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Stufen  

Wie jede Blüte welkt und jede Jugend 
dem Alter weicht, blüht jede Lebensstufe 
blüht jede Weisheit auch und jede Tugend 
zu ihrer Zeit und darf nicht ewig dauern 
es muß das Herz bei jedem Lebensrufe 
bereit zum Abschied sein und Neubeginne 
um sich in Tapferkeit und ohne Trauern 
in andre, neue Bindungen zu geben 
und jedem Anfang wohnt ein Zauber inne 
der uns beschützt und der uns hilft zu leben 
wir wollen heiter Raum um Raum durchschreiten 
an keinem wie an einer Heimat hängen 
der Weltgeist will nicht fesseln uns und engen 
er will Stuf' um Stuf' uns heben, weiten 
kaum sind wir heimisch einem Lebenskreise 
und traulich eingewohnt, so droht Erschlaffen 
nur wer bereit zu Aufbruch ist und Reise 
mag lähmender Gewöhnung sich entraffen 
Es wird vielleicht auch noch die Todesstunde 
uns neuen Räumen jung entgegensenden 
des Lebens Ruf an uns wird niemals enden 
Wohlan denn, Herz, nimm Abschied und gesunde.  

Hermann Hesse, Das Glasperlenspiel 
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1 Summary 
 

Uncovering the organization of a higher order nuclear architecture and its implications on 

nuclear function has become a topic of major interest in the recent past. There is growing 

evidence that beyond the DNA sequence information, gene expression is organized on 

different epigenetic levels, comprising modifications of histones and DNA and higher order 

chromatin arrangement. 

The present work focuses on histone lysine methylations which are known to represent an 

essential epigenetic mechanism of gene regulation both for gene repression and gene 

activation. Immunofluorescence together with confocal microscopy and quantitative image 

analysis was used to reveal the nuclear topology and spatial relations of lysine methylation 

sites (H3K4me3, H3K9me1, H3K9me3, H3K27me3, H4K20me1 and H4K20me3) with 

centromeres, nascent RNA or with each other in various human cell types. Pattern formation 

varied in the investigated cell types. An apparent association with centromeres was found 

only for lysine methylation sites linked to constitutive heterochromatin. Nascent-RNA was 

found associated, though to a different degree, with all histone methylation sites. A difference 

in pattern formation in relation to the cell cycle stage was observed for methylation sites 

which are assigned to constitutive heterochromatin. Simultaneous visualization of different 

histone lysine methylation sites and their pattern formation, compared to general chromatin 

density visualized by DAPI-counterstaining, revealed, that methylation patterns are organized 

in distinct nuclear zones with little apparent intermingling. 

Experiments performed with the fungal toxin Chaetocin an inhibitior of the histone methyl-

transferase SUV39H1 (responsible for H3K9me3) altered the overall chromatin organization 

in human fibroblasts but not in cancer cell-lines DLD-1 and MCF-7. Surprisingly, H3K9me3 

intensity was not found decreased after Chaetocin treatment but a distinct clustering 

occurred as detected by H3K9me3 antibody signals and DAPI-counterstaining. The 

comparison of distinct cellular targets in Chaetocin treated and untreated control cells by IF 

could help to ensure that the observed rearrangements caused by the drug were not due to 

cytotoxic effects. A rescue assay after Chaetocin application could not reestablish the former 

chromatin state thereby indicating a long term irreversible epigenetic change of higher order 

chromatin. 

To investigate whether distinct histone methylation sites (H3K4me3, H3K9me3 and 

H3K27me3) co-localize with defined chromatin segments an elaborate multicolor immuno-

FISH protocol was established. In an experimental setup entire chromosome territories of 

human chromosomes HSA #18, #19 and X as well as chromosomal subdomains with 

different regional gene densities or highly transcribed and repressed genes from HSA #12 

and X were compared to the respective lysine methylation sites. Co-localization analysis 
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(using Manders co-localization coefficients) revealed distinct differences in the level of 

H3K4me3 between the chromosome territories of the gene-poor HSA #18 and the gene-

dense HSA #19, but no differences were detectable for H3K9me3 and H3K27me3. Data  

from five color immuno-FISH experiments were supportive that H3K27me3 known to be 

essential for gene-repression on Xi can also be assigned to gene repression on the active X-

chromosome, since repressed genes showed higher levels of co-localization with H3K27me3 

staining foci compared to the entire chromosome or highly expressed genes on the active X. 

For H3K4me3 similar high co-localization values were found for gene-dense chromatin 

segments as well as for highly expressed genes on HSA #12. This supports the idea that 

H3K4me3 is not only a marker for ongoing transcription but reflects a rather “poised” state for 

transcription. 
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2 Introduction 
 

2.1 Goals of the study 

The main purpose of the present thesis was to investigate histone lysine methylation in the 

light of nuclear architecture. By a collaboration with A.Peters (Friedrich Miescher Institute for 

Biomedical Research, Basel) highly specific antibodies to discriminate different lysine 

methylation sites and even distinct methylation states were available. 

The first goal persued in this work was to investigate the 3D nuclear topology and spatial 

interrelationships of different lysine methylation sites (tri-H3K4, mono-H3K9, tri-H3K9, tri-

H3K27, mono-H4K20 and tri-H4K20) in different cell types and in relation to the cell cycle. 

Immunofluorescent experiments and confocal microscopy together with quantitative 

evaluation of 3D image stacks should be used to investigate spatial relations of distinct 

methylation sites with each other, centromeres and nascent RNA. Another task was to 

explore whether histone lysine methylation patterns are arranged in distinct three-

dimensional nuclear zones and would thus represent nuclear subcompartments. To check for 

cell type dependent variations in pattern formation, histone lysine methylation sites should be 

analysed and compared in three different human cell-lines.   

Co-localization analysis (Manders et al., 1993) should provide information on the degree of 

overlap between histone lysine methylation sites with regard to each other and to defined 

nuclear targets such as centromeres and nascent RNA. Differences of lysine methylation 

patterns between cycling and non cycling cells were evaluated with a radial autocorrelation 

function (RAC) program.  

 

A manipulative approach to asses histone lysine methylation features was the application of 

Chaetocin, a fungal toxin, that specifically inhibits the histone methyl transferase (HMT) 

SUV39H1, responsible for trimethylation of H3K9. Since experiments with inhibitors require 

tests concerning the proper concentration for a given cell type, analysis of the drug impact 

over time should be performed and information about cytotoxic bystander effects collected, 

which can blur results significantly. Chaetocin application was expected to lead to changes in 

H3K9me3 pattern formation and also chromatin reorganization on a higher level. To receive 

information about Chaetocins’ cytotoxicity, ongoing cell division should be analysed by BrdU 

incorporation and IF be performed with antibodies against microtubules, nucleoli and 

speckles. Interaction of H3K9me3 with HP1 alpha was a target of interest and analysed 

before and after Chaetocin application to get further information about their role in 

heterochromatin formation. 
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The methods to investigate cells after drug treatment remain comprised 

immunofluorescence, confocal microscopy and sophisticated 3D image computer analysis.  

 

In the third part of this work the question was addressed, to what extent defined chromatin 

segments (whole chromosome territories, gene poor/gene rich regions or differently 

expressed genes) can be attributed to distinct lysine methylation states. Therefore co-

localization analysis of histone lysine methylation patterns and selected chromosomal targets 

should be performed. The problem which emerges by application of immunofluorescence (IF) 

together with Fluorescence In Situ Hybridisation (FISH) is that both methods aim at rather 

opponent goals: The maintenance of the antibody-epitopes is required as good as possible, 

whereas a successful FISH experiment necessitates harsh treatment (especially HCl and 

denaturation) of cells which is harmful to lysine epitopes. To combine IF (lysine methylation) 

and FISH an Immuno-FISH protocol optimized for the epitope structure of interest has to be 

established. FISH probes comprised chromosome paints for whole chromosomes and BAC 

probes for chromosomal subdomains of HSA 12 and X. 

The inactive X-chromosome can be detected and visualized by H3K27me3 antibody-

staining. The hypothesis tested in this work was if this histone modification can also be 

correlated to a distinct expression status on the active X-chromosome and (if there is rather 

a noticeable correlation of H3K27me3 to the active X-chromosome than compared to the 

inactive X-chromosome) autosomes (e.g. HSA #12). This question was addressed in five 

color immuno-FISH experiments with BACs containing genes with different expression levels 

and H3K27me3 antibody-staining have to be performed, confocal images recorded and the 

spatial relationship of the targets investigated by co-localization analysis. 

 

In the following chapters, I want to introduce thematically the main topics that were central for 

this work. First I will give a short overview of different aspects of nuclear architecture. Next I 

try to summarize the rather new and complex topic of epigenetics in general and histone 

lysine methylation in particular. Current knowledge of the respective lysine methylation sites 

investigated in this thesis is outlined as well as other common epigenetic modifications and 

the SUV39H1 inhibitor Chaetocin.  
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2.2  A higher order functional nuclear topology 

 

When the 50th anniversary of the double helix’ discovery was celebrated in 2003, James 

Watson gave the following comment concerning where genetics is heading for: “You can 

inherit something beyond the DNA sequence. That’s where the real excitement in genetics is 

now” (Watson, 2003). 

Many mechanisms that regulate gene expression on the DNA level have been revealed in 

the last decades but now also growing evidence emerges that gene expression is controlled 

by nuclear architecture in a superordinate way. The cell nucleus is not just a simple spherical 

organell that harbours DNA, but it is also specifically compartmentalized within itself 

(reviewed by (Cremer and Cremer, 2001; Misteli, 2004; Misteli, 2005; Parada et al., 2004) 

(Spector, 2001). This compartmentalization is closely related to genome function and 

processes like transcription, splicing and replication are integrated therein (Belmont et al., 

1999; Dundr and Misteli, 2001). The nucleus however has no membrane bound 

subcompartments like the Golgi apparatus or Endoplasmatic Reticulum (ER). This means 

that localized substructures must be created by the interaction of nuclear components (the 

cellular organization of genome function was recently reviewed (Misteli, 2007)). 

 

Transcription by RNA polymerase II (Pol II) is not associated with the large scale 

organization that is observed for polymerase I transcription in the nucleolus (Raska et al., 

2004), but there is growing evidence that Pol II is organized into smaller structures termed 

transcription factories reviewed by Martin et al. (Martin and Pombo, 2003). Regulation of 

transcription includes a number of different organization levels in the cell nucleus. Control of 

gene expression can occur on the DNA-level by regulatory sequences e.g. promotores, 

silencer and enhancers (Alberts, 2002), but the control of accessibility of the transcription 

machinery on a more global level, is influenced by higher order chromatin structures that 

impede or permit access of factors to the genes (Li et al., 2007).  

Basic principles of the higher order arrangement of chromatin in interphase nuclei have 

become clearly apparent, including the distinctly different, spatial arrangement of early and 

mid to late replicating chromatin (Dimitrova and Berezney, 2002) and the non-random, radial 

arrangement of gene dense and gene poor chromatin (Boyle et al., 2001; Cremer et al., 

2001) (Kupper et al., 2007). 

The idea that chromatin forms higher order structures in the interphase nucleus which 

consist of subchromosomal domains with variable density, has led to the formulation of a 

topological model of gene expression termed the chromosome-territory-interchromatin 

compartment (CT-IC) model (figure 1) (Cremer and Cremer, 2001; Cremer et al., 1993). 
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       Figure 1                           Scheme taken from Cremer and Cremer 2001 (Cremer and Cremer, 2001) 
 
Structural features of the CT-IC model in an optical section of a nucleus in a HeLa histone H2B-GFP expressing 

cell. Insets show topological models of gene regulation. (a) CTs have complex folded surfaces. A A giant 

chromatin loop with active genes expands into the IC space   (b) CTs contain distinct arm domains for the short 

(p) and long (q) chromosome arms, and a centromeric domain (Volpi et al., 2000) (Williams et al., 2002) which 

represents constitutive heterochromatin and consists mainly of repetitive sequences of tandem DNA. B Top: 

actively transcribed genes (white) are located on a chromatin loop that is remote from centromeric 

heterochromatin. Bottom: Recruitment of the same genes in the proximity of centromeric hetrochromatin leads to 

their silencing (Brown et al., 1997; Fischer et al., 2006). (c) CTs have variable chromatin densities. Lax chromatin 

at least partly expands to the IC, whereas the condensed chromatin (especially constitutive heterochromatin 

corresponding to H3K9me3 and H4K20me3 is remote from the IC. (d) Shown are early replicating chromatin 

domains which comprises predominantly active and gene-rich regions (green). These regions would correspond 

to H3K4me3 patterns. The mid replicating chromatin (red) is preferentially located at the periphery and in close 

contact with the nuclear lamina and around the nucleolus (similar to H3K27me3 staining (Zinner et al., 2006)).  (e) 

Higher order chromatin structures built up from a hierarchy of chromatin fibers (Belmont and Bruce, 1994; 

Felsenfeld and Groudine, 2003; Lesne and Victor, 2006). D Active genes (white dots) may be at the surface of 

convoluted chromatin domains while silenced genes (black dots) may be retreated towards the interior of the 

chromatin structure. (f) The CT-IC model predicts that the IC (green) contains complexes (orange dots) and 

factors for transcription, splicing, DNA-replication and repair. (g) CT with 1-Mb domains (red) and IC (green) 

expanding between these domains. C Topological relationship between the IC, and active/inactive genes. The 
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finest branches of the IC end between 100-kb chromatin domains. Active genes (white dots) are located at the 

surfaces of these domains, whereas silent genes (black dots) are located in the interior. 

Actively transcribed chromatin (white arrows) is located between the gene poor compartments. This chromatin 

can be visualized by H3K4me3 antibody staining (Sims et al., 2003; Zinner et al., 2006). The white clusters (blue 

arrows) represent regions of highly condensed chromatin probably repetitive sequences at and around 

centromeres. These distinct constitutive heterochromatic regions are late-replicating and can be marked by 

H3K9me3 and H4K20me3 antibodies (Schotta et al., 2004b; Zinner et al., 2006). 

 

2.3 Chromatin  

In eukaryotic cells, the genetic material is organized into a complex structure that is known 

as chromatin (from the Greek “khroma” meaning coloured), which was first detected with 

basic dyes at the end of the nineteenth century (Flemming, 1882). 

Chromatin is built up of DNA wrapped around histones. Each nucleosome consists of a 

histone octamer containing the proteins histone H2A, H2B, H3 ad H4 each present twice in 

the octamer and 146 bp of DNA wrapped around it. The nucleosomes are linked by histone 

H1, which was found to significantly stabilize DNA within the nucleosomal particle (Simpson, 

1978). H2A and H2B form a stable dimer, whereas H3 and H4 form a tetramer in the 

absence of DNA (Kornberg, 1974). All core histones are evolutionary highly conserved in 

length and amino acid sequence (calf and pea histone H4 differ at only two sites in 102 

residues  (DeLange, 1969a; DeLange, 1969b). The four histones contain an extended 

histone fold domain at the C-terminus through which interactions with other histones or DNA 

occur and a charged tail at the N-terminal end which contain the bulk of lysine residues that 

can be epigeneticaly modified (figure 3) (Arents et al., 1991). Early biochemical analyses 

have indicated that methylatable N-terminal lysine positions in histones H3 and H4 can exist 

in mono-, di-, and trimethylated states (Paik and Kim, 1971). The N-terminal tails of the core 

histones also provide contact surfaces with other, non histone proteins, that organize higher 

order chromatin structures (Edmondson et al., 1996; Hecht et al., 1995).  

Electron microscopy analysis provided evidence for an ordered structure of chromatin 

organisation. The “beads on a string” images were compelling evidence for a regular and 

repeating form of chromatin assembly (Olins and Olins, 1974). 

The next level of higher chromatin organization in the nucleus which has also been 

investigated in detail is the 30nm or solenoid structure where nucleosomes are packed 

leading to a compaction of about 6-fold compared to the beads on a string conformation. 

(figure 2). But less is known about the arrangement of chromatin between the 30nm structure 

and the highest degree of condensation which is achieved at the beginning of mitosis. Here 

compared to interphase chromatin a 250-fold compaction of chromatin occurs (Belmont et 

al., 1999; Earnshaw and Bernat, 1991).  
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Two principal models have been proposed to explain how such a high and reversible degree 

of compaction can occur. On the one hand there is the idea of an organization of the fibre 

into loops that are radially arranged along the axis of the chromosome  (Gasser and 

Laemmli, 1986; Paulson and Laemmli, 1977) and on the other hand a helical folding of the 

30nm chromatin fibre is suggested (Sedat and Manuelidis, 1978).  

 

Figure 2 
Felsenfeld Nature 2003 (Felsenfeld and 

Groudine, 2003)  

 

From the double helix to the mitotic 

chromosome. 

The images show how the folding of higher 

order chromatin might occur. The view of the 

double helix up to the 30nm fibre is 

regareded as fact. The shown pictures of the 

300nm and 700nm organization are very 

speculative. 

 

 

 

 

 

 

 

 

2.4 Euchromatin versus (facultative) heterochromatin 

In the following section I want to give a short sketch of the concepts of eu- and (facultative) 

heterochromatin embracing early definitions from the 1920s to todays molecular aspects.  

Exclusively based on histological observations, in 1928 Heitz described his concept of 

heterochromatin (Heitz, 1928). He defined heterochromatin (HC) as the chromosomal 

segments which remain condensed throughout the interphase, whereas the rest of the 

nucleus is occupied by euchromatin, which appears diffuse and relatively light in colour. 

Only two years later Hans Muller already described the phenomenon of position effect 

variegation (PEV) in Drosophila, meaning that genes that were placed near heterochromatin 

are silenced (Muller, 1930). These studies were continued by Schultz, 1939 (Schultz, 1939) 
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who provided data that genes more proximal to heterochromatin were silenced first 

compared to distal genes. 

In 1966 almost 40 years later the term “facultative” heterochromatin was introduced by 

Brown (Brown, 1966). He established the idea that all chromatin regions are potentially 

capable of becoming heterochromatic. Today another 40 years later a lot of information has 

been collected about heterochromatin, especially on the molecular level.  

Modification of histones by chemical groups and their impact are already known since 1964 

when Allfrey et al. demonstrated that histone acetylation influences transcriptional activity in 

vitro (Allfrey, 1964). The highly dynamic process of modifications with acetyl groups by HATs 

and its removal by histone deacetylases (HDACs) is known since the mid 1990s (Taunton et 

al., 1996; Wolffe, 1996). 

The different types of chromatin can be subdivided into three distinct classes: euchromatin, 

facultative heterochromatin and constitutive heterochromatin (the properties of the chromatin 

types are summerized in table 1). 

 

 Euchromatin Facultative 
Heterochromatin 

Constitutive 
Heterochromatin 

Character           dynamic reversible stable 

State dispersed condensed highly condensed 

Nucleosome array irregular regular regular 

Nuclease sensitive 

sites (HS) 

+ - - 

Replication timing early mid late* 

Banding pattern 

(metaphase) 

R G C (subset of G) 

Base content GC-rich relatively AT-rich mostly AT-rich 

Genes gene dense 

housekeeping genes 

tissue specific genes 

gene poor 

tissue specific 

genes 

inactive X 

almost devoid of 

genes 

Characteristic 

sequences 

Single copy, SINES LINES Repetitive sequences, 

(satellite -DNA) 

transposons, 

CpG islands frequent rare absent 

Epigenetic marks H3/4 

hyperacetylation 

H3K4me2 and 

variable H3/4 hypoactylation 

H3K9me3** 

H4K20me3 
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H3K4me3 

methylation, 

 H3K36 methylation 

R-methylation 

hypomethylated DNA

methylated DNA 

RNAi 

  Table 1     Different classes of chromatin                        * exceptions (Kim et al., 2003)  are possible 
** all histone lysine methylations are named according to the Brno nomenclature (Turner, 2005) 

 

Constitutive heterochromatin in animals is mainly found at and around centromeres. It is 

permanently heterochromatic and consists of repetitive sequences (Martens et al., 2005; 

Myster et al., 2004). 

There are various types of satellite DNA in human which can be separated by gradient 

density centrifugation. The so called alpha-satellite DNA is rich in A-T and is located in the 

centromeric region of the chromosomes. DNA satellite I, which is also A-T rich, is located 

more specifically at the centromeres of chromosomes 3 and 4, the short arm of the 

acrocentric chromosomes and the long arm of the y-chromosome. The DNA satellites II and 

III are both A-T rich. DNA satellite II is primarily located at the secondary constriction of 

chromosome 9, the short arms of the acrocentrics and the y chromosome (Grady et al., 

1992; Therkelsen et al., 1997; Waye and Willard, 1989).  

 

2.5 Epigenetics and the histone code 

Epigenetic phenomena (from the Greek prefix “epi” meaning “in addition to”) do not change 

the actual, primary sequence of nuclear DNA but act on different cellular processes like 

transcription, DNA repair mechanisms and replication. Several posttranslational 

modifications like acetylation, histone methylation, DNA-methylation, phosphorylation, ADP-

ribosylation, ubiquitination and SUMOylation are involved in controlling the epigenetic output 

(Kouzarides, 2007). Chromatin can respond to intrinsic and external signals. Not only the 

already mentioned modifications can influence chromatin structure but also ATP consuming 

nucleosome remodeling systems (Mellor, 2005; Varga-Weisz and Becker, 2006), histone 

variant incorporation and non-coding RNAs (Matzke and Birchler, 2005). These alterations 

altogether determine epigenetic transitions that bias gene expression patterns in many ways. 

If one thinks about that roughly 30000 human genes can give rise to about 200 distinct cell 

types (Lander et al., 2001; Waterston et al., 2002) it is clear that complex mechanisms are 

required to conduct all factors that define the heritable state of a cell type, establish gene 

sets and maintain a specific cellular phenotype.  
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Lately , a “histone code” hypothesis has been suggested (Jenuwein and Allis, 2001; Strahl 

and Allis, 2000; Turner, 2000). Different modifications (e.g. acetylation and methylation) of 

histone N-termini represent an evolutionarily conserved mechanism that can induce and 

stabilize functionally distinct chromosomal subdomains  (Jenuwein and Allis, 2001). 

The enzymes responsible for these histone tail modifications are highly specific for particular 

amino acid positions, thereby extending the information content of the genome beyond the 

genetic code (Turner, 2000).  

 

The histone code hypothesis predicts that: 

 

1. Distinct modifications of the histone tails induce interaction affinities for chromatin- 

    associated proteins. 

2. Modifications on the same or different histone tails may be interdependent and generate  

    various combinations on any one nucleosome, thereby creating unique biological 

    outcomes. 

3. Distinct qualities of higher order chromatin, such as euchromatic or heterochromatic  

    domains, are largely dependent on the local concentration and combination of differentially 

    modified nucleosomes. 

 

Jenuwein and Allis envision that this “nucleosome code” then permits the assembly of 

different epigenetic states, leading to distinct “readouts” of the genetic information, such as 

gene activation versus gene silencing, or more globally, cell proliferation and cell 

differentiation (Jenuwein and Allis, 2001). Data presented by Sun and Allis were the first 

demonstration that the histone code on one tail can control that of another on a different 

histone tail (Sun and Allis, 2002). Other examples of crosstalk as predicted in the histone 

code hypothesis have been reported in the last years (Mateescu et al., 2004; Zhang et al., 

2005).        

Expression of genes in higher organisms is highly dependent on DNA accessibility 

(Khorasanizadeh, 2004; Langst and Becker, 2004). DNA packaging has inherent 

consequences regarding the accessibility of factors to DNA.  

Histone acetylation (Daujat et al., 2002; Grant et al., 1999; Schiltz et al., 1999) and arginine 

methylation (Bauer et al., 2002; Strahl et al., 2001; Wang et al., 2001)  have been linked 

mainly with transcriptional activation (Clarke et al., 1999; Mathis and Althaus, 1990; Parthun 

et al., 1996; Smith et al., 2005; Turner, 2000). This is because histone acetylation decreases 

internucleosome interaction and the interaction of nucleosome tails with linker DNA (Gorisch 

et al., 2005). Acetylation delivers its epigenetic power by “opening” chromatin via 

neutralization of the positive charged lysines and arginines and by repulsion of the negatively 
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charged acetyl groups and the negatively charged phosphate group of the DNA backbone. 

Negative acetyl groups can be easily added to the positive charged amino acids. Thereby 

each added acetyl-group reduces the net positive charge of the histone by 1. On the higher 

chromatin level the enhancement of negative charged groups leads to a repulsion with the 

negatively charged DNA backbone (electrostatic mechanism).  

Hyper- and hypoacetylation of individual lysines are associated with transcriptional 

regulation, generating distinct patterns of acetylation, resulting in an environment either 

permissive or not permissive transcriptional state. Many transcriptional activators have 

histone acetyltransferase (HATs) activities (Brownell et al., 1996) and quite some repressors 

are histone deacetylases (HDACs) (Taunton et al., 1996). Certain acetylation patterns may 

be used as surfaces for specific protein-histone interactions, providing one mechanism for 

coordinate regulation of chromatin processes that are biologically related (Kurdistani et al., 

2004). Arginines are substrates for members of the protein arginine methyl-transferase 

(PRMT) family (Bedford and Richard, 2005) which can mono or dimethylate this amino acid  

(Bannister et al., 2002). However, this classical view has been re-evaluated in light of 

accumulating data that histone deacetylasesalso function as activators of transcription in 

yeast (Kurdistani and Grunstein, 2003). 

Phosphorylation is thought to act similarly to acetylation by adding negative charges which 

repulse from the DNA-phosphate groups resulting in a more open configuration. It is involved 

in transcriptional activation of developmental early genes (Cheung et al., 2000; Clayton et al., 

2000)  and a necessary marker for mitotic chromosome condensation (Wei et al., 1999b). 

 

By mid of the 1990s a lot of information about posttranslational modifications was collected  

but none of the enzymes responsible for these modifications was identified. In 1996 the first 

histone acetyltransferase was identified which demarcated a new era in histone research 

(Brownell et al., 1996). It was known that histone acetylation serves as a binding site for 

bromo-domain proteins found in HAT-complexes thereby functioning as a self reenforcing 

system (Dhalluin et al., 1999). 

Recently many enzymes involved in histone methylation have been disclosed (figure 4) with 

SUV39H1 being the first histone methyltransferase that was discovered (Rea et al., 2000). 

SUV39H1 was demonstrated to be a highly specific histone lysine methyltransferase (HMT) 

on H3 peptides (Microsequencing revealed strong incorporation of a radioactive methyl 

group at the H3 lysine 9 residue). The fact that H3K9 was know as a site for acetylation 

(Nicolas et al., 2003) together with the observation that H3K9 methylation prevents 

phosphorylation of H3S10 (Aagaard et al., 1999) gave rise to the assumption that these 

modification underlys highly specific regulation.  
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Investigation of SUV39H1 revealed also a special sequence motif the catalytically active set-

domain and a chromo-domain which was already indentified in chromatin associated proteins 

like heterochromatin protein 1 (HP1) and polycomb proteins (Paro and Hogness, 1991).  

Trans-histone tail interactions, meaning that two epigentic modifications can result in a totally 

different biological output, different from one of these modifications alone, seem to play an 

important role in epigenetic events. At the moment three examples of trans-tail histone codes 

have been described involving H2B ubiquitination and H3K4 methylation (Sun and Allis, 

2002)  or H3K79 methylation (Briggs et al., 2001) in yeast and H3K9 and H4K20me3 in 

mammals (Schotta et al., 2004b). They could show that in Suv39h dn female MEFs, H4K20 

mono-and dimethylation are unaltered, but H4K20me3 is entirely lost from pericentric 

heterochromatin, concluding that the presence of the Suv39h enzymes can direct pericentric 

H4K20me3, or in other words this data suggest that H4K20me3 is highly dependent from a 

preceeding H3K9me3 (Kourmouli et al., 2004). In this publication H4K20me3 staining of an 

immortalized embryonic fibroblast cell line which lacks any functional Suv39h HMTase was 

compared to a WT cell line. In the immortalized cells no antibody staining was detectable at 

centromeric regions while in wt-cells H4K20me3 staining was found to be associated with 

centromeric heterochromatin clusters, which led to the conclusion that there has to be some 

kind of “cross-talk” between both histone methylation sites (the mammalian epigenome was 

recently reviewed by (Bernstein et al., 2007)). The large field of epigenetics was recently 

reviewed in a comprehensive textbook (Allis, 2007). 

 

2.6 The nucleosome core particle 

The structured globular domain of the nucleosome core particle is also extensively modified 

adding a new dimension to the histone-code hypothesis. The finding that the nucleosome 

core particle plays a key role in regulating chromatin dynamic makes a interpretation of 

histone modifications even more complex. Early indications of the importance of the 

structured histone globular domain came from genetic screens in yeast, which identified 

numerous globular-domain amino-acid residues important for gene expression (Kruger et al., 

1995; Park et al., 2002). Core histone phosphorylation is thought to have important structural 

consequences for nucleosome assembly and integrity. Histone H3 is rapidly phosphorylated 

on serine residues when extracellular signals like growth factors stimulate cells to proliferate 

(Mahadevan et al., 1991). Phosphorylation of H4 and H2A occurs in the cytoplasm shortly 

after histone synthesis (Dimitrov et al., 1994). 

The recent application of mass spectrometry to histone biology has led to the startling 

discovery that many of the same residues are targeted for post-translational modifications 

(Cocklin and Wang, 2003; Freitas et al., 2004; Ng et al., 2003; van Leeuwen et al., 2002; 
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Zhang et al., 2003). A new model implementing previously published data was recently 

proposed (Cosgrove et al., 2004). 

 

2.7 Histone lysine methylation 

The characterization of histone methylation is lagging behind that of histone acetylation and 

phosphorylation in its characterization, but it is rapidly catching up, as can be perceived from 

the high number of published reviews in recent years (Dillon, 2004; Fischle et al., 2003b; 

Huisinga et al., 2006; Lachner et al., 2003; Lesne, 2006; Martin and Zhang, 2005; 

Nightingale et al., 2006; Sims et al., 2003). Unlike histone acetylation, histone methylation 

does not alter the overall charge of the nucleosome. Both modifications can act by recruiting 

proteins that regulate processes that require DNA access like transcription, mRNA splicing 

and DNA repair (Sims et al., 2003). Whereas acetylation functions at least partly by changing 

the charge of the histone protein, methylation exerts its effect via many different adaptor and 

effector proteins. A unique feature of histone lysine methylation is that its functional impact 

depends on the modification site and the modification state (mono, - di, - and tri methylated 

states can be distinguished). H3K4me3 is associated with active genes (Santos-Rosa et al., 

2002) whereas H3K9me3 is found at silent loci (Lachner and Jenuwein, 2002). 

Trimethylation of H3K4, H3K9, H3K27 and H4K20 are especially stable and can persist 

through mitosis and over several cell generations (Lachner et al., 2004; Reinberg et al., 

2004).  

The stability of histone methylation marks renders them particularly suited for the 

propagation and inheritance of epigenetic states. The homeobox-containing proteins (HOX), 

a highly conserved class of transcriptional regulators determine the positions of structures 

along the anterior-posterior axis of the embryo and mutations in HOX genes transform one 

body segment into another one. The expression-status of this family of genes depends on 

two groups of antagonistic proteins. The Polycomb group (PcG) genes encode proteins that 

maintain the HOX genes silent in tissues where they should not be expressed while the 

Trithorax group (TrxG) genes are required for expression of HOX genes in proper cells  

(Ringrose and Paro, 2004). Several mechanisms have been suggested to explain the fate of 

histone lysine methylation marks during transitions between epigenetic states. For instance, 

the respective modification could be diluted through replication cycles by inhibition of the 

corresponding HMT. Another possible mechanism could be the replication dependent 

histone exchange. This process disrupts and ejects histones from the DNA template (Janicki 

et al., 2004; Schwabish and Struhl, 2004; Schwartz and Ahmad, 2005). Histone methylation 

could also be eliminated by cleavage of the histone tails (Bannister et al., 2002). Finally 

modifications might persist but no longer be able to perform their function, due to removal of 



                   Introduction 
__________________________________________________________ 

                                                                                                                                              13 

their interaction partners or changes of neighboring modifications (Bannister et al., 2002; 

Fischle et al., 2003a). 

The mystery of histone demethylation was partly solved in 2004 with the discovery of a lysine 

specific demethylase (LSD1) which was described as an amine oxidase able to remove 

methyl groups from lysine 4 of histone 3 (Shi et al., 2004). However it should be noted that 

the mechanism by which LSD1 demethylates is not a “true” demethylation because the 

enzyme acts specific on H3K4me2 by FAD-dependent oxidative destabilization of the amino-

methyl bond (Shi et al., 2004) and, furthermore, that mechanisms to remove trimethyl groups 

were discovered only recently (Trewick et al., 2005; Tsukada et al., 2006; Whetstine et al., 

2006). For an up to date review of histone lysine demethylation by demethylases read (Shi 

and Whetstine, 2007). 

 

          
Figure 3                                                                      Figure 4 
Histone modifications and where they occur                                The enzymes responsible for the methylation of      

                                                                                                      human histone lysine sites 

 

For more information on the different HMT families classified according to sequence similarities within their SET 

domain and within adjacent sequences, see the review by Völkel and Angrand, 2006 (Volkel and Angrand, 2006). 

 

There are about 50 SET domain gene sequences in the mammalian genomes (Kouzarides, 

2002), five lysines that can be methylated in the histone N-termini, and three distinct 

methylation states at each position. These numbers would account for 15 methylation 

systems which are present in several multigene families. There are also more than one 

enzyme observed to finally create one methylation state (figure 4). For example H3K9 has to 

be monomethylated before it can be trimethylated. In addition new methylation sites have 

been found (H3K18, H3K56, H3K64, H3K122) although these are only methylated at low 

frequency (Peters et al., 2003 online supplementary files) (Peters et al., 2003). Taken  

together, these modifications allow a high combinatorial diversity for potential interaction 

mechanisms (figure 5). 
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Figure 5 
 
Partitioning of chromatin by histone lysine 

methylation 

From Peters et al., 2003 Mol Cell 

(Peters et al., 2003)  

 

 

 

 

 

 

As was demonstrated by Mass Spectrometry (MS) analysis, up to 40-70% of a given histone 

lysine residue at each of the six methylation sites H3K4, H3K9, H3K27, H3K36, H3K79 and 

H4K20 are actually methylated in one form or another (Fodor et al., 2006). The relative 

abundance of the three distinct methylation states showed that di-methylation is the most 

frequent, followed by mono-methylation and tri-methylation (Fodor et al., 2006).  

The availability of highly specific antibodies for a given modification site  (Perez-Burgos et al., 

2004; Schotta et al., 2004a) has opened up the way for investigations of the functional and 

spatial arrangements of distinct methylation sites. The most critical step to raise these highly 

specific antibodies was an appropriate peptide (antigen) design. Peptide antigens differed in 

length (6 to 20 amino acids), configuration (linear versus branched peptide) and methylation 

state of the lysine of interest (mono-, di-, or tri-). Three types of quality controls were used to 

assess antibody specificity: Enzyme-linked immunosorbent assays (Elisas), peptide spotting 

analyses (dot blots) and protein blots with recombinant and nuclear histones. Finally as the 

most stringent test for antibody specificity was performed by comparing signals in a wild type 

(wt) and mutant background (dn for the HMT responsible for the modification the antibody 

should detect). Although slight discrepancy of antibody specificity was observed all 

antibodies recognized the appropriate lysine residue and methylation state with high 

specificity (Perez-Burgos et al., 2004).  

 

In the following I want to give an overview about recent research results about the meaning 

and interactions of the histone methylation sites that were investigated in this thesis.  
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2.7.1 H3K4 

Epigenome-wide investigation of H3K4me3 was performed in mouse and other higher 

eukaryotic organisms by chromatin immuno precipitation (ChIP) techniques  (Bernstein et al., 

2005; Martens et al., 2005; Schneider et al., 2004; Schubeler et al., 2004). 

H3K4me3 is an epigenetic mark associated with active genes in yeast and Tetrahymena 

(Dehe and Geli, 2006; Strahl et al., 1999). But similar to many other histone lysine 

methylation sites also for H3K4me3 contradictory data are available (Shi et al., 2006). The 

authors identified a new class of H3K4me3 effector proteins and describe a new mechanism, 

in response to DNA damage, by which H3K4me3 functions in active gene repression. 

The function of di and monomethylated H3K4 seems to be at least partially unclear. It was 

suggested that dimethylation correlates with a permissive state of chromatin, marking 

actively transcribed or potentially active genes. Dimethylation of H3K4 occurs on both 

inactive and active euchromatic genes, whereas trimethylation is present exclusively at 

active genes (Santos-Rosa et al., 2002). Detailed investigation of the global distribution of 

histone acetylation and H3K4 methylation revealed that H3K4me2 in coding regions 

correlates with transcriptional activity and that the HMTase Set1 (the enzyme for H3K4me3) 

protects active coding regions from deacetylation (Bernstein et al., 2002). The apparently 

ubiquitous presence of H3K4me2 is consistent with previously reported findings at the ß-

globin locus, where H3K4me2 is detected on large euchromatic regions encompassing both 

active and inactive genes  (Litt et al., 2001). Briggs et al., 2001 show in a rescue assay that 

H3K4 methylation is important for cell growth and transcriptional silencing of rDNA (Briggs et 

al., 2001). In recent years several binding proteins like complex proteins associated with Set 

1 (COMPASS) (Krogan et al., 2002) and inhibitor of growth 2 (ING2)  (Shi et al., 2006) that 

target this epigenetic mark have been identified. At different time points in development a 

marked enrichment of H3K4me3 was found in the transcribed regions of actively transribed 

genes. More precisely H3K4me3 persists to mark recently active genes after a transcriptional 

response has ended (Ng et al., 2003) but the trimethylated state changes during 

heterochromatin formation. This process is gradual and requires multiple cell division cycles 

and leads finally to a H3K4me1 state (Katan-Khaykovich and Struhl, 2005). Interestingly 

dimethylation as well as trimethylation of H3K4 was detectable on inactive globuline genes 

(Schneider et al., 2004). In this paper the first time a strongly and preferentially association of 

H3K4me3 with the transcribed regions of active genes was demonstrated for eukaryotes. 

Plasticity across evolution, as analyzed for various species, in the association of histone 

lysine methylation with functionally distinct chromatin domains was shown for H3K4me3 

(Spada et al., 2005). 

In Chlamydomonas it was shown that functional differences between H3K4me2 and 

H3K4me1 exist, with the latter operating as an epigenetic mark for repressed euchromatin 
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while dimethylated H3K4 can be attributed to a transcriptionaly permissive state (Dijk, 2005). 

The intricacy of writing and reading a single epigenetic mark and the mechanisms involved in 

histone lysine methylation were recently exemplified for H3K4 (Ruthenburg et al., 2007). 

 

2.7.2 H3K9 (and interaction with HP1) 

In mouse as well as in humans, constitutive heterochromatin is marked by H3K9me3 

(Lehnertz et al., 2003; Martens et al., 2005; Rea et al., 2000; Rice et al., 2003). H3K9 

methylation is largely, although not abundantly, conserved from S.pombe to mammals  

(Lachner et al., 2004). 

Suv39H1 the first HMT to be identified and meanwhile the best characterized one is 

responsible for H3K9me3 (Nakayama et al., 2001; Peters et al., 2001; Rea et al., 2000; 

Schotta et al., 2002). A role for SUV39H1 and its associated H3K9 methyltransferase activity 

in heterochromatin function was first indicated in Drosophila experiments by showing its 

association with the heterochromatin protein 1 (HP1) (Aagaard et al., 1999). Subsequent 

studies showed that H3K9me3 serves as a binding site for the chromodomain of HP1 

proteins. Suv 39h double null (dn) cells do not show pericentric heterochromatin 

accumulation of HP1. This phenotype could be rescued by heterologous expression of a 

catalytically active Suv39h1 demonstrating that Suv39h1 mediated H3K9 trimethylation is a 

binding site for HP1 (Bannister et al., 2001; Lachner et al., 2001). Unlike the H3K9me3-HP1 

system which is necessary for the formation of constitutive heterochromatin, the formation of 

facultative heterochromatin can occur in the absence of HP1 (Gilbert et al., 2003).  

HP 1 was initially identified in Drosophila melanogaster in a screen for nuclear proteins that 

show a predominant localization to the chromocentre of polytene chromosomes (James and 

Elgin, 1986). Shortly after the protein was reported to play an essential role in position effect 

variegation (PEV) (Eissenberg et al., 1990). Homologous proteins have been found in 

several organisms and three isoforms HP1α, HP1ß and HP1γ have been identified in 

Drosophila (Singh et al., 1991). While HP1α is only localized at centromeric heterochromatin, 

HP1ß and particularly HP1γ also localize to euchromatic sites (Nielsen et al., 2001). HP1 

proteins act via their chromodomain (Bannister et al., 2001; Lachner et al., 2001) which is 

connected by a hinge region to a chromoshadow domain (figure 6). These domains are 

found in many proteins that contribute to chromatin organization and regulation of gene 

expression like the Polycomb group proteins or SUV39H1 itself (Jones et al., 2000). 
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Figure 6 
This scheme depicts HP1-alpha domains of interaction with selected partners that are potentially important for the 

stability of heterochromatin domains.  From Maison and Almouzni Nature reviews 2004 (Maison and Almouzni, 

2004). 

 

The chromoshadow domain functions as a homodimerization module for all isoforms of the 

HP1 proteins. Self-association might contribute to heterochromatin compaction and 

clustering. H3K9me3 alone is not sufficient to recruit HP1 specifically but an RNA component 

is also required, as was shown in the mouse model (Maison et al., 2002). Heterochromatin is 

often described as static but recent work on heterochromatic domains revealed that HP1 

proteins are highly dynamic (Cheutin et al., 2003; Festenstein et al., 2003). A role for the 

retinoblastoma protein in heterochromatin formation and regulation of HP1-alpha dynamics 

was lately suggested (Siddiqui et al., 2007). The mechanism of HP1 for heterochromatin 

formation is more complex than it seems at a first glance. Indeed as was shown recently 

H3K9 methylation alone is not sufficient to recruit HP1 to chromatin but it can suppress 

transcription via a mechanism involving histone deacetylation by recruiting HDACs. 

Additionally a secondary direct protein-protein interaction with SUV39H1 (Stewart et al., 

2005) was reported for stable binding of HP1 to methylated H3K9me3. For further 

information about HP1 function in heterochromatin formation and maintenance read the 

review of Maison and Almouzni (2004) (Maison and Almouzni, 2004).  

Structure-function relationships and intercellular dynamics as well as hypothetical models 

describing how HP1 can organize peripheral heterochromatin acting as a crosslinker is 

described by Singh and Georgatos (Singh and Georgatos, 2002). To make the hole think 

even more complex, recently evidence for the existence of an HP1-mediated subcode was 

provided (Lomberk et al., 2006). The authors report that all three HP1 isoforms can be 

extensively modified, similar to histones, suggesting that the silencing of gene expression 

may be further regulated beyond the histone code. 

In 2000 O’Carroll and colleagues could show the existence of Suv39h2, a second mouse 

HMTase specifically expressed in testis, where it organizes meiotic heterochromatin. Based 

on their results, these authors suggested a redundant enzymatic role for Suv39h1 and 

Suv39h2 during mouse development and a function for Suv39h2 in organizing meiotic 

heterochromatin (O'Carroll et al., 2001). H3K9 methylation by Suv39h1 and Suv39h2 occurs 
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at mammalian telomeres and is important for telomere length regulation (Garcia-Cao et al., 

2004). These findings imply that epigenetic errors could alter telomere length thereby 

providing a connection between the transcriptional silencing of genes near the telomeres and 

the regulation of telomere length. In addition the viability of mice with inacivated Suv39h1and 

Suv39h2 genes was impaired and chromosomal instabilities that are associated with greater 

tumor risk and overall altered methylations patterns were observed (Peters et al., 2001).  

Apart from heterochromatin organization, H3K9me3 is important for chromosome 

segregation and mitotic progression (Melcher et al., 2000). Furthermore there are several 

reports demonstrating silencing effects correlated with, or resulting from H3K9me3 including 

the inactive X chromosome (Xi) (Boggs et al., 2002; Heard et al., 2001; Mermoud et al., 

2002), and developmentally regulated genes (Litt et al., 2001). 

The subnuclear localization of all three H3K9 methylation states and their replication timing 

was investigated in mammalian cells (Wu et al., 2005). H3K9me1 was found in replicating 

punctate domains of early replicating chromatin in the nuclear interior whereas the pattern of 

H3K9me2 was similar to the DNA replication pattern in mid S-phase i.e. localized at the 

nuclear and nucleolar periphery. H3K9me3 decorated late replicating DAPI-dense 

heterochromatic regions. 

The H3K9me3-SUV39H1-HP1 system is not only involved in local gene repression (Firestein 

et al., 2000) but also has a role in repressing euchromatic genes through interaction with the 

retinoblastoma protein (Rb) and other corepressor proteins (Nielsen et al., 2001). The 

interaction with the Rb tumorsuppressor-protein shows that epigenetic modifications and 

their associated proteins do not represent an isolated system, but probably work as 

interaction partners in networks of many pathways. 

 

In contrast to H3K9me3, H3K9me1 and H3K9me2, are excluded from pericentromeric 

regions and enriched within silent domains of euchromatin. In mouse the enzyme G9a was 

found to be responsible for H3K9me1 and H3K9me2 (Rice et al., 2003). G9a HMT activity 

has no effect on H3K9me3 patterns but only on H3K9me1 and H3K9me2 patterns, as was 

shown in the absence of G9a (Peters et al., 2003). H3K9me1 is predicted to function as a 

substrate for the Suv39h HMTases that change the monomethylated state into a 

trimethylated state (Peters et al., 2003). In mouse embryonic stem cells (ES) that are double 

null (dn) for both SUV39h1 HMTs, pericentric heterochromatin becomes enriched for 

H3K27me3 and H3K9me1, thereby illustrating an unexpected plasticity between the H3K9 

and H3K27 methylation systems. These results however, could not be reproduced by Rice 

and colleagues (Rice et al., 2003). Surprisingly H3K9me2 was also established as an 

epigenetic imprint of facultative heterochromatin e.g. the inactive X-chromosome in female 
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mammals (Boggs et al., 2002; Peters et al., 2001). H3K9me3 is retained throughout mitosis, 

suggesting that it might act as an epigenetic imprint to maintain the inactive state.  

