
Dynamic aspects of DNA
DNA-slippage and nucleosome dynamics

Richard Neher

München 2007





Dynamic aspects of DNA
DNA-slippage and nucleosome dynamics

Richard Neher

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Richard Neher

aus Göttingen

München, den 17. April 2007



Erstgutachter: Prof. Dr. Erwin Frey

Zweitgutachter: Prof. Dr. Ulrich Gerland

Tag der mündlichen Prüfung: 16.05.2007
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Zusammenfassung

DNA ist keine steife und festgefügte Einheit, sondern ändert fortlaufend ihre Konformation.
Die Dynamik von DNA auf unterschiedlichen Längenskalen ist Thema dieser Dissertation.
Der erste Teil der Arbeit befasst sich mit der Dynamik der Basenpaarung zwischen zwei
DNA Strängen, deren Sequenz eine mehrfache Wiederholung eines kurzen Motivs ist. Im
zweiten Teil der Arbeit wird die Dynamik von Chromatin, d.h. DNA, die mit Hilfe von
Proteinen in Chromosome gepackt ist, diskutiert.

Vielfache Wiederholungen eines kurzen Motivs von ein bis sechs Basen sind sehr häufig
in eukaryotischen Genomen und haben die erstaunliche Eigenschaft, dass sich die Zahl der
wiederholten Einheiten ausserordentlich schnell von Generation zu Generation ändert. Die
Rate solcher Mutationen übersteigt die von Punktmutationen um mehrere Größenordnun-
gen. Diese Hypervariabilität repetitiver Sequenzen hat eine Reihe von biologischen Kon-
sequenzen und ist unter anderem für einige menschliche Erbkrankheiten verantwortlich.
Repetitive DNA mutiert um so vieles schneller als gewöhnliche DNA, da die beiden Stränge
gegeneinander versetzt binden können und dadurch Fehler bei der DNA Replikation auf-
treten. Dieses versetzte Binden heisst DNA-slippage. Wir haben die Dynamik von DNA-
slippage theoretisch untersucht und Experimente vorgeschlagen, mit denen DNA-slippage
in einzelnen Molekülen detektiert werden kann. Zwei kurze repetitive DNA Stränge können
sich durch Propagation von Defekten gegeneinander bewegen und daher durch eine Scher-
kraft aneinander entlang gezogen werden. Die Defekte werden durch DNA-slippage an
den Enden des Doppelstrangs erzeugt. Die Rate, mit der Defekte produziert werden und
damit die Geschwindigkeit, mit der die Stränge sich gegeneinander bewegen, hängt sehr
empfindlich von der angelegten Kraft ab. Unsere theoretische Analyse hat gezeigt, dass
es vier dynamische Regime gibt, in denen die typischen Abrisszeiten unterschiedlich mit
Länge des Moleküls anwachsen. Ferdinand Kühner und Julia Morfill aus dem Labor von
Prof. H.E. Gaub haben kürzlich mit Hilfe eines Kraftmikroskops (AFM) experimentell
gezeigt, dass DNA-slippage tatsächlich durch Scherkräfte ausgelöst werden kann [1]. Über
die biologische Relevanz hinaus könnte repetitive DNA auch Anwendungen in der Nan-
otechnologie finden, denn sie verhält sich wie ein kontraktiles visko-elastisches Element.
Die Kenngrößen eines solchen Elements können durch Wahl der Sequenz und der Länge
der Stränge programmiert werden. Durch einzelne Punktmutationen, die die Periodizität
der Sequenz unterbrechen, kann die mechanische Antwort des Systems gezielt verzögert
werden.

Der zweite Teil der Dissertation behandelt die Dynamik des elementaren Baustein von
Chromatin, dem Nukleosom. Damit das Genom eukaryotischer Zellen in den Zellkern passt,
ist die DNA dicht gepackt. Trotzdem muss die in der DNA gespeicherte Information für
die Zelle zugänglich sein. Daher ist die Frage, wie oft und wie lang ein bestimmer Teil
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der DNA sich von dem Nukleosom löst von großer biologischer Relevanz. Ein Nukleosom
besteht aus einem zylindrischen Proteinkomplex mit einen Durchmesser von ca. 6 nm, um
den die DNA in etwa 1.7 mal gewickelt ist. Es wurde kürzlich experimentell gezeigt [2, 3],
dass sich Teile der DNA eines Nukleosoms auf eine Skala von Millisekunden bis Sekunden
vom Proteinzylinder lösen. Diese Dynamik könnte Teil des Mechanismus sein, mit Hilfe
dessen die Zelle Zugang zu kompaktifizierter DNA erlangt. Komplementär zu diesen Ex-
perimenten haben wir Nukleosom-Dynamik theoretisch untersucht. Unsere Studien haben
gezeigt, dass die wenn auch kleine Flexibilität der DNA einen außordentlich großen Einfluss
auf die Dynamik solcher DNA-Protein Komplexe hat. Der wesentliche Prozess des Auf- und
Abwickelns ist thermisch aktiviertes Überqueren einer Potentialbarriere, in dessen Verlauf
sich die DNA reorientiert. Die reichhaltige Phänomenologie und die Allgegenwärtigkeit
solcher Prozesse hat uns motiviert thermisch aktiviertes Überqueren einer Potentialbar-
riere gekoppelt an die Rotation eines flexiblen Arms genauer zu studieren. Die Rate für
das Überqueren der Barriere wird maximal bei einer intermediären Steifigkeit. Solche opti-
malen Parameter könnten in biologischen Makromolekülen wie z.B. molekularen Motoren
realisiert sein.

Im ersten Kapitel dieser Arbeit werden die chemische Zusammensetzung von DNA, ihre
Struktur, sowie ihre thermodynamischen und mechanischen Eigenschaften diskutiert. Das
zweite Kapitel befasst sich mit der Dynamik repetitiver DNA Sequenzen. Zu Beginn wird
die biologische Rolle repetitiver DNA und ihre Verbindung zu menschlichen Erbkrankheiten
vorgestellt. Dann diskutiere ich die Grundzüge unserer theoretischen Arbeit sowie die er-
ste experimentelle Bestätigung von DNA-slippage, gefolgt von unseren Publikationen zu
diesem Themenkomplex. Das dritte Kapitel befasst sich mit der Dynamik von Chromatin.
Nach der Struktur von Chromatin werden die Experimente zur Nukleosom-Dynamik disku-
tiert und im Anschluss unsere theoretische Arbeit und unsere Publikationen vorgestellt.



Abstract

DNA is not a rigid entity, but a highly dynamic molecule. The dynamics of DNA on
different length scales is the objective of this thesis. The first part of this thesis addresses
the dynamics of the base pairing patterns of DNA, the sequence of which is a multi-fold
repetition of a short motif. In the second part of this thesis, we discuss the dynamics of
chromatin.

Repetitions of short motifs of one to six bases are very common in eukaryotic genomes and
the number of repeated units changes extraordinarily fast from generation to generation.
The rate of such contractions or deletions is orders of magnitudes larger than the rate
of ordinary point mutations. This hyper-variability of repetitive DNA has a number of
implications in biology and is the cause of certain human hereditary diseases. The reason
why repetitive DNA mutates so rapidly is related to the fact, that two complementary
strands with repetitive sequence can bind to each other, even when shifted relative to
each other. Locally shifted binding is called DNA-slippage and leads to errors during
DNA replication. We studied the dynamics of DNA-slippage theoretically and suggest
experiments that probe DNA-slippage in single DNA molecules. The propagation of small
bulge loops in the double helix of repetitive DNA allows the two strands to move relative
to each other. Application of a shear force to repetitive DNA should therefore induce a
strand motion. The bulge loops are produced by DNA slippage at the ends of the double
strand. We show, that the bulge loop production rate and hence the relative velocity of
the two strands depends sensitively on the applied shear force. We uncover four dynamical
regimes, where the rupture times scale differently with the system size. Ferdinand Kühner
and Julia Morfill from the lab of Prof. H.E. Gaub succeeded in measuring force induced
DNA-slippage in single molecules using an atomic force microscope [1]. In addition to its
biological relevance, repetitive DNA has intriguing mechanical properties that might find
applications in nanotechnology. Repetitive DNA acts as a contractile visco-elastic element,
the characteristics of which can be programmed by its length and sequence composition.
Rare point mutations that interrupt the repetitive sequence allow to delay the response in
a controlled manner.

The second part of this thesis addresses the dynamics of nucleosomes, which are the
elementary packing units of chromatin. Eukaryotic cells compactify their genome to make
it fit into the cell’s nucleus. Nevertheless, the cell has to access the information in the
DNA. Since most proteins cannot bind to DNA buried in nucleosomes, the question how
often and how rapidly a particular stretch of DNA detaches from the nuclesome is of great
biological relevance. A nucleosome consists of a cylindrical protein core with 6 nm in
diameter. The DNA is wrapped around this protein cylinder approximately 1.7 times.
Recent experiments measured the rates, at which the DNA detaches and attaches partly
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from the protein core [2, 3]. We studied the dynamics of DNA wrapping and unwrapping
in single nucleosomes theoretically. We show, that the small but finite flexibility of the
DNA drastically enhances the rates of the wrapping and unwrapping kinetics. The rich
phenomenology and the ubiquity of similar processes in biology motivated us to study
transition that involve the rotation of flexible lever-like object in more detail. The transition
rate displays an optimum at an intermediate stiffness. The optimal stiffness parameters
could be realized by evolution in biological macromolecules such as molecular motors.

In the first chapter of this thesis, I present general features of DNA such as its chemical
composition, its structure, its thermodynamics and its mechanical properties. The second
chapter is on the dynamics of repetitive DNA. First, we discuss the biological significance
of repetitive DNA and existing experimental evidence for DNA-slippage. Then we present
our theoretical analysis and our publications on repetitive DNA. The third chapter is on
chromatin dynamics. To begin with, chromatin structure and its implication for gene reg-
ulation in eukaryotes are discussed. This is followed by a discussion of recent experiments
on single nuclesome dynamics, our theoretical work, and our publications.



1. Properties of DNA

Every known biological cell uses deoxyribonucleic acid, in short DNA, as carrier of its
hereditary information. DNA is a double stranded heteropolymer into which information
can be coded by the sequence of its four elementary subunits known as bases or nucleotides.
The information encoded in DNA has three primary functions. First of all, DNA codes
for proteins. The structure of a protein is determined by its amino acid sequence, which is
coded as a nucleotide sequence in DNA. Most organisms known use 20 different amino acids
to build their proteins. Since there are only four different bases, a multi-letter code has
to be used to describe a sequence of amino acids by a DNA sequence. Biology uses three
successive bases, called codons, to code for one amino acid. To produce a protein, the double
stranded DNA is locally opened and the nucleotide sequence is transcribed by a protein
complex called polymerase into messenger RNA (mRNA). The mRNA is then translated
into a sequence of amino acids, which folds into the functional protein. In addition to being
the storage medium for protein sequences, DNA has a pivotal role in cellular information
processing. At every instant in time, a cell has to determine how much of each gene
is to be expressed. To accomplish this feat, DNA contains regulatory regions to which
specialized proteins, so called transcription factors (TF), can bind. These proteins either
preclude or enhance the assembly of the transcription machinery and thereby regulate
the expression of genes. Different signals associated with different TFs can be logically
combined by arranging their binding sites on the DNA such that the TFs bind cooperatively
or exclude each other [4, 5]. Yet a different class of DNA regions codes for RNA sequences
that are not translated into proteins but have important functions themselves. RNA can
form complicated secondary and tertiary structures, which make certain RNA molecules
powerful catalysts. For example the ribosome, the cellular machine that translates the
RNA into proteins, is a complex of folded RNA molecules and proteins. Its catalytic
activity is performed by RNA parts and the proteins merely stabilize the RNA complex.
Another important example are transfer RNAs (tRNA) that decipher the genetic code into
amino acids. In addition to these three roles, many other and to date unknown functions
of DNA might exist. Indeed, only a fraction of the genome of higher organism can be
linked to any function, whereas the role of the largest part, often referred to as junk DNA,
is largely unknown [6]. For a comprehensive and fairly up-to-date source of information on
molecular biology, I refer the reader to the classic textbook by Alberts et al.

The objectives of this thesis are dynamical aspects of DNA. On one hand, we are going to
discuss the dynamics of the base pairing pattern of two complementary DNA strands, whose
sequence is the multi-fold repetition of units of one to six bases in length. Such repetitive
sequences play important roles in various processes in biology and are related to a certain
class of human hereditary diseases. What distinguishes them from sequences without this
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specific order is the dynamics of the base pairing pattern which renders repetitive sequences
hyper-variable in evolution. On the other hand, we will study the dynamics of DNA on a
much larger scale. In eukaryotes DNA is highly compactified. However, in order to be of any
use for the cell, the information encoded in the DNA sequence needs to be accessible for read
out. In chapter 3, we will discuss physical aspects of the dynamics of compactified DNA,
which has profound implication to the accessibility of genetic information in eukaryotes.

Since the dominant theme of this thesis is DNA and since its chemical and physical
properties are needed throughout, we will compile the basics of DNA in this introductory
chapter. We will only discuss aspects that are related or prerequisite to our work and we
do not attempt to provide a comprehensive survey. The biological background and the
relevance of the specific questions we address is discussed in the introductory part of the
two main chapters of the thesis.

1.1. The structure of DNA

The elementary subunits of DNA are single nucleotides, which can be connected to each
other to form a polymer. Each nucleotide consists of the sugar deoxyribose, a phosphate
group and one of the four bases adenine (A), cytosine (C), guanine (G) and thymine (T),
cf. Fig. 1.1. The phosphate group is attached to the 5’ carbon atom of the sugar. Nu-
cleotides with different numbers of phosphates and slightly modified sugars play pivotal
roles as energy storage and as signaling molecules in all known biological cells. Here, we
focus on the role of nucleotides as building blocks of DNA. Two nucleotides can be linked to
each other by formation of a phosphate bond between the phosphate group of one and the
hydroxyl group at the 3’ carbon atom of the other nucleotide (cf. Fig. 1.2). The formation
of this bond is independent of the base that is attached to the sugar, and long chains with
an arbitrary sequence of bases can be formed. The polynucleotide chain ends with a free
phosphate only at one end. The phosphorylated end is commonly called the 5’ end after
the carbon atom, to which the phosphate is attached. Correspondingly, the other end is
called the 3’ end. This polarity has important implications for DNA replication, since the
DNA polymerase attaches nucleotides only to 5’ ends, cf. Fig. 2.2.

Single stranded DNA (ssDNA) alone is not suitable as a storage medium for hereditary
information because single phosphate bonds are not stable enough and a damaged single
strand is hard to repair without a backup copy. Both problems are solved elegantly by
the ability of ssDNA to pair with a complementary strand. The geometry of the bases
adenine and thymine is such that they can form two hydrogen bonds, whereas cytosine
and guanine interact via three hydrogen bonds, cf. Fig. 1.2. The interaction between these
bases occurs only, if they are aligned in opposite polarity. Therefore a DNA strand binds
selectively to a strand, the sequence of which is the complementary sequence in opposite
order. After base pairing, the double stranded DNA (dsDNA) winds into a double helix,
which brings consecutive base pairs closer together and shortens the duplex from 0.7 nm
per base in single strand to 0.34 nm in double strand. The double helix has an diameter of
approximately 2 nm and a helical pitch of about 10.5 bp or 3.5 nm. By base pair stacking,
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Adenine

Thymine
Guanine

Cytosine

Figure 1.1: The four different nucleotides of DNA: Each nucleotide consists of a phosphate group,
the sugar desoxyribose and one of the bases adenine, cytosine, guanine or thymine. Source of
images: Wikipedia.

water is driven out of the space between base pairs and the carbon rings of bases align,
which is the major contribution to the DNA binding free energy. The DNA double helix
is not completely symmetric, meaning the two bases of a base pair do not form an angle
of 180◦. Thereby, dsDNA has a major and a minor groove, as illustrated in Fig. 1.2b.

In contrast to ssDNA, damage to dsDNA is easy to repair. The complementary strands
can serve as a template for reconstruction of a damaged strand and for replication of the
molecules. The stability of dsDNA and its potential to be repaired enable cells to maintain
genomes as long as 1010 nucleotides, resulting in molecules of macroscopic length.

1.2. Thermodynamics of DNA

In the previous section we discussed how the chemical architecture of DNA makes it an
ideal carrier of genetic information. We will now turn to thermodynamic properties of
DNA which have implications for the ability of cells to read the sequence information from
the DNA. Efficient information read out is possible only when the double helix is opened
and the unpaired bases are exposed. Hence, the cell has to separate dsDNA locally into
single strands at ambient temperature. How this can be achieved is mainly determined by
binding affinity of the two strands and their fluctuation properties, which therefore have
been studied extensively, both experimentally and theoretically.

The basic ingredients to DNA thermodynamics are the free energy contributions of base
pairing and stacking interactions. Using these parameters, the properties of short molecules
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Figure 1.2: Left: Two oppositely aligned DNA strands bind specifically to each other if their
sequences are complementary, i.e. if each base A faces a T and each base G faces a C. Hydrogen
bonds between bases are indicated by dashed lines. Right: The ladder-like structure compactifies
further by winding into a double helix. The pitch of the double helix 3.5 nm, which corresponds
to ≈ 10.5 bps. Since base pairs are not perfectly straight the helix displays a major and a minor
groove. Source of images: Wikipedia.

can be well understood with simple two state models. Subsequently we discuss the melting
behavior of long molecules and calculate the partition sum of a dsDNA molecule within
the framework of the Poland-Scheraga model.

1.2.1. Binding free energies of double stranded DNA

The dominant contributions to the binding free energy of double stranded DNA are H-
bonds between bases in Watson-Crick base pairs and the stacking interaction between
subsequent base pairs. The binding of the two strands goes along with a significant reduc-
tion in entropy, since two floppy single strands are forced into a much more rigid double
stranded conformation. Assuming constant specific heat cp, the free energy of a particular
structure is given by

∆G = ∆H − T∆S, (1.1)

where enthalpies, entropies and free energies are measured with respect to the dissociated
case. To a good approximation, ∆H and ∆S can be calculated as sums from contributions
of consecutive base pairs, such as AG/CT. Additional free energy contributions stem from
penalties for mismatches and loops or the lack of stacking interactions at the first and last
base pair, often called initiation and termination costs.

∆G = ∆Ginit +
∑

basepairs

∆Gbp +
∑
loops

∆Gloop +
∑

mismatches

∆Gmm + ∆Gterm. (1.2)
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Many of the parameters have been carefully measured and are reviewed by SantaLucia Jr.
in [8] and [9]. While the precise binding energies depend on at least two consecutive base
pairs, a good rule of thumb is that a CG base pair contributes approximately 3kBT and
an AT pair about 2kBT at physiological salt concentrations. The penalty for initiating a
loop, that is interrupting base pair stacking, is typically between 3 and 10kBT . Extrap-
olation formulas of the parameters to different salt concentrations are also available [9].
The complete set of parameters has been fed into software packages that predict melting
temperatures and plausible secondary structures of short DNA oligonucleotides, see for
example [10].

Two-state models. Short DNA oligonucleotides occur in essentially two different states.
The two strands are either dissociated and float freely in solution, or the two strands
are bound in their most stable binding configuration since any suboptimal base pairing is
unstable. For such molecules, it is particularly easy to predict their melting temperature.
The melting temperature Tm is commonly defined as the temperature where half of the
single strands are part of duplexes. Setting ∆G in Eq. (1.2) to zero and accounting for the
total concentration of DNA strands cT , one finds [8]

Tm = ∆H/(∆S + R ln cT ), (1.3)

where the gas constant R = 1.9872 cal
K·mol

. Due to significant contributions from terminal
ends, the melting temperature of short molecules strongly depends on the length. At larger
length (above 30 base pairs), the melting temperature mainly depends on the bulk binding
energy and hence on the CG content of the sequence. Melting temperatures range from
20◦C for very short (5 base pairs) sequences to 90◦C for long CG-rich molecules.

1.2.2. Denaturation of long DNA molecules

The assumption that two DNA strands are either firmly bound in the most stable state,
or completely dissociated is not justified for long sequences. Long sequences might have
regions with different CG-content that melt at different temperatures. Even homogenous
molecules will once in a while open their double stranded structure locally and form de-
natured bubbles as illustrated in Fig. 1.3. Two-state models are therefore not suitable
for long molecules, but many different configurations including partly melted patches con-
tribute significantly. The most important experimentally accessible quantity is the degree
of base pairing of the DNA strands, which can be monitored by the absorption of UV
light. Unpaired bases absorb UV light more efficiently than bases stacked in the double
helical conformation and any change in the absorption coefficient can be directly related
to the degree of base pairing Θ(T ) between the two strands [11]. If the local CG-content is

constant along the molecule, the derivative −dΘ(T )
dT

of the fraction of bound base pairs Θ
has a single peak. However, the CG-content of DNA varies considerably along the genome1.

1 There are differences in CG-content between coding and non-regions, as well as between incorporated
viral DNA and proper DNA.
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R.M. Wartell and A.S. Benigh:, Thermal denaturarion of DNA molecules 73

The UV absorbance of DNA is due to the nucleotide bases. It arises from the ir—ir~electronic
transition in both purine and pyrimidine bases [14].An increase in the absorbance reflects a change in

the electronic configuration of the bases due to the decrease in double helical stacking. The absorbance

increases by 30—40% depending on the DNA sample. As implied by eq. (1) it is generally assumed that

a linear relationship exists between increased absorbance and the extent of disrupted base pairs. This

appears to be true if the disrupted helical region contains at least ten base pairs [14].The percentage

increase in light absorption at 260 nm produced by denaturing DNA is related to the DNA’s percentage

of A . T base pairs. The higher the percentage of A . T’s in a DNA, the greater the percentage increase
of absorbed light [15]. If the absorption is monitored at 268 nm, the percentage increase in hyper-

chromicity for unwinding A . T or G~C base pairs is approximately the same [15]. Thus 268 nm is the

optimum wavelength for monitoring a DNAmelting curve to obtain O~.

In the 1960s, studies on DNA melting were carried out with sheared chromosomal and virial DNAs
from various sources. One of the important findings of that period was the correlation observed

between the midpoint temperature of the transition of a DNA, Tm, and its % G . C content [16,17]. The

Tm’S of natural DNAs increased linearly with increasing % G C. This indicated that G . C base pairs
were, on the average, more stable than A T pairs. Another observation noted was that distinct

multistep melting curves occurred for a few DNAs [18, 19]. Although most DNA samples gave smooth
sigmoidal transitions due to their heterogeniety in length and base pair sequence, DNAs from viruses

showed multistep transitions. Developments in DNA isolation procedures in the 1970s made it possible

to study a number of DNA samples which were homogeneous in length and sequence. Multistep
melting curves became the normal observation [10]. This multistep behavior is best manifested by

plotting the temperature derivative of the fraction of broken base pairs vs. temperature. Figure 3 shows

an example of this type of data. A plot of absorbance vs. temperature and the corresponding differential

melting curve for a 1630 bp DNA are presented. Seven distinct peaks are observed. An estimate of the

.4 .~
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Fig. 3. Absorbance vs. temperature and differential melting curve for the 1630 bp Hinf I restriction endonuclease DNA fragment of the plasmid

pBR322 (85).

T<T  : Native State

T~T  : Partial denaturation, 
predominantely in AT rich regions

T>T  : Separated ssDNAs

m

m

m

Figure 1.3: Left: With increasing temperature the double stranded structure of DNA is in-
terrupted by denatured loops and the two strands eventually separate. AT rich regions tend to
denature at lower temperatures due to their smaller binding free energy. Left: The UV ab-
sorbance and the negative differential of the fraction of base pairs vs. temperature, see main
text. Reproduced from [11].

In this case, the differential melting curve has many peaks corresponding to different re-
gions of the DNA that melt at different temperatures. A typical melting curve is shown in
Fig. 1.3.

Attempts to describe the melting transition of DNA theoretically date back to the late
1950s and resulted in a class of models that are now commonly referred to as Poland-
Scheraga models [12, 13, 14, 15] or Ising type models. These models describe a particular
configuration of the DNA by the set of base pairs formed. In general, base pairs can
be formed between any two complementary bases on different strands as wells as within
one strand, that folds back onto itself. The latter is particularly important for RNA,
but is rarely relevant for two complementary DNA strands since a high degree of self
complementarity within a single strand is unlikely. Poland-Scheraga models are usually
restricted to native base pairs, i.e. only base pairs that are present in the ground state are
allowed. The restriction to native base pairs is a good approximation, since stable base
pairing requires several consecutive base pairs and the chance of finding two non-native
complementary stretches that are several base pairs long is slim. A convenient way to
denote a base pairing configuration of dsDNA of length N is by an ordered subset of the
integers S = i1, . . . , im ⊂ [1, . . . , N ], which corresponds to the base pairs present in the
DNA duplex. Since we are not interested in reproducing experimental data as faithfully as
possible, but rather seek generic explanations to general features of DNA denaturation, it
is reasonable to simplify the free energy model. In the following, we assume that stacking
interactions do not depend on the base pair type and include them through a cost ε`

0 for
initiating a loop. Furthermore, we assume that the loop penalty is independent of the
bases in the loop and only depends on the loop size. The free energy model for a DNA
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configuration then simplifies to

G[S] = −
∑
i∈S

εb(i) +
∑
loops

ε`(nl), (1.4)

where εb(i) is the binding energy of base i and ε`(n) is the free energy cost of a loop
of size n. However, even with this simple free energy model the explicit summation of
all configurations is infeasible, since their number increases exponentially with the length.
Fortunately, there is a much more clever way to calculate the partition sum. Any allowed
base pairing configuration is a sequence of double stranded stems and denatured loops.
Furthermore, the free energy of a particular configuration is a sum of local contributions
from base pairs and loops. These properties allow the calculation of the partition function
using recursion relations. Let Zn be the partition function of a dsDNA molecule of length
n, where the first and the last base pair are formed. Zn obeys the recursion relation

Zn = e
εb(n)

kBT Zn−1 +
n−2∑
m=1

e
εb(n)−ε`(m)

kBT Zn−m−1, (1.5)

where the first term includes any structure that can be obtained by adding base pair n to
any configuration in Zn−1 and the sum includes all structures that are obtained when adding
the base pair n followed by a loop of size m to any structure in Zn−m−1. This recursion
relation allows the calculation of the partition sum of arbitrary sequences of length N in
O(N2) steps. Similar recursion relations have been used to study the statistical physics of
RNA strands that fold back onto themselves [16, 17].

The length dependence of the loop cost. When describing a dsDNA molecule by
its set of base pairs it is implicitly assumed, that all other degrees of freedom, e.g. the
conformation of single stranded ends or denatured loops equilibrate rapidly compared to
major rearrangements in the base pairing patterns. This results in a subtle dependence of
the free energy of a loop on its length. Single stranded DNA is rather flexible and changes
its orientations typically every 2 to 3 base pairs, see Sec. 1.3.3. The possible conformations
of ssDNA can therefore be mapped to the configurations of a random walk2. The number
of random walks increases as ∼ sn with its length n. For ssDNA, s has to be chosen such
that ln s is the decrease in entropy when a single stranded monomer is forced into dsDNA.
A denatured bubble in a dsDNA can also be described by a random walk, however, subject
to the constraint that the random walk forms a closed loop. This reduces the number of
allowed configurations by a factor n−c giving rise to a loop penalty of entropic origin of the
form c ln n [18]. For ordinary random walks in d dimensions c has the value d/2. When
self-avoidance is included, c is given by d times the Flory exponent ν. At first sight this
logarithmic correction to entropy appears to be of minor importance, but it is responsible
for a genuine denaturation transition in Poland-Scheraga models (see below). In particular,
a discontinuous transition requires c > 2. Kafri et al. claim that c is indeed larger than

2Excluded volume effects of free single strand are not essential for the denaturation transition.
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2 when mutual excluded volume effects of different loops are taken into account [19]. In
a nutshell the argumentation is as follows: The denatured loops in a DNA molecule are
not independent self-avoiding polymer loops, but are linked by the double stranded stem
to form a polymer network. Excluded volume effects in a connected polymer network are
stronger than for non-interacting loops, resulting in a higher value of the exponent c. Kafri
et al. calculated a value of c = 2.15 for DNA denaturation, resulting in a discontinuous
transition [20]. However, the applicability of the scaling theory of polymer networks to
DNA has been questioned [21, 22]. The objection is, that denatured loops are rare and
far apart such that their interaction should be negligible. The rigid double stranded stems
are essentially one dimensional objects, which are irrelevant for scaling. In any case,
corrections to the loop exponent will only become important when studying DNA melting
using extremely long molecules with very homogenous sequences. For now, we treat c as a
variable and use a loop initiation cost of the form

ε`(n) = ε`
0 − n ln s + c ln n, (1.6)

where ε`
0 is a constant loop initiation cost due to the loss of base pair stacking when a

loop is formed.

1.2.3. DNA melting of homogenous sequences

While the recursion relations are indispensable when studying the thermodynamics of a
particular sequence, they do not provide insight into the universal properties of DNA
melting. To this end, we now demonstrate how the partition sum can be calculated in
closed form if the binding energy per base is the same for every base. This might appear
to be a very restrictive and unrealistic assumption. However, we can coarse grain our
description even further and lump a small number of bases together and treat them as a
single entity. Given the sequence is random, the relative fluctuations of the binding energy
of such “super bases” become small. At the same time, each super base is likely to have a
unique binding partner, as assumed when choosing the set of allowed configurations. The
assumption made is thus not that restrictive and the homogenous Poland-Scheraga model
is adequate to study the melting transition3.

Poland-Scheraga models are essentially one-dimensional, similar to an Ising model. It is
well known, that one dimensional models do not exhibit genuine phase transitions. This
fact is in conflict with the observed melting behavior of DNA and the apparent contradic-
tion troubled (theoretical) physicists a while. A genuine melting transition is only obtained
if the proper dependence of the loop cost on the loop length is included in the model. The
logarithmic term in Eq. (1.6) introduces an effective long range interaction, that gives rise
to an order-disorder phase transition in such one dimensional models [23]. The detailed
thermodynamics of DNA was worked out by Poland and Scheraga in the publications
[14, 15] and later summarized in their book [24]. We will now briefly summarize the sta-
tistical physics of homogenous DNA following Poland and Scheraga. For a homogenous

3Obviously, this assumption breaks down when macroscopic regions differ in CG content.
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DNA molecule the recursion relation Eq. (1.5) simplifies to

Zn = qZn−1 +
n−2∑
m=1

qg2s2m

mc
Zn−m−1, (1.7)

where q = e
εb

kBT , g2 = e
− ε`

0

kBT and the starting value of the recursion is set to Z1 = q. This
recursion relation can be solved by z-transformation. The z-transform of Zn is defined as
Ẑ(z) =

∑∞
n=0 Znz

n and is also known as generating function or discrete Laplace transform.
Multiplying both sides of Eq. (1.7) by zn and summing over n yields after some algebra

Ẑ(z)− qz

z
= qẐ(z) + qg2Φc(zs

2)Ẑ(z), (1.8)

where Φc(z) =
∑∞

n=1
zn

nc is the polylogarithm. Eq. (1.8) is readily solved for Ẑ(z)

Ẑ(z) =
∞∑

n=0

Znz
n =

qz

1− qz − qg2zΦc(zs2)
. (1.9)

This z-transformed partition sum is nothing but the grand-canonical partition sum of
a DNA molecule coupled to a fictive nucleotide reservoir with fugacity z. The original
partition sum of a molecule of length N can now be recovered from Ẑ(z) by contour
integration around the origin of the complex plane.

ZN =
1

2πi

∮
dz

Ẑ(z)

zN+1
=

1

2πi

∮
dz

∞∑
n=1

Zn

zN−n+1
(1.10)

The function Ẑ(z) is analytic everywhere, except on [s−2,∞[ and possibly at isolated
singularities, i.e. zeroes of the denominator of Eq. (1.9). Having identified the singularities
and branch-cuts, the contour integral can be evaluated by calculating the residuals and the
integral encircling the branch-cut, as illustrated in Fig. 1.4. A graphical solutions for zeroes
of the denominator for different values of c are given in Fig. 1.4. At low temperatures,
that is large q, the denominator has a real root z∗. If c > 1, this root merges with the
branch-cut at some critical temperature and does not exist in the high temperature regime.
The partition function of a DNA molecule of length N is therefore of the form

ZN =
Res(Ẑ(z), z∗)

z∗N+1
+ As2N or ZN = As2N , (1.11)

depending on whether the root z∗ exists or not. If z∗ exists, the fraction Θ of base pairs
present in the structure is given by the logarithmic derivative of ln ZN with respect to q

Θ =
1

N

∂ ln ZN

∂ ln q
= − ∂z∗

∂ ln q
. (1.12)
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Figure 1.4: Left: Zeros z∗ of the denominator of Eq. (1.9) are given by the intersections of
gΦc(zs2) and q−1z−1 − 1 (g and s are set to 1 for simplicity). Right: Contour integration in the
fugacity plane. The contour integral around the origin is the sum of the residue at z = z∗ and
the integral encircling the branch cut. For large N , the integral is dominated by the residue.

If the isolated singularity does not exist ZN does not depend on q and Θ vanishes. The
existence of z∗ is therefore connected to the phase where the two strands are bound and
the temperature at which z∗ ceases to exist corresponds to the melting temperature Tm.
The order of the melting transition is determined by the value of the loop closure exponent
c [15, 20]: If c ≤ 1, Φc(z) diverges as z → 1, hence there is always a solution z∗ and no
melting transition exists. If 1 < c≤ 2, Φc(z) remains finite as z → 1 but approaches its
limiting value with infinite slope, resulting in a melting transition where Θ approaches zero
as T → Tm and the melting transition is continuous. If c > 2, Φc(z) tends to its limiting
value with finite slope and Θ drops from a finite value to zero at T = Tm, giving rise
to a first order melting transition. Experimental melting curves of DNA are very steep,
i.e. the fraction of bound bases vanishes very rapidly, and denaturation appears to be a first
order transition. The additional contributions to c from loop interactions might therefore
be relevant to reconcile the Poland-Scheraga models with experimental data. Available
experimental data has been reexamined using c = 2.15 instead of c = 3ν ≈ 1.8, resulting
in a smaller estimate of the effective loop initiation cost [25].

1.3. Mechanical properties of DNA

So far, we discussed the chemical and thermodynamic properties of DNA and neglected the
organization of DNA in space. A typical human chromosome is 108 bp long, corresponding
to a string of 3 cm in length. Forty-six of these strings have to fit into the cell’s nucleus,
which is only several micrometers in diameter. Packaging and compactifying DNA is
thus a nontrivial issue to cells, especially since they have to keep their genome, or at
least the relevant parts, accessible. This problem is addressed in the second part of this
thesis. Obviously, the mechanical properties of DNA play an important role in DNA
compactification and the dynamics of compactified DNA. During the last 15 years, it
has become possible to study the mechanical properties of DNA by manipulating single
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molecules and measuring their response to pico Newton forces. These single molecule
force spectroscopy techniques provided unprecedented insight into the static and dynamic
properties of biological macromolecules and even allow to study cellular machinery such as
polymerases or topoisomerases life on stage. The dynamics of repetitive DNA sequences
has also been studied using such techniques, which will be discussed in chapter 2. I
will therefore give a brief overview over such techniques and then discuss the mechanical
properties of DNA.

1.3.1. Single molecule force spectroscopy

At the molecular level, biological processes involve energy differences of the order of the
thermal energy 1kBT ≈ 4 pN nm and length scales on the order of nano meters. To probe
biological macromolecules mechanically, instrumentation is needed that is capable of ap-
plying forces in the pico Newton regime and measure distance with nano meter resolution.
By now, a variety of different techniques are available to achieve this feat and I will briefly
discuss their basic mechanism as well as their advantages and drawbacks. Atomic force
microscopy is discussed in a little more detail, since the slippage of repetitive DNA was
detected using this technique (see also Sec. 2.3). For comprehensive reviews of the different
techniques see for example [26, 27, 28].

Optical tweezers. When an object with an optical density higher than the surrounding
media is placed in a non-uniform electric field, it feels a force towards the stronger field.
This effect is exploited in optical traps, where a small spherical bead is held in a laser
focus. As soon as the bead is no longer centered in the focus, it experiences a restoring
force. Although the explanation illustrated in Fig. 1.5 is not exactly applicable to beads
of sizes of the order of a micrometer, it conveys the essence of the method. The laser light
is refracted by the bead and thereby transmits momentum to the bead. If the bead is
not centered, the laser intensity on the two sides of the bead are not equal and hence the
transmitted momenta do not balance, resulting in a net force towards the focus. To study
the response of a system to mechanical force, it is attached to the bead and the exerted
force can be determined by measuring the deviation of the bead from the trap center.
Interferometric methods allow to determine the bead position to nm resolution, which for
typical trap stiffnesses results in force resolution of pN and below. The maximal forces
optical traps can apply depend on the bead size and are in the range of 20 to 150pN. One
important application of optical tweezers has been the unzipping of single DNA molecules
[29], which is discussed in more detail below in Sec. 1.3.4. The motion of single processive
molecular motors has also been studied using optical tweezers [30].

