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Zusammenfassung 

Zusammenfassung 
 
 
Um die Rolle Kinetochor-assoziierter Proteine in der humanen Zellteilung zu 

studieren, haben wir die Funktion einer strukturellen Kernkomponente des 

Kinetochores analysiert, den Ndc80 Komplex. In diesem Komplex interagieren die 

Proteine Hec1 und Nuf2 über ihre N-termini und Hec1 interagiert darüberhinaus 

über Spc25 mit dem Spc24/Spc25 Unterkomplex. Der Proteinkomplex ist 

essentiell für die Chromosomensegregation und für das Rekrutieren mehrerer 

Proteine, darunter die mitotische Kinase Plk1. 

In Immunopräzipitationsexperimenten mit Plk1 Antikörpern konnte eine 

Kinetochor / Zentromer-assoziierte DNA-Translokase (PICH) als direkter Interaktor 

von Plk1 identifiziert werden. Die subzelluläre Lokalisierung von PICH an 

Kinetochoren und Zentromeren wird durch Plk1 reguliert. Plk1 inhibiert die 

Chromatin-Assoziation von PICH durch Phosphorylierung. PICH assoziiert mit 

auffallenden Fäden, die bis in die Anaphase bestehen und von Topoisomerase II 

aufgelöst werden. Darüberhinaus ist PICH eine neue, essentielle Komponente des 

Spindelkontrollpunktes (spindle assembly checkpoint), und das PICH Kontroll-

Signal wird wahrscheinlich über Regulierung der Kinetochor-Lokalisierung des 

Kontrollpunkt-Proteins Mad2 weitergeleitet. 

 Diese Arbeit stellt Fragen über das Verhalten zentromerischer DNA bei der 

Teilung von Schwesterchromatiden in der Mitose und den zeitlichen Ablauf von 

Dekatenation von Schwesterchromatiden. Wir vermuten, daß diese ATPase 

angehend in Prometaphase mit katenierter, zentromerischer DNA assoziiert, wo 

sie möglicherweise benötigt wird um die Spannung zwischen 

Schwesterkinetochoren zu messen. 
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Summary 

Summary 
 

To investigate the requirements of mitotic, kinetochore-associated proteins for 

human chromosome segregation we analyzed the human Ndc80 complex, a core 

structural component of the outer kinetochore. The Ndc80 complex contains Hec1 

and Nuf2 that interact via their N-termini and a smaller subcomplex of Spc24 and 

Spc25 is linked to Hec1. The complex is required for faithful chromosome 

congression and the recruitment of several proteins of the outer kinetochore, 

including the mitotic regulatory kinase Plk1. 

Pull down experiments with Plk1 identified a novel kinetochore/centromere 

associated DNA translocase, which we termed PICH, as an interactor of Plk1. The 

localization of PICH to kinetochores and centromeres is controlled by Plk1; and 

moreover, Plk1 phosphorylation on PICH negatively regulates its localization / 

chromatin association. PICH associates with conspicuous threads that persist into 

anaphase where Topoisomerase II causes their resolution. Moreover, PICH is a 

novel component of the spindle assembly checkpoint and PICH-dependent 

checkpoint signaling is likely to be mediated via kinetochore associated Mad2. 

This study raises questions as to the fate of centromeric DNA in sister chromatid 

separation and its timing of decatenation. We speculate that this enzyme 

associates with catenated, centromeric DNA from prometaphase where it may be 

required to sense the tension between sister kinetochores. 
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Introduction 

 

Introduction 
 
Cell division 

In 1885 Rudolf Virchow published the doctrine “omnis cellula ex cellula”: every cell 

originates from another cell. This turned out to be a basic principle of cell biology 

and hence the mechanism how cells duplicate is still one of the key questions of 

modern biology.  

The purpose of cell division is to produce two genetically identical daughter 

cells. Therefore, the DNA of eukaryotes has to be faithfully replicated, and the 

genetic material must then be accurately distributed into the two daughter cells so 

that each cell receives an identical copy of the parental genome. Walther 

Flemming was the first cytologist to describe in detail how chromosomes move 

during mitosis, or cell division (Figure 1). He observed cell division in salamander 

embryos where cells divide at fixed intervals and developed a method to stain 

chromosomes to observe this process. 

 
  

 
 
 
 
 
 
 
 
 

    
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Illustration of the book “Zell-substanz, Kern und Zelltheilung”, 1882, by the 
german discoverer of chromatin and chromosomes, Walther Flemming 
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Ultimately, Flemming described in a book published in 1882 the whole process of 

mitosis, from chromosome doubling to their even partitioning into the two resulting 

cells. The terms he coined, like prophase (chromosome condensation), 

metaphase (alignment of chromosomes at a plate before separation), anaphase 

(separation of chromatids) and telophase (formation of daughter nuclei) are still 

used to describe the steps of cell division, today.  

 

 

The spindle assembly checkpoint 

In 1991 the spindle assembly checkpoint and several of its signalling components 

were first discovered by two parallel screens in yeast (Hoyt et al., 1991; Li and 

Murray, 1991). This mitotic checkpoint is conserved in eukaryotes and monitors 

the correct bipolar attachment of chromosomes to microtubules to ensure that 

replicated sister chromatids are distributed equally to daughter cells (Cleveland et 

al., 2003; Li and Nicklas, 1995; Musacchio and Hardwick, 2002; Pinsky and 

Biggins, 2005; Stern and Murray, 2001). Therefore anaphase onset is only 

triggered when all the chromosomes are properly attached and aligned at the 

metaphase plate (Figure 2 and 3). This allows the equal separation of sister 

chromatids and their accurate delivery to each spindle pole.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Simplified illustration of spindle assembly checkpoint (SAC) function: The 
checkpoint inhibits mitotic progression to anaphase by inhibitory signalling until the last 
pair of sister chromatids is attached to microtubules and aligned at the metaphase plate. 
Silencing of the SAC allows progression into anaphase. 
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Elegant cell-biological studies have shown that a single unattached kinetochore is 

sufficient to inhibit the onset of anaphase throughout the cell. Laser ablation of this 

unattached kinetochore relieves this mitotic delay (Rieder et al., 1995). Although 

changes in the phosphorylation state of kinetochore-associated proteins have 

been correlated with checkpoint activity status (Ahonen et al., 2005; Nicklas et al., 

1995), the molecular source of the inhibitory spindle checkpoint signal remains 

unknown. There are several lines of evidence that the spindle checkpoint 

somehow ‘senses’ the tension that develops between sister kinetochores upon 

bipolar attachment (Figure 4), reflecting an equilibrium between poleward and anti-

poleward forces acting on the sister chromatids (Nicklas et al., 1995; Rieder et al., 

1994). Manipulations of chromosomes in insect spermatocytes showed that 

tension exerted across kinetochores during mitosis was enough to satisfy the 

spindle checkpoint (Li and Nicklas, 1995). However, to what extent lack of 

microtubule attachment and tension on kinetochores contribute to checkpoint 

activation in metazoan cells and where and how tension is monitored remains to 

be clarified (Musacchio and Hardwick, 2002).  

The prevention of anaphase onset is achieved by inhibition (Figure 2) of the 

Anaphase promoting complex (APC/C), a multiprotein ubiquitin ligase, which is the 

target of the spindle checkpoint (Figure 3). APC/C activation by spindle checkpoint 

silencing leads to the destruction of Securin and CyclinB, which in turn permits 

progression into anaphase (Peters, 2002; Pines, 2006). Genetic and biochemical 

data concur to demonstrate essential functions for several proteins, notably Mad1, 

Mad2, Bub3 and the protein kinases Bub1, BubR1 and Mps1, in spindle 

checkpoint signalling (Figure 3). How these proteins cooperate to inhibit the 

APC/C remains to be fully understood, but most models emphasize a key role of 

Mad2 in the inhibition of the APC/C-accessory and activating protein Cdc20 

(Mapelli et al., 2006; Yu, 2006).  
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Figure 3. Model of spindle checkpoint 
signalling: Upon lack of microtubule 
occupancy or tension at kinetochores 
several proteins at kinetochores and 
centromeres contribute to establish an 
inhibitory “wait anaphase” signal. 
Downstream effector proteins (BubR1, 
Bub3 and Mad2) directly prevent the 
activation of the anaphase promoting 
complex (APC/C) by binding to its activator 
Cdc20, either alone or in a multiprotein 
complex (MCC: mitotic checkpoint 
complex). When the APC/C is no longer 
inhibited, this E3 ubiquitin ligase 
ubiquitylates the substrates Securin and 
the Cdk1 activating subunit CyclinB, 
leading to their degradation by the 
proteasome. Subsequently Cdk1 activity 
drops and the protease Separase is no 
longer inhibited by Securin, allowing the 
proteolytic removal of cohesins - the glue 
that holds sister chromatids together – 
resulting in chromatid separation and the 
onset of anaphase. 

cyclinB 

 
 

 

 

 

 
from Yu, CurrOpinionCellBiol 2002

 

 

Recently, the role of Mad2 in spindle checkpoint signalling has been described by 

two prevailing models, the “template model” from the lab of Andrea Musacchio 

(DeAntoni et al., 2005) and the “exchange model” by Hongtao Yu (Yu, 2006). Both 

models are based on the observation that Mad2 can adopt two conformational 

states and that spindle checkpoint signalling requires a conformational change 

from inactive Mad2 (O-Mad2; N1-Mad2) to active Mad2 (C-Mad2; N2-Mad2). C-

Mad2 is more potent in Cdc20 binding and subsequent APC/C inhibition. The 

activation reaction is proposed to be catalyzed via a Mad1-Mad2 

interaction/intermediary complex formation at the kinetochore.  
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from Pinsky and Biggins, Trends in Cell Biology 
Figure 4. The spindle assembly checkpoint senses the lack of microtubule attachment at 
kinetochores and the presence/absence of tension between sister chromatids. Until today 
it remains elusive how and where exactly these signals are sensed and created. While the 
list of kinetochore and centromere associated proteins is growing, a clear mechanism still 
needs to be understood. 
 

 

 

Regulation of sister chromatid separation 

On a protein level sister chromatid separation is largely regulated by two 

posttranslational mechanisms: by protein phosphorylation and protein degradation.  

 

a) Protein phosphorylation: The most prominent mitotic kinases are the Cyclin-

dependent kinases (Cdks) as well as members of the Polo-like kinase family (Plks) 

and the Aurora family (Barr et al., 2004; Nigg, 2001; Vagnarelli and Earnshaw, 

2004). These enzymes contribute to the regulation of cell division via 

phosphorylation of numerous key substrates, including components of the cohesin 

complex, that holds sister chromatids together until the onset of anaphase. Sister 

chromatid separation requires the removal of cohesin proteins (Haering and 

Nasmyth, 2003) as well as decatenation of DNA by Topoisomerase II (Shamu and 

Murray, 1992; Yanagida, 1995) at the onset of anaphase. In vertebrates, cohesin 

proteins are removed from chromosome arms already during prophase, as a result 

of their phosphorylation by Polo-like kinase (Losada et al., 2002; Sumara et al., 

2002) (Figure 5). However, centromere-associated cohesin is protected from 

phosphorylation by a type 2 phosphatase (PP2A) in complex with Shugoshin 

(Sgo1) (Kitajima et al., 2006; Riedel et al., 2006; Tang et al., 2006) so that its 
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removal depends on proteolytic cleavage by the protease Separase, a process 

initially described in yeast (Uhlmann et al., 2000). 

b) Proteolysis: Mitotic proteolysis is triggered primarily by the anaphase promoting 

complex/cyclosome (APC/C). This multiprotein complex functions as an ubiquitin 

ligase that initiates protein degradation via ubiquitylation of target proteins that are 

then degraded by the proteasome (Peters, 2002; Pines, 2006). Most importantly 

the APC/C controls the destruction of both CyclinB, whose presence is required for 

Cdk1 kinase activity and Securin, the degradation of which is needed for liberating 

Separase proteolytic activity.  

 

 

 

 

 

 

 

 

 

 

  

                         

adapted from McGuinness et al. PLOS Biology 2005 
 

 
Figure 5. During vertebrate mitosis, cohesins (red circles) are removed from chromosome 
arms via phosphorylation by Plk1 during prophase/prometaphase. The centromeric 
cohesins (brown circles) are protected by Sgo1 (Shugoshin) until the metaphase-
anaphase transition. Once all chromosomes have successfully bi-oriented on the 
metaphase plate, inhibitory spindle checkpoint signalling by Mad2 to the APC/C is 
relieved, allowing Separase activation. Separase in turn removes cohesin remaining at 
centromeres through cleavage of the Scc1 subunit, allowing the cell to enter anaphase. In 
the absence of Sgo1 (Sgo1 depletion), cohesin is removed from the chromosome arms 
and the centromere during prophase/prometaphase before chromosomes have properly 
bi-oriented and been attached to their full complement of spindle microtubules.  
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Polo-like kinase 1 (Plk1) 

In recent years Polo-like kinases have demanded an increasing amount of 

attention as key enzymes required in cooperation with Cyclin dependent kinase 

(Cdk) to regulate cell division. The most well-characterized member of this group, 

Plk1 (Figure 6), is a serine-threonine kinase that has been described in eukaryotes 

from yeast to human (Barr et al., 2004). In vertebrates, Polo-like kinase1 performs 

several important functions throughout mitosis, including the regulation of 

centrosome maturation and spindle assembly, the removal of cohesins from 

chromosome arms, the inactivation of APC/C inhibitors, and the regulation of 

mitotic exit and cytokinesis (Barr et al., 2004). Concomitantly, Plk1 localizes to 

centrosomes and spindle poles, kinetochores, the central spindle and the 

postmitotic bridge. These dynamic localizations depend on the C-terminal non-

catalytic region of Plk1 (Jang et al., 2002; Seong et al., 2002), referred to as the 

Polo-box domain (PBD)(Elia et al., 2003b).  

 

 

 

 

        Plk1                        
 

 

                           

from Barr et al., Nat. Rev. MCB 2004 

 
Figure 6. Schematic illustration of Plk1. Plk1 consists of an N-terminal kinase domain and 
a C-terminal Polo-box-domain (PBD). The PBD of Plk1 consists of two polo boxes (PBs), 
joined by a linker region, and a small region known as the polo-box cap (Pc). Highlighted 
are residues Trp414, His538 and Lys540, that are implicated in phosphopeptide binding. 
Also indicated are a conserved, activating phosphorylation site in the T-loop (Thr210) and 
the D-box motif that is required for degradation by the APC/C–Cdh1. 
 
 
 
 
The PBD mediates the recruitment of Plk1 to proteins that have been ‘primed’ by 

phosphorylation at appropriate residues, notably at sites that conform to a 

consensus S-pS/pT-P/X (Elia et al., 2003a)(Figure 7 and 8). This docking 

mechanism constitutes an effective device for controlling Plk1 in time and space 
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(Hanisch et al., 2006; Jang et al., 2002; Lowery et al., 2005; Seong et al., 2002). 

The identification of the PBD as an interaction domain for phosphopeptide motifs 

prompts important questions as to the nature of the priming kinases as well as the 

identity of the docking proteins. Current evidence points to Cdk1-Cyclin B (Elia et 

al., 2003a) and the MAP kinase Erk2 (Fabbro et al., 2005) as prominent priming 

kinases. In addition, Calmodulin dependent kinase II (CaMKII) (Rauh et al., 2005) 

as well as Plk1 itself (Neef et al., 2003) have been identified as priming kinases. 

Several candidate docking proteins for Plk1 have also been described (Fabbro et 

al., 2005; Goto et al., 2005; Hanisch et al., 2006; Kang et al., 2006; Lowery et al., 

2005; Nishino et al., 2006; Qi et al., 2006), but additional Plk1 interaction partners 

undoubtedly await discovery. 

 

 

 
   

from Cheng et al (2003), EMBO J. 
 
 
 

Figure 7. Crystal structure of the polo-box domain (PBD) of Plk1. The PBD binds to target 
proteins after their phosphorylation by a priming kinase. Shown is a phospho-threonine 
(peptide (MQS(pT)PL)) in the phosphopeptide binding pocket of the PBD. 
Phosphopeptide binding also results in increased Plk1 kinase activity, due to a relief of 
autoinhibition by the PBD on the Plk kinase domain.  
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       from Barr et al., Nat. Rev. MCB 2004 
Figure 8. Plk1 activation and PBD-mediated targeting. Plk1 kinase activity can be 
activated by phosphorylation through an activating kinase on Thr210 (T-Loop activation). 
A docking site for Plk1 substrate binding can be created by phosphorylation through a 
priming kinase or Plk1 itself. Plk1 phosphopeptide binding occurs via its PBD. 
 
 

 

The centromere, the kinetochore and the Ndc80 complex 

Every chromatid has a centromere, a specialized chromatin region consisting of a 

series of α-satellite DNA repeats that provide a structural and functional foundation 

for the kinetochore. Specialized centromeric protein components are the histone 

H3 variants CenP-A, H3K4 and H3K9 (histone H3 methylated on Lysine 4 or 9) 

(Cleveland et al., 2003; Sullivan and Karpen, 2004), as well as further centromeric 

Proteins (CenPs) (Foltz et al., 2006). At the onset of mitosis the centromere builds 

up a proteinaceous structure, termed the kinetochore (Figure 9). The kinetochore 

hosts proteins that are required for microtubule attachment, such as the Ndc80 

complex, that consists of the highly conserved, SMC-domain carrying proteins, 

Nuf2 (Nuclear Filamentous 2, 52kD) and Ndc80/Hec1 (Highly Expressed in 

Cancer 1, 78kD) and the subunits Spc24 and Spc25 (Spindle Pole Component, 

24kD and 25kD).  The Ndc80 complex plays a crucial role in the assembly of the 

outer kinetochore, the recruitment of other proteins and the establishment of 

microtubule attachment (DeLuca et al., 2005; McCleland et al., 2003). Recent 

studies suggest how the individual subunits might interact at the kinetochore (see 

Figure 66) and propose that Hec1 and Nuf2 have a shared and direct function in 

microtubule attachment, whereas the sub-complex of Spc24 and Spc25 might be 
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required for anchorage to the centromere (Ciferri et al., 2005; Wei et al., 2007; Wei 

et al., 2005). A higher order complex around Ndc80 has been described to contain 

the proteins Af15q14, Zwint, Q9H410, D31, PMF1 and Mis12 (Cheeseman et al., 

2004). In addition, kinetochore proteins recruit checkpoint signalling proteins, 

including Mad2, BubR1 and Mps1 to kinetochores, supporting the idea that the 

spindle checkpoint signal originates from where spindle microtubule attachment 

and/or tension between sister chromatids is generated. A more detailed list of 

centromere and kinetochore associated proteins is reviewed by (Maiato et al., 

2004; Vos et al., 2006). 

