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Zusammenfassung 
 

Demenz ist definiert als Syndrom, das durch einen Verlust der geistigen Funktionen 

wie Denken, Erinnern, Orientierung und Verknüpfen von Denkinhalten sowie eine 

Beeinträchtigung der Alltagsrelevanz charakterisiert ist. Patienten mit einer Demenz 

zeigen ein regionales Defizit des Glucosemetabolismus im Gehirn. Das Ziel dieser 

Studie ist, einen Zusammenhang zwischen der neuropsychologischen Untersuchung 

und des regionalen Glucosemetabolismus des Gehirns bei Demenz-Patienten zu 

finden. In dieser Studie wurden 24 Patienten mit einer Demenz im Alter 69.2 ± 7.5 

Jahren, die nach den Kriterien der ICD-10 und der DSM-IV diagnosziert wurden, 

eingeschlossen. Die kognitiven Leistungen wurden mit Hilfe der CERAD-NP 

Testbatterie, des Uhrentests nach Shulman und des Stroop-Paradigmas nach dem 

Nürnberger-Alters-Inventar (NAI) getestet. Die MRT- und FDG-PET Untersuchungen 

wurden bei allen Patienten durchgeführt. Die Bildgebungsdatensätze wurden mit 

Hilfe der Medical Image Processing, Analysis and Visualisation software (MIPAV) 

nach der Region of Interest (ROI) – Methode in neun Gehirnregionen (die rechten 

und linken Hemisphären, der rechte und linke Gyrus frontalis inferior, der rechte und 

linke Hippocampus, der rechte und linke Parietallappen) ausgewertet. Die Daten 

wurden mittels des Spearman-Koeffizierten korreliert. In dieser Studie wurde eine 

signifikante Korrelation zwischen dem MMSE–Wert und dem Hypometabolismus im 

linken und rechten Parietallappen ermittelt. Beeinträchtigungen in der verbalen 

Lernleistung (Wortliste Lernen im CERAD-NP) korrelierten mit einem 

Hypometabolismus in der linken Hemisphäre, dem linken und rechten Hippocampus 

und dem linken Parietallappen. Zusätzlich wurde eine signifikante Korrelation 

zwischen der Wortliste Wiedererkennen (CERAD-NP) und einem reduzierten 

zerebralen Metabolismus des linken Gyrus frontalis inferior gefunden. Die 

konstruktive Praxis (CERAD-NP) korrelierte mit einem verringerten 

Glukosemetabolismus in der rechten Hemisphäre. Die visuokonstruktive Praxis 

(Uhrentest) konnte nicht signifikant mit spezifischen Gehirnregionen in Verbindung 

gebracht werden. Auffälligkeiten im Stroop-Paradigma korrelierten mit einem 

Hypometabolismus im rechten Gyrus frontalis inferior. Die Ergebnisse dieser Studie 

zeigen, dass spezifische kognitive Defizite Aufschluss über die entsprechende 

Lokalisation der neurodegenerativen Erkrankung im Gehirn geben können.  
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1 Introduction 
 

Dementia is a syndrome of acquired impairment in multiple areas of 

intellectual function not due to delirium. “Dementia is a compromise in three or 

more of the following spheres of mental activity: memory, language, praxis, 

conceptual or semantic knowledge, executive functions, personality or social 

behaviour, and emotional awareness or expression.” (1). Conditions lasting 

hours to days are regarded as delirium, whereas those lasting weeks to 

months are considered dementias. The criterion of intellectual impairment 

rather than a simple decline in intellectual function aims at objective 

documentation of the dementia. The criterion that the intellectual impairment 

includes multiple mental deficits excludes patients with isolated 

neuropsychological disturbances such as amnesia or aphasia from focal brain 

lesions (1). 

All definitions of dementia emphasize both memory impairment and functional 

impairments. The American Psychiatric Association’s Diagnostic and 

Statistical Manual, fourth edition (DSM-IV, 1994) criteria for dementia require 

the presence of memory loss plus an aphasia, agnosia, apraxia or a 

disturbance in executive functions (2) (see also Table 1). The core feature of 

this definition is a loss of at least two cognitive abilities, one of which must be 

memory.  

The diagnostic criteria of the ICD-10 (3) definition of dementia require: a) 

impairment in short- and long-term memory; b) impairment in abstract thinking, 

judgement, higher cortical function, or personality changes; c) memory and 

intellectual impairment, which cause significant social impairments; and d) the 

occurrence of these traits when patients are not in a state of delirium (see 

details in Table 2).  

From this perspective, dementia implies involvement of multiple neural 

systems, supported by multiple anatomic structures. Classical examples 

include memory loss, which is due to involvement of mesial temporal lobe 

structures; aphasia, which is due to impairment of the left perisylvian cerebral 

cortex; ideomotor apraxia, which is due to impairment of the left parietal lobe; 

agnosia, due to involvement of the dorsal occipital and parietal lobes. It is 
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clear, that the clinical manifestation of degenerative processes depend in part 

on which neural anatomical structures are affected earliest and most 

extensively.  

Alzheimer’s dementia (AD) is the leading type of dementias and accounts for 

approximately two thirds of cases of dementia (4). Dementia with Lewy bodies 

(DLB) is a relatively recently identified entity, with about half the number of 

cases of AD pathology (5). Fronto-temporal dementias (FTLD) are the third 

most common cause of cortical dementias, following AD and DLB (6).  

These different dementias are associated with distinctive characteristic 

neuropsychological syndromes.  

 

 

1.1 Alzheimer’s Dementia 

 

1.1.1 Definition 
 

In 1906, the German neuropsychiatrist Alois Alzheimer described a 51-year-

old woman with the dementia that came to bear his name (7). The path to 

accurate diagnosis of AD, however, is paved with difficulties, particularly at the 

very onset of clinical symptoms of the disease. The clinical diagnosis of AD is 

complicated by heterogeneity of the cognitive and other symptoms. Various 

clinical, biochemical, pharmacological, and genetic factors have consistently 

failed to be valid diagnostic instruments, and no early, or even ante mortem, 

marker for AD has yet been identified. Thus, the diagnosis of definite AD can 

be made only by invasive methods, either by biopsy, or more commonly, in 

autopsy (8). Current clinical diagnosis is made on the basis of the National 

Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s 

Disease and Related Disorders Association (NINCDS/ADRDA) criteria (8) (see 

Table 3) for possible and probable AD.  
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1.1.2 Neuropathology and Etiology 
 

The major histopathologic hallmarks of AD are: 

• Neurofibrillary tangles (NFTs) 

• β-Amyloid peptide deposition in senile plaques and blood vessels 

• Neuronal death 

Neurofibrillary tangles are masses of abnormal filaments within the cytoplasm 

of neurons that are made up of paired helical filaments. The major protein 

abnormality in NFTs is the presence of a highly insoluble, 

hyperphosphorylated microtubule-associated protein called tau. Its disruption 

of the normal cytoskeletal architecture may be an important factor in the death 

of neurons (9;10).  

Amyloid deposition appears to play a critical role in the pathology of AD. The 

amyloid precursor protein (APP) molecule is a transmembrane protein of 

unknown function. In humans, the predominant metabolism of APP involves 

an enzyme, termed alpha secretase, that cuts the extracellular portion of the 

molecule at a site close to the membrane surface, producing a long protein 

comprised entirely of the extracellular portion of the molecule (11). 

Subsequent studies of familial AD led to the discovery of mutations in the 

amyloid precursor protein (APP) on chromosome 21 (12).  

Senile plaques are spherical structures averaging about 100 microns in 

diameter, composed of degenerating neuronal processes, extracellular ß-

amyloid, microglia and astrocytes (11).  

  
 

1.2 Fronto-temporal Lobar Degeneration 

 

1.2.1 Definition 
 

Over a century ago, in 1862, Arnold Pick (13) described several elderly 

patients with progressive aphasia; later he augmented the study with 

additional patient reports and post-mortem correlations. A unique 

histopathology with globose intraneuronal inclusion and achromatic ballooned 
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neurons, called “Pick bodies” and “Pick cells”, was reported and Pick’s disease 

was established. Then later the Lund and Manchester group renamed Pick’s 

disease as fronto-temporal lobar degeneration (FTLD) (14), because of 

pronounced frontotemporal atrophy with loss of neuronal cells, grey and white 

matter gliosis and superficial cortical spongiform changes. Neary et al. 

established three prototypic neurobehavioral syndromes of FTLD: 

Frontotemporal Degeneration (FTD), Progressive Nonfluent Aphasia or 

Primary Progressive Aphasia (PPA) and Semantic Dementia (SD), see Table 

4. FTLD is the third most common cause of cortical dementia, following AD 

and Lewy body disease.  

 

1.2.2 Clinical symptoms 
 
Three prototypic neurobehavioral syndromes can be produced by FTLD. The 

most common clinical manifestation of FTLD is a profound alteration in 

personality and social conduct, characterized by inertia and loss of volition or 

social disinhibition and distractibility, with relative preservation of memory 

function (14-17). There is emotional blunting and loss of insight. Behavior may 

be stereotyped and perseverative. Speech output is typically economical, 

leading ultimately to mutism, although a press of speech may be present in 

some overactive, disinhibited patients.  

PPA is a disorder of expressive language, characterized by effortful speech 

production, phonologic and grammatical errors, and word retrieval difficulties 

(15). Difficulties in reading and writing can also occur. Understanding of word 

meaning is relatively well preserved. The disorder of language occurs in the 

absence of impairment in other cognitive domains, although behavioral 

changes of FTD may emerge late in the disease course. In patients with PPA, 

core features like nonfluent spontaneous speech and phonological 

paraphasias with preserved (single) word comprehension were observed (18).  

