Einfluss der Mutterschutzimpfung gegen *Mycoplasma hyopneumoniae* auf den Impfschutz der Ferkel

Inaugural-Dissertation

zur Erlangung der tiermedizinischen Doktorwürde
der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

von
Christian Strauß
aus Aindling

München 2007
Gedruckt mit der Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

Dekan: Univ.-Prof. Dr. E. P. Märtlbauer
Referent: Univ.-Prof. Dr. K. Heinritzi
Korreferent: PD Dr. B. Schalch

Tag der Promotion: 09.02.2007
Meinen Eltern

&

Tanja
Inhaltsverzeichnis

1 EINLEITUNG .. 1

2 LITERATURÜBERSICHT- MYCOPLASMA HYOPNEUMONIAE 2

2.1 Ätiologie .. 2

2.2 Epidemiologie ... 3

2.3 Pathogenese .. 5

2.4 Klinisches Bild ... 6

2.4.1 Monoinfektion mit Mycoplasma hyopneumoniae ... 6

2.4.2 Infektion mit Sekundärerreger ... 7

2.4.2.1 Bakterielle Sekundärerreger .. 7

2.4.2.2 Virale Sekundärerreger .. 8

2.4.3 Einfluss von unbelebten Faktoren .. 8

2.5 Pathologie .. 9

2.6 Immunreaktion .. 10

2.7 Diagnostik ... 12

2.7.1 Kultureller Nachweis ... 12

2.7.2 Immunfluoreszenz (IF) .. 13

2.7.3 Polymerase-Ketten-Reaktion (PCR) ... 13

2.7.4 Serologie .. 14

2.8 Bekämpfung von Mycoplasma hyopneumoniae ... 16

2.8.1 Sanierungsverfahren .. 16

2.8.2 Erregerkontrolle .. 17

2.8.2.1 Antibiose .. 17

2.8.2.2 Vakzination .. 19

2.9 Sauenmilch und maternale Antikörper .. 22

2.9.1 Zusammensetzung der Sauenmilch .. 22

2.9.2 Maternale Antikörper ... 22

3 MATERIAL UND METHODEN ... 25

3.1 Ziel der Untersuchung .. 25

3.2 Versuchsbetriebe ... 25

3.3 Auswahl der Tiere ... 29

3.4 Vakzine .. 29

3.5 Gruppeneinteilung ... 30

3.6 Probennahme ... 30

3.7 Labordiagnostik .. 31

3.8 Gewichtsentwicklung .. 33

3.9 Erhebung von Lungenbefunden ... 33

3.9.1 Bronchopneumonien .. 34

3.9.2 Pleuritiden .. 35
Inhaltsverzeichnis

3.9.3 Abszesse ... 36
3.10 Statistik.. 37
3.10.1 Statistische Auswertung der Ergebnisse .. 37
3.10.2 Arithmetisches Mittel (Mittelwert) und Signifikanzanalyse 38

4 ERGEBNISSE .. 39
4.1 Auswertbares Tiermaterial ... 39
4.2 Verträglichkeit der Impfung ... 41
4.3 Ergebnisse der serologischen Untersuchungen .. 41
4.3.1 Serologie der Ferkel ... 41
4.3.1.1 Antikörperentwicklungen aller Gruppen ... 41
4.3.1.2 Vergleich der Antikörperentwicklung der einzelnen Gruppen untereinander 43
4.3.2 Serologie der Sauen .. 48
4.3.2.1 Blutserologie .. 48
4.3.2.2 Milchserologie .. 50
4.4 Auswertung der Lungenbefunde... 54
4.5 Auswertung der Gewichtsentwicklung... 57

5 DISKUSSION ... 59
5.1 Verträglichkeit der Impfung... 59
5.2 Antikörperentwicklung nach Impfung tragender Sauen 60
5.3 Übergang maternaler Antikörper vom Kolostrum ins Blut der Ferkel................. 61
5.4 Antikörperentwicklung gegen Mycoplasma hyopneumoniae der Ferkel und Einfluss maternaler Antikörper ... 62
5.5 Beurteilung der Schlachtungen ... 64
5.6 Durchschnittliche tägliche Zunahmen .. 66
5.7 Bewertung der Milchserologie ... 67
5.8 Schlußfolgerungen ... 69

6 ZUSAMMENFASSUNG .. 71
7 SUMMARY ... 73
8 LITERATURVERZEICHNIS .. 75
DANKSAGUNG .. 93
LEBENSLAUF .. 94
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.p.</td>
<td>ante partum</td>
</tr>
<tr>
<td>APP</td>
<td>Actinobacillus pleuropneumoniae</td>
</tr>
<tr>
<td>BALF</td>
<td>Bronchoalveoläre Lavageflüssigkeit</td>
</tr>
<tr>
<td>BE</td>
<td>Blutentnahme</td>
</tr>
<tr>
<td>CCM</td>
<td>Corn Cob Mix</td>
</tr>
<tr>
<td>DNS</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DLG</td>
<td>Deutsche-Landwirtschafts-Gesellschaft</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked-Immunosorbent Assay</td>
</tr>
<tr>
<td>IF</td>
<td>Immunfluoreszenz</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunglobulin M</td>
</tr>
<tr>
<td>IHA</td>
<td>Indirekte Hämagglutination</td>
</tr>
<tr>
<td>KBR</td>
<td>Komplementbindungsreaktion</td>
</tr>
<tr>
<td>M.</td>
<td>Mycoplasma</td>
</tr>
<tr>
<td>MEW</td>
<td>Medicated-Early-Weaning</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NPW</td>
<td>Negativer Prädikativer Wert</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>p.n.</td>
<td>post natum</td>
</tr>
<tr>
<td>p.p.</td>
<td>post partum</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PCV</td>
<td>Porcines Circovirus</td>
</tr>
<tr>
<td>PMWS</td>
<td>Postweaning-Multisystemic-Wasting-Syndrome</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>PPW</td>
<td>Positiver Prädikativer Wert</td>
</tr>
<tr>
<td>PRDC</td>
<td>Porcine Respiratory Disease Complex</td>
</tr>
<tr>
<td>PRRSV</td>
<td>Porcine Reproductive and Respiratory Syndrome Virus</td>
</tr>
<tr>
<td>SEW</td>
<td>Segregated-Early-Weaning</td>
</tr>
<tr>
<td>SIV</td>
<td>Schweine-Influenzavirus</td>
</tr>
<tr>
<td>SPF</td>
<td>Spezifisch-Pathogen-Frei</td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen pro Minute</td>
</tr>
</tbody>
</table>
1 Einleitung

In der modernen Schweineproduktion verursachen respiratorische Erkrankungen schwerwiegende Probleme, die neben Infektionen des Gastrointestinaltraktes ein häufiger Grund für hohe wirtschaftliche Verluste durch hohe Behandlungskosten, eine hohe Mortalität der Tiere, schlechtere Futterverwertung und dadurch geringere Tageszunahmen in der Mast sind.

Begünstigt wird die Entstehung von respiratorischen Erkrankungen durch die modernen Haltungsformen, bei denen viele Tiere auf engem Raum gehalten werden, sowie die hohe Prävalenz des Erregers in der Population, die leichte Übertragbarkeit von *Mycoplasma hyopneumoniae* und die Schwierigkeit bei Prophylaxe und Therapie.

Im Rahmen der Bekämpfung von *Mycoplasma hyopneumoniae* wird der Immunprophylaxe großer Bedeutung beigemessen. Die Frage ob Tiere mit Einmal- oder Zweimalimpfstoff vakziniert werden sollen wird dabei immer wieder kontrovers diskutiert. Auch ob maternal über das Kolostrum übertragene Antikörper die Wirkung der Ferkelimpfung beeinflussen oder ob gar eine Impfung der Sauen vor dem Abferkeln einen ausreichenden Schutz für die Ferkel bietet, wurde noch nicht abschließend geklärt.

2 Literaturübersicht- *Mycoplasma hyopneumoniae*

Mykoplasmen sind ubiquitär verbreitet und kommen auf den Schleimhäuten fast aller Tiere vor. Während ein Teil der Mykoplasmen als apathogen anzusehen ist, können einige mit verschiedenen Erkrankungen bei Mensch und Tier in Zusammenhang gebracht werden.

2.1 Ätiologie

Mykoplasmen haben einen Durchmesser von 0,1 bis 0,3 µm, der es ihnen ermöglicht übliche bakteriendiene Filter zu passieren, und sind somit die kleinsten Mikroorganismen, die sich außerhalb von Zellen selbstständig vermehren können (SELBITZ 2002). Da das Zytoplasma nicht von einer festen Zellwand, sondern von einer dreischichtigen 7,5 bis 10 nm dicken Zellmembran umgeben ist, wurden Mykoplasmen früher zwischen Bakterien und Viren eingeordnet. Diese Membran ermöglicht ihnen pleomorph zu sein, das heißt die Zellform wird vom vorhandenen Milieu bestimmt. Außerdem sind sie färberisch sehr schlecht darzustellen, wodurch sie den gramnegativen Keimen zugeordnet werden. Ihre Vermehrung findet durch Querteilung statt (ROSS 1999).

2.2 Epidemiologie

2.3 Pathogenese

Durch Schädigung der Alveolarepithelzellen kommt es ferner zu einem Mangel des, von den Pneumozyten II produzierten, Surfactants (BERNER 1995), was zu einer Verminderung der mukoziliären Clearance führt.

2.4 Klinisches Bild

Verläuft bei einer Monoinfektion mit Mycoplasma hyopneumoniae die Erkrankung im Allgemeinen unkompliziert, so kann es unter Beteiligung von Sekundärerregern als Faktorenrkrankheit zu einem schwereren Krankheitsbild der Enzootischen Pneumonie kommen (SELBITZ 2002).

2.4.1 Monoinfektion mit Mycoplasma hyopneumoniae

Der Krankheitsverlauf ist von einer hohen Morbidität, aber geringen Mortalität geprägt (KOBISCH et al. 1993). Symptome wie Tachypnoe, Dyspnoe und Fieber können auftreten. Unter günstigen Umweltbedingungen sind kaum klinische Symptome zu beobachten (SCHUH 2001). Bei subklinischen Verläufen wird Kümmer, Verschlechterung der Futterverwertung und verringertes Wachstum festgestellt (ROSS 1999), was zu einer Verringerung der täglichen Zunahmen um bis zu 60g pro Tier und Tag führen kann (RAUTAINEN et al. 2000).
In Betrieben mit hohem Infektionsdruck können sich die Ferkel bereits früh an der Muttersau infizieren (BERNER 1995). Es zeigen vor allem Ferkel und Läuferschweine in chronisch infizierten Beständen klinische Symptome (PFÜTZNER 1993; ROSS 1999), wobei sich aber auch Mastschweine während der gesamten Mastperiode infizieren können (WALLGREN u. SCHWAN 1994).

2.4.2 Infektion mit Sekundärerregern

2.4.2.1 Bakterielle Sekundärerreger

Bordetella bronchiseptica kann häufig in den oberen Luftwegen gefunden werden und führt als Monoinfektion bei Saugferkeln zur Erkrankung. Als Sekundärerreger wird er oft aus veränderten Bezirken der Lunge bei Enzootischer Pneumonie isoliert (SELBITZ 2002).

2.4.2.2 Virale Sekundärerreger

Koinfektionen von *Mycoplasma hyopneumoniae* und *Schweine-Influenzavirus* (SIV) führen zur Verlängerung der Genesungszeit und verursachen einen größeren Grad an Lungenläsionen im Vergleich zur Monovirusinfektion (THACKER et al. 2001).

2.4.3 Einfluss von unbelebten Faktoren

Zu den unbelebten Faktoren zählen zum einen der Ammoniak- und Staubgehalt und zum anderen die Temperatur der Stallluft.

Untersuchungen in Dänemark von ANDREASEN et al. (1994) zeigten, dass durch eine Ammoniakkonzentration über 50ppm schwere Pneumonien verursacht werden, wenn die Lunge durch *Mycoplasma hyopneumoniae* bereits vorgeschädigt ist. Bei rein mit *Pasteurella multocida* infizierten SPF-Tieren konnten, unabhängig der Ammoniakkonzentrationen von 5 bis 50ppm, weder klinisch Pneumonien noch Lungenläsionen festgestellt werden. Erst als

Schlechtes Management, unzureichende Haltungsbedingungen und Zukauf aus mehreren Herkunfts betrieben führen zu einer erhöhten Infektionsrate der Schweine mit Enzootischer Pneumonie (DIFRANCO et al. 1989).

2.5 Pathologie

2.6 Immunreaktion

2.7 Diagnostik

Eine spezifische Diagnose einer *Mycoplasma hyopneumoniae*-Infektion ist nur durch einen direkten oder indirekten Erregernachweis möglich.

2.7.1 Kultureller Nachweis

2.7.2 Immunfluoreszenz (IF)

2.7.3 Polymerase-Ketten-Reaktion (PCR)

und hohen Spezifität, wird die PCR-Technik als ideal für den Nachweis von *Mycoplasma hyopneumoniae* angesehen (DUBUSSON 2003).

2.7.4 Serologie

Zu den wichtigsten serologischen Nachweisverfahren für humorale Antikörper gehören die indirekte Hämagglutination (IHA), die Komplementbindungsreaktion (KBR) und der Enzyme-linked-immunosobent-assay (ELISA).

Literaturübersicht

Es stehen zwei Methoden zur Verfügung, die auch für die Messung des Antikörpergehalts des Kolostrums geeignet sind.

Antikörpern. Deshalb besteht hier eine negative Korrelation zwischen Farbintensität und Antikörperkonzentration der Probe. Beim Blocking-ELISA liegt die von RAUTIANEN et al. (1996) ermittelte Sensitivität bei Herdendiagnostik bei 100% und die Spezifität bei 98,7%.

2.8 Bekämpfung von Mycoplasma hyopneumoniae

Bei der Bekämpfung der Enzootischen Pneumonie des Schweines muss man unterscheiden zwischen der Totalsanierung, die eine Erregereradikation zum Ziel hat, und Maßnahmen, die auf eine Verminderung des Keimdrucks abzielen.