While the chromatin of vertebrates at chromosome arms is separated 

already during prophase by the removal of cohesin ring complexes and 

decatenation, centromeric DNA seems to still connect sister kinetochores in 

metaphase (Hirano, 2000). This bridging can be visualized by 

immunofluorescence for centromeric proteins such as the chromosomal 

passenger complex (Vagnarelli and Earnshaw, 2004), CenP-B,  CenP-A or other 

Histone H3 variants (Sullivan and Karpen, 2004) or the human centromeric 

autoimmunesera CREST or ANA. However, the exact path of centromeric DNA in 

mitosis, its timely resolution and its regulation by cohesion regulating enzymes like 

Plk1, Sgo1 and Topoisomerase IIa remain to be understood. 

 

                                         
from Cleveland and Sullivan, Cell 2003 

Figure 9. Organization of the kinetochore/centromere. Colors represent microtubules 
(green), the outer kinetochore (yellow), the inner kinetochore (red) and the centromere 
(violet). 
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SNF2 type helicases 

The protein (PICH), which is the main subject of this study, provides a link 

between chromosome segregation and DNA decatenation, the mitotic spindle 

assembly checkpoint and chromatin remodelling by DNA translocating enzymes. 

Therefore, this chapter provides a short introduction into the field of helicases and 

translocases. 

The central roles of DNA and RNA in transcription, recombination, genome 

replication, repair, expression and epigenetics place high demands on their 

structure, compaction and accessibility. Thus, a vast number of proteins and 

enzymes are required to spacially and temporally modulate DNA and RNA 

depending on the specific requirements of the cell. 

Helicases, and their traditional characteristic of enzymatic unwinding of 

DNA, were first described in bacteria (Escherichia coli) in 1976 (Abdel-Monem et 

al., 1976; Abdel-Monem and Hoffmann-Berling, 1976). Since then, RNA and DNA 

helicases with diverse functions have been found in all organisms. Generally 

helicases harness the chemical energy of NTP binding and hydrolysis to execute 

their various functions. Processes which require helicase functions include the 

separation of complementary strands of double-stranded nucleic acids; the 

translocation along dsDNA; the removal of nucleic acid-associated proteins; and 

the catalysis of homologous DNA recombination (Singleton and Wigley, 2002; 

Singleton and Wigley, 2003). Although single helicase enzymes display these 

activities in vitro, most of them work efficiently as part of larger protein complexes. 

 

        
    from Flaus et al. NucleicAcidResearch, 2006 

Figure 10. Schematic illustration of the hierarchy of helicase superfamilies (SF), families 
and subfamilies. E.g. Rad54 belongs to the Rad54 subfamily of SNF2 type family 
ATPases which belong to helicase superfamily II (SF2). 
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Gorbalenya and Koonin (Gorbalenya and Koonin, 1993) classified a large group of 

proteins sharing a series of short ordered amino acid motifs. The majority of 

members with known function were nucleic-acid-strand separating helicases, so 

the sequences became known as helicase motifs and were labelled sequentially I, 

Ia, II, III, IV, V and VI. These helicase motifs also include the so-called Walker A 

and B sequences required for nucleotide binding. Proteins containing these motifs 

are subdivided into superfamilies on the basis of similarity (Figure 10). Structural 

characterizations have revealed that helicase-like superfamilies 1 and 2 (SF1 and 

SF2) are related by a common core of two recA-like domains (Subramanya et al., 

1996), whereas predicted SF3 type helicases share only three conserved motifs. 

Proteins with a helicase-like region of similar primary sequence to Saccharomyces 

cerevisiae Snf2p belong to the SNF2 family within SF2. The SNF2 family of SF2 

helicases can be further subdivided into several sub-families such as SNF2-like 

itself, SSO1653-like, ISWI-like and Rad54-like ((Flaus et al., 2006), Figure 10). 

 

 

 

             
from Dürr et al., Nucleic Acids Research, 2006 

Figure 11. Simplified illustration of the mode of action of Snf2 family ATPases and 
“classical” helicases. Schematic comparison of (A) dsDNA translocases (e.g. Snf2) and 
(B) ssDNA translocases. Both enzyme families contain a conserved RecA-like domain 
core (orange/green), but differ in other subunits (data not shown). Helicases move along 
ssDNA and often contain an upstream DNA unwinding element (grey triangle). In contrast, 
Snf2 family enzymes also recognize the 5`–3` strand (blue) and track along the minor 
groove. Despite many functional differences, however, both enzyme families bind the 3`–
5` strands at an equivalent site across the two RecA-like domains, indicating that ATP-
driven conformational changes transport DNA substrates via the 3`–5` strands in 
analogous ways (arrows). 
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The whole SNF2 family comprises a large group of ATP-hydrolysing proteins that 

are ubiquitous in eukaryotes, but also present in eubacteria and archaea. Rather 

than acting as processive helicases, members of the SNF2 family generally use 

ATP hydrolysis to displace proteins from chromatin (Becker and Horz, 2002), 

translocate on double stranded DNA (Durr et al., 2006; Svejstrup, 2003)(Figure 

11), or generate superhelical torsion (Beerens et al., 2005; Havas et al., 2001; Lia 

et al., 2006). Accordingly, SNF2 family members have been implicated in 

chromatin remodeling, DNA recombination and DNA repair (Becker and Horz, 

2002). Moreover, many of these SNF2 family members are ATPases within 

chromatin remodelling complexes such as the RSC complex (Saha et al., 2002) 

and the BAF complexes (Liu et al., 2001). Hence, it is thought that the presence of 

a SNF2-like core protein might be a defining property of ATP-dependent chromatin 

remodelling complexes (Becker and Horz, 2002). Interestingly, recent studies 

suggest that the ATPase and DNA translocation activity of SNF2 type enzymes 

(RSC;SWI/SNF2) depends on the template DNA conformation and applied tension 

(Lia et al., 2006; Zhang et al., 2006). 

 

 

Topoisomerase II 

DNA Topoisomerases play an essential role by altering the structure of double-

stranded DNA. There are two major types of Topoisomerases: Topoisomerase I 

and II, the distinction being based on the mode of their enzymatic activity. Only 

Topoisomerase II can work bidirectionally to remove positive or negative 

supercoils and to catenate or decatenate DNA duplexes (Cozzarelli, 1980) (Figure 

12). Due to its ATP dependent and DNA strand passing activity, Topoisomerase II 

plays a role in a variety of processes involving double-stranded DNA and functions 

at multiple steps in the assembly of mitotic chromosomes and the onset of mitosis. 

In vertebrates it is required for the separation of individual chromosomes, which 

occurs mainly in G2. In collaboration with the condensin complex Topoisomerase 

II is also believed to play a role in chromosome condensation (Uemura et al., 

1987).  
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from Lodish, Molecular Cell Biology 

Figure 12. Catenation and decatenation of two different DNA duplexes. Both prokaryotic 
and eukaryotic Topoisomerase II enzymes can catalyze this reaction. 
 

 

The decatenation activity of Topoisomerase II is required for sister chromatid 

resolution in prometaphase. The predominant phenotype when Topoisomerase II 

function is deficient is the impaired separation of sister chromatids in anaphase 

(Downes et al., 1991; Gorbsky, 1994; Holm et al., 1985; Shamu and Murray, 1992; 

Skoufias et al., 2004). 

Topoisomerase II accumulates at mitotic centromeres in prometaphase and 

remains there until early anaphase (Christensen et al., 2002; Rattner et al., 1996; 

Taagepera et al., 1993). A number of studies have suggested that Topoisomerase 

II may have a role in regulating kinetochore structure (Rattner et al., 1996) or  

centromeric cohesion (Bachant et al., 2002) and this view has been strengthened 

by molecular studies on human centromeric regions, where major sites of 

Topoisomerase II cleavage activity have been identified (Floridia et al., 2000; 

Spence et al., 2002). 

18 



_________________________________________________________________________ 
 
Aim of this work 

 

Aims of this work 
 
Beginning with the identification of human Hec1 (Martin-Lluesma et al., 2002), the 

vertebrate Ndc80 complex, consisting of its four subunits Nuf2, Hec1, Spc24 and 

Spc25, has been proposed to function as a structural core component of the 

kinetochore, required for the recruitment of several proteins, chromosome 

congression and microtubule attachment (DeLuca et al., 2005; DeLuca et al., 

2003; McCleland et al., 2003; Wei et al., 2007; Wei et al., 2005). This work aimed 

first to study the composition of the Ndc80 complex and its function in mitotic 

kinetochore assembly and mitotic progression. 

The mitotic kinase Plk1 is required for the regulation of several mitotic 

stages and its function is often reflected by its localization (Barr et al., 2004). In 

prometaphase, when the spindle assembly checkpoint is active, Plk1 localizes 

primarily to centrosomes and kinetochores. At this mitotic stage Plk1 is crucial for 

the removal of cohesins from chromatid arms to allow faithful segregation of sister 

chromatids (Hauf et al., 2005). However, even though an increasing number of 

Plk1 interactors at the kinetochore is being described (Goto et al., 2005; Kang et 

al., 2006; Qi et al., 2006), the function of Plk1 at the kinetochore remains to be 

fully understood. The discovery of the Plk1-PBD substrate docking mechanism 

(Elia et al., 2003a; Lowery et al., 2005) and our finding that the kinetochore 

association of Plk1 depends on the Ndc80 complex prompted us in the second 

part of this work to search for novel Plk1 interacting proteins at the kinetochore, 

and then study their functions in sister chromatid separation and the spindle 

assembly checkpoint.  
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Results part I  

 

Studies on the Ndc80 complex 

Based on the identification of human Hec1 (Martin-Lluesma et al., 2002) the 

original goal of this study was a functional and biochemical characterization of the 

human Ndc80 complex and the investigation of its role in kinetochore assembly, 

mitotic progression and the spindle assembly checkpoint.  

 

 

Assembly of the Ndc80 complex, a structural component of the kinetochore 

To understand the functional importance of the Ndc80 complex at kinetochores, 

HeLa cells were subjected to Nuf2 siRNA (Figure 13). It has previously been 

reported that depletion of one component of the Ndc80 complex results in the 

mislocalization of all other complex members (Bharadwaj et al., 2004). Therefore, 

efficient depletion of Nuf2 and complex dissociation were monitored by the levels 

of Hec1 protein at kinetochores. As a result of a 48h Nuf2 siRNA treatment, cells 

showed severely reduced Hec1 association with kinetochores and underwent a 

prometaphase-like mitotic arrest (Martin-Lluesma et al., 2002). 

 

 

 

 

 

 
 
 
 
 
                                      

DAPI α-tub Hec1

siGl2

siNuf2

DAPI α-tub Hec1

siGl2

2siNuf
      
 
 
Figure 13. HeLaS3 cells were treated for 48h with siRNA oligos targeting Nuf2 or GL2 
control, respectively. Then cells were permeabilized, fixed, and labeled for α-tubulin 
(green), Hec1 (red) and DNA (DAPI). 
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Interestingly, Nuf2 siRNA treated cells frequently showed elongated spindles with 

a greater distance between their poles (Figure 13, lower panel) compared to 

controls. Taken together these data suggest that depletion of Nuf2 results in a 

Hec1 depletion phenotype and confirms that the Ndc80 complex is a crucial 

component of the kinetochore required for mitotic microtubule organization and 

chromosome congression. 
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Figure 14. All four Ndc80 complex members and N-terminal domains of Hec1 and Nuf2 
(Nuf2f.l., Nuf21-208, Hec1 f.l., Hec11-250, Spc24 f.l., Spc25 f.l.) were cloned in both the pFBT9 
yeast-2-hybrid bait domain and the pACT2 activation domain carrying vectors. Each 
fragment was assayed against all other in a directed yeast-2-hybrid analysis. Positives on 
QDO (Quadruple Drop Out: Leu-/Trp-/His-/Ade-) selection plates (right panels) are 
marked in red. 
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To gain structural insight into the molecular organization of the Ndc80 complex a 

directed yeast-2-hybrid approach was used with its members Hec1, Nuf2, Spc24 

and Spc25. To this end, cDNAs coding for the four known components Spc24, 

Spc25, Hec1, Nuf2 (McCleland et al., 2004)  as well as N-terminal fragments of 

Hec1 (aa1-250) and Nuf2 (1-208) were amplified and cloned into both the yeast-2-

hybrid bait vector pFBT9, and the pACT2 library vector carrying the GAL4 

activation domain. A directed yeast-2-hybrid screen probing all proteins against 

each other was carried out (Figure 14) to test which components and domains 

interact with each other and allow complex formation. The observed interactions 

are summarized in Figure 15A. A scheme of our data for the Hec1-Nuf2 interaction 

obtained from the directed yeast-2-hybrid assay is shown in Figure 15B. A model 

proposing interactions between Nuf2 and Hec1 via their N-termini, as well as 

Spc25 interaction with Hec1 and, furthermore, Spc25 interaction with Spc24 is 

presented in Figure 15C. 

 

A 

                     
      B                                                                    
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C 

                     
           

Figure 15. Model of Ndc80 complex formation derived from the Yeast-2-hybrid data:  
Table summarizing the observed interactions (Figure 14) with +: interaction, -: no 
interaction, SA: no data due to self activation of the bait-protein (A). Direct interactions 
observed between the N-termini of Nuf2 and Hec1 suggest that Hec181-219 and Nuf2 1-208 

are sufficient for binding (B). A model consistent with the Ndc80 interaction data above is 
shown in C). 
 
 

 

Interaction partners of the Ndc80 complex 

To answer the question of how the Ndc80 complex is functionally involved in 

the structure and/or spindle checkpoint function at the outer plate of the 

kinetochore, we searched for interaction partners.  Two yeast-2-hybrid screens 

were carried out using Spc25 (Figure 16) or Nuf21-208 (Figure 18) as a bait. For 

both screens a pACT2 testis cDNA library (kindly provided by Evelyn Fuchs, MPI 

of Biochemistry, Martinsried) was used with approximately 500 000 transformands 

in the Spc25 screen and approx. 1.2 million transformands in the  Nuf21-208 screen. 

Positives were put in three categories: strong interactors (with colony growth on 

QDO selective plates within 4 days), moderate interactors (growth within 7 days) 

and weak interactors (growth within 10 days). In the Spc25 screen 4 potentially 

significant single hits were obtained: Nek2B, Zwint, Hec1 and Apc7; and, 

moreover three proteins appeared twice: HCR (Rod-homologue), TRAF4 (Tumor 

necrosis factor receptor-associated factor 4), and the sarcoma antigen NY-SAR-

48. For a detailed list of all the yeast-2-hybrid results see below (Figure 16). 

 

 

 

 

 

 

23 



_________________________________________________________________________ 
 
Results part I 

 

 

 
STRONG INTERACTORS

Nek2B
ZWINT
HEC1
APC7
HCR (Rod-homologue)
TRAF4 associated factor 1
AKAP350
AKAP82
BICD1
SNX4
MTX2
Olfactomedin 1
Nrg1
NY-SAR-48
NY-SAR-48
UXT
NADE

MODERATE INTERACTORS

HCR (Rod-homologue)
TRAF4 associated factor 
PSME3 Makropain
BAC clone CIT987SK-384D8
PER1
p34SEI1(cdk4 interactor)
CDK5 regulatory subunit 

associated protein 3
PIAS 1
ANKRD7
HSFY
hypothetical protein LOC283871
Integrin alpha 5

WEAK INTERACTORS

Spata11
SDHB
Clusterin isoform2
Calmodulin 2/CAMK2
KIAA 1443

 

 

 

 

 

 

 

 
 
 
 
 
 
 
F
in

igure 16. Results of the Y-2-H screen using Spc25 as a bait. Proteins are categorized 

equence analysis of the pACT2 cDNA library insert revealed that the NIMA 

nteractions between Spc25 and Nek2B or Zwint, the full 

length 

to strong/moderate/weak interactors, dependent on the yeast colony growth on QDO 
selective plates. Known kinetochore/mitotic proteins are printed in bold, proteins 
appearing twice in the screen are shown in blue. 
 

 

S

kinase Nek2B was interacting with Spc25 in the yeast-2-hybrid assay, via a C-

terminal fragment that is alternatively spliced and thus not present in the 

endogenous Nek2A protein, suggesting that this interaction with Spc25 might be 

specific for Nek2B. This kinase had previously been proposed to function at the 

centrosome (Twomey et al., 2004). The observation of Hec1 as an interactor 

indicated that the assay was functional and further confirmed data from the 

directed screen shown above (Figure 14-15). The protein Zwint had previously 

been suggested to be required for the recruitment of Rod/ZW10 and the 

dynein/dynactin complex to kinetochores (Cheeseman et al., 2004; Lin et al., 

2006; Starr et al., 2000).  

To verify potential i

proteins were amplified from a marathon cDNA library (Clontech) by nested 

PCR and tested against Spc25 in a directed yeast-2-hybrid screen (Figure 17).  
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Nek2B Zwint Nek2B Zwint

pFBT9

Spc25-pFBT9
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F
N

igure 17. Directed interaction assay to test the obtained potential Spc25 interactors 

nly full length Zwint but not the full length kinase Nek2B showed growth on QDO 

ins appearing as double hits (HCR, NY-SAR-48 and 

Traf4 

ek2B and Zwint as full length clones in both pFBT9 and pACT2 vectors.  
 
 
 

O

selective medium when cotransfected with Spc25 constructs in pACT2 or pFBT9. 

With regard to Nek2B this questioned the specificity of the interaction or, 

alternatively, indicated that the folding of the full length protein did not allow for 

efficient binding in this approach. With regard to Zwint, these experiments 

confirmed work from other laboratories, indicating that Zwint is associated with the 

Ndc80 complex (Cheeseman et al., 2004; Kops et al., 2005a). Moreover, our data 

further show that Zwint directly interacts with Spc25. Thus, these results provide a 

link between the structural basis of the outer kinetochore and the microtubule 

interface at the outer corona. 

None of the three prote

associated factor 1 (Tumor necrosis factor receptor-associated factor 

associated factor 1) have previously been described to either localize to 

kinetochores or to be required for mitotic progression. Therefore, these proteins 

have not been analyzed so far and remain interesting candidates that could be 

further pursued. 
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hypothetical protein XP_499286
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hypothetical protein FLJ38101
NIPSNAP
FLJ35785 (SMC)

PHD finger protein 8
hypothetical protein LOC286333
hypothetical protein FLJ38101
ISYNA1
RPL37
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Figure 18. Results of the Yeast-2-Hybrid screen using Nuf21-208 as a bait. Proteins are 

he second screen with Nuf21-208 as bait identified Hec1 as an interaction partner 

 

A monoclonal antibody specific for human Nuf2 

Ndc80 complex in kinetochore 

categorized into strong/moderate/weak interactors, dependent on the yeast colony growth 
on QDO selective plates. Known kinetochore/mitotic proteins are printed in bold, proteins 
appearing twice ore more often in the screen are shown in blue. 
 

