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1 Introduction 

Endogenous synthesis of long-chain polyunsaturated fatty acids. The two 

essential fatty acids (EFA) linoleic acid (LA, Figure  1.1) and alpha-linolenic acid 

(ALA) and their further desaturated, longer-chain derivatives, the long-chain 

polyunsaturated fatty acids (LCPUFA), are indispensable for human development 

and optimal health.  

 

 

Figure  1.1. Chemical structure of linoleic acid and alpha-linolenic acid. 

 

Arachidonic acid (AA), dihomo-gamma-linolenic acid (DGLA), and eicosapentaenoic 

acid (EPA) all serve as precursors for eicosanoids, while docosahexaenoic acid 

(DHA) is an important structural component of the gray matter of the brain and the 

retina of the eye. Although they can be synthesised in the body from LA or ALA 

through a series of elongation and desaturation (and additionally β-oxidation for DHA 

synthesis), this synthesis is restricted by the activity of the rate-limiting enzyme ∆6-

desaturase (Figure  1.2). Conversion of ALA to EPA and DHA is not very efficient and 

depends on the level of ALA and its ratio to LA in the diet, because n-6 and n-3 fatty 

acids compete for the same enzymes responsible for their conversion [1]. Previous 

studies with stable isotopically labelled ALA have shown conversion of ALA to EPA 
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varying from 6-21% [2-4] to much lower values (0.1-0.2%; [5-7]). Reports on the 

conversion of ALA to DHA range from 4-9% [2,4] to 0.04% [8] or undetectable DHA 

synthesis [3]. Thus, endogenous formation of EPA and especially DHA is thought 

insufficient under certain circumstances [9], and additional dietary intake of 

preformed n-3 LCPUFA is needed to cover metabolic requirements. 

 

 

 

Figure  1.2. Synthesis of polyunsaturated fatty acids (modified from [10]). 

 

Dietary intake and sources of n-3 LCPUFA in the Western diet. The vast majority 

of dietary EPA and DHA in a typical Western diet is consumed in the form of fish and 

seafood (68%) with much smaller contributions coming from eggs (12%), poultry 

(7%), meat and sausages (7%) [11]. Plant foods and vegetable oils are devoid of 

EPA and DHA, but contain varying amounts of ALA. Major sources of ALA are 

vegetable oils and selected nuts and seeds (e.g. soybean and canola oil, flaxseed, 
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English walnuts) [12,13]. The typical Western diet provides ∼1-2 g ALA per day but 

only 0.1-0.2 g/d EPA and DHA combined [12,14,15]. For German adults, a recent 

study reported the median dietary intake of EPA and DHA combined to be 141 mg/d 

among women and 186 mg/d among men [11]. The lowest median intake was 

observed among women aged 18-24 years (84 mg/d, Figure  1.3). 

 

 

Figure  1.3. Distribution of EPA + DHA intake in German adults stratified by sex and age (bottom and 
top edges of the box are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median and whiskers mark the data points that are nearest to the 1.5 interquartile ranges, outliers are 
not shown). The average daily DHA and EPA intake corresponding to two servings of fatty fish per 
week (150-300 g fish, containing 1 g EPA/DHA per 100 g) is marked by a horizontal line. 

* Figure from Bauch et al. [11]. 

 

The high intake of n-6 fatty acid LA (5-7% of daily energy or 11-16 g/day) yields a 

mean overall n-6:n-3 dietary ratio of about 9.8:1 in the United States [12] and 7.2:1 - 

8.6:1 in Germany [16]. The German Society of Nutrition has recommended [17] that 

this ratio should be lowered < 5:1 to reduce the competitive influence of high LA 

intakes on ALA conversion to EPA and DHA. Attaining the proposed recommended 

combined EPA and DHA intake ≥ 650 mg/d for healthy adults [18] will require an 

approximately 4-fold increase in fish consumption in the United States and other 

Western countries. Such a change in dietary habits is not realistic for all persons (e.g. 
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vegetarians, fish allergic persons) or might not be adequate for persons with 

increased n-3 LCPUFA requirements (patients with coronary heart diseases, 

pregnant women). Additionally, individual gustatory preferences may also limit 

additional fish consumption. Furthermore, an increase in fish consumption is 

ecologically (overfishing) and regarding heavy metal contamination problematic. 

Alternative strategies, such as n-3 fatty acid supplements, food enrichment and use 

of biotechnology will become increasingly important in raising n-3 fatty acid intake in 

the Western diet over the long term. 

N-3 LCPUFA intake and status of vegetarians. Total n-3 fatty acid intakes are 

similar for vegans, vegetarians, and omnivores (< 1-3 g/d, with the current average 

being ∼1.1-1.6 g/d) [19]. However, the intakes of n-3 LCPUFA vary appreciably: 

ovolacto vegetarians consume minimal amounts of EPA and varying amounts of DHA 

from eggs, milk and dairy products (average intakes < 33 mg/d) [20]. Vegans 

consume negligible amounts of n-3 LCPUFA and rely entirely on in vivo biosynthesis 

of n-3 LCPUFA from the precursor ALA. N-6 fatty acid intakes are significantly higher 

in vegan and vegetarian populations than in omnivorous populations, ranging from 5-

7% of energy in omnivores to about 10-12% of energy in vegans. As a result, the n-

6:n-3 ratio is generally considered to be elevated in vegans (14:1 – 20:1) and 

ovolacto vegetarians (10:1 – 16:1) compared with omnivores (< 10:1) [19]. 

Lack of EPA and DHA in vegetarian and especially vegan diets is reflected in 

reduced amounts of these fatty acids in platelets, red blood cells (RBC) and plasma 

[21-26]. 

N-3 LCPUFA and coronary heart diseases. The risk for many chronic diseases, 

including coronary heart diseases (CHD), is influenced by dietary fatty acid intake 

[27-29]. A higher degree of incorporation of n-3 LCPUFA into myocardial membranes 

reduces deaths following myocardial ischemia [30]. In a nested case-control study 

(94 men with incident CHD and 94 men without incident CHD), levels of DHA in 

plasma phospholipids were inversely correlated with CHD risk in a multivariate model 

that controlled for the effects of HDL:LDL cholesterol ratio (standardized odds ratio = 

0.57; 95% confidence interval 0.36-0.90) [31]. Harris et al. [32] showed that n-3 

LCPUFA content in RBC membranes reflects that of cardiac membranes. The 

percentage content of EPA + DHA in RBC membranes (hereafter called omega-3 

index) has recently been identified as a risk indicator for death from CHD [33]. The 

relationship between the omega-3 index and the risk for CHD death, especially 
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sudden cardiac death (SCD), was evaluated using the data from several published 

primary and secondary prevention studies. An omega-3 index ≥ 8 wt% was 

associated with the greatest cardioprotection, whereas an index ≤ 4 wt% was 

associated with the least. Harris & von Schacky [33] observed significant increases of 

the omega-3 index after EPA and DHA supplementation (1 g/d) for 5 months, ranging 

after intervention from 5 wt% to 13 wt%. These different levels in people consuming 

the same amount of EPA + DHA for several months might be caused by individual 

differences in baseline values of the omega-3 index or differences in digestion, 

absorption, transport, uptake in target tissues, metabolism from storage sites and in 

vivo conversion of ALA to LCPUFA derivatives. Consequently, a subject with low 

baseline omega-3 index may require a larger dose than a person with a higher 

baseline value. Further studies investigating the dose-response relationship between 

EPA + DHA intake and the omega-3 index in subjects with different background diets 

are needed. For clinical studies it is in addition of interest to know whether RBC total 

lipid fatty acids (especially omega-3 index) correspond to values found in other lipid 

classes (plasma phospholipids, RBC phosphatidylcholine, RBC phosphatidyl-

ethanolamine) in subjects with a stable background diet. 

Circulating triacylglycerol (TG) levels in the fasting and postprandial states are 

associated with the severity and progression of atherosclerosis [34] and are 

recognised as independent risk factors for CHD [35]. According to Assmann [36], the 

need to include factors other than LDL cholesterol in risk assessment of myocardial 

infarction (MI) is indicated by multivariate analysis of data from the Prospective 

Cardiovascular Münster (PROCAM) study in which HDL cholesterol, LDL cholesterol, 

TG level, age, systolic blood pressure, family history of MI, cigarette smoking, and 

diabetes were each identified as independent risk variables for MI. From Assmann’s 

point of view, the impact of curvilinear relation between LDL cholesterol level and risk 

of MI, as shown in Figure  1.4 and demonstrated in other epidemiological studies [37-

41], is frequently underestimated and it goes unrecognised that curves of different 

steepness are generated depending on global risk of the individuals. A change in one 

of the 7 identified risk factors beside LDL cholesterol (e.g. TG decrease) could result 

in the transfer of an individual to a lower-risk group without necessarily modifying LDL 

cholesterol level (Figure  1.4 and Figure  1.5). 
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Figure  1.4. Myocardial infarction (MI) risk within multiple logistic function (MLF) quintiles according to 
LDL cholesterol (LDL-C) level in the Prospective Cardiovascular Münster study population.*  

*  Figure from Assmann [36]. 
 

 

 

 
 

Figure  1.5. Incidence of myocardial infarction (MI) in 10 years according to baseline triglyceride level 
and LDL cholesterol (LDL-C) level in the Prospective Cardiovascular Münster study.* 

*  Figure from Assmann [36]. 
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A meta-analysis by Austin et al. [42] suggested that after adjustment for HDL 

cholesterol and other risk factors, each 1 mM increase in TG is associated with a 

14% increase in CHD in men and a 37% increase in women. According to Griffin [43] 

there is convincing evidence to show that even moderately raised plasma TG (> 1.5 

mM), which has a predicted frequency of between 25-30% in middle-aged men and 

postmenopausal women, confer increased cardiovascular risk in otherwise normal, 

healthy individuals. 

N-3 LCPUFA have TG-lowering effects in humans [44-49]. In a meta-analysis of 65 

studies, Harris [50] concluded that an average dose of 4 g EPA and DHA per day 

results in a 25-30% decrease of fasting TG in both normolipidaemic and 

hypertriacylglycerolaemic subjects. It has been assumed that the hypotriglyceri-

daemic effect of n-3 LCPUFA is mediated by several mechanisms such as increased 

hepatic fatty acid oxidation, inhibition of fatty acid and TG synthesis and reduced 

assembly and secretion of VLDL triacylglycerol [51]. Most studies of n-3 LCPUFA 

have generally used oils containing mixtures of EPA and DHA in the range of 1-5 g/d, 

but studies investigating specifically the effects of individual n-3 LCPUFA on TG and 

lipoproteins in humans are rare. Few studies have compared the effects of purified 

EPA and DHA (as ethyl esters) showing inconsistent results: in a study by Rambjor et 

al. [52] supplementing normolipidaemic subjects with 3 g EPA or DHA/d for 3 weeks, 

EPA, but not DHA had a TG-lowering effect. Other studies show that both EPA and 

DHA lower serum TG concentrations at intakes of 3.0-4.9 g/d [47,48,53,54], whereas 

HDL cholesterol concentrations tend to increase only with DHA supplementation 

[47,52,53]. 

Studies applying single-cell oil as DHA source, which contain only trace amounts of 

EPA and other n-3 fatty acids, reported a significant reduction in TG concentrations 

and an increase in HDL cholesterol levels at DHA intakes in the range of 1.25-2.5 g/d 

in normo- or hyperlipidaemic volunteers [44,46,49,55], whereas other studies with 

DHA intakes of 0.7 g/d [56] and 0.75-1.5 g/d [57] did not find any significant effects 

on plasma TG and lipoproteins in normolipidaemic subjects. Future trials will be 

needed to determine minimum effective dosages of EPA and DHA over lengthy 

periods and to show reduction of CHD by intervention. 
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N-3 LCPUFA and infantile development. DHA and AA are found in high 

concentrations in structural lipids of the central nervous system and have been 

shown to be important for brain development and function [58-60]. Adequate 

accretion of both DHA and AA in brain and retina is particularly important during the 

rapid brain growth, which takes place in the perinatal period [60]. However, since 

pregnancy is associated with a decrease in the biochemical and functional LCPUFA 

status of the mother, the foetal and neonatal LCPUFA status may not be optimal [9]. 

Numerous studies have been conducted over recent years to evaluate the functional 

effects of dietary DHA supplementation on visual and cognitive development of 

preterm and term infants. It is now generally accepted that postnatal DHA 

administration promotes, at least temporarily, cognitive and visual development of 

infants born preterm [61-66]. Developmental benefit of postnatal DHA 

supplementation has been observed in term infants also, but the results are less 

consistent [67-69]: Some studies have shown improved development of visual acuity 

and cognitive functions in term infants [70-76], whereas others have shown no 

significant effects [77-80].  

Two studies were performed in children with hyperphenylalaninaemia or 

phenylketonuria (mean subject age: 6 years and 11 years respectively [81,82]), 

whose habitual diets contain nearly no n-3 LCPUFA. These investigators observed 

significant improvements in visual evoked potential latencies after supplementation 

with LCPUFA / fish oil, suggesting that n-3 LCPUFA are essential substrates for the 

nervous system function even beyond infancy. 

Dietary supplementation with DHA not only improves the DHA status in the recipient, 

but at the same time it reduces the availability of AA [83]. AA is the second-most 

abundant LCPUFA in the brain, and AA-derived eicosanoids are important functional 

mediators [84]. AA is involved in cell signalling [85] and is one of the major fatty acid 

moieties of anandamides, which serve important functions as ligands of the 

cannabinoid receptor in the brain [86]. Information on the importance of AA for 

development and function of the central nervous system is less clear than for DHA. 

Only limited evidence points to a positive effect of this fatty acid on brain 

development and function, when given in combination with DHA to term infants 

[71,87]. But cerebral AA may be required for the prevention of neuromental disorders 

like schizophrenia [87]. Whether or not the AA reduction associated with DHA 

supplementation diminishes DHA-induced functional improvements is not known. 
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Because of this lack of knowledge, any supplementation of mothers or infants 

intended to improve their DHA availability should not compromise maternal and 

neonatal AA status.  

A potentially simple way to achieve this may be the administration of gamma-linolenic 

acid (GLA). This fatty acid is the ∆6-desaturated derivative of LA (see Figure  1.2) and 

has been suggested to be more readily converted to AA than LA [88]. Since the 

EFA/LCPUFA status of neonates is positively correlated with that of their mothers, a 

higher maternal GLA status can be expected to increase the neonatal GLA status. 

This may be of importance for the prevention of obesity, insulin resistance and 

hypertriglyceridaemia in later life, since at seven years of age these have been 

shown to be inversely related to GLA status at birth [89,90]. In addition, a significant, 

positive relationship has been observed between the DGLA status of the neonate 

and its birth weight [91]. According to the Barker hypothesis [92,93], a higher birth 

weight may be associated with a lower risk for certain chronic diseases in later life. In 

addition, GLA may serve essential functions in the transcription of genes involved in 

glucose and lipid metabolism [94,95] and is thought to play a role in atopy [96,97]. 

Dietary intake of GLA is very low and endogenously synthesised GLA may be 

expected to be converted to DGLA and possibly AA. Therefore, supplementation with 

GLA to pregnant women may increase the GLA and DGLA status of mothers and 

their neonates and, thereby, promote infantile development and support disease 

prevention.  

Most formulas for preterm infants and some term formulas already contain a 

combination of DHA and AA and some formulas are enriched with GLA as well. 

However, infants should preferably be fed with breast milk and, consequently, the 

EFA and LCPUFA content of mother’s milk should also be adequate for optimal 

postnatal development. Because the LCPUFA content of breast milk can be very low, 

it may be desirable to “fortify” mother’s milk with LCPUFA. This can be achieved i.e. 

by supplementing lactating mothers with these fatty acids or their precursors. Cant et 

al. [98] were the first to show that GLA supplementation results in GLA enrichment of 

breast milk lipids. This was confirmed by Thijs and co-workers, who demonstrated 

that supplementation of lactating atopic mothers with 230 or 460 mg per day of GLA 

from borage oil caused a dose dependent increase in milk lipid concentrations of 

GLA and DGLA [99]. AA concentrations, however, were not significantly affected. 

ALA supplementation increases ALA, EPA and DPA, but not DHA concentration in 
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breast milk lipids [100]. Supplementation with DHA-rich single cell oil in doses up to 

1.3 g DHA per day for 3 months increased the breast milk DHA concentration more 

than 5-fold (from 0.21 to 1.13 % of total fatty acids), whereas the AA content 

decreased slightly, but significantly [101]. Infant DHA levels in plasma and RBC 

phospholipids after 12 weeks of lactation were significantly and positively related to 

the DHA dose their mothers were supplemented with, and reached values up to 9.1 

and 9.8% for plasma and erythrocyte phospholipids respectively [102]. Infant plasma 

and erythrocyte AA contents reduced significantly in the supplemented groups and in 

proportion to the maternal DHA supplementation doses. Therefore, there is need to 

design a fatty acid supplement for pregnant women and lactating mothers which 

enhances GLA, DGLA, and DHA status in the neonates and later on in the breastfed 

infants while not compromising their AA status. 

Mothers may also functionally benefit from postnatal LCPUFA supplementation 

themselves, since their postnatal DHA status is lower than that of non-lactating 

mothers [103] and they may need to recover from possible cognitive impairments 

during pregnancy [104,105]. In addition, a low maternal DHA status has been 

suggested to increase the risk of post partum depression [106,107]. This hypothesis 

is supported by recent findings that a higher DHA status at delivery [107] and a better 

improvement of the maternal DHA status after delivery [108] are associated with less 

depressive symptoms in the post partum period. In a longitudinal study it appeared 

that post partum depression is often preceded by depression during the 32nd week of 

pregnancy already [109], which may also be DHA-related. Therefore, a higher DHA 

status during early pregnancy may be beneficial in the prevention of depressive 

symptoms during pregnancy and after delivery. 

Objectives of this work. This work is intended to evaluate two supplementation 

strategies to improve n-3 LCPUFA status in healthy adults. Two randomised, double 

blind, placebo-controlled intervention studies with parallel design were performed. In 

the first study (DHAVEG study), healthy adult vegetarians with low basal n-3 

LCPUFA status consumed a vegetarian, DHA-rich oil (delivering 1.05 g DHA and < 7 

mg of each GLA, AA, and EPA as triglycerides per day) or a placebo for 8 weeks.  

In the second study (FO/EPO study), healthy non-pregnant women were 

supplemented with a fish oil/evening primrose oil mixture (FO/EPO, providing not 

only 419 mg DHA and 72 mg EPA but also 14 mg AA and 337 mg GLA as 

triglycerides per day) or a placebo.  



  Introduction 11 

The objectives of this work are as follows: 

 

• Evaluation of a method for the analysis of fatty acids in RBC total lipids. 

• Validation of RBC total fatty acid analyses as a marker of essential fatty acid 

status. 

• Evaluation of a method for the analysis of vitamin A and E in plasma. 

• Effects of a supplementation with DHA alone or combined with GLA on fatty acid 

composition (RBC and/or plasma lipids). 

• Effects of DHA supplementation on plasma triglycerides and lipoproteins. 

• Tolerance and safety assessment of the two used fatty acid supplements 

(microalgae oil and fish oil/evening primrose oil respectively). 
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2 Subjects and Methods 

2.1 DHAVEG study 

2.1.1 Subjects and study design 

Ethical permission of the study was obtained from the Bavarian Board of Physicians. 

All volunteers completed a health and lifestyle questionnaire before entering the 

study. Eligible for the study were persons, who fulfil the following inclusion criteria: 

 

• Adherence to a vegetarian diet since at least one year (no meat, less than one 

fish meal per month) 

• Age ≥ 18 years 

• Body mass index (BMI) between 18 and 25 kg/m2 

• No presence of metabolic, cardiovascular, renal or neurological diseases 

• No intake of medication with known influence on the lipid metabolism during 

the last 3 months 

• No use of n-3 fatty acid supplements 

• No pregnancy or lactation 

• No participation in another scientific study 

 

Written informed consent was obtained from all subjects. Participants received 

financial compensation for their participation in the study. The study was conducted 

between June and November 2003 as a randomised double blind, placebo-controlled 

intervention study with two parallel groups. The subjects consumed 2.3 g daily of 

either a vegetarian, DHA-rich oil from microalgae Ulkenia sp. (providing 1.05 g DHA 

as triglyceride per day) or the same amount of olive oil (as placebo) for 8 weeks. 

Subjects were randomly assigned to one of the intervention groups with stratification 

for gender on the basis of a computer-generated random table.  

At baseline (day 0) and after 56 to 60 days of intervention, fasted blood samples 

were collected and body weight, height, blood pressure (BP), and heart rate were 

measured (Figure  2.1).  
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Figure  2.1. Study design, DHAVEG study. 

RBC, red blood cells. 
 

Before the first investigation (day 0), the subjects recorded their diet for 3 consecutive 

days (two weekdays and one weekend day). During the intervention, the subjects 

noted side effects, signs of illness, intake of medication and the number of capsules 

not consumed. At the end of the intervention period, they recorded their diet again for 

3 consecutive days. Telephone interviews were performed every two weeks of the 

intervention period to monitor study compliance and side effects. Compliance was 

assessed by counting leftover capsules and by the plausibility of the DHA increase in 

RBC phosphatidylethanolamine (PE). 

 

2.1.2 Study oils 

Each DHA capsule contained on average 571 mg oil derived from microalgae Ulkenia 

sp. (Nutrinova® DHA, Nutrinova GmbH, Frankfurt/Main, Germany). Nutrinova®DHA is 

a highly concentrated, triglyceride-based oil, containing at least 43 g DHA/100 g total 

fatty acids (wt%) and almost no EPA. Matching placebo capsules contained on 

average 562 mg olive oil, which is free of n-3 LCPUFA. The fatty acid composition of 

the two study oils as determined during intervention period is given in Table  2.1.  

 

3-day dietary 
record 

                    0                       2                     4                       6                       8                 weeks 

height, weight, 
 blood pressure, 

 plasma fatty acids,  
RBC fatty acids, 

safety parameters 
 

weight, 
 blood pressure, 

 plasma fatty acids,  
RBC fatty acids, 

safety parameters 
 

Microalgae oil (4 capsules/day) 

Placebo (4 capsules/day) 
 

3-day dietary 
record 
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Table  2.1. Major fatty acids of microalgae and placebo oils, DHAVEG study (wt%). 

 Microalgae oil (n = 12)                Placebo oil (n = 12)                

 Mean SD  Mean SD 

SFA 39.99 0.25  14.62 0.98 

18:1n-9 0.52 0.03  75.86 0.76 

18:1n-7 0.08 0.01  2.37 0.04 

18:2n-6 1.21 0.08  5.32 0.14 

18:3n-6 0.22 0.01  n.d.  

20:4n-6 0.09 0.01  n.d.  

22:5n-6 9.70 0.14  n.d.  

18:3n-3 0.11 0.01  0.68 0.02 

20:5n-3 0.29 0.01  n.d.  

22:5n-3 0.09 0.01  n.d.  

22:6n-3 46.13 0.20  n.d.  

n.d., not detected; SFA, saturated fatty acids. 
 

 

One thousand ppm mixed natural tocopherols (equals 2.2-2.3 mg mixed natural 

tocopherols per day) were added for stabilisation of the capsule content. The 

volunteers were required to take one capsule each during breakfast and dinner and 

two capsules during lunch (a total of four capsules per day). Capsules were stored 

refrigerated or at room temperature in a dry, dark place. 

 
2.1.3 Measurements, blood sampling and storage 

All anthropometrical measurements followed standardised procedures. Subjects were 

weighed without shoes and outdoor clothing on a digital scale at week 0 and week 8; 

height was measured only at study entry. A lump sum of 1 kg was subtracted for the 

weight of the clothes. The BMI was calculated as body weight (kg) divided by the 

square of body height (m). Seated blood pressure was determined using a 

stethoscope and a standard sphygmomanometer. Heart rate was counted for 15 sec 

at the wrist. 

Venous blood samples were collected from an antecubital vein of the forearm into 

EDTA, citrate, and lithium heparin containing tubes (Sarstedt, Nümbrecht, Germany) 

as well as special tubes for platelet function analysis (containing sodium citrate, 1:10) 

after an overnight fast. For factor VII, von Willebrand factor, and PAI-1 analyses, 

citrated blood, and for vitamin A/E and fatty acid analyses, EDTA blood was 

centrifuged at 1300 g for 7 minutes at room temperature within 2 hours. The obtained 

plasma was divided into aliquots, and stored at -80°C until analyses.  
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Blood cells from EDTA blood were washed 3 times with 0.9% sodium chloride (NaCl) 

solution. After lysis with distilled water (at least 200 µl/0.5 ml RBC) for 5 min, 8 ml 

isopropanol with BHT (50 mg/l) was added under constant shaking in 100 µl steps, 

and the tubes were frozen at -80°C.  The analyses of fatty acids, vitamin A and E, 

factor VII, von Willebrand factor, and PAI-1 of a given subject were performed during 

12 months of storage within the same analytical run. The other biochemical 

parameters were analysed at the day of blood drawing using established routine 

methods in the clinical chemistry laboratories of the University of Munich hospital. 

 

2.1.4 Analytical methods 

2.1.4.1 Chemicals, consumables and equipment  

 

Table  2.2. Chemical list (fatty acid analysis). 

Chemicals Source Quality 

2.7 Dichlorfluorescein Merck, Darmstadt for analysis 

2-Propanol Merck, Darmstadt for analysis 

Acetic acid Merck, Darmstadt for analysis 

Ammonia solution 25%  Merck, Darmstadt for analysis 

Butylated hydroxytoluene (BHT) Fluka, Neu-Ulm ≥ 99% GC 

Chloroform Merck, Darmstadt extra pure 

Diisopropyl ether Merck, Darmstadt for analysis 

Distilled water Braun, Melsungen ad iniectabilia 

Ethanol  Baker, Deventer, Holland absolute 

Methanol Merck, Darmstadt for analysis 

Methanolic HCl (3N) Supelco, Bellefonte, USA for analysis 

n-Heptane Merck, Darmstadt for analysis 

n-Hexane Merck, Darmstadt for analysis 

Sodium carbonate Merck, Darmstadt anhydrous for analysis 

Sodium chloride Merck, Darmstadt for analysis 

Sodium chloride solution (0.9%) Braun, Melsungen ad iniectabilia 

Sodium hydrogen carbonate Merck, Darmstadt for analysis 

Sodium sulfate Merck, Darmstadt for analysis 
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 Table  2.3. Chemical list (vitamin A and E analysis). 

Chemicals Source Quality 

Acetonitrile  Merck, Darmstadt LiChrosolv 

Ammonium acetate  Merck, Darmstadt Fractopur 

Butylated hydroxytoluene (BHT) Fluka, Neu-Ulm ≥ 99% GC 

Chloroform Merck, Darmstadt LiChrosolv 

Distilled water Braun, Melsungen ad iniectabilia 

Ethanol  Baker, Deventer, Holland absolute 

Methanol  Merck, Darmstadt LiChrosolv 

n-Hexane Merck, Darmstadt LiChrosolv 

Precipitation reagent Immundiagnostik, Bensheim 

Tetrahydrofuran  Merck, Darmstadt LiChrosolv 
 

Table  2.4. List for consumables (fatty acid analysis). 

Consumables Source 

Brown glass bottle R1, G4 CS-Chromatographie Service, Langerwehe 

Crimp cap R11-1.0 CS-Chromatographie Service, Langerwehe 

Filter paper grade 388 Sartorius, Göttingen 

Micro inlay G30/6 CS-Chromatographie Service, Langerwehe 

Pasteur pipette VWR International, Darmstadt 

Pipette tip CP100 Gilson, Villiers-le-Bel, France 

Pipette tip 50-1000 µl, 500-2500 µl Eppendorf, Hamburg 

Pipette tip 10-100 µl, 100-1000 µl Greiner bio-one, Frickenhausen 

Screw cap G13 CS-Chromatographie Service, Langerwehe 

Sealing disc G13 CS-Chromatographie Service, Langerwehe 

Test-tube 55.459 PS Sarstedt, Nümbrecht 

TLC plate, silica gel 60 Merck, Darmstadt (DHAVEG study) 

TLC plate, silica gel 60 Macherey-Nagel, Düren (FO/EPO study) 
 

Table  2.5. List for consumables (vitamin A and E analysis). 

Consumables Source 

Brown glass bottle G1, G4 CS-Chromatographie Service, Langerwehe 

Micro inlay G30/5 CS-Chromatographie Service, Langerwehe 

Pipette tip CP100, CP250, CP1000 Gilson, Villiers-le-Bel, France 

Pipette tip 50-1000 µl Eppendorf, Hamburg 

Pipette tip 10-100 µl, 100-1000 µl Greiner bio-one, Frickenhausen 

Screw cap G8-L, G13 CS-Chromatographie Service, Langerwehe 

Sealing disc G13 CS-Chromatographie Service, Langerwehe 

Silicone-PTFE septum Merck, Darmstadt 

Silicone-PTFE septum, slitted Merck, Darmstadt 
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Table  2.6. Equipment list (fatty acid analysis). 

Equipment Source 

Analytical balance type 1801 Sartorius, Göttingen 

Centrifuge Beckman GPR Beckman, Bucks, UK 

Centrifuge Hettich Universal 1200 Hettich, Tuttlingen 

Centrifuge Universal 30 F Hettich, Tuttlingen 

Centrifuge glass tube, conical angle 30° (12 ml) Sc hott Duran, Mainz 

Centifuge glass tube (25 ml) Schmitz, Munich 

Funnel D35m, D55mm Duran Schott, Mainz 

Membrane vacuum pump MZ 2c Vacuubrand, Wertheim 

Metal block thermostat type 2102 Bachofer, Reutlingen 

Nitrogen evaporation system type 5000 6101 Bachofer, Reutlingen 

Pear-shape glass flask, single-neck (50 ml) Lenz, Wertheim 

Pipette 10-100 µl, 100-1000 µl (Transferpette) Brand, Wertheim 

Pipette 50-250 µl, 500-2500 µl Eppendorf, Hamburg 

Pipette Microman M100 Gilson, Villiers-le-Bel, France 

Rotary evaporator Rotavapor R-114 Büchi Labortechnik, Flawil, Switzerland 

Solvent chamber for thin layer chromatography Desaga, Heidelberg 

Ultraviolet lamp Benda, Wiesloch 

Vortexer VF2 IKA-Labortechnik, Heitersheim 

Waterbath B-480 Büchi-Labortechnik, Flawil, Switzerland 

  

Gas chromatography:  

Autosampler A200S Carlo Erba Instruments, Milan, Italy              
(FO/EPO study) 

Autosampler HP 7673 Hewlett Packard, Böblingen (DHAVEG study) 

Capillary column, BPX-70 (60 m x 0.32 mm)  SGE, Weiterstadt 

Controller HP 7673 Hewlett Packard, Böblingen 

Gas chromatograph HP 5890 Series II Hewlett Packard, Böblingen 

Integrator HP 3396 Series II Hewlett Packard, Böblingen 

Software EZChromEliteV2.61 Scientific Software, Pleasanton, USA 

 

Table  2.7. Equipment list (vitamin A and E analysis). 

Equipment Source 

Analytical balance type 1801 Sartorius, Göttingen 

Brown glass bottle (25 ml) Schott Duran, Mainz 

Centrifuge Universal 30 F Hettich, Tuttlingen 

Nitrogen evaporation system type 5000 6101 Bachofer, Reutlingen 

Pipette 10-100 µl, 100-1000µl  (Transferpette) Brand, Wertheim 

Pipette 50-250µl Eppendorf, Hamburg 

Pipette Microman M100, M250, M1000 Gilson, Villiers-le-Bel, France 

Quartz cuvette SUPRASIL Hellma, Müllheim 

Ultrasonic bath Sonorex Super RK 102 H Bandelein, Berlin 

UV/Vis Spectrophotometer Cary 1E Varian, Darmstadt 
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Equipment (continuation) Source 

Volumetric flask 10 ml, 25 ml Schott Duran, Mainz 

Vortexer VF2 IKA-Labortechnik, Heitersheim 

  

HPLC:  

Autosampler AS-4000A Intelligent Merck Hitachi, Darmstadt 

Column, LiChroCART 250-3, LiChrospher 100, RP18 
(5 µm) 

Merck, Darmstadt 

Column oven STH 585 Gynkotek, Germering 

Pump L-6200 Intelligent Pump Merck Hitachi, Darmstadt 

Software EZChromEliteV2.61 Scientific Software, Pleasanton, USA 

UV/Vis detector L-4250 Merck Hitachi, Darmstadt 

 

 

Table  2.8. List for the used standard substances (fatty acid analysis). 

Standard substance Source 

Internal standard:  

Cholesteryl pentadecanoic acid Sigma, Deisenhofen 

Dipentadecanoyl phosphatidylcholine Sigma, Deisenhofen 

Pentadecanoic acid Sigma, Deisenhofen 

Tripentadecanoin Sigma, Deisenhofen 

  

Standards for peak identification:  

GLC-85 (reference standards) Nu-Chek, Elysian, MN, USA 

14:1t Sigma, Deisenhofen 

16:1t Sigma, Deisenhofen 

18:1n-7 Sigma, Deisenhofen 

18:2tt Sigma, Deisenhofen 

18:4n-3 Sigma, Deisenhofen 

20:3n-9 Sigma, Deisenhofen 

20:5n-3 Sigma, Deisenhofen 

22:1t Sigma, Deisenhofen 

22:4n-6 Sigma, Deisenhofen 

22:5n-3 Sigma, Deisenhofen 

22:5n-6 OmegaTech, CO, USA 

24:0 Sigma, Deisenhofen 
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Table  2.9. List of the used standards and control sera (vitamin A and E analysis). 

Standards/Control sera Source Quality 

Internal standard   

Retinyl acetate Hoffmann-La Roche, Basel, Switzerland Purity 99.7% 

Tocol  Eisai, Tokyo, Japan for HPLC 

   

Standards for peak identification   

alpha-Tocopherol Supelco, Bellefonte, PA, USA Purity 99.3% 

Retinol Merck, Darmstadt Purity >98% 

   

Control serum   

NIST Standard Reference Material 968c Gaithersburg, USA  

 

 

2.1.4.2 Fatty acid analysis in study oils 

Methyl esters of fatty acids (FAME) from study oil triglycerides were obtained by 

reaction with 3M methanolic hydrochloric acid (HCl), methanol and hexane (1+1+0.5, 

by vol) at 90°C for 60 min in closed glass tubes. A fter adding distilled water and 

hexane with BHT (2 g/l), the samples were vortexed and centrifuged. The upper 

hexane phase containing the FAME was stored until GC analysis at -80°C. 

 

2.1.4.3 Fatty acid analysis in plasma phospholipids 

Preparation of the internal standard. For quantification of fatty acids in plasma lipid 

fractions, defined concentrations of dipentadecanoyl phosphatidylcholine, 

pentadecanoic acid, tripentadecanoin, and cholesteryl pentadecanoic acid (equalled 

10 µg 15:0/100 µl for each lipid fraction) were used.  

 

Table  2.10. Composition of the internal standard for fatty acid analysis. 

 
Molecular weight 

(g/mol) 
Correction factor for 

non-15:0 residue 

Weighted sample              
(g per 200 ml 

methanol/chloroform) 

Cholesteryl pentadecanoic acid 611.0 x 2.52 50.47 

Dipentadecanoyl 
phosphatidylcholine 706.0 x 1.46 29.22 

Pentadecanoic acid 242.4 x 1.00 20.05 

Tripentadecanoin 765.3 x 1.05 21.06 
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The in Table  2.10 presented amounts were dissolved in 200 ml methanol/chloroform 

(35+15, by vol, with 2 g/l BHT), aliquoted in 4 ml brown glass bottles and stored at 

−80°C until usage. To get a high reliability, the sa me internal standard mixture was 

used for all analyses. 

Lipid extraction. Plasma lipids were extracted according to a modified method of 

Kolarovic & Fourier [110]. For this, 100 µl internal standard and 2 ml hexane/ 

isopropanol (3+2, by vol) were added to 250 µl plasma and the tube was vortexed for 

30 sec. After centrifugation at 1000 g for 7 min the hexane phase was transferred 

into a 4 ml brown glass vial. Thereafter, two extractions with 2 ml hexane were 

performed and the combined extracts were taken to dryness under a gentle stream of 

nitrogen.  

