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1 Introduction

Modeling the dynamics of asset prices and in particular financial volatility is crucial
for derivative pricing, risk management applications, and asset allocation decisions.
With the recent availability of high–frequency, or tick–by–tick transaction, data of
various financial markets the research in this area has taken new avenues. In partic-
ular, the new information contained in the high–frequency returns is exploited for
example for the direct modeling of these high–frequency returns, as well as for the
construction and modeling of lower–frequency nonparametric volatility measures.

On the intradaily level, high–frequency data revealed that returns are subject to
market microstructure frictions, such as transaction costs or bid–and–ask spreads,
and other specific intraday patterns such as the U–shaped volatility over the day,
or lunch–time effects. The existence of such effects complicates the direct model-
ing of high–frequency returns and the literature therefore focuses on modeling the
realized variation measures, which effectively summarize on a lower level the most
important information inherent in the high–frequency data. In fact, this literature
builds on the general result that under ideal conditions the sum over the outer
product of successively more finely sampled high–frequency returns converges to
the quadratic variation of the price process (see Andersen and Bollerslev, 1998;
Andersen et al., 2001b; Barndorff-Nielsen and Shephard, 2002b), an idea that al-
ready dates back to Merton (1980). However, the recent theoretical developments
also allow the decomposition of the quadratic variation into the variation coming
from the continuous–sample–path evolvement of the price process, as measured by
the so–called Bipower variation first introduced by Barndorff-Nielsen and Shephard
(2004b, 2005), and the variation coming from the jumps. As such, these measures
provide new information on the distribution and dynamics of the two volatility
components, as well as on the importance of jumps, which in turn can be useful for
modeling the dynamics of the price and volatility processes. Chapter 2 of this the-
sis provides a detailed discussion on the definition and construction of the realized
(co)variation measures and investigates their empirical properties, which are ex-
ploited in the subsequent chapters for the statistical assessment of continuous–time
stochastic volatility models.

In the finance and econometrics literature the continuous–time stochastic volatil-
ity models play a major role for asset pricing and risk management. Further-
more, due to their continuous–time formulation these models are informative about
the price process at any frequency. As a consequence a plethora of different
continuous–time stochastic volatility models has been developed, including for ex-
ample the affine and logarithmic jump–diffusion models (e.g. Andersen et al., 2002;
Chernov et al., 2003; Eraker, 2001; Eraker et al., 2003) in which the volatility
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1 Introduction

and the price processes are driven by jump–diffusion processes; the non–Gaussian
Ornstein–Uhlenbeck–type models of Barndorff-Nielsen and Shephard (2001b), in
which the volatility is modeled by a pure jump process; the Lévy–driven continu-
ous AR(FI)MA stochastic volatility models of e.g. Brockwell (2001) and Marquardt
(2004), which allow for a more flexible structure in the autocorrelation function of
the returns; as well as for example the time–changed Lévy processes (e.g. Carr
et al., 2003; Huang and Wu, 2004), in which stochastic volatility is introduced by
exchanging calender time with economic time.

Given the large number of different types of continuous–time stochastic volatil-
ity models it is interesting to assess their ability to reproduce the stylized facts
of stock returns, and to compare their implied empirical properties. However, the
empirical validation of these models is complicated by the existence of unobserved
state variables, the rare availability of the transition density, and the discreteness
of the observed prices. Consequently, to overcome these problems different esti-
mation strategies have been developed and applied, such as simulated maximum
likelihoods methods, MCMC methods and indirect inference approaches. Most of
the corresponding empirical studies are based on daily or lower–frequency data and
the empirical results typically do not allow for a very clear distinction between the
different models. Importantly, they do not allow the distinction between pure diffu-
sion multi–factor stochastic volatility models and lower–order models with jumps.
In view of the often observed large intraday price movements, however, one might
conjecture that the daily data most frequently used in the estimation of these mod-
els may simply not be informative enough to provide a firm answer.

In this thesis we therefore use high–frequency financial data and re–assess the
adequacy of the continuous–time stochastic volatility models. More specifically, as
the direct estimation of specific parametric volatility models with large samples of
high–frequency intraday data remains extremely challenging from a computational
perspective and, moreover, requires that all of the market microstructure complica-
tions inherent in the high–frequency data be properly incorporated into the model,
we will make use here of the realized variation measures. Note that the idea to
exploit the information contained in the realized variation measures for the estima-
tion of continuous–time stochastic volatility models is not novel to the literature.
In fact Bollerslev and Zhou (2002) propose a general method of moment approach,
and Barndorff-Nielsen and Shephard (2002a) suggest to use a quasi maximum like-
lihood. However, both approaches require the derivation of conditional moments
of the dynamics of the model–implied realized variation, which is not feasible for
all types of continuous–time stochastic volatility models. In contrast, we adopt
here the general scientific modeling (GSM) method recently proposed by Gallant
and McCulloch (2005), which does not rely on the derivation of such quantities,
and allows the assessment of any type of stochastic volatility model (as long as we
can simulate from it) within a unified framework. In Chapter 3 we conduct the
statistical assessment of univariate continuous–time stochastic volatility models.

Apart from the adequate modeling of the price process of a particular asset, as is
the focus of the above mentioned univariate continuous–time stochastic volatility

9



1 Introduction

models, the knowledge of the correlation structure, is also crucial for financial
decision–making, such as optimal portfolio choice and asset allocation decisions.
In the multivariate context, the model needs not only to capture the individual
dynamics, but should also reproduce the comovements and spill–over effects across
different assets. As such, modeling becomes even more challenging. Moreover,
the multivariate modeling is subject to some technical problems. One is given by
the necessity of a positive semidefinite covariance matrix. For stochastic volatility
models this implies that the instantaneous covariance matrix should be specified
by a positive semidefinite process. Moreover, if the dimension of the return vector
increases the number of parameters in the model is inflated. Hence, a parsimonious
but at the same time accurate specification is needed. Although the continuous–
time specification is very important for the asset pricing perspective, we are aware
of only three papers that consider continuous–time multivariate stochastic volatility
models, see Hubalek and Nicolato (2005), Lindberg (2005) and Gourieroux (2006).
However, none of these models provide closed–form expressions for the integrated
covariance process—the main variable of interest for financial applications.

The fourth chapter of this thesis therefore introduces a new continuous–time
multivariate stochastic volatility model that is shown to meet the above mentioned
requirements while providing a closed–form and very simple structure for the inte-
grated covariance process. In particular, our model is a multivariate extension of the
non–Gaussian Ornstein–Uhlenbeck–type model proposed by Barndorff-Nielsen and
Shephard (2001b). As this modeling framework allows us to derive state space rep-
resentations for the realized covariance matrix and for the squared high–frequency
returns, we also assess the adequacy of our multivariate model using high–frequency
data. This is in line with the quasi maximum likelihood estimation approach pro-
posed by Barndorff-Nielsen and Shephard (2002a) for the univariate non–Gaussian
Ornstein–Uhlenbeck–type stochastic volatility models.

The remainder of this thesis is structured as follows. The next chapter discusses
the information contained in high–frequency financial data. In particular, we re-
view the realized variation and covariation measures and illustrate their empirical
properties using a univariate and a multivariate dataset, which will be used later on
in the empirical assessment of the univariate and multivariate stochastic volatility
models, respectively. Chapter 3 presents the statistical assessment of the univariate
continuous–time stochastic volatility models. This also involves the derivation of a
highly accurate discrete–time model for daily returns and realized variation. The
chapter is primarily based on the papers by Bollerslev et al. (2006a) and Bollerslev
et al. (2007). Chapter 4 is based on Pigorsch and Stelzer (2007) and introduces the
multivariate extension of the non–Gausssian Ornstein–Uhlenbeck–type stochastic
volatility model, along with a Monte–Carlo analysis for the assessment of the fi-
nite sample properties of the relevant estimation methods. Furthermore, the model
is estimated using intraday returns sampled at different frequencies. Chapter 5
concludes.

10



2 High–Frequency Information

With the availability of transaction prices of financial assets, the question arises
whether such data provides any new information when compared to the commonly
available daily data. As a consequence, a new branch in the financial econometrics
literature has developed over the recent years addressing this issue, revealing that
the high–frequency data is indeed very informative about the price process not only
on an intradaily level–as might be naturally expected—but also on a daily level. In
particular, assessing the high–frequency returns directly, i.e. on an intradaily basis,
shows mainly that the markets are quite efficient and immediately incorporate news,
such as macroeconomic news announcements; that the very highly sampled returns
are subject to market microstructure noise induced by the trading mechanism;
and that there exists particular intradaily patterns, such as the well–known U–
shaped volatility pattern, exhibiting a high volatility at the beginning and at the
end of the trading day inducing strong seasonality patterns in the autocorrelation
functions of intraday absolute returns, or a high volatility period during lunch
(see e.g. Andersen et al., 2003b; Andersen and Bollerslev, 1997; Bollerslev et al.,
2000; Engle and Russell, 2007). However, all of these effects complicate the direct
modeling of high–frequency returns and in contrast to the daily level, for which
GARCH–type models are widely accepted as a quite accurate description of the
daily returns, a similar unifying and adequate approach accounting for all of these
intraday specific effects has not been established yet. Instead, rather then modeling
the raw high–frequency returns directly, the returns are usually adjusted for some
or all of these effects.

Alternatively, the information contained in the high–frequency data can be sum-
marized on a lower frequency, usually the daily level, resulting in the so–called
realized variation measures. In particular, based on the theory of quadratic varia-
tion the sum over the outer product of high–frequency returns provides an ex–post
measure of the daily quadratic (co)variation—a key variable in many financial appli-
cations. Moreover, these measures provide new information on the daily volatility
dynamics and the distribution of the volatility and standardized returns. They
also allow to empirically distinguish between the price variation coming from the
continuous–time evolvement of the price process and the variation coming from
jumps, and as such are informative on the contribution of jumps to total price vari-
ation. Furthermore, the relationships between the two volatility components and
returns can be assessed.

As a consequence, the nonparametric volatility measures have lead to the devel-
opment of a series of new and simple–to–implement reduced form volatility forecast-
ing models in which the realized volatilities are modeled by standard discrete–time

11



2 High–Frequency Information

time series procedures, examples of which include Andersen et al. (2003a, 2007),
Corsi (2004), Corsi et al. (2007), Deo et al. (2006), Koopman et al. (2005) and
Martens et al. (2004), among others. Noteworthy, by effectively incorporating the
high–frequency data into the volatility measurements, these simple discrete–time
models generally out–perform existing more complicated parametric volatility mod-
els based on the corresponding return observations only, such as the GARCH–type
models, being indicative of the higher information content of these measures when
compared to the daily returns.

Given the usefulness of the realized variation measures for modeling volatility,
we first review the theory of quadratic variation in the multivariate setup, and then
provide the definitions of realized variation, Bipower variation and a jump measure
for the special case of a univariate price process, see section 2.1.1. Thereafter, we
discuss the realized covariation, see section 2.1.2. We also establish some important
notation. In the sequel, we provide a discussion of the univariate dataset used for
the statistical assessment of the univariate continuous–time stochastic volatility
models (Section 2.2.1), as well as of the multivariate dataset used in the empirical
application of our newly developed multivariate extension of the OU–type stochastic
volatility model (Section 2.2.2). Within each of these sections we also exemplify
the empirical properties of the resulting series.

2.1 Definition of Realized Variation and Covariation

Measures

Let Yt denote the logarithmic price process of d different financial assets, and as-
sume that it belongs to the following class of stochastic volatility semimartingales:

Definition 2.1.1. A stochastic volatility semimartingale denoted by SVSM is a
vector semimartingale Y = α+m satisfying the following conditions:

(i) that α ∈ FVcloc, i.e. the drift has locally finite and continuous sample paths,
and α(0) = 0.

(ii) that m, the multivariate stochastic volatility process, is a local martingale.

Note, that our definition is quite similar to that of Barndorff-Nielsen and Shep-
hard (2004a), however, we allow the local martingale component of the logarithmic
prices in (ii) to have jumps. Moreover, even if the volatility process exhibits jumps,
Y is still a stochastic volatility semimartingale. Given Y ∈ SVSM, the quadratic
variation or covariation process, generally defined as (see e.g. Jacod and Shiryaev,

12



2 High–Frequency Information

2003)1

[Y ]t := plim
M→∞

M∑

j=1

(Ytj − Ytj−1
)(Ytj − Ytj−1

)T , (2.1)

for any sequence of partitions t0 = 0 ≤ t1 ≤ . . . ≤ tM = t with supj tj − tj−1 → 0
for M → ∞, is given for Y as

[Y ]t = [Y c]t + [Y d]t (2.2)

= [Y c]t +
∑

0≤s≤t

(∆Ys)(∆Ys)
T , (2.3)

where [Y c] and [Y d] are the continuous and the discontinuous local martingale (or
quadratic variation) components, respectively, whereby ∆Yt = Yt − Y−t denote the
jumps occurring at time t. Furthermore, since (i) holds,

[Y ]t = [m]t = [mc]t +
∑

0≤s≤t

(∆ms)(∆ms)
T , (2.4)

with ∆mt := mt −m−t, see e.g. Barndorff-Nielsen and Shephard (2004b).
For financial applications, the knowledge of the total price variation process, and

of its two components is essential and thus deriving consistent measures of these
quantities is important. The theory of quadratic variation, more specifically equa-
tion (2.1), suggests that summing over the outer product of ideally infinitesimally
sampled return vectors can provide an ex–post empirical measure of the quadratic
variation at time t if the sum is computed over the time interval [0, t]. In a similar
manner, the quadratic variation can be measured over any other time interval as
long as the summation interval is adjusted correspondingly. With the availability
of high–frequency data such an approach has become feasible. In particular, as
already shown by Merton (1980) and extended by Andersen and Bollerslev (1998),
Andersen et al. (2001b), Barndorff-Nielsen and Shephard (2001b), and by Comte
and Renault (1998), the quadratic variation can indeed be consistently estimated by
the sum of squared returns computed over very small time intervals. These results
hold even if the exact form of the drift and volatility processes are unknown (see
Barndorff-Nielsen and Shephard, 2002a). Although these authors are the first to
establish the formal relationship of the notion of realized variation to the theory of
quadratic variation within the context of finance and time–varying volatility mod-
eling, the idea of measuring the ex–post variation of asset prices by summing over
more frequently sampled squared returns dates back at least to Merton (1980), and
was also applied by French et al. (1987), Hsieh (1991) and Poterba and Summers
(1986), and more recently by Taylor and Xu (1997), inter alia. Moreover, based on
the theoretical results derived in Barndorff-Nielsen and Shephard (2004b) it is also
possible to construct measures of the two volatility components.

1In the following T denotes the transposed vector or matrix. As is common practice, all vectors
are column vectors.
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2 High–Frequency Information

Before discussing these realized quadratic (co)variation measures, we first intro-
duce some notation. Generally, we are interested in the discretely observed loga-
rithmic price increments of Yt over unit time intervals of length ∆. We therefore
denote the return over the time interval [(n− 1)∆, n∆] with n ∈ N by Yn, i.e.

Yn := Yn∆ − Y(n−1)∆. (2.5)

As is commonly done, we thereby focus on the daily returns, i.e. in (2.5) ∆ repre-
sents one day.

In addition, for each n (e.g. for each day) we observe the logarithmic price
increments over subintervals of ∆. In particular, the high–frequency returns (or
intradaily returns) are denoted by

Yj,n := Y((n−1)+ j

M )∆ − Y((n−1)+ j−1
M )∆ with j = 1, . . . ,M, (2.6)

whereby M refers to the sampling frequency. Commonly, the length of the subin-
tervals ∆/M is e.g. 5, 15, or 30 minutes.

In the next section we discuss the notion of realized variation, Bipower variation
and the logarithmic jump measure within the context of a univariate price process.
Thereafter, the realized covariation measure is reviewed.

2.1.1 Realized Variation

Assume that for the univariate price process yt ∈ SVSM, and that the stochastic
volatility process is given by the following Brownian semimartingale plus jumps

mt =

∫ t

0

σ(s)dw(s) +

N(t)∑

j=1

κ(sj), (2.7)

where σ(t) > 0 ∀t denotes the càdlàg instantaneous stochastic volatility, w(t) is
a standard Brownian motion, and the N(t) process counts the (for all t assumed
finite) number of jumps occurring with possibly time–varying intensity λ(t) and
jump size κ(sj). Note that most of the commonly used continuous–time stochastic
volatility models are subsumed in this class, i.e. the logarithmic and affine jump–
diffusion models or the non–Gaussian Ornstein–Uhlenbeck type processes proposed
by Barndorff-Nielsen and Shephard (2001b) and their extensions. The theory of
quadratic variation then allows to derive nonparametric realized variation measures
that can be used to decompose the total price variation into the variation coming
from the continuous sample path evolvement and the variation coming from the
jumps. In particular, for (2.7) the quadratic variation process is given by

[y]t = [yc]t + [yd]t =

∫ t

0

σ2(s)ds+

N(t)∑

j=1

κ2(sj), (2.8)
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2 High–Frequency Information

that is, the quadratic variation is the integrated variance, i.e. the continuous local
martingale or quadratic variation component, plus the sum of the squared jumps.
Obviously, in the familiar pure diffusion case where the N(t) counting process is
identically equal to zero, i.e. [y]t = [yc]t, the second term disappears and the
quadratic variation is simply equal to the integrated variance.

Then, by the theory of quadratic variation of semimartingales the realized vari-
ance over day n defined by

[y](M)
n :=

M∑

j=1

Y2
j,n, (2.9)

whereby the superscript M indicates the dependence of this quantity on the sam-
pling frequency, converges uniformly in probability to the (daily) quadratic vari-
ation process as the sampling frequency of returns approaches infinity, i.e., for
M → ∞

[y](M)
n

p→
∫ n∆

(n−1)∆

σ2(s)ds+

N(n)∑

j=N(n−1)+1

κ2(sj). (2.10)

In other words, the realized variance provides a consistent measure of the true total
price variation, including the discontinuous jump part.

In order to distinguish the continuous variation from the jump component,
Barndorff-Nielsen and Shephard (2004b) first proposed the so–called Bipower vari-
ation measure, defined by

[y]1,1(M)
n :=

π

2

M∑

j=2

|Yj,n||Yj,n|, (2.11)

whereby we have basically adopted their notation.2 Importantly, for increasingly
finely sampled returns the Bipower variation measure becomes robust to jumps and
consistently (for increasing values of M) estimates the integrated variance

[y]1,1(M)
n

p→
∫ n∆

(n−1)∆

σ2(s)ds. (2.12)

Consequently, the difference between the realized variance and the Bipower vari-
ation provides a consistent nonparametric estimator of the pure jump contribution
to total price variation, and can be used for testing for the presence of jumps as ad-
vocated empirically by Andersen et al. (2007) using the theoretical results derived
in Barndorff-Nielsen and Shephard (2006a), who consider a ratio jump statistics.
Alternatively, we consider the logarithmic relative jump measure defined by

{y}d(M)
n = log[y](M)

n − log[y]1,1(M)
n , (2.13)

2In particular, the superscript 1, 1 refers for the powers of the current and lagged absolute
intraday returns.
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2 High–Frequency Information

for which the corresponding test statistic might possess better finite sample per-
formance given the results in Barndorff-Nielsen and Shephard (2005) showing that
the variance of the logarithmic realized variance estimator is smaller than for the
non–transformed realized variance.

2.1.2 Realized Covariation

Our multivariate stochastic volatility model that is introduced in Section 4 is an ex-
tension of the univariate non–Gaussian Ornstein–Uhlenbeck–type models proposed
by Barndorff-Nielsen and Shephard (2001b, 2002a). Since these models are inter
alia characterized by a pure diffusion price process, we constrain ourselves on the
discussion of the realized covariation for the class of continuous stochastic volatility
semimartingales, i.e. Yt ∈ SVSMc ∈ SVSM. In particular, we assume that

mt = mc
t =

∫ t

0

Σ1/2(s)dW (s), (2.14)

whereby Σ(s) is the instantaneous covariance process with values in the positive
semidefinite matrices and càdlàg elements, and W (t) denotes a d–dimensional stan-
dard Brownian motion. In this case, the quadratic covariation is given by

[Yt] = Σ+
t :=

∫ t

0

Σtdt, (2.15)

i.e. the integrated covariance matrix, which is of main interest for financial applica-
tions. Oftentimes, we are interested in the daily integrated covariance, which can be
measured ex–post by the so–called realized covariation matrix using high–frequency
returns

[Y ](M)
n :=

M∑

j=1

Yj,nY
T
j,n, (2.16)

whereby the superscript (M) reflects the dependence of this measure upon the
particular sampling frequency M . Generally, by the theory of quadratic variation
it follows, that for M → ∞

[Y ](M)
n

p→ [Y ]n − [Y ]n−1, (2.17)

i.e. realized covariation is a consistent estimator of the daily increment of quadratic
variation. Moreover, if the log–price process Yt ∈ SVSMc, realized covariation
consistently estimates the integrated covariance over day n for M → ∞,

[Y ](M)
n

p→ Σn, (2.18)

with

Σn := Σ+
n∆ − Σ+

(n−1)∆ =

∫ n∆

(n−1)∆

Σtdt, (2.19)

as shown in Barndorff-Nielsen and Shephard (2004a), who further derive the asymp-
totic theory of realized covariance as an estimator of the increments of quadratic
variation or integrated variance.
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2 High–Frequency Information

2.2 Stylized Facts of Returns and Realized Variation

Measures

This section describes the datasets we use in our univariate and multivariate model
assessment, along with the empirical properties of the different realized variation
measures. A discussion of the issues arising in the practical computation of these
measures is also provided.

2.2.1 Univariate Dataset

The analysis of the univariate stochastic volatility models is based on high–frequency
S&P500 index futures data. In particular, our dataset consists of tick–by–tick trans-
action prices of S&P500 index futures recorded at the Chicago Mercantile Exchange
(CME). The sample ranges from January 1, 1985 to December 31, 2004, a period
of 5,040 trading days with 13,241,032 tick–by–tick observations. In the following
we discuss the construction of the daily realized variation, Bipower variation and
the logarithmic relative jumps measures.

Construction of Realized Variation Measures

It follows from the theoretical considerations discussed above that the consistency
of the realized variation, Bipower variation and the logarithmic relative jumps (as
well as for the realized covariation measure) hinges on the notion of increasingly
finer sampled high–frequency returns. In practice, however, the sampling frequency
is invariably limited by the actual quotation, or transaction frequency. Moreover,
very high–frequency returns, e.g. computed over 1 minute or even shorter time
intervals, are contaminated by transaction costs, bid–and–ask–bounce effects etc.,
leading to biases in the variance measures and rendering the basic assumption of a
semimartingale price process to be invalid at the very high–frequency level. Conse-
quently, the existence of such market microstructure noise induces a bias–variance
trade–off when constructing the respective measures (see also Bandi and Russell,
2005a; Zhang et al., 2005). In particular, in order to achieve consistency, a high
sampling frequency is required leading to the accumulation of market microstruc-
ture noise with the bias tending to become more severe as the sampling frequency
increases. On the other hand, using lower frequencies will result in less precise
estimates. In response to this, a number of authors, including Andersen et al.
(2001a,b, 2007), have advocated the use of coarser sampling frequencies, such as 5
to 30 minutes as a simple way to alleviate the contaminating effects, while main-
taining most of the relevant information in the high–frequency data. Alternatively,
different procedures have been proposed in the literature that make use of the very
high–frequency returns, e.g. computed even on a tick–by–tick basis. Since the mar-
ket microstructure noise induces autocorrelation in the intraday returns which in
turn leads to the bias problem, these approaches adopt techniques that are usually
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2 High–Frequency Information

applied in the estimation of the variance of a stationary time series in the presence
of autocorrelation (see also Hansen and Lunde, 2006). For example, for the esti-
mation of realized variance, pre–whitening techniques, such as the moving–average
filter (see e.g. Andersen et al., 2001a; Hansen et al., 2007) or the autoregressive
filter of Bollen and Inder (2002), nonparametric techniques, such as kernel–based
estimators (see Hansen and Lunde, 2006; Zhou, 1996) or estimators based on sub-
sampling (e.g. Zhang et al., 2005; Zhou, 1996) have been proposed. The recent
paper by Barndorff-Nielsen et al. (2006a) and Barndorff-Nielsen et al. (2006b) pro-
vides a unified theoretical framework for analyzing most of these estimators within
a kernel–based representation along with a discussion of optimal kernel and band-
width choices. In particular, they derive conditions under which these estimators
are consistent and very close to efficient. Moreover, their results are robust to rather
broad assumptions about the market microstructure noise dynamics. However, the
asymptotic theory is derived under the assumption of a pure Brownian semimartin-
gale, i.e. there are no jumps in the price process. Other approaches build on the
notion of an optimal sampling frequency, M , in the sense of minimizing the MSE of
the resulting realized volatility measure as suggested by Bandi and Russell (2005a)
and Aı̈t-Sahalia et al. (2005), or of business type sampling schemes dictated by the
activity of the market, as in, e.g., Oomen (2005).

So far, the literature has focused only on bias–correcting the realized variance
measure, and to the best of our knowledge none of these ideas have yet been for-
mally extended to allow for similar measurements of the integrated variance in
form of robust to market microstructure noise modified realized Bipower variation.
Consequently, similar work for the construction of market microstructure robust
jump measures and jump detection tests is still pending. Being interested in the
decomposition of total price variation into its two components, we therefore ad-
dress the bias–variance trade–off by sampling at lower frequencies. In particular,
given the high liquidity of our S&P500 index futures data, we follow Andersen
and Bollerslev (1998), Andersen et al. (2001b), Maheu and McCurdy (2002) and
Martens et al. (2004), among others, and use five–minute returns to construct our
realized–variance, Bipower–variation and jump measures.

The computation of the realized–variation measures is based on the most liq-
uid contracts. In particular, we consider the transaction prices of the most liquid
contract at the beginning of our sample period and switch to another contract if
this is traded more frequently. The corresponding intraday returns are then con-
structed from the transaction prices of each of these contracts, i.e. we avoid to
compute returns over the roll–over period. Moreover, we use the nearest neighbor
to the five–minute mark and exclude overnight returns, since the overnight trading
of these contracts at GLOBEX—the CME overnight trading platform—just started
in 1994. Using the same dataset and construction methods, Corsi et al. (2007) have
shown that the impact of market microstructure noise on these realized–variation
measures is negligible . In particular, they make use of the volatility–signature plot
which is a useful tool for assessing the bias induced by the microstructure noise
by depicting the full sample averages of realized volatility computed for different
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Figure 2.1: Volatility–signature plot of the S&P500 index futures constructed over
the full sample period. The graph shows average annualized realized volatility
constructed for different frequencies measured in number of ticks. Note that there
are about 7 seconds on average between trades, such that the average annualized
five–minute based realized volatility corresponds to around the 43th tick.

frequencies. In Figure 2.1 we reproduce the volatility–signature plot of Corsi et al.
(2007) for the S&P500 index futures. Note that a transaction takes place on aver-
age about every seven seconds, such that the average annualized realized volatility
based on the five–minute intervals corresponds to around the 43th tick presented
in the Figure. Obviously, the bias dies out very quickly.