 

T

three times, confirming our previous findings that Hec1 is able to interact with the 

N-terminus of Nuf2 (summarized in Figure 15A). Moreover, a so far 

uncharacterized protein, C10Orf94 (Hypothetical telomeric protein, synaptonemal 

complex central element protein 1, RP11-108K14.6, LOC93426), carrying an SMC 

domain in its N-terminus, also appeared as a strong interaction partner of Nuf2 

three times. Full length C10Orf94 was amplified from a HeLa marathon cDNA 

library, cloned into myc-expression vectors and yeast-2-hybrid plasmids and 

awaits further study. 

 

 

For further investigations of the role of Nuf2 and the 

structure and assembly, we generated monoclonal α-Nuf2 antibodies (see 

methods). A summary of the properties of three hybridoma cell lines tested in 

western blots on recombinant protein and cell extracts, in immunofluorescence, 

and in immunoprecipitation is listed below (Table 1).  
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able 1. Results of the characterization of 3 different hybridoma clones derived after 

olocalization analyses by immunofluorescence of the clones 27-123 and 28-37 in 

 test for the specificity of the Nuf2 monoclonal antibody, clone 28-37 was 

used 

 

igure 19. oma clones (27-123 and 28-37) in 

 Hybridoma 
rec. Protein     endogenous Immunofluores- Immuno-

p
   Isotype 

T
immunization of 2 mice with full length His-Nuf2 (see methods).  
 
 
 

C

HeLa cells showed that both hybridoma clones decorate kinetochores (Figure 19). 

That the antibodies decorate kinetochores was confirmed by co-staining with 

BubR1.  

To

for immunofluorescence on siRNA depleted HeLa cells (Figure 20). 

Following 48h treatment with Nuf2 siRNA the Nuf2 positive kinetochore signal 

readily disappeared, confirming the specificity of the monoclonal antibody. 

 

(WB) Protein (WB) cence recipitation 

27-123-1 IgG1 +++ - ++ ++ 

28-37-1/3 ++ + + ++ IgG1 

28-241-1 +++ - - ? IgG2b 

DAPI BuBR1 27-123 merge

DAPI BuBR1 28-37 merge

DAPI BuBR1 27-123 merge

DAPI BuBR1 28-37 merge

 

 

 

 

 

 

 

 

 
 
F
im

Testing of two Nuf2 hybrid
munofluorescence. HeLaS3 cells were fixed and labelled for Nuf2 (green), BubR1 (red) 

and DNA (blue; DAPI). 
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Staining with a Mps1 monoclonal antibody (Stucke et al., 2004; Stucke et al., 

2002) showed significant reduction of the Mps1 kinetochore signal in Nuf2 

depletion compared to control cells, indicating a dependency of Mps1 on Nuf2 and 

the Ndc80 complex (Figure 20). These data are in line with a previous study, 

showing that the depletion of Hec1 results in the loss of Mps1 and Mad1/Mad2 

from kinetochores (Martin-Lluesma et al., 2002). 

 
hNuf2 hMps1 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. HeLaS3 cells were treated for 48h with siRNA oligos for Nuf2 or GL2 control 
respectively. Cells were fixed and labelled for Nuf2 and Mps1. Note that Mps1 is 
mislocalized in Nuf2 depletion. 
 

 

The Ndc80 complex is required for Plk1 kinetochore localization 

The Ndc80 complex is not only a structural component of the outer kinetochore but 

is also required for the kinetochore assembly and functionality of checkpoint 

components such as Mps1, Mad1 and Mad2 (Martin-Lluesma et al., 2002). Using 

siRNA mediated depletion of Nuf2, the localization of fourteen structural and/or 

signalling proteins of the kinetochore and the inner centromere (Maiato et al., 

2004) were analyzed by immunofluorescence.  
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Table 2. Summary of immunofluorescence analyses for protein localization in Nuf2 
depletion. – indicates mislocalization of the indicated protein, + indicates that the 
localization is unaltered compared to GL2 control. 
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Interestingly Nuf2 was neither required for the proper localization of the outer 

kinetochore components CenP-E, CenP-F and BubR1 (Abrieu et al., 2000; 

Ditchfield et al., 2003; Maiato et al., 2004) nor for the centromere association of 

the chromosomal passenger complex, including AuroraB, Incenp and Survivin 

(Ditchfield et al., 2003; Vagnarelli and Earnshaw, 2004). However, the proteins 

Mad1, Mad2, Bub1 and Cdc20, all of which are involved in spindle checkpoint 

signalling (Musacchio and Hardwick, 2002; Pinsky and Biggins, 2005; Tang et al., 

2004), required the proper association of Nuf2 to the kinetochores for their wild 

type localization (Table 2). These results indicates that these proteins all belong to 

a kinetochore assembly branch dependent on the Ndc80 complex (see also 

(Vigneron et al., 2004)). Moreover, the mitotic kinase Plk1 was lost from 

kinetochores in Nuf2 depleted cells. As Plk1 is involved in a variety of mitotic 

events at different cellular structures as the centrosomes, the midzone/central 

spindle, the postmitotic bridge and the kinetochore (Barr et al., 2004), a sole 

dependency on the Ndc80 complex for its kinetochore localization might allow 

further studies that focus on the mitotic role of Plk1 at kinetochores in Ndc80 

depletion experiments.  

To corroborate this effect of Nuf2 knockdown on Plk1 localization, further 

siRNA experiments were carried out.  Using HeLa and U2OS cell lines, Hec1, 

Nuf2, CenP-F, BubR1, CenP-E, AuroraB, Sgo1 and Mad2 were depleted by 

siRNA and Plk1 localization was examined. The data indicate that not only Hec1 

and Nuf2, but also the centromeric proteins AuroraB and Sgo1 all contribute to 

proper Plk1 kinetochore localization (see also (Ahonen et al., 2005; Goto et al., 

2005)) and Table 3).  

                     

 
Table 3. Summary of immunofluorescence analyses for Plk1 kinetochore localization in 
various depletion background. – indicates mislocalization of Plk1, + indicates that Plk1 
localization is unaltered compared to GL2 control. 
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Conclusions I 
 
 
In this first part of our study we analyzed the composition of the human Ndc80 

complex and its requirement for kinetochore assembly and chromosome 

congression. We found that the N-terminal amino acid residues 81-219 of Hec1 

and 1-208 of Nuf2 are sufficient for their interaction.  Furthermore, Hec1 interacts 

with the complex subunit Spc25, which binds Spc24. In line with previous studies 

depletion of Nuf2 abrogates kinetochore association of Hec1 and results in a 

prometaphase-like arrest with elongated spindles, indicating defects in 

chromosome congression and microtubule attachment (DeLuca et al., 2005; 

Martin-Lluesma et al., 2002; McCleland et al., 2003). Screening for interacting 

proteins by using the yeast-2-hybrid assay identified several potential complex 

binding proteins, amongst them Zwint (Kops et al., 2005a) as an interactor of 

Spc25, and C10Orf94, an SMC domain carrying, so far uncharacterized open 

reading frame, as an interactor of Nuf2. We analyzed the effect of Nuf2 depletion 

by siRNA and subsequent disruption of the Ndc80 complex on 14 centromeric / 

kinetochore associated proteins. While centromere association of the 

chromosomal passenger complex and CenP-B, as well as the kinetochore 

localization of  CenP-E, CenP-F and BubR1 were unaltered, the spindle 

checkpoint signalling components Mps1, Mad1, Mad2, Cdc20 and Bub1 were 

mislocalized from kinetochores, suggesting a specific assembly pathway of these 

mitotic regulators dependent on the Ndc80 complex. Moreover, Polo-like kinase 

(Plk1) was lost from kinetochores in Nuf2 depleted cells. Further testing in different 

siRNA backgrounds showed that the localization of Plk1 requires the Ndc80 

complex as well as Sgo1 and AuroraB, but not CenP-E, CenP-F, BubR1 and 

Mad2, suggesting that Plk1 kinetochore association does not only depend on a 

single interaction partner (Goto et al., 2005; Kang et al., 2006; Nishino et al., 2006; 

Qi et al., 2006). 
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Studies on Plk1 

The appearance of several publications on the Ndc80 complex (Bharadwaj et al., 

2004; Ciferri et al., 2005; DeLuca et al., 2005; Deluca et al., 2006; DeLuca et al., 

2003; McCleland et al., 2003; McCleland et al., 2004; Wei et al., 2005) together 

with the discovery of the Plk1 substrate binding mechanism (Elia et al., 2003a) 

prompted us to use the Polo-box domain of Plk1 to search for novel substrates 

and interactors and to characterize their role in mitosis. 

 
 

Identification of PICH, a novel Plk1 interacting protein 

Previous reports identified a number of interactors, substrates and kinetochore 

recruiting factors of Plk1, for example NudC (Nishino et al., 2006), Incenp (Goto et 

al., 2005), PBIP1 (Kang et al., 2006), Bub1 (Qi et al., 2006), Mklp2 (Neef et al., 

2003) and XErp1 (Rauh et al., 2005). To search for further mitotic proteins, that 

interact with Plk1 and are regulated through recruitment of Plk1, HeLa cell lysates 

were prepared by arresting cells in mitosis via treatment with nocodazole. Plk1 

was immunoprecipitated from these mitotic lysates using two different monoclonal 

Plk1 antibodies (36-298 and 36-206) and the efficient recovery of Plk1 was tested 

by Western blotting (Figure 21 lower panel). These immunoprecipitates were then 

examined for the presence of Plk1-binding proteins, using a recombinant C-

terminal polo-box domain (GST-PBD) of Plk1, in a Far Western ligand-blotting 

assay (Figure 21, upper panel), (Neef et al., 2003).  
 
 
 
 
Figure 21. To search for Plk1-PBD binding proteins, HeLa 
cells were arrested in mitosis by treatment with nocodazole. 
Plk1 was immunoprecipitated using two different monoclonal 
antibodies (298 and 206) and efficient recovery of Plk1 was 
assessed by Western blotting (lower panel). 
Immunoprecipitates were then examined for the presence of 
Plk1-binding proteins, using a recombinant C-terminal polo-
box domain (PBD) in a ligand-blotting (Far Western) assay 
(upper panel).  The whole cell lysate (left), as well as a 
control immunoprecipitate prepared with an unrelated 
antibody (anti-myc; 9E10) were analyzed in parallel (upper 
panel) and support the specificity of the experiment. 
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Specifically, immunoprecipitates were used for western blotting followed by partial 

renaturing on the membrane. The blots were then incubated with recombinant 

GST-PBD, and the GST-Tag was assessed by primary / secondary antibody 

detection. The most prominent potential PBD-interacting protein migrated at about 

220 kD, whereas two weaker bands could be observed at 100 kD and 60 kD, 

respectively. Aliquots of the same immunoprecipitates were loaded on a 

preparative SDS-page minigel and coomassie bands migrating at approximately 

220kD were cut out and used for analysis by LC-MS/MS (MS analyses were 

carried out by Dr Roman Körner, MPI of Biochemistry, Munich).  

 

 
Figure 22. Samples were prepared as described in 
Figure 21 but were resolved by preparative gel 
electrophoresis. Gel slices corresponding to the 220 
kD mass range were analyzed by mass spectrometry 
(LC-MS/MS, using a quadrupole time-of-flight mass 
spectrometer). This approach identified several 
peptides that were present in both anti-Plk1 
immunoprecipitates but absent in the control. They 
matched ORF FLJ20105 encoded on chromosome 
Xq13.1 (Acc. No. BC111486 in the NCBI database). 
The mass spectrum shown was obtained by collision 
induced dissociation (CID) of the ORF FLJ20105-
derived peptide MoxASVVIDDLPK.  
 

   

Figure kindly provided by Dr Roman Körner 

 

 

This approach identified the ORFs FLJ90238, FLJ31932 and FLJ20105 (all 

representing parts of the same unpublished open reading frame), encoded on 

chromosome Xq13.1, as a candidate binding partner of human Plk1 (Figures 21, 

22, 23). 

To assemble the sequence of the full length ORF a combined bioinformatic 

and experimental approach was used: the information derived from peptides 

gained from MS analysis by Dr Roman Körner indicated the minimum length of the 

PICH sequence. Bioinformatical sequence alignments of truncated PICH versions 

at NCBI (FLJ31932, FJL90238, FLJ20105) together with PICH-related ESTs and 

additional sequence information obtained through 5` RACE PCRs suggested, that 

FLJ20105 (Acc. No. BC111486) represents the full length ORF. This is supported 
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by the presence of a Kozak consensus sequence for translation initiation (Kozak, 

1987) upstream of the ATG start codon. The whole ORF could be amplified by 

nested PCR from a HeLa marathon cDNA library, providing additional evidence 

that this cDNA/ORF does exist in human cells. Thus, the sequence shown in 

Figure 23 represents the full length protein.  

 

   

  
 
Figure 23. Predicted amino acid sequence of ORF FLJ20105. The approximate positions 
of various motifs are indicated in colour, as used in Figure 24.  
 

 

Analysis of the domain structure of ORF FLJ20105 at NCBI and SMART 

databases revealed that this protein carries several domains (Figure 23 and 24): 

The N-terminus harbours a SNF2-like helicase domain accompanied by a C-

terminal HELICc extension, which has high homology to the human SNF2 family 

members CSB/Ercc6 and Rad54. This SNF2 helicase domain is further 

characterized by the presence of a DEXH domain (Walker B motif) and a GKT 

sequence (Walker A motif), both of which are required for nucleotide binding and 

hydrolysis. This clearly suggests that FLJ20105 belongs to the subfamilies of 

Rad54-like or SSO-1653-like helicases of the SNF2 family of helicase superfamily 

2 (Eisen et al., 1995; Flaus et al., 2006).  
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Figure 24. Schematic illustration of subdomains within ORF FLJ20105 (PICH), as 
predicted by Scansite and Blast analyses on NCBI databases. Numbers refer to amino 
acid residues. 
 

 

At the very N- and C-termini of ORF FLJ20105 single tetratricopeptide repeats 

(TPR motifs) were found. These motifs have been shown to mediate protein-

protein interactions (Lamb et al., 1995).  

Because the described ORF carries a helicase domain, it interacts with the 

mitotic kinase Plk1, and is required for the spindle assembly checkpoint (see 

below), we named it PICH: Plk1 Interacting Checkpoint ‘Helicase’. 

In cooperation with Dr Kay Hofmann (Miltenyi Biotech, Cologne) the PICH 

amino acid sequence was analyzed for orthologs in other species. Using 

comparative sequence analyses, Dr Hofmann found a novel, conserved motif C-

terminal of the ‘helicase’ domain of PICH (Figure 25) that appears to be specific 

for PICH orthologs. This highly conserved region can be used as a signature motif 

for PICH in other species and thus we call it the PICH family domain (PFD) (Figure 

24 and 25).  

       

 
 

      Figure kindly provided by Dr Kay Hofmann 
 
Figure 25. Evolutionary conservation of the PICH family domain (PFD). Amino acid 
residues are indicated using single-letter code and numbers refer to their positions. Dark 
and light gray indicate conservation and conservative substitutions, respectively. A 
putative consensus is indicated below the alignment. 
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Database searches by Dr Hofmann focused on the PFD revealed PICH orthologs 

in vertebrates and plants as well as in a non-vertebrate chordate, in Dictyostelium, 

and in the single cell eukaryotic parasite Entamoeba, but (so far) not in yeast or 

the typical invertebrate model organisms Drosophila melanogaster or 

Caenorhabditis elegans. 

 

 

Detection of endogenous PICH  

Full length, bacterially expressed MBP-PICH was used for immunizations of two 

rats and two rabbits. The sera of all four animals (rabbits: F95-antibody and G95-

antibody; rats: rat I and rat II) showed crossreactivity with human PICH in 

immunofluorescence. Both rabbit antibodies were affinity purified and successfully 

used for western blotting analysis of PICH (Figure 26A).  

 

A      B 

              
 
 
Figure 26. The rabbit G anti-PICH antibody (A, left panel) and the corresponding pre-
immune serum (A, right panel) were used for Western blotting. Lysates were prepared 
from mitotic (nocodazole-arrested) and interphase HeLa cell extracts or from rabbit 
reticulocyte lysates that were primed for in vitro transcription by addition of a Flag-PICH 
transcription vector. Reticulocyte lysate alone was used as a control. Arrows indicate the 
two distinctly migrating forms of PICH; the asterisk marks a crossreacting band in the 
control lysate. When used for Western blotting on extracts prepared from asynchronously 
growing HeLa cells, an affinity-purified rabbit anti-PICH antibody recognized a single 
protein migrating at 180 kD. Attesting to antibody specificity, this immunoreactivity was 
almost completely abolished upon siRNA-mediated knock-down of PICH for 48 or 72 h, 
using either one of two different oligonucleotide duplexes (B). The duplex GL2 was used 
for control, and α-tubulin levels (lower panel) were determined to show equal loading. 
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Western blot analysis with rabbit α-PICH antibodies identified a protein of ~180kD 

in interphase lysates (Figure 26A), whereas, in the mitotic lysate an additional 

band migrating at approximately 220kD was recognized (arrows). This 220kD 

band likely corresponds to the PBD-interacting protein identified in mitotically 

arrested cells (Figure 21). PICH is composed of 1250 amino acids with a predicted 

molecular weight of approximately 140kD, in contrast to the observed molecular 

weight in interphase extracts of 180kD. Analysis of the isoelectric point using the 

bioinformatics website www.expasy.org revealed an acidic pI of 5.2, which might 

account for the retarded migration behaviour of PICH. To corroborate that non-

modified PICH migrates at 180kD, recombinant PICH was produced by in vitro 

translation. This Flag-PICH construct co-migrated with PICH from interphase 

extracts (Figure 26A, lanes 2 and 3), whereas, an additional slower migrating band 

(asterisk) appeared also in control IVT rabbit reticulocyte lysates (Figure 26A, 

lanes 3 and 4), showing that this band is not related to human in vitro translated 

PICH, even though it could reflect crossreactivity of the antibody with the rabbit 

ortholog of PICH from the reticulocyte lysate (Figure 26A). 

To further analyze the specificity of the antibody, siRNA transfections were 

carried out and analyzed by western blotting and immunofluorescence. Using two 

different siRNA oligo duplexes designed to target PICH on asynchronously 

growing Hela cells, PICH levels could be significantly reduced after at least 48h of 

incubation (Figures 26B). Depletion of PICH could also be confirmed by 

immunofluorescence microscopy (see below). 

 

 

 

The Plk1-PICH interaction is mediated by Polo-box binding to 

phosphorylated threonine 1063 

To confirm the interaction between Plk1 and PICH, nocodazole arrested cells were 

used to test for coprecipitation of Plk1 in immunoprecipitations of endogenous 

PICH and vice versa. As shown by Western blotting, endogenous PICH could 

readily be detected in Plk1 immunoprecipitates (Figure 27A, see also Figure 21) 

and endogenous Plk1 was present in PICH precipitates (Figure 27B). These two 

proteins were not precipitated by control antibodies. In addition, other mitotic 

proteins such as Hec1 and BubR1 were not detected in Plk1 or PICH 
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immunoprecipitates respectively, supporting the specificity of the PICH-Plk1 

interaction (Figure 27). 