Separation of lipid fractions. The lipid residue was dissolved in 400 µl chloroform/ 

methanol (1+1, by vol) and deposited on a thin layer chromatography (TLC) plate. 

Phospholipids (PL), free cholesterol, non-esterified fatty acids (NEFA), TG and 

cholesterol esters (CE) were separated using heptane, diisopropyl ether and acetic 

acid (60+40+3, by vol) as mobile phase [111]. After visualisation of the lipids with 2.7-

dichlorofluorescein (1% in ethanol) and UV-light, the band with the phospholipid 

fraction was scraped from the TLC plate and transferred into a 4 ml brown glass 

bottle (Figure  2.2). 

 

 

 

 

Figure  2.2. Separation of plasma lipid fractions using thin layer chromatography. 

NEFA, non-esterified fatty acids. 

Phospholipids 

NEFA 

Cholesterol 

Cholesterol 
esters 

Triglycerides 
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Transesterification and extraction of FAME. FAME were obtained by reaction with 

3M methanolic HCl at 85°C for 45 min. After neutral isation with sodium 

carbonate/sodium hydrogen carbonate/sodium sulphate buffer (1+2+2, by weight), 

1 ml hexane was added. After centrifugation at 1000 g for 4 min the hexane layer 

was transferred into a 2 ml brown glass bottle. The hexane extraction was repeated 

and the combined extracts were taken to dryness under a gentle stream of nitrogen. 

For storage until GC analysis at -80°C, the samples  were dissolved in 50 µl hexane + 

2g/l BHT.   

 

2.1.4.4 Fatty acid analysis in RBC total lipids and phospholipids 

Lipid extraction. The RBC/isopropanol mixture (see  2.1.3) was completely 

transferred into a 25 ml centrifuge tube; 6 ml isopropanol and 4 ml chloroform were 

added in little steps under constant shaking. Thereafter, the tubes were vortexed for 

10 minutes and centrifuged at 1400 g for 10 min. The supernatant was filtrated into a 

pear-shaped glass flask and a second extraction with 4 ml chloroform was 

performed. After shaking for 10 min, the whole sample was filtrated into the same 

flask and the filter was washed two times with chloroform. Four ml of the obtained 

lipid extract were transferred into a 4 ml brown glass bottle and frozen at -80°C until 

the analysis of RBC total lipids; 3 ml RBC extract was transferred into a second glass 

flask and taken to dryness under reduced pressure at 37°C.   

Separation of lipid fractions. The lipid residue was dissolved in 400 µl of 

chloroform/methanol (1+1, by vol) and deposited on a TLC plate. RBC 

phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were separated using 

chloroform, methanol, 25% ammonia solution, and distilled water (73+27+2.2+2.8, by 

vol) as mobile phase. After visualisation of the lipids with 2.7-dichlorofluorescein (1% 

in ethanol) and UV-light, the bands containing PE and PC were scraped separately 

from the TLC plate and transferred into 4 ml glass tubes.  

For the analysis of RBC total lipids, 2 ml of the defrosted lipid extract was directly 

transferred into a brown glass tube and taken to dryness under nitrogen.  

Transesterification and extraction of FAME. Transesterification of RBC PE, PC, 

and total lipids, extraction of FAME and storage were performed as described for 

plasma fatty acids (see  2.1.4.3). 
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2.1.4.5 Gas chromatography conditions 

FAME were separated using capillary gas liquid chromatography. For this, 3 µl 

sample was injected into the gas chromatograph. The GC program is described in 

Table  2.11 and Figure  2.3. 

 

 

Table  2.11. GC programme for fatty acid analysis. 

Oven  

Initial temperature 130°C 

Initial time 0.50 min 

Rate 3.0°C/min  

Final temperature 150°C  

Final time 0.00 min 

Rate A 1.5°C/min  

Final temperature 180°C  

Final time 0.00 min 

Rate B 3.0°C/min  

Final temperature 210°C  

Final time 23.00 min (plasma PL and TG, RBC PE and PC), 

33.00 min (plasma CE and total lipids, RBC total lipids) 

Pressure  

Initial pressure 1.10 bar 

Rate 0.025 bar/min 

Final time 40.00 min 

Injector / Detector  

Injector temperature 250°C 

Detector temperature 300°C 

CE, cholesterol esters; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PL, phospholipids; 
RBC, red blood cells. 
 

 

Flame ionisation detector signals were evaluated with the software EZ-Chrom Elite, 

version 2.61 (Scientific Software, Pleasanton, USA) and identified by comparison 

with the retention times of a standard mixture run previously (Figure  3.1). The 

instrument was calibrated regularly by using a quantitative standards mixture (GLC-

85, Nu-Chek, Elysian, MN, USA). 
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Individual fatty acid (mg/l)* 100 

Sum of all identified C14 - C24 fatty acids (mg/l) 

 

Figure  2.3. GC temperature programme for fatty acid analysis. 

 

2.1.4.6 Calculation of fatty acid contents 

Absolute fatty acid concentration (mg/l) of all identified fatty acids with 14 – 24 carbon 

atoms was determined via comparison with the peak area of the internal standard 

(15:0) and correction with the accordant response factor. In plasma lipid fractions 

(PL, CE, TG), the area of the internal standard equalled 10 µg 15:0/250 µl plasma = 

40 mg 15:0/l plasma.  

Additionally, fatty acid weight percentages (wt%) were calculated as follows: 

 

 

Individual fatty acid (wt%) = 

 

 

Absolute fatty acid concentrations in RBC lipids cannot be determined, because no 

internal standard was added and the used RBC volume is not exactly known. For 

RBC, fatty acid weight percentages (wt%) were calculated by dividing the peak area 

of each individual peak by the peak area of all C14 – C24 fatty acids (each peak area 

was corrected by the accordant response factor) and multiplying the result with 100. 

In addition to the fatty acid profile, the following fatty acid sums and ratios were 

calculated for each sample: sum of EPA and DHA (EPA + DHA), sum of all n-6 fatty 

acids (Σ-6 FA), sum of all n-3 fatty acids (Σn-3 FA), sum of all long-chain n-6 fatty 
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acids (Σ-6 LCPUFA), sum of all long-chain n-3 fatty acids (Σ-3 LCPUFA), the ratio of 

n-6 to n-3 fatty acids (Σn-6/Σn-3 FA), and the ratio of n-6 LCPUFA to n-3 LCPUFA 

(Σn-6/Σn-3 LCPUFA).  

 

2.1.4.7 Examination of reproducibility (fatty acid analysis) 

Prior to analyses of the study samples, RBC and plasma were obtained from a large 

blood sample as described in  2.1.3, aliquoted and stored at -80°C. Intra-assay 

reproducibility was assessed by analysing 8 pool samples in the same analytical run. 

Inter-assay reproducibilities of the used methods were assessed by analysing pool 

samples 11x during 6 weeks (plasma phospholipids), 14x during 9 weeks (RBC PC 

and PE), and 19x during 3 weeks (RBC total lipids). 

 

2.1.4.8 Analysis of vitamin A and E in plasma 

The analysis of vitamin A and E was performed according to a modified method of 

Schaffer [112] and Göbel et al. [113]. 

Preparation of the mobile phase. An isocratic mobile phase consisting of 

acetonitrile, tetrahydrofuran, methanol and 1% ammonium acetate (684+220+68+28, 

by vol) was used [114]. To avoid the formation of explosive peroxides from 

tetrahydrofuran, the mobile phase was prepared prior to use and degassed 

ultrasonically. 

Preparation of the internal standard. To consider losses during the extraction 

process as well as unsteady injection amounts into the HPLC system, retinyl acetate 

was added as internal standard to plasma and standard samples at the beginning of 

the analysis. To prepare the internal standard, 250 mg retinyl acetate was dissolved 

in 100 ml ethanol/BHT (0.0625%). In a second step, this concentrate was diluted 

1:1000 to a concentration of 2.5 mg/l to get an adequate peak height in the 

chromatogram. The internal standard was frozen at -80°C until usage. To get a high 

reliability, the same internal standard mixture was used for analyses of all study 

samples. 
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Preparation of standard concentrates and dilutions. For preparation of the 

standard concentrates, the following amounts of retinol and alpha-tocopherol (Table 

 2.12) were dissolved in 10 ml ethanol each, aliquoted in 4 ml brown glass bottles and 

stored at -80°C. From these standard concentrates, dilutions were prepared as 

described in Table  2.12 and stored in 25 ml brown glass bottles at -80°C until usage. 

 

Table  2.12. Preparation of retinol and alpha-tocopherol standard concentrates and dilutions, DHAVEG 
study. 

Substance Standard concentrate Standard dilution 

Retinol 10 mg/10 ml ethanol 200 µl concentrate/10 ml ethanol ⇒ 0.02 g/l 

alpha-Tocopherol 50 mg/10 ml ethanol 1000 µl concentrate/10 ml ethanol ⇒ 0.5 g/l 

 

 

Preparation of the stock standard. For a new standard curve, standard dilutions 

were defrosted and their absorbance was measured on a spectrophotometer at 325 

nm for retinol and at 292 nm for alpha-tocopherol (Table  2.13). Lambert-Beer Law 

was used to determine the exact concentration of the standard dilutions (c) from 

absorbance (A) (A1%
1cm, extinction coefficient of a compound at a certain wave 

length; d, thickness of cuvette).  

 

The formula is: 

 

A = A1%
1cm * c (g/dl) * d (cm) 

 

Thus, concentration can be calculated by: 

  

c (g/dl) = A /[A1%
1cm * d (cm)] 

 

 

Table  2.13. Extinction coefficients for retinol and alpha-tocopherol, DHAVEG study. 

Substance 
Molecular weight 

(g/mol) 
Wave length 

(nm) 
Extinction 

coefficient (A1%
1cm) Source 

Retinol 286.5 325 1780 [112] 

alpha-Tocopherol 430.7 292 75.8 [112] 
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On the basis of the photometrically determined concentrations, the composition of the 

stock standard mixture was defined: the stock standard mixture corresponds to the 

highest standard of the standard curve (Std. 7) and its concentration should be 

higher than all expected concentrations in the plasma samples. For preparation of the 

stock standard mixture, certain amounts of the standard dilutions were pipetted into a 

10 ml volumetric flask, dried under a gentle stream of nitrogen and redissolved in 10 

ml hexane (Table  2.14).  

 

 

Table  2.14. Preparation of the stock standard mixture for vitamin A/E analysis (example), DHAVEG 
study. 

Substance Concentration of 
standard dilution (µg/µl)* 

Pipetted amount 
(µl) 

Concentration of stock 
standard mixture (mg/l) 

Retinol 0.0134 760 1.018 

alpha-Tocopherol 0.3861 585 22.59 

* Calculated by Lambert-Beer-Law. 
 

 

For the calibration curve, various amounts of the stock standard mixture were 

evaporated after addition of 0.5% hexane/BHT and redissolved in 1 ml hexane (Table 

 2.15).  

 

 

Table  2.15. Preparation of the 7 standard dilutions for vitamin A/E analysis, DHAVEG study. 

 Std. 7 Std. 6 Std. 5 Std. 4 Std. 3 Std. 2 Std.1 

1)  Stock standard 1000 µl 844 µl 688 µl 532 µl 376 µl 220 µl 100 µl 

2)  Add 0.5%     
     hexane/BHT    100 µl 100 µl 100 µl 100 µl 100 µl 100 µl 100 µl 

3)  Dry under  
     nitrogen 

� � � � � � � 

4)  Add hexane 1000 µl 1000 µl 1000 µl 1000 µl 1000 µl 1000 µl 1000 µl 
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The concentrations of standards 1 – 7 were calculated according to their dilution 

factors (Table  2.16): 

 

Table  2.16. Calculated concentrations of the 7 standard dilutions for retinol and tocopherol calibration 
curves (mg/l), DHAVEG study. 

 Std. 7  Std. 6  Std. 5  Std. 4  Std. 3  Std. 2  Std.1  

Dilution factor x1 x0.84 x0.69 x0.53 x0.36 x0.22 x0.1 

Retinol 1.018 0.856 0.700 0.541 0.383 0.224 0.102 

alpha-Tocopherol 22.59 19.07 15.54 12.02 8.49 4.97 2.26 

 

 

Extraction of the standards. The extraction method of the 7 standards was similar 

to the extraction of the plasma samples (see below): 250 µl distilled water (instead of 

plasma), 50 µl internal standard and 500 µl precipitation reagent were pipetted into a 

4 ml brown glass tube to minimize light-induced degradation of vitamins and vortexed 

for 15 sec. Thereafter, 250 µl standard (standard 1 – 7 respectively) and 750 µl 

hexane (instead of 1 ml hexane in case of plasma samples) were added and the 

samples were mixed for another 30 sec. After centrifugation at 1100 g for 5 min, the 

upper phase was transferred into a 1.5 ml brown glass vial. Thereafter, a second 

extraction with 1 ml hexane was performed and the combined extracts were taken to 

dryness under a gentle stream of nitrogen. The dried extract was redissolved in 100 

µl mobile phase, shaken mechanically for 10 min and transferred into microvials 

before injecting into a HPLC system with UV-Vis detection. The HPLC conditions are 

shown in  2.1.4.9. Detector signals were evaluated with the software EZ-Chrom Elite, 

version 2.61. Figure  2.4 exemplifies the separation of fat-soluble vitamins and 

carotenes with HPLC. 
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Figure  2.4. Chromatogram of a standard mixture using UV-Vis detection, DHAVEG study. 

IS, internal standard (retinyl acetate); d-Tocopherol, delta-tocopherol; b-Tocopherol, beta/gamma-
tocopherol, a-Tocopherol, alpha-tocopherol; a-Carotin, alpha-carotene; b-Carotin, beta-carotene. 
 

 

Standard curve construction. A 7-point standard curve was constructed for retinol 

and alpha-tocopherol with the software Microsoft Excel 97 SR-2 (Microsoft GmbH, 

Unterschleißheim) by plotting the vitamin concentrations (Table  2.16, y-axis) against 

the peak-area ratios (vitamin/internal standard, x-axis) (see Figure  8.1). 

Subsequently, the equation of the regression line and the coefficient of determination 

(r2) were calculated. 

Extraction of plasma samples. 250 µl plasma, 50 µl internal standard and 500 µl 

precipitation reagent were pipetted into a 4 ml brown glass bottle and vortexed for 15 

sec to precipitate the proteins. Subsequently, two extractions with 1 ml hexane were 

performed. The upper phases were transferred into a 1.5 ml brown glass bottle and 

taken to dryness under a gentle stream of nitrogen. The dried extract was redissolved 

in 100 µl mobile phase, shaken mechanically for 10 min and transferred into 

microvials. 50 µl were injected into a HPLC system with UV-Vis detection. The HPLC 

conditions are shown in  2.1.4.9. Detector signals were evaluated with the software 

EZ-Chrom Elite, version 2.61 and identified by comparison with the retention times of 

a standard mixture run previously (Figure  2.4).  

Calculation of vitamin A and E concentrations. The peak-area ratios (vitamin / 

internal standard) were computed for retinol and alpha-tocopherol and the 

appropriate concentrations were calculated using the equations of the standard 

curves (Figure  8.1). 
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2.1.4.9 HPLC conditions 

The column temperature was held constant at 30°C. T he programs of pump and 

UV/Vis detector were as follows: 

 

Table  2.17. Programme of the HPLC pump, DHAVEG study. 

Time (min) Flow (ml/min) 

0 0.65 

8 0.65 

9 1.30 

13 1.30 

15 0.65 
 

 

Table  2.18. Programme of the UV-Vis detector, DHAVEG study. 

Time 
(min) 

Wave length 
(nm) 

Detection of 

0 325 Retinol 

4 292 Tocopherols 

9 450 Carotenes 

15 325  

 

 

2.1.4.10 Examination of reproducibility, recovery, and accuracy (vitamin A and 

E analysis) 

Before analysing the study samples, plasma was obtained from a large blood sample 

as described in  2.1.3, aliquoted and stored at -80°C. Intra-assay r eproducibility was 

assessed by analysing 8 pool samples in the same analytical run. Inter-assay 

reproducibility of the used method was assessed by analysing pool samples 11x 

during 2 weeks. 

Recovery of the vitamin A and E measurements was assessed by performing the 

described method for plasma samples ( 2.1.4.8), but using for the first extraction 

instead of 1 ml hexane 50 µl stock standard and 950 µl hexane (n = 4). Recovery 

was calculated by dividing the mean measured concentration by the expected 

concentration and multiplying the result with 100%. 

The accuracy of the vitamin A and E measurements was verified with lyophilised 

standard reference material 968c obtained from the US National Institute of 
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Standards and Technology (NIST), which contains the vitamins in low and high 

concentrations. Three samples of each concentration level were analysed and 

compared with the approved values. A bias between 0 and 5% is regarded as 

excellent, while a bias between 5 and 10% is considered acceptable by the NIST. 

 

2.1.4.11 Plasma triglycerides and lipoproteins 

TG, total and HDL cholesterol concentrations were determined in lithium heparin 

plasma by standard enzymatic methods on an automated sample processor with the 

appropriate reagent systems (Table  2.19). LDL cholesterol concentrations were 

calculated using the Friedewald formula [115]: 

 

LDL cholesterol = Total cholesterol – HDL cholesterol – VLDL cholesterol 

(in which VLDL cholesterol = Triglycerides / 5). 

 

The reproducibility of the used test kits as declared from the manufacturer is shown 

in Table  8.1. 

 

 

Table  2.19. Analyses of plasma triglycerides, total and HDL cholesterol, DHAVEG study. 

Parameter Test kit Analytical equipment 

Triglycerides Cobas Integra TRIGL                            
(Roche Diagnostics GmbH, Mannheim)  

Total cholesterol Cobas Integra CHOLL                                   
(Roche Diagnostics GmbH, Mannheim) 

HDL cholesterol 

 
Cobas Integra HDL_C                                  
(Roche Diagnostics GmbH, Mannheim) 

      

 

      Cobas Integra 800                                               
     (Roche Diagnostics GmbH, Mannheim) 

 

 

 

2.1.4.12 Blood cell count, biochemical and haemostatic parameters 

Full blood cell count and biochemical parameters. Full blood cell counts were 

performed in EDTA blood on an automatic analyser (Table  2.20). Bilirubin, creatinine, 

gamma-glutamyl transpeptidase (Gamma-GT), alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), cholinesterase (CHE), creatinekinase (CK), 

lactate dehydrogenase (LDH), uric acid, total protein, C-reactive protein (CRP) and 

glucose were measured in lithium heparin plasma on an automated sample 



  DHAVEG Study 31 

processor with the appropriate reagent systems. The reproducibility of the used test 

kits as declared from the manufacturer is shown in Table  8.2. 

 

Table  2.20. Analyses of full blood cell count and biochemical parameters, DHAVEG study. 

Parameter Test kit Analytical equipment 

Full blood cell count  Coulter Micro Diff II                                      
(Beckmann Coulter, Krefeld) 

 All test kits from Roche 
Diagnostics GmbH, Mannheim  

Bilirubin  BIL-T DPD 

Creatinine CREA Jaffe  

Gamma-GT  GGT flüssig 

ALT  ALT/GPT IFCC 

AST  AST/GOT IFCC 

CHE  CHE 

CK  CK NAC 

LDH LDH IFCC 

Uric acid UA plus 

Total protein TP 

CRP  CRP TINA-QUANT 

Glucose  GLU HK 

  

 

 

 

 

     Roche/Hitachi 912                                                    
     (Roche Diagnostics GmbH, Mannheim) 

Gamma-GT, gamma-glutamyl transpeptidase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; CHE, cholinesterase; CK, creatinekinase; LDH, lactate dehydrogenase;  
CRP, C-reactive protein. 
 

 

Haemostatic parameters. Platelet function analysis was performed within 2 hours of 

blood collection in citrated whole blood using a platelet function analyser (Table 

 2.21). Membranes pre-coated with collagen/epinephrine or collagen/adenosine 

diphosphate were used to stimulate platelet aggregation. Quick’s time, partial 

thromboplastin time (PTT), fibrinogen, and d-dimers were measured in citrated 

plasma using automated analysers with commercially available kits. PAI-1 activities 

were measured using an ELISA assay. Factor VII and von Willebrand factor analyses 

were performed on automated sample processors with commercial test kits. The 

reproducibility of the used test kits as declared from the manufacturer is shown in 

Table  8.3. 
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Table  2.21. Analyses of haemostatic parameters, DHAVEG study. 

Parameter Test kit Analytical equipment 

Quick’s time Thromborel S                                                     
(Dade Behring, Marburg) 

PTT Pathromtin**SL                                                        
(Dade Behring, Marburg) 

Fibrinogen Multifibren U                                                        
(Dade Behring, Marburg) 

       

 

      Amelung Amax CS                                 
      (Trinity Biotech, Darmstadt) 

D-dimers TINA-QUANT a D-Dimer                                 
(Roche Diagnostics GmbH, Mannheim) 

Roche/Hitachi 912                                                  
(Roche Diagnostics GmbH, Mannheim) 

Factor VII HemosIL, Factor VII deficient plasma,          
(Instrumentation Laboratory, Milan, Italy) 

ACL 9000                                                   
(Instrumentation Laboratory, Milan, Italy) 

Von Willebrand 
factor 

IL TestTM Von Willebrand Faktor                 
(Instrumentation Laboratory, Milan, Italy) 

BCS                                                            
(Dade Behring, Marburg) 

PAI-1 Coatest PAI                                        
(Chromogenix-Instrumentation 
Laboratory, Milan, Italy) 

SPECTRA thermo                                            
(Tecan, Crailsheim) 

PFA-ADP PFA-100 reagents                                                
(Dade Behring, Marburg) 

PFA-EPI PFA-100 reagents                                              
(Dade Behring, Marburg) 

      

      Platelet Function Analyzer PFA-100    
      (Dade Behring, Marburg) 

PTT, partial thromboplastin time; PAI-1, plasminogen activator inhibitor-1 activity; PFA-ADP, platelet 
function analysis with adenosine diphosphate; PFA-EPI, platelet function analysis with epinephrine. 
 

 

2.1.4.13 Dietary evaluation 

Food consumption of the subjects was determined before and during the intervention 

period using a self-reported three-day estimated dietary record (see Attachment, 

pages A54 – A57). We applied a modified form of the “Freiburger Ernährungs-

protokoll”, which is contained as protocol template in the used nutrition software Prodi 

(Nutri-Science GmbH, Freiburg, Germany). Vegetarian foods were added to the 

original protocol and foods of animal origin were excluded with the exception of eggs, 

butter, milk, and dairy products.  

In the used tally sheet protocol, the subjects estimated the quantities of the foods and 

beverages consumed using household measures (teaspoon, tablespoon, cup, slice, 

piece, etc.) according to the provided instructions. The diet was recorded over three 

consecutive days covering two weekdays and one weekend day (Thursday to 

Saturday or Sunday to Tuesday).  

Recorded dietary intakes were entered into the software Prodi version 4.5 LE 2003, 

which calculated the nutrient intake based on the German Nutrient Data Base BLS, 

version II.3 (BgVV, Berlin, Germany). 



  DHAVEG Study 33 

2.1.5 Data management and statistical analyses 

Statistical evaluation was carried out with SPSS 12.0 for Windows (SPSS Inc., 

Chicago, USA). Data are presented as mean ± SD for normally distributed data or as 

median with interquartile range (IQR, 25th – 75th percentiles) in case of non-normality.  

Test for normality. Data were checked for normality by visual inspection and by 

Kolmogorov-Smirnov-test (with Lilliefors correction). Parametric tests were used for 

normally distributed variables and nonparametric tests for variables that are not 

normally distributed. Exact significances were calculated for all nonparametric tests.  

Between-group differences. Any differences between the groups (active treatment 

vs. placebo) at each time point or the impact of treatment on absolute changes (week 

8 minus week 0) were tested for significance using Student’s unpaired t-test for 

normally distributed variables or the Mann-Whitney U test for variables not normally 

distributed.  

Within-group differences. Differences between week 0 and week 8 were 

determined within each treatment group using Student’s t-test for dependent samples 

and Wilcoxon nonparametric test respectively.  

Correlations and bivariate tabular analysis. Correlations between parameters 

were estimated by computing Pearson’s correlation coefficient in the case of normally 

distributed values and the Spearman-Rho correlation coefficient in the case of other 

distributions respectively. For bivariate tabular analysis the chi-square test (exact 

calculation) was used. In cases of expected values smaller than 5, a Fisher exact test 

was used instead.  

Level of significance. P values below 5% were considered significant. 
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2.2 FO/EPO study 

2.2.1 Subjects and study design 

Ethical permission of the study was obtained from the Bavarian Board of Physicians. 

All volunteers completed a health and lifestyle questionnaire before entering the 

study. Eligible for the study were persons, who fulfil the following inclusion criteria: 

 
• Female gender 

• Age between 18 and 40 years 

• BMI between 18 and 25 kg/m2 

• No hypertension (defined as a systolic blood pressure > 140 mm Hg or a 

diastolic blood pressure > 90 mm Hg [116]) 

• No presence of metabolic, cardiovascular, renal or neurological diseases 

• No long-term use of medication (contraceptives excluded) 

• No use of EFA or LCPUFA supplements 

• No drug abuse 

• No vegetarian lifestyle during the last 3 months 

• Smoking of ≤ 5 cigarettes per day 

• Consumption of ≤ 7 glasses alcohol per week 

• Consumption of fish ≤ 2 times a week 

• No pregnancy or lactation 

• No participation in another scientific study 

 

All subjects gave their written informed consent and received financial compensation 

for their participation. The study was conducted between June and August 2005 as a 

randomised double blind, placebo-controlled intervention study with two parallel 

groups. The subjects consumed 3.4 g daily of either a fish oil/evening primrose oil 

mixture (FO/EPO, delivering 419 mg DHA, 72 mg EPA, 14 mg AA, 337 mg GLA as 

triglycerides per day) or the same amount of a placebo (mixture of palm oil, rapeseed 

oil, and sunflower seed oil) for 8 weeks. Subjects were randomly assigned to one of 

the intervention groups on the basis of a computer-generated random table.  

Fasted blood samples were collected at weeks 0 (baseline), 4, 6 and 8 (Figure  2.5). 

Body weight, blood pressure, and heart rate were measured at study entry and after 
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8 weeks of intervention; height was measured at baseline only. During the 

intervention, the subjects noted side effects, signs of illness, intake of medication and 

the number of capsules not consumed. Compliance was assessed by counting 

leftover capsules and calculated as the percentage of the prescribed capsules taken. 

To check the success of blinding, the subjects were asked at the end of the study 

about their assumed group assignment. 

 

 

 
Figure  2.5. Study design, FO/EPO study. 

 

 

2.2.2 Study oils 

Each FO/EPO capsule contained 438 mg evening primrose oil (EFAMOL Ltd, 

Brackenholme, Selby, North Yorkshire, UK) and 129 mg fish oil (Incromega DHA 500 

TG SR, Croda Chemicals Europe Ltd, Cowick Hall, East Yorkshire, UK) (Table  2.22). 

Matching placebo capsules consisted of palm oil, rapeseed oil, and sunflower seed 

oil. The study capsules contained 1% synthetic vitamin E acetate for stabilisation of 

the capsule content. The fatty acid composition of the two study oils as declared from 

the manufacturer and as determined after the intervention period in our laboratory 

(January 2006) is given in Table  2.23. The volunteers were required to take daily 2 x 

3 capsules or 3 x 2 capsules with the meals (a total of six capsules per day). 

Capsules were stored refrigerated or at room temperature in a dry, dark place. 

 

 

Fish oil + evening primrose oil (6 capsules/day) 

Placebo (6 capsules/day) 

                 0                                                 4                        6                      8        weeks 

weight, 
 blood pressure, 

 plasma fatty acids,  
full blood cell count, 

liver enzymes 

 
 plasma fatty acids  

 

height, weight, 
 blood pressure, 

 plasma fatty acids,  
full blood cell count, 

liver enzymes 
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Table  2.22. Ingredients of placebo and FO/EPO capsules, FO/EPO study. 

 Component Percent (%) 

Palm oil 59.4 

Rapeseed oil 19.8 

Sunflower seed oil 19.8 

Placebo capsule (567.2 mg) 

Synthetic vitamin E acetate 1.0 

 

Efamol Evening primrose oil  76.5 

Croda Incromega DHA 500 TG SR 22.5 

FO/EPO capsule (572.7 mg) 

Synthetic vitamin E acetate 1.0 

FO/EPO, fish oil and evening primrose oil mixture. 
 

 

Table  2.23. Major fatty acids of FO/EPO and placebo oils (wt%), FO/EPO study. 

 FO/EPO* 
FO/EPO†              

(n = 4) 
 

Placebo* 
Placebo†                   
(n = 4) 

16:0 5.1 4.93 ± 0.03  27.8 28.46 ± 0.03 

18:0 1.9 1.84 ± 0.01  3.8 3.63 ± 0.01 

18:1n-9 + 18:1n-7 6.3 5.98 ± 0.06  42.4 42.01 ± 0.07 

18:2n-6 56.4 56.64 ± 0.04  21.1 21.37 ± 0.02 

18:3n-6 9.8 10.28 ± 0.03  - - 

20:4n-6 0.4 0.41 ± 0.00  - - 

18:3n-3 0.2 0.17 ± 0.01  2.0 2.06 ± 0.03 

20:5n-3 2.1 2.13 ± 0.02  - - 

22:6n-3 12.2 13.28 ± 0.06  - - 

FO/EPO, fish oil and evening primrose oil mixture. 

*  Values are reported as means (according to manufacturer’s declaration). 
†  As determined in our laboratory in January 2006 (mean ± SD). 
 

 

2.2.3 Measurements, blood sampling and storage 

All anthropometrical measurements at baseline followed standardised procedures. 

Height without shoes was measured to the nearest 5 millimetres and body weight 

without shoes and outdoor clothing to the nearest 100 g using a digital scale. A lump 

sum of 1 kg was subtracted for the weight of the clothes. Blood pressure and heart 

rate were determined in sitting position using a digital sphygmomanometer.  

Venous blood samples (5 ml) were collected from the antecubital vein of the forearm 

into an EDTA containing tube (Sarstedt, Nümbrecht, Germany) in sitting or lying 

position of the subject. Blood was centrifuged at 4°C (1500 g for 5 minutes) within 2 

hours and the obtained plasma was aliquoted into two plastic storage vials, which 
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were closed tightly under a stream of nitrogen, and stored at -80°C until analysis of 

total lipid (TL), phospholipid (PL), triglyceride (TG) and cholesterol ester (CE) fatty 

acids. At baseline and after 8 weeks of supplementation, two additional blood 

samples (1 ml each) were collected into a lithium heparin tube and into an EDTA tube 

(both Sarstedt, Nümbrecht, Germany) for liver enzyme measurements and a full 

blood count respectively. Fatty acid analyses of a given subject (weeks 0, 4, 6, and 8) 

were performed during 4 months of storage within the same analytical run. Full blood 

cell count and liver enzymes were analysed at the day of blood drawing using 

established routine methods in the clinical chemistry laboratories of the University of 

Munich hospital. 

 

2.2.4 Analytical methods 

2.2.4.1 Chemicals, consumables and equipment 

Chemicals, consumables and equipment for fatty acid analyses as well as the 

preparation of the internal standard and the GC conditions are described in  2.1.4.1 

and  2.1.4.5. 

 

2.2.4.2 Fatty acid analysis in study oils 

Fatty acid composition of the study oils was analysed as described in  2.1.4.2.  

 

2.2.4.3 Fatty acid analysis in plasma lipids 

Lipid extraction. Plasma lipids were extracted according to a modified Folch method 

[117]. One hundred µl of the internal standard solution (see  2.1.4.3), 10 ml 

chloroform/methanol (2+1, by vol, containing 50 mg BHT/l) and 2.5 ml distilled water 

were added to 250 µl plasma for total lipids, PL, TG and CE analysis. The tubes were 

vortexed for 15 minutes and centrifuged at 1000 g for 6 min. The aqueous phase was 

discarded and the remaining organic phase replenished with methanol up to a total 

volume of 10 ml. Subsequently, two extractions with 2.5 ml 2% NaCl solution were 

performed. The aqueous phases were discarded and the remaining organic phase 

containing the lipids was taken to dryness under reduced pressure.  

Separation of lipid fractions. The lipid residue was dissolved in 600 µl of 

chloroform/methanol (1+1, by vol), of which 150 µl were directly transferred into the 
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reaction vial and taken to dryness under nitrogen for analyses of fatty acids in plasma 

total lipids. The remaining 450 µl were deposited on a TLC plate for separation of PL, 

free cholesterol, NEFA, TG and CE using heptane, diisopropyl ether and acetic acid 

(60+40+3, by vol) as mobile phase [111]. After visualisation of the lipids with 2.7-

dichlorofluorescein (1% in ethanol) and UV-light, the bands with the lipid fractions of 

interest (PL, TG, and CE) were scraped separately from the TLC plate and 

transferred into 4 ml glass tubes (Figure  2.2).  

Transesterification and extraction of FAME. Transesterification of plasma total 

lipids and lipid fractions, extraction of FAME and storage were performed as 

described for plasma fatty acids in the DHAVEG study (see  2.1.4.3). 

 

2.2.4.4 GC conditions and calculation of fatty acid concentrations 

For gas chromatography conditions see  2.1.4.5. The calculation of fatty acid 

concentrations (mg/l) in plasma lipid fractions (PL, CE, TG) is described in  2.1.4.6. In 

plasma total lipids, the area of the internal standard equalled 40 µg 15:0/250 µl 

plasma = 160 mg 15:0/l plasma. Fatty acid percentages (wt%) were calculated 

dividing the absolute concentration of an individual fatty acid by the concentration of 

all C14 – C24 fatty acids and multiplying the result with 100. 

In addition to the fatty acid profile, the following fatty acid sums and ratios were 

calculated for each sample: sum of GLA and DGLA (GLA + DGLA), sum of all n-6 

fatty acids (Σ-6 FA), sum of all n-3 fatty acids (Σn-3 FA), sum of all long-chain n-6 

fatty acids (Σ-6 LCPUFA), sum of all long-chain n-3 fatty acids (Σ-3 LCPUFA), the 

ratio of n-6 to n-3 fatty acids (Σn-6/Σn-3 FA), and the ratio of n-6 LCPUFA to n-3 

LCPUFA (Σn-6/Σn-3 LCPUFA).  

 

2.2.4.5 Examination of reproducibility 

Pool plasma samples were provided by the sponsor of the study and stored at -80°C. 

Intra-assay reproducibility was assessed by analysing 8 pool samples in the same 

analytical run. When analysing the study samples, inter-assay reproducibility of the 

used method was assessed by analysing pool plasma samples 10/11x during 7 

weeks.  
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2.2.4.6 Blood cell count and liver enzymes 

Full blood cell counts were performed in EDTA blood on an automatic analyser. 

Gamma-glutamyl transpeptidase, alanine aminotransferase, aspartate amino-

transferase, and cholinesterase were measured in lithium heparin plasma on an 

automated sample processor with the appropriate reagent systems (see  2.1.4.12).  

 

2.2.5 Data management and statistical analyses 

Statistical evaluation was carried out with SPSS 12.0 for Windows (SPSS Inc., 

Chicago, USA). Data are presented as mean ± SD for normally distributed data (raw 

or transformed data) or as median with IQR in case of non-normality. For transformed 

data, the back-transformed mean is shown additionally. 

Test for normality. Data were checked for normality by visual inspection and by 

Kolmogorov-Smirnov-test (with Lilliefors correction). In case of non-normality, 

transformation of the fatty acid data was performed to obtain a normal distribution. 

Parametric tests were used for normally distributed variables and nonparametric tests 

for variables that are not normally distributed. Exact significances were calculated for 

all nonparametric tests.  

Between-group differences. Any differences between the groups (active treatment 

vs. placebo) at each time point or the impact of treatment on absolute changes (i.e. 

week 8 minus week 0) or relative changes from baseline (i.e. [week 8-week 0]/week 

0) were tested for significance using Student’s unpaired t-test for normally distributed 

variables or the Mann-Whitney U test for variables not normally distributed.  