In double null mouse cells for both Suv39h HMTases, H3K9me3 disappears from constitutive 

heterochromatin but is still found on Xi. Hence a Suv39h-HP1 independent pathway for the 

establishment of H3K9me3 at facultative heterochromatin seems to exist (Peters et al., 

2001).  Recent findings demonstrate that specific HMTs direct H3K9me1 and H3K9me2 to 

silent domains within euchromatin, whereas the bulk of H3K9me3 occurs in pericentric 

regions which represent the archaetype of constitutive heterochromatin (Dillon and 

Festenstein, 2002). H3K9me2 is found to be associated with facultative heterochromatin, 

while H3K9me1 is found in non-heterochromatic regions, referred to as euchromatin (Peters 

et al., 2003; Rice et al., 2003).  

 

2.7.3 H3K27 (and X-inactivation)     

H3K27me3 became famous through its correlation with facultative heterochromatin most 

notably the inactivated X-chromosome (Xi) (Okamoto et al., 2004; Plath et al., 2003; Silva et 

al., 2003). In female mammals facultative heterochromatinization of one X-chromosome 

occurs during development, silencing more that 1000 genes and gives rise to an inactive X-

chromosome (Lyon, 1999). X-linked gene products can thus be dosage-compensated 

between males (XY) and females (XX). The key-locus underlying the initial differential 

treatment of two X chromosomes is the X inactivation centre (Xic). Xic ensures that only a 

single X chromosome remains active in a cell with a diploid autosomal set (counting) and it 

provides a signal that triggers silencing: the non coding XIST transcript (Avner and Heard, 

2001). The 19kb long untranslated XIST transcript coats the X-chromosome in “cis”. This is 

followed by gene silencing across the chromosome (during embryonic stem cell 

differentiation) (Okamoto et al., 2004; Panning et al., 1997; Sheardown et al., 1997). X- 

inactivation can be subdivided into two consecutive processes: imprinted and random X-

inactivation. In  development, mouse imprinted X-inactivation takes place and the paternal X 

chromosome becomes silent in all the cells of the embryo (Okamoto et al., 2004). The 

paternal X remains inactive in cells that contribute to extraembryonic tissues, but X-

inactivation is reversed in cells that create the embryo proper. In these cells X-inactivation is 

re-established and both X-chromosomes paternal and maternal can then be inactivated 

randomly. 

 

Among the earliest chromatin changes that occur during the inactivation process are the loss 

of euchromatin-associated histone modifications (H3K9 acetylation, H3K9me1 and 

H3K9me2) just after XIST RNA coating (Chaumeil et al., 2002; Heard et al., 2001). Global 

histone hypoacetylation occurs shortly afterwards (Keohane et al., 1996). After these 
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changes several new histone modifications appear on the Xist-RNA coated chromosome. 

Several recent studies have implicated Polycomb group proteins in promoting some of these 

marks (Brinkman et al., 2006; Plath et al., 2003; Rougeulle et al., 2004). To date 

modifications involved in the process of X-inactivation: H4K20me1, H3K9me2 and 

H3K27me3 (Heard et al., 2001; Kohlmaier et al., 2004; Rougeulle et al., 2004; Silva et al., 

2003).  

The Xi presents many epigenetic hallmarks like a mosaic of cells with Xi (depending on 

inactivation of either the paternal or maternal X-chromosome), mitotic heritability but also a 

developmental reversibility of the inactive state and a replication pattern that is asynchronous 

with the rest of the genome (Heard, 2005). X-inactivation has certain similarities to 

constitutive heterochromatin: Xi is replicated later in S-phase than Xa (Xiong et al., 1998), 

retains a condensed heterochromatic morphology during interphase (Barr body) (Barr and 

Bertram, 1949), and is depleted in both H3K4 and H4 acetylated histones  (Boggs et al., 

2002).  

H3K27 methylation occurs predominantly by the enzyme enhancer of zeste (EZH2) (Czermin 

et al., 2002; Kuzmichev et al., 2002). Moreover interrelations between Su(var) and Polycomb 

pathways have been described (Sewalt et al., 2002). E.g. H3K27me1 was reported to be 

associated with pericentric heterochromatin (Peters et al., 2003; Rice et al., 2003).  

New investigations revealed that intergenic, coding and promoter regions are segregated into 

differentially marked chromatin. The presence of H3K27me3 at unexpressed autosomal 

genes suggests that this mark may be a more global heterochromatic mark rather than an X-

specific mark (Brinkman et al., 2006). 

 

H3K27 methylation also plays a role in laminopathies, e.g. in cells of Hutchinson-Gilford 

progeria Syndrome (HGPS) patients. There are currently only 30 to 40 known cases 

worldwide. Physical features of Progeria children include dwarfism, wrinkled/aged-looking 

skin, baldness, and a pinched nose. Their mental growth is equivalent to other children of the 

same age. This disease is caused by a mutant lamin A and recently attracted a lot of 

attention in the media.  

Shumaker and collegues demonstrated that there are significant changes in the epigenetic 

control of both facultative and constitutive heterochromatin. These changes are a direct 

consequence of the expression of the lamin A mutant which alters the state of histone 

methylation. In early passages of cultured female HGPS cells a loss of H3K27me3 was 

observed especially at the Xi (Shumaker et al., 2006). 

H3K27 methylation could indicate the emergence of multicellularity and cell-type 

differentiation, as it is absent in in both budding and fission yeast. The presence of H3K27 

methylation signals appears tightly coupled to the existence of the Polycomb system, which 



                   Introduction 
__________________________________________________________ 

                                                                                                                                              21 

is involved in lineage commitment and in coregulating the stability of gene expression 

programs (Lachner et al., 2004). 

 

2.7.4 H4K20                 

H4K20 was the first described methylated lysine residue (Murray, 1964). It is highly 

conserved and most abundant across epigenetic model organisms ranging from S.pombe to 

mammals (Lachner et al., 2004). H4K20me1 is catalized by the HMT SET8/PR-Set7 (Fang 

et al., 2002; Nishioka et al., 2002; Xiao et al., 2005). In this work it was noted that levels of 

H4K20me1 fluctuate during cell cycle. This suggests that this modification is somehow 

involved in cell cycle regulation. Indeed loss of the Drosophila homologue leads to cell cycle 

arrest (Karachentsev et al., 2005). It has also been described to contribute to chromosome 

segegation during mitosis (Julien and Herr, 2004). H4K20me1 is furthermore reported to be 

involved in DNA repair mechanisms in yeast (Nakamura et al., 2004; Sanders et al., 2004)  

and initiation of X-inactivation in mouse (Kohlmaier et al., 2004). 

Pericentric regions representing constitutive heterochromatin are enriched in H4K20me3 

(Kourmouli et al., 2004; Martens et al., 2005; Schotta et al., 2004b). A similar, but not totally 

identical pattern formation to H3K9me3 was observed very recently for H4K20me3 (Zinner et 

al., 2006). 

In a present work a role for the Rb-family not only in global chromatin modifiations, but also 

in the assembly of constitutive heterochromatin was suggested (Gonzalo et al., 2005). Suv4-

20h1 and Suv4-20h2 the HMTs responsible for H4K20me3 surprisingly interact directly with 

the famous tumor suppressor protein Rb, as was also shown for the trimethyl H3K9-

Suv39H1-HP1 system. 

Recently a close interrelationship involving H4K20 and H3K9 methylation was reported (Sims 

et al., 2006). Their findings indicate that the corresponding methylated states of H4K20 and 

H3K9 tend to localize to the same silent compartments in the nucleus and within the same 

genomic regions on chromatin fibers. H4K20me3 and H3K9me3 were both selectively 

enriched within perincentric heterochromatin. Analysis on the nucleosomal level revealed 

that H4K20me1 and H3K9me1 were preferentially and selectively enriched on the same 

nucleosome core particle in vivo.  

In a work by Talasz et al., H4K20me1 was shown to be associated with active chromatin 

(Talasz et al., 2005). On the contrary several independent reports showed that H4K20me1 

correlates with silent chromatin in higher eukaryotes (Karachentsev et al., 2005; Kohlmaier et 

al., 2004; Nishioka et al., 2002; Vaquero et al., 2004). Sims et al., (Sims et al., 2006) 

observed H4K20me1 enriched within silent regions of chromsome arms and within the 

inactive-X chromosome which implies that this modification marks facultative 

heterochromatin. H4K20me2 is independent of H4K20me1 and H4K20me3 and therefore 



                   Introduction 
__________________________________________________________ 

                                                                                                                                              22 

facultative and constitutive hetrochromatin, so they conceive that H4K20me2 may define an 

entirely unique type of heterochromatin that has not yet been decribed. Schotta and 

colleagues oberserved already a few years earlier that H4K20me2 is also broadly distributed 

over euchromatic regions but shows a more speckled pattern compared to monomethylation 

(Schotta et al., 2004a). Both, H4K20me1 and H4K20me2 appear as uniformly distributed foci 

throughout the nucleus, excluding nucleoli and the nuclear periphery. The findings that loss 

of H4K20me3 is a common hallmark of human tumor cells (Fraga et al., 2005) linked also 

histone lysine methylation to the already complex field of cancer biology. 

 

2.8 Chaetocin,  inhibitor of the HMT SUV39H1 

Inhibitors have been very popular in biological experiments concerning transcription and 

epigenetics. Actinomycin D (Frey et al., 1996; Galun et al., 1964), alpha-Amanitin (Gong et 

al., 2004)  or DRB (Clement and Wilkinson, 2000; Hensold et al., 1996)  for example are 

common inhibitors of RNA polymerase II activity. Changes in epigenetic mechanisms have 

been mainly investigated by the application of 5-aza-cytidine which sequesters DNA 

methyltransferases (Doiron et al., 1999; Lu and Randerath, 1980), short-chain fatty acids 

(e.g. sodium butyrate) (Bell and Jones, 1982; Hague et al., 1993) and hydroxamic acids 

(trichostatin A) (Yoshida et al., 1990), the last two acting as inhibitors of histone 

deacetylases.  

Lysine methylation was shown to be catalyzed by enzymes using S-adenosyl-methionine 

(SAM) as the methyl-group donor (Kim and Paik, 1965; Paik and Kim, 1971). But it was not 

until the year 2000 that the molecular identity of the first histone methyltransferase was 

discovered. The trimethylation of H3K9, a marker for constitutive heterochromatin is 

catalyzed by the HMT SU(VAR)H1 (Rea et al., 2000). Inhibitors of histone methyl 

transferases were not known until recently when the SUV39H1 inhibitor Chaetocin was 

discovered (Greiner et al., 2005). This fungal toxin acts as a competitive inhibitor for S-

Adenosyl-Methionin (SAM) the most important donor of methyl groups in a cell. Despite 

Chaetocin has structural similarities to HDAC inhibitors it yet does not alter cellular levels of 

acetylated histone H3 at cytotoxic concentrations (Isham et al., 2006). The discovery that 

Chaetocin affects enzymes responsible for methylations at other lysine sites to a much lower 

extent than H3K9me3 (Greiner et al., 2005), highlights the inhibitoric specificity of Chaetocin. 

 

2.9 RNA interference and heterochromatin formation  

Nuclear RNA-interference (RNAi) functions as a surveillance mechanism against foreign 

nucleic acids, e.g., retroelements and transposons (Buchon and Vaury, 2006). Recent 
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studies have revealed that components of the RNAi machinery are associated not only with 

the impairment of RNA translation but also envolved in DNA-methylation and the formation of 

heterochromatin (Matzke and Birchler, 2005; Zaratiegui et al., 2007). The detailed events 

involved in RNAi in mammals and plants are described in detail in a review by Wassenegger 

et. al (Wassenegger, 2005). 

The initiation of heterochromatin formation of specific chromosomal regions such as 

centromeric regions is thought to result from the bidirectional transcription of repetitive 

sequences by Pol II (Sarraf and Stancheva, 2004). The enzyme dicer then cuts the double 

stranded RNA into small interfering RNAs (siRNAs). After being loaded to the RITS-complex 

(RNA-induced initiation of transcriptional gene silencing), siRNA targets RITS to sites of 

heterochromatin. RITS recruits on the one hand SUV39H1, on the other hand it recruits the 

RDRC-complex (RNA-directed RNA polymerase) which functions in the production of 

additional double-stranded RNA. With this mechanism RITS reinforces its own recruitment to 

heterogenic regions (Martin and Zhang, 2005). 

 

2.10 DNA methylation  

DNA-methylation can be found in several different organisms like many prokaryotes, 

mammals, fungi and plants (Hendrich and Tweedie, 2003). DNA methylation in mammals is 

a post replicational modification that is found in cytosines of the dinucleotide sequence CpG.  

In the 1960s scientists suggested that DNA methylation might protect cells against the 

integration of foreign DNA or making host DNA resistant to DNases directed against foreign 

DNA (Srinivasan, 1964). It was proposed in 1975 that DNA methylation might be responsible 

for the stable maintenance of a particular gene expression pattern through mitotic cell 

division (Riggs, 1975). Proteins that specifically recognize methyl-CpG were identified more 

than a decade ago (Lewis et al., 1992; Meehan et al., 1989).  

Nowadays its widely accepted that DNA-methylation is a key-player in establishing silent 

domains by collaborating with proteins that modify nucleosomes. For a comprehensive 

coverage of the topic DNA-methylation the following reviews are recommended (Bender, 

2004; Bird, 2002; Freitag and Selker, 2005; Li, 2002).  

DNA methylation affects gene expression mainly in two ways: First, the modification of 

cytosines prevents DNA binding factors from associating to their specific DNA sequence by 

blocking them (Watt, 1988). Second, distinct proteins that recognize methyl-CpG can 

enhance the repressive potential of methylated DNA by recruiting enzymes responsible for 

epigenetic modifications which leads to a change in chromatin density, e.g. HDACs and 

HMTs (Hendrich and Bird, 1998; Nan et al., 1998; Sarraf and Stancheva, 2004). Epigenetic 

“cross-talk” in mammals was reported for the Suv39h-HP1 histone methylation system and 
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DNA methyltransferase 3b (Dnmt3b) (Lehnertz et al., 2003). Methyl-binding proteins (MBPs) 

use transcriptional co-repressor molecules to silence transcription and modify surrounding 

chromatin by recruiting HDACs and chromatin remodelling factors (Wade et al., 1999).  

These mechanisms are never isolated events but act as a bridge between two global 

epigenetic modifications, DNA-methylation and histone modifications (Fuks, 2005; Fuks et 

al., 2003).  

In mammals four catalytically active DNA methyltransferases (DNMTs) have been described 

(Robertson et al., 2000). Whereas DNMT3a and DNMT3b have been shown to be required 

for de novo DNA methylation (Okano et al., 1999), DNMT1, as a component of the 

multiprotein DNA replication complex (Vertino et al., 2002), is propagating heritable DNA 

methylation patterns following DNA replication (Li et al., 1992). DNMT2 shows only weak 

DNA methyltransferase activity in vitro (Hermann et al., 2003). Global de novo methylation 

has been documented during germ-cell development and early embryogenesis, when many 

DNA methylation marks are re-established after phases of genome demethylation (Reik et 

al., 2001). For de novo methylation mediated by DNMT3a and DNMT3b several models for 

DNA targeting have been suggested  (Klose and Bird, 2006): 

 

1. DNMTs themselves might recognize the DNA or chromatin template 

2. DNMTs are recruited by protein-protein interactions with transcription factors 

3. The RNA interference system (RNAi) targets de novo methylation to specific DNA  

    sequences 

 

DNA-methylation is not only involved in many cellular processes but plays a role in several 

diseases (Robertson, 2005). Of outstanding interest is the role of DNA-methylation in cancer 

which is still one of the most common disease in the western world (Jones and Baylin, 2002). 

 

2.11 Commonly used techniques in the field 

The analysis of the modification status has been traditionally performed using specialized gel 

systems or the incorporation of radioactive precursor molecules followed by a complete 

protein hydrolysis and the analysis of the resulting amino acid (Allfrey, 1964; Waterborg et 

al., 1983).  

Many of the data which contributed to linking histone lysine methylations to a gene 

expression state, either active (H3K4, H3K36, H3K79) (Krogan et al., 2002; Santos-Rosa et 

al., 2002; Schubeler et al., 2004) or repressed (H3K9, H3K27, H4K20) (Cao et al., 2002; 

Rice et al., 2003; Schotta et al., 2004b) were raised by chromatin-immunoprecipitation (ChIP) 

experiments. By ChIP analysis certain DNA sequences can be identified which are 
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precipitated by an anitbody against a certain protein (modification) (Bernstein et al., 2004; 

Bernstein et al., 2005). Traditional methods for analyzing gene expression provide only a 

partial glimpse into gene regulation, but transcription is a complex process that requires 

multiple interactions and the orchestrated binding of numerous components. A method that 

raised scientists interest in recent years is chromatin immunoprecipitation-on-chip (ChIP-on-

chip) (Boyer et al., 2006; Cam et al., 2005; Pokholok et al., 2005). ChIP-on-chip, also known 

as location analysis (LA), provides insight into key mechanisms of methylation, histone 

modification, as well as DNA replication, modification, and repair. It has been used to 

understand diseases such as diabetes, leukemia, and breast cancer, and has already 

provided important insight to vital processes like cell proliferation, cell fate determination, 

oncogenesis, cell cycle, apoptosis, and neurogenesis. ChIP-on-chip pairs chromatin 

immunoprecipitation (ChIP) with glass slide microarrays (chip) to analyze how regulatory 

proteins interact with the genome of living cells. For further information describing ChIP-on-

chip technology read Blais and Dynlacht, 2005 (Blais and Dynlacht, 2005). A very direct 

technique to study histone modifications is mass spectrometry. Every modification adds a 

distinct mass to the molecule studied and thanks to the high resolution of modern mass 

spectrometers and the development of “soft” ionization techniques, the mapping of 

posttranslational modifications has been greatly facilitated during the last couple of years 

(Mann and Jensen, 2003; Sickmann et al., 2002). 

RT-PCR techniques with gene-locus specific primers allow the analysis of the methylation 

status of a gene or a gene sub-region in correlation to its state of activity (Schneider et al., 

2004; Su et al., 2004). A rather new method for the investigation of chromatin binding 

proteins is chromatin profiling which allows an in vivo assay an is based on a combination of 

targeted DNA methylation and microarray technology (Pickersgill et al., 2006; van Steensel 

et al., 2001). Another approach for getting information about the role of epigenetic 

modifications in common and for nuclear architecture in special, is the use of highly specific 

antibodies in immunofluorescence (IF) experiments. Although  the antibodies developed in 

recent years are very sensitive, new problems arise from using them. It turned out that 

because of the similarity between different modification sites, many antibodies showed 

significant cross reactivity and were not as specific as researchers have initially hoped for 

(Perez-Burgos et al., 2004). Compared to immunofluorescence microscopy, ChIP-analysis 

provides a much higher resolution; however its information is restricted to the sequences 

associated with distinct proteins and does not provide any information about the three 

dimensional nuclear arrangement. 
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2.12 Outlook 

The importance of epigenetic processes in the eukaryotic genome is reinforced by the growth 

of our knowledge about covalent modifications of histone proteins, and about the enzyme 

systems that transduce or remove these modifications. Enzymes involved in histone 

modifications use metabolic cofactors (e.g. nicotinamide adenine dinucleotide and SAM) to 

regulate other enzymes also involved in epigenetic mechanisms, thereby supposing that 

histone modifications may also act as a “sensor” for metabolic processes. (Imai et al., 2000). 

The secrets of epigenetics are just touched to a minor extent and it will take big efforts to 

gain better insights into the complex network of epigenetic mechanisms. The participating 

enzyme systems and mechanisms how they are recruited have to be identified in detail. 

Finally the interactions with partners downstream have to be clarified. Its still very difficult to 

link a specific modification to a distinct disease but stable markers like H3K9me3 and 

H4K20me3, can be correlated with diverse cell fates or with different proliferative potentials 

which can be of diagnostic importance. Senescent cells for example accumulate large 

clusters of “ectopic” heterochromatin (Narita et al., 2003). By contrast there is a general 

reduction in global H3K9me3 and H4K20me3 in cells that resemble an uncommitted fate  

(Baxter et al., 2004). A correlation of increased histone acetylation and reduced H4K20me3 

has been recently reported for several types of human cancer  (Fraga et al., 2005; Seligson 

et al., 2005). The fact that epigenetic modifications are often altered in cancer cells makes it 

a very interesting target for cancer therapies (Espino et al., 2005). 
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3 Methods and Protocols 

3.1 Cell culture 

 
Cell-lines used in the present work 
_________________________________________________________________________________________ 

Cell line                         Medium                          Split ratio                Split frequency 
_________________________________________________________________________________________ 

 

DLD-1                          McCoy 5A+ 10% FCS+                   1.2                        every 3-4 days 

                                    100U/100 µg/ml 

                                    Penicillin/Streptomycin 

 

MCF-7                         RPMI+10% FCS+                            1:6                        every 3-4 days 

                                    100U/100 µg/ml 

                                    Penicillin/Streptomycin 

  

Primary human           DMEM+20% FCS+                          1:3                         every 3-4 days 

fibroblasts                   100U/100 µg/ml 

                                    Penicillin/Streptomycin 

 

Mouse embryonic       DMEM+20% FCS+                          1:2                         every 2-3 days                    

fibroblasts - W9          100U/100 µg/ml 

                                   Penicillin/Streptomycin 
Cells are routinely cultivated in 25cm2 tissue flasks with appropriate medium supplemented 

with 20% fetal calf serum (FCS) and antibiotics at 37°C and 5% CO2 in an (humidified for 

HFb cells) incubator. After reaching confluency cells were split, i.e trypsinized and 

resuspended in fresh medium in an appropriate dilution. For the setup of an experiment cells 

were seeded on coverslips or cultivated onward.  

 

3.1.1 Procedure for cell cultivation 

Equipment and solutions: 
• Serological pipettes (2ml, 5ml, 10ml, 25ml) 
• Automatic pipette 
• 25cm2  tissue culture flasks 
• 1xTrypsin-EDTA solution  
• PBS (Mg2+ + Ca2+- free) 
• Appropriate culture medium (prewarmed to 37°C) 
• Waste container 
• PBS (Mg2+ + Ca2+- free) 
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Procedure: 
All steps are carried out in a sterile laminar airflow cabinet equipped with a Bunsen-burner, 

an automatic pipette aid and a waste container. 

 

1. Decant medium to a waste container. 

2. Wash cells with PBS to remove medium which could inactivate trypsin. 

3. Add 1ml Trypsin/EDTA-solution. Discard the trypsin supernatant after a few seconds. 

4. Incubate the flask about 5min at 37°C in the CO2 incubator. 

5. Tap the flask carefully against the palm of your hand until all cells are detached  

    from the flask bottom. Control the procedure under the phase contrast microsope. 

6. Resuspend cells in about 3-10ml appropriate medium (depending on cell   

    concentration and the intended further proceeding, e.g. seeding on coverslips and   

    splitting in several culture flasks for freezing of cells). 

7. Incubate cells at 37°C and 5% CO2 in a humidified incubator.   

 

Note: Make sure to wear plastic gloves when working in the sterile airflow cabinet to avoid   

          contamination. 

3.1.2 Thawing and freezing of cells 

Equipment and solutions 
• 1xPBS (Mg2+ + Ca2+- free) 
• Cryo-tubes 
• Culture flask (25cm2) 
• Freezing medium (10% DMSO in appropriate complete medium, depending on the cell type) 
• Liquid nitrogen tank with racks 
• Centrifuge 
• Sterile 50ml/15ml Falcon tubes 
• Laminar airflow cabinet 
• Waterbath 
• Isopropanol box 
• Trypsin/EDTA 
 

 

 

Thawing: 
1. Take a stock of frozen cells (10% DMSO in culture media) from the liquid nitrogen tank  

    and let it thaw. 

2. Mix cells with 8ml prewarmed medium in a 15ml Falcon tube. 

3. Spin it down for 10min at 1000rpm (200g). 

4. Discard supernatant and resuspend cells in prewarmed medium and transfer it to the  

    culture flask. Now the rest of freezing medium containing DMSO is removed. 
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Freezing: 
1. Grow cells in a 75 cm2 tissue culture flask. 

2. Use cells in the logarithmic phase of growth (70-80% confluency). After washing and  

    trypsinizing (see protocol 3.1.1) uspend cells in 20ml full medium and transfer them to a  

    50ml Falcon tube. 

3. Centrifuge for 10min at 1000rpm (200g).  

4. Discard supernatant and resuspend pellet in 10ml freezing medium. 

5. Aliquot cell suspension into 2ml cryotubes and place them immediately onto ice. Cool  

    down cryotubes at -20°C for a few hours. Subsequently keep them at -80°C in an  

    isopropanol box (up to 3 days possible). Thereafter the cells can be stored in liquid  

    nitrogen. 

 

3.1.3 Slide preparation 

Coverslips (15x15mm/20x20mm square or 24x60mm) are washed thoroughly with dH2O to 

remove dirt and then stored in 100% technical ethanol. Before use, each coverslip is flamed 

and then transferred to a dish or well plate respectivly.  

 

3.1.4 Seeding cells on coverslips 

Equipment and solutions 
• Fine tweezers 
• Coverslips (15x15mm/20x20mm square or 24x60mm stored in 100% technical ethanol) 
• Fixative: formaldehyde 3,7% 
• 0,1% PBST 
• Tissue culture dishes or 6 well plates 
• 1xPBS 
• Incubator, 37°C 
• Appropriate cell culture medium 
• Trypsin/EDTA solution 
 

 

1. Trypsinize cells from a confluent culture flask under routine conditions and add 10ml  

    medium. 

2. Calculate volume of cell suspension needed. 

3. Mix well and distribute cells on dishes prepared with cleaned coverslips. 

4. Incubate in CO2 incubator until the cells reached the desired density. 

5. Fix cells for 10min in 3,7% formaldehyde. 

6. Wash cells in 0,1% PBST. Cells can be stored in PBST for several weeks. 
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3.2 Replication labeling with BrdU 

Labeling of replicating cells with the halogenated thymidine analogue BrdU has been a well- 

established technique since the early 1980s (Gratzner, 1982). The addition of this modified 

nucleotide analogue to a growing cell culture leads to an uptake and incorporation. The 

incubation time depends on the number of cells one wants to catch in S-phase. A minimum 

time of at least 10min is necessary for pulse labeling of cells during S-phase. Sites of BrdU 

incorporation are easily detectable by applying immunofluorescence. 

The purpose of BrdU-incorporation for the present experiments was to distinguish between 

S-phase and non S-phase cells (therefore a pulse of 30-45min is sufficient).  
Equipment and solutions 
• Tweezers 
• Coverslips (15x15mm/18x18mm) 
• Fixative: formaldehyde 3,7% 
• BrdU stock solution (10mM BrdU/PBS) 
• 0.5% Triton-X-100 in PBST 
• 0.1N HCl 
• Blocking solution Bovine Serum Albumine (BSA) 2% and 4% in PBST 
• Solution 3 (60mM Tris/ 0.6mM MgCl2/ 1mM 2-mercaptoethanol) Nick translation  
               buffer is also possible (MgCl2 is essential) 

• DNase I stock solution (2U/µl) 
• Primary antibody: mouse anti BrdU (Roche) 
• Secondary antibody : sheep anti mouse Cy3 or goat anti mouse alexa488 
• Parafilm 
• Shaker, Incubator, 37°C 
• Slides 
• Humidified chamber for incubation with antibodies 
• PBST pre-warmed at 37°C 
• Counterstain DAPI (0.02µg/ml in PBST) or TO-PRO-3 (1-2µM in PBST) 
• Antifade mounting medium (Vectashield) 
• Nail polish 
 

 
Procedure: 
1.  Grow cells on coverslips (15x15mm/18x18mm) for about 24h until they reach > 50%  

     confluency. 

2.  Add BrdU to the medium at a final concentration of 10-20µM, and incubate 45min in     

     the CO2 incubator.  

3.  Fix for 10min with 3,7% formaldehyde at room temperature (RT). 

4.  Wash coverslips 2min in 0,1%PBST. 

5.  Permeabilize 10min with 0,5% Triton in PBST. 

6.  Wash 2x5min in 0,1% PBST. 

7.  Incubate in 0,1 N HCl for 10min (check under the microscope  if cells remain attached to  

     the slide). 

8.  Block 10min in 4% BSA in PBST. 

9.  Prepare solution of primary antibodies together with DNase 
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     incubation mix: 

      - 20µl Solution 3 

      - 77µl blocking solution (2% BSA in PBST)  

      - Histone lysine methylation antibody (final dilution 0,6:250) 

      - 2µl DNase I (final dilution 1:50) 

      - 0,5 µl mouse anti BrdU (final dilution 1:200)  

10. Apply primary antibody solution: Add one drop mix (50µl for a 15x15mm coverslip) onto a  

      piece of PARAFILM and place the coverslip cell-side down onto the drop. Incubate 1h at  

      37°C in a humidified chamber.  

11. Wash 2x 5min with PBST. 

12. Incubate with secondary antibodies 30-40min at 37°C. 

      Sheep anti-mouse Cy3 (1:500 in blocking solution)or 

      Goat anti-mouse Alexa488 (1:200 in blocking solution) 

13. Wash 2x5min with PBST while shaking. 

14. Counterstain and mount cells in antifade medium.   

 

 
Figure 7 
Transmission images of DLD-1 cells with different magnifications recorded at the confocal laser scanning 

microscope Zeiss LSM 410. Cells were seeded on a coverslip, fixed and embedded with anti-fade medium. These 

pictures should illustrate to the reader how the cells adhere to the coverslip. Fluorescent signals only provide 

abstract views of a cell nucleus but no information how the cell as a whole grows in flasks or on coverlips. 

These pictures exemplify the nucleus embedded in the cytoplasm. Even nucleoli and cytoplasmatic substructures 

are visible. Bar indicates 10µm 

3.3 Scratch transcription labeling with BrUTP 

For the detection of nascent RNA, cells need to be labeled by BrUTP. The scratching 

procedure with a canula creates “transient holes” by damaging the cell membrane. In 

contrast to permeabilization with detergents like Triton-X 100, which kills cells within minutes, 

scratching allows a further cultivation of the cells. The fraction of BrUTP labeled cells 



                 Methods and Protocols 
__________________________________________________________ 

                                                                                                                                              32 

depends on the density of scratches applied on the cell layer. For further information read 

Schermelleh et al. (Schermelleh et al., 2001).  

 
Equipment and solutions 
• Tissue culture dish 
• Canula 
• Coverslips, Tweezers 
• Appropriate cell culture medium, pre-warmed to 37°C 
• Labeling solution: 20µM BrUTP (diluted in medium) 
• Paper to wipe off 
• Phase contrast microscope to control scratching procedure 
• Fixative 3,7% formaldehyde 
 

 

Procedure: 
1. Seed cells on small coverslips (15x15mm) and let them grow until they reach 80-90%  

    confluency. 

2. Take the coverslip with fine tweezers, wipe off the excess medium and place it into an  

    empty culture dish. Removement of fluid prevents sliding of the coverslip during the  

    subsequent scratching procedure.  

3. Add 10µl of the labeling solution onto the cells and distribute it by rotating the dish. 

4. Make parallel scratches into the cell layer with the tip of the canula. For best surveillance  

    scratching should be performed under phase contrast microscope. To avoid drying of cells  

    handling should be carried out fast. 

5. Add 5ml of pre-warmed medium and incubate further on.  

6. After about 10min nascent RNA-should be detectable. 

7. Fix cells with 3,7% formaldehyde. 

8. Proceed with immunostaining as described in 3.8. 

 

3.4 Polymerase chain reaction (PCR) 

The purpose of PCR is to make a huge number of copies of a DNA-sequence. It is commonly 

used for a variety of tasks (e.g. genetic fingerprinting, in diagnostics and cloning). In this work 

the method was mainly used to label paint and BAC probes. 

3.4.1 DOP-PCR 

Chromosome painting probes are usually generated from flow sorted chromosomes and 

initially amplified by DOP PCR using the universal primer 6MW (Telenius et al., 1992). 

Primary amplification products can be increased if necessary by few further rounds of DOP-

PCRs (up to four amplifications).  
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6 MW-primer: 
Equipment and solutions 
• PCR-tubes 
• PCR-buffer 
• 6 MW-primer (20µM) (sequence  CGACTCGAGNNNNNNATGTGG) 
• Polyoxyethylene ether W1 (1%) 
• dNTPs 
• H2O 
• Genomic DNA 
• Taq-polymerase 
 
 

Mastermix:                                                                                       Concentration 
 200µl  PCR buffer D 5x                                                                                         1x 
 100µl  6MW-primer (20µM)                                                                                   2µM 
 100µl  Polyoxyethylene ether W1 (1%)                                                                 0,1% 
   80µl  dNTP-mix (2,5mM each)                                                                            200µM 
 490µl  H2O 

__________ 

       970µl (for 20 reactions) 

 

 

For standard DOP-PCR amplification: 
 48,5µl Mastermix (MM) 
 1µl  DNA (DOP amplified chromosome paint DNA) 
 0,5µl Taq-polymerase (5U/µl) 

 

 

 

PCR-Program 
  Primary Secondary 

 Initial denaturation 96°C → 3min 96°C → 3min 

    Low Denaturation 94°C → 1min  

    Stringency (x8) Annealing 30°C → 1,5min  

 Extension Time ramp 14°C/min 72°C → 

2min 

 

    

    High Denaturation 94°C → 1min 94°C → 1min 

    Stringency (x35) Annealing 56°C → 1min 56°C → 1min 

 Extension 72°C → 2min 72°C → 2min 

    

 Final extension 72°C → 5’ min 72°C → 5min 

    

 Approximate time 4h15min 3h 

-  The amplification success can be checked by gel electrophoresis on a 1% agarose gel using standard 

   protocols. 

-  Probe length and amount can be estimated from the gel by comparing the PCR product with λ HindIII DNA  

   molecular weight marker and by commercial C0t1-DNA of known concentration. 
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DOP2, DOP3-PCR 
 

For a primary amplification of BAC-DNA and subsequent label PCR for 3D-FISH experiments 

a modified DOP-PCR was used employing two different primers in separate amplification 

reactions described as DOP2 and DOP3 by Fiegler et al. (Fiegler et al., 2003). 

The two different DOP2/DOP3 primer recognize different subsets of DNA and thus increase 

the probe complexity.  

The amplification and labeling reactions were performed in separate PCR-setups for each 

DOP2 and DOP3 primer. 

 

Equipment and solutions 
• PCR-tubes 
• PCR-buffer 
• DOP2-primer     sequence: CCGACTCGAGNNNNNNTAGGAG 
• DOP3-primer     sequence: CCGACTCGAGNNNNNNTTCTAG 
• Polyoxyethylene ether W1 (1%) 
• dNTPs 
• H2O 
• Genomic DNA 
• Taq-polymerase 
 

 
Mastermix:                                                                                                Concentration 

 200µl  PCR buffer D 5x                                                               1x 
 100µl  DOP2 or DOP3-primer (20µM)                                         2µM 
 100µl  Polyoxyethylene ether W1 (1%)                                       0,1% 
 80  µl  dNTP-mix (2,5mM each)                                                200µM 
 180µl  H2O 

__________ 

        640µl (for 20 reactions) 

 

 

For standard DOP-PCR amplification: 
 33  µl Mastermix (MM) 
 1    µl BAC-DNA (50-200ng) 
 15  µl H2O (Bi-distilled) 
 0,5 µl Taq-polymerase (5U/µl) 

 

 

PCR-Program 
 Initial denaturation 96°C → 3min 

Low stringency Denaturation 94°C → 1,5min 

(only for primary amplification) Annealing 30°C → 2,5min 

(10 cycles) Time ramp 6°C/min extension 72°C → 3min 

 Denaturation 94°C → 1min 

High stringency Annealing 62°C → 1,5min 

(30 cycles) Extension 72°C → 2min 
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94°C → 1min 

62°C → 1,5min 

  

Final extension 

 72°C → 8min 

 Approximate time 4h30min 

-  The amplification success can be checked by gel electrophoresis on a 1% agarose gel using standard 

   protocols. 

-  Probe length and amount can be estimated from the gel by comparing the PCR product with λ Hind III DNA  

   molecular weight marker and by commercial C0t1-DNA of known concentration. 

 

3.4.2 Label-PCR 

For labeling of chromosome painting probes (first amplified by DOP-PCR), a label-PCR was 

used. Probes were generated using a slightly modified amplification program compared to 

DOP-PCR. One nucleotide is substituted by a labeled analogue and finally incorporated into 

the new created strand. The paint probe can either be directly labeled with fluorochrome 

tagged nucleotides (Tamra-dUTP or TexasRed-dUTP) or indirectly by the hapten Biotin or 

the glycosid Digoxigenin. In the present case Tamra and Texas-Red were used at a final 

concentration of 20µM while its unlabelled counterpart dTTP was present at a concentration 

of 80µM. The other three nucleotides were used at 100µM. This PCR based technique has 

the great advantage to increase the probe output while labeling from small amounts of 

starting material. This makes it preferably to e.g. nick translation which needs high amounts 

of DNA at the beginning and is only suitable for very special cases. 

The amplification program differs from secondary DOP-PCR in that the number of cycles is 

reduced to 20 compared to 35, and that the elongation time is decreased to 30 seconds 

compared to 2 minutes. 

 

DOP-Label-PCR 
Nucleotide mix 
2mM ACG mix 1mM T 

10µl A (100mM) 10µl T (100mM) 

10µl C (100mM)  

10µl G (100mM)  

Ad 500µl H2O Ad 990µl H2O 

Mastermix Label-PCR 
Cetus II buffer    100µl 

MgCl2   (25mM)    80µl 

6MW Primer (17µM)    100µl 

AGC-mix (2mM)    50µl 

T (1mM)    80µl 

H2O bidest    490µl 

 ∑900µl 
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PCR-Program 
Initial denaturation 94°C → 3min 

Denaturation 94°C → 1min 

Annealing 56°C → 1min 

Extension 72°C → 0,5min 

Final extension 72°C → 5min 

 

 

20 cycles 

Approximate time 1h15min 

 

For standard Labeling-PCR amplification: 

 
 45,5µl Mastermix (MM) 
 1µl paint or BAC-DNA (50-200ng) 
 3µl e.g. Tamra-dUTP 
 0,5µl Taq-polymerase (5U/µl) 

 

 

DOP2/DOP3 labeling PCR 
In my case DOP2/DOP3 labeling PCR was only used to create direct labeled BAC-probes. 

For directly labeled nucleotides the master-mix was set up first and the fluorescent labeled 

dUTP is added before starting up the reaction. 

 

Mastermix DOP2/DOP3 Label-PCR 
Cetus II buffer    100µl 

MgCl2   (25mM)    80µl 

DOP2 or DOP3-primer (20µM)    100µl 

AGC-mix (2mM)    50µl 

T (1mM)    80µl 

H2O bidest    490µl 

 ∑900µl 

PCR-Program 
Initial denaturation 94°C → 3min 

Denaturation 94°C → 1min 

Annealing 56°C → 1min 

Extension 72°C → 0,5min 

Final extension 72°C → 5min 

 

 

20 cycles 

Approximate time 1h15min 

 

For standard Labeling-PCR amplification: 

 
 45,5µl Mastermix (MM) 
 1µl paint or BAC-DNA (50-200ng) 
 3µl e.g. Tamra-dUTP 
 0,5µl Taq-polymerase (5U/µl) 
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After completion of the DOP2/DOP3 Label-PCR the DOP2 and DOP3 amplification products 

targeting the same BAC-clone can be merged in one tube since they will be always used 

together as hybridization probes. 

For some experimental approaches it is necessary to generate complex probe sets. In this 

case BAC-pools were used, consisting of eight single BAC-clones. Therefore a pre-pool of 

each primary DOP2 and DOP3 amplified BAC-DNA, containing an approximately equal 

amount of amplified DNA from each BAC, was mixed. For further information read Cremer et 

al. 2006 (epigenetics protocol database). 

 

3.5 Metaphase preparation 

To test the quality and specificity of FISH probes, mitotic chromosomes of human 

lymphocytes were prepared.  

Therefore proliferating cells are required, the bulk of them ideally in mitosis. The lymphocytes 

extracted from peripheral blood were incubated for about 72h at 37°C and 5%CO2 in the 

incubator to allow cells to run through the cell cycle. Application of Colcemid inhibits the 

spindle apparatus and leads to an arrest of cells in mitosis. The longer Colcemid is present in 

the medium the more condesed the chromosomes appear. To get a high amount of mitotic 

cells on the one hand and a satisfying condensation state of chromosomes on the other hand 

the Colcemid incubation time should not go beyond 40min. A hypotone treatment with 0,56M 

KCl leads to a swelling of cells which facilitates the bursting of cells when dropped on the 

slide. The addition of fixative leads to an extraction of chromosomal proteins and increases 

the accessibility of target DNA for FISH-probes. 

 

Equipment and Solutions 
• Centrifuge, incubator, 37°C, shaker 
• Freezer -20°C 
• Pasteur pipette, slides, metal box 
• 15ml/50ml test tubes 
• 1xPBS 
• 0,01N HCl 
• Colcemide (10µg/ml) 
• Ethanol 70%, 90%, 100% 
• Fixative : Methanol/glacial acetic acid (3:1), ice cold 
• Hypotonic solution: 0,56% KCl, 37°C 
• Pepsin (320-450u/µl) 
• Silicagel with moisture indicator 
• Coplin jars 
• Trypsin/EDTA (0,02%/0,05%) 
• Waterbath at 37°C 
• Waterbath at 50°C 
• Antifade medium (Vectashiled) 
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Procedure: 
1.   Cells are grown until 70%-80% confluency. 

2.   8µl colcemide per ml medium is added. 

3.   Cells are placed back in the CO2 incubator until mitotic (apoptotic bodies) cells appear.  

      Longer incubation times result in shorter mitotic chromosomes.  

4.   Trypsinize cells as described in 3.1.1. 

5.   Cells are transferred to 50ml tubes and centrifuged at 1000rpm for 10min. 

6.   Supernatant is removed and a few ml of a 37°C 0.56% KCl solution are applied. Mix the    

      suspension carefully  with a pasteur pipette and fill up tube to 20ml with  

      hypotonic solution. 

7.   Cell suspension is incubated for 15-20min at 37°C (Depending on the cell type duration 

      of hypotoninc treatment varies). 

8.   1ml ice-cold fixative is added and the suspension is thoroughly mixed (Add fixative  

      slowly to avoid agglutination). 

9.   Cells are centrifuged at 1000rpm for 10min.  

10 .Supernatant is removed until 10-15ml are left and after resuspending the cells, they are  

      transferred to 15ml test tubes. 

11. Cells are centrifuged at 1000rpm for 10min. 

12. Supernatant is removed until the taper of the tube. 1ml of ice-cold fixative is slowly added  

      and cells are resuspended very gently. Further 14ml of fixative are added. 

13. Cell suspension is incubated 30min at -20°C. 

14. For the washing procedure the following steps can be repeated up to 10 or times: 
        - Cells are centrifuged for 10min.  

        - Supernatant is removed. 

        - 15ml ice-cold fixative is applied and cells are thoroughly resuspended. 

15. Slides for dropping are incubated for ~30min in absolute ethanol, and cleaned using a dry 

      lint-free cloth. Slides are stored at -20°C and should be completely cooled down before 

      use.  

      The water bath water level is adjusted in order to obtain an appropriate surface/volume  

      ratio (for further information read (Deng et al., 2003)). 

16. Cell suspension (RT) is dropped (10µl/drop) from a height of about 10cm on slides,  

      while the slide is slightly tilted. The slide is put immediately into the metal box for 1min  

      which is fixed at the border of the water bath. 

17. A few minutes later, the slide is dried and can be checked for quality of the metaphase  

      spreads and cell concentration using a phase contrast microscope (if necessary, the  

      concentration can be adjusted by either adding fixative or by centrifuging and then  

      removing fixative). To remove residues of cytoplasm finally a pepsinization protocol can  

      be applied. 
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18. Slides are aged by incubation ON at 37°C. 

19. After drying, slides are put in storage boxes together with silica gel pearls,  

      to prevent re-hydration. Slides are stored at -20°C. 

 

Pepsinization (optional) 
20. 0.01N HCl is warmed-up at 37°C and slides are placed in coplin jars. 

21. Pepsin (320-450u/µl) is diluted 1/2000 in 0.01N HCl (37°C) to a final concentration of 

      0.2-0.25u/µl. 

22. Slides are incubated in pepsin dilution for 10min at 37°C. 

23. Slides are washed 3 times for 5min with 1xPBS using a shaker. 

24. Preparations are dehydrated by successive incubation in 70% EtOH for 10min, 90% 

      EtOH  for 1min and 100% EtOH for 1min. 

 

3.6 2D-FISH 

Fluorescence in situ hybridization (FISH) is based on the property of single stranded nucleic 

acids to bind to their complementary counterparts after denaturation. Target-DNA is detected 

by labeled probes, predominantly extracted from genomic DNA. 

To avoid unspecific binding of probes to highly repetitive sequences (LINEs, SINEs and 

satellite-DNA) human cot1 DNA is added to the reaction mix. Cot1-DNA contains the same 

repetitive sequences as the target DNA. These sequences were saturated by cot1-DNA and 

are no longer a target for the applied probes. 

Paint-or BAC-probes were tested (figure 8) on metaphase slides, prepared as described in 

3.5.  