 

A      B 

                        
 
 
Figure 27. Immunoprecipitations with mouse anti-Plk1 or 9E10 anti-myc antibodies were 
performed from nocodazole arrested HeLa cells and probed by Western blotting with 
antibodies against the indicated proteins (left panel). Reciprokal immunoprecipitations with 
rabbit anti-PICH or preimmune antibodies were performed from nocodazole arrested 
HeLa cells and probed by Western blotting with antibodies against the indicated proteins 
(right panel).  
 
 
 

 

To study the cell cycle regulation of the PICH-Plk1 interaction, myc-PICH and flag-

Plk1 were co-expressed in HEK293T cells and reciprocal co-immunoprecipitation / 

Western blotting experiments were performed on asynchronously growing and 

nocodazole arrested cells. Plk1-PICH complex formation could be observed in 

mitotic cells but not in interphase samples (Figure 28), suggesting a requirement 

for a mitosis specific modification of PICH, most likely a priming phosphorylation 

(Elia et al., 2003a; Lowery et al., 2005). 
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Figure 28. mycPICH and flagPlk1 were co-expressed for 48 hrs in HEK293T cells before 
immunoprecipitations were performed, using anti-flag or anti-myc antibodies (or beads for 
control), from asynchronously growing cells (upper panel) or from cells that had been 
arrested for 16 hrs in nocodazole (lower panel). All samples were then probed by Western 
blotting with anti-myc and anti-flag antibodies. Note that Plk1 and PICH only co-
immunoprecipitate from mitotic extracts. 
 

 

Supporting the idea that PICH is phosphorylated a progressive increase in PICH 

mobility was seen upon release of HeLa cells from a nocodazole arrest (Figure 

29). This PICH upshift on SDS-gels disappeared concomitantly with Cyclin B, 

suggesting that it is mitosis specific.  

 

 

 
 
Figure 29. HeLa cells were released from a nocodazole-induced mitotic arrest, samples 
were collected every 20 min and probed by Western blotting, using the antibodies 
indicated. Cyclin B levels indicate exit from mitosis and α-tubulin levels serve as a loading 
control. 
 

 

Moreover, when mitotic (nocodazole arrested) lysates were treated with CIP (calf 

intestine phosphatases) for 30 min., PICH displayed a phosphatase-sensitive 
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retardation in electrophoretic mobility (Figure 30), comparable to the migration of 

the protein in interphase (aphidicoline) lysates. Thus, PICH is phosphorylated 

during mitosis as long as Cdk1 activity persists but undergoes dephosphorylation 

as cells exit mitosis.  

 

                   
 
Figure 30. The electrophoretic mobility of PICH in SDS-PAGE was assayed by Western 
blotting performed on interphase (aph; aphidicoline arrested) or mitotic (noc; nocodazole 
arrested) lysates. The latter lysates were pretreated for 30min with or without calf 
intestinal phosphatase (CIP). The mitotic status was assayed by monitoring Cyclin B 
levels. Equal loading is shown by detection of α-tubulin. 
 
 
 
Potentially important, evolutionarily conserved phosphorylation and Plk1 docking 

sites were then analyzed using sequence alignments of PICH orthologs. Indeed, a 

STPK amino acid sequence highly conserved in vertebrates could be identified at 

positions aa1062-1065 (Figure 31). This threonine site may constitute a Plk1-PBD 

docking site after being primed via phosphorylation by a proline directed 

serine/threonine kinase (Elia et al., 2003a). 
 

 

 

                                 
Figure 31. Alignment of vertebrate PICH: threonine 1063 appeared to constitute a highly 
conserved, potential PBD binding/Cdk1 consensus site.  
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Mass spectrometric analysis by Dr Roman Körner (MPI of Biochemistry, Munich) 

of the Plk1-PICH complex isolated from mitotic cell lysates indeed identified 

threonine 1063 as a prominent phosphorylation site in PICH (Figure 32). This 

suggested that phosphorylation by Cdk1 might transform it into a PBD-binding site 

(Elia et al., 2003a). 

 

 

     
kindly provided by Dr Roman Körner 

Figure 32. Collision induced dissociation (CID) mass spectrum of the ORF FLJ20105-
derived phospho-peptide QFDASpTPK. C-terminal and N-terminal fragments are marked 
as y-ions and b-ions, respectively. pT denotes phosphothreonine, fragments containing 
the phosphate group are marked as "+Ph.", and the fragment showing a characteristic 
loss of phosphoric acid is labeled as "-Ph.acid". 
 

 

Several further experiments were then performed to support the initial finding and 

explore the importance of PICH phosphorylation. First it was tested whether Cdk1 

could phosphorylate PICH in vitro. When recombinant Cdk1 was used for kinase 

assays, it phosphorylated both wild-type (wt) and, to a lesser extent, a mutant 

PICH with threonine 1063 mutated to alanine (T1063A) (Figure 33, middle panel), 

indicating that T1063 is a Cdk1 phosphorylation site, albeit not the only one. Next, 

a Far Western ligand binding assay (Neef et al., 2003) was performed (shown 

below) to test the ability of recombinant GST-PBD to bind PICH, with or without 
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prior phosphorylation by Cdk1 (Figure 33, bottom panel). Whereas wt PICH and 

PICH T1063A showed virtually no PBD binding without pre-phosphorylation by 

Cdk1, strong PBD binding was seen after Cdk1-mediated phosphorylation. In the 

case of the T1063A mutant, PBD binding was strongly reduced, albeit not 

completely abolished, even after pre-phosphorylation by Cdk1. These results 

identify threonine 1063 as a major priming site for Plk1-PBD binding to PICH and 

suggest that the PICH-Plk1 interaction requires mitosis specific priming by Cdk1. 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33. In vitro kinase assays were performed with Cdk1-Cyclin B (or buffer for control) 
and the indicated proteins as substrates, before samples were subjected to SDS-PAGE. 
Coomassie blue staining (CBB) and autoradiography shows protein loading (top panel) 
and phosphorylation ([32P]; middle panel), respectively. The arrow marks MBP-PICH. In 
parallel, a Far Western ligand blotting assay was performed with GST-PBD (bottom 
panel), demonstrating that efficient PBD binding to PICH requires Cdk1 phosphorylation 
on threonine 1063. 
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We next investigated, whether the Cdk1-induced recruitment of Plk1 to PICH  

could convert PICH into a substrate of Plk1. Therefore, sequential kinase assays 

were performed (Figure 34). Recombinant wt PICH and T1063A PICH proteins 

were incubated with or without Cdk1 in the presence of unlabelled ATP for 1 hour.  

 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34. Sequential kinase assay. MBP-PICH-His wt or T1063A proteins (500ng) were 
pre-incubated for 1h at 30°C with or without Cdk1-Cyclin B, in the presence of unlabeled 
ATP. All samples were then split equally and incubated for 30min at 30°C with either γ-
[32P]-ATP alone (middle panel) or γ-[32P]-ATP and Plk1 (bottom panel). Then, samples 
were resolved by 7.5 % SDS-PAGE and subjected to auto-radiography. Equal protein 
loading is shown by Coomassie blue staining (top panel). The arrow marks MBP-PICH. 
 

 

 

Samples were then split and incubated with γ-[32P]-ATP with or without Plk1. 

Phosphorylation of PICH incubated with only γ-[32P]-ATP was minimal, presumably 
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reflecting residual Cdk1 activity (Figure 34, middle panel). Likewise, Plk1-

dependent phosphorylation of both wt PICH and T1063A PICH was minimal in the 

absence of prior exposure to Cdk1 (Figure 34, bottom panel). In striking contrast, 

the sequential exposure of PICH to Cdk1 and then Plk1 resulted in strong 

phosphorylation of wt PICH, while still only a weak phosphorylation of the T1063A 

mutant (Figure 34, bottom panel). Therefore PICH is an excellent substrate of 

Plk1, provided that it has been primed for Plk1-PBD binding through 

phosphorylation at T1063. 

 

 

 

PICH colocalizes with Plk1 at kinetochores 

To investigate the subcellular localization of PICH in HeLa cells at different stages 

of the cell cycle, immunofluorescence microscopy was used. Anti-PICH antibodies 

produced weak, mostly cytoplasmic staining in interphase cells, but strong staining 

of the kinetochore region on mitotic chromosomes (Figure 35 and 36). 

Colocalization analysis of PICH with Hec1, a marker of the outer kinetochore 

(Ciferri et al., 2005), confirmed the kinetochore association of PICH in mitosis 

which could be abolished by siRNA mediated depletion of PICH, confirming both 

the specificity of the antibody and the kinetochore signal (Figure 36).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. PICH localization in HeLa cells was determined by immunofluorescence 
microscopy. Cells were fixed with paraformaldehyde and permeabilized with Triton-X-100 
before they were incubated with affinity-purified rabbit anti-PICH antibody (0.5 µg/ml), 
followed by secondary antibody. Bar, 10 µm). 
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Figure 36. HeLa cells were treated with PICH 
siRNA or GL2 for control. Kinetochore 
localization of PICH was confirmed by 
colocalization with Hec1 and antibody 
specificity documented by siRNA-mediated 
depletion. Bar 10µm. 

 

 

 

 

 

 

 

 

Next the subcellular localization of PICH and Plk1 was compared by 

immunofluorescence at different stages of mitosis (Figure 37). Beginning in 

prophase Plk1 localized to kinetochores, whereas PICH showed merely diffuse 

chromatin association, indicating that PICH is not required for the initial 

recruitment of Plk1 to kinetochores. In prometaphase PICH and Plk1 could be 

seen to colocalize at kinetochores, but only Plk1 was observed at centrosomes. 

PICH was still present at kinetochores in anaphase but not anymore in telophase, 

while Plk1 accumulated at the postmitotic bridge. Strikingly, strong association of 

PICH with novel “thread” structures could be detected in anaphase (arrow). 
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Figure 37. Double immunofluorescence microscopic analysis of asynchronously growing 
RPE-1 cells, comparing the localization of PICH and Plk1 at different mitotic stages. 
Merged images show Plk1 in green, PICH in red and DNA (DAPI staining) in blue. The 
arrow marks a typical PICH-positive thread in an anaphase cell. Bar, 10µm. 
 
 
 

 

 

Plk1 phosphorylation removes PICH from chromatid arms 

Given that PICH is a substrate of Plk1 it appeared obvious to ask whether Plk1 

might be required to regulate PICH activity and/or localization. When Plk1 was 

depleted by siRNA (Figure 38A and 39), PICH staining spread from the 

kinetochore region to chromatid arms (compare Figures 38Ab and d), with similar 

results in all cell types analysed (HeLa, U2OS, MCF-7, RPE-1; data not shown). 

This suggested that either Plk1 might prevent PICH from association with 

chromatid arms, or that Plk1 is required to remove PICH from chromatin. 

Alternatively Plk1 could regulate PICH protein levels / degradation, resulting in 

increased PICH levels and arm distribution. 
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A                   B 

                        
 
Figure 38. A) HeLa cells were treated with a siRNA duplex specific for Plk1 or GL2 for 
control before PICH and Plk1 were localized by immunofluorescence. Note spreading of 
PICH to chromatid arms in the absence of Plk1. Bar, 10µm. B) Overexpression of GFP-
PICH in HeLa cells at low (a) and high (b) expression levels. Note spreading of excess 
PICH to chromatid arms. The asterisk denotes a GFP-PICH aggregate that was frequently 
observed in these transfections. 
 

 

To further investigate PICH localization, GFP-tagged PICH was overexpressed in 

HeLa cells and its distribution observed under fluorescent light. Interestingly, when 

GFP-PICH was expressed at low levels it remained concentrated at kinetochores, 

similar to the distribution of the endogenous protein (Figure 38Ba). However, 

overexpression at higher levels resulted in the spreading of GFP-PICH to 

chromatid arms like in Plk1 depletion, suggesting that excess PICH could override 

a restraining influence of Plk1 (Figure 38Bb).  

To rule out that Plk1 depletion caused an accumulation of PICH protein, 

PICH levels were compared in Plk1 depleted and nocodazole arrested cells, as 

well as in cells depleted of the kinesin-related motor Eg5 (which results in a similar 

mitotic arrest). As shown by Western blotting, Plk1 depletion did not cause an 

accumulation of PICH (Figure 39, right panel). Instead, the electrophoretic mobility 

shift of mitotic PICH was lost upon depletion of Plk1 (but not of Eg5), indicating 

that it depends on Plk1 activity. Thus Plk1 appeared to regulate the mitotic 

localization of PICH but not its abundance. 
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Figure 39. Left panel: Effective depletion of Plk1 from HeLa cells by 48 hrs siRNA 
treatment is shown by Western blotting.  α-tubulin levels provide a loading control. Right 
panel: PICH mobility but not abundance is regulated by Plk1. Western blotting was used 
to compare levels and electrophoretic mobility of endogenous PICH protein in lysates of 
Plk1 or Eg5 depleted cells as well as nocodazole arrested cells (top row). Efficient 
depletion of Plk1 and Eg5 by siRNA is documented below and equal loading is shown by 
probing for α-tubulin (bottom row). 
 

 

 

If PICH is a Cdk1 dependent substrate of Plk1 in vitro, it might be possible that the 

phosphorylation of PICH by Plk1 is required to regulate PICH chromatid arm 

localization in vivo. To answer this question, two types of co-transfection 

experiments were performed: First, the localization of PICH was analyzed in Plk1 

rescue experiments using different Plk1 rescue constructs (Figure 40). Cells were 

depleted of Plk1 using a small hairpin plasmid (shRNA) and co-transfected with 

rescuing plasmids of Plk1wt, Plk1-PBD mutant (H538A, K540A), a Plk1 kinase 

mutant (K82R) and a fragment of the catalytic domain only (Hanisch et al., 2006).  
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Figure 40. Rescue experiments confirm the role of Plk1 in determining PICH localization. 
HeLa cells were cotransfected with Plk1 or GL2 control shRNA Plasmids and the 
indicated myc-tagged Plk1 constructs. Cells were fixed after 48h and co-transfected cells 
were analyzed for PICH arm/kinetochore localization. Histogram summarizes the results 
of 3 independent experiments (n=150-170) and bars indicate standard deviations. 
 

 

As summarized in Figure 40, only wt Plk1 was able to restore the typical 

concentration of endogenous PICH at kinetochores, whereas PBD and kinase 

mutants were unable to interfere with PICH arm localization. The catalytic domain 

alone produced an intermediary phenotype, suggesting that PICH could also be 

phosphorylated and regulated by an excess of unbound Plk1. 

In a complementary experiment, wt or T1063A mutant GFP-PICH proteins 

were co-expressed in U2OS cells with either mycPlk1 T210D (constitutively active 

kinase) or mycPlk1 K82R (inactive kinase). Only the constitutively active Plk1 was 

able to prevent GFP-PICH from spreading to chromatid arms and this regulation 

required the presence of the PBD docking site on PICH (Figure 41). Collectively, 

these data demonstrate that the recruitment of Plk1 to PICH and the ensuing 

phosphorylation regulate the localization of PICH on mitotic chromosomes. 
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Figure 41. GFP-PICHwt or GFP-PICHT1063A were cotransfected for 48 hours with either 
myc-Plk1T210D (constitutively active) or myc-Plk1K82R (kinase dead) into U2OS cells. After 
fixation cells were stained with anti-myc antibodies and only double-transfected cells were 
analyzed for GFP-PICH staining over chromatid arms or kinetochores only (see insets 
below). Histogram summarizes results obtained from 3 independent experiments (n=75 
for each experiment) and bars indicate standard deviations. 
 
 
 

Interestingly, whenever PICH was present at chromatid arms, its localization was 

very reminiscent to that of Topoisomerase II, a marker of chromatid axes 

(Earnshaw et al., 1985; Gasser et al., 1986) (Figure 42), raising questions as to 

functional interaction of these proteins. 

 

          
 
Figure 42. Two examples of GFP-PICH co-localization with Topoisomerase II in 
prometaphase.  
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Requirements for PICH localization 

Next, further requirements for the localization of PICH were examined by 

expressing various GFP-tagged PICH fragments in U2OS cells (Figure 43) and 

analyzed for their localization. As shown above in HeLa cells, GFP-PICH wt was 

able to localize to both kinetochores and chromatin arms in U2OS cells.  

 

A 

 
 

B 

 
 
Figure 43. A) Schematic illustration of different 
GFP-PICH constructs analysed in B). M1-M4 
refer to the same mutants in both panels. B) 
Wild-type and mutant GFP-PICH proteins were 
transfected into U2OS cells (left column) and 
these were counterstained with antibodies 
against Plk1 (right column, f-j). Asterisks in 
panels d and I point to a GFP-PICH aggregate, 
to which Plk1 is recruited. Bar, 10µm. 
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This localization could be observed also after overexpression of the N-terminal 

helicase domain alone (aa1-686). However, this wt localization required the 

presence of the PFD motif. In contrast, a fragment lacking the PFD helicase 

extension (aa1-632) associated with chromatin only in a diffuse manner. In 

agreement with an important role of the helicase domain in PICH chromatin 

localization, mutational inactivation of the Walker A nucleotide binding motif (GKT-

>AAA) completely abolished PICH localization. Overexpression of the T1063A 

mutant showed kinetochore and chromatid arm distribution comparable to wt 

PICH. 

Examination of Plk1 localization by counter-staining of cells transfected with 

GFP-PICH constructs by anti-Plk1 antibodies revealed that Plk1 was recruited to 

wt PICH over chromatin arms (Figure 43f). Similarly, the Walker A mutant (GKT to 

AAA) caused extensive sequestration of Plk1 to both the cytoplasm and PICH 

aggregates (Figure 43i). Mutants lacking the C-terminal PBD-binding domain (M1 

and M2) or carrying a mutation in T1063 (M4), however, were unable to 

significantly affect Plk1 localization (Figure 43g, h and j). These data demonstrate 

that an intact PICH ‘helicase’ domain including the extended PFD motif is critical 

for PICH localization and they further confirm that Plk1 interacts with PICH in vivo. 

Further requirements for PICH localization might be (upstream) components 

of the centromere/kinetochore. To find proteins that are required for the 

localization of PICH, we depleted a variety of candidates by siRNA and tested for 

PICH localization in immunofluorescence. As PICH showed similar subcellular 

distribution to chromatid axes as Topoisomerase II when either PICH regulation by 

Plk1 was prevented or when PICH was overexpressed at higher levels (Figure 38 

and 42), Topoisomerase II and Plk1 were also included in this siRNA analysis. 