Magnetic tweezers. Similar to optical tweezers, magnetic tweezers exploit the fact that
magnetic dipoles are attracted to high field regions and therefore experience a force in a
gradient field. In addition to force, magnetic fields exert torque on permanent magnetic
dipoles. This opens up the possibility to twist biomolecules by rotating the magnet that
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Figure 1.5: Part a) Ray optics explanation of an optical trap. Image source: Wikipedia. b)
Sketch of an AFM in a single molecule experiment. The different parts are extremely out of scale.
c) A typical force-extension curve recorded with an AFM (taken from ref. [1]).

generates the field. The position of the beads can be detected using similar interferometric
techniques as for optical tweezers, reaching nm resolution. The force can be sensitively
controlled through the field gradient and forces as small as 10 fN can be applied. Magnetic
tweezers have been used to study the stretching response of supercoiled DNA [31] and to
observe topoisomerases, the enzymes that disentangle DNA, in action [32].

Biomembrane force probes. Yet another technique of measuring small forces are biomem-
brane force probes. Small lipid vesicles or red blood cells are partially sucked into a mi-
cropipette to establish a well controlled tension of the vesicle membrane. The system to
be studied is attached to the other end of the vesicle and pulled away. The deformation
of the vesicle can be related to the force applied to the sample. This technique has been
used for measuring the binding strength and kinetics of receptor-ligand systems [33].

Atomic force microscope. While optical and magnetic techniques excel at small forces
with exquisite resolution, the realm of the atomic force microscope (AFM) are forces above
5pN. Among all force spectroscopy techniques, the AFM has by far the greatest spatial
resolution, which can be as good as the diameter of an atom. Historically, AFMs were
invented to map surfaces at atomic resolution, and only later became important tools
to study mechanical properties of biological macromolecules or molecular complexes. An
AFM used for force spectroscopy consists of a tiny solid state cantilever with an even
tinier tip. The substrate surface is mounted onto a piezo element which allows to move
the sample with respect to the cantilever with extremely high precision. A force exerted
on the cantilever will cause a slight bend in the cantilever. This minute deflection can
be measured by shining a laser beam onto the reflective upper side of the cantilever, as
sketched in Fig. 1.5. A deflection of the cantilever changes the reflection angle of the beam,
which in turn can be sensitively detected by a split photodiode. Since control and detection
is done by fast electronic devices, the bandwidth of AFM measurements can be as high as
100kHz and is limited by the viscous damping of the cantilever.

The substrate and the cantilever have to be prepared such that upon bringing the can-
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tilever in contact with the substrate, the sample attaches to both, the substrate and the
cantilever. Often, the connection to the cantilever and substrate is established via well
characterized and chemically functionalized linker molecules. Using linker molecules in-
creases the distance of the sample from the surface and thereby reduces surfaces effects.
The sample density has to be chosen such that a single contact between cantilever and
substrate is more probable than multiple linkages. The substrate surface is then retracted
and the force is measured as a function of extension. Depending on the question to ad-
dress, the force extension relation or the dependence of rupture forces on retract speed are
informative quantities.

1.3.2. Stretching double stranded DNA

On a microscopic scale, dsDNA is a very stiff polymer and thermal forces bend DNA only
on length scales long compared to the helical pitch or even individual base pairs. To a good
approximation, the DNA bendability is continuously distributed along the DNA and the
typical curvature radius is large compared to molecular dimensions. On the other hand,
up to forces of about 50pN, dsDNA is virtually inextensible. Ignoring excluded volume
effects the equilibrium conformations of DNA are therefore well described by the ensemble
of inextensible contour lines with a linear bending stiffness, a model commonly referred to
as worm-like-chain model (WLC) [34, 35]. The energy of a particular contour r(s) with a
force f pulling the endpoints apart is given by

E =
κ

2

∫ L

0

ds t′(s)2 − f · (r(L)− r(0)), (1.13)

where κ is the bending stiffness and t′(s) denotes the derivative of the tangent vector
with respect to the arclength s. To calculate the equilibrium properties of such a chain
immersed in a heat bath, one would have to calculate the integral over all possible paths
r(s), which in general is infeasible. Some quantities, however, can be calculated exactly. In
the absence of force, the most important exactly known quantity is the tangent correlation
function at different points of the contour.

〈t(s) · t(s′)〉 = e
− |s−s′|

`p , (1.14)

where `p = κ
kBT

is called the persistence length. The persistence length is the length scale
at which the correlations of different parts of the chain decay and a molecule is considered
flexible, if its total length is large compared to `p. Conversely, a chain several times smaller
than the persistence length is typically straight. The persistence length of double stranded
DNA under physiological conditions is `p = 50nm.

Short molecules. Polymers that are short compared to the persistence length are often
referred to as semi-flexible. The typical contours of these polymers are deviations from a
straight line. If the straight contour is the z-axis, the contour can parameterized by two
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single valued functions x(z) and y(z). Furthermore, longitudinal contraction is only of
second order, such that we can identify the arclength with z. Within this weakly bending
approximation, the equation of motion of the polymer is given by [36, 37, 38]

∂x(z, t)

∂t
= −kBT`p

ζ

∂4x(z, t)

∂z4
, (1.15)

where ζ is the friction coefficient per length (analogously for y(z, t)). The eigenfunctions of
this equation are of the form Wn(z) = a1 sin knz+a2 cos knz+a3 sinh knz+a4 cosh knz with
a discrete set of wave numbers kn fixed by the boundary conditions. The corresponding
relaxation times are τn = ζ/(k4

nkBT`p)

Long molecules. According to Eq. (1.14) the correlation length of the tangent vectors
t(s) along the backbone is the persistence length `p. Hence, a polymer that is far longer
than its persistence length will form a random coil where the number of independent
segments is given by ∼ L/`p. The diameter of the coil increases with length as ∼ `p (L/`p)

ν ,
where ν ≈ 0.588 is the Flory exponent. The end-to-end vector is a sum of independent
increments and hence Gaussian distributed. The number of possible chain configurations
for a given end-to-end distance is maximal at zero separation and decreases rapidly as the
ends are pulled apart. Entropy therefore favors small end-to-end distances and gives rise
to a restoring force opposing stretching. The force extension relation of a dsDNA molecule
several micrometers in length has been measured by Smith et al. using magnetic tweezers
[39]. At distances ∆r small to the backbone length the polymer responds like a linear spring
with entropic spring constant k = 3kBT

2`pL
. The force-extension relation becomes non-linear

as soon as the force exceeds kBT/`p. At very strong stretching, ∆r approaches the contour
length and the undulations of the of shorter and shorter wavelength are straightened out.
The stretching force diverges quadratically as ∆r approaches L [40].

Overstretching DNA. DNA ceases to be well described by an inextensible WLC model
at stretching forces of about 65pN, where the molecule suddenly extends by a factor of 1.7
[41, 42]. The transition is reversible and very little hysteresis is seen when the molecule
is first overstretched and subsequently relaxed. Upon overstretching DNA changes from
its ordinary structure called B-form to S-form. For this reason, the transition is called
B-S-transition. Since the mechanical properties of S-DNA are different from one single
DNA strand, two separated single DNA strands, and ordinary B-DNA [43], it is generally
believed that S-DNA is double stranded but has a structure distinct from B-DNA. The true
structure of S-DNA is not completely resolved. Rief et al. report another conformational
transition at forces of about 150pN, which is irreversible on experimental time scales [44].
The force-extension trace of relaxation suggests that the two strands separate during the
transition and only one single DNA strand remains attached between the substrate and
the cantilever. This force induced unpeeling is strongly sequence dependent.
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1.3.3. Stretching single stranded DNA

Single stranded DNA responds differently to stretching than dsDNA. Inspection of the
chemical structure of ssDNA sketched in Fig. 1.2 already hints at the great flexibility of
ssDNA. The monomers are attached to each other via a single chemical bond, about which
the bases can rotate and bend. In fact, ssDNA in solution reorientates about every two to
three bases. As opposed to dsDNA, the bendability of ssDNA is no longer continuously
distributed along the chain but concentrated at the joints between the bases. A suitable
model for such a system is the freely jointed chain (FJC) model which describes a polymer
by a chain of rigid rods which are connected at hinges. The length of single stranded DNA
corresponding to one segment of the FJC is about 1.5 to 2 nm.

Without a stretching force, the FJC model is equivalent to a random walk in space or, if
mutual exclusion of the monomers is accounted for, a self-avoiding random walk, as already
discussed for the long WLC polymer. At large stretching force, the response of the FJC
differs from that of the WLC due to the fact that WLC polymer displays undulations at
all wavelengths whereas the FJC has a lower cut-off length given by the monomer length.
The statistical mechanics of a FJC polymer under tension is very simple and is equivalent
to that of a paramagnet in an external magnetic field. The partition function of a single
monomer of length b is given by

Z =
1

4π

∫
dφ dcosθ e

− fb cos θ
kBT =

kBT

fb
sinh

fb

kBT
, (1.16)

where the force is parallel to the z-axis. The partition function of a N -monomer chain is
simply ZN . From this, the force extension relation is readily calculated

∆r = −NkBT
∂ ln Z

∂f
= Nb

(
coth

fb

kBT
− kBT

fb

)
. (1.17)

As ∆r approaches Nb, the force diverges as f ∼ (Nb−∆r)−1. The functional dependence
of ∆r on fb

kBT
is known as Langevin function. For a thorough discussion of this and similar

models, see [45].

1.3.4. DNA unzipping

Using single molecule manipulation techniques, one can unzip a single dsDNA. While
separating the two strands, the force needed for unzipping is recorded. Earlier experiments
achieved a spatial resolution of hundreds of base pairs [46], which was later improved to tens
of base pairs [29]. To interpret these experiments, it is helpful to consider the time scales
involved. The unzipping speeds used in these experiments are on the order of 100nm/s,
which corresponds to 300 bp per second. On the other hand, the intrinsic dynamics of
base pair formation is faster than 106 bp per second [47, 48]. Hence, unzipping is slow
compared to the base pair formation and the unzipping fork is essentially in equilibrium.
The opening of one base pair adds two bases to the single stranded part. The free energy
per base of the single stranded DNA under tension can be calculated using Eq. (1.16).



16 1. Properties of DNA

The force adjusts itself such that this free energy equals half the binding free energy of
a base pair. Hence, the binding free energy can be calculated from the measured force,
yielding results in agreement with bulk thermodynamics. The coupling of the dsDNA to
the measurement device is soft, such that the fork averages over many base pairs. As
expected, the estimated local binding free energies correlate with the GC-content of the
sequence. Unzipping forces range between 10pN for AT rich sequences to about 15pN for
GC-rich sequences.

These unzipping experiments attracted the attention of many theoretical physicists which
studied the nature of the unzipping transition [49] and in particular focussed on the effect
of sequence heterogeneity [50, 51, 52]. The unzipping transition is a first order phase
transition. The double helical state is stable at low force and the completely unzipped
state is favorable at high force. If the experiments are performed in the constant extension
ensemble, the opening fork of the unzipped DNA is the analog of a meniscus separating
two phases. While the phase diagram is extremely simple, the nature of the transition and
the unzipping dynamics is sensitive to sequence disorder. When unzipping homopolymers,
every part of the molecule becomes unstable at the critical force and the number of unzipped
bases diverges as m ∼ (f−fc)

−1 as the transition is approached from below. If the sequence
consists of a random mixture of weakly and strongly binding base pairs, the local binding
energy fluctuates. Even though the energy landscape for unzipping is flat on average at the
critical force, it fluctuates up and down like an unbiased random walk. Since the standard
deviation of an unbiased random walk grows with square root of the number of steps, the
energy barriers the unzipping force has to overcome to proceed m bases are typically of
height ∆E

√
m, where ∆E is the difference in binding energy between the strongly and

weakly binding base pairs. It can be shown, that the number unzipped bases m diverges
quadratically as the transition is approached [49]. Due to energy barriers on all scales,
unzipping at constant force is often interrupted by long pauses and the unzipping fork
exhibits anomalous dynamics.



2. Dynamics of repetitive DNA

At first sight DNA with repetitive sequences seems to be a rather artificial concept and one
would not expect such DNA to be relevant in biology. Consider a DNA sequence such as
5’-CACACACACACACACACACA-3’ and its complementary counterpart 3’-GTGTGTGTGTGTGT-
GTGTGT-5’. In a randomly assembled sequence of typical genome length the probability
to find this particular sequence is small (there are 420 ≈ 1012 ways to assemble a 20 bp
sequence, a mammalian genome is about 109 bps long and hence the chance of occurrence
is on the order of 10−3). Nevertheless, perfectly periodic sequences, i.e. repetitions of short
motifs of one to six nucleotides, are extremely common in eukaryotic genomes [53] and
account for up to 3% of the human genome [6]. This drastic overrepresentation of repeti-
tive sequences cannot be linked to any particular function, since most of these repetitive
sequences have been found in non-coding regions of the genome. Instead, what makes
repetitive DNA special compared to ordinary DNA is its much richer dynamics. While two
complementary single stranded DNA molecules with a sequence that is not particularly
ordered form base pairs only when correctly aligned, repetitive sequences can bind out of
register and form asymmetric loops as illustrated in Fig. 2.1. In particular, two complemen-
tary repetitive single strands can slip, meaning they can bind to each other when locally
shifted. This phenomenon of DNA-slippage is the key to understand the peculiarities of
repetitive DNA. In the following, we will outline the role of repetitive DNA in biology and
discuss how it is linked to human hereditary diseases.

Using a simple model of repetitive DNA we explore the potential of single molecule
experiments to study the dynamics of DNA slippage. Our theoretical analysis suggests,
that DNA-slippage can be probed by applying a shear force to a repetitive dsDNA. We find
that the two repetitive DNA strands start moving relative to each other when a sufficiently
high force is applied. The observed sliding speed can be related to the microscopic dynamics
of DNA-slippage. Hence, a thorough understanding of this sliding motion might give insight
into the molecular basis of DNA-slippage and shed light on the evolutionary dynamics of
repetitive sequences. The peculiar properties of repetitive DNA could also be exploited
in nanotechnology as visco-elastic elements and force generators. Our theoretical study is
complemented by a collaboration with the lab of Prof. H.E. Gaub, where Ferdinand Kühner
and Julia Morfill succeeded in measuring DNA sliding using an atomic force microscope.
These experiments are also discussed briefly.

Not only the dynamical properties of repetitive DNA are different from ordinary DNA,
but also its equilibrium thermodynamics is richer. If two repetitive and complementary
DNA strands of different length bind to each other, they undergo an additional temperature
driven phase transition before they separate into two single strands at high temperatures.
This additional transition will be discussed at the end of this chapter.
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C-A-C-A     C-A-C-A  - C-ACA

G-T-G-T  -  G-T-G-T     G-TGT

Figure 2.1: Two complementary DNA strands with repetitive sequence can bind in many
different configuration, since strands are complementary even when locally shifted by in integral
multiple of an repeat unit. In particular, repetitive DNA can form asymmetric loops and bulge
loops, resulting in local strand slippage.

2.1. The biological role of repetitive sequences

Repetitive sequences have first been observed in the early 80’s [54] and since then have
been found in every eukaryotic organism that was investigated. Repetitive sequences with
short repeat motifs (one to six base pairs) are commonly called microsatellites1, simple
sequence repeats (SSR) or short tandem repeats. To me, simple sequence repeat (SSR)
appears to be the most natural name and I will try to stick to it. Most of the simple
sequence repeats are found in non-coding DNA and are believed to evolve more or less
neutrally, that is the reproductive fitness of the organism is independent of length of the
SSR. Only very little is known about possible functional roles of repetitive DNA, see below
in Sec. 2.1.4. Within non-coding DNA, mono- and di-nucleotide repeats are the most
abundant, while within coding DNA, predominantly tri-nucleotide repeats are found. Tri-
nucleotide repeats constitute a special class of repeats, since the genetic code assigns amino
acids to combinations of three bases, so called codons. A tri-nucleotide repeat in coding
DNA therefore corresponds to a repeated amino acid in the protein. An extension or
contraction of a tri-nucleotide repeat results in the deletion or insertion of an amino acid
but leaves other parts of the poly-peptide sequence unaltered. This is very different for
most other repeat lengths, where expansions or deletions result in frameshift mutations,
i.e. the interpretation of the DNA sequence as three base codons is changed for the entire
part downstream of the repeat expansion. This most certainly results in a useless protein
or premature termination of transcription. The special role of tri-nucleotide repeats and
their relation to human hereditary diseases will be discussed in greater detail below.

2.1.1. The number of repeats changes rapidly in evolution

The key to understand the importance and ubiquity of SSRs is the extraordinarily large rate
at which the number of repeats changes from generation to generation. Although numbers
have to be taken with care, rates of contractions and expansions of SSRs in mammals

1DNA containing long repeated motifs forms ’satellite’ peaks in centrifugation experiments and such
DNA was called satellite DNA. Later shorter and very short repeat motifs where observed and became
known as mini- and microsatellites.
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can be as high as 10−2 per locus and generation [55]. This is orders of magnitude higher
than the typical rate for base substitutions which in mammals is about 10−9 per base
and generation. This hyper-variability can be linked to a peculiarity of the mechanism
by which DNA is replicated prior to cell division. To replicate DNA, the double stranded
molecule is separated into two single strands by a helicase and the two single strands serve
as templates to which the complementary strands are added by the DNA polymerase.
However, the DNA polymerase operates only from the 5’ to the 3’ end. Therefore, only
one strand, the so called leading strand, is copied continuously while the other strand,
the lagging strand, is copied piecewise as illustrated in the upper panel of Fig. 2.2. The
pieces of DNA that are added at a time are known as Okazaki fragments. The 5’ end of an
Okazaki fragment is fairly unprotected and a couple of bases will frequently detach from
the template strand by thermal fluctuations. Whenever the 5’ end of an Okazaki fragment
happens to have a repetitive sequence, it is possible that it rebinds in a misaligned manner,
forming a bulge loop containing one or more repeat units. If the DNA polymerase fills in
the next Okazaki fragment while such a bulge loop is present the number of repeat unit
on the copied strand has changed with respect to the template strand. A bulge loop on
the template strand results in the deletion of one repeat, whereas a loop on the newly
synthesized strand adds a repeat, as illustrated in the lower panel of Fig. 2.2.

Energetically, SSR contraction is greatly favored over repeat expansion, since only one
repeat unit has to open before a loop on the template strand can be formed, compared
to two repeat units that have to dissociate to from a loop on the nascent strand. Hence,
one would expect SSRs to contract and disappear quickly if the mutation mechanism was
adequately described by the sketches in Fig. 2.2. While this conclusion obviously contra-
dicts the abundance of SSRs in eukaryotic genomes, it explains the fact that SSRs are rare
in prokaryotes and tend to contract during PCR, as discussed below in Sec. 2.1.5. The
high ratio of expansion to contractions observed in eukaryotes is probably connected to the
DNA mismatch repair machinery, which checks the double helical structure of the newly
synthesized DNA. Only mutations that escape this repair machinery or are falsely corrected
persist to the next generation. Experiments in yeast have shown that a malfunctioning
DNA mismatch repair system causes an increase of SSR mutations of 100-700 fold [56].
These findings provide further indirect evidence that misaligned rebinding during replica-
tion, i.e. replication slippage, is an important source of SSR expansion and contraction.
In vivo rates of SSR evolution depend on a variety of different factors, most of which are
still heavily debated in the literature. For a concise summary I recommend ref. [57].

SSR genesis and the length dependence of the mutation rate. The longer a SSR, the
higher the probability that an open end during replication lies within the SSR. One would
therefore expect a linear increase of the expansion and contraction rate with the number
of repeats. Observations confirm a positive correlation between the repeat number and the
mutation rate, the precise length dependence of the mutation rate, however, is less clear
and a large body of contradicting evidence exists (for a review, see [53]). Before a SSR can
start growing by replication slippage, it has to contain at least two repeat units. It has
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Figure 2.2: Upper panel: Replication of the lagging strand is done piecewise and the stretches
replicated in one round are called Okazaki fragments. When an Okazaki fragment has a repetitive
sequence, the two strands can dissociate and subsequently rebind in a misaligned manner, as
illustrated by the bulge loop inside the red circle. Image adapted from Wikipedia. Lower panel:
Depending on whether the loop occurs on the template strand or the new strand, the number of
repeat units is increased or decreased in the copy.
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been shown, that expansion of SSR does actually occur for SSRs as short as two units. It
is generally believed that these initial seeds for SSR expansion are assembled by chance.

Dependence of mutation rate on the repeat unit length. Another feature one would
expect to have drastic effects on the SSR mutation rate, is the length of the elementary
repeat unit. The longer a repeat unit, the more bases have to dissociate before DNA-
slippage can occur. The activation free energy for DNA-slippage therefore increases with
repeat length and rates are expected to be small for SSRs with long repeat units. This
reasoning is very well supported by in vitro experiments (cf. Sec. 2.1.5), but in vivo evidence
is less conclusive. Some experiments seem to confirm that shorter repeat units mutate
faster than long repeat units [58]. A bioinformatics study also reports strongly decreasing
mutation rates with repeat length [59]. Repeated motifs that are longer than five or six
bases are not known to mutate significantly by replication slippage.

Length distributions of SSRs. A comparative study of the length distributions of SSRs
of different repeat length in humans, mice, fruit-flies, and yeast revealed significant dif-
ferences in abundance and distribution between different organisms [59]. In all cases,
short SSRs are most abundant. The longest SSRs are found in mice, but even for mice
the frequency drops rapidly to zero beyond 40 repeats. The absence of very long SSRs
is somewhat puzzling, since there appears to be a bias towards expansions of repeats2.
Furthermore, the mutation dynamics becomes faster as the length increases. Very long
SSRs are therefore expected. One possible resolution to this puzzle are point mutations,
which split a SSR into two smaller ones. The frequency of such a point mutation within
one locus increases with increasing length and thus provide a plausible explanation for
stationary length distributions [59]. However, one should keep in mind that many other
influences, most importantly selection or unanticipated properties of the mismatch repair
system, might be just as important to understand SSR length distributions.

The mechanism of SSR expansion discussed so far, replication slippage, changes the
length of an SSR usually by one repeat unit, sometimes by a few, but never by many.
However, the length of some special classes of SSRs tends to expand by a large number
of repeats in one generation. A common feature of such SSRs is their ability to form
hairpins, i.e the ability of the single strand to fold back onto itself and form a stable
structure. Possible mechanism of SSR expansion due to hairpin formation are reviewed
in [60, 61]. Another source of length variations of SSRs is unequal crossing-over during
meiosis. When a diploid organism produces haploid gametes, the genes on the chromosomes
are reshuffled by building new chromosomes out of pieces of the old ones. In repetitive
parts of the genome, these recombination sites are ambiguous, which can give rise to two
new chromosomes with SSRs of different length.

2As noted above contractions are less costly energetically, but more expansions seem to escape the
mismatch repair machinery, resulting in an expansion bias.
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2.1.2. SSRs are versatile genetic markers

The human genome contains hundreds of thousands SSRs, each of which changes its length
with a probability of 10−6 − 10−2 in each round of replication. The chance, that two
humans have the same set of SSRs is therefore negligibly small, even between closely
related individuals. For this reason SSRs are ideally suited as genetic markers and have
acquired great popularity in phylogeny studies, paternity testing and forensic sciences. To
measure the length of a set of SSRs, one exploits the fact that each SSR can be uniquely
identified by its flanking sequences. A short fragment of DNA containing the SSR to be
analyzed is cut from the sample using restriction enzymes that cut DNA specifically at the
flanking sequences of the SSR. The short fragments are amplified by PCR and their length
is measured using gel electrophoresis. The resolving power of these techniques is high
enough to detect insertion and deletions of single repeat units [62]. The great advantage
of SSRs based genotyping techniques is the small length of the sequence fragments that
need to be analyzed. Since short sequences can be efficiently amplified by PCR, minute
DNA samples suffice for reliable data. Depending on the questions one wants to address,
different genetic markers with different mutation rates, chromosome type (autosomes, X-,
or Y-chromosome) or flanking sequence are more suitable than others.

2.1.3. SSR expansion is related to hereditary diseases

Most SSRs reside in non-coding regions of the genome and mutations of these SSRs have
little or no effect on the fitness of the individual. A special class of tri-nucleotide SSRs,
however, occurs in coding regions or is part of introns, i.e. regions of a gene that are
transcribed but spliced from the mRNA before translation, and mutations of these can
lead to severely impaired phenotypes. Only tri-nucleotide repeats are found in coding
regions due to strong selection against frameshift mutations, which result by insertion or
deletion of a number of bases that is incommensurate with three. Mutations of these
tri-nucleotide SSRs are linked to a number of severe human hereditary diseases, such as
Huntington’s, fragile X or Friedenreich’s ataxia. These diseases fall into two different
categories [63]. The first class of tri-nucleotide related diseases is caused by expansions
of CAG repeats that code for the amino acid glutamine. The most prominent member
of this class is Huntington’s, which we will discuss in little more detail. Huntington’s
is a neurodegenerative disease that develops gradually. At early stages, patients suffer
from rapid uncontrollable movements. As the disease proceeds, patients loose virtually all
motor control, including the ability to speak, eat, or facial expression. The gene containing
the CAG repeat codes for the protein huntingtin, whose function is largely unknown. The
number of repeats in healthy individuals ranges between 6 and 34, people with 35 to 39
repeats have an increasing risk of developing the disease during their lifetime and people
with 40 or more repeats almost certainly suffer from Huntington’s by the age of 40. Due
to late onset of Huntington’s disease, patients usually have children before the disease is
detected. The disease tends to becomes worse from generation to generation as the CAG

repeat tends to grow longer and longer. The rate of elongation is correlated with the
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number of divisions in the paternal germ line [64]. The molecular basis of the pathology of
mutated huntingtin is still not completely resolved. The most popular hypothesis is, that
proteins with a long poly-glutamine stretch tend to aggregate and that those aggregates
are toxic. Such aggregates have been found in the brains of deceased patients. It is unclear,
however, whether these aggregates are key to the pathology or an unimportant byproduct
[65]. In any case, it is extremely astonishing that the protein works fine with any number
of glutamines between 6 and 34 and is almost certainly lethal with just 6 copies more.

The second class of pathological tri-nucleotide repeats are located in introns. In some
way or the other, the expansion of the SSR prevents transcription of the gene or the
processing of the mRNA for translation into protein. Pathological expansions often reach
repeat numbers as high as 2000, which is to be compared to the normal range of 5 to 50
[63]. The most prominent member of this class is the fragile X syndrome causing mental
retardation. Fragile X results from an expansion of a CGG unit beyond 200 repeats. The
pathology of fragile X is believed to be related to methylation of CG di-nucleotides, which
might silence the transcription of the gene.

2.1.4. SSRs in prokaryotes

In sharp contrast to eukaryotes, repetitive DNA is extremely rare in prokaryotes and seems
to occur only at loci, where there is a strong selective advantage to keep it. The prime
purpose of SSRs in prokaryotes are contingency genes, i.e. bacteria exploit the high muta-
tion rate of SSRs to maintain genetic and phenotypic diversity within a population. Such
diversity is essential to any organism subject to environmental changes, which may lead
to extinction if not a small fraction of the population happens to be prepared for the new
conditions [66]. SSRs are exceptionally well suited for contingency genes, since SSR mu-
tations are frequent and lead to repeat number changes only. A change in repeat number
differs from ordinary base substitution mutations, since they are easily reversed. Assuming
unbiased expansion or contraction, there is a 50% chance that a mutation is undone by the
subsequent mutation, or put into more academic terms, random walks in one dimension
are recurrent and almost surely to return to the origin in finite time. This is very different
for ordinary mutations, which correspond to a random walk in a very high dimensional
space (every base can be of four different types), where the chance of returning to a prior
state is negligibly small.

If there is a way to couple SSR contraction and expansion to switching genes on and off
or to change protein function, rapid SSR mutations would result in phenotypic variation
within populations and at the same time ensure easy recovery of temporarily switched off
traits. Not surprisingly biology has found several ways to do so. Among the best studied
examples are contingency loci of human pathogens such as Haemophillus influenzae3 or
Neisseria meningitis [67]. To evade the immune system, these bacteria frequently exchange
proteins in their outer membrane. This variability is often achieved by placing SSRs either

3Although its name suggests that H. influenzae is the cause of the flu and hence a virus, H. influenzae is
a gram-negative bacterium. It was mistakenly associated with the flu until 1933.
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in the promoter region or the in coding sequence itself. A change in length within a
promoter region can preclude necessary interactions of transcription factors or destroy
the RNA polymerase binding site. SSRs within the coding regions often cause frameshift
mutations, which results in transcription termination or an “gibberish” mRNA.

2.1.5. In vitro evidence for local strand slippage

By now, it is fairly well established that replication slippage plays a pivotal role in the
mutational dynamics of SSRs. However, the change in repeat length from one generation
to the next results always from an interplay of replication slippage and the DNA mismatch
repair machinery. Only those mutations that escape mismatch repair or are falsely cor-
rected can be detected. One way to study replication slippage alone is to knock out the
DNA repair machinery [56]. Another way is to study DNA replication in vitro [68]. Three
examples of such experiments are described below.

PCR slippage. The invention of the polymerase chain reaction (PCR) was one of the
most important steps towards modern biotechnology. PCR allows to faithfully amplify
minute amounts of DNA fast and cheaply. During one cycle of PCR, the DNA template
strands are separated by thermal denaturation, subsequently the temperature is lowered
such that short primer strands hybridize at the 3’ ends of both strands. A heat resisting
DNA polymerase then extends the short primers and copies the template. By multiple
repetitions of these steps, the initial template is amplified exponentially. By now, PCR is
a highly automated and very reliable technique. Only when amplifying repetitive DNA the
amplification is error prone [69, 70]. The product DNA is a mixture of the faithfully copied
template DNA and DNA sequences where the repetitive part has shortened by some repeat
units. Why does the PCR loose repeat units while amplification? Whenever the template
strand has a repetitive sequence and the polymerase happens to fall off the strand while
transcribing the DNA, one strand can slip with respect to the other and form a bulge loop.
Similarly to replication slippage in vivo, the number of repeats changes if the polymerase
resumes the replication while such a bulge loop is present (cf. Fig. 2.2). Only contractions
are observed due to the fact that the formation of a bulge loop has a lower activation
energy on the template strand. Given a binding free energy per repeat unit εb, contraction

is more likely than expansion by a factor of e
− εb

kBT .

SSR synthesis via DNA-slippage. Schlötterer and Tautz succeeded in synthesizing repet-
itive sequences by exploiting DNA-slippage in vitro. They mixed short repetitive DNA with
DNA polymerase and the required nucleotides in a suitable medium. After some incuba-
tion time, they measured the length distributions of the DNA strands and found that the
DNA strands tend to grow [68]. The elongation rate primarily depends on the length and
the binding strength of the elementary repeat unit. Di-nucleotide repeats grow at a rate of
4 to 6 base pairs per minute while tri-nucleotide repeats grow at a rate ranging from 0.5 to
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3 base pairs per minute. The elongation rate of tri-nucleotide repeats correlates strongly
with the number of AT base pairs in the repeat unit.

The observations can be explained by the following mechanism: The ends of the repeti-
tive dsDNA undergo DNA-slippage and form a bulge loop which diffuses inside the double
strand. The single stranded overhang produced by this slippage event is then filled in by
the DNA polymerase. When the bulge leaves the double strand again, it produces another
single stranded overhang, which is then filled in by the DNA polymerase. Since the rate of
bulge loop formation depends exponentially on the binding energy of one repeat unit, di-
nucleotide repeats are expected to grow faster than tri-nucleotide repeats. High AT content
should also enhance slippage, as observed.

Evidence for chain sliding. In the 1970s, Pörschke measured the hybridization kinetics
of short repetitive RNA oligomers [71]. When complementary strands are mixed, the rate
limiting step for hybridization is the formation of a critical nucleus of a few base pairs. Once
such a nucleus is formed, the remaining bases rapidly close in a zipper-like manner. When
sequences have no particular order, a stable nucleus and subsequent zipping is only possible
if the two strands are correctly aligned. This is very different for repetitive sequences, since
the two strands can bind with arbitrary shift relative to each other, see Fig. 2.3a. Once such
a misaligned duplex is formed, it is stable since both strands are bound by many base pairs.
Hence, one would expect to find a large number of misaligned double stranded intermediates
with a different number of base pairs. The relaxation dynamics of these intermediates to
the fully aligned state would further be expected to occur at markedly different rates, since
the time required to dissociate the strands by thermal activation depends exponentially on
the number of base pairs. However, no such slow multi-exponential relaxation is observed
[71]. Pörschke himself provided a very plausible explanation for his results. As already
discussed several times, repetitive sequences can form mobile bulge loops. The propagation
of a bulge loop from one end to another shifts both strands by the length of the loop, very
much like a rug can be moved by propagating slack from one side to another, see Fig. 2.3b.
The energy cost for the nucleation of such a bulge is small and in particular does not
depend on the length of the molecule.

2.2. Force induced DNA-slippage

The observations and experiments reported above provide good evidence that DNA-slippage
is indeed happening and that it plays a crucial role during SSR evolution. However, the
evidence for DNA-slippage is more or less indirect and based on bulk observations. One
goal of this thesis was to suggest experiments that allow to observe DNA-slippage in single
molecules using modern force spectroscopy techniques (cf. Sec. 1.3.1).

We suggest, that DNA-slippage can be induced by applying a shear force to repetitive
DNA. In a nutshell, application of a sufficiently high shear force fosters the formation
of bulge loops on both unstretched ends of the DNA duplex, which then travel across the
duplex and exit on the other side, as illustrated in Fig. 2.3b. The duplex lengthens stepwise,
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Figure 2.3: Left: During the hybridization reaction of repetitive RNA oligonucleotides, many
misaligned intermediates will be formed. Right: To explain the fast relaxation to the completely
aligned state, Pörschke suggested that the two strands can slide by the propagation of bulge loops
from one end to the other.

where each step corresponds to an individual bulge loop, the length of which can be one or
several repeat units. We devise a theoretical model, that allows us to predict experimental
signatures and relate measurements to microscopic parameters of DNA-slippage. Using
kinetic Monte Carlo simulations, methods from statistical mechanics, drift-diffusion, and
reaction-diffusion theory, we uncover four different force regimes with distinct characteristic
behavior. The model we use is simple enough to be amenable to analytic treatment, which
allows us to calculate the threshold forces and the average sliding speed exactly. We
further investigate how this sliding behavior is affected by rare mutations that destroy the
perfect repetitivity of the sequence. Such mutations do not necessarily impede sliding, but,
depending on the frequency of such alien bases, delay the mechanical response and require
larger forces.

2.2.1. Sliding dynamics of perfectly repetitive sequences

In a typical force spectroscopy experiment, a force extension curve is recorded until rupture.
In such experiments, either the distance of the cantilever from the surface, i.e. the exten-
sion of the sample, or the applied force is controlled, while the other is recorded. Though
in principle the same information can be gained from either of the two approaches, there
are significant practical differences between the two. The former is easier to implement
experimentally, since distance can be precisely controlled using piezo-elements. However,
applying a constant force and monitoring extension is easier to interpret and handle ana-
lytically or numerically. In the following, we will study the response of repetitive dsDNA
to a constant shear force, as illustrated in Fig. 2.4a.

DNA sliding exhibits four different force regimes

No matter how small forces are applied to the molecule, it will rupture eventually since the
state of large separation has the lowest free energy. However, to separate the two strands,
an activation barrier has to be overcome. The height of this barrier depends on the applied
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Figure 2.4: Part a): A dsDNA molecule sheared by a force f . Part b): When the DNA duplex
ruptures without sliding, the last base pair before rupture will be a native base pair. Part c): If
the two sequences slide along each other, the transition state has a larger extension L, see text
for details. Shorter duplexes rupture in a cooperative manner [72].

force, as well as on the internal dynamics of the system. In the case of repetitive DNA,
the main question is whether the two strands stayed in register or have shifted relative to
each other before rupture. Two possible transition states, i.e. the state prior to rupture,
with and without sliding are sketched in Fig. 2.4 b&c. The free energies difference of these
states to the ground states are given by

∆Enon−sliding = N (εb − f(`s − `d)) and ∆Esliding = N (εb − f(2`s − `d)) . (2.1)

The parameters `s and `d are effective lengths of ssDNA and dsDNA chosen such that
the stretching free energy per base or base pair is given by f · `s and f · `d, respectively.
Obviously, the transition state after sliding is always lower in free energy than the transition
state, when both strands stick. At low force, however, even ∆Esliding is positive and the
dissociation of the two strands is a thermally activated barrier crossing process, no matter
which dissociation path is taken. The rupture times are exponentially distributed with
a mean time 〈τ〉 that increases exponentially with ∆E and hence exponentially with the
length of the molecule. The situation changes, when the force is increased to

fc =
εb

2`s − `d

, (2.2)

where the ∆Esliding ceases to be positive while ∆Enon−sliding is still positive. If the du-
plex ruptures via sliding the dissociation should no longer be a thermally activated barrier
crossing process but some sort of creeping motion from the ground state to the transi-
tionstate. While sliding still involves local energy barriers such as bulge loop formation,
there is no longer an extensive barrier. Hence, the mean rupture time no longer increases
exponentially with the length but is determined by how rapidly the two strands can move
relative to each other. Simulations suggest, that 〈τ〉 scales as N3 at the critical force4 fc.
At forces above fc, we observe a quadratic increase of 〈τ〉 with N , see Sec. 2.8. How can
the cubic and quadratic scaling be rationalized? As suggested by Pörschke the two strands
can be shifted relative to each other by propagation of bulge loops from one end to the
other end. But a loop that is nucleated at one end most likely leaves the duplex again at
the same end. It travels all the way to the other end only with probability M−1, where M
is the number of base pairs (see Fig. 2.5a for illustration). Since the nucleation rate of loops

4 This force is actually slightly different from the expression given in Eq. (2.2) due to entropic effects.
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Figure 2.5: Left: A particle placed at site 1 will be exit at site N + 1 rather than at site 0 with
probability N−1. This can be seen from the steady state distribution resulting when particles are
injected at a constant rate. The particle fluxes to the left or right are proportional to the slopes
of the distribution, the ratio of which is N−1. Right: A particle-antiparticle model for bulge loop
dynamics, see main text.

at the end is independent of the total length, the mobility of the two strands relative to
each other is inversely proportional to the overlap length M . This mechanistic explanation
of strand mobility is consistent with the intuitive expectation, that the friction coefficient
of a one dimensional object should linearly depend on its length. At the critical force,
the nucleation rates of loops at stretched or unstretched ends are equal and the duplex
shortens and lengthens at equal rates, resulting in an undirected diffusive motion. Since
the diffusion constant itself is inversely proportional to N , the time needed to overcome
the distance N increases as N3. At forces above or below the critical force, bulge loops are
nucleated more frequently on unstretched or stretched strands, respectively, than they are
on the opposite strand. This induces a directed motion either extending or contracting the
duplex. The effective drift velocity is inversely proportional to the overlap length M . The
time required to overcome a distance N with a velocity proportional to M−1 scales as N2.