Within-group differences. Student’s t-test for dependent samples with Bonferroni-

Holm correction [118] for multiple comparisons was used to compare data from 

weeks 4, 6, and 8 with baseline data within each treatment group. In cases of non-

normally distributed data, which could not successfully be transformed, the Wilcoxon 

nonparametric test with Bonferroni-Holm correction for multiple comparisons was 

used to compare data from week 4, 6, and 8 with baseline data within each treatment 

group. 

General Linear Model. The overall effect of treatment on fatty acid composition was 

determined using the General Linear Model (GLM) for repeated measures corrected 

for fatty acid concentrations at baseline (week 0). The between-subjects factor had 

two levels (“placebo” versus “FO/EPO”), whereas the within-subjects factor “time” 

had three levels (weeks 4, 6, and 8).  
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Correlations and bivariate tabular analysis. Correlations between parameters 

were estimated by computing Pearson’s correlation coefficient in the case of normally 

distributed values and the Spearman-Rho correlation coefficient in the case of other 

distributions respectively. For bivariate tabular analysis the chi-square test (exact 

calculation) was used. In cases of expected values smaller than 5, a Fisher exact test 

was used instead.  

Level of significance. P values below 5% were considered significant with exception 

of multiple comparisons (week 4, 6 and 8 vs. week 0), in which the p values were 

corrected to < 1.67%, < 2.5%, and < 5% [118].  
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3 Results 

3.1 DHAVEG study 

3.1.1 Methods for fatty acid analysis 

The GC method ( 2.1.4.5) enabled the separation of the following C14 – C24 fatty 

acids, which were identified by comparison with the peaks of a standard mixture 

(Figure  3.1): 

Saturated fatty acids: 14:0, 15:0, 16:0, 17:0, 18:0, 20:0, 22:0, 24:0; 

Trans fatty acids: 14:1t, 16:1t, 18:1t, 18:2tt, 22:1t; 

Monounsaturated fatty acids: 14:1n-5, 15:1n-5, 16:1n-7, 17:1n-7, 18:1n-9, 18:1n-7, 

20:1n-9, 22:1n-9, 24:1n-9; 

Polyunsaturated fatty acids: 18:2n-6, 18:3n-6, 18:3n-3, 18:4n-3, 20:2n-6, 20:3n-9, 

20:3n-6, 20:4n-6, 20:3n-3, 20:5n-3, 22:2n-6, 22:4n-6 (small amounts of 22:3n-3 

cannot be excluded), 22:5n-6, 22:5n-3, 22:6n-3. 
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Figure  3.1. Chromatogram of the fatty acid standard mixture. 
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Reproducibility. In biological assays, intra-assay coefficients of variation below 5% 

are considered desirable. Table  3.1 and Table  3.2 show the determined coefficients 

of variation for selected n-6 and n-3 fatty acids in plasma PL, RBC total lipids, PE, 

and PC (for complete intra-assay and inter-assay CV see Table  8.4 - Table  8.6). 

 

 

Table  3.1. Intra-assay CV (%) of fatty acid analyses, DHAVEG study. 

 Plasma PL                          
(n = 8) 

 RBC TL               
(n = 8) 

 RBC PE             
(n = 7) 

 RBC PC              
(n = 7) 

 mg/l* wt%†  wt%†  wt%†  wt%† 

n-6 fatty acids         

18:2n-6 1.52 0.64  0.65  2.68  0.92 

18:3n-6 8.16 8.12  2.74  3.49  n.d. 

20:3n-6 1.58 0.83  1.32  0.71  1.49 

20:4n-6 1.76 0.39  0.22  2.00  2.27 

22:4n-6 1.85 1.33  0.44  2.77  9.49 

22:5n-6 3.82 4.19  1.74  3.28  7.31 

n-3 fatty acids         

18:3n-3 2.15 1.76  2.51  5.38  6.18 

20:5n-3 3.02 2.29  0.93  1.85  2.07 

22:5n-3 2.93 2.74  0.48  3.15  4.14 

22:6n-3 4.31 4.11  0.54  3.32  3.71 

n.d., not detected; PL, phospholipids; RBC, red blood cell; TL, total lipids; PE, phosphatidylethanol-
amine; PC, phosphatidylcholine. 
*  CV absolute fatty acid concentration (mg/l). 
†  CV relative fatty acid composition (wt%). 
 

 

The performed intra- and inter-assay variation tests proved a good reproducibility of 

the used methods for most fatty acids. Intra-assay CV were < 5% for the described n-

3 and n-6 fatty acids (mg/l and wt%) with the exception of GLA in plasma PL (CV 

8%), 22:4n-6 in RBC PC (9%) and ALA in RBC PE and PC (5.4% and 6.2% 

respectively), but these fatty acids account for minor proportions of total fatty acids (< 

0.4 wt% each). Inter-assay CV for the described n-3 and n-6 fatty acids were < 8% in 

plasma PL and RBC total lipids, < 7% in RBC PE and < 10% in RBC PC. 
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Table  3.2. Inter-assay CV (%) of fatty acid analyses, DHAVEG study 

 Plasma PL                          
(n = 11) 

 RBC TL               
(n = 19) 

 RBC PE             
(n = 14) 

 RBC PC              
(n = 14) 

 mg/l* wt%†  wt%†  wt%†  wt%† 

n-6 fatty acids         

18:2n-6 4.70 1.79  1.17  1.30  0.94 

18:3n-6 7.97 5.17  7.96  5.64  5.30 

20:3n-6 5.12 2.10  0.86  1.26  2.14 

20:4n-6 7.19 5.47  0.82  1.25  3.28 

22:4n-6 6.22 3.82  1.04  1.80  6.11 

22:5n-6 6.15 3.72  2.31  2.44  8.82 

n-3 fatty acids         

18:3n-3 4.27 2.01  3.23  6.76  2.84 

20:5n-3 6.74 3.92  1.99  1.48  3.99 

22:5n-3 7.46 6.72  1.78  2.19  9.74 

22:6n-3 5.13 2.95  2.06  1.84  6.02 

PL, phospholipids; RBC, red blood cell; TL, total lipids; PE, phosphatidylethanolamine; PC, 
phosphatidylcholine. 
*  CV absolute fatty acid concentration (mg/l). 
†  CV relative fatty acid composition (wt%). 
 

 

3.1.2 Method for vitamin A and E analysis 

Linearity of calibration curves. The calculated coefficients of determination (r2) 

obtained with the described method using seven vitamin concentration levels in the 

stated concentration range were as follows: retinol 0.102 – 1.018 mg/l (r2 = 0.9995), 

alpha-tocopherol 2.26 – 22.59 mg/l (r2 = 0.9998) (Figure  8.1). 

Reproducibility. The performed intra- and inter-assay variation tests proved good 

reproducibilities of the used method. Table  3.3 shows the determined coefficients of 

variation for retinol and alpha-tocopherol: intra-assay CV were < 2% and inter-assay 

CV < 4% for both substances.  

 

Table  3.3. Reproducibility of vitamin A and E analysis in plasma, DHAVEG study. 

 Intra-assay (n = 8)  Inter-assay (n = 11) 

 Mean (mg/l) CV (%)  Mean (mg/l) CV (%) 

Retinol 0.50 1.89  0.49 3.79 

alpha-Tocopherol 7.31 1.80  9.06 3.67 
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Recovery from plasma. The mean recoveries of added retinol and alpha- tocopherol 

to plasma  (n = 4) were 100% and 97% respectively. 

 

Table  3.4. Recoveries of retinol and alpha-tocopherol from plasma, DHAVEG study. 

 Basal plasma                     
(n = 4)  

Plasma + standard 
mixture (n = 4) 

Expected 
concentration 

Recovery (%) 

Retinol 0.586 ± 0.007 0.756 ± 0.008 0.755 100 ± 1 

alpha-Tocopherol 9.54 ± 0.21 15.03 ± 0.21 15.46 97 ± 1 

 

 

Accuracy of the measurements. The results for retinol were in excellent agreement 

with the approved values of the NIST standard reference material (bias < 5%), 

whereas the results for the lower alpha-tocopherol level corresponded acceptably to 

the certified values. The results for the higher alpha-tocopherol level were almost 

13% lower than the certified values.   

 

Table  3.5. Accuracy of vitamin A and E measurements, DHAVEG study. 

  Certified value 
(mg/l)† 

Measured                    
(n = 3, mg/l)§ Bias (mean, %) 

Retinol    

    Level 1 0.841 ± 0.027 0.850 ± 0.019 0.5 

    Level 2 0.484 ± 0.012 0.475 ± 0.007 -1.8 

alpha-Tocopherol    

    Level 1 7.47 ± 0.47 6.79 ± 0.13 -9.1 

    Level 2 16.79 ± 0.76 14.67 ± 0.07 -12.8 

The bias from the assigned value was calculated as follows:  
(mean of the 3 measured samples – certified value) * 100% / certified value. 
†  The true concentration is expected, with 95% confidence, to be in the interval defined  
   by the certified value ± the expanded uncertainty. 
§  Mean ± SD. 
 

 

3.1.3 Subjects 

One hundred-fourteen free-living, apparently healthy vegetarians aged 18 to 43 years 

(87 female, 27 male) were included in the study and randomly assigned to one of the 

intervention groups. There was no difference between the groups with respect to 

age, BMI, blood pressure, heart rate, duration of vegetarian diet, proportion of non-

smokers and gender ratio at study entry (Table  3.6).  
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Table  3.6. Baseline characteristics of the subjects, DHAVEG study (mean ± SD or median with IQR). 

 DHA (n = 58 - 59)*  Placebo (n = 55)  P† 

Female (n) / male subjects (n) 44 / 15  43 / 12  0.667 

Age (years)§ 24 (22 – 27)  24 (22 – 29)  0.904 

BMI (kg/m2) 21.4 ± 1.8  21.2 ± 2.0  0.532 

Blood pressure (mm Hg) 

   Systolic§ 

   Diastolic§ 

 

98 (90 – 100) 

65 (60 – 70) 

  

95 (90 – 100) 

70 (60 – 70) 

  

0.574 

0.737 

Heart rate (beats/min)§ 68 (60 – 72)  68 (64 – 72)  0.872 

Years on a vegetarian diet§ 8.0 (6.0 – 13.0)  8.5 (5.0 – 10.0)  0.445 

Non-smokers (%) 75  80  0.512 

*  For one subject, blood pressure and heart rate values are missing. 
§  Median with IQR in parentheses. 
†  Analyses of group differences. 
 

 

Two of the 114 subjects recruited into the study dropped out during the intervention 

period. One subject in the placebo group came down with a renal colic, which was 

considered unrelated to the dietary supplement, and the contact to one subject of the 

DHA group was lost. Three individuals in the DHA group and one in the placebo 

group were excluded from all analyses. The reasons for exclusions were poor 

compliance with study protocol (n = 2) and diarrhoea/vomitus for more than 6 days of 

the intervention period (n = 2, one subject from each group). Thus, 108 subjects 

(94.7%) are included in the statistical analysis. Two subjects were additionally 

excluded from the statistical analyses of triglycerides and lipoproteins, because of 

suspected hypertriacylglycerolaemia (basal TG > 2.5 mmol/l), resulting in 106 

subjects (93.0%) for these parameters. 

 

3.1.4 Compliance and side effects 

The median number of days in the study was 56 days (range: 56 – 60 days) in both 

groups. Compliance as judged by capsule count was 98% (mean) in the DHA group 

and 99% in the placebo group, with no significant between-group difference (Table 

 3.7).  

Side effects were reported in the DHA group by 11% and in the placebo group by 8% 

of the subjects (Table  3.8) including gastrointestinal upsets (flatulence, pain, 

diarrhoea, belching) and minor skin reactions (acne). Side effects were evenly 

distributed between DHA and placebo groups.  
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Table  3.7. Compliance, DHAVEG study (% of prescribed capsules taken).* 

 DHA                                     
(n = 55) 

Placebo                              
(n = 53) 

Mean ± SD (%) 98 ± 2 99 ± 2 

Median with IQR (%) 100 (97 – 100) 100 (98 – 100) 

100% compliance (number and %) 28  (51%) 32  (60%) 

*  No difference in compliance was observed between DHA and placebo groups (p = 0.441). 
 

 

 Table  3.8. Reported side effects, DHAVEG study (number and %).* 

 DHA                         
(n = 55) 

Placebo                       
(n = 53) 

Total side effects 6  (11%) 4  (8%) 

     Skin reactions - 1  (2%) 

     Flatulence 3  (5%) 2  (4%) 

     Stomach ache 2  (4%) 1  (2%) 

     Diarrhoea - 2  (4%) 

     Belching 2  (4%) 1  (2%) 

*  Side effects were evenly distributed between DHA and  
 placebo groups (p > 0.05). 

 

 

3.1.5 BMI, blood pressure and heart rate 

Body weight, BMI, blood pressure and heart rate did not differ between DHA and 

placebo groups at week 0 and week 8 (Table  8.11). An examination of within-group 

changes demonstrated slight but significant increases in body weight and BMI after 8 

weeks of intervention in the placebo group, but no changes in the DHA group. 

Changes from baseline in body weight and BMI tended to be different between DHA 

and placebo groups (p = 0.072 and p = 0.056 respectively). In both groups, slight 

increases of systolic blood pressure were observed (not significant in the DHA group: 

p = 0.066); the change from baseline in systolic blood pressure was not different 

between the groups. Diastolic blood pressure and heart rate did not change during 

intervention. 
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3.1.6 Dietary intake 

The proportion of macronutrients and the intakes of energy, alcohol, cholesterol, and 

n-3 LCPUFA with the background diet (not including supplements for placebo and 

DHA group) were not different between the two groups before the intervention and 

did not change (with the exception of energy intake in the DHA group) in both groups 

during intervention (Table  3.9).  

Energy intake in the DHA group was significantly lower during intervention compared 

to baseline and tended to be reduced at this time point compared to placebo (p = 

0.079). Dietary fibre intake was comparably high between both groups before 

intervention; during intervention it was significantly lower in the DHA than in the 

placebo group. Baseline DHA intakes were 23 mg/d (median) in the DHA group and 

20 mg/d in the placebo group. Before intervention, DHA and placebo groups differed 

in dietary LA intake (% of energy) (medians: 3.3% vs. 5.0%) and LA:ALA ratios 

(median: 6.6:1 vs. 7.9:1). Dietary LA intake and LA:ALA ratio decreased in the 

placebo group during the study, resulting in values comparable to the DHA group at 

study end.  

 

Table  3.9. Dietary intake with the background diet before and during intervention, DHAVEG study 
(mean ± SD or median with IQR). 

 DHA group (n = 55)  Placebo group (n = 53) 

 Before intervention During intervention  Before intervention During intervention 

Energy (MJ)§ 8.8 (7.2 – 10.3) 7.7 (6.5 – 9.2) 1  8.8 (7.0 – 10.1) 8.1 (7.0 – 10.9) 

Protein                            
(% of energy)§  13.0 (10.9 – 15.2) 12.4 (11.1 – 15.2)  13.2 (10.8 – 14.7) 12.5 (11.0 – 14.2) 

Total fat                      
(% of energy)§ 28.9 (23.1 – 32.9) 28.5 (24.1 – 31.9)  31.0 (24.1 – 38.4) 29.8 (24.6 – 35.0) 

Carbohydrates                    
(% of energy) 54.2 ± 1.1 54.3 ± 1.0  51.6 ± 1.2 52.9 ± 1.1 

Fibre (g)§ 28.1 (21.1 – 35.9) 24.8 (19.5 – 35.9)a  30.5 (22.6 – 44.8) 30.1 (24.3 – 41.3) 

Alcohol (g)§ 2.0 (0.2 – 9.2) 1.3 (0.1 – 10.9)  2.0 (0.1 – 10.9) 5.1 (0.1 – 11.1) 

Cholesterol (mg)§ 150 (84 – 231) 137 (88 – 200)  146 (76 – 208) 143 (73 – 256) 

LA (% of energy)§ 3.3 (2.5 – 4.6)a 3.3 (2.6 – 5.2)  5.0 (3.3 – 7.3) 3.5 (2.5 – 6.2) 1 

ALA                         
(% of energy)§ 0.51 (0.42 – 0.79) 0.52 (0.42 – 0.72)  0.57 (0.42 – 0.87) 0.52 (0.42 – 0.81) 

LA:ALA ratio§ 6.6 (4.5 – 8.6)a 6.7 (4.7 – 9.1)  7.9 (6.1 – 10.4) 6.1 (5.2 – 9.0) 1 

EPA (mg)§ 0.0 (0.0 – 3.3) 0.0 (0.0 – 3.3)  0.0 (0.0 – 3.3) 0.0 (0.0 – 3.3) 

DHA (mg)§ 23.3 (6.7 – 53.3) 16.7 (6.7 – 36.7)  20.0 (3.3 – 40.0) 20.0 (5.0 – 45.0) 

ALA, alpha-linolenic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid.  
§  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0;  
a  p < 0.05 vs. placebo at the same time point. 
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Spearman-Rho correlation coefficients between dietary LA intake (g/d) and LA (wt%) 

in RBC total lipids, RBC PE, RBC PC, and plasma PL at baseline were 0.454, 0.470, 

0.391 and 0.318 respectively (p always < 0.01). 

 

3.1.7 Plasma triglycerides and lipoproteins 

Measured lipid metabolism parameters were not different between the two groups at 

study entry and did not change in the placebo group (Figure  3.4, Table  8.12). A 

significant 20% decrease in plasma TG concentrations from 0.96 to 0.77 mmol/l 

(medians) was observed in the DHA group. Absolute TG changes from baseline were 

significantly different between DHA (-0.15 mmol/l, median) and placebo groups (-0.02 

mmol/l). After DHA supplementation, observed TG concentrations did not exceed 1.5 

mmol/l (Figure  3.2, •), whereas after placebo intervention, the values were distributed 

beyond 2.5 mmol/l (ο). The number of subjects with plasma TG levels > 1.5 mmol/l 

did not differ between DHA and placebo group at week 0 (17% vs. 15%), but after the 

intervention, the frequency was significantly lower in the DHA supplemented group 

compared to placebo (0% vs. 21%). 

 

 

Figure  3.2. Plasma triglycerides at week 0 and week 8, DHAVEG study (n = 53 in both groups). 
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Figure  3.3. Plasma triglyceride changes after DHA supplementation  
according to baseline triglyceride levels, DHAVEG study (n = 53). 

 

 

Figure  3.3 shows that in subjects with basal TG levels ≤ 1.2 mmol/l, DHA 

supplementation had no influence on TG levels (n = 40; mean TG levels 0.79 mmol/l 

at week 8 vs. 0.83 mmol/l at baseline; p = 0.161), but that in subjects with basal TG 

levels > 1.2 mmol/l, DHA decreased TG consistently (n = 13; mean TG levels 0.95 

mmol/l at week 8 vs. 1.83 mmol/l at baseline; p < 0.001). 

Plasma total, LDL and HDL cholesterol increased significantly in the DHA group; the 

changes from baseline in these parameters were significantly different between DHA 

and placebo groups (Figure  3.4, Table  8.12). We found a slight, negative correlation 

between absolute changes in TG and in HDL concentrations after DHA 

supplementation (r = -0.307, p = 0.025). In the DHA group, there were no correlations 

between individual DHA changes in plasma/RBC and changes in plasma TG, total, 

LDL or HDL cholesterol concentrations.  

The ratio of TG to HDL cholesterol was significantly reduced from 0.57 to 0.43 

(medians) in the DHA group and remained unchanged in the placebo group; these 

changes from baseline were significantly different between the two groups. Total 

cholesterol:HDL cholesterol and LDL cholesterol:HDL cholesterol ratios were not 

affected by intervention (Table  8.12).  
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Figure  3.4. Plasma triglycerides and lipoproteins at week 0 and week 8, DHAVEG study (n = 53 in 
both groups). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
1  p < 0.05 vs. week 0; a  p < 0.05 vs. placebo at the same time point. 
 

 

3.1.8 Vitamin A and E 

Absolute retinol and alpha-tocopherol levels as well as lipid-adjusted alpha-

tocopherol levels were not different between the two groups at study entry and did 

not change in both groups (Table  8.13). Retinol changes showed greater increases 

from baseline values with microalgae oil than with placebo; changes in absolute and 

lipid-adjusted alpha-tocopherol levels were not different between DHA and placebo 

groups. 
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3.1.9 Plasma haemostatic factors 

All measured haemostatic parameters were not different between the two groups at 

week 0 and week 8 (Table  8.14). Minor changes from baseline with no significant 

group differences were observed for fibrinogen, PTT, and PAI-1 as well as ADP-

induced platelet aggregation time. In the DHA group, a reduction of von Willebrand 

factor was observed and changes from baseline in this haemostatic factor were 

significantly different between the two intervention groups. 

With the exception of von Willebrand factor, incidence of haemostatic factors out of 

the laboratory’s reference range did not differ neither at baseline nor at week 8 

between DHA and placebo groups and within-group incidences did not differ between 

baseline and week 8 (Table  3.10). Concerning von Willebrand factor, we observed 

values out of reference range less often after DHA supplementation than at baseline 

(1 vs. 12 subjects), and incidence of such values was lower in the DHA group than in 

the placebo group at week 8 (1 vs. 11 subjects). 

 

 

Table  3.10. Haemostatic factors out of laboratory’s reference range, DHAVEG study (number). 

   DHA  Placebo 

 Reference 
range† 

 n* Week 0 Week 8  n* Week 0 Week 8 

Quick’s test (%) > 70  53 0 0  52 1 1 

PTT (sec) 25 - 42  53 0 0  52 2 0 

Fibrinogen (mg/dl) 160 - 400  54 3 4  52 8 7 

D-dimers (µg/ml) < 0.5  55 5 3  53 4 2 

Factor VII (%) 50 - 130  55 10 9  53 13 9 

Von Willebrand 
factor (%) 

50 - 130  55 12 11,a  53 11 11 

PAI-1 (AU/ml) < 15  55 6 3  53 2 2 

PFA-ADP < 110  43 8 9  40 8 9 

PFA-EPI < 160  42 4 4  34 3 6 

PTT, partial thromboplastin time; PAI-1, plasminogen activator inhibitor-1 activity; PFA-ADP, platelet 
function analysis with adenosine diphosphate; PFA-EPI, platelet function analysis with epinephrine. 
†  Reference range as specified from the clinical chemistry laboratories of the University of Munich   
   hospital. 
*  Some samples are missing because of technical problems during the measurements or coagulation    
   of the blood samples. 
1   p < 0.05 vs. week 0; a  p < 0.05 vs. placebo at the same time point. 
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3.1.10  Full blood cell count and biochemical parameters 

Parameters of haematology and blood chemistry were not different between the two 

groups at week 0 and week 8 with the exception of bilirubin levels at baseline, which 

were slightly, but significantly higher in the DHA than in the placebo group (0.7 vs. 

0.6 mg/dl, medians) (Table  8.15).  

Small changes from baseline within the normal ranges were observed in uric acid, 

total protein, leucocytes, haemoglobin and MCH with no significant group differences. 

ALT levels increased from 13.0 to 16.0 U/l (medians) and CHE levels decreased from 

7.5 to 7.2 kU/l (medians) with DHA supplementation; changes from baseline were 

significantly different between the two intervention groups. RBC count decreased in 

both groups compared to baseline, but reduction was significantly higher in the 

placebo group. The haematocrit value decreased with placebo treatment and 

changes from baseline were significantly different between the two groups. 

All observed changes in haematology and biochemical parameters were minor and 

within the normal ranges. Incidence of liver and cardiac enzymes out of the 

laboratory’s reference range did not differ neither at baseline nor at week 8 between 

DHA and placebo groups; within-group incidences did not differ between baseline 

and week 8 (Table  3.11).  

 

 

Table  3.11. Liver and cardiac enzymes out of laboratory’s reference range, DHAVEG study (number). 

   DHA  Placebo 

 Reference range†              
(male / female) 

 n* Week 0 Week 8  n* Week 0 Week 8 

GGT (U/l) < 55 / < 38  55 2 2  53 1 0 

ALT (U/l)  < 45 / < 35  55 1 2  53 0 1 

AST (U/l)  < 40 / < 33  55 0 1  53 2 2 

CHE (kU/l) 5.00 – 13.30  54 2 3  51 4 5 

CK (U/l) < 180 / < 155  55 4 5  53 5 8 

LDH (U/l) < 250  54 0 0  53 0 0 

GGT, gamma-glutamyl transpeptidase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; CHE, cholinesterase; CK, creatinekinase; LDH, lactate dehydrogenase. 
†  Reference range as specified from the clinical chemistry laboratories of the University of Munich   
   hospital. 
*  Some samples are missing because of technical problems during the measurements. 
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3.1.11   Fatty acids in plasma and RBC 

Fatty acid composition of RBC and plasma lipids was not different between groups at 

baseline (with the exception of Σn-3 LCPUFA in plasma PL) and changed negligibly 

in the placebo group (Table  8.16 - Table  8.19). After DHA supplementation, no 

changes or little increases were observed in saturated fatty acids 16:0 and 18:0. 

Microalgae oil supplementation resulted in significant increases of n-6 DPA, EPA, 

and DHA levels and significant decreases of 18:1n-9, 20:3n-9, 18:2n-6, 18:3n-6, 

20:3n-6, AA, 22:4n-6 and n-3 DPA levels in all measured fractions relative to baseline 

values (Figure  3.5).  
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Figure  3.5. Relative changes of selected fatty acids in RBC total lipids, RBC PE, RBC PC and plasma 
PL in the DHA group compared to baseline values, DHAVEG study (n = 52 in RBC total lipids, 
otherwise n = 55).  

Values were calculated as individual’s percent change in each lipid fraction and are reported as mean 
+/- SD. 
PA, 16:0; OA, 18:1n-9; LA, 18:2n-6; ALA, 18:3n-3; AA, 20:4n-6; DPA n-6, 22:5n-6; DPA n-3, 22:5n-3; 
EPA, 20:5n-3; DHA, 22:6n-3. 
 

 

Relative to placebo, DHA supplementation resulted in significantly higher contents of 

16:0 (not significant in RBC PC), n-6 DPA, EPA (not significant in RBC PE) and DHA, 

and lower contents of 18:1n-9 (not significant in RBC PE), 20:3n-9, 18:2n-6, 18:3n-6, 

20:3n-6, AA, 22:4n-6, 18:3n-3 (not significant in plasma PL and RBC PC) and n-3 

DPA. After DHA supplementation, the highest relative fatty acid changes were 

observed in DHA, n-6 DPA, and EPA in all measured lipid classes (Figure  3.5). The 
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degree of these changes was different in the various lipid classes with higher 

percentage changes in RBC PC and plasma PL than in RBC total lipids and RBC PE 

for DHA, n-6 DPA and EPA. 

The sums of n-6 FA and n-6 LCPUFA decreased and Σn-3 FA and Σn-3 LCPUFA 

increased significantly compared to baseline values in all measured plasma and RBC 

lipids after 8 weeks of DHA supplementation resulting in remarkable decreases of Σn-

6/Σn-3 FA and Σn-6/Σn-3 LCPUFA ratios. At week 8, Σn-6 FA, Σn-6 LCPUFA as well 

as the ratios of Σn-6/Σn-3 FA and Σn-6/Σn-3 LCPUFA were significantly lower and 

Σn-3 FA and Σn-3 LCPUFA were significantly higher in the DHA than in the placebo 

group. 

Statistically significant increases in EPA + DHA levels versus baseline values were 

observed after 8 weeks of microalgae oil supplementation in all investigated lipid 

fractions. The omega-3 index rose significantly from 4.8 ± 1.2 wt% to 8.4 ± 1.3 wt% 

(mean ± SD) in the DHA supplemented group, ranging after 8 weeks from 4.7 wt% to 

11.0 wt%. Relative to placebo application, supplementation with DHA-rich microalgae 

oil resulted in significantly higher contents of EPA + DHA in all tested lipid fractions. 

At baseline, 29% of the DHA group and 33% of the placebo group volunteers had an 

omega-3 index ≤ 4% and no one reached a desirable omega-3 index ≥ 8% (Figure 

 3.6). After 8 weeks of intervention, an omega-3 index ≤ 4% did not occur anymore in 

the DHA group but remained in 39% of the placebo group subjects (p < 0.001). 69% 

of the DHA supplemented subjects had an omega-3 index ≥ 8%, while no subject of 

the placebo group showed an omega-3 index above 8% (p < 0.001). 
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Figure  3.6. Omega-3 index (%) at week 0 and week 8, DHAVEG study 
(Placebo: n = 51; Microalgae oil: n = 52). 

 

 

 

3.1.12   Correlations between relative fatty acid concentrations 

Spearman-Rho correlation coefficients were computed between the relative fatty acid 

levels in RBC total lipids and fatty acid proportions in RBC PE, RBC PC, and plasma 

PL for all subjects (Table  8.20). Relative fatty acid content of selected fatty acids in 

RBC total lipids correlated significantly with the corresponding fatty acid content in 

the other lipid classes (plasma PL, RBC PC and RBC PE) (r always > 0.49). RBC 

total lipid DHA and RBC total lipid EPA + DHA consistently showed the strongest 

correlations with the other lipid fractions at both time points (r always ≥ 0.90). 

At baseline, correlation coefficients between omega-3 index and EPA + DHA from 

RBC PE, RBC PC and plasma PL were almost identical in DHA and placebo groups 

(Figure  8.2). After the intervention, correlation coefficients remained similar to 

baseline in the placebo group, but became lower in the DHA group.  

The correlations between EPA + DHA levels at week 0 and those at week 8 were 

lower in the DHA than in the placebo group in all tested lipid fractions (in the placebo 

group r = 0.841 - 0.970; in the DHA group r = 0.464 - 0.856, p always < 0.001). 

 

→ > 8% 
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3.1.13 Correlations between percentage fatty acid changes 

In the DHA group, Spearman-Rho correlations were computed between relative fatty 

acid changes from baseline values in RBC total lipid / plasma PL and percentage 

changes in the other lipid fractions for LA, AA, n-6 DPA, ALA, EPA, n-3 DPA, DHA, 

and EPA + DHA (Table  8.21). Relative changes in RBC total lipid n-6 and n-3 fatty 

acids correlated significantly and positively with changes in the other lipid classes (r 

always > 0.48); here, the correlations were highest for n-6 DPA, EPA, DHA, and EPA 

+ DHA (r always > 0.75). Relative changes in RBC PE correlated better with RBC 

total lipid than with plasma PL changes for all tested fatty acids. Relative changes in 

plasma PL correlated best with changes in RBC PC for all tested n-6 and n-3 fatty 

acids with exception of ALA. 
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3.2 FO/EPO study 

3.2.1 Method for fatty acid analysis 

Reproducibility. The GC method ( 2.1.4.5) enabled the separation and identification 

of the in  3.1.1 described fatty acids. The used method for determination of fatty acids 

in plasma total lipids and lipid fractions showed good intra-assay and inter-assay 

reproducibilities. Table  3.12 and Table  3.13 describe the determined coefficients of 

variation for selected n-6 and n-3 fatty acids (for complete intra-assay and inter-assay 

CV see Table  8.7 - Table  8.10). 

 

 

Table  3.12. Intra-assay CV (%) of fatty acid analyses, FO/EPO study. 

 Plasma PL                          
(n = 8) 

 Plasma CE              
(n = 8) 

 Plasma TG          
(n = 8) 

 Plasma TL            
(n = 8) 

 mg/l* wt%†  mg/l* wt%†  mg/l* wt%†  mg/l* wt%† 

n-6 fatty acids            

18:2n-6 0.70 0.35  1.22 0.08  1.38 0.28  1.31 0.98 

18:3n-6 2.46 2.78  1.17 0.33  1.88 1.24  1.85 1.55 

20:3n-6 0.74 0.69  1.49 0.41  1.37 0.74  2.06 1.76 

20:4n-6 1.21 1.12  1.37 0.38  1.35 0.22  1.43 0.90 

22:4n-6 0.88 1.15  n.d. n.d.  3.29 2.36  1.97 1.50 

22:5n-6 1.49 1.44  6.37 5.57  2.20 1.24  2.04 1.86 

n-3 fatty acids            

18:3n-3 0.96 1.15  1.54 0.58  1.76 1.16  1.17 0.98 

20:5n-3 1.27 1.71  1.56 0.62  3.16 2.90  1.71 1.09 

22:5n-3 1.39 1.76  n.d. n.d.  2.06 2.02  2.16 1.84 

22:6n-3 1.62 1.85  2.21 0.46  1.82 1.44  2.21 1.90 

n.d., not detected, PL, phospholipids; CE, cholesterol esters; TG, triglycerides; TL, total lipids. 

*  CV absolute fatty acid concentration (mg/l). 
†  CV relative fatty acid composition (wt%). 
 

 

Intra-assay CV were < 4% for the described n-3 and n-6 fatty acids (mg/l and wt%) 

with the exception of 22:5n-6 in plasma CE (CV < 7%), but this fatty acid accounted 

only for a minor proportion of total fatty acids in plasma CE (0.05 wt%, mean). Inter-

assay CV for the described n-3 and n-6 fatty acids were < 5% in plasma PL and <6% 

in plasma CE, TG and TL (exception: 22:5n-6 in plasma CE with an inter-assay CV 

<10%). 
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Table  3.13. Inter-assay CV (%) of fatty acid analyses, FO/EPO study. 

 Plasma PL                          
(n = 11) 

 Plasma CE              
(n = 10) 

 Plasma TG          
(n = 10) 

 Plasma TL            
(n = 10) 

 mg/l* wt%†  mg/l* wt%†  mg/l* wt%†  mg/l* wt%† 

n-6 fatty acids            

18:2n-6 3.22 0.71  3.37 0.43  2.87 0.45  3.35 1.22 

18:3n-6 4.55 2.85  3.53 2.23  3.47 2.38  3.55 1.96 

20:3n-6 3.52 1.29  4.90 2.88  4.88 3.38  4.06 3.12 

20:4n-6 3.80 1.53  3.97 1.37  4.07 2.56  3.32 1.68 

22:4n-6 4.36 2.52  n.d. n.d.  5.30 4.44  4.48 3.06 

22:5n-6 3.39 2.26  9.26 7.58  5.37 4.01  5.23 4.67 

n-3 fatty acids            

18:3n-3 4.07 2.50  3.88 1.45  2.84 2.92  3.16 0.88 

20:5n-3 3.92 1.73  5.18 4.18  4.14 3.70  3.85 2.81 

22:5n-3 4.86 2.81  n.d. n.d.  5.23 4.06  4.24 3.29 

22:6n-3 4.91 2.97  5.66 4.42  5.13 3.91  3.81 2.57 

n.d., not detected, PL, phospholipids; CE, cholesterol esters; TG, triglycerides; TL, total lipids. 

*  CV absolute fatty acid concentration (mg/l). 
†  CV relative fatty acid composition (wt%). 
 

 

3.2.2 Subjects 

Forty free-living, apparently healthy, non-pregnant women aged 19 to 36 years were 

included in the study and randomly assigned to one of the intervention groups. There 

were no significant differences in subject characteristics between the two intervention 

groups at study entry (Table  3.14).  

 

 

Table  3.14. Baseline characteristics of the subjects, FO/EPO study (mean ± SD). 

 FO/EPO (n = 20)  Placebo (n = 20)  P† 

Age (years) 24.6 ± 4.2  24.8 ± 2.9  0.863 

BMI (kg/m2) 21.8 ± 1.9  21.9 ± 2.0  0.823 

Blood pressure (mm Hg) 

   Systolic 

   Diastolic 

 

118 ± 13 

74 ± 7 

  

119 ± 11 

73 ± 8 

  

0.743 

0.741 

Heart rate (beats/min) 76 ± 13  74 ± 14  0.767 

Non-smokers (%) 90  70  0.235 

Use of oral contraceptives (%) 60  60  1.000 

†  Analyses of group differences. 
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One subject from the FO/EPO group dropped out during the first 4 weeks of the 

intervention period, because she came down with an abdominal influenza and could 

not take the capsules for more than 7 days. Thus, 39 subjects (97.5%) were included 

in the statistical analysis. 

