
 

Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

Proteotoxicity of polyglutamine expansion 

proteins: Cellular mechanisms and their 

modulation by molecular chaperones 
 

 

 

 

Christian Behrends 

 

aus 

 

Frankfurt am Main 

 

 

 

2006 

 

 



Erklärung 

 

Diese Dissertation wurde im Sinne von §13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. 

Januar 1998 von Prof. Dr. Franz-Ulrich Hartl betreut. 

 

 

 

 

 

Ehrenwörtliche Versicherung 

 

Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. 

 

 

München, den 4. Dezember 2006 

 

 

Christian Behrends    

 

 

 

 

 

Dissertation eingereicht am:  04.12.2006 

 

1. Gutachter: Prof. Dr. Franz-Ulrich Hartl 

2. Gutachter: Priv.-Doz. Dr. Konstanze F. Winklhofer 

 

Mündliche Prüfung am: 07.03.2007 



Danksagung 

 

Die vorliegende Arbeit wurde in der Zeit von Oktober 2002 bis November 2006 am Max-

Planck-Institut für Biochemie, Martinsried, in der Abteilung Zelluläre Biochemie angefertigt. 

An dieser Stelle möchte ich meinen Dank all jenen aussprechen, die zum Gelingen dieser 

Arbeit beigetragen haben. 

Mein besonderer Dank gilt dabei Prof. Dr. F. Ulrich Hartl für die interessante und reizvolle 

Themenstellung, die großzügige Förderung und die hervorragenden Möglichkeiten, in seiner 

Abteilung wissenschaftliches Denken und Arbeiten zu erlernen. Für hilfreiche Anregungen 

und wertvolle Ratschläge danke ich auch Dr. Manajit Hayer-Hartl. 

Dr. Konstanze F. Winklhofer danke ich ganz herzlich für konstruktive Diskussionen und die 

Erstellung des Zweitgutachtens. 

Ein besonderer Dank gilt Dr. Peter Breuer und Dr. Gregor Schaffar für die langjährige, 

freundschaftliche und produktive Zusammenarbeit. Ihr Interesse, ihre Ideen und ihre 

Diskussionsbereitschaft haben wesentlich zum Erfolg dieser Arbeit beigetragen. Dr. Katja 

Siegers und Dr. Sarah Broadley danke ich für ihre Hilfsbereitschaft und Unterstützung sowie 

viele wertvolle Anregungen. Dr. Raina Boteva und Carola Langer danke ich für die 

hervorragende Zusammenarbeit. Dr. Jose Baral, Dr. Martin Vabulas, Dr. Jason Young und Dr. 

Zoya Ignatova danke ich für viele inspirierende Diskussionen. 

Weiterer Dank gilt allen momentanen und ehemaligen Mitarbeitern der Abteilung für die 

freundschaftliche und hilfsbereite Atmosphäre, ohne die ein erfolgreiches Arbeiten nicht 

möglich gewesen wäre. Insbesondere danke ich in diesem Zusammenhang Alice, Angela, 

Christian, Chun, Iris, Jose, Juliane, Geli, Michael, Niclas, Sathish, Sophia, Shruti, Chi, Uli 

und Ulrike. Tobi danke ich für die vielen erfrischenden Stunden im und außerhalb des Labors. 

Zum Abschluss gilt mein besonderer Dank aber meiner Familie, die meine Arbeit 

wohlwollend begleitet und mich in jeglicher Form unterstützt haben. Meinen Eltern, meiner 

Schwester und meiner Großmutter Charlotte danke ich von ganzem Herzen für die vielen 

aufmunternden Worte, das stete Daumendrücken und ihre gedankliche Anwesenheit. Susanne 

möchte ich für ihre Freude, Tränen und Liebe danken. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Au football, tout est compliqué par la présence de l'équipe adverse” 

Jean-Paul Sartre 

 

 

 

 

 

 

 

 

 



Contents 

 

I

1 Summary ......................................................................................................1 
2 Introduction .................................................................................................2 
2.1 Protein folding..............................................................................................................2 

2.1.1 Protein folding problem ...................................................................................................... 3 
2.1.2 Protein folding mechanisms and energy landscapes........................................................... 3 
2.1.3 Folding of small and large proteins..................................................................................... 5 

2.2 Protein folding in vivo..................................................................................................6 
2.2.1 Protein aggregation ............................................................................................................. 6 
2.2.2 Macromolecular crowding .................................................................................................. 6 
2.2.3 Nascent polypeptide chains................................................................................................. 7 
2.2.4 Molecular chaperones ......................................................................................................... 9 

2.3 A chaperone network in the eukaryotic cytosol........................................................10 
2.3.1 Ribosome associated factors ............................................................................................... 10 
2.3.2 The Hsp70 chaperones........................................................................................................ 11 
2.3.3 The chaperonin TRiC.......................................................................................................... 13 
2.3.4 GimC/Prefoldin................................................................................................................... 16 
2.3.5 Hsp90 .................................................................................................................................. 17 
2.3.6 Chaperone-mediated protein degradation ........................................................................... 17 

2.4 Aberrant protein folding and conformational diseases............................................19 
2.4.1 Protein aggregation and amyloid-like deposits ................................................................... 20 

2.4.1.1 Structure and formation of amyloid fibrils ...............................................................................20 
2.4.1.2 Protein aggregation and toxicity...............................................................................................22 

2.4.2 Huntington’s disease ........................................................................................................... 24 
2.4.2.1 Huntingtin ................................................................................................................................24 
2.4.2.2 PolyQ aggregation....................................................................................................................25 
2.4.2.3 The nature of toxic species in polyQ aggregation ....................................................................27 
2.4.2.4 Mechanisms of polyQ aggregation mediated toxicity ..............................................................28 
2.4.2.5 Transcriptional dysregulation...................................................................................................29 
2.4.2.6 Molecular chaperones in polyQ aggregation and toxicity ........................................................31 

2.5 Aim of thesis .................................................................................................................34 

3 Material and Methods.................................................................................35 
3.1 Material ........................................................................................................................35 

3.1.1 Instruments.......................................................................................................................... 35 
3.1.2 Chemicals............................................................................................................................ 35 
3.1.3 Buffers and Media............................................................................................................... 37 
3.1.4 Antisera ............................................................................................................................... 38 
3.1.5 Bacterial and yeast strains, mammalian cell lines............................................................... 39 
3.1.6 Plasmids and oligonucleotides ............................................................................................ 40 

3.2 Methods ........................................................................................................................41 
3.2.1 Molecular biological methods............................................................................................. 41 



Contents 

 

II

3.2.1.1 Plasmid DNA purification........................................................................................................41 
3.2.1.2 Determination of DNA concentration ......................................................................................41 
3.2.1.3 Plasmid DNA sequencing ........................................................................................................41 
3.2.1.4 DNA restriction digestion ........................................................................................................41 
3.2.1.5 Dephosphorylation of DNA fragments ....................................................................................42 
3.2.1.6 5’-DNA end overhand fill in ....................................................................................................42 
3.2.1.7 DNA purification......................................................................................................................42 
3.2.1.8 DNA agarose gel electrophoresis .............................................................................................42 
3.2.1.9 DNA extraction from agarose gels ...........................................................................................42 
3.2.1.10 Polymerase chain reaction (PCR).............................................................................................43 
3.2.1.11 Oligonucleotides annealing ......................................................................................................43 
3.2.1.12 Site-directed mutagenesis.........................................................................................................43 
3.2.1.13 Ligation of DNA fragments .....................................................................................................44 
3.2.1.14 Preparation and transformation of competent E. coli cells.......................................................44 

3.2.2 Yeast methods..................................................................................................................... 45 
3.2.2.1 Culture and storage...................................................................................................................45 
3.2.2.2 Determination of cell density ...................................................................................................45 
3.2.2.3 Preparation and transformation of competent yeast cells .........................................................45 
3.2.2.4 Purification of DNA from yeast cells .......................................................................................46 
3.2.2.5 Protein expression in yeast cells...............................................................................................46 
3.2.2.6 Growth assays ..........................................................................................................................47 
3.2.2.7 Luciferase assay .......................................................................................................................47 
3.2.2.8 β-Galactosidase assay...............................................................................................................47 
3.2.2.9 Preparation of yeast cell lysates ...............................................................................................48 
3.2.2.10 Immunofluorescence ................................................................................................................48 

3.2.3 Mammalian cell culture methods........................................................................................ 49 
3.2.3.1 Cultivation of adherent cells.....................................................................................................49 
3.2.3.2 Transient transfection...............................................................................................................49 
3.2.3.3 Preparation of cell lysates.........................................................................................................50 
3.2.3.4 Immunofluorescence ................................................................................................................50 
3.2.3.5 Luciferase assay .......................................................................................................................50 

3.2.4 Biochemical methods.......................................................................................................... 51 
3.2.4.1 Determination of protein concentration....................................................................................51 
3.2.4.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) ...........................................................51 
3.2.4.3 Western Blotting ......................................................................................................................51 
3.2.4.4 Dot blot assay...........................................................................................................................52 
3.2.4.5 In vitro HttExon1-Aggregation ................................................................................................52 
3.2.4.6 Filter retardation assay .............................................................................................................52 
3.2.4.7 Size exclusion chromatography................................................................................................53 
3.2.4.8 Immunoprecipitation ................................................................................................................53 
3.2.4.9 Ni-NTA pull down of His-tagged proteins...............................................................................53 
3.2.4.10 Trichloracetic acid (TCA)-precipitation...................................................................................53 

4 Results...........................................................................................................54 
4.1 PolyQ toxicity mediated by transcription factor deactivation ................................54 

4.1.1 PolyQ aggregation and sequestration of the transcription factor TBP................................ 55 
4.1.1.1 Aggregation of mutant Htt and TBP ........................................................................................56 



Contents 

 

III

4.1.1.2 Requirements for Htt aggregation and TBP recruitment ..........................................................57 
4.1.2 Impairment of transcription factors by soluble, misfolded polyQ proteins ........................ 61 

4.1.2.1 Growth impairment upon expression of nuclear targeted polyQ-expanded Htt .......................63 
4.1.2.2 Correlation between soluble, oligomeric polyQ-expanded Htt and cellular toxicity................66 
4.1.2.3 Functional interference of TBP upon expression of nuclear targeted mutant Htt ....................68 
4.1.2.4 Transcriptional dysregulation due to aberrant interactions of mutant Htt and TBP .................70 
4.1.2.5 General impairment of transcription factors by soluble, oligomeric mutant Htt ......................72 
4.1.2.6 Influence of flanking sequences on TBP mediated polyQ protein toxicity ..............................74 

4.2 Chaperonin TRiC as modulator of polyQ protein aggregation and toxicity .........80 
4.2.1 TRiC deficiency modulates the properties of polyQ-expanded Htt.................................... 81 

4.2.1.1 Pronounced polyQ aggregation due to TRiC impairment ........................................................81 
4.2.1.2 Ambivalent effect of TRiC impairment on polyQ toxicity.......................................................83 

4.2.2 Influence of TRiC overexpression on the properties of mutant Htt.................................... 88 
4.2.2.1 Suppression of detergent-resistant aggregate formation...........................................................88 
4.2.2.2 Generation and accumulation of detergent-soluble polyQ oligomers ......................................91 
4.2.2.3 Cooperative and effective modulation of toxic, oligomeric aggregation intermediates ...........93 
4.2.2.4 Structural differences between toxic and benign Htt oligomers...............................................97 

5 Discussion.....................................................................................................100 
5.1 PolyQ-induced transcriptional dysregulation...........................................................102 

5.1.1 Contribution of aggregated polyQ-expanded Htt................................................................ 103 
5.1.1.1 Sequestration and co-aggregation of TBP................................................................................104 
5.1.1.2 Prerequisites for Htt aggregation and TBP co-aggregation......................................................105 

5.1.2 Contribution of soluble, misfolded polyQ-expanded Htt to toxicity .................................. 106 
5.1.2.1 Influence of cellular localization on polyQ aggregation and toxicity.......................................107 
5.1.2.2 Significance of soluble, misfolded polyQ intermediates ..........................................................108 
5.1.2.3 Mechanism of transcription factor deactivation .......................................................................109 
5.1.2.4 Influence of sequence context on polyQ aggregation and toxicity...........................................111 

5.2 Molecular chaperones and polyQ expansion proteins .............................................113 
5.2.1 Modulation of polyQ aggregation and toxicity by the chaperonin TRiC ........................... 114 
5.2.2 TRiC deficiency .................................................................................................................. 114 
5.2.3 TRiC overexpression .......................................................................................................... 116 

5.2.3.1 Modulation of aggregated polyQ-expanded Htt .......................................................................116 
5.2.3.2 Modulation of soluble, misfolded and toxic polyQ-expanded Htt ...........................................118 

5.2.4 Cooperation of TRiC with Hsp70 in altering aggregation and toxicity .............................. 119 
5.3 Existence of distinct polyQ oligomeric states ............................................................122 
5.4 Implications in neurodegenerative diseases ..............................................................124 
5.5 Perspective....................................................................................................................125 

6 References ....................................................................................................126 
7 Appendix ......................................................................................................145 
7.1 Abbreviations ...............................................................................................................145 
7.2 Publications and Presentations...................................................................................146 
7.3 Curriculum vitae..........................................................................................................147 



Summary 

 

1

1 Summary 
Proteins are central to all biological processes. To become functionally active, newly 

synthesized protein chains must fold into unique three-dimensional conformations. A group of 

proteins, known as molecular chaperones, are essential for protein folding to occur with high 

efficiency in cells. Their main role is to prevent off-pathway reactions during folding that lead 

to misfolding and aggregation. A number of human diseases are known to result from aberrant 

folding reactions. The formation of insoluble protein aggregates in neurons is a hallmark of 

neurodegenerative diseases including Huntington’s disease (HD). These disorders are though 

to result from the acquisition of dominant, toxic functions of misfolded proteins. 

HD is caused by a CAG trinucleotide expansion that results in the expansion of a 

polyglutamine (polyQ) tract in the protein Huntingtin (Htt). The disorder is characterized by a 

progressive loss of specific neurons and the formation of inclusions containing aggregated 

Htt. Aggregate formation is causally linked to the progressive HD neuropathology, though it 

is not clear whether large insoluble, fibrillar structures or smaller assemblies of Htt are the 

toxic agents. Toxicity could arise from the recruitment of other polyQ-containing proteins, i.e. 

transcription factors, into the inclusions resulting in a loss of their normal cellular functions. 

Here, soluble Htt oligomers have been found to accumulate in the nucleus and to 

inhibit the function of the transcription factors TBP and CBP in cells. Aberrant interaction of 

toxic Htt with the benign polyQ repeat of TBP structurally destabilized the transcription 

factor, independent of the formation of insoluble coaggregates and caused transcriptional 

dysregulation. Chaperones of the Hsp70 family protect against this deactivation by 

modulating the conformation of Htt.  

This protective effect of Hsp70 was found to be based on a cooperation between 

Hsp70 and the chaperonin TRiC. Both chaperone systems cooperate in eliminating toxic 

polyQ oligomers, which may resemble the potentially pathogenic, prefibrillar states of other 

amyloidogenic disease proteins, and in stabilizing mutant Htt in a soluble, oligomeric state 

that is not associated with toxicity. TRiC and Hsp70 appear to be part of an effective 

chaperone network preventing the formation of harmful, amyloidogenic proteins species. 

They act synergistically on Htt, reminiscent of their sequential action in assisting the folding 

of newly-synthesized proteins. 
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2 Introduction 
Proteins are the most abundant macromolecules molecules in cells and are involved in 

virtually every biological process. Humans contain perhaps 100,000 different types of 

proteins, and their functions range from catalysis of chemical reaction to maintenance of the 

electrochemical potential across cell membranes. Prerequisite for their specific function is the 

unique three-dimensional structure of a given protein. Acquisition and maintenance of protein 

structure is safeguarded by a class of specially evolved proteins termed molecular chaperones. 

Despite the existence of this highly sophisticated quality control system, a growing number of 

human diseases are associated with pathologically misfolded and aggregated proteins. 

2.1 Protein folding 

The structure of proteins is generally described by four successive levels of 

architecture. The basic structural units of proteins are amino acids, which consist of an amino 

group, a carboxyl group, a hydrogen atom and a variable side chain bound to a carbon atom 

(α-carbon). Different side chains distinguish the twenty amino acids commonly found in 

proteins. Polypeptide chains are formed by covalent peptide bonds between the α-carboxyl 

group of one amino acid and the α-amino group of another amino acid; the consecutive 

sequence of amino acids is referred to as the primary structure of a protein. The peptide bond 

is a rigid planar unit due to its partial double bond character, and therefore, rotational freedom 

exists only for the bonds on either side of the peptide group. The conformation of amino acids 

in the main chain can be described by the torsions angles ψ and ϕ, referring to rotations about 

the α-carbon and the carboxyl carbon and rotations about the α-carbon and the amino group, 

respectively. The range of different conformations is limited by several steric constraints on 

the torsion angles opposed by the rigid spherical nature of atoms. The relative stabilities of 

various conformations can be obtained by calculating the potential energy of nonbonded 

interactions (Venkatachalam and Ramachandran, 1969) and the most prominent and stable 

examples of allowed conformations are α helix and β sheet. The conformation of a 

polypeptide chain is referred to as secondary structure. It describes local three-dimensional 

structures, which are usually restricted to only parts of a polypeptide chain. The arrangement 

of secondary structures within the complete polypeptide chain to an overall fold and shape of 
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a protein is assigned to as tertiary structure. This physiologically folded i.e. native state is 

defined as the energetically most stable structure. In tertiary structure, specific contacts can be 

formed between sections of a polypeptide chain that are widely separated in the primary 

structure. Additionally, the spatial arrangement of several polypeptide chains in a 

multisubunit protein complex is referred to as quaternary structure. 

2.1.1 Protein folding problem 

The information required to reach the native state of a protein is solely encoded in its 

primary structure. In vitro, heat-denatured i.e. unfolded Ribonuclease A was shown to refold 

spontaneously into its native and enzymatically active structure at a  biologically relevant rate 

(Anfinsen, 1973). How a polypeptide sequence codes for its fold represents one of the most 

perplexing problems in molecular biology. Protein sequences must satisfy thermodynamic 

and kinetic requirements so that polypeptide chains adopt a unique folded conformation 

within a reasonable time. The complexity of this task is referred to as ‘the folding problem’ 

and is often exemplarily illustrated by the Levinthal paradox. That is, the total number of 

possible conformations of even a small polypeptide chain is so large that a systematic search 

for this particular structure would take an astronomical length of time (Levinthal, 1969). 

However, real average-sized proteins fold rapidly, frequently in less than one second 

(Karplus, 1997). Thus to remove the need to systematically search all possible conformations, 

protein folding was considered to occur along specific, defined pathways, as a series of 

sequential steps between increasingly native-like species, until the final native structure is 

formed. 

2.1.2 Protein folding mechanisms and energy landscapes 

The framework model (Kim and Baldwin, 1982) assumed a rapid formation of local 

secondary structure that functioned as scaffold for the subsequent acquisition of tertiary 

structure and was controversially discussed to occur either via a ‘nucleation-growth’ 

mechanism (Wetlaufer, 1973) or a ‘diffusion-collision’ mechanism (Karplus and Weaver, 

1976). The former proposed that tertiary structure propagates rapidly from an initial nucleus 

of local secondary structure, and the latter that secondary structure forms first, followed by 

diffusion, collision and coalescence of the preformed secondary structural units to yield the 

native, folded protein. Alternatively, the ‘hydrophobic collapse’ model proposed involvement 
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of the hydrophobic collapse as initial folding step followed by acquisition of secondary 

structure and correct packing interactions in a confined volume (Ptitsyn and Rashin, 1975). 

Unification of features of both the hydrophobic collapse and framework models led to 

formulation of the “nucleation-condensation” mechanism (Fersht, 1997). Long range and 

other native hydrophobic contacts are formed in the transition state, in which otherwise weak 

secondary structural elements are stabilized by tertiary interactions. Whether any or all of the 

mechanisms occur in general, and whether there is an underlying unifying mechanism 

remains unclear. 

The perception of pathways changed after computer simulation studies of protein 

folding revealed that the folding process involves a stochastic search of the many 

conformations accessible to a polypeptide chain (Wolynes et al., 1995; Dill and Chan, 1997; 

Karplus, 1997). Residues at different position in the primary structure contact each other due 

to inherent fluctuations in the conformation of the unfolded or incompletely folded 

polypeptide chain. Since native-like interactions between residues are on average more stable 

than nonnative ones, these interactions are more persistently resulting in a search mechanism 

to find the lowest energy structure by a process of trial and error (Dinner et al., 2000). 

 

 

Figure 1:  Energy landscape of protein folding. 
(A) Levinthal ‘golf course’ landscape. The chain searches randomly for the native state (N). (B) The ‘pathway’ 
solution to the random search problem. (C) Idealized funnel landscape. (D) Rugged energy landscape with 
kinetic traps, energy barriers and narrow throughway paths to native state (Adapted from Dill and Chan, 1997). 
 

For the description of such a search mechanism, energy surfaces i.e. energy landscapes 

have been of great conceptual benefit (Bryngelson et al., 1995; Wolynes et al., 1995; Dobson 

and Ellis, 1998). They represent the free energy of polypeptide chains as a function of their 

conformational properties and can be used to determine the trajectories along which 

molecules move from reactants to products and the position of transition states. Individual 

polypeptide chains are likely to follow different trajectories in which the native contacts are 
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formed in different orders giving rise to many transition states. The energy landscape 

resembles a funnel since the conformational space accessible to the polypeptide chain is 

reduced upon approaching the native state (Wolynes et al., 1995). Thus, the polypeptide chain 

needs to sample only a relative small number of conformations during its transition to the 

native structure due to the restrictive nature of the energy surface, providing a solution to the 

Levinthal paradox. 

2.1.3 Folding of small and large proteins 

Small single domain proteins with less than 100 amino acids in length generally fold 

into their native state on a sub-second timescale. The folding landscape of these proteins is 

relatively smooth. Only two species are stably populated during this folding reaction, the 

ensemble of unfolded structures and the native state (Fersht, 2000). These proteins fold by a 

two-state mechanism by which a folding nucleus of a small number of key residues forms, 

about which the remainder of the structure can then condense (Daggett and Fersht, 2003). 

Collapse of the polypeptide chain to a compact structure occurs as soon as the majority of the 

interactions involving the key residues have been formed followed by rapid conversion to the 

fully folded state. 

Proteins larger than 100 residues in length generally fold on a rougher energy surface. 

A higher proportion of hydrophobic residues provide among other factors a greater driving 

force for chain collapse. Compact folding states with substantial elements of native-like 

structure form prior to the stage at which folding can progress rapidly to the native state 

(Dobson and Hore, 1998). Reorganization of inter-residue contacts in these compact states 

may involve a high-energy barrier, leading to a transient population of partially folded or 

intermediate states. There is ongoing discussion about whether such intermediates assist 

folding by limiting the search process or whether they are traps that inhibit rapid folding 

(Roder and Colon, 1997; Khan et al., 2003; Sanchez and Kiefhaber, 2003). In large 

multidomain proteins, folding is suggested to occur largely independently among different 

segments or domains of the protein allowing parallel topology searches (Vendruscolo et al., 

2001). Key interactions define the fold within domains and other specific interactions ensure 

the appropriate interlocking of initially folded regions to the correct overall structure. A final 

cooperative folding step establishes all native intra- and interdomain contacts defining the 

final functional form (Radford et al., 1992). 
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2.2 Protein folding in vivo 

In the living cell, proteins are synthesized on the ribosome, an organelle-sized 

ribonucleoprotein complex that translates the genetic information from the nucleic acid into 

the polypeptide chain. In contrast to the situation in vitro, protein folding inside the cell is not 

generally a spontaneous process. Folding of a polypeptide chain in vivo reaches an additional 

level of complexity as the physiological conditions inside the cell differ considerably from 

those of in vitro refolding in the test tube and do not necessarily favor folding. For examples, 

some newly translated polypeptide chains must be guided to their correct location within the 

cell or must be kept in a folding or assembly-competent state until assembly partners are 

present in order to complete their folding. 

2.2.1 Protein aggregation 

Cooperative and reversible folding in vitro is generally observed only for small, 

single-domain proteins where exposed hydrophobic residues are rapidly buried upon initiation 

of folding. The majority of cellular proteins, especially large and multi-domain proteins, 

refold inefficiently. Kinetically trapped, slow folding and/or formation of stable interactions 

between regions of the polypeptide chain that are separated in the native protein result in the 

population of partially folded and misfolded (i.e. non-productive but compact) intermediates. 

Typically, both types of intermediates expose hydrophobic residues and segments of 

unstructured polypeptide backbone to the solvent and therefore favor aggregation. 

Hydrophobic forces and interchain hydrogen bonding drive the self-association into ordered 

complexes (Dobson and Karplus, 1999; Radford, 2000). Since aggregation is generally 

irreversible, proteins are removed from their productive folding pathways. 

2.2.2 Macromolecular crowding 

The interior of a cell is a crowded and dynamic environment in which protein 

concentration has been estimated to be as high as 300 mg/ml (Zimmerman and Trach, 1991). 

The term ‘crowded’ is used instead of ‘concentrated’ because no single macromolecule 

species occurs at high concentration, but taken together, the macromolecules occupy a 

significant fraction (20 – 30 %) of the total volume. This fraction is physically unavailable to 

other molecules. The mutual impenetrability of all solute molecules implicates a non-specific 

steric repulsion that has been described as molecular crowding or excluded volume effect 
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(Ellis, 2001; Minton, 2001). Steric exclusion generates considerable effects on the 

thermodynamic and kinetic properties of macromolecules. While restriction of the available 

volume for macromolecules leads to an increase in the effective concentration (i.e. 

thermodynamic activity) of each macromolecule species, the diffusion rates for 

macromolecules are reduced. Since aggregation is highly concentration dependent, molecular 

crowding enhances aggregation of non-native polypeptide chains. Aggregation would be more 

pronounced for small polypeptides, as large polypeptides have their diffusion slowed resulting 

in reduced encounter rate. In biochemical equilibria, molecular crowding favors association of 

macromolecules and can increase equilibrium constants for such reactions by two to three 

orders of magnitude (Zimmerman and Trach, 1991). This effect arises from reduction in 

excluded volume, i.e. concomitant increase in available volume, obtained when 

macromolecules bind to each other. Consequently, small structures are favoured over large 

structures, and this applies to the collapse of nascent polypeptide chains into compact 

functional proteins as well as to the aggregation of unfolded polypeptides into highly ordered 

structures.  

 

 

Figure 2:  Aggregation of non-native polypeptide chains as a side-reaction of productive folding. 
Enhancement of aggregation and chain compaction by macromolecular crowding (green arrows). Schematic 
representation of unfolded polypeptide chain released from the ribosome, partially folded intermediate and 
native, folded protein (Adapted from Dobson and Karplus, 1999). 
 

2.2.3 Nascent polypeptide chains 

A major difference between refolding of a denatured protein in vitro and de novo 

folding inside a cell is the vectorial synthesis from the amino (N) terminus towards the 

carboxy (C) terminus by which newly synthesized polypeptide chains emerge from the 
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ribosome. Although the N terminus is available for folding before the remaining polypeptide 

chain is synthesized, stable folding of a domain (100 – 300 amino acids) can only occur after 

its complete synthesis (Creighton, 1990; Jaenicke, 1991). Furthermore, during translation, 

about 40 residues of a nascent chain are sequestered within the polypeptides exit channel of 

the ribosome. As the channel is approximately 100 Å long and 10 – 20 Å wide at its 

narrowest point, folding beyond helix formation would not be allowed unless the channel is 

conformationally dynamic (Ban et al., 2000). Translation occurs on a timescale of seconds in 

bacteria to several minutes in eukaryotes and is therefore much slower than the millisecond 

timescale of the hydrophobic collapse. Since hydrophobic stretches of a nascent polypeptide 

chain cannot immediately be buried upon correct folding, they are exposed to the solution, 

rendering the polypeptide chain aggregation prone. Consequently, translating polypeptides 

populate non-native conformations until sufficient structural information is available for 

folding. The tendency to aggregate is even more pronounced due to the high concentration of 

unfolded polypeptides, especially occurring during translation on neighboring ribosomes 

(Ellis and Hartl, 1996). Thus, nascent polypeptides chains temporarily face the quandary of 

being unable to fold into stable structures or to remain in an extended state. However, they 

must avoid formation of misfolded intermediates as well as aggregation with other nascent 

polypeptide chains. 

For larger proteins composed of multiple domains, the vectorial nature of the 

translation process actually facilitates advantageous domain-wise folding of a polypeptide 

chain. Cotranslational and sequential domain folding of large proteins has been shown to 

avoid intramolecular misfolding and aggregation as it may occur upon their attempted 

refolding in vitro (Netzer and Hartl, 1997; Frydman, 2001). Concomitant with a much greater 

number of multidomain proteins in eukaryotes, the eukaryotic translation and folding 

machineries seem to have evolved to facilitate cotranslational domain folding (Hartl and 

Hayer-Hartl, 2002). Nevertheless, until sufficient sequence information of a nascent 

polypeptide chain is provided in order to allow formation of its correct domain structures, 

non-productive inter- and intramolecular interaction as well as premature misfolding of 

nascent polypeptide chains must be prevented. 
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2.2.4 Molecular chaperones 

To counteract these dangers of misfolding and aggregation and to ensure that 

polypeptides reach their native state with high efficiency, cells have evolved a complex 

machinery which includes several conserved protein families that are collectively termed 

molecular chaperones (Ellis et al., 1989; Gething and Sambrook, 1992; Hartl, 1996; Frydman, 

2001; Hartl and Hayer-Hartl, 2002). By counteracting aggregation and misfolding of non-

native proteins, chaperones assist in the folding of newly synthesized polypeptides as soon as 

they emerge from the ribosome and rescue existing proteins from partial stress-induced 

denaturation. Additionally, chaperones function in protein transport to subcellular 

compartments and may facilitate oligomer assembly. Many chaperones are constitutively 

expressed, but are synthesized at greatly increased levels under stress conditions and thus are 

classified as stress-response or heat-shock proteins (Hsps) (Gething and Sambrook, 1992). 

Their respective molecular weight determines their name, for example, the 70-kDa heat-shock 

protein is termed Hsp70. Molecular chaperones generally recognize exposed hydrophobic 

residues as well as unstructured segments of the main chain in their substrates. Such structural 

elements are typically present in non-native intermediates, but absent in the native state due to 

burial upon compact folding (Dobson and Ellis, 1998). Efficient folding is achieved by 

sequential cycles of substrate (client protein) binding and its release from the chaperone, often 

controlled by ATPase activity and cofactors proteins. Binding of chaperones shields non-

productive intramolecular interacting surfaces and likely blocks intermolecular aggregation of 

polypeptides. By avoiding the formation of non-native intramolecular contacts, chaperones 

may also prevent misfolding of kinetically trapped intermediates. Furthermore, one chaperone 

family, the Hsp100s, is able to resolubilize protein aggregates by an energy dependent process 

in order to pass misfolded polypeptides back to the productive folding pathway (Ben-Zvi and 

Goloubinoff, 2001). Importantly, chaperones do not contribute steric information to the 

folding process. Instead of actively folding their substrates (client proteins), chaperones 

provide a local environment in which productive folding is favoured over functionally non-

productive side reactions (Feldman and Frydman, 2000). Thus, chaperones increase the 

efficiency of the overall process by reducing the probability of competing reactions, 

particularly aggregation. Consequently, molecular chaperones can be distinguished from 

folding catalysts that accelerate specific rate-limiting steps in the folding process, like 

peptidyl-prolyl cis/trans isomerases (PPIase) or protein disulfide isomerases (PDIs). 
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2.3 A chaperone network in the eukaryotic cytosol 

Despite the similar general role of various chaperones in enabling efficient folding and 

assembly, their specific cellular functions can differ substantially. Distinct chaperones 

cooperate in a topologically and timely ordered manner. The cytosol provides a well-

developed network of chaperone pathways that can handle polypeptides at all stages of 

folding (Ellis and Hartl, 1996; Frydman and Hartl, 1996; Hartl and Hayer-Hartl, 2002; Young 

et al., 2004). The cytosolic chaperone pathways in eukaryotes start with several structurally 

unrelated ribosome-bound factors that function during the translation of polypeptides. 

Proteins of the Hsp70 family, such as the 70-kDa heat-shock cognate protein (Hsc70) in 

mammals or Ssb and Ssa (the Hsc70 homologue) in Saccharomyces cerevisiae, are also 

important in chaperoning nascent polypeptide chains and continue to assist in the folding of 

newly translated polypeptides together with the chaperonin TRiC. GimC/prefoldin binds to a 

subset of newly synthesized polypeptides and cooperates with TRiC. Another subset of 

polypeptides uses chaperones of the Hsp90 family together with the Hsp70 family to 

complete their folding. Several co-chaperones contribute to the chaperoning functions of 

Hsp70 and Hsp90 proteins. The Hsp104 can resolubilize aggregated polypeptides and 

cooperates with small heat shock proteins and the Hsp70 system to return them to a 

productive folding trajectory. 

2.3.1 Ribosome associated factors 

Once emerged from the ribosomal exit tunnel, nascent polypeptides are received by 

ribosome-bound chaperones, which then recruit further chaperone components. In 

Saccharomyces cerevisiae, the ribosome-associated complex, RAC, is a heterodimer 

consisting of the DnaJ-related co-chaperone zuotin, which mediates ribosome binding, and the 

Hsp70-related Ssz1/Pdr13 (Yan et al., 1998; Michimoto et al., 2000; Gautschi et al., 2001). 

RAC might recruit Hsp70s of the Ssb class to stabilize nascent polypeptides and assist in their 

folding (Gautschi et al., 2002; Huang et al., 2005). In mammals, RAC is composed of the 

homologues of zuotin and Ssz1, Mpp11 and Hsp70L1, respectively. Mpp11 associates with 

ribosomes and forms a stable complex with Hsp70L1 (Otto et al., 2005). Together Mpp11 and 

Hsp70L1 may target cytosolic Hsp70 to the nascent chain (Wegrzyn et al., 2006). 

Additionally, in Saccharomyces cerevisiae and mammals, the nascent-polypeptide-associated 
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complex, NAC, represents yet another ribosome bound complex. NAC is a heterodimer and 

contacts nascent polypeptides chains as they emerge from the ribosomal exit tunnel 

(Wiedmann et al., 1994; Shi et al., 1995). However, a clear chaperone activity has not been 

demonstrated so far. At present, it is unclear whether these factors interact in a hierarchical 

manner with nascent chains or whether they display specific functions for a particular subset 

of nascent polypeptides. 

2.3.2 The Hsp70 chaperones 

Hsp70s are a highly conserved family of proteins, distributed ubiquitously in all 

prokaryotes and in compartments of eukaryotic organisms (Bukau and Horwich, 1998; Hartl 

and Hayer-Hartl, 2002). In Saccharomyces cerevisiae, the cytosol contains four partially 

functional redundant Hsp70 homologues termed Ssa1-4, of which Ssa1p and Ssa2p are 

constitutively expressed and Ssa3p and Ssa4p are stress-inducible. Additionally, three 

ribosome-associated Hsp70s are present, namely Ssb1p, Ssb2p and Ssz1p/Pdr13p. In the 

mammalian cytosol, the stress-induced form of Hsp70 is named Hsp70 and the constitutively 

expressed homologue is termed Hsp70 cognate protein (Hsc70) (Frydman, 2001). The 

cytosolic Hsp70 chaperones are monomers and composed of two functionally coupled 

domains, namely the 44-kDa N-terminal ATPase domain and the 27-kDa C-terminal peptide-

binding domain (Zhu et al., 1996; Harrison et al., 1997). Hsp70 proteins recognize short 

hydrophobic polypeptide stretches in extended conformation as their substrates (Hartl, 1996; 

Rudiger et al., 1997). Binding and release of substrates is regulated by cycles of ATP binding 

and hydrolysis in the ATPase domain, thereby modulating the intrinsic peptide affinity (Hartl, 

1996; Bukau and Horwich, 1998). These ATPase cycles consist of an alternation between the 

ATP state with low affinity and fast exchange rates for substrates and the ADP state with high 

affinity and low exchange rates for substrates. 

Cycling between these different nucleotide-bound states is regulated by cofactors, 

mainly the Hsp40 co-chaperones. Hsp40 proteins characteristically possess an amino-terminal 

J-domain that stimulates the ATP hydrolysis of Hsp70 and often a carboxy-terminal 

chaperone domain, which binds unfolded polypeptides. Thereby, substrate polypeptides are 

transferred from Hsp40 to Hsp70 and stably bound by it in its ADP-bound state. In 

Saccharomyces cerevisiae, Ssa interacts with one of the two Hsp40 proteins Ydj1p or Sis1p 

and Ssb is thought to work together with Zuotin. The mammalian Hsc70 cooperates either 
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with the Hsp40 co-chaperones Hdj1 or Hdj2 (Johnson and Craig, 2001). In contrast to the 

bacterial Hsp70 reaction cycle, ADP-release is not the rate-limiting step when Hsp70 is in a 

complex with Hdj1 or Hdj2, but rather ATP hydrolysis (Ziegelhoffer et al., 1995; Minami et 

al., 1996). However, nucleotide exchange by Hsc70 can be stimulated through the 

mammalian co-chaperone BCL2-associated athanogene-1 (BAG1) or its homologues (Young 

et al., 2003). The mammalian co-chaperone Hsp70-interacting protein (Hip) counteracts 

BAG1 by stabilizing the polypeptide-binding ADP-bound state of Hsc70 (Hohfeld et al., 

1995). Mammalian HSP70-binding protein (HSPBP1) and its Saccharomyces cerevisiae 

homologue Fes1 form yet another class of Hsp70 nucleotide exchange factors (Shomura et al., 

2005; Dragovic et al., 2006). 