Durch medikamententelle Therapien, Impfungen und Hygiene- und Managementmaßnahmen kann der Infektionsdruck im Bestand gesenkt werden (WALLGREN et al. 1993).

2.8.1 Sanierungsverfahren

Das Grundprinzip aller Sanierungsverfahren ist die frühe Isolierung der Ferkel von der Muttersau und von anderen Schweinen, um Übertragungswege für Krankheitserreger zu unterbrechen.

Beim spezifisch pathogenfrei (SPF)-Verfahren von YOUNG und UNDERDAHL (1953) werden Ferkel per Hysterektomie geboren und anschließend mutterlos aufgezogen. Diese Methode ist jedoch sehr aufwändig und für konventionelle Betriebe nicht praktikabel.

2.8.2 Erregerkontrolle

2.8.2.1 Antibiose

Tabelle 1 zeigt die in Deutschland momentan zugelassenen Antibiotika gegen *Mycoplasma hyopneumoniae* beim Schwein mit den jeweiligen Handelsnamen und der Applikationsart.

Tabelle 1: Zugelassene Antibiotika gegen *Mycoplasma hyopneumoniae* beim Schwein in Deutschland

<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>Handelsname (®)</th>
<th>Applikationsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin</td>
<td>Baytril 10%</td>
<td>Intramuskulär</td>
</tr>
<tr>
<td></td>
<td>Baytril 2,5%</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>Marbofloxacin</td>
<td>Marbocyl 2%</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>Tulathromycin</td>
<td>Draxxin</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>Doxycyclin</td>
<td>Pulmodox</td>
<td>oral</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>Albiotic Top</td>
<td>oral</td>
</tr>
<tr>
<td>Valnemulin</td>
<td>Econor 10%</td>
<td>oral</td>
</tr>
<tr>
<td>Tiamulin</td>
<td>Tiamulin 20% Pulver</td>
<td>oral</td>
</tr>
<tr>
<td></td>
<td>Tiamulin 4% AMV animedica</td>
<td>oral</td>
</tr>
<tr>
<td></td>
<td>Tiamulin 10% AMV</td>
<td>oral</td>
</tr>
<tr>
<td></td>
<td>Tiamulin 10% oral</td>
<td>oral</td>
</tr>
<tr>
<td></td>
<td>Tiamulin 45% oral</td>
<td>oral</td>
</tr>
<tr>
<td></td>
<td>Tiamulin pro inj.</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>Tylosin</td>
<td>Norotyl LA</td>
<td>intramuskulär</td>
</tr>
<tr>
<td></td>
<td>Tylan Soluble</td>
<td>oral</td>
</tr>
</tbody>
</table>

Literaturübersicht

2.8.2.2 Vakzination

Eine Ansteckung mit dem Erreger kann durch eine Vakzination nicht verhindert werden, so dass auch nach Impfung eine *Mycoplasma hyopneumoniae*-Infektion möglich ist (THACKER et al. 2000b; JOLIE et al. 2004). Neben den in Europa seit 1994 zugelassenen Impfstoffen, die zur zweimaligen intramuskulären Applikation konzipiert sind (Tabelle 2), gibt es seit 2002 in Europa zugelassene sogenannte One-Shot-Vakzine, die nur noch einmalig intramuskulär appliziert werden müssen (Tabelle 3).

Tabelle 2: In Deutschland zugelassene Two-Shot-Vakzine gegen Mycoplasma hyopneumoniae

<table>
<thead>
<tr>
<th>Handelsname</th>
<th>Dosis</th>
<th>Adjuvans</th>
<th>Art</th>
<th>Empfohlener Impfzeitpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyoresp®</td>
<td>2ml</td>
<td>ALOH</td>
<td>Wasser</td>
<td>ab 5 Tagen und 3-4 Wochen später</td>
</tr>
<tr>
<td>M+PAC®</td>
<td>1ml</td>
<td>ALOH+Emunade</td>
<td>Öl in Wasser</td>
<td>ab 7 Tagen und 2-4 Wochen später</td>
</tr>
<tr>
<td>Mypravac Suis®</td>
<td>2ml</td>
<td>Carbomer</td>
<td>Polymer+Wasser</td>
<td>ab 7.-10. Tag und 3 Wochen später</td>
</tr>
<tr>
<td>Stellamune® Mycoplasma</td>
<td>2ml</td>
<td>Amphigen+Lecithin</td>
<td>Öl in Wasser</td>
<td>ab 3. Tag und 3-5 Wochen später</td>
</tr>
<tr>
<td>Suvaxyn M.hyo®</td>
<td>2ml</td>
<td>Carbopol</td>
<td>Polymer+Wasser</td>
<td>ab 3. Tag und 2-3 Wochen später</td>
</tr>
</tbody>
</table>

In Deutschland sind zurzeit neun zugelassene Impfstoffe gegen Mycoplasma hyopneumoniae auf dem Markt. Wie ebenfalls in Tabelle 2 und 3 dargestellt werden von den Herstellern verschiedene Impfschemata empfohlen.
Tabelle 3: In Deutschland zugelassene One-Shot-Vakzine gegen *Mycoplasma hyopneumoniae*

<table>
<thead>
<tr>
<th>Handelsname</th>
<th>Dosis</th>
<th>Adjuvans</th>
<th>Art</th>
<th>Empfohlener Impfzeitpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyoresp®</td>
<td>2ml</td>
<td>ALOH</td>
<td>Wasser</td>
<td>ab 10 Wochen</td>
</tr>
<tr>
<td>Ingelvac M.hyo®</td>
<td>2ml</td>
<td>Impran</td>
<td>Wasser in Öl</td>
<td>ab 3 Wochen</td>
</tr>
<tr>
<td>M+PAC®</td>
<td>2ml</td>
<td>ALOH+Emunade</td>
<td>Öl in Wasser</td>
<td>ab 3 Wochen</td>
</tr>
<tr>
<td>Respiporc M.HYO®</td>
<td>2ml</td>
<td>Impran</td>
<td>Wasser in Öl</td>
<td>ab 3 Wochen</td>
</tr>
<tr>
<td>Stellamune One®</td>
<td>2ml</td>
<td>Amphigen+Lecithin</td>
<td>Öl in Wasser</td>
<td>ab 1. Woche</td>
</tr>
<tr>
<td>Suvaxyn MH-One®</td>
<td>2ml</td>
<td>Carbomer</td>
<td>Polymer+Wasser</td>
<td>ab 3 Wochen</td>
</tr>
</tbody>
</table>

2.9 Sauenmilch und maternale Antikörper

2.9.1 Zusammensetzung der Sauenmilch

Die durchschnittliche Zusammensetzung der Sauenmilch während der Laktation beinhaltet 7,7% Fett, 5,6% Laktose, 5,9% Eiweiß und 0,8% Asche (ZEROBIN 1987).

2.9.2 Maternale Antikörper

Literaturübersicht

3 Material und Methoden

3.1 Ziel der Untersuchung

3.2 Versuchsbetriebe

Bei den beiden Versuchsbetrieben handelt es sich um einen Ferkelerzeuger (Betrieb 1) mit 550 Muttersauen der Rasse Deutsche Landrasse, der ca. 60% seiner produzierten Ferkel an einen Mäster (Betrieb 2) mit 2500 Mastplätzen verkauft. Betrieb 2 bezieht die Mastläufer ausschließlich von Betrieb 1.

Material und Methoden

Wie in Abbildung 1 gezeigt befinden sich in jedem Abferkelabteil Abferkelboxen mit Kastenstand für die Sauen. In den Boxen ist im hinteren Bereich Plastikspaltenboden und im vorderen Bereich eine geflieste Festfläche, die im Bereich der Liegefläche der Ferkel mit Fußbodenheizung und Wärmelampen beheizt wird.

Abb.1: Abferkelbucht im Betrieb 1

Am Tag der Geburt wird den Ferkeln der Schwanz kupiert und ein orales Eisenpräparat verabreicht. Am fünften Lebenstag erhalten die Ferkel eine betriebseigene Ohrmarke, werden kastriert und 2 ml EisenB$_{12}$-Komplex® wird i.m. appliziert.

Nach Absetzen der Ferkel in der vierten Lebenswoche werden die Ferkel in ein Absetzabteil im Flatdeck mit zwei großen Buchten für die geschlechtliche Trennung, wie in Abbildung 2 dargestellt, und zwei kleinen Buchten für untergewichtige Ferkel, eingestallt. Zwölf Tage nach Absetzen werden die Absatzläufer in ein größeres Flatdeckabteil mit gleichem Aufbau umgestellt, in dem sie bis zum Verkauf mit ca. elf Wochen verbleiben.
Abb.2: Absetzabteil in Betrieb 1

Die Fütterung im Bestand 1 erfolgte mit Trockenfutter aus hofeigenem Getreide, zugekauftem Sojaschrot und einer betriebsspezifisch zusammengestellten Mineralstoffmischung. Wasser stand allen Tieren über Nippeltränken zur freien Verfügung, wobei den Sauen nach der Fütterung zusätzlich Wasser in den Trog gegeben wurde.

Tabelle 4: Durchschnittliche Klimadaten im Betrieb 1 von Januar bis Dezember 2003

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mär</th>
<th>Apr</th>
<th>Mai</th>
<th>Juni</th>
<th>Juli</th>
<th>Aug</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Dez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abferkelst.</td>
<td></td>
</tr>
<tr>
<td>Temp. (°C)</td>
<td>21,4</td>
<td>21,5</td>
<td>21,9</td>
<td>22,2</td>
<td>23,1</td>
<td>24,5</td>
<td>25,4</td>
<td>24,8</td>
<td>23,4</td>
<td>23,1</td>
<td>22,5</td>
<td>21,8</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>10,6</td>
<td>4,6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,5</td>
</tr>
<tr>
<td>Flatdeck</td>
<td></td>
</tr>
<tr>
<td>Temp. (°C)</td>
<td>23,7</td>
<td>24,1</td>
<td>24</td>
<td>25,5</td>
<td>26,3</td>
<td>28,1</td>
<td>28,8</td>
<td>27,7</td>
<td>26,1</td>
<td>25,2</td>
<td>23,9</td>
<td>23,5</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>9,6</td>
<td>10,7</td>
<td>6,4</td>
<td>16,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Material und Methoden

Wie in Tabelle 4 zu sehen ist entsprach die Luftqualität, die vierteljährlich kontrolliert wurde, über das Jahr bei Betrieb 1 in allen Abteilen den Anforderungen der Schweinehaltungsverordnung.

Tabelle 5: Durchschnittliche Klimadaten im Betrieb 2 von Mai 2003 bis April 2004

<table>
<thead>
<tr>
<th></th>
<th>Mai</th>
<th>Juni</th>
<th>Juli</th>
<th>Aug</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Dez</th>
<th>Jan</th>
<th>Feb</th>
<th>Mär</th>
<th>Apr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. (°C)</td>
<td>24,8</td>
<td>25,3</td>
<td>25,6</td>
<td>25</td>
<td>23,7</td>
<td>21,9</td>
<td>20,5</td>
<td>20,4</td>
<td>20,7</td>
<td>21,3</td>
<td>22,7</td>
<td></td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>33,9</td>
<td>28,5</td>
<td>25</td>
<td>18,8</td>
<td>18,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5 zeigt, dass bei Betrieb 2 anfänglich die Ammoniakwerte über den Grenzwerten der Schweinehaltungsverordnung lagen. Nach Reinigung der Lüftungsanlagen, die aufgrund dieser Messungen durchgeführt wurde, konnten die Werte wieder unter den Grenzbereich gebracht werden.

Abb. 3: Mastbucht im Betrieb 2

Die Mastläufer wurden bei Betrieb 2 in gewaschene und desinfizierte Mastabteile eingestallt. Die Fütterung erfolgte mit Flüssigfutter aus hofeigenem Getreide, CCM und Molke mit
Material und Methoden

Zusatz einer Mineralstoffmischung. Zusätzlich konnten die Tiere ad libitum Wasser über Nippel aufnehmen.

3.3 Auswahl der Tiere

3.4 Vakzine

Bei den beiden Impfstoffen handelt es sich jeweils um einen inaktivierten *Mycoplasma hyopneumoniae* Impfstoff (Firma Pfizer).

Die One-Shot Vakzine ist eine Öl in Wasser Emulsion, bei der die Impfdosis 2 ml beträgt. Der Impfstoff enthält *Mycoplasma hyopneumoniae* Stamm NL 1042. Pro Impfdosis sind zwischen 4,5 und 5,2 \(\log_{10} \) relative ELISA-Einheiten (Relative ELISA-Einheiten im Vergleich zu einer Referenzvakzine) und als Adjuvans Amphigen®, bestehend aus 0,025 ml Amphigenbase und 0,075 ml Mineralöl Drakeol 5 enthalten. Als sonstiger Bestandteil ist 0,185 mg Thiomersal enthalten. Das Amphigen® besteht aus kleinsten Ölkügelchen umhüllt mit Lecithin. Das Antigen des Impfstoffes befindet sich zum Teil einerseits frei in der wässrigen Phase der Emulsion, andererseits ist es sowohl an die mit Lecithin umhüllte Oberfläche, als auch im Inneren der Ölkügelchen gebunden. Dies soll eine protrahierte Abgabe des Mykoplasmenantigens an den Organismus gewährleisten.

Die Two-Shot Vakzine ist ebenfalls ein inaktivierter *Mycoplasma hyopneumoniae*-Impfstoff in Form einer Öl-in-Wasser-Emulsion. Die Impfdosis von 2 ml enthält mindestens 6000 RU (relative ELISA-Einheiten) inaktivierte *Mycoplasma hyopneumoniae* mit einem Konservans von maximal 0,21 mg Thiomersal und sonstiger Bestandteile 0,075 ml Drakeol 5, 0,025 ml Amphigenbase, 0,056 ml Polysorbat 80, 0,024 ml Sorbitanmonoleat und maximal 1,4 mg EDTA-Natrium.
3.5 Gruppeneinteilung

Alle vier Wochen wurden die Sauen einer Abferkelgruppe in zwei Gruppen eingeteilt. Die Tiere einer Gruppe wurden drei Wochen ante partum mit StellamuneOne® geimpft. Die Ferkel der geimpften Sauen wurden in drei Gruppen, die Ferkel der ungeimpften Sauen in zwei Gruppen unterteilt, so dass insgesamt wie in Tabelle 6 dargestellt fünf Gruppen mit Tieren, die nach unterschiedlichen Impfschemata vakziniert wurden, entstanden.

