Die digitale Phlebographie des an Hufrehe erkrankten Pferdes

Inaugural–Dissertation
zur Erlangung der tiermedizinischen Doktorwürde
der tierärztlichen Fakultät der
Ludwig-Maximilians-Universität München

von
Christian Czech
aus Northeim

München 2006
Gedruckt mit der Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

Dekan: Univ.- Prof. Dr. E. P. Märtlauer

Referent: Prof. Dr. Gerhards

Korreferent(en): PD. Dr. Reese

Meiner Familie
Inhaltsverzeichnis

Abbildungsverzeichnis .. IV
Tabellenverzeichnis .. VII
Abkürzungsverzeichnis ... VIII

A. Einleitung .. 1

B. Literaturübersicht .. 3
 B.1. Definition der Hufrehe .. 3
 B.2. Vorkommen .. 3
 B.3. Einteilung und Verlauf .. 4
 B.4. Ätiologie .. 4
 B.5. Anatomie .. 6
 B.5.1. Hufbeinträger .. 7
 B.5.2. Venen der Pferdezeh ... 8
 B.6. Pathogenese .. 10
 B.7. Symptomatik der Hufrehe ... 16
 B.7.1. Klinische Symptome ... 16
 B.7.1.1. Einteilung der Lahmheitsgrade .. 17
 B.7.2. Röntgenologische Symptome .. 19
 B.8. Diagnose .. 20
 B.8.1. Klinische Untersuchung ... 20
 B.8.2. Röntgenologische Untersuchung .. 21
 B.8.3. Radiologische Kontrastmitteluntersuchungen 24
 B.8.3.1. Angiographie .. 24
 B.8.3.2. Phlebographie ... 25
 B.8.4. Weitere Untersuchungsmethoden .. 27
 B.9. Differentialdiagnosen ... 28
 B.10. Therapie ... 29
 B.10.1. Orthopädische Therapieansätze ... 29
 B.10.2. Medikamentöse Therapieansätze .. 32
 B.10.3. Chirurgische Therapieansätze ... 35
 B.10.3.1. Tenotomie ... 35
 B.10.3.2. Weitere chirurgische Behandlungsansätze 37
C. Material und Methode ... 39
 C.1. Patientengut ... 39
Inhaltsverzeichnis

C.2. Untersuchung ... 40
 C.2.1. Allgemeinuntersuchung .. 40
 C.2.2. Spezielle Untersuchung: ... 41
 C.2.3. Radiologische Untersuchung ... 43
 C.2.3.1. Röntgenologische Untersuchung .. 43
 C.2.3.2. Phlebographische Untersuchung ... 43
 C.2.3.2.1. Untersuchungsmaterial ... 44
 C.2.3.2.2. Vorgehensweise bei der digitalen Phlebographie 45
 C.3. Bilddokumentation ... 49
 C.4. Untersuchungstechnik und Auswertung ... 49

D. Ergebnisse .. 56
 D.1. Phlebographische Diagnostik ... 56
 D.1.1. Phlebographischer Normalbefund ... 57
 D.1.2. Phlebogramm des pathologisch veränderten Fusses 59
 D.1.2.1. Das phlebographische Bild des akuten Stadiums 61
 D.1.2.2. Das phlebographische Bild des chronischen Rehestadiums 64
 D.1.3. Technische Fehlermöglichkeiten ... 71
 D.2. Ergebnis des Bewertungsschemas ... 75
 D.3. Statistische Auswertung der Probandengruppe ... 80

E. Diskussion ... 88
 E.1. Untersuchungsmethoden ... 88
 E.1.1. Patientengut ... 89
 E.1.2. Klinische Untersuchung .. 89
 E.1.3. Untersuchungstechnik der Phlebographie ... 92
 E.2. Phlebographische Befunde .. 94
 E.2.1. Sektor I (Vv. coronales) ... 95
 E.2.2. Sektor II (Plexus parietalis) .. 96
 E.2.3. Sektor III (V. marginis solearis) ... 97
 E.2.4. Sektor IV (Plexus solearis) ... 97
 E.2.5. Sektor V (Plexus palmaris) .. 97
 E.3. Therapie ... 98
 E.3.1. Tenotomie .. 99
 E.4. Bewertungsschema .. 101

F. Zusammenfassung .. 102
Inhaltsverzeichnis

G. Summary .. 104
H. Literaturverzeichnis .. 106
Abbildungsverzeichnis

Abbildung 1: Komprimierende Pumpfunktion des Hufmechanismus zur venösen Drainage der Huflederhaut (Skizze nach MORRISON, 2004) ..10

Abbildung 2: Derotierender Hufbeschlag in Kombination mit einer Tenotomie der tiefen Beugesehne bei hgr. chronischer Hufrehe ..37

Abbildung 3: Reheuntersuchungsprotokoll für die spezielle Untersuchung bei Verdacht auf Hufrehe ..42

Abbildung 4: Positionsblöcke und deren Verwendung für die röntgenologische Untersuchung nach REDDEN (1997)...47

Abbildung 5: Schematische Darstellung des geometrischen Zusammenhangs zwischen der Messung und der trigonometrischen Ermittlung des Abweichungswinkels α ..51

Abbildung 6: Einteilung und Anordnung der anatomischen Sektoren an einem seitlichen Röntgenbild ...52

Abbildung 7: Invertiertes, seitliches phlebographisches Röntgenbild vorne links, Morganwallach, 11 Jahre, akute Hufrehe vorne bds, 8mm SD, 17/17mm H-L Zone (Patient Nr.13) ..53

Abbildung 8: Physiologisches Venogramm in 90° Projektionsrichtung57

Abbildung 9: Schematische Darstellung der Venen und des subkutanen Venennetzes des Zehenendorgans der Schultergliedmaße eines Pferdes (nach Schummer 1951)..58

Abbildung 10: Rotationsrichtung des Hufbeins am Beispiel eines physiologischen phlebographischen Röntgenbildes (90° Aufnahme).................................60

Abbildung 11: Röntgenbild 90° vorne links, Morganwallach 11 Jahre, akute Hufrehe vorne bds, SD 8mm, 17/17mm H-L Zone (Patient Nr.13)61

Abbildung 12: Vergleich Röntgenbild 90° (links, Abbildung 12a) und 0° (rechts, Abbildung 12b) nach Oxspiring vorne rechts, Saddlebredwallach 17 Jahre, akute Hufrehe an allen vier Gliedmaßen, 17mm SD, 18/18mm H-L Zone (Patient Nr.90) ..62

Abbildung 13: Vergleichendes Röntgenbild 90° ohne (links, Abbildung 13a) und mit Trachtenerhöhung (rechts, Abbildung 13b) vorne rechts, Vollblutstute, 5 Jahre, akute Hufrehe vorne bds, 19mm SD, 15/15mm H-L Zone, (Patient Nr. 86) ..63
Abbildung 14: Röntgenbild 0° nach Oxspring vorne links, Warmblutwallach 10 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 11,80° Rotation, 7mm SD, 18/21mm H-L Zone, (Patient Nr.12) ...64

Abbildung 15: Röntgenbild 90° vorne links, Araberwallach 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 5,37° Rotation, 14mm SD, 17/20mm H-L Zone, (Patient Nr. 9) ..65

Abbildung 16: Röntgenbild 0° vorne links, Araberwallach 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 5,37° Rotation, 14mm SD, 17/20mm H-L Zone, (Patient Nr. 9) ..66

Abbildung 17: Röntgenbild 90° vorne rechts, Vollblutstute, 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 9,96° Rotation, 2mm SD, 27/33mm H-L Zone, (Patient Nr. 24) ...67

Abbildung 18: Röntgenbild 90° vorne links, Vollblutstute, 7 Jahre, chronische Hufrehe (mit Knochenveränderungen) vorne bds, 31.04° Rotation, 5mm SD, 27/40mm H-L Zone, (Patient Nr. 116) ...68

Abbildung 19: Röntgenbild 90°, vorne rechts, Andalusierwallach, 4 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 10,74° Rotation, 3mm SD, 24/30mm H-L Zone, (Patient Nr. 69) ...69

Abbildung 20: Röntgenbild 0° vorne rechts, Andalusierwallach, 4 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 10,74° Rotation, 3mm SD, 24/30mm H-L Zone, (Patient Nr. 69) ...70

Abbildung 21: Röntgenbild 90°, vorne links, Vollbluthengst, 5 Jahre, akute Hufrehe vorne links, 14mm SD, 15/15mm H-L Zone, (Patient Nr.22)..............................71

Abbildung 22: Röntgenbild 90°, vorne links, Vollblutstute, 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 7.16° Rotation, 5mm SD, 27/33mm H-L Zone, (Patient Nr.24) ...72

Abbildung 23: Röntgenbild 90°, vorne links, Kaltbluthengst, 2 Jahre, chronische Hufrehe (inklusive Knochenveränderungen) an allen vier Gliedmaßen, 14.69° Rotation, 22mm SD, 54/68mm H-L Zone, (Patient Nr. 34)73

Abbildung 24: Röntgenbild 90°, vorne rechts, Vollblutstute, 16 Jahre, chronische Hufrehe (ohne Knochenveränderungen) an allen vier Gliedmaßen, 8.59° Rotation, 11mm SD, 23/29mm H-L Zone, (Patient Nr.23) ...74

Abbildung 25: Rassenverteilung innerhalb der Probandengruppe..........................80

Abbildung 26: Geschlechtsspezifische Einteilung der Krankheitsstadien81
Abbildung 27: Rassespezifische Einteilung der Krankheitsstadien.........................81
Abbildung 28: Altersverteilung innerhalb der Patientengruppe.................................82
Abbildung 29: Gliedmaßenspezifische Einteilung für das Bewertungskriterium
 Rotation...84
Abbildung 30: Gliedmaßenspezifische Einteilung für das Bewertungskriterium
 Sohlendicke...84
Abbildung 31: Gliedmaßenspezifische Einteilung für das Bewertungskriterium
 H-L Zone...85
Abbildung 32: Verteilung der Lahmheitsgrade nach OBEL (1948) bzw. nach
 CRIPPS und EUSTACE (1999b) innerhalb der Probendengruppe85
Abbildung 33: Ergebnisse der phlebographischen Sektorenbewertung vorne links ...86
Abbildung 34: Ergebnisse der phlebographischen Sektorenbewertung vorne rechts ...86
Abbildung 35: Ergebnisse der phlebographischen Sektorenbewertung hinten links ...87
Abbildung 36: Ergebnisse der phlebographischen Sektorenbewertung hinten rechts ...87
Abbildung 37: Vollblutstute mit chronischer Hufrehe (mit Knochenveränderung)
 und Atrophie des M.triceps brachii vorne rechts...91
Abbildung 38: Phlebographisches Röntgenbild 90°, vorne rechts, Vollblutstute,
 10 Jahre, Hornspalte in der Zehe ...95
Tabellenverzeichnis

Tabelle 1: Trefferverteilung und –häufigkeit spezifischer Suchbegriffe einer internetbasierten Googlesuche...1

Tabelle 2: Darstellung der maximalen Rotationsgrade bei Hufrehepatienten bei denen eine Heilung erzielt wird ..23

Tabelle 3: Darstellung der physiologischen Grenzwerte für die HL-Zone verschiedener Autoren ..24

Tabelle 4: Gebräuchliche Medikamente für die Hufrehetherapie mit ihren Dosierungen (Stand 2006) ..35

Tabelle 5: Rasseverteilung und Geschlechtsverteilung von 117 Rehepatienten der Probandengruppe ...39

Tabelle 6: Geschlechtsspezifische Altersverteilung der 117 Rehepatienten der Probandengruppe ...40

Tabelle 7: Tabellarische Darstellung des Bewertungsschemas im Verhältnis der Bewertungskriterien zum Schweregrad (SD = Sohlendicke; HL-Zone = Abstand der dorsalen Hufplatte zur Facies parietalis des Hufbeins)54

Tabelle 8: Verteilung der phlebographisch untersuchten Gliedmaßen innerhalb der Patientengruppe ...75

Tabelle 9: Statistische Ergebnisse der gruppenspezifischen Auswertung mit Hilfe des Bewertungsschemas ...77

Tabelle 10: Tabellarische Darstellung der Korrelationswerte der einzelnen Bewertungskriterien untereinander ...78
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Arteria</td>
</tr>
<tr>
<td>Aa.</td>
<td>Arteriae</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>DSA</td>
<td>Digitale Subtraktions Angiographie</td>
</tr>
<tr>
<td>ET-1</td>
<td>Endothelin 1</td>
</tr>
<tr>
<td>ggr.</td>
<td>geringgradig</td>
</tr>
<tr>
<td>hgr.</td>
<td>hochgradig</td>
</tr>
<tr>
<td>HL-Zone</td>
<td>Horn-Lamellar Zone (Abstand der dorsalen Hornplatte zur dorsalen Facies parietalis des Os ungulare)</td>
</tr>
<tr>
<td>KGW</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>mgr.</td>
<td>mittelgradig</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix Metalloproteinase</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>SD</td>
<td>Sohlendicke</td>
</tr>
<tr>
<td>TBS</td>
<td>tiefe Beugesehne</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming Growth Factor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Nekrose Faktor</td>
</tr>
<tr>
<td>V.</td>
<td>Vena</td>
</tr>
<tr>
<td>Vv.</td>
<td>Venae</td>
</tr>
</tbody>
</table>
A. Einleitung

Die Hufrehe des Pferdes ist eine potenziell lebensbedrohende Erkrankung, die mit großen Schmerzen und schweren Gliedmaßenfunktionsbehinderungen für den Patienten verbunden ist. Sie verursacht neben hohem wirtschaftlichen Schaden emotionalen, psychischen und zugleich auch physischen Stress für den Pferdebesitzer und -halter.

Trotz immenser wissenschaftlicher Bemühungen ist es bisher nicht gelungen, die Pathophysiologie der Hufrehe zu ergründen, um darauf folgend einen einheitlich gültigen Therapievorschlag zu entwickeln. Im angloamerikanischen Raum wurde wiederholt über die Anwendung der digitalen Phlebographie zu diagnostischen Zwecken berichtet (RUCKER, 1999; REDDEN, 1997). In der deutschsprachigen Literatur gibt es allerdings keine detaillierten Angaben über die digitale Phlebographie der distalen Pferdezehe des an Hufrehe erkrankten Pferdes. Die Tabelle 1 zeigt einen Überblick über die Trefferhäufigkeit verschiedener deutsch- und englischsprachige Suchbegriffe mit Hilfe der internetbasierten Suchmaschine GOOGLE.

