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1. EINLEITUNG 

 

Das multiple Myelom ist ein aggressives B-Zell Non-Hodgkin-Lymphom mit 

Infiltration des Knochenmarks. Ursächlich sind maligne transformierte 

Plasmazellen, die die physiologische Blutbildung verdrängen und monoklonale 

Immunoglobuline oder deren Leichtkettenfragmente produzieren (Herold, 2005). 

Die Inzidenzrate der Erkrankung steigt mit dem Alter an und beträgt in der 8. 

Lebensdekade 45/100.000 für männliche und 25/100.000 für weibliche Kaukasier; 

bezogen auf den deutschen Bevölkerungsdurchschnitt liegt sie bei 3/100.000 

(Lamerz R, 2002; Longo DL 1999). Mit Ausnahme der Plasmazellleukämie-

Variante sind die Tumorzellen bei dieser Erkrankung überwiegend im 

Knochenmark lokalisiert; die Myelomzellen wie auch die nicht-malignen 

Plasmazellen sind auf Interaktionen mit dem Knochenmarkstroma angewiesen, 

denn dieses vermittelt den Myelomzellen Signale zum Zellwachstum und –

überleben. Im Knochenmark adhärieren die Myelomzellen und fügen sich somit 

in das sog. “Microenvironment“ ein. Dieses besteht hauptsächlich aus den 

Knochenmarksstromazellen, welche eine Vielzahl von Zytokinen sezernieren, 

z.B. IL-6, IGF-1, SDF-1 und VEGF (Roecklein et al., 1995). Diese Zytokine 

fördern über die Signalwege wie JAK/STAT, Ras/Raf/MEK/ERK, PI3K/Akt und 

NFκB Überleben, Proliferation und Migration der Tumorzellen (Bisping et al, 

2005; Sanda et al, 2005). Außerdem exprimieren die Stromazellen auf der 

Oberfläche Adhäsionsmoleküle wie z.B. ICAM-1 und VCAM, an die die 

Myelomzellen binden können (Roecklein et al., 1995). Die Extrazellulärmatrix, 

welche Proteine wie Laminin, Vitronektin, Fibronektin und Kollagene umfasst, 

bietet ebenfalls Möglichkeiten zur Adhärenz für die Myelomzellen (Hazlehurst et 

al., 2001). Durch das im Knochenmark vorherrschende Zytokinmilieu und v.a. 

durch die Adhäsion der Myelomzellen im Microenvironment werden die 

Myelomzellen weniger chemosensibel, weshalb hier der Begriff CAM-DR „Cell 

Adhesion Mediated Drug Resistance“ benutzt wird.  

Der Tumor, seine Produkte und die Reaktion des Wirts führen zu 

Funktionsstörungen unterschiedlicher Organe und zu verschiedenen Symptomen. 

Häufigstes Symptom sind Knochenschmerzen, welche bei 70% der Patienten 

auftreten und v.a. in der Lendenwirbelsäule und in den Rippen lokalisiert sind.  
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Ursache für die Schmerzsymptomatik sind Knochenläsionen (Osteolysen), die 

aufgrund von Tumorzellproliferation und Osteoklastenaktivierung entstehen. 

Diese können zu pathologischen Frakturen und radikulären Symptomen führen. 

Zweithäufigstes klinisches Problem ist die erhöhte Infektanfälligkeit der 

Patienten, welches sich vor allem in fortgeschrittenen Stadien als 

lebensbedrohliche Sepsis manifestieren kann. Grundlage ist hier vor allem die 

funktionelle Hypogammaglobulinämie, welche aus einer verminderten Bildung 

und einem erhöhten Abbau vor allem der IgG-Antikörper resultiert. Das häufig 

auftretende Nierenversagen ist Folge vieler verschiedener Faktoren, allen voran 

die Hyperkalzämie als Produkt des Knochenabbaus. Auch glomeruläre 

Amyloidablagerungen können vor allem beim Leichtkettenmyelom die Ursache 

hierfür sein. Das vermehrt anfallende Paraprotein trägt ebenfalls zum 

Nierenversagen bei. Anfangs wird das Paraprotein in den Tubuli der Niere 

rückresorbiert, im Krankheitsverlauf kommt es zu einer Überladung der Tubuli 

mit Ausbildung eines Fanconi-Syndroms mit erhöhter Proteinausscheidung. 

Zusätzlich führt das Paraprotein zu einer Viskositätssteigerung und damit zu 

Blutgerinnungsstörungen. Bei 80% aller Patienten findet sich im Verlauf der 

Krankheit eine Anämie. Diese kann sich wegen des verdrängenden Wachstums 

der Myelomzellen, wegen eines Folat- und Vitamin-B12-Mangels oder wegen 

einer Hemmung der Hämatopoese durch sezernierte Tumorprodukte entwickeln.   

Aus klinischer Sicht bieten sich mehrere Therapieoptionen an: Die 

Standardtherapie besteht aus intermittierenden Zyklen von Cyclophosphamid oder 

Melphalan, jeweils in Kombination mit Prednison; dabei wird die Kombination 

aus Melphalan und Prednison am häufigsten eingesetzt. Mit dieser 

konventionellen Therapie leben nur 5% der Myelompatienten nach 10 Jahren nach 

Diagnosestellung (Kyle, 1983). Dieses Ergebnis konnte durch die Einführung der 

Hochdosischemotherapie mit Stammzelltransplantation verbessert werden. Jedoch 

können vor allem wegen der erhöhten Mortalität dieser Hochdosis-Melphalan-

Gabe bei älteren Menschen nicht alle Patientengruppen  der 

Hochdosischemotherapie zugeführt werden. Als dritte Möglichkeit stehen nun 

Bortezomib aus der Gruppe der Proteasominhibitoren und Thalidomid, für 

welches neben einer immunmodulatorischen Funktion eine 

Gefässneubildungshemmung nachgewiesen werden konnte, zur Verfügung.  

Alle drei Therapieoptionen führen aber letztendlich nicht zu einer Heilung des 
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Patienten. Nach Monaten bis Jahren der Therapie kommt es zur Ausbildung einer 

Resistenz gegen die Zytostatika. Die meisten Patienten sterben letztendlich an 

einer Infektion oder den Folgen einer Niereninsuffizienz.  

 

Das Hauptproblem bei der zytostatischen Therapie des multiplen Myeloms sind 

von Anfang an gegen Chemotherapeutika resistente und resistent gewordene 

Myelomzellen. Dabei ist die sekundäre, erworbene Resistenz relativ gut erforscht. 