This quadratic scaling does not persist to arbitrarily high forces, but crosses over to a
linear scaling. The threshold force f ∗ for this crossover is given by the force, at which also
the ∆Enon−sliding becomes negative.

f ∗ =
εb

`s − `d

. (2.3)

In this case, it is no longer energetically expensive to open base pairs from both ends.
Since consecutive opening of base pairs until rupture is faster than sliding, this mode
of unravelling wins over sliding dynamically and repetitive sequences behave similarly to
random sequences.

On a macroscopic level, the sliding dynamics of the two strands is well described by a
drift-diffusion equation, where the drift and the diffusion coefficient are inversely propor-
tional to the instantaneous length x of the overlap of the two strands at any instant.

∂

∂t
P(x, t) =

∂

∂x

(
D0(f)

x

∂

∂x
− v0(f)

x

)
P(x). (2.4)

By fitting the solution of this drift-diffusion equation to the simulated rupture time distri-
butions, we obtain the drift and diffusion coefficients v0(f) and D0(f) that are independent
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of x and depend on the force only. The dependence of the drift coefficient on the force
can be understood by microscopic modeling of the bulge loop dynamics. In essence, bulge
loops on opposite strands behave as particles and anti-particles, cf. Fig. 2.5b: They an-
nihilate on encounter forming one double stranded repeat unit. Bulge loops can also be
produced in pairs, when a spontaneously nucleated bubble separates into two bulges. The
nucleation of bulge loops at the ends is mimicked by a coupling to particle reservoirs, the
density of which depends on the force applied to that particular end. The difference of
particles and antiparticles fluxes is conserved and directly related to the sliding velocity
of the two DNA strands: The sliding velocity is given by the difference of the reservoir
densities on stretched and unstretched ends, divided by the length of the double stranded
region. The reservoir densities are determined by the pseudo-equilibrium loop densities on
stretched and unstretched ends, which be calculated from the partition sum of our model.
These results and the corresponding plots are included in our publication entitled “Dy-
namics of Force-Induced DNA-slippage” in Physical Review Letters [73], which is reprinted
in Sec. 2.8. The details of the calculation of the partition sum, defect densities, and critical
forces are presented in the Appendix A.

2.3. Single molecule experiments on DNA-slippage

Our theoretical study was intended to trigger experiments that study DNA-slippage in
single molecules. We are very happy, that Ferdinand Kühner and Julia Morfill from the
group of Hermann Gaub were willing to perform such experiments and collaborate with us.
The experiments show very clearly, that two strands with repetitive DNA can slide along
each other once the applied shear force exceeds a certain threshold value. Sliding proceeds
in stepwise manner and the observed steps are compatible with a shift by one repeat unit.
The observations can be convincingly explained by the force induced formation of a bulge
loop which is propagated to the opposite end and thereby lengthens the duplex. The
experiments were performed with two different sequences, a 10 fold repeat of GTT and a 15
fold repeat of GT.

In the vicinity of the threshold force fc for sliding, the sliding velocity is linearly related
to f − fc, and a sliding mobility µ can be defined via

v(f) = µ · (f − fc) (2.5)

In the experiments the situation is reversed, as the velocity is imposed by the speed at
which the cantilever is retracted and the force adjusts itself. Higher forces at a given
speed correspond to higher “friction”, i.e. lower mobility. The forces measured at different
speed confirm an approximately linear relationship. As expected, the tri-nucleotide repeat
slipped slower than the di-nucleotide repeat.

The threshold forces observed in the experiments were considerably higher than expected
from theory. We expect this discrepancy to be the result of deformations of the duplex,
which is not accounted for by the theory. When a force is applied to one strand of dsDNA
it will take a few bases, probably of the order of one helical turn of the DNA, to distribute
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the force evenly to both backbones. In this boundary region the double stranded structure
is distorted. The DNA sequences used are only 30 bps long and the two boundary regions
take up the whole molecule. It is therefore not surprising, that the observed forces deviate
from the theoretical estimates which assume an undistorted structure. The short sequences
also limited the number of possible sliding steps to four or five5. Therefore, the predicted
scaling behavior for the mean rupture time could not be tested. Given the biological
importance of repetitive sequences and putative applications as active nano-scale building
blocks, mechanical properties and the kinetics of repetitive sequences continue to be an
interesting and challenging field for single molecule studies. The publication containing
these results is reprinted in Sec. 2.9 and the interested reader is referred to this publication
for details [1].

2.4. DNA sliding in presence of sequence disorder

After having discussed the sliding dynamics of perfectly repetitive DNA, the question
whether sliding is robust to mutations that destroy the repetitive pattern, arises naturally.
We show that DNA sliding persists even in presence of such disorder. However, the onset
of sliding is delayed by a waiting time, during which all mutated base pairs are opened.

To begin with, we simulated the response to a shear force of a molecule with repetitive
sequence where once in a while a repeat unit has been exchanged by bases, that bind
only to their native binding partner and not to any other bases in the sequence. We find,
that the extension of the molecule remains constant for some time until suddenly a fairly
normal sliding behavior sets in. The existence of some delay is obvious, since all mutated
bases have to be opened before the molecule yields. But it is less clear how the state with
all mutations open is established and how the delay times are distributed. By monitoring
the state of individual mutations during the waiting stage, we reveal that mutations open
consecutively from both ends and that sliding starts, as soon as the last mutation has
opened. The mechanism by which a mutation opens is illustrated in Fig. 2.7.

Since the mutations open from both ends of the molecule, the state of all mutations can
be described by the outermost mutations on both sides. If the total number of mutations
in the molecule is M , the outermost mutations perform a random walk on [1, 2, . . . ,M ].
Sliding starts, when both of these random walkers meet, that is no more mutations are
bound. The rate, at which these random walkers hop, i.e. the outermost mutations open
and close, depends on the force and the spacing between mutations. At low force, the
random walkers are biased away from each other and mutations are preferentially closed.
In this case, the waiting time before sliding increases exponentially with the size of the
system. At high forces, the mutations are preferentially open and the waiting time increases
as a power law [74]. We can therefore identify different dynamical regimes in the plane of
mutation density and applied force, where rupture is fast or exponentially slow.

5The terminal bases on both ends are opening and closing very frequently and a duplex with fewer than
10 bp overlap rapidly dissociates under force before sliding can be observed [72].
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DNA sliding in presence of sequence disorder is treated in detail in our publication
entitled “DNA as a Programmable Viscoelastic Nanoelement” in the Biophysical Journal
[75]. Details of the two random walker model are presented in the supplementary material
to this article. The publication and the supplementary are reprinted in Sec. 2.10.

2.5. Repetitive DNA as a visco-elastic nanoelement

In recent years DNA has become a popular material to build elaborate structures on a
molecular scale [76, 77, 78]. These applications exploit the specificity of complementary
base pairing to guide an ensemble of DNA strands with carefully designed sequence into
the desired conformation. DNA has also been used to construct devices that undergo
conformational transitions in response to a change in the chemical composition of the
environment. A very versatile approach is to construct strands that bind competitively to a
scaffold strand with different binding affinities. If the device is in a particular conformation
including a weakly binding strand, the addition of a more strongly binding strand will
replace the weakly binding strand from the structure and, if designed properly, will result
in the desired conformational change [79]. Such competitive binding has also been used
to reversibly cross-link acrylamid gels [80]. Other structures are sensitive to variation of
pH and such reversible pH-driven transitions have recently been coupled to an oscillatory
chemical reaction [81, 82].

Here, we want to discuss briefly the potential of repetitive DNA in nano-mechanical
applications. Most applications mentioned above are rigid and conformational transitions
occur only between well defined states or require the replacement of one strand by an-
other. Repetitive DNA might be useful when building more flexible devices that respond
dynamically to mechanical forces. We have seen above that repetitive DNA lengthens by
one repeat unit at a time, if subject to a sufficiently high shear force. Conversely, it con-
tracts against a sub-threshold force until maximal overlap of the two strands is reached.
In this way, mechanical energy is reversibly transformed into base pairing energy. Ef-
fectively, repetitive DNA acts as a contractile visco-elastic element with a viscosity that
can be programmed by choice of the length of the individual repeat unit and the overall
length of the molecule. The contractile force is determined by the sequence composition.
Such a visco-elastic element might find applications as a molecular tie-rope that keeps a
connection between two parts straight and at the same time adjusts its length. Another
conceivable application is a molecular force sensor that responds to forces exceeding the
threshold force. The read out signal could either be rupture or simply a relative shift of the
two strands measured by FRET. The sliding response can be delayed by mutations in the
repetitive sequence that transiently lock the two strands in a particular relative position.
Cross-linking gels with repetitive DNA might also result in material with novel mechanical
properties. A detailed characterization of the visco-elastic properties of repetitive DNA
can be found in the article reprinted in Sec. 2.10 [75].
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2.6. Intermediate phase in DNA-melting

So far, we have been predominantly interested in dynamic features of repetitive DNA,
which proved to be much richer than DNA with sequences without a particular order.
Here, we show that not only the dynamics but also equilibrium properties of repetitive
DNA are different from random DNA.

The most prominent difference is, at least within Poland-Scheraga models, that the order
of the melting transition is different for repetitive sequences than for ordinary sequences.
We have seen in Sec. 1.2.2 that the order of the melting transition of DNA depends on
the entropy of denatured loops, which in turn is governed by the loop closure exponent c.
For random sequences, a loop of a given size at a given position corresponds to one base
pairing configuration. When sequences are repetitive, however, loops can be asymmetric
and the bases of a loop of size n can be distributed between the two strands in n+1 ways.
This effectively reduces c by one [83]. Hence, no transition is observed if c is smaller than
2, denaturation is continuous if 2≤ c < 3 and a first order transition is observed only, if
c≥3. A brief discussion of physical values of c was given in Sec. 1.2.2.

This argument can be formalized by calculating the partition sum of all possible pairings
between the two strands6, as we already did to study DNA sliding. When the two strands
have repetitive sequences, there is no reason to consider only strands of equal lengths. Our
study revealed an additional phase transition, which occurs when the two strands are of
different length. At low temperatures, the two strands form a rigid double helix and the
excess bases of the longer strand reside in a single stranded overhang. As the temperature
rises, more and more of these unbound bases are absorbed into bulge loops within the
double helix and the overhang becomes shorter. At a certain temperature all the bases
are absorbed and the length of the overhang is no longer extensive. This transition is
a continuous phase transition which formally and conceptually resembles Bose-Einstein
condensation. The overhang corresponds to those particles that condense into the ground
state, while bulge loops within the double helix correspond to populated excited states.
The intermediate phase persists in presence of weak sequence disorder. Our work on phase
transitions in repetitive dsDNA is published in Physical Review E [84], which is reprinted
in Sec. 2.11.

2.7. Conclusion & Outlook

The dynamics of repetitive DNA is a fascinating research area with many open questions
remaining to be addressed. Due to their structural simplicity, such sequences are amenable
to methods from statistical mechanics and their generic properties can be elucidated with-
out reference to a particular realization. We studied equilibrium and dynamical features
of repetitive DNA using both analytical and computational tools. Many quantities such as
threshold forces, defect densities and phase diagrams can be calculated exactly within our

6Only pairings corresponding to alternating stems and loops (no crossing base pairs) are allowed. This
is usually a good assumption due to steric constraints.
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model. When repetitive DNA is sheared with sufficiently high forces the two strands start
moving relative to each other. This motion is mediated by propagation of bulge loops from
one end to the other, very similar to defect diffusion in crystals. The dynamics of the two
strands can be described by a drift-diffusion equation with drift and diffusion coefficients
that are inversely proportional to the length of the double stranded overlap of the two sin-
gle strands. The drift and diffusion coefficients can be related to the microscopic bulge loop
dynamics using a reaction-diffusion model. These two different levels of description provide
a link between the microscopic dynamics of a bulge loop inside double stranded DNA to
the DNA sliding dynamics, that can be measured in single molecule experiments. First
experiments confirm that two repetitive DNA strands slide relative to each other when
sheared [1], but more experiments with longer strands are necessary to test the prediction
of different scaling regimes and to infer quantities such as bulge loop mobilities.

From an engineering perspective, repetitive DNA has intriguing mechanical properties
which could be exploited in nano-scale devices. In essence, repetitive DNA acts as a
visco-elastic element with a force offset. The characteristics of such an element can be cho-
sen through sequence composition and length. By introducing mutations in the perfectly
repetitive sequence, the response of the element can be delayed in a controlled way.

The principle incentive to study repetitive DNA is to understand the evolutionary dy-
namics of simple sequence repeats. Our research is focussed on microscopic properties of
DNA under well controlled conditions. On the other hand, the length distribution of SSRs
in various genomes and the mutation dynamics in vivo are being actively investigated. The
gap between these too approaches is huge, but I think that bridging this gap is not com-
pletely infeasible. After measuring the microscopic rates in single molecule experiments,
one can faithfully parameterize models for in vitro slippage as described in Sec. 2.1.5 [68].
By successively adding a mismatch repair system, single stranded binding proteins, etc.,
it might be possible to understand how these components work together in vivo. Another
possible role of DNA-slippage could be in prokaryotic transcription termination. Intrin-
sic terminator sequences in prokaryotes include a “slippery” and weakly binding poly-A
stretch, usually 7 to 9 bases in length. Upstream of this of this slippery sequence is a
palindromic sequence which forms a hairpin in the RNA transcript [85]. A popular hy-
pothesis is, that this hairpin exerts a force on the RNA still inside the polymerase and
thereby terminates transcription [86]. The precise mechanism how this is happening is
unclear, but it is conceivable that the force exerted by the hairpin induces DNA-slippage,
which then enables the RNA to slide along the DNA out of the polymerase. It should
be possible to address this question by pulling on the nascent RNA strand as presented
in ref. [86] while having the polymerase transcribe repetitive and non-repetitive sequences
with different binding energies.
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We study the base pairing dynamics of DNA with repetitive sequences where local strand slippage
can create, annihilate, and move bulge loops. Using an explicit theoretical model, we find a rich
dynamical behavior as a function of an applied shear force f: reptationlike dynamics at f ! fc with a
rupture time ! scaling as N3 with its length N, drift-diffusion dynamics for fc < f < f", and a
dynamical transition to an unraveling mode of strand separation at f ! f". We predict a viscoelastic
behavior for periodic DNA with time and force scales that can be programmed into its sequence.
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The dynamics of base pairing in DNA and RNA
molecules plays an important role in biological processes
such as DNA replication, transcription, and RNA folding
[1]. These dynamics can be probed in detail with modern
single molecule techniques to exert and measure pico-
newton forces with nanometer spatial resolution [2]. For
instance, double-stranded DNA (dsDNA) can be forced to
open either by pulling on the two strands from the same
end of the dsDNA (‘‘unzipping’’) [3–5] or from opposite
ends (‘‘shearing’’) [6]. In the case of unzipping, the
dynamics involves the consecutive opening of native
base pairs, i.e., those present in the ground state of the
molecule, and is well understood theoretically [7]. Here,
we consider instead the shearing of dsDNA and focus
specifically on periodic DNA sequences. This case is
particularly interesting both from a physical and a bio-
logical point of view, since (i) periodic sequences have
many non-native base pairing conformations where one
strand is shifted with respect to the other, (ii) shearing
probes the transitions between such states, i.e., the dy-
namics of DNA slippage; see Fig. 1, and (iii) DNA slip-
page during genome replication allows the expansion of
nucleotide repeats, and, for certain repeats inside genes,
triggers a variety of diseases including Huntington’s dis-
ease [8].

The mechanism for DNA slippage has already been
suggested by Pörschke [9]; see Fig. 1(a): small bulge loops
can form at one end of the molecule when a few bases
spontaneously unbind and rebind shifted by one or several
repeat units. Once formed, a bulge loop may diffuse along
the molecule and anneal at the other end, effectively
sliding the two strands against each other by a length
equal to the size of the bulge loop. This mechanism
involves only small energetic barriers compared to the
large barrier for complete unbinding and reassociation.
Here, we present a detailed theoretical study of force-
induced DNA slippage, which has so far not been studied
experimentally. We show that this system displays a rich
dynamical behavior that can be controlled experimen-
tally by adjusting the force, sequence length, and se-
quence composition.

Model.— We consider a dsDNA of two perfectly com-
plementary periodic sequences with N repeat units, each
consisting of m nucleotides (for simplicity, we refer to
repeat units also as ‘‘bases’’). Assuming that base pairing
within a strand is negligible, a base pairing configuration
is specified by the set of the n # N interstrand base pairs
S ! f$ui; li%g with 1 # u1 < u2 < . . .< un # N for the
‘‘upper’’ strand and analogously for the li in the ‘‘lower’’
strand. We assign a binding energy &"b < 0 to each base
pair and a loop cost E‘$j%> 0 when there are j > 0
unpaired bases (total on both strands) between two con-
secutive base pairs. With a constant shear force f, see
Fig. 1(b), the energy of a configuration S is

E'S(!&"bn'S()
Xn'S(
i!2

E‘$!ui)!li&2%&fL'S(; (1)

where !ui ! ui & ui&1 and !li ! li & li&1. The loop cost
E‘$j% increases with the loop length, starting from
E‘$0% ! 0. Free DNA (f ! 0) is described by E‘$j% !
"‘ ) 3"kBT ln$j%, with a loop initiation cost "‘ > 0 and
a logarithmic asymptotic behavior derived from polymer
theory (" * 0:6 is the Flory exponent) [10]. An applied
force can affect E‘$j%; however, our qualitative results are
insensitive to its precise form [11]. Unless stated other-
wise, we keep only the constant term, E‘$j > 0% ! "‘, for
simplicity. The total extension L is

ε

L

bε

sd

f

f

(a)

(b)

FIG. 1. Sketch of periodic dsDNA, where each bead repre-
sents one repeat unit consisting of one or several bases.
(a) Many microscopic slippage events can lead to macroscopic
sliding. (b) An applied shear force.
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L'S( ! ‘s$u1 & 1) N & ln% ) ‘d
Xn
i!2

min$!ui;!li%; (2)

where ‘d and ‘s > ‘d are the effective lengths (in the
direction of the force) per single and double-stranded
unit, respectively. The entropic elasticity of DNA [12]
causes both ‘d and ‘s to depend on the applied force;
however, since the DNA is almost fully stretched at the
forces of interest here, we use the constant values ‘d=m !
3:4 "A and ‘s=m ! 7 "A for simplicity [13].

We study the dynamics of our model with analytical
methods (see below) and a Monte Carlo approach using
three elementary moves [14]: opening, closing, and slip-
page of a base pair; i.e., a pair $ui; li% is removed from the
set S or added to it, or, if the base pair is adjacent to a
loop, either ui or li can be changed to another base inside
the loop. The absolute time scale of these dynamics is
hard to predict, but comparison with bulk reannealing
experiments [9] suggests that our simulation time step is
on the order of #s in real time.

Scaling of mean rupture times.— With a constant ap-
plied force f > 0, eventually every finite dsDNAwill rup-
ture, since complete separation of the strands (L ! 1) is
the state of minimal free energy. However, both the time
scale and the nature of the rupture dynamics depend
drastically on the force. Figure 2 displays the scaling of
the mean rupture time h!i with the number of bases N for
a number of different forces (see caption for parameters).
We observe four distinct asymptotic behaviors: an expo-
nential increase with N for small forces, a cubic scaling

with N at a certain force fc, a nearly quadratic scaling
above fc but below a second threshold f", and linear
scaling above f". The behavior in the two extremes is
easily interpreted: for small f, rupture is driven by ther-
mal fluctuations across a large free energy barrier with an
associated Kramers time that scales exponentially with
N, and linear scaling at large f is expected when indi-
vidual bonds break sequentially at a constant rate.We now
characterize the rich behavior in the intermediate force
regime, including the nature of the two transitions.

The thermodynamic energy barrier disappears at a
force fc, which can be estimated by balancing the binding
energy per base pair with the mechanical work exerted
when sliding both strands against each other by one step,

fc * "b=$2‘s & ‘d%: (3)

fc is a critical force in the thermodynamic sense, if the
state of complete rupture is excluded (see below for the
exact calculation including all base pairing configura-
tions). At f ! fc, the rupture dynamics is best under-
stood by analogy with the reptation problem [15], since
bulge loops in the DNA structure behave similarly to the
‘‘stored length’’ excitations of a single chain in a polymer
network: these excitations are generated at the ends of the
polymer with constant rate independent of N, diffuse
along the polymer, and reach the other end with a proba-
bility +N&1. Therefore, the macroscopic diffusion con-
stant for the relative motion of the two DNA strands
should scale as D+ N&1 and the time for diffusion over
distance N is +N3.

For f > fc, strand separation is energetically a down-
hill process, which induces a drift velocity v between the
two strands. In linear response, we expect v ! #!f for
small !f ! f& fc with a mobility mediated by bulge
loop diffusion, # ! D=kBT + N&1 (from the Einstein
relation), leading to h!i+ N2. Why does this behavior
not persist for large forces? The second transition in the
scaling behavior is due to a change in the rupture mode: at
forces larger than f" * "b=$‘s & ‘d%, the double strand
can open by unraveling from both ends; i.e., the energy
cost "b of opening a base pair at the end is outweighed by
the gain f$‘s & ‘d% from a longer base-to-base distance in
the single strand. In this unraveling mode, the rupture
time scales linearly with N. The dynamical transition
from sliding to unraveling is clearly reflected in the
length at rupture, L'S$!%(; see Fig. 3(a), which is roughly
a factor of 2 larger for sliding.

Rupture time distributions.— Single molecule setups
are ideally suited to record the full distribution of rupture
times, P$!%, which is a sensitive characteristic of the
dynamics and permits a close examination of the physical
picture introduced above. The histograms in Fig. 4 show
P$!% from simulations at f ! fc and a larger force fc <
f < f"; see caption for parameters. We observe that fluc-
tuations play a dominant role at f ! fc, i.e., the width
of P$!% is comparable to the mean, while the rupture
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FIG. 2. Scaling of the mean rupture time h!i with the number
of bases N for different shear forces (with "b ! 1:11, "‘ ! 2:8,
which roughly corresponds to adenine-thymine (AT) sequences
at 50 ,C; see Fig. 5). The symbols represent Monte Carlo data
(error less than symbol size). The solid lines for f - fc are
power law fits (exponent with error in least significant digit is
given; data with N # 40 show significant finite size deviations
and are excluded). For f < fc the rupture time increases
exponentially. The data for f ! 6:4 pN * fc (connected by
the dashed line) demonstrate the crossover from diffusive to
drift behavior; see main text . The data for f ! 23 pN are
calculated including the logarithmic loop cost, which becomes
relevant at large forces [11].
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dynamics is drift dominated at the larger force, with a
localized peak in P$!%.

To formulate the drift-diffusion dynamics quantita-
tively, we treat the number of bases in the double-
stranded region as a continuum variable x with 0< x<
N, and consider the probability distribution P $x; t%, which
satisfies the continuity equation @tP $x; t% ! &@xj$x; t%
with a force-dependent current

j$x; t% ! &D$f; x%@xP $x; t% & v$f; x%P $x; t%: (4)

The above discussion suggests a diffusion coefficient of
the form D$f; x% ! D0$f%=x and similarly a drift
v$f; x% ! v0$f%=x. We have an absorbing boundary at x !
0 and it is natural to choose a reflecting boundary at x !
N and a delta peak at x ! N as initial condition. The
solution P $x; t%, which must in general be obtained nu-
merically, determines the rupture time distribution
through P$!% ! j$0; !%.

We can determine the force dependence of the diffu-
sion coefficient and drift empirically by fitting the calcu-
lated P$!% to the simulation data using D0 and v0 as
adjustable parameters. The solid lines in Fig. 4 show
that the drift-diffusion theory describes the simulation
data well. Figure 3(b) shows the fitted v0 as a function of
f (circles). The drift vanishes at the critical force,
v0$fc% ! 0, confirming the physical picture. The drift-
diffusion theory also explains the crossover behavior in
the vicinity of f ! fc; see Fig. 2: the drift is significant
only when the system size N is larger than the diffusive
length D0=v0 [16]. Hence, with v0 +!f, reptationlike
dynamics is expected in a force interval $f+ N&1

around fc.

Microscopic dynamics.— Next, we study how the mac-
roscopic drift in Eq. (4) emerges from the microscopic
bulge loop dynamics and determine v0$f% in terms of our
system parameters. Since bulge loops on opposite strands
annihilate each other when they meet, the bulge loop
dynamics is equivalent to a reaction-diffusion system of
particles and antiparticles in one dimension. Both parti-
cles and antiparticles are created at each end, however,
with different rates determined by the applied force.
From the underlying master equation for these processes
one obtains the mean-field equations [11]

@tu$y;t%!k0@2yu$y;t%&k1u$y;t%l$y;t%)k2;

@tl$y;t%!k0@2yl$y;t%&k1u$y;t%l$y;t%)k2;
(5)

where u$y; t% and l$y; t% denote the bulge loop density on
the upper/lower strand, y 2 '0; x( is the position within
the double-stranded region, and k0, k1, k2 are the rates for
hopping, annihilation, and pair creation, respectively. At
the boundaries, the densities take on constant values,
u$0; t% ! l$x; t% ! %< and u$x; t% ! l$0; t% ! %>, where
%<$f% and %>$f% are calculated below by assuming a
local equilibrium of the DNA at the edges. The macro-
scopic drift is determined by the stationary solution and
depends only on the difference between the loop densities
on the upper/lower strand, v$f; x% ! k0@y'u$y% & l$y%(.
Using Eq. (5), this yields v0$f% ! 2k0'%>$f% & %<$f%(.
Figure 3(b) shows that this result is in excellent agreement
with the empirical v0$f% obtained above.

Since the loop cost E‘$j% is larger for two separate
loops than for a single one of the combined length, bulge
loops on the same strand feel a short-range attraction.
However, the interaction is not strong enough to cause a
significant aggregation of the loops in our Monte Carlo
simulations. This is consistent with the observation that
with our DNA parameters, the interaction energy "‘ is
never significantly larger than the entropic cost + log% of
colocalization at loop density %. While v0$f% is appar-
ently robust to interaction effects, the diffusion coeffi-
cient D0$f% is sensitive to interactions as well as
correlations. Both are neglected in Eq. (5), leaving the
calculation of D0$f% as a challenge for the future.

Critical force.— To obtain the exact critical force, we
need the partition function Z ! P

e&E'S(=kBT summed
over all configurations S with at least one base pair. It is
useful to allow for different numbers of bases in the two
strands, e.g., 1 # ui # N and 1 # li # M, with a corre-
sponding partition function

Z$N;M% !
XN&1

i!0

XM&1

j!0

bi)j
s

XN&i

n!1

XM&j

m!1

Zp$n;m%; (6)

where bs ! ef‘s=kBT is the Boltzmann factor for a
stretched base, and Zp$n;m% is the partition function for
the central, double-stranded section starting with the first
and ending with the last base pair cf. Figure 1(b). We
calculate Zp$n;m% recursively by introducing a comple-
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respond to a CG sequence at room temperature; see Fig. 5.
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mentary partition function Zu$n;m% containing only
structures where the last of the n upper bases is not bound
to the last of the m lower bases:

Zp$n) 1;m) 1% ! qbdZp$n;m%)qbdgZu$n;m%;

Zu$n) 1;m) 1% ! g
Xn
k!1

Zp$k;m) 1%)g
Xm
k!1

Zp$n) 1; k%

)gbdZp$n;m%)bdZu$n;m%: (7)

Here, the Boltzmann factors q ! e"b=kBT , g ! e&"‘=2kBT ,
and bd ! ef‘d=kBT account for base pairing, loop costs,
and stretching of double strand, respectively. To obtain
the critical behavior for N ! 1, we take the z transform
Ẑ$z; y% ! P

N;MZ$N;M%zNyM. The inverse z transform is
then determined by the simultaneous poles of Ẑ$z; y% in z
and y. For large N, the pair of poles with the smallest jzyj
dominates. A detailed analysis of the critical behavior
will be presented elsewhere [11]; here we are interested in
fc, the force where the dominant pole switches. We find
that fc is the nontrivial root of!b2s

bd
& q

"!b2s
bd

& 1
"
& g2q

!
2

bs & 1

b2s
bd

) 1
"
! 0: (8)

When "b or "‘ . kBT, the second term is negligible and
the nontrivial root of (8) is b2s=bd ! q, recovering the
naive estimate (3). However, for smaller "b, "‘ one finds
significant deviations from (3); see Fig. 5.

Loop densities.— Using the same approach as above,
we can calculate the loop densities %<, %> introduced
above. Assuming equilibration between all possible
conformations of the two strands with a fixed cen-
tral base pair, we find %< ! P

a;bP$a; b%a=& and %> !P
a;bP$a; b%b=&, where & ! min$a; b% ) 1 and P$a; b% !

bb&a
s b&dqgZp$N & b & 1; N & b & 1%=Zp$N;N%. The

sums can be evaluated exactly for large N [11].
Conclusions.— We find a response of periodic dsDNA

to shear forces that is very distinct from that for non-
periodic sequences. Above a thermodynamic critical
force fc, but below a dynamic critical force f", bulge
loop diffusion allows periodic DNA to open by sliding.
This mechanism leads to a much lower thermodynamic
critical force than the unraveling mechanism by which
nonperiodic DNA opens. Within our model, we have
calculated fc exactly and characterized the associated

dynamics, which is effectively viscoelastic with a creep
compliance +N&1 for fc < f < f". Above f", periodic
dsDNA also opens predominantly by unraveling (this
dynamical transition may be regarded as a remnant of
the thermodynamic transition for nonperiodic sequen-
ces). Interestingly, periodic DNA could be used as a
viscoelastic nanomechanical element with properties
that are programmable by choosing sequence length and
composition. This may lead to applications in microstruc-
tured devices, similar to the programmable DNA-based
force sensors reported in Ref. [17].
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Force-Induced DNA Slippage
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ABSTRACT DNA containing repetitive sequences displays richer dynamics than heterogeneous sequences. In the genome
the number of repeat units of repetitive sequences, known as microsatellites, may vary during replication by DNA slippage and
their expansion gives rise to serious disorders. We studied the mechanical properties of repetitive DNA using dynamic force
spectroscopy and found striking differences compared with ordinary heterogeneous sequences. Repetitive sequences
dissociate at lower forces and elongate above a certain threshold force. This yield force was found to be rate dependent.
Following the rapid stretching of the DNA duplex, the applied force relaxes by stepwise elongation of this duplex. Conversely,
contraction of the DNA duplex can be observed at low forces. The stepwise elongation and shortening is initiated by single
slippage events, and single-molecule experiments might help to explain the molecular mechanisms of microsatellites formation.
In addition to the biological importance, the remarkable properties of repetitive DNA can be useful for different nanomechanical
applications.

INTRODUCTION

Not only is DNA the key molecule for life, it has also
become an extremely versatile tool kit for man made
nanoscale structures and devices (1). Despite the fact that
structure and dynamics of DNA were studied extensively,
many of the discovered intramolecular processes, which ex-
hibit complex dynamics and a distinct biological function,
still lack satisfactory explanation. Microsatellites formation
and bulge loop propagation in repetitive sequences are
prominent examples (2). Two complementary DNA strands
with heterogeneous sequences can only bind in a well-
defined, unique conformation. Thermodynamic fluctuations
lead to excitations in the double-stranded DNA, which re-
sults in a fast opening and closing of short stretches of
basepairs (3,4). These fluctuations are localized and do not
propagate through the DNA duplex.
In contrast, double-stranded DNA, containing short repet-

itive sequences, so-called microsatellites, displays a more
complex dynamic behavior (5–9) with potential applications
in nanotechnology. Two complementary strands can hybrid-
ize in various different conformations in which sufficiently
long stretches are aligned to build up thermodynamically
stable structures. Rapid transitions between these different
conformations may occur. This so-called bulge loop forma-
tion and propagation (see Fig. 1) is called DNA slippage. It is
considered to play a central role in the evolution of micro-
satellites, which can be found throughout the genome (10).
The repeat units of these microsatellites usually consist of

one to six bases, e.g., (A)N, (GT)N, or (GTT)N. The cor-
responding length of the microsatellites, i.e., the number of
consecutive identical repeat units, N, changes rapidly in
evolution, presumably due to DNA slippage events during

replication. Because of this length variability, the micro-
satellites frequently are used as genetic markers, e.g., for
forensic purposes, or to determine the genetic similarity
between different populations. On the other hand, certain
human neurodegenerative diseases, such as fragile X or
Chorea Huntington, are related to expansions of trinucleotide
repeats of microsatellites beyond certain thresholds (11).
Investigations of DNA slippage in vitro (2,12) showed

that DNA bulge loop formation at the end of the duplex
occurs on a timescale of microseconds. As a result, the two
strands can be shifted relative to each other by propagation of
a bulge loop toward the other end of the duplex (compare
Fig. 1). In recent years, single molecule techniques have
been used to study the mechanical properties of single DNA
molecules. For example, the elasticity (13–16) and unzip-
ping of l-phage DNA (17,18), the interactions between
proteins and double-stranded DNA (19,20) and the dissoci-
ation forces of short DNA duplexes (21–23) have been
measured using different experimental setups. Recently, a
theoretical work suggested studying DNA slippage with an
atomic force microscope (AFM) (24): The two complemen-
tary strands of a DNA duplex with a repetitive sequence are
predicted to move relative to each other if the externally
applied force exceeds a critical force, the slipping threshold
fc. This slipping threshold can be estimated by balancing the
work performed by the external force with the binding free
energy, which is lost if both strands are shifted relative to
each other by one repeat unit. When shifting the two strands,
the contour length of the single-stranded parts of the duplex
elongates by twice the length of one repeat, whereas the
double-stranded part shortens by one repeat unit. This simple
argument leads to the slipping threshold fc:

fC ¼ eb
2ls " ld

; (1)Submitted August 24, 2006, and accepted for publication December 1, 2006.
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where eb is the binding free energy of one repeat unit, lS is the
effective length of one unit when unbound and stretched by
the force f, and ld the length of the hybridized repeat unit. For
a trinucleotide (GTT) the basepairing energy is eb # 7–8
kBT, the length of three basepairs in the duplex is ld # 1 nm,
and the effective length of three single-stranded bases is lS #
1.5 nm. Inserting these values in Eq. 1 a slipping threshold
fc of roughly 15 pN can be predicted. For a dinucleotide (GT)
fC is roughly 13 pN, with ls# 1 nm, ld# 0,7 nm, and eb# 4–
5.5 kBT. However, this estimate has to be taken with care,
since the deformation of the duplex and finite size effects
will affect the true value of fc. The rate of this motion of
the two DNA strands relative to each other is determined by
the diffusion of bulge loops from one end of the strand to the
other (see Fig. 1). The slipping process can be characterized
with the following parameters: the slipping rate, which
describes the speed of the movement of the bulge loops
along the DNA duplex; the slipping length, which describes
the length increase or decrease that is determined by the
number of bases in one repeat unit; and the slipping thresh-
old, which describes the critical force for the appearance of
slipping.
Here we report on an investigation on the response of short

DNA duplexes to an externally applied shear force and

compare these repetitive sequences with heterogeneous
sequences with respect to their slipping rate, slipping length,
and slipping threshold with the intent to test the concept of
bulge loop mediated elongation. The dependence of the dy-
namics on the number of repeat units and the number of bases
in one repeat unit is investigated.