 

3.2.3 Compliance, side effects and success of blinding 

Compliance as judged by capsule count was 98% (mean) for both groups with no 

significant group difference (Table  3.15).  

 

Table  3.15. Compliance, FO/EPO study (% of prescribed capsules taken).* 

 FO/EPO                                     
(n = 19)  

Placebo                              
(n = 20)  

Mean ± SD (%) 98 ± 2 98 ± 3 

Median with IQR (%) 99 (98 – 100) 99 (97 – 99) 

100% compliance (number and %) 5 (26%) 3 (15%) 

IQR, interquartile range. 
*  No difference in compliance was observed between FO/EPO and placebo groups (p = 0.533). 
 

 

Three subjects from each group reported mild adverse effects including 

gastrointestinal upsets (indigestion, belching), minor skin reactions (acne) and 

prolonged bleeding time (Table  3.16). Side effects were evenly distributed between 

FO/EPO and placebo groups. Group assignment was guessed correctly in the 

FO/EPO group by 63% and in the placebo group by 50% of the subjects with no 

significant group difference (p = 0.523). 

 

Table  3.16. Reported side effects, FO/EPO study (number).* 

 FO/EPO                     
(n = 19) 

Placebo                  
(n = 20) 

Total side effects 3 3 

     Skin reactions 1 1 

     Prolonged bleeding  
     time 

- 1 

     Indigestion 1 - 

     Diarrhoea - 1 

     Belching 1 - 

*  Side effects were evenly distributed between FO/EPO and  
    placebo groups (p > 0.05). 
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3.2.4 BMI, blood pressure and heart rate 

Body weight, BMI, blood pressure and heart rate did not differ between FO/EPO and 

placebo groups at week 0 and week 8 and absolute changes from baseline after 8 

weeks of intervention were not significantly different between the two groups (Table 

 8.22). The diastolic blood pressure decreased slightly after 8 weeks of FO/EPO 

supplementation compared to baseline (p = 0.046), but changes from baseline were 

not significantly different between the groups. 

 

3.2.5 Full blood cell count and liver enzymes 

Liver enzymes and haematological parameters did not differ between FO/EPO and 

placebo groups at week 0 and week 8 with the exception of platelet counts at both 

time points (p < 0.05) and cholinesterase (CHE) levels at baseline (trend: p = 0.053, 

Table  8.23). Small changes from baseline within the normal ranges were observed in 

MCV and MCHC with no significant group differences. CHE levels were significantly 

increased after 8 weeks of placebo intervention and changes from baseline were 

significantly different between the two groups. The haematocrit value decreased with 

FO/EPO supplementation compared to baseline and changes from baseline were 

significantly different between FO/EPO and placebo groups. Changes from baseline 

in haemoglobin levels showed a greater reduction with FO/EPO treatment compared 

to placebo.  

All observed changes in haematology and liver enzymes were minor and within the 

normal ranges. Incidence of liver enzymes and haematological parameters out of the 

laboratory’s reference range did not differ neither at baseline nor at week 8 between 

FO/EPO and placebo groups; within-group incidences did not differ between baseline 

and week 8 (Table  3.17). 

 

 

 

 

 

 

 

 



  FO/EPO Study 61 

Table  3.17. Liver enzymes and haematological parameters out of reference range, FO/EPO study 
(number). 

   FO/EPO (n = 19)  Placebo (n = 20) 

 Reference range*  Week 0 Week 8  Week 0 Week 8 

GGT (U/l) < 38  0 0  0 0 

ALT (U/l) < 35  2 1  1 0 

AST (U/l) < 33  0 1  2 0 

CHE (kU/l) 5.0 - 13.3  3 3  7 5 

Blood cell count        

     Leucocytes (G/l) 4.0 - 11.0  0 0  0 0 

     Erythrocytes (T/l) 4.1 - 5.1  1 2  1 1 

     Haemoglobin (g/dl) 12.0 - 15.5  1 0  0 1 

     Haematocrit (%) 36.0 - 46.0  1 0  0 1 

     MCV (fl) 80.0 - 96.0  1 3  2 2 

     MCH (pg) 28.0 - 33.0  2 3  0 1 

     MCHC (%) 32.0 - 36.0  3 0  1 2 

     Platelets (G/l) 150 - 400  0 1  0 1 

GGT, gamma-glutamyl transpeptidase; ALT, alanine aminotransferase; AST, aspartate aminotrans-
ferase; CHE, cholinesterase; MCV, mean cellular volume; MCH, mean cellular haemoglobin; MCHC, 
mean cellular haemoglobin concentration; G = Giga, 109; T = Tera, 1012. 

*  Reference range as specified from the clinical chemistry laboratories of the University of Munich   
   hospital. 
 

 

3.2.6 Relative fatty acid composition 

The GLM could not be performed for the following fatty acids, sums and ratios, 

because the data could not successfully be transformed into a normal distribution: 

EPA in TL and PL, DHA in PL and TG, Σn-6 FA in PL, Σn-3 FA in CE, Σn-6 LCPUFA 

in PL, and Σn-6/Σn-3 LCPUFA in TL (Table  3.18). 

The GLM for repeated measures (weeks 4, 6, and 8) corrected for fatty acid 

percentages at baseline (week 0) revealed significant increasing effects of FO/EPO 

treatment compared to placebo on the following fatty acids, sums and ratios: GLA, 

DGLA, AA (in plasma TG), adrenic acid (in plasma TG), EPA, DHA, GLA + DGLA, 

Σn-3 FA, Σn-6 LCPUFA, and Σn-3 LCPUFA (Table  3.18, ↑↑↑↑). 

The GLM for repeated measures corrected for fatty acid percentages at baseline 

indicated significant decreasing effects of FO/EPO treatment compared to placebo on 

the following fatty acids, sums and ratios: Mead acid (MA), LA (in plasma PL), 

adrenic acid (in plasma PL), n-6 DPA (in plasma TL, PL, and CE), ALA, n-3 DPA (in 

plasma PL), Σn-6/Σn-3 FA, and Σn-6/Σn-3 LCPUFA (↓↓↓↓). 
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The GLM for repeated measures indicated no different effects of FO/EPO and 

placebo treatment on LA (in plasma TL, CE, and TG), AA (in plasma TL, PL, and 

CE), adrenic acid (plasma TL), n-6 DPA (in plasma TG), n-3 DPA (in plasma TL and 

TG), and Σn-6 FA. 

 

Table  3.18. Effects of treatment on fatty acid proportions, sums, and ratios, FO/EPO study.* 

 Total lipids Phospholipids Cholesterol esters Triglycerides 

20:3n-9  ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ 

18:2n-6 = ↓↓↓↓ = = 

18:3n-6  ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ 

20:3n-6 ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ 

20:4n-6  = = = ↑↑↑↑ 

22:4n-6 = ↓↓↓↓ n.d. ↑↑↑↑ 

22:5n-6 ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ = 

18:3n-3 ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ 

20:5n-3 NN NN ↑↑↑↑ ↑↑↑↑ 

22:5n-3 = ↓↓↓↓ n.d. = 

22:6n-3 ↑↑↑↑ NN ↑↑↑↑ NN 

GLA + DGLA ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ 

∑n-6 FA = NN = = 

∑n-3 FA ↑↑↑↑ ↑↑↑↑ NN ↑↑↑↑ 

∑n-6 LCPUFA ↑↑↑↑ NN ↑↑↑↑ ↑↑↑↑ 

∑n-3 LCPUFA ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ ↑↑↑↑ 

∑n-6/∑n-3 FA ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ 

∑n-6/∑n-3 LCPUFA NN ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ 

GLA, gamma-linolenic acid; DGLA, dihomo-gamma-linolenic acid; ∑n-6 FA, sum of n-6 fatty acids; ∑n-
3 FA, sum of n-3 fatty acids; ∑n-6 LCPUFA, sum of all long-chain n-6 fatty acids; ∑n-3 LCPUFA, sum 
of all long-chain n-3 LCPUFA; ∑n-6/∑n-3 FA, ratio of n-6 to n-3 fatty acids; ∑n-6/∑n-3 LCPUFA, ratio 
of n-6 to n-3 long-chain polyunsaturated fatty acids; n.d., not detected; NN, non-normally distributed 
(no GLM could be performed); ↓↓↓↓, decrease compared to placebo; ↑↑↑↑, increase compared to placebo; =, 
same effect as placebo. 

*  Indicated by GLM. 

 
 

The effects of treatment were further described by comparing data from weeks 4, 6, 

and 8 with baseline data within each group and by determining differences among 

treatment groups at each time point (Table  8.24 - Table  8.31 and Figure  8.3 - Figure 

 8.7). The obtained significances are summarised for fatty acids of main interest in 

Table  3.19. 
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Table  3.19. Plasma fatty acids (wt%): differences from baseline at weeks 4, 6, and 8 within each 
group or differences between treatments at the same time point, FO/EPO study. 

  FO/EPO  Placebo  FO/EPO 

  versus baseline  versus baseline  versus placebo 

  Week 4 Week 6 Week 8  Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

GLA TL ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa aa aaa 

 PL ↑↑↑↑ ns ↑↑↑↑  ns ns ns  ns aaa ns aaa 

 CE ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa aa aaa 

 TG ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa a a 

              

DGLA  TL ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  a aa aa aaa 

 PL ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  a aa aa aaa 

 CE ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  a aa aa aaa 

 TG ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa aaa aaa 

              

AA TL ns ns ns  ns ↓↓↓↓ ↓↓↓↓  ns ns ns ns 

 PL ns ns ns  ns ↓↓↓↓ ↓↓↓↓  ns ns ns ns 

 CE ns ns ns  ns ns ns  ns ns ns ns 

 TG ↑↑↑↑ ns ns  ns ns ns  a ns ns ns 

              

EPA TL ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ↑↑↑↑  ns aa aa a 

 PL ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aa aa a 

 CE ns ns ns  ns ns ↑↑↑↑  a aa aaa a 

 TG ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aa aa aa 

              

DHA TL ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa aaa aaa 

 PL ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa aaa aaa 

 CE ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa aaa aaa 

 TG ↑↑↑↑ ↑↑↑↑ ↑↑↑↑  ns ns ns  ns aaa aaa aaa 

AA, arachidonic acid; CE, cholesterol ester; DGLA, dihomo-gamma-linolenic acid; DHA, docosahexaenoic acid; EPA, 
eicosapentaenoic acid; GLA, gamma-linolenic acid; ns, non-significant; PL, phospholipids, TG, triglycerides; TL, total lipids. 

↑↑↑↑   Significantly higher than baseline value (Bonferroni-Holm adjusted significances).   
↓↓↓↓   Significantly lower than baseline value (Bonferroni-Holm adjusted significances). 
a, aa and aaa   Higher than placebo value at the same time point with significances p < 0.05, p < 0.01 and p < 0.001,    
                         respectively. 

 

3.2.6.1 Plasma total lipids 

Baseline values of DGLA, ALA, Σn-3 FA, and Σn-6/Σn-3 FA were significantly 

different between FO/EPO and placebo groups; the other fatty acids, sums and ratios 

of interest differed not significantly between the two groups at study entry (Table 

 3.19, Table  8.24, Table  8.25, and Figure  8.3 - Figure  8.7).  

Most investigated fatty acids, their sums and ratios in plasma TL were not 

significantly affected by placebo treatment. Exceptions were ALA, EPA, AA, adrenic 

acid, n-6 DPA, Σn-6 LCPUFA, and Σn-6/Σn-3 LCPUFA, which were significantly 

higher (ALA, EPA) or lower (AA, adrenic acid, n-6 DPA, Σn-6 LCPUFA, Σn-6/Σn-3 

LCPUFA) at week 4, 6, and/or 8 than at baseline.  
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In the FO/EPO group, the following fatty acids, sums and ratios decreased 

significantly during intervention (week 4, 6 and/or 8) compared to baseline: Mead 

acid, adrenic acid, n-6 DPA, ALA as well as the ratios Σn-6/Σn-3 FA and Σn-6/Σn-3 

LCPUFA. Significant increases compared to baseline were observed for GLA, DGLA, 

EPA, DHA, GLA + DGLA, Σn-3 FA, and Σn-3 LCPUFA throughout FO/EPO 

supplementation. The sum of all n-6 LCPUFA was not affected by FO/EPO intake. 

Proportions of GLA, DGLA, EPA, DHA, GLA + DGLA, Σn-3 FA, and Σn-3 LCPUFA 

were significantly higher at weeks 4, 6, and 8 in the FO/EPO than in the placebo 

group. Mead acid, adrenic acid (only at week 6) as well as the ratios of Σn-6/Σn-3 FA 

and Σn-6/Σn-3 LCPUFA were significantly lower throughout intervention period with 

FO/EPO than with placebo supplementation. 

 

3.2.6.2 Plasma phospholipids 

Baseline values of DGLA, ALA, and GLA + DGLA were significantly higher in the 

FO/EPO than in the placebo group; the other fatty acids, sums and ratios of interest 

differed not significantly between the two groups at study entry (Table  3.19, Table 

 8.26, Table  8.27, and Figure  8.3 - Figure  8.7).  

Most investigated fatty acids, their sums and ratios in plasma PL were not 

significantly affected by placebo treatment. Exceptions were AA, adrenic acid, n-6 

DPA, and Σn-6 LCPUFA, which were significantly lower at weeks 4, 6, and/or 8 

compared to baseline values.  

In the FO/EPO group, the following fatty acids, sums and ratios were significantly 

lower at ≥ 1 time point during intervention compared to baseline: Mead acid, adrenic 

acid, n-6 DPA, ALA, n-3 DPA, Σn-6 FA as well as the ratios Σn-6/Σn-3 FA and Σn-

6/Σn-3 LCPUFA. Increases compared to baseline were observed for GLA (not 

significant at week 6), DGLA, EPA, DHA, GLA + DGLA, Σn-3 FA, and Σn-3 LCPUFA 

throughout FO/EPO supplementation. The sum of all n-6 LCPUFA was not affected 

by FO/EPO intake. 

The proportions of GLA (not significant at week 6), DGLA, EPA, DHA, GLA + DGLA, 

Σn-3 FA, and Σn-3 LCPUFA were significantly higher at weeks 4, 6, and 8 in the 

FO/EPO than in the placebo group. With FO/EPO treatment, Mead acid, LA, adrenic 

acid, n-6 DPA, ALA, Σn-6 FA as well as the ratios Σn-6/Σn-3 FA and Σn-6/Σn-3 
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LCPUFA were significantly lower at ≥ 1 time point of the intervention period 

compared to placebo. 

 

3.2.6.3 Plasma cholesterol esters 

Baseline values of DGLA, ALA, EPA, Σn-3 FA, Σn-3 LCPUFA, and Σn-6/Σn-3 FA 

were significantly different between FO/EPO and placebo groups; the other fatty 

acids, sums and ratios of interest differed not significantly between the two groups at 

study entry (Table  3.19, Table  8.28, Table  8.29, and Figure  8.3 - Figure  8.7).  

Most investigated fatty acids, their sums and ratios in plasma CE were not 

significantly affected by placebo treatment; exceptions were n-6 DPA, EPA, and Σn-

6/Σn-3 LCPUFA, which were significantly higher (EPA) or lower (n-6 DPA, Σn-6/Σn-3 

LCPUFA) at week 8 than at baseline.  

In the FO/EPO group, the following fatty acids, sums and ratios were significantly 

lower at ≥ 1 time point during intervention compared to baseline: Mead acid, n-6 

DPA, ALA as well as the ratios Σn-6/Σn-3 FA and Σn-6/Σn-3 LCPUFA. Significant 

increases compared to baseline were observed for GLA, DGLA, DHA, GLA + DGLA, 

Σn-3 FA, and Σn-3 LCPUFA throughout FO/EPO supplementation. The sum of all n-6 

LCPUFA was not affected by FO/EPO intake. 

The proportions of GLA, DGLA, EPA, DHA, GLA + DGLA, Σn-3 FA, and Σn-3 

LCPUFA were significantly higher at weeks 4, 6, and 8 in the FO/EPO than in the 

placebo group. With FO/EPO treatment, the ratios Σn-6/Σn-3 FA and Σn-6/Σn-3 

LCPUFA were significantly lower throughout intervention compared to placebo. 

 

3.2.6.4 Plasma triglycerides 

Baseline values of ALA, Σn-3 FA, Σn-3 LCPUFA and Σn-6/Σn-3 FA were significantly 

different between FO/EPO and placebo groups; the other fatty acids, sums and ratios 

of interest differed not significantly between the two groups at study entry (Table 

 8.30, Table  8.31, and Figure  8.3 - Figure  8.7).  

Most investigated fatty acids, their sums and ratios in plasma TG were not 

significantly affected by placebo treatment; exceptions were ALA levels, Σn-3 FA, Σn-

6/Σn-3 FA, Σn-6/Σn-3 LCPUFA, which were significantly higher (ALA, Σn-3 FA) or 



Results 66 

lower (Σn-6/Σn-3 FA, Σn-6/Σn-3 LCPUFA) at ≥ 1 time points during intervention 

compared to baseline.  

In the FO/EPO group, the following fatty acids and ratios were significantly lower 

throughout intervention compared to baseline: Mead acid as well as the ratios Σn-

6/Σn-3 FA and Σn-6/Σn-3 LCPUFA. Significant increases compared to baseline were 

observed for LA, GLA, DGLA, AA, EPA, DHA, GLA + DGLA, Σn-6 FA, Σn-3 FA, and 

Σn-3 LCPUFA at ≥ 1 time points of FO/EPO supplementation (Table  3.19). The sum 

of all n-6 LCPUFA was not affected by FO/EPO intake. 

The proportions of GLA, DGLA, AA, EPA, n-3 DPA, DHA, GLA + DGLA, Σn-3 FA, Σn-

6 LCPUFA, and Σn-3 LCPUFA were significantly higher at ≥ 1 time point during 

intervention in the FO/EPO than in the placebo group. With FO/EPO treatment, Mead 

acid (only significant at week 6) as well as the ratios Σn-6/Σn-3 FA and Σn-6/Σn-3 

LCPUFA were significantly lower during intervention compared to placebo. 

 

3.2.7 Relative changes in fatty acid composition 

Relative changes from baseline in GLA, DGLA, AA, EPA, and DHA levels (wt%/wt%) 

are shown in Figure  8.8 - Figure  8.12. For GLA, percentage changes from baseline 

were significantly different between FO/EPO and placebo groups at weeks 4 and 8 in 

all investigated plasma lipid domains and additionally at week 6 in plasma TG (Figure 

 8.8). In the placebo group, GLA changes from baseline at weeks 4, 6, and 8 were 

between -25.7% and 6.6% in all lipid domains (medians). With FO/EPO 

supplementation, GLA increased in plasma TL by 34.6 – 63.0%, in PL by 16.5 – 

42.5%, in CE by 25.8 – 56.8%, and in TG by 27.4 – 49.7%.  

For DGLA, percentage changes from baseline were significantly different between 

the two intervention groups at week 8 in plasma PL and at weeks 4, 6 (in TL: p = 

0.050), and 8 in plasma TL, CE, and TG (Figure  8.9). The proportion of DGLA 

changed negligible with placebo treatment: median changes were between –7.1% 

and 3.8% in all investigated lipid domains. FO/EPO supplementation increased 

DGLA in plasma TL by 9.5 – 13.3%, in plasma PL by 12.2 – 14.8%, in plasma CE by 

14.0 – 19.9%, and in plasma TG by 29.3 – 33.3%.  

AA changes from baseline at weeks 4, 6, and 8 did not differ between FO/EPO and 

placebo groups in plasma TL, PL, and CE (median changes were between -8.7% 

and 5.9%), but were higher in plasma TG at all time points with FO/EPO 

supplementation than with placebo (Figure  8.10). The active treatment increased AA 
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in plasma TG by 14.8 – 17.3%, whereas median changes were between –7.6% and 

–5.0% with placebo intake.  

Percentage changes from baseline in EPA levels were not significantly different 

between the two groups at weeks 4, 6 or 8 (Figure  8.11). EPA levels increased in 

plasma TL by 5.9 – 21.6% with placebo and by 32.7 – 44.7% with FO/EPO 

supplementation. In plasma PL, median increases were between 5.6 – 23.7% with 

placebo and between 30.3 – 38.3% with FO/EPO treatment. Placebo 

supplementation increased EPA in plasma CE by 7.5 – 21.8% as it did FO/EPO 

treatment by 28.6 – 42.9%. In plasma TG, median EPA increases were 15.2 - 29.4% 

with placebo and 47.0 – 60.7% with the active treatment.  

DHA changes from baseline were significantly higher throughout intervention in the 

FO/EPO than in the placebo group (Figure  8.12). Placebo treatment changed DHA 

levels in plasma TL, PL, and CE by –2.2 to 4.0%, and in plasma TG by 16.8 – 25.2%. 

FO/EPO increased DHA levels in plasma TL by 57.3 – 66.2%, in plasma PL by 45.5 

– 60.3%, in plasma CE by 52.4 – 67.0%, and in plasma TG by 130.8 – 155.8%. 

 
3.2.8 Correlations between relative fatty acid concentrations 

Spearman-Rho correlation coefficients were computed for all subjects (n = 39/40) 

between relative fatty acid levels (wt%) of the various lipid domains. Proportions of 

LA, GLA, ALA, DGLA, AA, EPA, and DHA were significantly correlated between TL, 

CE, PL, and TG, with the exception of LA levels in plasma TG at week 4, which were 

not correlated with LA in TL, PL, or CE (Table  8.32).  

The proportions of LA correlated strongly between TL, CE, and PL at all time points (r 

≥ 0.785). GLA levels showed the strongest correlations between TL and CE (r ≥ 

0.936 at all time points). Correlation coefficients for ALA were ≥ 0.760 between TL – 

CE, TL – PL, TL - TG, and CE - PL. Proportions of DGLA were in general highly 

correlated between TL – CE (r ≥ 0.887), TL – PL (r ≥ 0.954), and CE – PL (r ≥ 0.860). 

AA levels showed strong correlations between TL – CE (r ≥ 0.857), TL – PL (r ≥ 

0.875), and CE – PL (r ≥ 0.839). Correlation coefficients between EPA levels in TL, 

CE or PL were ≥ 0.887 at all time points. The proportions of DHA were highly 

correlated between TL – CE (r ≥ 0.921), TL – PL (r ≥ 0.951), and CE – PL (r ≥ 0.927) 

at all time points. 

 



Results 68 

3.2.9 Correlations between percentage fatty acid changes 

Spearman-Rho correlations for the percentage fatty acid changes from baseline 

(wt%/wt%) during FO/EPO supplementation in plasma TL and lipid fractions are 

given in Table  8.33. Percentage fatty acid changes from baseline (calculated for 

GLA, DGLA, AA, EPA, and DHA) at weeks 4, 6, and 8 were significantly correlated 

between TL – CE, TL – PL, and CE - PL. The correlations with fatty acid changes in 

plasma TG were in general not as strong as between the other lipid fractions or not 

significant. Correlations for DGLA, AA, and DHA percentage changes were highest 

between plasma TL and PL (r > 0.81), whereas GLA changes correlated best 

between TL and CE (r > 0.87). Correlation coefficients for EPA changes were 

comparable high between TL – CE and TL – PL (r > 0.87 and r > 0.88 respectively).  
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4 Discussion 

4.1 Method development 

4.1.1 Fatty acids in RBC total lipids 

The described method enabled the analysis of relative concentrations of fatty acids in 

RBC total lipids with satisfactory reproducibility. Even though each lipid fraction 

revealed a distinct and characteristic fatty acid pattern, RBC total lipid fatty acids 

were significantly correlated with fatty acids from RBC PC, RBC PE, and plasma PL. 

In agreement, also Vlaardingerbroek et al. [119] and Harris & von Schacky [33] 

reported strong correlations between RBC and plasma PL LCPUFA. In contrast, a 

study by Leichsenring et al. [120] did not find any relation of RBC DHA (PE, PC, and 

total lipids) values to DHA levels in plasma PL, which might be due to a greater 

heterogeneity of their subjects with respect to age and diet.  

After 8-week supplementation, correlation coefficients between omega-3 index and 

RBC PE, RBC PC, and plasma PL EPA + DHA were higher in the placebo than in the 

DHA group. Furthermore, correlations between omega-3 index from weeks 0 and 8 

were stronger for the placebo group. These findings may indicate that EPA + DHA 

contents in plasma and RBC lipid fractions are not in a steady state after 8 weeks of 

DHA supplementation. Another explanation may be that there are individual 

differences in digestion of the supplemented fatty acids, their absorption, beta-

oxidation or preferential incorporation into the various lipid fractions. 

Our study shows that RBC total lipids are a good biomarker for dietary n-3 LCPUFA 

intake as they reflect increased DHA intake. Furthermore, the fatty acid composition 

and the relative fatty acid changes of RBC total lipids correlate well with that in other 

biomarkers of n-3 fatty acid intake (plasma phospholipids, RBC PC and PE), and the 

analytical procedure required for RBC total fatty acid analyses is less demanding 

than the analyses of fatty acids in isolated RBC lipid fractions. Thus, RBC total lipid 

fatty acid analyses can be used instead of RBC lipid fraction analyses for assessing 

PUFA status. 
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4.1.2 Vitamin A and E in plasma 

The used method enabled the analysis of absolute concentrations of retinol and 

alpha-tocopherol in plasma with good reproducibility. The performed recovery tests 

from added standard substances to plasma were satisfactory, but accuracy of alpha-

tocopherol determination was not acceptable for high levels (bias –13%). One reason 

for the bad accuracy of the method could be that the chosen internal standard 

substance retinyl acetate was not optimal: first, its retention time was so close to that 

of retinol that the peaks could not be completely separated with the mobile phase 

used (Figure  2.4), and furthermore, the extraction behaviour of retinyl acetate (a 

vitamin A analogue) might be comparable with that of retinol, but might rather differ 

from that of alpha-tocopherol. Other explanations might be that the used precipitation 

reagent was not optimal, so that vitamins were partly enclosed in the precipitate, or 

that there were imprecisions when preparing the standard dilutions for the calibration 

curve. 

To improve the method, we tried the synthetic vitamin E analogue tocol as an internal 

standard: its peak can be well separated from the tocopherols (Figure  4.1) and its 

extraction behaviour might be more comparable with that of alpha-tocopherol. To 

optimise the extraction procedure, we used ethanol/BHT (0.0625%) for protein 

precipitation: Göbel et al. [113] tested four precipitation reagents (ethanol, acid 

ethanol, isopropanol and acid isopropanol) for their suitability for increasing vitamin 

yields in pool plasma. While obtained retinol levels showed no differences, highest 

yields of tocopherol were achieved with ethanol used as precipitation reagent. 

Because Göbel et al. reported greater precision when three extraction steps were 

employed, we enhanced the number of extraction steps from two to three and placed 

additionally the tubes after centrifugation on ice to improve phase separation.  

We also changed the preparation of the standard curves: instead of doing a standard 

mixture (containing retinol and alpha-tocopherol) as stock standard and preparing 

from it 7 standard dilutions, we did separate stock standards for each vitamin (equals 

the highest standard of the standard curve). The advantages were as follows: two 

pipette steps and one drying step less per vitamin means less imprecision; 

furthermore, it was now possible to determine the exact concentrations of the two 

stock standards photometrically, and to use these stock standards (with known 

concentrations) directly for preparation of the other 6 standard dilutions.  
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The improved method for quantification of vitamin A and E in plasma showed good 

reproducibilities: intra-assay CV (n = 8) were 1.0% for retinol and 0.9% for alpha-

tocopherol; inter-assay CV (n = 7 during 3 weeks) were 1.5% for retinol and 1.4% for 

alpha-tocopherol. Recoveries from added standard substances to plasma (n = 4) 

were 96% for vitamin A and 102% for vitamin E. The accuracy of the vitamin A and E 

measurements was verified with lyophilised standard reference material 968c 

obtained from the US National Institute of Standards and Technology (level 1, n = 3). 

The results for retinol and alpha-tocopherol were in good agreement with the 

approved values (bias: +1% for retinol and +4% for alpha-tocopherol). 

 

 

 
Figure  4.1. Chromatogram of a standard mixture (containing retinol, tocopherols, and carotenes) with 
tocol as internal standard (IS) using UV-Vis detection, DHAVEG study. 
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4.2 DHAVEG study 

A daily intake of 1.05 g DHA (as triglyceride) from Ulkenia oil markedly increased the 

DHA content of plasma and RBC phospholipids. Previous studies reported a two to 

threefold increase of the DHA content of serum and platelet phospholipids after 

supplementation with 0.75 g, 1.50 g or 1.62 g DHA/d for 6 wk [44,57,121] and a rise 

of DHA levels in plasma PL by 76% and in RBC phosphoglycerides by 58% 

respectively, after 3 months of supplementation with 0.7 g DHA/d [56]. The observed 

increase in EPA in RBC and plasma lipids after DHA supplementation in our study 

appears to reflect retroconversion of DHA, as suggested also by other investigators 

[44,45,54,121]. We found a decrease in the n-6 LCPUFA 20:3n-6, 20:4n-6, and 

22:4n-6, accompanied by a decrease in n-3 DPA, consistent with other findings 

[44,45,57,121]. In contrast, n-3 DPA shows considerable enrichment in serum and 

platelet phospholipids when fish or seal oils (providing EPA, DHA and some n-3 

DPA) are fed [122,123]. Thus, dietary DHA and possibly also n-6 DPA appear to 

partially replace n-3 DPA in circulating and cellular phospholipids in human subjects. 

In contrast to other studies using DHA-rich oils from an algal source, which reported 

significant decreases in n-6 DPA [44,45,121], we observed an increase of n-6 DPA in 

plasma and RBC phospholipids, which is explained by the significant n-6 DPA 

content in the tested oil derived from microalgae Ulkenia sp. (9.7 wt% or 0.22 g/d). 

Sanders et al. [124] also reported an increase of n-6 DPA and DHA levels in plasma 

and RBC lipids after 4-week supplementation with an algal triglyceride providing 1.5 g 

DHA and 0.6 g n-6 DPA per day. 

The omega-3 index rose significantly from 4.8 ± 1.2 wt% to 8.4 ± 1.3 wt% (mean ± 

SD) in the DHA supplemented group. A similar increase (from 4.7 to 9.9 wt%, means) 

of the omega-3 index was reported by Harris & von Schacky [33] after EPA and DHA 

supplementation (1 g/d) for 5 months. At baseline, no one of our subjects reached a 

desirable omega-3 index ≥ 8 wt%, although more than 50% of the subjects reached 

or exceeded recommended intakes for ALA (0.5% of energy) and 26% had a dietary 

LA:ALA ratio below 5:1 as considered desirable [17]. These results suggest that the 

in vivo conversion of ALA to n-3 LCPUFA is not adequate to reach a desirable EPA + 

DHA status even with adequate ALA intake and low dietary LA:ALA ratio. Thus, a 

dietary intake of pre-formed n-3 LCPUFA seems to be necessary to enhance the 

omega-3 index. After 8-week supplementation with microalgae oil, 69% of the 
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subjects had an omega-3 index ≥ 8%, while no subject of the placebo group showed 

an omega-3 index above 8%. 

Relative changes of n-6 DPA, EPA and DHA were greater in plasma PL and RBC PC 

than in RBC total lipids or RBC PE, with strong correlations between RBC PC and 

plasma PL fatty acid changes. RBC PE and plasma PL fatty acid changes were less 

closely related. Plasma PL fatty acids change relatively fast and reflect dietary 

intakes over the past few days [125]. RBC PL are asymmetrically distributed between 

the outer and the inner layer of the membrane [126]: the major part of PE is located 

at the inner layer, whereas PC occurs predominantly on the outer layer and can 

exchange more easily with plasma lipids. Thus, PC reflects more directly the fatty 

acid composition of PL of the plasma [127], whereas the fatty acid composition of PE 

appears to be more independent from the plasma fatty acids and depends on 

selective incorporation of PUFA and LCPUFA into PE [128].  

Relative changes in RBC total lipid n-6 DPA, EPA and DHA were lower than their 

average changes in RBC PE and RBC PC, indicating that these fatty acids were 

preferentially incorporated into PE and PC, which comprise about 23% and 22% of 

total membrane lipids (modified from [129], calculated without cholesterol), but less in 

the other lipids of the RBC membrane like sphingomyeline, phosphatidylserine, 

glycolipids and other lipids, comprising about 23%, 9%, 4%, and 18% of total 

membrane lipids respectively. 

Dietary intake of EPA and DHA combined with the background diet was as expected 

very low in these vegetarian subjects (23 mg/d in both groups, median). The 

observed values are in agreement with a study by Conquer & Holub, who reported 

that vegetarians consume minimal EPA (< 5 mg/d) and varying amounts of DHA 

depending on egg consumption (< 33 mg/d) [20]. For comparison, the dietary intake 

of EPA and DHA combined in the German population has recently been estimated to 

be 141 mg/d among women and 186 mg/d among men (medians) [11]. Reported 

energy intake in the DHA group was significantly lower during intervention compared 

to baseline (7.7 MJ vs. 8.8 MJ, medians), but remained unchanged in the placebo 

group. We observed no changes in body weight over the 8-week study period in the 

DHA group, but a slight weight gain in the placebo group (+ 0.5 kg). An explanation 

for the reduced energy intake without weight loss in the DHA group and the weight 

gain without (recorded) increased energy intake in the placebo group could be that 

energy requirements decreased in both groups during the intervention period, e.g. 
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because of less physical activity related to seasonal influences. The participation in a 

nutritional study and the intake of oil-containing capsules might have caused larger 

reductions in dietary intakes and/or a greater “underreporting” of consumed foods 

than before the intervention in both groups at the days of the dietary record. Since we 

observed a trend towards lower energy intakes in the DHA group relative to placebo, 

the tested microalgae oil might have had a different effect on appetite or regulation of 

food intake than olive oil in the vegetarian subjects studied. 

In the present study, heart rate and diastolic blood pressure were not affected by 

DHA supplementation. Similar results were shown previously with DHA intakes of 0.7 

g and 3.0 g/d [48,57]. Mori et al. [130] reported a decrease of systolic and diastolic 

BP after DHA supplementation in men with otherwise normal BP, whereas 

Grimsgaard et al. [131] did not detect a reduction of BP in comparable subjects. Both 

groups observed a significant influence of DHA on heart rate in healthy men. Very 

clear effects in respect to n-3 LCPUFA on BP control have been observed in 

hypertensive patients [132-135], but these investigators used extremely large 

amounts of omega-3 fatty acids ranging from 3.4 to 15 g per day. In the present 

study, systolic and diastolic BP at baseline were very low (DHA group: 100/65 mm 

Hg; placebo group: 95/70 mm Hg, medians); therefore, a further decrease of BP 

could not be expected and would also be considered undesirable. The observed 

increase of systolic BP in the placebo group and the same trend in the DHA group 

may be caused by a systematic change in BP measurement or by environmental 

influences.  

Sanders & Hinds [136] reported that plasma alpha-tocopherol concentrations fell 

below the normal range during a period of fish oil supplementation (2.1 g DHA and 

0.8 g EPA per day), suggesting that fish oil increases the requirement for 

antioxidants. No significant changes in plasma alpha-tocopherol were evident 

following fish oil treatment (3 g EPA + DHA per day) providing 21 mg/d total 

tocopherol of which 16 mg was alpha-tocopherol [137]. In the present study, the olive 

oil and microalgae oil capsules provided a total of 2.2-2.3 mg mixed natural 

tocopherols per day. No changes of alpha-tocopherol levels and lipid-adjusted alpha-

tocopherol concentrations were observed after intervention in both groups, 

suggesting that 2.3 mg mixed natural tocopherols are sufficient to maintain alpha-

tocopherol levels at a DHA intake of ∼1 g/d. 
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For safety and tolerance evaluation, side effects were reported and several 

haematology and biochemistry parameters were analysed. Self-reported side effects 

were equally distributed between DHA and placebo group. We observed significant 

changes in some blood parameters after DHA supplementation within the normal 

ranges (e.g. alanine aminotransferase and cholinesterase levels), which are 

presumed to be of no clinical relevance. Incidence of liver and cardiac enzymes out 

of the laboratory’s reference range did not differ neither at baseline nor at week 8 

between DHA and placebo groups; within-group incidences did not differ between 

baseline and week 8. Slight increases in the serum activity of liver enzymes during n-

3 LCPUFA supplementation has been noted repeatedly [138,139]; the mechanisms 

remain unclear.  

