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...

There is a theory which states that if ever anyone discovers exactly

what the Universe is for and why it is here, it will instantly disappear

and be replaced by something even more bizarre and inexplicable.

There is another which states that this has already happened.

DNA [1]

...





Abstract

The primary aim of this thesis was the acceleration of ions with a nuclear charge Z > 1 to

multi-MeV energies by means of a laser pulse. While laser-induced proton acceleration in

the MeV-range has recently been achieved by a number of groups, the laser acceleration of

high quality, high energy beams of heavier particles has been demonstrated for the first time

within the framework of this thesis. Furthermore, the obtained data could then subsequently

be used to understand the dynamics of the acceleration physics, which was not accessible by

the means of the previously performed experiments.

The particles were accelerated using a state-of-the-art ultrahigh-intensity laser , with a peak

power in excess of 100 Terawatt (TW) and a focused intensity I ∼ 5 × 1019 W/cm2. These

powers and intensities are achieved by compressing 30 Joule of energy in a laser pulse as

short as 300 femtoseconds (fs) and focussing this pulse down to a spot with a radius r ≤ 8

µm. When laser pulses with intensities of ∼ 1019 W/cm2 interact with thin metal foils they

ponderomotively accelerate electrons to energies of several MeV. Due to the relativistic nature

of the interaction at these intensities the acceleration is mainly directed in forward direction

and the electrons penetrate the target foil. Upon exiting they set up an ultrastrong space

charge field of several TV/m. While the ions have a too high inertia to be significantly moved

by the rapidly oscillating laser field, this quasistatic field at the target rear surface accelerates

ions to multi-MeV energies. The ions are emitted in a narrow beam with a divergence

decreasing with increasing energy and charge state. Without any special precautions this

acceleration mechanism is only effective for protons, regardless of the target material. Due

to the operating conditions of ultrahigh-intensity lasers an ultra-high vacuum environment is

not possible and the target surfaces are always contaminated by a thin layer of hydrocarbons.

Due to their higher charge-to-mass ratio protons are always more efficiently accelerated than

any other ion and subsequently the protons outrun all other ion species and effectively screen

the accelerating potential.

The way to accelerate other ion species therefore lies in getting rid of the protons. By heat-

ing the targets we succeeded in removing the contaminant layers of hydrocarbons. This is

achieved by either resistive heating or laser heating. Once the hydrocarbons are removed,

other ions are efficiently accelerated as can be seen in the spectrum shown below. Two

Thomson-parabola ion spectrometers were designed and employed to obtain these high-

resolution, absolutely calibrated ion energy spectra and charge state distributions. Carbon

and fluorine ions were accelerated to energies of several MeV/nucleon, the highest achieved

energy was measured for F7+-ions with more than 100 MeV. A conversion efficiency of laser

energy to heavy ion energy of > 5 % has been achieved for optimal heating parameters.

This corresponds to roughly the same conversion efficiency that was otherwise measured for

protons.

The measured spectra and charge state distributions contain information on the dynamics of
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the ionization and acceleration processes. It is shown that the main ionization mechanism is

Field Ionization by Barrier Suppression (FIBS) and that collisional ionization and recombi-

nation are of minor importance. The ionization happens sequentially as the ion moves away

from the target surface, on a spatial scale of ∼nm and a temporal scale of ∼fs. The initial

ion distribution during and shortly after the laser pulse is stratified - i.e. C1+ closest to the

unperturbed surface, followed by C2+, C3+and finally C4+ extending and forming the forward

edge of the expanding ion front. The accelerating field moves outwards into the vacuum as

could be shown by simulations with a 1-dimensional kinetic code which was developed within

the scope of this work. The interaction is highly dynamic and gets increasingly complex as

the system cools down after the pulse. Having established FIBS as the responsible ionization

mechanism, it is now possible to use the charge state distribution as a probe for the strength

of the accelerating field. Since the individual charge states have different energy distributions

this probe is automatically time-dependent and reveals information about the field dynamics.

The highest fields are on the order of several TV/m and have a duration τ ∼ 500 fs, com-

parable to the laser pulse duration. The lower charge states, however, which only see fields

of ∼ 10 GV/m, are accelerated on a time scale of > 10 ps. This requires a mechanism that

maintains the high electron temperature after the source (i.e. the laser pulse) has shut off.

One possibility are oscillating or recirculating electrons, which undulate around the positive

ion distribution.

Our measurements show that the accelerated ion beam is of high quality, showing a small

divergence (≤15◦) and source size (∼ 100 µm). The transverse temperature of the beam

is very low, allowing imaging on a sub-micron scale. Furthermore the ion pulse is initially

short, i.e. of the same duration as the laser pulse, and carries a current of several MA. These

characteristics cannot be obtained by any conventional accelerator and open the door for a

multitude of potential applications, among them proton imaging, ion fast ignition and ion

fusion drivers, advanced accelerator concepts and tools for fundamental physics studies, e.g.

on transport and stopping of high current beams and isochoric heating of matter.



Zusammenfassung

Laser-induzierte Beschleunigung von Protonen auf MeV Energien konnte in den letzten zwei

Jahren von mehreren Gruppen erreicht werden. Im Rahmen dieser Arbeit demonstrieren

wir nun erstmalig die effiziente Beschleunigung von hochenergetischen leichten Ionen mit

guter Strahlqualität durch einen Laserpuls. Die gewonnenen Daten liefern ausserdem einen

entscheidenden Beitrag zum Verständnis der Dynamik des Beschleunigungsprozesses, die

bisherigen Experimenten nicht zugänglich war.

Ein state-of-the-art Nd:Glass Höchstintensitätslaser lieferte die erforderlichen Lichtpulse mit

einer Energie von 30 J und einer Dauer von 300 fs. Sie wurden mit einem Parabolspiegel auf

einen Fleck mit einem Durchmesser von 8 µm fokussiert, was einer Intensität von 5 × 1019

W/cm2 entspricht. Wird Materie einer solchen Bestrahlungsdichte ausgesetzt, verwandelt

sie sich instantan in ein Plasma, dessen freie Elektronen der Gradient des Lichtdruckes auf

Energien von einigen MeV in Laserstrahlrichtung beschleunigt. Targets von nur einigen 10

µm Dicke (dünne Folien) vermögen die Elektronen zu durchdringen und durch die Rück-

seite zu verlassen. Dadurch baut sich dort ein zeitlich nicht oszillierendes Raumladungsfeld

mit Feldstärken von mehreren TV/m auf. Es ist in der Lage, Atome auf der Targetrück-

seite zu ionisieren und auf viele MeV zu beschleunigen. Die Ionen werden in einem engen

Strahl emittiert und weisen eine mit zunehmender Energie und Ladungszustand abnehmende

Divergenz auf. Ohne besondere Massnahmen hinsichtlich der Targetpräperation werden un-

abhängig vom Folienmaterial immer Protonen beschleunigt. Diese stammen aus Wasser- und

Kohlenwasserstoffschichten, die auf Grund der Vakuumbedingungen in Hochintensitätslaser-

Experimenten allen Oberflächen anhaften. Wegen ihres grösseren Ladung-zu-Masse-Verhält-

nisses werden Protonen immer effektiver beschleunigt als jede andere Ionenspezies. Die

Protonen laufen daher vor den anderen Teilchen her und schirmen die beschleunigenden

elektrischen Felder für diese ab. Um also Ionen mit Z > 1 auf hohe Energien zu beschle-

unigen, muss man zuerst die kontaminierenden Schichten entfernen. Dies geschieht durch

Ohmsche Heizung des Targets. Die gemessenen Spektren bestätigen dann eindeutig, dass

dominant schwerere Ionen effizient beschleunigt werden. Um die Spektren und Ladungszus-

tandsverteilungen absolut kalibriert und hochaufgelöst messen zu können, wurden im Rahmen

dieser Arbeit zwei Thomsonparabel-Spektrometer entwickelt und eingesetzt. Kohlenstoff-

und Fluorionen wurden auf mehrere MeV/nucleon beschleunigt, wobei die höchste gemessene

Energie von über 100 MeV mit F7+-Ionen erreicht wurde. Für ein optimal gereinigtes Target

konnten Konversionseffizienzen von Laserenergie in Ionenenergie von mehr als 5% erreicht

werden. Dieser Wert entspricht in etwa dem für Protonen gemessenen, d.h. man kann zu

schwereren Teilchen übergehen ohne nennenswerte Effizienzeinbussen hinnehmen zu müssen.

Die gemessenen Spektren enthalten Informationen über die Dynamik des Ionisations- und

Beschleunigungsprozesses. Wir können zeigen, das die primäre Ionisation mittels Feldion-

isation durch Potentialunterdrückung (Field Ionization by Barrier Suppression) geschieht
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und dass Stossionisation und Rekombinationsprozesse von untergeordneter Bedeutung sind.

Die Ionisation geschieht sequentiell, während sich das Ion von der Folienoberfläche fortbe-

wegt, allerdings auf extrem kleinen räumlichen (nm) und zeitlichen (fs) Skalen. Die ur-

sprüngliche Ionenverteilung direkt nach der Spitze des Laserpulses ist geschichtet - d.h.

C1+ am nächsten an der Folienrückseite, gefolgt von C2+, C3+ und schliesslich C4+ an

der vorderen Kante der expandierenden Ionenfront eines Kohlenstofftargets. Das Maxi-

mum des beschleunigenden Feldes bewegt sich mit den Ionen mit, wie wir durch kinetis-

che Simulationen zeigen konnten. Die Wechselwirkung ist gekennzeichnet durch ihre hohe

Dynamik und wird zunehmend komplexer mit fortschreitender Abkühlung nach Ende des

Laserpulses. Die Identifizierung von Feldionisation als primärer Ionisationsmechanismus

ermöglicht es, die Ladungszustandsverteilung als Sonde für die auftretenden Feldstärken zu

benutzen. Durch die unterschiedlichen Energieverteilungen der Ladungszustände ist diese

Sonde inhärent zeitabhängig und ermöglicht so eine erste Messung der Felddynamik. Die

höchsten Feldstärkten erreichen mehrere TV/m und haben Lebensdauern im Bereich der

Pulsdauer des Lasers. Die niedrigen Ladungszustände werden jedoch von Feldern von ”nur”

∼ 10 GV/m beschleunigt, das jedoch über eine Zeit von einigen 10 ps. Dies erfordert einen

Mechanismus, der in der Lage ist, auch nach Abklingen des Laserpulses noch eine hohe Elek-

tronentemperatur aufrecht zu erhalten. Dafüer könnten rezirkulierende Elektronen, die im

Potenzial der Ionen und des Targets oszillieren, in Frage kommen, wie es kürzlich von Y.

Sentoku vorgeschlagen wurde.

Unsere Messungen zeigen einen Ionenstrahl von ausserordentlicher Qualität, mit einer kleinen

Divergenz und sehr kleiner Quellgrösse. Weiterhin ist die transversale Temperatur des Strahls

so extrem niedrig, dass sie sogar Abbildungen im Sub-Mikrometerbereich ermöglicht. Der

Ionenpuls ist verglichen mit konventionell beschleunigten Pulsen sehr kurz, er hat ungefähr

die gleiche Dauer wie der ihn auslösende Laserpuls, und enthält ausserdem einen Strom von

vielen MA. Diese Eigenschaften, die konventionelle Beschleuniger nicht erreichen, ermöglichen

neue Beschluenigerkonzepte sowie Anwendungen in der Isotopenproduktion für medizinische

Zwecke, Laserfusion und Grundlagenforschung bezüglich isochorem Heizen von Materie auf

Inner-Stern-Bedingungen.
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Chapter 1

Introduction

1.1 Motivation

When investigating laser-induced ion acceleration the first question has to be what

happens when light of high intensity comes into contact with matter? The light wave

couples to the electrons of the target, which start to oscillate in the electromagnetic

field. Already at relatively moderate intensities (1012W/cm2) enough energy is trans-

ferred to ionize the surface layer of the target. The matter heats up and a plasma

evolves and expands. The main part of the laser pulse now interacts with the plasma.

The plasma is heated and modified and at the same time modifies the incident light.

Very generally spoken, light energy is converted into particle motion, which means in

most cases unordered motion, i.e. temperature. Under the internal pressure of this

temperature the plasma will expand further which results in the acceleration of the

plasma ions. These acceleration mechanisms have been studied almost as long as high

energy pulse lasers exist. However while lasers with pulse energies in the hundreds of

Joules and even kilojoule range exist for many years, the pulse durations achievable

with these systems used to be in the nanosecond range. Consequently experiments with

these Nd:glass and CO2 lasers [2, 3, 4, 5, 6] where performed at intensities between

1014 and 1016W/cm2 and the typical ion energies were in the keV or later 100-keV

range. And due to the origin of the acceleration in unordered motion, the resulting ion

acceleration is also unordered and the ions are emitted in a large cone (> 45◦) against

the laser direction and exhibit high transverse temperatures. Due to their poor beam

characteristics, these ions could never be put to any further use.

With the advent of Chirped-Pulse-Amplification (CPA) [7] a new aspect came into

play. Achievable intensities jumped by many orders of magnitude to up to and beyond

1021 W/cm2. Intensities like this and the corresponding fields had never before been

accessible within a laboratory. It turned out that at intensities beyond ∼ 1018W/cm2 a

fundamental threshold is crossed, and the laser-plasma interaction becomes relativistic.

1
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More specific the quiver velocity of the electrons in the electromagnetic field of the

lasers approaches the speed of light in a single oscillation period. As a consequence

the magnetic component of the field is no longer negligible and the electron mass

increases. The changes in single-particle interaction lead to collective effects in the

plasma allowing a conversion of light energy into ordered motion.

The most intriguing possibility of this development is the acceleration of charged parti-

cles along very short distances (typically hundreds of microns) into well directed dense

bunches with energies up to tens of MeVs. Using ultrahigh-intensity lasers electrons

with energies up to 200 MeV have been demonstrated [8] and protons have been acceler-

ated to ∼ 60 MeV [9]. This work now demonstrates for the first time the acceleration of

heavier ions by short pulse lasers to equivalently high energies, specifically accelerating

fluorine ions to energies up to 100 MeV.

Describing these acceleration processes and indeed the interaction of ultra-high inten-

sity laser pulses with matter is still work in progress, both theoretically and experi-

mentally.

Although on a microscopic scale, the problem in principal reduces to the Maxwell

equations and the relativistic equations of motion for the involved particles, it is not

easy to extrapolate to the macroscopic scale of an experiment. Modern computer

simulation codes try this approach very successfully for a limited problem, but even the

biggest massively parallel computers have not enough computing power to simulate a 3-

dimensional all-particle description of a dense plasma in a sufficiently large simulation

area. Therefore, severe restrictions and simplifications must be made which require

a profound pre-understanding of the effects involved. The other way is an analytic

description of the plasma as a collective entity analogous to classic plasma physics,

which yields tendencies, functional dependencies, and model pictures.

The basic model picture for the ion acceleration mechanism is easily sketched and

explained in more detail in Chapter 2. The high-intensity electromagnetic fields in

the laser focus accelerate electrons by various collective mechanisms to relativistic

energies. In contrast to non-relativistic laser-plasma interaction, this acceleration can

be directed. The displacement of a large number of electrons leads to the build up of

space charge fields of the same order of magnitude than the laser fields. In contrast

to the quickly oscillating laser fields (T∼ 3 fs) these space charge fields are stable on

a time scale of up to picoseconds, which can be even longer than the total laser pulse

duration. These ”quasistatic” space charge fields can now accelerate ions which are

too inert to follow the fast changing laser fields.

As simple as this model picture as complex are the details and dynamics of the acceler-

ation process. They, and with them a way to control them, are largely not understood
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yet and the topic of current research. Up to now neither an analytical model nor a

computer simulation could be produced that describes the entire process. However,

by the virtue of a number of ongoing experiments more pieces of the puzzle are found

continually, such as this work was able to shed light in the topics of effectively selecting

the ion species as well as the ionization and acceleration dynamics.

1.2 Thesis Structure

The thesis is divided into three major parts. The first part consists of Chapter 2 and

Chapter 3 and explains the basic theoretical concepts. Chapter 2 explains the physics

of laser acceleration, while Chapter 3 deals with the different ionization mechanisms.

The topic of the second part is the technical aspect of this work. Chapter 4 describes

the laser system, the experimental setup, and the different diagnostics. Chapter 5

explains in detail Thomson parabola -spectrometers which formed the main diagnostics,

the detector physics and working principles of the CR-39 Solid State Nuclear Track

Detectors (SSNTD) and the automated scanning microscope system used to analyze

the CR-39.

The third and main part is dedicated to the experimental results of the thesis. Chap-

ter 6 gives an introduction to the proton measurements and contains measurements on

general beam parameters like divergence and source size. In Chapter 7 the results on

carbon and fluorine ion acceleration are presented and the ion beam parameters are

analyzed and compared to the proton measurements. Chapter 8 then carries on from

there and uses the obtained data to illuminate the underlying physics. Information

on recombination and ionization processes, the field dynamics and the acceleration

mechanism is extracted from the data and further analyzed by means of kinetic and

Particle-In-Cell computer simulations. Chapter 9 finally discusses future perspectives

of laser accelerated ions both with respect to fundamental science and applications and

tries to give a scaling of the effects to the new bigger laser systems currently under

construction.

1.3 Nature of the experiments

In contrast to the table-top ATLAS system at the MPQ the high-energy lasers used

within the scope of this work are fairly large facilities which are operated very much

like large scale accelerators. That means that each user gets only a limited amount

of beamtime and due to the low repetition rates of large high energy glass lasers the

actual number of shots for an experiment is even more limited. Also the beamtime
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is not scheduled to one user but to a group of users meaning that usually a number

of different experiments are carried out at one beamtime which further decreases the

number of laser shots available to a specific task.

The experiments described in this thesis were mainly part of a larger experimental

campaign at the Laboratoire pour l’Utilisation des Lasers Intense (LULI) 100 TW

Laser at the Ecole Polytechnique, Palaiseau, France. Our group consisted of J. Fuchs,

P. Audebert and J.C. Gauthier from LULI, M. Roth, A. Blacevic, M. Geissel and E.

Brambrink from GSI/TU Darmstadt, M. Allen and T. Cowan from General Atomics,

San Diego and S. Karsch and myself from MPQ/LMU Munich.

The campaign consisted of four beamtimes of two weeks each and its aim was to

investigate particle acceleration from thin foils by ultrahigh-intensity lasers. Within

these campaigns especially measurements of the accelerated protons and their beam

properties, i.e. yield, divergence, emittance, spectrum, etc. were performed. We also

studied the dependence of the proton beam parameters on laser and target properties,

such as laser energy, prepulse, target materiel, thickness, or surface quality. Moreover,

the possibilities of neutron production by d(d,n)3He fusion and (p,n)-reactions using

laser accelerated deuterons and protons have been investigated.

The primary part of these experimental campaigns that this thesis deals with is the

acceleration and subsequent characterization of ions with Z >1. Can these heavier

ions be accelerated efficiently by ultrahigh-intensity lasers and what targets are suited

best for that task? Moreover, what can be learned from the measured spectral and

charge state distributions concerning the ionization and acceleration mechanism? In

contrast to the protons the heavier ions exist in a multitude of charge states which

have all different sensitivities towards the ionizing and accelerating mechanisms and

thus inherently contain much more information regarding these physical processes than

the proton signal.

An additional campaign was run recently at the new Trident Shortpulse Laser at the Los

Alamos National Laboratory in cooperation with J. Cobble, S. Letzring, R. Johnson

and J. Fernandez. The primary aim of this campaign was to commission the new

laser facility and to validate its abilities for particle acceleration. Though the number

of shots was very limited and no dedicated heavy ion targets could be shot due to

lack of time and difficulties with the target insertion mechanism, the main goal of the

campaign was met and some of the results on beam parameters presented in Chapter 6

were obtained at the Trident facility.

This thesis mainly describes the results of the ion acceleration experiments, however,

to draw an as complete and conclusive picture of the underlying physics as presently

possible, the results of the other experiments will frequently be used to complement the
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ion measurements. For a detailed description the reader is referred to the respective

publications as given in the text and the addendum, in particular the PhD-theses of

M. Allen and S. Karsch [10, 11].



6 CHAPTER 1. INTRODUCTION



Chapter 2

High-Intensity Laser – Matter

Interaction and Laser-induced Ion

Acceleration

In laser-matter interactions plasma creation already starts at very moderate intensities

of I ∼ 1012 W/cm2. When a high-intensity laser pulse hits any target, already the

onset of the pulse many orders of magnitude below peak intensity is strong enough to

ionize the target atoms and start plasma creation. Therefore, all kind of matter will

thus always be in the plasma state when it interacts with the main part of ultrahigh-

intensity laser pulse. While laser-matter interaction has been treated thoroughly in

the past, new effects come into play when ultra-short laser pulses are involved.

In the case of ultrashort and ultra-intense laser pulses the energy is deposited into a

much smaller spatial area because the diffusion and equipartition processes happen on

time scales much longer than the laser pulse. Furthermore the relativistic nature of the

interaction changes the mechanism of laser coupling to single particles, which leads on

the whole to collective motion and to the creation of large quasistatic fields. Another

point is that the plasma is not only created and heated but also strongly modified in

its properties when an ultra-intense laser pulse is present. The ion acceleration in the

wake of such a laser-plasma interaction, at least for the high energetic ions which are

the topic of this thesis, is not caused by the well-known expansion processes but takes

place on much shorter time-scales. More important, charge neutrality is not maintained

in the acceleration phase but on the contrary the acceleration is caused by a quasistatic

field set up by charge separation.

In spite of these major differences all ion acceleration schemes have one thing in com-

mon. The ions are not accelerated by the laser itself but the interaction is mediated by

the plasma electrons. To understand the different acceleration schemes it is therefore

7
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important to understand the laser-electron interaction. The following section therefore

discusses the laser-plasma interaction, starting with a single free electron before going

over to a full plasma. The second section then discusses the different ion acceleration

mechanisms possible with short-pulse lasers and compares those to the well-known

long-pulse case.

2.1 The interaction of an ultrahigh-intensity laser

pulse with a plasma

When a high-intensity laser pulse interacts with a plasma at intensities beyond ∼ 1018

W/cm2 one enters a relativistic regime. While on the one hand the laser acts upon

the plasma, simultaneously the plasma acts on the laser pulse, too. This interaction

gives rise to several new effects which could not be observed before in conventional laser

plasma interaction. But before discussing those collective plasma effects the interaction

of a single charged particle with ultra-intense light is reviewed.

2.1.1 Interaction of ultra-intense light and a single electron

When light interacts with a charged particle, this particle moves in the electromagnetic

field of the light wave. In SI units and in vacuum (with the relative permittivity and

permeability εr = µr = 0) and in the slowly varying envelope approximation (SVEA),

a linearly polarized light field is given as

~E(~r, t) = E0(~r, t)~exe
i (ωt− kz)

~B(~r, t) = B0(~r, t) ~ey e
i (ωt− kz) with B0 =

E0

c
,

(2.1)

where ~ex and ~ey are normal and normalized vectors, both normal to the propagation

direction ~ez, and c is the speed of light. The corresponding intensity is defined as the

energy flux density averaged over the fast oscillations

(2.2) I(~r, t) =

〈∣

∣

∣

∣

∣

~E ×
~B

µ0

∣

∣

∣

∣

∣

〉

=
ε0c

2
|E0(~r, t)|2 ,

and is usually given in [W/cm2]. Here ε0 is the permittivity and µ0 the permeability of

free space. The force exerted on a charge Ze moving with a velocity ~β = ~v/c is given

by the Lorentz-law

(2.3)
d~p

dt
=

d
(

γmc~β
)

d t
= Ze

(

~E + c ~β × ~B
)

= Ze
(

~E + ~β ×
(

~ez × ~E
))

,
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where m is the particle mass and the usual relativistic γ.

The second term in (2.3) is negligible for non-relativistic particles with β ¿ 1. Their

motion is described by a harmonic oscillation in the electric field with a maximum

amplitude and velocity in the order of

(2.4) s0 ≈
|Ze|
m

E0

ω2
and |~v| ≈ |Ze|

m

E0

ω
.

As one can see the motion of an ion is by far weaker than than that of an electron due

to the ions higher mass mi. Therefore, in the following the ions are assumed to be at

rest.

A convenient quantity frequently used in relativistic laser plasma physics is the dimen-

sionless light amplitude

(2.5) a0 =
eE0

ωmec
,

where me denotes the electron mass. One can then rewrite the field equations

E0 = a0
2πmec

2

eλ
=

a0

λ [µm]
3.2× 1012 V/m

B0 = a0
2πmec

eλ
=

a0

λ [µm]
1.07× 107 T

I = a0
22ε0c

(

πmec
2

eλ

)2

=
a0

2

λ2 [µm2]
1.37× 1018 W/cm2 .

(2.6)

Describing the electron motion (2.4) in terms of the dimensionless light amplitude a0

one obtains

(2.7) s0 ≈ a0
λ

2π
and |~v| ≈ a0c .

A relativistic description of the periodic electron motion becomes necessary when a0

approaches unity. At a laser wavelength λ ≈ 1µm, this is the case at intensities around

1018 W/cm2, a threshold crossed by orders of magnitude with last-generation high-

intensity lasers. By crossing this threshold one reaches the new regime of relativistic

laser-matter interaction, where particle dynamics change due to several phenomena:

• mass increase: When an electron approaches the speed of light in every oscil-

lation, its (average) mass increases.

• anharmonic motion: The electron oscillation in the electric field is no longer

harmonic, but the relation (2.7) for the maximum transverse oscillation amplitude

s0 remains valid.
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Figure 2.1: Electron trajectories in a strong laser field: (a) laser pulse of duration ∆τ = 20 fs,

amplitude a0 = 2.5 (I = 1.3× 1019 W/cm2 at λ = 800 nm), and large lateral beam size; (b)

same laser pulse, but in a tight focus (diameter dFWHM = 3µm, the laser lateral intensity

profile is also shown). An electron, initially at rest at a distance of x0 = 0.5µm from the laser

axis, is ejected under an angle of θ ≈ 52◦ to the axis with an energy of Ekin = 0.64MeV.

• forward drift: The ~v× ~B term in the Lorentz force (2.3) is no longer negligible

if β ≈ 1, which results in more complex particle trajectories (see Fig. 2.1(a)).

The relativistic particle motion is described by a figure-of-8 shape in the frame of the

average drift, as shown below. This average drift is caused by the magnetic field in

combination with the electric field induced by transverse velocity. This drift is always

directed in the light propagation direction with a velocity

(2.8) ~vD =
a0

2

4 + a0
2
c ~ez .

It has to be noted, that in spite of the high average kinetic energy during the light

pulse, the electron does not gain net energy by this process.

Up to now all considerations have been made for an electron in an infinitely extended

plane wave. However, when the light is focused, a transverse intensity profile comes

into play. The major effect of this transverse profile is, that an electron which is driven

out of the focus in one half-cycle by the very high fields in the immediate focal region,

feels a very much weaker force in the second half-cycle. It is therefore not as hard

drawn back as it was pushed out and will eventually leave the focal region as shown

in Fig. 2.1 (b). Thereby it will now effectively gain energy. For a realistic laser pulse

with finite dimensions this constitutes an effective acceleration mechanism that allows

electrons to be accelerated by the light wave.

However, this simple explanation, which is worked out numerically and analytically for
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the relativistic case in [12], predicts electron ejection in the plane of polarization, while

experimental evidence shows that electrons leaving the focus have an azimuthally sym-

metric distribution, even in the case of linearly polarized laser light. This discrepancy

is due to the fact that the above explanation neglects that a spatially confined light

field always has non-zero field components in the propagation direction [13, 14] to fulfill

the Poissons equation. Usually these components are fairly small but for ultra-high

intensities they become big enough to play a role. If one takes into account those

terms (see e.g. [15, 16]) the electron trajectories in these modified fields are complex

3-dimensional patterns (see Fig. 2.2) and the electron ejection is radially symmetric,

independent of the laser polarization direction. To get a first understanding without

having to deal with the full 3-dimensional trajectory it is useful to consider the elec-

trons final state. The final energy of the electron depends on its escape angle θ with

the laser axis, (see Fig. 2.1(b)). For an electron initially at rest,

(2.9) cos θ ≈
√

γ − 1

γ + 1

is a good approximation for γ ≤ 3 and gives a lower estimate of θ for larger γ [16]. The

exact relativistic solution can be found in [16] and describes the acceleration in terms

of a so-called ponderomotive force:

(2.10)

〈

d~p

dt

〉

=
1

2meγ̄
∇〈|eA⊥|2〉 ,

where γ̄ is the local relativistic γ-factor averaged over an oscillation period, e the elec-

tron charge and A⊥ is the transverse component of the 4-vector of the electromagnetic

potential (A = (eΦ,A).

2.1.2 Interaction of an ultra-intense laser pulse with a plasma

Considering now the interaction of the laser pulse with a whole ensemble of charged

particles instead of a single electron new collective effects come into play. Furthermore

does not only act the laser on the plasma but also the plasma on the laser pulse, which

of course immediately affects the way the laser acts on the plasma and so on. The

interaction becomes recursive. The three most important effects are

• laser induced transparency

• relativistic self-focussing

• profile steepening at the pulse front
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Figure 2.2: 3-dimensional trajectory of an electron accelerated and ejected by a high in-

tensity laser pulse (a0 = 0.3, τPulse = 200 fs). The calculations take into account the field

components in laser direction arising from the focussing [16].

To understand these effects one has to bear in mind that the properties of a plasma

are largely governed by its free electrons. Key quantities are the electron density ne

and the electron plasma frequency

(2.11) ωp =

√

e2

ε0

ne
γ̄ me

,

which is the resonance frequency of collective electron density oscillations against the

ion background. With respect to laser frequency ωL, a plasma is called overdense (or

overcritical) when ωp > ωL. In this case, the collective electron motion is strong enough

to cancel the light propagation. When the electron density ne is below the so-called

critical density

(2.12) nc =
ωL

2ε0γ̄ me

e2

(for example, nc ≈ 1021 cm−3 for λ = 1µm), the plasma is underdense with ωp < ωL,

and light can propagate with phase and group velocities

(2.13) vp =
c

np
and vg = c np , with np =

√

1−
(

ωp
ωL

)2

,

where np is the refractive index of the plasma. For light intensity high enough to cross

into the relativistic regime, i.e. γ̄ ≥ 1, the plasma frequency gets smaller and the

critical density moves to larger values. That means that the plasma at the place of

the former critical density becomes transparent for the laser pulse and the pulse can
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�

(�c�)�profile�steepening:�vg =�c�np

(�b�)�relativistic�self-focussing:�vp =�c�/�np

(�a�)�laser�induced�transperency

Figure 2.3: Effects of relativistic non-linear optics: (a) Laser Induced Transparency:

High intensities producing γ À 1 reduce the plasma frequency ωp. The plasma becomes

transparent at its former plasma frequency. (b) Relativistic Self-focussing: A pulse with

a transverse intensity profile increases the refractive index of the plasma strongly along its

propagation axis, but not as much in the fringe region. The plasma acts as a positive lens.

(c) profile steepening: The central pulse regions with higher intensities move with larger

group velocity v = npc than the head of the pulse, the profile steepens.

propagate to the new critical density, where the same effect happens all over again

until the laser pulse looses too much energy and the intensity falls below the critical

value. This effect is called laser induced transparency (see Fig. 2.3 (a)).

At ultra-high intensities the electrons also gain mass due to their relativistic motion

[17, 18]:

(2.14) γ̄ ≈
√

1 + a0
2 / 2 ,

and they are pushed out of the region of high light intensities by the ponderomotive

force. In a plasma, this leads to an effective charge separation, since the ions remain
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initially stationary, and thus to the creation of a quasistatic radial space charge field.

These space charge fields reduce the electron acceleration compared to a free particle

in vacuum, where γ = 1 + a2
0/2, but as we will see below still huge energies are

achieved. Electron depletion on the laser axis may continue up to the point where

the created space charge distribution cancels the ponderomotive force. The electron

density reduction on axis can be self-consistently estimated [19]

(2.15)
∆ne
ne
≈
(

c

ωpw0

)2
a0

2

√

1 + a0
2/2

,

(with the Gaussian focus width w0), and can lead to a total depletion when the laser

amplitude a0 is sufficiently high.

Both of these effects again significantly decrease the plasma frequency ωp (2.11) on

the axis of laser propagation. From (2.13) it follows that the refractive index increases

with decreasing ωp. This leads to the build-up of a spatial refractive index profile

results with a maximum on axis, which acts analogous to a positive lens, focussing the

laser pulse (and thereby increasing its intensity even further). This effect is known as

relativistic self-focusing and is schematically shown in Fig. 2.3 (b).

Profile steepening is caused by the finite temporal extension of the pulse. The central

regions of the pulse with higher peak intensities move with larger group velocities as

seen in (2.13) and Fig. 2.3 (c). Thus they catch up with the pulse front where the

intensities and therefore the group velocity is lower and the pulse profile steepens.

2.2 Electron acceleration by laser - plasma interac-

tions

The effects described above can now in turn give rise to various modes of electron

acceleration, depending on the exact laser and plasma parameters. Very high electron

energies on the order of many tens and recently even hundreds of MeV have been real-

ized in strongly underdense plasmas using wakefield-acceleration [20] or in higher but

still underdense plasmas using Direct Laser Acceleration [21]. In dense and overdense

plasmas ponderomotive acceleration is the most important mechanism. The electrons

are not as well collimated and have lower (but still relativistic) energies but the num-

ber of accelerated electrons is about two to three orders of magnitude higher. Since

electrons are the mediator between the laser pulse and the ions that shall ultimately

be accelerated in this work, their acceleration plays a crucial role. The following para-

graphs give a brief overview over the different acceleration mechanisms, ordered by

increasing plasma densities and importance for the ion acceleration process.
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2.2.1 Laser-Wakefield-Acceleration

Laser-Wakefield acceleration (LWA) [22] works best in very underdense plasmas

of ne ∼ 1018 cm−3. In this mechanism an ultra-high intensity pulse creates a plasma

wave in its wake as it propagates through the medium. Due to its ponderomotive

potential it expells electrons creating a density disturbance. This plasma wave or

”wake” follows the pulse at almost the speed of light. Electrons can get trapped in

this wake and ”surf” the wave gaining very high energies. Recently 160 MeV electrons

were reported by Malka et al. [8] from laser interaction with an underdense plasma at

an intensity I < 1018W/cm2.

