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For we must suppose that the wind in the earth has effects similar to those of 

the wind in our bodies whose force, when it is pent up inside us, can cause tremors and 

throbbings (…)  

 

      Aristoteles, Meteorologica, Book II 
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Zusammenfassung 

 

Vulkanausbrüche stellen eine der am schwierigsten vorhersagbaren 

Naturkatastrophen dar. Die Unwägbarkeiten beziehen sich dabei sowohl auf den 

Zeitpunkt eines Ausbruchs als auch auf dessen Ausprägung und Heftigkeit. Die 

Prozesse, die vor oder während eines Vulkanausbruchs ablaufen, werden durch eine 

Vielzahl physikalischer und chemischer Parameter beeinflusst. Die Tatsache, dass die 

meisten dieser Parameter in irgendeiner Form voneinander abhängen und sich somit 

gegenseitig beeinflussen, führt zu einem komplexen Netzwerk an Einflussgrößen, das 

nicht mehr rein theoretisch erfasst werden kann. Die Ergebnisse experimenteller 

Arbeiten an natürlichen Materialien gewinnen deshalb, insbesondere als Datengrundlage 

für numerische Eruptionsmodelle, zunehmend an Bedeutung. Solche Modelle stellen 

gerade zu Zeiten, in denen sozio-ökonomische Faktoren zu einer zunehmenden 

Bevölkerungsdichte und Agglomeration von Industrie in direkter Umgebung von 

Vulkanen führen, ein effektives Instrument zur Vorhersage und Risikoabschätzung dar.  

Die Porosität eines Magmas und dessen Gaspermeabilität sind Parameter, die 

einen beachtlichen Einfluss auf den Charakter einer Eruption haben können. Detaillierte 

Untersuchungen der Permeabilität vulkanischer Gesteine und ihrer Abhängigkeit von 

Porosität und texturellen Gegebenheiten einerseits, und ihres Einflusses auf die 

Magmenfragmentation andererseits, sind deshalb für das Verständnis eruptiver Prozesse 

grundlegend. Gerade die Kombination von Feldbeobachtungen und Laborarbeit 

ermöglicht sowohl die Aufstellung einer statistisch relevanten Datenmenge, als auch die 

experimentelle Quantifizierung von Zusammenhängen verschiedener Gesteins-

parameter. 

 

Das Hauptaugenmerk dieser Arbeit lag auf der experimentellen Bestimmung der 

Gaspermeabilität vulkanischer Gesteine. Um dabei hoch-turbulente vulkanische 

Entgasungsprozesse zu simulieren, wurden die Versuche mit einer instationären 

Meßmethode nach dem Stoßrohr-Prinzip (shock tube) durchgeführt: Eine durch das 

kontrollierte Öffnen von Berstscheiben hervorgerufene, quasi-instantane 

Dekompression in einer Autoklavenkammer oberhalb des Probenzylinders verursacht 

einen Druckgradient über die Probe. Dieser Gradient führt entweder zur Filtration des 
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noch unter Druck stehenden Gases unterhalb des Probenzylinders durch den Porenraum 

des Gesteins, bis auch in der unteren Autoklavenkammer Atmosphärendruck herrscht, 

oder, wenn der initiale Gasdruck über einem probenspezifischen Schwellenwert liegt, 

zur Fragmentation der Probe. Die aufgezeichnete Druckverlaufskurve der unteren 

Autoklavenkammer dient als Grundlage für die Berechnung zweier 

Permeabilitätskoeffizienten: Ein linearer Koeffizient k, der in etwa der Darcy-

Permeabilität eines laminar strömenden Fluids entspricht, und ein nicht-linearer 

Koeffizient C als Korrekturfaktor für das nicht-laminare Fließverhalten des Gases.  

Die Permeabilität eines porösen Gesteins hängt von einer Vielzahl textureller 

Gegebenheiten ab. Das effektiv für die Gasfiltration verfügbare Porenvolumen, d.h. die 

Gesteinsporosität Φ, spielt dabei eine wichtige Rolle. Da Filtration in vulkanischen 

Gesteinen jedoch ausschließlich durch miteinander verbundene Poren und Brüche 

stattfinden kann, kommt dem Grad der „Poren-Verbundenheit“ die ausschlaggebende 

Bedeutung zu. Dieser Grad wird wiederum von Faktoren wie Klüftigkeit des Gesteins, 

mittlere Porengröße, Porengrößenverteilung, Porenform, etc. beeinflusst. Aufgrund der 

Komplexität dieser Einflüsse ist es nahezu unmöglich, die Permeabilität von natürlichen 

Materialien theoretisch zu berechnen oder vorherzusagen. Empirisch-experimentelle 

Arbeit ist in diesem Gebiet deswegen unabdingbar. Durch mehr als 360 Versuche an 

112 Gesteinsproben verschiedener Herkunft, Zusammensetzung und Porentextur wurde 

mit dieser Arbeit eine umfassende Datenbasis an Permeabilitäts- und Porositätswerten 

für die Untersuchung verschiedenster Fragestellungen auf diesem Gebiet geschaffen. 

Der Zusammenhang zwischen Porosität und Permeabilität vulkanischer Gesteine 

ist in erster Linie durch eine enorme Streuung gekennzeichnet. Für denselben 

Porositätswert können Permeabilitätswerte in einem Bereich von vier Größenordungen 

auftreten. Dennoch konnten die in dieser Arbeit untersuchten Gesteine nach ihrer 

zugrundeliegenden Porengeometrie in zwei Gruppen mit unterschiedlichen 

Permeabilitäts-Porositäts-Trends klassifiziert werden. Der grundsätzliche Verlauf der 

beiden Trends konnte durch zwei verschiedene theoretische Modelle begründet werden: 

Bei niedrig-porösen Domgesteinen, bei denen Klüfte und stark deformierte und 

elongierte Poren einen übergeordneten Einfluss auf Entgasungsvorgänge haben, konnte 

der k-Φ-Trend mit Modellen zum Gasfluss durch kluftähnliche (zwei parallele 

Begrenzungsebenen) und kapillare Geometrien (Röhren) angenähert werden (Kozeny-

Carman-Gleichungen; k ~ Φn; 3 ≤ n ≤ 3,8). Bei hoch-porösen Gesteinen explosiven 

Ursprungs (Bimse, Schlacken, Brotkrustenbomben), bei denen der Gastransport 
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bevorzugt durch ein Netzwerk miteinander verbundener, mehr oder wenig 

kugelförmiger Blasen stattfindet, konnte die Filtrations-Theorie von vollständig 

„überlappbaren“ Hohlkugeln (fully penetrable spheres – FPS; k ~ (Φ-30)2) als Näherung 

verwendet werden.  

 

Die Permeabilität von Vulkaniten kann durch das Entstehen von Abkühlungs-

(Mikro-)Rissen post-eruptiv verändert werden und entspricht damit nicht mehr der 

ursprünglichen Magmenpermeabilität. Experimente bei hohen, magmatisch relevanten 

Temperaturen können daher Aufschlüsse über die „reale“ Gesteinspermeabilität liefern.  

Gasflussexperimente bei hohen Temperaturen stellen jedoch eine hohe technische 

Herausforderung dar. Die Abdichtung der Probe gegen die Autoklavenwand bzw. den 

Probenhalter entpuppte sich dabei als das am schwierigsten zu lösende Problem. 

Letztendlich konnten jedoch durch die Verwendung von gepresstem NaCl als Dichtung 

erste zufrieden stellende Ergebnisse erzielt werden. Der relativ niedrige Schmelzpunkt 

von Kochsalz (801 °C) erlaubte jedoch -unter Berücksichtigung gewisser 

Verunreinigungen (z.B. Wasser) und einer Sicherheitsmarge- nur Versuchstemperaturen  

bis ~750 °C. Das feinkörnige Salz wird in den Zwischenraum von Autoklav und 

Probenzylinder eingefüllt und regelmäßig mittels eines Stahlrohrs und einer Presse 

komprimiert. Während des Versuchs kann das Salz jederzeit nach Bedarf 

weiterkomprimiert werden, um eventuell auftretende Undichtigkeiten wieder 

auszufüllen. Die leichte mechanische Deformierbarkeit der Salzkristalle sorgt hierbei für 

eine stets kompakte, gasdichte Ummantelung der Probe. Die Messergebnisse von drei 

Domgesteinen zeigen eine zum Teil deutlich reduzierte Filtrationsrate bei hohen 

Temperaturen, ein Effekt, der größtenteils auf die höhere Gasviskosität zurückzuführen 

sein dürfte. Eine diesbezügliche Korrektur ergab für die Proben einen höheren 

Permeabilitätswert als bei einer bei Raumtemperatur durchgeführten Messung. Dies 

könnte ein Hinweis auf eine durch thermische Expansion bedingte Weitung der für den 

Gasfluss relevanten Porenverbindungen sein. Da jedoch die kompressive Kraft, die das 

Salz (durch die manuelle Nachkomprimierung einerseits und die thermische Expansion 

des Salzes andererseits) auf den Probenzylinder ausübt, bei diesen Versuchen eine 

unbekannte Größe darstellt, müssen die erzielten Ergebnisse unter Vorbehalt betrachtet 

werden. Die Kompression könnte, insbesondere bei Gesteinen mit ausgeprägten 

Kluftsystemen, Risse in einem unbekannten Maße verengen und somit einen - der 

thermischen Ausdehnung entgegenwirkenden - Einfluss auf die effektiv gemessene 
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Permeabilität haben. Der Vergleich von Permeabilitätswerten vor und nach dem 

Aufheizprozess und eine Langzeitmessung an einer peralkalinen (trachytischen) Probe 

legen nahe, dass bei den hier angewendeten Versuchsbedingungen keine permanenten 

Veränderungen der Porenstruktur (z.B. Kluftheilung) auftreten. 

 

Für die Modellierung eruptiver Prozesse ist der Einfluss der Permeabilität auf die 

Magmenfragmentation von besonderem Interesse. Insbesondere der 

Fragmentationsschwellenwert (fragmentation threshold), d.h. die physikalischen 

Rahmenbedingungen, bei denen ein poröses Magma Gasüberdruck nicht mehr allein 

durch Filtration abbauen kann, sondern in Partikel verschiedener Größe zerbricht, stellt 

diesbezüglich einen wichtigen Parameter dar. Dieser Schwellenwert wurde lange Zeit 

allein als abhängig vom Erreichen einer bestimmten Porositätsstufe angesehen (z.B. 

Sparks 1978, Thomas et al. 1994, Gardner et al. 1996); neuere experimentelle Arbeiten 

proklamieren dagegen eine Kombination von Gasüberdruck und Porosität als 

bestimmende Faktoren (Spieler et al. 2004b). Mit einer Serie kombinierter 

Permeabilitäts- und Fragmentationsvesuche konnte in der vorliegenden Arbeit 

zusätzlich ein beträchtlicher Einfluss der Permeabilität auf den 

Fragmentationsschwellenwert, insbesondere bei hoch-permeablen Gesteinen, 

experimentell nachgewiesen werden. Dieser Einfluss konnte in einer analytischen 

Beziehung zwischen Gasüberdruck, Gesteinsporosität und Permeabilität quantifiziert 

werden. Mit dieser Gleichung können nun numerischen Modellen von Conduit-

Prozessen, wie der Übergang von effusivem zu explosivem Verhalten, realistischere 

Input-Parameter zur Verfügung gestellt werden. Diese können damit einen verbesserten 

Beitrag zur Risiko-Evaluierung explosiver Vulkane leisten.  

 

Ein weiterer Aspekt der vorliegenden Arbeit bestand in der Analyse von Dichte- 

und Porositätsdaten von insgesamt acht zirkum-pazifischen Vulkanen, die teils im 

Rahmen von Feldkampagnen selber gemessen, teils aus der Literatur entnommen 

wurden (Hoblitt & Harmon 1993, Kueppers 2005). Bei den untersuchten Vulkanen 

handelt es sich um St. Augustine (Alaska, USA), Bezymianny (Kamtschatka, Russland), 

Colima (Mexiko), Merapi, Kelut, Krakatau (alle Indonesien), Unzen (Japan) und Mt. St. 

Helens (Washington, USA). Um eine statistisch aussagekräftige Dichteverteilung zu 

erhalten, wurde im Gelände die Dichte von durchschnittlich 60 - zufällig ausgewählten - 

Gesteinsproben pro Messpunkt mittels Archimedischem Prinzip (Messung des Gewichts 
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der Probe in Luft und ihres Auftriebs in Wasser) bestimmt (Kueppers et al. 2005). Pro 

Vulkan wurden zwischen drei und 37 Messpunkte bearbeitet. Aus der Rohdichte eines 

Gesteins kann bei bekannter Dichte der reinen Festphase des Materials (Matrixdichte 

oder Reindichte) dessen Porosität bestimmt werden. Die Matrixdichten wurden an 

Pulvern repräsentativer Proben im Labor mittels He-Pycnometrie bestimmt.  

Die Resultate der einzelnen Messpunkte und der Gesamt-Porositätsdaten eines 

Vulkans wurden in Histogrammen mit einer Häufigkeitsverteilung der unterschiedlichen 

Porositätsklassen in 5 %-Schritten dargestellt.  Die vergleichende Interpretation dieser 

Porositätsverteilungen erlaubt (a) Aussagen über regionalspezifische Eruptions- und 

Ablagerungsmechanismen, wenn die einzelnen Probenpunkte eines Vulkans 

untereinander verglichen und analysiert werden, und (b) Aussagen über generelle, 

überregionale Zusammenhänge bezüglich Eruptionscharakteristika und Explosivität, 

wenn die Gesamtdatensätze mehrerer Vulkane betrachtet werden. In diesem 

Zusammenhang interpretierbare Parameter sind die generelle Form (z.B. unimodal-

bimodal) und die Varianz (d.h. die „Breite“) einer Verteilungskurve, sowie die Werte 

der Häufigkeits-Maxima und der Porositäts-Durchschnitte.  

Anhand dieser Parameter konnten die acht untersuchten Vulkane in drei 

übergeordnete Eruptions-Klassen eingeordnet werden: (1) Dom-bildende Vulkane, 

deren Haupt-Aktivitätsform aus gravitativ induzierten Block- und Asche-Strömen 

(block-and-ash-flow oder nuée ardente) und seltenen explosiven Events besteht 

(Merapi, Unzen, Colima), (2) Kryptodom-bildende Vulkane, bei denen ein plötzliches 

dekompressives Ereignis (z.B. Hangrutsch) einen explosiven Ausbruch (lateral oder 

directed blast) hervorgerufen hat (Mt. St. Helens, Bezymianny), und (3) explosive, 

subplinianische bis plinianische Eruptionen mit pyroklastischen Strömen (Kelut, 

Krakatau, St. Augustine).  

Des Weiteren wurden mögliche Zusammenhänge zwischen den mittleren 

Porositätswerten einer Eruptionsablagerung und der Explosivität eines Ausbruchs 

untersucht. Als Messgrößen für die Explosivität wurden dabei zwei verschiedene in der 

Literatur beschriebene Indizes verwendet: 

- Der Volcanic Explosivity Index (VEI) nach Newhall & Self (1982), eine 

größtenteils auf dem Gesamtvolumen des bei einem Ausbruch (oder während 

einer längeren Eruptionsphase) geförderten Materials basierende Kennzahl 

zwischen 0 (= rein effusiv) und 8 (= katastrophal explosiv), und 
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- die Eruption Magnitude (M) nach Pyle (1995, 2000), der die Masse des 

geförderten Materials als Grundlage dient. 

Während der Abgleich der Porositätsdaten mit dem VEI einen eher qualitativen, 

positiven Zusammenhang mit allerdings ungenauer Korrelation bei niedrig-porösen und 

-explosiven Förderprodukten aufweist, konnte durch Berechnung der Eruption 

Magnitude (unter Verwendung der in dieser Studie ermittelten Porositätswerte) eine 

insgesamt bessere Korrelation erreicht werden. Abweichungen von einem linear 

ansteigenden Trend können dabei durch die jeweiligen Eruptionscharakteristiken (z.B. 

Kryptodom, phreatomagmatische Aktivität) erklärt werden.  
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1 Introduction 

 

1.1 Explosive volcanism – threat and challenge 

The relationship between mankind and volcanoes is of ambivalent nature. On the 

one hand, people have always benefited from the fertility of the rich volcanic soils and 

the amenities of hot springs, and therefore often settled in proximity of volcanoes. But 

every now and then, the apparently peaceful landscapes tend to turn into vigorously 

exploding volcanoes, responsible for lethal catastrophic events that may destroy human 

lives, buildings, and infrastructure. Several of the most serious natural disasters in 

history are correlated to explosive volcanic eruptions – either directly by pyroclastic 

flows and ash fall, or indirectly through the effect of tsunamis (e.g. Krakatau 1883, with 

more than 36,000 casualties) or the impact of volcanic aerosols on climate and 

agriculture (e.g. Tambora 1815, with at least 117,000 casualties, Sigurdsson 2000). Just 

as the powerful consequences of these phenomena have always fascinated and 

frightened people, their causes have been subject to speculation and interpretation since 

early times of human civilization. 

At the beginning of the 21st century, approximately 10 % of human population live 

within a 100 km radius of historically active volcanic centres, concurrently a 

considerable amount of capital is concentrated in those areas. Explosive volcanic 

eruptions generate natural hazards that can have devastating effects on human life, and 

the environmental status quo. The damage to infrastructure can lead to massive 

international capital flow with a social and economic hangover. For risk minimization 

and the prevention of casualties caused by the various effects of such an event it is 

therefore essential to understand mechanistically how a volcano works and why (and, 

even more important, when) it “chooses” to explode.  

As of today, the most applicable methods for volcanic hazard assessment are 

provided by seismic or chemical monitoring of eruptive precursors. But considering the 

enormous speed of progress in computational technologies, numerical modelling is 

becoming an increasingly important tool to predict the course and consequences of an 

eruption. If provided with a framework of profound and realistic physico-chemical 
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parameters, such models can now deliver helpful insights even into extremely complex 

physical processes.  

An explosive volcanic eruption as one of such processes derives its complexity 

from the interaction of a vast number of more or less interdependent physico-chemical 

parameters. Chemical composition, pressure, and temperature govern magma 

crystallinity, volatile exsolution, and viscosity. The latter in turn influence magma 

ascent and bubble growth dynamics. Overpressure development in volatile phase 

depends on the structure of a pore framework and its gas permeability. An efficient 

discharge of the gaseous phase again has an impact on magma viscosity and all the 

related processes and properties (e.g. Gilbert & Sparks 1998, Dingwell 1998b, Cashman 

et al. 2000).  

It can be regarded as a primary task of experimental volcanology to contribute a 

basis of realistic data that may serve as input parameter for numerical models. This 

especially accounts for those natural processes, which are eluded from direct 

observation, or are too complex for a purely theoretical treatment. Magmatic 

fragmentation is a good example for such a complex process (Mader et al. 2004).  

The subject of this work is to investigate the interrelations of porosity and 

permeability of natural volcanic rocks and examine the effects of both parameters on 

fragmentation processes and explosivity. For this purpose, a new setup for the 

investigation of permeability under conditions close to volcanic environments – high 

decompression rates, strongly transient conditions and high temperatures – has been 

developed. The influence of pore texture and volume on the permeability has been 

experimentally investigated (Chapter 4). The determination and quantification of a 

dependency between the degassing efficiency of a volcanic rock and its fragmentation 

behaviour was a further vital component of this work (Chapter 5). Porosity data from 

samples of various volcanic settings have been achieved in the laboratory and, in a 

statistical relevant amount, directly from volcanic deposits in order to analyse their 

significance for volcanic explosivity evaluations (Chapter 3).  
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1.2 The development of porosity – bubble nucleation and growth 

A magma is basically a mixture of three phases: a viscous silicate melt, crystals, 

and a volatile phase. The composition of the latter varies with the magma’s origin and 

degree of fractionation; the biggest portion is usually represented by H20 and CO2. 

Under deep-crustal conditions, volatiles are dissolved in the melt. The total amount of 

volatiles that can be kept in dissolution depends on the magma’s composition, its 

temperature, and the confining pressure.  

 

Bubble nucleation 

The formation of a new gas phase requires a certain amount of volatile 

supersaturation in the silicate melt, in order to provide the energy input necessary to 

create new surfaces (Figure 1.1). Since a huge volume increase accompanies volatile 

exsolution and formation of a vapour phase, pressure reduction is the most effective 

mechanism to achieve this supersaturation. This depressurization might be caused e.g. 

by magma ascent to shallower levels or sudden confining wall rock failure. This type of 

bubble nucleation is also referred to as first boiling (Navon & Lyakhovsky 1998). 

Another process to reach supersaturation is to increase the water content of the melt. 

The crystallization of OH-poor or -free minerals, would, for instance, increase the 

relative H2O-content of the residual melt. This process is termed second boiling and 

may be of special importance for the pressurization of crystallizing magma chambers or 

lava domes (Navon & Lyakhovsky 1998, Cashman et al. 2000, Francis & Oppenheimer 

2003).  

 

Once a melt is saturated, the thermodynamic equilibrium demands the formation of 

a separate vapour phase. According to classical nucleation theory for a homogenous 

material (e.g. Landau & Lifshitz 1980, Navon & Lhaykhovsky 1998), bubble formation 

is governed by the counterbalance between energy gained by balancing the saturation 

disequilibrium (volume energy) and energy lost by increasing the bubble-melt interface 

against surface tension (surface energy). A critical nucleus size, above which the bubble 

is stable and can grow, is defined at exactly the point, where volume energy and surface 

energy are balanced. If a bubble with a radius smaller than the critical radius is formed, 

capillary force closes the bubble. Classical nucleation theory predicts that - assuming 
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realistic surface tension values of silicate melts - extremely high supersaturation 

pressures of up to 150 MPa are required to cause nucleation in a homogenous medium 

(Navon & Lyakhovsky 1998). However in a natural system with all kinds of impurities, 

nucleation may also occur heterogeneously. Crystals may provide particularly 

favourable sites for bubble nucleation, since the crystal-gas interface energy is lower 

than that of the melt to gas. Taking these heterogeneities into account, bubble nucleation 

may thus occur at much lower degrees of supersaturation (Navon & Lyakhovsky 1998, 

Cashman et al. 2000). These two end-member models - purely homogenous versus 

heterogeneous - define two possible exsolution levels within a magma column. This 

relative position, with respect to the fragmentation level during an explosive eruption, is 

an important control on the resulting bubble sizes, bubble-size distribution and bubble 

number density of the pyroclasts, since it defines the time scale of bubble growth and 

coalescence. This may have considerable effects on the general dynamics of an eruption 

(Cashman et al. 2000).  

 

 

 

 

Figure 1.1: Schematic view of processes in a volcanic 

conduit. Bubble nucleation initiates when the magma 

has reached a certain amount of volatile 

supersaturation, which mainly depends on the 

available concentration of heterogeneities acting as 

nucleation sites. After nucleation, bubbles grow due to 

volatile diffusion and decompression, and eventually 

coalesce. If a system of interconnected pore space is 

established, gas will escape following the pressure 

gradient. Lastly, magma fragmentation transforms the 

bubbly flow into a gas-particle dispersion flow.  

Modified from Melnik et al. 2005.    