Labeled probe-DNA is precipitated with 100% pure ethanol and afterwards resuspended in 

formamide to bring down the denaturation temperature. Dextransulfate increases the volume 

thereby retaining the DNA concentration. 

 

Equipment and solutions 
• Cot1-DNA 
• Ethanol 100%, ice cold 
• Formamide 
• Mastermix 
• Probe 
• Speed Vac. 
• 0.1x SSC 60°C, 2x SSC 37°C, 4x SSC 37°C 
• Shaker, Parafilm 
• 2% BSA in 4xSSC 37°C, 4% BSA in 4xSSC 37°C 
• Coverslips (12x12mm for 2µl Hybmix, 15x15 for 5µl Hybmix, 24x32mm) 
• Fixogum 
• Hot Block 76 °C 
• Hybridization mix 
• Metal box 
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• Metaphase spreads 
• Tweezers, coplin jar 
• Fridge 
• Water bath 37°C and 80°C  
• Appropriate antibodies (if probe is not directly labeled) 
• DAPI (0,05µg/ml) 
• H2O dest. 
• Nail polish 
• Anti-fade medium (Vectashield) 
 

 

Procedure: 
Precipitation of probes: 
 

1.  pro reaction mix: 

     - probe (dependent on chromosome size or the final hybridization mix volume*) 

     - approx. 10µl cot1 DNA 

     - optional 2µl blue stain (to visualize the pellet) 

     - add 2.5 x reaction-volume of ethanol 

2.  Vortex for about 15sec. 

3.  Store at -20°C for 30-60min. 

4.  Centrifuge 20min at 13000rpm. 

5.  Ethanol-supernatant is removed. 

6.  Dry pellet in “speed vac” for 5min. 

7.  Add ½ vol. formamide and ½ vol. mastermix (dextransulfate). 

8.  Put the mix 1h or overnight on the shaker until solution is totally dissolved. 

*    recommended final-concentration for paints is 20-30ng/µl (2D-FISH) and 40-60ng/µl (3D-   

     FISH). 

 

Hybridization: 
 

9.  Choose appropriate metaphase spreads and mark the area where hybridization is  

     planned. 

10.Coat the chosen area with 2µl hybridization mix and put a 12x12mm coverslip on it. 

11. Seal the coverslip with fixogum and let it dry for about 20min (fixogum should be flat and  

      totally transparent). 

12.Denaturate preparation (target- and probe-DNA) on the heat block (76°C) for 2min. 

13.Put the slides in a metal box and incubate it over night at 37°C in a water bath. 
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Post-hybridization washings: 
 

14. Remove the fixogum very carefully.  

15. Wash slide on the shaker 2x5min with 2xSSC 37°C. 

16. Wash slide on the shaker 3x5min with 0.1xSSC 60°C. 

17. Equilibrate at RT for a few minutes in 4xSSC. 

 

Detection: 
18. Block slide 10-15min in a coplin jar with 4%BSA/4xSSCT at 37°C. 

19. Prepare appropriate dilution with (fluorochrome conjugated) antibody in 2%BSA in  

      4xSSC. 

20. Bring about 100µl antibody dilution on the area with metaphases and cover with a  

      24x32mm coverslip. Incubate for approximately 40min. 

21. If you use more than one layer of antibodies wash in-between 2x5min with 2xSSC. 

 

Counterstaining: 
22.  Stain with DAPI for 5min. 

23. Wash slide with distilled water and let it dry by air in the dark. 

24. Cover the marked area with an appropriate coverslip and one drop of vectashield. 

25. Seal slide with nail polish. 

 

 
Figure 8 
Gene poor (A, red spots) and gene-rich (B, red spots) BACs and a paint of #12 (green) were tested on metaphase 

spreads of human lyphocytes. Images were recorded by a CCD-camera on an epifluorescent microscope. Bar 

indicates 5µm 
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3.7 Peptide competition assay 

For antibodies used in the experiments a peptide competition assay was performed to 

ensure their specificity. Such tests are essential especially in cases where the antibody 

recognition site is embedded within the same small surrounding amino acid sequence, e.g. 

the “ARKS” amino acid sequence identical for H3K9 and H3K27.  

The respective antibody was diluted to the working solution (approximately 0.04µM in 

1xPBS/0.01%Tween/2%PBS) and incubated for at least 45min at 37°C with a 100 fold molar 

excess of the peptide (length of 20 amino acids) carrying this specific histone lysine 

methylation site. After blocking the slide with nuclei in 4%BSA/1xPBS/0.01%Tween cells 

were incubated with the pre-incubated antibody for 1h at room temperature, followed by the 

incubation with the appropriate fluorochrome-labled second antibodies as described in the 

chapter “immunostaining” (3.8). Images of staining patterns after the peptide competition 

assay were delineated in figures 9, 10 and 11. 

As a negative control antibodies were incubated with unmodified peptides, similar modified 

and without peptides, while an antibody against centromeres on the same slide served as a 

positive control. Peptides for H3K9me3, H3K27me3, H4K20me1, H4K20me3 and unmodified 

peptides were kindly provided by A.Peters (Basel) at a concentration of 10mM. 

 

Equipment and solutions 
• Cells on coverslips (15x15mm) 
• Fixative: formaldehyde 37% (dilution 1:10 in PBST) 
• 0,5% Triton X-100 
• 4% BSA in PBST 
• Top cover of a 6 well plate 
• Parafilm 
• Metal box 
• Water bath 37°C 
• Antibodies 
• Antibody specific and unspecific peptides 
• DAPI 
• Nail polish 
• Tweezers 
• Antifade medium (Vectashield) 
 

 
Calculation of the dilution for the antibody and peptide solutions 
General information: 

Antibody concentration: 3mg/ml 

Molarity Peptide: 10mM 

1Mol antibody is equivalent to ~150kg (150kDa) 

Calculate the working solution out of your Ab-concentration (dilution 1:500) 

3mg/ml = 3000µg/ml →   6µg/ml → 6mg/l (molarity working solution) 

                               1:500 
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150 x 10-6 mg = 1Mol 

6mg                = xMol       →   x =   6mg x 1/ 150x10-6  mg =4x10-8 M= 0,04µM 

The antibody working solution is a 0,04µM solution. The peptide should be in a 100 fold 

excess (100 molecules peptide for 1 molecule antibody) which means 4µM. 

Molarity peptide: 10mM = 10000 µM → 1:10 dilution in dest. water → 1000µM 

1µl of this dilution  in 200µl of a 1:500 antibody dilution (2% BSA in PBST) to achieve 5µM  
(to work exactly give 1µl peptide to 240µl of a 1:500 antibody dilution). 
 

1.   Disseminate cells and let them grow to a confluence of about 70%. 

2.   Fix cells with 3,7% FA for 10 min. 

3.   Permeabilize cells in 0,5% Triton for 10min. 

4.   Block cells in 4% BSA in PBST for 10min. 

5.   Make a mixture of the antibody and the peptide you want to test and incubate it in  

      the water bath at 37°C for 45min.   

      Make sure that incubation time is up when the 10min blocking time (step 4.) are over. 

6.   After peptide/antibody incubation incubate first antibody 1h in the water bath at 37°C.   

      Add one drop mix (50µl for a 15x15mm coverslip) onto a piece of PARAFILM and place  

      the coverslip cell-side down onto the drop. Incubate 1h at 37°C in a humidified chamber.  

7.   Wash 2x10min in PBST. 

8.   Second antibody 40min in the water bath at 37°C. 

9.   Wash 2x10min in PBST. 

10. Counterstain with DAPI and TO-PRO-3 for 5min. 

 

 

Note:  

If the antibody is specific for the applicated peptide it will bind to the peptide and one won’t 

get a signal in the nucleus. Make a positive control for example centromeres on the same 

slide using another color for detection. To extend the specificity test make cross-tests, for 

example a H4K20me3 ab. against a peptide for monomethalted H4K20. Last but not least 

test ab’s against unmodified peptides. 
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Figure 9 
“Normal” antibody patterns without peptide pre-incubation  in MCF-7 cells visualized by epifluorescence widefield 

microscopy.  Bar indicates 10µm 

 

 
Figure 10 
After incubation of antibodies with their specific peptides all antibody patterns disappear, thereby indicating their 

high specificity. Centromere staining was successfully used as positive control.  Bar indicates 10µm 
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Figure 11 
To test the high specificity of these anti-methylation antibodies emphatically, the antibodies were incubated with 

peptides that are different in only two methyl-groups (H3K9me3 was incubated with the H3K9me1 against which 

the monomethylated antibody was raised, H3K27me3 with an unmodified peptide, H4K20me1 with a H4K20me3 

peptide and vice versa. As shown by  white arrows typical antibody patterns (compare figure 9) can be found in all 

attempts. These findings demonstrate that the histone lysine antibodies can even distinguish between different 

methylation states. Bar indicates 10µm 

 

3.8 Immunostaining 

Immunostaining was performed in experiments when co-localization of histone lysine 

methylation sites, centromeres and nascent RNA was investigated. Detection schemes 

usually consisted of two layers, with a primary antigen-specific antibody as a first layer and a 

secondary antibody, which was specific for immunoglobulins from the species, the first 

antibody was generated in. The latter was conjugated with a fluorochrome allowing 

visualization by epifluorescence or confocal microscopy. Nuclei were counterstained with 

DAPI and additionally with the DNA binding dye TO-PRO®-3, since the utilized confocal 

microscopes were not equipped with an appropriate UV-laser. The latter can be excited by a 

633nm laser line and emits light in the infrared spectrum. 

 

Equipment and solutions 
• Cells on coverslips 
• Tweezers 
• Fixative: formaldehyde 3,7%  
• 0,5% Triton X-100 
• 2% BSA in PBST, 4% BSA in PBST 
• Primary antibodies, secondary antibodies 
• 0.01% PBST 
• Metal box 
• Parafilm, slide 
• Top-cover of a 6-well plate 
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• DAPI or TO-PRO-3 
• Antifade medium (Vectashield) 
• Nail polish 
 

 

1.    Seed cells on coverslips. 

2.    Let cells grow until they are about 60-70% confluent. 

3.    Fix cells with 3,7% FA 10min. 

4.    Permeabilize cells with 0.5% Triton for 15min. 

5.    Block with 4% BSA in PBST. 

6.    1.Ab (rabbit anti lysine methylation dilution: 0.6:250) 1h at 37°C in the water bath. Add  

       one drop mix (50µl for a 15x15mm coverslip) onto a piece of PARAFILM and place the  

       coverslip cell-side down onto the drop. Incubate 1h at  37°C in a humidified chamber.  

7.    Wash 2x5min in PBST. 

8.    2.Ab (e.g goat anti rabbit-cy3) 45min at 37°C in the water bath. 

9.    Wash 2x5min in PBST. 

10.  Counterstaining with DAPI (1:100 in PBS ) for 3 min. 

11.  Put vectashield on your coverslip.  

12.  Seal coverslip with nail polish. 

Note: The antibody incubation was made on the top of a 6-well plate which contained a stripe 

of parafilm. A drop of antibody solution (50µl for a 15x15mm coverslip) was pipetted on the 

parafilm and the coverslip placed on it. 

3.9 Sequential antibody labeling 

Sequential antibody labeling is required when two antibodies which are both raised in the 

same species (in this case rabbit) are combined in an experiment. For a complete blocking of  

the first antibody an incubation step with an unconjugated Fab-fragment is required. 

Equipment and solutions 
• Cells on coverslips (15x15mm) 
• Fixative: formaldehyde 3,7% 
• PBST 0,01 Tween 
• 0,5% Triton X-100 
• Tweezers 
• 2% BSA in PBST, 4% BSA in PBST 
• Metal box 
• Parafilm, slide 
• Top-cover of a 6-well platte 
• Primary antibodies: rabbit anti-histone modification 
• Secondary antibody: goat anti rabbit Cy3 Fab, goat anti human-FITC 
• Goat anti rabbit Fab non-conjugated 
• DAPI (stock solution 5µg/ml, final working solution 0,05µg/ml) 
• Counterstain alternative: TO-PRO-3 (stock solution 1mM, final working solution 1µM) 
• Nail polish  
• Antifade medium (Vectashield) 
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1.    Grow cells on coverslips (50-70% confluent). 

2.    Fix cells with 3,7% FA. 

3.    Permeabilize cells with 0.5% Triton X-100 for 10min. 

4.    Block with 4% BSA in PBST 10min. 

5.    1.ab layer: rabbit anti histone methylation (dilution: 1:500) 

       1h at 37°C (if the result is not satisfying try over night). Add one drop mix (50µl for a  

       15x15mm coverslip) onto a piece of parafilm and place the coverslip cell-side down  

        onto the drop. Incubate 1h at 37°C in a humidified chamber.  

6.    Wash 2x10min in PBST. 

7.    2.ab. layer: goat anti rabbit Cy3 Fab (dilution 1:100) incubate 45min at 37°C. 

8.    Wash 2x10min in PBST. 

9.    3. ab. layer: goat anti rabbit Fab non conjugated (to block the rest of the free  

       binding sites, best dilution 1:500-1:800) 45min at 37°C. 

10.  Wash 2x10min in PBST. 

11.  4. ab layer: rabbit anti histone (1:500) 45min at 37°C. 

12.  Wash 2x10min in PBST. 

13.  5. ab layer: h.c.a. goat anti human FITC, dilute  1:200. 

14.  Wash 2x10min in PBST. 

15.  Counterstain with DAPI 5min. 

16.  Put coverslip on a slide with Vectashield and seal with nail polish. 

 

3.10 3D-Immuno-FISH 

The combination of FISH with the visualization of proteins by immunofluorescence is critical 

because antigenic or fluorescent epitopes can be destroyed by heat denaturation and HCl 

treatment required for FISH.   

Since these essential steps of the FISH procedure are indispensable the focus had to be on 

the immuno-part of the protocol. One approach to achieve good immuno-FISH results was to 

change the order of single steps. Another option was to modify the antibody detection 

system. Different conceivable combinations and modifications, that were tested until a 

working protocol was found, are schematically listed in the flow chart (table2). 

In the following, the most important steps of the finally used protocol are explained. First 

antibody detection was performed at the beginning of the experiment instead at the end of 

the experiment. However this change in the experimental order solely was not sufficient to 

achieve better immunostaining results. In the next step, instead of using a directly labeled 

secondary antibody for detection of histone lysine methylation sites, the Biotin/Avidin-system 

was used, since it is widely accepted as very stable due to its high binding affinity (Korpela, 
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1984). Furthermore it was reported to be thermal stable which is another advantage for 

immuno-FISH (Gonzalez et al., 1999; Wei and Wright, 1964). This approach yielded an 

improvement of signal quality at least by visual inspection but an optimal solution was not 

found until an additional fixation step with 1% formaldehyde was added to the protocol (post 

fixation step). This step probably enhances the stability of the primary (lysine methylation 

antibody)/secondary antibody (Biotin) complex and is a important feature of the protocol. 

It is essential for achieving the best results that the correct order as delineated in table 2 right 

column is abided.  

 

Pretreatment 
(Gycerol, HCl, Formamide, 

pepsinization) 

↓ 
FISH (Hybridization of probes) 

↓ 
Immunofluorescence 
(histone lysine antibodies) 

+ FISH detection 

↓ 
antibody pattern hardly to 

identify, 

bad signal 

 

 

 

 

 

 

 

 

Primary histone lysine 

antibody 

↓ 
(direct labelling or 

  biotinylated Ab) 

↓ 
Pretreatment 
(Gycerol, HCl, Formamide, 

pepsinization) 

↓ 
FISH (Hybridization of probes) 

↓ 
detection of FISH-probes 

and detection of 

biotinylated antibody with 

avidin 

↓ 
good signal intensity, 

staining pattern seemed to 

be somehow affected by 

FISH treatment 

 

 

Primary histone lysine 

antibody 

↓ 
biotinylated Ab 

(important) 

↓ 
post fixation 1% FA/PBST 

(essential step) 

↓ 
Pretreatment 
(Gycerol, HCl, Formamide, 

pepsinization) 

↓ 
FISH (Hybridization of probes) 

↓ 
FISH detection and  

detection of  

biotinylated Ab 

↓ 
best results, no difference 

to cells whithout 

denaturation and HCl 

treatment was observed 

by visual inspection 

Table 2 



                 Methods and Protocols 
__________________________________________________________ 

                                                                                                                                              49 

Flow chart of different approaches for a new immuno-FISH protocol. The protocol which turned out to 

perform best is delineated in the right column. 

 

A comparison of morphology of nuclei and staining pattern after immuno-FISH could only be 

made with those achieved after IF. Incubation with the primary antibody at the beginning of 

the protocol and the detection of the biotinylated secondary antibody at the end makes it 

impossible to check whether changes occur during application of the immuno-FISH protocol. 
 

Equipment and solutions 
• Cells on coverslips 
• Fixative: formaldehyde 3,7%  
• Fixative: formaldehyde 1% for post-fixation 
• 4% BSA in 0,01% PBST 
• 2% BSA in 0,01% PBST 
• 0,5% Triton X-100 
• Antibodies: 
               - rabbit anti histone lysine methylation 

               - goat anti rabbit-Biotin 

               - Streptavidin Cy5 

               - sheep anti Dig-FITC 

               - goat anti Streptavidin-Bio 

• Glycerol 
• Tweezers, slides 
• Cot1-DNA 
• Centrifuge (1300rpm) 
• Coverslips (15x15mm) 
• Vacuum centrifuge, metal box 
• Ethanol 
• Labeled DNA  (40-60ng/µl) 
• X-paint probes (Dig-labeled) 
• Directly labeled BAC probes (Tamra and Texas Red) 
• 0.1xSSC 60°C, 2xSSC 37°C, 4xSSC 37°C 
• 50% formamide/2xSSC 
• Liquid nitrogen 
• 1N HCl  
• Shaker, Water bath 37°C 
• Heat block 76°C 
• Pepsin (49,5ml H2O + 0,5ml 1N HCl + 10µl Pepsin) 
• PBS/MgCl2 (95ml 1xPBS/5ml 1M MgCl2) 
• 2%BSA/4xSSC, 4%BSA/4xSSC 
• Nail polish  
• Antifade medium (Vectashield) 
• DAPI (stock solution 5µg/ml, final working solution 0,05µg/ml) 
 

Fixation 
1.    Cultivate cells on coverslips until they are about 50% confluent. 

2.    Fix cells in 3.7% FA for 10min. 

3.    Permeabilize cells in 0.5% Triton for 15min. 

4.    Block 10min in 4% BSA in PBST. 

5.    1.Ab (rabbit anti histone methylation, dilution 0.6:250 in 2% BSA in PBST)  

       1h at 37°C in the water bath. Add one drop mix (50µl for a 15x15mm coverslip) onto a  
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       piece of PARAFILM and place the coverslip cell-side down onto the drop. Incubate 1h at  

       37°C in a humidified chamber.  

6.    Wash 2x5min in PBST. 

7.     2.Ab (goat anti rabbit-Biotin, dilution 1:100 in 2%BSA in PBST) 

        45min at 37°C in the water bath. 

8.    Wash 2x5min in PBST. 

9.    Post-fixation 10min in 1% FA. 
10.  Incubate with 0.1N HCl for 10min (depending on cell type: in cases it might be better to 

       incubate 6-7min). Watch cells under the microscope to be sure that cells remain  

       attached to the coverslip. 

11.  Permeabilize again with 0.5% Triton for 5min. 

12.  Incubate in 20% Glycerol for 45 min. 

13.  Nitrogen step: 

       Take coverslips out of the glycerol and freeze it for a few seconds in liquid nitrogen until  

       you hear a snap. Let it thaw, dip it shortly in glycerol and freeze it again. Repeat these 

       steps 4-5 times. 

14.  Wash in 2xSSC for 5min. 

15.  Store coverslips in 50% FA/2xSSC for at least 24h, better 48h. 

16.  Wash 8min in 2xSSC. 

17.  Change to PBST. 

 

Pepsin treatment 
18.  Incubate 5min in pepsin (49,5ml H2O + 0,5ml 1N HCl + 10µl Pepsin). 

19.  2x5min in PBS/MgCl2 (95ml 1xPBS/5ml 1M MgCl2). 

20.  Post-fixation 3min in 1% FA. 

21.  Wash 3min in 1xPBS. 

22.  Wash 8min in 2xSSC. 

23.  Store 2h in 50% FA/2xSSC. 

 

Hybridization 
24.  Put hybmix on your slide place the coverslip with cells on it and seal it with   

       fixogum. 

25.  Wait about 20min until the fixogum is dried completely (flat and transparent). 

26.  Denaturation at 76°C on the hot block. 

27.  Incubation for 48h at 37°C in the water bath. Remove coverlips very carefully under fluid  

       (2xSSC) to avoid cell damage. 
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Post hybridization washings and detection 
28.  Wash 3x3min in 2xSSC (from now on take care that coverslips are not exposed to any  

       kind of light sources). 

29.  Wash 4x3min in 0.1xSSC. 

30.  4xSSC for 1min. 

31.  Block 10min in 4% BSA/4xSSC  

32.  sheep anti Dig-FITC (dilution 1:100 in 2% BSA/4xSSC)  

       45min in a wet chamber at 37°C in the water bath. 

33.  Wash 2x5min  in 4xSSC 

34.  Use additional Ab.layers  for FISH-detection if necessary (to enhance signals). 

35.  Change to 1xPBS (because of the Streptavidin ab.). 

36.  Detection of immunostaining: 

       (Strept)avidin Cy5 (dilution 1:200 in 2%BSA in PBST). 

       45min in a wet chamber at 37°C in the water bath. 

36.  DAPI-counterstain in PBS (1:100). 

37.  Stain with DAPI for 3min. 

38.  Put vectashield on your slide and seal with nail polish. 

Note: 
- A test revealed that Streptavidin Cy5 worked perfectly together with the sheep anti Dig ab.    

  in 2% BSA/2xSSC. 

- To get a higher Cy5 signal intensity:  

  goat anti Streptavidin-Biotin (dilution 1:200) detect this ab. with Streptavidin Cy5 as  

  described above. 

- The Biotin-antibody detection should be always carried out at the end, otherwise the   

   immunostaining gets clearly worse. 

 

3.11 Chaetocin treatment 

Chaetocin was recently described as a specific inhibitor of the histone methyltransferase 

Suv39h1 (Greiner et al., 2005). Treatment of cells with Chaetocin was performed to study its 

effect for spatial distribution of SUV39h1 mediated H3K9me3 methylation. 

 

3.11.1 Calculation of the molarity out of the Chaetocin concentration 

Concentration of the stock solution: 5mg/ml = 5g/l 

MW (has to be known): 697 

→ 1Mol = 697g 
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     1Mol = 697g/l        xMol = 5g/l      xMol = 1Mol x 5g/l / 697g/l- 0,00717M =7,17mM 

Consider dilution factor! It might be appropriate to make an intermediate dilution step. 

 

3.11.2 Experimental Chaetocin setup 

Equipment and solutions 
• Cells on coverslips 
• Incubator, 37°C 
• Fixative: formaldehyde 3,7% 
• 6 or 12 well plate  
• Appropriate medium 
• Chaetocin (stock solution: 5mg/ml , working solution: 0,01µM) 
• Medium (see appendix) 
• All further equipment and solutions already listed under 3.9 
 

 

1.  Seed cells in a 6 or 12 well plate, on coverslips, with about 40-50% confluence. 

2.  Put cells in the incubator at 37°C. 

2.  Let cells attach to coverslip for about 2h. 

3.  Add Chaetocin in the appropriate dilution (Always think of a negative control e.g. let cells  

     grow in DMSO. Use a high Chaetocin dilution as a positive control). 

4.  Fix cells after 3 days with 3,7% FA. 

5.  Proceed with immunostaining as described in 3.8. 

 

Note: -The inhibition potency of Suv39H1 generated by Chaetocin treatment is negatively 

           correlated to the density of the seeded cells. 

          -Dilute Chaetocin in the same medium as the cells grow. 

 

3.12 Microscopy 

3.12.1 Transmitted light microscopy 

 

Transmitted light microscopy was used to 

a) monitor the status of cultured cells. 

b) control the procedure of scratch transcription labeling. 

 

Transmitted light microscopy can provide valuable information about the state of cells and at 

higher magnification even of cellular substructures. The used microspcope was the Axiovert 

25C from Zeiss. It is very easy to handle and no special cell treatment of any kind (e.g. 

fluorescence staining) is necessary to asses cells. Due to its low light excitation the cells in 

culture flasks are not at risk of any damage.  
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3.12.2 Epifluorescence microscopy 

Because of its selectivity (only objects of interest in an otherwise black background are 

visible), fluorescence imaging has become the mainstay of microscopy in many biological 

disciplines. For further information read the review by Lichtman and Conchello (Lichtman and 

Conchello, 2005). 

Epifluorescent microscopy was used in this work to 

a)  check success and quality of FISH and immunofluorescent experiments. 

b)  take widefield pictures for documentation of experiments with a CCD-camera.  

For all experiments a Zeiss Axiophot 2 microscope was used, equipped with a Coolview 

CCD camera with a spectral response of 400-900nm and a CCD chip resolution of 753x576 

pixels.  

 

3.12.3 Confocal-laser-scanning microscopy 

Compared to conventional epifluorescence microscopy confocal microscopy shows a much 

better axial resolution. The reason is that instead of using widefield illumination, focused 

laser beams scan the specimen exciting only small areas at a time. In combination with using 

a pinhole in front of the detection device this step by step illumination excites and detects 

much less fluorescent entities that are not within the focus plane, resulting in highly 

decreased out of focus blur (for details on confocal microscopy and applications see 

(Conchello and Lichtman, 2005; Pawley, 2006). 

In the present work, confocal-laser-scanning-microscopy was used for image recording 

concerning all quantitative evaluations.  

Although confocal microscopy has a lot of advantages, it also suffers from limitations. A 

detraction is the high amount of excitation light required to produce a confocal image. So at 

least in some cases the excitation light which is necessary to obtain satisfactory 3D images 

bleaches the dye or fluorochrome. Although confocal images are affected to a much lesser 

extent by out-of-focus light than wide-field images they are still hindered by out-of-focus light. 

And it is very hard, especially for complex structures or patterns, to set the appropriate 

threshold. To facilitate this user based thresholding all 3D confocal data set were 

deconvolved before applying evaluation of any kind. 

 

The following tables contain some typical parameters that were used for the Zeiss LSM 410 

and the Leica SP2 microscopes (table 3 and 4). 

Objective 63x plan-apochromat 1,4x oil 

Voxel size (x,y,z) 66x66x200nm  and  88x88x200nm 

Image size 256x256 



                 Methods and Protocols 
__________________________________________________________ 

                                                                                                                                              54 

Average  4 

Color depth 8 bit 

Table 3       Parameters for Zeiss 410 LSM 
 

Objective HCX PL APO 63x1,4 oil 

Voxel size (x,y,z) 60nmx60nmx160nm 

Image size 512x512 

Average 4 

Color depth 8 bit 

Pinhole 0,99 

Table 4       Parameters for Leica SP2 

 

3.13 Deconvolution 

3.13.1 Deconvolution in general 

The image formed by a conventional widefield fluorescence microscope contains light from 

throughout the specimen. This out-of-focus light confounds detection of what is actually 

present in the focal plane. Because this out-of-focus haze contributes significantly to 

background its removal is the task of 3D microscopy, thereby improving image contrast. This 

problem is partly solved in confocal microscopy by positioning a pinhole in front of the 

detector that most of the light passing through the pinhole derives from the focal plane but 

not from surrounding regions. 

In this thesis the majority of pictures was produced by confocal microscopy. Stacks of single 

optical light sections comprising the complete 3D object per channel were recorded. Images 

are built up as a matrix of pixels in grey values from 0-255 in 8-bit pictures (indicating the 

depth of colour). All evaluation methods used required a threshold setting to separate true 

signal from backround blur. Despite the fact that automated thresholding algorithms have 

been developed, in the case of complex staining patterns (e.g. lysine methylation) 

investigated in this work, setting of thresholds by the user was unavoidable. This means that 

the person who sets thresholds needs a lot of experience with the respective antibodies and 

their patterns to distinguish between true signals and disturbing background, especially if 

images exhibit a low signal to noise ratio. 

In optics, the term “deconvolution” is used to refer to the process of reversing the optical 

distorsion that takes place in a microscope to create clearer images. One gets the best 

picture by the assumption that a theoretical point source of light is in an optically perfect 

instrument, convolved with a point spread function (PSF), that is, a mathematical function 

that describes the distortion in terms of the pathway this point source takes through the 
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instrument. Usually each point source contributes to a small area of fuzziness to the final 

image. If the appropriate PSF can be determined, it is only a matter of computing its 

complementary function and convolving the aquired image with it, resulting in the original, 

undistorted image. With the introduction of deconvolution techniques (Shaw and Rawlins, 

1991) and their incorporation into commercially available software modules a powerful tool 

for image restoration emerged. 

But unfortunately this is only theory, in practice it is impossible to find the true PSF and even 

a good approximation to it is difficult. Real optics may have different PSFs at different focal 

and spatial locations. Finally the accuracy of the approximation of the PSF will dictate the 

result. 

Deconvolution provides a similar exclusion of out of focus blur as confocal microscopy but 

the mechanism is not based on technical regulation (pinhole) but mathematical processing 

by a computer.  

Using co-localization analysis, it was shown by different groups that deconvolution enhances 

the image quality also of confocal images (Landmann, 2002; McNally et al., 1999). The 

combination of confocal microscopy and deconvolution improves resolution beyond what is 

generally attainable by either technique alone. Thereby the benefit is a lower noise level and 

a higher contrast in confocal images which makes it for the user much easier to set 

thresholds. 

 

3.13.2 Deconvolution setup 

 

Artifacts in deconvolution analysis 
The sources of image degradation can be devided into four independent phenomena: noise, 

scatter, glare and blur. The task of deconvolution is in principle to remove the out-of-focus 

blur from images. 

After application of a chosen deconvolution algorithm (maximum likelyhood estimation 

implemented in Huygens software), the restored images can show apparent aberrations such 

as striping and ringing. Artifacts can also occur when processing parameters (pinhole, quality 

criterion and number of iterations) are not configured correctly for the raw image. 

The height of the backround level crucially influences co-localization analysis often used in 

this thesis and impairs image quality in at least two respects. First it affects resolution, as the 

high frequency image components are generally of less intensity than the low frequency 

ones. Second low intensity signals are lost and image details appear obscure. This 

backround noise is caused primarily by three components: electronic offset, stray light and 

blur from a specifically labelled part of the object (Sheppard and Török, 1997). 
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But often they are not caused by computation, but by histology, optical misalignement or 

electronic noise. To find the source of an artefact they first step should always be a 

comparison of the deconvolved and the raw image. 

 

The point spread function 
The concept of a three-dimensional PSF is of fundamental importance to understand the 

model of blur and finally pave a way to avoid imaging artifacts. It is based on an infinitely 

small point source of light originating in the specimen space. Because in the microscope only 

a fraction of the light emitted by this point is collected, it cannot focus the light into a perfect 

three-dimensional image of this point. Instead the point appears widened and spread into a 

three-dimensional diffraction pattern. Depending upon microscope system (transmitted light, 

widefield and confocal), the PSF has a different and unique shape and contour. 

The point spread function can be defined either theoretically by utilizing a mathematical 

model of diffraction, or empirically by aquiring a three dimensional image of a fluorescent 

bead. The latter option was chosen for our approach. A theoratical point spread function 

generally has axial and radial symmetry.  The PSF is symmetric above and below the x-y 

plane (axial symmetry) and rotationally about the z-axis (radial symmetry). But a PSF based 

on fluorescent bead measurement can deviate significantly from symmetry (figure 12). The 

deviation is in this case due to irregularities or misalignements in any components such as 

mirrors, beamsplitters, filters, tube lenses and apertures. That means the higher the quality of 

the optical components the closer the empirical PSF comes to ideal symmetrical shape. 

 
Figure 12                                                                           Pictures of PSFs by courtesy of Heiner Albiez 
A and B PSFs of a fluorescent bead measured at our confocal Leica SP2 microscope. Diffraction rings (in A) are 

visible from top view, displayed by different gray values (different colours). 
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C Three dimensional contour of the point spread function of a high NA microscope objective (taken from 

wwwmc.bio.uva.nl/UploadImages)  

 

Statistical Iterative Algorithms 
The family of iterative algorithms uses probabilistic error criteria borrowed from statistical 

theory. The Huygens deconvolution software from SVI (http://www.svi.nl/) uses the maximum 

likelihood estimation (MLE). Statistical algorithms are more time consuming than classical 

methods and can take significantly longer to reach a solution. But they restore images to a 

higher degree and produce better results on noise images. 

Despite many advantages of deconvolution mentioned in the text above, a not small number 

of experts still doubts the power of this method and the debate about artefacts and true 

restoration of images goes to the next round (Markham and Conchello, 2001). 

 

Measuring PSFs 
About 10 fluorescent nano-spheres (Huygens decides which beads can be used, so make 

sure to have enough beads for each colour) with 175nm (PS-speck Microscope Point-

Source-Kit, Molecular Probes) were measured for each laser line. The voxel size xyz should 

be 50nmx50nmx120nm, at least less than xy-70nm and less than 150nm in z. Use average 

mode 4x and try to scan at least 40-50 sections to get all the diffraction rings. Therefore the 

beads were seeded on coverslips separately, dried and embedded in Vectashield. Directed 

by the “Huygnes Essential User Guide” (http://www.svi.nl/download/guides.php) all 

parameters required for PSF distillation and for deconvolution procedure were adjusted 

(Table 5). For further information read Albiez et al. 2007 (in prep.) and (Wallace and Orr-

Weaver, 2005). 

 

General parameters for Huygens  

Numerical aperture of the used objectives (63xoil objective) 1.4 

Lens medium (immersion oil) refractive index 1.518 

Medium refractive index (Embedding medium-Vectashield) 1.457 

Voxel size (x-y-z)  

Zeiss LSM 410 50x50x200nm 

Leica SP2 60x60x150nm 

Excitation wavelength of the used lasers  

Zeiss LSM 410 488nm, 543nm, 633nm 

Leica SP2 405nm, 488nm, 561nm, 633nm 

Emission wavelength  

According to the used fluorochromes DAPI:461nm, FITC:519nm 

Alexa488:520nm, Cy3: 565nm, 
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Cy5:670nm, To-Pro-3: 661nm 

According to the signatures of the used nano-spheres for 

PSF generation 

“blue”:440nm, “green”: 

515nm, “orange”: 560nm, “far-

red”:660nm 

Size of backprojekted pinhole according to used laser 
wavelength and microscope 

 

Zeiss LSM 410 315nm (for 488nm-, 543nm- 

and 633nm-laser line) 
Leica SP2 176nm (for 405nm laser line), 

213nm (for 488nm laser line), 

244nm (for 561nm laser line) 

and 276nm (for 633nm laser 

line) 

Excitation photon count 1 

Bleaching correction off 

Iteration mode High quality 

Table 5   General parameters for Huygens 

 

Important steps for application of  deconvolution 

Signal to noise ratio 
This value is judged on the image quality and can adopt values from <10 (=noisy), 10<20 

(=moderate noise) and >20 (=low noise). The data sets, investigated in this study were all set 

to 30.  

 

Background estimation 
Background values were always adopted by Huygens estimation on the input raw images 

with the recommended “lowest-value”-tool 

 

Maximum iterations 
Deconvolution by the iterative Maximum-Likelihood Estimation alogorithm is a in principal 

endless preocedure. A stopping criterion has to be assigned to stop the calculation and to 

avoid obvious artifacts by deconvolution. Based on experience and on comparison between 

raw data and deconvoluted images we did not apply more than 10 iterations. Ahigh number 

of iterations can produce artifacts. These are probably caused by over- or underestimations 

of some of the values of deconvolution parameters (Conchello and Lichtman, 2005; 

Markham and Conchello, 2001). 
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Quality threshold 
Another quality characteristic is the quality level at which deconvolution is stopped. As soon 

as the quality between the previous image and the subsequent one is not more increasing as 

predetermined in this criterion, the whole procedure stops. The quality threshold was set in 

all cases at 0.1.  

3.13.3 The impact of deconvolution on image restoration 

 
Figure 13 
 
Single sections of a 5-colour immuno-FISH 

experiment before (column A1-A5) and after 

deconvolution (column B1-B5): 

A1,B1 shows DAPI-counterstain, 

A2,B2 H3K27me3 antibody staining, which marks 

the inactive X but displays also a foci like pattern 

throughout the nucleus. 

A3,B3  shows X-chromosome paints 

The active X-chromosome appears much more 

bigger and decondensed than the inactive X-

chromosome. 

Examples for distinct changes in the patterns after 

deconvolution are highlighted by white arrows. 

After deconvolution sub-structures emerge (holes 

in the paints, arrows in A3,B3) 
A4 and B4 show BACs with weakly expressed 

genes 

A5 and B5 show BACs with mid-expressed genes 

 

 

 

 

 

 

 

 

 

The impact of deconvolution is clearly visible in all 

channels. Background blur and noise are reduced 

to a minimum and contrast is enhanced thereby 

highlighting smaller structures that can be seen 

hardly in raw images. 
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Substructures which are hardly to identify in the raw images, emerge more clearly and with 

sharpened edges after deconvolution (figures 13 and 14). Examples are shown for a five-

color immuno-FISH experiment in figures 13. In figure 14 a magnification of the inactive X-

chromosome before and after deconvolution is delineated to exemplify the power of this tool. 

This makes it much more easy for the user to set thresholds which often turned out to be the 

most critical step in evaluation programs like co-localization analysis (figure 15).  

The grainy signals shown for DAPI-counterstaining, H3K27me3 staining and chromosome 

paints (figure 15) make it difficult to set an appropriate threshold (figure 15, A1-A3). After 

application of deconvolution signals appear as well defined structures which facilitates 

significantly to distinguish between signals and background (figure 15, B1-B3). Through this 

clear separation it is much easier to determine thresholds. 

 

 

 
Figur 14 
The figure shows a typical H3K27me3 staining in a HFb-nucleus. The inactive X is magnified and structures that 

appear after deconvolution are marked by white arrows. 

A H3K27me3 before deconvolution: in the raw image blur and higher backround is obvious.    

B H3K27me3 after deconvolution:  blur and background noise are clearly reduced. In contrast to the raw image 

the consistency of substructures can be seen. 

Both pictures are single confocal mid sections of a HFb-nucleus, bar indicates 5µm 
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Figure 15 
The upper row (A1-A3) shows raw data of mid sections of HFbs with thresholds which I would set to separate 

signals from background. Raw signals appear more grainy in all three channels compared to the deconvolved 

images (B1-B3). For the DAPI channel (A1) a threshold 40 grey values higher than for the deconvolved picture 

has to be set to achieve a similar signal indicating noise reduction after deconvolution. The raw pictures of 

H3K27me3 (A2) and X-chromosomal paints (A3) show clear graining. The same picture after deconvolution 

shows the chromosome territories more distinct and with sharpened edges.  
 

 

3.13.4 The consistency of evaluation results at different thresholds  

 

To test whether the results of the co-localization analysis were reliable co-localization 

analysis with deconvolved images was performed over a wide threshold range in steps of 

five (figure 16). The analysis was exemplified for H3K4me3 with paints (example for a big 

object) on the one hand and for BAC signals (small object) on the other hand. The applied 

thresholds were relatively low because deconvolution of images already took a considerable 

amount of signal intensity. The absolute co-localization values of H3K4me3 with #18 paints 

on the one hand and BACs containing highly expressed genes on the other hand deviated 

from each other because of their different properties (see chapter results figure 40 and 43). 

Despite co-localization values for thresholds 30 and 60 are very different for both CT#18 and 

BACs one should keep in mind that values divergate not too much from one threshold step to 
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the next (between 30 and 60 not more than 6% in all 

cases). Given that thresholds 30 and 60 are not 

appropriate it is convincing that if a threshold is not 

set totally wrong the achieved results are 

acceptable. However it is important for the user to 

get experience with histone methylation patterns to 

decide what is the appropriate threshold. Using a 

reasonable amount of nuclei a statistical error can 

be minimized. 

To summarize the findings described above, taking 

the Manders coefficient for evaluation in co-

localization analysis was an acceptable approach. 

 

 

 

 

 

 
 
Figure 16 
 

Test of the consistency of co-localization analysis results over a 

range of thresholds for BAC signals and chromosome 18 paints 

with H3K4me3. The Manders coefficient M reflects the 

percentage of overlapping volume of  the chromosome 

territories HSA #18 and highly expressed genes respectively 

with the H3K4me3 staining pattern. All images were 

deconvolved before co-localization analysis. Despite drastic 

changes concerning the amount of voxel in the H3K4me3 signal 

that contributes to co-localization analysis, the deviation in per 

cent from one threshold step to the next is reasonable and 

proofs the choice of this evaluation method right for these kind 

of experiments. 

 

 

 

Bar indicates 5µm 

Note: The applied thresholds in the displayed images was 50 for 

CT #18 and 70 for highly expressed genes in all cases. 
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3.14 Image processing 

3.14.1 Documentation and shift correction 

For documentation purposes images were processed using Adobe Photoshop version 7.0 or 

Image J version 3.29 and 3.30. Usually in Image J only slight grey levels adjustments and 

false color assignments were performed on the raw images. 

To measure the axial shift, image stacks of multi-fluorescent beads were collected using a 

very small z-step size (~50nm). Then the particular z-step position of the frame showing the 

biggest diameter of an individual bead within the stack was determined for each fluorescence 

channel and compared. The difference in this z-step position was then multiplied by the step 

size to give the z-shift in nm. This was repeated for several individual beads and the mean 

was calculated. Lateral shift was negligible.                                          

 

3.14.2 Photoshop and Image J  

Adobe photoshop is the world market leader for professional image manipulation. It shows 

a big number of options to edit and arrange pictures. In this thesis photoshop was used to 

arrange complex pictures and for the best presentation of signals, but never for any kind of 

evaluation.  

The public Java imaging processing program Image J can display, edit, analyze, process 

and save pictures with different colour depths. The raw data from our microscopes have the 

TIFF image formate which can be loaded in stacks as an image sequence. Now three 

dimensional measurements, analysis and processing functions, such as sharpening, 

smoothing, edge detection, and many more are possible. The program can measure 

distances and angles as well as line profile plots (line scans). In addition standard image 

processing functions as brightness/contrast, filtering, application of thresholding and grey 

value calibration are supported. With a huge number of plugins that are available the 

spectrum for image processing and analysis can be extended.  

 

3.14.3 Co-localization analysis 

Co-localization refers to different data analysis methods to characterize the degree of overlap 

between two signals and to investigate if two cellular targets (in this case nuclear targets) are 

located at least partly in the same spatial position. 

Different approaches exist for co-localization analysis. Thus an appropriate method 

according to the type of analysis has to be chosen. A requirement, which a co-localization 

software should provide for our purposes is an intensity weighted voxel-by-voxel analysis. 

Another need  is a certain statistical output, e.g. how many % of signal in channel A co-
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localize with signal in channel B and vice versa. Practically this approach has to face the 

problem that two signals can have different sizes, can co-localize to a different extent 

(completely, partly or not at all) and vary in their intensity distribution. 

Different coefficients are widely used in literature and should be explained exemplified by 

Paerson’s and Manders’ coefficients. Paerson’s coefficient takes into account the signal 

intensities and integrates for each voxel both gray values (channel one and channel two). 

Values of the Paerson’s coefficient range from -1 to +1 and can only be applied to a single 

population of signals which is not very common in biological problems. In this context 

interpretation of negative corellation is difficult. 

The values used for quantitative evaluation of co-localization in this work were based on the 

Manders coefficients M1 and M2 (Manders et al., 1993). Calculation of Manders coefficients 

was performed using an Image J plugin (figure 18). The evaluation of the degree of co-

localization of two channels was restricted to voxels that contributed to at least one of the 

channels after segmentation. These values measure the proportion of overlap between two 

channels relative to the total amount of signal contributing to each channel on a voxel based 

algorithm. The Manders co-localization coefficients M1 and M2 range from 0 to1 (0%-100%) 

and can be treated as indicators of the percentage of the summed up intensities of co-

localizing voxels in the two colour channels with regard to the summed up intensities of all 

voxels counted in the respective channel.  

 

Manders coefficients M1 and M2 
 

These coefficients are Mander’s co-localization coefficients for channel 1 (M1) and channel 2 

(M2). 

Split-coefficients avoid issues relating to absolute intensities of the signal, since they are 

normalized against total pixel intensity. We also get information about how far channels 

overlap with each other. There might be cases where red may overlap significantly with 

green (“red” and “green” were just used to define two different channels), but most of the 

green may not overlap with the red or vice versa. 

If the assumption is made that greyscale number equates to dye molecules (this is not 

necessarily correct) then these coefficients represent the percentage of red dye molecules 

that share their location with a green dye molecule. 

These coefficients are very sensitive to poor background correction and do not take into 

account the intensity of the second channel, other than it is non-zero. For example, a bright 

red pixel colocalizing with a faint green pixel is considered equivalent to a bright red pixel 
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colocalizing with a bright green pixel. Intuitively, a red-green pixel-pair of similar intensities 

should be considered “more colocalised” than a pixel pair of widely differing intensities. 

The plugins generate scatter plots plus correlation coefficients. In each scatter plot, the first 

(channel 1) image component is represented along the x-axis, the second image (channel 2) 

along the y-axis (figure 17). The intensity of a given pixel in the first image is used as the x-

coordinate of the scatter-plot point and the intensity of the corresponding pixel in the second 

image as the y-coordinate. 