 

 

Figure 3:  Hsp70 structure and model of its reaction cycle in the mammalian cytosol. 
(A) Structures of the ATPase domain and the peptide-binding domain of Hsp70 shown representatively for 
E.coli DnaK (B) Hsp70 reaction cycle. Unfolded polypeptide (U), folding intermediate (I), native state (N) 
(Adapted from Frydman, 2001; and Hartl and Hayer-Hartl, 2002). 
 

After release from Hsp70, an unfolded polypeptide can partition between progressive 

folding to its native state and rebinding to Hsp70. Slow-folding intermediates can undergo 

multiple rounds of binding and release by Hsp70. Association with Hsp70 stabilizes segments 

of the substrate protein in an extended conformation, thereby inhibiting intramolecular 

misfolding and intermolecular aggregation. As non-native polypeptides presumably expose 

multiple hydrophobic peptide stretches, several Hsp70 molecules may bind to the same 

polypeptide. Optimal folding would then require the coordinated release of the polypeptide 

from several Hsp70 monomers. However, yet there is no experimental evidence for the 

existence of a coordinated mechanism. Released polypeptide substrates may also bind 



Introduction 

 

13

sequentially to other cytosolic chaperones, such as the chaperonin TRiC or Hsp90, in order to 

complete their folding. In Saccharomyces cerevisiae, Ssa assists the folding of proteins that 

were initially bound by Ssb. Ssa also cooperates with the chaperonin TRiC and folds 

substrates such as the Von-Hippel-Landau (VHL) tumor suppressor (Melville et al., 2003). 

Ssb has been shown to interact, among others, with certain WD40 repeat proteins during their 

translation and continues to bind them post-translationally until their folding is completed by 

TRiC. In mammals, Hsc70 binds nascent polypeptide chains and is thought to assist in their 

co-translational folding (Beckmann et al., 1990; Frydman et al., 1994). Alternatively, 

polypeptide substrates can be passed onto Hsp90. The co-chaperone Hsp-organizing protein 

(HOP) links Hsc70 and Hsp90 for subsequent folding of a subset of polypeptide substrates. 

2.3.3 The chaperonin TRiC 

The Chaperonins are a conserved class of large cylindrical double-ring protein 

complexes of approximately 900 kDa. They are found in all cells and are strictly required for 

viability. Chaperonins compromise two subclasses that are similar in architecture but distantly 

related in sequence: Members of Group I are found in eubacteria and organelles of 

endosymbiotic origin, mitochondria and chloroplast (Bukau and Horwich, 1998; Ellis and 

Hartl, 1999), and Group II chaperonins occur in archaea and in the cytosol of eukaryotic cells 

(Gutsche et al., 1999; Llorca et al., 1999). Chaperonins differ substantially from Hsp70 in 

architecture and mechanism. However, as in Hsp70, ATP binding and hydrolysis generates 

conformational changes which drive cycles of substrate binding and release. 

The eukaryotic chaperonin TRiC (tailless complex polypeptide-1 [TCP1] ring 

complex) also know as CCT (for chaperonin containing TCP1) is a double-ring shaped 

hetero-oligomeric complex that consists of eight orthologous subunits per ring ranging 

between 50 and 60 kDa (Hartl and Hayer-Hartl, 2002). The crystal structure of the archetype 

group II chaperonin, the thermosome complex from Thermoplasma acidophilum, revealed 

that individual subunits have a domain arrangement similar to those in the bacterial GroEL 

(Klumpp et al., 1997; Ditzel et al., 1998). The equatorial domain harbors the ATP binding site 

and is connected through a hingelike domain to the apical domain. Most sequence divergence 

between TRiC subunits is found in the apical domains, which likely contain the substrate 

binding sites (Kim et al., 1994). Given the hetero-oligomeric nature of the TRiC subunits and 

ensuing sequence diversity in apical domains, the contribution of each of the eight TRiC 
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subunits for the folding of different proteins is however an open question. The backbone trace 

of the chaperonin II apical domain is virtually identical to that of GroEL, with the exception 

of a α-helical insertion that protrudes from the ring opening. One of the substantial 

differences between group I and II chaperonins relates to the functional dependency of GroEL 

function on the ring-shaped cofactor GroES. Following binding, GroES acts as a detachable 

lid for the cavity and creates a folding chamber that encloses polypeptide substrates (Sigler et 

al., 1998). In the absence of a separate GroES-like cofactor, this α-helical protrusion is 

thought to function as a built-in lid of the central cavity. In the crystal structure of the 

thermosome, the apical protrusions form an iris-like structure that restricts access to the 

central cavity, in which a polypeptide of up to 60 kDa could be encapsulated (Ditzel et al., 

1998). TRiC function likely comprises enclosure of substrate polypeptides in this cavity as 

part of an ATP-dependent cycle as observed with the structurally related chaperonins from 

archaea (Klumpp et al., 1997; Ditzel et al., 1998). 

 

 

Figure 4:  Architecture of group II chaperonins. 
(A) Subunit of the thermosome from Thermoplasma acidophilum. (B) Side view of closed conformation 
observed in the X-ray structure of thermosome. (C) Top view of the closed thermosome structure from (B). (D) 
Bead models of the ATP-induced transition from the open to closed state (Adapted from Spiess et al., 2004). 
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Indeed, ATP-dependent movements of the apical domains were demonstrated to be 

involved in TRiC-mediated folding similar to GroEL (Llorca et al., 2001b). The apical 

domains bind substrate polypeptides through hydrophobic contacts and release them into the 

enclosed central cavity where they fold protected from aggregating with other nonnative 

proteins (Meyer et al., 2003). In contrast to the group I chaperonin, TRiC binds to nascent 

polypeptide chains (Frydman et al., 1994; Agashe and Hartl, 2000; McCallum et al., 2000). 

This capacity may allow TRiC to assist the folding of an individual domain of a multidomain 

protein by encapsulation while the rest of the protein remains outside and extends through a 

gap in the apical domain (Frydman et al., 1994; Ditzel et al., 1998). Indeed, TRiC may be 

able to support folding without complete sequestration of a protein (Llorca et al., 2001a).  

 

 

Figure 5:  Model of the nucleotide cycle of the eukaryotic chaperonin.  
(A) In the absence of nucleotide, the open complex can bind to unfolded substrates (U-substrate). (B) ATP 
binding. (C) Lid closure and confinement of the substrate in the central cavity. Folding probably occurs at this 
stage of the cycle. (D) Bond scission or inorganic phosphate (Pi) dissociation is likely to trigger reopening of the 
lid and the release of folded substrate (Adapted from Spiess et al., 2004). 
 

The essential role of TRiC relates to its absolute requirement for folding of a subset of 

essential proteins. TRiC is responsible for the folding of actin and tubulin as well as for Ga-

transducin, cyclin E and the Von Hippel-Landau (VHL) tumor suppressor (Gao et al., 1992; 

Yaffe et al., 1992; Farr et al., 1997; Won et al., 1998; Feldman et al., 1999). In 

Saccharomyces cerevisiae, TRiC is required for the folding of several WD40 repeat proteins. 

In these proteins, several consecutive WD40 repeats fold into a β-propeller domain in which 

each blade is a four-stranded β-sheet. The WD40 repeat proteins represent the first structural 

class of proteins, which is handled by chaperonins, and include the Stec4 transducin subunit, 

the Cdc55 regulatory phosphatase subunit, the Pex27 peroxisomal import receptor as well as 
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the Cdc20 and Cdh1 activators of the anaphase-promoting complex (Camasses et al., 2003). 

WD40 repeat proteins have cooperatively folded structures and function as components in 

either homo- or hetero-oligomeric complexes. Thus, these presumably complex folding 

requirements might explain their strict TRiC dependency. In addition to the folding of 

subunits, TRiC may also be involved in assisting oligomeric assembly, since TRiC is known 

to mediate the folding of interacting subunits in the case of Gα- and Gβ-transducin as well as 

Cdc55 and Sit4 (Farr et al., 1997; Siegers et al., 2003). Furthermore, for some substrates, such 

as tubulin, VHL and CDC20, release from TRiC occurs only in the presence of their partner 

proteins and is coupled to substrate assembly into the oligomeric complex (Spiess et al., 

2004). In Saccharomyces cerevisiae, TRiC cooperates with the Hsp70 Ssb in the folding of 

WD40 repeat proteins and with the Hsp70 Ssa in the folding of VHL. In contrast, TRiC works 

together with GimC/Prefoldin in the folding of actin and tubulin. One controversial aspect of 

TRiC-mediated folding is whether substrates bind in either a native-like or an unstructured 

state. Protease sensitivity of TRiC-bound actin and the location of TRiC-binding sites in the 

core of the native structure of VHL indicate a unstructured conformation of these substrates 

(Feldman et al., 2003; Meyer et al., 2003). By contrast, electron microscopy revealed that 

TRiC binds to compact folding intermediate of actin and tubulin (Llorca et al., 2000). 

2.3.4 GimC/Prefoldin 

The cytosolic Gim1-6 complex (GimC)/prefoldin is composed of six different 

subunits. Initially, the yeast GimC and its mammalian homologue prefoldin were shown to 

support folding and assembly of tubulin as well as delivering unfolded actin to TRiC in vitro, 

respectively (Geissler et al., 1998; Vainberg et al., 1998). GimC functions independently of 

ATP and recognizes substrates via hydrophobic extensions at the ends of its six coiled-coil 

domains (Vainberg et al., 1998; Siegers and Schiebel, 2000). These extensions also mediate 

weak interactions with TRiC, possibly a mechanism for polypeptide transfer to the chaperonin 

(Martin-Benito et al., 2002). GimC interacts with actin and tubulin nascent polypeptides 

during their translation (Hansen et al., 1999), and in cooperation with TRiC, GimC assists in 

post-translational folding of actin. Additionally, GimC protects polypeptides from non-

productive intermolecular interactions (Siegers et al., 1999). Consistent with its post-

translational role in folding, GimC is capable of binding to a compact folding intermediate of 
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actin (Martin-Benito et al., 2002). Thus, GimC might recognize some yet unknown specific 

features of its substrates, in addition to exposed hydrophobic surfaces. 

2.3.5 Hsp90 

In eukaryotic cells, Hsp90 is a highly abundant and essential chaperone that acts at late 

stages of protein folding. Hsp90 is a homodimer in which each subunit consists of an N-

terminal ATP-binding domain linked by an extended region to a C-terminal dimerization site. 

ATP binding and hydrolysis regulates the activity of Hsp90. In the ATP-bound state, the N-

termini can transiently dimerize, thereby presumable closing the structure around a substrate 

polypeptide. The opening of the structure after ATP hydrolysis might release the bound 

substrate and allow reloading of substrate onto Hsp90. The exact mechanism of polypeptide 

substrate binding and folding remains to be determined. Since Hsp90 often cooperates with 

Hsc70, these two chaperones might be considered as part of a multichaperone complex. The 

activities of this Hsc70-Hsp90 machinery are modulated by a wide range of cofactors (Richter 

and Buchner, 2001; Young et al., 2001; Pratt and Toft, 2003). Several of these co-chaperones 

(e.g. tetratricopeptide repeat protein 2; p23, activator of Hsp90 ATPase or Cdc37) affect the 

ATPase cycles of Hsc70 or Hsp90 and thereby influence substrate binding by the chaperones 

(Young et al., 2004). Among these are co-chaperones (e.g. HOP) that can physically link 

Hsc70 and Hsp90 to facilitate substrate transfer (Prodromou et al., 1999; Scheufler et al., 

2000). Another group of co-chaperones interacts preferentially with subsets of Hsp90 

substrates and might either target them to Hsp90 or provide a specifically required 

chaperoning activity (e.g. UNC-45) (Barral et al., 2002). Hsp90 substrates include signal-

transduction molecules (e.g. steroid hormone receptor), transcription factors, regulatory 

kinases (e.g. v-src, Wee-1, Cdk4 or Raf) and other proteins.  

2.3.6 Chaperone-mediated protein degradation 

Eukaryotic cells have a sophisticated system for protein degradation, in which 

multimers of the ubiquitin polypeptide (Ub) are covalently attached to proteins and are thus 

earmarked for targeting to and degradation by the 26S proteasome (Hershko and Ciechanover, 

1998). This multi-subunit, self-compartmentalized protease comprises a 20S core complex 

bearing different, rather non-specific proteolytic sites within its cavity, and two axial 19S 

regulatory caps (Pickart and Cohen, 2004). This system removes misfolded proteins and 
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destroys native proteins for regulatory purposes. Under certain conditions, when chaperones 

cannot repair misfolded proteins, chaperone-mediated targeting to the ubiquitin-proteasome 

system (UPS) results in selective degradation. Hsp70 and Hsp90 cooperate with the UPS 

through the co-chaperones Chip (carboxyl terminus of Hsp70-interaction protein) and Bag1. 

In addition to its Hsc70 regulatory activity, Bag1 also contains a ubiquitin-like domain that 

mediates the contact with the proteasome (Hohfeld et al., 2001). Chip contains a TPR-clamp 

domain, which recognizes either Hsc70 or Hsp90, and a E3 ubiquitin ligase activity that 

promotes the ubiquitinylation and degradation of some Hsc70-Hsp90 substrate polypeptides 

(Cyr et al., 2002). Bag1 and Chip interact with each other and might present non-native 

polypeptides as ubiquitylated substrates to the proteasome for degradation (Demand et al., 

2001). 

 

 

Figure 6:  Schematic representation of the chaperone network in eukaryotic cytosol. 
(A) In mammals, nascent polypeptides are met by Hsc70 and its Hsp40 cofactors. (B) In Saccharomyces 
cerevisiae, RAC recruits Ssb to bind nascent chains. Some proteins, initially bound by Ssb, are assisted in 
folding by Ssa, the S. cerevisiae homologue of Hsc70. (C) Actin and tubulin nascent chains are bound by 
GimC/prefoldin and TRiC. Hsc70 (Ssa) and Ssb also cooperate with TRiC in folding. Other newly synthesized 
polypeptides can fold spontaneously or be assisted by Hsc70. Alternatively; HOP mediates their transfer from 
Hsc70 to Hsp90. (D) CHIP contacts Hsc70 or Hsp90 to attach polyubiquitin onto polypeptides, targeting these 
substrates, in assistance with BAG1, to the proteasome for degradation. (Adapted from Young et al., 2004). 
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2.4 Aberrant protein folding and conformational diseases 

The failure of proteins to fold appropriately or to remain correctly folded is associated 

with a large number of disease related cellular malfunctions. Proteins that do not fold 

correctly are not able to exert their proper functions and may give rise to disease (loss of 

function diseases, e.g. cystic fibrosis). In the case of amyloid diseases, misfolded proteins 

escape all protective mechanism and form aggregates within cells or in the extracellular 

space. These aggregates, or the pathway of their formation, are toxic independently of the 

function of the normal protein they derived from (gain of function disease). An increasing 

number of pathologies, including neurodegenerative disorders such as Alzheimer’s and 

Huntington’s disease, are known to be directly associated with the deposition of such 

aggregates, suggesting a causative link between aggregate formation and pathological 

symptoms. These diseases can be inherited, sporadic or even infectious. 

 
Table 1:  Summary of some of the main amyloidoses and the proteins or peptides involved. 
 

Disease Protein 
Alzheimer’s disease (AD) Aβ peptide/Tau/χ-secretase 
Spongiform encephalopathies Prion (PrPc/PrPsc) 
Parkinson’s disease (PD) α-synuclein/parkin 
Senile systemic amyloidosis Transthyretin (TTR) 
Haemodialysis-related amyloidoses β2-microglobulin (β2-m) 
Huntington’s disease (HD) Huntingtin (Htt) 
Spinal and bulbar muscular atrophy (SBMA) Androgen receptor (AR) 
Dentratorubal-palidoluysian atrophy (DRPLA) Atrophin 
Spinocerebella ataxias 1, 2, 3, 6, 7 (SCA1/2/3/6/7) Ataxin 1, 2, 3, 6, 7 
Spinocerebella ataxia 17 (SCA17) TATA box-binding protein (TBP) 

 

Many of the mutations associated with familial deposition diseases populate partially 

unfolded states by decreasing the stability or cooperativity of the native state or increasing the 

stability of intermediates. Other familial diseases are associated with the accumulation of 

fragments of the native proteins, often produced by aberrant processing or incomplete 

degradation. Such species are unable to fold into aggregation-resistant native-like states. The 

mechanism(s) by which protein aggregation results in pathology are not yet understood in 

detail. In the case of systemic diseases, the sheer mass of insoluble protein may physically 

disrupt the functioning of specific organs (Tan and Pepys, 1994). However, for the 

neurodegenerative disorders AD, PD and HD, the primary symptoms apparently occur 

through the destruction of neurons by a toxic gain-of-function that results from the 

aggregation process (Koo et al., 1999; Caughey and Lansbury, 2003). 
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2.4.1 Protein aggregation and amyloid-like deposits 

In the amyloid diseases, the protein deposits contain intractable aggregates, often 

fibrillar in nature. Each amyloid disease is associated primarily with one protein or fragment 

of a protein that forms the core structure of the deposits (Sunde and Blake, 1997). 

Remarkably, although the polypeptides that aggregate in these disorders are unrelated in size 

or primary amino acid sequence, they form amyloid-like structures with common biochemical 

and biophysical characteristics. These commonalities may indicate that a conserved 

mechanism of aggregation, and perhaps toxicity, might connect these phenotypically diverse 

diseases. 

 

 

Figure 7:  Intracellular, cytoplasmic and extracellular aggregates and inclusion bodies. 
(A) Intranuclear (INI) and cytoplasmic (CI) polyglutamine inclusions in the motor cortex of HD brain. (B) Lewy 
body (LB) and other cytoplasmic inclusions (CI) in substantia nigra of PD brain. (C) Neuritic plaque of AD in 
the cerebral cortex. (D) Neurofibrillary tangles of AD in the hippocampus (Ross and Poirier, 2005). 
 

2.4.1.1 Structure and formation of amyloid fibrils 

Amyloid fibrils are long, straight and unbranched filamentous structures with a width 

of ~10 nm and a length of 0.1-10 µm (Sunde and Blake, 1997). The fibrils typically consist of 

between 2 and 6 protofilaments that are often twisted around each other to form a supercoiled 

rope-like structure (Serpell, 2000). The defining feature of amyloid fibrils is the so-called 

cross-β structure (Eanes and Glenner, 1968; Sunde and Blake, 1997). In this structural motif, 

ribbonlike β-sheets are formed by β-strands running nearly perpendicular to the long axis of 

the fibril and hydrogen bonds that run nearly parallel to the long axis. The core structure of 

Aβ, α-synuclein and polyglutamine aggregates appears to involve both β-strands and β-turns 

(Benzinger et al., 2000; Thakur and Wetzel, 2002; Williams et al., 2004). Consistent with a 

common core structure, monoclonal conformation-specific antibodies recognize the amyloid 

fibril state of Aβ peptide and of other proteins of unrelated sequences including 

polyglutamine (polyQ), Transthyretin (TTR) and β2-microglobulin (β2-m) but neither the 
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soluble monomeric state of Aβ nor native polymers such as collagen or gelatin (O'Nuallain 

and Wetzel, 2002). Furthermore, a monoclonal antibody raised against human light chain 

amyloid fibrils also stains amyloid deposits from tissue containing other types of amyloid 

such as Aβ and TTR (Hrncic et al., 2000). 

 

 

Figure 8:  Fibers and protofibrils. 
(A) Electron micrograph of fibers made of the glutamine- and asparagine-rich region of prion protein Sup35. (B) 
Models of bundles of plastic tubes wound around each other and representing protofibrils (Perutz et al., 2002a). 
 

In vitro, many proteins unrelated to known amyloid disease (e.g., myoglobin) have 

been shown to form fibrillar structures under certain conditions with all characteristics of 

those found associated with the clinical amyloidoses (Chiti et al., 1999; Fandrich et al., 2001; 

Fandrich and Dobson, 2002). Thus, the ability to form amyloid fibrils was suggested to be a 

generic property of polypeptide chains (Dobson and Karplus, 1999). The stability of the 

amyloid core structure results primarily from hydrogen bonds that link the β-strands and 

involve the amide and carbonyl groups of the polypeptide main chain, which is common to all 

polypeptides (Dobson, 2002). In amyloid fibrils, the main chain dominates the structure and 

the side chains are incorporated in the most favorable manner, in contrast to the evolved 

globular structures. The residues that nucleate the folding of a globular protein appear to be 

distinct from those that nucleate its aggregation into amyloid fibrils (Chiti et al., 2002). 

The common core structure of amyloid fibrils supports the assumption of similarities 

in their assembly pathways. Unfolded or aberrantly folded polypeptides acquire the ability to 

self-assemble into higher-order structures (Dobson and Karplus, 1999). However, in a 

globular protein, the polypeptide main chain and hydrophobic side chains are largely buried 

within the folded structure. Thus, only conditions that favor their exposure, such as partial 

unfolding (i.e.: low pH) or fragmentation (i.e.: proteolysis), will allow the conversion into 

amyloid fibrils. In vitro, fibrils form in a nucleation-dependent manner typically characterized 
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by a lag phase, which is followed by a period of rapid growth (Rochet and Lansbury, 2000). 

The formation of soluble oligomeric species appears to be involved early in amyloid 

formation. In this context, oligomers have been defined as clusters of small numbers of 

protein or peptide molecules without a fibrillar appearance (Chiti and Dobson, 2006). The 

first structures observed by electron and atomic force microscopy resemble isolated or 

clustered spherical beads of 2-5 nm in diameter and are termed protofibrils (Dobson, 2004; 

Glabe, 2004; Chiti and Dobson, 2006). These metastable, nonfibrillar species are generally 

characterized by extensive β-sheet structure (Chiti and Dobson, 2006). Protofibrils can be on- 

or off-pathway with regard to fibril formation (Serio et al., 2000; Gosal et al., 2005). Later on, 

species with a more distinct morphology, commonly described as fibrillar, develop and are 

termed protofilaments (Caughey and Lansbury, 2003). These structures may anneal or 

undergo conformational changes to form mature fibrils (Bouchard et al., 2000; Goldsbury et 

al., 2000). The exact order of events in the aggregation process is unknown. Protein 

aggregation could follow a linear pathway – from monomers to oligomers to protofibrils to 

fibrils – or a series of parallel processes in which monomers are added directly to growing 

fibers, with alternative species originating from side pathways (Ross and Poirier, 2005). 

2.4.1.2 Protein aggregation and toxicity 

Abnormal protein conformation and protein aggregation are emerging as common 

pathological features of amyloid diseases such as neurodegenerative disorders. However, 

there is an ongoing controversy about the role of aggregation in the disease process. The 

presence of inclusions correlates poorly with other markers of neurodegeneration, or with 

clinical features (Ross and Poirier, 2005). In AD, there is only a weak correlation between the 

density of Aβ peptide derived amyloid plaques in human post-mortem material and the 

clinical severity of AD (Terry et al., 1991). Similarly in PD, only little correlation exists 

between the presence of Lewis bodies and cell death in the Substantia nigra in the brain 

(Tompkins and Hill, 1997). Thus, paradoxically, the process of aggregation might be related 

to toxicity, but the inclusion bodies might be neutral by-products or even protective. 

Presumably, inclusions represent an end-stage manifestation of a multi-step aggregation 

process with several possible intermediate species, including oligomeric and protofibrillar 

forms. Early events before the formation of inclusion bodies might cause toxicity and possible 

culprits include abnormal monomers of the disease proteins or small assemblies of abnormal 
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aggregated protein (oligomer). Indeed, early pre-fibrillar aggregates of proteins associated 

with neurological diseases can be highly damaging to cells, in contrast to mature fibrils that 

are relatively benign or even protective (Walsh et al., 2002; Caughey and Lansbury, 2003; 

Arrasate et al., 2004). The toxic oligomer hypothesis is supported by the finding that a single 

polyclonal antibody can equally recognize a common conformational epitope that is displayed 

be several disease-associated proteins, including Aβ, α-synuclein and polyQ-containing 

peptides (Kayed et al., 2003). Co-incubation of the anti-oligomer antibody with oligomers of 

the aforementioned disease proteins blocks their toxicity when applied to cultured cells, 

indicating that oligomeric structures formed by distinct disease proteins might confer toxicity 

through a similar mechanism (Kayed et al., 2003). Furthermore, pre-fibrillar aggregates of 

several proteins that are not connected with any known disease are as cytotoxic as Aβ 

(Bucciantini et al., 2002), conceptually supporting the generic toxic nature of early pre-

fibrillar aggregates (Dobson, 2004). 

A general proposal for the relationship between aggregation and toxicity is supported 

by studies of polyglutamine-expanded proteins. Therein, toxicity may depend on interactions 

of polyglutamine-expanded proteins with, and possibly recruitment into aggregates of, other 

cellular constituents during the aggregation process (Preisinger et al., 1999; McCampbell et 

al., 2000; Chen et al., 2001; Nucifora et al., 2001). Exposure of moieties that are usually 

hidden in globular proteins, such as hydrophobic side chains or main chain NH and CO 

groups in an abnormal β-conformation could lead to the formation of aberrant, non-native 

hydrogen bonds with other proteins in the cell (Dobson, 2003). Such a toxicity mechanism 

could be exerted by particular molecular species (for example oligomers or protofibrils). 

Alternatively, toxicity might not be exclusively due to any specific species, but to the 

dynamics of the aggregation process, as there seems to be structures shared by various 

aggregating proteins. This would imply the maintenance of a common toxic fold upon 

assembly into dimers, oligomers or fibrils (Stefani and Dobson, 2003). Based on the same 

concept, abnormal interaction with cellular membranes through the formation of membrane 

pores is being discussed (Lashuel et al., 2002; Quist et al., 2005). 
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2.4.2 Huntington’s disease 

HD is an autosomal dominant inherited disorder characterized by irrepressible motor 

dysfunction, cognitive decline and psychiatric disturbance, which lead to progressive 

dementia and death approximately 15-20 years after disease onset (Bates, 2000). HD is caused 

by expansion of a CAG repeat coding for polyglutamine (polyQ) in the amino terminus of the 

protein huntingtin (Htt) (HDCRG, 1993; Nasir et al., 1995). This type of mutation is 

responsible for a number of neurodegenerative diseases, including DRPLA, SBMA, SCA 1-3, 

6, 7 and SCA 17, that are collectively termed polyglutamine disease and which are likely to 

be caused by common pathogenic mechanisms (Orr and Zoghbi, 2001). Apart from their 

polyQ repeats, the proteins involved are structurally unrelated, and although they are all 

widely expressed in the central nervous system and peripheral tissue, each leads to a distinct 

characteristic pattern of neurodegeneration (Zoghbi and Orr, 2000). In HD, the selective 

neurodegeneration of the γ-aminobutyric acid-releasing spiny-projection neurons of the 

striatum is predominant, although loss of neurons in many other brain regions has also been 

reported. The length of the normal polyQ tract is polymorphic, typically ranging from 10 to 

36 glutamine residues, whereas in HD there is an unstable expansion beyond the normal 

range, with longer expansion correlating with earlier onset and more severe disease (Bates, 

2003). The expanded polyQ domain seems to induce a conformational change in the protein, 

which causes it to form aggregates (Scherzinger et al., 1997). There is a correlation between 

the polyQ threshold of aggregation in vitro and the polyQ threshold for disease in humans, 

consistent with the idea that aggregation is related to pathogenesis (Davies et al., 1997; 

Scherzinger et al., 1999). HD has a prevalence of 5-10 cases per 100,000 worldwide, which 

makes it the most common inherited neurodegenerative disorder (Tobin and Signer, 2000). 

2.4.2.1 Huntingtin 

Htt is an essential 348-kDa multidomain protein that contains a polymorphic 

glutamine/proline-rich domain at its amino terminus. The function of normal Htt and the 

mechanism whereby mutant Htt mediates harmful effects remains unclear. Htt contains very 

little sequence homology to other known proteins and its expression is ubiquitous but greatest 

in neurons (Trottier et al., 1995a). Moreover, Htt is localized in many subcellular 

compartments, including nucleus, cell body, dendrites as well as nerve terminals (DiFiglia et 

al., 1995; Trottier et al., 1995a) and is associated with a number of organelles, namely Golgi 



Introduction 

 

25

apparatus, endoplasmatic reticulum, synaptic vesicle and mitochondria (DiFiglia et al., 1995; 

Sharp et al., 1995; Gutekunst et al., 1998). Htt interacts with a range of proteins suggesting 

that it may act as a molecular scaffold, regulating several cellular processes including 

endocytosis, vesicle transport, excitatory synapses, mitochondrial function and transcriptional 

events (Harjes and Wanker, 2003; Li and Li, 2004). Interestingly, Htt can protect neuronal 

cells from apoptotic stress and therefore may have a pro-survival role (Rigamonti et al., 

2000). Transgenic animal studies support a toxic gain-of-function mechanism that leads to 

neuronal dysfunction and death (Zoghbi and Orr, 2000), although loss-of-function has not 

been excluded in contributing to disease pathogenesis (Reiner et al., 2001; Cattaneo, 2003). 

2.4.2.2 PolyQ aggregation 

Mutant Htt forms microscopically distinct inclusions in the cytoplasm and nucleus of 

affected neurons (DiFiglia et al., 1997; Becher et al., 1998), indicating that the aggregation is 

dominated by the expanded polyQ stretch. PolyQ aggregation has been reproduced in vitro, 

using either a fragment of mutant Htt or synthetic polyQ peptides (Perutz et al., 1994; 

Scherzinger et al., 1997; Chen and Wetzel, 2001). Their aggregation results in the 

accumulation of β-sheet rich fibrillar structures and displays nucleated-growth polymerization 

kinetics, with a rate-limiting lag-phase accounting for the formation of an aggregation 

nucleus, followed by a fast elongation phase during which additional polyQ monomers or 

oligomers rapidly join the growing aggregates (Scherzinger et al., 1999; Chen and Wetzel, 

2001). 

 

 

Figure 9:  Hypothetical pathway of polyQ-mediated aggregation and inclusion formation. 
Unstructured polyQ monomer undergoes a structural conversion to β-sheet, resulting in the formation of 
protofibrillar intermediates. This step may proceed through a linear growth mechanism or through assembly of 
oligomeric intermediates. Protofibril assembly is followed by fibril and finally inclusion formation (Adapted 
from Ross et al., 2003). 
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Detailed structural information on polyQ has been difficult to obtain due to intrinsic 

insolubility. Whereas monomeric polyQ peptides with repeat length of 5 – 44, have been 

shown to be unstructured (Altschuler et al., 1997; Chen and Wetzel, 2001; Masino et al., 

2002), aggregates derived from expanded polyQ peptides or proteins adopt β-sheet structure 

(Chen et al., 2002; Perutz et al., 2002b; Poirier et al., 2002). Thus, a conversion from 

disordered to β-strand is likely to occur in an individual polyQ chain (Chen et al., 2002) and 

fibril formation by addition of other polyQ chains to these monomeric β-strand nuclei. The 

structure of polyQ segments was proposed to be an anti-parallel β-sheet termed “polar 

zipper”, held together by hydrogen bonds between main-chain and side-chain amides (Perutz 

et al., 1994). Refinement predicted a polyQ β-helix with a cylindrical, parallel β-sheet and 20 

residues per turn, structurally addressing the aggregation threshold of polyQ tracts. A single 

20-residue helical turn would be unstable and, therefore only polyQ monomers above the 

pathological threshold would favor a conformational change (Perutz et al., 2002b). In 

contrast, a mutational study suggested that polyQ aggregation begins by the formation of a 

compact β-structure with alternating β-strands and β-turns, with an optimal length of seven 

glutamines per β-strand (Thakur and Wetzel, 2002) (Figure 7). This alternative model would 

support a compact β-structure, rather than an extended strand model, but would be compatible 

in parts with the polar zipper model, as hydrogen bonds are formed between main chain atoms 

and do not involve the side chains (Ross et al., 2003). Yet, the precise organization of polyQ 

molecules within the aggregate is still largely unknown. 

 

 

Figure 10:  Schematic representation of proposed structural models for aggregated mutant polyQ. 
(A) Computer-generated model of a polyQ helix with 20 residues per turn (Perutz et al., 2002a). (B) Sketch of 
expanded polyQ, with β-turns constrained by proline-glycine insertions that is purposed to be similar to the 
structure of expanded pure polyQ (Adapted from Ross and Poirier, 2004). 
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The aggregation process might be initiated by proteolytic cleavage of full-length Htt. 

Inclusions in HD post-mortem tissue are selectively labeled with antibodies to epitopes near 

the amino terminus of Htt (DiFiglia et al., 1997; Becher et al., 1998). Short amino terminal 

fragments containing the expanded polyQ repeat are substantially more toxic, in most cell 

culture and mouse models, than longer or full-length Htt (Saudou et al., 1998; Peters et al., 

1999; de Almeida et al., 2002). Htt can be cleaved by several proteases, including caspases, 

calpain and an unidentified aspartyl protease (Gafni and Ellerby, 2002; Lunkes et al., 2002; 

Wellington et al., 2002). Recently, transgenic mice carrying caspase-6-resistant mutant Htt 

were shown to maintain normal neuronal function and did not develop striatal 

neurodegeneration (Graham et al., 2006), suggesting that cleavage of Htt at the caspases-6 

site generates polyQ-expanded N-terminal Htt fragments. 

2.4.2.3 The nature of toxic species in polyQ aggregation 

The role of aggregation in the pathogenesis of HD remains contentious; it may be 

pathogenic, represent an epiphenomenon, or be beneficial and neuroprotective (Sakahira et 

al., 2002; Bates, 2003). There is a good correlation between the length of the CAG repeat and 

the density of inclusions (Vonsattel et al., 1985; Becher et al., 1998). However, in the cerebral 

cortex, which undergoes only moderate degeneration, inclusions are denser than in the cells of 

the striatum, which undergoes massive degeneration (Gutekunst et al., 1999). Striatal 

inclusions are most prevalent in large interneurons, which are spared in HD, rather than in 

medium spiny neurons, which are selectively lost in the disease (Kuemmerle et al., 1999). 

Transgenic mouse models provide evidence for a lack of association between inclusions and 

neurodegeneration or dysfunction (Slow et al., 2005). Moreover, in cell culture models, 

inclusion body formation showed little correlation with neuronal toxicity and even predicted 

neuronal survival, whereas the level of diffuse huntingtin correlates significantly with cell 

death (Saudou et al., 1998; Arrasate et al., 2004). Interestingly, formation of inclusion bodies 

seems to be a regulated cellular process that requires an intact microtubule cytoskeleton and 

might have evolved as a protective mechanism to sequester toxic, misfolded protein entities 

that could otherwise disrupt cellular homeostasis (Waelter et al., 2001; Muchowski et al., 

2002; Taylor et al., 2003). Despite the chemical stability, inclusions are not necessarily 

permanent cellular components. The cell is able to degrade polyQ aggregates after expression 

of the soluble mutant protein is discontinued (Yamamoto et al., 2000). Alternatively, once 
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collected in an aggresome, abnormally folded proteins could potentially be disposed of by 

autophagy (Ravikumar and Rubinsztein, 2004; Rideout et al., 2004; Iwata et al., 2005). Thus, 

although aggregates are thought to be protective, the aggregation processes itself seems to 

trigger toxicity. 

 

 

Figure 11:  Likely cellular events in the pathogenesis of HD. 
(A) Htt becomes pathogenic when its polyQ tract exceeds ~39 repeats (top left). Monoclonal antibodies (yellow) 
selectively recognize the polyQ-expanded Htt, indicating that the polyQ expansion entails a conformational 
change. (B) Mutant Htt is selectively subject to cleavage, and its N-terminal fragment can enter the nucleus. (C) 
These fragments can self-aggregate and, (D) form inclusions that also contain other proteins. Neuronal function 
is compromised (bottom), but it is not precisely known whether the proximate cause of compromised function is 
(a) full-length mutant Htt, (b) a fragment of Htt, (c) a fragment aggregate or (d) an inclusion that contains Htt 
and other molecules. The pathomechanism is also not known precisely (Adapted from Tobin and Signer, 2000). 
 

2.4.2.4 Mechanisms of polyQ aggregation mediated toxicity 

Several non-exclusive hypotheses have been developed to explain how the unusually 

long polyQ tract causes neurodegeneration. The expansion of the polyQ domain is likely to 

impart a novel, presumably aberrant, conformation. The unprotected β-sheets in intracellular 

polyQ oligomers or even in the monomeric polyQ fragments may interact unfavorably with 

the surface of other proteins thereby impairing various cellular functions (Sakahira et al., 

2002). Intriguingly, the transient association of transcriptional regulators into their 

transcriptional complexes is commonly facilitated by interactions between glutamine-rich 

regions within these proteins (Gerber et al., 1994). These presumably flexible and 

unstructured regions may act as molecular ‘fishing lines’ that allow a single protein within a 
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complex to recruit additional factors or to bridge large distances, such as is required in 

transcription (Faux et al., 2005). Hence, monomeric or oligomeric soluble expanded polyQ 

species could aberrantly bind to transcriptional mediators harboring polyQ tracts in the non-

pathogenic range, disrupt the organization of transcriptional complexes and lead to 

transcriptional dysregulation (Cha, 2000; Sakahira et al., 2002). 

The accumulation of molecular chaperones and components of the ubiquitin-

proteasome system (UPS) in polyQ aggregates suggests that insufficient protein folding and 

degradation plays a role in the pathogenesis of polyQ diseases (Sakahira et al., 2002; 

Ciechanover and Brundin, 2003). Therefore, polyQ diseases might arise from impaired 

folding or proteolysis, either when proteins become inherently difficult to refold or degrade. 