Patients with a diagnosis of SD were characterized by fluent and 

grammatically correct spontaneous speech, but empty of content words, 

semantic paraphasias, impaired (single) word comprehension, and frontal 

behavioral features. Also there is an inability to recognize the meaning of 

visual percepts (associative agnosia) (15;18).  
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1.3 Corticobasal Degeneration 

 

1.3.1 Definition 
 

Corticobasal degeneration (CBD) is an extrapyramidal syndrome 

characterized by progressive asymmetric rigidity, involuntary movements, and 

localized cortical signs, particularly apraxia or cortical sensory loss. Proposed 

criteria for the diagnosis of the corticobasal syndrome are presented in Table 

5. 

 

1.3.2 Neuropathology 
 

CBD was first  described by Rebeiz et al. in 1968 based on the pathological 

findings in 3 patients of “corticodendatonigral degeneration with neuronal 

achromasia” (19). CBD has disease-specific tau protein isoform profiles and 

hence, is one of the disorders associated with tau pathology (20;21).  

Some authors reported  that typical pathological findings in CBD comprise 

cortical atrophy, especially in the frontal and anterior parietal lobes, with 

degeneration of the substantia nigra (22;23). The medial temporal lobe may 

be involved in some cases of CBD (24). 

 

1.3.3 Clinical symptoms 
 

Clinically, patients typically have onset of symptoms in one arm, although a 

leg, gait or speech may more rarely be affected first. The patients often initially 

describe ‘clumsiness’ in the affected limb (25;26). Dementia may occur later in 

the disease.  
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1.4 Posterior cortical atrophy 

 

1.4.1 Definition 

 

Posterior cortical atrophy (PCA) is a syndrome with cognitive manifestation of 

visual deficits which are more prominent than the memory and language 

abnormalities. The term PCA was first applied by Benson et al. in 1988 (27). 

They described a group of patients with progressive dementia and disorders of 

higher visual function, including alexia and visual object and topographic 

agnosia. The clinical syndrome is most frequently dominated by elements of 

Balint’s syndrome (simultanagnosia, oculomotor apraxia, optic ataxia) and 

Gerstmann’s syndrome (agraphia, acalculia, right-left disorientation, finger 

agnosia) and ideomotor apraxia (27;28). The visual cognitive deficits may 

remain more prominent than memory, language and other cognitive 

abnormalities.  

 

1.4.2 Neuropathology 

 

Amongst cases of PCA coming to autopsy, there has been a predominance of 

AD pathology (29-32). In comparison with typical Alzheimer’s disease, patients 

with PCA have a much higher incidence of senile plaques and neurofibrillary 

tangles in Brodmann areas (BA) 17, 18 and 19 of the occipital cortex as well 

as in the posterior parietal cortex (BA 7b/7m), the inferior temporal-occipital 

junction (area MT) and the posterior cingulated gyrus (BA 23). The difference 

from AD is most marked in the posterior occipital cortex, and less marked, 

though still significant, in the posterior parietal cortex. In addition, areas 9, 45 

and 46 in the prefrontal cortex, show much less pathology than the posterior 

cortical areas in these patients and much less than is typical in AD 

(27;31;33;34). 
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1.4.3 Clinical symptoms 

 

Insofar as PCA is a disorder most often associated with AD pathology, it is still 

unclear whether it is best characterised as part of the spectrum of 

presentations constituting typical AD (27;33), or as a distinct entity. Some 

studies have demonstrated a subgroup with prominent visual problems among 

patients meeting standard criteria for diagnosis of probable AD (35). Mendez 

et al. (36) have argued that PCA patients differ from AD patients in having, in 

addition to greater visual problems, greater insight, more depression, better 

verbal fluency and memory, earlier age of onset, and, in general, focal 

posterior but not mesiotemporal atrophy on magnetic resonance imaging 

(MRI). Mendez et al. suggested criteria for the clinical diagnosis of PCA (see 

Table 6). 

 

 

1.5 Dementia with Lewy bodies 

 

The current consensus criteria by McKeith et al. (see Table 7) for probable 

dementia with Lewy bodies (DLB) are the presence of the core features: 

fluctuating sensorium/cognition, parkinsonism and visual hallucinations. A 

definite diagnosis of DLB rests on the histopathological examination, which 

shows the presence of Lewy bodies in brain tissue.  

DLB is acknowledged as the second most common degenerative dementia, 

trailing only Alzheimer's disease. Lewy bodies are found in substantia nigra, 

locus ceruleus and basal nucleus of Meynert (37). 

 

1.5.1 Clinical symptoms 

 

Disease progression usually occurs over years, and it can be more rapid than 

in AD (38). The cognitive decline associated with DLB can precede the onset 

of parkinsonian symptoms and is associated with prominent impairment in 

visuospatial and executive function. Visuospatial deficits can be manifested 
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clinically as a loss of the ability to cope with familiar surroundings. Formal 

neuropsychological testing shows impaired executive function and working 

memory (39). Individuals are slow to perform tasks of set-shifting and spatial 

working memory. In contrast to AD, short-term memory is relatively intact in 

DLB. 

Recurrent, well-formed, detailed visual hallucinations are a core feature of 

DLB (40;41); one study found delusions in 27.8% of cases (42). Delusional 

misidentification is surprisingly common, and patients often complain that their 

spouse or child has been replaced by an impostor (Capgras syndrome) (42). 

Selective degeneration of the amygdala, a brain region involved in identifying 

familiar faces, appears to be the anatomic substrate of this syndrome. The 

delusions and visual hallucinations seen in DLB have been associated with 

upregulation of cholinergic muscarinic receptors caused by decreased 

cholinergic levels (43). 
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1.6 Neuroimaging in Dementia 

 

1.6.1 Magnetic resonance imaging (MRI)  

 

Structural magnetic resonance imaging (MRI) is an important method in 

identification of dementia. The use of MRI in the practical assessment helps to 

distinguish different types of dementia, particularly in their early stages. The 

different pathological processes that produce cerebral dysfunction at a cellular 

level also produce macroscopic effects that can be detected in vivo with 

imaging. For these reasons, neuroimaging in general, and MRI in particular, is 

an essential part of the investigation of a patient with dementia. 

 

Medial temporal lobe atrophy  
Neuropathological studies have implicated the medial temporal lobe as an 

early site of pathological involvement in AD and many imaging studies have 

therefore focused on this part of the brain (44-49). The availability of MRI 

enabled the study of specific structures within the medial temporal lobe, such 

as the hippocampus, the parahippocampal gyrus, subiculum, entorhinal cortex 

and amygdala. Scheltens et al. (50) reported that in patients with AD the 

degree of medial temporal lobe atrophy correlated significantly with scores on 

the mini-mental state examination and memory tests. O’Brien et al (48) 

showed a significant temporal lobe atrophy in AD in contrast to normal ageing, 

depression, vascular dementia and other causes of cognitive impairments. 

Thus, several studies conclude that atrophy of the medial temporal lobe is 

quite sensitive for AD (45-51).  

 

Frontotemporal atrophy 
Neary et al. (15) listed frontal and temporal atrophy as supportive diagnostic 

features for frontotemporal lobar dementia, but absence of these features 

does not rule out this diagnosis. Asymmetrical, predominantly left-sided 

perisylvian atrophy characterises progressive non-fluent aphasia and 

asymmetrical anterior temporal lobe atrophy – semantic aphasia (15). In both 
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disorders atrophy becomes more widespread but generally remains 

asymmetrical. In Galton and colleagues’ study (52) of 30 patients with 

Alzheimer’s disease, 17 with semantic dementia, 13 with the frontal variant of 

frontotemporal dementia and 18 controls, a new visual scale was used; it was 

based on atrophy of the temporal pole, parahippocampal gyrus, and lateral 

temporal gyrus, and it could be helpful in distinguishing Alzheimer’s disease 

from semantic dementia, because the latter disorder shows significantly more 

atrophy in all these regions in both hemispheres.  

 

Occipital lobe atrophy 
Dementia with Lewy bodies (DLB) is associated with occipital changes in 

blood flow and metabolism. But Middelkoop et al. (53) performed volumetric 

MRI measurement of the occipital lobe blind to the diagnosis in 23 subjects 

with DLB, 25 with AD, and 24 age-matched control subjects and found no 

significant differences between groups in occipital lobe volume. The authors 

conclude that gross structural changes in the occipital lobe do not occur in 

patients with mild to moderate DLB or AD.  

Parieto-occipital atrophy on brain MRI was also reported in patients with the 

posterior cortical atrophy variant of AD (31;33). 

 

1.6.2 Positron emission tomography with [18F] fluorodeoxyglucose 

(18F-FDG-PET) 

 
Positron emission tomography is a diagnostic examination that involves the 

acquisition of images based on the detection of radiation from the emission of 

positrons. Positrons are tiny particles emitted from a radioactive substance 

administered to the patient.  

FDG-PET is a useful instrument for the detection of brain regions with reduced 

metabolic activity in the early stages of progressive neurodegenerative 

diseases, even at a stage before atrophic brain changes become apparent on 

structural imaging. 18F-FDG-PET has become important also in differentiation 

between different types of dementia. 
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1.6.2.1 FDG-PET in Alzheimer’s dementia (AD) 

FDG-PET in patients with AD shows a typical hypometabolism in neocortical 

structures, mainly the parietal, frontal, and posterior temporal association 

cortices, i.e. the same areas where neuronal as well as synaptic degeneration 

is most severe in post-mortem studies (54;55); further to the regional 

abnormalities, AD also exhibits a global reduction of cerebral glucose 

metabolism. Decrease of the cerebral metabolic rate of glucose (CMRglc) in 

the parietotemporal association cortex has been recognised as potentially 

diagnostic for AD and the use of PET in clinical settings to evaluate patients 

with dementia has been facilitated by this recognition (56).  