Strikingly, siRNA depletion experiments of either Cdc14 or AuroraB resulted in the 

mislocalization of PICH and Topoisomerase II from kinetochores (table 4 and 

Figure 44). These data suggest that PICH and Topoisomerase II localization may, 

directly or indirectly, require coregulation by these enzymes. Moreover, the 

depletion of Hec1 resulted in a significant reduction of PICH signal from 

centromeres/kinetochores. Having shown that PICH kinetochore/centromere 

association requires an extended helicase domain comprising the PFD domain 

(Figure 43), this raises the question whether the specific PICH kinetochore and/or 

centromere recruitment might require protein-protein interactions between 
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PICH/the PFD and the Ndc80 complex or its downstream effectors. On the other 

side, long nocodazole treatment leads to reduced PICH centromere/kinetochore 

signals, which might be reflected in the Hec1 siRNA situation, where microtubule 

attachments are impaired (DeLuca et al., 2003).  

 

                
Table 4. Summary of several siRNA experiments: the localization of Plk1, PICH and 
Topoisomerase II was analyzed in various siRNA depletion backgrounds. – indicates 
mislocalization, + indicates unaltered localization compared to GL2 control (wt), ++ stands 
for the PICH redistribution over chromatid arms. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Immunofluorescence of Topoisomerase II (green) and PICH (red) in HeLa cells 
treated with siRNA targeting Cdc14, Topoisomerase II and GL2 control, respectively. 
DAPI is visualized in blue. Note that PICH and Topoisomerase chromatin localization is 
strongly reduced in siCdc14.  
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PICH reveals inter-kinetochore threads in anaphase 

As mentioned above (Figure 36), anti-PICH antibodies stained conspicuous 

threads in mitotic cells. Shown in Figure 45, numerous but short PICH-positive 

threads could be seen already in metaphase cells where they connected Hec1-

positive kinetochores of nearly all sister chromatids (a).  

 

 

       

 
 
Figure 45. Immunofluorescent staining of PICH-positive threads (red) during mitotic 
progression, from left (prometaphase) to right (late anaphase/telophase), documenting 
progressive lengthening and concomitant loss of threads. Kinetochores are co-stained 
with antibodies against Hec1 (green). DAPI staining for DNA is shown below. Bar, 10µm. 
 

 

 

Closer analysis of metaphase cells and co-localization studies with Hec1, a marker 

of the outer kinetochore plate (Ciferri et al., 2005; DeLuca et al., 2005), and 

Borealin, a marker of the inner centromere (Vagnarelli and Earnshaw, 2004), 

showed that PICH associates mostly with internal kinetochore structures and the 

centromeric region (Figure 46), often reminiscent of a “dumb bell”.  
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Figure 46. Metaphase HeLa cells were co-stained with the indicated antibodies to allow 
for a high resolution analysis of PICH localization (red) in comparison to Hec1 (a marker 
of the outer kinetochore plate; green) and Borealin (a marker for the inner centromere; 
blue). 
 

When cells further progressed through anaphase (Figure 45b and c) the threads 

became progressively longer and, concomitantly, their number diminished, so that 

they were absent by telophase (Figure 45e). Occasionally, though, long threads 

could still be seen to connect Hec1-positive kinetochores in late anaphase cells 

(Figure 45d). Figure 47 shows a quantitative analysis of the length of these 

threads, along with their frequency, in cells at representative mitotic stages. 

   

 

                        
 
Figure 47. Quantification in U2OS cells confirms that PICH threads are progressively 
stretched and resolved during anaphase. 
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Figure 48. Anaphase cells in MCF-7 and U2OS populations were fixed and permeabilized 
using paraformaldehyde/Triton-X-100 (Stucke et al., 2002), before they were co-stained 
with rat anti-PICH antibodies (serum 1:1000; red) and CREST serum (green). DNA was 
stained with DAPI (blue).  
 
                        

 

As the appearance of PICH threads in anaphase is a suprising and new results, 

different cell lines were analyzed to exclude that this might be a HeLa specific 

artifact. However, PICH-positive threads were seen in all cells examined, both 

non-transformed (RPE-1)(Figure 45) and transformed (MCF7, U2OS, Cos-7, 

HeLa) (Figure 48), with all four different rat and rabbit anti-PICH antibodies (Figure 

49). 
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Figure 49. Visualization of PICH positive threads by three further polyclonal antibodies. 
Asynchronously growing HeLaS3 cells were fixed and stained for CREST (green), PICH 
(red) and DNA (blue; DAPI). Bar, 10µm. 
 
 
 

The visualization of these PICH-positive threads did not require any deconvolution 

or data processing (Figure 48, pictures are neither deconvolved nor processed). 

Also, qualitatively identical results were obtained when using alternative fixation 

procedures (e.g. 3 % paraformaldehyde (10 min) followed by Triton-X-100 (0.5 %, 

10 min) or methanol (10 min, -20oC). 

Further supporting evidence that these threads reflect real structures comes 

from GFP-PICH transient transfections in HeLa (Figure 50) and U2OS cells (data 

not shown). In these experiments GFP-PICH could be directly observed at sister 

kinetochore connecting threads in metaphase/anaphase, excluding that PICH 

threads are an artefact of antibody crossreactivity. 
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Figure 50. Visualization of PICH positive threads by GFP-PICH (green). HeLaL cells were 
transfected for 36h with an expression plasmid carrying GFP-PICHwt. Cells were fixed and 
stained for Plk1 (red) and DNA (blue, DAPI). Bar, 10µm. 
 
 
 
           
 
PICH positive threads are catenated, centromere-related, sister kinetochore 

connecting chromatin  

The discovery of PICH threads required further analysis as to what specific 

structure they might reflect. Considering the helicase motif of PICH and that 

threads frequently connect sister kinetochores, the two most obvious models were 

explored further. a) PICH might associate with lagging chromosomes in anaphase, 

or b) PICH might associate with stretched centromeric chromatin forming at 

metaphase. To first examine a possible relationship between PICH-positive 

threads and lagging chromosomes, we increased the frequency of chromosome 

segregation errors by siRNA-mediated depletion of Mad2. This interference with 

spindle checkpoint function did not reveal any obvious relationship between PICH-

positive threads and lagging chromosomes (Figure 51A). Next, we tested the 
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possibility that PICH-positive threads represent stretched chromatin extending 

between sister kinetochores. If this were the case, one would predict that the 

premature removal of centromeric cohesin should enhance thread formation. 

Indeed, when premature loss of centromere cohesion was induced by siRNA-

mediated depletion of Sgo1 (Salic et al., 2004), a massive enhancement of PICH-

positive threads was seen (Figure 51B). Further illsutration of the intriguing 

localization of PICH threads is shown in Figure 52, where images from Sgo1 

depleted Hela cells were greatly magnified. In these photos threads reached 

lengths of several µm and often connected sister kinetochores (Figure 52), 

supporting the view that they represent stretched centromere-related chromatin. 

 

 

A      B 

     
 
Figure 51. A) To induce lagging chromosomes, HeLa cells were subjected to Mad2 
siRNA (36 h) before they were co-stained with anti-PICH antibodies (red) and CREST 
anti-Kinetochore serum (green). DNA in the same cell was stained by DAPI (right panel); 
notice lack of co-localization between PICH-positive thread (asterisk) and lagging 
chromosome (arrow). Bar, 10µm. B) To induce premature sister chromatid separation, 
HeLa cells were subjected to Sgo1 siRNA (48 h) and then stained with antibodies against 
PICH and CenP-B to visualize PICH-positive threads (red) and kinetochores (green), 
respectively. DNA was stained with DAPI (right panel). Bar, 10µm. 
 

 

Furthermore, although PICH-positive threads could not reliably be counter-stained 

with DAPI over their entire lengths, DAPI staining could often be seen at their ends 

(e.g. Figure 45d).  
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Figure 52. Sgo1-depleted HeLa cells (48 h) showing different degrees of sister chromatid 
separation were stained with antibodies against PICH and Hec1 to visualize PICH-positive 
threads (red) and kinetochores (green), respectively. Bar, 1µm. 
 
 
 
 
In cooperation with Dr Valentin Nägerl (MPI of Neurobiology, Munich), 2 photon 

confocal microscopy on fixed, asynchronously growing U2OS cells was used to 

obtain high resolution images of PICH threads in colocalization with Hec1 at 

various stages of late mitosis. Shown below are three examples confirming 

previous results that PICH localizes to internal kinetochores and often decorates 

sister kinetochore connecting threads that disappear and stretch, beginning from 

early anaphase. 

 

A) Early anaphase 
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B) Late anaphase                       

                      
C) Telophase 

 
Figure 53 A-C) images were acquired with the help of Dr. Valentin Nägerl (MPI for 
Neurobiology) and show PICH-positive threads (red) in different stages between early 
anaphase and telophase. U2OS cell were counterstained for kinetochores (green) and 
DNA (blue). Confocal image stacks were acquired on a Leica SP2 and the images were 
processed and 3D rendered using the Imaris software package by Bitplane AG. 
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If PICH threads were to represent centromeric chromatin, they should be sensitive 

to DNAse treatment. Indeed, when HeLa cells - depleted of Sgo1 to induce PICH 

threads – were pre-permeabilized ten minutes prior to fixation and either control 

buffer, RNAse or DNAse was added, PICH threads rapidly disappeared from 

DNAse treated samples only (Figure 54), suggesting that they contain DNA.  

 

 

      
Figure 54. HeLa cells were treated for 24 h with Sgo1 siRNA, permeabilized and 
incubated for 12 min with buffer, RNAse or DNAase (5 µg/ml) prior to fixation. Then they 
were stained with antibodies against α-tubulin (green) and PICH (red). DNA was stained 
with DAPI (blue). Bar, 10µm.   

 

 

In normal mitotic progression, PICH threads were visible in basically all post-

prometaphase cells. Most striking, however, is the presence and length of threads 

in anaphase. Topoisomerase II is an enzyme required for the untangling of 

catenated DNA strands and hence is crucial for the decatenation of sister 

chromatids in early mitosis (Skoufias et al., 2004; Vagnarelli et al., 2004).  

Prompted by a previous study that Topoisomerase II is also required for sister 

chromatid separation during anaphase (Shamu and Murray, 1992), we asked 

whether the resolution of PICH-positive threads requires Topoisomerase II activity. 

To answer this question, indirect immunofluorescence experiments were 

performed in Mad2 depleted HeLa cells to avoid the early mitotic arrest typically 

induced by Topoisomerase II inhibition (Skoufias et al., 2004; Toyoda and 

Yanagida, 2006).  
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Figure 55. HeLa cells were treated for 36 h with Mad2 siRNA and, during the last three 
hours, the Topoisomerase II inhibitor ICRF-193 (20 µM) or DMSO were added. Then cells 
were fixed and stained with antibodies against CREST (green) and PICH (red). DAPI 
shows DNA (blue). Bar, 10µm. 
 

 

Most remarkably, when DNA decatenation was inhibited by application of the 

Topoisomerase II inhibitor ICRF-193, PICH-positive threads became very 

prominent (Figure 55, and Figure 56) and persisted until cytokinesis (Figure 57). 

Costaining of PICH with CREST anti – centromere autoimmune serum suggested 

that kinetochores are mainly drawn polewards, whereas PICH threads accumulate 

in the area of the midzone / postmitotic bridge, suggesting that microtubules are 

pulling the kinetochores to the spindle poles, but the lagging and catenated 

DNA/threads can not be resolved. 

Further colocalization analysis were carried out under the same 

experimental conditions with either Topoisomerase II to assess its localization 

under ICRF-193 inhibitor addition or with α-tubulin to confirm that PICH threads 

and tubulin do not colocalize. 
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Figure 56. HeLa cells were treated for 36 h with Mad2 siRNA duplex and incubated for 
the last 3 h with the Topoisomerase II inhibitor ICRF-193 or solvent (DMSO). They were 
then fixed and co-stained with antibodies against Topoisomerase IIa (red) and PICH 
(green). DNA is stained with DAPI (blue). Bar, 10µm. 
 

 

               

              
 
Figure 57. Cells were treated as described above, except that they were co-stained for 
PICH (red) and α-tubulin (green). DAPI shows DNA (blue). Bar, 10 µm. 
 
 
 
 
Recent reports suggested that SNF2 type translocases depend in their mode of 

action and remodelling activity on the tension/torsion that is applied on their 

chromatin template (Lia et al., 2006; Zhang et al., 2006). This raises intriguing 
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questions as to the localization and action of PICH at these conspicuous threads 

and its dependence on thread conformation and tension status. To examine a 

possible influence of tension on PICH-positive threads, Sgo1 depleted cells were 

incubated with Taxol for 30min., an inhibitor of microtubule dynamics that is 

frequently used to decrease tension (Pinsky and Biggins, 2005). Under these 

conditions, PICH-positive threads disappeared rapidly (Figure 58), suggesting that 

thread formation and/or PICH recruitment to threads is sensitive to alterations in 

tension. These results lead to the interpretation that PICH associates with 

catenated centromere-related DNA that stretches under tension until decatenation 

by Topoisomerase II causes its resolution during anaphase. 

 

 

 
 
Figure 58. HeLa cells were treated for 36 hrs with Sgo1 siRNA. Then, cells were 
incubated for 30 min with either taxol (0.58 µM) or DMSO solvent before fixation and 
permeabilization. They were stained for CREST (green) and PICH (red). DNA was stained 
by DAPI (right panels). Note that PICH-positive threads disappeared in response to taxol. 
Bar, 10µm. 
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PICH is required for the spindle checkpoint 

To explore the function of PICH, siRNA knockdown experiments were performed. 

Two distinct duplexes effectively depleted PICH (Figure 26) and produced virtually 

identical phenotypes. Compared to control treated HeLa cells (GL2), a 48 hour 

PICH knockdown resulted in aberrant division and extensive micronucleation, 

indicating that PICH is required for accurate chromosome segregation (Figure 59).  

 

       
 
Figure 59. DAPI staining of HeLa cells treated for 48hrs with a siRNA duplex targeting 
PICH (right) or GL2 for control (left). 
 
 

Even though unlikely due to the cytoplasmic localization of PICH in interphase 

(Figure 35), this SNF2 type ATPase could be involved in the establishment of 

cohesins in interphase which might result in a premature separation of sister 

chromatids and chromosome segregation defects. If PICH would be required for 

cohesin complex chromatin association, double depletion of PICH and Plk1 should 

result in a lack of sister chromatid cohesion, whereas depletion of Plk1 alone 

should confirm published results of persistent chromatid arm cohesion (Hanisch et 

al., 2006). To test this possibility, chromosome spreads were carried out in double-

depleted HeLa cells with the following double siRNA treatments: PICH/GL2, 

Plk1/GL2, Mad2/GL2, Mad2/Plk1 and PICH/Plk1 for 48h with addition of the 

proteasome inhibitor MG132 for the last 3 hours to enrich for pre-anaphase mitotic 

cells. Inhibition of the proteasome by MG132 inhibits progression into anaphase, 

even if the APC/C is active, because the downstream targets CyclinB and Securin 

65 



_______________________________________________________________________ 
 
Results part II 

can not be degraded by the proteasome. This results in a transient metaphase 

arrest before cells undergo cell death (Terret et al., 2003). 

 

 

      
Figure 60. Chromosome spreads. HeLaL cells were treated with siRNA oligos as 
indicated for 48h. 3h prior to fixation MG132 was added to enrich for pre-anaphase cells. 
Note that siPlk1/siPICH double siRNA has mainly aligned chromatid arms, indicating that 
PICH is not required for the establishment of arm cohesins. 
 

 

As shown in Figure 60, double depletion of Plk1 and PICH resulted in a Plk1-like 

phenotype with sister chromatids aligned at their arms and centromeres. The 

same result was obtained in a control where Plk1 and Mad2 were co-depleted. 

These data suggest that PICH is not required for the establishment of cohesions.  

To analyse the siRNA phenotype in more detail, a HeLa cell line stably 

expressing GFP-tagged histone H2B was used for live cell imaging. Figure 61 

shows stills from such movies, with pictures taken at the indicated time points after 

the start of chromosome condensation.  Whereas control cells exhibited the 

expected congression of chromosomes to a metaphase plate, followed by the 

onset of anaphase (Figure 61, upper panel), PICH depleted cells separated their 

chromosomes without ever organizing them in a metaphase plate (Figure 61, 

lower panel). This could either be indicative of a defect in chromosome 

congression or in the inability to delay the onset of anaphase until efficient 

metaphase plate formation can be achieved. A disability to delay anaphase can be 

quantified, hence several time-lapse images of PICH and control depleted cells 

acquired by live cell imaging were analyzed for the time cells spent between 

chromosome condensation and the onset of anaphase. The average time elapsed 

was 33 min (range 22-90 min) for control cells but only 19 min (range 14-26 min) 

for PICH depleted cells (Figure 62). 

This clearly suggests a defect of PICH depleted cells in mitotic timing. 

Because the timing of anaphase onset is controlled by the spindle assembly 
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checkpoint, the above results strongly suggested that PICH is required for spindle 

checkpoint function. 

 

 

     
 
Figure 61. Representative stills illustrating mitotic progression in cells treated as 
described in B. Pictures were taken at the indicated time points after the onset of 
chromosome condensation. 
 

 
 
 
 
 

 

 

 

 

  

 
Figure 62. Histogram illustrating time elapsed between the beginning of chromosome 
condensation and the onset of anaphase in cells treated for approx. 36 hrs with GL2 or 
PICH siRNA duplexes. Data were collected by live cell imaging (N=36 cells; 5 different 
movies; bars indicate standard deviation). 
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Next a direct requirement for PICH in the spindle assembly checkpoint was tested. 

HeLa cells were depleted by siRNA specific for PICH or GL2 control, respectively, 

and treated with either nocodazole or monastrol for the last 12h. Both these 

compounds are commonly used to probe spindle checkpoint function in response 

to lack of microtubule attachment and/or tension (reviewed in (Pinsky and Biggins, 

2005)). Fixed cells on coverslips were then quantified for the amount of mitotic, 

interphase or micronucleated cells. Strikingly, PICH depleted cells were unable to 

undergo a mitotic arrest in response to either drug, clearly suggesting a 

requirement of PICH in the spindle checkpoint, as summarized in Figure 63. 

 

              
 
Figure 63. To study the SAC response of cells treated for 48 hrs with PICH or GL2 siRNA 
duplexes, nocodazole or monastrol were added during the last 12hrs of the incubation. 
DNA morphology was then analysed by DAPI staining and immunofluorescence 
microscopy and classified as interphase cells, mitotically arrested cells (indicative of a 
functional SAC) or micronucleated cells (indicative of checkpoint override). Histograms 
summarize the results of 3 independent experiments (with at least 250 cells counted for 
every column in each experiment) and bars indicate the standard deviation. 
 