Tabelle 1: Trefferverteilung und –häufigkeit spezifischer Suchbegriffe einer internetbasierten Googlesuche

<table>
<thead>
<tr>
<th>Jahrgang/ Suchbegriff</th>
<th>1960</th>
<th>1980</th>
<th>2005</th>
<th>Ohne Jahreszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hufrehe</td>
<td>234</td>
<td>715</td>
<td>25.700</td>
<td>49.400</td>
</tr>
<tr>
<td>Laminitis</td>
<td>810</td>
<td>908</td>
<td>76.400</td>
<td>186.000</td>
</tr>
<tr>
<td>Founder Horse</td>
<td>334.000</td>
<td>471.000</td>
<td>1.680.000</td>
<td>2.950.000</td>
</tr>
<tr>
<td>Pododermatitis aseptica diffusa</td>
<td>6</td>
<td>23</td>
<td>139</td>
<td>420</td>
</tr>
<tr>
<td>Venogram Horse</td>
<td>354</td>
<td>1.050</td>
<td>673</td>
<td>801</td>
</tr>
<tr>
<td>Venogram Hoof</td>
<td>1</td>
<td>2</td>
<td>343</td>
<td>706</td>
</tr>
<tr>
<td>Venogram Laminitis</td>
<td>1</td>
<td>1</td>
<td>141</td>
<td>327</td>
</tr>
<tr>
<td>Phlebographie Hufrehe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phlebographie Pferd</td>
<td>13</td>
<td>33</td>
<td>36</td>
<td>222</td>
</tr>
<tr>
<td>Gesamt</td>
<td>335.419</td>
<td>473.732</td>
<td>1.783.432</td>
<td>3.187.876</td>
</tr>
</tbody>
</table>

Das Ergebnis von 3.187.876 Einträgen zum Themengebiet der Hufrehe zeigt das besondere Interesse und die damit verbundene Notwendigkeit für weitere Untersuchungen zu dieser Erkrankung.
B. Literaturübersicht

B.1. Definition der Hufrehe

B.2. Vorkommen

B.3. Einteilung und Verlauf

B.4. Ätiologie

Obwohl die Hufrehe als multifaktorielle Erkrankung angesehen wird, gibt es einige nachgewiesene spezielle Ursachen für ihre Entstehung. Folgende Ursachen und / oder Primärerkrankungen werden für die Hufreheentstehung verantwortlich gemacht:

Systemische Erkrankungen
- gastrointestinal, besonders bei begleitendem Endotoxinschock
 - Kolik
 - Gastroenteritis, besonders Kolitis
 - Diarrhoe
- reproduktiv
Literaturübersicht

- Plazentitis
- Nachgeburtsverhaltung
- Zyklusanomalien

- bakterielle und virale Allgemeinerkrankungen
 - Pneumonie
 - Sepsis

- muskuloskelettal
 - Rhabdomyolysis

- renal
 - Dehydration / Schock

Endokrine Imbalancen
- Cushing Syndrom
 - Pituitary Pars Intermedia Dysfunktion (PPID)
- Hyper- / Hypothyreoidismus
- Zyklusanomalien

Mechanische Überbelastung
- Pflasterrehe (Marschrehe)
- Belastungsrehe (*supporting limb laminitis*)
- Beschlagsfehler oder starke Stellungsveränderungen

Intoxikationen und / oder alimentäre Überschüsse
- Schwarze Walnuß (*USA black walnut*)
- Kernholzspäne (*heartwood shavings*)
- Kortikosteroide und/oder andere Medikamente
- Kohlenhydratüberschüsse
 - Junges Gras, Gras mit hohem Fruktangehalt
 - Getreide

Idiopathische / unbekannte Ursachen
- (Stress bedingt erhöhten endogenen Kortisolspiegel)

Risiko an Hufrehe zu erkranken ausgesetzt. Allerdings ist der pathologische Mechanismus noch nicht aufgeklärt.

B.5. Anatomie

Für die orientierende Betrachtung der Anatomie empfiehlt sich ein Sagittalschnitt des Hufes. Hierbei lassen sich folgende Schichten identifizieren:

1. Deck- oder Glasurschicht (Saumhorn, Stratum externum)
2. Schutzschicht (Kronhorn, Stratum medium)
3. Verbindungsschicht (Wandhorn, Stratum internum)
4. Wandlederhaut (Corium parietis als Anteil der Dermis ungulae)
5. faserknorpelige Insertionszone mit Knochenhaut in den Knochenrinnen (Chondralapophysäre Insertionszone mit Periost)
6. Knochengewebes des Hufbeins

Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung der venösen Gefäßstruktur. Für die Darstellung soll aber die Struktur des Wandsegmentes ebenfalls berücksichtigt werden, da hier ein Großteil der venösen Gefäße lokalisiert ist.
B.5.1. Hufbeinträger

1. Die vierzonale Insertionszone am Hufbein
2. Straffe parallelfaserige Bindegewebsfasern (Stratum reticulare)
3. Die Lederhautblättchen (Stratum lamellatum)
4. Die Wandepidermis mit den Hornblättchen und dem Kappenhorn

Der Hufbeinträger besteht nach BUDRAS und KÖNIG (2005) aus einem Lederhaut- und einem Oberhautanteil. WISSDORF et al. (2002) teilen die Lederhaut in folgende Abschnitte ein:

- Saumlederhaut
- Kronlederhaut
- Wandlederhaut
- Sohlenlederhaut
- Strahllederhaut
- Ballenlederhaut

Die Saum- und Kronlederhaut sowie die lebenden Zellschichten der Saum- und Kronoberhaut werden insgesamt als Saumband, im englischsprachigen Raum als *coronary band* bezeichnet (RIEGEL und HAKOLA, 1999). Die Wandlederhaut stellt die distale Fortsetzung der Kronlederhaut dar. Sie besteht aus etwa 600 sensiblen Primärblättchen, zu deren Oberflächenvergrößerung weitere 100-200 Sekundärblättchen vorhanden sind (BUDRAS und KÖNIG, 2005; WISSDORF et al., 2002; NICKEL et al., 1996). Aus diesem komplexen System geht ein sehr stabiler Aufhängeapparat hervor, wobei die Körpermasse sowohl durch die Primär- als auch durch die Sekundärblättchen getragen wird. Die Summe beider Blättchenqualitäten ergibt ca. 60.000 Befestigungsstrukturen. Dieses entspricht einer durchschnittlichen Gesamtfläche für die Verbindung von ca. 0,75 Quadratmetern pro Huf. Daraus resultiert rechnerisch eine Belastung von etwa 17,5g/cm² während der Stützphase für den Aufhängeapparat (RIEGEL und HAKOLA, 1999). Die Lederhaut ist hufbeinseitig über lineare, pro-

B.5.2. Venen der Pferdezehe

Im Folgenden soll auf den venösen Gefäßverlauf an der Pferdezehe eingegangen werden. In Anlehnung an die Vorgehensweise der vorliegenden Arbeit wird die Darstellung retrograd, d.h. von den digitalen Gefäßen bzw. Venen ausgehend, vorgenommen. Um die Ausführung möglichst übersichtlich zu halten, sollen die Erläuterungen beispielhaft an einer Vordergliedmaß aufgeführt werden. Der Gefäßverlauf der Hintergliedmaße ist prinzipiell der gleiche, wobei sich bekanntermaßen die Terminologie zwischen Vorder- und Hintergliedmaße unterscheidet.

Abbildung 1: Komprimierende Pumpfunktion des Hufmechanismus zur venösen Drainage der Huflederhaut (Skizze nach MORRISON, 2004)

B.6. Pathogenese

1. vaskulär-hämodynamisch
2. toxisch/metabolisch/enzymatisch
3. traumatisch-mechanisch

Obwohl JOHNSON et. al. (2002) den Glucokortikoiden ein besonderes Risiko der Hufrehenentstehung beimessen, gibt es für sie weiterhin keine pathogenethisch zufrieden stellende Erklärung, wobei sie postulieren, dass sowohl die Applikation von Dexamethason als auch beispielsweise durch Stresszustände bedingt erhöhte endogene Glucokortikoidspiegel eine Permeabilitätssteigerung der Darmbarriere bewir-

BUDRAS et al. (1993) bezeichnen den Übergang zwischen lebenden, noch unverhornten Epidermizellen und dem toten dyskeratotischen Verbindungshorn als „locus minoris resistentiae“. Als Begründung sehen sie die geringer ausgeprägte Zellverbin dung als an anderen entsprechenden Grenzflächen. Die sich im chronischen Verlauf der Hufrehe entwickelnden Reheringe sind im Trachtenbereich typischerweise weiter von einander entfernt als im Bereich der dorsalen Hufwand. Dieser Zustand kann durch die veränderten mechanischen Verhältnisse erklärt werden. Im dorsalen Bereich kommt es zu einer Kompression und Stauchung des Kronsaums. Daraus resul-
tiert eine Verringerung der Durchblutung und somit eine Verlangsamung der Keratin-
synthese, da der Processus extensorius rotationsbedingt auf die Kronrinne drückt
(HERTSCH, 1981). Die palmaren Anteile des Hufes wachsen hingegen mit physiologi-
gischer Geschwindigkeit, da die vaskulären Perfusionsverhältnisse weitgehend kon-
stant bleiben (HERTSCH 1989). In chronischen Fällen kann das Hufbein rotations-
bedingt auf die Sohlenfläche drücken. Dadurch geht die konvexe Form der Hufsohle
zunehmend verloren. In besonders schwerwiegenden Fällen resultiert hieraus eine
Penetration der Sohlenfläche durch das Hufbein.

Aus dieser Ausführung wird ersichtlich, dass die exakte Pathogenese der Hufre-
heentstehung bisher nicht eindeutig geklärt ist. Alle Wissenschaftler betonen, dass
noch immer keine pauschal gültige und in vivo nachvollziehbare und somit bewiese-
ne Theorie für den pathogenetischen Entstehungsmechanismus existiert. Daher wird
weiter mit der gleichen Akribie an dem Krankheitsbild der Hufrehe geforscht.

B.7. Symptomatik der Hufrehe

B.7.1. Klinische Symptome

Die klinische Symptomatik variiert zwischen den Erkrankungsstadien. Das Prodromal-
oder auch Initialstadium ist schwer zu identifizieren. Einige Pferde fallen durch
eine erhöhte Frequenz der Gewichtsverlagerung der kontralateralen Gliedmaßen auf
(POLLITT, 2004; YELLE, 1986). Die pathologischen Veränderungen betreffen einer-
seits den Bewegungsapparat und andererseits das Allgemeinbefinden des erkrank-
ten Pferdes. Im akuten Erkrankungsfall sind die Symptome offensichtlich. Hierzu ge-
öhren:

- Reduziertes Allgemeinbefinden
- Erhöhte Puls- und Atemfrequenz
- Erhöhte Körpertemperatur
- Injizierte Schleimhautgefäße
- Häufiges Liegen und Bewegungsunlust
- Schmerzäußerung in Form von Schwitzen und Muskelfaszikulationen
- Vermehrte Wärme der Hufe
- Erhöhte (z.T. klopfende) Pulsation der Zehenarterien
- Trachtenfußung in Verbindung mit sägebockartiger Haltung und Lahmheit
• Wendeschmerz
• Schmerzhaftigkeit bei der Hufzangenuntersuchung und der Hammerperkussion primär im Sohlen- und/oder Zehenspitzenbereich

Die Symptome des chronischen Erkrankungsstadiums hängen stark vom Schweregrad der Hufrehe ab. Es ist möglich, dass chronisch erkrankte Patienten von akuten Reheschüben heimgesucht werden und sich die klinische Symptomatik dadurch verstärkt. Neben den Symptomen der akuten Rehe sind für das chronische Erkrankungsstadium folgende zu nennen:

• Veränderungen am Kronsaum, evtl. mit Exsudation
• Sohlenprolaps, in schwerwiegenden Fällen penetriert die Hufbeinspitze die Sohle
• Verbreiterung oder Auflösung der Linea alba, mit der Folge von rezidivierender purulenter Pododermatitis
• Konformationsänderungen der Hufe und Bildung von Reheringen
• Dekubitus als Konsequenz von häufigem und langanhaltendem Niederliegen

Üblicherweise äußert sich die Hufrehe an den Vordergliedmaßen häufiger und auch schwerwiegender, was mit der physiologischen Verteilung des Körpergewichts zustande kommt (MOORE et al., 2004). Der betroffene Patient nimmt eine sägebockartige Haltung ein, d.h. die betroffenen Vorderextremitäten werden vor dem eigentlichen Schwerpunkt platziert, um das belastende Gewicht der Körpermasse auf die palmaren Anteile des Hufes zu verlagern. Die Hintergliedmaßen bekommen eine stärkere gewichtstragende Funktion, indem das Pferd sie weiter unter den Körperschwerpunkt nach vorn stellt. STASHAK (2002) meint jedoch, dass Pferde die eine Absenkung des Hufbeins erfahren ihre Gliedmassenstellung nicht verändern.

B.7.1.1. Einteilung der Lahmheitsgrade

Die Hufrehe, gleich welcher Ätiologie, geht zwangsläufig mit Lahmheitssymptomen einher, für deren Differenzierung die Schemata nach OBEL (1948) oder CRIPPS und
EUSTACE (1999b) zugrunde gelegt werden können und eine international vergleichbare Aussage bezüglich des Schweregrades machen. OBEL (1948) unterteilte die Hufrehe in vier so genannte Obel-Grade ein:

Obel-Grad 1: In Ruhe hebt das Pferd ständig abwechselnd die Hufe. Im Schritt ist keine Lahmheit zu erkennen, im Trab ist der Gang kurz und steif.

Obel-Grad 2: Die Pferde gehen im Schritt zwar willig, aber steif vorwärts. Aufheben eines Fußes ist ohne Schwierigkeiten möglich.

Obel-Grad 3: Das Pferd bewegt sich äußerst widerwillig und wehrt sich heftig gegen den Versuch, einen Fuß aufzuheben.

Obel-Grad 4: Das Pferd weigert sich, sich zu bewegen. Nur durch Zwang ist es zum Laufen zu bringen.

Grad 0: Keine feststellbare Lahmheit im Schritt und Trab auf gerade Linie auf hartem Untergrund.

Grad 1: Im Schritt ist keine Lahmheit sichtbar, das Tier bewegt sich unbehindert. Es zeigt eine Lahmheit im Trab auf gerader Linie und hartem Untergrund und wendet vorsichtig.

Grad 2: Das Tier bewegt sich nicht ungebunden, sondern steif; es zeigt eventuell eine offenkundige Lahmheit auf einem Bein im Schritt und ist nur widerwillig auf hartem Untergrund zu traben, das Wenden funktioniert nur mit großen Schwierigkeiten (deutlicher Wendeschmerz).

Grad 3: Das Tier bewegt sich widerwillig im Schritt auf jedem Untergrund, es ist schwierig ein Bein aufzuheben, es kann eigentlich nicht auf einem Bein das Körpergewicht tragen.

Grad 4: Das Tier bewegt sich nicht ohne Zwang, es ist besonders widersetzlich bei dem Wechsel von weichen auf harten Untergrund; und es ist unmöglich eine Gliedmaße aufzunehmen.