MATERIALS AND METHODS

Oligonucleotides modified with a thiol group at the 59-terminus (for de-

tails see Table 1; IBA GmbH, Göttingen, Germany; Metabion GmbH,
Martinsried, Germany) were immobilized on amino-functionalized surfaces

using a heterobifunctional poly(ethylene glycol) (PEG) spacer. One oligo-

nucleotide was immobilized on the cantilever and the complementary

sequence was coupled to the surface. Note that such a chemical func-
tionalization leaves the molecule the freedom to rotate because of the single

covalent bonds in the PEG chain. The cantilevers (Bio-lever, Olympus,

Tokyo, Japan) were cleaned and functionalized as described previously (25).

Instead of epoxy-functionalized cantilevers, amino-modified surfaces on
the cantilevers were prepared using 3-aminopropyl-dimethylethoxysilane

(ABCR GmbH, Karlsruhe, Germany). Commercially available amino-

functionalized slides (Slide A, Nexterion, Mainz, Germany) were used.
From this step on, the surfaces of cantilever and slide were treated in

parallel as described in Blank et al. (26). They were incubated in borate

buffer pH 8.5 for 1 h. This step was necessary to deprotonate the amino

groups for coupling to the N-hydroxysuccinimide groups (NHS) of the
heterobifunctional NHS-PEG-maleimide (MW 5000 g/mol; Nektar, Hunts-

ville, AL). The PEG was dissolved in a concentration of 50 mM in borate

buffer at pH 8.5 and incubated on the surfaces for 1 h. In parallel, the

oligonucleotides were reduced using TCEP beads (Perbio Science, Bonn,
Germany) to generate free thiols. After washing with ultrapure water, a

solution of the oligonucleotides (1.75 mM) was incubated on the surfaces for

1 h. Finally, the surfaces were rinsed with phosphate buffered saline (PBS)

to remove noncovalently bound oligonucleotides and stored in PBS until
use.

All force measurements were performed with a MFP-3D atomic force

microscope (AFM) (Asylum Research, Santa Barbara, CA) at room tem-
perature in PBS. Force-clamp, distance jump experiments and analysis of the

data were carried out in Igor 5.3 with self-written procedures. Cantilever

spring constants were determined by thermal calibration (6–8 pN/nm).

RESULTS

For the AFM experiments, the complementary DNA strands
were covalently anchored via poly(ethylene glycol) (PEG)
spacers. One strand was bound to the surface of a glass slide
(26) and the complementary strand was coupled to the can-
tilever tip, respectively.

FIGURE 1 Comparison of the behavior of repetitive (left) and heteroge-

neous (right) DNA sequences under an externally applied force. Repetitive

DNA sequences can form bulge loops. These bulge loops can propagate to

the other end of the DNA duplex and therefore cause a lengthening of the
molecule. In contrast, this dissociation path is not available for heteroge-

neous DNA sequences. Heterogeneous DNA sequences simply dissociate in

an all or none mode.

TABLE 1 DNA sequences

DNA duplex Sequence (cantilever) Sequence (slide)

(X)ID 59SH-TTTTTTTTTTTTTTTTTTTTCGTTGGTGCGGA
TATCTCGGTAGTGGGATACGACGATACOGAAG
ACAGCTCATGTTATATTATG-39

59SH-TTTTTTTTTTTATCCCACTACCGAGATATCCGCAC
CAACG-39

(GT)ID 59SH-TTTTTTTTTTGTGTGTGTGTGTGTGTGTGT-39 59SH-TTTTTTTTTTACACACACACACACACACACA-39
(GT)ID 59SH-TTTTTTTTTTGTGTGTGTGTGTGTGTGTGTGTGT

GTGTGT-39
59SH-TTTTTTTTTTACACACACACACACACACACACACA
CACAC-39

(GGT)ID 59SH-TTTTTTTTTTGGTGGTGGTGGTGGTGGTGGTGGT
GGTGGT-39

59SH-TTTTTTTTTTACCACCACCACCACCACCACCACCACC
ACC-39
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In all experiments the slide was approached with the tip of
the cantilever, allowing the two single strands to hybridize
and form a duplex. To avoid double rupture events the bind-
ing probability was adjusted to ,30% by the applied force
and duration time on the surface. Subsequently, the canti-
lever was retracted and the DNA duplex was loaded with a
gradually increasing force until it finally ruptured and the
cantilever relaxed back into its equilibrium position. The
force applied to the DNA duplex via the PEG spacers was
recorded as a function of the distance between the cantilever
tip and the surface (Fig. 2). This curve was fitted with a two-
state freely jointed chain (FJC) model, which describes the
enthalpic and entropic behavior of polymers under an ap-
plied force (27).
Because most biologically relevant interactions are com-

parable in strength to thermal energies, force-induced pro-
cesses such as the separation of receptor-ligand systems or
in our case DNA duplexes are fluctuation-assisted processes
(28). Therefore the distribution of the unbinding forces is
broadened significantly (29). At a given force rate and at a
fixed bond energy, a shift of the histograms directly reflects
the difference in the effective width of the binding potentials
(30,31) and indicates different unbinding pathways in the
energy landscape.
To investigate, whether DNA duplexes with repetitive

sequences have different unbinding pathways and therefore
show different unbinding forces than heterogeneous se-
quences, both systems were analyzed. Fig. 3 shows the
resulting distributions of the rupture forces of a heteroge-
neous (X)30 and a repetitive DNA sequence (GT)15 recorded
at approximately the same pulling speed. Although both
sequences have similar thermodynamic properties, which
mainly correlate with the GC content of the sequence, their
rupture force distributions differ drastically. The histogram
for the repetitive DNA sequence (blue) is shifted toward
lower dissociation forces. The DNA complex typically
dissociates at forces below 40 pN. We conclude that an

additional dissociation path is available for the repetitive
sequence. Note that the repetitive sequence might also bind
fractionally and therefore might lead to lower dissociation
forces. But without the assumption of an additional unbind-
ing path this effect would lead to a broadening of the force
distribution containing also higher forces similar to those of
the heterogeneous sequence. The specificity of the measured
interactions was proven, by replacing one single DNA strand
with a noncomplementary sequence. This leads to ,0.5%
interactions.
Having established that repetitive DNA has characteris-

tics, which are absent in heterogeneous sequences, two repet-
itive sequences with a different number of bases per repeat
unit were compared with a heterogeneous sequence. The
study of the unbinding mechanism of (GTT)10 and (GT)15
should reveal more detailed insights in the unbinding
mechanism.
The theoretically predicted unbinding path represents a

stepwise elongation of the repetitive DNA duplex by moving
both strands against each other (see Fig. 1) as soon as the
externally applied force exceeds a certain threshold (slipping
threshold fc). Such an elongation can indeed be observed in
the recorded force-extension curves. Fig. 4 shows several
typical force-extension curves obtained for two different
repetitive and one heterogeneous DNA sequence. The force-
extension curves for repetitive DNA deviate from the FJC
behavior at forces above 40 pN, whereas the curves for
heterogeneous DNA follow the FJC fit up to much higher
forces. Apparently, repetitive DNA gets elongated at a
slipping threshold between 35 and 40 pN. In the following
we will use the expression ‘‘slipping threshold’’ for the value
of the applied force beyond which the DNA duplex starts to
slip or creep.
Whereas the results described above show further proof

that repetitive sequences slip under load, the following
experiment was carried out to examine the dependence of the
slipping process on the length of the elementary repeat unit

FIGURE 2 Example of a force-extension curve of a heterogeneous DNA

duplex. While retracting the cantilever from the surface the polymer spacer

and the DNA duplex are set under stress. The elastic behavior of the

polymer-DNA duplex can be described with the FJC fit (black dashed line).
At a force of 62 pN the double-stranded DNA dissociates and the cantilever

drops back into its relaxed state.

FIGURE 3 Histograms of the unbinding forces of DNA duplexes with a

heterogeneous (X)30 and a repetitive (GT)15 sequence measured at similar

pulling speeds. The duplex with the repetitive sequence dissociates at
markedly lower forces, although its binding energy equals the binding

energy of the heterogeneous sequence. The force distribution of the

repetitive DNA is detruncated at a force of 40 pN. This gives evidence for an
additional unbinding path, which is favored if an external force is applied.

Force-Induced DNA Slippage 2493
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and the number of repeats. These experiments were carried
out with the following sequences: (GTT)10, (GT)10, and
(GT)15. These DNA duplexes were probed at different pull-
ing speeds because the slipping threshold is expected to be
speed dependent. Because the slipping thresholds only differ
by a few piconewtons, each data set was recorded with one
cantilever to avoid calibration errors. In Fig. 5 the maxima of
the slipping force distributions are plotted against the pulling
speed of the cantilever. As can be seen in this figure, the
slipping threshold shows a weaker dependence on the pull-
ing speed for dinucleotide than for trinucleotide repeat units.
Furthermore, the slipping thresholds are lower for the shorter
repetitive sequence (GT)10 than for the sequence containing
15 repeat units. In a linear response, the velocity of a particle
in a viscous environment is given by the product, containing
the mobility of the particle and the applied force. Close to the
slipping threshold fc, the relationship between the measured
force and the velocity of DNA slippage can be treated sim-
ilarly. Here an effective friction for relative strand motion

arises from the need to nucleate bulge loops to shift both
strands.
Close to slipping threshold fc the slipping velocity v(f)

increases linearly with the measured force due to v(f) ¼ dv/
df3 (f " fc). The variable u0 ¼ dv/df represents the effective
slipping mobility, which depends on the bulge loop nucle-
ation rate, microscopic slipping rate, and the number of
repeat units. In our experiments, we correlated the slipping
velocity v(f) with the retract speed of the cantilever and
measured the resulting slipping threshold.
From a linear fit, we achieve a slipping mobility u0 of 580

nm/s$pN for a dinucleotide and 250 nm/s pN for a trinucle-
otide sequence. This is in agreement with the theoretical
predictions and with bulk experiments that observed faster
expansions for shorter repeat units. To form a bulge loop in a
dinucleotide sequence, fewer basepairs have to open up than
in a trinucleotide sequence and hence the rate to create these
defects is smaller for longer repeat units. However, the ad-
ditional length increase per step for longer repeat units does
not compensate the lower rate.
So far the experimental results confirm that repetitive

DNA strands can slide against each other and that the
slipping threshold can be determined for different retract
speeds. The values obtained for the slipping mobility are in
good agreement with theoretical predictions. However, the
time resolution in an usual force-extension measurement is
not sufficient enough to discriminate individual steps, which
would give direct evidence of the stepwise microscopic
sliding mechanism.
Initial force clamp (32) measurements (data not shown)

performed with the AFM only showed a lengthening of the
different DNA duplexes at forces of 35–40 pN, but failed to
resolve the expected individual steps. Therefore, a new mea-
surement protocol was implemented, whose time resolution
is limited only by the relaxation of the cantilever. These
measurements were carried out as follows: i), The cantilever
was lowered, to allow the DNA to hybridize and form a
duplex. ii), The cantilever was gradually retracted from the
surface allowing a certain force, well below the slipping
threshold, to build up. iii), Then, in one step, the cantilever
was retracted an additional 3–7 nm away from the surface.
As a result of this distance jump, the force acting on the DNA
duplex rises almost instantaneously to a new higher value.
Initially, the contour length, which gives the total length
under force, does not change. If, in response, the DNA
duplex elongates due to slipping, an increase of the contour
length is observed. In addition, the applied force drops,
which can be detected by the cantilever.
Fig. 6 A shows two typical curves, force versus time and

distance versus time, for a 15-times repetitive dinucleotide
DNA duplex (GT)15 recorded with the measurement proto-
col described above. First, the force acting on the DNA
molecule is fluctuating around 38 pN, a value close to the
previously observed slipping threshold. As indicated with
the blue arrow in the force versus time graph a 4-nm distance

FIGURE 4 Typical force-extension curves of a heterogeneous (X)30, a

repetitive (GT)15, and a (GTT)10 sequence. In contrast to the force-extension

curve of the heterogeneous DNA sequence, which follows the two-state FJC
behavior, the repetitive DNA duplexes elongate at a force (slipping

threshold) of ;35–40 pN until they finally dissociate (rupture force).

FIGURE 5 Pulling speed dependence of the slipping threshold for

different repetitive DNA sequences. To avoid spring calibration errors
every data set for one sequence is performed in a single experiment with the

same cantilever. The maxima of the slipping threshold histograms, con-

taining 80–150 force curves, are plotted against the pulling speed of the

cantilever. The slipping threshold depends on the pulling speed and shows a
linear time dependency as a first approximation.
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jump was performed. As a result of the distance jump the
force (red) increases to nearly 57 pN, but the contour length
stays constant. Within a fraction of a second the measured
force decreases to a value below 40 pN in discrete steps. The
final force is again close to the observed slipping threshold.
This rapid and discrete decrease of the force can only be
explained with a stepwise lengthening of the DNA molecule,
which compensates the performed distance jump. These
observations show that a single relaxation process increases
the contour length of the dinucleotide DNA system by;1.46
0.3 nm. This value was obtained by a Gaussian fit of the
contour length increase histogram (see Fig. 6 C) of several
experiments, with a confidence interval of 90% certainty.
This effect can be well explained by a relative sliding of one

repeat unit (dl¼ 2ls" ld¼ 43 0.5 nm" 23 0.34 nm¼ 1.4
nm). Unfortunately, only a limited number of steps can be
observed, because the probability of holding these DNA
duplexes under such a high force for a long time is very low
and decreases further with every step.
Fig. 6 B shows the equivalent experiment for a trinucle-

otide (GTT)10 sequence. As expected, the contour length
increase of ;2.1 6 0.3 nm, determined analogous to the
(GT) sequence, is higher than for the dinucleotide sequence.
Analogous experiments performed with the heterogeneous
sequence did not show any discrete steps (data not shown).
To exclude the possibility, that the observed steps are

artifacts of multiple binding the following arguments are
pointed out. First of all the overall elasticity of the measured
PEG polymer spacer would be much stiffer. Secondly, the
presumption of three bound molecules in parallel mimicking
the three steps of the single molecule shown in Fig. 5 would
require the respective PEG polymer spacers to differ in
length by,2 nm. This would mean that the total force acting
on the cantilever would be distributed on three duplexes and
as a consequence the lifetime for the duplexes would be much
longer than our experimental findings. Dissociation of one
duplex increases the split force applied to the remaining
duplexes and reduces their lifetime drastically. For this rea-
son multiple binding as potential artifact can be excluded
with a very high certainty.
Having shown that all characteristic parameters describing

the slipping process can be determined experimentally, we
wanted to obtain more detailed information about the
behavior near the slipping threshold. The system for the na-
tive and elongated conformation of the repetitive DNA
duplex can be described with a two-state potential illustrated
in Fig. 7. Application of an external force allows the tuning
of the potential, so that the Gibbs free energy of these two
states is the same as shown with the dashed line in Fig. 7. If
this force equals the slipping threshold fc the system can
fluctuate in equilibrium. This was achieved in the measure-
ment shown in Fig. 8. Using the above-mentioned measure-
ment protocol a distance jump is performed and the force on
the DNA duplex first increases over the slipping threshold
limit fc. As a result the DNA duplex elongates and the force
drops to the slipping threshold. At this force the system starts
to perform multiple back and forth slipping events. An
additional distance jump forces the DNA duplex in its
elongated conformation until it finally ruptures completely.
These fluctuations of the DNA duplex between the two

states can be analyzed with random telegraph noise analysis
similar to ion channel recordings (Fig. 8, black curve). The
hidden Markovian process can be characterized with the
transition rates from one state to the other (33). The data trace
shown in Fig. 8 exhibits mean lifetimes of 0.031 s for the
elongated and 0.022 s for the shortened state. Note that these
lifetimes are very dependent on the applied force. The energy
difference between these two states varies between the
binding energy of the DNA duplex and the bending energy

FIGURE 6 Force versus time (red) and contour length versus time curve

(black) of a repetitive (GT)15 and (GTT)10 DNA duplex, initially held at a

force below the slipping threshold. After 0.5 s a distance jump of the

cantilever was performed resulting in a force step above the slipping
threshold, but leaving the contour length of the molecule constant. In panel

A the contour length of the (GT)15 DNA complex relaxes in two discrete

elongation steps and the force acting on the duplex drops below the slipping

threshold. In panel B the contour length (black curve) of the (GTT)10 DNA
complex elongates in one discrete step and the force drops below the

slipping threshold. Panel C shows the distribution of the contour length

change for the di- and trinucleotide sequence. The additional peak at (;2.8

nm) in the dinucleotide sequence may occur from double slipping events.
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of the cantilever. The energy was found to be;7 kBT, which
is close to well-established values of about ;8 kBT for a
trinucleotide GTT repeat unit. Other experiments underline
this value. Due to the sensitivity of the system regarding
the applied force and the low detection probability a closer
examination will require substantial instrumental improve-
ments. The observed multiple forward and backward jumps
in Fig. 8 could be detected with short polymer spacers with
lengths between 15 and 20 nm only. A possible reason for
this finding could be that the fluctuations of the cantilever
allow the duplex to form a bulge loop at lower forces, which
eventually diffuses to the other end. For longer spacers these

fluctuations are averaged by the elasticity of the polymer
(34). The alternative scenario, that the observed shortening
is a simple transient bulge loop formation at the stretched
end, can be ruled out because the lifetime of these bulge loops,
even if they travel some steps into the molecule, is orders of
magnitude too small to explain the observed frequencies.

DISCUSSION

The data presented here show that repetitive DNA duplexes
elongate under an applied shear force and dissociate at
significantly lower forces of;38 pN than for heterogeneous
DNA sequences. Because of the possibility of fractional
binding for repetitive sequences, lower dissociation forces
are possible in regular force distance curves (see Fig. 2). This
is due to an additional unbinding path that allows the
repetitive DNA duplex to increase its contour length without
having to overcome a large free energy barrier. It should be
pointed out that this unbinding path energetically is not
favored over other paths but gets populated by force.
The theoretically predicted length increase occurs in

discrete slipping steps. We could show that the resulting
length increase of the whole DNA duplex is consistent with
the length increase obtained by shifting both strands of di-
and trinucleotide sequences by one repeat unit. Slippage is
faster for shorter repeat units and smaller repeat numbers.
This is consistent with the theory of bulge loop diffusion
because the expected slipping velocity decreases with the
energy needed to produce a bulge loop. In addition, the
diffusion of a bulge loop through the molecule is faster for
shorter duplexes. The mechanism of relative strand motion
caused by the creation, diffusion, and absorption of bulge
loop defects is similar to defect propagation in crystal lattices.
The slipping threshold determined in the measurements

was found to be larger than the theoretically predicted slipping
threshold fc. This may be due to the small number of repeat
units used in the experiments and to the simplistic model used
for the theory. For instance, deformations and conformational
changes in the backbone of the DNA duplex resulting from
an externally applied force are not included in the model.
The slipping velocity is expected to scale inversely with

the number of repeat units. This prediction could not be un-
ambiguously confirmed because only rather short sequences
were available. Further experiments are necessary to quan-
tify the dependence of the slipping dynamics on the repeat
number and flanking sequences. More detailed experiments
will shed some light on the kinetics of the processes involved
in expansion of microsatellites during replication. Because of
its bidirectional property DNA slippage, itself, is not the
cause for the asymmetric increase effect of repeat units in the
human genome.
Besides the biological importance of repetitive sequences,

the remarkable properties of repetitive DNA might also be
useful for different nanomechanical applications (35–37).
Because the rupture force distribution for repetitive

FIGURE 7 Gibbs free energy of a two-state system under an external

force. The model describes the completely bound and the first lengthened

state of a repetitive DNA duplex. The potential is tilted due to an externally
applied force. This results in a leveling of the energy of the two states,

allowing the DNA duplex to fluctuate between the two states in equilibrium.

FIGURE 8 Example for the slipping of the DNA duplex between the

elongated and the short state. A repetitive (GTT)10 DNA duplex is held at a

constant force analogous to Fig. 6. A distance jump drives the force above

the slipping threshold. This results in a lengthening of the DNA duplex and
the force drops down to the slipping threshold. Consequently, the duplex

lengthens and shortens due to forward and backward slipping. The measured

time trace (red) of the fluctuation process was analyzed with a telegraph

noise algorithm to extract the dynamics of the length changes (black). The
mean lifetimes were found to be 0.031 s for the fully hybridized state and

0.022 s for the lengthened state.
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sequences is truncated sharply at forces close to 40 pN,
repetitive DNA could serve as a programmable force sensor,
with a threshold force that can be fine tuned by sequence
composition. Adjustable viscoelastic building blocks in
DNA self-assembly structures can be realized with repetitive
sequences.
Furthermore, the relaxation of a large force to a slipping

threshold force fc with a time constant that can be chosen by
length and sequence composition could be used as a length
independent force normal. Conversely, if extended, repeti-
tive double-stranded DNA contracts until the slipping thres-
hold force fc is built up if the initial force is below fc. Therefore,
complementary repetitive single-stranded DNA could be
applied for self-tightening connections in nanostructures. Af-
ter initial hybridization, two single strands tend to maximize
their overlap, i.e., the number of basepairs, until a tension of
the order of the slipping threshold fc is built up. These ad-
justable force-induced tensions at confident locations estab-
lish completely new features in nanoscale structures.
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DNA as a Programmable Viscoelastic Nanoelement

Richard A. Neher and Ulrich Gerland
Arnold Sommerfeld Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians Universität München, Munich, Germany

ABSTRACT The two strands of aDNAmoleculewith a repetitive sequence can pair intomany different basepairing patterns. For
perfectly periodic sequences, early bulk experiments of Pörschke indicate the existence of a sliding process, permitting the rapid
transition between different relative strand positions. Here, we use a detailed theoretical model to study the basepairing dynamics
of periodic and nearly periodic DNA. As suggested by Pörschke, DNA sliding is mediated by basepairing defects (bulge loops),
which can diffuse along the DNA. Moreover, a shear force f on opposite ends of the two strands yields a characteristic dynamic
response: An outward average sliding velocity v; 1/N is induced in a double strand of lengthN, provided f is larger than a thresh-
old fc. Conversely, if the strands are initially misaligned, they realign even against an external force f , fc. These dynamics
effectively result in a viscoelastic behavior of DNAunder shear forces, with properties that are programmable through the choice of
the DNA sequence. We find that a small number of mutations in periodic sequences does not prevent DNA sliding, but introduces
a time delay in the dynamic response. We clarify the mechanism for the time delay and describe it quantitatively within a phe-
nomenological model. Based on our findings, we suggest new dynamical roles for DNA in artificial nanoscale devices. The
basepairing dynamics described here is also relevant for the extension of repetitive sequences inside genomic DNA.

INTRODUCTION

The basic double-helical structure of DNA is insensitive to
the nucleotide sequence, but many of its biophysical proper-
ties are not. For instance, the local thermodynamic stability
of double-stranded DNA (dsDNA) depends strongly on the
sequence (1), and certain sequence motifs can cause per-
manent bends or make DNA more bendable (2). Such local
modulations of the DNA properties play an important role in
molecular biology, e.g., for nucleosome positioning (3) and
transcription regulation through DNA looping (4). The
sequence-dependent stability of DNA basepairing is also
crucial for applications in nanotechnology (5–7). Clearly,
since the thermodynamics of DNA basepairing is sequence-
dependent, the kinetics is sequence-dependent as well. Our
aim here is to show that the kinetics can display a much richer
phenomenology than might be expected on the basis of the
thermodynamics alone.
The dynamics of DNA basepairing can be probed experi-

mentally on the single-molecule level with mechanical and
optical techniques (8–14). One approach is to unzip dsDNA
from one end of the double helix (12,13,15). However, un-
zipping probes only one aspect of the basepairing dynam-
ics—the sequential opening of consecutive basepairs. In a
different approach, a shear force is applied by grabbing the
two strands on opposite ends of the dsDNA (16); see Fig. 1.
For a heterogeneous dsDNA with a random sequence, the
effect of a shear force is to unravel the basepairs from both
ends (16); see Fig. 1 a, which is qualitatively similar to
unzipping. In contrast, with a perfectly periodic sequence,

e.g., (C)N on the upper and (G)N on the lower strand or a
higher-order repeat such as (CA)N and (GT)N, the two strands
can bind in many configurations (17). An applied shear force
then facilitates local strand slippage and can induce macro-
scopic DNA sliding (18); see Fig. 1 b. (Throughout this
article, we use the term ‘‘DNA slippage’’ for microscopic
events where a few bases at the end of the double-strand
unbind and rebind shifted by one or several repeat units.
In contrast, ‘‘DNA sliding’’ refers to an average large-scale
movement of the two strands against each other.)
DNA slippage is an aspect of DNA basepairing dynamics,

which plays an important role in the generation of a class of
genetic diseases (19,20). If local DNA slippage occurs in an
Okazaki fragment during DNA replication, trinucleotide repeats
inside genes can get extended beyond a threshold length for the
onset of Huntington’s and other diseases. Such slippage events
are possible only within the time window that DNA polymerase
needs to fill in the Okazaki fragment. Thus, the kinetics of
strand slippage is an important determinant for the frequency of
repeat extensions.
We propose that the dynamics of periodic and nearly

periodic DNA is interesting also for the design of DNA-based
nanodevices. Indeed, DNA is becoming increasingly popular
as a building block for the assembly of nanoscale structures and
devices (5–7). These applications already exploit the specificity
of the basepairing interaction, e.g., to direct the assembly of
DNA strands into predefined architectures, and the dynamics of
DNA branchmigration, e.g., to replace a boundDNA strand by
a different strand. Below, in Discussion, we consider several
new possible applications of DNA in nanotechnology, based on
the dynamic properties identified in the main part of this article.
Finally, DNA sliding is interesting also from a purely theo-

retical perspective. Since simultaneous slippage of all base-
pairs is kinetically inhibited by an extensive activation barrier,
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the macroscopic sliding of DNA strands is a complex process
involving the dynamics of many local basepairing defects
(17,18). The most likely defects are bulge loops (see Fig. 1 b),
which are created at the ends of the dsDNA, or, in pairs, any-
where along the molecule. Once formed, bulge loops diffuse
freely along a periodic dsDNAuntil they annihilate with a loop
on the opposite strand or are absorbed at an end. Mutations in
the periodicity of the DNA sequence create obstacles for the
diffusion of bulge loops. Effectively, the bulge-loop dynamics
can be regarded as a reaction-diffusion process of particles and
antiparticles in one dimension. DNA shearing experiments
render certain aspects of these dynamics observable and per-
mit a quantitative characterization.
The outline of this article is as follows. First, we describe

our theoretical model for the energetics and dynamics of
DNA basepairing under a shear force. We then show that our
model leads to the following predictions:

1. For periodic dsDNA, the combination of polymermechanics
and basepairing dynamics gives rise to a viscoelastic re-
sponse to shear forces above a threshold fc, where both fc and
the viscosity h are programmable over a wide range through
the DNA sequence. The viscoelastic behavior can be de-
scribed with the help of a mechanical analog model.

2. DNA sliding is possible even when the exact sequence
periodicity is destroyed by a few mutations.

3. The mutations affect the viscoelastic behavior by intro-
ducing a programmable time delay before sliding com-
mences after a sudden force jump.

4. The mechanism for the time delay can be understood
within a phenomenological model, which also permits a
quantitative description of the full distribution of time
delays. Taken together, we find that the sequence depen-
dence of the basepairing dynamics allows us to adjust the
mechanical response of DNA under a shear force over
a broad range of behaviors. In the last section, we discuss
the experimental ramifications of these findings.

DNA MODEL

To study the dynamics of DNA sliding, we consider a DNA
molecule under a shear force f, which can be applied experi-

mentally by pulling the opposite 59 ends (16) or, alterna-
tively, the opposite 39 ends. In a coarse-grained description,
the configuration of the DNA is specified by its basepairing
pattern S and the spatial contours of both strands. A generic
configuration consists of two stretched and two unstretched
single strands, and the central region from the first to the last
basepair (see Fig. 1).
We will not explicitly describe the dynamics of the spatial

polymer degrees of freedom, but assume rapid equilibration
compared to the timescale of DNA sliding. This assump-
tion is justified for short DNA molecules: The timescale
to equilibrate a semiflexible polymer of length L and per-
sistence length lp in a solvent of viscosity h is hL4=72 l2p f ;
where f is an external force applied to its ends (21). For
a DNA of 150 bp (one persistence length) in water at a 10-pN
load, the equilibration time is on the order of 0.01 ms, which
is fast compared to the millisecond timescale of DNA sliding
observed in the reannealing experiments of Pörschke (17).
Hence, we integrate out the contour conformations to obtain
a free-energy function E(S) that depends only on the base-
pairing pattern S. The total free-energy E(S) can be split up
into three terms,

EðSÞ ¼ EstretchðSÞ1EbpðSÞ1EloopðSÞ; (1)

corresponding to the stretching energy, the free-energy gain
due to basepairing, and the free-energy cost of (internal or
bulge) loops in the pattern S, respectively.

Polymer model

The mechanical polymer properties of DNA enter only into
the stretching energy, which we write in the form Estretch(S)¼
$f L(S), with an effective force-dependent total length L(S)
for the stretched DNA, i.e., the two single-stranded ends
where the force is applied and the central DNA segment from
the first to the last basepair (see Fig. 2). The unstretched
single strands do not contribute to the free energy, since we
take all energies relative to the unstretched and unpaired
state, which is the usual convention (1). For the stretched
single strands, we use a freely jointed chain polymer model
with a Kuhn length twice the bare segment length bs % 0.7
nm for a single base (22). With this model, each unbound

FIGURE 1 DNA under a shear force. (a) A non-
periodic sequence unravels from both ends, driven by the

length gain from converting stacked bases into longer

single strands. (b) A periodic DNA sequence can open by

sliding, mediated by bulge loops that are created at the
ends and diffuse freely along the DNA. When a bulge

loop reaches the opposite end, the two strands have effec-

tively slipped against each other by a distance equal to the
loop size.
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base at the ends where the force is applied contributes an
effective length !bbsð f Þ to the total length L(S), where

!bbsð f Þ ¼ $kBT

2f
ln

sinhð2fbs=kBTÞ
2fbs=kBT

! "
(2)

and kBT is the thermal energy. Note that !bbsð f Þ differs from
the average extension of one segment in the direction of the
force. Instead, the average total extension Æxæ of a DNA with
basepairing pattern S is calculated as the force derivative of
the stretching free energy,

Æxæ ¼ @EstretchðSÞ
@f

; (3)

which yields the correct (Langevin) form for the extension of
a freely jointed chain. For the central DNA region from the
first to the last basepair, we assume a B-DNA conformation
and use a wormlike-chain model with persistence length lp¼
50 nm and a contour length of bd ¼ 0.34 nm per base. (The
length of an asymmetric loop in the central region is appro-
ximated by counting only the bases in the shorter arm of the
loop.) For the forces of interest here, the effective length of a
basepair, !bbdðf Þ, is given by the asymptotic formula

!bbdðf Þ ¼ bd 1$

ffiffiffiffiffiffiffiffi
kBT

4flp

s !

: (4)

The force-dependence of the lengths !bbsð f Þ, !bbdð f Þ is, in fact,
essential only for our calculation of the viscoelastic response.
For all other properties considered below, the force-dependence
has no qualitative effect, and will hence be neglected (i.e.,
!bbsð f Þ ¼ bs, !bbdð f Þ ¼ bd everywhere except in Viscoelastic
Behavior).

Basepairing energy model

To obtain a compact theoretical description, we use a base-
pairing energy model which is simplified from the nearest-
neighbor model of SantaLucia (1), but nevertheless permits

semiquantitative predictions. We exclude basepairs within
a strand, and assign a binding (free) energy eðkÞb .0 for each
basepair of type k (Watson-Crick or other) between strands
(see Fig. 2). Hence, EbpðSÞ ¼ $SknkðSÞeðkÞb , where nk(S) is
the total number of type k basepairs in the basepairing pattern
S. Similarly, we assign a loop initiation cost e‘ . 0 for each
internal or bulge loop in a given pattern (we neglect an addi-
tional length-dependent loop cost, which has no qualitative
effect on the results discussed below). Therefore, Eloop(S) ¼
q(S)e‘, where q(S) is the total number of loops in the pattern.
The numerical values of the free-energy parameters eðkÞb and
e‘ are temperature-dependent (1). The actual values used in
our simulations are given below.

Elementary kinetic steps

We support our phenomenological theory presented below
by simulating the DNA basepairing dynamics in detail. To
this end, we use a kinetic Monte Carlo scheme with three
single base moves as elementary steps (23): basepair opening,
basepair closing, and basepair slippage. Here, basepair slip-
page refers to a local shift of the binding partner of a base,
which is possible only for basepairs next to unbound bases,
i.e., inside loops or at the ends of the molecule. Clearly,
basepair slippage can also be generated by a basepair opening
move followed by a basepair closing move. However, the
work of Pörschke (17) indicates that basepair slippage is faster
than would be expected from the individual rates for basepair
opening and closing (see below). Hence, we include the base-
pair slippage move, as has been done previously (23).

Kinetic rates

To fully specify our model for the DNA basepairing
dynamics, we need to assign a rate to each elementary kinetic
step. Careful relaxation experiments (24) determined the
rate for basepair closing at the end of helical segments to be
1–20 3 106 s$1, where the range indicates the experimen-
tal uncertainty. In our model, we assume that this rate is
independent of the identity of the basepair. To reproduce
the correct equilibrium behavior from our basepairing dy-
namics, the rate for opening a basepair of type k at the end
of a helix must be reduced by a factor expð$eðkÞb =kBTÞ with
respect to the closing rate. From reannealing experiments
with periodic sequences, Pörschke (17) estimated the rate for
the displacement of a bulge loop by one base, i.e., the rate
for basepair slippage, to be;53 106 s$1. Hence, the rates for
basepair closing and basepair slippage are approximately
equal, within experimental accuracy. In our model, we set
them exactly equal, for simplicity (our main results are, in
fact, insensitive to the precise value of the closing rate; see
below). In general terms, our model assumes that all kinetic
rates of passing from a higher energy configuration to one
with lower energy are the same, whereas the reverse rates are
chosen to obey detailed balance. It may be noteworthy that

FIGURE 2 DNA free-energy model. The free energy E(S) of a basepairing
pattern S contains three separate contributions: first, a negative binding

energy for basepairing. For simplicity, we assign the same binding energy
eðkÞb for every basepair of type k, regardless of the neighboring bases. Second,
a positive free energy cost for internal and bulge loops. We assign the same

cost e‘ for every loop, regardless of its length and base sequence, since the
detailed choice of the loop cost function does not affect our main findings.

Third, a stretching energy. For a given pattern S, the stretching energy can be
written in the form $f L(S), with an effective length L(S), which is obtained
from force-dependent base-to-base distances !bbdðf Þ and !bbsðf Þ for double and
single strands, respectively. Note that L(S) does not correspond to the

physical length of the DNA molecule (see main text).

3848 Neher and Gerland

Biophysical Journal 89(6) 3846–3855



recent theoretical work on the kinetics of force-induced RNA
unfolding, which used similar assumptions, produced sur-
prisingly good agreement with experiment (25).
Below, we report all of our kinetic simulation data in units

of Monte Carlo steps. From Pörschke (17), our best estimate
for the real-time equivalent of oneMonte Carlo step is 0.2ms.
However, it should be kept in mind that this estimate beares
a large uncertainty.

SLIDING DYNAMICS OF PERIODIC SEQUENCES

The simplest periodic sequence is a repetition of one base on
one strand, e.g., AAA. . ., and the complementary base on the
other. In this case, we have only basepairs of one type (i.e.,
eðkÞb [ eb in our model) and each base on one strand can bind
to any base on the other strand. For longer repeat units, e.g.,
triplet repeats such as CAGCAG. . ., which play an important
role in genetic diseases (19), one can treat a repeat unit as an
effective base with larger associated energies eb, e‘ and
lengths bd, bs. We are interested in the basepairing dynamics
induced by a constant shear force f that is suddenly turned on
at t ¼ 0. In the following, we first review the physical
description of DNA sliding dynamics, which we have
established already in Neher and Gerland (18). We then
construct a mechanical analog model to characterize the
viscoelastic response of periodic DNA and its sequence-
dependence.

