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1 Introduction and Overview

We are considering a random worldline. This should be thought of as the path of
a particle in the space-time manifold (which might be 4-dimensional Minkowski
space, but might as well be a more general d-dimensional manifold), this path
being dependent on some randomness. That is, we have a submanifold-valued
random variable. A narrower case we are particularly interested in is that of a
deterministic random worldline, i.e. a random worldline L with the property that
if you know one point of it, you know what the entire worldline is; in other words,
it is only the “initial position” of the particle that is chosen at random, and once
this initial position is chosen, the future motion is fixed in a deterministic way.

An example of a deterministic random worldline is provided by Bohmian me-
chanics, a physical theory about a moving point particle depending on the wave
function of quantum mechanics; in this theory, all the randomness comes from the
unknown initial position of the particle. In chapter 4, I will illustrate my results
in terms of Bohmian mechanics, and apply them to a version of Bohmian mechan-
ics adapted to the one-particle Klein-Gordon (resp. Dirac) equation. Another
application lies in the context of the N-particle dynamics of the “hypersurface
Bohm-Dirac model”.

We discuss the connection between random worldlines and closed differential
3-forms on the 4-dimensional space-time manifold. (All my results hold as well for
other dimensions; so whenever I say 3, I mean a number > 1; and whenever I say
4, T mean 3+1.) Differential 3-forms, or 3-forms, are completely antisymmetric
tensor fields of rank 3; in usual index notation, a 3-form [ reads

ﬁ)\;w = _/BAII;L - _5;0\1/ .

On the other hand, a 3-form can be understood as what topologists call a 3-cochain,
that is a mapping that assigns a real number to every oriented 3-dimensional
hypersurface (and, indeed, to formal linear combinations thereof), this number
usually being written as [ 7 B, the integral of the 3-form 3 over the hypersurface
H. A 3-form is said to be closed if its integral over H vanishes whenever H is
the boundary of some 4-volume, or, equivalently, if its exterior (skew) derivative
vanishes.

It turns out that closed 3-forms are closely related to random worldlines. For
every random worldline (that means, worldline-valued random variable, not world-
line chosen at random), there is a naturally associated closed 3-cochain containing
information about the probability density; given appropriate smoothness proper-
ties of the random worldline, the closed 3-cochain corresponds to a closed 3-form.



We explain that closed 3-forms are the natural way of covariantly expressing prob-
ability density. And covariant, in this case, means not only Lorentz-invariant (in
case of space-time being Minkowski space) but actually diffeomorphism-invariant
(or general-relativistic, one might say).

We now describe what the connection between 3-forms and random worldlines
is. To begin with, the immediate question to ask about a random worldline L
and a 3-dimensional hypersurface H is: what is the probability of L crossing H?
This question is, of course, highly relevant for detection probabilities (where H
is a piece of a t = const. surface) and for scattering cross sections (where H is
time-axis x a sphere around the scattering center), for example. The number of
crossings through H is an integer-valued random variable, and one may ask for
its expectation value. However, we are going to ask a slightly different question.
If we give orientations to the worldlines, to the hypersurface and to space-time,
we may define which crossings are positively oriented and which are negatively
oriented. The number of signed crossings, defined essentially as the number of
positive crossings minus the number of negative crossings, is again an integer-
valued random variable which we call N(H), and we will see its expectation, as
a function of the hypersurface H, is a 3-cochain, essentially because it adds for
disjoint unions of hypersurfaces, and it changes sign when reverting the orientation
of H. This is the connection between random worldlines and 3-forms we are talking
of.

The reason why the expected number of signed crossings E/N is more relevant
for our purposes than the expected total number of crossings or the probability
of crossing, is just the fact that (sufficient smoothness properties assumed, and
finiteness of the expectation) it can be read as a 3-form, i.e. as a tensor field! In
contrast, the probability of crossing H as a function of H is a very abstract mapping
on a very abstract space (the set of all suitable H’s), and so is the expected total
number of crossings. A tensor field is a comparably simple and familiar object; in
many cases the relevant 3-form can be specified by some explicit formula.

Our central enterprise is to discuss the converse question: given a closed 3-
form (3, is there a random worldline L such that § provides the expected number
of signed crossings EN with respect to L? Is L unique? Let’s start with uniqueness:
there is no reason to expect uniqueness—but if a deterministic random worldline
exists, it is unique (for the precise statement, see p. 19). In section 3, we describe
the construction of this deterministic random worldline I'(3) from the 3-form 3. In
general, the construction can only be carried out on a “set of well-behaved points”
in space-time, the wandering set. Our construction provides a 1-dimensional foli-
ation (or congruence) of the wandering set, and a measure on the worldlines; this
measure is not necessarily normalized, so only a suitably normalized 3-form [ will



define a ['(3). The following diagram roughly summarizes the correspondences:

{random worldlines}
| EN
{normalized closed 3-forms}
T

{deterministic random worldlines}

That EN(L) is indeed a smooth 3-form is, of course, a nontrivial smoothness
property L may have or not. With this restriction, however, EN defines a many-
to-one mapping. On the set of deterministic random worldlines, EN and I" are
essentially inverse mappings, i.e. ['(ENy) = L for every deterministic random
worldline L, while EN (I'(8)) = 8 holds only on the wandering set.

We already remarked above that the mapping EN that assigns closed 3-forms
to random worldlines, does not depend on the Lorentzian metric on space-time, it
is not related to any metric. The same applies to the other mapping: I' can be
constructed on any orientable manifold.

Since the reasoning of chapters 2 and 3 relies in no way on properties of the
numbers 3 and 4, but applies just as well to closed d — 1-forms on d-dimensional
manifolds, the phase flow of Newtonian mechanics is an example of a deterministic
random worldline, with space-time replaced by phase space x time axis. Further-
more, for the hypersurface Bohm—Dirac model, a relativistic dynamics for N par-
ticles, the differential form method can be fruitfully applied to establish rigorously
the equivariance statement, even for a curved space-time, which is a novel result.

There is a relation between d — 1-forms, d-forms, and vector fields on a d-
dimensional manifold. A d-form o and a vector field j together define a d — 1-
form by plugging the vector into the first slot of the d-form, 5(Xi,..., X41) =
a(g, Xy, ..., X4-1). If a nowhere-vanishing d-form (which is often called a volume
form) is given then the translation from a vector field to a d — 1-form is one-to-one
and onto, so vector fields and d — 1-forms amount to the same thing. This is
sometimes called the duality between d — 1-forms and vector fields; but keep in
mind this depends on the volume form. A volume form is automatically selected by
the metric (together with the orientation) in Minkowski space, or more generally
in any Lorentzian or Riemannian manifold; as well, a volume form is selected by
the structure of a Galilei space (see p. 12). In all these cases, closedness of the
d — 1-form corresponds to j being divergence-free. The orientation alone does not
select a volume form, but rather a class of volume forms that differ by a positive
function.

Most of our examples and applications exploit the duality by defining a divergence-
free current vector field and translating it into a closed d — 1-form, which again
defines a deterministic random worldline. The possible outcomes are worldlines
tangent to the current vector. Nevertheless, I wish to stress that the object nat-
urally associated with the random worldline is the d — 1-form rather than the
current vector field which comes into play only through the duality induced by



a volume form. To speak of probabilities, one needs a form. This is one of the
main lessons from our construction of random worldlines on arbitrary manifolds;
another notable lesson—seeming more obvious than it is—is that the integral of
the form over a hypersurface H does not give the probability of crossing H but
rather the expected number of signed crossings.

There is a divergence-free vector field j# associated with a solution v of the
single-particle Klein-Gordon equation. When we apply I' to the closed 3-form
that corresponds to j#, we end up with a deterministic random worldline. This
is remarkable in so far as some authors [4, 7] have claimed that since the tempo-
ral component j° is sometimes negative, there cannot be any random worldline
associated with . This is discussed in more detail in section 4.4.

2 Random Worldlines Crossing Hypersurfaces

2.1 Definitions

This section is more technical in character. We give definitions for the terms
worldline, random worldline, deterministic random worldline, hypersurface, and
signed crossing.

2.1.1 Worldlines

Space-time is an oriented (connected C'*°) 4-manifold. We define a worldline to
be an (oriented) equivalence class of curves, where curves are understood to be
injective C*° mappings v : R — (space-time) with the property dv/dt # 0 every-
where, and equivalence of two curves 7,7 means each is a reparametrisation of
the other, i.e. there is a diffeomorphism ¢ : R — R with dg/dt > 0 everywhere
and 7 = yopresp. y =70 L

Equivalently, we may say that a worldline is (up to orientation) a connected 1-
dimensional submanifold (in the broad sense of “submanifold”: an immersed rather
than imbedded manifold) that is diffeomorphic to the real line. Those connected
1-dimensional submanifolds that are not worldlines are diffeomorphic to the circle.
If 7 is a worldline, we will write p € ¢ to indicate that the point p lies on the
worldline ¢ and often speak of ¢ as if it was a set, although ¢ does not merely
denote a set of points (in some cases, like the one of the figure “8”, there are
two different submanifolds on the same set of points). We will sometimes say the
wordline ¢ is a part of the worldline ¢/ when we mean there is a parametrization ~
of ¢ and a parametrization 7' of ¢’ such that v/ = 7oy where ¢ is a diffeomorphism
R — (a,b) with —oco < a < b < oo and dep/dt > 0.

We do not require worldlines to be timelike, as we do not presume any metric
on space-time.

We define a random worldline to be a worldline-valued random variable. For
this to be well-defined, we need to know which sets of worldlines count as measur-



able, i.e. we need to define a o-algebra WV on the set of worldlines.

W should contain the subsets of the form {all worldlines intersecting A} where
A is a Borel-measurable subset of space-time. But the o-algebra generated by
these sets is not enough, since it does not distinguish orientation; W should also
contain the subsets of the form {all worldlines having a representing curve v such
that w(dy/dt) > 0} where w is a 1-form on space-time. We define W to be the
o-algebra generated by these two families of sets. Note that sets of the form {all
worldlines lying completely within A} (“cylinder sets”) are measurable for Borel
sets A, since they are complements of generating sets.

We usually denote a random worldline as L or L'. Be warned that there is a
possible source of confusion, as always with random variables, in that the same
symbol L (and the same name “random wordline”) is used for both (a) the random
variable and (b) its outcome; to stress the difference, (a) is not random at all, but
a fixed mapping from a probability space to the set of worldlines whereas (b) is a
worldline chosen by Tyche in an unforeseeable way.

We will speak a lot about deterministic random worldlines, meaning by that
that merely the initial position is random, but the motion is not; in other words
that it is enough to know one point on L to know the entire path. As a first step
towards a definition, we say a random worldline L has the determinism property
if it is possible to associate with every p € (space-time) a worldline ¢, such that
the event

{Vp € (space-time) : if p € L, then L = {,,} (1)

has probability 1. The mapping p — ¢, has the property that up to null events, if
q € {, then ¢, = {,; more precisely, if S is the set

S = {p € (space-time)|Vqg € ¢, : {, = {,} (2)

then the event {L C S} has probability 1 (since the complement of this event
is that there is a p € L and a ¢ € ¢, such that ¢, # ¢,, which implies that
either p € L,L # {, or ¢ € L,L # {,, which by assumption is a null event). L
determines the mapping p — £, uniquely up to null events, i.e. if there is another
mapping p — £, such that the event (1) has still probability 1 when £ is replaced
by ¢/, then almost certainly, L is a subset of {p € (space-time)|(, = £} (since the
complementary event is that there is a p € L such that £, # £, which implies that
either L # (, or L # (, which by assumption is the union of null events). It is
clear from the definition (2) of S that the curves ¢, form a decomposition of S into
disjoint lines.