Consistently, overexpression of molecular chaperones in fly and mouse models suppresses 

toxicity (Chan et al., 2000; Cummings et al., 2001) The role of UPS impairment is still 

controversial (Yamamoto et al., 2000; Bence et al., 2001; Verhoef et al., 2002; Kaytor et al., 

2004; Bennett et al., 2005; Bowman et al., 2005). Impaired axonal and dendritic trafficking as 

well as mitochondrial dysfunction are also implicated in HD (Sipione and Cattaneo, 2001; 

Feany and La Spada, 2003). 

2.4.2.5 Transcriptional dysregulation 

The cAMP-responsive element (CRE-) and the SP1-mediated transcription pathways 

have been shown to be affected in HD and intriguingly are involved in the expression of 

genes essential for neuronal survival (Lonze et al., 2002; Landles and Bates, 2004). Deletion 

of cAMP-responsive element binding protein (CREB) results in an HD-like phenotype with 

progressive neurodegeneration in the hippocampus and striatum (Mantamadiotis et al., 2002) 

and downregulation of CRE-regulated genes has been detected in transgenic mice, cell-culture 

models and in HD patients (Glass et al., 2000; Luthi-Carter et al., 2000; Wyttenbach et al., 

2001). Furthermore, CBP overexpression alleviates polyQ toxicity in neuronal cells 

(McCampbell et al., 2000). Mutant Htt also interferes with Sp1-mediated transcription of 

genes such as the dopamine-D2-receptor gene that are compromised in HD patients (Dunah et 

al., 2002). Consistently, glutamine-rich transcription regulators involved in these transcription 

pathways including the CREB-binding protein (CBP), specificity protein 1 (Sp1) and TATA-

binding protein (TBP)-associated factor (TAFII130) have been shown to interact directly with 

soluble polyQ species and this interaction is enhanced by expansion of the polyQ tract into 
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the pathological range (Nucifora et al., 2001; Dunah et al., 2002; Li et al., 2002). CBP 

cooperates with the transcription factor CREB in activating the expression of cAMP-

responsive genes and Sp1 recruits the general transcription factor TFIID that contains TBP 

and multiple TBP-associated factors including TAFII130 to DNA. TAFII130 directly interacts 

with Sp1 and stimulates transcriptional activation of genes. Mutant Htt seems to disturb these 

orchestrated interactions. Increased binding of mutant Htt to Sp1 reduces the association of 

Sp1 with TAFII130 and with its promoter region. Only overexpression of both SP1 and 

TAFII130 can overcome the inhibition of dopamine-D2-receptor gene expression (Dunah et 

al., 2002). Furthermore, in vitro transcription analysis revealed that Sp1 and selective 

components of the core transcription apparatus, including the transcription initiation factors 

TFIID and TFIIF, are direct targets inhibited by mutant Htt in a polyQ-length dependent 

manner (Zhai et al., 2005). However, CBP, Sp1, and TAFII130 have also been found to 

localize to inclusions (Kazantsev et al., 1999; McCampbell et al., 2000; Shimohata et al., 

2000; Steffan et al., 2000; Nucifora et al., 2001). Whether recruitment of these factors into 

aggregates is mediated by toxic monomeric or oligomeric intermediates during the 

aggregation process or by the final fibrils is still unclear. Thus, expanded polyQ might disturb 

transcription whether soluble or aggregated (Michalik and Van Broeckhoven, 2003). 

Importantly, characteristic alterations in gene expression that are normally regulated by these 

factors can be observed in transgenic and cell-culture models which are not necessarily 

associated with the formation of inclusions (Kita et al., 2002; Luthi-Carter et al., 2002a; 

Sipione et al., 2002).  

 

 

Figure 12:  Dysregulation of CRE-mediated transcription in HD. 
(A) CREB binds to CRE elements in promoters such as in the encephalin gene, the activation of which is 
important in neuronal survival. CREB recruits CBP and the TAFII130 subunit of TFIID, followed by the general 
transcriptional machinery (transcription factors TFIIA, B, D, E, F, H and TBP) and RNA polymerase II (Pol II). 
Once correctly targeted, transcription is initiated (B) Mutant Htt disrupts transcription by directly interacting 
with or sequestering CBP, and possibly TAFII130, in aggregates in the nucleus. CBP and TAFII130 are 
prevented from binding to CRE regions, so the general transcription apparatus along with Pol II are not correctly 
targeted and transcriptional activation is impaired.(Adapted from Landles and Bates, 2004). 
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In addition to CBP, Sp1 and TAFII130, several other important transcription factors 

appear to interact with Htt. The Gln-Ala repeat transcriptional activator CA150 has been 

found associated with both normal and mutant Htt (Holbert et al., 2001). In HD brain 

samples, CA150 protein levels increase as the disease progress, implying accumulation of 

CA150 in response to Htt aggregation and hence interference with transcription (Holbert et 

al., 2001). Furthermore, the general transcription factor TBP has been localized to inclusions 

(Perez et al., 1998) and strikingly, an expanded polyQ stretch in TBP causes SCA17 which 

resembles HD in many aspects (Nakamura et al., 2001; Stevanin et al., 2003), suggesting that 

altered function of TBP could similarly contribute to the pathology of HD. Htt might also 

function as a transcriptional repressor owing to its direct and polyQ dependent interaction 

with nuclear corepressor protein (N-CoR) and Sin3A, which both act in concert with other 

transcriptional DNA-binding proteins to repress the transcriptional activation of nuclear 

receptors such as thyroid and retinoic acid receptors (Boutell et al., 1999). Consistently, 

microarray analysis indicates an involvement of Htt in the regulation of N-CoR and Sin3A-

mediated transcription in HD transgenic mice (Luthi-Carter et al., 2000). Finally, the tumor 

protein p53 was also found in inclusions, reinforcing the hypothesis of a role for 

transcriptional dysregulation (McCampbell et al., 2000; Steffan et al., 2000). 

Another harmful interaction takes place between expanded polyQ tracts and the 

acetyltransferase domain of several histone acetylases, including CBP, p300 and P/CAF 

(Steffan et al., 2001) whose function is to maintain chromatin in a transcriptionally active 

state through acetylation of histones (Grewal and Moazed, 2003). Expanded polyQ inhibits 

histone acetylases and impairs histone acetylation. Furthermore, the role of defective histone 

acetylation in polyQ pathogenesis has been substantiated by the observation that histone 

deacetylase inhibitors alleviate neurodegeneration in animal and cellular models of polyQ 

toxicity (McCampbell et al., 2001; Steffan et al., 2001). 

2.4.2.6 Molecular chaperones in polyQ aggregation and toxicity 

Molecular chaperones are localized to polyQ aggregates in both cellular and animal 

models of polyQ diseases as well as in patient tissue samples (Cummings et al., 1998; Chai et 

al., 1999), suggesting that cellular quality-control mechanisms act to prevent aggregation 

(Sherman and Goldberg, 2001). Thus, impairment of protein folding might give rise to HD 

pathology (Sakahira et al., 2002). Chronic expression or generation of aggregation-prone 
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polyQ protein could have global consequences on protein homeostasis and may affect folding 

or stability of proteins, which harbor folding defects (Gidalevitz et al., 2006), such as 

metastable polymorphic proteins (Rutherford and Lindquist, 1998). Moreover, sequestration 

of chaperones into aggregates decreases the amount of available chaperones in the cell and 

thereby presumably enhances abnormal protein folding (Hay et al., 2004). Consistently, 

overexpression of the Hsp70/Hsp40 chaperone system suppressed polyQ-induced 

neurotoxicity in fly models (Warrick et al., 1999; Chan et al., 2000; Fernandez-Funez et al., 

2000; Kazemi-Esfarjani and Benzer, 2000) and mouse models of polyQ disease (Cummings 

et al., 2001; Bonini, 2002; Adachi et al., 2003) whereas expression of a dominant negative 

mutant form of Hsp70 increased polyQ toxicity (Cummings et al., 2001). Intriguingly, 

overexpression of Hsp70 and Hsp40 did neither prevent the formation nor alter the 

microscopic appearance of the neuronal inclusions, indicating that the protective effect of 

Hsp70 does not require inclusion body clearance. In vitro analysis revealed that Hsp70 and 

Hsp40 inhibited the self-assembly of polyQ proteins into amyloid-like fibrils in an ATP-

dependent manner and caused the formation of amorphous (as opposed to protofibrillar or 

fibrillar) detergent-soluble aggregates (Muchowski et al., 2000). Since fibril prevention was 

most effective when Hsp70 and Hsp40 acted synergistically during the lag phase of the 

aggregation reaction, their substrate is presumably in an intermediate, pre-fibrillar state. Yeast 

and mammalian cell models of polyQ aggregation as well as a Drosophila model of polyQ-

induced neurodegeneration confirmed the synergistic effect of the Hsp70/Hsp40 chaperones 

(Sittler et al., 2001; Bonini, 2002). Furthermore, Hsp70 and Hsp40 were found to partition 

monomers and decrease spherical and annual oligomers, which seem to be intermediates on 

the pathway to fibril assembly (Wacker et al., 2004). Hsp70 and Hsp40 might bind to 

expanded polypeptide segments and inhibit the formation of intramolecular β-sheet 

conformation, thereby blocking nucleation and fibril growth. Binding of Hsp70 to the polyQ 

segments must be transient and of low affinity, because Hsp70 cycles its substrates in an 

ATP-dependent manner and glutamine is not a preferred residue in Hsp70-binding peptides 

(Rudiger et al., 1997). In addition to Hsp70/Hsp40 chaperones, genetic screens implicated 

various chaperones in modulating polyQ aggregation (Nollen et al., 2004).  

Considering that chaperones are multifunctional proteins, their protection against 

neurodegeneration may result from more than one activity in the cell. Failure of housekeeping 

mechanisms during ageing may be in part a result of the need for greater protective capacity 
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in old age as aggregation becomes more prevalent, perhaps as a result of the gradual increased 

accumulation of misfolded and damaged proteins (Csermely, 2001). With progressive age, it 

is likely that the activity of our chaperone response and degradatory mechanism declines, 

resulting in an increased probability that the protective mechanisms are overwhelmed (Keller 

et al., 2002; Cohen and Kelly, 2003). Marginally stable or folding-defective proteins may 

misfold due to this stressed folding capacity and in turn contribute to the progressive 

disruption of the folding environment (Gidalevitz et al., 2006). Apparently, aged organisms 

and senescent cultures of mammalian cells are less able to induce Hsps in response to protein-

damaging conditions (Rattan and Derventzi, 1991; Heydari et al., 1994). Thus, a shift in the 

balance between cellular chaperone capacity and production of polyQ-expended protein may 

be crucial in triggering the onset of disease (Muchowski et al., 2000). Longer polyQ stretches 

would require more chaperone binding to avoid a toxic aggregation pathway, and therefore 

patients expressing such sequences would develop neuronal dysfunction earlier in life. 

 

 
Figure 13:  The global consequences of an aggregation-prone protein on protein folding homeostasis. 
(A) Under normal physiological conditions, polymorphisms in genes can result in the expression of proteins that 
are mild folding variants, which are correctly folded or cleared out of the cell by protein quality control 
mechanisms. (B) In the presence of a chronic aggregation-prone protein, the protein folding and clearance 
process may become overwhelmed. Innocuous proteins may no longer be correctly folded, leading to 
dysfunction in a diverse set of cellular pathways. In turn, these structurally and functionally unrelated proteins 
might generate a positive feedback loop and could exacerbate the misfolding of the aggregation-prone protein, 
acting as modifiers of this process (Adapted from Bates, 2006). 
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2.5 Aim of thesis 

There is increasing evidence that aggregate formation by a mutant version of 

Huntingtin (Htt), the disease protein in HD, is causally linked to the progressive 

neuropathology of this disease. However, whether large insoluble, fibrillar structures or 

smaller, monomers or oligomeric assemblies of Htt are the toxic agents responsible for 

cellular malfunction and eventual for neuronal loss, is far from clear. Toxicity could arise 

from the recruitment of other polyQ-containing proteins, i.e. transcription factors, into the 

neuronal inclusions, which would result in a loss of their normal cellular function. 

Alternatively, such factors might form abnormal protein-protein interactions with misfolded 

β-sheet rich Htt monomers or small soluble oligomers.  

The main aim of the project was to mechanistically dissect the contribution of soluble 

and aggregated forms of polyQ-expanded Htt exon 1 to cellular toxicity. This problem was 

addressed in the context of transcriptional dysregulation as a possible pathomechanism. 

Specifically, the interaction of polyQ-expanded Htt constructs with the transcription factors 

TBP and CBP was investigated in yeast model in vivo. These experiments were designed to 

determinate whether destabilization of the transcription factors can occur by polyQ-mediated 

aberrant interactions independent of the formation of insoluble coaggregates. Furthermore, the 

role of intramolecular determinants flanking the expanded polyQ stretch in modulating polyQ 

aggregation and cellular toxicity was analyzed. 

In a second part of the study, the interaction of different classes of molecular 

chaperones with polyQ-expanded fragments of Htt was investigated focusing on their ability 

to modulate oligomerization, aggregation and toxicity. In particular, the role of the cytosolic 

chaperonin TRiC was investigated in this context for the first time. Given the fact that 

chaperones assist in the folding of newly-synthesized proteins in a concerted and sequential 

manner of sequential actions, the cooperativity of chaperones in handling misfolded, 

aggregation-prone and toxic proteins was investigated. 
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3 Material and Methods 

3.1 Material 

3.1.1 Instruments 

Abimed (Langenfeld, Germany): Gilson Pipetman (2, 10, 20, 100, 200, 1000 µl). 

Amersham Pharmacia Biotech (Freiburg, Germany): electrophoresis power supply EPS 600, FPLC 

systems, SMART-System, prepacked chromatography columns: Superdex200, Superose6. 

Beckman (Munich, Germany): DU 640 UV/VIS spectrophophometer; Avanti J-25, Avanti 30 and GS-

6R centrifuge; Optima TLX ultracentrifuge. 

Biometra (Göttingen, Germany): T3 PCR-Thermocycler. 

Bio-Rad (München, Germany): electrophoresis chambers MiniProtean 2 and 3; electrophoresis power 

supply Power PAC 300. 

Eppendorf (Hamburg, Germany): centrifuges 5415C and 5417R, Thermomixer Comfort. 

EG&G Berthold (Bad Wildbad, Germany): Lumat LB9507. 

Fisher Scientific (Schwerte, Germany): pH meter Accumet Basic. 

Hoefer Scientific Instruments (San Francisco, USA): SemiPhore blotting transfer unit. 

Mettler Toledo (Gießen, Germany): balances AG285, PB602. 

Millipore (Eschborn, Germany): deionization system MilliQ plus PF, Millix-HA filters 0.22 µm. 

New Brunswick Scientific (Nürtingen, Germany): orbital shaker and incubator Innova 4430. 

Sartorius (Goettingen, Germany): vacuum filtration unit (0.2 µm). 

WTW (Weilheim, Germany): pH meter pH535. 

Zeiss (Jena, Germany): Microscope Axiovert 200M 

3.1.2 Chemicals 

All chemicals were of quality pro analysi and purchased from Sigma-Aldrich 

(Deisenhofen, Germany) if not stated otherwise. Solutions were prepared with deionised, 

double distilled and sterile-filtered water. Concentration in percent of liquids are given as 

(v/v) and of solid chemicals as (w/v). 

Amersham Pharmacia Biotech (Freiburg, Germany): Protein G Sepharose™, LMW and HMW gel 

filtration Calibration kits. 

BioMol (Hamburg, Germany): HEPES. 

BioRad (München, Germany): ethidiumbromide. 
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BD Bioscience (Heidelberg Germany): doxycycline. 

Calbiochem (Bad Soden, Germany): TWEEN-20. 

Difco (Heidelberg, Germany): Bacto agar, Bacto yeast extract, Bacto pepton, Bacto trypton, Yeast 

nitrogen base w/o amino acids.s 

Fermentas (St. Leon-Rot, Germany): PageRuler™ protein ladder, GeneRuler™ 100bp and 1 kb DNA 

ladder. 

Fluka (Deisenhofen, Germany): DMSO. 

Invitrogen (Karlsruhe, Germany): LipofectamineTM-reagent. 

New England Biolabs (Frankfurt/Main, Germany), T4 DNA Ligase, DNA polymerase I (Klenow 

fragment), restriction endonucleases, prestained protein marker broad range. 

Merk (Darmstadt, Germany): Benzonase, EDTA, 2-Mercaptoethanol, paraformaldehyde. 

Molecular Probes (Karlsruhe, Germany): DAPI. 

Quiagen (Hilden, Germany): NiNTA resin, QIAprep spin miniprep Kit, QUIAGEN Plasmid Midi Kit, 

QIAPrepEndoFree Plasmid Maxi kit, QIAquick PCR purification and gel extraction kits. 

Pierce (Bonn, Germany): Coomassie protein assay reagent. 

Promega (Mannheim, Germany): Wizard®PlusSV Minipreps, PureYield™ Plasmid Midiprep system, 

Wizard®SV gel and PCR clean-up system, Beetle Luciferin-potassium salt, Luciferase Assay System. 

Roche (Basel, Switzerland): ampicillin, aprotinin, Complete Protease inhibitor, DTT, ExpandTMLong 

Template PCR system, leupeptin, Pefabloc Protease inhibitor, pepstatinA, shrimp alkaline 

phosphatase. 

Schleicher & Schuell (Dassel, Germany): Protran™ nitrocellulose transfer membrane, nitrocellulose 

acetate membrane filter. 

Seikagaku (Tokyo, Japan): Zymolyase-20T 

Serva (Heidelberg, Germany): Coomassie, Serva BlueR, PEG, PMSF, Acrylamide-Bis solution 30% 

(37:5:1), Citifluor. 

Stratagene (La Jolla, USA): PfuTurbo™ DNA Polymerase II, QuickChange™ site-directed 

mutagenesis kit, Yeast Carrier DNA. 
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3.1.3 Buffers and Media 

Buffers were prepared with ddH2O. 

PBS    137 mM NaCl, 2.7 mM KCl, 8.4 mM KH2PO4, 1.5 mM K2HPO4, pH 
    7.4, adjusted with HCl 
PBST    PBS + 0.05 % (v/v) Tween 20 
TE    10 mM Tris-HCl pH 8.0, 1 mM EDTA 

 

Media were prepared with ddH2O and autoclaved, unless stated otherwise. 

LB medium:   10 g/l Bacto™tryptone, 5 g/l Bacto™yeast extract, 5 g/l NaCl, (+ 15 
    g/l agar for solid medium), Adjusted to pH 7.0 with NaOH, ampicillin 
    100 mg/ml in ddH20 (sterile filtered and added to media after  
    autoclaving). 
 
YPD medium:   20 g/l Difco™peptone, 10 g/l Bacto™yeast extract, 20 g glucose, 
    ddH20  to 1 l final volume, adjust pH 5.8.  
 
SC-synthetic complete  6.7 g/l Yeast Nitrogen Base without amino acids, 20 g/l glucose, 2 g/l 
    drop-out mix, (+ 20 g/l agar for solid medium), ddH20  to 1 l final 
    volume, adjust pH 5.8. 
 
Drop-out mix   0,5 g adenine, 0,2 g para-aminobenzoic acid, 10 g leucine, 2 g each 
    of alanine, arginine, asparagine, aspartic acid, cyteine, glutamine, 
    glutamic acid, glycine, histidine, inositol, isoleucine, lysine,  
    methionine, phenylalanine, proline, serine, threonine, tryptophan, 
    tyrosine, uracil, valine (For selection, components were left out for 
    which the strain was prototroph.) 
 
Sugar stock solutions  20 %glucose, 20 % raffinose, 20 % galactose (Solutions were sterile 
    filtered and added to sterile media). 
 
DMEM    inclusive 3.7 g/l NaHCO3 and 4.5 g/l glucose (BiochromAG, F0435) 
 
FCS    Tet system improved FCS (BD Bioscience, 8637, Lot G20951) 
 
200 mM L-glutamine   (Invitrogen, 25030-024) 
 
Penicillin/Streptomycin (100x) each 10000 U/ml 
 
Geneticin (G-418)  100 mg/ml (Sigma, 9516) 
 
OptiMEM-I   (Invitrogen, 31985-04) 
 
PBS    w/o CaCl2/MgCl2 (Invitrogen, 20012-019) 
 
Trypsin/EDTA-Solution  0.25 % trypsin (BiochromAG, L2163), 0.002 % EDTA 
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3.1.4 Antisera 

All antisera were used in 2x10-3 to 10-5 dilutions in PBS-T supplemented either with 

0.3 % BSA or with 0.4 % non-fat milk powder. 

 
Table 2:  Antisera used in this study. 
 

Primary antibody Species Reference 
anti-c-myc mouse, monoclonal SantaCruz sc-40 

anti-c-myc-Cy3 mouse clone 9E10, monoclonal Sigma C 6594 
anti-HA rabbit, polyclonal Babco MMS-101R 

anti-Flag M2 mouse, monoclonal Babco MMS-101R 
anti-GFP mouse clones 7.1&13.1, monoclonal Roche 11814 460 001 
anti-GST goat, monoclonal Amersham 27-4577 
anti-CBP mouse, monoclonal abcam ab2832 
anti-TBP mouse, monoclonal abcam ab818 
anti-1C2 mouse, monoclonal Chemicon MAB1574 
anti-A11 rabbit, polyclonal C. Glabe 
anti-Ssa1 rabbit, polyclonal K. Siegers 
anti-Ssb1 rabbit, polyclonal E. Craig 
anti-Ydj1 rabbit, polyclonal E. Craig 

anti-GroEL rabbit, polyclonal Dean Naylor 
anti-TCP-1α rat, polyclonal Stressgen CTA-191 
anti-TCP1 rabbit, polyclonal K. Siegers 
anti-TCP3 rabbit, polyclonal K. Siegers 
anti-TCP5 rabbit, polyclonal K. Siegers 
anti-TCP7 rabbit, polyclonal K. Siegers 

 

Secondary antibody Species Reference 
anti-mouse IgG HRP goat, polyclonal DakoCytomation P0447 
anti-mouse IgG Cy3 goat, polyclonal Dianova 115-165-062 
anti-mouse IgG FITC goat, polyclonal Dianova 115-096-062 
anti-rabbit IgG HRP goat, polyclonal Sigma A9169 
anti-rabbit IgG Cy3 goat, polyclonal Dianova 111-165-045 

anti-rabbit IgG FITC goat, polyclonal Sigma F6005 
anti-rat IgG FITC goat, polyclonal Sigma F 6258 
anti-rat IgG Cy3 goat, polyclonal abcam ab6953 
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3.1.5 Bacterial and yeast strains, mammalian cell lines 

 

Table 3:  E. coli strains used in this study. 
 

Strain Genotype Reference 
DH5α 

 
F'/endA1 hsdR17(rK-mK+) supE44 thi-1 recA1 gyrA (Na1r) relA1 
D(lacZYA-argF)U169(m80lacZDM15) 

Novagene 
 

SURE 
 

e14- (McrA-) D(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96 
relA1 lac recB 

Novagene 
 

XL1-Blue 
 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F˘proAB 
lacIqZDM15 Tn10 (Tetr)] 

Stratagene 
 

 

Table 4:  Saccharomyces cerevisiae strains used in this study. 
 

Strain Genotyp Reference 
YPH499 

 
MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 
 

(Sikorski and Hieter, 
1989) 

GSY2 
 

MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 
∆spt15::HIS3 pRS415yhTBP38Q 

(Schaffar et al., 2004) 
 

GSY2 
 

MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 ssa1∆ 
ssa2∆ 

Gregor Schaffar 
 

KSY185.7 
 

MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 ssb1∆ 
ssb2∆ 

(Siegers et al., 2003) 
 

KSY515 
 

MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 tcp1∆ 
pRS414-TCP1 

(Siegers et al., 2003) 
 

KSY333 
 

MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 tcp1∆ 
pRS414-tcp1-2 

(Siegers et al., 2003) 
 

 

Table 5:  Neuroblastoma cell lines used in this study. 
 

Cell line Description Reference 
Neuro-2a 

(N2a) -Tet-off 
(adherent) mouse neuroblastoma cell line stable transfected with 
tetracycline-inducible transactivator tTA 

(Schaffar et al., 2004) 

SH-SY5Y 
 

(adherent) human neuroblastoma cell line  ATCC CRL-2266 
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3.1.6 Plasmids and oligonucleotides 
 
Table 6:  Plasmids used in this study. 
 

Vector Description Reference 
pGEX-6P1 E.coli cloning vector, T7 and T3 promoters  Stratagene 
pRS317 Yeast Shuttle vector (CEN6, LYS2) (Sikorski and Boeke, 1991) 
pRS413 Yeast Shuttle vector (CEN6, HIS3) (Sikorski and Hieter, 1989) 
pRS414 Yeast Shuttle vector (CEN6, TRP1) (Sikorski and Hieter, 1989) 
pRS415 Yeast Shuttle vector (CEN6, LEU2) (Sikorski and Hieter, 1989) 
pRS416 Yeast Shuttle vector (CEN6, URA3) (Sikorski and Hieter, 1989) 
p415ADH Yeast expression vector (CEN6, LEU2), ADH1 promoter (Mumberg et al., 1994) 
p415Gal Yeast expression vector (CEN6, Leu2), GAL1 promoter (Mumberg et al., 1994) 
p416Gal Yeast expression vector (CEN6, URA3), GAL1 promoter (Mumberg et al., 1994) 
p425Gal Yeast expression vector (2µ, LEU2), GAL1 promoter (Mumberg et al., 1994) 
p426Gal Yeast expression vector (2µ, URA3), GAL1 promoter (Mumberg et al., 1994) 
p423tet Yeast expression vector (CEN6, HIS3), tetO promoter K. Siegers 
pSI215 Yeast expression vector (2µ, TRP1), CUP1 promoter K. Siegers 
pSI244 Yeast expression vector (2µ, LEU2), CUP1 promoter K. Siegers 
YEp105 Yeast expression vector (2µ, TRP1), CUP1 promoter (Ecker et al., 1987) 
pTRE2hygro mammalian expression vector, tet-CMV promoter BD Bioscience 
pcDNA3.1 mammalian expression vector, CMV promoter Invitrogene 
pEF-BOS-EX mammalian expression vector, EF-1-α promoter (Mizushima and Nagata, 1990) 

 
Table 7:  Oligonucleotides used in this study. 
 

Name Nucleotide sequence 
5’- myc-Htt-BglII 
 

5'-CTAGCTAGCATGTGTGAACAAAAGCTTATTTCTGAAGAAGACTTGGGTA 
TGCAGATCATGGCGACCCTGGAAAGGCTG-3' 

5’- NLS-myc-BglII 
 

5'-CTAGCTAGCATGCGCCCAAAAAAGAAGAGAAAGGTAGAATTAGGAACA 
GCATGTGAACAAAGCTTATTTCTG-3' 

5’- myc-PstI 5'-AACTGCAGATGTGTGAACAAAAGCTTATTTCTGAAG-3' 
3’- Htt-SalI 5'-GAGGTCGACTCACGGTCGGTGCAGCGGCTCCTCAGCC-3' 
3’- Htt-NotI 5'-CTTTTGCGGCCGCTCACGGTCGGTGCAGCGGCTCC-3' 
5’- GST-BglII 5'-GGAAGATCTATGTCCCCTATACTAGGTTATTGG-3' 
3’- HA-stop-SalI 5'-GACGTCGACTTACGCGTAATCTGGAACGTCATACGG-3' 
5’- GST-NheI 5'-CTAGCTAGCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGG-3' 
3’- GFP-SalI 5'-CTGCAGCTGGCTTTTGTATAGTTCATCCATGCC-3' 
5’- PKI-NES 
 

5'-CTAGTAATGAATTAGCCTTGAAATTAGCAGGTCTTGATATCAACAAGACA 
A-3' 

3’- PKI-NES 
 

5'-ATTACTTAATCGGAACTTTAATCGTCCAGAACTATAGTTGTTCTGTTTCGA-
3' 

5’- Luc-BamHI 5'-CGGATCCATGGAAAACATGGAGAACGATGAAAATATTGTG-3' 
3’- Luc-SalI 5'-TGACGTCGACTTACAATTTGGACTTTCCGCCCTTCTTGGC-3' 
5’- GAL1-TGTA 5'-GGTTATGCAGTTTTTGCATTTACATATCTGTTAATAGAT-3' 
3’- GAL1-TGTA 5'-GATCTATTAACAGATATGTAAATGCAAAAACTGCATAACC-3' 
5’- hTBP-NotI 5'-ATTTGCGGCCGCGATGGATCAGAACAACAGCCTGCCACC-3' 
3’- hTBP-XhoI 5'-GGCTCGAGCCTTACGTCGTCTTCCTGAATCCCTTTAGAAT-3' 
5’- yTBP-NotI 5’ -CAGGCGCGAGCTCATGGCCGATGAGGAACG- 3’ 
3’- yTBP-XhoI 5’ -CAGGCGCCTCGAGTCACATTTTTCTAAATTCAC- 3’ 
5’- mut3hTBP 
 

5'-GTTATGAGCCAGAGTTATTTCCTGGTTTATTCTACAGAATGATCAAACC 
CAGAATTACTCTCGTTATTTTTGTTTCTGGAAAAG-3' 

3’- mut3hTBP 
 

5'-CTTTTCCAGAAACAAAAATAACGAGAGTAATTCTGGGTTTGATCATTCT 
GTAGAATAAACCAGGAAATAACTCTGGCTCATAAC-3' 
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3.2 Methods 

3.2.1 Molecular biological methods 

All solutions were autoclaved or sterile filtered before usage. All methods were 

adapted from “Molecular Cloning“(Sambrook J., 1989), if not stated elsewhere. 

3.2.1.1 Plasmid DNA purification 

5 ml or 100 ml LB medium, for small or large-scale plasmid DNA purification, 

respectively, were inoculated with a single E.coli colony harboring the plasmid of interest and 

grown to saturation over night at 37 °C. Cells were harvested and further processed according 

to instructions of the following plasmid purification kits: QIAprep spin miniprep Kit, 

QUIAGEN Plasmid Midi Kit and QIAprep Endofree Plasmid Maxi Kit (Quiagen) or 

Wizard®PlusSV Miniprep and PureYield™ Plasmid Midiprep system (Promega). 

3.2.1.2 Determination of DNA concentration 

DNA concentration of purified Plasmid DNA was measured by UV absorption 

spectroscopy at a wavelength of 260 nm. In H2O, a solution of 50 µg/ml of double-stranded 

DNA exhibits approximately an absorbance A260 = 1. 

3.2.1.3 Plasmid DNA sequencing 

DNA sequencing was performed either by Medigenomix GmbH (Martinsried, 

Germany) or by Sequiserve (Vaterstetten, Germany). 

3.2.1.4 DNA restriction digestion 

DNA fragmentation for analysis and cloning was carried out by digesting plasmid 

DNA or PCR products with restriction endonucleases. Enzymes and supplied buffers were 

used as recommended by the manufacturer. 0.5-1 µg plasmid DNA was used for analysis and 

8-15 µg plasmid DNA or 20 µl purified PCR product for cloning purposes. The reaction was 

incubated at the recommended temperature for 2-4 h. The restriction digest was incubated 

typically at 65°C for 20 min to heat-inactivate enzyme for further cloning or separated by 

agarose gel electrophoresis for DNA fragment analysis. 
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3.2.1.5 Dephosphorylation of DNA fragments 

Prior to ligation of DNA fragments carrying identical ends, 5’-end dephosphorylation 

was carried out in order to prevent self-ligation of plasmid DNA fragments. The removal of 5’ 

phosphate groups was catalysed by Shrimp alkaline phosphatase (SAP). 5 – 10 µg plasmid 

DNA were incubated with 1 U SAP and supplied buffer for 1 h at 37 °C. Subsequently, the 

reaction was heat inactivation by incubation at 65 °C for 15 min.  

3.2.1.6 5’-DNA end overhand fill in  

For generation of blunt ends, 3’-recessed ends were filled-in by Klenow fragment. 15 

U Klenow fragment and 30 µM dNTP were added to a 100µl DNA restriction digest and 

incubated at 25˚C for 15 min. Klenow fragment was heat inactivated at 75˚C for 20 min. 

3.2.1.7 DNA purification 

Enzymatically modified DNA or PCR products were purified according to QIAquick 

PCR purification kit (Qiagen) or to Wizard®SV PCR clean-up system (Promega). 

3.2.1.8 DNA agarose gel electrophoresis 

For separation of DNA fragments or analysis of plasmid digests, DNA agarose gel 

electrophoresis was performed in TAE buffer and 1 – 2 % TAE-agarose gels, supplemented 

with 1 mg/ml ethidiumbromide, at 4 – 6 V/cm. Ethidiumbromide interchelates with DNA and 

can be visualized under UV light. A DNA mass standard was used for identification of DNA 

length. The DNA was loaded in loading buffer on agarose gel. 

DNA sample buffer 30 % glycerol, 0.25 % bromphenol blue, 0.25 % xylencyanol FF 
TAE   40 mM Tris-acetate, 1 mM EDTA, pH 8.0 
 

3.2.1.9 DNA extraction from agarose gels 

After separation by agarose gel electrophoresis and staining, bands of interest were cut 

out and purified by Wizard®SV gel clean-up system (Promega) or QIAquick gel extraction kit 

(Quiagen) in order to isolate DNA fragments. 
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3.2.1.10 Polymerase chain reaction (PCR) 

For amplification of DNA fragments, the polymerase chain reaction (PCR) was 

performed according to the following protocol: 

 
Table 8:  Standard protocol for PCR. 
 

Reaction mixture Reaction 
0.25 µM primer 1 (sense) 
0.25 µM primer 1 (antisense) 
10 µl 10x Pfu polymerase buffer 
10 µl DMSO 
50 – 100 µg template DNA 
250 µM dNTPs 
1 – 2 U Pfu DNA polymerase II 
ddH20 to 100 µl final volume 

1st cycle   denaturation   95 °C         5 min 
25 cycle    denaturation   95 °C        30 sec 
                  annealing       60 °C        30 sec 
                  extension       72 °C    1 min/kb 
last cycle   extension       72 °C         8 min 
                                          4 °C                

 

3.2.1.11 Oligonucleotides annealing 

100 pmol/µl sense and antisense oligonucleotides were mixed at a 1:1 ratio, incubated 

first for 3 min at 95 °C, following 10 min at 65 °C, and finally for 2 h at 37 °C. The annealed 

oligonucleotides were ligated into vector DNA 

3.2.1.12 Site-directed mutagenesis 

Site-directed mutagenesis was performed using the QuickChange™ System 

(Stratagene) following the manufacturers’ instructions. Vector DNA containing the gene of 

interest was amplified by PCR using a complementary set of sense and antisense primers, 

which introduced site-specific the desired mutation. A mutagenesis PCR reaction was 

typically performed using the following protocol: 

 
Table 9:  Standard protocol for site-directed mutagenesis. 
 

Reaction mixture Reaction 
125 ng primer 1 (sense) 
125 ng primer 2 (antisense) 
5 µl 10x Pfu polymerase buffer 
5 – 50 ng template DNA 
250 µM dNTPs 
1 µl PfuTurbo™ DNA polymerase II 
ddH20 to 50 µl final volume 

1st cycle denaturation 95 °C      30 sec 
25 cycle  denaturation 95 °C     30 sec 
                annealing     55 °C      1 min 
                extension     68 °C 2 min/kb 
last cycle extension     68 °C    20 min 
                                      4 °C             ∞ 
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PCR products were treated with 1 µl endonuclease DpnI (20000U/ml) for1 hour at 37 

°C to digest specifically methylated and hemimethylated parental template DNA. 1 – 5 µl of 

the reactions were transformed in E.coli XL1-Blue supercompetent cells and mutations were 

confirmed by DNA sequencing. 

3.2.1.13 Ligation of DNA fragments 

Ligation reaction was carried out to fuse compatible DNA ends. Usually vector and 

fragment DNA were mixed at 1:7 ratios with 0.5 U T4 DNA Ligase and supplied buffer. The 

reaction was incubated at 20 °C for 15 min in case of cohesive ends and for 2 h in case of 

blunt ends followed by transformation into chemical competent E.coli cells. 

3.2.1.14 Preparation and transformation of competent E. coli cells 

Chemical competent cells were prepared as described (Hanahan, 1983). 5 ml LB were 

inoculate with a single colony and grown to saturation at 37 °C. 2 ml of this pre-culture were 

used to inoculate 200 ml LB medium and grown to an OD600 of 0.3. Cells were chilled on ice 

for 15 min and centrifuged at 1500 x g for 15 min at 4 °C. Pelleted cells were resuspended in 

30 ml ice-cold TB1 and incubated on ice for 10 min. Then, cells were centrifuged again and 

resuspended in 4 ml ice-cold TB2. Aliquots were frozen in liquid nitrogen and stored at -80 

°C. For transformation, 50 µl competent cells were mixed with 0.05 – 0.2 µg plasmid DNA or 

1 – 5 µl ligation reaction and incubated on ice for 30 min. The cells were then heat shocked at 

42 °C for 45 – 60 s and placed on ice for 2 min. After addition of 1 ml of LB medium, cells 

were incubated at 37 °C for 1 h with shaking. The cell suspension was subsequently plated on 

selective plates and incubated at 37 °C until colonies had developed. 

TB1   100 mM RbCl, 250 mM MnCl2, 30 mM KAc, 10 mM CaCl2,  
   15 % glycerol, pH 5.8 (adjusted with 0.2 HOAc) 
TB2   75 mM CaCl2, 10 mM RbCl2, 10 mM MOPS, 15 % glycerol, pH 6.5 

    (adjusted with KOH) 
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3.2.2 Yeast methods 

All solutions required for cultivation of yeast were autoclaved or sterile filtered before 

usage. All yeast methods were adapted from “Yeast Protocols” (Evans, 1996), if not stated 

otherwise. 