2.2.2 Direct Laser Acceleration

When the plasma density is increased on enters the regime of Direct Laser Accel-

eration (DLA) [23]. At densities ne ∼ 1020 cm−3 strong relativistic self-focussing

is a dominating effect and leads to the formation of a so-called ”superchannel” [21].

The ponderomotive force drives a strong electron current within the channel which

in turn induces a radial electric field and an azimuthal magnetic field. All the time

electrons which are ponderomotively expelled from the channel are bent back in by the

quasistatic fields. If the electrons have the right timing with respect to the phase of

the laser pulse they can gain net energy on each pass. Energies of several tens of MeV

can be achieved by this method but it still requires an underdense plasma of rather

large scale length (∼ 100 µm) to give enough room for the channel formation.

2.2.3 Ponderomotive acceleration in an ultra-strong laser field

The most important mechanism with respect to ion acceleration is ponderomotive

acceleration (PA). The ion experiments discussed in this thesis were all carried out

with solid state targets, which means that the main laser plasma interaction takes

place in a dense to overdense plasma, namely exactly at the critical density surface.

Under these conditions ponderomotive acceleration is the most effective mechanism

even when onsets of channel-formation and subsequent DLA or LWA in the underdense

preplasma might add a superhot tail to the electron spectrum. As an example the

following paragraph reviews the ponderomotive effects caused by a ultrahigh-intensity

laser -pulse of ∼ 1021 W/cm2[5 × 1019 W/cm2] which represents the highest possible

intensity today and in brackets [] a typical intensity for our experiments. The intensities

correspond to a local field strengths Elaser of

(2.16) Elaser =

√

2I

ε0c
≈ 1014 [2× 1013] V/m,
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in the focal region, with I being the intensity in W/m2. Using (2.5) we obtain for the

dimensionless light amplitude a value of a0 ∼ 30 [6.3]. The laser-plasma interaction

becomes relativistic at a value of a ∼ 1, so we have to consider the relativistic factor

γ:

(2.17) γ̄ =
1

√

1− 〈v2〉
c2

=

√

1 +
〈p2〉
(mc)2

=

√

1 +
a2

2
.

Substituting a0 yields γ ≈ 21 [4.5].

The electrons react on the ponderomotive potential and are pushed away from the

high-intensity region. Thereby the potential energy ΦPond is converted into kinetic

energy Wkin. The ponderomotive potential can be estimated as

(2.18) Φpond = Wkin = mec
2(γ̄ − 1) = mec

2

(
√

1 +
a2

0

2
− 1

)

≈ 10 MeV [2 MeV] .

Thereby charges are separated and space charge fields are generated, but the electron

depletion in the focus will continue until the ponderomotive potential is cancelled

by the space charges. The accelerated electrons show a quasi-maxwellian distribution

with a temperature kBT ∼= ΦPond. For a more detailed and rigorous treating of electron

behavior in laser fields see e.g. [24, 25].

2.3 Mechanisms for Laser-driven Ion Acceleration

The idea of ion acceleration with lasers has been around almost as long as the first laser

itself. Experiments started already in the early seventies and succeeded in ionizing and

accelerating ions to at first very moderate sub-keV energies. With the progressing laser

technology high energy pulse lasers became available delivering ns-pulses and reaching

ion energies in the 100keV/nucleon range ([26] and ref. therein). With the recent step

to sub-ps high-energy lasers intensities of more than 1021 W/cm2and MeV-ion energies

are possible. What mechanism is responsible for those vastly higher ion energies?

Traditional long-pulse laser system with pulse durations in the ns-range create a plasma

at quasi-equilibrium. It can react fast enough to adapt to the slowly varying laser

pulse shape. Plasma expansion, heat transport and the dissipation and equipartition

of energy play important roles in describing this situation. Ion acceleration is primarily

driven by the pressure gradient in the hot plasma and the surrounding vacuum which

causes an quasineutral, isothermal expansion described by a self-similar solution [27].

With short pulse lasers these effects can largely be neglected with respect to the ob-

served high energy ions. Heat transfer and dissipation, shock waves and plasma expan-

sion act on timescales much longer than the laser pulse duration and cannot explain the
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observed effects, especially since the key requirements for the long pulse acceleration

model, quasineutrality and isothermal conditions, are specifically not fullfilled as will

be shown below.

As was just demonstrated in the previous section modern short-pulse lasers create

enormous potentials, driving electrons to many MeV. But while the electrons experience

this huge ponderomotive potential, the ions because their larger inertia combined with

the short laser period (T ∼ 2π/ω ∼ 3fs ) are not directly moved by those fields.

Their ponderomotive potential is negligible due to their much higher mass. If we

replace me by the proton mass mp in eqs 2.5 and 2.18 we obtain a ponderomotive

potential Φpond ∼56 keV for a laser intensity of 1021 W/cm2. But the relativistic

effects always lead to ponderomotive electron expulsion, which will continue until the

space charge potential induced by the charge separation balances the ponderomotive

potential. The electron distribution remains quasi stationary for the duration of the

laser pulse. The ions now feel these space charge fields, whereas the counterbalancing

laser fields do not create a substantial ponderomotive potential for the ions, which

therefore will be accelerated in a quasistatic electric field as long as the laser fields

maintain the charge separation. The plasma is the key element of this acceleration

scenario. Whereas in vacuum laser-irradiated ions remain essentially at rest, the plasma

can store the laser energy and transfer it first to the electrons which than can hand

it on to the ions. The ions can thereby be accelerated to energies of the order of

the electron ponderomotive potential (2.18) and even above. The charge state and

energy distribution, directionality, emittance, etc. depend on the actual geometry and

parameters of the charge separation. Several different variations of this main theme

with different target and laser conditions have demonstrated to accelerate ions to high

energies and are briefly discussed below. Four different approaches have been reported

so far:

1. Ions in clusters are stripped to high charge states by intense laser radiation and

explode due to several mechanisms, e.g. [28, 29], leading to an isotropic ion

distribution.

2. In an underdense plasma, self-focusing and channel formation take place and

increase both the ponderomotive potential and the high-intensity interaction

length. Ions are ejected radially outwards from such a plasma channel in the

electron depletion space charge fields in kind of a radial Coulomb explosion, as

observed in several experiments [30, 31, 32].

3. When laser pulses are focused on solid surfaces, suprathermal ions are ejected

along the target normal, as observed in the 1980s already [26]. With today’s
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lasers, this effect is enhanced, leading to huge numbers of multi-MeV protons

and highly charged ions [33] with broad angular (typically 40◦) and Boltzmann-

like energy distributions.

4. Collimated high-energy proton beams in laser direction are observed when fo-

cussing ultrahigh-intensity laser pulses on thin foils targets (∼ 50 µm) at inten-

sities of > 1019 W/cm2 [9].

2.3.1 Ion acceleration in gas targets

Two different type of experiments have been reported which observe ion acceleration in

underdense plasmas: laser-cluster interactions and laser channeling experiments. Both

methods employ gas nozzles to generate the interaction target for the laser pulse.

Clusters: In cluster experiments the gas nozzle is set up in such a way that the

gas atoms (e.g. Deuterium) do not come out in a homogenous flow but form large

clusters of typically 102 − 105 atoms. When these clustered are irradiated by a high

intensity laser pulse, the atoms quasi instantaneously stripped to very high charge

states [34]. The coupling of laser energy into cluster electrons is extremely efficient

and leads to strong intra-cluster space charge fields which in turn ionize the cluster

atoms and subsequently lead to a Coulomb explosion. The ions are accelerated by this

explosion to energies up and beyond 1MeV [29]. Relatively modest intensities even

below 1016 W/cm2 are sufficient to cause this result which makes it possible to use a

large focal spot and thereby have a great number of clusters in the interaction region.

Several models have been developed to explain these findings (see review in [28]). The

nanoplasma model [35] predicts an optimum cluster size for a given pulse duration,

and experiments support this assumption [36, 28]. However it cannot explain all mea-

sured ion spectra and seems to be inadequate to model the cluster expansion after

heating. Ditmire et al. [37] found e.g. for a 2500 atom Xe cluster that its spectrum is

reproduced by the self-similar solution of the ion fluid equations for an isotropic, radial

expansion for a Xe plasma with a mean charge of 20+ and an electron temperature

of 2.5 keV, suggesting that the expansion is driven largely by hydrodynamic pressure.

The spatial ion distribution is mainly spherical isotropic since it consists of a great

number of point explosion centers. However a moderate anisotropy in the laser polar-

ization direction was reported in [28]. This spatial characteristic does not make this

mechanism attractive as an injector for accelerators or similar applications requiring a

directed beam. However by using Deuterium clusters the production of fusion neutrons

has been demonstrated and an application as neutron point source might seem feasible.
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Plasma channel: In an underdense plasma produced in a gas jet or by substantial

prepulses on solid targets, relativistic self-focusing and subsequent channel formation

take place [38, 21, 24]. This channel provides a larger high-intensity interaction length

and electrons can be accelerated by various plasma mechanisms like ”Self-modulated

Wake Field Acceleration” (SMWFA) or ”Direct Laser Acceleration” (DLA) which fur-

ther depletes the electron density in the channel and increases the quasistatic potential

set up by the ponderomotive pressure. This potential will finally cause the channel to

undergo a radial Coulomb explosion in which ions are ejected radially outwards from

the plasma channel. This radial ion ejection was observed in a couple of experiments

which agree well with theoretical predictions from PIC-codes, which estimate for a

1.5-TW pulse in a 30 µm scale length deuterium preplasma, ∼ 4× 1010 ion energies up

to 500 keV [30]. Sarkisov et al. [31] observed He-ions up to 500 keV with a 4-TW laser,

and Krushelnick et al. [32], using laser intensities of up to 5 × 1019W/cm2, measured

multi-MeV He-ions.

2.3.2 Ion acceleration from solid bulk targets

Ultra-high intensity laser interaction with solid target does almost never really happen.

Even for a good intensity contrast ratio of typically 107 a couple of nanoseconds before

the main pulse, the focussed prepulse intensity from a main pulse of 1019 W/cm2still ex-

ceeds 1012 W/cm2 When laser pulses are focused on solid surfaces, ions are accelerated

to suprathermal velocities in the blow-off plasma at the front side. This effect has been

observed with CO2 lasers in the 1980s already, with ion energies up to 2MeV/nucleon

[26]. Using modern ultrahigh-intensity lasers increases this effect drastically, and huge

numbers of multi-MeV protons and highly charged ions have been observed recently

[33], namely a few times 1011 protons per sr with energies above 4 MeV, which was

sufficient for demonstrating the production of various radioactive isotopes in secondary

p, n-reactions [20]. The protons and ions produced in this way have a broad angular

distribution (typically about 45◦) and their spectra exhibit rather complex substruc-

tures under a Boltzmann distribution [33]. Additionally ions are accelerated more or

less isotropic out of the focal region of the laser pulse where ponderomotive charge

separation occurs. Half of these ions stream off ahead of the blow-off plasma, while

the other half is accelerated into the bulk of the target where they are stopped. Those

ions have been measured using nuclear reactions like d(d,n)3He fusion [11].
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2.3.3 Ion acceleration from thin foil targets

The most promising way for creating well-collimated high-energy ion beams has been

found in the interaction with thin foil targets: When focussing ultrahigh-intensity laser

pulses on thin foils high energetic proton beams are observed which exhibit new features

[9, 39, 40]:

(i) 1011 - 1013 well collimated (≤15◦) protons with 5 to 60MeV are generated,

(ii) they come from the rear surface and move in laser direction,

(iii) they form a dense, charge-neutralized bunch of ∼1ps duration,

(iv) up to 12% of the laser energy was converted to protons with energies E > 10

MeV and up to 30% to energies > 2 MeV [9].

To explain these experimental observations, Hatchett introduced a mechanism called

target normal sheath acceleration (TNSA) in [41] which will be explained in detail

in the next paragraph. The TNSA-mechanism is the most widely accepted theory to

explain the observed high energetic proton acceleration from the backside of a thin foil.

It also forms the basis for understanding the ion acceleration observed in the scope of

this work.

Target Normal Sheath Acceleration: Target Normal Sheath Acceleration works

on the same principal as an ion diode: A cloud of relativistic electrons is expelled by

the enormous ponderomotive force of the laser penetrates the target and extends past

the rear surface, inducing an ultra-strong space charge field. This field is of the same

order of magnitude as the laser fields, i.e. TV/m. Atoms at this surface are ionized

and accelerated, but the energetic part of electrons will always leak further out into

vacuum and maintain the accelerating gradient as long as the electron temperature is

high. At a conversion efficiency of 30 - 40 % [9] and typical temperatures in the order

of 2 MeV as (see Sect. 2.2.3) the number of electrons created by a 30 J laser pulse is

roughly Ne ∼ 4×1013. Only the most energetic electrons can escape into the vacuum

before the rest is trapped by the resulting Coulomb potential. The electrons penetrate

the target with a wide angle of ∼ 45◦, as seen in bremsstrahlung data [41], exit the

target rear surface and are turned around. There is recent evidence from [42] and also

form this work [43], suggesting that the electrons are turned around again at the front

surface and start oscillating, but this is not within the scope of this basic model and is

discussed later (see Chapter 8). At a cone angle of 45◦the radius of the electron spot

at the target rear surface is approximately equal to the target thickness d ∼ 50 µm.
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Figure 2.4: Ion acceleration from thin foil targets.

At a pulse duration of τp ∼ 300 fs the electron density at the back of the target can

then be estimated to be

(2.19) ne ≈
Ne

cτpπd2
≈ 5× 1019cm−3.

The TNSA-model assumes the hot electrons to relax to Boltzmann equilibrium, i.e.

(2.20) Nhot
e ∼ exp

( −eΦ
kT hot

e

)

.

This electron population will set up a sheath at the target rear surface whose scale

length l0 will be given by the Debye length of the hot electrons λD. The Debye length

of a plasma is defined as the length needed to totally shield an internal electric field

[44]. We therefore obtain for the scalelength

(2.21) l0 ≡ λD =

√

ε0kBTe
e2ne

.

for the parameters used above this expressions evaluates to l0 ∼ 1.5 µm. This

combination of a high electron density and a relativistic temperature over an extremely

short scale length will establish a very strong ambipolar electric sheath field

(2.22) E ≈ kBT
hot
e

eλD
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Figure 2.5: Schematics of the TNSA-mechanism

Again substituting the values for our experimental conditions we can expect an accel-

erating Field E of roughly E = 1.5 TV/m. This field is by far larger than the field

created by the initially escaping electrons for which the scale length is of the order of

the target thickness.

The new feature making this mechanism possible is that the hot electrons are created

basically in a delta-function pulse with respect to the plasma expansion time and

that the electron ranges are high enough to penetrate the target. Furthermore this

mechanism works only at the rear surface. The electron cloud lasts only for a finite

and very brief time. The accelerating field scales with the plasma scale length which

at the front side is on the order of 100 microns due to the plasma creation by the foot

of the laser pulse (prepulse). Therefore while the potential is basically the same at

the front and rear surface the fields at the front are substantially lower. This would

not matter if the life time of the field was arbitrarily long and the ions had time to

fall through the whole potential. Due to the finite duration of the hot electron pulse

however the potential changes and decreases by cooling effects before the front side

protons are able to reach high energies [45].

Once created the field will ionize and accelerate the protons on the surface. The ions

start moving outwards while the cold electron population is pushed back into the target

at ion densities lower than the hot electron density as shown in Fig. 2.5. Further out

the hot electron density will fall with the ion density maintaining a local quasineutrality

that is also observed in PIC-code simulations (see Chapter 9). According to the TNSA-

model quasineutrality is maintained until the local hot electron Debye length becomes

greater than the local ion scale length. There, an electron sheath is retained whose

charge is balanced by a positive charge sheet which forms where the cold electrons have

been excluded. Between the sheath and the positive charge sheet a region of roughly

constant E-field persists for a few times the laser pulse duration.

Ion acceleration: The TNSA-model was developed to explain the observed high

proton energies and does not take into account other ions with multiple charge states.
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However this turns out to be important not only for the consideration of ion acceleration

but for the model as a whole. Because what happens as soon as multiple charge states

and masses are present, is that the ions with the highest charge-to-mass ratio will out-

accelerate the other ions and screen the accelerating fields for everything behind them.

This effect is strong enough to positively inhibit the acceleration of all other ion species

as soon as protons are present. To accelerate heavier ions it was therefore important

to find a way to experiment with a proton free target. As is discussed in Chapter 7

that can not be achieved by simply choosing the right target material but requires a

dedicated cleaning procedure. The same screening effects of course hold true for every

other ion population as well leading to a field that is much less quasistatic and constant

than assumed in TNSA. While it is still quasistatic with respect to the laser frequency

it nevertheless displays a highly dynamic behavior, with the region of highest field

strength moving outwards in vacuum during the course of the acceleration, as we are

able to show by our data analysis presented in Chapter 8. Furthermore the field at the

target surface never reaches the maximum field strength since it is pinned at a value

defined by the field ionization value of the first charge state. The field ramps up to

that first ionization value. When now an additional fast electron joins the population

setting up the field the threshold is crossed and an atom is ionized. The freed electron

is pushed into the target by field, leaving the positive ion charge to balance the new

electron that caused the ionization. At the surface where there is an infinite supply of

ions the field can therefore never substantially exceed that first ionization threshold.

However, as soon as one moves outwards this condition does not hold anymore and the

field increases. As our simulations show this increase happens on very small spatial

and temporal scales (nm and fs), i.e. very small compared to relevant scales for TNSA.

Therefore these effects can be neglected in first order and the TNSA-model is well

suited to predict the limits of the acceleration process, i.e. the parameters responsible

for the high energies of the particles with the highes charge-to-mass ratio .

Front-surface Mechanism: Another mechanism was proposed by Maksimchuk in

[46] and Krushelnick in [39, 47] to explain the acceleration of high energetic protons

and deuterons from thin foils. This mechanism assumes acceleration on the target

front side by the space charge fields generated when hot electrons disappear from the

dense plasma into the solid material. In this mechanism the ions are pushed through the

target, much as the relativistic electrons in TNSA. Measurements of the ring structures

in the proton beam are explained by proton deflection by magnetic fields inside the

target. While there is no doubt that indeed both a front and a rear surface mechanism

exists there is an ongoing discussion which of the two is responsible for the really high

energies beyond ∼ 10 MeV. Most experimental evidence suggests that it is the rear
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surface mechanism. It has e.g. been shown that the accelerated protons are influenced

by a structure on the rear surface but not by one very close behind it. Also simulations

[48] show that the ion population from the front shows much lower energies (< 5 MeV)

and are less collimated. The presented work shows by demonstrating ion acceleration

out of well defined source layers on the rear surface that an effective rear surface

mechanism exists that produces well collimated high energy ion beams.

2.3.4 Ion acceleration by long-pulse lasers

For completeness and better distinction the traditional laser ion acceleration mech-

anism is briefly summarized. For over 25 years now, energetic protons and heavier

ions have been generated by focusing ∼ns-pulses from large CO2 and Nd:glass lasers,

on solid targets at intensities of 1014 − 1016W/cm2. The accelerated ions showed a

very broad distribution in energy as well as a large emittance and could therefore not

be put to any further use. In those experiments one focusses a high-energy ns-pulse

on a target, e.g. a foil, bulk material or glass micro-balloon targets for fusion stud-

ies. Thereby a hot coronal plasma is created, which expands into the vacuum. The

expansion proceeds radially outward in an isothermal, self-similar fashion,

(2.23) nion∼exp (−r/cst)

with ions being fed into the expanding corona by a rarefaction wave propagating at

the sound speed, cs, into the bulk plasma. The ions are accelerated by the electric field

present in the quasi-neutral expanding plasma,

(2.24) E ∼ −kThot
e

∂nion
∂r

,

where r is the distance from the laser focus center. In these experiments ions, mostly

originating from the target front, moved against the laser direction and showed a very

large dispersion (∼90◦). Typical energies were ∼ 100 keV/nucleon for sub-kJ lasers

and up to 2MeV for protons from kJ-systems. Ion acceleration from the rear surface

in laser direction was a minor effect only. Begay et al. [5] reported ion acceleration

from the rear surface in laser direction from wire targets, but the signal vanished

almost completely when the contaminating hydrocarbons were removed. In another

experiment on the Asterix iodine laser at MPQ1 Tsakiris et al. [4] observed ions in

laser direction from thin foil targets but only for foil thicknesses beyond a few µm,

i.e. the foil is thin enough that the whole foil is heated at once and the expansion can

1Asterix was decomissioned at MPQ in 1996 and is currently set up again as PALS (Prague Asterix

Laser System) in Prague.
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proceed spherically in all directions. When using thicker foils on the other hand the

still cold bulk of the foil hinders the expansion in that directions and the ions are not

energetic enough to penetrate the foil.

The main difference to present experiments lies in the timescales. In ns-laser experi-

ments the acceleration occurs simultaneously with the laser-plasma interaction. Both

processes are necessarily coupled meaning that the stochastic and chaotic plasma be-

havior imprints itself on the ion signal. Using short-pulse lasers, it appears that ion

acceleration can be largely decoupled from the details of the laser-plasma interactions

at the front of the target over a broad range of conditions. Though of course at later

times a isothermal expansion occurs, the conditions at the ion front are not isothermal

and quasineutral and therefore the self-similar model (e.g. [49]) cannot be applied

to explain the high ion energies. The same is true for the charge state distribution.

In long-pulse laser interactions the atoms are ionized due to target heating, i.e. col-

lisionally, and the temperature is maintained over a long time, leading to an almost

complete ionization in the highest charge state (e.g. C6+). The measured charge state

distribution is than created by recombination processes and consequently all charge

states show the same cutoff energy, as can be seen in Fig. 2.6.
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Figure 2.6: Comparison of charge state distributions for laser accelerated ions from long-

pulse experiments (left) [3] and short-pulse experiments (right) [43]: In the long-pulse case

all carbon charge states have the same cutoff velocity, suggesting collisional ionization to

the highest charge state followed by recombination after the acceleration process. In the

short-pulse case the cutoff energy increases with charge state suggesting field ionization and

freezing of the charge state distribution by rapid expansion. The expansion velocity of the

ion front is a factor 5 faster than in the long pulse case.



Chapter 3

Ionization Mechanisms and

Recombination at the target

rear-surface

The topic of this work is the acceleration of ions by means of laser pulses. But the

laser is fired not at a plasma of ionized atoms but at a solid target, so an important

question in understanding the complete process is ”How are the ions created in the first

place?”. Which ionization mechanisms play a role and in how far is the time integrated

charge state distribution measured in the spectrometer representative for the charge

state distribution during the acceleration stage.

Therefore this chapter looks at the basic ionization and recombination processes which

might play a role at the experimental conditions present in our experiment. The

important ionization processes are ”Field Ionization by Barrier Suppression” (FIBS)

and ”Collisional Ionization” (CI) by the ambient electron populations. Another process

to bear in mind is recombination and charge exchange of ions on their way to the

spectrometer, to be able to judge in how far the measured charge state distributions

may have changed since their respective birth. The contributions of all three processes

are analyzed by analytical estimates as well as by using a numerical model, the FLY-

code.

3.1 Direct Ionization of rear surface atoms by the

Laser Pulse

One possible source of ionization is of course the laser pulse itself. The fields in the focal

region reach many times the strength necessary to ionize the target atoms. However,

27
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with regard to the ion signal the region of interest is the rear surface of the target,

while the laser is interacting with the front surface. By employing an interferometric

diagnostic described in Sect. 4.2.1, we can directly observe the laser interaction and the

plasma conditions on both sides of the target. The target’s thickness in the experiment

was chosen such that the laser pulse is completely absorbed in the preplasma and

prevents shock-breakout until well after the interaction time ( 10ns).

We can therefore rule out ionization by the laser pulse or by a shock front, which leaves

us with field ionization by the strong quasistatic fields and collisional ionization due to

the ambient electrons as possible ionization sources. These mechanisms are discussed

in the following paragraphs.

3.2 Field Ionization by Barrier Suppression by ultra-

strong Electric Fields

As was shown in Chapter 2, the electric fields in the laser focus are by far stronger

than the atomic field in a hydrogen atom. Furthermore, the fields on the backside of

the target predicted by the TNSA-model are of the same order of magnitude. The fact

that TV/m fields, capable of field ionization, are present has been shown in several

publications in the last years experimentally [50, 51, 52], with simulations [45, 48] and

analytical estimates [41, 53, 54]. Given the laser parameters, electron acceleration by

ponderemotive force as well as plasma acceleration mechanisms yield typical values

of kBTe ∼ 2MeV and ne ∼ 1019cm−3. The maximum amplitude of the resulting

electric fields can be easily estimated from that charge distribution e.g. by the TNSA

equation or in more detail by solving Poisson’s equation for different time steps as

in our 1D-kinetic model described in Chapter 8. The results from the 1D-PIC-code

presented in the same chapter even include electric fields within the target, especially

at interfaces. The duration of the maximal field at the rear surface is on the order of

the laser pulse length, i.e. as long as hot electrons are supplied. In order to describe

the ionization by a strong external field, a number of models has been developed in the

past. However, all these models assume fields of approximately the same strength as

the binding atomic field of the electron in question, while the fields in our experiments

are one to two orders of magnitude stronger. That means that the predictions made

by those models compose a very conservative estimation and a lower threshold, while

the real contributions of field ionization may be considerably higher.

Different models for field ionization exist, having their origin in the different possibilities

in describing the ionization in strong external fields. The most direct way to do this

lies in solving the time-dependent Schrödinger Equation numerically, as done by Bauer
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and described in [55]. This method as well as the ”Density-Functional Theory” [56, 57]

and the ”time-dependent Hartree-Fock theory” [58] require a large numerical effort.

A different approach was chosen by Keldysh [59], Faisal [60] and Reiss [61], who de-

scribe the amplitude of the transition probability of the original Coulomb-state in a

Volkov-state [62]. From this model as well as from the quantum mechanical model

from Ammosov, Delone, and Krainov (ADK-model) [63], and the classical model from

Posthumus [64], analytical rate equations can be obtained. In the following these rate

equations are used to get an estimation of the contribution of field ionization in our

experiments. Furthermore, the results are compared to the much more detailed nu-

merical solutions obtained by Bauer [55] and found to be in good agreement for our

parameters.

As an example the two models used by the codes presented in later chapters are de-

scribed in more detail. This is first the Barrier Suppression Ionization (BSI) model

which is used in our 1D-kinetic code and then the ADK-model which is used to get an

analytical estimate and also in the 1D-PIC code by Pfund and Kemp [65] which was

used to model different subsets of the interaction process (see Chapter 8).

3.2.1 FIBS-Model

Field Ionization by Barrier Suppression (FIBS) is the most simple model to be consid-

ered. The basic idea is that an external electric field deforms the Coulomb potential of

the atom as shown in Fig. 3.1. As soon as the external field exceeds a certain threshold,

defined by the binding energy of the electron, the barrier is lowered below the electron

state and this electron finds itself in the continuum and is thus instantly ionized. To

calculate the threshold value one starts considering the effective potential that acts on

the electron. In the case of a Coulomb potential it is of the form

(3.1) U(x, t) = − eZ

4πε0x
+ x E(t).

Here E is the time-dependent external electric field and the x-axis is lying in the

direction of that field. For the maximal field Emax at t = tmax, the maximum of the

potential is defined by

(3.2)
dU(x)

dx
=

eZ

4πε0x2
+ Emax = 0, =⇒ x = ±

√

eZ

4πε0Emax

.

Substituting the result of (3.2) in (3.1) we obtain

(3.3) U = 2

√

eZE

4πε0
,
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Figure 3.1: Field Ionization by Barrier Suppression: An external electric field disturbs and

suppresses the Coulomb barrier of an atom. An electron at the potential U1 is bound in the

unperturbed potential (green). The external field depresses the barrier by the amount ∆U so

that the electron suddenly finds itself at an energy higher than the new disturbed potential

(red).

With Uk as the binding energy of the k-th charge state we then obtain the threshold

condition for the external electric field as:

(3.4) Ek =
Uk

2ε0π

eZ
.

For the C4+ charge state for example, which has a binding energy of 64.5 eV the

threshold for the electric field is at ∼0.2 TV/m. Since the fields predicted by the

TNSA-model are of the order of 2 TV/m, i.e. one order of magnitude higher, one can

expect a very rapid field ionization of C4+.

3.2.2 Keldysh-Model

As explained above, Keldysh pertubatively calculated the transition rate from a bound

electron to a free electron oscillating in a laser field, which is called a nonpertubative

Volkov state. Using the Keldysh formula as given in [54] we obtain for the ionization
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rate

(3.5) WK = 4ωa

(

Uk

UH

)1/2
Ea

E
exp

[

−2

3

(

Uk

UH

)3/2
Ea

E

]

,

where E = 2TV/m (from (2.22)) is the ionizing field, Eat =
e

4πε0a2
b

= 0.51 TV/m is

the atomic electric field and UH and Uk are the ionization potentials of hydrogen and

the ionized electron, respectively. An important feature of the Keldysh theory is that

the ionization rate is determined more by the properties of the outgoing electron than

ba the details of the atomic structure [66]. The Keldysh theory does not include any

species dependence into the rate equation.

3.2.3 ADK-Model

A different treatment of the problem can already be found in the book by Landau [67].

There the ionization rate for a hydrogen atom in a static electric field E is deduced as

(3.6) WL = 4

(

Uk

UH

)5/2
Ea

E
exp

[

−2

3

(

Uk

UH

)3/2
Ea

E

]

.

This rate follows from the tunneling probability of the electron through the Coulomb-

barrier (reduced by the electric field). Ammosov, Delone, and Krainov extended this

theory for larger atoms with a higher number of charge states. The resulting field

ionization rate due to the ADK-model [63] is then given by:

WADK = C2
n∗l

(

3

π

E

Ea

(

UH

Uk

)3/2
)1/2

Uf(l,m)

×
(

2Ea

E

(

Uk

UH

)3/2
)2n∗−|m|−1

exp

(

−2

3

(

Uk

UH

)3/2
Ea

E

)

,(3.7)

with

(3.8) Cn∗l =

(

2e

n∗

)n∗
1

(2πn∗)1/2
, f(l,m) =

(2l + 1)(l + |m|)!
2|m||m|!(l − |m|)! ,

n∗ is an effective quantum number, l and m are angular and magnetic quantum numbers

and e in the coefficient Cn∗l is Euler’s number 2.71828... . The ADK-model does include

atomic structure via terms f(l,m) and Cn∗l. For a more detailed description of the

model see [63, 66]. Incorporating Krainov’s extension to incorporate FIBS [68] and

using the implementation of Penetrante and Bardsley [69], the ionization rate can be

written as:
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WADK ≈ 6.6 × 1016 Z2

n4.5
ef

(

10.87
Z3

n4
ef

(

Ea

E

)1/2
)2nef−1.5

× exp

[

− 2Z3

3n3
ef

(

Ea

E

)1/2
]

t ,(3.9)

where Z is the charge of the created ion, t is the time, and nef = Z/
√

Uk/UH .

3.3 Collisional Ionization

Theoritical Estimates on the Collisional Ionization Rates

By the laser plasma interaction on the front side, large amounts of hot electrons are

accelerated which penetrate through the target and reach the back surface. The hot

electrons exit the target rear surface and only the most energetic escape the target

completely, while the majority will be drawn back by space charge effects and hit the

target rear surface again. Recent experiments by Mackinnon et al. [42] even suggest

extensive oscillations in the target. Furthermore these electrons draw colder return

currents in the opposite direction. All these electrons can and will ionize atoms they

encounter, however mostly within the target. To analyze the ion spectra it is important

to know the contribution of collisional ionization to the back surface ions, since only

those are accelerated. The ionization within the target is a more complex problem

which is difficult to address experimentally but is part of the studies performed by

PIC-codes.

Electron-atom collisions can be divided into soft or distant collisions with a large impact

parameter and hard or close collisions with small impact parameter. The Mott theory

[70] accounts for hard collisions as between two electrons but not for soft collisions

[71]. As was shown by Bethe, soft collisions essentially take place by dipole interaction

between the incident electron and the target electron [72]. A combined model valid for

energies from ionization the ionization threshold to the keV range was developed by

Kim in [73] and extended to the high energy MeV-range by Tikhonchuk in [54]. This

model is used to estimate the amount of collisional ionization for the relevant range of

parameters.
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3.3.1 Collisional Ionization by the hot electron component:

Analytical Estimate

From the TNSA-model of Chapter 2 we know that we have to expect a hot electron

component with a temperature of ∼2 MeV at a density of ∼ 1019 cm−3. The cross sec-

tions for ionization by electron impact are well known. An estimate of the contribution

of this electron component to the overall ionization balance can be obtained from [54]:

(3.10) Wcol ≈ 4πa2
bnevet

U2
H

UkkBTe
ln

(

kBTe
Uk

)

.

where ab is the Bohr radius, ve is the electron velocity and Uk and UH are the ionization

potentials of the ionized species and hydrogen, respectively. The results are collected

in Sect. 3.5 where they are compared to the field ionization contributions as well as to

the numerical results calculated by the FLY-code.

3.3.2 Collisional Ionization by cold electrons in return cur-

rents : Analytical Estimate

The hot electron component drives return currents in the target in order to stay below

the Alfvén-limit. Measurements by Gremillet et al. [74] and simulations by Ruhl

[75] suggest temperatures on the order of tens of eV for those return currents. The

contribution to the ionization balance return current heating can easily be estimated.

The return current with a temperature kBT
ret
e ∼ 50eV , which must balance the hot

electron flow, i.e.

(3.11) nrete vrete ' nhote vhote ⇒ nrete ∼ nhote vhote

vrete

∼ nhote

√

T hot
e

T ret
e

.

While the ionization rates due to a 50 eV electron component at 100 times higher

density are clearly much higher than those due to the hot component, one has to take

into account the interaction times as well. The hot component can ionize the surface

atoms on the rear for as long as hot electrons are supplied from the laser interaction

region, i.e. for the duration of the laser pulse. The cold electrons however are pushed

into the target by the quasistatic electric field on the back surface as soon as it gains

some strength. When this field is strong enough to start ionizing carbon it is on the

order of several GV/m, which is still more than three orders of magnitude below its

maximum. While the cold electrons will be pushed back into the target, the surface

ions will be accelerated outwards. The resulting overlap time of a 50eV electron and a
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Figure 3.2: In the presence of a comparatively weak field of ∼ 109V/m, a cold electron

component is pushed back into the target, while C1+-ions on the surface are accelerated

outward. The mutual overlap time is less than 2 fs. The field is calculated by selfconsistently

solving Poisson’s equation using our 1D-kinetic code (Chapter 8).