Grundlage hierfür sind die Herauf- oder Herabregulation von pro- oder 

antiapoptotischen Proteinen oder z.B. die vermehrte Expression von Multi-drug-

resistance-Proteinen (MDR), welche als Effluxpumpen agieren und  Zytostatika 

unspezfisch aus der Zelle herausbefördern, bevor diese wirken können. Die 

Ergebnisse aus der Erforschung der sekundären Chemoresistenz wurden bereits in 

klinisch-therapeutische Konzepte integriert Dabei hatte jedoch z.B. eine 

Hemmung des MDR-Proteins mit Verapamil kaum einen Einfluss auf das 

Gesamtüberleben (Dalton et al., 1995).  

Anders hingegen ist dies bei der primären Resistenz der Myelomzellen: Hierbei 

handelt es sich um Signale zwischen Myelomzellen und dem Mikroenvironment 

des Knochenmarks, welche die Myelomzellen zur Proliferation anregen und 

Apoptoseresistenz gegenüber Zytostatika induzieren. Dazu zählen Zytokine wie 

z.B. IL-6 oder IGF, jedoch ebenso die integrinvermittelte Chemoresistenz über 

ICAM-1 und VCAM. Die primäre Zytostatikaresistenz ist noch nie systematisch 

untersucht worden und konnte auch noch nicht in therapeutischen Konzepten 

gesondert berücksichtigt werden. 

 
Ziel dieser Dissertation war es, die primäre Chemoresistenz von Myelomzellen 

systematisch zu untersuchen und mögliche Ziele für eine pharmakologische 

Interaktion zu finden. Durch geeignete Substanzen sollte die Resistenz der 

Myelomzellen in einem in-vitro Modell wieder voll hergestellt werden. 
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2. PATIENTEN, MATERIALIEN UND METHODEN 
 

Eine detaillierte Auflistung der verwendeten Materialien, Chemikalien und Geräte 

findet sich im Anhang, Kapitel 6. 

 

2.1 Zellkultur 

 

2.1.1 Zelllinien 

Die Myelomzelllinien U266, OPM-2, NCI-H929 und RPMI-8226, sowie die 

Stromazelllinie HS-5 stammen von der Deutschen Sammlung für 

Mikroorganismen und Zellkulturen (DMSZ).  

Die Zellen wurden in RPMI –1640 mit 20-prozentigem Zusatz von fetalem 

Kälberserum (FCS), welches zuvor bei 56 Grad Celsius über eine Stunde 

inaktiviert wurde, bei 37°C, 5%CO2 und 90% Luftfeuchtigkeit kultiviert.  

Es wurde kein Streptomycin/Penicillin verwendet. Die Zellen wurden bis zu einer 

Dichte von etwa 80x104 Zellen/ml kultiviert; dann wurde die Kultur geteilt, ein 

Teil davon verworfen, und der andere Teil mit Medium auf eine Zellkonzentration 

von 20x104 Zellen/ml verdünnt und weiterkultiviert. Die Zellvitalität vor Beginn 

eines Experimentes wurde sowohl mikroskopisch mittels Trypanblaufärbung 

sichergestellt. 

 

2.1.2 Einfrieren und Auftauen von Zellen  

Zu Beginn des Einfrierens wurde ein Einfriermedium hergestellt, welches aus 5ml 

RPMI1640, 3ml FCS und 2ml DMSO bestand. Dieses wurde bis zum Abfüllen in 

die Kryoröhrchen auf Eis gelagert. Für das Einfrieren von Zellen wurden 107 

Zellen abzentrifugiert, zweimal mit kaltem PBS gewaschen  und anschließend in 

4,5ml Kulturmedium (RPMI1640 + 20% FCS) resuspendiert. In jedes der 

Kryoröhrchen wurden jeweils 0,9ml der Zelllösung und 0,9ml des 

Einfriermediums gegeben und sofort für 6 Stunden bei -20 C° gelagert. 

Anschließend wurden die Zellen für 24 Stunden bei -80C° und schließlich bei 

196C° tief gefroren. 

Für das Auftauen der Zellen wurden die Kryoröhrchen aus dem Gefrierschrank 

genommen, 2 Minuten bei Raumtemperatur angewärmt und schließlich in 37 C° 

warmes Kulturmedium überführt. Es folgten zwei Waschvorgänge mit 
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Kulturmedium. Anschließend wurden die Zellen in einer Dichte von 20x104 

Zellen in Zellkulturflaschen überführt.  

 

2.1.3 Zellzahlbestimmung 

Dafür wurden 50µl einer Zelllösung mit 50µl der Trypanblaulösung versetzt, 

gevortext  und in Neubauer-Zählkammern gegeben und unter dem Mikroskop die 

Zellzahl pro ml festgestellt.  

 

2.1.4 Gewinnung mononukleärer Zellen für Knochenmarksstromakulturen 

Zur Isolierung von mononukleären Zellen aus Knochenmarksaspirat für 

Knochenmarksstromakulturen wurden jeweils 15 ml heparinisiertes 

Knochenmarksspirat von Patienten mit hämatologischen Erkrankungen benötigt. 

Die Patienten hatten nach Aufklärung durch einen Arzt die Zustimmung zur 

Verwendung des Materials für wissenschaftliche Zwecke gegeben. Ein positives 

Votum der Ethikkommission liegt vor. Die Aufreinigung der mononukleären 

Zellen erfolgte im Rahmen einer Dichtezentrifugation, für welche Ficollhypaque® 

verwendet wurde. Dieses wurde auf Raumtemperatur erwärmt und 10 ml davon in 

ein 50ml Falcon Röhrchen gegeben. Das Aspirat wurde 1:1 mit PBS verdünnt und 

vorsichtig über das Ficollhypaque geschichtet. Das Falconröhrchen wurde dann 

bei 755xg ohne Bremse für 30 Minuten bei Raumtemperatur zentrifugiert. 

Anschließend wurde die Interphase („buffy coat“) abpipettiert, in ein neues 

Röhrchen gegeben und zweimal mit PBS gewaschen. Danach folgte die 

Resuspension in Kulturmedium. Die Konzentration der Zellen wurde bestimmt, 

auf eine Konzentration von 107/ml verdünnt und in 96 wellplates, 24 wellplates 

und 6 wellplates  mindestens 3 Wochen und maximal 5 Wochen lang kultiviert, 

bis ein Monolayer aus hBMSC vorhanden war (Methode nach Lokhorst et al., 

1994).  

 

2.2 Zellvitalitätsmessungen mit hBMSC 

In den Mitochondrien vitaler Zellen erfolgt die Umsetzung des roten 

Tetrazoliumsalzes WST-1 zu orange-gelbem Formazan. Die Orangefärbung und 

damit die Zunahme der optischen Dichte der Zellsuspension kann bei einer 

Wellenlänge von 450 – 630nm bestimmt werden. Da avitale Zellen den Farbstoff 

nicht umsetzen können, korreliert die Anzahl vitaler Zellen mit 
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Extinktionserhöhung bei 450nm, die gegen eine Refernzwellenlänge von 690nm 

im Multi-well-Photometer gemessen wurde. 