 

To corroborate our finding that PICH has a role in SAC signalling, PICH depleted 

cells were analyzed for possible effects on the most downstream effectors of the 

spindle assembly checkpoint by immunofluorescence. Of the well known spindle 

checkpoint proteins Mad1, Mad2 and BubR1, only Mad2 was selectively lost from 
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the kinetochores of PICH depleted cells (Figure 64). Interestingly Mad1, the 

binding partner of Mad2 at the kinetochores (Musacchio and Hardwick, 2002), was 

still present. 

The loss of Mad2 from kinetochores in PICH depletion could be either due 

to a requirement for PICH in Mad2 recruitment or to PICH regulating the 

abundance of Mad2 protein in mitotic cells. However, Western blot analysis of 

siRNA depleted cells that were arrested in mitosis by addition of the proteasomal 

inhibitor MG132 for the last 3 hours, revealed that the abundance of Mad2 and 

Mad1 was not affected (Figure 65). 

 

A      B 

 
 
 
C      D 
 

                                                                           
 

 
Figure 64. A-D: HeLa cells were treated for 48 hrs with PICH siRNA or GL2 control, 
before the localization of the Cdc20 inhibitors Mad2 and BubR1 or the Mad2 interactor 
Mad1 in PICH depleted prometaphase-like cells was examined by immunofluorescence 
microscopy. DNA is stained by DAPI (blue). Bar, 10µm. A,B,D) Mad2 is mislocalized from 
kinetochore in PICH depleted cells whereas Mad1 remains unaffected. C) PICH depletion 
has no effect on BubR1 localization. Bar, 10 µm. 
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To analyze whether Mad2 kinetochore localization directly requires the presence 

of PICH at kinetochores, siRNA depleted cells were treated with nocodazole for 

30min. to depolymerize microtubules and subsequently induce recruitment of 

Mad2 to kinetochores (reviewed by (Pinsky and Biggins, 2005). Cells were 

arrested in mitosis by 3h MG132 treatment. Control cells but not PICH depleted 

cells (Figure 54) showed Mad2 kinetochore localization, confirming that PICH is 

required for the recruitment of Mad2 to kinetochores. Considering that Mad2 is a 

known interactor of Cdc20 and inhibitor of the APC/C (Fang et al., 1998; Mapelli et 

al., 2006; Yu, 2006) and that its loss from kinetochores often correlates with 

impaired spindle checkpoint function (Pinsky and Biggins, 2005), this protein 

plausibly constitutes one critical component (albeit perhaps not the only one) 

through which PICH exerts its specific effect on SAC signalling. 

 

 

 

        
 
Figure 65. HeLa cells were treated for 42 hrs with PICH siRNA or for GL2 control and 
arrested in mitosis by addition of MG132 during the last 3 h. After shake off lysates were 
prepared and probed by Western blotting with the indicated antibodies. 
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Figure 66.  HeLa cells were treated as in A) but, prior to fixation, the proteasome inhibitor 
MG132 was added for 3h and nocodazole (100ng/ml) for the last 30 min. Then, cells were 
co-stained for PICH (green) and Mad2 (red). Bar, 10µm. Note that Mad2 does not return 
to kinetochores in the absence of PICH, even though microtubule attachment is prevented 
by nocodazole. (Mad2 levels in these cells are normal; data not shown, but see Figure 
51). 
 

 

 

PICH depleted cells have intact kinetochores and functional microtubule 

attachment 

Because a loss of spindle checkpoint signalling together with the observed 

phenotype could also be due to a general disruption of kinetochore structure 

(Maiato et al., 2004; Vagnarelli and Earnshaw, 2004), we looked at the effect of 

PICH depletion in more detail. All together the mitotic localization of sixteen 

proteins representative of the outer corona, the kinetochore or the centromere 

were analyzed by immunofluorescence.  

 

                                                

 
 
Table 5. Summary of results for all proteins analyzed as described in A: + : kinetochore  
staining indistinguishable from GL2 control;  – : protein lost from kinetochores. -/+: Lost 
from kinetochores only 
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Figure 67. As summarized in table 5, the depletion of PICH (red) by siRNA from HeLa 
cells resulted in reduced kinetochore association and more diffuse localization of 
Topoisomerase II (green). DNA is visualized in blue (DAPI). 
 

 

 

As summarized in Table 5, fourteen proteins showed wild type localization when 

PICH was depleted, strongly suggesting that kinetochores were intact. 

Quantitation of the kinetochore signals of representative proteins is shown in Table 

6.  As described above, only Mad2 localization was completely abolished (see 

Figures 64-66 and Table 5), but furthermore the depletion of PICH led to a loss of 

the prominent Topoisomerase II kinetochore staining in early mitosis, resulting in a 

readily diffuse localization over chromatids (Figure 67). This might provide further 

evidence for the interdependent requirement of PICH and Topoisomerase II in 

chromosome segregation and sister chromatid decatenation at centromeres. 
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Table 6. Histograms show the kinetochore staining intensities for the 5 indicated proteins 
in PICH depleted cells relative to the GL2 samples (100 %), and bars indicate standard 
deviations. For each protein, 5 different mitotic cells were analyzed using metamorph 
software and intensity values in each cell were measured at 5 representative kinetochores 
(normalized against 5 random positions in the cytoplasm). 
 

 

Additional evidence for the integrity of kinetochores and microtubule attachment 

could be obtained by depletion experiments under addition of the proteasome 

inhibitor MG132.  If the inability of cells that have no PICH to build up a metaphase 

plate would be caused by impaired microtubule capture at kinetochores and 

disrupted kinetochore structure, than these cells should not be able to form 

metaphase plates upon addition of the proteasome inhibitor. However, like control 

depleted cells, MG132-arrested PICH depleted cells reacquired the ability to form 

metaphase plates, indicating that kinetochore-microtubule interactions were not 

significantly impaired (Figure 68). This result also suggests that the defects in 

chromosome segregation and spindle checkpoint signalling are caused by 

signalling components upstream of the APC/C rather than by cohesion mediating 

proteins. 
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Figure 68. HeLa cells were treated for 48 hrs with siRNA duplexes targeting either PICH 
or Mad2, or with GL2 for control. Where indicated, the proteasome inhibitor MG132 was 
added during the last 3 hrs of the incubation, and the extent of restoration of metaphase 
plates was analyzed by immunofluorescence (DAPI staining).  
Left panel: Histograms summarize the results of 3 independent experiments (for each 
column at least 150 cells were counted). Bars indicate standard deviations. 
Right panel: Representative cells stained with DAPI and antibodies against PICH (red) 
and α-tubulin (green). 
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Conclusions II  
In Plk1 immunoprecipitates we identified a novel interactor of Plk1, which we 

termed PICH. PICH belongs to the family of SNF2-type ATPases within the SF2 

superfamily of helicases. We could identify a new motif conserved and present in 

PICH orthologs from plant to humans which we termed the PICH family domain 

(PFD). The Plk1-PICH interaction requires a priming phosphorylation by Cyclin 

dependent kinase 1 (Cdk1-CyclinB) at PICH threonine 1063, which converts this 

conserved STPK motif into a docking site for the C-terminal Polo-box domain of 

Plk1. Binding to Plk1 converts PICH into a strong substrate and phosphorylation of 

PICH by Plk1 negatively regulates the chromatin association of PICH. GFP-

transfection experiments in U2OS cells showed that the N-terminal SNF2-type 

helicase domain, including the Walker A motif and the PFD are required and 

sufficient for PICH wild type localization. In all cell lines analyzed PICH can be 

observed at kinetochores and centromeres from prometaphase to anaphase. With 

the establishment of bipolarity and tension between sister kinetochores, PICH 

association with stretched centromeres becomes very prominent. When cells 

proceed into anaphase, PICH remains associated with threads that occasionally 

gain lengths of up to several µm. As cells proceed through anaphase PICH 

threads are progressively resolved and this action requires decatenation activity of 

Topoisomerase II. PICH threads are sensitive to DNAse treatment and disappear 

when tension is reduced, indicating that PICH associates with DNA in a tension 

dependent manner. We propose that these novel, thread-like structures are 

catenated, centromeric DNA that is resolved by Topoisomerase II after the onset 

of anaphase.  

Depletion of PICH by siRNA resulted in severe chromosome segregation 

defects and micronucleation. Moreover, cells lacking PICH were not able to arrest 

in mitosis upon treatment with the compounds nocodazole or monastrol. Only 

Mad2 (and to some extent Topoisomerase II), but neither Mad1 nor any other of 

15 proteins tested, was selectively lost from kinetochores of PICH depleted cells. 

Furthermore, the formation of metaphase plates could be restored in cells lacking 

PICH by addition of the proteasome inhibitor MG132, indicating that kinetochore 

structure and microtubule attachment are not disrupted in PICH depleted cells. We 

conclude that PICH is involved in Mad2 dependent spindle checkpoint signalling, 

possibly via regulation of the Mad1-Mad2 kinetochore interaction that is required 
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for the establishment of inhibitory Mad2 (DeAntoni et al., 2005; Yu, 2006).  

Moreover, Finally, the mitotic localization of PICH to stretched chromatin, its 

predicted SNF2 type translocase activity, its sensitivity to tension and its 

requirement for the spindle checkpoint lead us to propose that this enzyme might 

be ideally suited to monitor tension, thus possibly constituting the long sought 

tension sensor of the spindle checkpoint. 
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The Ndc80 complex 

The Ndc80 complex – consisting of its four subunits Hec1/Ndc80, Nuf2, Spc24 

and Spc25 - has been reported previously to be required for microtubule 

attachment, chromosome congression and kinetochore assembly (DeLuca et al., 

2005; DeLuca et al., 2003; Maiato et al., 2004; Martin-Lluesma et al., 2002; 

McCleland et al., 2003; McCleland et al., 2004). Using a directed Yeast-2-hybrid 

assay, we created an interaction model of the four complex components (Figure 

15). In this model the N-terminus of Nuf2 (aa1-208) is sufficient to bind Hec1 

residues 81-219. Moreover the small subunits Spc24 and Spc25 directly interact 

with each other and are linked to Hec1 via a direct Hec1-Spc25 interaction. These 

data support in vitro studies (summarized in Figure 69) where Hec1/Nuf2 or 

Spc24/Spc25 were co-expressed pairwise in bacteria and insect cells and 

exhibited subcomplex formation followed by whole complex assembly (Wei et al., 

2005). Further studies described that the Hec1/Nuf2 dimer is directly involved in 

microtubule attachment (Cheeseman et al., 2006; Wei et al., 2007). Moreover, it 

has recently been suggested that phosphorylation of Hec1 by Aurora B might 

regulate merotelic attachment (Deluca et al., 2006), but further experimental 

evidences will be required to strengthen this hypothesis. Our approach of Nuf2 

depletion by siRNA showed complex disruption and mislocalization of Hec1, 

resulting in disordered microtubules and failure in chromosome congression, 

supporting the requirement for Nuf2 and Hec1 in mitotic microtubule attachment 

and kinetochore structure.  

To analyze the higher order complex formation around the Ndc80 proteins 

and to find novel interactors, two yeast-2-hybrid screens were carried out using 

Nuf21-208 and Spc25 as baits. Several interesting candidates were identified 

(Figures 16-18). None of these potential novel interactors was present in previous 

pull down experiments, where a higher order complex around Ndc80 was 

copurified from C. elegans and human lysates (Cheeseman et al., 2004). In this 

view it remains interesting to further study the most promising candidates (e.g. 

APC7, C10Orf94) obtained in our screens and their potential role at the 

kinetochore. 
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from Wei et al. PNAS 2005 

Figure 69.  Schematic model of the Ndc80 complex. Each subunit of the Ndc80 complex 
is represented by an oval (the globular domain) and a stick (the coiled-coil region). The 
dashed line indicates the N-terminal segment of Ndc80p that was deleted. Numbers label 
the approximate first and last residues of each protein segment. The coiled-coils of 2N 
and 2S form the coiled-coil core. The globular domains of 2N form the outer head (toward 
the microtubule); the globular domains of the 2S, the inner head (toward the centromere). 
MT, microtubule; CEN, centromere. 
 

 

In Nuf2 siRNA depletion experiments the influence on known kinetochore and 

centromere proteins was analyzed (Table 2). Consistent with the finding that Hec1 

depletion results in loss of the checkpoint proteins Mad1, Mad2, Mps1 and Cdc20 

from kinetochores (Martin-Lluesma et al., 2002), we additionally observed that the 

kinetochore association of Polo-like kinase (Plk1) was selectively lost (Table 3). In 

general, this might open the possibility to separately observe Plk1 function when it 

is lost from kinetochores but remains at e.g. centrosomes. However, testing 

whether other centromere / kinetochore components might be required for the 

localization of Plk1 revealed the requirement for the chromosomal passenger 

protein Aurora B (see also (Goto et al., 2005) and Sgo1, indicating that Plk1 

localization might underlie complex regulation by several proteins. 

 

 

 

PICH – a novel mitotic target of Plk1  

Polo-like kinase (Plk1) is an essential enzyme involved in the regulation of 

centrosome maturation and spindle assembly, the removal of cohesins from 

chromosome arms, the inactivation of APC/C inhibitors, and the regulation of 
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mitotic exit and cytokinesis (Barr et al., 2004). The distinct functions of Plk1 are 

reflected by its localization to centrosomes and spindle poles, kinetochores, the 

central spindle and the postmitotic bridge. Plk1 substrate binding depends on the 

C-terminal non-catalytic domain of Plk1 (Jang et al., 2002; Seong et al., 2002), the 

so-called Polo-box domain (PBD)(Elia et al., 2003b). 

Human PICH was identified here as a novel interaction partner and 

substrate of Plk1. The PICH – Plk1 interaction requires a priming phosphorylation 

at threonine 1063, which creates a docking site for binding of Plk1`s Polo-box 

domain (PBD). Subsequently PICH becomes an efficient substrate of Plk1 (Figure 

70).  

 

 
  

 

 

 

              

 

 

 

 
Figure 70. PICH is a Cdk1 dependent substrate of Plk1: Following a priming 
phosphorylation on threonine 1063 on PICH by Cdk1-CyclinB at the onset of mitosis, 
PICH is bound by Plk1 via its PBD (Polo-box domain). This turns PICH into an efficient 
substrate of Plk1. This mechanism follows exactly the model proposed by Yaffee and 
coworkers (see introduction Figure 8). 
 

 

 

The Plk1-PICH mode of interaction fits exactly into the model of Plk1 substrate 

binding proposed by Yaffee and coworkers (Lowery et al., 2005). The identification 

of Cdk1-CyclinB as priming kinase points to a directed regulation of PICH in 

mitosis, even though this does not rule out further functions at other stages of the 

cell cycle. Our data indicate that Plk1 prevents the association of PICH with 

chromosome arms and restricts its localization to the kinetochore / centromere 

region by phosphorylation. This role of Plk1 in controlling PICH localization during 
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mitosis is highly reminiscent of the function of this kinase in removing cohesins 

from chromatid arms (Hauf et al., 2005; Losada et al., 2002; Sumara et al., 2002) 

and the protection of centromeric cohesins by Sgo1 and the phosphatase PP2A 

(Kitajima et al., 2006; Riedel et al., 2006; Tang et al., 2006)(Figure 71). The timely 

coordination in early mitosis between the removal of cohesins and PICH from 

chromatid arms raises questions as to possible connections between these 

events. In the future the identification of the Plk1 phosphorylation site(s) on PICH 

might help to understand the detailed function of the interaction between these 

enzymes.  

It also remains to be understood why PICH is not removed from 

centromeres / kinetochores by Plk1. Preliminary results indicate that the Cdc14 

phosphatase is required for wild type PICH localization and suggest that PICH 

could be protected from phosphorylation via the counteraction of a phosphatase 

that prevents dissociation (see also below). Hence Cdc14 phosphatase activity 

could be a strong candidate for protecting PICH at centromeres from Plk1 

phosphorylation. It has previously been reported that the resolution of sister 

chromatid rDNA (ribosomal DNA) in yeast anaphase requires the activity of Cdc14 

(Sullivan et al., 2004). Even though PICH localizes to centromeric DNA rather than 

to nucleoli, it is interesting to note, that PICH and Topoisomerase II localizations 

both depend on Cdc14 (Table 4).  

 

 

 

                                          
from McGuinness et al. PLOS Biology 2005 
Figure 71. Plk1 removes cohesins from chromosome arms in prophase. Centromeric 
cohesin is protected from Plk1 activity by Sgo1 and the phosphatases PP2A until 
anaphase onset. 
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PICH defines a novel subclass of the SNF2 ‘helicase’ family 

PICH clearly belongs to the SNF2 family of ATPases, which share a catalytic core 

with the superfamily 2 of predicted ‘helicases’. Rather than acting as processive 

helicases, members of this family utilize ATP hydrolysis to displace proteins from 

chromatin (Becker and Horz, 2002), translocate on double stranded DNA 

(Svejstrup, 2003), or generate superhelical torsion (Beerens et al., 2005; Havas et 

al., 2001; Lia et al., 2006), consistent with roles in chromatin remodeling, DNA 

recombination and DNA repair.  

As shown above, mutation of the Walker A motif abolishes chromatin 

association, suggesting that PICH associates with DNA in an ATP-dependent 

fashion. Furthermore the N-terminal half of PICH, comprising the extended 

‘helicase’ domain, is both necessary and sufficient for kinetochore / centromere 

localization, whereas deletion of the PFD domain resulted in diffuse chromatin 

association and to a significant loss of kinetochore staining. A potential role of the 

PFD in PICH kinetochore / centromere recruitment remains to be tested.  

Intriguing in the PICH domain structure are also the two TPR motifs in the very N- 

and C-termini of the protein. This could be a prerequisite for PICH oligomerization 

or hint at interactions with other TPR proteins. BubR1 and several members of the 

APC/C are TPR containing proteins (Passmore et al., 2005) and a recent study by 

the Pines lab (Acquaviva et al., 2004) established the localization of APC/C at 

centromeres. 

 

 

Evidence for PICH localization to catenated centromeric DNA 

In addition to its concentration at kinetochores and inner centromeres, 

endogenous PICH was found to localize to striking threads. These threads were 

difficult to visualize with DNA stains or antibodies against other proteins (including 

Topoisomerase II or the centromere-associated CENP-A or CENP-B, data not 

shown) and, to the best of our knowledge, no such threads have been reported in 

FISH experiments with centromeric DNA probes. Yet, PICH is predicted to bind 

DNA and several lines of evidence support the interpretation that these unusual 

PICH-positive threads represent stretched chromatin: firstly, they became visible 

when chromosomes underwent bipolar attachment during late prometaphase and 

connected most pairs of sister kinetochores in metaphase. Secondly, they 
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increased in length and concomitantly decreased in number during anaphase. 

Thirdly, they could be removed by DNAse treatment. Fourthly, they were 

exacerbated by depletion of Sgo1, indicating that premature release of 

centromeric cohesin caused their stretching. Finally, they persisted through 

telophase when Topoisomerase II activity was inhibited. Collectively, these data 

point to the conclusion that PICH-positive threads represent stretched and 

catenated centromere-related chromatin. The apparent persistence of catenated 

DNA into anaphase is unexpected, however a requirement for Topoisomerase II 

activity during anaphase has been reported previously (Shamu and Murray, 1992). 