Quantitative phenomenological description

As illustrated in Fig. 1 b, sliding of periodic dsDNA is
mediated by the creation, diffusion, and annihilation of bulge
loops. When a force is applied, the diffusion of bulge loops
within the dsDNA remains unbiased, assuming the force
does not deform the dsDNA structure significantly (this as-
sumption clearly breaks down for forces above the B-S
transition around 65 pN). In contrast, the force strongly
affects the rates at which bulge loops are created at the ends.
When the two DNA strands are misaligned, these creation
rates are imbalanced, since a bulge at an overhanging end does
not reduce the number of basepairs in the structure (although
it does on the opposite end). This imbalance produces a restor-
ing force fc, which can be obtained approximately (18) by
balancing the energy cost of breaking a basepair with the gain
in stretching energy, eb ¼ f3ð2 !bbsð f Þ $ !bbdð f ÞÞ. The restor-
ing force creates an average inward drift that realigns the two
strands. To obtain an outward drift velocity v, i.e., macro-
scopic sliding, one needs to overcome the restoring force fc, so
that v ; ( f – fc) in the vicinity of fc. Indeed, fc becomes a
critical force in the thermodynamic sense when the limit of
a large strand length N is taken and the state where the strands
are completely separated is excluded.
At the critical force, the rates at which bulge loops are

produced are equally large on the overhanging stretched and
the unstretched ends. The average sliding velocity v van-

ishes; however, the bulge-loop dynamics still leads to a
macroscopic diffusion of the two strands relative to each
other, with a diffusion coefficient D. Interestingly, this dif-
fusion coefficient scales with the total number of bases as D
; 1/N, so that the rupture-time t required to separate the two
strands completely scales as t ; N3 instead of the usual t ;
N2 for diffusion of a particle over a distance N. This scaling
of D is due to the fact that loops are generated at the ends
with a constant rate, but only result in a global shift between
the strands, if they diffuse over a distance;N, either to anni-
hilate at the other end or with a loop on the opposite strand.
In both cases, the probability for an event scales as 1/N. The
D; 1/N scaling occurs also in the reptation problem of poly-
mer physics, and indeed the microscopic origin is closely
related, as motion is mediated by defect diffusion (26).
Since the production of a loop on the stretched ends shortens

the molecule, the corresponding production rate decreases with
f. Hence, the rates of events extending or shortening the double-
stranded region, that are equal for f ¼ fc, differ at other forces
resulting in a drift. Each of these rates, and consequently the
sliding velocity v as well, is proportional to 1/N. From the
Einstein relation, one expects v; (f – fc)D; 1/N, in agreement
with this result. With the negative (inward) drift velocity below
fc, rupture events are driven by rare fluctuations, and the
rupture-time t grows exponentially with N, as is characteristic
for thermally activated transport over an extensive energy
barrier. On the other hand, for forces larger than fc, the N$1

scaling of v leads to rupture times increasing as t ; N2.
This scaling holds up to a force f*, above which the

rupture times grow only linearly with N, due to a dynamical
transition in the opening mode from sliding to unraveling
(i.e., the opening mode of heterogeneous dsDNA). For
f . f*, it is energetically favorable to break basepairs con-
secutively from both ends and both strands are separated
after breaking N basepairs. Within our model, f* is well ap-
proximated by the solution of f ¼ eb=½!bbsð f Þ $ !bbdð f Þ'—i.e.,
the balance between the basepairing energy and the stretching
energy gained by extending the molecule by the difference
between the length of an unbound base and a basepair. (For
DNA sequences where this force is large enough to deform
the DNA structure, in particular for f* above the ;65 pN of
the B-S transition, the unraveling mode may not exist.)

Viscoelastic behavior

DNA sliding can be regarded as a viscous flow of the two
strands relative to each other. According to the physical
picture reviewed above, this flow has interesting nonlinear
and sequence-dependent properties. Since the shear force
also elicits an elastic response (due to the entropic elasticity
of DNA), the behavior of periodic dsDNA is reminiscent of
a viscoelastic material. Such materials combine solidlike and
fluidlike mechanical properties when probed by external
stress. In the following, we examine this analogy more
closely.
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The mechanical behavior of a typical viscoelastic material
can be described by a Zener model (27), which is con-
structed, e.g., by connecting a Kelvin element (a dashpot in
parallel with a spring) in series with a spring (see Fig. 3). The
Zener model reproduces the two prominent characteristics of
viscoelastic materials:

1. In a creep experiment, where a constant stress is suddenly
applied, an instantaneous elastic strain is followed by a
gradual creep toward a new equilibrium.

2. When the strain is suddenly increased, the stress rises
sharply and then relaxes gradually to an equilibrium
value.

On a qualitative level, periodic dsDNA displays these same
characteristics in its average behavior:

1. Upon sudden application of a constant force f in the range
fc , f, f*, the DNA rapidly stretches against its entropic
elasticity and slowly creeps with a viscosity h that is
proportional to the number of bases in the double strand.
However, it will not approach a new equilibrium, but
eventually rupture.

2. When the extension of the DNA is suddenly increased,
the tension rapidly rises and then slowly relaxes to the
critical value fc (provided the initial rise was above fc).

The viscoelastic behavior of periodic DNA can be described
by a nonlinear generalization of the Zener model (see Fig.
3 b), where the Kelvin element effectively describes the
basepairing dynamics, while the outer elastic element
accounts for the entropic elasticity of the polymer backbone
(consisting of dsDNA, single-stranded DNA, i.e., ssDNA,
and, if present, linkers to the points of force application).
Since the basepairing dynamics of two misaligned comple-
mentary periodic DNA strands produces a restoring force fc,
the sliding velocity v is proportional to f – fc. The sliding
dynamics is thus described by a dashpot in parallel with

a potential generating the restoring force and preventing
contraction beyond maximal overlap. In contrast to the
standard Zener model with harmonic springs, the stress in
response to a strain will relax to the value fc, independent of
the displacement (within a certain range). Fig. 3 a shows
extension-time-traces obtained from our model, both for
a periodic (bottom panel) and a heterogeneous DNA (center
panel); see Fig. 3 legend for parameters. Here, we have
considered a creep test situation where the force is switched
periodically between fmin , fc and fmax . fc (top panel). Fig.
3 c shows the corresponding behavior of the generalized
Zener model for comparison. We observe that the average
behavior of the periodic DNA resembles that of the
generalized Zener model, whereas the heterogeneous DNA
shows only elastic behavior. Of course the extension also
displays strong thermal fluctuations, which play an important
role in single-molecule dynamics, and ultimately lead to
rupture even below the critical force (18).

Programmability

The viscoelastic behavior described above relies on the
basepairing dynamics within the DNA molecule, and is
manifestly sequence-dependent. This fact makes the me-
chanical behavior of dsDNA under shear-force program-
mable, i.e., both the force offset fc and the viscosity h can be
adjusted through sequence composition and length of the
dsDNA. Even for perfectly periodic sequences, there is still
a considerable freedom in the choice of the sequence
composition, since a repeat unit can be several bases long
and involve different combinations of Watson-Crick and
other basepairs. Exploiting this freedom, the range over
which the average basepairing energy eb can be programmed
is ;0.5–4 kBT (1), which translates into an equally wide
range of force offsets fc ¼ eb=ð2 !bbs $ !bbdÞ. (The precise
experimental range of the force offset is difficult to predict,

FIGURE 3 Viscoelastic response of periodic DNA. (a)
The shear force on an 80-bp dsDNA (with two 20-bp

ssDNA linkers) is switched periodically between fmin ¼
11.4 pN and fmax ¼ 19 pN (upper panel). The center and
bottom panels show the extension-time-trace for hetero-
geneous and periodic DNA, respectively (energy param-

eters: eb ¼ 1.11 kBT and e‘ ¼ 2.8 kBT, roughly

corresponding to AT basepairs at 50"C (18)). The time

units are Monte Carlo steps, the real-time equivalent of
which is discussed in Kinetic Rates (see article). The

heterogeneous DNA responds only elastically to the force

jumps, mostly due to stretching of the linkers. The length
of the periodic DNA shows a similar elastic strain, but in

addition, the molecule elongates at a finite speed due to

sliding, since fmax . fc ¼ 16.3 pN. When the molecule is

relaxed, we find an elastic response and inward sliding,
since fmin, fc. The length of the periodic DNA fluctuates strongly due to loop formation and annihilation. (b) The viscoelastic behavior displayed by a periodic
DNA molecule can be described by a generalized Zener model, where harmonic springs are substituted by anharmonic elastic elements describing polymer
elasticity and the restoring force fc. The ideal dashpot (with viscosity h) creates the viscous behavior of periodic dsDNA. (c) The response of the above

idealized model to the same periodic force resembles the average response of periodic DNA.
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since it depends sensitively on the effective ssDNA and
dsDNA length. Roughly, we expect values of up to 30 pN.)
The velocity of macroscopic strand sliding is determined

by four factors: 1), the mobility of defects, i.e., the rate for
bulge-loop displacement; 2), the bulge-loop density; 3), the
inverse strand length; and 4), the deviation of the force f from
the critical force fc. The defect density depends sensitively on
the basepairing free energy and may vary roughly between
0.001 and 0.2 for different repeat lengths and temperatures,
leaving great freedom to adjust the timescale of DNA
sliding. Note that since only the bulge-loop density and not
the individual rates for basepair closing and opening influence
the sliding velocity, the rate for bulge-loop displacement
is the only crucial rate parameter in our model. By increasing
the strand length, the sliding velocity can be made arbitrarily
small, or, equivalently, the viscosity h can be made arbi-
trarily large (h ; N). Alternatively, h is increased by using
longer repeat units, since h grows exponentially with the free
energy cost of creating a bulge loop. An order-of-magnitude
estimate for the lower bound on h yields;10$3 pN3 s/nm,
based on reannealing experiments with homogeneous
oligonucleotides of 10 bps (the reannealing experiments of
Pörschke (17) suggest that a misaligned 10-bp molecule can
slide by one basepair within 0.1 ms; assuming that the sliding
velocity extends linearly from fc ;10 pN to force zero, one
obtains the estimate h ;3 3 10$3 pN 3 s/nm). With these
force- and timescales, DNA sliding should be well observ-
able in single-molecule experiments.

PERIODIC DNA WITH WEAK
SEQUENCE DISORDER

How is the basepairing dynamics affected when a few muta-
tions destroy the perfect periodicity? Fig. 4 (top) shows two
simulated extension-time-traces, one for a perfectly periodic
sequence and one with M ¼ 7 equidistant mutations (DNA
parameters; see Fig. 4’s legend). Here, we assigned the same
binding energy to mutated and original basepairs, to focus on
the effects that mutations exert on the basepairing dynamics
rather than the energetics. Furthermore, we assumed that
mutated bases can only bind to their ground-state binding
partners, i.e., mutated bases cannot form basepairs with the
original bases and all mutations are of a different type. The
less generic effects that can result without these assumptions
are discussed below.
We observe that the mutations have a drastic effect:

whereas the original sequence begins to slide almost imme-
diately after application of the force, the mutated sequence
exhibits a pronounced delay before sliding sets in. Indeed,
the figure suggests that the mutated sequence has two char-
acteristic timescales: a waiting time tw, during which the
extension fluctuates around a constant value; and a sliding
time ts, during which the extension increases until the two
strands are completely separated. Another, less drastic effect
of the mutations is to reduce ts; i.e., once sliding starts, it is

faster than without mutations. Note that the convex shape of
both sliding curves is due to the fact that the sliding velocity
increases as the length of the double-stranded region de-
creases, v ; h$1 ; N$1 (see above).
What is the physical mechanism that sets the waiting

timescale (tw)? Clearly, sliding can begin only after all mutated
basepairs have been broken, since otherwise the two strands
are locked into one relative position. Arguably the simplest
scenario would be that all mutations independently fluctuate
between the open and closed states, and sliding commences
when all mutations happen to be open simultaneously.
Alternatively, the dynamics of the mutated basepairs could
be correlated. To clarify the dynamical mechanism, we plotted
the binding state (bound/unbound) of all mutated basepairs
alongside the trajectories in Fig. 4 (bottom, shaded curves). It is
evident that the mutations do not open independently. Instead,
interior mutations open only once the neighboring mutation
toward the exterior has already opened.

The two-random-walkers model

Inspection of Fig. 4 (bottom) suggests that the positions of
the two outermost-bound mutations might, in fact, perform

FIGURE 4 (Top) Extension-time-trace for a perfectly periodic DNA of

N ¼ 120 basepairs and the same DNA with seven mutations, both under

a shear force of f ¼ 12.7 pN (energy parameters as in Fig. 3). Whereas the

molecule without mutations starts sliding almost immediately, the molecule
with mutations fluctuates about its initial length for some time tw before

sliding starts. (Bottom) The time-trace of the binding state (open/closed) for

the seven mutated basepairs in the sequence. Each mutated basepair (1–7) is
unbound wherever the corresponding thick horizontal line is broken, and

bound where the line is shown. Note that the mutated basepairs do not open/

close independently from each other. Instead, a mutated basepair opens only

once all mutated basepairs to the left or right are already open. The black
envelope curves emphasize the positions of the outermost bound mutation

on each side. Their dynamics resembles a (biased) random walk. Sliding

begins when all mutations are open.
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a (biased) random walk (see the black curves in Fig. 4). If
true, the waiting time tw could be interpreted as the first
collision time tc of two random walkers (2RW) on a row of
M 1 1 discrete sites, with force-dependent in- and outward
hopping rates kin and kout. To test this hypothesis, we
compare the histogram of tw values (from many simulations)
with the distribution P(tc) of first collision times for 2RW.
Fig. 5 shows three such histograms (main panel and two
insets) obtained with the same DNA parameters as in Fig. 3,
but with three different forces. Superimposed are the dis-
tributions P(tc), calculated as described below and in Sup-
plementary Material. The case shown in the main panel of
Fig. 5 corresponds to a force value for which the 2RW are
unbiased—i.e., kin ¼ kout—whereas the left inset corre-
sponds to a smaller force producing a bias to the outside
(kout . kin) and the right inset shows the opposite case of a
larger force and kout , kin. In all three cases, the observed
histogram is well described by the 2RW model. Indeed,
despite some caveats (see below), this model can serve as a
useful coarse-grained description for the basepairing dy-
namics preceding the sliding stage.

The calculation of the first collision time distribution P(tc)
belongs to the class of first-passage problems, which has
been studied extensively in statistical physics (28). In the
context of the helix-coil transition, Schwarz and Poland (29)
(see also (30)) already solved the associated diffusion prob-
lem. Here, we use their work as a basis to treat the first-
passage problem. One can replace the problem of 2RW in one
dimension by the equivalent problem of one RW on a two-
dimensional lattice with a triangular shape (see Fig. 6). In the
following, the unbiased case (kin ¼ kout [ k) is of particular
interest. In this case, there is only the single rate constant k,
which can be absorbed in the unit of time, so that the
distribution P(tc) depends only on the number of lattice points
(i.e., the number of mutations). However, in the limit of large
M this dependence also disappears, if we use the rescaled
collision time t̃c ¼ tck=M2. The resulting parameter-free
distribution can be expressed in the form (see Supplementary
Material) of

Pðt̃cÞ ¼ $16

p2

@

@t
½QðtÞ'2jt¼t̃c

; (5)

where Q(t) is the rapidly converging series

QðtÞ ¼ +
N

n¼1

ð$1Þn

2n$ 1
exp $p2

2
ð2n$ 1Þ2t

! "
: (6)

This distribution is plotted as the solid line in the main panel
of Fig. 5. Even when M is small, it is a good approximation
to the actual distribution, as illustrated by the dashed line in
Fig. 5 showing the exact distribution for the case of M ¼ 7.
In the case of biased RW (kin 6¼ kout), we compute P(tc)

numerically. The dashed curves in the insets of Fig. 5 show
these distributions forM¼ 7 mutations, where we have used
the rates kin, kout as fit parameters.

Scaling of mean waiting time

In the 2RW model, the mean first collision time follows the
diffusive behavior tc ; M2 when the RW are unbiased (see
above). When the walkers have an inward bias, this changes
to linear scaling tc ; M, whereas tc increases exponentially
withM for an outward bias (see Supplementary Material). To
test these predictions of the 2RW model, we determined the

FIGURE 5 Waiting time distributions. (Main panel) The histogram of

waiting times tw of a 120-bp-long DNA sequence with M ¼ 7 equidistant
mutations subject to a force f ¼ f̃c ¼ 12:9pN; is well described by the

distribution of collision times (dashed line) of the two-random-walker model

(see main text and Fig. 6). The solid line shows the parameter-free asymptotic

distribution of Eq. 5 for comparison. (Insets) Distribution of tw for forces
above and below f̃c (f ¼ 15.2 pN and f ¼ 11.4 pN, respectively). The dashed

lines are fits using the RW model with directional bias (see main text).

FIGURE 6 On a coarse-grained level, the dynamics of
mutation opening/closing can be described by a model

of two particles hopping on a one-dimensional lattice, with

inward/outward hopping rates kin, kout. Their positions

represent the two outermost closed mutations. When the
particles collide, all mutations have opened. Equivalently,

one can consider a single particle hopping on a triangular

two-dimensional lattice. The first collision time then cor-
responds to the time to reach the diagonal absorbing

boundary.
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mean waiting time Ætwæ for different M and different forces f
from our DNA simulations. Fig. 7 a shows Ætwæ as a function
ofM (on a double logarithmic scale) for the same three force
values as in Fig. 5. Here, we increased the total DNA length
N proportional to M, to keep the mutation density constant
and equal to that of Fig. 5. At the smallest force, the waiting
time increases exponentially with M, as expected. At the
intermediate force, corresponding to the case of unbiased
walkers, we find a scaling Ætwæ;Mz with z % 2.4, while z %
1.5 for the largest force. We expect that the values of these
exponents are strongly influenced by finite size effects, since
we can vary M only over roughly one decade. However, our
results indicate that the waiting times increase more rapidly
with the system size than expected on the grounds of our
phenomenological 2RW model. A possible explanation is
given in Microscopic Mechanism, below.
How does the mean waiting time depend on the applied

force? Fig. 7 b shows three curves of Ætwæ versus f for

different mutation densities. The vertical dashed lines indi-
cate the force value where kin ¼ kout for each curve. Below
these values, Ætwæ increases sharply with decreasing force.
Indeed, it is reasonable to consider the force f̃c where kin ¼
kout as a generalization of the critical force fc to the case
of weakly disordered sequences. As explained in Supple-
mentary Material, the rates kin, kout can be extracted in
several different ways from the simulation data, leading to f̃c
values which are mutually compatible.
Fig. 7 c summarizes the different dynamical regimes as

a function of the applied force f and the mutation density n.
Without mutations (n ¼ 0) the force axis is divided into three
regimes, with rupture driven by rare fluctuations, continuous
sliding, and unraveling at low, intermediate, and large forces,
respectively. As mutations are introduced (n . 0), the
boundary f̃cðnÞ between the fluctuation-driven Kramer’s
regime and the sliding regime rises to larger forces, and the
sliding regime acquires the time delay of Fig. 4 as a new
feature. It is clear from Fig. 7 c that the force interval dis-
playing sliding behavior becomes narrower as the mutation
density is increased. This trend can be understood within a
more microscopic picture (see below). We could not deter-
mine unambiguously whether the sliding regime vanishes
completely already at a finite mutation density. However, it
is clear that sliding will, in practice, be unobservable for
sequences with many mutations. The qualitative features
depicted in Fig. 7 c are robust against variations in our micro-
scopic parameters eb, e‘, !bbsðf Þ, and !bbdðf Þ. However, the posi-
tions of the boundaries between the different regimes depend
on these parameters (see below).

Microscopic mechanism

Why does the mutation dynamics of Fig. 4 (bottom) resemble
the behavior of two random walkers? First, the opening of
a mutation (and subsequent local shift of the two strands
against each other) is always associated with the formation of
two permanent loops (see Fig. 6, left). Hence, the opening of
mutations is energetically expensive and mutations remain
mostly closed, as long as this cost is not compensated by any
gain in entropy or stretching energy. Since there is no such
gain when an interior mutation opens, mutations can only
open beginning from the ends toward the inside: loops are
constantly created at the ends of both strands and propagate
inwards until they hit a mutation, which forms a barrier to
bulge-loop diffusion. On the unstretched strand, loops are
generated at a higher rate than on the stretched strand, re-
sulting in a larger quasi-equilibrium loop density (18). When
the outermost bound mutation opens spontaneously, the ac-
cumulated loops on the exterior unstretched strand can sud-
denly penetrate to the inside. This penetration results in an
entropy gain and a relative shift of the mutated bases, which
prevents immediate recombination (see Fig. S10 in Supple-
mentary Material). The size of the entropy gain and the shift

FIGURE 7 (a) The mean waiting time Ætwæ as a function of the system

size (the mutation density of n ¼ 1/15 is kept fixed as the number of evenly
spaced mutations M is increased). At low forces the scaling is exponential

(circles, data for f ¼ 11.4 pN; solid line, exponential fit), while we find

power-law behavior at the force threshold (f̃c¼ 12.9 pN, squares) and above
(f ¼ 15.2 pN, diamonds). (b) The mean waiting time as a function of

the applied force for a sequence of N ¼ 240 bp with 5, 9, and 15 mutations.

The dashed lines indicate the threshold force f̃c for each case. Below the

threshold, Ætwæ rises sharply. (c) Different regimes of the DNA dynamics in
the parameter space (f, n). The Kramers regime (DNA rupture becomes

exponentially slow with increasing system size) is separated from the

(delayed) sliding regime by the line f̃cðnÞ where the inward and outward

hopping rates are equal, kin ¼ kout (circles, data; solid line, interpolation). At
forces larger than f*, the molecule dissociates by unraveling from both ends.
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increases with the distance to the next mutation. Therefore,
the mutation density, not the absolute number, is the relevant
parameter that determines the relative magnitude of the
hopping rates kin and kout in the random-walker model, and
hence fixes the value of the force threshold f̃c.
We now discuss how parameter changes affect the

location of the boundaries between the different dynami-
cal regimes in Fig. 7 c. First, it is clear that increasing the
basepairing energy eb, will shift both force thresholds, fc
and f*, toward higher forces. Furthermore, from the above
microscopic picture, it follows that the inward hopping rate
kin is proportional to the average loop density, while the
outward hopping rate kout decreases with the loop density.
The average loop density, in turn, is affected by our energy
parameters: with increasing eb, e‘, the average loop density
decreases, and consequently the boundary f̃cðnÞ is shifted
toward lower mutation densities, i.e., the sliding regime be-
comes more sensitive to mutations (this tendency is enhanced
by the rising energetic cost for opening a mutation).
So far, we considered only mutations with binding energy

equal to the original bases. Dropping this restriction leads to
a sloped boundary f*(n) between the sliding and unraveling
regimes, and also affects the slope of f̃cðnÞ. Furthermore, we
assumed above that all mutations are of a different type and
bind only to their native binding partner. Without this as-
sumption, bases belonging to different mutated basepairs can
bind on encounter during the sliding phase. These basepairs
have to be opened in the same way as during the waiting
phase preceding sliding. When mutations are equidistant,
this effect becomes particularly strong, leading to additional
intervals of constant length, i.e., plateaus in the extension
versus time-trace. Another important effect, caused both
by variable spacing and energies of mutations, is that the
hopping rates kin and kout become site-dependent, so that the
random walks are effectively on a rugged-energy landscape
(31,32).
Finally, we stress that the 2RWmodel is phenomenological

and fails to describe certain features of the DNA dynamics.
(For instance, our simple description has neglected cor-
relations between subsequent hopping steps of an RW; see
Supplementary Material.) Short-range correlations do not
affect the long-time behavior, which may explain why our
model describes the shape of the waiting-time distribution
accurately (see Fig. 5). A more drastic approximation is that
the 2RWmodel does not account for the time required to bring
in new loops from the ends to a mutation deep inside the
dsDNA. The fact that this time increases with the length of the
DNA may be the cause for the waiting time to rise more
rapidly with the system size than expected from the 2RW
model (see Fig. 7).

CONCLUSIONS AND OUTLOOK

The basepairing dynamics in DNA and RNA molecules is
only beginning to be explored. Here, we have shown that

even the seemingly simple case of periodic DNA sequences
displays rich behavior, which can be revealed by applying a
shear force. Our main finding is that the microscopic dy-
namics of bulge-loop defects endows DNA with viscoelastic
properties, which can be programmed into the sequence.
Weak sequence disorder does not abolish these properties,
but 1), introduces a delay, since all mutations have to be
broken before DNA sliding begins, and 2), effectively
narrows the viscoelastic force regime. The dynamics of
mutation breaking is an interesting stochastic process, with
main features that can be understood by considering a first-
passage problem of two random walkers. Our theoretical
study has led to several experimental ramifications. For
instance, we predict that periodic or nearly periodic DNA
responds to sudden stress by slowly relaxing its tension to a
threshold value independent of the initial stress (provided the
DNA is not too short). This stress relaxation process cannot
occur for heterogeneous DNA. Furthermore, we predict that
the relaxation velocity is inversely proportional to the DNA
length, so that the timescale of the dynamics can be easily
adjusted into the range of interest for a given experimental
setup. We expect the existence of the different dynamical
regimes shown in Fig. 7 c to be independent of our detailed
model assumptions. As DNA slippage is directly linked to
the production rate and mobility of bulge loops, single-
molecule experiments on DNA sliding would test our basic
understanding of basepairing dynamics in DNA.
The same properties, which make DNA uniquely suited

for reliably storing genetic information while keeping it
accessible, permit many applications in nanotechnology (5).
For instance, dsDNA has been used as a reversible cross-
linker in polymer networks to switch between different
mechanical properties (7), and even DNA-only networks
with specified topologies can be constructed, exploiting
the specificity of the basepairing interaction (5). In other
applications, short dsDNA molecules served as programma-
ble force sensors (6) using the sequence-dependence of the
mechanical rupture force, or DNA-based nanomachines
were constructed on the basis of the DNA branch migration
mechanism (33). Our results render several new applications
for DNA in nanotechnology conceivable. For instance, com-
plementary periodic ssDNAs could be used as self-tightening
connections in nanostructures: once two such strands found
each other, they will slide to maximize their overlap until the
tension reaches a value fc. Periodic or nearly periodic DNA
could also serve as a viscoelastic crosslinker in polymer
networks, which should lead to different material properties
from those observed in Lin et al. (7). Similarly, DNA net-
works could also be endowed with viscoelastic properties,
and (nearly) periodic DNA might even be useful as a pro-
grammable reference molecule for kinetic measurements. Of
course, which of these and other possible applications will
turn out to be useful in the end is unclear at the present stage.
However, we feel that there is a clear potential that should be
explored.
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2.10.1. Supplementary Material to Biophys. J., 89, p. 3846.

Waiting Time Distributions

Two Random Walker Model We consider two random walkers in one dimension con-
fined by two reflecting boundaries M +1 sites apart. Since we want to model the process
of mutation opening preceding the sliding stage, we seek the distribution of times until
encounter of both walkers, given they started at opposite boundaries. Their motion is
equivalent to the motion of one walker on a triangular piece of the two dimensional square
lattice. The 2D walker on site (m,n) corresponds the state, where the left 1D walker is
m steps from the left boundary and the right 1D walker n steps from the right boundary
(see Fig. 3, main text). The 2D walker is reflected at the lines m = 0 and n = 0. The line,
where both coordinates add up to M − 1 corresponds to the cases, when both walkers in
1D meet and is therefore an absorbing boundary for the 2D walker.
The case, where the rates, at which the walker moves away and towards a boundary (kin

and kout) are independent of the site, has been solved by Schwarz and Poland [74] using
the methods of image charges.
The quantity we are interested in is the distribution of the time of the first encounter of
the two random walkers in 1D, or equivalently the lifetime distribution P (τ) of the random
walker on the triangle. A walker sitting on any site (m, n) with m = M − 2 − n can hop
on two absorbing sites with rate kin. The distribution of τ is therefore given by

P (τ) = 2kin

M−2∑
n=0

P(n, M−2−n; τ), (2.6)

where P(n, m; τ) is the probability of finding the walker on site (n, m) at time τ , given it
started at site (0, 0). In the following we derive approximations of the solution by Schwarz
and Poland.

Unbiased Hopping When the walker has no bias, e.g. kin = kout = k, P(n, m; τ) is given
by a sum of 4M2 terms. The solution by Schwarz and Poland can be rearranged to

P(n, m; τ̃) =
1

M2

2M∑
r,s=1

e−2τ̃M2(2−cos πr
M
−cos πs

M )(1− (−1)r+s)

cos
π(2n + 1)r

2M
cos

πr

2M
cos

π(2m + 1)s

2M
cos

πs

2M
,

(2.7)

where the time variable has been rescaled as τ = τ̃M2/k. Only terms, where the argument
of the cosines in the exponent are close to 0 or 2π, contribute significantly when τ̃ > 1/M2.
After shifting the summation interval to r, s = −M . . .M−1, significant terms are those
the r, s close to 0. We can expand cosines with arguments πr

M
or πs

M
and keep only the first

non-vanishing contribution.

P(n, m; τ̃) ≈ 1

M2

∞∑
r,s=−∞

e−τ̃π2(r2+s2))(1− (−1)r+s) cos
π(2n + 1)r

2M
cos

π(2m + 1)s

2M
. (2.8)
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Figure 2.6: The lifetime distributions for M = 3, 5, 10 and the approximation for large M . The
time axis is rescaled by M2.

The range of summation can be safely extended to ±∞, as terms with big r, s are exponen-
tially small. Plugging this approximation into Eq. (2.6) yields, after some algebra, using
similar approximations as above,

P (τ̃) ≈ 2

M2

∞∑
r,s=−∞

e−
τ̃π2

M2 (r2+s2)) (1− (−1)r+s)(r2 + s2)

r2 − s2
(2.9)

Since only those terms with odd r + s contribute, we change the summation variables to
2v = r + s− 1 and 2w = r − s− 1.

P (τ̃) ≈ 4

M2

∞∑
v=−∞

e−
τ̃π2

2
(2v−1)2 (−1)v

2v − 1

∞∑
w=−∞

e−
τ̃π2

2
(2w−1)2(−1)w(2w − 1) (2.10)

From this expression, we find a parameter-free lifetime distribution

P̃ (τ̃) = M2P (τ̃) = −16

π2

∂

∂τ̃
Q(τ̃)2, (2.11)

where Q(τ̃) is given by

Q(τ̃) =
∞∑

n=1

(−1)ne−
π2(2n−1)2τ̃

2

2n− 1
(2.12)

The approximations involved are justified for large M . However, even for small systems
the agreement is excellent, as illustrated in Fig. 2.6.

Biased Hopping When the rates kin and kout are different, there is no compact analytical
expression for P(n, m; t). However, the longterm behaviour of a such a biased random
walker is easily understood. If kin is bigger than kout, the walker approaches the absorbing
boundary steadily. In the opposite case, the walker will stay close to the origin and only
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rare excursions will lead to absorption. Quantitatively, the hopping of the random walker
on the triangle is well approximated by suitably chosen one-dimensional representation.
To that end, we consider the probability to find the walker on the line ν steps away from
the origin.

P (ν; τ) =
ν∑

m=0

P(m, ν−m; τ) (2.13)

This amounts to projecting the motion of the random walker onto the symmetry axis of the
triangle. The time derivative of this quantity is very similar to a one dimensional hopping
process.

∂τP (ν; τ) = −2(kin + k−)P (ν; τ) + 2kinP (ν−1; τ) + 2koutP (ν+1; τ)

+ kout [P(0, ν; τ) + P(ν, 0; τ)− P(0, ν+1; τ)− P(ν+1, 0; τ)]
(2.14)

The contributions from the boundary terms in the second line depend on the ratio of
kin and kout. When kin � kout the walker rapidly approaches the absorbing boundary.
The probability P(0, ν; τ) of finding the walker on the reflecting boundary is small, as it
is unlikely to make equally many steps with high rate and a low rate. In this case the
boundary terms can be neglected entirely, so that the process reduces entirely to a 1D first
passage problem. Using standard methods described in ref. [87], one finds, that the mean
first passage time

〈τ〉 =
M − 1

2kin − 2kout

− kout

1−
(

kout

kin

)M−1

2(kin − kout)2
, (2.15)

increases linearly with the number of mutations M .

In the opposite limit, when kin � kout, 〈τ〉 increases as
(

kout

kin

)M−1

with M . In this

case equilibration along the line n = ν−m is fast compared to the lifetime of the walker
and P(m, ν−m; τ) is almost independent of m. Setting all terms P(m, ν−m; τ) equal
results in a 1D hopping process with site dependent rates. The mean first passage time

of this process can be calculated in much the same way, yielding 〈τ〉 ∼
(

kout

kin

)M−1

with

polynomial corrections. In summary, we find that, depending on whether the walkers have
an inward bias, an outward bias or no bias, the mean lifetime scales linearly, exponentially
or quadratically with time. Since the force, at which kin and kout are equal, separates
regimes, where the waitingtime increases exponentially with M from linear scaling, we call
it critical force f̃c in the presence of mutations. The force f̃c converges towards the critical
force fc in the limit of no mutations.

Measuring Hopping Rates

So far, we have been concerned with the waitingtime distribution given a certain set of
rates, at which mutations open or close. These rates depend on the applied force and on
the distance between consecutive mutations and have to be determined in simulations.
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f

f

Figure 2.7: Simplified system to measure the opening and closing rates of mutations. The
simulation starts from the ground state with all bases bound. We determine the first-passage
time distributions of the opening of the rightmost mutation and fit these to a the first passage
time distribution of a random walker.

As long as there are at least two mutations bound, the dynamics of the opening and
closing of mutations at one end is independent of the other end. To measure the rates for
a given pair of force and mutation density, we used a simplified system, where a dsDNA
with equidistant mutations is fixed on the right hand side and a force is applied to the
first base of the upper strand (see Fig. 2.7). This simplified system is useful, as finite size
effects are smaller when one walker crosses M mutations as when two walkers cross M/2
mutations each. Furthermore, subtleties of the mutual annihilation process do not enter
the measurement. We measure the distribution of the time it takes to open the rightmost
mutation for the first time and fit this distribution to the lifetime distribution of a random
walker in one dimension between reflecting and absorbing boundary conditions. The rates
kin and kout are fit parameters. This is done for a range of forces and mutation densities
and the critical force f̃c for a certain mutation density can be extract from the crossing
of kin and kout. To further pin down f̃c, we generated data for many force values slightly
above and below f̃c and fitted a linear relation for each rate to all data sets simultaneously.
The crossing of the two resulting lines yield a robust estimate of f̃c. Using a system of
N = 240 basepairs, energy parameters εb = 1.11kBT, ε` = 2.8kBT and different number
of equidistant mutations, we determined f̃c over broad range of mutation densities. The
results are shown in Fig. 7(c) in the main text.
To check the reliability of the estimation of f̃c, we simulated waitingtime distributions by
applying the force to both ends of the DNA and fitted the two random walker model to the
waitingtime distribution. The force, where kin and kout coincide, reproduces the previously
determined force f̃c. Furthermore, fitting the critical distribution (one fit parameter) to
the waitingtime distribution with yields best fits for f ≈ f̃c. The absolute value of the
rates shows slight dependencies on the length of the system (see below) and varies for fits
to different setups.

Caveats of the Model Equilibration of the loopdensity is only possible by propagation
of loops from the end beyond a newly broken mutation, or in other words by sliding the
unstretched strand some distance ∆d inward. The sliding velocity, however, is inversely
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proportional to the length of the strand. Therefore, equilibration will slow down breaking of
mutations for supercritical forces deep inside the double strand and the linear dependence
of the waitingtime on the number of mutations will not persist for very large systems.

It is clear from the microscopic mechanism leading to breaking and opening of mutations
(see main text and Fig. 2.8) that the rates kin and kout depend on the force f . The rate kout

also depends on the mutation density, since a great distance between mutations corresponds
to a large entropy barrier for mutation closing, and hence a smaller closing rate kout. The
microscopic opening rate kin is expected to be more or less independent of the mutation
density. When looking at the opening and closing dynamics of an individual mutation, this
is what we observe. However, the equilibration of loop densities after an opening or closing
event takes some time. Therefore, successive microscopic opening and closing events are
not entirely uncorrelated, which makes an unambiguous definition of the microscopic rates
difficult. These correlations die out very quickly and it is still possible to describe the
observed lifetime distribution with an uncorrelated random walker. The effective rates
describing this motion both depend on mutation density and the applied force.

stored length
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Figure 2.8: Left: Illustration of how the density of loops on the strands depends on the state of
the mutated bases in the sequence. In between bound mutations loops are rare, as the formation of
a loop costs initiation energy and shortens the system. The same applies to the stretched strands
outside bound mutations. The only part, where a significant number of loops can be found, is the
unstretched strand outside the bound mutations. When a mutation is broken, loops move across
the mutation on the unstretched strand and locally both strands are shifted against each other.
Thereby, the bases that previously formed the mutated basepair become permanently separated
and the single strand part on the stretched strand grows. Right: To support the cartoon-like
picture of part (a), we measured the time averaged loopdensity, conditioned on a certain mutation
state. Mutations are located at base 40 and 80, the parameters are εb = 1.11kBT , ε` = 2.8kBT
and f = 10.7pN. We consider only opening of mutation from the left, i.e. the rightmost base is
kept fixed, as in Fig. 2.7. When all mutations are bound (upper panel), the loopdensity is high
only on the unstretched strand to the left of the mutation at position 40. When this mutation is
broken (lower panel), loops can spread from the left end to the mutation at position 80, yielding
a fairly constant density interrupted only by the permanent loop at the position of the mutated
base. The hump to the left of the broken mutation on the unstretched strand and to the right
of the broken mutation on the stretched strand indicate the position of the mutated base on
the opposite strand. A loop already present on one strand renders unbound bases on the other
strand more likely, as no additional loop initiation has to be paid. The vanishing loopdensity at
the end of the stretched strand indicates unbound ssDNA. Observe, that this is the longer, the
more mutations are broken.
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We predict a temperature-driven phase transition of DNA below the melting transition. The additional,
intermediate phase exists for repetitive sequences, when the two strands have different lengths. In this phase,
the excess bases of the longer strand are completely absorbed as bulge loops inside the helical region. When
the temperature is lowered, the excess bases desorb into overhanging ends, resulting in a contour length
change. This continuous transition is in many aspects analogous to Bose–Einstein condensation. When the
sequence is weakly disordered, the contour length changes discontinuously with temperature.
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The base-pairing interaction between the two strands of
DNA is not only pivotal to its biological function #1$, but
also leads to intriguing applications in nanotechnology #2$.
One approach to probe this interaction is to monitor the
DNA conformation as a function of temperature. Experimen-
tally, one can observe the number of base pairs formed !us-
ing UV absorption #3,4$", as well as changes of intramolecu-
lar distances on the nanometer scale !using modern single-
molecule techniques #5$". On the theoretical side, the
temperature dependence of DNA conformations has been
studied for almost 50 years, using models of various degrees
of complexity #6–14$. Particular attention has been paid to
the characteristics of the melting transition, where the two
strands separate completely. Whereas early models yielded
only a crossover #6$, the Poland-Scheraga !PS" model #8$
was the first to display a phase transition, albeit a continuous
one, which appeared to be at variance with the experimen-
tally observed sharp jump in the fraction of bound base pairs
#3$. Only recently have mechanisms been proposed #11,12$
which yield an abrupt, first-order transition. So far, however,
most analyses of DNA melting have incorporated only native
interactions, i.e., base pairs that occur in the ground state of
the molecule !see #7,13,14$ for notable exceptions". It is our
aim here to show that such non-native interactions can intro-
duce an intermediate phase in the melting behavior of DNA,
associated with an additional conformational transition be-
fore strand separation.