Empirical Properties

In the following we discuss and illustrate the empirical properties of the resulting
daily returns, realized variation, Bipower variation and jump measures. Note that
we basically reproduce here the descriptive data analysis of Bollerslev et al. (2007).
Moreover, for the ease of exposition we denote from now on the realized variance
by RVt := [y]

(M)
n , the Bipower variation by BVt := [y]

1,1(M)
n and the logarithmic

relative jump measure by Jt := {y}d(M)
n .3

The daily return, logarithmic realized–variance, logarithmic Bipower–variation

3The somehow less intuitive notation in Section 2.1.1 was chosen to provide a unified framework
for discussing the univariate as well as the multivariate measures. Moreover, the notation
was partly adopted from Barndorff-Nielsen and Shephard (2004a) and turns out to be useful
in the derivation of our multivariate stochastic volatility model. In contrast, the univariate
model assessment relies on the existence of a discrete–time model for these measures, and such
notation would complicate the intuitive representation of this auxiliary model.
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Figure 2.2: Time Series of returns, logarithmic realized variance, logarithmic
Bipower variation and jumps.
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Table 2.1: Descriptive Statistics of the Univariate Dataset

Series Mean Std.Dev. Median Skewness Exc.Kurt. Ljung–Box(10)√
RVt 0.8627 0.5935 0.7586 15.3509 496.7651 10155.72

logRVt -0.5139 0.8775 -0.5527 0.5950 1.7981 22023.20√
BVt 0.8340 0.5359 0.7348 11.1561 288.4633 12223.28

logBVt -0.5817 0.8845 -0.6163 0.5418 1.4807 21715.55

log
(
RVt

BVt

)
0.0678 0.1263 0.0538 1.7766 12.2675 51.44

rt 0.0254 1.0946 0.0511 -2.1655 96.2483 117.29
rt/

√
RVt 0.0866 1.0027 0.0739 0.0503 -0.1497 14.86

and jump series are displayed in Figure 2.2. The widely–documented volatility–
clustering effect becomes obvious in all three series. Moreover, the realized–variance
is more volatile than the Bipower–variation series, which might be due to the jump
series exhibiting many, mostly positive, small values. Some of these observations,
and of the small negative values, may be attributed to measurement or discretiza-
tion errors induced by sampling at a lower frequency in order to eliminate the mar-
ket microstructure bias. But there are also larger values, which, in contrast, can
be associated with genuine large–sized jumps on those particular days. Although
we do not test for the presence of jumps here, these observations are indicative of a
relevant contribution of jumps to total price variation. In fact, using similar data,
Huang and Tauchen (2005) find that jumps contribute to total price variation by
about 7%.

The visual impressions are confirmed by the summary statistics reported in Ta-
ble 2.1. In particular, the mean and variance of the realized volatility exceed the
corresponding statistics for the square–root Bipower variation. Also, the uncondi-
tional distribution of both volatility measures is highly skewed and leptokurtic, but
can be made close to Gaussianity by the logarithmic transform, which is further
supported by the kernel density plots presented in Figure 2.3, and is in line with
the empirical findings in Andersen et al. (2001a,b), among others. The descriptive
statistics and the corresponding kernel density plots for the relative jump measure,
Jt, clearly indicate a positively skewed and leptokurtic distribution.4 The uncondi-
tional distribution of the daily returns also shows the well–known excess kurtosis
and negative skewness, and is surprisingly close to Gaussianity if the distribution
is scaled by the realized volatility, as previously documented by Andersen et al.
(2001a).

According to the Ljung–Box test statistics for up to tenth order autocorrelation,

4Note that the sign of the skewness is determined by the specific definition of our jump measure
as the ratio of RVt divided by BVt. Barndorff-Nielsen and Shephard (2004b) in contrast
consider the inverse ratio resulting in a negatively skewed distribution.
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Figure 2.3: Unconditional distributions of standardized returns, logarithmic re-
alized variance, logarithmic Bipower variation and jumps. The left panel of the
figure shows the kernel density estimates of the series (red line) and the normal
density (black line) for reference purposes. The right panel shows the same in
log scale.
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Figure 2.4: Sample autocorrelations and partial autocorrelations of returns, log-
arithmic realized variance, logarithmic Bipower variation and jumps. The red
lines give the upper and lower ranges of the conventional Bartlett 95% confi-
dence band.
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all of the volatility measures exhibit highly significant own serial dependencies.
This is also supported by the sample autocorrelation functions presented in Figure
2.4 showing significant autocorrelation coefficients (compared to the conservative
Bartlett 95% confidence bands) up to the 125th order corresponding to roughly
half–a–year. The Figure also visualizes the nearly hyperbolic decay of the auto-
correlation functions for the two logarithmic volatility measures—a characteristics
that has also been reported in the GARCH and stochastic volatility literature. In
contrast, the relative jump measure exhibits much less autocorrelation, with most
of the dependency being attributable to the first and the fifth lag, corresponding to
jumps that are one day and one week apart, respectively. Such weak autocorrelation
in the jump series has also been found in Andersen et al. (2007).

Another stylized fact, that is also well–known from the GARCH– and stochastic–
volatility literature, is the negative correlation between past return shocks and
current volatility, in particular negative return shocks tend to be associated with
a larger increase in volatility than a positive return shock of the same magnitude.
This phenomenon is very often referred to as the leverage effect, although for equity
indices the observed effect is too large to be caused by financial leverage, and such
an explanation would be more adequate for single equities. Alternatively, the effect
is sometimes also explained by the existence of a time–varying risk–premium im-
plying that expected returns depend positively on the conditional volatility, see for
example Bekaert and Wu (2000), Campbell and Hentschel (1992) as well as French
et al. (1987). Obviously, the two explanations assume a converse causality and
the empirical evidence on both effects is controversial. However, the recent high–
frequency data analysis in Bollerslev et al. (2006b) points towards a ”leverage”–type
causality. The news–impact curve proposed by Engle and Ng (1993) is a common
approach to empirically visualize this asymmetric relationship. The corresponding
plots for the logarithmic realized variance and Bipower variation are given in Fig-
ure 2.5. Both exhibit the expected slight asymmetric response to past standardized
returns. Interestingly, however, such relationship is not found for the jumps which
seem to be almost unaffected by the past return shocks, and, if anything, respond
negatively to the standardized returns. This also explains, why the asymmetric
effect is more pronounced for the pure continuous volatility BVt component in the
second panel, as compared to the total realized variation RVt depicted in the first
panel.

2.2.2 Multivariate Dataset

Our multivariate analysis is based on tick–by–tick transaction prices of various
US stocks. Table 2.2 provides some information on the companies included in
our dataset. As can be seen, our study includes companies of very different size
and from different sectors. The data is taken from the Trade and Quote (TAQ)
Database and covers the period from January 1, 2001 to December 31, 2005, a
period of 1,256 trading days. The descriptive statistics are presented in Table 2.3,
whereby we have made the following data adjustments. We only use transactions

24



2 High–Frequency Information

-4

-2

 0

 2

 4

 6

 8

-4 -3 -2 -1  0  1  2  3  4  5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

-4 -3 -2 -1  0  1  2  3  4  5

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-4 -3 -2 -1  0  1  2  3  4  5

rt−1/
√
RVt−1

rt−1/
√
RVt−1

rt−1/
√
RVt−1

lo
g
R
V
t

lo
g
B
V
t

lo
g
R
V
t/
B
V
t

Figure 2.5: News–impact curves for logarithmic realized variance, logarithmic
Bipower variation and jumps. The figure shows the scatter points between the
respective variable and lagged standardized returns. The black lines are the
news–impact curves, i.e. the linear regression lines for negative and positive
values of standardized returns.
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.

Table 2.2: Company Descriptions of the Multivariate Dataset
Symbol Name Sector Employees
AA Alcoa Inc. Basic Materials 129,000
C Citigroup Inc. Financial 299,000
HAS Hasbro Inc. Consumer Goods 5,900
HDI Harley-Davidson Inc. Consumer Goods 9,700
INTC Intel Corp. Technology 99,900
MSFT Microsoft Corp. Technology 61,000
NKE Nike Inc. Consumer Goods 28,000
PFE Pfizer Inc. Healthcare 106,000
TEK Tektronix Inc. Technology 4,359
XOM Exxon Mobil Corp. Basic Materials 106,000

taking place during the official trading time, i.e. from 9.30 a.m. to 4 p.m. and
exclude overnight returns. Moreover, we only consider valid trades, i.e. we remove
trades indicated by “exclude” and “error” flag provided by the TAQ database.
The resulting number of total as well as effectively used trades are reported in the
second panel of Table 2.3. The lower panel informs about the distribution of the
used trades across the different exchanges. The upper panel presents the mean and
standard deviation of the daily returns, as well as the duration between trades, i.e.
the mean time between used trades measured in seconds. Obviously, our sample
consists of quite actively traded stocks with the largest duration being somewhat
lower than half a minute. The intraday returns are constructed using the nearest
neighbor prior to the corresponding time mark, e.g. prior to the 15 minute tag.

On a intradaily basis, we also find the well–known U–shaped volatility pattern,
which is illustrated in Figure 2.6 showing the average number of trades taking place
within each minute of a trading day for the four most frequently traded assets of
our sample, i.e. for Intel Corp. (INTC), Citigroup Inc. (C), Microsoft Corp.
(MSFT) and Pfizer Inc. (PFE). The effect also induces a sinusoidal behavior in the
autocovariance of the squared returns as is illustrated by the red line in the upper
and lower panels of Figure 2.7, depicting the autocovariance functions for Microsoft
Corp. and Intel Corp. To account for this intraday pattern we adjust our dataset
by computing the intraday returns of each single stock as

y
(a)
j,n =

σ̄

σj
yj,n for j = 1, . . . ,M (2.20)

whereby σ̄ denotes the variance of the intraday returns over the whole sample period
and σj is the variance over the time interval of length ∆/M , i.e. 15 minutes. The
black lines in Figure 2.7 show that our data adjustment procedure indeed removes
the sinusoidal behavior in the autocovariance functions of the squared intraday
returns of MSFT and INTC as well as of their crossproduct. In our empirical
application, however, we consider both, the intradaily unadjusted as well as the
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Table 2.3: Description of the Multivariate Dataset
AA C HAS HDI INTC MSFT NKE PFE TEK XOM

st
at

s mean -0.12 -0.04 0.05 -0.03 -0.04 0.01 0.05 -0.10 -0.07 -0.01
std 1.83 1.62 1.75 1.82 2.39 1.73 1.56 1.52 2.17 1.27
dur 6.24 2.67 21.89 8.60 0.32 0.33 10.56 2.02 26.14 2.75

tr
ad

es all 4720081 11078678 1344353 3421089 92662950 88698413 2773959 14644488 1121288 10720372
del 55579

[1.17%]
165524

[1.49%]
13962
[1.03%]

35079
[1.02%]

1965582
[2.12%]

1690277
[1.90%]

24495
[0.88%]

252158
[1.72%]

11285
[1.00%]

139159
[1.29%]

used 4664502 10913154 1330391 3386010 90697368 87008136 2749464 14392330 1110003 10581213

ex
ch

an
ge

A 0
[0.00%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

4377
[0.00%]

24256
[0.02%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

B 213832
[4.58%]

1004835
[9.20%]

6284
[0.47%]

93700
[2.76%]

2045577
[2.25%]

1756565
[2.01%]

14416
[0.52%]

1685616
[11.71%]

1499
[0.13%]

634833
[5.99%]

C 46613
[0.99%]

379611
[3.47%]

809
[0.06%]

11665
[0.34%]

22241752
[24.52%]

20222366
[23.24%]

16327
[0.59%]

536066
[3.72%]

151
[0.01%]

289643
[2.73%]

D 0
[0.00%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

2292952
[2.52%]

2122142
[2.43%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

M 137632
[2.95%]

386381
[3.54%]

21763
[1.63%]

154569
[4.56%]

664418
[0.73%]

564682
[0.64%]

50105
[1.82%]

475902
[3.30%]

7194
[0.64%]

327272
[3.09%]

N 3240520
[69.47%]

6069579
[55.61%]

1187640
[89.27%]

2461513
[72.69%]

0
[0.00%]

0
[0.00%]

2369470
[86.17%]

6057649
[42.08%]

1023248
[92.18%]

5886927
[55.63%]

P 177101
[3.79%]

541921
[4.96%]

24606
[1.84%]

114593
[3.38%]

15640265
[17.24%]

14469267
[16.62%]

86980
[3.16%]

891783
[6.19%]

12176
[1.09%]

636877
[6.01%]

Q 0
[0.00%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

15079950
[16.62%]

15560590
[17.88%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

0
[0.00%]

T 799503
[17.14%]

2393309
[21.93%]

87730
[6.59%]

531753
[15.70%]

32728077
[36.08%]

32288268
[37.10%]

208540
[7.58%]

4598761
[31.95%]

64211
[5.78%]

2714449
[25.65%]

X 49301
[1.05%]

137518
[1.26%]

1559
[0.11%]

18217
[0.53%]

0
[0.00%]

0
[0.00%]

3626
[0.13%]

146553
[1.01%]

1524
[0.13%]

91212
[0.86%]

Notes: The first panel presents the mean and standard deviation of the daily returns, as well as the average duration between trades (measured in seconds). The second
panel reports the total as well as the number of trades used after data adjustments. The last panel presents the number of (used) trades taking place at the different
exchanges: A (AMEX), B (Boston), C (Cincinnati), D (NASD ADF), M (Chicago), N (NYSE), P (Pacific), Q (NASD), T (NASD), X (Philadelphia). The number in
brackets denote the corresponding percentages.
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Figure 2.6: U–shaped intraday patterns. Depicted is the average number of trades
taking place within each minute of the trading day.
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2 High–Frequency Information

adjusted dataset, in order to assess the relevance of cleaning out this intraday
pattern a priori.

Construction of the Realized Covariation Measure

When it comes to the construction of the realized covariation measure we face
similar problems as in the univariate case. On one side we may want to use the
returns sampled at the highest frequency possible in order to obtain precise esti-
mates, on the other side, market microstructure effects may induce sever biases
at very high–frequencies. Moreover, although the literature on how to solve this
bias–variance trade–off in the univariate case is by now extensive (see the discussion
in the last Section), similarly elaborate approaches for bias–correcting the multi-
variate measures, i.e. realized covariation, are still pending. This might be due
to the just recent introduction of the asymptotic theory for the realized covaria-
tion measure. Although some of the methods developed for realized variation can
be extended to the multivariate case, the conclusions may be different as market
microstructure noise, e.g. noise caused by the bid–and–ask spreads, has different
impacts on realized covariation than on realized variance (Voev and Lunde, 2007,
see e.g.). In addition, the construction of consistent and efficient realized covaria-
tion measures is not only further complicated by the possibility of cross–correlated
market microstructure noise, but, importantly, also by the non–synchronous trad-
ing of the different assets. In empirical applications the latter problem is usually
addressed by applying synchronization methods, such as the last–tick interpolation
(e.g Barndorff-Nielsen and Shephard, 2004a). However, such methods introduce an
additional bias to the resulting realized covariation measure, as also discussed in
Voev and Lunde (2007). As a consequence, several studies have focused on correct-
ing for this synchronization bias, see e.g. Bandi and Russell (2005b) and Hayashi
and Yoshida (2005). A more comprehensive analysis is provided by Voev and Lunde
(2007), who derive the asymptotic properties of different synchronization–bias cor-
rected covariation estimators under various forms of market microstructure noise.

However, although some of these estimators are unbiased and consistent under
specific noise assumptions, a joint approach for bias–correcting realized variance
as well as realized covariation, that is bias–correcting the full covariance matrix,
is not yet available in the literature. In fact the estimation of the full covariance
matrix is complicated by the different impacts of market microstructure noise on
realized variance and covariances. As will become clear in Section 4.4, our estima-
tion methodologies for the multivariate continuous–time stochastic volatility models
are based on the full covariance matrix, and we therefore follow Barndorff-Nielsen
and Shephard (2004a) and compute the realized covariation estimator according
to (2.16) using a lower sampling frequency, whereby we are aware of the potential
biases and noisiness of the resulting measure. To reduce these effects, however, we
consider 15 minutes or longer time intervals across all assets and apply the last tick
interpolation. Moreover, selecting for our empirical analysis the four assets with
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Figure 2.7: Autocovariance function of 15min squared high–frequency returns of
MSFT and INTC and their crossproducts for the raw and adjusted bivariate
dataset.
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2 High–Frequency Information

the highest liquidity, i.e. MSFT, INTC, C and PFE,5, the noise induced bias in
the realized–covariance measure should be negligible at this frequency. Moreover,
since the durations of the different assets are very similar and small, we expect the
synchronization bias to be very small.

Empirical Properties

In the following we analyze the empirical properties of the resulting daily return
and realized variance and covariance series. Figure 2.8 depicts the the returns
(left panel, in percentages) and the corresponding logarithmic realized variances
(right panel). All return series show the well–known volatility clustering behavior
and seem to move together. In particular, high and low volatility periods seem
to occur at the same time across the different assets, whereby we can observe an
overall higher volatility during the first half of the sample period when compared
to the second half (with the exception of Pfizer Inc.). This becomes even more
obvious from the time evolvement of the realized variance series. Note that the
series are somewhat noisy, as they are based on 15 minutes intervals rather than an
infinite sampling frequency.6 In order to facilitate the visual comparison of these
series, we therefore apply an exponential smoother, i.e. we compute the trend

realized variance series (displayed in black) by [yi]
(M)
n = 0.1[yi]

(M)
n + 0.9[yi]

(M)
n−1 for

the respective asset i. Figure 2.8 shows the logarithmic realized correlation series,

i.e. between asset 1 and 2 we compute
PM

j=1 Y(1)j,nY(2)j,n
q

PM
j=1 Y2

(1)j,n

PM
k=1 Y2

(2)k,n

, along with the

correspondingly exponentially smoothed series. The series are nearly throughout
non–negative and confirm our previous finding of a positive comovement across the
different assets. Moreover, as one might have conjectured from the previous plots,
Pfizer Inc. shows slightly less and more volatile correlations with the other stocks,
whereas INTC and MSFT exhibit the strongest correlation as expected.

These visual impressions are confirmed by the summary statistics reported in
Table 2.4. In particular, the means of the realized correlations of Pfizer Inc. are
lower than the other correlations while their variances exceed those of the others,
indicating that Pfizer Inc. moves less closely with the other stocks. Overall, the
unconditional distributions of the realized correlations are only slightly skewed to
the left and exhibit only weak excess kurtosis, i.e. being close to Gaussianity, with
the only exception being the realized correlation between INTC and MSFT, for
which we observe larger skewness and slight fat tails.

The descriptive statistics for the daily returns of the different assets show the
commonly observed skewness and fat–tailedness of the unconditional distribution.
Note also, that the skewness and leptokurtosis are less pronounced for single assets

5Note that the least traded asset of our sample still exhibits a transaction on average every two
and a half seconds.

6Such pattern has already been reported in Barndorff-Nielsen and Shephard (2005, 2004a), illus-
trating via a simulation study that the realized variance and covariance errors, respectively,
increase with lower sampling frequencies.
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Figure 2.8: Daily returns and logarithmic realized variances. The left panel of
the figure shows the time evolvement of the daily returns of the different as-
sets, whereas the right panel exhibits the corresponding realized variance series,
whereby the black line depicts the exponentially smoothed realized variance series
(see text for more details on the particular exponential smoother used).
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Figure 2.9: Daily realized correlations. The figure shows the pairwise realized
correlations between the different assets along with the exponentially smoothed
realized correlation series (black lines) (see text for more details on the particular
exponential smoother used).
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Table 2.4: Descriptive Statistics of the Multivariate Dataset (C, INTC, MSFT, PFE)

Series Mean Std.Dev. Median Skewness Exc.Kurt. Ljung–Box(10)
rPFE -0.0979 1.5244 -0.1475 0.1917 1.5139 14.6487
rC -0.0392 1.6201 -0.0891 0.3253 9.2576 23.4088
rINTC -0.0462 2.3873 -0.1157 0.2804 2.0375 17.9267
rMSFT 0.0108 1.7308 -0.0603 0.5278 3.4031 18.5505
RV PFE 2.4446 3.4322 1.5344 6.6163 70.2943 709.9982
RV C 2.9525 5.8487 1.4786 9.5613 126.8565 1876.1827
RV INTC 5.4312 6.4778 2.9878 3.1128 15.8839 4687.1599
RV MSFT 2.9007 3.8369 1.5814 4.2629 30.5911 3427.8917
RCorPFE,C 0.3185 0.2533 0.3354 -0.3456 -0.2365 385.4888
RCorPFE,INTC 0.3071 0.2432 0.3299 -0.4826 0.1765 255.5214
RCorPFE,MSFT 0.2987 0.2632 0.3200 -0.5048 -0.0083 400.6457
RCorC,INTC 0.4217 0.2234 0.4521 -0.7204 0.5624 151.6455
RCorC,MSFT 0.4037 0.2379 0.4346 -0.6390 0.0590 265.0768
RCorINTC,MSFT 0.5362 0.2231 0.5770 -1.0801 1.5784 861.5205
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2 High–Frequency Information

than for a stock market index, as is also revealed by comparing the respective values
with those of the S&P500 index futures reported in Table 2.1, which however is
also based on a different sample period. Moreover, the single assets exhibit less, in
fact nearly insignificant serial correlation, as indicated by the Ljung–Box statistics
for up to tenth order autocorrelation.7

According to Table 2.4 the unconditional distribution of the realized variance
series of the single assets considered in this study is less skewed and leptokurtic than
the realized variance of the stock market index (see table 2.1), but still significant.
In addition, we also find highly significant own serial dependencies as indicated by
the corresponding Ljung–Box statistics.8 Similar results are found for the realized
correlations.

7The corresponding critical value at the five and one percent significance levels is 18.31 and
23.21, respectively.

8This is also supported by the sample autocorrelation functions not presented here. Moreover,
the sample autocorrelation functions also exhibit a hyperbolic decay.
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3 Statistical Assessment of

Univariate Continuous–Time

Stochastic Volatility Models

Modeling the dynamics of asset prices is crucial for derivative pricing and an ade-
quate risk management. As a consequence, a plethora of different continuous–time
stochastic volatility models has been developed that aim at capturing the stylized
facts of stock returns. Although modeling asset prices by stochastic differential
equations was already introduced by Bachelier (1900), this approach just gained
further attention through the work of Black and Scholes (1973) and Merton (1973)
showing that the continuous–time specification facilitates derivative pricing. How-
ever, by now, it is well–known, that the Black–Scholes model, that assumes a
geometric Brownian motion for the asset price process, is unable to reproduce the
stylized facts of stock returns, in particular the asymmetry and fat tails of the
unconditional return distribution, as well as the time–variation and persistence in
the volatility with high/low volatile periods following high/low volatile periods, the
so–called volatility clustering. As a consequence different extensions have been pro-
posed in the literature. E.g. Merton (1976) already included a jump process into
the price diffusion process, which can account for the observed extreme outliers.
Heston (1993), Hull and White (1987) and Scott (1987) were the first to introduce
continuous–time stochastic volatility models, in which volatility clustering is in-
troduced by specifying an extra random, persistent process for the instantaneous
volatility. A combination of both approaches has been examined by e.g. Bates
(1996a,b), Bakshi et al. (1997) and Dai and Singleton (2000) as well as Ander-
sen et al. (2002), inter alia. Further extensions are the multi–factor models, in
which the volatility is commonly given either by an affine or logarithmic function
of these factors (e.g Andersen et al., 2002; Chernov et al., 2003; Dai and Singleton,
2000); or the additional inclusion of jumps into the volatility specifications such as
in Bates (2000), Duffie et al. (2000), Pan (2002) and Eraker et al. (2003), which
encounters the fact observed by Jones (2003), that a large shock to volatility of
returns leads to a rapid increase in the volatility itself. Whereas all of these models
specify either a pure diffusion process or a jump–diffusion process for returns and
volatility, whereby the jumps are usually modeled by a Poisson process, the use of
other Lévy processes has also become popular over the recent years, see e.g. the
non–Gaussian Ornstein–Uhlenbeck–type stochastic volatility models proposed by
Barndorff-Nielsen and Shephard (2001b), the continuous–time autoregressive mov-
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3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

ing average (CARMA) process as proposed by Brockwell (2001) and also considered
in Todorov and Tauchen (2005), or the time–changed Lévy processes of Carr et al.
(2003) and Huang and Wu (2004).

Given the large number of different continuous–time stochastic volatility models,
it is interesting to assess their ability to reproduce the stylized facts. Generally,
most of the existing empirical studies primarily focus on the model assessment
and comparison of the affine and logarithmic jump–diffusion models. Using daily
or lower–frequency data, the empirical results, however, do not allow for a very
clear distinction between pure diffusion multi–factor stochastic volatility models
and lower–order models with jumps. In view of the often observed large intraday
price–movements, one might conjecture that the daily data might just not be in-
formative enough to provide a distinction between the models. Moreover, as we
have seen in the previous chapter, high–frequency data provides indeed new infor-
mation on the price process and we therefore re–assess the affine and logarithmic
jump–diffusion models using realized variation measures.

Hence, our main objective is to evaluate and compare the ability of these models
to reproduce the stylized facts of returns and realized variations within a unified
framework. In particular, we use the general scientific modeling (GSM) method
recently proposed by Gallant and McCulloch (2005). The main idea of GSM is
that the usually unavailable transition density of the continuous–time stochastic
volatility model is expressed in terms of the transition density of a highly accu-
rate auxiliary model. Importantly, however, in contrast to other indirect inference
methods, GSM additionally allows to incorporate some prior information (e.g. on
the unconditional mean of the returns). Moreover, the continuous–time models can
be interpreted as prior information on the parameter space of the auxiliary model.
As such, model assessment is strongly simplified as it can be conducted in terms of
the auxiliary model, which provides a unifying framework for model assessment.

The remainder of the chapter is structured as follows. The next section reviews
the affine and logarithmic jump–diffusion models and introduces the model speci-
fications we consider in our analysis. Section 3.2 discusses the GSM method. As it
requires a highly accurate auxiliary model, we introduce in Section 3.3 a discrete–
time model for daily returns, realized variations and jumps, whereby the adequacy
of this model is illustrated through a detailed residual analysis and a simulation
study. Section 3.4 discusses the prior information we impose, and Section 3.5 pro-
vides the estimation and some simulation results. Section 3.6 provides a summary
of this chapter.

3.1 Model Specifications

In this section we discuss the univariate affine and logarithmic continuous–time
stochastic volatility models. The models we consider can be nested in the following

37



3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

representation, whereby we adopt a similar notation as in Chernov et al. (2003)

dyt = (α10 + α12U2t)dt+ σ (β10 + β13U3t + β14U4t) (3.1)

×
(√

1 − ψ2
13 − ψ2

14dW1t + ψ13dW3t + ψ14dW4t

)
+ J1,tdNt,

dU2t = α22U2tdt+ dW2t, (3.2)

with yt denoting again the logarithmic price of the financial asset, whose drift is
allowed to be driven by a Gaussian Ornstein–Uhlenbeck process, denoted by U2t, in
order to capture potential short–term dynamics in the returns. Moreover, the price
follows either a pure diffusion or a jump–diffusion process. The inclusion of jumps
into the price process was already proposed by Merton (1976) and should help
to capture outliers in the returns. Whereas Merton assumed a constant volatility
coefficient, Heston (1993) and Scott (1987) suggested a stochastic volatility spec-
ification without jumps. In most empirical applications, however, it turned out
that one volatility factor might not be sufficient enough to accommodate for both
the extreme outliers as well as the volatility persistence. As a consequence, multi–
factor stochastic volatility models or stochastic volatility models with jumps have
been proposed. Here, the coefficient σ(·) of the diffusion part is given by a linear
combination of at most two mean–reverting pure diffusion volatility factors denoted
by U3t and U4t. Depending on the functional form of the volatility coefficient we
either obtain the affine or the logarithmic stochastic volatility specification, as is
described below. The observed asymmetry in the return process or the so–called
leverage effect is usually introduced by correlating the Brownian Motions in the
price and the volatility specifications. Note, that the parameters ψii are the cor-
relation coefficients due to the reparametrization of ψ11 =

√
1 − ψ2

13 − ψ2
14. In the

presence of multiple volatility factors these correlation coefficients cannot be inter-
preted as the leverage effect. In particular, Chernov et al. (2003) show, that in this
case the leverage effect is dependent on the states of the volatility factors.

3.1.1 Affine Models

The affine stochastic volatility models have been extensively discussed in i.e. Ander-
sen et al. (2002), Chernov et al. (2003) and Dai and Singleton (2000). In particular,
they are characterized by a linear drift and volatility function. The most popular
volatility specification in this class is given by

σ(u) =
√
u (3.3)

assuming non–negative processes for the volatility factors. Commonly, the volatility
factors are driven by the following affine specification

dUit = (αi0 + αiiUit) dt+
√
βi0 + βiiUitdWit, i = 3, 4, (3.4)

i.e. a Square–Root or also called Cox–Ingersoll–Ross process. This specification
nests the well–known stochastic volatility model of Heston (1993), in which the drift
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3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

is only deterministic, i.e. (3.2) is shut down, and there exists only one Square–Root
volatility factor. This model is particularly attractive since closed–form expressions
for option pricing formulas exist. Moreover, the additivity of the two volatility fac-
tors in this specification allow to interpret one factor as a long–memory component
accounting for the persistence and a short–memory component accounting for the
extreme events (see e.g. Chernov et al., 2003; Engle and Lee, 1999).