Grad 5: Das Tier verbringt die meiste Zeit in Seitenlage und kann nicht länger als einige Minuten stehen.
B.7.2. Röntgenologische Symptome

Die röntgenologischen Symptome bieten ein krankheitsspezifisches Erscheinungsbild, wobei ihre Ausprägung vom Erkrankungsstadium abhängig ist bzw. das Stadium sogar definieren. Die röntgenologischen Symptome der akuten Hufrehe sind sehr dezent und nicht immer feststellbar. Mögliche Symptome des akuten Stadiums sind:

- Schwellung der dorsalen Lederhaut (O’BRIEN und BAKER, 1986)
- Ansammlung von seröser Flüssigkeit im Bereich der dorsalen Lederhaut (THRALL, 1994; BUTLER et al., 1993)
- Aerogene Verschattung der dorsalen Lederhaut (BUTLER et al., 1993)

Das chronische Erkrankungsstadium ist durch seine charakteristischen Symptome sicher zu identifizieren. Definitionsgemäß wird die Hufrehe als chronisch bezeichnet, sobald das Hufbein disloziert ist oder aber die Erkrankung bereits länger als 72 Stunden andauert. Die röntgenologischen Befunde sind im Verhältnis zur Erkrankungsdauer zu beurteilen. Eine ggr. Rotation des Hufbeins kann beispielsweise innerhalb von Stunden oder Tagen eintreten. Für die Veränderung der Knochenstruktur des Hufbeins z.B. in Form einer Hukrumpenbildung sind hingegen Wochen erforderlich. Die röntgenologischen Symptome der chronischen Rehe sind:

- Dislokation des Hufbeins in Form von Rotation und / oder Absenkung (CRIPPS und EUSTACE 1999a, BRUNKEN, 1985; STICK et al., 1982)
- Deutliche Schwellung der dorsalen Lamina mit einhergehender Separation des Aufhängeapparates
- Gaseinlagerungen zwischen der dorsalen Hufplatte und dem Hufbein (THRALL, 1994)
- Gaseinlagerungen als Folge der purulenten Pododermatitis im Bereich der Sohle und / oder des Wandsegmentes
- Veränderungen der Knochenkontur und –struktur des Hufbeins (THRALL, 1994; BUTLER et al., 1993; BRUNKEN, 1985)
 - Knochenatrophie z.B. der Hufbeinspitze
 - Ostitis / Osteomyelitis
 - Frakturen des Margo solaris und / oder der Hufbeinspitze
 - Hukrumpenbildung der Hufbeinspitze
- Asymmetrie im Hufgelenk (MORRISON, 2005)
Aus dieser Auflistung sind die typischen klinischen und röntgenologischen Hufrehesymptome zu ersehen. Es ist jedoch zu bedenken, dass die Symptomatik individuellen Schwankungen unterworfen ist.

B.8. Diagnose

Die Diagnose der Hufrehe basiert primär auf den klinischen Symptomen und den Befunden der röntgenologischen Untersuchung, nur in Einzelfällen sind Leitungsanästhesien erforderlich (STASHAK, 2002). In Übereinstimmung mit den Befunden der allgemeinen und speziellen klinischen Untersuchung ist die Haltung eines rehekran ken Pferdes als pathognomonisch zu werten. Ein ausführlicher Vorbericht bedeutet eine große diagnostische Hilfe.

B.8.1. Klinische Untersuchung

B.8.2. Röntgenologische Untersuchung

- Kategorie 1: ohne besonderen Befund
- Kategorie 2: distale Dislokation des Hufbeins, sichtbar durch einen Weichteildefekt im Bereich des Kronsaums und des Proc. extensorius
- Kategorie 3: Rotation des Hufbeins
- Kategorie 4: Rotation und distale Absenkung des Hufbeins
- Kategorie 5: Rotation des Hufbeins mit einhergehender chronischer Schädigung

Tabelle 2: Darstellung der maximalen Rotationsgrade bei Hufrehepatienten bei denen eine Heilung erzielt wird

<table>
<thead>
<tr>
<th>Autor</th>
<th>Grenzwert der Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAMEYA (1973)</td>
<td>3,7° +/- 4,7°</td>
</tr>
<tr>
<td>STICK et al. (1982)</td>
<td>5,5°</td>
</tr>
<tr>
<td>BRUNKEN (1985)</td>
<td>11,87°</td>
</tr>
<tr>
<td>EUSTACE und CALDWELL (1989)</td>
<td>11,5°</td>
</tr>
<tr>
<td>STAHL (1992)</td>
<td>16,0°</td>
</tr>
<tr>
<td>HEMKER (2001)</td>
<td>6,68°</td>
</tr>
</tbody>
</table>

Tabelle 3: Darstellung der physiologischen Grenzwerte für die HL-Zone verschiedener Autoren

<table>
<thead>
<tr>
<th>Autor</th>
<th>Grenzwerte für die HL-Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRALL (1994)</td>
<td>15-18 mm</td>
</tr>
<tr>
<td>REDDEN (2003)</td>
<td>15-16 mm (leichte Rassen)</td>
</tr>
<tr>
<td></td>
<td>20 mm (Traber)</td>
</tr>
<tr>
<td>O'BRIEN und BAKER (1986)</td>
<td>20 mm (Warmblut)</td>
</tr>
<tr>
<td>CRIPPS und EUSTACE (1999b)</td>
<td>16 mm (Vollblut)</td>
</tr>
<tr>
<td>LINDFORD et al. (1993)</td>
<td>19 mm (Vollblut)</td>
</tr>
</tbody>
</table>

B.8.3. Radiologische Kontrastmitteluntersuchungen

B.8.3.1. Angiographie

nen für die Durchblutungsverhältnisse des rehekranken Pferdes. Die Feinfocustech-
nik ermöglicht eine bis zu 200-fache Vergrößerung der Gefäße, ohne dabei einen
Verlust der Detailgenauigkeit zu verursachen (HERTSCH, 1993). Eine eingehende
Beschreibung der angiographischen Methodik ist bei DREWES (1990) und

Sämtliche angio- bzw. arteriographischen Untersuchungen sind unter Allgemein-
anästhesie durchzuführen. Der untersuchungsspezifisch narkotisierte Patient wird in
Seitenlage verbracht. Anschließend wird eine chirurgische Hautinzision im medialen
Vordergliedmaßenbereich der zu punktierenden Arterie (A. digitalis palmaris commun-
aris II) vorgenommen und der Katheter platziert. Die Punktion der Mittelfußarterie der
Hintergliedmaße (A. metatarsæa dorsalis III) erfolgt anatomisch bedingt lateral am Me-
tatarsus. Hierbei ist es möglich, die Kontrastmittel injektion perkutan im proximalen
Drittel des Röhrbeins mit einer Flügelkanüle vorzunehmen (DREWES 1990). Im An-
schluss an die Kontrastmittelapplikation wird der narkotisierte Patient in Seitenlage
geröntgt. Nach erfolgter röntgenologischer Darstellung ist der Hautschnitt nahttech-
nisch zu verschließen und mit einem Kompressionsverband zu versehen. Typische
arteriographische Befunde beim akut rehekranken Pferd sind nach HERTSCH (1993)
zum einen die Verengung der Gefäße innerhalb der Hornkapsel und zum anderen
der diffuse Austritt von Kontrastmittel. Als Folge der Kapillarschädigung tritt Blut aus
dem Gefäßsystem aus, was sich durch den diffusen Kontrastmittelaustritt manifes-
tiert (HERTSCH, 1993). Dadurch entsteht ein erhöhter intrakapsulärer Druck, der das
komprimierte Erscheinungsbild der digitalen Gefäße erklärt. Das angiographische
Röntgenbild erhält durch das entweichende Kontrastmittel eine milchige Beschaffen-
heit, die noch einige Zeit bestehen bleibt. Eine besondere diagnostische Bedeutung
misst HERTSCH (1993) den Papillararterien bei, die er mit Hilfe der Feinfocustechnik
darstellt. Im akuten Erkrankungsfall sind diese mitunter komplett zerstört. Die einset-
zende Heilung zeigt sich im arteriographischen Bild durch die Rekonstruktion der Ge-
fäße des Kapillargebietes und die Wiederherstellung der Papillararterien.

B.8.3.2. Phlebographie

Neben der Arteriographie gewinnt die Phlebographie in der Veterinärmedizin zuneh-
mend an Bedeutung (HERTSCH, 1973). Die Erfahrungen der oben genannten arteri-

methodische Vorgehensweise für reproduzierbare Ergebnisse der Phlebographie für unverzichtbar. Auf diese Weise sind die Ergebnisse selbst bei niedrigen Fallzahlen diagnostisch sicher zu verwerten.

Da die Phlebographie des Hufrehepatienten als Fragestellung der vorliegenden Arbeit dient, soll an dieser Stelle nicht näher auf die technische Vorgehensweise eingegangen werden. Eine detaillierte Beschreibung der phlebographischen Methodik ist unter Punkt C.2.3.2. zu finden. Die Darstellung des physiologischen phlebographischen Röntgenbildes erfolgt unter Punkt D.1.1. Unter Punkt D.1.2. wird die Hufrehe-diagnostik mittels Phlebographie eingehend erläutert. Mögliche technische Fehlerquellen und ihre Auswirkungen bei der Bilddarstellung sind unter Punkt D.1.3. aufgelistet.

B.8.4. Weitere Untersuchungsmethoden

B.9. Differentialdiagnosen

Nach GARNER (1975) bleibt das Initialstadium der Hufrehe häufig unerkannt bzw. ist sehr schwer zu identifizieren. Er weist auf die Verwechslungsgefahr des akuten schmerzhaften Zustandes mit Kolikerkrankungen und Kreuzverschlag hin. RIEGEL und HAKOLA (1999) zählen eine Reihe von Krankheiten auf, die differentialdiagnostisch zu berücksichtigen sind:

- Podotrochlose-Syndrom
- Purulente Pododermatitis
- Nageltrittverletzungen
- Arthropathia deformans
- White line disease
- Ostitis des Hufbeins

Weiterhin sind sämtliche akute und / oder purulente Pododermatitiden anderer Genese als Differentialdiagnose zu hinterfragen.
B.10. Therapie

B.10.1. Orthopädische Therapieansätze

den, wobei in Abhängigkeit vom Schweregrad der Erkrankung nur der Huf oder aber in besonders hgr. Fällen die Gliedmaße bis zum Karpus vom Gipsverband umschlossen ist. Ziel dieser Maßnahme ist es, die Stabilität des Verbandes auszunutzen und ihn somit in eine gewichtstragende Funktion zu versetzen. Alternativ können Hufverbände kombiniert mit kommerziell erhältlichen Lily Pads® (Strahl übernimmt Gewicht), Rubber Pads, Styrofoam Pads oder Holzklötze therapeutischen Einsatz finden. Als Zielsetzung der Änderung der mechanischen Verhältnisse kommen folgende Punkte in Frage:

1. Entlastung der Huflederhaut im Bereich der dorsalen Hufwand
2. Entlastung des Tragerandes
3. Kompressionsschutz der Sohle als Infektionsschutz
4. Erhöhung der Trachten als Dislokationsprophylaxe um die Zugspannung der tiefen Beugesehne zu verringern
5. Zehenrichtung und Zurücklegung des Abrollpunktes unter das Hufgelenk als additiven Schutz der dorsalen Lederhaut (REDDEN, 1997 Abrollpunkt auf Höhe der Hufbeinspitze)
6. Zusätzliche gewichtstragende Funktion der palmaren Anteile des Hufes (Strahl, Eckstreben und Trachten)

Das Ergebnis dieser orthopädischen Intervention ist die Verbesserung der klinischen Symptomatik und die Prävention. Für die therapeutische Intervention bei chronischer Hufrehe bestehen in Abhängigkeit des Schweregrades der pathologischen Veränderungen unterschiedliche Beschlagsmöglichkeiten. Der Erfolg der verwendeten orthopädischen Therapie ergibt sich aus der Verbesserung der klinischen Situation des Patienten. Für die Anwendung stehen folgende Methoden zur Auswahl:

- Therapeutische Hufschuhe
 - Dallmer Clog®
 - Equine Digit Support System®
 - Ultimate Reden Cuff®
 - Ibex Hufschuhe®
- Indirekter Klebebeschlag
 - Sigafoos Series I
 - Sigafoos Series II
- Orthopädische Beschläge
 - Rehebeschlag nach Bolz
o Reheesen nach Pflug
o Reheplatte nach Stark und Guther
o Umgekehrtes konventionelles Eisen
o Hufeisen mit verbreitertem Zehenteil
o Herzeisen sog. Heartbar Shoe aus Aluminium oder Stahl
o Eiereisen sog. Eggbar Shoe aus Aluminium oder Stahl
o Redden Rail Shoe®
o Rock’n Roll-Shoe

B.10.2. Medikamentöse Therapieansätze

Die Wahl der medikamentösen Therapie richtet sich nach der Ätiopathogenese. So empfiehlt sich beispielsweise bei alimentär bedingter akuter Rehe die notfalltherapeutische Gastrolavage, inklusive des Einsatzes von Laxantien und Paraffinöl. Im Falle von systemischen Erkrankungen ist beispielsweise der Einsatz von Infusionstherapien angezeigt und bei orthopädisch traumatisierten Patienten muss einer einseitigen Überbelastung durch angepasste Therapie vorbeugt werden. Bei Vorliegen einer schweren Allgemeinerkrankung, einer Kolik bedingten Bauchhöhlenoperation oder einer anderen Endotoxin verursachenden Erkrankung sollten Hyperimmuns serum und Flunixin Meglumin in einer antiendotoxisch wirksamen Dosierung (0,25mg/kg KGW i.v. alle 8 Stunden) verabreicht werden (KANEPS und TURNER,
angstlösende Wirkung, so dass sich akut rehekrane Pferde häufiger niederlegen und somit der mechanische Stress an der dermo-epidermalen Verbindung reduziert wird. EUSTACE (1996) empfiehlt die kombinierte Anwendung von Acepromazin und Lily-Pads®, um somit die erforderliche Dosierung der NSAID’s zu senken. Dadurch reduziere sich das Risiko von Nebenwirkungen der antiinflammatorischen Medikamente gerade bei Ponies und kranken oder geriatrischen Patienten.

handlung herangezogen werden. Sie dient als Zusammenfassung der im Text dargestellten Medikamente und wird im Anhang ebenfalls aufgeführt.

Tabelle 4: Gebräuchliche Medikamente für die Hufrehetherapie mit ihren Dosierungen (Stand 2006)

<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>Konzentration</th>
<th>Applikations-</th>
<th>Applikations-</th>
<th>Wirkung</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylbutazon</td>
<td>2,2-4,4mg/kg KGW</td>
<td>i.v., p.o.</td>
<td>12h</td>
<td>NSAID</td>
<td>REDDEN 1997, STASHAK 2002</td>
</tr>
<tr>
<td>Flunixin Meglumin</td>
<td>0,5-1,1mg/kg KGW</td>
<td>i.v., p.o.</td>
<td>8 – 12h</td>
<td>NSAID, antiendotoxisch</td>
<td>HUNT 1996, POLLITT 1998</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>2,2mg/kg KGW</td>
<td>i.v.</td>
<td>12h</td>
<td>NSAID</td>
<td>KANEPS und TURNER 2004, STASHAK 2002</td>
</tr>
<tr>
<td></td>
<td>3,63mg/kg KGW</td>
<td>i.v.</td>
<td></td>
<td></td>
<td>POLLITT 1998</td>
</tr>
<tr>
<td>DMSO</td>
<td>0,1-1,0 mg/kg KGW</td>
<td>i.v.</td>
<td>12h</td>
<td>Entzündungshemmend, Radikalfänger</td>
<td>STASHAK 2002, POLLITT 1998</td>
</tr>
<tr>
<td>Acepromazin</td>
<td>0,03-0,06mg/kg KGW</td>
<td>i.v., i.m.</td>
<td>6-8h initial</td>
<td>α-Rezeptorblocker, Vasodilatator</td>
<td>HUNT 1996, MCILWRAITH und TURNER 1998</td>
</tr>
<tr>
<td>Isoxsuprine</td>
<td>1,2mg/kg KGW</td>
<td>p.o.</td>
<td>12h</td>
<td>Vasodilatator</td>
<td>STASHAK 2002</td>
</tr>
<tr>
<td>Pentoxifylline</td>
<td>4,4mg/kg KGW</td>
<td>p.o.</td>
<td>12h</td>
<td>Thrombozytenaggregationshemmer</td>
<td>STASHAK 2002, IGLE-FEHR und BAXTER 1999</td>
</tr>
<tr>
<td>Aspirin</td>
<td>10-20mg/kgKGW</td>
<td>p.o.</td>
<td>48h</td>
<td>Plättchenaggregationshemmer</td>
<td>STASHAK 2002</td>
</tr>
<tr>
<td>Heparin</td>
<td>40-80 IU/kg</td>
<td>i.v., s.c.</td>
<td>8-12h</td>
<td>antithrombotisch</td>
<td>BELKAMP und MOORE 1989</td>
</tr>
<tr>
<td>Biotin</td>
<td>15mg/Pferd</td>
<td>p.o.</td>
<td>24h</td>
<td>Hornbildung</td>
<td>STASHAK 2002</td>
</tr>
</tbody>
</table>

B.10.3. Chirurgische Therapieansätze

B.10.3.1. Tenotomie

Die Tenotomie der tiefen Beugesehne (TBS) wird bei chronischer therapierezisterenter Hufrehe als Behandlung zur Schmerzreduktion und um die Rotation des Hufbeins zu reduzieren empfohlen (EASTMAN et al., 1998; HUNT, 1996,1991; TURNER, 1992). Alternativ zu der Tenotomie besteht bei milder Erkrankung die Möglichkeit...