 

Bubble growth 

Once nucleated, bubble growth is - under constant ambient pressure - controlled by 

an interplay between water diffusion from the melt phase towards the melt-vesicle 

interface and bubble expansion against the viscous melt. In early stages of vesicle 
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expansion, when diffusion is rapid and a sufficient amount of water molecules is 

available, viscosity-controlled exponential growth (i.e. limited mainly by viscous 

resistance of the melt) dominates (Figure 1.2, A; Cashman et al. 2000). Above a certain 

vesicle size, diffusion is not rapid enough to maintain the equilibrium saturation 

pressure in the bubble, so the growth slows down and follows the square-root of time, 

i.e. the time-bubble radius path becomes parabolic (Figure 1.2, B; Lyakhovsky et al. 

1996). The velocity of bubble expansion is then primarily limited by the efficiency of 

diffusive flux. In natural systems with many vesicles, the growth of a single bubble will 

at some point be influenced and further slowed by the proximity of neighbouring 

bubbles, expressed by mean separation distances between bubbles (Figure 1.2, C). Once 

the system approaches mechanical and chemical equilibrium, that is the gas pressure in 

the bubble reaches ambient pressure, and volatile concentration in proximity to the 

bubble is uniform, the bubbles have reached their final size, and growth stops (Lensky et 

al. 2004).   

 

Figure 1.2: Bubble growth history is divided into three segments: A – growth is exponential and 

viscosity-limited, B – growth is parabolic and diffusion-limited, C – growth is hindered and slowed by 

neighbouring bubbles. From Cashman et al. 2000 

 

The duration of each of these stages depends on the melt composition, which 

controls viscous deformation, the volatile content (and thus diffusivity), the ambient 

pressure, and the rate of decompression (e.g. Toramaru 1995, Navon & Lyakhovsky 

1998, Lensky et al. 2004). The relative time scales of the related processes have a direct 

impact on the eruptive style. Deep in the conduit, viscosity is relatively low, and bubble 

growth is limited by the rate of volatile diffusion. As magma ascends, its viscosity 

increases because of cooling and crystallization; yet decompression favours bubble 

expansion, in turn limited by the viscous resistance of the surrounding melt. At 
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shallower depth, this enhanced viscous resistance may result in considerable amounts of 

excess pressure in the bubbles, which may eventually lead to magma fragmentation by 

internal overpressure (Figure 1.1; Cashman et al. 2000). These effects will be addressed 

further in Chapter 5.   

 

Porosity 

The entirety of the bubbles nucleated, grown, and coalesced during ascent, together 

with syn- and post-eruptive shear- cooling- or expansion fractures, define the total 

porosity of a volcanic rock. It is commonly expressed as a fraction of the bulk volume 

(vol% or fraction between 0 and 1). The total porosity (Φtot) of a material is composed 

by the connected (or open, accessible, effective) pore space (Φop) plus isolated (or 

closed) pores.  

In contrast to sedimentary rocks with an intergranular porosity, where the void 

space is primarily defined by the interstices between single grains or particles and is 

commonly highly interconnected, the porosity of volcanic rocks derives from originally 

isolated, ‘spherical’ vesicles. The accessibility of gas to flow between these vesicles is 

provided mainly by bubble-bubble interconnections, formed during bubble coalescence. 

If a sample has experienced considerable brittle deformation, the influence of (micro- 

and macro-) cracks on the formation of a connected porosity may be substantial. The 

resulting texture of a volcanic rock’s pore space depends on its history of coalescence, 

shear deformation (elongation) and compaction during ascent or emplacement. 

Important parameters in this context are the bubble size, the bubble size distribution, the 

bubble number density (number of bubbles per volume unit), the bubble’s aspect ratios, 

the degree of coalescence, and, indirectly, also the crystal content. Textural features of 

porosity and their relation to permeability will be further addressed in Chapter 4.  

 

1.3 Causes and consequences of magma permeability  

According to theoretical solubility relationship (e.g. Shaw 1974), initial H2O 

contents of many dacitic to rhyolitic magmas (4-6 wt%) should lead to porosities of 

about 75 vol% at 450-750 m depth and >99 vol% at the volcanic vent (Klug & Cashman 

1996). The fact that such high vesicularities are rarely found in natural pumices 

indicates the presence of more or less effective degassing of the magma during ascent. 
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Degassing is a crucial process for the eruptive behaviour of a volcanic system. 

Beside its superficially visible manifestations, like volcanic gas emission and the 

precipitation of magmatic-hydrothermal deposits, it may have substantial impacts on the 

fragmentation behaviour (Klug & Cashman 1996, Dingwell 1998a, Papale 2001), the 

transition in eruptive styles (explosive-effusive; Eichelberger et al. 1986, Dingwell 

1996, Gonnermann & Manga 2003, Melnik et al. 2005), the pressurization of lava 

domes and plugs (Sparks 1997, Navon et al. 1998), and post-fragmentation processes 

(Kaminsky & Jaupart 1997).  

Gas filtration through magma occurs if an interconnected framework of pores and 

fractures has been developed during bubble growth and brittle deformation, and a 

pressure gradient exists that drives the motion of the gas phase. The permeability of 

such a system is limited by the aperture size of the bubble-bubble interconnections or 

the width of a fracture (Blower 2001a). To create a network of bubbles connected via 

apertures, the vesicles have to mechanically interact and coalesce at some point during 

ascent. This is considered to happen mainly through the process of thinning and 

subsequent failure of bubble walls. The time scale of melt film rupture thereby depends 

on the balance between two counteracting forces: the pressure difference that causes 

radial expansion of bubbles together with capillary and gravitational forces (both acting 

to retract the melt films between touching vesicles), against viscous resistance of the 

liquid (Klug & Cashman 1996, Navon & Lyakhovsky 1998). According to Klug & 

Cashman (1996) the frequent occurrence of coalesced bubbles in pumices indicates that 

the aforementioned time scale of wall thinning is less than the time scale of 

fragmentation.  

Assumptions about the mechanisms and directions of gas escape diverge: some 

models assume that magma degassing through the conduit wall into the country rock is 

significant (e.g. Jaupart 1998), while others claim effectively impermeable conduit 

walls and a vertical direction of gas filtration through a permeable bubbly magma 

(Jaupart & Allegre 1991, Woods & Koyaguchi 1994).  

However, as the dynamics of volcanic eruptions are likely to be sensitive to 

volatile content, exsolution mechanisms, and gas overpressures, small changes of the 

permeability within a volcanic system may change the eruptive style considerably. 

Accordingly, sudden transitions from effusive to explosive behaviour and back may, for 

example, be attributed to the opening of new fracture systems within a volcanic edifice, 

giving rise to a sudden increase in degassing efficiency. Similarly, a gradual increase of 
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the permeability of a porous magma and the transition from closed- to open-system 

degassing may at some point lead to the transgression of the critical degree of volatile 

and overpressure extraction from the magma, and cause termination of explosive 

activity. Examples and explanations of these kinds of eruptive style transitions are given 

in Eichelberger et al. 1986, Woods & Koyaguchi 1994, Gonnermann & Manga 2003, 

Melnik 2000 and Melnik et al. 2005. 

A contribution to the ongoing debate, whether a high permeability can influence, 

and eventually also prevent magma fragmentation, is given by the experimental 

investigations described in Chapter 5 of this thesis.   
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2 Sample provenance and preparation 

 

2.1 Investigated volcanoes 

For this work, pyroclastic rocks of 13 volcanoes have been analysed (Figure 2.1). 

The samples were taken and provided by Bettina Scheu and Ulrich Küppers (Unzen), 

Oliver Spieler, (Merapi, Souffrière Hills, Santorini, Kelut, Krakatau), Andrea di Muro 

(Pinatubo), Jacopo Taddeucchi (Stromboli), Margarita Polacci (Stromboli, Pinatubo, 

Campi Flegrei), Dominique Richard and Simon Kremers (Kelut, Krakatau), and Daniele 

Giordano (Campi Flegrei). Samples from Augustine, Colima, Bezymianny, Campi 

Flegrei and Lipari were taken by myself in cooperation with Oliver Spieler.   

 

 

Figure 2.1: Samples from 13 volcanoes that have been investigated in this study. World map base © 

www.kartenwelt.de.  

 

To allow for profound empirical analyses, one of the fundamental concepts of this 

work was the coverage of a broadest possible range of volcanic products. This applies 

for textural parameters as well as for chemical compositions. Therefore, samples in a 

continuous range from basalt over andesite to rhyolite, as well as high-alkali trachytes 

have been used (Figure 2.2).  
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Figure 2.2: TAS diagram showing the chemical compositions of the volcanic rocks used in this work 

(after LeBas et al. (1986)).  

 

In the following sections a short description of each of the investigated volcanoes, 

with their main characteristics in terms of erupted material and eruptive style, will be 

given. 

 

2.1.1 St. Augustine, Alaska, USA 

 

Figure 2.3: St. Augustine volcano seen from the north-western side. Augustine island is located in the 

Lower Cook Inlet, on the Alaskan south coast. Map: Face of the EarthTM 

 

St. Augustine volcano is 1260 m high, and located on Augustine Island, Lower 

Cook Inlet, southern Alaska, USA (59°23’ N, 153°26’ W; Figure 2.3). The volcano 

consists of a central dome and lava complex which is surrounded by pyroclastic debris. 
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Its eruptive style can be described as dome-building with occasional subplinian 

explosive activity. The Volcanic Explosivity Index (VEI) according to Newhall & Self 

(1982; see also Chapter 3.4)) of the 1986 eruptive phase was classified as “4” (Siebert & 

Simkin 2002-). 

St. Augustine is the youngest and most frequently active of the Cook Inlet 

volcanoes. Its activity began during the late Pleistocene Moosham glacial advance 

(19,000 – 15,500 years BP; Johnson 1979). In historical times, eight eruptive phases 

have been recorded: 1812, 1883, 1908, 1963/64, 1976, 1986 and 2005. The eruption of 

1883 is considered to have had the most violent activity. Eruptions of Augustine 

volcano typically endure several months and consist of multiple phases. The first phase 

is typically the most violently explosive one; successive stages include minor explosive 

ash eruptions, pyroclastic and mud flows, and the extrusion of a lava dome (Swanson & 

Kienle 1988, Waitt & Beget 1996). 

The eruptive products of St. Augustine are commonly reddish dark grey to light 

grey porphyritic andesites with mainly plagioclase, pyroxene and magnetite phenocrysts 

(Getahun et al. 1996, Waitt & Beget 1996). Pumices with mingled white and black parts 

are common. Magma composition was found to be relatively constant throughout 

eruptive history, with an average SiO2 content of approximately 60 % (Swanson & 

Kienle 1988). The glass matrix of pumices ranges from dacitic to rhyolitic composition, 

with the most silicic glass sample showing > 72 % SiO2 (Waitt & Beget 1996). 

 

 

Figure 2.4: Left: Thin section of Aug P5 pumice (~70 vol% porosity), under partially polarized light. 

Plagioclase phenocrysts are up to 3 mm large, An-rich and often zoned and fractured. Further phenocryst 

phases are Opx and oxides. The largest portion of vesicles is small (10-30 µm) and forms an extensive 

network within the groundmass; some reach 100-200 µm and few large bubbles are up to 3 mm large. 

Right: White pumice of a 1986 pyroclastic flow deposit. The pumices are generally rich in crystals 

(mainly plagioclase and pyroxenes). 
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The samples investigated in this work derive from the 1986 eruption. The 

porosity/density distribution of volcanic products of eight different locations has been 

measured in a field campaign in summer 2004. The porosity of the investigated material 

ranges from ~3 to ~80 vol%. 

2.1.2 Bezymianny, Kamchatka, Russia 

Figure 2.5: Bezymianny volcano on central Kamchatka peninsula seen from south-east. Visible is the 

horseshoe-shaped crater of the 1956 directed blast event with a newly grown dome structure. Map: Face 

of the EarthTM. 

 

The volcano (2882 m asl) is situated in the central part of the Klyuchevskaya 

volcanic complex, Kamchatka peninsula, Russia (56°04’ N, 160°43’ E; Figure 2.5). Its 

activity is dome-building with highly explosive eruptions, interrupted by up to several 

hundred years of quiescence. The explosivity of the last major explosive event in 1956 

is rated as VEI 5 (Siebert & Simkin 2002-).  

The eruptive history of Bezymianny volcano began 10,000–11,000 yBP with the 

extrusion of basaltic-andesitic to andesitic lava to form a “pre-Bezymianny” 

stratovolcanic structure. The present Bezymianny stratovolcano started growing 5000-

5500 yBP. Three periods of activity were recorded within the last 2500 years: 2400-

1700 yBP (B I), 1350-1000 yBP (B II) and 1955-present (B III; Bogoyavlenskaya et al. 

1991).  

The eruptive phase of 1955/56 culminated in a sector collapse triggering a 

directed blast event similar to the 1980 Mt. St. Helens eruption, and destroyed the 

formerly 3100 m high summit and the eastern slope, forming a horseshoe-shaped crater 

with a new dome structure in its centre. For this work, samples of proximal block-and-

ash-flows from a 2000 eruption and deposits of the pyroclastic flows that followed the 
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1956 sector collapse, as well as deposits of the blast event itself have been investigated. 

Density measurements have been performed on five sites in September 2004.  

The products of this eruption are dense, dark grey to bluish hornblende andesites, 

vesicular light-grey hornblende andesites, and rock fragments of the old pre-

Bezymianny edifice. The bulk SiO2-content ranges between 52.5 % and 65.5 % 

(Bogoyavlenskaya et al. 1991) and averages at around 58.5 % (Belousov 1996). Thin 

sections show that the main phenocrysts phases are plagioclase and hornblende (Figure 

2.6). 

 

Figure 2.6: Left: Thin section of an andesite from 1956 Bezymianny blast-deposit. Vesicles are rather 

small with sizes mainly between 25 and 100 µm. They show for the most part deformation/ collapse 

structures (e.g. concavely shaped edges). The dominating phenocryst phase is plagioclase; hornblende and 

ore minerals are minor components. Mafic minerals are often rimed by oxide minerals. Right: High-

crystalline blast-deposit sample (porosity ~25 vol%) with deformed vesicles, and predominantly 

plagioclase and hornblende phenocrysts. 
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2.1.3 Colima, Mexico 

Figure 2.7: Small explosion of Colima volcano, photographed in April 2004 from the eastern side. The 

volcano is located in western central Mexico. Map: Face of the EarthTM. 

 

Volcán de Colima (also “Volcán de Fuego”) with an elevation of 3860 m asl is 

situated in western central Mexico (19°30’ N, 103°37’ W; Figure 2.7), and is part of the 

Trans-Mexican Volcanic Belt. The stratovolcano marks the intersection of the N-S 

trending Colima Rift Zone and the NE-SW trending Tamazula Fault (Zobin et al. 2002). 

Together with the northerly adjacent inactive Nevado de Colima (4320 m) it forms the 

Colima volcanic complex. The volcanic activity of this complex can be traced back to at 

least 600,000 yBP. The formation of the two modern volcanoes began, on the basis of 

an older caldera structure, about 200,000 years ago (Nevado), and 50,000 years ago 

(Colima, “Paleofuego”), respectively. Each of them was affected by a huge Mt. St. 

Helens type eruption around 10,000 yBP (Robin et al.1987). 

Volcán de Colima is the historically most active volcano of Mexico, with at least 

52 eruptions since AD 1560. Recent activity shows a pronounced cyclic character with 4 

eruption cycles, each enduring about 100 years. An eruptive cycle is usually subdivided 

in the following stages (Figure 2.8): 1. Open crater a following cycle-ending explosion, 

2. lava ascent and dome growth, 3. lava spills over crater rim or leaks out a flank vent, 

accompanied by block-and-ash-flows, 4. intermittent minor to major explosive activity 

(VEI 2-4), and 5. major plinian to subplinian explosive eruption (~VEI 4) to terminate 

the cycle. The current cycle started after a major explosive event in 1913, the actual 

state is presumably between stage 3 and 4 with explosions of a VEI of 2-3 (Luhr 2002).  
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Figure 2.8: Schematic depiction of the five stages of eruption cycles of Colima volcano. Explanation see 

text. From Luhr 2002. 

 

Volcán de Colima usually erupts andesitic lavas with ~61 wt% SiO2, the cycle-

ending major explosions (e.g. 1818 and 1913), as well as 1976 and 1981/82 lava flows, 

involve more mafic andesites with ~58 wt% SiO2. This change in composition is 

attributed to a periodic recharge of deeper, mafic magma into a more differentiated 

magma reservoir and may be interpreted as a precursor for a cycle-terminating 

explosion in near future. The magma of the current eruption cycle contains 2-3.5 wt.% 

H20, which is significantly lower than the water contents of the 1896-1913 cycle. This 

indicates a lower explosivity of the current eruptive cycle (Luhr 2002). 

The andesites of Colima show a porphyritic texture with plagioclase (13-25 vol%), 

orthopyroxene (2-4 vol%), clinopyroxene (3-4 vol%), and minor hornblende (< 0.5%) as 

phenocrysts. Ti-oxides and olivine can occur as xenocrysts; the groundmass amounts to 

59-68 vol% (Luhr 2002). 
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Figure 2.9: Left: Thin section of a Colima 1999 andesite under partly polarized light. The vesicles are 

irregularly shaped and form a highly interconnected network. Plagioclase phenocrysts are generally 

twinned and smaller than 1.5 mm. Ortho- and clinopyroxenes represent the second abundant phenocryst 

phase. The groundmass is rich in plagioclase microlites. Right: Polished sample section of a 1999 block-

and-ash-flow sample with ~20% porosity. The samples are mostly high-crystalline with comparatively 

small phenocrysts. 

 

In the course of two field campaigns in 2004 and 2005 the density distribution of 

four locations within the 1998/99 pyroclastic deposits on the south flank and products of 

a 2005 pyroclastic flow near Montegrande valley have been measured. Permeability 

measurements have been performed on block-and-ash-flow samples from Cordoban and 

San Antonio valley (1999 eruption), on lava flow samples from El Playón valley (1961 

eruption), and on pumices and scoriae from the 1913 explosive eruption. 
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2.1.4 Krakatau, Indonesia 

  

Figure 2.10: Anak Krakatau with the remnants of Rakata island in the background. The islands of 

Krakatau lie in the Sunda strait between Java and Sumatra. Photo courtesy Volcanological Survey of 

Indonesia, 1979, map: Face of the EarthTM. 

 

The caldera of Krakatau lies in the Sunda Strait between the Indonesian islands of 

Java and Sumatra, 6°6’ S, 105°25’ E (Figure 2.10). It is part of the Sunda Arc, a 5400 

km long chain of volcanoes parallel to a zone of subduction of the Indo-Australian plate 

beneath the Sunda plate and Burma microplate. Within this trench, the Sunda Strait 

represents a transitional area from oblique subduction under Sumatra (~55°), to near 

frontal subduction under Java (~13°; Mandeville et al. 1996).  

The former Krakatau island, consisting of the three volcanoes Rakata, Danan and 

Perbuwatan, was mostly destroyed during the catastrophic caldera forming eruption of 

1883. Only a remnant of Rakata volcano was left, the adjacent islands of Sertung and 

Panjang were covered by massive pumice fall. This VEI 6 eruption caused more than 

36,000 fatalities, predominantly resulting from tsunami floodings over indonesian 

coastlines. Since 1927, the cone of Anak Krakatau (‘Child of Krakatau’) formed within 

the 1883 caldera (Francis & Oppenheimer 2004, Siebert & Simkin 2002-).    

Pumices of the 1883 eruption (Figure 2.11) have SiO2 contents of 68.1 % to 70.1 

%, covering the dacite to rhyodacite field of LeBas et al. (1986; Mandeville et al. 1996). 

Since 1972, Anak Krakatau shows frequent activity, consisting mostly of the extrusion 

of basaltic andesite lava flows, accompanied by minor explosive activity (VEI 1-2).  
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Figure 2.11: Left: Thin section of a highly vesicular pumice of the 1883 explosive eruption. Bubble size 

ranges from 20 µm to more than 7 mm, the size distribution is highly polydisperse. Especially large 

vesicles are often coalesced. The phenocryst content is rather low, the most abundant mineral phase is 

plagioclase (with a brownish appearance due to the partly polarized light). Right: Highly porous, white 

pumice from Rakata island (porosity ~ 85 vol%). 

Density measurements have been performed by S. Kremers, D. Richard and O. 

Spieler on six locations (on Sertung, Rakata, Panjang, and Anak Krakatau), during a 

field campaign in March 2005. For the permeability investigations, white pumices of the 

1883 eruption and basaltic andesites from the Anak Krakatau crater rim have been used.  

 

2.1.5 Kelut, Indonesia 

Figure 2.12: Crater lake of Kelut volcano, eastern central Java. Photo by Dan Dzurisin, 1980 (U.S. 

Geological Survey), map: Face of the EarthTM. 

 

Kelut is a 1731 m high stratovolcano, situated in the eastern part of Java (7°56’ S, 

112°18’ E; Figure 2.12). It consists of a cluster of summit lava and numerous craters, 

giving the volcano a rather irregular profile. Since AD 1000 more than 30 eruptions 

have been reported from Kelut, often accompanied by outpouring of the crater lake, 

leading to catastrophic lahars with numerous fatalities. Most eruptions are short (few 
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hours) but violent, and have usually a moderate magnitude in terms of erupted material 

volume (Bourdier et al. 1997). The most recent eruption (Feb 1990), started with a 

series of phreatic explosions, after 24 years of dormancy. A subsequent small plinian 

phase sustained for four hours and predominantly produced light grey pumices and dark 

scoriae. The VEI 4 eruption totalled ~0.13 km3 of erupted tephra (Bourdier et al. 1997, 

Siebert & Simkin 2002-). 

Juvenile products of the 1990 eruptions (Figure 2.13) are basaltic andesites with 

~55 wt.% SiO2 and a total alkali content of ~3.9 wt.% (Bourdier et al. 1997). 

 

 

Figure 2.13: Left: Thin section of Kelut pumice, with a polarization angle of ~80°. Phenocrysts are 

predominantly zoned plagioclase, clinopyroxene and orthopyroxene. Vesicles are polydispersely 

distributed, with sizes ranging from ~30 µm to 2 mm. Large vesicles are deformed and often coalesced. 

Right: polished surface of a pumice from the Kelut 1990 eruption (~48 vol% porosity). The samples show 

a high crystallinity. 

 

In March 2005, pyroclast density distributions were measured by O. Spieler, D. 

Richard and S. Kremers on six sites, permeability measurements were conducted on 

three pumices and one scoria sample from the 1990 eruption products. 
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2.1.6 Merapi, Indonesia 

Figure 2.14: The 2968 m high Merapi volcano in central Java; Photo by Yustinus Sulistiyo, 1994 

(Volcanological Survey of Indonesia), map: Face of the EarthTM. 

 

Merapi in central Java (7°32’ S, 110°26’ E; Figure 2.14) is one of Indonesia’s 

most active volcanoes. It is a 2968 m high basalt to basaltic-andesite stratovolcano, and 

the youngest and southernmost volcano of a NNW-SSE trending volcanic chain. The 

eruptive style of Merapi changed from frequent plinian to subplinian explosions (~3000-

250 yBP) to a dome-building and block-and-ash-flow dominated activity, with 

occasional small to moderate Vulcanian explosions (19th and 20th century). Merapi is 

eponymous for gravity-driven volcanic flows formed by non-explosive disintegration 

and collapse of parts of the dome or viscous lava flows. The explosivity of the most 

recent eruptions is estimated at VEI 2 (Andreastuti et al. 2000, Siebert & Simkin 2002-).  