3.1.2 Logarithmic Models

In the logarithmic models the volatility coefficient is specified by

σ(u) = exp (u) (3.5)

which shows the familiarity of this model class with the standard discrete–time
stochastic volatility and EGARCH models. The volatility factors are given by
Gaussian Ornstein–Uhlenbeck processes, i.e.

dUit = (αi0 + αiiUit) dt+ dWit, i = 3, 4. (3.6)

Obviously, in this specification the volatility factors enter the diffusion component
of the price process in a multiplicative way, whereby the exponential function al-
lows for very high volatility values. Also, this specification nests one of the classical
stochastic volatility models. In particular, excluding the stochastic drift specifi-
cation and considering only a one factor–diffusion process we obtain the model
of Scott (1987). Note, however, that the log–linear models are under the view-
point of derivative pricing less attractive than the affine specification, as it requires
numerical computations to derive option prices.

3.1.3 Jump–Diffusion Models

An alternative way to simultaneously capture the tail thickness and the persistence
in volatility is given by additionally allowing for jumps in the return process. Gen-
erally, in the jump–diffusion stochastic volatility models the volatility of returns
is then restricted to be driven by only one factor (U3t), which is responsible for
the persistence in volatility whereas the jumps account for the fat tail behavior.
Following the specifications considered in Andersen et al. (2002) and Chernov et al.
(2003), we specify the jumps in the return process by a Poisson jump process with
constant jump intensity, i.e.

Nt ∼ Poi(λJ) and jumps sizes J1,t ∼ N(µJ , σ
2
J). (3.7)

The assumption of constant jump intensity can be relaxed, such as in Andersen et al.
(2002) and Chernov et al. (2003), who specify the jump intensity as a function of
the spot volatility or of the size of the previous jump. In this study, however, we will
not consider a time–varying jump intensity as we want to assess the relevance and
adequacy of one of the simplest jump specifications versus pure diffusion models.
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3.1.4 Model Definitions

In this section we present our model abbreviations and the normalizations imposed
for identification. Again, for the ease of comparison the abbreviations are adopted
from Chernov et al. (2003). In particular for all models we set

α20 = 0 and β20 = 1. (3.8)

For the affine models we impose the following restrictions

β10 = β30 = β40 = 0 and β33 = β44 = 1. (3.9)

For the logarithmic models the following constraints apply

α30 = α40 = 0 and β30 = β40 = 1. (3.10)

Moreover, we impose the standard conditions to ensure existence and non–explosivity.
Our models are summarized in Table 3.1.

3.2 Estimation Methodology

The estimation of continuous–time stochastic volatility models is well–known to be
nontrivial due to the presence of unobservable state variables as well as the nonexis-
tence of closed–form expressions for the transition densities. Moreover, the models
can only be evaluated with discretely observed data introducing the problem of
discretization bias. As a consequence, considerable research effort has been con-
ducted to develop adequate estimation methods ranging over simulated maximum
likelihood methods (see e.g. Durham and Gallant, 2002; Pedersen, 1995), quasi
maximum likelihood estimation using high–frequency information (e.g. Barndorff-
Nielsen and Shephard, 2002a, 2006b), MCMC methods (e.g. Eraker, 2001; Eraker
et al., 2003), to method of moments based approaches (e.g. Bibby and Sørensen,
2001; Bollerslev and Zhou, 2002; Duffie and Singleton, 1993; Gallant and Tauchen,
1996; Hansen and Scheinkman, 1995), as well as indirect inference methods (e.g
Gallant and Tauchen, 1996; Gourieroux et al., 1993; Gallant and McCulloch, 2005).

The use of high–frequency financial data to evaluate the continuous–time stochas-
tic volatility models, however, further increases the complexity in the implementa-
tion of some of those methods. For example, the simulated maximum likelihood
estimation or MCMC methods can only be applied directly to the high–frequency
return data itself (ideally adjusted for market microstructure and diurnal effects),
and will therefore in general involve irregularly spaced time–intervals. Instead,
method of moments and indirect inference methods can exploit the high–frequency
information contained in regularly sampled variation measures. However, their fea-
sibility relies on the availability of sufficient moment conditions for those measures,
or on the existence of a discrete–time parametric auxiliary model, that adequately
describes the dynamics and distributional characteristics of these series. Fortu-
nately, such models are available, and the model proposed in Bollerslev et al. (2007)
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Table 3.1: Jump–Diffusion Model Specifications

Abb. Model description α10 α12 α22 α30 α33 α40 α44 β10 β13 β14 β30 β33 β40 β44 ψ13 ψ14 λJ µJ σJ

AFF1V affine, 1 vola. factor * * * * * * 1 *
AFF2V affine, 2 vola. factors * * * * * * * * * 1 1 * *
AFF1V–J affine, 1 vola. factor * * * * * * 1 * * * *

plus jumps

LL1V log., 1 vola. factor * * * * * * 1 *

dyt = (α10 + α12U2t)dt+ σ (β10 + β13U3t + β14U4t)

×
(√

1 − ψ2
13 − ψ2

14dW1t + ψ13dW3t + ψ14dW4t

)
+ J1,tdNt,

dU2t = α22U2tdt+ dW2t,

dUit = (αi0 + αiiUit) dt+ (βi0 + βiiUit)
γi dWit, i = 3, 4

σ(u) =
√
u, γi = 0.5 for affine

σ(u) = exp (u), γi = 0 for logarithmic

Nt ∼ Poi(λJ),

J1,t ∼ N
(
µJ , σ

2
J

)
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3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

provides an extensive and highly accurate description of the dynamics and inter-
relationships of returns, and the continuous–time and jump components of total
price variation.

Hence, we find ourselves in a situation to which indirect inference methods are
particularly well–suited, i.e. the transition density of the models under consid-
eration are not available in closed–form, however, one can simulate from those
models. Moreover, there exists a parametric auxiliary model that provides an ad-
equate description of the data. Candidate estimation methods therefore include
the efficient method of moments of Gallant and Tauchen (1996), or the general
scientific modeling (GSM) method proposed in Gallant and McCulloch (2005). In
this work we use the GSM method, since it allows us to additionally incorporate
prior information, and, more importantly, provides tools to assess the ability of the
candidate continuous–time stochastic volatility models to capture the stylized facts
of the high–frequency based data. In contrast to the EMM method,1 the interest-
ing data features must not be associated with specific parameters of the auxiliary
model, but can also be given by functionals that cannot be expressed in terms of
the auxiliary model’s parameters, such as e.g. the mean or variance of the observed
series. We continue the discussion of our estimation approach by describing the
GSM method in Subsection 3.2.1, and by introducing the highly accurate auxiliary
model of Bollerslev et al. (2007) for the high–frequency information contained in
the realized variation measures in Subsection 3.3.1.

3.2.1 The General Scientific Modeling Method

Let us first briefly sketch the main idea of the general scientific modeling method of
Gallant and McCulloch (2005), which is especially suited for the estimation of mod-
els with unknown transition density. In particular, GSM assumes that in addition
to the structural model, which is the model of interest, there also exists a paramet-
ric auxiliary or statistical model that provides a highly accurate description of the
data and for which the transition density is available in closed–form. Then, these
two models are linked to each other by the existence of a map, mapping the param-
eters of the structural model into the parameter space of the auxiliary model. This
allows to express the unknown transition density of the structural model in terms of
the transition density of the auxiliary model. Hence, given the auxiliary model and
the map, the parameters of the structural model can be estimated by simple max-
imum likelihood methods. However, the map is usually unknown and needs to be
computed. In GSM it is therefore additionally assumed that one can simulate from
the structural model. The map is then computed by fitting the auxiliary model to
the simulated data. The assumptions imposed so far, i.e. the existence of a highly
accurate auxiliary model with known form of the transition density, the existence
of the map, as well as the possibility to simulate from the structural model, show

1In EMM the score t–ratios can be used to assess how well the structural model fits the stylized
facts of the data.
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3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

the familiarity of the GSM method to other indirect inference approaches. How-
ever, GSM additionally allows to incorporate also prior information, such that the
method can be interpreted as a Bayesian indirect inference approach. In this case,
the main objective is to compute the posterior of the parameters of the structural
model based on the auxiliary model and the map, which involves standard MCMC
methods. In the following we will discuss GSM in more detail and introduce the
notation, whereby we follow Gallant and McCulloch (2005).

Let the transition density of the structural model, i.e. of the continuous–time
stochastic volatility model, be denoted by

p(yt|xt−1, θ) θ ∈ Θ,

whereby xt−1 subsumes all relevant past information of the process yt. As previously
noted, the form of the transition density is unknown, but one can simulate from the
structural model for given θ. Moreover, there might exist some prior information
on the structural model that can be expressed either in terms of θ or by simulating
from the model. The latter functionals or characteristics of the process, such as
for example moments of the unobserved drift or volatility factors, are denoted by
Ψ : p(·|·, θ) 7→ ψ and we can summarize the prior information on the structural
model by π(θ, ψ).

In contrast, the transition density of the parametric auxiliary model is known in
closed–form and is denoted by

f(yt|xt−1, η) η ∈ H.

Prior information on the parameters or other functionals of the auxiliary model
Υ : f(·|·, η) 7→ v can be imposed as well and are expressed by π(η, v). In general,
the functionals v can be computed by simulations from the auxiliary model, but
can also include elements of ψ, such as moments of observed variables. This is very
appealing, since very often one has some prior information about unconditional
moments of the return series etc.

Moreover, it is assumed, that the auxiliary model provides an accurate description
of the process {yt}, and that there exists a map g : θ 7→ η, i.e. mapping the
parameters of the structural model into the parameter space of the auxiliary model.
Given this map, the transition density of the structural model can be computed
using the transition density of the auxiliary model

p(yt|xt−1, θ) = f(yt|xt−1, g(θ)) θ ∈ Θ. (3.11)

Hence, the unknown likelihood of the structural model can be inferred from the
likelihood of the auxiliary model with parameters restricted through the map. Since
the auxiliary model is generally highly parametrized its dimension of θ is larger than
that of the structural model, and the map therefore generates a manifold M on η.
So, given the map the analysis can be carried out in the parameter space of the
auxiliary model.
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3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

In general, however, the map is unknown and needs to be computed by minimiz-
ing the Kullback–Leibler divergence between p(y|x, θ) and f(y|x, η). This involves
the computation of

∫ ∫
log f(y, η) p(y|x, θ) dy dp(x|θ) dx, which can be approx-

imated by 1
N

∑N
t−1 log f(ŷt|x̂t−1, η) with {ŷt, x̂t−1} denoting a sequence of data of

length N simulated according to p(yt|xt−1, θ). The minimization problem then
results into the maximum likelihood estimation of the auxiliary model on the sim-
ulated data and the map is therefore given by

g : θ 7→ arg max
η

N∑

t−1

log f(ŷt|x̂t−1, η). (3.12)

Therefore, in applications the map can be uncovered by simulating for any given θ
from the structural model, and by fitting the auxiliary model to the simulated data.
The resulting maximum likelihood estimator η then corresponds to the parameter
vector θ given through the map.

Once the map is known, i.e. once we have computed the maximum likelihood
estimator η, we can compute for each θ the likelihood of the structural model at
the observed data (ỹt) by

L(g(θ)) =
T∏

t=1

f(ỹt|x̃t−1, g(θ)). (3.13)

Then the remaining steps to obtain the parameter estimates of the structural model
are straightforward.

In particular, additionally allowing for prior information (subsumed in π(θ, ψ, η, v))
yields a Bayesian estimation approach and the posterior of the parameters of the
structural model p(θ|y, x) ∝ L(g(θ)) π(θ, ψ, η, v) can be computed via standard
MCMC methods. More specifically, a Metropolis Hastings algorithm can be em-
ployed that only differs from the standard algorithms by the additional steps in-
volved to compute the map, such that the likelihood of the structural model can
be approximated by L(g(θ)). The algorithm suggested in Gallant and McCulloch
(2005) is as follows

1. Draw θ∗ according to q(θ∗|θo)

2. Draw {ŷt, x̂t−1}Nt=1 according to p(yt|xt−1, θ
∗).

3. Compute η∗ = g(θ∗) and ψ∗ from the simulation {ŷt, x̂t−1}Nt=1 and ν∗ from η∗.

4. Let α = min
(
1, L(g(θ∗))π(θ∗,ψ∗,η∗,ν∗)q(θ∗|θo)

L(g(θo))π(θo,ψo,ηo,νo)q(θo|θT )

)

5. Accept (θ′ = θ∗) with probability α otherwise repeat (θ′ = θo).

More details on the algorithm and a possible specification of the proposal density
are discussed in Gallant and McCulloch (2005).
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The Bayesian character of the GSM method allows for a particularly detailed
model assessment. So far, the estimation procedure build on the assumption that
the structural model holds exactly. As a consequence, the parameter estimates of
the structural model, or more generally, the whole posterior expressed in the η–
space, is restricted to the manifold. This assumption may be relaxed, in order to
assess the adequacy of the structural model.

When allowing the structural model to move away from the manifold, its posterior
can move in the η–space in search of the likelihood evaluated at the data. If the
model is correct, the shape of the posterior may change, however, the mode should
still lie on the manifold. In contrast, if the structural model is incorrect, then the
location of the posterior will shift and its mode will be off the manifold. Obviously,
inference off the manifold can only be carried out in the η–space, since the structural
model is not valid anymore.

The implementation of the model assessment procedure is best understood when
the structural model is interpreted as imposing a prior on η through the map.
Hence, the prior on the statistical model now consists of two components: the first
is the prior that η is restricted to the manifold; the second is the prior π(η, v). Now,
relaxing the first prior allows the posterior to move away from the manifold. This
relaxation can be expressed by a parameter κ and the relaxed prior is then given
by

πκ(η, v) ∝ π(θj, ψj) exp

{
−d(η,M)

2κ

}
π(η, v) (3.14)

with d(η,M) measuring the minimum distance of η from the manifold. A large
value of κ then corresponds to a relaxation of the prior. π(θj, ψj) denotes the prior
information of the structural model on the point on the manifold, for which the
distance is minimal. In particular, the distance can be computed by d(η,M) =
minj[η − g(θj)]

′Σ−1
η [η − g(θj)] with scaling matrix Ση that ideally puts η on the

scaling of the posterior. A proposal for the computation of Ση is given in Gallant
and McCulloch (2005).2

The inference off the manifold can also be conducted for the parameters of the
auxiliary model and therefore provides similar strategies as EMM to assess the
ability of the structural model to reproduce the stylized facts of the data associated
with those parameters. However, a comparison of the posteriors of other functionals
of the auxiliary model is also possible and therefore allows to assess additional data
characteristics that cannot be expressed in terms of the parameters of the auxiliary
model.

2Applying an MCMC algorithm to compute the map, the weighting matrix Ση can be computed
from the parameter chains obtained for each maximum likelihood estimation of η on the
simulated data.

45



3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

3.3 The Auxiliary Model

Recall that our objective is to estimate different continuous–time stochastic volatil-
ity models using high–frequency information. Therefore, if we want to apply the
GSM method we first need to specify a highly accurate model for high–frequency
data. However, as the modeling of high–frequency returns is complicated by market
microstructure effects, diurnal volatility patterns etc. (see also our discussion in
Section 2.2) we explore the high–frequency information by modeling realized varia-
tion measures. In fact, the nonparametric volatility measures have already inspired
the development of a series of new and simple–to–implement reduced form volatil-
ity forecasting models in which the realized volatilities are modeled by standard
discrete–time time series procedures, examples of which include Andersen et al.
(2003a, 2007), Corsi (2004), Corsi et al. (2007), Deo et al. (2006), Koopman et al.
(2005) and Martens et al. (2004), among others. By effectively incorporating the
high–frequency data into the volatility measurements, these simple discrete–time
models generally out–perform existing more complicated parametric volatility mod-
els based on the corresponding daily return observations only. The simplicity of
these methods, however, comes at the cost of disregarding information about the
different volatility components. With the exception of Andersen et al. (2007), who
simply included lagged measures for the jump component into a univariate linear
forecasting model for the total realized variation, none of the above listed studies
have made use of the decomposition of the total variation into its separate con-
tinuous and jump components. However, as illustrated in Section 2.2 jumps are
apparently relevant and there exist distinctly different distributional features and
time–series patterns of the continuous volatility component and the jump compo-
nents. Hence, a more structured approach to realized volatility modeling may be
preferable, which in turn will allow us to assess the ability of the different univariate
continuous–time stochastic volatility models to reproduce the stylized facts implied
by the high–frequency information.

In Bollerslev et al. (2007) we develop such an empirically highly accurate mul-
tivariate discrete–time volatility model for the returns and the realized continuous
sample path and jump variation measures. Note also, that our joint modeling of
the returns and the two volatility components allows us to directly assess the im-
portance of the often documented asymmetric relationship between returns and
volatility, and whether the observed leverage effect is caused by a negative cor-
relation of the lagged returns with the current continuous volatility component
and/or current jumps.3 We initially estimate the model equation–by–equation un-
der the implicit assumption that the disturbances are independent across the three
equations. However, our univariate estimation results reveal important nonlinear
contemporaneous dependencies in the disturbances, which we account in a general
recursive simultaneous equation system, explicitly allowing for contemporaneous

3The recent empirical analysis in Bollerslev et al. (2006b) also points toward the existence of a
contemporaneous leverage effect in the form of cross–correlated high–frequency returns and
absolute returns.
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nonlinear inter–dependencies. The recursive structure also makes simulations from
the model easy to implement, which is used for checking different aspects of our
final preferred specification. It turns out, that our model indeed provides a highly
accurate description of the data. Importantly, despite the general and very flexible
structure of the model, its transition density is available. Hence, the model can be
used for the estimation of univariate continuous–time stochastic volatility models
via indirect inference methods, such as GSM.

In the following section we introduce the formulation of the three basic model
equations for the returns, Bipower variation and relative jump series. The result-
ing equation–by–equation estimates are presented in Section 3.3.2, along with an
assessment of the cross–equation dependencies in the disturbances. This illustrates
the relevance of contemporaneous dependencies and explains why our final model
specification is given by a trivariate simultaneous equation model, which is de-
scribed in Section 3.3.3 along with a presentation of the corresponding maximum
likelihood estimates. Simulations from the model are given in Section 3.3.4 showing
the adequacy of the model’s fit.

3.3.1 A Discrete–Time Model for Daily Returns and Realized

Variations

A burgeon literature dating back to Bollerslev (1987) and French et al. (1987) has
been concerned with the modeling of daily speculative returns using GARCH and
related stochastic volatility models; see, e.g., the review in Bollerlsev et al. (1994).
More recently, several studies, including Andersen et al. (2003a), Martens et al.
(2004), Martens and Zein (2004), Pong et al. (2004), and Thomakos and Wang
(2003) among others, have advocated the use of ARFIMA type models, along with
approximate long–memory component type structures in Andersen et al. (2007)
and Corsi (2004), for modeling the dynamic dependencies in realized volatilities.
However, these same ideas have not been applied yet to the Bipower variation,
nor to the relative jump measure considered here.4 More importantly, we are not
aware of any other attempts at jointly modeling the daily rt, BVt and Jt series
within a coherent multivariate framework. We first consider the specification for
the integrated volatility process as measured by daily Bipower variation, followed
by a discussion of our models for the relative jump component and the daily returns,
respectively.

The Bipower Variation Equation

The realized variation only differs from the Bipower variation (by more than mea-
surement errors) in the presence of jumps. Hence, guided by the recent empirical
literature pertaining to the modeling of RVt cited above, we will here rely on the

4In a related context, Andersen et al. (2006) have recently explored the use of ACD type models
for characterizing the times between significant, according to the ratio statistic in Huang and
Tauchen (2005), jumps.
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Heterogeneous Autoregressive, or HAR–RV, type model, originally proposed by
Corsi (2004) and successfully employed in a closely related context by Andersen
et al. (2007), for describing the dynamic dependencies in the BVt series.5 How-
ever, in contrast to the HAR–RV model estimates reported in Corsi (2004) and
Andersen et al. (2007), which are based on simple least squares, we shall here rely
on more efficient maximum likelihood estimation techniques explicitly accounting
for the time–dependent conditional heteroskedasticity in the residuals from the BVt
model through a separate GARCH type specification for the volatility–of–volatility.
A similar estimation approach has also recently been implemented by Corsi et al.
(2007).

More specifically, to set up the model we define the logarithmic multiperiod
Bipower variation measures by the sum of the corresponding daily logarithmic
measures

(logBV )t+1−k:t =
1

k

k∑

j=1

logBVt−j, (3.15)

where k = 5 and k = 22 correspond to (approximately) one week and one month,
respectively.6 Our HAR–GARCH–BV model then takes the form

logBVt = α0 + αd logBVt−1 + αw(logBV )t−5:t−1 + αm(logBV )t−22:t−1 (3.16)

+θ1
|rt−1|√
RVt−1

+ θ2I[rt−1 < 0] + θ3
|rt−1|√
RVt−1

I[rt−1 < 0] +
√
htut

ht = ω +

q∑

j=1

αj(logBVt−1 − x′BV βBV )2 +

p∑

j=1

βjht−j +
s∑

j=1

λjBVt−j.(3.17)

The lagged daily, weekly and monthly realized variation measures on the right-
hand-side of the logBVt equation could, of course, be augmented with additional
terms to account for the possibility of even longer–run dependencies. However,
the combination of relatively few volatility components often provide a remarkably
close approximation to true long–memory dependencies. The remaining, new vis–
a–vis the original HAR–RV model in Corsi (2004), terms explicitly allow for a
leverage effect in the volatility through the inclusion of the lagged signed returns.
The model also permits a level effect in the GARCH model for the volatility–of–
volatility. Lastly, to account for deviations from conditional normality, we allow
the errors to follow a normal–mixture distribution

ut
iid∼
{

N1(0, 1) with probability (1 − pu,2)
N2(µu,2, σ

2
u,2) with probability pu,2

. (3.18)

5The HAR model may be seen as an extension of the heterogeneous ARCH model first suggested
by Müller et al. (1997).

6We follow Corsi (2004) in defining the multi–period logarithmic volatility by the sum of the
corresponding one-period logarithmic measures. Almost identical empirical results obtain by
using the logarithm of the multi–period realized variances in place of the sum of the logarithms.
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Having defined the model for the continuous volatility component, we next turn
our attention to the specification of the jump component.

The Jump Equation

Consistent with the results in Andersen et al. (2007) pertaining to the time series
of significant squared jumps, the descriptive statistics in Section 2.2 point toward
fairly weak, albeit not zero, own serial dependencies in the relative jump series.
To best accommodate this we specify a standard autoregressive model augmented
with the same leverage type terms used in the BVt equation

log

(
RVt
BVt

)
= δ0 + ψ1

|rt−1|√
RVt−1

+ ψ2I[rt−1 < 0] + ψ3
|rt−1|√
RVt−1

I[rt−1 < 0]

+
n∑

j=1

δj log

(
RVt−j
BVt−j

)
+ νt. (3.19)

This in turn allows us to disentangle whether the well–documented asymmetric
negative relationship between total volatility and return innovations is primarily
driven by the response of the continuous volatility component and/or the reaction
of the jump component.

Experimentation suggests that the innovations in the jump equation are well
described by a mixture of a zero mean Normal Inverse Gaussian (NIG) distribution
and an Inverse Gaussian (IG) distribution

νt
iid∼
{

NIG0(αNIG, βNIG, δNIG) with probability (1 − pν,2)
IG(λIG, µIG) with probability pν,2

. (3.20)

Other asymmetric distributions could, of course, be considered, but a mixture based
on one distribution having support on the whole real line and the other being de-
fined only on the positive domain appears a natural choice for characterizing the
jump innovation distribution. Intuitively, the NIG distribution may be seen as pri-
marily accounting for the small day–to–day fluctuations in the logarithmic realized
variance around the logarithmic Bipower variation attributable to measurement er-
rors and small jumps, while the positive IG distribution captures the innovations
associated with large genuine jumps, or the right tail of the distribution. More-
over, the NIG and IG distributions both have very flexible shapes, and the superior
fit afforded by this particular mixture of distributions is indeed confirmed by our
model estimates discussed below.

The Return Equation

Our final model for the distribution of the daily returns rely on the nonparametric
RVt measure for capturing the total price variability. This same idea has previously
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been used in the context of modeling daily returns by Forsberg and Bollerslev
(2002). Note that even though we do not directly model RVt, the conditional
distribution of the total price variation is readily inferred from our models for
the logarithmic Bipower variation and the jumps discussed above based upon the
definition in equation (2.13); i.e., RVt := exp(Jt + logBVt).

Specifically, allowing for up to d’th order serial correlation, we postulate the
following simple autoregressive model for the daily return process

rt = γ0 +
d∑

j=1

γjrt−j +
√
RVtǫt. (3.21)

Our final preferred model takes the innovations to be standard normally distributed

ǫt
iid∼ N(0, 1), (3.22)

but as discussed further below, we also experimented with other more flexible
mixtures–of–distributions to allow for deviations from conditional normality. How-
ever, broadly consistent with the summary statistics in Table 2.1, we found that
the standard normal distribution provided as good a fit as any of these other dis-
tributions.

We next turn to a discussion of the univariate estimation results for this very
simple return generating process along with the other two equations for the realized
variation measures making up our complete system.

3.3.2 Equation–by–Equation Estimation

The recursive structure of the three equation system defined in the preceding sec-
tions, means that as long as the disturbances are independent across equations,
each of the three models may be estimated efficiently in isolation using standard
maximum likelihood methods. The validity of the assumption of independent dis-
turbances is, of course, questionable, and we will subsequently investigate the ade-
quacy of this based upon the single–equation estimates.

The estimation results for each of the three equations, along with the corre-
sponding asymptotic standard errors for the parameter estimates, are reported in
Table 3.2. Figures 3.1 to 3.3 show the resulting residuals, their autocorrelation
and partial autocorrelation functions, as well as the QQ plots and kernel density
estimates. The selection of the autoregressive lags in the different models is based
on the Schwarz Bayesian information Criterion (BIC), and all of the lags are kept
the same in the subsequent models.