Demetriades et al. (57) suggested the following criteria for AD:  

• bilateral metabolic reduction in the parietotemporal association cortex,  

• glucose metabolism reduction in the frontal association cortex, mainly in 

advanced disease,  

• relative preservation of primary neocortical structures, such as the 

sensorimotor and primary visual cortex, and also of subcortical 

structures, like the basal ganglia, brainstem, and thalamus, 

• metabolic reduction in the mesial temporal cortex. 

 

An interesting study of Minoshima et al. showed a close correlation between 

progressive metabolic reduction in the posterior cingulate cortex and 

cinguloparietal transitional area and Mini-Mental State Examination score (58). 

Matsuda also reported that in very early AD metabolism is reduced first in the 

posterior cingulate gyrus and precuneus (59). This reduction may arise from 

neural degeneration in the entorhinal cortex that is the first to be pathologically 

affected in AD. 

 

1.6.2.2 FDG-PET in fronto-temporal lobar degeneration (FTLD) 

A study of patients with FTLD showed significant metabolic deficits primarily in 

frontal cortical areas including the gyrus frontalis superior, medius and inferior 

and subcortical structures, particularly the caudate nuclei and the thalami 

(60;61). In comparison with follow-up (after 17.1 ± 6.0 months) patients 

showed a significant progression of metabolic deficits in the orbitofrontal parts 
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of the frontal lobe. A metabolic decrease was also observed in the dorsal parts 

of the frontal lobes and in the left inferior parietal lobule (61).  

Another interesting study by Ibach et al. (18) highlights metabolic group 

differences between patients with FTLD and early onset of Alzheimer’s 

disease (EOAD). These regions comprised the bilateral medial frontal gyrus 

(BA 10), the left insula (BA 13), and inferior frontal gyrus (BA 45) with a 

relative metabolic decrease in the FTLD group and the right middle temporal 

gyrus (BA 39) with a relative decrease in the EOAD group. 

 

1.6.2.3 FDG-PET in dementia with Lewy bodies (DLB) 

Ishii et al. (62) found that in patients with DLB CMRglc was reduced in the 

cerebellum and in the occipital region compared to those with AD. Their 

comparison of patients with DLB and normal control subjects yielded 

differences in almost all parts of the brain except the sensomotor cortex, basal 

ganglia, thalamus and pons.  

Minoshima et al. (63) found in DLB patients significant reductions in the 

occipital cortex, particularly in the primary visual cortex, which distinguished 

DLB from AD with 90% specificity and 80% sensitivity. 

Previous FDG-PET studies (64;65) reported significant CMRglc decreases in 

patients with DLB (vs. those with AD) in the temporoparieto-occipital 

association cortices and cerebellar hemispheres. However, the medial 

temporal and cingulate CMRglc were significantly lower in the AD patients. 

The authors conclude that the different regional emphases of glucose 

hypometabolism might explain the different clinical features of the two 

diseases (64). 
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2 Aims of Study 

This study investigates the quantitative correlation between local cerebral 

metabolic rate (CMRglc) determined with 18Fluodeoxyglucose (18F-FDG) and 

cognitive impairments in patients with dementia. As discussed in the 

introduction previous 18F-FDG-PET studies (57;60;66) have localized significant 

metabolic reduction in different regions of the cortex in dementia.  

The focus of this study is the correlation between local cerebral metabolic rate 

in selected regions of interest (ROI) and data derived from neuropsychological 

examinations (CERAD battery, clock-drawing test, Stroop paradigm) in patients 

with dementia. 

The manually selected ROIs were: right and left hemispheres, right and left 

gyrus frontalis inferior, right and left hippocampus, right and left parietal lobe 

and occipital lobe. We hypothesize that:  

• the selected ROIs of the hemisphere correlate with cognitive functions  

that are commonly attributed to the left and right hemisphere (left: verbal 

functions, right: non-verbal functions), 

• decreased metabolism in the gyrus frontalis inferior correlates with 

decline in language processing, 

• decreased metabolism in the hippocampus area correlates with 

decreased memory processing, 

• hypometabolism in the parietal lobe correlates with visuospatial deficits,  

• hypometabolism in the occipital lobe correlates with decline of visual 

perception. 
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3 Materials and Methods  
 

3.1 Patients 

Twenty-four patients with dementia aged 69.2 ± 7.5 years were examined (see 

Table 9). We examined 9 patients with Alzheimer’s disease, 8 patients with 

fronto-temporal lobar degeneration, 2 with dementia with Lewy-bodies, 3 with a 

diagnosis of cortico-basal degeneration and 2 with posterior cortical atrophy. 

The patients fulfilled Diagnostic and Statistical Manual of Mental Disorders–IV 

(DSM-IV) (2), (see Table 1) and ICD-10 (3), (see Table 2) criteria for dementia. 

Additionally we used the criteria of Neary et al., 1998 (Table 4) to diagnose 

FTLD and the criteria of McKeith et al. for diagnosis of DLB (Table 7). Patients 

were recruited from the Cognitive Neurology Outpatient Clinic of the 

Neurologische Klinik und Poliklinik, Universität München – Grosshadern. The 

clinical assessment included detailed medical history, neurological and 

neuropsychological examination and laboratory studies (routine hematology and 

biochemistry screen, thyroid function tests), cerebralspinal fluid (CSF), magnetic 

resonance imaging and FDG-PET scans. The patients had no systemic or 

neurological disease apart from degenerative dementias that could account for 

their neurological deficits. The cognitive domains were assessed with 

neuropsychological testing.  

 

3.2 Neuropsychological Tests 

 
The German version of the Consortium to Establish a Registry for Alzheimer’s 

Disease Neuropsychological Battery (CERAD–NP) (67), which incorporates the 

Mini-Mental State Examination (MMSE), a clock-drawing test (68) and a Stroop-

paradigm - Nürnberger-Alters-Inventar (NAI) Version (69) – were used for 

neuropsychological testing. In three patients MMSE values were available only 

from SIDAM testing (Structured Interview for Diagnosis of Dementia of 

Alzheimer Type, Multiinfarct Dementia and Dementia of other Etiology) (70). 

Two patients were examined with a variant verbal fluency test (71). 
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Neuropsychological testing was administered within 0-6 weeks of MRI and PET 

scan.  

 

3.2.1 CERAD 
 

The following tests are included in the CERAD-NP battery to measure the 

principal cognitive changes of AD (i.e., memory, language, praxis and general 

intellectual status (67). 

 Verbal Fluency: “Animal Category”. This test measures impairments in 

verbal production, semantic memory and language. Subjects are asked to name 

as many animals as possible in one minute. The score is the total number of 

named animals.    

 Boston Naming Test. Subjects are asked to name 10 objects presented 

as line drawing; a maximum of 10 seconds is allowed for each picture.  

 Mini-Mental State. This is a well-known brief general cognitive battery 

that measures orientation, immediate and delayed memory, concentration, 

language and praxis (72). 

 Word List Learning. This task assesses the ability to remember newly 

learned information. On the first trial, 10 printed words are presented at the rate 

of every 2 seconds. The subject is asked to recall as many words as possible 

(90 seconds allowed). On each of 2 subsequent trials, the 10 words are 

presented in a new random order and the subject tries to recall all 10 words.  

 Constructional Praxis. Four line drawings of figures of increasing 

complexity (a circle, a diamond, intersecting rectangles, and a cube) are 

presented to the subject for copying; 2 minutes are allowed for each figure.  

 Word List Recall. This tests delayed memory for the 10 words of the 

Word List Learning task. 

 Word List Recognition. This tests recognition for the 10 words of the 

Word List Memory task when presented among other words. 

The values of the CERAD – NP subtests has been verified for influences of age, 

gender and education that correspond to the standardisation of the German 

speaking countries. All results of the CERAD – NP subtests were finally 

controlled by the Z – test.  
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3.2.2 Clock-drawing test 
 

The clock-drawing test commonly used in the form suggested by Shulman et al. 

(73) is a practical screening of visuo-constructional abilities (74). 

On a predrawn circle the subject completes the numbers on the “clock face”. 

Then the investigator gives the instruction to ‘set the time at 10 after 11’. The 

scoring system ranges from 1 to 6 with higher scores reflecting a greater 

number of errors and more impairment (74). 

 

3.2.3 Stroop – paradigm  

 

The Stroop - paradigm is the conflict or interference situation in which the 

subjects must name the colour of the ink of colour-words when the colour and 

the word are incongruous. The colour-word interference test was first introduced 

into American psychology by John Ridley Stroop.  

In our study we used the Nürnberger-Alters-Inventar (NAI) Version of the 

paradigm, which was suggested by Wolf Dieter Oswald in 1995. This test was 

used as a screening tool for attention. The time to complete the color naming 

and interference conditions was measured and the difference was reported 

(seconds).  

 

3.3 Neuroimaging  

 

3.3.1 MRI 
 
All patients  underwent clinical MR imaging of the brain that included a 3D 

contrast-enhanced MPRAGE (Magnetization-prepared Rapid Acquisition 

Gradient Echo) imaging sequence. MRI was performed on a 1.5T whole body 

imaging system (Magnetom SP, Siemens Medical Systems) at the 

Neuroradiology Department of the Institut für Klinische Radiologie, Universität 

München – Grosshadern. An IV infusion of 0.1 to 0.15 mmol/kg of contrast 

agent gadolinium-DPTA (Gd-DPTA) was manually administered at a rate of 1 to 
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2 ml/s and then T1-weighted MR and contrast-enhanced MPRAGE imaging 

sequences were performed. The study was performed with subjects lying 

supine and awake with closed eyes. A low flip angle T1-weighted three-

dimensional gradient echo sequence (MPRAGE) provided 128 sagittal images 

(repetition time = 11.4 ms, echo time = 4.4 ms, inversion time = 400 ms, delay 

time = 50 ms, matrix 256×256; slice thickness = 1 mm). The field of view was 25 

cm. The acquisition time was 5.25 min. Images were transferred to a standard 

PC for further analysis (see 3.3.3). 

