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Zusammenfassung

In dieser Doktorarbeit wird der Galaxienhaufen A1689 untersucht. Der Haufen ist
relativ nahe (die Rotverschiebung istl8) und es existieren hervorragende Bild-
daten im Hubble-Space-Teleskop-Archiv, die einéihgrtrdfene Vielzahl an Gravi-
tationslinsenffekten aufweisen. Wir benutzen diese so genannten Arcs und ca. 100
Mehrfachbilder von Galaxien, um verschiedene Aspekte seiner Massenverteilung zu
untersuchen.

Am Anfang wird eine kurze Eirfhrung in die Kosmologie und Allgemeine Re-
lativitatstheorie sowie eine Motivatiofiif diese Doktorarbeit gegeben. Es folgt eine
Beschreibung des Programms, distiie Analyse des starken Linsdtekts entwickelt
wurde.

Der Schwerpunkt dieser Arbeit beruht auf der Identifizierung gelinster Mehrfach-
bilder von Hintergrund-Galaxien. lhre Positionen dienen dazu, sowohl die globale
Massenverteilung des Haufens als auch die Masse, die mit den ihnen innewohnen-
den Galaxien assoziert ist, einzusitiken. Durch die sogenannte Fundamental Plane
wurde die Geschwindigkeitsdispersion dieser Haufengalaxien akigescBie glatte
Komponente der dunklen Materie (DM) im Galaxienhaufen wird mit zwei alternativen
Parametrisierungen beschrieben, einem nicht-sémgalisothermen Ellipsoid (NSIE)
und einem elliptischen Navarro-Frenk-White-Profil (ENFW). Mit dem Linsenmodell
erhalten wir dann sowohl das gesamte Massenprofil als auch die separatageBeitn
der Galaxienkomponente und der glatt verteilten dunklen Materie. Die beiden konkur-
rierenden DM-Profile liefern dieselbe Fitqualitund sind daher nicht unterscheidbar.
Die Ergebnisse mit Massenprofilen, die audnRjendaten und dem schwachen Lin-
sendfekt abgeleitet wurden, liegen um einen Faktor 2 niedriger. Diese Diskrepanz
wurde in der Literatur bereits diskutiert, und es besteht ein genereller Konsens, dass
systematische Fehler in der Anwendung der beiden anderen Methoden die Ursache
sind. Verglichen mit Massenprofilen von A1689, die aiikiéren Analysen des starken
Linsendtekts stammen, liefert diese Arb@&ihnliche Ergebnisse, wobei unsere Arbeit
die Mehrfachbilder und Arcs signifikant besser reproduziert. Die Ursachie dxf
die sorghltige Beiicksichtigung der Galaxienkomponente in unserem Modell. Diese
Galaxienkomponente wird im Detail studiert und die Ausdehnung der dunklen Ma-
teriehalos bestimmt. Verglichen mit Feldgalaxien sind die Halos der Haufengalax-
ien jedoch deutlich kleiner. Mit dieser Arbeit ist zum ersten Mal diéf&nmessung
der Galaxienhalos mit dem starken Galaxienlensing gelungen. Die Ergebnisse stim-
men qualitativ mit denen aus dem schwachen Linfekeuberein. Diese wurden
in anderen Galaxienhaufen gewonnnebntken aber @f3ere systematische Fehler
aufweisen.

Am Ende dieser Arbeit befaRen wir uns schlieRlich mit dem nach wie vor
schlechteny? des besten Linsenmodells. Es wird gezeigt, dass diearemkerden
kann, wenn die ‘glatte’ Komponente selbst aus Subhalos zusammengesetzt ist.



Synopsis

In this thesis we have set out to study the galaxy cluster Abell 1689 using strong grav-
itational lensing. Due to its relative closeness at redshift 0.18 and available archived
deepHubble Space Telescommaging it presents an ideal opportunity to several di-
verse studies based on strong gravitational lensing.

We start with a brief introduction to cosmology and general relativity as well as
motivation for the thesis. This is followed by a short description of the program de-
veloped during the thesis to analyse strong lensing systems. We begin the main body
of work by identifying the cluster galaxies and by estimating their velocity dispersions
using the fundamental plane. The work on cluster galaxies is proceeded by identifying
multiple image systems in A1689. The multiple images provide strong constraints for
the global mass distribution of the cluster. After the identification of multiple images
we detail the diferent models constructed to obtain robust estimates for the total mass
in the cluster. The smooth dark matter is assumed to follow two parametric halo pro-
files, a non-singular isothermal ellipsoid (NSIE) and an elliptical Navarro, Frenk and
White (ENFW) profile. With the models we are able to derive the total mass profile as
well as to separate the mass contributions from cluster galaxies and the smooth halo
of the cluster. The models based on both the NSIE and ENFW smooth dark matter
profiles provide very similar fit qualities and we are unable to rule one of them out.
Compared to weak lensing and X-ray estimates of the cluster mass, strong lensing
methods obtain total masses consistently higher by facte2ofThis discrepancy is
well discussed in the literature, and there is general consensus that systdfaatic e
in both weak lensing and X-ray methods lead to underestimates of the mass. In addi-
tion to the models used to derive the total mass profile of the cluster we also construct
separate models to provide a direct comparison to earlier strong lensing work done on
the cluster. We find good agreement between the mass profiles obtained, although the
multiple images are reproduced significantly better in our modelling. This can be at-
tributed to the careful inclusion of the cluster galaxies in our modelling. We also study
in more detail the galaxy component and derive extensions of the dark matter haloes
of the cluster galaxies. Compared to field galaxies the haloes of cluster galaxies are
strongly truncated. This is the first time the sizes of haloes have been determined using
strong lensing alone. The results are in good agreement with previous work done using
weak lensing. Last, we investigate the fairly pgérobtained in strong lensing models
of A1689 and find that the observgd can be explained by assuming that the smooth
dark matter halo of the cluster is itself composed of subhaloes.
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Foreword

The thriving forces behind the development of mankind, and us humans as individuals,
have always been curiosity and need for survival. Once the latter has been satisfied
the first takes over and our mind wanders in the mysteries of the world around us.

Some of the most perplexing puzzles for the mind lie in the unreachable distances
of the sky above us; the Sun, the Moon and a phletora of other phenomena from
shooting stars to planets, from stars to galaxies. The same curiosity that has made
people for thousands of years to turn their gaze on the star lit sky has driven also
me to astronomy and to try to understand a little more of the Universe in which we live.

’:¥ .

- \\*\”r{r/@

J

Un missionnaire du moyen age raconte qu'il avait trouvé le point
ou le ciel et la Terre se touchent...

Figure 1: A woodcut by an anonymous artist that was first published in the French
astronomer Camille Flammarion’s book “L'atmosgph: néteorologie populaire”. It
depicts a scene where a pilgrim from the middle ages finds the place where the sky
meets the Earth and is able to see the mechanics of the celestial spheres.






Chapter 1

Introduction

This thesis will deal with the astronomical phenomena on the very largest scales of
the Universe: clusters of galaxies, the most massive gravitationally bound systems, on
the one hand and galaxies at the edge of the observable Universe on the other. In this
introduction we aim to provide the necessary background for the work to follow. We
start with the Universe as a whole after the point when the currently understood laws
of physics are believed to be valid, its evolution from the cosmic soup to the stars and
galaxies we see today. We constrain ourselves mainly to the currently accepted world
model, the Standard Cosmology, that starts with a Big Bang, but mention also briefly
other alternative ideas. We then proceed to describe in some detail the objects of this
thesis, galaxy clusters, and the method used to study them, gravitational lensing.

1.1 The Universe

The visible Universe outside our Solar system is composed of gas clouds, stars, galax-
ies and groups and clusters of galaxies, the largest known bound systems. The distri-
bution of galaxies in the Universe is not smooth but consists of large voids where only
a few galaxies are seen, and filaments with relatively high concentration of galaxies.
Clusters of galaxies are seen where these filaments cross.

Through spectroscopy we can study the abundancefefefit elements. The Uni-
verse is mainly composed of hydroger80%) and helium+{20%) with the remaining
composed mainly of deuterium and lithium.

In 1965 a uniform microwave radiation was observePenzias & WilsoiL965
The temperature of the radiation corresponded to that of a black body-it B.and
seemed to come equally from all directions on the sky. This led to the interpretation
of it being an antenna noise in their measurements. The existence of the cosmic mi-
crowave background radiation was predicted some years earlier by G. Gamow in 1948
and by R. Alpher and R. Herman in 1950. Although Renzias & Wilson(1965
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the radiation was noise in the signal the interpretation of the radiation came in the
same volume of the Astrophysical JournalBicke et al.(1965 who were devising

an experiment to find the very radiation discoveredP@nzias & Wilsoh It is now

widely accepted that the cosmic microwave background is a relic from the hot birth
of the Universe. The temperature of the radiation has now cooled to around 3K due
to the expansion of the Universe. The background radiation has since been measured
with various instruments at flerent wavelengths, sky coverage and spatial resolution
(COBE,Bennett et al1996 MAXIMA, [Hanany et al20000 BOOMERanG[Crill et al.

2003 WMAP, Spergel et al2003amongst others)

1.1.1 Standard Cosmology

Any cosmological model of the Universe should be able to meet the observational con-
strains, and ideally also have verifiable predictions for further observations. The most
developed and mature model is the Standard Cosmology which successfully accounts
for the observations but unfortunately has very little predictive power.

In order to start building a cosmological model some simplifying assumptions need
to be made. For the Standard Cosmology these are:

e Gravitational force dominates the interactions of large-scale structure and is de-
scribed by Einstein’s theory of gravity

o On sdficiently large scales the distribution of matter in the universe is isotropic
and homogeneous.

The two points together ensure that we can find a relatively simple solution to
the Einstein field equations. Before Einstein, space and time were considered sepa-
rate entities but after the publication of his theories of relativity space and time have
been thought of as a space-time continuum. The field equations are a set of 10 equa-
tions arising from a single tensor equation that describes how time, space and energy
are interrelated. In an isotropic and homogeneous universe the solution is called the
Robertson-Walker metric,

dr?

1-kr2
wheresis the proper distance,is the speed of light,is time, a(t) is the expansion

parameter at time, and ¢, 6, ¢) are the usual spherical coordinates. In an isotropic and
homogeneous universe there is no dependence on the direction défi=sdg? = 0.
The parametédt describes the curvature of the univerke.0 corresponds to a geomet-
rically flat universe, whereds< 0 andk > 0 correspond to an open and closed universe
respectively. A flat universe marks the boundary between an eternally expanding open
universe and one that eventually starts collapsing under the attractive force of gravity.

ds = c?dt?’ - a(t)z( +r2(d6? + sirf(9)d¢?) |, (1.1)



1.1. Tue UNIVERSE 5

With the adoption of the Robertson-Walker metric the 10 field equations are re-
duced to just 2, the Friedmann equations,

a AnG P 1
A\ 2
o _ (8% _8Gp 1, , k&
H* = (5) =3 + éAC T2 (1.3)

where in addition to the parameters in the metric we have the gravitational constant
G, densityp, pressurd?, cosmological constamt and the Hubble parametét. The
Hubble parameteH (defined in equatiofi.d) is related to the expansion rate of the
universe, and was measured for the first time by Hubllgbble [1929. The current
value is usually denoted liyg. The value has been under hot debate until recently and
many other measurables depending-bare hence often given for a nominal value of
Ho=100 h knys/Mpc?, and a dependence én The best determination ¢, to-date
comes from the measurements of the cosmic microwave background with the WMAP
satellite and iSHO:71i‘31 km/s'Mpc (Spergel et a).2003. The Hubble constant has
been measured using several other techniques which yield similar relStdesdman
et all (2007) gives a nice summary on recent developments.

In addition to the Hubble parameter other convenient definitions include the density
parameters

om 881G or 881G kc? AC?
Qn=—=— R Q=—=— s Q:——, a.nd Qpr = —
m Om b pr k=~"2212 AT 3R2

14
Pc 3H2 3H2 ( )

for the scaled matteK(Y,), radiation €2), curvature ) and cosmological con-
stant (2,) energy densities of the universe respectiveiydenotes the critical density
for a flat universe wittk = A = 0 and is equal to132/87G. For relativistic particles,
e.g. photons, the densityand pressur® are related by the equation of st&e- w p
with w = 1/3 and sq, = 3 P. The cosmological constant hasw = -1 and so it has
negative pressure associated with it that drives the accelerating expansion of the uni-
verse as seen in observations of distant supernovaellReess et a|l1998. Although
w = —1 corresponds to a cosmological constant, also alternative theories for this dark
energy, as it is also know, exist. In quintessence models, for example, the equation of
state can vary in time and can obviously depart from unity.

lparsec is an often used distance measure in astronomy. An object is at a distance of one parsec if its
position on the sky relative to distant objects changesdaye second of arc as the Earth rotates from one
side of the Sun to the other. The nearest stars are some parsecs away, galaxies have typical radii of a few
tens of kiloparsecs (kpc) and the sizes of clusters of galaxies are measured in megaparsecs (Mpc). Light
travels one parsec in roughly 3.3 years.
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The observations (recentigpergel et a).2003 show that the geometry of the
Universe is very close to flat and &= 0. This means then that al$ = 0 and is
hence often ignored. On the other hand the matter density is composed of two parts,
the baryonid, and dark matt&rQpy, components so th&,, = Qp + Qpwm.

We take this opportunity to introduce another important quantity in astronomy.
This is the redshifz which can be used both as a time and distance indicator. In an ex-
panding universe photons loose energy, and the wavelength of the photon is increased.
This means that when we observe a galaxy at cosmological distances, the spectrum
appears to have shifted to longer wavelengths by a factar 1

The redshift of an object can be written in terms of the scale factoa(t) at the
time when the photon was emitted and the scale factor at the presenagime(to).

What is actually observed are the the rest-frame wavelength of the emitted radiation
Ae, and the observed wavelength The wavelength and scale factors are related, so
thatl,/1e = ag/a(t). The redshifz can then be written in terms of the expansion of the
universe, and the observable wavelengths, as

_@-a _ do—4e
a2

z

(1.5)

Redshifts are very important as distance measures on cosmological scales. For
nearby objects the relative motion of the Earth and the object can also lead to a change
in the observed wavelength, and hence redshifts cannot do not provide accurate
distances within the local Universe.

The five parameters mentioned earlidr, Qpm, Qp, Qr andQ,) are the parameters
of a homogeneous and isotropic universe. In a perfectly homogeneous and isotropic
universe no structures such as planets, stars and galaxies, can form and so we must in-
troduce some inhomogeneities. As long as the scale of these inhomogeneities is much
smaller than the universe we can still assume the background universe to behave like a
Robertson-Walker model. Such a model is referred to as either an almost Robertson-
Walker model or just Robertson-Walker model for simplicity.

The initial fluctuations(t, =) are small and written in terms of the mean density of
the universe so thats(t,z) = ©£. The density fluctuations in the early Universe are
very nearly GaussiaiSpergel et a]l2003 and so are fully described by the amplitude
A and the index n of the power spectrum of the Fourier transfiyof 5(t, x).

The Standard Cosmology has then seven parameters that describe the energy den-
sity, geometry and the expansion of the universe on large scales and the small scale
variations of the otherwise homogeneous universe. These parameters are not in any
way predicted by the model itself and need to come from observations. In[Tdble

1Some dark matter candidates are mentioned in the apj@ndix
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Table 1.1:Power LawACDM Model Parameters - WMAP only. The Table is slightly
modified fromSpergel et al(2003. Qi is derived with additional measurements of
Ho from both supernova and HST Key ProjeEtéedman et §l2001). Q, is obtained
assumingio=Qm+Qa

Parameter Name Parameten Value
Baryon Density | Qp 0.046+0.002
Matter Density | Qn 0.27+0.06
Hubble Constant h 0.72+0.05
Amplitude A 0.90+0.10
Spectral Index | ng 0.99+0.04
Total Density Qiot 1.02+0.02
Cosm. Constant| Qx 0.75+0.08

we give the measured values for the parameters as obtained from the measurements of
the cosmic microwave background radiation®pergel et al(2003.

With a standard cosmology in place we will now proceed to the evolution of the
Universe and outline briefly the main phases in the evolution our Universe from the
beginning in a Big Bang to the present day.

1.1.2 Cosmological eras

The evolution of the Universe can be divided into several distinct epochs according to
the temperature or the dominantof the time. In the early phases of the evolution the
time is most conveniently measured in seconds after the beginning, and time continues
to be used until we enter the edge of the observable Universe. After this point we start
using redshift as an indication for time since it can be measured directly.

1.1.2.1 The Beginning

The very beginning of the Universe will remain a tightly guarded secret until our
knowledge of the physics at the highest energies improves either through theoretical
work, or more importantly, by direct observations and experiments at energies higher
than 100 Gev. The laws of physics have currently been tested only to energies below
this limit and as is often in science new improved observations require us to revise the
way we think about a subject.

There are several theories that hypothesise on the properties of the very early Uni-
verse at the Planck time of 103 seconds. In order for progress to be made the
seemingly incompatible theories of quantum mechanics and Einstein’s general relativ-
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ity need to be combined to one all encompassing theory that could be used to predict the
conditions of the Big Bang, the singularity in general relativity that marks the creation
of the Universe. At the Planck epoch the noifelient forces, electromagnetism, weak
nuclear force, strong nuclear force and gravity, would be unified to one fundamental
force.

At roughly 1023 seconds gravity begins to separate from the other forces. The
physics is described by the Grand Unified Theories of the Standard Model where elec-
tromagnetism and the strong and weak nuclear forces are unified.

1.1.2.2 Inflation

As the strong nuclear force separates from the electroweak force the energy provided
by symmetry breaking starts the following phase, the inflation. During inflation the
Universe undergoes exponential expansion. Inflation explains some of the outstanding
problems in the Standard Model, for example, the very smooth cosmic microwave
background observed today and the flatness of the geometry. The structures seen in the
Universe today are believed to originate from the quantum fluctuations in the Universe
before inflation and the exponential expansion during the inflation naturally flattens the
Universe as is observed today. It should be noted that for the Universe to be flat today
requires it to be flat to within 1 part in 3®directly after the Big Bang!

1.1.2.3 Matter

At roughly 10°%s to 102s the Universe enters the hadron epoch when quark-gluon
plasma making up the Universe cools and produces hadrons. These are baryons and
mesons composed of quarks which are held together by the strong nuclear.

1.1.2.4 Nucleosynthesis

One second after the Big Bang the Universe is cool enough for protons and neutrons to
form atomic nuclei. The atoms created are mostly hydrog@6%*H, ~0.01% D) and
helium (~25%*He, ~0.01%°3He) and smaller amounts of beryllium and lithium. The
relative amounts of the elements produced in the nucleosynthesis depends critically on
the baryon density of the Universe and require fgt0.04. The dependences of the
different elements on the baryon density can be seen in Higlitaken fromBurles

et all (1999. The helium abundance is sensitive to the number of neutrino flavours,
and the element abundances are satisfied with 3 flavours.

The evolution of the Universe has been dominated by radiation density and this
continues to be so for the next 70 000 years. This is a relatively quiet period during
which the Universe cools further. The matter density evolves like the inverse of the
scale of the Universe cubed;3, where as the radiation density falls of faster?,
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Figure 1.1:A figure showing how the abundances of the light elements produced the
Big Bang nucleosynthesis vary with the baryon density. The figure has been taken
fromBurles et al (1999

due to the reduced energy of the photons during expansion. This increases the relative
influence of matter on the evolution of the Universe as the temperatures continue to
fall. After this period the relative densities in the radiation field and in matter are in
rough equilibrium and as the Universe continues to expand the importance of matter
for the evolution of the Universe continues to increase. We have entered the matter
dominated era. The primordial density perturbations can start to grow.

1.1.2.5 Combination

After another 300 000 years, when the Universe is still at its infancy at an age of mere
380 000 years, the Universe is finallyfBaiently cool for hydrogen and helium atoms

to form when the nuclei can hold on to the electrons. The matter becomes transparent to
the photons, which form a free flowing background radiation. Itis this radiation that we
see today at microwave energies. Before combination, interactions between matter and
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radiation is frequent and direct observations of times before the combination are not
possible as all features are erased by the photons. Not much is known observationally
between the creation of the CMBR on the surface of last scatter at redistof and

the time when the first stars and galaxies were formed.

1.1.2.6 Reionisation

When the first stars (Populationistars) formed they produced large amounts of
radiation that #iciently reionised the atomic gas of the Universe. Apart from taking
part in the reionisation of the Universe they also enrich the primordial gas from which
the next generation of stars forms. Qud3ame also thought to have formed at a
similar time and taken part in the reionisation process. High redshift quasars@ith z
show absorption features of neutral hydrogen in their spectra indicating that at least
a few percent of the gas was neutral by that time. The WMAP mission measured
a reionisation redshift of, = 17+ 4, earlier than expected from the quasar spectra.
The three year WMAP results have since lowered the reionisation redshift&lpgo
(Spergel et a)l2006).

1.1.3 Structure formation

The first structures in the Universe were quasars and the hypothetical Population 1lI
stars that reionised the Universe. These are formed in local high density regions em-
bedded in large scale over densities. In the cold dark matter paradigm of the Standard
Model, the structures in the Universe are formed hierarchically by smaller structures
merging, creating larger structures that merge further to create even larger structures.
On large scales the evolution is dominated by gravitational forces than can be easily
solved using powerful computers and N-body simulations. These largely reproduce
the observed structures seen in the Universe today. Problems present themselves at
small scales where gas dynamics and the details of star formation become important.
What is clear though is that the inhomogeneities seen in the CMBR are too small to
grow to the structures observed today. In the current paradigm most of the matter in

Ipopulation 11l stars are the first stars that form and are made up entirely of the primordial gas from the
Big Bang and hence share its element abundances. They are possibly very massive with masses ranging
from 10-100 solar masses and are very short lived. These have never been observed.

Population Il stars form from the metal (anything other than hydrogen and helium) enriched gas ex-
pelled by the Population Ill stars during their lifetime.

Population | stars are the most metal rich stars formed from the recycled gas from the previous two
populations.

2Quasars are very energetic systems that are powered by supermassive black holes that accrete ma-
terial from an accretion disk surrounding them. The highly directed emission from quasars is emitted
perpendicular to the accretion disk. Due to the very concentrated radiation, quasars can be observed in
the early Universe at> 6.
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Figure 1.2:The evolution of structure in ACDM universe N-body simulatidn The
boxes show the (dark) matter density affefient redshifts from 210 (left) to the
present day (20, right). The small scale structures form first and later merge to create
larger objects.

the Universe is of a new type called dark matter. This new type of matter interacts only
gravitationally. Since this new type of matter doesn't feel the radiation field, it is able
to form structures already before the matter and radiation decouple. The normal bary-
onic matter then falls into the potential wells of the dark matter after the decoupling
from radiation.

In addition to clearing the problem of structure formation, dark matter solves also
other 'missing mass’ problems. The observed flat rotation curves of galaxies and the
high velocity dispersions of clusters of galaxies indicate that the total masses in galax-
ies and clusters far exceed the mass that can be contained in the luminous components
of these structures.

A typical scenario of structure formation is shown in Figiir It shows how the
density evolves from redshift= 10 to the present day € 0) in numerical simulations.

The density is fairly smoothly distributed to begin with but voids and filaments are
formed as the denser regions contract and merge.

The Universe is still in this phase, and galaxies and clusters continue to form and
evolve. We end this introduction to cosmological eras with some details on the proper-
ties of galaxies and clusters of galaxies.

1.1.3.1 Galaxies

After stars, galaxies are the next fundamental building blocks for structures in the
Universe. Galaxies typically have 16 10" stars, and their masses range fronf 10

to 10" M. Their luminous components extend out to several tens of kiloparsecs and
their dark haloes out to several hundreds of kiloparsecs.

1The simulations were performed at the National Center for Supercomputer Applications by Andrey
Kravtsov (The University of Chicago) and Anatoly Klypin (New Mexico State University).
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Figure 1.3:The Hubble tuning fork for galaxy classification. Elliptical galaxies (EO-
E9) are on the right, spiral galaxies (Sa, Sh, Sc, SBa, SBb, SBc) on the right. Although
originally proposed as an evolutionary sequence from left to right the direction has
since been reverse.

It is still unclear when the first galaxies were formed but some galaxies have re-
cently been identified with probable redshits (Bouwens et a][2004 [Richard et al.
2006 [Labke et al, [2006). These galaxies have most likely formed at redshif®
when the Universe was only 500-600 million years old and still ionised.

Hubble (1936 constructed the so called Hubble tuning fork diagram. It is a
classification scheme for galaxies according to their morphology. Hubble originally
thought of it as an evolutionary track from the left to the right, from the elliptical
galaxies to the spiral galaxies. The elliptical galaxies are classified based on their
visual oblateness from EO to E9. The classification of spiral galaxies is based on the
increasing openness of the spiral arms. The spiral galaxies can be either normal (Sa,
Sh, Sc) or barred (SBa, SBb, SBc) and this separation creates the tuning fork shape
of the diagram. The direction of evolution has since been reversed, and elliptical
galaxies are nowadays believed to form in mergers of spirals galaxies. In addition to
the elliptical and spiral galaxies, Hubble also included an SO galaxy as a transitional
galaxy type between the two galaxy types, and an irregular galaxy type for galaxies
that don't have clear morphological structure. A revision of the Hubble sequence
for elliptical galaxies was proposed [Rormendy & Bender(1996. The original
classification of elliptical galaxies is stronglyffected by projection féects. The
proposed new classification uses isophotal shapes that are in contrast related to
fundamental properties of the galaxies such as the distribution of stellar orbits in the
galaxy.

The diferent galaxy types have the following characteristic properties:

e The irregular galaxies are generally composed largely of gas and have a high
star formation rate. They don't have recognisable spiral structure and also lack a
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prominent nuclear bulge.

e Spiral galaxies have a disk with spiral arms with considerable angular mo-
mentum. The bulges of spiral galaxies are made of old and red Population Il
stars. The spiral arms have relatively high star formation rates and are com-
posed largely of young Population | stars, generally bluish in colour. Due to the
evolution scheme by Hubble these are also called late type galaxies.

¢ Elliptical galaxies have only a small amount of angular momentum compared to
spirals and are dominated by random motions of the stars in the galaxy. They
are also poor in interstellar gas and have mostly old Population Il stars with little
current star formation. Elliptical galaxies are often called early type galaxies.

The first galaxies to have formed were irregular and spiral galaxies with active
star formation. Through galaxy mergers these have then formed the elliptical galaxies.
All galaxy types continue to evolve through external inputs via mergers as well as
internally through the evolution of the stellar populations in the galaxies.

1.1.3.2 Galaxy Clusters

Clusters of galaxies are the largest gravitationally bound systems in the Universe.
They can be composed of several hundred galaxies and have massesl@ptv,

and extents up te-2-3 Mpc. The typical velocity dispersions of the galaxies in a
cluster are~1000 kmis. Although some of the mass in clusters is in the galaxies and
intracluster gas, most of it is in a dark matter halo surrounding the whole cluster. The
intracluster gas is hot; 10° K, and emits X-ray photons. Cluster masses and radial
mass profiles can be estimated from the X-ray emission, the velocity dispersion of the
cluster galaxies or using weak or strong lensing.

Clusters have a composition similar to that of the Universe as a whole, and so
by measuring both the baryonic mass and the total mass in a cluster it is possible to
constrain the baryonic fraction of the Universe.

The mass profiles of clusters are an important test for the nature of dark matter,
and its precise determination for a large number of clusters is an on going process.
Numerical simulations with cold dark matter predict a so called universal dark matter
profile. [Navarro et al.(1996 showed that a simple fitting function can be used to
describe the profiles of dark matter haloes at opposing ends of the mass scale, all the
way from individual galaxies to the largest clusters. The so called Navarro, Frenk and
White profile (NFW for short) has the following form

_ Lo
o(r) = ETRCETIA (1.6)
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wherers is the scale radius of the cluster at which the density profile changes from
p(r) < r~1to p(r) e« r=3. The profile is often parametrised in terms of its virial radius,
rvir, and concentratiorg = ry; /rs. The virial radius determines the mass scale of the
cluster.

The inner slope of cluster profiles is debated with some claiming that the logarith-
mic slope of -1 obtained ifNavarro et al1996can be a result of the mass resolution
and force softening in the simulations. The proposed slope is steeper, closer to -1.5
(e.g.Fukushige & Making199% [Moore et al,[199§. The profile with an inner slope
of -1.5is called the Moore profile. What is clear from the simulations is that the profiles
are cuspy with the density continuing to increase towards the centre of the cluster.

The NFW profile has been generalised to account for the dispute. The generalised
NFW profile has an additional free paramegthe inner slope of the profile.

PO
= : 1.7
= G Wiy &)
The standard NFW profile hg8 = 1, whereas a Moore profile hgs= 1.5.
Regardless of the inner slope, all generalised profiles have the same behaviour at large
radii with p(r) e r=3,

Another profile often used with success in fitting cluster profiles is the isothermal
sphere. A galaxy or a cluster with an isothermal profile has a flat rotation curve. This is
observed in many galaxies and the simplicity of the profile is very appealing. A profile
with a flat rotation curve has an infinite mass as the mass increases linearly with the
radius. It also has a singularity at@ where the density reaches infinity. For clusters a
softened isothermal sphere is often used instead. The profile in this case has a flat core
with a finite density in the centre. The density can be written as

o2 1
p(r) = %m’ (1.8)
whereo is the velocity dispersion of the galaxies in the cluster anid the core
radius. Setting; = 0 recovers the singular profile. At large radii the density fafts o
like r=2. A flat core in a cluster may indicate that dark matter is self-interacting or that
the details of gas dynamics are important for the formation of the core. At large radii
the density of an NFW profile fallstbquicker than isothermal.
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1.2 Gravitational lensing

In the curved space-time of general relativity the null geodesics, the paths followed
by light rays, are no longer straight but curved due to the feassgy content of the
universe. The whole universe can have a curvature but also local concentrations of mass
distort the space-time. This leads to the bending of light rays near massive objects.