<table>
<thead>
<tr>
<th>Tabelle 6: Gruppeneinteilung und Impfzeitpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
</tr>
<tr>
<td>Gruppe 2</td>
</tr>
<tr>
<td>Gruppe 3</td>
</tr>
<tr>
<td>Gruppe 4</td>
</tr>
<tr>
<td>Gruppe 5</td>
</tr>
</tbody>
</table>

3.6 Probennahme

Von allen Sauen des Versuches wurde am Tag der Abferkelung Milch gewonnen. Dazu wurde ihnen 0,5ml Depotocin® injiziert und etwa fünf Minuten später in ein steriles Milchröhrchen Milch von den vorderen, mittleren und hinteren Mammarkomplexen gemolken.
Material und Methoden

Tabelle 7: Zeitpunkt der Blutentnahme (BE) der Sauen der einzelnen Gruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 3</td>
<td>/</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 4</td>
<td>/</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 5</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
</tr>
</tbody>
</table>

Allen Ferkeln wurde unabhängig ihrer Gruppenzugehörigkeit zu denselben Zeitpunkten Blut entnommen, wie in der folgenden Tabelle zu sehen ist.

Tabelle 8: Zeitpunkt der Blutentnahme (BE) aller Ferkel

<table>
<thead>
<tr>
<th>BE</th>
<th>Zeitpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7. Lebenstag (+/- 1 Tag)</td>
</tr>
<tr>
<td>2.</td>
<td>21. Lebenstag (+/- 1 Tag)</td>
</tr>
<tr>
<td>3.</td>
<td>63. Lebenstag (+/- 1 Tag)</td>
</tr>
<tr>
<td>4.</td>
<td>140. Lebenstag (+/- 1 Tag)</td>
</tr>
</tbody>
</table>

Am Tag der Entnahme wurden die Blutproben zehn Minuten bei 3000 U/min zentrifugiert und das dadurch gewonnene Serum mit einer Eppendorfpipette abgezogen und in 1ml Micronic®-Röhrchen einpipettiert und in Kästen eingefroren. Die Milchproben wurden am Tag der Entnahme in gleicher Weise bearbeitet.

3.7 Labordiagnostik

Die Seren der Tiere wurden mittels Enzyme-linked-Immunosorbent Assay (ELISA) auf Antikörper gegen Mycoplasma hyopneumoniae untersucht. Um etwaige Schwankungen an verschiedenen Tagen oder bei den Testkits auszuschließen wurden alle Proben eines Tieres am gleichen Tag auf der gleichen Platte ausgewertet.

Der Test ist gültig, wenn die Differenz zwischen dem Mittelwert der positiven Kontrollen und dem Mittelwert der negativen Kontrollen größer oder gleich 0,150 ist.

Die Werte der optischen Dichte der Proben (OD Probe) sowie der positiven Kontrolle (OD positiv) werden durch Subtraktion der Extinktion der negativen Kontrolle (OD negativ) korrigiert. Die korrigierten Werte der Probenwerden auf den korrigierten Wert der positiven Kontrolle (=100 %) bezogen (Probenwert % = (OD Probe – OD negativ / OD positiv – OD negativ) x 100) und als ELISA-Wert (%) bezeichnet. Nach Angaben des Herstellers werden ELISA-Werte < 30 als negativ, zwischen 30 und 40 als grenzwertig und > 40 als positiv gewertet.

3.8 Gewichtsentwicklung

Alle Masttiere wurden am 105. Lebenstag (+/- 2 Tage) auf dem Betrieb 2 mit einer geeichten, fahrbaren Viehwaage gewogen. Aus betriebstechnischen Gründen war die Wiegung am Schlachttag nicht möglich.

3.9 Erhebung von Lungenbefunden

Da jedes Tier unverwechselbar mit Ohrmarke und Tätowierung gekennzeichnet wurde, konnten die jeweiligen Lungenbefunde einem Einzeltier und damit auch einer Versuchsgruppe zugeordnet werden.

Abbildungen 4 bis 6 zeigen Beispiele von Schlachtlungen mit verschiedenen pathologischen Veränderungen und die dazugehörige Scorebewertung.
Material und Methoden

Abb.4: Lunge mit Score 0

3.9.1 Bronchopneumonien

Tabelle 9: Beurteilung pneumonischer Veränderungen je Lungenlappen

<table>
<thead>
<tr>
<th>Score-Punkte</th>
<th>Qualität der Veränderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nicht vorhanden</td>
</tr>
<tr>
<td>1</td>
<td>Kleine Veränderungen nicht größer als 3 x 3 cm</td>
</tr>
<tr>
<td>2</td>
<td>Größere Veränderungen jedoch weniger als ½ des Lungenlappens</td>
</tr>
<tr>
<td>3</td>
<td>Umfangreiche Veränderungen jedoch nicht gesamter Lungenlappen betroffen</td>
</tr>
<tr>
<td>4</td>
<td>Gesamter Lungenlappen betroffen</td>
</tr>
</tbody>
</table>
Abb.5: Lunge mit Score 2

3.9.2 Pleuritiden

Pleuritiden, die mit Verklebungen einhergehen, werden mit dem Score 1, andere, die zu Verwachsungen geführt haben werden mit Score 2 bewertet.

<table>
<thead>
<tr>
<th>Score</th>
<th>Art der Pleuritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nicht vorhanden</td>
</tr>
<tr>
<td>1</td>
<td>Verklebung</td>
</tr>
<tr>
<td>2</td>
<td>Verwachsung</td>
</tr>
</tbody>
</table>
Material und Methoden

Abb.6: Lunge mit Score 10

3.9.3 Abszesse

Abszesse können einzeln auftreten oder können vermehrt vorhanden sein. Wurde ein Abszess bei der Lunge festgestellt so führte dies zur Einzelbewertung 1, bei zwei oder mehr Abszessen wurde der Score 2 notiert (Tabelle 11).

<table>
<thead>
<tr>
<th>Tabelle 11: Abszesse je Lunge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Material und Methoden

3.10 Statistik

3.10.1 Statistische Auswertung der Ergebnisse

Die Beurteilung der Milchuntersuchung sowie der Ferkelblutserologie wurde mit Hilfe der Vierfeldertafel vorgenommen, wobei die Ergebnisse der Blutuntersuchung der Sauen als Richtwerte galten. Ermittelt wurde die Sensitivität, die Spezifität, der positive prädikative Wert (PPW) und der negative prädikative Wert (NPW), bezogen auf die Milchuntersuchung bzw. auf die Untersuchung des Ferkelblutes.

Die Sensitivität gibt die Wahrscheinlichkeit an, dass ein im Blut positives Tier auch in der Milch als positiv erkannt wird bzw. dass das Blut der Ferkel einer im Blut positiven Sau positiv ist.

Die Spezifität ermittelt die Wahrscheinlichkeit, dass ein im Blut negatives Tier auch in der Milch negativ ist bzw. dass das Blut der Ferkel einer im Blut negativen Sau negativ ist.

Der positive prädikative Wert (PPW) macht eine Aussage über die Wahrscheinlichkeit, dass ein in der Milch als positiv erkanntes Tier auch tatsächlich im Blut positiv ist bzw. dass im Blut positive Ferkel auch tatsächlich eine positiv getestete Mutter haben.

Der negative prädikative Wert (NPW) sagt aus, dass ein in der Milch als negativ ermitteltes Tier auch tatsächlich im Blut negativ ist bzw. dass im Blut negative Ferkel auch tatsächlich eine negativ befundete Mutter haben.

Vierfeldertafel:

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>-</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>a</td>
<td>b</td>
<td>a + b</td>
</tr>
<tr>
<td>-</td>
<td>c</td>
<td>d</td>
<td>c + d</td>
</tr>
<tr>
<td>Σ</td>
<td>a + c</td>
<td>b + d</td>
<td>n</td>
</tr>
</tbody>
</table>

Sensitivität: \(\frac{a}{a+b} \)
PPW: \(\frac{a}{a+c} \)

Spezifität: \(\frac{d}{c+d} \)
NPW: \(\frac{d}{b+d} \)

- 37 -
Material und Methoden

3.10.2 Arithmetisches Mittel (Mittelwert) und Signifikanzanalyse

Der Mittelwert errechnet sich aus der Summe der Einzelwerte (x) dividiert durch die Anzahl der Einzelwerte (n).

Die Signifikanzen wurden mittels t-Test bzw. χ^2-Test durchgeführt. Die Berechnung erfolgte mit dem Programm SPSS.
Ergebnisse

4 Ergebnisse

4.1 Auswertbares Tiermaterial

In die Studie wurden insgesamt 423 Ferkel einbezogen. Gründe für ein vorzeitiges Ausscheiden lagen unabhängig von der Studie an Todesfällen im Saugferkelbereich, im Flatdeck, in der Mast oder nach Blutentnahme und der Vermarktdung der Tiere an andere Mäster. In die Studie wurden nur Tiere einbezogen, die bis zur Schlachtung verfolgt werden konnten (Tabelle 12).

Tabelle 12: Ferkelzahl (n) der einzelnen Gruppen zu den unterschiedlichen Zeitpunkten und Impfschema für die Sauen und Ferkel der einzelnen Gruppen

<table>
<thead>
<tr>
<th></th>
<th>Gruppe 1</th>
<th>Gruppe 2</th>
<th>Gruppe 3</th>
<th>Gruppe 4</th>
<th>Gruppe 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauen vakziniert</td>
<td>One-Shot</td>
<td>One-Shot</td>
<td>nicht</td>
<td>nicht</td>
<td>vakziniert</td>
</tr>
<tr>
<td>Ferkel</td>
<td>One-Shot</td>
<td>One-Shot</td>
<td>One-Shot</td>
<td>Two-Shot</td>
<td>nicht</td>
</tr>
<tr>
<td>BE mit 1 Woche</td>
<td>160</td>
<td>162</td>
<td>159</td>
<td>153</td>
<td>114</td>
</tr>
<tr>
<td>BE mit 3 Wochen</td>
<td>158</td>
<td>158</td>
<td>157</td>
<td>151</td>
<td>113</td>
</tr>
<tr>
<td>BE mit 9 Wochen</td>
<td>157</td>
<td>158</td>
<td>155</td>
<td>151</td>
<td>112</td>
</tr>
<tr>
<td>Wiegung 15 Wochen</td>
<td>92</td>
<td>99</td>
<td>91</td>
<td>85</td>
<td>60</td>
</tr>
<tr>
<td>BE mit 20 Wochen</td>
<td>92</td>
<td>99</td>
<td>91</td>
<td>85</td>
<td>60</td>
</tr>
<tr>
<td>Lungen-score</td>
<td>89</td>
<td>99</td>
<td>91</td>
<td>84</td>
<td>60</td>
</tr>
</tbody>
</table>

BE = Blutentnahme
Die Muttertiere der in den Versuch einbezogenen Ferkel wurden ebenfalls berücksichtigt. Die 254 Sauen wurden in fünf Gruppen eingeteilt (Tabelle 13). Die Sauen der Gruppen 1, 2 und 5,

Tabelle 13: Anzahl der Sauen je Gruppe und deren Blutentnahmezeitpunkte

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
<td>55</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td>54</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 3</td>
<td>55</td>
<td>/</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 4</td>
<td>51</td>
<td>/</td>
<td>BE</td>
<td>BE</td>
</tr>
<tr>
<td>Gruppe 5</td>
<td>39</td>
<td>BE</td>
<td>BE</td>
<td>BE</td>
</tr>
</tbody>
</table>

BE = Blutentnahme

Die Altersverteilung nach Wurfnummer der Sauen im Versuch ist in Abbildung 7 dargestellt. Einen etwa gleich großen Teil der Sauen stellten die Sauen vom zweiten bis vierten Wurf mit 45,7 % und die Sauen ab dem fünften Wurf mit 46,8 %, wohingegen die Jungsaunen mit erstem Wurf mit 7,5 % vertreten waren.

Abb. 7: Altersverteilung der Muttermiere nach Wurfnummer im Versuch
4.2 Verträglichkeit der Impfung

Es wurde bei den geimpften Tieren sowohl nach der Impfung der Sauen mit StellamuneOne® als auch bei Impfung der Ferkel mit Stellamune® bzw. StellamuneOne®, entzündliche Reaktionen an der Applikationsstelle bei der Untersuchung der lokalen Verträglichkeit nicht festgestellt. Auch fieberhafte Allgemeinerkrankungen oder Fressunlust nach Vakzinierung traten nicht auf. Lediglich eine Sau abortierte zehn Tage nach Vakzinierung. Bei Untersuchung der Sau und des Abortmaterials wurde keine infektiöse Ursache des Aborts festgestellt.

Bei stichprobenartigen Kontrollen der Rektaltemperatur von etwa 10 % der im Versuch einbezogenen Tiere, war keine Erhöhung um mehr als 0,3°C am Tag nach der Impfung festzustellen. Die Impfung der Sauen hatte außerdem keinen Einfluss auf den Geburtszeitpunkt, den Geburtsverlauf und die Erkrankungshäufigkeit am MMA-Komplex.

4.3 Ergebnisse der serologischen Untersuchungen

Bei der Beurteilung des Tests auf Antikörper gegen *Mycoplasma hyopneumoniae* der Firma IDEXX wurden ELISA-Werte (in % zur Positivkontrolle) kleiner 30 als negativ, zwischen 30 und 40 als grenzwertig und größer 40 als positiv eingestuft.