3.2.2.1 Culture and storage 

Saccharomyces cerevisiae yeast strains were cultivated on YPD or SC medium 

containing agar plates or as liquid culture with vigorous agitation at the required temperature 

in YPD or SC medium. Media were supplemented with 0,003 % adenine, since all used yeast 

strains harbor an auxotroph ade2-101 mutation within the adenine gene. For short-term 

storage, yeast was streaked on agar plates, grown until colony formation and stored at 4 °C. 

For long-term storage, glycerol stocks were performed by mixing a liquid culture, grown to 

saturation, in 1:1 ration with 50 % glycerol. Cell suspension is shock frozen in liquid nitrogen 

and stored at -80 °C. 

3.2.2.2 Determination of cell density 

The density of cells in a culture was determined spectrophotometrically by measuring 

its optical density (OD) at 600 nm. For reliable measurements, cultures were diluted such that 

the OD600 was below 1. In this range, each 0.1 OD600 unit corresponds to ~ 3x106 cells/ml. 

Consequently, an OD600 of 1 is equal to 3x107 cells/ml. 

3.2.2.3 Preparation and transformation of competent yeast cells 

For generation of competent yeast cells, 5 ml appropriated media was inoculated with 

a single yeast colony and grown to stationary phase at 30 °C. This preculture was used to 

inoculated 50 ml main culture to a cell density of OD600 = 0.15 and incubated as described 

above. Cells were harvested at OD600 = 0.5 – 0.6 by centrifugation at 1000 x g for 3 min at 

room temperature, resuspended in 50 ml ddH2O and centrifuged again. Cells were 

resuspended in 12.5 ml lithium/sorbitol-buffer and pelleted once more. After an additional 

centrifugation step in order to remove the supernatant completely, pellets were finally 

resuspended in 300 µl lithium/sorbitol-buffer and mixed with 30 µl yeast carrier DNA (10 

mg/ml). Next, cell suspension was aliquoted and stored at -80 °C. For transformation, 50 µl 

cells were incubated with 1 µg plasmid DNA and 300 µl lithium/PEG-buffer for 20 min at 
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RT. 35 µl DMSO were added to the cells suspension followed by heat shock incubation at 42 

°C for 15 min. Cells were pelleted at 4000 x g for 5 min, resuspended in appropriated medium 

and plated on selective plates followed by incubation at 30 °C until colonies developed. 

Lithium/sorbitol buffer  100 mM LiOAc, 10 mM Tris-HCl pH 8.0, 1 mM EDTA 
    1 M sorbitol 
Lithium/PEG buffer  100 mM LiOAc, 10 mM Tris-HCl pH 8.0, 1 mM EDTA 
    40% PEG3350 
 

3.2.2.4 Purification of DNA from yeast cells 

2 ml yeast cultures were grown overnight to early stationary phase at 30 °C. Cells 

were pelleted by centrifugation at 2000 x g, washed once with ddH2O and resuspended in 200 

µl buffer A followed by incubation for 1 h at 30 °C with gently agitation. Subsequently, 200 

µl buffer B were added and incubated for 20 min at 65 °C. Cells were placed on ice prior to 

addition of 200 µl KAc and 15 min incubation. Cells were centrifuged at 20.000 x g and 

supernatant transferred to fresh Eppendorf tube. DNA was precipitated from supernatant by 

addition of 600 µl isopropanol. After short incubation at RT, DNA was pelleted by 

centrifugation at 20.000 x g for 10 min, washed once with 70 % ethanol and incubated at RT 

for 10 min. DNA was pelleted again by centrifugation at 20.000 x g for 10 min, air-dried and 

resuspended in 30 µl TE buffer. 

Buffer A  100 mM Tris-HCl pH 7.5, 10 mM EDTA pH 7.5, 10 µl/ml 2- 
    mercaptoethanol, 0.2 mg/ml Zymolase-20T 

Buffer B  0.2 M NaOH, 1 % SDS 
 

3.2.2.5 Protein expression in yeast cells 

For expression of proteins in yeast, galactose, copper and doxycycline regulated 

promoters, GAL1, CUP1 and tetO respectively, were used. Since glucose inhibits the GAL1 

promoter, glucose was only used as carbon source for yeast in media when expression was 

driven by CUP1 promoter. For galactose inducible expression, raffinose was used as carbon 

source instead of glucose. A stationary phase preculture was used to inoculated a main culture 

to an optical density of OD600 = 0.15 and grown at 30 °C while shaking (230 rpm). Expression 

of the protein of interest was induced with 2 % Galactose or 100 µM CuSO4, for GAL1 or 

CUP1 promoter respectively, once the culture reached OD600 = 0.4 – 0.5 and cells were 

incubated for desired period of time at 30 °C with vigorous agitation (230 rpm). tetO driven 
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expression was induced by withdrawal of doxycycline from the media. Cells were washed 3 

times in media and were allowed to grow for desired period. 

3.2.2.6 Growth assays 

Growth curves and plate assays were performed to compare viability of various yeast 

strains. For plate assays, a serial dilution was performed with the appropriated medium 

starting from an exponential phase culture adjusted to a cell density of OD600 = 1. 5 µl of each 

dilution was dropped on selective plate and incubated at the required temperature until 

colonies developed. Sensitivity to the microtubule-destabilizing drug benomyl was assayed by 

spotting cells on YPD agar plates containing 0 and 40mg/ml benomyl. For growth curves, cell 

density was recorded in liquid media supplemented with 50 mM 3-AT at 30 °C by reading 

OD600 at various time points. 

3.2.2.7 Luciferase assay 

Luciferase activity was measured by mixing approximately 5 µl exponential phase 

cells with 50 µl of beetle luciferin (Promega). The samples were immediately transferred into 

a luminometer (EG&G Berthold) and measured for 5 – 30 seconds. Each measurement was 

repeated at least three times and the results were averaged. Cell density was determinated by 

measuring OD600 in order to calculate relative luciferase activity. 

3.2.2.8 β-Galactosidase assay 

β-galactosidase converts the colorless ONPG substrate into galactose and the 

chromophore ο-nitrophenol, yielding a bright yellow solution. 100 µl lysate were incubated 

with 700 µl Z buffer and 160 µl ONPG at 30 °C. 400 µl Stop solution were added when all 

samples showed a weak yellow coloring and absorbance were measured at 420 nm. β-

galactosidase activity was expressed in nmoles of β-galactose formed per minutes per mg of 

lysates at 30 °C (Nielsen et al., 1983). 

Z Buffer  100 mM NaH2PO4 pH 7.0, 10 mM KCl, 1 mM MgSO4, 50 mM β-
    mercaptoethanol 

ONPG   4 mg/ml in Z Buffer 
Stop solution  1 M Na2CO3 
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3.2.2.9 Preparation of yeast cell lysates 

Glass bead lysis was performed for preparation of lysates under native conditions. 

Yeast cultures were harvested by centrifugation at 2000 x g. Pellets were washed once with 

ddH2O and mixed with 0.5 – 1 ml ice-cold lysis buffer and one volume of acid-washed glass 

beads (diameter 0.45 – 0.5 mm). Lysis buffers TG&I or TP were only used for gel filtration 

and immunoprecipitation or NiNTA pull down of TRiC, respectively. Suspensions were 

repeatedly shaken vigorously for 1 min and chilled on ice in between. Cell debris and beads 

were pelleted at 1000 x g at 4 °C and supernatants were transferred to new tubes. 

Lysis buffer  25 mM Tris-HCl pH 7.5, 50 mM KCl, 10 mM MgCl2, 1 mM EDTA, 
    5% glycerol, 1% Triton-X-100, 1x protease-inhibitor-mix 

Lysis buffer TG&I 1 x PBS, 1 mM EDTA, 1x protease-inhibitor-mix 
Lysis buffer TP  1 x PBS, 10 mM MgCl2, 5 % glycerol, 0.1% Triton-X-100, 1x  

    protease-inhibitor-mix 
 

3.2.2.10 Immunofluorescence 

For immunofluorescence microscopy, 5 ml exponential phase culture were fixed by 

addition of 0.5 M K3PO4 (pH 6.5) and 3.7% formaldehyde for one hour at RT. Cells were 

harvested by centrifugation at 1000 x g, washed five times with sorbitol buffer and 

resuspended in 1 ml sorbitol buffer supplemented with 2.5 mg Zymolase T20 and 19 µM 2-

mercaptoethanol. Suspension was incubated at 30 °C under agitation until ~ 90 % of cells 

were spheroblasts. After thoroughly washing with sorbitol buffer, spheroblasts were 

resuspended in 500 µl sorbitol buffer. 20 µl of suspension were transferred onto a multiwell 

microscopy slide coated with 0,3 % poly-L-lysine and incubated for 10 min. Unbound 

spheroblasts were washed away with PBS supplemented with 1 % BSA (PBS-B) before air-

drying slides. For permeabilization, slides were incubated 5 min in ice-cold 100 % ethanol 

following 30 sec in ice-cold 100 % acetone. After air-drying, cells were incubated with PBS-

B for one hour at RT to prevent unspecific antibodies binding. Spheroblasts were incubated 

with appropriate primary antibody (20 – 50 mg/ml in PBS-B) for one hour. After thoroughly 

washing with PBS-B, cells were incubated with corresponding fluorescent-labeled secondary 

antibody (5 – 10 µg/ml in PBS-B) as before. Slides were washed as before, overlaid with 

mounting medium and covered with coverslip sealed by nail polisher.  

Sorbitol buffer   0.1 M KPO4, pH 6.5, 1.2 M sorbitol 
Mounting medium  75% Citifluor, 25% PBS, 0.25 µg/ml DAPI 
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3.2.3 Mammalian cell culture methods 

All media and material, utilized for mammalian cell culture, were either sterile 

filtered, autoclaved or UV-light radiated prior to usage. 

3.2.3.1 Cultivation of adherent cells 

The adherent cell lines N2a and SH-SYS5 were grown in DMEM medium 

supplemented with 10 % FCS, 2 mM L-glutamine 1x Penicillin/Streptomycin, if not stated 

otherwise. Cells were cultured in tissue culture plates at 37 °C in 5 % CO2. For maintenance, 

cells reached approximately 90 % confluency were washed once with PBS and then detached 

from tissue culture plates using 1x trypsin/EDTA. Cells were then diluted in fresh medium as 

required and plated into appropriated tissue culture plates for further cultivation. For long-

term storage, cells were trypsinized, pelleted at 200 x g for 5 min and resuspended in medium 

supplemented with 10 % DMSO. Next, cells were frozen at -80 °C over night and then 

transferred into liquid nitrogen. For regeneration, cells were thaw at 37 °C in a water bath 

followed by dilution into pre-warmed medium. After centrifugation at 200 x g for 5 min, cells 

were resuspended in medium, transferred into tissue culture plates and incubated as described 

above. In order to remove DMSO completely, medium was exchanged the following day. 

3.2.3.2 Transient transfection 

Cell lines were transfected with the liposome based LipofectAMINE™ reagent 

(Invitrogen) according to the manufacturers’ instructions. Transfection was enhanced by the 

use of Plus™ reagent (Invitrogen) to pre-complex DNA prior to the preparation of 

transfection complexes. The day prior to transfection, cells were diluted and plated in order to 

reach approximately 60 % confluency at the day of transfection. Per 6 cm dish, 2 µg DNA 

were mixed with 8 µl Plus™ reagents in 250 µl OptiMEM-I medium and incubated for 15 

min at room temperature to pre-complex DNA. 12 µl LipofectAMINE™ diluted in 250 µl 

OptiMEM-I medium were added and incubated for another 15 min. While DNA-liposome 

complexes were forming, medium was replaced by serum free OptiMEM-I medium. DNA-

liposome mixture was then transferred on to the cells and incubated for 3 h at 37 °C. Finally, 

serum containing growth medium was added and cells were grown for 24 to 48 h. 
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3.2.3.3 Preparation of cell lysates 

Cell lysates were prepared 24 h to 48 h after transient transfection. Cells were washed 

twice with ice-cold PBS and incubated with 0.5 ml ice-cold lysis buffer on ice for 10 min. 

Complete detachment of cells was achieved using a cell scraper. Cell lysates were separated 

from intact cells upon centrifugation at 1000 x g for 5 min at 4 °C. 

Lysis buffer  150 mM NaCl, 10 mM Tris-HCl pH 7.5, 1% Triton-X-100, 0.5% 
    deoxycholat, 0.1% SDS, 1x protease-inhibitor-mix 

 

3.2.3.4 Immunofluorescence 

Cells were grown on coverslips to about 50 % confluency. Cells were washed three 

times with pre-warmed PBS prior to fixation and permeabilization in methanol for 5 min at -

20 °C. C. After removing of methanol, cells were washed once again three times with PBS 

and incubated in PBS supplemented with 1 % BSA (PBS-B) for 1 h at RT to reduce 

unspecific binding of antibodies. The first antibody was applied at concentration of 20 – 50 

µg/ml in PBS-B for 1 h. Cells were then washed three times with PBS before applying the 

secondary, fluorescent-labeled antibody at concentration of 10 – 20 µg/ml in PBS-B together 

with 1 µg/ml DAPI for 1 h. DAPI was used to stain the nucleus. Prior to fixation on 

microscopy slide with Prolong®Antifade kit (Molecular Probes) cells were washed three 

times with PBS and once in ddH2O in order to remove salts. Finally, slides were sealed with 

nail polisher and stored in the dark at 4 °C. 

3.2.3.5 Luciferase assay 

Transfected cells were washed once in PBS, lysed in 200 µl reporter lysis buffer 

(Promega) and separated form intact cells upon low spin centrifugation. Luciferase activity 

was tested by diluting 5 µl lysates into 50 µl luciferase reagent (Promega). The samples were 

immediately transferred into a luminometer (EG&G Berthold) and measured for two seconds. 

Each measurement was repeated at least twice and the results were averaged. Total protein 

concentration was determinated in order to calculate relative luciferase activity. 
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3.2.4 Biochemical methods 

3.2.4.1 Determination of protein concentration 

Total protein concentration of cell lysates was determinated spectrophotometrically at 

OD595 using Bradford reagent (Pierce) (Bradford, 1976) and compared to a BSA standard 

dilution series. The concentration of the samples was then normalized. 

3.2.4.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were analyzed by SDS-PAGE using a discontinuous buffer system under 

denaturing and reducing conditions (Laemmli, 1970). 4x concentrated SDS loading buffer 

was added to protein samples prior to denaturation at 95 °C for 5 min and gel loading. Gels 

(0.75 or 1 mm width) had varying polyacrylamide concentrations (7.5 – 15 %) depending on 

the required resolution. Electrophoresis was performed in BioRad Mini-Protean II employing 

a constant voltage of 200 V in SDS running buffer. 

Stacking Gel   5.1 % acrylamide/bisacrylamide (37.5:1), 125 mM Tris HCl, 
     pH 6.8,  0.1 % SDS, 0.1 % TEMED, 0.1 % APS 

Separating Gel   7.5 - 15 % acrylamide/bisacrylamide (37.5:1), 750 mM Tris 
     HCl, pH 8.8, 0.1 % SDS, 0.075 % TEMED, 0.05 % APS 

4x SDS loading buffer  62.5 mM Tris-HCl, pH 6.8, 20 % glycerol, 2 % SDS, 0,005 % 
     bromphenol blue, 750 mM 2-mercaptoethanol 

SDS running buffer  50 mM Tris-Base (pH8.3), 380 mM glycine, 0.1 % SDS  
 

3.2.4.3 Western Blotting 

Proteins, separated by SDS-PAGE, were transferred onto nitrocellulose membranes 

(Protran, Schleicher&Schuell) in a semi-dry blotting unit (SemiPhore). The electrophoretic 

protein transfers were achieved in Western blot buffer at a constant current of approximately 

0.5 – 0.8 mA/cm2 gel size for 1 h (Towbin et al., 1979). Transfer efficiency was verified by 

brief incubation of nitrocellulose membranes into PonceauS solution. Membranes were 

blocked in PBS-T supplemented either with 3 % BSA or with 4 % skim milk powder for 1 h 

at RT or at over night at 4 °C. Subsequently membranes were incubated with the primary 

antibody diluted 1:200-1:10000 in PBS-T supplemented with either 0.3 % BSA or 0.4 % skim 

milk powder for 1 h at RT. After extensively washing in PBST, membranes were incubated 

with a 1:1000-1:10000 dilution of secondary antibody conjugated to horseradish peroxidase 

as above described. Finally, membranes were washed as before. Protein bands were detected 
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by incubating membranes with ECL solutions A and B at 1:1 ratio and exposing to either X-

ray films (Amersham) or luminescent image analyzer LAS3000 (Fujifilm). 

Western blot buffer  50 mM Tris (pH 8.4), 192 mM glycine, 20 % methanol 
PonceauS solution  2.5 % PonceauS, 40 % methanol, 5 % acetic acid 
PBS-T    PBS, 0.05 % TWEEN-20 
ECL-A    1 ml 250 mM 3-aminophthalhydrazid (Luminol), 444 µl 90 

     mM p-coumarin acid, 10 ml 1 M Tris-HCl, pH 8.5, ddH20 to 
     100 ml final volume. 

ECL-B    61.4 µl 30 % ddH20, 10 ml 1 M Tris-HCl, pH 8.5, ddH20 
     to 100 ml final volume. 

 

3.2.4.4 Dot blot assay 

Dot blot assay was also used to detect proteins but in contrast to Western blot, protein 

samples were neither denatured nor separated electrophoretically. Typically, 5 µl protein 

samples (total cell extracts or gel filtration fractions) were spotted directly onto nitrocellulose 

membrane. The membrane was then air-dried and processed as described above. 

3.2.4.5 In vitro HttExon1-Aggregation 

Purified GST-Htt20Q and GST-Htt53Q (Muchowski et al., 2000) were obtained from 

the laboratory stock of the Department of Cellular Biochemistry, Max-Planck Institute of 

Biochemistry, Martinsried, Germany. Aggregation of GST-Htt proteins (3µM) was initiated 

by addition of 2.5 U PreScission protease (Amersham) in aggregation buffer at 30oC for 5 h. 

For recruitment analysis, 45 µl of gel filtration fraction were added. 

Aggregation buffer  50 mM Tris-HCl, pH 7.5, 150 mM KCl, 1 mM DTT, 0.1 
     mg/ml Ovalbumin, 1x protease inhibitor mix  

 

3.2.4.6 Filter retardation assay 

To detect SDS-insoluble aggregates, cell extracts or in vitro aggregation reactions 

were mixed with an equal volume of 4% SDS and 100 mM DTT and heated (95°C, 5 min), 

followed by filtration through a cellulose acetate membrane (0.2 µm pore size) and 

immunodetection (Scherzinger et al., 1997; Muchowski et al., 2000). 
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3.2.4.7 Size exclusion chromatography 

Total cell extracts were centrifuged at either 20.000 x g or 100.000 x g for 30 min or 1 

h and subjected to size exclusion chromatography on FPLC or SMART system with 

Superdex200 or Superose6 column at 4 °C or 15 °C, respectively. The appropriate lysis buffer 

was used as running buffer. Fractions were analyzed by immunoblotting and quantification 

software AIDA. The chromatographic resolution was between 2000 and 17 kDa determined 

by protein standards.  

3.2.4.8 Immunoprecipitation 

Cell lysates were blocked with 50 µl protein A sepharose and BSA at a final 

concentration of 1 % for 1 h at 4 °C in order to prevent unspecific binding. After removal of 

protein A sepharose by centrifugation at 2000 x g, cell lysates were transferred to mini-

columns and incubated with 1 – 2 µg primary antibodies over night at 4 °C with agitation. 

Subsequently 50 µl protein A sepharose were added to the antigen-antibody complex and 

incubated for 1 – 2 h at 4 °C. Protein A sepharose was washed extensively with cell lysis 

buffer TG&P. Finally, the bound antibody and antigen complex was incubated in SDS 

loading buffer at 95 °C for 5 min and eluted by centrifugation. 

3.2.4.9 Ni-NTA pull down of His-tagged proteins 

Cell lysates were incubated with Ni-NTA resin pre-equilibrated in lysis buffer TP 

(Qiagen; 50 µl of 1:1 slurry) in micro spin columns (MoBiTec, Germany) over night at 4 °C. 

Beads were washed three times with lysis buffer TP. Bound proteins were eluted from the 

resin with lysis buffer TP (supplemented with 400 mM Imidazole pH 7.5). Samples were 

removed during washing for analysis. Equal amount of eluate and control samples were 

mixed with 4x SDS loading buffer and incubated at 95 °C for 5 min. 

3.2.4.10 Trichloracetic acid (TCA)-precipitation  

TCA precipitation was performed to concentrate protein samples prior to SDS-PAGE 

analysis. Protein samples were mixed at 1:1 ratio with a 20 % TCA solution and incubated for 

30 min on ice. After centrifugation at 20.000 x g for 20 min at 4 °C, pellets were washed with 

500 µl of acetone (-20 °C) and pelleted again. Proteins were then resuspended in SDS loading 

buffer. 
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4 Results 
Huntington’s disease (HD) is caused by the expansion of a polyglutamine (polyQ) 

repeat in the N-terminal exon 1 segment of huntingtin (Htt). The pathogenic length of the 

polyQ stretch is typically greater than ~37 Q. Cytotoxicity presumably results from 

interference of polyQ-expanded Htt with various cell functions, including transcriptional 

regulation and protein quality control and is associated with aberrant folding of mutant Htt, 

leading to its deposition in the form of insoluble, fibrillar aggregates (inclusions). 

Aggregation-competent N-terminal fragments of a size similar to Htt exon 1 are produced by 

proteolysis and are thought to be critical in cellular toxicity. 

This study investigated the interactions of polyQ-expanded Htt exon 1 with the 

transcription factors TBP and CBP and their contributions to polyQ protein toxicity. Small 

oligomers formed by polyQ expanded Htt rather than aggregates have been related to cellular 

toxicity. Furthermore, for the first time, the chaperonin TRiC was demonstrated not only to 

inhibit polyQ protein aggregation, but also to conformationally modulate soluble polyQ-

expanded Htt oligomers, thereby reducing their toxicity. 

4.1 PolyQ toxicity mediated by transcription factor 

deactivation 

Mainly two nonexclusive ideas have been put forward to explain how polyQ 

expansion proteins may cause cellular dysfunction (Sakahira et al., 2002). In one model, 

expanded polyQ proteins may engage the quality control machinery in a non-productive 

manner, thereby reducing the chaperone capacity and/or interfering with the function of the 

ubiquitin-proteasome system (Bence et al., 2001; Berke and Paulson, 2003). In the second 

model, neurotoxicity originates from the ability of the polyQ proteins to induce the 

coaggregation of other proteins essential for cell viability, among them several transcription 

components, which possess non-pathogenic polyQ repeats. These factors include the TATA 

box binding protein (TBP), a central component of the general transcription initiation 

complex, and the transcriptional coactivator CREB binding protein (CBP). TBP, CBP, and 

other transcription factors have been reported to colocalize with the aggregates of disease-

related polyQ proteins (Perez et al., 1998; Kazantsev et al., 1999; McCampbell et al., 2000). 

Hence, the coaggregation of TBP and CBP might result in their sequestration and loss of 
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function (Chai et al., 2002; Kim et al., 2002). Indeed, transcriptional dysregulation has been 

implicated in several polyQ diseases (Sugars and Rubinsztein, 2003); however, the underlying 

mechanism is far from clear. PolyQ-induced transcriptional dysregulation in neurons can 

manifest itself before cellular aggregates are detectable (Sugars and Rubinsztein, 2003), and 

the formation of aggregates has even been suggested to be a protective mechanism (Saudou et 

al., 1998; Cummings et al., 1999). The increased expression of molecular chaperones such as 

Hsp70 and Hsp40 can suppress the neurotoxicity of polyQ-expanded proteins without 

preventing the formation of polyQ inclusions (Warrick et al., 1999; Cummings et al., 2001), 

although the chaperones do modulate the aggregation process (Chan et al., 2000; Krobitsch 

and Lindquist, 2000; Muchowski et al., 2000). These findings seemed to question the general 

significance of the sequestration model for the disruption of transcriptional pathways in polyQ 

diseases. Alternatively, aberrant interactions of soluble expanded polyQ proteins with 

transcription factors may render them non-functional. To clarify the role of aggregates as well 

as of monomers and small soluble oligomers, this study investigated the interaction of polyQ-

expanded Htt exon1 fragments with TBP and CBP and the differential contribution of 

transcription factor sequestration and deactivation to polyQ protein toxicity. 

4.1.1 PolyQ aggregation and sequestration of the transcription factor TBP 

Sequestration represents a widely proposed hypothesis describing how select cellular 

factors might be depleted away from their usual localization, thereby compromising their 

function and leading to toxicity (Ross, 2002). Accordingly, recruitment of TBP, which carried 

a non-pathogenic polyQ stretch of 38 glutamines, into Htt aggregates was analyzed in mouse 

neuronal and yeast cells. Htt fusion to GST was demonstrated to allow purification of mutant 

Htt from E. coli in soluble form (Scherzinger et al., 1997; Muchowski et al., 2000; Schaffar et 

al., 2004). Aggregation and recruitment properties of Htt and GST-Htt fusion were compared 

to dissect the requirements for sequestration of transcription factors in vivo. 

 

 

Figure 14:  Schematic overview of Htt exon 1 constructs. 
myc tag (myc), polyQ stretch of 20, 53 or 96 Q, proline rich domain (P rich), Glutathione S-transferase (GST). 
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4.1.1.1 Aggregation of mutant Htt and TBP 

myc-tagged Htt exon 1 fragments with 20, 53 and 96Q (Htt20Q, Htt53Q and Htt96Q) 

as well as N-terminal GST fusion to these constructs (GST-Htt20Q, GST-Htt53Q and GST-

Htt96Q) were cloned under control of the CMV promoter into mammalian expression vectors 

and transiently expressed in mouse neuroblastoma cells (N2a) (Figure 14). These cells have 

been used previously to study polyQ expansion proteins (Jana et al., 2000; Schaffar et al., 

2004; Haacke et al., 2006). Transfection efficiency was on average ~30 %. Expression of 

constructs was analyzed in lysates 48 h after transfection by SDS-PAGE and Western blot. 

Htt constructs and GST-Htt fusions were produced to roughly similar levels (Figure 15A). 

Noteworthy, Htt polypeptides exhibited a mobility in SDS-PAGE that was proportional to 

predicted molecular mass but demonstrated a systematic relative decrease in electrophoretic 

mobility consistent with previous reports (Preisinger et al., 1999). Remarkably, this effect was 

less pronounced when Htt was fused to GST. 

 

 

Figure 15:  Recruitment of human TBP into Htt aggregates in N2a cells.  
(A) myc-tagged Htt20Q, Htt53Q and Htt96Q with or without N-terminal GST fusion were transiently expressed 
in N2a cells for 48 h. Lysates were analyzed by Western blot and Htt constructs were detected with anti-myc 
antibody. * indicates specific protein band and < endogenous c-myc protein. (B) Constructs used in (A) were 
transiently coexpressed with FLAG-tagged human TBP as described above. SDS-resistant aggregates in lysates 
were detected by filter assay and immunostaining for Htt constructs with anti-myc and for recruited human TBP 
with anti-FLAG antibody. (C) Cells derived form (B) were fixed and immunolabeled with anti-myc or anti-
FLAG antibody coupled either to Cy3- or FITC-conjugated secondary antibodies, respectively. Nuclei were 
counterstained with DAPI. 
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For TBP recruitment analysis, Htt constructs were transiently coexpressed with 

FLAG-tagged human TBP cloned under control of EF-1α promoter. In this experimental 

setup, co-transfection efficiency was on average ~10 %. Htt53Q and Htt96Q but not Htt20Q 

formed SDS-resistant aggregates detectable in N2a cell extracts by the filter assay (Figure 

15B). Unexpectedly, aggregation of Htt53Q was markedly increased compared to Htt96Q, 

presumably due to instability of Htt96Q in N2a cells. Whereas coexpression of Htt20Q and 

TBP did not lead to co-aggregation, substantial amount of TBP were recovered in SDS-

resistant aggregates formed by Htt53Q and Htt96Q (Figure 15B). Furthermore, recruitment of 

TBP has been demonstrated to depend on the ongoing production of mutant Htt and on the 

presence of its polyQ segment (Schaffar et al., 2004), consistent with a polyQ-mediated 

recruitment process. 

Intriguingly, Htt exon 1 fragments fused to GST formed neither SDS-resistant 

aggregates nor induced co-aggregation of TBP (Figure 15B). Immunofluorescence analysis 

confirmed these findings. Htt53Q and Htt96Q formed large cytoplasmic inclusions, whereas 

normal Htt with 20 Q was diffusely distributed in the cytoplasm. TBP was located in the 

nucleus upon transient coexpression with Htt20Q, while substantial amounts of TBP were 

dislocated to the cytoplasm and colocalized with the Htt53Q and Htt96Q aggregates. 

Consistently, GST-Htt fusions were diffusely distributed in the cytoplasm and coexpressed 

TBP located to the nucleus (Figure 15C). Thus, aggregation of mutant Htt is inhibited in the 

sequence context of the GST fusion. Furthermore, recruitment of transcription factor appears 

to require mutant Htt in an aggregation-prone conformation, which is perturbed by the 

attachment of the GST part. 

4.1.1.2 Requirements for Htt aggregation and TBP recruitment 

Besides neuronal cells, the baker’s yeast Saccharomyces cerevisiae was used as model 

systems in this work to study polyQ protein interaction, aggregation and toxicity as described 

previously in several other studies (Krobitsch and Lindquist, 2000; Muchowski et al., 2000; 

Meriin et al., 2002). Several independent studies demonstrate that at a basic level, the yeast 

model faithfully recapitulates the molecular basis of polyQ length-dependent aggregation and 

toxicity (Colby et al., 2004; Cashikar et al., 2005; Vacher et al., 2005; Zhang et al., 2005). 

The yeast system offers the unique opportunity to dissect modulators of polyQ aggregation 

and toxicity in a defined and uniform cellular environment. In fact, an advantage of yeast cells 
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is that they are not confounded by the perplexing variations in cellular proteome that 

characterize distinct cell types in whole organisms or in cultured mammalian cells. In 

addition, numerous genetic tools available in yeast make it a powerful instrument to explore 

the intra- and intermolecular factors that govern polyQ aggregation and toxicity. 

To confirm the recruitment of human TBP into Htt aggregates in the yeast system, 

myc-tagged Htt and GST-Htt fusion constructs as well as HA-tagged human TBP were cloned 

into yeast expression vectors under control of copper- and galactose-inducible promoters, 

respectively, and coexpressed in the wild-type strain YPH499 (Sikorski and Hieter, 1989). 

 

 

Figure 16:  Recruitment of human TBP into Htt aggregates in wild-type yeast cells. 
(A) myc-tagged Htt20Q, Htt53Q and Htt96Q with or without N-terminal GST fusion under CUP1 control were 
coexpressed with HA-tagged human TBP under control of GAL1 in wild-type cells for 12 h at 30 oC. Lysates 
were analyzed by Western blot (WB) and by filter assay (FA). Htt constructs and recruited human TBP were 
immunodetected with anti-myc and anti-HA antibody, respectively. * indicates specific protein band, < GST 
cleavage products and > stacking gel. (B) Cells derived from (A) were analyzed by indirect immunofluorescence 
with anti-myc or anti-HA antibody coupled either to Cy3- or FITC-conjugated secondary antibodies, 
respectively. Nuclei were counterstained with DAPI. 
 

Small amounts of Htt20Q were detected as a protein band on SDS-PAGE, while 

Htt53Q and Htt96Q did not migrate into the gel and were only detectable in the stacking gel 

(Figure 16A). Consistently, GST-Htt20Q and GST-Htt53Q were produced similarly in 

substantial amounts and almost exclusively in SDS soluble form. To a minor extent, GST-

Htt96Q was detected as a protein band but additionally also in the stacking gel (Figure 16A). 

Htt53Q and Htt96Q displayed polyQ-length dependent formation of SDS-insoluble 
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aggregates and recruitment of TBP. Htt20Q did neither aggregate nor recruit TBP (Figure 

16A). Fusion to GST inhibited aggregation of Htt53Q completely and of Htt96Q to some 

residual extent. Recruitment of TBP could not be observed for any GST-Htt construct (Figure 

16A). These results were confirmed by immunofluorescence analysis: TBP resided in the 

nucleus when coexpressed with Htt20Q or any of the GST-Htt constructs and redistributed 

from the nucleus to cytoplasmic Htt aggregates when coexpressed with Htt53Q and Htt96Q 

(Figure 16B). 

Expression of mutant Htt fused to GST was without any effect on the recruitment of 

TBP (Figure 16A and Figure 16B). These proteins did not form aggregates by themselves, 

although their polyQ segments were exposed, based on the observation by filter assay that 

GST-Htt53Q but not GST alone co-aggregated with Htt96Q (Figure 17A). Consistently, GST-

Htt53Q coalesced with Htt96Q in aggregates observable by immunofluorescence (Figure 

17B). Hence, since mutant Htt when fused to GST is not per se aggregation-incompetent, a 

conformational rearrangement of Htt occurring upon its release from the GST moiety might 

be a prerequisite for initiating aggregation and recruitment of TBP. In vitro FRET 

experiments with GST-Htt53Q indicated that a rapid conformational compaction occurs in the 

Htt fragment upon its proteolytic release from a protective sequence context (Schaffar et al., 

2004). 

 

 

Figure 17:  Accessibility of the Q stretch in GST-Htt fusions protein 
(A) myc-tagged Htt96Q under control of CUP1 was coexpressed with HA-tagged GST or GST-Htt53Q under 
control of GAL1 in wild-type cells for 12 h at 30 °C. SDS-resistant aggregates in lysates were detected by filter 
assay and immunostaining for Htt with anti-myc and for recruited GST-Htt with anti-GST antibody. (B) Cells 
derived from (A) were analyzed by indirect immunofluorescence with anti-myc or anti-HA antibody coupled 
either to Cy3- or FITC-conjugated secondary antibodies, respectively. Nuclei were counterstained with DAPI. 
 

In order to verify whether liberation of mutant Htt from its GST fusion partner initiates 

its aggregation and recruitment of TBP, GST-Htt fusions were constructed that harbor an 

internal, highly specific tobacco etch virus (TEV) protease cleavage site between the GST 

part and the myc-tagged mutant Htt exon 1 fragment. TEV protease was cloned under a 



Results 

 

60

doxycycline-controllable promoter and coexpressed with GST-TEV-myc-Htt constructs in 

wild-type yeast. Expression and proteolytic cleavage of GST-TEV-myc-Htt constructs were 

analyzed by SDS-PAGE and immunoblotting. GST-TEV-myc-Htt53Q and GST-TEV-myc-

Htt96Q were produced to similar levels and migrated according to their nominal size in the 

gel. Only minor amounts of unspecific cleavage products could be detected in the absence of 

TEV protease (Figure 18A). Upon induction of TEV protease, protein bands corresponding to 

GST-TEV-myc-Htt constructs diminished and substantial amounts of cleaved GST 

accumulated. Concurrently, myc-Htt53Q and myc-Htt96Q were almost exclusively detectable 

in the stacking gel (Figure 18A). GST-TEV-myc-Htt53Q and GST-TEV-myc-Htt96Q did not 

form SDS-insoluble aggregates detectable by filter assay unless TEV protease was induced 

(Figure 18B). Thus, analogous to in vitro experiments (Scherzinger et al., 1997; Schaffar et 

al., 2004), aggregation of formerly soluble mutant Htt fused to GST can be initiated in vivo in 

yeast cells by cleavage of the Htt part from the GST moiety. Similarly, aggregation of full-

length polyQ expanded Ataxin-3 was demonstrated to be initiated by proteolytical cleavage at 

an engineered TEV protease cleavage site (Haacke et al., 2006). 

 

 

Figure 18:  Initiation of Htt aggregation upon cleavage of the GST-Htt fusion protein. 
(A) GST-TEV-myc-Htt53Q and GST-TEV-myc-Htt96Q were expressed under control of CUP1 in wild-type 
cells for 12 h at 30oC with and without expression of TEV protease from a doxycycline-regulated promoter. Cell 
lysates were analyzed by Western blot, and cleaved and uncleaved GST-Htt constructs were detected with anti-
GST and anti-myc antibodies, respectively. * indicates specific protein band, < GST cleavage products and > 
stacking gel. (B) SDS-resistant aggregates in lysates from (A) were detected by filter assay and immunostaining 
for Htt constructs with anti-myc antibody. 
 

To determine whether recruitment of TBP could be initiated similarly, proteolytic 

cleavage of GST-Htt in vivo was analyzed in parallel by filter assay and immunofluorescence. 

GST-TEV-myc-Htt96Q and HA-tagged human TBP were coexpressed in the absence of TEV 

protease. Formation of SDS-insoluble aggregates in lysates could be detected neither for 
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Htt96Q nor for TBP. Remarkably, continuous coexpression of GST-TEV-myc-Htt96Q and 

TBP in the presence of TEV protease but not in its absence led to substantial aggregation of 

Htt96Q and TBP (Figure 19A). In the absence of TEV protease, GST-TEV-myc-Htt96Q was 

diffusely distributed throughout the cytosol and TBP located to the nucleus. Consistently, 

TBP was dislocated from the nucleus and coalesced with Htt96Q in aggregate in the presence 

of TEV protease (Figure 19B). Hence, mutant Htt acquires, presumably by a structural 

rearrangement, the ability to aggregate and consequently to recruit TBP upon its release from 

the GST moiety.  