The 1992-2002 eruptive phase consisted of different stages of dome growth with 

varying effusion rates. In April 1994, lava extruded through a new vent. A catastrophic 

collapse event of this new dome structure occurred on November 22, 1994, and the 

accompanying southward directed block-and-ash-flow caused nearly 100 casualties 

(Voight et al. 2000). The samples investigated in the laboratory were collected in 1996 

by O. Spieler and D.B. Dingwell from Boyong valley and represent deposits of this 

November 1994 event. Field density measurements were performed by B. Scheu and L. 

Schwarzkopf on six locations within the 1998 block-and-ash-flow deposits at the 

western flank of Merapi. 

Samples of recent Merapi eruptions reveal whole-rock SiO2 contents of ~55.5 wt%  

and total alkali contents of ~6.0 wt%,  and are described as basaltic andesites with a 

relatively high-K tendency (Gertisser & Keller 2003). The solid phase of the dome 

rocks consists of 40-50 % plagioclase and pyroxene phenocrysts (1-2 mm) and a 
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microcrystalline phase. The porosity varies between 13 and 46 vol%, the pore texture is 

characterized by a very irregular shaped, complex ‘dendritic’ network of deformed 

bubbles (Figure 2.15). 

 

 

Figure 2.15: Left: Thin section of a Merapi andesite with ~35 vol% porosity under partly polarized light, 

showing a network of large, irregular shaped and highly interconnected pores. A population of smaller, 

macroscopically isolated vesicles range between 20 and 60 µm, the large vesicles can reach up to 2 mm. 

Phenocrysts (mainly plagioclase and pyroxenes) grew to a maximum size of 2 mm. Right: Merapi 

andesite sample MP C with ~45% porosity. Phenocrysts are abundant, but comparatively small. 

 

2.1.7 Soufrière Hills, Montserrat, UK 

Figure 2.16: Pyroclastic flow on January 16, 1997, travelling down the southern flank of Soufrière Hills 

volcano on Montserrat island, Lesser Antilles islands, West Indies. Photo by Richard Heard, 1997 

(Montserrat Volcano Observatory), map: Face of the EarthTM. 

 

Soufrière Hills Volcano is a 915 m high andesitic stratovolcano situated on the 

island of Montserrat (UK), which is part of the Lesser Antilles islands (16°43’ N, 

62°11’ W, Figure 2.16). The Lesser Antilles island arc was formed by a westward 

subduction of Atlantic oceanic crust under the Carribbean plate. Volcanic activity at 
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Montserrat island started in early Pliocene. Five different eruptions centres have been 

active since then, of which Soufrière Hills is the youngest (Roobol & Smith 1998, 

Harford et al. 2003).   

Two historical eruptions are recorded: an early 17th-century eruption, during which 

Castle peak lava dome was formed, and the ongoing active phase that started 1995. The 

recent eruption started with long-term small-to-moderate explosions with ash eruptions 

starting in 1995, and was later accompanied by dome growth, block-and-ash-flows, 

pyroclastic flows and surges, and a lateral blast caused by a debris avalanche on Dec 26, 

1997. In July and August 1997, a series of pyroclastic flows reached Montserrat’s 

capital Plymouth and almost entirely destroyed it. The 1995-2003 eruptive episode is 

classified as VEI 3 (Robertson et al. 1998, Druitt et al. 2002, Siebert & Simkin 2002-).  

The andesites of Soufrière Hills Volcano typically show SiO2 contents of 58-62 

wt%. The solid phase is composed of 60-75 % phenocrysts (> 100 µm), 20-30 % 

microlites, and rhyolitic glass with SiO2 contents of 76-79 wt%. The main phenocrysts 

are plagioclase (30-35 %), amphibole (6-10 %), and orthopyroxene (2-5 %)  (Horwell et 

al. 2001, Murphy et al. 2000). The porosity of Soufrière Hills eruptive products range 

from extremely dense dome rocks (~2.5 vol% porosity) to pumices with ~68 vol%. For 

this work permeability and fragmentation behaviour have been analysed on three 

pumice samples. 

 

 

Figure 2.17: Left: The thin section of a Soufrière Hills pumice sample shows irregular vesicles with a 

high degree of interconnection. The size of the vesicles varies strongly and ranges from a few tens of µm 

to up to 1.5 mm. Plagioclase and hornblende phenocrysts can reach up to 10 mm and are often fractured. 

Right: Pumice from Montserrat with ~ 75 vol% porosity. Bubbles are slightly deformed; crystals were 

often ripped apart during fragmentation (Kennedy et al. 2005).  

 



 Sample provenance and preparation 

 

 29

2.1.8 Campi Flegrei, Agnano-Monte Spina, Italy 

 

Figure 2.18: Satellite image of the Gulf of Pozzuoli and Naples. The Phlegrean Fields consist of a large 

caldera with a high number of smaller crater structures inside. Image from National Aeronautical and 

Space Administration (NASA), 1984, map: Face of the EarthTM. 

 

The Campi Flegrei (‘Phlegrean Fields’) represent a 13-km-wide caldera structure 

situated on the Gulf of Pozzuoli, on the western outskirts of Naples (40°49’ N, 14°8’ E). 

The caldera is a convoluted structure resulting from two main collapses, related to the 

formation of the Campanian Ignimbrite, 37,000 yBP, and the Neapolitan Yellow Tuff, 

12,000 yBP. Following the last caldera collapse, about 60 eruptions have taken place 

from various subaerial and also submarine vents. Three major phases of activity took 

place in younger history: 12,000-9500 yBP, 8600-8200 yBP, and 4800-3800 yBP. The 

Agnano-Monte Spina (AMS) eruption occurred during the last major eruptive episode, 

about 4100 yBP, and represents the highest-magnitude eruption of this phase (VEI 5). 

Two eruptions have occurred in historical time: one at Solfatara in the founding year of 

the city of Munich (1158), and one in 1538 at Monte Nouvo (Orsi et al. 1996, De Vita et 

al. 1999, Siebert & Simkin 2002-).  

Permeability and fragmentation investigations have been performed on pumices of 

the 4100 yBP AMS eruption. Products of this event are generally classified as trachytes 

to alkali-trachytes, with SiO2 contents between ~58.5 wt% and ~61.0 wt%, and (Na2O + 

K2O) contents between ~11.3 wt% and ~12.4 wt%. The pumices are of porphyritic 

texture, with phenocrysts of plagioclase and alkali-feldspar, clinopyroxene, biotite, and 

apatite (De Vita et al. 1999). The porosity of the pumices ranges between 69 and 84 

vol% (Figure 2.19). 
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Figure 2.19: Left: Thin section of an Agnano-Monte Spina pumice with ~80% porosity. The pumice is 

highly inflated, large vesicles can reach cm-scale in these samples and are highly coalesced. A smaller 

vesicle population ranges between 30 and 100 µm. Plagioclase and clinopyroxene represent the dominant 

phenocryst phases. Right: Pumice sample with a highly inflated central part. 

 

2.1.9 Stromboli, Italy 

  

Figure 2.20: Stromboli, the NE-most of the Aeolian islands, seen from the west. Photo by Guiseppina 

Kysar, 1999 (Smithsonian Institution), map: Face of the EarthTM. 

 

Stromboli is a 924 m high stratovolcano which forms the NE-most of the Aeolian 

islands in the Thyrrenian sea (38°47’ N, 15°12’ E; Figure 2.18). It is characterized by 

persistent mild explosive activity (and is actually eponymous for this kind of eruptive 

behaviour), with occasional major explosions and paroxysms, and lava flows. The VEI 

for this kind of activity is specified to 2 (Siebert & Simkin 2002-).   

The composition of Stromboli pumices and scoriae has remained relatively 

constant since the beginning of the ‘Strombolian activity’ between the 3rd and 7th 

century AD. Silica contents range in the order of 48.2 wt% and 51.5 wt%, K2O contents 

are generally high with values between 1.5 wt% and 2.5 wt%. This classifies 



 Sample provenance and preparation 

 

 31

Strombolian eruptive products as high-K to shoshonitic basalts, with a prevalence of the 

latter (Rosi et al. 2000, Francalanci et al. 2004). 

In this study, pumices and scoria samples (Figure 2.21) with porosities ranging 

from 50 vol% to 81 vol% have been investigated. 

  

Figure 2.21: Left: Thin section of Stromboli scoria under non-polarized light. The vesicles are spherical 

to regularly rounded and range between ~100 µm to several mm. A small vesicle fraction is not present. 

The phenocryst phase is represented mainly by plagioclase and pyroxenes. Right: Typical high-vesicular 

scoria sample from Stromboli. The length of this sample is ~8 cm, its porosity 58 vol%.  

 

2.1.10 Monte Pilato, Lipari, Italy 

 

Figure 2.22: Aquacalda pumice mine on Monte Pilato, located on the north coast of Lipari island, the 

largest of the Aeolian islands. Map: Face of the EarthTM. 

 

Lipari is the largest of the Aeolian islands and is located north of Vulcano island 

(38°20’ N, 14°57’ E). It is entirely formed of volcanic material, and contains numerous 

small stratovolcanoes, craters and lava domes. The island was formed in three major 
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eruptive cycles: The first from 223 to 188 kyBP, the second 102-53 kyBP, including the 

formation of Monte St. Angelo stratovolcano, and the third cycle from 40 ky to present. 

This last period included the eruption of the Monte Guardia sequence 22,600-16,800 

yBP, and the latest eruptive activity on Lipari, the Monte Pilato eruption in the 6th to 7th 

century AD. This eruption produced several layers of surge and pumice deposits (Figure 

2.22) and in its last stage formed the Rocche Rosse obsidian flow (Dellino & La Volpe 

1995, Siebert & Simkin 2002-).    

The eruptive products of the Monte Pilato eruptive sequence are rhyolitic with 

~74.3 wt% SiO2, ~4.1 wt% Na2O and ~4.7 wt% K2O (Gioncada et al. 2003). Pumices 

and foamed rhyolites used for permeability and fragmentation analyses are brownish to 

light grey and show porosity values between 35 vol% and 80 vol%. Vesicles are 

predominantly elongated in flow direction (Figure 2.23).  

 

 

Figure 2.23: Left: Thin section of a Lipari pumice under simply polarized light. The crystal-poor rhyolite 

shows vesicles of various size populations, ranging from ~ 30 µm to several mm. Vesicles are in some 

places strongly deformed by shearing and are elongated in a preferred direction. Right: Pumice from 

Aquacalda pumice mine. The porosity of this variety is about 57 vol%. The major portion of the vesicles 

is small (< 200 µm). The samples are generally poor in crystals. 
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2.1.11 Santorini, Greece 

 

Figure 2.24: The southern crater rim of the Santorini caldera, with the city of Thera on top. Santorini is 

part of the Cyclades islands in the Aegean sea. Photo by Lee Siebert, 1994 (Smithsonian Institution). 

Map: Face of the EarthTM
. 

 

Santorini is an active volcanic island group in the South Aegean Volcanic arc 

(36°24’ N, 25°23’ E; Figure 2.24). It consists of the islands Thera, Therasia, Aspronisi, 

and Palea Kameni and the intra-calderic island of Nea Kameni. Santorini is build of 

several overlapping volcanoes, cut by four different caldera structures. The oldest of 

these calderas formed 180,000 years ago, the youngest ~3600 yBP in the course of the 

Late-Bronze-Age Minoan eruption. The latest eruptive activity was 1950 and produced 

a small lava dome on Nea Kameni (Druitt et al. 1989, 1999; Pfeiffer 2001; Siebert & 

Simkin 2002-). 

The 1640 BC Minoan eruption was a VEI 6 plinian caldera forming eruption that 

produced about 6.3 x 1010 m3 of tephra. The resulting pumices are mostly white to 

pinkish in colour and of rhyodacitic composition (~70.9 wt% SiO2, 4.9 wt% Na2O, and 

3.1 wt% K2O). They contain 3-20 wt% euhedral to subhedral phenocrysts, set in 

vesicular glass. Glasses show SiO2 contents ranging from 73.4 to 75.0 wt% (Druitt et al. 

1999, chapter 4). The pumices investigated in this work derive from western Thera 

island and range between 78.3 and 84.4 vol% porosities (Figure 2.25).   
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Figure 2.25: Left: Santorini Minoan pumice thin section of suboptimal quality (the black dots are 

grinding material). Large vesicles are often highly expanded to cm-scale and coalesced. The material is 

generally poor in crystals (3-20 wt% phenocrysts; Druitt et al. 1999), with plagioclase and orthopyroxene 

as the major phenocrysts. Right: Close view of a light-grey Santorini pumice (~85 vol% porosity) from 

the Minoan eruption ~1640 BC. 

 

2.1.12 Mt. Unzen, Japan 

 

Figure 2.26: Aerial photograph of Unzen volcanic complex, taken from the east, with pyroclastic flow 

deposits of the 1990-95 eruption. Mt. Unzen is located on Kyushu, the southernmost Japanese islands; 

Photo from Unzen-Decade Volcano page, taken on Oct. 13, 1995 by Nagasaki Photo Service, Map: Face 

of the EarthTM. 

 

Unzen volcano is situated on Shimabara peninsula on Kyushu, the southernmost 

of the four major Japanese islands (32°45’ N, 130°17’ E, elevation ~1500 m asl; Figure 

2.26). It is located in a volcanotectonic back-arc depression, known as the Unzen 

Graben, and its activity is related to a steep subduction of the Philippine Sea Plate below 

the Eurasian Plate. Three complex stratovolcanoes, Kinugasa on the north, Fugen-dake 

at the east-center, and Kusenbu on the south, form the andesitic-to-dacitic Unzen 

volcanic complex. Onset of volcanic activity in the Unzen region was about 500 ky ago. 

Active phases, comprising mainly lava dome growth, around Mt. Fugen (the central 
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peak of Unzen volcano) occur every 4000-5000 years. Historical eruptions are reported 

from 1663, 1792, and 1990-95. (Nakada et al. 1999, Siebert & Simkin 2002-)  

The samples investigated here derive from the 1990-95 eruptive phase. This 

eruption started on 17 November 1990 with small phreatic explosions. The first lava 

extrusion occurred in May 1991 and continued until February 1995, with varying 

extrusion rates. Dome growth was accompanied by frequent dome collapse events and 

resulting pyroclastic flows (one of which lead to 43 fatalities on 3 June 1991), and few 

minor explosive events. The VEI of this eruptive episode is 1 (Nakada et al. 1999, 

Siebert & Simkin 2002-).  

The SiO2 content of dome lavas remained relatively constant throughout the 1990-

95 eruption, at ~65 wt%. With a total alkali content around 6.0 wt%, the rocks are 

classified as dacites according to Le Bas et al. 1986. The dome rocks are porphyritic 

with 23-28 vol% phenocrysts (Nakada & Motomura 1999). The phenocrysts are 

predominantly idiomorphic plagioclase (An40-50), hornblende, and biotite, and exhibit 

average sizes of about 5 mm but can reach up to 2 cm. The porosity of the erupted 

material ranges from ~3 vol% at the very dense dome rocks up to 54 vol% at breadcrust-

bombs. The pores can reach up to 2 cm in size and are very irregular in shape and often 

attached to phenocrysts. The rocks are irregularly pervaded by systems of macroscopic 

fractures. Field density measurements on 37 sites have been performed during two field 

campaigns in 2000 and 2001 by U. Kueppers, B. Scheu, O.Spieler and J. Gottsmann.  

 

Figure 2.27: Left: Thin section of a dense (~5 vol% porosity) porphyritic Unzen dome rock. Plagioclase, 

biotite, and hornblende phenocrysts can reach sizes of >1 cm, pyroxenes and oxides are minor 

components. The groundmass is highly crystalline with mainly plagioclase microlites of up to 50 µm. 

Vesicles in this rock variety are generally small (few are greater than 2 mm), highly deformed, and often 

attached to existing crystals. The samples are often interlaced with fractures and microcracks. Right: 

Polished surface of an Unzen dacitic dome rock. The samples are often pervaded by a complex network of 

fractures. Phenocrysts are generally large.  
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2.1.13 Pinatubo, Philippines 

 

Figure 2.28: The remnants of Pinatubo volcano after the 1991 plinian eruption. Pinatubo is situated on 

western central Luzon island, Philippines. Photo by Chris Newhall, 1991 (U.S. Geological Survey), map: 

Face of the EarthTM. 

 

Mt. Pinatubo is a stratovolcano located approximately 100 km NW of Manila, 

central Luzon island, Philippines (15°8’ N, 120°21’ E; Figure 2.28). At least six major 

eruptive periods are documented from modern Pinatubo volcano during the last 35,000 

years. However, it is most famous for its recent VEI 6 plinian eruption in 1991, one of 

the world’s largest of the 20th century. This eruption formed a 2.5 km-wide summit 

crater, reduced the mountains height from 1745 to 1486 m, and ejected about 1.1 x 1010 

m3 of tephra.  During the climactic phase of the eruption, solely dacitic magma was 

ejected (~65 wt% SiO2), producing basically two varieties of dacitic pumices: a white 

(phenocrysts-rich) and a grey (phenocrysts-poor) type (Figure 2.29; Hoblitt et al 1996, 

Pallister et al. 1996, Hammer et al. 1999, Siebert & Simkin 2002-). These two varieties 

have been used for laboratory experiments, the determined porosities range from 55 to 

78 vol%.  
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Figure 2.29: Left: Thin section of a grey (crystal poor) pumice of the 1991 eruption of Mt. Pinatubo. 

Many vesicles have spherical shapes. The larger vesicle population has diameters of 300-600 µm, small 

vesicles are ~50 µm. Phenocrysts (mainly plagioclase) are generally small. Right: Pinatubo grey pumice 

with ~75 vol% porosity. Bubbles are often spherical and generally small, as well as the variability of 

bubble sizes.  

 

2.1.14 Sample overview 

Table 2.1: Overview of the samples used for permeability and/or fragmentation experiments  

Sample Origin Eruption Rock type Av. Porosity [%] 
     
LIP B Lipari Mte. Pilato, 6th/7th  AD Rhyolite, Pumice  57.0 
LIP C Lipari Mte. Pilato, 6th/7th  AD Rhyolite, Pumice  69.3 
LIP E Lipari Mte. Pilato, 6th/7th  AD Rhyolite, Pumice  38.5 
LIP F Lipari Mte. Pilato, 6th/7th  AD Rhyolite, Pumice  79.8 
     
MUZ 2000 A Mt. Unzen  1990-95 Dacite, Dome/ BAF 4.3 
MUZ 2000 D Mt. Unzen  1990-95 Dacite, Dome/ BAF 16.2 
MUZ 2000 E Mt. Unzen  1990-95 Dacite, Dome/ BAF 16.6 
MUZ 2000 G Mt. Unzen  1990-95 Dacite, Dome/ BAF 34.5 
MUZ 2001 A Mt. Unzen  1990-95 Dacite, Dome/ BAF 7.1 
MUZ 2001 B Mt. Unzen  1990-95 Dacite, Dome/ BAF 5.7 
MUZ 2001 C Mt. Unzen  1990-95 Dacite, Dome/ BAF 21.3 
MUZ 2001 F Mt. Unzen  1990-95 Dacite, Dome/ BAF 35.6 
MUZ BKB  Mt. Unzen  1990-95 Dacite, Breadcrust Bomb 43.6 
MUZ VUL 01 Mt. Unzen  1990-95 Dacite, Breadcrust Bomb 47.1 
     
MP A Merapi 1990-2002 Andesite, BAF 14.0 
MP B Merapi 1990-2003 Andesite, BAF 35.5 
MP C Merapi 1990-2004 Andesite, BAF 45.5 
     
CF S  Campi Flegrei Agnano-Monte Spina  Trachyte, Pumice 75.6 
     
SNT Santorini Minoan Rhyodacite, Pumice 82.3 
     
STR_Br Stromboli 2003 Basalt, scoria  61.5 
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STR_Bi Stromboli 2003 Basalt, Pumice  75.0 

PIN A Pinatubo 1991 
Dacite, crystal-poor pumice 
(grey) 61.0 

PIN B Pinatubo 1991 
Dacite, crystal-rich pumice 
(white) 65.0 

PIN C Pinatubo 1991 
Dacite, crystal-rich pumice 
(dark-grey) 57.4 

PIN GFL Pinatubo 1991 
Dacite, crystal-poor pumice 
(grey) 75.4 

     
MTSR Montserrat 1995-recent Andesite, Pumice 74.0 
     
Au B1  Augustine 1986 Andesite, dark-grey BAF 9.4 
Au C1  Augustine 1986 Andesite, black BAF 38.0 
Au P4 Augustine 1986 Andesite, Pumice 70.0 
Au P1 Augustine 1986 Andesite, Pumice 48.0 
     
Co C6   Colima 1999 Andesite, BAF 15.0 
Co D2  Colima 1999 Andesite, BAF 22.0 
Co E4  Colima 1999 Andesite, BAF 44.0 
Co P3 Colima 1913 Andesite, Pumice 62.0 
Co P4  Colima 1913 Andesite, Pumice 64.6 
     

Be B1 Bezymianny 1956 
Andesite, Pyroclastic flow 
deposit 25.2 

Be C3 Bezymianny 1956 
Andesite, Pyroclastic flow 
deposit 38.3 

Be D2   Bezymianny 2000 Andesite, BAF 45.4 
Be E1  Bezymianny 2000 Andesite, BAF 50.9 
     
Ke C3  Kelut 1991 Basaltic andesite 28.0 
Ke D4  Kelut 1991 Basaltic andesite 47.8 
Ke D9   Kelut 1991 Basaltic andesite 47.3 
     
Kr A11  Anak Krakatau recent Basaltic andesite lava 22.7 
Kr D4  Anak Krakatau recent Basaltic andesite lava 41.5 
Kr E6  Anak Krakatau recent Basaltic andesite scoria 65.2 
Kr S2 Krakatau 1883 Rhyodacite, Pumice 73.4 
Kr R4  Krakatau 1883 Rhyodacite, Pumice 84.4 
Kr TP Krakatau ? Rhyodacite, Tube pumice 78.1 
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2.2 Sample preparation 

In most instances the experiments have been conducted on coplanar cylindrical 

shaped samples with a diameter of 25 mm and varying lengths of up to 60 mm (Figure 

2.30). In order to cover a widest possible range in textural and chemical properties, 

samples have been chosen to derive from (a) different types of pyroclastic deposits 

including dome rocks, pumices, scoriae and breadcrust bombs and (b) different volcanic 

settings (see chapter 2.1). The sample cylinders were drilled from the clasts parallel to a 

macroscopically detectable flow alignment, in order to possibly reproduce an original 

orientation. Subsequently the samples were cut and polished to the desired length. 

 

Figure 2.30: Pumice clast with a drilled sample cylinder. Height of the cylinder is 60 mm, the diameter is 

25 mm. 
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2.3 Laboratory porosity determination 

For this study, porosity values were determined in the laboratory using a helium 

pycnometer (high precision) and directly in the field (high number) according to the 

method for field density measurements described by Kueppers et al. 2005. The latter 

method will be described in Chapter 3.2. 

 

 

Figure 2.31: Density and porosity of the samples were determined in the laboratory using a helium 

pycnometer (Micromeritics Accupyc 1330).  