With the exception of von Willebrand factor (vWF), incidence of haemostatic factors 

out of the laboratory’s reference range did not differ neither at baseline nor at week 8 

between DHA and placebo groups; within-group incidences did not differ between 

baseline and week 8. Concerning vWF, we observed values out of reference range 

less often after DHA supplementation than at baseline (1 vs. 12 subjects), and 

incidence of such values was lower in the DHA than in the placebo group at week 8 

(1 vs. 11 subjects). Other studies supplementing n-3 LCPUFA observed decreased 

[140,141] or unchanged [122,124,142,143] vWF levels. Plasma vWF levels have 

been proposed as risk factor for CHD and stroke, especially in high-risk populations 

with previous cardiovascular events, diabetes or old age [144]. Our results might 

indicate a normalisation of prior abnormal vWF levels with DHA supplementation. 

Further research is needed to clarify the possible beneficial effects of DHA on 

haemostasis and the impact on CHD or stroke risk in normolipidaemic subjects.  

Our results show that a supplementation with ∼1 g DHA/d for 8 weeks significantly 

lowered TG in normolipidaemic (basal TG < 2.5 mM) subjects. Previous studies with 

single-cell oil sources of DHA reported a significant reduction in TG concentrations 

and an increase in HDL cholesterol levels with DHA intakes in the range of 1.6 - 2.4 

g/d in normolipidaemic volunteers [44,49,55], whereas other studies with DHA 

intakes of 0.7 g/d [56] and 0.75 - 1.5 g/d [57] did not find any significant effects on 

plasma TG and lipoproteins. In persons with combined hyperlipidaemia, significant 

reductions in TG and increases in LDL and HDL cholesterol concentrations were 

observed after supplementation with 1.25 g or 2.5 g DHA per day [46]. N-3 LCPUFA 

lower plasma TG concentrations by several mechanisms such as increased hepatic 
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fatty acid oxidation, inhibition of fatty acid and TG synthesis and depressed assembly 

and secretion of VLDL TG [51]. The TG-lowering effect of DHA is greater in subjects 

with higher initial TG concentrations [50]. Considering the normolipidaemic subjects 

in our study, it also seems that DHA lowers plasma TG only in subjects with higher 

basal TG (> ∼1.2 mmol/l). 

HDL cholesterol concentrations increased after 8 weeks of DHA supplementation. 

Plasma TG and HDL cholesterol of all subjects at baseline were slightly inversely 

correlated (r = -0.207, p = 0.033), and absolute changes in TG correlated inversely 

with HDL concentrations after DHA supplementation (r = -0.308, p = 0.025). The 

mechanisms by which DHA supplementation increases HDL cholesterol are not 

known, but may be related to alterations in lipid transfer protein activity [145]. A 

decrease of cholesteryl ester transfer protein (CETP) activity would reduce the 

exchange from HDL cholesterol esters and VLDL triglycerides, resulting in larger, 

more cholesterol-rich HDL cholesterol particles. Indeed, other studies applying 

purified DHA (3.6 g/d and 4.9 g/d respectively) observed a decrease in the 

apoA1:HDL-cholesterol ratio [47,54]. These findings suggest an effect of DHA 

supplementation on HDL particle size with a shift towards the larger, more 

cholesterol-rich HDL-2 particle. Other investigators observed an increased HDL-

2:HDL-3 cholesterol ratio [52,55] or increased HDL-2 cholesterol [53] after DHA 

supplementation.  

In the present study, total and LDL cholesterol levels increased after DHA intake. 

Other studies did not detect any significant changes in total cholesterol after 

supplementation with 0.75 - 4.9 g DHA/d [47,48,52,54,57] or increased total 

cholesterol levels after supplementation with an algal triglyceride providing 1.5 g DHA 

and 0.6 g n-6 DPA per day [124]. Inconsistent effects of DHA on LDL cholesterol 

levels were reported in previous studies: some investigators observed LDL 

cholesterol-raising effects of DHA [46,53,56,124], whereas others found no effects 

[44,47-49,52,54,57]. The repeatedly observed increase in plasma LDL cholesterol 

after DHA / fish oil supplementation must be due to either decreased clearance or 

increased production of LDL. The limited amount of TG available for packaging into 

VLDL after supplementation with n-3 LCPUFA could result in smaller VLDL particles 

that contain less TG. Small VLDL are more readily converted to LDL, which may 

cause increased LDL cholesterol levels [43]. However, previous studies did not find 

increases in smaller VLDL subspecies with n-3 fatty acid supplementation [146,147]. 
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Lu et al. [147] suggested that n-3 fatty acids could enhance the conversion of VLDL 

to LDL via increased inherent susceptibility of VLDL particles to lipolysis and/or 

increased in vivo lipolytic activity.  

Decreased clearance of LDL might be due to decreases in LDL receptor binding 

activity or reduced LDL receptor expression. Animal experiments feeding fish oil with 

DHA to hamsters and primates showed decreased receptor-mediated clearance of 

LDL cholesterol [148,149]. Binding of LDL to the LDL receptor decreased because of 

an altered LDL structure and a reduced affinity of LDL for its receptor. Lindsey et al. 

[150] observed an in vitro depression of LDL receptor activity and expression in 

human hepatoma HepG2 cells after supplementation with 3.6 g EPA/d and 2.9 g 

DHA/d for only 2 weeks. Whether n-3 FA alter LDL receptor activity or expression in 

humans is not known, but LDL kinetic studies showed no decrease in fractional 

catabolic rate relative to a high saturated fat diet [151] or a vegetable diet [152], 

providing no evidence for a change in LDL receptor activity in humans. Further 

research is needed to clarify the reasons for the increase in LDL cholesterol with 

moderate intakes of DHA and the possible consequences for CHD risk in 

normolipidaemic subjects.  

Kinosian et al. [153,154] proposed that changes in total cholesterol:HDL cholesterol 

and LDL:HDL cholesterol ratios are better predictors of risk for CHD than changes in 

total or LDL cholesterol alone. The ratio of TG to HDL cholesterol is additionally 

considered a predictor of risk for myocardial infarction [155]. In our study, the total 

cholesterol:HDL cholesterol ratio as well as the LDL:HDL cholesterol remained 

unchanged in both intervention groups, but the TG:HDL cholesterol ratio was 

significantly lower after DHA supplementation. Stark & Holub [45] also reported a 

significant decrease of TG:HDL cholesterol after supplementation with 2.8 g DHA/d 

over 4 weeks in postmenopausal women. Decreased ratios of total:HDL cholesterol 

[44,47] and LDL:HDL cholesterol [44] or no changes in LDL:HDL or total:HDL 

cholesterol ratios [45,57] were observed with DHA supplementation in other studies. 

In conclusion, DHA-rich oil from microalgae Ulkenia sp. is well tolerated and can be 

considered a suitable vegetarian source of n-3 LCPUFA. Eight-week 

supplementation with this microalgae oil can achieve a desirable omega-3 index ≥ 

8% in subjects with low basal n-3 LCPUFA status. The DHA intake was associated 

with improvements in some CHD risk factors (plasma TG, TG:HDL cholesterol ratio, 
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vWF), but others, notably LDL cholesterol, worsened. Therefore, the overall effects of 

this treatment on CHD risk are unclear and should be further investigated. 
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4.3 FO/EPO study 

The objective of this pilot study was to investigate the effects of a fatty acid mixture 

(providing 419 mg DHA, 337 mg GLA, 72 mg EPA, and 14 mg AA as triglycerides per 

day) on plasma fatty acid composition in healthy, non-pregnant women. Previous 

studies showed that supplementation with DHA alone increased plasma lipid 

concentrations of DHA and (in most studies) EPA, but decreased GLA, DGLA, and 

AA concentrations [44-48,53,54,56,57,121,156]. Supplementation with GLA on the 

other hand increased plasma concentrations of DGLA as well as (in most studies) AA 

and GLA levels, but did not enhance EPA and DHA levels [10,157-161]. We 

hypothesised that the tested n-3 LCPUFA/GLA mixture (FO/EPO) would result in an 

increase of plasma DHA, GLA, and DGLA levels without impairing AA status.  

This pilot study showed that 8-week supplementation with FO/EPO increased the 

proportions of GLA and its elongation product DGLA in plasma total lipids and in all 

measured plasma lipid fractions (CE, PL, and TG) compared to baseline, suggesting 

that some of the GLA is elongated before incorporation into PL, CE or TG. These 

observations are consistent with those of Laidlaw & Holub [123], who found 

significant increases from baseline in the proportions of GLA and DGLA (measured in 

plasma PL) in healthy women given EPA + DHA and GLA in a ratio of 1:1 or 1:0.5 for 

4 weeks; no GLA and DGLA changes could be observed in this study when the ratio 

of n-3 LCPUFA to GLA was 1:0.25. Miles et al. [10] reported increases in the 

proportion of GLA in plasma TG and CE, but not in PL, after supplementation with a 

n-3 LCPUFA/GLA mixture (1:0.625). Other studies supplementing 8 – 28 subjects 

with n-3 LCPUFA and GLA (in a ratio from 1:0.33 to 1:1.14) could not detect any 

changes in absolute GLA and DGLA levels of plasma total lipids or in relative 

concentrations of plasma PL [159,160,162,163]. The effects on GLA and DGLA 

might be influenced by the total GLA amount or by the ratio of n-3 LCPUFA to GLA in 

the used supplement: Laidlaw & Holub [123] observed increasing DGLA values with 

increasing amounts of GLA and constant EPA + DHA dosages. Concerning the 

changes in GLA levels, a reason for the different findings between the studies may 

be the lipid fraction studied: as demonstrated by several investigators [10,164], GLA 

is mainly found in CE and TG, but hardly in PL (< 0.1 wt%), so that changes would be 

more readily detected in these fractions than in plasma PL (depending also on the 

used method for fatty acid analyses and on the number of subjects). 
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In the present study, the proportion of AA increased in plasma TG, whereas AA 

levels did not change in plasma TL, CE, and PL. Other investigators reported 

decreased [123,162] or unchanged [10,159,163] plasma AA levels in TL or PL with n-

3 LCPUFA/GLA mixtures compared to baseline. The inconsistent effects on AA 

levels may relate on the one hand to the lipid fraction studied, on the other hand to 

differences in the GLA, AA, and EPA contents or in the EPA:GLA ratio of the used 

supplements: EPA and DGLA compete with AA for esterification into phospholipids 

and furthermore, the (n-3) fatty acid product of the ∆5-desaturase reaction, EPA, 

attenuates the conversion of (GLA-derived) DGLA to AA [159,165]. In the current 

study, the decrease of AA levels in plasma, which is often observed with n-3 

LCPUFA supplementation, could be prevented in all measured plasma lipid fractions 

as anticipated by adding GLA (and AA) to the supplement (n-3 LCPUFA:GLA = 1: 

∼0.7; EPA:GLA = 1: ∼4.7); thus, the GLA amount in the supplement seems to be 

adequate. 

FO/EPO supplementation increased the proportions of EPA and DHA in all 

investigated plasma lipid fractions (exception: EPA levels in plasma CE were not 

significantly changed from baseline values). Consistent with our results, other studies 

supplementing n-3 LCPUFA combined with GLA also observed increased levels of 

EPA and DHA in plasma TL and PL [10,123,159,160,162,163]. The observed 

increase in plasma EPA levels after FO/EPO supplementation in our study may relate 

to the EPA content of the supplement (∼72 mg/day) and/or could reflect 

retroconversion of DHA, as suggested also by other investigators [44,45,54,121].  

As we observed increases in ALA and EPA levels and decreases in long-chain n-6 

fatty acids (AA, adrenic acid, n-6 DPA) in some plasma lipid fractions with placebo 

treatment, the fatty acid composition of the placebo oil might not have been 

sufficiently comparable to the habitual fatty acid composition of the subjects’ diet. In a 

previous study conducted in November 2003 at our hospital, we determined the 

dietary intake in 23 female omnivores (age: 23.8 ± 3.2 years, height: 1.68 ± 0.06 m, 

BMI: 20.9 ± 1.9 kg/m2, mean ± SD for all). These subjects were well comparable with 

the subjects in the present study (predominantly medicine students with comparable 

age, height and BMI). In this previous study, we evaluated the median EPA intake 

with the normal diet to be 20 mg per day (IQR 10 – 30 mg/d). If we assumed that ALA 

conversion to EPA could be up to 20% in young women [2], the additional ALA 

supply with placebo capsules (about 69 mg/d) would deliver about 14 mg EPA, what 
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accounts for an additional EPA supply of 47% or more in ¾ of the subjects (30 mg 

EPA/d = 100% ⇒ 44 mg EPA/d = 146.7%). This might have caused the observed 

increases in plasma EPA and decreases in plasma long-chain n-6 fatty acids. 

Another possibility might be that the subjects changed their dietary habits during the 

intervention period, because with this study they became aware of the benefits of n-3 

fatty acids. As the subjects did not record their diets before and during the 

intervention period of this study, we cannot prove or disprove one of these 

speculations. For future intervention studies, dietary records might be helpful to 

detect possible changes in the background diet. A possible change in fatty acid 

composition of the placebo oil should be taken into account for the planned main 

study supplementing pregnant and lactating women with the FO/EPO mixture. 

The present pilot study also serves to compare the fatty acid responses in the various 

lipid domains. This information will then be used to decide which lipid domain will be 

investigated in future studies supplementing n-3 and n-6 fatty acids. The proportions 

of GLA, DGLA, EPA, and DHA in all investigated plasma lipids (total lipids and lipid 

fractions) reached their maximum already after 4 - 6 weeks of FO/EPO 

supplementation; therefore, the intervention period of 8 weeks is definitely adequate 

and could possibly be reduced to 6 weeks in future studies. Regarding all subjects at 

study entry (n = 40), GLA was mainly found in cholesterol esters, triglycerides, and 

total lipids (medians: 0.85 wt%, 0.31 wt%, and 0.37 wt% respectively), but hardly in 

phospholipids (< 0.1 wt%) as demonstrated by several investigators [10,164]. DGLA, 

AA, and DHA concentrations, on the other hand, were highest in phospholipids 

(medians: 3.43 wt%, 9.34 wt% and 3.09 wt% respectively) and considerably lower in 

cholesterol esters and triglycerides. Relative GLA changes from baseline (wt%/wt%) 

with FO/EPO supplementation were comparably high in plasma TL, CE, and TG 

(median changes at weeks 4, 6, and 8 ranged between 25 – 63%) and little lower in 

PL (16 – 43%). DGLA, EPA, and DHA changes from baseline were highest in plasma 

TG (29 – 33%, 47 – 61%, 131 – 156% respectively), and for each fatty acid 

comparably high in plasma TL, CE, and PL (about 10 – 20% for DGLA, 29 – 45% for 

EPA, and 45 – 67% for DHA). Percentage changes from baseline in these fatty acids 

of main interest at weeks 4 – 8 were significantly correlated between TL – CE, TL – 

PL, and CE - PL.  

As proportions and changes of the tested n-6 and n-3 fatty acids were correlated 

between TL – CE and TL - PL, fatty acid analyses might be limited to plasma total 
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lipids, provided that the subjects are healthy (no dyslipidaemias), non-pregnant and 

fasting. In our subjects, the proportion of PL, CE, and TG total fatty acids (in % of 

plasma total lipid fatty acids) changed only negligible between weeks 0, 4, 6, and 8 

(PL: 44.7 – 45.0% of TL, CE: 26.0 – 26.7% of TL, TG: 19.5 – 20.0% of TL, means, p 

> 0.05 between the four time points); this finding is probably an important condition 

for the strong correlations between fatty acids of TL and lipid fractions. Plasma total 

lipids as biomarkers for n-6 and n-3 fatty acid status have the following positive 

attributes: all n-6 and n-3 fatty acids are present in adequate amounts in plasma TL, 

fatty acid composition in plasma TL responds to increasing EFA/LCPUFA intakes and 

is correlated with fatty acids in plasma PL, CE, the analyses are less time-consuming 

(no separation of the lipid fractions), and the required sample volume is smaller. A 

disadvantage is that the fatty acid composition in plasma total lipids is influenced by 

fasting or fed state; therefore, it might be problematical in pregnant women, because 

of the observed raise in plasma triglycerides during pregnancy [166], as well as in 

neonates, in whom it is not possible to take fasted blood samples. For these subjects, 

fatty acid analyses in plasma PL and CE might be the best choice as markers for 

fatty acid status. 

For safety and tolerance evaluation, side effects were reported and several 

haematological and biochemical parameters were analysed. The supplementation 

with the FO/EPO mixture did not result in any physiologically relevant changes of 

safety parameters: incidence of liver enzymes and haematological parameters out of 

the laboratory’s reference range did not differ neither at baseline nor at week 8 

between FO/EPO and placebo groups; within-group incidences did not differ between 

baseline and week 8. The observed different changes in cholinesterase levels with 

DHA/EPO or placebo intake might be due to the lower basal cholinesterase levels in 

the placebo group and their normalisation over the intervention period. Self-reported 

side effects were equally distributed between FO/EPO and placebo groups. 

In conclusion, in women of childbearing age the tested fatty acid supplement is well 

tolerated and appears safe. FO/EPO intake resulted in the anticipated increase of 

plasma GLA, DGLA, and DHA levels without impairing AA status. These data provide 

a basis for testing this FO/EPO mixture in pregnant women for its efficacy to optimise 

maternal and neonatal LCPUFA status, and for its effects on infantile development, 

early markers of allergy risk and prevention of obesity, insulin resistance, 

hypertriglyceridaemia or other chronic diseases in later life. 



 Comparison of the Two Used Supplements 83 

4.4 Comparison of the two used supplements 

The fatty acid profiles of plasma and/or RBC lipids followed closely the fatty acid 

composition of the supplements and illustrate the competitive interactions between n-

3 and n-6 metabolic pathways: in the DHAVEG study, main fatty acids in the 

supplement were DHA (∼1050 mg/d as triglyceride) and n-6 docosapentaenoic acid 

(∼222 mg/d as triglyceride). Median percentage changes from baseline in plasma 

phospholipids after 8 weeks of intervention were highest (and significantly different 

from changes with placebo intervention) for these two fatty acids with a +159% 

increase for DHA and +87% increase for n-6 DPA (Figure  4.2, blue bars). Reductions 

in GLA, DGLA, AA levels as well as in n-6 LCPUFA were greater with microalgae oil 

than with placebo intake. 
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Figure  4.2. Percentage changes from baseline in plasma phospholipids after 8 weeks of 
supplementation with microalgae oil, FO/EPO or placebo (%, medians). 

GLA, gamma-linolenic acid; DGLA, dihomo-gamma-linolenic acid; AA, arachidonic acid; n-6 DPA, n-6 
docosapentaenoic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; n-3 LCPUFA, sum 
of all long-chain n-3 fatty acids; n-6 LCPUFA, sum of all long-chain n-6 fatty acids; FO/EPO, fish 
oil/evening primrose oil. 
*  p < 0.05 vs. changes with the appropriate placebo (A in DHAVEG study; B in FO/EPO study). 
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In the FO/EPO study, the FO/EPO mixture provided 419 mg DHA and 337 mg GLA 

as triglycerides per day. Percentage changes from baseline values of plasma 

phospholipid fatty acids showed a significantly greater increase with FO/EPO than 

with placebo for GLA (medians: +22% vs. –7%), its elongation product DGLA (+15% 

vs. –4%), and DHA (+45% vs. –1%) (Figure  4.2, green bars).  

In contrast to the supplementation with DHA alone (DHAVEG study), the expected 

dietary DHA-induced decrease of n-6 fatty acids (e.g. GLA, DGLA, AA, Σn-6 

LCPUFA) in plasma phospholipids was attenuated in the FO/EPO study by the 

presence of GLA in the supplement. The combination of DHA and GLA may be of 

added benefit especially in pregnant or lactating women, in whom it is desirable to 

enhance n-3 LCPUFA status without compromising GLA, DGLA, or AA status. 

Further studies should compare the effects of DHA alone and in combination with 

GLA on neonatal and infantile brain development and function. 

Concerning the CHD risk, it is noteworthy that increasing concentrations of DHA in 

serum phospholipids have been inversely correlated with risk of CHD [31]. In this 

regard, Simon et al. [31] reported that a standard deviation increase (+1.22 wt%) in 

plasma PL DHA resulted in an odds ratio of 0.66 for CHD risk (95% confidence 

interval 0.46 - 0.94). In our two studies, 8-week supplementation resulted in absolute 

DHA increases from baseline values ≥ 1.22 wt% in 96% (53/55) of the microalgae oil 

supplemented subjects and in 74% (14/19) of the FO/EPO supplemented subjects.  

The omega-3 index has been also identified as a risk indicator for death from CHD 

and especially SCD [33]. To convert plasma fatty acid data of the FO/EPO study to 

the correspondent omega-3 index, we used the following equation which was 

determined from fatty acid data of the DHAVEG study (Figure  4.3): 

 

Omega-3 index (wt%) = Plasma phospholipid EPA+DHA (wt%) x 0.7612 + 2.1649 

 

In both studies, no subject had a desirable omega-3 index ≥ 8 wt% at baseline. After 

8-week supplementation with microalgae oil, 69% of the subjects reached an omega-

3 index ≥ 8% (median omega-3 index increased from 4.70 wt% at baseline to 8.54 

wt% at week 8), whereas FO/EPO treatment did not result in omega-3 index values ≥ 

8 wt% (median (estimated) omega-3 index increased from 5.02 wt% at baseline to 

6.57 wt% at week 8).  
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Figure  4.3. RBC vs. plasma phospholipid EPA + DHA, DHAVEG study.  

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; PL, phospholipids. 

These two parameters were measured in 103 pairs of blood samples (DHAVEG study, week 8, 
Spearman-Rho r = 0.94, p < 0.001). 
 

 

Regarding only the changes in plasma phospholipid DHA or omega-3 index, there 

might be a better reduction of CHD risk with microalgae oil than with the tested 

combination of fish oil and evening primrose oil. But a study by Laidlaw & Holub [123] 

indicated added benefit from combined supplementation of n-3 LCPUFA and GLA on 

reduction of CHD risk. These investigators observed reduced serum TG 

concentrations by 40%, 39%, and 35% with EPA+DHA supplementation alone (4 g) 

or in conjunction with GLA (1 or 2 g), whereas TG concentrations did not change 

significantly when GLA supplementation increased to 4 g/d. Interestingly, the 

combination of EPA+DHA and GLA in the 4:2 and 4:4 groups resulted in a tendency 

of LDL cholesterol to decrease, whereas EPA+DHA alone typically has no effect 

[44,47-49,52,54,57] or a modest elevating effect [46,53,56,124,156] on LDL 

concentrations.  

The international task force for the prevention of CHD uses the variables age, systolic 

blood pressure, cigarette smoking, diabetes, family history of MI, and LDL 

cholesterol, HDL cholesterol, and TG concentrations with the PROCAM risk 

calculator to predict the risk of MI within the next 10 years [167]. Laidlaw & Holub 

[123] reported that on the basis of this risk calculator, the lipid changes observed 
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(before and after supplementation) in the four groups studied yielded estimated 

reductions in the risk of MI over a 10-y period of 37%, 33%, 43%, and 24% (group 

means) in the 4:0, 4:1, 4:2, and 4:4 groups respectively. Thus, the 4:2 group (4 g 

EPA + DHA and 2 g GLA) had the greatest overall reduction in MI risk on the basis of 

the PROCAM risk calculator. Further studies are needed investigating and comparing 

the effects of DHA alone and in combination with GLA on CHD risk. 
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5 Summary 

 

5.1 DHAVEG study 

Background: Low red blood cell (RBC) membrane content of eicosapentaenoic and 

docosahexaenoic acids (EPA + DHA, hereafter called omega-3 index) has recently 

been described as an indicator for increased risk of death from coronary heart 

disease (CHD). Previous studies demonstrated repeatedly beneficial effects of n-3 

long-chain polyunsaturated fatty acids (n-3 LCPUFA) on plasma triglyceride (TG) 

levels, but studies investigating the individual effects of EPA or DHA on plasma TG 

and lipoproteins in humans are rare.  

Objectives: This study aimed to investigate the influence of a vegetarian DHA-rich 

oil from microalgae Ulkenia sp. (almost free of EPA) on plasma and RBC DHA status, 

omega-3 index, and plasma lipids as well as its tolerance and safety in healthy adults 

with low basal DHA status.  

Design: A randomised, double blind, placebo-controlled intervention study with two 

parallel groups was performed. One hundred fourteen vegetarians (87 f, 27 m) aged 

18 to 43 years consumed 2.28 g daily of either microalgae oil providing ∼1 g DHA (as 

triglyceride) or about the same amount of olive oil (as placebo) for 8 weeks. RBC and 

plasma fatty acids, plasma lipids, and safety parameters (blood cell count, liver and 

cardiac enzymes, haemostatic parameters, plasma vitamin E) were measured at 

week 0 and week 8. 

Results: DHA supplementation significantly increased DHA in RBC total lipids (from 

4.4 to 7.9 wt%, means), in RBC phosphatidylethanolamine (from 6.5 to 12.1 wt%), in 

RBC phosphatidylcholine (from 1.4 to 3.8 wt%), and in plasma phospholipids (from 

2.8 to 7.4 wt%), whereas EPA levels rose to a much lesser extent. The mean omega-

3 index rose significantly from 4.8 to 8.4 wt% in the DHA group. After intervention, 

69% of DHA supplemented subjects but no subject of the placebo group reached an 

omega-3 index above the desirable value of 8 wt%. Microalgae oil supplementation 

resulted in significant decreases of 18:2n-6, 18:3n-6, 20:3n-6, 20:4n-6, 22:4n-6 and 

22:5n-3 levels in all measured fractions relative to baseline values.  
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Plasma TG decreased by 20% from 0.96 to 0.77 mmol/l (medians) with DHA 

treatment. Plasma total, LDL and HDL cholesterol increased significantly in the DHA 

group, resulting in lower TG:HDL cholesterol and unchanged LDL:HDL and total 

cholesterol:HDL cholesterol ratios.  

Self-reported side effects were minor und evenly distributed between DHA and 

placebo groups (11% vs. 8%). The intake of DHA-rich microalgae oil did not result in 

any physiologically relevant changes of safety and haemostatic factors with exception 

of von Willebrand factor (vWF) levels. Concerning vWF, we observed values out of 

reference range less often after DHA supplementation than at baseline (1 vs. 12 

subjects), and incidence of such values was lower in the DHA than in the placebo 

group at week 8 (1 vs. 11 subjects). Absolute and lipid-adjusted alpha-tocopherol 

levels did not change with DHA supplementation. 

Conclusions: In healthy adults DHA-rich oil from microalgae Ulkenia sp. is well 

tolerated, appears safe and can be considered a suitable vegetarian source of n-3 

LCPUFA. Eight-week supplementation with the tested oil can achieve a desirable 

omega-3 index ≥ 8% in subjects with low basal n-3 LCPUFA status. The DHA intake 

was associated with improvements in some CHD risk factors (plasma TG, TG:HDL 

cholesterol ratio, vWF), but others, notably LDL cholesterol, worsened. Therefore, the 

overall effects of this treatment on CHD risk are unclear and should be further 

investigated. 



 FO/EPO Study 89 

5.2 FO/EPO study 

Background: Fish oil supplementation can enhance docosahexaenoic acid (DHA) 

blood levels in pregnancy, but this might compromise maternal and neonatal 

arachidonic acid (AA) status, which is also important for infantile development. 

Objectives: This pilot study investigated whether co-administration of fish oil (FO) 

and evening primrose oil (EPO) will enhance n-3 long-chain polyunsaturated fatty 

acid (LCPUFA) status without reduction of AA levels. We also evaluated the effects 

on plasma gamma-linolenic acid (GLA) and dihomo-GLA (DGLA) concentrations, 

since these fatty acids have been shown to be associated with increased birth weight 

(DGLA) and reduced risk of certain aspects of metabolic syndrome (GLA). Tolerance 

and safety of this fatty acid mixture were assessed as well. 

Design: A randomised, double blind, placebo-controlled intervention study with two 

parallel groups was performed. Forty non-pregnant women aged 19 – 36 years 

consumed 3.4 g daily of either a FO/EPO mixture (providing 419 mg DHA, 337 mg 

GLA, and 72 mg eicosapentaenoic acid as triglycerides per day) or a placebo 

(mixture of palm oil, rapeseed oil, and sunflower seed oil) for 8 wk. Fatty acids were 

quantified in plasma total lipids (TL), phospholipids (PL), cholesterol esters (CE), and 

triglycerides (TG) at baseline and after 4, 6 and 8 weeks. Safety parameters (e.g. 

blood cell count, liver enzymes) were measured at weeks 0 and 8.  

Results: Eight-week supplementation with FO/EPO significantly increased plasma 

total lipid DHA (from 2.0 to 3.1 wt%, means), DGLA (from 2.0 to 2.3 wt%), and GLA 

(from 0.36 to 0.52 wt%), whereas AA levels did not change. After 8 weeks, mean 

percentage changes from baseline values of plasma total lipid fatty acids showed a 

significantly greater increase with FO/EPO than with placebo for GLA (+49.9 vs. 

+2.1%), DGLA (+13.8 vs. +0.7%) and DHA (+59.6 vs. +5.5%), while there was no 

difference for AA (-2.2 vs. -5.9%). Results were largely comparable for the other lipid 

fractions (PL, CE, and TG).  

Three subjects each both in the active and in the placebo group reported mild 

adverse effects (skin reactions, gastrointestinal upsets). FO/EPO supplementation 

did not result in any physiologically relevant changes of liver enzymes and full blood 

cell count. 
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Conclusions: In women of childbearing age the tested FO/EPO mixture is well 

tolerated and appears safe. FO/EPO intake resulted in the anticipated increase of 

plasma GLA, DGLA, and DHA levels without impairing AA status. These data provide 

a basis for testing this FO/EPO mixture in pregnant women for its efficacy to optimise 

maternal and neonatal LCPUFA status, and for its effects on infantile development, 

early markers of allergy risk and prevention of obesity, insulin resistance, 

hypertriglyceridaemia or other chronic diseases in later life. 
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5.3 Conclusions from both studies 

In contrast to supplementation with DHA alone (DHAVEG study, microalgae oil), the 

expected dietary DHA-induced decrease of n-6 fatty acids (e.g. GLA, DGLA, AA, Σn-

6 LCPUFA) in plasma lipids is attenuated in the FO/EPO study by the presence of 

GLA in the supplement (fish oil/evening primrose oil mixture). The combination of 

DHA and GLA may be of added benefit especially in pregnant or lactating women, in 

whom it is desirable to enhance n-3 LCPUFA status without compromising GLA, 

DGLA, and AA status. Further studies should compare the effects of DHA alone and 

in combination with GLA on neonatal and infantile brain development and function. 

Increases from baseline in plasma phospholipid DHA, n-3 LCPUFA and (probably) 

omega-3 index are smaller with FO/EPO than with microalgae oil treatment. Further 

studies are needed investigating and comparing the effects of DHA alone and in 

combination with GLA on CHD risk. 
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6 Zusammenfassung 

6.1 DHAVEG-Studie 

Hintergrund: Der Gehalt an Eicosapentaensäure (EPA) und Docosahexaensäure 

(DHA) in der Erythrozytenmembran (von nun an „Omega-3 Index“ genannt) wurde 

kürzlich als Risikoindikator für den Tod durch kardiovaskuläre Erkrankungen (CHD) 

beschrieben. Für den günstigen Effekt von langkettigen n-3 Fettsäuren (n-3 

LCPUFA) wird u.a. ihre Triglyzerid-senkende Wirkung diskutiert. Nur wenige Studien 

untersuchten die individuellen Effekte von EPA oder DHA auf Triglyzerid- (TG) und 

Lipoproteinspiegel im Plasma.  

Ziele: In dieser Studie sollte der Einfluss eines vegetarischen, DHA-reichen 

(praktisch EPA-freien) Öles der Mikroalge Ulkenia sp. auf den DHA-Gehalt von 

Plasma und Erythrozyten (RBC), den Omega-3 Index, Plasmalipide sowie seine 

Verträglichkeit und Unbedenklichkeit bei gesunden Erwachsenen mit niedrigem 

basalen DHA-Status untersucht werden.  

Studiendesign: Es wurde eine randomisierte, doppelt-blinde, Plazebo-kontrollierte 

Interventionsstudie mit zwei parallelen Gruppen durchgeführt. Einhundertvierzehn 

Vegetarier (87 Frauen, 27 Männer) zwischen 18 und 43 Jahren nahmen über 8 

Wochen täglich 2,28 g Mikroalgenöl (entspricht einer täglichen Aufnahme von ∼1 g 

DHA als TG) oder dieselbe Menge Olivenöl (als Plazebo) zu sich. An Woche 0 

(Baseline) und Woche 8 wurden RBC- und Plasmafettsäuren, Plasmalipide und 

verschiedene Sicherheitsparameter (u.a. Blutbild, Leberwerte, Gerinnungsparameter, 

Vitamin E im Plasma) bestimmt.  

Ergebnisse: Die Supplementierung mit DHA erhöhte signifikant den DHA-Gehalt in 

RBC-Gesamtlipiden (von 4,4 auf 7,9 wt%, Mittelwerte), in RBC-Phosphatidyl-

ethanolamin (von 6,5 auf 12,1 wt%), in RBC-Phosphatidylcholin (von 1,4 auf 3,8 

wt%) und in Plasma-Phospholipiden (von 2,8 auf 7,4 wt%), während der EPA-Anstieg 

geringer ausfiel. Der mittlere Omega-3 Index erhöhte sich in der DHA-Gruppe 

signifikant von 4,8 auf 8,4 wt%. Nach 8-wöchiger Intervention erreichten 69% der 

DHA-supplementierten Probanden, aber kein Proband der Plazebo-Gruppe, einen 

wünschenswerten Omega-3 Index größer 8 wt%. Die Supplementierung mit 
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Mikroalgenöl führte zu signifikanten Abnahmen von 18:2n-6, 18:3n-6, 20:3n-6, 20:4n-

6, 22:4n-6 und 22:5n-3 in Plasma und RBC.  

Die DHA-Gabe senkte die Plasma-TG um 20% von 0,96 auf 0,77 mmol/l (Mediane). 

Plasma-Gesamtcholesterol sowie LDL- und HDL-Cholesterol stiegen in der DHA-

Gruppe signifikant an, was zu einem niedrigeren Verhältnis von TG:HDL-Cholesterol 

und unveränderten LDL:HDL- sowie Gesamtcholesterol:HDL-Cholesterol-Ratios 

führte.  

Leichte Nebenwirkungen (Hautreaktionen und gastrointestinale Beschwerden) traten 

gleichhäufig in DHA- und Plazebo-Gruppe auf (11% vs. 8%). Bei der Einnahme von 

DHA-reichem Mikroalgenöl wurden keine physiologisch relevanten Veränderungen 

der Sicherheitsparameter beobachtet. Ausnahme waren die Plasmaspiegel des von 

Willebrand-Faktors (vWF), die nach DHA-Gabe seltener außerhalb des 

Referenzbereiches lagen als zu Studienbeginn (1 vs. 12 Probanden) sowie seltener 

als in der Plazebo-Gruppe zum selben Zeitpunkt (1 vs. 11 Probanden). Die absoluten 

und auf Gesamtlipide bezogenen Alpha-Tocopherolspiegel im Plasma veränderten 

sich nicht durch die DHA-Gabe.  

Schlussfolgerungen: DHA-reiches Öl der Mikroalge Ulkenia sp. ist bei gesunden 

Erwachsenen gut verträglich und anscheinend unbedenklich und kann als geeignete 

vegetarische Quelle für n-3 LCPUFA angesehen werden. Durch 8-wöchige 

Supplementierung des getesteten Öles lässt sich bei Personen mit niedrigem 

basalen n-3 LCPUFA-Status ein wünschenswerter Omega-3 Index ≥ 8% erzielen. 