Frisches, heparinisiertes Knochemmarkaspirat wurde ficolliert und wie in 2.1.4 

beschrieben in 96 wellplates (200µl/well) geben. Die Zellen wurden mindestens 

drei Wochen und höchstens fünf Wochen lang bei 37°C bei 5%CO2 und 90% 

Luftfeuchtigkeit inkubiert. Es wurden nur Experimente mit 96-well-plates 

durchgeführt, bei denen die hBMSC über 80% der Wellfläche bedeckten. Die 

Reinheit der hBMSC wurde mikroskopisch sichergestellt. Nach zweitägiger 

Inkubation mit dem jeweiligen Zytostatikum wurde WST-1 im Verhältnis 1:10 

(20µl) zugeben. Nach drei Stunden erfolgte die Analyse bei 450 gegen 630 nm im 

Photometer. Die Analyse beinhaltete eine Messung von Kontrollen (Färbung nicht 

behandelter Zellen) und Blanks (Färbung von Medium).   

 

 
2.3 Durchflusszytometrische Analysen 

 

2.3.1 AnnexinV/Propidiumjodid Apoptose Assay 

In vitalen Zellen besteht eine ausgeprägte Asymetrie der Zellmembran; 

Phosphatidylserin kommt in vitalen Zellen nur auf der Innenseite der Zellmebran 

vor. Zu Beginn von in Apoptose gehenden Zellen verliert die Membran ihre 

Asymmetrie und es kommt es zu einem „Flip-Flop“ der Membranlipide, d.h. 

Phosphatidylserin wird auch auf die Außenseite der Zellmembran verschoben. 

AnnexinV vermag an der Zelloberfläche an dieses Phosphatidylserin binden. 

Durch Koppelung von AnnexinV mit Flourescein-thioisocyanat (FITC), welches 

von einem Argonlaser bei einer Wellenlänge von 488nm angeregt werden kann, 

wird die Emmission des FITC-Moleküls bei einer Wellenlänge von 518nm im 

Durchflusszytometer gemessen.  

Verliert die Zelle des Weiteren die Membranintegrität, so kann Propidiumjodid 

(PI), ein DNA-Farbstoff, die Zellmembran permeieren und sich an DNA anlagern. 

PI ist im Gegensatz zu FITC ein nach optischer Laseranregung nicht grün sondern 

rot floureszierender Farbstoff. PI wird bei 488nm angeregt und emmitiert bei 

617nm.   

Durch Kombination der beiden Färbungen können 2 Stadien des Zelluntergangs 

beschrieben werden (Abb. 2.1): 
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• Frühe Apoptose: die Zellen sind AnnexinV positiv und PI negativ 

• Späte Apoptose: die Zellen sind sowohl für AnnexinV als auch für PI 

positiv 

 

Im Einzelnen wurden 106 Zellen bei 1500U/min, 8°C, 6 Minuten lang 

abzentrifugiert und nach Abschütten des Überstandes zweimal mit kaltem PBS 

gewaschen und dann in Annexin Binding Buffer gelöst um eine Zellkonzentration 

von 2 x 106 Zellen/ml zu erhalten.  

 

Binding Buffer: 10 mMHepes/NaOH, pH 7,4 

   140 mM NaCl 

   2,5 mM CaCl2   

 

Nach dem Transfer von 100 µl in ein neues Facsröhrchen (Sarstaedt) wurden 5 µl 

Annexin-FITC und 10 µl PI (Propidiumjodid) hinzu gegeben und bei 

Raumtemperatur im Dunkeln für 15 min inkubiert. Nach Zugabe von 400µl 

Binding Buffer wurde die Analyse innerhalb einer Stunde durchgeführt. Zur 

Analyse wurden die Kanäle FL1 (Annexin – FITC) und FL3 (Propidiumjodid) im 

Epics Coulter XL Durchflußzytometer verwendet.  

 

PI PI

Annexin Annexin
 

Abbildung 2.1: Das Annexin-PI Apoptose Assay. NCI-H929-Zellen nach 48-stündiger  Kultur 
als Kontrolle (linkes Bild) oder Inkubation mit 30 µM Melphalan (rechtes Bild). Die Abbildung 
zeigt eine deutliche Verlagerung der Zellen vom Annexin/PI–negativen Bereich über den 
Annexinpositiven (frühe Apoptose) in den Annexin/PI-positiven Bereich (späte Apoptose). 
(Annexin-V-FITC = FL1, Propidiumjodid = FL3) 
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2.3.2 Analyse der Oberflächenexpression 

Bei der Oberflächenmarkermessung werden Zellen mit einem monoklonalen 

Antikörper markiert, der seinerseits mit FITC (Flourescein-thiocyanat) oder PE 

(Phycoerythrin) markiert ist. Auf diese Weise kann mit dem  

Durchflusszytometer, welches die Farbintensität misst, auf die 

Oberflächenexpressionstärke eines Antigens auf der Zelloberfläche geschlossen 

werden. 

 4 –5 x 105 Zellen wurden bei 1500U/min, 8°C, 6 Minuten lang abzentrifugiert 

und nach Abschütten des Überstandes zweimal mit kaltem PBS gewaschen und 

dann in 1ml kaltem PBS resuspendiert. 100 µl dieser Zelllösung wurden mit 10µl 

der Antikörperlösung für 10 Minuten im Dunkeln inkubiert. Nach Zugabe von 2 

ml kaltem PBS und nochmaligem zentrifugieren (1500 U/min, 6 min, 8°C) wurde 

der Überstand verworfen und die Zellen in 400 µl PBS resuspendiert. Die Analyse 

erfolgte im Durchflusszytometer. 

 

 

 

2.3.3 Zytotoxizitäts-Assay unter Kokulturbedingungen 

Zu Beginn eines Kokulturexperiments mussten die HS-5-Stromazellen für das 

Experiment vorbereitet werden. Dafür wurden die HS-5 Zellen trypsinisiert: Aus 

der zu trypsinisierenden HS-5-Kultur wurde das überstehende Kulturmedium 

abgenommen und anschließend 5 ml der Trypsinlösung zugegeben und bei 37 

Grad Celsius für 5 Minuten inkubiert und anschließend deren Ablösung vom 

Kulturflaschenboden  im Mikroskop kontrolliert. Nach Zugabe von 20ml Medium 

(RPMI1640 + 20% FCS) wurden die Zellen bei 1500U/min, 8 Grad Celsius, 10 

Abbildung 2.2: Oberflächenmarkermessung. Die Abbildung zeigt die relative Expressionsstärke 
von CD38 (durchgezogene Linie) und CD138 (grau hinterlegt) und die Isotypkontrolle (gestrichelt) 
der Myelomzelllinie OPM-2. 
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Minuten lang abzentrifugiert und nach Verwerfen des Überstandes zweimal mit 

PBS gewaschen, in Medium resuspendiert und die Zellkonzentration bestimmt. 