 

 

Decatenation of PICH threads in anaphase 

Why would dividing cells maintain DNA catenation into anaphase, a leftover from 

DNA replication? The metaphase localization of PICH highlights that catenation 

between sister chromatids is only maintained at centromeric regions at this 

specific stage of mitosis. Presumably inter-centromeric threads are the last and 

only physical link where the cohesin ring complex can remain to maintain cohesion 

before the onset of anaphase. Therefore, the timely regulation of cohesion 

removal (at least at centromeres) could demand that Separase removes cohesins 

before the decatenation mediated by Topoisomerase II untangles centromeric 

DNA that has been freed from cohesins. It has been proposed that Cdc14 

dependent resolution of rDNA in budding yeast anaphase requires previous 

activation by Separase, which might explain the surprising delay of centromere 

decatenation into mid-anaphase (Sullivan et al., 2004). As chromatin that is bound 

by PICH obviously exists into anaphase it will be interesting to test whether PICH 

– analogous to the role of cohesins – might stay at chromatin to prevent premature 

separation by constituting an inhibitor of decatenation. Thus removal of PICH from 

chromatid arms might be a requirement for timely progression through mitosis. In 

this view, the removal/clearance of PICH from chromosome arms in early mitosis 

might indeed reflect the necessity to remove an inhibitor of decatenation that 

counteracts Topoisomerase II activity. Moreover, it is tempting to speculate that in 

anaphase PICH associates with stretched chromatin threads that are under 

tension to stabilize them so they would resist tension/rupture and thus allow site 

directed decatenation by Topoisomerase II.  
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A regulatory network around PICH and Topoisomerase II 

Overexpression of GFP-PICH shows a localization pattern on mitotic 

chromosomes very similar to that of Topoisomerase II. Both enzymes localize to 

chromatid axes and have strong kinetochore association in early mitosis. This 

intriguing codistribution might hint at a possible common role at kinetochores and 

centromeres and might further indicate that PICH and Topoisomerase II are 

specifically recruited to kinetochores, where they might be required to perform 

their checkpoint function(s). In PICH siRNA knockdown experiments, 

Topoisomerase II seemed selectively lost from centromeres but not from 

chromatid arms (Figure 67), suggesting that PICH might have a role to specifically 

target Topoisomerase II to the centromere (table 5). Moreover, PICH and 

Topoisomerase II seem to be co-regulated by several mitotic enzymes. Depletion 

of both Cdc14 and AuroraB mislocalizes PICH and Topoisomerase II from mitotic 

chromatin (Figure 72). In addition, Plk1 knockdown leads to redistribution of PICH 

over chromatid arms, resulting in colocalization with Topoisomerase II to 

chromatid axes. A possible interplay between PICH and Topoisomerase II in 

decatenation and their requirements for cohesin maintainance or cohesin removal 

remain to be unravelled. However, PICH might be ideally suited to provide a link 

between the needs of mitotic progression to resolve cohesion between sister 

chromatids through: a) decatenation and b) removal of cohesins. It is worth 

mentioning that mitotic arrests caused by either loss of cohesins induced by Sgo1 

depletion or by Topoisomerase II inhibition using the compound ICRF-193 are 

mediated by Mad2 (McGuinness et al., 2005; Skoufias et al., 2004). This suggests 

that the mechanisms regulating cohesins and decatenation merge in the same 

downstream effector proteins, raising the question of where these two pathways 

come together. 
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Figure 72. Model of PICH regulation. Cdc14 and AuroraB co-regulate the localization and 
function of PICH and Topoisomerase II. Plk1 is proposed as general regulator of 
cohesion, not only removing the cohesin ring complex but also PICH from chromatid 
arms. PICH also influences the kinetochore localization of Topoisomerase II. Both 
enzymes could have a common role in decatenation, which may be linked to the timely 
and physical regulation of cohesin removal. Furthermore, PICH regulates the onset of 
anaphase via Mad2 regulation. 
 

 

 

Human PICH is an essential component of the SAC 

As a consequence of PICH depletion, cells went through mitosis without awaiting 

chromosome congression. Moreover, they were unable to activate the spindle 

assembly checkpoint in response to either nocodazole or monastrol. Although 

rescue experiments proved unreliable because of extensive cell death induced by 

PICH overexpression (data not shown), we are confident that the inability of PICH 

depleted cells to mount a spindle checkpoint response reflects a direct role of 

PICH in checkpoint signaling. First, PICH was mostly cytoplasmic during 

interphase (Figure 36), arguing against an indirect mechanism due to a nuclear 

function related to transcription, replication, establishment of cohesion or 

chromatin remodelling. Second, the localization of many representative 

kinetochore/centromere proteins was not detectably affected by depletion of PICH, 

indicating that PICH is not required for generalized kinetochore assembly. Third, 
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PICH depleted cells were able to form metaphase plates when mitotic exit was 

blocked by MG132, demonstrating that microtubule attachment to kinetochores 

was not significantly impaired. Most importantly, PICH knock-down resulted in a 

specific loss of Mad2 from kinetochores, indicating that this Cdc20-inhibitor most 

likely represents a downstream mediator of PICH action. Interestingly, the 

kinetochore association of Mad1 was not detectably influenced, suggesting that 

PICH is required to regulate the Mad2-Mad1 interaction at kinetochores (either 

directly or indirectly). A crucial role in the spindle checkpoint has been proposed 

for the protein p31-Comet to turn off the checkpoint by competitive binding to 

Mad2 (Xia et al., 2004). Even though p31 has been found in vertebrates only, it 

presents an attractive way how to regulate spindle checkpoint status by 

interference with Mad2. There are further possibilities of Mad1-Mad2 interaction 

regulation, e.g. inhibitory phosphorylation of either Mad2 (Wassmann et al., 2003) 

or of Cdc20 by Bub1 (Tang et al., 2004). How PICH regulates Mad2 presence 

remains to be determined, but, with the examples given above it seems that there 

are several possible mechanisms and pathways to follow. 

 

 

 

PICH in other organisms 

It may appear surprising that no obvious orthologs of PICH could be identified in 

the genomes of yeast, Drosophila and Caenorhabditis. However, a PICH family 

member is clearly detectable in both Dictyostelium, Ciona and even Arabidopsis 

and rice (Figure 25), suggesting that functional homologs may be widespread 

amongst eukaryotes but escape detection by bioinformatics algorithms in lower 

order organisms. Considering that some 2 % of all Saccharomyces cerevisiae 

genes code for ‘helicase’-related proteins (Shiratori et al., 1999), there is no 

shortage for candidate PICH homologs in yeast and functional redundancy would 

readily explain why no PICH homologs were identified in the original screens for 

spindle checkpoint components (Hoyt et al., 1991; Li and Murray, 1991).  
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A working model for PICH function as tension sensor 

According to current models, centromere-associated cohesins hold sister 

chromatids together until the extinction of the SAC results in Separase activation 

and cohesin cleavage (Haering and Nasmyth, 2003). Furthermore, the activity of 

the SAC is believed to be regulated through microtubule attachment and/or 

tension developing at the kinetochore-microtubule interface (Pinsky and Biggins, 

2005; Sandall et al., 2006). Questions that remain largely unresolved concern the 

extent to which DNA catenation contributes to sister chromatid cohesion and the 

timing of Topoisomerase II action at centromeres (Shamu and Murray, 1992; 

Yanagida, 1995). The properties of the PICH protein described here lead us to 

envision a role for centromere-associated DNA in spindle checkpoint regulation. In 

analogy to the purported roles of other SNF2 family members, it seems plausible 

that PICH may induce changes in DNA topology or remodel centromeric 

chromatin. Additionally, PICH may respond to tension-dependent alterations in 

DNA topology.  

 

 

                                         
 
Figure 73. A model for PICH function at prometaphase 

 

During prometaphase (Figure 73) PICH accumulates at kinetochores and inner 

centromeres similar to cohesins, reflecting its regulation by Plk1. At this stage, 

PICH is required to uphold conditions permissive for the production of Mad2 
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protein at kinetochores, so that the spindle checkpoint is on and the APC/C 

inhibited.  

 

                                    
 

Figure 74. A model for PICH function at metaphase 

 

In response to bipolar attachment (Figure 74), the catenated centromeric DNA is 

proposed to stretch under tension, resulting in the formation of PICH-positive 

threads connecting sister kinetochores. A tension-induced change in PICH activity 

(and/or the recruitment of PICH away from kinetochores) would then bring the 

production of inhibitory Mad2 protein to a halt, so that the SAC becomes extinct.  

 

 

 

                                     
 
Figure 75. A model for PICH function at anaphase 

 

Finally, during anaphase (Figure 75), PICH function is no longer coupled to SAC 

regulation but PICH remains associated with centromeric DNA threads until 

decatenation is completed by Topoisomerase II. At this stage, PICH may regulate 
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the access of Topoisomerase II and/or protect stretched DNA from non-specific 

rupture. 

The key prediction is that catenated centromere-related DNA provides a structural 

continuity between sister kinetochores, thereby offering a platform for the 

monitoring of tension by a DNA-bound enzyme. The model further proposes PICH 

as a candidate tension sensor on chromatin, similar to the recent proposal that 

Sgo1 could function as a tension sensor at the kinetochore-microtubule interface 

(Indjeian et al., 2005). The two proposals are not mutually exclusive since spindle 

checkpoint signalling could conceivably originate from both catenated DNA and 

the kinetochore-microtubule interface. A mechanistic understanding of PICH 

function and concomitant testing of the above model will have to await studies on 

the enzymology of this predicted ATPase. However, the discovery of PICH 

provides new opportunities for elucidating the hitherto elusive connections 

between DNA catenation, sister chromatid cohesion and spindle checkpoint 

regulation. Considering that both SNF2-related proteins and spindle checkpoint 

components have been linked to human cancer (Kops et al., 2005b; Owen-

Hughes, 2006), it will also be interesting to explore a possible relationship between 

PICH and the etiology of human disease. 
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Chemicals and materials 

All chemicals were purchased from Merck, Sigma-Aldrich Chemical Company 

(Sigma, St Louis, MO), Fluka-Biochemika, Switzerland, or Roth, unless otherwise 

stated. Components of growth media for E. coli and yeast were from Difco 

Laboratories or Merck. The Minigel system was purchased from Bio-Rad and the 

Hoefer SemiPHor Blotting system from Pharmacia-Biotech. Tabletop centrifuges 

were from Eppendorf. 

 
Plasmids and antibodies 

The complete ORF of PICH (corresponding exactly to FLJ20105; Acc. No. 

BC111486) was amplified by nested PCR, using a HeLa Marathon library 

(Clontech laboratories Inc.), and cloned into pEGFP-C1 vector (Clontech 

laboratories Inc.). The following primer pairs were used (see also list below):  

primer pair 1:  

AAG CTC CAG CTC CAA GCT CC and  

TGC TTT TTG AGA TCT TTC TTG CC,  

primer pair 2:  

GACTCGAGCTATGGAGGCATCCCGAAGGTTTC and 

GCCCGGGTCAATTGTTATTAAGTTGC.  

 

These primers contain Xho1 and Xma1 sites, respectively, used for cloning. 

pEGFP-C1-PICH was the source for further PCR-mediated subcloning of PICH 

fragments. The T1063A and Walker A motif (GKT->AAA) mutants were produced 

by site directed mutagenesis, using Pfu turbo (Stratagene, La Jolla, CA) and the 

following primers (reverse primers correspond to the inverted sequence) 

T1063A: CAATTTGATGCTTCAGCTCCCAAAAATGACATC;   

AAA: GATGATATGGGATTAGCGGCGGCTGTTCAAATCATTGCT. 

All plasmid constructs were confirmed by sequencing. 
Coupled in vitro transcription-translations were carried out using the TNT T7 kit 

provided by Promega (Madison, WI, USA). Recombinant MBP-PICH protein was 

expressed in E.Coli (strain JM109-RIL) and purified under native conditions 

(QIAexpressionist system; Qiagen, Hilden, Germany). Antibodies against full 
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length MBP-PICH-His were raised in rabbits (Charles River laboratories (Romans, 

France) and rats (in-house animal facility, MPI of Biochemistry, Martinsried, 

Germany). All other antibodies were described previously or obtained 

commercially.  

The monoclonal anti-Plk1 (Yamaguchi et al., 2005) and 9E10 anti-myc 

antibody (hybridoma tissue culture supernatant, (Evan et al., 1985) as well as the 

rabbit anti-Borealin antibody (Klein et al., 2006) have been described previously. 

Monoclonal anti-Hec1 (ab3613) and anti-CenP-A (Abcam, Cambridge, UK), anti-α-

tubulin (DM1A) and anti-Flag M2 (Sigma, St Louis, MO); anti-Aurora B (AIM1),anti-

Bub3 and anti-CenP-F (BD Biosciences Pharmingen, NJ USA), anti-BubR1 and 

anti-Cyclin B1  (Biomol, Plymouth meeting, USA), anti-CENP-E and anti-Cdc20 

(Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-Mad2 (Bethyl, 

Montgomery, Texas) were obtained commercially.  

Hybridoma cells producing monoclonal anti-CENP-B antibodies were 

purchased from ATCC (Middlesex, UK), monoclonal antibodies against Bub1, 

INCENP and Plk1 were kindly provided by Andreas Uldschmidt (MPI for 

Biochemistry), and the rabbit anti-GST antibody was a kind gift from Dr U. 

Gruneberg. CREST human autoimmune serum was purchased from 

Immunovision (Springdale, AR) and mouse anti-Topoisomerase II antibodies was 

from Stressgen (Ann Arbor, MI). Primary antibodies were detected with cy2/cy3-

conjugated donkey antibodies (Dianova, Hamburg, Germany) and Alexa Fluor 

647-conjugated goat antibodies (Invitrogen, Carlsbad, CA), respectively. 
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name tag gene insert species vector comment
CB  1 APC7 wt human pCRTopoIIblunt cloning vector

CB  2 APC7 wt human pCRTopoIIblunt cloning vector

CB  3 APC7 wt human pCRTopoIIblunt cloning vector

CB  4 APC7 wt human pAct2 Y2H

CB  5 APC7 wt human pFBT9 Y2H

CB  6 flag APC7 wt human pcDNA3.1Aflag mammalian expression

CB  7 GST APC7 wt human pGEX6P-3 bacterial expression

CB  8 MYC APC7 wt human pcDNA3.1Amyc mammalian expression

CB  9 94 wt human pCRTopoIIblunt cloning vector

CB 10 94 wt human pCRTopoIIblunt cloning vector

CB 11 94 wt human pCRTopoIIblunt cloning vector

CB 12 94 wt human pCRTopoIIblunt cloning vector

CB 13 94 wt human pACT2 Y2H

CB 14 94 wt human pFBT9 Y2H

CB 15 myc 94 wt human pcDNA3.1Amyc mammalian expression

CB 16 myc Nek2B wt human pcDNA3.1Amyc mammalian expression

CB 17 Nek2B wt human pFBT9 Y2H

CB 18 Nek2B wt human pACT2 Y2H

CB 19 myc ZWINT wt human pcDNA3.1Amyc mammalian expression

CB 20 flag ZWINT wt human pcDNA3.1Aflag mammalian expression

CB 21 HIS ZWINT wt human pQE32 bacterial expression

CB 22 ZWINT wt human pAct2 Y2H

CB 23 ZWINT wt human pFBT9 Y2H

CB 24 His Nuf2 1-208 human pQE80 bacterial expression

CB 25 His Nuf2 1-86 human pQE80 bacterial expression

CB 26 His Nuf2 wt human pQE80 bacterial expression

CB 27 His Nuf2 83-464 human pQE80 bacterial expression

CB 28 GST Nuf2 wt human pGEX6P-3 bacterial expression

CB 29 MBP Nuf2 1-208 human pMalc2-x bacterial expression

CB 30 His Nuf2 202-464 human pQE80 bacterial expression

CB 31 GST Nuf2 83-464 human pGEX6P-3 bacterial expression

CB 32 GST Nuf2 202-464 human pGEX6P-3 bacterial expression

CB 33 His Hec1 wt human Com220 insect expression

CB 34 GST Nuf2 wt human pACGHLT-B insect expression

CB 35 myc Nuf2 S244A human pcDNA3.1Amyc mammalian expression

CB 36 myc Nuf2 S244D human pcDNA3.1Amyc mammalian expression

CB 37 myc Nuf2 S244E human pcDNA3.1Amyc mammalian expression

CB 38 Nuf2 wt human pAct2 Y2H

CB 39 Nuf2 wt human pFBT9 Y2H

CB 40 Nuf2 1-208 human pAct2 Y2H

CB 41 Nuf2 1-208 human pFBT9 Y2H

CB 42 Hec1 wt human pAct2 Y2H

CB 43 Hec1 wt human pFBT9 Y2H

CB 44 Hec1 1-250 human pAct2 Y2H

CB 45 Hec1 1-250 human pFBT9 Y2H

CB 46 Spc24 wt human pAct2 Y2H

CB 47 Spc24 wt human pFBT9 Y2H

CB 48 His Spc24 wt human pQE32 bacterial expression

CB 49 myc Spc24 wt human pcDNA3.1myc mammalian expression

CB 50 flag Spc24 wt human pcDNA3.1flag mammalian expression

CB 51 Spc25 wt human pAct2 Y2H

CB 52 Spc25 wt human pFBT9 Y2H

CB 53 myc Spc25 wt human pcDNA3.1myc mammalian expression

CB 54 flag Spc25 wt human pcDNA3.1flag mammalian expression  
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CB 55 myc PICH wt human pcDNA3.1myc mammalian expression

CB 56 FLAG PICH wt human pcDNA3.1flag mammalian expression

CB 57 PICH wt human pAct2 Y2H

CB 59 PICH wt human pFBT9 Y2H

CB 60 MBP-HIS PICH wt human pMaltFN-His bacterial expression

CB 61 GST PICH wt human pGEX4T-1 bacterial expression

CB 62 GFP PICH wt human pEGFP-C1 mammalian expression

CB 63 MBP-HIS PICH T1063A human pEGFP-C1 mammalian expression

CB 64 His PICH wt human pQE32 bacterial expression

CB 65 GFP PICH T1063A human pEGFP-C1 mammalian expression

CB 66 GFP PICH full length human peGFPC1
g

mutation

CB 67 GFP PICH full length human peGFPC1 AAA mutant

CB 68 GFP PICH full length human peGFPC1 PICH oligo1

CB 69 GFP PICH full length human peGFPC1 PICH oligo 1

CB 70 GFP PICH full length human peGFPC1 construct for PICH oligo 1

CB 71 GFP PICH full length human peGFPC1 construct for PICH oligo 1

CB 72 PICH shRNA PICH oligo1 human pTer+

CB73 GFP PICH 1-632 (SNF2 domain) human peGFP-C1 mammalian expression

CB74 GFP PICH 1-686 (SNF2 + PFD domain) human peGFP-C1 mammalian expression

CB75 GFP PICH
g

DEAH->DQAH human peGFP-C1 mammalian expression

CB76 GFP PICH
g

GKT->GAT human peGFP-C1 mammalian expression

CB77 myc Mps1 Mps1wt S389 human pcDNA3.1Amyc transfection vector/IVT

CB78 myc Mps1 Mps1kd S389 human pcDNA3.1Amyc transfection vector/IVT  
 
Table 7. List of all Plasmids cloned during this work with aliquots deposited in the lab`s     
-80°C stock (Department of Cell Biology, MPI of Biochemistry, Martinsried, Munich). Gene 
name 94 corresponds to C10Orf94. 
 