B.10.3.2. Weitere chirurgische Behandlungsansätze

Neben der Tenotomie der TBS finden die Resektion der dorsalen Hufwand und das Einkerben des Kronsaums als chirurgische Therapiemöglichkeiten Erwähnung. Die

C. Material und Methode

C.1. Patientengut

Tabelle 5: Rasseverteilung und Geschlechtsverteilung von 117 Rehepatienten der Probandengruppe

<table>
<thead>
<tr>
<th>Rasse</th>
<th>Hengst</th>
<th>Wallach</th>
<th>Stute</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollblut</td>
<td>7</td>
<td>7</td>
<td>62</td>
<td>76</td>
</tr>
<tr>
<td>Traber</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Araber</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Warmblut</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Saddlebred (Morgan)</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Quarterhorse</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Andalusier/Pasofino(H)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Kaltblut</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Summe</td>
<td>12</td>
<td>30</td>
<td>75</td>
<td>117</td>
</tr>
</tbody>
</table>
Tabelle 6: Geschlechtsspezifische Altersverteilung der 117 Rehepatienten
der Probandengruppe

<table>
<thead>
<tr>
<th>Geschlecht/Alter (in Jahre und Prozent)</th>
<th>Hengst</th>
<th>Wallach</th>
<th>Stute</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>2</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt</td>
<td>12</td>
<td>30</td>
<td>75</td>
<td>117</td>
</tr>
</tbody>
</table>

Tabelle 6 zeigt die geschlechtsspezifische Altersverteilung innerhalb der Patientengruppe.

C.2. Untersuchung

C.2.1. Allgemeinuntersuchung

Grundsätzlich wurden alle Pferde zuerst einer gewissenhaften Allgemeinuntersuchung nach folgendem Schema unterzogen:
1. Haltung
2. Verhalten
3. Habitus
4. Ernährungs- und Pflegezustand (insbesondere Hufpflege)
5. Atmung/Temperatur/Puls
6. Lymphknoten
7. Schleimhäute inklusive KFZ
8. Husten provozierbar oder spontan
9. Nasenausfluss

C.2.2. Spezielle Untersuchung:

Reheuntersuchungsprotokoll

Patient:

<table>
<thead>
<tr>
<th>Alter:</th>
<th>Geschlecht:</th>
<th>Rasse:</th>
</tr>
</thead>
</table>

Verwendungszweck:

<table>
<thead>
<tr>
<th>Trainingszustand:</th>
<th>Management:</th>
</tr>
</thead>
</table>

Vorbericht

Vorbehandlung:

<table>
<thead>
<tr>
<th>Erkrankungsdauer:</th>
</tr>
</thead>
</table>

Adspektion:

<table>
<thead>
<tr>
<th>Schmerzäußerung:</th>
</tr>
</thead>
</table>

LH:

<table>
<thead>
<tr>
<th>Gliedmaßen:</th>
</tr>
</thead>
</table>

Obel-Grad (1-4):

<table>
<thead>
<tr>
<th>Cripps-Grad (0-5):</th>
</tr>
</thead>
</table>

Huf (inkl. Kronrand)

Beschlag

<table>
<thead>
<tr>
<th>vorne links:</th>
<th>vorne rechts:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>hinten links:</th>
<th>hinten rechts:</th>
</tr>
</thead>
</table>

Palpation:

<table>
<thead>
<tr>
<th>Hufzange/Hammerperkussion</th>
</tr>
</thead>
</table>

Gliedmaßen aufhebbar:

<table>
<thead>
<tr>
<th>Belastung:</th>
</tr>
</thead>
</table>

Pulsation:

<table>
<thead>
<tr>
<th>(A-)Symmetrie:</th>
</tr>
</thead>
</table>

Röntgen:

<table>
<thead>
<tr>
<th>90° (lat.-med.):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0° (ant.-post.):</th>
</tr>
</thead>
</table>

Messungen (H-L Zone, SD, Rotation):

<table>
<thead>
<tr>
<th>vl:</th>
<th>vr:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>hl:</th>
<th>hr:</th>
</tr>
</thead>
</table>

Knochenveränderungen und Gaseinschlüsse:

<table>
<thead>
<tr>
<th>vl:</th>
<th>vr:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>hl:</th>
<th>hr:</th>
</tr>
</thead>
</table>

Venogramm:

<table>
<thead>
<tr>
<th>vl/vr</th>
<th>hl/hr</th>
</tr>
</thead>
</table>

Sektor I

Sektor II

Sektor III

Sektor IV

Sektor V

Abbildung 3: Reheuntersuchungsprotokoll für die spezielle Untersuchung bei Verdacht auf Hufrehe

C.2.3. Radiologische Untersuchung

C.2.3.1. Röntgenologische Untersuchung

Im Anschluss an die allgemeine und die spezielle klinische Untersuchung wurde der Patient mit Detomidinhydrochlorid (Domosedan®) 20-40µg/kg KGW i.v./i.m. sediert. Zur Objektivierung der klinischen Befunde wurden die Patienten einer röntgenologi­schen Untersuchung unterzogen, die standardisiert die 0° und die 90° Aufnahme, bei chronischen Fällen auch die 45° und die 135° Aufnahme beinhaltete. Anschließend wurden die Pferde, wie in Kapitel C.2.3.2. detailliert beschrieben digital phle­bographiert. Im Rahmen dieser Arbeit wurden die röntgenologische und die phlebo­bographische Untersuchung kombiniert durchgeführt. Die Beschreibung der Rönt­genuntersuchung ist daher in die methodische Vorgehensweise der venösen Kon­trastmittelstudie mit eingegliedert.

C.2.3.2. Phlebographische Untersuchung

Um reproduzierbare und vergleichbare Ergebnisse mit der phlebographischen Kon­trastmittelstudie zu erzeugen, ist eine standardisierte methodische Vorgehensweise die Grundvoraussetzung. Im Folgenden wird das phlebographische Untersuchungs­
protokoll der Arbeit detailliert beschrieben. Mit dem Ziel, eine möglichst effektive und
einheitliche Vorgehensweise zu gewährleisten, sind die Arbeitsmaterialien im Voraus
bereitzustellen. Das Arbeitsumfeld sollte möglichst ruhig sein, um störungsfrei arbei-
ten zu können. Ein ebener Untergrund im Untersuchungsbereich ist essentiell für die
Anfertigung der Röntgenbilder.

C.2.3.2.1. Untersuchungsmaterial

Die notwendige Ausrüstung ist stichwortartig aufgelistet und bezieht sich auf die
phlebographische Untersuchung eines Hufes:

- Schmiedewerkzeug zur Entfernung des Hufeisens und der Reinigung des Hu-
 fes
- stationäres oder transportables Röntgengerät und die dazugehörige Entwick-
 lungseinheit
- mindestens fünf Röntgenkassetten pro Huf
- Raster für konventionelle Röntgenkassetten
- Vorrichtungen für die exakte Kennzeichnung der Röntgenkassetten
- Marker für die Kennzeichnung der dorsalen Hufwand z.B. Bariumsulfatpaste
- Röntgenschutzkleidung
- zwei hölzerne Positionsblöcke zur Erhöhung der Fußungsfläche
- selbstklebende Bandagen und Verbandsmaterial
- Esmarchschlach oder -bandage
- eine Mosquitoklemme
- trockene und saubere Tupfer und zugelassene Hautdesinfektion
- sterile chirurgische Einmalhandschuhe
- mindestens zwei 21 Gauge (*3/4“ -> 0,8mm*19mm*30cm) Butterflykatheter
 pro Huf
- zwei bis drei zwanzig Milliliterspritzen
- Sedation z.B. Domosedan® (Detomidinhydrochlorid 20-40µg/kg KGW)
- Lokalanästhetikum z.B. Carbocaine® (Mepivicaine 2%)
- 20-25 ml intravenös injizierbares Kontrastmittel z.B. Renografin®-60 (Diatrizo-
 ate Meglumine), Solutrast® (Iopamidol) der Hypaque®-76 (Diatrizoate Sodium)
 pro zu untersuchenden Huf
Material und Methode

- optional drei Milliliter Amikacin® (Amikacin 250mg) um es dem Kontrastmittel als Infektionsprophylaxe beizugeben

C.2.3.2.2. Vorgehensweise bei der digitalen Phlebographie

Die individuell ausgeprägte Schmerzhaftigkeit des Patienten macht es ratsam, das Pferd initial zu sedieren um eine weitere Schädigung der ohnehin geschwächten Lederhaut, zu vermeiden. Bei den Pferden der Untersuchungsgruppe wird standardisiert Detomidinhydrochlorid in einer Dosierung von 20-40µg/kg KGW i.v. als Sedation angewendet. Alternativ kann bei vorausschauender Planung Domosedan® in der Dosierung von 40-80µg/kg KGW i.m. appliziert werden, um eine länger anhaltende sedative Wirkung zu erreichen. Bei hochgradiger Lahmheit z.B. Obel-Grad III oder IV kann der Patient in seiner Aufstallung verbleiben, sofern diese mit einem festen und ebenen Untergrund versehen und die Einstreu beiseite zu räumen ist.

Als nächster Schritt wird nach ausreichender Hautdesinfektion eine Leitungsanästhesie des Nervus digitalis palmaris/plantaris medialis und lateralis als mittlere palmar/plantare Anästhesie (MPA) direkt proximo-palmar bzw. plantar des Fesselgelenkes mit sechs bis acht Milliliter Carbocaine (Mepivicaine 2%) vorgenommen. Die Leitungsanästhesie ist Voraussetzung für das Abnehmen des Hufbeschlags, die Reinigung, das Ausschneiden und gegebenenfalls das Kürzen oder Berunden der Hufe. Außerdem garantiert die MPA die physiologische Belastung und das gleich-
mäßige anhaltende Stehen auf den erkrankten Gliedmaßen. Es ist zu beachten, dass die Leitungsanästhesie einige Zentimeter proximal der beabsichtigten Punktionsstelle gesetzt werden sollte, um Orientierungsschwierigkeiten bedingt durch die subkutane perineuräre Infiltration des anästhetischen Injectables bei der Katheterisierung zu vermeiden.

Das für die Punktion der Vena digitalis palmaris / plantaris medialis oder lateralis avisierte Hautareal wird aufgesucht, falls notwendig geschoren, gereinigt und desinfiziert. Sowohl die mediale als auch die laterale Seite sind zu reinigen und aseptisch vorzubereiten, um für gelegentlich auftretende Katheterisierungsschwierigkeiten gewappnet zu sein. Auf Höhe der proximalen Sesambeine wird ein Stase bewirkender und somit perfusionshemmender und gefäßkomprimierender Esmarchschaft um das Fesselgelenk angelegt.

Abbildung 4: Positionsblöcke und deren Verwendung für die röntgenologische Untersuchung nach REDDEN (1997)

Die Röntgenbilder werden mit einem transportablen Hochfrequenzröntgengerät Minx-ray HF 8015 ultralight im Abstand von ca. 70cm (28-30 Inch), mit 0.08mAs und 78kV belichtet, wobei es geringe Varianzmöglichkeiten bezüglich der Belichtungszeit und der Strahlungsintensität in Abhängigkeit von der Größe des Patienten gibt. Zum Untersuchungsstandard zählen die 0° und die 90° Aufnahme, die an jedem Patienten vorzunehmen sind. Die Anfertigung dieser Projektionen gelingt mit Hilfe der beschriebenen Positionsblöcke. Bei chronisch hufrehekranken Pferden werden zusätzlich Schrägaufnahmen angefertigt. Zu diesem Zweck ist der Huf auf einen Positionsblock nach Oxspring zu positionieren. In direkter proportionaler Korrelation zur Größe des Patienten sind nun 19 ± 3ml des wasserlöslichen trijodierten Kontrastmittels Rennografin® (Ditrizoate meglumin) oder alternativ vergleichbare Injectabile wie Hypaque® oder Solutrast® mit 3ml Amikacin® (Amikacin 250mg) als antibiotische Prophylaxe in zwei Spritzen aufzuziehen. Bei ausreichender Routine ist es möglich die Injektion auch nur mit einer Spritze auszuführen. Um chirurgische Kautelen zu gewährleisten, wird das für die Punktion der V. digitalis palmaris / plantaris medialis oder lateralis vorgesehene Hautareal ein weiteres Mal gereinigt und desinfiziert. Eine der steril behandschuhten Hände greift den ebenfalls sterilen Butterflykatheter, mit der anderen ist der Verschluss des mit dem Butterfly verbundenen Infusionsschlauches zu öffnen. Das aus dem geöffneten Schlauchende kontinuierlich abtropfende Blut ist die Kontrolle der korrekten intravenösen Lage des Katheters im Anschluss an
die Punktion der V. digitalis palm./plant. med. oder lat.. Nach adspektorischer und palpatorischer Kontrolle der korrekten Position des Katheters wird der Spritzenkonus mit dem Infusionsschlauch verbunden und das Kontrastmittel unter leichtem und gleichmäßigem Druck injiziert. Hierbei ist auf eventuell auftretende subkutane perivaskulär lokализierte Umfangsvermehrungen oder Schwellungen zu achten, die eine extravaskuläre Injektion anzeigen würden.