Starting with the results in the first column and the BVt equation, the estimates
directly mirror earlier results in the literature for the HAR–RV realized volatility
model. The daily, weekly and monthly volatility components are all highly statisti-
cally significant, while the inclusion of the logarithmic Bipower variation measures
over biweekly and other horizons do not improve the fit according to the BIC
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Table 3.2: Single–Equation Estimation Results of the Auxiliary Model

BV equation Jump equation Return equation
Estimate Std. Error Estimate Std. Error Estimate Std. Error

α0 -0.1978 (0.0170) δ0 0.0704 (0.0067) γ0 0.0858 (0.0098)
αd 0.2548 (0.0169) δ1 0.0347 (0.0089) γ2 -0.0254 (0.0139)
αw 0.4370 (0.0265) δ5 0.0516 (0.0116) γ3 -0.0351 (0.0133)
αm 0.2416 (0.0215) ψ1 -0.0143 (0.0032)
θ1 0.0571 (0.0144) ψ2 -0.0026 (0.0050)
θ2 0.0384 (0.0217) ψ3 0.0014 (0.0049)
θ3 0.1247 (0.0218) pν,2 0.0072 (0.0329)
ω 0.0228 (0.0053) αNIG 71.5659 (52.7253)
α1 0.0419 (0.0077) βNIG 54.0383 (47.7732)
β1 0.8048 (0.0378) δNIG 0.2637 (0.0367)
pu,2 0.1451 (0.0304) λIG 0.5247 (0.3198)
µu,2 0.7688 (0.1306) µIG 1.1804 (5.2968)
σu,2 1.9278 (0.0688)

logL: -3464.75 logL: 3775.22 logL: -5839.63
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Figure 3.1: Residual analysis of the (log.) Bipower variation equation. The up-
per graph of the figure represents the time evolvement of the innovations of
the Bipower variation equation. The second line of graphs shows their sample
autocorrelations and partial autocorrelations. The third is the corresponding
Quantile–Quantile plot. The lower left panel of the figure shows the kernel den-
sity estimates of the residuals (red line) and the density of the estimated normal
mixture (black line). The right panel shows the same in log scale.
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Figure 3.2: Residual analysis of the jump equation. The upper graph of the figure
represents the time evolvement of the innovations of the jump equation. The
second line of graphs shows their sample autocorrelations and partial autocorre-
lations. The third is the corresponding Quantile–Quantile plot. The lower left
panel of the figure shows the kernel density estimates of the residuals (red line)
and the density of the estimated NIG–IG mixture (black line). The right panel
shows the same in log scale.
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Figure 3.3: Residual analysis of the return equation. The upper graph of the
figure represents the time evolvement of the innovations of the return equation.
The second line of graphs shows their sample autocorrelations and partial auto-
correlations. The third is the corresponding Quantile–Quantile plot. The lower
left panel of the figure shows the kernel density estimates of the residuals (red
line) and the density of a standard normal (black line). The right panel shows
the same in log scale.
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Figure 3.4: The volatility of Bipower variation. The graph exhibits the HAR–
GARCH implied volatility series of logarithmic Bipower variation.

criteria. A standard GARCH(1,1) model without any level effects emerges as the
preferred specification for the conditional variance. The estimated GARCH param-
eters easily satisfy the corresponding stationarity condition α1σ

2
u + β1 < 1, where

σ2
u = 1 + pu,2

(
σ2
u,2 − 1

)
. The importance of allowing for time–varying volatility

is further underscored by the plot of the GARCH conditional standard deviation
in Figure 3.4. The importance of asymmetry, or leverage effect, in the continuous
volatility component is directly manifest by the highly significant estimates for the
θ1 and θ3 parameters. As expected, the point estimates imply that a lagged negative
return shock leads to a much larger increase in the volatility than does a positive
shock of the same magnitude. In contrast, the level shift in the volatility equation
due to negative news is not significant. This latter result mirrors earlier findings for
the realized volatility in Martens et al. (2004). The QQ and kernel density plots in
Figure 3.1 indicate that the mixture of two normal distributions does a very good
job of capturing the slight skewness and kurtosis inherent in the innovations from
the model. Moreover, the autocorrelation and partial autocorrelation functions for
the estimated residuals do not reveal any remaining systematic serial correlation
within a monthly horizon.

Turning to the jump equation, the autoregressive parameter estimates associated
with the first, or daily, and fifth, or weekly, lags are both significant. Still, the
magnitude of both coefficients is very small, thus supporting the aforementioned
weak own predictability in the jump series. Interestingly, and in sharp contrast to
the results for the continuous volatility component, the parameter estimates for ψ2
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and ψ3 related to the leverage effect suggest that jumps are not asymmetrically
affected by lagged return shocks. In fact, if anything the estimate for ψ1 points
to a symmetric, but dampening impact of news on future jumps. The findings of
a negative leverage effect in the diffusion volatility component only, is directly in
line with most of the parametric jump–diffusion models estimated in the recent
literature, in which the leverage effect is typically incorporated by allowing for
a negative correlation between the two Brownian motions driving the price and
continuous volatility processes; see, e.g., the models in Bates (2000), Eraker et al.
(2003) and Pan (2002).7 Our results on the contemporaneous dependencies in the
disturbances, discussed below, further supports this particular specification. The
QQ–Plot for the residuals from the Jt equation as well as the kernel density plots
in Figure 3.2 show that the distribution of the jump innovations is well described
by the NIG–IG mixture.

The estimates for the return equation in the last column reveal statistically sig-
nificant, but economically very small, second and third order autocorrelations. As
already noted, the standard normal distribution fit the data very well, and are gen-
erally preferred over other specifications by the BIC criteria, including a normal
with a freely estimated variance parameter as well as a freely estimated zero–mean
NIG distribution. We also experimented with the inclusion of a risk premia, or
GARCH–in–Mean type effect, by allowing the conditional mean to depend on the
realized variance. However, consistent with existing results in the literature suggest-
ing that reliable estimates for this risk premium parameter requires longer return
horizons and time–spans of data (e.g. Lundblad, 2004; Ghysels et al., 2005), we
found the GARCH–in–Mean effect to be insignificant at the daily level.

Residual Inter–Dependencies

The separate estimation of the three equations discussed above implicitly assumes
that the disturbances are independent. However, based upon existing results in the
stochastic volatility literature, we might naturally expect that the disturbances in
the return and volatility equations are correlated due to contemporaneous (at the
daily level) leverage and/or volatility feedback effects; see, e.g., the recent high–
frequency data analysis in Bollerslev et al. (2006b). Moreover, the innovations
to the two volatility equations might naturally be expected to be correlated as
well. Such inter–dependencies would obviously have to be taken into account in a
fully efficient estimation of the joint system, and could also result in inconsistent
equation–by–equation estimates.

7In the context of a representative agent general equilibrium model, Tauchen (2005) has also
recently shown that a positive leverage effect can occur depending on the magnitude of the
intertemporal marginal rate of substitution and the degree of risk aversion. It is possible that
by explicitly differentiating between the two sources of risk, an extension of this model could
help explain our empirical findings of a ”standard” negative leverage effect in the diffusion
component but a positive correlation between returns and jumps.

56



3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

To begin, consider the sample correlation matrix for the estimated residuals from
the Bipower variation, jump and return equations, respectively

ρ̂ =




1 −0.1847 −0.2008
. 1 0.0283
. . 1


 .

Consistent with the discussion above, the continuous volatility innovations appear
to be negatively correlated with both the relative jump residuals and the return
innovations. Meanwhile, the correlation between the relative jumps and the return
residuals appears negligible.

In addition to the linear contemporaneous relationships suggested by the sample
correlations, there might also exist nonlinear dependencies due to, e.g., asymmet-
ric volatility effects. To this end, Figures 3.5 to 3.7 present the pairwise scatter
plots of the residual series along with a fitted quadratic polynomial, as well as a
Rosenblatt–Parzen Gaussian–based kernel estimator. The conjecture of a nonlinear
relationship between the residuals is, obviously, supported for at least two of the
three combinations. Most obviously, there is an asymmetric negative relation be-
tween the residuals of the Bipower equation and the return shocks in Figure 3.5. In
fact, this relationship is very similar to the usually assumed lagged leverage effect.
In contrast, there is no apparent nonlinear relation between the residuals from the
jump and return equations. Interestingly, Figure 3.7 reveals a smirk–like relation
between the innovations to the continuous volatility and jump components.8

To further visualize the inter–dependencies between the residual series, Figure
3.8 shows the scatter plot of the respective pairwise cumulative distribution func-
tions (cdf). In the absence of any dependencies the points should be uniformly
distributed over the whole scatter surface. However, consistent with the aforemen-
tioned smile–like pattern in the residual scatter plot for the Bipower variation and
return equations, the first panel shows that low (high) cdf values of the return
innovations tend to be associated with higher cdf values of the diffusion volatility
innovations. A similar pattern emerge in the cdf scatter for the jump and con-
tinuous volatility innovations in the bottom panel, but with high return cdf values
being associated with smaller values of the jump innovation cdf due to the dampen-
ing (smirk–like) behavior. Meanwhile, the cdf scatter between the jump and return
innovations in the middle panel exhibits nearly uniformly distributed scatter points.

In summary, our analysis points to the existence of important asymmetric depen-
dencies among the three innovation series. These effects should be incorporated into
a joint modeling framework in order to, firstly, more systematically quantify and
test for their significance, secondly, guard against any biases in the single–equation

8This effect should, of course, be carefully interpreted in light of the definitions of the underlying
variation measures. In particular, a negative shock to the (logarithmic) Bipower variation
corresponds to an overestimation of the continuous volatility component, which in turn is
associated with a larger jump component. In contrast, a positive shock to the Bipower variation
equation, and a larger than expected continuous volatility component, does not directly affect
the relative jump measure.
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Figure 3.5: Dependency analysis of the residuals between the return equation and
Bipower variation equation. The lower left and right panels include additional
different polynomial and nonparametric specifications, respectively.
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Figure 3.6: Dependency analysis of the residuals between the return equation
and jump equation. The lower left and right panels include additional different
polynomial and nonparametric specifications, respectively.
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Figure 3.8: CDF scatter plot of the single–equation innovations.
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estimates, and thirdly, enhance the efficiency of the individual model parameter
estimates. The unified system approach explicitly allowing for nonlinear functional
forms of residual dependencies developed in the next section does this.

3.3.3 System Estimation

The results of the equation–by–equation estimations suggest that the proposed
model specifications provide an adequate description of the dynamic dependencies
in the two volatility and return processes, but that it does not fully account for
the nonlinear contemporaneous dependencies among the innovations. We therefore
retain our basic three equation set up, but additionally model the nonlinear inter–
dependencies based on the following system of equations

rt = γ0 +
d∑

j=1

γjrt−j +
√
RVtǫt

logBVt = α0 + αd logBVt−1 + αw(logBV )t−5:t−1 + αm(logBV )t−22:t−1

+ θ1
|rt−1|√
RVt−1

+ θ2I[rt−1 < 0] + θ3
|rt−1|√
RVt−1

I[rt−1 < 0] +
√
ht (ut + g(ǫt))

ht = ω +

q∑

j=1

αj (logBVt−j − x′BV βBV )
2
+

p∑

j=1

βjht−j +
s∑

j=1

λjBVt−j

log

(
RVt
BVt

)
= δ0 +

n∑

j=1

δj log

(
RVt−j
BVt−j

)

+ ψ1
|rt−1|√
RVt−1

+ ψ2I[rt−1 < 0] + ψ3
|rt−1|√
RVt−1

I[rt−1 < 0]

+ (νt +m(ut) + k(ǫt)) .

(3.23)

In comparison to the individual equations, the system explicitly allows the innova-
tions in the continuous volatility and relative jump equations to depend nonlinearly
on the return innovations via the general functions g(ǫt) and k(ǫt), respectively.
Similarly, the jump innovations are allowed to depend on the continuous volatility
shocks via the m(ut) function. Thus, by choosing an adequate functional form for
each of these functions, we seek to render the underlying three innovation series to
be pairwise independent.

Now, utilizing the recursive structure of the basic model equations along with
the contemporaneous independence of the transformed innovations, the transition

density for the joint system, yt = (logBVt, log
(
RVt

BVt

)
, rt)

′, is available and can be
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readily expressed as

fy(yt|xt−1; θ) =
1√

ht
√
RVt

× fǫ



rt − x′rβr√

RVt︸ ︷︷ ︸
ǫt

∣∣∣∣∣∣∣∣
ϑǫ


 fu




logBVt − x′BV βBV√
ht

− g

(
rt − x′rβr

exp
{

1
2
logRVt

}
)

︸ ︷︷ ︸
ut

∣∣∣∣∣∣∣∣∣
ϑu




× fν


 log

(
RVt
BVt

)
− x′RV βRV −m (ut) − k (ǫt)

︸ ︷︷ ︸
νt

∣∣∣∣∣∣∣∣
ϑν


 ,

where as before

ǫt
iid∼ N(0, 1)

ut
iid∼

{
N1(0, 1) with probability (1 − pu,2)
N2(µu,2, σ

2
u,2) with probability pu,2

νt
iid∼

{
NIG0(αNIG, βNIG, δNIG) with probability (1 − pν,2)
IG(λIG, µIG) with probability pν,2.

To complete the specification, we assume that the nonlinear contemporaneous de-
pendencies among the individual equation innovations may be adequately captured
by a set of second order degree polynomials9

g(ǫt) = g1ǫt + g2ǫ
2
t (3.24)

k(ǫt) = k1ǫt + k2ǫ
2
t (3.25)

m(ut) = m1ut +m2u
2
t , (3.26)

where for identification purposes we have restricted the three constants to be zero.
Fully efficient maximum likelihood estimation of the complete system may now
proceed in a standard manner by maximizing the log likelihood function defined by
the summation of the logarithmic transition densities over the sample observations.

Comparing the system estimation results reported in Table 3.3 to the equation–
by–equation results in Table 3.2, the estimates for most of the individual parameters
obviously do not change by much. In particular, our previous conclusions regarding

9We also experimented with higher order polynomials, but found a simple quadratic sufficient
in capturing the smirk–like dependencies over the required range.
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Table 3.3: System Estimation Results of the Auxiliary Model (logL=-5230.37)

BV equation Jump equation Return equation
Estimate Std. Error Estimate Std. Error Estimate Std. Error

α0 -0.2526 (0.0172) δ0 0.0665 (0.0051) γ0 0.0570 (0.0095)
αd 0.2499 (0.0160) δ1 0.0422 (0.0095) γ2 -0.0321 (0.0125)
αw 0.4494 (0.0249) δ5 0.0500 (0.0110) γ3 -0.0431 (0.0116)
αm 0.2291 (0.0205) ψ1 -0.0145 (0.0033)
θ1 0.0636 (0.0139) ψ2 -0.0034 (0.0050)
θ2 0.0424 (0.0215) ψ3 0.0028 (0.0051)
θ3 0.1246 (0.0211) m1 -0.0200 (0.0012)
g1 -0.2493 (0.0186) m2 0.0013 (0.0004)
g2 0.1363 (0.0129) k1 0.0042 (0.0015)
ω 0.0250 (0.0055) k2 0.0018 (0.0011)
α1 0.0425 (0.0077) pν,2 0.0174 (0.0263)
β1 0.7707 (0.0417) αNIG 41.8149 (13.6452)
pu,2 0.1617 (0.0035) βNIG 26.1884 (11.2286)
µu,2 0.6183 (0.1204) δNIG 0.2417 (0.0330)
σu,2 1.9391 (0.0731) λIG 0.3183 (0.0933)

µIG 0.3722 (0.7001)
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the lagged leverage effect in the continuous volatility component and the positive
correlation between jump and return innovations all remain intact.10 Moreover, as
expected the asymptotic standard errors for the estimated parameters are generally
smaller for the system estimates in Table 3.3, highlighting the gain in (asymptotic)
efficiency obtained by jointly estimating the three equations.

Along these lines, the highly significant quadratic term in the g(ǫt) dependency
function clearly indicates that the innovations to the continuous volatility compo-
nent are nonlinearly related to the innovations to the return equation. In contrast,
for the return and jump innovations only k1 is significant and both of the parameters
are numerically very small. The aforementioned nonlinear relationship between the
continuous volatility component and the relative jump innovations allowed for by
the m(ut) dependency function is also strongly supported by the joint estimation.
The importance of allowing for contemporaneous nonlinear dependencies among the
innovations is further underscored by the likelihood ratio test comparing the fully
specified simultaneous equation model to the system equation estimates without
the quadratic polynomials, which equals an overwhelmingly significant 597.67.

The model presented in Table 3.3 still includes some individually insignificant
parameters. In particular, restricting θ2 = ψ2 = ψ3 = k2 = 0, and re–estimating
the model results in a LR test statistic of only 6.619 versus the fully general model.
Also, the remaining parameter estimates are hardly affected by restricting these
four parameters to be equal to zero. Our final preferred model specification is
therefore given by this restricted model in Table 3.4.

As an additional diagnostic check for this final specification, consider the sample
correlation between the three residual series

ρ̂ =




1 −0.0221 −0.0096
. 1 −0.0046
. . 1


 .

Compared to the sample correlations for the equation–by–equation residuals re-
ported earlier, these are obviously much closer to zero and generally insignificant.
The three scatter plots for the pairwise cdf’s for the system residuals in Figure 3.9
now also appear uniformly distributed over the entire range, indicating that the
quadratic polynomials have successfully accounted for the nonlinear contempora-
neous dependencies observed in the equation–by–equation residuals.

3.3.4 Further Accuracy Checks via Simulations

The discussion in the previous section suggests that the model performs an exem-
plary job in terms of describing the one–day–ahead conditional transition densities
when judged by the standard maximum likelihood criteria and corresponding model

10Importantly, the system GARCH parameter estimates for the BVt equations also satisfy the
corresponding second–order stationarity condition: α

(
σ2

u + g2

1
+ 2g2

2

)
+ β < 1, where σ2

u =

1 + pu,2

(
σ2

u,2 − 1
)

and α ≥ 0, β ≥ 0.
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Table 3.4: Restricted System Estimation Results of the Auxiliary Model (logL=-5233.67)

BV equation Jump equation Return equation
Estimate Std. Error Estimate Std. Error Estimate Std. Error

α0 -0.2351 (0.0140) δ0 0.0668 (0.0042) γ0 0.0572 (0.0095)
αd 0.2510 (0.0160) δ1 0.0426 (0.0094) γ2 -0.0323 (0.0125)
αw 0.4476 (0.0249) δ5 0.0497 (0.0110) γ3 -0.0430 (0.0116)
αm 0.2298 (0.0205) ψ1 -0.0136 (0.0025)
θ1 0.0489 (0.0115) ψ2 - -
θ2 - - ψ3 - -
θ3 0.1596 (0.0126) m1 -0.0200 (0.0012)
g1 -0.2493 (0.0186) m2 0.0013 (0.0004)
g2 0.1406 (0.0127) k1 0.0045 (0.0015)
ω 0.0247 (0.0055) k2 - -
α1 0.0419 (0.0077) pν,2 0.0198 (0.0236)
β1 0.7728 (0.0416) αNIG 41.0467 (12.6795)
pu,2 0.1628 (0.0355) βNIG 25.6054 (10.3213)
µu,2 0.6149 (0.1194) δNIG 0.2390 (0.0322)
σu,2 1.9374 (0.0730) λIG 0.3007 (0.0830)

µIG 0.3264 (0.5295)

66



3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fu (ut)

F
u
(u

t)
F
ν
(ν
t)

F
ν
(ν
t)

Fǫ (ǫt)

Fǫ (ǫt)

Figure 3.9: CDF scatter plot of the system innovations.
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diagnostics.11 Meanwhile, in order to better understand the workings and possible
limitations of a given model, it is often instructive to consider its ability to account
for other aspects of the data through the use of simulations. To this end, we gen-
erate 105,040 observations from the estimated system, keeping only the last 5,040
observations corresponding to the sample size of our data; i.e., the first 100,000
simulated observations serve as a large burn–in period. We then repeat this 25,000
times, leaving us with 25,000 simulated ”daily” sample paths for the returns, log-
arithmic Bipower variation, and relative jump series. To illustrate, Figure 3.10
shows one such representative set of simulated data. The basic similarities for each
of the series with those of the original data in Figure 2.2 are striking, and indeed
shows the model to be broadly consistent with the data.

More formally, consider the summary statistics in Table 2.1. By calculating the
same set of summary statistics for each of the 25,000 simulated sample paths, we
obtain a model–implied sample distribution for the respective statistics. If the
model provides an adequate description of the observed data, the realized values of
the corresponding sample statistics should lie within reasonable confidence inter-
vals, say 95%, of these model–implied distributions. Table 3.5 provides these 95%
simulated confidence intervals for the standard set of summary statistics, as well
as the actual sample values from Table 2.1. We also report actual and simulated
quantiles for each of the series, and illustrate these in Figure 3.11. Nearly all of
the sample statistics, including all of the reported 0.01 to 0.99 quantiles, lie within
the simulated confidence bands. Only the realized skewness and kurtosis for the
returns and the realized kurtosis for the logarithmic Bipower variation fall outside
the 95% bands.12

Exploring the dynamic implications of the model, Figure 3.12 shows the sample
autocorrelations and partial autocorrelations with the corresponding simulated 95%
confidence bands. As can be seen from the figure, the short–run dynamics of both
the returns and the relative jump series are generally consistent with those of the
model. Meanwhile, the HAR model for logBVt, as well as the model’s implications
for logRVt, both fall somewhat short in terms of reproducing the highly significant
and very slowly decaying sample autocorrelations over longer multi–month lags.13

At the same time, however, Figure 3.13 shows that the autocorrelations for the
Bipower and realized variation expressed in standard deviation form, as would
be of interest in many practical applications, both are well accounted for by our

11Although not reported in this work, we have also investigated the dynamic patterns and distri-
butional assumptions of the system residuals yielding almost identical results to the ones for
the single–equation estimates in Figures 3.1 to 3.3. These results are available upon request.

12Although our maximum likelihood based inference doesn’t seem to favor this, this could pre-
sumable be ”fixed” by allowing for a fattailed and skewed error distribution in the return
equation, either parametrically or through the uses of more flexible semi–nonparametric den-
sity estimation as in, e.g., Gallant and Nychka (1987) and Gallant and Tauchen (1989).

13As previously noted, the inclusion of quarterly or longer–run realized variation measures on
the right–hand–side of the HAR model for logBVt would presumable remedy this deficiency;
see also the simulations reported in Corsi (2004), which shows that the HAR model can get
remarkably close to reproducing the autocorrelations of a true long–memory volatility process.
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Figure 3.10: Simulated paths of returns, logarithmic realized variance, logarithmic
Bipower variation and jumps.
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Table 3.5: Simulation Results

rt logRVt logBVt log
(
RVt

BVt

)

stat. realized 95% intervals realized 95% intervals realized 95% intervals realized 95% intervals
Mean 0.0254 (-0.0125,0.0416) -0.5139 (-0.7501,-0.3148) -0.5817 (-0.8159,-0.3788) 0.0678 (0.0611,0.0687)

Std.Dev. 1.0946 (0.8539,1.1504) 0.8775 (0.7382,0.9312) 0.8845 (0.7447,0.9377) 0.1263 (0.1200,0.1354)
Skew. -2.1648 (-1.8996,0.0906) 0.5948 (-0.0211,0.5765) 0.5416 (-0.0252,0.5711) 1.7761 (0.9838,3.8142)

Exc.Kurt. 96.2483 (3.2207,37.8147) 1.7981 (-0.0476,1.2418) 1.4807 (-0.0354,1.2464) 12.2675 (3.1382,60.7865)
Q0.01 -2.6479 (-3.4341,-2.3966) -2.3275 (-2.7117,-2.0456) -2.3868 (-2.7956,-2.1305) -0.1517 (-0.1720,-0.1548)
Q0.025 -2.0527 (-2.4330,-1.7798) -2.0632 (-2.3743,-1.7998) -2.1377 (-2.4537,-1.8780) -0.1303 (-0.1394,-0.1268)
Q0.05 -1.5535 (-1.7945,-1.3384) -1.8321 (-2.0994,-1.5834) -1.9172 (-2.1746,-1.6577) -0.1027 (-0.1116,-0.1013)
Q0.10 -1.0895 (-1.2252,-0.9229) -1.5848 (-1.7958,-1.3244) -1.6667 (-1.8696,-1.3969) -0.0737 (-0.0792,-0.0703)
Q0.25 -0.4626 (-0.5275,-0.3872) -1.1147 (-1.3135,-0.8754) -1.1859 (-1.3812,-0.9436) -0.0143 (-0.0225,-0.0147)
Q0.50 0.0511 (0.0308,0.0767) -0.5527 (-0.7797,-0.3452) -0.6163 (-0.8443,-0.4098) 0.0538 (0.0470,0.0551)
Q0.75 0.5446 (0.4790,0.5901) 0.0173 (-0.2421,0.2279) -0.0533 (-0.3044,0.1683) 0.1339 (0.1264,0.1366)
Q0.90 1.0964 (0.9484,1.1850) 0.6022 (0.2553,0.8023) 0.5372 (0.1968,0.7448) 0.2218 (0.2091,0.2242)
Q0.95 1.5001 (1.2961,1.6478) 0.9853 (0.5634,1.1937) 0.9352 (0.5084,1.1375) 0.2799 (0.2656,0.2870)
Q0.975 1.9627 (1.6544,2.1554) 1.3462 (0.8420,1.5616) 1.2815 (0.7860,1.5113) 0.3371 (0.3211,0.3524)
Q0.99 2.5991 (2.1481,2.9251) 1.8250 (1.1784,2.0496) 1.8240 (1.1285,2.0040) 0.4322 (0.3964,0.4557)
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Figure 3.11: Sample quantiles of returns, logarithmic realized variance, logarith-
mic Bipower variation and jumps with 95% simulated confidence intervals.
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Figure 3.12: Sample autocorrelations and partial autocorrelations of returns, log-
arithmic realized variance, logarithmic Bipower variation and jumps. The red
lines give the upper and lower ranges of the simulated 95% confidence intervals.

72



3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 20  40  60  80  100  120
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 20  40  60  80  100  120

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 20  40  60  80  100  120
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 20  40  60  80  100  120

ac
f
of

√
B
V
t

p
ac

f
of

√
B
V
t

ac
f
of

√
R
V
t

p
ac

f
of

√
R
V
t

Figure 3.13: Sample autocorrelations and partial autocorrelations of realized
volatility and Bipower variation in standard deviation form. The red lines give
the upper and lower ranges of the simulated 95% confidence intervals.

relatively simple and easy–to–implement final preferred model in Table 3.4.
Our estimation and simulation results show, that our simultaneous equation

model provides indeed a highly accurate description of the discrete–time joint
dynamics of the returns and the two volatility components, Moreover, based on
the availability of its transition density, the model can be used in the indirect
estimation—e.g. via GSM—of other parametric volatility models, such as the affine
or logarithmic stochastic volatility models, while effectively incorporating the rele-
vant information contained in the high–frequency data.

3.4 Prior Information

Recall that in contrast to other indirect inference approaches, the GSM method also
allows to incorporate some prior information on both, parameters and functionals
of the structural model as well as of the auxiliary model.

In our auxiliary model we impose the following prior information. To assure
that the auxiliary model always satisfies the general stationarity conditions we
impose some parameter restrictions in form of support conditions. In particular
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3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

in the Bipower variation equation we restrict the autoregressive component by
|αd+αw+αm| < 1, and require the GARCH parameters to fulfill α (σ2

u + g2
1 + 2g2

2)+
β < 1, where σ2

u = 1 + pu,2
(
σ2
u,2 − 1

)
and α ≥ 0, β ≥ 0, assuming a GARCH(1,1)

specification. Similar conditions are imposed on the autoregressive parameters of
the jump equation, i.e. |∑n

j=1 δj| < 1. Obviously, the persistence in the return
equation also has to be less than one, but we make here additional use of the results
reported in the literature stating that returns are only weakly autocorrelated, i.e.
they are less predictable. We incorporate this information in form of the following
normal priors P (|γj − 0| < 0.098) < 0.95 for j = 1, ..., d, which is part of π(η, v).

Moreover, since mixtures of distributions are notoriously difficult to estimate, we
will fix the parameters of the underlying distributions (i.e. µu,2, σu,2 and αNIG,
βNIG, δNIG, δIG, µIG) to the estimated values from our observed data (see Table
3.4), and only allow the mixing probabilities to be freely estimated within the GSM
routine. In addition, recall from (3.16) and (3.19) that the mixing probabilities in
each mixture of distributions, are restricted to sum to one.

For the structural models we only impose the normalizations discussed in Section
3.1 to achieve identification as well as non–explosivity restrictions. Furthermore,
we do not consider other prior information, in order to allow for comparability
among the different competing continuous–time stochastic volatility models, i.e.
the assessment of each of the models should be subject to the same information
set. Note, that in contrast the prior information on the auxiliary model is not
relevant only for one specific structural model, but for all of the continuous–time
models which are estimated with respect to this prior information.

3.5 Empirical Results

Given the prior information and the auxiliary model, we can now turn to the es-
timation of the continuous–time stochastic volatility models using GSM. In the
following we provide a discussion of the corresponding estimation results. Impor-
tantly, note that to this end we conduct our model assessment only in terms of
the auxiliary model, although, of course, the parameter estimates of the structural
models are also available as in GSM there exists for each parameter vector of the
structural model an associated parameter vector of the auxiliary model with the
correspondence given by the map. However, analyzing the results in terms of the
auxiliary model facilitates the comparison of the different continuous–time stochas-
tic volatility models among each other, as well as the assessment of their ability to
reproduce the stylized facts of the data, which is the main objective of this study.