 

 

Figure 19:  Initiation of TBP recruitment into aggregates upon cleavage of the GST-Htt fusion protein. 
(A) GST-TEV-myc-Htt96Q and HA-tagged human TBP under control of CUP1 and GAL1, respectively, were 
coexpressed in wild-type cells for 4 h at 30 °C followed by 2 h with and without induction of TEV protease. 
SDS-resistant aggregates in lysates from samples taken after 0 and 2 h induction of TEV protease were detected 
by filter assay and immunostaining for Htt96Q with anti-myc and recruited TBP with anti-HA antibody. (B) 
Cells derived form (A) were analyzed by indirect immunofluorescence with anti-myc or anti-HA antibody 
coupled either to Cy3- or FITC-conjugated secondary antibodies, respectively. Nuclei were counterstained with 
DAPI. 
 

4.1.2 Impairment of transcription factors by soluble, misfolded polyQ proteins 

Alternatively but mutually non-exclusive to the sequestration hypothesis, polyQ 

toxicity may arise by aberrant non-productive interactions of soluble polyQ protein with 

select cellular factors, including transcription factors, thereby leading to their inactivation. To 

examine the relevance of soluble mutant Htt for cellular toxicity, a yeast model was designed 

in which toxicity arising from polyQ-mediated TBP deactivation can be detected without 

interference from other possible mechanisms of polyQ toxicity. Wild-type yeast cells tolerate 

the expression of mutant Htt exon 1 fragment (Htt96Q) without overt toxicity under standard 

growth conditions (Krobitsch and Lindquist, 2000; Muchowski et al., 2000). Human and 

yeast TBP share 80 % homology in their C-terminal DNA binding (basic) domains, but differ 

substantially in their N-terminal domain that is almost absent in yeast TBP including the 

polyQ stretch (Hahn et al., 1989; Peterson et al., 1990) (Figure 20). Yeast TBP is essential for 
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growth but can be functionally replaced by human TBP, carrying the mutation R231K, at 

temperatures up to 35 oC (Cormack et al., 1994). Taking advantage of the fact that yeast TBP 

lacks the polyQ stretch, yeast strain yTBP∆/hTBP was constructed, in which yeast TBP was 

deleted and human TBP (R231K) was expressed complementarily under the control of the 

endogenous yeast TBP promoter. A toxic effect of mutant Htt on human TBP function should 

result in reduced growth of the host cells. 

 

 

Figure 20:  Comparison of human and yeast TBP. 
 

yTBP∆/hTBP cells grew indistinguishably from wild-type cells up to 34 °C, but 

showed temperature sensitivity upon incubation at 37 °C (Figure 21A). DNA analysis of wild-

type and yTBP∆/hTBP cells by PCR using primers against yTBP and hTBP revealed the 

absence of yTBP and the presence of hTBP in yTBP∆/hTBP cells and vice versa in wild-type 

cells (Figure 21B). Expression of hTBP was investigated by SDS-PAGE and immunoblotting 

of lysates derived from wild-type and yTBP∆/hTBP cells. hTBP was produced to substantial 

amounts in yTBP∆/hTBP and was absent in wild-type cells (Figure 21C). Hence, hTBP 

functionally replaced yTBP in yTBP∆/hTBP cells. 

 

 

Figure 21:  Initial characterization of yTBP∆/hTBP yeast strain. 
(A) Wild-type and yTBP∆/hTBP cells were grown for 24 h at 30 °C. Growth was examined on SC-plates after 2 
d at 37 °C. (B) PCR analysis of DNA derived from (A). (C) Lysates derived from (A) were analyzed by Western 
blot, and hTBP was detected by anti-hTBP antibody, which recognizes the N-terminus of hTBP. 
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4.1.2.1 Growth impairment upon expression of nuclear targeted polyQ-expanded Htt 

To investigate the effect of a polyQ expanded protein in yTBP∆/hTBP cells, myc-

tagged Htt exon 1 fragments with 20, 53 and 96 Q (Htt20Q, Htt53Q and Htt96Q) and their 

corresponding GST fusions (GST-Htt20Q, GST-Htt53Q and GST-Htt96Q) were cloned with 

and without nuclear localization sequence (NLS) under copper-inducible promoters into yeast 

expression vectors. The expression and aggregation of the proteins in yTBP∆/hTBP cells was 

analyzed by SDS-PAGE followed by immunoblotting and filter assay after 24 h induction at 

30 °C. While Htt20Q and NLS-Htt20Q showed protein bands according to their size and did 

not form SDS-insoluble aggregates, Htt53Q and Htt96Q were only detectable in the stacking 

gel. Surprisingly, considerable amounts of NLS-Htt53Q and NLS-Htt96Q migrated into the 

gel and were detectable in the stacking gel only to a minor extent (Figure 22A). 

 

 

Figure 22:  Expression, aggregation and localization of Htt constructs in yTBP∆/hTBP cells. 
(A) myc-tagged Htt20Q, Htt53Q and Htt96Q with or without NLS and/or N-terminal GST fusion were expressed 
under control of CUP1 in yTBP∆/hTBP cells for 24 h at 30 °C. Htt constructs in lysates were analyzed by 
Western blot (WB) and filter assay (FA) and immunodetected with anti-myc antibody. > indicates stacking gel. 
(B) Cells from (A) were analyzed by indirect immunofluorescence. Htt constructs were immunolabeled with 
anti-myc antibody coupled to Cy3-conjugated secondary antibodies, and nuclei were counterstained with DAPI. 
 

Htt53Q and Htt96Q as well as NLS-Htt53Q and NLS-Htt96Q showed a polyQ-length 

dependent aggregation, but in contrast to their cytosolic counterparts, aggregation of NLS-

Htt53Q and NLS-Htt96Q was significantly reduced, consistent with their increased SDS-

solubility detected by Western blot (Figure 22A). Importantly, the presence of the NLS did 
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not influence Htt aggregation in vitro (data not shown). All GST Htt fusions were produced in 

substantial amounts and migrated to their corresponding size in the gel. Similar to their 

expression in wild-type cells, fusion to GST prevented aggregation of Htt53Q completely and 

of Htt96Q to some residual extent. Remarkably, GST fusion to nuclear Htt constructs 

inhibited their aggregation entirely (Figure 22A). Localization of cytosolic and nuclear Htt 

exon 1 constructs was verified by indirect immunofluorescence. While Htt96Q formed a large 

bright aggregate in the cytosol and aggregates of NLS-Htt96Q located to the nucleus, GST-

Htt96Q was diffusely distributed throughout the cytosol and GST-NLS-Htt96Q was found to 

be nuclear (Figure 22B). The remaining Htt constructs were found to localize to the cytosol or 

nucleus according to the presence or absence of NLS, respectively (data not shown). Thus, Htt 

fusion to GST and the nuclear environment seem to have an inhibitory effect on Htt 

aggregation. 

 

 

Figure 23:  Growth defect in yTBP∆/hTBP upon Htt expression targeted to the nucleus. 
(A) myc-tagged Htt, NLS-Htt and GST-NLS-Htt constructs were expressed under control of CUP1 in 
yTBP∆/hTBP cells for 24 h at 30 °C. Growth was examined by serial dilutions of cells on SC-plates after 2 d at 
34 oC. Growth defect was suppressed upon simultaneous expression of yTBP or human Hsp70/Hsp40 under 
control of galactose-regulated promoter. (B) myc-tagged Htt and NLS-Htt constructs under control of CUP1 
were coexpressed with hTBP under control of GAL1 in wild-type cells for 24 h at 30 °C. Growth was examined 
as in (A). 
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Expression of Htt53Q and Htt96Q resulted only in a mild growth defect of 

yTBP∆/hTBP cells, although the mutant Htt proteins formed large cytoplasmic aggregates 

(Figure 23A). However, expression of NLS-Htt53Q and NLS-Htt96Q resulted in a 

pronounced, polyQ length-dependent growth impairment (Figure 23A). This effect can be 

attributed to a (partial) polyQ-mediated deactivation of human TBP, because it was 

suppressed by coexpression of yeast TBP (Figure 23A). Rescue of the growth defect was also 

achieved by coexpression of human Hsp70 and Hsp40 (Hdj1) (Figure 23A). Intriguingly, no 

growth defect was observed in wild-type yeast expressing the NLS-Htt constructs, whether or 

not these cells also expressed human TBP (Figure 23B and data not shown). The expression 

of mutant Htt fused to GST in the nucleus or cytosol was without any effect on the growth of 

yTBP∆/hTBP cells (Figure 23A and data not shown). Thus, toxicity of mutant Htt in this yeast 

model appears to depend on interference with the function of TBP and to require a 

conformational re-arrangement of Htt occurring upon its release from the GST moiety, as 

shown to be a prerequisite for the recruitment of TBP. 

 

 

Figure 24:  Nuclear location is prerequisite for transcription factor mediated polyQ toxicity. 
(A) myc-tagged NLS-Htt20Q, NLS-Htt96Q with or without NES were expressed under control of CUP1 in 
yTBP∆/hTBP cells for 24 h at 30 °C. Growth was examined by serial dilutions of cells on SC-plates after 2 d at 
34 oC. (B) Htt constructs in lysates from (A) were analyzed by Western blot with anti-myc antibody. (C) Cells 
from (A) were analyzed by indirect immunofluorescence. Htt constructs were immunolabeled with anti-myc 
antibody coupled to Cy3-conjugated secondary antibodies, and nuclei were counterstained with DAPI. 
 

To further demonstrate that the nuclear localization of mutant Htt is a prerequisite for 

toxicity, the nuclear export sequence (NES) of protein kinase inhibitor α (PKI-α) was fused 

N-terminal to NLS-Htt constructs. The polyQ-length dependent growth defect was suppressed 

by targeting mutant Htt to the cytoplasm (Figure 24A). Importantly, the fusion of NES to 

NLS-Htt96Q did not alter its expression level or aggregation propensity (Figure 24B and data 

not shown) and, indeed, led to redistribution of the fusion protein to the cytosol (Figure 24C). 

Thus, the presence of mutant Htt in the nucleus seems to be necessary for toxicity in this yeast 

system. 
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4.1.2.2 Correlation between soluble, oligomeric polyQ-expanded Htt and cellular toxicity 

Growth of yTBP∆/hTBP yeast in liquid medium was monitored to determine when the 

reduction in growth rate sets in relative to the appearance of Htt aggregates. Remarkably, 

expression of NLS-Htt96Q for one hour resulted already in a marked growth defect (Figure 

25A). In contrast, no substantial impairment was observed upon expression of Htt96Q or 

GST-Htt96Q in the cytosol and GST-NLS-Htt96Q in the nucleus, as compared to cells 

expressing Htt20Q (Figure 25A). Interestingly, while the cytoplasmic Htt96Q aggregated 

rapidly, the nuclear NLS-Htt96Q formed insoluble aggregates more slowly after a delay of 

several hours. Their GST fusions did not form any aggregates within this time (Figure 25B). 

 

 

Figure 25:  Lack of correlation between the presence of insoluble aggregates and toxicity. 
(A) yTBP∆/hTBP cells were grown in liquid medium over night and adjusted to an OD of ~0.3 before expression 
of indicated Htt constructs was induced. Growth at 30 oC in medium containing 50 mM 3-AT was followed over 
8 h. (B) Accumulation of SDS-insoluble aggregates was determined in cells analyzed in (A) by filter assay and 
immunodetection with anti-myc antibody. Amounts of aggregates are expressed in arbitrary units (AU). 
 

Strikingly, lysates of yeast cells expressing NLS-Htt96Q for up to 4 hours contained 

Htt protein that was exclusively soluble upon centrifugation at 100,000 x g (Figure 26A). In 

contrast, soluble Htt protein was absent in cells expressing Htt96Q in the cytoplasm but was 

detected in cells expressing GST-Htt96Q (Figure 26A). Thus, the soluble mutant Htt in the 

nucleus must be responsible for the early growth defect observed in yTBP∆/hTBP cells. This 

soluble NLS-Htt96Q fractionated upon size exclusion chromatography between 70 and 170 

kDa (Figure 26B). Taking into account that the Htt constructs tend to fractionate greater than 

their nominal mass, this protein would represent monomers and/or small oligomers of Htt 

(dimers and trimers), although it is also possible that the NLS-Htt is associated with other 

cellular factors. 
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Figure 26:  NLS-Htt96Q forms toxic soluble oligomers of ~70 – 170 kDa size. 
(A) Solubility of myc-tagged NLS-Htt96Q, Htt96Q and GST-Htt96Q (100,000 x g, 30 min) in extracts of 
yTBP∆/hTBP cells after different times of induction, as detected by Western blot with anti-myc antibody. (B) 
Size exclusion chromatography of soluble fractions from yTBP∆/hTBP cells expressing NLS-Htt96Q for 1 h. 
The distribution of Htt constructs in the fractions was analyzed by Western blot with anti-myc antibody. The 
position of molecular weight markers is indicated. 
 

To dissect the mechanism by which the soluble nuclear mutant Htt exon 1 fragment 

impairs growth in yTBP∆/hTBP cells, its effect on TBP was analyzed. The solubility of TBP 

did not change significantly over time regardless of which Htt construct was expressed 

(Figure 27A). Intriguingly, expression of NLS-Htt96Q affected the size fractionation 

properties of TBP. In cells expressing Htt96Q in the cytoplasm or in the absence of any Htt, 

TBP was present in a well-defined complex of ~200 kDa (Figure 27B and data not shown). 

However, upon expression of NLS-Htt96Q for one hour, a substantial amount of TBP was 

recovered in high molecular weight fractions between 200 and 800 kDa. This effect was not 

observed upon expression of GST-fused NLS-Htt96Q (Figure 27C). Thus, an interaction with 

the toxic soluble form of nuclear Htt changes the conformational properties of TBP (or TBP 

containing transcription complexes), presumably resulting in the formation of aggregates. 

This interaction between TBP and soluble mutant Htt must be transient since it did not result 

in the formation of TBP/Htt co-aggregates (data not shown), which were however observed 

when both Htt and TBP were expressed to high levels in wild-type yeast cells (Figure 16). 
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Figure 27:  Soluble NLS-Htt96Q oligomers affect size fractionation properties of TBP. 
(A) Solubility of hTBP (100,000 x g) in extracts of yTBP∆/hTBP cells expressing myc-tagged NLS-Htt96Q, 
Htt96Q or GST-Htt96Q after different times of induction, as detected by Western blot with anti-TBP antibody. 
(B) Soluble fractions of yTBP∆/hTBP cells expressing NLS-Htt96Q and Htt96Q for 1 h were subjected to size 
exclusion chromatography (Superdex 200 column). Distribution of hTBP in fractions was analyzed by Western 
blot. (C) Size fractionation of hTBP in yTBP∆/hTBP cells expressing NLS-Htt96Q, Htt96Q and GST-NLS-
Htt96Q for 1 h quantified by densitometry. 
 

4.1.2.3 Functional interference of TBP upon expression of nuclear targeted mutant Htt 

For a detailed analysis of the functional impairment of human TBP by mutant Htt, a 

reporter system was design in wild-type instead of yTBP∆/hTBP yeast cells to exclude any 

secondary effects, such as global down regulation of transcription or translation in response to 

toxicity upon expression of mutant Htt. This reporter system takes advantage of the fact that 

TBP binds to DNA at the TATA box and serves as a platform for the assembly of the 

transcription initiation complex. Three point mutations (I194P, V202T and L205V) in the 

basic DNA binding domain of human TBP were shown to allow transcription almost 

exclusively from a modified TATA box, which contained the DNA sequence TGTA instead 

of TATA (Strubin and Struhl, 1992). In this reporter system, intra- and intermolecular 

effectors of the TBP impairment, such as a dependence of the polyQ stretch in TBP and 

modulation by chaperones, respectively, could be directly dissected. Therefore, the above 

mentioned mutations were introduced by site-directed mutagenesis into human TBP 

(mut3hTBP) which was subsequently cloned under control of the constitutive ADH1 promoter 

into a yeast expression vector. The TATA box in the GAL1 promoter was mutated 
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accordingly and coupled to the luciferase gene (Figure 28A). Coexpression of wild-type 

human TBP and TGTA-luc reporter resulted in a basal luciferase activity in wild-type yeast 

cells upon induction of the TGTA-luc reporter construct (Figure 28B). However, coexpression 

of mut3hTBP and TGTA-luc reporter markedly increased luciferase activity (Figure 28B). 

Thus, the mutated human TBP specifically allows transcription from the modified TATA box 

in wild-type yeast cells. Deactivation of TBP by mutant Htt should suppress transcription of 

the luciferase gene and lead to a decrease in luciferase activity. 

 

 

Figure 28:  Reporter system to assay TBP mediated transcription in wild-type yeast. 
(A) Schematic representation of the TGTA-luc reporter and mutated human TBP (mut3hTBP). (B) NLS-Htt20Q, 
NLS-Htt96Q, mut3hTBP and TGTA-luc were coexpressed in wild-type cells for 12 h at 30 oC. Growth was 
examined by serial dilutions of cells on SC-plates after 2 d at 34 oC. (C) hTBP or mut3hTBP under control of 
ADH1 were coexpressed with TGTA-luc and NLS-Htt20Q in wild-type cells for 2 h at 30 oC followed by 1 h 
induction of TGTA-luc. Luciferase activity was recorded and expressed in arbitrary units (AU). 
 

Various Htt constructs were coexpressed with the reporter system and assayed for their 

ability to interfere with TBP mediated transcription of the luciferase gene by recording 

luciferase activity. Expression of NLS-Htt20Q or NLS-Htt96Q did not cause any growth 

defect in wild-type yeast, whether or not these cells also expressed TGTA-luc reporter 

construct and mutated human TBP (Figure 23B and data not shown). Strikingly, NLS-Htt96Q 

caused a substantial decrease in luciferase activity compared to NLS-Htt20Q, whereas Htt96Q 

did not affect the activity (Figure 29A). The decrease in luciferase activity upon expression of 

NLS-Htt96Q depended on the presence of the polyQ segment in TBP (Figure 29B). 

Furthermore, the amount of TBP in these cells was reduced upon induction of NLS-Htt96Q 

compared to NLS-Htt20Q as revealed by immunoblot analysis (Figure 29C). In agreement 

with these results, soluble mutant Htt has been demonstrated to structurally destabilize TBP 

and to inhibit TBP binding to DNA in vitro (Schaffar et al., 2004). Thus, based on these 

combined data, nuclear mutant Htt seems to impair the transcription initiation function of 

TBP, presumably by destabilizing its structure, which in turn inhibits its binding to DNA. 
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This interference seems to be mediated by polyQ-polyQ interaction. The alteration of the size 

fractionation properties of TBP might reflect the production of structurally distorted TBP or 

TBP containing transcription complexes. This reporter system now offers the opportunity to 

investigate the effect of chaperones on the aberrant interaction and, more general, to screen a 

human cDNA library to find new modulators of polyQ-mediated transcription impairment. 

 

 

Figure 29:  NLS-Htt96Q interferes with TBP mediated transcription. 
(A) NLS-Htt20Q, NLS-Htt96Q or Htt96Q were coexpressed with mut3hTBP and TGTA-luc for 2 h at 30 oC 
followed by 1 h induction of TGTA-luc. Luciferase activity was recorded and set to 100 % in cells expressing 
NLS-Htt20Q. (B) Cells coexpressing NLS-Htt20Q or NLS-Htt96Q with either mut3hTBP38Q or mut3hTBP2Q 
and TGTA-luc were assayed as in (A). Luciferase activity is expressed in arbitrary units (x104) (AU). (C) 
mut3hTBP and TGTA-luc were coexpressed as in (A) with and without induction of NLS-Htt20Q and NLS-
Htt96Q. TBP in lysates was detected by Western blot with anti-TBP antibody and quantified. * marks TBP 
protein and < unspecific background. Amount of TBP in cells expressing NLS-Htt20Q was set to 100 %. 
 

4.1.2.4 Transcriptional dysregulation due to aberrant interactions of mutant Htt and TBP 

In order to reproduce and validate the findings obtained from the yeast model system, 

the properties of soluble mutant Htt exon 1 fragment targeted to the nucleus were investigated 

in mouse neuroblastoma cells. Therefore, myc-tagged Htt96Q and NLS-Htt96Q were cloned 

into mammalian expression vectors, transiently expressed in N2a cells and analyzed by the 

filter assay and Western blot as described above. Aggregation of NLS-Htt96Q was reduced 

markedly compared to Htt96Q (Figure 30A) and consistently, NLS-Htt96Q accumulated to 

higher levels in SDS-soluble form than Htt96Q (Figure 30B). Whereas no Htt96Q could be 

recovered from the gel filtration column, NLS-Htt96Q fractionated between ~70 – 170 kDa 

upon size exclusion chromatography (Figure 30C). Hence, a fraction of nuclear targeted 

mutant Htt exists in a soluble, well-defined species similar to those found to be toxic in 

yTBP∆/hTBP yeast cells. Preliminary experiments showed that expression of NLS-Htt96Q 

caused polyQ-length dependent toxicity in mouse neuroblastoma cells (Schaffar, 2004). 
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Figure 30:  Soluble NLS-Htt96Q forms oligomers of ~70-170 kDa size in N2a cells. 
(A) myc-tagged Htt96Q and NLS-Htt96Q were transiently expressed in N2a cells for 48 h. SDS-resistant Htt 
aggregates in lysates were detected by filter assay and immunostaining with anti-myc antibody. (B) Htt 
constructs in lysates from (A) were detected by Western blot with anti-myc antibody. (C) Size exclusion 
chromatography of soluble fractions from (B) followed by Western blot. Htt constructs were detected with anti-
myc antibody. Positions of size markers are indicated in kDa. 
 

Interference with the size fractionation properties of TBP by soluble mutant Htt in 

yTBP∆/hTBP cells suggested at least a transient association with TBP. Therefore, interaction 

of soluble Htt and human TBP was investigated by co-immunoprecipitation experiment. myc-

tagged NLS-Htt20Q and NLS-Htt96Q were transiently coexpressed in N2a cells with FLAG-

tagged human TBP and subsequently radioactively-labeled. NLS-Htt20Q and NLS-Htt96Q 

were produced to similar levels (Figure 31A). Strikingly, although TBP was present at equal 

amounts in cells expressing NLS-Htt20Q and NLS-Htt96Q, TBP could only be co-

precipitated with NLS-Htt96Q (Figure 31B). Thus, soluble Htt exon 1 fragment associates 

with human TBP in a polyQ-length dependent manner. 

To dissect whether transient association of mutant Htt and TBP leads to functional 

impairment of the transcription factor, the reporter assay for TBP mediated transcription 

established in yeast was applied in N2a cells. Mutated human TBP (mut3hTBP) and 

luciferase were subcloned into mammalian expression vectors under control of the EF-1α and 

the CMV promoter, respectively; the latter contained a modified TATA box. N2a cells were 

transiently co-transfected with mut3hTBP, TGTA-luc reporter construct and either NLS-

Htt20Q or NLS-Htt96Q for 48 h and assay for luciferase activity. Expression of NLS-Htt96Q 

markedly reduced the luciferase activity compared to NLS-Htt20Q (Figure 31C). Thus, an 

aberrant association of soluble oligomers formed by mutant Htt is likely to impair the function 

of the transcription factor TBP in the nucleus. 
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Figure 31:  Coimmunoprecipitation of FLAG-tagged human TBP with antibodies against myc-tagged Htt. 
(A) myc-NLS-Htt20Q and NLS-Htt96Q were transiently expressed in N2a cells for 48 h. Htt constructs in 
lysates were detected by Western blot with anti-myc antibody. (B) myc-NLS-Htt20Q, NLS-Htt96Q and FLAG-
hTBP were coexpressed as in (A). Cells were labeled for 2 h with 400 µCi/ml 35S-Met/35S-Cys (Promix, 
Amersham) and 100,000 × g supernatants of cell extracts prepared in lysis buffer. FLAG-hTBP was 
immunoprecipitated from the 100,000 × g supernatants of mock-transfected and of NLS-Htt20Q- and NLS-
Htt96Q-expressing cells (lanes 1, 2 and 3). Equivalent aliquots of 100,000 × g supernatant of NLS-Htt20Q- and 
NLS-Htt96Q-expressing cells (lanes 4 and 5) were first immunoprecipitated with anti-myc antibody. The 
precipitates were redissolved in lysis buffer/1 % SDS, followed by 10-fold dilution in lysis buffer and 
immunoprecipitation with anti-FLAG antibody. Reactions were analyzed by SDS-PAGE and fluorography. * 
marks an unidentified band precipitating with anti-FLAG antibody. This experiment was performed in 
cooperation with Dr. Peter Breuer. (C) NLS-Htt20Q, NLS-Htt96Q, mut3hTBP and TGTA-luciferase reporter 
were transiently coexpressed in N2a cells for 48 h. Cell lysates were assayed for luciferase activity. Luciferase 
activity without induction of Htt construct was set to 100 %. 
 

4.1.2.5 General impairment of transcription factors by soluble, oligomeric mutant Htt 

To address whether soluble polyQ expanded Htt exon 1 fragments similarly impair the 

function of endogenous transcription factors, Htt constructs were transiently expressed in 

human neuroblastoma cells (SH-SY5Y) and analyzed for their effect on endogenous human 

TBP and CBP. These cells were used previously to study polyQ-expansion proteins 

(Wyttenbach et al., 2000; Ding et al., 2002). While NLS-Htt96Q fractionated between ~70 – 

170 kDa upon size exclusion chromatography, Htt96Q could not be recovered from the gel 

filtration column (Figure 32A). Surprisingly, NLS-Htt20Q was found to fractionate at a 

higher molecular weight than NLS-Htt96Q. Both proteins were present at roughly similar 

amounts (Figure 32A). Size fractionation of the transcription factors TBP and CBP were 

altered by NLS-Htt96Q (Figure 32B and Figure 32C). In cells expressing NLS-Htt20Q, TBP 

was in a well-defined complex of ~200 kDa, as observed previously and, CBP fractionated at 

~400 kDa. However, upon expression of NLS-Htt96Q, substantial amount of TBP and CBP 

were recovered in higher molecular weight fractions. Thus, the soluble form of nuclear Htt 

seems to modulate the conformational properties of TBP and CBP (or transcription complexes 

containing these factors). 
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Figure 32:  NLS-Htt96Q affects unproductively properties of transcription factors in SH-SY5Y cells. 
(A) myc-tagged Htt96Q, NLS-Htt20Q and NLS-Htt96Q were transiently expressed in SH-SY5Y cells for 48 
hours. Soluble fractions of lysates were subjected to size exclusion chromatography on a Superdex 200 column 
followed by Western blot with anti-myc antibody. Positions of size markers are indicated in kDa. (B) and (C) 
Distribution of endogenous TBP and CBP in the fractions from (A) was analyzed by Western blot with anti-TBP 
and anti-CBP antibody, respectively, and quantified by densitometry. (D) myc-tagged NLS-Htt20Q, NLS-
Htt96Q and CRE-luc construct were transiently coexpressed as in (A). Cell lysates were assayed for luciferase 
activity. Luciferase activity in cells expressing NLS-Htt20Q was set to 100 % 
 

Disease associated polyQ proteins have been shown to cause dysregulation of CRE-

mediated transcription (Nucifora et al., 2001; Shimohata et al., 2001). To assess whether the 

altered fractionation properties of the transcription factors TBP and CBP are connected to 

transcriptional dysregulation, NLS-Htt20Q and NLS-Htt96Q were transiently coexpressed 

with a CRE luciferase reporter construct in SH-SY5Y cells for 48 h. Strikingly, expression of 

NLS-Htt96Q caused a reduction in luciferase activity compared to NLS-Htt20Q (Figure 32D). 

Thus, soluble polyQ expanded Htt exon 1 fragment seems to interfere with the function of 

endogenous transcription factors in the nucleus of human neuronal cells, leading to a 

downregulation of CRE mediated transcription. Whether this transcriptional dysregulation 

also leads to cellular toxicity remains to be determined. 
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4.1.2.6 Influence of flanking sequences on TBP mediated polyQ protein toxicity 

Specific amino acids sequences flanking the polyQ region of Htt exon 1 are believed 

to modulate polyQ-length dependent toxicity (Steffan et al., 2004; Duennwald et al., 2006b). 

To dissect the influence of flanking sequences on the toxicity of polyQ expansion proteins, a 

set of Htt exon 1 fragments was constructed that varied in the length of their polyQ stretch, 

presence or absence of the endogenous proline-rich region juxtaposed C-terminally to the 

polyQ sequence, C-terminal fusion to green fluorescent protein (GFP), or presence of a N-

terminal epitope tag (myc or FLAG) (Figure 33). 

 

 

Figure 33:  Schematic overview of different Htt exon 1 constructs. 
N-terminal myc tag (myc) or FLAG-tag (FLAG), polyQ stretch of 20 or 96 Q (20Q or 96Q), proline rich domain 
(P rich), green fluorescent protein (GFP). 
 

All Htt constructs were cloned into copper-inducible yeast expression vectors. FLAG-

tagged Htt∆Prich-GFP fragments have been demonstrated to cause a polyQ length-dependent 

growth defect in yeast (Meriin et al., 2002), and it was proposed that toxicity of this particular 

Htt exon 1 construct arises from the combined effect of the amino-terminal epitope (FLAG) 

tag and deletion of the proline rich domain (Duennwald et al., 2006b). FLAG-tagged 

Htt25Q∆P-GFP and FLAG-tagged Htt96Q∆P-GFP used in this study were identical to 

constructs described previously with the exceptions that the expanded polyQ stretch contains 

96 glutamines instead of 103 and that expression was originally driven from the GAL1 

promoter (Meriin et al., 2002). Since FLAG-tagged Htt96Q∆P-GFP was described to be toxic 

in wild-type yeast, the effect of these different Htt exon 1 constructs on viability was first 

analyzed in wild-type cells by serial dilution on plates containing selective media. Expression 

of Htt20Q and Htt96Q did not cause any toxicity as described previously (Krobitsch and 

Lindquist, 2000; Muchowski et al., 2000) (Figure 34A). Whereas Htt96Q-GFP did also not 
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affect cell viability, Htt96Q∆P-GFP showed a pronounced growth defect (Figure 34A). This 

growth defect was also observed at 30 °C and 34 °C, but was less pronounced at these 

temperatures (data not shown). To exclude the possibility that the growth defect caused by 

Htt96Q∆P-GFP was only due to deletion of the proline domain, viability of wild-type cells 

expressing Htt96Q∆P was analyzed. Intriguingly, Htt96Q∆P did not cause any toxicity 

(Figure 34B). Moreover, to address whether the epitope tag has any influence on toxicity, 

FLAG- and myc-tagged Htt96Q∆P-GFP were expressed in wild-type cells. The toxicity 

caused by Htt96Q∆P-GFP was independent of its N-terminal epitope tag (Figure 34C). As 

FLAG (DYKDDDDK) and myc ((EQKLISEEDL) tags differ substantially in amino acid 

composition, charge and hydrophobicity, it seems unlikely that the epitope tags are 

responsible for toxicity as previously reported (Duennwald et al., 2006b). Thus, toxicity of 

Htt96Q∆P-GFP is likely to arise from the combined effect of deletion of the proline rich 

domain and fusion to GFP. 

 

 

Figure 34:  Growth defect upon expression of Htt constructs. 
(A) myc-tagged Htt20Q, Htt96Q, Htt96Q-GFP or Htt96Q∆P-GFP was expressed under CUP1 for 12 h in wild-
type cells at 30 °C. Growth was examined by 5-fold serial dilutions on SC plate after 2 days at 37 °C. (B) Wild-
type cells expressing myc-tagged Htt20Q, Htt96Q or Htt96Q∆P were cultured and analyzed as in (A). (C) 
FLAG-tagged Htt25Q∆P-GFP, FLAG-tagged Htt96Q∆P-GFP and myc-tagged Htt96Q∆P-GFP were cultured 
and analyzed as in (A). 
 

Expression and formation of SDS-resistant aggregates of the different Htt constructs 

was investigated as before in order to correlate aggregation properties and toxicity. Dot blot 

analysis revealed that Htt96Q, Htt96Q-GFP and Htt96Q∆P-GFP were expressed at 

comparable levels (Figure 35A). Whereas Htt96Q and Htt96Q-GFP formed similar amounts 

of SDS-resistant aggregates detectable by filter-trap assay, Htt96Q∆P-GFP formed 90 % less 

detergent-resistant aggregates (Figure 35A). Furthermore, Htt96Q∆P formed 4 – 5 times more 

SDS resistant aggregates compared to Htt96Q (Figure 35B). Similar to their effect on cell 

viability, the investigated epitope tags (Myc and FLAG) did not change the aggregation 

propensity of Htt96Q∆P-GFP fragment governed by the polyQ stretch (Figure 35C). Thus, the 
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combined effect of deletion of the proline segment and fusion to GFP seems not only to be 

responsible for toxicity but also for inhibition of aggregation. The GFP moiety might possibly 

exert a kinetic block on the aggregation of Htt, retarding the formation of detergent-resistant 

inclusions. Similarly, the propensity of Htt to aggregate is reduced by the nuclear 

environment. 

 

 

Figure 35:  Expression and aggregation of Htt constructs. 
(A) myc-tagged Htt96Q, Htt96Q-GFP or Htt96Q∆P-GFP was expressed under CUP1control for 12 h in wild-
type cells at 30 °C. Lysates were analyzed by dot blot (DB) and filter assay (FA) followed by detection of Htt 
constructs with anti-myc antibody. The amount of Htt96Q aggregates was set to 100 %. (B) myc-tagged Htt96Q 
and Htt96Q∆P were expressed and analyzed as in (A). (C) FLAG-tagged Htt96Q∆P-GFP and myc-tagged 
Htt96Q∆P-GFP were expressed and analyzed as in (A). Htt constructs were immunodetected with anti-GFP 
antibody. The amount of FLAG-Htt96Q∆P-GFP aggregates was set to 100 %. 
 

Intriguingly the amount of SDS-resistant aggregates did not correlate with the 

observed growth defect. In addition to the analysis of SDS-resistance of aggregates, SDS-

solubility of the various Htt constructs was determined in lysates from wild-type yeast by 

SDS-PAGE and immunoblot analysis. Htt96Q and Htt96Q-GFP did not migrated into the gel 

and were only detectable in the stacking gel consistent with the formation of detergent-

resistant aggregates observed for these constructs. A substantial amount of Htt96Q∆P-GFP 

migrated into the gel and was detected as a single protein band of ~50 kDa (Figure 36A).  

To assess the oligomeric state of different Htt constructs, size exclusion 

chromatography was carried out on supernatants of lysates obtained by centrifugation at 

20,000 x g. Whereas neither Htt96Q nor Htt96Q-GFP could be recovered from the gel 

filtration column, SDS-soluble oligomers of Htt96Q∆P-GFP fractionated around ~200 kDa 
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(100-230 kDa) (Figure 36B). Interestingly, the detergent-soluble 200 kDa oligomers formed 

by Htt96Q∆P-GFP correlate with the growth defect caused by the same construct. Thus, 

soluble polyQ species exert toxicity rather than large aggregates. 

 

 

Figure 36:  Soluble Htt96Q∆P-GFP forms oligomers of ~200 kDa. 
(A) Myc-tagged Htt exon 1 constructs with 96 Q (Htt96Q, Htt96Q-GFP and Htt96Q∆P-GFP) were expressed 
under CUP1control for 12 h in wild-type cells at 30 °C. Lysates were analyzed by Western blot with anti-myc 
antibody. (B) Soluble lysate fractions analyzed in (A) were subjected to size exclusion chromatography on a 
Superdex 200 column. Htt proteins were detected by Western blot with anti-myc antibody. Positions of size 
markers are indicated in kDa.  
 

The ability of Htt exon 1 fragments to recruit other polyQ proteins into aggregates is 

thought to play an important role in toxicity (Kazantsev et al., 1999; Schaffar et al., 2004; 

Duennwald et al., 2006a). To address whether toxicity of Htt96Q∆P-GFP could be mitigated 

by enhanced aggregation and/or recruitment of the ~200 kDa oligomer into aggregates formed 

by Htt96Q, both Htt exon 1 fragments were coexpressed in wild-type cells. Therefore, myc-

tagged Htt20Q and Htt96Q were expressed from copper-inducible promoters and FLAG-

tagged Htt25Q∆P-GFP and Htt96Q∆P-GFP as previously described (Meriin et al., 2002). 

Differences in abundance or toxicity of Htt96Q∆P-GFP were not observable regardless which 

promoter drove its expression. Intriguingly, the growth defect caused by Htt96Q∆P-GFP 

could not be suppressed by coexpression of Htt96Q (Figure 37A). Although Htt25Q∆P-GFP 

and Htt96Q∆P-GFP were found to co-aggregate upon coexpression with Htt96Q as detected 

with filter trap assay, aggregation of Htt96Q∆P-GFP was not increased compared to 

Htt25Q∆P-GFP under the same conditions (Figure 37B). Size exclusion chromatography 

revealed the persistence of the ~200 kDa Htt96Q∆P-GFP oligomer upon coexpression with 

Htt96Q (Figure 37C), indicating that Htt96Q∆P-GFP cannot be efficiently recruited by 

Htt96Q. Thus, in agreement with the results above, the presence of the ~200 kDa Htt96Q∆P-

GFP oligomer correlates with toxicity. 
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Figure 37:  Toxicity of Htt96Q∆P-GFP oligomers cannot be mitigated by recruitment into Htt aggregates. 
(A) Myc-tagged Htt20Q or Htt96Q under CUP1 control were coexpressed with Htt25Q∆P-GFP or Htt96Q∆P-
GFP under GAL1 control in wild-type cells for 24 h at 30 °C. Growth was examined by 5-fold serial dilutions on 
SC plates after 2 days at 37 °C. (B) SDS-resistant aggregates in lysates from (A) were analyzed by filter assay 
and immunodetected as indicated. (C) Soluble fraction from cells coexpressing myc-tagged Htt96Q and 
Htt96Q∆P-GFP as in (A) was subjected to size exclusion chromatography. Htt96Q∆P-GFP was detected by 
Western blot with anti-GFP antibody. Positions of size markers are indicated in kDa. 
 