 
 

3.3.2 FDG-PET 
 
18F-FDG PET study was performed with an ECAT EXACT HR+PET scanner 

(Siemens/CTI) at the Klinik und Poliklinik für Nuklearmedizin, Universität 

München – Grosshadern. The scanner acquires 63 contiguous transaxial 

planes, simultaneously covering 15.5 cm of axial field of view. The transaxial 

and axial resolutions (full width at half maximum) of the PET system were 

measured as 4.6 mm and 4.0 mm, respectively, at the center and 4.8 mm and 

5.4 mm, respectively, at a radial offset of 10 cm. Data acquisition followed a 

standardized protocol. Patients fasted for at least 9 h before scanning. The 

study was performed under resting condition with eyes closed and ears 

unplugged, and in a quiet environment. The head of the patient was fixed in a 

foam cushion and adequately positioned in the gantry. Acquisition started with a 

15-min transmission scan (68Ge-sources), which was used for subsequent 

attenuation correction. After the transmission scan 18F-FDG was intravenously 

administered. A PET study was obtained 30 to 60 min after injection (3 frames, 

10 min per frame, 128×128 matrix, 3-dimensional acquisition). For further 

evaluation, the three 10-min frames were added to a single frame comprising 

the entire 30-min acquisition. Images were reconstructed by filtered 

backprojection using a Hann filter and corrected for scatter and attenuation. A 

time–activity curve of the 18F-FDG concentration in blood plasma was obtained 

by sampling arterialized venous blood starting immediately after injection and 

continuing until 45 min after injection. For further evaluation, the PET data were 

transferred to a HERMES - workstation (Nuclear Diagnostics) (75). The image 
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voxel values were converted to micromoles of glucose per 100 g of tissue per 

minute (μmol/min/100g) using the methods described by Phelps et al. (76), 

generating a regional cerebral metabolic rate of glucose (rCMRglc). Then the 

data via the DICOM transfer server of the neurological clinic were transferred to 

a standard PC. Additionally, the differences of voxel intensities between DICOM 

transfer and HERMES – workstation were calculated.   

 

 

3.3.3 Image processing 

 

The datasets were analysed with the help of MIPAV (medical image processing, 

analysis and visualisation application software, Imaging Science Laboratory, 

CIT, NIH, see http://mipav.cit.nih.gov/).  

MRI scans from different individuals will vary greatly due to differences in slice 

orientation and brain features (i.e. brain size and shape varies across 

individuals). Therefore, it is generally useful to coregister scans to a standard 

template. Coregistration is the process of translating, rotating, scaling a brain to 

roughly match a standard template image. As standard template image we used 

the MRI data of a control subject. 

The control subject is a 57-year-old male, who was examined in our outpatient 

clinic. After complete neurological, neuropsychological, laboratory and 

neuroimaging examination the diagnosis of dementia was excluded in this 

subject. 

A detailed description of template image processing, coregistration and 

standardisation to the Talairach system (77) is presented in the appendix (9.3). 
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3.3.4 ROI boundaries 
 
After the template image had been standardized in the Talairach system, the 

nine anatomical regions of interest (right and left hemispheres, right and left 

gyrus frontalis inferior, right and left hippocampus, right and left parietal lobe 

and occipital lobe) were segmented in the MRI template scan according to the 

protocol of the Laboratory of Neuroimaging (LONI), University of California, Los 

Angeles (78), see: 

www.loni.ucla.edu/NCRR/Downloads/Protocols/LONIR_Protocols.html. 

The ROIs were selected on the ten sections, where the best anatomical 

representation was seen. Hemispheres and gyrus frontalis inferior were 

segmented in the axial section; parietal and occipital lobe – on the sagittal 

section and hippocampus – on the frontal view. 

In case of doubt, the delineations were verified using the neuroanatomical atlas 

of Duvernoy (79).  

 

The detailed protocol of ROI delineation is described in the appendix (9.4).  
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3.4 Image analysis 

 
The image analysis (see Figure 1) was done using the MIPAV software. All MRI 

and FDG-PET images of 24 patients were coregistered to the template image to 

make them similar in size and shape using the automatic image registration with 

the following parameters: degree of freedom – rigid 9, interpolation – trilinear, 

cost function – normalized mutual correlation, coarse angle increment 5 

degrees, fine angle increment – 1, degree and iterations – 5. Coregistered MRI-

and FDG-PET images  in 3-D rendering view are presented in the appendix 9.2 

(Figure 2). 

 

 

Figure 1. Schematic presentation of the image coregistration 
 
 

 

 

 

 

 

 

 

 

 

In each of the coregistered PET-images, the voxel value was then calculated in 

each of the 9 (right and left hemispheres, right and left gyrus frontalis inferior, 

right and left hippocampus, right and left parietal lobes and occipital lobe) 

predefined regions of interest, using the standard ROIs of the template image. 

The image voxel values were converted to micromoles of glucose per 100 g of 

tissue per minute (μmol/min/100g) using the methods described by Phelps et al. 

(76), generating a regional cerebral metabolic rate of glucose (rCMRglc). 

Additionally, the differences of voxel intensities between DICOM transfer and 

HERMES – workstation were calculated.   
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3.5 Statistical analysis 

 
Once all neuropsychological and imaging data had been collected, we checked 

whether data in the pairs came from normal distributions and whether the data 

were at least in the category of equal interval data using Kolmogorov-Smirnov 

test. Because our data did not fit to the normal distribution, we used the Rank 

(Spearman) Correlation Coefficient.  

Correlations were computed between the neuropsychological assessment 

battery of the Consortium to Establish a Registry of Alzheimer's Disease 

(CERAD), clock – drawing test and Stroop – paradigm and cerebral metabolic 

rate of glucose in selected ROI. The data were analyzed utilizing SPSS-PC+ 

V.12.1 software (SPSS Inc., Chicago, IL). Level of statistical significance was 

set at p-value ≤ 0.05. 
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4 Results 

4.1 Neuropsychological and FDG-PET data 

In our study we examined 24 patients with dementia, 12 men and 12 women, 

(details see in Table 9 and Table 10). Results of the neuropsychological testing 

of our patients are listed in Table 11. Regional cerebral metabolic rates of 

glucose of 24 patients are presented in Table 12.  

The data of the neuropsychological testing and of the regional cerebral 

metabolism did not fit the standard normal distribution. Because 

neuropsychological data were measured on ordinal and interval scales, the 

correlation was evaluated with Spearman rank - order correlation coefficient.  

 

4.2 Correlation between neuropsychological testing and FDG-
PET  

In this study the MMSE score was significantly correlated with the 

hypometabolism in the left and right parietal lobes (r = 0.5; p = 0.021; r = 0.4; p 

= 0.048), see Table 13. 

 

Table 13. Nonparametric Spearman correlation of the MMSE score with 

measures of cerebral metabolic rate measured with 18F-FDG – PET in 24 

patients with dementia.  

Regions Side r p-value 

Hemisphere  Left 0,333 0,111 

  Right 0,215 0,313 

Gyrus frontalis inferior  Left 0,304 0,149 

  Right 0,039 0,855 

Hippocampus  Left 0,295 0,162 

  Right 0,27 0,202 

Parietal lobe  Left 0,468 0,021 

  Right 0,408 0,048 

Occipital lobe Left 0,337 0,107 

r – correlation coefficient; p- p value, was set at p ≤ 0.05, uncorrected. The 

significant results are marked. 
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.Significant correlation was detected between word list memory test of the 

CERAD-NP and metabolic rates of glucose in the left hemisphere (r = 0.6; p = 

0.008), left and right hippocampus (r = 0.4; p = 0.05; r = 0.5; p = 0.033) and left 

parietal lobe (r = 0.5; p = 0.038), see Table 14. The scatterplot-relationship 

between severity of memory decline determined by the word list memory and 

the left and right hippocampus metabolic rate is shown in Figure 3. The word list 

recognition showed a significant correlation with metabolism of the left gyrus 

frontalis inferior (r = 0.5; p = 0.031), see Table 14. The constructive praxis 

subtest of the CERAD-NP was significantly correlated with glucose metabolism 

in the right hemisphere (r = 0.5; p = 0.024), see Table 14. 

 

Table 14. Nonparametric rank (Spearman) correlation of the subtests of the 

CERAD-NP with measures of cerebral metabolic rate measured with 18F-FDG – 

PET in 24 patients with dementia. Details: see legends from Table 13.  