 

To determine the volumetric fraction of the accessible (“open”) and total (“open” 

+ “closed”) pore space of a sample cylinder in a non-destructive manner, a helium-

pycnometer (Micromeritics Accupyc 1330) has been used (Figure 2.31). The measuring 

method is based on the exact determination of the amount of Helium gas displaced by a 

samples solid phase volume. A weighed sample (as powder, fragments, or in well 

defined geometries) is therefore placed in a test cell with known volume. The gas 

pressures observed upon filling the measuring chamber and then discharging it into a 

second empty chamber allow the determination of volume displaced. Since helium 

atoms rapidly fill the tiniest pores of the sample, only the truly solid phase (or matrix) 

and the non-accessible pores of the sample are excluded from gas infiltration. If the 

mathematical volume of the sample cylinder (= total porosity + matrix) is known, then 
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the volumetric fraction of the rocks open porosity (Φop) can be achieved easily 

according to  

 

Φop = (Vmath – Vpyc)/Vmath, (2.1) 

 

with Vmath being the measured mathematical volume and Vpyc the volume determined by 

the pycnometer (i.e. matrix + isolated pores). The density ρm of the samples matrix 

(including the closed porosity) can then be calculated via 

 

ρm = ms/Vpyc, (2.2) 

 

with ms being the mass of the sample, its bulk density ρb is 

 

ρb = ms/Vmath. (2.3) 

 

To determine a rocks total and closed porosity, a portion of the material is milled 

to a fine powder in order to open all the closed pore sections. The density ρp of the 

powder represents the samples matrix density excluding the closed pores, so the total 

porosity is obtained with 

 

Φtot = (ρp - ρb) / ρp. (2.4) 
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3 Field porosity investigations 

 

3.1 Introduction 

 

Investigations of explosive volcanism and the modelling of related processes 

require profound knowledge of the physico-chemical properties of the rock material 

involved. Vesicularity and density highly influence the rheological properties as well as 

the fragmentation behaviour of the magma. Since the overpressurized gas in the pore 

space is considered to be one of the driving forces of an explosive eruption, the porosity 

distribution of erupted pyroclasts may reflect the degree of a volcano’s explosivity, and 

give valuable insights into pre-eruptive conditions of a volcanic conduit.  

Direct observation of volcanic conduit rocks is restricted to the investigation of 

eroded edifices (which, due to their age, are often highly chemically and physically 

altered), or drilling projects (which represent a major technical challenge and are 

exceedingly expensive). It can be assumed that within the volcanic edifice the physical 

and textural properties of silica-rich magma are, due to high melt viscosity, subject to 

only minor changes. Hence information on the temporal variability of the ascending 

magma’s vesicularity can be easiest achieved via the measurement of a statistically 

reliable amount of representative erupted samples (Kueppers et al. 2005).  

In order to relate density/porosity distributions of eruptive products to specific 

volcanic settings and eruption characteristics, the results of field campaigns on seven 

volcanoes of the circum-Pacific area (“Ring of Fire“) have been evaluated and 

compared. The density of more than 3200 pyroclastic-flow and block-and-ash-flow 

samples of St. Augustine (Alaska), Bezymianny (Kamchatka), Unzen (Japan), Merapi, 

Kelut, Krakatau (all Indonesia) and Colima (Mexico) were measured directly in the 

field. Data from Unzen derive from 2000 and 2001 field campaigns by U. Kueppers, B. 

Scheu, O. Spieler and J. Gottsmann (published in Kueppers et al. 2005 and Kueppers 

2005), Merapi density data have been measured in 2002 by B. Scheu and L. 

Schwarzkopf. Kelut and Krakatau have been investigated by O. Spieler, D. Richard and 

S. Kremers in 2005. In addition, density data from Hoblitt & Harmon (1993) of the 

1980 Mt. St. Helens eruption have been used for comparison.  
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3.2 Field based porosity determination 

The total porosity of samples is easily acquired by measuring its bulk density. If 

then the mean density of the solid phase (the matrix density ρP as defined in Chapter 

2.3) of the material is known, the sample’s porosity can be calculated according to 

equation (2.4). To determine of the matrix densities a representative number of samples 

from each volcano (or, if it obviously represents an exceptional depositional 

environment, also from a single measurement site) have been grinded to powder. The 

density of the powder was measured with the helium pycnometer (see Chapter 2.3). The 

mean density value was then used to calculate each rock’s porosity.  

Density measurements of porous media usually involve time-consuming 

procedures like water saturation (e.g. Belikov et al. 1964, Schopper 1982) or surface 

impregnation/ coating (e.g. Houghton & Wilson 1989, Polacci et al. 2003), or they are 

done via pycnometric methods (e.g. Chapter 2.3). All these measurements are 

commonly done in the laboratory, and require sampling and sample transportation. 

However, in order to reliably evaluate the density distribution of volcanic deposits, an 

adequate number of measuring locations, as well as a statistically reliable amount of 

samples measured per location is required. A number of 60 measurements per spot was 

found to meet this requirement. Since transportation of this amount of samples with a 

total weight of several hundreds of kg per volcano would represent a disproportionate 

effort, density measurements were conducted directly in the field. 

The measuring setup developed for this purpose (Kueppers et al. 2005) is based 

on the Archimedean principle, which states that the buoyant force of a body is equal to 

the weight of the displaced fluid. A dry sample’s bulk mass therefore must be weighed 

in air and subsequently under water (Figure 3.1). To prevent water infiltration into the 

accessible pore space, the samples were placed in plastic bags, which, when evacuated 

using a battery-powered vacuum pump, tightly cover the samples surface. To keep the 

vacuum in the plastic bag, it was sealed with silicon glue.  

If the density of the water, ρH20, is assumed to be 1 g/cm3, the bulk density of the 

rock can be calculated according to  

 

ρsample = (mair /(mair-mH2O))ρH20,  (3.1) 
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where mair and mH2O are the masses of the sample in air and submerged under water, 

respectively. The method and required equipment are described in detail in Kueppers et 

al. (2005). 

 

Figure 3.1: (a) The setup used for field density measurements with the battery-powered balance fixed on 

a tripod and the holding device for the sample (left) inside the waterproof container (right). The inset 

(top) shows the battery-powered vacuum pump, the silicon injection device and plastic bags. (b) Field 

density measurements on Augustine Island.  

(a) (b) 
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3.3 Field porosity measurements – results  

3.3.1 St. Augustine 

Density measurements have been performed on 8 sites within the deposits of the 

1986 eruptive phase: 4 sites within pumice flow/ pumiceous pyroclastic flow deposits 

(PPF; unit 86pp, according to Waitt & Begét 1996), 3 sites within lithic pyroclastic flow 

deposits (LPF; unit 86pl) and one lahar flow deposit (LahF, also unit 86pp) (Figure 3.2). 

For the porosity determination, an average matrix density of 2.64 g/cm3 has been 

measured for the porous pumice flow deposits (LOK 1, 2 and 9), and 2.78 g/cm3  for the 

remaining locations.  

 

 

Figure 3.2: Locations of density measurements on Augustine island. LOK 1 and 2 represent pumice flows 

(levees) within the lithic-rich pyroclastic deposits, LOK 5 and 9 are deposits of pumiceos pyroclastic 

flows. LOK 4, 7 and 8 are deposits of lithic pyroclastic flows/ block-and-ash-flows, and LOK 6 lahar and 

“mixed-flow” deposits. Modified from the Geological Map of Augustine Island by Waitts & Begét 1996. 
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Figure 3.3 (a-h): Porosity distribution of eight locations; fraction of the total amount of measurements plotted in 

increments of 5 vol%. (i) displays the distribution of the entire data set (n=425). 

 

The porosity distributions of the single locations in Figure 3.3 confirm that 

different depositional environments yield distinct distributive patterns with different 

mean- and peak-porosity values. PPF sites show unimodal distributions with mean 

porosities between 45.5 (LOK 5) and 63.6 vol% (LOK 2). As LOK 5 was close to the 

shoreline, a post-depositional modification of the porosity distribution by elutriation of 

low-density particles cannot be excluded. The same accounts for LOK 4. LPF locations 

also show unimodal patterns, with slightly lower mean porosity values between 33.5 

(LOK 4) and 44.5 vol% (LOK 8). The lahar deposit (LOK 6) displays a low mean 

porosity (28.9 vol%) and an indication of bimodal porosity distribution. Post-deposition 

fluvial transportation is likely responsible for the depletion of less dense material.   

A coherency between mean porosities and the deposit types is evident in Figure 

3.4. The entire dataset of Augustine volcano (Figure 3.3 (i)) shows a nearly unimodal 

and Gaussian porosity distribution, with a porosity peak at ~50 vol%. The mean 

porosity value is 47.5 vol% and the mean density is 1.44 g/cm3. The comparatively 

broad character of the distribution curve reflects the diversity of deposit types and 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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eruptive stages occurring on Augustine volcano: highly explosive activity (VEI 4) with 

emplacement of pumiceous pyroclastic-flow deposits at the beginning of the eruption, 

followed by lava dome extrusion with associated block-and-ash flows. 

 

Figure 3.4 Mean porosity values of the 8 locations, subdivided into 3 groups of deposits: Pumice flow/ 

pumiceous pyroclastic flow deposits (PPF), lithic pyroclastic flow deposits (LPF) and lahar flow deposit 

(LahF). The locations subject to fluvial reworking show a considerable loss of less dense material. 

 

3.3.2 Bezymianny 

At Bezymianny volcano, density measurements have been performed on 3 sites 

within the deposits of the 1956 lateral blast eruption (LOK 3, 5 and 7), and on 2 

locations with products of 2000 block-lava effusion and block-and-ash-flow activity 

(LOK 2 and 6) (Figure 3.5). As mean matrix density for the porosity calculation, 2.67 

g/cm3 has been used for the 1956 eruption samples, and 2.72 g/cm3 for the 2000 BAF 

samples. 
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Figure 3.5: LANDSAT image of Bezymianny volcano with the locations of the 5 measurement sites. 

Locations 3, 5, and 7 represent deposits of the 1956 sector-collapse induced lateral blast event, locations 6 

and 2 are BAF deposits of 2000. 

 

Figure 3.6 shows the porosity distributions of the 5 investigated locations. Porosity 

values range from 10 to 60 vol%, the mean value for all locations is 35.70 vol%, with a 

mean density of 1.73 g/cm3. All locations of 1956 eruption show a slight bimodal 

distribution with a maximum at the more porous mode. This pattern is confirmed by the 

compiled plots of the whole dataset (f) but is more prominent in the 1956-deposits (h). 

The bimodality of these kind of eruptive products is in good agreement with results of 

Hoblitt & Harmon 1993, who investigated the density distribution of products of the 

1980 lateral blast of Mt. St. Helens. They ascribe the bimodal distribution to two distinct 

vesicle nucleation events: the first population formed during magma ascent and 

cryptodome formation, the second upon rapid decompression due to the sector collapse. 

They also conclude that for the early bubble nucleation to occur, the volatile content in 

the magma has to be greater than a threshold value of 0.2-0.4 wt%. At magma portions 

with lower bulk water content, the confining pressure during the cryptodome formation 
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stage hinders gas exsolution and bubble growth. As the eruptive scenario of the 1956 

Bezymianny eruption is assumed to be comparable to the Mt. St. Helens 1980 lateral 

blast, a similar explanation may account for the bimodal porosity distribution of 

Bezymianny products. The mean values of only the 1956 deposits are 32.4 vol% 

porosity and 1.80 g/cm3 density. 

 

 

 

  

 

Figure 3.6: Porosity distribution of 5 locations of Bezymianny volcano, plotted in 5 vol%-steps as fraction of the 

total amount of measurements. (f) displays the distribution of the entire data set (n=300), (g) the distribution of the 

2000 eruption products, (h) the distribution of only the 1956-eruption samples. A bimodal pattern is evident for all 

sites of the 1956 eruption. 

(a) (b) (c) 

(e) (f) (d) 

(g) (h) 
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3.3.3 Colima 

Five locations have been measured at Volcán de Colima during two field 

campaigns in 2004 and 2005. The samples from San Antonio and Cordoban valleys are 

products of the 1998/99 pyroclastic and block-and-ash-flows; “Montegrande valley” and 

“LPF” samples are from early the 2005 explosive activity (Figure 3.7). Results show an 

overall low porosity in which the majority of rocks range between 1 and 30 vol%; a few 

outliers show porosities up to 63 vol% (Figure 3.8). The mean porosity of the entire 

dataset is 16.4 vol%, the mean bulk density 2.28 g/cm3, and the mean matrix density for 

the porosity determination 2.73 g/cm3. The low mean porosity may be an indication of a 

low volatile content of the magma, or effective degassing of the magma prior to 

eruption. These results are in good accordance to the general low water content of recent 

activity products measured by Luhr 2002.   

 

 

Figure 3.7: Satellite view of Volcán de Colima with the five of the field density measurements. 

Background image from GoogleEarthTM. 
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Figure 3.8: Porosity distribution for 5 locations of deposits of 1998/99 and 2005 explosive activity. Porosities are 

generally low with peaks between 10 and 25 vol%. (b) and (c) show a slight bimodal character with a low at 20 

vol%. The compiled dataset of all locations (f) shows a slight bimodality and a mean porosity of 16.4 vol%. 

 

3.3.4 Krakatau 

Products of the 1883 explosive eruption of Krakatau volcano have been 

investigated on 6 sites on the three island surrounding the newly arisen Anak Krakatau 

island: two locations on Panjang (or Lang) island, three on Rakata island (the remnant 

of the destroyed Krakatau island) and one on Sertung (or Verlaten) island (Figure 3.9). 

 

 

Figure 3.9: Satellite image of Krakatau archipelago with the sampling sites on Sertung, Panjang, and 

Rakata islands. In the centre lies the currently active Anak Krakatau. Background image from 

GoogleEarthTM. 

(a) (b) (c) 

(d) (e) (f) 
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The results show without exception high to very high porosity values (45 to 92 

vol%), with narrow unimodal distribution patterns (Figure 3.10). Mean porosity of the 

entire dataset is at 76.9 vol%, mean density 0.58 g/cm3. The high porosity of the 

products reflects the high volatile content and explosivity of this eruption. 

 

 

 

 

 

  

Figure 3.10: Porosity distribution of products of the 1883 plinian eruption, taken from six localities on 

three islands of the Krakatau archipelago. Porosities are exceptionally high, with peak porosities between 

75 and 80 vol%. Porosity data compilation (g) shows a unimodal distribution with a pronounced peak 

around 80 vol%.  

 

3.3.5 Kelut 

On Kelut volcano, three sites with products of the 1990 eruption have been 

examined (Figure 3.11). This eruption involved melt-water interaction 

(phreatomagmatic) and a short plinian phase. The results show generally high porosities, 

and an unimodal distribution, but slightly higher variance than that of Krakatau. The 

(a) (b) (c) 

(d) (e) (f) 

(g) 
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entire dataset displays an almost Gaussian distribution with a mean porosity at 66.16 

vol% (Figure 3.12). The mean density of the samples is 0.93 g/cm3. 

 

 

Figure 3.11: Satellite image of Kelut volcano showing the three sampling locations R1-3. The outcrops 

represent pumice and dark scoriaceous pumice deposits from the 1990 explosive eruption. Background 

image from GoogleEarthTM. 

 

 

 

  

Figure 3.12: Results of porosity determinations on three sites on Kelut’s western flank. The plots show 

consistent peak abundances at porosities around 70 vol%. Mean porosity of the whole data is 66.16 vol%.  

 

(a) (b) (c) 

(d) 
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3.3.6 Merapi 

Six locations have been investigated in Jurangjero valley on Merapi’s western 

flank: D1-3 represent sites within the lower, middle and upper unit of a 1998 block-and-

ash-flow deposit, respectively. D4-6 were equally sampled on a more proximal position 

of the same flow (Figure 3.13). For the calculation of porosity a mean matrix density of 

2.82 g/cm3 has been assumed. 

 

 

Figure 3.13: The two locations of the six measuring points taken on Merapi volcano. D1-3 are distal 

deposits of a 1998 Jurangjero valley block-and-ash-flow, D4-6 were taken on a site closer to the dome. 

On each location 60 samples from a lower, middle and upper section of the flow have been measured, 

respectively. Modified from Schwarzkopf et al. 2005.  

 

The results of the measurements show vaguely bimodal distributions for D1-D4. 

This bimodality is also evident for the total data compilation, indicating at least two 

bubble growth stages in the Merapi andesite (Figure 3.14). The mean porosity of the 

entire dataset is 26.21 vol%, its mean density 2.08 g/cm3. The mean porosity variation 

within a respective deposit location, from upper (U) to lower (L) level is displayed in 

Figure 3.14 (h). It shows trends in the opposite direction for the distal (decreasing with 

depth) and proximal sites (increasing with depth). The compiled mean porosity values 
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(in vol%) (Figure 3.14 (i)) indicate no apparent change in sample density with distance 

from the dome. The lack of a systematic correlation between porosity distribution and 

(a) runout distance and (b) stratigraphic position is consistent with the chaotic, unsorted 

character of Merapi-type block-and-ash-flows. 

 

 

 

  

 Distal  Proximal 

Upper  28.37 24.82 

Middle  25.18 25.18 

Lower  23.40 29.79 

mean 25.65 26.60 

Figure 3.14: Porosity distributions of three distal (D1-3) and 3 proximal (D4-6) measuring points from 

Merapi’s western flank. The compiled distribution (g) shows a slight bimodal character with a peak at ~20 

vol% porosity. (h) displays the mean porosity variation within a respective deposit location, from upper 

(U) to lower (L) level. The compiled mean porosity values (in vol%) (i) indicate only narrow differences 

between the distal and proximal sites.    

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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3.3.7 Unzen 

Unzen volcano has been extensively sampled in two field campaigns 2000 and 

2001. More than 1000 density data have been obtained from 37 locations (Figure 3.15) 

and been published and interpreted in Kueppers et al. 2005 and Kueppers 2005. The 

deposits of the 1990 -95 eruption from four valleys and the dome have been analysed.  

 

 

Figure 3.15: Locations of the 37 measuring points on Unzen volcano investigated by U. Kueppers and B. 

Scheu in two field campaigns in 2000 and 2001 (Modified from Kueppers 2005, geological map from 

Watanabe & Hoshizumi 1995). 

 

For this work, the block-and-ash-flow density results have been recalculated to 

porosity values using a mean matrix density of 2.60 g/cm3. The results show peak 

porosities around 25 vol%, except the somewhat denser dome samples (~20 vol%). The 

mean porosity of all samples is 23.2 vol%; a slight bimodality can be detected especially 

at the entire dataset (Figure 3.16). As mean density 1.93 g/cm3 has been determined. 
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Figure 3.16: Porosity distributions of Unzen volcano. The result of four valleys and the dome region have 

been compiled. The total number of measurements is 1098. The diagram of the entire dataset delivers a 

mean porosity of 23.2 vol%.  

 

3.4 Interpretations 

3.4.1 Correlations between porosity distributions and eruptive behaviour  

In order to compare the porosity distributions of the seven volcanoes described 

above and to relate distinct distribution patterns to specific volcanic environments and 

eruptive styles, the porosity-frequency plots of the primary deposit datasets (i.e. without 

lahar deposits) of these volcanoes have been compiled in Figure 3.17. Additionally, the 

Mt. St. Helens data from Hoblitt & Harmon (1993) are plotted for comparison. To 

convert their density dataset to porosity values, a mean matrix density of 2.69 g/cm3 has 

been used. The diagram 3.17 illustrates the tremendous bandwidth of the physical state 

of the investigated volcanic material: with samples from <1 vol% to 95 vol%, the entire 

range of possible porosities has been covered by the field studies. Interpretable 

parameters of this data compilation comprise: 

- the range of porosity covered by the deposits of a volcano,  

- the shape of the distribution (unimodal, bimodal, Gaussian etc.),  

- the relative and absolute position of the porosity peak and mean porosity value, 

respectively. 

(a) (b) (c) 

(d) (e) (f) 
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Figure 3.17: Compilation of the porosity distribution datasets of primary deposits of all eight investigated 

volcanoes.  

 

The “broadness” (variance) of a volcano’s porosity distribution curve reflects its 

variability in (a) primary volatile content of the magma, and (b) the effectiveness of 

degassing processes prior to eruption (this effectiveness actually depends on the magma 

permeability and the time available for gas loss - which, in turn, depends the magma 

viscosity and the duration of magma ascent). In addition, post- or syneruptive sorting 

processes may affect the porosity/ density distribution. A distal fallout deposit for 

example exhibits per se a much smaller variability in clast sizes and densities than a 

block-and-ash-flow or gravity-induced debris flow. Many deposits, especially when 

they are older in age, may have been reworked which would present an altered porosity 

distribution.  

The shape of the distribution reflects most likely the number of nucleation events 

the magma has been exposed to during ascent. Usually these different events correspond 

to differences in the physical conditions of the magma (pressure, temperature, chemical 

gradients; see Chapter 1.2). Rapid changes of external conditions (e.g. decompression 

during an explosive eruption) strongly affect bubble growth kinetics and may allow, for 

example, the sudden nucleation of a new population of vesicles. If this new population 

is restricted to a specific type of magma in terms of chemical composition or level in 
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magma column, different peaks in the porosity distribution of an eruptions deposit will 

be the result. 

The position of porosity peak(s) can be seen as a representative measure for a 

combination of (a) the initial gas content of the magma, and (b) the (dis)ability of the 

magma to degas to the atmosphere or the country rock, i.e. its permeability. Magma 

with high volatile content and low permeability retain a comparatively big amount of 

potential energy in the form of overpressurized gas, thus its eruption may be assumed to 

be highly explosive.  

Taking the criteria mentioned above into account, the porosity distributions of the 

eight investigated volcanoes can be interpreted and generally classified according to 

their eruptive styles. In this way, the volcanoes can be subdivided into three groups:  

(a) dome forming eruptions with occasional explosions but predominantly 

gravitational-driven block-and-ash-flow/ debris flow activity (VEI 1-3) 

(b) cryptodome formation preceding a sector-collapse-induced lateral blast (VEI 

5) 

(c) explosive eruptions with subplinian to plinian phases (VEI 4-6) 

Colima, Merapi and Unzen represent the first group of dome building volcanoes. 

Their porosity distributions show mean values clearly below 30 vol% (16.4-26.2) and a 

slight bimodality (Figure 3.18a). Bezymianny 1956 and Mount St. Helens 1980 

eruptions are two examples of lateral blast eruptions with preceding cryptodome growth. 

In both cases, the porosity of the resulting pyroclasts shows a distinct bimodal 

distribution, with the higher peak at ~40 vol%. The mean porosity values vary around 

30 vol% (28.2 and 32.4, respectively) (Figure 3.18b). Krakatau 1883, Kelut 1990 and 

Augustine 1986 serve in this work as examples of highly explosive eruptions with 

subplinian to plinian activity. Due to its change in eruptive style during the 1986 activity 

period, Augustine volcano may here be seen as a link between the less explosive dome 

growth group and the high explosive activity group with pyroclastic flows and pumice 

ejection. The dataset including all seven primary deposit locations (i.e. without the lahar 

deposit) accordingly delivers a rather broad and flat porosity distribution (Figure 3.18c). 

If, however, only the products of the explosive phase (i.e. the pumice flows and 

pumiceous pyroclastic flows) are taken into account (Figure 3.18d), the resulting curve 

shows a slightly bimodal distribution (likely reflecting the mixture of pyroclastic flow 

and fallout deposits) with a mean porosity at 61.4 vol%, and is therefore in better 

accordance with evenly explosive Kelut volcano (both VEI 4).   
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(a) (b) 

(c) 

 

(d) 

Figure 3.18: The porosity distributions of the eight investigated volcanoes can be interpreted and 

generally classified according to their eruptive styles:  Dome forming eruptions with occasional 

explosions but predominantly gravitational-driven block-and-ash-flow/ debris flow activity (a), 

cryptodome formation preceding a sector-collapse-induced lateral blast (b), and explosive subplinian to 

plinian eruption (c). The broad distribution of Augustine in (c) becomes better defined with a smaller 

variance, if only the pumiceous pyroclastic deposits are taken into account (d).  