C1+-ion both initially at rest in presence of this comparatively low field of ∼ 109V/m

is less than 2fs as can be seen in Fig. 3.2. A higher collisional ionization frequency

due to lower temperatures is therefore immediately compensated for by a decreasing

interaction time.

3.4 Numerical Model of Collisional Ionization and

Recombination Processes using the FLY-code

In addition to the simple analytical estimates the numerical FLY-code [76] can be used

to simulate collisional ionization and recombination with time-dependent electron den-

sity ne(t), and ion density ni(t), and an equally time-dependent electron temperature

Thot(t).

For a model case of a typically measured C4+-spectrum there is no significant transfer

to other charge states due to collisional ionization or recombination. The simulation

starts with solid state density at the target rear surface, ni in the adjacent half space
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Figure 3.3: Charge transfer due to electrons in a laser accelerated C4+-ion cloud from the

time it leaves the target till it reaches the Thomson parabola-spectrometer. The transfer

rates are calculated by the FLY-code. Electron and ion densities and temperatures are fully

time-dependent.

follows from velocity dispersion and angular divergence; ne is assumed to rise with the

laser pulse up to 2.5× 1019 cm−3 and fall again to q̄ni, where q̄ is the local average ion

charge, to finally assure quasi-neutrality of the plasma cloud. Thot is estimated from

the modelled acceleration fields via (2.22). The total recombination and collisional

ionization rates, integrated along the path to the detector are in the range of 1% and

0.1%, respectively, as can be seen in Fig. 3.3. For the hot electron component this

small level of collisional ionization is to be expected.

3.5 Efficiencies of Field Ionization and Collisional

Ionization in ultrahigh-intensity laser ion ac-

celeration

Having discussed the different possible mechanisms one can now evaluate each mecha-

nisms contribution to the observed charge state distribution. First one has to bear in

mind that the region of interest is the backside of the target foil, there is the origin of
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Figure 3.4: Ionizationrates for C1+in a strong external electric field according to the numer-

ical model of Mulser (cyan) and the analytical models by Keldysh (red), Posthumus (orange),

and ADK (blue). The horizontal lines show the ionization rates due to collisional ionization

by the hot (2 MeV) electron component (green) and the cold (50 eV) return current (yellow).

the observed ion signal.

Direct ionization by the laser can be ruled out as explained in Sect. 3.1. Models for

both collisional ionization and field ionization are explained above and Fig. 3.4 shows

the respective ionization rates for C1+in an external electric field due to the analytical

Keldysh, Posthumus and ADK models as well as for the numerical model developed

by Mulser and Bauer [55]. Also shown are the collisional rates due to a hot electron

population of ∼ 2 MeV as predicted by the TNSA-model with a density of 1019 cm−3

and the due to the return current necessary to compensate that current. The return

current is assumed to have a temperature of 50 eV and with (3.11) follows a density of

∼ 2× 1021 cm−3.

It is obvious, that no matter which of the field ionization models is used, at the relevant

electric field strength FIBS is by many orders of magnitude more effective than colli-

sional ionization by the electrons. One also has to remember that the field ionization

rates are just lower boundary estimates since the fields are still higher than normally

considered in most of the theories which account for example for effects as tunneling
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Table 3.1: Calculated field and ionization parameters for carbon. Q denotes the charge

state, Uk is the ionization potential of the kth ionic charge state and Ek is the corresponding

field strength (3.4). Emax
k is the maximal E-field, tmin

k is the minimal field duration and

lmin
k is the minimal acceleration length for given k. W are the ionization rates due to the

hot electrons (kBT hot
e ∼2MeV, nhote ∼2.5 × 1019 cm−3), the return current (kBT ret

e ∼50 eV,

nrete ∼2.5× 1021 cm−3) and the field ionization (Ef = 2TV/m).

Q Uk Wcol,hot Wcol,ret WADK

[eV ] /ps /ps /ps

1 11.16 2.53·10−2 2.13 5.93·104

2 24.38 1.1·10−2 0.68 2.65·105

3 47.89 5.29·10−3 0.21 1.46·106

4 64.5 3.28·10−3 0.11 4.62·106

5 392.09 5.29·10−4 – 8.5·10−5

6 490.00 4.14·10−4 – 7.03·10−9

through the Coulomb barrier. However at the field strength present the potential bar-

rier is lowered by such a large amount that the electrons are above the barrier anyway

and tunneling is not necessary. The numerical model of Bauer accounts for that and

as one can see at high field strength on the order of TV/m the respective curve (cyan)

lies again considerably higher than the analytical predictions.

While the curves shown in Fig. 3.4 are computed just for the C1+charge state, Tab. 3.1

lists the ionization rates for all carbon charge states due to field ionization (using the

ADK-model), collisional ionization by hot electrons and by the return current. The

calculations show that field ionization is orders of magnitude more effective than col-

lisional ionization with ionization frequencies of ∼ 106 ps−1. The collisional ionization

frequencies are more than six orders of magnitude lower, meaning that every ion which

experiences a field is more or less instantly ionized by it. For the C5+-case however the

collisional ionization frequency is about an order of magnitude higher than the field ion-

ization frequency. The number of collisionally ionized C5+is given by N5+ = ν5+
col τeNe,

with ν5+
col = 5.3 ∗ 10−4 ps−1, τe ∼ τlaser = 350 fs, and Ne = neV = neπr

2τeve, with

radius r ∼ 50 µm, ne ∼ 2× 1019 cm−3, ve ∼ c. This yields a N5+ ∼ 4× 109 and is in

good agreement with the measured number of ∼ 4.5× 109.

In the limit that only FIBS takes place, our model so far predicts sharp low-energy

cutoffs for each species. Note that this is qualitatively different from previous work

with long-pulse, isothermal expansion, for which ion spectra are continuous and rising

towards zero energy. In some shots such cutoffs are seen while for others the low-energy

cutoff is determined by detector properties. In the presented carbon measurement we
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observe a rolloff of the C4+and C5+charge states at low energies and for C5+we observe

a high-energy cutoff that seems not to scale with q. This does not fit into the basic

picture of TNSA but is reasonable due to a small degree of collisional ionization.

In conclusion the analytical as well as numerical models show that collisional ionization

is far less effective than field ionization. The collisional ionization frequencies are more

than six orders of magnitude lower (Wcol ∼ ps−1 10−3 − 100 ps−1), meaning that

every ion, once exposed to the space-charge field is quasi instantly ionized. For C5+or

other hydrogen-like charge states however, the collisional ionization frequency is about

an order of magnitude higher than the field ionization frequency. The C5+distribution

could thereby be created to a significant part by field ionization, though short spikes

and fluctuations in the field as seen in some PIC-simulations may also play a role.

Its decay is not completely understood yet and takes possibly much longer. The main

question for determining the dominant ionization mechanism therefore has to be which

possible mechanism is the most effective for the given conditions. To that purpose

in the first version of the paper we presented a FLY-simulation, showing that for a

population of C4+ions there is no significant transfer to other charge states due to

collisional ionization and recombination.



Chapter 4

Experimental Realization of

Laser-induced Ion Acceleration

The experiments this work is based upon were carried out at the 100-TW laser at

the Laboratoire pour l’Utilisation des Lasers Intenses (LULI). They were part of three

experimental campaigns of two weeks each in October 2000, May 2001, and August

2001. A forth campaign January 2002 as well as a two weeks beamtime at the Trident

facility at the Los Alamos National Laboratory did not include heavy ion experiments

but yielded some data on the ion origin as well as general beam characteristics. The

LULI 100 TW laser is a single-shot high energy glass laser and delivers pulses of Wp ∼
30 J with a pulse length τp ∼ 300 fs at a wavelength λp = 1.057 µm. These pulses

are focused at normal incidence on thin foil targets to an intensity of up to 5×1019

W/cm2. The contrast, i.e. the peak-to-pedestal intensity ratio, amounts to ∼ 107 at

1.5ns before the main pulse. This corresponds to an energy contrast of ∼ 10−4. The

complete laser system, and the exact experimental setup including the used diagnostics

and targets are described in the following paragraphs. The Trident shortpulse system

is of similar design, and all its working principles and basic setup are analogous to the

LULI system, therefore no extra section describing the Trident laser is included. The

main differences are a slightly longer pulse duration (∼ 600 fs) and slightly higher pulse

energy (up to 40 J) at Trident. Due to the fact that the pulse compression is done in

air the focussability of the pulse is limited to about three times the diffraction limit.

This combined with the longer pulse length leads to slightly lower intensities on target

of ∼ 1019 W/cm2.

39
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4.1 Ultra-high-intensity lasers for ion acceleration:

The LULI 100 TW Laser System

With advent of high-intensity lasers based on ”chirped pulse amplification” (CPA)[7]

a new class of lasers became available. These lasers deliver pulse energies of 1 to

1000 J in pulses between 30 and 500 fs, thus achieving intensities of well above 1019

W/cm2. Today two basic types of high-intensity lasers exist: The Ti:Sapphire type

lasers, like ATLAS at the MPQ, with typical pulse durations of tens of fs and pulse

energies in the 1-Joule range. These lasers have the advantage of high repetition rates

of usually 10 Hz. Ti:Sapphire lasers can today achieve powers of up to 100 TW (3 J

in 30 fs) which can be focussed to intensities of up to 1020 W/cm2. The second type

are huge Nd:Glass lasers, capable of delivering up to 1 kJ in pulses of typically half a

picosecond. The higher energy as well as the longer pulse duration are both due to the

amplifier material. Glass amplifiers can be build big enough to extract huge amounts

of energy but the reduced bandwidth in the gain curve limits the pulse duration of

pure Nd:glass systems to about half a picosecond. Furthermore, these systems are

single-shot lasers, with repetition rate usually not above 1 shot/hour. So far, the now

dismantled Livermore Petawatt-laser holds the record in power (as the name says 1

PW: 500 J in 500 fs) as well as in intensity (>1021 W/cm2), though systems of up to

5 kJ are currently under construction.

Though some experiments were performed on the MPQ’s Ti:Sapphire system ATLAS,

which is described in detail in [77] the bulk of the experiments were performed with

the 100-TW laser at the Laboratoire pour l’Utilisation des Lasers Intenses (LULI) [78]

which is described in the following paragraphs. The LULI 100 TW laser is a kind of a

hybrid laser of the two types discussed above, though leaning more towards the glass-

lasers. By using a Ti:Sapphire oscillator together with mixed-glass amplifiers, pulses

down to 300fs with energies of up to 30 J on target (100 TW) can be achieved. The

laser can theoretically be fired every 20 minutes though to obtain a good quality beam

a 40 minute interval is more realistic.

4.1.1 The Oscillator

The LULI 100-TW laser utilizes a commercial Ti:Sapphire oscillator with Kerr-lens

mode-locking [79, 80]. This oscillator delivers an 80 MHz train of pulses with a duration

∆τ =80 fs at λ=1057 nm. For Gaussian laser pulses the relation between the pulse

duration ∆τ and the spectral width ∆λ at FWHM is defined by

(4.1) ∆τ∆λ ≥ 2ln2

π

λ2

c
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Figure 4.1: The frontend of the LULI 100 TW laser produces 80fs laser pulses. First the

pulses are created in a Ti:Sapphire oscillator pumped by an Ar+-laser. These pulses are than

stretched to 700 ps by a grating stretcher and amplified in a Nd:YAG pumped Ti:Sapphire

regenerative amplifier to a level of ∼ 5 mJ.

[81], with λ being the central laser wavelength and c the vacuum speed of light. The

pulses are then stretched to up to 1.3ns in a 4-pass grating stretcher with a spectral

bandwidth ∆λ > 16 nm. A Pockels-cell extracts a single pulse which is amplified in a

regenerative amplifier (Ti:Sapphire, TEM00) pumped by a frequency-doubled Nd:YAG

laser. This regenerative amplifier delivers 10 mJ pulses at 10Hz repetition rate with a

bandwidth of ∆λ >9nm, i.e. ∆τ >180fs. The shot-to-shot energy fluctuation is about

±8%. The setup of the oscillator, stretcher and regenerative amplifier is depicted in

Fig.4.1.

4.1.2 The Mixed Glass Amplifiers

The pulses from the regenerative amplifier then pass through a chain of consecutive

glass amplifiers. As shown in Fig.4.2 the amplifier chain consists of 3 rod amplifiers

stages with increasing diameters (16, 25, 45mm) and the final 108mm disc amplifier.

Each rod amplifier stage consists of a rod of LHG-8 phosphate glass and one of LSG91-

H silicate glass in series to generate a broader gain curve (see Fig.4.3.

The 108mm phosphate glass disc amplifiers is custom made at the Rutherford Appleton

Laboratory in the UK and is operated in a double pass configuration. The 6 glass discs

sit at brewster angle and are pumped by an array of flashlamps. The complete amplifier
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Figure 4.2: The pulses from the front end are amplified in two 16, 25 and 45 mm diameter

glass amplifiers, respectively. The rods consist of different glass sorts to widen the gain curve.

The final amplification is done in a 108 mm disc amplifier. Between the single amplifier stages

are spatial filters (SF) to clean the beam profile.
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Figure 4.4: The beam profiles evolves gradually in a flat-top profile while passing the

different amplifier stages. This reduces the peak intensities on the compressor gratings.

chain has an accumulated B-integral of ∼1.5 and is able to deliver chirped pulses of up

to 150J. (The B-integral is defined as

(4.2) B =
2π

λ

∫

∆n(I)

n0

dl

and describes the nonlinear effects on the pulse due to the intensity dependent second

order of the refraction index). By taking advantage of the radial gain of the rod

amplifiers, it is possible to set up the amplifier in a way which causes the Gaussian

pulse profile at the beginning of the amplifier chain to gradually evolve into at flat-top

profile at the end of the chain as illustrated in Fig.4.4. This is of great advantage

for the following compressor stage, since the total energy in a pulse is limited by the

damage threshold of the gratings, which in turn depends on the peak intensity on any

one given point of the beam profile. Thus it is clear, that with a flat-top pulse with

the same peak intensity a significantly higher total energy can be transported over the

gratings than with a Gaussian shaped pulse.

The whole laser system is set up on several tables in two rooms. Fig. 4.5 shows the

actual setup of the frontend, the rod amplifiers and the disc amplifier. The space in the

laboratory is very confined, therefore the disc amplifier had to be installed in a second

plane above the rest of the setup. The compressor chamber and the target chamber are

installed in a separate room to ensure a disturbance free laser operation and a reduced

laser hazard in the experimental area.



44 CHAPTER 4. THE EXPERIMENT

Figure 4.5: Photographs of the LULI laser system: top left: front end, top right: rod

amplifier and beam diagnostics, bottom left: disc amplifier, bottom right: compressor and

target chamber.

4.1.3 The Pulse Compressor

After passing through the glass-amplifier chain the pulse is split into two. One part

(containing typically∼60 J) stays long and can for example be used for plasma creation.

The second part with typically ∼40 J is sent through a grating compressor to reduce

the pulse duration to ∼300 fs. The compressor and the attached interaction chamber

form a connected vacuum system with an operating pressure of ∼ 10−5 mbar.

As illustrated in Fig.4.6, the compressor consists of two gold-coated diffraction gratings

of 42 × 21 cm. The pulse makes a double pass in the compressor and the maximum

pulse energy is limited by the fluence at the second pass on G1, when the pulse is

already short. Holographic gold-gratings have a damage threshold of ∼0.35 J/cm2 for

a pulse of ∼200 fs [77], limiting the maximum pulse energy to 30-40 J. With an overall

compression system efficiency measured to be ∼ 70% this yields about 20-30 J on

target. This is only a small part of the energy delivered by the amplifiers. Currently

developed dielectric gratings promise higher damage thresholds, resulting in higher

throughput energies for the compressor system once they become available.
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Figure 4.6: LULI double-pass compressor with holographic gold gratings

4.1.4 The Target Chamber

After entering the compressor all pulse transport is done in vacuum to prevent beam

breakup. The pressure inside the pumped-down target chamber is typically of the

order of ∼ 10−5 mbar. Due to the short pulse duration and the resulting high inten-

sities nonlinear effects like small-scale self-focussing can cause serious distortions to

the wavefront and thus prevent a good focussing when the beam is transported in air.

Therefore the interaction chamber is attached to the compressor chamber as can be

seen in Fig.4.7 and forms a closed vacuum system.

The target chamber itself is of roughly spherical shape with a diameter of 1.2 m. Various

ports allow to connect different detectors and diagnostics for beam characterization

and of course the experiment. The photograph in Fig. 4.7 shows to Thomson parabola

spectrometers in the foreground and the transport setup for a probe/heater pulse on

the right.

4.1.5 Laser Diagnostics

The beam is transported by dielectric mirrors and focussed by an off-axis parabola

down to intensities of ∼ 5 · 1019 W/cm2. The critical alignments of the system, such

as pulse compression and focussing are done with an injected 10 Hz-beam from the

regenerative amplifier. The focal spot is measured by a far field camera system which

shows it to be roughly 2 times diffraction limited. A typical focus measurement is
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Figure 4.7: The LULI targetchamber has 1.2 m diameter. In the foreground the two Thom-

son parabolas can be seen which are attached to the chamber via valves to have independent

access without breaking the vacuum. In the upper left corner a part of the compressor

chamber can be seen.

shown in Fig. 4.8. For the pulse duration measurement a single-shot autocorrelator is

used which showed typical pulse durations between 300 and 350fs.

4.2 Experimental Setup and Diagnostics

As targets mostly thin metal foils were used with thicknesses ranging from 5 to 200

µm. The foils were mounted free standing on washers as shown in Fig. 4.9 to provide

access for the laser pulse, the different spectrometers and other particle diagnostics

and the simultaneous target interferometry, as illustrated by the green laser beam in

Fig. 4.9. At ∼5 cm distance behind the target a stack of Radiochromic film (RCF) was

mounted to catch an imprint of the proton signal. Usually the stack was fitted with

a slit to provide free line of sight for the spectrometers. One special targetmount had

the option of resistively heating the targets by running a ∼10 A current through it.

While the non-heated targets were simply glued to the washers this what not possible

for heated targets. In order to maintain contact and stay in place also at temperatures
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Figure 4.8: Typical focal spot for a LULI laser shot with an energy of ∼15 J. The plot

shows the intensity over the spatial extension of the focus.

∼1000 ◦C, these targets were clamped down on an insulating mount. Attached to this

mount were the wires carrying the heating current.

The setup for most experiments is depicted in Fig. 4.10. The main interaction beam

(red) is focussed by an off-axis parabola, hitting the target under an angle of 0◦ with

respect to the target normal. Perpendicular a frequency doubled probe beam (green)

was used to obtain an interferometric image of the plasma conditions at the target

surfaces.

The accelerated particles were investigated by four complementary diagnostics:

(a) a stack of radiochromic films (RCF) 5cm behind the target to record the angular

distribution of the emitted proton beam [41, 33];

(b) two combined magnetic proton/electron spectrometer [82] with a Kodak DEF

X-ray film to measure the proton energy spectra;

(c) a cluster of neutron detectors to measure the neutrons produced by second order
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Figure 4.9: The target is mounted with free access from the front, rear and the sides. The

laser is impinging on the front the ions are accelerated from the rear in laser direction where

most of them hit the stack of RCF. Some pass through the slit to the spectrometers. Attached

to the targets are the current-carrying wires for resistive heating.

(p,n), (γ,n) and fusion reactions [11], these detectors are not shown in Fig. 4.10;

(d) the main diagnostic for the ion experiments (see Chap.5): two Thomson parabola

spectrometers (B = 0.65T, E = 1.3MV/m, solid angle ∼ 5 · 10−8 sr) with CR-39

track detectors to obtain the ion energy spectra.

The Thomson parabolas as well as the proton spectrometers are attached to the outside

of the target chamber at at -6.5◦, 0◦, or 13◦ to the target normal at a distance of

about 1m as is shown on the photograph in Fig. 4.7. Three spectrometers could be

used simultaneously. While the proton spectrometers use standard X-ray film as a

detector, this is not possible for the detection of heavier particles which would be

stopped in the protective layer. The Thomson parabolas work instead with a Solid

State Nuclear Track Detector (SSNTD) called ”CR-39”. CR-39 is sensitive to single

ion events but insensitive to electromagnetic radiation and electrons. An ion striking a

CR-39 plate destroys the polymer matrix along its path and causes nm-scale damage

sites. These damage trails are transformed into cone- or bowl-shaped craters when
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Figure 4.10: Experimental Setup: the target is mounted free standing and can be resistively

heated via the two wires, the main laser pulse (red) is focussed optics by an off-axis parabola.

The interferometry beam (green) is expanded after the target to obtain a magnified image.

Behind the target is the RCF-stack diagnostics and two Thomson parabola-spectrometers

with CR-39 detector plates.

the CR-39 is etched in NaOH solution. Each individual track is analyzed by optical

microscopy with custom pattern recognition software [83] yielding position and track

size parameters. The absolute energy spectra for each ion species are then obtained

from the distribution of pits along the distinct traces. Only this ”single-track counting

method” yields correct results for the areal ion density. Optically scanning an etched

CR-39 plate as often done may lead to erroneous results because the optical density

is not simply proportional to the number of pits. While the next sections describe

the general diagnostics (a) - (c) as well as the target interferometry, the main ion

diagnostics, i.e. the Thomson parabolas, the CR-39 detectors and the automated track

counting system is discussed in Chapter 5.

4.2.1 Interferometry

The free standing target was probed by a frequency doubled laser beam parallel to

the surface to determine the plasma conditions on the front and rear surface. The
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interferometric setup yielded information on plasma formation on the target surfaces.

The interferometric setup makes it in principal possible to obtain the exact electron

densities. This data is however not part of this work and will be published elsewhere.

The important aspect for the acceleration of fast ions is to have unperturbed target

rear surface at the time of the interaction. The timing of the probe beam could be

varied by a delay line to adjust the prepulse in a way to give a large enough preplasma

for effective electron acceleration but to be close enough to the main pulse so that the

prepulse-launched shock wave does not destroy the back surface.

4.2.2 Neutron Detectors

In addition to the ion and laser beam detectors, a silver activation neutron detector

[84] was placed close to the target chamber determining the neutron yield for the

different experiments. The silver is activated by neutron capture and β-decay with

a half life of 28 seconds, which is detected in a scintillator and recorded by a photo

multiplier tube (PMT). This detector measures the neutron emission caused by (γ,n)

and (p,n) reactions from the target. On typical shots, the neutrons are generated by

(γ,n) reactions within the target (caused by the bremsstrahlungs photons from the

relativistic electrons) and by (p,n) reactions of our proton beam impacting on the RCF

screen. We also used a target of deuterized plastic (CD2), which was laser-heated to

produce a beam of deuterons. Placing a CD2 catcher behind the target we observed

the yield of neutrons from (d,d) fusion reactions. We detected a total yield of 2.8×107

neutrons in this experiment, which was at least an order of magnitude above the yield

on average shots. The details of this experiment which also used time-of-flight neutron

detectors to measure a neutron spectrum can be found in [11].

4.2.3 Radiochromic Film and CR-39 stacks

As is shown in Fig. 4.9, a stack of radiochromic film (RCF) was mounted ∼ 5 cm behind

the target to record the angular distribution and spatial beam profile of the emitted

proton beam [40]. Due to ion Bragg-peak, i.e. the pronounced energy loss of ions at the

end of their range, different layers of the RC film pack allow the imaging of the proton

beam at different energies. The RCF changes through polymerization of a diacetylene

active layer, from transparent to dark blue in proportion to the absorbed dose (in

rads) of ionizing radiation (1 rad = 100 erg/g). The response of the RC film package

was modelled with the SRIM Monte Carlo ion transport code, and obtained response

functions for the layers of RCF similar to the ones presented in [32]. Furthermore the

RCF was specially calibrated for protons at a proton accelerator facility. The resulting
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Figure 4.11: Calibration curve for proton energy deposition in RCF (courtesy of A. Blaze-

vic).

calibration curve is given in Fig. 4.11.

4.2.4 Proton and Electron Spectrometer

The two magnetic spectrometers were mounted at a distance of about 1 m from the

target covering a solid angle of ∼ 5 × 10−6 sr. The spectrometer design allows to si-

multaneously record a proton spectrum as well as an electron and a positron spectrum.

The layout of the spectrometers is shown in Fig. 4.12 and a detailed description of its

properties can be found in [82]. Electrons and protons were recorded in nuclear emul-

sion track detectors which allow single particle detection without being overwhelmed

by the blinding X-ray flash from the laser plasma. The use of an additional X-ray film

layer extended the dynamic range to higher particle fluxes. A protective light tight

paper in front of the emulsion and X-ray film stopped protons below ∼2 MeV.

The upper energy limit for protons is around 100 MeV. The instrumental energy range

for electrons is between 0.2 and 140 MeV and for positrons between 0.2 and 40 MeV.

The spectrometers were supplied by our coworkers from General Atomics and the

detailed data obtained by them will be presented in [10].
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Figure 4.12: Magnetic spectrometers to record proton electron and positron spectra.

4.3 Thin Foil Targets for Ion acceleration: material

choice and properties

A wide range of different target materials was tried within the experimental campaign,

including insulators as well as conductors. The typical targets for proton production

were Au- and Al-foils, sometimes with additional CH layers on the back to boost the

proton yield. The thickness ranged from 5 to 200 µm, with ∼10 µm targets giving

the highest yields and energies. For dedicated ion experiments Al-foils with a 1 µm

carbon coating were used in the beginning. Due to the low melting point of aluminum

the substrate was later changed to tungsten. The coating was changed from carbon,

which has to much hydrogen embedded in its matrix, to CaF2 or UF4. 10 to 50 µm

thick targets were used, with coatings in the 100 nm range.



Chapter 5

Diagnostics for laser-accelerated

heavy Ions

After high-energy protons had been measured in a number of experiments [41, 39, 52],

the next logical step was to search for heavier elements, which might also be accelerated

by the same mechanism. Since a basic magnetic spectrometer like the one used to detect

the protons is not able to distinguish different ion species and charge states a new

detector had to be deployed. Two Thomson parabola spectrometers were designed,

the parameters like electric and magnetic fields, but also outer dimensions, vacuum

capability, etc. were chosen to match the expected experimental conditions. These

detectors consists of two parts: (i) the real spectrometer, which uses parallel electric

and magnetic fields to separate the entering ions by charge-to-mass ratio and energy

and (ii) a CR-39 detector plate normal to the flight path to record the impinging ions.

The following sections give an overview over those detectors.

5.1 Design of the Thomson parabola spectrometer

A Thomson parabola -spectrometer is an established detector, invented 1912 by Joseph

John Thomson, the discoverer the electron, to investigate ”Kanalrays” or positive rays.

It basically consists of parallel electric and magnetic fields which are arranged with

there field lines perpendicular to the flight path of the particles to be measured. If now

a charged particle passes through the fields it is deflected parallel to the electric and

perpendicular to the magnetic field. Using this arrangement, Thomson first identified

the isotope 22Ne. For an ideal Thomson parabola , neglecting any fringe fields the

amount of the deflection is given by

(5.1) x ' qElD

mv2
=

qElD

2Ekin

53
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Figure 5.1: eft: Thomsonparabola spectrometer and right: etched CR-39 detector, showing

H+and C1+– C4+parabolic ion traces.

and

(5.2) y ' qBlD

mv
=

qBlD√
2mEkin

,

where E,B are the electric and magnetic fields, l is the length of those fields, D the

distance from the middle of the fields to the detector plane and m, q, v, and Ekin

the particles mass, charge, velocity and kinetic energy. Combining (5.1) and (5.2) now

yields

(5.3) y =
mE

qlDB2
x2 =

q

m

E

lDB2
x2 ,

a parabolic equation with the charge-to-mass ratio as a parameter. From (5.3) it is

easy to see that particles with the same charge-to-mass ratio but different energies

are deflected on a parabolic trace in the detector plane, while particles with different

charge-to-mass ratio lie on different parabolas, as can be seen in Fig. 5.1.

The Thomson parabolas used in our experiments were housed in their own vacuum

casing which was attached to the targetchamber with a valve to allow separate pumping.

This was important to be able to change the CR-39 detector in the Thomson parabola

between two shots without having to open the whole targetchamber. The fields were



5.1. THE THOMSON PARABOLA SPECTROMETER 55

0.00 20.00 40.00 60.00 80.00

0

10

20

30

40

�

�

�H+

�C1+

�C2+

�C3+

�C4+

�C5+

E
-D

ef
le

ct
io

n�
[m

m
]

B-Deflection�[mm]

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

�

�

Data:�C4_F
Model:�TPenergy�
��
Chi^2/DoF =�125899714.0032
R^2 =��1
��
P1 0 ±0
P2 21938.65885 ±26.74333
P3 1972.07223 ±0.19311

E
ne

rg
y�

[�M
eV

�]

B-displacement�[�mm�]

Electrodes

Yoke Magnets

Yoke

Electrode
Magnet

Iontrajectories

Iontrajectories

Figure 5.2: Thomson parabola calibration: top left and bottom right: a 3D computer model

was needed to treat the fringe fields correctly. Top right: the simulated traces are overlayed

with the measured data to identify the charge states. Bottom left: from the simulation an

energy dispersion relation for the Thomson parabola can be obtained.

supplied by permanent magnets and copper electrodes, respectively. he magnetic fields

have a strength of ∼ 0.65 T, the high voltage fields can be continually adjusted up to

16 kV for one of the Thomson parabolas and up to 30 kV for the other, yielding electric

fields of up to 1.3 MV/m. These fields cause a dispersion strong enough to separate

charge-to-mass ratio -differences < 0.1 at MeV/nucleon energies by more than 500µm.

The Thomson parabolas can be fitted with pinholes of varying size to adjust for target

distance and ion yield. A typical pinhole size is 300 µm, resulting in a solid angle for

the spectrometer of ∼ 5 · 10−8 sr.

Due to the compact design and the very strong magnets and high voltages the Thomson

parabolas cannot be described by (5.3) with sufficient accuracy. Strong fringe fields,

a design-based geometric shift between the electric and magnetic fields and a variable

entrance point for the ions lead to an additional linear term in the equation. In order to

obtain a exact calibration it is necessary to do a full 3D tracing routine for ions crossing

the deflecting fields. This was done using the ion optics code SimIon 1. Fig. 5.2 shows

cutaway views of the 3D-Thomson parabola simulation with computed ion traces for

Hydrogen and Carbon. The simulated traces where then overlayed with the measured

1Idaho National Engineering and Environmental Laboratory, Bechtel 1999
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data in order to identify the correct species and charge-to-mass ratio (Fig. 5.2 top right).

To obtain a dispersion relation the simulated data was then fitted with a second order

polynomial:

(5.4) Ekin = P1 +
P2

x
+

P3

x2

A typical fit for a C4+trace is shown in the bottom left picture of Fig. 5.2. Using this

dispersion relation the energy of for each point on a specific ion track can be obtained.

CR-39 is sensitive to single ion events but very insensitive to electromagnetic radiation

and electrons. An ion striking a CR-39 plate destroys the polymer matrix along its path

and causes nm-scale damage sites. These are transformed into cone- or bowl-shaped

craters when the CR-39 is etched in NaOH solution. Each individual track is analyzed

by optical microscopy with custom pattern recognition software [83] yielding position

and track size parameters. The absolute energy spectra for each ion species are then

obtained from the distribution of pits along the distinct traces. Only this ”single-track

counting method” yields correct results for the areal ion density. Optically scanning

an etched CR-39 plate may lead to erroneous results because the optical density is not

simply proportional to the number of pits.

5.2 Solid State Nuclear Track Detectors

CR-39 characteristics and functional principle

To record the ion traces Solid State Nuclear Track Detectors (SSNTD) were used.

(SSNTD) are used for more than 40 years to detect ionizing particles in a wide range of

experiments and applications, including dosimetry, medicine and biology, space physics,

nuclear physics, fusion physics, and recently also in the new field of ultrahigh-intensity

laser -plasma physics2. SSNTDs can be made of various materials, as e.g. crystals like

LiF, or different sorts of plastic. They are robust and easy to handle and sensitive

to single particle interaction. The track forming mechanism only works for heavily

ionizing particles which makes SSNTDs insensitive for light, X-rays and even electrons.

In the scope of ultrahigh-intensity laser experiments where one wants to detect ions

within a strong background of virtually every other radiation possible this comprises a

significant advantage over nuclear emulsions or films. The material used in the scope of

this work, ”TASTRAK CR-39” is a plastic solid state nuclear track detector, produced

by TASL3 in Bristol, UK.

2For an extensive review on the applications of SSNTDs see [85].
3Track Analysis Systems Limited, H H Wills Physics Laboratory, Bristol. ”CR” in CR-39 stands

for ”Columbia Resin”.
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5.2.1 Working principle of SSNTDs: Track formation mecha-

nism

The working principle of a plastic SSNTD is fairly straight forward: a particle passing

through the detector looses energy along its path which is transferred to the surrounding

medium. If the differential energy loss of the particle is high enough and exceeds a

material dependent threshold, molecules are excited or ionized and the polymer chains

of the material break. The fact that a material dependent threshold has to be overcome

to break the polymer chains is the reason that CR-39 is fairly insensitive for UV, X-

ray, γ- or even electron radiation unless exposed to very high doses over a longer time.

Heavy particles on the other hand leave a trail of damage in the material which can be

detected and which contains information about the particle that caused it. Since the

size of a damage track is on the order of ∼3-10µm, detecting it is simple. Though there

is recent work of direct track detection by atomic force microscopy [86], usual method

is to enlarge the tracks by the use of a chemical reagent (etchant). These etchants (e.g.

NaOH) dissolve the damaged regions at a higher rate than the bulk of the material

thus first gouging out the damage trail and then enlarging it in all directions [87] until

it becomes visible under an optical microscope.

Since the etch rate along a track depends on the differential energy loss of the parti-

cle let us know briefly consider the damage causing mechanism in a bit more detail:

A charged particle passing through matter can loose energy due to radiation losses

(Bremsstrahlung, Cerenkov-radiation), through electromagnetic interaction and by in-

ternuclear scattering. For ions in the MeV-range the electromagnetic interaction is the

dominating energy loss mechanism and is described by the Bethe-Bloch-Formula [72]:

(5.5) −dW

d
x = 4πα2 (~c)2

mec2
ne

Z∗2

β2

[

ln

(

2mec
2β2

(1− β2)I

)

− β2 − δ

2

]

.