Intriguingly, in yTBP∆/hTBP cells, similar soluble oligomers as those observed for 

Htt96Q∆P-GFP were formed by nuclear targeted Htt96Q. These species interfered with the 

function of the transcription factor TBP and caused cellular toxicity. Since the aggregation 

propensity of Htt96Q∆P-GFP is reduced compared to the non-toxic Htt96Q, the toxicity of 

Htt96Q∆P-GFP is likely to arise as well from aberrant protein-protein interaction rather than 

from a sequestration mechanism. To address whether Htt96Q∆P-GFP also causes a growth 

defect in yTBP∆/hTBP cells, Htt constructs were expressed in these cells and their growth was 

assayed at 34 °C. At this temperature, expression of Htt96Q∆P-GFP in wild-type cells 

resulted only in mild growth impairment (Figure 38). In contrast, in yTBP∆/hTBP cells, 

Htt96Q∆P-GFP expression led to a severe growth defect (Figure 38). Neither Htt96Q nor 

Htt96Q-GFP showed any toxicity in yTBP∆/hTBP cells (Figure 38). Although growth of 

yTBP∆/hTBP cells is to some extent slower compared to wild-type cells, expression of 

Htt96Q∆P-GFP causes the most pronounced growth defect in yTBP∆/hTBP cells (Figure 38). 

Thus, Htt96Q∆P-GFP oligomers, which are correlated to toxicity in wild-type cells, appear to 

exercise increased toxicity in yTBP∆/hTBP cells, presumably due to functional interference 

with the transcription factor TBP, as observed for oligomers formed by NLS-Htt96Q. 
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Whether Htt96Q∆P-GFP is also found in the nucleus of yTBP∆/hTBP cells, as primary site of 

cellular toxicity, remains to be determined. 

 

 

Figure 38:  Increased growth defect upon expression of Htt96Q∆P-GFP in yTBP∆/hTBP cells. 
Htt20Q, Htt96Q, Htt96Q-GFP or Htt96Q∆P-GFP was expressed under CUP1 for 12 h in wild-type or 
yTBP∆/hTBP cells at 30 °C. Growth was examined by 5-fold serial dilutions on SC plate after 2 days at 34 °C. 
 

In summary, the interaction of polyQ-expanded Htt with the transcription factors TBP 

and CBP was investigated in mouse and human neuronal cells as well as in a yeast model. 

Monomers and/or small soluble oligomers of mutant Htt were shown to deactivate the 

transcription factors by a polyQ-mediated interaction, independent of the formation of 

insoluble coaggregates. These soluble toxic forms are possibly generated through a 

conformational rearrangement in mutant Htt and accumulated to high levels when the polyQ-

expanded protein is targeted to the nucleus. Soluble oligomers of a distinct size (and 

presumably conformation) might generally represent a toxic species since similar effects 

could be observed for oligomers formed by a polyQ-expanded Htt fragment with largely 

modified flanking sequences 
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4.2 Chaperonin TRiC as modulator of polyQ protein 

aggregation and toxicity 

Hsp70 and its cochaperone Hsp40 have been demonstrated to interfere with polyQ 

toxicity early in the aggregation pathway by retarding the conformational compaction of the 

polyQ disease protein and presumably also by transiently shielding benign polyQ sequences 

in target proteins such as the general transcription factor TBP (Schaffar et al., 2004). In 

agreement with this view, increased expression of Hsp70, together with Hsp40, has been 

shown to alleviate polyQ toxicity and neurodegeneration in various cellular and animal 

models, presumably by redirecting the aggregation process towards the formation of non-

fibrillar, amorphous aggregates (Cummings et al., 1998; Warrick et al., 1999; Chan et al., 

2000; Muchowski et al., 2000). This mechanism is thought to inhibit the accumulation of 

certain aggregation intermediates, including soluble polyQ oligomers, which may be the 

primary toxic agents (Arrasate et al., 2004; Schaffar et al., 2004; Wacker et al., 2004). A 

reduction in the chaperone capacity due to the ageing process may allow the accumulation of 

proteotoxic species (Morley et al., 2002; Morley and Morimoto, 2004), thereby possibly 

explaining the late onset of these diseases. 

In the eukaryotic cytosol, the Hsp70 chaperone system cooperates with the chaperonin 

TRiC in the de novo folding of a subset of newly-synthesized proteins (Frydman, 2001; Hartl 

and Hayer-Hartl, 2002). Hsp70 members, together with Hsp40 cochaperones, can interact co-

translationally with nascent polypeptide chains, protecting them against aggregation, whereas 

TRiC acts downstream in mediating folding and assisting oligomer assembly. Whether these 

chaperones also cooperate in preventing the formation of aberrantly folded proteins associated 

with neurodegenerative diseases, such as HD, has remained largely unexplored. A recent 

RNA interference (RNAi) screen in Caenorhabditis elegans, searching for endogenous 

regulators of polyQ aggregation, isolated, in addition to Hsp70 and Hsp40, six out of eight 

TRiC subunits (Nollen et al., 2004), invoking the cytosolic chaperonin TRiC as a previously 

unknown modulator of polyQ aggregation. Thus, this screen may have uncovered the 

endogenous chaperone pathway for polyQ proteins. Alternatively, as TRiC folds essential 

cytoskeletal components, the observed RNAi phenotype could have resulted from indirect 

effects on the cytoskeleton. 
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In this study, a series of experiments were conducted to explore the direct interaction 

of TRiC and polyQ expanded Htt exon 1 fragments. The differential aggregation propensity 

and toxicity of distinct Htt exon 1 fragments were exploited to dissect the involvement of 

TRiC in modulating the properties of expanded polyQ proteins and its capacity to suppress 

their cellular toxicity. These experiments were carried out in the genetic background of wild-

type yeast cells instead of yTBP∆/hTBP cells.  

4.2.1 TRiC deficiency modulates the properties of polyQ-expanded Htt 

Mutations in chaperones have been of great use in analyzing polyQ aggregation 

(Krobitsch and Lindquist, 2000; Meriin et al., 2002). A possible role of TRiC in modulating 

polyQ aggregation was investigated taking advantage of the well characterized conditionally 

TRiC-defective tcp1-2 yeast strain (Ursic et al., 1994). Because all TRiC subunits are required 

for function, mutation or depletion of a single subunit is sufficient to impair the function of 

the complex (Spiess et al., 2004). tcp1-2 carries a point mutation (G423D) within the 

equatorial ATP binding domain in the Tcp1p subunit of TRiC (Ditzel et al., 1998). The 

folding of the cytoskeletal proteins tubulin and actin stringently depends on assistance of 

TRiC (Frydman, 2001). Accordingly, tcp1-2 cells are hypersensitivity to the microtubule 

depolymerisation drug benomyl, form large unbudded cells and are temperature-sensitive for 

growth at 37 oC, indicating that cytoskeletal dysfunction is a consequence of the functional 

impairment of TRiC (Ursic et al., 1994). 

4.2.1.1 Pronounced polyQ aggregation due to TRiC impairment 

The effect of TRiC on Htt aggregation was investigated in wild-type and tcp1-2 

mutant yeast. When expressed in wild-type cells, Htt exon 1 with 20 Q (Htt20Q) did not form 

SDS-resistant aggregates detectable by filter-trap assay (Figure 39A). Htt45Q, close to the 

threshold-length for polyQ pathology of ~37 Q, formed small amounts of insoluble 

aggregates, whereas substantial aggregation was observed with Htt96Q (Figure 39A). In tcp1-

2 yeast cells, the amount of SDS-insoluble aggregates increased ~2-fold upon expression of 

Htt45Q and Htt96Q at the semi-permissive temperature of 30 oC (Figure 39A). Interestingly, 

immunofluorescence revealed that Htt45Q was diffusely distributed in wild-type cells, while 

in the tcp1-2 cells, the protein coalesced into large, well-defined cytoplasmic inclusions 

(Figure 39B). 
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Figure 39:  Effect of functional TRiC impairment on Htt aggregation. 
(A) Myc-tagged Htt20Q, Htt45Q and Htt96Q were expressed under CUP1 control for 24 h in wild-type and 
tcp1-2 cells at 30 o C. SDS-resistant aggregates in lysates were analyzed by filter assay and detected with anti-
myc antibody. The amount of Htt96Q aggregates in wild-type cells was set to 100 %. (B) Cells expressing myc-
Htt45Q as in (A) were analyzed by indirect immunofluorescence. myc-Htt45Q was immunolabeled with anti-
myc antibody coupled to Cy3-conjugated secondary antibody, and nuclei were counterstained with DAPI. 
 

The enhancement of Htt aggregation due to functional TRiC impairment could be 

recapitulated with Htt96Q∆P-GFP. Whereas Htt25Q∆P-GFP did not aggregate, both in wild-

type and in TRiC deficient cells, expression of Htt96Q∆P-GFP resulted in a ~ 2-fold increase 

in formation of SDS-resistant aggregates in tcp1-2 compared to wild-type cells (Figure 40A). 

Consistently, immunofluorescence analysis showed increased aggregation of Htt96Q∆P-GFP 

in tcp1-2 cells (Figure 40B). Similar results were obtained using the TRiC mutant yeast strain 

cct4-1 (Tam et al., 2006). 

 

 

Figure 40:  Defective TRiC enhances Htt aggregation. 
(A) Htt25Q∆P-GFP and Htt96Q∆P-GFP were expressed under CUP1control in wild-type and tcp1-2 for 24 h at 
30 o C. SDS-resistant aggregates in lysates were analyzed by filter assay and detected with anti-GFP antibody. 
The amount of Htt96Q∆P-GFP aggregates in wild-type cells was set to 100 %. (B) Cells expressing Htt96Q∆P-
GFP as above were analyzed by GFP fluorescence. Nuclei were stained with DAPI. 
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These findings mirror the observation in C. elegans that down-regulation of TRiC 

subunit expression results in enhanced polyQ aggregation (Nollen et al., 2004). Recently, 

RNAi-mediated TRiC subunit knockdown in mammalian cells confirmed the role of TRiC in 

polyQ aggregation (Kitamura et al., 2006; Tam et al., 2006). Enhanced aggregation was 

unlikely to be a secondary effect of a loss of TRiC function in tubulin biogenesis, because 

disruption of the tubulin cytoskeleton is known to inhibit formation of large polyQ inclusions 

(Muchowski et al., 2002). Thus TRiC, at normal levels, profoundly modulates the aggregation 

properties of polyQ expansion proteins. 

 

 

Figure 41:  Soluble Htt96Q∆P-GFP forms oligomers of ~200 kDa. 
Myc-tagged Htt96Q and Htt96Q∆P-GFP were expressed under CUP1 control for 24 h in wild-type and tcp1-2 
cells at 30 °C. Soluble lysate fractions were analyzed by size exclusion chromatography on a Superdex 200 
column. Htt proteins were detected by Western blot with anti-myc antibodies. Positions of size markers are 
indicated in kDa.  
 

To assess whether TRiC impairment had an effect on SDS-solubility of Htt species, 

the supernatants of lysates derived from wild-type or tcp1-2 cells expressing either Htt96Q or 

Htt96Q∆P-GFP were subjected to size exclusion chromatography and analyzed by 

immunoblotting. Whereas no SDS-soluble Htt96Q could be recovered from the gel filtration 

column regardless of expression in wild-type or tcp1-2 cells, the amount of ~ 200 kDa 

Htt96Q∆P-GFP oligomers was slightly decreased in tcp1-2 compared to wild-type cells 

(Figure 41), consistent with the pronounced formation of detergent-resistant aggregates in 

tcp1-2 cells. Thus, TRiC deficiency appears to modulate the aggregation pathway. 

4.2.1.2 Ambivalent effect of TRiC impairment on polyQ toxicity 

The fact that TRiC impairment increases the formation of detergent-resistant 

aggregates stimulated the further investigation of its effect on cell viability. The growth defect 

caused by expression of Htt96Q∆P-GFP in wild-type cells was slightly suppressed in tcp1-2 

cells (Figure 42A), consistent with the reduced amount of soluble, presumably toxic, ~200 

kDa Htt96Q∆P-GFP oligomers and increased formation of SDS-insoluble aggregates by the 



Results 

 

84

same protein. In contrast, expression of Htt96Q is tolerated by wild-type yeast under standard 

growth conditions without overt toxicity (Figure 42B). However, in TRiC deficient tcp1-2 

cells, expression of Htt96Q markedly aggravated the growth defect of tcp1-2 cells at 37oC 

(Figure 42B), which was rescued by expression of wild-type TCP1 (Figure 42C). Increased 

polyQ toxicity was also observed in neuroblastoma cells upon downregulation of TRiC 

subunits by RNA interference (Kitamura et al., 2006). Thus, different Htt exon 1 constructs 

may exert distinct mechanisms of toxicity under certain conditions.  

 

 

Figure 42:  Increased polyQ toxicity in TRiC-impaired yeast. 
(A) Wild-type and tcp1-2 cells expressing Htt25Q∆P-GFP or Htt96Q∆P-GFP were cultured in liquid media and 
growth was examined by 5-fold serial dilutions on SC plates at 37 °C after 2 days. (B) Growth of cells 
expressing Htt20Q or Htt96Q was analyzed as in (A). (C) Htt20Q and Htt96Q were coexpressed for 24 h at 30 
°C together with either empty vector or TCP1 under its endogenous promoter, and growth of yeast cells was 
monitored as in (A).  
 

In the case of toxicity conferred by Htt96Q, either Htt becomes toxic when TRiC 

function is partially impaired, or re-localization of TRiC to Htt aggregates causes a critical 

reduction in available TRiC activity in tcp1-2 cells. In order to test the latter hypothesis, 

sequestration of TRiC subunits was analyzed in wild-type and tcp1-2 cells. The TRiC subunit 

Tcp5p and Tcp1p were diffusely distributed in the cytoplasm of wild-type and tcp1-2 mutant 

cells upon expression of Htt20Q, but co-localized partially with aggregates of Htt96Q in both 

cell types (Figure 43 and data not shown). Notably, similar results were obtained for Tcp1p in 

neuronal N2a cells upon transient expression of Htt96Q-GFP (data not shown). Thus, the 

chaperonin TRiC seems to be recruited into Htt aggregates. 
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Figure 43:  Colocalization of TRiC subunits with aggregates. 
Wild-type and tcp1-2 mutant cells expressing myc-Htt20Q or myc-Htt96Q for 24 h at 30 °C were analyzed by 
indirect immunofluorescence. myc-Htt constructs were immunolabeled with anti-myc antibody coupled to Cy3-
conjugated secondary antibody, TRiC was immunostained with anti-Tcp5p antibody coupled to FITC-
conjugated secondary antibody, and nuclei were counterstained with DAPI. 
 

In order to quatify the amount of sequestrated TRiC subunits, the endogenous TRiC 

subunit TCP2 was functionally replaced by C-terminally HA-tagged TCP2 in wild-type and 

tcp1-2 mutant yeast. SDS-insoluble TRiC subunit Tcp2p was detected in Htt96Q expressing 

cells by filter-trap assay, presumably reflecting stable incorporation into the aggregates. This 

effect was more pronounced in tcp1-2 cells (Figure 44A).  

 

 

Figure 44:  Recruitment of TRiC subunit into aggregates. 
(A) myc-Htt20Q and myc-Htt96Q were expressed in wild-type and tcp1-2 cells carrying chromosomal HA-
tagged TCP2 for 24 h at 30 °C. SDS-resistant aggregates in lysates containing Tcp2p-HA were analyzed by filter 
assay and detected with anti-HA antibody. Non-specific interaction of anti-HA antibody with Htt aggregates was 
excluded. Amounts of aggregated Tcp2p in cells expressing Htt96Q was set to 100 %. (B) Lysates derived from 
(A) were separated by centrifugation at 100,000 x g for 30 min and analyzed by Western blot. Tcp2p-HA was 
detected in fractions with anti-HA antibody. Total amount of Tcp2p-HA was set to 100 %. 
 



Results 

 

86

However, ~75 % of TRiC remained soluble, arguing against a functionally significant 

depletion of available chaperonin, at least in wild-type cells. In tcp1-2 cells, the amount of 

soluble TRiC was further reduced upon expression of Htt96Q to ~ 60 % of the total amount of 

TRiC (Figure 44B). Thus, enhanced Htt aggregation due to TRiC deficiency likely results in 

increased TRiC recruitment, possibly leading to a vicious circle that might severely engage 

the cellular chaperone activity. 

 

 

Figure 45:  Changes in localization and induction of Ssa proteins upon Htt aggregation. 
(A) Wild-type and tcp1-2 cells expressing myc-tagged Htt20Q and Htt96Q for 24 h at 30 °C were analyzed by 
indirect immunofluorescence. myc-Htt constructs were immunolabeled with anti-myc antibody coupled to Cy3-
conjugated secondary antibody, Ssa1p was immunostained with anti-Ssa1p antibody coupled to FITC-
conjugated secondary antibody and nuclei were counterstained with DAPI. Note that anti-Ssa1p recognize all 4 
Ssa proteins. (B) Induction of SSA3 upon expression of Htt. myc-Htt20Q, myc-Htt96Q and HSE-SSA3-LacZ 
reporter were coexpressed in wild-type and tcp1-2 cells for 24 h at 30 °C. Lysates were assayed for β-
galalactosidase activity. 
 

Intriguingly, besides TRiC subunits, the cytosolic Hsp70s of the Ssa class co-localized 

partially with aggregates of Htt96Q in wild-type and tcp1-2 cells, while being diffusely 

distributed in the cytoplasm upon expression of Htt20Q (Figure 45A). Importantly, in contrast 

to TRiC, two members of the Ssa class of Hsp70s, namely Ssa3p and Ssa4p, are stress-

inducible. To investigate whether Htt expression leads to Hsp70 induction, the heat shock 

element (HSE) of the Ssa3p promoter was fused to the lacZ gene and induction of Ssa3p was 

quantified by measuring β-galactosidase activity (Boorstein and Craig, 1990). While Htt96Q 

did not affect β-galactosidase activity in wild-type yeast, tcp1-2 cells showed 1.5 – 2 fold 

increase in activity upon expression of Htt96Q compared to Htt20Q (Figure 45B). Thus, the 

induction of the stress-inducible Ssa might counteract sequestration of Ssa proteins. 
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Accordingly, sequestration of TRiC could potentially lead to its functional depletion since 

TRiC is not stress-inducible and of low abundance compared to Hsp70 (Hartl, 1996; Siegers 

et al., 1999). 

 

 

Figure 46:  TRiC-impairment upon Htt expression in tcp1-2 mutant cells. 
Sensitivity to the microtubules depolymerisation drug Benomyl. Wild-type and tcp1-2 cells expressing myc-
Htt20Q or myc-Htt96Q were cultured in liquid media, and growth was examined by 5-fold serial dilutions on 
YPD plates with or without 40 mg/ml Benomyl at 34 °C after 4 days. 
 

Consequently, in order to test whether recruitment of TRiC into Htt aggregates leads 

to further TRiC impairment, cells were assayed for sensitivity to the microtubule-

depolymerizing drug benomyl. The growth defect displayed on benomyl containing plates 

was initially used to describe TRiC dysfunction in tcp1-2 mutant cells (Ursic et al., 1994). 

Wild-type cells expressing Htt96Q did not show increased sensitivity to benomyl compared to 

cells expressing Htt20Q (Figure46). tcp1-2 mutant cells expressing Htt20Q possessed a slight 

growth defect compared to wild-type cells, reflecting TRiC deficiency conferred by mutation 

in the TCP1 gene. Remarkably, Htt96Q caused a profound growth defect in tcp1-2 cells 

(Figure 46). Thus, TRiC activity seems to be further reduced via recruitment of TRiC subunits 

(or the TRiC complex) into Htt aggregates, likely accounting for the increased polyQ toxicity 

in tcp1-2 cells. 

 

Based on these results, TRiC is an important modulator of polyQ aggregation and 

toxicity. Generally, decreased TRiC activity facilitates the formation of detergent-resistant 

inclusions. Depending on the properties of polyQ expansion proteins, this increased aggregate 

formation appears to have different consequences for cellular toxicity. Increased aggregation 

can either reduce the accumulation of toxic, soluble species, as in the case of Htt96Q-GFP, or 

even generate toxic species, as presumably in the case of Htt96Q. Moreover, increased 

aggregation might also compromise the quality control system, especially those components 

that are of low abundance and cannot be up-regulated, such as the chaperonin TRiC. 
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4.2.2 Influence of TRiC overexpression on the properties of mutant Htt 

Like the mutational analysis of chaperones, overexpression of chaperones in yeast has 

also been helpful in elucidating their role in modulating polyQ protein aggregation and 

toxicity (Krobitsch and Lindquist, 2000; Muchowski et al., 2000; Meriin et al., 2002). 

Although several members of different chaperone families are known to affect polyQ 

aggregation and toxicity, overexpression of TRiC has not been investigated. 

4.2.2.1 Suppression of detergent-resistant aggregate formation 

To test whether TRiC is involved in suppressing aggregation and toxicity of polyQ 

proteins, a yeast strain overexpressing all eight TRiC subunits was constructed. To this end, 

TCP1 and TCP7, TCP2 and TCP3, TCP4 and TCP5 as well as TCP6 and TCP8 were cloned 

pairwise, with each gene under an individual galactose inducible promoter, into yeast 

expression vectors. Wild-type cells were cotransformed with these four plasmids and 

induction and assembly of TRiC was analyzed. These cells produced significantly increased 

amounts of TRiC subunits (Figure 47A), and size exclusion chromatography revealed that the 

overexpressed subunits assembled into a complex with similar fractionation properties but 5 – 

10-fold more abundant as endogenous TRiC (Figure 47B). 

 

 

Figure 47:  TRiC overexpression in wild-type yeast. 
(A) Wild-type cells were grown with and without overexpression of TRiC subunits from galactose-inducible 
promoters for 20 h at 30 °C. Induction of TRiC subunits was analyzed by Western blot with indicated antibodies. 
(B) Soluble fractions derived from (A) were subjected to size exclusion chromatography on a Superose 6 
column. Tcp5p was detected by Western blot with anti-Tcp5p antibody. Positions of size markers are indicated 
in kDa. This experiment was performed in cooperation with Dr. Ulrike Böttcher. 
 

TRiC has been described to cooperate with Hsp70 in de novo folding of substrate 

proteins and in assisting their oligomeric assembly (Frydman et al., 1994; Melville et al., 

2003; Siegers et al., 2003). Whether these chaperones also cooperate in modulating polyQ 

protein aggregation and toxicity remains unclear. In order to address this, TRiC was 

overexpressed in yeast cells with reduced amount of cytosolic Hsp70s of the Ssa class 
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(ssa1∆/ssa2∆) or lacking the non-canonical, ribosome-associated Hsp70s Ssb1p and Ssb2p 

(ssb1∆/ssb2∆) (Figure 48A). Similar to wild-type yeast, these cells produced 5 – 10-fold 

higher levels of TRiC upon induction compared to uninduced cells (Figure 48B). 

 

 

Figure 48:  TRiC overexpression in chaperone deletion yeast. 
(A) Wild-type, ssa1∆/ssa2∆ and ssb1∆/ssb2∆ cells were grown as above. The absence of Ssa1p/Ssa2p and 
Ssb1p/Ssb2p was confirmed by Western blot with indicated antibodies. Note that anti-Ssa1p and anti-Ssb1p also 
recognize Ssa2p, Ssa3p, Ssa4p and Ssb2p, respectively. (B) Cells were grown as in (A) with and without TRiC 
overexpression. Induction of TRiC was analyzed in lysates by Western blot with anti-Tcp5p antibody. 
 

The effect of TRiC overexpression on polyQ protein aggregation was analyzed in 

wild-type, ssa1∆/ssa2∆ and ssb1∆/ssb2∆ yeast cells. In addition to the four TCP expression 

vectors, the corresponding cells were transformed with different Htt constructs under control 

of copper-inducible promoters and formation of SDS-insoluble aggregates was analyzed by 

filter retardation assay. Increased expression of TRiC in wild-type yeast cells markedly 

inhibited the formation of SDS-insoluble aggregates of Htt96Q and of Htt96Q∆P-GFP 

(Figure49A). Similar results have been reported in mammalian cells (Kitamura et al., 2006). 

 

 

Figure 49:  TRiC overexpression affects Htt aggregation. 
(A) myc-tagged Htt96Q and Htt96Q∆P-GFP were expressed under CUP1 control in wild-type, ssa1∆/ssa2∆ and 
ssb1∆/ssb2∆ yeast cells for 24 h at 30 °C with and without TRiC overexpression. SDS-insoluble aggregates in 
lysates were analyzed by filter assay and myc-Htt96Q and Htt96Q∆P-GFP were immunodetected with anti-myc 
and anti-GFP antibody, respectively. Amounts of aggregates without TRiC overexpression were set to 100 %. 
(B) SDS-insoluble aggregates form wild-type cells expressing myc-tagged NLS-Htt96Q were analyzed as in (A). 
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In ssa1∆/ssa2∆ cells, however, TRiC overexpression failed to reduce Htt aggregation 

(Figure 49A). In contrast, normal inhibition of Htt aggregation by TRiC was observed in 

ssb1∆/ssb2∆ cells (Figure 49A). Intriguingly, TRiC overexpression in the cytosol did not 

affect formation of SDS-insoluble aggregates of NLS-Htt96Q, which is targeted to the 

nucleus via a nuclear localization sequence (NLS) (Figure 49B). Thus, TRiC modulates 

polyQ aggregation in cooperation with the canonical Hsp70s only in the cytosol. In agreement 

with this result, TRiC and Hsp70/Hsp40 have also been demonstrated to alter polyQ 

aggregation cooperatively in vitro (Behrends et al., 2006). 

 

 

Figure 50:  Overexpression of various TRiC subunit combinations does not affected Htt aggregation. 
(A) myc-tagged Htt96Q was expressed under CUP1 control in wild-type cells for 24 h at 30 °C with and without 
overexpression of indicated TRiC subunits or bacterial GroEL. SDS-insoluble Htt aggregates were analyzed by 
filter assay following immunodetection with anti-myc antibody. Amounts of aggregates without TRiC 
overexpression were set to 100 %. (B) GroEL was detected in lysates by Western blot with anti-GroEL antibody. 
 

To exclude the possibility that the observed modulation of polyQ aggregation is 

mediated by single and distinct TRiC subunits rather than the complete TRiC complex, 

various subunit combinations were analyzed regarding their effect on formation of SDS-

insoluble aggregates by Htt. Remarkably, TRiC-dependent inhibition of Htt aggregation was 

only seen upon overexpression of all TRiC subunits but not of various TRiC subunit 

combinations (Figure 50A). Moreover, expression of the bacterial chaperonin, GroEL, a 

distant homolog of TRiC, also failed to reduce the formation of SDS-resistant Htt aggregates 

(Figure 50A), although GroEL was expressed (Figure 50B) and is functionally active in yeast 

(Kerner et al., 2005). Similarly, in vitro, GroEL fail to prevent the formation of SDS-resistant 

aggregates (G. Schaffar and C. Langer, personal communication). Thus, the TRiC complex 

and not single TRiC subunits mediate the inhibitory effect on Htt aggregation. Furthermore, 
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the eukaryotic chaperonin TRiC appears to interact with certain structural features in substrate 

proteins that are not recognized by the bacterial chaperonin GroEL. 

4.2.2.2 Generation and accumulation of detergent-soluble polyQ oligomers 

Since TRiC inhibited Htt aggregation, it was of interest to determine whether the 

amount of SDS-soluble Htt exon 1 fragments increased in the presence of overexpressed 

TRiC. Western blot analysis revealed that there were 2 – 3 fold higher amounts of SDS-

soluble Htt96Q and Htt96Q∆P-GFP upon TRiC induction (Figure 51A). In contrast, the 

expression level of Htt25Q∆P-GFP was unchanged, indicating that TRiC overexpression did 

not unspecifically affect the expression of polyQ constructs (Figure 51A). Consistent with the 

inability of TRiC to suppress the aggregation of NLS-Htt96Q, the amount of SDS-soluble 

NLS-Htt96Q did not increase (Figure 51A). Immunofluorescence analysis showed that 

whereas Htt96Q and Htt96Q∆P-GFP formed large aggregates in wild-type cells, both 

constructs displayed diffuse cytoplasmic staining in TRiC overexpressing cells (Figure 51B). 

Thus, TRiC inhibits the formation of SDS-insoluble aggregates and favors the formation of 

SDS-soluble species. 

 

 

Figure 51:  TRiC overexpression increases fraction of SDS-soluble Htt. 
(A) myc-tagged Htt96Q, myc-tagged NLS-Htt96Q, Htt25Q∆P-GFP and Htt96Q∆P-GFP constructs were 
expressed under control of CUP1 in wild-type cells for 24 h at 30 °C with and without TRiC overexpression. 
The amount of SDS-soluble Htt in lysates was analyzed by Western blot, and myc-tagged Htt and Htt-GFP were 
detected with anti-myc or anti-GFP antibody, respectively. The amount of Htt without TRiC overexpression was 
set to 1. (B) Cells derived from (A) were analyzed by indirect immunofluorescence with anti-myc antibody 
coupled to Cy3-conjugated secondary antibody and by GFP fluorescence, respectively. Nuclei were 
counterstained with DAPI. 
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Small amounts of polyQ protein were co-immunoprecipitated with antibodies against 

various TRiC subunits (Figure 52A). Intriguingly, Htt96Q∆P-GFP but not Htt25Q∆P-GFP 

was pulled down together with overexpressed His-tagged TRiC from lysates (Figure 52B). 

The N-terminal His-tag on TRiC subunit Tcp1p did not interfere with assembly of the 

overexpressed TRiC. His-tagged Tcp1p fractionated at a similar size as shown for the 

endogenous TRiC complex (Figure 52C and Figure 47B), and Tcp5p cofractionated with His-

tagged Tcp1p (Figure 52C). Hence, the chaperonin TRiC interacts weakly with soluble 

expanded polyQ protein. 

 

 

Figure 52:  A fraction of soluble Htt associates with TRiC. 
(A) Htt96Q∆P-GFP and TRiC were coexpressed in wild-type cells for 24 h at 30 °C. Soluble lysates (20,000 x g) 
were immunoprecipitated with antibodies against Tcp1p, Tcp3p, Tcp5p and Tcp7p or control antibody. 
Precipitates were Western blot with anti-GFP antibody. 10 % of input is shown for comparison. (B) Htt25Q∆P-
GFP, Htt96Q∆P-GFP and His-tagged TRiC were coexpressed as in (A). NiNTA pull down from soluble lysates 
via His-tagged Tcp1p was analyzed by Western blot. Htt-GFP and Tcp5p were detected with anti-GFP and anti-
Tcp5 antibodies, respectively. Flow through (FT), wash (W) and eluate (E) are shown. (C) Size exclusion 
chromatography (Superose 6 column) of lysate derived from (B) followed by Western blot and detection of His-
tagged Tcp1p and Tcp5p with anti-His and anti-Tcp5p antibodies, respectively. Positions of size markers are 
indicated in kDa. 
 

The effect of TRiC overexpression on the SDS-soluble fraction of Htt exon 1 

fragments was analyzed in more detail by centrifugation and size exclusion chromatography. 

In wild-type cells, Htt96Q was almost absent from the supernatant and exclusively found in 

the pellet fraction. Upon TRiC induction, Htt96Q was largely recovered in the supernatant 

fraction upon centrifugation (Figure 53A). While no soluble Htt96Q was recovered upon size 

exclusion chromatography of extracts in the absence of TRiC overexpression, TRiC 

overexpressing cells contained large amounts of Htt96Q that fractionated around 440 kDa 

(Figure 53B). The distribution of TRiC and of cytosolic Hsp70 (Ssa proteins) did not overlap 

with that of the polyQ oligomers. Strikingly, gel filtration analysis of in vitro Htt aggregation 
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in the combined presence of TRiC and Hsp70/Hsp40 but not with any of these chaperones 

alone revealed the formation of similar sized Htt oligomers (Behrends et al., 2006). Thus, the 

two chaperone systems seem to cooperatively modulate Htt aggregation. 

 

 

Figure 53:  Characterization of TRiC modulated soluble Htt species. 
(A) myc-tagged Htt96Q was expressed under control of CUP1 in wild-type cells with and without TRiC 
overexpression for 24 h at 30 °C. Distribution of myc-Htt96Q upon centrifugation at 20,000 x g (30 min) was 
analyzed by Western blot followed detection with anti-myc antibody. Total (T), supernatant (S) and pellet (P) 
fractions are shown. (B) Soluble fractions analyzed in (A) were subjected to size exclusion chromatography on a 
Superdex 200 column followed by Western blot. Htt96Q was detected with anti-myc antibody and TRiC and Ssa 
protein with anti-Tcp5p and anti-Ssa antibody, respectively. Positions of size markers are indicated in kDa. 
 

4.2.2.3 Cooperative and effective modulation of toxic, oligomeric aggregation intermediates 

Htt96Q∆P-GFP, unlike Htt96Q, is known to cause a polyQ-length dependent growth 

defect of yeast cells (Meriin et al., 2002) (Figure 54A). This distinct property of Htt96Q∆P-

GFP was exploited to address whether TRiC is able to suppress polyQ toxicity. Remarkably, 

overexpression of TRiC efficiently suppressed the growth defect caused by Htt96Q∆P-GFP. 

In contrast, overexpression of Ssa1p and its Hsp40 co-chaperone, Ydj1p, did not rescue the 

growth defect, suggesting that TRiC is limiting in suppressing polyQ protein toxicity. 

Strikingly, overexpression of TRiC in ssa1∆/ssa2∆ but not in ssb1∆/ssb2∆ cells failed to 

suppress the growth defect caused by Htt96Q∆P-GFP, in support of the conclusion that TRiC 

and the canonical Hsp70 must cooperate in alleviating polyQ proteotoxicity in the yeast 

system. The growth defect of Htt96Q∆P-GFP in wild-type yeast depends on the prion state of 

Rnq1, which is indicated by the insolubility of Rnq1 protein (Meriin et al., 2002; Duennwald 

et al., 2006a) (Figure 54B). Importantly, TRiC suppressed toxicity of Htt96Q∆P-GFP without 

affecting the solubility of Rnq1p (Figure 54B). 
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Figure 54:  Effect of TRiC overexpression on polyQ toxicity. 
(A) Growth of wild-type, ssa1∆/ssa2∆ or ssb1∆/ssb2∆ cells expressing Htt25Q-GFP or Htt103Q-GFP under 
control of CUP1 with and without overexpression of TRiC or Ssa1p/Ydj1p was examined by 5-fold serial 
dilutions on SC plates after 2 days at 37 °C. (B) Htt25Q-GFP, Htt103Q-GFP and TRiC were coexpressed in 
wild-type cells for 24 h at 30 °C. The distribution of Rnq1p upon centrifugation at 100,000 x g was analyzed by 
Western blot with anti-Rnq1p antibody. Total (T), supernatant (S) and pellet (P) fractions are shown. 
 

Failure of suppression of toxicity by the Hsp70 and Hsp40 chaperones, Ssa1p and 

Ydj1p, was not due to inefficient overexpression of the two chaperones. Cells produced ~3-

fold higher levels of Ssa1p and Ydj1p upon induction compared to uninduced cells (Figure 

55A). Likewise, Ssa1p and Ydj1p markedly inhibited the formation of SDS-insoluble Htt 

aggregates (Figure 55B). 

 

 

Figure 55:  Ssa1 and Ydj1 overexpression reduces Htt aggregation. 
(A) Wild-type cells were grown with and without overexpression of Ssa1p and Ydj1p from galactose-inducible 
promoters for 24 h at 30 °C. Induction of Ssa1p and Ydj1p was analyzed by Western blot followed detection 
with indicated antibodies. (B) Htt96Q∆P-GFP was expressed under control of CUP1 as in (A). SDS-insoluble 
aggregates in lysates were analyzed by filter assay followed by immunodetection with anti-GFP antibody. 
Amounts of Htt aggregates without TRiC overexpression were set to 100 %.  
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To understand how TRiC suppresses toxicity, lysates derived from cells expressing 

Htt96Q∆P-GFP were analyzed by centrifugation. In cells with endogenous TRiC levels, 

Htt96Q∆P-GFP was largely present in the pellet and only a minor amount was recovered in 

the supernatant fraction. TRiC overexpression reversed this ratio. Htt96Q∆P-GFP was mainly 

found in the supernatant and to some smaller extent in the pellet fraction (Figure 56A). 

 

 

Figure 56:  TRiC modulates toxic soluble Htt species. 
(A) Htt96Q∆P-GFP was expressed under control of CUP1 in wild-type cells with and without TRiC 
overexpression for 24 h at 30 °C. Distribution of Htt96Q∆P-GFP upon centrifugation at 20,000 x g (30 min) was 
analyzed by Western blot followed by detection with anti-GFP antibody and quantification. Supernatant (S) and 
pellet (P) fraction are shown. (B) Htt96Q∆P-GFP was expressed as in (A) with and without overexpression of 
TRiC or Ssa1p/Ydj1p. Soluble fractions were subjected to size exclusion chromatography followed by Western 
blot. Htt96Q∆P-GFP was detected with anti-GFP antibody and TRiC and Ssa protein with anti-Tcp5p and anti-
Ssa antibody, respectively. Positions of size markers are indicated in kDa. 
 