Die DHA-Aufnahme war mit Verbesserungen einiger CHD-Risikofaktoren verbunden 

(Plasma-TG, TG:HDL-Cholesterol, vWF), aber andere Risikofaktoren, insbesondere 

das LDL-Cholesterol, verschlechterten sich leicht. Deshalb ist der Gesamteffekt 

dieser Intervention auf das CHD-Risiko unklar und sollte weiter untersucht werden. 
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6.2 FO/EPO-Studie 

Hintergrund: Eine Supplementierung mit Fischöl kann den Docosahexaensäure 

(DHA)-Status während der Schwangerschaft erhöhen, aber gleichzeitig zu einer 

Verminderung der maternalen und neonatalen Arachidonsäure (AA)-Konzentra-

tionen führen. Da auch AA für die Entwicklung des fötalen Gehirns und anderer 

Gewebe benötigt wird, ist eine Verschlechterung ihrer Verfügbarkeit nicht 

wünschenswert.  

Ziele: In dieser Pilotstudie sollte untersucht werden, ob eine Supplementierung von 

Fischöl (FO) und Nachtkerzenöl (EPO) die Plasmaspiegel an langkettigen n-3 

Fettsäuren (n-3 LCPUFA) erhöht, ohne den AA-Status zu beeinträchtigen. 

Desweiteren waren die Auswirkungen auf Gamma-Linolensäure (GLA)- und Dihomo-

GLA (DGLA)-Konzentrationen von Interesse, da gezeigt werden konnte, dass diese 

Fettsäuren mit erhöhtem Geburtsgewicht (DGLA) und geringerem Risiko für 

bestimmte Aspekte des metabolischen Syndroms (GLA) assoziiert sind. Auch die 

Verträglichkeit und Unbedenklichkeit dieser Fettsäuremischung sollten beurteilt 

werden.  

Studiendesign: Es wurde eine randomisierte, doppelt-blinde, Plazebo-kontrollierte 

Interventionsstudie mit zwei parallelen Gruppen durchgeführt. Vierzig nicht-

schwangere Frauen zwischen 19 und 36 Jahren nahmen über 8 Wochen täglich 3,4 

g einer FO/EPO-Mischung (entspricht einer täglichen Aufnahme von 419 mg DHA, 

337 mg GLA und 72 mg Eicosapentaensäure) oder ein Plazebo (Mischung aus 

Palmöl, Rapsöl und Sonnenblumenöl) zu sich. Zu Studienbeginn und nach 4, 6 und 8 

Wochen wurden die Fettsäurekonzentrationen in Plasma-Gesamtlipiden (TL), 

Phospholipiden (PL), Cholesterolestern und Triglyzeriden (TG) gemessen. Zusätzlich 

wurden an Woche 0 und Woche 8 verschiedene Sicherheitsparameter (Blutbild, 

Leberwerte) bestimmt.  

Ergebnisse: Die 8-wöchige Supplementierung mit FO/EPO erhöhte in den Plasma-

Gesamtlipiden die Spiegel an DHA (von 2,0 auf 3,1 wt%, Mittelwerte), DGLA (von 2,0 

auf 2,3 wt%) und GLA (von 0,36 auf 0,52 wt%), während sich die AA-Level nicht 

veränderten. Die relativen Veränderungen in den Gesamtlipiden nach 8 Wochen 

Intervention (% der Baselinewerte) von GLA (+49,9 vs. +2,1% mit Plazebo, 

Mittelwerte), DGLA (+13,8 vs. +0,7%) und DHA (+59,6 vs. +5,5%) waren nach 

FO/EPO-Gabe signifikant größer als mit Plazebo, wohingegen sich die 

Veränderungen der AA-Spiegel nicht zwischen den beiden Interventionen 
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unterschieden (-2,2 vs. –5,9%). Die Fettsäureveränderungen in den untersuchten 

Plasma-Lipidfraktionen (PL, CE, TG) waren in Richtung und Ausmaß ähnlich wie in 

den Gesamtlipiden.  

Je drei Probandinnen aus der FO/EPO- sowie der Plazebogruppe berichteten von 

leichten Nebenwirkungen (z.B. Hautreaktionen, leichte gastrointestinale Beschwer-

den). Die FO/EPO-Supplementierung führte zu keinen physiologisch relevanten 

Veränderungen der Leberwerte oder im Blutbild. 

Schlussfolgerungen: Die getestete FO/EPO-Mischung ist bei Frauen im gebär-

fähigen Alter gut verträglich und anscheinend unbedenklich. Das Supplement erhöht 

die Plasmaspiegel von DHA, GLA und DGLA, ohne den AA-Status zu 

beeinträchtigen. In einer weiteren Studie sollten nun die Effekte dieser FO/EPO-

Mischung auf den LCPUFA-Status schwangerer Frauen und ihres Föten sowie die 

Auswirkungen auf Gemütsverfassung und Gehirnleistung der Mutter, auf die geistige 

Entwicklung des Kindes, das Allergierisiko sowie die Prävention von Übergewicht, 

Insulinresistenz, Hypertriglyzeridämie oder anderen chronischen Erkrankungen im 

weiteren Leben untersucht werden. 
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6.3 Schlussfolgerungen aus beiden Studien 

Im Gegensatz zur alleinigen DHA-Gabe in der DHAVEG-Studie (Mikroalgenöl) wird 

die durch Nahrungs-DHA induzierte Abnahme der n-6 Fettsäuren im Plasma 

(insbesondere von GLA, DGLA, AA sowie Σn-6 LCPUFA) durch den GLA-Gehalt im 

Supplement (Mischung aus Fischöl und Nachtkerzenöl, FO/EPO-Studie) verhindert. 

Die Kombination von DHA und GLA könnte von zusätzlichem Nutzen insbesondere 

für schwangere und stillende Frauen sein, bei denen eine Erhöhung des n-3 

LCPUFA-Status ohne Beeinträchtigung der GLA-, DGLA- und AA-Level erwünscht 

ist. Zukünftige Studien sollten die Auswirkungen von DHA alleine sowie in 

Kombination mit GLA auf die neonatale und kindliche Gehirnentwicklung und -

funktion untersuchen und vergleichen. 

Die Erhöhung der DHA- und n-3 LCPUFA-Gehalte in Plasmaphospholipiden sowie 

(vermutlich) auch des Omega-3 Indexes ist mit FO/EPO-Gabe geringer als mit 

Mikroalgenöl-Gabe. Weitere Studien sind notwendig, um die Effekte von DHA alleine 

und in Kombination mit GLA auf das CHD-Risiko zu untersuchen. 
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 A1 

8 Attachment 

8.1 Tables 

Table  8.1. Reproducibility of triglyceride and lipoprotein analyses, DHAVEG study.* 

 Intra-assay  Inter-assay 

 n Mean CV (%)  n Mean CV (%) 

Triglycerides (mg/dl) 
     Level 1 
     Level 2 

 
20 
20 

 
84.9 
143.0 

 
1.6 
1.6 

  
20 
20 

 
84.9 

143.0 

 
1.9 
1.9 

Total cholesterol (mg/dl) 
     Level 1 
     Level 2 

 
20 
20 

 
205 
259 

 
1.3 
1.1 

  
20 
20 

 
205 
259 

 
2.2 
2.5 

HDL cholesterol (mg/dl) 
     Level 1 
     Level 2 

 
21 
21 

 
21.7 
46.0 

 
0.75 
0.85 

  
21 
21 

 
21.7 
46.0 

 
2.1 
1.7 

n, n-fold determination of one sample. 

*  According to manufacturer’s declarations. 
 



Attachment A2 

Table  8.2. Reproducibility of test kits for biochemical parameters, DHAVEG study and FO/EPO study.* 

 Intra-assay  Inter-assay 

 n Mean CV (%)  n Mean CV (%) 

Bilirubin (mg/dl) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
2.1 
2.1 
5.0 

 
1.3 
1.8 
1.2 

 n.s.  
2.1 
2.1 
5.0 

 
1.9 
2.1 
1.6 

Creatinine (mg/dl) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
1.67 
1.95 
3.69 

 
0.7 
0.6 
0.6 

 n.s.  
1.09 
1.92 
3.70 

 
2.3 
1.5 
1.7 

Gamma-GT (U/l) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
51.6 
40.6 
185 

 
1.5 
0.5 
0.3 

 n.s.  
53.7 
39.1 
173 

 
1.4 
1.9 
1.8 

ALT (U/l) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
48 
61 
131 

 
1.8 
2.9 
1.1 

  
10 
10 
10 

 
40 
55 
124 

 
3.2 
2.1 
0.5 

AST (U/l) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
143 
81 
174 

 
0.7 
4.0 
0.8 

  
10 
10 
10 

 
101 
74 
161 

 
2.9 
3.4 
1.9 

Cholinesterase (U/l) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
15998 
3358 
4756 

 
0.7 
1.4 
1.1 

  
10 
10 
10 

 
16117 
3402 
4759 

 
1.4 
1.4 
1.7 

Creatinekinase (U/l) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
31 
224 
484 

 
2.6 
0.4 
0.5 

  
10 
10 
10 

 
150 
220 
475 

 
2.1 
1.7 
1.7 

LDH (U/l) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
132.3 
144.7 
243.7 

 
1.4 
1.3 
1.0 

 n.s.  
195.9 
160.6 
247.3 

 
2.3 
1.8 
1.3 

Uric acid (mg/dl) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
5.57 
4.67 
10.18 

 
0.5 
0.5 
0.4 

 n.s.  
7.21 
4.86 
9.39 

 
1.7 
1.3 
1.6 

Total protein (g/dl) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
4.4 
5.0 
4.8 

 
0.60 
0.47 
0.70 

 n.s.  
6.4 
5.1 
4.9 

 
0.95 
1.21 
1.22 

CRP (mg/dl) 
     Human serum 
     Precinorm U 
     Precipath U 

 
21 
21 
21 

 
2.3 
5.4 
9.4 

 
1.3 
1.0 
0.6 

  
8 
8 
8 

 
2.2 
4.2 
11.5 

 
6.0 
2.9 
1.3 

Glucose (mg/dl) 
     Human serum 
     Control serum I 
     Control serum II 

 
21 
21 
21 

 
127 
66 
274 

 
1.0 
1.1 
0.8 

 n.s.  
126 
118 
253 

 
1.7 
1.9 
1.9 

n, n-fold determination of one sample; gamma-GT, gamma-glutamyl transpeptidase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; CRP, C-reactive 
protein; n.s., not specified. *  According to manufacturer’s declarations. 



  Tables A3 

Table  8.3. Reproducibility of test kits for haemostatic parameters, DHAVEG study.* 

 Intra-assay  Inter-assay 

 n Mean CV (%)  n Mean CV (%) 

Quick’s test (%) 
     Behring Coagulation Timer 
     Bering Fibrintimer A 

 
8 
8 

  
0.7 – 1.2 
1.2 – 6.0 

  
5 
5 

 
 

 
1.5 – 2.2 
0.7 – 3.3 

PTT (sec) 
     Normal plasma 
     Pathological plasma 
     Heparine plasma pool 

 
4 
4 
4 

  
 
0.6 – 2.0 

  
10 
10 
10 

  
 

0.3 – 2.8 

Fibrinogen (mg/dl) 
     Normal plasma 
     Pathological plasma 

n.s.   
1.5 - 5 
3 - 6 

 n.s.   
2.0 - 5 
3 - 6 

D-dimeres (µg/ml) 
     Plasma 
     Low control 
     High control 

 
21 
21 
21 

 
0.19 
0.86 
5.11 

 
7.3 
1.7 
0.8 

 n.s.  
0.30 
0.87 
4.58 

 
6.5 
8.3 
3.2 

Factor VII (%) 
     Normal 
     Low abnormal 

n.s.  
99.4 
47.6 

 
0.8 
1.4 

 n.s.  
99.7 
47.6 

 
2.6 
3.5 

Von Willebrand factor (%) 
     Level 1 
     Level 2 
     Level 3 

n.s.  
33.7 
80.8 
101.5 

 
2.2 
1.3 
1.4 

 n.s.   
? 
? 
? 

PAI-1 (AU/ml) 
     Level 1 
     Level 2 

 
9 
9 

 
12 
23 

 
2.4 
0.4 

  
10 
10 

 
12 
23 

 
7.6 
1,6 

PFA-ADP   ?    ? 

PFA-EPI   ?    ? 

n, n-fold determination of one sample; PTT, partial thromboplastin time; PAI-1, plasminogen activator 
inhibitor-1 activity; PFA-ADP, platelet function analysis with adenosine diphosphate; PFA-EPI, platelet 
function analysis with epinephrine; n.s., not specified; ?, no informations available. 

*  According to manufacturer’s declarations. 

 



Attachment A4 

Table  8.4. Reproducibility of fatty acid analysis in plasma PL, DHAVEG study (mean, CV). 

 Intra-assay (n = 8)  Inter-assay (n = 11) 

 mg/l  CV (%) wt%  CV (%)  mg/l CV (%) wt% CV (%) 

Saturated fatty acids          

14:0 4.84 1.98 0.45 1.66  6.71 4.74 0.44 3.47 

15:0 IS  IS   IS  IS  

16:0 327.15 1.63 30.23  0.43  437.57 2.19 28.82 2.12 

17:0 4.23   2.02 0.39 0.64  4.69 6.36 0.31 3.81 

18:0 147.82  1.94 13.66  0.83  190.92  2.59 12.57 2.53 

20:0 7.44 1.81 0.69 0.83  6.77 11.04 0.45 10.44 

22:0 20.18 1.47 1.86 0.69  19.00 15.07 1.25 14.74 

24:0 16.37 1.58 1.51 1.36  15.47 12.00 1.02 12.00 

Trans fatty acids          

14:1t n.d.  n.d.   n.d.  n.d.  

16:1t 1.15 5.50 0.11 5.08  0.78 16.71 0.05 15.45 

18:1t 2.91 3.66 0.27 3.32  2.59 18.59 0.17 16.55 

18:2tt 0.94 3.94 0.09 3.52  0.65 12.61 0.04 13.27 

22:1t 1.02 9.64 0.09 9.79  n.d.  n.d.  

MUFA          

14:1n-5 n.d.  n.d.   n.d.  n.d.  

15:1n-5 n.d.  n.d.   n.d.  n.d.  

16:1n-7 7.13 1.57 0.66 0.73  20.49 5.58 1.35 2.85 

17:1n-7 n.d.  n.d.   n.d.  n.d.  

18:1n-7 17.04 1.61 1.57 0.42  22.17 5.56 1.46 2.75 

18:1n-9 112.05 1.44 10.35 0.57  177.37 5.50 11.67 2.92 

20:1n-9 1.81 3.44 0.17 2.75  2.39 8.37 0.16 5.49 

22:1n-9 2.70 9.92 0.25 9.33  2.61 34.48 0.17 33.04 

24:1n-9 33.65 1.96 3.11 1.61  30.06 15.79 1.98 14.83 

PUFA          

20:3n-9 1.29 23.62 0.12 23.73  3.85 11.01 0.25 8.25 

18:2n-6 211.35 1.52 19.53 0.64  270.19 4.70 17.78 1.79 

18:3n-6 0.91 8.16 0.08 8.12  2.15 7.97 0.14 5.17 

20:2n-6 5.16 7.11 0.48 6.80  7.47 9.43 0.49 6.87 

20:3n-6 29.11 1.58 2.69 0.83  69.84 5.12 4.60 2.10 

20:4n-6 72.26 1.76 6.68 0.39  127.79  7.19 8.41 5.47 

22:2n-6 n.d.  n.d.   n.d.  n.d.  

22:4n-6 2.58 1.85 0.24 1.33  9.23 6.22 0.61 3.82 

22:5n-6 2.61 3.82 0.24 4.19  7.29 6.15 0.48 3.72 

18:3n-3 1.39 2.15 0.13 1.76  4.02 4.27 0.26 2.01 

18:4n-3 0.47 7.88 0.04 7.64  0.21 22.49 0.01 22.19 

20:3n-3 0.65 22.83 0.06 22.83  2.39 15.59 0.16 13.94 

20:5n-3 5.96 3.02 0.55 2.29  7.57 6.74 0.50 3.92 

22:5n-3 5.36 2.93 0.50 2.74  11.60 7.46 0.76 6.72 

22:6n-3 23.42 4.31 2.16 4.11  53.18 5.13 3.50 2.95 

CV, coefficient of variation; IS, internal standard; n.d., not detected, PL, phospholipids. 



  Tables A5 

Table  8.5. Reproducibility of fatty acid analysis in RBC PC and PE, DHAVEG study (mean, CV). 

 Intra-assay (n = 7*)  Inter-assay (n = 14) 

 RBC PC RBC PE  RBC PC RBC PE 

 wt% CV (%) wt% CV (%)  wt% CV (%) wt% CV (%) 

Saturated fatty acids          

14:0 0.60 2.96 0.26 5.98  0.74 3.95 0.23 11.29 

15:0 n.d.  n.d.   n.d.  n.d.  

16:0 37.42 0.86 17.36 2.71  37.62 1.30 17.36 1.56 

17:0 0.38 1.34 0.28 3.74  0.33 3.49 0.23 4.64 

18:0 8.76 1.17 8.02 1.10  8.78 2.17 7.47 1.75 

20:0 n.d.  n.d.   n.d.  n.d.  

22:0 n.d.  n.d.   n.d.  n.d.  

24:0 0.06 22.1 n.d.   0.22 35.11 n.d.  

Trans fatty acids          

14:1t n.d.  n.d.   n.d.  n.d.  

16:1t 0.07 33.63 0.44 3.92  0.11 8.48 0.10 14.87 

18:1t 0.13 12.08 0.18 4.82  0.08 21.70 0.13 13.85 

18:2tt 0.06 10.41 n.d.   0.05 9.22 0.05 9.18 

22:1t n.d.  n.d.   n.d.  n.d.  

MUFA          

14:1n-5 n.d.  n.d.   n.d.  n.d.  

15:1n-5 n.d.  n.d.   n.d.  n.d.  

16:1n-7 0.68 2.28 0.37 5.32  1.33 2.26 0.52 3.42 

17:1n-7 n.d.  n.d.   n.d.  n.d.  

18:1n-7 1.64 0.86 0.78 2.22  2.08 1.64 1.27 7.93 

18:1n-9 15.63 1.32 16.48 3.18  15.29 1.61 16.58 1.20 

20:1n-9 0.19 3.25 0.34 1.80  0.18 4.40 0.37 2.66 

22:1n-9 n.d.  n.d.   0.24 3.83 n.d.  

24:1n-9 0.232 22.14 n.d.   0.23 41.38 n.d.  

PUFA          

20:3n-9 0.09 3.30 0.09 4.84  0.15 3.78 0.14 4.35 

18:2n-6 19.53 0.92 5.64 2.68  18.54 0.94 5.02 1.30 

18:3n-6 0.07 3.49 n.d.   0.08 5.64 0.09 5.30 

20:2n-6 0.32 2.04 0.22 2.93  0.48 4.36 0.20 3.21 

20:3n-6 2.87 1.49 1.24 0.71  3.67 2.14 1.79 1.26 

20:4n-6 7.54 2.27 25.93 2.00  5.62 3.28 23.55  1.25 

22:2n-6 n.d.  n.d.   n.d.  n.d.  

22:4n-6 0.32 9.49 7.99 2.77  0.34 6.11 7.43 1.80 

22:5n-6 0.14 7.31 0.99 3.28  0.23 8.82 1.16 2.44 

18:3n-3 0.14 6.18 0.16 5.38  0.26 2.84 0.17 6.76 

18:4n-3 n.d.  n.d.   n.d.  n.d.  

20:5n-3 0.45 2.07 1.26 1.85  0.30 3.99 0.83 1.48 

22:5n-3 0.31 4.14 4.25 3.15  0.42 9.74 4.66 2.19 

22:6n-3 1.57 3.71 7.50 3.32  1.85 6.02 9.71 1.84 

*  One sample was lost; n.d., not detected; PC, phosphatidylcholine, PE, phosphatidylethanolamine. 



Attachment A6 

Table  8.6. Reproducibility of fatty acid analysis in RBC total lipids, DHAVEG study (mean, CV). 

 Intra-assay (n = 8)  Inter-assay (n = 19) 

 wt% CV (%)  wt% CV (%) 

Saturated fatty acids      

14:0 0.36 1.40  0.37 2.14 

15:0 0.21 0.58  0.21 3.14 

16:0 22.24 0.29  22.26 0.88 

17:0 0.32 1.10  0.32 2.52 

18:0 13.80 0.19  13.64 0.80 

20:0 0.36 2.31  0.37 4.08 

22:0 1.33 1.31  1.35 2.64 

24:0 4.45 2.08  4.61 5.93 

Trans fatty acids      

14:1t n.d.   n.d.  

16:1t n.d.   n.d.  

18:1t 0.19 7.98  0.17 5.41 

18:2tt n.d.   n.d.  

22:1t n.d.   n.d.  

MUFA      

14:1n-5 n.d.   n.d.  

15:1n-5 n.d.   n.d.  

16:1n-7 0.45 1.00  0.46 1.42 

17:1n-7 n.d.   n.d.  

18:1n-7 1.49 1.13  1.48 5.46 

18:1n-9 11.55 0.20  11.44 0.94 

20:1n-9 0.21 1.50  0.20 2.11 

22:1n-9 0.17 34.69  0.19 34.03 

24:1n-9 3.96 1.55  4.17 4.31 

PUFA      

20:3n-9 0.10 2.33  0.10 3.79 

18:2n-6 9.20 0.65  9.23 1.17 

18:3n-6 0.07 2.74  0.06 7.96 

20:2n-6 0.23 1.16  0.25 4.32 

20:3n-6 2.05 1.32  2.05 0.86 

20:4n-6 15.29 0.22  15.07 0.82 

22:2n-6 n.d.   n.d.  

22:4n-6 3.77 0.44  3.82 1.04 

22:5n-6 0.71 1.74  0.76 2.31 

18:3n-3 0.09 2.51  0.09 3.23 

18:4n-3 n.d.   n.d.  

20:3n-3 0.17 6.41  0.15 10.43 

20:5n-3 0.49 0.93  0.49 1.99 

22:5n-3 2.82 0.48  2.80 1.78 

22:6n-3 3.79 0.54  3.76 2.06 

n.d., not detected. 



  Tables A7 

Table  8.7. Reproducibility of fatty acid analysis in plasma phospholipids, FO/EPO study (mean, CV). 

 Intra-assay (n = 8)  Inter-assay (n = 11) 

 mg/l  CV (%) wt%  CV (%)  mg/l CV (%) wt% CV (%) 

Saturated fatty acids          

14:0 9.52 0.94 0.54 0.74  9.43 3.37 0.52 3.65 

15:0 IS  IS   IS  IS  

16:0 611.67 1.00 34.75 0.40  620.63 2.17 34.41 1.43 

17:0 6.14 1.78 0.35 1.61  6.21 2.11 0.34 2.42 

18:0 154.98 1.34 8.80 0.72  159.99 2.42 8.87 1.16 

20:0 8.25 4.81 0.47 4.83  9.10 4.50 0.50 4.37 

22:0 24.47 1.39 1.39 1.35  25.60 10.78 1.42 10.46 

24:0 13.59 1.55 0.77 1.61  15.27 4.12 0.85 3.40 

Trans fatty acids          

14:1t n.d.  n.d.   n.d.  n.d.  

16:1t 1.98 5.07 0.11 5.15  1.66 17.54 0.09 18.74 

18:1t 1.75 8.53 0.10 8.51  2.40 11.06 0.13 10.27 

18:2tt 0.81 11.71 0.05 11.42  0.84 8.06 0.05 7.53 

22:1t 4.37 2.43 0.25 2.17  4.63 5.76 0.26 4.61 

MUFA          

14:1n-5 n.d.  n.d.   n.d.  n.d.  

15:1n-5 n.d.  n.d.   n.d.  n.d.  

16:1n-7 32.26 0.96 1.83 0.77  32.53 3.08 1.80 1.44 

17:1n-7 n.d.  n.d.   n.d.  n.d.  

18:1n-7 32.62 1.15 1.85 0.57  33.32 3.32 1.85 1.12 

18:1n-9 195.64 0.90 11.11 0.40  200.06 3.05 11.09 0.52 

20:1n-9 2.11 2.68 0.12 2.13  2.24 4.68 0.12 4.62 

22:1n-9 3.72 28.11 0.21 27.35  4.96 41.79 0.27 41.60 

24:1n-9 36.98 0.80 2.10 0.63  39.22 3.45 2.17 2.69 

PUFA          

20:3n-9 5.73 1.09 0.33 1.27  6.02 2.79 0.33 2.02 

18:2n-6 246.23 0.70 13.99 0.35  250.87 3.22 13.90 0.71 

18:3n-6 1.94 2.46 0.11 2.78  1.98 4.55 0.11 2.85 

20:2n-6 7.61 0.52 0.43 0.69  7.87 3.17 0.44 1.72 

20:3n-6 77.27 0.74 4.39 0.69  79.37 3.52 4.40 1.29 

20:4n-6 178.25 1.21 10.13 1.12  184.12 3.80 10.20 1.53 

22:2n-6 n.d.  n.d.   n.d.  n.d.  

22:4n-6 9.57 0.88 0.54 1.15  9.96 4.36 0.55 2.52 

22:5n-6 10.23 1.49 0.58 1.44  10.16 3.39 0.56 2.26 

18:3n-3 3.11 0.96 0.18 1.15  3.15 4.07 0.17 2.50 

18:4n-3 0.68 11.17 0.04 11.68  0.70 10.92 0.04 10.92 

20:3n-3 2.31 3.67 0.13 3.34  2.30 9.30 0.13 9.19 

20:5n-3 11.70 1.27 0.66 1.71  11.88 3.92 0.66 1.73 

22:5n-3 15.38 1.39 0.87 1.76  16.09 4.66 0.89 2.81 

22:6n-3 49.59 1.62 2.82 1.85  51.51 4.91 2.85 2.97 

IS, internal standard; n.d., not detected. 



Attachment A8 

Table  8.8. Reproducibility of fatty acid analysis in plasma CE, FO/EPO study (mean, CV). 

 Intra-assay (n = 8)  Inter-assay (n = 10) 

 mg/l  CV (%) wt%  CV (%)  mg/l CV (%) wt% CV (%) 

Saturated fatty acids          

14:0 12.01 1.09 1.11 0.86  12.18 3.02 1.15 4.02 

15:0 IS  IS   IS  IS  

16:0 136.00 1.04 12.62 0.23  135.16 2.23 12.72 1.89 

17:0 0.92 6.15 0.09 5.49  1.14 6.63 0.11 7.35 

18:0 6.68 1.75 0.62 1.24  6.92 4.27 0.65 4.96 

20:0 1.06 2.85 0.10 3.43  0.93 14.34 0.09 14.86 

22:0 n.d.  n.d.   n.d.  n.d.  

24:0 n.d.  n.d.   n.d.  n.d.  

Trans fatty acids          

14:1t n.d.  n.d.   n.d.  n.d.  

16:1t n.d.  n.d.   n.d.  n.d.  

18:1t n.d.  n.d.   n.d.  n.d.  

18:2tt n.d.  n.d.   n.d.  n.d.  

22:1t 1.21 7.82 0.11 7.08  1.16 9.78 0.11 8.12 

MUFA          

14:1n-5 0.82 5.83 0.08 6.26  0.88 7.28 0.08 7.29 

15:1n-5 n.d.  n.d.   n.d.  n.d.  

16:1n-7 111.46 1.17 10.34 0.41  110.40 2.86 10.39 1.83 

17:1n-7 n.d.  n.d.   n.d.  n.d.  

18:1n-7 15.77 1.16 1.46 0.35  16.38 4.27 1.54 2.51 

18:1n-9 241.77 1.25 22.43 0.16  238.52 3.17 22.43 0.49 

20:1n-9 n.d.  n.d.   n.d.  n.d.  

22:1n-9 1.06 15.56 0.10 16.26  1.26 38.92 0.12 38.84 

24:1n-9 n.d.  n.d.   n.d.  n.d.  

PUFA          

20:3n-9 1.29 3.61 0.12 3.79  1.34 22.84 0.13 23.82 

18:2n-6 417.23 1.22 38.70 0.08  409.68 3.37 38.53 0.43 

18:3n-6 14.50 1.17 1.35 0.33  14.42 3.53 1.36 2.23 

20:2n-6 n.d.  n.d.   n.d.  n.d.  

20:3n-6 10.46 1.49 0.97 0.41  10.13 4.90 0.95 2.88 

20:4n-6 82.07 1.37 7.61 0.38  79.75 3.97 7.50 1.37 

22:2n-6 n.d.  n.d.   n.d.  n.d.  

22:4n-6 n.d.  n.d.   n.d.  n.d.  

22:5n-6 0.58 6.37 0.05 5.57  0.56 9.26 0.05 7.58 

18:3n-3 7.59 1.54 0.70 0.58  7.40 3.88 0.70 1.45 

18:4n-3 0.65 5.12 0.06 4.90  0.63 20.19 0.06 19.50 

20:3n-3 0.52 10.53 0.05 9.81  0.47 12.77 0.04 11.92 

20:5n-3 7.87 1.56 0.73 0.62  7.46 5.18 0.70 4.18 

22:5n-3 n.d.  n.d.   n.d.  n.d.  

22:6n-3 4.97 2.21 0.46 1.59  4.80 5.66 0.45 4.41 

CE, cholesterol esters; CV, coefficient of variation; IS, internal standard; n.d., not detected. 
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Table  8.9. Reproducibility of fatty acid analysis in plasma triglycerides, FO/EPO study (mean, CV). 

 Intra-assay (n = 8)  Inter-assay (n = 10) 

 mg/l  CV (%) wt%  CV (%)  mg/l CV (%) wt% CV (%) 

Saturated fatty acids          

14:0 25.90 1.21 2.79 1.02  26.32 3.02 2.95 4.40 

15:0 IS  IS   IS  IS  

16:0 305.63 1.04 32.92 0.37  303.36 2.65 33.94 0.85 

17:0 2.50 2.83 0.27 2.20  2.62 3.54 0.29 3.44 

18:0 21.64 1.59 2.33 1.29  20.72 5.31 2.32 3.70 

20:0 1.46 7.77 0.16 7.59  1.16 13.60 0.13 12.72 

22:0 0.82 5.22 0.09 4.36  0.32 11.13 0.04 10.41 

24:0 n.d.  n.d.   n.d.  n.d.  

Trans fatty acids          

14:1t n.d.  n.d.   n.d.  n.d.  

16:1t 0.72 6.64 0.08 6.89  0.74 8.95 0.08 8.40 

18:1t 3.25 3.07 0.35 2.30  3.27 17.37 0.37 15.24 

18:2tt 0.81 10.44 0.09 10.38  0.69 8.20 0.08 8.20 

22:1t 0.80 4.99 0.09 4.62  0.76 9.05 0.09 7.31 

MUFA          

14:1n-5 2.65 1.07 0.29 1.09  2.78 7.02 0.31 8.46 

15:1n-5 n.d.  n.d.   n.d.  n.d.  

16:1n-7 82.78 1.21 8.91 0.31  81.89 3.00 9.16 2.98 

17:1n-7 n.d.  n.d.   n.d.  n.d.  

18:1n-7 41.39 1.42 4.46 0.37  38.50 3.59 4.31 1.28 

18:1n-9 278.87 1.42 30.03 0.30  263.09 3.42 29.43 1.02 

20:1n-9 4.40 1.57 0.47 0.72  3.94 6.57 0.44 5.11 

22:1n-9 1.29 8.23 0.14 8.02  1.43 25.61 0.16 25.84 

24:1n-9 n.d.  n.d.   n.d.  n.d.  

PUFA          

20:3n-9 3.34 0.91 0.36 0.95  3.10 7.36 0.35 6.16 

18:2n-6 95.60 1.38 10.30 0.28  89.97 2.87 10.07 0.45 

18:3n-6 2.40 1.88 0.26 1.24  2.31 3.47 0.26 2.38 

20:2n-6 2.45 1.05 0.26 0.58  2.28 6.63 0.26 5.52 

20:3n-6 4.81 1.37 0.52 0.74  4.24 4.88 0.48 3.38 

20:4n-6 17.60 1.35 1.90 0.22  15.91 4.07 1.78 2.56 

22:2n-6 n.d.  n.d.   n.d.  n.d.  

22:4n-6 2.68 3.29 0.29 2.36  2.48 5.30 0.28 4.44 

22:5n-6 3.57 2.20 0.38 1.24  3.16 5.37 0.35 4.01 

18:3n-3 6.81 1.76 0.73 1.16  6.40 2.84 0.72 2.92 

18:4n-3 n.d.  n.d.   n.d.  n.d.  

20:3n-3 0.80 4.99 0.09 5.00  0.71 8.44 0.08 6.54 

20:5n-3 1.97 3.16 0.21 2.90  1.66 4.14 0.19 3.70 

22:5n-3 2.54 2.06 0.27 2.02  2.14 5.23 0.24 4.06 

22:6n-3 8.69 1.82 0.94 1.44  7.45 5.13 0.83 3.91 

CV, coefficient of variation; IS, internal standard; n.d., not detected. 
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Table  8.10. Reproducibility of fatty acid analysis in plasma total lipids, FO/EPO study (mean, CV). 

 Intra-assay (n = 8)  Inter-assay (n = 10) 

 mg/l  CV (%) wt%  CV (%)  mg/l CV (%) wt% CV (%) 

Saturated fatty acids          

14:0 50.70 1.20 1.26 0.56  51.65 2.69 1.27 2.86 

15:0 IS  IS   IS  IS  

16:0 1134.12 1.17 28.11 0.61  1140.11 2.06 27.95 1.13 

17:0 10.56 2.56 0.26 2.13  10.48 3.08 0.26 2.03 

18:0 206.16 2.20 5.11 1.78  205.02 3.41 5.03 2.58 

20:0 9.32 6.07 0.23 6.13  11.82 5.16 0.29 4.59 

22:0 27.84 2.93 0.69 2.60  26.72 15.69 0.66 15.51 

24:0 15.06 3.08 0.37 2.45  15.95 4.94 0.39 3.97 

Trans fatty acids          

14:1t n.d.  n.d.   n.d.  n.d.  

16:1t 2.96 4.09 0.07 3.08  2.75 9.81 0.07 9.85 

18:1t 5.48 2.59 0.14 2.69  6.24 4.98 0.15 4.76 

18:2tt 1.92 7.72 0.05 7.73  1.87 4.13 0.05 4.26 

22:1t 7.36 3.07 0.18 2.76  7.18 5.50 0.18 3.63 

MUFA          

14:1n-5 4.16 2.06 0.10 2.47  4.33 3.67 0.11 4.52 

15:1n-5 n.d.  n.d.   n.d.  n.d.  

16:1n-7 235.78 1.33 5.84 1.07  241.01 3.09 5.91 1.98 

17:1n-7 n.d.  n.d.   n.d.  n.d.  

18:1n-7 97.16 1.22 2.41 0.68  97.87 2.81 2.40 0.86 

18:1n-9 753.10 1.48 18.66 1.20  772.53 3.57 18.94 1.75 

20:1n-9 7.02 3.09 0.17 3.42  7.42 4.68 0.18 3.41 

22:1n-9 5.20 68.11 0.13 66.65  5.33 32.00 0.13 31.93 

24:1n-9 42.40 2.87 1.05 2.50  42.27 5.06 1.04 4.48 

PUFA          

20:3n-9 11.40 1.64 0.28 1.13  11.57 5.38 0.28 3.43 

18:2n-6 787.38 1.31 19.51 0.98  800.91 3.35 19.63 1.22 

18:3n-6 19.34 1.85 0.48 1.55  19.94 3.55 0.49 1.96 

20:2n-6 11.92 1.60 0.30 1.43  12.00 4.49 0.29 2.36 

20:3n-6 104.38 2.06 2.59 1.76  103.07 4.06 2.53 3.12 

20:4n-6 308.30 1.43 7.64 0.90  307.09 3.32 7.53 1.68 

22:2n-6 n.d.  n.d.   n.d.  n.d.  