4.3.1 Serologie der Ferkan

4.3.1.1 Antikörperentwicklungen aller Gruppen

Tabelle 14: Arithmetisches Mittel und Standardabweichung s der ELISA-Werte der Ferkel gegen *Mycoplasma hyopneumoniae* der einzelnen Gruppen mit Anzahl der Tiere n

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=89) (SV/FO)</td>
<td>144,20</td>
<td>98,48</td>
<td>31,56</td>
<td>69,16</td>
</tr>
<tr>
<td>s</td>
<td>41,90</td>
<td>48,16</td>
<td>24,90</td>
<td>56,85</td>
</tr>
<tr>
<td>2 (n=99) (SV/FT)</td>
<td>133,60</td>
<td>96,21</td>
<td>36,61</td>
<td>73,04</td>
</tr>
<tr>
<td>s</td>
<td>50,86</td>
<td>49,33</td>
<td>22,95</td>
<td>50,18</td>
</tr>
<tr>
<td>3 (n=91) (SNV/FO)</td>
<td>29,09</td>
<td>16,46</td>
<td>25,38</td>
<td>70,91</td>
</tr>
<tr>
<td>s</td>
<td>42,05</td>
<td>31,89</td>
<td>24,91</td>
<td>49,75</td>
</tr>
<tr>
<td>4 (n=84) (SNV/FT)</td>
<td>26,83</td>
<td>14,71</td>
<td>40,82</td>
<td>73,44</td>
</tr>
<tr>
<td>s</td>
<td>37,15</td>
<td>28,14</td>
<td>26,52</td>
<td>44,69</td>
</tr>
<tr>
<td>5 (n=60) (SV/FNV)</td>
<td>154,68</td>
<td>119,28</td>
<td>30,13</td>
<td>36,36</td>
</tr>
<tr>
<td>s</td>
<td>52,85</td>
<td>55,25</td>
<td>25,24</td>
<td>36,36</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot

In Tabelle 14 und in Abbildung 8 ist zu erkennen, dass die Ferkel der geimpften Sauen der Gruppen 1, 2 und 5 hohe maternale Antikörperwerte aufwiesen, die sich im Blut der noch ungeimpften Ferkel am siebten Lebenstag nachweisen ließen. Die Ferkel dieser Gruppen wiesen im Mittel positive ELISA-Werte von 144,20, 133,60 und 154,68 auf. Im Gegensatz dazu waren die Ferkel der Gruppen 3 und 4, bei denen die Muttermütter nicht a.p. vakziniert wurden mit mittleren ELISA-Werten von 29,09 und 26,83 unter 30 und wurden somit als negativ bewertet.

Bei allen Gruppen fielen zur zweiten Blutentnahme mit drei Wochen die ELISA-Werte ab, wobei die Ferkel der Gruppen 1, 2 und 5 immer noch deutlich im positiven Bereich waren.

Zur dritten Blutentnahme nach neun Wochen fielen die ELISA-Werte der Ferkel der geimpften Sauen weiter ab und waren im Mittel nicht mehr im positiven Bereich, während sich bei den Ferkeln der ungeimpften Sauen die ELISA-Werte zur zweiten Blutentnahme mit drei Wochen verringerten, um zur dritten Entnahme mit neun Wochen wieder anzusteigen,
wobei Gruppe 3, bei der die Ferkel mit One-Shot geimpft wurden, im Mittel nicht in den positiven Bereich stieg. Gruppe 4 aber, bei der die Ferkel mit Two-Shot geimpft wurden, überschritt den positiven cut-off von 40 knapp.

Abb. 8: Antikörperentwicklung der Ferkel aller Gruppen gegen *Mycoplasma hyopneumoniae*

Mit neun Wochen waren die Serumantikörper der Ferkel, egal ob von geimpften oder ungeimpften Sauen, nahezu gleich, wobei die Ferkel, die mit Stellamune® doppelt geimpft wurden, im Mittelwert höhere ELISA-Werte aufwiesen. Nach 20 Wochen lagen die ELISA-Werte aller Gruppen, bei denen die Ferkel vakziniert wurden, im positiven Bereich (Abbildung 8), während das arithmetische Mittel der ELISA-Werte der ungeimpften Ferkel der Gruppe 5, bei der nur die Mutternachwuchs vakziniert wurden, nicht wieder in den positiven Bereich stieg, aber dennoch eine Steigerung zu verzeichnen hatte.

4.3.1.2 Vergleich der Antikörperentwicklung der einzelnen Gruppen untereinander

Beim Vergleich der Gruppen mit Vakzination der Sauen (Gruppen 1, 2 und 5) untereinander (Tabellen 15-17) ist zu sehen, dass bei der ersten Blutentnahme mit einer Woche kein signifikanter Unterschied bei den ELISA-Werten zu erkennen ist. Erst bei der zweiten
Ergebnisse

Blutentnahme mit drei Wochen unterscheidet sich Gruppe 5 signifikant ($p < 0.05$) von Gruppe 2, bei der die Ferkel mit einer Woche die erste Dosis des Two-Shot erhalten haben, und Gruppe 1, bei der bis zu diesem Zeitpunkt wie bei Gruppe 5 die Ferkel nicht geimpft waren. Bei der Blutentnahme mit neun Wochen war wiederum kein signifikanter Unterschied zwischen den drei Gruppen vorhanden.

Tabelle 15: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 1 und 5

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1 (n=89)</td>
<td>144,20</td>
<td>98,48</td>
<td>31,56</td>
<td>69,16</td>
</tr>
<tr>
<td>(SV/FO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 5 (n=60)</td>
<td>154,68</td>
<td>119,28</td>
<td>30,13</td>
<td>36,36</td>
</tr>
<tr>
<td>(SV/FNV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>$p \geq 0.05$</td>
<td>$p < 0.05$</td>
<td>$p \geq 0.05$</td>
<td>$p < 0.001$</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; FO = Ferkel One-Shot; FNV = Ferkel nicht vakziniert; n = Anzahl der Tiere

Tabelle 16: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 2 und 5

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 2 (n=99)</td>
<td>133,60</td>
<td>96,21</td>
<td>36,61</td>
<td>73,04</td>
</tr>
<tr>
<td>(SV/FT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 5 (n=60)</td>
<td>154,68</td>
<td>119,28</td>
<td>30,13</td>
<td>36,36</td>
</tr>
<tr>
<td>(SV/FNV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>$p \geq 0.05$</td>
<td>$p < 0.05$</td>
<td>$p \geq 0.05$</td>
<td>$p < 0.001$</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; FT = Ferkel Two-Shot; FNV = Ferkel nicht vakziniert; n = Anzahl der Tiere

Tabelle 17: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 1 und 2

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1 (n=89)</td>
<td>144,20</td>
<td>98,48</td>
<td>31,56</td>
<td>69,16</td>
</tr>
<tr>
<td>(SV/FO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 2 (n=99)</td>
<td>133,60</td>
<td>96,21</td>
<td>36,61</td>
<td>73,04</td>
</tr>
<tr>
<td>(SV/FT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>$p \geq 0.05$</td>
<td>$p \geq 0.05$</td>
<td>$p \geq 0.05$</td>
<td>$p \geq 0.05$</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot; n = Anzahl der Tiere
Ergebnisse

Erst mit 20 Wochen hatten die beiden Gruppen 1 und 2, bei denen Ferkelimpfungen durchgeführt wurden, signifikant (p < 0,001) höhere ELISA-Werte als Gruppe 5 ohne Ferkelvakzination.

Vergleicht man die Gruppen 3 und 4, beide Gruppen mit Ferkelimpfung mit One- bzw. Two-Shot, aber ohne Sauenimpfung, und Gruppe 5, bei der nur die Sauen vakziniert wurden, ist zu sehen, dass ein signifikanter Unterschied (p < 0,001) der ELISA-Werte mit einer, drei und 20 Wochen festgestellt wurde. Während mit einer und drei Wochen die ELISA-Werte der Gruppen 3 und 4 signifikant niedriger waren, waren sie mit 20 Wochen signifikant höher. Mit neun Wochen war nur der ELISA-Wert der Gruppe 4, bei der die Ferkel mit Two-Shot vakziniert wurden, signifikant (p < 0,05) höher als bei Gruppe 5 ohne Ferkelvakzination (Tabelle 18 u. 19).

Tabelle 18: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 3 und 5

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 3 (n=91)</td>
<td>29,09</td>
<td>16,46</td>
<td>25,38</td>
<td>70,91</td>
</tr>
<tr>
<td>(SNV/FO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 5 (n=60)</td>
<td>154,68</td>
<td>119,28</td>
<td>30,13</td>
<td>36,36</td>
</tr>
<tr>
<td>(SV/FNV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p ≥ 0,05</td>
<td>p < 0,001</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FNV = Ferkel nicht vakziniert

Tabelle 19: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 1 und 5

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 4 (n=84)</td>
<td>26,83</td>
<td>14,71</td>
<td>40,82</td>
<td>73,44</td>
</tr>
<tr>
<td>(SNV/FT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 5 (n=60)</td>
<td>154,68</td>
<td>119,28</td>
<td>30,13</td>
<td>36,36</td>
</tr>
<tr>
<td>(SV/FNV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,05</td>
<td>p < 0,001</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FT = Ferkel Two-Shot; FNV = Ferkel nicht vakziniert

Vergleicht man die Gruppen mit gleichen Impfschema der Ferkel miteinander, so ist zu sehen, dass bei den Gruppen, bei denen die Ferkelimpfung mit One-Shot durchgeführt wurde,
die Gruppe 1 (mit Sauenvakzination) bei der Blutentnahme mit einer und drei Wochen signifikant (p < 0,001) höhere ELISA-Werte hatte als Gruppe 3 (ohne Sauenvakzination). Zu den Entnahmezeitpunkten mit neun und 20 Wochen waren keine signifikanten Unterschiede mehr vorhanden (Tabelle 20).

<table>
<thead>
<tr>
<th>Gruppe 1 (n=89) (SV/FO)</th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 3 (n=91) (SNV/FO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Signifikanz | p < 0,001 | p < 0,001 | p ≥ 0,05 | p ≥ 0,05 |

GV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; n = Anzahl der Tiere

Bei den Gruppen 2 (mit Sauenvakzination) und 4 (ohne Sauenvakzination), bei denen die Ferkel mit Two-Shot geimpft wurden, unterschieden sich die ELISA-Werte mit einer und drei Wochen ebenfalls signifikant (p < 0,001). Ab neun Wochen war wiederum kein signifikanter Unterschied mehr auszumachen (Tabelle 21).

<table>
<thead>
<tr>
<th>Gruppe 2 (n=99) (SV/FT)</th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 4 (n=84) (SNV/FT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Signifikanz | p < 0,001 | p < 0,001 | p ≥ 0,05 | p ≥ 0,05 |

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot

Zwischen Gruppe 1 und 4 und zwischen Gruppe 2 und 3 bestand bei den Blutentnahmen nach einer und drei Wochen ein signifikanter Unterschied (p < 0,001), wobei die Gruppen 1 bzw. 2, bei denen die Sauen vakziniert wurden, die signifikant höheren ELISA-Werte aufwiesen als die Gruppen 3 bzw. 4, bei denen keine Muttertierimpfung vorgenommen wurde (Tabellen 22 u. 23).
Ergebnisse

Tabelle 22: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 1 und 4

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1 (n=89)</td>
<td>144,20</td>
<td>98,48</td>
<td>31,56</td>
<td>69,16</td>
</tr>
<tr>
<td>(SV/FO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 4 (n=84)</td>
<td>26,83</td>
<td>14,71</td>
<td>40,82</td>
<td>73,44</td>
</tr>
<tr>
<td>(SNV/FT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p ≥ 0,05</td>
<td>p ≥ 0,05</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot

Tabelle 23: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 2 und 3

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 2 (n=99)</td>
<td>133,60</td>
<td>96,21</td>
<td>36,61</td>
<td>73,04</td>
</tr>
<tr>
<td>(SV/FT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 3 (n=91)</td>
<td>29,09</td>
<td>16,46</td>
<td>25,38</td>
<td>70,91</td>
</tr>
<tr>
<td>(SNV/FO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,05</td>
<td>p ≥ 0,05</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot

Mit neun Wochen war nur zwischen den Gruppen 2 und 3 ein signifikanter Unterschied (p < 0,05) vorhanden. Dabei wies die Two-Shot geimpfte Gruppe 3 einen höheren Antikörperwert auf als die One-Shot geimpfte Gruppe 2 (Tabelle 23). Bei der Blutentnahme mit 20 Wochen konnte zwischen den Gruppen keine signifikanten Unterschiede mehr festgestellt werden.

Tabelle 24: Vergleich der arithmetischen Mittel der ELISA-Werte der Gruppen 3 und 4

<table>
<thead>
<tr>
<th></th>
<th>1 Woche</th>
<th>3 Wochen</th>
<th>9 Wochen</th>
<th>20 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 3 (n=91)</td>
<td>29,09</td>
<td>16,46</td>
<td>25,38</td>
<td>70,91</td>
</tr>
<tr>
<td>(SNV/FO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 4 (n=84)</td>
<td>26,83</td>
<td>14,71</td>
<td>40,82</td>
<td>73,44</td>
</tr>
<tr>
<td>(SNV/FT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signifikanz</td>
<td>p ≥ 0,05</td>
<td>p ≥ 0,05</td>
<td>p < 0,001</td>
<td>p ≥ 0,05</td>
</tr>
</tbody>
</table>

SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot; n = Anzahl der Tiere
Ergebnisse

Beim Vergleich der Gruppen ohne Sauenvakzination miteinander wies nur bei der Blutentnahme mit neun Wochen Gruppe 4 mit der Doppelimpfung der Ferkel einen signifikant ($p < 0,001$) höheren ELISA-Wert auf als Gruppe 3 mit der Einmalimpfung der Ferkel (Tabelle 24).

4.3.2 Serologie der Sauen

4.3.2.1 Blutserologie

Abbildung 9 zeigt die Antikörperentwicklung der vakzinierten und nicht vakzinierten Gruppen zusammengefasst. Bis auf ein Tier serokonvertierten alle der 148 geimpften Sauen, was eine Prävalenz von 99,3% bedeutet, und hatten deutlich höhere Antikörpergehalte gegen Mycoplasma hyopneumoniae zum Zeitpunkt der Blutentnahme eine Woche p.p., die drei Wochen nach Abferkelung wieder etwas abfielen.