 

3.4.2 Correlations between porosity and the size of volcanic eruptions  

Volcanic Explosivity Index 

The Volcanic Explosivity Index (or VEI) was introduced by Newhall & Self 

(1982) as a measure for the size of a volcanic eruption. It is a semi-quantitative 

logarithmic scale and is based on a combination of erupted tephra volume, eruption 

plume height and a subjective description of observers. The VEI ranges from 0 (“non-

explosive”) to 8 (“colossal”). A VEI 6 eruption, for example, corresponds to an erupted 
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tephra volume of 10-100 km3 (Newhall & Self 1982, Simkin & Siebert 2002-, Mason et 

al. 2004) 

As mentioned above, the averaged pore volume of a volcanic deposit should allow 

inferences on the explosive potential of an eruption. Although the VEI scale is a very 

general classification of the explosive style of an eruption and mostly integrates over 

longer periods of activity, it may in this context serve as a reference measure. In Figure 

3.19 the mean porosity values of eight distinct eruptions or, in the case of Augustine, 

eruptive phases are plotted versus their VEI classification after Simkin & Siebert  

(2002-). The distribution indicates a rough general positive relation of the mean porosity 

with the VEI value. Exceptions can be noted especially at the low-porosity deposits of 

Colima, Unzen and Merapi. These show no coherency within this correlation. The 

deviation of the two cryptodome-dominated eruptions of Bezymianny and Mount St. 

Helens towards higher VEI scales is however not surprising, and reflects a different 

style of depressurization: During the formation of a cryptodome, volatile exsolution and 

thus porosity development is suppressed by the lithostatic pressure of the overlying 

material. Nevertheless, the exsolved gas in the (limited) pore volume should be able to 

bear a higher amount of overpressure than in an environment without the additional 

lithostatic load. Upon rapid decompression, a highly compressed gas in a comparably 

small total pore volume may therefore cause a large, cataclysmic explosive response to 

the removal of the confining load. This scenario lead to the VEI 5 eruptions of Mt. St. 

Helens and Bezymianny which generated material with no more than ~30 vol% 

porosity. 
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Figure 3.19: Mean porosities plotted versus the Volcanic Explosivity Index (VEI) defined by Newhall & 

Self (1982). If the cryptodome eruptions of Bezymianny and Mt. St. Helens are treated separately, a rough 

general positive trend can be observed.  

Eruption Magnitude 

A significant problem with the use of the VEI scale is that it is mainly based on an 

estimated tephra bulk volume of the respective eruption and does not account for the 

deposit density. As the density of tephra deposits may vary considerably (e.g. a layer of 

inflated pumice versus a densely welded ignimbrite), two eruptions with the same 

volume of erupted rhyolitic magma may produce extremely different bulk tephra 

deposits and thus different VEI measures. Additionally, the consideration of only the 

amount of erupted material provides only limited information on the intensity of an 

eruption, since it does not account for the time span involved, (Mason et al. 2004). A 

solution to this dilemma has been proposed by Pyle (1995, 2000). He suggests a 

combination of two parameters to better describe the characteristics of an eruption: the 

eruption magnitude M and the eruption intensity I. The logarithmic M is entirely based 

on the mass of erupted material (in kg): 

M = log10(mass)-7, (3.2) 

Similarly, the intensity scale depends on the mass eruption rate in kg/s: 

I = log10(mass eruption rate)+3 (3.3) 



 Field porosity investigations 

 

 63

The mass eruption rate is commonly estimated according to direct observations, so data 

are not available for every eruption. The scales of both parameters are chosen in a way 

to be comparable to the VEI scale. 

Using the mean bulk density values determined in the field campaigns, it is 

possible to calculate M from the easier obtainable bulk tephra volumes of an eruption, 

listed e.g. in digital databases like Siebert & Simkin 2002- (Table 3.1). 

 

Table 3.1: Compilation of Tephra volume, measured mean density, calculated erupted mass and the 
explosivity scales M and VEI. 

Eruption Tephra volume 

(m3) b 

Mean density 

(kg/m3) 

Erupted mass 

(kg) 

Magnitude M VEI b 

Colima 1998-rec 2,40E+06 2280 5,47E+09 2,74 3 

Krakatau 1883 2,00E+10 570 1,14E+13 6,06 6 

Augustine 1986 1,00E+08 1440 1,44E+11 4,16 4 

Unzen 1990-95 4,70E+06 2000 9,40E+09 2,97 1 

Kelut 1990 1,30E+08 730 9,49E+10 3,98 4 

Merapi 1992-2002 1,10E+07 2080 2,29E+10 3,36 2 

Bezymianny 1956 2,80E+09 1800 5,04E+12 5,70 5 

Mt. St. Helens 1980 1,20E+09 1930 a 2,32E+12 5,36 5 
a - mean density value calculated from density data from Hoblitt & Harmon (1993); b – data from Siebert & Simkin 2002- 

 

As M accounts for both the tephra volume and mean density, a closer correlation 

between porosity and eruption magnitude can be expected and becomes verified in 

Figure 3.20. Now also the low porous eruption deposits fit very well into the trend. This 

correlation seems to react even more sensible to changes of the eruption mechanism, as 

the deviation of Bezymianny, Mount St. Helens and also Kelut is bigger in Figure 1.20 

compared to Figure 1.19. All these eruptions are characterized by not only pure 

explosive (Vulcanian or Plinian) eruption mechanism. Because of the assumed high 

energetic character of the lateral blast eruptions, the data points of Bezymianny and 

Mount St. Helens still deviate from a possible linear relation. Also the Kelut 1990 

eruption does not closely fit this approximate trend, most likely because it was 

comparatively short (and had therefore a relatively low total tephra output), but -due to 

its phreatomagmatic character- intense.  
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Figure 3.20: Relationship between the mean porosity of an eruption and the eruption magnitude as 

defined by Pyle (1995, 2000). A general positive trends with deviation can be observed (a) towards low 

porosity/ high magnitude, possibly due to hindered bubble growth e.g. in cryptodomes, and (b) towards 

high porosity/ low magnitude, possibly due to a short eruption duration and subsequent comparatively low 

total magma output, but high, phreatomagmatic explosivity.  

(a) 

(b) 
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4 Permeability measurements on volcanic rocks – influences 

of texture and temperature  

 

4.1 Factors controlling permeability 

 

4.1.1 Basic parameters 

Permeability is defined as the ability of a porous medium to allow fluid flow 

through its pore space in response to an applied pressure gradient. It is commonly 

described by Darcy’s Law that relates the pressure gradient over a sample and its 

dimensions to the flow rate of a fluid through the sample in a linear relationship: 

p
L
AkQ ∆=   (4.1) 

Here, Q is the flow rate, A is the samples cross-sectional area, L its length and ∆p the 

pressure gradient. The permeability coefficient k defines the slope of the linearity; its SI-

unit is m2. In the present form, equation (4.1) bears a limited validity, since (a) it only 

accounts for incompressible fluids (i.e. liquids), (b) it is normalized for the viscosity of 

water (the primary derivation of Darcy’s equation was based on hydrological 

investigations of groundwater flow; Darcy 1856) and (c) it assumes laminar flow 

conditions. Accordingly, when regarding flow processes of a gaseous phase at high flow 

rates, additional permeability-controlling factors have to be taken into account: The 

viscosity of the gas phase µg, and a non-linear term, basically depending on the 

Reynolds number and the flow velocity, to correct for the turbulent flow conditions (see 

Chapter 4.2.2, equations. (4.5) and (4.6)).  

 

4.1.2 Textural parameters 

It seems obvious that the filtration of a fluid trough a porous medium strongly 

depends on the actual volume fraction of pore space. Indeed, it can be shown either 

theoretically (e.g. Rose 1945a-c, Kozeny 1927, Carman 1956, Dullien 1979, Katz & 

Thompson 1986, Johnson et al. 1986) or empirically (e.g. Eichelberger et al. 1986; Klug 
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& Cashman 1996; Saar & Manga 1999; Blower 2001a) that porosity and permeability 

are linked by a complex positive relationship. This is not surprising, as a higher 

proportion of pore volume is generally expected to lead to a greater probability of pore 

connectivity and the formation of a fluid-flow providing pathway. However, as will be 

shown below, the relationship between k and Φ is not a unique one, because many other 

textural parameters may play an important role concerning gas flow properties. Among 

these parameters are (a) the connection geometry (i.e. intergranular pore spaces in 

clastic sediments vs. bubble interconnections), (b) the pore sizes, (c) pore shape and (d) 

pore size distribution (Figure 4.1).  

 
(a) (b) 

 
(c) (d) 

 

Figure 4.1 Textural parameters that may influence the permeability of a porous medium: a) pore 

interconnection geometry; in clastic sediments (e.g. sandstones) fluid flow is possible through the spaces 

between the grain components (“concave” porosity), whereas in volcanic rocks filtration occurs through 

bubble-bubble interconnections (“convex” porosity). b) Pore size; although the resulting total porosities 

might be identical, larger pore sizes lead to (1) wider pore interconnection aperture sizes and thus a lower 

resistance to fluid flow (Blower 2001a) and (2) to a higher probability of pore connectivity (Navon & 

Lyakhovsky 1998). c) Pore shape; elongated pores with higher aspect ratio (length/width) cause a 

permeability anisotropy: permeability is increased along the axis of elongation and decreased 

perpendicular to this direction, with no change in the actual value of total porosity (Blower 2001a). d) 

Pores size distribution; a polydisperse bubble distributions allow much higher total porosities without 

necessarily leading to interconnected pores. Permeability can thus be very low at high pore volume 

fractions (Blower 2001a). 
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Models that mathematically relate permeability to porosity and pore geometries 

have been suggested by Rose (1945a-c), Kozeny (1927), Carman (1956), Dullien 

(1979), Katz and Thompson (1986), Johnson et al. (1986), and Blower (2001b), for 

example. Most of them recommend a power-law relationship between k and Φ. A 

comprehensive compilation of permeability-porosity theories is given in Saar (1998). 

Two of these models, which will be referred to further in this work, are described in 

more detail below. 

The empirical Kozeny-Carman equations are based on capillary tube models and 

relate permeability to the porosity of a porous medium in cubic proportionality, thereby 

including quantities such as surface density, tortuosity, and pore shape (e.g. Carman 

1956; Schopper 1982). According to Doyen (1988) and Klug & Cashman (1996), these 

equations can often be simplified to power-law relations with exponents n of 3.0 – 3.8 

and a constant of proportionality c (Figure 4.2): 

k(Φ) = c⋅Φn ;  3.0 ≤ n ≤ 3.8. (4.2) 

Similarly other models describing gas-flow through fractures predict a cubic 

relationship between gas flow rate and crack aperture (and thus crack volume) under 

laminar flow conditions (“cubic law for fracture flow”; e.g. Lamb 1945; Langlois 1964).  

 

Figure 4.2: Schematic depiction of the theoretical predicted permeability-porosity relations according to 

Kozeny-Carman equations, which are based on flow behaviour through cylindrical tubes, and fracture 

flow models. Both recommend power-law relations with exponents ranging from 3 to 3.8.  
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Percolation theory deals with fluid flow through a random media by 

mathematically describing the probability of connectivity in a disordered lattice and 

generally predicts a permeability-porosity relationship in the form 

k(Φ) = c⋅(Φ - Φcr)n ∀ Φ ≥ Φcr 

k(Φ) = 0 ∀ Φ < Φcr (4.3) 

where c is a magnitude-defining constant and n is the power-law exponent dependent on 

the pathway geometry. Φcr is a critical porosity (“percolation threshold”) below which 

no connected, continuous network of pores and thus no permeability can be expected. 

For media with idealized, spherical bubbles (FPS – fully penetrable sphere model), n = 2 

and Φcr ∼ 30 % (Figure 4.3; Saar & Manga 1999; Blower 2001a; Feng et al. 1987; 

Sahimi 1994, 1995; Mukhopadhyay & Sahimi 1994).  

 

Figure 4.3: Schematic depiction of the theoretical permeability-porosity trend according to the 

percolation theory for a medium with fully penetrable, spherical bubbles. The model predicts a 

percolation threshold at ~30 % porosity, below which no filtration can be expected, and an increase of k to 

the square of the porosity above that threshold.  

 

In recent experimental volcanological research, the permeability, as a physical 

parameter of volcanic rocks, has increasingly become an object of interest, especially in 

terms of its direct influence on volcanic degassing processes and thus eruption 

mechanisms. Mentionable in this context are the works of Eichelberger et al. (1986), 

Westrich & Eichelberger (1994), Klug & Cashman (1996), Saar & Manga (1999), 

Melnik & Sparks (2002), Srouga et al. (2003), and Burgisser & Gardner (2005). A 

selected compilation of permeability measurement results of previous workers is 

displayed in Figure 4.4. 
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Figure 4.4: Permeability data of previous workers, plotted semi-logarithmically against the total porosity. 

The results show steady-state measurements on natural porous media from Eichelberger et al. (1986), 

Klug & Cashman (1996), Saar & Manga (1999), Melnik & Sparks (2002) and, for comparison, sandstone 

permeabilities from Doyen (1988). The trend line represents the Kozeny-Carman-based best fit curve for 

the data from Klug & Cashman (k ∝ Φ3,5).  

 

Regarding experimental permeability data of five previous studies, the following 

essential statements can be made. (1) Permeability values of vesicular igneous rocks 

predominantly range from 10-14 to 10-11 m2. (2) Permeability generally increases with 

porosity. (3) Permeability data may vary by more than three orders of magnitude at a 

given porosity. In particular point (3) emphasizes the aforementioned extraordinary 

influence of rock textures and inhomogeneities on permeability. Klug & Cashman 

(1996) fit their data distribution according to a power-law trend based on Kozeny-

Carman relation with an exponent of 3.5; Saar & Manga (1999) describe a continuous 

divergence of permeability results of vesicular flow-basalt from a percolation-theory-

based power-law trend towards lower porosities and higher permeabilities (when 

normalized by a characteristic bubble area value), and interpret this displacement as a 

consequence of increasing bubble deformation and elongation; the steep increase in 

permeability values of Eichelberger et al. (1986) at about 60 % porosity was 

interpreted as the transition from a closed to an open (connected) porous system; 
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Melnik & Sparks (2002) approximate their data variation with the equation log(k(Φ) = -

10.2(100Φ)0.014/Φ ; Φ > 0.03. 

 

4.2 Permeability measurements - method 

4.2.1 Experimental setup 

Permeability measurements were conducted on a modified setup of a shock-tube 

based fragmentation apparatus (Alidibirov & Dingwell 1996a, b; Spieler 2001, Spieler 

et al. 2003, 2004a, b). In order to realistically simulate strongly transient volcanic gas 

filtration processes, the method is based on an unsteady-state (or “pressure decay”) 

measuring principle (e.g. Brace et al 1968, Innocentini et al. 2000, Liang et al. 2001) : 

a sudden decompression above the sample causes (a) gas filtration through the sample, 

if the initial pressure difference (∆Pi) is lower than a fragmentation threshold pressure 

(∆Pfr;  permeability experiment), or (b) sample fragmentation due to expansion of the 

gas phase in the pore space of the sample, if ∆Pi > ∆Pfr (  fragmentation experiment, 

Chapter 5). 

The fragmentation bomb, originally designed to investigate fragmentation 

behaviour of volcanic rocks by rapid decompression, consists of a high-pressure 

autoclave, which sustains up to 100 MPa of gas pressure, and a low-pressure collecting 

tank representing the atmosphere (Figure 4.5). The two parts are separated by an 

arrangement of metal diaphragms – the decompression event is triggered by exceeding 

the diaphragm’s strength. For the investigation of the temperature dependency of 

particular rock parameters, the high-pressure autoclave can be externally heated up to 

950 °C. 
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(a) (b) 

 

Figure 4.5: (a) Schematic view of the experimental setup for permeability measurements. A high-

pressure/ high-temperature steel autoclave is attached to a particle collection tank at atmospheric 

conditions. The two sections are separated by a set of copper or aluminium diaphragms. Gas overpressure 

in the autoclave is achieved by supply of Argon gas, the pressure evolution in the autoclave is surveyed 

by two pressure transducers. The autoclave can be heated with an external furnace. In order to monitor the 

temperature within the autoclave, a thermocouple can be placed directly below the sample. (b) Photograph 

of the fragmentation bomb 

 

The essential elements of the experimental setup for permeability and gas flow 

measurements are illustrated in Figure 4.6: A - To install the cylindrical rock sample 

into the high-pressure autoclave, it is glued gas-tight in a stainless-steel sample holder 

tube which is then screwed tightly on the lower sealing plug. To pressurize the 

autoclave argon 4.8 was used. The gas flows into the spaces below and above the 

sample via capillary tubes and is kept within the autoclave by the lower of two 

diaphragms. For further details on the multi-diaphragm trigger system see Spieler 

(2001). B - After the rarefaction wave, triggered by the opening of the diaphragms, hits 

the sample surface, the resulting pressure gradient causes the compressed argon gas to 

flow through the sample, until the gas pressure in the two volumes below and above the 
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sample is in equilibrium. The pressure trends in these spaces are recorded with two 

pressure transducers (Kistler 4075A100). A detailed description of the experimental 

procedure is given in Appendix A. 

 

 

Figure 4.6: Detailed view of the autoclave setup (A) before and (B) after diaphragm rupture. ∆PFr is the 

threshold pressure for fragmentation. For further explanations see text. 

 

 

4.2.2 Data analysis 

Following the rupture of the diaphragms, the upper pressure transducer records a 

steep drop to atmospheric conditions, whereas the lower transducer shows an 

exponential decay, caused by gas filtration through the sample (Figure 4.7a). 

Temperature variations recorded by the thermocouple below the sample show a 
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decrease in temperature at the initial stage of decompression due to the gas expansion 

and a slight increase later due to heat transfer from the walls of the autoclave. Overall 

temperature variations within the autoclave are in the order of 10 - 15 °C leading to a 

variation in gas density of less then 5% (Figure 4.7b). 

 
(a) 

 

(b) 

 

Figure 4.7: (a) Pressure drop curves recorded by the pressure transducers above and below the sample 

during a permeability experiments. (b) Temperature trend of the gas in the autoclave, recorded directly 

below the sample cylinder (red curve). For comparison the according pressure evolution in the same 

chamber is plotted. The temperature drop is caused by the decompression in the lower volume. 

 

Transient filtration code 

In order to analyse the experimental data a transient 1D filtration code was 

developed in cooperation with Dr. Oleg Melnik (Moskow State University). The flow is 

assumed to be isothermal due to the high heat capacity of the matrix skeleton, the 

intense heat transfer between the gas and the skeleton, and the low variations of the 

temperature in the gas volume below the sample. A non-linear friction term is taken into 

account to describe the rapid filtration processes. Inertia terms are neglected and, 

therefore, the code is not capable of considering rapid variations of parameters on the 

timescale of ta = L / a (where L is the characteristic length scale, for example the length 

of the sample, and a is the velocity of sound in the gas phase). For typical experimental 

conditions the value of ta is on the order of 0.2 ms, which is much shorter than the 

duration of the filtration experiments (typically several tens of seconds). Therefore, the 

model cannot describe the propagation of a rarefaction wave through the sample 

generated by the disruption of diaphragms, but instead concentrates on the flow 

thereafter.  
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The basic system of equations for the code is the following:  

 

0U
t x

ρ ρ∂ ∂
Φ + =

∂ ∂
 (4.4) 
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In this system Equation (4.4) is the mass conservation equation, Equation (4.5) is 

the Darcy equation with a non-linear friction term to correct for the turbulent flow 

conditions (Forchheimer correction) and Equation (4.6) defines parameters and the 

equation of state for the gas. Here ρ is the density of the gas, U is the filtration velocity, 

p is the pressure, µg is the viscosity of the gas phase, and Φ the void fraction. k is the 

linear permeability coefficient and C(Re) is the non-linear correction coefficient due to 

rapid gas flow, depending on the Reynolds number (Re), as a power law. λ is constant, 

R is the gas constant for argon and T0 is the initial temperature of the gas. t is the 

experiment time, and x the position within the sample cylinder. 

The system is solved with the following boundary conditions: 
2

0 : ; : ( )
4a L

d Dx V U x L p p t
dt
ρ π ρ= = − = =  (4.7) 

where Va is the volume of the autoclave below the sample and D is the diameter of the 

sample. At the bottom of the sample the density of inflowing gas changes due to the 

evacuation of the gas from the autoclave. Equation (4.7) specifies mass conservation for 

the gas below the sample. At the top of the sample pressure evolution with time is given. 

Because the code does not consider the process of diaphragm rupture, the formation of 

the rarefaction wave and its interaction with the sample, the function pL(t) is given by: 

( ) ( )0
0

exp
L a a

tp t p p p
τ

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
 (4.8) 

where p0 and pa are the initial and final pressures and τ0 is a constant defining the rate of 

pressure drop above the sample. The value of τ0  influences the stability of the 
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calculations and is kept as small as possible (~ 0.1 s). For relatively small values of τ0, 

the particular choice has a minor impact on the results. 

The code for fixed values of k, λ and n is solved numerically by means of the 2-

point Thomas method described in detail in Melnik and Sparks (2004). In order to find a 

best fit to the experimental data (the evolution of pressure in the autoclave with time) 

the following functional criteria is used: 

 

( )( ) ( )( )( )2

0, ,
min ln lnft

e ck n
p p d

λ
τ τ τ∆ = −∫  (4.9) 

 

Here tf is the duration of the experimental record, and pe and pc  are the measured 

and the calculated pressures at the bottom of the sample, respectively. Pressure is scaled 

logarithmically in order to allow both high and low pressure parts of the experimental 

curve to be fitted. The value of n was fixed for most calculations at n = 0, corresponding 

to the Forchheimer equation (e.g. Dullien 1979).  

 

 

Figure 4.8: Comparison of experimentally measured evolution of autoclave pressure with calculations 

using different friction models. Explanations see text. 

 

Figure 4.8 shows a comparison of the experimentally measured pressure below the 

sample with calculations for n = 0 and 0.5. Calculated best fit coefficients are for n = 0: 
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k = 5.29⋅10-13 m2, λ = 111, ∆ = 0.18⋅10-2, and for n = 0.5: k = 5⋅10-12 m2, λ = 136, ∆= 

0.88⋅10-3. For comparison the fit with λ = 0 is plotted as a dashed line. In this case k = 

1.6⋅10-13 m2. If only the last 10 s of the dataset are used for the determination of linear 

permeability, the value of k (6.05⋅10-13 m2) is close to the value determined for n = 0. 

For the same sample and different initial pressures the fit for the data with n = 0.5 is 

always better, but the range of best-fit parameters for different runs is much wider than 

for the case when n = 0. Therefore, in further analysis, the Forchheimer correction to 

Darcy equation will be used. It is clear from Figure 4.8 that the linear Darcy law alone 

(i.e. for λ=0) cannot fit the experimental data well. In the case of large pressure 

gradients typical for pre-fragmentation conditions in ascending magma during explosive 

eruptions the resistance to gas escape is strongly non-linear. Therefore transient effects 

can be very important in this case.  