 

 

Figure 17 

A shows a typical H3K27me3 staining pattern, B paint signals of the X-chromosomes. Co-localization analysis 

was performed for the Xi (visualized by paint probes and identified by conformity of paint and ab. staining) and the 

H3K27me3 pattern. The result is mirrored by the color scatterplot on the right. Yellow colour represents overlay of 

the channels 1 (red=H3K27me3) and 2 (green=Xi paint). The corresponding Manders coefficients are M1: 0.144 

and M2: 0.887. The Manders values range from 0-1 this means in this case: all voxels above a distinct threshold 

in one channel colocalize with all voxels above a certain threshold in the other channel. In other words, 88,7% of 

the Xi-paint signal colocalize with the ab. staining and 14,4% of the antibody staining colocalize with the Xi-paint 

signal. Shown are single confocal mid sections after deconvolution of a HFb nucleus. Bar indicates 5µm 
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Figure 18 

Path in Image J for calculating Manders coefficients out of two diffrent image stacks. Before application stacks are 

shift corrected, deconvolved and a manuel threshold was applied. 

 

The intensities of each pixel in the “Correlation Plot” image represent the frequency of pixels 

that display those particular red/green values. Since most of the image will probably be 

background, the highest frequency of pixels will have low intensities so the darkest pixels in 

the scatter plot are in the bottom left hand corner – i.e. x~ zero, y ~ zero while the brighter 

pixels can be found in the upper right area of the scatter plot. The intensities in the “Red-

Green correlation plot” image represent the actual colour of the pixels in the image. 

Quantitative analysis removes user bias by analyzing all the pixels based on of their intensity 

(it must be noted that some authors consider this a drawback rather than an advantage due 

to the intrinsic uncertainty of pixel intensity; see Lachmanovich et al. (Lachmanovich et al., 

2003). The path for calculating Manders coefficients in Image J is delineated in figure 18. 

One key issue that can confound co-localization analysis is bleed through. Co-localization 

typically involves determining how much the green and red colours overlap. Therefore it is 

essential that the green emitting dye does not contribute to the red signal (typically, red dyes 

do not emit green fluorescence but this needs to be experimentally verified). One possible 

way to avoid bleed-through is to acquire the red and green images sequentially, rather than 
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simultaneously (as with normal dual channel confocal imaging) and the use of narrow band 

emission filters.  

Qualitative analysis can be thought of as "highlighting overlapping pixels". Although this is 

often given as a number ("percentage overlap") suggesting quantification, the qualitative 

aspect arises when the user has to define what is considered "overlapping". The two 

channels have a threshold set and any areas where they overlap is considered "colocalised". 

Qualitative analysis has the benefit of being readily understood with little expert knowledge 

but suffers from the intrinsic user bias of "setting the threshold". There are algorithms 

available which will automate the thresholding without user intervention but these rely on 

analysis of the image's histogram which is subject to user intervention during acquisition. 

The confocal image stacks had to be shift corrected first. After that they were deconvolved 

(described in 3.13) and processed to separate “true” signals from backround signals.  

The deconvolution of confocal images can have a profound impact on co-localization 

analysis  (Sedarat et al., 2004). But in-depth investigations demonstrated that co-localization 

analysis shows clearly superior results after image restoration (Landmann and Marbet, 

2004).  

The deconvolution and processing of pictures makes it much easier for users to set the 

appropriate threshold.  

 

3.14.4 Amira 3D reconstruction 

3D reconstructions were generated using the software Amira (TGS) version 3.1.1, by surface 

rendering image stack data. The basic principle is that a surface is generated separating 

voxels beyond and above a certain subjectively set threshold. To improve the signal/noise 

ratio in order to facilitate threshold determination and to smooth signal boundaries, image 

stacks were modified using a 3D Gaussian filter, with a kernel size of 2. The threshold was 

chosen in a way that the generated surface would be aligned with the grey level images in 

the individual sections as close as possible, but without losing smaller, weaker signals. 

It is important to mention, that Amira reconstructions were just used to illustrate the results, 

but never any kind of evaluation was performed with this program. 
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3.14.5 Radial autocorrelation (RAC) function analysis 

 

To quantify the degree of clustering or spreading of the histone lysine immunofluorescence 

staining, an autocorrelation approach as described in Walter et al. (Walter et al., 2003)  was 

applied. For each nucleus a maximum intensity projection of five central optical sections was 

generated. An intensity threshold value, which separates the signal from the background, 

was determined for each projection by visual inspection, and the threshold value was 

subtracted from all intensity values in the projection. 

The relative distance between all possible pairs of pixels (i and j) was calculated as 

  
d(i, j) = 1
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ixr , jxr : the positions of pixels i and j. 

refl : reference length: the length of the long axis of the elliptically shaped nuclei 

Using a plugin for Image J the radial autocorrelation function (RAC) of an image was 

calculated as 
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dRAC  , with 

d  : the starting value of a relative distance interval; d = 0, 0.02, 0.04, ..., 1 

d  iI , jI : fluorescence signal of pixels i and j (minus the threshold intensity) 

 

The RAC is an intensity-weighted measure that reflects how many pairs of pixels fall into 

each relative distance interval. 

 

3.14.6 Evaluation procedure in Chaetocin experiments  

After Chaetocin treatment drastic changes in H3K9me3 pattern formation were observed in 

HFbs but not in the cancer cell-lines MCF-7 and DLD-1. To evaluate these changes in 

chromatin formation a good evaluation strategy was required. In HFbs H3K9me3 forms 

unspectacular small clusters which change to very big clumps after Chaetocin application. 

However MCF-7 cells show big clusters of constitutive heterochromatin in treated and 

untreated cells. The task was to find an evaluation method that allowed to investigated big 

staining signals (H3K9me3 clusters). The decision was made to take the volume of objects 

as a criteria for this evaluation. To eliminate the threshold problem as a major source of 

error, measurements in nuclei of HFbs was made threshold independently over a range from 
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0 to 100 in steps of five. All images were deconvolved in advance so a lot of backround noise 

was already removed and therefore led to lower overall gray value intensities. The evaluation 

was performed with the freeware program Image J. The plug-in 3D objects counter provides 

amongst other things the volume of objects assessed by the number of voxels contributing to 

one object. To plot the results in a diagram and to get the best information out of the data, 

two groups of objects with different size were defined. The first group comprised objects 

>500 voxel while the second group consisted of objects >1000 voxel. These parameters 

served as criteria for the judgement of cluster formation in the respective cell-lines. A flow 

chart that describes how the evaluation was performed in detail is delineated in table 6.  

 

All raw images were devonvolved before the evaluation was started. 

↓ 
An image stack of the channel which contained the H3K9me3 signal was opened in the 

Image J program. 3D object counter calculated the volume of all objects over a threshold 

range from 0-100 in steps of five for each respective TH.  

↓ 
All values were copied into an excel table where the number of objects for each TH step 

belonging to one of the two groups, >500 voxel and >1000 voxel, was counted. 

↓ 
Mean values of the object number belonging to one of these groups were calculated per TH 

step for all nuclei that were part of the evaluation (the number of nuclei used for evaluation 

varied between 8 and 12). 

↓ 
Point diagrams were created using Microsoft excel software which delineated the number of  

objects >500 and >1000 voxel at different thresholds. 

 

Table 6    Flow chart of the evaluation procedure after Chaetocin treatment 

 
As deduced from the evaluation experience made with HFbs, evaluation for values at 

thresholds 25 and 35 were regarded as sufficient. These thresholds proofed to be 

representative in the case of HFbs to show that the pattern size in cells after drug application 

is different from untreated control cells. 

One the one hand the diagrams provide information about potential differences of the cluster 

size in treated and untreated cells, on the other hand curve progression mirrors the integrity 

and intensity of heterochromatin clusters.  
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4 Results 

4.1 Nuclear patterns of distinct histone methylation sites 

4.1.1 Methylation sites and their arrangement in regard to centromeres 

The staining patterns of various lysine methylation sites in three human cell types, diploid 

fibroblasts as well as two common cancer cell-lines (DLD-1 and MCF-7) was compared in its 

3D context to DAPI-counterstaining on the one hand and centromere signals on the other 

hand. All nuclei shown in figures 19 and 20 show nuclei of cycling cells as identified by Ki-67 

staining. 

 
Figure 19 
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Histone lysine methylation patterns of H3K4me3, H4K20me1 and H3K9me1 (green) together with centromeres 

(red) after immunostaining and nuclear counterstain with TO-PRO-3 (blue) in DLD-1, MCF-7 and HFb cells. Insets 

show representative areas at a higher magnification (left panel antibody and DNA, right panel antibody and 

centromeres).  

In most cases centromere signals are clearly separated from chromatin sites marked by the respective antibodies 

(A,B,D,E,G-I) in accordance with their functional assignment to active chromatin. Small overlapping sites can be 

seen in (C) and (F). H3K4me3 is predominantly located within chromatin areas of low staining intensity with TO-

PRO-3 (A-C). A similar distribution within low compacted chromatin is observed for H4K20me1 (D-F), while a 

considerable fraction of H3K9me1 stained chromatin is found in TO-PRO-3 dense areas (G-I). All pictures display 

a projection of five confocal mid-sections (comprising a thickness of 1µm) of a nucleus. All images are 

deconvilved. Bar indicates 5µm 

 

The specificity of all used antibodies (except H3K4me3 which was commercial and no 

peptides against this antibody was raised have been available) was tested accurately as 

described in 3.7. H3K4me3 which was allocated to actively transcribed chromatin (Santos-

Rosa et al., 2002) forms a nuclear network in all cell types (A-C). The antibody signals were 

more (A, B) or less (C) found in areas of low TO-PRO-3 staining. In humans this 

counterstaining dye stains predominantly A-T-rich sequences and is concordant with DAPI. 

Accordingly very little staining was found in the proximity of centromeres, around nucleoli and 

at the nuclear rim. 

A quite similar pattern was observed for H4K20me1 (D-F) which also expanded as a 

reticulation throughout the nucleus with very little overlapping to centromeres. But in 

comparison to H3K4me3 more overlap with TO-PRO-3 dense regions was observed. 

Unexpectedly about 25% of all cells had a distinctly higher staining intensity than the rest of 

the cells. This fraction likely represents nuclei between S and G2-phase as identified by Ki-

67 staining and estimated by cell size (data not shown). Those differences within a cell 

population were not observed at any other antibody pattern. 

Rice and colleagues assigned H3K9me1 to “silent domains of euchromatic regions” in mouse 

cells where it was found throughout the nucleus but excluded from DAPI-dense regions and 

nucleoli (Rice et al., 2003). Accordingly in the three human cell types examined here the 

antibody pattern appeared in small foci all over the nucleus (G-I) but in contrast to H3K4me3 

and H3K9me1 the staining was predominantly found in TO-PRO-3 dense regions. 
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Figure 20 
Histone lysine methylation patterns of H3K27me3, H4K20me3 and H3K9me3 (green) linked to repressed 

chromatin together with centromeres (red) after immunostaining in DLD-1, MCF-7 and HFb cells. Nuclei are 

counterstained by TO-PRO-3 (blue). Insets show representative areas at a higher magnification.  

For H3K27me3 stained chromatin no overlapping with centromeres is visible in neither cell type (A-C). A distinct 

staining pattern at the nuclear periphery and around nucleoli is observed in DLD-1 and in MCF-7 cells (A,B). The 

staining of Xi in HFb is marked by an arrow (C). A strong association of centromeres with both H4K20me3 and 

H3K9me3 is shown for all cell-lines (D-I). Moreover the signals of these two antibodies co-localize mostly with 

DNA dense regions (TO-PRO-3, blue). All pictures display a projection of five confocal mid-sections (comprising a 

thickness 1µm) of a nucleus. All images are deconvolved. Bar indicates 5µm 
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The most prominent example of facultative heterochromatin is the inactive X-chromosome. 

Its association with H3K27me3 is demonstrated for female human fibroblasts (C, white 

arrow). Furthermore the foci like H3K27me3 pattern is distributed throughout the nucleus 

with an accentuation of the nuclear periphery and around nucleoli. It shows, if any only small 

overlap with centromeres. Staining of the inactive X-chromosome was lacking not only in 

male DLD-1 cells as expected but also in the female breast cancer cell line MCF-7 where X-

chromosomes escape inactivation (Ganesan et al., 2002). 

An interconnection of H3K9me3 and H4K20me3 as well as an assignment to constitutive 

heterochromatin has been shown for several species and cell types (Bannister and 

Kouzarides, 2004; Kourmouli et al., 2004; Lachner et al., 2003; Martens et al., 2005). In 

accordance to this we could show for all cell types a close spatial association of centromeres 

with both H3K9me3 and H4K20me3. Both modifications showed cluster formation around 

centromeres but there were also small foci uniformly distributed in the nucleus.   

4.1.2 Overlap assessment between centromeres and histone modifications 

 
Figure 21 
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Quantitative assessment of overlap between centromeres (upper graph, red) and chromatin modified at different 

methylation sites (lower graph, green) represented as the percentage of the co-localizing volume for each color 

channel. Error bars show the standard deviation of ≥8 measured nuclei. Numbers without asterisks denote nuclei 

from cycling DLD-1 cells (1), MCF-7 cells (2) and human fibroblasts (3). Numbers with asterisks denote the 

overlap values for the respective cell types after exit of the cell cycle. 

 

To quantify the spatial correlation of histone modifications and centromeres the degree of 

overlap between centromeres and patterns of specific histone modification sites was 

evaluated in 10 nuclei for each methylation site and cell type (figure 21). The Manders co-

localization coefficients M1 and M2 of voxels representing centromere signals on the one 

hand and signals of histone modifications on the other hand were calculated (Manders et al., 

1993). Both coefficients indicate the percentage of the summed up intensities of co-localizing 

voxels in the evaluated two color channels with regard to the summed up intensities of all 

voxels counted in the respective channel. The values one gets from these coefficients range 

between 0 and 1 (or 0-100%, respectively), thereby indicating the percentage of the summed 

up intensities of colocalizing voxels in the two colour channels.  

The six different histone lysine modification already shown in figure 19 and 20 were 

investigated in DLD-1, MCF-7 and HFb (figure 21). For DLD-1 and MCF-7 cell-lines co-

localization analysis was separately performed for cycling and quiescent cells. 

H3K4me3 which stains actively transcribed chromatin regions and centromeres exclude each 

other and so consequentially the very low co-localization value is as expected. The 

percentage of overlap for H4K20me1 and H3K9me1 with centomeres was comparable to 

H3K4me3. H3K27me3 showed a minor increase in overlay. 

An explicit overlap between centromeres and histone methylation sites was found for 

H3K9me3 as well as for H4K20me3. Between roughly 40% and 70% of all voxels assigned 

to centromeres co-localized with either of these histone modifications (upper panel). There 

are no big discrepancies between the different cell types. However the overlap of all voxels 

assigned to H4K20me3 ranged between 5 and 25% and for H3K9me3 between 2 and 10% 

(lower panel). These data argue for the idea that centromeres delineated by CREST serum 

are at least partially embedded in constitutive heterochromatin visualized by 

H4K20me3/H3K9me3 staining. Vice versa these methylation sites cannot be regarded as 

restricted to centromeric heterochromatin. 
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4.1.3 Relation between different histone modifications and nascent RNA 

 
Figure 22 
Spatial relation between different histone lysine methylation sites (green) and nascent RNA (red) visualized in 

DLD-1 cells. The graphs on the right of each image show the quantitative assessment of overlap between 

nascent-RNA (red) and each histone methylation site (green) as the percentage of the co-localizing volume for 

each color channel. All images are deconvolved. Bar indicates 5µm 

To check whether distinct histone lysine methylation sites can be assigned to 

transcriptionally active sites, the spatial relationship between different methylation sites (the 

same six sites already investigated together with centromeres) and nascent RNA was 

analyzed. Cells were pulse labeled by application of Br-UTP scratch transcription labeling 

(Schermelleh et al., 2001) as described in 3.3. Representative mid-sections of merged 

confocal images for each histone modification and nascent-RNA are shown in figure 22. 

Attached are their respective co-localization coefficients M1 (Br-UTP labeled nascent-RNA, 

red) and M2 (histone methylation, green) from 6-8 investigated nuclei. As was expected the 

highest co-localization coefficient with nascent-RNA was found for H3K4me3 (A) (M1=40%), 
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confirming its connection to actively transcribed chromatin. Nascent-RNA displayed similar 

overlap to H4K20me1/H3K9me1 (B, C) as well as H3K27me3 (D) (M1=17%). Very low co-

localization coefficients were obtained for H3K9me3/H4K20me3 (E, F). This is as estimated 

because in constitutive heterochromatic regions only low transcriptional activity occurs. 

 

4.1.4 Pattern formation in cycling and quiescent nuclei 

While inspecting the histone methylation patterns in the epifluorescent microscope two 

different shaped pattern of H3K9me3 and H4K20me3 were eye-catching. The first idea was 

that the variable pattern formation depends on different cell cycle stages. MCF-7 cells 

providing the biggest and most distinct H4K20me3 antibody pattern were our choice for 

evaluation. Cycling MCF-7 cells were discriminated from quiescent cells by their positive 

pKi67 staining pattern. In both cycling and quiescent cells centromeres are in close contact 

and at least partially embedded in constitutive heterochromatin visualized by H4K20me3 

staining. In quiescent cells the heterochromatic clusters appear bigger and in a more ring-like 

structure (23 B) compared to cycling cells (23 A). Additionally cycling cells displayed more 

foci throughout the nucleus and remote from centromeres. For the other antibody patterns no 

difference between cycling and quiescent cells was observable by visual inspection. 

 
Figure 23 
3D reconstructions of chromatin patterns after H4K20me3 immunostaining (green) together with centromeres 

(red) in a nucleus from a cycling MCF-7 cell (A) and from a quiescent cell (B). In both nuclei all centromeres are 

spatially associated to H4K20me3 stained chromatin clusters, but show only partial embedding. H4K20me3 

clusters appear more dispersed in (A) compared to (B), where clusters frequently form ring-like structures. The 

inset magnifications point out in more detail the characteristic structure and spatial relation between H4K20me3 

and centromeres. The 3D reconstruction was made from deconvolved images.  Bars indicate 5µm 
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Figure 24 
Comparison of pattern formation between nuclei of cycling (left panel, red) and of quiescent MCF-7 cells (mid 

panel, green) after immunostaining with H4K20me1 (A), H3K27me3 (B), H4K20me3 (C) and H3K9me3 (D). All 

pixels above threshold are shown as red or green respectively.  

The graphs of the right panel illustrate the results of the applied radial autocorrelation function (RAC) summarized 

from ten nuclei each. The x-axis denotes relative distance intervals of the normalized nuclear length, the y-axis 

the percentage of pairs of pixels that fall into each relative distance interval (red curves = cycling cells, green 

curves =quiescent cells).   

Similar pixel distribution between cycling and quiescent cells was obtained for mono-H4K20 (A3). The curves of 

the H3K27me3 signals show a slight increase of larger distances in quiescent cells (B3). Differences in the small 

distances are observed for H4K20me3 and more pronounced for H3K9me3 stained chromatin between the red 

and the green curves (C3 and D3). The sharp peaks and consecutive drops of the green curves (marked with 
asterisks in C3 and D3) in contrast to the smoother red curves reflect the increase of small relative distances in 
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quiescent cells as a result of a more compact cluster formation. The shoulder within medium distance intervals 

together with the lack of relative distances > 0.8 indicates that the nuclear periphery is devoid of these big 

clusters. All images are deconvolved. Bar indicates 5µm. 

 

As evaluation method to assess the difference between cycling and quiescent cells the radial 

autocorrelation (RAC) function analysis described by Walter et al., (Walter et al., 2003) (see 

methods and protocols 3.14.5) was applied. The degree of clustering was evaluated for the 

following histone methylation sites: H4K20me1, H3K9me3, H3K27 and H4K20 (figure 24). 

Each of the four modifications in nuclei from ten cycling and ten quiescent MCF-7 cells was 

investigated. Therefore projections were made from five subsequent optical sections 

representing about 1µm of the middle part of a given nucleus. After threshold was set 

manually and normalization of the size of these projections was performed, 2D distance 

measurements were carried out between all possible pairs of pixels representing a distinct 

histone modification. Distance values were grouped into 50 intervals of increasing relative 

distances (corresponding to approximately 200-300nm for each interval). RAC was 

established  as a measure of the frequencies of pairs of pixels belonging to each interval. 

figure 24 (right panel) illustrates the results of RAC analysis summarized from ten nuclei 

each.  

As expected already from judgement by eye, no difference between cycling (A1, red) and 

quiescent (A2, green) cells was detectable as reflected by the almost identical curves in the 

graph A3. For H3K27me3 (B1 and B2) a small shift of the staining signals towards the 

nuclear periphery in quiescent cells seems to occur (B3). For both H3K9me3 and H4K20me3 

an increase in smaller distances was discovered. This result is mirrored in the respective 

graphs (C3 and D3) by the sharp peaks followed immediate by clear drops (marked by 

asterisks) and in contrast to the smoother curves shown for cycling cells. 

 

4.1.5 Interrelationship of different lysine methylation sites  

To test whether patterns of different histone methylation sites represent distinct nuclear 

zones, combinations of antibodies were performed by double immunostaining experiments 

(figure 25). Apart from that the following questions were addressed: share H3K9me3 and 

H4K20me3 which both represent constitutive heterochromatin the same 3D nuclear topology 

and can H4K20me1 be verified as a marker for active chromatin by co-localization with 

H3K4me3? Both pairs of these histone modifications displayed globally similar distribution 

patterns in single staining experiments (compare with figures 19 and 20). To compare 

histone modifications pairwise and directly in individual DLD-1 nuclei, a double 

immunostaining protocol had to be applied. This was necessary because all used primary 
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antibodies were raised in rabbit. Incubation with the second primary antibody was performed 

after complete blocking of the first primary antibody (see methods and protocols 4.9). 

Representative histone lysine methylation staining patterns in DLD-1 cells are shown in 

figure 25. The respective co-localization coefficients evaluated for ten nuclei per experiment 

are presented at the right side of each panel. Panel A shows a nucleus with H3K9me3 (A1, 

red) and H4K20me3 (A2, green) staining.  Signals in both channels appear distinct and show 

clear overlap with each other (visualized by yellow color in the overlay of red and green, A3). 

The overlap of these signals representing predominantly pericentromeric constitutive 

heterochromatin is also mirrored in the highest co-localization values of all combinations 

(A4). The high values, M1=31% for H4K20me3 and M2=53% for H3K9me3 reflect the high 

yet not complete overlap of the two modifications. However small chromatin foci stained with 

either H3K9me3 or H4K20me3 not associated with centromeric regions showed distinct 

signals for both channels. 

Panel B shows a nucleus with H3K4me3 (B1, “active”) and H4K20me1 (B2, ”potentially 

active”) stained chromatin foci. Numerous chromatin sites display overlap (B3, yellow color) 

and only few regions appear distinct. The high co-localization value for H3K4me3 of 38% 

with H4K20me1 (B4) indicates that a considerable sub-fraction shared the same spatial 

topology. In panels C-E it was investigated to which extend methylation sites with functional 

different assignment showed overlap or were mutually excluded from each other, thus 

representing distinct nuclear zones. Surprisingly for the combination of H3K27me3 and 

H3K9me3 co-localization values (43% for H3K27me3) were quite high regarding the fact that 

constitutive and facultative heterochromatic regions were compared. However this co-

localization is likely due to the accumulation of H3K27 methylation at the nuclear periphery 

and around nucleoli. Contradictionary combination of H3K4me3 with H3K27me3 on the one 

hand (Panel D) and H3K4me3 with H3K9me3 on the other hand (panel E) resulted as 

expected in little overlap of the respective modifications. These result support the existence 

of distinct nuclear zones for the tested histone lysine methylation sites. 
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Figure 25 
Comparison of differently methylated chromatin sites by double immunostaining after deconvolution in DLD-1 

cells. 
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Panel A: double immunostaining of H3K9me3 (A1) and H4K20me3 (A2) shows high though not complete 

overlapping within the big clusters of high intensity in the merged image (A3). Small sites of chromatin regions 

stained with either H3K9me3 or H4K20me3 appear spatially associated but not strictly co-localizing. The 

quantitative assessment of overlap between H3K9me3 (red) and H4K20me3 (green) as the percentage of the co-

localizing volume for each color channel evaluated from ten nuclei is illustrated in the graph (A4).  
Panel B: double immunostaining of H3K4me3 (B1) and H4K20me1 (B2). Both modifications show a globally 

similar distribution pattern and frequent spatial associations in the merged image (B3). In addition to clearly co-

localizing sites (example marked by yellow arrows) there are also sites that are stained only by H3K4me3 (red 

arrows) or by mono-H4K20me1 (green arrows). The quantitative assessment of co-localization between 

H3K4me3 (red) and H4K20me1 evaluated from ten nuclei is illustrated in the graph (B4). 
Panel C: double immunostaining of H3K9me3 (C1) and H3K27me3 (C2). Intensely stained H3K9me3 clusters are 

not marked by H3K27me3 (see red arrows and merged image (C3)). However, spatial associations of chromatin 

marked by both modifications is seen at the nuclear periphery (yellow arrows). Considerable co-localization of 

H3K27me3 with H3K9me3 is confirmed by the quantitative assessment of evaluated from ten nuclei (C4). 
Panels D and E:  double immunostaining of H3K4me3 (D1) and H3K27me3 (D2) as well as H3K9me3 (E1) and 

H3K4me3 (E2). As shown in the merged images (D3 and E3) each modification is present in distinct nuclear 

zones. This is confirmed by the low co-localization values of quantitative assessment between H3K4me3 (red) 

and H3K27me3 (green) and between H3K9me3 (red) and H3K4me3 (green) evaluated from ten nuclei (D4 and 
E4). All images are deconvolved. Bar indicates 5µm 
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4.1.6 The formation of distinct nuclear zones by lysine methylation sites 

 
Figure 26 
Distinct nuclear zones formed by H3K4me3, H3K27me3 and H4K20me3 in quiescent MCF-7 cells. 

Panel 1 shows images after TO-PRO-3 counterstaining, Panel 2 the representative methylation patterns and 

Panel 3 the merged images. Panel 4 exhibits in line scans the intensity profiles between DNA counterstain and 

the respective histone methylation signals. The intensity profile of H3K4me3 reveals an anti-correlation to the 

nuclear counterstain intensity and a lack of signals at the utmost nuclear periphery (A4). In contrast line scans for 

H3K27me3 reveal a general consistency with DNA counterstain and an enrichment of this modification at the 

nuclear periphery and around nucleoli (B4). Clusters visualized by H4K20me3 staining are all found in TO-PRO-3 

dense regions (C4). All images are deconvolved. Bar indicates 5µm 
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A further assessment of several different methylation sites was performed by combination of 

TO-PRO-3 staining with H3K4me3, H3K27me3 and H4K20me3 in MCF-7 cells, illustrated in 

figure 26. These representative nuclear images demonstrate the enrichment of these 

methylated histone sites in different nuclear zones. Line scans through the middle of the 

recpective nuclei showing TO-PRO-3 DNA counterstain on the one hand and the particular 

methylation site on the other hand are plotted in figure 26 (A4-C4). Line scan for H3K4me3 

and DNA counterstaining revealed a pronounced anti-correlation of both signals as well as a 

lack of H3K4me3 at the nuclear rim (A4). On the contrary, line scan for H3K27me3 (B4) 

yielded a general correlation with the intensity profile of TO-PRO-3. In this case also an 

enrichment at the nuclear periphery was observable (B4). The massive clusters generated by 

H4K20me3 staining could be attributed to very TO-PRO-3 dense regions, as reflected by the 

line scan (C4). 

 

4.2 Changes in nuclear 3D topology after Chaetocin treatment  

Since histone lysine methylation is associated with many epigenetic regulations and 

processes (see the introduction of this thesis), it was tempting to perform manipulative 

experiments with the SUV39h1 HMT inhibitor Chaetocin. Fortunately this drug was made 

available by collaborators (A. Imhof, Adolf Butenandt-Institute, Munich) in order to address 

possible effects of Chaetocin treatment on nuclear architecture. It was interesting to 

investigate how Chaetocin treatment affects nuclear architecture in general and how it 

changes H3K9me3 marked (peri)centromeric heterochromatin and its interactions with HP1-

alpha in particular. 

 

4.2.1 Test for the assessment of an appropriate Chaetocin dilution 

A cytotoxic effect of Chaetocin dependent on cell density and incubation time was previously 

shown (Greiner et al., 2005). Therefore it was essential to find out a Chaetocin concentration 

where an effect on H3K9me3 was detectable on the one hand but on the other hand damage 

of cells by obvious cytotoxic effects should be avoided.  

Chaetocin induced cellular oxidative stress 1000 times more potently than H2O2 one could 

proceed from the assumption that cells can bear only very low Chaetocin concentrations 

(Isham et al., 2006). HFbs were fixed after 24h, 48h, 4days and 7days of treatment with 

different incubation concentrations. Cell survival was assessed by visual inspection in the 

phase-contrast microscope (figure 27). Nuclear topology was assayed by IF with an antibody 

against H3K9me3 and DAPI-counterstaining (figure 30). As shown in figure 27, cells treated 

with a concentration of 0,1µM and 0,5µM started to die within 48h. HFbs survived well at a 
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Chaetocin concentration of 0.01µM. Control cells incubated with DMSO at a concentration of 

0.01µM showed no growth retardation. Hence, all subsequent experiments with Caetocin 

were performed using a concentration of 0,01µM. This Chaetocin concentration was 

determined for a initial cell density of 40-50% confluency. Media was not changed throughout 

the course of the experiment and Chaeticin was merely added at the beginning of the 

experiment 

 

 
Figure 27 
Cell viability in the presence of different Chaetocin concentrations was tested over a time period of one week. 

HFbs were fixed after 24h, 48h, 4days and 7days. As demonstrated cells treated with a concentration of 0,5µM 

and even 0,1µM die within 48h and are dead after a few days. Cells show morphological abnormalities and 

detach from the cover slip. HFbs survive drug application only at a very low Chaetocin concentration of 0,01 µM. 

Control cells incubated with DMSO show no striking changes in growth behaviour. Images were recorded at a 

transmission light microscope (magnification 20-fold). 

 

4.2.2 Test for cells in S-phase 

It was important to ascertain that potential changes in nuclear architecture after Chaetocin 

treatment were not the consequence of any cytotoxic effects of the drug. In order to test the 

proliferation status, cells were labeled in S-phase by a 1-hour pulse of BrdU incorporation 

before fixation on days 1, 3 and 7. BrdU was detected by IF (figure 28). Randomly counting 



                          Results 
__________________________________________________________ 

                                                                                                                                              85 

of 200 untreated and treated cells revealed no striking difference in the number of S-phase 

cells for HFbs as well as MEF cells (Table 7). The proportion of cells in S-phase dropped 

significantly from around 30% in HFbs and 15-20% in MEFs to values of about 5% after one 

week. Note that values for control cells and drug treated cells are similar (especially for 

HFbs). At all time points BrdU labeling was detectable to some extent (~5%). This result 

supports the earlier assumption (4.2.1) that a Chaetocin concentration of 0.01µM has no 

severe impact on cell viability. 

 

Human fibroblasts Mouse embryonic fibroblasts 

Time point Control 0,01µM  Time point Control 0,01µM 

24h 35% 31% 24h 23% 13% 

3 days 9% 11% 3 days 10% 5% 

7 days 4% 7% 7 days 3% 6% 

Table 7 
In HFbs as well as in MEFs the percentage of cells in S-phase decreases, probably because of contact inhibition. 

At all time points, a similar proportion of cells can be detected in S-phase in control as well as in Chaetocin 

treated cells confirming the idea that no cytotoxic effects occur after drug application. 

 

 
Figure 28 
Replication labeling of HFbs in control cells 

(A1/B1) and Chaetocin treated cells (A2/B2) after 

seven days. Column A shows DAPI-pictures, 

column B cells in S-phase. Despite high 

confluency (contact inhibition) cells in S-phase 

can still be found.  

 

 

 

 

 

 

All pictures are widefield images taken with a CCD 

camera at the epifluorescence microscope. 

 

4.2.3 Investigation of cell morphology in a test for Chaetocin cytotoxicity  

To ensure that cells were not affected by any cytotoxic effects of Chaetocin the condition of 

other cellular structures was investigated in a subsequent experiment. Therefore, IF was 

performed with antibodies against beta-tubulin, B23 and SC35. These markers were suitable 

to visualize the cytoskeleton, nucleoli and splicing speckles, respectively. Analysis of staining 
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patterns did not give any hint that changes in these cellular structures occurred after 

Chaetocin treatment (figure 29). In particular, the fact that patterns of SC35 staining are 

similar in treated and untreated cells suggests that splicing proceeded normally in the 

presence of Chaetocin. 

 

Figure 29 
Comparison of different antibody stainings 

marking cellular compartments in control (A1-A5) 
and Chaetocin treated cells (B1-B5) after two 

days of incubation time.  

Human fibroblasts are shown with staining of 

beta-tubulin (A1,B1) to visualize microtubules 

(microtubules are marked by white arrows), 

B23/nucleoplasmin and SC-35 domains to display 

nucleoli (big, striking structures), speckles (small 

foci) (nucleoli are marked by white arrows) 

(A3,B3), DAPI-counterstaining (A4,B4) and an 

overlay of all channels except beta-tubulin signals 

respectively  (A2,B2). 

A comparison of microtubule staining in control 

and Chaetocin treated cells did not reveal any 

cytoplasmatic discrepancies after drug treatment. 

A similar impression was obtained for staining of 

nucleoli and speckles. At least by visual 

inspection nucleoli did not display topological 

changes and speckles were also found in 

Chaetocin treated cells, thereby indicating splicing 

activity. 

The DAPI-counterstaining pattern revealed the 

same chromatin reorganization as observed in all 

Chaetocin treated HFbs, reporting a drug specific 

effect at the same time. A conglomeration of 

DAPI-stained chromatin is marked by a white 

arrow (B4).  

All images (deconvolved) show z-projections of 

several confocal mid-sections comprising    

approximately 1µm.  Bar indicates 5µm 

 

4.2.4 Changes in nuclear topology after Chaetocin treatment 

Human fibroblasts were sowed at 40% confluency and incubated with Chaetocin for three 

days. By IF, a change in the pattern formation of H3K9me3 staining was observed in more 

than 90% of cells (estimated by visual inspection, data not shown). Aggregation of chromatin 
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marked by H3K9me3 was distinctly more pronounced compared to untreated cells (figure 

30). Surprisingly a decrease in H3K9me3 fluorescence intensity was not observed. 

To test whether this finding is reproducible the same experiment with HFb was repeated two 

times. In all cases, results were similar and revealed a rearrangement of chromatin in the 

majority of the cells. 
 

Figure 30 
The figure shows single confocal mid sections of 

human fibroblasts in untreated control cells (A1-
A5) and 3 days after incubation with 0,01µM 

Chaetocin (B1-B5). 
 (A1/B1) A comparison of the overlay of 

H3K9me3 (green) with centromere signals 

(CREST, red) shows that centromeres remain 

associated with H3K9me3 stained chromatin after 

drug application. H3K9me3 conglomerations (B1) 
are marked by white arrows.  

(A2/B2) H3K9me3 staining in a control cell and 3 

days after incubation with Chaetocin. 

Conglomerations of H3K9me3 (B2) are marked 

by white arrows.  
(A3/B3) Centromere signals do not undergo 

clustering. Clustering as shown in (B2/B4) is 

probably not due to a rearrangement of 

centromeric heterochromatin.  

(A4/B4) Changes in pattern formation are not 

restricted to H3K9me3 staining but are also 

reflected in the DAPI-counterstaining. Clusters of 

chromatin stained by DAPI (B4) are marked by 

white arrows.  

(A5/B5) An overlay of H3K9me3 (green) and 

DAPI-counterstaining (red) underlines the co-

localization (yellow color) of chromatin 

aggregates in both channels.  

 

 

All images are deconvolved.  Bar indicates 5µm 
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Human fibroblasts are characterized by a dot-like H3K9me3 staining pattern without 

prominent aggregations of constitutive heterochromatin (figure 30,31, A1)  (Zinner et al., 

2006). To confirm the observation made in HFbs that Chaetocin treatment leads to a 

reorganization of chromatin marked by H3K9me3 and DAPI (figure 31, C1 and D1), the effect 

of the drug was investigated in the two immortalized cancer cell-lines, MCF-7 and DLD-1 

(figure 31, C2/D2 and C3/D3). DLD-1 cells are characterized by a H3K9me3 staining pattern 

similar to that of HFbs whereas MCF-7 cells contained big clusters of (peri)-centromeric 

heterochromatin (figure 31, A2,) (Cremer et al., 2004; Zinner et al., 2006).  

However, after the experiments with DLD-1 and MCF-7 cells were performed with the same 

setup as for HFbs no changes in pattern formation for both, H3K9me3 chromatin clusters 

and AT-rich chromatin visualized by DAPI-counterstaining, were observed (figure 31, C2/D2 

and C3/D3).  

In HFbs all centromere signals were found associated with H3K9me3 signals indicating that 

(peri)-centromeric heterochromatin (H3K9me3) was not moving in relation to centromeric 

signals (CREST-serum). Vice versa no clustering of centromeres was observed after drug 

application which indicates that the observed aggregations are probably not due to clustering 

of centromeric heterochromatin (figure 30, A3 and B3). Similar to what was done in the case 

of HFbs, the experiments with Chaetocin were repeated two times for DLD-1 and MCF-7 

cells, without diverging results.  

To sum it up Chaetocin treatment lead to a striking reorganization of heterochromatin in 

normal HFbs but not in MCF-7 and DLD-1 cancer cells.  
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Figure 31 
Changes of the H3K9me3 staining pattern occur in HFbs but not in MCF-7 and DLD-1 cancer cells. 

Column A1-A3 shows an overlay of H3K9me3 antibody staining (green) and centromere signals visualized by 

CREST-serum (red) in all three cell-lines not treated with Chaetocin. Centromere signals are always associated 

with H3K9me3 staining independent of their aggregation size. Heterochromatin clusters are unspectacular in 

HFbs and DLD-1 cells. However MCF-7 cells display a low number of big heterochromatic blocs. DAPI-

counterstaining is shown in column B1-B3. In the untreated cells DAPI-counterstaining appears “normal”, in B1 

the inactive X can be identified (white arrow).  

3 days after incubation with Chaetocin, an aggregation of chromatin occurs in HFbs which can not only be 

visualized in the H3K9me3 staining (C1) but also in the DAPI-counterstaining (D1). The cancer cell -lines MCF-7 

and DLD-1 do not show changes in chromatin formation neither on the basis of H3K9me3 staining (C2,C3) nor 

DAPI-counterstaining (D2,D3).  

All images are deconvolved and show a projection of five confocal mid-sections of a nucleus (comprising a 

thickness of 1µm). Bar indicates 5µm 

 

4.2.5 Investigation of HP1-alpha distribution after Chaetocin treatment 

 

The role of H3K9me3 as a binding site for heterochromatin protein 1 (HP1) was first shown in 

Drosophila experiments (Aagaard et al., 1999). Structure-function relationships and 

intercellular dynamics as well as hypothetical models suggesting how HP1 could act as a 
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chromatin crosslinker to organize peripheral heterochromatin have been recently described 

(Singh and Georgatos, 2002).  

To investigate the interrelationship of HP1-alpha and H3K9me3 after Chaetocin treatment 

co-immunostaining was performed. Co-localization of these two targets was evaluated in 10 

nuclei for each cell line. Visual inspection and co-localization analysis in untreated and 

Chaetocin treated cells revealed an association of H3K9me3 and HP1 in heterochromatic 

regions for all cell types. The images demonstrate to some extent overlay of H3K9me3 and 

HP1-alpha (figure 32, B1 and C1, yellow color). The increased co-localization observed after 

drug treatment coming along with chromatin condensation has no consequences for the 

overlapping volume of signals obtained for H3K9me3 and HP1-alpha staining. The 

evaluation of signals for DLD-1 and MCF-7 cells also revealed an association of H3K9me3 

and HP1-alpha signals. DLD-1 cells, having smaller heterochromatin and HP1 clusters, give 

smaller co-localization values (15-25%) when compared to MCF-7 cells which display very 

prominent aggregations of heterochromatin (30-50%).  

The observed discrepancy in co-localization of H3K9me3 and HP1-alpha in DLD-1 cells 

before and after Chaetocin treatment is probably due to interexperimental variability. 

Regarding the fact that many of the smaller foci of both signals, deriving from H3K9me3 and 

HP1 staining, are not overlapping, the overall co-localization values basing predominantly on 

overlap of pericentromeric heterochromatin can be considered as rather high. The higher 

volume of overlap after drug application compared to control cells in HFbs is probably due to 

cluster formation where most of the overlap occurs (overlap of smaller foci can be  

neglected).  
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Figure 32 
Antibody staining patterns of H3K9me3 and HP1 alpha in control and Chaetocin treated cells. 

In all images and diagrams H3K9me3 signals are shown in green, whereas red color indicates HP1-alpha pattern 

formation. In all cell types HP1-alpha is associated with H3K9me3 in untreated control cells (A1-C1) and 

Chaetocin treated cells (A2-C2). In MCF-7 (B1,B2) cells the co-localizing volume appears almost identical. DLD-1 

(C1,C2) revealed a slightly different co-localizing volume after drug application, and only in untreated HFbs 

differences in the overlapping volume compared to Chaetocin treated cells were observed (A1,A2).  

All images are deconvolved and display a projection of five confocal mid-sections (comprising a thickness of 1µm 

of a nucleus). In each case 10 nuclei were used for co-localization analysis.  Bar indicates 5µm 
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4.2.6 No reorganization of chromatin occurs after Chaetocin rescue 

 

To test whether Chaetocin-induced changes of the 3D chromatin organization are reversible 

a rescue assay was performed. HFbs that had been treated for 2 days were washed and 

cultivated further for another 2 days in absence of the drug. HFbs incubated for two days with 

DMSO at the same concentration as the Chaetocin treated cells served as control.  

Cells were incubated in the presence of Chaetocin for two days to allow the cells to complete 

at least one cell cycle which is in this case probably necessary for chromatin aggregation. 

This assumption was based on the observation that treatment for 8h did not lead to changes 

in overall chromatin assembly (data not shown). Indeed, changes in chromatin organization 

were not found until 24h after treatment (data not shown), a time interval which corresponds 

approximately to the cell cycle duration in HFbs (diploma thesis A.Engelhard, 2001). Staining 

of these cells with antibodies directed against H3K9me3 and DAPI- counterstaining did not 

show a reversion to the chromatin state observed in untreated cells (figure 33). The 

H3K9me3 staining and AT-rich chromatin phenotypical aggregations found after Chaetocin 

treatment were maintained.  
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Figure 33 
 
Rescue assay in HFbs two days after 

Chaetocin application. 

Pattern formation of DAPI-counterstaining 

(A4,B4) and H3K9me3 staining (A3,B3) in 

control (A1-A5) and Chaetocin treated cells 

(B1-B5) after release.  

(A2,B2) Centromere signals detected with 

CREST-antiserum, and H3K9me3 staining 

pattern (A3,B3)  are shown. The formation of 

large heterochromatin clusters is eye-

catching in nuclei incubated with Chaetocin. 

As exemplified in the overlay images, 

centromere signals (red) are associated with 

H3K9me3 (green) in untreated cells (A1) and 

after Chaetocin treatment (B1), although 

H3K9me3 cluster formation is much more 

prominent in cells incubated with the drug.  

In the control nucleus, the Xi can be seen in 

the DAPI-counterstaining (A4, white arrow). 
Otherwise DAPI-counterstaining is 

inconspicuous whereas chromatin 

rearrangements that are similar to changes 

in the H3K9me3 pattern can be found in drug 

treated nuclei (B4). 

An overlay of the H3K9me3 staining pattern 

(green) with DAPI-counterstaining (red) 

revealed an articulate overlap of big 

heterochromatin clusters after drug 

application (B5) while in control cells operlap 

can be found at the Xi and in some areas at 

the nuclear periphery (B4). 

 
 
All images are deconvolved. 

All images show z-projections of several 

confocal mid-sections comprising a thickness 

of 1µm. Bar indicates 5µm 
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4.2.7 Evaluation of H3K9me3 pattern size in Chaetocin experiments 

 

Changes in H3K9me3 (and HP1) pattern formation were obvious by visual inspection but in 

order to quantitate these changes an evaluation method using Image J 3D object counter 

was applied. Therefore the number of objects was classified into objects containing >500 

voxels and objects containing >1000 voxels across threshold values (THs) ranging from 15 to 

60.  

As an illustration of the volume occupied by objects >500 and >1000 voxels, 3D-

reconstructed images of heterochromatin foci with the very voxel sizes are shown (figure 34). 

Therefore the THs of a centromere signal were set in a way that signals with a volume of 

exactly 500 and 1000 voxels remained.  

Centromere signals labelled with the CREST-serum have a volume of approximately 100 

voxels after deconvolution. Therefore, it seemed adequate to choose values of >500 and 

>1000 voxels for those adjacent blocks of constitutive heterochromatin that are visualized by 

H3K9me3. As shown in figure 34 these volumes reflect estimated sizes of heterochromatin 

clusters which seemed suitable for the investigated cell-lines. The number of objects was 

measured over a TH-range from 0 to 60 in a stepsize of five. Due to deconvolution the 

overall chosen THs had to be rather low because deconvolution reduced signal intensity 

significantly.  

 
Figure 34 
The images show a 3D-reconstruction of a HFb nucleus containing an object of 500 voxels (A) and of 1000 voxels 

(B). The objects shown correspond in size to typical H3K9me3 heterochromatin clusters. DAPI-counterstain is 

shown in blue. The pictures are just to illustrate the size of both objects classes used in the evaluation of 

H3K9me3 aggregations shown in figure 31 for control and Chaetocin treated cells.  Bar indicates 5µm 

 

 

In HFb control nuclei, distinct objects were only observed at TH < 30 for both classes (>500 

and >1000 voxels). At such low THs, the impact of backround blur on signals is not negligible 

and might lead to overestimation of the number of objects. Already at TH 20, both curves 
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plunge down rapidly and finally reach zero at TH 30. The small number of objects and the 

rapid decline indicate the absence of heterochromatin clusters visualized by H3K9me3 

staining (figure 35).  