Size exclusion chromatography of extracts from cells with normal TRiC levels showed 

the presence of Htt96Q∆P-GFP oligomers of ~200 kDa, which were not populated upon 

expression of Htt96Q (Figure 56B and Figure 53B). Strikingly, overexpression of TRiC 

prevented the formation of ~200 kDa Htt96Q∆P-GFP species and produced an increased 

amount of Htt96Q∆P-GFP fractionating at ~500 kDa, comparable to the oligomers of Htt96Q 

formed upon TRiC overexpression (Figure 56B and Figure 53B). A minor fraction of 

unassembled Htt96Q∆P-GFP was detected at ~50 kDa. Overexpression of Ssa1p/Ydj1p at 

normal TRiC levels did not prevent the formation of ~200 kDa oligomers, in line with the 

failure of Ssa1p/Ydj1p to rescue the growth defect caused by Htt96Q∆P-GFP (Figure 56B).  
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Figure 57:  TRiC requires cooperation with Ssa for modulation of toxic soluble Htt species. 
(A) Htt96Q∆P-GFP was expressed in ssa1∆/ssa2∆ cells with and without TRiC overexpression as before. 
Lysates were analyzed by Western blot and Htt96Q∆P-GFP was detected with anti-GFP antibody. (B) Soluble 
fractions from (A) were subjected to size exclusion chromatography followed by Western blot. Htt96Q∆P-GFP 
was detected with anti-GFP antibody and TRiC with anti-Tcp5p. Positions of size markers are indicated in kDa. 
 

Consistent with the result above, overexpression of TRiC in ssa1∆/ssa2∆ cells neither 

changed the level of SDS-soluble Htt96Q∆P-GFP (Figure57A), nor reduced the amount of the 

~200 kDa oligomers (Figure 57B). Despite the fact that these cells produced 5 – 10-fold 

higher levels of TRiC compared to uninduced cells (Figure 57B). Thus, TRiC appears to 

profoundly modulate the aggregation pathway of mutant Htt in cooperation with the canonical 

Hsp70, resulting in the elimination of presumably toxic oligomeric species in favour of the 

generation of apparently benign Htt oligomers. 

 

 

Figure 58:  Toxic soluble Htt oligomers are not associated with Ssa. 
(A) Htt96Q∆P-GFP was expressed in wild-type cells with and without Ssa1p/Ydj1p overexpression as before. 
Soluble fractions were subjected to size exclusion chromatography followed by immunoprecipitation of the ~200 
kDa peak fraction (14-19) with anti-Ssa1p or control antibodies. Precipitates were immunoblotted with anti-GFP 
antibody. 10 % of input is shown for comparison. (B) Wild-type cells from (A) were lysed in the presence of 10 
mM ATP or 10 mM glucose, 20 U/ml hexokinase and 10 mM ADP (ATP depletion). Soluble fractions were 
subjected to size exclusion chromatography followed by Western blot with anti-Ssa1 antibody. Positions of size 
markers are indicated in kDa 
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The ~200 kDa and ~500 kDa Htt96Q∆P-GFP oligomers partially co-fractionated with 

the Ssa Hsp70 chaperones and TRiC, respectively, (Figure 56B) but could neither be co-

immunoprecipitated with anti-Ssa nor with anti-Tcp antibodies from the corresponding gel 

filtration fractions (Figures 58A and data not shown). Neither was the fractionation of Ssa 

altered by the presence of ATP or by ATP depletion (Figure 58B), suggesting that the Htt 

oligomers formed are no longer efficiently recognized by the ATP-dependent chaperone. 

4.2.2.4 Structural differences between toxic and benign Htt oligomers 

To characterize the ~200 kDa and ~500 kDa oligomers formed in the absence and 

presence of TRiC overexpression, respectively, in more detail, the corresponding gel filtration 

fractions were subjected to centrifugation at 100,000 x g. Remarkably, the ~200 kDa and 

~500 kDa Htt96Q∆P-GFP oligomers remained soluble and dissociated in SDS (Figure 59A). 

 

 

Figure 59:  Solubility of Htt96Q∆P-GFP oligomers and recruitment of oligomer into Htt aggregates. 
(A) Distribution upon centrifugation at 100,000 x g (1 h) of ~200 and ~500 kDa Htt96Q∆P-GFP oligomers 
obtained by size exclusion chromatography was analyzed by Western blot with anti-GFP antibody. Total (T), 
supernatant (S) and pellet (P) fractions are shown. (B) Proteins (3 µM GST-Htt20Q and GST-Htt53Q) and gel 
filtration fractions (~200 kDa fraction of Htt96Q∆P-GFP and lysate control) were incubated in the indicated 
combination. Aggregation reactions were started at 30 °C by addition of PreScission protease and stopped after 5 
h by addition of SDS. Aggregated proteins were analyzed by filter assay and immunodetection as indicated.  
 

To address whether the ~200 kDa Htt96Q∆P-GFP oligomers are aggregation 

competent, recruitment of this species into Htt aggregates was analyzed in vitro. HA-tagged 

Htt20Q and Htt53Q were produced as N-terminal GST-fusion cleavable with PreScission 

protease. Upon incubation with PreScission protease, GST-Htt53Q but not GST-Htt20Q, 

formed SDS-insoluble Htt aggregates detectable by filter assay (Figure 59B) (Schaffar et al., 

2004). The ~200 kDa Htt96Q∆P-GFP gel filtration fraction coaggregated with Htt53Q, but 

not with Htt20Q (Figure 59B). Consistently, the corresponding ~200 kDa gel filtration 
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fraction derived from lysate without Htt96Q∆P-GFP expression did not show any SDS-

insoluble aggregates (Figure 59B). Hence, the ~200 kDa Htt96Q∆P-GFP oligomer likely 

represents an intermediate species on the aggregation pathway. Whether these oligomers are 

on- or off-pathway to aggregate formation remains to be established. 

 

 

Figure 60:  Epitope mapping of ~200 and ~500 kDa Htt96Q∆P-GFP oligomers. 
(A) Analysis of ~200 and ~500 kDa oligomers obtained by size exclusion chromatography of soluble lysates 
fractions, derived from cells expressing Htt96Q∆P-GFP in the presence and absence of overexpressed TRiC, by 
Western blot (WB) with anti-GFP antibody and by dot blot (DB) with antibodies 1C2 and A11. The ratio of A11 
to 1C2 signal is given below. (B) Dot blot analysis of ~200 kDa gel filtration fractions of Htt25Q∆P-GFP and 
Htt96Q∆P-GFP in the presence or absence of overexpressed TRiC with anti-A11 antibody. (C) Dot blot analysis 
of ~200 kDa gel filtration fractions of Htt96Q∆P-GFP and Htt96Q by with anti-A11 antibody. 
 

The conformational status of a protein can be judged by its aggregation state, which is 

determined by its solubility or by the size of the oligomer according to exclusion 

chromatography and gel electrophoresis. Size measurements can lack the desired resolution, 

however, and do not necessarily reflect the aggregation state under more physiological 

circumstances. Conformation-dependent antibodies have the potential to provide more 

detailed and sensitive information about the conformation of misfolded proteins. 

A structural differentiation between the ~200 kDa and ~500 kDa Htt96Q∆P-GFP 

oligomers was achieved based on their immunoreactivity with two different antibodies. 

Antibody 1C2 interacts with an epitope formed by expanded polyQ sequences (Trottier et al., 

1995) and antibody A11 recognizes a sequence-independent structural feature common to 

soluble amyloid oligomers associated with toxicity (Kayed et al., 2003). Comparable amounts 

of the two oligomers were analyzed, as determined by immunoblotting with anti-GFP 

antibody (Figure 60A). Strikingly, dot blot analysis in the absence of SDS showed that the 

~200 kDa oligomers reacted only weakly with antibody 1C2 but were highly reactive with 
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A11 antibody, whereas the ~500 kDa oligomers were efficiently recognized by antibody 1C2 

but essentially lacked A11 reactivity (Figure 60A). The immunoreactivity of the ~200 kDa 

oligomers with antibody A11 was specific since it depended on the presence of these 

oligomers in the absence of TRiC overexpression (Figure 60B). Likewise, corresponding gel 

filtration fractions of Htt25Q∆P-GFP or Htt96Q did not show reactivity to antibody A11 

above background in dot blot analysis (Figure 60B and Figure 60C). Thus, the two types of 

oligomer are clearly conformationally distinct with regard to exposure of the polyQ sequence. 

Moreover, reactivity with the generic amyloid oligomer antibody A11 would support the view 

that the ~200 kDa Htt96Q∆P-GFP species is cytotoxic.  

 

The interaction of the chaperonin TRiC with polyQ expanded fragments of huntingtin, 

implicated in HD, was explored in a yeast model. TRiC was found to interfere with polyQ 

fibril formation and proved to be a limiting factor in suppressing polyQ toxicity. Remarkably, 

the chaperonin cooperated with Hsp70 and Hsp40 in promoting the assembly of benign Htt 

oligomers of ~500 kDa. In combination with in vitro experiments (Behrends et al., 2006), this 

process is reminiscent of the sequential action of Hsp70/Hsp40 and TRiC in assisting the 

folding of newly-synthesized proteins. 



Discussion 

 

100

5 Discussion 
In amyloid diseases, specific peptides or proteins misfold and give rise to highly 

ordered fibrillar aggregates. In Alzheimer’s disease (AD), extracellular Aβ peptide deposition 

is thought to be intimately associated with the initiation of disease, whereas in certain forms 

of Parkinson’s disease (PD), it is the intracellular formation of aggregates of the protein α-

synuclein. Huntington’s disease (HD) is caused by a mutant version of huntingtin (Htt), which 

results in an expansion of its polyglutamine (polyQ) segment and renders the protein 

aggregation-prone. The same type of mutation in otherwise unrelated proteins gives rise to a 

collection of other neurodegenerative polyQ diseases. Perinuclear inclusions of mutant Htt, or 

other polyQ-containing disease proteins, in brain tissue are a key feature of these disorders. 

However, the poor overlap between neurons with visible inclusions and neurons actually 

undergoing degeneration indicates that aggregates, although a hallmark of these diseases, are 

not sufficient to provoke neuronal damage. In addition, polyQ toxicity can be dissociated 

from the formation of inclusions in several cellular and animal model systems. The exact 

mechanism by which protein misfolding and aggregation is linked to disease is still unclear. 

In any case, misfolded disease proteins are supposed to act through a gain-of-function 

mechanism that eventually leads to cell death. 

Increasing evidence indicates that the main toxic agents are soluble precursors of the 

disease proteins generated through the process of aggregation, rather than the mature 

insoluble fibrils. In a model for AD, Aβ oligomers instead of the mature amyloid fibrils have 

been demonstrated to exert neurotoxicity (Walsh et al., 2002). Furthermore, the suppression 

of fibril deposition in intranuclear inclusions has even been shown to exacerbate the cellular 

toxicity of polyQ proteins, assigning a protective role to the mature fibrils (Saudou et al., 

1998). Thus, the oligomeric species formed in the pathway towards mature fibrils, present in a 

wide variety of misfolding diseases, may be the principal agents of toxicity. However, the 

possibility that mature fibrils may also contribute to neuronal toxicity should not be ruled out. 

In fact, soluble and aggregated polyQ might harm neurons via non-exclusive mechanisms 

(Michalik and Van Broeckhoven, 2003). 
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Although a number of different cellular events are known to be associated with HD, 

the actual pathogenic mechanisms remain unclear. Transcriptional dysregulation is 

hypothesized to be a common theme in polyQ pathogenesis (Cha, 2000; Sakahira et al., 2002; 

Sugars and Rubinsztein, 2003). Such dysregulation might be mediated by several 

mechanisms. PolyQ proteins can directly interact with numerous transcription regulators, 

which have been found in polyQ inclusions. The expanded polyQ stretch in mutant Htt may 

result in sequestration of these proteins into perinuclear aggregates, leading to their functional 

depletion (Kazantsev et al., 1999). However, given the evidence for a protective role of 

inclusions in disease, toxicity might be exerted by soluble aggregate precursors via aberrant 

interaction with transcription factors, thereby rendering them non-functional and disrupting 

transcriptional pathways. Molecular chaperones might counteract these aberrant protein 

interactions, presumably by shielding hydrophobic surfaces. Finally, the association of 

aggregating polyQ proteins with the quality control machinery may itself contribute to 

cellular toxicity (Sherman and Goldberg, 2001; Sakahira et al., 2002). Misfolded proteins 

may sequester and/or non-productively engage components of the chaperone (and 

degradation) systems and consequently reduce their activity in the cell. The increased 

expression of chaperones frequently relieves toxicity associated with aggregation diseases.  

The present study mechanistically dissected the contribution of aggregated and 

soluble, misfolded polyQ expansion proteins to cellular toxicity (Figure 61). Soluble 

oligomers of mutant Htt exon 1 deactivate transcription factors with normal polyQ repeats by 

a polyQ-mediated aberrant interaction. Importantly, this mechanism is independent of the 

formation of insoluble coaggregates. Furthermore, the analysis of how chaperones modulate 

polyQ-expanded proteins was expanded to a chaperone class previously not described in this 

context. The interaction of the chaperonin TRiC with mutant Htt and its cooperation with the 

Hsp70/Hsp40 chaperone system in modulating Htt aggregation and toxicity was analyzed in 

detail. TRiC interferes with polyQ fibril formation and proves to be limiting in suppressing 

polyQ toxicity. In cooperation with Hsp70/Hsp40, TRiC promotes the assembly of benign Htt 

oligomers. Thus, the mechanistic principles of chaperone cooperation between Hsp70 and 

TRiC employed in the pathway of de novo protein folding may also be utilized in the cellular 

defense against potentially toxic, amyloidogenic proteins. 
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5.1 PolyQ-induced transcriptional dysregulation 

Transcriptional alterations have been reported to occur early in disease progression for 

various polyQ diseases (Sugars and Rubinsztein, 2003). Coordinated transcription requires the 

synchronization of many events and mechanisms that depend on the regulated trafficking and 

interaction of numerous proteins. Such proteins include DNA-binding transcription factors, 

non-DNA-binding co-regulators and components of the basal RNA-polymerase apparatus. In 

addition to the components involved in transcription, eukaryotic gene expression depends on 

other multi-protein complexes that carry out the additional steps of pre-messenger RNA 

processing and export of mRNA to the cytoplasm. These processes involved in gene 

expression are believed to form an extensive coupled network with proteins participating in 

more than one step (Maniatis and Reed, 2002; Reed, 2003). Notably, many regulators of 

transcription contain glutamine-rich activation domains that are typical of an extensive family 

of highly conserved transcriptional activators. These glutamine-rich activation domains are an 

important class of protein–protein interacting motifs that enable transcription factors to 

interact with one another and thus regulate gene expression (Tanese and Tjian, 1993).  

The TATA-binding protein (TBP) is a general transcription factor and a crucial 

component of the core transcriptional complex, TFIID, which plays two important roles in the 

initiation of transcription for most eukaryotic genes (Gill and Tjian, 1992). Assembly of the 

TFIID complex is dependent on interactions between TBP and multiple TBP-associated 

factors. The TFIID complex is the first general transcription complex to bind to DNA, and 

this step is essential for initiating transcription by RNA polymerase II. TBP is the component 

of the TFIID complex that directs the complex to DNA by binding to the TATA-box (Roeder, 

1991). Recently, a role for TBP in neurodegeneration has been described. TBP contains a 

polyQ stretch of 38 Q at its N-terminus, and expansion of this polyQ tract beyond 42 Q results 

in an autosomal dominant form of SCA17 (Koide et al., 1999; Rolfs et al., 2003). 

Furthermore, TBP is associated with aggregates in several polyQ disorders (Perez et al., 1998; 

van Roon-Mom et al., 2002). Thus, a reduction of the available TBP activity contributes to 

cellular toxicity in polyQ diseases. 
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5.1.1 Contribution of aggregated polyQ-expanded Htt 

In HD, the elongated CAG repeat encoding a stretch of glutamines (Q) is located 

within the first exon of the gene encoding the protein Htt. PolyQ repeats in Htt below the 

threshold value of 35 are not associated with HD; repeats over 36 residues cause 

neurodegenerative dysfunction, and longer repeats are characterized by an earlier age of onset 

(Zoghbi and Orr, 2000). Expression of Htt exon 1 carrying the expanded CAG stretch 

recapitulates toxicity in transgenic mice and C. elegans, causing HD-like phenotypes 

(Mangiarini et al., 1996; Morley et al., 2002). In vitro, mutant Htt exon 1 typically forms 

large, SDS-resistant aggregates, which can be detected by membrane filtration through a 200 

nm pore-sized membrane (Scherzinger et al., 1997). For in vivo analysis of the aggregation of 

polyQ proteins, yeast and murine neuronal cells were used as model systems as described 

previously (Wang et al., 1999; Krobitsch and Lindquist, 2000). 

Htt exon 1 with 20 Q was diffusely distributed in the cytoplasm and did not from 

aggregates regardless of the model system in which it was expressed. In contrast, expression 

of Htt exon 1 with an expanded polyQ tract resulted in the formation of SDS-insoluble 

perinuclear aggregates in both model systems (Figure 15 and 16). In yeast cells, the amount of 

Htt aggregates was found to correlate with the length of the polyQ stretch (Becher et al., 

1998), whereas in neuroblastoma cells aggregation of Htt53Q was most pronounced. This 

discrepancy may be attributed to the altered aggregation propensity of the distinct polyQ-

expansion proteins in neuroblastoma cells, possibly due to protein modification or interaction 

with other proteins, and requires further investigation. 

In addition to repeat length, the aggregation propensity of the polyQ repeat 

protein/peptide depends on sequence context (Nozaki et al., 2001; Steffan et al., 2004; 

Bhattacharyya et al., 2006; Duennwald et al., 2006b). In vitro, fusion of expanded Htt exon 1 

to GST prevents its aggregation, allowing the expression and purification of mutant Htt as a 

soluble protein from E. coli; subsequent cleavage of the GST-part permits analysis of Htt 

aggregation under controlled conditions (Scherzinger et al., 1997; Schaffar et al., 2004). In 

yeast and neuroblastoma cells, aggregation of polyQ expanded Htt exon 1 with up to 96 Q has 

been found to be likewise inhibited in the sequence context of the GST fusion (Figure 15 and 

16). Remarkably, the polyQ repeats in these GST fusion proteins are solvent-exposed, based 

on their ability to mediate recruitment into Htt aggregates, in contrast to GST alone (Figure 
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17). Consistently, GST-Htt53Q is accessible to protease digestion in vitro (Schaffar et al., 

2004). How the GST domain stabilizes the polyQ sequence of Htt exon 1 in a nontoxic 

conformation remains to be established, but it is an attractive possibility that the context of the 

authentic full-length huntingtin provides a similar protective effect. Intriguingly, aberrant Htt 

proteolysis and/or dysfunctional clearance of Htt fragments are suggested to underlie the 

neuropathology of HD, since N-terminal Htt fragments have been found to accumulate 

intracellularly in HD and mouse models (Gutekunst et al., 1999; Kim et al., 2001). 

5.1.1.1 Sequestration and co-aggregation of TBP 

Aggregates in polyQ disease patient’s brains are not solely composed of the respective 

disease proteins, but rather contain a plethora of additional cellular proteins, including 

transcription factors carrying non-pathogenic polyQ repeats (Suhr et al., 2001). This 

observation led to the hypothesis that sequestration into aggregates might deplete these factors 

away from their usual localization, thereby compromising their function and leading to 

toxicity (Cha, 2000). In fact, transcriptional dysregulation has been demonstrated to occur in 

polyQ diseases, but much remains to be elucidated to understand the underlying mechanisms. 

In order to mechanistically dissect the recruitment of transcription factors into polyQ 

protein inclusions, co-aggregation of TBP was analyzed in the herein established cellular 

models systems for Htt aggregation. In yeast and murine neuronal cells, exogenous human 

TBP was located in the nucleus upon coexpression with normal Htt, whereas it was dislocated 

to the cytoplasm and coalesced with aggregates upon coexpression with mutant Htt. These co-

aggregates were SDS-resistant and the amount of co-aggregated TBP correlated with the 

propensity of the expanded polyQ stretch to aggregate (Figure 15 and 16). In Htt-TBP co-

aggregation reactions in vitro, TBP is almost exclusively recovered in the pellet fraction upon 

centrifugation. However, the majority of aggregated TBP can be solubilized with SDS, in 

contrast to aggregated Htt53Q (Schaffar et al., 2004). Consistently, in vivo FRET experiments 

failed to detect an interaction of co-aggregated TBP and mutant Htt (Kim et al., 2002), 

suggesting that the nature of TBP interaction with polyQ aggregates is markedly distinct from 

the self-association of polyQ expansion proteins. The recruitment process appears to be 

mediated by the polyQ segment in human TBP, since a mutant version of TBP, lacking the 

polyQ tract, fails to mislocalize and co-aggregate with mutant Htt (Schaffar et al., 2004). 

While preexisting Htt inclusions have been shown to be recruitment incompetent, recruitment 
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seems to depend on the ongoing synthesis of mutant Htt (Schaffar et al., 2004). Newly 

synthesized, diffusible Htt presumably drives the aberrant interaction with TBP. Consistent 

with the prevention of SDS-resistant aggregation, fusion to GST inhibits polyQ expanded Htt 

exon 1 fragments from sequestering TBP. The transcription factor is located in the nucleus 

regardless which GST-Htt construct is coexpressed (Figure 15 and 16). The toxic property of 

an expanded polyQ sequence, i.e., to interact aberrantly with the benign polyQ repeats of 

other proteins, seems to be structurally linked with its ability to nucleate self-oligomerization. 

5.1.1.2 Prerequisites for Htt aggregation and TBP co-aggregation 

The toxicity of the mutant protein in HD is believed to be unmasked upon proteolytic 

cleavage to release N-terminal fragments containing the expanded repeats (Luo et al., 2005; 

Graham et al., 2006). PolyQ repeats up to at least 53 Q are in an unstructured conformation 

when attached to GST (Masino et al., 2002). Based on the in vivo observations herein, the 

polyQ segment in GST-Htt53Q is assumed to be solvent exposed. Analogous to in vitro 

experiments (Scherzinger et al., 1997), aggregation of formerly soluble polyQ-expanded Htt 

exon 1 fragment fused to GST is initiated in vivo, in yeast cells, upon cleavage of the Htt part 

from the GST moiety (Figure 18). Similarly, aggregation of full-length polyQ expanded 

Ataxin-3 has been demonstrated to be initiated by proteolytic cleavage at an engineered, 

internal TEV protease cleavage site (Haacke et al., 2006). Intramolecular FRET experiments 

in vitro indicate that a conformational rearrangement occurs in the polyQ-expanded Htt 

fragment upon its proteolytic release from its protective sequence context (GST), compatible 

with a compaction due to the formation of intramolecular β sheet structure in the mutant 

polyQ segment (Schaffar et al., 2004). Consistent with this observation, the epitope of 

expanded-polyQ tracts has been shown to become rapidly inaccessible for the anti-polyQ 

antibody MW1 in an in vitro aggregation assay (Ehrnhoefer et al., 2006). A similar 

conformational change may occur when N-terminal fragments resembling Htt exon1 are 

produced by proteolytic processing of full-length huntingtin. 

Concomitant with the initiation of self-association, mutant Htt acquires the ability to 

induce the co-aggregation of TBP upon its proteolytic release from the GST part in vivo in the 

yeast model system (Figure 19). The structural rearrangement in the mutant polyQ segment 

presumably renders the expanded polyQ repeat capable of interacting with the benign polyQ 

segment in TBP. In vitro, intermolecular FRET between polyQ-expanded Htt molecules 
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monitors early events during Htt oligomerization (Schaffar et al., 2004). TBP interferes with 

this FRET efficiency, consistent with the idea that ongoing Htt production is required for 

recruitment. Interaction with soluble polyQ-expanded Htt may be sufficient to affect the 

functional properties of the transcription factor, and sequestration into co-aggregates is likely 

to represent a secondary phenomenon. In fact, the co-aggregation of polyQ-expanded Htt and 

TBP observed in vivo may result from the expression of both proteins to high levels. 

5.1.2 Contribution of soluble, misfolded polyQ-expanded Htt to toxicity 

Alternative to the sequestration of transcription factors by recruitment into Htt 

aggregates, their concerted interactions among each other and/or with other cellular factors 

may be disrupted by soluble, misfolded polyQ expansion proteins. A number of nuclear 

transcription factors has been shown to interact directly with mutant Htt (Okazawa, 2003). 

DNA microarray studies have detected changes in gene expression profiles in HD transgenic 

mice, which are not necessarily associated with the formation of Htt aggregates (Luthi-Carter 

et al., 2002a; Luthi-Carter et al., 2002b). Altered expression levels in cell models can occur in 

the absence of inclusions (Kita et al., 2002; Sipione et al., 2002). To understand the 

mechanism by which soluble mutant Htt may interact with transcription factors to mediate 

early pathological changes prior to the formation of large inclusions, a cellular model system 

was established in yeast. Although yeast and human TBP share considerable homology, the 

N-terminal region encompassing the polyQ stretch is absent in yeast TBP (Kao et al., 1990). 

Importantly, yeast TBP is essential for growth but can be functionally replaced by human 

TBP carrying the point mutation R231K in the C-terminal DNA binding domain (Cormack et 

al., 1994). The TBP-dependent polyQ-toxicity model system consists of the yTBP∆/hTBP 

yeast strain, in which yeast TBP is deleted and mutated human TBP (R231K) is expressed 

under control of the endogenous yeast TBP promoter (Schaffar et al., 2004). These cells 

depend on the transcriptional activity of human TBP (Figure 21). 

Expression of Htt exon 1 fragments with expanded polyQ in the cytoplasm resulted 

only in a mild growth defect of yTBP∆/hTBP cells. However, targeting mutant Htt to the 

nucleus caused a pronounced, polyQ length-dependent growth impairment, which could be 

suppressed by the coexpression of yeast TBP (Figure 23). In wild-type yeast, mutant Htt did 

not result in toxicity whether its expression was directed to the cytosol or the nucleus. Thus, 

toxicity can be attributed to a polyQ-mediated deactivation of human TBP. Mutant Htt fused 
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to GST was without any effect on growth regardless of its cellular localization. Hence, the 

growth impairment by mutant Htt detected in the yeast model appears to require a 

conformational rearrangement of Htt upon its release from the GST moiety, as predicted 

based on the in vivo and in vitro experiments discussed above. 

5.1.2.1 Influence of cellular localization on polyQ aggregation and toxicity 

Cellular localization appears to influence the aggregation propensity of polyQ-

expanded proteins. Mutant Htt with 53 Q and 96 Q formed substantially higher amounts of 

SDS-insoluble aggregates in the cytosol than in the nucleus (Figure 22). Consistently, polyQ 

aggregation has been observed to be most pronounced in the cytosol (Rousseau et al., 2004). 

Neither a difference in expression levels between the nuclear and cytoplasmic Htt proteins nor 

aggregation inhibition by attachment of the nuclear localization sequence (NLS) could 

account for this effect. Thus, the formation of insoluble Htt aggregates appears to be retarded 

in the nuclear environment relative to the cytoplasm. Consistently, soluble polyQ-expanded 

Htt species were most abundant in the nucleus and almost absent in the cytosol (Figure 22). 

Expression of mutant Htt in the cytosol and nucleus of mouse and human neuroblastoma cells 

confirmed that Htt aggregation and the partitioning between aggregated and soluble polyQ 

species depended on cellular localization (Figure 30 and 32). Intriguingly, the amount of 

soluble but not aggregated Htt correlated with toxicity in yTBP∆/hTBP cells. Moreover, not 

only the accumulation of soluble mutant Htt per se seemed to be necessary for toxicity but 

also its conformationally altered state (i.e. the acquisition of harmful intramolecular β-sheet 

structure) and its exclusive presence in the nuclear compartment (Figure 24 and 26). 

Consistent with the latter, nuclear translocation is an early step in pathogenesis in a HD 

mouse model and is required for neurotoxicity of other polyQ disease proteins (Klement et 

al., 1998; Saudou et al., 1998; Van Raamsdonk et al., 2005). 

Modification of mutant Htt in the nucleus might contribute to the observed modulation 

of Htt aggregation. In fact, mutant Htt can be modified either by ubiquitin or the small 

ubiquitin-like modifier SUMO-1 on identical lysine residues (Waelter et al., 2001; Steffan et 

al., 2004). Ubiquitination appears to reduce polyQ toxicity, presumably by promoting 

degradation (Tsai et al., 2003), whereas SUMOylation stabilizes mutant Htt, reduces its 

ability to form aggregates and promotes its capacity to repress transcription. Furthermore 

SUMOylation exacerbates neurodegeneration in a Drosophila model of HD (Steffan et al., 
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2004). Likewise, the absence of a microtubule-mediated process that concentrates 

microaggregates into large aggresome-type inclusions in the cytoplasm may play a role in the 

retardation of aggregation in the nucleus (Waelter et al., 2001; Muchowski et al., 2002). 

Alternatively, cytosolic factors, such as prions, might assist or catalyze expanded polyQ 

aggregation (Osherovich and Weissman, 2001; Meriin et al., 2002). On the other hand, 

specific nuclear protein-protein interactions might contribute to the inhibition of aggregation 

in the nucleus (Cattaneo et al., 2001). 

5.1.2.2 Significance of soluble, misfolded polyQ intermediates 

The amount of diffuse mutant Htt has been demonstrated to predict whether and when 

inclusion formation or cell death in neurons occur (Arrasate et al., 2004). Likewise, kinetic 

analysis of the growth impairment relative to the progression of polyQ aggregation in 

yTBP∆/hTBP yeast turned out to be highly informative concerning the contribution to toxicity 

of cytoplasmic and nuclear as well as soluble and aggregated polyQ species (Figure 25). 

Growth impairment has been observed shortly after induction of nuclear polyQ-expanded Htt 

but not upon expression of cytosolic Htt. In contrast, SDS-insoluble aggregates were formed 

almost immediately upon expression of cytosolic mutant Htt and only with a substantial delay 

upon expression of nuclear Htt. Concomitantly, while cytosolic polyQ-expanded Htt was 

essentially all insoluble, nuclear polyQ-expanded Htt was exclusively found in the soluble 

cellular fraction (Figure 26). Analysis of the oligomeric state of soluble polyQ-expanded Htt 

revealed a size between 70 and 120 kDa (Figure 26). These species may represent monomers 

and/or small oligomers of Htt (dimers and trimers), given that Htt constructs exhibit atypical 

physical properties and tend to fractionate greater than their nominal mass (Kazantsev et al., 

1999; Schaffar, 2004). Notably, NLS-Htt96Q has a calculated molecular mass of 23 kDa but 

migrates at 45 kDa in SDS-PAGE. However, association of polyQ-expanded Htt with other 

cellular factors cannot be ruled out at this point. Mutant Htt with the same fractionation 

properties was also observed in the nucleus of mouse and human neuroblastoma cells (Figure 

30 and 32), suggesting a general role of the nuclear environment in allowing the accumulation 

and/or generation of such species. 

Whether these oligomers are on- or off-pathway with regard to fibril formation 

remains to be determinated. However, accumulating evidence has raised the possibility that 

precursors to amyloid fibrils, such as low-molecular weight oligomers and/or structured 
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protofibrils, are the primary pathogenic species in neurodegenerative disease (Caughey and 

Lansbury, 2003; Chiti and Dobson, 2006). For example, the severity of neurodegeneration in 

AD correlates with the levels of low-molecular-weight species of Aβ including small 

oligomers (McLean et al., 1999). Moreover, the aggressive ‘Arctic’ mutation of the amyloid β 

precursor protein, associated with a heritable early-onset manifestation of AD, has been found 

to enhance protofibril formation (Nilsberth et al., 2001). The toxic nature of prefibrillar 

aggregates extends far beyond AD and the Aβ peptide. Early, non fibrillar aggregates of 

transthyretin (TTR) associated with familiar amyloid polyneuropathy are toxic to neuronal 

cells (Sousa et al., 2001). Recently, such toxicity has been demonstrated to originate from 

low-molecular-weight oligomers of TTR of up to ~ 100 kDa in size (Reixach et al., 2004). In 

support of the relevance of these findings, prefibrillar forms of nondisease-related proteins are 

also highly toxic to cultured neurons, whereas the monomeric native states and the amyloid-

like fibrils display no substantial toxicity (Bucciantini et al., 2002).  

5.1.2.3 Mechanism of transcription factor deactivation 

The mechanism by which oligomers or prefibrillar aggregates exert toxicity to cells is 

a matter of intensive research. The conversion of a protein from its soluble state into 

oligomeric forms will invariably generate a wide distribution of nonnative, misfolded species 

that expose an array of structural features on their surfaces that are normally buried in 

globular proteins or dispersed in highly unfolded peptides or proteins (Chiti and Dobson, 

2006). In the crowded and highly organized cellular environment, the nonnative character of 

misfolded oligomers likely triggers aberrant events resulting from their inappropriate 

interactions with other cellular factors (Ellis and Minton, 2006), possibly leading to the 

malfunctioning of crucial aspects of the cellular machinery. 

Notably, toxicity in yTBP∆/hTBP cells was most effective when the polyQ-expanded 

model protein was targeted to the nucleus, where small soluble oligomers reach apparently 

high local concentrations close to the sites of transcription. Indeed, the size fractionation 

properties of the transcription factor TBP in these cells were affected by nuclear polyQ-

expanded Htt, but not by cytosolic mutant Htt or by fusion of GST to the nuclear polyQ-

expanded protein (Figure 27). Upon expression of mutant Htt in the nucleus, TBP shifted 

from a well-defined complex of ~200 kDa in size to high molecular weight fractions between 

200 and 800 kDa. A similar alteration of the fractionation properties was observed for 
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endogenous TBP in the presence of polyQ-expanded Htt in the nucleus of human 

neuroblastoma cells (Figure 32). This conformational interference of TBP (or TBP-containing 

transcription complexes) with polyQ-expanded Htt was found to be associated with 

impairment of the transcription initiation function of TBP in yeast and neuroblastoma cells. 

Furthermore, mutant Htt transiently associated with TBP and did not cause the formation of 

insoluble TBP/Htt coaggregates (Figure 29 and 31). In agreement with this, soluble rather 

than aggregated forms of mutant Htt have been demonstrated to directly dysregulate 

transcription by interfering with specific components of the transcription initiation complex 

(Zhai et al., 2005). Deactivation of TBP depended on the presence of its polyQ segment, 

emphasizing the role of aberrant polyQ-polyQ interactions (Figure 29). Transcription factor 

molecules that are functionally compromised may populate misfolded and partially 

aggregated states or, alternatively, may be degraded. 

The N-terminal part of TBP encompassing the polyQ-stretch has been presumed to 

regulate the DNA binding activity of the protein (Lescure et al., 1994). Strikingly, in vitro, 

mutant Htt affects the function of TBP by inhibiting its binding to DNA (Schaffar et al., 

2004). The kinetics of TBP deactivation in vitro resembles that of the conformational change 

and early oligomer formation in mutant Htt detected by intramolecular FRET and is 

considerably faster than the formation of insoluble TBP/Htt coaggregates (Schaffar et al., 

2004). Moreover, polyQ-expanded Htt increases the protease sensitivity of TBP (Schaffar et 

al., 2004). Thus, impairment of the functional conformation of TBP is likely to result from a 

structural destabilization of the protein induced by a transient, polyQ-mediated interaction 

with small, soluble oligomers of mutant Htt, before sequestration into aggregates occurs. This 

is consistent with observations of polyQ-mediated interference with transcription in the 

apparent absence of inclusions (Sugars and Rubinsztein, 2003). 

The general relevance of this observation is supported by the fact that the soluble form 

of nuclear polyQ-expanded Htt similarly modulated the size fractionation properties of 

endogenous CREB binding protein (CBP) in human neuroblastoma cells concomitant with an 

impairment of cAMP-responsive-element (CRE)-mediated transcription in these cells (Figure 

32). Of the transcription pathways that are affected in HD, the CRE-mediated pathway, in 

which CBP plays a central role as co-activator, is perhaps the most interesting because of its 

role in neuronal survival (Lonze and Ginty, 2002). Also, early downregulation of CRE-

regulated genes is a feature of early human HD, and CRE-mediated transcription is 
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compromised by polyQ proteins (McCampbell et al., 2000; Nucifora et al., 2001; Wyttenbach 

et al., 2001; Jiang et al., 2006). Since colocalization of CBP with polyQ aggregates yielded 

mixed results (Nucifora et al., 2001; Yu et al., 2002), soluble interactions between polyQ-

expanded proteins and CBP may account for the dysregulation of CBP. Whether the described 

impairment of functional CBP conformation leads to toxicity remains to be demonstrated. 

5.1.2.4 Influence of sequence context on polyQ aggregation and toxicity 

Besides HD, there are eight other known neurodegenerative diseases caused by 

expanded CAG repeats, each involving the repeat expansion of polyQ in a different protein 

(Zoghbi and Orr, 2000). Similar conditions can be induced in animal models by expression of 

the polyQ sequence alone or in other protein contexts (Mangiarini et al., 1996; Morley et al., 

2002). Apart from the polyQ sequence, the cellular context of the disease protein and the 

sequence context of the polyQ tract within the disease protein are both likely to contribute to 

the physical behavior of the polyQ protein and to pathology (Nozaki et al., 2001; de Chiara et 

al., 2005; Wetzel, 2005; Duennwald et al., 2006b). Domains adjacent to the polyQ expansion 

are clearly important given the fact that polyQ proteins, both native and unnatural fusions, 

tend to aggregate more aggressively when non-glutamine domains are removed by proteolysis 

(Scherzinger et al., 1997; Schaffar et al., 2004; Haacke et al., 2006). 