22:4n-6 14.40 1.97 0.36 1.50  14.30 4.48 0.35 3.06 

22:5n-6 17.16 2.04 0.43 1.86  16.21 5.23 0.40 4.67 

18:3n-3 19.28 1.17 0.48 0.98  19.41 3.16 0.48 0.88 

18:4n-3 2.02 8.40 0.05 8.96  2.16 18.89 0.05 18.62 

20:3n-3 3.98 5.45 0.10 4.93  3.82 9.75 0.09 9.03 

20:5n-3 24.36 1.71 0.60 1.09  23.74 3.85 0.58 2.81 

22:5n-3 21.36 2.16 0.53 1.84  20.90 4.24 0.51 3.29 

22:6n-3 73.60 2.21 1.82 1.90  73.60 3.81 1.80 2.57 

CV, coefficient of variation; IS, internal standard; n.d., not detected.
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Table  8.11. BMI, blood pressure and heart rate at weeks 0 and 8, DHAVEG study (mean ± SD or median with IQR). 

 DHA group (n = 54 - 55)*  Placebo group (n = 53)   

 Week 0 Week 8  Week 0 Week 8  P† 

Weight (kg)§ 60.8 (56.2 – 67.3) 60.9 (54.8 – 67.7)  60.2 (53.7 – 69.0) 60.7 (54.0 – 70.4)1  0.072 

BMI (kg/m2) 21.23 ± 1.69 21.23 ± 1.75  21.18 ± 1.94 21.36 ± 1.901  0.056 

Systolic BP (mm Hg)§ 100 (90 – 100) 100 (94 – 110)  95 (90 – 100) 100 (95 – 105)1  0.675 

Diastolic BP (mm Hg)§ 65 (60 – 70) 70 (60 – 70)  70 (60 – 70) 70 (65 – 70)  0.700 

Heart rate (beats/min)§ 68 (63 – 72) 68 (64 – 72)  68 (64 – 72) 68 (64 – 72)  0.664 

BMI, body mass index; BP, blood pressure; IQR, interquartile range. 

*  For one subject, blood pressure and heart rate values are missing; §  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0. 
†  Analyses of group differences in absolute changes from baseline (week 8 – week 0). 



 A
12       A

ttachm
ent 

 

Table  8.12. Plasma triglycerides and lipoproteins at weeks 0 and 8, DHAVEG study (mean ± SD or median with IQR). 

 DHA group (n = 53)  Placebo group (n = 53)   

 Week 0 Week 8  Week 0 Week 8  P† 

Triglycerides (mmol/l)§ 0.96 (0.75 – 1.21) 0.77 (0.63 – 1.05)1,a  1.04 (0.68 – 1.30) 0.91 (0.71 – 1.34)  0.033 

Total cholesterol (mmol/l)§ 4.47 (3.89 – 5.18) 4.73 (4.02 – 5.39)1  4.71 (4.05 – 5.30) 4.68 (4.03 – 5.13)  0.004 

LDL cholesterol (mmol/l)§ 2.43 (1.86 – 2.96) 2.74 (2.19 – 3.07)1  2.64 (2.03 – 3.10) 2.48 (1.95 – 3.07)  0.003 

HDL cholesterol (mmol/l) 1.65 ± 0.47 1.77 ± 0.471  1.67 ± 0.44 1.66 ± 0.43  0.002 

LDL:HDL cholesterol 1.58 ± 0.54 1.64 ± 0.60  1.64 ± 0.65 1.65 ± 0.69  0.441 

Total:HDL cholesterol 2.92 ± 0.70 2.87 ± 0.68  2.95 ± 0.76 2.97 ± 0.82  0.486 

TG:HDL chosterol§ 0.57 (0.43 – 0.91) 0.43 (0.35 – 0.64)1,a  0.63 (0.36 – 0.87) 0.57 (0.43 – 0.86)  0.021 

IQR, interquartile range; TG, triglycerides. 
§  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0. 
a  p < 0.05 vs. placebo at the same time point. 
†  Analyses of group differences in absolute changes from baseline (week 8 – week 0). 
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Table  8.13. Vitamin A and E levels at weeks 0 and 8, DHAVEG study (mean ± SD). 

 DHA group (n = 55)  Placebo group (n = 53)   

 Week 0 Week 8  Week 0 Week 8  P† 

Retinol (µmol/l) 1.78 ± 0.44 1.81 ± 0.42  1.81 ± 0.43 1.74 ± 0.43  0.020 

alpha-Tocopherol (µmol/l) 20.80 ± 3.99 20.32 ± 3.79  21.22 ± 4.17 21.11 ± 4.02  0.450 

alpha-Tocopherol/ 
(Cholesterol+TG) (µmol/mmol) 3.67 ± 0.58 3.60 ± 0.59  3.72 ± 0.54 3.72 ± 0.55  0.736 

TG, triglycerides. 
†  Analyses of group differences in absolute changes from baseline (week 8 – week 0). 
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Table  8.14. Plasma haemostatic factors at weeks 0 and 8, DHAVEG study (median with IQR). 

  DHA group   Placebo group   

 n* Week 0 Week 8  n* Week 0 Week 8  P† 

PTT (sec) 53 32.0 (31.0 – 34.0) 32.0 (29.5 – 35.0)  52 31.5 (30.0 – 34.7) 31.5 (29.0 – 34.0)1  0.212 

Fibrinogen (mg/dl) 53 233 (209 – 264) 258 (230 – 301)1  51 230 (203 – 292) 268 (226 – 327)1  0.608 

D-dimers (µg/ml) 55 0.2 (0.1 – 0.3) 0.2 (0.1 – 0.3)  53 0.2 (0.1 – 0.3) 0.2 (0.1 – 0.3)  0.838 

Factor VII (%) 55 103.0 (94.0 – 120.0) 104.0 (90.0 – 119.0)  53 105.0 (88.0 – 130.5) 107.0 (88.5 – 122.0)  0.330 

Von Willebrand factor (%) 55 91.0 (75.0 – 119.0) 89.0 (71.0 – 105.0)1  53 92.0 (65.5 – 116.0) 96.0 (67.0 – 109.5)  0.033 

PAI-1 (AU/ml) 55 2.75 (0.00 – 6.08) 3.57 (1.31 – 6.15)  53 2.25 (0.00 – 6.39) 5.42 (1.90 – 8.32)1  0.083 

PFA-ADP 43 82.0 (70.0 – 101.0) 92.0 (81.0 – 105.0)1  40 85.0 (74.0 – 96.8) 88.0 (74.0 – 109.5)  0.728 

PFA-EPI 42 117.5 (104.0 – 134.0) 128.0 (108.8 – 147.0)  34 116.0 (101.0 – 139.0) 129.5 (105.8 – 149.5)  0.761 

IQR, interquartile range; PTT, partial thromboplastin time; PAI-1, plasminogen activator inhibitor-1 activity; PFA-ADP, platelet function analysis with adenosine 
diphosphate; PFA-EPI, platelet function analysis with epinephrine. 

*  Some samples are missing because of technical problems during measurement or coagulation of the blood samples. 
1  p < 0.05 vs. week 0. 
†  Analyses of group differences in absolute changes from baseline (week 8 – week 0). 

 



   

Table  8.15. Biochemical parameters and full blood cell count at weeks 0 and 8, DHAVEG study (mean ± SD or median with IQR). 

 DHA group (n = 54 - 55)*  Placebo group (n = 51 - 53)*   

 Week 0 Week 8  Week 0 Week 8  P† 

Creatinine (mg/dl)§ 0.8 (0.8 – 0.9) 0.9 (0.8 – 0.9)  0.8 (0.8 – 0.9) 0.8 (0.8 – 0.9)  0.184 

Bilirubin (mg/dl)§ 0.7 (0.5 – 1.0)a 0.8 (0.5 – 1.0)  0.6 (0.4 – 0.8) 0.6 (0.4 – 0.8)  0.328 

GGT (U/l)§ 15.0 (12.0 – 20.0) 15.0 (12.0 – 20.0)  14.0 (13.0 – 20.0) 15.0 (12.0 – 18.5)  0.069 

ALT (U/l)§ 13.0 (10.0 – 18.0) 16.0 (12.0 – 20.0)1  14.0 (10.5 – 19.0) 13.0 (11.0 – 19.0)  0.031 

AST (U/l)§  20.0 (18.0 – 25.0) 21.0 (18.0 – 26.0)  21.0 (18.5 – 26.5) 21.0 (19.0 – 24.0)  0.267 

CHE (kU/l)§ 7.5 (6.6 – 8.6) 7.2 (6.5 – 8.0)1  6.9 (5.9 – 8.1) 6.9 (6.2 – 7.7)  <0.001 

CK (U/l)§ 79.0 (57.0 – 104.0) 80.0 (64.0 – 102.0)  84.0 (66.0 – 102.5) 77.0 (64.0 – 117.0)  0.567 

LDH (U/l § 144.0 (135.5 – 154.3) 146.5 (131.8 – 158.0)  147.0 (128.5 – 165.5) 140.0 (128.0 – 165.5)  0.566 

Uric acid (mg/dl) 4.56 ± 1.15 4.55 ± 0.95  4.95 ± 1.20 4.73 ± 1.231  0.140 

Total protein (g/dl) 7.60 ± 0.45 7.44 ± 0.531  7.69 ± 0.45 7.43 ± 0.421  0.308 

CRP (mg/dl)§ 0.20 (0.10 – 0.30) 0.20 (0.05 – 0.30)  0.20 (0.10 – 0.30) 0.20 (0.10 – 0.40)  0.326 

Glucose (mg/dl)§ 93.3 ± 7.5 92.2 ± 7.6  95.9 ± 6.1 94.6 ± 7.8  0.926 

Blood cell count        

     Leucocytes (G/l)§ 5.80 (4.90 – 6.60) 5.60 (4.40 – 7.00)  5.60 (4.95 – 6.60) 5.50 (4.85 – 6.15)1  0.397 

     Erythrocytes (T/l)§ 4.40 (4.30 – 4.70) 4.30 (4.10 – 4.70)  4.40 (4.30 – 4.80) 4.30 (4.05 – 4.45)1  0.028 

     Haemoglobin (g/dl)§ 13.7 (12.9 – 14.5) 13.4 (12.8 – 14.5)1  13.7 (12.7 – 14.5) 13.2 (12.6 – 13.9)1  0.255 

     Haematocrit (%) 40.0 ± 3.1 39.5 ± 3.6  40.1 ± 3.4 38.5 ± 3.31  0.044 

     MCV (fl) 88.9 ± 4.5 89.3 ± 4.5  89.4 ± 4.7 89.8 ± 4.7  0.821 

     MCH (pg)§ 30.6 (29.4 – 32.0) 30.9 (29.8 – 32.0)  30.6 (29.6 – 31.5) 30.9 (30.2 – 32.3)1  0.194 

     MCHC (%)§ 34.7 (33.0 – 35.3) 34.5 (33.6 – 35.4)  34.1 (33.0 – 35.1) 34.7 (33.5 – 35.6)  0.439 

     Platelets (G/l) 233.3 ± 57.0 236.7 ± 60.6  238.9 ± 53.3 239.3 ± 59.2  0.775 

GGT, gamma-glutamyl transpeptidase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CHE, cholinesterase; CK, creatinekinase; LDH, lactate 
dehydrogenase; CRP, C-reactive protein; MCV, mean cellular volume; MCH, mean cellular haemoglobin; MCHC, mean cellular haemoglobin concentration. 
*  Some samples are missing because of technical problems measurement; §  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0; a p < 0.05 vs. placebo at the same time point. 
†  Analyses of group differences in absolute changes from baseline (week 8 – week 0). 
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Table  8.16. Relative fatty acid composition (wt%) in plasma phospholipids at weeks 0 and 8, DHAVEG study (mean ± SD or median with IQR). 

 DHA group (n = 55)  Placebo group (n = 53) 

 Week 0 Week 8  Week 0 Week 8 

16:0§ 27.95 (26.98 – 29.66) 28.15 (27.38 – 29.91)a  27.95 (26.40 – 29.20) 27.40 (26.38 – 29.58) 

18:0§ 12.03 (10.99 – 13.00) 12.08 (10.82 – 13.18)  12.40 (11.43 – 13.10) 12.23 (11.33 – 12.93) 

18:1n-9 10.35 ± 1.42 9.07 ± 1.181,a  10.33 ± 1.62 10.48 ± 1.43 

20:3n-9§ 0.14 (0.10 – 0.21) 0.08 (0.05 – 0.11)1,a  0.14 (0.10 – 0.20) 0.14 (0.12 – 0.18) 

18:2n-6 22.01 ± 2.80 20.63 ± 2.821,a  23.04 ± 3.23 22.91 ± 2.90 

18:3n-6§ 0.10 (0.07– 0.12) 0.06 (0.04 – 0.08) 1,a  0.10 (0.08 – 0.13) 0.08 (0.07 – 0.12) 

20:3n-6 3.49 ± 0.72 2.59 ± 0.601,a  3.31 ± 0.87 3.34 ± 0.88 

20:4n-6 8.93 ± 1.40 8.07 ± 1.421,a  8.92 ± 1.66 8.99 ± 1.76 

22:4n-6§ 0.42 (0.35 – 0.50) 0.23 (0.20 – 0.28)1,a  0.40 (0.35 – 0.48) 0.40 (0.34 – 0.46) 

22:5n-6§ 0.34 (0.29 – 0.45) 0.66 (0.56 – 0.73)1,a  0.31 (0.24 – 0.45) 0.32 (0.24 – 0.44) 

18:3n-3§ 0.19 (0.14 – 0.24) 0.16 (0.11 – 0.21)  0.17 (0.14 – 0.24) 0.18 (0.13 – 0.26) 

20:5n-3§ 0.54 (0.42 – 0.64) 0.75 (0.62 – 0.87)1,a  0.52 (0.41 – 0.73) 0.48 (0.39 – 0.66) 1 

22:5n-3 0.90 ± 0.27 0.55 ± 0.181,a  0.85 ± 0.26 0.85 ± 0.27 

22:6n-3 2.84 ± 0.89 7.36 ± 1.611,a  2.56 ± 0.74 2.52 ± 0.68 

EPA + DHA 3.42 ± 0.91 8.13 ± 1.671,a  3.13 ± 0.78 3.04 ± 0.69 

∑n-6 FA 35.74 ± 2.15 32.62 ± 2.291,a  36.49 ± 2.47 36.46 ± 2.27 

∑n-3 FA§ 4.61 (4.06 – 5.23) 8.84 (8.00 – 9.89)1,a  4.20 (3.75 – 4.85) 4.26 (3.79 – 4.70) 

∑n-6/∑n-3 FA§ 7.83 (6.87 – 8.91) 3.80 (3.11 – 4.15)1,a  8.55 (7.17 – 9.93) 8.32 (7.58 – 9.99) 

∑n-6 LCPUFA 13.61 ± 1.74 11.92 ± 1.711,a  13.35 ± 2.13 13.44 ± 1.98 

∑n-3 LCPUFA 4.48 ± 0.94a 8.82 ± 1.661,a  4.13 ± 0.78 4.03 ± 0.71 

∑n-6/∑n-3 LCPUFA§ 3.23 (2.82 – 3.64) 1.34 (1.18 – 1.56)1,a  3.31 (2.92 – 3.76) 3.29 (2.99 – 3.80) 

IQR, interquartile range; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; ∑n-6 FA, sum of n-6 fatty acids; ∑n-3 FA, sum of n-3 fatty acids; ∑n-6/∑n-3 
FA, ratio of n-6 to n-3 fatty acids; ∑n-6 LCPUFA, sum of all long-chain n-6 fatty acids; ∑n-3 LCPUFA, sum of all long-chain n-3 fatty acids; ∑n-6/∑n-3 LCPUFA, 
ratio of n-6 to n-3 long-chain polyunsaturated fatty acids. 
§  Median with IQR in parentheses; 1  p < 0.05 vs. week 0; a p < 0.05 vs. placebo at the same time point. 
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Table  8.17. Relative fatty acid composition (wt%) in RBC phosphatidylcholine at weeks 0 and 8, DHAVEG study (mean ± SD or median with IQR). 

 DHA group (n = 55)  Placebo group (n = 52)* 

 Week 0 Week 8  Week 0 Week 8 

16:0§ 35.59 (34.44 – 37.13) 36.26 (34.76 – 37.21)1  35.20 (34.26 – 37.35) 35.03 (34.20 – 36.68)1 

18:0§ 10.07 (8.71 – 10.90) 10.27 (9.25 – 10.99)1  10.13 (9.11 – 10.87) 10.33 (9.04 – 10.97) 

18:1n-9 15.92 ± 1.48 15.45 ± 1.261,a  15.99 ± 1.28 16.16 ± 1.30 

20:3n-9§ 0.08 (0.05 – 0.11) 0.04 (0.03 – 0.07)1,a  0.08 (0.06 – 0.11) 0.08 (0.06 – 0.11) 

18:2n-6 21.09 ± 2.34 20.16 ± 2.341,a  21.58 ± 2.21 21.43 ± 2.34 

18:3n-6§ 0.07 (0.06 – 0.09) 0.04 (0.03 – 0.05)1,a  0.07 (0.06 – 0.09) 0.06 (0.05 – 0.08) 

20:3n-6 2.50 ± 0.52 1.96 ± 0.441,a  2.45 ± 0.65 2.45 ± 0.65 

20:4n-6 6.00 ± 1.10 5.49 ± 1.001,a  5.97 ± 1.00 6.02 ± 1.09 

22:4n-6§ 0.31 (0.26 – 0.37) 0.22 (0.20 – 0.27)1,a  0.31 (0.25 – 0.34) 0.33 (0.26 – 0.35)1 

22:5n-6§ 0.16 (0.12 – 0.20) 0.33 (0.27 – 0.38)1,a  0.13 (0.11 – 0.21) 0.14 (0.11 – 0.21) 

18:3n-3§ 0.19 (0.15 – 0.24) 0.16 (0.12 – 0.20) 1  0.18 (0.14 – 0.22) 0.18 (0.15 – 0.24) 

20:5n-3§ 0.31 (0.24 – 0.41) 0.43 (0.35 – 0.53)1,a  0.30 (0.23 – 0.41) 0.28 (0.22 – 0.36) 

22:5n-3 0.52 ± 0.16 0.37 ± 0.101,a  0.51 ± 0.14 0.51 ± 0.14 

22:6n-3 1.38 ± 0.51 3.78 ± 0.951,a  1.25 ± 0.41 1.23 ± 0.43 

EPA + DHA§ 1.58 (1.35 – 2.13) 4.10 (3.57 – 4.99)1,a  1.58 (1.22 – 1.91) 1.46 (1.23 – 1.90) 

∑n-6 FA§ 30.56 (29.00 – 32.19) 28.36 (27.57 – 29.69)1,a  30.91 (29.73 – 32.19) 30.33 (29.62 – 32.00) 

∑n-3 FA 2.56 ± 0.62 4.88 ± 1.021,a  2.41 ± 0.48 2.36 ± 0.47 

∑n-6/∑n-3 FA§ 12.73 (10.11 – 14.23) 5.84 (5.10 – 6.71)1,a  13.17 (11.38 – 15.36) 13.09 (11.17 – 14.71) 

∑n-6 LCPUFA§ 9.28 (8.26 – 10.52) 8.22 (7.20 – 9.43)1,a  9.02 (8.09 – 10.43) 9.27 (8.38 – 10.04) 

∑n-3 LCPUFA 2.37 ± 0.60 4.71 ± 1.021,a  2.20 ± 0.45 2.17 ± 0.45 

∑n-6/∑n-3 LCPUFA§ 4.23 (3.68 – 4.76) 1.82 (1.54 – 2.06)1,a  4.20 (3.85 – 4.77) 4.26 (3.95 – 4.91) 

Abbreviations see Table  8.16. 

*  One sample was lost during preparation. 
§  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0; a p < 0.05 vs. placebo at the same time point. 
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Table  8.18. Relative fatty acid composition (wt%) in RBC phosphatidylethanolamine at weeks 0 and 8, DHAVEG study (mean ± SD or median with IQR). 

 DHA group (n = 55)  Placebo group (n = 52)* 

 Week 0 Week 8  Week 0 Week 8 

16:0 15.97 ± 1.21 16.54 ± 1.211,a  15.94 ± 1.27 15.79 ± 1.20 

18:0 7.61 ± 0.71 7.61 ± 0.67  7.56 ± 0.47 7.71 ± 0.441 

18:1n-9 16.36 ± 1.56 16.12 ± 1.531  16.70 ± 1.67 16.72 ± 1.61 

20:3n-9 0.10 ± 0.04 0.08 ± 0.031,a  0.10 ± 0.03 0.11 ± 0.041 

18:2n-6 6.55 ± 1.27 5.82 ± 1.161,a  6.87 ± 1.19 6.88 ± 1.36 

18:3n-6 0.11 ± 0.02 0.09 ± 0.021,a  0.11 ± 0.02 0.11 ± 0.02 

20:3n-6§ 1.63 (1.41 – 1.87) 1.48 (1.29 – 1.62)1,a  1.57 (1.40 – 1.82) 1.60 (1.43 – 1.87) 

20:4n-6 25.56 ± 1.84 23.77 ± 1.891,a  25.49 ± 1.68 25.60 ± 1.65 

22:4n-6 8.52 ± 1.40 6.57 ± 1.261,a  8.45 ± 1.23 8.48 ± 1.20 

22:5n-6 1.15 ± 0.30 1.67 ± 0.28  1.07 ± 0.33 1.07 ± 0.32 

18:3n-3§ 0.13 (0.11 – 0.16) 0.11 (0.08 – 0.14)1,a  0.13 (0.11 – 0.17) 0.14 (0.11 – 0.18) 

20:5n-3§ 0.71 (0.55 – 0.88) 0.81 (0.67 – 0.96)1  0.70 (0.59 – 0.89) 0.73 (0.60 – 0.89) 

22:5n-3 5.12 ± 1.11 3.65 ± 0.851,a  5.13 ± 1.02 5.15 ± 1.04 

22:6n-3§ 6.06 (4.83 – 8.13) 12.49 (10.97 – 13.39)1,a  5.72 (4.48 – 7.85) 5.32 (4.37 – 7.56)1 

EPA + DHA§ 7.03 (5.43 – 9.16) 13.45 (11.61 – 14.40)1,a  6.48 (5.22 – 8.62) 6.20 (5.00 – 8.56)1 

∑n-6 FA 43.94 ± 2.85 39.76 ± 2.651,a  44.04 ± 2.25 44.21 ± 1.93 

∑n-3 FA 12.79 ± 2.30 16.93 ± 2.201,a  12.37 ± 1.92 12.20 ± 1.98 

∑n-6/∑n-3 FA§ 3.44 (3.03 – 4.12) 2.36 (2.08 – 2.70)1,a  3.58 (3.12 – 4.15) 3.73 (3.18 – 4.08)1 

∑n-6 LCPUFA§ 38.35 (34.84 – 39.25) 33.88 (32.01 – 35.72)1,a  37.51 (36.34 – 38.34) 37.52 (35.91 – 38.64) 

∑n-3 LCPUFA§ 12.77 (11.04 – 14.13) 17.06 (15.41 – 18.27)1,a  12.15 (10.61 – 13.84) 11.77 (10.78 – 13.65)1 

∑n-6/∑n-3 LCPUFA§ 2.94 (2.62 – 3.57) 1.98 (1.79 – 2.31)1,a  3.06 (2.71 – 3.52) 3.21 (2.79 – 3.49)1 

Abbreviations see Table  8.16. 

*  One sample was lost during preparation. 
§  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0; a p < 0.05 vs. placebo at the same time point. 
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Table  8.19. Relative fatty acid composition (wt%) in RBC total lipids at weeks 0 and 8, DHAVEG study (mean ± SD or median with IQR). 

 DHA group (n = 52)*  Placebo group (n = 51)* 

 Week 0 Week 8  Week 0 Week 8 

16:0§ 21.41 (20.88 – 21.94) 21.79 (21.14 – 22.26)1,a  21.25 (20.73 – 22.03) 20.98 (20.62 – 21.95)1 

18:0 13.89 ± 0.67 13.99 ± 0.631  13.88 ± 0.69 14.04 ± 0.681 

18:1n-9§ 12.02 (11.63 – 12.90) 11.85 (11.42 – 12.40)1,a  12.32 (11.86 – 13.02) 12.51 (11.88 – 13.20) 

20:3n-9§ 0.07 (0.06 – 0.09) 0.05 (0.04 – 0.07)1,a  0.08 (0.05 – 0.09) 0.07 (0.06 – 0.09) 

18:2n-6 10.18 ± 1.36 9.66 ± 1.421,a  10.55 ± 1.18 10.56 ± 1.37 

18:3n-6§ 0.04 (0.03 – 0.05) 0.03 (0.02 – 0.03)1,a  0.04 (0.03 – 0.05) 0.04 (0.03 – 0.05) 

20:3n-6§ 1.82 (1.61 – 2.14) 1.53 (1.38 – 1.74)1,a  1.75 (1.54 – 2.15) 1.82 (1.53 – 2.08) 

20:4n-6§ 14.04 (13.27 – 14.67) 12.75 (12.19 – 13.26)1,a  14.09 (13.50 – 14.64) 14.26 (13.59 – 14.54) 

22:4n-6 3.36 ± 0.60 2.58 ± 0.541,a  3.31 ± 0.54 3.32 ± 0.51 

22:5n-6 0.78 ± 0.20 1.07 ± 0.171,a  0.72 ± 0.19 0.72 ± 0.19 

18:3n-3§ 0.12 (0.10 – 0.14) 0.11 (0.09 – 0.13)1,a  0.12 (0.11 – 0.15) 0.12 (0.10 – 0.15) 

20:5n-3§ 0.39 (0.32 – 0.49) 0.46 (0.37 – 0.53)1,a  0.38 (0.30 – 0.49) 0.39 (0.30 – 0.46) 

22:5n-3 2.29 ± 0.47 1.66 ± 0.371,a  2.32 ± 0.45 2.31 ± 0.43 

22:6n-3§ 4.26 (3.56 – 5.11) 8.03 (7.41 – 8.53)1,a  3.94 (3.42 – 5.14) 3.85 (3.21 – 4.88)1 

EPA + DHA 4.84 ± 1.16 8.38 ± 1.311,a  4.58 ± 1.03 4.43 ± 0.951 

∑n-6 FA 30.61 ± 1.64 27.98 ± 1.671,a  30.85 ± 1.45 30.91 ± 1.52 

∑n-3 FA 7.40 ± 1.17 10.28 ± 1.221,a  7.18 ± 0.99 7.02 ± 0.891 

∑n-6/∑n-3 FA§ 4.24 (3.60 – 4.85) 2.69 (2.42 – 3.03)1,a  4.35 (3.75 – 4.88) 4.39 (3.89 – 4.95)1 

∑n-6 LCPUFA§ 20.58 (19.70 – 21.34) 18.23 (17.49 – 18.93)1,a  20.51 (19.63 – 21.04) 20.44 (19.41 – 21.09) 

∑n-3 LCPUFA 7.27 ± 1.16 10.17 ± 1.221,a  7.04 ± 0.99 6.89 ± 0.881 

∑n-6/∑n-3 LCPUFA§ 2.85 (2.51 – 3.33) 1.78 (1.63 – 1.99)1,a  2.97 (2.57 – 3.27) 3.03 (2.65 – 3.29)1 

Abbreviations see Table  8.16. 

*  Some samples were lost during preparation. 
§  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0; a p < 0.05 vs. placebo at the same time point. 
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Table  8.20. Spearman-Rho correlations between RBC total lipid fatty acids (wt%) and fatty acids from RBC PE, RBC PC                                                               
and plasma PL at week 0 and week 8 in all subjects, DHAVEG study (n = 103). 

  RBC PE  RBC PC  Plasma PL 

  Week 0 Week 8  Week 0 Week 8  Week 0 Week 8 

16:0  0.491* 0.521*  0.785* 0.705*  0.745* 0.753* 

18:1n-9  0.711* 0.664*  0.782* 0.704*  0.528* 0.515* 

18:2n-6  0.896* 0.887*  0.858* 0.930*  0.759* 0.802* 

20:3n-6  0.798* 0.791*  0.777* 0.757*  0.790* 0.781* 

20:4n-6  0.700* 0.826*  0.615* 0.700*  0.581* 0.661* 

22:4n-6  0.946* 0.965*  0.668* 0.821*  0.604* 0.758* 

22:5n-6  0.973* 0.969*  0.905* 0.910*  0.899* 0.895* 

18:3n-3  0.612* 0.672*  0.815* 0.827*  0.747* 0.743* 

20:5n-3  0.939* 0.913*  0.857* 0.856*  0.830* 0.817* 

22:5n-3  0.947* 0.961*  0.691* 0.755*  0.762* 0.851* 

22:6n-3  0.954* 0.971*  0.921* 0.955*  0.921* 0.944* 

EPA + DHA  0.956* 0.972*  0.900* 0.959*  0.911* 0.944* 

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine;  
PL, phospholipids; RBC, red blood cells. 

*  Significant correlations between RBC total lipid fatty acids and fatty acids of the other lipid fractions  (p < 0.001). 
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Table  8.21. Spearman-Rho correlations between percentage fatty acid changes from baseline in RBC total lipids or plasma phospholipids and percentage fatty 
acid changes in the other lipid fractions after 8-week supplementation with DHA, DHAVEG study (n = 52 – 55). 

 RBC TL – Plasma PL RBC TL – RBC PC RBC TL – RBC PE Plasma PL – RBC PC Plasma PL – RBC PE 

18:2n-6 0.746* 0.797* 0.666* 0.768* 0.595* 

20:4n-6 0.580* 0.636* 0.628* 0.770* ns 

22:5n-6 0.750* 0.849* 0.965* 0.863* 0.705* 

18:3n-3 0.823* 0.791* 0.531* 0.738* 0.278* 

20:5n-3 0.849* 0.902* 0.754* 0.949* 0.525* 

22:5n-3 0.603* 0.487* 0.834* 0.658* 0.412* 

22:6n-3 0.814* 0.897* 0.941* 0.885* 0.720* 

EPA + DHA 0.794* 0.898* 0.933* 0.861* 0.682* 

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; ns, non-significant; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PL, phospholipids;  
RBC, red blood cells. 

*  Significant correlations between RBC total lipid fatty acids and fatty acids of the other lipid fractions  (p < 0.05). 
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Table  8.22. BMI, blood pressure and heart rate at weeks 0 and 8, FO/EPO study (mean ± SD or median with IQR). 

 FO/EPO group (n = 19)  Placebo group (n = 20)   

 Week 0 Week 8  Week 0 Week 8  P† 

Weight (kg) 60.9 ± 7.0 61.0 ± 7.0  62.3 ± 6.5 62.0 ± 6.4  0.136 

BMI (kg/m2) 21.7 ± 1.9 21.7 ± 1.8  21.9 ± 2.0 21.9 ± 2.0  0.438 

Systolic BP (mm Hg) 118 ± 13 120 ± 11  119 ± 11 120 ± 12  0.755 

Diastolic BP (mm Hg)§ 74 (67 – 78) 69 (67 – 77)1  71 (67 – 79) 73 (69 – 81)  0.126 

Heart rate (beats/min) 74 ± 11 74 ± 10  74 ± 14 75 ± 14  0.710 

BMI, body mass index; BP, blood pressure; IQR, interquartile range. 
§  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0. 
†  Analyses of group differences in absolute changes from baseline (week 8 – week 0). 
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Table  8.23. Liver enzymes and full blood cell count at weeks 0 and 8, FO/EPO study (mean ± SD or median with IQR). 

 FO/EPO group (n = 19)  Placebo group (n = 20)   

 Week 0 Week 8  Week 0 Week 8  P† 

GGT (U/l)§ 14.0 (11.0 – 18.0) 12.0 (11.0 – 17.0)  12.0 (10.0 – 16.8) 12.5 (11.0 – 16.5)  0.216 

ALT (U/l)§ 21.0 (14.0 – 26.0) 19.0 (12.0 – 23.0)  18.0 (14.0 – 21.8) 17.5 (14.0 – 19.8)  0.872 

AST (U/l)§ 19.0 (18.0 – 29.0) 20.0 (19.0 – 22.0)  20.0 (17.0 – 23.5) 21.0 (18.3 – 23.0)  0.228 

CHE (kU/l) 6.4 ± 1.6 6.3 ± 1.6  5.5 ± 1.2 5.8 ± 1.11  0.001 

Blood cell count        

     Leucocytes (G/l)§  5.6 (5.0 – 6.3) 5.7 (5.2 – 6.8)  5.9 (5.4 – 6.7) 5.9 (5.3 – 6.7)  0.851 

     Erythrocytes (T/l)§ 4.6 (4.4 – 4.8) 4.4 (4.2 – 4.8)  4.5 (4.3 – 4.8) 4.6 (4.3 – 4.9)  0.050 

     Haemoglobin (g/dl) 13.6 ± 0.7 13.4 ± 0.9  13.6 ± 0.9 13.9 ± 0.9  0.033 

     Haematocrit (%) 41.9 ± 2.5 40.0 ± 2.61  41.3 ± 2.4 41.7 ± 2.8  0.010 

     MCV (fl) 90.9 ± 4.6 88.7 ± 5.71  91.7 ± 2.9 90.8 ± 3.6  0.145 

     MCH (pg) 29.7 ± 1.7 29.8 ± 1.8  30.0 ± 1.0 30.2 ± 1.1  0.744 

     MCHC (%)§ 32.5 (32.2. – 32.7) 33.6 (32.6 – 34.3)1  32.7 (32.3. – 33.2) 33.3 (32.5 – 34.0)1  0.263 

     Platelets (G/l) 300 ± 59a 289 ± 71a  257 ± 50 246 ± 56  0.862 

IQR, interquartile range; GGT, gamma-glutamyl transpeptidase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CHE, cholinesterase; MCV, 
mean cellular volume; MCH, mean cellular haemoglobin; MCHC, mean cellular haemoglobin concentration. 
§  Median with IQR in parentheses. 
1  p < 0.05 vs. week 0; a  p < 0.05 vs. placebo at the same time point. 
†  Analyses of group differences in absolute changes from baseline (week 8 – week 0). 
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Table  8.24. Relative fatty acid composition (wt%) of plasma total lipids at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD or median with IQR). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

20:3n-9  ln 

* 

-1.95 ± 0.33 

0.142 

-2.34 ± 0.421,a 

0.096 

-2.34 ± 0.391,a 

0.096 

-2.29 ± 0.081,a 

0.101 
 

-1.93 ± 0.39 

0.144 

-2.03 ± 0.37 

0.131 

-1.98 ± 0.41 

0.138 

-2.03 ± 0.39 

0.131 

18:2n-6 ln 

* 

3.24 ± 0.10 

25.46 

3.25 ± 0.10 

25.88 

3.26 ± 0.11 

26.06 

3.22 ± 0.13 

25.00 
 

3.28 ± 0.13 

26.46 

3.28 ± 0.11 

26.57 

3.29 ± 0.11 

26.88 

3.30 ± 0.13 

27.08 

18:3n-6  ln 

* 

-1.05 ± 0.23 

0.351 

-0.658 ± 0.2441,a 

0.518 

-0.798 ± 0.2351,a 

0.450 

-0.686 ± 0.2281,a 

0.504 
 

-1.09 ± 0.48 

0.338 

-1.17 ± 0.28 

0.310 

-1.08 ± 0.33 

0.341 

-1.169 ± 0.329 

0.311 

20:3n-6 - 2.00 ± 0.30a 2.25 ± 0.491,a 2.20 ± 0.411,a 2.27 ± 0.451,a  1.76 ± 0.35 1.76 ± 0.36 1.78 ± 0.37 1.73 ± 0.35 

20:4n-6  1/x 

* 

0.156 ± 0.034 

6.42 

0.155 ± 0.027 

6.44 

0.155 ± 0.035 

6.45 

0.161 ± 0.037 

6.20 
 

0.145 ± 0.020 

6.90 

0.148 ± 0.024 

6.74 

0.153 ± 0.0221 

6.52 

0.154 ± 0.0191 

6.49 

22:4n-6 - 0.228 ± 0.061 0.194 ± 0.0481 0.179 ± 0.0431,a 0.190 ± 0.0571  0.231 ± 0.042 0.212 ± 0.0341 0.206 ± 0.0371 0.194 ± 0.0381 

22:5n-6 - 0.267 ± 0.092 0.219 ± 0.0731 0.207 ± 0.0741 0.208 ± 0.0791  0.246 ± 0.068 0.237 ± 0.060 0.236 ± 0.057 0.218 ± 0.0521 

18:3n-3 ln 

* 

-0.609 ± 0.310a 

0.503 

-0.726 ± 0.309 

0.484 

-0.751 ± 0.403 

0.472 

-0.802 ± 0.2071 

0.440 
 

-0.852 ± 0.302 

0.427 

-0.687 ± 0.285 

0.503 

-0.721 ± 0.248 

0.486 

-0.639 ± 0.3021 

0.528 

20:5n-3§ - 0.510 

(0.388 – 0.684) 

0.6791,a 

(0.524 – 0.783) 

0.6441,a 

(0.598 – 0.747) 

0.6861,a 

(0.548 – 0.811) 
 

0.472 

(0.329 – 0.521) 

0.459 

(0.377 – 0.551) 

0.444 

(0.349 – 0.671) 

0.5051 

(0.428 – 0.599) 

22:5n-3 - 0.392 ± 0.105 0.356 ± 0.072 0.350 ± 0.089 0.357 ± 0.081  0.355 ± 0.089 0.362 ± 0.075 0.350 ± 0.086 0.375 ± 0.092 

22:6n-3 - 2.04 ± 0.43 3.12 ± 0.481,a 3.25 ± 0.481,a 3.14 ± 0.421,a  1.87 ± 0.42 1.98 ± 0.60 1.92 ± 0.51 1.97 ± 0.61 

IQR, interquartile range; T, transformation of the data; -, no transformation; ln, natural logarithm; 1/x, reciprocal value. 