Here, α is the fine-structure constant, me the electron mass, ne the electron density

within the material, c the velocity of light and the usual relativistic β = v/c. The

velocity of the impacting particle is denoted by v and its initial charge state by Z,

Z∗ = Z(1 − exp(−130β/Z2/3)) [85] being the effective charge state at a specific time

caused by the interaction with the target material. I ≈ 16Z0.9
M eV describes an average

ionization potential of the target material and δ/2 is a correction for density effects

to the standard Bethe-Bloch-Formula described e.g. in [88]. The differential energy

loss of the particle thus depends on its kinetic energy and its range R in the detector
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Figure 5.3: Energy loss dE/dx for alpha-particles in CR-39. The highest energy loss occurs

at the end of the range at low energies, shortly before the particle is stopped.

material is determined by:

(5.6) R =

0
∫

Wmax

dx =

0
∫

Wmax

1

dW/dx
dW.

Due to the energy losses by electromagnetic interaction target electrons can be excited

to higher energy level which can break the polymer chains. The electrons can also

be totally ejected (δ-electrons) and cause further excitation and ionization (secondary

electrons) which can also break the polymer chains. As can be seen in Fig.5.3, the

highest energy loss occurs at low energies at the Bragg-peak, i.e. at the end of the

particle range. In the next section, where the etching behavior is discussed, it will

become clear that this means that particles stopping in the material will leave the

most visible tracks and that it is possible to infer information on particle species and

energy from the observed tracks. To determine if a given energy loss is sufficient to

create an etchable track, several different criteria exist. The most obvious one is a

threshold behavior in the total electromagnetic energy loss dW/dx: if dW/dx exceeds

a material dependent threshold the particle leaves an etchable track. Unfortunately

this is not confirmed by experiments which show that the threshold depends on the

atomic number Z of the ion [85]. The criteria used in the scope of this work is the

Restricted Energy Loss (REL), which is the part of the energy loss which produces

δ-electrons below a maximum energy W0. Electrons with energies above W0 deposit

their energy too far away from the ion path to contribute to the track formation. With

a correct (material dependent) choice of W0 a Z-independent threshold for etchable

tracks can be found [89]. A more extensive discussion of track formation criteria can

be found e.g. in [87].
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5.2.2 Track Etching

The most common method to render the individual tracks visible is chemical etching.

The etching process in the track region proceeds with the velocity vt which is larger

than the bulk etch velocity vB in the undamaged material. This means that along the

ion path a narrow channel is etched until the stopping point is reached. Within the

channel the etching process continues with vB, so that pits or craters are formed. The

exact form of these pits depends on the etching conditions and on the track etch rate

vt which in turn is a function of the energy loss. For ions with normal incidents a

cone shaped crater with a circular opening and radius r forms, which becomes elliptic

with increasing angles of incidents. The opening angle β of the cone depends on the

ion range, i.e. the energy. The process is schematically depicted in Fig. 5.4. The

new surface after etching the detector for a time te can be obtained by drawing a

semicircle with radius vBte from every point of the original surface. The new surface

is than determined by the envelope of these semicircles. Along the track the etch rate

is vT > vB. While the track is etched the length l = vT te, the surface is only etched by

the distance h = vBte. At each point along the track a circle with radius rT = vB(te−t)

can be drawn leading to the conical shape shown in Fig. 5.4 (a), if R ≥ L is fulfilled,

with R being the ion’s range. If the etching is continued beyond the stopping point the

cone will develop a rounded end section and finally assume an increasingly flat bowl

shape as illustrated in Fig. 5.4 (b). The dimensions of the track opening can be easily

calculated. The opening angle β is given by:

(5.7) sin(β) =
vBte
L

=
vBte
vT te

=
vB
vT

.

Also

(5.8) tan(β) =
r

Le

(5.7)
=

vB
√

v2
T − v2

B

,

so that for the observed track radius follows:

(5.9) r =
vBLe

L
=

vBte
√

v2
T − v2

B

= vBt

√

vT − vB
vT + vB

.

Furthermore, for oblique tracks the angle of incidents can be determined by measuring

the ellipticity. That means that by measuring the bulk etch rate vB and the track radius

r it is possible to determine the track etch rate vt, from which in turn the energy loss

and in the end the track causing particle can be inferred.

In the experiments presented in this work six-molar NaOH at 80◦C was used as an

etchant. Etching times were usually ∼ 40 minutes for ion analysis and multiples of this

to specifically etch for protons. To achieve reliable results it is important to hold the
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Figure 5.4: Iontracks in CR-39: (a) schematic diagram of track formation. h: thickness of

removed surface, L: lenght of the etched track at time t, vB: bulk etch velocity, vT : track

etch velocity. (b) development of the track during the etch process. First a cone is etched up

until the end of the ion range is reached. Further etching produces a sphere at the end of the

cone that gets bigger and finally develops into a bowl shape. (c) different track shapes show

different appearances depending on how they reflect the light. (d) microscope image showing

exemplary tracks.

temperature and the concentration constant during the etching process and also for

different etching runs in order to compare different sets of CR-39 plates. To achieve

this the etching apparatus is equipped with a temperature stabilization (+/- 0.1◦), the

etchant is circulated and the CR-39 plates are constantly moved during the etching

process to inhibit the build up of concentration gradients and to remove the etched

material from the surface.
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5.3 Analysis of the CR-39 plates using the Siegen

Automated Scanning Microscope with pattern

recognition system

Analyzing an etched CR-39 plate is usually done by optical means. Normally the

individual tracks are counted under a microscope, either by hand or by an automated

system. Especially in laser-ion experiments, the track density is usually high enough

to cause a change in the mean optical density of the plate. Several groups tried to

analyze CR-39 plates by using the optical density as obtained e.g. by a scanner, as a

measure for the particle density. As it is shown below there are serious problems with

this method, since the optical density is not only dependent on the number of particles

but also on the track geometry. This in turn depends on the particle species, it energy,

angle of incidence and the etching parameters.

5.3.1 Reflective and transmissive behavior of etched tracks

The reflective and transmissive behavior of an etched CR-39 plate determines it optical

density. An undamaged CR-39 plate without any etched ion tracks is transparent,

like plexiglass. Each surface damage, like an ion track but also like scratches, dust,

dirt, material inhomogeneities, etc, acts as a scattering center which absorbs, reflects

and scatters any incident light. Especially how the light is scattered at a single etch

crater depends strongly on the form of the crater as is explained for a simple example

in Fig. 5.4 (c). Cone-shaped tracks will appear almost black since the light is not

scattered back to source, while with bowl-shaped ends will develop a very bright spot

in the middle which gets bigger with increasing bowl-diameter. Tracks which have no

cone walls left and consist entirely of a rounded bowl will appear light and with a weak

contrast to an unperturbed surface. When one now relies on measurement of mean

optical densities for analyzing the CR-39 as one does by using a flatbed scanner or

photograph it is clear that this method is prone to error. The mean optical density

depends strongly on the method of illumination, i.e. which angle, parallel or divergent

light, etc. as one sees in Fig. 5.5. Using a mixed nuclid source (241Am,239 Pu), two

alpha-particle spots were created on a CR-39 plate. One has a particle density typical

for laser acceleration experiments, the other is a factor 10 less dense. The CR-39 plate

was then scanned by an optical scanner. The top row in Fig. 5.5 shows two scans at

different illumination angles, with superimposed optical density lineouts from a 5 x 100

mm wide area out of the middle of each plate. The bottom row shows a false color

representation of the entire surface. Not only is it impossible to determine which of the
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Figure 5.5: A CR-39 plate irradiated at two spots with an alpha source. After etching the

plate was scanned at different angles. The change of the angle caused a drastic change in the

signal. Top: scanned images, the left shows a bright center of the irradiated spots, the right

shows ring structures. The red lines are horizontal line-outs from the middle of the plates.

Bottom: False color image of the scanned pictures, the colors represent different brightness

values.

two spots is of higher density, the profiles also change drastically with the illumination.

It follows that analysis of CR-39 by mean optical densities as done e.g. in [39, 90] is

not a reliable technique. Therefore this approach was discarded in the scope of this

thesis and the analysis was done by single track counting.

5.3.2 Automated Single Track Counting

One CR-39 plate from a Thomson parabola detector typically holds ∼ 106 tracks, ruling

out a manual track counting procedure. Instead an Automated Track Counting System

at the University of Siegen was used [91, 83]. This system consists of an high-precision

microscope equipped with an autofocus, a positioning stage and a CCD-camera. The

camera and the positioning stage are coupled to a computer with a specialized pattern

recognition software. An updated version of the system was recently purchased by our

group and is shown in Fig. 5.6.

The Samaica pattern recognition software analysis the video image and searches for ion

tracks. To each recognized track it fits an ellipse (see Fig. 5.7) and stores a number of
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Figure 5.6: Automated scanning and particle counting station: The CR-39 detectors are

placed under a computer controlled microscope. A CCD-camera relays the image to the

computer where a special pattern recognition software searches for particle tracks. The

tracks are counted and analyzed. From the stored data the complete image on the CR-39

can be reconstructed, displayed and further processed.

parameters like position, semi-axis, angle, enclosed area, brightness, etc. . Afterwards

the program moves the microscope stage by one image and the process is repeated until

the whole CR-39 plate is scanned. For a 10 x 5 cm plate this typically took 20 to 30

hours at a 50x magnification, due to the fact that with the old system only rectangular

scanning areas were possible. Due to this experience the new Munich system is fitted

with a larger CCD-chip and can process up to 5 arbitrary shaped scanning areas for

faster processing. The Samaica pattern recognition software was specially developed

for the analysis of ion traces in CR-39 SSNTDs and has a wide range of options to

tune the recognition process and discriminate against dirt effects. For more details on

the system see references above and [92].

After a scan is completed the raw data is analyzed further. To postprocess the scanning

data the Software Package PlotIt was developed. With this program the Thomson

parabola images can be reconstructed, the individual parabolic traces identified and
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~�100�µm

Figure 5.7: The automated scanning microscope takes a video picture and searches for

tracks. Recognized tracks are fitted with ellipses and their parameters are stored. After

further analysis a scatter plot reconstructs the Thomson parabola image.

the energy spectra extracted.



Chapter 6

Proton Acceleration and general

Beam characteristics: Experimental

Results

While the main topic of this work is the to effectively accelerate ions which are heavier

than protons and use the results to obtain a better understanding of the acceleration

process, a number of other quantities are important to form a complete picture. In the

scope of our experimental campaign we also measured the electron spectra, the proton

energy spectra and beam divergence, the ion source size and the dependence of the

acceleration process on a number of target conditions.

6.1 Electron Measurements

The magnetic spectrometers used to measure the proton spectra could be equipped

with a second film to simultaneously record an electron spectra as shown in Fig. 4.12.

Figure Fig. 6.1 shows a typical electron spectra measured for a gold target. Elec-

tron energies from ∼200 keV up to 50 MeV, i.e. the high energy tail of the electron

population were measured. The spectra can be fitted with a 2 temperature fit, the

temperatures agreeing reasonably well with both the TNSA-model and more elaborate

PIC-simulations. A detailed analysis and interpretation of the electron spectra is dif-

ficult, since the spectrum measured is not the original electron spectrum created by

the laser pulse. It is influenced and deformed by the transport through the target as

well as the space charge fields and the ion’s charge fields on the back of the target.

Furthermore only the high energy part which escape from the target is measured in

the spectrometer, while all low energy electrons do not escape the vicinity of the target

but are drawn back by the strong space charge fields. Baton et al. [93], using the same

65
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Figure 6.1: Electron spectra for a typical Au-target shot with 24J.

laser facility, were able to measure a part of that colder electron component exiting the

rear surface of aluminum targets, employing optical transition radiation.

6.2 Proton acceleration from thin foil targets

As will be shown below by shooting a ultrahigh-intensity laser at any foil target, one

will always accelerate protons, no matter what the target material. While heavier ions

are a much better suited tool to probe the accelerating fields, some properties such as

beam divergence for different energies, beam emittance and source size is much more

readily measured by protons. Due to their higher range the protons penetrate several

layers of stacked Radiochromic Film Detectors while the heavier ions are normally

already stopped in the first protective layer of nylon and never reach even the first dye

layer.
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Figure 6.2: Proton spectra for an aluminum target (black), a gold target (red) and a coated

tungsten target (blue). The spectra from gold and aluminum were measured at 0◦, the one

from the tungsten target at 13◦, explaining the lower cutoff energy.

6.2.1 Proton Spectra

The spectral shape of each proton energy distribution is generally continuous up to the

cut-off energy, in agreement with the electrostatic sheath acceleration mechanism and

as well as observations in similar experiments [9, 39, 40]. Fig. 6.2 shows proton spectra

from three different targets, namely from an Al-target, a Au-target, and a coated W-

target. All these different target materials, as well as Teflon and other plastic targets,

show strong proton spectra, dominating all other species and charge states. This is a

known phenomena already observed with long pulse lasers, e.g. in [26]. The explanation

lies in the typical vacuum conditions in laser experiments. All targets are coated with

layers of hydrocarbons and the protons stem from those contaminants. It is shown that

proton energies up to 25 MeV are typically achievable with the LULI 100 TW laser.

Taking into account the respective laser pulse energy in these experiments, we obtained

an conversion efficiency of laser energy into protons on the order of a few percent, de-

pending on actual shot parameters such as pulselength, prepulse level or target thick-

ness. At a given maximum laser energy of 30 J and a conversion efficiency of ∼5%,

a layer thickness in the nanometer range is sufficient to provide enough protons to be
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Figure 6.3: For an electroplated Au-target with smooth surface the signal is homogenous

through all layers of RCF. For a target made from rolled gold structures appear in the proton

signal which correspond to surface structures visible under an electron microscope.

accelerated. This observed conversion efficiency agrees well with experiments at simi-

lar facilities. At the Vulcan Laser at Rutherford Appleton Laboratory (100 J, 5× 1019

W/cm2), conversion efficiencies of a also a few percent have been determined. From the

Petawatt laser with both higher pulse energy and intensity up to 13% energy conver-

sion is reported [9]. Another striking feature of the observed spectra is that the cutoff

energy drops sharply at larger angles, as can be seen for the W-target in Fig. 6.2. This

is the first indication for a really beamed ion emission with a rather small divergence.

These feature is discussed in more detail in Sect. 6.2.2, but further details about the

proton signal are not port of the scope of this work and will be published in [10].

6.2.2 Divergence, Emittance and Source Size

The angular dependence of the energy distribution of the proton beam was measured in

two independent ways. The two ion spectrometers were positioned at different angles

(0◦, 6.5◦, and 13◦) as already explained in the previous section. The measured spatial

distributions of protons on the dispersion plane were deconvoluted (with respect to the

entrance aperture shape) and corrected for the spectrometer dispersion. The energy

of the protons emitted normal to the target rear surface at 0◦extended up to 25 MeV.

The maximum energy of the protons dropped to about 10 MeV at an angle of 13◦, as
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Figure 6.4: Proton spectra at 0◦ and 13◦ for a typical Au-target. The high-energy cutoff is

strongly reduced at larger angles.

shown in Fig. 6.4 and consistent with a 2-D model of the sheath acceleration process.

The other measurement is performed with the RCF stack detectors which record the

ion beam crossection for different energies as shown in Fig. 6.3. Both measurements

yield an approximately 15◦ half-angle for the MeV-protons and a considerably smaller

divergence for the high energy part of the spectrum [40].

An excellent way to measure the proton beam divergence as well as the actual source

size as a function of proton energy was discovered accidentally in our experiments:

in some of the beam imprints recorded in RCF, structures and lines were discovered

whereas other shots from the same type of targets (e.g. 50 µm Au-targets) produced

a nice homogenous proton signal as is shown in Fig. 6.3. Upon closer investigation

it turned out that a number of the targets were electroplated gold foils with a very

smooth surface, while others were made from rolled gold and their surface is heavily

structured as can be seen on the electron microscope pictures in Fig. 6.3. This effect

can be put to use by shooting a target with a defined and well known structure on the

back surface. The RCF in Fig. 6.5 was recorded with a 18 µm thin Al-target with a

one dimensional grid structure on the back surface. The grid was 0.2 µm deep and had

a spacing of 3 µm . From the number of visible grid lines one can now instantly deduce

the source size. The overall beam divergence can be determined from the diameter of
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Figure 6.5: Proton signal in RCF from an 18 µm Al-target with a 0.2 µm deep and 3µm wide

grid structure. The laser shot was fired at LANL’s Trident Short Pulse Laser and contained

26 J in a ∼20 µm diameter focus. The pulse length was about 1.2 ps, making for an Intensity

of ∼ 7× 1018 W/cm2 on target.

the beam imprint. A systematic analysis of the source size and beam divergence is

displayed in Fig. 6.6 and published in [94].

For most of the future applications of laser generated ion beams the beam quality is the

most important characteristic. Especially for the use as an ion source or the application

as an inertial confinement fusion (ICF) ignitor beam, the ion beam emittance is crucial

with respect to the accelerator structure acceptance or the achievable focus spot size.

As is apparent from the radiochromic film data, the angular divergence of the proton jet

is rather well defined and decreases with increasing proton energy. This suggests that

protons or other light ions accelerated by this mechanism may have a usefully small

emittance in the sense of an actual ion beam. To precisely estimate the emittance,

penumbral imaging of edges at different distances from the target was used, to directly

measure the core emittance of the proton beam. This technique is closely related

to the conventional slit-emittance measurements made with apertures and screens at

conventional accelerators. The normalized emittance of protons from flat gold foils is
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Figure 6.6: Real source size of laser accelerated protons in dependence of their energy.

The spot size at the rear surface decreases from 260 µm diameter for 3 MeV protons to

80µmdiameter for 10 MeV.

determined to be of the order of 0.2 pi mm-mrad. The results of this analysis and

subsequent modeling, developing a 2-D extension of the model in [45], suggest that we

observe a rather cold proton beam, which is smoothly diverging and highly laminar.

The phase space of the highest energy protons exhibits a tilted ellipse, whose width

ultimately is the characteristic of the ion temperature. From these data, we deduce

that the transverse proton temperature is less than ∼ 1 keV. From simple electron-ion

collisional heating during the expansion, one may expect the ion temperature to be

even lower, on the order of ∼ 100 eV.

6.3 Influence of target and surface properties on

the ion acceleration.

6.3.1 Plasma density gradients

The determining parameter for the electron acceleration on the target front side, apart

from laser energy and intensity, is the density gradient of the preplasma. This in turn

is determined by the contrast ratio of the laser pulse, or the pre-pulse level. At a focal

intensity of 1019W/cm2 even with a contrast ratio of 10−7 at a few ns before the main

pulse, this prepulse is strong enough to create a plasma. For the electron acceleration a

large preplasma is beneficial, the drawback however is, that the prepulse also launches

a shockwave through the target.

When we applied a prepulse at a contrast ratio of 10−7 of the main pulse 10 ns before

the main pulse the maximum energy of the protons dropped to 2 MeV from the typical

10-20 MeV range typical of low-prepulse shots [40]. This is in good agreement with
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Figure 6.7: left: simulation of the shock wave launched by the prepulse. The shock wave

reaches the rear surface at about 7 ns. middle: Interferometric image of the plasma conditions

on the front and rear target surface at normal prepulse level at 5ns before the main pulse.

No shock breakout occured yet, the rear surface is unperturbed. right: The prepulse at 10

ns before the main pulse causes perturbation of the rear surface due to shock wave breakout.

No protons were detected.

the MULTI calculations, which indicate that in 10 ns a shock wave launched by the

prepulse penetrates the target and causes a rarefaction wave that diminishes the den-

sity gradient on the back and therefore drastically reduces the accelerating field. The

inward moving shock wave also alters the initial conditions of the target material due

to shock wave heating and therefore changes, e.g., the target density and conductivity.

Because of its relevance to the electron transport, we chose the target thickness such

that a considerable fraction of the target was still in its unperturbed, initial conditions.

Fig. 6.7 also shows interferometric measurements of the target surface with and with-

out the additionally applied prepulse. The interferometry detects the plasma density

conditions on the front and rear surface simultaneously. In the figure, the laser is in-

cident from the right (note that the bright spot is 2ω emission from the laser plasma

during the pulse). As shown in Fig. 6.7, the front surface always shows the blowoff

plasma caused by the ASE. In absence of a prepulse (left image) the rear surface is

unperturbed and a high-energy proton signal could be detected on the RCF. When we

observed the presence of an extended plasma at the rear surface due to the applied

pre-pulse, no protons above the detection threshold of our RCF (∼2 MeV) were mea-

sured. This result is also in excellent agreement with experiments using a second laser

to generate a plasma at the rear target surface .

6.3.2 Front surface damage

Another somewhat accidental discovery in our campaign was the influence of any front

surface damage structure on ion signal. While it stands to reason that a damaged front
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Figure 6.8: Beam imprint for an undamaged (left) and a damaged (right) target front side.

A small crater on the front side caused a ring structure in the proton signal.

surface is not necessarily beneficial to the ion signal we did not plan dedicating any

shots towards that problem. However at one time we had to use the 10Hz seed pulse

to align the target instead of the usual HeNe-alignment laser. It turned out that the

weak seed pulse was strong enough to dig a little pit in the target surface and instead

of the usual smooth disk-like ion beam cross section we detected a ring structure as

shown in Fig. 6.8.

Such ring-like structure keep appearing in experiments (e.g. [39] and while a front

surface damage is not the only possible explanation for such a signal it is worth keeping

in mind the possibility.

6.3.3 Rear surface damage

As already shown above in Sect. 6.2.2 any structure on the back surface is mapped onto

the ion signal. If the surface becomes to rough the beam even filaments and looses a

considerable amount of energy. If the scale of the damage becomes large compared to

the Debye length, which for our parameters is on the order of a few microns, the proton

signal vanishes completely.

6.3.4 Conductors and Insulators

While most of our targets were metal targets, i.e. conductors, we also shot a variety

of different plastic and even glass targets which are insulators. Though insulators

also produce an ion signal of about the same strength and energy, the beam cross

section is not homogenous as with conductors but strongly filamented. The similar

beam patterns obtained from plastic and glass targets exclude the origin (surface or
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bulk) of the protons to be the reason for the onset of the filamentary structures. In

contrast, due to the strong coupling of the ion acceleration mechanism to the electron

distribution at the rear surface of the target the smooth, laminar beam quality from

metal, i.e. conductor targets, indicates a rather homogenous electron transport through

the target. Insulating material seem to disrupt the electron transport, which causes

filamentation of the electron distribution and therefore also a non-homogenous ion

acceleration. The dependence of the electron transport on target conductivity has

been observed by other research groups as well. As mentioned above the preceding

ASE leads to a shockwave that preheats the target, thereby changing the conductivity

of the insulating targets. However, in our experiments the target thickness has been

chosen such, that a considerable fraction of the target material was still in the cold,

solid state by the time of arrival of the main pulse.

6.3.5 Curved Targets

An important question to be addressed for any future application of laser-accelerated

protons and ions is the possibility of tailoring the proton beam, either collimating

or focusing it, by changing the geometry of the target surface. Ballistic focusing of

the laser accelerated protons is expected to be rather difficult because of the inherent

divergence associated with the spatial density dependence of the hot electron sheath,

which drives the acceleration. Accordingly, we first attempted to defocus the beam in

one dimension, by using a convex target. Using a 60 mm diameter Au wire as a target

basically constituted such a one-dimensional de-focusing lens, and we observed a line

as shown in Fig. 6.9. Tilting the wire also changed the orientation of the line, which

results from the radial, fan-shaped expansion of the protons normal to the wire.

If one wants to focus the ions, there is an energy dependent angle of divergence that

has to be compensated for. Therefore the effective focal length of a curved target

rear surface is dependent on the ion energy. First results, that will be published in

[95], show a strong reduction in the divergence of the central core of the proton beam

representing ballistic collimating of laser produced proton beams.
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Figure 6.9: Experimental setup and RCF images of experiments with 60 µm gold wires.

The convex rear surface constitutes a de-collimating cylinder-lens. Accordingly the proton

beam was formed into a line.
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Chapter 7

Acceleration of light Ions by

short-pulse Lasers: Experimental

Results

In this chapter, the first experimental study is presented, demonstrating that besides

protons, also high-brightness, high-energy (∼MeV/nucleon) ion beams can be accel-

erated from the rear surface of thin foils. As was shown in the last chapter and also

observed by other groups experiments, no matter what target material is chosen, one

always excites predominantly protons. These protons stem from hydrogenous impuri-

ties, such as water vapor and pump oil, adhered to the target surface. Due to their

larger charge-to-mass ratio, the protons are accelerated more efficiently and outrun the

other ion species thereby screening the accelerating fields for the latter. By removing

the hydrogenous surface contaminants one can therefore increase the field coupling to

heavier ions and accelerate them efficiently. Using the Thomson-parabola detector de-

scribed in Chapter 5 high-resolution, absolutely calibrated energy spectra of different

ion species and charge states could be obtained. From these spectra additional infor-

mation, not contained in the proton signal, about the spatio-temporal evolution of the

accelerating field and the origin of the observed ions could be extracted.

7.1 Removal of Hydrocarbon Contaminants by Tar-

get heating

As was shown in Chapter 6, no matter what target material one chooses, one always

accelerates protons. This is due to the fact, that because of the technical setup and

experimenting procedures at high-power lasers the vacuum in the target chamber is

77
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on the order of 105mbar. At this pressure levels all surfaces are coated by films of

water- and oil-vapor even when using theoretically oil free components. That means

that all targets will have protons present at their surfaces, which due to their at least

twice as big charge-to-mass ratio , will always be more effectively accelerated than any

other ion species and charge state. Thereby the protons take up the major part of the

available energy and screen the accelerating potentials. To efficiently accelerate other

ion species one therefore has to use targets which do not contain any protons. To do

this the target has to be cleaned in situ and since typical resorption times are on the

order of milliseconds, as close to the firing of the laser as possible or preferably even

during the laser shot.

7.1.1 Cleaning Methods

The way to clean the target is to transfer enough energy to the contaminants to over-

come the adhesion forces acting at the surface, i.e. heating the target or at least

the target surface. Three different approaches where tried, depending on the target

properties and other experimental parameters:

1. radiative heating

2. laser heating

3. resistive-heating as used in [96, 5].

While radiative heating with a strong lamp did not produce high enough temperatures

to have the desired effect, the other two methods worked with resistive heating being

the most effective if used in conjunction with a suitable target material. For resis-

tive heating a ∼10 A current at ∼12 V was run through the target, which required

fairly thick and therefore inflexible wires attached to the target mount as shown in

Fig. 4.9. This reduced the number of targets on the mount from four to three and

also constricted the movement of the setup, complicating the alignment. Some targets

as the deuterated targets used for the neutron experiments [11] could not be heated

to high temperatures without destroying them but required nonetheless the removal

of protons. A nanosecond-pulse Nd:YAG-laser slaved to the main trigger roughly 100

µs before the main pulse was used to ablate the outermost surface layer of the target,

thereby taking with it part of the hydrocarbons.

The first series of dedicated ion experiments used aluminum targets coated with a

carbon layer on the back surface. The targets were heated to just below the melting

point of aluminum at 933 K. The current had to be carefully ramped up to just below

the melting point, the correct parameters were determined by trial and error and a
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number of targets burned through prior to the laser shot. Once the right parameters

were established it was crucial to fire the laser as quickly as possible before burnthrough

occurred. Subsets (a) and (b) of Fig. 7.1 show the measured Thomson parabola signals

of unheated and heated aluminum targets coated with 1 µm carbon. From the unheated

target basically only protons were accelerated, the ion number being more than two

orders of magnitude lower and hard to spot in the scatterplot without an in detail

analysis (comp. Fig. 7.3). In the case of the heated target the ion signal becomes

clearly visible, even dominating the proton signal which is however still present, though

reduced by more than an order of magnitude. In combination with the aluminum

targets the resistive heating cleaning procedure showed its potential by removing a big

enough percentage of hydrocarbons to enhance ion acceleration in overall ion numbers

as well as in ion energy and conversion efficiency of laser energy to ions. However

it became clear that higher temperatures are required to get rid of all hydrocarbons

and this could not achieved using aluminum substrates. Therefore tungsten target

substrates were used in the later runs which were heated until they were white hot

glowing, i.e. well above 1300 K. As shown in subset (c) of Fig. 7.1 the procedure worked

perfect for tungsten targets and no protons were left on the target surfaces at the time

of the laser interaction. The ion energy was increased further and also the energy

conversion efficiency as discussed later in this chapter in more detail. Subset (d) finally

shows the results of the laser cleaning process. The respective ion and proton fractions

compare to the resistive heating case for aluminum targets, i.e. enough protons are

removed to make a difference to the unheated case but the conditions are still far from

optimal.

7.2 Energy Spectra, Yield and Divergence of the

ion bunches

Using the two Thomson parabola detectors in conjunction with the automated scanning

microscope and the custom made pattern recognition and analyzing software described

in Chapter 5 it was possible to obtain absolutely calibrated, high resolution energy

spectra for different ion species and charge states. Apart from demonstrating the abil-

ity to accelerate except from protons also heavier ions at various charge states these

spectra contain information on the underlying physical processes not available in the

proton signal. The charge state distribution and the cutoff energies of the individual

charge states are a tell tale sign of the dominant ionization and recombination pro-

cesses. Also they yield information on the field strength and the spatial and temporal

extensions of the acceleration process. The highest ion energies were achieved with
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Figure 7.1: (a) Ion traces from an unheated Al|C-target on CR39. A strong proton line

which is even too dense for counting at its onset is clearly visible while the ion signal is

extraordinarily faint. (b) An Al|C-target resistively heated to ∼800 K shows a strong increase

in the ion signal and energy while the proton signal is reduced. (c) By heating W-targets

to ∼1300 K all protons can be removed. The ion signal and energy is strongly enhanced

by orders of magnitude. (d) Al| D2-target cleaned by laser ablation with a mJ-ns Nd:YAG

pulse some 100 µs before the main pulse. The result is similar to the resistive heating for

Al-targets: The ion signal is enhanced but a substantial proton fraction remains.

tungsten targets coated with Calcium Fluoride (CaF2), however due to the multitude

of charge states with similar charge-to-mass ratio the detailed analysis proved to be

difficult. From the CaF2-targets fluorine ions, calcium ions and residual carbon ions are

accelerated and the individual traces overlap. Fig. 7.5 shows an example of a deuter-

ated aluminum target where it is just possible to recover most of the traces and obtain

spectra. But even in this case one Al-trace is missing while one other trace cannot be

identified unambiguously. Much better results could be obtained by using a simpler

carbon system with only 6 potential (and 5 observed) charge states. The modelling

and interpretation of the acceleration mechanism is therefore done using the carbon

spectra. The drawback of the Al|C-targets which could not be heated enough to drive

out all the hydrogen imbedded in the carbon matrix, turned eventually out to be an

advantage: It allows a much more detailed analysis of the influence of the hydrogen

on the obtained spectral shapes, since now a series of different fractions of hydrogen

contamination (dominantly hydrogen, approx. equal hydrogen and ion fractions, and
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no hydrogen) could be studied in experiment and compared to simulations as is done

in Chapter 8. Finally, also Deuterium spectra were obtained to supplement the mea-

surements by S. Karsch ([11]) on fusion neutron generation and ion acceleration within

the laser focus region.

7.2.1 Carbon Spectra

While the main in energy in the case of unheated targets is transferred to protons,

other target ions are accelerated, too. For all unheated targets however the main part

of the accelerated ions stems out of the contaminating hydrocarbon layers, resulting

in acceleration of carbon ions independently of the target material. Thus, carbon

spectra were obtained from a variety of different targets, and could indeed also be

obtained on shots dedicated to other experiments. Consequently, carbon spectra form

the majority of measured spectra, making carbon the best candidate for all comparisons

and systematic studies. Figure 7.2 shows a typical result for a parasitic measurement

performed on planar Au and Al targets set up to study the proton beam quality. The

picture shows the Thomson parabola raw data and the corresponding carbon spectra

for both targets. As noted in Chapter 5 there are three major difficulties in obtaining

a proton spectra from the Thomsonparabolas: The crater size in the CR-39 depends

on the energy loss of the particle and is substantially lower for protons than for other

ions. Consequently proton tracks will be much smaller and reach the resolution of the

used scanning microscope at about 3 MeV. To circumvent this problem one has to use

longer etch times, thereby enlarging the tracks. However, due to the enormous particle

numbers in the experiments and the resulting high track densities on the CR-39 this

would cause the tracks to overlap significantly and again prevent a detailed counting.

Since the main goal is to analyze heavier ions the choice of pinholes, detector stand-off

distance, and etch conditions were optimized towards that purpose. This means that

the high energy part of the proton signal above ∼3 MeV could not be counted and the

low energy part is frequently too dense to give a very accurate counting either. The

proton signals as obtained from the Thomsonparabolas have therefore to be judged

as a mere lower threshold while the real spectrum shows substantially higher energies.

This choice of experimental parameters was further motivated by the fact that an

independent proton spectrometer was operated on the experiment. The data obtained

from that diagnostics will be presented in [10].

Both targets were irradiated with approximately the same laser energy, ∼11 J, and for

both targets the high energy cutoff for the helium-like carbon charge state is at slightly

above 0.5 MeV/nucleon. This is a fairly typical cutoff energy for all unheated targets.

When one looks in detail however, the Au-target shows slightly higher energies and ion
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Figure 7.2: Typical Thomsonparabola raw data and spectra for unheated targets. Left: 13

µm Al-target, 11.2 J laser energy, right: 5 µm Au-target, 12 J laser energy. Both cases show

strong carbon spectra, however in the case of the thin gold other traces, probably Oxygen,

are also present, albeit very weak.

numbers and also some weak oxygen charge states. This is due to the smaller target

thickness. As was shown in Chapter 6 thinner targets, as long as they do not suffer

plasma breakthrough, tend to exhibit stronger fields caused by higher local electron

densities. A thick Au-target as shown in Fig. 7.3 (a) shows a much weaker signal

although the laser energy was more than 50% higher.