Although speculated already earlier based on Newton’s law of gravity — acceler-
ation caused by massive objects is independent of mass and hence could, at least in
principle, also apply to light — it wasn’t until the general theory of relativity that the
correct deflection angle for a point mass was obtained. The path of a light ray passing
an object of mass M at a distané&vill be bent by an angle(¢),

N 4GM
a(¢) = R (2.9)

This is a factor of 2 higher than expected from Newtonian mechanics. The bending
of light was the first prediction of general relativity that was also observed. During the
1919 solar eclipse Arthur Eddington measured positions of stars near the edge of the
Sun. By comparing the positions to those measured when the Sun was not present the
bending angle could be determined. The analysis of the data taken during the eclipse
has since been criticised and the results from Eddington’s experiment are not as clear-

cut as presented at the time.

1.2.1 Theory behind it all

We show in figurél.4 the basic geometry of a gravitational lens. The lens could be
the Sun, a MACHO (massive astronomical compact halo object) in our galaxy, another
galaxy or even a cluster of galaxies. In the figurgi®the angular diameter distafice

to the deflector. We observe a source S at a distagéeb us. The distance between

the lens and the source is$ Without the lens the source S that i§set from the
optical axis by a distancgwould be observed at an angular positga n/Ds. Due to

the deflection of the light ray from the source passing as it passes through the lens at
an optical axis distancgthe source is observed at I, with an angular positioithe
change in the position of the sourcersand the actual deflection of the light ray at the
lens isa. The famous lens equation in its vector form (from now on all vector quantities
are shown with bold font) summarises what is evident already from the figure, namely
that

BO) = 0—a(6). (1.10)

The lens equation is written in terms of the angular positions of the source and the
lens since this is what is observed. In order to derive the projected physical pogitions

1Angular diameter distance (D) is a distance measure in astronomy that relates the physighabsize (
an object to its observed angular sigg@n the sky byd=x/D.
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Figure 1.4:A schematic view of the geometry in a simple gravitational lens. An ob-
serves at O looking through a lens at a source S at a distdnm® the optical axis. The
source passes through the lens at a distéifican the axis. Angleg andd correspond

to the angular positions of the unlensed source and the lensed source respectively. An-
glea is the true deflection angle ands the change in the position of the source called

the reduced deflection angle. After the deflection the source appears at position I. The
distances I@, Ds and Dys are the angular diameter distances between the observer and
the deflector, observer and source, and deflector and source respectively.

andé¢ also the distancesdpDs need to be known. Since the distances used are angular
diameter distances the angular positighand@ are related to the projected physical
onesn and¢ by definition like,

B =1n/Ds, andé = £/Dy. (1.11)

In addition the deflection angleis related to the reduced deflection anglby

() = %—d &(©). (1.12)

The deflection anglé depends only on the mass distribution and the point where
the light ray intersects the lens plane. The chanrgen the angular positiof of
the source as compared to a universe with out the lens depends also on the relative
distances between the observer, the lens and the source. Gravitational lensing is
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inefficient for lenses that are close to either the observer or the source. The maximum
geometrical #iciency is achieved when the lens lies exactly half way between the
source and the observer, i.e4PDy.

Once the image position and the mass distribution of the deflector are known it is
in principle very easy to calculate the position of the source. For more general non-
symmetric mass distributions, equatib® for the deflection angle of a point mass can
be extended for small deflection angles (most astronomical applications) by simple
superposition arguments. It can then be be written as

AGM f (0-0") %(0)

c?Dy 662
In the above equation all the mass of the deflector is assumed to be at a fixed

distance @ from the observer. The surface mass dens{#) can be obtained from

the three dimensional mass dengit, z) by projecting it on to the lens plane. This is

done by integrating over the line of sight from the observer to the source at a distance
of Dg,

&(0) = d?e. (1.13)

Ds
3(0) = fo 0(6,D) dD. (1.14)

Since the extent of the deflector is generally much smaller than the distagpdes D
and Dys this so called thin lens approximation is valid for all simple cases. The extent
of deflectors (along the line of sight) become important if other mass concentrations
of a similar order of magnitude than the lens are on the same line of sight. This can
be another galaxy cluster or in the case of cosmic shear the large scale structure of the
universe.

Other than the deflection angle and surface mass density, some other important
gquantities in gravitational lensing are théeetive lensing potential, the scaled sur-
face mass densityand the gravitational shegt The deflection angle can be thought
of as a kind of a generalised force, and just like gravitational force and electric force
have their respective potentials, a potential can also be attached to the deflection an-
gle. The use of a potential has some powerful mathematical implications making it
easy to obtain observable quantities suck asdy for simple mass distributions. The
effective lensing potentiat can be obtained from the Newtonian potentiel

Dys
Ds Dd

This is similar to what was done earlier when the matter density was projected to
the lens plane.

w(6) =

f > 5(Dy 6.D) dD. (1.15)
0
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a, k andy are then related to the derivatives of the potentiak.r.t. 8 in the
following way,

a(0) = Vy(6), «(0) = %Vzw(a), and (1.16)

Y1= %(lﬁ(e)ll— Y(0)22) , y2 =v(0)12= ()21, (1.17)

where the double indices indicate derivates w.pf.and6,. The gravitational
lensing sheay is a complex number and the two components describe the distortion
of the image shape locally.is defined as the ratio of the local surface mass deiisity
and the critical density of the universg;,

z c? Ds
= —, whereXes;=— .
K Zcr “ 47TG Dds Dd

An important quantity in gravitational lensing that gives also physical insights into
the quantitiex andy is the Jacobian matrix A,

(1.18)

Az@ _(1-k-m —y2 ) _ (1_K)( 1 0)_ ( cos2 sin2p
00 -y l-k+7y1 0 1 sin2p —-cosa )’
(1.19)

wherey=|y| gives the magnitude anglthe orientation of the shear. All the quanti-
ties are in general functions éfand depend on the mass distribution. Magnification
u in gravitational lensing is defined as the ratio of the area of the image to that of
the source. Since surface brightness is conserved by gravitational lensing this means
that the flux is also magnified by the same ratio. Locally the magnification can be
defined asi6?/6B2. This is just the inverse of the determinant of the Jacobian matrix
A. The magnificationu is then such that™ = |(1-«)? - y?. The magnification in
gravitational lensing makes it possible to study galaxies that would otherwise be too
faint to be observed.

1.2.2 Strong, weak and micro

After the first observational confirmation of gravitational lensing by Eddington in 1919

it took 60 years untiWalsh et al. observed gravitational lensing in the form of two
guasars very close to each other, separated by only 5.7”. The quasars QSBG®&DB57

A and B are both at a redshift of 1.4 and have very similar spectra. The idea that two
guasars are images of the same quasar is a natural conclusion especially since between
the two images is a foreground galaxy that can act as the lens. Ediishows an

HST image of the two images (A,B) of the quasar and the lensing galaxy (G1).
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Figure 1.5: The two images A and B of the quasar QSO 08561 and the lensing
galaxy G1 can be seen in this HST F555W image of the lensing sy&emstein
et all, [1997).

During the time between the observations of Eddington and thogéatsh et al.
the field of gravitational lensing had been studied theoretically by many people. Both
in the ways of observing the possible phenomena, and applications to cosmology.
Many of the ideas from that time have become observational reality by now. Zwicky
realised in the late 30's that galaxies could act as viable lenses. He speculated that
gravitational lensing by galaxies could be used to not only test General Relativity but
also to measure galaxy masses and to study magnified background galaxies. In the
early sixties Refsdal considered the possibility of measuring the Hubble constant with
gravitational lensing.

Gravitational lensing phenomena are often classified to three distinct regimes: the
strong, the weak and the microlensing regimes. The first observed gravitational lensing
effect, the bending of light rays by the Sun and the change in the measured positions of
stars near the limb of the Sun, has very limited use since the true source positions are
almost never known and thisfect will not be discussed further here. In the following
sections we give only brief qualitative properties and applications of the three regimes.
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1.2.2.1 Strong lensing

In the strong lensing regime the lensinfijeet is strong enough to produce multiple
images of the same source. In order to form multiple images, it is necessary for the
surface mass densikyof the lens to exceed unity at some point. The separation of
the images depends on the mass of the lens and is typically a few arcseconds for a
galactic lens and up to several arcminutes in galaxy clusters. The regime where the
image separation is of the order of micro seconds (too small to be directly observable)
is also technically strong lensing but is often treated separately as microlensing.

In strong lensing mass reconstructions one tries to obtain the mass distribution
of the lens by requiring that the mass distribution reproduces the observed properties
of the lensed source or sources. The most obvious property to investigate in strong
lensing is the image positions. Additional constraints include morphological as well
as photometric properties of the images. The distances to the source and the lens are
important to know so that overall mass scale can be fixed. The scale is represented by
the angular diameter distanceg, D5 and Dys.

Since the multiple images are assumed to originate from the same source, one
property of a lensed source is that all the images of the source are mapped to the
same point in the source plane. This works generally well, but due to the mass sheet
degeneracy present in lensing, can bias the results towards mass distributions with high
magnificatior!

One can also look for a mass distribution and a source position that produce
images at the observed locations on the sky. This is called image plane minimisation
and directly compares the model with the observations. Thulty with image
plane minimisation is that in the lens equation (equafidi) the deflection angle
is a function of the image positiof and not of the source positigh This makes
the inversion of the lens equation numerically very intensive and sometimes unfeasible.

Refsdal IRefsdal [1964) realised that the light rays of multiple images have to
travel diferent path lengths from the source to us. This distance can be measured if
a variable source is lensed and the time delays between the variations iffénendi
images can be measured. The size of the Universe depends on the Hubble constant
and hence the time delay also. Unfortunately the time delay depends also on the mass
distribution of the lens. The mass in the lens needs to be modelled accurately before
the Hubble constant can be measured with any certainty. Quasars are well suited for
this task since they are very bright and can be seen out to large distances. The lens
is also generally a single galaxy, although tlikeet of the environment surrounding

1Since the deflection angle depends only on the mass within the images, lensing cannot constrain the
mass profile within that area. Lenses that have high magnification map a source to a large area in the
image plane. This then also means that images from a large part of the sky are all mapped to the same
source position.
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Figure 1.6:Highly distorted images of a galaxy (blue objects) behind galaxy cluster
Cl0024. The mass in the galaxy bends light rays and acts as a lens, distorting and
magnifying images of a distant background galaxy.

the lens is also important. As the observations have improved it has also become
evident that the lenses themselves have substructure. The relative magnifications
of the diferent multiple images of a quasar shows variations from smooth galaxy
models for the lensing galaxy. The current status of this field is nicely summarised in
a conference contribution by P. Schechtdellier & Meylan,2005. The value oHg

from lensing isHy=61+7 knys/Mpc. This is a little lower than the canonical value of
Ho:7ltg km/s/Mpc from WMAP data/Epergel et a}l2003).

Strong gravitational lensing can also be seen on larger scales of galaxy clusters. In
cluster lensing images of background galaxies are distorted to giant arcs, and possibly
many multiple images. These can be used to study the mass distribution of the clusters.
One of the first striking examples of this phenomenon observed in nature is shown in
figure[l.8 The cluster CL00241654 at a redshift of 0.39 lenses a galaxy at a redshift
of 1.675 Broadhurst et al2000) into at least 4 easily identifiable images. The cluster
has been studied intensively by several groups [iagsiola et al/1992, [Tyson et al,

199§. Numerical simulations with cold dark matter predict cuspy inner mass profile
slopes between -1 and -1/Bldvarro et al.[1996 [Moore et al,[1998. [Tyson et al.
(1998 exclude an NFW type profile with high confidence finding strong evidence for
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a flat inner core. This has later been criticiseBmoadhurst et al(2000); [Shapiro &

[liev| (2000 who find that an NFW profile in fact does provide a good fit to the data.
They claim that the isothermal sphere obtaine@yison et al(1998 has much too high

a velocity dispersion for the cluster. This highlights the debate that is still active: the
slope of the inner mass profiles of clusters obtained figdint authors often disagree.

1.2.2.2 Weak lensing

In the weak lensing regime only the shapes of background sources are distorted by the
intervening inhomogeneous mass distribution. Both the scaled surface mass density
x and the sheay are less than unity and no multiple images of the same source are
observed. A concentrated mass overdensity, like a galaxy or a cluster of galaxies,
induces correlated changes in the ellipticities of the galaxies behind them. Although
the dfect is small and the background galaxies have intrinsic ellipticity variations the
effect can be measured providedistent numbers of background galaxies can be
observed. Weak lensing can be used to measure the sizes and total masses of the dark
matter haloes of galaxies (galaxy-galaxy lensing), the masses and mass profiles of
clusters of galaxies and also the large scale structure of the universe (cosmic shear).

The first parameter free inversion technique was present&@iser & Squires
(1993. It allows one to reconstruct the surface mass density from the measured
ellipticities of sources. The method takes advantage of the connection between
andy through the derivatives of the deflection potential Since 1993 many other
reconstruction algorithms have emerged, improving on the limitations of the original
method proposed bifaiser & Squires(1993 (e.g.Kaiser et al.[1995 Broadhurst
et all [1995 Rhodes et d12000 Bernstein & Jarvis2002, to mention a few).

An exciting recent result bZlowe et al.(2006) provides strong evidence for dark
matter in clusters of galaxies. The largely collisionless galaxies and dark matter in
the bullet clusters 1E 0657-558 have separated from the intra cluster gas as the two
cluster have travelled through each other. With weak lensing it can be seen that most
of the mass remains in the smooth dark matter haloes around galaxies. If the larger
gravitational force at large distances would be due to modified Newtonian dynamics
(MOND) one would expect to see more of the mass concentrated in the intra cluster
gas than is observed [@owe et al.in 1E 0657-558.

A new prospect for weak lensing lies in cosmic shear and weak lensing tomography
where the large scale structure of the universe acts as the lens. Cosmic shear and weak
lensing tomography can be used to constrain the equation of state of dark energy, and
by considering lensed sources in redshift slices also the evolutisnvath redshift
(time).
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Figure 1.7:The intra cluster gas (red) has been separated from the galaxies and dark
matter (blue) in the Bullet clusters 1E 0657-558. The mass estimate is based on a
weak lensing analysis @lowe et al.(2006), the gas is detected from its X-ray emis-
sion (Markevitch et al.[2002). The diset between the mass and the gas fisadilt to
understand in the framework of MOND but is easily explained by dark matter.

1.2.2.3 Microlensing

Microlensing refers to lensing phenomena where the image separation of multiple im-
ages is too small to be resolved, of order micro second. If the source and the lens are
both on the same line of sight, or very nearly so, the gravitational magnification can
still be observed as a brightened source. Since both the lens and the source are gen-
erally moving with respect to the observer this magnification changes over time and a
light curve can be constructed. This light curve has a characteristic shape and is the
same in all wavelengths since gravitational lensing is achromatic. The applications of
microlensing are many from finding extrasolar planets to detecting MACHOs in the
haloes of galaxies near and far.

1.2.3 Gravitational lensing in clusters of galaxies

One of the most useful and important properties of gravitational lensing is that it is
sensitive to any kind of matter that acts gravitationally. This makes it viéegtéve

for the study of the mass profiles of galaxy clusters where the hot intra cluster gas
emitting X-rays is not necessarily in hydrostatic equilibrium, the velocity dispersion
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measurements ardfacted by complex dynamical structure and most of the mass is in
the form of dark matter that cannot be observed directly. With gravitational lensing
one measures all the mass from the gas and stars and dark matter. Additionally the
dynamical state of the cluster does nfieat the results.

In galaxy clusters the dense central regions (typically several hundred kpc) are
efficient strong lenses producing multiple images and spectacular giant arcs. The giant
arcs constrain the mass within the Einstein rablinfsthe cluster tightly. The cluster
centre needs to be well determined for this to yield accurate masses if only one arc is
visible. By identifying counter images of the arc on the opposite side of the cluster,
mass estimates can be significantly improved.

Clusters where one can identify many multiply imaged sources are more interest-
ing. With multiple images at manyfiiérent projected cluster centric distances one can
effectively measure the mass of the cluster #iedént radii and accurate radial mass
profiles in the central regions can be obtained. If the redshifts of the sources can also
be estimated we carffectively break the mass sheet degeneracy mentioned earlier.

Regions outside the Einstein ring and the strong lensing regime distort that shapes
of background galaxies and the mass can be estimated using weak lensing mass recon-
struction algorithms. This means that the mass profiles of clusters can be extended out
and beyond the virial radii of clusters (typically around 2 Mpc).

There is a region between the strong and weak lensing regimes where there are
no multiple images but the images are significantly curved (flexion) and the current
weak lensing mass reconstruction techniques cannot make full use of the information
contained in the shapes of the images of background galaxies. The work to include also
this region in the mass reconstruction is starting with papers treating flexion appearing
in astro-ph (Goldberg & Natarajari2002 (Okura et al.2006 |Goldberg & Leonargd
2006 [Melchior et al,[2006. This could hopefully reduce the discrepancies sometimes
seen between the cluster profile parameters derived from strong and weak lensing, e.g.
in Abell 1689.

The masses and mass profiles of clusters are of great astronomical interest for sev-
eral reasons. Since most of the matter, not only in clusters but also in galaxies and the
universe as a whole, is expected to be in some form of cold dark matter the exact distri-
bution of the mass in clusters can give us clues how dark matter interacts with normal
baryonic matter and itself. Large cores in clusters could, for example, indicate that
dark matter is self-interacting: the interactions between dark matter particles would
lead to dissipation of energy and create flat cores for clusters. Accurate masses for
large numbers of clusters and groups in the universe are needed to constrain also cos-
mological models. The initial conditions for structure formation are well know from

1A spherically symmetric lens produces a ring like image of a background source, if the source is
located directly behind the lens. The ring is called an Einstein ring and its radius the Einstein radius.
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the imprint left on the cosmic microwave background radiation and the evolution of
the inhomogeneities to the present day can be calculated using numerical simulations.
What is needed, is an equally good reference point at later evolutionary stages of the
universe.

The first strong lensing clusters were discovered when giant luminous arcs were
identified in CL2244-02|(ynds & Petrosian1986 and A370 [Goucail et al.198%).

The nature of the arcs was not immediately recognised but spectroscopy of the arcs
revealed them to be at high redshifts making gravitational lensing the only viable ex-
planation for the highly elongated structures. Since then many more clusters with giant
arcs and multiple images have been found.

Great dfort has gone into the detailed studies of many clusters with weak and
strong lensing methods as well as X-ray and dynamical mass estimates. Ideally one
should obtain the same mass for a cluster regardless of the method but difieremdi
approximations and assumptions in the methods the measured masses can have dis-
crepancies as large as factor of 3 e.g. clusters A2Rb&ib et all1995 |Abdelsalam
et all[1998although recent studies [¥irardi et all199% [Cannon et al1999claim to
resolve this problem.) and A168&irardi et all1997% [Clowe & SchneideP001; |King
et alll2002, [Xue & Wu 2002 [Andersson & MadejskP004). In some other clusters
however a good agreement is found. An example of such a cluster is CLIER224 (
et al,[1999).

The discrepancies are most likely associated with complicated dynamical states
of the clusters. Mergers and subcomponents in the mass structure of a cluster can
increase the measured line of sight velocity dispersions. The X-rays mass estimates are
affected by non-spherical mass distributions in clusters and deviations from hydrostatic
equilibrium. Lensing on the other hand i§excted by mass structures along the line of
sight not associated with the cluster and unknown redshifts of the background sources.
The key to our understanding of galaxy clusters is to use all the methods at our disposal.

Another hotly debated issue is related to the exact profile of galaxy clusters. Weak
lensing is most sensitive around the scale radius where both NFW and isothermal
spheres have logarithmic gradients close to -2. This makes it véigudli to reject
one of the profiles with high confidence using weak lensing alone. The inner slope can
be obtained with strong lensing but also here controversy prevails with NFW matching
the observations well in some clusters (e.g. CLOBK#Ib et al,[2003 and isothermal
sphere in others (e.g. MS21%3avazzi et a|l2003.

1.2.3.1 Abell 1689

Abell 1689 is a very massive cluster at a redshift 0.18 that has been studied extensively
with spectroscopy, X-rays and gravitational lensing. Most of the lensing work done so
far is in the weak lensing regime, although some models based on the prominent giant
arc have been constructed.
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The first dynamical mass estimates measured a very high velocity dispersion of
almost 2400 kirs[Teague et di(1990). This has since been reduced by a reanalysis of
the data to a more moderate value of 150Q0ki@Girardi et al,[1997). The reanalysis
revealed A1689 to have 3 significant substructures with well defined velocities that
overlap spatially. Considering them all as one structure gives the very high dispersion
of [Teague et 8l(1990). The 3 separate structure are a likely reason for the problems
associated with the very fiierent mass estimates from the 3 methods. The separate
structures can increase the observed velocity dispersion of the cluster as well as
complicates the mass estimates based on the X-ray emitting gas.

Of the mass estimates, X-ra&llen), (1998 [Xue & Wu, 2002, |Andersson & Made-
jski, 2004 produces consistently the lowest mass estimates. Most reZemdBrsson
& Madejski (20049 obtain a velocity dispersion of only 918 ks

Weak lensing has been used in many various forms to estimate the mass of the clus-
ter (Tyson & Fischey1995 [Taylor et al,[1998 Dye et al,[2007; [Clowe & Schneider
2007 King et al|, 20027 [Clowe, (2003 Broadhurst et &|2005F. The weak lensing
results generally favour a fairly small velocity dispersion of 1000-120@skiar an
isothermal sphere, although there are also exceptions of theTay®f et al, (1998
Dye et al,2007).

For a long time the only strong lensing analysis of A1689 was thaflicilda-
Escude & Babu1995 who used two prominent arcs to construct a simple two halo
model for the cluster. One of the haloes has a velocity dispersion of 145)dad
the other 700 kifs. This is in fairly good agreement with the dynamical mass estimate
presented ifGirardi et al.(1997).

What has been lacking until very recently is a thorough investigation using the full
potential of a strong lensing analysis in this cluster. This deficit will be dealt with in
this thesis.

That no proper strong lensing model exists is mainly due to the lack of deep im-
ages of the cluster taken with the Hubble Space Telescope. The use of space based
observations is necessary in order to be able to resolve the many faint multiple images
expected to be identifiable in the cluster. In this work we will use recent HST WFPC2
and ACS images in 6 passbands (WFPC2: F555W, F814W, ACS: F475W, F625W,
F775W, F850L) in the HST Science Archive. Essentially the same data set has been
used in several other recent strong lensing models of the cliBteadhurst et g|.
2005a|Diego et al,[2005h [Zekser et a| 2006
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1.3 Outline of the thesis

After this short introduction to the important background and terminology to the
subject presented here, the thesis will continue as follows.

In ChaptefZ we quickly describe the code developed as a part of this thesis to
allow a flexible and fficient platform under which all the lensing analysis in this
thesis could be performed. The GLens package includes the strong lensing mass
reconstruction code and separate Ydfigloutines used for further analysis and
visualisation of the obtained cluster models.

The following 2 chapters are made from published journal articles. In Chapter
we reproduce an article to be published in the Monthly Notices of the Royal
Astronomical Society. In the article we present two parametric strong lensing models
for the cluster along with mass profile of the cluster. In Chdfitee take advantage of
the unprecedented number of multiple images in this cluster and the strong constraints
imposed in the mass distribution to derive statistically sizes for the dark matter
haloes of the cluster galaxies. This is the first time this has been done using strong
galaxy-galaxy lensing in clusters.

In chaptefs we attempt to explain the poor performance of strong lensing models
generally obtained in galaxy clusters. This is done by assuming that the dark matter
halo of the cluster as whole is not completely smooth as is assumed in the models but
that the halo is composed of numerous smaller mini haloes.

We finally bring it all together and summarise the work in chapter

Lyorick is an interpreted programming language, designed for post processing or steering large scien-
tific simulation codes. It is freely available at hifpww.maumae.ngyorick/dogindex.php



28

CuAPTER 1.

INTRODUCTION




Chapter 2

GLens - a software package for
strong lensing analysis

This chapter is intended to give a short introduction to the GLens package. For basic
ideas in gravitational lensing see sec{lbdin the Introduction of this thesis and e.qg.
Schneider et al[1992); Meylan et al.(200€) for through treatments of the topic.

Gravitational lensing is a powerful tool in studyindtérent astronomical phenom-
ena such as large scale structure in the universe, matter in clusters and galaxies, and
extrasolar planets. GLens was written in order to study the dark matter profiles of
galaxy clusters but can equally well be used to study individual galaxies also. Itis a
collection of tools written mainly in-€+. It includes an extensive set of plotting rou-
tines that utilise Yorick, a diverse interpreted environment well suited for displaying
scientific data.

GLens allows the user to model both simple single lens systems like lensing of
gquasars to strong lensing features identified in massive galaxy clusters where one can
identify dozens of lensed sources and the features are created by hundreds of individual
lenses. The package implements three parametric density profiles that are physically
well motivated in scales ranging from galaxies to galaxy clusters. The parametric
models are the universal dark matter profile (NN&varro et al(1996), and a family
of isothermal sphere profiles including truncated isothermal spiid@eenerd et al.

1996).

GLens inverts the lens equation and does a proper optimisation of the lens parame-
ters in the image plane, that is minimising the distances between observed images and
those predicted by the model. Optionally the user can choose minimise in the source
plane. This is significantly faster than an image plane minimisation but can in some
cases lead to biased model parameters. In calculating the sourcepldhe errors
estimated for the image positions are scaled with the local magnification. The resulting
2 is in most cases a good tracer of the image pjghe
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2.1 Parametric Lensing Profiles

Parametric models of gravitational lenses are ideal in many situations due to their well
described, and understood, properties and the usually fairly small number of constraints
available. Even in over constrained systems with hundreds of multiple images para-
metric models can perform extremely well, due in part to the limited parameter space
needed to explore in order to find good models which limits the danger of finding local
minima present in the problem. The parametric profiles implemented in GLens are all
well motivated in an astrophysical context through either theoretical arguments or nu-
merical simulations. Although only a few profiles are implemented at the moment the
inclusion of additional lensing profiles is very easy, and in principal only the deflection
angle needs to be described analytically. The implemented profiles are described in
some detail in this section.

2.1.1 Isothermal Spher¢g Ellipsoid

A model often used in gravitational lensing for galaxies and clusters of galaxies is a
singular isothermal sphere (SIS) (e@ott & Gunn [1974 [Turner et al.[1989. SIS
naturally reproduces the observed flat rotation curves of galaxie$fRebgrts & Rots

1973. The following equations describe a non-singular (or softened) isothermal ellip-
soid Hinshaw & Krauss1987) where the singularity has been removed with a core
radius, and additionally an ellipticity has been incorporated to better model the ob-
served galaxy shapeSéditz et al.[1998. The velocity dispersion is in principle a
direct observable and can be obtained by measuring the velocities of individual cluster
galaxies. It defines the overall mass scale of the system. The core radius is included
to fit observational data that indicate that some clusters have constant density cores as
opposed to an increasing density towards the centre.

In the equations below ellipticity is introduced to the gravitational potential, in a
similar fashion td&ochanek et al(1989, and not the mass distribution. This approach
has some problems with large ellipticities, when the accompanying mass distribution
can have negative values, as notedBtgndford & Kochanek(1987), Kormann et al.
(1999 and others, but is numerically rather simple and straightforward to implement
since all parameters of interest can be calculated from the analytic derivatives of the
potential. An alternative approach is to have an elliptical mass distribution as demon-
strated byKormann et al(1994 but the expressions for deflection angig,(surface
mass densityk) and sheary) are considerably more complicated.

In the following equationg is gravitational potential is (image) position on the
lens plane( is a core radiusg=b/a=(1-€)/(1+¢€) is the axis ratio of the potential and
e is the Einstein radius of a singular isothermal sphere.
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The equations for the deflection potentia(q)), the deflection anglen(), « andy

are
_Yo /2 o L o
W(6) = z l +q01+at92—05 c(o), (2.1)
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«(0) = %V%//(o) - % % (Q+ 42+9§+a§) , (2.3)
with Q. =q+ 2,
_1 6 2 2, 2
70)=3 g (@ -6 +8). 2.4
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2.1.2 Universal Dark Matter Profile

The universal dark matter profile is an analytic fit to results of numerical N-body sim-
ulations of galactic haloes tiMavarro et al(1996). These simulations showed that
density profiles of galactic haloes of venyidrent sizes (two decades in radius) could
be fitted with a single 'universal’ profile. At small radii{rs or x=r/rs <1) the NFW-
profile is flatter than (singular) isothermal wifhe r=1, whereas for large radii (1),
wherep « r=3, it is steeper than isothermal which has: r=2 everywhere. Numeri-
cal simulations at higher resolution than the origiNalvarro et al(1996 paper (e.g.
Navarro et al.2004 Tasitsiomi et al.2004 [Diemand et a|/2004 show that the cusp
in the centre of a dark matter halo remains and is not a numerical artifact. The origin
of the break in the logarithmic slope of density has been attributed to mass accretion
processesHukushige & Makinp2007; [Salvador-Sd et al, 2005 [Lu et al,[2006 end
references therein).

Lensing by NFW-profile has been studied in a number of papersBartelmaniy
1996 Kneib et al, [1996 Wright & Brainerd [200Q [Golse & Knei)[2002). We have
implemented an elliptical NFW-profile (ENFW) following the formalism described in
Meneghetti et dl(2003. They have introduced the ellipticity to the deflection angle
rather than the potential (or mass distribution). Here we show only the expression for
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the deflection angle. For details of the derivationSEmeghetti et al(2003.