Abb. 9: Antikörperentwicklung der vakzinierten und nicht vakzinierten Sauen
Ausgehend von der ersten Blutentnahme der jeweiligen Sauen zeigt Tabelle 25 die prozentuale Verteilung der positiven, fraglichen oder negativen Sauen des Versuchsbestandes, unterteilt in Jungsaufen mit erstem Wurf, Altsauen mit Wurf zwei bis vier und Altsauen ab dem fünften Wurf. Den größten Anteil an positiven Sauen konnten die Jungsaufen mit 42,1% verzeichnen, aber 52,6% von ihnen wies ein negatives serologisches Testergebnis auf. Der Anteil der positiven Sauen bei den Altsauen ab fünftem Wurf war mit 27,7% etwas größer als bei den Altsauen mit Wurf zwei bis vier mit 22,4%.

Ergebnisse

Tabelle 25: Prozentuale Verteilung der negativen, fraglichen und positiven ELISA-Werte in den verschiedenen Altersgruppen der ungeimpften Sauen

<table>
<thead>
<tr>
<th></th>
<th>negativ</th>
<th>fraglich</th>
<th>Positiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jungsaufen (n=19)</td>
<td>52,6%</td>
<td>5,3%</td>
<td>42,1%</td>
</tr>
<tr>
<td>mit 1. Wurf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altsauen (n=116)</td>
<td>65,5%</td>
<td>12,1%</td>
<td>22,4%</td>
</tr>
<tr>
<td>mit Wurf 2-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altsauen (n=119)</td>
<td>57,2%</td>
<td>15,1%</td>
<td>27,7%</td>
</tr>
<tr>
<td>ab Wurf 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(n=\) Anzahl der Tiere

Tabelle 26: Vierfeldertafel für die Blutserologie der Ferkel auf Antikörper gegen *Mycoplasma hyopneumoniae* in Bezug auf Blutserologie der Sauen

<table>
<thead>
<tr>
<th>Blutserologie 1 Woche p.p.</th>
<th>Ferkel</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sauen</td>
<td>159</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>164</td>
<td>70</td>
</tr>
</tbody>
</table>
Die Auswertung der Vierfeldertafel ergibt, dass ein positiv getestetes Ferkel mit 95% Wahrscheinlichkeit auch eine im Blut positiv getestete Muttersau und ein negativ befundetes Ferkel mit 80% Wahrscheinlichkeit auch eine im Blut negativ getestete Muttersau hat.

4.3.2.2 Milchserologie

Der ELISA-Wert des Blutes bei der Verdünnung 1 : 40 wird als Referenzwert genommen. Berücksichtigt wurden nur positive und negative Testergebnisse. Fragliche Testergebnisse werden ausgeschlossen. Der Test ist für Milchserum nicht validiert, aber in der Schweiz schon mehrfach erprobt worden.

Es wurden 49 Milchserumproben in verschiedenen Verdünnungen getestet, von denen 21 im Blut der Sauen als negativ, also einen ELISA-Wert kleiner 30 hatten, und 28 im Blut als positiv, also einen ELISA-Wert größer 40 hatten, bewertet.

Tabellen 27 bis 32 zeigen zusammenfassend in Vierfeldertafeln die Ergebnisse der Milchserologie des Doppelansatzes in verschiedenen Verdünnungen im Vergleich zum Blut der Sauen bei der Probennahme eine Woche p.p.. Tabelle 33 zeigt die statistische Auswertung der Daten in Bezug auf Spezifität, Sensitivität, positiv prädikativem Wert (PPW) und negativ prädikativem Wert (NPW).

Tabelle 27: Vierfeldertafel für die Milchuntersuchung auf Antikörper gegen *Mycoplasma hyopneumoniae* im unverdünnten Ansatz in Bezug auf Blutergebnis der Sauen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Blutserologie der Sauen</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>1 Woche p.p.</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>∑</td>
<td>48</td>
<td>1</td>
</tr>
</tbody>
</table>
Bei Betrachtung der Ergebnisse der Milchserologie des unverdünnten Ansatzes fällt auf, dass nur eine Probe als negativ bewertet wurde, was zu einer Spezifität von 5 % führt. Dagegen waren alle positiven Proben im Blut auch in der Milch positiv, dadurch die Sensitivität von 100%. Da außer der Negativen alle anderen Milchproben als positiv befunden wurden, ergeben sich ein NPW von 100% und ein PPW von 58% (Tabelle 27).

Bei der Verdünnung 1 : 10 erreicht man eine Sensitivität von 85% während die Spezifität bei 55% liegt. Insgesamt 85% der im Blut positiven Sauen erscheint auch in der Milch positiv und nur 55% der im Blut negativen Sauen werden auch in der Milch als negativ befunden. Von den 28 im Blut positiv getesteten Sauen waren 22 in der Milch positiv, vier Tiere waren in der Milch negativ, also falsch negativ, und zwei Tiere sind mit einem fraglichen Ergebnis befunden worden, wurden also ausgeschlossen. Der PPW lag bei 71 % und der NPW bei 73 %, das heißt mit 71 % Wahrscheinlichkeit ist ein in der Milch positiv getestetes Tier auch im Blut positiv und ein in der Milch negativ getestetes Tier ist mit 73 % Wahrscheinlichkeit auch im Blut negativ. Es waren von 31 positiven Milchproben auch 22 im Blut positiv und von 15 negativen Milchproben waren auch elf im Blut negativ (Tabelle 28).

Tabelle 28: Vierfeldertafel für die Milchuntersuchung auf Antikörper gegen *Mycoplasma hyopneumoniae* in der Verdünnung 1 : 10 in Bezug auf Blutergebnis der Sauen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Blutserologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>der Sauen 1 Woche p.p.</td>
<td>+</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>∑</td>
<td>31</td>
<td>15</td>
</tr>
</tbody>
</table>

Bei der Verdünnung 1 : 20 wurde eine Sensitivität von 75% und eine Spezifität von 65% erreicht. Der PPW erreichte 75% und der NPW 65%. Von den 28 im Blut positiv getesteten Tieren waren auch 21 in der Milch positiv und sieben Sauen waren in der Milch falsch positiv. Von den 21 im Blut negativ getesteten Tieren waren in der Milch 13 negativ, ein Ergebnis fiel fraglich aus und sieben Tiere hatten ein falsch positives Ergebnis. Von den 28 Sauen, die in der Milch positiv getestet wurden, waren 21 auch beim Blutbefund tatsächlich
Ergebnisse

positiv. Sieben Muttersauen hatten in der Milch ein negatives Ergebnis, obwohl ihr Blutbefund positiv war (PPW 75%) (Tabelle 29).

Tabelle 29: Vierfeldertafel für die Milchuntersuchung auf Antikörper gegen *Mycoplasma hyopneumoniae* in der Verdünnung 1 : 20 in Bezug auf Blutergebnis der Sauen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutserologie der Sauen</td>
<td>+</td>
<td>21</td>
</tr>
<tr>
<td>1 Woche p.p.</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>∑</td>
<td>28</td>
<td>20</td>
</tr>
</tbody>
</table>

Bei der Verdünnung 1 : 40 waren von 28 im Blut positiven Sauen noch 17 in der Milch positiv, 10 waren in der Milch negativ und eine Muttersau wurde wegen des fraglichen Milchergebnisses ausgeschlossen (Sensitivität = 63%). Von 21 im Blut negativ getesteten Sauen wurden auch 13 in der Milch negativ getestet, fünf Tiere erschienen in der Milch positiv und drei Ergebnisse wurden ausgeschlossen, da sie fraglich ausfielen (Spezifität = 72%). Der PPW lag bei 77% und der NPW bei 57%, das heißt von 22 in der Milch positiven Sauen waren 17 auch im Blut positiv und fünf im Blut negativ und von 23 in der Milch negativen Tieren waren 13 Muttersauen auch im Blut negativ, zehn waren jedoch im Blut positiv (Tabelle 30).

Tabelle 30: Vierfeldertafel für die Milchuntersuchung auf Antikörper gegen *Mycoplasma hyopneumoniae* in der Verdünnung 1 : 40 in Bezug auf Blutergebnis der Sauen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutserologie der Sauen</td>
<td>+</td>
<td>17</td>
</tr>
<tr>
<td>1 Woche p.p.</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>∑</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>
Bei der Verdünnung 1 : 80 ist eine Sensitivität von 56% und eine Spezifität von 90% zu verzeichnen. Von den 28 im Blut positiv getesteten Sauen waren auch 14 Milchergebnisse positiv, drei Milchergebnisse fraglich und elf Sauen wurden in der Milch negativ bewertet. Bei zwei positiven Ergebnissen in der Milch waren von 21 im Blut negativen Sauen auch 19 in der Milch negativ. Von 16 in der Milch positiven Tieren waren 14 tatsächlich auch im Blut positiv, was zu einem PPW von 88% führt. Der NPW von 63% ergibt sich aus 30 in der Milch negativen Sauen, von denen 19 auch im Blut negativ waren (Tabelle 31).

Tabelle 31: Vierfeldertafel für die Milchuntersuchung auf Antikörper gegen Mycoplasma hyopneumoniae in der Verdünnung 1 : 80 in Bezug auf Blutergebnis der Sauen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutserologie</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>der Sauen 1 Woche p.p.</td>
<td>14 11 25</td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>2</td>
<td>19 21</td>
</tr>
<tr>
<td>∑</td>
<td>16</td>
<td>30 46</td>
</tr>
</tbody>
</table>

Bei der Verdünnung 1 : 160 lag die Sensitivität bei 59% und die Spezifität lag wiederum bei 90%, das heißt von 21 im Blut negativ getesteten Sauen wurden wieder auch 19 in der Milch negativ befundet, während zwei Milchergebnisse positiv waren. Von 28 positiven Blutergebnissen waren in der Milch 13 positiv, zwei fraglich und 13 negativ. Von 15 in der Milch positiven Proben waren 13 auch im Blut positiv (PPW 87%) und von 32 in der Milch 13 positiv, zwei fraglich und 13 negativ.
negativen Sauen wurden 19 auch tatsächlich im Blut negativ bewertet (NPW 59%) (Tabelle 32).

Tabelle 33: Auswertung der Milchuntersuchung bei verschiedenen Verdünnungen in Bezug auf Ergebnis der Sauen

<table>
<thead>
<tr>
<th>Verdünnung</th>
<th>Spezifität</th>
<th>Sensitivität</th>
<th>Positiver prädikativer Wert</th>
<th>Negativer prädikativer Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>unverdünnt</td>
<td>5%</td>
<td>100%</td>
<td>58%</td>
<td>100%</td>
</tr>
<tr>
<td>1 : 10</td>
<td>55%</td>
<td>85%</td>
<td>71%</td>
<td>73%</td>
</tr>
<tr>
<td>1 : 20</td>
<td>65%</td>
<td>75%</td>
<td>75%</td>
<td>65%</td>
</tr>
<tr>
<td>1 : 40</td>
<td>72%</td>
<td>63%</td>
<td>77%</td>
<td>57%</td>
</tr>
<tr>
<td>1 : 80</td>
<td>90%</td>
<td>56%</td>
<td>88%</td>
<td>63%</td>
</tr>
<tr>
<td>1 : 160</td>
<td>90%</td>
<td>50%</td>
<td>87%</td>
<td>59%</td>
</tr>
</tbody>
</table>

4.4 Auswertung der Lungenbefunde

Wie in Abbildung 10 und Tabelle 34 dargestellt lag der Lungenscore in allen Gruppen mit vakzinierten Ferkeln (Gruppen 1, 2, 3 und 4) signifikant unter dem der Gruppe 5, in der nur die Sauen geimpft wurden (p < 0,001). Bei den vier Gruppen mit Ferkelimpfung wiesen die Gruppen 3 und 4, bei denen die Muttertiere nicht geimpft wurden, weniger pathologische Veränderungen auf als die Gruppen 1 und 2. Ein statistisch signifikanter Unterschied (p < 0,05) wurde aber nur zwischen der Gruppe 3 mit ungeimpften Sauen und Gruppe 1 mit geimpften Sauen, wobei bei beiden Gruppen die Ferkel mit dem One-Shot vakziniert waren, ermittelt (p = 0,038).
Ergebnisse

Abb. 10: Arithmetisches Mittel der Lungenscores und Signifikanzen zwischen den Gruppen

Tabelle 34: Anzahl n und arithmetische Mittelwerte der Lungenscores mit Standardabweichung sowie die Signifikanz gegenüber Gruppe 5

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Lungenscore gesamt</th>
<th>Standardabweichung</th>
<th>Signifikanz gegenüber Gruppe 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1 (n=89) (SV/FO)</td>
<td>2,14 (n=89)</td>
<td>2,23</td>
<td>p<0,001</td>
</tr>
<tr>
<td>Gruppe 2 (n=99) (SV/FT)</td>
<td>1,92 (n=99)</td>
<td>2,25</td>
<td>p<0,001</td>
</tr>
<tr>
<td>Gruppe 3 (n=91) (SNV/FO)</td>
<td>1,53 (n=91)</td>
<td>1,68</td>
<td>p<0,001</td>
</tr>
<tr>
<td>Gruppe 4 (n=84) (SNV/FT)</td>
<td>1,63 (n=84)</td>
<td>1,83</td>
<td>p<0,001</td>
</tr>
<tr>
<td>Gruppe 5 (n=60) (SV/FNV)</td>
<td>5,20 (n=64)</td>
<td>3,62</td>
<td>-</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot; FNV = Ferkel nicht vakziniert

Betrachtet man die prozentuelle Verteilung der Lungenscores in Tabelle 35 der verschiedenen Gruppen, ist zu sehen, dass bei Gruppe 5, bei der auch die Ferkel ohne Impfung blieben, keine
Ergebnisse

einzige Lunge den Score 0 aufwies, während bei den Gruppen mit vakzinierten Ferkeln 27,9% bei Gruppe 1 (Sauen vakziniert, Ferkel One-Shot), 33,7% bei Gruppe 2 (Sauen vakziniert, Ferkel Two-Shot), 31,0% bei Gruppe 3 (Sauen nicht vakziniert, Ferkel One-Shot) und 35,4% bei Gruppe 4 (Sauen nicht vakziniert, Ferkel Two-Shot) der Lungen ohne sichtbare pathologische Veränderungen waren. Auch beim Score über 10 ist zu sehen, dass noch 11,5% der Lungen der Gruppe 5 einen Wert größer 10 hatten, während bei den anderen Gruppen nur bei Gruppe 2 insgesamt zwei Lungen einen Score über 10 aufwiesen. Bei allen vier Gruppen bewegte sich der Scorewert zum größten Teil zwischen 1 und 3.