To examine the possibilities of target cleaning and enhancing the heavy ion yield we

started with carbon coated Al-targets, which were easy to fabricate and the expected

carbon spectra can be readily compared with those of other targets. We first shot a

unheated aluminum substrate of 50 µm thickness coated on the backside with 1 µm of

carbon. When not heated however the carbon signal is fairly weak and dominated by

protons. The resulting spectra is shown in Fig. 7.3 (b), and again the He-like cutoff

energy is around 0.5 MeV/nucleon.

If one now heats the target close to its melting point prior to the shot, a major fraction

of the contaminants boils off from the surface into the vacuum. The number of accel-

erated protons is strongly reduced and the energy is instead transferred to heavier ion

species. Already the partial removal of hydrocarbons strongly enhanced the accelera-

tion of carbon ions, as shown in Fig. 7.1 and in the spectra in Fig. 7.3 (c). The proton
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Figure 7.3: (a) Carbon spectra for an unheated 50 µm Au-target: the ion yield is very

weak, the high energy cutoff for the highest charge state is around 0.5 MeV/nucleon. (b)

Carbon spectra for an unheated Al|C-target (50 µm): the proton signal shows a gap due

to detector properties which is optimized for heavier particles. The lines show two fits to

bridge the detector gap H+-spectra, but the real spectra has still a high energetic tail which

cannot be accounted for from the Thomson parabola -signal. (c) Carbon spectra for a heated

Al|C-target (50 µm): The ion signals are strongly enhanced and the high energy cutoff is at

higher energies. (d) Conversion efficiencies of laser energy to ions for all three targets: The

unheated targets show a similar behavior. The heating increased the energy in the heavy ion

signal by two orders of magnitude.

spectrometer yielded typically ∼ 1012 protons of up to 25 MeV, for unheated targets.

For heated Al-targets, the number of protons is reduced to ∼ 1010 with energies of up

to 3MeV as confirmed by the RCF-stack. The high-energy cutoff of the carbon ions

rises by a factor of ∼2 and the number by two orders of magnitude to ∼ 2 × 1011. A

detailed comparison between the heated and unheated targets as well as a standard

50µm Au-target can be found in Tab. 7.1: The conversion efficiency from laser energy

into heavy ion energy increases by more than two orders of magnitude from 0.002% to

0.5% (see Fig. 7.3 (d)). As one can see in Fig. 7.4, the acceleration is most efficient

for C4+-ions, with a spectral cutoff at ∼1 MeV/nucleon at the high-energy-end. The

other cutoff energies and overall ion numbers fall with the charge state number, the
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Table 7.1: Conversion efficiency of laser energy into carbon ions for an unheated (u/h)

Au-target, an unheated (u/h) Al|C-target and a heated (h) Al|C-target (reduced proton

contamination). All targets were 50 µm thick. The ion charge states are denoted by Q.

u/h Au u/h Al|C h Al|C
Q Ion Eabs Conv. Ion Eabs Conv. Ion Eabs Conv.

No. [J] [%] No. [J] [%] No. [J] [%]

1 4·108 2.7·10−5 1.5·10−4 7.9·108 7.9·10−5 4·10−4 2·1010 0.004 0.013

2 6.7·108 6.2·10−5 3.4·10−4 8.8·108 1.7·10−4 8.3·10−4 3.3·1010 0.009 0.034

3 1.5·109 1.7·10−4 9.7·10−4 1.3·108 3.5·10−5 1.8·10−4 5.7·1010 0.026 0.096

4 7.5·108 1.8·10−4 0.001 6.5·108 3.4·10−4 0.002 9.9·1010 0.081 0.3

5 – – – – – – 4.5·109 0.005 0.017

Σ 3.3·109 4.5·10−4 0.002 2.5·109 6.2·10−4 0.003 2.1·1011 0.12 0.5

main acceleration and energy transfer processes happen during the time of highest field

strength, on a timescale comparable to the duration of the laser pulse. The C5+charge

state alone shows lower energies and much lower numbers than its predecessor, sug-

gesting a different ionization mechanism than for the other charge states. While C1+to

C4+are created almost instantaneously in large numbers by field ionization as soon as

the field reaches the ionization threshold (comp. Chapter 3), C5+ions seem to be cre-

ated by collisional ionization during the whole process. As will be explained in more

detail in Sect. 8.1.2, the low cross section of the high energy electrons and the rather

delocalized spatial and temporal origin lead to the lower numbers and energies.

The highest carbon energies were obtained on a shot dedicated to neutron production

with a Al-target coated with CD2. Resistive heating was not possible because the

Deuterons would be removed as well, so laser cleaning with a ns-pulse laser a few mil-

liseconds before the main shot was tried. While this method was employed on a number

of occasions and usually produced the same results as resistive heating of aluminum

targets, i.e. ∼1 MeV/nucleon ion energies, in this particular case the timing and focal

conditions of the cleaning laser seemed to be better suited for the task and a greater

fraction of Hydrocarbons were removed. This resulted in higher numbers of heavier

ions and helium-like carbon and aluminum ions with energies of ∼2.5 MeV/nucleon as

can be seen in Fig. 7.5.

7.2.2 Fluorine Spectra

Even better results were obtained using tungsten as a target substrate. 50 µm tungsten

substrates coated with a 300 nm thin layer of CaF2 were used as targets both heated and

unheated. The higher heating temperatures resulted in an almost complete removal
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Figure 7.4: Carbon spectra for a heated Al|C-target (50 µm): The ion signals are strongly

enhanced and the high energy cutoff occurs at higher energies. The cutoff energies and ion

numbers increase with increasing charge state.

of hydrocarbons. As shown in Fig. 7.7 the proton spectrometer did not show any

protons, while for an identical unheated target a typical proton spectrum for this

target thickness was measured (see Fig. 7.7). The proton spectrometers lower energy

cutoff is at ∼2 MeV, while the Thomson parabola detects protons between 200 keV

and 3 MeV. Since the CR-39 also showed no protons for the heated target we can rule

out any significant amount of high energetic protons. The energy transferred instead

mainly to the fluorine ions, especially the helium-like charge state. As shown in Fig. 7.6,

energies up to 100 MeV were achieved for fluorine 7+ ions. This corresponds to more

than 5 MeV per nucleon, the highest energy so for achieved for laser accelerated heavy

ions. This finding is confirmed by the RCF data, shown in Fig. 7.7. A narrow spot

appears in the first layer, which, in the absence of protons, indicates fluorine ions of

energies of more than 4 MeV/nucleon. This is also the first measurement of a heavier

ion beam profile and agrees well with the observed proton signals, as will be discussed

in Sect. 7.2.3. The conversion efficiency of laser energy to ions was again increased by

one order of magnitude. The F7+ions alone hold more than 4% of the laser energy.

The lower charge states however could not be distinguished as well as in the carbon
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Figure 7.5: Carbon and aluminum spectra for a laser-heated Al|CD2-target: The ion signals

are strongly enhanced and the high energy cutoff occurs at even higher energies as before.

Spectra for all carbon charge states up to C5+could be identified and nearly all charge states

of Al up to 11+. The Al9+ charge state cannot be identified since it coincides with the

C4+charge state. Between Al3 and Al4+ is a track that could not be identified.

cases, due to a multitude of different charge states and species with sometimes close

to identical charge-to-mass ratios .

Furthermore since only the target rear surface was coated with CaF2, the fluorine

ions found in our experiment originate unambiguously from the rear surface of the

targets, proving once and for all the existence of an effective rear surface acceleration

mechanism.

7.2.3 Divergence

For most of the future applications of laser generated ion beams the beam quality is

the most important characteristic. Especially for the use as an ion source or an inertial
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Figure 7.6: Resistively heated W/CaF2-target: All protons were removed and F7+-spectra

is now dominantly accelerated: More than 100 MeV (5 MeV/nucleon) energy and more than

4% conversion efficiency are achieved for F7+/ions.

confinement fusion (ICF) ignitor beam, the ion beam emittance is crucial with respect

to the accelerator structure acceptance or the achievable focal spot size. As is apparent

from the radiochromic film data, the angular divergence of the proton jet is rather well

defined and decreases with increasing proton energy. This suggests that protons or

other light ions accelerated by this mechanism may have a usefully small emittance in

the sense of an actual ion beam. In contrast to the proton beam profile and divergence,

which can be measured quite easily with stacks of radiochromic film, this is not possible

in the case of heavier particles. Due to the higher stopping power all but the most

energetic ions are stopped in the ∼60 µm thick protective Nylon layer covering the first

dye layer of RCF. Only when one gets rid of all the protons and achieves optimal laser

conditions for a shot, i.e. a high energy on target, a short pulse, and a small regular

focal spot, the heavier ions gain enough energy to penetrate at least that first layer as

can be seen in Fig. 7.7. Furthermore this gives only one signal for the highest energy

and not, as with protons, different signals for a whole energy range. However this one

signal agrees well with the measurements for proton signals, allowing the conclusion

that the overall behavior with respect to beam divergence is similar.
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Figure 7.7: RCF and proton spectrometer raw data for shots on cold and heated W|CaF2-

targets. For non-heated targets the typical proton spectra was measured and the RCF de-

tectors showed the usual beam profile. For the heated targets the proton signal completely

vanishes, disproving the existence of high energy protons. The first layer of RCF shows a

narrow spot, similar to the deeper layers, i.e. the high energy tail, of measured proton spec-

tra. In the absence of protons this spot has to be caused by heavier ions and corresponds to

fluorine ions >4 MeV/nucleon.

Another data point, this time for the low energy component could be obtained by

replacing the RCF stack with a CR-39 plate. This will record ions of all energies i.e.

especially all the low energetic particles. Due to the high flux, the CR-39 detectors

are completely saturated with overlapping pits, making particle counting or any other

quantitative analysis impossible, the overall transversal size of the ion beam however

can be distinguished clearly. Again the ion beam divergence for low energies agrees

with the proton data.

A more detailed measurement over the whole energy range was measured by employing

two Thomson parabolas under different angles. The target chamber setup allowed for

angles of -6.5◦, 0◦, and 13◦, although only two angles could be occupied simultaneously.

From our detectors we obtain absolute ion numbers for the small spatial angle of the

spectrometers of ∼ 108 sr. Fig. 7.8 shows that the ion spectrum is fairly constant over

an angle of ∼7◦ but drops steeply at 13◦. This is true both for a moderately heated

case where still a sizeable fraction of protons is left as in subset (a), as well as for the

pure ion case shown in subset (b). Fig. 7.8 (a) shows C4+spectra from resistively heated

targets measured at three different angles, 0◦, 6.5◦, and 13◦. The 0◦ and 6.5◦ spectra

where obtained at the same shot, while the 13◦ spectra was obtained on a different shot.

As can clearly be seen, the first two spectra are almost identical, a behavior observed

on almost any other shots for 0 and 6◦. For larger angles however the spectrum drops
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Figure 7.8: (a) C4+spectra at 0, 6.5, and 13◦ from heated targets. The spectra at 0◦ and

6.5◦ were measured on the same shot. Due to the substrate a major proton fraction was still

present but the ion acceleration was enhanced. (b) F7+spectra at 0◦ and 13◦ from the same

shot. The targets were resistively heated and most of the protons could be cleaned of. In

both cases the 13◦ spectra are strongly decreased.

dramatically. The difference between the first two and the 13◦spectrum in subset

(a) might theoretically be accounted for in part by the difference in laser parameters

between the two shots. The two F7+spectra in subset (b) for 0◦ and 13◦ however

were obtained on a single shot and show the characteristics. It is therefore safe to

conclude and furthermore in agreement with the data discussed above, that the ions

are emitted in a tight beam with a opening angle of ∼13◦ as observed for the proton

acceleration. Furthermore the measurements show that this behavior holds true over

the whole spectral range of accelerated particles.

7.2.4 Source Size

A direct measurement of the source size as done in the proton case was not possible

for heavy ions. RCF-detectors do not work due to the diminished range of heavier

particles. CR-39 does not work either for this special measurement due to the ex-

tremely high current and particle densities which saturate the CR-39 and the possible

detector distances and render a qualitative analysis using track counting impossible.

Since however the performed divergence measurements reproduce exactly the proton

properties it seems reasonably safe to assume the same features in source size.
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Chapter 8

Analysis and Interpretation of the

experimental Results

8.1 Analysis and Interpretation of the experimen-

tal data with respect to the underlying physics

of the acceleration mechanism

To gain a better understanding of the acceleration mechanism from the measured ion

data it is important to know how the charge state distributions were created. Therefore

the following paragraphs first discuss recombination and ionization effects, drawing on

the theory explained in Chapter 3. Then follows a detailed analysis of the measured

spectra and charge state distributions with respect to the field dynamics. It turns out

that the ion spectra contain new information not incorporated in any other experiment

so far.

8.1.1 Recombination

As was already shown in the FLY-simulations in Chapter 3, recombination does not

play a major role. This assumption is confirmed by the experimental data shown in

Chapter 7. All spectra show a dependence of the high-energy cutoff on the charge

state, which rules out recombination as a dominant effect in our experiments. If a

major fraction of ions were to recombine on their way to the detector a high energy

low charge state signal would be observable. The absence of this signal is the first

experimental proof of a low recombination rate. Fig. 7.4 shows a roughly constant

tail in the C1+-distribution at a level of ∼ 10−3 compared to the higher charge state

populations which likely originates from recombination and collisional ionization since

91
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the neutral atoms are not accelerated and therefore have a much longer overlap time

with the warm return current.

This finding is confirmed by a direct measurement. On all CR-39 track detectors from

the Thomson parabolas an image of the pinhole can be seen. This must be formed

by the low fraction of ions that actually recombine and are neutral upon entering the

Thomson parabola . The number of ions in this zero-order image can be counted by the

automated scanning microscope and for all analyzed shots it turns out to be between

0.1 and 1%. This is in good agreement with the spectra as well as the FLY-simulations.

This behavior is fundamentally different from that observed in the carbon spectra in

long-pulse experiments [3], where recombination played a major role and all charge

states were found to have the same cutoff energy.

8.1.2 Ionization

Earlier work with ns-laser-produced C and CH plasmas demonstrated that the ion

spectra can be used to infer the hot electron temperature. As noted previously, the

ionization in those experiments was thermal from the direct laser heating, and Te,hot was

nearly constant throughout the expansion ([3, 26] and ref. therein). For hot plasmas,

only C6+was present, and the other charge states were populated by recombination

during the drift phase after the acceleration, leading to very similar energy spectra for

each ionization state. From the ion spectra and their charge state independence an

isothermal expansion with Te,hot ∼ 10 − 100 keV could be identified as the dominant

mechanisms ([3, 26] and the acceleration could be described by a self-similar solution

(see [97], Sect. 2.3.4).

As was shown in Chapter 3 field ionization dominates by orders of magnitude over

collisional processes for our set of parameters and for charge states up to He-like.

For C5+, Whot
col is stronger than WADK , which explains the different spectral shape

and lower numbers for this charge state. Due to the short timescales (∼fs) and high

electron temperatures (∼MeV) involved in short pulse experiments, Field Ionization

by Barrier Suppression (FIBS) in the strong transient electric field dominates, leading

to charge state distribution depending on the temporal shape and cooling behavior of

the laser-induced electron pulse.

8.1.3 Field Dynamics

Having established that the ion spectra and charge state distributions are directly

linked to the ionizing and accelerating E-fields we can extract information such as

field strength, which is not available from proton data. With FIBS as the dominant
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ionization process the k+ -ionic state is created as soon as the electric field is above

the threshold

(8.1) Ek =
Uk

2ε0π

eZ
.

We can use Ek+1− ε as an upper limit for the electric field strength that a k+ -ion has

experienced. This also defines a lower limit for the acceleration time τmin
k required to

achieve the observed maximum ion energy for a given charge state. The acceleration

length lmin
k is the minimal distance an ion has to travel during acceleration and is

therefore a measure for the minimal spatial extension of the fields.

The maximum field a C2+ion can have experienced for any effective time t > fs is

therefore Emax
2+ ≤ 1.3 × 1011V/m. This field causes the maximal acceleration if it is

instantaneously switched on and off. The high energy cutoff for C2+is at Wmax
k ∼6MeV

as can be seen in Fig. 7.4. The minimum acceleration time τmin an ion must have spend

in the influence of the field Emax
k is given by

(8.2) τmin
k =

√

2Wmax
k m

Emax
k q

For the C2+-ions in Fig. 7.4 this results in a minimum acceleration time of 4.6 ps,

considerably longer than the laser pulse and therefore the source of hot electrons. For

the F7+-ions (Fig. 7.6) field strengths between 0.9 and 23 TV/m would be possible.

Assuming a field strength of ∼2.5 TV/m as calculated using (2.22), the minimum

acceleration time is ∼350 fs, i.e. the laser pulse duration. Taking this method one step

further the scale length of the accelerating fields can be estimated by calculating the

distance the ions move during acceleration. The distance lkmin is given by

(8.3) lmin
k =

Emax
k q

2m
(τmin
k )2 .

The results for all carbon charge states and the helium-like fluorine are tabulated in

Tab. 8.1. For the helium-like charge states the calculation is done for three different

field values: the minimum and maximum fields and an intermediate value given by

(2.22). The results from intermediate field values are in good agreement with other

parameters, such as laser pulse duration and Debye-length.

If a more realistic field form is assumed rather than a box-like profile with infinitely

steep gradients, the values in Tab. 8.1 become even larger. Fig. 8.1 shows an example

for C4+-ions. In this case the modelled field rises with the laser pulse and decays

exponentially. The maximum field with Emax
4 ∼ 5TV/m is still too large and much
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Table 8.1: Ionization potentials and corresponding field strengths according to the FIBS

model and an ideal (boxlike) accelerating electric field. tmin
k is the minimum field duration

and lmin
k is the minimum acceleration length.

Charge Uk Ek Ek,max τk,min lk,min

state [eV] [V/m] [V/m] [ps] [µm]

C1 11.16 2.2·1010 5.2·1010 16 58

C2 24.38 5.2·1010 1.3·1010 4.6 23

C3 47.89 1.3·1011 1.8·1011 2.7 17

C4 64.5 1.8·1011 1.8·1011 2.4 17

C4 64.5 1.8·1011 1.2·1012 0.35 2.5

C4 64.5 1.8·1011 5.3·1012 0.08 0.6

C5 392.09 5.3·1012

C6 490.00 7.0·1012

F7 185.2 8.5·1011 8.5·1011 10 17

F7 185.2 8.5·1011 2.5·1012 0.35 5.7

F7 185.2 8.5·1011 2.3·1013 0.04 0.6

shorter than the laser pulse. A field of similar duration as the laser pulse has now a

maximal value of ∼ 1.75TV/m instead of 1.2 in the boxlike case.

The ultrahigh-field region turns out to be short-lived and of short length (≤ 500 fs,

≤ 5µm). Only the C4+- and F7+-ions see these highest fields, while the lower charge

states are accelerated by lower fields of longer duration. The difference in spatial and

temporal extension of the C1+and C4+accelerating fields is two orders of magnitude.

The evaluation of the fluorine shot shown in Fig. 7.6 shows that E∼2.5 TV/m active

over τmin
7 ∼ 350 fs is necessary to accelerate F7+-ions up to 100 MeV over a scale length

of l ∼ 5 µm. The shot presented in Fig. 7.6 was virtually without any protons, but the

modelled fields can accelerate H+up to ∼25 MeV, as typically observed with unheated

targets (see Fig. 8.2).

This first evaluations show that the TNSA-model explains the occurence of high energy

protons and is able to reproduce the measured spectra. It does not however, explain

the spectra of other charge state and has to be considered incomplete. The estimated

temporal and spatial extensions for the fields accelerating the lower charge states take

place on larger timescales. A valid model for larger timescales would be the isothermal

expansion model by Gurevich [97] and similar models which work well for acceleration

by longpulse lasers. However, the ansatz to describe the high energetic part of the

spectrum by TNSA and assume a relaxation to an isothermal regime as an explanation
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Figure 8.1: Accelerating fields for C4+-ions. In order to achieve the right cutoff energy the

field duration and strength are varied. The maximum field is much shorter than the laser

pulse. A field of the duration of the laser pulse is in good agreement with TNSA-model

predictions with respect to the field strength.

for the lower charge states does not work either. It reproduces neither the measured

spectra nor the charge state balance. The most promising way to theoretically describe

the physics of the acceleration process is with the use of computer simulations, which

will be discussed in Sect. 8.2.

8.1.4 Front- versus Rearside mechanism

Since the first experiments on short-pulse laser ion acceleration there has been a dis-

agreement about the origin of the observed particles. Some groups favor the rear-

surface TNSA mechanism [90, 52, 50], while others suggest the acceleration of front-

surface protons in the charge-separation field in the laser-plasma [39, 47, 46]. While it

is now clear that both mechanisms exist, there is still discussion about the effective-

ness of each mechanism and what energies can be produced. The problem in settling

this dispute is that in measuring protons it is not possible to determine without doubt

where the protons are coming from. Due to the vacuum conditions there is always a

proton population on both surfaces and a method to reliably clean only one surface has
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yet to be demonstrated. Maksimchuck [46] circumvented this problem by accelerating

deuterons coated on the front of an Al-target. A nuclear reaction in a 10B catcher

which is sensitive to deuterons but not to protons was then used to distinguishe the

particles and proved the existence of a front surface mechanism. We where able to

reproduce those measurements in more detail in our recent experimental campaigns

at LULI and LANL (to be published). However, the deuterons out of this front lay-

ers have comparatively low energies of ∼5 MeV and cannot explain the high energy

proton signal. Furthermore when doing the reverse experiment with deuterons on the

back, the proton contamination poises the acceleration process for the deuterons as

was shown in Chapter 7 and Sect. 8.2.3.

By accelerating heavy ions out of prepared source layers, and removing the proton

contaminants we unambiguously prove for the first time the existence of an effective

rear-surface acceleration mechanism. The deduced electric field for the high energy

particles is consistent with the TNSA-model and explains the proton energies observed

in our experiments, as is showed in Fig. 8.2. These experiments, published in [43],

together with experiments showing that the acceleration is disturbed by a plasma

at the back surface (Chapter 6 and [50]), the detailed Boron measurements (to be

published), and the neutron experiments published in [98] lead to the conclusion that

the well-collimated high energy ions stem from the rear surface while the protons from

the front surface are of much lower energy and show a larger divergence angle. This

explanation is also in agreement with 3D-PIC simulations by Pukhov [48] and Ruhl

[99] and finally resolves the proton-origin controversy.

8.2 Computer Simulations

Understanding ion acceleration by short pulse lasers with the help of Computer Simu-

lations

The old self-similar solutions which can analytically describe the ion expansion in the

case of a long pulse laser do not work for ultra-short pulse laser interaction. While

clearly an isothermal expansion takes place on longer time-scales, after the laser-plasma

interaction is finished and some degree of cooling has occured, the main interaction is

driven by other processes. The two main requirements for the self-similar ansatz as

described in Chapter 2 to work are not fullfilled in the first stages of acceleration. These

requirements are charge neutrality and a constant temperature during the expansion.

While overall charge neutrality is of course fulfilled for the system, the acceleration

by ambipolar space charge fields requires locally, i.e. at the coordinates where actual

acceleration takes place, a strong negative charge distribution to create the field. The
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second requirement, isothermal conditions, are not fulfilled due to the extremely short

pulse duration. Especially the time scales of the laser pulse are much shorter than the

time scales of the whole expansion process. Since the laser pulse creates the hot electron

population their temperature starts to decrease as soon as the pulse terminates. How

fast and by what mechanism the temperature decays is still a subject to discussion

and further research but it is clear that the situation of the fast ions is by no means

isothermal.

The analytical TNSA-model (see Sect. 2.3.3) gives a good idea on the relevant scales

like the maximum accelerating field, the spatial scale and the temperatures involved but

is a far to simple model to give a detailed dynamic picture of the interaction process.

In order to better understand the ionization and acceleration dynamics we therefore

make use of computer models simulating parts of the interaction. Two different codes

are used to model different aspects of the interaction, a simple 1D-kinetic code that

was developed to get a basic idea of the ionization dynamics and the first stage of the

acceleration process and a more elaborate 1D-PIC code developed by Pfund [65] and

expanded by A. Kemp to be able to model our experimental parameters as closely as

possible. The last section of this chapter than briefly describes the struggle for full

scale 3D-simulations of solid-state target ion experiments which are currently work in

progress.

8.2.1 1D-code

In order to describe how the energy and charge state distributions of the individual

ion species develop in space and time, we have developed a 1D-numerical model which

calculates the electron dynamics behind the target, assuming a Boltzmann distribu-

tion for the electron energy spectrum and a current distribution which follows the laser

pulse [43]. The code includes the ionization process (FIBS), the acceleration of dif-

ferent ion species as well as screening effects on the potential. In each time step, it

solves Poisson’s equation for the given charge distribution, calculating a self-consisting

solution for the electric field behind the target. It then checks for ionization events, ad-

vances the different ion species, and solves again Poisson’s equation for the new charge

distribution. This operation is repeated until a stable solution for the given time step

is obtained. The intermediate results are stored and the time counter is advanced until

the end of the predefined computation time span is reached.

This method works well for approximately the duration of the laser pulse, i.e. the

ionization phase and the first phase of acceleration. After the laser pulse no more hot

electrons are supplied, while the ions move on. In the code very large decelerating

fields develop due to the lack of a charge neutralization mechanism and a cooling
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mechanism for the electron distribution. PIC-code simulations by Y. Sentoku [42]

suggest an oscillating electron population which charge neutralizes the beam and keeps

an accelerating gradient at the tip of the ion front. This however cannot be described

by our simple model but needs a full PIC-code description. Therefore this kinetic code

was discontinued in favor of a cooperation with the theory group at GA where much

more accurate and complete PIC-codes could be used to study the acceleration physics.

However to get a first idea of the physical processes involved, especially the ionization

dynamics, as well as to predict the highest charge state energy spectra for given field

parameters the kinetic model is still a useful tool, especially since it can be run in finite

time on a normal PC and does not need large parallel cluster machines.

Exemplary results of the simulations are shown in Fig. 8.2. The spectra for the highest

present charge state is reproduced within an order of magnitude (see Fig. 8.2 (a)).

Fig. 8.2 (b) shows that the ion distribution starts out stratified - i.e. C1+ closest to the

surface, followed by C2+, C3+ and finally C4+ extending to the edge of the expanding

ion front. This is different from the measured data, where the high energy cutoff is

still increasing with charge state but the spectra overlap and e.g. the fastest C2+-ions

have more energy than the slowest C4+-ions. This discrepancy is understandable since

the simulation only runs on a time scale of the laser pulse duration. The interaction is

however highly dynamic and gets increasingly complex as the system cools down after

the pulse. That first period of ∼0.5 ps is shown in Fig. 8.2 (c). When the first laser-

heated electrons enter the vacuum behind the target, they create a highly dynamical

situation, different from that in the simple TNSA model. When more and hotter

electrons arrive at the surface, the field increases until Estat = E1. Now FIBS sets in

and the produced ions and electrons decrease the field at the surface. An equilibrium

between the growing external field and the surface ionization rate keeps the field at

the surface always at E1. The created ions are accelerated into the vacuum whilst

the freed electrons are pushed into the target. Whereas the field close to the target is

shielded by the ions, the unshielded field in vacuum keeps increasing. The position of

the maximum electric field moves outwards into vacuum, ionizing the outermost ions

further (see Fig. 8.2 (b)).

As long as there is a source of hot electrons, nearly all ions are sequentially ionized

to C4+. This sequence happens extremely fast during the rising flank of the electron

pulse on a temporal and spatial scales of femtoseconds and nanometers respectively.

The low charge state distributions have to be created either after the pulse requiring

two orders of magnitude longer time scales or in field-fringe-regions of the electric field

requiring a fully three-dimensional simulation.
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Figure 8.2: C4+-spectrum calculated with 1D-kinetic model. Highest energy and absolute

ion numbers are reproduced within an order of magnitude. (c) Time-space history of the

accelerating electric fields (red curves) and the ion distribution (white curve): The region

of maximum field moves out into the vacuum. Already during the pulse there exists an ion

distribution on a µm-scale. (d) F7+-trajectory and corresponding H+-trajectory in acceler-

ating quasistatic field. The same field that accelerates F7+to ∼100 MeV accelerates protons

to ∼23 MeV. This result is in good agreement with the measured data.

8.2.2 1D-PIC code with ionization

A more detailed and accurate modelling of the acceleration process was possible with a

one-dimensional PIC-code. This code was developed by R. Pfund in [65] and contains

not only the standard PIC-physics of relativistic equations of motion for the particles

and Maxwell’s equations for the field but also ionization models for collisional ionization

and field ionization. The code was expanded by A. Kemp to be run on massively parallel

computers. This was a prerogative in order to accurately simulate the experiments

which by their nature require a large computing effort. The targets have solid state

densities, ne ∼ ni ∼ 1023 cm−3, which results in a very high number of particles in the

simulation. As was shown before the simulations have to run on large temporal and

spatial scales, ideally∼ 100 ps and several hundreds of micrometers. While this was still

not possible yet due to the lack of CPU-time on sufficiently powerful parallel computers,
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Figure 8.3: Influence of contaminating protons on the carbon spectrum: In the presence of

protons the carbon spectrum has lower energies and a cutoff forms. The proton spectrum

starts showing band structures.

simulation times on the order of picoseconds could be realized. This together with

the simultaneous treatment of not only different charge states but also different ion

species, resulted in a far more accurate simulation. While in the simple kinetic model

an electron temperature and distribution has to be assumed, the PIC-code is able to

model the full laser-target interaction. Fig. 8.3 shows the resulting spectra for the

interaction of a 300 fs laser pulse of an Intensity I = 5 × 1019 W/cm2 with a pure

carbon target. The helium-like charge state gets accelerated to ∼ 5 MeV/nucleon and

the spectrum is smoothly decreasing showing a plateau-like high-energy region. In both

energy and form it agrees well with the measured spectra in the absence of protons as

shown in Fig. 7.6.

8.2.3 1D-PIC results: Influence of H+ contamination

The measured ion spectra show a distinctively different form for shots which had no

protons at all and shots were still some protons were left. While in the first case

the helium-like charge state shows a gentle decrease in the energy spectra ending in a

plateau, in the latter a sharp cutoff is observed. The 1D-PIC-code is able to examine

that situation by simulating a target with two different ion species. In the simulations

a carbon target was used which contained variable degrees of hydrogen. The results
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are summarized in Fig. 8.4. As the amount of hydrogen in the target is increased form

0 % to 90 % a cutoff develops and the spectra also shows fluctuations. Furthermore the

cutoff energy decreases since the faster protons more and more shield the accelerating

fields for the heavier. This behavior is in excellent agreement with the measured

data and even allows an estimate of the proton fractions for partly heated targets.

Comparing the spectra in Fig. 8.4 with the measured C4+ spectra in Fig. 7.5 and

Fig. 7.4, proton fractions of ∼50 % and ∼70 % are obtained.

This is the first time that a multi-species PIC-calculation accurately reproduced an

experimental result. Though it is only a small aspect yet, this success is encouraging

further work on the computer code. Current work on 1D-simulations for thicker targets

and longer timescales and 3-dimensional simulations with full ionization already looks

very promising.
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Chapter 9

Further Research and Potential

Future Impact of Laser Accelerated

Ions

Ion acceleration with short pulse lasers has only just begun. This work as well as the

handful of similar experiments were all performed within the last three years and we

have just started to understand the underlying physics. As explained in the preceding

chapter, no complete model explaining the full spectra and charge state distribution

currently exists. The electron transport through the target is still largely unclear yet

and the scaling laws with respect to the laser parameters are incomplete. This leaves

room for many different future experiments and simulations in order to gain a better

understanding of the process. Simultaneously, however, there have been many encour-

aging results regarding applications. Laser accelerated ions have a number of unique

characteristics: the pulse duration is at least three orders of magnitude shorter, the

currents are many orders of magnitude higher and the inherent beam emittance is bet-

ter than that of conventional accelerators. If one succeeds in preserving those phase

space properties only partially while matching the pulse to a standard accelerator one

would have a unique ion source and first accelerator stage. There are first results at the

MPQ ATLAS laser, indicating that a downscaling to a table-top system and thereby

an upscaling in repetition rate from once every hour to ten times a second is possible.

There are also first experiments and simulations showing that focussing of the beam

by shaped targets and/or shaped laser pulses is possible. This is of extreme impor-

tance for Fast Ignition with proton or ion beams in the framework of a laser-fusion

scheme as simulated by Atzeni et al. [100]. It would also offer the possibility for basic

astrophysics experiments in the laboratory. The next section briefly summarizes the

acceleration mechanism including the adjustments and additions resulting from this

103
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work. The other three sections then describe future perspectives within this fields,

proposing near future experiments to further explore the acceleration physics and dis-

cussing further prospects of what to expect from next generation laser sources and

finally giving exemplarily a number of immediate applications of laser accelerated ions.

9.1 Modified picture of the acceleration mechanism

The basis of our current picture of the acceleration physics is still rooted in the TNSA-

model. However, due to the discoveries made during the course of this thesis some

important modifications and limitations have to be made. The TNSA-model correctly

estimates the maximum field strengths and the maximum energy for the ion species

with the highest charge-to-mass ratio . Beyond that, it is far too basic to explain the

underlying physics. As we see from the simulations in Sect. 8.2.1, [43], the field is

not really quasistatic but shows a very dynamic behavior. It also does not reach its

maximum directly at the target surface but at a short distance behind it. This is caused

by the fact that at the surface there is an unlimited supply of potential positive charges

(the target atoms), the ionization happens quasi-instantaneously and the freed electron

is pushed away into the target. Therefore, any additional electron adding to the charge

distribution and thereby building up the field, is immediately neutralized directly at

the surface, once the field exceeds the first field ionization barrier. Already a few nm

further out this condition does not apply anymore and the field ramps up very fast to

its maximum value of several TV/m for typical laser parameters. During the course

of acceleration the maximum of the electric field moves out into the vacuum with the

moving ion density. If not only one charge state is accelerated, as it is always the case in

an experiment, then the charge state with the highest charge-to-mass ratio outruns the

others and screens and modifies the accelerating fields. By measurements and PIC-

calculations we could show that the contaminating protons not only inhibit the ion

acceleration and that by removing them one can effectively accelerate heavier species

[43], but that they also influence the spectral shape of the other charge states (see

Sect. 8.2.3, to be published). Another important result is that we were able to measure

lower limits for the time-constant of the acceleration process. While the highest charge

states are accelerated on a time scale equal to that of the laser pulse, the acceleration

of the lower charge states takes considerably longer. A possible mechanism which could

explain that phenomenon was suggested by Mackinnon and Sentoku in [42] to explain

the increasing proton energy with decreasing target thickness. Their measurements

and PIC-simulations indicate recirculating electron populations which retain a high

temperature and density long after the laser pulse is terminated. One still missing
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piece of the puzzle is the origin of the low charge states. Up to now no simulation

could reproduce the measured charge state distribution correctly. Two possibilities are

discussed at the moment. The first one asks wether these charge states constitute a

3-dimensional effect by originating in the spatial fringe regions of the accelerating field.