Although every possible outcome of a random worldline with the determinism
property is a smooth worldline, such a random variable may be nonsmooth in
several respects: The field of tangents to the worldlines ¢, may be nonsmooth,
as illustrated in fig. 1. The orientation may change discontinuously. And even if
the family of worldlines is completely well-behaved, the probability measure may
still be too wild: as an example, think of R* as space-time and the foliation into
the parallels to the 2° axis as the £,; then it is still a nontrivial property that
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Figure 1: An example for a decomposition of a manifold (here, R?) into lines such
that each line is smooth, but together they do not form a foliation of the manifold.
One of the lines is the z axis, and the other lines are helices around the z axis
with winding frequencies approaching infinity near the z axis. More precisely,
the curves—except the z axis itself—are defined by x = Rcos(z/R + ),y =
Rsin(z/R + ) where R > 0 and 0 < o < 27 parametrize the family.

the probability measure on the worldlines (as parametrized by R?) has a smooth
density.

We define a smooth deterministic random worldline to be a random worldline
with the determinism property and the following additional ones:

(i) There is an open set Sy C S containing either all or nothing of a given /¢,
and containing almost-all of them (i.e., the event {L C Sy} has probability

1).

(ii) The field of tangents to the worldlines we decompose Sy into is smooth. This
is equivalent to saying the curves £, form a foliation® of Sp.

(iii) On Sp, the orientation of ¢, varies continuously with p, i.e., the positively
oriented direction of the tangent to £, forms a smooth field of directions.

(iv) Every p € Sy has a neighborhood U such that for every ¢ € U, ¢, N U is
connected. (In particular, no ¢, recurs to ¢ arbitrarily close.)

(v) L has smooth probability densities in the following sense: for every coor-
dinate chart? (U, z) in Sy which maps the £, worldlines to lines parallel to

LA foliation is a decomposition of a manifold of dimension n into disjoint submanifolds of
dimension m < n (called the leaves) in a way locally diffeomorphic to the way R™ can be
decomposed into parallel m-dimensional planes. A 1-dimensional foliation, where the leaves are
curves, is sometimes called a congruence.

2A coordinate chart consists of an open subset U of the manifold and a mapping z : U — R¢
that is a diffeomorphism onto its range.



the 2% axis (with the same orientation), and which has the property that for
every ¢ € U, ¢, N U is connected, the induced measure on the projection to
R? of 2(U) has smooth density.

The role of axiom (iv) is that without it, axiom (v) would be vacuous, and
axiom (v) must suppose that for every ¢ € U, £,NU is connected, because otherwise
different points of R* would represent the same worldline £,, and the probability
measure on the worldlines would not define a measure on R3, so we could not speak
of the probability density.

We will usually drop the word “smooth” and assume smoothness implicitly
when speaking of a deterministic random worldline.

2.1.2 Hypersurfaces

A hypersurface is a 3-dimensional, oriented, imbedded submanifold. Imbedded
means its topology and differential structure is inherited from space-time through
being a subset, or, equivalently, every point on the hypersurface has arbitrarily
small neighbourhoods in the hypersurface that are intersections of certain neigh-
bourhoods in space-time with the hypersurface; in other words, every point on the
hypersurface has a neighbourhood in space-time through which the hypersurface
“cuts only once”. An example of a non-imbedded submanifold is a geodesic on
the torus S' x S! having irrational slope, i.e., the image of a straight line (hav-
ing irrational slope) in R? when taken modulo the lattice Z?; this submanifold is
dense in the torus, so it intersects every neighbourhood “infinitely often”. Another
example is shown in fig. 2.

Figure 2: An example of a non-imbedded submanifold of R? is a sheet of paper
twisted in such a way that “its boundary touches the surface.”

“Oriented” means a hypersurface H is equipped with an orientation defining
for every basis (eq, ez, e3) of every tangent space T,,H whether it is positively or



negatively oriented. Of course the orientation is required to vary continuously with
p, so a given connected submanifold can at most have two different orientations.
Note that not all submanifolds allow for an orientation, e.g. the Mobius band does
not. Relative to the orientation of space-time, the orientation of a hypersurface
defines which side is “the up side” and which is “the bottom side”: if e is a tangent
vector at p, but not tangent to H, and if (ey, ..., e3) is a positively oriented basis
of T),(space-time) while (e, ..., es) is a positively oriented basis of T, H, then the
side to which eq is pointing is the up side.

We will sometimes say “a piece of hypersurface” rather than “a hypersurface”
to remind you that we do not require a hypersurface to cut space-time into two
parts.

2.1.3 Crossings

We now define the sign of a worldline’s crossing through a hypersurface. In short,
a crossing is positive if the worldline comes from the bottom side and leaves on
the up side.

Before we give the definition, we consider a simple case first: by an isolated
intersection of a worldline ¢ through a hypersurface H we mean a point p €
¢ N H such that for every parametrisation v : R — (space-time) of ¢, there is a
neighbourhood U around the parameter value sy corresponding to p such that if
s € U and v(s) € H then s = so. Examples of non-isolated intersections are:
a worldline that moves along a hypersurface for an entire parameter interval of
positive length, or a worldline that intersects a hypersurface at parameter times 0
and 1/n for every positive integer n.

Proposition. Four types of isolated intersections are possible:

(i) The worldline comes from the bottom side, crosses through the hypersurface,
and leaves on the up side. (This we call a positive crossing.)

(ii)) The worldline comes from the bottom side, touches the hypersurface and
leaves on the bottom side again. (This we do not count as a crossing.)

(iii) The worldline comes from the up side, crosses through the hypersurface, and
leaves on the bottom side. (This we call a negative crossing.)

(iv) The worldline comes from the up side, touches the hypersurface, and leaves
on the up side again. (This we do not count as a crossing.)

Proof. Since H is imbedded, there is a coordinate chart on a neighbourhood
V' of the isolated intersection p that “straightens” H NV to a hyperplane in the
coordinate space R*. Choose a parametrization «y of £, and let so := 7~ !(p). There
is a neighbourhood U’ of sy such that v(U’) C V, and a neighbourhood U C U’
such that UNy~Y(H) = {so}. Since the coordinate image of HNV is a hyperplane,



a curve cannot get on the other side without intersecting H. As a consequence,
“which-side” is constant before and after sg. O

Note that an isolated crossing is not necessarily transverse, but may be tangent.
That is, the tangent to the worldline in the point of intersection may be tangent
to the hypersurface (like the graph of the x — 3 function when crossing the x
axis).

If a given worldline possesses only isolated intersections with a given hyper-
surface H, it is clear what the number of positive crossings Nt (¢, H) and the
number of negative crossings N~ (¢, H) mean. The number of signed crossings is
the number of positive crossings minus the number of negative crossings, N (¢, H) =
N*t(,H)— N~(¢,H). If both Nt and N~ are infinite, we define N to be 400, to
avoid that N is not defined in some cases.

Whether an isolated crossing is positive or negative depends on the orientation
of space-time, on the orientation of the hypersurface, and on the orientation of
the worldline. If any of these orientations is reversed, the crossing changes sign.
The question whether an isolated intersection is a crossing at all is not affected by
reversing an orientation.

Before we extend our definition to non-isolated intersections, let us consider
an example. Say the smooth curve v in R* intersects the 2! = 0 hypersurface at
times —1/n and 0, with z'(y(¢)) > 0 for ¢ > 0 and —5 < t < —5-, whereas
2l (y(t)) < 0fort < —1 and —% <t< _TIH' Then ~ has infinitely many positive
and infinitely many negative crossings through the hypersurface; nevertheless it
passes from ! < 0 to ' > 0 in total, and that is why we want to set the number
of signed crossings to 1. The number of signed crossings is sometimes finite even
if the number of positive and negative crossings are not.

For any pair s; < sy of parameter values, we define the number of signed

crossings between s; and so like this:

(i) It is 0 if in the interval [sq, so], 7 did not intersect H.

(ii) If there is a coordinate chart (U, x) mapping H N U onto {2° = 0} N x(U)
preserving the orientation of space-time and of the hypersurface, such that
v(t) € U for s <t < s9, then

N(s1,82) = | a°(7(s2)) <0]2°%((s2)) =0 | 2%(7(s2)) > 0
2%(v(s1)) <0 0 1/2 1
2%(y(s1)) =0 —1/2 0 1/2
2%((s1)) > 0 -1 —1/2 0

(This means landing on the hypersurface counts as half a crossing; this is of
course undone when starting towards the side the worldline came from.)
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(iii) If there is a coordinate chart (U, x) mapping H N U to an open subset of
the {2° = 0} hyperplane, such that v(¢t) € U and 2°(y(¢)) = 0 for s; <t <
S, then N(s1,$2) = 0. (This means leaving the hypersurface through its
boundary does not buy a crossing.)

(iv) Furthermore, for any s; < so < s3, N(s1,83) = N(s1,52) + N(s2, s3).

The (total) number of signed crossings is the limit of N(s;, s2) for s1 — —oo and
S9 — OQ.

One easily checks that the local coordinate definitions are consistent with the
additivity and with each other, that N(sq,s2) does not depend on the choice
of coordinates, that N(sy,s2) takes on half-integer values, that this definition is
consistent with the earlier definition for isolated intersections, and that the limit
does not always exist (not even when allowing +o00 as a limit, which we do). E.g.,
it does not exist for the graph of the sine function, and not either for a curve that
crosses a hypersurface positively at every positive integer time, and negatively at
every negative integer time. In any case, infinitely many positive and negative
crossings are involved when the limit does not exist. When the limit does not
exist, we set N = 400 to avoid ill-defined expressions.

The number of signed crossings depends on the orientations of space-time, the
hypersurface, and the worldline in just the same way as the sign of an isolated
crossing: it changes sign when any of the orientations is reversed.

When H is the disjoint union of two hypersurfaces, H = H; U H,, then
the crossing numbers add: N*(¢(,H) = Nt({,H;) + N*({,Hy), N~ ((,H) =
N-(¢,H) + N~(¢,Hy), N(¢(,H) = N({,H,) + N(¢, Hy). Here we calculate as
if +o0 — o0 = +o0, as we will generally. In case H; and H, are not disjoint,
additivity still holds if we count the crossings with a suitable multiplicity.

As a consequence, N(/,-) has the formal properties of a 3-cochain (over the
ring of integers), i.e., it accepts a (3-dimensional, oriented) hypersurface (and a
formal linear combination thereof) as an argument and is Z-linear—except at the
infinities. Unfortunately, the infinities cannot be avoided since there is always
some hypersurface that contains ¢, so there is a nonisolated intersection, and then
by definition NV is infinite.

2.1.4 3-Forms Integrated Over Hypersurfaces

There is a point we must clarify about the integration of a form over a submanifold
(as, e.g., a hypersurface). The integral over a d-form needs a d-dimensional oriented
“domain of integration”. The definition [10, p. 141-3] of such an integral supposes
that the domain is a so-called d-chain, that is a formal linear combination of so-
called singular® d-simplices, which are smooth mappings from (a neighborhood of)
the standard simplex in R? into the manifold. This strategy ensures that (a) the
domain of integration is compact, so the d-form is bounded and the integral is

3The name “singular” comes from the fact that the mapping need not have full rank.
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finite, and that (b) the boundary of the domain of integration is piecewise smooth
again.

To extend this definition to submanifolds as the domain of integration, one may
simply decompose the submanifold into countably many simplices o3 and add the
integrals over 0. The only problem that arises is that the sum may not converge.
Four cases are possible:

(a) The sum converges for every triangulation, and the value is independent of
the choice of triangulation. In this case, there is no ambiguity about the
value of the integral over the submanifold.

(b) The sum diverges to oo for every triangulation. In this case, we set the value
of the integral to oco.

(c) The same with —oc.

(d) For some triangulation, the positive summands and the negative ones are
both infinite. Now the integral is really ill-defined. To ensure it always has
some value, we set the integral to 400 also in this case.

2.1.5 Minkowski and Galilei Space

An affine Minkowski (resp. Galilei) space is a set on which the additive group of
a Minkowski (resp. Galilei) vector space acts freely and transitively. A Minkowski
vector space is a four-dimensional real vector space endowed with a symmetric
bilinear form 7 which in a suitable basis has the matrix form diag(1, -1, —1, —1).
A Galilei vector space is a four dimensional real vector space endowed with a
nonzero linear form w (the absolute time) and a positive definite symmetric bilinear
form on kerw. The affine Minkowski (resp. Galilei) space may equivalently be
characterized as a manifold diffeomorphic to R* endowed with a flat connection
(on the tangent bundle) and the structure of a Minkowski (resp. Galilei) vector
space on every tangent space, such that the Minkowski (resp. Galilei) structure is
parallel (“covariantly constant”) w.r.t. the connection. We say a basis e, e1, €z, €3
of a Minkowski (resp. Galilei) vector space is inertial, if the matrix representing
the metric is n = diag(1,—1,—1,—1) (resp. if w(eg) = 1 and ey, ey, e3 form an
orthonormal basis of kerw). It is clear there exist global coordinate charts of
a Minkowskian (or Galileian) space-time that are inertial in every point; such
coordinates we call inertial coordinates. Note that in inertial coordinates, like in
every coordinate chart, the equation 2° = const. defines a hypersurface.