C.3. Bilddokumentation

C.4. Untersuchungstechnik und Auswertung

Material und Methode

Image J wird eine Winkelfunktion entwickelt, die es ermöglicht mit Hilfe der ermittelten Werte den Abweichungswinkel rechnerisch zu bestimmen. Dafür benötigt man die im 90° Winkel von der Hornkapsel aus gemessene H-L Zone (entspricht den Strecken a und b in Abbildung 5 rechts) und die Länge ihrer vertikalen Verbindungslinien (entspricht der Strecke c in Abbildung 5 rechts). Im physiologischen Zustand, d.h. ohne Rotation entsteht so ein Rechteck. Durch die rotationsbedingte Verschiebung der Hufbeinspitze entsteht ein Trapez, dessen Seitenlängen die Distanzmesungen ausmachen. Ziel ist es den Abweichungswinkel zwischen der Dorsalplatte der Hornkapsel und der Facies parietalis des Hufbeins zu bestimmen. Hierzu werden die in Abbildung 5 rechts dargestellten geometrischen Zusammenhänge herangezogen. Das kleinere Dreieck, das die Strecke c als Hypotenuse hat, ist dem großen Dreieck mit der Strecke b als Schenkel mathematisch ähnlich. Da in ähnlichen Dreiecken die Winkel gleich sind (Strahlensatz) und es sich hier um rechtwinklige Dreiecke handelt, kann der Winkel \(\alpha \) durch einen trigonometrischen Zusammenhang beschrieben werden. Das Verhältnis eines Schenkels zu der Hypotenuse, hier (b-a) zu c, entspricht den Sinus des gesuchten Winkels. Mit Hilfe der zyklometrischen Funktion (auch Arcusfunktion genannt) wird der gesuchte Abweichungswinkel bestimmt. Dabei sei noch bemerkt, dass für die Auswertung die Multiplikation mit dem Wert \(180/\pi \) nötig ist, da der Winkel mit Hilfe des Programms Microsoft Excel® errechnet wird. Die Funktionen innerhalb dieses Programms rechnen in Bogenmaß, was durch die Multiplikation zu korrigieren ist, da die Ergebnisse in Grad angegeben werden sollen. Auf diese Weise ist der Abweichungswinkel zwischen der Facies parietalis des Hufbeins und der Dorsalplatte der Hornkapsel festzustellen.

Als Erklärung für dieses mitunter umständliche Vorgehen sei bemerkt, dass sowohl das Programm eFilm medical 1.5 als auch Image J kostenlos zugänglich sind. Das Programm eFilm medical 1.5 verfügt über eine Kalibrierungsfunktion mit deren Hilfe es möglich ist genaue Distanzmessungen vorzunehmen. Allerdings gibt es in diesem Programm keine Winkelmessfunktion. Daher werden die Winkelmessungen für die Rotationsbestimmung mit dem Programm Image J durchgeführt, bei dem im Umkehrschluss die Kalibrierung von Röntgenbildern in dieser Menge nur umständlich gelingt. Da aber aus der Verwendung unterschiedlicher Programme eine erhöhte Ungenauigkeit bzw. Abweichung zu befürchten ist, wurde durch die mathematische Bestimmung diesem Problem vorgebeugt. Weiterer positiver Nebeneffekt dieser Winkelfunktion ist, dass bei Untersuchungen, die nicht mit digitalen oder digitalisierten Röntgenbildern angefertigt werden, so eine Möglichkeit der Auswertung besteht, indem man einfach mit einem Lineal die Distanzmessungen vornimmt und diese in die Gleichung überträgt. Im Rahmen der vorliegenden Arbeit werden die Daten in eine definierte Excel-Datei übertragen, die die Ausrechnung der gewünschten Werte vereinfacht.
Die Sohlendicke (SD) wird direkt distal von der Hufbeinspitze im rechten Winkel zur Fußflächenfläche gemessen. Somit wird die Stärke des sich unterhalb der dritten Phalanx befindlichen Hornes bestimmt.

Abbildung 5: Schematische Darstellung des geometrischen Zusammenhangs zwischen der Messung und der trigonometrischen Ermittlung des Abweichungswinkels α

Abweichungswinkel $\alpha = \arcsin(GK/H) \times 180/\pi$
Als Erkrankungsstadien ist das akute, das chronische ohne Knochenveränderungen oder das chronische mit Knochenveränderungen zu identifizieren bzw. zu differenzieren. Für die Auswertung der phlebographischen Untersuchung wird der Huf bzw. das laterale Röntgenbild in fünf anatomische Sektoren geteilt, in denen die pathologisch-anatomischen Veränderungen separat zu ermitteln sind. Die Gliederung der Sektoren richtet sich nach folgendem Schema:

Sektor I (S₁): Bereich des Kronsaums und des Proc. extensorius mit den Vv. coronales
Sektor II (S₂): Bereich der Facies parietalis zwischen dem Proc. extensorius und der Hufbeinspitze mit den Plexus parietalis
Sektor III (S₃): Bereich der Hufbeinspitze mit der V. marginis solearis
Sektor IV (S₄): Bereich der Facies solearis des Hufbeins mit dem Plexus solearis
Sektor V (S₅): Bereich des Ballenpolsters mit der V. tori digitalis und dem Plexus palmaris

Abbildung 6: Einteilung und Anordnung der anatomischen Sektoren an einem seitlichen Röntgenbild

In Abbildung 6 ist die Einteilung und Anordnung der anatomischen Sektoren I bis V an einem seitlich aufgenommenen Röntgenbild dargestellt. Die phlebographischen Röntgenbilder wurden ebenso mit dem Programm eFilm medical 1.5 ausgewertet. Hierbei sind die so genannte Invert- und auch die DSA-Funktion (Digitale Subtraktions Angiographie) sehr nützlich, wie in Abbildung 7 dargestellt, da sie die unter-
Material und Methode

schiedlichen kontrastgebenden Gewebe differenziert darstellen. Daraus ergeben sich eine bessere Detailgenauigkeit und eine zuverlässige Identifikation der Gefäße.

Abbildung 7: Invertiertes, seitliches phlebographisches Röntgenbild vorne links, Morganwallach, 11 Jahre, akute Hufrehe vorne bds, 8mm SD, 17/17mm H-L Zone (Patient Nr.13)

Die ermittelten Daten der einzelnen Bezugspunkte werden in einer Wertetabelle niedergelegt und auf diese Weise mit den Ergebnissen des Phlebogramms in Beziehung gesetzt. Für die Evaluierung der pathologischen Veränderung setzt man einen Schweregrad ein, sodass eine Rangliste in Korrelation zu den Befunden entsteht. Tabelle 7 dient als Erklärung für die Interpretation der Befunde. Der Grad 1 ist somit als keine bis geringe pathologische Veränderung, der Grad 2 als mittelgradige oder moderate und der Grad 3 als hochgradige bis prognostisch ungünstige Veränderung einzustufen. Die Reduktion auf drei Schweregrade erhöht die Nachvollziehbarkeit und reduziert das Risiko subjektiver Empfindungsunterschiede. Um abgesicherte Ergebnisse zu erzielen, wird das phlebographische Röntgenbild mit sechs weiteren Beurteilungskriterien korreliert.
Tabelle 7: Tabellarische Darstellung des Bewertungsschemas im Verhältnis der Bewertungskriterien zum Schweregrad (SD = Sohlendicke; HL-Zone = Abstand der dorsalen Hufplatte zur Facies parietalis des Hufbeins)

<table>
<thead>
<tr>
<th>Bewertungsschlüssel Bewertungsmerkmal</th>
<th>Grad 1</th>
<th>Grad 2</th>
<th>Grad 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Über 15mm</td>
<td>12-14mm</td>
<td>Unter 12mm</td>
</tr>
<tr>
<td>Rotation</td>
<td>0-5 Grad</td>
<td>5-10 Grad</td>
<td>Über 10 Grad</td>
</tr>
<tr>
<td>HL-Zone</td>
<td>Rassespezifisch</td>
<td>Negativer palmar Winkel</td>
<td>Über Rassestandard</td>
</tr>
<tr>
<td>Erkrankungsstadium</td>
<td>Akut</td>
<td>Chronisch ohne Knochenveränderungen</td>
<td>Chronisch mit Knochenveränderungen</td>
</tr>
<tr>
<td>Phlebogramm S₁-S₅</td>
<td>Keine sichtbaren Veränderungen</td>
<td>Schädigung der Gefäße/ Perfusionsminderung</td>
<td>Keine sichtbare Perfusion bzw. Gefäße</td>
</tr>
</tbody>
</table>

Die Zuordnung des jeweiligen Krankheitsstadiums innerhalb des Bewertungsschemas richtet sich einerseits nach der definitionsgemäßen Zugehörigkeit und andererseits nach der Knochenstruktur des Hufbeins. Eine Differenzierung der patholo-
D. Ergebnisse

D.1. Phlebographische Diagnostik

- Perivaskulärer Austritt
- Unzureichende bzw. undichte Verbindung zwischen der Injektionsspritze und dem Katheterende
- Undichter oder zu gering verschlossener Katheter
- Inkorrekt berechnetes Injektionsvolumen
- Falsche Lokalisation oder zu schwache Anbringung der Esmarchstaubinde

Als Indikator dient der Perfusionsbereich des Ballenpolsters. Dieser erscheint physiologischerweise wie ein Gefäßbaum mit endwärts gerichteter, zunehmend geringerer Gefäßstärke. Volumendefizite an Kontrastmittel führen zu einer Auflockerung des Gefäßbaumes, die eine Minderperfusion suggeriert, aber eine technische Fehlerquelle offen legt. Ebenso ist die Applikation des Esmarchschlauches mit ausreichender Sorgfalt vorzunehmen. Eine ungünstig lokalisierte oder ungenügend verschlossene Staubinde verursacht einen Verlust an Kontrastmittel aus den digitalen Gefäß-
Ergebnisse

D.1.1. Phlebographischer Normalbefund

Abbildung 8: Physiologisches Phlebogramm in 90° Projektionsrichtung eines hufgesunden Vollblüters
Abbildung 9: Schematische Darstellung der Venen und des subkutanen Venennetzes des Zehenendorgans der Schultergliedmaße eines Pferdes (nach Schummer 1951) aus NICKEL et al. (1992)

und anastomosiert distal mit der V. marginis solearis, wobei sich die Distanz im Bereich der Hufbeinspitze auf ca. vier bis sechs Millimeter vergrößert. Im englischsprachigen Raum werden diese Gefäße daher *circumflex vessels* genannt. Der Umenschlagstelle folgend ist im distalen Bereich das venöse Gefäßnetz des Sohlenkoriums erkennbar, das als Plexus solearis zu bezeichnen ist. Bei einem hufgesunden Pferd mit gut ausgeprägter Sohlcicke von wenigstens 15mm ist das Sohlengeflecht mindestens zehn Millimeter stark. Im palmaren Bereich des Röntgenbildes ist die V. tori digitalis mit ihren trachtenwärtigen Ästen abgebildet. Dieses Venengeflecht, das auch als Plexus palmaris (bzw. plantaris) angesprochen wird, ist im Röntgenbild nur als Ganzes zu beurteilen. Die Differenzierung der einzelnen Gefäße gelingt nur selten bzw. nicht zuverlässig, wobei die Anastomosen mit den benachbarten Venen zu identifizieren sind. Im Bereich des Plexus palmaris kommt es zu zahlreichen Überlagerungen, da sich hier axial und abaxial des Hufknorpels gelegene oberflächliche und profunde Gefäßnetze befinden.

D.1.2. Phlebogramm des pathologisch veränderten Fusses

Die Reduzierung der Gefäßfüllung hat unterschiedliche Ursachen, die aus dem pathogenetischen Ablauf resultiert und mit der anatomischen Lokalisation korreliert, wobei mechanische und degenerative Veränderungen einzeln oder kombiniert wirksam werden. Die einsetzende Rotation des Hufbeins verursacht eine mechanische Kompression der digitalen Gefäße. Beginnend werden die Gefäße im Bereich der
Hufbeinspitze geschädigt, die distal liegenden werden komprimiert, die dorsalen erfahre
en eine Dehnung. Bei weiterer und somit stärkerer Rotation des Os ungulare
kommt es zur Kompression des Koronarpexus durch den Processus extensorius und
die medial und lateral lokalisierten Hufbeinknorpel der distalen Phalanx. Dieses ma-
nifestiert sich durch eine verminderte Perfusion der dorsalen Lamina und des venö-

sen Sohlenplexus. Die distale Absenkung des Os ungulare verursacht eine mechanische
Kompression kombiniert mit gleichzeitig auftretender dislokationsbedingter
Zugspannung am Weichteilgewebe und den dazugehörigen Gefäßen. Als Folge ent-
steht ein interstitielles Ödem mit vaskulärer Stase. Die reduzierte Perfusion wird

schmerzbedingt durch den erhöhten sympathischen Vasotonus mit vergesellschaftetem
Vasospasmus und eventueller arterieller Thrombosierung unterstützt. Die Vv.
coronales erscheinen nicht mehr wie ein „Wasserfall“, sondern wie abgeschnitten. Im
dorsalen Bereich ist in hgr. Fällen keine Vaskularisation auf dem phlebographischen
Röntgenbild sichtbar. Ist die Dislokation als distale Absenkung des Hufbeins offensichtlich,
zeigen sich die pathologischen Veränderungen als mechanische Kompression
und Distension der Vaskularisation und des Gewebes, mit folgendem Austritt
von interstitieller Flüssigkeit und einsetzendem Ödem.

Abbildung 10: Rotationsrichtung des Hufbeins am Beispiel eines physiologischen phlebographischen Röntgenbildes (90° Aufnahme)

Abbildung 10 zeigt mit Hilfe der Pfeile schematisch die rotationsbedingte Lageveränderung des Hufbeins. Die resultierende pathologische Destruktion der folgenden me-

D.1.2.1. Das phlebographische Bild des akuten Stadiums

Abbildung 11: Phlebogramm 90° vorne links, Morganwallach 11 Jahre, akute Hufrehe vorne bds, SD 8mm, 17/17mm H-L Zone (Patient Nr.13)

Abbildung 12: Vergleich Phlebogramm 90° (links, Abbildung 12a) und 0° (rechts, Abbildung 12b) nach Oxspring vorne rechts, Saddlebredwallach 17 Jahre, akute Hufrehe an allen vier Gliedmaßen, 17mm SD, 18/18mm H-L Zone (Patient Nr.90)

Abbildung 13: Vergleichendes Phlebogramm 90° ohne (links, Abbildung 13a) und mit Trachtenerhöhung (rechts, Abbildung 13b) vorne rechts, Vollblutstute, 5 Jahre, akute Hufrehe vorne bds, 19mm SD, 15/15mm H-L Zone, (Patient Nr. 86)

D.1.2.2. Das phlebographische Bild des chronischen Rehestadiums

Abbildung 14: Phlebogramm 0° nach Oxspring vorne links, Warmblutwal- lach 10 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 11,80° Rotation, 7mm SD, 18/21mm H-L Zone, (Patient Nr.12)

Abbildung 14 zeigt eine phlebographische Röntgenaufnahme in 0° Projektionsrichtung nach Oxspring. Im Zehenspitzenbereich ist die Kontrastmittelanfüllung des parietalen Venengeflechtes als Folge der Dislokation des Hufbeins deutlich reduziert. Der venöse Arcus terminalis ist ebenfalls nicht erkennbar. Physiologischerweise ist im Bereich der V. marginis solearis (Sohlenrandvene) ein „Bürstensaum“ (vgl. D.1.1) vorhanden, der in diesem Bild in Folge der chronischen Schädigung nicht mehr nachzuweisen ist. Die Kontrastmittelfüllung der Vv. coronales (Sektor I) ist an lateralen Seite (im Bild rechts) weniger ausgeprägt als an der medialen Seite. Diese reduzierte Anfüllung ist als Folge der Gewichtsverteilung zulasten der lateralen Seiten zu werten.
Abbildung 15: Phlebogramm 90° vorne links, Araberwallach 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 5.37° Rotation, 14mm SD, 17/20mm H-L Zone, (Patient Nr. 9)

Abbildung 16: Phlebogramm 0° vorne links, Araberwallach 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 5.37° Rotation, 14mm SD, 17/20mm H-L Zone, (Patient Nr. 9)

Abbildung 17: Phlebogramm 90° vorne rechts, Vollblutstute, 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 9,96° Rotation, 2mm SD, 27/33mm H-L Zone, (Patient Nr. 24)

Abbildung 18: Phlebogramm 90° vorne links, Vollblutstute, 7 Jahre, chronische Hufrehe (mit Knochenveränderungen) vorne bds, 31.04° Rotation, 5mm SD, 27/40mm H-L Zone, (Patient Nr. 116)

Abbildung 19: Phlebogramm 90°, vorne rechts, Andalusierwallach, 4 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 10,74° Rotation, 3mm SD, 24/30mm H-L Zone, (Patient Nr. 69)

Abbildung 20: Phlebogramm 0° vorne rechts, Andalusierwallach, 4 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 10,74° Rotation, 3mm SD, 24/30mm H-L Zone, (Patient Nr. 69)

Bei ausschließlicher Betrachtung der Bewertungskriterien wie Rotation, Sohlendicke, H-L Zone oder des Erkrankungsstadiums ist die diagnostische Befundung dieses Patienten deutlich schlechter, als das klinische Erscheinungsbild dieser Röntgenaufnahme suggeriert. Das bedeutet im Umkehrschluss, dass trotz massiver eingetreten-
ner Dislokation die Durchblutungsverhältnisse noch günstig und feinste Gefäßstrukturen selbst im Korium der Sohlenfläche weiterhin vorhanden sind.