Non-native interactions are particularly relevant for re-
petitive DNA sequences, which are common in genomes
#15$. Periodic DNA, with, e.g., a single base repeat such as
TTT¼, or a higher-order repeat such as CAGCAG¼, can
take on base-pairing patterns with asymmetric loops and the
two complementary strands can be shifted relative to each
other. Here, we consider the general situation where the two
strands can have arbitrary lengths N, M. We find that for N
!M, the bound phase splits into two separate phases. The
low-temperature phase is characterized by an extensive
length of the unbound end on the longer strand, whereas in
the new intermediate phase these overhanging bases are ab-

sorbed into the helical region. Mathematically, and also con-
ceptually, many aspects of this transition are analogous to
Bose-Einstein condensation !BEC", as “particles” !bases"
condense into a single “state” !the overhanging end", which
thereby acquires macroscopic “occupation” !length". Obvi-
ously, the analogy extends only to the behavior of the parti-
tion function, as there is no quantum coherence in the DNA
problem. Effectively, the transition amounts to a
temperature-sensitive change in the contour length of the
DNA molecule, which should be observable with optical or
single-molecule methods. While the transition is continuous
for perfectly periodic sequences, we find that the contour
length shortens discontinuously once !weak" sequence disor-
der is introduced.

DNA model. We consider two DNA strands with lengths N
and M !N, respectively, and describe their interaction with
the “imperfect matching” generalization of the PS model
#8,13,14,16$. Specifically, a base i"N of the lower strand
can form a base pair !i , j" with every complementary base
j"M of the upper strand, whereas the formation of base
pairs within a strand can be neglected !since we are inter-
ested only in sequences with a high degree of complementa-
rity and a low degree of self-complementarity". Due to geo-
metrical constraints, we may neglect the “crossing” of base
pairs, e.g., two base pairs !i1 , j1" and !i2 , j2" with i1# i2 but
j1$ j2. The base-pairing pattern S, i.e., the set of all formed
base pairs, then creates a DNA conformation consisting of
bound segments alternating with !possibly asymmetric"
loops, see Fig. 1. To simplify the discussion, we enforce the
base pair !N ,M" at the right end, so that we need to consider

*Electronic address: richard.neher@physik.lmu.de

FIG. 1. A possible configuration of two complementary DNA
strands with a repetitive sequence !a bead represents one repeat
unit". Note that repetitive sequences can form base-pairing patterns
with asymmetric loops. In general, we allow for different strand
lengths N, M. The last repeat units !squares" are permanently
bound.
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only one overhanging end. However, our main findings re-
main equally valid without this constraint. Experimentally,
this constraint could be realized, e.g., by a few particularly
strong base pairs at one end.

Each base-pairing pattern S, receives a statistical weight
Q!S", which takes the form of a product with factors of four
different types: !i" a Boltzmann factor q=e%b/kBT for every
base pair with binding energy −%b#0, !ii" a Boltzmann fac-
tor g2=e−%!/kBT for every loop with loop initiation cost %!
$0, !iii" an entropic factor B!!m"=smm−c for each loop,
which is the increase in the number of polymer configura-
tions when m bases form a !floppy" loop instead of being in
a !rigid" double helical conformation, and !iv" a similar en-
tropic factor A!n"=snn−c̄ for a single-stranded end of n bases.
Here, the exponents c, c̄ in the entropic factors are universal
in that they are independent of the detailed polymer proper-
ties, but are sensitive to excluded volume interactions. For
interacting self-avoiding loops one has c%2.15, while c̄
%0.1 #17$. Whereas the value of c determines the critical
behavior at the melting transition, the nonuniversal constant
s has no qualitative effect on the melting behavior !we use
s=10 in all numerical examples".

In the following, we first apply the DNA model to per-
fectly periodic sequences, where each repeat unit can be
treated as an effective base with renormalized parameters
!we use %b=6 and %!=3 in temperature units, kB=1". We
emphasize that our simplistic model for the involved ener-
gies and entropies is meant to illustrate the physical phenom-
ena in a transparent way, but leads to an unrealistic tempera-
ture scale. With a more detailed description #4$, we find that
all of the interesting behavior happens at accessible tempera-
tures #18$.

Free energy of periodic DNA. To obtain the equilibrium
properties of the DNA model, we calculate the partition sum
over all base-pairing patterns, ZN

M =&SQ!S". By separating
the single-stranded ends from the double-stranded part, see
Fig. 1, we write ZN

M as

ZN
M = &

i=0

N−1

&
j=0

M−1

A!i"A!j"WN−i
M−j . !1"

Here, Wr
t is the partition function of two complementary and

periodic strands of length r and t with the first and last base
pair formed. Wr

t obeys this recursion relation

Wr+1
t+1 = qWr

t + g2q &
k+m$0

k#r,m#t

B!!k + m"Wr−k
t−m, !2"

with the initial conditions W1
1=q and W1

i =Wi
1=0 for i$1.

For sequences with weak disorder considered further below,
q has to be replaced by qr+1

t+1, where qr
t =e%b/kBT for original

bases at r and s, qr
s=e%̄b/kBT for mutated bases at r=s and

qr
t =0 otherwise. We use the recursion relation to calculate

ZN
M and expectation values for finite lengths N, M #13,19$. To

extract the thermodynamic behavior in the limit of long
strands, we take the z transform Ẑ!x ,y"=&N,M=0

& ZN
MxNyM and

solve for the transformed partition sum. This procedure is
equivalent to the method of sequence generating function
employed in Ref. #14$. One obtains

Ẑ!x,y" =
Â!x"Â!y"qxy

1 − qxy +
qg2xy

x − y
#yB̂!y" − xB̂!x"$

, !3"

where the transforms of the entropic factors are given by
Â!z"='c̄!sz"+1 and B̂!z"='c!sz", with the polylogarithm
'c!z"=&n=1

& znn−c.
The Z-transform carried out above amounts to a change

from the canonical to the grand canonical ensemble. The
transformation variables x ,y play the role of fugacities for
bases in the lower and upper strands, respectively. However,
for the ensuing discussion, it is advantageous to keep the
length N of the shorter strand fixed as a reference. Hence, we
perform the inverse transformation for the lower strand by
contour integration in x, to obtain the partition sum ZN!y0"
for N bases on the lower strand and the upper strand coupled
to a “nucleotide reservoir” with fixed fugacity y0. For large N
and temperatures below the melting temperature, ZN!y0" is

given by Â!y0"x*!y0"−N, where x*!y0" is the smallest real zero
of the denominator of Eq. !3" for given y=y0 #14$. Hence,
the free energy of the bound phase is given by Nfb!y0"
−T ln Â!y0", where the first term is the contribution of the
helical region with a free energy per length fb!y0"
=T ln x*!y0", and the second term is the contribution from the
unbound end of the longer strand. The free energy for given
N and M is then obtained by saddle point integration,

F!T,N,M"
T

= − ln Â!y0" + N
fb!y0"

T
+ M ln!y0" , !4"

where the fugacity y0 is determined by

M = 'M(y0
= y0

" ln Â!y0"
"y0

− N
y0

T

"fb!y0"
"y0

. !5"

Phase diagram. To extract the physical behavior of the
DNA model from Eqs. !4" and !5", we focus on two observ-
ables, the total number of base pairs, N(, and the length of
the single-stranded overhang. The fraction ( of bound base
pairs is calculated from the free energy per length of the
helical region as

( = −
q

T

"fb!y0"
"q

. !6"

To obtain the overhang length, we note that the right-hand
side of !5" decomposes the total length M of the upper strand
into two contributions, where the first term is the expected
overhang length and the second term corresponds to the
number of bases in the helical region. The dashed line in Fig.
2 !top" shows the overhang length as a function of tempera-
ture, for N=1000 and M =1150. At low temperatures, the
two DNA strands are completely aligned, so that all M −N
excess bases of the longer strand form an overhanging end.
However, we observe that the overhang length decreases
with increasing temperature, dropping almost to zero before
it rises again sharply at even higher temperature. We see in
Fig. 2 !bottom" that this drop occurs in a temperature range
where almost all possible base pairs are formed, and the rise
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occurs when the two strands separate. These observations
suggest that a temperature-driven conformational transition
occurs before the melting transition.

This transition is in fact completely analogous to BEC, as
Eq. !5" parallels the behavior of the equation of state for an
ideal Bose gas: If we divide Eq. !5" by our system size N and
introduce the “particle density” )=M /N, we obtain

) =
1
N

'c̄−1!sy0"
'c̄!sy0" + 1

+ )̄!y0" , !7"

where )̄!y0"=−!y0 /T"#"fb!y0" /"y0$!1 is the density inside
the helical region. In Eq. !7", the first term on the right-hand
side corresponds to the occupation of the ground state of an
ideal Bose gas, whereas )̄!y0" is analogous to the occupation
of the excited states. The fugacities of a Bose gas and our
DNA are bounded: for the former, by the energy of the
ground state, and for the DNA by the weight of an unbound
monomer, i.e., y0"s−1. The population of the excited states
increases monotonically with the fugacity, and attains a finite
maximal value, in our case )̄max= )̄!s−1", provided the loop
exponent c$2 #22$. When the temperature is lowered, )̄max
decreases !see bottom panel of Fig. 3", and when it falls
below ), the length of the unbound end must become exten-
sive to accommodate the remaining bases. In an analogous
way, the ground state of a Bose gas is macroscopically popu-
lated at low temperatures. In this “condensate” phase, the
fugacity is locked to the value s−1 in the thermodynamic
limit !N ,M→&, )=const.". The deviation for finite systems
scales as s−1−y0)1/N, see Fig. 3 !top". In the opposite case,
where )#)̄max, there is a solution to Eq. !7" with y0#s−1

and the unbound end remains finite for all system sizes.
It is easily shown that )̄max approaches 1 at low tempera-

tures, and consequently all excess bases of the longer strand
are condensed in the overhang, as illustrated in Fig. 3 !bot-

tom". As T increases, more and more bases are absorbed in
the helical region !)̄max increases", and the system enters the
intermediate phase at T=Tc, where )̄max=). At Tc the con-
densate fraction vanishes, as the solid line shows in Fig. 2
!top". Note that the intermediate phase exists only when ) is
not too large.

The melting temperature Tm, where the strands separate
and ( vanishes !denatured phase", is independent of ). For
periodic sequences, the loop size distribution at T=Tm de-
cays as )n−!c−1" instead of )n−c, since n bases of a loop can
be distributed in n+1 ways among both strands #8$. Hence,
periodic DNA displays a continuous melting transition for
2#c"3 and a first-order transition only if c$3. For 2#c
"3, we obtain ()*T−Tm*!3−c"/!c−2", using the same method
as #20$ for the standard PS model. To illustrate this, we plot
( for periodic sequences and for the standard PS model in
Fig. 2 !bottom". Whereas for the latter ( drops discontinu-
ously to zero, ( of periodic DNA vanishes with zero slope.

Weak sequence disorder. Is the intermediate phase identi-
fied above robust against sequence disorder? To address this
question, we replace a small fraction of base pairs by bases
that can pair with each other !%̄b=2", but not with other bases
in the sequence. Figure 4 shows the average overhang length
calculated using the generalized Eq. !2" for sequences with
evenly spaced mutations every d=25, 50, and 100 bases. The
unbound end keeps its ground-state length up to a certain
temperature, and then shortens rapidly. The temperature at
which the drop occurs increases with the density of muta-
tions. The width of the transition region scales inversely with
the system size N, see Fig. 4!b". These numerical observa-

FIG. 2. Top: The length of the unbound end, normalized by the
number of excess bases N−M on the longer strand. For finite sys-
tems !N=1000, dashed line", the unbound end shrinks to a minimal
value and increases again, as the melting temperature is ap-
proached. In the N→& limit, the overhang length diverges below
Tc=0.7752 and is of order 1 for T$Tc. Expectation values calcu-
lated numerically using Eq. !2" agree well with the analytic result.
Bottom: The fraction of bound base pairs ( as a function of tem-
perature. For periodic sequences with c=2.15, ( vanishes with zero
slope at Tm=1.424, whereas a random sequence shows a first-order
phase transition. FIG. 3. !Color online" Top: The fugacity y0 vs T for different

system sizes N. In the thermodynamic limit, y0=s−1 for T#Tc. As
for BEC, y0 approaches its limiting value as s−1−y0)1/N. Bottom:
Phase diagram of periodic DNA. At low temperatures, both strands
are completely aligned and excess bases of the longer strand form
an unbound end. In the intermediate phase, all excess bases are
absorbed into the helical region.
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tions suggest that in the limit of infinite system size, the
transition becomes an abrupt first order transition.

Indeed, the first-order behavior can also be understood
theoretically by comparing the energy barriers for forming
bulge loops with and without mutations: The formation of a
bulge loop on the longer strand of a perfectly periodic mol-
ecule requires only the initiation energy %!. In the presence
of mutations, however, shifting both strands breaks mutated
base pairs. Hence, to form a bulge loop, all mutations to the
left of the loop have to be broken and the energy barrier
becomes extensive. For a sufficiently low density of muta-

tions, there is a temperature T̃c at which the entropy gained
by distributing excess bases in loops along the molecule out-
weighs the energetic costs to break all mutations #21$. Below
T̃c all mutations are bound, if T$ T̃c as many mutations
open, as are necessary to absorb all excess bases.

Discussion and outlook. We have identified a BEC-like
conformational transition in periodic DNA, which occurs be-
low the melting transition. The hallmark of this transition is
the shortening of the unbound end, which could be directly
observed experimentally by resonant energy transfer between
fluorescent dyes located at the ends of the two strands. The
transition is also associated with a change in the contour
length of the DNA molecule, roughly proportional to M −N.
The increased density of bulge loops in the helical region
may additionally yield an effect on the persistence length.
We found that the existence of the intermediate phase is ro-
bust against weak sequence disorder and expect that it is also
independent of the details of our model. The temperature
range of the intermediate phase rapidly narrows as the mu-
tation density is increased. We conjecture that the intermedi-
ate phase disappears completely at a finite mutation density.
The exploration of the critical behavior in the complete
temperature—mutation density phase diagram is left as an
interesting theoretical challenge for the future.

We are grateful for important comments by E. Frey
and H. Wagner. We acknowledge financial support by the
Deutsche Forschungsgemeinschaft through the Emmy Noe-
ther Program.
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3. Dynamics of nucleosomal DNA

Every cell of a multicellular organism carries the complete genetic information in its
genome, regardless of its specific role as a part of the whole. Since different cells, e.g. a
liver cell and a neuron, need different proteins to function, cells are in need of a mecha-
nism to control which part of the genome is transcribed and which genes are silent. This
not only applies to specialized cells of multicellular organisms, but to every cell we know.
Even the simplest bacteria need to adjust their metabolism to the available nutrients and
require different proteins at different stages of the cell cycle. Regulation of protein pro-
duction can occur either before the gene is transcribed into mRNA, or target the process
of the translation of mRNA into protein. To regulate transcription, the DNA contains
short sequences that bind specifically to proteins called transcription factors (TF). These
transcription factors repress or enhance the binding of the polymerase to the promoter,
which is a prerequisite for transcription. The expression levels of the cell’s genes is thereby
controlled by the concentrations of transcription factors in the cell.

Eukaryotic cells suffer from an additional difficulty in achieving this feat. To fit their
DNA into the cell’s nucleus, the DNA needs to be strongly compactified. Due to this
compactification the DNA is no longer freely accessible and transcription factor binding
to DNA is to some extent precluded. The precise mechanisms of transcription regulation
in eukaryotes are unknown, but there is evidence that the compactified DNA is dynamic
enough and exposes each part of its genome sufficiently often to allow for TF binding. On
the other hand, cells exploit DNA compactification to silence subsets of their genes and to
determine cell fates during development. The dynamics of the elementary compactification
unit of eukaryotic DNA, the nucleosome, has recently been tested experimentally. In order
to understand how the observed dynamics depends on various parameters of the system and
what physical mechanisms might be responsible for the observed behavior, we investigate
the dynamics of nucleosomes theoretically using a simple model. Within our model, the
dynamics of nucleosomes depends drastically on the polymer properties of DNA, which
could also hold true for their dynamics in vivo.

In this chapter, I want to discuss the basics of chromatin structure and its implications
for gene regulation in eukaryotes. Then we will discuss two recent experiments, that studied
the dynamics of nucleosomes and close with a discussion of our theoretical study.

3.1. DNA compactification

While bacteria have small genomes and avoid superfluous DNA, eukaryotes and in partic-
ular higher multicellular organisms need more room to store their genetic information. In
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Nucleosomes like 
beads on a string.

Nucleosomes stack
into the 30nm fiber.

10nm 30nm ~μm

Metaphase: chromatin 
compactifies further.

Figure 3.1: DNA is compactified into chromosomes in a hierarchic manner. See main text for
details. Image source: Wikipedia.

addition to the greater number of proteins that need to be coded, eukaryotes also tend to
accumulate DNA that does not code for proteins and whose function is still unclear. In
any case, the genomes of eukaryotes can be as big as a few gigabases for higher mammals.
Even if broken up into several chromosomes, a DNA coil of that length is several tens of
micrometers in diameter, which is larger than the cell nucleus. Hence, there is a need for
compactification, which is achieved by an elaborate hierarchical organization of the DNA
into chromosomes, as sketched in Fig. 3.1.

At the lowest level of organization, the DNA double helix is wrapped around a protein
complex of cylindrical shape with a diameter of about 6 nm. This elementary packing unit is
commonly referred to as a nucleosome. Its structure is known in exquisite detail and will be
discussed in Sec. 3.1.1. Nucleosomes are more or less evenly spaced on the genome with an
average distance of about 30 nm. When stretched or in low salt conditions, this structure
looks like a string of DNA with beads, the nuclesosomes, of about 10 nm in diameter.
Under physiological conditions, this array of nucleosomes is further compactified to form
a fiber with 30 nm in diameter, the structure of which is still subject to debate. The two
competing models differ primarily in the geometry of the linker DNA between consecutive
nucleosomes. In solenoid models, it is assumed that nucleosomes are arranged along a
helix [88], which requires the linker DNA between two nucleosomes to be strongly bent.
For the second class of models, it is assumed that the linker DNA is straight and crosses
the center of the chromatin fiber. In these zig-zag models two consecutive nucleosomes are
assumed to lie on more or less opposite sides of the fiber [89]. Recently, the crystal structure
of tetra-nucleosomes was resolved, providing evidence for a zig-zag structure [90, 91]. A
computational study also suggests that the structure of oligo-nucleosomes is best described
by an irregular zig-zag model [92]. A more comprehensive overview and a survey of the
current state of the debate is given in ref. [93]. Due to its stacked structure without strong
interactions along the direction of the fiber, the chromatin fiber is rather flexible and easily
ripped apart by longitudinal tension. Stretching experiments on a single chromatin fiber
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and comparison to an extensible worm-like-chain model suggest a persistence length of
about 30 nm and a stretching modulus of 5pN [94]. This experiment further indicates,
that the chromatin fiber disintegrates if tensions beyond 20pN are applied. Little is known
about the intermediate levels of chromatin organization. It is believed, that the 30 nm
fiber forms large loops that are arranged on some scaffold, but evidence is sparse [7]. Only
during cell division in the so called metaphase, the DNA is packed into the dense structure
known as chromosome1 that is large enough to be seen in the light microscope. Our focus
here is on the elementary packing unit, the nucleosome, and we will therefore describe the
structure of the nucleosome in greater detail.

3.1.1. The nucleosome core particle

While the structure of chromatin at larger length scales is still under debate, the nucleosome
has been studied at atomic resolution. Luger et al. succeeded in crystalizing the complex of
histone proteins together with a short piece of DNA wrapped around the protein complex
and resolved the structure using X-ray scattering techniques. The first study achieved
a resolution of 2.8Å [95] and a subsequent experiment improved the resolution to 1.9Å
[96]. The structure of the nucleosome is illustrated in Fig. 3.2. A piece of DNA, precisely
147 bps long, is wrapped around a cylindrical protein complex 1.7 times along a left-
handed super-helical path. The pitch of this path is only 2.8 nm, such that the DNA
comes very close to itself along the super-helix. The protein complex has a diameter
of 6.5 nm and a height of about 6 nm. The cylinder is assembled out of four different
histone proteins H2A, H2B, H3 and H4, each of which is present in two copies. These
proteins form crescent shaped heterodimers (H2A-H2B) and (H3-H4), which are arranged
such that they define a binding path for the DNA. The histone complex is positively
charged and therefore attracts the negatively charged DNA. The DNA-protein interaction
is concentrated in 14 well defined contact points located at positions where the minor
groove of the DNA faces the protein core. Each contact points forms a variable number
of hydrogen bonds with the DNA. Due to the electrostatic nature of the protein-DNA
interaction, the stability of nucleosomes depends on salt concentration. With increasing
salt concentration, nucleosomes disassemble into DNA and the histone core complex, before
the histone complex dissociates further into the dimers [97].

The net binding free energy between DNA and the histones can be estimated using
cleavage enzymes that cut DNA at specific sites. In these experiments, cleavage sites are
placed at different locations on the wrapped DNA and the reduction of the cleavage rate
compared to free DNA is measured. By measuring this rate reduction, one can estimate
the fraction of time the DNA site is accessible to protein binding [98, 99, 100], from which
the free energy difference of the wrapped and the unwrapped state is calculated. These
cleavage studies also revealed a significant sequence dependence of the net binding energies,
but as a rule of thumb, each contact point contributes about 1.5 to 2kBT to the net binding

1The name chromosome is derived from the greek word chromos for color, since chromosomes are easily
stained with dyes that bind to DNA.
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Figure 3.2: The nucleosome consists of 147 bp of DNA wrapped 1.7 times around a complex
of eight proteins. The two strands of DNA are shown in turquoise and brown. Only the main
chains of the histone proteins are shown (H3: blue, H4: green, H2A: yellow, H2B: red). Figure
reprinted with kind permission by Nature [95].
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free energy under physiological conditions. The net binding free energy is the amount by
which the total interaction energy exceeds the free energy needed to force the DNA into the
strongly bent and clamped conformation when wrapped around a histone complex. The
latter can be estimated as follows. When only moderately bent, dsDNA is well described
by a worm-like-chain model (WLC, comp. Sec. 1.3.2) for semi-flexible polymers with a
persistence length of `p = 50nm. Within the WLC model, the bending energy of the DNA
in a nucleosome can be estimated to

Ebend = kBT
`pl

2R2
≈ 58kBT, (3.1)

where R = 4.3nm is the radius of curvature of the DNA contour and l = 43nm is the
length of the bend part. This number for Ebend should only be considered as an order of
magnitude estimate, since it is not at all clear whether the WLC model is applicable to
strongly bent DNA. The estimate for the bending free energy leads to an estimate of the
total interaction free energy of about 6kBT per contact point. The binding strength and
the bendability of the DNA are strongly sequence dependent and special sequences, called
positioning sequences, are known to bind preferentially to histones in a precise alignment.

3.2. Gene regulation in eukaryotes

In prokaryotes, the set of genes which is transcribed by the RNA polymerase into mRNA
is determined by the concentration of transcription factors (TF) in the cytosol. The regu-
latory sequences to which TFs bind specifically are usually located from 20 to a couple of
hundred base pairs upstream of the gene and either enhance the binding of the polymerase
to the promoter site by attractive interaction or prevent the binding of the polymerase
by steric hinderance. These regulatory mechanisms are well established for prokaryotes,
where the DNA is freely accessible to passive TFs.

Transcription regulation in eukaryotes is more complicated and many additional stages
of regulation exist. The regulatory sites for a specific gene can be far away from the site
where transcription starts and many more signals are integrated to determine whether
a gene is to be silent or not. The general picture of eukaryotic gene regulation is far
from complete. Nevertheless, TFs have to find their binding sites, even if they are hidden
by nucleosomes. The comparatively small net binding energy of nucleosomes led to the
hypothesis, that transient unwrapping of DNA from the histone complex driven by thermal
fluctuations could suffice for reliable gene regulation [99]. Polach and Widom coined the
term site exposure mechanism for this tentative mode of gene regulation. The mechanism
is illustrated in Fig. 3.3a. The site exposure mechanism allows to tune the binding affinity
of a TF by the location of the binding site inside the nucleosome, the further away a
site is from the entry or exit point, the harder it is to access. Indeed, it has been shown
that the positioning of nucleosomes along the genome is carefully controlled [101], which
might be related to the tuning of binding affinities of TFs to their sites. The nucleosome
can also be exploited to mediate indirect interactions between TFs, see Fig. 3.3b&c. If
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a)

b) c)

Figure 3.3: Site exposure mechanism for protein binding to nucleosomal DNA. Part a): Before
the protein (red blob) can bind to its binding site (red), the DNA (black) has to detach from the
histone complex (green). Part b&c): Nucleosomes can mediate transcription factor interactions,
see main text.

two binding sites are located on the same side of the symmetry point of the nucleosome,
exposure of the binding site further inside the nucleosome implies the exposure of the
other. Hence, the joint binding probability is higher than the product of the individual
binding probabilities, which is equivalent to cooperative binding of the TFs. This type
of nucleosome mediated TF interaction has been shown to be a functional mode of gene
regulation in vivo [102]. In the opposite case, where the two sites are at different ends of
the piece of DNA, simultaneous binding is disfavored. To rationalize this, recall that DNA
is highly charged. In a nucleosome, DNA is wrapped 1.7 times along a helical path such
that the DNA comes very close (a few Å) to itself for 0.7 turns. Due to self-repulsion of
DNA, the first 0.7 turns are rather easy to unwrap, while the final turn is much more stable
since self repulsion is lacking. Two binding sites on opposite ends of the DNA are usually
individually accessible by unwrapping less than 0.7 turns of DNA, however, when exposing
both of them simultaneously only little DNA remains wrapped and one has to compensate
the lacking self-repulsion. This gives rise to a joint binding probability that is less than
the product of the individual binding probabilities, equivalent to repulsive interactions.
However, in order to be feasible, the site exposure needs to be fast. The remainder of
this chapter will address kinetic aspects of site exposure. Before presenting our theoretical
study, I will discuss recent experiments, that study the dynamics of single nucleosomes in
vitro.

3.3. Experiments on single nucleosome dynamics

A set of experiments addressing the dynamics of nucleosomes was performed by Gu Li
in the group of Jonathan Widom. To study the fluctuation properties of DNA wrapped
around a histone complex, they labeled a 147 bp long positioning sequence at one end
with a green fluorescent dye. In addition, they labeled the appropriate histone protein
with a red dye, such that the two dyes are in very close proximity when the DNA is fully
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wrapped around the protein complex. The two dyes used are an efficient FRET pair, i.e.
the excitation energy can be transferred without radiation from the green to the red dye via
a dipol-dipol interaction. The efficiency of this energy transfer decreases with the distance
r between the dyes as

EFRET ∼
1

1 + (r/R0)6
, (3.2)

where R0 is the separation at which the EFRET is half its maximal value. This dis-
tance is known as the Förster radius and is usually on the order of a few nanometers.
The FRET efficiency drops from near to one to negligibly small values in a very narrow
range surrounding R0, which makes FRET an extremely sensitive distance measure. The
arrangement of FRET pairs on the nucleosome as realized by Li et al. allows the detec-
tion of the state of the nucleosome with optical means. In one publication [103], Li et al.
convincingly showed, that the outermost part of the DNA is transiently unwrapped. It is
well known, that the equilibrium constant between the wrapped and the unwrapped state
can be tuned by varying the salt concentration, since mobile ions in solution screen the
DNA-histone interaction. The same effect can be achieved by placing a binding site for
the DNA binding protein LexA inside the nucleosome. Once the DNA unwraps from the
histone and exposes the binding site, the open state is stabilized by binding of LexA to
its site. The occupation of the LexA binding site can be controlled by the LexA protein
concentration in solution. While this work established, that an equilibrium between the
wrapped and unwrapped state exists and that proteins can access binding sites buried
inside nucleosomes, it is still a bulk experiment and does not yield any information about
the rates of individual wrapping and unwrapping events. This question was addressed in a
subsequent publication [2] using fluorescence correlation spectroscopy (FCS) and stopped
flow measurements. In the stopped flow experiments, nucleosomes are rapidly mixed with
a LexA. LexA binds strongly and rapidly to a binding site located between base pair 8
and 27 of the DNA strand if and only if the site is exposed by transient DNA unwrap-
ping from the histone complex. Since the DNA exposure is the rate limiting step, its rate
can be measured by monitoring the decrease in FRET after mixing. The estimate for the
exposure rate is kopen = 3.9 ± 0.9s−1. Using the equilibrium constant between the open
and closed state determined in previous experiments, the rewrapping rate is estimated
to be kclose ≈ 90s−1. To corroborate these findings, a second experiment using FCS was
performed. The authors compared the fluorescence autocorrelation curves of nucleosomes
labeled only with the green dye to those labeled with pair of green and red dyes. In the
former case, the decay of the autocorrelation function is solely due to the diffusion of nu-
cleosomes into and out of the focal volume, while in the later case transient unwrapping
events add an additional source of decorrelation. By fitting a reaction-diffusion model to
the data, an independent estimation of the rates is achieved, yielding kopen = 3.6s−1 and
kclose = 20s−1. These are within the same order of magnitude and are consistent with the
previous estimates within experimental uncertainty.

Similar experiments were performed by M. Tomschik in the group of S. H. Leuba [3].
In these experiments, the red and the green dye were both attached to the DNA and
their positions were chosen such that both dyes are next to each other when the DNA is
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fully wrapped around the histone. The DNA used was 164 bp long with a sequence that
is known to wrap symmetrically around the histone octamer. Furthermore, the DNA is
functionalized at one end, such that it can be chemically ligated to a streptavidin coated
glass cover slip. The green fluorescent dye can now be excited by evanescent light and
individual nucleosomes show up as bright spots in the wide-field image. Depending on
their conformation, the excitation energy is either transferred to the red dye or emitted
as green light. Using this setup, Tomschik et al. succeeded in measuring time traces
showing the opening and closing of single nucleosomes and thus were able to determine
the associated rates directly. Depending on the salt concentration, the rate of unwrapping
is kopen = 0.2 − 0.5s−1, while the rate for rewrapping is kclose = 5 − 6s−1. The fact that
the opening rate is much slower than the estimates by Li et al. is not surprising, because
the length of the DNA segment that has to be unwrapped to change the FRET signal is
much longer, at least 60 bps. However, the opening and closing rate should be related
via the equilibrium constant, which is known to be larger than kclose/kopen < 30. What
gives rise to this discrepancy is unclear. Taken together, these experiments suggest that
the nucleosome undergoes rapid conformational fluctuations which involve unwrapping of
the DNA and exposure of buried DNA binding sites.

3.4. Kinetic accessibility of protein binding sites in
nucleosomal DNA

To help understanding the dependence of wrapping and unwrapping time scales on the
DNA length involved, the DNA stiffness and the characteristics of the DNA protein in-
teraction, we modeled the DNA-histone complex and studied the dynamics of our model
using simulations. The DNA is modeled as a discretized WLC polymer with four beads
per helical turn. The histone complex itself is not explicitly modeled, and only the 14
contact points, at which the DNA-histone interaction is concentrated, are included. These
contact points are arranged in space along the path of the DNA deduced from the crystal
structure of the nuclesome (cf. Fig. 3.2). Each contact point attracts the bead of the dis-
cretized WLC that corresponds to the appropriate location along the DNA with a short
range Morse potential.

Uc = γkBT
∑

n

(
1− e−|ri(n)−cn|/ρ

)2
, (3.3)

where cn is the location of the n-th contact point, γ is the depth, and ρ the width of the
contact potential. As a contact radius, we use ρ = 0.5nm, which is a compromise between
the slightly longer ranged electrostatic interactions and the short ranged hydrogen bonding.
Details of the model and the values used for the parameters are discussed in the publication
reprinted in Sec. 3.7 [104].
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3.4.1. Kinetics of site exposure

The wrapping and unwrapping of DNA from the protein complex is a stepwise process2,
where DNA detaches from one contact point at a time. In the course of unwrapping, the
DNA has to overcome a transition state of high free energy, at which it no longer feels
the short range attraction to the contact point but is still strongly bent. Overdamped
thermally activated barrier crossing processes are well described by Kramers’ rate theory,
which states that the transition rate is given by the product of the pseudo-equilibrium
population of the transition state and the relaxation rate out of this state [106, 107]. The
former is the exponential of the free energy difference from the meta-stable state to the
transition state, whereas the latter depends on the mobility of the reaction coordinate. In
our case, a natural reaction coordinate is the distance of the DNA from the contact point. If
the process by which the DNA detaches from the outermost contact point was purely local,
i.e. only the part of the DNA that binds to the specific contact point is involved, one would
assume that the mobility of the reaction coordinate and hence the rate was independent
of the DNA length attached. However, Brownian dynamics simulations rapidly show, that
this is not the case (cf. Figure 2 in the published article reprinted in Sec. 3.7). Instead, one
observes a steady decrease of the rates as the attached DNA gets longer, i.e. for contact
points that are further inside the nucleosome. A minute of thought reveals that this is
what should be expected. The length of the free DNA is always far smaller than the
persistence length and one expects it to move as if it was stiff. When opening or closing
one contact point, this free DNA end has to rotate by about 45◦. The friction coefficient
associated with rotation of a rigid lever about one end increases as L3 [108], and hence the
opening and closing rate should decay with the length of the attached DNA. However, the
simulation data is not compatible with such a drastic decrease of the rate, and neither of
the two extreme cases, purely local vs. entirely rigid rotation, seems to be realized.

In order to describe the wrapping and unwrapping transitions faithfully, we study the
rotational barrier crossing process of semi-flexible polymers taking into account the full
spectrum of the polymer dynamics. The essence of the dynamics is captured by another
model system, which consists of a semi-flexible polymer attached to a point about which it
can rotate. The polymer experiences a potential acting on the attachment angle. This an-
gular potential induces preferred attachment angles, separated by energy barriers. Within
this model, transitions from one preferred orientation to another can be studied without
interference from other aspects of the nucleosome model. We find that the dynamics of the
barrier crossing process is governed by a new length scale lc, which is given by the ratio of
the polymer stiffness `pkBT and the curvature γ of the angular potential at the transition
state

lc ∼
`pkBT

γ
. (3.4)

If the overall length L of the polymer is small compared to lc, the polymer crosses the barrier
as a stiff rod with a rate that decreases as L−3 with the length. In the opposite case L � lc

2Before the discrete nature of DNA-histone interactions was known, a theoretical study suggested that
DNA unwrapping is an all-or-none process [105].
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only the first part of length lc is involved in the relaxation from the barrier and the rate is
independent of L. If lc < L, the transition rate is therefore greatly enhanced compared to
the rate of a rigid lever. The dynamics of long polymers is limited by diffusion, which again
results in a L3-dependence of the typical time of between reorientations of the polymer. In
addition to this simple scaling argument, the interplay of the polymer dynamics and the
relaxation from the barrier can be treated analytically taking into account the complete
mode spectrum of the polymer. Comparison to the nucleosome data reveals, that the
rewrapping transitions in our nucleosome model fall into the crossover region between the
flexibility assisted regime and the diffusion limited regime.

Caveats and pitfalls. Our model of the nucleosome is very simplistic in several aspects.
First of all, it is far from obvious whether a discretized WLC model is appropriate for
DNA bent as strongly as it is in nucleosomes. Furthermore, modeling DNA as a line with
constant charge density is certainly not a faithful description at the nanometer scale, since
the diameter of the DNA itself is 2 nm and the spatial arrangement of the charges on the
double helix certainly matters. However, we are only interested in the physical mechanisms
that underlie the DNA-histone dynamics and to that end, the model has to be as simple
as possible to exhibit the generic features as clearly as possible. We think, that our model
captures the essential physics in a satisfactory way, as it integrates polymer properties of
DNA and the short range attraction of the DNA to the surface of the protein complex.