The deflection angle for a spherical NFW mass distribution=afrxis

4k
M) = =2g(x), (2.6)
with
2 1-x
y ﬂarctanh,/m ,X<1
g(x):ln§+ 1 ,x=1 2.7)

2 x=1
marctan,/m ,X>1

We approximate an elliptical mass distribution with axis ratio q by elliptical con-

X X
QENFW _ o NFW(, ) ax QENFW _ oNFW(, ) X2
! X 2 ax

The surface mass density) @nd sheary) are calculated from the elliptical deflec-
tion angles by numerical fferentiation;

K(X) = Va(X) , (2.8)

7= 5(01100-02209), 72 = 01200 = 02209 29)

whereai,j(x)=(ag>(<?()).
J

2.1.3 Truncated isothermal sphere

The truncated isothermal sphere has been introduc@&fduperd et al (1996 in the
framework of galaxy-galaxy lensing. The two parameters of BBS profile are truncation
radius §) and central velocity dispersion). The density profile of the BBS model is
then given by

oz &

0= G 7 )

(2.10)
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Forr < sthe density profile is similar to a singular isothermal sphg(g) ¢< 1/r?)
where as for > sthe density falls & quicker p(r) o 1/r*) to avoid the infinite mass
of an isothermal sphere. The BBS profile parameterisation can also be used to study
the dependence of the truncation radius of a galaxy on the environment. Galaxies
in high density environments are expected to have less extended haloes due to tidal
truncation. The velocity profiles of galaxies as measured frdfaraint optical tracers
are relatively little #fected and remain nearly isothermal but the dark haloes that
extend beyond the visible parts of galaxies are strongly truncated.

The deflection angle of a BBS profile is

402D
aBBS(x) = %Zxds [1+ x—V1- xz] 2.11)
S

with x=r/s.

We have included the ellipticity in the BBS profile in the same Wésneghetii
et all (2003 did for the NFW profile. The deflection angle of a BBS profile with axis

ratio q is
1,
X—xy = C])(§+—X2

EBBS_ BBS, , X EBBS_ _BBS/ \ X2
ay =a 7 (x) —, a5 =a°" > (y) —
X ax

The surface mass density and shear are calculated from elliptical deflection angles
by numerical diferentiation as for the NFW profile.

2.2 Finding Optimal Model Parameters

Goodness of fit in strong gravitational lensing can be quantified in two ways. The
proper way is to calculate g in the image plane, i.e. how far an image predicted by

a model is from the observed one. In calculating the positions of predicted images of
an image system, we assume that the images of a system originate from the average
source of the images. The expression for an image plaiethen

Ok — 6 i >)?
X2222| k. Szﬂk, > (2.12)
P k
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whereé,; is the position of imagein image systenk andé;(< B >) is the pre-
dicted image position corresponding to imag@atfrom mean source of systekmt
< Bki > ando is the error in image positions for systénfestimated to be 1 pixel for
all images).

Calculating image plang? is unfortunately very time consuming since the lens
eqguation needs to be inverted numerically. An additional complication is that for some
values of the model parameters not all observed images necessarily exist. This means
that an image plang? does not necessarily converge to the optimal parameters but is
trapped in a local minimum.

Goodness of fit can also be estimated by requiring that all images of an image
system originate from the same source and hence minimise the dispersion of the source
positions. The problem in this case is that the errors are measured in the image plane
and do not necessarily represent the errors in source positions. We take account of
this by rescaling errors in the image plane with local magnification. Rescaling by
magnification largely avoids bias towards cluster parameters with high magnification
(large core radius for the NSIE model or small concentration for ENFW model). The
source plang?, ¥, can be written in the following way,

;2:222202 Bki =B jI? (2.13)
' ki

. 2 L
TS /ﬂk,l +0-k,j/,uk,j

wherepy; is the source position of imagein systemk, oy; is the error in the
corresponding image position apg; is the local image magnification.

The advantage g2 over y? is that for every image position it is always possible
to calculate a corresponding source position ang?stan be calculated for all values
of the model parameters makiigg converge well.

To find optimal model parameters it is often a good idea to first minimpfsto
obtain model parameters close to the optimal ones to ensure that the identified multiple
images can be reproduced by the models. The optimal model parameters can now
found by minimisingy? properly in the image plane.

The optimisation of all the free parameters of the lenses and multiple images is
based on Powell's directional method in multi-dimensions (Numerical ReciPes’s
et all [1992). For the source plane minimisation the method is fast, the direction of
the fastest improvement ii? is calculated and the free parameters are changes ac-
cordingly until convergence is reached or the desired number of minimisation steps
has been performed. For the image plane minimisation the implementation contains
nested minimisations. For each set of free parameters we need to calculate image po-
sitions for a given source. This is done by assuming a starting position for the image at
the observed position after which Powell’s directional method is used to minimise the
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distance between the source of the observed image and the source position we want to
predict images for. Since this needs to be done for all images every time a parameter of
the model has been changed the minimisation time in the image plane is significantly
higher than in the source plane.

2.2.1 Degeneracies

Any multiple image system can only constrain the mass contained within the images.
This leads to degeneracies in the derived surface mass profile. The so called mass
sheet degeneracy states that if a given surface mass density satisfies image constraints
then a new surface mass density can be found, by suitably rescaling this surface mass
density and by adding a constant mass sheet. This new surface mass density satisfies
image positions as well as relative magnifications equally well, i.e. the mapping
(1-2)«+ A leaves all observable image properties intact.

For haloes with variable mass profile this can also create a degeneracy between the
parameters of the profile. For the NSIE model a high core radius can be compensated
for by a larger velocity dispersion and for NFW a higher scale radius demands a lower
concentration parameter.

These degeneracies can be broken if multiple image systemSeaedt redshifts
and at diterent radii can be found. Position of a radial critical line, and so radial arcs,
depends critically on the mass distribution in the central regions and hence the core
radius. On the other hand tangential arcs give strong constraints on the mass on larger
scales. When choosing the parameterisation of the lens one should carefully consider
the constraints and choose the number of individual lenses and the free parameters of
the lenses accordingly.

2.2.2 Using GLens

The configuration of the lens and observed multiple images is easy and intuitive. Since
the diameter distances of the lenses and sources depend on the cosmology, the config-
uration file starts with the definitions of the energy densifigs Qxand the Hubble
constant |J. The image and lens positions are given in pixels and for the conversion to
physical units a pixel scale is also required. For the calculation of the deflection angle,
surface mass density and the shear, also the region of the sky in which these quantities
are wanted needs to be defined. The format of the header is the following:

omega_matter value
omega_lambda value
ho value
pixelscale value

sky X_min x_max y_min y_max step
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The number of lenses can (in principle) be arbitrarily large to accommodate any
possible substructure in the lens. For each lens, key profile parameters and a position,
ellipticity and position angle can be defined. Any of the above mentioned parameters
can also be allowed to have a range of values and the program will then find an op-
timal value for that parameter in the range provided. In the following we show the
configuration of an NSIE lens.

lens

nsie

Xy 0/1 (x_min x_max y_min y_max)
redshift

sigma 0/1 (min max)

core_radius 0/1 (min max)

ellipticy 0/1 (min max)

position_angle 0/1 (min max)

The configuration of a lens starts by defining its type. The type can be either nsie,
enfw or bbs. Next follows the position of the lens in pixels and a 0 or a 1 indicating
if the position is to be optimised. In case the position is to be optimised, then also the
range in x and y need to be given. The last positional coordinate is the redshift. The
meanings of the next two parameters depends on the lens profile. The first parameter
gives the 'strength’ of the lens and the second the 'shape’. For the NSIE profile these
are the velocity dispersion and core radius. For the ENFW profile theseGfrand
concentrations. For the BBS profile the velocity dispersion and the truncation radius.
The last two parameters are the ellipticity and the position angle of the ellipse. All
parameters apart from the redshift can be marked as free parameters.

source redshift 0/1 min max
weight

image x y

image x y

image x y

The multiple images used are grouped by their sources. The strength of the lens
depends on the distance of the source and so a redshift needs to be estimated for all the
sources. Any of the redshifts can optionally be added to the list of free parameters of
the model. This can be done in cases where the redshifts of the sources are unknown,
or account for the errors in photometric redshifts. The multiple images of a given
source are assumed to originate from a singe point in the minimisation. Therefore
one should try to select clearly identifiable features in the multiple images. For the
source one needs to define its redshift (and possible an allowed range), a weight and
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the image positions. The weight can be used to gifeint relative importance to
the diferent multiple images. The weight as well as the positions of multiple images
are fixed.

The number of free parameters to be optimised is not limited, but the user should
make sure that the number of free parameters is reasonable when compared to the
constraints from the observed multiple images. Otherwise strong degeneracies between
the model parameters can occur. More multiple images and lenses can be included by
simply adding an lens or a source entry in the configuration file.

Once this has been done it is time to call GLens and let it do the work. GLens has
many command line options but the most important are -s (—save) and -m (—-minimise).
-s takes no argument but -m needs to know whether the minimisations should be done
in the source plane (1) or in the image plane (2). The optimised lens configuration will
be saved in the same file (overwriting the old configuration) unlesffereint name
for the output is given with the -o (—output) flag. If -s flag is used then the deflection
angle, surface mass density and the shear data will be writtermntput file >.fits (or
to < outputfile>.fits if < outputfile> is defined with -o flag).

halkola@cursa: " /glens>glens -s -m 2 <inputfile>

The fits data cube (where, « andy are stored) is necessary for the plotting of
critical curves and caustics as well as surface mass density contours. The critical curves
are areas of very high magnification in the image plane. For a circular source this is
also where the einstein ring would be seen. The caustics are the corresponding high
magnification areas in the source plane. The data saved in the fits cube can also used
to predict images and unlensing the observed multiple images in order to reconstruct
the true source shape.

2.2.3 Yorick routines

The routines for plotting dierent aspects of the gravitational lens defined in the config-
uration file take advantage of the powerful array operations in Yorick. In the following
we demonstrate some of the things that can be done with the plotting routines defined
in the Yorick script-file glens.i.

open_glens, <inputfile>

source_z, 3.04

objects,1,1

kappa, levs=[ 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 ]
crit, color="blue"

caus
src_cont,id=1,levs=20,lcolor="magenta",scolor="cyan"

vV V V V V V V
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Figure 2.1: The surface mass density contours of a simple two lens system.
[0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6] contours are shown in grey & 1) in black > 1).

The positions of images from one of the multiple image systems used in constraining
the parameters of the lenses are shown with triangles. For these contours the lens has
a redshift 0.18 and the source is at redshift 3.04.

The first line opens the lens configuration file and the associated data file. Next we
define the source to have a redshift of 3.04. This is important since the surface mass
density contours, critical curves and caustics all depend on the redshift of the source.
The output of the next 2 commands are shown in Bid, where the image positions
for the first multiple image system are shown along with the surface mass density
contours as defined with levs option in the plotting routiappa Thex < 1 contours
are shown in grey while > 1 are shown in black. As can be seen from the surface
mass density contours the lens configuration is relatively simple (only two NSIE
lenses). This example is based on the strong lensing models that will be presented in
the next chapter with the fierence that mass is assumed to be in only two smooth
haloes.

In Fig.2.2we show the output of the remaining 3 commands. First we display the
critical lines (and define their colour to be blue), and the caustics (the default colour
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Figure 2.2: The critical curves (blue) and caustics (red) corresponding to the mass
distribution shown in Fig.Zd Also shown is one of the multiple image systems
used in constraining the parameters of the two lenses in the model (triangles). The
magenta contours show the model expectations for the positions of the those multiple
images, the cyan circle the unlensed source. Comparing magenta contours are clearly
distorted from the circle used as the source and are significantly larger demonstrating
the magnification ect of gravitational lensing.

is red). With the last command we place a circular source with a radius of 20 pixels
at the mean source position of the images in image system 1. The source is shown as
the cyan circle, and images of the circle are shown as magenta lines in the figure. The
areas of the magenta contours show the relative magnification between the multiple
images. Comparing the areas of the images to the area of the source gives the absolute
maghnifications of the images. The predicted images line fairly well with the input
image positions shown with triangles. The reason for thigetis that the models were
constrained by many more multiple image systems than just the one shown in these
figures.
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Chapter 3

Parametric Strong Gravitational
Lensing Analysis of Abell 1689

3.1 Abstract

We have derived the mass distribution of galaxy cluster Abell 1689 witBiMpc/hzg

of the cluster centre using its strong lensidfget on 32 background galaxies, which

are mapped in altogether 107 multiple images. The multiple images are based on
those ofBroadhurst et d(20058 with modifications to both include new and exclude
some of the original image systems. The cluster profile is explored further out to
~ 2.5 Mp@h;o with weak lensing shear measurements fi®imadhurst et al(20055).

The masses 0200 cluster galaxies are measured with Fundamental Plane in order
to accurately model the small scale mass structure in the cluster. The cluster galaxies
are modelled as elliptical truncated isothermal spheres. The scaling of the truncation
radii with the velocity dispersions of galaxies are assumed to match those of i) field
galaxies|Hoekstra et aJ.2004 and ii) theoretical expectations for galaxies in dense
environmentsi¥erritt,[1983. The dark matter component of the cluster is described by
either non-singular isothermal ellipsoids (NSIE) or elliptical versions of the universal
dark matter profile (ENFW). To account for substructure in the dark matter we allow
for two dark matter haloes.

The fitting of a single isothermal sphere to greoothDM component results in a
velocity dispersion of 145G3 knys and a core radius of 73 kpg/hzo while an NFW
profile has amyqo 0f 2.86+0.16 Mpgh7o (M200=3.2x 10"°Mg h7o) and a concentration
of 47J_r82

The total mass profile is well described by either an NSIS profile with

1This chapter is a reproduction of a manuscript that has been accepted for publication in the Monthly
Notices of the Royal Astronomical society. The other authors of the manuscript are Stella Seitz and
Maurilio Pannella.
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0=151418 knys and core radius of.=71+5 kpghzo, or an NFW profile with
C=6.0£0.5 andrygp = 2.82 + 0.11 Mpghyo (M200=3.0x 10'°M¢ hyg). The errors
are assumed to be due to the error in assigning masses to the individual galaxies in
the galaxy component. Their small size is due to the very strong constraints imposed
by multiple images and the ability of the smooth dark matter component to adjust to
uncertainties in the galaxy masses. The agreement in total mass profile between this
work and that oBroadhurst et al(20054 is better than 1+ at all radii despite the
considerable dierences in the methodology used.

Using the same image configuratiorBa®adhurst et (200548 we obtain a strong
lensing model that is superior to thalBfoadhurst et d(20054 (rms of 2.7” compared
to 3.2"). This is very surprising considering the larger freedom in the surface mass
profile in their grid modelling. The ¢lierence is most likely a result of the careful
inclusion of the cluster galaxies.

Using also weak lensing shear measurements Booadhurst et gl(2005h) we
can constrain the profile further outtte-2.5 Mpghyo. The best fit parameters change
to 0=1499:15 knys andr.=66+5 kpghy for the NSIS profile an€=7.6+0.5 andrq
= 2.55+0.07 Mpgh7o (M200=2.3x 10**M¢, h7o) for the NFW profile.

3.2 Introduction

Abell 1689 at a redshift of 0.18 is one of the richest clusters of galaxies on the sky.
Its closeness and richness should allow a straightforward mass determination using the
gravitational lens fect on background galaxies, the dynamics of cluster members and
the X-ray emission of the intra-cluster gas. Nevertheless, these methods have come up
with strikingly different results in the past.

Observations with th€handra(Xue & Wu, 2002) andXMM-Newton(Andersson
& Madejski, 2009 satellites yield masses roughly a factor 2 lower than strong lensing
measurements (e.Bye et al,[200]). The first line-of-sight (LOS) velocity measure-
ments of cluster member3dague et g1/1990) had resulted in a velocity dispersion
of o ~ 2355 kmjs, compared to a value of onby ~ 1028 ks for a singular isother-
mal fit to weak lensing measurements by, for exaniilag et all (2002). Therefore
the singular isothermal sphere velocity dispersion estimates of the cluster from strong
lensing, X-ray and weak lensing analysis originally implied a mass estim@eedit
by a factor of up to 5.

The apparently incompatible weak and strong lensing results for an isothermal
sphere are most puzzling since both methods measure the (same) line-of-sight pro-
jected two dimensional surface mass density of the cluster. If parameters obtained with
these two methods onftiérent angular scales do not agree for a given mass profile, it
implies that i) the assumed mass profile does not describe the true mass distribution at
all, or i) that one analysis (more likely the weak lensing analysifgssifrom underes-
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timated systematic errofBroadhurst et d{20058 have shown that this is the case for
A1689, i.e. that in previous analyses the contamination of the ’background galaxies’
with cluster members could have biased the lensing signal of the background galaxies.
Their background galaxies show (compareCiowe & Schneide2007); [King et al|

(2002) a factor of roughly two higher lensing signal on large scales and make the or-
der of magnitude mass estimate in the weak and strong lensing analysis agree. This
discrepancy is much less in new worksBrsoadhurst et 8i(2005F) andBardeau et &l.

(2009 as well as in the reanalysis [@lowe & Schneide2007) in [Clowe (2003 in

which additional filters were included and a cleaner background source catalogue was
used.

The discrepant results from the cluster dynamics and the X-ray data relative to the
strong lensing analysis can potentially be explained, if some assumptions in the inter-
pretation of the dynamics of galaxies and the X-ray emitting intracluster gas, i.e. hav-
ing onespherically symmetric isothermal structure in dynamical equilibrium, are not
valid. Indeed(Girardi et al.(1997) identified three substructures (using spectroscopic
data fromTeague et gl(1990) in Abell 1689 which are well separated in velocity
but overlap along the line of sight. This reduced the previous value of the cluster's
velocity dispersion from 2355 kfs by[Teague et al(1990) to 1429 knis, a value in
good agreement with strong lensing results. Evidence for substructure and merging
was also found in velocity eierences of X-ray emission lines and in X-ray temper-
ature maps bjAndersson & Madejsk{2004. They pointed out that the X-ray mass
estimate (lower by a factor of two) would double if two equal mass structures along the
line-of-sight are responsible for the X-ray emission in stead of just one structure. The
X-ray surface brightness map, however, and the weak lensing data of A1689 indicate
an almost circular (2D projected) mass distribution centred on the cD galaxy. This is
not necessarily contradicting the substructure results summarised above, as long as the
two major contributions in mass are on the same line of sight, and each of them is a
fairly relaxed structure. The issue of relarrelaxed systems and the cluster X-ray
temperature - mass relation is studied in 10 X-ray luminous galaxi&nfith et al.
(2009 using Chandra X-ray and weak and strong lensing. They find that a large frac-
tion of their clusters are experiencing, or recovering from, a cluster-cluster merger and
that the scatter in the cluster X-ray temperature - mass relation is significantly larger
than expected from theory.

The current status of the strong lensing, weak lensing, the dynamical and the X-ray
mass estimates for A1689 are defined by the worl&roadhurst et 820054, Broad*
hurst et al.(20058, [Girardi et al.(1997% and/Andersson & Madejsk{2009 respec-
tively. The mass estimates agree well with the exception of the still low X-ray mass
estimate. The X-ray mass can be brought in line with the masses from other methods
if two equal mass substructures along the LOS are responsible for the X-ray emission
(Andersson & Madejsk2004).
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Broadhurst et &l(2005h) also carried out a combined strong and weak lensing
analysis. They rule out a softened isothermal profile at a 18+el. According to their
work, a universal dark matter profile (NFW) with a concentratio€efl3.7*1 and a
virial radius ofr,;; = 2.04+0.07 M pc/hyqo fits the shear and magnification based on
weak and strong lensing data well. For a flat universe Wjtk0.3 the virial overden-
sity with respect to the critical density #£=100. They point out that the surprisingly
large concentration for A1689 together with results from other clusters could point to
an unknown mechanism for the formation of galaxy clusters. The strong rejection of an
isothermal sphere type profile has also been reported in galaxy cluster Gt 64
byKneib et al.(2003 who probed the cluster profile to very large clustercentric radius
(5 Mpc). They also find that both a power law profile and an NFW profile provide a
good fit.

Oguri et al. (2005 however have demonstrated that halo triaxiality can lead to
large apparent central concentrations, if these haloes are analysed assuming spherical
symmetry. This is because a highly elongated structure along the LOS imitates a
high central density if investigated in projection only. Allowing for triaxiality the
central concentration is less well constrained and not in disagreement with results
from numerical simulations of cluster mass profiles.

In our work we want to address the following points:

e Does one obtain the same mass profile with an analysis of the strong lensing
effect using a dferent method? We concentrate offfeliences between grid
method used bBroadhurst et 2i(20054 and our parametric method.

e Are mass profiles from weak (WL) and strong (SL) lensing at all compatible
with each other, or does the combination of both observations already rule out
an NFW or an isothermal profile?

e How much does the large concentration and the level of compatibility of the WL
and SL results depend on the values of two outermost WL shear data points?

e How good is the relative performance of a non-singular isothermal sphere vs. an
NFW profile, based on both the strong and weak lensing analyses?

We aim to investigate all these points with parametric cluster models. Our basic as-
sumptions are that substructure follows galaxies and the cluster mass can be described
by mass associated with the galaxies (both luminous and dark) plus a smooth compo-
nent. The multiple image configurations determine if there are one or more of these
smooth components necessary, e.g. two haloes of similar mass like in A370 (see e.g.
Kneib et al.(1993; /Abdelsalam et dl(1998) , or a massive halo plus less massive,
group-like components.
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We describe the smooth component by 2 parametric halo profiles. Deviations
from symmetry are accounted for by elliptical deflection angles (ENFW) or potentials
(NSIE) depending on the model. The first halo profile is the so called universal dark
matter profile (hereafter NFW profile), an outcome of numerical simulations of cold
dark matter cosmologie®Navarro et al.l1996. The second is a non-singular isother-
mal ellipsoid (NSIE) which naturally reproduces the observed flat rotation curves of
both late and early-type galaxies.

The profiles of cluster galaxies are described with an elliptical truncated isother-
mal sphere profileBlandford & Kochanek(1987) whose velocity dispersions are
determined using both Fundamental-Plane and Faber-Jackson relations.

Provided a range of plausible radial mass profiles are tested with parametric halo
profiles, a significantly better performance of grid methods, like the one used by
Broadhurst et al(20054 (alsoDiego et al.(2005&b); [Zekser et al(2006), can give
clues to the existence of dark matter substructure not traced by galaxies (dark mini
haloes) if these dark haloes are numefmmassive enough to influence the lensing
observables on a relevant level. Théfelience can also result from the details of a
particular modelling, e.g. the treatment of the cluster galaxy component and the dark
matter profiles used in modelling the smooth DM of the cluster.

In section3.3 we give a brief summary of the data and data analysis used in this
paper. Sectioi8.4 describes our method to obtain the best fitting lensing models,
results are given and discussed in sed8dh We draw conclusions in sectihé

The cosmology used throughout this paper %,=0.30, 2,=0.70 and
Hop=70 knmys’Mpc, unless otherwise stated. With this cosmology 1" corresponds to
3.1 kpc.

3.3 Data and Data Analysis

We have used archived opticllST (Wide Field Planetary Camera 2, WFPC2 and
Advanced Camera for Surveys, ACS) data in filters F555W and F814W (WFPC2) and
F475W, F625W, F775W and F850LP (ACS). A summary of the data can be seen in
Table3.1 The limiting 2” aperture AB magnitude in the table has been estimated from
the number counts of objects and where they start to depart from a power law. The
relatively wide field-of-view (202x202 arcs®aand high resolution (pixelscale 0.05”)

of ACS allow us to probe A1689 over the area where most of the multiple images are
formed. WFPC2 data are used to further constrain the photometric redshifts in the
central region of A1689 covered by the observations.
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Table 3.1:A summary of the data used in this study.

Filter t1(ks) #ofexposure§ psf(’) m

F555W (WFPC?2) 442 17 0.17 27.2
F814W (WFPC2) 5.0 5 0.20 26.7
FA475W (ACS) 9.5 8 0.11 27.2
F625W (ACS) 9.5 8 010 268
F775W (ACS) 9.5 8 0.10 26.6
F850LP (ACS) 16.6 14 011 263

1 Total exposure time in kilo seconds
2 Number of exposures combined
3 FWHM of point sources
4 The limiting AB 2” aperture magnitude estimated
from the departure of number counts from a power law.

3.3.1 Data Reduction
3.3.1.1 HST-WFPC2

The WFPC2 data in filters F555W and F814W come fié8T proposal 6004 byyson

(1995. We use pipeline flatfielded images which were combined usin§ tiaaks in
combination with psf fitting cosmic ray rejection algorithms developed in hdBésg|

& Riffeser2002). The steps of data reduction were as follows. First all features with
FWHM less than 1 pixel and a high signal to noise were marked as cosmic rays and
not used in any further analysis. In the second step the four chips of each WFPC2
exposure were transformed to a single coordinate system. In this step both the geo-
metrical distortions of the WFPC2 chips as well as translation and rotation between
the diferent CCDs and exposures were taken cdife The description oHoltzman

et all (1999 was used to remove the geometrical distortions. Themint chips have
slightly different photometric zeropoints and before the images were stacked all the im-
ages were normalised to the zeropoint of the planetary camera. The stacking was done
by taking a kappa-sigma clipped mean of each pixel. It was found during the reduction
process that the two stage cosmic ray rejection was necessary in order to remove all
the cosmic raysféiciently. Most of the cosmic rays were removed by psf- fitting in the
first stage and larger pointlike cosmic rays were removed in the stacking stage by the

kappa-sigma clipping.

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the As-
sociation of Universities for Research in Astronomy, Inc., under cooperative agreement with the National
Science Foundation.
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thot

Figure 3.1:Comparison between spectroscopic and photometric redshifts. Notice how
the reddest cluster ellipticals have been pushed to higher redshifts to compensate for
the relative blueness of the model elliptical SED in the SED library used to compute
the photometric redshifts. Filled symbols show the most likely redshift, open symbols
the second most likely for the objects where it is closer to the true redshift.

3.3.1.2 HST-ACS

The advanced Camera for Surveys has a larger field of view than WFPC2 at a similar
resolution. The data in filters F475W, F625W, F775W and F850LP come 8m
proposal 9289 bi{ord (2002). The "on the fly re-processing” (OTFR) provides flat-
fielded and calibrated data. The individual exposures were transformed to a common
coordinate system using PyDrizzle in pyraf. The cosmic rays were again removed in 2
stages as with the WFPC2 data.

3.3.2 Object Catalogues

The object catalogue was obtained with SExtradBartin & Arnouts [1996). To opti-
mise the extraction parameters of Sextractor - detection threshold and number of con-
tiguous pixels - a procedure similar to thaHeidt et al.(2003 was followed. Sources
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were detected from a signal-to-noise weighted sum of the four ACS filters. The pho-
tometry for the detected sources was then done in all filters. Output of SExtractor
used later in the lensing model include total and aperture photometry as well as source
ellipticities and their position angles.

3.3.3 Spectroscopic redshifts

The redshift data are collected from several published studies of Abell (&8 di

et alll199¢ Balogh et all2002, IDuc et al.2002, Golse200%, Frye et ali2002). In

total 84 spectroscopic redshifts were available in the ACS field of A1689. Except
Golse these studies concentrate on the line-of-sight velocities of the cluster members
in order to obtain the velocity dispersion and hence an estimate of the dynamical mass
of the cluster. The redshift information is used to get secure cluster members for the
lensing analysis, to exclude galaxies which are not part of the cluster and to compare
photometric redshifts with spectroscopic ones.

3.3.4 Photometric redshifts

We have calculated photometric redshifts using the method descrilizzhoter et al.
(200)). For the central regions we were able to use all 6 filters, otherwise only the 4
available ACS filters were used. Comparison between photometric redshifts and avail-
able spectroscopic ones is shown in Al Unfortunately spectroscopic redshifts

are not numerous and those that exist are mainly for cluster members. The model el-
liptical galaxy in the spectral energy distribution (SED) library used to calculate the
photometric redshifts is bluer than the reddest cluster members and hence the cluster
galaxies are pushed to redshifts slightly higher than that of the cluster. The slope of
the cluster redsequence causes the large spread in photometric redshifts of the cluster
members. The photometric redshift distribution of all objects is shown in [Big.

The cluster appears as a narrow peak~d.2 on the redshift histogram. Objects at
z~3-4 are either gravitationally lensed background galaxies or cluster galaxies whose
4000 A break was misidentified as Lyman break. This places them to redsBiffo

1This is an additional remark to the accepted paper. The redshift of an astronomical object can be
measured very accurately from the emission and absorption lines observable in the electromagnetic spec-
trum of an object. From an observational point of view this is very time consuming however and is only
suitable for bright objects.

2Available at httpy/tel.ccsd.cnrs.fdocumentgarchives@00/00/22/79

SThis is an additional remark to the accepted paper. In stead of using fine details of the spectrum it is
also possible to use the gross features of the spectrum, and estimate the redshift with photometry. The er-
rors on the derived redshifts are considerably larger than those of spectroscopic redshifts but photometric
redshifts can be easily obtained for large numbers of objects. Since the lefiiigney of the cluster
(shown in Fig[3:I1) depends only weakly on the redshift already at moderate redskift6% forz> 1
) this is not going to be a limitation for the derived results.
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Figure 3.2: Photometric redshift distribution of objects in the field of A1689. The
cluster is clearly visible as a peak at&2. The inlaid figure shows objects considered

as cluster galaxies. In a number of cases the 4000 A break of cluster galaxies was
misinterpreted as Lyman break and hence a redshi#twas assigned (see text for
details).

clearly discriminate between the two breaks we would need both redder and especially
bluer filters than the ones available. This confusion is not important in our case since
photometric redshifts are used to constrain redshifts of the multiple images. For these
the low redshift peak can be excluded because gravitational lensindfisiem if the
background source is close to the lens.