2.1.6 Volume Forms and Current Vector Fields

There is a relation between d—1-forms, d-forms, and vector fields on a d-dimensional
manifold. A d-form « and a vector field j together define a d — 1-form by plugging
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the vector into the first slot of the d-form, 5(Xy,..., Xq-1) = a(j, X1,..., Xg_1).
In usual index notation, this translation reads for d = 4:

ﬁ)\,uu = jﬁan)\;w ) (3)

At point p, in other words, a defines a linear mapping from the tangent space 7,
to the space AY71(T,), called the d — 1-th exterior power of T}, and being the value
space of d — 1-forms at p. If oy, # 0 then this mapping is injective and, since both
spaces have the same dimension d, also surjective and hence an isomorphism.

So if a nowhere-vanishing d-form (which is often called a volume form) is given
then a vector field and a d — 1-form amount to the same thing. This is sometimes
called the duality between d — 1-forms and vector fields; but keep in mind this de-
pends on the volume form. A volume form is automatically selected by the metric
(together with the orientation) in Minkowski space since Lorentz transformations
have determinant +1: choose a (correctly oriented) inertial frame ey . .. e3, and let
a be the 4-form having components

Qprur = Erduw »

where &), is the Levi-Civita symbol (the unit skew symbol, i.e., if kKAuv is a
permutation of 0123, € is the sign +1 of the permutation, and 0 otherwise). In
other correctly orientated frames, o will have the same components because the
transformation matrix has determinant 1. Equivalently, we may say

a:éo/\él/\ég/\é3

where € ...e3 is the dual basis. In such a frame, we can spell out the inverse
formula to (3):
jn = _%EHANVB)\;;V-

Since Galilei transformations, when orientation-preserving, have determinant 1,
too, every (oriented) Galilei space has a selected volume form as well. Similarly, a
volume form is selected on any Lorentzian or Riemannian manifold by the metric
and the orientation. (Note that the role of the metric in the duality is solely to
select a volume form and nothing else; as an illustration, duality also works in
Galilei space where no metric is available.)

With a given volume form, (3) can be inverted, and the so distilled j is called the
current vector field. Many examples and applications use this channel in the other
direction: they define a current vector field first, and then exploit the volume form
to translate it into a 3-form, which again serves to define a deterministic random
worldline. In all these cases, the random worldline is only obtained by mediation
of the 3-form, and the 3-form is only reached by the duality mechanism. It is fair
to say that the natural tensor field representing the random worldline is the 3-form
rather than the current vector field, since a vector field will not define a random
worldline in the absence of a selected volume form.

13



In all our example cases (Galilei space, Lorentzian and Riemannian manifolds)
a covariant derivative V, is available with respect to which the volume form «
is parallel, i.e., Va = 0. Note that Va distinct from dea, which identically van-
ishes by definition. The relation between d and V is da = V A «, or, in com-
ponents: (da)x,.a, = V[ Qx,..a,,,) Where the square brackets stand for anti-
symmetrization. The covariant derivative allows us to speak of derivatives of j,
and to ask into what condition the closedness of  translates. The general answer
is

0= Vighu = (Vmanww)f + (V[su'“) Q]

and in case Vo = 0 this reduces to V,j* = 0; in words, closed 3-forms correspond
to divergence-free current vector fields.

2.2 3-Forms From Random Worldlines
2.2.1 The Expected Number of Signed Crossings

Given a random worldline L and a hypersurface H, the number of signed cross-
ings N(L,H) is a Z U {oo, —oo}-valued random variable, and we may ask for its
expectation value.

There is a subtlety about expectation values of random variables that may
assume infinite values. Let X be a Z U {oo, —oo}-valued random variable; the
expectation of the positive part of X is always well defined,

00 if Prob{X = oo} >0
E(X - 1{X>0}) = > nProb{X =n} otherwise,
n=1

where the infinite sum may well be infinite. Similarly, the expectation of the
negative part of X is well-defined; the problem arises when both partial expectation
values are infinite. In that case, we define the expectation EX to be +o00, to make
sure it is always defined.

EN(L,-) is a RU {00, —oo}-valued functional on the set of hypersurfaces. Due
to the linearity of expectations, it inherits the additivity of N(¢,-), i.e., EN(L,-)
adds on disjoint unions of hypersurfaces. Moreover, it changes sign when the
orientation of the hypersurface is reversed. It can thus be extended to a linear
functional on the formal linear combinations of hypersurfaces with real coefficients
(where —H is identified with the reversed orientation of H, and H; + Hy with
H, U Hy provided Hy; N Hy = (). This means EN (L, -) is a real 3-cochain (except
at the infinities, where linearity breaks down).

In other words, EN(L,-) is a “formal” 3-form if we disregard differentiability
questions.
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2.2.2 Closedness

Our reason to restrict attention to closed 3-forms is that under suitable conditions,
the formal 3-form EN(L,-) is closed in the sense that it vanishes on the boundary
of a compact 4-volume. The rough idea behind this is that what flows in has to
flow out again some time, so the net flux across the surface should be zero. We
elaborate a bit on what conditions this would be.

A mapping is called proper if the pre-image of every compact set is compact.
For a smooth curve 7 : R — (space-time) this means it sooner or later leaves
ultimately every compact set, in both time directions. Since properness is pre-
served under reparametrization, we may speak of proper wordlines. The notion
of properness is interesting in the context of the question whether the worldlines
start or end somewhere, and from the physical point of view, it is a very reasonable
property for a worldline to have.

Consider a compact 4-volume R in space-time with smooth surface OR. For
every (nonrandom) worldline ¢ that is proper, the number of signed crossings
N(¢,0R) is zero: since ¢ ultimately leaves R in both time directions, there was
a time s; before the first encounter with R, and N(sq,t) is 1 when 7(t) is inside
R and 0 when outside because there is no way to get inside (resp. out) without
crossing the boundary.

Now if a random worldline L has the property that it is proper with probability
one, then N(L,0R) = 0 with probability one, thus EN(L,9R) = 0.

2.2.3 Smoothness

There is no general condition ensuring the formal 3-form EN(L,-) is a smooth
3-cochain, i.e., that there is a 3-form 3 such that EN(L,-) = [ 8. It is simply
a property a random worldline L may have or not. More can be said about
deterministic random worldlines:

Proposition. Let L be a (smooth) deterministic random worldline. Then there
is a unique smooth 3-form 3 on Sy such that

EN(L,H):/B. (4)
H
whenever either side is finite. Moreover, (3 is closed.

Proof. Choose p € Sy; by the rectification theorem (see p. 21), there is a coordi-
nate system (U, z) on a neighborhood around p that maps the worldlines ¢, to lines
parallel to the z° axis (and with the same orientation); by axiom (iv) of a smooth
deterministic random worldline, we may assume ¢,NU is connected for every g € U.
Let m : R* — R? denote the canonical projection; every point u € o z(U) rep-
resents a worldline 771 (u). By axiom (v), the induced measure on the projection
mox(U) has smooth density p(z!, 2%, 2®). Define B|U := p(z?, 2%, 23) dz* Adz? Ada?.
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Certainly, § is smooth and closed:

3
)
dﬁ:dp/\dazl...dxg:;a—;dx“/\dxl...dxgzO.

Once we show that for hypersurfaces in U, (4) is true, we are finished, because

(a) This ensures uniqueness of § on U, because for 5’ # 3, one can find an
arbitrarily small piece of hypersurface H such that [, 3" # [, 0.

(b) As a consequence of uniqueness, (3, does not depend on the choice of (U, z),
so the pieces B|U match up to give a 3-form [ on Sp.

(c) Eq. (4) is fulfilled for arbitrary hypersurfaces since they can be decomposed
into smaller pieces lying within a U. Note that ignoring or double-counting
the boundaries between pieces does no harm: since they form a null set in H,
they do not change | 5 3, and since the image of a null set under a smooth
mapping is a null set [6, p. 73], their images in R? under 7 o z are null sets
in R3 and thus do not influence the expectation value.

The rest of this proof will show that (4) holds for hypersurfaces H in U. xz(H)
is a hypersurface in z(U) C R%. The expectation value may be expressed as

EN(L,H) = (U)N(fl(u), z(H)) p(u) d®u. (5)

We now remove from H all points where §|H vanishes, that is we set H' = {p €
H|(B|H), # 0} and observe [, 8 = [,, 6. We claim that all the points we removed
did not contribute to the left hand side of (4) either:

(i) Points with p(7(p)) = 0 can be left out of the domain of integration in (5)
without changing the expectation value.

(ii) All other points with (5|H), = 0 must have the property that the tangent
plane to H at p is vertical in coordinate space, i.e. it must contain a parallel
to the ¥ axis. But the projection of these points forms a null set in R3,
according to the lemma below; so we may leave the projection out of the
domain of integration in (5) without damage.

The connected components H; of the remaining H’ have the property that 5| H.
does not change sign: since A*(T,H) is 1-dimensional, the orientation of H defines
a positive half-space and a negative half-space of A3(T,H); let o; be +1 if B|H] is
positive, and —1 otherwise. If o; is positive (resp. negative), each point of H] is a
positive (resp. a negative) transverse crossing of some worldline. The projection 7
when restricted to H; has full rank, so it is a local diffeomorphism. Divide H into

16



(countably many) pieces H;; such that on each H;;, m is a diffeomorphism onto its

image, which allows us to parametrize H;; from its projection, and we find

G = ai/ p(u) dBu,
Hz{j ﬂ-(Hz{j)

and summing over ¢ and j we add the signs of all transverse crossings and arrive
at the right hand side of (5), which completes the proof. O

Lemma. Given a (d — 1-dimensional) hypersurface H in R% (d > 2), the set
S =m{pe H|0/02° € T,H}, that is the projection in R4~ of all p € H such that
the tangent plane at p is vertical, has Lebesgue measure zero.

Proof. Consider d = 2 first: choose a curve v parametrizing 1-dimensional H.
Remove all the points having horizontal tangent; this does not interfere with the
set of points having vertical tangent. Since the parameter values s with horizontal
tangent are the zeroes of x°(%(s)), this set is closed, and the remaining set of
parameter values is open, and thus is the disjoint union of countably many open
intervals U;. To show that A(S) = 0, it suffices to show that A(S;) = 0 where
S;i=5N W(’V(Ui)). On U;, the hypersurface may be smoothly parametrized by
the 2° coordinate; we assume v is such a parametrization, v(t) = (¢, f(t)). Then
Si=f({te Uil f(t) = 0}), and the statement follows from the fact that U; can be
covered by countably many compact intervals, and the lemma of Sard:

Sard’s Lemma. [9, p. 247] Let U be an open interval, let f : U — R be C" and
Lipschitz, and let C = {t € U|f = 0} be the set of critical points. Then f(C') has
Lebesgue measure zero.

Now consider d > 2. We only need to show that in a sufficiently small neigh-
borhood U of any p € H where the tangent plane 7),H is vertical, the set of points
with a vertical tangent plane projects to a null set in R¢~!. Choose U such that,
as ¢ varies in U, the plane T, H varies not too much in the set of d — 1-dimensional
subspaces of R%; this includes that T, H does not become horizontal, and where it is
vertical, its projection 7(7,H) does not vary much in the set of d — 2-dimensional
subspaces of R%"!. Then there is a direction e in R¢! which is transverse to
all the T,H, and we consider the family of parallel 2-planes in R? containing the
direction e and the vertical. Using these 2-planes, we reduce everything to the
2-dimensional case.