Table 3.6 presents the corresponding estimation results of the continuous–time
stochastic volatility models along with the parameter estimates of the auxiliary
model which are just reproduced from Table 3.2. Note, that rather than testing
for the significance of the individual parameters of the continuous–time stochastic
volatility models, we are mainly interested in the closeness of these estimates to the
ones of the auxiliary model. We therefore only report the standard deviations of the
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Table 3.6: Estimation Results of the Continuous–Time Stochastic Volatility Mod-
els

Param. Est. Stdev. LL1V AFF1V AFF1V-J-75 AFF2V

B
V

α0 -0.235 0.014 -0.107 -0.101 0.026 0.011
αd 0.251 0.016 0.833 0.816 0.210 0.325
αw 0.448 0.025 -0.067 -0.016 0.694 0.590
αm 0.230 0.021 -0.004 -0.003 0.079 0.074
θ1 0.049 0.012 -0.056 -0.056 -0.060 -0.044
θ3 0.160 0.013 0.119 0.122 0.113 0.095
pu,2 0.163 0.036 0.001 0.021 0.012 0.012
ω 0.025 0.006 0.032 0.060 0.001 0.001
β1 0.773 0.042 0.889 0.689 0.929 0.940
α1 0.042 0.008 0.001 0.072 0.051 0.047

r

γ0 0.057 0.010 0.055 0.058 0.044 0.078
γ2 -0.032 0.013 -0.001 -0.007 -0.021 -0.007
γ3 -0.043 0.012 0.002 0.002 -0.014 -0.018

J

δ0 0.067 0.004 0.026 0.029 0.034 0.028
δ1 0.043 0.009 0.013 0.024 -0.006 0.061
δ5 0.050 0.011 -0.018 -0.006 -0.008 0.014
ψ1 -0.014 0.003 0.001 0.001 -0.002 -0.000
pν,2 0.020 0.024 0.000 0.000 0.082 0.000

co
n
te

m
p
. g1 -0.249 0.019 -0.146 -0.152 -0.128 -0.106

g2 0.141 0.013 0.007 -0.003 -0.004 0.007
m1 -0.020 0.001 -0.014 -0.016 -0.023 -0.029
m2 0.001 0.000 0.000 -0.003 0.001 -0.000
k1 0.005 0.002 -0.000 -0.003 0.001 -0.001
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parameter estimates of the auxiliary models providing us with confidence intervals,
which should include the estimates of the continuous–time models if those models
are adequate.

Let us first focus on the parameters of the Bipower variation equation (first
panel). Comparing the estimates of the HAR coefficients reveals that the one–
factor models introduce persistence mainly through the daily volatility component.
In particular, they strongly overstate the impact of the daily volatility component
(αd) and impose nearly zero weight to the weekly and monthly components. In
contrast, the two–factor model and the affine one–factor model with jumps attribute
the highest impact to the weekly component followed by the daily one, which is
just in line with the data, i.e. the auxiliary model, where, however, the weekly and
monthly coefficients are smaller and larger, respectively. Furthermore, overall the
AFF1V and the AFF1V-J-75 overestimate the persistence as measured by the sum
of the HAR coefficients, whereas the one–factor models underestimate it.14 Turning
our attention to the parameters of the leverage specification, i.e. θ1 and θ3, it
becomes obvious that none of the continuous–time models is able to reproduce the
smile–like relationship between returns and volatility. The estimates rather imply a
smirk–like behavior as positive lagged returns lead to a decrease in the continuous–
volatility component rather than an increase, while negative returns still have a
positive impact. Similarly, the contemporaneous interdependencies between the
Bipower variation and the return innovations is not captured. The results for
the return equation show, that the weak serial correlation in the returns is not
generated by any of the considered continuous–time stochastic volatility models
as is also the case for the own serial correlation of the jumps, which, however, is
not surprising, given that the model specifications impose no serial dependence in
the jump process. Moreover, returns seem to have no lagged nor contemporaneous
impact on the jumps as is indicated by the near zero estimates of ψ1 and k1,
respectively. However, in the affine one–factor model with jumps the innovations
exhibit similar dependency on the contemporaneous shocks in the Bipower variation
as is observed empirically via the auxiliary model. Importantly, the model with
jumps is also the only one that has a positive mixing probability pν,2. However,
according to the estimated value, the model implies a larger relative importance of
the jumps than is observed empirically.

Overall, none of the continuous–time stochastic volatility models seems to be
able to reproduce all of the empirical characteristics of our data. However, some
of the data characteristics cannot be attributed to particular parameters of the
auxiliary model, and we therefore supplement our analysis by a simulation–based
unconditional and conditional model assessment.

14Note, that AFF1V-J-75 denotes the affine one–factor stochastic volatility model with λ = 75.
In particular, we have fixed λ to different values and have reestimated the AFF1VJ model
for each of these values whereby it turned out that on average 75 jumps per year are most
adequate. We henceforth fixed λ = 75.
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Figure 3.14: The figure shows the model–implied distributions of the means of
the returns (upper panel), of the logarithmic realized variance (middle panel),
and of the logarithm of Bipower variation (lower panel). The distributions are
based on a simulation study, which is further described in Section 3.5. For an
explanation of the model abbreviations see Table 3.1.
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Figure 3.15: The figure shows the model–implied distributions of the mean of the
jump measure (upper panel), of the correlation between returns and logarithmic
realized variance (middle panel), and of the Ljung–Box statistics (scaled by the
number of observations) on serial correlation of realized variance up to order 22
(lower panel). The distributions are based on a simulation study, which is further
described in Section 3.5. For an explanation of the model abbreviations see Table
3.1.
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Table 3.7: Summary Statistics of Model–Implied Distributions
model mean std Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

r
AUX 0.0157 0.0140 -0.0083 0.0067 0.0153 0.0255 0.0378
AFF1V 0.0363 0.0146 0.0124 0.0267 0.0355 0.0462 0.0603
AFF1V-J-75 0.0338 0.0270 -0.0115 0.0163 0.0334 0.0524 0.0761
AFF2V 0.0132 0.0256 -0.0312 -0.0021 0.0132 0.0307 0.0519
LL1V 0.0236 0.0138 0.0010 0.0142 0.0227 0.0329 0.0463

logRV
AUX -0.5325 0.1101 -0.7108 -0.6087 -0.5392 -0.4579 -0.3514
AFF1V -0.4626 0.0411 -0.5299 -0.4906 -0.4656 -0.4345 -0.3947
AFF1V-J-75 0.9507 0.2107 0.6036 0.8078 0.9392 1.0934 1.2951
AFF2V 0.6666 0.2198 0.3107 0.5179 0.6500 0.8138 1.0308
LL1V -0.4750 0.0316 -0.5263 -0.4964 -0.4774 -0.4533 -0.4226

logBV
AUX -0.5973 0.1105 -0.7761 -0.6736 -0.6042 -0.5226 -0.4154
AFF1V -0.4893 0.0413 -0.5571 -0.5175 -0.4924 -0.4612 -0.4212
AFF1V-J-75 0.8909 0.2111 0.5433 0.7470 0.8792 1.0341 1.2350
AFF2V 0.6372 0.2202 0.2794 0.4882 0.6204 0.7846 1.0014
LL1V -0.5020 0.0318 -0.5536 -0.5236 -0.5045 -0.4802 -0.4495

J
AUX 0.0648 0.0019 0.0617 0.0636 0.0647 0.0661 0.0681
AFF1V 0.0268 0.0016 0.0241 0.0256 0.0266 0.0278 0.0294
AFF1V-J-75 0.0598 0.0022 0.0562 0.0583 0.0597 0.0613 0.0635
AFF2V 0.0293 0.0017 0.0266 0.0282 0.0292 0.0305 0.0321
LL1V 0.0270 0.0016 0.0245 0.0260 0.0269 0.0281 0.0296

ρrt,logRVt

AUX -0.1183 0.0215 -0.1528 -0.1325 -0.1197 -0.1042 -0.0835
AFF1V -0.0833 0.0229 -0.1206 -0.0981 -0.0846 -0.0686 -0.0469
AFF1V-J-75 -0.0252 0.0181 -0.0553 -0.0369 -0.0260 -0.0132 0.0043
AFF2V -0.0724 0.0187 -0.1028 -0.0843 -0.0733 -0.0604 -0.0427
LL1V -0.0956 0.0182 -0.1254 -0.1080 -0.0969 -0.0832 -0.0656

Q∗(22)
AUX 7.0609 1.1347 5.2424 6.2495 6.9712 7.8218 8.9628
AFF1V 1.9170 0.1444 1.6945 1.8164 1.9024 2.0098 2.1641
AFF1V-J-75 15.3082 1.4748 12.7166 14.3608 15.3243 16.3591 17.5469
AFF2V 13.6959 1.9287 10.3657 12.3940 13.6654 15.0849 16.6846
LL1V 1.3268 0.0765 1.2061 1.2733 1.3195 1.3764 1.4551

Continued on next page
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model mean std Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

σr
AUX 0.9901 0.0792 0.8782 0.9370 0.9795 1.0349 1.1211
AFF1V 1.0167 0.1113 0.9565 0.9851 1.0065 1.0358 1.0863
AFF1V-J-75 1.9088 0.2329 1.5698 1.7470 1.8771 2.0471 2.3072
AFF2V 1.6334 0.2642 1.3239 1.4762 1.5873 1.7500 2.0433
LL1V 0.9691 0.0233 0.9324 0.9529 0.9667 0.9848 1.0086

σlogRV

AUX 0.8332 0.0487 0.7584 0.7988 0.8276 0.8641 0.9176
AFF1V 0.9552 0.0254 0.9138 0.9380 0.9530 0.9718 0.9972
AFF1V-J-75 0.7877 0.1058 0.6308 0.7125 0.7727 0.8545 0.9752
AFF2V 0.7314 0.1145 0.5724 0.6507 0.7104 0.7959 0.9362
LL1V 0.8955 0.0172 0.8676 0.8838 0.8941 0.9071 0.9243

σlogBV

AUX 0.8267 0.0487 0.7520 0.7926 0.8212 0.8576 0.9112
AFF1V 0.9521 0.0252 0.9110 0.9352 0.9500 0.9686 0.9938
AFF1V-J-75 0.7974 0.1042 0.6429 0.7235 0.7822 0.8630 0.9823
AFF2V 0.7294 0.1142 0.5702 0.6492 0.7084 0.7939 0.9331
LL1V 0.8936 0.0171 0.8659 0.8820 0.8922 0.9050 0.9222
Notes: The table reports the summary statistics, i.e. the mean, standard deviation and the different quantiles,
of the model–implied distributions of different statistics. Note, that bar denotes the mean of the respective
series, ρ the correlation coefficient, Q∗(22) is the Ljung–Box statistics (scaled by the number of observations) for
serial correlation up to order 22, and σ denotes the standard deviation of the series indicated in the subscript.
The distributions are based on a simulation study, which is further described in Section 3.5. For an explanation
of the model abbreviations see Table 3.1.

Our unconditional model assessment is conducted as follows. We simulate from
our estimated continuous–time stochastic volatility models as well as from the fitted
auxiliary model a series of daily returns from which we construct a series of 15,040
daily returns, Bipower variation, realized variance, and of the logarithmic relative
jump measure. The first 10,000 observations serve as a large burn–in period. From
the remaining 5,040 observations—which is equivalent to the size of our sample—
we compute different statistics, e.g. the mean of the jump measure. Repeating
this procedure 10,000 times provides us with a model–implied distribution of the
respective statistics, which are partly presented in Figures 3.14 and 3.15. Table
3.7 reports some summary statistics of all the distributions considered. Figure
3.14 and the corresponding first three panels of Table 3.7 show that the means
of the logarithmic realized variance and logarithmic Bipower variation are best
captured by the one–factor stochastic volatility models, whereby, however, their
implied distribution exhibits much less variance than the empirical one as given by
the distribution from the simulation based on the auxiliary model. In contrast, the
two–factor model and the one–factor model with jumps imply considerably higher
means of the two series. This in turn leads to a higher variance in the return
distribution, whereby its mean is more or less reproduced by all of the different
stochastic volatility models. The first panel in Figure 3.15 and the fourth panel in
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Table 3.7 illustrate nicely, that the mean of the jump measure can only be captured
by the inclusion of a jump process into the continuous–time stochastic volatility
models. Moreover, none of the models seems to be able to introduce an adequate
correlation between the returns and the logarithm of realized variance, indicating
that the leverage effect is not adequately modeled. The last panel of Figure 3.15
and the corresponding panel in Table 3.7 show the model–implied distribution of
the Ljung–Box statistics on own serial correlation (up to order 22—corresponding
roughly to one month) of the logarithmic realized variance. Both support our
previous findings based on the sum of the HAR coefficients, i.e. the one–factor
models tend to underestimate the persistence, whereas the two–factor model and
the one–factor model with jumps tend to overestimate it. To complement our
unconditional analysis we have also computed the distribution of the standard
deviation of the returns, logarithmic realized variance and logarithmic Bipower
variation (see last three panel of Table 3.7). As might be expected from our previous
findings, the standard deviation of the returns is strongly overestimated by the
two–factor model and the one–factor model with jumps. In contrast the standard
deviations of the two volatility components are captured by nearly all of the models.

In summary, the estimation results and the unconditional model assessment sug-
gest that the incorporation of a jump process into the price dynamics is important
and generally leads to an improvement in model adequacy. However, for many fi-
nancial applications the performance of the models conditional on the history of the
price process is of primary interest, e.g. whenever return or volatility forecasts are
needed. To this end, we condition on the observed price process up to four specific
dates and assess the forecasting performance of the different models via simulation.
In particular, our conditioning sets are selected according to the 10%– and 90%–
quantiles of the continuous–time RV volatility component (which corresponds in
our sample to October 1, 1992 and July 31, 2003, respectively) and of the jump
measure (corresponding to January 19, 1993, and March 28, 2001, respectively),
which allows us to evaluate the models at different volatility states. We then pro-
ceed as follows: conditional on the specific information sets, we compute the return,
the realized variance and the Bipower variation series 22 steps ahead by simulating
from the auxiliary model with parameter values implied by the stochastic volatility
models, i.e. using the parameter estimates presented in Table 3.6. Repeating this
procedure 10,000 times we obtain the model–implied conditional distributions of
the returns, the realized variance and the Bipower variation over the next 22 days,
i.e. over approximately the next month.
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Table 3.8: Summary Statistics of Model–Implied Conditional Distributions
model mean std Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

1992/10/01∑22
i=1 rt+i

AUX 0.4781 3.2355 -4.7671 -1.2567 0.5470 2.4670 5.0891
AFF1V 0.8016 4.4195 -6.5978 -1.6377 0.8567 3.5961 7.4276
AFF1V-J-75 0.7641 2.9151 -4.1213 -0.8717 0.7767 2.6050 5.1146
AFF2V 0.4721 2.7885 -4.2930 -1.1284 0.4975 2.2908 4.6647
LL1V 0.4792 4.4486 -7.0181 -2.1454 0.4957 3.3558 7.2846

log(
∑22

i=1RVt+i)
AUX 2.0632 0.4906 1.3249 1.7266 2.0029 2.3573 2.9017
AFF1V 2.7542 0.5890 1.8428 2.3570 2.6973 3.1161 3.7509
AFF1V-J-75 1.9613 0.5936 1.0172 1.5716 1.9058 2.3270 2.9561
AFF2V 1.9132 0.4732 1.1785 1.6025 1.8672 2.1929 2.7363
LL1V 2.8321 0.4917 2.0414 2.4977 2.7970 3.1561 3.6561

log(
∑22

i=1BVt+i)
AUX 2.0034 0.4972 1.2521 1.6672 1.9424 2.3004 2.8515
AFF1V 2.7297 0.5934 1.8085 2.3273 2.6724 3.0957 3.7299
AFF1V-J-75 1.8965 0.5954 0.9530 1.5025 1.8405 2.2643 2.9080
AFF2V 1.8907 0.4783 1.1415 1.5760 1.8406 2.1758 2.7182
LL1V 2.8062 0.4943 2.0063 2.4715 2.7686 3.1325 3.6311

2003/07/31∑22
i=1 rt+i

AUX 0.0791 5.4094 -8.7130 -2.8480 0.2087 3.4471 7.8329
AFF1V 0.6718 5.1995 -8.0720 -2.2933 0.6964 4.0234 8.4396
AFF1V-J-75 0.4505 5.6673 -9.0179 -2.7474 0.4632 4.0443 8.9095
AFF2V -0.0701 5.2359 -8.9413 -3.1026 -0.0389 3.3627 7.8308
LL1V 0.3881 4.9276 -7.8418 -2.5731 0.3750 3.6246 7.9234

log(
∑22

i=1RVt+i)
AUX 3.1001 0.4866 2.3647 2.7681 3.0405 3.3881 3.9320
AFF1V 3.1086 0.5525 2.2562 2.7388 3.0516 3.4436 4.0564
AFF1V-J-75 3.2971 0.5860 2.3666 2.9109 3.2403 3.6599 4.2818
AFF2V 3.1766 0.4685 2.4515 2.8679 3.1309 3.4523 3.9916
LL1V 3.0527 0.4663 2.3011 2.7351 3.0174 3.3593 3.8469

log(
∑22

i=1BVt+i)
AUX 3.0371 0.4937 2.2908 2.7042 2.9759 3.3311 3.8821
AFF1V 3.0842 0.5574 2.2240 2.7085 3.0266 3.4206 4.0419
AFF1V-J-75 3.2326 0.5879 2.3040 2.8433 3.1767 3.5962 4.2307
AFF2V 3.1531 0.4739 2.4112 2.8431 3.1043 3.4342 3.9753
LL1V 3.0277 0.4691 2.2697 2.7069 2.9919 3.3366 3.8275

Continued on next page

82



3 Statistical Assessment of Univariate Continuous–Time Stochastic Volatility Models

model mean std Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

1993/01/19∑22
i=1 rt+i

AUX 0.3825 3.7694 -5.7272 -1.6385 0.4626 2.7005 5.7578
AFF1V 0.7497 4.7009 -7.1703 -1.8969 0.7969 3.7514 7.7874
AFF1V-J-75 0.6797 3.6280 -5.3905 -1.3501 0.6985 2.9688 6.0756
AFF2V 0.3350 3.3896 -5.4385 -1.6090 0.3635 2.5465 5.4397
LL1V 0.4387 4.6305 -7.3596 -2.2836 0.4451 3.4527 7.5127

log(
∑22

i=1RVt+i)
AUX 2.3681 0.4918 1.6276 2.0311 2.3078 2.6625 3.2064
AFF1V 2.8891 0.5745 2.0024 2.5044 2.8313 3.2395 3.8632
AFF1V-J-75 2.3981 0.5944 1.4545 2.0076 2.3417 2.7648 3.3948
AFF2V 2.3018 0.4755 1.5644 1.9895 2.2547 2.5816 3.1299
LL1V 2.9185 0.4820 2.1397 2.5882 2.8852 3.2325 3.7288

log(
∑22

i=1BVt+i)
AUX 2.3089 0.4984 1.5562 1.9729 2.2469 2.6050 3.1596
AFF1V 2.8646 0.5791 1.9634 2.4751 2.8063 3.2190 3.8494
AFF1V-J-75 2.3332 0.5963 1.3893 1.9381 2.2770 2.7016 3.3461
AFF2V 2.2795 0.4806 1.5283 1.9634 2.2293 2.5655 3.1120
LL1V 2.8925 0.4847 2.1081 2.5602 2.8568 3.2102 3.7037

2001/03/28∑22
i=1 rt+i

AUX -0.6266 7.8098 -13.3029 -4.8407 -0.4351 4.2170 10.6060
AFF1V 0.6451 5.3191 -8.2840 -2.4106 0.6617 4.0790 8.6185
AFF1V-J-75 0.0272 8.2523 -13.6895 -4.5904 0.0419 5.2179 12.3388
AFF2V -0.8231 8.1280 -14.6242 -5.4758 -0.7471 4.4487 11.4188
LL1V 0.3742 4.9459 -7.8882 -2.6038 0.3552 3.6183 7.9319

log(
∑22

i=1RVt+i)
AUX 3.8298 0.4922 3.0863 3.4943 3.7688 4.1201 4.6753
AFF1V 3.1544 0.5530 2.2991 2.7849 3.0952 3.4908 4.1049
AFF1V-J-75 4.0406 0.5957 3.0957 3.6481 3.9805 4.4077 5.0440
AFF2V 4.0449 0.4832 3.2982 3.7279 3.9964 4.3293 4.8857
LL1V 3.0581 0.4698 2.3011 2.7391 3.0235 3.3657 3.8622

log(
∑22

i=1BVt+i)
AUX 3.7694 0.4992 3.0176 3.4334 3.7070 4.0640 4.6227
AFF1V 3.1295 0.5580 2.2711 2.7540 3.0720 3.4673 4.0923
AFF1V-J-75 3.9762 0.5977 3.0318 3.5803 3.9181 4.3446 4.9961
AFF2V 4.0221 0.4886 3.2590 3.7004 3.9702 4.3137 4.8693
LL1V 3.0322 0.4728 2.2674 2.7094 2.9963 3.3428 3.8358

Continued on next page
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model mean std Q0.05 Q0.25 Q0.50 Q0.75 Q0.95

Notes: The table reports the summary statistics, i.e. the mean, standard deviation and the different quantiles, of
the model–implied conditional distributions of the 22–steps ahead returns, the logarithm of the 22–steps ahead
realized variance and Bipower variation. The dates correspond to the conditioning set, i.e. the 10%–quantile
of realized variance (first panel), the 90%–quantile of realized variance (second panel), the 10%–quantile of the
jump measure (third panel), and the 90%–quantile of the jump measure (last panel). The distributions are based
on a simulation study, which is further described in Section 3.5. For an explanation of the model abbreviations
see Table 3.1.

Table 3.8 shows the summary statistics of these conditional distributions along
with those based on the auxiliary model. The results are pretty much in line
with our previous findings. In particular, conditional on low volatility or jump
states the one–factor stochastic volatility models tend to overestimate the logarith-
mic one–month–ahead realized volatility and Bipower variation, whereas for high
volatility/jump states they seem to underestimate these quantities. This behavior
might be attributable to the observed tendency of these models to underestimate
the volatility persistence. In contrast, the two–factor model and the one–factor
model with jumps provide more accurate one–month–ahead forecasts and exhibit
only a slight tendency to underestimate/overestimate the volatilities if we condi-
tion on low/high volatility states. This is also in line with the results reported
earlier, i.e. that these models tend to overestimate the volatility persistence but
generally produce more variation in the persistence (as can be seen from the stan-
dard deviations of the Ljung–Box statistics of these models, see e.g. Figure 3.15
(last panel). Further, irrespective of the conditioning set all of the models provide
more or less accurate forecasts of the returns. However, focusing on the tails of the
return distribution reveals that, throughout, the two–factor model and the one–
factor model with jumps are very accurate and outperform the one–factor models.
This finding is of major importance for many risk management applications, such
as Value–at–Risk computations, which require as precise as possible estimates of
the tail quantiles, in particular of the left–hand tail.

3.6 Summary

Motivated by the inability of the existing empirical studies to provide a clear dis-
tinction between pure–diffusion models and lower–order models with jumps using
daily data, we explore the information contained in the high–frequency financial
data and re–assess the adequacy of the affine and logarithmic jump–diffusion mod-
els. Furthermore, our model evaluation is conducted using the general scientific
modeling method of Gallant and McCulloch (2005), which generally allows the
comparison of rather diverse structural models within one unifying framework. For
the GSM method to be applicable, we have derived a highly accurate auxiliary
model for daily returns, realized variations and jumps, summarizing the most im-
portant information inherent in the high–frequency returns. In particular, even
though the discrete–time model has no direct continuous–time analog, and may in
fact be consistent with many different continuous–time formulations, it is nonethe-
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less highly informative about the general features that need to be accounted for
in the data. We explore this fact by using its likelihood function as a summary
of the data to estimate and empirically assess different continuous–time stochastic
volatility models.

To this end, it turns out that the GSM method is very well suited. In particular,
model evaluation is facilitated if it is conducted in terms of the auxiliary model
allowing a direct comparison of the different models to capture important features
of the data as given by the parameter estimates of the auxiliary model. Moreover,
since not all data characteristics can be represented by individual parameters, we
also perform an unconditional as well as a conditional simulation study. Note, that
within the GSM method the conditional model assessment is strongly simplified
when compared to other estimation methods, such as the efficient method of mo-
ments (EMM), for which the model–implied volatility states need to be extracted
first, e.g. via reprojection in EMM. Instead, GSM allows to evaluate the models in
terms of the auxiliary model, and as such does not require the filtering step.

Our statistical assessment of different affine and logarithmic continuous–time
stochastic volatility models reveals that all of these models still miss some impor-
tant features of the data, in particular they are unable to reproduce the volatility
persistence as well as the leverage effect. Moreover, the inclusion of jumps into
the price dynamics is an important feature that leads to an improvement in the
model’s fit. Our analysis also shows, that the one–factor models underestimate
the volatility persistence, whereas the two–factor model and the one–factor model
with jumps tend to an overestimation but can reproduce a larger range of the
persistence. Importantly, based on the conditional model evaluation we also find
that both of these models provide quite accurate extreme quantile forecasts of the
returns, which is essential for an adequate risk management. Overall the results
suggest, that at least two factors or one factor and a jump process are needed, in
order to better account for the volatility persistence and the fat–tailedness of the
returns, an observation that was also made in Chernov et al. (2003) using daily
data. However, other jump or stochastic volatility specifications—than the ones
considered here—might be more adequate. As such it will be interesting to extend
the analysis, which is straightforward using GSM regardless of the very different
types of stochastic volatility models one might want to consider, as long as it is
possible to simulate from them.
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Ornstein–Uhlenbeck Stochastic

Volatility Model

A wide range of different univariate continuous–time stochastic volatility models
has been developed in the financial literature aiming at capturing the most distinct
features of the price process of a financial asset. As pointed out earlier, the ade-
quacy of such models is essential for an adequate risk management and derivative
pricing. For the latter application closed–form expressions are desirable imposing
additional constraints on the flexibility of a stochastic volatility model. In a mul-
tivariate context, modeling becomes even more challenging. Next to capturing the
individual dynamics the model also needs to reproduce the comovements and spill–
over effects across different assets. In particular, knowing the correlation structure
is crucial for financial decision–making, such as optimal portfolio risk management
or asset allocation. In addition to those requirements, there also arise some techni-
cal problems in the multivariate setting. One is given by the necessity of a positive
semidefinite covariance matrix. For stochastic volatility models this implies that
the instantaneous covariance should be specified by a positive semidefinite process.
Moreover, if the dimension of the return vector increases the number of parameters
in the model is inflated. Hence, a parsimonious but at the same time accurate
specification is needed.

Given these challenges the theoretical literature on multivariate stochastic volatil-
ity models has developed over the last few years, whereby the main focus was on
discrete–time models as an alternative to the multivariate GARCH models, see e.g.
Chib et al. (2006) and Harvey et al. (1994). Although the continuous–time specifi-
cation is very important under the asset pricing perspective, we are aware of only
a few papers considering continuous–time multivariate stochastic volatility mod-
els. Hubalek and Nicolato (2005) and Lindberg (2005) adopt a factor approach in
which the volatility factors are independent and follow univariate positive Ornstein–
Uhlenbeck type processes. The flexibility of these models, however, is accompanied
by the difficulty to achieve identification, i.e. complicating the empirical application
of these models. Moreover, closed–form expressions for the integrated covariance
process—the main variable of interest for financial applications—is not available.
In Gourieroux (2006) the stochastic volatility is not driven by factors, but the full
covariance matrix is specified as the sum of matrix squares of Gaussian Ornstein–
Uhlenbeck processes, which are refered to as the Wishart autoregressive process.
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Being the multivariate extension of a Cox–Ingersoll–Ross (CIR) process, the model
shares the limitations and advantages of the univariate CIR model. Although it
provides closed–form expressions for many applications, it also lacks a closed–form
solution for the integrated covariance process.