In this case a 1D-simulation is fundamentally unable to reproduce the low charge states.

The second notion is that the low charge states only start to accelerate when the field is

cooling, requiring very long simulation runs and the correct electron transport physics,

taking into account recirculation and trapping in the ion potential. Both possibilities

are currently worked upon theoretically and the next section suggests an experiment

to measure the effect directly.

To leave the reader with a picture of how the ion acceleration by a short pulse laser

works in a very simplified but illustrative way, the current model is schematically

displayed again in nine time steps in Fig. 9.1:

9.2 Future Experiments

Although the principle is simple, as discussed above there are still many open questions

concerning for example the process dynamics, the cooling times, the spatial setup or

the screening processes, all of which have to be understood in order to optimize the

process for future applications.

9.2.1 Time-resolved measurement of the accelerating electric

field

As described in Chapter 7 and [43] the dynamics of the acceleration mechanisms are

far more complex than described by TNSA or any other current model. Clearly, a

dedicated experiment is needed that explicitly addresses the temporal behavior of the

apparently not-so ”quasistatic” accelerating fields. With the new upgrades to the

LULI 100TW laser facility currently under installation, which comprise a second pulse

compressor, it will be possible to have two ion generating laser pulses. As was shown

by Borghesi et al. in [51] the laser generated proton beam can be used for a time-

dependent measurement of strong electric fields with a ∼ps time-resolution. As we

were able to show in our previous experimental campaigns at the LULI-laser, this is

the time frame for the acceleration of low charge state ions. We therefore plan an

experiment in which one of the two pulses is used to make a high energy proton burst

to generate a time-resolved radiographic image of the acceleration process at a second

target. This second target is then placed at a 90◦angle and a cm distance to the first
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Figure 9.1: Schematics of laser induced ion acceleration: (1,2) A laser pulse is focused by an

off-axis parabola on a pure carbon target. (2,3) Prepulses and ASE create a plasma density

gradient at the target front side. (4) The main pulse interacts with this preplasma, (5) ac-

celerating relativistic electrons through the target. (6) These electrons set up an ultra-strong

(TV/m), quasistatic space charge field at the rear surcface. (7) This electric field ionizes the

rear surface atoms (C1+: green). (8) The ionized atoms start moving and are further ionized

(C2+: blue, C3+: cyan, C4+: green; scales: fs, nm). (9) The ions are accelerated to MeV

energies, the higher the charge state, the higher the energy and the smaller the divergence.

target. It consists of a thin W-foil coated with a light ion source layer like LiF or

Be. The target has to be heated in order to remove the protons, so the light ions

out of the source layer can be accelerated. The ion spectra from this target are to be

recorded by Thomson parabola spectrometers as done in previous experiments. Those

spectra will yield additional information on the field strength and spatial and temporal

parameters as demonstrated in [43] and Chapter 7. These measurements combined

with the radiographic images should yield the necessary information to form a more

consistent picture of the field dynamics. The key parts of the experiments, namely

the production, measurement and analysis of the ion spectra on the one hand and the

time-resolved radiography on the other hand, have been demonstrated. The problems

in combining these methods will be in the experimental realization, not in the physics,
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while the expected gain from the experiment will yield new insights in the physics

mechanism of acceleration.

9.2.2 Spatial origin of low charge state ions

Another interesting question is the origin of the lower charge state ions. So far, 1D-

simulations were not able to reproduce the complete charge state distribution but only

the highest charge state spectra. One possibility is that the low charge states originate

in the bulk of the target and are accelerated later in time, requiring long simulation

times and transport physics in the simulations. The other option is an origin in the

fringe regions of the accelerating field. In that case it would require a full 3D-code to

see the full low charge state spectra in a simulation. However, 3D-simulations can not

yet deal with a sufficiently long timespan, a large enough simulation box and a high

enough target density simultaneously, due to the limited computing power of even the

biggest massively parallel machines. We therefore plan an experiment to clarify this

question. The experiment will consist of two series of targets to test each hypothesis.

The first series will be tungsten targets with a few atomic layers thin coating of beryl-

lium. This coating will be successively buried deeper and deeper in the W-substrate,

the buried depth being again on the atomic layer scale. This shot series will thereby

test up to which depth ions can be accelerated and contribute to the signal.

The second series will consist of tungsten targets with a Beryllium coating at the

back surface in the form of a small spot of ∼ 50 µm diameter. From the source size

measurements presented in Chapter 6 we know that this is roughly the source size of

the high energetic part of the proton spectra, i.e. the high-field region. If the low

charge states originate in the fringe region we can expect a significant drop of the low

charge state ion spectra in the signal. Apart from learning more about the acceleration

physics it might also be a method to obtain a single charge state ion spectrum.

9.2.3 Truly heavy ion acceleration

Last but not least we plan to try for really heavy ion acceleration by shooting a cleaned

pure tungsten target, an experiment not yet done due to the lack of sufficient beamtime

on big enough laser systems. Apart from the possible applications we would also get a

more precise idea of the maximum field strength due to the more numerous charge states

in the region of interest. To resolve this, however, the Thomson parabola spectrometer

have to be improved in resolution and accuracy.
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Figure 9.2: Proton spectra for a 8 µm Mylar target irradiated by a 0.6 J pulse from the

table-top, high rep-rate (10 Hz) MPQ ATLAS-10 laser.

9.2.4 MeV-Ion acceleration with table-top lasers

Another approach which will be followed at the MPQ ATLAS laser facility is the trans-

fer of the ion acceleration scheme to a table-top laser system. In recent experiments

up to 2 MeV protons were measured with a Faraday cup detector as shown in Fig. 9.2.

By optimizing the parameters even 3.5 MeV protons and ∼6 MeV carbon ions were

produced by the ATLAS-10 laser, using 0.6 J pulses of 150 fs pulse duration at an

intensity of ∼ 1019 W/cm2. Apart from being smaller and cheaper the big advantage

of this type of laser is its repetition rate of 10 Hz. For any future application such

as isotope production or ion sources, a higher repetition rate is a conditio sine qua

non. Furthermore, from the scientific point of view it enables systematic parameter

studies which are difficult at high energy systems with their limited number of shots

and poor reproducibility of pulse parameters. Among those parameters to be studied

in future experiments at MPQ is the ion energy scaling with preplasma gradient and

pulse duration.
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9.3 Scaling parameters for laser accelerated ions

What ion parameters can be expected for future laser systems?

While, apart from fast ignition, all the experiments and applications described above

can be conducted with existing laser systems, the question remains how the ion accel-

eration scales up with laser parameters and what can be realistically expected using

future laser systems. Up to now no qualitative exact scaling laws could be obtained

from the conducted laser ion experiments. The reasons for this lack are related to the

characteristics of the high energy laser systems used in ion experiments. Due to their

low repetition rate the number of shots in any experimental series is rather small. On

the other hand the shot-to-shot fluctuations of the laser parameters are fairly large.

When comparing experiments performed on different laser systems usually a number of

parameters is different which complicates any analysis. Therefore at the moment PIC

simulations have the best hope of predicting results with upscaled laser parameters,

since the relevant physics problems are supposed to be inherently solved within the

code. The most promising outlook for the future of laser accelerated ions is predicted

by a full 3D-PIC simulation done by Pukhov. Using his VLPL code he simulated the

interaction of a 15 fs, 1 kJ laser pulse at an intensity of I = 1023 W/cm2. The simula-

tion predicts 1012 relativistic protons in a narrow spectral distribution between 5 and

6 GeV as is shown in Fig. 9.3.

In order to compare the simulation results to real experiments and to get an idea of

the scaling behavior Fig. 9.4 summarizes the results on laser ion acceleration already

done and published with respect to the scaling parameters. The experiments listed

were performed on a number of different laser systems, from small 10 Hz systems like

ATLAS, to high-energy systems like LULI (France), Trident (USA) or Vulcan and

on to big Petawatt systems like the now decommissioned Livermore PetaWatt laser

(USA) or the Gekko-Shortpulse (Japan). Also included was a 3D simulation done by

Pukhov [101] to scale up to future laser parameters. Comparing those experiments is

difficult though, due to the number of relevant parameters involved. Examined are

the proton cutoff energy, the absolute proton number and the conversion efficiency

from laser energy to ion energy. The main laser parameters are pulse energy, pulse

duration and intensity on target. Unfortunately these parameters vary from system to

system, and neither are they the only parameters involved, nor are they independent

from each other. Especially the intensity depends on both the energy and the pulse

duration, but also on the focal size. Other important characteristics which also are very

different for all experiments are target material and thickness, incident laser angle, the

contrast ratio of the laser pulse which is responsible for the preplasma density gradient,

and last but not least detector properties. The low energy cutoff plays an important
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Figure 9.3: Laser-accelerated GeV protons: top: simulation setup and parameters; left:

ion density(ni) and longitudinal electric field; right: energy spectra of electrons and protons

[101].

role when comparing the absolute ion yield and the energy conversion efficiency. The

exact parameters of the experiments together with the references are given in Tab. 9.1.

Despite those difficulties there are some trends which can be observed in Fig. 9.4.

Due to the problems discussed above it is hard to do a quantitative analysis of the

scaling parameters. More experiments with carefully chosen and controlled parameters

are necessary. Especially the results with high repetition-rate laser systems are very

promising with regard to that purpose, due to their inherently lower shot-to-shot fluc-

tuations. It is, however, possible to spot some qualitative trends. As one would expect

especially the number of ions seems to scale with the pulse energy but the same seems

true for the energy conversion efficiency. This will go into saturation at a certain level

and it cannot exceed the conversion efficiency into relativistic electrons. The highest

conversion factor in fast electrons reported up to date is >40 % [9] at the Livermore

PW laser. Anticipating some improvement and optimization one can probably expect

a maximum achievable conversion efficiency from laser to ion energy on the order of 50

%. The maximum energy does not only scale with laser energy, but more importantly

also with laser intensity. While the laser parameters from the VLPL simulation are still

far from being realized, a number of facilities with energies in the multi-kJ range and

pulse durations of ∼ 0.5 ps are under construction. These lasers can be expected to



9.3. SCALING PARAMETERS FOR LASER ACCELERATED IONS 111

1 10 100 1000

0

10

20

30

40

50

60

1000

Atlas
Jena
Trident
Michigan
JanUSP
Gekko�PW
LULI
Vulcan
PetaWatt
Pukhov�Sim

P
ro

to
n�

E
ne

rg
y�

[M
eV

]

Laser�Energy�[J]

0.01 0.1 1
0

10

20

30

40

50

60

1000

10000

P
ro

to
n�

E
ne

rg
y�

[M
eV

]

Pulse�Duration�[ps]
0.01 0.1 1

1E-4

1E-3

0.01

0.1

1

10

100

C
on

ve
rs

io
n�

E
ff

ic
ie

nc
y�

[%
]

Pulse�Duration�[ps]

1E18 1E19 1E20 1E21 1E22 1E23
0

10

20

30

40

50

60

1000

10000

P
ro

to
n�

E
ne

rg
y�

[M
eV

]

Laser�Intensity�[�W/cm2�]
1E18 1E19 1E20 1E21 1E22 1E23

1E-4

1E-3

0.01

0.1

1

10

100

Atlas
Jena
Trident
Michigan
JanUSP
Gekko�PW
LULI
Vulcan
PetaWatt
Pukhov�Sim

C
on

ve
rs

io
n�

E
ff

ic
ie

nc
y�

[%
]

Laser�Intensity�[�W/cm2�]

Scaling�with�Laser�Intensity

Scaling�with�Pulse�Duration

Scaling�with�Laser�Energy

1 10 100 1000
1E-4

1E-3

0.01

0.1

1

10

100

C
on

ve
rs

io
n�

E
ff

ic
ie

nc
y�

[%
]

Laser�Energy�[J]

0.01 0.1 1
1E9

1E10

1E11

1E12

1E13

1E14
N

um
be

r�
o

f�P
ro

to
n

s

Pulse�Duration�[ps]

1 10 100 1000
1E8

1E9

1E10

1E11

1E12

1E13

1E14

N
um

be
r�

o
f�P

ro
to

n
s

Laser�Energy�[J]

1E18 1E19 1E20 1E21 1E22 1E23
1E9

1E10

1E11

1E12

1E13

1E14

N
um

be
r�

o
f�P

ro
to

n
s

Laser�Intensity�[�W/cm2�]

Figure 9.4: Scaling behavior of proton energy, yield and energy conversion efficiency with

laser parameters. The top row shows scaling with laser energy, the middle row scaling with

pulse duration and the bottom row scaling with laser intensity on target. The experiments

together with the references are listed in Tab. 9.1. The colored stars are experimental data,

the black star is from a 3D-simulation with VLPL.

deliver intensities exceeding 1022 W/cm2. The Beamlet Shortpulse Upgrade at Sandia

National Laboratory could deliver 5 kJ pulse at 500 fs within the next 5 years. As-

suming a focal diameter of 10 µm an intensity of 1.3× 1022 W/cm2 would be achieved.

Using the simple equations from Chapter 2 one would obtain an electron density of

ne ∼ 5 × 1020 cm−3, a Debye length of ∼2 µm and an electron temperature Th ∼ 40

- 50 MeV. Using the 1D-kinetic code from Chapter 8 a maximum proton energy of

∼ 250 MeV can be expected. The proton number can be expected to be on the order

of > 5× 1013 particles above 10 MeV.
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Table 9.1: Listing of laser induced ion acceleration experiments.

Facility Epulse tpulse I/1018 contrast Emin Emax Ionno. Effic. ref

[J] [ps] [W/cm2] [MeV] [MeV] [%]

ATLAS 0.6 0.15 20 10−6 0.2 3.5 1011 2

ATLAS 0.6 0.15 20 10−6 1 3.5 1010 1

Jena 0.6 0.08 30 10−6 1 1.2 1010 0.0005 [98]

Trident 1 0.6 10 10−10 2 18 8× 109 0.2 [102]

CUOS 4 0.4 6 5× 10−5 - 10 - 0.02 [103]

JanUSP 10 0.1 100 10−10 4 24 2× 1011 1 [42]

JanUSP 10 0.1 100 10−10 7 24 ∼ 5× 109 0.1 [42]

LULI 25 0.35 50 10−7 2 25 1012 4 [43]

GekkoPW 25 0.45 5.5 10−3 1 10 2× 109 0.004 [90]

Vulcan 50 1 50 10−7 2 22 1012 4.4 [50]

LLNL PW 500 0.5 300 10−7 2 58 3.5× 1013 7 [9]

LLNL PW 500 0.5 300 10−7 10 58 2× 1013 12 [9]

LLNL PW 500 0.5 300 10−7 2 58 ∼ 1.5× 1014 ∼ 30 [9]

VLPL Sim 1000 0.015 105 - 4000 6000 1012 ∼ 40 [101]

9.4 Applications

Laser accelerated protons are already a new tool for plasma diagnostics [51]. Also the

transport of very dense charge neutralized ion beam in plasmas or isochoric heating

of macroscopic volumes (∼ 105 µm) to hundreds of eV can now be studied. These

ion beams represent a radically new tool for probing the properties of dense, strongly

coupled plasmas due to their properties: very short pulse duration (∼ps), unprece-
dented density (∼ 1019 cm−3) and overall charge neutrality. With the new capability

to accelerate also other ion species and indications in simulations that beam focussing,

spectra- and charge state control might be feasible, applications like laser accelerators

are becoming realistic.

Before we can realize the potential for this new tool, we need to understand the in-

teraction of such neutralized, middle to high Z, high current beams (∼100 kA for

ions/electrons) with a low Z plasma or solid target. On the one hand, the neutralizing

beam electrons are beneficial in allowing currents much above space-charge limits. On

the other hand, they introduce the possibility of collective effects (filamentation, hos-

ing instabilities) in their interaction with the target plasma when its density is similar

(1018 − 1020 cm−3) to the beam density. It is not known how these instabilities would

affect the range and energy deposition of such neutralized beams, particularly in re-

alistic plasmas with a density gradient. Such understanding might enable ion-based
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isochoric plasma heating, not yet conclusively demonstrated. Applications of isochoric

heating include ion-driven fast ignition and spectroscopy. Heating optimization would

benefit from modest focusing of the beam (factor of 4: Te > 300 eV in solid Al), from

improved laser/ion conversion efficiency, and from improved ion spectra.

Technologically, laser-driven ion accelerators hold the promise of supplying outstanding

new ion sources as well as accelerator stages with acceleration gradients many orders

of magnitude above those achievable by conventional means. If transferred to small

table-top Ti:Sapphire lasers, small cheap accelerators might become available opening

possibilities (e.g., isotope production for medical diagnostics) so far only accessible

by large accelerators in a handful of hospitals. Laser accelerated ions also have the

potential to advance the grand challenge of fusion in the laboratory and our state

of knowledge in strongly coupled plasmas, another frontier area in plasma physics.

The interaction of such beams with background plasmas might allow benchmarking

astrophysical codes and studying problems such as radiation transport in a star in the

presence of impurities like iron. Due to their inherent ion density and short duration,

laser-based ion sources might prove to be the core-heating method of choice for fast

ignition [100] and even the driver of choice for ion-driven fusion.

The generation and control of very low emittance ion beams, as well as plasma beams,

opens the possibility of new developments and applications in basic and applied re-

search. For example, this technique can be used to produce interestingly large mi-

crobunches of ions which could be injected into accelerators for conventional exper-

iments. It is important to note that whereas RF technology is quite mature, laser

technologies are still advancing rapidly and useful rep-rated injectors might be fore-

seeable and recent experimental results at MPQ’s 10 Hz laser point in that direction.

Other applications making use of the unique characteristics of laser accelerated ions,

such as the short acceleration time and the high peak currents and current densities

may be found in material studies, e.g. of fusion reactor walls. One may also be able

to learn about time-resolved material damage effects, by coupling laser-accelerated ion

beams with laser-based ultrafast probing techniques using optical or X-ray photons.

Neutral beams are in themselves of interest as diagnostic probes for example of tokamak

plasmas. One could imagine using laser accelerated protons to probe turbulent field

phenomena in fusion plasmas. Finally, as we learn to produce better focused beams

and high contrast, one could image using beams patterned at the source to improve

the efficiency or writing speed of ion-implantation or lithographic applications. Clearly

this field is only at its very start and it is difficult to predict which applications will

gain enough interest and momentum to be realized, but it is clear that short-pulse laser

accelerated ions hold an enormous potential in a number of fields.
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Proton Imaging

One application of laser accelerated protons already realized in a number of experiments

is radiographic imaging. The excellent beam quality of the ion beam is ideally matched

to the requirements for these techniques. One scheme of particular interest is the use

of laser accelerated protons to radiograph macroscopic samples to study their proper-

ties. Due to the different interaction mechanism protons can provide complementary

information to more common techniques like X-ray backlighting. The interaction of

swift protons with matter is well known and a traditional research area of accelerator

laboratories over the past decades. Because of the copious amounts of protons accel-

erated in a very short time, laser accelerated protons provide a new diagnostic quality

in research of transient phenomena. Within the scope of our campaigns at LULI and

LANL a number of experiments has been performed to demonstrate the feasibility of

laser accelerated proton beams for radiography applications. A compound target of

different materials has been imaged by the protons. It consisted of an 1 mm thick

epoxy ring structure, several copper wires of 250 µm diameter, a hollow cylinder with

300 µm walls of steel, several Ti sheets of 100 µm thickness and a glass hemisphere

of 900 µm diameter and 20 µm wall thickness was used as a radiography target. The

protons were recorded in multiple layers of RCF to detect the image at different pro-

ton energies. Fig. 9.5 shows the radiographic images of the target for different proton

energies. The pictures basically constitute a negative image of the areal density of the

target. The names of the collaborating institutes have been engraved on the epoxy

ring, which results in a reduced thickness and therefore a higher energy deposition of

the protons in the respective layer. The areal density variation of the hollow cylin-

der, including a hole in the wall on the right hand side can be seen as well as a thin

metal rod placed inside the cylinder. These results show a clear dependence on the

areal density rather than on a residual charging effects, which can also be diagnosed

as presented in [51]. Close examination also shows the small glass hemisphere placed

above the cylinder. The time of exposure in this experiment was estimated to be in

the order of tens of picoseconds, based on the initial proton beam pulse duration and

the energy dependent dispersion of the pulse from the source to the target.
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Figure 9.5: Proton radiography of a compound target. Top left: Compound target con-

sisting of an epoxy ring, several wires of varying thicknesses, a steel hohlraum and a glass

shell. Bottom left: target mounted ∼ 5 cm behind the proton producing target foil. Right:

Radiographic images at different proton energies.
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Collimated jets of carbon and fluorine ions up to 5 MeV=nucleon (�100 MeV) are observed from the
rear surface of thin foils irradiated with laser intensities of up to 5� 10 19W=cm2. The normally dominant
proton acceleration could be surpressed by removing the hydrocarbon contaminants by resistive heating.
This inhibits screening effects and permits effective energy transfer and acceleration of other ion species.
The acceleration dynamics and the spatiotemporal distributions of the accelerating E fields at the rear
surface of the target are inferred from the detailed spectra.

DOI: 10.1103/PhysRevLett.89.085002 PACS numbers: 52.38.Kd, 41.75.Jv

For over 25 years, energetic protons and ions have been
generated by focusing �ns pulses from large Nd:glass
and CO2 lasers ([1] and references therein) on solid tar-
gets at intensities of 1014–1016 W=cm2. The ions emerg-
ing from the coronal plasma are emitted into a large solid
angle. They exhibit strong trajectory crossing and a broad
energy spectrum with typical ion temperatures of
�100 keV=nucleon. These unspectacular characteristics
have prevented major applications. This scenario is totally
different when the ion acceleration is caused by femto-
second (fs) laser pulses. When these are focused on thin
foils targets (�50 �m) at intensities of >1019 W=cm2,
proton beams are observed which exhibit new features
[2–4]: (i) 1011–1013 well collimated (<20�) protons with
5 to 50 MeV are generated, (ii) they come from the rear

surface and move in the laser direction, and (iii) they form
a dense, charge-neutralized bunch of �1 ps duration.
These proton beams have already been applied for the
diagnostic of high-density plasmas [5] and suggested for
fast ignition [6]. Application in isotope production for
positron emission tomography might follow soon.

Hatchett and Wilks [7,8] attribute the above mentioned
characteristics of the proton beam to the so-called target-
normal sheath acceleration mechanism (TNSA), the notion
being that relativistic electrons with density, ne, and tem-
perature, Te, created at the target front side penetrate the
foil and by extending past the rear surface produce a strong
space-charge field:

E�kBTe=e�D; �D��
0kBTe=e
2ne�

1=2: (1)

Typical values of kBTe�2 MeV and ne�2:5�10
19 cm�3

yield �D�2 �m (distance over which the electric field E
decays) and E > 1012 V=m. A few monolayers of atoms at
the rear surface experience field ionization by barrier sup-
pression (FIBS) [9] and are accelerated normal to the sur-

face by E. The most energetic electrons always extend
farther out into vacuum, maintaining the accelerating field
as long as the electron temperature is high. This is funda-
mentally different from the long-pulse case, in which bulk
effects and collisional ionization by thermal electrons in
the coronal plasma are the dominant mechanisms. In the fs
case, however, the ion generation and acceleration mecha-
nisms are decoupled from the stochastic laser-plasma in-
teraction, which offers many advantages for producing
well-controlled ion beams. The decoupling and the rapid
rear-surface acceleration are the reasons why the protons
appear in a highly laminar, low emittance ps bunch inside
which no trajectory crossing occurs. So far, mainly protons
have been observed from the rear side. This is attributed to
contaminations of hydrocarbon and H2O layers adhered to
the target. Because of its low ionization potential and high
charge-to-mass ratio hydrogen is among the first ion spe-
cies produced and most effectively accelerated, thereby
screening the space-charge fields for all other ion species.

In this Letter, we present the first experimental study
demonstrating that besides protons also high-brightness,
high-energy (�MeV=nucleon) ion beams can be acceler-
ated from the rear surface of thin foils. These ions are
effectively accelerated only if the hydrogenous surface
contaminants are removed. We obtain absolutely calibrated
high-resolution energy spectra of different ion species and
charge states. These provide additional information, not
in the proton signal, about the spatiotemporal evolution of
the accelerating field and the origin of the observed ions.
We show for the first time that it is possible to control the
accelerated ion species by choosing a target composed of a
front-side interaction material and a rear-side ion source
layer. The high-energy ions out of these prepared source
layers unambiguously prove the existence of an effec-
tive rear-surface acceleration mechanism. For our experi-
mental conditions, we thereby resolve the long-standing
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controversy as to whether the high-energy (> 10 MeV)
protons come from the rear surface and are accelerated
by the TNSA mechanism [6,10–12] or stem from the front
surface and are accelerated by the charge-separation field
in the laser plasma [3,13]. The electric field deduced from
the ion spectra can explain the high-energy protons
(> 25 MeV [4]) in our experiments. This result also con-
stitutes a major difference to long-pulse experiments,
where rear-surface acceleration was a minor effect only,
that vanished almost completely when either the contam-
inating hydrocarbons were removed [14] or foils thicker
than a few �m were used [15]. With the new capability to
accelerate ion species at will and indications that beam
focusing [4], spectra and charge state control might be
feasible, applications such as laser accelerators are becom-
ing realistic. Also the transport of a dense charge-
neutralized ion beam in plasmas and solids, enabling iso-
choric heating of macroscopic volumes ( � 105 �m3) to
> 300 eV, could now be studied.

Our experiments were performed with the 100-TW laser
at the Laboratoire pour l’Utilisation des Lasers Intenses
(LULI). The laser pulses (�30 J, �300 fs, 1:05 �m) were
focused at normal incidence on target to an intensity of up
to 5� 1019 W=cm2. The contrast, i.e., the peak-to-pedestal
intensity ratio, amounts to �107 at t � 1:5 ns. As targets
we used 50 �m thick Al and W foils coated on the rear side
with 1 �m carbon or 0:3 �m CaF2, respectively. The
accelerated particles were investigated by three comple-
mentary diagnostics: (a) a stack of radiochromic films
(RCF) 5 cm behind the target to record the angular distri-
bution of the emitted proton beam [7,16], (b) a magnetic
proton spectrometer [17] at 13� to the target normal with a
Kodak DEF x-ray film to measure the proton energy spec-
tra, and (c) two Thomson parabola spectrometers (B �
0:65 T, E � 1:3 MV=m) with CR-39 track detectors at
0� and 6� at a distance of about 1 m (solid angle �5 	
10�8 sr) to obtain the ion energy spectra. CR-39 is sensi-
tive to single ion events but insensitive to electromagnetic
radiation and electrons. An ion striking a CR-39 plate
destroys the polymer matrix along its path and causes
nm-scale damage sites. These are transformed into cone-
or bowl-shaped craters when the CR-39 is etched in NaOH
solution. Each individual track is analyzed by optical
microscopy with custom pattern recognition software
[18] yielding position and track size parameters, from
which the absolute ion energy spectra are then obtained.
Because the optical density is not simply proportional to
the number of pits, only ‘‘single-track counting’’ yields
correct results for the areal ion density, whereas optical
scanning may lead to erroneous results.

To remove the hydrogenous contaminants, we tried ra-
diative, laser, and resistive heating and found the latter the
most effective (see also [19]). We heated Al and W foils up
to �600 K and �1200 K, respectively. Already the partial
removal of hydrocarbons strongly enhanced the accelera-
tion of carbon ions, as shown in Fig. 1. The proton spec-
trometer yielded typically �1011 protons of up to 25 MeV,

for unheated targets. For heated Al targets, the number of
protons is reduced to �1010 with energies of up to 3 MeV.
The energy of the carbon ions is increased by a factor of
�2:5 and the number by 2 orders of magnitude to �2 �
1011, corresponding to a laser-to-ion energy conversion of
0.5%. Acceleration is most efficient for C4
 ions, with a
cutoff energy of �1 MeV=nucleon at the high-energy end.
In all spectra the high-energy cutoff is dependent on the
charge state, ruling out recombination as a dominant effect
in our experiments. This is confirmed by the low number of
neutral atoms (�1%) forming the pinhole image on the
CR-39. This behavior is fundamentally different from that
observed in the carbon spectra in long-pulse experiments
[20], where all charge states had a similar cutoff and the
rear-surface ion signal almost vanished for heated targets
[19]. Using W targets, the higher heating temperatures re-
sulted in a complete removal of hydrocarbons. The proton
spectrometer as well as the CR-39 did not show any pro-
tons, while strong fluorine ion tracks are observed origi-
nating from the CaF2 layer at the target rear side (Fig. 2).
Since only the target rear surface is coated with either C or
CaF2, the carbon and fluorine ions originate unambigu-
ously from the rear surface of the targets. The acceleration
of heavier ions was again increased considerably: F7
 was
accelerated up to 100 MeV ( > 5 MeV=nucleon) at > 5%

energy conversion. The RCF confirmed this by showing a
narrow spot in the first layer, which, in the absence of
protons, indicates fluorine ions of energies above
4 MeV=nucleon. The analysis of the lower charge states

FIG. 1 (color). (a) Ion traces (on CR39) from an unheated
Al j C target and (b) corresponding spectra. The gap in the
proton signal is due to the CR-39 detector which is optimized
for heavier particles. The dotted line illustrates the H
 spectra as
obtained with the proton spectrometer. (c) Ion traces from a
heated Al j C target and (d) corresponding spectra. The ion
signals are strongly enhanced. The spot in the upper right corner
of (a),(c) is the pinhole image formed by neutral atoms.
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proves to be more difficult due to overlapping of F and Ca
traces with similar charge-to-mass ratios.

Long-pulse experiments showed that ion spectra can
be used to identify the ionization and acceleration
mechanisms, e.g., isothermal expansion (with Te;hot�
10–100 keV) and collisional ionization up to the highest

charge state (e.g., C6
), followed by recombination to the
lower charge states in the drift phase ([1,20] and references
therein). In short-pulse experiments, however, FIBS in the
strong transient space-charge field dominates because of
the fs timescale and high electron temperature (�MeV).
We can rule out ionization by the laser pulse or by a shock
front by simultaneous target interferometry. The laser pulse
is completely absorbed in the preplasma and the target
thickness is chosen to prevent prepulse-caused shock
breakout until �10 ns after the main pulse. Collisional
ionization is estimated from [21]:

�col � neve4�a
2
b�U

2
H=UkkBTe� ln�kBTe=Uk�;

(2)

where ab is the Bohr radius, ve is the electron velocity, and
Uk and UH are the ionization potentials of the ionized
species and hydrogen, respectively. We also considered
the influence of heating by possible return currents with
a temperature kBT

ret
e �50 eV [22], which must balance

the hot electron flow, i.e., nrete vrete ’nhote vhote )nrete � 2:5�
1021 cm�3. We estimated the field ionization rate from the
ADK model [23]:

�ADK � 6:6 	 1016�Z2=n4:5ef � exp���2Z3=3n3ef��Eat=E���10:87�Z
3=n4ef��Eat=E��

2nef�1:5; (3)

where E � 2 TV=m [from Eq. (1)] is the ionizing field,
Eat � 0:51 TV=m is the atomic electric field, Z is the
charge of the created ion, and nef�Z=

����������������

Uk=UH

p

. The
various ionization frequencies are listed in Table I. Other
analytical models yield similar results and the exact nu-
merical rates are even higher [23]. For all models field
ionization dominates by orders of magnitude over the
collisional processes for our set of parameters and for
charge states up to He-like. For C5
, �hotcol is larger than
�ADK, which may explain the different spectral shape and
lower numbers for this charge state. Assuming detailed
balancing [24], we estimate recombination rates of �1%
consistent with our measured data.

Having established that the ion spectra are linked to the
accelerating E fields, we can now extract information such
as the field strength which is not available from the proton
data. With FIBS as the dominant ionization process, the

k
 -ionic state will be created as soon as the electric field
is above the threshold

Ek � U2
k"0�=eZ: (4)

We can use Ek
1 as an upper limit for the electric field
strength that a k
 ion has experienced. By integrating the
equations of motion for an ion in a field rising in time with
the laser pulse to Ek, staying at this value for a time �mink

and then decaying exponentially, �mink defines a lower limit
for the acceleration time, required to achieve the observed
maximum ion energy for a given charge state (see Table I).
The acceleration length, lmink , is the distance traveled by an
ion during �mink and is therefore a measure for the minimal
spatial extension of the fields. The ultra-high-field region
turns out to be of the duration of the laser pulse and of short
length (� 500 fs, � 5 �m). Only the C4
 ions see these

TABLE I. Calculated field and ionization parameters for carbon. Uk is the ionization potential of the kth ionic charge state and Ek is
the corresponding field strength [Eq. (4)]. Emaxk is the maximal E field, �mink is the minimal field duration, and lmink is the minimal
acceleration length for a given k. � are the ionization frequencies due to the hot electrons (kBT

hot
e �2 MeV, nhote �2:5� 1019 cm�3),

the return current (kBT
ret
e �50 eV, nrete �2:5� 1021 cm�3), and the field ionization (Ef � 2 TV=m). Because �min4 ��laser, E

max
4 is

lower than the theoretically possible value of 5:3 	 1012 V=m.

k Uk (eV) Ek (V=m) Emaxk (V=m) �mink (ps) lmink (�m) �hotcol (ps�1) �retcol (ps�1) �ADK (ps�1)

1 11.2 2:2� 1010 5:2� 1010 60 230 2:53� 10�2 2.13 5:93� 104

2 24.4 5:2� 1010 1:3� 1011 10 48 1:1� 10�2 0.68 2:65� 105

3 47.9 1:3� 1011 1:8� 1011 4.3 25 5:29� 10�3 0.21 1:46� 106

4 64.5 1:8� 1011 1:75� 1012 0.35 3 3:28� 10�3 0.11 4:62� 106

5 392 5:3� 1012 5:29� 10�4 	 	 	 8:5� 10�5

6 490 7:0� 1012 4:14� 10�4 	 	 	 7:03� 10�9

FIG. 2 (color). (a) Overlayed signals of heated (orange) and
unheated (blue) W j CaF2 targets: The proton signal vanishes for
heated targets; the fluorine signals (especially F7
) go up to
much higher energies. (b) Corresponding F7
 spectra: F7
 ions
achieve more than 100 MeV (5 MeV=nucleon).
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highest fields, while the lower charge states are accelerated
by lower fields of up to 2 orders of magnitude longer dur-
ation, which is not explainable by the static TNSA model.