The intersection of H with such a 2-plane P is an imbedded submanifold of
dimension 1 because H and P are transverse (i.e., T,H and T,P span the R? in
every ¢ € H N P), and the transverse intersection of imbedded submanifolds is
again an imbedded submanifold, while the codimensions add [10, p. 31].

H N P has vertical tangent at every point in U N H N P where H has a vertical
tangent plane. Thus, by the statement of the lemma for dimension 2, the projected
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vertical tangents over any line ¢ C R4~! with direction e form a null subset of g.
But by Fubini’s theorem (applied to an indicator function), a set S is a null set in
R4 if SN g is anull set in 1 dimension for every parallel g to some fixed axis. [

3 Constructing a Deterministic
Random Worldline From a 3-Form

3.1 Construction of the Worldlines
3.1.1 Directions From a 3-Form

A 3-form has the property that it selects a direction in every tangent space where
it does not vanish. This fact is simple yet crucial for our entire enterprise. Say (3
is a 3-form, and (3, is B taken at point p.

Proposition. Assume 3, € A*(T,) does not vanish. Then (3, has a 1-dimensional
kernel (= subspace of T, containing such vectors X that for all Y,Z € T, :
B(X.Y,Z)=0).

Proof. Let A*(E) denote the space of skew-symmetric k-linear forms on a given
vector space E of dimension d. Choose an element a # 0 from A4(E). « induces a
linear mapping E — A% }(E) by Y + iya where iy a denotes the skew-symmetric
d — 1-linear form (X,..., X4 1) — (Y, Xy, ..., X4_1). This linear mapping £ —
AY(E) is injective, and as AY"}(E) has the same dimension d as F, it is an

isomorphism. Thus every given d — 1-form 3, can be written as a(Y, —,---, —).
If 5, # 0, then Y # 0. Obviously, the equation ix (3, = 6,(X,—,---,—) = 0 holds
if and only if a(Y, X, —, -+, —) = 0 which is equivalent to X = \Y for some real
A [l

In case a volume form is given, this is precisely the mechanism of duality
between vector fields and d — 1-forms described on p. 12. But if no particular
a,, is selected, every nonzero element of A%(E) is good enough. Since A%(E) has
dimension 1, two possible choices for «,, can only differ by a nonzero factor. That
is why (3, defines a 1-dimensional subspace (its kernel), but not a particular vector.

The nonzero elements of AY(E) (which has dimension 1) form two classes within
which the elements differ only by positive factors. The given orientation on space-
time (and thus on E = T),) selects one of these classes. This again selects one of
the two half-spaces of ker 3,, or, equivalently, an orientation of ker 3,.

So a 3-form 3 induces a smooth field 7 = ker 5 of tangent lines (1-dimensional
subspaces of the tangent spaces) on the open subset D = {p|3, # 0}, and even a
smooth field of directions 7% on D, where 7,7 is the positive half-line of 7,. The
relevance of this direction field for a deterministic random worldline is made clear
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by the following observation: if L is a deterministic random worldline and X, a
vector tangent to £, then iy, (3, = 0 by construction, that is, X, € ker 3,.

Corollary. Let L, L' be deterministic random worldlines. If their associated 3-
forms coincide, 3 = (3, which presupposes Sy = S(,, then L and L’ are identically
distributed.

Proof. Since ker f3, is the tangent to ¢,, on the open set M := SyN{p|F, # 0} the
tangent field to the foliation formed by the £, must agree with that of £, so the
two foliations must agree on M. Thus L and L’ share the same possible worldlines;
furthermore, rectifying coordinates (U, ) also rectify the £, and in terms of x we
have pdz! Adz? Ada® = 3 = p/ da! Ada? Ada3, so p = p'. The probability for L
to lie in Sy \ M is zero. O

Corollary. Let L, L' be deterministic random worldlines, and (3, 3’ their associ-
ated 3-forms. Let U C SyN S|, be open, and ¢, C U for every p € U. If p|U = §'|U
then £, is part of €, for all p € U up to null events, and the mapping £, — (,,
preserves the measure.

Proof. Set M := U N {p|B, # 0}. Note L € U\ M is a null event. On M, the
kernels of 3, and /3, coincide and thus the tangents to the foliations, implying £, is
a part of £, for every p € M. In rectifying coordinates the density functions of L
and L’ coincide, implying the probability for L to lie in a certain set of worldlines
equals the probability for L’ to lie in the corresponding set of worldlines under the
mapping £, — (.. O

These two corollaries answer a uniqueness question, the existence counterpart
of which is the topic of this chapter. But before we study the construction of a
random worldline from (3, we draw another useful conclusion:

Proposition. Given a deterministic random worldline (with associated 3-form
B) and a coordinate chart (U,xz), then the probability density for crossing the
2% = const. hypersurface at p is |B123(p)| = |8(01,0,03)(p)|. More precisely, if
B123(p) # 0 then there is a 3-neighborhood H of p (on the x° = const. hypersurface)
that each worldline intersects at most once, and as a transverse crossing, and with

constant sign on H; and for Borel subsets A C H, the probability of hitting A is
fA |Broa ()| .

Proof. If (123(p) # 0 then 3, # 0, and the kernel of §, is not tangent to {z° =
const.}. Choose a 3-neighborhood H' C {x° = const.} C U of p with f93 # 0
on H’. There is a neighborhood U’ of p such that every worldline runs only once
through U’ (axiom (iv) of a deterministic random worldline). Define H = H'NU'.
Then a worldline cannot travers H twice since the sign of 3 is constant. From
the fact that every worldline can intersect H at most once and with a fixed sign
o = =*1, it follows that the expected number of signed crossings equals o times
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the probability of crossing, for every polyhedral subset of H; thus, the probability
density is |23 O

In case a volume form « is selected, and in case the coordinates satisfy dz® A
... ANdz? = a, we observe |B123(p)| = |7°(p)| for the current j.

We now take ( to be any given closed 3-form. The maximal integral curves of
7 are what we will and have to use as the worldlines of the deterministic random
worldline, and the orientations of these worldlines are fixed by the condition that
Yp € T;r for positive parametrization ~.

Note that the worldlines the (yet to be constructed) deterministic random
worldline consists of are tangent to the kernel of 5. Relative to a given (positively
oriented) volume form, (3 corresponds to a current vector field j, and we observe
Jp € 7,7 (this is immediate from the definition 8 = a(j, .. .) of j). As a consequence,
all the worldlines are tangent to the current.

We will often choose a 77-compatible vector field, i.e. a smooth vector field X
such that X, = 0 & [, = 0 and X, € 7,7 wherever 3, # 0. In case a volume
form is selected, the current does the job; but for our purposes it is enough to
take some TT-compatible vector field, as produced by some positively oriented
nowhere-vanishing 4-form (which exists due to orientability of space-time). We
also sometimes say a vector field X on space-time is T-compatible if X, = 0 <
B, = 0 and X, € 7, wherever (3, # 0. The integral curves of 7, of course, are the
integral curves of X, except that the integral curves of 7 do not have a defined
parametrization. Different choices of X differ on D = {p|3, # 0} by a (smooth)
nowhere-vanishing scalar function, X'|D = fX|D, f # 0 (it may happen that f
does not possess a smooth continuation outside D).

3.1.2 Facts About Integral Curves

We note the main facts about integral curves:

Existence and uniqueness theorem. [10, p. 37] Let X be a C* vector field
on a (differentiable) manifold M. For each p € M there exist a(p) and b(p) in
R U {00, —o0}, and a smooth curve

W+ (alp), b(p)) — M
such that
(1) 0 € (a(p), b(p)) and 7,(0) = p.
(i) 7y is an integral curve of X, i.e., 4,(t) = X, ) for all t.

(iii) If v : (¢,d) — M is a smooth curve satisfying conditions (i) and (ii), then
(e;d) < (a(p), bp)) and v = 7[(c,d).
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(iv) For each p € M, there exists an open neighborhood U of p and an £ > 0
such that the flow map

¢
(p,t) — (1)
is defined and is C* from U x (—¢,¢) into M.

(v) For eacht € R, D, := {p € M|t € (a(p),b(p))} is open.
(vi) &' : p— &(t,p) is a diffeomorphism D; — D_; with inverse ¢~*.

(vii) Lett andt' be real numbers. Then the domain of ¢t o¢? is contained in Dy
and is equal to Dy, in case t and t' have the same sign. On the domain of
the left hand side, ¢' o ¢! = p'**'.

Rectification theorem. [10, p. 41] Let X be a smooth vector field on the
manifold M, and p € M such that X, # 0. Then there exists a coordinate
system (U,z) with coordinate functions x1, ...,z on a neighborhood of p such
that X|U = 52-|U.

Proposition. The set D = {(p,t) € M x R|t € (a(p),b(p))} is open, and the flow
map ¢ : D — M is C*.

Proof. We show that every pair (p,t) € D has an open neighborhood V (p,t) C
M x R such that ¢ exists and is smooth on V(p,t). It is sufficient to fix p and
show that the set of such ¢ that a V(p,t) exists is nonempty, open and closed
in (a(p),b(p)), and thus equal to the whole interval. Nonemptyness follows from
statement (iv) of the existence theorem, while openness is trivial.

For closedness, consider a sequence t,, — T' converging within (a(p), b(p)), that
is, a(p) < T < b(p); without loss of generality, we may assume 7" > 0. We
distinguish two cases: (a) Xyr(,) = 0, and (b) Xyr(, # 0.

(a) By uniqueness of the integral curve, it must be constant, ¢'(p) = p V¢, so
X, = 0. According to statement (iv) of the existence theorem, there is a
neighborhood U of p and an € > 0 such that ¢ is C*° on U x (—¢,¢). Choose
a coordinate chart (U’,z) such that U" C U. By means of the coordinates,
we can assign distances to pairs of points, and norms to the velocities X, .

We want to have a neighborhood U of p such that the velocities in U are
bounded so close to 0 that the integral curves starting in U cannot leave U’
(or cease to exist) before time T+ 6 with § > 0. Then choose an integer
n > (T + 6)/e and observe that ¢ = (¢t/™)" = ¢'/" o --- 0 ¢!/™ is smooth
since t/n < ¢ for t < T + 6.

Since X is differentiable, there is a constant K > 0 such that

. X < K|z = z(p)]]
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(that is to say, velocity is less than K times distance from p) on a neigh-
borhood U” C U’ of p. U” contains the ball (in terms of z-coordinates) of

radius (say) r around p; as U, choose the ball around p of radius re=% (T+9),

A point in U cannot leave U” within time T+ §.

(b) Choose rectifying coordinates (U,z) around ¢ (p). Sufficiently far in the
sequence t,, the difference ¢ := ¢, — T'| is so small that {¢'(p)|T —20 <t <
T+25} CU and T — 26 > 0. By definition of T', ¢ exists and is smooth on
a neighborhood V' of (p,t,) (keep in mind ¢, = 7"+ ¢) while on U the flow
(for small times) is simply (the pull-back through x of) the translation on R*
in the z%direction. Thus if we choose a neighborhood U’ of ¢ (p) such that
U' C U and ¢T(U’) C U, then ¢¥° is smooth on U’. By continuity of ¢ on
V"’ there is a neighborhood V" of (p, t,) with (V") C U’. Now by statement
(vii) of the existence theorem, for (p',t) € V" we have ¢!T(p') = ¢ (p'),
so (p/,tF ) € D, and ¢ is smooth on {(p',t F9)|(p’,t) € V"} which is open
and contains (p,T), as desired.

O

Since two 7t-compatible vector fields X, X' differ on D = {p|3, # 0} by a
positive function, the integral curves ~,~ through a point p differ only by an
orientation-preserving reparametrization. Besides, an integral curve cannot inter-
sect itself (due to the uniqueness of part of the existence theorem above). Thus,
we have: The X-integral curve through p defines a worldline if and only if it is not
closed; in this case, the worldline does only depend on 7" but not on the choice of
X.

Every such worldline lies within the open set D. In the following, we will
speak of 77-integral worldlines; sometimes also of 7-integral (or 7" -integral) curves,
meaning equivalence classes of curves integral to some T-compatible (or 77-compatible)
vector field.