Coarse grained models like ours usually depend on reasonable choices of many unknown
parameters and effective potentials. These choices can have significant impact on the time
scale of the observed dynamics, which makes such modeling a very delicate task. The
rates of the wrapping and unwrapping transitions surely depends on the precise from of
the DNA-histone interaction potential and in particular on the nature of the transition
state to unwrapping. Indeed, the dynamics of our model appears to be a factor of 100-
1000 faster than real nucleosomes. Having this in mind, we can only compare different
situations within the framework of our model and cannot make any statements regarding
absolute timescales.

DNA is slightly unwound when wrapped around the nucleosome. We estimated the tor-
sional energy for wrapping of one 10 bp segment to about 1kBT . This is far less than the
energetic cost due to bending or the adsorption energy per contact point. Therefore, we
implicitly included its thermodynamic effect into the effective interaction potential. Nev-
ertheless, the fact that DNA has to be slightly unwound to match the contact potential
might be responsible for the large wrapping/unwrapping times observed in experiments.
Including twist deformation into our model did not seem to be justified to us, since little
is known about the dependence of DNA-histone interaction on twist. While it likely af-
fects the absolute timescales, we do not expect it to alter the qualitative picture of DNA
wrapping.



3.5 Flexibility assisted conformational transitions 77

3.5. Flexibility assisted conformational transitions

DNA wrapping and unwrapping in nucleosomes is a thermally activated barrier crossing
process which is coupled to the lever-like rotation of the attached DNA end. While our
primary motivation to study such a process was a better understanding of the dynamics
of our nucleosome model, similar transitions are ubiquitous in proteins and protein-DNA
complexes. One class of important examples are molecular motors such as myosins and
kinesins [109], where a conformational transition in the motor head is coupled to the
rotation of a lever to which the cargo is attached. Other examples are conformational
changes of DNA induced by proteins such as the integration host factor (IHF), which is
required for the integration of viral DNA into the genome of the host cell [110, 111]. These
transitions share two generic features, which turn out to be important for the kinetics of
the transition: They involve the rotation of a lever-like extended object, and this lever has
some residual flexibility. This flexibility is either continuously distributed as in DNA, or
localized at hinges as found in the structure of molecular motors [112, 113].

We studied such transitions using a simple but general model and revealed an unexpected
non-monotonic dependence of the rate on the stiffness of the lever. Furthermore, the barrier
crossing rate is fairly insensitive to the hydrodynamic drag on the tip of the lever, which
might imply robustness of the speed of molecular motors to cargo size variations. Our
model consists of two beads which are connected to each other and the origin. The first
bead acts as a joint with a finite bending stiffness ε. Its friction coefficient mimics the
friction associated with bending modes of the lever. The friction coefficient of the outer
bead plays the role of the cargo and accounts for the hydrodynamic drag associated with
rotation about the origin. In analogy to the semi-flexible Brownian rotor used to study
the DNA wrapping in the nucleosome, we include an external potential acting on the
attachment angle. This external potential induces preferred attachment angles separated
by potential barriers.

We find, that the Kramers-Langer theory for multi-dimensional barrier crossing pro-
cesses does not describe the phenomenology of our model [114]. The discrepancy results
from the configuration dependent mobility matrix of our model, which is not accounted for
in standard Kramers-Langer theory. We generalize the Kramers-Langer theory to a rate
theory that perturbatively includes the effects of configuration dependent mobility matri-
ces. This generalized theory captures the essential features of the observed phenomenology
and in particular explains the peak. The maximal rate at finite stiffness is due to a tradeoff
between an increasing average mobility of the reaction coordinate and a decreasing rate
due to stronger coupling of the inner and outer bead due to higher stiffness.

Our work on this system is contained in a recently submitted publication entitled “Op-
timal rate in conformational transitions”, which is reprinted in Sec. 3.8. A more detailed
derivation of the generalized Kramers-Langer rate is presented in the Appendix B.
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3.6. Conclusion & Outlook

Understanding the way higher organisms orchestrate the expression of their genes is a
formidable task and we are just beginning to get a faint idea of the elaborate mechanisms
evolution came up with. Nevertheless, some molecular details such as the structure of
nucleosome are known in exquisite detail. Single nucleosomes have recently been studied
experimentally and were found to be very dynamics entities that undergo rapid conforma-
tional changes. We addressed this questions theoretically and extracted generic features of
the dynamics of DNA unwrapping and wrapping from the protein complex. Due to the lo-
calized DNA-histone interaction, the dynamics is essentially discrete and each step involves
a thermally activated barrier crossing event. In the course of this transition, the DNA is
rotated like a lever. We find that the bending fluctuations of the DNA greatly enhance
the barrier crossing rate and that the dynamics is governed by a new length scale lc which
emerges from the coupling of polymer modes and the relaxation dynamics from the barrier.
Since similar situations are ubiquitous in conformational transitions in macromolecules, we
studied such transitions in a more general context, both for continuously distributed flexi-
bilities and hinged levers. Simulation results revealed, that the transition rates for hinged
levers depend non-monotonically on the stiffness of the hinge. To describe and understand
this phenomenon, we generalized the Kramers-Langer theory for multi-dimensional escape
processes to account for configuration dependent mobility matrices. We hope that this
generalized rate theory will find applications in other fields.

In vivo, nucleosomes are not in isolation but arranged in large arrays. They interact
with each other electrostatically and via flexible protein tails. Hence, it is not at all clear,
to what extend our findings carry over to in vivo chromatin dynamics. The next step along
bottom up approach, would be to incorporate additional nucleosomes into our simulations
and explore how the dynamics changes. It should be possible to test the key prediction of
our study, the length dependence of the wrapping and unwrapping rate, experimentally.
Another interesting question to address experimentally is the strength of the effective
repulsion of transcription factors mediated by the nucleosome and whether this interaction
has significant effects on gene expression.
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Although the DNA in eukaryotic cells is packaged into
chromatin, its genetic information must be accessible to
proteins for read out and processing [1]. The structural
organization of chromatin is fairly well known: the funda-
mental unit is a nucleosome core particle (NCP) consisting
of about 150 base pairs (bp) of DNA wrapped in 1.7 turns
around a cylindrical histone octamer [2], and NCPs are
regularly spaced along the DNA, which is further compac-
tified into higher order structures. In contrast, the confor-
mational dynamics of chromatin is poorly understood.
Recent experiments studied these dynamics on the level
of individual NCPs using single-molecule force [3] and
fluorescence [4,5] techniques. The latter directly observed
spontaneous conformational transitions where part of the
DNA unwraps reversibly, allowing proteins to access DNA
sites that are normally buried. This mode of access, driven
by thermal fluctuations, is particularly important for pas-
sive DNA-binding proteins, e.g., transcription factors.
Here, we study spontaneous DNA unwrapping within a
theoretical model; see Fig. 1(a).

Consider a buried DNA site that is accessible only when
a DNA segment of length L is unwrapped. How long is the
typical dwell time !a in the accessible state, i.e., the
window of opportunity for protein binding? And what is
the typical time !i for which it remains inaccessible? Li
et al. [4] measured !a ! 10–50 ms and !i " 250 ms for
L# 30 bp, while Tomschik et al. [5] found !a !
100–200 ms and !i ! 2–5 s for L# 60 bp. Taken to-
gether, these results indicate a significant dependence on
L in both time scales, which cannot be reconciled with an
early theoretical study [6] suggesting an all-or-none un-
wrapping mechanism where the nucleosome fluctuates
between two conformations only. Instead, these results,
as well as previous biochemical experiments [7], imply a
multistep opening mechanism.

In this Letter, we propose and characterize a theoretical
model for this multistep mechanism, similar in spirit to
previous work on histone-DNA interactions which focused
mainly on static properties or the calculation of free energy
barriers [6,8,9]. Within our model, we clarify the physics

that determines the L dependence of the time scales !a and
!i. We find that the dependence of !i can be interpreted
with a simple random walker model, which may serve as a
fitting model for future experiments that probe the time
scales at different L values. In contrast, the L dependence
of !a reflects the intricate coupling between the DNA
polymer dynamics and the dynamics of breaking and re-
forming DNA-histone contacts. To analyze the effect of
this coupling, we introduce a toy model, the ’’semiflexible
Brownian rotor’’ (SBR); see Fig. 1(b). We identify a ge-
neric physical effect of flexibility-assisted barrier crossing,
which may arise also in other contexts. It is marked by a
characteristic plateau of the time scale at intermediate L.
Biologically, the L dependence is relevant, because it
creates a positioning effect for transcription factor binding
sites relative to nucleosomes [10]. We expect that the
integration of single NCPs into nucleosome arrays will
alter the absolute time scales but not the basic physics of
the DNA (un)wrapping process.

Nucleosome model.—The NCP crystal structure [2]
shows that both the electrostatic and hydrogen bond inter-
actions between the DNA and the histone complex are

FIG. 1 (color online). (a) Illustration of our nucleosome
model. The DNA-histone interaction is localized at contact
points attracting the red (dark) beads. The DNA is shown in
the ground state as well as a conformation where the first contact
is open. (b) Illustration of the semiflexible Brownian rotor (SBR)
model. In this toy model, the tradeoff between bending energy
and DNA-histone interaction in the nucleosome is mimicked by
an angular potential V$’%, exerting a torque on the attachment
angle ’ of a semiflexible polymer at the origin.
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mainly localized to 14 contact points, about evenly spaced
by 10.2 bp along a superhelical contour with radius 4.2 nm
and helical pitch 2.4 nm. Because we are interested only in
the dynamics at a fixed (physiological) salt concentration,
we combine the interactions at each of these points into a
simple Morse potential [11]. The DNA-histone interaction
energy is then

 Uc ! "kBT
X
n
$1& e&jri$n%&cnj=#%2; (1)

where cn is the nth contact point on the superhelical
contour, " is the depth, and # the width of the contact
potential. A discrete bead-spring model with beads at
positions ri models the DNA, and i$n% is the bead bound
to contact n in the fully wrapped state. The beads are
connected by a harmonic potential Us ! "s

P
i$jri'1 &

rij& a%2=2 with a typical bead separation a and a stiffness
"s set to 800kBT=nm2. Below, we use three beads between
contacts and at each end (about 2:5 bp=bead), unless stated
otherwise. Increasing the discretization or "s raises the
computational effort without affecting our results qualita-
tively. We account for the bending rigidity of DNA by an
energy Ub ! "b

P
i$1& cos$i% with bending angle $i at

bead i and a bending stiffness "b adjusted such that
the apparent persistence length matches the known ‘p "
50 nm for DNA at physiological salt conditions.
Furthermore, we incorporate the screened electrostatic
self-repulsion of DNA through a Debye-Hückel potential
UDH ! kBTlB$!a%2

P
i<je&%jri&rjj=jri & rjj with the

Bjerrum length lB " 0:7 nm, a charge density ! !
2 charges=bp, and a screening length %&1 " 1 nm. We
use a contact radius # ! 0:5 nm in between the range of
hydrogen bonds and electrostatic interactions and adjust
the depth " of the Morse potential to match the binding
free energy [12] of " 1:5kBT per contact estimated from
biochemical experiments [7,9]. Taken together, the total
energy is U ! Us 'Ub 'UDH 'Uc. To study the dy-
namics of our model, we perform Brownian dynamics
simulations with the overdamped Langevin Eqs.

 

_r i$t% ! &&brriU$frjg% ' !i$t%; (2)

where &b is the bead mobility, and the absolute time scale
is set by a2=&bkBT. The random forces !i satisfy h!i$t% (
!j$t0%i ! 6&bkBT'i;j'$t& t0%.

Unwrapping dynamics.—A suitable reaction coordinate
for the opening of a single contact is the attachment angle
’, see Fig. 1(a), which changes by !’ " 45) in this
process. The equilibrium distribution p$’% for the first
contact is shown in Fig. 2(a). Its bimodal form suggests
to approximate a contact by a 2-state system, with rates kb,
ku for binding and unbinding, respectively. To test whether
such a reduced description is sufficient, we initiate simu-
lations in the fully wrapped state and determine the func-
tionally relevant time scales, i.e., the average time !i$n%
until contact n opens to expose the nth DNA segment and
the average time !a$n% until contact n recloses [13,14]. The

results are shown in Fig. 2(b) for n * 5 [15]. Within the
reduced description of consecutive 2-state contacts, !i$n%
can be calculated as a mean first passage time [16] for a 1D
biased random walker with hopping rates ku, kb. The
walker starts at site zero (reflecting boundary) and reaches
site n after an average time

 !i$n% !
k&1
u

1& K

!
1& Kn

1& K&1 ' n
"

"K+1Kn&1

ku
: (3)

Here, K ! kb=ku can be interpreted as the effective equi-
librium binding constant per contact. The exponential in-
crease of !i$n% is clear also from the equivalence of the
biased random walk with a random walk against a free
energy ramp. The excellent fit of (3) to the simulation data
(dashed line) indicates that the reduced description is
sufficient for the dwell times in the inaccessible state. In
contrast, it proves insufficient for the dwell times in the
accessible state, because !a$n% in Fig. 2(b) is clearly not
constant as one would expect with a fixed binding rate kb.
Thus, we find !a$n% to be a more sensitive probe for the
physics of spontaneous site exposure than !i$n%.

To probe the effect of the DNA length on the rewrapping
kinetics, we vary the number of overhanging beads before
contact 1 and plot !a$1% as a function of the overhang
length L in Fig. 3(a). Superimposed is the data of
Fig. 2(b) (bottom) with n converted to contour length.
The good agreement of these dependencies indicates that
!a is determined by polymer dynamics. Indeed, we will
now see that contact breaking and reformation of a rotating
semiflexible polymer displays much richer physics than a
simple 1D barrier crossing process.

Semiflexible Brownian rotor.—The essential physics of
contact formation in the nucleosome is captured by the toy
model depicted in Fig. 1(b): A semiflexible polymer with
contour length L and persistence length ‘p is attached
to a point about which it can rotate in a plane. The attach-
ment angle ’ experiences a periodic potential V$’% !
V0 cos$2(’=!’%, which creates preferred angles sepa-
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FIG. 2. (a) Equilibrium distribution of the DNA angle ’ de-
fined in Fig. 1(a). The two peaks at ’ ! 0 and ’ " 45 deg
correspond to the fully wrapped state and the state with contact 1
open, respectively. (b) Kinetics of DNA site exposure within our
nucleosome model. The dwell time in the inaccessible state
(squares) increases roughly exponentially with the number of
contacts that must open to render a DNA site accessible. The
dashed line is a fit to Eq. (3). The circles show the average time
the nth contact point remains open.
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rated by potential barriers as in our nucleosome model
(there, the barrier for contact reformation results from the
DNA bending energy and the electrostatic repulsion). The
main difference is that the length of the rotating polymer is
constant for this SBR, while it changes slightly when a
contact breaks or reforms in the nucleosome. Also, we do
not consider a directional bias in the SBR, because it is not
essential for what follows. So far, barrier crossing of semi-
flexible polymers was studied only for situations where the
entire polymer experiences an external potential [17]. In
the NCP, the potential acts only on the angle at the attach-
ment point.

To characterize the phenomenology of the SBR, we
determine its barrier crossing rate 1=!w with Brownian
dynamics simulations of a discrete bead-spring model
[18]. The circles in Fig. 3(b) show !w as a function of
L=‘p for V0 ! 5kBT. We observe that at very short lengths,
!w follows the stiff rod behavior !w # L3 [19] indicated by
the dotted line. However, above a certain length ‘c, there is
a regime where !w is nearly insensitive to L, before it rises
again. Hence, for lengths L> ‘c the semiflexible polymer
crosses the barrier much faster than the stiff rod. What is
the physical mechanism for this acceleration? One effect of
a finite flexibility is a reduced mean end-to-end distance
(due to the undulations in the contour), which in turn leads
to a larger rotational mobility. However, with V$’% ! 0,
the rotational diffusion time of a semiflexible polymer over
an angle !’ (squares) is almost identical to that of a stiff
rod (dashed line) when L < ‘p. Hence the acceleration is

not a mobility effect. Note that the dashed line is also the
diffusion limit for !w, which induces a second crossover
from a reaction to a diffusion controlled process. The
equivalent diffusion limit is shown also in Fig. 3(a) (dashed
line). It indicates that the !a$n% data for the nucleosome is
indeed in the accelerated barrier crossing regime.

Flexibility-assisted barrier crossing.—To understand
the interplay between the polymer dynamics and the bar-
rier crossing dynamics qualitatively, we recall the basic
aspects of each: (i) A semiflexible polymer of length L
relaxes its conformational degrees of freedom in a time
#L4=‘p [20]. Conversely, within a given time !, a local
bending deformation is ‘‘felt’’ only over a length ‘#
$‘p!%1=4. (ii) The probability current over a barrier is
proportional to the quasiequilibrium occupancy of the
transition state and to the relaxation rate !&1 out of this
state. Together, (i) and (ii) imply that ‘c is the length of the
polymer segment that gets deformed during the relaxation
process away from the potential peak. We estimate ‘c by
noting that the attachment angle relaxes according to _’ !
&&$‘c%@V=@’, where &$‘c% # ‘&3

c is the rotational mo-
bility of the deformed segment. Hence, !#
‘3c$!’=2(%2=V0 and with ‘c # $‘p!%1=4, we find

 ‘c ! C‘p
kBT
V0

#
!’
2(

$
2
; (4)

where C is a constant to be determined below. For lengths
below ‘c, the entire polymer is involved in the relaxation
process, i.e., it behaves like a stiff rod.

Quantitative theory for the crossover.—To render the
above picture quantitative, we employ the Langer theory
for multidimensional barrier crossing processes [21]. For
the case at hand, one can show [22] that the barrier crossing
time simplifies to !w ! (

)&
e2V0=kBT , where )& is the eigen-

value associated with the unstable mode at the saddle
point. We calculate )& using the continuous wormlike
chain model in the weakly bending approximation [23].
At the transition state the chain is straight, e.g., along
the x axis. We denote deviations from this con-
figuration by y$x; t%. The chain dynamics follows @ty !
&$kBT‘p=*%@4xy with a friction coefficient * . With " !
V0$2(=!’%2 denoting the curvature of the potential at the
transition state, the torque on the attached polymer end is
&"@xyjx!0. This torque must be balanced by a local bend
resulting in the boundary condition kBT‘p@2xyjx!0 !
&"@xyjx!0. The other boundary conditions are yjx!0 !
@2xyjx!L ! @3xyjx!L ! 0. We find a unique unstable mode
with eigenvalue )& ! kBT‘p+4=4*L4 and + determined
by

 

+,sinh$+% & sin$+%-
cosh$+% ' cos$+% ' 2

!
%%%%%%
123

p L
‘c

; (5)

where ‘c is as in (4) with C !
%%%%%%
123

p
. In the limit L . ‘c,

we find )& ! 3"=*L3 independent of the stiffness,
whereas in the opposite limit )& ! 3"=*‘3c independent

FIG. 3. (a) The dependence of the dwell time !a$n ! 1% on the
overhanging DNA length (diamonds) is compatible with !a$n%
when n is converted to contour length (gray open circles). The
dashed line indicates the diffusion limit (see main text for
details). (b) The average barrier crossing time !w (open circles)
for the SBR model of Fig. 1(b). At small lengths, the barrier
crossing time follows that of a stiff rod (indicated by the dotted
line). Beyond a crossover length ‘c . ‘p, barrier crossing is
much faster than for a stiff rod. For large lengths, !w approaches
the diffusion limit, i.e., !w of the free SBR (open squares). With
L < ‘p, free diffusion of the SBR is virtually indistinguishable
from free diffusion of a rigid rod (dashed line). The crossover
from the rodlike regime to the intermediate regime is well
described by the theoretical analysis (solid line), see main text.
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of L. Figure 4 shows (a) the unstable eigenmode for
L=‘c ! f0:1; 1; 10g and (b) the crossover in the barrier
crossing time. The eigenmode shape confirms our qualita-
tive picture: stiff and short polymers respond to the torque
by rotating as a whole, whereas the torque shapes a bulge
of size #‘c in longer polymers. For a discrete polymer
model, the same analysis can be performed, but the eigen-
value )& must be computed numerically. The solid line in
Fig. 3 shows the resulting barrier crossing time for the
same discretization as used in the Brownian dynamics
simulations of the SBR model. Indeed, the crossover
from the rodlike to the flexibility-assisted barrier crossing
is well described by this analysis. The deviations at larger
L can be attributed to finite barrier corrections [24].

Discussion and outlook.—The experiments [4,5] have
shown that the functionally relevant time scales !i and !a
depend on the position on the nucleosomal DNA. Our
theoretical study suggests that these time scales addition-
ally depend on the total DNA length. The position depen-
dence of !i should follow the random walker model (3),
which is the minimal model for a gradual, multistep open-
ing mechanism. However, we expect that the position-
dependence of !a and the length-dependence of both
time scales will reflect the polymer dynamics of the
DNA. Within our toy model, the semiflexible Brownian
rotor, we find three physically distinct regimes for this
length dependence; see Fig. 3(b). The intermediate regime
displays a striking flexibility-assisted barrier crossing ef-
fect, the onset of which is marked by the new length scale
‘c of Eq. (4). It can be interpreted as the length over which
the polymer contour is deformed as it passes over the
potential barrier. Because ‘c is considerably smaller than
the persistence length ‘p, we expect that the onset of the
intermediate regime will not be detectable in nucleosomes.
However, nucleosomes should display the crossover from
flexibility-assisted barrier crossing to diffusion-limited dy-
namics as shown in Fig. 3(a). All three regimes of Fig. 3(b)
could be probed in an experimental realization of the SBR
model, e.g., with an actin filament as the rotating polymer.
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Optimal flexibility for conformational transitions in macromolecules
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Conformational transitions in macromolecular complexes often involve the reorientation of lever-
like structures. Using a simple theoretical model, we show that the rate of such transitions is
drastically enhanced if the lever is bendable, e.g. at a localized “hinge”. Surprisingly, the transition
is fastest with an intermediate flexibility of the hinge. In this intermediate regime, the transition
rate is also least sensitive to the amount of “cargo” attached to the lever arm, which could be
exploited by molecular motors. To explain this effect, we generalize the Kramers-Langer theory for
multi-dimensional barrier crossing to configuration dependent mobility matrices.

Many biological functions depend on transitions in the
global conformation of macromolecules, and the associ-
ated kinetic rates can be under strong evolutionary pres-
sure. For instance, the directed motion of molecular mo-
tors is based on power strokes [1], protein binding to
DNA can require DNA bending [2] or spontaneous partial
unwrapping of DNA from histones [3, 4], and the func-
tioning of some ribozymes depends on global transitions
in the tertiary structure [5]. These and other examples
display two generic features: (i) A long segment within
the molecule or complex is turned during the transition,
e.g. an RNA stem in a ribozyme, the DNA as it unwraps
from histones or bends upon protein binding, or the lever
arm of a molecular motor relative to the attached head.
(ii) The segment has a certain bending flexibility. Here,
we use a minimal physical model to study the coupled
dynamics of the transition and the bending fluctuations.

Our model, illustrated in Fig. 1, demonstrates explic-
itly how even a small bending flexibility can drastically
accelerate the transition. Furthermore, if the flexibil-
ity arises through a localized “hinge”, e.g. in the protein
structure of some molecular motors [6, 7] or an interior
loop in an RNA stem, we find that the transition rate
is maximal at an intermediate hinge stiffness. Thus, in
situations where rapid transition rates are crucial, molec-
ular evolution could tune a hinge stiffness to the optimal
value. We find that an intermediate stiffness is optimal
also from the perspective of robustness, since it renders
the transition rate least sensitive to changes in the drag
on the lever arm, incurred e.g. by different cargos trans-
ported by a molecular motor.

Our finding of an optimal rate is reminiscent of a phe-
nomenon known as resonant activation [8, 9], where a
transition rate displays a peak as a function of the charac-
teristic timescale of fluctuations in the potential barrier.
However, we will see that the peak in our system has
a different origin: a trade-off between the accelerating
effect of the bending fluctuations and a decreasing av-
erage mobility of the reaction coordinate. The standard
Kramers-Langer theory [10] for multi-dimensional transi-
tion processes is not sufficient to capture this trade-off. A

generalization of the theory to the case of configuration-
dependent mobility matrices turns out to be essential to
understand the peak at intermediate stiffness.

Model.— We model the conformational transition as
a thermally activated change in the attachment angle ϕ
of a macromolecular lever, see Fig. 1. The lever has two
segments connected by a hinge with stiffness ε, which ren-
ders the lever preferentially straight, but allows thermal
fluctuations in the bending angle θ. The energy function
V (ϕ, θ) of this ‘Two-Segment Lever’ (TSL) is

V (ϕ, θ)

kBT
= ε(1 − cos θ) −

[

(aϕ)3

3
−

b(aϕ)2

2

]

, (1)

where kBT is the thermal energy unit. The hinge, de-
scribed by the first term, serves not only as a sim-
ple model for a protein or RNA hinge, but also as a
zeroth-order approximation to a more continuously dis-
tributed flexibility; see below. The second term is the
potential on the attachment angle ϕ, which produces a
metastable minimum at (ϕ, θ) = (0, 0). The thermally-
assisted escape from this minimum passes through the
transition state at (ϕ, θ) = (b/a, 0) with a barrier height
∆V = b3kBT/6 [20].

a) b)

FIG. 1: Schematic illustration of the ‘Two-Segment Lever’
(TSL) model for conformational transitions. (a) The two
segments of lengths 1 and ρ are connected by a hinge and
attached to the origin. The viscous drag acts on the ends
of the segments as indicated by the beads. (b) Schematic
illustration of the barrier crossing processes. The external
meta-stable potential V (ϕ) is indicated by shading (top; dark
corresponds to high energy) and is also sketched below.
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In the present context, inertial forces are negligible,
i.e. it is sufficient to consider the stochastic dynamics of
the TSL in the overdamped limit. We localize the fric-
tion forces to the ends of the two segments, as indicated
by the beads in Fig. 1(a). The length of the first segment
defines our length unit and ρ denotes the relative length
of the second segment. Similarly, we choose our time
unit such that the friction coefficient of the first bead is
unity, and denote the coefficient of the second bead by
ξ. To describe the Brownian dynamics of the TSL, we
derive the Fokker-Planck equation for the time-evolution
of the configurational probability density p(ϕ, θ, t). In
general, the derivation of the correct dynamic equations
can be a nontrivial task for stochastic systems with con-
straints [11, 12]. For instance, implementing fixed seg-
ment lengths through the limit of stiff springs, leads to
Fokker-Planck equations with equilibrium distributions
that depend on the way in which the limit is taken [12].
However, for our overdamped system, we can avoid this
problem by imposing the desired equilibrium distribu-
tion, i.e. the Boltzmann distribution p = exp(−V/kBT ),
which together with the well-defined deterministic equa-
tions of motion uniquely determines the Fokker-Planck
equation for the TSL.

The deterministic equations of motion take the form
q̇k = −Mkl ∂V/∂ql with the coordinates (q1, q2) = (ϕ, θ)
and a mobility matrix M. We obtain M with a standard
Lagrange procedure: Given linear friction, M is the in-
verse of the friction matrix, which in turn is the Hessian
matrix of the dissipation function [13]. This yields

M =
1

1 + ξ sin2 θ

(

1 ρ+cos θ
ρ

ρ+cos θ
ρ

ρ+2 cos θ
ρ + 1+ξ

ξρ2

)

. (2)

The Fokker-Planck equation then follows from the conti-
nuity equation ∂tp({qi}, t) = −∂kjk({qi}, t) together with

jk({qi}, t) = −Mkl

[

∂V

∂ql
+ kBT

∂

∂ql

]

p({qi}, t) (3)

as the probability flux density. Our analytical analysis
below is based directly on Eqs. (2) and (3), while we
perform all Brownian dynamics simulations with a set of
equivalent stochastic differential equations [14].

Transition rate.— To explore the phenomenology of
the TSL, we performed simulations to determine its av-
erage dwell time τ in the metastable state, for a range of
hinge stiffnesses ε. The rate for the conformational tran-
sition is related to the dwell time by k(ε) = 1/τ(ε). Fig. 2
shows k(ε) (circles) for a barrier ∆V =12 kBT , a distance
∆ϕ= 0.4 to the transition state, and ξ= ρ= 1 (data for
different parameter values behaves qualitatively similar,
as long as the process is reaction-limited, i.e. ∆V is suf-
ficiently large that τ is much longer than the time for the
TSL to freely diffuse over an angle ∆ϕ). We observe a
significant flexibility-induced enhancement of the transi-
tion rate over a broad range of stiffnesses, compared to
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gen. Langer rate
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FIG. 2: Simulation data of the barrier crossing rate normal-
ized by k0 display a prominent peak at finite stiffness (cir-
cles, each obtained from 20000 simulation runs initialized at
the metastable minimum). The conventional Langer theory
fails to describe the non-monotonicity of the rate and over-
estimates the rate at small ε. The generalized Langer theory
captures the non-monotonicity of the rate and describes the
simulations data accurately; parameters see main text.

the dynamics in the stiff limit (ε→∞), see inset. Note
that the enhancement persists even at relatively large ε,
where typical thermal bending fluctuations δϕ ∼

√
ε are

significantly smaller than ∆ϕ. Surprisingly, the acceler-
ation is strongest at an intermediate stiffness (ε ≈ 10).
This observation suggests that the stiffness of molecular
hinges could be used, by evolution or in synthetic con-
structs, to tune and optimize reaction rates.

When the friction coefficient ξ of the outer bead is
increased, the rate of the conformational transition de-
creases; see Fig. 3a. This decrease is most dramatic in
the stiff limit (dash-dotted line). In the flexible limit (dia-
monds) the decrease is less pronounced. Notably, the rate
appears least sensitive to the viscous drag on the outer
bead at intermediate ε (circles). Indeed, Fig. 3b shows
that the ε-dependence of this sensitivity (measured as the
slope of the curves in Fig. 3a at ξ=1) has a pronounced
minimum at ε ≈ 20. Hence, intermediate hinge stiffnesses
in the TSL lead to maximal robustness, which is an im-
portant design constraint for many biomolecular mecha-
nisms in the cellular context. For instance, as molecular
motors transport various cargos along one-dimensional
filaments, it may be advantageous to render their speed
insensitive to the cargo size, e.g. to avoid “traffic jams”.

In the remainder of this letter, we seek a theoretical
understanding of the above phenomenology. First, it is
instructive to consider simple bounds on the transition
rate. An upper bound is obtained by completely elimi-
nating the outer bead. The Kramers rate [15] for the re-
maining 1D escape process, k0 = (a2b/2π) e−∆V/kBT , is
used in Figs. 2 and 3 to normalize the transition rates. At
the optimal stiffness, the transition rate in Fig. 2 comes
within 20 % of this upper bound. An obvious lower bound
is the stiff limit: For ε→∞, the second segment increases



3

1 10 100
friction ξ

0.01

0.1

1

k/
k 0

0 20 40 60 80
stiffness ε [kT]

0

0.2

Δ
 ln

 k
 / 
Δ

 ln
 ξ

a) b)
 ε=25

 ε=0

kstiff

FIG. 3: The sensitivity of the rate to the friction coefficient
ξ is minimal at intermediate stiffness. (a) Simulation results
at ε = 0 and ε = 25 as well as the theoretical estimates of the
rate at ε = 0 and in the stiff limit. (b) The derivative of ln k
with respect to ln ξ evaluated at ξ = 1, i.e. the slope of the
curves in a), is minimal in an intermediate stiffness range.

the rotational friction by a factor ζ = 1 + (1 + ρ)2ξ, so
that the 1D Kramers rate becomes k∞ = k0/ζ, as shown
by the dash-dotted line in Fig. 2 and Fig. 3a. However,
to understand how the dynamics of the bending fluctua-
tions affects the transition rate, we must consider the full
2D dynamics of the TSL. The multi-dimensional gener-
alization of Kramers theory is Langer’s formula for the
escape rate over a saddle in a potential landscape [10],

kLanger =
λ

2π
×

√

det e(w)

| det e(s)|
exp

(

−
∆V

kBT

)

. (4)

Here, e(w) and e(s) denote the Hessian matrix of the po-
tential energy, ∂2V/∂qk∂ql, evaluated at the well bot-
tom and the saddle point, respectively, whereas λ is the
unique negative eigenvalue of the product of the mobility
matrix M and e(s). Eq. (4) can be made plausible in sim-
ple terms: Given a quasi-equilibrium in the metastable
state, the second factor represents the probability of be-
ing in the transition region, i.e. the region within ∼ kBT
of the saddle. The escape rate is then given by this prob-
ability multiplied by the rate λ at which the system re-
laxes out of the transition state, analogous to Michaelis-
Menten reaction kinetics.

For our potential (1), the determinants in (4) can-
cel. The eigenvalue can be determined analytically (the
dashed line in Fig. 2 shows the resulting kLanger), but for
the present purpose it is more instructive to consider the
expansions for large and small stiffness. In the stiff limit,
the natural small parameter is the stiffness ratio γ/ε,
where γ = a2b is the absolute curvature or “stiffness” of
the external potential at the transition state. The ex-
pansion yields kLanger/k∞ = 1 + (ρ2ξ/ζ) γ/ε+O(γ2/ε2).
As expected, the rate approaches k∞, but the stiff limit
is attained only when the bending fluctuations ∼

√
ε are

small compared to the width of the barrier ∼ √
γ. In the

opposite limit, ε( γ, the rate is given by kLanger/k0 =

1 −
(

1 + ρ−1
)2
ε/γ + O(ε2/γ). Since the linear term is

negative, Langer theory predicts that the transition rate
peaks at zero stiffness, with a peak value equal to the
Kramers rate k0 for the lever without the second segment.

a) b)

FIG. 4: The friction opposing rotation of the attachment an-
gle ϕ depends on the bending angle θ, since the outer bead is
moved by different amounts in different configurations. For an
infinitesimal displacement dϕ, the displacement of the outer
bead is sin θ dϕ. The projection of the resulting friction force
onto the direction of motion adds another factor sin θ, yielding
a friction coefficient for ϕ of 1 + ξ sin2 θ.

This prediction is clearly at variance with the simulation
results. It is interesting to note, however, that the slope
of the linear decay is independent of ξ. This is consistent
with our observation that the transition rate is insensi-
tive to ξ in the intermediate stiffness regime. Indeed,
Fig. 2 shows that Langer theory (dashed line) describes
the simulation data (circles) reasonably well for interme-
diate and large hinge stiffness.

To understand the origin of the peak at intermediate
stiffness, it is useful to consider the flexible limit (ε = 0).
In this limit, the transition state is degenerate in θ, and
it seems plausible to estimate the transition rate by using
a θ-averaged mobility for the reaction coordinate ϕ,

k(ε = 0) ≈ k0

∫ π

−π

dθ

2π
M11(θ) =

k0√
1 + ξ

. (5)

This estimate agrees well with the simulation data,
see the dashed line in Fig. 3a, indicating that the
configuration-dependent mobility (2) plays an important
role for the transition rate. In contrast, the conventional
Langer theory assumes the mobility matrix to be con-
stant in the relevant region near the transition state.
Fig. 4 illustrates why the mobility M11 of the coordinate
ϕ is affected by the bending angle θ and gives a graphical
construction for M11.

Generalized Langer theory.— To account for the mo-
bility effect identified above, we must generalize the
Langer theory to configuration-dependent mobility ma-
trices. The special case where the mobility varies only
along the reaction coordinate has already been studied in
[16], however the main effect in our case is due to the vari-
ation in the transverse direction. In the following, we out-
line the derivation of the central result, while all details
will be presented elsewhere. Near the saddle, the mobil-

ity matrix takes the form Mij({qi}) = M (s)
ij + 1

2Akl
ij q̂lq̂k,

where q̂i are deviations from the saddle and Akl
ij denotes

the tensor of second derivatives of the mobility matrix
(we assume that the first derivatives of M vanish at the
saddle, which is the case for the TSL). The escape rate
is given by the probability flux out of the metastable
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well, divided by the population inside the well. To cal-
culate the flux, we construct a steady state solution to
the Fokker-Planck equation in the vicinity of the saddle,
as described in [15] for the conventional Langer theory.
We use the Ansatz p({qi}) = 1

2peq({qi}) erfc(u), where

peq({qi}) = Z−1e−V ({qi})/kBT and erfc(u) is the comple-
mentary error function with argument u = Uk q̂k. Insert-
ing the Ansatz into the Fokker-Planck equation yields an
equation for the vector U,

Ui(−Mije
(s)
jk + Bik) − UiMijUj Uk = 0 , (6)

where Bik = kBT
∑

n Ank
ni . Bik q̂k is the noise induced

drift, which is absent in the conventional Langer theory.
Ignoring higher order terms, this equation determines U

to be the left eigenvector of −M(s)e(s) +B to the unique
positive eigenvalue λ, and requires U to be normalized

such that UiM
(s)
ij Uj = λ. The directions of the left and

right eigenvectors of −M(s)e(s) + B have a physical in-
terpretation: U is perpendicular to the stochastic sepa-
ratrix, while the corresponding right eigenvector points
in the direction of the diffusive flux at the saddle [17].