Tabelle 35: Verteilung der Schweregrade der Lungenscores der einzelnen Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Score 0</th>
<th>Score 1-3</th>
<th>Score 4-6</th>
<th>Score 7-10</th>
<th>Score>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1 (n=89) (SV/FO)</td>
<td>27,9%</td>
<td>52,3%</td>
<td>14,0%</td>
<td>5,8%</td>
<td>0%</td>
</tr>
<tr>
<td>Gruppe 2 (n=99) (SV/FT)</td>
<td>33,7%</td>
<td>49,5%</td>
<td>12,6%</td>
<td>2,1%</td>
<td>2,1%</td>
</tr>
<tr>
<td>Gruppe 3 (n=91) (SNV/FO)</td>
<td>31,0%</td>
<td>57,5%</td>
<td>8,0%</td>
<td>3,4%</td>
<td>0%</td>
</tr>
<tr>
<td>Gruppe 4 (n=84) (SNV/FT)</td>
<td>35,4%</td>
<td>51,2%</td>
<td>11,0%</td>
<td>2,4%</td>
<td>0%</td>
</tr>
<tr>
<td>Gruppe 5 (n=60) (SV/FNV)</td>
<td>0%</td>
<td>44,3%</td>
<td>26,2%</td>
<td>18,0%</td>
<td>11,5%</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot; FNV = Ferkel nicht vakziniert

Tabelle 36 führt unabhängig vom Gesamtscore den Prozentsatz von Pleuritiden und Abszessen der einzelnen Gruppen auf. Bei Gruppe 5, bei der nur die Sauen vakziniert wurden, sind auch hier mit 16,7% die meisten Lungen mit Verklebungen bzw. Verwachsungen zu verzeichnen, während bei den anderen vier Gruppen sich der Anteil der Lungen mit Verklebungen bzw. Verwachsungen zwischen 2,2% und 6,0% bewegte. Es traten insgesamt nur drei Abszesse bei allen Gruppen, je ein Abszess bei den Lungen der Gruppen 2, 4 und 5, auf.
Tabelle 36: Auftreten von Pleuritiden oder Abszessen in % bei den einzelnen Gruppen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Verklebung bzw. Verwachsung</th>
<th>Abszess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1 (n=89) (SV/FO)</td>
<td>3,4%</td>
<td>0%</td>
</tr>
<tr>
<td>Gruppe 2 (n=99) (SV/FT)</td>
<td>4,1%</td>
<td>1,0%</td>
</tr>
<tr>
<td>Gruppe 3 (n=91) (SNV/FO)</td>
<td>2,2%</td>
<td>0%</td>
</tr>
<tr>
<td>Gruppe 4 (n=84) (SNV/FT)</td>
<td>6,0%</td>
<td>1,1%</td>
</tr>
<tr>
<td>Gruppe 5 (n=60) (SV/FNV)</td>
<td>16,7%</td>
<td>1,7%</td>
</tr>
</tbody>
</table>

SV = Sau vakziniert; SNV = Sau nicht vakziniert; FO = Ferkel One-Shot; FT = Ferkel Two-Shot; FNV = Ferkel nicht vakziniert

4.5 Auswertung der Gewichtsentwicklung

Bestimmt wurde das Gewicht der Tiere am 105. Lebenstag. Es wurden die mittleren täglichen Zunahmen von Geburt bis zum 105. Lebenstag berechnet (Tabelle 37).

Tabelle 37: Mittlere Tageszunahmen bis zum 105. Lebenstag für alle Gruppen mit Standardabweichung, der Tierzahl n und die Signifikanz zu Gruppe 5

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauen vakziniert One-Shot</td>
<td>467</td>
<td>450</td>
<td>444</td>
<td>452</td>
<td>458</td>
</tr>
<tr>
<td>Sauen nicht vakziniert One-Shot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferkel vakziniert One-Shot</td>
<td>61</td>
<td>50</td>
<td>53</td>
<td>53</td>
<td>62</td>
</tr>
<tr>
<td>Ferkel nicht vakziniert Two-Shot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittlere Tageszunahmen in g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardabweichung in g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>89</td>
<td>99</td>
<td>91</td>
<td>84</td>
<td>60</td>
</tr>
<tr>
<td>Signifikanz zu Gruppe 5</td>
<td>≥0,05</td>
<td>≥0,05</td>
<td>≥0,05</td>
<td>≥0,05</td>
<td>/</td>
</tr>
</tbody>
</table>
Ergebnisse

Zwischen den einzelnen Gruppen konnten am 105. Lebenstag keine signifikanten Unterschiede in den Tageszunahmen nachgewiesen werden. Die höchsten Tageszunahmen hatte Gruppe 1 (Sauen vakziniert, Ferkel One-Shot) mit 467g, wobei bei Gruppe 5, bei der nur die Sauen vakziniert wurden, mit 458g nur geringfügig weniger Zunahmen zu verzeichnen waren. Die Gruppen 2 und 4, mit jeweiliger Impfung der Ferkel mit Two-Shot und geimpften (Gruppe 2) und nicht geimpften (Gruppe 4) Sauen, hatten mit 450g bzw. 452g fast gleich hohe Zunahmen bis zu diesem Zeitpunkt. Die geringsten Zunahmen zeigte mit 444g Gruppe 3, bei der die Sauen nicht vakziniert und die Ferkel mit One-Shot geimpft wurden.
5 Diskussion

5.1 Verträglichkeit der Impfung

5.2 **Antikörperentwicklung nach Impfung tragender Sauen**

5.3 Übergang maternaler Antikörper vom Kolostrum ins Blut der Ferkel

Insgesamt zeigen die Antikörpermengen, die bei den Nachkommen geimpfter und nicht geimpfter Sauen in der ersten Lebenswoche nachgewiesen wurden, dass wie schon bei anderen Untersuchungen (SCHREIBER 2002; MARTELLI et al. 2006) die Impfung von Sauen geeignet ist hohe Konzentrationen maternaler Antikörper im Ferkel zu induzieren.
5.4 Antikörperentwicklung gegen *Mycoplasma hyopneumoniae* der Ferkel und Einfluss maternaler Antikörper

Die arithmetischen Mittel der ELISA-Werte der Ferkel der Gruppen 1, 2 und 5 (mit Sauenvakzination) war bei der ersten Blutentnahme im positiven Bereich und signifikant höher als die Mittel der ELISA-Werte der Ferkel der beiden Gruppen 3 und 4 (ohne Sauenvakzination), die im negativen Bereich waren.

Um den Einfluss der maternalen Antikörper auf die einmalige Impfung der Ferkel mit StellamuneOne® drei Wochen bzw. auf die doppelte Impfung mit Stellamune® mit einer und drei Wochen auswerten zu können, wurden die serologischen Verläufe der Gruppen mit gleichem Impfschema für Ferkel miteinander verglichen.

Die Tiere der Gruppen 1 und 2 hatten aufgrund der Muttermtiervakzination signifikant höhere ELISA-Werte mit einer und drei Wochen als die Tiere der Gruppen 3 und 4. Ab der dritten Blutentnahme mit neun Wochen unterschieden sich die Werte der Tiere der Gruppen 1 und 3, bei denen die Ferkel mit One-Shot geimpft wurden, bzw. 2 und 4, bei denen die Ferkel den Two-Shot erhielten, nicht mehr signifikant voneinander. Dies lässt darauf schließen, dass hohe maternale Antikörpertiter nicht die Bildung der Serumantikörper im Blut beeinflussen. In der Studie ist kein signifikanter Unterschied bei den ELISA-Werten mit 20 Wochen zwischen den One-Shot und den Two-Shot geimpften Ferkeln vorhanden, egal ob hohe maternale Antikörperwerte vorhanden waren oder nicht.
5.5 Beurteilung der Schlachtlungen

In der vorliegenden Untersuchung wurde bei den Lungen der Tiere der Gruppen 1, 2, 3 und 4, bei denen die Ferkel mit einem Einmal- bzw. Zweimalimpfstoff gegen *Mycoplasma hyopneumoniae* geimpft wurden, eine signifikante Reduktion des Lungenscores im Vergleich zu den Lungen der Gruppe 5, bei der nur die Muttertiere a.p. vakziniert wurden, festgestellt. Bei den ungeimpften Tieren der Gruppe 5 konnte bei Schlachtung keine einzige Lunge mit Score 0 beurteilt werden, während bei den vier anderen Gruppen mindestens 27,9% der
Diskussion

Eine Impfung von Saugferkel gegen Mycoplasma hyopneumoniae ist geeignet die Lungenqualität der Tiere zu verbessern.
5.6 Durchschnittliche tägliche Zunahmen

Um in dieser Studie herauszufinden, ob sich die verschiedenen Impfschemata auf die Wirkung der Impfung in Bezug auf die täglichen Zunahmen auswirken, wäre eine Wiegung zum Mastende notwendig gewesen, da die Wiegung nach 105 Tagen nur Aufschlüsse über den Status in der Aufzuchtphase und frühen Vormast gibt. Ohne diese Daten ist in dieser Studie keine endgültige Aussage über die Auswirkung der Impfung auf die täglichen Zunahmen bis zum Ende der Mast zu treffen.
5.7 Bewertung der Milchserologie

In der hier durchgeführten Studie wurden die blutserologischen Ergebnisse der Muttersauen sieben Tage p.p. mit dem arithmetischen Mittel des Doppelansatzes verschiedener Verdünnungen der Kolostralmilch der Sauen mittels ELISA verglichen und statistisch ausgewertet.

Die Sensitivität gibt die Wahrscheinlichkeit eines positiven Milchbefundes bei blutserologisch positiven Sauen an.

Die Spezifität gibt die Wahrscheinlichkeit eines negativen Milchbefundes bei blutserologisch negativen Sauen an.

Ein Test mit hoher Spezifität ist geeignet positive Tiere zu erkennen, da bei hoher Spezifität der Anteil falsch positiver Ergebnisse niedrig ist. Bei einem positiven Testresultat ist also das Tier mit hoher Wahrscheinlichkeit auch tatsächlich positiv.

Welche Verdünnung geeignet ist hängt vom Ziel der jeweiligen Untersuchung ab.
In der vorliegenden Studie ist zu sehen, dass je niedriger die Verdünnung ist, desto höher ist die Sensitivität und je höher die Verdünnung ist, desto höher ist die Spezifität.

5.8 Schlußfolgerungen

Die Untersuchungen konnten die positiven Einflüsse der Impfung gegen *Mycoplasma hyopneumoniae* auf die Lungenqualität und eine unveränderte serologische Reaktion der Ferkel auch in Anwesenheit hoher maternaler Antikörperwerte darstellen.

Die Vakzination gegen *Mycoplasma hyopneumoniae* verursacht bei Ferkeln keine Komplikationen.

Die Infektion mit *Mycoplasma hyopneumoniae* ist in Ferkelerzeugerherden und Mastbetrieben weit verbreitet auch wenn nicht immer klinische Symptomatik in diesen Beständen vorhanden sein muss.

Einen weiteren Hinweis auf die Wirkung der Impfstoffe ergibt die Auswertung der Lungenscores. Bei allen Gruppen mit geimpften Ferkeln fand sich eine deutliche Verbesserung der Lungenqualität im Vergleich zur Gruppe ohne Ferkelimpfung. Der Vergleich der Impfgruppen in Bezug auf die Lungenqualität lässt allerdings vermuten, dass
Diskussion

Bei Betrachtung der täglichen Zunahmen ist zu sehen, dass bis zum Wiegetermin mit 105 Tagen keine signifikanten Unterschiede zu verzeichnen waren. Dieses Ergebnis bedarf einer Klärung in weiteren Studien, bei denen die Gewichtsentwicklung bis zum Mastende verfolgt wird.

Die Kolostralmilch ist beim ELISA mit dem Testkit HerdCheck M.hyo der Firma IDEXX bei einer Verdünnung von 1 : 10 ein geeignetes Probenmaterial um in einem Bestand eine Mycoplasma hyopneumoniae-Infektion auszuschließen.

6 Zusammenfassung

In die Studie wurden 254 Muttersauen und 423 Ferkel einbezogen, die in fünf verschiedene Gruppen eingeteilt wurden. Gruppe 1: Sauen vakziniert - Ferkel One-Shot; Gruppe 2: Sauen vakziniert – Ferkel Two-Shot; Gruppe 3: Sauen nicht vakziniert - Ferkel One-Shot; Gruppe 4: Sauen nicht vakziniert - Ferkel Two-Shot; Gruppe 5: Sauen vakziniert - Ferkel nicht vakziniert.

Zusammenfassung

Bei den Tieren aller Gruppen bei denen eine Saugferkelvakzination durchgeführt wurde, konnten signifikant bessere Lungenscores gefunden werden, als bei den Tieren der Gruppe ohne Saugferkelvakzination. Ein signifikanter Unterschied konnte außerdem zwischen den Tieren der beiden Gruppen, bei denen die Ferkel mit One-Shot geimpften wurden, festgestellt werden, wobei die Tiere der Gruppe, bei der die Sauen nicht vakziniert wurden den signifikant besseren Lungenscore aufwiesen. Dies könnte für eine Beeinflussung der Wirkung des Impfstoffes StellamuneOne® durch hohe maternale Antikörperwerte sprechen.

Bis zum 105. Lebenstag konnten zwischen den Tieren der verschiedenen Gruppen keine signifikanten Unterschiede der täglichen Zunahmen ermittelt werden. Die verschiedenen Impfschemata wirkten sich bis zur Vormast nicht auf das Gewicht der Tiere aus.