Danach wurden die Zellen mit Medium verdünnt, in einer Konzentration von 104 

Zellen/well in die 6-wellplates transferiert und in 3ml Medium (RPMI 1640 + 

20% FCS) resuspendiert. Für die Myelom-Knochenmarkstroma-Kokultur wurden 

die HS-5-Zellen so lange inkubiert, bis der Monolayer aus HS-5 Zellen 80% der 

Oberfläche des Wells bedeckte, mindestens jedoch 3 Tage (Methode nach 

Lokhorst et al., 1994). 

Nach mindestens drei Tagen wurden pro Well Myelomzellen in einer 

Konzentration von 0,5 x 105/ml hinzugeben. Nach einer halbstündigen 

Inkubationszeit wurde entweder mit einem Signalwegsmodulator eine Stunde lang 

vorinkubiert oder das Zytostatikum hinzugeben. 

Nach zwei oder vier Tagen wurden die Zellen mittels pipettieren oder Cellscraper 

vom Boden der Wells gelöst und abgeerntet. Nach einer weiteren 

Zellzahlbestimmung und ggf. Verdünnung wurden 4 –5 x 105 Zellen bei 

1500U/min, 8 Grad Celsius, 6 Minuten lang abzentrifugiert und nach Verwerfen 

des Überstandes zwei mal mit kaltem PBS gewaschen und dann in 0,5ml kaltem 

PBS resuspendiert. 100 µl dieser Zelllösung wurden mit 10µl der 

Antikörperlösung (CD38-FITC, CD38-PE oder CD138-FITC) für 15 Minuten im 

Dunkeln inkubiert. Nach Zugabe von 2 ml kaltem PBS und nochmaliger 

Zentrifugation (1500 U/min, 6 min, 8 Grad Celsius) wurde der Überstand 

verworfen und die Zellen in 100 µl PBS resuspendiert. Nach Zugabe von 10 µl PI 

und 400 µl PBS wurde die Zelllösung innerhalb einer Stunde im Coulter Epics-

XL durchflusszytometrisch analysiert. Zur Analyse wurden die Kanäle FL1 (FITC 

– Antikörper) und FL3 (Propidiumjodid) verwendet.  

 

2.4 Western Blotting 

Der Western Blot wurde zum Nachweis eines Proteins in der Zelle herangezogen. 

In einem mehrschrittigen Verfahren wurden verschiedene Proteine mittels 

Chemoluminiszenz nachgewiesen. 

 

Zelllyse 

107 Zellen wurden drei Tage lang in Anwesenheit oder Abwesenheit der 

Stromazelllinie HS-5 in Medium (RPMI 1640 + 20 % FCS) inkubiert und dann 
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geerntet. Die Myelomzellen in der Kokultur wurden mittels pipettieren von dem 

Monolayer der HS-5-Zellen abgetrennt. Die Reinheit der Myelomzellen wurde 

anschließend durch Anfärbung mit CD38-FITC-Antikörper 

durchflußzytometrisch bestimmt und lag über 80%.  Die Zellen wurden bei 

1500U/min, 8°C, 6 Minuten lang abzentrifugiert und nach Abschütten des 

Überstandes zweimal mit kaltem PBS gewaschen und dann in 1ml kaltem PBS 

resuspendiert. Diese Zelllösung wurde nochmals im bei 2500U/min sechs 

Minuten lang abzentrifugiert und der Überstand verworfen. Anschließend  folgte 

die Zugabe von 100µl Zelllysepuffer: 

 

• Zelllysepuffer:  

 Auqua dest (8,18ml), Tris (250µl, 1M, pH7,6), NaF(100µl, 1M), EDTA 

 (200µl, 0,5M), Aprotinin (50µl, 2,1 mg/ml)  Leupeptin (20µl, 5 mg/ml), 

 PMSF (100µl, 100mM), Na3VO4 (100µl, 100mM).  

 

Nach der Homogenisierung der Zellen im Homogenisator wurden 10µl NP-40 

(10%) dazugeben und die Proben bei 4°C 15 Minuten geschwenkt.  

Danach erfolgte die Bestimmung der Proteinkonzentration. Hierfür wurde zu 2µl 

Proteinlösung 800µl Aqua dest. und 200µl eines Jod-Färbeagens (Bio-Rad®) 

zugegeben.. Die Proteinkonzentration wurde im Photometer gegen einen Nullwert 

bestimmt.  

 

Gelelektrophorese 

Im Anschluß wurden die Proteinkonzentrationen der einzelnen Proben durch 

Zugabe von Lysepuffer einander angeglichen. Die Proteinlösung wurde mit 

Loading Buffer im Verhältnis 1:4 verdünnt und bei 95°C für fünf Minuten erhitzt, 

anschließend bei 6000 U/min zwei Minuten lang abzentrifugiert  und auf 

Polyacrylamidgele (12% und 15% Acrylamid)  aufgetragen: 

 

• Seperating Gel (15%): 24% Aqua dest., 25% Tris 1,5M pH8,8, 49% 

Acrylamid (30%), 0,01% APS 10%, 0,0006% Temed. 

• Seperating Gel (12%): 35% Aqua dest., 25% Tris 1,5M pH8,8, 39% 

Acrylamid, 0,01% APS 10% , 0,0006% Temed. 
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Die Gelkammern wurden zu ¾ mit der jeweiligen Gellösung gefüllt und 

anschließend mit 500µl Isopropanol überschichtet und 30 Minuten stehen 

gelassen. Nach einer halben Stunde wurde das Isopropanol abgegossen und die 

Gelkammern viermal mit Aqua dest. gereinigt und getrocknet. 

Danach erfolgte die Zugabe des Stacking Gels: 

 

• 64% Aqua dest.; 27% Tris 1,5M pH8,8; 13,5% Acrylamid; 0,01% APS 

10%; 0,0006% Temed. 

 

Nach Zugabe des Stacking Gels wurde die Kämme bis zur Auspolymerisierung 

(45 Minuten) in die Kammern gesteckt. Die Gele wurden anschließend in die 

Elektrophoresebehälter gestellt und diese mit Running buffer gefüllt. Nach 

Herausnahme der Kämme wurden die Geltaschen gründlich mit Running Buffer 

gespült und mit 20µl Proteinlösung bzw. 10µl Marker gefüllt. Die angelegte 

Spannung betrug, solange sich das Protein im Stacking Gel befand, 80V, nach 

Erreichen des Separation Gels wurde sie auf 100V erhöht. 

 

Blotting 

Die nun nach dem Molekulargewicht aufgetrennten Proteine wurden auf PVDF-

Membranen übertragen.  

Zum Transfer der Proteine auf die Membranen wurden diese in Methanol 100%, 

ddH2O, und Transferbuffer getränkt. Anschließend wurden die Gele auf die 

Membranen zwischen Filterpapiere und Schwämme gelegt, in die 

Transferbehälter gesetzt und bei 23V über 12 Stunden bei 8°C inkubiert. 