 

Quasi-static approach 

Because during most of the experiment the system behaves quasi-statically (i.e., 

the discharge rate above and the sample are equal) a simplified method to determine the 

permeability coefficient can be used. If we neglect the time derivative in Equation (4.4) 

then the discharge rate is a function of time only. Substituting this relationship into 

Equation (4.5) gives: 

 

( ) ( )
( )

2
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,
( , ) ,

RT Q t RT Q t
p x t
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∂
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This equation is an ordinary differential equation for pressure where time acts as a 

parameter. It can be integrated analytically giving: 
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Discharge rate can be determined from the boundary condition at the top of the sample 

p(L,t) = pa(t). Substitution of the discharge rate into Equation (4.11) gives pressure 

profile along the sample which is independent from values of k and λ:  
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( ) ( ) ( )2 2, 0, 1 a
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Using boundary condition at the bottom of the sample an ordinary differential equation 

for the evolution of pressure in the autoclave can be derived in the form: 

 

( ) ( ) ( )( )0,
0, , ;a

dp t
Q p t p t const

dt
ω ω= − =  (4.13) 

 

Best fit parameters calculated using Equation (13) for the same sample as in Figure 4.8 

are: 4.55 10-13 m2, λ = 128 and ∆ = 0.17 10-2, corresponding to a 13% deviance to the 

transient code. Therefore, the quasi-static approach allows a quick and relatively 

accurate determination of permeability coefficients and has no stability problems. 

 

4.2.3 Error estimation 

For this new experimental setup an series of calculations errors may arise from: 

(1) measurement of the samples geometry and the gas volume of the autoclave, (2) 

technical equipment (pressure transducer, thermocouple), (3) conversion of the 

transducers raw data (voltage) into pressure data (Pa), (4) deviation of the numerically 

modelled curve from the actually measured pressure decay (∆), and (5) factors that are 

not accounted in the model, including temperature variations, non 1D flow effects, and 

the different forms of non-linear friction laws that are possible. An estimation of the 

practical precision of these experiments, repeated ten times under the same external 

conditions, indicates a precision of 3 - 5 % for the permeability constant k. For most of 

the rock varieties the investigation of samples with diameters of 17 and 25 mm revealed 

no significant, systematic difference in the permeability values. Therefore for these 

samples the size of the cylinder scaling on the results is unlikely to be a major influence. 

Nevertheless, a potential complication may arise from the fact that in certain rock types, 

large, truncated pores in the drilled cylinders may distort the effective sample geometry, 

especially in samples with a high bubble to sample size ratio. This may result in 

artificially low decompression values. 
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4.3 Permeability measurements - results 

 

To enable a comparability with the results of other studies, the linear permeability 

coefficient k will be used for further interpretations. The correlation between 

permeability results calculated with the 1D transient code and the total porosity of the 

corresponding samples is plotted semi-logarithmically in Figure 4.9. The obtained 

permeability values range from 2⋅10-15 to 1.5⋅10-10 which is in good agreement with the 

results of previous workers (Figure 4.4). The results show a general positive 

relationship between porosity and permeability with a high data scatter.  

 

Figure 4.9: The results of unsteady-state permeability measurements on material from 13 volcanoes, 

shown as a total porosity vs. linear permeability plot. It reveals a general increasing trend with a high 

scatter. 

A comparison of the permeability constants obtained using the 1D-transient code 

with those obtained using the quasi-static approach is shown in Figure 4.10. Values of k 

predicted by both methods are similar, with maximum difference of only 0.3 log units 

(Figure 4.10). This demonstrates that the steady-state approach provides an easy and fast 

method to determine permeability even from strongly unsteady experiments. However, 

the method is limited by the length of the dataset. If the experimental timescale is too 

short, transient effects may become more important.  
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Figure 4.10: Comparison of linear permeability values obtained by transient and quasi-static approaches. 

A correlation coeffictient of 0.958 underpins the applicability of the quasi-static approach.  

  

4.4 Permeability-porosity relationships - interpretations  

 

One of the most apparent features of the data distribution in Figure 4.9 is the 

enormous scatter of permeability of more than 3 orders of magnitude for a given 

porosity value. Therefore it is almost impossible to interpret these data according to a 

simple cause-and-effect correlation. In an attempt to apply k-Φ-models with power-law 

exponents of three or higher to our data, as for example the Kozeny-Carman based 

curve of Klug & Cashman (1996), the permeability values are either strongly 

overestimated at low porosities or underestimated for highly porous samples. Therefore 

it will be proposed to interpret the data using a combination of two different power-law 

models, each describing gas flow through a different pore structure type (Figure 4.11). 

It is evident that gas flow through the samples can still occur below the 

theoretically predicted percolation threshold for a network of spherical bubbles (~ 30 % 

porosity; Figure 4.11, Figure 4.4). This flow might occur through microcracks, most 

likely to have been generated during cooling processes, or elongated collapsed bubbles, 

resulting from dynamic processes during magma flow and degassing (Saar & Manga 

1999). If so, then adequate models to approximate this kind of degassing should be the 

capillary-tube based Kozeny-Carman relations or the cubic law for fracture flow, both 

recommending permeability-porosity relations with power-law exponents between 3.0 

and 3.8 (e.g. Doyen 1988; Klug & Cashman 1996; see Chapter 4.1.2). Indeed we find 
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that the curves of Equation (4.2) corresponding to k(Φ) = c1⋅ Φ3 and k(Φ) = c1⋅ Φ3.8 , 

with c1 = 1⋅10-17 , bound well most of the data for long-term degassed dome rocks. The 

intermediate fit k(Φ) = c1⋅ Φ3.4 can be used to describe the general k-Φ trend of this 

type of volcanic rock (Figure 4.11). 

At higher vesicle contents it can be assumed that beyond the percolation threshold 

of ∼ 30 % porosity, the contribution of a interconnected bubble network to the overall 

degassing increasingly dominates (i.e. for pumice, scoriae, or breadcrust bomb 

samples). Thus, the theoretical FPS percolation model (Chapter 4.1.2) should be 

appropriate as a first order approximation. In fact, a set of curves according to Equation 

(4.3) with n = 2 and c2 = 2⋅10-15 does predict the trend of the highly porous volcanic 

rocks reasonably well. The best fit of the curve is achieved for a slightly higher 

percolation threshold of Φcr = 33 (Figure 4.11).  

 

 

Figure 4.11: A combination of two distinct models might explain the high data separation in the low and 

medium porous range. Firstly, in the range of 3-30 vol.% an approximation based on a capillary tube 

model (a1) in combination to fracture flow model (a2) produces the best fit for the data. In this case c1 = 

1⋅10-17 . Secondly, experimental results on samples with 30 - 80 vol.% can be approximated using the 

FPS-percolation theory (b) with c2 = 2⋅10-15. The combination of both approaches might be used to 

represent laminated, possibly cracked, pumices (c).  

(a1) 

(a2) 

(b) 

(c) 
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Although these models indicate general trends and therefore should not be 

overinterpreted, the fact remains that the sets of curves according to k(Φ) = c1⋅ Φ3 and to 

k(Φ) = c2⋅(Φ - 30)2 converge in the region of highly permeable Krakatau, Stromboli, 

and Campi Flegrei pumices. This observation fits well with the known hybrid character 

of those pumices’ pore structure: a network of coalesced, large, and often tubular shaped 

bubbles (e.g. Krakatau tube pumices). Likewise, the combination of the two different 

models helps to explain the outstanding increase in data scattering starting at the range 

of porosity, at which both pore geometries start to affect the gas flow properties 

coevally.  

The diverse patterns of porosity-permeability dependency described above reflect 

the different pore structures responsible for the range of permeability values at a given 

porosity. For instance the permeability of Merapi andesite MP C and Bezymianny 

andesite BEZ E1 is almost 2 orders of magnitude higher than that of similarly porous 

Unzen breadcrust bombs (BKB). MP C and BEZ E1 both have ≤ 2 mm wide, irregular 

shaped, unevenly distributed vesicles giving rise to a relatively high connectivity 

(Figure 4.12). This pore structure may reflect the long retention period of these rocks in 

conduit and dome, giving rise to a highly advanced stage of bubble collapse and 

interconnection. In contrast, explosively erupted material like Pinatubo pumice (PIN B) 

or Stromboli scoria (STR Br) contain partly elongated, but well distributed bubbles of 

several millimetres length, with a lower degree of connectivity. Breadcrust bombs 

represent an extreme example of this kind of pore structure: they may have total 

porosities of up to 54 % but, due to their short time span available for bubble formation 

(basically from ejection to trespassing glass transition temperature Tg), small bubble 

sizes, a rather uniform bubble size distribution and an associated low connectivity. 

These factors lead to relatively low permeability values (Figure 4.12). So it can be 

concluded that in this type of volcanic rocks, the distribution of vesicles, rather than the 

bubble elongation or vesicle size appears to affect the permeability. Another notable fact 

is that the wide range of the permeability values within a single rock type (e.g. Lipari 

pumice with ~38 vol% porosity, see Figure 4.9) of more than 2 orders of magnitude 

generally reflects the influence of heterogeneities and sample orientation, especially in 

rocks with elongated bubbles.  
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Merapi MP C 

 
Bezymianny BEZ E1 

 
Stromboli STR Br Pinatubo PIN B Unzen breadcrust bomb (BKB) 

Figure 4.12: Different types of pore structures responsible for the range of permeability values at a given 

porosity. The samples MP C and BEZ E1 represent products of effusive dome growth, with a network of 

large, highly deformed and interconnected pores. The samples, STR Br, PIN B and Unzen breadcrust 

bomb represent products of explosive activity. The bubbles are less deformed and show a lower degree of 

coalescence. Note that in all the examples shown the permeability of the explosive products is lower than 

that of the effusive products, despite a similar or higher porosity. This clearly supports the strong 

influence of pore texture and connectivity on the permeability, rather than the total pore volume.  

 

4.5 High-temperature permeability measurements – experimental 

difficulties, possible solutions and preliminary results 

 

Volcanic rocks may be subject to post-eruptive alterations which might affect their 

permeability. Particularly microfracturing during cooling can be considered as a process 

that might significantly increase the permeability in comparison to that of the original 

magma. This effect might be negligible at high-porous rocks, as here the degassing 

predominantly occurs through bubble interconnections (Melnik & Sparks 2002), but at 

dome rocks with a generally low porosity an influence of microfractures may be 

considerable. Permeability experiments at temperatures close to natural conditions, as 

they are met for instance in a conduit or volcanic dome, might therefore provide more 
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realistic data for conduit dynamics models, if they are capable of re-enacting the 

original, pre-eruptive state of a sample.  

 

4.5.1 Experimental approaches 

However, permeability measurements at high temperatures represent, from the 

experimental point of view, a major technical challenge in terms of operational 

demands, material deformation and the steadiness of the experimental conditions. The 

biggest problem in this context is the gas tight fit of the sample-autoclave-interface. In 

the following section an overview of some of the approaches pursued during this project, 

and the problems faced, will be given. For the tests, the gas discharge rates of samples 

cylinders assembled with the respective approach were compared to discharge rates 

obtained by the standard room-temperature method using crystal bond as a adhesive.  

1) The first approach was to glue the sample into a steel sample holder, in analogy to 

the room-temperature setup (Chapter 4.2.1 & Appendix A). As adhesive, a high 

temperature cement (Sauereisen No. 13) was used. At 850°C gas leakage was 

observed. The cause of this leakage is most probably the different thermal 

expansion of steel and rock. With an expansion coefficient α ~ 18-19⋅10-6 K-1 

(Wegst 1989) the thermal expansion of steel is considerable larger than that of 

silicic rocks (α ~ 5-10⋅10-6 K-1; e.g. Strohmeyer 2003) and the thermal expansion 

of the HT cement (4.68⋅10-6 K-1; Sauereisen Zircon potting cement No. 13 

datasheet) is not able to compensate this, resulting in gas leakage between sample 

and sample holder.  

2) Ceramic sample holder tubes with lower thermal expansivities (Alsint, α ~ 8⋅10-6 

K-1 and fired pyrophyllite, α ~ 3⋅10-6 K-1; α-values from http://www.haldenwanger 

.de/pdf/materials_e_06.pdf and www.ceramic-substrates.co.uk/material, 

respectively) were used. Again, the sample cylinders were glued using the high-

temperature cement. Problems with this approach were: (a) The Pyrophyllit sample 

holders were too fragile to withstand the uniaxial pressures required to tighten it 

against two copper sealing rings above and below the sample holder. (b) The 

surface of the stronger Alsint (an Al2O3 ceramic) sample holder didn’t conjoin 

properly with the cement. Gas leakage therefore most likely occurred through the 

Alsint-cement interface. (c) The low thermal expansion coefficients of the ceramic 
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tubes in comparison to that of the sample in few cases caused rupture of the 

ceramic tube. 

3) To allow for a dynamical adjustment of the sealing material between sample and 

sample holder, a borosilicate glass tube was placed around the samples. For a glass 

tube of a specified glass composition there exists a temperature window above the 

softening point, in which the glass viscosity causes gravitational collapse of the 

tube and hence closure of the space between the autoclave and the sample. For 

borosilicate glass, 850 °C is within this temperature window. However, it was 

found that the gravitational collapse didn’t create a bonding between the glass and 

the rough sample surface strong enough to withstand to applied gas overpressures. 

Gas leakage, most likely through the glass-sample interface, was the consequence. 

4) The following three approaches were based on grouting a powdery substance into 

the space between autoclave and sample: the sample cylinder is placed in the 

autoclave, free-standing on the conical shaped inset on top of the sample (in 

measurement position). Then gradually the powder is filled in the space between 

sample and autoclave (Figure 4.13). About every 5 mm, the loose powder grains 

are compressed in a hydraulic press with not more than 10 bar, using a steel tube 

with 28 mm outer and ~25mm inner diameter as plunger. The procedure is 

repeated, until the compressed powder coat covers the entire sample length. The 

advantage of this method is that the sealing compound can be, if required, further 

compressed during the high-T experiment by moving up a metal tube through the 

retightening of the lower screw nut. The induced deformation of the powder 

continuously seals the system. First attempts with this method were conducted 

using compacted CaF2-powder. This material is often used as sealing material in 

high-temperature experimental petrology, since it has a high melting point > 1360 

°C. However, the problem in this case was that the Calcium Fluoride grains are too 

rigid to be mechanically deformable at the applied compressive pressures, and 

therefore did not form a compact, gas-tight filling. The overpressurized gas in the 

grain interstices caused – upon rapid decompression – a complete blow-out of the 

material.  

5) Though softer pyrophyllite or talcum powder could be compressed to a compact 

seal, dehydration reactions at high temperatures caused volume reduction of the 

sealing coat and subsequent gas leakage.  
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6) Granular NaCl, with a melting point 801 °C, turned out to be the most promising 

material for this approach, since it (due to its plasticity) mechanically deforms in a 

ductile manner at comparatively low pressures and by that forms a compact quasi-

solid body around the sample (Figure 4.13). Further, it has a comparatively high 

thermal expansion of ~ 40-60⋅10-6 K-1 (Enck & Dommel 1965), which might lead 

to additional sealing pressure. The problems of this method are (a) the 

comparatively low melting point of the salt, which allows, considering impurities, 

experimental temperatures of max. 750 °C, and (b) uncertainties about the actual 

applied radial, compressional force on the sample. This force might, for example, 

be responsible for the narrowing of fractures, which in turn has considerable 

effects on the permeability. At weaker samples, the compression might even cause 

sample failure. 

7) A further approach to solve the problem of gas leakage at high temperature could 

lie in the use of a second, independent gas pressure system to press a sealing metal 

foil against the sample cylinders outer surface. This project, however, couldn’t be 

pursued due to difficulties in material acquisition. 

 

Figure 4.13: Sample mounting for high-temperature permeability measurements. In this setup, the sample 

cylinder is sealed against the autoclave using compressed NaCl. The salt is carefully filled into the spacing 

between the autoclave and the sample (left), and is thereby gradually compacted using a steel tube. For the 

experiment the steel tube is screwed down tightly, so that the tube-salt interface is impermeable (right). 

During the experiment possible leakage due to thermal expansion can be closed by readjusting the 

pressure on the salt coating.   
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4.5.2 High-temperature measurements with a NaCl sealing 

 

Experimental procedure 

Considering the NaCl-sealing-method as the most feasible one, permeability 

measurements have been performed on two samples from Mt. Unzen, one from Merapi 

and one from Campi Flegrei. The Unzen samples are dacitic dome rocks with a porosity 

of 4 and 13 vol%, respectively. The Merapi sample is a low-permeable andesitic dome 

rock with ~36 vol% porosity; the Campi Flegrei sample is a pumiceous trachyte from 

the 1538 Monte Nouvo eruption with 47 vol% porosity. The sample cylinders are 

centred in the hottest zone of the autoclave. Investigations of Spieler 2001 revealed a 

temperature gradient of less than 12 °C over the sample length of 60 mm. During the 

experiments the temperature of the gas below the sample (which is usually 30-40 °C 

below the furnace temperature) is surveyed with a thermocouple directly at the bottom 

of the sample cylinder. The experimental procedure after sample installation was as 

follows: 

a) permeability measurement at room temperature 

b) heating of the autoclave. The final temperature Tmax of 750 °C was reached after 

approximately 60 minutes 

c) thermal equilibration for at least 120 minutes, under argon pressure 

d) rapid-decompression permeability measurement at 750 °C 

e) cooling to room temperature (3-4 h) 

f) permeability measurement at room temperature. 

 

Results 

Regarding the resulting pressure trends of the Unzen dacite and Merapi andesite 

experiments, the following statements can be made (Figure 4.14): (1) The 

decompression profiles for the room temperature experiments before and after the heat 

treatment are similar in all three cases. This similarity indicates that at the applied 

temperature conditions and time scales, independent from textural features and porosity, 

no permanent changes in the samples pore texture (e.g. fracture healing) occurred. This 

is, however, not surprising as the temperature of 750 °C is, in the case of Unzen dacites 

and Merapi andesites, more than 100 °C below the glass transition temperature of the 

rock’s glass phase (Hess, pers. comm.), and substantially below the solidus of 
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representative dacites/ andesites. Accordingly, processes like partial melting or  

mobilization of the glass phase and subsequent fracture healing cannot be expected in 

these samples under the given conditions. (2) The gas filtration rate is considerably 

lower at high temperatures (expressed by a longer pressure equilibration time). This 

decrease in gas filtration rate might be partially caused by a change in gas properties 

with higher temperatures: the viscosity of Argon increases from 2.26 · 10-5 (25 °C) to 

max. 5.34 · 10-5 Pas (730 °C; Verein deutscher Ingenieure 2002). As the transient code 

doesn’t account for different gas viscosities when calculating k, a temperature-correction 

is required for the determination of the real permeability value:  

kreal   = kcalculated · (µArgon, high-T / µArgon, room-T) (4.14) 

 
 (a) 

 

(b) 

(c) 

 

 
 

Figure 4.14: (a)-(c) Pressure profiles for Unzen Dacites (4 and 13 vol% porosity, resp.), and a Merapi 

Andesite (36 vol% porosity). Displayed are the decompression curve at 750 °C, and two curves at room 

temperature before and after heating, respectively. Filtration rates at high T are generally lower.   
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Interpretations 

The uncorrected and corrected permeability values in comparison to the room 

temperature data are displayed in Figure 4.15. The results illustrate that the corrected, 

real permeability of the samples at high temperatures is effectively higher than at room 

temperature. This allows the interpretation that thermal expansion of the entire sample 

leads to an extension of the pore interconnections responsible for gas flow.  
(a) (b) 

(c)  
 

Figure 4.15: Permeability development during high-temperature experiments. The room-temperature 

experiments before and after the heating are similar within a 10 %-interval for all three cases. This 

indicates that no permanent changes in the samples structure took place. At high temperatures the 

permeability value, calculated without temperature correction, drops about 30 % (dark red dots). If, 

however, the changed gas properties are taken into account, permeability gets effectively higher (red dots). 

The red dotted line schematically indicates the temperature course of the experiment.     

 

This effect can be illustrated regarding a comparative degassing experiment using 

a steel cylinder with seven capillary drillings as sample representative (Figure 4.16). 

Although the gas viscosity is higher at high temperatures and the flow rate should 
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theoretically decrease, the gas filtration rate is higher at 850 °C. This is most probably 

caused by an extension of the capillaries diameter by thermal expansion. 

 

Figure 4.16: Pressure profiles of a degassing experiment at room temperature and 850 °C, performed on a 

steel cylinder with seven 0.2 mm drillings.  Despite a higher gas viscosity, in this case the filtration rate of 

the high temperature experiment is higher. 

  

It can be therefore concluded: (a) gas filtration through the samples is slower at 

high temperatures, though (b) the effective permeability of the samples is higher. 

However, these conclusions must be seen under certain restrictions: it must be 

taken into account that the radial compressive forces induced by the salt upon the sample 

cylinder may counteract the extensional forces of the thermal expansion. This might 

lower both the calculated and the corrected permeability value. As the gas filtration 

properties of fracture-like geometries are more sensitive to volumetric changes than that 

of bubble interconnections, this compressive permeability reduction assumingly is more 

effective at dense samples with prominent fracture zones, rather than at high-porous 

samples. Since the amount of radial pressure and the actual effect of the compression on 

the sample can not fully be quantified and controlled in the present setup, uncertainties 

concerning the interpretation of the obtained permeability data remain.  

 

To address the question whether permanent changes in a sample’s textural 

properties can principally occur at the given experimental circumstances, a Campi 

Flegrei sample with trachytic, peralcaline composition was heated above the glass 

transition temperature of the material (~605-690 °C depending on water content; Hess, 

pers. comm.), and kept at 750 °C for five hours (Figure 4.17). Permeability 

measurements were performed subsequently during the heating phase without rapid 
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decompression, by supplying a defined ‘pulse’ of argon gas into the volume below the 

sample. Because the supplied gas was at room-temperature, no viscosity-correction for 

the permeability calculation was performed. As a slight temperature-increase of the gas 

during filtration can be assumed, the permeability values from the four high-temperature 

experiments in Figure 4.17 likely represent minimum values. But, as the conditions were 

equal for all four experiments, they allow a comparative examination: the results show 

no apparent changes in permeability throughout the entire experiment (Figure 4.17). It 

can therefore be concluded that deformation kinetics in these experiments are far too 

slow to cause any substantial structural modifications in the materials pores or fractures, 

even if the glass transition temperature is exceeded. Considering that in the present 

experiments no axial stresses are applied to the rock cylinder and deformation would 

have to occur purely gravitationally, these results correspond to the expected behaviour 

of highly viscous melts. 

 

 
(a) 

 

(b) 

 

Figure 4.17: Long-term high temperature permeability measurement on a trachytic sample from Monte 

Nouvo, Campi Flegrei. (a) Pressure profiles from one room temperature and four experiments at 750 °C 

furnace temperature, measured in 1h-intervalls. (b) Calculated permeability values (uncorrected).  As no 

considerable changes in permeability throughout the entire experiment can be noted, permanent changes 

of the pore texture can be excluded under the given circumstances. The red dotted line schematically 

indicates the temperature course of the experiment. 
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5 Permeability control on volcanic fragmentation processes 

 

5.1 Introduction 

Fragmentation of porous magma bearing gas overpressure is considered to be a 

crucial process generating explosive volcanic eruptions. A decompressive event (e.g. 

rapid magma ascent, landslide, dome collapse, plug failure) disrupts the stress 

equilibrium between the gas phase and the surrounding melt. When the gas in the pores 

is exposed to a pressure gradient, it may either fragment the surrounding magma, or 

escape from the magma along an existing pathway of cracks and interconnected 

bubbles. Thus magma permeability can be a decisive parameter in determining whether 

an eruption experiences fragmentation; that is, whether it is explosive or effusive, or 

exhibits a temporal transition between the two eruptive styles. An experimental 

investigation of the interconnection between degassing efficiency and fragmentation 

behaviour of volcanic rocks is therefore of great importance for a refined understanding 

of eruption mechanisms.  