In order to get a better understanding of how the ion
energies and charge state distributions develop in space
and time, we have developed a 1D-numerical model which
calculates the electron dynamics behind the target, assum-
ing a Boltzmann equilibrium for the electron energy spec-
trum and a current distribution which follows the laser
pulse. We include the ionization process (FIBS), the accel-
eration of different ion species, and screening effects on the
potential. In each time step, we solve Poisson’s equation
for the given charge distribution, check for ionization
events, advance the different ion species, and solve again
Poisson’s equation for the new charge distribution. When
the first laser-heated electrons enter the vacuum behind the
target, they create the space-charge field E, albeit in a
highly dynamic way, much more complex than in the
simple TNSA model. When more and hotter electrons
pass through the surface, the field increases until E � E1.
Now FIBS sets in and the produced ions and electrons
decrease the field at the surface. An equilibrium between
the growing external field and the surface ionization rate
keeps the field at the surface always at E1. The created ions
are accelerated into the vacuum while the freed electrons
are pushed into the target. Whereas the field close to the
target is shielded by the ions, the unshielded field in
vacuum keeps increasing. The maximum of the electric
field moves outwards into vacuum, ionizing the outermost
ions further (see Fig. 3). The model reproduces the meas-
urements for protons and the high charge states. As long as
there is a source of hot electrons, nearly all ions are
sequentially ionized to C4
. As seen in the experimental
data, the lower charge states require 2 orders of magnitude
longer time scales and possibly a 3D treatment to allow for
low fields in the fringe regions. To explain the long accel-
eration times the electron recirculation model of [10] may
prove useful. Another approach is to envision the individ-

ual charge states in separately lined up bunches each with a
charge neutralizing electron cloud lagging a bit behind,
thereby setting up an effective field for the next lower
charge state bunch. A model to completely explain the
acceleration dynamics is currently developed. The evalu-
ation of the fluorine shot shown in Fig. 2 shows that E�
2 TV=m active over �min7 � 350 fs is necessary to acceler-
ate F7
 ions up to 100 MeV over a scale length of l�
10 �m. The inferred fields would accelerate H
 up to
�25 MeV, as typically observed with unheated targets.

In summary, by using high-intensity laser pulses we
achieved efficient (> 5% energy conversion), directed
ion acceleration to more than 5 MeV=nucleon from the
rear surface of thin-foil targets. High-resolution energy
spectra measured for different ionic charge states yield
detailed information on the spatiotemporal behavior of
the accelerating fields. They show that FIBS is the domi-
nant ionization mechanism while recombination and colli-
sional ionization are negligible except for C5
. A 3D-
TNSA model including dynamic fields and multiple ion
species is needed to correctly describe the acceleration
process.
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FIG. 3 (color). Space-time history of the accelerating electric
fields (red curves) and the C4
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(white curves) as calculated by our model: The field maximum
moves out into the vacuum. Already during the pulse there exists
an ion distribution on a �m scale.
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We present the results of a detailed study on the acceleration of intense ion beams by relativistic laser
plasmas. The experiments were performed at the 100 TW laser at the Laboratoire pour L’Utilisation des
Lasers Intenses. We investigated the dependence of the ion beams on the target conditions based on theo-
retical predictions by the target normal sheath acceleration mechanism. A strong dependence of the ion
beam parameters on the conditions on the target rear surface was found. We succeeded in shaping the
ion beam by the appropriate tailoring of the target geometry and we performed a characterization of the
ion beam quality. The production of a heavy ion beam could be achieved by suppressing the amount of
protons at the target surfaces. Finally, we demonstrated the use of short pulse laser driven ion beams for
radiography of thick samples with high resolution.
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I. INTRODUCTION

Recently, the production of intense ion beams of laser
irradiated targets has been observed [1–4]. Some experi-
ments, using ultraintense short pulse lasers [5] with in-
tensities exceeding 1019 W�cm2, have shown collimated
beams of protons that have a very low emittance, while
reaching energies of up to 50 MeV [6], which is under-
stood as rear surface emission accelerated by the target
normal sheath acceleration (TNSA) mechanism [7]. This
ion beam generation is attributed to electrostatic fields pro-
duced by hot electrons acting on protons from adsorbed
water vapor and hydrocarbons [8,9]. Relativistic electrons
generated from the laser-plasma interaction, having an av-
erage temperature of several MeV, envelope the target foil
and form an electron plasma sheath on the rear, nonirra-
diated surface. The electric field in the sheath can reach
.1012 V�m, which field ionizes atoms on the surface and
accelerates the ions very rapidly normal to the rear surface.
Protons, having the largest charge-to-mass ratio, are prefer-
entially accelerated in favor of heavier ions over a distance
of a few microns, and up to tens of MeV. This forms in
a collimated beam with an approximately exponential en-
ergy distribution with 5–6 MeV. This acceleration mecha-
nism makes these intense ion beams highly interesting for
many applications, especially if one can collimate or focus
the beam by shaping the target, as suggested by numerical
calculations [10,11]. Because of the dependence of the ion
beam on the formation of the sheath, this process should
reveal information about the electron transport through the

target. The transport of relativistic electrons through the
target is an extensively studied area of research [12–15]
because of its relevance not only for ion acceleration, but
especially for the concept of fast ignition [16–18] in in-
ertial confinement fusion. The transport of large currents
through the target, the onset of beam filamentation, and
the dependence on the target conductivity (with respect to
the onset of return currents) are essential for a detailed un-
derstanding of the ion accelerating mechanism. We expect
that details of the ion acceleration will also depend on the
target material and surface conditions. Therefore we car-
ried out experiments to investigate in detail the influence
of these target parameters on the ion beam production.

II. EXPERIMENTS

The experiments presented in this paper were performed
with the 100 TW laser at Laboratoire pour l’Utilisation des
Lasers Intenses (LULI). Pulses of up to 30 J at 300 fs
pulse duration at l � 1.05 mm were focused with an f�3

off-axis parabolic mirror onto free standing target foils at
normal incidence, at intensities up to 5 3 1019 W�cm2.
The focal spot diameter (FWHM) measured in vacuum
was about 8 mm. Amplified spontaneous emission (ASE)
occurred 2 ns before the main pulse at a level of 1027 of
the main pulse energy and preformed a plasma.

The diagnostic setup is depicted in Fig. 1. The free-
standing target was probed by a frequency doubled laser
beam parallel to the surface to determine the plasma
conditions on the front and rear surfaces. A stack of
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radiochromic film (RCF) was positioned a few cm behind
the target to measure the spatial beam profile. Because
of the pronounced energy loss of ions at the end of
their range (Bragg peak), different layers of the RCF
pack allow the imaging of the ion beam at different
energies. The RCF changes through polymerization of a
diacetylene active layer, from transparent to dark blue,
in proportion to the absorbed dose (rads) of ionizing
radiation (1 rad � 100 erg�g). We modeled the response
of the RCF package with the SRIM [19] Monte Carlo ion
transport code, assuming the beam to be protons, and
obtained response functions for the layers of RCF similar
to the ones presented in Ref. [2]. A slot in the center
of the RCF allowed a free line of sight for the charged
particle spectrometers fielded at 0±, 6±, and 13± to provide
the energy distribution of the emitted electrons and ions.

Two absolutely calibrated, permanent magnetic ion
spectrometers were mounted at a distance of about 1 m
from the target covering a solid angle of 5 3 1026 sr. The
electrons and protons were recorded in nuclear emulsion
track detectors which allow single particle detection
without being overwhelmed by the blinding x-ray flash
from the laser plasma. The use of an additional x-ray film
layer extended the dynamic range to higher particle fluxes.
A protective light tight paper in front of the emulsion and
x-ray film stopped protons below 1.8 MeV. We extended
the spectral range to lower proton energies using CR-39 in
the low energy range of the dispersion plane. By etching
the CR-39 detectors in sodium hydroxide, the material
damage caused by the impacts of ions above a threshold of
a few hundred keV become visible. Microscopic scanning
provides position, as well as the size of the impact, which
is proportional to the atomic number Z of the ion. Thus,
protons produce much smaller pit sizes than heavy ions.

As a complementary measure of the total yield of pro-
tons we used a titanium catcher foil, which was placed in
the path of the proton beam. The 48Ti is transmuted by a
�p, n� reaction by protons above a sharp reaction threshold
at �5 MeV to an excited state of the 48V isotope. Using a
low-background Ge detector we observed the gamma de-
excitation lines of the 48Ti�p, n�48V reaction, which pro-

RCF

Diagnose Beam

ion spectrometers
or Thompson parabolas

Laser
30-35 J @ 300 - 500 fs
I = 1 X 1 0 W/cm19 2

FIG. 1. (Color) Experimental setup. The freestanding target is
irradiated at normal incidence. A slit in the radiochromic film
(RCF) gives a line of sight for the particle spectrometer.

vided the total activation and therefore the yield of protons
above the reaction threshold of �5 MeV.

To detect heavy ions accelerated from the rear surface
of the relativistic-laser illuminated targets, we substituted
two high resolution Thompson parabolas in replacement
of one of the charged-particle spectrometers. The paral-
lel electric and magnetic fields in the Thompson parabo-
las discriminated ions with respect to their momentum and
charge-to-mass ratio, at the plane of the CR-39 track de-
tectors. Careful analysis of the scanned CR-39 detectors
then provides absolute numbers of the ions with respect to
their kinetic energy and charge state. In addition to the ion
and laser beam detectors, a silver activation neutron detec-
tor was fielded close to the target chamber determining the
neutron yield for the different experiments. The silver is
activated by neutron impact capture and b2 decay with a
half-life of 28 sec, which is detected in a scintillator and
recorded by a photomultiplier tube (PMT).

III. RESULTS

A. Hydrodynamic target stability

For the effective acceleration of the ions, an undisturbed
back surface of the target is crucial to provide a sharp ion
density gradient as the accelerating field strength is pro-
portional to Thot�el0, where Thot is the temperature of the
hot electrons and l0 is the larger of either the hot-electron
Debye length or the ion scale length of the plasma on the
rear surface. The preceding ASE launches a shock wave
into the target which causes a destruction of the accelera-
tion sheath. Therefore the target thickness was chosen to
guarantee an undisturbed rear surface based on numerical
calculations using the hydrocode MULTI [20]. The result
of the simulation is shown on the left-hand side of Fig. 2.
The inward propagating shock wave is clearly visible. It
reached the rear surface at about 8 ns after the onset of the
prepulse. Thus, the targets should maintain an undisturbed
back surface for a 5 ns prepulse. When we applied a pre-
pulse at a contrast ratio of 1027 of the main pulse 10 ns
before the main pulse, the maximum energy of the pro-
tons dropped to 2 MeV from the typical 10–20 MeV range
typical of low-prepulse shots. This is in good agreement
with the MULTI calculations, which indicate that in 10 ns a
shock wave launched by the prepulse penetrates the target
and causes a rarefaction wave that diminishes the density
gradient on the back and therefore drastically reduces the
accelerating field. The inward moving shock wave also
alters the initial conditions of the target material due to
shock wave heating and therefore changes, e.g., the target
density and conductivity. Because of its relevance to the
electron transport, we chose the target thickness such that
a considerable fraction of the target was still in its unper-
turbed, initial condition. Figure 2 also shows interferomet-
ric measurements of the target surface with and without the
additionally applied prepulse. The interferometry detects
the plasma density conditions on the front and rear surfaces
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FIG. 2. Left: simulation of the shock wave launched by the prepulse. The shock wave reaches the rear surface at about 7 ns.
Center: interferometric images of the plasma conditions on the front and rear target surfaces. Right: perturbation of the rear surface
due to prepulse induced shock wave breakout. No protons were detected.

simultaneously. In the figure, the laser is incident from the
right (note that the bright spot is 2v emission from the
laser plasma during the pulse). As shown in Fig. 2, the
front surface always shows the blowoff plasma, extending
up to about 200 mm, caused by the ASE. In the absence
of a prepulse (left image) the rear surface is unperturbed
(no plasma formation could be detected within the reso-
lution limit of the interferometry of a few micrometers)
and a strong high-energy proton signal could be detected
on the RCF. In agreement with the TNSA predictions,
when we observed the presence of an extended plasma
(about 50 mm) at the rear surface due to the applied pre-
pulse, no protons above the detection threshold of our RCF
(�2 MeV) could be measured. This result is also in ex-
cellent agreement with recent experiments using a second
laser to generate a plasma at the rear target surface [21].

B. Angular dependence

The angular dependence of the energy distribution of
the proton beam was measured with two ion spectrome-
ters positioned at an angle of 0± and 13±, respectively. The
measured spatial distributions of protons on the dispersion
plane were deconvoluted (with respect to the entrance aper-
ture shape) [22] and corrected for the spectrometer disper-
sion. The energy of the protons emitted normal to the
target rear surface extended up to 25 MeV. The maxi-
mum energy of the protons dropped to about 13 MeV at
an angle of 13±, consistent with a 2D model of the sheath
acceleration process. The spectral shape of each proton
energy distribution is generally continuous up to the cutoff
energy, in agreement with the electrostatic sheath accelera-
tion mechanism, as well as previous observations in experi-
ments with the LLNL PETAWATT laser [6]. The best fit
to the spectrum obtained by the ion spectrometers, as well
as to the spectral information extracted from the stacked
RCF packages, was obtained by using a two component
exponential distribution with 2 and 6 MeV, respectively.
Details about the angular dependence of the ion beam and
the origin of occasionally observed narrow features in the
spectral distribution, caused by the segregation of different

ion species, are beyond the scope of this paper and will be
published elsewhere.

C. Yield, surface dependence

Previous experiments using gold targets of similar size,
performed at the LLNL PETAWATT laser, revealed a
smooth, collimated beam of protons perpendicular to the
rear surface. The origin of the protons was found to be
contaminant layers of water vapor and hydrocarbons. The
total yield of protons could be increased significantly
using plastic targets, due to acceleration of protons from
the bulk material; however, the laminarity of the beam
was largely disrupted, with the spatial pattern of the
accelerated protons exhibiting a large degree of filamen-
tarylike structure. We considered several possible reasons
for this behavior, including quality of the plastic versus
gold material, ion-acoustic instabilities during the ion
expansion, and conductivity of the bulk material or of the
target rear surface. To investigate the infl uence of such
target conditions on the creation of a collimated ion beam,
we varied the target composition and structure of the rear
surface.

We used thin (48 mm) targets of gold with either a fl at
or structured rear surface. The proton beam ejected from
the rear surface is shown in the two left-hand pictures of
Fig. 3. The results showed a clear dependence of the spa-
tial uniformity of the proton beam on the structure of the
back surface. In contrast to the homogenous, collimated
beam from the gold target, protons emitted from the struc-
tured gold rear surface showed filaments. To discriminate
between conductivity and surface quality effects, we next
used �100 mm plastic and glass targets. The results of
the glass and plastic targets were even more pronounced.
While the fl at surfaces of glass and plastic yielded a strong,
but filamented proton beam (Fig. 3, third image), there
were no protons detected above 1 MeV from the rough-
ened targets (Fig. 3, right-hand image). The similar beam
patterns obtained from plastic and glass targets exclude the
origin (surface or bulk) of the protons to be the reason for
the onset of the filamentary structures. In contrast, due to
the strong coupling of the ion acceleration mechanism to
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FIG. 3. Proton emission from smooth and roughened rear surfaces of gold (two left-hand columns) and plastic targets. The rough-
ened surface in the case of gold leads to the onset of filamentation. No protons could be detected from the roughened plastic targets
due to the destroyed surface. The scanning electron microscope (SEM) images show the corresponding structures of the surfaces
[note that the structure visible for the smooth plastic target (third, lower inset) was an artifact to focus the SEM]. The overall surface
of the target was similar to the upper right-hand part.

the electron distribution at the rear surface of the target, the
smooth, laminar beam quality from metal, i.e., conductor
targets, indicates a rather homogenous electron transport
through the target. Insulating material seems to disrupt
the electron transport, which causes filamentation of the
electron distribution and therefore also a nonhomogenous
ion acceleration. The dependence of the electron transport
on target conductivity has been observed by other research
groups as well [23]. As mentioned above, the preceding
ASE leads to a shock wave that preheats the target, thereby
changing the conductivity of the insulating targets. How-
ever, in our experiments the target thickness has been cho-
sen such that a considerable fraction of the target material
was still in the cold, solid state by the time of arrival of the
main pulse.

Using a scanning electron microscope (SEM) we exam-
ined the structure of the target surfaces. The images are
shown as the corresponding lower insets in Fig. 3. Struc-
turing the gold surface maintained a smooth surface with
hills and valleys, visible as bright shadows on the lower,
second inset of Fig. 3. The surface of the plastic and glass
targets was largely destroyed by numerous cracks. The
different behavior of the structured gold, glass, and plastic
targets can be understood within the context of the TNSA
model. When the material on the rear surface is exposed to
the strong electric field generated by the electron plasma
sheath, it is field ionized instantaneously. As mentioned
above, the accelerating electric field is characterized by
E � Thot�el0, where Thot is the temperature of the hot
electron and l0 is the scale length of the plasma on the rear
surface, and is in the order of megavolts per micrometer. A
shallow, wavelike surface, such as for the roughened gold

targets, is expected to lead to a microlensing phenomenon,
consistent with the observed filamentation or spatial modu-
lation of the accelerated protons.

Such microfocusing effects have been calculated for the
case of a single concave depression of the surface [7]. In
the case of a destroyed surface, the cracks and defects on
the plastic and glass create many sharp excursions, very
different from the rather smooth undulating surface of the
gold targets. The ion plasma created by the field is there-
fore extended over a much larger scale length normal to the
(average) surface. We expect this to partially compensate
the charge separation sheath created by the hot electrons,
and therefore strongly suppress the ion acceleration.

As mentioned above, it was found in recent experiments
[6] that the proton yield of plastic targets was higher than
the yield of hydrocarbon contaminants on gold targets,
whereas the beam quality from metal targets is much bet-
ter than from glass or plastic targets [24]. We attempt to
increase the yield of laser-accelerated protons, while main-
taining the superior beam quality, by adding hydrogen-
containing layers of acrylic (CH) to the rear surface of gold
targets. We varied the thickness of a CH layer between 5
and 100 nm. The results showed an increase of the proton
yield according to the CH thickness while maintaining the
beam quality. However, at a layer thickness of 100 nm we
observed the onset of filamentlike structures in the spatial
distribution of the accelerated protons.

We modeled the response of the RCF package with the
SRIM [19] stopping power tables, assuming the beam to
be protons, and obtained response functions for the lay-
ers of RCF similar to the ones presented in [6]. Taking
into account the respective laser pulse energy in these

061301-4 061301-4



140 PUBLICATIONS

PRST-AB 5 ENERGETIC IONS GENERATED BY LASER PULSES: A 061301 (2002)

experiments, we obtained a conversion efficiency of laser
energy into protons of 1% for the 5 nm coating and 2.5%
for the 100 nm coated target.

Finally, the increase of the proton yield was limited by
the laser energy available in our experiments. At a given
maximum laser energy of 30 J and a conversion efficiency
into hot electrons less than 35%, a layer thickness of sev-
eral nanometers is sufficient to provide enough protons to
be accelerated. This is quite different for petawatt laser
systems operating at higher pulse length and accordingly
higher total laser energy. In that case an increase in the
overall proton yield by at least an order of magnitude can
be expected.

A well-known technique to determine the total yield
of fast protons is to use nuclear reactions in a catcher
material. For our proton beam, we used the 48Ti�p, n�48Va
reaction that provided a sharp threshold at proton energies
of �5 MeV. The total yield of 48Va activations produced
in a typical shot was 107. From that we deduce a total fl ux
of 1011 laser-accelerated protons, assuming a Maxwellian
energy distribution with a temperature of 2 MeV. This
represents a total conversion efficiency of less than 1% of
the laser energy to accelerated protons.

It is interesting to note that there is an empirical
indication of an efficiency scaling with respect to the
laser energy. Experiments at the petawatt laser system
(500 J, 1020 W�cm2) obtained conversion efficiencies of
more than 10% [6], as mentioned in the Introduction. At
the Vulcan laser at the Rutherford Appleton Laboratory
(100 J, 5 3 1019 W�cm2); conversion efficiencies of a
few percent have been determined, we found an efficiency
less than 1% in our experiments at the LULI 100 TW laser
(30 J, 3 3 1019 W�cm2), and various laser systems at
lower energy obtained conversion efficiencies well below
this value.

D. Proton beam shaping

An important question to be addressed for any future ap-
plication of laser-accelerated protons and ions is the pos-
sibility of tailoring the proton beam, either collimating or
focusing it, by changing the geometry of the target sur-
face. Ballistic focusing of the laser-accelerated protons is
expected to be rather difficult because of the inherent di-
vergence associated with the spatial density dependence
of the hot electron sheath, which drives the acceleration.
Accordingly, we first attempted to defocus the beam in
one dimension by using a convex target. Using a 60 mm
diameter Au wire as a target basically constituted such a
one-dimensional defocusing lens, and we observed a line
as shown in Fig. 4. Tilting the wire also changed the orien-
tation of the line, which results from the radial, fan-shaped
expansion of the protons normal to the wire.

We then attempted to focus the protons by modifying the
curvature (concave) of the target foil. Focusing laser gen-
erated protons is essential for many applications such as

FIG. 4. Experimental setup and RCF images of experiments
with 60 mm gold wires. The convex rear surface constitutes a
decollimating cylinder lens. Accordingly, the proton beam was
formed into a line.

ion-induced material damage research, proton driven fast
ignition [25], proton radiography [26], and the use as next
generation ion sources. Because of the Gaussian-like shape
of the hot electron Debye sheath that causes the accelera-
tion, there is an energy dependent angle of divergence that
has to be compensated to focus the ions in the energy range
of interest. Therefore the effective focal length of a curved
target rear surface is longer and is dependent on the proton
energy. The results, which will be published elsewhere,
show a strong reduction in the divergence of the central
core of the proton beam representing ballistic collimating
of laser produced proton beams.

E. Heavy ion beam production

Having established that one can enhance the proton
yield while maintaining the beam quality, and at least con-
template successful focusing targets, we next attempted to
control the accelerated ion species and, in particular, se-
lectively accelerate either protons or heavy ions. Because
of their larger charge-to-mass ratio, which causes the pro-
tons to outrun the other ion species during the ambipolar
expansion, protons are accelerated faster taking most of
the energy from the electrostatic sheath. Therefore, the
amount of protons had to be reduced significantly. For tar-
gets of solid metals (gold, aluminum), the majority of the
protons is due to water vapor and hydrocarbons at the target
surface. We reduced these impurities by resistively heating
the targets. The targets consisted of thin foils of 50 mm Al
coated with 1 mm of carbon. To detect the heavy ions with
respect to their momentum and charge-state distribution,
we substituted the ion spectrometers with two Thompson
parabolas at an angle of 0± and 13±. The ions were recorded
in CR-39 plastic track detectors. We compared the yield
for heated and nonheated targets, as shown in Fig. 5. As
expected, for the nonheated targets (left-hand side) a strong
proton signal was observed together with a weak signal
of carbon ions. The result changed dramatically for the
heated targets, as shown in the right-hand side of Fig. 5.
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FIG. 5. Heavy ion beam production. In contrast to the strong proton signal (left), removing the hydrocarbons from the target rear
surface results in a strong heavy ion (carbon) signal (right).

A sharply reduced proton signal was detected in these
experiments together with a much more intense heavy ion
signal (carbon and aluminum ions). We observed a higher
yield, much higher ion energies and ions at higher charge
states. These results are in agreement with experiments
using CO2 lasers more than 20 years ago in which re-
moval of hydrogen contaminants by heating increased the
ion yield in laser ablation plasmas. In extension to the
results obtained in [8], the use of short-pulse chirped-
pulse-amplification lasers allows higher focused intensities
at shorter pulse length leading to electron temperatures of
several MeV, and, consequently, the observed heavy ions
are accelerated up to the several MeV�u range.

E. Neutron production

Complementing the laser and ion beam diagnostics we
also measured the neutron emission caused by �g, n� and
�p, n� reactions from the target. We used a silver acti-
vation detector attached to a PMT. On typical shots, the
neutrons are generated by �g, n� reactions within the target
(caused by the bremsstrahlung photons from the relativis-
tic electrons) and by �p, n� reactions of our proton beam
impacting on the RCF screen. We also used a target of
deuterized plastic (CD2), which was heated to produce a
beam of deuterons. Fielding a CD2 catcher foil behind the
target we observed the yield of neutrons from �d, d� fusion
reactions. We detected a total yield of 2.8 3 107 neutrons
in this experiment, which was at least an order of magni-
tude above the yield on average shots.

F. Proton beam emittance

For most of the future applications of laser generated
ion beams, the beam quality is the most important char-
acteristic. Especially for the use as an ion source or the
application as an inertial confinement fusion ignitor beam,
the ion beam emittance is crucial with respect to the ac-

celerator structure acceptance or the achievable focus spot
size. As is apparent from the radiochromic film data, the
angular divergence of the proton jet is rather well defined
and decreases with increasing proton energy. This suggests
that protons or other light ions accelerated by this mecha-
nism may have a usefully small emittance in the sense of
an actual ion beam.

To precisely estimate our emittance, we used penum-
bral imaging of edges at different distances from the target
with the magnetic spectrometers to directly measure the
core emittance core of the proton beam. This technique
is closely related to the conventional slit-emittance mea-
surements made with apertures and screens at conventional
accelerators. We determine the normalized emittance of
protons from fl at gold foils to be �0.2p mm mrad, and
a factor of at least 2 smaller than the resolution limited
measurements we performed on the LLNL PETAWATT
(see Ref. [24]). Details of the present measurements, and
systematics of the proton emittance versus energy, will be
reported elsewhere.

The results of this analysis and subsequent modeling,
developing a 2D extension of the model in [27], sug-
gest that we observe a rather cold proton beam, which is
smoothly diverging and highly laminar. The trace space of
the highest energy protons exhibits a tilted ellipse, whose
width ultimately is the characteristic of the ion tempera-
ture. From these data, we deduce that the proton tem-
perature is less than �1 keV. From simple electron-ion
collisional heating during the expansion, one may expect
the ion temperature to be even lower, of order �100 eV.

G. Radiography using laser-accelerated proton beams

The excellent beam quality of the ion beam is ideally
matched to the requirements for imaging techniques.
One scheme of particular interest is the use of laser-
accelerated protons to radiograph macroscopic samples to
study their properties. Because of the different interaction
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mechanism, protons can provide complementary in-
formation to more common techniques such as x-ray
backlighting. The interaction of swift protons with matter
is well known and has been a traditional research area of
accelerator laboratories over the past decades. Because of
the copious amounts of protons accelerated in a very short
time, laser-accelerated protons provide a new diagnostic
quality in research of transient phenomena. We performed
a first set of experiments to demonstrate the feasibility
of these laser-accelerated proton beams for radiography
applications. Recently, there have been experiments per-
formed to use laser-accelerated protons for object imaging
[28]. In these experiments, a thin target (grid) has been
placed very close to the proton source. In contrast to these
experiments, where the target was exposed to the electron
cloud closely behind the target, we have chosen a different
geometry. We used a distance of 5 cm between the proton
source and the target in order to minimize any charging
of the target and placed the detector (RCF) close to the
object to reduce defl ection effects. In our experiments,
we used a compound target of different materials to be
imaged by the protons. It consisted of a 1 mm thick epoxy
ring structure, several copper wires of 250 mm diameter,
a hollow cylinder with 300 mm walls of steel, several Ti
sheets of 100 mm thickness, and a glass hemisphere of
900 mm diameter and 20 mm wall thickness.

The protons were recorded in multiple layers of RCF
to detect the image at different proton energies. Figure 6
shows the radiography of the target for final proton ener-
gies of 7.5 MeV. The image basically constitutes a negative
image of the areal density of the target. The names of the
collaborating institutes have been engraved on the epoxy

FIG. 6. Radiography of a compound target. Details of the
target are given in the text.

ring, which results in a reduced thickness and therefore a
higher energy deposition of the protons in the respective
layer. The areal density variation of the hollow cylinder,
including a hole in the wall on the right-hand side, can be
seen as well as a thin metal rod placed inside the cylinder.
These results show a clear dependence on the areal den-
sity rather than on residual charging effects, in contrast to
the experimental technique used in [28]. Close examina-
tion also shows the small glass hemisphere placed above
the cylinder. The time of exposure in this experiment was
estimated to be on the order of tens of picoseconds, based
on the initial proton beam pulse duration and the energy
dependent dispersion of the pulse from the source to the
target.

IV. CONCLUSION

We have presented a detailed investigation of the target
conditions on the proton and ion beam production from
intense laser solid interactions. The observed strong de-
pendence on the rear surface conditions is in agreement
with the target normal sheath acceleration mechanism. The
target conductivity appears to have a major infl uence on
the quality of the ion beam, and the quality of the sur-
face finish of the target is very important for maintaining
a high gradient sheath and a laminar beam. It has been
shown that tailoring the ion beam (yield, shape, compo-
sition, homogeneity) by means of target shape and com-
position is possible, and we present first observations of
laser-accelerated ion beam focusing. Finally, the success-
ful generation of a heavy ion beam (carbon, aluminum)
further encourages speculation that laser-accelerated ion
beams may become a useful tool in a variety of future
applications.
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Abstract

Intense beams of protons and heavy ions have been observed in ultra-intense

laser–solid interaction experiments. Thereby, a considerable fraction of the

laser energy is transferred to collimated beams of energetic ions (e.g. up

to 50 MeV protons; 100 MeV fluorine), which makes these beams highly

interesting for various applications. Experimental results indicate a very short-

pulse duration and an excellent beam quality, leading to beam intensities in

the TW range. To characterize the beam quality and its dependence on laser

parameters and target conditions we performed experiments using the 100 TW

laser system at Laboratoire pour l’Utilisation des Lasers Intenses at the Ecole

Polytechnique, France, with focused intensities exceeding 1019 W cm−2. We

found a strong dependence on the target rear surface conditions allowing to

tailor the ion beam by an appropriate target design. We also succeeded in the

generation of heavy ion beams by suppressing the proton amount at the target

surface.

We will present recent experimental results demonstrating a transverse

beam emittance far superior to the accelerator based ion beams. Finally, we

will discuss the prospect of laser accelerated ion beams as new diagnostics

in laser–solid interaction experiments. Special fields of interest are proton

radiography, electric field imaging, and relativistic electron transport inside the

target.

1. Introduction

Energetic ions have been produced by lasers focused onto solid targets for several decades.

The predominant mechanism in those experiments was found to be an isothermal expansion
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with ions being fed into the expanding corona by a rarefaction wave propagating at the sound

speed, cs, into the bulk plasma. In these experiments ions, mostly originating from the target

front, moved against the laser direction and showed a very large dispersion. Typical energies

were of the order of 100 keV/nucleon for sub-kJ lasers and up to 2 MeV for protons from kJ

systems. With the advent of ultra-intense, short-pulse lasers the situation changed dramatically.

Nowadays even table-top, low energy laser systems produce protons up to several MeV particle

energy and collimated beams of ions have been observed [1, 2].

Ion emission has been observed originating from the front and rear surface of solid targets.

In contrast to the experiments using long-pulse lasers, ions accelerated by fs-laser systems are

emitted normal to the rear surface in a low divergent beam of excellent quality. The dominant

mechanism of the ion acceleration is understood as rear surface emission accelerated by the

target normal sheath acceleration (TNSA) mechanism [3]. Relativistic electrons generated

from the laser–plasma interaction, having an average temperature of several MeV, envelope the

target foil and form an electron plasma sheath on the rear, non-irradiated surface. The electric

field in the sheath (Estat ∼ kThot/eλD, λD = (ε0kThot/e
2ne,hot)

1/2) can reach >1012 V m−1.

A few monolayers of atoms at the rear surface are field-ionized and accelerated normal

to the surface by Estat, with the most energetic electrons always extending further out into

vacuum, maintaining the accelerating field as long as the electron temperature is high. This

is fundamentally different from the long-pulse case, in which bulk effects and collisional

ionization by thermal electrons in the coronal plasma are the dominant mechanisms. So

far mainly protons have been observed from the rear side, originating, as in the long-pulse

experiments, from contaminating hydrocarbon layers which coat the targets. As soon as

protons are present they outrun the heavier ions due to their superior charge-to-mass ratio,

and screen the acceleration field. Thus protons are preferentially accelerated in favour of

heavier ions over a distance of a few microns, and up to tens of MeV. This forms a collimated

beam with an approximately exponential energy distribution with 5–6 MeV. The conversion

efficiency from laser energy to ion beam energy can be quite high and efficiencies of order of

10% have already been measured [2]. This acceleration mechanism makes these intense ion

beams highly interesting for many applications [4–6], especially if one can collimate or focus

the beam by shaping the target, as suggested by numerical calculations [7, 8]. Because of the

dependence of the ion beam on the formation of the electron sheath, this process should also

reveal information about the electron transport through the target. We expect details of the ion

acceleration will furthermore depend on the target material and surface conditions. Therefore,

we carried out experiments to investigate the influence of these target parameters on the ion

beam production.

2. Experiments

The experiments presented in this paper were performed with the 100 TW laser at Laboratoire

pour l’Utilisation des Lasers Intenses (LULI). Pulses of up to 30 J at 300 fs pulse duration at

λ = 1.05 µm were focused with an f/3 off-axis parabolic mirror onto free standing target foils

at normal incidence, at intensities up to 5 × 1019 W cm−2. The focal spot diameter (FWHM)

measured in vacuum was about 8 µm. Amplified spontaneous emission occurred 2ns before

the main pulse at a level of 10−7 of the main pulse energy and preformed a plasma.