 

• Transfer-puffer:  25 mM Tris-HCl 

     192 mM Glycin 

     0,037 % (w/v) SDS 

     20% (v/v) Methanol 

 

 

Proteinnachweis 

Der Proteinnachweis basiert auf einem mehrschrittigen Verfahren, bei dem ein 

Primärantikörper an das Protein auf der Membran bindet, ein Sekundärantikörper 
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wiederum an dem Primärantikörper bindet, welcher mit einer Peroxidase 

konjugiert ist und so mittels Chemoluminiszenz nachgewiesen werden kann. 

Im Einzelnen wurden die Membranen zuerst luftgetrocknet. Um unspezifische 

Bindungen der spezifischen Antikörper zu Verringern wurden die Membranen 60 

Minuten lang mit einer Magermilchpulverlösung (5g Magermilchpulver, aufgelöst 

in 100ml PBS-T (1l PBS und 0,5ml Tween20)) inkubiert, und anschließend 

viermal kurz mit PBST gespült. Daraufhin wurden die Membranen 10 Minuten 

lang mit PBST gewaschen. 

 

• PBST-puffer: NaCl 8 g 

    KCl 0,2 g 

    Na2HPO4 1,44 g 

    KH2PO4 0,24g 

    H2O 1l   

 

Der primäre Antikörper (Liste der verwendeten Antiköper siehe Anhang) wurde 

1:1000 mit PBST verdünnt und 60 Minuten lange auf einem Schüttler mit den 

Membranen inkubiert. Anschließend wurden nicht gebundene Antikörper mit 

PBST (4-mal für jeweils 10 Minuten) abgewaschen. 

Der sekundäre Antikörper wurde 1:2000 mit  Blocking-Lösung verdünnt und für 

60 Minuten auf dem Schüttler (10/min) auf die Membranen geben. Die 

Antikörper-Milchpulver-Lösung wurde mit PBST (siehe oben, wonach wieder 

viermal 10 Minuten lang) abgewaschen.  

Anschließend wurden jeweils 3 ml der 2 ECL Lösungen auf die Membranen 

geben und nach kurzer Zeit die Chemoluminiszenz der Banden mit Röntgenfilmen 

festgehalten. 

 

Membran-Stripping 

Die Antikörper konnten mittels Stripping-Puffer von der Membran entfernt 

werden, so dass mehrere Antikörper-Overlays mit jeder Membran durchgeführt 

werden konnten. 

 

• Stripping-Puffer: Tris 7,56g 

     SDS 20 g 
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     H2O 1 l  

 

Hierbei wurden die Membranen im Stripping Puffer 35 Minuten lang bei einer 

Wasserbadtemperatur von 57C° inkubiert und anschließend in insgesamt drei 

Waschvorgängen mit PBS-T gespült. Anschließend wurde der Proteinnachweis 

wie oben geschildert durchgeführt. und nach 2 Waschschritten mit 10 – 15% 

Milchpuffer geblockt. 

 

 

2.5 Statistik 

In den Abbildungen werden die Mittelwerte mit den Standardabweichungen 

gezeigt. Die deskriptive Statistik wurde mittels Excel ausgewertet und die 

statistische Signifikanz mit dem Kruskal-Wallis-Test berechnet. 

P < 0.05 wurde als statistisch Signifikant angesehen.  
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3. ERGEBNISSE 

 

Zur Untersuchung der primären Chemoresistenz beim Myelom musste ein 

Zellkulturmodell etabliert werden, welches die Verhältnisse des 

Microenvironments adäquat widerspiegelt. Ziel war es, ein Kokulturmodell zu 

untersuchen,  in welchem  sowohl primäre Stromazellen als auch HS-5-

Stromazellen mit Myelomzellen in Interaktion treten konnten und der Effekt von 

Zytostatika einerseits und die primäre Chemoresistenz andererseits greifbar 

wurden. Außerdem sollte sowohl die Zellkultur als auch die Auswertung am 

Durchflusszytometer einfach durchführbar sein.  

Da bei dem oben beschriebenen Zellmodell auch die Stromazellen von den 

Zytostatika potentiell  beeinflusst werden konnten, musste zu allererst untersucht 

werden, wie sensibel die Stromazelllinie HS-5 als auch die primären Stromazellen 

auf die Zytostatika reagieren. Damit sollten geeignete Zytostatikakonzentrationen 

gefunden werden, welche vor allem toxisch auf die Myelomzellen und weniger 

auf die Stromazellen wirken. 

 

 

 

3.1 Etablierung eines Kokulturmodells 

 

3.1.1 Chemosensitivität von HS-5-Zellen 

Für die Untersuchung der Chemosensibilität wurden die HS-5 Zellen vor 

Inkubation mit dem Chemotherapeutikum so lange kultiviert, bis der Boden der 6-

well-plates zu 80% - 90% mit Zellen bedeckt war, mindestens jedoch 72 Stunden 

lang. Anschließend wurden die Zellen 48 Stunden lang mit dem Zytostatikum 

inkubiert, dann durch Pipettieren von den Zellkulturplatten abgelöst und mit 

Propidiumjodid gefärbt. Der Anteil apoptotischer Zellen wurde 

durchflusszytometrisch bestimmt. 
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Abbildung 3.1 zeigt, dass HS-5 Stromazellen gegenüber den Zytostatika 

unempfindlicher sind als die Kontrollzelllinien NCI–H929 und U937. Die 

Alkylantien Melphalan und Treosulfan führen zu einem weitgehend linearem 

Anstieg der Apoptoseraten bei Dosiseskalation, während es bei Doxorubicin, 

Cytarabin und Gemcitabin zu einer Plateaubildung der Apoptose kommt. 

 

 

3.1.2 Chemosensitivität von primären Stromazellen (hBMSC) 

Wie für die HS-5 Zellen sollte auch für primäre Stromazellen die 

Chemosensitivität bestimmt werden. Mononukleäre Zellen aus 

Knochenmarksaspiraten wurden in 96-well-plates solange kultiviert, bis 90% des 

Wellbodens mit Stromazellen bedeckt waren. Wahrend der mehrwöchigen Kultur 

wurde regelmäßig alle sieben Tage das Medium gewechselt. 
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Abbildung 3.1: Chemosensitivität der 
Stromazelllinie HS-5. Alle Zellen 
wurden 48 h lang mit dem jeweiligen 
Zytostatikum in ansteigenden 
Konzentrationen inkubiert. Der Anteil 
der apoptotischen Zellen wurde im 
Durchflusszytometer nach Färbung mit 
Propidiumjodid nachgewiesen. NCI – 
H929 und U937 dienten als 
Kontrollzelllinien.   
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Tabelle 4.1 zeigt die Patientencharakteristika eingeschlossenen Patienten. Dabei 

handelte es sich überwiegend um Patienten mit multiplem Myelom. 