 

Verbal 
Fluency 

Boston 
Naming Test 

Word List 
Learning 

Word List 
Recall 

Word List 
Recognition 

Constructive 
Praxis 

Constructive 
Praxis Recall Regions Side 

r p r p r p r p r p r p r p 

Left 0,066 0,765 0,054 0,812 0,56 0,008 0,202 0,38 0,356 0,113 0,33 0,144 0,252 0,271 
Hemisphere  

Right 0,044 0,841 0,124 0,581 0,409 0,065 -0,003 0,989 0,241 0,292 0,491 0,024 0,147 0,526 

Left 0,039 0,861 0,005 0,981 0,327 0,148 -0,048 0,838 0,472 0,031 0,426 0,054 0,188 0,413 
Gyrus frontalis 

inferior  
Right 0,101 0,647 0,181 0,421 0,341 0,131 -0,098 0,672 0,164 0,478 0,351 0,118 0,295 0,195 

Left 0,053 0,812 0,185 0,409 0,433 0,05 0,181 0,431 0,251 0,273 0,398 0,074 0,376 0,093 
Hippocampus  

Right 0,085 0,7 0,193 0,388 0,467 0,033 0,379 0,09 0,361 0,108 0,36 0,109 0,046 0,841 

Left -0,152 0,488 0,132 0,558 0,456 0,038 0,139 0,549 0,15 0,516 0,392 0,078 0,369 0,1 
Parietal lobe  

Right -0,284 0,189 -0,023 0,918 0,359 0,11 0,01 0,966 0,241 0,293 0,382 0,087 0,322 0,155 

Occipital lobe both 
sides -0,093 0,672 0,083 0,713 0,394 0,077 -0,063 0,787 0,102 0,66 0,426 0,054 0,126 0,585 
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Figure 3. Word list learning (memory) test data plotted against cerebral 

metabolic rates for glucose in the left and right hippocampus in 24 patients with 

dementia. 
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The score of the Word List Learning (Memory) Subtest from CERAD-NP is 

plotted against metabolic rate of glucose (µmol/100g/min) in the left 

hippocampus (a), r – 0.4, and right hippocampus (b), r – 0.4, p ≤ 0.05. 

Index by the diagnosis: AD-Alzheimer’s dementia; CBD-corticobasal 

degeneration; DLB-dementia with Lewy bodies; FTLD-fronto-temporal lobar 

degeneration; PCA-posterior cortical atrophy 

 

No significant correlations were detected between the clock-drawing test and 

metabolic rate of glucose in selected regions, see Table 15.  

 

Table 15. Nonparametric rank (Spearman) correlation of the clock-drawing test 

with measures of cerebral metabolic rate measured with 18F-FDG – PET in 24 

patients with dementia. Details: see legends from Table 13. 

Regions Side r p 

Hemisphere Left -0,134 0,533 

 Right -0,053 0,804 

Gyrus frontalis inferior Left 0,117 0,586 

 Right 0,055 0,799 

Hippocampus Left 0,046 0,831 

 Right -0,204 0,339 

Parietal lobe Left -0,198 0,355 

 Right -0,202 0,345 

Occipital lobe both sides -0,086 0,69 
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A significant negative correlation was detected between Stroop paradigm and 

right gyrus frontalis inferior (r =- 0.5; p = 0.046), see Table 16.  

 

Table 16. Correlations between Stroop-paradigm and measures of cerebral 

metabolic rate measured with 18F-FDG – PET in 24 patients with dementia. 

Details: see legends from Table 13. 

Regions Side r p 

Hemisphere Left -0,238 0,341 

 Right -0,269 0,28 

Gyrus frontalis inferior Left -0,199 0,428 

 Right -0,476 0,046 

Hippocampus Left -0,082 0,748 

 Right -0,218 0,385 

Parietal lobe Left -0,084 0,742 

 Right -0,04 0,874 

Occipital lobe both sides -0,195 0,438 
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5 Discussion 
This study focused on possible correlations between cognitive domains 

(CERAD-NP battery, clock-drawing and Stroop paradigm) and decrease of 

regional cortical metabolism measured with 18F-FDG-PET in patients with 

dementia. We measured cerebral metabolism in selected regions (right and left 

hemispheres, right and left gyrus frontalis inferior, right and left hippocampus, 

right and left parietal lobe and occipital lobe). We correlated cognitive 

performance score with regional metabolism across patients with dementia to 

elucidate the cortical substrate of cognitive impairment. In this study a 

significant correlation was detected between the MMSE score and the regional 

hypometabolism in the left and right parietal lobes. The word list learning test 

from the CERAD-NP significantly correlated with the hypometabolism of 

glucose in the left hemisphere, left and right hippocampus and left parietal lobe. 

Significant correlations were detected between the score of the word list 

recognition test and the cerebral metabolism of the left gyrus frontalis inferior 

and between the constructive praxis subtest and glucose hypometabolism in the 

right hemisphere. No significant correlation was detected between the clock-

drawing test and the metabolic rate of glucose in selected regions. The score of 

the Stroop paradigm was significantly negatively correlated with the right gyrus 

frontalis inferior.  

 

Several studies have previously reported a metabolic decrease in the cortex in 

patients with dementia. Studies with FDG-PET in patients with AD showed a 

typical hypometabolism in neocortical structures, mainly the parietal, frontal, 

and posterior temporal association cortices, i.e. the same areas where neuronal 

as well as synaptic degeneration is most severe in post-mortem studies 

(54;55;80); further to the regional abnormalities, AD also exhibits a global 

reduction of cerebral glucose metabolism. Decrease in the cerebral metabolism 

in the parietotemporal association cortex has been recognised as potentially 

diagnostic for AD and the use of PET in clinical settings to evaluate patients 

with dementia has been facilitated by this recognition (56). In patients with DLB 

cerebral metabolic reductions were detected in the occipital cortex, particularly 

in the primary visual cortex (62;63;65;81). FDG-PET studies of patients with 
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FTLD showed a hypometabolism in the frontal cortex, anterior temporal and 

mesiotemporal areas (18;60;61;82).  

Several studies investigated the relation between the regional cortical 

metabolism and the profile of cognitive impairment in patients with dementia. 

The individual profile of impairment of different domains of memory correlated 

with the regional distribution of hypometabolism in resting state FDG-PET 

(83;84). Left hemispheric hypometabolism (in frontal, temporal and parietal 

cortices) in patients was associated with greater impairment of language, 

whereas right hemispheric metabolism was associated with impairment of 

visuo-constructive abilities (85;86).  

 

5.1 MMSE 

In this study the MMSE score significantly correlated with the left and right 

parietal lobe. These results are consistent with the findings of previous imaging 

studies. Several studies reported that in patients with AD the MMSE score 

significantly positively correlated with the hypometabolism of the temporal and 

parietal lobe on both sides (87;88). Other studies reported that MMSE score 

significantly correlated with the left parietal and occipital lobe (89) and the 

parietal lobe and cerebellum (90).  

The reduction of the MMSE score seems to be caused by a decline in the visuo-

constructional function in the associated parietal lobe in patients with dementia 

(87-90).  

In this study four patients with the MMSE score 28 -29 were also included in this 

study. Because judgment and insight can not be tested only by the MMSE, the 

diagnosis of dementia in our patients was not only based on the MMSE score. 

We included in this study the patients, that had also cognitive declines in other 

neuropsychological tests, as CERAD (67), Clock – drawing test (68) or Stroop – 

test (69) and fulfilled to the Diagnostic and Statistical Manual of Mental 

Disorders–IV (DSM-IV) (2) and ICD-10 (3) criteria for dementia. 
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5.2 Memory 

The total score of the word list learning test was significantly correlated with the 

left hemisphere, the hippocampus of both sides and the left parietal lobe. 

Several previous neuroimaging studies suggested that the hippocampus 

subserves episodic memory (83;91;92). The significant correlation between 

memory impairment and hippocampal integrity has been observed previously in 

patients with AD (93-95). Lesions in other neocortical areas, such as the 

parietal lobe, appear to subserve the short-term retention of information. The 

involvement of parietal areas is suggested by several neuroimaging and 

electrophysiological studies of visuospatial and verbal episodic memory (96-98). 

Left-sided lesions are associated with defective performance in auditory–verbal 

short-term memory tasks (99). The left temporo-parietal cortex is thought to be 

involved in memory compensation processes in AD according to some 

activation studies (100;101). Federmeier et al. examined each hemisphere's 

tendency to retain verbal information over time, using a continuous recognition 

memory task, and found that the ubiquitous advantage of the left hemisphere 

for the processing and retention of verbal information is attenuated and perhaps 

even reversed over long retention intervals (102). According to this notion, a 

correlation of hypometabolism in the left hemisphere with the word list 

recognition test is more likely than with the word list learning test. In our study 

the word list recognition test correlated significantly with the left inferior frontal 

gyrus. This is in agreement with previous studies, that reported left prefrontal 

activation in recognition memory (103-105). Activation of prefrontal cortex 

during memory retrieval has been connected to top-down activation of 

memorized materials (106).  

The word list recall test in our study did not significantly correlate with any 

regional metabolism. Significant correlation observed in AD patients involved 

hippocampal regions, bilateral posterior cingulate and retrosplenial cortices 

(83). 

 

5.3 Language 

In this study language functions measured with naming and verbal fluency tests 

were not correlated significantly to any brain regions. Previous studies reported 
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that lesions of cortical areas surrounding the temporo-parietal junction were 

found in patients with impaired word comprehension and retrieval (107;108) and 

in semantic dementia (109). Our hypothesis that language processing 

correlates with hypometabolism in the gyrus frontalis inferior was not confirmed 

in this study.  

 

5.4 Attention  

In this study impairment of selective attention (Stroop paradigm) significantly 

correlated with reduced metabolism in the right gyrus frontalis inferior. Spatial 

selective attention and alertness are driven by the prefrontal cortex, which is 

also responsible for spatial working memory (110;111). A neuroimaging study of 

spatial selective attention supported the hypothesis of metabolic activity in a 

right-hemisphere dominant network of prefrontal and parietal lobes (111).  

 

5.5 Visuo-constructional abilities 

In our study the subtest “constructional praxis” from the CERAD-NP battery 

significantly correlated with hypometabolism in the right hemisphere. We 

hypothesized that visuospatial deficits correlate with hypometabolism in the 

parietal lobe. In this study only a weak association between the clock-drawing 

test and parietal lobe was detected. A large range of neuropsychological studies 

on patients with local cerebral lesions suggested the involvement of bilateral or 

right parietal lobe in constructional function (112;113). PET studies reported that 

patients with predominant visuo-constructive dysfunction showed a 

hypometabolic focus in the right parietal cortex (114;115). In contrast to the 

constructive praxis of patients with focal lesions, the spontaneous drawings of 

AD patients were not only simplified, but often incoherent, and the visuo-spatial 

relationships were lost not only in spontaneous drawing of items but also when 

copying an object (116). The deficits in patients on copying tasks might be 

partially attributable to attention deficits whereby the patients fail to integrate 

separate features of an object into a coherent whole. The correlation between 

constructive praxis and reduced metabolism in the right hemisphere in our 

patients may, therefore, in part reflect attention deficits. Attention, as it has been 
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reported above, was associated in our study with right-hemisphere 

hypometabolism.  