The overall number of objects in HFbs is significantly higher in cells incubated with Chaetocin 

than in control cells. Numerous heterochromatin clusters can also be found at higher THs in 

treated cells, indicating that the delineated clusters after H3K9me3 staining (see respective 

images in figures 30 B1/B2 and 31 C1) are more intense and bigger than in control nuclei. 

With rising THs they decay into smaller clusters that are still above a size of >500 voxel and 

>1000 voxel respectively. The observation that the number of objects reaches zero at TH 60 

for objects >500 voxel and at TH 50 for objects >1000 voxel supports the idea that in this 

case the heterochromatin clusters are not only bigger compared to control cells but 

persistent over a wider TH range as well. 

 

 
Figure 35 
The figure shows the behavior of two big object classes (>500 and >1000 voxels) over thresholds ranging from 15 

to 60 for control HFb cells and Chaetocin treated cells. It can be deduced from the curves that drug treated cells 

(yellow and red curve) show higher numbers of big objects at low thresholds than control cells (light blue and dark 

blue). Chaetocin treated cells show also more heterochromatin clusters with a volume bigger than 1000 voxel (red 

curve) compared to untreated cells with a volume of more than 500 voxel (light blue curve). The curves for the 

untreated cells decrease much more slowly to zero while the curves of the controls drop suddenly to zero at low 

thresholds indicating that the investigated heterochromatic clusters are more intense and stable. Number of 

objects were counted for 15 nuclei in each case.  

 

. 
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Based on evaluation experience obtained from HFbs, in MCF-7 and DLD-1cells object 

analysis was carried out only for THs 25 and 35. As shown in the figures 36 and 37, the 

numbers of objects are rather similar for both classes in control and Chaetocin treated cells. 

In MCF-7 nuclei the mean number of objects for objects >500 voxel was 17 (control) 

compared to 12 (Chaetocin) at threshold 25. As expected, the number of objects was smaller 

at TH35 but again similar in control and drug treated cells (5 versus 6 objects). In the object 

class >1000 voxel, the number of objects was in general lower than evaluated for smaller 

clusters but resulted again in very related numbers at both investigated THs for control and 

Chaetocin treated cells. To summarize the corresponding pointpairs delineated in the 

diagram after evaluation of clusters in control and Chaetocin treated cells can be found close 

to each other at both investigated THs, thereby demonstrating that H3K9me3 pattern size 

and number in MCF-7 cells remains rather similar after Chaetocin treatment (figure 36).  

 

 

Figure 36 
H3K9me3 heterochromatin clusters with an object size of > 500 and >1000 voxel in MCF-7-control and Chaetocin 

treated cells. Evaluation was performed exemplarily for thresholds 25 and 35 which already proofed to be 

representative as deduced from curves of HFbs (figure 35). MCF-7 cells are well known for their big constitutive 

heterochromatin clusters (see figures 31 and 32). At threshold 25 many clusters with a volume >500 voxel exist 

and also a few with a volume of >1000. Even at threshold 35 some objects of the size assigned to both object 

classes can be found, reflecting the high intensity and persistence of these clusters. Furthermore the 

corresponding pointpairs of control and Chaetocin treated cells can be found close to each other, thereby 

demonstrating that H3K9me3 pattern formation remains similar after Chaetocin treatment.  
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Figure 37 
Behavior of objects visualized by H3K9me3 staining in DLD-1-cells. As illustrated in figures 31 and 32 DLD-1 cells 

display an inconspicuous heterochromatin staining pattern with small aggregations of constitutive 

heterochromatin. Already at threshold 25 only very few objects >500 voxel were detectable. The number of 

objects >1000 tends to zero. At threshold 35 in both, control and Chaetocin treated cells, the number of objects is 

around zero, emphasizing the impression from the deconvolved images that DLD-1 cells exhibit no formation of 

bigger heterochromatin clusters after drug application compared to control cells. 

 

In DLD-1 cells 3D object counting resulted in very low amounts of objects in all investigated 

cases (figure 37), thereby indicating that Chaetocin treatment does not alter the chromatin 

pattern. 

 

 

4.3 Lysine methylation sites and specific chromatin segments 

After it was shown that histone lysine methylation patterns are largely arranged in distinct 

nuclear zones (Zinner et al., 2006), the next step was to investigate whether these clusters 

and foci are reflected on the one hand on a more global (chromosomal) level and if these 

staining patterns on the other hand can be characterized at “high resolution” down to 

chromosomal subdomains.  

To combine immunostaining of lysine methylation sites and FISH techniques, a protocol had 

to be puzzled out (see methods and protocols 3.10), that allowed the simultaneous 

delineation of chromosome territories (CTs) in 3D preserved nuclei together with the histone 

methylation sites at a best preserved morphology (referred to as Immuno-FISH). For 

quantitative evaluation of the overlap-extent of signals in two different channels  we used the 
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Manders coefficients M1 and M2 (first described by Manders, see 3.14.3 (Manders et al., 

1993)).  

4.3.1 Modifications correlate with gene density on the chromosomal level 

 

Focus was on the investigation of spatial associations between the modified lysines 

H3K4me3, H3K9me3 and H3K27me3 (because they are the most stable and best 

characterized modifications) and the human chromosome territories (CTs) of HSA18 and 

HSA19 to get an impression of their topology on the chromosome level in intact cell nuclei. 

HSA18 is the autosome with the lowest gene density (mean gene content 5.3 genes/Mb) and 

an overall low expression level. It is proportioned in predominantly equal parts of R- and G-

bands, most of them intensely stained (Francke, 1994; Nusbaum et al., 2005). HSA 19 has 

the highest gene density in the human genome (25 genes/Mb). It is enriched in Alu 

sequences, contains mostly weakly stained G-bands and displays an overall high expression 

level (Caron et al., 2001; Grimwood et al., 2004). Genes are evenly distributed along the 

chromosome except for the gene-poor heteromorphic region 19p12 to 19q12 (<10 genes/Mb) 

that flanks the immediate pericentromeric region over approximately 6Mb. For detailed 

information on gene density along the chromosomes #18 and #19, see figure 38. 

 

Figure 38                                                                  
In courtesy of Katrin Küpper 
Ideograms of human chromosomes HSA #18, 19 together with their gene-density 

profile (left of the ideogram).  

 

 

 

 

 

 

 

The pattern marked by H3K9me3 staining and its spatial association with chromosomes #18 

and #19 is shown in figure 39 (A1-A3). By visual inspection one could get the impression that 

the rather branched territory of #19 is overlapping to a higher extent with H3K9me3 than 

territory of #18. However co-localization values averaged from twelve nuclei were almost 

identical (30%, figure 39 A4). This means that for H3K9me3 no differences between  

chromosomes #18 and #19 were observable despite of their varying properties regarding 

state of “compaction”, gene content and transcriptional activity. 
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Striking for H3K27me3 staining in HFbs is the inactive X-chromosome (white arrow, figure 39 

B1). Apart from Xi the antibody pattern consisted of many small foci throughout the nucleus 

with a slight pronounciation at the nuclear rim (figure 39, B1-B3) (Zinner et al., 2006). No 

differences in the overlapping volume of H3K27me3 and chromosomes #18 and #19 were 

observable as co-localization analysis for both chromosomes resulted in 10% overlap for 

each of them. 

 
Figure 39 
Immuno-FISH delineating H3K9me3 and H3K27me3 together with CTs #18 and #19. (A1-A3) single optical 

section of a HFb nucleus with H3K9me3 (red) and painted CTs #18 (green) (A1) and CTs #19 (green) (A2). The 

cluster formations of H3K9me3 likely indicate pericentromeric heterochromatin. (A3) merged image with nuclear 

counterstain (blue), CTs #18 are shown here in yellow. (A4) Quantitative co-localization analysis of H3K9me3 

with CTs #18 (black bar) and #19 (white bar). (B1-B3) single optical section of a HFb nucleus with H3K27me3 

(red) and painted CTs #18 (green) (B1) and CTs #19 (green) (B2). The focal cluster in (B1) and (B2) marks the 

region of Xi (arrow) strongly decorated by H3K27me3. (B3) merged image with nuclear counterstain (blue), CTs 

#18 are again shown in yellow. (B4) Quantitative co-localization analysis of H3K27me3 with CTs #18 (black bar) 

and #19 (white bar). All images are deconvolved. Bar indicates 10µm, n = number of evaluated nuclei.  

 

As shown in figure 40 co-localization of H3K4me3 differed distinctly for CTs #18 and #19 

(G,H). Gene-poor chromosome 18 is predominantly located in H3K4me3 free areas, whereas 

chromosome 19 co-localizes with the antibody staining to a higher extent. The nuclear 

periphery is almost devoid of H3K4me3 staining. Only 10% of chromatin assigned to CT #18 

co-localized with H3K4me3 whereas more than 40% of CT #19 were attributed to H3K4me3 

(figure 40, diagram). Thus, the approximately fourfold higher values for #19 compared to #18 

after co-localization analysis matched bot properties of these chromosomes, gene content 

and transcriptional activity. 
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Figure 40 
Immuno-FISH delineating H3K4me3 together with CTs #18 and #19. (A-E) single optical confocal section of a 

HFb nucleus. (A) DNA counterstain, (B) H3K4me3 staining, (C) painted CTs #19, (D) painted CTs #18, (F) 
overlay. (E) 3D image reconstruction of the whole nucleus (CT#18 red, CT#19 green), (the nuclear counterstain is 

slit to show the nuclear interior) using Amira 3.0 TGS software (http://www.amiravis.com/). H3K4me3 staining 

(yellow) is spared from the nuclear periphery. (G-H) magnifications of chromosome paints 18 (G) and 19 (H) 
together with H3K4me3. The territory of chromosome 18 is located in an area of low antibody staining whereas 

the more branched appearing chromosome 19 colocalizes at several regions with H3K4me3 (I) Quantitative co-

localization analysis of H3K4me3 with CTs #18 (black bar) and #19 (white bar) confirm the visual observation of a 

different degree of overlapping for the CTs #18 and CTs #19 with H3K4me3. All images are deconvolved. Bar 

indicates 10µm, n = number of evaluated nuclei.  
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4.3.2 “Holes” in chromosome paints are filled with heterochromatin  

 

After applying deconvolution on raw data sets, holes in many paint signals and Xi visualized 

by H3K27me3 staining were eye catching (and example is shown in figure 44 A,B and C). 

Since repetitive DNA-sequences are depeleted from paint probes (Bolzer et al., 1999), the 

hypothesis that (peri)centromeric regions are embedded within these holes was tested. 

Therefore the approved Immuno-FISH protocol was applied. Immuno-FISH with CREST-

serum (centromeres), H4K20me3 (constitutive heterochromatin) and X-paint probes, was 

accomplished. As can be verified by visual inspection, both centromere and H4K20me3 

signals were embedded in the paint at the position of the hole (in most cases one hole per 

paint). This observation could be confirmed by analyzing the chromosome territory through 

intensity profiling. The maxima in the curve of centromere and H4K20me3 signals coincided 

with a minimum in the curve of the painted territory signals (figure 41).  

The finding that “holes” in these type of chromosome paints always contain (peri)centromeric 

heterochromatin could provide additional information concerning organization of 

chromosome territories.  

 

 
Figure 41  
Linescan through a region of one of the X-chromosome territories that contains centromere and H4K20me3 

signals. The white line defines start and end of the intensity profile. The curves of signal intensity for constitutive 

heterochromatin (H4K20me3, green) and the centromere (red) show negative correlation to the curve of the X-

chromosome paint (blue). This means that in areas where the paint signal is low intensity peaks of the other two 

signals can be found. The second peak of the H4K20me3 signal (which is not associated with centromeres) 

indicates that the paint probes are really depleted of all repetitive sequences. Note that centromere signals are 

mostly associated with H4K20me3 staining. 

Nucleus of a human fibroblast, size10µm. The image is deconvolved and displays a single confocal mid-section. 
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4.3.3 Distinct lysine methylations correlate with expression levels 

 
 
Figure 42 
Ideograms of human chromosomes HSA 

#12 and X together with their gene-density 

profile (left of the ideogram) and 

chromosomal position of each BAC used 

in this study. For HSA #12 the white dots 

denote BACs located in a gene-dense 

region (left) or highly transcribed genes 

(right), the black dots denote BACs located 

in a gene-poor region (left) or repressed 

genes (right).  For HSA X the white dots 

denote BACs with highly expressed genes, 

grey dots with intermediate expression 

levels and black dots BACs with repressed 

genes.  

In courtesy of K. Teller and K.Küpper 

 

HSA #12 was chosen for the investigation of gene-rich and gene-poor chromatin segments 

because of its property to present regions where gene densities deviate noteworthy from its 

overall mean gene density of ~ 13 genes/Mb within size windows of only a few Mbs (see 

figure 42 A, left ideogram) according to the different gene-rich and gene-poor segments. The 

gene-rich BACs on HSA #12 comprised a pool of 19 BAC clones located in the three main 

gene-dense regions 12p12.3-12p12.32 (38 genes/Mb, ~10.5 Mb), 12q13.11-12q13.3 (31 

genes/Mb, ~11 Mb) and 12q24.11-12q24.32 (16 genes/Mb, ~16 Mb). The gene-poor BAC 

pool consisted of 12 pooled BAC probes comprising the regions 12p11.22-12p12.3 (6,5 

genes/Mb, ~ 15 Mb) and12q21.2-12q21.33 (5 genes/Mb, ~ 18 Mb). BACs from HSA #12 

containing highly expressed genes and weakly expressed genes respectively were 

delineated by two BAC pools each containing 9 BAC-clones irrespective of their position 

regarding the gene density of their environment (see figure 42 A, right ideogram). The values 

for expression intensity was recently investigated by an Affimetrix gene-chip for humans 

(U133A) (Geigl et al., 2004) and verified by TR-PCR (Kupper et al., 2007). A BAC clone was 

classified as highly expressed if it contained at least one gene with an expression intensity 

>1000 (arbitrary units on the Affimetrix chip) regardless of the expression levels of other 

genes on the respective BAC. The pool with weakly expressed genes consisted of BAC 

clones containing only genes with an expression intensity <200 units. All BACs were directly 

labeled by label PCR (see methods and protocols 3.4.2).  
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BACs containing gene poor segments or weakly expressed genes were mostly found in 

H3K4me3 free areas whereas gene rich segments and highly expressed genes were 

detected often partly overlapped or in proximity of H3K4me3 (figure 43, A,B and E,F). 

Quantitative co-localization analysis uncovered explicit difference of H3K4me3 overlapping 

values between gene poor segments (~20%) and gene rich segments (~50% figure 43 D). 

The same tendency was also demonstrated for weakly expressed genes (~6%) and highly 

expressed genes (~33% figure 43 H). The discrepancy of absolute values in both 

experiments, might be partly due to interexperimental variations but of course also the 

experimental setup, pools addressed to gene density on the one hand and pools addressed 

to transcriptional activity may play a more desicive part.  

Quantitative co-localization analysis for H3K27me3 revealed altogether values lower than 3% 

for weakly and highly expressed genes (figure 43, L). These findings indicate that H3K27me3 

is not associated with the addressed genes but this cannot exclude an overall involvement of 

H3K27me3 in transcriptional regulation. 

A detailed description of the BACs used for this study is given in Küpper et al., 2007 and 

essential data are summarized in the appendix. 

 

 



                          Results 
__________________________________________________________ 

                                                                                                                                              104 

 
Figure 43 
Immuno-FISH of gene-rich/gene-poor DNA segments of HSA #12 with H3K4me3 and of highly 

expressed/repressed genes of HSA #12 with H3K4me3 and H3K27me3. 

All images represent single optical confocal sections of HFb nuclei after deconvolution. (A) pool of gene-poor 

BACs (green) on CT #12 combined with H3K4me3 staining (red), (B) pool of gene-rich BACs (green) on CT #12 

combined with H3K4me3 staining (red), (C) overlay of H3K4me3 staining (yellow), CT #12 (blue) and gene-poor 

(red) / gene-rich (green) BAC pools, (D) quantitative co-localization analysis of gene-poor / gene-rich BAC pools 

on CT #12 with H3K4me3. (E) pool of BACs containing weakly expressed genes on CT #12 (green) combined 

with H3K4me3 staining (red), (F) pool of BACs containing highly expressed genes on CT #12 (green) combined 
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with H3K4me3 staining (red). The inset magnifications show BAC signals from repressed gene loci predominantly 

in H3K4me3 free spaces whereas BACs containing highly expressed genes are more frequently associated with 

H3K4me3. (G) overlay of H3K4me3 staining (yellow), CT #12 (blue) and BACs containing weakly expressed (red) 

and highly expressed (green) genes. (H) quantitative co-localization analysis of H3K4me3 with BACs containing 

highly and weakly expressed genes on CT #12. (I) pool of BACs containing weakly expressed genes on CT #12 

(green) combined with H3K27me3 staining (red), (J) pool of BACs containing highly expressed genes on CT #12 

(green) combined with H3K27me3 staining (red), (K) overlay of H3K27me3 staining (yellow), CT #12 (blue) and 

BACs containing weakly expressed (red ) and highly expressed (green) genes (L) quantitative co-localization 

analysis of H3K27me3 with expression assigned BACs. All images are deconvolved. n = number of evaluated 

nuclei. Size of nuclei =10µm. 

 

To assign more precisely the relationship of H3K27me3 to chromatin segments with different 

expression levels on the X-chromosome, the spatial relationship of BAC pools (figure 42 B) 

(8 BAC clones per pool) classified into weakly, mid or highly expressed genes was compared 

to H3K27me3. Since X-linked gene expression is distinctly lower compared to autosomes, 

genes with an expression intensity >600 were declared as highly expressed while segments 

with at least one gene on a given BAC exhibiting a expression intensity between 300-400 

were regarded as mid expressed. The BAC pool with weakly expressed genes contained 

genes with an expression level <200 units. 

Co-localization analysis of H3K27me3 with differently expressed BAC-pools was performed 

separately for Xa and Xi. Chromosome territories of both X-chromosomes were marked by X 

chromosome specific painting probes. The co-localization coefficients between Xa and 

H3K27me3 and Xi and H3K27me3 provided an intra-experimental standard in each 

experiment. The overlapping volume between H3K27me3 and both X chromosomes was 

clearly different with Xa showing ~6% and Xi ~66% (figure 44, A-D). The magnification 

(figure 44, C) displays distinct though not total overlap between H3K27me3 and the Xi. 

To answer the question to which segments the widely distributed foci could be assigned to, 

co-localization results of H3K27me3 with BACs containing differentialy expressed genes on 

Xa were regarded as decisive. Analysis of H3K27me3 with highly expressed genes yielded 

<1% of overlap, while a co-localization value of 40% was noted fot the same genes on the Xi 

(figure 44, E and G). This value is significantly lower as it was measured for the entire X in 

the same experiment (~65%). This observation is probably due to to a considerable amount 

of genes that escape X-inactivation (~20%). 

In an elaborate 5-color immuno-FISH experiment the spatial relationship of H3K27me3 with 

weakly and mid expressed genes on both Xa and Xi was evaluated (figure 44, H-M). 

Analysis of Xi revealed almost identical overlapping for mid (~62%) and weakly (~70%) 

expressed genes. On Xa mid expressed genes yielded a small co-localization value (~5%) 

comparable to highly expressed genes (~1%). However a discrepancy was found in the co-

localization analysis for weakly expressed genes (~16%) with H3K27 on Xa. This value was 
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more than twice as high as calculated for the overall co-localization of H3K27me3 with the 

CT of Xa (~7%). The observation that co-localization values for weakly expressed genes on 

the Xa are distinctly higher than values obtained for weakly expressed genes on HSA #12 

suggests a higher impact of H3K27me3 silencing effect on X-chromosomes compared to 

HSA #12.  

 
Figure 44 
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Immuno-FISH delineating X territories and X-specific genes together with H3K27me3. (A) single optical confocal 

section with painted territories of the X chromosomes in a female human fibroblast nucleus. (B) H3K27me3 

staining of the same section. The insets mark the Xi. (C) inset magnification of the merged image of A and B 

shows distinct areas of intense co-localization between Xi and H3K27me3. (D) Quantitative co-localization 

analysis reflects the different level of H3K27me3 in Xi and Xa. (E) 3D reconstruction of an entire nucleus with 

painted X territories (green), BAC signals containing highly expressed genes (red) and H3K27me3 (golden). (F) 

single optical section of the same nucleus showing H3K27me3 (red) and highly expressed genes from the short 

arm (green), that exemplify little mutual overlapping at a higher magnification. (G) Quantitative co-localization 

analysis of H3K27me3 with Xi and Xa territories and of H3K27me3 with highly expressed gene loci (H-I) 3D 

reconstruction of a nucleus delineating DNA counterstaining (white, not shown in I) CTs of the X-chromosomes 

(blue), and BAC probes containing genes with intermediate expression activity (green) and weakly expressed 

genes (red). (J) magnification of the same CTs (K) 3D reconstruction (top) and optical section (bottom) 

comprising H3K27me3 immunostaining and BACs containing weakly expressed genes and (L) 3D reconstruction 

(top) and optical section (bottom) of the same nucleus comprising H3K27me3 immunostaining and BACs 

containing mid expressed genes. (M) quantitative co-localization analysis of H3K27me3 with Xi (grey) and Xa 

(grey checkered) territories, mid-expressed and weakly expressed gene loci. All images are deconvolved. n = 

number of evaluated nuclei.  
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5 Discussion 
 

The present thesis can be subdivided into three main topics. In the first part the 3D 

architecture and spatial relationships of different histone lysine methylation sites (H3K4me3, 

H3K9me1, H4K20me1, H3K9me3, H3K27me3 and H4K20me3) with defined nuclear targets 

like centromeres, nascent RNA and with each other was investigated in various cell types. 

The second part comprised experiments that were performed with the SUV39H1 inhibitor 

Chaetocin.  

Concerning the final part a complex immuno-FISH protocol was established first and 

consecutively an investigation of spatial associations of histone methylation sites (H3K4, 

H3K9 and H3K27) with distinct chromatin targets on the chromosomal and subchromosomal 

level was performed. 

 

5.1 Lysine methylation patterns are arranged in nuclear zones 

In this work emphasis is put on the nuclear topology and spatial interrelationships of 

chromatin methylated at several different histone lysine sites. Therefore the use of highly 

specific antibodies was compulsory. The antibody specificity was tested on MCF-7 cells as 

they showed the most distinct patterns of all cell types investigated so far (Zinner et al., 

2006). All antibodies preincubated with their specific peptide revealed a weak diffuse 

background without any pattern formation reflecting high affinity to their respective peptide. 

Even tests for H3K9 and H3K27 which are embedded within the same amino acid sequence 

“ARKS”, did not reveal cross reaction, so subsequent experiments could be performed 

proceeding from the assumption that all antibodies are highly specific for the epitopes they 

should recognize.  

Despite the fact that all core histones are evolutionary highly conserved in length and amino 

acid sequence  (Baxevanis and Landsman, 1996) methylation sites show plasticity (Peters et 

al., 2003). This caveat should be kept in mind comparing findings on a certain modification in 

different cell types of one species to the same cell type in a different species (Martens et al., 

2005; Spada et al., 2005).  

The data obtained for H3K4me3 in this work is in consistency with what was already known 

from the literature where it was considered predominantly as a marker for active chromatin. 

This modification lacked almost any overlap with centromeric regions and the outermost 

(transcriptionally inactive) nuclear periphery, while co-localization analysis with nascent RNA 

generated clearly higher values. Apart from that H3K4me3 was predominantly restricted to 

nuclear zones of low TO-PRO-3 staining intensity supporting the idea that this modification 

can be regarded as a marker for actively transcribed chromatin. But against this widely 
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accepted assignment of H3K4me3 to active chromatin a role also in active gene repression 

has recently been reported (Shi et al., 2006). The authors showed that members of the 

inhibitor of growth family (ING) of tumor suppressor proteins bind to H3K4me3 via a PHD-

domain and  thus stabilize a HDAC-complex at the promoters of proliferation genes.  

 

The DNA dye TO-PRO-3 has been shown to be a specific and sensitive nuclear 

counterstaining dye in human cells (Matsuzaki 1997) and in Xenopus laevis (de Maziere et 

al., 1996) embryos as well as on frozen sections of rat (Suzuki et al., 1997). Its affinity to ds 

DNA makes it comparable to DAPI (Bink et al., 2001). The latter however has an affinity to 

AT-rich sequences which was not reported for TO-PRO-3 (Petty 2000). Areas of low TO-

PRO-3 staining intensity represent less compacted or decondensed DNA, a chromatin state 

indicative for high gene density and genetic activity (Gilbert et al., 2004). On the light 

microscopic level both dyes stained similar areas namely regions containing dense 

chromatin.  

 

It was shown recently that H4K20me1 is involved in cell cycle regulation (Karachentsev et 

al., 2005). The observation during the present thesis that two “populations” of antibody 

staining signals exist supports the idea of a connection of H4K20me1 to cell cycle 

progression. Other processes where H4K20me1 was reported to play a role are 

chromosome segregation during mitosis in Drosophila (Julien and Herr, 2004), DNA repair 

mechanisms in yeast (Nakamura et al., 2004; Sanders et al., 2004)  and the initiation of X-

inactivation (Kohlmaier et al., 2004). Controversal data have been published assigning 

H4K20me1 to promotor regions on the one hand (Talasz et al., 2005) and to silent chromatin 

one the other hand (Karachentsev et al., 2005; Nishioka et al., 2002). The striking similarity 

in the nuclear arrangement and the dot like appearance of both antibody signals H3K4me3 

and H4K20me1 suggests that the latter modification is also associated with active gene loci 

or at least chromatin with a transcriptional permissive state. The still large fraction of 

separate signals of the two antibodies after co-immunostaining indicates that chromatin 

segments exist which were spatially excluded from each other and therefore mark distinct 

types of chromatin.  

A connection of H4K20me1 to repetitive sequences was shown in the mouse model, where 

in ChIP experiments H4K20me1 was merely found to be enriched in SINEB1 (correspond to 

the human Alu family) repeats (Martens et al., 2005). However this modification could not be 

assigned to centromeres as evaluated by co-localization analysis. The observation that 

H4K20me1 is apparently only to a minor extent associated with nascent RNA leads to the 

conclusion that the detected pattern mirrors a very special type of chromatin that cannot 

simply be assigned to either actively transcribed or repressed chromatin regions. 
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Assessment of H3K9me1 in human led to the suggestion that this modification reflects 

temporarily silent chromain domains (Rice et al., 2003). Tests by ChIP analysis in mouse 

revealed low H3K9me1 enrichment at repetitive sequences as well as in transcriptionally 

active regions (Martens et al., 2005). Comparable to H4K20me1 also H3K9me1 is 

characterized by a punctual pattern. Both modifications showing staining foci distributed 

throughout the nucleus (except nucleoli and the nuclear rim) are alike regarding their low 

level of co-localization with centromeres and nascent RNA. The immunostaining experiments 

produced often signals in TO-PRO-3 rich areas which favors the idea of H3K9me1 reflecting 

rather silent domains. The discrepancy of information about this modification is probably due 

to varieties between the species human and mouse (Martens et al., 2005; Rice et al., 2003). 

 

H3K27me3 is predominantly mentioned in the context of imprinted facultative 

heterochromatin formation and initiation of X-chromosome inactivation (Okamoto et al., 2004; 

Plath et al., 2003). Additionally a function in maintaining X inactivation has recently beeen 

described (Kohlmaier et al., 2004). The presence of H3K27me3 at unexpressed autosomal 

genes suggests that this mark is an ubiqitary label for heterochromatin rather than a  X-

specific marker (Brinkman et al., 2006). The staining pattern of H3K27me3 in DLD-1 and 

MCF-7 cells resembles the pattern for mid (to-late) replicating chromatin in a very striking 

manner. This pattern is  found around the nucleoli and at the nuclear periphery thereby 

sustaining the idea of an association with gene repressing chromatin. Mid-replicating 

chromatin and facultative heterochromatin (Craig and Bickmore, 1993) corresponds to a 

large extent to G-dark bands which contain tissue-specific genes that are transcribed only in 

selected cell types (Manuelidis, 1990). These genes have a high content of LINE elements 

but no enrichment of H3K27me3 with LINE elements could be uncovered in mouse (Martens 

et al., 2005). The question if such an association is also existant in humans remains 

unanswered at the moment.  

In neither cell type an association of H3K27me3 with centromeres was observed and also 

co-localization analysis with nascent RNA revealed low overlapping volume. Taken into 

account that H3K27me3 was never brought into connection with actively transcribed genes 

and the co-localization data of this modification with centromeres and nascent RNA obtained 

in this work, chromatin visualized by H3K27me3 seems to represent a discrete type of 

heterochromatin. 

 

H3K9me3 is the probably best known and characterized epigenetic marker for constitutive 

heterochromatin in a variety of species (Lehnertz et al., 2003; Martin and Zhang, 2005; Rea 

et al., 2000; Rice et al., 2003). After it was shown that this epitope serves as a binding site 

for HP1-alpha it became evident that H3K9me3 plays a key role in nuclear formation of 
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constitutive heterochromatin via these interaction (Bannister et al., 2001; Lachner et al., 

2001). In mouse a high overlap of H3K9me3 with chromocenters (visualized by DAPI-

counterstaining) was observed linking it to (peri-) centromeric heterochromatin (Peters et al., 

2003; Rice et al., 2003). ChIP analysis of the bulk of repetitive sequences in mouse 

confirmed a strong and stable enrichment of H3K9me3 in the major and minor tandem 

satellite repeats in all investigated cell types (Martens et al., 2005) whereas enrichment for 

different subsets of interspersed repetitive elements with H3K9me3 was found to be rather 

cell cycle dependent. The observation in this thesis that H3K9me3 exists either in smaller 

and more dispersed clusters or in big intense clusters posed the question if there is a 

dynamic movement of constitutive heterochromatin dependent on cell cycle stage. Changes 

in pattern formation after exit of the cell cycle and also during the cell cycle were already 

ovserved in the past (Cremer et al., 2004). These results are to align with the claim that 

dynamic properties of heterochromatin are required for its nuclear function (Baxter et al., 

2004; Manuelidis, 1990). Recently the absence of several histone methylation sites in resting 

B and T lymphocytes was described which were remarkably increased after mitotic 

stimulation (Baxter et al., 2004). The discrepancy of this observation with data obtained in 

this work is probably due to the fact that lymphocytes represent a very special case and exit 

of the cell cycle as investigated for tumor cells may differ fundamentally from mechanisms in 

senescent cells or during terminal differentiation.  

RAC analysis could confirm the observation made by visual inspection, that H3K9me3 

pattern changes its conformation and compaction during the cell cyle. To say more precisely, 

the dispersed H3K9me3 pattern could be assigned to cycling cells while in quiescent cells 

bigger clusters were dominating. However RAC analysis could not reveal differences in the 

pattern formation during cell cycle progression for H3K27me3 and H4K20me1. But this does 

not exclude the possibility of cell cycle dependent changes of these histone modifications 

because the RAC-method depends highly on the 3-dimensional shape of the evaluated 

objects. It is also possible and very likely that smaller foci do move but in relative to each 

other not forming bigger aggregates. This could not be detected by RAC because this 

program is only suitable to uncover changes in pattern size. The observed changes of 

H3K9me3 marked (peri-)centromeric heterochromatin pattern probably comes along with a 

silencing of genes as it was recently described for the beta globin locus (Litt et al., 2001).  

H3K9me3 was found associated with centromere signals visualized by CREST-serum 

throughout all cell types. The histone methylation signal was found to a different extent 

around or partly overlapping with centromeres and probably represents rather 

pericentromeric heterochromatin than the centromere itself. The abundance of much smaller 

foci distributed all over the nucleus but remote from centromeres and nucleoli varied a little 

bit between cell types. These foci not associated with constitutive heterochromatin might 
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represent interspearsed elements that are enriched within these modification. Surprisingly 

the appearance of H3K9me3 also in coding regions of active genes was recently reported for 

the X-chromosomes (Brinkman et al., 2006). If an association with active genes also exists 

for other chromosomes has to be elucidated.  

However this could explain the existence of many smaller foci distributed all over the 

nucleus. Co-localization analysis of H3K9me3 with nascent RNA yielded low values and 

perhaps this reflects rather overlap of nascent RNA with smaller foci than with big 

hetrochromatic regions. Since overlap of constitutive heterochromatin marked by H3K9me3 

with nascent RNA is negligible the observed co-localization might be due to overlapping 

volume of smaller foci adressed to coding regions with nascent RNA. 

 

Related to H3K9me3, the potential function of H4K20me3 as a label for constitutive 

heterochromatin and its involvement in gene repression are shown in model organisms like 

mouse and Drosophila (Gonzalo et al., 2005; Kourmouli et al., 2004; Schotta et al., 2004b). 

The 3D nuclear topology of both modification is also very similar (Zinner et al., 2006). The 

relationship of these modifications is not surprising taking into account the close 

interrelationship involving H3K9me3 and H4K20me3 as described in a new publication (Sims 

et al., 2006). In all investigated cell types centromeres were to a related extent embedded in 

signals deriving from H4K20me3 staining. CREST antiserum, which is directed against 

centromeric proteins CENP-A, CENP-B and CENP-C gives reliable information about the 

spatial disposition of the central domain of the centromere-kinetochore complex (Earnshaw 

and Rothfield, 1985). Centromeric chromatin is distinct from that of both euchromatin and 

flanking heterochromatin (Sullivan and Karpen, 2004). The partialy embedding of 

centromeres in hetrochromatin clusters contributes to the unique domain organization and 

three-dimensional structure of centromeric regions. Furthermore the antibody pattern 

appeared more dispersed in cycling cells than in quiescent cells with the latter coming up 

with a striking ring like structure of pericentromeric chromatin. This cell cycle dependent 

reorganization observed for heterochromatin clusters is in accordance with the highly 

dynamic properties of condensed chromatin (Cheutin et al., 2003; Grigoryev et al., 2004). 

 

Co-localization analysis of distinct histone methylation sites with nascent RNA was made 

under the assumption that a statement about the involvement of distinct methylation sites in 

transcriptional activity can be made by the judgement of overlap. However all investigated 

methylation sites revealed low overlapping volume with nascent RNA. H3K4me3 and 

H3K9me1 yielded the highest co-localization values at about 20%. This observation can be 

partly explained by new data that assigns basic gene transcripton mainly to H3K4me2 

whereas H3K4me3 is associated with cell type specific transcription (Bernstein et al., 2005). 
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Another aspect is that RNA-transcription occurs to a certain extent on non-coding intergenic 

DNA-sequences (Cheng et al., 2005; Mattick, 2003) which are probably not marked by 

H3K4me3. One should also keep in mind that RNA has the potential of a very dynamic 

behavior (Pederson, 1999; Politz et al., 1999) which makes it difficult to spot the current 

situation. This might also explain the low overlapping volume with constitutive 

heterochromatin visualized by H3K9me3 and H4K20me3. Therefore co-localization analysis 

with nascent RNA as a parameter for present gene activity should be treated with caution. 

 

To investigate 3D lysine methylation patterns with regard to each other the specific 

antibodies were combined in various combinations. The problem deriving from the fact that 

all antibodies were raised within the same species made a protocol for sequential antibody 

labeling (Spada et al., 2005) mandatory. Combination of antibodies revealed that the 

investigated histone methylation sites can be assigned to distict nuclear zones (Zinner et al., 

2006). H3K9me3 and H4K20me3 which are supposed to stain similar types of chromatin 

showed high overlapping volume with each other. H3K4me3 is clearly separated of both 

H3K9me3 and H3K27me3 which means that it is not associated with neither constitutive 

heterochromatin nor facultative heterochromatin. It is presently open to what dimension 

constitutive heterochromatin in the human genome is also marked by H3K27me3 or 

facultative heterochromatin by H3K9me3 and to what extent these two functionally distinct 

chromatin segments share in parts the same topology. But the idea that distinct modifications 

can be addressed to a specific type of chromatin was challenged lately (Brinkman et al., 

2006; Chadwick, 2006). Combination of H3K4me3 with H4K20me1 does not yield clear 

information about the latter modification and also H3K9me3 combined with H3K27me3 did 

not give an explicit result because intermingling was observed to a certain degree. Co-

localization analysis gave clear results only for signals representing either similar types of 

chromatin like H3K9me3 and H4K20me3 which share overlapping volume to a certain extent 

or totally different types of chromatin, e.g. H3K4me3 and H3K9me3 where a negative 

correlation was evaluated. 

The organization of nuclear zones visualized by distinct histone methylation sites seems to 

follow basic principles as well as the spatial arrangement of early vs mid-to-late replicating 

chromatin (Dimitrova and Berezney, 2002). H3K4me3 pattern looks similar to early 

replicating chromatin, H3K27me3 is correspondent to the mid replication pattern and 

H4K20me3 mirrors gene poor, big, late replicating heterochromatin clusters. The impelling 

forces underlying these non-random topological arrangements of chromatin have not yet 

been uncovered but their evolutionary high conservation underline their outstanding 

functional relevance (Alexandrova et al., 2003; Postberg et al., 2005; Tanabe et al., 2002a; 

Tanabe et al., 2002b). 
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5.2 Changes in nuclear 3D topology after Chaetocin treatment  

 

Chaetocin is a member of the epipolythiodioxopiperazine (ETP) class of toxins. Properties of 

these secondary fungal metabolites were recently reviewed by Gardiner et al. (Gardiner et 

al., 2005). The cytotoxic effect of the given concentration of a drug can vary somewhat 

between cell types. Hence, it was essential to define the appropriate Chaetocin dilution for 

the cells that were used in this work. This step was also necessary because Chaetocin 

toxicity is highly dependent on the initial cell density when the inhibitor is added to the cells 

seeded on coverslips (Greiner et al., 2005). Therefore it was important to start all 

experiments with the same initial cell density. After the appropriate Chaetocin concentration 

for the used cell types was established the next aim was to check whether cytotoxicity was 

involoved in the observed chromatin rearrangements. Visual analysis and BrdU incorporation 

after several days revealed that a similar proportion of drug-treated and control cells were in 

S-phase. These findings argue against an involvement of cytotoxic effects at the applied 

Chaetocin concentration. 

In subsequent experiments the topology of nucleoli, speckles and microtubules was 

investigated to gain information about a potentially impact of Chaetocin application on 

cellular morphology. Nuclei harbor pre-mRNA splicing factors in about 25-50 nuclear 

speckles (Spector, 2001). These speckles are highly dynamic and serve as reservoir of 

splicing factors to neighboring sites of transcription. Nuclear speckles and their surrounding 

regions were shown to be major sites of RNA-polymerase II mediated transcription (Wei et 

al., 1999a). Transcription sites are observed throughout the nucleoplasm including the 

periphery of speckles (Spector, 2001). It was recently shown that speckles also serve as 

storage sites for RNA-polymerase II although not for its active form (Xie et al., 2006). Taken 

together, these findings support the notion that the existence of speckles can provide an 

indirect tool for ongoing transcriptional activity.  

Since rRNA synthesis, rRNA processing and assembly of ribosomal subunits occurs in the 

nucleolus, this compartment can be regarded as an indicator of nuclear activity (Spector, 

1993). The cellular location of B23 serving as a nucleolar marker was extensively described 

in the early 90’s (Chan, 1992).  

Microtubules are crucial for cytoplasmic organization and were thus taken as a marker for 

general cellular structure (Malikov et al., 2005).  

IF experiments with antibodies against these cellular structures were also performed 

because changes in the morphology of the investigated compartments after drug treatment 

have been reported. It was shown that the nucleolar phosphoprotein B23 dissociates from 

nucleoli of cells after treatments with various drugs (Chan et al., 1999). Inhibition of 

transcription resulted in prominent round clusters of SC-35 domains (Xing et al., 1995). DRB 
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and alpha-amanitin application changed the nuclear poly (A)-RNA organization from the 

typical speckled localization pattern into fewer and larger clusters of splicing compartments 

(Huang et al., 1994). Microtubules were selectively destructed by inhibitors of phosphatases 

(Merrick et al., 1997) and tubulin disruption was recently shown as a mechanism by which 

inhibitors of HDACs reduce the secretion of interleukin-1 (Carta et al., 2006). 

An overall impact of the drug as would have been expected in the case of cytotoxicity would 

have certainly led to changes in the morphology of the investigated cellular structures. 

However immunofluorescence with antibodies against nucleoli, speckles and microtubules 

did not reveal variations in the appearance of the stained compartments after chaetocin 

treatment on the light-microscopic level.  

Despite lacking morphological changes and positive tests for S-phase in drug treated cells, 

(hetero)chromatin condensation as observed after Chaetocin treatment in HFbs is not 

inconsistent with cytotoxicity.  

Cells commiting apoptosis also display chromatin aggregated into dense compact masses 

(Fadeel and Orrenius, 2005; Lawen, 2003). However it was shown that de novo chromatin 

condensation normally seen during mitosis does not occur when cells undergo apoptosis. 

Instead, the noticed condensed chromatin results from aggregation of the typical constitutive 

heterochromatin (Hendzel et al., 1998).  

Mitotic cell death (MCD) also known as “mitotic catastrophy” is another form of cell death to 

eliminate damaged cells and is mainly described in morphological terms (Blank et al., 2006). 

To date, evidence of premature mitosis in damaged cells relies primarily on the appearance 

of uneven chromatin condensation (UCC), which is the formation of hypercondensed 

chromatin aggregates (Roninson et al., 2001). Since MCD was identified as a prominent 

response of cells to different anticancer drugs (Lock and Stribinskiene, 1996; Tounekti et al., 

1993) (Torres and Horwitz, 1998), this process might be an explanation for the observed 

effects after Chaetocin treatment. 

Surprisingly, an overall decrease in H3K9me3 staining intensity, at least by visual inspection, 

was not observed after drug application, suggesting that SUV39H1 activity and therefore 

H3K9me3 levels are not altered in Chaetocin-treated cells. This is at least partly in 

consistency with in vivo inhibition of SU(VAR)3-9 in Drosophila SL-2 cells which show mainly 

a reduction of H3K9me2 rather than H3K9me3 in mass spectrometry (MS) (Greiner et al., 

2005). However in another experiment the authors could also observe a substantial drop in 

H3K9me3. 

In HFbs Chaetocin treatment led to a rearrangement of chromatin that could be highlighted 

by changes in the patterns after H3K9me3 staining and DAPI-counterstaining. The relocated 

chromatin is characterized by very large clusters, of what is mostly but not exclusively (peri)-

centromeric heterochromatin. However, keeping in mind the amount of chromatin that seems 
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to be rearranged, it is very likely that heterochromatic as well as euchromatic regions are 

affected by drug treatment. 

Taking into account the fact that Chaetocin treatment induces changes in chromatin 

formation in general it is reasonable to suppose that the appearance of H3K9me3 clusters is 

a consequence of this overall chromatin alteration rather than a direct effect of SUV39H1 

inhibition. However information about SUV39H1 enzyme activity remains to be obtained by 

enzyme activity assays.  

Western blot analysis of SUV39H, H3K9me3 and H3 (as a control) could provide a much 

better resolution compared to simple visual inspection and is essential for any final 

conclusions on this topic.  

The mechanisms leading to the rearrangement of heterochromatin that are described here 

remain unclear. Taken all observations together it seems rather unlikely that the observed 

chromatin rearrangements in HFbs were simply based on cytotoxicity.  

 

Another important question to be answered is why a similar impact of Chaetocin was only 

observed in HFbs but not in the cancer cell-lines DLD-1 and MCF-7.  

An explanation might be the development of several mechanisms for drug resistance in 

cancer cells. Each cancer cell has specific genetic and epigenetic alterations (Ballestar and 

Esteller, 2005). Hence tumor cells express different arrays of drug-resistance genes 

conferring simultaneous resistance to many different drugs, a phenomenon called multidrug 

resistence (Gottesman et al., 1994). Much data is provided about mechanisms that alter 

accumulation of drugs within cells (Ambudkar et al., 1999; Borst et al., 2000). There are two 

ways for drug resistance of cancer cells that should be also taken into account for the 

discussed observations. A first mechanism can increase drug efflux from cancer cells and a 

second mechanism leads to reduced uptake of drugs. The latter argument does not fit the 

finding that all cells from all cell-lines died at 0,1µM Chaetocin.  

Most tumor cells show ABC-transporter (ATP-binding cassette)-mediated multidrug 

resistance (Higgins, 1992). This type of resistance was already discovered in 1976 (Juliano 

and Ling, 1976). The major mechanism of multidrug resistance in cultured cancer cells was 

the expression of an energy-dependent drug efflux pump, known alternatively as P-

glycoprotein (Pgp) (Ueda et al., 1987). It is the product of the MDR1 gene in humans and 

highly expressed in cancer cells (Chen et al., 1986). Although big efforts have been made 

recently for overcoming this feature of tumor cells (Borowski et al., 2005) it is still a major 

cause of failure in anti-tumor therapy. The resistence is due to the expression of ABC 

transporter glycoproteins which participate actively in effluxing the drug out of the cell thus 

preventing the accumulation of substances. These general findings in tumor cells would 
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provide an explanation why no changes in higher chromatin organization were found in 

nuclei of DLD-1 and MCF-7 cells. 

An explanation why chromatin condensation in HFbs occurs already at a Chaetocin 

concentration of only 0,01µM could be a redox-uptake mechanism that has recently been 

described for a ETP-toxin (Bernardo et al., 2003). The concentration of the substance within 

a cell can be several orders of magnitude greater (up to 1500-fold) than the applied 

concentration. This accumulation appears to enhance the toxicity of ETPs. 

 

It is much more difficult to uncover a mechanism in the context of regulating histone lysine 

methylation than histone acetylation (Turner, 2000). This is because the latter mainly 

depends on repulsion of charges whereas lysine methylation effector functions depend on 

the recruitment and interaction of many proteins (Bernstein et al., 2007; Li et al., 2007). 