3.1.3 The Wandering Set

An integral curve of 71 might feature two undesirable properties. First, it might
be closed (and fail to define a worldline in the sense used here). Then, it might
recur to a each neighborhood of a point it previously traversed infinitely many
times; why this is bad for our purposes we discuss with a simple case:

Example. Consider the geodesics on the torus* R?/Z? of a fixed irrational slope;
such curves are sometimes called solenoids; they are everywhere dense. They arise
indeed from a closed d — 1-form in just the manner described earlier, namely
B = da' + Adz? where ) is an irrational constant. Now the number of signed

40f course, similar cases can be found in dimension 4, but the relevant phenomenon is already
present in dimension d = 2.
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crossings through a piece of hypersurface, however small, is infinite, so it is not
possible to understand integrals of the d —1-form as the expected number of signed
crossings. The form does not locally define probabilities either.

We thus restrict our attention to the well-behaved integral curves of 77+:

Definition. Let ¢! denote the flow map of X. We say a point p wanders w.r.t.
X if there is an open neighborhood U of p and a number 7" > 0 such that for all
t>T, ¢"{q € U|p'(q) exists} NU = (). The set of all wandering points w.r.t. any
T-compatible vector field X we call the wandering set of 7.

Proposition. The wandering set is open, and with every p it contains the entire

T-integral curve through p.

Proof. Openness is immediate from the definition, since U is a subset of the
wandering set. Now we show that if p wanders w.r.t. X then so does p’ = ¢* (p) (if
t' > 0); consider T" = T and U’ = ¢*' {q € U|¢" (q) exists}, which is open (because
U and D, are open, and ¢ is a diffeomorphism); for ¢t > T,

¢'{qd € U'|¢'(¢) exists} NU" = {¢'(¢')|¢' € U" and ¢'(¢') exists} N U’ =
= {¢"""(q)lq € U and ¢'*"(q) exists} N U’ =
= ¢"'{¢'(q)lg € U and ¢"*" (q) exists} N ¢ {r € U|¢" (r) exists} =
- ¢t’{7~ € ¢t{q € U|¢t(q) exists} N U| ¢t () exists} =0

since ¢'{q € U|¢'(q) exists} NU is empty. In the case ¢’ < 0, p' is still contained in
the wandering set, since (according to what we have just shown) it is wandering
w.ort. —X. O

Moreover, the wandering set does not contain any closed integral curves, since
if there is a ¢ > 0 such that ¢'(p) = p, the disjointness condition cannot be fulfilled.

We also note that the integral curves form a foliation of {5 # 0}, and of the
wandering set; this follows from the rectification theorem. Let = denote the set of
7t-integral worldlines in the wandering set; in the following we assume it is not
empty.

3.2 Construction of the Measure

3.2.1 A Simple Case First

Assume there is a hypersurface H such that every wordline € = intersects H
precisely once, and in a positive crossing. Without loss of generality, we may
assume that H lies within the wandering set. Then there is a one-to-one relation
between H and =, so H may be taken to parametrize =. The restriction of 3 to
H defines a measure on the Borel subsets of H in an obvious manner: roughly
speaking, the measure of a set A C H equals [ 4 B; for a rigorous treatment, see
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the general discussion below. This provides a measure on the subsets of =. This
measure is normalized (and thus a probability measure) if and only if

/Hﬁzl- (6)

Let us assume this is the case. Then we have arrived at a deterministic random
worldline. The question remains whether two different hypersurfaces, both sat-
isfying the requirements we asked, give rise to the same random worldline. The
answer is yes, and this follows from considerations we have to go through anyway
when we are not given such a nice hypersurface H.

If (6) is not the case, then  cannot be the expected number of signed crossings
of any deterministic random worldline (and perhaps, not of any random worldline
at all). However, it may still be the expected number of signed crossings of a
random finite set of worldlines. This amounts to a broadening of the notion of
worldline, namely dropping the axiom that a worldline be connected. As a simple
example, suppose 3 has norm 2; then %5 satisfies (6) and defines a deterministic
random worldline; now take two identically distributed copies of this random vari-
able; the expectation of the sum of the two numbers of signed crossings (which
may be understood as the number of signed crossing for one “non-connected world-
line”) then agrees with the integral of the given (. In case the norm | B of Bis
noninteger but finite, we may first pick a random integer number K > 0 of world-
lines distributed in a way that EK equals the norm of 3, and then consider K
independent identically distributed copies of the deterministic random worldline
associated with the normalization of 3, ([, 3)~'3.

A similar procedure can be applied if the norm of 3 is infinite: then use a
covering of H such that on each covering set, the integral of [ is finite, and a
partition of unity subordinate to this covering, get a countable (locally finite)
family of (automatically closed) 3-forms on H adding up to 3, turn these into a
countable family of independent deterministic random worldlines such that § gives
the expected sum of the numbers of signed crossings.

In general, however, a hypersurface H as just considered does not exist. There
exist only pieces of hypersurface cross-secting batches of worldlines, parametrizing
patches of =. On each patch, the measure will be defined in essentially the same
way as above, and then the complete measure must be pieced together.

3.2.2 Outline

We now turn to the construction of the measure M on the space of worldlines. The
definition goes roughly like this:

Given a coordinate chart (U,x) rectifying 7 (so U C {8 # 0}) such that
z(U) = (=1,1) x B} where B} C R3 is the open 3-ball of radius 1, and with
the property that every integral curve of 7 intersects H := z~'({0} x B?}) at
most once. Note that H is a (piece of) hypersurface. The 3-form 3 induces a
measure on H and thus on the set of 7-integral worldlines intersecting H, and
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this measure coincides by definition with the restriction of M to the subsets of
the set of 7T-integral worldlines intersecting H. One has to show, of course, that
these measures can be pieced together to give M, i.e., that the constructed local
measures are compatible on overlaps of patches—here the key ingredient is Stokes’s
theorem. It is understood that M of the complement of = is 0.

3.2.3 Local Construction of the Measure

Proposition. For every p in the wandering set, there is an open neighborhood U
and a coordinate system x : U — R* such that

1. U C wandering set

2. z(U) = (—1,1) x B} where B} C R? is the open 3-ball of radius 1

3. 71 is mapped to the positive x°-direction in R*

4. every integral curve of T intersects H := x~'({0} x B?}) at most once.
5.0< [, < oo0.

Such a coordinate system we will call a standard coordinate system.

Proof. Since p lies in the wandering set, there is a 7"-compatible vector field

X and an X-wandering open neighborhood U’ of p. Now by the rectification
theorem, there is an open neighborhood U of p (without loss of generality, U C U’)
and a coordinate chart 7 such that X|U = 9/02°. z will simply be a suitable
magnification of 7, restricted on a smaller neighborhood. As soon as we have an
open neighborhood U” of p such that every 7-integral curve intersects 7! ({0} x
B3N U” at most once, we take U to be a suitable subset of U N U”, and we are
finished.

Now assume such an U” did not exist, i.e., there are points u, (for all integers
n > ng) in the {z° = 0} plane of coordinate space at distance less than 1/n
from the origin such that the 7-integral curves through the points p, = 77 (u,)
they represent sooner or later meet the hyperplane H = 77 2% = 0} again at
points p/, whose coordinate representatives u,, = Z(p/,) are again at distance less
than 1/n from the origin; say, when read as X-integral curves, they meet H again
at parameter times t,, i.e., ¢'"(p,) = p/,. Without loss of generality, U may be
chosen such that its image in coordinate space is a cylinder (—r,r) X B?; then the
recurrence to H takes a minimum time 2r (since in coordinates, a point moves in
x'-direction at speed 1 just after leaving and just before recurring to {z° = 0}).
By the wandering property, all ¢,, must be less than T" < oo, since after time 7', all
@' (pn), if existent, must be outside U’. So we have an infinite sequence ¢, between
2r and T, thus t,, must have an accumulation point fthithNQT <t < T. Since
pn — p and pl, — p as n — oo, and since ¢ is continuous, ¢'(p) must be defined
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and equal to p, thus the integral curve through p is closed, in contradiction to the
wandering of p.

Finiteness of the integral of # over H can be achieved by making the neighbor-
hood smaller; the integral is nonnegative anyway (thanks to the correct orientation
of our coordinates), and nonzero because (3 is nonzero where X is nonzero. 0

Now comes the core of the construction of the measure M. We pick a stan-
dard coordinate chart (U, x); let =5 denote the set of 71-integral worldlines that
intersect H = 271({0} x B}); these worldlines intersect H precisely once, that
means we have a bijection between H and =p. In the following paragraph, we
construct a measure M[U, z] on the (WW-measurable) subsets of Zp; in the end this
will agree with the restriction of M, i.e., for every (WW-measurable) subset B of
=g, M(B) = M[U, z|(B).

x induces a parametrization of the set =5 with B} as the parametrizing domain,
in the following way: Let 7 : Bf — (set of worldlines) map u € B? to the unique
7T -integral worldline intersecting H in the point z7'(0,u). x.3 is a 3-form on
(—1,1) x B}, and by restriction a 3-form on B}, which is a function f times the
canonical 3-form dz; A dze A dzs. The density function f is real-valued, smooth,
and positive (by construction of standard coordinates). f times the Lebesgue
measure is a measure on the Borel g-algebra of B}, and this measure agrees with
the 3-form z,( in the following sense: whenever A is a polyhedral or open subset
of B? and ¢ is a smooth function on B,

/A o) f(wA) = [ gu)e.s.

A
where the left hand side is a Lebesgue integral and the right hand side is an integral
of a 3-form. Now 7 carries this measure over to the set =g, i.e., for a subset B of
=pu, define
MUB) = [ fu).
i~1(B)

Note that M[u, x] is a finite measure thanks to property 5 of standard coordinate
charts.

3.2.4 Measurability

One point we have to show is that Z carries Borel sets A C B} to WW-measurable
sets of worldlines.

Proposition. Given an open subset U of space-time and a nowhere-vanishing
vector field X on U having no closed integral curves. Then the set =/ of X -integral
worldlines lies in W.

Proof. First note that the integral curves of X indeed define worldlines (by
forgetting the parametrization except for the orientation), since they cannot self-
intersect and are not closed by hypothesis.
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We define a topology on the set of worldlines lying in U, generated by the sets
of the form {all worldlines lying within U’} where U’ is an open subset of U. This
topology—seen as a family of subsets of space-time—clearly forms a subset of W.
Now define Z” to be the set containing precisely all the elements of = and their
inverse (i.e., with orientation changed). First we show that Z” is a closed set w.r.t.
this topology. This implies =" € W. Then we show there is a 1-form w on U such
that for every X-integral curve v, w(¥) > 0 everywhere. This property singles out
= from =" again, and it is a VW-measurable property; thus =’ € W.

To see that =" is closed, we establish its complement is open. If it were not,
there would be a worldline ¢ that is not X-integral (nor its inverse) such that
every neighborhood of ¢ in U contains a complete worldline of =Z”. But this is only
possible if ¢ contains an X-integral worldline ¢’ as a proper subset, which again
is only possible if ¢ has an endpoint p inside U, which again is only possible if
X, = 0, which is excluded by assumption.

To construct a 1-form as indicated above, choose a nondegenerate Riemann
metric on U (for the existence of which see the lemma below), and use this metric to

turn X into a 1-form w,, = g, X"”. Since X # 0 everywhere and ¢ is nondegenerate,
w(X) > 0, as desired. O

Lemma. Every manifold M admits a (nondegenerate, smooth) Riemannian met-
IiC Gu -

Proof. Choose a countable family of coordinate charts covering M (such a family
exists by definition of a manifold) and a partition of unity® on M subordinate
to this family of charts. Use the charts to pull back the Euclidean metric from
coordinate space R? to the domain of the chart, and combine them by means of
the partition of unity:. O

As a consequence, the set = of 71-integral worldlines in the wandering set is
VW-measurable.

Since 7!(A) C H is a Borel subset of space-time, the set of worldlines inter-
secting 271 (A) is W-measurable, thus also the intersection with = is, which is the
set of 7T-integral worldlines intersecting z7!(A). This is precisely the image of A
under z, which we wanted to show to be YW-measurable.