Bei der Untersuchung der Kolostralmilch mittels ELISA scheint bei diesem Test eine Verdünnung von 1 : 10 mit einer Sensitivität von 85% und einer Spezifität von 55% geeignet zu sein eine Mycoplasma hyopneumoniae-Infektion in einem Bestand auszuschließen.

Zusammenfassend konnte in diesem Bestand durch die Vakzination der Ferkel mit den Impfstoffen Stellamune® und StellamuneOne® gegen Mycoplasma hyopneumoniae eine Verbesserung in der Lungengesundheit erzielt werden und keine Beeinflussung in der Produktion humoraler Antikörper auch in Anwesenheit hoher maternaler Antikörperwerte festgestellt werden.
7 Summary

Influence of sow vaccination against Mycoplasma hyopneumoniae for the protection of piglets through vaccination

Enzootic Pneumonia primarily caused by *Mycoplasma hyopneumoniae* is a reason for high economic losses in pig production worldwide. In most herds, the vaccination of piglets with one-shot or two-shot *Mycoplasma hyopneumoniae* vaccines is used as a prophylaxis against enzootic pneumonia. The influence of maternal antibodies on the effect of the vaccines is discussed controversially.

The objective of this study was to evaluate the effect of the Stellamune®Mycoplasma (Two-Shot) and StellamuneOne® (One-Shot) (Pfizer) against *Mycoplasma hyopneumoniae* on the performance of the piglets and to evaluate the influence of maternal antibodies. Furthermore, sow colostrum was tested with an ELISA (HerdCheck M.hyo, IDEXX) as an alternative test for the detection of *Mycoplasma hyopneumoniae* antibodies. The present study was done in a herd of sows with a growing unit, which was followed up on a fattening farm. The trials were done from December 2002 to June 2004.

In the present study 254 sows and 423 piglets were included. These were divided into five treatment groups: group 1: vaccinated sows/ one-shot-vaccinated piglets; group 2: vaccinated sows/two-shot-vaccinated piglets; group 3: non vaccinated sows/ one-shot-vaccinated piglets; group 4: non-vaccinated sows/ two-shot-vaccinated piglets; group 5: non-vaccinated sows/ non-vaccinated piglets.

After vaccination of 148 sows 147 of them had seroconverted three weeks a.p.. Piglet antibody concentrations from the vaccinated and non vaccinated sows one week p.n. showed that the sow vaccination induces a high concentration of maternal antibodies in piglets.

Sow vaccination did not interfere with the humeral antibody response after piglet vaccination. At the age of 20 weeks no significant differences in humeral immune response were found in groups of vaccinated piglets. The non vaccinated piglet group showed significantly lower values than the four vaccinated piglet groups.

All vaccinated piglet groups showed significantly better lungscores than the unvaccinated group. A significant difference was also found between the groups with one-shot-vaccinated piglets. The group of non-vaccinated sows showed a significantly better lungscore. This could
be an indication for the interference of high amounts of maternal antibodies on the effect of the StellamuneOne® vaccine.

In 105-day-old pigs no significant differences were evaluated on the average daily weight gain. The different vaccination schemes had no influence on the body weight until the pre-fattening period.

Examining sow colostrums at a dilution of 1:10 with an ELISA had a sensitivity of 85% and a specificity of 55%, seemed to be an appropriate method to exclude *Mycoplasma hyopneumoniae* infections in the herd.

In conclusion the vaccination of piglets in this herd with the Stellamune® Mycoplasma and StellamuneOne® against *Mycoplasma hyopneumoniae* improved the pulmonary health and had no negative influence on the production of humeral antibody values.
8 Literaturverzeichnis

ADEGBOYE, D.S. (1978a):
A review of mycoplasma-induced immunosuppression.
Brit. Vet. J. 134, 556-560

ADEGBOYE, D.S. (1978b):
Attempts to demonstrate cell-mediated immune response during Mycoplasma suipneumoniae infection of pigs.
Res. Vet. Sci. 25, 323-330

Medicated early weaning to obtain pigs free from pathogens endemic in the herd of origin.
Vet. Rec. 106, 114-119

Interaction of Mycoplasma hyopneumoniae and Pasteurella multocida infections in swine.

Effect of aerial ammonia on the MIRD-complex.
Proc.: 13. Congress International Pig Veterinary Society, Bangkok, 429

ANDREASEN M., J.P. NIELSEN, P. BAEKBO (2000a):
Colostral antibodies and duration of maternal immunity: Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae serotype 2.
Proc.: 16. Congress International Pig Veterinary Society, Melbourne, 446

A longitudinal study of serological patterns of respiratory infections in nine infected Danish swine herds.

Comparison of the enzyme-linked immunosorbent assay and the indirect hemagglutination and complement fixation tests for detecting antibodies to Mycoplasma hyopneumoniae.

Porcine mycoplasmas.
In: H.W. Whitford, R.F. Rosenbusch, L.H. Lauermann (Hrsg.):
Mycoplasmosis in animals: laboratory diagnosis.
Iowa State University Press, Ames, 68-83

Eradication of Mycoplasma hyopneumoniae from infected herds without restocking.
Proc.: 13. Congress International Pig Veterinary Society, Bangkok, 135
Litauurverzeichnis

Impact on air quality on respiratory diseases and productivity.
Proc.: 14. Congress International Pig Veterinary Society, Bologna, 522

Detection of Mycoplasma hyopneumoniae in bronchoalveolar Lavage fluids of pigs by PCR.

Evaluation of the ELISA and comparison to the complement fixation and radial immunodiffusion enzyme assay for detection of antibodies against Mycoplasma hyopneumoniae in swine serum.
Vet. Microbiol. 25, 177-192

Impfung- eine neue Methode der Bekämpfung der Enzootischen Pneumonie des Schweines.
Prakt. Tierarzt 76, 668-682

Der zeitliche Verlauf der experimentellen Enzootischen Pneumonie beim SPF-Schwein.
Schweiz. Arch. Tierheilk. 114, 107-116

BINDEI, A. (1990):
Vorkommen und Bedeutung von Mykoplasmen bei Schweinen und Rindern.
Prakt. Tierarzt 23, 22-28

Zur Prävalenz der respiratorischen Erkrankungen des Schweins in den wichtigsten Schweinefleischproduzierenden Ländern.
Prakt. Tierarzt 74, 64-67

Erfassung pathologisch-anatomischer Organbefunde am Schlachtthof. 1. Ansatz zu neuen Wegen bei der Wahrnehmung der Verantwortung für Verbraucherschutz und Tiergesundheit.
Fleischwirtsch. 73, 877-881

Electron microscopic observation of the respiratory tract of SPF piglets inoculated with Mycoplasma hyopneumoniae.
Vet. Microbiol. 30, 329-341

BOLLWEIN, J. (2004):
Serologische Untersuchung von Sauenmilch und Ferkelblut als mögliche Alternative zur Blutuntersuchung von Muttersauen im Rahmen der Bestandsdiagnostik.
A method for the enzyme-linked immunosorbent assay results for diagnosing enzootic pneumonia in pig herds.

BOMMELI, W.R. (1986):
Effect of enzootic pneumonia of pigs on growth performance.

Vaccine efficacy and immune response to *Mycoplasma hyopneumoniae* challenge in pigs vaccinated against porcine respiratory syndrome virus and *Mycoplasma hyopneumoniae*.
J. Swine Health Prod. 10, 259-264

BOULANGER, P., E. L’ECUYER (1968):
Enzootic Pneumonia of pigs: Complement-fixation tests for the detection of Mycoplasma antibodies in the serum of immunized rabbits and infected swine.
Can. J. Comp. Med. 32, 547-554

Quantitative detection of antibodies to *M. Suipneumoniae* in pig sera with an enzyme-linked immunosorbent assay.
Vet. Rec. 101, 109-111

CALSAMIGLIA, M., C. PIJOAN, G.J. BOSCH (1999):
Profiling *Mycoplasma hyopneumoniae* in farms using serology and nested PCR technique.
J. Swine Health Prod. 7, 263-268

The relationship between pig population size, stocking density, air quality parameters and pleurisy in pig herds.
Proc.: 14. Congress International Pig Veterinary Society, Bologna, 521

CARUSO, J., R.F. ROSS (1990):
Effects of *Mycoplasma hyopneumoniae* and *Actinobacillus (Haemophilus) pleuropneumoniae* infections on alveolar macrophage functions in swine.
Am. J. Vet. Res. 51, 227-231

Mycoplasma hyopneumoniae increases the susceptibility of pigs to experimental *Pasteurella multocida* pneumonia.

Mycoplasma hyopneumoniae: interaction with other agents in pigs, and evaluation of immunogens.
Arch. Med. Res. 25, 235-239
CLARK, L.K. (1997):
Control or eradication of mycoplasmal pneumonia of swine.

B.E. HERNÁNDEZ, C.A. CIPRIAN (1996):
The cellular immune response to *Mycoplasma hyopneumoniae* in lungs of experimentally inoculated pigs.

Effects of cold stress and age on pulmonary bacterial clearance in young pigs.
Am. J. Vet. Res. 37, 299-301

DEBEY, M.C., R.F. ROSS (1994):
Ciliostasis and cytotoxic and loss of cilia induced by *Mycoplasma hyopneumoniae* in porcine tracheal organ cultures.
Infect. Immun. 62, 5312-5318

Using sow vaccination Mycoplasma protocols for the control of *Mycoplasma hyopneumoniae*.
Proc.: 19. Congress International Pig Veterinary Society, Kopenhagen, 136

Effect of vaccination against *Mycoplasma hyopneumoniae* on health, growth and pubertal status of guilts exposed to moderate ammonia concentrations in all-in-all-out versus continous-flow systems.
Swine Health Prod. 7, 55-61

Enzootic pneumonia in feeder pigs: observations on causal factors.

An improved enzyme-linked immunosorbent assay (ELISA) for the detection of porcine serum antibodies against *Mycoplasma hyopneumoniae*.
Vet. Microbiol. 39, 261-273

Serum and mucosal antibody response and protection in pigs vaccinated against *Mycoplasma hyopneumoniae* with vaccines containing denaturated membrane antigen pool and adjuvant.
Aust. Vet. J. 36, 504-511

Proteolytic processing of *Mycoplasma hyopneumoniae* cilium adhesion.
Infect. Immun. 72, 2791-2802

HARRIS, D.L. (1990):
The use of Isowean 3 site production to upgrade health status.
Proc.: 11. Congress International Pig Veterinary Society, Lausanne, 374

Untersuchungen zur ultraschallgeführten Lungenbiopsie beim Schwein.
Tierärzt. Prax. 31, 264-272

Neue Ideen für eine effektive Mykoplasmenimpfung beim Schwein?
AVA Nutztierpraxis Aktuell, 2, 25-28

HILTERMANN-LINDEN, E. (2004):

Production of pneumonia in gonotopic pigs with pure cultures of *Mycoplasma hyopneumoniae*.
Vet. Rec. 84, 268-272

On the immune response in porcine serum and tracheobronchial secretions following experimental infection with *Mycoplasma hyopneumoniae*.
Zbl. Vet. Med. 79, 599-605

HOLMGREN, N., N. LUNDEHEIM, P. WALLGREN (1999):
Infections with *Mycoplasma hyopneumoniae* and *Actinobacillus pleuropneumoniae* in fattening pigs. Influence of piglet production systems and influence on production parameters.

How effective is *Mycoplasma hyopneumoniae* vaccination in pigs less than three weeks of age.
J. Swine Health Prod. 14, 189-195

Verbreitung der *Mycoplasma hyopneumoniae*-Infektion in Deutschland- Schlußfolgerungen für die Bekämpfung der Enzootischen Pneumonie der Schweine.
Tierärzt. Umsch. 52, 508-514

Host-agent interactions of *Mycoplasma hyopneumoniae* in pigs: Serum antibodies.

In Vitro Colonization of Porcine Trachea by *Mycoplasma hyopneumoniae*.

KOBISCH, M., B. BLANCHARD, M.F. LE PORTIER (1993):
Mycoplasma hyopneumoniae infection in pigs: duration of the disease and resistance to reinfection.
Vet. Rec. **24**, 67-77

KOLB, J., M. GENZOW, M. LISING (2004):
Summary of field trials comparing Ingelvac M.HYO® vs. conventional M.HYO vaccines.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 593

Changes in the concentrations of serum IgG, IgA and IgM of sows throughout the reproductive cycle.

KLOBASA, F., J.E. BUTLER (1987):
Absolute and relative concentrations of immunoglobines G, M and A, and Albumin in the lacteal secretion of sows of different lactation numbers.

Vaccination of sows with Porcilis®APP, Stellamune®Mycoplasma and Atrinord®Do
Proc.: 17. Congress International Pig Veterinary Society, Ames, Iowa, 277

Field study on the efficacy of two different vaccination schedules with HYORESP® in a *Mycoplasma hyopneumoniae*-infected commercial pig unit.

Evaluation of the mode action of RespiSure® *Mycoplasma hyopneumoniae* bacterin.

KUHN, M.J. (2002):
Vaccine efficacy and production performance of pigs vaccinated with RespiSureOne®.

Seroepidemiology of *Mycoplasma hyopneumoniae* in pigs from farrow-to-finish farms.
Vet. Microbiol. **78**, 331-341

LEVONEN, K., E. SIHVO, P. VEIJALAINEN (1999):
Comparison of two commercial enzyme-linked immunosorbent assays for the detection of antibodies against *Mycoplasma hyopneumoniae* and correlation with herd status.

LILLIE, K. (2004):
Untersuchungen zur Wirkung und Verträglichkeit eines inaktivierten *Mycoplasma hyopneumoniae*-One-Shot-Impfstoffes (Stellamune®One) bei unterschiedlichen Vakzinationszeitpunkten.
In vivo and in vitro comparisons of a spray-drying and solvent-evaporation preparation of microencapsulated *Mycoplasma hyopneumoniae* for use as an orally administered vaccine for pigs.

LINGENS, P.O.T. (2002):
Einfluss der Impfung (Hyoresp®) von Ferkeln gegen *Mycoplasma hyopneumoniae* auf die Zuwachsleistung sowie den Gesundheitsstatus während der Mast.