From p({qi}), the flux density is determined by (3) and
the total flux is obtained by integrating the flux density
over a plane containing the saddle; a convenient choice is
the plane u = 0. Evaluation of the integral is particularly
simple in a coordinate system, where the first coordinate
is parallel to U, and the remaining coordinates are chosen

such that e(s) is diagonal in this subspace, e(s)
ij = µiδij

for i, j > 1. In this coordinate system, the generalized
Langer rate takes the simple form

k =
λ

2π

1 + 1
2M11

∑

l>1
All

11

µl√
1 − c

×

√

det e(w)

| det e(s)|
e−

∆V

kBT , (7)

where c = Uie
−1
ij Uj + 1 = B1ie

−1
i1 /M (s)

11 and e−1 denotes

the inverse matrix of e(s). Eq. (7) contains three correc-
tions to (4), all of which vanish when M({qi}) is constant:
The most important one is given by

∑

l>1 All
11/µl, which

changes the mobility M11 in the direction of U to an ef-
fective mobility that is averaged over the separatrix with
respect to the Boltzmann distribution. In addition, there
are two corrections incurred by the noise-induced drift:
the factor

√
1 − c and a change due to the fact that λ is

now the eigenvalue to M(s)e(s) − B instead of M(s)e(s).
The solid line in Fig. 2 shows the application of the

generalized Langer formula to the TSL. We observe that
it captures the peak in the transition rate and thus the es-
sential phenomenology of the TSL. Obviously, the evalu-
ation of the Gaussian integral that leads to Eq. (7) is only
meaningful, if the harmonic approximation of the mobil-
ity matrix is reasonable within the relevant saddle point
region. This integral diverges as the saddle point degen-
erates, which explains the behavior for ε → 0. At high
ξ, the very anisotropic friction can also render Langer
theory invalid [18, 19].

Conclusion.— We have introduced the “Two-Segment
Lever” as a simple model for a class of conformational
transitions in biomolecules. The model clearly demon-
strates how flexibility can enhance the rate of a confor-
mational transition. This remains true, if the hinge in the
TSL is replaced by a more continuous bendability. In-
terestingly, a discrete hinge has a stiffness regime, where
the rate is large and robust against cargo variation, which
raises the question, whether these effects are exploited by
evolution, for example in the design of molecular motors.
To understand these effects theoretically, we derived a
generalized Langer theory that takes into account con-
figuration dependent mobility matrices. We hope that
this theory will find applications also in other fields.
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A. Partition sums of repetitive DNA

The analytic results obtained in the publications reprinted in Sec. 2 rely to a great extent on
the calculation of the partition sum of repetitive double stranded DNA molecules. How this
partition sum is calculated was discussed only briefly and I want to present the important
steps in greater detail here. When the two strands have a repetitive and complementary
sequence, the approximation that only native base pairs form is no longer justified. To
the contrary, each repeat unit from one strand can bind to every repeat unit of the other
strand. The configurations that contribute to the partition sum are therefore much more
numerous and the calculation is considerably harder. The only assumption that can be
reasonably made, is that base pairs do not cross, i.e. that the molecule can be depicted as
a sequence of denatured loops and double stranded helices. However, the loops can now
have a different number of bases on the two strands.

Every allowed configuration can be broken into essentially two different parts: the four
open ends and the central part that is bounded by base pairs as illustrated in Fig. A.1.
The partition sum of the molecule with N repeat units on one and M repeat units on the
other strand is thus given by

Z(N, M) =

i+k<N,j+l<M∑
i,j,k,l=0

F1(i)F2(j)F3(k)F4(l)W
N−i−k
M−j−l , (A.1)

where Fi(n) are the statistical weights of the single stranded ends of length n and W r
s is

the sum of all possible configuration of a double stranded part with r bases on one and s
bases on the other strand. Similarly to the case where only native base pairs are allowed
(see Sec. 1.2.2), W r

s can be calculated from the recursion relation

W r+1
s+1 = qr+1

s+1W
r
s + qr+1

s+1

k<r,m<s∑
k+m>1

E`(k,m)W r−k
s−m, (A.2)

where qr
s is the Boltzmann factor of the binding energy of base r and base s and E`(k,m) is

the cost of having a loop with k bases on one and m bases on the other strand. The first term
of the recursion relation accounts for all configuration where the base pair (r + 1, s + 1) is
added to any configuration in W r

s , whereas the second term includes all configuration where
the base pair (r + 1, s + 1) followed by a loop of size (k,m) is added to any configuration
in W r−k

s−m. One easily convinces oneself, that this recursion indeed generates all allowed
configurations.

This recursion relation can be solved numerically for arbitrary sequences in O(N2M2)
operations [115, 116]. An analytical solution can be obtained, if the sequence is homoge-
nous, that is qr

s = q, and if E`(k, m) is sufficiently well behaved. Note that every repetitive
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F(i)1

F(j) 4

F(k)

F(l)
2

3
WM-j-l

N-i-k

Figure A.1: Left: Every base-pairing configuration can be described by the length of the single
stranded ends 1 to 4 and the part bounded by base pairs. Right: A sketch of the singularities of
F̂ (x), F̂ (y) and Ŵ (x, y) in the positive quarter plane of real x and y.

sequence is essentially homogeneous since each repeat unit can be treated a single base
which only binds to its native binding partner. Again, the recursion relation can be solved
by z-transformation, but this time different fugacities x and y for the two strands are
needed since they can be of different length and are not necessarily in register. To this
end, we multiply both sides by xrys and sum over r and s to obtain

Ŵ (x, y)− xyW 1
1

xy
= qŴ (x, y) + qÊ`(x, y)Ŵ (x, y), (A.3)

where Ŵ (x, y) =
∑∞

r,s=1 W r
s xrys, Ê`(x, y) =

∑∞
r,s=1 E`(r, s)x

rys and W i
1 = W 1

i = 0 for all

i > 1. This is readily solved for Ŵ (x, y), yielding

Ŵ (x, y) =
W 1

1

1
xy
− q − qÊ`(x, y)

, (A.4)

The z-transform of the partition sum in Eq. (A.5) is computed similarly and given by

Ẑ(x, y) = F̂1(x)F̂2(y)F̂3(x)F̂4(y)Ŵ (x, y), (A.5)

where F̂i(z) is the one variable z-transform of the single stranded ends.
The z-transformations in the base indices on both strands are equivalent to changing

from a statistical ensemble with constant particle numbers to a grand ensemble, where
the particle number is determined by the fugacities of a particle reservoir. The grand
partition sum is a power series in xNyM with coefficients Z(N, M). Therefore Z(N, M)
can in principle be obtained from Ẑ(x, y) by double contour integration

Z(N, M) = − 1

4π2

∮ ∮
dxdy

Ẑ(x, y)

xN+1yM+1
. (A.6)
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In many cases, one of the integrals can be calculated by suitable deformation of the inte-
gration contour, but the remaining integral is usually infeasible. Nevertheless, a great deal
of information can be obtained from the function Ẑ(x, y), at least in the thermodynamic
limit, which for linear molecules corresponds to the limit of long strands [117]. In this limit
relative strand length fluctuations vanish and the grand ensemble is equivalent to the fixed
length ensemble. The expected numbers of particles on both strands are given by

〈N〉 = x
∂ ln Ẑ(x, y)

∂x
and 〈M〉 = y

∂ ln Ẑ(x, y)

∂y
, (A.7)

and for 〈N〉 or 〈M〉 to become arbitrarily large, Ẑ(x, y) has to diverge. The thermodynamic
limit thus confines the set of possible fugacities to the singularities of Ẑ(x, y), which in
general form a one dimensional, possibly multiply branched, set (cf. right part of Fig. A.1).
To fix the fugacities completely, we need an additional condition. This is given by the
requirement, that the ratio of the two strand length remains constant as the thermodynamic
limit is approaches. Otherwise, the intensive properties of the system are not preserved.
We thus have to choose the fugacities (x∗, y∗) such that

limx,y→x∗,y∗〈N〉 = ∞ and limx,y→x∗,y∗〈M〉 = ∞
limx,y→x∗,y∗

〈N〉
〈M〉 = c. (A.8)

Since the free energy of the DNA molecule should be extensive, the partition sum for
long strands of length N and cN is of the form Z(N, cN) = γN . From the definition
Ẑ(x, y) =

∑∞
N,M=1 Z(N, M)xNyM and the fact that only configurations with M ≈ Nc

contribute, we have Ẑ(x, y) ∼ (1 − γNxNycM)−1. Hence, the singularities of Ẑ(x, y) lie
on the curve x∗y∗c = γ−1. The limit of infinite strand length is approached from below
|xyc| < γ−1. Within this approximation, which essentially is a saddle point approximation,
the free energy of a molecule out of strands of length N and M is given by

F (N, M) = −kBT ln Z(N, M) = N ln x∗ + M ln y∗, (A.9)

where the free energies per base ln x∗ and ln y∗ are determined by Eq. (A.8) and Eq. (A.7).
Alternatively, one can perform the inverse transformation in one variable and thereby
fix one strand length and then determine the remaining fugacity such that the expected
length of the other strands matches the desired value. We will now apply this formalism to
concrete problems of repetitive DNA under shear force and thermal denaturation of DNA.
A more detailed description of this derivation is given in ref. [117].

A.1. Thermal denaturation of repetitive DNA

To describe the melting transition of repetitive DNA, we have to specify the Boltzmann
factor associated with the binding of one repeat unit and the statistical weights of loops
and single stranded ends. The statistical weights of loops and free ends are dominated
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by the entropy of the different configurations available to the flexible polymer, as already
discussed in Sec. 1.2.2. The statistical weights of free single stranded ends of length n and
of loops with n and m on the two strands are given by

F (n) =
sn

nc̄
and E`(n,m) = g2 sn+m

(n + m)c
, (A.10)

where the exponents c̄ and c describe the excluded volume effects of an open end and a
closed loop. While c̄ is irrelevant for the melting transition, c is pivotal and its value is
assumed to lie in the range 1.8 . . . 2.15 [19] (cf. Sec. 1.2.2). The z transformations of the
weights are given by

F̂ (x) = Φc̄(xs) and Ê`(x, y) = g2xΦc(xs)− yΦc(ys)

x− y
. (A.11)

The factor g2 accounts for a finite energy penalty to initiate a loop. The function Φc(z)
is the polylogarithm, which is analytic everywhere in the complex plane, except on the
interval [1,∞[ of the real axis.

Inserting F̂ (x) and Ê`(x, y) into equation Eq. (A.5) yields the grand canonical partition
sum two homogeneous DNA strands. As described above, the asymptotic behavior of the
two strands is governed by the singularity of Ẑ(x, y) which is closest to the origin, subject
to the constraint that the ratio of the two strand length is fixed. Depending on whether
this singularity is the branch-cut induced by the polylogarithm or an isolated singularity
of Ŵ (x, y), the two strands are denatured or bound to each other. The phase behavior of
such systems is discussed in Sec. 2.6.

A.2. Pulling on repetitive DNA

When exerting a shear force to the DNA, we have to distinguish between ends where the
force is applied to and the unstretched ends. From now on, we model the ssDNA by
the freely jointed chain (FJC) model, neglecting self-avoidance. Furthermore, we give all
energies relative to unconstrained single strand. Consequently, for unstretched ends we
have F2(n) = 1 irrespective of the length n. The transformed F̂2(x) is given by (1− x)−1.
The free energy of the DNA molecule in the external force field is given by the product of
an effective length L and the magnitude of the force. This effective length can be calculated
separately for the single stranded ends and the double stranded region in between. The
free energy of a segment of a FJC polymer with Kuhn length lk under a tension f is given
by the integral over all orientations of a segment

1

2

∫
e
− flk cos θ

kBT sin θdθ =
kBT

flk
sinh

(
flk
kBT

)
. (A.12)

The free energy per monomer of length `s is thus given by f · ¯̀s = `s
lk

ln
(

kBT
flk

sinh
(

flk
kBT

))
,

where ¯̀
s is an effective length. The contribution of stretched ssDNA of length n is there-

fore F1(n, f) = en¯̀
sf = δs

n and its z-transform reads F̂1(x, f) = (1 − xδs)
−1. dsDNA is
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sufficiently stiff and long, such that we can assume that its completely aligned, yielding a
free energy per base pair f ·`d. Together with the binding free energy the statistical weight
of a base pair is given by q = ef`d+εb = δdq0. The statistical weights of loops within the
sequence is a bit more subtle to calculate. We assume, that the projected length of a loop
is given by the length the shorter arm would have when in a double helix. As loop cost
function, we use E`(n, m, f) = g2e`d min(n,m)f = g2δd

min(n,m), where g2 accounts for loop
initiation and the exponential for the stretching energy. The two variable z-transformation
of this quantity is a bit laborious and yields

Ê`(x, y, f) =
g2

1− δdxy

(
x

1− x
+

y

1− y
+ δd

)
(A.13)

Inserting the different functions for loop cost and single strand contributions in Eq. (A.5)
yields the grand canonical partition sum for sheared DNA. The single strand factors have
obvious singularities at x = 1, y = 1, x = δs

−1 and y = εb
−1, corresponding to no

stable binding and completely stretched single strand, respectively. At low forces, however,
Ŵ (x, y) has an additional singularity at (x∗, y∗) corresponding to a state where the two
strands bind with maximal overlap. The transition from this bound state the stretched
state occurs when (x∗, y∗) = (δs

−1, δs
−1). In the limit of high loop cost the contribution

Ê`(x, y, f) in the denominator can be neglected and it is easily seen that the singularity
is found at x∗y∗ = δdq0. The transition to the open state occurs at x∗y∗ = δs

−2 = δdq0,
which is yields fc = εb

2¯̀
s−`d

. At finite loop cost the double stranded region is stabilized by
the combinatorial entropy of the different double stranded conformations. Typically, this
contribution is small.

A.2.1. Determining loop densities.

In Sec. 2, it was argued that the sliding velocities can be calculated from the pseudo-
equilibrium loop densities, which in turn can be calculated from the proper equilibrium
properties of a suitably chosen system. This system cannot be a double strand with a
shear force applied, since at equilibrium in the supercritical regime, there is no double
stranded region and no loop density can be defined. The argument leading to the pseudo-
equilibirium density was, that the two strands move slowly relative to each other, such
that the densities at the ends equilibrate. We now idealize this assumption, by attaching
both strands to a wall at one end, and apply a force to the longer strand at the other end,
at illustrated in Fig. A.2. The partition sum of this system is given by

Ẑ(x, y) = F̂s(x)F̂u(y)Ŵ (x, y), (A.14)

where the stretched single strand contributes F̂s(x) = (1 − xδs
−1), the unstretched single

strand F̂u(y) = (1− y)−1 and Ŵ (x, y) is the same as above. Given the complete partition
sum, we can now calculate the average number of base pairs via

〈Nbp〉 =
∂ ln Ẑ(x, y)

∂ ln q
. (A.15)
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f

Figure A.2: Using a double strand attached to a wall, we can calculate the loop densities on the
stretched and unstretched strands, even for f > fc.

Furthermore, we can calculate the number of nucleotides on the upper and lower strand
inside the double helical region by

〈Nu〉 =
∂ ln Ŵ (x, y)

∂ ln x
and 〈Nl〉 =

∂ ln Ŵ (x, y)

∂ ln y
. (A.16)

Similarily, we can calculate the average number of loops inside the double helical region by
differentiating ln Ẑ(x, y) with respect to 2 ln g. From these quantities the loop densities,
the stored length and the mean loop size are readily calculated.



B. Generalized Kramers-Langer rates

This appendix provides a detailed derivation of the generalized Kramers-Langer-Theory
presented in Sec. 3.5. The derivation is kept general and we refer the reader to Sec. 3.5 or
the publication reprinted in Sec. 3.8 for a concrete application. In 1969, J. Langer published
a generalization of the celebrated Kramers’ formula for thermally activated escape from
a one-dimensional potential well to barrier crossing processes in many dimensions [114].
A concise and clear derivation of this formula can be found in ref. [107]. The Langer
formula, as presented by Hänggi et al.[107], assumes a constant mobility matrix in the
relevant saddle point region. However, in many systems and especially in those described
by generalized coordinates, this assumption cannot be made. Here, we seek to incorporate
the configuration dependence of the mobility matrix into the Langer formula.

The escape rate out of a meta-stable potential well separated from a stable region by
a unique saddle point is given by ratio of the probability current over the saddle point
and the population inside the well. The evolution of the probability density P({η}) is
determined by the Fokker-Plank equation (FPE) ∂tP({η}, t) = −∇ · j({η}, t), where the
flux density j({η}, t) is given by

ji({η}, t) = −
[
Mij

∂V ({η})
∂ηj

+ kBTMij∂j

]
P({η}, t), (B.1)

The matrix M is the mobility matrix which in general depends on the configuration {η}
and V ({η}) is the potential energy. We consider only the purely diffusive case and neglect
any symplectic contributions to M, which is justified since the applications in mind are
completely overdamped. Let us now assume that particles are injected into the meta-stable
well at a constant rate and removed from the stable region. In this case, P({η}) tends to
a steady state, with a distribution that is very close the equilibrium distribution inside the
meta-stable well, and which vanishes beyond the saddle where particles are removed. This
steady state distribution carries a probability flux density out of the meta-stable well into
the region where particles are removed. Obviously, the total flux integrated over any surface
separating the insertion site from the absorbing boundary is equal to the rate of particle
insertion. The non-trivial task is to relate this flux to the population inside the meta-stable
well, i.e the number of particles that accumulate before the steady state is attained. To
this end, we solve the FPE in the vicinity of the saddle point where the probability flux
is concentrated to a narrow channel, and match this solution to the approximate pseudo-
equilibrium solution inside the meta-stable region. The size of the relevant saddle point
region is determined by the curvature of the potential energy at the saddle point. Within
this region, we can expand the potential energy, resulting in the simple FPE

∂i [MijEjkηk + MijkBT∂j]P({η}) = 0, (B.2)
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where E is the Hessian of the energy near the saddle point. Since we need to match the
solution near the saddle point to the equilibrium distribution inside the well, we rewrite
P({η}) in the form P({η}) = Peq({η})ζ({η}), where Peq({η}) is the equilibrium distribu-
tion. Using this ansatz we can decompose the above equation into the equations

∂iζ({η}) [MijEjkηk + kBTMij∂j]Peq({η}) = 0

∂iPeq({η})kBTMij∂jζ({η}) = 0,
(B.3)

the first of which is trivially fulfilled since it includes the current of Peq({η}).
If the mobility matrix changes significantly inside the saddle point region, its variation

has to be taken into account. Here, we seek to incorporate this variations by expanding
the mobility matrix about the saddle point and calculate the correction to the rate. Each
entry of the mobility matrix M can be expanded separately as

Mij = M0
ij +

∂Mij

∂ηk

ηk +
1

2

∂2Mij

∂ηk∂ηl

ηkηl +O(η2), (B.4)

where ηk are the deviations from the saddle. For symmetry reasons the linear dependence
on ηk will often vanish and for the moment we will drop the linear term. In short, we have
Mij = M0

ij + 1
2
Aij

klηkηl with the symmetric matrix Aij for each entry of M. Inserting this
expansion into Eq. (B.3) yields

[−EikMij + kBTBjk] ηk∂jζ({η}) + kBTMij∂i∂jζ({η}) = 0 , (B.5)

where the matrix B is defined by

∂iMij =
1

2

∑
i

(
δilA

ij
lkηk + δikA

ij
lkηl

)
=
∑

i

Aij
ikηk = Bjkηk. (B.6)

Bklηl is the noise induced drift due to the configuration dependence of the mobility matrix
and which is absent in the conventional Langer theory. To solve this equation, we employ
the ansatz [107]

ζ({η}) =
1√

2πkBT

∫ ∞

u

exp(− z2

2kBT
)dz, (B.7)

where the lower integration boundary depends on ηk via u =
∑

i Uiηi, where the vector U is
to be determined by Eq. (B.5). This function interpolates smoothly between one inside the
meta-stable region and tends to zero beyond the saddle point and therefore automatically
satisfies the matching condition. Inserting this ansatz into Eq. (B.5) yields, after a bit of
algebra

[Uj(−MjiEik + kBTBjk)− UiMijUjUk] ηk = 0 (B.8)

Since this equation should hold for any set ηk, the term in brackets itself has to vanish.
Eq. (B.8) is equivalent to equation 4.71 in ref. [107], but includes the additional drift
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Figure B.1: The slope of stochastic separatrices at the saddle point changes with temperature.
The slope calculated from the left eigenvector of −M0

jiEik + kBTBjk (solid lines) agrees with
simulation results (symbols) within their uncertainty.

kBTBjkηk induced by the configuration dependence of M. In this equation, the explicit
configuration dependence of Mij = M0

ij +
1
2
Aij

klηkηl is of second order in ηk and can therefore
be neglected. After substituting M0

ij for Mij, Eq. (B.8) is an eigenvector equation for U,
which determines U to be a left eigenvector of −M0

jiEik +kBTBjk. The norm of U is fixed
by the condition λ = UiM

0
ijUj, where λ is the eigenvalue corresponding to the eigenvector

U. In particular, this condition requires λ to be positive. The necessity of the noise-
induced drift term is illustrated in Fig. B.1, where the stochastic separatrix is plotted for
different temperatures. The vector U has an appealing interpretation: U is perpendicular
to the stochastic separatrix, i.e. the hyperplane where the probabilities to relax either into
the meta-stable or stable region are both equal to 0.5. The right eigenvector to the same
eigenvalue points into the direction of the diffusive flux at the transition state [118]. The
right and left eigenvectors coincide if M is diagonal.

B.1. The flux over the barrier

Given the approximate steady state solution of the FPE, the probability flux reads

ji = −
[
Mij

∂V ({η})
∂ηj

+ kBTMij∂j

]
P({η}) =

kBTPeq({η})√
2πkBT

exp(− u2

2kBT
) MijUj, (B.9)

where Mij is the full configuration dependent mobility matrix. The total flux out of the
meta-stable region can now be calculated by integrating the flux density over a surface
surrounding that region. To calculate the total flux over the saddle, we integrate the flux
density over the plane given by the separatrix u = 01 (cf. Appendix of ref. [107]). Since
the flux is strongly concentrated at the saddle point, we can again expand the potential
energy and the mobility matrix. The resulting integral reads

J = Z−1

√
kBT

2π

∫
u=0

ds

|U|
e
− 1

2

Eijηiηj
kBT Ui

(
M0

ij +
1

2
Aij

klηkηl

)
Uj , (B.10)

1Any plane that separates the meta-stable well from the absorbing boundary can be used, the separatrix
is a particularly convenient choice.
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where Peq({η}) = Z−1e
− 1

2

Eijηiηj
kBT was substituted for the equilibrium distribution. To fa-

cilitate the evaluation of this surface integral it is helpful to choose suitable coordinate
system. Let the direction of the first coordinate coincide with the vector U, which is then
obviously of the form Ui = δi1U1. In this particular system of coordinates, the surface
integral reduces to the integral over the coordinates 2, . . . , N , with η1 = 0.

J = Z−1

√
kBT

2π

∫
η1=0

∏
l>1

dηl e
− 1

2

Eijηiηj
kBT U1

(
M0

11 +
1

2
A11

ij ηiηj

)
(B.11)

The integral over the first term in parenthesis is readily evaluated, yielding

J0 = Z−1 λ

U1

√
kBT

2π

1

|Ê11/(2πkBT )| 12
, (B.12)

where Ê11 is the matrix E with the first column and row removed2. The normalization
of U has been used to substitute λ

U1
for U1M

0
11. The integral of the second term can be

evaluated by choosing the remaining coordinates such that Ê11 is diagonal.

J corr = Z−1

√
kBT

2π

∫
η1=0

∏
l>1

dηl U1
1

2
A11

ij ηiηje
− 1

2
Eijηiηj

= Z−1

√
kBT

2π

U1

2|Ê11/(2πkBT )| 12
∑
l>1

A11
ll

µ̂l

(B.13)

where the diagonal elements of the reduced matrix Ê11 are denoted by µ̂2, . . . , µ̂N . To
express the determinant of Ê11 in the denominator through the determinant of the full
Hessian of the potential energy, we need the relation

UiE
−1
ij Uj =

1

λ
Ul(−M0

lkEki + kBTBli)E
−1
ij Uj = −1 +

kBT

λ
UlBlie

−1
ij Uj = −1 + γ, (B.14)

where γ is a solely due to the noise induced drift. Using the well known formula for inverse
matrices E−1

kl = 1
|E|(−1)k+l|Êkl|, we have |Ê11| = |E|E−1

11 = |E| = −|E|1−γ
U2

1
. Putting

everything together, we find for the total flux out of the meta-stable well

J = Z−1 λ

2π

1

|E/(2πkBT )| 12 (1− γ)
1
2

(
1 +

1

2M11

∑
l>1

A11
ll

µ̂l

)
, (B.15)

The population inside the meta-stable region can be calculated within a Gaussian approx-
imation

N = Z−1

∫
dηe

−
1
2 Ew

ijηiηj−∆U

kBT =
e

∆U
kBT

Z|Ew/(2πkBT )| 12
, (B.16)

2The reduced matrix Ê11 is positive definite and symmetric.
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where Ew is the Hessian of the potential energy at the bottom of the meta-stable potential
well. Dividing the flux by the population inside the meta-stable well yields the generalized
Langer rate

k =
J

N
=

λ

2π

√
|Ew|

|Et|(1− γ)
e
− ∆U

kBT

(
1 +

1

2M11

∑
l>1

A11
ll

µ̂l

)
, (B.17)

where we labeled the the Hessian at the transition state with a superscript t. The different
terms of this rate are easily interpreted. The ratio of the determinants, the exponential
factor and the correction due to noise induced drift are the probability of finding the system
near the transition state. The eigenvalue λ is the relaxation rate from the saddle. The term
in parenthesis quantifies by what amount the mobility of the reaction coordinate averaged
over the relevant window surrounding the saddle differs from the mobility at the saddle
point itself. Note, that the latter correction term is given in the coordinate system where
η1 coincides with the direction of the reaction coordinate.

B.2. Stochastic dynamics of constrained systems

Many microscopic systems such as polymer chains or proteins have some degrees of freedom
that vary in a large range and others that are confined to a very narrow range. Typically,
the former are bending angles while the latter are linear dimensions. It is therefore tempt-
ing to replace the strongly confined degrees of freedom by rigid constraints and describe
the system with generalized coordinates corresponding to the large amplitude degrees of
freedom. Such a natural choice of coordinates is often helpful to elucidate the essential
features of the system. Eliminating strongly confined degrees of freedom has also prac-
tical advantages, since the steep confining potentials require very small simulation time
steps. Unfortunately, the limiting procedure to eliminate the constrained coordinates is
ambiguous and the subtle difficulties arise where none would be expected. Quite generally,
intuition is not a very good guideline when it comes to stochastic dynamics is curvilinear
coordinate systems and things go awfully wrong if insufficient care is taken. These diffi-
culties not only affect the dynamics of the system, but also the equilibrium distribution of
the spatial coordinates. To illustrate this, let us consider a system with constrained and
unconstrained degrees of freedom and compare their equilibrium distribution using rigid
or flexible constraints. The Hamiltonian of the rigid version is given by

H({pi}, {qi}) =
1

2
pktkl({qi})pl + V ({qi}), (B.18)

where {qi} are the generalized coordinates, {pi} are the conjugate momenta, tkl({qi})
is the quadratic form of the kinetic energy3, and V ({qi}) is the potential energy of the
unconstrained coordinates. The corresponding energy function for the system with flexible
constraints in cartesian coordinates is

H({ẋi}, {xi}) =
∑

i

mi

2
ẋ2

i + V ({qi({xi})}) + U({xi}), (B.19)

3 tkl({qi}) is the inverse of the mass matrix in generalized coordinates.
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where mi are the masses and U({xi}) is the confining potential for the stiff directions.
Submerged in a heat bath, the equilibrium distribution of the {qi} and their conjugate
momenta {pi} is the Boltzmann distribution. The same holds true for the cartesian coor-
dinates. However, after integrating over {pi}, the distribution of the {qi} alone is no longer
of Boltzmann form, but reads

Prigid({qi}) ∼
1

|tkl({qi})|
1
2

e
−V ({qi})

kBT (B.20)

Integrating over momenta in cartesian coordinates is trivial. To compare the distribution
of the spatial coordinates in both systems, lets express the cartesian coordinates by the
unconstrained coordinates {qi} and the coordinates along the constraints {ri}. Integrating
over the {ri} yields

Pflex({qi}) ∼ g({qi})e
−V ({qi})

kBT , (B.21)

where g({qi}) is the left-over of the Jacobian determinant of the coordinate transformation.
Even for very simple systems, Pflex({qi}) and Prigid({qi}) are different [119, 120, 121],
although the potential energies are the same. When introducing the confining potential
U({xi}) we assigned a small range to each constrained coordinate, which is independent
of the {qi}. We then integrated over constrained momenta and coordinates, resulting in a
distribution that does not favor any region of the space of {qi}’s apart from the volume
element of the {qi}-coordinate system. When using rigid constraints, we ignore momenta
of the constrained direction from the start. The integration over the conjugate momenta
reduces the complete phase space to a subspace where some regions are favored over others.
Loosely speaking, in these regions the conjugates momenta have a greater number of states
available than in other regions.

We are interested in the stochastic dynamics of constrained systems, but we want to
interpret them as stiff limits of physical springs since there are no truly rigid constraints in
classical physics. If even the equilibrium properties of constrained systems are ambiguous
or incompatible with the physical picture, dynamical features certainly are too. In the case
of overdamped dynamics, however, there is a remedy to this problem. The difference be-
tween stiff and rigid constraints can be compensated by a pseudo potential [119, 122, 123].
Here, we apply a somewhat reverse, but equivalent strategy. We impose an equilibrium
distribution on the generalized spatial coordinates {qi} of the form

Peq({qi}) ∼ e−Ω({qi})e
−V ({qi})

kBT , (B.22)

where V ({qi}) is the potential energy of the system and Ω({qi}) accounts for obvious de-
pendencies of the volume element on the {qi}, e.g. Ω(θ) = − ln(sin θ) for three dimensional
spherical coordinates. The key observation now is, that the choice of the equilibrium dis-
tribution and the deterministic overdamped relaxation fixes the Fokker-Planck equation
governing the evolution of the probability distribution. The equations describing the de-
terministic relaxation of constrained systems can be most conveniently obtained from the
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Euler-Lagrange equations including friction [124], which in the overdamped limit simplify
to

∂P ({qi}, {q̇i})
∂q̇j

= −∂V ({qi})
∂qj

. (B.23)

Assuming linear friction, the dissipation function P ({qi}, {q̇i}) is given by the kinetic energy
with all masses mi substituted by the particle mobilities µi. Hence, P ({qi}, {q̇i}) is a
quadratic form in {qi} and equation Eq. (B.23) can be solved for {q̇i}

q̇i = −Mij({qi})
∂V ({qi})

∂qj

, (B.24)

where M({qi}) is the configuration dependent mobility matrix given by the inverse of
the friction matrix P({qi}). The system obeys detailed balance, requiring that the net
probability flux vanishes for Peq({qi})

jk =

[
Fk + Dkl

∂

∂ql

]
Peq({qi}) = 0. (B.25)

Here, the Fk are general drift terms for each coordinate and Dkl is the diffusion matrix.
The drift terms have to reduce to the deterministic relaxation in the low temperature limit
and can be written in the form Fk = −Mkl∂lV ({qi}) + F noise

k . F noise
k are stochastic drift

terms absent in the low temperature limit. Since the potential V ({qi}) is arbitrary for
a particular system with mobility matrix M, the fluctuation dissipation theorem Dkl =
kBTMkl follows immediately. This identification fixes the noise induced drift forces to
F noise

k = −kBTMkl∂lΩ({qi}), which vanishes at zero temperature as required. The full
Fokker-Plank equation of our system is therefore given by

∂

∂t
P({qi}, t) =

∂

∂qk

Mkl({qi})
[
∂lV ({qi}) + kBT∂lΩ({qi}) + kBT

∂

∂ql

]
P({qi}, t) (B.26)

From this Fokker-Plank equation, a simple procedure leads to the Langevin equations,
which are to interpreted in the Ito sense [87]. Since M is positive definite and symmetric,
a matrix B with kBTMij = BilBjl can be found, and the stochastic dynamics of the qi is
governed by the equation

q̇k = −Mkl({qi}) [∂lV ({qi}) + kBT∂lΩ({qi})] + kBT
∂

∂ql

Mkl({qi}) +
√

2Bkl({qi})ηl, (B.27)

where ηl is a vector of Gaussian white noise terms with unit variance. Admittedly, the sim-
ulation of these equations is computationally expensive, since the mobility matrix has to be
calculated in each time step by inverting the friction matrix. Hence the computational cost
increases with the third power of the system size. A different approach to the simulation
of constrained systems is to over-parameterize the system using cartesian coordinates and
project the solution to the appropriate subspace [125, 126]. These algorithms run in linear
time, since the matrix that needs to be inverted is a band matrix [127]. Unfortunately,
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these algorithms are terribly complicated and disguise the physical nature of the problem
by a mind-boggling formalism. Admittedly, I was not able to or did not invest enough
time to understand them. Therefore I want by no means claim that the content of this
chapter is an optimal solution, nor do I claim it to be original. On the other hand, if both
approaches are correct, there should be a way to reconcile them.

B.2.1. Langevin equations for a multisegment chain

A chain in two dimensions can be described by a set of N − 1 angles with respect to some
suitably defined reference axis, and the position of one bead, with respect to which all
other coordinates are measured. Here, we assume that the first bead (bead zero) is fixed,
which plays the role of the reference frame taken to be the origin. Now, the position of
bead i is given by

xi =
i∑

j=1

rj cos φj yi =
i∑

j=1

rj sin φj (B.28)

Its squared velocity is given by

ẋ2
i + ẏ2

i =
i∑

k,l=1

rkrlφ̇kφ̇l(sin φk sin φl + cos φk cos φl) =
i∑

k,l=1

rkrlφ̇kφ̇l cos(φk − φl)

=
i∑

k=1

r2
kφ̇

2
k +

i∑
l<k

rkrlφ̇kφ̇l cos(φk − φl) +
i∑

k<l

rkrlφ̇kφ̇l cos(φk − φl)

(B.29)

Hence, the dissipation function for unit friction coefficient of each bead is given by

P ({φ̇i}) =
1

2

N∑
i=1

ẋ2
i + ẏ2

i

=
1

2

N∑
k=1

(N − k + 1)r2
kφ̇

2
k +

N∑
k=1

k−1∑
l=1

(N − k + 1)rkrlφ̇kφ̇l cos(φk − φl)

(B.30)

and the elements of the friction matrix P are

Pii = (N − i + 1)r2
i and Pij = (N − i + 1)rirj cos(φi − φj) i > j. (B.31)

In general, the mobility matrix M = P−1 has to be computed numerically, which makes
the algorithm computationally expensive. The Langevin equations for the angles φj read

φ̇j = −Mjl
∂V ({φi})

∂φl

+ kBT
∂Mjl

∂φl

+
√

2Bjlηl, (B.32)

where Bij is chosen such that BijBkj = kBTMik.
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Glossary

A Adenine, page 2.

C Cytosine, page 2.

G Guanine, page 2.

T Thymine, page 2.

AFM Atomic force microscope, page 13.

Codon The genetic code associates with three consecutive bases in DNA
one specific amino acid. One element of the genetic code is known
as codon.

DNA Deoxyribonucleic acid, page 1.

dsDNA Double stranded DNA.

FCS Fluorescence Correlation Spectroscopy.

FJC Freely jointed chain.

FRET Förster Resonance Energy Transfer, page 71.

Genetic code Since there are more amino acids than bases, a multi-letter code is
used to store an amino-acid sequence. Each amino acid is encoded
by three consecutive bases, known as codons. The genetic code is
redundant.

Genome The complete hereditary information of an organism encoded in
DNA.

LexA A protein that binds strongly to specific DNA sequences.

Microsatellite Simple sequence repeat.

mRNA Messenger RNA. Messenger RNAs are transcripts of genes that are
translated into protein by the ribosome.

Nucleotide Nucleotides are the elementary building blocks of RNA or DNA.
They consist of a sugar, one or several phosphates and a base,
page 2.
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Okazaki fragment Piece of DNA polymerized continuously during piecewise replica-
tion of the lagging strand, page 19.

PCR Polymerase chain reaction. By PCR small amounts of DNA can be
amplified rapidly and cheaply.

Polymerase Protein complex that transcribes DNA into a complementary RNA
or DNA strand.

PS-models Poland-Scheraga models. A class of models for base pairing config-
urations of dsDNA, page 7.

Ribosome The ribosome is a RNA-protein complex that translates the mRNA
into proteins.

RNA Ribonucleic acid. The structure of RNA and DNA are very simi-
lar. RNA nucleotides are made from a the sugar ribose instead of
desoxyribose. The base complementary to adenine is uracil instead
of thymine.

Short tandem repeat Simple sequence repeat.

ssDNA Single stranded DNA.

SSR Simple sequence repeat. A multi-fold repetition of a short (one to
six base pairs) motif, page 18.

Stacking interactions Consecutive base pairs in dsDNA stack on top of each other and
thereby drive water out of the inter-base region. These stacking in-
teraction are a major contribution to the DNA binding free energy,
page 3.

TF Transcription factor. Transcription factors are specialized proteins
that bind to DNA and to regulate gene expression.

WLC Worm-like chain, page 13.
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bedanken. Prof. Herbert Wagner bin ich für unzählige gute Ratschläge und interessante
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