We therefore introduce here a new continuous–time multivariate stochastic volatil-
ity model that is shown to meet the above mentioned requirements while providing
a closed–form and very simple structure for the integrated covariance process. The
general d-dimensional stochastic volatility model is given by

dYt = (µ+ Σtβ)dt+ Σ
1/2
t dWt, Y0 = 0, (4.1)

whereby we recall the notation introduced in Section 2.1.2, i.e. Y denotes the d-
dimensional logarithmic stock price process, µ, β ∈ R

d are parameters, (Wt)t∈R+

denotes the d-dimensional standard Brownian motion, and (Σt)t∈R+ is a station-
ary stochastic process with values in the positive semidefinite matrices S

+
d being

independent of (Wt)t∈R+ . The same representation has also been stated in e.g.
Barndorff-Nielsen and Shephard (2001b), Barndorff-Nielsen et al. (2002) and Lind-
berg (2005). In our model the stochastic volatility process (Σt)t∈R+ is given by
a Lévy–driven positive semidefinite Ornstein–Uhlenbeck type process which was
recently introduced by Barndorff-Nielsen and Stelzer (2006), and is a multivariate
extension of the positive non–Gaussian Ornstein–Uhlenbeck process used in the con-
text of univariate stochastic volatility models in Barndorff-Nielsen and Shephard
(2001b). We therefore refer to our model as the “multivariate OU–type stochastic
volatility model”.

The remainder of this section is structured as follows. For illustrative purposes,
we first discuss the univariate Lévy–driven Ornstein–Uhlenbeck stochastic volatil-
ity model introduced by Barndorff-Nielsen and Shephard (2001b) and its main
characteristics. Extending this model to the multivariate case requires a multivari-
ate Lévy–driven Ornstein–Uhlenbeck stochastic volatility process that is symmetric
and positive semidefinite. Section 4.2 therefore provides a review of the positive
semidefinite matrix process of OU–type involving the notion of a matrix subordi-
nator, and derives some probabilistic properties that are useful for the derivation of
our multivariate stochastic volatility model. Moreover, it establishes some impor-
tant notation. Section 4.3 finally introduces the multivariate OU–type stochastic
volatility model and its theoretical properties. The theoretical properties of our
model provide the basis for different estimation methods that are presented in Sec-
tion 4.4 along with an evaluation of their respective finite sample properties. Section
4.5 presents an empirical application of our model, and Section 4.6 concludes this
chapter.
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4.1 The Univariate Non–Gaussian OU–Type

Stochastic Volatility Model

In contrast to the univariate stochastic volatility models considered in Section
3.1, Barndorff-Nielsen and Shephard (2001a,b, 2002a) suggest to model stochas-
tic volatility through Lévy–driven Ornstein–Uhlenbeck–type processes rather than
using Brownian motions. In particular, with an appropriate choice of the non–
Gaussian Lévy process the Ornstein–Uhlenbeck type model results not only in a
non–Gaussian and quite flexible law of the returns, which could capture the ob-
served tail–thickness, but also incorporates the volatility persistence.

The stationary Lévy–driven Ornstein–Uhlenbeck process (σ2
t )t≥0 is defined as

σ2
t = σ(0) exp{−λt} +

∫ t

0

exp{−λ(t− s)}dz(s), (4.2)

where λ is a parameter taking on only positive values, and (zt)t∈R denotes a Lévy–
process that is oftentimes referred to as the Background–driving Lévy process. Ob-
viously, if z is a Brownian motion, σ2 is the Gaussian Ornstein–Uhlenbeck process,
a specification that we have already considered in the logarithmic jump–diffusion
models in Section 3.1. Using any other Lévy process, the resulting σ is a non–
Gaussian Ornstein–Uhlenbeck process that is only driven by jumps. Moreover, for
stochastic volatility modeling the OU process is required to be positive, unless the
process is transformed adequately, e.g. by exponentiating it as in the case of the
logarithmic jump–diffusion models. However, by using a positive OU process the
model is linear and hence mathematically more tractable. In the non–Gaussian
Ornstein–Uhlenbeck–type model of Barndorff-Nielsen and Shephard (2001b), it is
therefore assumed that the BDLP satisfies the conditions of a subordinator, i.e.
it is a pure jump Lévy process with positive increments, yielding a positive non–
Gaussian OU process.

Given this is the case, then the univariate non–Gaussian OU–type stochastic
volatility model is given by

dyt = (µ+ βσ2
t )dt+ σtdwt (4.3)

dσ2
t = −λσ2

t dt+ dzt, (4.4)

whereby σ2
t satisfies the stochastic differential equation (4.4) and z is a subordinator

without drift. The local drift of the price process is given by a constant and a risk–
premium effect βσ2

t as is also oftentimes considered in the related ARCH–in–Mean
models (see e.g. the discussion in Bollerslev et al., 1988). From equation (4.4) it
is obvious, that the local behavior of the integrated variance is only driven by the
jumps in z, and is exponentially decaying between two jumps.1 The BDLP is there-
fore the key ingredient of the OU–type models, since it determines the dynamics
of the instantaneous (or spot) volatility and its marginal distribution. Moreover, it

1This interpretation of course only holds for z being of finite activity.
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Figure 4.1: Simulated sample paths of a univariate non–Gaussian OU stochastic
volatility model. The figure shows the time evolvement of the simulated returns
and of the integrated variance.

also determines the distribution of the returns. Note that the models can be built
either by specifying a one–dimensional distribution for σ2

t and by working out the
implied behavior of the BDLP, or by specifying the BDLP. Barndorff-Nielsen and
Shephard (2001b), for example, consider the Gamma– and the Inverse–Gaussian
OU processes.

Figure 4.1 illustrates the simulated sample paths of a OU stochastic volatility
model where the BDLP is specified as a compound Poisson process with expo-
nentially distributed jumps. Note that the simulation is based on high–frequency
returns, more specifically on 5 minute returns, computed for 1000 days. The figure
depicts the resulting daily return and daily integrated variance series. It exempli-
fies that the increments of the integrated variance are only driven by jumps and
exponential decay in no–jump periods. Moreover, large (small) jumps usually intro-
duce high (low)–volatility states over several days, inducing the observed volatility
clustering in the return series.

An important feature of the non–Gaussian OU–type stochastic volatility models
for financial applications, is the availability of a closed–form expression for the
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integrated variance, which is given by

∫ t

0

σ2
sds = (1/λ)(zt − σ2

t − σ2
0). (4.5)

Barndorff-Nielsen and Shephard (2001b) also show that the integrated variance fol-
lows a (constrained) ARMA(1,1) process, a results that is useful for constructing
a state space representation for realized variance (see Barndorff-Nielsen and Shep-
hard, 2002a), which in turn can be used for the estimation of the model using the
Kalman filter. In addition, the model allows to derive a state space representation
for the squared returns leading to an alternative estimation method. Moreover,
the model provides closed–form expressions for the autocovariance function of the
squared returns. Although the autocovariance function is already quite flexible,
in fact even more flexible, monotone decreasing forms of the volatility’s autocor-
relation structure can be obtained by considering a convex combination of several
Lévy–driven Ornstein–Uhlenbeck stochastic volatility factors, i.e. by a superposi-
tion of positive OU–type processes. Next to these appealing results, which facilitate
the estimation of the model, Barndorff-Nielsen and Shephard (2002a) show that
within this model option prices can be derived analytically. Further properties of
the model, which, however, are shared with other stochastic volatility models, are
that the returns are scaled mixtures of normals with time–dependent scaling, such
that the non–Gaussianity of returns and the volatility clustering can be reproduced;
and that the returns aggregate to Gaussianity as the sampling frequency increases.

Given the analytic tractability of this class of models and its empirical properties,
it will be interesting to consider its multivariate extension, which will be done in
the sequel. Before deriving the multivariate OU–type stochastic volatility model,
however, the next section establishes some notation and introduces the multivariate
counterparts of the positive OU–type processes recently proposed by Barndorff-
Nielsen and Stelzer (2006) involving the concept of a matrix subordinator, along
with the presentation of some important properties of these processes.

4.2 Positive Semidefinite Processes of OU–Type

Although an adequate transformation would allow us to use any OU–type pro-
cess for modeling a positive semidefinite matrix, i.e. modeling stochastic volatility,
we follow Barndorff-Nielsen and Shephard (2001a,b, 2002a) for the ease of mathe-
matical tractability and consider only the positive semidefinite OU–type processes
directly, which have recently been introduced by Barndorff-Nielsen and Stelzer
(2006). In fact the authors already point out, that these processes can be used
for the multivariate extension of the univariate non–Gaussian OU–type stochastic
volatility model. After introducing some notation, Section 4.2.2 reviews the pos-
itive semidefinite OU–type processes and the most important results concerning
the stationary distribution and the second order moment structure of the pro-
cess. Moreover, we derive some further properties, e.g. we show that the sta-
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tionary distribution of the positive semidefinite OU–type process can be inferred
from the characteristic function of the Background–driving Lévy process—a matrix
subordinator—implying that, similarly to the univariate case, the OU–type process
can be constructed through the specification of the BDLP. In Section 4.2.3 we re-
state the result derived in Barndorff-Nielsen and Stelzer (2006) that the integrated
positive semidefinite OU–type process has a simple representation, which is impor-
tant for financial applications. Section 4.2.4 examines the relation of the individual
components of the matrix valued OU–type process to the univariate OU–type pro-
cess as considered in Barndorff-Nielsen and Shephard (2001a,b, 2002a) showing that
the individual components can be represented by a superposition of univariate, but
generally dependent, OU–type processes.

4.2.1 Notation

For the remainder of this work we write throughout R
+ for the positive real numbers

including zero, R
++ when zero is excluded and we denote the set of real m × n

matrices by Mm,n(R). If m = n we simply write Mn(R) and denote the linear
subspace of symmetric matrices by Sn, the (closed) positive semidefinite cone by
S

+
n and the open (in Sn) positive definite cone by S

++
n . In stands for the n×n identity

matrix, σ(A) for the spectrum (the set of all eigenvalues) of a matrix A ∈ Mn(R)
and ρ(A) for its spectral radius. The natural ordering on the symmetric n × n
matrices will be denoted by ≤, i.e. for A,B ∈ Sn(R) we have that A ≤ B, if and
only if B−A ∈ S

+
n . The Kronecker (tensor) product of two matrices A,B is written

as A⊗B. vec denotes the well–known vectorization operator that maps the n× n
matrices to R

n2
by stacking the columns of the matrices below one another. For

more information regarding the tensor product and vec–operator we refer to Horn
and Johnson (1991, Chapter 4). Likewise vech : Sd → R

d(d+1)/2 denotes the “vector–
half” operator that stacks the columns of the lower triangular part of a symmetric
matrix below another. Finally, AT is the transpose of a matrix A ∈Mn(R).

For a matrix A we denote by Aij the element in the i-th row and j-th column
and this notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined
on a given appropriate filtered probability space (Ω,F , P, (Ft)) satisfying the usual
hypotheses. With random functions and measures we usually do not state the
dependence on ω ∈ Ω explicitly.

Furthermore, we employ an intuitive notation with respect to the stochastic
integration with matrix–valued integrators. Let At ∈ Mm,n(R), Lt ∈ Mn,r(R) and
Bt ∈Mr,s(R) be three stochastic processes then we denote by

∫
AtdLtBt the matrix

C in Mm,s(R) which has ij-th element Cij =
∑n

k=1

∑r
l=1

∫
aikbljdLkl. Equivalently

such an integral can be understood in the sense of Métivier and Pellaumail (1980),
resp. Métivier (1982), by identifying it with the integral

∫
AtdLt with At being

for each fixed t the linear operator Mn,r(R) → Mm,s(R), X 7→ AtXBt. Moreover,

we always denote by
∫ b
a

with a ∈ R ∪ {−∞}, b ∈ R the integral over the half–open
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interval (a, b] for notational convenience. If b = ∞ the integral is understood to be
over (a, b).

4.2.2 Definition and Probabilistic Properties

In the following we provide the definition of the positive semidefinite Ornstein–
Uhlenbeck–type processes along with a characterization of their stationary distri-
bution. The construction of these processes is based on a special type of matrix–
valued Lévy process, i.e. the matrix subordinator, which is studied in detail in
Barndorff-Nielsen and Pérez-Abreu (2007), and is defined as follows.

Definition 4.2.1. An Sd-valued Lévy process L is said to be a matrix subordinator,
if Lt − Ls ∈ S

+
d for all s, t ∈ R

+ with t > s.

It can easily be shown that the paths of a matrix subordinator are S
+
d –increasing

and of finite variation. Moreover, the trace tr(L) is a one–dimensional (Lévy)
subordinator with ”tr” denoting the usual trace functional.

Given this definition the existence of Ornstein–Uhlenbeck–type processes assum-
ing values only in the positive semidefinite matrices is ensured by the following
theorem.

Theorem 4.2.2 (Barndorff-Nielsen and Stelzer (2006, Theorem 4.5)). Let (Lt)t∈R

be a matrix subordinator with E(log+ ‖Lt‖) <∞ and A ∈Md(R) such that σ(A) ⊂
(−∞, 0)+ iR. Then the stochastic differential equation of Ornstein–Uhlenbeck type

dΣt = (AΣt + ΣtA
T )dt+ dLt

has a unique stationary solution

Σt =

∫ t

−∞

eA(t−s)dLse
AT (t−s)

or, in vectorial representation,

vec(Σt) =

∫ t

−∞

e(Id⊗A+A⊗Id)(t−s)dvec(Ls).

Moreover, Σt ∈ S
+
d for all t ∈ R.

Note, that Stelzer (2006) has recently shown that the linear operator A : Sd → Sd

given byX 7→ AX+XAT with A ∈Md(R) uniquely identifies A.2 Moreover, Stelzer
(2006) establishes that all linear operators A which satisfy exp(At)(Sd) = S

+
d (∗)

for all t ∈ R are necessarily of the form X 7→ AX + XAT for some A ∈ Md(R).

2In particular, to identify A it is already sufficient to know the values of AEii for i = 1, . . . , d
where Eii are the d× d matrices with only zero entries except for one entry of one at the i-th
diagonal element.
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The property (∗) is important for the well–definedness of positive semidefinite OU–
type processes. The equality also immediately implies that the distribution of the
OU–type process Σt is not concentrated on any proper linear subspace of Sd when
the distribution of the driving Lévy process Lt is not concentrated on any proper
linear subspace.

Having defined the positive semidefinite OU–type process, we now turn to the
characterization of its stationary distribution. To this end, note that Barndorff-
Nielsen and Pérez-Abreu (2007) show that the subordinator Lt has the following
characteristic function

µLt
(Z) = exp

(
tψL(Z)

)
, Z ∈ Sd, where (4.6)

ψL(Z) := itr(γLZ) +

∫

S
+
d
\{0}

(eitr(XZ) − 1)νL(dX). (4.7)

Based on this characteristic function, the stationary distribution of the positive
semidefinite Ornstein–Uhlenbeck process and its second–order–moment structure,
which are important for the derivation of the second order structure of the stochastic
volatility model, are then given as follows.

Proposition 4.2.3 (Barndorff-Nielsen and Stelzer (2006, Proposition 4.7)). The
stationary distribution of the positive semidefinite Ornstein–Uhlenbeck process Σt

is infinitely divisible with characteristic function

µ̂Σ(Z) = exp

(∫ ∞

0

ψL

(
eA

T sZeAs
)
ds

)
(4.8)

= exp

(
itr(γΣZ) +

∫

S
+
d
\{0}

(eitr(XZ) − 1)νΣ(dX)

)
, Z ∈ Sd,

where
γΣ = −A−1γL

with A defined as the linear operator A : Md(R) →Md(R), X 7→ AX+XAT which
can be represented as vec−1 ◦ ((Id ⊗ A) + (A⊗ Id))

−1 ◦ vec and

νΣ(E) =

∫ ∞

0

∫

S
+
d
\{0}

IE(eAsxeA
T s)νL(dx)ds

for all Borel sets E in S
+
d \{0}.

Assume that the driving Lévy process is square–integrable. Then the second order
moment structure is given by

E(Σt) = γΣ − A−1

∫

S
+
d
\{0}

yνL(dy) = −A−1E(L1) (4.9)

var(vec(Σt)) =

∫ ∞

0

e(A⊗Id+Id⊗A)tvar(vec(L1))e
(AT⊗Id+Id⊗A

T )tdt

= −A−1var(vec(L1)) (4.10)

cov(vec(Σt+h), vec(Σt)) = e(A⊗Id+Id⊗A)hvar(vec(Σt)), (4.11)
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where t ∈ R and h ∈ R
+ and A : Md2(R) → Md2(R), X 7→ (A ⊗ Id + Id ⊗ A)X +

X(AT ⊗ Id + Id ⊗ AT ). The linear operator A can be represented as

vec−1 ◦ ((Id2 ⊗ (A⊗ Id + Id ⊗ A)) + ((A⊗ Id + Id ⊗ A) ⊗ Id2)) ◦ vec.

Note, that equation (4.10) can alternatively be restated as

−var(vec(L1)) = (A⊗ Id + Id ⊗A)var(vec(Σt)) + var(vec(Σt))(A
T ⊗ Id + Id ⊗AT ).

Moreover, we used the vec–operator above, as this clarifies the order of the elements
of the (co)variance matrix. One might wonder why one does not use the “vector
half” operator vech that stacks the columns of the lower diagonal part (including
the diagonal) of a symmetric matrix below one another. Although this would avoid
the redundancies in the covariance matrices var(vec(L1)) and var(vec(Σt)) caused
by the symmetry of L1 and Σt, it seems to be rather disadvantageous when seeking
explicit expressions, since to the best of our knowledge, there are far less results from
linear algebra available for the vech–operator than for the vec-operator. Hence, we
will use the vec–operator throughout most of the rest of this work and merely note
that one can, of course, switch to the vech–operator by simply picking the relevant
components.

Having derived the stationary distribution of the positive semidefinite OU–type
process, it is important to note, that generally the finiteness of its moments is
completely characterized by the driving Lévy process.

Proposition 4.2.4. Let (Σt)t∈R be a strictly stationary OU–type process in S
+
d with

driving matrix subordinator Lt and be r ∈ R
++. Then E(‖Σ0‖r) < ∞, if and only

if E(‖L1‖r) <∞ or equivalently
∫

S
+
d
,‖x‖≥1

‖x‖rνL(dx) <∞.

Proof. Follows by a straightforward adaptation of the proof of Marquardt and
Stelzer (2007, Proposition 3.30) to the matrix case.

Furthermore, it is noteworthy that these processes exhibit a very nice dependence
structure. To illustrate this, let us thus introduce the notion of β-mixing:

Definition 4.2.5 (cf. Davydov (1973)). A continuous–time stationary stochastic
process X = {Xt}t∈R is called strongly (or α-) mixing, if

αl := sup
{
|P (A ∩B) − P (A)P (B)| : A ∈ F0

−∞, B ∈ F∞
l

}
→ 0

as l → ∞, where F0
−∞ := σ ({Xt}t≤0) and F∞

l = σ ({Xt}t≥l).
It is said to be β- mixing (or completely regular), if

βl := E
(
sup

{∣∣P (B|F0
−∞) − P (B)

∣∣ : B ∈ F∞
l

})
→ 0

as l → ∞.

Note that αl ≤ βl and thus any β-mixing process is strongly mixing, which
implies that many results regarding statistics can be applied.
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Proposition 4.2.6. Let Σt be a stationary OU–type process in S
+
d . Then Σt is a

temporally homogeneous strong Markov process.

If the driving Lévy process L satisfies, moreover,

∫

S
+
d
,‖x‖≥1

‖x‖rνL(dx) <∞ (4.12)

for some r > 0, then Σt is β-mixing with mixing coefficients βl = O(e−al) for some
a > 0. In particular, Σt is strongly mixing and ergodic.

Proof. Follows from Protter (2004, Theorem V.32) and Masuda (2004, Theorem
4.3).

Furthermore, we can obtain the conditions ensuring that the stationary OU–type
process Σt is almost surely strictly positive definite.

Theorem 4.2.7 (Barndorff-Nielsen and Stelzer (2006, Theorem 4.9)). If γL ∈ S
++
d

or νL(S++
d ) > 0, then the stationary distribution PΣ of Σt is concentrated on S

++
d ,

i.e. PΣ(S++
d ) = 1.

Additionally, the stationary distributions of multivariate Ornstein–Uhlenbeck–
type processes are operator self–decomposable as is shown in Pigorsch and Stelzer
(2007).

4.2.3 The Integrated Process

An important feature of the positive semidefinite Ornstein–Uhlenbeck–type pro-
cesses is that the integrated process, denoted by Σ+

t , has a simple representation.

Proposition 4.2.8 (Barndorff-Nielsen and Stelzer (2006, Proposition 4.10)). Let
Σt be a positive semidefinite Ornstein–Uhlenbeck process with initial value Σ0 ∈ S

+
d

and driving Lévy process Lt. Then the integrated Ornstein–Uhlenbeck process Σ+
t

is given by

Σ+
t :=

∫ t

0

Σtdt = A−1 (Σt − Σ0 − Lt)

for t ∈ R
+, where A is the linear operator defined in Proposition 4.2.3

The similarity of this expression to the representation of the integrated process
in the univariate case, see equation 4.5 is obvious. From a financial point of view
this is very appealing since the integrated process corresponds to the integrated
covolatility, which is the main variable of interest in financial applications. Hence,
a simple representation is therefore desirable.
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4.2.4 Marginal Dynamics

In this section we compare the behavior of the individual components Σij,t implied
by a positive semidefinite OU–type process Σt = (Σij,t)1≤i,j≤d in S

+
d with the uni-

variate OU–type processes. We therefore derive the marginal dynamics. Assume
that A is real diagonalizable and σ(A) = {λ1, . . . , λd}. Let U ∈ Md(R) be such
that

UAU−1 =




λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λd


 := D. (4.13)

Denoting (UT )−1 = (U−1)T by U−T , we have that

Σt = U−1

(∫ t

−∞

eD(t−s)UdLsU
T eD

T (t−s)

)
U−T

= U−1

(∫ t

−∞

eD(t−s)d(ULsU
T )eD

T (t−s)

)
U−T . (4.14)

Defining Mt = ULtU
T for t ∈ R we see that M is again a Lévy process in Md(R)

and even a matrix subordinator. Moreover, one obtains that

(∫ t

−∞

eD(t−s)d(ULsU
T )eD

T (t−s)

)

ij

=

∫ t

−∞

e(λi+λj)(t−s)dMij,s,

which obviously shows that the individual components of

UΣtU
T =

∫ t

−∞

eD(t−s)d(ULsU
T )eD

T (t−s)

are stationary one–dimensional Ornstein–Uhlenbeck–type processes with associated
SDE d(UΣtU

T )ij = (λi + λj)(UΣtU
T )ijdt + dMij,t (∗). Note further, that Mii for

1 ≤ i ≤ d is necessarily a subordinator and (UΣtU
T )ii has to be a positive OU–type

process. These assertions do, however, fail in general for Mij and (UΣtU
T )ij with

i 6= j.
Together with (4.14) the above considerations show that the individual compo-

nents Σij,t of Σt are superpositions of (at most d2) univariate OU–type processes.
However, unlike in Barndorff-Nielsen and Shephard (2001b), the individual OU
processes superimposed are in general not independent.

With the obvious modifications the above results hold also true for general di-
agonalizable (non–real!) A ∈ Md(R). Then XT denotes the Hermitian of a
matrix X ∈ Md(C) and UΣtU

T are OU–type processes in the positive semidef-
inite complex matrices. Note that (UΣtU)ii still have to be real (even positive)
and Mii a real matrix subordinator. Furthermore, (∗) becomes d(UΣtU

T )ij =
(λi + λj)(UΣtU

T )ijdt+ dMij,t.
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4.3 The Multivariate OU–Type Stochastic Volatility

Model

Having discussed the positive semidefinite OU–type process we can now introduce
our multivariate stochastic volatility model. Recall that the general d-dimensional
stochastic volatility model is given by

dYt = (µ+ Σtβ)dt+ Σ
1/2
t dWt, Y0 = 0,

where Y denotes the d-dimensional logarithmic price process, µ, β ∈ R
d are the

drift and so–called risk premium parameters, respectively, (Wt)t∈R+ denotes a d–
dimensional standard Brownian motion and (Σt)t∈R+ is a stationary stochastic pro-
cess with values in S

+
d and is independent of (Wt)t∈R+ . Moreover, (Σt)t∈R+ is referred

to as the stochastic volatility process.
The above model has been stated in several papers (Barndorff-Nielsen and Shep-

hard, 2001b; Barndorff-Nielsen et al., 2002; Lindberg, 2005, e.g.) along with various
concrete specifications for the volatility process Σt (mainly factor models).

In this work we mainly focus on a specification in which the volatility process
is given by a Lévy–driven positive semidefinite OU–type process where the driving
Lévy process (Lt)t∈R+ and the the Brownian Motion of the price process are in-
dependent. However, whenever possible we state our result for the general model
given in (4.1). Note, that for the multivariate OU–type stochastic volatility model
the corresponding formula turn out to be very explicit.

Generally we follow Barndorff-Nielsen and Shephard (2001b) and presume Y0 = 0,
which is no real constraint as it just corresponds to a normalization of the prices at
time zero. In the Ornstein–Uhlenbeck–type stochastic volatility model, however,
we again extend the driving Lévy process to one defined on the whole real line
and thus the stochastic volatility process of our multivariate Lévy–driven positive
semidefinite OU–type stochastic volatility model is given by

Σt =

∫ t

−∞

eA(t−s)dLse
AT (t−s). (4.15)

Note that this corresponds to starting the OU–type process at time zero with Σ0

having stationary distribution and being independent of (Lt)t∈R+ .
Before deriving the most important theoretical properties of the multivariate

OU–type stochastic volatility model, we shortly reconsider the price and volatility
increments and provide an illustration of our model. In particular, the returns over
a unit time interval, such as one day, as defined in equation (2.5) are given here by

Yn =

∫ n∆

(n−1)∆

(µ+ Σtβ)dt+

∫ n∆

(n−1)∆

Σ
1/2
t dWt,

whereas the integrated volatility over this interval is defined by

Σn :=

∫ n∆

(n−1)∆

Σtdt = Σ+
n∆ − Σ+

(n−1)∆.
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As such, it follows that the returns are a scaled mixture of multivariate Normals,
i.e.

Yn |Σn ∼ Nd (µ∆ + Σnβ,Σn) (4.16)

with Nd (m, τ) denoting the d–dimensional Normal distribution with mean m and
variance τ .

To illustrate our multivariate positive semidefinite OU–type stochastic volatility
model, we simulate from a bivariate model with finite active BDLP. In particular,
we set µ = β = 0, and assume that the BDLP is a vector compound Poisson pro-
cess, i.e. has zero non–diagonal elements, with exponentially distributed jumps of
the two BDLP components occurring at the same time. Figure 4.2 presents the
resulting return and integrated variance series of the two assets. Obviously, our
model introduces volatility clustering in both assets whereby high and low volatil-
ity periods occur roughly simultaneously. Moreover, the time evolvement of the
integrated variance series shows that in contrast to the univariate case (see Figure
4.1) the individual series are not anymore solely driven by jumps and an exponen-
tial decay between two consecutive jumps, but also exhibit smooth increases, which
is due to the joint modeling. The comovements between the two assets is further
illustrated in Figure 4.3 depicting the covariance and correlation series. As can be
seen, the assets of our simulation are indeed mostly positively correlated, which is
also obvious from the scatter plot of the two returns series.

Note that, it is easy to incorporate a leverage effect into the OU–type stochastic
volatility model analogously to the univariate case by specifying

dYt = (µ+ Σtβ)dt+ Σ
1/2
t dWt + ψdLt. (4.17)

with ψ being a linear operator from Sd to R
d. However, even in the univariate case

it is hard to obtain any closed form expressions for the model with leverage effect,
so we focus here on the model without leverage effect.

The remaining section is structured as follows. The next subsection presents the
second order properties of the model. In Section 4.3.2 we introduce a state space
representation for the vector of returns and squared returns, whereas section 4.3.3
derives such a representation for the realized covariation.