MADEC, F., M. KOBISCH (1982):
Bilan lésionnel des poumons de porcs charcutiers à l’abattoir.
Journées rech. Porcine en France **14**, 405-412

Enzootic pneumonia in pigs.
Vet. Q. **18**, 104-109

The effect of vaccination against *Mycoplasma hyopneumoniae* in pig herds with a continous production system.

The effect of vaccination against *Mycoplasma hyopneumoniae* in pig herds with all-in/all-out production system.
Vaccine **17**, 1024-1034

Herd factors associated with the seroprevalences of four major respiratory pathogens in slaughter pigs from farrow-to-finish pig herds.
Vet. Res. **31**, 313-327

Field efficiacy of a single-dose *Mycoplasma hyopneumoniae* vaccine in farrow-to-finish operations.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 405

MARÈ, C.J., W.P. SWITZER (1965):
New species: *Mycoplasma hyopneumoniae*, a causative agent of virus pig pneumonia.
Vet. Med. **60**, 841-846

Antibody response to *Mycoplasma hyopneumoniae* infection in vaccinated pigs with or without maternal antibody induced by sow vaccination.
Efficacy of a *Mycoplasma hyopneumoniae* bacterin (Hyoresp) in challenge studies.
Proc.: 15. Congress International Pig Veterinary Society, Birmingham, 157

Detection of *Mycoplasma hyopneumoniae* in nose swabs from pigs by in vitro amplification of the 16S rRNA gene.

MENDOZA, S., C. PIJOAN (2004):
Temperature sensitive mutants of *Mycoplasma hyopneumoniae*.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 212

MESSIER, S., R.F. ROSS, P.S. PAUL (1990):
Humoral and cellular response of pigs inoculated with *Mycoplasma hyopneumoniae*.

R1 region of P97 mediates adherence of *Mycoplasma hyopneumoniae* to swine cilia.
Infect. Immun. **68**, 3056-3060

Persistence of passively acquired antibodies to *Mycoplasma hyopneumoniae* in a swine herd.

Seroepidemiologic study on natural transmission of *Mycoplasma hyopneumoniae* in a swine herd.

Specific enzymatic amplification of DNA in vitro: The Polymerase chain reaction.

NICOLET, J., P. PAROZ, S. BRUGGMANN (1980):
Tween 20 soluble proteins of *Mycoplasma hyopneumoniae* as antigen for an enzyme-linked immunosorbent assay.

Colostrum uptake- effect on health and daily weight gain until slaughter.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 722
NIEMANN, O. (1999):
Kontrolle der Wirksamkeit eines inaktiven Impfstoffes gegen Mycoplasma hyopneumoniae bei Vakzination bei Saugferkeln mittels klinischer, serologischer, bakteriologischer und zytologischer Untersuchung.

NOYES, E.P., D.A. FEENEY, C. PIJOAN (1990):
Comparison of the effect of pneumonia detected during lifetime with pneumonia detected at slaughter on growth of swine.
J. Am. Vet. Ass. 197, 1025-1029

The use of polymerase chain reaction (PCR) and serology (ELISA) to determine Mycoplasma hyopneumoniae infection in German pigs.
Proc.: 16. Congress International Pig Veterinary Society, Melbourne, 453

OISHI, E., Y. MUNETA, Y. MORI, Y. SHIMOJI (2004):
A live vector for Mycoplasma hyopneumoniae of swine.

Experimental Reproduction of Postweaning Multisystemic Wasting Syndrome in pigs by dual infected with Mycoplasma hyopneumoniae and Porcine Circovirus Type 2.
Vet. Pathol. 41, 624-640

PABST, T., E. GROßE BEILAGE (2004):
The efficacy of single-dose Ingelvac®M.hyo in endemic infected herds.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 385

PABST, T., E. GROßE BEILAGE, J. SPERGSER (2004):
Diagnostic of enzootic pneumonia in vaccinated herds endemic infected with Mycoplasma hyopneumoniae.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 170

Pathogens of pneumonic disease in pigs with different age groups in Bronchoalveolar Lavage Fluid.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 289

Mycoplasmen-Infektion des Schweines.
Prakt. Tierarzt 8, 708-713

PFÜTZNER H., T. BLAHA (1995):
Die ätiologische und ökonomische Bedeutung von Mycoplasma hyopneumoniae im Komplex der respiratorischen Erkrankungen des Schweines.
Tierärztl. Umschau 50, 759-765

Effect of *Mycoplasma hyopneumoniae* sow vaccination on colonization, seroconversion and
presence of enzootic pneumonia compatible lung lesions.
Proc.: 19. Congress International Pig Veterinary Society, Copenhagen, 103

Evaluation of enzyme-linked immunosorbent assay for detection of *Mycoplasma
hyopneumoniae* antibody in porcine serum.
Aust. Vet. J. 69, 255-258

Relationship between lifetime pneumonia lesions, slaughter volumetric and superficial lung
lesions and productive parameters in pigs.
Proc.: 13. Congress International Pig Veterinary Society, Bangkok, 132

Relationship between respiratory pathogen seroconversion and lung lesions in pigs.
Proc.: 13. Congress International Pig Veterinary Society, Bangkok, 133

SLAWIK, M.F., W.P. SWITZER (1972):
Development of a microtitration complement-fixation test for diagnosis of mycoplasmal
swine pneumonia.
Iowa State J. Res. 37, 117-128

Field efficacy of a new single dose *Mycoplasma hyopneumoniae* vaccine Stellamune®One
administered to pigs at 3 to 5 weeks of age.
Proc.: 17. Congress International Pig Veterinary Society, Ames, Iowa, 515

SØRENSEN, V., K. BARFOD, N.C. FELD (1992):
Evaluation of a monoclonal blocking ELISA and IHA for antibodies to *Mycoplasma
hyopneumoniae* in SPF-pig herds.
Vet. Rec. 130, 488-490

Application of enzyme-linked immunosorbent assay for the surveillance of *Mycoplasma
hyopneumoniae* infection in pigs.
Revue scientifique et technique 12, 592-604

The humoral response to experimental *Mycoplasma hyopneumoniae* infection in pigs in
relation to clinical signs and pathological lesions.
Proc.: 13. Congress International Pig Veterinary Society, Bangkok, 190

Mycoplasma hyopneumoniae infections increase severity
Pig Progress, The international magazine on pig production, Special June 1999, 8-10

Mycoplasma hyopneumoniae potentiation of Porcine Reproductive and Respiratory Syndrome virus induced pneumonia.
J. Clin. Mic. 37, 620-627

THACKER E., B. THACKER (2000):
Factors affecting *Mycoplasma hyopneumoniae* vaccine efficacy.
Proc.: 16. Congress International Pig Veterinary Society, Melbourne

The influence of maternally-derived antibodies on *Mycoplasma hyopneumoniae* infection.
Proc.: 16. Congress International Pig Veterinary Society, Melbourne

Evaluation of local and systemic immune responses induced by intramuscular injection of a *Mycoplasma hyopneumoniae* bacterin to pigs.
Am. J. Vet. Res. 31, 1384-1389

THACKER, E.L. (2001):
Mycoplasma diagnosis and immunity.

THACKER B., E. THACKER (2001):
Influence of maternally derived antibodies on the efficacy of *Mycoplasma hyopneumoniae* bacterin.

Interaction between *Mycoplasma hyopneumoniae* and *swine influenza virus*.

Influence of maternal immunity on mycoplasmal vaccine Respisure One efficacy.
Proc.: 17. Congress International Pig Veterinary Society, Ames, Iowa, 482

Validation of a PCR-Assay for diagnosis of porcine enzootic pneumonia.
Proc.: 14. Congress International Pig Veterinary Society, Bologna, 233

UTRERA, V., S. MENDOZA, C. PIJOAN (2002):
Development of a live avirulent vaccine against *Mycoplasma hyopneumoniae*.
Proc.: 17. Congress International Pig Veterinary Society, Ames, Iowa, 289
VELASQUEZ, J.I., S. VELASQUEZ (2004):
Weight gain of 80 grow-finish pigs prophylactically treated with two levels of Tylosin and Valnemulin.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 577

Use of an internal control in nested PCR assay for Mycoplasma hyopneumoniae detection and quantification in tracheobronchial washings from pigs.
Mol. Cell. Probes 14, 365-372

In vitro susceptibility of Mycoplasma hyopneumoniae field isolates.
Proc.: 18. Congress International Pig Veterinary Society, Hamburg, 535

Über den Einfluss verschiedener Umweltfaktoren auf die Infektionsabwehr.
Mh. Vet.-Med. 32, 630-635

WALLGREN, P., K. ARTURSSON, C. FOSSUM, G.V. ALM (1993):
Incidence of infections in pig bred for slaughter revealed by elevation serum levels of interferon and development of antibodies to Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae.

Strategic vaccination against Mycoplasma hyopneumoniae avoid marketing contagious animals from multiplying herds.
Proc.: 15. Congress International Pig Veterinary Society, Birmingham, 149

WALLGREN, P., O. SCHWAN (1994):
Regulation of time for infectio with Mycoplasma hyopneumoniae in a chronically infected herd to avoid merchandise of contagious animals.
Proc.: 13. Congress International Pig Veterinary Society, Bangkok, 134

Metaphylactic antimicrobial strategy in finishing pigs with naturally occuring Mycoplasma hyopneumoniae.
Proc.: 16. Congress International Pig Veterinary Society, MELBOURNE, 458

Immune suppression of Mycoplasma hyopneumoniae infected swine.
Proc. Int. Organ. Mycoplasmologists 7, 72

WHITTLESTONE, P. (1972):
The role of mycoplasmas in the production of pneumonia in pig.
In: Pathogenic Mycoplasmas. Amsterdam: Associated Scientific Publishers, 263-283
WHITTLESTONE, P. (1985):
Mycoplasmal infection of swine.
In: Gylstorff (Hrsg.): Infektionen durch Mycoplasmatales
Gustav Fischer Verlag, Jena, 387-417

WHITTLESTONE, P. (1990):
Control of enzootic pneumonia infection in pigs

YAGIHASHI, T., S. KAZAMA, M. TAJIMA (1993):
Seroepidemiology of mycoplasmal pneumonia of swine in Japan as surveyed by an enzyme-linked immunosorbent assay.
Vet. Microbiol. 34, 155-166

Isolation units for growing baby pigs without colostrum.
Am. J. Res. 14, 571-574

Physiologie der Milchsekretion.

Glycolipid receptors for attachment of Mycoplasma hyopneumoniae to porcine respiratory ciliated cells.
Infect. Immun. 62, 4367-4373

ZIMMERMANN, W., P. TSCHUDI, J. NICOLET (1986):
Schweiz. Arch. Tierheilk. 128, 299-306

ZIMMERMANN, W., P. TSCHUDI (1989):
Kontrolle der enzootischen Pneumonie beim Schwein mit der Milchserologie.
Tierärztl. Prax. Suppl. 5, 113-115

ZIMMERMANN, W., W. ODERMATT, P. TSCHUDI (1989):
Schweiz. Arch. Tierheilk. 131, 179-191

ZIMMERMANN, W., S. WEISKOPF (1996):
The use of lincomycin in an enzootic pneumonia eradication program in pig herds.

ZIMMERMANN, W., PLONAIT, H. (2001):
Erkrankungen des Atmungsapparates.
In: WALDMANN, K.H., M. WENDT (Hrsg.): Lehrbuch der Schweinekrankheiten, 3. Auflage 111-150 Verlag Paul Parey, Berlin
Danksagung

Mein ganz besonderer Dank gilt Herrn Prof. Dr. K. Heinritzi für die Überlassung des interessanten Themas, sowie die stets freundliche und sehr gute Betreuung und Unterstützung während Durchführung und Anfertigung dieser Arbeit.

Herrn Dr. M. Ritzmann und Herrn Dr. A. Palzer danke ich sehr für die immer freundliche und verlässliche Unterstützung und für die Hilfe bei der Textausarbeitung.

Vielen Dank an die Mitarbeiter und Doktoranden der Klinik für Schweine der Tierärztlichen Fakultät der LMU München für ihre freundliche Hilfe bei der Probengewinnung und Markierung der Ferkel.

Herrn Dr. M. Erber danke ich für die Ermöglichung der serologischen Untersuchungen. Ein ganz besonderes Dankeschön an Frau B. von Kölln-Braun für die geduldige Einarbeitung in den ELISA und die riesige Hilfe bei der Probenuntersuchung.

Bei Herrn Prof. Dr. H. Küchenhoff sowie Frau A. Ossig vom StatLab der LMU München bedanke ich mich für die statistische Betreuung dieser Arbeit.

Mein Dank gilt auch den Mitarbeitern der Tierarztpraxis Dr. Werner Schmidt, die nicht nur bei der Probengewinnung mir tatkräftig zur Seite standen, sondern auch bei der Einteilung der täglichen Praxisarbeit Rücksicht auf den Zeitaufwand dieser Arbeit nahmen.

Weiterhin danke ich den Landwirten für deren Mithilfe und Unterstützung und die Bereitstellung ihrer Tiere für die Untersuchungen.

Der Firma Pfizer vielen Dank für die Bereitstellung des Impfstoffes.

Nicht zuletzt danke ich meiner Familie und meinen Freunden für die großartige seelische Unterstützung.
<table>
<thead>
<tr>
<th>Lebenslauf</th>
</tr>
</thead>
</table>

Name | Strauß
Vorname | Christian
Geburtsdatum | 12.01.1976
Geburtsort | Aindling
Staatsangehörigkeit | deutsch
Eltern | Lorenz Strauß
| Sofie Strauß, geb. Limmer
| |

| Schulbildung | 1982 - 1986 Grundschule in Mühlhausen
| 1986 - 1987 Hauptschule in Affing
| 1987 - 1996 Wernher von Braun Gymnasium in Friedberg
| 06/1996 Abschluss: Abitur
| 1996 – 2002 Studium der Tiermedizin an der Ludwig-Maximilians-Universität München
| 04/2002 Tierärztliche Approbation
| 12/2002 Beginn der Dissertation
| Beruf | seit 05/2002 Angestellter Tierarzt in der Tierarztpraxis Dr. Werner Schmidt in Affing-Bergen
| |

- 94 -