 

5.2 Bubble overpressure and its reduction 

Of the various phenomena that can drive magma fragmentation, internal bubble 

overpressure is considered to be amongst the most important (Alidibirov & Dingwell 

1996a, 2000; Cashman et al. 2000; Ichihara et al. 2002). The propelling force of this 

phenomenon, exerted upon the pyroclastic products, should depend on magma porosity, 

gas overpressure, and the ability to preserve the overpressure condition for a certain 

time. The latter magma property is strongly dependent on its degassing efficiency or 

permeability. Magma porosity and permeability are normally linked by a complex 

positive relationship, as a higher proportion of pore space generally leads to a greater 

probability of pore interconnectedness (see chapter 3; Eichelberger et al., 1986; Klug 

and Cashman, 1996; Blower, 2001a). 

As outlined in chapter 1, bubbles grow within rising magma due to overpressure 

fed by volatile diffusion and decompression. As the magmastatic pressure in the magma 

column decreases during ascent, i) volatile solubility decreases and, upon saturation and 

bubble nucleation, volatiles diffuse from the liquid into the bubbles; and ii) bubbles 
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expand to compensate for the resulting pressure disequilibrium. Magma viscosity and 

surface tension counteract and may effectively retard bubble growth, and the balance 

between these contributions determines the pressure at any moment within the 

individual bubbles (Sparks 1978; Sparks 1997; Thomas et al. 1994; Navon 1998; 

Lensky et al. 2001). If, however, during magma ascent, a connected network of void 

space (bubbles and/or cracks) is established, then gas flows down local pressure 

gradients and eventually escapes to the atmosphere or the country rock. Further, if the 

effective viscosity of the magma around the bubbles yields a magma relaxation time 

scale that is significantly longer than the time scale of magma ascent, then a closed pore 

network may cause high overpressures to be generated in isolated pores or network 

sections (Lensky et al. 2001, 2004). If magma decompression accelerates (due to either 

internal or external forces), two possible scenarios are conceivable (Figure 5.1): (1) a 

highly interconnected pore network is established and its permeability is sufficiently 

high to efficiently reduce vesicle overpressure by gas filtration (Figure 5.1b), or (2) the 

permeability of the network (or cluster of isolated pores) is low and gas overpressure 

cannot be reduced within the time scale required to prevent fragmentation (Figure 5.1c). 

In the latter case, the expansion of the pressurized gas may cause bubble wall failure and 

the fragmentation of magma into pyroclasts (Alidibirov & Dingwell, 1996, 2000; Zhang, 

1999).  

 

Figure 5.1: a: In a stable system the bubble overpressure is in structural equilibrium with the surrounding 

magma. b: A decompression event causes a pressure gradient within the magma column. If the 

permeability of the system is high enough, the gas will escape by filtration. c: At a low magma 

permeability, gas flow is hindered and vesicle overpressure may cause bubble wall failure. On the 

resultant newly exposed surface a steep pressure gradient between the gas phase in the bubbles and the 

atmosphere develops and induces magma fragmentation by a sudden expansion of the highly compressed 

gas phase. This is considered to occur in a layer-by-layer manner along a downward propagating 

fragmentation front (Alidibirov & Dingwell, 1996; Spieler et al., 2004b Kennedy et al. 2004). 
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These two scenarios illustrate qualitatively the inexorable impact of permeability 

on the fragmentation of porous magma. In order to improve models of magma 

fragmentation and to permit more reliable hazard assessment, it is therefore of 

paramount importance to know the permeability of the investigated volcanic material 

(Koyaguchi & Mitani 2005; Melnik et al. 2005). Moreover, it now appears essential to 

quantify the dependence of the “fragmentation threshold” (the minimum gas 

overpressure required to initiate fragmentation; Spieler et al. 2004b) of porous material 

on its permeability coefficient.  

 

5.3 Experimental procedure 

To this end a combined investigation of permeability measurements and 

fragmentation experiments has been conducted on a selected variety of 32 dome rock 

and pumice samples. The permeability determinations and additional fragmentation 

threshold experiments were performed on the shock-tube-like fragmentation apparatus 

described in Chapter 4.  

First, the permeability of a sample cylinder was measured according to the method 

described in Chapter 4.2, and subsequently the same sample was built into another 

autoclave designed for fragmentation threshold and speed analysis (Spieler et al. 2004a, 

Scheu 2005). The setup principles for the fragmentation experiments are schematically 

displayed in Figure 5.2. Above a specific ∆Pi, the overpressure in the pore space cannot 

be reduced sufficiently fast by gas filtration. In consequence, the matrix skeleton of the 

sample fails on the spots of stress accumulation, causing a layer-by-layer fragmentation 

of the rock cylinder (Alidibirov & Dingwell 1996a, Spieler at al. 2004b). This specific 

pressure difference is referred to as “fragmentation threshold” (∆Pfr). ∆Pfr of a sample is 

determined by a series of experiments with constantly increasing ∆Pi, until ∆Pfr has 

been reached, and the entire sample has been fragmented. Normally, the initial pressure 

is increased in steps of 0.5 MPa. The time delay of the pressure drop due to rapid 

decompression recorded by two pressure transducers above and below the sample can 

be used to determine the speed of the downward propagation fragmentation front 

(Spieler 2004a, Scheu 2005). 
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Figure 5.2: Detailed set-up of the autoclave section used for fragmentation threshold and -speed 

experiments. Above a specific ∆Pi, the overpressure in the pore space cannot be reduced sufficiently fast 

by gas filtration and the sample fragments. For the determination of ∆Pfr, the sample is set into an 

autoclave especially designed for fragmentation threshold and -speed analysis. Then, in a series of 

experiments, ∆Pi is constantly increased until the sample fragments. The minimum overpressure to 

fragment a specific sample is defined as ∆Pfr. The diagram below shows a typical recording of the 

pressure trends that display the time delay ∆t between the impinging of the decompression fronts on the 

sample’s surface and on its base after complete fragmentation. 
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5.4 The effect of permeability on the fragmentation threshold 

 

Figure 5.3 includes the experimentally derived high- and room-temperature 

fragmentation threshold values of Spieler et al. (2004b), Scheu et al. (2006) and 

Kueppers et al. (2006), together with those of this study. As in the experiments isolated 

bubbles bear no overpressure und thus do not contribute to the fragmentation process, 

for the following considerations the values of the open porosity has been used. In 

general, the results of room-temperature experiments appear not to differ systematically 

from experiments performed at 850 °C. ∆Pfr and the sample’s open porosity, φ, show a 

strongly non-linear dependency, which can be approximated as a first-order inverse 

correlation. Spieler et al. (2004b) deduced a fragmentation criterion of the form ∆Pfr = 

σm/φ, with σm being the effective tensile strength of a compound matrix. Clear 

deviations from this trend towards higher threshold values can however be noted, 

predominantly in the high-porosity region. These data may indicate an increasing 

influence of rock permeability on the fragmentation threshold.  
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Figure 5.3: Experimentally determined high- and room-temperature fragmentation threshold values from 

Spieler et al., 2004, Scheu et al., 2006, Kueppers et al., 2006, and this study. Porosity values are given in 

void fraction between 0 and 1. Deviations from a first-order inverse correlation of ∆Pfr with the samples 

open porosity as proposed by Spieler et al., 2004, are evident especially in highly porous samples, 

indicating an increasing influence of a high permeability on the fragmentation behaviour. 
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In Figure 5.4 the linear permeability values of the samples used for the combined 

permeability-fragmentation study are highlighted. The comparison of Figure 5.3 and 

Figure 5.4 reveals conspicuous accordance in the porosity intervals 0.35-0.45 and 0.70-

0.80. In both cases exceptionally high amplitudes of permeability values of almost four 

orders of magnitude coincides with exceptional deviations of the fragmentation 

threshold pressures from a first-order inverse trend. This analogy foreshadows the 

influence of the rock permeability on the fragmentation threshold. The experimental 

results of the porosity, permeability and fragmentation threshold determinations are 

compiled in Table 5.1. 
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Figure 5.4: Permeability-porosity relations of the samples used for permeability-fragmentation 

experiments (highlighted with a black ring). Porosity values are given in void fraction between 0 and 1.  
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Table 5.1: Results of combined porosity, permeability, and fragmentation threshold determinations 
for 22 pumice/ breadcrust bomb samples and 10 dome rock samples  

Sample  Open porosity φ Permeability k [m2] Fragmentation 

threshold ∆PFr [MPa] 

Energy Density at 

∆PFr 

[10-6J/m’] (= ∆PFr*φ)  

Explosive activity 

products 

    

Lipari B03 0.587 5.96e-13 3.0 1.7595 

Lipari B04 0.581 1.66e-13 4.0 2.3252 

Lipari C02 0.694 4.98e-13 3.3 2.2895 

Lipari E01 0.393 8.90e-14 5.0 1.9660 

Lipari E09 0.377 1.99e-14 5.5 2.0730 

Lipari E20 0.364 2.20e-15 6.5 2.3633 

Lipari F03 0.758 4.85e-13 3.0 2.2746 

Unzen VUL02 0.475 1.47e-13 3.0 1.4247 

Unzen BKB38 0.367 8.90e-14 4.1 1.5047 

Campi Flegrei AMS 02 0.707 5.46e-12 7.0 4.9483 

Campi Flegrei AMS 03 0.793 1.17e-11 6.0 4.7598 

Campi Flegrei AMS 06 0.669 2.75e-12 6.5 4.3466 

Campi Flegrei AMS 15 0.723 9.86e-12 6.0 4.3368 

Campi Flegrei AMS 27 0.792 5.08e-12 4.8 3.8011 

Montserrat 33 0.684 1.67e-12 3.0 2.0505 

Krakatau RAK301 0.848 3.27e-12 2.7 2.2883 

Krakatau tube pumice03 0.781 1.26e-10 14.0 11.2000 

Santorini 01 0.752 1.35e-12 2.5 1.8793 

Santorini 03 0.701 7.83e-14 1.8 1.2622 

Santorini 05 0.798 7.13e-13 3.2 2.5549 

Santorini 12 0.801 8.47e-13 3.0 2.4027 

Stromboli biondo01 0.805 5.65e-11 7.5 6.0375 

     

Dome rocks     

Unzen 01 A17 0.050 4.35e-15 23.0 1.1592 

Unzen 01 F18 0.343 9.99e-13 7.5 2.5748 

Unzen 00 G18 0.412 4.50e-12 5.0 2.0590 

Unzen 00 G52 0.349 3.41e-12 6.0 2.0958 

Merapi A02 0.139 6.88e-14 10.0 1.3850 

Merapi A03 0.143 1.35e-13 10.0 1.4250 

Merapi B04 0.297 4.64e-13 9.0 2.6694 

Merapi B12 0.353 2.91e-12 9.0 3.1770 

Merapi C01 0.451 1.26e-11 13.0 5.8630 

Augustine B102 0.094 4.24e-15 14.0 1.3174 
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In Figure 5.5 the permeability is plotted against the respective fragmentation 

threshold of a sample. Regarding the distribution of the (k, ∆Pfr) pairs of variants, the 

following points can be stated: (1) In analogy to the permeability-porosity trends 

(Chapter 4.4) a distinction between dome rocks and explosive activity products can be 

made. (2) The data points of both groups follow similarly shaped trends, but parallel 

translated along the ∆Pfr – axis, with dome rocks generally showing higher threshold 

pressures. A noticeable deviation from this parallelism can be observed for very low 

permeability values. (3) Both trends seem to follow a more or less pronounced parabolic 

curvature with a minimum ∆Pfr at permeability values between 10-12 and 10-11 m2. 

Again, this observation implicates an influence of high k values towards an increase of 

∆Pfr. (4) However, the general view of the plot yields a high data scatter, because the 

very different porosities of the samples are not taken into account. Therefore this 

diagram helps to underpin the influence of the permeability on the fragmentation 

threshold but appears to be less suitable for an accurate quantitative statement.  
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Figure 5.5: Permeability values plotted against the corresponding fragmentation threshold. Samples from 

dome rocks and from explosive activity both follow trends with a parabolic curvature, but are parallel 

translated. The sharp increase at high permeabilities indicates an increasing influence of effective 

degassing on the fragmentation process. 
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The most evident way to avoid data scatter due to different porosities is to choose 

a set of samples with a similar pore volume fraction but different permeabilities and 

study their fragmentation behaviour. This was done for a set of 7 samples with a 

porosity of approximately 0.8 and permeability coefficients ranging from 8.4⋅10-13 to 

1.6⋅10-10 m2 (Figure 5.6a). The plot of the determined ∆Pfr values of these samples 

versus the measured k reveals an explicit power-law increase of the fragmentation 

threshold with increasing permeability (Figure 5.6b). The trend can be best-fitted with 

the curve ∆Pfr = 3.48 + 3.43·108·k0.76.  
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Figure 5.6: (a) porosity-adjusted influence of permeability on the fragmentation threshold is easiest 

achieved by taking samples with approximately the same porosity. In the present case, seven samples with 

~80 vol% porosity were chosen (red dots), (b) k-∆Pfr relation for seven samples with ~80 vol% porosity. 

An explicit increase following a power-law can be observed. 
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5.4.1 Fragmentation energy density 

The concept of the energy responsible for the fragmentation process allows the 

incorporation of the pore volume to the fragmentation threshold examinations for the 

whole set of investigated samples (Scheu 2005): The energy, E, which is needed to 

initiate and sustain a fragmentation process, is provided by the expansion of the 

pressurized gas located in the pore space of the samples. If the experiments are assumed 

to be isothermal due to the high heat capacity of the sample matrix and a negligible 

temperature drop in the gas volume below the sample after decompression (see Chapter 

4.2.2), E can be written as 

 

E = ∆P·φ ·V, (5.1) 

 

with ∆P being the differential between the pressure in the pore space and the ambient 

(in our case atmospheric) pressure, φ the volumetric fraction of open porosity, and V the 

sample volume. Standardizing the fragmentation energy to a unit volume the energy 

density, ρE , is defined as: 

 

ρE = E/V = ∆Pφ  (5.2) 

 

The minimum ρE needed to initiate fragmentation can be considered to be the 

“fragmentation threshold energy density” or alternatively as the “threshold energy 

density” ρE_fr. In analogy to equation (5.2) this value is determined as: 

 

ρE_fr = E(∆Pfr )/V = ∆Pfr·φ (5.3) 
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Figure 5.7: The fragmentation threshold energy density, ρE_fr, plotted against the corresponding 

permeability coefficients, k, on a logarithmic scale (both determined at room temperature). The increasing 

trend can be fitted by a power-law relation in the form ρE_fr =c⋅k0.46+σ (r2=0.87), with c= 3.27⋅105 

MPa/m2, and σ=1.4 MPa. Interestingly, data points for dome rock and explosive activity products 

(pumices and breadcrust bombs) fully coincide, despite their very different pore textures responsible for 

gas filtration (cracks or highly deformed pores in long-term degassed dome rocks, and a network of 

interconnected, spherical bubbles in material produced by explosive activity, respectively), and their 

different permeability-porosity trends (Chapter 4). This concurrence supports the broad predictive value 

of the proposed model. 

 

By relating the experimentally determined threshold energy density values of the 

samples with their measured permeability (Figure 5.7), the influence of a high rate of 

degassing on fragmentation becomes evident. Regression analysis reveals a data 

increase following the power-law distribution 

 

ρE_fr = 3.27⋅105⋅k0.46+1.4. (5.4) 
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By combining equations (5.3) and (5.4) a correlation of the fragmentation threshold with 

the sample porosity and permeability is obtained: 

 

∆Pfr = (c⋅k0.46+σ)⋅1/φ  (5.5) 

 

where c and σ are constants with the values 3.27⋅105 MPa/m2 and 1.4 MPa, respectively.  

 

5.4.2 Implications 

Previous definitions of the criterion required for magma fragmentation have 

invoked either a range of porosity (Sparks 1978; Sparks et al. 1994; Thomas et al. 1994; 

Gardner et al. 1996) or a combination of porosity and overpressure (Zhang 1999, 

Spieler et al. 2004b). The equation (5.5) bears similarities to the empirically defined 

criterion given by Spieler et al. (2004b). The comparison of the two equations strongly 

suggests that the constant σ, used in this study, can be regarded as an averaged value of 

the effective tensile strength of the samples matrix. The value of σ =1.4 MPa agrees 

well with the values reported by Spieler et al. (2004b). In this way, equation (5.5) 

represents an enhanced fragmentation criterion that relates the fragmentation threshold 

pressure not only to the porosity, but also to the rock permeability.  

The data distribution in Figure 5.7 indicates that at k-values around 10-12 m² 

there is a notable change in the influence of permeability. For k < 10-12 m² the threshold 

energy density is more or less constant. Consequently, the effect of permeability on the 

fragmentation behaviour is minor and can be sufficiently explained by existing models. 

For k > 10 -12 m² the threshold energy density increases sharply, suggesting that the 

permeability is taking over control on the fragmentation process. Furthermore, it is 

remarkable that the data in Figure 5.7 display a well defined trend with a relatively low 

degree of scatter, despite the very different properties exhibited by the samples, such as 

bulk chemistry, cristallinity, porosity, and tortuosity. As a result, it can be concluded 

that the influence of these material properties on the fragmentation behaviour is minor 

compared to that of the permeability. 

The fit accuracy of the criterion proposed here with respect to the experimental 

results is shown in Figure 5.8, and compared with results calculated with the 

fragmentation criterion by Spieler et al. 2004b. The data distribution demonstrates that 

the criterion incorporating the permeable gas flow is capable of predicting the 
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fragmentation threshold with an explicitly higher accuracy than the purely porosity-

related criterion of Spieler et al. 2004b. 

calculated ∆PFr [MPa]

0 5 10 15 20 25 30

m
ea

su
re

d 
∆P

Fr
 [M

Pa
]

0

5

10

15

20

25

30

This study 
Spieler et al., 2004b

 

Figure 5.8: Comparison of the fit accuracy of the theoretically predicted  ∆Pfr values according to the 

criterion of  this work (∆Pfr = (3.27⋅105 kg/m3s2 ⋅k0.46+1.4 MPa)⋅1/φ  ; full circles) and the work of 

Spieler et al. 2004b (∆Pfr = 0.995 MPa⋅1/φ ; open circles). The experimentally determined fragmentation 

threshold pressures of the 32 pyroclast samples of this work are therefore plotted against the values 

calculated with the two equations, respectively. The data distribution demonstrates that the criterion of 

Spieler et al. 2004b, neglecting the effect of permeable gas flow, overestimates the threshold of most of 

the samples, whereas the deviation between measured and calculated values remains small (r2=0.98) 

throughout the entire sample set for the criterion proposed in this work. 
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6 Summary and conclusions  

 

Porosity and permeability are both parameters which may have a considerable 

impact on the characteristics of a volcanic eruption. Various processes, from magmatic 

flow during ascent to the point of magmatic fragmentation during an explosive eruption 

are influenced, and sometimes even controlled by the amount of volatiles trapped in a 

magma’s pore space and by the efficiency of their escape. Detailed investigations of the 

porosity of pyroclastic rocks and its relation to the gas permeability are therefore crucial 

for the understanding of such processes and may provide an important database for 

physical models. The combination of experimental work and field investigation 

represents in this context an effective approach to obtain a statistically relevant amount 

of data on the one hand, and, on the other hand, experimentally quantify the correlation 

between different parameters. 

 

For this study, density data of pyroclastic deposits from eight circum-pacific 

volcanoes were recalculated to porosity values using the determined matrix density of 

the corresponding rocks. The pyroclasts density was determined directly in the field 

with a method based on the Archimedean principle; the matrix density was determined 

in the laboratory using a He-Pycnometer. The comparison of the resulting porosity 

distribution histograms allows (a) the investigation of local features related to 

depositional mechanisms, if the distribution of single measurement points is evaluated, 

and (b) statements about large scale coherencies regarding the eruptive style and the 

explosivity of a volcano, if the compiled datasets of the volcanoes are compared.  

The shape and the variance of the distribution curves, as well as the positions of 

the porosity peak or mean porosity values are parameters that can be used for further 

interpretation. The differences in the porosity distribution patterns allowed the 

classification of the investigated volcanoes into three groups, corresponding to their 

eruptive characteristics: (1) dome-building volcanoes with predominantly block-and-

ash-flow activity and occasional Vulcanian explosions (Merapi, Unzen, Colima), (2) 

cryptodome-forming volcanoes with a subsequent lateral-blast eruption (Bezymianny, 

Mount St. Helens), and (3) Subplinian to Plinian explosive eruptions (Krakatau, Kelut, 

Augustine).  
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Furthermore, possible coherencies between the mean porosity values of selected 

eruptions and their explosivity, expressed in two different explosivity indexes, were 

evaluated. The ‘Volcanic Explosivity Index’ (VEI), introduced by Newhall & Self 

(1982), is mainly based on the volume of the erupted tephra, and shows a rough positive 

correlation to the mean porosity of eruptive products. A qualitative enhancement of this 

correlation, especially considering low-porosity, low-explosive deposits, was achieved 

by using the measured porosity values to determine the index of the ‘Eruption 

Magnitude’, introduced by Pyle 1995. Volcanoes with not only pure explosive 

(Vulcanian and/or Plinian) activity were found to deviate systematically from this 

correlation. Besides their relevance for the understanding and modeling of eruption 

physics, the interpretation of porosity data may help to discriminate eruption 

characteristics and explosivities also at historic and pre-historic eruption deposits.  

 

The main focus of this work was the experimental investigation of the gas 

permeability of volcanic rocks. In order to simulate degassing processes under strongly 

transient conditions, the experiments were performed on a shock-tube like apparatus. 

The permeability of a natural porous material depends on a complex mixture of physical 

and textural parameters. Evidently, the volume fraction of the materials pore space, i.e. 

its porosity, is one of the prominent factors controlling permeable gas flow. But, as a 

high scatter of measured permeability values for a given porosity indicates, it seems that 

parameters like vesicle sizes, vesicle size distribution, vesicle shape, the degree of 

interconnectivity et cetera may likewise influence filtration properties. Therefore it is 

almost impossible to predict the permeability development of natural material with 

theoretical cause-and-effect relations, and experimental work in this field is essential. 

By performing more than 360 gas filtration experiments on 112 different samples from 

13 volcanoes, a comprehensive permeability and porosity database was created with this 

study, giving rise to profound empirical as well as quantitative investigations.  

The dependency of porosity and permeability of volcanic rocks was found to 

follow two different, but overlapping trends, according to the geometries of the gas-

flow providing pore-space: at low porosities (i.e. long-term degassed dome rocks), gas 

escape occurs predominantly through microcracks or elongated micropores and 

therefore could be described by simplified forms of capillary (Kozeny-Carman 

relations) and fracture flow models. At higher porosities, the influence of vesicles 

becomes progressively stronger as they form an increasingly connected network. 
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Therefore, a model based on the percolation theory of fully penetrable spheres was 

used, as a first approximation, to describe the permeability-porosity trend.  