D.1.3. Technische Fehlermöglichkeiten

Die sichere intravenöse Injektion des Kontrastmittels ist eine unerlässliche Voraussetzung für die Anfertigung von zuverlässig interpretierbaren Röntgenbildern. Im Folgenden wird auf das röntgenologische Erscheinungsbild typischer technischer Fehler mit Hilfe einiger Abbildungen eingegangen.

Abbildung 21: Phlebogramm 90°, vorne links, Vollbluthengst, 5 Jahre, akute Hufrehe vorne links, 14mm SD, 15/15mm H-L Zone, (Patient Nr.22)

Abbildung 22: Phlebogramm 90°, vorne links, Vollblutstute, 7 Jahre, chronische Hufrehe (ohne Knochenveränderungen) vorne bds, 7.16° Rotation, 5mm SD, 27/33mm H-L Zone, (Patient Nr.24)

In Abbildung 22 ist das seitliche Röntgenbild einer Vollblutstute mit chronischer Hufrehe dargestellt. Auf der Höhe des distalen Fesselbeins ist die perivaskuläre Lage der Katheterspitze zu erkennen. Das Kontrastmittelvolumen ist komplett im perivenösen Bereich zu erkennen.

Abbildung 23: Phlebogramm 90°, vorne links, Kaltbluthengst, 2 Jahre, chronische Hufrehe (inklusiv Knochenveränderungen) an allen vier Gliedmaßen, 14.69° Rotation, 22mm SD, 54/68mm H-L Zone, (Patient Nr. 34)

Der Plexus palmaris (Sektor V) ist durch seine anatomischen Besonderheiten nur in besonders schwerwiegenden Fällen pathologischen Veränderungen unterworfen. Daher dient der Sektor V als Indikator für die Beurteilbarkeit eines phlebographischen Röntgenbildes.

Ein ausreichendes Kontrastmittelvolumen ist unabdingbar und stellt somit eine potentielle Fehlerquelle dar. Die Berechnung der zu applizierenden Menge geht aus Kapitel C.2.3.2. hervor. Eine mangelnde Reduzierung der Zugspannung der tiefen Beugesehne, die durch ggr. Flexion des Karpus zu bewirken ist, hat einen ähnlichen
Ergebnisse

Effekt. Ohne das leichte Einbeugen der Gliedmaße gelingt die retrograde Füllung der digitalen Gefäße nicht zuverlässig und ergibt ein falsch negatives Ergebnis der phlebographischen Untersuchung, indem das Röntgenbild eine Minderperfusion suggeriert, obwohl die pathologischen Veränderungen weit geringer ausfallen.

Abbildung 24: Phlebogramm 90°, vorne rechts, Vollblutstute, 16 Jahre, chronische Hufrehe (ohne Knochenveränderungen) an allen vier Gliedmaßen, 8.59° Rotation, 11mm SD, 23/29mm H-L Zone, (Patient Nr.23)

Bevor ein phlebographisches Röntgenbild beurteilt wird, empfiehlt es sich folgende Punkte zu kontrollieren:

- Korrekte intravenöse Lage des Katheters
- Perivenöses Kontrastmittel
- Deutliche kontrastgebende Struktur der vorhandenen Gefäße
- Venöser Gefäßbaum des Plexus palmaris als Indikator für ein Volumendefizit
D.2. Ergebnis des Bewertungsschemas

Tabelle 8: Verteilung der phlebographisch untersuchten Gliedmaßen innerhalb der Patientengruppe

<table>
<thead>
<tr>
<th>Untersuchte Gliedmaßen</th>
<th>Häufigkeit</th>
<th>Anzahl Veno.</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mal vo bds</td>
<td>7</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>2 mal vo li</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2 mal vo li, 2 mal vo bds</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2 mal vo re</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2 mal vo re, vo li</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3*vo re</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>hi li</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>hi re</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>vo bds</td>
<td>51</td>
<td>2</td>
<td>102</td>
</tr>
<tr>
<td>vo bds, hi li</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>vo bds, hi re</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>vo bds, vo li</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>vo bds, vo re</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>vo li</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>vo li, hi re, vo bds</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>vo li, vo bds</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>vo re</td>
<td>12</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>vo re, 2 mal vo li</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>vo re, hi li</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>vo re, vo bds</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>vo/hi bds</td>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>vo/hi bds, vo/hi re</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>vo/hi re, vo li</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Summe</td>
<td>117</td>
<td></td>
<td>251</td>
</tr>
</tbody>
</table>

Bei insgesamt 117 Patienten der gesamten Probandengruppe werden, wie in Tabelle 8 dargestellt ist, 207 erkrankte Gliedmaßen mindestens einmal phlebographisch un-

Gruppe 1: Gesamtanzahl der Patienten (117) mit der Summe der Bewertungskrite rien nach OBEL (1948), maximal möglich 31
Gruppe 2: Gesamtanzahl der Patienten (117) mit der Summe der Bewertungskriterien nach CRIPPS und EUSTACE (1999), maximal möglich 32
Gruppe 3: Anzahl der Patienten ohne Tenotomie (81) mit der Summe der Bewer tungskriterien nach OBEL (1948), maximal möglich 31
Gruppe 4: Anzahl der Patienten ohne Tenotomie (81) mit der Summe der Bewer tungskriterien nach CRIPPS und EUSTACE (1999), maximal möglich 32
Gruppe 5: Anzahl der Patienten mit Tenotomie (36) mit der Summe der Bewer tungskriterien nach OBEL (1948), maximal möglich 31
Gruppe 6: Anzahl der Patienten mit Tenotomie (36) mit der Summe der Bewer tungskriterien nach CRIPPS und EUSTACE (1999), maximal möglich 32
Tabelle 9: Statistische Ergebnisse der gruppenspezifischen Auswertung mit Hilfe des Bewertungsschemas

<table>
<thead>
<tr>
<th>statistische Ergebnisse/Gruppe</th>
<th>Gruppe 1</th>
<th>Gruppe 2</th>
<th>Gruppe 3</th>
<th>Gruppe 4</th>
<th>Gruppe 5</th>
<th>Gruppe 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Patienten</td>
<td>117</td>
<td>117</td>
<td>81</td>
<td>81</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Minimalwert</td>
<td>1,60</td>
<td>1,60</td>
<td>1,55</td>
<td>1,55</td>
<td>1,80</td>
<td>1,70</td>
</tr>
<tr>
<td>Maximalwert</td>
<td>3,00</td>
<td>3,00</td>
<td>3,00</td>
<td>3,00</td>
<td>2,90</td>
<td>3,00</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>2,27±0,29</td>
<td>2,28±0,31</td>
<td>2,16±0,26</td>
<td>2,17±0,27</td>
<td>2,47±0,24</td>
<td>2,51±0,26</td>
</tr>
</tbody>
</table>

Ergebnisse

dieser Untersuchung der retrospektiven Beurteilung unterliegen und diese Patienten
nach klinisch-empirischen Gesichtspunkten und nicht anhand dieses Bewertungs-
schemas ursprünglich betrachtet wurden, ist es möglich diese Beispiele mit Hilfe der
statistischen Auswertung zu kontrollieren und die Ergebnisse zu objektivieren. Der
höhere statistische Mittelwert zeigt, dass die Bewertungskriterien der tenotomierten
Patienten deutlich schlechter bzw. höher sind.

Tabelle 10: Tabellarische Darstellung der Korrelationswerte der einzelnen
Bewertungskriterien untereinander

<table>
<thead>
<tr>
<th>Korrelationswerte der Bewertungskriterien</th>
<th>Rotation</th>
<th>SD</th>
<th>H-L Zone</th>
<th>Krankheitsstadium</th>
<th>Lahmheitsgrade nach OBEL</th>
<th>Lahmheitsgrade nach CRIPPS und EUSTACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe der Sektoren I bis V</td>
<td>0,15</td>
<td>0,08</td>
<td>0,09</td>
<td>0,08</td>
<td>0,16</td>
<td>0,17</td>
</tr>
<tr>
<td>Rotation</td>
<td>-0,02</td>
<td>0,52</td>
<td>0,02</td>
<td>0,58</td>
<td>0,07</td>
<td>0,11</td>
</tr>
<tr>
<td>SD</td>
<td>-0,02</td>
<td>0,19</td>
<td>0,02</td>
<td>-0,03</td>
<td>-0,03</td>
<td>-0,03</td>
</tr>
<tr>
<td>H-L Zone</td>
<td>0,52</td>
<td>0,09</td>
<td>0,51</td>
<td>-0,06</td>
<td>-0,06</td>
<td>-0,02</td>
</tr>
<tr>
<td>Krankheitsstadium</td>
<td>0,58</td>
<td>0,02</td>
<td>0,51</td>
<td>-0,03</td>
<td>0,01</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10 zeigt die Größe des Korrelationskoeffizienten, welcher das Intervall von
minus eins bis plus eins überdeckt. Befindet man sich im Bereich einer deutlich nega-
tiven Korrelation, dann lässt sich ein stochastischer Zusammenhang in der Art ab-
lesen, dass mit dem Wachsen der einen Größe die andere abnimmt. Umgekehrt be-
deutet eine deutlich positive Korrelation die Zunahme beider Beobachtungsgrößen.
Unabhängige Zufallsvariablen weisen einen Korrelationskoeffizienten von null auf.
Bei einer Korrelation ungleich null kann jedoch nicht zwingend auf einen Kausal-
zusammenhang zwischen den Beobachtungsgrößen geschlossen werden. Im Ge-
gensatz zur Proportionalität ist die Korrelation ein stochastischer Zusammen-
hang. Es kann nur eine ungefähre Zu- oder Abnahme prognostiziert werden.

Als Grundlage der Beurteilung der einzelnen Bewertungskriterien werden Schwere-
grade von eins bis drei eingesetzt, woraus sich keine vollständige Übereinstimmung
ergibt. Da das Krankheitsstadium definitionsgemäß von der Rotation abhängt, ist der
entsprechende Korrelationswert mit 0,58 hoch. Der statistische Zusammenhang zwi-
schen der Rotation und dem Wert der H-L Zone ist mit einem Ergebnis von 0,52 e-
D.3. Statistische Auswertung der Probandengruppe

Ziel der statistischen Auswertung ist die graphische Darstellung der Zusammensetzung der Probandengruppe sowie die Aufschlüsselung der einzelnen Bewertungskriterien.

Abbildung 25: Rassenverteilung innerhalb der Probandengruppe von 117 Pferden mit Hufrehe

Abbildung 26: Geschlechtsspezifische Verteilung der Krankheitsstadien innerhalb der Probandengruppe

Abbildung 27: Rassespezifische Verteilung der Krankheitsstadien innerhalb der Probandengruppe

Abbildung 27 zeigt die Verteilung der Krankheitsstadien im Verhältnis zur Rasse.
Parallel zur Abbildung 25 wird der große Anteil der Rasse Vollblut dargestellt. Für die Verteilung der übrigen an der Untersuchung beteiligten Rassen lässt sich keine signifikante Häufung erkennen.

Abbildung 28: Altersverteilung innerhalb der Patientengruppe

In Abbildung 28 sind die Altersbereiche der Patienten im Verhältnis zum Geschlecht innerhalb der Probandengruppe dargestellt. Auffällig ist eine gehäufte Erkrankungsraten der Stuten innerhalb eines Lebensalters zwischen zwei und acht Jahren (48 von insgesamt 75), die sich für die Hengste noch deutlicher wieder finden lässt.
Abbildung 29: Altersverteilung der männlichen Pferde der Patientengruppe

Abbildung 29 zeigt als Ergänzung zu Abbildung 28 die Altersverteilung der männlichen Pferde der Patientengruppe. Alle zwölf Hengste der Patientengruppe sind im Altersbereich zwischen zwei und acht Jahren.

In Abbildung 30 bis 31 sind die Messergebnisse für die Bewertungskriterien Rotation, Sohlendicke und HL-Zone gliedmaßenspezifisch dargestellt. Da die Erkrankungen an den Vordergliedmaßen schwerwiegender und häufiger vorkommen, ist die Summe der Messergebnisse der Hintergliedmaßen deutlich geringer.
Ergebnisse

Abbildung 30: Gliedmaßenspezifische Einteilung für das Bewertungskriterium Rotation

Abbildung 31: Gliedmaßenspezifische Einteilung für das Bewertungskriterium Sohlendicke
Ergebnisse

Abbildung 32: Gliedmaßenspezifische Einteilung für das Bewertungskriterium H-L Zone

![Gliedmaßenverteilung HL-Zone](image)

Abbildung 33: Verteilung der Lahmheitsgrade nach OBEL (1948) bzw. nach CRIPPS und EUSTACE (1999b) innerhalb der Probendengruppe

![Verteilung der Lahmheitsgrade](image)

In Abbildung 33 wird die Lahmheitsbewertung nach OBEL (1948) mit der von CRIPPS und EUSTACE (1999b) verglichen. Der Schweregrad 4 ist bei beiden Bewertungsschemata am häufigsten vertreten.
Abbildung 34: Ergebnisse der phlebographischen Sektorenbewertung vorne links

Abbildung 35: Ergebnisse der phlebographischen Sektorenbewertung vorne rechts
Die Abbildung 34 bis 36 zeigen die gliedmaßenspezifische Sektorenbewertung der phlebographischen Kontrastmittelstudie. Für die Beurteilung muss auf die unterschiedliche Anzahl von Messungen geachtet werden. Schwerpunkt liegt auch hier auf den vorderen Gliedmaßen.
E. Diskussion

E.1. Untersuchungsmethoden

Die phlebographische Kontrastmitteluntersuchung des an Hufrehe erkrankten Pferdes gehört in Deutschland nicht zu den routinemäßig eingesetzten Untersuchungsmethoden.

und mitunter zu epileptoiden Reaktionen führen kann. In Anbetracht des Narkoserisiko-
kos und der Seitenlage während der Untersuchung ist die Arteriographie der Phle-
lographie im routinemäßigen diagnostischen Einsatz unterlegen.
Weitere Untersuchungstechniken wie die Thermographie oder die Szintigraphie, die
am stehenden Pferd durchführbar sind, sind der CT, der MRT und der Arteriographie
in der Detailgenauigkeit unterlegen. Außerdem ist der Einsatz dieser Methoden an
ein stationäres Gerät gebunden und kann somit nicht ambulant verwendet werden.