3.4 Lensing Models

In this section we describe how the lensing models of A1689 were constructed; the
different mass components of the cluster, the multiple image systems and the optimi-
sation of model parameters. The lensing profiles are described in detail in appendix

B71
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3.4.1 Cluster Galaxy Component

The cluster galaxies were selected using the redsequence method supported by spec-
troscopic redshifts where available. The spectroscopic data are takefiGirandl]

et all (1997 (using data froniTeague et al(199()), Balogh et al.(2002 and/Duc

et all (2002). We have excluded 6 objects from the cluster catalogue obtained with the
redsequence method based on foaekground objects listed Balogh et al.(2002)
andDuc et al.(2002). Fig. [3.3 shows a colour-magnitude diagramme of the cluster.
We chose to use filters F475W and F775W from the ACS observations as the cluster
redsequence is seen patrticularly clearly in these two filters. Galaxies included in the
lensing analysis are marked by triangles in B@ Solid triangles show the galaxies
which have been spectroscopically confirmed to be cluster members in one or more
of the referred papers. To find more members a redsequence in the CM diagramme
was determined by fitting a line to the bright end of the redsequence. Those galaxies
whose F475W-F775W colour deviated by less than 0.3 mag from the fitted sequence
were included as cluster members (region between the two inclined dashed lines in Fig.
B3.

Fig. [3.4 shows the positions of cluster members in the field of A1689 (using the
same symbols as in Fid3.3. The coordinate systems in all the figures of A1689
are centred on the cD galaxy at (RAL3'11M29°.66, Sec. -12027.86) and has
1-b/a=0.14+0.01 and a position angle 1441°.

The cluster galaxies were modelled with an elliptical BBS profeinerd et al.
1996 see appendi®. 7. Xfor further details). We have treated the two parameter profile
as a one parameter profile by assuming that truncation radisér). For radii smaller
thans from the galaxy centre the profile is isothermal witly(r < S) o r~2 where as
for r > s, pap(r > S) < r 4. We base our models for the tidal stripping of galaxies
on observational work bjdoekstra et al(2009 for galaxies in the fieldg« o2) and
theoretical expectations for galaxies in cluster environmeriof) (Merritt,[1983. We
only take the scaling of the truncation radii with the velocity dispersions of the galaxies
from the aforementioned works and find the normalisation of the truncation ragljus,
to fit the multiple images. The two scaling laws adopted in the paper are tisens] x
(o-ga|/l36km/s)2 and 2)s = s, x (ogai/136knVs), where for both scaling laws and all
Models we have found thg. that best reproduces the observed multiple images. The
scaling law for the truncation of galaxies in cluster environment will be treated in more
detail in a forth coming publication (Halkola et al., 2006 in preparation). Assuming
the usual scaling relations= s.(o/o,)* ando = o, (L/L,)*4, with the equation for

1The work on Fundamental Plane and the determination of the galaxy velocity dispersions is done by
Maurilio Pannella who is a co-author of the published paper.
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Figure 3.3:Cluster redsequence in ACS F47AW75W colour-magnitude diagramme.
Only non-stellar objects are plotted. The solid triangles represent cluster galaxies with
spectroscopic redshifts, open triangles all other objects which were considered as clus-
ter members in the lensing analysis. The remaining objects are represented by dots.
A clear cluster redsequence can be seen. Galaxies fainter than 22 in F775W were not
included in analysis since these have Einstein radii well below one pixel. See section
[B.4for details on the selection criterion for cluster membership.

the total mass of a BBS haloM« s 2 we obtain,

M/L o« s,02(L/L,)¥/41/2, (3.1)

This means that foir=1 we have a constant M ratio where as forw=1 M/L o
L4,

We find the fit to multiple images with a galaxy component described by the values
for s. (=185h7! kpc) ando, (=136 kmy's) and the scalings(= s. x (o7/c,)?) found
for galaxies in the Red-Sequence Cluster Suriéyekstra et ali2004) is very poor.
We obtain the best witls,=~37 kpc for their scaling law. This means that the galaxy
haloes in A1689 must be significantly stripped. The stripping of galaxies in cluster
environment has been reported earlier by Blgtarajan et di(1998 2002 who have
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Figure 3.4:Positions of cluster galaxies in the field of Abell 1689. The symbols corre-
spond to those in Fi@.3 Origin of the coordinate system is on the central cD galaxy.
The box width is 200" (corresponding t&625kpc at z0.18).

used galaxy—galaxy lensing in clusters to study the properties of galaxy haloes in 6
clusters at redshifts 20.17-0.58. They found strong evidence for tidally truncated
haloes around the galaxies compared to galaxies in thel@eldazzi et al(2004 were

only able to derive upper limits in MS03827 due to the smoothing scale employed

in their analysis.

The positions, ellipticities (of surface brightness) and position angles were taken
from SExtractor output parameters. The velocity dispersions of cluster galaxies were
determined mostly using the Fundamental Plane. For a small number of galaxies also
the Faber-Jackson relation was used.

3.4.1.1 Central Velocity Dispersions of Cluster Galaxies & Halo Velocity Disper-
sions

The Fundamental Plane (hereafter FP) links together, in a tight way, kinematic (ve-
locity dispersion), photometric fiective surface brightness) and morphological (half
light radius) galaxy propertie®fessler et a)l1987% [Djorgovski & Davis [198% Ben+
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der et al,[1992). We assume that the central velocity dispersion of a galaxy, as derived
from the FP, is equal to the halo velocity dispersion, and that mass in disk can be
neglected.

The FP relation allows us to estimate the velocity dispersion of galaxies more accu-
rately than the standard Faber-Jackson relation appréatief & Jacksarilo76. We
model the 2—dimensional light profiles of cluster galaxies with PSF—convolved Sersic
(Sersi¢ 1969 profiles using two packages, GALFIP€éng et a].2002 and GIM2D
(Simard et al.[1999, to have a better handle on the systematics. The analysis was
performed on the F775W ACS image. 176 objects with AB magnitudes brighter than
22 mag were fitted. The point spread function (PSF) used to convolve the models was
derived by stacking stars identified in the field. The results coming out from the two
completely dfferent softwares agree very well.

In order to be able to use a FP determination for cluster galaxies at red$ht
in restframe Gunn r filterJgrgensen et al1996 [Ziegler et al, [2007; [Fritz et al,
2009, all the observed F775Y¢ surface brightnesses (extinction corrected) were
converted to restframe Gung+y (Thuan & Gunin[1976 ones and corrected for the
cosmological dimming. Since the observed F775W passband is close to restframe
Gunn r at the redshift of A1689, the conversion factor between observed F775W and
restframe Gunn r is small.

The mean observed surface brightness withiis:

(ue)F775w = F779Wopservedt 2.5109(27) + 5log(re) — 10log(1+ 2), (3.2)

where the last term corrects for the dimming due to the expansion of the Universe.
It is then converted to restframe Gungyrby:

(e = eXrr7aw — Ar7ran + K(r, F7750\,2) + GTeorr, (3.3)

The Galactic extinction correctiof=775y is calculated from the list of A(B-V)
in table 6 ofSchlegel et al(1999, along with their estimate of E(B-V) calculated from
COBEandIRASmaps as well as the Leiden-Dwingeloo maps of HI emission. We
adopted forAr775y a value of 0.06.

The "k-correction colour”, K(r,F775W,z), is the fkrence between rest frame
Gunn r and observed F775W magnitude and includes also.fledg?1+ 2) term. It
was obtained by using an elliptical template from CW@bleman et a)/1980 and
synthetic SEDs obtained for old stellar populations (10 Gyr, ie=5 observed at
z=0.2) with theBruzual & Charlot(2003 models. All models give a conversion fac-
tor of approximately 0.174. The correction needed to pass from the AB photometric
system to the Gunn&Thuan system is {1~ 0.17 .
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We used the FP cdigcients froniFritz et all(2005. For the Gunn r band then
1.048«l0gRe = 1.24xlogo — 0.82x (| Yo + ZPgpy, (3.4)

where thgl)e term, i.e. the mean surface brightness in unitsg/pi?, is given for the
Gunn r band by the equation:

log(1 e = —0.4((ur Yo — 26.4). (3.5)

The zero—point of the FBPgp, is a quantity changing with both the cluster pecu-
liarity and, mainly, with the cluster redshift. We used &fep,; the value published in
Fritz et al.(200%. Their study was focused on A2218 and A2390, two massive clus-
ters at almost the same redshift as A1689. They applied a bootstrap bisector method in
estimating th&Z Prp; and relative uncertainties, finding a value of 0.88922.

Finally, we inserted the values derived from our morphological fitting procedures
into the FP relation. The uncertainties on the derived velocity dispersions were esti-
mated by taking into account the errors on the morphological parameters, the propa-
gated photometric uncertainties, the error onZirgp, value and the intrinsic scatter
of the FP relation, which gives the main contribution. We found that an estimate of
0.1 inlogE) is a good value for the total uncertainty in velocity dispersion for objects
having a velocity dispersion greater than 7g/&nfor lower velocity dispersions down
to 24 km's, we assumed an overall uncertainty of 0.2 dex. The fitted parameters for the
80 most massive galaxies are tabulated in T&ble

A comparison between total observed magnitude relations in three clusters
at redshift~0.2 are shown in Fig[3.3 Red points are measured values taken from
Ziegler et al.(200]) for A2218 (z=0.18), green points are values taken fréimtz
et all (2005 for A2390 (z=0.23) and full (empty) black points refer to the velocity
dispersion estimates obtained in this paper for A1689 using the GIM2D (GALFIT)
morphology. The literature values have been transformed to FZg5\dgnitudes by
applying relatively small colour terms (0.04,-0.4) and the AB correction (0.4).

Additionally, we have obtained the velocity dispersions of 26 galaxies using the
Faber-Jackson relations derived using the 176 galaxies for which we have obtained the
velocity dispersions via FP. These are all faint galaxies witt60 kmys.

The Einstein-radius of an isothermal sphere can then be writtegas
1.4"(0/220kmy/s)? D, where D is a geometrical factor of order unity depending on
redshifts of the objects and cosmology (0B < 0.92 for 1< z5 < 6 and our adopted
cosmology). The pixelscale of the ACS camera on H&T is 0.05"/pixel and so
1.4”corresponds to 28 pixels. Cluster members witl 24 knys were included in
the galaxy component of the cluster. This limit is somewhat arbitrary and below the
luminosity limit where FP and FJ are determined. An Einstein radius smaller than the
pixel size of the ACS ensures that all galaxies which could significaffibcimage
morphologies locally are included when external shear and convergence from the other
cluster galaxies and the cluster halo are present.
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Figure 3.5:Total observed magnitudes=relation for three 20.2 clusters. Red points

are measured values taken friegler et al.(2007]) for A2218 (z=0.18), green points

are values taken froifritz et all (2005 for A2390 (z=0.23) and full (empty) black
points refer to the velocity dispersion estimates obtained in this paper for A1689 using
the GIM2D (GALFIT) morphology. The literature values have been transformed to
F775Wag magnitudes by applying relatively small colour terms (0.04,-0.4) and the
AB correction (0.4).

3.4.1.2 Ellipticities of Cluster Galaxies and Their Haloes

Blandford & Kochanek(1987%), Kormann et al(1994 and others have noted that for
elliptical potentials the accompanying surface mass density can have negative values.
We have used elliptical potential for our NSIE profile since it is straightforward to im-
plement (all parameters of interest can be calculated from the analytic derivatives of the
potential). An alternative approach is to have an elliptical mass distribution as demon-
strated byKormann et al (1999 but the expressions far, k andy are considerably
more complicated.

For the ENFW and BBS profiles we have introduced the ellipticity to the deflection
angle, see appendB7.1for details and references. Théext of using an elliptical
deflection angle instead of an elliptical mass distribution is shown in[Bi§. The
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ellipticities of the mass distributions were estimated by fitting an ellipse=t&.2
isodensity contours for both BBS (top) and ENFW (bottom) haloes withférent
ellipticities (0, 0.05, 0.1, 0.15, 0.2 and 0.25). On the right panel a quarter of the
xk=0.2 isodensity contour for fferent profile ellipticities are drawn in solid. Dashed
lines show the best fit ellipses. For the BBS model the isodensity contours start to
deviate from an ellipse aiye >0.15, where the contours first appear boxy before
turning peanut shaped. For the ENFW profile the contours are only slightly peanut
shaped at,,=0.25. Left panels of Fig3.6 show how the ellipticity of mass deviates
from exappa=2€deni aNd ekappa=3eder lines shown dashed. We have assumed that light
and mass have the same ellipticity and used the relation in[Ei@to convert the
measured galaxy ellipticitiegiappg to BBS model ellipticities €gef)). A histogram of

the ellipticities of the included cluster galaxies are shown in[Big.

3.4.2 Dark Matter Not Associated with Galaxies

Different studies have shown that Abell 1689 is not a simple structure with only one
component. In an early strong lensing analysis of AlIBBfalda-Escudd1995 as-

sumed two halo components based on the distribution of gal&Ries.di et al.(1997),

on the other hand, spectroscopically identified three distinct groups in Abell 1689.
More recentlyAndersson & Madejsk{2004) have also found evidence for substruc-
ture and possible merger in X-ray data. This prompted us to model the cluster dark
matter in A1689 with two dark matter haloes. The use of more haloes in the modelling
is not desired since this increases problems related to a large number-of free parame-
ters; larger parameter space to explore, increag@dudty of finding global minimum

and degeneracies between the free parameters. Both haloes have 6 free parameters:
position (x,y), ellipticity, position angle and in the case of NSIE profile velocity disper-
siono and core radius. and for the NFW profile virial radiusygp and concentration
parameter C.

For all the following modelling we have constrained the first halo to reside within
50”in x and y from the cD galaxy in order to reduce the volume of the parameter space
and to reduce the degeneracy between the parameters of the two haloes. We do not
want to tightly connect the halo with any of the galaxies but use the position of the
cD as a first guess for the position of the cluster centre. This is supported by X-ray
maps of Abell 1689Xue & Wu, 2002 /Andersson & Madejsk2004) as well as weak
lensing studiesKing et all, 2002 which place the centre of the mass distribution very
near the cD galaxy. The position of the second halo was initially set to coincide with
the visually identified substructure to the north-east of the cluster centre but was left
unconstrained in the optimisation.
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Figure 3.6:Ellipticity of surface mass density vs. profile ellipticity (in deflection angle)
for the two profiles (BBS is on the top two panels and ENFW on the bottom two). The
ellipticity of « is estimated by fitting an ellipse to lines of constant surface mass density.
Right panels show=0.2 isodensity contours in solid and fitted ellipses in dashed lines.
Profile ellipticities are 0.0, 0.05, 0.10, 0.15, 0.20, 0.25 and increase from bottom to top.
The curves have anfiset of 0.25 in b for clarity. Left panels shagsppaas a function

of profile ellipticity egesi. The dashed lines aeRappa= 3 €defl aANUekappa= 2 €defi lines.

3.4.3 Multiple Images & Arcs

It is evidently of great importance for the modelling to find as many multiple images as
possible. The colour and surface brightness of an object aféegted by gravitational
lensing and we have hence used the colour, surface brightness and the morphology
of the images to identify multiple image systems. We have first identified arcs and
obvious multiple images which were then used to find an initial set of halo parameters.
Initial constraints include images from image systems 1, 3, 4, 5, 6, 12 and arcs that
contain images systems 8, 14, 20 and 32. A model based on these images could now
be used to search for more images for the existing image systems as well as new image
systems which could be included in the model and constrain the model parameters
further. New images were searched for by looking for image positions whose source
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Figure 3.7: A histogram of the ellipticitieseges, for the BBS profiles used to model
the cluster galaxies. Most of the galaxies have an ellipticity well below 0.15 where the
isodensity contours of surface mass density start to appear peanut shaped.

lies within a specified distance, e.g. 5”, from the source of an existing image. This
method is basically the same as describe8dhramm & Kayse(1987) andKayser &
Schramm(1989.

The images we have found are with a few exceptions also identified in the pio-
neering work ofBroadhurst et dl(20054. For our analysis we have merged the two
image catalogues to obtain a catalogue of 107 multiple images in 32 image systems
one of which is an long arc. In the merging we have split the image system 12 from
Broadhurst et d(20054 to two separate systems (12 and 13) with 2 additional images
from our catalogue. The splitting includes separating two images with the same spec-
troscopic redshift into two dierent image systems. We have done this based on the
morphology of the images and our lensing models and we believe these to originate
from 2 different sources. AldBeitz et al.(1999 in their analysis of cluster MS-1512
reported two sources at the same redshift. In the case of MSHIEfIRz et al.(2009
used near-infrared spectroscopy to confirm that the sources were indeed separate with a
difference of only 400 kys in velocity (0.0013 in redshift). To positively identify a set
of images to originate from a single source is vejiciilt without extremely accurate
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spectroscopy or obviously the same (complex) morphology. The field of A1689 has a
vast number of images that can potentially be erroneously assigned to any multiple im-
age system. In our work we have rather excluded an image than include it in an image
system. For this reason we have also excluded image system 28foadhurst et &l.
(20054 from our analysis. Image systems not usedBogadhurst et al(20053 are
systems 31 and 32, a system with 2 images and a long arc respectively.

Eight of the image systems used have an even number of images. The missing
images in these cases are always demagnified, and based on the lensing models mostly,
are expected to lie near a galaxy making their identification vefcdit.

In Fig. [3.8 we show all the multiple images used in this study. More details,
such as positions and redshifts, of the image systems, arcs and images can be found in
Appendix3.7.3 Tabled3.8 and3.9 as well asBroadhurst et 8l(20059. The redshifts
of the multiple images were estimated using the values from both this work and that
of Broadhurst et 220059 where possible. Secure spectroscopic redshifts come from
Golse (2002 andFrye et al.(2002. The redshift of image system 10 is taken from
Broadhurst et 20054 who in turn have taken it frorRort et al.(1997%). We have not
been able to confirm the validity of the redshift but have used in the analysis although
the use of it is debatable.

A comparison between photometric redshifts from this work and tho8razd*
hurst et al (20053 is shown in Fig[3.9 The overall agreement is very good. The one
object with a 21 from[Broadhurst et 8i(20053 and z-3.4 from this work belongs to
image system 1 and is one of the few objects with a spectroscopic redghif=@0).

In Fig. B.I0we show the photometric redshift probability density of the 5 multi-
ple image systems with a spectroscopically known redshift. In the figuresttbecdit
colours represent the probability densities of individual multiple images of the sys-
tem. In most of the cases the spectroscopic and photometric redshifts agree very well.
Only image systems 10 and 12 have a broad photometric redshift probability density
distribution.

The lensing power of a cluster depends on the rBtig/Ds, whereDgys is the
angular diameter distance between the cluster and the sourcBsasdhe angular
diameter distance of the source. In H§ 11 we show the power of a lens at redshift
0.18 for diterent source redshifts. Vertical lines in F§iI1show the range of allowed
Dy¢/Ds ratios for the image systems with photometric redshifts. The five squares mark
the image systems with known redshifts (two have the same redshift). g§BD
ratio can be well constrained by photometric redshifts alone. With the help of the five
spectroscopic redshifts we can very accurately separate the geometric factor from the
deflection angle allowing us to constrain the cluster mass tightly.
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Figure 3.8:Positions of multiple images used in constraining the model parameters.
The images from each multiple image system have the same number, the images within
an image system are coded with letters. The box sidé@ kpc with our cosmology.
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Z — this work

phot

Figure 3.9:A comparison of photometric redshifts of multiple images from this work
to those fronBroadhurst et d{(20054. The correspondence is very good and for most
objects within the errors. The one object withja#~1 fromBroadhurst et d((20054

and Znot ~3.4 from this work has a spectroscopic redshift §fez=3.04.

3.4.4 Finding Optimal Model Parameters

Goodness of fit in strong gravitational lensing can be quantified in two ways. The
proper way is to calculate)g in the image plane, i.e. how far an image predicted by a
model is from the observed one. In calculating the positions of predicted images of an
image system we assume that the images of a system originate from the average source
of the images. The expression for an image plghis then

bki —6i i >)P
X2=ZZ| K, (<2ﬂk, >)| ’ (3.6)
ko Oy

whereéy; is the position of imagein image systenk andé;(< Bk, >) is the pre-
dicted image position corresponding to imag@atfrom mean source of systekmat
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Figure 3.10:Photometric redshift probability density for the 5 image systems where
spectroscopic redshift is known for at least one of the images in the system. In each
panel the coloured thin lines represent individual redshift probability densities for the
images in the system. Only image systems 10 and 12 have a broad photometric redshift
probability density distribution, the other spectroscopic redshifts are recovered well.
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Figure 3.11:The lensing power of a cluster depends on the fatjg' Ds, whereDys is

the angular diameter distance between the cluster and the sourby amnithe angular
diameter distance of the source. This ratio flattens rapidly for redshifts larger than 0.5
(for a cluster at redshift 0.18). In the figure we show the alloggd/Ds ratios of

the diferent multiple image systems. The squares indicate objects with spectroscopic
redshifts. SinceDys/Ds varies only little for z2 the redshifts of sources are not of
great importance. The spectroscopic redshifts are important in fixing the overall mass
scale.

< PBki > ando is the error in image positions for systdn(estimated to be 1 pixel for
all images).

Calculating image plang? is unfortunately very time consuming since the lens
equation needs to be inverted numerically. An additional complication is that for some
values of the model parameters not all observed images necessarily exist. This means
that an image plang? does not necessarily converge to the optimal parameters but is
trapped in a local minimum.

Goodness of fit can also be estimated by requiring that all images of an image
system originate from the same source and hence minimise the dispersion of the source
positions. The problem in this case is that the errors are measured in the image plane
and do not necessarily represent the errors in source positions. We take account of
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this by rescaling errors in the image plane with local magnification. Rescaling by
magnification largely avoids bias towards cluster parameters with high magnification
(large core radius for the NSIE model or small concentration for ENFW model). The
source plang?, ¥, can be written in the following way,

P2 ZZZ i 1Bi — Bk jl? (3.7)

. 2 L’
PEEES O—k,i/,uk,l'ko_k’j/ﬂk,j

wherepy; is the source position of imagein systemk, oy; is the error in the
corresponding image position apg; is the local image magnification.

The advantage g2 over y? is that for every image position it is always possible
to calculate a corresponding source position ang?stan be calculated for all values
of the model parameters makigg converge well.

To find optimal model parameters we have first minimigédo obtain model pa-
rameters close to the optimal ones to ensure that the identified multiple images can be
reproduced by the models. The optimal model parameters were then found by min-
imising y? properly in the image plane.

3.4.5 Degeneracies

Any multiple image system can only constrain the mass contained within the images.
This leads to degeneracies in the derived surface mass profile: the so called mass sheet
degeneracy states that if a given surface mass density satisfies image constraints then a
new surface mass density can be found, by suitably rescaling this surface mass density
and by adding a constant mass sheet, which satisfies image positions as well as relative
magnifications equally well.

For haloes with variable mass profile this can also create a degeneracy between the
parameters of the profile. For the NSIE model a high core radius can be compensated
for by a larger velocity dispersion and for NFW a higher scale radius demands a lower
concentration parameter.

These degeneracies can be broken if multiple image systemSeaedt redshifts
and at dfferent radii can be found. Position of a radial critical line, and so radial arcs,
depends critically on the mass distribution in the central regions and hence the core
radius. On the other hand tangential arcs give strong constraints on the mass on larger
scales. Well defined halo parameters can be determined by having radial arcs, a large
number of multiple images atféiérent redshifts and by minimising in the image plane.
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3.5 Constructing Lensing Models

We have constructed in total 4 strong lensing models for the cluster. The mass distribu-
tions are composed of two components as described in the previous section: the cluster
galaxies and a smooth dark matter component. They give us the best fitting NSIE and
ENFW parameters for themoothdark matter component and the mass profile of the
different mass components as well the total mass profile of the cluster. With Models

| and Il we aim to establish a well defined total mass profile for the cluster using the
multiple image positions and the photometric redshifts of the sources. Trectice
between Models | and Il is in the scaling law used for the cluster galaxies. Model | as-
sumes &« o law where as for Model |l we usex o law. Models Ib and I1b replicate

the setup oBroadhurst et 2(20054 and with these we want to compare results of our
parametric models to those of their more flexible kappa-in-a-grid model. For Models
Ib and llb we have used images frd@@noadhurst et dI(20054 only and have left the
photometric redshifts of the sources free as was doBgoadhurst et al(20058. We

have kept the spectroscopic redshifts fixed as these help to define the mass scale of the
cluster. The dterence between Models Ib and Ilb is again in the scaling law adopted.

In addition to the 4 strong lensing Models above we have also constructed 2 further
Models in order to derive NSIS and NFW parameters of the total cluster mass profile
and to facilitate the comparison of our results with earlier methods used to measure
cluster masses, and numerical simulations. In Model Il we have fitted a NSIS and
an NFW profile to the total mass obtained with Models | and Il. With Model IV we
combine the strong lensing constraints from Model Il and the weak lensing constraints
fromBroadhurst et ali2005K) and derive accurate NSIS and NFW parameters for the
total mass profile out te 15’ (~2.5 Mpc).

Most of the image systems are very well reproduced by the Models. Image systems
8, 12, 14, 15, 30, 31 and 32 are located close to critical lines where the image plane
1?2 is difficult to calculate due to ill determined image positions from the models. For
these image systems we have always calculategivethe source plane.

We quantify the quality of fit by the rms distance between an observed image po-
sition and one predicted by the models. For the images systems mentioned above the
magnification weighted source separation was used instead. The rms distance between
animage in an image system and the image position obtained with the models are given
for each image system in Talf#e8 in the Appendix.

Additional information of the fit quality can be seen in apperglix.4where we
show image stamps of all multiple images. In addition to the multiple images we also
show two model reproductions for each image obtained with the two descriptions of
the smooth dark matter component (NSIE and ENFW) for Model II.

Fig. [3.12 shows the total surface-mass-density contours obtained with Models
| and Il for the two smooth DM profiles. For each smooth DM profile we plot
the meanx of the in total 4000 cluster realisations used in deriving the best fit
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parameters and errors. The dotted contours are for the NSIE and the dashed contours
are for the ENFW profile. The contours are drawna0.25, 0.50, 1.0 and 2.0 lev-
els for a source redshift of 1. The thin contour lines arefot and thick lines fok >1.

Fig.[3.13shows the critical curves obtained with Models | and Il for the two smooth
DM profiles. For each smooth DM profile we plot the critical curves of the average
cluster of the in total 4000 cluster realisations used in deriving the best fit parameters
and errors. The dotted contours are for the NSIE and the dashed contours are for the
ENFW profile. The thin contours are drawn for a source redshift of 1 and the thick
contours for a source redshift of 5.

3.5.1 Models | and II: Strong Lensing Mass Reconstruction

The first two strong lensing models aim to establish a total mass profile for further
analysis. The smooth dark matter component of the cluster mass was modelled in
exactly the same way for both models (detailed in se@idh for the galaxy compo-

nent we vary the scaling of the truncation radius of the BBS model with the velocity
dispersion. For Model | we have assumed that the galaxies follow a scaling law sim-
ilar to the field galaxies, namely that the truncation radiud a galaxy scales like

s= s, x (o/136knys)? with the velocity dispersion- of the galaxy. For Model Il we

have assumed a scaling law expected for galaxies in clsstes, x (o-/136kmy/s). The
normalisation of the scaling law for each Model and smooth DM profile is shown in
Table3.2 The haloes are strongly truncated. This is a ré@alot but the actual values
obtained fors, can be &ected by the optimisation process. Mass lost from galaxies
due to truncation can in part be compensated by the smooth dark matter component,
leading to possibly significant uncertainties in the truncation radii. It is not our aim
in this paper to attempt to constrain the truncation radii of the galaxies in the cluster
but instead to reproduce the observed multiple images as accurately as possible. The
truncation of galaxies in a cluster environment will be discussed in detail in a forth
coming publication (Halkola et al., 2006 in preparation).

The constraints for Models | and Il are the positions of the multiple images and
their redshifts. The redshifts of sources were allowed to find the optimal redshift within
the 1o errors of the photometric redshifts, except sources with spectroscopic redshifts
for which we have fixed the redshift to the measured one. The allowed ranges for the
source redshifts are tabulated in TdBIgin appendi3.7.3

The best fit parameters for the smooth dark matter component of the models are
summarised in Tabl8.2 The errors are caused by errors in determining the correct
galaxy masses and in measuring the multiple image position. The derivation of errors
is explained in sectiof.5.3

Our best fitting model is Model | with a dark matter component described by an
ENFW profile. The dferences in the fit quality between the models and smooth dark
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Figure 3.12:Surface mass density contours for NSIE (dotted) and ENFW (dashed)
profiles for Model I. For each smooth DM profile we plot the meathe in total 4000
cluster realisations used in deriving the best fit parameters and errors. The contours are
drawn atk=0.25, 0.50, 1.00 and 2.00 levels for a source at redshift of 1.0. The thin
contour lines are fok <1 and thick lines fok >1. The secondary mass concentration

on the upper right can also be seen clearly in the surface mass density contours.
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Figure 3.13:The critical curves obtained with Models | and Il for the two smooth DM
profiles. For each smooth DM profile we plot the critical curves of the average cluster
of the cluster realisations used in deriving the best fit parameters and errors. The dotted
contours are for the NSIE and the dashed contours are for the ENFW profile. The thin
contours are drawn for a source redshift of 1 and the thick contours for a source redshift

of 5.
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matter profiles used are generally small as can be seen from@Zxddthough both
Models perform better when the smooth DM is modelled with an ENFW profile. The
fit quality is 0.5” better than that achievedByoadhurst et al20054 in their analysis

of the cluster. This can be due to better modelling of the cluster mass or fi@eedt

set of multiple images used. If theffiirence is due to the changes in multiple image
systems then thg? in the caséBroadhurst et 8l(20053 of is driven by a only a

few image systems since most of the images systems are infact identical. Another
difference are the constraints imposed on the redshifts of the images in our modelling.