Additionally, in order to interpret the successfulness of the ROIs alignment the 

test-retest reliability was used. Intra-class correlations (ICC) in all ROIs showed 

good test/retest reliability . For example, in the parietal lobe (range r=0.958 - 

0.992 with 95% confidence) or left hippocampus (range r=0.764 - 0.956 with 

95% confidence) the values of glucose metabolism were good reliable, 

suggesting that the identification of ROIs in this study was successful.  

This study has some limitations. The most important study limitation is its small 

sample size. Unfortunately we were unable to investigate more patients using 

both structural and functional imaging, and the small number of subjects clearly 

compromised the statistical power of this investigation. We also used a low level 

of significance that set at 0.05. Because of the small sample size the two-

sample test was used. This was a potential limitation in our study. But it would 

be interesting in the perspective study to proof our data with the higher sample 

of subjects. Furthermore, no correction for multiple comparisons (for example, 

Bonferroni) was done in view of the exploratory character of the study. 

Nevertheless, our results show some correlation between structural and 

functional measurements which might well have clinical significance.  

There is also methodological lack, which have to be considered with our data. 

We had selected 9 independent regions of primary interest in the ROI-based 

analysis. The limitation of the above approach is that we may not interpret the 

exact coordinate location too heavily, i.e. if we find a significant activation in the 

left hemisphere, we cannot put emphasis on the specific function of a 

subdivision of the left hemisphere. An additional analysis of our data using a 

voxel-based morphometry method would therefore be of interest. 

The unexpected pattern of observed correlations may be accounted for by the 

small sample size of patients.  

There is also a methodological shortcoming that any restricted regions of 

interest were chosen for analysis.   

An additional analysis of our data using a voxel-based statistical approach 

would therefore be of interest. 
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6 Summary 

We examined 24 patients with dementia aged 69.2 ± 7.5 years, diagnosed 

according to the ICD-10 (3) and DSM-IV (2) criteria for dementia. Cognitive 

function was assessed using the Consortium to Establish a Registry for 

Alzheimer’s Disease Neuropsychological Battery (CERAD-NP), which 

incorporates the Mini-Mental State Examination (MMSE) (67), clock-drawing 

test as modified by Shulman (68) and a Stroop-paradigm - Nürnberger-Alters-

Inventar (NAI) Version (69). Neuroimaging data used to establish a clinical 

diagnosis were obtained solely from MRI, and all diagnoses were made before 

and independently from the PET scan. The MRI AND FDG-PET datasets were 

analysed within medical image processing, analysis and visualisation 

application software (MIPAV). The cerebral metabolism in FDG-PET data were 

calculated in the nine predefined set of regions of interest (ROI) (right and left 

hemispheres, right and left gyrus frontalis inferior, right and left hippocampus, 

right and left parietal lobe and occipital lobe). The correlation between 

neuropsychological and imaging data using Spearman’s rank correlation 

coefficient was calculated. In this study a significant correlation was detected 

between the MMSE score and the regional hypometabolism in the left and right 

parietal lobes. On memory tests, the word list learning test from the CERAD-

NP, the hypometabolism of glucose in the left hemisphere, the left and right 

hippocampus and the left parietal lobe approached significance. Additionally, 

the word list recognition test from the CERAD-NP significantly correlated with 

cerebral metabolism of the left gyrus frontalis inferior. On the nonverbal task of 

the constructive praxis, decreased glucose metabolism was detected in the right 

hemisphere. Visuo-constuctional praxis, particularly the clock-drawing test, was 

not significantly correlated to any brain regions. On attention test, the Stroop 

paradigm, hypometabolism in the right gyrus frontalis inferior was observed.  

Our findings support the notion that profiles of cognitive impairment and 

regional cortical metabolism can identify cortical regions that are affected by 

dementia. Some findings from this study correspond to the brain-behaviour 

relationships and show that image fusion and correlation with 

neuropsychological data is feasible in clinical practice. 
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9 Appendix 

9.1 Tables 
 
Table 1. Diagnostic criteria for dementia according to DSM-IV . 

A1. The development of multiple cognitive deficits manifested by both 

 Memory impairment (impaired ability to learn new information or to recall 

previously learned information) 

A2. One (or more) of the following cognitive disturbances: 

 a. Aphasia (language disturbance) 

 b. Apraxia (impaired ability to perform motor activities despite intact 

motor function) 

 c. Agnosia (failure to recognize or identify objects despite intact sensory 

function) 

d. Disturbance in executive functioning (that is, planning, organizing, 

sequencing, abstracting) 

B. The cognitive deficits in criteria A1 and A2 each cause severe impairment in 

social or occupational functioning and represent a major decline from a previous 

level of functioning 

E. The deficits do not occur exclusively during the course of a delirium 

F.  The disturbance is not better accounted for by another axis I disorder (for 

example, major depressive disorder, schizophrenia) 

* clinical criteria for all types of dementia 
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Table 2. Diagnostic Criteria for dementia according to ICD-10. 

 
G 1.1. A decline in memory, which is most evident in the learning of new information, although 

in more severe cases, the recall of previously learned information may be also affected. The 

impairment applies to both verbal and nonverbal material. The decline should be objectively 

verified by obtaining a reliable history from an informant, supplemented, if possible, by 

neuropsychological tests or quantified cognitive assessments. 

G 1.2. A decline in other cognitive abilities characterized by deterioration in judgement and 

thinking, such as planning and organizing, and in the general processing of information. 

Evidence for this should be obtained when possible from interviewing an informant, 

supplemented, if possible, by neuropsychological tests or quantified objective assessments. 

Deterioration from a previously higher level of performance should be established. 

The overall severity of the dementia is best expressed as the level of decline in memory or other 

cognitive abilities, whichever is the more severe (e.g. mild decline in memory and moderate 

decline in cognitive abilities indicate a dementia of moderate severity).  

G 2. Preserved awareness of the environment (i.e. absence of clouding of consciousness (as 

defined in F05, criterion A)) during a period of time long enough to enable the unequivocal 

demonstration of G1. When there are superimposed episodes of delirium the diagnosis of 

dementia should be deferred.  

G 3. A decline in emotional control or motivation, or a change in social behaviour, manifest as at 

least one of the following: 

(1) emotional lability;  

(2) irritability;  

(3) apathy;  

(4) coarsening of social behaviour. 

G 4. For a confident clinical diagnosis, G1 should have been present for at least six months; if 

the period since the manifest onset is shorter, the diagnosis can only be tentative. 
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Table 3. NINCDS/ADRDA criteria for probable AD. 

 
I. Criteria for the clinical diagnosis of PROBABLE Alzheimer`s disease 

• dementia established by clinical examination and documented by the Mini-Mental Test; Blessed 

Dementia Scale, or some similar examination, and confirmed by neuropsychological tests; 

• deficits in two or more areas of cognition; 

• progressive worsening of memory and other cognitive functions; 

• no disturbance of consciousness;  

• onset between ages 40 and 90, most often after age 65; and 

• absence of systemic disorders or other brain diseases that in and of themselves could account 

for the progressive deficits in memory and cognition 

II. The diagnosis of PROBABLE Alzheimer`s disease is supported by: 

• progressive deterioration of specific cognitive functions such as language (aphasia), motor skills 

(apraxia), and perceptions (agnosia); 

• impaired activities of daily living and altered patterns of behavior; 

• family history of similar disorders, particularly if confirmed neuropathologically; and 

• laboratory results of: 

• normal lumbar puncture as evaluated by standard techniques, 

• normal pattern or non-specific changes in EEG, such as increased slow-wave activity,  

• evidence of cerebral atrophy on CT with progression documented by serial observation 

III. Other clinical features consistent with the diagnosis of PROBABLE Alzheimer`s disease, after 

exclusion of causes of dementia other than Alzheimer`s disease, include: 

• plateaus in the course of progression of the illness; 

• associated symptoms of depression, insomnia, incontinence, delusions, illusions, hallucinations, 

catastrophic verbal, emotional, or physical outbursts, sexual disorders, and weight loss; 

• other neurologic abnormalities in some patients, especially with more advanced disease and 

including motor signs such as increased muscle tone, myoclonus, or gait disorder; 

• seizures in advanced disease; and 

• CT normal for age 

IV. Features that make the diagnosis of PROBABLE Alzheimer`s disease uncertain or unlikely 

include: 

• sudden, apoplectic onset; 

• focal neurologic findings such as hemiparesis, sensory loss, visual field deficits, and 

incoordination early in the course of the illness; and 

• seizures or gait disturbances at the onset or very early in the course of the illness. 
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Table 4. Diagnostic features for FTLD (Neary et al., 1998) 

Form of Dementia Core diagnostic features Supportive diagnostic features 

Frontotemporal 
degeneration 

Insidious onset  

Gradual progression 

Early decline in social Interpersonal 

conduct 

Early impairment of personal conduct 

Early emotional blunting 

Early loss of insight 

 