Furthermore epigenetic “cross-talk” can occur, making research and interpretations even 

more complicated (Fischle et al., 2003b; Kouzarides, 2007). This means that all possible 

interaction partners of H3K9me3, HP1-alpha and SUV39H1 have to be taken into account 

when it comes to a discussion about the underlying mechanisms of these changes observed 

after Chaetocin treatment. 

Another question that has to be addressed is whether the enzyme activity after Chaetocin 

application is as high as in control cells. To investigate enzymatic activity directly several 

types of enzyme assays have been developed over the decades (Lottspeich, 1998). Enzyme 

assays can be split into two groups according to their sampling method: continuous assays, 

where the assay gives a continuous reading of activity, and discontinuous assays, where 

samples are taken, the reaction stopped and then the concentration of substrates/products 

determined. To test the hypothesis if the changes of H3K9me3 after drug application are due 

to altered enzyme activity an enzyme activity assay against the HMT SUV39H1 should be 

executed in subsequent experiments as was applied for HATs (Brownell et al., 1999). 

Since cancer cells obviously have mechanisms to escape the effects of drug treatment at 

least at low concentrations it seems necessary to investigate the effect of Chaetocin 

application in other “normal” cell-strains. 

 

HP1-alpha, which, binds to H3K9me3 (Bannister et al., 2001; Lachner et al., 2001), can still 

be found co-localizing after Chaetocin treatment. In all three cell types HP1-alpha was found 

to be overlapping with H3K9me3 to some extent in untreated control cells and in Chaetocin 

treated cells, indicating that H3K9me3 as a binding site for HP1-alpha is not affected by the 

drug. In MCF-7 and DLD-1 cells the overlapping volume of HP1-alpha appears similar before 

and after drug treatment; only in untreated HFbs different overlapping volume compared to 

Chaetocin treated cells was observed. The observation that HP1-alpha remains overlapping 
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at least partly with H3K9me3 in HFbs raises again the question whether the HP1/H3K9me3-

system involved in heterochromatin formation is affected at all or if other pathways are 

altered by Chaetocin treatment.  

An important finding was that a rearrangement of chromatin was not observed after an 

incubation time of 8h. Together with the observation that changes in chromatin occur after 

24h this finding argues for a cell cycle dependence of the described effect because the time 

window where changes can be detected correspond approximately to the duration of one cell 

cycle in HFbs (diploma thesis A. Engelhard, 2001). The described changes are more likely 

due to a process where the passing of S-phase is required. 

In a rescue assay where Chaetocin was “washed out” two days after application no re-

establishment of chromatin occured. Cells were not capable to rearrange their chromatin to 

the original state as observed in control cells. This would on the one hand argue for 

cytotoxicity or on the other hand confirm that the process initiated by Chaetocin application is 

irreversible, thereby suggesting a long term epigenetic alteration (Lachner et al., 2004; 

Reinberg et al., 2004).  

The performed experiments to uncover the role of this drug on the level of nuclear 

architecture were a necessary completion to the exclusively biochemical experiments made 

when Chaetocin was found and proofed to be a specific inhibitor of SU(VAR)3-9. 

 

5.3 Analysis of lysine sites with regard to chromatin segments  

In this chapter the spatial relationship of histone modifications H3K4me3, H3K9me3 and 

H3K27me3 with whole chromosome territories (CT), chromosomal subdomains and selected 

gene loci is discussed. 

The gene poor chromosome 18 and the gene rich chromosome 19 differ in their enrichment 

for H3K4me3 staining but not for H3K9me3 and H3K27me3. Co-localization analysis for 

H3K9me3 and the CTs of chromosomes 18 and 19 respectively yielded almost identical 

values despite their different “compaction” state, gene content and overall transcriptional 

activity. The bulk of H3K9me3 can be assigned to blocs of pericentromeric heterochromatin 

containing tandem repeats (Peters et al., 2003; Rice et al., 2003; Zinner et al., 2006). Since 

chromosome specific painting probes do not represent these large heterochromatin blocs 

due to Cot-1 DNA suppression in FISH-experiments or depletion of repetitive sequences in 

probe generation (Bolzer et al., 1999) it is not surprising that overlap occurs merely to a 

minor extent. This observation was confirmed by experiments where signals of centromeres 

and constitutive heterochromatin marked by H4K20me3 were found in “holes” of 

chromosome paints. Therefore co-localization data are mainly obtained by overlapping 

regions not associated with pericentromeric heterochromatin. A large number of small foci 
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distributed all over the nucleus, not associated with pericentric heterochromatin, was recently 

observed (Zinner et al., 2006). In humans a selective enrichment of H3K9me3 in 

interspersed sequences (LINEs and SINEs) has not been described so far. The finding that 

H3K9me3 is present in coding regions of genes makes an interpretation more complicated 

but might explain the existence of these small foci (Brinkman et al., 2006). CT #19 is higher 

enriched in Alu sequences compared to CT #18 (Grimwood et al., 2004). Our evaluations do 

not confirm an association of H3K9me3 with Alu sequences because if so, co-localization 

analysis should have revealed a clear discrepancy between both chromosomes. Data 

reporting HSA #18 not generally enriched in repetitive sequences, despite being gene poor 

(Nusbaum et al., 2005), are supportive to the identical co-localiaztion results. 

H3K27me3 can be assigned to the Xi both topologically and functionally (Kohlmaier et al., 

2004; Plath et al., 2003). Similar to H3K9me3, the H3K27me3 staining pattern appears as a 

conglomeration of small dots throughout the nucleus with a slight enhancement at the 

nuclear periphery. The low amount of overlapping volume that was calculated for CTs #18 

and #19 is consistent with findings that H3K27me3 participates in the repression of only a 

sparsely described subset of autosomal genes such as HOX clusters (Cao et al., 2005; Cao 

et al., 2002) or genes subject to imprinting in humans and mouse (Delaval and Feil, 2004; 

Mager et al., 2003). 

Co-localzation analysis of H3K4me3 with CTs #18 and #19 respectively produced clearly 

different results. The ratio of H3K4me3 overlapping with #19 was fourfold higher compared to 

overlapping with #18. These findings were confirmed and partly explained by publications 

that either report H3K4me3 associated with promotor regions (Schubeler et al., 2004), or 

data that attribute H3K4me3 to active genes since SET1 the HMT for this modification is in 

contact with RNA polymerase II during elongation (Ng et al., 2003). However Brinkman et al. 

(2006) found H3K4me3 not necessarily as a marker for ongoing transcription (Brinkman et 

al., 2006). But this is not a discrepancy with the data described in this thesis because a 

chromosome territory comprises a rather large area concerning the whole nuclear volume 

and is therefore not decisive for co-localization analysis if transcription just started or ended. 

Probably the higher H3K4me3 co-localization values with HSA #19 simply mirrored the 

exalted gene content and a higher overall transcriptional activity of HSA #19 (Caron et al., 

2001).  

To get deeper insight into histone lysine methylation on a higher resolution, H3K4me3  and 

H3K27me3 were addressed to chromosomal subdomains and selected genes on HSA #12 

defined by a distinct regional gene density or transcriptional activity. For overlap with 

H3K4me3 similar and high co-localization values were found for both, gene dense DNA 

segments and highly expressed genes on HSA #12. BACs containing gene poor segments 

or weakly expressed genes are predominantly found in H3K4me3 free spaces while BACs 
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containing gene rich segments or highly expressed genes are to a higher extent associated 

with this modification. The results support the idea that H3K4me3 is not exclusive connected 

to transcription but represents a rather competend chromatin state for transcription. Co-

localization analysis of H3K27 with BACs containing highly and weakly expressed genes 

gave overall low values, suggesting no impacts of H3K27me3 for a regulation of the 

investigated genes.  

Given that H3K27me3 covers almost the entire Xi a possible association with  differential 

expressed genes (weakly, mid and highly) on both, the Xi and Xa was investigated. After co-

localization analysis low values were calculated for the Xa with H3K27me3 while Xi revealed 

very high values. This confirmed the impression from images of interphase nuclei after 

immuno-FISH with X-paints and H3K27me3 where signals of both structures seemed to 

occupy the same spatial area. In methaphases a variable distribution of H3K27me3 on the Xi 

was reported (Chadwick, 2006; Chadwick and Willard, 2004). Co-localization analysis of 

H3K27me3 with highly expressed genes on Xa almost tended to zero, while co-localization of 

40% was evaluated for the same genes on the Xi. An even higher value of 65% was 

measured for the entire X-chromosome in the same experiment. The discrepancy can be 

explained by the fact that 19% of all genes on the Xi escape inactivation and another 10% 

show variable patterns of inactivation between individuals (Carrel and Willard, 2005; 

Disteche, 1995; Disteche, 1999). These genes are not restricted to the pseudoautosomal 

regions on both chromosomal arms but are found over the whole chromosome with a 

pronounciation on the short arm (Carrel and Willard, 1999).  

In an elaborate five-color immuno-FISH experiment was performed to investigate the co-

localization of mid and weakly expressed X-linked genes with H3K27me3 were investigated 

on both X chromosomes. Similar high values of overlap were found for the Xi, while for mid 

and weakly expressed genes a discrepancy on the Xa was observed. Mid expressed genes 

showed an overlapping volume of 5% with H3K27me3 whereas weakly expressed genes an 

increased level of 16%. The latter was also distinctly higher to the overall co-localization of 

H3K27me3 with the painted Xa territory compared to co-localization values for the repressed 

genes on chromosome #12 (3%). These data are supported by the observation that two X-

linked genes are associated with H3K27me3 in lymphoblastoid cell where these genes are 

inactive (Brinkman et al., 2006). These findings taken together would support the idea that 

H3K27me3 has a higher affinity to the X-chromosomes than to autosomes. 
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5.4 The methodological approach 

 

Confocal image stacks were used for a quantitative evaluation of: 

1. the degree of clustering by RAC analysis 

2. the degree of overlap between histone methylation sites with each other, centromeres and  

    nascent RNA 

3. Cluster-size in Chaetocin experiments 

4. overlap of chromosome-territories and DNA segments with lysine methylation sites 

 

Among several publications that describe approaches for an analysis of co-localization of two 

different objects (Kreft et al., 2004; Landmann and Marbet, 2004; Manders et al., 1992; 

Manders et al., 1993), the co-localization coefficients M1 and M2 first described by Manders 

et al. (1993) were chosen. An important advantage of these coefficients was the implication 

of a intensity weighted calculation. The evaluation method is suitable in cases of little or no 

overlap and also in cases where voxel numbers differ significantly in one of two channels 

which mirrors exactly situations that were found in nuclei evaluated in this work (Manders et 

al., 1993).  

However co-localization analysis is afflicted with several problems. What is the correct way of 

describing and interpretating data resulting from Manders coefficients M1 and M2. It is very 

difficult to judge if a given value (say 0.2) is important and meaningful or not. Therefore it is 

required to compare always two data sets within one experiment, e.g highly and weakly 

expressed genes visualized on a chromosome within the same experiment and judgement of 

co-localization values relative to each other. Another problem emerges from the statistical 

point of view. How to deal with data by statistics when single voxels can not be regarded as 

“independent events”. 

As was shown in the method chapter for thresholds in a certain range co-localization 

coefficients differ significantly for both, big objects (chromosome paints) as well as for smaler 

objects (BAC signals). From one step to the next the overlapping values change only a few 

%-points which does not lead the user astray if the TH is somewhat set properly. But for a 

person which is familiar with the shape and structure of histone methylation patterns it should 

not be a problem to set an appropriate threshold within a range of few gray values TH 

(plus/minus5). In principle threshold independent evaluation tools are highly desireable and 

have recently been implemented in our evaluation spectrum (Cremer et al., 2004; Stadler et 

al., 2004).  

The immuno-FISH protocol turned out to be a proper tool to visualize histone modifications 

and DNA targets simultaniously. Since two fundamentally different goals are pursued in this 

approach, on the one hand to maintain methylated lysine epitopes as best as possible and 
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on the other hand gain accessibility for complex DNA probes to their nuclear target 

sequences, it is clear that 3D-immuno-FISH is a rather critical procedure. DNA-FISH typically 

requires HCl treatment and heat denaturation which is harmful to protein structure. With 

regard to the structural and morphological preservation of the nucleus, especially lysine 

methylations, best results were achieved by binding the histone epitope with the highly 

specific primary antibody followed by a Biotin-conjugated secondary antibody and stabilizing 

this complex in a post fixation step. This step turned out to be of fundamental importance, 

since biotin is rather heat resistant  (Gonzalez et al., 1999; Wei and Wright, 1964) and thus 

not prone to destruction by the subsequent heat denaturation before hybridization (Solovei et 

al., 2002a). The effect of FISH on chromatin formations was assessed in nuclei with histone 

H2B-GFP-tagged chromatin. Accordingly light microscopy could not reveal any changes 

down to a level of 1Mb chromatin domains (Solovei et al., 2002b). However these 

investigations revealed alterations in the ultrastructure of the nucleus probably caused by 

heat denaturation. Therefore a risk for misinterpretation at high resolution in nanometer 

scales exists questioning the usefullness of these investigations in the nm range. The 

experimental procedure benefits from the high affinity and specificity of the biotin-avidin 

complex (Korpela, 1984). Shifting the antibody detection of Biotin to the end of the protocol 

prevents the fluorochrome to be destroyed by heat.  

Depending on the protein of interest many different approaches to combine 

immunofluorescence and FISH have been suggested (Brown, 2002; Grimaud, 2005; Lavrov 

et al., 2004). The immuno-FISH protocol successfully established in this work copes with 

these problems, as far as can be judged by confocal light microscopy, and can reveal 

interactions between nuclear components, like DNA and RNA on the one hand and proteins 

on the other hand.  

Another aspect that can affect a qualitative and a quantitative evaluation of 

immunofluorescence is the inter-experimental difference in antibody staining intensity. As 

was shown by co-localization analysis of DAPI and different histone methylation patterns in 

several experiments the amount of antibody signal varies to a certain extent (figure 45) even 

within one series of experiments. This phenomenon might also lead to discrepancies in the 

evaluation and interpretation of data. But as illustrated in figure 45 the interexperimental 

discrepancies that came along with the immuno-FISH approach used in this work were not 

as drastic that conclusions were not to draw out of these data. 
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Figure 45 
The figure describes the inter-experimental differences of several histone methylation sites (H3K4me3, H3K9me3 

and H3K27me3) that were investigated in multi-color immuno-FISH experiments. The legend refers to the type of 

experiment that was performed. Co-localization of antibody staining was measured against DAPI-counterstaining 

in all evaluated nuclei. The evaluation comprised 25 nuclei for each experiment. 

 

Deconvolution which was applied to all raw images prior to evaluation is not without 

controversy. There are several adjustable parameters for the deconvolution setting which 

might be a source of error. The question if the appearance of images after deconvolution 

represent “reality” is justified and raised as an issue in recent publications (Conchello and 

Lichtman, 2005; Walter et al., 2006). Moreover instead of improving image quality new 

artifacts might be generated by deconvolution (Wallace et al., 2001). Also the immanent 

problem of subjectivity applying a threshold can not be solved by deconvolution.  

But otherwise deconvolution reduces backround blur significantly and yields superior results 

in contrast to conventional judgement of images (Landmann, 2002; Landmann and Marbet, 

2004). If applied properly deconvolution facilitates the manual threshold setting and provides 

a tool to separate artefacts from the “true” signal (Pawley, 2006). The improvement in image 

quality after deconvolution clearly facilitates the choice of an optimal TH to segment complex 

morphological structures like signals deriving from histone methylation sites, and it helps to 

quantitate data more easily (Albiez et al. in prep.). Despite these advantages of 

deconvolution one should always attempt to compare only different labelled targets to the 

same reference structure within a given nucleus. Following this guideline does not help to 
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make a clear statements about absolute values but makes an interpretation of the relative 

difference between two signals compared to a reference structure more reasonable.  

Deconvolution has also been shown to deliver better results for co-localization analyses 

when compared to other techniques like filtering (Landmann, 2002; Sedarat et al., 2004). 

Interestingly deconvolution of raw images has lately been commonly accepted as an 

indispensible tool for quantitative evaluation of 3D reconstructed image stacks (Pawley, 

2006). 

 

Image stacks taken from a confocal microscope with signals in several channels have to 

cope with lateral and axial shifting which yields a source of errors especially for co-

localization analysis. Despite the performed axial shift-correction an impact of shifting as a 

source of error still remains because of the small lateral shift that was uncorrected and the 

axial shift that changed during intervalls of measurements (several weeks). All investigations 

should be always considered with the awareness of the limits of optical resolution of the used 

confocal microscope. A lateral resolution of >200nm and an axial resolution of >500nm have 

to be considered for a careful interpretation of confocal microscopic data. 

Nonetheless of many debatable issues in the described approaches the data described in 

this thesis provided clear results for many questions that were addressed in the carried out 

experiments. Many of the data obtained in this work are consistant with molecular 

approaches like ChiP, array and blotting techniques. To conclude the applied evaluation 

methods and protocols were adequate to contribute new data to the still puzzling field of 

epigenetics and to the role of histone lysine methylation in the context of nuclear 

architecture. 

 

 

 

 

 

 

 

 

 



                    References 
__________________________________________________________ 

                                                                                                                                              125 

6 References 
 
Aagaard, L., G. Laible, P. Selenko, M. Schmid, R. Dorn, G. Schotta, S. Kuhfittig, A. Wolf, A. Lebersorger, P.B. 

Singh, G. Reuter, and T. Jenuwein. 1999. Functional mammalian homologues of the Drosophila PEV-
modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin 
component M31. Embo J. 18:1923-38. 

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2002. Molecular Biology of the Cell. 
Garland Science, New York. 

Alexandrova, O., I. Solovei, T. Cremer, and C.N. David. 2003. Replication labeling patterns and chromosome 
territories typical of mammalian nuclei are conserved in the early metazoan Hydra. Chromosoma. 
112:190-200. 

Allfrey, V.G.F.a.M.A.E. 1964. Acetylation and methylation of histones and their possible role in the regulation od 
RNA synthesis. Proc.NAtl.Acad.Sci USA. 51:786-94. 

Allis, C.D., Jenuwein, T., Reinberg, D. 2007. Epigenetics. Cold Spring Harbor Laboratory Press. 
Ambudkar, S.V., S. Dey, C.A. Hrycyna, M. Ramachandra, I. Pastan, and M.M. Gottesman. 1999. Biochemical, 

cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 39:361-
98. 

Arents, G., R.W. Burlingame, B.C. Wang, W.E. Love, and E.N. Moudrianakis. 1991. The nucleosomal core 
histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl 
Acad Sci U S A. 88:10148-52. 

Avner, P., and E. Heard. 2001. X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet. 2:59-
67. 

Ballestar, E., and M. Esteller. 2005. The epigenetic breakdown of cancer cells: from DNA methylation to histone 
modifications. Prog Mol Subcell Biol. 38:169-81. 

Bannister, A.J., and T. Kouzarides. 2004. Histone methylation: recognizing the methyl mark. Methods Enzymol. 
376:269-88. 

Bannister, A.J., R. Schneider, and T. Kouzarides. 2002. Histone methylation: dynamic or static? Cell. 109:801-6. 
Bannister, A.J., P. Zegerman, J.F. Partridge, E.A. Miska, J.O. Thomas, R.C. Allshire, and T. Kouzarides. 2001. 

Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 410:120-
4. 

Barr, M.L., and E.G. Bertram. 1949. A morphological distinction between neurons of the male and female, and the 
behavior of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature. 163:676-677. 

Bauer, U.M., S. Daujat, S.J. Nielsen, K. Nightingale, and T. Kouzarides. 2002. Methylation at arginine 17 of 
histone H3 is linked to gene activation. EMBO Rep. 3:39-44. 

Baxevanis, A.D., and D. Landsman. 1996. Histone Sequence Database: a compilation of highly-conserved 
nucleoprotein sequences. Nucleic Acids Res. 24:245-7. 

Baxter, J., S. Sauer, A. Peters, R. John, R. Williams, M.L. Caparros, K. Arney, A. Otte, T. Jenuwein, M. 
Merkenschlager, and A.G. Fisher. 2004. Histone hypomethylation is an indicator of epigenetic plasticity 
in quiescent lymphocytes. Embo J. 23:4462-72. 

Bedford, M.T., and S. Richard. 2005. Arginine methylation an emerging regulator of protein function. Mol Cell. 
18:263-72. 

Bell, P.A., and C.N. Jones. 1982. Cytotoxic effects of butyrate and other 'differentiation inducers' on immature 
lymphoid cells. Biochem Biophys Res Commun. 104:1202-8. 

Belmont, A.S., and K. Bruce. 1994. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema 
model of interphase chromatid structure. J Cell Biol. 127:287-302. 

Belmont, A.S., S. Dietzel, A.C. Nye, Y.G. Strukov, and T. Tumbar. 1999. Large-scale chromatin structure and 
function. Curr Opin Cell Biol. 11:307-11. 

Bender, J. 2004. DNA methylation and epigenetics. Annu Rev Plant Biol. 55:41-68. 
Bernardo, P.H., N. Brasch, C.L. Chai, and P. Waring. 2003. A novel redox mechanism for the glutathione-

dependent reversible uptake of a fungal toxin in cells. J Biol Chem. 278:46549-55. 
Bernstein, B.E., E.L. Humphrey, R.L. Erlich, R. Schneider, P. Bouman, J.S. Liu, T. Kouzarides, and S.L. 

Schreiber. 2002. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U 
S A. 99:8695-700. 

Bernstein, B.E., E.L. Humphrey, C.L. Liu, and S.L. Schreiber. 2004. The use of chromatin immunoprecipitation 
assays in genome-wide analyses of histone modifications. Methods Enzymol. 376:349-60. 

Bernstein, B.E., M. Kamal, K. Lindblad-Toh, S. Bekiranov, D.K. Bailey, D.J. Huebert, S. McMahon, E.K. Karlsson, 
E.J. Kulbokas, 3rd, T.R. Gingeras, S.L. Schreiber, and E.S. Lander. 2005. Genomic maps and 
comparative analysis of histone modifications in human and mouse. Cell. 120:169-81. 

Bernstein, B.E., A. Meissner, and E.S. Lander. 2007. The Mammalian epigenome. Cell. 128:669-81. 
Bink, K., A. Walch, A. Feuchtinger, H. Eisenmann, P. Hutzler, H. Hofler, and M. Werner. 2001. TO-PRO-3 is an 

optimal fluorescent dye for nuclear counterstaining in dual-colour FISH on paraffin sections. Histochem 
Cell Biol. 115:293-9. 

Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6-21. 
Blais, A., and B.D. Dynlacht. 2005. Constructing transcriptional regulatory networks. Genes Dev. 19:1499-511. 



                    References 
__________________________________________________________ 

                                                                                                                                              126 

Blank, M., Y. Lerenthal, L. Mittelman, and Y. Shiloh. 2006. Condensin I recruitment and uneven chromatin 
condensation precede mitotic cell death in response to DNA damage. J Cell Biol. 174:195-206. 

Boggs, B.A., P. Cheung, E. Heard, D.L. Spector, A.C. Chinault, and C.D. Allis. 2002. Differentially methylated 
forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet. 
30:73-6. 

Bolzer, A., J.M. Craig, T. Cremer, and M.R. Speicher. 1999. A complete set of repeat-depleted, PCR-amplifiable, 
human chromosome-specific painting probes. Cytogenet Cell Genet. 84:233-40. 

Borowski, E., M.M. Bontemps-Gracz, and A. Piwkowska. 2005. Strategies for overcoming ABC-transporters-
mediated multidrug resistance (MDR) of tumor cells. Acta Biochim Pol. 52:609-27. 

Borst, P., R. Evers, M. Kool, and J. Wijnholds. 2000. A family of drug transporters: the multidrug resistance-
associated proteins. J Natl Cancer Inst. 92:1295-302. 

Boyer, L.A., K. Plath, J. Zeitlinger, T. Brambrink, L.A. Medeiros, T.I. Lee, S.S. Levine, M. Wernig, A. Tajonar, M.K. 
Ray, G.W. Bell, A.P. Otte, M. Vidal, D.K. Gifford, R.A. Young, and R. Jaenisch. 2006. Polycomb 
complexes repress developmental regulators in murine embryonic stem cells. Nature. 441:349-53. 

Boyle, S., S. Gilchrist, J.M. Bridger, N.L. Mahy, J.A. Ellis, and W.A. Bickmore. 2001. The spatial organization of 
human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet. 10:211-9. 

Briggs, S.D., M. Bryk, B.D. Strahl, W.L. Cheung, J.K. Davie, S.Y. Dent, F. Winston, and C.D. Allis. 2001. Histone 
H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in 
Saccharomyces cerevisiae. Genes Dev. 15:3286-95. 

Brinkman, A.B., T. Roelofsen, S.W. Pennings, J.H. Martens, T. Jenuwein, and H.G. Stunnenberg. 2006. Histone 
modification patterns associated with the human X chromosome. EMBO Rep. 

Brown, K. 2002. Visualizing nuclear proteins together with transcribed and inactive genes in structurally preserved 
cells. Methods. 26:10-8. 

Brown, K.E., S.S. Guest, S.T. Smale, K. Hahm, M. Merkenschlager, and A.G. Fisher. 1997. Association of 
transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 91:845-54. 

Brown, S.W. 1966. Heterochromatin. Science. 151:417-25. 
Brownell, J.E., C.A. Mizzen, and C.D. Allis. 1999. An SDS-PAGE-based enzyme activity assay for the detection 

and identification of histone acetyltransferases. Methods Mol Biol. 119:343-53. 
Brownell, J.E., J. Zhou, T. Ranalli, R. Kobayashi, D.G. Edmondson, S.Y. Roth, and C.D. Allis. 1996. Tetrahymena 

histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. 
Cell. 84:843-51. 

Buchon, N., and C. Vaury. 2006. RNAi: a defensive RNA-silencing against viruses and transposable elements. 
Heredity. 96:195-202. 

Cam, H.P., T. Sugiyama, E.S. Chen, X. Chen, P.C. FitzGerald, and S.I. Grewal. 2005. Comprehensive analysis of 
heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet. 37:809-
19. 

Cao, R., Y. Tsukada, and Y. Zhang. 2005. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene 
silencing. Mol Cell. 20:845-54. 

Cao, R., L. Wang, H. Wang, L. Xia, H. Erdjument-Bromage, P. Tempst, R.S. Jones, and Y. Zhang. 2002. Role of 
histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039-43. 

Caron, H., B. van Schaik, M. van der Mee, F. Baas, G. Riggins, P. van Sluis, M.C. Hermus, R. van Asperen, K. 
Boon, P.A. Voute, S. Heisterkamp, A. van Kampen, and R. Versteeg. 2001. The human transcriptome 
map: clustering of highly expressed genes in chromosomal domains. Science. 291:1289-92. 

Carrel, L., and H.F. Willard. 1999. Heterogeneous gene expression from the inactive X chromosome: an X-linked 
gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci 
U S A. 96:7364-9. 

Carrel, L., and H.F. Willard. 2005. X-inactivation profile reveals extensive variability in X-linked gene expression in 
females. Nature. 434:400-4. 

Carta, S., S. Tassi, C. Semino, G. Fossati, P. Mascagni, C.A. Dinarello, and A. Rubartelli. 2006. Histone 
deacetylase inhibitors prevent exocytosis of interleukin-1beta-containing secretory lysosomes: role of 
microtubules. Blood. 108:1618-26. 

Chadwick, B.P. 2006. Variation in Xi chromatin organization and correlation of the H3K27me3 chromatin 
territories to transcribed sequences by microarray analysis. Chromosoma. 

Chadwick, B.P., and H.F. Willard. 2004. Multiple spatially distinct types of facultative heterochromatin on the 
human inactive X chromosome. Proc Natl Acad Sci U S A. 101:17450-5. 

Chan, P.K. 1992. Characterization and cellular localization of nucleophosmin/B23 in HeLa cells treated with 
selected cytotoxic agents (studies of B23-translocation mechanism). Exp Cell Res. 203:174-81. 

Chan, P.K., D.A. Bloom, and T.T. Hoang. 1999. The N-terminal half of NPM dissociates from nucleoli of HeLa 
cells after anticancer drug treatments. Biochem Biophys Res Commun. 264:305-9. 

Chaumeil, J., I. Okamoto, M. Guggiari, and E. Heard. 2002. Integrated kinetics of X chromosome inactivation in 
differentiating embryonic stem cells. Cytogenet Genome Res. 99:75-84. 

Chen, C.J., J.E. Chin, K. Ueda, D.P. Clark, I. Pastan, M.M. Gottesman, and I.B. Roninson. 1986. Internal 
duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from 
multidrug-resistant human cells. Cell. 47:381-9. 

Cheng, J., P. Kapranov, J. Drenkow, S. Dike, S. Brubaker, S. Patel, J. Long, D. Stern, H. Tammana, G. Helt, V. 
Sementchenko, A. Piccolboni, S. Bekiranov, D.K. Bailey, M. Ganesh, S. Ghosh, I. Bell, D.S. Gerhard, 
and T.R. Gingeras. 2005. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. 
Science. 308:1149-54. 



                    References 
__________________________________________________________ 

                                                                                                                                              127 

Cheung, P., K.G. Tanner, W.L. Cheung, P. Sassone-Corsi, J.M. Denu, and C.D. Allis. 2000. Synergistic coupling 
of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol 
Cell. 5:905-15. 

Cheutin, T., A.J. McNairn, T. Jenuwein, D.M. Gilbert, P.B. Singh, and T. Misteli. 2003. Maintenance of stable 
heterochromatin domains by dynamic HP1 binding. Science. 299:721-5. 

Clarke, A.S., J.E. Lowell, S.J. Jacobson, and L. Pillus. 1999. Esa1p is an essential histone acetyltransferase 
required for cell cycle progression. Mol Cell Biol. 19:2515-26. 

Clayton, A.L., S. Rose, M.J. Barratt, and L.C. Mahadevan. 2000. Phosphoacetylation of histone H3 on c-fos- and 
c-jun-associated nucleosomes upon gene activation. Embo J. 19:3714-26. 

Clement, J.Q., and M.F. Wilkinson. 2000. Rapid induction of nuclear transcripts and inhibition of intron decay in 
response to the polymerase II inhibitor DRB. J Mol Biol. 299:1179-91. 

Cocklin, R.R., and M. Wang. 2003. Identification of methylation and acetylation sites on mouse histone H3 using 
matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass 
spectrometry. J Protein Chem. 22:327-34. 

Conchello, J.A., and J.W. Lichtman. 2005. Optical sectioning microscopy. Nat Methods. 2:920-31. 
Cosgrove, M.S., J.D. Boeke, and C. Wolberger. 2004. Regulated nucleosome mobility and the histone code. Nat 

Struct Mol Biol. 11:1037-43. 
Craig, J.M., and W.A. Bickmore. 1993. Chromosome bands--flavours to savour. Bioessays. 15:349-54. 
Cremer, M., J. von Hase, T. Volm, A. Brero, G. Kreth, J. Walter, C. Fischer, I. Solovei, C. Cremer, and T. Cremer. 

2001. Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. 
Chromosome Res. 9:541-67. 

Cremer, M., R. Zinner, S. Stein, H. Albiez, B. Wagler, C. Cremer, and T. Cremer. 2004. Three dimensional 
analysis of histone methylation patterns in normal and tumor cell nuclei. Eur J Histochem. 48:15-28. 

Cremer, T., and C. Cremer. 2001. Chromosome territories, nuclear architecture and gene regulation in 
mammalian cells. Nat Rev Genet. 2:292-301. 

Cremer, T., A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schrock, M.R. Speicher, U. Mathieu, A. Jauch, P. 
Emmerich, H. Scherthan, T. Ried, C. Cremer, and P. Lichter. 1993. Role of chromosome territories in the 
functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol. 58:777-92. 

Czermin, B., R. Melfi, D. McCabe, V. Seitz, A. Imhof, and V. Pirrotta. 2002. Drosophila enhancer of Zeste/ESC 
complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 
111:185-96. 

Daujat, S., U.M. Bauer, V. Shah, B. Turner, S. Berger, and T. Kouzarides. 2002. Crosstalk between CARM1 
methylation and CBP acetylation on histone H3. Curr Biol. 12:2090-7. 

de Maziere, A.M., W.J. Hage, and G.A. Ubbels. 1996. A method for staining of cell nuclei in Xenopus laevis 
embryos with cyanine dyes for whole-mount confocal laser scanning microscopy. J Histochem 
Cytochem. 44:399-402. 

Dehe, P.M., and V. Geli. 2006. The multiple faces of Set1. Biochem Cell Biol. 84:536-48. 
DeLange, R.J., Fambrough, D.M., Smith,E., Bonner,J. 1969a. Calf and pea histone IV.II.The complete amino acid 

sequence of calf thymus histone IV; presence of epsilon-N-aceyllysine. J.Biol.Chem. 244:319-334. 
DeLange, R.J., Fambrough, D.M., Smith,E., Bonner,J. 1969b. Calf and pea histone IV.III. Complete amino acid 

sequence of pea seedling histone IV; comparison with the homologous calf thymus histone. J.Biol.Chem. 
244:5669-5679. 

Delaval, K., and R. Feil. 2004. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev. 
14:188-95. 

Deng, W., S.W. Tsao, J.N. Lucas, C.S. Leung, and A.L. Cheung. 2003. A new method for improving metaphase 
chromosome spreading. Cytometry A. 51:46-51. 

Dhalluin, C., J.E. Carlson, L. Zeng, C. He, A.K. Aggarwal, and M.M. Zhou. 1999. Structure and ligand of a histone 
acetyltransferase bromodomain. Nature. 399:491-6. 

Dijk, v. 2005. Monomethyl histone H3 lysine 4 as an epigenetic mark for silenced euchromatin in 
Chlamydomonas. Plant Cell. 17:2439-2453. 

Dillon, N. 2004. Heterochromatin structure and function. Biol Cell. 96:631-7. 
Dillon, N., and R. Festenstein. 2002. Unravelling heterochromatin: competition between positive and negative 

factors regulates accessibility. Trends Genet. 18:252-8. 
Dimitrov, S., M.C. Dasso, and A.P. Wolffe. 1994. Remodeling sperm chromatin in Xenopus laevis egg extracts: 

the role of core histone phosphorylation and linker histone B4 in chromatin assembly. J Cell Biol. 
126:591-601. 

Dimitrova, D.S., and R. Berezney. 2002. The spatio-temporal organization of DNA replication sites is identical in 
primary, immortalized and transformed mammalian cells. J Cell Sci. 115:4037-51. 

Disteche, C.M. 1995. Escape from X inactivation in human and mouse. Trends Genet. 11:17-22. 
Disteche, C.M. 1999. Escapees on the X chromosome. Proc Natl Acad Sci U S A. 96:14180-2. 
Doiron, K.M., J. Lavigne-Nicolas, and C.G. Cupples. 1999. Effect of interaction between 5-azacytidine and DNA 

(cytosine-5) methyltransferase on C-to-G and C-to-T mutations in Escherichia coli. Mutat Res. 429:37-
44. 

Dundr, M., and T. Misteli. 2001. Functional architecture in the cell nucleus. Biochem J. 356:297-310. 
Earnshaw, W.C., and R.L. Bernat. 1991. Chromosomal passengers: toward an integrated view of mitosis. 

Chromosoma. 100:139-46. 
Earnshaw, W.C., and N. Rothfield. 1985. Identification of a family of human centromere proteins using 

autoimmune sera from patients with scleroderma. Chromosoma. 91:313-21. 



                    References 
__________________________________________________________ 

                                                                                                                                              128 

Edmondson, D.G., M.M. Smith, and S.Y. Roth. 1996. Repression domain of the yeast global repressor Tup1 
interacts directly with histones H3 and H4. Genes Dev. 10:1247-59. 

Eissenberg, J.C., T.C. James, D.M. Foster-Hartnett, T. Hartnett, V. Ngan, and S.C. Elgin. 1990. Mutation in a 
heterochromatin-specific chromosomal protein is associated with suppression of position-effect 
variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A. 87:9923-7. 

Espino, P.S., B. Drobic, K.L. Dunn, and J.R. Davie. 2005. Histone modifications as a platform for cancer therapy. 
J Cell Biochem. 94:1088-102. 

Fadeel, B., and S. Orrenius. 2005. Apoptosis: a basic biological phenomenon with wide-ranging implications in 
human disease. J Intern Med. 258:479-517. 

Fang, J., Q. Feng, C.S. Ketel, H. Wang, R. Cao, L. Xia, H. Erdjument-Bromage, P. Tempst, J.A. Simon, and Y. 
Zhang. 2002. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-
specific methyltransferase. Curr Biol. 12:1086-99. 

Felsenfeld, G., and M. Groudine. 2003. Controlling the double helix. Nature. 421:448-53. 
Festenstein, R., S.N. Pagakis, K. Hiragami, D. Lyon, A. Verreault, B. Sekkali, and D. Kioussis. 2003. Modulation 

of heterochromatin protein 1 dynamics in primary Mammalian cells. Science. 299:719-21. 
Fiegler, H., P. Carr, E.J. Douglas, D.C. Burford, S. Hunt, C.E. Scott, J. Smith, D. Vetrie, P. Gorman, I.P. 

Tomlinson, and N.P. Carter. 2003. DNA microarrays for comparative genomic hybridization based on 
DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer. 36:361-74. 

Firestein, R., X. Cui, P. Huie, and M.L. Cleary. 2000. Set domain-dependent regulation of transcriptional silencing 
and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol Cell Biol. 
20:4900-9. 

Fischer, A., I. Hofmann, K. Naumann, and G. Reuter. 2006. Heterochromatin proteins and the control of 
heterochromatic gene silencing in Arabidopsis. J Plant Physiol. 163:358-68. 

Fischle, W., Y. Wang, and C.D. Allis. 2003a. Binary switches and modification cassettes in histone biology and 
beyond. Nature. 425:475-9. 

Fischle, W., Y. Wang, and C.D. Allis. 2003b. Histone and chromatin cross-talk. Curr Opin Cell Biol. 15:172-83. 
Flemming, W. 1882. Beiträge zur Kenntnis der Zelle und ihrer Lebenserscheinungen. In Archiv für Mikroskopische 

Anatomie. v. la valette St. George and W. Waldeyer, editors. Verlag von Max hen & Sohn, Bonn. 1-87. 
Fodor, B.D., S. Kubicek, M. Yonezawa, J. O'Sullivan R, R. Sengupta, L. Perez-Burgos, S. Opravil, K. Mechtler, G. 

Schotta, and T. Jenuwein. 2006. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin 
in mammalian cells. Genes Dev. 

Fraga, M.F., E. Ballestar, A. Villar-Garea, M. Boix-Chornet, J. Espada, G. Schotta, T. Bonaldi, C. Haydon, S. 
Ropero, K. Petrie, N.G. Iyer, A. Perez-Rosado, E. Calvo, J.A. Lopez, A. Cano, M.J. Calasanz, D. 
Colomer, M.A. Piris, N. Ahn, A. Imhof, C. Caldas, T. Jenuwein, and M. Esteller. 2005. Loss of acetylation 
at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 
37:391-400. 

Francke, U. 1994. Digitized and differentially shaded human chromosome ideograms for genomic applications. 
Cytogenet Cell Genet. 65:206-18. 

Freitag, M., and E.U. Selker. 2005. Controlling DNA methylation: many roads to one modification. Curr Opin 
Genet Dev. 15:191-9. 

Freitas, M.A., A.R. Sklenar, and M.R. Parthun. 2004. Application of mass spectrometry to the identification and 
quantification of histone post-translational modifications. J Cell Biochem. 92:691-700. 

Frey, U., S. Frey, F. Schollmeier, and M. Krug. 1996. Influence of actinomycin D, a RNA synthesis inhibitor, on 
long-term potentiation in rat hippocampal neurons in vivo and in vitro. J Physiol. 490 ( Pt 3):703-11. 

Fuks, F. 2005. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 
15:490-5. 

Fuks, F., P.J. Hurd, D. Wolf, X. Nan, A.P. Bird, and T. Kouzarides. 2003. The methyl-CpG-binding protein MeCP2 
links DNA methylation to histone methylation. J Biol Chem. 278:4035-40. 

Galun, E., J. Gressel, and A. Keynan. 1964. Suppression of Floral Induction of Actinomycin D - an Inhibitor of 
'Messenger' Rna Synthesis. Life Sci. 3:911-5. 

Ganesan, S., D.P. Silver, R.A. Greenberg, D. Avni, R. Drapkin, A. Miron, S.C. Mok, V. Randrianarison, S. Brodie, 
J. Salstrom, T.P. Rasmussen, A. Klimke, C. Marrese, Y. Marahrens, C.X. Deng, J. Feunteun, and D.M. 
Livingston. 2002. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell. 
111:393-405. 

Garcia-Cao, M., R. O'Sullivan, A.H. Peters, T. Jenuwein, and M.A. Blasco. 2004. Epigenetic regulation of 
telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat 
Genet. 36:94-9. 

Gardiner, D.M., P. Waring, and B.J. Howlett. 2005. The epipolythiodioxopiperazine (ETP) class of fungal toxins: 
distribution, mode of action, functions and biosynthesis. Microbiology. 151:1021-32. 

Gasser, S.M., and U.K. Laemmli. 1986. The organisation of chromatin loops: characterization of a scaffold 
attachment site. Embo J. 5:511-518. 

Geigl, J.B., S. Langer, S. Barwisch, K. Pfleghaar, G. Lederer, and M.R. Speicher. 2004. Analysis of gene 
expression patterns and chromosomal changes associated with aging. Cancer Res. 64:8550-7. 

Gilbert, N., S. Boyle, H. Fiegler, K. Woodfine, N.P. Carter, and W.A. Bickmore. 2004. Chromatin architecture of 
the human genome: gene-rich domains are enriched in open chromatin fibers. Cell. 118:555-66. 

Gilbert, N., S. Boyle, H. Sutherland, J. de Las Heras, J. Allan, T. Jenuwein, and W.A. Bickmore. 2003. Formation 
of facultative heterochromatin in the absence of HP1. Embo J. 22:5540-50. 

Gong, X.Q., Y.A. Nedialkov, and Z.F. Burton. 2004. Alpha-amanitin blocks translocation by human RNA 
polymerase II. J Biol Chem. 279:27422-7. 



                    References 
__________________________________________________________ 

                                                                                                                                              129 

Gonzalez, M., C.E. Argarana, and G.D. Fidelio. 1999. Extremely high thermal stability of streptavidin and avidin 
upon biotin binding. Biomol Eng. 16:67-72. 

Gonzalo, S., M. Garcia-Cao, M.F. Fraga, G. Schotta, A.H. Peters, S.E. Cotter, R. Eguia, D.C. Dean, M. Esteller, 
T. Jenuwein, and M.A. Blasco. 2005. Role of the RB1 family in stabilizing histone methylation at 
constitutive heterochromatin. Nat Cell Biol. 7:420-8. 

Gorisch, S.M., M. Wachsmuth, K.F. Toth, P. Lichter, and K. Rippe. 2005. Histone acetylation increases chromatin 
accessibility. J Cell Sci. 118:5825-34. 

Gottesman, M.M., S.V. Ambudkar, B. Ni, J.M. Aran, Y. Sugimoto, C.O. Cardarelli, and I. Pastan. 1994. Exploiting 
multidrug resistance to treat cancer. Cold Spring Harb Symp Quant Biol. 59:677-83. 

Grady, D.L., R.L. Ratliff, D.L. Robinson, E.C. McCanlies, J. Meyne, and R.K. Moyzis. 1992. Highly conserved 
repetitive DNA sequences are present at human centromeres. Proc Natl Acad Sci U S A. 89:1695-9. 

Grant, P.A., A. Eberharter, S. John, R.G. Cook, B.M. Turner, and J.L. Workman. 1999. Expanded lysine 
acetylation specificity of Gcn5 in native complexes. J Biol Chem. 274:5895-900. 

Gratzner, H.G. 1982. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of 
DNA replication. Science. 218:474-5. 

Greiner, D., T. Bonaldi, R. Eskeland, E. Roemer, and A. Imhof. 2005. Identification of a specific inhibitor of the 
histone methyltransferase SU(VAR)3-9. Nat Chem Biol. 1:143-5. 

Grigoryev, S.A., T. Nikitina, J.R. Pehrson, P.B. Singh, and C.L. Woodcock. 2004. Dynamic relocation of 
epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from 
proliferation to quiescence. J Cell Sci. 117:6153-62. 

Grimaud, B.F., Cavalli G. 2005. Fluorescent in situ Hybridization Combined with Immunostaining on Polytene 
Chromosomes. Epigenome network of excellence: Research tools-protocols. 

Grimwood, J., L.A. Gordon, A. Olsen, A. Terry, J. Schmutz, J. Lamerdin, U. Hellsten, D. Goodstein, O. Couronne, 
M. Tran-Gyamfi, A. Aerts, M. Altherr, L. Ashworth, E. Bajorek, S. Black, E. Branscomb, S. Caenepeel, A. 
Carrano, C. Caoile, Y.M. Chan, M. Christensen, C.A. Cleland, A. Copeland, E. Dalin, P. Dehal, M. 
Denys, J.C. Detter, J. Escobar, D. Flowers, D. Fotopulos, C. Garcia, A.M. Georgescu, T. Glavina, M. 
Gomez, E. Gonzales, M. Groza, N. Hammon, T. Hawkins, L. Haydu, I. Ho, W. Huang, S. Israni, J. Jett, 
K. Kadner, H. Kimball, A. Kobayashi, V. Larionov, S.H. Leem, F. Lopez, Y. Lou, S. Lowry, S. Malfatti, D. 
Martinez, P. McCready, C. Medina, J. Morgan, K. Nelson, M. Nolan, I. Ovcharenko, S. Pitluck, M. 
Pollard, A.P. Popkie, P. Predki, G. Quan, L. Ramirez, S. Rash, J. Retterer, A. Rodriguez, S. Rogers, A. 
Salamov, A. Salazar, X. She, D. Smith, T. Slezak, V. Solovyev, N. Thayer, H. Tice, M. Tsai, A. 
Ustaszewska, N. Vo, M. Wagner, J. Wheeler, K. Wu, G. Xie, J. Yang, I. Dubchak, T.S. Furey, P. DeJong, 
M. Dickson, D. Gordon, E.E. Eichler, L.A. Pennacchio, P. Richardson, L. Stubbs, D.S. Rokhsar, R.M. 
Myers, E.M. Rubin, and S.M. Lucas. 2004. The DNA sequence and biology of human chromosome 19. 
Nature. 428:529-35. 