E.1.1. Patientengut

Das zur Untersuchung herangezogene Patientengut der Klinik „Rood and Riddle“
besteht zu großen Teilen aus Vollblutpferden, da sich die Klinik in Kentucky und so-
mit in einem internationalen Hauptzuchtgebiet für Vollblutpferde befindet. In diesem
US-amerikanischen Bundesstaat sind die klimatischen Bedingungen für die Vegeta-
tion sehr günstig und haben ihm den Namen „blue grass state“ eingebracht. Die int-
tensiven Zuchtaktivitäten gehen mit einer extensiven Weidehaltung einher, sodass
aufgrund der üppigen Vegetation die alimentär bedingte Hufrehe (grass founder) ge-
häuft anzutreffen ist. Diese Tatsache spiegelt sich sowohl in der Rasse- als auch in
der Geschlechtsverteilung der Probandengruppe dieser Arbeit wieder, weshalb es
nicht möglich ist, allgemeingültige Thesen für die Ergebnisse abzuleiten.

E.1.2. Klinische Untersuchung

Für die vorliegende Arbeit wurden die Pferde zuerst einer allgemeinen und speziellen
klinischen Standarduntersuchung unterzogen. Das eigens für diese Arbeit erstellte
Reheuntersuchungsprotokoll für die spezielle klinische Untersuchung des Rehepa-
tienten stellt sich als sehr hilfreich heraus.
Die Haltung des rehokranken Pferdes wird in der Literatur (z.B. STASHAK 2002) als
sägebockartig (Übersetzungsfehler?) beschrieben. Um der Erscheinung eines Säge-
bockes gerecht zu werden, müsste ein Pferd seine Vordergliedmaßen in kranialer
Richtung und die Hintergliedmaßen in kaudaler Richtung positionieren. Diese Form
der Haltung ist im Rahmen dieser Arbeit so nicht nachvollziehbar. Bei Erkrankung
aller vier Gliedmaßen stellen die Pferde sowohl die Vorder- als auch die Hinterglied-

Die Stützsäulenfunktion des M. triceps brachii ist beim langfristig chronisch rheumatischen Pferd in Abhängigkeit zum Schweregrad der Erkrankung reduziert, da diese Patienten schmerzbedingt wesentlich häufiger liegen als stehen. In den Zeiten des Stehens fallen die Pferde durch eine rheumatische und zugleich wackelige bzw. schwankende Haltung auf.

Die zwangsläufig auftretende Lahmheit des Patienten, die mit vergesellschaftetem Wendeschmerz erkennbar ist, wird in Kapitel B.7.1.1 unter den Bewertungskriterien aufgeführt.

E.1.3. Untersuchungstechnik der Phlebographie

Als nächster Schritt wird nach ausreichender Hautdesinfektion eine Leitungsanästhesie (MPA) mit Carbocaine® (Mepivicaine 2%) vorgenommen (HERTSCH, 1987; DYSON, 1984). Die MPA garantiert das Stehvermögen während der Untersuchung, da das schmerzverursachende retrograde Anfüllen des digitalen Venennetzes für die Pferde unbemerkt bleibt. Außerdem wird die Leitungsanästhesie für das Anbringen eines orthopädischen Hufbeschlags nach Auswertung der Standard- und der phlebographischen Röntgenbilder ausgenutzt. Im Podiatry Center der Klinik „Rood and Riddle“ werden orthopädische Spezialbeschläge für die Hufrehetherapie üblicherweise mit einem Acrylklebstoff (Equilox®) an den Hufen befestigt. Damit das Hufeisen in seiner gewünschten Lage bleibt, ist es notwendig den Huf während des Aushärtens des Klebstoffes für ca. eine Minute aufzuhalten. Für die temporäre Belastung nur einer Gliedmaße, ist die MPA unerlässlich. Der Vorteil des Klebstoffes liegt in der Option nur gewisse Bereiche des Hufes in eine gewichtstragende Funk-

Diskussion

Bei einigen Patienten wurden vergleichend sowohl digitale als auch konventionelle Röntgenfilme eingesetzt, wobei sich keine diagnostisch relevanten Unterschiede zugunsten einer der jeweiligen Techniken ergaben. Digitale Röntgenbilder haben allerdings den Vorteil nachträglich bearbeitet werden zu können, obgleich diese Technik teurer ist und nicht in jeder klinischen Einrichtung zur Verfügung steht.

E.2. Phlebographische Befunde

Diskussion

gruppe gehörte, im Podiatry Center vorgestellt, welches der überweisende Tierarzt nach einer Ausdünnung der dorsalen Hufplatte phlebographiert hatte.

Abbildung 39: Phlebogramm 90°, vorne rechts, Vollblutstute, 10 Jahre, Hornspalte in der Zehe

E.2.1. Sektor I (Vv. coronales)

Die Rotation des Hufbeins führt zu einer synchronen Bewegung des Proc. ext. in Richtung Hornkapsel. Dadurch wird eine Kompression der Vv.coronales verursacht.

E.2.2. Sektor II (Plexus parietalis)

E.2.3. Sektor III (V. marginis solearis)

Die Sohlenrandvene wird durch die dislokationsabhängige Dehnung der Gefäße des Wandsegmentes ebenfalls gedehnt oder aber auch komprimiert. Physiologischerweise beträgt der Abstand der Sohlenrandvene zur Hufbeinspitze in der 90° Aufnahme ca. 5 mm. Der physiologisch gleichmäßige Bogen der Sohlenrandvene dorsal der Hufbeinspitze weist durch eine Veränderung seines Erscheinungsbildes schon auf dezente Lageveränderungen des Hufbeins hin. In der 0° Aufnahme nach Oxspring ist an der Sohlenrandvene ein Bürstensaum festzustellen, der eine zusätzliche diagnostische Hilfe für die bereits eingetretene Schädigung erlaubt. Parallel zu den angiographischen Erkenntnissen von HERTSCH (1981) zeigt die Phlebographie eine mögliche physiologische Gefäßstruktur trotz eingetretener Rotation. Durch dieses Ergebnis kann das stabile vom instabilen chronischen Erkrankungsstadium getrennt werden, woraus sich im Folgenden Rückschlüsse sowohl für die Therapie als auch für die Prognose des Patienten ableiten lassen.

E.2.4. Sektor IV (Plexus solearis)

E.2.5. Sektor V (Plexus palmaris)

Im Rahmen dieser Untersuchung zeigt sich eine gewisse Indikatorfunktion des Sektor V für die Beurteilbarkeit des Röntgenbildes. Die besondere Gefäßanatomie des Ballensegmentes bedingt eine gewisse Unabhängigkeit der Blutver- bzw. entsorgung. Bei Patienten im chronisch instabilen Erkrankungsstadium mit hgr. Rotation kann die unfixierte Lage des Hufbeins zum Abscheren der Ballengefäße durch die Hufknorpel führen. In akuten und chronisch stabilen Erkrankungsfällen sind keine
oder nur geringe phlebographische Veränderungen im Venengeflecht des Ballenpolsters feststellbar. Die Indikatorfunktion des Sektor V wird im Kapitel D.1.3. eingehend besprochen, da dieses Gefäßgeflecht für die Identifikation von technischen Fehlern herangezogen werden kann.

E.3. Therapie

Diese Ansicht wird durch die vorliegende Arbeit nicht gestützt. Mit Ausnahme sehr weniger Fälle gelingt die Bewegungslimitierung trotz schmerzlindernder Therapie, wobei das Allgemeinbefinden des Patienten ungleich verbessert wird.

Alle Patienten werden neben der medikamentösen Therapie in Abhängigkeit zu ihrem Erkrankungsstadium orthopädisch behandelt. Die unterschiedlichen Möglichkeiten mit denen die mechanischen Verhältnisse positiv zu beeinflussen sind, gehen aus dem Kapitel B.10.1. hervor.

Bei chronisch erkrankten Pferden mit purulenter Infektion der Hufsohle wird zusätzliche eine intravenöse Stauungsantibiose vorgenommen.

E.3.1. Tenotomie

chungen erkennt MORRISON (2005), dass sämtliche stabilisierenden Haltestrukturen des Hufgelenkes, wie die Gelenkkapsel, die Seitenbänder und die Sesambeinbänder bei langfristig chronisch erkrankten Pferden durch bindegewebige Indurationen in ihrer Flexibilität reduziert sind.

E.4. Bewertungsschema

Die Ergebnisse der statistischen Korrelation zeigen, dass die Bewertungskriterien und die Phlebographie voneinander unabhängige Resultate liefern. Einzelne Kriterien des Bewertungsschemas zeigen deutliche statistische Abhängigkeiten, wie z.B. das Erkrankungsstadium und der Wert der HL-Zone mit der Rotation. Dieses Ergebnis wird als Bestätigung für die korrekte Auswertung interpretiert, da das Erkrankungsstadium per definitionem von der Rotation abhängig ist.

F. Zusammenfassung

Die Rehe (Pododermatitis aseptica diffusa) ist eine der schwerwiegendsten und folgenreichsten orthopädischen Erkrankungen der Equiden, die trotz aller veterinärmedizinischer und schmiedehandwerklicher Fortschritte auch heute noch nicht ihre Schrecken verloren hat. Daher besteht anhaltendes Forschungsinteresse an Diagnose, Prophylaxe, Therapie und Prognose der Hufrehe. Im Hinblick auf eine optimale stadiengerechte Therapie der Hufrehe finden in den USA neben klinisch-orthopädischen Untersuchungen zunehmend häufiger digitale phlebographische Darstellungen am stehenden Pferd Eingang in die Routinediagnostik.

Mit der vorliegenden Untersuchung sollte:
1. eine standardisierte Technik für die digitale Phlebographie am stehenden Pferd erstmals detailliert beschrieben werden,
2. eine kasuistische Darstellung und Analyse von eigenen Fällen und von Klinikfällen gegeben werden,
3. der Nutzen der venösen Gefäßdarstellung für die Rehebehandlung und Prognose bewertet werden und
4. der diagnostische Wert der Phlebographie im Vergleich mit konventionellen Parametern der Rehebehandlung herausgestellt werden.

Bei Einhaltung der detailliert beschriebenen Untersuchungsmethodik werden qualitativ gute und diagnostisch verwertbare phlebographische Röntgenbilder erstellt. Zugleich wird das Risiko technisch bedingter Fehler auf ein Minimum reduziert, wobei aus der Beschreibung hervorgeht, dass diese Untersuchungstechnik sowohl stationär wie auch ambulant durchführbar ist.

In den Ergebnissen des Bewertungsschemas zeigt sich der unabhängige zusätzliche diagnostische Wert der digitalen Phlebographie im Verhältnis zu den konventionellen Untersuchungsparametern (Rotation, HL-Zone, SD-Wert, Lahmheitsgrad nach OBEL (1948) bzw. CRIPPS und EUSTACE (1999b) und Erkrankungsstadium).

Aus den Ergebnissen der digitalen Phlebographie lässt sich sowohl das Erkrankungsstadium als auch der Schweregrad der Hufrehe zuverlässig ableiten. Diese Befunde sind in der Therapieform und -intensität zu berücksichtigen und beeinflussen somit die Prognose des Patienten.

Die digitale Phlebographie des rehekranen Pferdes bietet eine kostengünstige, komplikationsarme und einfach durchzuführende diagnostische Methode, die im Verhältnis zur Arteriographie nicht an eine Allgemeinanästhesie gebunden ist.
G. Summary

The digital venogram in the laminitic horse

Christian Czech

Although veterinary medicine and corrective farriery have advanced greatly during the past years, Laminitis is still one of the most severe and dramatic orthopaedic diseases of the equine digit, it is still feared by equine veterinarians and farriers. Continuous interests in research on diagnose, prevention, treatment and prognosis on laminitis are the consequences. Digital venography on the standing horse in regard to optimal stage based therapy of the founder horse are increasingly being used in the USA beside clinical orthopaedic diagnoses today.

Following research tries to show:

1. first time detailed description on the standardised technique of digital venography on the standing horse,
2. a casuistically display and analysis on own studies and clinical cases,
3. evaluating the benefit of the venogram in the prognosis and treatment of lamitis and
4. diagnostic value of the venography in comparison to conventional parameters of the laminitic treatment.

Between March 1st and May 15th 2005 at Rood and Riddle Equine Hospital, 31 founder cases were examined and included with the described venographic technique with Diatrizoate Meglumine or Diatrizoate Sodium as contrast material in the presented case study. In addition, 86 further venographed founder case reports were retrospectively analysed so that in all 117 patients (12 stallions, 30 geldings, 75 mares, between 2 and 21 of age, 76 thoroughbreds, 14 quarter horses, 11 saddlebreds and 16 horses of six other breeds) could be included into this case study. An error resistant formula (S.53) is developed to calculate degree of rotation. The radiological diagnosis (degree of rotation, distance between the dorsal hoof wall and the dorsal facies parietalis of the coffin bone and sole depth) were compared to the venogram diagnosis (evaluation of the hoof segments S1-S5) in relation to the...
different lameness degrees OBEL (1948), CRIPPS and EUSTACE (1999b) compared to the stage of the disease.

High quality and diagnostically usable venograms are made in adherence with the detailed described diagnostical method. At the same time technical defaults are being minimised whereby the possibility of ambulatory or stationary usage emerges from the description. Independent diagnostical value of the venogram is found in the results of the evaluation scheme in comparison to the conventional examination parameters (rotation, HL-Zone, sole depth, degree of lameness OBEL (1948) respectively CRIPPS and EUSTACE (1999) and stage of disease. The degree of lameness and severeness of the laminitis can be deflected reliably from the results of the digital venogram. The diagnosis is to be considered in the treatment and intensity and therefore affect the prognosis of the patient. The digital venogram of a laminitic horse offers a cost effective, uncomplicated and easily applied diagnostical method which unlike the arteriography is not tied to a general anaesthesia.
H. Literaturverzeichnis

Laminar microvascular flow, measured by means of Doppler flowmetry, during the prodromal stages of black walnut-induced laminitis laminitis in horses.
AM J Vet Re 61: 862-868

ALLEN, D.Jr., CLARK, E.S., MOORE, J.N. et al. (1990):
Evaluation of equine digital Starling forces and hemodynamics during early laminitis

BAXTER, G.M. (1994):
Acute laminitis.