 

 

To generate monoclonal antibodies against hNuf2, recombinant His6-hNuf2 was 

expressed in JM109 bacteria. Recombinant proteins were purified on Ni2+-

columns as described. For the production of mAbs, Balb/c mice were immunized 

by repeated subcutaneous injections of 100-150µg of His6-hNuf2, using either 

Freund´s (Sigma-Aldrich) or Alu-Gel-8 (SERVA Electrophoresis GmbH) as an 

adjuvant. Spleen cells were fused with PAIB3Ag81 mouse myeloma cells using 

polyethylene glycol medium (PEG 4000;Merck) as described by Kohler and 

Milstein (Kohler and Milstein, 1975). Fused cells were initially selected for two 

weeks in HAT-medium (hypoxanthine/aminopterin/thymidine-medium) followed by 

selection in HT-medium (hypoxanthine/thymidine-medium) for the cloning 

procedure. Supernatant screening was performed by indirect ELISA using His6-

hNuf2 as an antigen, by dot blot assays and by Western blotting on total HeLa cell 
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extracts. mAb isotyping was performed by dot blot analysis using Mouse 

Monoclonal Antibody Isotyping Reagents (Sigma-Aldrich) as described by the 

supplier and revealed that 28-37-1/3 and 27-123-1 are all IgG1.  

 
 
 
name purpose comment sequence
M3246 site directed mut GKT-AAA Walker mut GATGATATGGGATTAGCGGCGGCTGTTCAAATCATTGCT
M3247 site directed mut GKT-AAA Walker mut AGCAATGATTTGAACAGCCGCCGCTAATCCCATATCATC
M3254 site directed mut GKT-GRT Walker mut GATGATATGGGATTAGGGAGGACTGTTCAAATCATTGCT
M3255 site directed mut GKT-GRT Walker mut AGCAATGATTTGAACAGTCCTCCCTAATCCCATATCATC
M3298 site directed mut T1063A CAATTTGATGCTTCAGCTCCCAAAAATGACATC
M3299 site directed mut T1063A GATGTCATTTTTGGGAGCTGAAGCATCAAATTG
M3387 sequencing 5` 600 TATGTAGTGATAATAACACC
M3388 sequencing 5` 350 TCTTCCATCCCTATACAGGC
M2765 amplification FLJ90238 up2 TTCCTTTGCTGAATCCGATTGAGG
M2766 amplification FLJ90238 up1 TTGGCCCCTAAAGCTTGAAAGTTG
M3344 site directed mut rescue PICH oligo 1 GAGGGTGAGAAACAAGACTTATCCAGTATAAAGGTG
M3345 site directed mut rescue PICH oligo 1 CACCTTTATACTGGATAAGTCTTGTTTCTCACCCTC
M2854 sequencing 397down ATTGCTTTCCTTTCCGGTATG
M2855 sequencing 801down ATGGTCCCTATTTGATTTTGC
M2856 sequencing 1195down TCACCTTTGGCTGAGCTAG
M2857 sequencing 1613down TAGGTGGTGTCGGTTTAAC
M2858 sequencing 2103down TCAGAAAGCTCAATTCCTCG
M2859 sequencing 2564down AGGCACTGCAAGAGGATCC
M2860 sequencing 2978down TGCATAGCAAAACATGTCTC
M2861 sequencing 3424down ACAGAAGAGGATCCTTCCG
M2862 sequencing 3823down TTCTTTGGGAACATGAAGC
M2952 cloning eGFP Xma1 up GCCCGGGTCAATTGTTATTAAGTTGC
M2955 cloning Xma1 Y2Hd100 CTCCCGGGCATGAATCCAGATGTTGATGCC
M2961 cloning Kpn1down100 CGGGTACCTATGAATCCAGATGTTGATGCC
M2828 cloning Xma1down full length Y2H CTCCCGGGCATGGAGGCATCCCGAAGGTTTC
M2829 cloning Kpn1downmyc CGGGTACCTATGGAGGCATCCCGAAGGTTTC
M2830 cloning Kpn1downpQE CGGGTACCCAATGGAGGCATCCCGAAGGTTTC
M3092 cloning Kpn1dmyc270 CGGGTACCTATGCGAGAACTGCACAACCAACTC
M3093 cloning Xho1mycup1300 GCTCGAGTCATCCAGATTCTTCCATCAATGTG
M3094 cloning Xho1mycup2000 GCTCGAGTCAAGCAGCATGCAAAGACTGAAGC
M3095 cloning Xho1mycup2600 GCTCGAGTCACCAAGGATTGCAATGACG
M3096 cloning Xho1mycup3000 GCTCGAGTCAATCTTCATCTTCGCCATCTG
M3097 cloning Xho1GFPdown270 GACTCGAGCTATGCGAGAACTGCACAACCAACTC
M3098 cloning Xho1GFPdown3000 GACTCGAGCTATGTGTGGCTCTGCACCTAATTCC
M3099 cloning Xho1GFPdown2000 GACTCGAGCTATGGCCTACCTGCAGTCTTTGG
M3101 cloning Xho1GFPdown1000 GACTCGAGCTATGAATCCAGATGTTGATGCC
M3102 cloning Xma1GFPup1300 GCCCGGGTCATCCAGATTCTTCCATCAATGTG
M3103 cloning XmaGFPup2000 GCCCGGGTCAAGCAGCATGCAAAGACTGAAGC
M3104 cloning XmaGFPup2600 GCCCGGGTCACCAAGGATTGCAATGACG
M3105 cloning XmaGFPup3000 GCCCGGGTCAATCTTCATCTTCGCCATCTG
M2922 Nested PCR down ATGGAGGCATCCCGAAGGTTTCC
M2923 Nested PCR down-60 AAGCTCCAGCTCCAAGCTCC
M2951 cloning eGFPC1Xho1down GACTCGAGCTATGGAGGCATCCCGAAGGTTTC
M2953 cloning XmaY2Hd3000 CTCCCGGGCATGTGTGGCTCTGCACCTAATTCC
M2954 cloning XmaY2Hd2000 CTCCCGGGCATGGCCTACCTGCAGTCTTTGG
M2956 cloning Kpn1pQE3000 CGGGTACCCAATGTGTGGCTCTGCACCTAATTCC
M2957 cloning Kpn1pQE2000 CGGGGTACCCAATGGCCTACCTGCAGTCTTTGG
M2958 cloning Kpn1pQE1000 CGGGTACCCAATGAATCCAGATGTTGATGCC
M2959 cloning Kpn1downmyc3000 CGGGTACCTATGTGTGGCTCTGCACCTAATTCC
M2960 cloning Kpn1downmyc2000 CGGGTACCTATGGCCTACCTGCAGTCTTTGG
M3058 cloning pMalHisTEVXho1up GCCTCGAGATTGTTATTAAGTTGCTT
M3059 cloning pMalHisTEVNot1down GGCGGCCGCAATGGAGGCATCCCGAAGGTTTCC
M2821 Nested PCR FLJ31932NestedDown ACAACCAACTCTTTGAGCACCAG
M2822 Nested PCR FLJ31932Nestedup TGCTTTTTGAGATCTTTCTTGCC
M2823 cloning FLJ31932Xma1down CTCCCGGGCATGGGATTAGGGAAGACTGTTC
M2824 cloning FLJ31932Xho1up GCCTCGAGTCAATTGTTATTAAGTTGC
M2825 cloning FLJ31932Xho1up GCCTCGAGCTATTCACCAGACAAAGGCTC
M2826 cloning FLJ31932Kpn1downMYC CGGGTACCTATGGGATTAGGGAAGACTGTTC
M2827 cloning FLJ31932Kpn1downPQE CGGGTACCCAATGGGATTAGGGAAGACTGTTC
M2849 cloning FLJaa228BamH1 CGGGATCCCAAGAAGGATTGTTTCAGATGGCG
M3657 cloning GFPXma1upfromaa632 no PFD ccccccgggtcaatcctcgattgtaaagagctc
M3658 cloning GFPXma1upfromaa686 incl PFD ccccccgggtcactcttctttaacagacagatc
M3659 cloning GFPXma1upfrom1060 ccccccgggtcaatcaaattgtttcacagatga
M3666 siRNA vector pTER PICH1siRNAforw gatcccCAAGATCTCTCCAGTATAAttcaagagaTTATACTGGAGAGATCTTGtttttggaaa
M3667 siRNA vector pTER PICH1siRNArev agcttttccaaaaaCAAGATCTCTCCAGTATAAtctcttgaaTTATACTGGAGAGATCTTGgg  
 
Table 8. List of primers used for the cloning of PICH constructs. 
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Immunofluorescence microscopy and live cell imaging 
Immunofluorescence microscopy was performed using a Zeiss Axioplan II 

microscope (Carl Zeiss, Jena, Germany) equipped with an Apochromat 63x oil 

immersion objective, and images were acquired using a Micromax charge coupled 

device (CCD) camera (model CCD-1300-Y; Princeton Instruments, Trenton, NJ) 

and MetaView software (Visitron Systems, Puchheim, Germany) (data shown in 

Figures 2C, 6A and S2D). Alternatively (all other Figures), a Deltavision 

microscope on a Nikon Eclipse TE200 base (Applied Precision, Issaquah, WA) 

equipped with an Apo 60_/1.4 oil immersion objective and a CoolSnap HQ camera 

(Photometrics) was used for collecting 0.15-µm distanced optical sections in the z-

axis. Images at single focal planes were processed with a deconvolution algorithm 

(Nikon_60x_140_12601.otf or Olympus_60x_140_10602.otf, depending on the 

objective used). Settings were conservative, with noise filtering set to low or 

medium and 3 or 4 deconvolution cycles. The number of z-stacks collected was 

variable (between 8 and 18), depending on the height of the individual cell. Images 

were projected into one picture using the Softworx software (Applied Precision). 

Exposure times and settings for image processing (deconvolution) were constant 

for all samples to be compared within any given experiment. Images were opened 

in Adobe Photoshop CS and then sized and placed in figures using Adobe 

Illustrator CS (Adobe Systems, Mountain View, CA). 
  For the quantification shown in Figure 45, asynchronously growing U2OS 

cells were fixed and stained for PICH and CREST. Cells at representative states of 

mitosis from early metaphase to telophase (shown by DAPI staining below) were 

analyzed and the number and length of PICH threads was quantified using 

Softworx imaging software.  

 To digest nucleic acids, cells grown on coverslips were incubated for 12 min 

with 5 µg/ml of DNAse or RNAse (Sigma, St Louis, MO) in 0.2 % Triton-X-100, 20 

mM Pipes pH 6.8, 1 mM MgCl2, before they were fixed by the addition of 

formaldehyde and EGTA (to 4 % and 10 mM final concentration, respectively). 
For live-cell imaging, a HeLa S3 cell line stably expressing histone H2B-

GFP was used. Following siRNA treatment, cells were placed into CO2-

independent medium and onto a heated stage (37°C). Live-cell imaging was 

performed using a Zeiss Axiovert-2 microscope equipped with a Plan Neofluar 60x 

objective. Metaview software (Visitron Systems GmbH, Puchheim, Germany) was 
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used to collect and process data. Images were captured with 50 millisecond 

exposure times with 2 minutes intervals for 16 hours. 

 

 

Transient transfections and siRNA 
Plasmid transfections were performed using FuGENE6 reagent (Roche 

Diagnostics, Indianapolis, IN, USA) according to the manufacturer’s instructions. 

SiRNA duplexes were transfected using Oligofectamine (Invitrogen, Carlsbad, CA, 

USA). PICH was depleted using duplexes (Qiagen, Hilden, Germany) targeting 2 

different sequences, with identical results.  In siRNA experiments,  Plk1, Mad2 and 

Sgo1 were depleted using previously published duplexes (Hanisch et al., 2006; 

McGuinness et al., 2005; Stucke et al., 2004) and the GL2 duplex (Elbashir et al., 

2001) was used for control. Target sequences for Eg5 and PICH were: 

Eg5 siRNA:  5’-CTAGATGGCTTTCTCAGTA-3’  

PICH siRNA oligo 1: 5’-CAAGATCTCTCCAGTATAA-3’  

PICH siRNA oligo 2: 5’-GGACCATATTGATCAAGTA-3’  

Depletion of PICH with both siRNA nucleotides had identical results. 

 

 

Biochemical assays  

In vitro phosphorylation of PICH by Cdk1 was carried out in a total volume of 20 µl 

BRB80 kinase buffer (Stucke et al., 2004) for 30 min at 30°C, using 200ng PICH, 

100ng Cdk1/Cyclin B (Upstate, Charlottesville, VA, USA), 1mM ATP, 0.1 µl γ-[32P]-

ATP, 3000 Ci/mmol, and 10 mCi/ml. After stopping the kinase reactions by 

addition of gel sample buffer, samples were resolved by 7.5% SDS-PAGE and 

subjected to either autoradiography or transferred to HybondC-extra membranes 

(Amersham Biosciences, England) for Far Western blotting. Kinase reactions used 

in Far Western analyses were performed under identical conditions except that γ-

[32P]-ATP was omitted. Far Western assays were performed using GST-tagged 

PBD (1µg/ml) for 6h at 4°C, followed by detection of bound protein with affinity-

purified rabbit anti-GST antibodies (Neef et al., 2003).  

Yeast two-hybrid screens were performed according to the yeast protocol 

handbook (Clontech). For the directed interaction screening, yeast colonies were 

selected by pACT2 and pFBT9 selection markers (Leu-/Trp-) for plasmid uptake. 
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The GAL4 binding domain (BD) – activation domain (AD) interaction and 

subsequent expression of markers (His-/Ade-) were monitored by streaking yeasts 

out on QDO selective plates (Quadruple Drop Out: Leu-/Trp-/His-/Ade-). Every 

single construct was additionally tested in the same assay for self activation by 

cotransfection with an empty vector. Self activating plasmids were Hec11-250-

pFBT9 and Spc24-pFBT9. 

For chromosome spreads mitotic cells were collected by mitotic shake off, 

centrifuged for 4 min at 1000 rpm and resuspended in diluted DMEM culture 

medium (40% DMEM without antibiotics and 60 % deionised H2O). Cells were 

swelled at RT for 5 min before spinning and resuspending them in fixation solution 

(3:1 methanol:acetic acid). The fixed cells were incubated at 4°C for at least 20 

min, washed three more times with the fixation solution and, finally, 10 µl of each 

cell solution were dropped on a -20°C HCl-treated cover slip, which had been 

moistened before by breathing on to it. After drying of the cover slip on a wet 

Kleenex tissue over a 60°C heating block, spreads were stained for 5 min with 0,4 

µg/ml DAPI and mounted. 

 

 

Co-immunoprecipitations  

For co-immunoprecipitations, mitotic HeLa cells were harvested by mitotic shake 

off after 16h nocodazole treatment. Lysates were prepared using RIPA buffer 

(10mM Tris-HCL pH7.5, 150mM NaCl, 0.5% Triton, 1% sodium deoxycholate, 

complete mini protease inhibitor tablets (1/10ml) (Roche Diagnostics, Indianapolis, 

IN, USA), DNAse 20µg/ml, 100nM Okadaic Acid) and 250µl aliquots were 

incubated for 2h at 4°C with either one of two monoclonal anti-Plk1 antibodies or 

9E10 anti-myc antibodies for control. In each case, 10µg antibody was coupled to 

20µl Sepharose-G beads (Pierce, Rockford, IL, USA). After protein capture, beads 

were washed 4x with RIPA buffer and 2x with PBS, resuspended in gel sample 

loading buffer and resolved by 7.5% PAGE. Gels were either processed for 

Western blotting or analysis by mass spectrometry.  

 
 

 

 

96 



_________________________________________________________________________ 
 
Material and Methods 

Miscellaneous reagents 

The HeLa S3 cell line stably expressing GFP-histone H2B was constructed and 

kindly provided by Dr. Herman Silljé (Sillje et al., 2006). Calf intestine 

phosphatases (CIP) was purchased from New England Biolabs (Ipswich, MA), the 

proteasome inhibitor MG132 was from Calbiochem (San Diego, CA, USA), Taxol, 

Nocodazole and Aphidicoline were from Sigma (St Louis, MO, USA). The 

Topoisomerase II inhibitor ICRF-193 was purchased from Biomol (Plymouth 

Meeting, PA, USA). 
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Abbreviations 
 
All units are abbreviated according to the International Unit System. 

 

AA: amino acid 

ATP: adenosine 5´-triphosphate 

BSA: bovine serum albumin 

CDK: Cyclin-dependent kinase 

DAPI: 4´,6-diamidino-2-phenylindole 

DTT: dithiothreitol 

ECL: enhanced chemiluminescence 

EDTA: ethylenedinitrilotetraacetic acid 

ELISA: enzyme linked immunosorbent assay 

FCS: fetal calf serum 

GFP: green fluorescent protein 

GST: glutathione S-transferase 

HCl: hydrochloric acid 

Ig: Immunglobulin 

IP: immunoprecipitation 

mAb: monoclonal antibody 

Mad: mitotic arrest deficient 

MBP: maltose binding protein 

MS: mass spectrometry 

ORF: open reading frame 

PBD: Polo-box domain 

PBS: phosphate-buffered saline 

PCR: polymerase chain reaction 

PFD: PICH family domain 

PICH: Plk1 interacting checkpoint helicase 

PIPES: 1,4-Piperazinediethanesulfonic acid 

PMSF: phenylmethylsulfonyl fluoride 

PTEMF: Pipes, Triton, EGTA, MgCl2, Formaldehyde 

RACE: rapid amplification of cDNA ends 
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RNA: ribonucleic acid 

RT: room temperature 

SDS-PAGE: sodium dodecylsulfate polyacrylamid gelelectrophoresis 

SF: helicase superfamily 

siRNA: small interference ribonucleic acid 

SNF2: sucrose non-fermenting  

T1063: threonine at position 1063 

Topo: Topoisomerase  

TPR: tetratricopeptide repeats 

WT: wild-type 
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