4.3.1 Second Order Structure

The aim of this section is to study the moments, in particular the second order
structure, of various processes such as the integrated volatility and its increments,
the price process, the returns and squared returns of our multi–dimensional stochas-
tic volatility model. We consider the general model whenever possible, but the most
explicit results are obtained for the OU–type stochastic volatility model. This anal-
ysis provides a basis for estimation and forecasting of our model. Henceforth, we
make the assumption, that the stationary stochastic volatility process (Σt)t∈R+ has
a finite second moment.3

3In the OU–case this means that the driving Lévy process has to be square–integrable.
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Figure 4.2: Simulated sample paths of a bivariate positive semidefinite OU–type
stochastic volatility model. The figure shows the simulated return series as well
as the integrated variance series.
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Figure 4.3: Simulated sample paths and return scatter plot of a bivariate positive
semidefinite OU–type stochastic volatility model. The figure presents the time
evolvement of the integrated covariance between the two assets (red solid line,
values are according to the left–hand axis) and of their correlation (green dashed
line, values are according to the right–hand axis). The second panel shows the
pairwise scatter plot between the returns of the two assets.
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As usual we define the autocovariance function acovX(h) by

acovX(h) = cov(Xh, X0) = E(XhX
T
0 ) − E(X0)E(X0)

T h > 0 (4.18)

and if X is a second order stationary process in Md(R) then we set acovX :=
acovvec(X).

The twice integrated autocovariance function of the stationary volatility process
Σt will be of particular importance. Thus we define

r+(t) =

∫ t

0

acovΣ(u)du and (4.19)

r++(t) =

∫ t

0

r+(u)du. (4.20)

Based on these definitions we are able to show the following properties for the
general multivariate stochastic volatility model.

Theorem 4.3.1. For the general stochastic volatility model with (Σt)t∈R+ being
stationary and square–integrable it holds that:

E(Σ+
t ) = tE(Σ0) (4.21)

var(vec(Σ+
t )) = r++(t) +

(
r++(t)

)T
(4.22)

E(Yt) = (µ+ E(Σ0)β)t (4.23)

var(Yt) = E(Σ0)t+ (βT ⊗ Id)var(vec(Σ+
t ))(β ⊗ Id). (4.24)

Furthermore the discretely observed integrated volatility (Σn)n∈N is stationary and
square–integrable. We have

E(Σn) = ∆E(Σ0) (4.25)

var(vec(Σn)) = r++(∆) +
(
r++(∆)

)T
(4.26)

acovΣ(h) = r++(h∆ + ∆) − 2r++(h∆) + r++(h∆ − ∆), h ∈ N. (4.27)

Likewise we have that the discretely observed log–price increments (Yn)n∈N are
stationary and square–integrable. It holds that

E(Yn) = (µ+ E(Σ0)β)∆ (4.28)

var(Yn) = E(Σ0)∆ + (βT ⊗ Id)var(vec(Σ+
∆))(β ⊗ Id) (4.29)

acovY(h) = (βT ⊗ Id)acovΣ(h)(β ⊗ Id), h ∈ N (4.30)

Let Σt now be a positive semidefinite OU–type process with driving matrix sub-
ordinator L then

E(Σ0) = −A−1E(L1) (4.31)

r++(t) =
(
A

−2
(
eA t − Id2

)
− A

−1t
)
var(vec(Σ0))

= −
(
A

−2
(
eA t − Id2

)
− A

−1t
)
)A−1var(vec(L1)) (4.32)

acovΣ(h) = eA ∆(h−1)
A

−2
(
Id2 − eA ∆

)2
var(vec(Σ0))

= −eA ∆(h−1)
A

−2
(
Id2 − eA ∆

)2 A−1var(vec(L1)), h ∈ N (4.33)

where A := A⊗ Id + Id ⊗ A.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

Proof. The proof of Theorem 4.3.1 is given in Pigorsch and Stelzer (2007).

Pigorsch and Stelzer (2007) show that the integrated covariance matrix Σn has a
VARMA(1,1) structure. If Σn would be observable, then this result could be used
for the estimation and inference of our multivariate OU–type stochastic volatility
model. Instead, we can only observe the log–price increments Yn, whose second
order structure, however, obviously does not allow for an in–depth analysis of the
latent stochastic volatility model. The next result shows that the squared log–
price increments YnY

T
n are much more informative and can be used for model

asessment. This is not surprising, as their sum converges in probability to the
integrated volatility as the sampling frequency goes to infinite.

Theorem 4.3.2. In the general stochastic volatility model with µ = β = 0 the
second order structure of the squared log price process is given by

E(YtY
T
t ) = var(Yt) + E(Yt)E(Y T

t ) = E(Σ0)t (4.34)

var(vec(YtY
T
t )) = (Id2 + Q + PQ)

(
r++(t) + (r++(t))T

)

+(Id2 + P) (E(Σ0) ⊗ E(Σ0)) t
2 (4.35)

and the one of the squared log return increments (YnY
T
n )n∈N is given by

E(YnY
T
n ) = var(Yn) + E(Yn)E(YT

n ) = E(Σ0)∆ (4.36)

var(vec(YnY
T
n )) = (Id2 + Q + PQ)

(
r++(∆) + (r++(∆))T

)

+(Id2 + P) (E(Σ0) ⊗ E(Σ0)) ∆2 (4.37)

acovYYT (h) = acovΣ(h) for h ∈ N (4.38)

where

P : Md2 →Md2 , (4.39)

(PX)i,(p−1)d+q = Xi,(q−1)d+p for all i = {1, 2, . . . , d2}, p, q = {1, 2, . . . d}
Q : Md2 →Md2 , (4.40)

(QX)(k−1)d+l,(p−1)d+q = X(k−1)d+p,(l−1)d+q for all k, l, p, q = {1, 2, . . . d}

are linear operators.
Componentwise we have for the variance

cov
(
(Yi,nY

T
j,n), (Yk,nYl,n)

)
= var(vec(YnYn))(j−1)d+i,(l−1)d+k (4.41)

=

∫ t

0

∫ z

0

(cov(Σij,z,Σkl,u) + cov(Σij,u,Σkl,z)) dudz

+

∫ t

0

∫ z

0

(E(Σjl,zΣik,u) + E(Σjl,uΣik,z) + E(Σjk,zΣil,u) + E(Σjk,uΣil,z)) dudz

Since the process (vec(YnY
T
n ))n∈N has the same autocovariance function as the

integrated variance it is again a VARMA(1,1) process.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

Proof. The proof of Theorem 4.3.2 is given in Pigorsch and Stelzer (2007).

Given the second order properties of YYT we are now able to estimate our
model via the autocovariance function. We apply this procedure in our empirical
application. Although the implementation of this estimation method is straight
forward its theoretical, i.e. distributional properties are unavailable. This is also
highlighted by a Monte–Carlo study, which in fact shows that the autocovariance
estimator is biased for a finite number of observations. Another shortcoming is the
unavailability of the underlying states of the time–varying volatility matrix. To
overcome this we could apply a particle filter. Alternatively, the Kalman filter can
used for the quasi maximum likelihood estimation and volatility filtering based on a
state space representation for the squared high–frequency returns, which is derived
in the sequel.

4.3.2 State Space Representation

In this section we establish a state space representation for the joint process (Yn,YnY
T
n )n∈N.

This allows inference using basic tools, e.g. estimating the latent stochastic volatil-
ity via the Kalman filter. Throughout we assume β = 0. We first analyze the
general stochastic volatility model and thereafter focus on the OU–type model

Recall first that

Yn = ∆µ+

∫ n∆

(n−1)∆

Σ1/2
s dWs,

which immediately implies

YnY
T
n = ∆2µµT +

∫ n∆

(n−1)∆

Σ1/2
s dWs

∫ n∆

(n−1)∆

dW T
s Σ1/2

s

+∆

∫ n∆

(n−1)∆

Σ1/2
s dWsµ

T + ∆µ

∫ n∆

(n−1)∆

dW T
s Σ1/2

s . (4.42)

Defining

un :=

(
u1,n

u2,n

)
(4.43)

u1,n :=

∫ n∆

(n−1)∆

Σ1/2
s dWs (4.44)

u2,n :=

∫ n∆

(n−1)∆

Σ1/2
s dWs

∫ n∆

(n−1)∆

dW T
s Σ1/2

s + ∆

∫ n∆

(n−1)∆

Σ1/2
s dWsµ

T

+∆µ

∫ n∆

(n−1)∆

dW T
s Σ1/2

s − Σn, (4.45)

it follows that

Yn = ∆µ+ u1,n (4.46)

YnY
T
n = ∆2µµT + Σn + u2,n. (4.47)
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

To obtain a state space representation for (4.46) and (4.47) we need to derive the
second order properties of un. Moreover, we express the increments of the integrated
covariance Σn as a linear process with a noise sequence which is uncorrelated with
un. The following proposition establishes the second order properties of un.

Proposition 4.3.3. The sequence (un)n∈N is a (second order) stationary zero–mean
martingale difference sequence (w.r.t. the filtration (Gn)n∈N := (Fn∆)n∈N) and thus
in particular white noise. It holds that

var(u1,n) = E(Σn) = E(Σ0)∆ (4.48)

var(vec(u2,n)) = ∆2
(
E(Σn) ⊗ (µµT ) + (µµT ) ⊗ E(Σn) + µT ⊗ E(Σn) ⊗ µ

+µ⊗ E(Σn) ⊗ µT
)

+ (Id2 + P) (E(Σn) ⊗ E(Σn))

+(Q + PQ)var(vec(Σn)) (4.49)

= ∆3
(
E(Σ0) ⊗ (µµT ) + (µµT ) ⊗ E(Σ0) + µT ⊗ E(Σ0) ⊗ µ

+µ⊗ E(Σ0) ⊗ µT
)

+ ∆2(Id2 + P) (E(Σ0) ⊗ E(Σ0))

+(Q + PQ)
(
r++(∆) + (r++(∆))T

)

cov(u1,n, vec(u2,n)) = ∆
(
E(Σn) ⊗ µT + µT ⊗ E(Σn)

)

= ∆2
(
E(Σ0) ⊗ µT + µT ⊗ E(Σ0)

)
(4.50)

Proof. The proof of Proposition 4.3.3 is given in Pigorsch and Stelzer (2007).

Note that so far the second order properties for un are derived for the general
multivariate stochastic volatility. However, to express the increments of the inte-
grated volatility as a linear process, the process of the volatility matrix needs to
be specified in more detail. In the following we therefore turn our attention to the
OU–type model and show that we can derive a state space representation for this
specific model.

Defining

η1,n :=

∫ n∆

(n−1)∆

eA(n∆−s)dLse
AT (n∆−s) (4.51)

η2,n :=

∫ n∆

(n−1)∆

dLs = Ln∆ − L(n−1)∆ (4.52)

ηn := (η1,n, η2,n) (4.53)

for all n ∈ N it is easy to see that

Σn∆ = eA∆Σ(n−1)∆e
AT ∆ + η1,n (4.54)

Ln∆ = L(n−1)∆ + η2,n. (4.55)

Before showing that this leads to a helpful state space representation we study the
properties of the noise sequence (ηn)n∈N.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

Proposition 4.3.4. The sequence of random variables (ηn)n∈N is i.i.d. and uncor-
related with (un)n∈N. Moreover, it has finite second moments and

E(η1,n) = −A−1
(
E(L1) − eA∆E(L1)e

AT ∆
)

= E(Σ0) − eA∆E(Σ0)e
AT ∆ (4.56)

E(η2,n) = ∆E(L1) = −∆AE(Σ0) (4.57)

var(vec(η1,n)) = −A−1
(
var(vec(L1)) − eA ∆var(vec(L1))e

A T ∆
)

= var(vec(Σ0)) − eA ∆var(vec(Σ0))e
A T ∆ (4.58)

var(vec(η2,n)) = ∆var(vec(L1)) = −∆Avar(vec(Σ0)) (4.59)

cov (vec(η1,n), vec(η2,n)) = −A
−1
(
var(vec(L1)) − eA ∆var(vec(L1))

)

= A
−1A(Id2 − eA ∆)var(vec(Σ0)). (4.60)

Proof. The proof of Proposition 4.3.4 is given in Pigorsch and Stelzer (2007).

Using the proporties of the integrated variance (most importantly see Proposition
4.2.8) we have

Σn = Σ+
n∆+ − Σ+

(n−1)∆ = A−1
(
Σn∆ − Σ(n−1)∆ − Ln∆ + L(n−1)∆

)

for all n ∈ N and recalling the definition of ηn we have

AΣn = eA∆Σ(n−1)∆e
AT ∆ − Σ(n−1)∆ + η1,n − η2,n.

Combining this with the representation (4.46) and (4.47) of the observable log–
price process Yn and its “square” YnY

T
n , and setting α1,n = AΣn and α2,n = Σn∆

results in the desired state space representation

Yn = ∆µ+ u1,n (4.61)

YnY
T
n = ∆2µµT + A−1α1,n + u2,n. (4.62)

where

α1,n = eA∆α2,n−1e
AT ∆ − α2,n−1 + η1,n − η2,n (4.63)

α2,n = eA∆α2,n−1e
AT ∆ + η1,n (4.64)

or in pure vector notation with αn :=

(
vec(α1,n)
vec(α2,n)

)
:

(
Yn

vec(YnY
T
n )

)
=

(
∆µ

∆2(µ⊗ µ)

)
+

(
0M

d,d2 (R) 0M
d,d2 (R)

A
−1 0M

d2,d2 (R)

)
αn +

(
u1,n

vec(u2,n)

)

(4.65)

where

αn =

(
0M

d2 (R) eA∆ ⊗ eA∆ − Id2

0M
d2 (R) eA∆ ⊗ eA∆

)
αn−1 +

(
vec(η1,n − η2,n)

vec(η1,n)

)
. (4.66)

Observe that 0M
d,d2 (R) denotes the zero matrix in Md,d2(R) etc.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

4.3.3 Realized Quadratic Variation

In the following we derive a state space representation for the realized covariation.
Recall from Section 2.1.2 that the realized covariation is defined as:

[Y](M)
n :=

M∑

j=1

Yj,nY
T
j,n. (4.67)

In a first step we derive the second order properties of the realized variation.

Theorem 4.3.5. Consider the general stochastic volatility model with µ = β = 0.
Then the sequence ([Y]

(M)
n )n∈N is (second order) stationary and

E
(
[Y](M)

n |Σn

)
= Σn (4.68)

E
(
[Y](M)

n

)
= E(Σn) = ∆E(Σ0) (4.69)

var
(
vec
(
[Y](M)

n

))
= var(vec(Σn)) +M(Q + QP)

(
r++

(
∆

M

)
+

(
r++

(
∆

M

))T)

+
∆2

M
(Id2 + P)(E(Σ0) ⊗ E(Σ0)) (4.70)

= r++(∆) + (r++(∆))T

+M(Q + QP)

(
r++

(
∆

M

)
+

(
r++

(
∆

M

))T)

+
∆2

M
(Id2 + P)(E(Σ0) ⊗ E(Σ0))

acov[Y](M)(h) = acovΣ(h) (4.71)

= r++(h∆ + ∆) − 2r++(h∆) + r++(h∆ − ∆), h ∈ N.

Proof. The proof of Theorem 4.3.5 is given in Pigorsch and Stelzer (2007).

Moreover, as the realized covariation is defined as the sum of the squared high–
frequency returns, we can also generalize the state space representation of the last
section by simple addition, whereby we have again to switch to the specific OU–type
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

stochastic volatility model with β = 0. We define for n ∈ N and j = 1, 2, . . . ,M

u(M)
n :=

(
u

(M)
1,n

u
(M)
2,n

)
(4.72)

u
(M)
1,j,n :=

∫ (n+ j

M )∆

((n−1)+ j−1
M )∆

Σ1/2
s dWs (4.73)

u
(M)
2,j,n :=

∫ (n+ j

M )∆

((n−1)+ j−1
M )∆

Σ1/2
s dWs

∫ (n+ j

M )∆

((n−1)+ j−1
M )∆

dW T
s Σ1/2

s + ∆

∫ (n+ j

M )∆

((n−1)+ j−1
M )∆

Σ1/2
s dWsµ

T

+∆µ

∫ (n+ j

M )∆

((n−1)+ j−1
M )∆

dW T
s Σ1/2

s − Σj,n (4.74)

u
(M)
1,n :=

M∑

j=1

u
(M)
1,j,n (4.75)

u
(M)
2,n :=

M∑

j=1

u
(M)
2,j,n. (4.76)

Then the sequence u
(M)
j,n :=

(
u

(M)
1,j,n, u

(M)
2,j,n

)
is in law equal to the sequence un with

∆ replaced by ∆/M and it is straightforward to see that

Yn = ∆µ+ u
(M)
1,n (4.77)

[Y](M)
n =

∆2

M
µµT + Σn + u

(M)
2,n (4.78)

and (u
(M)
n )n∈N := (u

(M)
1,n , u

(M)
2,n )n∈N is a (second order) stationary zero–mean martin-

gale difference sequence with respect to the filtration Gn := Fn∆, n ∈ N. Moreover,

var(u
(M)
1,n ) = E(Σn) = ∆E(Σ0) (4.79)

var(vec(u
(M)
2,n )) = Mvar(vec(u2,1,n)) =

∆3

M2

(
E(Σ0) ⊗ (µµT ) + (µµT ) ⊗ E(Σ0)

+ µT ⊗ E(Σ0) ⊗ µ+ µ⊗ E(Σ0) ⊗ µT
)

+
∆2

M
(Id2 + P) (E(Σ0) ⊗ E(Σ0))

+M(Q + PQ)
(
r++(∆/M) + (r++(∆/M))T

)
(4.80)

cov(u
(M)
1,n , vec(u

(M)
2,n )) =

∆

M

(
E(Σn) ⊗ µT + µT ⊗ E(Σn)

)

=
∆2

M

(
E(Σ0) ⊗ µT + µT ⊗ E(Σ0)

)
. (4.81)

In the OU–type stochastic volatility model we can use equations (4.63) and (4.64)
to obtain a recursion for (AΣn,Σn∆). Hence, we obtain the following state space

107



4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

representation

Yn = ∆µ+ u
(M)
1,n (4.82)

[Y](M)
n =

∆2

M
µµT + α1,n + u

(M)
2,n (4.83)

where

α1,n = eA∆α2,n−1e
AT ∆ − α2,n−1 + η1,n − η2,n (4.84)

α2,n = eA∆α2,n−1e
AT ∆ + η1,n. (4.85)

Alternatively in pure vector notation with αn :=

(
vec(α1,n)
vec(α2,n)

)
:

(
Yn

vec([Y]
(M)
n )

)
=

(
∆µ

∆2

M
(µ⊗ µ)

)
+

(
0M

d,d2 (R) 0M
d,d2 (R)

A
−1 0M

d2,d2 (R)

)
αn +

(
u

(M)
1,n

vec(u
(M)
2,n )

)

(4.86)

where

αn =

(
0M

d2 (R) eA∆ ⊗ eA∆ − Id2

0M
d2 (R) eA∆ ⊗ eA∆

)
αn−1 +

(
vec(η1,n − η2,n)

vec(η1,n)

)
. (4.87)

Furthermore, recall that the sequence (ηn)n∈N := (η1,n, η2,n)n∈N is i.i.d. and note

that it is uncorrelated with (u
(M)
n )n∈N. The further second order properties are

given by equations (4.56) to (4.60).

4.4 Estimation Methods and Finite Sample

Properties

Having derived the positive semidefinite OU–type stochastic volatility model, we
now turn to its estimation. In particular, we provide a discussion of the different
estimation methods along with a small Monte–Carlo analysis designed to assess
their finite–sample properties.

4.4.1 Estimation Methods

As noted earlier, the estimation of continuous–time stochastic volatility models
is complicated by the unavailability of the likelihood function. However, based
on the theoretical results derived above, we can estimate multivariate OU–type
stochastic volatility models either by using the second order dependence structure
of the squared returns or by exploiting the different state space representations.
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Estimation via the second order dependence structure

Given the closed–form expression for the autocovariance function of the squared
returns, see theorem 4.3.2, model estimates can be obtained by minimizing the dis-
tance between the empirical autocovariance function and the model–implied one,
such that this estimation approach can be interpreted as a nonlinear and overiden-
tified Yule–Walker estimator. In particular, our objective function is given by

SSR(i, p) =
∣∣∣∣v̂ar

(
vec
(
Y(i)Y(i)T

))
− var

(
vec
(
Y(i)Y(i)T

))∣∣∣∣

+

p/i∑

k=1

∣∣∣∣âcovY(i)Y(i)T (k) − acovY(i)Y(i)T (k)
∣∣∣∣ , (4.88)

with i(= ∆/M) denoting the sampling frequency, such as 15 minutes, and p the
number of lags over time period ∆, e.g. a day. Moreover, although several matrix
norms can be considered we use the Frobenius norm, i.e.

||A|| :=
d∑

i=1

d∑

j=1

a2
ij = tr(AAT ).

As noted in Barndorff-Nielsen and Shephard (2001b, Chapter 5.3), who apply this
procedure for the estimation of a univariate OU–type stochastic volatility model,
the estimator is independent of the assumption of a particular OU–type process.
Instead, as can also be seen from the formulas of the autocovariance function 4.3.2,
the estimator generally identifies the mean and the variance of the BDLP, as well
as the matrix A. So, instead of assuming a specific parametric model for the BDLP,
we optimize over the first two moments of L1.

4

Estimation via the state space representations

Based on the state space representation for the squared high–frequency returns
and for the realized covariation (see section 4.3.2, respectively) the Kalman filter
can be used to obtain the quasi likelihood function of the model. Note that since
we have not established the distributions of the volatility dynamics, i.e. we have
not specified the distributions of un and ηn, the Kalman filter assumes Gaussianity
and hence the resulting estimates are quasi maximum likelihood estimates. Both
of these estimation approaches have also been considered in Barndorff-Nielsen and
Shephard (2001b, 2002a) for the univariate OU–type stochastic volatility model, for
which they also show, that the Kalman filter is suboptimal but provides consistent
and asymptotically normal estimators. From the state space representations it
also becomes clear, that the multivariate model can again be estimated without
specifying a particular parametric BDLP. Instead we estimate the mean and the
variance of the BDLP as well as the matrix A. For financial applications the

4Oftentimes the parameters of a specific BDLP can be identified solely by the mean and the
variance of the BDLP. In this case, the autocovariance fit also identifies these parameters.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

estimation via the Kalman filter might be preferable over the autocovariance fit, as
it allows to compute smoothed and predicted series of the integrated covariance in
a straightforward manner.

4.4.2 Monte–Carlo Analysis

So far—at least to the best of our knowledge—a direct comparison of the three
different estimation procedures in the univariate setting has not been pursued in
the literature yet. In particular, we are not aware of any study presenting parameter
estimates for the same dataset based on the different estimation methods, nor of any
simulation study assessing the finite sample properties of the respective methods.
This is the aim of this section.

To this end, we generate a series of five minute returns over a period of 101250
days, from which we keep the last 1250 days (corresponding roughly to our sample
size), from a univariate non–Gaussian OU–type process with model parameters set
to empirically plausible values, i.e. they are based on our univariate estimation
results for MSFT as reported in Section 4.2. For the simulated series we compute
the 15, 30, 65 and 130 minute returns, the corresponding realized variation as well
as the autocovariance function. The model is then estimated for these frequencies
using the different estimation methods, whereby the autocovariance fit is based on
p = 25 daily lags. Note that the consideration of the different sampling frequencies
allows us to assess the relevance of using more information. More specifically, for
the estimation via the state space representation of the squared high–frequency
returns as well as for the autocovariance fit an increasing sampling frequency leads
to an increase in the number of observations used in the estimation. We therefore
expect an improvement in the finite sample performance of this estimator at higher
frequencies. In contrast, for the estimation based on the realized covariation the
number of observations remains the same across different frequencies. However, the
number of terms involved in the construction of the realized–covariation measure
is increasing and so the resulting series should be more informative. We repeat our
simulation procedure 1000 times providing us with a series of parameter estimates
for A

(
= 1

2
λ
)
, E(L1) and var(L1). Given these estimates we can also compute for

each simulation run some further statistics for which we have derived closed–form
expression in the multivariate setting. In particular, we consider the variance of
the daily returns and of the squared daily returns, as well as the autocorrelation
coefficient of the squared returns at the 10th daily lag (acorr(y2

t )10).
Table 4.1 presents some characteristics of the so obtained distribution of the

respective statistics, which in turn are depicted in Figure 4.4 and 4.5. The results
reveal, that the autocovariance–based estimation method tends to underestimate
the parameter A, and to overestimate E(L1) and var(yt) irrespective of the sampling
frequency used. Moreover, as expected the parameter estimates become slightly
less precise with decreasing sampling frequency, i.e. with a decreasing number of
observations used in the estimation. The two estimation methods based on the
Kalman filter yield very accurate estimates, and only tend to underestimate the
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Table 4.1: Monte–Carlo Results
autovoc kalmanhf kalmanrc

15min 30min 65min 130min 15min 30min 65min 130min 15min 30min 65min 130min
A = −0.004

mean -0.0057 -0.0057 -0.0057 -0.0057 -0.0047 -0.0045 -0.0044 -0.0041 -0.0042 -0.0041 -0.0041 -0.0040
std 0.0029 0.0029 0.0031 0.0034 0.0022 0.0022 0.0020 0.0020 0.0020 0.0020 0.0020 0.0021
min -0.0638 -0.0636 -0.0616 -0.0540 -0.0403 -0.0411 -0.0250 -0.0179 -0.0306 -0.0382 -0.0258 -0.0201
max -0.0010 -0.0007 -0.0000 -0.0000 -0.0004 -0.0004 -0.0004 -0.0004 -0.0003 -0.0004 -0.0003 -0.0003
Q0.05 -0.0095 -0.0095 -0.0102 -0.0110 -0.0077 -0.0075 -0.0077 -0.0077 -0.0071 -0.0072 -0.0073 -0.0075
Q0.50 -0.0053 -0.0052 -0.0053 -0.0050 -0.0046 -0.0044 -0.0042 -0.0039 -0.0041 -0.0040 -0.0039 -0.0037
Q0.95 -0.0027 -0.0026 -0.0023 -0.0018 -0.0015 -0.0015 -0.0014 -0.0014 -0.0012 -0.0012 -0.0014 -0.0013

E(L1) = 0.02
mean 0.0297 0.0298 0.0298 0.0294 0.0253 0.0242 0.0234 0.0218 0.0218 0.0215 0.0213 0.0206
std 0.0196 0.0198 0.0210 0.0228 0.0170 0.0161 0.0158 0.0149 0.0144 0.0144 0.0144 0.0144
min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0001
max 0.1301 0.1374 0.1454 0.1710 0.1237 0.1027 0.1222 0.1010 0.0900 0.0925 0.0912 0.1047
Q0.05 0.0058 0.0059 0.0053 0.0044 0.0034 0.0034 0.0034 0.0033 0.0030 0.0032 0.0031 0.0033
Q0.50 0.0255 0.0254 0.0255 0.0238 0.0220 0.0214 0.0202 0.0187 0.0194 0.0189 0.0186 0.0177
Q0.95 0.0664 0.0677 0.0706 0.0727 0.0589 0.0563 0.0545 0.0503 0.0497 0.0501 0.0496 0.0480

var(L1) = 0.17
mean 0.1845 0.1844 0.1862 0.1869 0.1599 0.1572 0.1544 0.1475 0.1595 0.1571 0.1548 0.1488
std 0.1837 0.1843 0.1909 0.2093 0.1698 0.1668 0.1721 0.1645 0.1676 0.1670 0.1694 0.1672
min 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
max 1.9006 1.6335 1.3110 2.0530 1.9998 1.6221 1.8559 1.2558 1.9753 1.5002 1.5041 1.2799
Q0.05 0.0166 0.0164 0.0151 0.0130 0.0104 0.0102 0.0109 0.0096 0.0107 0.0103 0.0106 0.0097
Q0.50 0.1355 0.1316 0.1285 0.1215 0.1124 0.1065 0.1026 0.0975 0.1137 0.1076 0.1036 0.0978
Q0.95 0.5302 0.5320 0.5550 0.5520 0.4803 0.4598 0.4506 0.4359 0.4638 0.4619 0.4657 0.4340
Notes: The entries report the summary statistics of the simulated distributions of the parameter estimates based on the autocovariance–fit (autocov), on the Kalman
filter for the squared high–frequency returns (kalmanhf), and on the Kalman filter for the realized covariation (kalmanrc) using different sampling frequencies. The
first row in each panel reports the true parameter value.
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Figure 4.4: Simulated distributions of the parameters estimates. The figure shows the simulated distributions of the
parameter estimates based on the autocovariance–fit (red), the Kalman filter for the squared high–frequency returns
(blue), and on the Kalman filter for the realized variation (green) using different frequencies (decreasing from upper to
lower panel). The true parameter values are marked as black crosses, whereas the other crosses represent the mean of the
parameter estimates colored according to the respective estimation method.
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Figure 4.5: Simulated distributions of implied daily return characteristics. The figure shows the simulated distribution of
the var(yt), var(y2

t ) and the autocorrelation coefficient of the squared returns at the 10th lag (acorr(y2
t )10) based on the

estimation results of the autocovariance–fit (red), the Kalman filter for high–frequency returns (blue), and on the Kalman
filter for the realized variation (green) using different sampling frequencies. The true parameter values are marked as
black crosses, whereas the other crosses represent the mean of the parameter estimates colored according to the respective
estimation method.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

acorr(yt)10. Moreover, for a decreasing sampling frequency the var(L1) tends to
be underestimated. Furthermore, for the realized–variation–based estimation the
incorporation of more information by aggregating over more finely sampled returns
does not seem to be essential for more precise parameter estimates. In particular,
sampling at lower frequencies already provides very accurate results. Note also that
the Kalman filter for the state space representation of the squared high–frequency
returns seems to exhibit a slight tendency towards an underestimation of A and an
overestimation of E(L1) as the sampling frequency increases.