3.5.2 Models Ib and IIb: Comparison to Broadhurst et al. 2005

In order to directly compare the performance of our parametric models to the grid
model ofBroadhurst et 2i(20053 we have constructed two further models that mimic
their setup. The models are constrained only by the multiple image positions from
Broadhurst et dI(20053; the photometric redshifts of the images were thus ignored
and were included as free parameters. We have fixed the spectroscopic redshifts how-
ever since it is necessary to define an overall mass scale for the cluster. The rest of the
modelling is identical to that of Models | and II. The results for Models Ib and llb are
shown in Tabl&.3

The very good performance of our models relativBtoadhurst et d20053 is re-
markable considering the large freedom in the mass profile allowed in their modelling.
This also means that the mass profile can be very well described by parametric models
making the additional freedom allowed by non-parametric mass modelling unneces-
sary, even undesirable if one is interested in comparing the performancfesédi
parametric mass profiles.

Assuming that the smooth mass componeiB@adhurst et dI(20054 is able to
reproduce both NSIE and ENFW halo profiles the other majderdince between our
mass modelling and that &roadhurst et 2l(20054 is in the treatment of the galaxy
component. The assumptions needed on the properties of the cluster galaxies in our
modelling seem to be well justified based on the superior performance of our models.

3.5.3 Estimation of Errors in the Parameters of the Smooth Dark Matter
Component

Our primary source of uncertainty in the parameters of the smooth dark matter compo-
nent are the velocity dispersions of the galaxies in the cluster.

In order to estimate thefiect of measurement errors in the cluster galaxy compo-
nent on the parameters of the smooth cluster component, we have created 2000 clusters
for Models I, I, Ib and Ilb and the two profiles by varying the velocity dispersions of
cluster galaxies and positions of multiple images by the estimated measurement errors.
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For each galaxy we have assigned a new velocity dispersion from a Gaussian distri-
bution centred on the measured values with a spread corresponding to the error. The
truncation radii of the cluster galaxies were adjusted accordingly. For the scaling law
we have used the normalisation as for the original cluster galaxies. New positions for
the multiple images were assigned similarly by assigning new positions from a Gaus-
sian distribution centred on the measured positions.

Optimal parameters for the smooth cluster component for each cluster were found
by minimising¥? in the source plane due to the large number of minimisations re-
quired. However, in all subsequent analysis we have used the imageplealeulated
after the optimal parameters in the source plane were found.

To justify the use of? instead ofy? in the error estimation, we show in Fig.14
the finaly? againsty? for a large number of models after minimisigg. In the fig-
ure bothy? andy? have been scaled by the minimyga of the models. The good
correspondence between the two, even at high valug$ aind thag(y?) is a mono-
tonically increasing function (unfortunately with some scatter) gives us confidence in
the source plane minimisation and our error analysis.

The optimal parameters of the generated clusters have a spread around the best
fit parameters determined for the 'real’ cluster. The number density of the optimal
parameters in the parameter space cannot be directly used to quantify the random
error since areas of high density could in fact also include a large number of relatively
poor fits to the data. To include also information of the quality of fit we weight each
realisation of the Monte-Carlo simulation with the fingl4 of the realisation. In
Fig. B.I8we show the number density contours for the NSIE (top panel) and ENFW
(bottom panel) halo parameters of the realisations after weighting by the firfal 1
The solid lines are for Model | and the dashed lines for Model Il. The contour lines
show the regions in which 68 and 95 per cent of the weighted realisations lie.

3.5.4 Model lll;: Parameters for the Total Mass Profile

It is important to realise that the multiple images constrain the combined mass of the
cluster, be it baryonic or dark. The division of the mass to two components is done
in order to take the mass we can observe into account as accurately as possible. The
uncertainty of the description of the galaxy component is reflected in how well we can
determine the profile parameters of the smooth dark matter component. The parameters
for the total mass distribution, constrained directly by the multiple images, can be
determined significantly better. For this reason we have also fitted single NFW and
NSIS haloes to the total mass obtained from Models | and II.

We estimate the total mass profile of the cluster by combining all mass profiles
from the error analysis. In Fig3.16 we show the 68.3 per cent confidence regions
of mass for the two mass components and the total mass. The galaxy component is
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Table 3.2:Best fit halo parameters of the smooth dark matter components for Models |
and Il. The rms error quoted for each model and halo type is the rms distance between
the measured image positions and those predicted by the models expect for image

systems where the calculations of an image plgheas not possible (8, 12, 14, 15,

30, 31 and 32) for which we have used the source pjgneefined in equatioB. 2

The values given are for the best fitting halo optimised in the image plane. The values

in brackets refer to the mean values obtained from the simulations (optimised in the

source plane), the errors in the halo parameters are derived from the spread of the
values in the simulations. For details of the models and error derivation see text body.

Model | Model Il

NSIE rms error 3.17" (3.520.15") rms error 3.13” (3.450.16")

Sobs = 24 kpC*(O'gal/]-36kms)2 Sobs = 37 KpC*(oga/136kM’s)
Parameter Halo One Halo Two Halo One Halo Two
o (kmys) 1298 (1293} 603 (595:20) 1285 (12813°) 618 (61317)
re (kpc) 77 (76:‘3‘) 75 (72+5) 75 (74j§) 75 (73£4)
X (arcsec) -5.4 (-550.4) 58.6 (57.43.2) -5.4 (-5.20.3) 56.5 (55.25.0)
y (arcsec) 1.3 (120.5) 33.8 (33.21.1) 1.1 (1.a0.5) 32.9 (32.€1.0)
€ 0.066 (0.0640.003) 0.20 (0.190.01) 0.067 (0.0640.003) 0.18 (0.120.01)
PA (°) -33.1 (-32.81.9) 12.6 (12.21.9) -32.5 (-32.21.8) 13.0 (12.61.7)
ENFW rms error 2.73” (3.120.207) rms error 2.48” (3.080.19")

Sohs = 21 kpC*(o'gal/]-36kms)2 Sobs = 36 KpC*(oga/136kM’s)
Parameter Halo One Halo Two Halo One Halo Two
C 6.5 (6.30.2) 0.5 (0.50.1) 6.2 (6.20.1) 0.7 (0.%20.1)
r200 (Mpc) 2.04 (2.030.03) 2.79 (2.820.06) 2.07 (2.060.03) 2.52 (2.520.06)
X (arcsec) -2.8 (-440.15) 34.6 (30.63.9) -3.5 (-4.20.10) 36.8 (31.61.3)
y (arcsec) 0.8 (050.9) 31.8 (30.84.6) 0.6 (1.20.7) 32.1 (31.61.8)
€ 0.104 (0.1040.006) 0.19 (0.190.01) 0.100 (0.09¥0.007) 0.19 (0.120.02)
PA (°) -43.7 (-45.21.9) 24.5 (23.81.8) -42.1 (-42.%1.7) 24.6 (24.41.7)
Model free parameters of the smooth dark parameters of the smooth dark
parameters matter component matter component

images from this work and images from this work and
Model con-
straints Broadhurst et 2(20053 Broadhurst et 2(20053

Zphot Of sources

Zphot Of sources
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Table 3.3:Best fit halo parameters of the smooth dark matter components for Models
Ib and Ilb. The rms error quoted for each model and halo type is the rms distance
between the measured image positions and those predicted by the models expect for
image systems where the calculations of an image pldneas not possible (8, 12,

13, 14, 20 and 30) for which we have used the source pléraefined in equation

B4 The values given are for the best fitting halo optimised in the image plane. The
values in brackets refer to the mean values obtained from the simulations (optimised in
the source plane), the errors in the halo parameters are derived from the spread of the
values in the simulations. For details of the models and error derivation see text body.

Model Ib Model Ilb
NSIE rms error 3.03” (3.2%0.20") rms error 2.65” (3.280.21")
Spps = 30 kpc*(crga|/136kn15)2 Sobs = 43 KpC*(oga/136kM’s)
Parameter Halo One Halo Two Halo One Halo Two
o (knys) 1223 (122213) 647 (64518) 1210 (121&11) 658 (66@-15)
re (kpc) 56 (6Q:3) 75 (74:3) 58 (6Q:=3) 74 (74:2)
X (arcsec) -4.7 (-4900.4) 56.7 (49.&2.1) -4.9 (-4.40.4) 455 (48.81.8)
y (arcsec) 2.1 (140.4) 33.1 (31.61.1) 1.2 (1.60.3) 29.9 (31.20.9)
€ 0.079 (0.0780.004) 0.20 (0.120.02) 0.078 (0.07¥0.004) 0.19 (0.180.02)
PA (°) -33.6 (-35.21.5) 16.3 (15.22.0) -34.0 (-34.41.5) 15.5 (15.21.8)
ENFW rms error 2.74" (3.380.15") rms error 2.72" (3.3£0.15")
Spps= 31 kpc*(crga|/136kn13)2 Sobs = 51 KpC*(oga/136kM's)
Parameter Halo One Halo Two Halo One Halo Two
C 6.4 (6.4:0.2) 1.5 (1.60.1) 6.5 (6.40.2) 1.6 (1.20.1)
r200 (Mpc) 2.12 (2.08.0.04) 1.87 (1.860.05) 2.08 (2.040.04) 1.85 (1.820.05)
X (arcsec) -3.8 (-3£0.6) 42.2 (39.83.1) -3.9 (-3.20.5) 46.0 (39.12.0)
y (arcsec) 0.9 (0£0.6) 30.8 (31.@2.3) 1.1 (-0.20.5) 30.7 (30.22.0)
€ 0.087 (0.0880.009) 0.21 (0.20.01) 0.082 (0.0860.009) 0.20 (0.180.02)
PA (°) 417 &) 22.4 (21.92.9)  -41.1 (-41.22.1)  21.9 (21.32.7)
parameters of the smooth dark parameters of the smooth dark
Model free
matter component, matter component,
parameters
Zphot Of sources Zphot Of sources
Model con- images from images from
straints Broadhurst et 820053 Broadhurst et (20053
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Figure 3.14: A comparison betweeg? (image plang?) andy? (source plang?)
for ~3000 diferent model configurations. The important property &f?) for the
minimisation is that it is a monotonically increasing function makiffga reliable
tracer fory? when used in finding optimal model parameters in the error analysis.

shown as a solid grey region, smooth dark matter as a striped grey and the total mass as
a solid black region. The regions were determined by taking the best 68.3 per cent of
the galaxy component realisations from both Models | and Il regardless of the smooth
DM profile used. We have decided to combine the individual mass profiles from both
models and smooth dark matter profiles since they all provide similar fit qualities and
by combining them we allow a greater freedom in the total mass profile.

In Fig. B.I7we show again the envelope of the total masses encompassed by the
best 68.3 per cent fits of all the model galaxies from the error analysis in striped grey.
For comparison we also show the strong lensing mass measureniBmamthurst
et all (20059 (long dashed), weak lensing mass fréimg et al| (2002 (NFW dashed,

SIS dot dashed) and X-ray mass estimat@oflersson & Madejsk{2009 (dashed

- long dashed). FoBroadhurst et dl(20054 and/Andersson & Madejski2004)
points we plot the Ir errors. ThéBroadhurst et di(20058 mass has been integrated
from the radial surface mass density profile in their fig. 26, and the errors have
been inferred from the errors in surface mass dengihdersson & Madejsk{2004)
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Figure 3.15:Estimates of the profile parameter uncertainties for the main halo of the
smooth DM component (NSIE top, NFW bottom). In both panels Model | is repre-
sented by the solid contours and Model Il by the dashed contours. Contours are drawn
at 68 and 95 per cent confidence levels. The uncertainty is mostly due the errors in
determining the contribution of the cluster galaxies to the total mass.
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Figure 3.16:1-0- confidence regions of projected massd¥)(inside radius r for two

mass components and total mass. The mass associated with galaxies is shown as a
solid grey, the smooth dark matter as a striped grey and the total mass as a solid black
region. The large uncertainty in the galaxy component is well balanced by the smooth
dark matter component to produce a tightdv)(profile for the total mass.

have also provided an estimate of the projected X-ray mass so that the profile can be
compared with lensing mass measurements. The agreement between our work and
that of[Broadhurst et al(20053 is very good, well within 1s- at all radii. The mass
measured using strong lensing is fact@ larger than the mass from X-ray estimates.

For a discussion on the low mass from X-ray estimates, please refgrdersson &
Madejski(2009).

To estimate the NSIS and NFW parameters of the total mass we can simply fit the
mass profile obtained with Models | and Il with a single NSIS or NFW halo. One
should not forget that the total mass profile was derived using the NSIE and NFW
profiles themselves. The total mass profile is composed of the mass in the galaxies and
two elliptical smooth DM haloes and hence the total mass is no longer a pure NSIE or
ENFW profile. In fitting a single halo we also do not include ellipticity. The excellent
agreement between the total mass profile obtained in this work and {Babadhurst
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Figure 3.17:1-0- confidence region of projected massdVY inside radius r from thjs
work (striped grey region) compared wiBroadhurst et al(20053 (long dashed),
King et al| (2002 (NFW dashed, SIS dot dashed) awddersson & Madejsk{2009
(dashed - long dashed). The error bars showiBimadhurst et dl(20058 and/An-
dersson & Madejsk{2004) are 1o errors. The mass profile and errors/Bnoadhurst

et all (20053 were obtained by integration from the surface mass density in their fig.
26.

et al. (20054 and the superior performance of our models to theirs give us confidence
that the parameters we have derived are indeed representative of the total mass profile
of the cluster. We do not compare the quality of fit of NSIS and NFW haloes but instead
the obtained parameters with those from weak lensing. This should help us to avoid
problems arising from the underlying smooth DM profiles used in obtaining the total
mass profile.

The 68.3, 95.4 and 99.7 per cent confidence contours for the NFW parameters are
shown in Fig.[3.18 (solid black contours). Both the concentration apgh are well
constrained. The best fit values &€6.0+0.5 andr20=2.82"5-3¢.

Also the NSIS parameters are well constrained. The corresponding confidence con-
tours are shown in Fig8.19 Both of the NSIS parameters depend on the halo profile in
the region where the multiple images have significant constraints. Therefore the confi-



3.5. GNSTRUCTING LENSING M ODELS 77

dence contours are also extremely tight. The best fit parameteos:a&létjg kmy/s
andr.=71+5 kpc. The best fitting profile parameters are summarised in [Bdle

As a comparison we have also fitted an NSIS and an NFW profile tertfzoth
DM component only. This results in an NSIS a velocity dispersion of ;gﬁsm/s
and a core radius of 7 kpgh while an NFW profile has a concentration of 7
and a virial radius of 2.860.16 Mp¢hyo.

Table 3.4:Best fit halo parameters for the cluster profile. For Models Il and IV we
have fitted the measured cluster parameters with a single NSIS or NFW profile. The
constraints for the cluster parameters were mass for Model Ill,both mass and shear for
Model IV. For details of the models see text body.

Model IlI Model IV

NSIE x°/d.of.=10.5/11 x°/d.o.f.=30.0/ 20
Parameter only one halo fitted only one halo fitted
o 1514 % knys 149975 ks
re 71+5 kpc 665 kpc
ENFW y?/d.of.=0.8/11 y?/d.0.f.=31.9/20
Parameter only one halo fitted only one halo fitted
C 6.0£.5 7.@332
r200 2.82:01 Mpc 2.55207 Mpc
Model free  the above parameters of the above parameters of
parameters the halo profiles the halo profiles

total mass obtained with
Model total mass obtained with Models | and Il
constraints Models I and Il shear from Broadhurst et

al. 2005b

3.5.5 Model IV: Combining Information from Strong and Weak Lensing

In this subsection we include the new weak lensing shear dataBroadhurst et &l.
(2005 in our analysis to use information of the cluster profile from larger cluster-
centric radii.

Strong lensing in A1689 can only constrain the mass at best to out 200-300 kpc
from the cluster centre. In order to constrain the scale radius of an NFW profile strongly
it should lay within the multiple images. Unfortunately, in the case of A1689, the scale
radius seems to be just outside the multiple images (and hence strong lensing cannot
constrain it significantly) but too small to be well constrained by weak lensing data
alone. On the other hand weak lensing can tell us something about the total mass of
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the cluster and hence constrajge. By combining this with information from strong
lensing (details of the profile at small radii) one should expect to have a handle on the
cluster at all radii.

In their extensive work on this clustBroadhurst et 82005&b) conclude that the
parameters derived from strong and weak lensing are not compatible. In the strong
lensing regime an NFW halo has only a moderate concentrafle®.0+0.5 in this
work, Broadhurst et &l(20054 find C:6.5j:g) whereas in the weak lensing regime a
very high concentratior(l:l&?_*}:‘l‘, Broadhurst et dll20051) is required, uncharac-
teristic to a halo of this size and typical to a halo with a much lower mass.

We have checked this inconsistency in the NFW parameters by fitting a single halo
to both the radial mass profile (Model Ill, this work) and shear praBl®éadhurst et al.
(20058), shown in FigureB.20and3.21 The fit is done simultaneously to the mass
points from strong lensing shown in Fi@.20 and reduced shear points from weak
lensing shown in Figl3.21 In the fitting all the points are given equal weighting and
the y? of a given halo is calculated from how it's mass fits the mags<#’ and the
shear at >2'. The best fitting NFW profile is plotted as a dashed black line in the two
figures.

Unlike Broadhurst et al(2005K) we do not include any prior (€30) on the con-
centration in our fits since there is no obvious bias towards NFW profiles with higher
concentrations: a high quality fit with a large concentration purely reflects the inability
of shear measurements to constrain the central cluster profile. A prior could lead to
a wrong determination of the minimug? and hence favour a smaller concentration
without a physical significance.

Fitting a single NFW halo to the weak lensing shear ffi@rmadhurst et 220055
gives only a lower limit for the concentration but constramgo (or equivalently
M2po) to ~ 2.0-2.5Mpe¢hyg (68.3, 95.4 and 99.7 per cent confidence regions for C—
rs are shown in Fig.[3.18 as dotted lines). The best fit values &e30.4 and
r200=1.98 Mpghyo. The fit is excellent withy?,, 0o/d.0.f. = 2.5/ 8 (where d.o.f.
is for degrees of freedom). The parameters of the NFW profile from fitting the total
mass and shear independently disagree more than the estimatedds. The dfer-
ence between the NFW parameters obtained in this work and tiBabatihurst et &l.
(20055 is unlikely to arise from the prior @roadhurst et 220050 have a flat prior
for c<30. Broadhurst et dl(2005F) however do not fit an NFW profile to the shear
measurements only. Instead they fit the the NFW profile to the surface mass density
map obtained from the shear. In our work we fit the shear directly, avoiding the extra
step involved.

By fitting both shear and mass simultaneously, we are able to combine the con-
straints from both small and large radii to obtain well defined NFW parameters for the
halo. The NFW parameters in this case bec@a@.6"3 andrz00=2.55"39 Mpc/hzo
(confidence regions for the combined weak and strong lensing fit are shown with solid
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Figure 3.18:68.3, 95.4 and 99.7 per cent confidence contours for the NFW parameters
C—o0o for a fit to reduced shear (data frdBroadhurst et 21(2005K)) only (dotted
contours) and mass (data from this work) only (solid black contours). The dotted
blue contours show the confidence regions from shear when the last two data points
are excluded. The combined fit to both reduced shear and mass simultaneously is
y?/d.o.f. ~ 31.9/ 20 (shown in the inlet for clarity with the same scale). The best
fitting parameters ar€=7.6"0-3 andr,00=2.55"39¢ Mpc/hzo. A fit to shear only gives

-0.09
C=30.4 andro00=1.98 Mp(}'hm.

red contours in Figl3.189. The mass and shear profiles of the best fitting NFW halo
are shown in Figuré3.20and3.21respectively as dashed lines.

We have repeated the experiment also for an NSIS halo. The corresponding con-
tours are shown in Fig3.19 and mass and shear profiles in FiguBe&l and3.21as
solid lines.

Like with the NFW halo the core radius of the NSIS halo is poorly constrained by
the weak lensing data alone though surprisingly a singular profile with354 knjs
has the best fit. The fit is good with? / d.o.f. = 10/ 8. The best fitting pa-
rameters to both weak and strong lensing simultaneously-afe99+15 knys and
re=66+5 kpghzo with y2 / d.o.f.= 30/ 20. The agreement between the parameters for
the NSIS halo is better than for the NFW profile, though still only at vel.
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Figure 3.19:68.3, 95.4 and 99.7 per cent confidence contours for the NSIS parame-
terso—r for a fit to reduced shear (data frdBnoadhurst et al(20050) only (dotted
contours) and mass (data from this work) only (solid black contours). The dotted blue
contours show the confidence regions from shear when the last two data points are ex-
cluded. The combined fit to both reduced shear and mass simultaneously (shown in the
inlet with the same scale) is similar to that of NFW profile wittyd.o.f. ~ 30/ 27.

The best fitting parameters ase=1499:15 kmys andr.=66+5 kpghzo.A fit to shear

only gives a singular profile withr=1354 krjs.

To see how important the last two shear data points are for the previously derived
cluster parameters we have excluded the two outer most data points from the shear
measurement. If compared to numerical simulations the concentration of the NFW
halo remains unreasonably high although the disagreement between weak and strong
lensing is reduced to just underd3- For the NSIS halo the shear data is still fit best
with a singular profile but higher values of core radius are allowed and the velocity
dispersion is increased to make the weak and strong lensing parameters agree at better
than 2e. The best fitting parameters abe-7.1+0.4 andr,00=2.63:0.06 Mp¢hy for
the NFW halo and-=1505+15 kmys andr.=68+5 kpghyo for the NSIS halo. The two
profiles fit well with y2_/d.o.f. ~ 22/ 18 compared ta?, /d.o.f. ~ 20/ 18. The
confidence regions with the last two shear points excluded are shown as dotted blue
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Figure 3.20:Radial profile of the total mass from this work (circles). The lines show
the best fitting NSIS (solid line) and NFW (dashed line) profiles to a simultaneous fit
of the shear in Fig3.21and the mass in this Figure.

contours in Figure8.18and3.19

In a recent worlBiviano & Salucci(2005 derived the mass profiles of theffiir-
ent luminous and dark components of cluster masses separately. They find that ratio
of baryonic to total mass decreases from the centre~0.15 virial radii and then in-
creases again. We see the same trend also in our work[@Eig), where the galaxy
component has a minimum contribution at around 200 kpc. This is smaller than ex-
pected (380 kpc) if we take thegg of the NFW profile to be the virial radius of the
cluster.

The best fit parameters are summarised in Tdkle

3.5.6 Comparison with Literature

The mass of Abell 1689 has been determined in a variety of ways witirelt weak-
nesses and strengths. Results from the three methods used (X-ray temperature, line-of-
sight velocity and lensing (both weak and strong)) have disagreed considerably. This
section makes a short summary and comparison of the results usingfénerdimeth-
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Figure 3.21:Radial profile of the tangential shear frd@noadhurst et al{20055) (cir-
cles). The lines show the best fitting NSIS (solid line) and NFW (dashed line) profiles
to a simultaneous fit of the shear in this figure and the mass ifBEZ§.

ods.

Recent results are summarised in TalfEgs and[3.8 Aperture mass fits are
summarised in TablB.B and parametric model fits in TabdE8 When comparing
different mass estimates one should bear in mind that both X-ray and velocity
dispersion measure a spherical mass where as lensing in the thin lens approximation
measures projected mass, i.e. mass in a cylinder of a given radius, resulting in higher
masses within a given radius. Only lensing measures the mass directly. Both X-ray
and velocity dispersion rely on the cluster being a relaxed system.

3.5.6.1 X-ray

The most recent X-ray measurements of the mass of A1689 are thd&ed Wu
(2002) with the Chandra X-Ray Observatory dAddersson & Madejsk{2004) with

the XMM-Newton X-Ray Observatory. Both find nearly circular X-ray emission cen-
tred on the cD galaxy. Best fit NFW profile fandersson & Madejsk{2004) data has
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Table 3.5:Comparison between mass estimates for Abell 1689 frérerdint methods.

The mass measured B\ndersson & Madejsk{2004) are underestimates of the total
mass if the cluster is undergoing a merger. For our work the mas9)a25 Mpghzq

is an extrapolation since the multiple images do not extend to such large clustercentric
radii. All the masses given in this table are projected masses. This includésdbe!

sson & Madejski2004 X-ray mass estimate taken from their paper.

M(<r) r Reference
(10® Mg hid)  (Mpc hi}

0.14+ 0.01 0.10 this work, Model Il
0.082+ 0.013 0.10 Andersson & Madejsk(2004)
0.43+0.02 0.24 Tyson & Fischei(1995
0.20+0.03 0.25 Andersson & Madejsk{2009)
0.37+ 0.06 0.25 this work, Model I
0.48+0.16 0.25 Dye et al.(2007)

parameter€ =7.7*% [ andrz00=1.87£0.36 Mpghzo. They have also fitted a SIS profile
to the data and obtaiin =918 knm's. The NFW profile gives a much better fit to their
data. We have also fitted an NSIS profilgAodersson & Madejsk{2004) since it
is clear that (single parameter) a SIS will not be able to reproduce the data. We have
fitted the spherical mass of an NSIS profile with=1190 kmis andr. =27 kpc to the
data from fig. 9 ofAndersson & Madejsk{2004) and this provides a very good fit.
The NSIS halo along with the fitted points are shown in Bi@2 The lowo found by
Andersson & Madejskf2004) is mainly driven by the low central mass of the cluster
which the SIS profile can only accommodate with a lowBy including a core radius
in the fit the mass can be modelled very well everywhere also by an IS profile.

The total mass inside 140kpc from the cluster centre ig10%* M, and 1.%10'*
M for|/Andersson & Madejsk{2004 andXue & Wu (2002 respectivelyl/Andersson
& Madejski (2009 also discuss thefkect a merger would have on the X-ray mass
estimates. The estimated X-ray masses could increase by a fact@ @felocity
dispersion by facton/2) assuming that two equal mass haloes are considered as one in
the X-ray analysis. This would be enough to bring X-ray mass of Abell 1689 in good
agreement with lensing.

3.5.6.2 Spectroscopy

An early spectroscopic work kfeague et gl(1990 found a very high velocity dis-
persion of 2355kns for Abell 1689.Girardi et al.(1997 have reanalysed the data
from [Teague et &l(1990) and found four dierent structures in A1689 with veloc-
ity dispersions of 1429kys, 321knjis, 243knjis and 390kifs. A simple consideration
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Figure 3.22:The spherical mass of A1689 from X-ray observations of the cluster by
Andersson & Madejsk{2009 (points) and our best fit NSIS halo to the points with
0=1190 ks andr. =27 kpc (line). The fit is very good witp? / d.o.f. = 9.2/ 8. The

low mass in the centre can only be fitted with an isothermal sphere if a core radius is
included.

of total mass in the separate structures equals that of a single isothermal sphere with
o~1550knis. The separate structures are more extended than the region of multiple
images and the™ halo in this study does not correspond to any of the spectroscopi-
cally identified groups biirardi et al.(1997%).

Cz0sk&20049 have used Visible MultiObject Spectrograph (VIMOS) on the Very
Large Telescope (VLT) to obtain spectra for A1689. Their results are still preliminary
but indicate a strong gradient in the velocity dispersion fra?d00knjs in the centre
to ~1200knys at larger clustercentric distanceslMpc). The high velocity dispersion
on the centre could be due to an unrelaxed system and not an indication of a high total
mass of the cluster.

Lokas et al.(2009 have recently used published spectroscopic redshifts mainly
from [Teague et dl(1990), Balogh et al.(2002) andDuc et al.(2002 to show that
cluster mass cannot be reliably estimated from galaxy kinematics due to the complex
kinematical structure of A1689. The obtained velocity dispersion depends sensitively
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on the chosen galaxy sample.

3.5.6.3 Weak Lensing

The mass of A1689 has been measured in a number of cases with weak gravita-
tional lensing. The obtained masses are always considerably lower when compared
to strong lensing masses or line-of-sight velocity dispersion (LOSVD) measurements
with 0=1028 knjs, 0=998 km's, 0-=1030 kmis ando-=998 knys (Clowe & Schneider
(2001), King et al. (2002a,b) arlBardeau et 22005 respectively)Clowe & Schnei-
der (2001); [King et al| (2002 use the same catalogue of lensed background galaxies.
The catalogue is very likely contaminated by unlensed galaxies in the foreground and
only weakly lensed galaxies in the close proximity of the clustex)3) where lensing
is inefficient. These galaxies reduce the average shear signal leading to lower mass es-
timates. The SIS velocity dispersion estimattdwe & Schneide200]) increases
to 1095 knis if they assume that 87 per cent of the faint background galaxies have
z>0.3. In[Clowe (2003 colour information from Canada—France—Hawaii Telescope
(CFHT) is added to better select background sources. They find that without the colour
information the mass in the cluster core is underestimated due to cluster dwarf galax-
ies. The new values for A1689 becomre 1205 knjs for the SIS profile an€ = 7.9
andryp0=2.04 Mpc. Bardeau et dI(2005) agree very well withiClowe & Schneider
(2002); King et al| (2002 both for the SIS parameters and thegylof an NFW pro-
file although they find a low concentration of 3.5. Recent workBogadhurst et dl.
(2005h results in higher masses and only I=2liscrepancy between weak and (our)
strong lensing models.

Hoekstra(2001, 2003 investigate the féect of distant (along line-of-sight) large
scale structure (LSS) on the errors of derived on SIS velocity despeldmeksétra
2001 and Mygo and concentration of an NFW halbldekstra2003. They conclude
that the errors could be underestimated by a facthr The dfect is more noticeable
at large clustercentric radii where the signal from the cluster itself is small. The more
massive the cluster the better the concentration can be constrained. Adscdn
be derived with greater relative accuracy although the absolute error is increased. In
Hoekstra(2001) they showed that the LSS increases the noise but does not bias the
results. We expect theffect to be smaller in the strong lensing regime where the
signal is completely dominated by the cluster mass.