 

PATIENT 

NR. 

ALTER/ 

GESCHLECHT 

DIAGNOSE BISHERIGE 

ZYTOSTATISCHE 

THERAPIE 

1 75/ weiblich Multiples Myelom 
3xVAD, 1xEC, 2xHD-

Melphalan 

2 77/weiblich MGUS - 

3 51/weiblich Multiples Myelom 
4x ID, 1xIEV, 2xHD-

Melphalan 

4 29/weiblich ALL 
Induktionstherapie nach 

dem GMALL-Protokoll 

5 51/männlich Multiples Myelom 6xVAD 

6 50/männlich Multiples Myelom Keine 

7 51/männlich Multiples Myelom 6 x VAD 

8 
51/mä

nnlich 

Multiple

s 

Myelom 

z.Z. Diagnose 

 

Tabelle 3.1: Grunderkrankungen der Patienten, welche Knochmarksaspirat zur Verfügung gestellt 
haben.  VAD(Vincristine, Doxorubicine, Dexamethason), EC(Etoposid,Cyclophosphamid), HD-
Melphalan (Hochdosis-Melphalan mit autolog. Stammzelltherapie), GMALL (Methotrexat, 
Cyclophosphamid, Dexamethason, Vincristin, Daunorubicin, Asparaginase, Cytarabin, 6-
Mercaptopurin) 
  

Vor den Versuchen wurden durch Pipettieren und Spülen mit Medium die 

restlichen adhärenten Zellen von den hBMSC gelöst und entfernt. Die Inkubation 

mit dem jeweiligen Zytostatikum erfolgte über 48h im 96-well-Kulturgefäss. Die 

Zellvitalität wurde nach Zugabe von WST-1 und einem dreistündigem 

Inkubationsschritt photometrisch bestimmt.  

Abbildung 3.2 zeigt, dass die hBMSC deutlich weniger sensibel auf Zytostatika 

reagieren als die Kontrollzelllinien NCI-H929 und U937. Analog zu den HS-5-

Zellen fällt auf, dass vor allem die Alkylantien Melphalan und Treosulfan die 

Apoptoseraten von hBMSC durch Dosissteigerung liniear steigern können. Bei 

Cytarabine, Doxorubicin und Gemcitabine dagegen kommt es zu Plateaubildung. 
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Zusammenfassend kann gesagt werden, dass sowohl die Stromazelllinie HS-5 als 

auch die primären Stromazellen resistenter für eine Zytostatikawirkung sind als 

Myelom- oder Leukämiezelllinien und somit für ein Kokulturmodell geeignet 

sind, an dem primäre Chemoresistenz untersucht wird.  

 

Zur weiteren Entwicklung des Kokulturmodells wurden sowohl die Dauer der 

Kokultivierung, die verwendeten Zellkonzentrationen als auch die verwendeten 

Zytostatikakonzentrationen variiert und auf ein Optimum für die 

durchzuführenden Experimenten eingestellt. (Näheres unter 2.3.3 im 

Methodenteil) 
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Abbildung 3.2: Chemoresistenz von 
primären Stromazellen. Die 
Stromazellen wurden 48 Stunden mit 
dem jeweiligen Zytostatikum 
inkubiert. Die Bestimmung der 
Zellvitalität erfolgte durch 
anschließende Inkubation mit WST-1 
für drei Stunden und photometrische 
Analyse. Aus den 8 verschiedenen 
hBMSC-Kulturen wurden für die 
Abbildungen    die Mittelwerte der 
Apoptoseraten verwendet. 
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3.1.3 Durchflusszytometrische Analyse der Kokulturexperimente 

Nach dem Ansetzen einer Kokultur wurden die Zellen nach 48h oder 96h geerntet  

und wie im Methodenteil beschrieben für die durchflusszytometrische Analyse 

vorbereitet. Dabei wurden die Zellen mit Propidiumjodid gefärbt um späte, 

irreversible Apoptose zu detektieren. Außerdem erfolgte die Färbung mit einem 

FITC-konjugierten Antikörper, mit dem man beide Zelltypen im 

Durchflusszytometer voneinander trennen konnte. Dies war entweder CD38-

FITCoder auch CD138-FITC, beides Marker, die auf Stromazellen nicht 

exprimiert werden. Bei der durchflusszytometrischen Analyse wurden dann die 

Zellen mittels mehrerer „Gates“ in CD38-(oder CD138-)positive- und negative 

Zellen eingeteilt.  

 
Abbildung 3.3 Zytotoxizitäts-Assay unter Kokulturbedingungen Die Abbildung zeigt den 
Verfahrensweg einer Kokulturmessung am EPICS Coulter XL. Die Zellauftrennung erfolgte durch 
eine Antikörpermarkierung, meist mit CD38-FITC. Durch das Setzen verschiedener „Gates“(z.B. 
R1, R2, R3 und R4,  siehe Abbildung) können verschiedene Zellgruppen (CD38-negative oder –
positive, PI-negative oder –positive) getrennt voneinander analysiert und quantifiziert werden. Im 
Zytotoxizitätsassay unter Kokulturbedingungen konnten die Apoptoseraten der CD38 -positven 
Zellfraktion und selektiv deren PI-positivität bestimmt werden. Aus den bestimmten Werten 
errechnet sich dann CAM-DR:  
(Apoptose d. Monokultur - Apoptose d. Kokultur) x 100 / Apoptose d. Monokultur 
   

R2 : 39,35%CAM  - DR: 
49% 

Monokultur NCI  

CD38 -FITC

G2 : R3

PI

R4

R3

PI

Kokultur HS  - 5 / NCI 

CD38- FITC

G1 : R1

R1

R2 

R4: 76,77% 
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Von der CD38-positiven Population konnte dann die PI-positivität und damit der 

Anteil apoptotischer Zellen bestimmt werden. Die Apoptoseraten der CD38-

positiven Population der Mono- und Kokulturen wurde miteinander verglichen 

und der CAM-DR-Index bestimmt. Dieser Wert ergibt sich aus der prozentualen 

Abnahme der Apoptoserate in der Kokultur im Vergleich zur Monokultur und 

sagt aus, wie stark die Myelomzellen vor Apoptose geschützt werden. 

 

3.1.4 Validität des Zellmodells 

Da es sich bei den im Kokulturmodell verwendeten Stromazellen um eine 

Zelllinie handelt und nicht um primäre Stromazellen eines Patienten, musste 

gezeigte werden, dass sowohl die HS-5-Zellen als auch die hBMSCs den selben, 

in der oben vorgestellten durchflusszytometrischen Analyse nachweisbaren Effekt 

auf die Myelomzellen haben.  