*  Back transformed mean.   
§  Median with IQR in parentheses. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
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Table  8.25. Fatty acid sums (wt%) and ratios in plasma total lipids at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD or median with IQR). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

GLA + DGLA - 2.36 ± 0.35 2.78 ± 0.551,a 2.66 ± 0.451,a 2.78 ± 0.491,a  2.13 ± 0.41 2.08 ± 0.38 2.14 ± 0.40 2.06 ± 0.37 

∑n-6 FA - 35.40 ± 2.63 36.10 ± 2.68 36.31 ± 2.74 35.14 ± 3. 56  36.57 ± 3.47 36.48 ± 2.86 36.53 ± 2.86 36.57 ± 3.36 

∑n-3 FA ln 

* 

1.30 ± 0.22a 

3.65 

1.56 ± 0.141,a 

4.75 

1.58 ± 0.141,a 

4.85 

1.56 ± 0.121,a 

4.74 

 1.16 ± 0.14 

3.20 

1.24 ± 0.21 

3.44 

1.20 ± 0.20 

3.33 

1.25 ± 0.23 

3.50 

∑n-6/∑n-3 FA - 9.94 ± 0.51a 7.65 ± 0.261,a 7.55 ± 0.271,a 7.46 ± 0.241,a  11.57 ± 0.48 10.86 ± 0.53 11.21 ± 0.58 10.77 ± 0.6 0 

∑n-6 LCPUFA 1/x 

* 

0.108 ± 0.017 

9.23 

0.107 ± 0.014 

9.38 

0.107 ± 0.018 

9.35 

0.109 ± 0.018 

9.20 

 0.107 ± 0.013 

9.38 

0.108 ± 0.013 

9.24 

0.111 ± 0.013 

9.01 

0.113 ± 0.0111 

8.88 

∑n-3 LCPUFA ln 

* 

1.11 ± 0.24 

3.03 

1.43 ± 0.161,a 

4.19 

1.46 ± 0.141,a 

4.30 

1.44 ± 0.131,a 

4.23 

 0.99 ± 0.17 

2.70 

1.05 ± 0.24 

2.87 

1.02 ± 0.23 

2.78 

1.06 ± 0.25 

2.90 

∑n-6/∑n-3 
LCPUFA§ 

- 3.24 

(2.28 – 3.88) 

2.161,a 

1.99 – 2.54) 

2.081,a 

(1.85 – 2.54) 

2.081,a 

(1.94 – 2.43) 

 3.53 

(3.19 – 3.89) 

3.27 

(3.04 – 3.71) 

3.38 

(2.72 – 3.84) 

3.271 

(2.48 – 3.85) 

IQR, interquartile range; GLA, gamma-linolenic acid; DGLA, dihomo-gamma-linolenic acid; ∑n-6 FA, sum of n-6 fatty acids; ∑n-3 FA, sum of n-3 fatty acids; ∑n-
6/∑n-3 FA, ratio of n-6 to n-3 fatty acids; ∑n-6 LCPUFA, sum of all long-chain n-6 fatty acids; ∑n-3 LCPUFA, sum of all long-chain n-3 fatty acids; ∑n-6/∑n-3 
LCPUFA, ratio of n-6 to n-3 long-chain polyunsaturated fatty acids; T, transformation of the data; -, no transformation; ln, natural logarithm; 1/x, reciprocal value. 

*  Back transformed mean. 
§  Median with IQR in parentheses. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
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Table  8.26. Relative fatty acid composition (wt%) of plasma phospholipids at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD or median with IQR). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

20:3n-9  ln 

* 

-1.72 ± 0.29 

0.179 

-2.13 ± 0.401,a 

0.119 

-2.17 ± 0.291,a 

0.114 

-2.08 ± 0.351,a 

0.125 
 

-1.76 ± 0.40 

0.172 

-1.82 ± 0.34 

0.163 

-1.78 ± 0.43 

0.169 

-1.81 ± 0.41 

0.164 

18:2n-6 - 18.73 ± 1.87 18.08 ± 2.28 18.04 ± 2.51a 17.46 ± 2.29a  19.38 ± 2.42 19.49 ± 2.31 19.87 ± 2.37 20.02 ± 1.9 4 

18:3n-6  1/x 

* 

11.19 ± 3.08 

0.089 

8.51 ± 2.491,a 

0.117 

10.32 ± 3.16 

0.097 

8.49 ± 2.051,a 

0.118 
 

11.52 ± 4.40 

0.087 

12.24 ± 3.45 

0.082 

11.34 ± 3.45 

0.088 

12.68 ± 3.75 

0.079 

20:3n-6 - 3.50 ± 0.57a 3.89 ± 0.941,a 3.77 ± 0.731,a 3.98 ± 0.911,a  3.04 ± 0.59 3.09 ± 0.72 3.09 ± 0.70 2.98 ± 0.63 

20:4n-6  ln 

* 

2.20 ± 0.18 

9.03 

2.15 ± 0.16 

8.63 

2.16 ± 0.22 

8.68 

2.14 ± 0.20 

8.49 
 

2.26 ± 0.11 

9.55 

2.24 ± 0.13 

9.39 

2.19 ± 0.121 

8.97 

2.18 ± 0.101 

8.85 

22:4n-6 - 0.369 ± 0.085 0.302 ± 0.0771,a 0.277 ± 0.0651,a 0.298 ± 0.0921  0.384 ± 0.077 0.348 ± 0.0551 0.339 ± 0.0601 0.317 ± 0.0601 

22:5n-6 - 0.400 ± 0.138 0.312 ± 0.1101 0.291 ± 0.0971,a 0.300 ± 0.1111  0.377 ± 0.094 0.358 ± 0.081 0.354 ± 0.079 0.328 ± 0.0701 

18:3n-3 ln 

* 

-1.53 ± 0.39a 

0.216 

-1.68 ± 0.36 

0.186 

-1.81 ± 0.44 

0.164 

-1.79 ± 0.281,a 

0.168 
 

-1.81 ± 0.43 

0.163 

-1.62 ± 0.35 

0.198 

-1.65 ± 0.37 

0.191 

-1.56 ± 0.33 

0.210 

20:5n-3§ - 0.591 

(0.460 – 0.792) 

0.7241,a 

(0.607 – 0.907) 

0.7441,a 

(0.661 – 0.849) 

0.7671,a 

(0.653 – 0.953) 
 

0.572 

(0.388 – 0.620) 

0.559 

(0.463 – 0.650) 

0.538 

(0.423 – 0.774) 

0.561 

(0.516 – 0.732) 

22:5n-3 - 0.668 ± 0.157 0.590 ± 0.1061 0.576 ± 0.1331 0.600 ± 0.1331  0.606 ± 0.153 0.620 ± 0.130 0.603 ± 0.135 0.663 ± 0.141 

22:6n-3§ - 3.09 

(3.01 – 3.56) 

4.991,a 

(4.39 – 5.40) 

5.101,a 

(4.67 – 5.45) 

5.031,a 

(4.63 – 5.41) 
 

3.21 

(2.59 – 3.60) 

3.04 

(2.60 – 3.96) 

3.20 

(2.60 – 3.83) 

3.14 

(2.37 – 4.15) 

IQR, interquartile range; T, transformation of the data; -, no transformation; ln, natural logarithm; 1/x, reciprocal value. 

*  Back transformed mean. 
§  Median with IQR in parentheses. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
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Table  8.27. Fatty acid sums (wt%) and ratios in plasma phospholipids at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD or median with IQR). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

GLA + DGLA - 3.59 ± 0.58a 4.02 ± 0.941,a 3.88 ± 0.731,a 4.11 ± 0.90 1,a  3.14  ± 0.61 3.18 ± 0.72 3.19 ± 0.69 3.07 ± 0.63 

∑n-6 FA§ - 32.63  

(31.56 – 33.84) 

31.35a 

(30.74 – 33.98) 

31.36a 

(30.79 – 33.28) 

31.881,a 

(29.99 – 32.56) 
 

33.33 

(31.66 – 35.07) 

33.76 

(32.13 – 34.42) 

33.57 

(31.85 – 34.45) 

33.33 

(31.88 – 34.21) 

∑n-3 FA ln 

* 

1.61 ± 0.19 

5.00 

1.88 ± 0.131,a 

6.54 

1.90 ± 0.141,a 

6.67 

1.89 ± 0.111,a 

6.65 
 

1.50 ± 0.16 

4.49 

1.57 ± 0.23 

4.79 

1.53 ± 0.22 

4.62 

1.56 ± 0.24 

4.77 

∑n-6/∑n-3 FA - 6.66 ± 0.29 4.92 ± 0.201,a 4.82 ± 0.201,a 4.72 ± 9.141,a  7.51 ± 0.30 7.12 ± 0.35 7.38 ± 0.41 7.15 ± 0.41 

∑n-6 LCPUFA§ - 13.61 

(12.33 – 15.70) 

13.28 

(12.56 – 15.06) 

13.51 

(12.10 – 14.19) 

13.60 

(11.87 – 15.08) 

 13.55 

(13.08 – 14.41) 

14.28 

(12.25 – 14.98) 

13.001 

(12.43 – 14.08) 

12.631 

(12.09 – 13.53) 

∑n-3 LCPUFA 2ln 

* 

0.435 ± 0.11 

4.69 

0.607 ± 0.081,a 

6.26 

0.620 ± 0.081,a 

6.41 

0.620 ± 0.061,a 

6.42 

 0.366 ± 0.12 

4.23 

0.402 ± 0.15 

4.46 

0.376 ± 0.17 

4.29 

0.395 ± 0.17 

4.41 

∑n-6/∑n-3 
LCPUFA 

1/√ 

* 

0.593 ± 0.020 

2.85 

0.685 ± 0.0151,a 

2.13 

0.696 ± 0.0151,a 

2.07 

0.694 ± 0.0141,a 

2.08 

 0.559 ± 0.009 

3.20 

0.581 ± 0.013 

2.97 

0.580 ± 0.014 

2.97 

0.596 ± 0.017 

2.81 

Abbreviations see Table  8.25. IQR, interquartile range; T, transformation of the data; -, no transformation; ln, natural logarithm; 2ln, double natural logarithm; √, 
square root. 

*  Back transformed mean. 
§  Median with IQR in parentheses. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
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Table  8.28. Relative fatty acid composition (wt%) of plasma cholesterol esters at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

20:3n-9  ln 

* 

-2.59 ± 0.39 

0.075 

-2.91 ± 0.541 

0.054 

-2.90 ± 0.571 

0.055 

-2.82 ± 0.531 

0.060 
 

-2.67 ± 0.42 

0.069 

-2.68 ± 0.46 

0.069 

-2.67 ± 0.53 

0.070 

-2.62 ± 0.53 

0.073 

18:2n-6 - 48.45 ± 3.20 48.82 ± 4.23 48.47 ± 3.84 47.76 ± 4.25  50.16 ± 3.93 49.82 ± 3.35 49.69 ± 3.48 49.71 ± 3.82 

18:3n-6  ln 

* 

-0.113 ± 0.214 

0.893 

0.219 ± 0.2631,a 

1.245 

0.078 ± 0.2541,a 

1.081 

0.223 ± 0.2191,a 

1.250 
 

-0.198 ± 0.444 

0.820 

-0.246 ± 0.277 

0.782 

-0.188 ± 0.338 

0.829 

-0.256 ± 0.305 

0.774 

20:3n-6 x2 

* 

0.783 ± 0.238a 

0.885 

1.03 ± 0.391,a 

1.014 

1.11 ± 0.461,a 

1.054 

1.12 ± 0.421,a 

1.056 
 

0.621 ± 0.254 

0.788 

0.650 ± 0.309 

0.806 

0.638 ± 0.261 

0.799 

0.599 ± 0.248 

0.774 

20:4n-6  ln 

* 

1.90 ± 0.22 

6.69 

1.92 ± 0.20 

6.85 

1.94 ± 0.25 

6.99 

1.91 ± 0.25 

6.77 
 

1.94 ± 0.15 

6.98 

1.94 ± 0.17 

6.98 

1.91 ± 0.16 

6.74 

1.89 ± 0.14 

6.63 

22:4n-6           

22:5n-6 - 0.040 ± 0.017 0.032 ± 0.0131 0.032 ± 0.0161 0.030 ± 0.0141  0.037 ± 0.013 0.034 ± 0.011 0.036 ± 0.012 0.032 ± 0.0081 

18:3n-3 - 0.693 ± 0.168a 0.592 ± 0.1591 0.526 ± 0.1581 0.539 ± 0.1231  0.553 ± 0.173 0.564 ± 0.127 0.580 ± 0.139 0.625 ± 0.172 

20:5n-3 ln 

* 

-0.421 ± 0.483a 

0.656 

-0.233 ± 0.316a 

0.792 

-0.229 ± 0.167a 

0.795 

-0.203 ± 0.300a 

0.816 
 

-0.722 ± 0.373 

0.486 

-0.587 ± 0.385 

0.556 

-0.618 ± 0.381 

0.539 

-0.457 ± 0.4091 

0.633 

22:5n-3           

22:6n-3 - 0.620 ± 0.096 0.938 ± 0.1781,a 1.02 ± 0.191,a 0.979 ± 0.1801,a  0.581 ± 0.159 0.616 ± 0.186 0.614 ± 0.184 0.604 ± 0.198 

T, transformation of the data; -, no transformation; ln, natural logarithm; x2, squared. 

*  Back transformed mean. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
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Table  8.29. Fatty acid sums (wt%) and ratios in plasma cholesterol esters at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD or median with IQR). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

GLA + DGLA 2ln 

* 

1.05 ± 0.06 

1.75 

1.13 ± 0.071,a 

2.22 

1.11 ± 0.071,a 

2.08 

1.14 ± 0.061,a 

2.26 
 

1.02 ± 0.11 

1.59 

1.01 ± 0.08 

1.55 

1.02 ± 0.08 

1.60 

1.00 ± 0.08 

1.52 

∑n-6 FA x2 

* 

3275 ± 304 

57.23 

3397 ± 429 

58.28 

3363 ± 371 

57.99 

3281 ± 463 

57.28 
 

3490 ± 427 

59.08 

3440 ± 335 

58.65 

3404 ± 366 

58.34 

3384 ± 436 

58.18 

∑n-3 FA§ - 1.98a 

(1.74 – 2.32) 

2.441,a 

(2.16 – 2.73) 

2.471,a 

(2.35 – 2.67) 

2.411,a 

(2.21 – 2.65) 
 

1.73 

(1.56 – 2.00) 

1.70 

(1.62 – 2.09) 

1.84 

(1.42 – 2.12) 

2.03 

(1.57 – 2.18) 

∑n-6/∑n-3 FA - 28.29 ± 1.55a 24.12 ± 0.831,a 24.00 ± 0.751,a 23.75 ± 0.981,a  35.63 ± 2.18 32.99 ± 1.68 33.18 ± 1.94 30.96 ± 1.8 4 

∑n-6 LCPUFA ln 

* 

2.04 ± 0.20 

7.66 

2.07 ± 0.18 

7.93 

2.09 ± 0.23 

8.11 

2.07 ± 0.23 

7.92 

 2.06 ± 0.15 

7.84 

2.06 ± 0.16 

7.86 

2.03 ± 0.15 

7.61 

2.01 ± 0.13 

7.48 

∑n-3 LCPUFA 1/x 

* 

0.771 ± 0.194a 

1.30 

0.571 ± 0.1211,a 

1.75 

0.544 ± 0.0971,a 

1.84 

0.550 ± 0.1011,a 

1.82 

 0.919 ± 0.242 

1.09 

0.850 ± 0.222 

1.18 

0.870 ± 0.263 

1.15 

0.820 ± 0.242 

1.22 

∑n-6/∑n-3 
LCPUFA 

√ 

* 

2.42 ± 0.11 

5.88 

2.12 ± 0.061,a 

4.50 

2.10 ± 0.061,a 

4.42 

2.09 ± 0.081,a 

4.38 

 2.66 ± 0.06 

7.06 

2.55 ± 0.06 

6.51 

2.54 ± 0.08 

6.44 

2.44 ± 0.071 

5.95 

Abbreviations see Table  8.25. IQR, interquartile range; T, transformation of the data; -, no transformation; 2ln, double natural logarithm (10*x); x2, squared; ln, 
natural logarithm; 1/x, reciprocal value; √, square root. 

*  Back transformed mean. 
§  Median with IQR in parentheses. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
 

                                                                                                                 T
ables       A

29 



 

Table  8.30. Relative fatty acid composition (wt%) of plasma triglycerides at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD or median with IQR). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

20:3n-9  ln 

* 

-1.67 ± 0.38 

0.189 

-1.91 ± 0.461 

0.148 

-1.85 ± 0.401,a 

0.156 

-1.85 ± 0.361 

0.157 
 

-1.56 ± 0.33 

0.210 

-1.64 ± 0.43 

0.193 

-1.57 ± 0.44 

0.208 

-1.65 ± 0.38 

0.192 

18:2n-6 ln 

* 

2.53 ± 0.19 

12.49 

2.61 ± 0.22 

13.57 

2.68 ± 0.201 

14.58 

2.53 ± 0.19 

12.57 
 

2.59 ± 0.29 

13.36 

2.57 ± 0.23 

13.09 

2.60 ± 0.24 

13.51 

2.65 ± 0.28 

14.12 

18:3n-6  1/√ 

* 

1.95 ± 0.40 

0.263 

1.58 ± 0.281,a 

0.402 

1.62 ± 0.251,a 

0.381 

1.66 ± 0.341,a 

0.361 
 

1.85 ± 0.51 

0.293 

2.06 ± 0.38 

0.236 

1.92 ± 0.43 

0.271 

2.01 ± 0.50 

0.248 

20:3n-6 - 0.301 ± 0.79 0.400 ± 0.1101,a 0.376 ± 0.0771,a 0.378 ± 0.1171,a  0.278 ± 0.076 0.268 ± 0.092 0.274 ± 0.060 0.256 ± 0.059 

20:4n-6  ln 

* 

0.151 ± 0.401 

1.16 

0.341 ± 0.2871,a 

1.41 

0.273 ± 0.337 

1.31 

0.248 ± 0.376 

1.28 
 

0.113 ± 0.259 

1.12 

0.098 ± 0.260 

1.10 

0.096 ± 0.322 

1.10 

0.046 ± 0.279 

1.05 

22:4n-6 ln 

* 

-1.78 ± 0.36 

0.169 

-1.73 ± 0.31 

0.177 

-1.79 ± 0.31 

0.166 

-1.80 ± 0.36 

0.165 
 

-1.82 ± 0.26 

0.162 

-1.87 ± 0.20 

0.153 

-1.92 ± 0.24 

0.147 

-1.96 ± 0.24 

0.141 

22:5n-6 √ 

* 

0.444 ± 0.096 

0.197 

0.440 ± 0.097 

0.194 

0.429 ± 0.092 

0.184 

0.424 ± 0.101 

0.180 
 

0.415 ± 0.077 

0.173 

0.412 ± 0.086 

0.170 

0.418 ± 0.066 

0.175 

0.392 ± 0.076 

0.154 

18:3n-3 1/x 

* 

1.19 ± 0.40a 

0.837 

1.30 ± 0.42 

0.768 

1.31 ± 0.63 

0.762 

1.42 ± 0.40 

0.706 
 

1.52 ± 0.55 

0.658 

1.19 ± 0.351 

0.837 

1.26 ± 0.331 

0.791 

1.19 ± 0.491 

0.844 

20:5n-3 ln 

* 

-2.06 ± 0.51 

0.128 

-1.65 ± 0.261,a 

0.191 

-1.70 ± 0.251,a 

0.183 

-1.70 ± 0.331,a 

0.183 
 

-2.40 ± 0.56 

0.091 

-2.15 ± 0.51 

0.117 

-2.22 ± 0.59 

0.109 

-2.18 ± 0.56 

0.113 

22:5n-3 ln 

* 

-1.60 ± 0.40 

0.202 

-1.54 ± 0.36 

0.215 

-1.49 ± 0.37a 

0.225 

-1.50 ± 0.32 

0.222 
 

-1.80 ± 0.44 

0.166 

-1.73 ± 0.27 

0.177 

-1.76 ± 0.43 

0.172 

-1.68 ± 0.51 

0.187 

22:6n-3§ - 0.612 

(0.421 – 0.761) 

1.491,a 

(1.12 – 2.04) 

1.421,a 

(1.11 – 1.79) 

1.381,a 

(1.08 – 1.76) 
 

0.520 

(0.301 – 0.607) 

0.473 

(0.327 – 0.747) 

0.574 

(0.373 – 0.683) 

0.527 

(0.322 – 0.698) 

IQR, interquartile range; T, transformation of the data; ln, natural logarithm; √, square root; 1/x, reciprocal value. 

*  Back transformed mean. 
§  Median with IQR in parentheses. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
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Table  8.31. Fatty acid sums (wt%) and ratios in plasma triglycerides at weeks 0, 4, 6 and 8, FO/EPO study (mean ± SD). 

  FO/EPO (n = 19)  Placebo (n = 20) 

 T Week 0 Week 4 Week 6 Week 8  Week 0 Week 4 Week 6 Week 8 

GLA + DGLA ln 

* 

-0.555 ± 0.303 

0.574 

-0.214 ± 0.2861,a 

0.808 

-0.260 ± 0.1641,a 

0.771 

-0.281 ± 0.3001,a 

0.755 
 

-0.508 ± 0.349 

0.602 

-0.667 ± 0.272 

0.513 

-0.560 ± 0.251 

0.571 

-0.632 ± 0.361 

0.532 

∑n-6 FA - 15.16 ± 2.79 16.80 ± 3.63 17.62 ± 3.201 15.50 ± 2.62  16.24 ± 4.18 15.65 ± 3.33 16.17 ± 3.2 6 16.78 ± 3.86 

∑n-3 FA 1/x 

* 

0.509 ± 0.140a 

1.96 

0.366 ± 0.0991,a 

2.73 

0.355 ± 0.1031,a 

2.82 

0.383 ± 0.0841,a 

2.61 
 

0.645 ± 0.165 

1.55 

0.548 ± 0.152 

1.82 

0.564 ± 0.131 

1.77 

0.561 ± 0.2241 

1.78 

∑n-6/∑n-3 FA - 7.72 ± 0.64a 6.05 ± 0.411,a 6.12 ± 0.381,a 5.82 ± 0.271,a  10.44 ± 0.80 8.39 ± 0.521 9.19 ± 0.69 8.99 ± 0.59 

∑n-6 LCPUFA 2ln 

* 

-0.410 ± 0.473 

1.94 

-0.189 ± 0.326a 

2.29 

-0.249 ± 0.316a 

2.18 

-0.301 ± 0.438a 

2.10 

 -0.455 ± 0.342 

1.89 

-0.490 ± 0.344 

1.85 

-0.468 ± 0.322 

1.87 

-0.623 ± 0.529 

1.71 

∑n-3 LCPUFA ln 

* 

0.031 ± 0.395a 

1.03 

0.628 ± 0.3551,a 

1.87 

0.646 ± 0.2771,a 

1.91 

0.608 ± 0.2741,a 

1.84 

 -0.231 ± 0.280 

0.79 

-0.102 ± 0.437 

0.90 

-0.104 ± 0.335 

0.90 

-0.106 ± 0.429 

0.90 

∑n-6/∑n-3 
LCPUFA 

√ 

* 

1.45 ± 0.08 

2.11 

1.15 ± 0.051,a 

1.32 

1.11 ± 0.051,a 

1.23 

1.11 ± 0.041,a 

1.24 

 1.58 ± 0.04 

2.48 

1.47 ± 0.05 

2.17 

1.48 ± 0.05 

2.18 

1.44 ± 0.051 

2.07 

Abbreviations see Table  8.25. T, transformation of the data; ln, natural logarithm; 1/x, reciprocal value; 2ln, double natural logarithm; √, square root. 

*  Back transformed mean. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances). 
a  p < 0.05 vs. placebo at the same time point. 
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Attachment A32 

Table  8.32. Spearman-Rho correlations between fatty acids (wt%) of plasma TL, PL, CE, and TG, 
FO/EPO study (n = 39/40). 

 TL – CE TL - PL CE - PL TL - TG CE - TG PL - TG 

LA       

   week 0 0.890* 0.850* 0.843* 0.731* 0.642* 0.677* 

   week 4 0.842* 0.864* 0.785* ns ns ns 

   week 6 0.891* 0.817* 0.835* 0.575* 0.502* 0.359* 

   week 8 0.903* 0.845* 0.825* 0.689* 0.602* 0.462* 

GLA       

   week 0 0.941* 0.905* 0.886* 0.801* 0.648* 0.774* 

   week 4 0.937* 0.856* 0.742* 0.784* 0.585* 0.727* 

   week 6 0.941* 0.732* 0.648* 0.718* 0.495* 0.686* 

   week 8 0.936* 0.871* 0.794* 0.704* 0.479* 0.768* 

ALA       

   week 0 0.880* 0.896* 0.846* 0.822* 0.546* 0.645* 

   week 4 0.871* 0.818* 0.763* 0.868* 0.616* 0.659* 

   week 6 0.796* 0.772* 0.760* 0.930* 0.645* 0.597* 

   week 8 0.810* 0.789* 0.806* 0.869* 0.542* 0.514* 

DGLA       

   week 0 0.887* 0.954* 0.871* 0.663* 0.569* 0.694* 

   week 4 0.962* 0.959* 0.947* 0.843* 0.790* 0.803* 

   week 6 0.901* 0.958* 0.860* 0.731* 0.676* 0.722* 

   week 8 0.923* 0.972* 0.911* 0.707* 0.713* 0.682* 

AA       

   week 0 0.936* 0.940* 0.907* 0.805* 0.717* 0.722* 

   week 4 0.892* 0.893* 0.891* 0.477* 0.497* 0.376* 

   week 6 0.863* 0.926* 0.839* 0.784* 0.634* 0.621* 

   week 8 0.857* 0.875* 0.915* 0.702* 0.687* 0.623* 

EPA       

   week 0 0.924* 0.955* 0.887* 0.739* 0.563* 0.735* 

   week 4 0.955* 0.974* 0.948* 0.814* 0.762* 0.767* 

   week 6 0.912* 0.974* 0.905* 0.825* 0.751* 0.797* 

   week 8 0.936* 0.968* 0.929* 0.871* 0.778* 0.828* 

DHA       

   week 0 0.930* 0.960* 0.927* 0.755* 0.642* 0.682* 

   week 4 0.940* 0.960* 0.959* 0.902* 0.801* 0.810* 

   week 6 0.921* 0.958* 0.929* 0.927* 0.829* 0.852* 

   week 8 0.954* 0.951* 0.973* 0.921* 0.848* 0.867* 

AA, arachidonic acid; ALA, alpha-linolenic acid; CE, cholesterol ester; DGLA, dihomo-gamma-linolenic 
acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; GLA, gamma-linolenic acid; LA, 
linoleic acid; PL, phospholipids, TG, triglycerides; TL, total lipids. 
*  p < 0.05; ns, non-significant. 
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Table  8.33. Spearman-Rho correlations between plasma TL, PL, CE, and TG fatty acid changes from  
baseline with FO/EPO supplementation, FO/EPO study (wt%/wt%, n = 19). 

 TL – CE TL - PL CE - PL TL - TG CE - TG PL - TG 

GLA       

   week 4 - 0 0.914* 0.682* 0.547* ns ns 0.481* 

   week 6 - 0 0.942* 0.882* 0.732* 0.542* ns 0.761* 

   week 8 - 0 0.879* 0.937* 0.809* 0.647* ns 0.640* 

DGLA       

   week 4 - 0 0.689* 0.877* 0.611* 0.637* ns 0.672* 

   week 6 - 0 0.561* 0.911* 0.544* 0.589* ns 0.712* 

   week 8 - 0 0.868* 0.865* 0.730* 0.658* 0.630* 0.730* 

AA       

   week 4 - 0 0.805* 0.947* 0.840* ns ns ns 

   week 6 - 0 0.805* 0.867* 0.847* ns ns ns 

   week 8 - 0 0.758* 0.816* 0.898* 0.479* ns ns 

EPA       

   week 4 - 0 0.968* 0.977* 0.933* 0.660* 0.540* 0.709* 

   week 6 - 0 0.879* 0.921* 0.907* 0.639* 0.474* 0.554* 

   week 8 - 0 0.921* 0.888* 0.835* ns ns 0.521* 

DHA       

   week 4 - 0 0.846* 0.895* 0.904* 0.858* 0.663* 0.702* 

   week 6 - 0 0.905* 0.947* 0.821* 0.740* 0.725* 0.588* 

   week 8 - 0 0.853* 0.911* 0.889* 0.851* 0.649* 0.761* 

AA, arachidonic acid; ALA, alpha-linolenic acid; CE, cholesterol ester; DGLA, dihomo-gamma-linolenic 
acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; GLA, gamma-linolenic acid; LA, 
linoleic acid; PL, phospholipids, TG, triglycerides; TL, total lipids. 

*  p < 0.05; ns, non-significant. 
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Figure  8.1. Seven-point standard curves for retinol and alpha-tocopherol, DHAVEG study. 

 



    

 

Figure  8.2. Correlations between EPA + DHA in RBC total lipids (wt%) vs. EPA + DHA in RBC PE, PC and plasma PL (Spearman-Rho correlation),                                  
DHAVEG study.  

� and dashed line, placebo group; • and solid line, DHA group. 

• n = 52 
r = 0.957 
p < 0.001 

• n = 52 
r = 0.893 
p  < 0.001 

• n = 52 
r = 0.909 
p < 0.001 

 

• n = 52 
r = 0.870 
p < 0.001 

• n = 52 
r = 0.804 
p < 0.001 
 

• n = 52 
r = 0.732 
p < 0.001 
 

� n = 51 
r = 0.911 
p < 0.001 

 

� n = 51 
r = 0.949 
p < 0.001 

� n = 51 
r = 0.867 
p < 0.001 
 

� n = 51 
r = 0.890 
p < 0.001 

 

� n = 51 
r = 0.885 
p < 0.001 

� n = 51 
r = 0.943 
p < 0.001 
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Figure  8.3. GLA (wt%) in plasma TL, PL, CE, and TG at weeks 0, 4, 6 and 8, FO/EPO study  
(placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; GLA, gamma-linolenic acid; PL, phospholipids; TG, triglycerides; TL, total 
lipids. 
 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances);  
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.4. DGLA (wt%) in plasma TL, PL, CE, and TG at weeks 0, 4, 6 and 8, FO/EPO study  
(placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; DGLA, dihomo-gamma-linolenic acid; PL, phospholipids; TG, triglycerides; TL, 
total lipids. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances);  
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.5. Arachidonic acid (wt%) in plasma TL, PL, CE, and TG at weeks 0, 4, 6 and 8, FO/EPO 
study (placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; PL, phospholipids; TG, triglycerides; TL, total lipids. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances); 
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.6. EPA (wt%) in plasma TL, PL, CE, and TG at weeks 0, 4, 6 and 8, FO/EPO study  
(placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; EPA, eicosapentaenoic acid; PL, phospholipids; TG, triglycerides; TL, total 
lipids. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances);  
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.7. DHA (wt%) in plasma TL, PL, CE, and TG at weeks 0, 4, 6 and 8, FO/EPO study  
(placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; DHA, docosahexaenoic acid; PL, phospholipids; TG, triglycerides; TL, total 
lipids. 
1  Significantly different from baseline (Bonferroni-Holm adjusted significances);  
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.8. Percentage changes from baseline in relative GLA levels at weeks 4, 6, and 8, FO/EPO 
study (placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; GLA, gamma-linolenic acid; PL, phospholipids; TG, triglycerides; TL, total 
lipids. 
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.9. Percentage changes from baseline in relative DGLA levels at weeks 4, 6, and 8, FO/EPO 
study (placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; DGLA, dihomo-gamma-linolenic acid; PL, phospholipids; TG, triglycerides; TL, 
total lipids. 
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.10. Percentage changes from baseline in relative AA levels at weeks 4, 6, and 8, FO/EPO 
study (placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; AA, arachidonic acid; PL, phospholipids; TG, triglycerides; TL, total lipids. 
a  p < 0.05 vs. placebo at the same time point. 
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Figure  8.11. Percentage changes from baseline in relative EPA levels at weeks 4, 6, and 8, FO/EPO 
study (placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; EPA, eicosapentaenoic acid; PL, phospholipids; TG, triglycerides; TL, total 
lipids. 
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Figure  8.12. Percentage changes from baseline in relative DHA levels at weeks 4, 6, and 8, FO/EPO 
study (placebo: n = 20; FO/EPO: n = 19). 
 
Bottom and top edges are located at 25th and 75th percentiles, centre horizontal line is drawn at the 
median, whiskers mark the data points nearest to the 1.5 interquartile ranges, outliers are shown as 
points together with subject code. 
CE, cholesterol esters; DHA, docosahexaenoic acid; PL, phospholipids; TG, triglycerides; TL, total 
lipids. 
a  p < 0.05 vs. placebo at the same time point. 
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8.3 Used information and documentation materials 

8.3.1 DHAVEG study 

Poster for subject recruiting, DHAVEG study 

 



 Used Information and Documentation Materials  A47   

Invitation to participate in the study, DHAVEG study  
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Subject information, DHAVEG study 
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Informed consent of the subjects, DHAVEG study 
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Leaflet with study informations, DHAVEG study 
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Leaflet with study informations, DHAVEG study (continuation) 
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Health and lifestyle questionnaire, DHAVEG study 
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Health and lifestyle questionnaire, DHAVEG study (continuation) 
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3-day dietary record, DHAVEG study 
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3-day dietary record, DHAVEG study (continuation 1) 
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3-day dietary record, DHAVEG study (continuation 2) 
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3-day dietary record, DHAVEG study (continuation 3) 
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Record of side effects, signs of illness and intake of medication, DHAVEG 
study 
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Investigation protocol at week 0, DHAVEG study 
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Investigation protocol at week 8, DHAVEG study 
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8.3.2 FO/EPO study 

Poster for subject recruiting, FO/EPO study 
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Invitation to participate in the study, FO/EPO study 
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Subject information, FO/EPO study 
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Informed consent of the subjects, FO/EPO study 
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Leaflet with study informations, FO/EPO study 
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Health and lifestyle questionnaire, FO/EPO study 
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Record of side effects, signs of illness and intake of medication, FO/EPO study 
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Investigation protocol at week 0, FO/EPO study 
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Investigation protocol at weeks 4 and 6, FO/EPO study 
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Investigation protocol at week 8, FO/EPO study 
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