3.6 Conclusion

We have identified 15 images systems in deep ACS images of galaxy cluster Abell
1689. Two of these are not in the 30 image systems identifieBroadhurst et &l.
(200549. By excluding one of their image systems and splitting another in two we
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have constructed a new catalogue with 107 multiple images. These from 31 image
systems and we have additionally used one long arc in the modelling. The galaxy
cluster was modelled with a two component mass model: mass associated with cluster
galaxies and an underlying smooth dark matter component. Cluster galaxies were
identified from the cluster redsequence and their halo masses were estimated using
Fundamental-Plane and Faber-Jackson relations. The use of Fundamental-Plane in
measuring the mass for most of the galaxies used in the cluster modelling is new
and allows a very precise determination of the (central) galaxy mass. The galaxies
were modelled with a truncated isothermal ellipsoid. The truncation of the galaxy
haloes is necessary for accurate lensing models. The smooth dark matter component
was modelled separately with two parametric elliptical halo profiles: elliptical NFW
profile and a non-singular isothermal ellipsoid.

We find that both an ENFW and NSIE describe the smooth dark matter component
very well. The best fit ENFW profile of the smooth dark matter component has a virial
radius of 2.060.03 Mpc and a concentration parameter of+#®.4, the best fitting
NSIE profile has a core radius of #¥3 kpc and a velocity dispersion of 12810 knys.

The ellipticities of the two model haloes are smak-(0.06 in both cases). The multiple
images are reproduced very well. With the modified set of multiple images the best
fitting model has an rms0.8” better thaiBroadhurst et 2l(20053.

By fitting a single NSIS and NFW halo to the total mass we can constrain the
halo parameters of the cluster as a whole very strongly. The NFW parameters are
C=6.0+£0.5 andrypp=2.82:0.11 Mpc; the NSIS parameters are1514j§ km/s and
re=71+5 kpc.

Using the images dBroadhurst et 2I(20058 we obtain a fit with an rms distance
between the identified multiple images and model predictions 0.6” better than the best
model inBroadhurst et @(20054 (rms of 2.65” compared to 3.25"). This is surprising
considering the large freedom in the mass model useBrbadhurst et &l(20058
compared to parametric models. The superior performance of our model can in part
be attributed to a careful analysis of the cluster galaxy component. It also indicates
that small scale dark matter ‘'mini’ haloes are not needed to explain the deflection field
in A1689. The overall mass profiles are in good agreement however. This shows that
strong gravitational lensing can be used to derive very accurate total mass profiles;
different methods and assumptions agree very well in mass although the treatment of
the cluster galaxies in particular can be quitéedient.

The low masses obtained from weak lensing in the past are no longer observed
in new shear measurements(Bgoadhurst et al(2005f). According to our analysis,
at least for the NFW profile, the parameters obtained from strong and weak lensing
disagree at-3-0- level. The high concentration of an NFW profile fit to weak lensing
data is incompatible with both the strong lensing results presented here and in
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Broadhurst et 8l(20058. The discrepancy between halo parameters obtained with
weak and strong lensing separately is preseaat level in the case of an isothermal
sphere dark matter halo. We do not find support for the strong rejection of a softened
isothermal sphere broadhurst et dl(2005F) based on the combined strong and
weak lensing mass profile.

The unusually high concentration of 13.7 foundBmnoadhurst et al (20055
(compared to 4 expected from numerical N-body simulations) can be explained by a
suitably aligned tri-axial hald@guri et al, 2005. This cannot be used to solve the
discrepancy between weak and strong lensing measurements which both measure the
same projected mass, albeit affeient radii.
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Table 3.6:Comparison between best fit parametric mass models fréfiereit meth-
ods for Abell 1689./Andersson & Madejsk{2009) is an X-ray,King et al| (2002);
[Bardeau et dI(2005 a weak lensing an&irardi et al.(1997 a line of sight veloc-
ity study of the cluster. The background galaxy catalogue uséiry et all (2002
sufers from contamination from galaxies at low redshifts where lensing fidient
(discussed in more detail i@lowe & Schneide2007)) which reduces the total mea-
sured mass of the cluster and hence the measured velocity dispersion.

NFW Parameters

Method C r200 (Mpc) Reference

SL 6.0:0.5 2.820.11 this work

SL 6.5j~g 2.02
SL 570034  4.1407%
X-ray 7.75( 1.87:0.36 |Andersson & Madejsk2004
WL 4.8 1.84

WL 3593 1.99:0.25

WL 7.9 2.04

NSIE Parameters

Method o (km/s)  rc (kpc) Reference

SL 1514+18 715 this work

SL 1390 60
X-ray 918:27 SIS I/Andersson & Madejsk2004
X-ray 1190 27 I/Andersson & Madejsk2004
WL 9983 SIS

WL 998+68 SIS

WL 1205 SIS
LOSVD 142977 - Girardi et all1997

* data fromAndersson & Madejsk2004 fitting done in this work.
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3.7 Appendix

3.7.1 Gravitational Lensing by NSIE, NFW and BBS profiles
3.7.1.1 Isothermal Spherg Ellipsoid

A model often used in gravitational lensing for galaxies and clusters of galaxies is a
singular isothermal sphere (SIS) (e@ott & Gunn [1974 [Turner et al.[1984. SIS
naturally reproduces the observed flat rotation curves of galaxie§ebgris & Rots
1973. The following equations describe a non-singular (or softened) isothermal ellip-
soid Hinshaw & Krauss1987) where the singularity has been removed with a core
radius, and additionally an ellipticity has been incorporated to better model the ob-
served galaxy shapeSé€itz et al.[1998. In the equations ellipticity is introduced to
the gravitational potential, in a similar fashionKochanek et al(1989, and not the
mass distribution. This approach has some problems with large ellipticities, when the
accompanying mass distribution can have negative values, as no@idrimford &
Kochanek(1987), Kormann et al(19949 and others, but is numerically rather simple
and straightforward to implement since all parameters of interest can be calculated
from the analytic derivatives of the potential. An alternative approach is to have an el-
liptical mass distribution as demonstrateddmrmann et al(1994 but the expressions
for deflection angleq), surface mass density)(and shearx) are considerably more
complicated.Kassiola & Kovner(1993 have done a thorough comparison between
elliptical potentials and elliptical mass distributions. We have estimatedfiibet ®f
an elliptical potential on the ellipticity of the surface mass density, illustrated in Fig.
[3.8 This will be discussed later in more detail.

In the following equationg is gravitational potential is (image) position on the
lens plane/ is a core radiusg=b/a=(1-€)/(1+¢) is the axis ratio of the potential and
6k is the Einstein radius of a singular isothermal sphere.

The equations for the deflection potentia(q)), the deflection anglen(), « andy

are
w() =— | /§2+q 02 + ; 05 = 0 C(6) (3.8)

with 6g = 47deS(")2 andC() = /22 +q 02 +% 62,

a(6) = V(6) = Gs-(an 5 02). (3.9
K(6) = —v2¢( 0) = ; 0?5)3 (Q+ 42+9§+e§), (3.10)
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with Q. =g ¢,
1 6
m@=§céﬁﬁlf—%+@y (3.11)
O 016
wwﬁp-aéf, (3.12)

3.7.1.2 Universal Dark Matter Profile

The universal dark matter profile is an analytic fit to results of numerical N-body sim-
ulations of galactic haloes tiMavarro et al.(1996). These simulations showed that
density profiles of galactic haloes of venfidrent sizes (two decades in radius) could
be fitted with a single 'universal’ profile. At small radii € rs or x=r/rg < 1) the
NFW-profile is flatter than isothermal witl,« r=1, where as for large radix(> 1),
wherep o« r=3, it is steeper than isothermal which has r~2 everywhere.

Lensing by NFW-profile has been studied in a number of papersBartelmani
1996 [Wright & Brainerd [200Q [Golse & Kneil) 2002). We have implemented an
elliptical NFW-profile (ENFW) following the formalism described/@olse & Kneib
(2002. They have introduced the ellipticity to the deflection angle rather than the
potential (or mass distribution). The treatmen@Galse & Kneil(2002) is very general
explaining also how to obtain analytic values toandy for the NFW profile as well
as other profiles.

For the ellipticity parametersiaand a. in [Galse & Kneib(2002) we have fol-
lowed the example dMeneghetti et al(2009 so that a.=1-e=a/b=g and a.=1/(1-
€)=b/a=1/q.

The deflection angle for a spherical NFW mass distribution=at /r is

4
NP = =2g(x), (3.13)
with
2 h (1
y ﬁarctan = »x<1
g(x):ln§+ 1 X=1 (3.14)
so=arctan i x> 1

We approximate an elliptical mass distribution with axis ratio q by elliptical con-

tours of the deflection angle,
Xﬁx=\h€+é€, (3.15)
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X X
G’ENFW NFW(X) q 1 QENszaNFW(X) 2 (316)

The surface mass density) @nd sheary) are calculated from the elliptical deflec-
tion angles by numerical fierentiation. For analytic expressions please ref@dtse
& Kneibl (2002).

3.7.1.3 Truncated isothermal sphere

The truncated isothermal sphere has been introduc&fdiperd et al (1996 in the
framework of galaxy-galaxy lensing. The two parameters of BBS profile are truncation
radius €) and central velocity dispersiomr]. The density profile of the BBS model is
then given by

o2 &
27Gr2 (r2 +99)
Forr < sthe density profile is similar to a singular isothermal sphg(e) ¢« 1/r?)

where as for > sthe density falls & quicker p(r) « 1/r*) to avoid the infinite mass
of an isothermal sphere.

p(r) = (3.17)

The deflection angle of a BBS profile is

BBS(x) = 4”"—'3"5 [1 x= V1= xz] (3.18)

with x=r/s.

The ellipticity is included in the deflection angle in exactly the same way as was
done for the ENFW halo. The surface mass density and shear were also calculated
from elliptical deflection angles by numericalidirentiation.
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3.7.2 Fundamental Plane
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Table 3.7:Table of galaxy properties from fitting cluster galaxies with a Sersic profile
and using the Fundamental Plane. The parameters of the 80 most massive galaxies are

tabulated.
ID RA Dec mag? Nser  Re2(kpc) 1-b/a  PA()  oest (kmys)
1 +13:11:25.53 -1:20:37.09 11B3+0.15 31+03 81+05 037+0.02 10+1 178 (224141)
2 +13:11:25.28 -1:19:31.12 1®W+0.10 60+01 22+01 006+001 70+3 108 (13686)
3 +13:11:28.19 -1:18:43.80 1B+0.14 26+0.1 25+01 057+0.03 32+1 115 (14491)
4 +13:11:26.09 -1:19:51.99 1W+0.13 39+02 25+01 023+001 79+1 144 (18%¥114)
5 +13:11:26.67 -1:19:03.88 1+0.14 32+01 18+01 038+0.01 79+1 80 (10063)
6 +13:11:26.38 -1:19:56.51 1®+014 34+01 17+01 035+001 34+1 181 (228144)
7 +13:11:27.06 -1:19:36.88 1&H+001 60+01 49+01 017+001 5+1 147 (185117)
8 +13:11:24.62 -1:21:11.10 1®+013 44+03 21+01 055+0.03 136+1 170 (21%135)
9 +13:11:25.55 -1:20:17.25 1B7+0.10 60+01 26+01 015+002 96+3 97 (12277)
10 +13:11:27.30 -1:19:05.17 182+0.15 38+0.1 17+02 033+001 171+2 81 (10264)
11 +13:11:28.50 -1:18:44.81 14+0.09 39+01 30+02 056+0.03 179+1 115 (14491)
12 +13:11:29.55 -1:18:34.66 1&H+0.13 41+02 20+01 041+001 172+1 175 (22¥139)
13 +13:11:25.27 -1:20:02.92 186+0.12 10+01 17+01 078+0.01 93+1 81 (10265)
14 +13:11:27.56 -1:20:02.51 17+0.01 89+0.1 80+0.1 015+001 57+1 147 (18%116)
15 +13:11:26.62 -1:19:47.96 180+0.01 35+01 24+01 035+001 165+1 75 (9560)
16 +13:11:24.36 -1:21:07.57 13+0.12 61+02 15+01 011+002 173+7 138 (174110)
17 +13:11:28.27 -1:19:31.55 13+0.14 60+01 24+02 032+002 148+1 149 (188119)
18 +13:11:27.99 -1:20:07.71 166+0.01 53+01 38+0.1 006+0.01 176+£1 205 (259163)
19 +13:11:28.90 -1:19:02.55 1®+0.14 51+01 36+03 042+001 84+1 83 (10566)
20 +13:11:29.47 -1:19:16.58 1B/+0.13 40+0.1 10+0.1 058+0.02 56+1 174 (220139)
21 +13:11:28.52 -1:19:58.47 1B/+0.14 33+01 26+01 042+0.02 159+1 153 (192121)
22 +13:11:31.57 -1:19:32.70 104+001 23+0.1 49+0.1 020+0.01 150+1 258 (325205)
23 +13:11:28.38 -1:20:43.40 17/+0.01 56+01 76+01 012+001 17+1 177 (223140)
24 +13:11:27.29 -1:20:58.41 1®%+0.12 13+01 24+01 044+0.03 1691 97 (12377)
25 +13:11:29.24 -1:19:46.93 138+0.14 47+04 06+01 060+0.02 142+1 140 (176111)
26 +13:11:30.91 -1:18:52.53 228B+0.14 43+01 O07+01 045+001 104+1 84 (10667)
27 +13:11:31.68 -1:19:24.65 1®+0.10 41+01 34+01 043+004 90+1 96 (12177)
28 +13:11:28.62 -1:20:25.10 181+0.01 60+01 27+01 009+0.01 24+1 136 (172108)
29 +13:11:30.23 -1:20:42.74 11+001 31+01 57+01 016+0.01 83+1 255 (327202)
30 +13:11:28.78 -1:20:26.54 1®+0.02 48+0.1 72+02 044+0.05 50+2 94 (11975)
31 +13:11:30.44 -1:20:29.13 162+0.02 26+0.1 19+01 010+0.02 65+3 238 (299189)
32 +13:11:29.66 -1:20:27.86 1®+0.01 12+01 101+0.1 014+0.01 144+1 303 (382241)
33 +13:11:28.08 -1:21:36.68 1B+0.16 38+05 19+03 057+003 175+1 132 (166105)
34 +13:11:32.03 -1:18:53.65 1®+0.17 45+03 35+05 005+001 1676 82 (10365)
35 +13:11:32.88 -1:19:31.48 1#+0.02 55+01 101+02 029+001 61+1 233 (293185)
36 +13:11:30.11 -1:19:55.90 1®R+0.14 29+01 19+01 007+0.01 1071 135 (17Q107)
37 +13:11:28.02 -1:21:12.90 1¥+0.18 47+04 26+04 020+0.01 95+1 104 (13183)
38 +13:11:30.15 -1:20:40.11 166+0.01 25+01 53+01 036+001 52+1 180 (227143)
39 +13:11:30.40 -1:20:51.69 164+0.01 60+0.1 60+01 015+001 89+1 192 (241152)
40 +13:11:32.28 -1:19:46.72 159+0.01 52+0.1 44+01 004+001 2144+1 215 (273171)

1 Total F775W AB magnitude obtained from the surface brightness profile fitting

2 Circularized physical half light radius in units of kpc
3 Estimated galaxy velocity dispersion, see text for details, and the correspodmagde
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Table 3.7: Table of galaxy properties continued...

ID RA Dec mag’ Nser Re2(kpc) 1-b/a  PA(°)  oest (kMys)
41 +13:11:32.15 -1:19:24.22 1®+013 44+04 25+01 019+0.01 24+3 156 (196124)
42 +13:11:30.20 -1:20:28.41 1¥4+0.01 25+01 32+01 013+0.01 1256 197 (248156)
43 +13:11:29.18 -1:21:16.67 19+0.01 46+01 46+01 010+0.01 178+1 176 (222140)
44 +13:11:30.04 -1:20:15.10 1®+0.01 38+0.1 27+01 037+0.02 116+1 86 (10969)
45 +13:11:30.18 -1:20:17.29 180+0.01 60+0.1 13+01 041+001 59+1 108 (13686)
46 +13:11:29.17 -1:20:53.83 1¥6+0.12 27+01 10+01 019+0.01 178:1 160 (20%127)
47 +13:11:32.83 -1:19:58.55 1H+0.01 46+0.1 83+01 031+0.01 22+1 292 (370230)
48 +13:11:29.93 -1:21:00.55 1M+0.01 52+01 19+01 012+0.01 25+1 114 (14390)
49 +13:11:32.26 -1:19:36.44 1®+001 48+01 35+01 036+0.01 39+6 81 (10264)
50 +13:11:30.75 -1:20:43.62 182+0.01 35+01 42+0.1 012+001 174+1 185 (233147)
51 +13:11:30.56 -1:20:34.81 1%7+0.02 35+01 14+01 035+001 70+6 124 (153100)
52 +13:11:30.56 -1:20:45.35 1B3+001 43+0.1 20+01 012+0.02 92+3 173 (213135)
53 +13:11:29.49 -1:21:05.48 182+0.01 30+01 08+01 024+001 1791 77 (9§62)
54 +13:11:29.26 -1:21:37.37 1B/+0.09 31+01 19+0.1 053+003 118:1 131 (165104)
55 +13:11:29.30 -1:21:55.18 145+0.01 41+01 31+01 028+001 144+1 146 (184116)
56 +13:11:33.36 -1:19:16.81 2R1+0.02 27+01 05+01 006+001 167+5 77 (9661)
57 +13:11:33.49 -1:19:42.82 1B+0.15 53+01 29+03 010+0.03 17+2 107 (13585)
58 +13:11:31.31 -1:21:25.05 179+0.01 50+0.1 63+02 009+001 65+2 145 (179116)
59 +13:11:30.21 -1:21:18.09 140+0.01 33+01 09+0.1 027+001 171+1 135 (170107)
60 +13:11:31.27 -1:21:27.71 1®+0.01 35+01 17+01 025+003 61+2 175 (220139)
61 +13:11:31.26 -1:20:52.44 1®+0.16 55+01 18+03 007+001 41+8 156 (196124)
62 +13:11:31.32 -1:20:44.07 138+0.02 57+02 09+01 004007 18+2 121 (14997)
63 +13:11:31.17 -1:21:27.72 1%+0.01 32+01 16+01 017+002 1381 102 (13082)
64 +13:11:30.22 -1:21:42.98 1&+0.15 53+01 14+02 051+002 24+1 165 (207131)
65 +13:11:34.93 -1:19:24.36 1+0.15 51+01 26+02 013+001 2+1 117 (14893)
66 +13:11:31.97 -1:20:58.57 18+0.01 58+01 51+02 006+001 24+2 86 (10968)
67 +13:11:34.23 -1:21:01.72 1®+0.07 23+02 31+03 061+002 177+2 164 (207130)
68 +13:11:35.76 -1:20:12.09 1B+0.02 19+01 51+02 013+001 15x2 111 (14088)
69 +13:11:35.03 -1:20:04.29 1®H+0.03 46+01 29+02 031+005 11+3 100 (12779)
70 +13:11:32.28 -1:21:37.97 13+0.02 44+01 34+01 027+001 120+1 146 (183116)
71 +13:11:32.38 -1:22:10.64 1Bl+0.01 55+01 41+01 020+001 63+3 146 (180115)
72 +13:11:34.26 -1:21:18.50 1®+0.12 31+01 18+01 053+002 90+1 113 (14390)
73 +13:11:35.37 -1:21:18.87 18+0.14 39+01 17+01 024+001 66+1 129 (163103)
74 +13:11:35.72 -1:21:09.01 180+0.15 61+03 28+03 019+001 167+2 95 (11975)
75 +13:11:34.94 -1:20:58.99 1M+0.13 38+02 25+01 031+001 117+1 152 (197121)
76 +13:11:36.79 -1:19:42.49 1B7+0.13 28+0.1 30+01 015+005 43+6 82 (10465)
77 +13:11:36.01 -1:19:57.25 1®+0.11 31+03 13+01 038+001 1701 86 (10969)
78 +13:11:35.55 -1:20:42.52 1#+0.16 50+02 22+02 005+001 90+1 137 (173109)
79 +13:11:33.45 -1:21:53.28 1R+0.01 28+01 14+01 032+001 15+1 73 (9258)
80 +13:11:35.34 -1:21:12.50 13B+0.14 29+02 18+01 025+001 24+1 94 (11875)

! Total F775W AB magnitude obtained from the surface brightness profile fitting

2 Circularized physical half light radius in units of kpc
3 Estimated galaxy velocity dispersion, see text for details, and the correspomdmgde
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3.7.3 List of Images
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Table 3.8:A summary of image systems used in this study. For the columns with red-
shifts and rms from lensing the values are mean values from Models | and Il optimised
in the image plane, in brackets the mean of simulations (optimised in the source plane)

is given.

Image No. of
system images Zi,s  Zmin- Zmad

é Zgsie Zgnfw I'mﬁsie rms‘gnfw

1 7 3.04 3.04

2 5 246 1.88-3.03
3 3 547 4.62-6.32
4 5 121 0.98-1.43
5 3 287 2.34-3.39
6 4 1.08 0.77-1.39
7 3 4.87 4.87

8 5 284 1.31-3.35
9 4 3.98 3.50-4.46
10 3 1.37 1.37

11 3 244 178-3.11
12 2 1.83 1.83

13 4 1.83 1.83

14 3 099 0.77-1.21
15 2 3.54 3.04-4.04
16 3 1.99 1.59-2.38
17 3 204 1.65-242
18 3 240 2.03-2.77
19 3 213 184-241
20 5 270 2.15-3.25
21 3 1.74 1.36-2.13
22 3 204 168-241
23 3 201 1.62-2.40
24 5 3.09 247-3.71
25 2 425 3.41-5.08
26 3 1.02 033-1.71
27 3 258 1.91-3.25
28 2 1.58 0.02-3.15
29 5 3.26 2.60-3.93
30 3 3.51 3.08-3.94
31 2 2.07 158-257
32 19 1.50 0.50-8.00

3.04 3.04 (3.04) 3.04 (3.04) 172 2.54
- 227 (2.28) 2.12 (2.23) 1.59 2.04
- 574 (5.88) 5.88 (5.92) 0.70 1.01
- 1.07 (1.06) 1.29 (1.29) 1.64 1.80
- 235 (2.37) 252 (2.56) 1.31 2.48
- 0.98 (0.97) 1.36 (1.33) 0.77 1.24

4.87 4.87 (4.87) 4.87 (4.87) 10.38 6.40
- 226 (2.25) 2.30 (2.36) 2%0 3.51°
- 3.52 (3.55) 4.46 (4.41) 1.83 2.77

1.3 1.37 (1.37) 137 (1.37) 250 2.79
- 248 (2.56) 2.47 (2.53) 1.23 2.15

1.8% 1.83 (1.83) 1.83 (1.83) 0.66 0.359

1.8% 1.83 (1.83) 1.83 (1.83) 2.01 2.88
- 1.21 (1.20) 1.21 (1.18) G%B9 1.74©
- 3.04 (3.50) 3.04 (3.47) 1%6 1.46°
- 1.66 (1.66) 1.78 (1.83) 2.28 1.48
- 1.71 (1.65) 1.76 (1.89) 2.79 1.35
- 277 (2.76) 2.77 (2.77) 1.18 2.42
- 1.84 (1.84) 1.86 (1.86) 1.90 1.56
- 3.25 (3.25) 3.25 (3.25) 4.54 4.31
- 1.50 (1.51) 1.56 (1.63) 1.48 1.64
- 1.98 (1.84) 192 (1.86) 1.52 1.28
- 2.02 (1.90) 1.90 (1.86) 1.32 1.40
- 247 (2.47) 247 (253) 5.36 2.22
- 3.41 (3.41) 3.41 (3.41) 6.90 4.81
- 1.71 (1.71) 171 (1.71) 3.89 4.98
- 1.91 (2.11) 1.93 (2.53) 4.38 5.37
- 3.15 (3.15) 3.15 (3.14) 2.15 1.64
- 2.60 (2.60) 2.60 (2.71) 6.85 4.34
- 3.94 (3.89) 3.08 (3.56) 1%7 3.639
- 1.92 (1.98) 257 (2.45) %5 0.72°
- 1.29 (1.32) 1.20 (1.26) 6%6 0.139

1 Redshift of the image system

2 Redshift range allowed in modelling
3 Spectroscopic redshift

4 Spectroscopic redshi@ols&2002

6 Mean redshift for the NSIE-profile from Models | and ||

’ Mean redshift for the ENFW-profile from Models | and II

8 Mean image rms for the NSIE-profile from Models | and |I
9 Mean image rms for the ENFW-profile from Models | and ||

® Spectroscopic redshjfirye et al2002 ° Source plang?
11 This redshift is taken frorBroadhurst et 820058 who quoteFort et al.(1997 as the source of the
redshift. We have not been able to confirm this redshift and its use is hence questionable.
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Table 3.9:Images used in this study, 1-9.

ID IDBO5 RA Dec z z z
1 a 1.1 +13:11:26.60 -1:19:56.73 - 39?2% 3.04
b 1.2 +13:11:26.43 -1:20:00.29 3.4D.22 3.04°
c 1.3  +13:11:29.92 -1:21:07.49 3.40.30 3.27;83gg -
d 1.4 +13:11:33.21 -1:20:27.42 3.328.20 2.94§f§§ -
e 15 +13:11:32.08 -1:20:06.01 3.48.11 3.35527 -
f 1.6  +13:11:30.00 -1:20:38.43 3.32.26 1.oq§;§} -
g - +13:11:26.58 -1:19:57.35 - - -
2 a 21 +13:11:26.67 -1:19:55.47 3.862.94 2.62078 -
b 22 +13:11:33.11 -1:20:25.51 2.9D.73 2.51847 -
c 23 +13:11:32.12 -1:20:07.17 2.90.63 2.648% -
d 24 +13:11:29.96 -1:21:06.03 - 2.8364 -
e 25 +13:11:30.03 -1:20:39.38 - 1.5'82 -
3 a 31 +13:11:32.19 -1:20:27.54 - 5.48% -
b 32 +13:11:32.32 -1:20:33.30 - 5.4%%2 -
c 33 +13:11:31.83 -1:20:56.06 - - -
4 a 41 +13:111:32.32 -1:20:57.37 1.20.40 1.06957 -
b 42 +13:11:30.67 -1:21:12.05 1.1D.34 1.32:81%1 -
c 43 +13:11:30.90 -1:20:08.34 1.10.14 1.4z§f§§ -
d 44 +13:11:26.43 -1:20:3545 1.€0.35 133031 -
e 45 +13:11:29.99 -1:20:29.38 - - -
5 a 51 +13:11:29.21 -1:20:48.79 3.28.80 3.299% -
b 52 +13:11:29.37 -1:20:44.17 - 3.1 S
c 53 +13:11:34.27 -1:20:20.93 - 2.1 'g? -
6 a 6.1 +13:11:30.90 -1:19:38.01 1.88.33 1.22047 -
b 6.2 +13:11:33.50 -1:20:12.19 0.26.94 1.3181%8 -
c 6.3 +13:11:32.90 -1:19:54.52 - 0.958 -
d 6.4 +13:11:32.63 -1:19:58.88 - 1.0 :22 -
7 a 7. +13:11:2560 -1:20:51.86 4.28.41 4.920/5 4.87
b 7.2 +13:11:30.82 -1:20:13.92 4.4D.14 5.2Q8;5} -
c 7.3  +13:11:29.97 -1:20:24.89 - o.z%of -
8 a 81 +13:11:32.44 -1:20:50.93 3.20.89 2.630;; -
b 82 +13:11:31.55 -1:21:05.56 2.24.13 2738358 -
c 83 +13:11:31.65 -1:20:14.10 - 2.7 ?é -
d 84 +13:11:25.68 -1:20:20.18 - 0. -
e 85 +13:11:30.48 -1:20:30.51 - 0.77 -
9 a 9.1 +13:11:30.45 -1:19:48.67 4.30.18 4.97%7% .
b 9.2 +13:11:33.67 -1:20:50.35 1.0% -
C 9.3 +13:11:28.90 -1:21:15.83 - 5 -
d 94 +13:11:26.42 -1:20:26.95 4.98.30 5.1 -

1 Photometric redshift, this work
2 Photometric redshifBroadhurst et 82005a
3 Spectroscopic redshift

4 Spectroscopic redshiiGolsé2002

5 Spectroscopic redshifErye et all2002
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Table 3.9: Images used in this study 10-21.