Primäre Stromazellen (hBMSC) wurden aus ficolliertem Knochenmarksaspirat 

gewonnen und so lange in 6-well-plates kultiviert, bis 80% - 90% des 

Kulturgefäßes mit Zellen bedeckt war, jedoch mindestens drei, maximal fünf 

Wochen. Dies gelang fast immer. Nach Zugabe von 2x105/ml Myelomzellen und 

30µM Melphalan wurde die Kokultur 48h inkubiert. Anschließend wurden die 

Myelomzellen durch pipettieren geerntet, mit CD38 – FITC und PI gefärbt und im 

Durchflusszytometer gemessen und ausgewertet. 
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Abbildung 3.4 zeigt, dass in der Kokultur mit primären 

Knochenmarksstromazellen CAM-DR auftritt. Hier kommt es zu einer Inhibition 

des Zelltodes um 37%.  

Abbildung 3.4 Kokultur mit 
primären Stromazellen führt zu 
Apoptosereduktion.  NCI-H929 
wurden über einen Zeitraum von 
48h in An- oder Abwesenheit von 
primären Stromazellen mit 30µM 
Melphalan kultiviert. Nach 
Färbung mit CD38-FITC und PI 
wurde der Anteil der CD38- und 
PI-positiven Zellen im 
Durchflusszytometer bestimmt. Die 
Mittelwerte und hBMSCs stammen 
von 3 verschieden Experimenten 
und Patienten.  
 



Ergebnisse 

  20 

 

Ebenso wurde dasselbe Experiment mit gleicher Zell- und 

Zytostatikakonzetration, gleichen Inkubationszeiten und gleicher Auswertung mit 

HS-5-Zellen statt hBMSC durchgeführt. Dies führte wie bei den Experimenten 

mit hBMSC zu einer starken Apoptosereduktion um bis zu  50%. 
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Mit diesen Versuchen konnte wurde gezeigt werden, dass HS-5-Zellen genauso 

wie primäre Stromazellen denselben antiapoptotischen Effekt in den 

Myelomzellen induzieren.  

 

Somit bietet das HS-5-Kokulturmodell eine sehr gute und einfach durchführbare 

Möglichkeit,  Interaktionen zwischen Stromazellen und Myelomzellen und damit 

CAM-DR zu untersuchen. 

 

 

3.2 Zelladhäsions-vermittelte Chemoresistenz  (CAM-DR) 

 

Im folgenden Kapitel wird die zelladhäsionsvermittelte Chemoresistenz 

charakterisiert und versucht, die ihr zugrunde liegenden Mechanismen 

aufzudecken. 

 

3.2.1 Auftreten von CAM-DR bei verschieden Zytostatika 

Zuerst bestand die Frage, ob CAM-DR spezifisch nur bei einem Zytostatikum 

auftritt oder ob CAM-DR ein genereller Schutzmechanismus der Zelle ist, der bei 

Abbildung 3.5: Kokultur mit 
HS-5-Stromazellen führt zu 
Apoptosereduktion. .  NCI-
H929 wurden über einen 
Zeitraum von 48h in An- oder 
Abwesenheit von HS-5-
Stromazellen mit 30µM 
Melphalan kultiviert. Nach 
Färbung mit CD38-FITC und PI 
wurde de Anteil der CD38- und 
PI-positiven Zellen im 
Durchflusszytometer bestimmt. 
Die Mittelwerte stammen von 3 
verschieden Experimenten. Es 
wurden jeweils die Mittelwerte 
und die Standardabweichung 
verwendet. 
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verschiedenen Zytostatika mit verschiedenen Wirkungsmechanismen beobachtet 

werden kann.  

Für die Beantwortung dieser Frage wurden HS-5-Zellen solange in 6-well-plates 

vorinkubiert, bis 80% - 90% des Zellkulturgefäßes bedeckt waren, mindestens 

jedoch drei Tage lang. Anschließend wurden die NCI-H929 und das jeweilige 

Zytostatikum (Melphalan, Treosulfan, Doxorubicin oder Gemcitabine) 

dazugegeben. Die Messung und Auswertung erfolgte nach 48 Stunden durch 

Doppelfärbung mit CD38-FITC und PI im Durchflusszytometer. 
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Abbildung 3.6: CAM-DR ist nicht substanzspezifisch. NCI-H929 wurden über 48h mit 
Melphalan 30µM, oder Treosulfan 100µM, oder Doxorubicine 10µM oder Gemcitabine 15nM 
oder nur Medium in An- oder Abwesenheit von HS-5-Stromazellen kultiviert. Die Bestimmung 
der PI-positiven Zellen erfolgte im Durchflusszytometer. Es wurden jeweils die Mittelwerte und 
die Standardabweichung verwendet. 

 

Sowohl bei dem wichtigsten Medikament für die Therapie des Plasmozytoms, 

Melphalan, wie auch bei Doxorubicin, Gemcitabine und Treosulfan, tritt eine 

deutliche Verminderung der Apoptose durch Kokultivierung auf Stromazellen auf.  

Die Konzentrationen der Chemotherapeutika führen bei den Versuchsansätzen 

ohne Stromazellen zu einer deutlichen Apoptoseinduktion, welche bei den 

Ansätzen mit Stromazellen stark vermindert ist (Melphalan: 57%, Treosulfan: 

63%, Doxorubicin: 42% und Gemcitabine: 58%). 
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Hiermit wird deutlich, dass CAM-DR nicht spezifisch für ein Zytostatikum oder 

eine Gruppe von Zytostatika ist. Vielmehr handelt es sich hier um eine Resistenz 

gegenüber vielen verschiedenen toxischen Substanzen. 

 

3.2.2 Auftreten von CAM -DR bei verschiedenen Myelomzelllinien 

Da zunächst der antiapoptotische Effekt nur bei einer Myelomzelllinie gezeigt 

wurde, bestand die Frage, ob es sich bei CAM-DR um einen spezifischen Effekt 

der NCI-H929-Zellen oder einen allgemeinen Schutzmechanismus bei vielen 

Myelomzelllinien handelt.  

Dafür wurden die HS-5 vorkultiviert und anschließend NCI-H929, OPM-2, 

RPMI-8226 und U266 und Melphalan 30µM zugegeben. Die Messung und 

Auswertung erfolgte nach 48 Stunden durch Doppelfärbung mit CD38-FITC und 

PI im Durchflusszytometer. 
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Abbildung 3.7 CAM-DR ist nicht zelllinienspezifisch. Die vier Myelomzelllinien wurden 48h 
lang in An- oder Abwesenheit von HS-5-Stromazellen mit 30µM Melphalan inkubiert. Die 
Myelomzellen wurden mit CD38-FITC oder CD138-FITC gefärbt und der Anteil der PI-
positiven Zellen im Durchflusszytometer bestimmt. Es wurden jeweils die Mittelwerte und die 
Standardabweichung verwendet.  
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Bei allen der vier Myelomzelllinien (NCI-H929, OPM-2, U266 und RPMI-8226) 

kommt es beim Standardmedikament Melphalan zum Auftreten von CAM-DR, 

wenn diese in Gegenwart von Stromazellen kultiviert werden. Am stärksten zeigt 

sich dieser Effekt bei den NCI-H929 mit 50% Apoptosereduktion. Auch bei den 

anderen Zelllinien (U266: 35%, RPMI–8226: 45%, OPM-2: 33%) ist der 

antiapoptotische Effekt stark ausgeprägt. Bei den U266- und RPMI- Zellen ist 

auch die Monokultur gegenüber dem Zytostatikum relativ resistent. Dies könnte 

daran liegen, dass U266-Zellen vollkommen und RPMI-Zellen teilweise bereits 

auf Plastik adhärieren.  