Behavioral disorder 

1. Decline in personal hygiene and grooming 

2. Mental rigidity and inflexibility 

3. Distractibility and impersistence 

4. Hyperorality and dietary changes 

5. Perseverative and stereotyped behavior 

6. Utilization behavior 

Speech and language 

1. Altered speech output 

2. Echolalia 

3. Perseveration 

4. Mutism 

Physical signs 

1. Primitive reflexes 

2. Incontinence 

3. Akinesia, rigidity, and tremor 

4. Low and labile blood pressure 

Primary 
progressive 
aphasia  

Insidious onset  

Gradual progression 

Nonfluent spontaneous speech: 

agrammatism, phonemic paraphasias, 

anomia 

 

Speech and language 

1. Stuttering or oral apraxia 

2. Impaired repetition 

3. Alexia, agraphia 

4. Early preservation of word meaning 

5. Late mutism 

Behavior 

1. Early preservation of social skills 

2. Late behavioral changes similar to FTD 

Physical signs: 

Late contralateral primitive reflexes, akinesia, rigidity, 

and tremor 

Semantic 
dementia 

Insidious onset 

Gradual progression 

Language Disorder characterized by 

1. Progressive, fluent, empty 

spontaneous speech 

2. Loss of word meaning, manifest by 

impaired naming and comprehension 

3. Semantic paraphasias and/or 

Perceptual disorder  

Preserved perceptual matching and 

drawing reproduction 

Preserved single-word repetition 

Preserved ability to read aloud and 

write to dictation orthographically 

regular words 

Speech and language 

1. Press of speech 

2. Idiosyncratic word usage 

3. Absence of phonemic paraphasias 

4. Surface dyslexia and dysgraphia 

5. Preserved calculation 

Behavior 

1. Loss of sympathy and empathy 

2. Narrowed preoccupations 

3. Parsimony 

Physical signs 

1. Absent or late primitive reflexes 

2. Akinesia, rigidity, and tremor 
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Table 5. Proposed criteria for the diagnosis of the corticobasal syndrome (117) . 

Core features Insidious onset and progressive course 

No identifiable cause (i.e., tumor or infarct) 

Cortical dysfunction as reflected by at least one of the following: 

 Focal or asymmetrical ideomotor apraxia 

 Alien limb phenomenon 

 Cortical sensory loss 

 Visual or sensory hemineglect  

 Constructional apraxia 

 Focal or asymmetric myoclonus 

 Apraxia of speech / nonfluent aphasia 

Extrapyramidal dysfunction as reflected by at least one of the following: 

 Focal or asymmetrical appendicular rigidity lacking prominent and 

 sustained L-dopa response 

 Focal or asymmetrical appendicular dystonia 

 

Supportive 

investigations 

Variable degrees of focal or lateralized cognitive dysfunction with relative 

preservation of learning and memory, on neuropsychometric testing 

Focal or asymmetric atrophy on computed tomography or magnetic 

resonance imaging, typically maximal in parietofrontal cortex 

Focal or asymmetric hypoperfusion on single-photon emission computed 

tomography and positron emission tomography, typically maximal in parieto-

frontal cortex +/- basal ganglia +/- thalamus 
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Table 6. Proposed clinical diagnostic criteria for posterior cortical atrophy 

(Mendez et al., 2002) 

Core features Insidious onset and gradual progression 

Presentation with visual complaints with intact primary visual functions 

Evidence of predominant complex visual disorder on examination 

- Element of Balint’s syndrome  

- Visual agnosia 

- Dressing apraxia  

- Environmental disorientation 

Proportionally less impaired deficits in memory and verbal fluency 

Relatively preserved insight with and without depression 

 

Supportive 

features  

Presenile onset 

Alexia 

Elements of Gerstmann’s syndrome 

Ideomotor apraxia 

Physical examination within normal limits  

Investigations 

- Neuropsychology: predominantly impaired perceptual deficits 

- Brain imaging : predominantly occipitoparietal abnormality 

(especially on functional imaging) with relative sparing of frontal 

and mesiotemporal regions)  
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Table 7. Consensus criteria for the clinical diagnosis of probable and possible 

dementia with Lewy bodies (McKeith et al., 1996) 

Central features Progressive cognitive decline of sufficient magnitude to interfere with 

normal social or occupational function. 

Prominent or persistent memory impairment may not necessarily occur in 

the early stages but is usually evident with progression 

Deficits on tests of attention, executive function, and visuospatial ability 

may be especially prominent. 

 

Core features Fluctuating cognition with pronounced variations in attention and alertness 

Recurrent visual hallucinations that are typically well formed and detailed 

Spontaneous motor features of parkinsonism 

 

Supportive 

features 

Repeated falls  

Syncope 

Transient loss of consciousness  

Neuroleptic sensitivity  

Systematized delusions 

Hallucinations in other modalities 

 

A diagnosis of 

DLB is less likely 

Stroke disease, evident as focal neurologic signs or on brain imaging 

Evidence on physical examination and investigation of any physical illness 

or other brain disorder sufficient to account for the clinical picture 
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Table 9. List of patients with demographic data and diagnosis, case index by 

diagnosis 

Patient 
Nr 

Patient 
initials gender Age Age of 

onset Diagnosis 

001 BO f 67 65 AD 
002 BR f 78 77 AD  
003 BA m 68 68 AD 
004 AM f 76 76 AD 
005 DH m 69 68 AD 
006 MC m 74 73 AD 
007 MB f 54 53 AD 
008 SB m 78 77 AD 
009 KH m 65 63 AD 
010 FK f 76 75 CBD 
011 WV m 66 65 CBD 
012 SK f 75 71 CBD 
013 WH f 74 71 FTLD 
014 SA  m 63 60 FTLD 
015 WA f 61 60 FTLD 
016 IR f 62 60 FTLD 
017 KC m 68 67 FTLD 
018 EF m 72 69 FTLD 
019 NR f 63 61 FTLD 
020 JD f 60 59 FTLD 
021 GF m 81 79 DLB 
022 KE m 82 81 DLB 
023 WE f 59 58 PCA 
024 KF m 69 59 PCA 

f – female, m – male; AD – Alzheimer’s dementia, CBD – corticobasal 

degeneration, FTLD – frontotemporal lobar degeneration, DLB – dementia with 

Lewy’s bodies, PCA – posterior cortical atrophy; 
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Table 10. Index of symptoms of 24 patients with dementia 
 

Pat.Nr memory  concen
tration 

orienta
-tion 

visuocon
-struction 

word 
fluency 

motor 
aphasiar 

sensory 
aphasia  alexia perse-

veration 
ideomotor 

apraxia 
limb-

kinetic 
apraxia 

visuo-
motor 
ataxia 

gait rigidity 
tremor 

orthosta- 
tic 

hypoten-
sion 

optical 
hallucina 

tion 
behaviour 
disorder  

001 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
002 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
003 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
004 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
005 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
006 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
007 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
008 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
009 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
010 1 0 0 0 0 0 0 0 0 1 left 0 0 0 0 0 0 
011 1 1 0 0 0 0 0 0 0 1 left 0 0 0 0 0 0 
012 1 1 0 1 1 1 0 0 0 1 right 0 1 0 0 0 0 
013 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 
014 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 
015 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
016 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
017 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 
018 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 
019 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 
020* 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 
021 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 
022 1 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 
023 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 
024 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 
Total 24 19 9 14 19 2 2 2 8 12 3 2 3 2 2 0 5 

1 – presence of the symptom; 0 – absence of the symptoms; left and  right – presence of symptom on the left or on the right side. * - patient had in the 

anamnesis an old arteria carotis anterior (ACA) infarction left (for several years before the cognitive impaiments) 
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Table 11. Neuropsychological testing in 24 patients with dementia. 

CERAD 

Pat. 
Nr. 

M
M

SE
 

Ve
rb

al
 F

lu
en

cy
 

B
os

to
n 

N
am

in
g 

Te
st

 

W
or

d 
Li

st
 M

em
or

y 

W
or

d 
Li

st
 R

ec
al

l 

W
or

d 
Li

st
 R

ec
og

ni
tio

n 

C
on

st
ru

ct
io

na
l P

ra
xi

s 

C
on

st
ru

ct
io

na
l 

Pr
ax

is
/R

ec
al

l 

C
lo

ck
 d

ra
w

in
g 

te
st

 

St
ro

op
 p

ar
ad

ig
m

 

001 15 6 11 6 0 8 4 0 5 42 

002 12* N/D N/D N/D N/D N/D N/D N/D 3 N/D 

003 20 9 14 10 3 19 11 6 3 N/D 

004 15* 12** 15 N/D N/D N/D N/D N/D 1 N/D 

005 24 12 15 4 2 6 11 6 1 21 

006 16 8 11 5 0 13 7 0 3 36 

007 29 18 15 19 2 7 11 6 1 18 

008 26 14 15 18 4 9 11 9 1 23 

009 26 20 14 13 1 14 11 1 3 20 

010 26 14 15 9 4 9 7 4 4 29 

011 29 16 15 18 6 20 11 2 3 24 

012 27 12 14 18 6 10 4 2 1 52 

013 27 9 6 8 0 17 7 7 5 67 

014 25 15 14 17 6 10 10 2 3 31 

015 28 7 13 13 4 20 11 0 1 45 

016 22 9 15 9 0 7 11 4 4 50 

017 25 9 11 8 0 20 11 4 3 27 

018 9 8 9 6 0 11 11 3 1 118 

019 28 5 13 15 3 20 11 11 3 25 

020 28 6 13 21 9 20 10 7 1 54 

021 26 13 15 13 10 20 9 5 1 N/D 

022 26 10 14 8 2 19 11 11 3 82 

023 18 17 13 9 1 15 5 0 6 N/D 

024 24* 11** 14 N/D N/D N/D N/D N/D 3 N/D 

HC 30 25 15 20 10 20 11 11 1 14 

Numbers represent raw data from the specific subtests, except for the Stroop paradigm 

(seconds, difference between color naming and interference conditions).   