Overall the estimation via the state space representations yields more precise
estimates than the autocovariance fit, whereby the estimates based on the realized
variation are most stable across the different frequencies.

4.5 Empirical Application

In the following we estimate the positive semidefinite OU–type stochastic volatility
model as given in equations (4.1) and (4.15), whereby we follow Barndorff-Nielsen
and Shephard (2001b) by assuming that µ = β = 0, i.e. the means of the returns
are set to zero.5 Moreover, we assume that the non–diagonal elements of the ma-
trix subordinator are zero, such that we obtain in fact a vector subordinator. The
elements of this subordinator are allowed to correlate positively. Hence, the correla-
tion between the variances of the different assets is induced by both the correlation
of the diagonal subordinators as well as the entries of A.

In order to assess the sensitivity of our model with respect to the sampling
frequency, we estimate the model for different sampling frequencies. In particular,
we consider 15 minutes, 30 minutes, 65 minutes and 130 minutes returns computed
according to the description in Section 2.2.2.6 Moreover, we assess the model’s
performance for the raw (based only on the used trades as described in Section
2.2.2) as well as the adjusted dataset, whereby the adjustment is recomputed for
each individual sampling frequency (i.e. in equation 2.20 ∆/M = 15, 30, 65 and
130 minutes). This allows us to analyze the ability of our model to reproduce
the seasonalities in the autocorrelation function induced by the intraday volatility
pattern. So, overall, we consider a total of eight different datasets for which we
estimate the model using the three different estimation methods discussed in the
previous section.

Before presenting the estimation results of the multivariate Ornstein–Uhlenbeck–
type stochastic volatility model, we first consider its univariate counterpart. This
allows us a more detailed analysis of the multivariate model. We therefore start

5For a discussion on the estimation of these parameters either in a two–step approach or jointly
using an extended state space representation of the model see Section 5 of Barndorff-Nielsen
and Shephard (2001b). We expect that the proposed methods can also be applied in our
multivariate case.

6Note, that we only consider frequency that are integer divisors of the total number of minutes
of each trading day (i.e. 390 minutes). We therefore use 65 and 130 minutes rather than the
oftentimes used 60 and 120 minutes frequency.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

with a discussion of the univariate estimation results for Microsoft Corp. and Intel
Corp.—the two assets for which we subsequently estimate the bivariate model.

Tables 4.2 and 4.3 present the univariate estimation results for Microsoft Corp.
and Intel Corp., respectively, based on different sampling frequencies of the raw as
well as the adjusted high–frequency data. The first five rows of each of the two
panels for the raw and the adjusted data give the estimation results based on fitting
the autocovariance function according to 4.88. The remaining entries correspond to
the estimation via the Kalman filter using either the state space representation for
the high–frequency returns or for the realized quadratic variation. Note, that based
on the construction of realized quadratic variation the corresponding estimation re-
sults for the raw and the adjusted data are redundant and so we only report them
in the raw data panel. The results show that irrespective of the estimation method
a lower sampling frequency generally implies more persistence in the volatility pro-
cess, i.e. smaller (absolute) values of A. At the same time, however, the mean (with
the exception of the estimates based on the Kalman filter for realized variation)
and the variance of the Background–driving Lévy process are also reduced. Hence,
at lower frequencies the volatility is driven by on average smaller and less volatile
jumps which are more persistent than at higher frequencies at which the jumps
are larger and more volatile. Note, that the autocovariance–based estimates of A
and var(L1) are (in absolute terms) larger than the corresponding estimates of the
Kalman filters, which is in accordance to our simulation results indicating that the
parameter estimates based on the state space representations might be closer to
the ”true” ones. When evaluating the model’s adequacy, we find that the models
estimated via the state space representation can reproduce the empirical variance
(measured over the whole sample period) of the returns, whereas the variance of
the squared returns can hardly be captured by any of the estimation methods. In
view of our simulation results, this suggests that our model is unable to reproduce
adequately the fourth moments of the returns.

Figures 4.6 and 4.7 depict the estimated model–implied autocorrelations of the
squared daily returns along with the empirical one (given by the straight line) for
both, the raw (left panel) and the adjusted dataset (right panel) for Microsoft Corp.
and Intel Corp. respectively. Note, that although the model is estimated for differ-
ent sampling frequencies, we present the model–implied daily autocovariances (up
to the 25th lag), in order to facilitate the comparison across the different estimation
methods and sampling frequencies. In particular, the red lines refer to the daily
autocorrelation functions implied by minimizing the distance between the empiri-
cal and the model–implied autocovariances at different intradaily frequencies. The
blue and green lines depict the autocorrelation functions based on the estimation
using the state space representation for the high–frequency returns and the realized
quadratic variation, respectively. As can be seen from the figures, across the dif-
ferent estimation methods using a lower sampling frequency yields less persistence
in the autocorrelation function than using a higher sampling frequency. At a first
glance this might seem to be at odds with the findings in Tables 4.2 and 4.3, where
we have observed a decreasing (absolute) value of A (implying more persistence) as
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

Table 4.2: Univariate Estimation Results for MSFT
∆ A E (L1) var (L1) var (rt) var (r2

t )
raw data 2.9957 48.5693

au
to

co
v 15min -0.0150 0.1497 0.5583 5.0030 77.7664

30min -0.0110 0.0888 0.3204 4.0527 54.6189
65min -0.0092 0.0676 0.2499 3.6931 47.6199

130min -0.0076 0.0483 0.1928 3.1793 39.1680

ka
lm

an
h
f 15min -0.0232 0.1349 2.2730 2.9136 89.4921

30min -0.0108 0.0598 0.6768 2.7576 61.6699
65min -0.0042 0.0232 0.2174 2.7395 53.4075

130min -0.0036 0.0195 0.1336 2.6952 42.1717

ka
lm

an
rc 15min -0.0039 0.0231 0.7424 2.9933 161.5467

30min -0.0028 0.0166 0.2933 2.9913 96.8841
65min -0.0034 0.0201 0.1854 2.9748 58.6616

130min -0.0032 0.0190 0.1179 2.9565 44.9131
adjusted data 2.9957 48.5693

au
to

co
v 15min -0.0162 0.1567 0.6513 4.8226 76.2643

30min -0.0135 0.1197 0.4483 4.4387 64.1199
65min -0.0109 0.0768 0.3243 3.5216 46.9490

130min -0.0086 0.0485 0.2254 2.8385 35.7756

ka
lm

an
h
f 15min -0.0366 0.2141 3.3844 2.9216 84.6773

30min -0.0133 0.0734 1.0368 2.7676 73.4785
65min -0.0060 0.0329 0.2908 2.7491 51.3813

130min -0.0052 0.0280 0.1548 2.7010 36.8696
Notes: The estimation results are presented for the raw (upper panel) and the ad-
justed dataset (lower panel) and are based on different estimation methods: autocov

refers to the estimation by fitting the model–implied autocovariance function (of up
to the 25th lag) to the empirical one (see equation (4.88)); kalmanhf and kalmanrc

refers to the estimation based on the state space representation for the high–frequency
returns and for the realized variation, respectively. A is the mean–reversion param-
eter of the volatility process, E(L1) and var(L1) denote the mean and the variance,
respectively, of the Background–driving Lévy process. var(rt) and var(r2t ) are the
(full) sample variances of the daily returns and squared returns.
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4 A Multivariate Extension of the Ornstein–Uhlenbeck Stochastic Volatility Model

Table 4.3: Univariate Estimation Results for INTC
∆ A E (L1) var (L1) var (rt) var (r2

t )
raw data 5.6993 130.3840

au
to

co
v 15min -0.0102 0.1721 1.1807 8.4630 230.7735

30min -0.0087 0.1261 0.8626 7.2494 179.0819
65min -0.0075 0.1115 0.7591 7.4713 187.5331

130min -0.0058 0.0685 0.5667 5.9060 142.7933

ka
lm

an
h
f 15min -0.0181 0.1973 4.9389 5.4513 261.7214

30min -0.0047 0.0499 0.9317 5.2725 202.9165
65min -0.0035 0.0373 0.7258 5.3532 213.3412

130min -0.0032 0.0351 0.3905 5.4244 149.1353

ka
lm

an
rc 15min -0.0028 0.0319 1.2844 5.6930 407.8518

30min -0.0025 0.0283 0.6159 5.6926 250.3508
65min -0.0040 0.0455 0.7435 5.6502 202.0576

130min -0.0032 0.0360 0.3728 5.5852 148.9632
adjusted data 5.6993 130.3840

au
to

co
v 15min -0.0107 0.1635 1.3116 7.6575 208.7341

30min -0.0095 0.1251 1.0313 6.5766 167.3295
65min -0.0081 0.1360 0.9010 8.3650 222.5990

130min -0.0058 0.0731 0.6165 6.2614 157.2995

ka
lm

an
h
f 15min -0.0741 0.8087 16.1413 5.4562 215.1093

30min -0.0098 0.1040 1.6413 5.2844 180.0722
65min -0.0033 0.0354 0.8939 5.3728 261.0619

130min -0.0030 0.0330 0.4359 5.4473 166.9682
Notes: For a description of the entries reported in this table refer to Table 4.2.
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Figure 4.6: Model–implied and empirical daily autocorrelation functions for
MSFT. The figure shows the empirical (black straight line) daily autocorrela-
tion function along with those implied by the parameter estimates based on the
different estimation methods and sampling frequencies. The left panel presents
the results for the raw data and the right panel those for the adjusted dataset.
The autocorrelation functions based on the different sampling frequencies are
characterized by different line styles, i.e. # refers to the 15 min sampling fre-
quency, � to the 30 min sampling frequency, 2 to 65 min sampling frequency,
and D refers to the 130 min sampling frequency, whereas the different line colors
represent a different estimation method. The red lines corresponds to the auto-
correlation function implied by fitting the model–implied autocovariance function
to the empirical one (see equation (4.88)), the blue lines corresponds to the esti-
mation based on the state space representation for high–frequency returns, and
the green lines corresponds to state space representation for the realized quadratic
variation.
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Figure 4.7: Model–implied and empirical daily autocorrelation functions for INTC.
For the description of the figure refer to Figure 4.6.

the sampling frequency reduces. However, this can be explained by the expression
of the autocorrelation function. In particular, for µ = β = 0 the autocorrelation
function of our model is given in theorem 4.3.2 and does not only depend on A
but also on the variance of the Background–driving Lévy process which has been
found to be smaller for lower frequencies. The Figures also show, that estimating
the model via the state space representation yields generally higher autocorrelations
than the empirical one, whereby the estimation based on the realized quadratic vari-
ation is far–off for the 15 and 30 minutes sampling frequencies. For the remaining
frequencies the two estimation methods perform pretty similar. Both approaches,
however, are outperformed by the autocovariance estimation method, which is not
surprising since it minimizes the difference of the model–implied and the empirical
autocorrelation functions. The estimation results for the adjusted dataset exhibit
similar characteristics as observed for the raw dataset, whereby the performance
of the high–frequency state space based estimation is slightly improved (with the
exception of the estimation using the 30 minutes frequency).

We now turn to the estimation of the bivariate positive semidefinite OU–type
stochastic volatility model. As can be inferred from Tables 4.4 and 4.5 reporting
the bivariate estimation results, the parameter estimates exhibit similar patterns
as in the univariate case. In particular, the parameters estimates generally de-
crease with decreasing sampling frequencies, whereby the estimates based on the
state space representation for the realized covariation are again most stable, and
the autocovariance fits yield the largest variance and covariance estimates of the
Background–driving Lévy processes. Interestingly, the sample variances and covari-
ances of the daily returns are again most adequately reproduced by the estimation
methods based on the Kalman filter.
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Table 4.4: Bivariate Estimation Results for MSFT and INTC
∆ A1,1 A2,1 A2,2 A2,2 E (L1)1,1 E (L1)2,2 var (L1)1,1 var (L1)2,1 var (L1)2,2

adjusted data
au

to
co

v 15min -0.0418 -0.0092 0.0641 -0.0058 0.1508 0.1289 2.3077 0.8506 0.4464
30min -0.0347 -0.0101 0.0559 -0.0009 0.1020 0.0779 1.3712 0.4777 0.2364
65min -0.0325 -0.0096 0.0533 0.0003 0.0716 0.0711 1.1874 0.4082 0.1880

130min -0.0301 -0.0118 0.0515 0.0039 0.0524 0.0464 0.9267 0.3176 0.1322

ka
lm

an
h
f 15min -0.0918 -0.0979 0.2081 0.0602 0.0122 0.1137 1.0260 0.4818 1.2163

30min -0.0289 -0.0309 0.0645 0.0215 0.0047 0.0234 0.3324 0.0814 0.1337
65min 0.1641 0.1920 -0.3695 -0.1676 0.0000 0.0119 0.0498 0.0527 0.0559

130min 0.1239 0.1458 -0.2845 -0.1269 0.0000 0.0102 0.0535 0.0354 0.0235

ka
lm

an
rc 15min -0.0227 -0.0233 0.0423 0.0203 0.0103 0.0023 0.1640 0.0058 0.1484

30min -0.0218 -0.0219 0.0427 0.0183 0.0056 0.0090 0.1984 0.0000 0.1005
65min -0.0242 -0.0245 0.0497 0.0203 0.0000 0.0130 0.1557 0.0286 0.0482

130min -0.0223 -0.0231 0.0483 0.0190 0.0000 0.0111 0.1014 0.0193 0.0247
adjusted data

au
to

co
v 15min -0.0487 -0.0084 0.0727 -0.0081 0.0796 0.1409 2.8910 1.0450 0.5569

30min -0.0431 -0.0084 0.0662 -0.0055 0.0000 0.1113 1.9953 0.7124 0.3889
65min -0.0468 -0.0125 0.0764 0.0018 0.1091 0.0959 1.8047 0.5725 0.2346

130min -0.0355 -0.0127 0.0609 0.0051 0.0556 0.0509 1.1049 0.3623 0.1326

ka
lm

an
h
f 15min -3.0814 -3.6234 6.4958 3.0618 0.1282 0.0000 0.7329 0.4214 0.2423

30min 0.5512 0.6492 -1.1240 -0.5574 0.0371 0.0000 0.1842 0.0967 0.0507
65min -0.0357 -0.0273 0.0670 0.0267 0.0575 0.0000 0.2301 0.0622 0.0576

130min -2.5726 -2.6987 5.6495 2.5680 0.0297 0.0000 0.0871 0.0410 0.0193
Notes: The estimation results are presented for the raw (upper panel) and the adjusted dataset (lower panel) and are based on different estimation
methods: autocov refer to the estimation by fitting the model–implied autocovariance function function (of up to the 25th lag) to the empirical one
(see equation (4.88)); kalmanrc and kalmanrc refer to the estimation based on the state space representation for the high–frequency returns and for
the realized covariation, respectively. Reported are the results for the entries of A, as well as of the mean vector and the covariance matrix of the
Background–driving Lévy process.
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Table 4.5: Bivariate estimation results of implied daily return characteristics (MSFT and INTC)
∆ 〈Irt〉 〈Irt,M rt〉 〈Mrt〉 〈Ir2

t 〉 〈Ir2
t ,
I rMt rt〉 〈Ir2

t ,
M r2

t 〉 〈IrMt rt〉 〈Mr2
t ,
I rMt rt〉 〈Mr2

t 〉
raw data

5.6993 2.7390 2.9957 130.3840 68.8621 46.1189 55.6923 43.9153 48.5693
au

to
co

v 15min 8.3130 4.2474 4.3541 229.4144 103.8443 63.0617 81.2176 55.2869 66.3301
30min 7.1490 3.5301 3.5459 177.7620 79.4417 47.6048 60.4924 40.5202 47.7711
65min 7.4114 3.8396 3.6440 186.5218 87.2304 52.4303 64.6952 43.4620 47.9926

130min 5.8185 2.8931 2.8034 141.9506 63.8522 39.2673 47.2088 31.5400 36.6306

ka
lm

an
h
f 15min 5.4782 2.3887 2.9407 286.8854 122.8217 80.3240 90.7280 68.8467 90.6811

30min 5.2632 2.3182 2.7865 212.5998 90.9424 58.2471 67.5391 49.5890 63.4889
65min 5.2708 2.3405 2.7167 215.4310 95.7749 59.4672 68.3087 49.2744 56.8637

130min 5.2825 2.2998 2.6826 164.6216 71.8231 42.7897 51.6716 36.4135 42.1818

ka
lm

an
rc 15min 5.4319 2.7953 3.1489 588.9409 312.0233 219.0245 228.3155 184.1286 205.2037

30min 5.5893 2.7911 3.1045 318.9696 158.8653 106.5755 116.1370 90.5030 102.9625
65min 5.7404 2.7881 3.0441 223.6810 106.3295 67.4487 77.1494 57.3190 65.4008

130min 5.7383 2.6494 2.9239 171.2418 77.5129 46.4074 56.1662 40.0122 45.8656
adjusted data

au
to

co
v 15min 7.2597 4.3172 4.2144 203.0017 99.2069 66.7592 78.7169 56.6038 65.8486

30min 6.3516 4.1338 3.8360 165.1680 85.5240 60.0587 67.3353 49.5818 55.1687
65min 8.3247 4.3853 3.9505 223.4970 107.8377 64.1211 77.7772 51.7927 53.0818

130min 6.2097 3.1574 2.8644 157.4716 72.6837 44.0276 51.8453 34.1090 36.7130

ka
lm

an
h
f 15min 5.4536 2.5771 3.0498 220.1967 104.2200 67.2668 77.2580 58.2839 68.8674

30min 5.1923 2.5627 2.9845 198.0647 97.4740 63.9301 72.8592 55.9878 65.2553
65min 5.8075 2.6695 2.7266 239.9187 120.5099 73.5427 82.2512 58.5539 58.1607

130min 5.6639 2.5765 2.7077 150.7523 68.6008 39.0351 47.7327 32.7956 34.4539
Notes: The table presents the entries of the covariance matrix of the returns (first three columns) and of the variance of the squared returns (fourth and last
column), of the crossproduct of the the returns and the squared returns of the two assets (column 7 and column 6, respectively), and of the variance of the
crossproduct of the squared returns of one asset with the crossproduct of the returns of both assets (fifth column). The first row of each column reports the
corresponding empirical values. For further descriptions of the entries reported in this table refer to Table 4.4.
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Figure 4.8: Model–implied and empirical daily autocorrelation functions based
on the bivariate estimation results for MSFT and INTC. The figure shows the
model–implied and empirical (black line) autocorrelation functions of the squared
returns of the two assets (upper and lower panel) as well as for their crossproduct
(middle panel). For a further description of the figure refer to Figure 4.6.
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Figure 4.8 shows the estimated as well as the empirical (in black) autocorrelation
functions of the squared daily returns and the cross product of the daily returns
of the two assets. Just as in the univariate case the Figure illustrates that a lower
sampling frequency yields less persistence in the autocorrelation function across
all estimation methods. Importantly, however, we can observe oscillations in the
autocorrelation functions of the squared returns and the cross product implied by
the state space estimation for the high–frequency returns. This might be caused
by the ability of our multivariate model to reproduce the sinusoidal behavior in
the intraday autocorrelation function induced by the U–shaped intraday volatility
pattern (see e.g. Figure 2.6 of Section 2). Noteworthy, these oscillations disappear
if the model is fitted to the intradaily–pattern adjusted dataset (with the exception
of the autocorrelation function based on 30 minutes returns, which in fact did not
exhibit such oscillations for the raw dataset, but is now quite accurate).

So, based on our simulation and estimation results, is there any estimation
method that might be preferable in practice? The answer to this question de-
pends on the application at hand. In particular, if the main focus is on an ade-
quate reproduction of the autocorrelation function of the squared returns, then the
autocovariance–based estimation method should be used. In contrast, if the main
interest is on the integrated covariance matrix, as is the case in most financial risk
management applications, then the estimation via the state space representations
should be preferred, whereby our results indicate that the one for the realized co-
variation provides more robust results across different sampling frequencies. More-
over, in our empirical application these robust estimation results, i.e. the estimates
based on the realized covariance, suggest that our multivariate OU–type stochastic
volatility model can adequately reproduce the integrated covariance, but fails to
account for the fourth moments in the return series.

4.6 Summary

Given the relevance of a joint modeling of the dynamics of multiple assets for
portfolio and risk management decisions, we have extended the non–Gaussian
Ornstein–Uhlenbeck–type stochastic volatility model Barndorff-Nielsen and Shep-
hard (2001b) to the multivariate case. It turns out, that our model possesses many
attractive features which are mainly a result of our stochastic volatility specifica-
tion. In particular we have shown, that similar to Barndorff-Nielsen and Shephard
(2001b) our general multivariate specification implies that returns are scaled mix-
tures of multivariate normals with the scaling given by the integrated covariance
matrix, such that the observed fat–tailedness, as well as the volatility clustering of
returns can be reproduced. Moreover, returns also aggregate to Gaussianity as the
time interval over which returns are computed increases. In addition, specifying the
stochastic volatility by Lévy–driven positive semidefinite Ornstein–Uhlenbeck–type
processes provides a relatively flexible volatility dependency structure. In particu-
lar, we show, that the increments of the integrated covariance of a stochastic model
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based on a single positive semidefinite Ornstein–Uhlenbeck–type process follows
a VARMA(1,1) process. Furthermore, the first and second moments of the inte-
grated volatility increments exhibit closed–form expressions. These results have
several important implications. First, the implementation of financial decisions,
such as the choice of e.g. a minimum–variance portfolio or other types of risk as-
sessment, is facilitated. Second, based on the VARMA structure of the integrated
covariance, we have derived a state space representation for the model–implied re-
alized quadratic variation, which in turn can be used for the estimation of these
models as well as for extracting and predicting the integrated covariance using the
Kalman filter. Alternatively, a state space representation for the outer product of
high–frequency returns can be used, which is based on the finding that those follow
also a VARMA(1,1) process. Moreover, we derived closed–form expressions for the
autocovariance function of the squared returns, which provides an additional ap-
proach for the estimation of our model. However, in practice the estimation based
on the Kalman filter might be preferable as it provides quite accurate estimates of
the integrated covariance matrix, which is of major importance for many financial
applications.
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5 Conclusion

In this thesis we analyze the usefulness of high–frequency financial data for the es-
timation and empirical assessment of different continuous–time stochastic volatility
models. In doing so, we primarily exploit the realized variation measures and show
that the information inherent in these measures does not only facilitate the sta-
tistical assessment of univariate as well as multivariate continuous–time stochastic
volatility models, but also provides new insights into the empirical properties im-
plied by the different models.

Motivated by the inability of the existing empirical studies based on daily data to
allow for a clear distinction between pure diffusion multi–factor stochastic volatility
models and lower–order models with jumps, we re–assess the adequacy of the affine
and logarithmic jump–diffusion models within a unified framework. In particu-
lar, we employ the general scientific modeling method of Gallant and McCulloch
(2005), which allows the model assessment of rather diverse structural models in
terms of a highly accurate auxiliary model. To this end, we develop a discrete–time
simultaneous equation model for the daily returns and realized variation measures,
in which the dynamics of the total price variation is explicitly decomposed into
its two components, i.e. the variation coming from the continuous–sample path
evolvement and the variation coming from the jumps. As a result we obtain a
model that is highly informative on the most important empirical features that
should be accounted for by the different continuous–time stochastic volatility mod-
els. Importantly, we show that the often observed leverage effect, or asymmetry
in the relationship between lagged and contemporaneous returns and the volatility,
primarily acts through the continuous volatility component, and that jumps are
important and exhibit only weak own serial correlation.

Using the likelihood function of this auxiliary model, we estimate and assess the
different continuous–time stochastic volatility models. Our estimation and simula-
tion results reveal that the affine and logarithmic jump–diffusion models considered
here still miss some important features of the data. In particular they are unable to
reproduce the persistence and the leverage effects. More specifically, the one–factor
models tend to underestimate the persistence whereas the two–factor model and the
one–factor model with jumps tend to an overestimation but are able to reproduce a
wider range of the persistence. Moreover, based on a conditional model assessment
we find that the latter models imply more accurate tails of the return distributions
than the one–factor models, suggesting that at least two volatility factors or one
factor and a jump process are needed to better account for the volatility persis-
tence and the fat–tailedness of the return distribution. Moreover, the inclusion of
jumps into the price process leads to an improvement of the model’s fit. Overall,
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5 Conclusion

our results are novel to the literature in that sense that they provide more detailed
information on the (in)ability of the models under consideration to capture specific
empirical data characteristics. These findings could only be obtained through the
use of high–frequency data.

Apart from the assessment of the individual price processes, this thesis also con-
siders the joint modeling of multiple assets, which is important for portfolio and
risk management decisions. In addition, based on the unavailability of a closed–
form expression for the integrated covariance matrix of the existing multivariate
continuous–time stochastic volatility models, we develop the multivariate positive
semidefinite Ornstein–Uhlenbeck–type stochastic volatility model, for which the in-
tegrated covariance matrix is readily available and in fact exhibits a very simple
structure. Moreover, the theoretical properties of this model allows us to derive
three different estimation methods that are based on the use of high–frequency
information, either using the high–frequency returns directly or the realized covari-
ation measure. The Monte–Carlo study analyzing the small sample properties of
the different estimation methods and our empirical application reveal that the most
robust results are obtained by using the state space representation of the realized
covariation measure. Moreover, the two estimations methods based on the state
space representations either for the squared high–frequency returns or for the real-
ized covariation measure might be preferable in practice, as the Kalman filter allows
the computation of the smoothed and predicted series of the integrated covariance
in a straightforward manner.
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Brockwell, P. (2001), “Lévy-Driven CARMA Processes,” Annals of the Institute of
Statistical Mathematics, 53, 113–124.

Campbell, J. Y. and Hentschel, L. (1992), “No News is Good News: An Asymmetric
Model of Changing Volatility in Stock Returns,” Journal of Financial Economics,
31, 281–331.

Carr, P., Geman, H., Madan, D. B., and Yor, M. (2003), “Stochastic Volatility for
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CARMA Stochastic Volatility Models,” Working Paper, Duke University.

Voev, V. and Lunde, A. (2007), “Integrated Covariance Estimation using High-
frequency Data in the Presence of Noise,” Journal of Financial Econometrics, 5,
68–104.

Zhang, L., Mykland, P. A., and Aı̈t-Sahalia, Y. (2005), “A Tale of Two Time Scales:
Determining Integrated Volatility with Noisy High-Frequency Data,” Journal of
the American Statistical Association, 100, 1394–1411.

Zhou, B. (1996), “High-Frequency Data and Volatility in Foreign-Exchange Rates,”
Journal of Business & Economic Statistics, 14, 45–52.

135



Eidesstattliche Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit:

Estimation of Continuous–Time Financial Models Using

High–Frequency Data
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