Hague, A., A.M. Manning, K.A. Hanlon, L.I. Huschtscha, D. Hart, and C. Paraskeva. 1993. Sodium butyrate 
induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: implications for the 
possible role of dietary fibre in the prevention of large-bowel cancer. Int J Cancer. 55:498-505. 

Heard, E. 2005. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X 
chromosome. Curr Opin Genet Dev. 15:482-9. 

Heard, E., C. Rougeulle, D. Arnaud, P. Avner, C.D. Allis, and D.L. Spector. 2001. Methylation of histone H3 at 
Lys-9 is an early mark on the X chromosome during X inactivation. Cell. 107:727-38. 

Hecht, A., T. Laroche, S. Strahl-Bolsinger, S.M. Gasser, and M. Grunstein. 1995. Histone H3 and H4 N-termini 
interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. 
Cell. 80:583-92. 

Heitz, E. 1928. Das Heterochromatin der Moose. Jahrb. Wiss. Botanik. I:762-818. 
Hendrich, B., and A. Bird. 1998. Identification and characterization of a family of mammalian methyl-CpG binding 

proteins. Mol Cell Biol. 18:6538-47. 
Hendrich, B., and S. Tweedie. 2003. The methyl-CpG binding domain and the evolving role of DNA methylation in 

animals. Trends Genet. 19:269-77. 
Hendzel, M.J., W.K. Nishioka, Y. Raymond, C.D. Allis, D.P. Bazett-Jones, and J.P. Th'ng. 1998. Chromatin 

condensation is not associated with apoptosis. J Biol Chem. 273:24470-8. 
Hensold, J.O., D. Barth, and C.A. Stratton. 1996. RNA polymerase II inhibitor, 5,6-dichloro-1-beta-D-

ribofuranosylbenzimidazole (DRB) causes erythroleukemic differentiation and transcriptional activation of 
erythroid genes. J Cell Physiol. 168:105-13. 

Hermann, A., S. Schmitt, and A. Jeltsch. 2003. The human Dnmt2 has residual DNA-(cytosine-C5) 
methyltransferase activity. J Biol Chem. 278:31717-21. 

Higgins, C.F. 1992. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 8:67-113. 
Huang, S., T.J. Deerinck, M.H. Ellisman, and D.L. Spector. 1994. In vivo analysis of the stability and transport of 

nuclear poly(A)+ RNA. J Cell Biol. 126:877-99. 
Huisinga, K.L., B. Brower-Toland, and S.C. Elgin. 2006. The contradictory definitions of heterochromatin: 

transcription and silencing. Chromosoma. 115:110-22. 
Imai, S., C.M. Armstrong, M. Kaeberlein, and L. Guarente. 2000. Transcriptional silencing and longevity protein 

Sir2 is an NAD-dependent histone deacetylase. Nature. 403:795-800. 
Isham, C.R., J.D. Tibodeau, W. Jin, R. Xu, M.M. Timm, and K.C. Bible. 2006. Chaetocin, a promising new anti-

myeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood. 
James, T.C., and S.C. Elgin. 1986. Identification of a nonhistone chromosomal protein associated with 

heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 6:3862-72. 



                    References 
__________________________________________________________ 

                                                                                                                                              130 

Janicki, S.M., T. Tsukamoto, S.E. Salghetti, W.P. Tansey, R. Sachidanandam, K.V. Prasanth, T. Ried, Y. Shav-
Tal, E. Bertrand, R.H. Singer, and D.L. Spector. 2004. From silencing to gene expression: real-time 
analysis in single cells. Cell. 116:683-98. 

Jenuwein, T., and C.D. Allis. 2001. Translating the histone code. Science. 293:1074-80. 
Jones, D.O., I.G. Cowell, and P.B. Singh. 2000. Mammalian chromodomain proteins: their role in genome 

organisation and expression. Bioessays. 22:124-37. 
Jones, P.A., and S.B. Baylin. 2002. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415-

28. 
Juliano, R.L., and V. Ling. 1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary 

cell mutants. Biochim Biophys Acta. 455:152-62. 
Julien, E., and W. Herr. 2004. A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase 

defects upon loss of HCF-1. Mol Cell. 14:713-25. 
Karachentsev, D., K. Sarma, D. Reinberg, and R. Steward. 2005. PR-Set7-dependent methylation of histone H4 

Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19:431-5. 
Katan-Khaykovich, Y., and K. Struhl. 2005. Heterochromatin formation involves changes in histone modifications 

over multiple cell generations. Embo J. 24:2138-49. 
Keohane, A.M., P. O'Neill L, N.D. Belyaev, J.S. Lavender, and B.M. Turner. 1996. X-Inactivation and histone H4 

acetylation in embryonic stem cells. Dev Biol. 180:618-30. 
Khorasanizadeh, S. 2004. The nucleosome: from genomic organization to genomic regulation. Cell. 116:259-72. 
Kim, S., and W.K. Paik. 1965. Studies on the origin of epsilon-N-methyl-L-lysine in protein. J Biol Chem. 

240:4629-34. 
Kim, S.M., D.D. Dubey, and J.A. Huberman. 2003. Early-replicating heterochromatin. Genes Dev. 17:330-5. 
Klose, R.J., and A.P. Bird. 2006. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 

31:89-97. 
Kohlmaier, A., F. Savarese, M. Lachner, J. Martens, T. Jenuwein, and A. Wutz. 2004. A chromosomal memory 

triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2:E171. 
Kornberg, R.D. 1974. Chromatin structure: a repeating unit of histones and DNA. Science. 184:868-71. 
Korpela, J. 1984. Avidin, a high affinity biotin-binding protein, as a tool and subject of biological research. Med 

Biol. 62:5-26. 
Kourmouli, N., P. Jeppesen, S. Mahadevhaiah, P. Burgoyne, R. Wu, D.M. Gilbert, S. Bongiorni, G. Prantera, L. 

Fanti, S. Pimpinelli, W. Shi, R. Fundele, and P.B. Singh. 2004. Heterochromatin and tri-methylated lysine 
20 of histone H4 in animals. J Cell Sci. 117:2491-501. 

Kouzarides, T. 2002. Histone methylation in transcriptional control. Curr Opin Genet Dev. 12:198-209. 
Kouzarides, T. 2007. Chromatin modifications and their function. Cell. 128:693-705. 
Kreft, M., I. Milisav, M. Potokar, and R. Zorec. 2004. Automated high through-put colocalization analysis of 

multichannel confocal images. Comput Methods Programs Biomed. 74:63-7. 
Krogan, N.J., J. Dover, S. Khorrami, J.F. Greenblatt, J. Schneider, M. Johnston, and A. Shilatifard. 2002. 

COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene 
expression. J Biol Chem. 277:10753-5. 

Kruger, W., C.L. Peterson, A. Sil, C. Coburn, G. Arents, E.N. Moudrianakis, and I. Herskowitz. 1995. Amino acid 
substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the 
yeast SWI/SNF complex for transcription. Genes Dev. 9:2770-9. 

Kupper, K., A. Kolbl, D. Biener, S. Dittrich, J. von Hase, T. Thormeyer, H. Fiegler, N.P. Carter, M.R. Speicher, T. 
Cremer, and M. Cremer. 2007. Radial chromatin positioning is shaped by local gene density, not by 
gene expression. Chromosoma. 

Kurdistani, S.K., and M. Grunstein. 2003. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol. 
4:276-84. 

Kurdistani, S.K., S. Tavazoie, and M. Grunstein. 2004. Mapping global histone acetylation patterns to gene 
expression. Cell. 117:721-33. 

Kuzmichev, A., K. Nishioka, H. Erdjument-Bromage, P. Tempst, and D. Reinberg. 2002. Histone 
methyltransferase activity associated with a human multiprotein complex containing the Enhancer of 
Zeste protein. Genes Dev. 16:2893-905. 

Lachmanovich, E., D.E. Shvartsman, Y. Malka, C. Botvin, Y.I. Henis, and A.M. Weiss. 2003. Co-localization 
analysis of complex formation among membrane proteins by computerized fluorescence microscopy: 
application to immunofluorescence co-patching studies. J Microsc. 212:122-31. 

Lachner, M., and T. Jenuwein. 2002. The many faces of histone lysine methylation. Curr Opin Cell Biol. 14:286-
98. 

Lachner, M., D. O'Carroll, S. Rea, K. Mechtler, and T. Jenuwein. 2001. Methylation of histone H3 lysine 9 creates 
a binding site for HP1 proteins. Nature. 410:116-20. 

Lachner, M., R.J. O'Sullivan, and T. Jenuwein. 2003. An epigenetic road map for histone lysine methylation. J Cell 
Sci. 116:2117-24. 

Lachner, M., R. Sengupta, G. Schotta, and T. Jenuwein. 2004. Trilogies of histone lysine methylation as 
epigenetic landmarks of the eukaryotic genome. Cold Spring Harb Symp Quant Biol. 69:209-18. 

Lander, E.S., L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. 
FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. 
McEwan, K. McKernan, J. Meldrim, J.P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. 
Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, D. 
Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. 
Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. 



                    References 
__________________________________________________________ 

                                                                                                                                              131 

Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, 
S. Milne, J.C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R.H. Waterston, R.K. 
Wilson, L.W. Hillier, J.D. McPherson, M.A. Marra, E.R. Mardis, L.A. Fulton, A.T. Chinwalla, K.H. Pepin, 
W.R. Gish, S.L. Chissoe, M.C. Wendl, K.D. Delehaunty, T.L. Miner, A. Delehaunty, J.B. Kramer, L.L. 
Cook, R.S. Fulton, D.L. Johnson, P.J. Minx, S.W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. 
Richardson, S. Wenning, T. Slezak, N. Doggett, J.F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. 
Uberbacher, M. Frazier, et al. 2001. Initial sequencing and analysis of the human genome. Nature. 
409:860-921. 

Landmann, L. 2002. Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data 
sets more than filtering techniques. J Microsc. 208:134-47. 

Landmann, L., and P. Marbet. 2004. Colocalization analysis yields superior results after image restoration. 
Microsc Res Tech. 64:103-12. 

Langst, G., and P.B. Becker. 2004. Nucleosome remodeling: one mechanism, many phenomena? Biochim 
Biophys Acta. 1677:58-63. 

Lavrov, S., J. Dejardin, and G. Cavalli. 2004. Combined immunostaining and FISH analysis of polytene 
chromosomes. Methods Mol Biol. 247:289-303. 

Lawen, A. 2003. Apoptosis-an introduction. Bioessays. 25:888-96. 
Lehnertz, B., Y. Ueda, A.A. Derijck, U. Braunschweig, L. Perez-Burgos, S. Kubicek, T. Chen, E. Li, T. Jenuwein, 

and A.H. Peters. 2003. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to 
major satellite repeats at pericentric heterochromatin. Curr Biol. 13:1192-200. 

Lesne, A. 2006. The chromatin regulatory code: Beyond a histone code. Eur Phys J E Soft Matter. 19:375-7. 
Lesne, A., and J.M. Victor. 2006. Chromatin fiber functional organization: Some plausible models. Eur Phys J E 

Soft Matter. 19:279-90. 
Lewis, J.D., R.R. Meehan, W.J. Henzel, I. Maurer-Fogy, P. Jeppesen, F. Klein, and A. Bird. 1992. Purification, 

sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 
69:905-14. 

Li, B., M. Carey, and J.L. Workman. 2007. The Role of Chromatin during Transcription. Cell. 128:707-19. 
Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 

3:662-73. 
Li, E., T.H. Bestor, and R. Jaenisch. 1992. Targeted mutation of the DNA methyltransferase gene results in 

embryonic lethality. Cell. 69:915-26. 
Lichtman, J.W., and J.A. Conchello. 2005. Fluorescence microscopy. Nat Methods. 2:910-9. 
Litt, M.D., M. Simpson, M. Gaszner, C.D. Allis, and G. Felsenfeld. 2001. Correlation between histone lysine 

methylation and developmental changes at the chicken beta-globin locus. Science. 293:2453-5. 
Lock, R.B., and L. Stribinskiene. 1996. Dual modes of death induced by etoposide in human epithelial tumor cells 

allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res. 56:4006-12. 
Lomberk, G., D. Bensi, M.E. Fernandez-Zapico, and R. Urrutia. 2006. Evidence for the existence of an HP1-

mediated subcode within the histone code. Nat Cell Biol. 8:407-15. 
Lottspeich, F.Z., H. 1998. Bioanalytik. Spektrum. 
Lu, L.J., and K. Randerath. 1980. Mechanism of 5-azacytidine-induced transfer RNA cytosine-5-

methyltransferase deficiency. Cancer Res. 40:2701-5. 
Lyon, M.F. 1999. X-chromosome inactivation. Curr Biol. 9:R235-7. 
Mager, J., N.D. Montgomery, F.P. de Villena, and T. Magnuson. 2003. Genome imprinting regulated by the 

mouse Polycomb group protein Eed. Nat Genet. 33:502-7. 
Mahadevan, L.C., A.C. Willis, and M.J. Barratt. 1991. Rapid histone H3 phosphorylation in response to growth 

factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell. 65:775-83. 
Maison, C., and G. Almouzni. 2004. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell 

Biol. 5:296-304. 
Maison, C., D. Bailly, A.H. Peters, J.P. Quivy, D. Roche, A. Taddei, M. Lachner, T. Jenuwein, and G. Almouzni. 

2002. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone 
modification and an RNA component. Nat Genet. 30:329-34. 

Malikov, V., E.N. Cytrynbaum, A. Kashina, A. Mogilner, and V. Rodionov. 2005. Centering of a radial microtubule 
array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nat Cell Biol. 
7:1213-8. 

Manders, E.M., J. Stap, G.J. Brakenhoff, R. van Driel, and J.A. Aten. 1992. Dynamics of three-dimensional 
replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J 
Cell Sci. 103 ( Pt 3):857-62. 

Manders, E.M.M., F.J. Verbeek, and J.A. Aten. 1993. Measurement of co-localization of objects in dual-colour 
confocal images. Journal of Microscopy. 169:375-382. 

Mann, M., and O.N. Jensen. 2003. Proteomic analysis of post-translational modifications. Nat Biotechnol. 21:255-
61. 

Manuelidis, L. 1990. A view of interphase chromosomes. Science. 250:1533-40. 
Markham, J., and J.A. Conchello. 2001. Artefacts in restored images due to intensity loss in three-dimensional 

fluorescence microscopy. J Microsc. 204:93-8. 
Martens, J.H., R.J. O'Sullivan, U. Braunschweig, S. Opravil, M. Radolf, P. Steinlein, and T. Jenuwein. 2005. The 

profile of repeat-associated histone lysine methylation states in the mouse epigenome. Embo J. 24:800-
12. 

Martin, C., and Y. Zhang. 2005. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 6:838-
49. 



                    References 
__________________________________________________________ 

                                                                                                                                              132 

Martin, S., and A. Pombo. 2003. Transcription factories: quantitative studies of nanostructures in the mammalian 
nucleus. Chromosome Res. 11:461-70. 

Mateescu, B., P. England, F. Halgand, M. Yaniv, and C. Muchardt. 2004. Tethering of HP1 proteins to chromatin 
is relieved by phosphoacetylation of histone H3. EMBO Rep. 5:490-6. 

Mathis, G., and F.R. Althaus. 1990. Uncoupling of DNA excision repair and nucleosomal unfolding in poly(ADP-
ribose)-depleted mammalian cells. Carcinogenesis. 11:1237-9. 

Matsuzaki , S.M., Fujikura K, Takata K. 1997. Nuclear staing for laser confocal microscopy. Acta Histochem 
Cytochem. 30:309-314. 

Mattick, J.S. 2003. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. 
Bioessays. 25:930-9. 

Matzke, M.A., and J.A. Birchler. 2005. RNAi-mediated pathways in the nucleus. Nat Rev Genet. 6:24-35. 
McNally, J.G., T. Karpova, J. Cooper, and J.A. Conchello. 1999. Three-dimensional imaging by deconvolution 

microscopy. Methods. 19:373-85. 
Meehan, R.R., J.D. Lewis, S. McKay, E.L. Kleiner, and A.P. Bird. 1989. Identification of a mammalian protein that 

binds specifically to DNA containing methylated CpGs. Cell. 58:499-507. 
Melcher, M., M. Schmid, L. Aagaard, P. Selenko, G. Laible, and T. Jenuwein. 2000. Structure-function analysis of 

SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and 
mitotic progression. Mol Cell Biol. 20:3728-41. 

Mellor, J. 2005. The dynamics of chromatin remodeling at promoters. Mol Cell. 19:147-57. 
Mermoud, J.E., B. Popova, A.H. Peters, T. Jenuwein, and N. Brockdorff. 2002. Histone H3 lysine 9 methylation 

occurs rapidly at the onset of random X chromosome inactivation. Curr Biol. 12:247-51. 
Merrick, S.E., J.Q. Trojanowski, and V.M. Lee. 1997. Selective destruction of stable microtubules and axons by 

inhibitors of protein serine/threonine phosphatases in cultured human neurons. J Neurosci. 17:5726-37. 
Misteli, T. 2004. Spatial positioning; a new dimension in genome function. Cell. 119:153-6. 
Misteli, T. 2005. Concepts in nuclear architecture. Bioessays. 27:477-87. 
Misteli, T. 2007. Beyond the sequence: cellular organization of genome function. Cell. 128:787-800. 
Muller, H.J. 1930. Types of visible variations produced by X-rays in Drosophila melanogaster. J.Genet. 22:299-

334. 
Murray, K. 1964. The occurrence of e-N-methyllysine in histones. Biochemistry. 3:10-15. 
Myster, S.H., F. Wang, R. Cavallo, W. Christian, S. Bhotika, C.T. Anderson, and M. Peifer. 2004. Genetic and 

bioinformatic analysis of 41C and the 2R heterochromatin of Drosophila melanogaster: a window on the 
heterochromatin-euchromatin junction. Genetics. 166:807-22. 

Nakamura, T.M., L.L. Du, C. Redon, and P. Russell. 2004. Histone H2A phosphorylation controls Crb2 
recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol 
Cell Biol. 24:6215-30. 

Nakayama, J., J.C. Rice, B.D. Strahl, C.D. Allis, and S.I. Grewal. 2001. Role of histone H3 lysine 9 methylation in 
epigenetic control of heterochromatin assembly. Science. 292:110-3. 

Nan, X., H.H. Ng, C.A. Johnson, C.D. Laherty, B.M. Turner, R.N. Eisenman, and A. Bird. 1998. Transcriptional 
repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 
393:386-9. 

Narita, M., S. Nunez, E. Heard, A.W. Lin, S.A. Hearn, D.L. Spector, G.J. Hannon, and S.W. Lowe. 2003. Rb-
mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 
113:703-16. 

Ng, H.H., F. Robert, R.A. Young, and K. Struhl. 2003. Targeted recruitment of Set1 histone methylase by 
elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell. 
11:709-19. 

Nicolas, E., C. Roumillac, and D. Trouche. 2003. Balance between acetylation and methylation of histone H3 
lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol Cell Biol. 23:1614-22. 

Nielsen, S.J., R. Schneider, U.M. Bauer, A.J. Bannister, A. Morrison, D. O'Carroll, R. Firestein, M. Cleary, T. 
Jenuwein, R.E. Herrera, and T. Kouzarides. 2001. Rb targets histone H3 methylation and HP1 to 
promoters. Nature. 412:561-5. 

Nightingale, K.P., L.P. O'Neill, and B.M. Turner. 2006. Histone modifications: signalling receptors and potential 
elements of a heritable epigenetic code. Curr Opin Genet Dev. 16:125-36. 

Nishioka, K., J.C. Rice, K. Sarma, H. Erdjument-Bromage, J. Werner, Y. Wang, S. Chuikov, P. Valenzuela, P. 
Tempst, R. Steward, J.T. Lis, C.D. Allis, and D. Reinberg. 2002. PR-Set7 is a nucleosome-specific 
methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell. 
9:1201-13. 

Nusbaum, C., M.C. Zody, M.L. Borowsky, M. Kamal, C.D. Kodira, T.D. Taylor, C.A. Whittaker, J.L. Chang, C.A. 
Cuomo, K. Dewar, M.G. FitzGerald, X. Yang, A. Abouelleil, N.R. Allen, S. Anderson, T. Bloom, B. 
Bugalter, J. Butler, A. Cook, D. DeCaprio, R. Engels, M. Garber, A. Gnirke, N. Hafez, J.L. Hall, C.H. 
Norman, T. Itoh, D.B. Jaffe, Y. Kuroki, J. Lehoczky, A. Lui, P. Macdonald, E. Mauceli, T.S. Mikkelsen, 
J.W. Naylor, R. Nicol, C. Nguyen, H. Noguchi, S.B. O'Leary, K. O'Neill, B. Piqani, C.L. Smith, J.A. 
Talamas, K. Topham, Y. Totoki, A. Toyoda, H.M. Wain, S.K. Young, Q. Zeng, A.R. Zimmer, A. Fujiyama, 
M. Hattori, B.W. Birren, Y. Sakaki, and E.S. Lander. 2005. DNA sequence and analysis of human 
chromosome 18. Nature. 437:551-5. 

O'Carroll, D., S. Erhardt, M. Pagani, S.C. Barton, M.A. Surani, and T. Jenuwein. 2001. The polycomb-group gene 
Ezh2 is required for early mouse development. Mol Cell Biol. 21:4330-6. 

Okamoto, I., A.P. Otte, C.D. Allis, D. Reinberg, and E. Heard. 2004. Epigenetic dynamics of imprinted X 
inactivation during early mouse development. Science. 303:644-9. 



                    References 
__________________________________________________________ 

                                                                                                                                              133 

Okano, M., D.W. Bell, D.A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential 
for de novo methylation and mammalian development. Cell. 99:247-57. 

Olins, A.L., and D.E. Olins. 1974. Spheroid chromatin units (v bodies). Science. 183:330-2. 
Paik, W.K., and S. Kim. 1971. Protein methylation. Science. 174:114-9. 
Panning, B., J. Dausman, and R. Jaenisch. 1997. X chromosome inactivation is mediated by Xist RNA 

stabilization. Cell. 90:907-16. 
Parada, L.A., S. Sotiriou, and T. Misteli. 2004. Spatial genome organization. Exp Cell Res. 296:64-70. 
Park, J.H., M.S. Cosgrove, E. Youngman, C. Wolberger, and J.D. Boeke. 2002. A core nucleosome surface 

crucial for transcriptional silencing. Nat Genet. 32:273-9. 
Paro, R., and D.S. Hogness. 1991. The Polycomb protein shares a homologous domain with a heterochromatin-

associated protein of Drosophila. Proc Natl Acad Sci U S A. 88:263-7. 
Parthun, M.R., J. Widom, and D.E. Gottschling. 1996. The major cytoplasmic histone acetyltransferase in yeast: 

links to chromatin replication and histone metabolism. Cell. 87:85-94. 
Paulson, J.R., and U.K. Laemmli. 1977. The structure of histone-depleted metaphase chromosomes. Cell. 

12:817-28. 
Pawley, J.B. 2006. Handbook of biological confocal microscopy. Springer (Science and business media). 
Pederson, T. 1999. Movement and localization of RNA in the cell nucleus. Faseb J. 13 Suppl 2:S238-42. 
Perez-Burgos, L., A.H. Peters, S. Opravil, M. Kauer, K. Mechtler, and T. Jenuwein. 2004. Generation and 

characterization of methyl-lysine histone antibodies. Methods Enzymol. 376:234-54. 
Peters, A.H., S. Kubicek, K. Mechtler, R.J. O'Sullivan, A.A. Derijck, L. Perez-Burgos, A. Kohlmaier, S. Opravil, M. 

Tachibana, Y. Shinkai, J.H. Martens, and T. Jenuwein. 2003. Partitioning and plasticity of repressive 
histone methylation states in mammalian chromatin. Mol Cell. 12:1577-89. 

Peters, A.H., D. O'Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schofer, K. Weipoltshammer, M. Pagani, M. 
Lachner, A. Kohlmaier, S. Opravil, M. Doyle, M. Sibilia, and T. Jenuwein. 2001. Loss of the Suv39h 
histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 107:323-37. 

Petty , B.J., Robertson ME. 2000. Thermodynamic characterization of the association of cyanine dyes with DNA. 
J Phys Chem. B 104:7221-7227. 

Pickersgill, H., B. Kalverda, E. de Wit, W. Talhout, M. Fornerod, and B. van Steensel. 2006. Characterization of 
the Drosophila melanogaster genome at the nuclear lamina. Nat Genet. 38:1005-14. 

Plath, K., J. Fang, S.K. Mlynarczyk-Evans, R. Cao, K.A. Worringer, H. Wang, C.C. de la Cruz, A.P. Otte, B. 
Panning, and Y. Zhang. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science. 
300:131-5. 

Pokholok, D.K., C.T. Harbison, S. Levine, M. Cole, N.M. Hannett, T.I. Lee, G.W. Bell, K. Walker, P.A. Rolfe, E. 
Herbolsheimer, J. Zeitlinger, F. Lewitter, D.K. Gifford, and R.A. Young. 2005. Genome-wide map of 
nucleosome acetylation and methylation in yeast. Cell. 122:517-27. 

Politz, J.C., R.A. Tuft, T. Pederson, and R.H. Singer. 1999. Movement of nuclear poly(A) RNA throughout the 
interchromatin space in living cells. Curr Biol. 9:285-91. 

Postberg, J., O. Alexandrova, T. Cremer, and H.J. Lipps. 2005. Exploiting nuclear duality of ciliates to analyse 
topological requirements for DNA replication and transcription. J Cell Sci. 118:3973-83. 

Raska, I., K. Koberna, J. Malinsky, H. Fidlerova, and M. Masata. 2004. The nucleolus and transcription of 
ribosomal genes. Biol Cell. 96:579-94. 

Rea, S., F. Eisenhaber, D. O'Carroll, B.D. Strahl, Z.W. Sun, M. Schmid, S. Opravil, K. Mechtler, C.P. Ponting, 
C.D. Allis, and T. Jenuwein. 2000. Regulation of chromatin structure by site-specific histone H3 
methyltransferases. Nature. 406:593-9. 

Reik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science. 
293:1089-93. 

Reinberg, D., S. Chuikov, P. Farnham, D. Karachentsev, A. Kirmizis, A. Kuzmichev, R. Margueron, K. Nishioka, 
T.S. Preissner, K. Sarma, C. Abate-Shen, R. Steward, and A. Vaquero. 2004. Steps toward 
understanding the inheritance of repressive methyl-lysine marks in histones. Cold Spring Harb Symp 
Quant Biol. 69:171-82. 

Rice, J.C., S.D. Briggs, B. Ueberheide, C.M. Barber, J. Shabanowitz, D.F. Hunt, Y. Shinkai, and C.D. Allis. 2003. 
Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. 
Mol Cell. 12:1591-8. 

Riggs, A.D. 1975. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 14:9-25. 
Ringrose, L., and R. Paro. 2004. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group 

proteins. Annu Rev Genet. 38:413-43. 
Robertson, K.D. 2005. DNA methylation and human disease. Nat Rev Genet. 6:597-610. 
Robertson, K.D., S. Ait-Si-Ali, T. Yokochi, P.A. Wade, P.L. Jones, and A.P. Wolffe. 2000. DNMT1 forms a 

complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat 
Genet. 25:338-42. 

Roninson, I.B., E.V. Broude, and B.D. Chang. 2001. If not apoptosis, then what? Treatment-induced senescence 
and mitotic catastrophe in tumor cells. Drug Resist Updat. 4:303-13. 

Rougeulle, C., J. Chaumeil, K. Sarma, C.D. Allis, D. Reinberg, P. Avner, and E. Heard. 2004. Differential histone 
H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol. 24:5475-84. 

Ruthenburg, A.J., C.D. Allis, and J. Wysocka. 2007. Methylation of lysine 4 on histone H3: intricacy of writing and 
reading a single epigenetic mark. Mol Cell. 25:15-30. 

Sanders, S.L., M. Portoso, J. Mata, J. Bahler, R.C. Allshire, and T. Kouzarides. 2004. Methylation of histone H4 
lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell. 119:603-14. 



                    References 
__________________________________________________________ 

                                                                                                                                              134 

Santos-Rosa, H., R. Schneider, A.J. Bannister, J. Sherriff, B.E. Bernstein, N.C. Emre, S.L. Schreiber, J. Mellor, 
and T. Kouzarides. 2002. Active genes are tri-methylated at K4 of histone H3. Nature. 419:407-11. 

Sarraf, S.A., and I. Stancheva. 2004. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 
9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell. 15:595-605. 

Schermelleh, L., I. Solovei, D. Zink, and T. Cremer. 2001. Two-color fluorescence labeling of early and mid-to-late 
replicating chromatin in living cells. Chromosome Res. 9:77-80. 

Schiltz, R.L., C.A. Mizzen, A. Vassilev, R.G. Cook, C.D. Allis, and Y. Nakatani. 1999. Overlapping but distinct 
patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal 
substrates. J Biol Chem. 274:1189-92. 

Schneider, R., A.J. Bannister, F.A. Myers, A.W. Thorne, C. Crane-Robinson, and T. Kouzarides. 2004. Histone 
H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol. 6:73-7. 

Schotta, G., A. Ebert, V. Krauss, A. Fischer, J. Hoffmann, S. Rea, T. Jenuwein, R. Dorn, and G. Reuter. 2002. 
Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene 
silencing. Embo J. 21:1121-31. 

Schotta, G., M. Lachner, A.H. Peters, and T. Jenuwein. 2004a. The indexing potential of histone lysine 
methylation. Novartis Found Symp. 259:22-37; discussion 37-47, 163-9. 

Schotta, G., M. Lachner, K. Sarma, A. Ebert, R. Sengupta, G. Reuter, D. Reinberg, and T. Jenuwein. 2004b. A 
silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes 
Dev. 18:1251-62. 

Schubeler, D., D.M. MacAlpine, D. Scalzo, C. Wirbelauer, C. Kooperberg, F. van Leeuwen, D.E. Gottschling, L.P. 
O'Neill, B.M. Turner, J. Delrow, S.P. Bell, and M. Groudine. 2004. The histone modification pattern of 
active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 
18:1263-71. 

Schultz, J. 1939. The function of heterochromatin. Proc VII Int. Congr. Genet.:257-262. 
Schwabish, M.A., and K. Struhl. 2004. Evidence for eviction and rapid deposition of histones upon transcriptional 

elongation by RNA polymerase II. Mol Cell Biol. 24:10111-7. 
Schwartz, B.E., and K. Ahmad. 2005. Transcriptional activation triggers deposition and removal of the histone 

variant H3.3. Genes Dev. 19:804-14. 
Sedarat, F., E. Lin, E.D. Moore, and G.F. Tibbits. 2004. Deconvolution of confocal images of dihydropyridine and 

ryanodine receptors in developing cardiomyocytes. J Appl Physiol. 97:1098-103. 
Sedat, J., and L. Manuelidis. 1978. A direct approach to the structure of eukaryotic chromosomes. Cold Spring 

Harb Symp Quant Biol. 42 Pt 1:331-50. 
Seligson, D.B., S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, and S.K. Kurdistani. 2005. Global histone 

modification patterns predict risk of prostate cancer recurrence. Nature. 435:1262-6. 
Sewalt, R.G., M. Lachner, M. Vargas, K.M. Hamer, J.L. den Blaauwen, T. Hendrix, M. Melcher, D. Schweizer, T. 

Jenuwein, and A.P. Otte. 2002. Selective interactions between vertebrate polycomb homologs and the 
SUV39H1 histone lysine methyltransferase suggest that histone H3-K9 methylation contributes to 
chromosomal targeting of Polycomb group proteins. Mol Cell Biol. 22:5539-53. 

Shaw, P.J., and D.J. Rawlins. 1991. Three-dimensional fluorescence microscopy. Prog Biophys Mol Biol. 56:187-
213. 

Sheardown, S.A., S.M. Duthie, C.M. Johnston, A.E. Newall, E.J. Formstone, R.M. Arkell, T.B. Nesterova, G.C. 
Alghisi, S. Rastan, and N. Brockdorff. 1997. Stabilization of Xist RNA mediates initiation of X 
chromosome inactivation. Cell. 91:99-107. 

Sheppard, C.J.R., and P. Török. 1997. Effects of specimen refractive index on confocal imaging. Journal of 
Microscopy. 185:366-374. 

Shi, X., T. Hong, K.L. Walter, M. Ewalt, E. Michishita, T. Hung, D. Carney, P. Pena, F. Lan, M.R. Kaadige, N. 
Lacoste, C. Cayrou, F. Davrazou, A. Saha, B.R. Cairns, D.E. Ayer, T.G. Kutateladze, Y. Shi, J. Cote, 
K.F. Chua, and O. Gozani. 2006. ING2 PHD domain links histone H3 lysine 4 methylation to active gene 
repression. Nature. 442:96-9. 

Shi, Y., F. Lan, C. Matson, P. Mulligan, J.R. Whetstine, P.A. Cole, and R.A. Casero. 2004. Histone demethylation 
mediated by the nuclear amine oxidase homolog LSD1. Cell. 119:941-53. 

Shi, Y., and J.R. Whetstine. 2007. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 
25:1-14. 

Shumaker, D.K., T. Dechat, A. Kohlmaier, S.A. Adam, M.R. Bozovsky, M.R. Erdos, M. Eriksson, A.E. Goldman, 
S. Khuon, F.S. Collins, T. Jenuwein, and R.D. Goldman. 2006. Mutant nuclear lamin A leads to 
progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A. 103:8703-8. 

Sickmann, A., M. Mreyen, and H.E. Meyer. 2002. Identification of modified proteins by mass spectrometry. 
IUBMB Life. 54:51-7. 

Siddiqui, H., S.R. Fox, R.W. Gunawardena, and E.S. Knudsen. 2007. Loss of RB compromises specific 
heterochromatin modifications and modulates HP1alpha dynamics. J Cell Physiol. 211:131-7. 

Silva, J., W. Mak, I. Zvetkova, R. Appanah, T.B. Nesterova, Z. Webster, A.H. Peters, T. Jenuwein, A.P. Otte, and 
N. Brockdorff. 2003. Establishment of histone h3 methylation on the inactive X chromosome requires 
transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell. 4:481-95. 

Simpson, R.T. 1978. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and 
all the histones. Biochemistry. 17:5524-31. 

Sims, J.K., S.I. Houston, T. Magazinnik, and J.C. Rice. 2006. A Trans-tail Histone Code Defined by 
Monomethylated H4 Lys-20 and H3 Lys-9 Demarcates Distinct Regions of Silent Chromatin. J Biol 
Chem. 281:12760-6. 



                    References 
__________________________________________________________ 

                                                                                                                                              135 

Sims, R.J., 3rd, K. Nishioka, and D. Reinberg. 2003. Histone lysine methylation: a signature for chromatin 
function. Trends Genet. 19:629-39. 

Singh, P.B., and S.D. Georgatos. 2002. HP1: facts, open questions, and speculation. J Struct Biol. 140:10-6. 
Singh, P.B., J.R. Miller, J. Pearce, R. Kothary, R.D. Burton, R. Paro, T.C. James, and S.J. Gaunt. 1991. A 

sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. 
Nucleic Acids Res. 19:789-94. 

Smith, E.R., C. Cayrou, R. Huang, W.S. Lane, J. Cote, and J.C. Lucchesi. 2005. A human protein complex 
homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at 
lysine 16. Mol Cell Biol. 25:9175-88. 

Solovei, I., A. Cavallo, L. Schermelleh, F. Jaunin, C. Scasselati, D. Cmarko, C. Cremer, S. Fakan, and T. Cremer. 
2002a. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in 
situ hybridization (3D-FISH). Exp Cell Res. 276:10-23. 

Solovei, I., J. Walter, M. Cremer, F. Habermann, L. Schermelleh, and T. Cremer. 2002b. FISH on three-
dimensionally preserved nuclei. In FISH: a practical approach, chapter 7. B. Beatty, S. Mai, and J. 
Squire, editors. Oxford University Press, Oxford. 119-157. 

Spada, F., M. Vincent, and E.M. Thompson. 2005. Plasticity of histone modifications across the invertebrate to 
vertebrate transition: histone H3 lysine 4 trimethylation in heterochromatin. Chromosome Res. 13:57-72. 

Spector, D.L. 1993. Macromolecular domains within the cell nucleus. Annu Rev Cell Biol. 9:265-315. 
Spector, D.L. 2001. Nuclear domains. J Cell Sci. 114:2891-3. 
Srinivasan, P.R.a.B., E. 1964. Enzymatic alteration of nucleic acid structure. Science. 145:548-53. 
Stadler, S., V. Schnapp, R. Mayer, S. Stein, C. Cremer, C. Bonifer, T. Cremer, and S. Dietzel. 2004. The 

architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol. 5:44. 
Stewart, M.D., J. Li, and J. Wong. 2005. Relationship between histone H3 lysine 9 methylation, transcription 

repression, and heterochromatin protein 1 recruitment. Mol Cell Biol. 25:2525-38. 
Strahl, B.D., and C.D. Allis. 2000. The language of covalent histone modifications. Nature. 403:41-5. 
Strahl, B.D., S.D. Briggs, C.J. Brame, J.A. Caldwell, S.S. Koh, H. Ma, R.G. Cook, J. Shabanowitz, D.F. Hunt, 

M.R. Stallcup, and C.D. Allis. 2001. Methylation of histone H4 at arginine 3 occurs in vivo and is 
mediated by the nuclear receptor coactivator PRMT1. Curr Biol. 11:996-1000. 

Strahl, B.D., R. Ohba, R.G. Cook, and C.D. Allis. 1999. Methylation of histone H3 at lysine 4 is highly conserved 
and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci U S A. 96:14967-
72. 

Su, R.C., K.E. Brown, S. Saaber, A.G. Fisher, M. Merkenschlager, and S.T. Smale. 2004. Dynamic assembly of 
silent chromatin during thymocyte maturation. Nat Genet. 36:502-6. 

Sullivan, B.A., and G.H. Karpen. 2004. Centromeric chromatin exhibits a histone modification pattern that is 
distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol. 11:1076-83. 

Sun, Z.W., and C.D. Allis. 2002. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in 
yeast. Nature. 418:104-8. 

Suzuki, T., K. Fujikura, T. Higashiyama, and K. Takata. 1997. DNA staining for fluorescence and laser confocal 
microscopy. J Histochem Cytochem. 45:49-53. 

Talasz, H., H.H. Lindner, B. Sarg, and W. Helliger. 2005. Histone H4-lysine 20 monomethylation is increased in 
promoter and coding regions of active genes and correlates with hyperacetylation. J Biol Chem. 
280:38814-22. 

Tanabe, H., F.A. Habermann, I. Solovei, M. Cremer, and T. Cremer. 2002a. Non-random radial arrangements of 
interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res. 
504:37-45. 

Tanabe, H., S. Muller, M. Neusser, J. von Hase, E. Calcagno, M. Cremer, I. Solovei, C. Cremer, and T. Cremer. 
2002b. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher 
primates. Proc Natl Acad Sci U S A. 99:4424-9. 

Taunton, J., C.A. Hassig, and S.L. Schreiber. 1996. A mammalian histone deacetylase related to the yeast 
transcriptional regulator Rpd3p. Science. 272:408-11. 

Telenius, H., N.P. Carter, C.E. Bebb, M. Nordenskjold, B.A. Ponder, and A. Tunnacliffe. 1992. Degenerate 
oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. 
Genomics. 13:718-25. 

Therkelsen, A.J., A. Nielsen, and S. Kolvraa. 1997. Localisation of the classical DNA satellites on human 
chromosomes as determined by primed in situ labelling (PRINS). Hum Genet. 100:322-6. 

Torres, K., and S.B. Horwitz. 1998. Mechanisms of Taxol-induced cell death are concentration dependent. Cancer 
Res. 58:3620-6. 

Tounekti, O., G. Pron, J. Belehradek, Jr., and L.M. Mir. 1993. Bleomycin, an apoptosis-mimetic drug that induces 
two types of cell death depending on the number of molecules internalized. Cancer Res. 53:5462-9. 

Trewick, S.C., P.J. McLaughlin, and R.C. Allshire. 2005. Methylation: lost in hydroxylation? EMBO Rep. 6:315-20. 
Tsukada, Y., J. Fang, H. Erdjument-Bromage, M.E. Warren, C.H. Borchers, P. Tempst, and Y. Zhang. 2006. 

Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439:811-6. 
Turner, B.M. 2000. Histone acetylation and an epigenetic code. Bioessays. 22:836-45. 
Turner, B.M. 2005. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct 

Mol Biol. 12:110-2. 
Ueda, K., C. Cardarelli, M.M. Gottesman, and I. Pastan. 1987. Expression of a full-length cDNA for the human 

"MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A. 
84:3004-8. 



                    References 
__________________________________________________________ 

                                                                                                                                              136 

van Leeuwen, F., P.R. Gafken, and D.E. Gottschling. 2002. Dot1p modulates silencing in yeast by methylation of 
the nucleosome core. Cell. 109:745-56. 

van Steensel, B., J. Delrow, and S. Henikoff. 2001. Chromatin profiling using targeted DNA adenine 
methyltransferase. Nat Genet. 27:304-8. 

Vaquero, A., M. Scher, D. Lee, H. Erdjument-Bromage, P. Tempst, and D. Reinberg. 2004. Human SirT1 interacts 
with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 16:93-105. 

Varga-Weisz, P.D., and P.B. Becker. 2006. Regulation of higher-order chromatin structures by nucleosome-
remodelling factors. Curr Opin Genet Dev. 16:151-6. 

Vertino, P.M., J.A. Sekowski, J.M. Coll, N. Applegren, S. Han, R.J. Hickey, and L.H. Malkas. 2002. DNMT1 is a 
component of a multiprotein DNA replication complex. Cell Cycle. 1:416-23. 

Volkel, P., and P.O. Angrand. 2006. The control of histone lysine methylation in epigenetic regulation. Biochimie. 
Volpi, E.V., E. Chevret, T. Jones, R. Vatcheva, J. Williamson, S. Beck, R.D. Campbell, M. Goldsworthy, S.H. 

Powis, J. Ragoussis, J. Trowsdale, and D. Sheer. 2000. Large-scale chromatin organization of the major 
histocompatibility complex and other regions of human chromosome 6 and its response to interferon in 
interphase nuclei. J Cell Sci. 113 ( Pt 9):1565-76. 

Wade, P.A., A. Gegonne, P.L. Jones, E. Ballestar, F. Aubry, and A.P. Wolffe. 1999. Mi-2 complex couples DNA 
methylation to chromatin remodelling and histone deacetylation. Nat Genet. 23:62-6. 

Wallace, J.A., and T.L. Orr-Weaver. 2005. Replication of heterochromatin: insights into mechanisms of epigenetic 
inheritance. Chromosoma. 114:389-402. 

Wallace, W., L.H. Schaefer, and J.R. Swedlow. 2001. A workingperson's guide to deconvolution in light 
microscopy. Biotechniques. 31:1076-8, 1080, 1082 passim. 

Walter, J., B. Joffe, A. Bolzer, H. Albiez, P.A. Benedetti, S. Muller, M.R. Speicher, T. Cremer, M. Cremer, and I. 
Solovei. 2006. Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome 
Res. 114:367-78. 

Walter, J., L. Schermelleh, M. Cremer, S. Tashiro, and T. Cremer. 2003. Chromosome order in HeLa cells 
changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J 
Cell Biol. 160:685-97. 

Wang, H., Z.Q. Huang, L. Xia, Q. Feng, H. Erdjument-Bromage, B.D. Strahl, S.D. Briggs, C.D. Allis, J. Wong, P. 
Tempst, and Y. Zhang. 2001. Methylation of histone H4 at arginine 3 facilitating transcriptional activation 
by nuclear hormone receptor. Science. 293:853-7. 

Wassenegger, M. 2005. The role of the RNAi machinery in heterochromatin formation. Cell. 122:13-6. 
Waterborg, J.H., S.R. Fried, and H.R. Matthews. 1983. Acetylation and methylation sites in histone H4 from 

Physarum polycephalum. Eur J Biochem. 136:245-52. 
Waterston, R.H., K. Lindblad-Toh, E. Birney, J. Rogers, J.F. Abril, P. Agarwal, R. Agarwala, R. Ainscough, M. 