* MMSE according to (70); 

** semantic fluency according to (71); 

HC – healthy control subject; N/D – not done 
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Table 12. Regional cerebral metabolic value of glucose (μmol/100 g/min) in 24 

patients with dementia 

Pat.Nr 
H

em
is

ph
er

e 
le

ft 

H
em

is
ph

er
e 

rig
ht

 

G
yr

us
 fr

on
ta

lis
 

in
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r l
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t 

G
yr

us
 fr

on
ta

lis
 

in
fe

rio
r  

rig
ht

 

H
ip
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ca

m
pu

s 
  l

ef
t 

H
ip

po
ca

m
pu

s 
rig

ht
 

P
ar

ie
ta

l l
ob

e 
le

ft 

P
ar

ie
ta

l l
ob

e 
rig

ht
 

O
cc

ip
ita

l l
ob

e 

001 24,87 22,45 23,93 25,51 14,81 15,99 20,75 20,50 31,70 

002 32,11 35,25 30,30 40,84 18,38 20,41 29,73 31,12 33,90 

003 28,15 27,05 27,92 29,21 20,73 22,71 28,47 25,13 28,09 

004 32,18 29,86 29,01 33,67 21,68 19,84 34,32 34,06 39,31 

005 21,81 23,38 21,18 23,87 12,21 16,20 27,00 26,34 27,26 

006 21,18 23,92 20,96 23,41 14,97 19,05 23,31 27,43 29,65 

007 28,92 28,66 28,71 32,28 18,60 17,05 29,49 29,55 38,29 

008 38,48 38,55 29,34 33,19 31,56 28,98 44,36 37,36 49,12 

009 29,42 33,09 30,08 27,15 20,26 20,43 33,61 28,37 37,94 

010 21,79 19,00 20,37 17,22 15,87 15,13 23,75 20,31 24,38 

011 35,11 34,24 35,20 31,08 22,12 23,12 35,90 35,49 38,73 

012 24,96 25,78 21,17 22,82 20,00 24,22 36,17 31,89 29,29 

013 31,82 29,52 33,10 29,26 18,97 15,28 41,82 37,61 35,08 

014 25,27 23,01 20,71 17,20 23,81 22,14 25,97 24,61 33,26 

015 31,33 31,94 29,36 24,84 18,69 23,39 41,35 36,76 45,37 

016 23,01 32,31 27,56 26,82 23,01 20,02 44,45 42,41 54,85 

017 35,86 34,93 33,14 28,59 25,43 28,33 42,35 38,99 47,39 

018 18,90 18,32 18,43 16,15 8,71 10,66 21,28 21,69 22,49 

019 28,18 30,09 29,69 32,53 21,69 21,66 35,21 34,60 34,86 

020 32,10 28,85 27,12 24,72 20,81 17,51 42,70 43,60 39,91 

021 21,23 21,99 25,21 23,54 13,80 19,85 22,72 20,75 20,89 

022 23,73 22,63 22,06 20,56 25,10 21,94 23,82 25,02 29,96 

023 22,60 22,96 27,11 26,92 14,89 16,74 17,89 16,43 26,86 

024 29,11 33,30 31,44 33,63 24,47 24,34 33,71 33,39 32,01 



9.2    Figures

Figure 1. 3D-rendering view of coregistered MRI and FDG-PET of twenty-four 
patients with dementia. Hypometabolism in cerebral cortex (arrows). The 
numbers of patients according to Table 9 are marked in the left corner. 
LH – left hemisphere; RH – right hemisphere.
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9.3 Image standardization 
 

Template image processing 
 
The MRI template image was reconstructed and standardized with a semi-

automated method, which included 2 main steps. 

 

Step 1. Deskulling the image  

The surface of the brain was first extracted from a MPRAGE - image using 

Extract Brain Surface Tool of the MIPAV.  

 

Step 2. AC-PC (anterior commissure – posterior commissure) alignment 

First the dataset was aligned with the stereotactical coordinate system by 

identifying the five crosspoints (see Fig. 1), according to the semiautomated 

AC-PC alignment procedures. AC-PC line (X axis) – a horizontal line running 

though the anterior and posterior commisures. The landmark points are shown 

in Fig. 1. 

 

 

Fig. 1. Five landmark points to perform AC-PC alignment 
 

 
 

The landmark points to perform AC-PC alignment: AC superior edge – top 

middle of anterior commissure; AC posterior margin – rear middle of anterior 

commissure; PC inferior edge – bottom middle of posterior commissure. 
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To find all these landmark points we used the methods developed by Bazin et 

al., Laboratory for Medical Image Computing, Johns Hopkins University, see 

details at: http://mipav.cit.nih.gov/documentation/presentations/talairach.pdf. 

 

 

Step 2. Talairach alignment 
The AC-PC template image that was generated needs to be aligned in the 

Talairach coordinate system. Talairach alignment consists in scaling the brain to 

match its boundaries with those of the Talairach atlas. It is a 12-degrees-of-

freedom, piece-wise linear transformation. It brings the AC, PC, and anterior, 

posterior, left, right, inferior, and superior boundaries of the brain to normalized 

positions (see Fig. 2).   

 

Fig. 2. The Create Talairach Image dialogue box on the triplanar view 

 

Talairach alignment of the template image along the three dimensions of the 

Talairach coordinates. The six most anterior, posterior, left, right, inferior, and 

superior points, or, alternatively, the bounding box enclosing the brain.  
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9.4 Regions of interests 
 
Delineation of ROI according to the standard protocol of the Laboratory of 
Neuroimaging (LONI), University of California, USA, see details at 
http://www.loni.ucla.edu/NCRR/Downloads/Protocols/LONIR_Protocols.html 
 

I. Hemisphere left/right were delineated using the automated draw 

levelset VOI tool (MIPAV). The CSF was excluded.  
 
II. The inferior frontal cortex  

1. The inferior frontal cortex (IFC) is traced in the axial plane. The IFC is 

defined as the cortex anterior to the precentral sulcus, inferior to the 

inferior frontal sulcus and superior and posterior to the lateral orbital 

sulcus. The IFC includes three subregions, pars opercularis, pars 

triangularis, and pars orbitalis, which can be identified using the 

vertical and horizontal rami of the sylvian fissure. 

Tracing begins on the most superior axial slice in which the inferior 

frontal sulcus can be delineated or where the pars orbitalis appears.  

2. In the axial viewing plane, colour the region that is both between the 

precentral sulcus and inferior frontal sulcus and also lateral to the 

point where these two sulci meet. When the inferior frontal sulcus and 

precentral sulcus do not meet, draw a straight line between the most 

medial point of the inferior frontal sulcus to the most medial point of 

the precentral sulcus. 

 

 III. Parietal Lobe 

The landmarks for delineating the parietal lobe include:  

• central sulcus  

• parieto-occipital sulcus  

• lateral ventricle  
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• Sylvian fissure  

• superior temporal sulcus (horizontal and ascending)  

• anterior calcarine sulcus 

1. The parietal lobe is traced in the sagittal plane. The parietal lobe is 

defined as the portion of the cerebrum superior and anterior to the 

parieto-occipital sulcus, posterior to the central sulcus, and 

superior to the corpus callosum. 

2. Delineation begins slightly off centre from midline and proceeds 

laterally in the sagittal plane. As you move laterally, the corpus 

callosum disappears and the parietal lobe is then traced as all 

matter above the lateral ventricle down to the tip of the 

hippocampus. 

3. Next, a line is drawn from the hippocampus to the parieto-occipital 

sulcus to distinguish the inferior boundary  

4. Going back to the sagittal slice view, once the lateral ventricle 

disappears, the medial most segment of the sylvian fissure is 

connected to the horizontal ramus of the superior temporal sulcus. 

Drawing is continued laterally until you can no longer distinguish 

brain matter. 

 

III. Occipital Lobe  

1. Begin tracing at the most mid-sagittal slice at the parieto-occipital 

sulcus. 

2. The cortex of the occipital lobe is delineated by following the 

parieto-occipital sulcus and temporal-occipital sulcus. In the 

absence of any distinguishable sulci, which may occur, straight 

lines are drawn to box off the region.  
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IV. Hippocampus & Amygdala  
 

1. The hippocampus is traced in the oblique coronal viewing plane. 

Images are first reoriented to the long axis of the hippocampus by 

selecting the most anterior and posterior limits of the hippocampus 

and reorienting the images so that the anterior and posterior limits 

of the hippocampus are in parallel along the long axis. This has 

been previously reported to promote the clear and easy 

identification of hippocampal anatomy.  

 

2. The posterior hippocampus is first traced on the slice in which the 

crus of the fornix can be delineated . As the fornix is the major 

efferent pathway of the hippocampus this has proved to be a 

reliable landmark that is based on hippocampal anatomy rather 

than on structures unrelated to the hippocampus.  

 

3. Following the identification of the crus of the fornix, the 

hippocampus is traced using the alveus as the superior boundary 

and the white matter of the parahippocampal gyrus as the inferior 

boundary. The inferior temporal horn of the lateral ventricle is 

used as the lateral boundary and the ambient cistern the medial 

boundary.  

 

4. The hippocampus tracings include the head of the hippocampus 

(CA1, CA2, CA3 fields) and the subiculum. The inferior temporal 

horn of the lateral ventricle and alveus clearly separate the 

hippocampus from the amygdala .  

 



  71

The overlay of nine ROIs is shown in Fig. 3 
 
 
Fig. 3. ROIs on the template image.   
 

a)   b)  c)  

ROIs of the template image: hippocampus - in the coronal view (a); 

hemispheres and gyrus frontalis inferior - in the axial view (b); parietal and 

occipital lobe – in the sagittal (c) plane.  
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