BELKAMP, J.K. (2004):
Laminitis: What is new?
Proceedings 2004 Surgical Summit ACVS

Evaluation of heparin for prophylaxe equine laminitis:
71 cases (1980-1986).
J Am Vet Med Assoc 95: 505-507

BRUNKEN, G. (1985):
Die prognostische Bedeutung der röntgenologischen Untersuchung bei der chronischen Hufrehe des Pferdes.
Hannover, Tierärztl. Hochschule, Diss.
BUDRAS, K.-D. und HUSKAMP, B. (1999):
Belastungshufrehe - Vergleichende Betrachtung zu anderen systemischen Huf-
erkrankungen
Pferdeheilkunde 15: 89-110

BUDRAS, K.-D. und KÖNIG, H.E. (2005):
in: KÖNIG, H.E. und LIEBICH, H.G.(Hrsg.)
Anatomie der Haussäugetiere Lehrbuch und Farbatlas für Studium und Praxis
3. überarbeitete und erweiterte Auflage
Huf (Ungula) des Pferdes, S. 644-653
Schattauer Verlag Stuttgart, New York

BUDRAS, K.-D. und RÖCK, S. (2004):
Atlas der Anatomie des Pferdes
Lehrbuch für Studierende und Tierärzte
5. Auflage S. 27-30 und S. 138-141
Schlütersche Hannover

Zur Struktur des gesunden und Rehe-kranken Pferdehufes
in: Orthopädie bei Huf- und Klauentieren
KNEZEVIC P. F. (Hrsg), S. 237-251
Schattauer Verlag Stuttgart, New York

BUDRAS, K.-D., H. BRAGULLA, R. PELLMANN und REESE, S. (1997):
Das Hufbein mit Periost und Insertionszone des Hufbeinträgers
Wien. Tierärztl. Mschr. 84, 241-247

Hoof circulation in equine laminitis.
J Am Vet Med Assoc 156, 76-83

Radiological measurements from the feet of normal horses with relevance to
laminitis
Equine Vet J 31 (5): 427-432
Factors involved in the prognosis of equine laminitis in the UK.
Equine Vet J 31 (5): 433-442

The Equine distal Limb
An Atlas of Clinical Anatomy and Comparative Imaging
The Equine Foot, p.1-128
Manson Publishing/The veterinary Press

Angiographische Untersuchungen der Zehe bei der Hufrehe des Pferdes
Hannover, Tierärztl. Hochschule, Diss.

Nerve blocks and lameness diagnosis in the horse
In Practice 6: 102-107

A Review of the Pathophysiology and Treatment of acute Laminitis:
Pathophysiologic and Therapeutic Implications of Endothelin-1
AAEP Proceedings Vol. 48

EASTMAN, T.G. et al. (1999):
Deep digital flexor tenotomy as a treatment of chronic laminitis in horses:
35 cases (1988-1997)

Equine digital Starlings forces and hemodynamics during early laminitis induced
by an aqueous extract of black walnut (juglans nigra).
Am J Vet Re 56: 1338-1344

Explaining Laminitis and its Prevention
E.F.S. equine series
Treatment of solar prolapse using the heart bar shoe and dorsal hoof wall resection technique
Equine Vet J 21 (5): 370-372

Iatrogenic laminitis (letter). Vet Rec. 126: 586

Equine Laminitis: loss of hemidesmosomes in hoof secondary epidermal lamellae correlates to dose in an oligofructose induction model: an ultrastructural study
Equine Vet J 36: 230-235

Changes in cecal flora associated with the onset of laminitis.
Equine Vet J 4: 249-252

GERHARDS, H. (2004):
Laminitis as a feared complication in diseases and veterinary treatment
Proceedings MICEM 2004

GERHARDS, H. (2005):
Persönliche Mitteilungen vom 12.10.05

Persönliche Mitteilungen vom 20.03.06

Eine retrospektive Studie über die Hufrehe bei Pferden; dargestellt an den Patienten der Klinik für Pferde
Allgemeine Chirurgie und Radiologie der Freien Universität Berlin aus den Jahren 1976-1995
Berlin, Veterinärm. Fakultät, Diss.
HEMKER, S. (2001):
Die Bewertung der Meßmethoden bei der chronischen Hufrehe des Pferdes für den Grad und die Prognose
Berlin, Veterinärmed. Fakultät, Diss.

HERTSCH, B. W. und BRUNKEN, G. (1988):
Die röntgenologischen Veränderungen bei der chronischen Hufrehe.
10. Arbeitstagung der DVG, Fachgr. Pferdekrankh., Ber.: 120-131

HERTSCH, B.W. (1973):
Zur Arteriographie der Zehe des Pferdes

HERTSCH, B.W. (1981):
Arteriographische Untersuchungen an den Extremitäten beim Pferd.

HERTSCH, B.W. (1982):
Arteriographische Untersuchungen bei akuter und chronischer Hufrehe.
8. Arbeitstagung der DVG, Fachgr. Pferdekrankh., Ber.: 74-78

HERTSCH, B.W. (1993):
Zur orthopädischen Therapie der Hufrehe
in: Orthopädie bei Huf- und Klauentieren
KNEZEVIC, P. F. (Hrsg.)
Schattauer Verlag Stuttgart, New York
S. 269-282

Diagnostische Anästhesien bei der Lahmheitsuntersuchung - Form, Technik, Interpretation, Komplikationen.
Vortrag auf der Equitana VII, 13.3.-14.3.1987, Fachtagung für Pferdekrankheiten in Essen
Introduction and Clinical Review of Laminitis in Horses
First international Equine Conference on Laminitis and diseases of the Foot
Program Book: p.11-15

Endotoxemia as a direct cause of laminitis
Proc Am Assoc Equine Pract 41: 245-247

Pathophysiology of equine laminitis.
Comp Cont Educ Pract Vet 3: 454

Comparison of phenylbutazone, Lily pads and trimming on expressed pain in horses with chronic laminitis
Proc Am Assoc Equine Pract 41: 248-250

Therapiemonzepte bei der Hufrehe eines Pferdes

HUNT, R.J. (1991):
Pathophysiology of acute laminitis.
CompCont Educ Pract Vet 13: 1003-1010

HUNT, R.J. (1993):
A retrospective evaluation of laminitis in horses.
Equine Vet J 25: 61-64

HUNT, R.J. (1996):
Diagnosing and treating chronic laminitis in horses.
Vet Med 91 (11): 1025-1032
HUNT, R.J., ALLEN, D., BAXTER, G.M. et al. (1991):
Mid-metacarpal deep digital flexor tenotomy in the management of refractory laminitis in horses.
Vet Surg 20: 15-20

HUSKAMP, B. (1990):
Anmerkungen zur orthopädischen Behandlung der Hufrehe.
Pferdeheilkunde 6: 3-9

Igle-Fehr, J.E. und Baxter, G.M. (1999):
The Effect of Oral Isoxsuprine and Pentoxifylline on Digital and Laminar Blood Flow in Healthy Horses.
Vet Surg 28: 154-160

Evaluation of digital and laminar blood flow in horses given a low dose of endotoxin.
Am J Res 59: 192-196

Serum markers of lamellar basement membrane degradation and lamellar histopathological changes in horses affected with laminitis.

KAMEYA, T. (1973):
Clinical studies an laminitis in the racehorse
Exp Rep Equine Health Lab 10: 19-40

Studies on laminitis in the racehorse: Clinical aspects and relationships between chemical composition and histopathological findings of affected hoofs

HINCHCLIFF, K.W., KANEPS, A.J., GEOR, R.J., BAYLY, W.(Hrgs.)
Chapter 15, Diseases of the foot, Laminitis: p.274-278

Equine Vet J 31 (3): 243-247

KLUNDER, P. (2000): Physikalische Auswirkungen der Trachtenhochstellung am Huf des Pferdes
Berlin, Veterinärmed. Fakultät, Diss.

LINFORD, R.L. (1989a): Acute laminitis and subtle radiographic changes
Third Annual Bluegrass Laminitis Symposium, Louisville, Kentucky

Third Annual Bluegrass Laminitis Symposium, Louisville, Kentucky

Am J Vet Re 54 (1): 38-51

J Am Med Assoc 202: 71-76
MADEICZYK, V. (1991):
Mikroangiographische Untersuchungen bei der Hufrehe des Pferdes mit der
Fein-Focus-Methode
Hannover, Tierärztl. Hochschule, Diss.

Complications of equine surgery
In: MCILWRAITH, C.W.TURNER, S., editors:
Mcllwraith and Turner's Equine Surgery-Advanced Techniques
Second edition Baltimore, MD: Williams and Wilkens, p. 36-40

The pathophysiology of acute laminitis.
Vet Med 91: 936-939

Haematological changes during development of acute laminitis hypertension
Equine Vet J 13 (4): 240-242

Evidence for vascular and enzymatic events in the pathophysiology og acute
laminitis: which pathway is responsible for initiation of this process in horses?
Equine Vet J 36: 204-209

MORRISON, S.E. (2004):
Foot Management
in: Clinical Techniques in Equine Practice
Laminitis
ORSINI, J. A. (Hrsg) p. 71-82

MORRISON, S.E. (2005):
persönliche Mitteilung vom 15.3.2005

Case-control study of risk factors for development of laminitis in the
contralateral limb in Equidae with unilateral lameness.
J Am Vet Med Assoc 209: 1746-1748

POLLITT, C.C. (1999a):
Laminitis
in: Equine Medicine and Surgery, 5. Ausgabe
COLAHAN,P.T.; et al.(Hrsg)
Elsevier, Mosby: p. 1521-1541

POLLITT, C.C. (1999b):
Equine Laminitis: A Revised Pathophysiology.
Proc Am Assoc Equine Pract 45: 188-192

Equine laminitis: its development coincides with increased sublamellar blood
flow
Equine Vet J Suppl 26: 125-132

POLLITT, C.C. und G.S. MOLYNEUX (1990):
A scanning electron microscopical study of the dermal microcirculation of the
equine foot
Equine Vet J 22 (2): 79-87

POLLITT, C.C. (1999):
in: Color atlas of the horse's foot
Mosby-Williams & Wilkins, p. 9-27: 168-204

Batimastat (BB-94) inhibits matrix metalloproteinases of equine laminitis
18° elevation of the heel as an aid to treating acute and chronic laminitis in the equine.
Proc Am Assoc Equine Pract 37: 375-379

The use of venograms as a diagnostic tool
Proceedings of the 7th Bluegrass Laminitis Symposium
International Equine Podiatry Center Versailles Kentucky
p. 1-6

REDDEN, R.F. (1997):
Shoeing the Laminitic Horse.
Proc Am Assoc Equine Pract 43: 356-359

Possible therapeutic value of digital venography in laminitic horses
Equine Vet Educ 13: S. 125-134

Computertomographische Untersuchungen am Reehuf des Pferdes
Prakt. Tierarzt, coll.vet. XXVII: S. 46-50

RIEGEL, R. J. und HAKOLA, S.E. (1999):
Bild-Text-Atlas zur Anatomie und Klinik des Pferdes
Bewegungsapparat und Lahmheiten
S.115-121 und 153-163
Schlütersche Hannover

Coronary grooving promotes dorsal hoof wall growth in horses with chronic laminitis.
Proc Am Assoc Equine Pract 42: 212-213
RUCKER, A. (1999):
Interpreting Venograms: Normal or Abnormal
and Artefacts that may be misinterpreted
Proceedings of the Xth Bluegrass Laminitis Symposium
International Equine Podiatry Center Versailles Kentucky

Anatomie für die Tiermedizin
Huf, ungula, des Pferdes
S. 659-666
Enke Verlag Stuttgart

SCHUMMER, A. (1951):
Blutgefäße und Zirkulationsverhältnisse im Zehenendorgan des Pferdes.
Dtsch. Tierärztli. Wochenschr. 56: 36-38

Mathematische Formeln
Erweiterte Ausgabe E
Kapitel Trigonometrie: S. 14-15
Ernst Klett Schulbuchverlag GmbH

Zur radiologischen Untersuchung beim hufrehekranken Pferd. Eine retrospekti-

Lahmheit.
In: T.S. Stashak: Adam´s Lahmheit bei Pferden: 13-15
4. Auflage
Verlag M. u. H. Schaper, Hannover
Lameness, The Foot, Laminitis
In: T.S. Stashak: Adam’s Lameness in Horses
5. Edition: S. 645-664
Verlag Lippincott Williams&Wilkins

STICK, J.A. et al. (1982):
Pedal rotation as prognostic sign in laminitis of horses.
J Am Med Assoc 180: 251-253

Textbook of Veterinary Diagnostic Radiology
2. edition

Scintigraphic evaluation of digital circulation during the developmental and
acute phases of equine laminitis.
Equine Vet J 22 (6): 416-421

TURNER, T.A. (1992):
Use of deep flexor tenotomy in the management of laminitis.
Proc Am Assoc Equine Pract (38): 11-12

WINTZER, H.-J. (1997):
Krankheiten der Gliedmaßen
in: Krankheiten des Pferdes, H.-J. Wintzer (Hrsg)
2. Auflage
Verlag Paul Parey im Blackwell Wissenschaftsverlag GmbH Berlin, Wien
Praxisorientierte Anatomie und Propädeutik des Pferdes
2. ergänzte und völlig überarbeitete Auflage
WISSDORF, H., GERHARDS, H., HUSKAMP, B. und E. DEEGEN (Hrsg)
Schultergliedmaße, Hufbereich, Regio ungularis
S. 365-392
Verlag M.&H. Schaper Alfeld-Hannover

YELLE, M. (1986):
Klinischer Leitfaden zur Reihe des Pferdes.
Pferdeheilk. 2: 291-294

Detomidine Hydrochloride in Hoof Surgery and Therapeutic Shoeing
AAEP Proceedings 37: 315-318
Danksagung

Meinem Doktorvater, Herrn Prof. Dr. Hartmut Gerhards, möchte ich an dieser Stelle für die Überlassung des interessanten Themas und die jederzeit gewährte freundliche Unterstützung während der Anfertigung der Arbeit herzlich danken.

Den Mitarbeitern des Podiatry-Centers der Klinik „Rood and Riddle“ namentlich Dr. Scott Morrison, Dr. Bob Aigne und den Schmieden Aaron Gygax und Manfred Ecker danke ich besonders für Ihre großzügige Unterstützung.

Lebenslauf

Name: Christian Czech

Geburtsdatum: 17. Juni 1978

Geburtsort: Northeim

Eltern: Dr. med. Alexander Czech

Jutta Czech, geb. König

Staatsangehörigkeit: deutsch

Familienstand: ledig

Schulausbildung: 1984-1988 Grundschule in Dassel

1988-1990 Orientierungsstufe in Dassel

1990-1997 Paul-Gerhardt Gymnasium in Dassel

Abitur: 07/1997

Hochausbildung: 09/1999-09/2000 Studium der Tiermedizin an der Semmelweis Universität, Budapest

10/2000-01/2005 Studium der Tiermedizin an der Ludwig-Maximilians-Universität, München

Staatsexamen: 20.01.2005

 Approbation: 08.02.2005

Dissertation: seit 02/2005 Doktorand an der Chirurgischen Tierklinik der Ludwig-Maximilians-Universität, München, Abteilung für Pferde,

Vorstand: Prof. Dr. H. Gerhards