 

To investigate possible influences of high temperatures on the degassing 

properties of volcanic rocks, a measuring method that allowed permeability experiments 

at temperatures up to 750 °C was developed and tested. A sealing coat of compacted 

NaCl, which was, if required, further compressed during the high-T experiment, was 

found to be the most promising approach to avoid gas leaking due to different thermal 

expansivities of the materials involved. The results of three dome rock samples showed 

distinct lower gas filtration rates at high temperatures. As this may, for the largest part, 

be attributed to changed gas properties at high temperature, the obtained permeability 

values must be corrected for the enhanced gas viscosity. The corrected permeability 

values of the samples were higher than those obtained at room temperature, possibly 

caused by thermal expansion of the pores. Since, however, compressional forces of the 

salt coating upon the sample cylinder may lower the permeability particularly of highly 

fractured rocks to a not quantifyable degree, these results must be interpreted 

accordingly and seen under certain restrictions.  

Comparison of the permeability values before and after the heating process 

revealed that no permanent structural changes in the pore network occurred. This was 

confirmed by a 5h-experiment on a trachytic sample, with permeability tests in an 

interval of 60 minutes.  

 

The influence of permeability on magmatic fragmentation is of special interest for 

the modelling of eruptive processes. In particular the ‘fragmentation threshold’, i.e. the 

physical conditions, at which magma is no longer able to reduce gas overpressure by 

filtration and fragments, represents an important boundary condition for explosive 

eruption models. Former studies defined this threshold to depend on either the porosity 

of the magma, or a combination of porosity and overpressure. The experimental results 

of this work, however, reveal that, in addition to porosity and applied overpressure, the 

permeability strongly influences the fragmentation threshold. By quantifying this 

influence in a simple, analytical equation, these results will provide a valuable tool for 

physical models of eruption mechanics.  
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Appendices 

A. Permeability measurements and the use of the filtration codes – an 

operating manual 

 

The methods for permeability measurements and data evaluation described in this 

work have been specially designed for particular investigations relevant to explosive 

volcanic activity and are therefore hardly comparable to standard measuring techniques. 

They comprise a complex procedure of sample preparation, installation, measurement, 

data recording and finally data evaluation. In order to enable a not only theoretical 

reproducibility of the method, a practical guideline for the steps relevant for 

measurement and subsequent data editing will be given in the following: 

 

Experimental procedure 

(1) Sample preparation: A 25 mm core is drilled out of the respective sample boulder 

and the edges cut to the desired length (standard length for most of the 

investigations on the fragmentation apparatus is 60 mm. However, permeability 

measurements at lengths down to 20 mm and up to 100 mm are operable). The 

edges should be polished coplanar. 

 

(2) Pycnometric density measurement/ BET surface analysis: After drying and 

weighing the sample may pass through the non-destructive characterisation 

procedures of interest. Porosity/ density measurements on the AccuPyc™ are a 

standard precursor for further fragmentation/ permeability investigations. 

 

(3) Sample installation: The sample cylinder is glued into a steel tube using an 

adhesive (Crystalbond™) that softens and is processible at a temperatures of 71 °C, 

and consolidates and becomes gas tight when cooling down to room temperature 

(Figure A1). For high-temperature measurements the sample cylinder is placed in 

the autoclave, free-standing on the conical shaped inset on top of the sample (in 

measurement position). Then gradually the salt is filled in the space between sample 

and autoclave. About every 5 mm, the loose salt grains are compressed in a 

hydraulic or “Spindel” press, using a steel tube with 28 mm outer and ~25mm inner 
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diameter. The procedure is repeated, until the compressed salt coat covers the entire 

sample length.  

Figure A1: The sample cylinder is glued into the steel tube using Crystalbond™. 

 

(4) Autoclave preparation: The steel tube is screwed onto the lower sealing plug and 

firmly tightened against a copper or (better) Teflon sealing ring. With a conical 

shaped placeholder on top, the steel tube is then inserted into the autoclave (sample 

holder tube + placeholder should fill the lower autoclave volume as precisely as 

possible), and, by firmly tightening a screw nut, the plug is pressed against the 

lower edge of the autoclave  (Figure A2).  

   
Figure A2: The steel tube is attached to the lower sealing plug (a) and screwed down tightly (b). 

Subsequently the sample tube is inserted into the autoclave, and the system is sealed with screw nut (c). 

(a) (b) (c) 
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(5) Autoclave installation: The autoclave is attached to the particle collection tank, 

with diaphragms of the desired strength placed in the diaphragm holders, and 

pressure transducers and gas supply are attached to the autoclave. Pressure 

transducer amplifiers are connected to the recording device (computer or oscillator; 

Figure A3).  

 

 
Figure A3: Copper or aluminium diaphragms are placed in the diaphragm holders (a). The autoclave is 

then attached to the tank and screwed down tightly against the diaphragms (b). Finally the gas supply 

system and the pressure transducers are attached (c). 

(a) (b) 

(c) 
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(6) Data recording: Commonly a Labview™ applet is used to record and save the 

pressure signals of the two transducers. It is important for further data editing that 

the amount of recorded data points is between 5000 and 15000. The sampling 

interval and the record time should be adjusted accordingly.  

 

(7) Filtration experiment: For the measurement the autoclave is pressurized to the 

required overpressure. By a controlled exceeding of the uppermost diaphragms 

strength the upper autoclave volume is rapidly decompressed. The pressure signals 

are recorded until the pressures in the two volumes are completely equalized. 

 

(8) The recorded .dyn or .pt files are saved and converted into plain text files.   

 

Data editing procedure 

(1) Code installation: Both codes, the steady and transient, consist of a main.exe, a 

parameter.dat and a pressure.txt file, which should be saved in the same folder for 

each of the codes. The additional files grfront.dat and rgb.txt, responsible for 

graphical presentation of the results, have to be saved in a newly created folder 

C:\pgplot. 

 

(2) Pressure file separation: For an initial data processing, the plain text file of the 

pressure recording should be imported to a suitable processing program, in the 

present case SigmaPlot® 8.0 has been used. All columns except the two pressure 

transducer signals should be deleted, as well as all forerun recording of the 

experiment (pressurization phase, constant pressure line etc.). The upper 

transducer column should be put in column 3 and should contain exactly one 

maximum pressure value (pi) before the rapid pressure drop. Lower transducers 

signal should be placed in column 2. 

 

(3) Time axis and conversions: A time axis according to the chosen sampling 

interval should be created in column 1. For SigmaPlot, a transform file containing 

“col(1)=data(0;size(col(2))*x;x)”, where x is the sampling interval in seconds, will 

create a progressional time series. As the codes require bar as a unit of pressure, 

all MPa values should be converted. The three resulting columns “time [s] - plow 
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[bar] – pup [bar]” should be re-exported to a plain text file. (Note: the codes 

operate only with dot-separated decimals, so eventually commas have to be 

converted in this txt-file.) 

 

(4) Pressure.txt-file editing of the steady code: The entire pressure data set will then 

be copy-pasted into the appropriate section of the pressure.txt file of the quasi-

steady code. Sample specifications must be entered above in the same file. 

 

(5) Param.dat-file editing of the steady code: The parameters in this file define the 

boundary conditions for the numerical calculation process of the code. “Min K” 

and “Max K” are the boundaries for the linear permeability, “Min C” and “Max C” 

for the non-linear term. For normal rocks k should lie between 1e-15 and 1e-10, 

and C between 1d-1 and 1d4 (1d2 = 100, 1d3 = 1000,…). If one of the resulting 

parameters calculated by the code lies on the previously defined boundary value, 

the respective number should be adjusted. The setting “ik” defines the calculation 

range for the permeability determination: 0 – the code determines both C and k 

using the whole dataset, approximation is done with the non-linear Forchheimer 

law, 1 - determines only the linear permeability k using the tale of the dataset 

applying Darcy’s law. “tstart” and “dtend” define the time range for this 

calculation. 

 

(6) “main.exe” starts the code. After the calculations have been performed, a graphic 

file shows the measured versus the calculated pressure drop curve. k and C results 

and an mean deviation “delta” are displayed as well. A full compilation of the 

resulting parameters is found in the file “results.dat”.   

 

(7) For the use of the transient code, the 3 columns of the time/pressure recording 

must be pasted into the pressure.txt-file of the transient code. Calculation 

parameters, including the sample specifications, have to be entered in the 

respective param.dat-file. Again the main.exe file starts the calculations. Note: 

The correct value of C (transient) is obtained by multiplying the calculated C with 

the square root of k.  
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B. Tables of experimental results 

Table B.1: Results of room-temperature permeability and laboratory porosity measurements of 112 
samples, as well as fragmentation threhold and energy density values. For each of the samples, one to five 
permeability measurements at different initial pressure differences have been performed. The average 
values of these experiments are displayed in the table.   

Sample 
k(quasi-
static)[m2]  

C(quasi-
static) 

k(transient)
[m2]  

C 
(transient) 

Φopen 
[vol%] 

Φtotal 
[vol%] 

∆Pfr 
[MPa] 

ρE_fr 
[10-6 

J/m3] 
LIP B02 2,37E-13 661,21 2,67E-13 97,54 53,92 60,05   

LIP B04 1,39E-13 326,06 1,66E-13 233,41 58,13 64,60 4 2,33

LIP B03 6,54E-13 90,50 5,96E-13 38,57 58,65 63,04 3 1,76

LIP C02 4,56E-13 528,48 4,98E-13 337,81 69,38 73,69 3,3 2,29

LIP E01 9,34E-14 572,50 8,90E-14 220,70 39,32 39,57 5 1,97

LIP E03 2,98E-13 249,28 3,90E-13 69,57 38,41 38,74   

LIP E04 7,54E-14 433,24 8,16E-14 294,31 39,22 39,32   

LIP E08 3,41E-14 1998,00 4,94E-14 1749,70 36,47 37,06   

LIP E09 2,03E-14 2475,20 1,99E-14 2847,39 37,69 37,84 5,5 2,07

LIP E11 6,20E-14 236,14 6,94E-14 171,48 36,46 36,95   

LIP E12 3,38E-14 395,12 3,73E-14 294,24 35,50 35,99   

LIP E13 3,03E-14 397,24 3,48E-14 110,04 35,39 36,18   

LIP E14 3,40E-14 117,37 3,80E-14 79,28 31,51 33,78   

LIP E17 3,32E-15 84149,00 3,12E-15 90242,50 39,87 40,46   

LIP E20 2,67E-15 56126,00 2,21E-15 50346,01 36,36 36,63 6,5 2,36

LIP F03 4,29E-13 6834,40 4,85E-13 5424,00 75,82 79,69 3 2,27

LIP F04 5,21E-13 1585,40 5,21E-13 1229,08 76,59 79,97 3,1 2,37

MUZ VUL01 1,06E-13 893,64 1,21E-13 651,02 46,88 53,95   

MUZ VUL02 1,71E-13 210,07 1,47E-13 71,50 47,49 54,25 3 1,42

MUZ VUL03 1,03E-13 1330,77 1,47E-13 375,20 46,34 54,48   

MUZ BKB35 8,99E-14 741,99 9,91E-14 588,52 36,88 42,93   

MUZ BKB 38 6,67E-14 793,82 8,91E-14 804,06 36,70 42,83 4,1 1,50

MUZ 2000 A18 2,56E-15 16775,00 2,67E-15 9001,65 3,83 4,22   

MUZ 2000 A19 7,34E-15 19836,00 8,93E-15 12137,27 4,41 4,41   

MUZ 2001 A22 2,11E-14 1065,24 1,85E-14 1239,93 5,47 5,47   

MUZ 2000 A22 1,51E-14 1764,90 1,68E-14 1064,28 10,12 10,12   

MUZ 2000 A25 3,98E-15 5418,00 3,29E-15 802,42 3,67 3,67 17 0,62

MUZ 2001 A17 4,15E-15 6198,00 4,35E-15 8354,00 5,04 5,04 23 1,16

MUZ 2001 B18 3,63E-14 1508,25 3,96E-14 1115,25 12,37 14,47   

MUZ 2001 C20 2,82E-13 154,15 3,18E-13 118,89 20,16 21,01   

MUZ 2000  D02 4,20E-14 1853,90 5,09E-14 1920,70 12,67 16,21   

MUZ 2000 D09 3,27E-14 2239,80 3,63E-14 1776,70 13,72 16,21   

MUZ 2000 E17 3,10E-14 1546,05 3,52E-14 1209,44 14,12 16,64   

MUZ 2000 E21 3,31E-14 1366,40 3,91E-14 1110,18 14,89 17,42   



 Appendices 

 

 125

MUZ 2000 E22 3,60E-14 1976,50 3,87E-14 1450,30 14,53 16,88   

MUZ 2000 G18 3,75E-12 2,49 4,50E-12 1,55 41,18 42,00 5 2,06

MUZ 2000 G32 7,88E-13 48,06 9,33E-13 28,61 37,89 38,93   

MUZ 2000 G38 5,43E-13 129,27 8,53E-13 149,37 32,46 34,55   

MUZ 2000 G52 2,89E-12 3,57 3,41E-12 2,25 34,93 36,04 6 2,10

MUZ 2001 F18 9,87E-13 52,57 9,99E-13 37,73 34,33 36,69 7,5 2,57

MUZ 2001 F23 1,14E-12 24,30 1,29E-12 17,38 34,88 37,43   

MUZ 2001 F24 1,11E-12 20,18 1,44E-12 10,97 34,77 37,02   

MP A02 7,81E-14 345,49 6,88E-14 62,87 13,85 13,85 10 1,39

MP A03 9,25E-14 1673,95 1,35E-13 1557,42 14,25 14,25 10 1,43

MP B04 4,93E-13 138,97 5,35E-13 142,90 29,66 30,37 9 2,67

MP B10 1,63E-12 17,17 2,14E-12 16,29 34,59 36,44   

MP B12 2,35E-12 5,41 2,91E-12 4,16 35,30 35,76 9 3,18

MP C01 9,66E-12 0,74 1,26E-11 0,12 45,10 45,50 13,5 6,09

CFS 02 4,65E-12 2,59 5,46E-12 1,87 70,69 73,70   

CFS 03 1,10E-11 1,42 1,17E-11 0,08 79,33 81,95   

CFS 06 2,00E-12 4,37 2,06E-12 1,02 66,87 69,80   

CFS15 6,64E-12 1,26 7,66E-12 0,41 72,28 75,20   

CFS16 2,84E-12 4,25 3,30E-12 2,05 66,39 69,17   

CFS18 1,94E-12 12,03 2,56E-12 7,20 66,63 72,31   

CFS27 4,53E-12 3,44 5,08E-12 1,54 79,19 82,08 4,8 3,80

SNT01 1,18E-12 29,21 1,35E-12 18,25 75,17 82,03 2,5 1,88

SNT03 6,95E-14 2216,40 7,83E-14 1610,20 70,12 78,34   

SNT05 5,90E-13 162,81 7,13E-13 124,04 79,84 84,42   

SNT06 8,91E-13 189,91 8,73E-13 59,35 79,00 84,38   

SNT12 7,27E-13 261,05 8,47E-13 180,86 80,09 84,61 3 2,40

STR_Br249 4,77E-13 98,36 5,35E-13 74,71 49,39 50,14   

Stbr02 1,18E-11 0,59 1,27E-11 0,19 71,95 72,87   

Stbr03 2,57E-13 112,11 2,97E-13 76,46 58,70 59,90   

Stbr04 5,77E-13 30,39 6,23E-13 21,21 62,30 63,18   

STR_Bi 5,44E-11 0,19 5,65E-11 0,05 80,50 81,24 7,5 6,04

Str_Bi03 1,38E-11 0,52 1,42E-11 0,33 66,05 68,95   

PIN A01 2,76E-12 7,78 3,56E-12 7,62 60,18 61,83   

PIN A02 2,99E-12 6,32 3,81E-12 6,04 60,31 62,40   

PIN B01 1,77E-12 22,39 2,27E-12 16,63 51,36 65,88   

PIN B07 1,23E-13 420,39 1,36E-13 269,43 51,97 63,65   

PIN B09 1,45E-12 20,41 1,10E-12 8,08 47,64 58,16   

PIN C04 8,44E-13 16,65 9,08E-13 7,81 50,70 55,77   

PIN C03 6,97E-13 26,06 8,09E-13 12,54 51,48 58,56   

PIN GFL1a 1,17E-12 8,79 1,35E-12 6,19 76,34 78,49   
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PIN GFL1b 1,28E-12 9,76 1,72E-12 8,03 73,16 76,36   

PIN GFL1c 4,21E-13 29,74 5,78E-13 37,28 71,18 74,97   

PIN GFL2a 4,40E-13 29,69 5,44E-13 26,04 72,12 74,38   

PIN GFL3aa 1,08E-12 19,83 1,11E-12 7,70 72,99 75,20   

PIN GFL4a 5,68E-13 73,47 6,22E-13 58,01 68,39 73,89   

PIN GFL5 9,42E-14 381,27 1,03E-13 283,83 67,20 74,14   

PIN GFL6 1,58E-13 246,51 1,88E-13 195,01 67,84 73,52   

MTSR33 1,80E-12 25,32 1,67E-12 4,18 68,35 74,01 3 2,05

MTSR38 1,82E-12 98,59 1,60E-12 70,82 66,79 74,46   

MTSR86 1,29E-11 1,32 1,45E-11 0,70 67,52 73,62   

AuB1 02 4,70E-15 12362,00 4,24E-15 14291,82 9,41 9,41 14 1,32

AuC1 01 1,07E-12 13,92 1,17E-12 10,99 37,21 37,94   

AuC1 02 2,44E-12 3,49 2,68E-12 2,36 48,05 48,30   

AUG P4x 2,67E-13 320,25 2,09E-13 99,44 70,52 76,68   

AuP104 1,73E-12 9,05 1,93E-12 6,66 47,68 53,84   

CoC6 03 1,35E-13 787,68 1,51E-13 736,48 14,27 14,27   

CoD2 06 1,70E-12 20,11 2,21E-12 14,27 18,96 19,00   

CoD2 13 8,65E-13 97,23 9,56E-13 85,48 18,25 18,42   

CoD2 30 1,88E-12 7,38 2,38E-12 7,55 21,64 21,64   

CoE4 04 9,89E-13 18,81 1,05E-12 13,29 44,20 47,72   

CoP3 05 7,17E-12 1,24 8,54E-12 0,92 64,69 66,21   

CoP4 01 1,14E-12 43,18 1,36E-12 55,93 62,12 64,76   

KeC3 01 6,62E-13 132,05 7,22E-13 107,91 28,05 28,76   

KeD4 01 2,49E-12 6,45 2,87E-12 5,46 46,72 50,73   

KeD4 02 2,61E-12 7,00 2,88E-12 5,49 48,93 52,94   

KeD9 02 1,99E-12 12,14 2,41E-12 10,77 47,33 50,57   

KrA11 01 3,87E-14 4345,80 4,05E-14 3511,49 22,67 23,07   

KrD4 02 5,02E-14 590,15 6,57E-14 727,00 41,45 41,45   

KrE6 01 1,75E-13 178,29 2,51E-13 166,79 65,20 65,37   

KrTP 1,49E-10 0,02 1,51E-10 0,02 78,14 78,14   

KrR4 01 2,61E-12 16,18 3,27E-12 6,53 84,75 89,96 2,7 2,29

KrR4 02 9,76E-13 71,74 1,21E-12 56,15 82,37 88,59   

KrS2 01 1,19E-12 28,16 1,52E-12 27,39 73,36 81,39   

BeB1 01 1,72E-13 10,84 2,17E-13 10,42 25,52 28,32   

BeC3 01 3,08E-13 1896,05 2,88E-13 1176,75 38,04 41,49   

BeC3 02 4,28E-13 321,61 6,15E-13 364,92 38,52 41,99   

BeD2 06 8,26E-12 1,16 9,24E-12 0,91 45,42 45,47   

BeE1 01 7,04E-12 1,24 8,28E-12 0,98 50,87 51,12   



 Appendices 

 

 127 

Table B.2: Parameters and results of high-temperature permeability experiments. The measurements of the Camp Flegrei trachyte have been performed at 0, 120, 180, 240 and 
300 min after experiment start.   

Experiment ∆ Pi 

Tfurnace 

[°C] Tgas [°C] 

k(steady) 

[m2] C(steady) 

k(transient) 

[m2] C(transient) 

µargon [10-5 

Pas] k corr  C corr k drop [%] 

Φopen 

[vol%] 

Φtotal 

[vol%] 

              

MUZ 2001 A20_b 1,65 25  9,23E-15 764,54 1,17E-14 1389,29     4,72 5,1 

MUZ 2001 A20_h 1,63 707 707 5,76E-15 95782,00 8,10E-15 421736,86 5,26 1,89E-14 181202,53 30,9 4,72 5,1 

MUZ 2001 A20_h 1,67 25  8,90E-15 1489,50 1,04E-14 2424,88     4,72 5,1 

              

MUZ 2000 A17_b 2,59 25  1,92E-13 97,21 2,16E-13 96,31     9,23 9,69 

MUZ 2000 A17_h 2,62 750 730 6,89E-14 96,61 7,54E-14 287,99 5,34 1,78E-13 121,88 65,1 9,23 9,69 

MUZ 2000 A17_a 2,60 25  2,01E-13 63,67 2,16E-13 52,08     9,23 9,69 

              

MUZ 2000 D b 1,57 25  6,10E-14 2978,80 5,68E-14 3767,35     14,1 16,2 

MUZ 2000 D_h 1,56 750 701 4,33E-14 5572,30 3,73E-14 20182,53 5,25 8,67E-14 8688,10 34,4 14,1 16,2 

MUZ 2000 D_a 1,56 25  7,84E-14 2905,40 6,11E-14 2803,83     14,1 16,2 

              

MP B10_b 1,70 25  1,83E-12 8,90 2,03E-12 7,01     35,48 36,44 

MP B10_h 1,70 750 701 1,15E-12 3,86 1,33E-12 10,52 5,25 3,08E-12 4,53 34,6 35,48 36,44 

MP B10_a 1,71 25  3,86E-12 16,89 2,11E-12 4,47     35,48 36,44 

              

cf_mn05_1 0,46 25  3,84E-13 37,77       46,71  

cf_mn05_1h 0,46 750  4,27E-13 83,21       46,71  

cf_mn05_2h 0,46 750  4,39E-13 104,64       46,71  

cf_mn05_3h 0,46 750  4,89E-13 79,44       46,71  

cf_mn05_3h 0,46 750  4,56E-13 96,11       46,71  



 Appendices 

 

 128 



 Curriculum vitae 

 

 129

Curriculum vitae 

 

Persönliche Daten 

 

Sebastian Philipp Müller, geboren am 20. Mai 1975 in München 

verheiratet, 1 Kind 

 

Schulbildung 

 

1981-1985  Besuch der Tagesheimschule an der Hochstraße, München 

1985-1994  Besuch des Willi-Graf-Gymnasiums, München 

Juli 1995  Erwerb der allgemeinen Hochschulreife 

 

Studium 

 

1995-1996 Studium der Geographie an der Technischen Universität 

München 

1996-2002 Studium der Geologie/Paläontologie an der Ludwig-

Maximilians-Universität München 

September 2002  Erwerb des Diploms in Geologie/Paläontologie 

Seit November 2002 Promotion an der Fakultät für Geowissenschaften, LMU 

München 

 

Berufstätigkeit 

 

Seit November 2002 Wissenschaftlicher Mitarbeiter am Department für Geo- und 

Umweltwissenschaften der LMU München 