ID IDBO05 RA Dec z; z z
10 a 10.1 +13:11:34.13 -1:20:50.87 2.26.98 1.7503¢ 137
b 10.2 +13:11:28.20 -1:20:12.50 - 1.55‘31 -
c 103 +13:11:29.46 -1:20:27.76 - 2.5'5 -
11 a 111 +13:11:33.49 -1:21:06.77 2.96.92 2910 -
b 11.2 +13:11:29.20 -1:20:01.31 2.Z8.18 2.8181?1 -
c 11.3 +13:11:29.64 -1:20:26.40 - 1.5% -
12 a 122 +13:11:2751 -1:20:54.90 1.48.33 1.9973; 1.834?
b - +13:11:27.36  -1:20:51.85 2.18.39 - -
13 a - +13:11:33.42 -1:20:44.40 2.40.66 - -
b - +13:11:26.65 -1:20:22.12 0.52.27 - -
c 121  +13:11:30.50 -1:19:51.45 - 1.53% 1.834°
d 124 +13:11:29.11 -1:21:10.31 1.98.51 1.9203% -
14 a 13.1 +13:11:32.97 -1:19:24.39 - 1.025/ -
b 13.2 +13:11:33.13 -1:19:25.85 - 0._'g -
c 133 +13:11:33.54 -1:19:31.15 1.26.18 1.1Q0?2§ -
15 a 141 +13:11:29.18 -1:21:41.82 3.50.35 3.370%¢ -
b 142 +13:11:29.60 -1:21:42.65 - 3.§§1§§ -
16 a 15.1 +13:11:28.22 -1:20:15.21 - 1.993° -
b 152 +13:11:34.22 -1:20:51.33 38 -
c 153 +13:11:29.38 -1:20:27.59 a3 -
17 a 16.1 +13:11:28.13 -1:20:25.34 -
b 16.2 +13:11:29.06 -1:20:28.57 -
c 16.3 +13:11:34.54 -1:20:46.42 -
18 a 17.1 +13:11:30.80 -1:20:24.91 -
b 17.2 +13:11:30.54 -1:20:27.79 -
C 17.3 +13:11:25.13 -1:20:41.89 -
19 a 18.1 +13:11:28.39 -1:20:09.56 -
b 18.2 +13:11:33.97 -1:20:54.56 -
C 18.3 +13:11:29.51 -1:20:27.41 -
20 a 19.1 +13:11:31.78 -1:20:22.61 -
b 19.2 +13:11:25.39 -1:20:20.03 -
c 193 +13:11:32.10 -1:20:59.33 -
d 194 +13:11:32.20 -1:20:57.15 -
e 195 +13:11:30.36 -1:20:33.98 -
21 a 211 +13:11:31.17 -1:20:45.80 -
b 21.2 +13:11:30.95 -1:20:44.76 -

c 213 +13:11:25.40 -1:20:11.23

1 Photometric redshift, this work

2 Photometric redshifBroadhurst et d2005a

3 Spectroscopic redshift

4 Spectroscopic redshiiolsé2002

® Spectroscopic redshifErye et all2002

6 This redshift is taken fronBroadhurst et al(20058 who quoteFort et al.(1997)
as the source of the redshift. We have not been able to confirm this redshift.
The use of the redshift is hence questionable.
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Table 3.9: Images used in this study, 22-31.

ID IDBO5 RA Dec z z
22 22.1 +13:11:29.83 -1:20:08.81 1.9D.44 1.99023Y
22.2 +13:11:29.76 -1:20:23.78 - 1.9%98
22.3  +13:11:32.56 -1:21:15.93 2.3D.49 1.9@03§§
23 23.1 +13:11:29.68 -1:20:10.04 2.88.37 2.03%49
23.2  +13:11:29.70 -1:20:22.91 - 1.9'8
23.3  +13:11:32.80 -1:21:15.22 - 2.0 :3§
24 24.1 +13:11:29.34 -1:20:56.20 3.84.18 2.6393%
24.2 +13:11:32.21 -1:19:50.58 - 2.5

243 +13:11:30.44 -1:19:34.16 3.80.89 2'458322
244 +1311:3387 -1:20:19.88 284.35 28Iy
245  +13:11:29.78 -1:20:37.02 - 25577

25 251 +13:11:28.64 -1:20:35.01 - 4.5 ;3

252 +13:11:34.80 -1:20:33.59 3.38.73 4.42_*5;?

26 26.1 +13:11:25.30 -1:20:32.78 1.4P.75 1.08%2/
26.2 +13:11:31.47 -1:20:25.26 - 1.0 27
26.3 +13:11:30.39 -1:20:32.61 - 0.7 %
27 27.1 +13:11:25.32 -1:20:33.13 1.4R.75 1.81;3/
27.2  +13:11:31.51 -1:20:24.66 - 1.583
27.3  +13:11:30.34 -1:20:32.92 - 4.553
28 28.1 +13:11:28.45 -1:20:10.93 - 1175

28.2 +13:11:34.41 -1:21:00.02 -

29 29.1 +13:11:29.37 -1:20:57.93 -
29.2 +13:11:30.18 -1:19:34.23 -
29.3 +13:11:32.29 -1:19:52.58 -
29.4 +13:11:33.77 -1:20:20.83 -

29.5 +13:11:29.88 -1:20:36.62 -

30 30.1 +13:11:32.57 -1:19:19.84 3.29.13
30.2 +13:11:33.33 -1:19:26.08 3.18.05

30.3 +13:11:33.80 -1:19:32.71 3.%0.21

31 - +13:11:31.82 -1:19:47.34 2.6D.63 -

- +13:11:31.71 -1:19:45.97 1.5P.36 -

T |0 T Q0 T T |0 T 9|0 T|T @ Q0 T 90 T |0 T o

1 Photometric redshift, this work
2 Photometric redshifBroadhurst et d2005a
3 Spectroscopic redshift
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Table 3.9: Images used in this study, 32
ID IDBO05 RA Dec z Z Z

32 a - +13:11:33.59 -1:20:05.99 - - -
b - +13:11:33.58 -1:20:05.49 - - -
C - +13:11:33.56 -1:20:04.93 - - -
d - +13:11:33.55 -1:20:04.40 - - -
e - +13:11:33.53 -1:20:03.64 - - -
f - +13:11:33.54 -1:20:04.00 - - -
g - +13:11:33.52 -1:20:03.16 - - -
h - +13:11:33.51 -1:20:02.72 - - -
i - +13:11:33.51 -1:20:02.29 - - -
j - +13:11:33.50 -1:20:01.80 - - -
k - +13:11:33.48 -1:20:00.80 - - -
| - +13:11:33.47 -1:20:00.31 - - -
m - +13:11:33.41 -1:19:57.01 - - -
n - +13:11:33.42 -1:19:57.44 - - -
o] - +13:11:33.43 -1:19:57.88 - - -
p - +13:11:33.44 -1:19:58.37 - - -
q - +13:11:33.45 -1:19:58.75 - - -
r - +13:11:33.45 -1:19:59.25 - - -
S - +13:11:33.47 -1:19:59.81 - - -

1 Photometric redshift, this work
2 Photometric redshifiBroadhurst et 820054
3 Spectroscopic redshift
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3.7.4 multiple images

In this section of the appendix we show image stamps for all multiple images in the
different image systems. Observed images are shown on the top row of each figure.
Model predictions are shown in the second and third rows for NSIE and ENFW Models

Il respectively except for the source image for which we show the unlensed image
instead. The images used as sources are indicated with a # on the observed image. The
thumbnails for the galaxies in the image plane have a box width of 2”, those in the
source plane have a box width of 1”. The scale of the images are also marked on the
bottom right corner of the images used as sources. To make the model predictions of
the images we have found a mapping from one region of the image plane (i) to another
(s) via the source plan@s(8(6;,2),2). Regioni is where we expect to see an image
from region s. In general a pixel from regiors mapped to a quadrilateral in regisn

which will overlap several pixels. We have redistributed the flux from pixels in region
sto the pixel mapped from regidrin a way which preserves surface brightness. This
allows us to create an image of regisiin regioni which has mesh of square pixels

in region i. We have used a three colour image composed of F850LP (red), F625W
(green) and F475W (blue) for the mapping. For all images the colour cuts are the
same expect for images near bright sources for which we have used only a single filter
(F775W) with the bright source subtracted in order to show the multiple image more
clearly. Image systems 3, 9 and 28 that have very red colours we show as a grey scale
images in filter F850LP.
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Figure 3.26:Image system 4.
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Figure 3.27Image system 5:
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Figure 3.28Image system 6:
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Figure 3.29:1mage system 7:
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Figure 3.331mage system 11:
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Figure 3.34Image system 12:
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Figure 3.35:Image system 13:
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Figure 3.37Image system 15:
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Figure 3.411mage system 19:
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Figure 3.43:Image system 21:
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Figure 3.47Image system 25:
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Figure 3.49:1mage system 27:
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Figure 3.51:Image system 29:
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Figure 3.531mage system 31:
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Chapter 4

The sizes of galaxy halos in galaxy
cluster Abell 168%

4.1 Abstract

The multiple images observed in galaxy cluster Abell 1689 provide strong constraints
not only on the mass distribution of the cluster but also on the ensemble properties of
the cluster galaxies. Using parametric strong lensing models for the cluster, and by
assuming well motivated scaling laws between the truncation ragdiod the velocity
dispersioro- of a cluster galaxy we are able to derive sizes of the dark matter halos of
cluster galaxies.

For the scaling law expected for galaxies in the cluster environnsenis), we
obtains= 64jﬁ>< (o/ 220 knys) kpc. For the scaling law used for galaxies in the
field with sec o we finds=66*13x (o/ 220 knysy kpc. Compared to halos of field
galaxies, the cluster galaxy halos in Abell 1689 are strongly truncated.

4.2 Introduction

Although galaxies are the units of objects seen on cosmological distances, very little is
known observationally about the extent of dark matter halos surrounding the galaxies
beyond the light emitted by the gas and stars in them. Based on numerical simulations
these dark matter halos are expected to extend out to several hundred kpc (e.g.
Tormen et al.[1998. Rotation curves of spiral galaxies and the line of sight velocity
dispersions of the stars in elliptical galaxies can be measured only out to some tens of
kiloparsecs (see e.@ofue & Rubifi2007; Bender et al1994and references therein).

1This chapter is a reproduction of a manuscript that has been accepted for publication in the Astro-
physical Journal. The other authors of the manuscript are Stella Seitz and Maurilio Pannella.
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The results from these two methods indicate that the masses of galaxies continue to
grow roughly linearly with the radius, i.e. the matter in galaxies is closely isothermal.
The radial velocities of satellites of galaxies can also be used to estimate the masses
of their host galaxies (e.g/Hartwick & Sargerit[1978 [Zaritsky et al, (1989 [Prada

et al,[2003. This has recently been done for the Milky Way/Bgttaglia et al(2005

who were able to measure the radial velocity dispersion profile of the Galaxy out to
120 kpc. The method works only for field galaxies since it is sensitive to other nearby
massive galaxies and hence the galaxies studied need to be is@egr(d2004).

Gravitational lensing is an ideal tool to measure the extents of dark matter halos
around galaxies since no optical tracers within the halo are needed. Instead, the halo
mass can be inferred from the gravitational lensing of background sources.

Weak lensing can be used to study galactic dark matter halos statistically. The field
started from the pioneering work @son et al.(1989), and galaxy-galaxy lensing
has now been successfully used both in the fiBiciherd et al. 1996 [dell’Antonio
& Tyson, [1996 Hudson et all1998 [Fischer et al.l200Q [Smith et al,[2001; Wilson
et all, [2007; [McKay et all, [2007; [Hoekstra2003 [Hoekstra et a)l2004 and in clus-
ters Natarajan et 11998 [Geiger & Schneid¢1999 [Natarajan et 8]2002, |[Gavazzi
et al,[2004 [Limousin et al,[2006) to measure the masses and extents of galaxy halos.
The signal is very weak for individual galaxies and needs to be collected from many
galaxies, possibly adopting various scaling laws to compare measurements from lens-
ing galaxies with dierent luminosities. The fferent works generally find a tangential
sheary that decreases likex 1/6 with the radiug, i.e. the halos stay roughly isother-
mal beyond the luminous component. In the field the signal from galaxies has been
measured out te 200 kpc (e.g.Wilson et al,[2007; [Hoekstra et a)2004).

The galaxy truncation in clusters has been studied both theoretically and obser-
vationally in[Natarajan & Kneib(1997%); [Natarajan et al(1998); |[Geiger & Schneidér
(199§ 1999; Natarajan et al(2002); [Gavazzi et al(2009; [Limousin et al.(2005
2006. Strong truncation of galaxies is foundiWatarajan et 21998, Natarajan et &l.
(2002 andLimousin et al.(2006§ when compared to galaxies in the field (truncation
radii s of L* galaxies span 17-55 kpc in the 6 clusters §5:264+42 kpghyg in the
field,[Hoekstra et al2004). There is a general agreement that the halos of galaxies in
dense environments are truncated relative to those in the field although the uncertain-
ties are still large and the sample of clusters used is inhomogeneous. The inherently
statistical nature of the methods and the need to assume certain scaling laws further
complicate the case. The method usefiNatarajan et d1(1998 2002 also requires
that the parameters of the smooth cluster component are known accuRd&yajah
& Kneibl [1997). This is achieved by incorporating also strong lensing constraints in
the clusters enablinatarajan et alto accurately model the cluster profile.

The typical radius of an Einstein ring of a galaxy is at most a few arcseconds and
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so in the strong lensing regime it is not possible to probe the extent of dark matter
halos beyond a few arcseconds directly. This makes strong lensing unfeasible to study
the dark halos of individual galaxies beyond a few arcseconds in the field. In clusters
of galaxies however the combined potentials of the smooth dark matter halo of the
cluster as a whole and those of the individual galaxy halos are responsible for the
lensing of background sources. This enables us to statistically probe galaxy halos in
dense environments using strong gravitational lensing. Since lensing constrains only
the total potential of the cluster it is important to have a large number of multiple
images with a large radial spread over the cluster in order to investigatefibredt

mass components separately. Abell 1689 is ideally suited for this task with the large
number of identified multiple images of manyfdrent background sources and well
defined strong lensing modeBroadhurst et 8][20054 Diego et al, 2005k [Zekser

et all, 2006 Halkola et al, [2006. In this paper we use the strong lensing models
developed ifHalkola et al.(200€) to study the truncation of cluster galaxy dark matter
halos in A1689. We demonstrate that the models are indeed sensitive to the total
mass contained in the cluster galaxies and derive sizes for the galaxies in the cluster.
This is the first time the sizes of galaxy halos have been measured in dense cluster
environments with strong lensing only.

In sectiord.3we give a brief summary of the models usedHalkola et al.(2006)
in particular the modeling of the galaxy component of the cluster, in sedtidwe
outline the methodology used to study the truncation of the cluster galaxies. The
results are presented in sectlér and in sectiod.g we perform several checks to
demonstrate that the results obtained are robust and reasonable. In Eettiom
compare the results with earlier published studies of galaxy halo truncation before
concluding in sectiod.8

The cosmology used throughout this paper ,=0.30, 2,=0.70 and
Hop=70 knysMpc.

4.3 Strong Gravitational Lensing Model for A1689

The strong lensing models in this work are based on the parametric models used in
Halkola et al.(2006) to study the mass profile of A1689 in detail. Here we give a short
summary of the strong lensing modeling but refer the readétalkola et al.(2006)
for the details.

The multiple images iffdalkola et al.(2006) were in most part those identified in
Broadhurst et d20054. In total a 107 multiple images in 31 multiple image systems
and 1 arc were used. In 5 cases at least one of the images in a system had also a
spectroscopic redshift and the redshifts were kept fixed for these systems. The redshifts
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of another 26 multiple image systems were estimated using photometric redshifts. In
these cases the redshift of an image system was allowed to find its best redshift within
the estimated photometric redshift errors. The arc was too faint for good photometry
and its reshift is left unconstrained.

The mass in the cluster is assumed to be in two smooth DM halos that are described
by either non-singular isothermal ellipsoids (NSIE) or elliptical Navarro-Frenk-White
profiles (ENFW). The small scale mass structures associated with the galaxies are mod-
eled with BBS profilesBrainerd et all1996). The BBS profile is a singular isothermal
sphere with a truncation radiss In the central regions (< s) the density profile is
isothermal § o r=2) but there is a truncation of the halo at radmiafter which the
density falls sharply withp oc r=4.

The velocity dispersions of the galaxies are estimated using the Fundamental Plane
(FP). The FP ties kinematic (velocity dispersion), photometiteftive surface bright-
ness) and morphological (half light radius) galaxy properties togebreséler et al.

1987% [Djorgovski & Davig [1987% Bender et a]/1992). Measuring morphological and
photometric properties of the galaxies allows us to estimate the galaxy kinematics. We
assume that the central velocity dispersions of galaxies, as derived from the FP, are
equal to the halo velocity dispersions, and that the masses in disks can be neglected.
For some fainter galaxies we have also used the Faber-Jackson réfaien & Jack-

son (1976 here after FJ relation) that relates the absolute magnitude of a galaxy to
its velocity dispersion. The FJ relation has a large intrinsic scatter and the velocity
dispersion obtained using FJ have a larger uncertainty than the ones obtained with the
FP.

The truncation radii of the galaxies are assumed to follow a scaling law of the form
Sgal = £ X (0gar/0)?. In this paper we discuss the same scaling laws &aikold
et all (2006), namelya = 1 anda = 2. =1 corresponds to tidal truncation of halos in
dense cluster environmeiidérritt, 1983 whereas galaxies with=2 have a constant
mass-to-light ratio and is usually assumed in weak lensing analyses [Brainerd
et al, [1996 [Natarajan et 8]/1998 [Hoekstra et dJ.2004. In this paper we explore
further the radial extent of the galaxy halos for the scaling laws usktdikola et al.

(2008).

A1689 is an excellent candidate for this work since the large number of multiple
images ensures not only that the global mass profile can be constrained very accurately
but also the relative contributions of the smooth DM and galaxies can be determined
as will be shown later.

4.4 Methodology

In this paper take advantage of the unique opportunity presented in A1689 to use strong
lensing and the significant contribution of the cluster galaxies on the positions of the
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impressive number of multiple images observed in the cluster.Tfeetds only ob-
servable in the total fit quality and is hence statistical in nature in that extension of
individual galaxies cannot be determined.

Unlike the usual galaxy-galaxy lensing in which foreground galaxies weakly dis-
tort the shapes of background galaxies this method relies on the changes induced by
galaxies on th@ositionsof multiply imaged background galaxies. This strong galaxy-
galaxy lensing is only applicable in the strong lensing regime where multiple images
are observed over a large range of cluster centric radii so that they pose strong con-
straints both on the total cluster potential and also on the galaxies.

In this section we outline the method used to measure the extents of galaxy halos.
The strong lensing models are constrained by the observed multiple images. The posi-
tions of the images can be measured to an accuracy of better than 1 pixel or 0.05” on
the images from the Advanced Camera for Surveys. The only other measurables are
the redshifts of the cluster and the multiple images. The redshift of the cluster is well
established from spectroscopic surveysdgue et d1[199Q [Balogh et al.[2002, [Duc
et all, 2002 and the overall mass scale of the cluster is fixed by the 5 spectroscopic
redshifts of multiple image systems. The major uncertainty in the models is the inclu-
sion of the cluster galaxies. In the following we describe the Monte-Carlo simulations
used to find the normalization of the scaling lask, and how these simulations can
also be used to estimate the errosfrdue to the uncertainties in the observables.

4.4.1 Monte-Carlo Simulations

A Monte-Carlo run consists of reassigning a new velocity dispersigft, to each
cluster galaxy based on the valuga and estimated error determined using the FP
or the FJ relation. The newyc of a galaxy was drawn from a Gaussian distribution
centered owrgg With a width corresponding to the estimated error. The multiple image
positions were similarly varied with assumed error of 1 pixel. In this way we have
constructed a simulated galaxy that has properties similar to the one observed within
our estimates of the errors.

This cluster can now be analyzed in the same way as the ’original’ cluster. This
means that we find the optimal parameters for the two smooth DM halos (positions, el-
lipticities, position angles and the two free parameters of the halos: velocity dispersion
and core radius for the NSIE profile and concentration and virial radius for the ENFW
profile) and redshifts for the image systems with photometric redshifts.

The simulated clusters used in this work are the same that were ugtalkiole
et all (2006) to derive errors for the total mass profile and the parameters of smooth
DM halo.

In this work we concentrate on the normalization of the truncation raglifes two
scaling lawsg = 1 anda = 2, which was not done iRlalkola et al(2006. This means
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that in addition to optimizing the above mention parameters we also find the optimal
value of for each simulated cluster. This is explained below.

4.4.2 Determinings? for a Monte-Carlo Run

The optimal<® for each Monte-Carlo run was taken as the one with the minimum
{ x*YY? whens? was progressively increased from 20 kpc to 200 kpc. The parameter
optimization was performed by a source plane minimization for computational reasons.
In all subsequent analysis we have used an image pfadefined as the sum of the
squared distances between the observed images and ones predicted by our models.
{ ¥®Y? is hence the rms distance between the observed images and the corresponding
model image positions.

We use the shapes of thege?)¥/? vs. ° curves to convince the reader that there
is clear signal and that® can be constrained in clusters using strong lensing once
suficiently many multiple images can be used to constrain the models.

4.4.3 Determinings? for the Cluster

The shape and spread of tha?)1/2 vs. ° curves could in principle also be used
to derive confidence limits og”. This, however, would require us to perform more
simulations to derive appropriati? levels for the confidence limits. The ?)Y/2 vs.
s curves do however demonstrate that there is a strong and clean signal that can be
used to derive® and the errors for a given scaling law.

The best fittings® and the errors for the cluster are derived from the distribution of
the s values obtained in the Monte-Carlo runs instead.

45 Results

For the scaling law we need to choose a referane The deriveds? is then the
truncation radius of a galaxy with a velocity dispersion equal to¢highe truncation
radii of galaxies with dferentos can then be obtained using the appropriate scaling
law. In this work we simply assume a fiducial valueo=220 knys. To compare the

s” obtained in this work with literature one should scale slioy (o9, / 220 kny's ).

In creating the simulated clusters the velocity dispersions for the galaxies are
drawn from a Gaussian distribution and hence we do not expect to see significant
differences in the shapes of the individga®)/? vs. ° curves between the fiierent
Monte-Carlo runs that would arise from a systematic change in the galaxy component.
The curves do vary in their absolutg?)'/? level however. For this reason we have
normalized the individual curves to their respective medigf)/? in order to bring
all the curves to a similaf y2)1/? level. After this the curves have been renormalized
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to the level of the mean median?)%/? of all the curves. The scaling of the individual
curves is necessary in order to combine the informatios’drom the diferent curves.

In Fig. 4.1 the mean curves for 1000 simulated clusters for each of the smooth
DM profiles used are shown. NSIE is shown as a dotted line and squares, ENFW as
a dashed line and triangles. The left panel shows the curves=#dt (S« o) and the
right for & = 2 (s o). Combining the two smooth DM profiles yields the solid line
and points shown as circles. The points show the 2-sigma clipped mean fos’each
The error bars show the dispersions of the final clipped points for a given

The smaller scatter in the points for NSIE models is an indication that the
renormalized curves are very similar while the considerable scatter for the ENFW
models shows that the curvedfdi not only in the absolutg? level but also in their
shape. The combined curve has been calculated from the NSIE and ENFW curves and
not from the curves of each individual Monte-Carlo run for the two models. ENFW
smooth DM profiles generally favor slightly larger values $8than the NSIE models
(48 ~ 10 kpc).

The ( x*¥? vs. S curves are flatter at large-$0 kpc) ¥ than at smalles?, this
is especially apparent for the cases where the smooth DM is described by an NSIE
profile. A possible reason for the shallower slope on the logarithmic horizontal scale
(linear in fractional change in mass) in Fig.J is that the larger extent of the halos,
and hence a smoother combined mass profile of the galaxies, makes it easier for the
smooth DM component to compensate for the change in the mass in the galaxies.
In the smalls® regime the galaxies have significant local contribution to the image
positions which cannot be easily compensated by the smooth DM component.

The curves for the two scaling laws are very similar and we are not able to
differentiate between them in terms of quality of fit. This is also seen in weak lensing
determinations of the extensions of the dark matter halos of galaxies (Limousin
2006, private communication). A possible explanation is that instead of measuring
the extension directly we are in fact measuring the mass of the galaxies. This then
creates a degeneracy between the two parameters in the scaling law, naearaly
L. For a diferent value ofr the same total mass in the galaxies can be obtained by
appropriately adjusting®.

We would like to stress at this point that the two panels in Bid.are only shown
to illustrate that thes is indeed constrained and to provide an idea how the fit quality
changes whes® deviates from the best fif. The( y?)/? vs. S curves are not used
to derive thes” of the cluster nor the errors. The estimationsdfand errors is done
using the histograms of tr8°s obtained using the Monte-Carlo simulations shown in
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Figure 4.1: The mean( y?)¥/?2 vs. ° curve for 1000 simulated clusters for the smooth DM described

by both NSIE (dotted line, squares) and ENFW (dashed line, triangles), and the combined data from the
two smooth profiles (solid line, circles). The left panels are calculated for the scaling of the truncation
radius withs « o~ and the right panels fa « o-2. The points show the 2-sigma clipped mean for each

<, and the error bars show the final sigma of the clipped points. Before clipping, the individual curves
were normalized to their mediany?)/? in order to bring all the curves to a similan2)/? level for
comparison. The median curve has been brought back to the level of the mean metidh The
combined curve has been calculated from the NSIE and ENFW curves and not from the individual
curves for the two models. The minimuy?)%/2 is obtained at-60-70 kpc.

= \ T E = \ T E
500 [~ -1 500 | 2
- 0 o - - = o i
X st (ZEOkm/s) ] X S =B (220km/s> ]
- NSIE oo ] - NSIE o]
400 = ENFW ------ 7 400 ENFW ------ ]
C BOTH ] C BOTH ]
300 |- - 300 |- B .
N, | In, [ ! ]
200 | 4 200 |- .
B i B *: i
100 |- — 100 [ L -
o U ‘— o 2 A T B = SR,
20 40 60 80100 200 20 40 60 80100 200

s9 [kpc] s° [kpc]

Figure 4.2:The histograms of the® values at which each simulated cluster attains its minimum. The

line types used are as above. As is expected, the histograms peak nicely at the positions where the
mean curves on the top row also have their minima. The strong clustering of the histogram between
£ =40 kpc ands® = 90 kpc with only a few outliers demonstrates tts strongly constrained. The

best fits” and its error has been derived from these histograms.
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Fig.[4.2and explained below.

We finally use the best fitting? of each Monte-Carlo run to deriv& for A1689
and estimate the errors. In Fig.2 we show the histograms @& values at which
each simulated cluster attains its minimgrp?)/2, i.e. the best fitting® for a given
Monte-Carlo run.

As is expected the histograms peak nicely at the positions where the mean curves
in Fig. 4.1 also have their minima. The strong clustering of the histograms between
L = 40 kpc ands® = 90 kpc with only a few outliers demonstrates tisdtis well
constrained. The flattery?)1/2 vs. & curves ats® >50 kpc for the NSIE models lead
to less well defined minima and correspondingly wider distributios’at larges® in
the histograms.

The best fit values of° for the diferent descriptions of the smooth DM component
of the cluster are shown in Tal#el The values given are the geometric means of the
best fit<? of all the simulated clusters. We have used the geometric mean to estimate
the truncation radius since this corresponds to fractional change in mass apd)té
vs. & curves in Fig.4.1 are relatively symmetric in log?) (although not exactly as
discussed earlier). We also give in TaBld the estimated 1- and @-errors ofs?. The
errors have been derived from the distribution of the best fif the simulated clusters
shown in Figl4.2 For this the histograms were interpreted as probability distributions
of 2 and 1- and 2 confidence intervals were estimated by the regions around the
mean that contain 68.3 per cent and 95.4 per cent of the beSt\filues from the
simulation for the 1- and 2= errors respectively. The asymmetry of the distribution
becomes evident at higher confidence limits as can be seen irvtherars.

For the scaling law expected theoretically for galaxies in clusfdesritt, (1983,
s=5"x (o/ 09), we finds® = 64*S] kpc, where the errors given arex2errors. For the
scaling law used for galaxies in the fielsi£ *x (o/ 00)?), we find s° = 6672 kpc,
the errors are again @-errors.

4.6 Checks on the Robustness of the Results

We have performed the following checks to confirm that the results presented above
are reasonable and robust.

4.6.1 o9 L, o and the Total Mass in Cluster Galaxies

The total mass of a galaxy with a BBS profile can be easily written in terms of its
truncation radius and velocity dispersionr as is shown iiBrainerd et al(199€¢). The
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Table 4.1:Deriveds? values and 1- and @-errors fors? for the diferent descriptions

of the smooth DM component of cluster. The truncation radius s of a galaxy depends on
its velocity dispersior and the scaling laws adopted are of the farms® x (o-/0°)®.

The s” values given are the geometric means of the individual minima of the simulated
clusters. The errors are derived from the distribution of the minima. We give both
1- and 2¢ errors since the asymmetries of the distributions become more apparent at
higher confidence limits. The histograms of the minima for thedent descriptions

of smooth DM are shown in Fi¢gl.2

Smooth DM Jd 1-0errors 2-o0 errors
profile ff  (kpc) (kpc) (kpc)
NSIE 1 58 +12/-11 +32/-23
ENFW 1 69 +19/-12 +88/-30

NSIE & ENFW 1 64 +15/-14 +67/-28

2
2
2

NSIE 64 +18/-15 +76/-25
ENFW 66 +18/-16 +70/-26
NSIE & ENFW 66 +18/-16 +72/-26

total mass of the cluster galaxies in A1689 with a scaling law for the truncation of the
halos of the frons = °x (0-/0%)* can be written simply as,

Mot = 7.3% 10° (i) Z(L)Z (Oi )a Mo, (4.1)

kpc ; km/s/ \o©

wheres, is the normalization of the scaling law? a reference velocity dispersion
ando is the velocity dispersion of galaxy i.

In our study we have taker® = 220 knys. Note that this- is only a fiducial value
and is not related to the*Lof the galaxies in the cluster. With this® and our set of
galaxies in the cluster, the galaxies have the same total mass with the two scaling laws
(e=1ande=2) if _,=0.93 x _,. Note that this relation betweef}_, ands?_, is
the same for alt®_, ands)_,,.

The fact that the normalizatiors8 obtained for the two scaling laws are very simi-
lar (s)_, = 64*15 kpc ands)_,, = 66" 13 kpc) for °=220 knys provides strong support
for the results and our analysis.

4.6.2 Sensitivity of Cluster Lensing to Extensions of Galaxy Halos

To demonstrate that we are indeed able to measure the extension of galaxy DM halos
with strong lensing we have created clusters witrsam the range [20,80] kpc. For
each of these clusters we have created a mock set of multiple images that are exactly
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reproduced by the cluster. The mock multiple image set is based on the observed
multiple images so that the cluster setup is as close to reality as possible. These clusters
with known galaxy truncation laws are then analyzed in the same way as is done for
A1689.