The diagnostic setup is depicted in figure 1. The free standing target was probed by a

frequency doubled laser beam parallel to the surface to determine the plasma conditions on the

front and rear surface. A stack of radiochromic film (RCF) was positioned a few cm behind

the target to measure the spatial beam profile. Due to the pronounced energy loss of ions at the

end of their range (Bragg-peak) different layers of the RC film pack allow the imaging of the
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Figure 1. Experimental setup. The free standing target is irradiated at normal incidence. A slit in

the RCF gives a line of sight for the particle spectrometer.

ion beam at different energies. A slot in the centre of the RCF allowed a free line of sight for

the charged-particle spectrometers fielded at 0˚, 6˚ and 13˚ to provide the energy distribution

of the emitted electrons and ions.

Two absolutely calibrated, permanent magnetic ion spectrometers were mounted at a

distance of about 1m from the target covering a solid angle of 5 × 10−6 sr.

As a complementary detector system we used titanium catcher foils, which were placed in

the path of the proton beam. The 48Ti is transmuted by a (p, n) reaction by protons above a sharp

reaction threshold at ∼5 MeV to an excited state of the 48V isotope. Using a low-background

Ge detector we observed the gamma deexcitation lines of the 48Ti(p, n)48V reaction, which

provided the total activation and therefore the yield of protons above the reaction threshold of

∼5 MeV.

To detect heavy ions accelerated from the rear surface of the relativistic-laser illuminated

targets, we substituted two high resolution Thompson parabolas in replacement of one of the

charged-particle spectrometers. The parallel electric and magnetic fields in the Thompson

parabolas discriminated ions with respect to their momentum and charge-to-mass ratio, at the

plane of the CR-39 track detectors. Careful analysis of the scanned CR-39 detectors then

provides absolute numbers of the ions with respect to their kinetic energy and charge state. In

addition to the ion and laser beam detectors, a silver activation neutron detector was fielded

close to the target chamber determining the neutron yield for the different experiments.

Details about the experimental setup and the various detector systems were published

in [5].

3. Results

3.1. Ion beam properties

We performed a series of experiments to examine the properties of the laser accelerated ion

beam. Even though the majority of the beam consists of protons, as mentioned above, we have

been able to efficiently accelerate heavier ions (see section 3.3).

Up to now no measurement of the initial ion beam pulse duration has been performed, but

based on the finite lifetime of the hot electrons a maximum pulse duration of a few picoseconds
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has been concluded. Given the absolute numbers of ions (1013 protons at experiments using

1 PW lasers [2], 1012 protons at the LULI 100 TW system) the resulting initial ion beam current

ranges in the mega-ampere regime.

The angular dependence of the energy distribution of the proton beam was measured with

two ion spectrometers positioned at an angle of 0˚ and 13˚, respectively. The measured spatial

distributions of protons on the dispersion plane were deconvoluted (with respect to the entrance

aperture shape) [9] and corrected for the spectrometer dispersion. A typical ion spectrum is

shown in figure 2.

The energy of the protons emitted normal to the target rear surface extended up to 25 MeV.

The maximum energy of the protons dropped to about 13 MeV at an angle of 13˚, consistent

with a two-dimensional model of the sheath acceleration process. The spectral shape of

each proton energy distribution is generally continuous up to the cut-off energy, in agreement

with the electrostatic sheath acceleration mechanism and as well as previous observations

in experiments with the LLNL PETAWATT laser [2]. The best fit to the spectrum obtained

by the ion spectrometers, as well as to the spectral information extracted from the stacked

RCF packages was obtained by using a two component exponential distribution with 2 MeV

and 6 MeV, respectively. Details about the angular dependence of the ion beam and the

origin of occasionally observed narrow features in the spectral distribution, caused by the

segregation of different ion species, are beyond the scope of this paper and will be published

elsewhere.

For most of the future applications of laser generated ion beams the beam quality is the

most important characteristic. Especially for the use as an ion source or the application as an

inertial confinement fusion (ICF) ignitor beam, the ion beam emittance is crucial with respect

to the accelerator structure acceptance or the achievable focus spot size. The formation of the

ion beam is highly dependent on the formation of the electron sheath at the rear surface of the

target (see section 3.2). We observed highly laminar and well collimated beams of ions using

metal targets. As is apparent from the RCF data (see figure 3), the angular divergence of the

proton jet is rather well defined and decreases with increasing proton energy. This suggests that

protons or other light ions accelerated by this mechanism may have a usefull small emittance

in the sense of an actual ion beam.

To precisely estimate our emittance, we used penumbral imaging of edges at different

distances from the target with the magnetic spectrometers, to directly measure the core

emittance of the proton beam. This technique is closely related to the conventional slit-

emittance measurements made with apertures and screens at conventional accelerators. We

determine the normalized emittance of protons from flat gold foils to be ∼0.2π mm mrad, and

factor of at least two smaller than the resolution limited measurements we performed on the

Figure 2. Typical proton spectra obtained at 20 J/350 fs pulses. Whereas the proton maximum

energy extends up to 25 MeV normal to the rear surface (right), the maximum energy drops to

below 10 MeV at an angle of 13˚ normal to the surface (left).
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Figure 3. RCF images of the laser accelerated proton beam 5 cm behind the target. The ion energy

increases from left to right. The divergence of the homogeneous beam decreases with increasing

ion energy.

LLNL PETAWATT (see [2]). Details of the present measurements, and systematics of the

proton emittance versus energy will be reported elsewhere.

The results of this analysis and subsequent modelling, developing a two-dimensional

extension of the model in [10], suggest that we observe a rather cold proton beam, which is

smoothly diverging and highly laminar. The trace space of the highest energy protons exhibits

a tilted ellipse, whose width ultimately is the characteristic of the ion temperature. From these

data, we deduce that the proton temperature is less than ∼1 keV. From simple electron–ion

collisional heating during the expansion, one may expect the ion temperature to be even lower,

of order ∼100 eV.

Using a newly developed technique that will be published in detail in [11] we have been

able to improve the measurement of the beam core emittance by an order of magnitude. These

measurements result in a transverse beam emittance of 0.06π mm mrad, which is orders of

magnitude lower than achieved at any conventional accelerator.

It is interesting to note, that this measured beam emittance correspond to an effective ion

temperature of less than 100 eV. This temperature is not consistent with the high temperatures

present at the front surface, but likely maintained at the rear surface during the acceleration.

Moreover, one should be aware of the fact, that determining the source size by penumbral

imaging techniques is misleading. The results obtained by this technique indicate spot sizes

in the order of 10–20 µm. These spot sizes have been used in recent publications [12] to

rule out the rear surface contaminants as the origin of the intense beams observed. However,

in case of a highly laminar acceleration as expected for the TNSA mechanism the use of

penumbral imaging traces back the virtual source size in the sense of a beam waist (as been

reported at several conferences), which can be more than an order of magnitude smaller than

the real source size at the rear surface. Recent experiments using direct surface imaging

(see section 3.4) indicate the real source size to be much larger than the values obtained by

penumbral imaging techniques.

Figure 4 shows the origin of the laser accelerated protons with respect to their energy.

Protons up to energies of 3 MeV were emitted from an area of about 300 µm diameter, far

larger than the initial spot size at the front surface. The emission region decreases for higher

energetic protons, in this case down to about 80 µm for 10 MeV protons. The measurement

is consistent with an electron sheath distribution caused by the higher electron density in the

central region as predicted by numerical simulations [7, 8].

Recently, experiments at the LULI laser system using imaging techniques to determine

the electron distribution at the target rear surface [13] show an excellent agreement between

the electron distribution and the real proton source size at the target rear surface.
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Figure 4. Real source size of the laser accelerated protons for different proton energies. The size

at the rear surface decreases from 260 µm for 3 MeV protons to 80 µm for 10 MeV protons.

3.2. Target dependence

One of the interesting features of the laser accelerated ion beams is that their directionality is

always normal to the rear surface of the irradiated target. Because of the small extension of

the accelerating electron sheath and the strong dependence of their formation, target properties

like the rear surface structure and target conductivity should have a major influence on the ion

beam properties.

We have therefore performed detailed experiments to investigate the ion beam properties

in dependence of these target parameters. In contrast to the homogeneous spatial distribution of

protons originating from highly conducting (gold, aluminium) targets with a flat rear surface,

ion beams emitted from targets with structured rear surfaces showed a strong filamentation.

This effect could be explained by the presence of microfocusing filaments from these surface,

as published in [14]. Furthermore, as expected from the TNSA mechanism, the scale length

of the plasma at the rear surface is crucial for an effective ion acceleration. A large extension

of a plasma at the rear surface has been shown to suppress the acceleration mechanism

effectively [5, 15].

The formation of the accelerating sheath is dependent on the transport of the large electron

currents through the target, thereby influenced by the onset of compensating return currents

and effected by instabilities. The transport of relativistic electrons through the target is

an extensively studied area of research [16–19] because of its relevance not only for ion

acceleration, but especially for the concept of fast ignition [20–22] in ICF. It has been shown [2]

that proton beams emitted from plastic targets always showed a filamentary structure. We

used plastic and glass targets of varying thickness as well as layered targets to examine the

influence of the target conductivity. Figure 5 shows a comparison of a simulation with the

experiment for a 50 µm plastic target coated with 10 µm gold at the front surface. The left

part of the figure shows the accelerating electron sheath assuming electron beam breakup into

three large filaments during the propagation in the target. The central part of figure 5 presents

the simulated ion beam structure at the location of our detector several cm behind the target.

This is compared to the experimental data shown in the right part of figure 5. As can be seen,
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Figure 5. Proton beam filamentation due to electron transport. Simulation of a filamented electron

sheath (left) in plastic causes the proton beam to show structure (central part). The experiment

(right) shows an excellent agreement with the simulation.

there is an excellent agreement between the simulated beam pattern to the experiment which

indicates electron beam breakup to be the origin of the beam filamentation. Similar results

have been obtained using targets coated with conducting layers at the front and the rear surface.

3.3. Heavy ion acceleration

So far mainly protons have been observed from the rear side, originating, as in the long-

pulse experiments, from contaminating hydrocarbon layers which coat the targets. As soon as

protons are present they outrun the heavier ions and screen the acceleration field. We present

the first experimental study, demonstrating that besides protons, also high-quality, high energy

(∼MeV/nucleon) heavy ion beams can be accelerated from the rear surface of (coated) thin

foils. We find that heavy ions are effectively accelerated, provided the hydrogenous surface

contaminants are removed. We obtained high resolution, absolutely calibrated energy spectra

of different ion species, which provide additional information, not available in the proton signal,

about the spatio-temporal evolution of the accelerating field and the origin of the observed ions.

Details on the acceleration of heavy ions are to be published in [23]. To effectively remove the

hydrogen contaminants we resistively heated tungsten targets up to temperatures of 1000 K

for several minutes. The ion species of interest was coated solely on the rear surface of the

target, thereby unambiguously verifying the origin of the heavy ions. The proton spectrometer

as well as the CR-39 did not show any protons, while strong fluorine ion tracks are observed

originating from the CaF2 layer at the target rear side. The complete removal of contaminants

increased the acceleration of heavier ions considerably. Quantitative evaluation shows that

F7+ was accelerated up to 100 MeV, i.e. more than 5 MeV/nucleon at 4% energy conversion.

The RCF diagnostic confirmed this by showing a narrow spot in the first layer, which, in the

absence of protons, indicates fluorine ions of energies above 4 MeV/nucleon. The evaluation

of the fluorine shot shown in figure 6 shows that E-fields Estat ∼ 2 TV m−1 on a timescale of

τ ∼ 350 fs are necessary to accelerate F7+-ions up to 100 MeV over a scale length of l ∼ 10 µm.

The shot presented in figure 6 was virtually without any protons, but the modelled fields can

accelerate protons up to ∼25 MeV, as typical with unheated targets. The field distribution is in

agreement with an extended TNSA model including dynamic fields and multiple ion species.

We found that field ionization is the dominant mechanism while recombination and collisional

ionization are by far less effective (see [23]). Since the targets were coated only at the back

surface and we successfully removed contaminations and can rule out front side acceleration

within the parameters of our experiment.
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Figure 6. Heavy ion acceleration in the presence (unheated) and without (heated) proton

contaminants. More than 100 MeV (5 MeV/nucleon) F7+ ions were measured.

3.4. Ion beam tailoring

An important question to be addressed for any future application of laser-accelerated protons

and ions is the possibility of tailoring the proton beam, either collimating or focusing it, by

changing the geometry of the target surface. Due to the excellent beam quality and the close

correlation of the accelerating sheath to the rear surface tailoring of the ion beams should be

feasible using appropriate target design. However, ballistic focusing of the laser accelerated

protons is expected to be rather difficult because of the inherent divergence associated with

the spatial variation of the density of the hot electron sheath, which drives the acceleration.

Accordingly, we first attempted to de-focus the beam in one dimension, by using a convex target.

Using a 60 µm diameter Au wire as a target basically constituted such a one-dimensional

de-focusing lens, and we observed a line image as published in [14]. Tilting the wire also

changed the orientation of the line image, which results from the radial, fan-shaped expansion

of the protons normal to the surface of the wire. We then attempted to focus the protons by

modifying the curvature (concave) of the target foil. Due to the Gaussian-like shape of the

hot electron Debye sheath that causes the acceleration, there is an energy dependent angle

of divergence that has to be compensated to focus the ions in the energy range of interest.

Therefore, the effective focal length of a curved target rear surface is longer and is dependent

of the proton energy. The results, that will be published elsewhere show a strong reduction in

the divergence of the central core of the proton beam representing ballistic collimating of laser

produced proton beams.

Based on the excellent beam emittance that implies a highly laminar expansion of an

initially very cold ion beam we investigated the prospect of imaging the actual target surface

by means of the protons. This would further allow the precise determination of the real

source size, details about the electron transport and has the prospect of many applications.

Initial experiments showed substructures in the proton beam that could be related to surface

structures at the µm scale. Figure 7 shows an image of a 50 mm gold target rear surface

obtained by using a scanning electron microscope (SEM). Due to the fabrication process,

elliptical structures (holes) at the surface remain at a diameter of a few µm. In the right part of

the figure, we present typical substructures of the proton beam emitted from that surface. The

shape of the structures in the beam resembles the structures at the surface. Meanwhile we have

succeeded to use artificial surface structures, like lines, grids, crosses and names on a µm scale

to tailor laser accelerated proton beams. The results will be published elsewhere [11], but the

excellent quality of the beam allows to tailor ion beams with fiducial patterns, which is highly

interesting for any imaging techniques, like proton radiography, or electrical field mapping.
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Figure 7. Surface imaging by laser accelerated protons. The structures at the target rear surface

(SEM image, left) were imaged by the proton beam onto the detector (right).

4. Conclusion

Laser accelerated proton and ion beams offer new prospects for a whole variety of applications.

The beam quality was found to be far superior to beams accelerated by conventional accelerators

with respect to the transversal beam emittance, while the longitudinal phase space was found

to be comparable. The beam intensity exceeds present accelerators by orders of magnitude.

The excellent beam quality implies a highly laminar acceleration and an initially extremely

cold beam and the experiments proved the beam to have optical qualities. The properties are

highly interesting for applications, especially as we have shown the possibility of tailoring

the beam with respect to shape, ion species, efficiency [14], and homogeneity. A wealth of

applications are currently being investigated, starting from improved diagnostic capabilities [6],

to industrial and medical applications, to next generation ion sources and prospects for fast

ignition in inertial ICF [4, 24]. Still the underlying physics is subject to further investigation

and, with respect to the extensive interest, future improvements are likely to be developed in

the next years.
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We describe a novel scheme consisting of two deformable bimorph mirrors that can free ultrashort laser pulses
from simultaneously present strong wave-front distortions and intensity-profile modulations. This scheme
is applied to the Max-Planck-Institut für Quantenoptik 10-TW Advanced Titanium-Sapphire Laser (ATLAS)
facility. We demonstrate that with this scheme the focusability of the ATLAS pulses can be improved from
1018 to 2 3 1019 W�cm2 without any penalty in recompression fidelity. © 2002 Optical Society of America

OCIS codes: 010.1080, 140.3590, 220.1000.

In high-power multistage Nd:glass and Ti:sapphire
(TiS) laser systems, wave-front aberrations (WFAs)
that result in deterioration of beam quality are com-
mon. These WFAs originate from imperfections in
the many optical components that are present in the
beamline as a result of optical f igure errors, pump-
induced thermal distortions in the amplif iers, and the
third-order nonlinear n2 effect. In TiS lasers, cooling
the crystals to the temperature of liquid nitrogen can
essentially eliminate pump-induced distortions.1 – 3 A
more versatile approach, however, is to use adaptive
optics, which can counteract each of the three WFA
sources, regardless of whether they occur individually,
in pairs, or all together simultaneously. This was
demonstrated in Refs. 4–7 by use of just a single
deformable mirror (SDM).

In the SDM concept, only the WF of the pulse is cor-
rected, not the intensity profile. This scheme works
well as long as the WF perturbing action of each indi-
vidual optical element is so weak that the shortest local
radius of curvature, R, of the WF of the exiting pulse
is many times the distance to the adaptive mirror. In
addition, the pulse should not pick up strong intensity
modulations, e.g., by nonuniform amplification. How-
ever, when an optical element such as a multipass am-
plifier causes a single-pass WFA with an associated
R value of the order of the pass-to-pass propagation
distance, the pulse intensity profile becomes increas-
ingly modulated from pass to pass. On further propa-
gation, these modulations may get even worse. If one
stays with the SDM concept, the beam loading would
then have to be reduced so that the optical components
placed downstream from the amplif ier are not dam-
aged. In chirped-pulse amplification laser systems,
the compressor gratings are then particularly endan-
gered because of their low damage threshold. The sys-
tem efficiency is thereby decreased considerably, too.

In this Letter we study this heavy-perturbation
case, which to our knowledge has not been investigated
experimentally before and is characterized here by the
simultaneous presence of strong phase and amplitude
modulations. We show that by invoking two DMs
one can cancel the modulations without any sacrif ice

in beam loading. In our concept, the compressor is
placed between two DMs and thus has to be operated
with a distorted WF. For this situation, we present
conditions that, when met, maintain the pulse recom-
pressibility and focusability within reasonable limits.

The two-DM concept has also been investigated for
applications in areas others than the one studied here,
so far only theoretically. These other applications
include beam shaping for high-power laser beams in
laser photochemistry and material processing8 as well
as delivering a high-quality pulse on a remote target
after propagation through turbulent atmosphere.9 In
astronomy, the use of two DMs may enable one to over-
come turbulence-induced phase and amplitude modu-
lations for widely enlarged fields of view (Refs. 10
and 11, and references therein). The algorithms
developed in Refs. 8–11 for control of the DM surfaces
are not applicable to our situation because of the
presence of the gratings between the two DMs, which
limits beam loading.

The heavy-perturbation case that we are confronted
with arises in the f inal disk amplif ier of our Advanced
Titanium:Sapphire Laser (ATLAS) facility (Fig. 1).
The front end of the laser12 delivers a 300-mJ pulse
that is centered at 790 nm and stretched from 100 fs
to 200 ps with a smooth intensity profile and a well-
behaved WF. After four passes, the f luence pattern
of the pulse inside the compressor is heavily modulated
(Fig. 2, left) due to crystal-growth defects (Fig. 3) and
pump-induced aberrations. At a pulse energy of
1.3 J at the compressor entrance, the peak f luence
reaches 0.3 J�cm2 on the f irst grating, far beyond its
damage threshold of 0.15 J�cm2. Under these loading
conditions, the energy that is transmittable through
the compressor is limited to only 0.5 J. Because of
the simultaneous presence of WFAs and intensity
modulations, the SDM concept is no longer applicable.
To increase the amount of energy that is transportable
through the compressor, we must f irst smooth the
f luence profile. This is achieved with deformable mir-
ror DM1 (17 electrodes, 30-mm diameter, bimorph),13

which replaces the plane mirror in the beamline before
the pulse makes its final transit through the amplif ier

0146-9592/02/171570-03$15.00/0 © 2002 Optical Society of America
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Fig. 1. Setup of the final amplif ier in the ATLAS facility
with two deformable mirrors, DM1 and DM2, closed loop,
and three target chambers (TCH5–TCH7). The TiS crys-
tal of 40-mm outer diameter is pumped from two sides.
The TiS pulse provided by the front end passes through
the crystal four times and is thereby amplif ied from 0.3 to
1.5 J. The pulse then runs through spatial filter SF2, and
the pulse diameter increases from 18 to 63 mm. The pulse
is then recompressed to 130 fs in an evacuated compressor
chamber that houses two holographic gold gratings and is
connected to the target chambers by evacuated tubes.

(Fig. 1). The best electrode voltage settings for DM1
can be found manually with a few iterations by use of
a real-time beam-profile analyzer. For the same
energy of 1.3 J as before, the peak f luence of the
smoothed profile is then reduced to 90 mJ�cm2 so that
the 1.3-J energy can be safely transmitted through
the compressor. At constant voltage settings, the
smoothed beam profile remains stable over weeks and
changes little on propagation inside the compressor
and a few meters downstream.

The action of DM1 modif ies the WFAs originating
in the amplifying crystal but does not generate a
plane WF. A plane WF is generated with a sec-
ond deformable mirror, DM2 (33 electrodes, 80-mm
diameter, bimorph).13 DM2 is placed behind the
compressor so that it is able to compensate for the
optical f igure errors of the gratings and to ensure that
highly peaked intensity patterns that might occur
when DM2 is optimized cannot damage the gratings.
The compressor is thus fed with a chirped pulse whose
WF is distorted. In this situation, which was inves-
tigated theoretically in Ref. 14, the following three
effects are of major importance: loss of compression
fidelity, astigmatism, and chromatic aberration. For
an estimate of the level of WFAs that are tolerable
without too high a loss in beam quality, the rigorous
theory14 is not needed. It is sufficient to replace the
real pulse with a spherical WF whose curvature is
chosen to be equal to the maximum local curvature in
the real distorted WF. The focus of the model WF is
downstream DM2.

From measurements, we find that the recompres-
sion fidelity in terms of pulse duration and contrast
is hardly affected as long as any local radius of curva-
ture of the WF exceeds 15 m. The condition is met
in the ATLAS for pulse energies of up to 1 J after
compression.

The originally spherically convergent beam turns
astigmatic when it leaves the compressor, leading to
the occurrence of two focal lines instead of a single
point focus because the beam behaves differently
in the dispersion and nondispersion planes of the
compressor. With R $ m, the compressor-induced
astigmatism turns out to be weak and is hence easily
correctable with DM2, since the necessary displace-
ment is #1 mm. The compensation of the original
beam convergence is not a problem, either.

The chromatic aberration originates from the differ-
ent path lengths of the individual spectral components
on their way through the compressor. When they are
exiting, the individual spectral beam components still
have the same cone angle, but at a f ixed position in
space the radii of curvature are different. This ef-
fect cannot be compensated for with DM2. The beam
emerging from DM2 will hence be parallel for the spec-
tral component near l0 but divergent for the compo-
nents with l , l0 and convergent for those with l . l0.
The focus of such a beam is hence no longer pointlike
but exhibits longitudinal spreading, with each spec-
tral component having its own focus located at a dif-
ferent position. This spreading is tolerable when the
foci of all colors inside the spectral range 4DlFWHM

lie within the Rayleigh length of the spectral beam
component at l0. For the ATLAS, this criterion re-
quires R . 15 m, which is met. The theoretical analy-
sis reveals that R ~ DlFWHM. Very short pulses with
DlWFHM $ 50 nm thus need to be rather well collimated
if one wishes to avoid intensity degradation in the fo-
cus. This conclusion is in fair agreement with the re-
sults of the rigorous theory.14

Fig. 2. Fluence patterns in the plane of the first compres-
sor grating. Left, DM1 is replaced with a plane mirror;
peak f luence, 300 mJ�cm2. The double-peak pattern is
due to the coarse two-half structure of the WFAs shown
in Fig. 3. Right, DM1 is optimized; peak f luence reduced
to 90 mJ�cm2. The remaining f luence modulation arises
from the fine structure of the WFAs (Fig. 3). The very
high spatial frequencies, which carry little energy, are lost
on propagation through the spatial filter SF2 (Fig. 1).

Fig. 3. WFAs that are due to growth defects in the f inal
disk amplifier of 40-mm diameter, 17-mm thickness, and
al � 2.3 at 532 nm.
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Fig. 4. Fluence profile in the focus of the F�3 off-axis
parabola. Left, DM1 and DM2 are on, but DM2 acts as
a plane mirror. Middle; local intensity as a function of
radius for the f luence profiles shown to the left �- - -� and
right �222�. Right, DM1 and DM2 are on, but DM2 is
locked to operation for minimal WFAs.

We generate a parallel beam with DM2 by comparing
the actual WF as measured with a Shack–Hartmann
sensor that has a 12 3 12 lenslet array with a reference
WF obtained from a diode laser running at 790 nm and
expanded to a parallel beam of 63-mm diameter. Edge
points with an intensity of less than 10% of the maxi-
mal intensity are disregarded. The reference WF
is stored in the computer for subsequent use. The
voltage settings to be assigned to the electrodes
of DM2 then have to be found so that the WF of
the ATLAS pulse matches the reference WF as
closely as possible. This is achieved by application
of a closed loop. The algorithm employed for this
purpose is the same as that developed in Ref. 5.
The deviations between the actual and the refer-
ence WFs are minimized by use of the peak-to-
valley optical-path difference as a criterion. Usually,
approximately f ive iterations are needed to decrease
the peak-to-valley value from the original 10l to l�4.
The voltage settings corresponding to minimal WF
distortion are stored. They can be used for hours
because of the high thermomechanical stability of
the ATLAS and the correspondingly low shot-to-shot
f luctuations of the WF. For routine operation of the
ATLAS, the closed loop is no longer needed once the
WF correction is complete. We can then remove
the beam splitter feeding the Shack–Hartmann sen-
sor from the beam line to keep the B integral low.
In case of performance deterioration, e.g., because of
thermal drift, the whole WF correction procedure,
which takes �15 s, has to be redone.

We check the quality of the corrected WF in each
target chamber by measuring the f luence patterns in
the foci of the F�3 off-axis parabolas, using an 8-bit
CCD camera and a set of calibrated filters. This
combination provides an effective dynamic range of
.104. The focus is viewed at 503 magnification.
Because of the 1-mm-diameter pinhole SF2, there can
be no energy outside the sensor chip �6 mm 3 4 mm�.
Hence, the amount of energy that can possibly be
hidden in the pixels showing no direct response is at
most 10% of the total pulse energy. In each chamber,
we obtain the same result for thousands of shots.
With DM1 on and DM2 acting as a plane mirror, we
find the multiple-peak f luence pattern depicted in
the left-hand part of Fig. 4. The Strehl ratio (for its
definition, see Ref. 15) is only �0.04. However, when
DM2 is locked to operation for minimal WFA, we find

a dramatic improvement (Fig. 4, right). A single peak
appears that contains 65% of the pulse energy within
the diffraction-limited diameter. The mean intensity
inside the diffraction-limited diameter is raised by a
factor of �20 from �10

18 to 2 3 10
19 W�cm2. The

Strehl ratio increases to 0.7. The Strehl ratio esti-
mated from the corrected WF with a peak-to-valley
optical path difference of l�4 is 0.8. The difference
in the two ratios is attributed to the fact that the
real WF has higher-order abberrations that are not
measurable with our Shack–Hartmann sensor and
are not correctable with our adaptive optics.

We have shown that a combination of two DMs can
free ultrashort laser pulses from simultaneously
present heavy phase and amplitude modulations
without any penalty in recompression fidelity and
focusability.
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Teilchenbeschleunigung mit Lasern
Einer internationalen Gruppe von Forschern aus Deutschland (MPI für
Quantenoptik, LMU München, GSI Darmstadt) sowie Frankreich (LULI)
und den USA (General Atomic) ist es gelungen, Fluor- und Kohlenstoff-
ionen mittels eines Hochleistungslasers auf Energien von über 100 MeV
zu beschleunigen. Diese Methode eröffnet Anwendungsmöglichkeiten
in Bereichen wie Laserfusion, Medizin oder Laborastrophysik.

Dadurch werden die Elektronen der

Folienatome von den Laserfeldern in-

nerhalb von ca. 2 fs nahezu auf Licht-

geschwindigkeit (Energie: 2 MeV) be-

schleunigt. Die Atomrümpfe verblei-

ben zunächst im Laserfokus. Sie wer-

den auf Grund ihrer größeren Träg-

heit nicht so schnell beschleunigt.

Noch bevor sie einen nennenswerten

Impuls aufnehmen können, wechselt

das Laserfeld sein Vorzeichen und

wirkt nun bremsend.

Die Elektronen haben jedoch die

Region bereits verlassen und behal-

ten deshalb ihre Geschwindigkeit

bei. Aufgrund von relativistischen Ef-

fekten wirkt auf die Elektronen trotz

der transversalen Natur der Laserfel-

der eine Beschleunigung in Laserrich-

tung. Dies führt zu einem starken

Elektronenstrom durch die Folie, der

bei seinem Austritt auf der Rückseite

dort ein sehr starkes quasistatisches,

das heißt nicht oszillierendes, elek-

trisches Feld erzeugt. Dieses Feld 

erreicht eine Stärke von  mehr als 

1012 Volt pro Meter und ist damit

rund zehnmal größer als

das Feld, das ein Elektron

im Wasserstoffatom hält.

Dadurch werden die Ato-

me an der Folienober-

fläche ionisiert und be-

schleunigt, wobei die

höchste Energie mit F7+-

Ionen erzielt wurde. Ein

Laserpuls erzeugt  etwa

1012 Ionen und beschleu-

nigt sie auf einer Distanz

von nur 10 µm auf Ener-

gien von über 100 MeV

[1]. Konventionelle 

Beschleuniger benötigen 

dazu Strecken von ca.

100 Metern.

Hochenergie-Kurzpulslaser erzeugen

für die Dauer des Laserpulses im Fo-

kus Intensitäten von 1019-1021 W/cm2

und ionisieren die Materie. Die im

Plasma auftretenden elektrischen

und magnetischen Felder übertreffen

alle jemals zuvor im Labor erzeugten

Feldstärken um viele Größenordnun-

gen und sind vergleichbar mit Ver-

hältnissen, wie sie sonst nur in Pulsa-

ren, Supernovae und anderen astro-

physikalischen Objekten auftreten.

Erzeugt man solche Bedingungen

nun kontrolliert im Labor, lassen sich

neuartige Materiezustände und Phä-

nomene beobachten.

In unseren Experimenten fokus-

sieren wir den 100-TW-Laser des La-

boratoire pour l'Utilisation des Lasers

Intenses (LULI) in Palaiseau, Frank-

reich, auf eine wenige Mikrometer

dünne Folie aus Aluminium oder

Wolfram, die auf der Rückseite mit

Kohlenstoff bzw. CaF2 beschichtet ist

(Abbildung 1). Die 300 fs kurzen 

Laserpulse erzeugen im Fokus eine

Leistungsdichte von 5·1019 Watt/cm2.

Die Ionen werden in einem kur-

zen Puls aus einem sehr kleinen

Raumvolumen emittiert und ihre Tra-

jektorien überschneiden sich nicht.

Die daraus resultierende hohe Strahl-

qualität ist eine wichtige Vorrausset-

zung für weitere Anwendungen und

eine bessere Kontrolle des Ionen-

strahls. Die Ionenpulse haben unge-

fähr die Dauer des Laserpulses und

sind damit mehr als tausendmal kür-

zer als jeder herkömmlich erzeugte

Puls. Da die positive Ionenladung im

laserbeschleunigten Puls durch be-

gleitende Elektronen kompensiert

wird, können außerdem Teilchenströ-

me von einigen MA realisiert werden

und liegen damit um viele Größen-

ordnungen über denen konventio-

neller Beschleuniger. Aufgrund dieser

einzigartigen Eigenschaften konnten 

laserbeschleunigte Protonen bereits

erfolgreich in der Diagnostik von

hochdichten, kurzlebigen Plasmen

und elektrischen Felder eingesetzt

werden.

Aus den Energiespektren der La-

dungszustände lassen sich wichtige

Informationen über die Dynamik der

Felder und den Beschleunigungsme-

chanismus gewinnen, die in Zukunft

eine bessere Kontrolle des Prozesses

und der Pulseigenschaften ermög-

lichen. Die Methode eröffnet eine

Vielzahl von Anwendungen. Im medi-

zinischen Bereich zur Produktion

von kurzlebigen Isotopen für die 

Positronen-Emissions-Tomographie

(PET), in der Grundlagenforschung

als Diagnostikverfahren oder Zünd-

funke in Fusionsexperimenten, für

neuartige Teilchenbeschleuniger und

sogar für astrophysikalische Experi-

mente im Labor. So kann man mit

den Ionenpulsen makroskopische

Proben in wenigen Pikosekunden auf

über 100 000 Grad  erhitzen, bevor

diese sich ausdehnen.

Die Arbeit wurde unterstützt im

Rahmen des EU-Programmes Nr.

HPRI CT 1999-0052, Grant-Nr.

E1127.

[1] M. Hegelich et al., Phys.Rev.Lett. 2002, 89,

085002
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Abb. 1 Beschleu-

nigungsmecha-

nismus: Der

Laserpuls beschleu-

nigt in einer Folie

Elektronen (rot-

orange), die auf

der Rückseite eine

Ladungsschicht

und damit ein

elektrisches Feld

erzeugen. Diese

ionisiert und

beschleunigt die

Atome (in diesem

Fall Kohlenstoff)

aus der Folienrück-
seite.
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dass wir unsere erfolgreiche (berühmt-berüchtigte) und nicht zuletzt vor allem viel

Spass machende GSI-LULI-GA-MPQ-Kollaboration auch in Zukunft aufrechterhalten

werden. (Auch wenn noch ein oder zwei Institutslogos hinzukommen).

... M. Allen, Abel Blazevic (diesmal richtig geschrieben), Erik Brambrink und Matthias
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... meinem Bürogenossen Stefan Karsch für seine gute Zusammenarbeit in wirkich allen

Bereichen. Du warst eine grosse Hilfe und ein noch grösserer Ansporn. Und wenn ich

denn eine neue Walspezies entdecken soll, wird es bei dir ein inerstellarer Nebel, viel

Glück mit der neuen Teleskopmontierungist. Und immer dran denken: Alles wird gut!

... den Kollegen Michael Jost, Malte Kaluza, Matthias Dreher, Ulrich Andiel, Christoph

Gahn, Jürgen Fließer, Jürgen Stein, Marko Santala, der sehr kompetenten Francesca

Pisani (die sich immer darüber ärgert, zuerst mit dem Adjektiv ”hübsch” in Verbindung
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