3.2.5 Compatibility on the Overlap of Patches

We have defined measures M[U, z] on “patches” Zp (the set of 77-integral world-
lines intersecting H) covering = (the set of all 77-integral worldlines in the wan-

SA partition of unity is a collection {f;} of smooth functions such that for every p, f;(p) > 0,
> ; filp) = 1, and there are only finitely many is with fi(p) # 0. It is called subordinate to
the cover {U,} if for each 7 there is an « such that the support of f; is contained in U,. The
existence of a countable partition of unity subordinate to a given open cover is a known fact [10,
p. 10].
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dering set). Before we put these measures together to form a measure M on = in
the next section, we have to check that on the overlap of patches, the “local” mea-
sures agree. This means, given two standard coordinate charts (U, z), (U’, z’), we
consider a (W-measurable) subset B of =y N =g and establish that M[U, z|(B) =
M[U’, 2'](B).

Proposition. Given two standard coordinate charts (U, x) and (U',z'), let C C H
(resp. C" C H') be the set of points p such that the worldline through p also
intersects H' (resp. H). Then C is open in H, i.e., x(C) is open in R3.

Proof. Choose a 7t-compatible vector field X. Say p € C and ¢'(p) =p' € H',
then due to continuity of ¢ an entire neighborhood of p in H will be mapped by
¢! to U’, and thanks to the rectifying coordinates, a suitable correction of ¢ will
move the image to H'. This shows that C' is open. U

Proposition. With respect to a T"-compatible vector field X, the unique time

parameter t(q) when the integral curve starting in ¢ € C' will hit H' is a smooth
function of q, t : C' — R.

Proof. It is clear that t(q) exists and is unique for every ¢ € C. Since 1@ (q) e U,
@’ (¢?(q)) is defined, and we observe its 0-component is identically zero. That is,
t solves the equation

1D =2"(¢') =0,
and by the implicit function theorem [10, p. 31], it is smooth. O

Proposition. Some points p € C will have the property that the worldline
through p meets C" at a later time (call this subset C ), others at earlier times
(call this subset C_ ). The definition of Cy and C_ does not depend on X but only
ontt. Cy and C_ are open in H, and C'\ (CL UC_)=HNH'.

Proof. Since the worldline through p itself (oriented as it is) determines whether
or not p belongs to C';, X was not involved in the definition; nevertheless, C'; can
be characterized as the set where £ > 0 (which implies C;. is open), and the function
t is indeed defined only w.r.t. some vector field X. Obviously, C'\ (C, UC_) =
HNH. O

On H N H’ the constructed measures coincide trivially.

Proposition. There is ¢ > 0 and a diffeomorphism ® : C, x (—¢,1 +¢) —
(space-time) such that

(i) ®(p,0) =p forp € C4
(i) O(Cy,1) C H'

28



(iii) for fixed p € C'y, ®(p, t) is a correctly oriented parametrization of a T-integral
curve.

Proof. Let X again be a 7"-compatible vector field, and choose € > 0. Let t1(p)
be the unique (negative) time parameter when the worldline through p crosses the
2% = —1/2 hypersurface; let t5(p) be the unique time parameter (> £(p)) when the
worldline through p crosses the % = 1/2 hypersurface; just as with t, the functions
t, and t, are smooth. Let f: (0,) x (0,00) x (0,00) — (0,00) a smooth function
such that (1) f(¢,u,v) is increasing in ¢, (2) at t \, 0, f(¢,u,v) approaches 0, (3)
att /e, f(t,u,v) approaches u, (4) at t \, 0, all derivatives approach zero except
Of /ot — v. Set

¢tf(p) (p) it0<t<1 )
Dp.1) = GOHIRO TN i1 <1,
¢—f(—t,—?z(p)f(p))(p) ift <0.

Note that ® is smooth. Next, ® is injective, since if p,p’ € C and ¢*(p) = ¢ ()
then p = p’ (because every worldline crosses H at most once) and ¢'~*(p) = p
which implies t = ¢/. Finally, we show that the tangent map d® has full rank,
which then implies ® is a diffeomorphism:

Consider 0 < ¢t < 1. The first column of the 4 x 4 matrix d® is 09/t =
t(p) Xa(pr), and the remaining 3 columns, so to speak, are 9P /9p = t X @ dt +

(0¢°/0p)(s = tt(p)). According to statement (vi) of the existence theorem, ¢* (for
fixed s) is a diffeomorphism. Xg,4 is linearly independent of the the columns of

(0¢°/0p)(s = tt(p)), so the full rank of dP follows from the following simple fact

of linear algebra: if vectors ey, ..., es are linearly independent and if o # 0, then
ap€p, e1 + ajeq, es + asep, es + aseq are linearly independent.
For t <0 or t > 1, a similar reasoning applies. O

Remark. On the basis of this diffeomorphism, one can find a diffeomorphism
C — (C'. As a consequence, a differentiable structure is defined on the set = of
7t-integral worldlines in the wandering set, which would turn = into a manifold if
the Hausdorff axiom did not fail. As an example that the Hausdorff property can
fail, consider space-time to be R*\ {0} and 7F the positive 2°-direction; then the
wandering set is all of space-time, and the positive and the negative part of the

x-axis form two distinct worldlines having no disjoint neighborhoods.

C, can be treated as a subset of B}. For every polyhedron P C C,, we now
show that the measure of P’ = ®(P, 1) as defined on the basis of (U’, z’) equals the
measure of P as defined on the basis of (U, x). This is based on Stokes’s theorem:

Stokes’s integral theorem. [10, p. 144] Let ¢ be a k-chain® in a (d-dimensional)

6«Chain” means a formal linear combination, with real coefficients, of finitely many oriented
singular simplices, i.e., images of standard simplices through a smooth mapping defined on some
neighborhood of the standard simplex.
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differentiable manifold M, and let 3 be a smooth k — 1-form defined on a neigh-
borhood of the image of c. Then
fo=
Jdc c

The cylinder P x [0, 1] is, of course, a chain, and we take ®(P x [0, 1]) as the ¢
in Stokes’s formula. In our case, ( is closed, so the right hand side vanishes. The
boundary of ¢ consists of three parts: the bottom —P, the lid P/, and the mantle
O (0P x [0,1]). Since the mantle is everywhere tangent to 7, the integral of 5 over
the mantle vanishes. Thus we have

/P,ﬁ—/PﬁZO,

which establishes that the measures induced by (U, z) and (U’,2’) give the same
value on the set of worldlines intersecting P.

Now the polyhedra in C' generate the Borel o-algebra of C'; (indeed, already
the axiparallel cuboids do), and if the two measures agree on a N-stable generator,
then they agree on the entire Borel o-algebra of C, as the following theorem
guarantees:

Measure uniqueness theorem. [2, p. 33-4] Suppose that P, and P, are
probability measures on o(G), the o-algebra generated by G, where G is closed
under the formation of finite intersections. If P, and P, agree on G, then they
agree on o(Q).

3.2.6 Composing the Local Measures

Now define M(B) for a (W-measurable) subset B of = like this: partition B into
countably many disjoint parts B = |J;-, By such that each By lies within some
Ep, associated with a standard coordinate chart (U, xy), and set

M(B) =Y MUy, z4](By) .

oo

First we have to show that such a partition exists. This follows from

Lemma. There are countably many standard coordinate neighborhoods that
cover the wandering set.

Proof. By the definition of a manifold, there is a countable dense set in space-time
and hence in the wandering set, say {px|k € N}. We will use standard coordinate
neighborhoods of these p;. To ensure that the entire wandering set is covered, one
has to take care to choose sufficiently large standard neighborhoods.
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To be able to control this, choose a Riemann metric on space-time (see p. 27);
it serves to define what the ball of radius r around a point is. Every standard
neighborhood of p; contains some ball around py; the set of all radii » such that
there exists a standard neighborhood of pj, containing the 7-ball around py, has the
property that with any it contains every positive " < r. Let Ry be the sup of
this set, and define Ry = Ry/2 in case Ry is finite, and Ry = 1 in case Ry = o0
Then there exists a standard neighborhood of p; containing the Rj-ball. This we
use for our countable covering.

Now let p be any point in the wandering set, and (U, z) a standard coordinate
neighborhood. U contains some r-ball around p; put € = min(r/4, 1); pick k such
that py lies in the e-ball around p; as a consequence, the 3e-ball around py, lies in the
4e-ball around p and thus in U. Therefore there exists a standard neighborhood
of pp containing a 3e-ball around p;, and thus Ry, is at least ¢, implying the chosen
standard neighborhood around p; contains p. 0

Next we have to show that the value of M(B) does not depend on the choice
of partition B =, Bx = U,, B,,. We observe

ZMUhxk Bk —iiMUk,l’k BkﬂB/)

= k=1 m=1

ZZM m? m BkﬂB/ ZM m) m )

k=1 m=1
because M[U, z] is a measure and therefore o-additive, and because on Zy N ZEp,
the measures M[U, z] and M[U’, '] agree.
Finally, we have to check that M is a measure. It will be helpful to fix a
partition of the entire wandering set = = Uk B, such that B, C =y for some
standard coordinate chart. For a countable family A,, of disjoint sets,

M(UAn> :M<U(AnﬂBk > ZM U, 7] (U(Antk)> -

v

= SN MUk al(A. N By) = > M(A,),
k=1 n=1 n=1

and certainly, M(0)) = 0.

To sum up, starting from a closed 3-form 3 we have constructed a measure M
on the set = of 7T-integral worldlines in the wandering set of 7. It may as well be
understood as a measure on the set of worldlines by setting M(B) = M(B N ).
In general, M is not a probability (i.e. normalized) measure, but by construction
it is o-finite, since every M[U, z] is a finite measure.

We will focus on the case that M is indeed a probability measure; any other
case can be dealt with in the way indicated in section 3.2.1.
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Then M defines a deterministic random worldline I'(3): take the wandering set
as Sp, and the integral worldlines of 7% as ¢,; the standard coordinate neighbor-
hoods have the property that the intersections with the worldlines ¢, are connected.

Proposition. For every hypersurface H in the wandering set of T, | gl =
EN(T(3), H), whenever either side is finite.

Proof. This follows from the proposition of p. 15, and the fact that the 3-form
associated with T'(3) is (. O

3.3 The Global Existence Question

We recall that a mapping is called proper if the pre-image of every compact set
is compact (see p. 15), and that for a smooth curve v : R — U C (space-time)
this means it sooner or later leaves ultimately every compact subset of U, in both
time directions. Note that this depends on U: a curve may well be proper in U
which is not proper in space-time; this is because there may be a compact subset
of space-time (but not contained in U) whose pre-image fails to be compact.

Proposition. FEvery 7" -integral worldline in the wandering set is proper as a
mapping into the wandering set.

Proof. Any compact subset K of the wandering set can be covered by finitely
many standard coordinate charts as defined on p. 25, which in the course of this
proof we call radar screens. Consider a parametrization 7 of a 7 -integral world-
line, possibly inversely oriented. Let us see whether v ultimately leaves K. If
it doesn’t intersect K at positive times, there is nothing to prove. If it does, it
appears on some radar screen. Let I be the set of radar screens the curve will
appear on at positive times; since there are but finitely many radar screens, I is
finite, too. By construction of standard coordinates, the curve cannot travers the
same radar screen twice. So it may either leave once and for all the screens listed
in I, in which case it also left K, or it stays an infinite amount of time on some last
radar screen, or several ones. Since v must go on as long as a continuation along
the 7-direction (which on the screen is mapped to the z%-direction) is possible,
it can only slow down close to the boundary of each radar screen on which it is
still visible, and approach, as t — oo, a point on the boundary. But this point is
outside K, so for sufficiently large ¢, the curve has left K. O

The case we would regard as regular behavior of worldlines is that they come
from t = —oo and go to t = +00. Our general perspective treating space-time as a
bare manifold lacks any notion of timelikeness and time-orientation on space-time,
so in this context the only question is whether the worldlines start and end “on
the boundary” of space-time. This is not always the case. A worldline in the
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Figure 3: The graph of the exp(1/t) function, which is used in the example 3-form.
When approaching 0 from the left, the function and all its derivatives tend to zero.

wandering set may well approach the nonwandering set. In particular, a worldline
may run into a zero of [.