We find that we are able to recover the ingitwithin a few kpc in all cases.
Additionally, both the change in the fit quality(y2)*/? ~0.2") of these new simulated
clusters and the distribution of the bestditis similar to what is observed and shown
in Figured4.Jand4.2

4.6.3 Hfect of the Choice of Multiple Image Systems

We have in addition checked the sensitivity of the results to our choice of multiple
images. This was done by running another 100 Monte-Carlo runsasdthand the
smooth DM described by NSIE profiles. This time for each Monte-Carlo run we se-
lected randomly 20 of the 32 image systems to use as constraints for the modeling.
The multiple images with spectroscopic redshifts were always included since they are
needed to fix the overall mass scale of the cluster. With fewer constraints we obtained
essentially the sam&” with larger spread in the distribution af from the diferent

runs. The best fit® obtained with 20 image systemss8= 5927 kpc compared to

s” = 58'17 kpc with all the image systems, the errors are.1-

When only 20 multiple image systems were used the absolfie’? stayed at the
same level as with all the 32 image systems. This shows thatRe’? level is not
driven by only a few image systems but all image systems contribute similarly to the
{x*Y? level. The change in fit quality between bestsfitand extrema a$’=20 kpc
and s°=200 kpc with fewer image systems g y?)1/? ~0.1” showing that also the
individual © are less well constrained with fewer image systems. That no charsgie in
is obtained demonstrates that our resultssfoare robust.

4.7 Comparison with literature

The extensions of dark matter halos have been measured previously in cluster envi-
ronment byNatarajan et al(1998, [Natarajan et di(2002), [Gavazzi et al(2004), and
Limousin et al.(2008).

Strong truncation of galaxies is found/Natarajan et al(199¢), [Natarajan et &l.
(2002), andLimousin et al.(2006) when compared to galaxies in the field; the trun-
cation radii of an L. galaxy span the range 17-55 kpc for the 6 clusters studied in
Natarajan et 8l(2002). The halos irLimousin et al.(200€) are truncated more with a
typical truncation radius below 20 kpc.

An important diterence in the analysis Bpfatarajan et dl(1998 [2002) to that of
Limousin et al(2006€) is thatNatarajan et dlalso include strong lensing features in the
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central parts of the clusters to further constrain the mass profile of the selected cluster
sample and hence also constrain the galaxy halo parameters stronger. This helps to
better define the shear contribution from the cluster galaxies and hence the truncation
radius. Another major dlierence is thatimousin et al.(2006 work exclusively with

ground based data where as Hubble Space Telescope data are|Ns¢arajan et 2.

(1998 12002.

The large errors in the work @avazzi et alare caused by the smoothing scale of
0s=220 kp¢h7o employed in their analysis which restricts the achievable resolution.
Although they are not able to derive strong limits on the sizes of cluster galaxies,
they do find that halos on the periphery of the cluster MS@3@2are more strongly
truncated than the halos on the central regions of the cluster providing thus further
confirmation for the tidal stripping scenario.

For the range ofs for the clusters ifNatarajan et 82002 our £ is in the range
[32,66] kpc fora = 1 and [16,72] kpc for = 2 (their® span 17-55 kpc). In Figd.3
we show a comparison between our results and thoddatdrajan et 8l(2002) and
Limousin et al.(2006. For our points we also show the scalingsfvith o° as dotted
and dashed linesy(= 1 anda = 2 respectively). The lines can be used to convert the
s and errors to a° different from 220 kfs, making the comparison between other
works easier. The solid line shows tke ¢ pairs for a galaxy with a total mass of
5x10'Mq. The scatter of the points is large, though mostly consistent within the
large error bars. There is some indication that the galaxy halos in A1689 are more
extended than those in most of the other cluster studied.

Natarajan et 812002 compared their results for the density of the cluster at the
core radiusp(r¢), and the truncation radius of galaxies obtained in their analysis and
found results in good agreement wikterritt (1983,

05
S = 40 o ( ) ) kpc. 4.2)

180kmys\ 3.95x 108Mkpc3

Using the results for A168%(uste=1450 kmis andr.=77 kpc, [Halkola et al,
2006 we get an expected truncation radius of 54 kpc, a little smaller than@bepc
obtained in this work. This (small) fierence is in fact also expected since in our
analysis we measure the truncation radii of the galaxies along the line of sight. Some
of the galaxies will have large cluster-centric distances despite their small projected
distances from the center. This supports the idea that the galaxy clusters are mainly
truncated by the tidal field of the global potential as assumeleéwitt (1983 and
also shown in numerical simulations [Moore et al.(1998); Ghigna et al(2000).

When comparing the results fromfiidirent works it should be noted that weak
lensing works generally include all the galaxies from the center to the periphery of
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the cluster (althougiGavazzi et al2004 do separate the galaxies in radius). This
means that the results are averaged over the cluster galaxy population out to several
Mpc (Limousin et al, 200€). With our strong lensing method we include galaxies
only out to a projected cluster-centric radiusrof 300 kpc. The clusters also vary

in their central densities complicating direct comparison between clusters. According
tolLimousin et al.(2006 their cluster sample (Abell clusters A1763, A1835, A2218,
A383 and A2390) form a homogeneous set of clusters and hence the results for these
clusters should be comparable.

Comparison to field galaxies is shown in Fig.4 In the figure we show points
from|Brainerd et al(1996), [Fischer et al(2000), [Smith et al.(2007), Hoekstra(2003
andHoekstra et al(2004). Adoptingao36zl36 km's used byHoekstra et dl(2004 we
obtains),. = 39*11 kpc for e=1 ands) ,, = 25'%; kpc for a=2. Similarly to previous
studies of cluster galaxies we report a strong truncation of galaxy halos in dense cluster
environments compared to galaxy halos in the field.
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4.8 Summary and Conclusions

In this paper we report the determination of the sizes of galaxy dark matter halos in
galaxy cluster A1689. The strong lensing models for the cluster are constrained by
107 multiple images and an arc in 32 image systems. The strong constraints from
these images enable us to study not only the global mass profile of the clusters but
also the ones of the cluster galaxies. Assuming well motivated scaling laws between
the truncation radius of a galaxy halo and its central velocity dispersion (as obtained
with the fundamental plane and Faber-Jackson relations) we can study the combined
effect of the cluster galaxies on the multiple images and the ensemble properties of
the galaxies. This is the first time the sizes of galaxy halos have been measured using
strong lensing only.

For a scaling law of the fornsys = X (ogai/0%)* we find & = 64*5% kpc for
a =1 ands’ = 66" 12 kpc for = 2. Both values are given for a fiducial galaxy velocity
dispersion 06-°=220 knys. The errors are @-errors to show the clear asymmetry of
the errors. The’s are in good agreement with previously determined values in several
other clusters using weak lensirfgdtarajan et dl1998§ 2002, [Limousin et al,2006).

Galaxy halos in a cluster can be truncated either by the tidal field of the global
cluster potential or harassmeMdore et al,[ 19961998 by other cluster galaxies that
strip the halos of galaxies in the central regions of cluster. Mergers of cluster galaxies
on the other hand are extremely ra€&hfgna et al[199§. Once the cluster has been
formed the principal mechanism for truncation is the tidal stripping of galaxy halos by
the global cluster potentigihigna et al.2000). This is supported by the correlation
between the density of the cluster at the core radius and the truncation radii of galaxies
shown inNatarajan et al(2002). The results presented here also support the tidal
stripping scenario.
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Chapter 5

Abell 1689 - Substructuring of the
'smooth’ cluster halo

5.1 Introduction

The previous two chapters have dealt with quantities directly measurable with the
strong lensing features observable in Abell 1689. In chdptee used the multiple
images to constrain the total mass profile of the cluster, as well as the parameters of
both NSIE and ENFW profiles. In chapi#we used the significant contribution of the
cluster galaxies on the positions of the multiple images to constrain the sizes of cluster
galaxies in A1689. In this chapter we want to address a topic that so far has received
very little attention not only in this thesis but also in the literature. Namely the poor

{ x¥>Y? obtained by strong lensing models in A1689.

Broadhurst et al(20054 used a flexible surface mass to model the smooth dark
matter distribution of the cluster and the small scale mass structure associated with the
galaxies was modelled with a constant mass to light ratig M 'he M/L was used to
convert the observed light directly to a surface mass density map. Thavds a free
parameter of the models.

In our work we have modelled the smooth cluster mass with 2 parametric halo pro-
files and the galaxies were modelled with truncated isothermal spheres whose velocity
dispersions were measured with the Fundamental Plane. The truncatios,rafdihe
cluster galaxy haloes were modelled with a scaling law of the foens’ x (/0 0)?,
which allows for significant mass contribution from galaxies also outside their visible
haloes. By varyingr the galaxies can also have dlMhat depends on the luminosity
of the galaxy ¢=2 corresponds to a constanfIM.

In light of the significant dferences in the two modellings, it is hence rather sur-
prising that all the models, that @roadhurst et dl(20058 and those in this thesis,
obtain( y?y2 ~ 3”. This means that on average the models predict imag@sg> 60
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ACS pixels) from the observed one! In absolute terms this is of course quite appalling
and something we should work on to improve. A1689 is the first cluster with such a
large number of multiple images from manyfdrent background sources. That the

two approaches to cluster strong lensing modelling fail similarly in reproducing the
multiple images can be potentially useful. The parametric models can only account for
mass by explicitly including each mass component that is considered to be significant.
The flexible surface mass models on the other hand are free to take any shape allowed
within the regularisatidh The limitations of the two approaches are in the small scale
structure of the mass distribution. In particular, the small scale structure not associated
with galaxies, since these are modelled in both models.

Cosmological numerical simulations predict an abundance of small scale structure
in clusters. Only the more massive substructure haloes are taken into account in the
strong lensing models as galaxies. The number of substructure of a given mass is
inversely proportional to the square of the mass, i.e. N{m)~? (e.g.Moore et al,

1999. This means that cluster have prominent substructure beyond the one in galaxies.
In the models the mass in addition to the galaxies is assumed to be completely smooth.

Substructure in galactic haloes can be detected in multiply lensed quasars where
the magnification ratios between the separate images are usually poorly modelled by
smooth mass models. This gives important information on substructure on galactic
scales. On larger scales of clusters tife@ of substructure on the derived parameters
of smooth profiles has been investigated with weak lensing of cluster haldesdy
et all (200]). They find that a realistic substructure model induces change8 ptr
cent on the input parameterBlatarajan & Springe{2004) have used galaxy-galaxy
lensing to derive the total mass function of bright cluster galaxies including their dark
matter haloes in several galaxy clusters. The agreement between their mass functions
and those of N-body simulations is good in the mass rang€,[10'%°] M, that was
probed by the observations. This means that the substructure abbviel@s well
traced by the galaxies in the cluster. The amount of substructure (number of bodies of
given mass) in N-body simulations continues to grow when substructures less massive
than those probed [yatarajan & Spring@&(2004) are considered.

In this chapter we aim to establish whether or not this small scale granularity be-
yond the mass resolution of current strong lensing models for A1689 can be used to
explain the poot y? Y¥/2 seen in strong lensing models of A1689, and maybe set some
upper limits on the fraction of the total halo mass that is associated with this small scale
structure.

1The regularisation is required so that the surface mass density doesn’t have freedom that far exceeds
the constraints from the multiple images. The regularisation is also done in order to avoid fitting the noise
in the data.
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5.2 Methodology

In order to see how big anffect unmodelled substructure can have on(thé /2
obtainable with strong cluster lensing models, we use Monte-Carlo simulations similar
to those used in chaptdBsanddl In those simulations we only considered the errors
that arise from the scatter in the fundamental plane in the derived velocity dispersions
of cluster galaxies. In this chapter we add substructure to the simulated clusters, in
addition to the uncertainty on the cluster galaxy velocity dispersions from the scatter
in the fundamental plane.

This is done by creating a set of simulated mock galaxy clusters with prominent
substructure. For the masses of the subhaloes we have tried several possibilities. First
we assume that all subhaloes have the same mass, eiffevid®r 10'2 M. Alter-
natively, we have tried a mass spectrum of the fddns m~2 for the subhaloes. For
the mass spectrum we have tried masses in the ran2 [182] M, and another with
masses in the range [3,0.0*%] M.

To make a realistic model of A1689 we also add the galaxies in their observed po-
sitions, but vary their velocity dispersions within the scatter of the fundamental plane.
Similarly to the galaxies, the substructure of the smooth dark matter component is as-
sumed to be composed of truncated isothermal spheres. We use the same truncation
law for the substructure and the cluster galaxies. The substructure haloes are distributed
spatially in such a way that the total projected mass density follows the smooth profile
obtained in our earlier strong lensing models for the cluster. In order to studiféat e
of the amount of substructure, we place a varying fraction of the smooth dark matter
in the substructure haloes. The rest of the dark matter is assumed to be in two smooth
DM haloes. The parameters of the two smooth haloes are optimised to reproduce the
multiple images observed in A1689.

In the case where all of the dark matter is composed of subhaloes of mdss 10
M, we have in total more than3x 10° subhaloes in the cluster model. This is com-
putationally challenging and restricts the number of trials possible in our simulations.
For subhaloes of constant mass ot%®l, and for a mass spectrum in the range’[10
1012] Mo we have created 20 simulated clusters, for the other 2 cases 100 simulated
clusters were created.

The final step in creating the simulated clusters is to find the multiple images they
would produce. These are based on the observed ones. For each multiple image system
we find a source position, that once lensed by the simulated cluster, produces images as
close to the observed ones as possible. As we need to able to predict image positions
for the models we are not able to use all of the multiple image systems. Due to the
high magnification and greatly distorted shapes of images near critical curves it is very
difficult to predict multiple images in these regions. Image systems 5, 12, 15, 30, 31
and 32 have not been used for this reason.

Having now established how we have created simulated clusters with substructure
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that have mass profiles and multiple image configurations as close as possible to those
observed in A1689 we can proceed to the analysis of the simulations and the results.

5.3 Analysis and Results

In the previous section we have explained in some detail how we have created simu-
lated clusters with a varying fraction of the mass in the subhaloedfefeint masses.

In this section we show how well we can reconstruct the multiple image systems of
these clusters when we repeat the analysis done in cliiptethe simulated clusters.

The analysis in chaptBwas based on the hopeful assumption that the mass in the
cluster is accurately represented by a mass model with the mass in the 200 brightest
cluster galaxies and two smooth dark matter profiles. We make the same assumption
for the simulated clusters, and try reconstruct them without the substructure that was
painstakingly included in the previous section. The galaxies are modelled with their
measured velocity dispersions. Since the images were created with galaxies whose
velocity dispersions had a scatter around the determined values, we do not expect to be
able to reproduce the multiple images perfectly even if very little or no substructure is
present in the simulated cluster we are trying to model.

This is basically what happens also in reality when a cluster is modelled with a
parametric smooth halo and substructure associated with the galaxies only. All small
scale mass structure in the cluster is ignored.

We use the image positions created with the simulated clusters as constraints for
the cluster reconstructions. The parameters of the smooth haloes are optimised in the
source plane.

The change in thg? for different subhalo populations as the fraction of the mass
in the subhaloes is increased is shown in Bigl The expected level for they? y/?
of 2.2” is shown as a horizontal line. The value is derived from(th& Y2 levels
obtained in creating the simulated clusters. It is important to note thathel/? is
not expected to be around 1”. It is a measure of how far images from the models are
from the ones used as constraints. Ideally it should be within the error in measuring
the image positions. This can be done to within 0.05”. As can be seen frorfbHig.
the ( x? Y¥/? is already~1" when only 2% of the mass is in the substructure. This is
caused by the error in estimating the mass in the most massive galaxies alone.

As is expected, the more massive the subhaloes, the smaller the fraction of the total
mass that can be contained in subhaloes of that mass. This is because the overall mass
profile has more pronounced granularity when the subhaloes themselves have higher
mass. Smaller subhalo masses result in a smoother total mass profile as the halo is
composed of a larger number of small subhaloes and hence a larger fraction of the total
mass can be contained in smaller subhaloes.
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Figure 5.1:In this figure we show the meany? )1/ of the clusters that were created

with substructure and then later modelled without the substructure. We have created
20-100 clusters with a certain fraction of the DM halo in subhaloes of a given mass
(10%° or 102 M) or with two mass spectra of the forh o« m=2 in the mass range

[100, 10" M, and [13°, 10'9]. For subhaloes of mass M, the observed y? Y1/2

is obtained when 16 per cent of the DM is in the the subhaloes. This fraction is higher
for smaller mass subhaloes since the halo is composed of a larger number of subhaloes
resulting in a smoother profile. The allowed mass fraction goes w@@ger cent for
subhaloes of mass 1M,

If all the subhaloes have the same mass of [10, 1800f M, we obtain upper
limits for the fraction of the total mass in the subhaloes of [65, 16] per cent respectively.
For a mass spectrum with masses in range [10, 1800 M, we obtain an upper
limit of 40 per cent, and where as for masses in range [1.0, 1080@]M, an upper
limit of 70 per cent is obtained.
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5.4 Summary and Conclusion

Natarajan & Springe(2004 have found that the high mass end of the galaxy mass
function is accurately described by the cluster galaxies. To achieve a mass resolution
better than the one iNatarajan & Springe(2004 (10 M) in galaxy clusters is
very difficult since the visible galaxies with masses lower than the linfatarajan &
Springel(2009 have very small@ect on the shapes of background galaxies. Therefore
subhaloes of lower mass have to be found indirectly.

In this chapter we have shown that the pgbiseen in the strong lensing analyses
of A1689 can be used to obtain upper limits for the mass fraction of the assumed
subhalo populations. Theftirent approaches of the mass modelling in this work and
in [Broadhurst et gl(20053 lends support for the idea of subhaloes. JRebtained
using a flexible model-free mass distributiorBmoadhurst et 2l(20054 is similar to
what is seen in this work. If the reason for the hjghin this work would be in the
insufficient flexibility of a parametric model we would expect to see a higén our
work compared to that droadhurst et dl{20053. The flexible mass distribution of
Broadhurst et 8l(20053 should in principle be able to model a perturbed parametric
model and hence obtain a bettérif that was indeed the case. The reason for the poor
x? is hence more likely in the insiicient mass resolution of both of the two methods.
Based on numerical simulations of clusters, these small scale mass perturbations are
expected to be in subhaloes that have a mass function closely following &Y.

We find in our simulations that the® obtained in strong lensing models of A1689
is easily explained by assuming that the smooth DM halo of the cluster is not entirely
smooth but is itself composed of subhaloes. For subhalo masses$®aér100t? M,
we find upper limits of 65 and 16 per cent respectively.

We have alternatively assumed a mass spectrum of the form N(M)?. For
masses between 10and 132 M, we obtain a mass fraction limit of 40 per cent. For
a lower mass limit of 19M,, (10° Mg, <M< 10'2 M) 70 per cent of the smooth DM
is allowed be in the subhaloes.

It should be noted that in reality galaxy cluster have also larger scale deviations
from the completely smooth dark matter halo profile assumed in this work. Part of
the y? seen in chapte® will also be explained by these deviations from an idealised
situation. They? might also stfer from other systematidfects in the modelling that
increase its values. The acceptable levels of substructure mass should therefore serve
as useful upper limits only.



Chapter 6

Summary of the Thesis

In the course of this thesis we have described the code developed to construct strong
gravitational lensing models for astronomical applications and applied it to galaxy
cluster A1689. The deep HST images of the cluster reveal an impressive number of
multiple images in many image systems spread over the HST Advanced Camera for
Surveys (ACS) field of the central region of the cluster.

A major part of the work is contained in Chapf@where we gave a detailed ac-
count of the identification of the multiple images. The work started with archived
images in two bands obtained with WFPC2 camera on the HST. Later also images
from ACS came available providing a additional filters and an improved resolution
over a larger field-of-view. With the now 6 available filters we are able to select clus-
ter galaxies using a colour-magnitude diagram and derive photometric redshifts for the
identified multiple images. In total 107 multiple images have been identified in 31
different image systems. We also include one giant arc in the analysis. Five image sys-
tems have a spectroscopic redshift from literature. These are in good agreement with
the photometric ones.

We have performed fundamental plane (FP) analysis of most of the central cluster
galaxies in order to measure their central velocity dispersions. For a number of fainter
galaxies we have estimated the velocity dispersions of the galaxies using the Faber-
Jackson relation which connects a galaxy’s luminosity and its velocity dispersion.

Our strong lensing model of the cluster is composed of the galaxies and a smooth
halo of the cluster. The smooth halo of the cluster is modelled with two parametric halo
profiles. We have chosen to use an NFW profile that is a result of numerical simulations
with cold dark matter and a softened isothermal sphere often used in cluster lensing.
The accurate determinations of the galaxy velocity dispersions and the tight constraints
imposed by the multiple images in the cluster require us to include also truncation of
the haloes in the modelling of the cluster galaxies. The cluster galaxies are modelled
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with truncated isothermal spheres (BEEainerd et all1996. The truncation radiis,
are assumed to correlate with the velocity dispersio$ the galaxies according ®

= (o /0?) . The powew is chosen to match those in the fiete=@, e.g. Brainerd

et all (1996 Hoekstra et dJ,2004 and a theoretical model for galaxy truncation in
cluster ¢=1, Merritf, 1983. The normalisatiors is obtained from the data for a
fiducial 0°=220 knys.

We find that both NSIE and ENFW profiles are able to describe the smooth
DM halo of the cluster equally well. Also the total mass profile for the cluster is
equally well fit by both NSIE and ENFW profiles. The total mass profile is in good
agreement with the one derived Broadhurst et &l(20058 using a more flexible
description for the smooth mass distribution. The total mass is higher than previous
mass estimates using both weak lensing and X-ray measurements. The discrepancy
is starting to be understood and can in part be explained by systenfi@ot
the weak lensing analyses, and the unrelaxed state of the cluster in the X-ray. For
accurate weak lensing masses it is important to know the redshifts of the background
sources and minimise the contamination from galaxies both in the foreground and
in the cluster. This has been discusseiowe (2003); Broadhurst et gl(20053.
Andersson & Madejsk(2004) discuss the discrepancy of the X-ray analysis and
conclude that the mass could be underestimated by a factor of 2 if the cluster is
composed of several substructures on the same line of sight. New weak lensing work
Broadhurst et dl(2005K) and a better understanding of the cluster dynamics in the
part of the X-ray measurements have therefore essentially solved the mass discrepancy.

Little attention was paid to the extensions of the haloes of the cluster galaxies in
Chapter3 This is rectified in Chaptddl where we analyse in detail the extensions
of galaxy haloes. Optical traces in the galaxy haloes indicate that the haloes of field
galaxies stay roughly isothermal beyond several hundred kiloparsecs. Gravitational
lensing enables us to probe the haloes out to larger radii. Galaxy-galaxy lensing in the
field has shown that the haloes extend as far out as 1 Mpc but are strongly truncated in
dense cluster environments.

In Chapteid we introduce strong galaxy-galaxy lensing, the lensing of multiple
images of background galaxies by foreground galaxies. This extends the standard
galaxy-galaxy lensing for the first time also to multiply imaged sources. This is
made possible in A1689 by the unprecedented number of multiple images. We
confirm the truncation of galaxy haloes in clusters when compared to field galaxies
as discussed biNatarajan et dl(e.g. [2002); [Limousin et al.(e.g. [2006§. The
obtained truncation radii are also consistent within the considerable errors. Combining
results from several cluster, a good agreement to theoretical expectddenstt(

1983 is found in the relation between the truncation radii of galaxies and the density
of the cluster. This supports the idea that the haloes are truncated mainly by the
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dense intra cluster medium and harassment by other cluster galaxies plays a minor role.

Published strong lensing analyses have generally a poor absolute fit quality (in the
cases where it is published). This is a point that is seldom discussed in the literature,
presumably in an attempt not to damage the credibility in the results derived using
strong lensing. The poor fit quality can be potentially useful, and tell us about the
physics not included in the analysis. The very simjifarobtained in the parametric
approach in this work and in the more flexibly modeBybadhurst et a20054 may
indicate that the problem is at smaller scales than probed by either model. We propose
in Chaptethat the smooth DM of the cluster as a whole is not so smooth after all but
is composed of subhaloes of smaller mass tifatathe multiple image positions and
the y2.

We investigate this point by running simulations where we model clusters with
known substructure (we create the cluster configuration and multiple images) without
the substructure. We can create clusters with a varying fraction of the mass in the
substructure and see at what stagethef a substructure free model reaches the one
observed in A1689. A limitation of our approach is that the substructure is assumed to
follow either an NSIE or an NFW profile and hence any possible deviation from these
profiles that occurs in nature is not included. This makes the results obtained here only
upper limits for the mass in substructure. Tjfecan be significantly fiected by a
smooth deviation from the assumed profiles.

If all the subhaloes have the same mass of [10, 1600f M, we obtain upper
limits for the fraction of the total mass in the subhaloes of [65, 16] per cent respec-
tively. For a mass spectrum with masses in range [10, 1000] My, with a mass
function N(M) o« M~2 we obtain an upper limit of 40 per cent, and for masses in range
[1, 1000]x10° Mg, an upper limit of 70 per cent.

We are restricted to a lower mass limitof0° M, in our analysis by the time taken
by the calculations. Thg? observed in A1689 can be explained by any of the assumed
subhalo masses (or mass spectra) given high enough fraction of the total mass is in the
subhaloes. The next step would be either to improve the code speed in order to push
the lower limit further. Another option could be to quantify thEeet of the inevitable
perturbations of real clusters from the idealised NFW or NSIE halo used here and see
if the perturbations are enough to explain the pgor

Even if we haven’t been able to draw strict boundaries for the subhalo population
in haloes of galaxy clusters we have shown that the high absefutdten seen in
strong lensing models can be easily explained by deviation from a perfectly smooth
halo profile. It should be noted that although tffecan be easily explained with
subhaloes to actually include the subhaloes in the modelling is very challenging. A
good way to begin would be to study thffext of the subhaloes on the derived total
mass distribution and on the obtained parameters of, for example, NSIE and NFW
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profiles.

In this thesis we have applied strong lensing to marffetént aspects of the
properties of galaxy clusters A1689. we have measured the mass profile and mass
distribution of the cluster as a whole, the extensions of the haloes of the cluster
galaxies, and we have shown that the pg®in strong lensing mass reconstructions
can be easily explained with subhaloes.
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Appendix A

Dark matter

Some of the evidence for dark matter has been discussed in the Introduction in chapter
[ but the limits on the properties and some of the candidates for dark matter itself
were not discussed. Although certainly a part of the dark matter is normal baryonic
matter that doesn’t emit enough radiation to be detected, it is by now well accepted
that most of the dark matter has to be in some kind of new elementary particle that
does not interact with electromagnetic radiation. This is because although baryonic
dark matter can help in solving the problem of unseen matter in galaxies and clusters,
it cannot solve the problems of structure formation and of the element abundances in
the Big Bang nucleosynthesis which together require non-baryonic dark matter. In this
Appendix we give some current ideas for what the matter that makes up most of the
universe could be. In the following only non-baryonic dark matter will be discussed.
We will also not discuss alternative theories to the Standard Model here.

A.1 Hot dark matter

Hot dark matter consist of particles with relativistic speeds. Examples include light
neutrinos and gravitinos. The total mass contained in these neutrinos cannot be very
high, or otherwise they would prohibit the formation of small scale structure to a level
that would contradict the wealth of structure seen in the universe today.

A.2 Cold dark matter

Opposite to its hot counterpart, cold dark matter is composed of slowly moving par-
ticles. The slow speeds of particles mean that small scale structures can form more
easily.

There is good agreement between the structures seen in numerical simulations with



154 APPENDIX A. DARK MATTER

cold dark matter and the observed observed universe. Also the mass profiles of cluster
and galaxies from the simulations agree well with observations. These provide strong
support for the cold dark matter paradigm. Although the paradigm successfully repro-
duces observed phenomena, it cannot tell us what most of the matter content of the
universe is made of. This is a question for particle physicists. Some of the particles
included in the answers are:

Neutralino

In supersymmetric theories, bosons (fermions) have fermionic (bosonic) super-
symmetric partners, e.g. a photon’s supersymmetric partner is a photino. These
can mix to form neutralinos. A possible mass range for neutralinos is from 30
GeV to 3 TeV, and as such they are an excellent cold dark matter candidate.
Neutralinos are expected to annihilate, and the energy released in the annihila-
tion is equal to the mass of the neutralino. There are several projects looking at
the centre of the Galaxy for well defined gamma-ray lines that could result from
these annihilation processes.

Axion
Axions are hypothetical particles that are used to explain the strong-CP
(charggparity) problem in QCD (quantum chromodynamics). Certain types of
weak decays seemed to violate the strong-CP symmetry. Axions are thought to
be created at this symmetry braking and thus solve the symmetry violation. The
current imbalance in maty@nti-matter is a result of the strong-CP violation and
an indication that the Big Bang should have produced large amounts of axions.
Provided that the axions have a suitable mass, they are a promising candidate for
a cold dark matter particle.

Q-balls
Q-balls are another cold dark matter candidate arising from supersymmetric the-
ories. They are localised field configurations, where the stability is provided by
the conservation of charge. Q-balls might be created in the early universe and be
preserved until today.

A.3 Warm dark matter

A compromise solution between the two extremes can be a mix between the two, and
is therefore warm. This is most certainly the case since we know that hot dark matter
exists at least in neutrinos and we have strong evidence to believe that cold dark matter
exists also. But it is possible that warm dark matter is truly warm.

Neutrinos could help in this region again. Their energy would optimally have to
be around 1 kev. This would solve the over merging problem; numerical simulations
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predicted many more substructures in galaxies than what is observed. If the mass of
the neutrino is around 1 kev it suppresses the formation of satelliiésisntly. Larger
masses have littlefiect on the number of satellites and less massive neutrinos on the
other hand would be too hot and result in too few satellites in simulations.
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