Alexandersson, P. An, S.E. Antonarakis, J. Attwood, R. Baertsch, J. Bailey, K. Barlow, S. Beck, E. Berry, 
B. Birren, T. Bloom, P. Bork, M. Botcherby, N. Bray, M.R. Brent, D.G. Brown, S.D. Brown, C. Bult, J. 
Burton, J. Butler, R.D. Campbell, P. Carninci, S. Cawley, F. Chiaromonte, A.T. Chinwalla, D.M. Church, 
M. Clamp, C. Clee, F.S. Collins, L.L. Cook, R.R. Copley, A. Coulson, O. Couronne, J. Cuff, V. Curwen, 
T. Cutts, M. Daly, R. David, J. Davies, K.D. Delehaunty, J. Deri, E.T. Dermitzakis, C. Dewey, N.J. 
Dickens, M. Diekhans, S. Dodge, I. Dubchak, D.M. Dunn, S.R. Eddy, L. Elnitski, R.D. Emes, P. Eswara, 
E. Eyras, A. Felsenfeld, G.A. Fewell, P. Flicek, K. Foley, W.N. Frankel, L.A. Fulton, R.S. Fulton, T.S. 
Furey, D. Gage, R.A. Gibbs, G. Glusman, S. Gnerre, N. Goldman, L. Goodstadt, D. Grafham, T.A. 
Graves, E.D. Green, S. Gregory, R. Guigo, M. Guyer, R.C. Hardison, D. Haussler, Y. Hayashizaki, L.W. 
Hillier, A. Hinrichs, W. Hlavina, T. Holzer, F. Hsu, A. Hua, T. Hubbard, A. Hunt, I. Jackson, D.B. Jaffe, 
L.S. Johnson, M. Jones, T.A. Jones, A. Joy, M. Kamal, E.K. Karlsson, et al. 2002. Initial sequencing and 
comparative analysis of the mouse genome. Nature. 420:520-62. 

Watson, J.D. 2003. Celebrating the genetic jubilee: a conversation with James D. Watson. Interviewed by John 
Rennie. Sci Am. 288:66-9. 

Watt, F.a.M., P.L. 1988. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required 
for optimal expression of the adenovirus major late promotor. Genes and Dev. 2:1136-1143. 

Waye, J.S., and H.F. Willard. 1989. Human beta satellite DNA: genomic organization and sequence definition of a 
class of highly repetitive tandem DNA. Proc Natl Acad Sci U S A. 86:6250-4. 

Wei, R.D., and L.D. Wright. 1964. Heat Stability of Avidin and Avidin-Biotin Complex and Influence of Ionic 
Strength on Affinity of Avidin for Biotin. Proc Soc Exp Biol Med. 117:341-4. 

Wei, X., S. Somanathan, J. Samarabandu, and R. Berezney. 1999a. Three-dimensional visualization of 
transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol. 146:543-58. 

Wei, Y., L. Yu, J. Bowen, M.A. Gorovsky, and C.D. Allis. 1999b. Phosphorylation of histone H3 is required for 
proper chromosome condensation and segregation. Cell. 97:99-109. 

Whetstine, J.R., A. Nottke, F. Lan, M. Huarte, S. Smolikov, Z. Chen, E. Spooner, E. Li, G. Zhang, M. Colaiacovo, 
and Y. Shi. 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. 
Cell. 125:467-81. 

Williams, R.R., S. Broad, D. Sheer, and J. Ragoussis. 2002. Subchromosomal positioning of the epidermal 
differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res. 272:163-
75. 

Wolffe, A.P. 1996. Histone deacetylase: a regulator of transcription. Science. 272:371-2. 
Wu, R., A.V. Terry, P.B. Singh, and D.M. Gilbert. 2005. Differential subnuclear localization and replication timing 

of histone H3 lysine 9 methylation states. Mol Biol Cell. 16:2872-81. 



                    References 
__________________________________________________________ 

                                                                                                                                              137 

Xiao, B., C. Jing, G. Kelly, P.A. Walker, F.W. Muskett, T.A. Frenkiel, S.R. Martin, K. Sarma, D. Reinberg, S.J. 
Gamblin, and J.R. Wilson. 2005. Specificity and mechanism of the histone methyltransferase Pr-Set7. 
Genes Dev. 19:1444-54. 

Xie, S.Q., S. Martin, P.V. Guillot, D.L. Bentley, and A. Pombo. 2006. Splicing speckles are not reservoirs of RNA 
polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal 
domain. Mol Biol Cell. 17:1723-33. 

Xing, Y., C.V. Johnson, P.T. Moen, Jr., J.A. McNeil, and J. Lawrence. 1995. Nonrandom gene organization: 
structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol. 
131:1635-47. 

Xiong, Z., W. Tsark, J. Singer-Sam, and A.D. Riggs. 1998. Differential replication timing of X-linked genes 
measured by a novel method using single-nucleotide primer extension. Nucleic Acids Res. 26:684-6. 

Yoshida, M., Y. Hoshikawa, K. Koseki, K. Mori, and T. Beppu. 1990. Structural specificity for biological activity of 
trichostatin A, a specific inhibitor of mammalian cell cycle with potent differentiation-inducing activity in 
Friend leukemia cells. J Antibiot (Tokyo). 43:1101-6. 

Zaratiegui, M., D.V. Irvine, and R.A. Martienssen. 2007. Noncoding RNAs and Gene Silencing. Cell. 128:763-76. 
Zhang, K., W. Lin, J.A. Latham, G.M. Riefler, J.M. Schumacher, C. Chan, K. Tatchell, D.H. Hawke, R. Kobayashi, 

and S.Y. Dent. 2005. The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome 
segregation. Cell. 122:723-34. 

Zhang, L., E.E. Eugeni, M.R. Parthun, and M.A. Freitas. 2003. Identification of novel histone post-translational 
modifications by peptide mass fingerprinting. Chromosoma. 112:77-86. 

Zinner, R., H. Albiez, J. Walter, A.H. Peters, T. Cremer, and M. Cremer. 2006. Histone lysine methylation patterns 
in human cell types are arranged in distinct three-dimensional nuclear zones. Histochem Cell Biol. 125:3-
19. 

 
 

 

 



                                                                                                     Appendix 
__________________________________________________________ 

                                                                                                                                              138 

7 Appendix 

7.1 Material and technical equipment 

7.1.1 Cells 

__________________________________________________________________________         

Cell type                              Medium                                     Source 

__________________________________________________________________________ 
Primary human                               DMEM                                      Kindly provided by S.Götze 

                                                                                                         from a healthy patient 

fibroblasts, XX                                10% FCS+ P/S                         hospital Amsterdam       

 

DLD-1                                              McCoy 5A+ 10% FCS+           Kindly provided by       

                                                        P/S                                           Dr.C.Lengauer 

 

MCF-7                                              RPMI                                       Kindly provided by 

                                                       10% FCS+ P/S                          Dr. P.Meltzer                                                 

                                                                                                         (NIH) Bethesda 

 

MEF-W9                                         DMEM                                       Kindly provided by  

                                                       10% FCS+ P/S                          Dr.T.Jenuwein 

                    IMP Vienna 

 

7.1.2 Chemicals, enzymes and reagents 

___________________________________________________________________ 

Chemicals 
___________________________________________________________________ 
Acetic acid (100%) Merck, Darmstadt 

Antifade-Medium (Vectashield)                                 Vector, Burlingame 

BSA  Roche, Mannheim 

Cetus II buffer Roche, Mannheim 

Colcemide (10µg/ml) Seromed Biochrom, Berlin 

DAPI  Serva 

Dimethyl-sulfoxid (DMSO)     Merck, Darmstadt 

Dextransulphate   Amersham Biosciences, Freiburg 

DMEM     Gibco Invitrogen, Karlsruhe 

Ethanol   Merck, Darmstadt 

Fetal calf serum (FCS)                   Seromed Biochrom, Berlin 

Formaldehyde (37%)     Sigma-Aldrich, Deisenhofen   

Formamide    Merck, Darmstadt 

Glycerol     Sigma-Aldrich, Taufkirchen 

HCl 1N       Merck, Darmstadt 
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Isopropanol       Merck, Darmstadt  

Methanol                   Merck, Darmstadt 

MgCl2 Merck, Darmstadt 

NaCl Merck, Darmstadt 

Na-citrate dihydrate Merck, Darmstadt 

Nick-translation buffer (10x) Roche, Mannheim 

Penicillin/Streptomycin (10000 I.E./10000 µg/ml)   Seromed Biochrom, Berlin 

RPMI 1640 media    Seromed Biochrom, Berlin 

Sodiumchloride     Merck, Darmstadt 

Solution 3 Roche, Mannheim 

TO-PRO-3       Molecular Probes, Leiden NL 

Triton X-100     Merck, Darmstadt 

Tween 20    Merck, Darmstadt 

___________________________________________________________________ 

Enzymes 
___________________________________________________________________ 
DNase I                                Roche, Mannheim 

Pepsin (10% in H2O)    Sigma Aldrich, Taufkirchen 

Proteinase K Roche, Mannheim  

10xTrypsin/EDTA       Biochrom AG, Berlin 

Taq-Polymerase         Invitrogen GmbH, Karlsruhe 

___________________________________________________________________ 

Nucleotides 
___________________________________________________________________ 
5-Bromo-2’-deoxyuridine     Sigma-Aldrich, Taufkirchen 

Biotin-16-dUTP                Roche, Mannheim 

BrUTP Sigma-Aldrich, Deisenhofen 

Cot1-DNA Invitrogen GmbH, Karlsruhe 

DOP2/DOP3-primer MWG Biotech 

dATP, dCTP, dGTP, dTTP     Amersham Biosciences, Freiburg 

Digoxigenin-11-dUTP     Roche, Mannheim 

6MW -primer MWG-Biotech, Ebersberg 

Tamra-dUTP, TR-dUTP Molecular Probes 

      

___________________________________________________________________ 

Antibodies 
___________________________________________________________________ 
Primary antibodies 
 
Goat anti-DNP   Sigma-Aldrich, Deisenhofen 

Human anti-CREST serum   Euroimmun, Lübeck 

Mouse anti-B23 Sigma-Aldrich, Deisenhofen 

Mouse anti-BrdU   Roche, Mannheim 

Mouse anti-ß-tubulin Sigma-Aldrich, Deisenhofen 
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Mouse anti-Cl/Br      Caltag, Hamburg 

Mouse anti-Digoxigenin   Sigma-Aldrich, Deisenhofen 

Mouse anti-HP1 alpha    Euromedex, Souffelweyersheim 

Mouse anti-SC35 Sigma-Aldrich Deisenhofen 

Rabbit anti-Ki67     Roche, Mannheim 

Rabbit anti- H3K4me3                                 Abcam, Cambridge 

Rabbit anti- H3K9me1                            All following antibodies are kindly provided      

Rabbit anti- H3K9me3        by T.Jenuwein MIP      

Rabbit anti- H3K27me3               and A.Peters FMI, Basel 

Rabbit anti- monomethylated H4K20 

Rabbit anti- trimethylated H4K20 

Rat anti-BrdU        Serotec, Oxford 

 

Secondary antibodies 
 
Avidin-Cy5 Sigma-Aldrich, Deisenhofen 

Avidin-FITC     Vector, Burlingame CA, USA 

Avidin-alexa488    Molecular Probes, Leiden NL 

Donkey anti-human-Cy3    Jackson Immunoresearch, Baltimore 

Donkey anti-rat-Cy3               Jackson Immunoresearch, Baltimore 

Donkey anti-goat-alexa488     Molecular Probes, Leiden NL 

Goat anti-Avidin-Biotin      Vector, Burlingame CA, USA 

Goat anti-Avidin-FITC     Vector, Burlingame CA, USA 

Goat anti-mouse-Biotin    Vector, Burlingame CA, USA 

Goat anti-mouse-Cy5     Jackson Immunoresearch, Baltimore 

Goat anti-mouse-AMCA    Molecular Probes, Leiden NL 

Goat anti-mouse-alexa488 h.c.a.    Molecular Probes, Leiden NL 

Goat anti-rabbit-alexa488 h.c.a.    Molecular Probes, Leiden NL 

Goat anti-rabbit-Biotin   Biosource, Camarillo 

Goat anti-rabbit-Cy3     Amersham Biosciences, Freiburg 

Goat anti-rabbit-Cy3-Fab   Jackson Immunoresearch, Baltimore 

Goat anti-rabbit-Fab non conjugated   Jackson Immunoresearch, Baltimore 

Goat anti-rabbit-FITC               Biosource, Camarillo 

Goat anti-rat-Cy3     Amersham Biosciences, Freiburg 

Goat anti-Streptavidin-Biotin    Vector, Burlingame CA, USA 

Horse anti-goat-Biotin     Vector, Burlingame CA, USA 

Rabbit anti-human-Cy3      Jackson Immunoresearch, Baltimore 

Sheep anti-Digoxigenin-FITC  Roche, Penzberg 

Sheep anti-mouse-Cy3      Jackson Immunoresearch, Baltimore 

Sheep anti-mouse-FITC    Sigma-Aldrich, Deisenhofen  

Streptavidin-Cy5        Jackson Immunoresearch, Baltimore 

Streptavidin-Cy3    Jackson Immunoresearch, Baltimore 
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7.1.3 Media, buffers and solutions 

__________________________________________________________________________ 

Buffers/Solutions                                     Constituent                                   Notes                             

__________________________________________________________________________ 
                                                                                              

ACG-Mix for label DOP-PCR 2mM dATP, dCTP and dGTP 10µl of dATP, dCTP and dGTP 

(100mM) each + 470µl H2O bidest 

store at -20°C 

Blocking solution                                 2% BSA in PBST                       PBST 0.01% Tween 

+ 0.04% Na-Azid store at 4°C 

2g BSA → ad 100ml PBST 

DAPI stock solution                            2mg/ml dd H2O                          steril filtered 

DAPI working solution                        0,02µg/ml in PBST                    dilute stock solution 1:4000 in   

PBST 

DNase I stock solution                        2 U/µl DNase I       0,03 M NaCl 

50% Glycerin  

1mg/ml DNase I (2000 U/mg) 

DMEM full media 450ml DMEM                       

50ml FCS (10%)   

5ml Penicillin/Streptomycin 

(100 I.E./100 µg/ml) 

Constituents DMEM: 

3,7g/l NaHCO3  

4,5g/l D-Glucose 

Stable Glutamine, Na-pyruvate 

dTTP for label DOP-PCR 1mM dTTP 10µl dTTP+990µl H2O bidest 

store at -20°C 

Ethanol (30%, 50%, 70% and 90%) Ethanol (type 642) 30, 50.70,90ml EtOH→ad 100ml 

Using H2O bidest 

Fixative (for chromosomes)                Methanol/acetic acid  3:1               cool to -20°C before use 

Fixative for post-fixation 1% Formaldehyde in PBST dilute Formaldehyde 37% about 

1:40 in PBST 

Fixative (for 3D preserved cells)         3,7% Formaldehyde in PBST    dilute Formaldehyde 37% 1:10 in 

PBST 

Formamide/2xSSC (storing and 

denaturation solution) 

50% formamide in 2xSSC 50ml 20xSSC + 350ml formamide + 

100ml H2O bidest. Adjust to pH 7.0 

with 1M HCl, store at -20°C 

Freezing medium                                20% FCS                                            

10% DMSO (appropriate medium) 

 

Glycerol (20%) 20% glycerol in 1xPBS 100ml glycerol + 400ml 1xPBS 

HCl (0,1M)  50ml HCl (1M) 

Hybridization mastermix 20% Dextran sulphate in 2xSSC Dissolve 8g Dextran sulphate in 

40ml 2xSSC, vortex, filter using 

0,45µm filter, aliquot, store at -20°C 

KCl solution, hypotone                        75mM KCl                                  0,56g/100ml H2O 

McCoy’s 5A modified media 450ml McCoy’s 

50ml FCS (10%)   

5ml Penicillin/Streptomycin 

(100 I.E./100 µg/ml) 

6,5g/l NaCl 

2,0g NaHCO3, 5mg/lPhenolred 

Prewarm to 37°C before use 
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NaCl solution (4)                                 4 M NaCl in H2O                      23,4g/100ml H2O 

PBS (pH 7,4)                                      137 mM NaCl       

2,7 mM KCl          

8,0 mM Na2HPO4    

1,5 mM KH2PO4                                                  

10xPBS:     80g NaCl 

2g KCl 

11,5 Na2HPO4 

11,5 Na2HPO4 

ad 1l  dd H2O 

PBST 0,02% Tween 20 in 1xPBS        200µl Tween 20 in 1l PBS 

Pepsinization solution 0,005% pepsin in 0,01 M HCl 10µl (20%) pepsin + 0,5ml 1N HCl 

→ad 49,5ml H2O bidest 

RPMI 1640 full media                         450ml RPMI 1640                       

50ml FCS (10%)   

5ml Penicillin/Streptomycin 

(100 I.E./100 µg/ml) 

Constituents RPMI 1640: 

25mM HEPES, 5,5g/l NaCl, 

2,0g NaHCO3, 5mg/lPhenolred, 

0,5g/l N-Acetyl-L-alanyl-L-glutamin 

Prewarm to 37°C before use 

20xSSC (Standard Saline Citrate) NaCl, Na-citrate dihydrate and H2O 173,3g NaCl 

88,2g Na-citrate 

→add 1l H2O  bidest 

Adjust to pH 7 with NaOH 

Triton X-100 (0,5%) 

permeabilization solution                    

0,5% Triton X-100 in PBST        500µl in 100ml PBST 

Trypsin-EDTA                                     0,05% Trypsin   

0,02% EDTA                                      

Prepare from 10x concentrated 

solution 

 

7.1.4 Equipment and instrumentation 

Glass, plastic ware and other implements 
__________________________________________________________________________ 

Items                                                                        Company                                   

__________________________________________________________________________ 
6 well plates                       Greiner bio-one, Frickenhausen 

12 well plates    Greiner bio-one, Frickenhausen 

Automatic pipette Gilson, Inc., Middleton 

Canula Braun, Melsungen 

Cell culture flasks (75cm2, 25cm2)    Falcon/Becton Dickinson, S. Jose 

                                                          Greiner bio-one, Frickenhausen 

Coverslips 12×12mm            Hecht Assistant, Sondheim 

Coverslips 15×15mm     Menzel-Gläser 

Coverslips 18×18mm    Marienfeld, Lauda-Königshofen 

Coverslips 20×20mm     Marienfeld, Lauda-Königshofen 

Coverslips 24×24mm    Marienfeld, Lauda-Königshofen 

Coverslips 24×60mm    Menzel-Gläser, Braunschweig 

Culture dishes Falcon/Becton Dickinson, S.Jose 

Cryo-tubes 2ml    Greinerbio-one, Frickenhausen 

Fixogum Marabu, Tamm 
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Glass marker diamond    Kraus & Winter, Hamburg 

Glass bottles 100ml, 250ml, 500ml Schott, Stafford UK 

Gloves Nitril                       Ansell, Richmond Meditrade, Kiefersfelden 

Gloves Latex          Ansell, Richmond Meditrade, Kiefersfelden 

Isopropanol box                        Nalgene, Rochester 

Immersion oil          Zeiss,  Jena 

Immersion oil          Leica, Wetzlar     

Kim wipes          Kimberly-Clark 

Liquid nitrogen tank with racks        Messer, Griesheim 

Metal box with lid Schubert Medizinprodukte GmbH 

Mikro-Pipette tips  Greiner bio-one, Frickenhausen 

Mikro-Pipettes  

(2µl, 10µl,200µl,1000µl)     Gilson, Inc., Middleton 

Nail polish     Manhattan, Müller GmbH & Co. KG, Ulm- v    

                                                                                                       Jungingen 

Parafilm-M®    Pechiney Plastic Packaging, Inc., Neenah 

PCR tubes 0.5 ml     Molecular probes, San Diego 

Pipette tips white Molecular Bio Products 

Pipette tips yellow and blue Greiner Labortechnik 

Pipette tips for PCR Molecular Bio Products 

Plastic dishes, different sizes, round and square      Falcon/Becton, Greiner bio-one 

Quadriperms (4 well plates)    VivaScience AG, Hannover 

Rubber cement    Marabu, Tamm 

Reaction tubes 1,5ml Eppendorf, Hamburg 

Safety pipette filler        Deutsch und Neumann 

Slides Langenbrinck, Teningen 

Slide briefcases and boxes      Schubert Medizinprodukte GmbH 

Staining Jars acc. to Coplin Staining Jars acc. to Hellendahl   Hecht Assistant, Sondheim 

Serological pipettes 2ml, 5ml, 10ml, 25ml Sarstedt, Nümbrecht  

Sterile plastic pipettes 1ml, 2ml, 5ml, 10ml, 25ml   Falcon/Becton Dickinson, S. Jose 

Sterile tubes 50ml/15ml             Falcon/Becton Dickinson, S. Jose 

Test tubes 1.5ml/2ml     Eppendorf, Hamburg 

Tweezers   Dumont, Montignez 

Waste container Biochrom, Berlin 

 

__________________________________________________________________________ 

Technical equipment                                                                   
__________________________________________________________________________ 

Items                                                                                       Company            
                      
Centrifuge/Biofuge pico      Kendro, Langenselbold 

Centrifuge/Rotana/S     Hettich, Tuttlingen 

CO2 incubator/BB6220 CU   Kendro, Langenselbold 

CO2 incubator/Hera Cell    Kendro, Langenselbold 

Freezer (–80°C)/6485     GFL, Burgwedel 
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Freezers/various types (–20°C)  Privileg/Quelle, Fürth 
                                                                                                       AEG, Frankfurt a. M. 

Fridge (+4°C)       Bosch, Gerlingen-Schillerhöhe 

Heating block/DB 2-D     Techne, Cambridge 

Ice machine/AF-10               Scotsman, Bettolino di Pogliano 

Incubator/Certomat HK      B.Braun Biotech international, Melsungen 

Laminar air flow cabinet     Biohit Helsinki 

Magnetic stirrer/IkaMag RH    Ika Labortechnik, Staufen 

Magnetic stirrer/RCT basic    Ika Labortechnik, Staufen 

Minicentrifuge      National Labnet, Woodbridge 

pH-meter/pH538     WTW, Weilheim 

PS-speck microscope point-source-kit Molecular probes, San Diego 

Test tube rotator/34528            Snijders, Tilburg 

Thermocycler/Techne Progene   Techne, Cambridge 

Vacuum centrifuge/BaVaco-M Mini-30     Bachhofer, Reutlingen 

Vortexing machine    Ika Labortechnik, Staufen 

Water baths/1004    GFL, Burgwedel 

Water baths/5     Julabo, Seelbach 

Water baths/M12     Lauda, Lauda-Königshofen 

Weighing machine/ 2254    Sartorius, Göttingen 

 

 

__________________________________________________________________________ 

Miscellaneous                                 
__________________________________________________________________________ 
• Bunsen burner 

• Table-centrifuge 

• Immersion oil 

• Tweezers 

• Filter paper 

• Ice machine 

• pH-meter 

• UV-lamp (air flow cabinet) 

• Preparation folders 

• Overhead marker 

Software 

Programs Company 
Imaging  
Adobe Photoshop® 7.0 Adobe Systems, Inc., S. Jose 
Cytovision Applied Imaging International Ltd, Newcastle Upon Tyne 
Image J (v1.29) National Institute of Health, USA 
Irfan View version 3.8 Irfan Skiljan, Wiener Neustadt 
Leica-TCS-SP2 software Leica, Heidelberg 
LSM 410 software version 3.95 Zeiss, Jena 
Zeiss Image Browser Zeiss, Jena 
Other  
Adobe Acrobat version 5.0 Adobe Systems, Inc., S. Jose 
Amira version 4.0 TGS Europe, Merignac Cedex 
Endnote version 6.0 Thomson/ISI Researchsoft, Carlsbad 
Microsoft Office XP Microsoft, USA 

 



                       Appendix 
__________________________________________________________ 

                                                                                                                                              145 

Optics 

Microscopes and accessories Specifications 

Phase contrast microscope Axiovert 25 C (Carl Zeiss, Jena) 

Objectives CP Achromat, 5x/0,12 
CP Achromat, 10x/0,25 Ph1 
LD Achrostigmat, 20x/0,3 Ph1 
     Achrostigmat, 40x/0,55 Ph2 

Digital camera Canon G5  (5 Mpixel resolution) 

Fluorescence microscope Axiophot 2 (Carl Zeiss, Jena) 

objectives Plan-Neofluar 16×/0,5  

 Fluar 40×/1,3 Oil, Ph 3 

 Plan- Neofluar 40×/1,3 Oil 

 Plan-Apochromat 63×/1,4 Oil 

 Plan-Neofluar 100×/1,3 Oil 

dichroic filter sets DAPI (BP 365; FT 395; LP 450-490) 

 FITC (BP 450-490; FT 510; LP 515-565) 

TRITC/Cy3 (BP 546; FT 580; LP 590) 

Cy5 (BP 575-625; FT 645; BP 660-710) 

 

Triple Filter (TBP400/495/570;FT410/505/585; 
                    TBP460/530/610) 

CCD-Kamera  

Leica Confocal Laser Scanning 
Microscope 

SP 2 (Leica, Heidelberg) 

objectives Plan-Apochromat  63×/1,4 Oil 

Laser Argon: 458nm(5mW)/476nm(5mW)/488nm(20mW) / 496nm 
           (5mW)/514nm(20mW) laser lines 
Helium/Neon  594 nm laser line, 2,5mW 
                       633 nm laser line, 10mW 
DPSS: 561nm laser line, 10mW 
UV-laser: 405nm laser line, 50mW 

Beam splitters RSP 525: emission spectrum red  
RSP 650: emission spectrum infrared  
TD 488/568/647: for emission spectrum green and for green red 
combinations 

Emission filters AOTF: Acousto Optical Tunable Filter 

Software TCS-SP2 software 

Zeiss Confocal Laser Scanning 
Microscope 

LSM 410 (Carl Zeiss, Jena) 

objectives Plan-Neofluar 10x/0.3 Ph1 
Plan-Apochromat 63×/1.4 Oil 

Laser Argon: 488nm, 15mW 
Helium/Neon1: 543nm laser line, 0,5mW 
Helium/Neon2: 633nm laser line, 5mW 

Beam splitters FT 488/543 

Emission filters BP 502-542: emission spectrum green  
LP 570: emission spectrum red 
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BP 575-640: emission spectrum red  
LP 650: for emission spectrum infrared 

Software LSM 410 software,   Version 3.95 
 

 

7.1.5 BACs used in the experiments 

 

Overview of the R-/G-band assigned BAC pool and the gene-density assigned BAC 
pool of chromosome 12 for human fibroblasts 
 

Clone 
ID 

Internal 
ID 

Band  
assignment 

Position 
G/R 

band 

Gene 
density 

2Mb 

Gene 
density 
10Mb 

Transcriptional 
activity 

Genes 
Pool  

assignments 
Replication 

Index 
Reference 

Clone 

RP11- 

283I3 
12/1 12p13.33 

155K –  

330K 
R 9 16.5 

HLy: low 

HFb: median 
4 

R 

- 

1.605 

median 
--- 

RP11- 

359B12 
12/2 12p13.33 

860K –  

1085K 
R 9 16.5 

HLy: median 

HFb: median 
3 

R 

- 

1.717 

early 
--- 

RP11- 

388F6 
12/3 12p13.32 

4315K – 

 4485K 
G (1) 12.5 16.5 

HLy: low 

HFb: median 
4 

G 

gene-rich  

1.667 

early 
--- 

RP11- 

433J6 
12/4 12p13.31 

6580K- 

6750K 
R 28 19.7 

HLy: median 

HFb: high 
10 

R 

gene-rich 

1.736 

early 
--- 

RP11- 

13C13 
12/5 12p13.2 

10125K- 

10290K 
G (2) 28 19.5 

HLy: low 

HFb: high 
6 

G  

gene-rich 

1.645 

early 
--- 

RP11- 

4N23 
12/6 12p13.1 

13505K- 

13640K 
R 9 13 

HLy: low 

HFb: low 
1 

R 

gene-rich 

1.461 

median 
--- 

RP11- 

502N13 
12/7 12p13.1 

14520K- 

14700K 
R 9 11.4 

HLy: low 

HFb: median 
3 

R 

gene-rich 

1.565 

median 

RP11-

109N5 

RP11- 

489N6 
12/8 12p12.3 

15980K- 

16170K 
G (3) 7.5 7 

HLy: low 

HFb: median 
1 

G  

gene-rich 

1.433 

median 
--- 

RP11- 

69C13 
12/9 12p12.3 

16640K- 

16785K 
G (3) 6 7.3 

HLy: low 

HFb: low 
1 

G 

gene-poor  

1.373 

late 
--- 

RP11- 

871F6 
12/10 12p12.3 

17425K- 

17640K 
G (3) 4 7.2 

HLy: ??? 

HFb: ??? 
2 

G  

gene-poor 

1.292 

late 

RP11-

161L1 

RP11- 

729I10 
12/11 12p12.1 

21775K- 

21960K 
G (3) 9 4.8 

HLy: low 

HFb: low 
2 

G 

gene-poor 

1.357 

late 

RP11-

59N23 

RP11- 

12D15 
12/12 12p12.1 

22210K- 

22370K 
G (3) 7 5.4 

HLy: low 

HFb: low 
1 

G  

gene-poor 

1.455 

median 
--- 

RP11- 

877E17 
12/13 12p12.1 

25985K- 

26165K 
G (3) 8 5.9 

HLy: low 

HFb: low 
1 

G 

gene-poor 

1.625 

median 

RP11-

16A24 

RP11- 

485K18 
12/14 12p11.22 

28290K- 

28465K 
G (2) 5.5 6.2 

HLy: low 

HFb: median 
1 

G 

gene-poor 

1.352 

late 

RP11-

425D17 

RP11- 

498B21 
12/15 12q12 

39750K- 

39940K 
G (3) 3.5 4.4 

HLy: low 

HFb: low 
0 

G 

- 

1.311 

late 
--- 

RP11- 

490D11 
12/16 12q12 

40110K- 

40280K 
G (3) 5.5 4.5 

HLy: low 

HFb: low 
1 

G 

-  

1.333 

late 
RP11-184I5 

RP11- 

510P12 
12/17 12q12 

41500K- 

41670K 
G (3) 9 5.6 

HLy: low 

HFb: low 
0 

G 

- 

1.388 

late 
--- 

RP11- 

624G19 
12/18 12q12 

42530K- 

42690K 
G (3) 6 9.1 

HLy: ??? 

HFb: ??? 
2 

G  

- 

1.500 

median 

RP11-

329A19 

RP11- 

559C10 
12/19 12q12 

43180K- 

43370K 
G (3) 6 10 

HLy: low 

HFb: low 
1 

G 

-  

1.459 

median 
--- 

RP11- 12/20 12q12 43510K- G (3) 4.5 10.5 HLy: low 1 G 1.431 --- 
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176J16 43650K HFb: low -  median 

RP11- 

480H15 
12/21 12q13.11 

47235K- 

47425K 
R 28.5 18.7 

HLy: low 

HFb: median 
6 

R 

gene-rich 

1.569 

median 
--- 

RP11- 

1100L3 
12/22 12q13.13 

50550K- 

50765K 
R 29 27.5 

HLy: low 

HFb: high 
6 

R 

gene-rich 

1.591 

median 

RP11-

324C17 

RP11- 

624J6 
12/23 12q13.13 

51750K- 

51955K 
R 38 30.2 

HLy: low 

HFb: high 
10 

R 

gene-rich 

1.610 

median 
RP11-323I9 

RP11- 

681G7 
12/24 12q13.2 

53145K- 

53355K 
G (1) 27 26 

HLy: median 

HFb: low 
6 

G  

gene-rich 

1.660 

early 

RP11-

192J19 

RP11- 

973D8 
12/25 12q13.2 

54580K- 

54795K 
G (1) 38.5 23.8 

HLy: high 

HFb: high 
10 

G 

gene-rich 

1.784 

early 

RP11-

152L9 

RP11- 

799O6 
12/26 12q13.3 

55625K- 

55825K 
R 37.5 21.8 

HLy: low 

HFb: high 
10 

R 

gene-rich 

1.772 

early 

RP11-

545N8 

RP11- 

557F20 
12/27 12q14.1 

57605K- 

57765K 
G (2) 2.5 16.2 

HLy: low 

HFb: low 
0 

G  

- 

1.283 

late 
--- 

RP11- 

1143G9 
12/28 12q15 

67910K- 

68060K 
R 10 6.4 

HLy: low 

HFb: median 
3 

R 

- 

1.670 

early 

RP11-

324P9 

RP11- 

1022D13 
12/29 12q15 

68180K- 

68370K 
R 11 6.3 

HLy: high 

HFb: high 
5 

R 

- 

1.665 

early 
RP11-15L3 

RP11- 

148D15 
12/30 12q21.2 

76670K- 

76845K 
R 2 3.6 

HLy: low 

HFb: median 
1 

R 

gene-poor 

1.363 

late 
--- 

RP11- 

362A1 
12/31 12q21.31 

80805K- 

80950K 
G (3) 2.5 3 

HLy: low 

HFb: low 
0 

G 

gene-poor 

1.304 

late 
--- 

RP11- 

900F13 
12/32 12q21.32 

87350K- 

87525K 
R 5 3.9 

HLy: low 

HFb: low 
1 

R 

gene-poor 

1.391 

late 

RP11-

464G3 

RP11- 

81H17 
12/33 12q21.33 

88300K- 

88485K 
G (3) 4 4.9 

HLy: low 

HFb: low 
3 

G  

gene-poor 

1.563 

median 
--- 

RP11- 

40P18 
12/34 12q21.33 

89170K- 

89360K 
G (3) 6 4.9 

HLy: low 

HFb: low 
0 

G  

gene-poor 

1.515 

median 
--- 

RP11- 

917O5 
12/35 12q21.33 

89910K- 

90090K 
G (3) 3.5 5 

HLy: low 

HFb: high 
3 

G  

gene-poor 

1.462 

median 

RP11-

424L2 

RP11- 

18B24 
12/36 12q22 

92275K- 

92430K 
R 6.5 5.4 

HLy: median 

HFb: high 
3 

R 

- 

1.688 

early 
--- 

RP11- 

690J15 
12/37 12q23.1 

96845K- 

97030K 
G (2) 4 7.1 

HLy: low 

HFb: low 
0 

G  

- 

1.331 

late 

RP11-

552H16 

RP11- 

482D24 
12/38 12q23.3 

105550K-

105730K 
G (2) 8 10.2 

HLy: low 

HFb: low 
2 

G 

-  

1.556 

median 
--- 

RP11- 

90N16 
12/39 12q23.3 

106080K-

106245K 
G (2) 8 10.5 

HLy: ??? 

HFb: ??? 
1 

G 

-  

1.501 

median 

RP11-

561I21 

RP11- 

608E13 
12/40 12q24.11 

108465K-

108625K 
R 17.5 11.4 

HLy: median 

HFb: high 
2 

R 

gene-rich 

1.656 

early 
RP1-7G5 

RP11- 

25E2 
12/41 12q24.21 

113915K-

114105K 
G (2) 3.5 8.5 

HLy: low 

HFb: low 
0 

G  

gene-rich 

1.293 

late 
--- 

RP11- 

131H7 
12/42 12q24.23 

117565K-

117755K 
G (2) 7.5 11 

HLy: low 

HFb: low 
0 

G 

gene-rich 

1.356 

late 
--- 

RP11- 

87C12 
12/43 12q24.31 

120770K-

120960K 
R 18.5 11.9 

HLy: low 

HFb: high 
3 

R 

gene-rich 

1.780 

early 
--- 

RP11- 

512M8 
12/44 12q24.31 

121150K-

121340K 
R 18.5 11.9 

HLy: low 

HFb: high 
5 

R 

gene-rich 

1.811 

early 
--- 

RP11- 

486O12 
12/45 12q24.31 

122415K- 

122615K 
R 16 11.6 

HLy: median 

HFb: high 
6 

R 

gene-rich 

1.654 

early 
--- 

RP11- 

380L11 
12/46 12q24.31 

122825K-

123025K 
R 13 11.9 

HLy: median 

HFb: high 
3 

R 

gene-rich 

1.720 

early 
--- 

RP11- 

205M16 
12/47 12q24.32 

125875K-

126030K 
G (2) 5 8.6 

HLy: ??? 

HFb: ??? 
1 

G  

- 

1.276 

late 

RP11-

111F6 

RP11- 

394D10 
12/48 12q24.33 

132135K-

132315K 
R 17.5 8.2 

HLy: low 

HFb: median 
5 

R 

- 

1.520 

median 

RP11-

46H11 
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For the experiments gene-rich and gene-poor BACs respectively were pooled. All BACs used 

in this work were marked by color, gene rich BACs in green and gene-poor BACs in red. 
 

Overview of the transcriptional activity assigned BAC pool of chromosome 12 for 
human fibroblasts 
 

Clone ID 
Internal 

ID 
Band 

assignment 
Position 

G/R 
band 

Gene 
density 

2Mb 

Gene 
density 
10Mb 

Transcriptional 
activity 
(=pool 

assignment) 

Genes 
Replication 

Index 
Reference 

Clone 

RP11- 

150J21 

12FbEx-

3 
12p13.31 

6742K- 

6893K 
R 30.5 19.6 high 8 

1.776 

early 
RP11-8J11 

RP11- 

157G21 

12FbEx-

4 
12p13.31 

7460K- 

7637K 
R 31 19.6 low 1 

1.509 

median 
--- 

RP11- 

69M1 

12FbEx-

5 
12p13.1 

7988K- 

8174K 
R 20.5 20.1 low 4 

1.701 

early 
--- 

RP11- 

20D14 

12FbEx-

6 
12p12.31 

8690K- 

8864K 
R 21.5 19.8 high 1 

1.645 

early 
--- 

RP11- 

118B22 

12FbEx-

7 
12p13.1 

9190K- 

9317K 
R 23 19.4 low 2 

1.599 

median 
--- 

RP11- 

80N2 

12FbEx-

8 
12p12.2 

20833K- 

21009K 
R 8 4.9 low 1 

1.289 

late 
--- 

RP11- 

92H16 

12FbEx-

9 
12p12.1 

21633K- 

21784K 
G(3) 9.5 4.8 high 2 

1.363 

late 
--- 

RP11- 

993B23 

12FbEx-

12 
12p11.22 

27882K- 

28040K 
G(2) 8 6.2 low 1 

1.71 

early 
RP11-299E2 

RP11- 

76H15 

12FbEx-

13 
12q13.11 

45001K- 

45162K 
R 5.5 12.7 high 1 

1.638 

early 
RP11-474P2 

RP11- 

1136G11 

12FbEx-

15 
12q13.13 

51745K- 

51903K 
R 38 30.5 high 5 

1.61 

median 
RP11-323I9 

RP11- 

616L12 

12FbEx-

17 
12q13.2 

53665K- 

53867K 
G(1) 31.5 24.9 low 1 

1.475 

median 
RP11-101M22 

RP11- 

715H19 

12FbEx-

19 
12q14.2 

61745K- 

61896K 
R 7 4.6 low 1 

1.391 

late 
RP11-263K23 

RP11- 

18J9 

12FbEx-

21 
12q21.31 

84703K- 

84875K 
G(3) 4.5 3.2 low 2 

1.293 

late 
--- 

RP11- 

481K9 

12FbEx-

22 
12q23.1 

97449K- 

97545K 
G(2) 3.5 6.8 high 2 

1.678 

early 
--- 

RP11- 

210L7 

12FbEx-

23 
12q23.2 

101290K-

101460K 
R 8 6.9 low 1 

1.632 

median 
--- 

RP11- 

144B2 

12FbEx-

24 
12q24.23 

119040K-

119225K 
G 18 11.8 high 6 

1.678 

early 
--- 

RP11- 

282O18 

12FbEx-

25 
12q24.31 

122244K-

122332K 
R 17 11.5 high 3 

1.699 

early 
--- 

RP11- 

592O2 

12FbEx-

26 
12q24.31 

123817K-

123939K 
R 6 11.3 high 2 

1.789 

early 
RP11-22H15 

 

For the experiments BACs containing weakly- and highly expressed genes respectively were 

pooled. All BACs used in this work were marked by color, BACs containing weakly-

expressed genes in red and highly-expressed genes in greene. 
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Overview of the transcriptional activity assigned BAC pool of the X-chromosome  for 
human fibroblasts 
 

BAC begin end band R-or 
G-
band 

Genes expression 
level 

genes/1Mb 
(2Mb) 

genes/1Mb 
(10Mb) 

RP11-155F12 2449600 2605375 p22.33 R 

 

LOC401577 

CD99 

high 2 3,8 

RP11-428I5 3231922 3407677 p22.33 R 

 

DKFZp564I1922 

ASSP4 

high 1 4,4 

RP11-196N16 10041748 10137830 p22.2 G2 CLCN4 low 2,5 5,2 

RP11-66H17 11211051 11361474 p22.2 G2 ARHGAP6 low 3,5 6,6 

RP11-3O12 11691588 11844380 p22.2 G2 PDZK10 mid 6,5 6,9 

RP11-347D6 16180299 16347878 p22.2 G2 LOC392429 

CTPS2 

CALB3 

mid 11 7,1 

RP11-160F21 16267255 16432260 p22.2 G2 LOC392429 

CTPS2 

CALB3 

SYAP1 

mid 10 7,1 

RP11-75D20 18074131 18266588 p22.13 R SCML2 

CDKL5 

mid 7 7 

RP11-317L16 19317804 19487786 p22.12 G2 FLJ16518 

SH3KBP1 

mid 8 7,4 

RP11-16H4 

 

21227780 21397725 p22.12 G2 CNKSR2 low 4 6,5 

RP11-147O5 21659073 21823564 p22.11 R MBTPS2 

SMS 

PHEX 

high 5 6 

RP11-359I12 23304119 23461397 p22.11 R PRDX4 high 9 6,5 

RP11-326D20 23523356 23731243 p22.11 R SAT 

MGC4825 

LOC317771 

FLJ25444 

mid 9,5 6,4 

RP11-241G16 29834432 30026614 p21.2 R MAGEB2 

MAGEB3 

MAGEB4 

 

MAGEB1 

mid 5 3,7 

RP11-242C19 30468985 30634237 p21.2 R GK 

TAB3 

low 6 3,7 

RP11-46A23 30874687 31028427 p21.2 R DMD low 5,5 3,9 

RP11-562E1 37007363 37179999 p21.1 G3 PRRG1 

LOC389844 

LOC139249 

mid 11,5 6 

RP11-495K15 37239134 37425983 p21.1-

p11.4 

G3/R FLJ42925 

XK 

CYBB 

low 12 6 

RP11-245M13 37686362 37831467 p11.4 R SYTL5 

SRPX 

high 13 6,1 
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RP11-64H6 38029097 38197598 p11.4 R OTC 

LOC392442 

LOC392443 

LOC442446 

TM4SF2 

low 10 6,3 

RP11-429N5 39524948 39730119 p11.4 R LOC392445 

BCOR 

low 5,5 7,1 

RP11-126D17 40108591 40246636 p11.4 R ATP6AP2 

 

 

LOC347411 

MGC39350 

high 8,5 7,1 

RP11-185O17 40472057 40655592 p11.4 R LOC401584 

LOC392447 

LOC286444 

 

LOC442447 

high 10,5 7,3 

RP11-360E17 40860674 41053405 p11.4 R DDX3X high 9 7,5 

 

 

For the experiments BACs containing weakly-, mid- and highly expressed genes respectively 

were pooled. All BACs used in this work were marked by color, BACs containing weakly-

expressed genes in red, mid-expressed genes in yellow and highly-expressed genes in 

greene. 

 

All BACs were kindly provided by Rogier Versteeg (Amsterdam) and originally generated in 

the Sanger Institute. 
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8 Abbreviations 
2D    2-dimensional 
3D    3-dimensional 
Ab   Antibody 
BAC   Bacterial Artificial Chromosome 
Bp                                   Base pair 
BrdU          5-bromo-2’-deoxyuridine 
BSA      Bovine Serum Albumine 
CCD      Charge-Coupled Device 
CENP-A,-B,-C   Centromeric Proteins -A,-B,-C 
ChIP    Chromatin Immunoprecipitation 
cm      centimeter 
CT         Chromosome Territory 
DAPI         4’,6-diamidino-2-phenylindole 
Dig           Digoxigenine 
DNMT   DNA Methyl Transferase 
d H2O       de-ionized water 
dd H2O      ultrapure water 
DMEM    Dulbecco’s Modified Eagle Medium 
DNA           Deoxyribo-Nucleic Acid 
Dnase    Deoxyribo-nuclease 
DOP-PCR  Degenerate Oligonucleotid Primer-Polymerase Chain Reaction 
dUTP      deoxyuridine-triphosphate 
EDTA       Ethylendiamintetraacetat 
EtOH      Ethanol 
EZH  Enhancer of Zeste 
FA                                      Formaldehyde 
FCS      Fetal Calf Serum 
FISH      Fluorescence In Situ Hybridization 
FITC      Fluorescein-isothiocyanat 
HAT   Histone Acetyl Transferase 
HDAC  Histone Deacetylase 
h.c.a.                          highly cross adsorbed 
HEPES     N-2-hydroxyethylpiperazin-N’-2-ethanesulfonic acid 
HFb  Human Fibroblasts 
HMT      Histone Methyl-Transferase 
HSA                                  Homo Sapiens Autosome 
HOX  Homeobox genes 
HP-1     Heterochromatin Protein-1 
IF  Immunofluorescence 
kb            kilobase 
LINE/SINE  Long/Short Interspersed Nuclear Element 
MCF-7  Mammary Carcinoma Fibroblasts 
MEF  Mouse Embryonic Fibroblasts 
Mb     Megabase 
ON                                     Over Night 
PBS          Phosphate-Buffered Saline 
PEV     Position Effect Variegation 
PcG  Polycomb Group 
PSF  Point Spread Function 
RAC  Radial Autocorrelation Function 
RNA      Ribonucleic Acid 
RPMI      cell culture medium (Roswell Park Memorial Institute) 
Rpm     Rotations per minute 
RT             Room Temperature 
SAM  S-Adenosyl-Methionine 
SET1/SET2  Proteins containing a SET-domain 
SSC  Sodium chloride Sodium Citrate 
SUV 39  Suppressor of Variegation 
Tris              Tri(hydroxymethyl)aminomethane 
Triton X-100       Octylphenoldecaethylenglycolether 
Tween 20        Polyoxyethylensorbitanmonolaurat 
Xa/Xi    active X-chromosome/inactivated X-chromosome 
wt    wildtype 
Xic    X inactivation centre 
XIST    X Inactive Specific Transcript RNA 
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