Example. Here is an example showing that indeed infinitely many worldlines may
run into the same zero of 3: we take space-time to be R*, and we express 3 by its
dual vector field j where duality is mediated by the 4-form ¢ = dz® A... Adz? (see
p. 12). Instead of 2°, ..., 2 we write ¢, x, v, 2, and set j® = pv" with

3r Yy oz
U= (17 BTEETME ___>
Lt tft]” el

o (8- £ 2)
202 202 202
(2m)3204(t)ay (t)o:(t)

where 0, (t) = e/l o, (t) = ¥/l and o,(t) = e'/ll. The so defined j is smooth
and divergence-free, so /3 is smooth and closed. For a plot of the e/ function, see
fig. 3.

The integral curves are easy to compute: for ¢t > 0, they solve the decoupled
linear ODE & = —3x/t%, § = y/t?, 2 = z/t?, which implies z(t) = &%/, y(t) =
ne Yt z(t) = Ce”Y!. For t < 0, they solve & = 3x/t?, §j = —y/t?, ¢ = —z/t?,
which implies z(t) = e/t y(t) = ne'/t, z(t) = (e'/t (for a plot, see fig. 4). The
family of integral curves is symmetric against reflection at the {¢ = 0} hyperplane.
All the integral curves with £ = 0 run into the zero at the origin; together they fill
the 3-dimensional {x = 0} hyperplane. These are the only integral curves running
into a zero.

and p =

Nevertheless, such irregular behavior seems not to be the rule but the exception.

Conjecture. Given a closed d — 1-form [3 on an oriented d-dimensional manifold,
let 77 be the field of oriented kernels of 5 on D = {p|B, # 0}, and let = denote
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Figure 4: The integral curves of the example 3-form in the xt plane.

the set of correctly oriented integral curves (modulo parametrization) of 7% in the
wandering set.

Then the curves in = are proper as mappings into space-time, except for a set
of measure zero (w.r.t. the measure defined in the previous section).

Some consequences of this conjecture: Almost-surely, a worldline in = does
not run into a zero of 3, nor intersect every neighborhood of a zero; there cannot
be any endpoints lim; ., y(t) or accumulation points (limits for certain sequences
t, — o00). In particular, the worldline does not approach (in the sense of inter-
secting every neighborhood) any compact part of the nonwandering set. All this is
understood, of course, as almost-sure statements. Another consequence: If space-
time is compact, the wandering set is empty (since no worldline in a compact
space-time can be proper).

The conjecture generalizes a theorem of Miinch-Berndl [1, p. 38] stating that
almost-surely, the worldlines of nonrelativistic Bohmian mechanics do not run into
a zero of the 3-form (see also section 4.1).

As an overview, we may classify the different “quality classes” of 7-integral
curves as follows: the really bad ones are the ones in the nonwandering set, in-
cluding the single-point curves (zeroes of [3), closed integral curves, and integral
curves recurring infinitely many times to every neighborhood of some point they
have traversed before. The really good ones, on the other end, are the proper
curves (proper as mappings into space-time) in the wandering set, which behave
as worldlines reasonably should. Inbetween, there are nonproper worldlines in the
wandering set; but these, the conjecture says, are negligibly few.
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4 Examples and Applications

4.1 Nonrelativistic Bohmian Mechanics

Bohmian mechanics, a nonrelativistic (more precisely, Galilei-invariant) theory of
point particle motion, serves as an illustration of our result. Bohmian mechanics
of a single particle states that the motion through Euclidean 3-space satisfies the

first-order equation
b VE(Q.1)

R (X) g
where 1) solves the Schrodinger equation, and the initial position at time ¢t = ¢
is chosen at random with distribution |t (¢0)|*> times Lebesgue measure. It has
been shown [1] that (7) possesses global solutions for |1 (#o)|*-almost every initial
position, and that the distribution of Q(t) has density |¢(¢)]?.

These global solutions can be understood as a deterministic random worldline
L in a Galilei space-time” in the following way: let L arise in the usual way from
a closed 3-form 3 which again arises in the usual way (3) from a divergence-free
current vector field j#, which again is defined as

h
=P = —S(row) fora=1,2,3.

It is the wave function that defines the 3-form.

To see that L is the usual Bohmian trajectory, check the following: since j° > 0
whenever j* # 0, the time coordinate 2° is a Lyapunov (i.e., ever-increasing) func-
tion, which implies that {¢p # 0} = {j* # 0} = {8 # 0} is the wandering set
(proof: around p with 1(p) # 0, choose rectifying coordinates on a neighborhood
so small that j° is bounded away from 0, and then choose a sufficiently small time
interval). Since the worldlines are tangent to j*, the velocity of the particle is
Q* = j*/4° for a = 1,2,3, thus (7) is satisfied. Due to the Lyapunov character
of 2%, every {2° = const.} hyperplane can intersect any 7F-integral curve at most
once, and this hyperplane (when cut into sufficiently small parts) may serve as the
hypersurface in a standard coordinate system defining the probabilities. These
probabilities correspond to the density (193 = j° = ||>. The trajectories which
do not intersect this hyperplane form a null set, as shown in [1], hence the mea-
sure constructed in earlier sections is normalized and thus defines a deterministic
random worldline which coincides with the Bohmian trajectory.

The properness conjecture of p. 33 implies for Bohmian mechanics that if the
wave function is C* then for |i|*-almost-every initial position, the Bohmian tra-
jectory either exists globally in time, or flees to spatial infinity in finite time. This
statement is known to be true [1, p. 38] under an assumption on the wave function
that may be called finiteness of the kinetic energy in the time average. Miinch-
Berndl indeed showed more than this, namely that the trajectory almost-surely

"Indeed, (7) is Galilei-invariant, provided one assumes the usual transformation behavior of
wave functions under Galilei boosts.
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does not flee to spatial infinity. Our approach in terms of manifolds, of course, is
blind towards the distinction between spatial and temporal infinity.

4.2 Equivariance

Equivariance of Bohmian mechanics is the statement that if Q(0) is chosen [¢(0)|?-

distributed, then Q(t) as determined by the equation of motion is |¢(¢)|?-distributed,
that is, the probability density remains the same functional of the wave function.

This generalizes in the following sense: if a 3-form is given as some function f of

a (possibly spinor-valued) wave function,

By = f(¥(p), dib(p)),

and if # defines a deterministic random worldline (i.e., if 3 is closed and the
measure M arising from [ is normalized), then everywhere in the wandering set
the probability of crossing a “suitable” piece of hypersurface H is | || 1 B, so the
functional dependence of v is the same everywhere. “Suitable” means transverse
to the foliation of the wandering set into worldlines, and sufficiently small such
that each worldline intersects H at most once.

Hence, whenever a (normalized) closed 3-form is defined from a wave function—
as it is in Bohmian mechanics and in the cases below—then the dynamics is equiv-
ariant in the wandering set.

This implies that on a hypersurface of constant 2° coordinate, the density of
the crossing probability is |B123|, but keep in mind it does not mean that the
probability of crossing this hypersurface is 1.

4.3 A Bohm-Type Mechanics for the
Klein—Gordon Equation

We now present how a Bohm-type mechanics can be constructed for a point particle
guided by a Klein—-Gordon wave function.

In a system of units in which 7 = ¢ = 1, the Klein-Gordon equation for a single
particle of mass m and charge e is:

" (10, — eA,)(i0, — eAy)h = m*y, (8)
where 1 is a complex scalar function on Minkowski space, A, is the external elec-
tromagnetic potential, and n** = diag(1l,—1,—1,—1) is the metric of Minkowski

space. For the vector field j#, usually called the Klein—Gordon current and defined
as

o= (e, - ed,)) ©

_ _%nﬂvg(w(ay + ieAy)1/1> ,
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with R denoting the real part and & the imaginary part, the Klein—-Gordon equa-
tion (8) implies
ot =0.

This is just what is needed for a deterministic random worldline, except for nor-
malization. The integral worldlines satisfy dQ?/dz® = j*/4° wherever j° # 0.

This random worldline is only defined on the wandering set, and I have noth-
ing general to say about what the wandering set looks like for the Klein-Gordon
particle. It may occur that the wandering set is empty (e.g., when 1) is real and
A, = 0), in which case there is no associated deterministic random worldline. It
also fails to exist in case the measure on = is nonzero but not normalized; but this
can be cured through changing ¢ by a factor (in case the measure is finite), or
in the way indicated in section 3.2.1. Note also that the wandering set in general
depends on the one-form A, on all of space-time, so whether or not a point p lies
in the wandering set might depend on A, in the future of p.

4.4 The Objections of Bohm and Hiley, and Holland

The analogy between Bohmian mechanics and the guidance law Q* = j¢ /3% with
the Klein—Gordon current (9) breaks down at the point that in Bohmian mechanics,
7% = |¢]? is the probability density whereas the Klein-Gordon j° is sometimes
negative and thus cannot be a probability density. Holland [7, p. 500] points out
that even restricting v to the positive energy subspace of Hilbert space does not
cure this problem. Secondly, j* is not always timelike, so according to the guidance
law, the particle sometimes moves faster than light, or even goes back in time.
This feature, Holland writes [7, p. 500], “is clearly unacceptable”. Regarding both
of these problems, Holland comments [7, p. 501]: “We conclude that the Klein—
Gordon equation does not have a consistent single-particle interpretation and the
naive transcription of the trajectory interpretation of nonrelativistic Schrodinger
quantum mechanics into this context does not work.” On the basis of the same
two problems, Bohm and Hiley [4, p. 233-4] arrive at the same judgment: that
a particle interpretation of the Klein—Gordon equation “cannot be carried out
consistently”. They suggest that in this context, one should replace the particle
ontology by field beables.

Such conclusions are too hasty, however, since our treatment makes clear that
these problems are not serious enough to keep the Klein-Gordon current from
defining a random worldline. Let us first clear up the mystery of the negative
4% in the wandering set (the outside is irrelevant anyway), the probability of
crossing an infinitesimal piece of the {z° = const.} hyperplane is [j°| times the
3-volume of the piece, since j° times 3-volume gives the expected number of signed
crossings through the piece—and thus, since the piece is infinitesimal, the sign of
crossing times the crossing probability. The sign of j° reflects the orientation of
the worldlines passing through the piece, as compared to the orientation of the a°
axis, and does neither refer to negative probabilities nor to the opposite charge,
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as suggested by some authors (e.g. [8, p. 7]) who call j* the charge current, as
opposed to the probability current.

Now concerning the second problem, the spacelike trajectories: there is no
problem at all, as long as a worldline is defined, and it is. Be this worldline
superluminal, or even go back and forth in time, it is nonetheless a worldline. I
wish to stress that as a consequence of our mathematical treatment there is no
room for causal paradoxes (in this 1-particle system).

On the contrary, worldlines oriented backwards in time have often been linked
to antiparticles [3, section 9.1], and certainly a ()-shaped worldline resembles the
annihilation of a particle with its antiparticle, just as a | J-shaped worldline re-
sembles pair creation. These phenomena seem to downright suggest the existence
of worldlines turning around in time. The 1-particle theory provides, of course, a
rather limited frame for such a discussion. Nevertheless it is worth noting that the
complex conjugate wave function ¢* solves (8) again, but with the opposite charge
—e, and induces the negative current j*[*] = —j*[¢], the negative 3-form and
thus the same worldlines but with the opposite orientation; this means, particle
and antiparticle change roles. That is to say, it is a symmetry of this Bohm-type
1-particle Klein—-Gordon theory to stay invariant under exchange of particles and
antiparticles.

4.5 The Bohm-—Dirac Model

The Dirac equation reads
’Y“(iau - GAMWJ =my

and implies J,j" = 0 where j* = y*) and 1) = 1T, The wave function is
C*-valued, and v* are the 4 x 4 Dirac matrices. Again, j* induces a deterministic
random worldline, known as the Bohm—Dirac model [4, p. 272].

Since j° > 0 whenever j* # 0, the time coordinate of any Lorentz frame serves
as a Lyapunov function, showing that {¢) # 0} is the wandering set. j*, if nonzero,
is always timelike or null, thus a worldline cannot flee to spatial infinity, and the
properness conjecture of p. 33 implies that the solutions to the ODE Q“ = j°/4°
exist globally in time for 1 fi-almost every initial value.