In addition to the modulating effect of other domains on conformation, it seems 

possible that short sequence elements directly adjacent to the polyQ sequence, retained in 

protease-resistant fragments, may modulate aggregation efficiency (Nozaki et al., 2001). One 

particularly interesting flanking sequence is the oligo-proline sequence found immediately C-

terminal to the polyQ tract in Htt exon 1. A single proline residue interrupting an 

amyloidogenic sequence can decrease the ability of that sequence to aggregate (Thakur and 

Wetzel, 2002; Williams et al., 2004). The presence of a proline-rich extension C-terminal to a 

polyQ tract modulates its conformational behavior and decreases its tendency to aggregate 

(Bhattacharyya et al., 2006; Dehay and Bertolotti, 2006). From an evolutionary perspective, 

the oligo-proline sequences may help proteins avoid aggregation during synthesis and folding 

in the cell. In agreement with these findings, deletion of the proline-rich segment adjacent to 

the polyQ expansion has been found to enhance Htt aggregation in wild-type yeast cells 

(Figure 35). Importantly, increased aggregation did not correlate with enhanced toxicity in 

these cells (Figure 34), which are known to tolerate the expression of polyQ-expanded Htt 



Discussion 

 

112

without overt growth impairment (Krobitsch and Lindquist, 2000; Muchowski et al., 2000). 

This is in line with the assumption that cellular toxicity is unlikely to be conferred by 

aggregates of the disease protein themselves but rather by the process of their formation. 

Enhanced aggregation presumably alters the aggregation pathway depleting possible toxic 

aggregation intermediates. 

Intriguingly, deletion of the proline-rich segment flanking the polyQ tract in Htt exon 

1 in combination with heterologous fusion to GFP (Htt96Q∆P-GFP) causes a pronounced 

growth defect, as reported previously (Meriin et al., 2002). In contrast to recent observations 

(Duennwald et al., 2006b), the toxicity of this construct did not depend on its N-terminal 

epitope tag but arose rather from the combined effect of deletion of the proline rich domain 

and fusion to GFP (Figure 34). Moreover, this particular polyQ-expanded Htt chimera not 

only displayed reduced aggregation propensity, but also accumulated in detergent-soluble 

form and was present in an oligomeric state of ~ 200 kDa (100 – 230 kDa) in size (Figure 35 

and 36). Thus, the combined effect of deletion of the proline segment and fusion to GFP 

seems to impose a block on the path towards fibrillar Htt aggregates, retarding the formation 

of detergent-resistant inclusions and allowing the formation and accumulation of presumably 

toxic, oligomeric intermediates. These oligomers could not be recruited into aggregates when 

coexpressed with an aggregation prone mutant Htt construct, and thus toxicity persisted 

(Figure 37). The formation of these oligomers likely represents either a kinetically trapped 

intermediate in the polyQ aggregation pathway or an off-pathway oligomerization reaction. 

These Htt oligomers resemble those generated by targeting polyQ-expanded Htt to the 

nucleus in yTBP∆/hTBP cells. Strikingly, in these cells, the toxicity of Htt96Q∆P-GFP was 

significantly increased compared to wild-type cells (Figure 38), indicating a partially similar 

mechanism of proteotoxicity as suggested for the oligomers formed by NLS-Htt96Q. Whether 

Htt96Q∆P-GFP can also be found in the nucleus remains to be demonstrated. Intriguingly, 

fusion to a hydrophobic peptide converts polyQ-expanded Htt from a benign aggregation-

prone species into a toxic, soluble species, which accumulate likewise as a ~200 kDa 

oligomer both in vitro and in vivo (Sarah Broadley, personal communication). Thus, several 

distinct polyQ-expansion proteins exert their toxicity in yeast through the formation of soluble 

oligomers, supporting the hypothesis that the soluble oligomeric form of amyloidogenic 

proteins might represent the principle pathogenic species (Caughey and Lansbury, 2003). 
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5.2 Molecular chaperones and polyQ expansion proteins 

Chaperones assist proteins in folding into their native conformation, refold abnormally 

folded proteins and rescue previously aggregated proteins (Fink, 1999; Hartl and Hayer-Hartl, 

2002). Consistently, the aggregation of various polyQ-containing disease proteins are 

modulated by chaperones (Cummings et al., 1998; Chai et al., 1999; Chan et al., 2000; 

Krobitsch and Lindquist, 2000; Muchowski et al., 2000; Schaffar et al., 2004). Hsp70 and 

Hsp40 chaperones can divert the polyQ aggregation pathway from the formation of fibrils to 

the generation of amorphous aggregates (Muchowski et al., 2000; Schaffar et al., 2004; 

Wacker et al., 2004). FRET experiments suggest that the toxic oligomerization of mutant Htt 

begins with an intramolecular structural rearrangement of monomeric Htt (Schaffar et al., 

2004). Hsp70 and Hsp40 inhibit this intramolecular rearrangement, presumably by preventing 

monomeric Htt from achieving the β-sheet conformation necessary for the formation of 

mature fibrils (Schaffar et al., 2004). Although Hsp70 interacts preferentially with extended 

sequences enriched in hydrophobic residues, glutamine is not excluded from binding 

(Sakahira et al., 2002). Generally, overexpression of Hsp70 has been shown to improve 

disease phenotypes without visibly affecting aggregate formation (Warrick et al., 1999; 

Cummings et al., 2001). Thus, chaperones may not prevent aggregation per se, but rather 

redirect the aggregation process towards the formation of amorphous, non-amyloidogenic 

deposits, thereby presumably eliminating potentially toxic species. 

In agreement with these observations, rescue of the growth defect in yTBP∆/hTBP 

cells is achieved by coexpressing mammalian Hsp70 and Hsp40 (Hdj1) without changing the 

cellular levels of mutant Htt protein (Figure 23). In vitro, Hsp70 and Hsp40 preserves the 

functionality of TBP with regard to DNA binding in the presence of polyQ-expanded Htt 

(Schaffar et al., 2004). In combination with aforementioned FRET experiments, Hsp70 and 

Hsp40 appears to interfere early with polyQ toxicity by retarding the conformational 

compaction of the polyQ disease protein and possibly by transiently shielding benign polyQ 

sequences in target proteins such as TBP. Through their conformational effect on the polyQ 

expansion protein, the chaperones may either facilitate the degradation of the potentially toxic 

agent or mediate its disposal in the form of nonfibrillar, disordered inclusions (Muchowski et 

al., 2000). 
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5.2.1 Modulation of polyQ aggregation and toxicity by the chaperonin TRiC 

Apart form the Hsp70 and Hsp40 chaperone system, the cytosolic chaperonin TRiC 

has recently been linked to polyQ aggregation (Nollen et al., 2004). TRiC is a ~900 kDa 

cylindrical complex with ATPase activity consisting of 8 homologous subunits that are 

arranged in two octameric rings stacked back-to-back (Hartl and Hayer-Hartl, 2002; Spiess et 

al., 2004). Unfolded proteins bind in the ring center, contacting multiple apical domains of the 

TRiC subunits, and are then transiently enclosed in the TRiC central cavity for folding in a 

process involving ATP-regulated movements of α-helical extensions of the subunits (Meyer 

et al., 2003). Substrates may be presented to TRiC by Hsp70 and/or the co-chaperone 

prefoldin (Frydman et al., 1994; Vainberg et al., 1998; Siegers et al., 2003). Moreover, TRiC 

appears to cooperate with Hsp70 in oligomeric protein assembly by transiently stabilizing 

protein subunits in assembly-competent conformations (Melville et al., 2003). TRiC 

substrates include actins, tubulins, several WD40 repeat proteins and the Von-Hippel-Lindau 

(VHL) tumor suppressor protein (Frydman, 2001; Melville et al., 2003; Siegers et al., 2003). 

TRiC recognizes hydrophobic β-sheets in VHL and in the trimeric G protein β subunit (Gβ) 

and prevents aggregation of the latter in vitro (Feldman et al., 2003; Kubota et al., 2006). 

Given the importance of β-sheet structures in polyQ aggregation, TRiC may play an essential 

role in antagonizing their aberrant formation, thereby protecting against polyQ toxicity. 

5.2.2 TRiC deficiency 

Down-regulation of TRiC subunit expression has been shown to result in enhanced 

polyQ aggregation in C. elegans (Nollen et al., 2004). This finding was reproduced in 

conditional TRiC-defective tcp1-2 yeast cells. These cells have reduced TRiC activity due to 

a mutation in the equatorial ATP binding domain of the TRiC subunit Tcp1p (Ursic et al., 

1994). The formation of SDS-insoluble Htt aggregates was increased substantially upon 

expression of polyQ-expanded Htt in these cells. Immunofluorescence analysis of a Htt 

construct with polyQ-expansion close to the threshold-length of polyQ pathology of ~37 Q 

has nicely demonstrated this effect (Figure 39). Aggregation of the distinct Htt96Q∆P-GFP 

construct was likewise increased, suggesting a general role of TRiC in modulating polyQ 

aggregation. Enhanced aggregation is unlikely a secondary effect of a loss of TRiC function 

in tubulin biogenesis, because disruption of the tubulin cytoskeleton is known to inhibit 
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formation of large polyQ inclusions (Muchowski et al., 2002). Thus TRiC, at normal levels, 

profoundly modulates the aggregation properties of polyQ-expansion proteins. 

Given the complexity of the cellular environment, it is plausible that chaperone actions 

may have differential impact on polyQ aggregation. For instance, increased aggregation of 

Htt96Q∆P-GFP resulted in a decrease of the potentially toxic polyQ oligomers, consistent 

with an amelioration of the growth defect (Figure 41 and 42). Thus, preventing the 

accumulation of certain aggregation intermediates by redirecting the aggregation process is 

likely to alleviate polyQ toxicity. On the other hand, enhanced aggregation of Htt96Q due to 

TRiC deficiency caused pronounced toxicity (Figure 42). Similarly, downregulation of TRiC 

subunit expression by RNA interference has been shown to enhances polyQ aggregation and 

to cause increased polyQ toxicity in mammalian cells (Kitamura et al., 2006; Tam et al., 

2006). In yeast, this phenotype specifically depended on TRiC, since it was suppressed by 

reintroducing a wild-type copy of the mutant TRiC subunit. In these cells, recruitment of 

TRiC into polyQ aggregates was considerable (Figure 43 and 44). Notably, TRiC has also 

been found to colocalize with polyQ aggregates in mammalian neuronal cells (Tam et al., 

2006). The increased sensitivity toward the microtubules-depolymerizing drug benomyl 

suggests that sequestration of TRiC may indeed lead to its functional depletion (Figure 46). 

Importantly, TRiC is not stress-inducible and of low abundance (Siegers et al., 1999). 

Furthermore, different chaperone systems appear to be affected differentially by polyQ-

mediated sequestration. For instance, colocalization of the cytosolic Hsp70 of the Ssa class 

into polyQ inclusions seemed to be counteracted by up-regulation of its expression (Figure 

45). In addition, proteins trapped or associated with aggregates may exhibit distinct molecular 

interactions. While association of Hsp70 with polyQ aggregates is dynamic and transient 

(Kim et al., 2002), detection of TRiC subunits in SDS-resistant Htt aggregates suggests a 

rather tight incorporation in these inclusions. 

Hence, polyQ-expansion proteins may exceed the protective capacity of the cell. The 

levels of damaged or newly folded proteins and the available chaperone capacity are two sides 

of a carefully balanced system in cells. An excess of chaperone substrates or diminished 

chaperone content might induce a relative deficit of available active chaperones (Csermely, 

2001). This chaperone overload may become especially prevalent in elderly subjects, in 

whom general protein damage is abundant (Gray et al., 2003; Trojanowski and Mattson, 
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2003), and induction and function of quality control mechanisms are likely to be impaired 

(Keller et al., 2002; Soti and Csermely, 2002). Sequestration of components of the quality 

control system may partially contribute to the amplification of this effect. Indeed, in a mouse 

model of HD, sequestration of chaperones into aggregates seems to decrease the amount of 

soluble chaperones available in the cell, thereby presumably enhancing abnormal protein 

folding (Hay et al., 2004). Furthermore, in a C. elegans model of polyQ aggregation, the 

chronic expression of a misfolded protein appears to upset the cellular protein folding 

homeostasis (Gidalevitz et al., 2006). Intriguingly, the human genome harbors numerous 

polymorphic variants and mutations that might be prevented from exerting deleterious effects 

by the protein quality control systems of the cell. However, should these mechanisms become 

overwhelmed, mild folding variants might contribute to disease pathogenesis by perturbing an 

increasing number of cellular pathways. Therefore, the complexity of pathogenic mechanisms 

identified for protein conformation diseases could in part result from the imbalance in protein 

folding homeostasis. These folding-defective proteins may in turn compromise the overall 

folding capacity of the cell and act as genetic modifiers of disease. In HD, this may contribute 

to the 40 % of the variance in age of onset that is not attributed to polyQ repeat length but to 

genes other than the HD gene (Wexler et al., 2004). 

5.2.3 TRiC overexpression 

TRiC overexpression provided additional insights into the mechanism(s) of polyQ 

toxicity. The overexpression of TRiC is complicated by the fact that TRiC is a large, hetero-

oligomeric complex consisting of two rings with eight orthologous subunits each. 

Overexpressing all eight TRiC subunits was achieved in yeast cells. Under these conditions, 

TRiC was significantly more abundant than in uninduced cells. Importantly, overexpressed 

TRiC assembled into a similar, high molecular weight complex as ‘wild-type’ TRiC (Figure 

47). Thus, overexpression of TRiC likely produces an active chaperonin complex. 

5.2.3.1 Modulation of aggregated polyQ-expanded Htt 

Contrary to the situation in TRiC deficient yeast cells, overexpression of TRiC 

reduced the formation of detergent-resistant Htt aggregates (Figure 49). Secondary effects are 

unlikely to contribute to this inhibition, since the cytosolic chaperonin TRiC neither alters the 

level of Htt expression nor affects the aggregation of nuclear targeted polyQ-expanded Htt. 
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Similar results have recently been reported in mammalian neuronal cells (Kitamura et al., 

2006). The inhibitory effect on Htt aggregation required the functional TRiC complex and not 

single TRiC subunits (Figure 50). In contrast, a recent study suggests that single subunits 

could also contribute to the modulation of Htt aggregation (Tam et al., 2006). This apparent 

contradiction is probably due to different overexpression conditions. Tam and colleagues 

expressed single subunits in wild-type cells to high amounts and large excess of unassembled 

TRiC subunits might interfere with Htt aggregation to some extent by unspecific binding. In 

the present study, combinations of single TRiC subunits were expressed in the genetic 

background of the TRiC overexpression strain, resulting in slower growth of these cells and 

lower amounts of overexpressed subunits. Under these conditions, unspecific interactions 

were likely reduced. Notably, GroEL from E. coli did not prevent the formation of Htt 

aggregates. Thus, the eukaryotic chaperonin TRiC appears to interact with certain structural 

features in substrate proteins that are not recognized by the bacterial chaperonin GroEL. 

In vitro, purified bovine TRiC reduces the aggregation of polyQ-expanded Htt exon 1 

fragment (Htt53Q) at equimolar and even at substoichiometric concentrations of TRiC 

relative to Htt (Behrends et al., 2006). This effect is equally observed in the presence of ATP 

and in the absence of nucleotide. Aggregation prevention is mildly enhanced in the presence 

of ADP or the non-hydrolyzable ATP analog AMP-PNP. Intriguingly, these nucleotides are 

known to stabilize the acceptor state of the chaperonin for protein substrate (Meyer et al., 

2003). TRiC appears to function in this reaction by transiently binding the Htt protein with 

low affinity. Consistent with the proposed mechanism of chaperone-mediated modulation of 

polyQ aggregation (Scherzinger et al., 1997; Muchowski et al., 2000), TRiC blocks the 

formation of large polyQ fibrils in favor of shorter fibrillar structures in vitro (Behrends et al., 

2006). In this aggregation reaction, TRiC does not lead to the accumulation of considerable 

amounts of soluble polyQ-expanded Htt protein (Behrends et al., 2006). 

However, in the cellular context and concomitant with the inhibition of aggregate 

formation by Htt96Q, TRiC overexpression resulted in accumulation of SDS-soluble species, 

which were diffusely distributed throughout the cell (Figure 51). These soluble polyQ 

expansion proteins were present in an oligomeric complex of ~440 kDa (Figure 53). 

Importantly, this fractionation behavior cannot be attributed to association of polyQ-expanded 

Htt with TRiC or cytosolic Hsp70 (Ssa proteins), since the distribution of these chaperones 

did not overlap with that of the polyQ oligomers. Furthermore, the Htt oligomers seemed to 
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be no longer efficiently recognized by these chaperones. The discrepancy with the in vitro 

situation might be explained by the contribution of additional factors, possibly including other 

chaperones, to the modulation of Htt aggregation. 

TRiC interacted directly with the soluble polyQ-expanded proteins (Figure 52). 

However, this interaction must be weak and transient, since it did not persist upon size 

exclusion chromatography. TRiC seems to interact with polyQ proteins via its substrate 

binding regions, since binding of denatured actin reduces the activity of TRiC in the 

aggregation assay (Behrends et al., 2006). Thus, TRiC likely functions in this inhibitory 

reaction by transiently binding the Htt protein with relatively low affinity. 

5.2.3.2 Modulation of soluble, misfolded and toxic polyQ-expanded Htt 

Cytosolic TRiC not only prevents the formation of detergent-resistant Htt aggregates, 

but also acts on polyQ-expanded oligomeric species. Overexpression of TRiC inhibited the 

formation of the ~200 kDa oligomers formed by Htt96Q∆P-GFP. In accordance with 

chaperone-mediated redirection of Htt aggregation, prevention of the formation of ~200 kDa 

oligomers concomitantly produced an increased amount of polyQ-expanded Htt fractionating 

at ~500 kDa (Figure 56). Neither of these oligomeric mutant Htt species was found to be 

associated with Hsp70 or TRiC, suggesting that these polyQ oligomers are not recognized 

anymore by those chaperones. Remarkably, these higher molecular weight oligomers are 

comparable to the oligomers of Htt96Q formed upon TRiC overexpression. Additionally, a 

minor fraction of Htt96Q∆P-GFP may represent unassembled Htt. 

Expression of Htt96Q∆P-GFP caused a pronounced growth defect in wild-type cells 

that correlated with the presence of ~200 kDa Htt oligomers. Consistent with the elimination 

of this potentially toxic oligomeric species, overexpression of TRiC suppressed growth 

impairment (Figure 54). The ~500 kDa oligomers are likely benign, since they are not 

associated with toxicity. Notably, the toxicity of Htt96Q∆P-GFP depends on the protein 

Rnq1p (Meriin et al., 2002). Rnq1p is rich in asparagines and glutamines and belongs to a 

small class of proteins known as yeast prions. They are capable of adopting an alternate, self-

perpetuating conformational state (Sondheimer et al., 2001). Htt96Q∆P-GFP only causes 

growth impairment, when Rnq1p is in its prion conformation (Meriin et al., 2002). 

Importantly, overexpression of TRiC did not affect the prion conformation of Rnq1p, 
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suggesting that TRiC-mediated suppression of toxicity directly depends on its action on 

polyQ-expansion proteins. Thus, TRiC appears to profoundly modulate the aggregation 

pathway of mutant Htt, resulting in the elimination of presumably toxic oligomeric species in 

favour of the generation of apparently benign Htt oligomers. 

5.2.4 Cooperation of TRiC with Hsp70 in altering aggregation and toxicity 

Several studies have demonstrated an important role of the Hsp70/Hsp40 system in 

modulating polyQ aggregation and cytotoxicity (Muchowski and Wacker, 2005). Mammalian 

Hsp70 and Hsp40 (Hdj1) are known to slow polyQ aggregation and to increase the amount of 

proto-fibrillar oligomers and amorphous aggregates in an ATP-dependent manner 

(Muchowski et al., 2000; Schaffar et al., 2004; Wacker et al., 2004). The cytosolic chaperonin 

TRiC cooperates with Hsp70 chaperones in de novo folding of a subset of newly synthesized 

polypeptides and in assisting the assembly of oligomeric protein complexes (Hartl and Hayer-

Hartl, 2002; Melville et al., 2003). A similar cooperation between TRiC and Hsp70 chaperone 

systems appears to exist for handling misfolded, aggregation-prone proteins. Overexpression 

of TRiC failed to suppress polyQ aggregation in cells having a reduced amount of cytosolic 

Hsp70 of the Ssa class (ssa1∆/ssa2∆), but not in cells lacking the noncanonical, ribosome-

associated Hsp70 of the Ssb class (ssb1∆/ssb2∆) (Figure 49). Consistently, Htt exon 1 has 

been demonstrated to interact with TRiC and Ssa but not with Ssb in vitro (Tam et al., 2006). 

Thus, TRiC seems to modulate polyQ aggregation in cooperation with the canonical Hsp70. 

Likewise in vitro, addition of Hsp70/Hsp40, TRiC and ATP to an aggregation reaction 

of polyQ-expanded Htt (Htt53Q) produces almost exclusively SDS-soluble polyQ protein, 

which represented Htt oligomers of ~500 kDa (440-700 kDa), as revealed by size exclusion 

chromatography (Behrends et al., 2006). Strikingly, these oligomers resemble those observed 

upon overexpression of TRiC in vivo, in yeast cells. In contrast, the presence of 

Hsp70/Hsp40/ATP or TRiC/ATP alone during in vitro Htt aggregation yields either reduced 

amounts of soluble protein co-fractionating with Hsp70 or hardly any polyQ protein, 

respectively (Behrends et al., 2006). Thus, the ~500 kDa Htt oligomers form only in the 

presence of both chaperone systems and ATP. Furthermore, preincubation of aggregating 

mutant Htt with Hsp70 and Hsp40 followed by delayed addition of TRiC results in the 

production of ~500 kDa Htt oligomers, whereas such oligomers are absent when the order of 

chaperone addition is reversed (Behrends et al., 2006). Thus, Hsp70/Hsp40 likely stabilizes 



Discussion 

 

120

monomers or small oligomers of polyQ-expanded Htt in a conformation competent for 

subsequent interaction with TRiC, which then mediates formation of the ~500 kDa species. 

Intramolecular FRET experiments with a fluorescence labeled Htt exon 1 fragment 

provide mechanistic insight into the synergistic activity of the two chaperone systems. While 

TRiC alone is unable to interfere with the conformational collapse of the protein that occurs 

during the nucleation phase of aggregation (Schaffar et al., 2004), TRiC and Hsp70/Hsp40 in 

combination completely prevents this conformational change (Behrends et al., 2006). In this 

reaction, TRiC may modulate structural properties of Htt by acting either on the polyQ 

segment itself and/or its flanking sequences. Transient, ATP-regulated enclosure in the central 

cavity of TRiC might be involved in this activity. The end products of the reaction are 

presumably ‘folded’ Htt exon 1 monomers that assemble into soluble oligomers of ~500 kDa, 

reminiscent of the role of TRiC in the folding and assembly of proteins such as actin, tubulin 

or VHL. It is tempting to speculate that TRiC may also be involved in the de novo folding of 

proteins with polyQ repeats of normal length. 

Consistent with this cooperative modulation of Htt aggregation by TRiC and Hsp70 in 

vitro, the prevention of formation of toxic ~200 kDa Htt96Q∆P-GFP oligomers in yeast cells 

in favour of benign ~500 kDa oligomers similarly requires the cooperation of the two 

chaperone systems. TRiC overexpression failed to eliminate the ~ 200 kDa oligomeric Htt 

species in cells that had a reduced amount of Ssa. Furthermore, overexpression of Ssa1p and 

its Hsp40 co-chaperone, Ydj1p at normal TRiC levels did not prevent the formation of ~200 

kDa oligomers. Apparently, TRiC is not only limiting in modulating polyQ protein 

aggregation and oligomer formation, but also in suppressing its toxicity. In line with the 

failure of Ssa1p and Ydj1p to eliminate the ~200 kDa Htt oligomers, overexpression of these 

two chaperones could not suppress the growth defect caused by Htt96Q∆P-GFP. Moreover, 

overexpression of TRiC in ssa1∆/ssa2∆ but not in ssb1∆/ssb2∆ cells failed to suppress the 

growth defect caused by Htt96Q∆P-GFP (Figure 54, 56 and 57). Thus, in the yeast system, 

TRiC appears to cooperate with the canonical Hsp70 in modulating the aggregation pathway 

and alleviating polyQ proteotoxicity. 

The interaction of Hsp70/Hsp40 and TRiC with polyQ-expanded proteins resembles 

the sequential action of these chaperones in de novo folding. In both reactions, the more 

abundant Hsp70 stabilizes the substrate protein in a conformation that is appropriate for 
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productive interaction with the chaperonin, which then promotes folding to the native state. In 

both processes, the chaperones act early in the folding/assembly pathway, either on nascent 

polypeptide chains or on aggregation-prone conformers during the incipient stage of polyQ 

protein aggregation, which may be initiated by processing of the full-length disease protein. 
 

 

Figure 61:   Working model of chaperone-mediated modulation of polyQ aggregation and toxicity. 
Nucleation of aggregation may occur at the level of polyQ-expanded monomers of the Htt exon 1 fragment. 
Early oligomers include prefibrillar forms with cytotoxic properties, such as the ~200 kDa oligomer, which may 
be off pathway to fibril formation. Reaction (A) with TRiC alone, leading to short polyQ fibrils but not 
preventing the accumulation of potentially toxic forms; (B) with Hsp70/Hsp40, favoring the formation of 
amorphous aggregates (C); and (D) with Hsp70/Hsp40 and TRiC combined, leading to soluble, benign ~500 
kDa oligomers. (E) Toxic species may aberrantly interact with proteins containing non-pathogenic polyQ tracts 
such as TBP, leading to conformational destabilization and functional deactivation. 
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5.3 Existence of distinct polyQ oligomeric states  

The variety of oligomer sizes and prefibrillar structures, coupled with the implication 

that they might represent the primary species suspected to cause toxicity in degenerative 

disease, implicates the challenge of determining the conformational status of misfolded 

proteins. The polyQ disease proteins can access conformationally distinct, soluble oligomer 

states, which may be on- or off-pathway with respect to the formation of fibrillar inclusions. 

An initial structural differentiation between the toxic ~200 kDa and the benign ~500 kDa 

Htt96Q∆P-GFP oligomers was achieved based on their immunoreactivity with the two 

conformation-dependent antibodies 1C2 and A11 under native-like conditions (Figure 60). 

1C2 antibody interacts with an epitope formed by polyQ expansion sequences 

(Trottier et al., 1995b). Interestingly, 1C2 was originally raised against the N-terminus of 

TBP encompassing its polyQ stretch (Lescure et al., 1994). This monoclonal antibody has 

recognition properties that mimic the clinical severity of polyQ diseases. In HD, the 

recognition signal appears to increase over the whole length range of polyQ tracts, with no 

obvious threshold effect. The strong length dependence suggests that the antibody detects 

with high affinity a unique conformation, which requires a minimum length of polyQ and 

which is stabilized by further increase in length. However, multiple bivalent binding of the 

antibody on the homopolymeric epitopes could not be excluded. Notably, 1C2 is also able to 

detect intracellular inclusions containing polyQ expansion proteins (Paulson et al., 1997). 

On the other hand, the antibody A11 specifically recognizes soluble Aβ amyloid 

oligomers and prefibrillar aggregates, but not natively folded APP, low molecular weight 

monomers or dimers of Aβ, or mature amyloid fibrils (Kayed et al., 2003). This reactivity 

indicates that the oligomeric aggregates display a common epitope, which is distinct from that 

displayed by mature fibrils. Furthermore, the anti-oligomer antibody recognizes soluble 

oligomers of different amyloids, including α-synuclein, islet amyloid polypeptide, PrP and 

polyQ (Kayed et al., 2003). Because antibody recognition is independent of the amino acid 

sequence, the epitope is likely to be a common peptide backbone motif, such as the array of 

hydrogen bond donors and acceptors at the edge of a β-sheet or a turn motif. This epitope 

seems to be greatly reduced in the fibril structure. In keeping with the latter, the edge of the β-

sheet is likely being exposed only at the ends of fibrils; thus, the amount of this epitope would 

decrease as the average length of the fibrils increased. 
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The size exclusion chromatography fractions containing the ~200 kDa oligomers were 

highly reactive with A11 antibody but only weakly reactive with antibody 1C2. In contrast, 

the ~500 kDa oligomers were efficiently recognized by antibody 1C2 but essentially lacked 

A11 reactivity. Importantly, comparable amounts of the two oligomers were analyzed in this 

assay and A11 reactivity depended on the presence of ~200 kDa oligomers. Thus, the two 

types of oligomers, while being identical in sequence, are clearly distinct with regard to the 

conformational properties of the polyQ repeat. Whether epitope masking by posttranslational 

modifications or association with other cellular factors might contribute to the different 

reactivity of the two oligomeric species, remains to be investigated.  

The anti-oligomer antibody A11 has been found to block toxicity of all of the above 

mentioned oligomers (Kayed et al., 2003). This observation is in line with the widely 

accepted hypothesis that the soluble oligomeric forms of amyloids might represent the 

principal pathogenic species (Caughey and Lansbury, 2003). Based on immunoreactivity with 

the anti-oligomer antibody, the ~200 kDa polyQ oligomers may resemble the potentially 

toxic, prefibrillar states formed by other amyloidogenic disease proteins and peptides. 

Strikingly, Htt oligomers of similar size were found to undergo aberrant interactions with the 

transcription factor TBP and their accumulation correlated with toxicity in the yeast model 

system (Figure 25, 26 and 27). Furthermore, polyQ-expanded Htt fused to a hydrophobic 

peptide likewise accumulates as ~200 kDa oligomer, inhibits the ubiquitin proteasome system 

and causes toxicity in yeast (Sarah Broadley, personal communication). Whether these toxic 

oligomers also show reactivity to the anti-oligomer antibody remains to be determinated. In 

addition, it would be interesting to test whether all of these toxic polyQ oligomers also lead to 

cytotoxicity when applied to mammalian cells, as previously reported for other non-fibrillar 

pre-aggregates (Bucciantini et al., 2002). In contrast, the ~500 kDa polyQ oligomers 

produced by the cooperative action of Hsp70/Hsp40 and TRiC are conformationally distinct 

and may be more comparable to the native assembled state of other oligomeric proteins. They 

lack reactivity with the A11 antibody and are not associated with proteotoxicity in the yeast 

model. Thus, in the ~500 kDa assembly, the polyQ expansion sequence is presumably 

prevented from adopting structural features enabling aberrant interactions with other proteins. 
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5.4 Implications in neurodegenerative diseases 

Failure of the cooperative Hsp70/Hsp40-TRiC pathway to prevent certain proteins 

from accessing potentially toxic, amyloidogenic conformations may be critical in the onset of 

CAG-repeat diseases and perhaps other neurodegenerative folding disorders. In fact, this 

function may be more generally relevant in protein quality control considering that the ability 

to form amyloid structures is not an unusual feature of the small number of proteins 

associated with diseases, but instead may be a more general property of polypeptide chains 

(Stefani and Dobson, 2003). The factors that may be responsible for the failure of chaperone 

defense in neurodegenerative disease remain to be determinated.  

In a C. elegans model of HD, the age-1 mutation, which extends the lifespan of the 

worms, causes a significant delay in polyQ toxicity and protein aggregation (Morley et al., 

2002). A delay in ageing in mice caused by caloric restriction, lead to a significant reduction 

in polyQ aggregation, reduced brain atrophy and a delay in development of behavioral 

symptoms of the disease (Duan et al., 2003). Dietary restriction is known to reduce oxidative 

stress and increase the production of chaperones (Mattson and Magnus, 2006). Thus, the rate 

of progression for proteinopathies seems to be linked with the genetic regulation of ageing. 

Intriguingly, the heat shock response appears to be poorly induced during ageing (Amici et 

al., 1992; Soti and Csermely, 2002). Hence, the ability of chaperone networks to respond to 

the appearance of misfolded and aggregation-prone proteins during ageing would be 

compromised, which is consistent with genetic approaches that have identified molecular 

chaperones as suppressors in models of ageing and protein aggregation related diseases 

(Nollen et al., 2004). In fact, the capacity of the stress protein network, which is regulated by 

the master transcription regulator heat shock factor (HSF1), may decrease as part of the 

ageing program (Morley and Morimoto, 2004), thus favoring the accumulation of toxic 

protein species. Interestingly, the regulation of TRiC and several other chaperones involved in 

de novo folding differs from that of stress-inducible Hsp70 members in that it is HSF1-

independent (Albanese and Frydman, 2002). It will therefore be important to see how TRiC is 

regulated and whether the level of functional chaperonin changes during ageing.  
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5.5 Perspective 

While the formation of large inert aggregates (inclusions, aggresome) seems to be part 

of the cellular protective response against misfolded proteins, it is clear that the aggregation 

process itself is related to toxicity. An important issue that remains is to determine the exact 

nature of the toxic species: whether this is some form of soluble aggregate such as a small 

oligomer or the misfolded monomer itself. A detailed understanding of toxicity mechanisms 

will depend on information concerning the molecular composition, reactivity and structure of 

these forms. A related question is whether soluble oligomeric species are on the pathway to 

fibre formation or represent an off-pathway step. Dissecting and ordering the pathway of fibril 

formation in vivo will help to elucidate the underlying pathomechanism and to guide the 

development of therapeutic strategies. It is important to realize in this context that, contrary to 

present belief, interfering with the aggregation process may not be generally advantageous but 

could increase the accumulation of toxic species. 

Molecular chaperones and other components of the protein quality control system are 

remarkably efficient in ensuring the neutralization of potentially toxic protein species. These 

protective mechanisms likely involve the ability of chaperones to alter the partitioning 

between harmful and harmless forms of aggregates. Therefore, a plausible therapeutic strategy 

would be to seek ways to enhance the cellular defense mechanisms. Drugs such as 

geldanamycin can increase the level of chaperones (Sittler et al., 2001). Small molecules may 

be similarly able to target the misfolding proteins directly. Congo red has been shown to bind 

to proteins with β-sheet structure and reduce toxicity in vivo (Sanchez et al., 2003). It is 

conceivable that small molecule inhibitors can be identified that mimic the combined effect of 

the Hsp70/Hsp40 and TRiC chaperones in converting toxic oligomers into benign forms. 

Drug screens may take advantage of the ability of conformation-specific antibodies to 

differentiate these forms. 
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7 Appendix 

7.1 Abbreviations 

Units are expressed according to the international system of units (SI), including outside units 
accepted for use with the SI. Amino acids are abbreviated with their one or three letter symbols. 
Protein and gene names are abbreviated according to their SWISSPROT database entries. 
 
3-AT   3-Amino-1,2,4-triazole 
ADP   adenosine 5’-diphosphate 
APS   ammonium peroxodisulfate 
ATP   adenosine 5’-triphosphate 
bp   base pair 
C. elegans  Caenorhabditis elegans 
CMV   cytomegalovirus immediate-early promotor 
Da   Dalton 
ddH2O   double distilled water 
DAPI   4,6-diamidin-2-phenylindol 
DNA   deoxyribonucleic acid 
dNTP   didesoxy-nucleoside triphosphate 
DMSO   dimethylsulfoxid 
DTT   dithiothreitol 
DMEM   Dulbecco’s Modified Eagle’s Medium 
ECL   enhance chemiluminescence 
E.coli   Escherichia coli 
EDTA   ethylenediaminetetraacetic acid 
FCS   fetal calf serum 
FITC   fluorescein-isothiocyanate 
FPLC   fast performance liquid chromatography 
FRET   fluorescence resonance energy transfer 
g   acceleration of gravity, 9.81 m/s2 
hr   hours 
LB   Luria-Bertani 
min   minutes 
Ni-NTA  nickel-nitrilotriacetic acid 
OD   optical density 
Pi   inorganic Phosphate 
PBS   phosphate-buffered saline 
PEG   polyethylene glycol 
PMSF   phenylmethylsulfonyl fluoride 
pH   reverse logarithm of relative hydrogen proton (H+) concentration 
RT   room temperature 
S. cerevisiae   Saccharomyces cerevisiae 
SDS   sodium dodecylsulfate 
TCA   trichloroacetic acid 
TEMED  N,N,N’,N’-tetramethylethylendiamine 
Tris   Tris(hydroxymethyl)aminomethane 
Triton X-100  octyl phenol ethoxylate 
Tween 20  polyoxyethylen-sorbitan-monolaurate 
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7.2 Publications and Presentations 

 
 
Publications 
 
Behrends C., Langer C. A., Boteva R., Böttcher U. M., Stemp M. J., Schaffar G., Rao B. V., Giese A., 
Kretzschmar H., Siegers K., and Hartl F. U. (2006). Chaperonin TRiC promotes the assembly of polyQ 
expansion proteins into nontoxic oligomers. Molecular Cell Vol.23, pp.887-897. 
 
 
Schaffar G., Breuer P., Boteva R., Behrends C., Tzvetkov N., Strippel N., Sakahira H., Siegers K., 
Hayer-Hartl M., and Hart, F. U. (2004). Cellular toxicity of polyglutamine expansion proteins: 
Mechanism of transcription factor deactivation. Molecular Cell Vol.15, pp.95-105. 
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two-hybrid systems for human membrane proteins. Molecular Membrane Biology Vol.21, pp.373-383. 
 
 
Oral Presentations 
 
Symposium of the SFB (Collaborative Research Center) 596 “Molecular mechanisms of  
neurodegeneration“, October 2006, LMU, Munich, Germany 
“Chaperonin TRiC promotes the assembly of polyQ proteins into nontoxic oligomers” 
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EMBO (European Molecular Biology Organization) – FEBS (Federation of European Biochemical 
Societies) Conference on “Amyloid Formation“, March 2006, Florence, Italy 
“Role of chaperonin TRiC as a suppressor of aggregation and cytotoxicity of polyglutamine expansion 
proteins” 
 
 
GBM (Society for Biochemistry and Molecular Biology) Meeting on “Molecular Machines", March 
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