4.6 Many Particle Dynamics

Everything I said about random worldlines and differential forms applies, of course,
not only to dimension 4, but to manifolds of any dimension. In this section, we
replace space-time by some “configuration space-time” manifold C for N particles.
The results of chapters 2 and 3 prove rigorously the equivariance of the hypersur-
face Bohm—Dirac model first derived in a less rigorous fashion in [5, p. 2733-5].
We assume space-time to be a Lorentzian manifold, i.e., we allow for a curved
space-time, which makes our discussion slightly more general than that in [5] fo-
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cussing on Minkowski space. It is one of the advantages of the differential form
method developed here that it easily generalizes to a curved space-time.

It is reasonable furthermore to suppose of the space-time metric that there
exist no closed timelike-or-null curves, and this hypothesis will exert an pleasant
influence on how big the wandering set is.

In the rest of this section, we will construct a deterministic random worldline
in C via a closed 3N-form, based on a many-particle Dirac wave function. This
random worldline is equivalent to that discussed by [5]; what is novel about my
discussion is that it employs closed forms, features full mathematical rigor, and is
valid in curved space-times.

4.6.1 Definition of the Form

The configurations we are interested in are the simultaneous configurations w.r.t.
the time-foliation, i.e., N-tuples of space-time points that lie on the same leaf. The
foliation can be written (we assume) as the level sets of a function F' on space-
time, where dF' must be a nowhere-vanishing timelike 1-form to make the leaves
smooth and spacelike. Let n denote the (unique) future-pointing timelike 1-form
of unit length whose (3-dimensional) kernel is tangent to the leaves of the foliation;
that is, n, = (0" F9,F)~Y29,F. The set C of simultaneous configurations can be
written as

C= {(pl, ...,pN) € (space-time)™ |F(p)) = ... = F(pN)},

and, by the implicit function theorem [10, p. 31}, is an imbedded submanifold of
dimension 3N + 1.

Let T'M denote the tangent bundle of the manifold M. If £ and E’ are two
vector bundles over M, then £ ® E’ denotes the vector bundle with fibers (F ®
E'), = E,®E),. Accordingly, T*" (space-time)" is a bundle of (4V)"-dimensional
vector spaces over a 4N-dimensional manifold. Regarding T} (space-time)" as
@D, T, (space-time), we may form E, := @), T, (space-time), which is a 4"-dimensional
subspace of T,?Y (space-time)™, so E = | J, E,, is a subbundle of T*" (space-time)".
Consider a section J through this bundle F; at p € (space-time)" it takes values
in ), T),, (space-time). In index notation, it may be written J#*#~ where p; refers
to 1), (space-time).

Such a section is given by

JHLEN — gl @ . @ AN

where ¢ is a smooth section through the bundle ), D,, over (space-time)", D,
being the space of Dirac spinors at space-time point p;, and v, : D,, ® D,, — T},
being the gamma tensor at space-time point p;, satisfying 75 v, + 7.7, = 2g""1.
If v solves the multi-time Dirac equation,

1, Vi, b =ma,
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(where V is the covariant derivative including, when acting on spinors, the vector
potential) then the section J satisfies

Vi JH N =0, (10)

since by definition, the covariant derivative of v vanishes. We define a 3N-form (3
on (space-time)”™ by

_ (_1)N(N+1)/2 e

AgNi1--A4N
ﬁAl...Ag,N - J +

Al...A4N Y

where the A indices run through the 4N dimensions of (space-time)", the value
space @), T, of J is seen as a subspace of (T),(space-time)™)®V and ea, A, I8
the 4N-form on (space-time)" arising from the metric-induced 4-form ¢, ,, in
the sense eé*V) = ¢(p) A... Ae(pn).

4.6.2 The Associated Random Path

Proposition. §|C is closed.

Proof. Choose a coordinate system on space-time that has the F function as
its 2% coordinate; in fact, what we need is only a collection of N local coordi-
nate systems having F' as their 2° functions, being defined on some open neigh-
borhood of the space-time points p;...py, with p = (p1,...,pn) € C. Note
that the 4N functions 'Y ... 23 form a coordinate system on a neighborhood
of p in (space-time)”; the corresponding 4N canonical vector fields will be de-
noted Oy ...0n3. On C the 2 functions coincide, so call them z; it follows that
dz®|C = da®. The z° function together with the 3N functions x!'*...2"3 form
a coordinate system of C (in a neighborhood of p); the corresponding 3N + 1
canonical vector fields are 9y = ZZ]\LI 0;0|C and 011|C, ..., Ons|C.

In order to establish that the restriction of § to C is closed, we only have to
calculate d3(0y A 011 A ... A Ons) = 0. Since the covariant derivative of ¢ is zero,
we have

dﬂ = V[A’ 6A1---A3N} = <_1)N+N(N+1)/25[A1---A3N|A3N+1...A4NV\A’] JASNHWA‘LN )

N
and thus dﬁ(a(] A 811 VANPIRAN 8N3) = Z dﬁ(azo VAN 811 AN 8N3) =

i=1

N
- (_1>N+N(NH)/2 Z8[11...N3|A3N+1...A4Nv|z’0} JOsN+1- BN —
i=1
[because JA3N+1--84n is nonzero only if Asyi1 = (1, 1), ..., Aun = (N, un)]

(_1)N+N(N+1)/2

3N +1

N
10...NO
€11...N3,10...NO E Vio J +
i=1
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(— 1)N+N(N+1)/2+1 N 3N

c . \V4 JIO...}...NO _
+ 3N +1 ; fz:: 11..40...N3 10...f...NO f

[the last term is zero unless f = (i,a) with a € {1,2, 3}]

—1\N N
( ) szﬂ JlO...N0+

:3N+11,:1

(_1)N+N(N+1)/2+1 N 3 o N
+ 3N +1 Z Z811...28...N3,10...i2...N0vm J -

i=1 a=1
(=D~ ZVOJIO NO
=1

N+

—_

(oo X
+ N1 Z Z NN+ 21y, g10.daNO _

=1 a=1
N )
(—)N Z 10...ipt...NO
= Vi JO--N0
BN + 14

0

I wish to stress that while this proof may appear sophisticated, it is not. It is
essentially a straightforward calculation, not much more than bookkeeping about
which terms vanish and how many signs one collects when permuting the indices.

Now that we have checked that the key requirement on the form, closedness, is
satisfied, the machinery we have developed does the work and defines a foliation of
the wandering set and a measure on the curves. In case the measure is normalized,
we have arrived at a deterministic random “worldline” in C.

How big is the wandering set? Provided that space-time has no closed timelike-
or-null curves, the wandering set is {p € C|¢)(p) # 0} = {p € C|3, # 0}, since all
the 4-velocities are timelike-or-null, and the parameter F' of the time-foliation may
serve as a Lyapunov function. This is the largest set possible for a wandering set.

The properness conjecture of p. 33 implies the almost-certain global existence
of the solution curve in C tangent to ker §. It also implies that the norm of the
measure equals the L? norm of the wave function, which is usually set to 1.

4.6.3 Equivalent Formulations

We can be more explicit about the probability densities and the velocities. In terms
of the coordinates used in the proof above, the probability density of crossing the
hypersurface 2° = const. = F (p;) at configuration p is

B Ao A Dy) = (—1)VEED2 ez 080 J 0N
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The number €13 n3,10..50 can be computed as (—1)NWN+D/2 HZ]L v/ —9g(pi), g being
the determinant of the matrix representing the metric in the given coordinates. If,

moreover, Oy . . . 0;3 form an orthonormal basis of T}, for each ¢, then the probability
density simply equals J1%N0 =10 @ ... @Y ¢ = lp = 3 _[1h,|* where the
index o refers to the basis in D, ® ---® D, formed by tensor products of the
basis vectors in D, corresponding to ;... J;3.

To compute explicit coordinate expressions for the velocities, note that the
kernel of 3 (in C) is the ray through

i=1 a=1
This means the velocity of particle number i is

Jo...é...o

Q? - Jo-.0

These are precisely the probabilities and velocities of the hypersurface Bohm—Dirac
model, which in [5] are expressed in a slightly different way, as we explain in the
following.

In [5], the probabilities and velocities are expressed in terms of N smooth map-
pings j; : (space-time)™ — T'(space-time) such that p; is the base point 7(j;(p)) of
Ji(p), which are defined from J by

—

jzm = Jmm#Nnul (pl) o 'nm(pi) My (pN)

and which satisfy (a) V;,j = 0 and (b) ji'n,(p;) is independent of i. As the
authors argue, (a) and (b) are sufficient for defining an equivariant hypersurface
dynamics on Minkowski space. Indeed on C, j; can be recovered from 3 and vice
versa (note dz® = n(p;)):

(—1)NV+D)/2 B0 A ... N\On3)
(O A ANOn3 AOig A ... AOno)

]zﬂnu(pz) =

B(Oy AO A ... Om... ADys)
€<811/\.../\(9]\[3/\810/\.../\8]\[0)7

. A
ﬁAl---A3N|C = (_1)N(N+1)/25A1...A4N (]l“nu(pl) 8103N+1 ARRRWA a]%éN +

N 3
. A A i A
3SR A LA aNgN> .

i=1 a=1

j{z — (_1)i+a+1+N(N+1)/2

And indeed, (a) and (b) are sufficient for 3|C to be closed, also in curved space-time:
(we use a special space-time coordinate system making the connection coefficients
vanish at pq,...,pn)

1

AB(00 A O A A Oa) = g3

VobBii.ns +

42



N 3
3N+ 1 ZZ(_1)Z+a_1viaﬁo,11..ﬁl_..j\/3 =

i=1 a=1
(_1)N(N+1)/2

_ Wfll.._N0<V0, ”u(pz) +ZZVZ“]Z> B

(val +ZZVML> ~0.

4.7 Newtonian Mechanics

Newtonian mechanics is the theory about the motion of N point particles in 3-
dimensional Euclidean space stating the equation of motion

N
i = Y (Gmy — ) T =t (11)

= 47r50m1- |$j - :z:i|3
J#i
in a Cartesian (orthonormal) coordinate system for ¢ = 1,..., N and a = 1,2, 3.

G,m;,q;, and gy are constants. The existence and uniqueness theorem (p. 20)
for ODEs implies there exists a unique local solution for every set of 6V initial
conditions ;,(0) = Ty, Tiq = Vi provided x; # x; for i # j. Thus, we define the
phase space as

¢ = {(331,’017...,33]\[,'01\[) ERGN Q?Z‘#Q:j forz;«éj}

and consider ® X time axis as the manifold on which we will define a (non-
normalized) deterministic random “worldline” using the current

where the six components per particle are numbered in the order (z",z%, z%,

vl v v®), the O-component refers to the time axis, and a'® stands for the rlght

hand 31de in (11). The current is divergence-free in the sense

N 6
007+ Y Y O =

i=1 A=1

because it vanishes termwise. With the help of the 6 N + 1-dimensional Levi-Civita
symbol, we may define a closed 6 N-form

_ AV
5A1---A6N = €A, A1..A¢n J

The associated congruence are the maximal integral curves of j, or solutions to
(11), and the associated measure can be understood as Lebesgue’s measure on ¢
for any fixed time ¢.
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Since time is a Lyapunov function (5° > 0), and 3 vanishes nowhere, ® X
time axis is the wandering set, and the properness conjecture holds (as proved
on p. 32). This does not imply (almost-certain) global existence of the solution
curves, however, which would only follow from being proper as a mapping into
RSY x time axis, rather than into ® x time axis.

In terms of (3, Liouville’s theorem states that

/ 5= 5
Px{t} Prx{t'}

provided P and P’ are two polyhedra in ® such that P x {t} and R’ x {t'} intersect
precisely the same trajectories. In particular, the assumption implies that none
of the trajectories starting in P at time ¢ (or in P’ at t') run into a singularity in
RN \ @ within the time span between ¢ and '. Liouville’s theorem follows from
Stokes’s theorem by much the same reasoning as applied in section 3.2.5.
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