 

3.2.3 CAM-DR ist abhängig von der Dauer der Kokultivierung  

Der Kontakt von Myelomzellen mit den Stromazellen führt bei den Myelomzellen 

bei Zytostatikainkubation zu verminderten Apptoseraten. Folglich wurde der 

Frage nachgegangen, in wie weit die Dauer der Kokultivierung für das Überleben 

der Myelomzellen wichtig ist und ab wann dieses Signal zu keinem 

antiapoptotischen Effekt mehr führt. 

Für dieses Experiment wurden NCI-H929 Zellen in 30µM melphalanhaltigem 

Medium insgesamt 48h lang kultiviert. Zu bestimmten Zeitpunkten (nach 12, 24 

und 36 Stunden nach Beginn des Experiments) wurden die NCI-H929 aus der 

Monokultur für den Rest der 48h auf Stromazellen weiterkultiviert, also in eine 

Kokultur überführt. Die Messung und Auswertung erfolgte nach 48 Stunden 

durch Doppelfärbung mit CD38-FITC und PI im Durchflusszytometer. 
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Abbildung 3.8: CAM-DR ist abhängig von der Dauer der Kokultivierung. NCI-H929 
wurden über 48h mit 30µM Melphalan inkubiert und zu den angegebenen Zeitpunkten auf 
konfluente HS-5-Monolayer gegeben. Nach Doppelfärbung mit CD38-FITC und PI wurde der 
Anteil der nekrotischen Zellen im Durchflusszytometer bestimmt. Es wurden jeweils die 
Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 
 

Wie Abbildung 3.8 zeigt, tritt CAM-DR auf, wenn die Myelomzellen 48, 36 und 

24 Stunden auf Stromazellen kultiviert werden. Bei der Kokultivierung über 36 

Stunden kommt es zu CAM-DR um 47%, über 24 Stunden zu CAM-DR um 

37%.Bei nur 12-stündiger Kokultur mit Stromazellen ist fast kein 

antiapoptotischer Effekt mehr zu erkennen (9%). 

 

3.2.4 Resistenz gegen Apoptoseinduktion bei Zytostatikabehandlung 

Weiterhin wurde der Frage nachgegangen, durch welchen Mechanismus die 

Myelomzellen vor dem Zelltod gerettet werden.  

Prinzipiell gibt es für eine Zelle zwei Möglichkeiten für einen Zelluntergang: 

Nekrose und Apoptose. Während es sich bei der Nekrose um einen passiven 

Vorgang handelt, bei dem die Zelle letztendlich untergeht und es zu einer 

Entzündungsreaktion kommen kann,  stellt die Apoptose einen aktiven Vorgang 

dar, bei dem es zum „geordneten“ Zelluntergang über eine Signalkaskade kommt. 

Dabei ist im Frühstadium der Apoptose die Zellmembran zwar noch intakt, jedoch 

geht die Membranasymetrie verloren. Dies wird daran deutlich, dass 

Phosphatidylserin, welches bei der vitalen Zelle nur auf der Innenseite der 

Membran vorkommt, auf die Außenseite gekehrt wird. Damit wird die Zelle 
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anfärbbar für Annexin – V, da dieses in geeignetem Puffermilieu an 

Phosphatidylserin binden kann. Bei weiter fortgeschrittener Apoptose/Nekrose 

kann Annexin-V-FITC dann über Membrandefekte in das Innere der Zelle 

vordringen und von innen an das Phosphatidylserin der Plasmamembran binden. 

Diese wird so auch bei später Apoptose/Nekrose Annexin-V-FITC – positiv. Mit 

dem nächsten Experiment sollte die Frage beantwortet werden, ob die Interaktion 

der Myelomzellen mit den Stromazellen zu einer Hemmung der frühen Apoptose 

führt.  

Dafür wurden die HS-5-Zellen vorkultiviert und NCI-H929 und Melphalan 5µM 

für 48h zugegeben. Die Auswertung erfolgte mittels CD38-PE und Annexin – 

FITC sowie CD38-FITC und PI im Durchflusszytometer. 
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Abbildung 3.9: Adhärenz führt zur Reduktion der Apoptoseinduktion. NCI-H929 wurden 
über 48 Stunden in An- oder Abwesenheit eines konfluenten HS-5-monolayers mit Melphalan 
5µM inkubiert. Anschließend wurden die Zellen mit CD38-PE gefärbt und der Anteil der 
apoptotischen Zellen mittels Annexin-V-FITC-Färbung im Durchflusszytometer bestimmt. Es 
wurden jeweils die Mittelwerte und die Standardabweichung verwendet.  
 
 

Stromazellen führen nicht nur zu einer Hemmung der späten (vgl. Abb. 3.6 und 

3.7), sondern, wie hier gezeigt, auch zu einer Hemmung der frühen Apoptose um 

41,5%, welche im Zellmodell mit 5µM Melphalan über 48 Stunden erreicht wird. 

Bei dieser Konzentration werden die Myelomzellen nur sehr gering PI – positiv, 

zeigen jedoch bereits Membransymmetrie als Frühstadium der Apoptose. Damit 
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wird klar, dass die der Stromazellinteraktion nachgeschalteten Mechanismen die 

Kaskade der Apoposeinduktion in den Myelomzellen hemmen.   

 

3.2.5 Rolle der Cytokine bei CAM-DR 

Bisher wurde gezeigt, dass die Anwesenheit von Stromazellen in einer Kokultur, 

welche mit Zytostatika inkubiert wird, bei den Myelomzellen zu einer starken 

Apoptoseresistenz führt. Wie die Stromazellen die Signale übermitteln ist 

weiterhin unklar. Im Kokulturmodell gibt es prinzipiell zwei Möglichkeiten, wie 

Signale von Stromazellen an Myelomzellen geleitet werden können. Diese sind: 

 

• Signaltransduktion durch lösliche Faktoren 

• Signaltransduktion durch Integrine (Adhärenz) 

 

Folglich musste die Rolle der Cytokine im Kokulturmodell erarbeitet werden. 

HS-5-Zellen sezernieren viele Cytokine (Roecklein et al., 1995), wie z.B.:  

 

• G – CSF  

• GM – CSF 

• M – CSF  

• Makrophagen-inhibierendes-Protein-1-alpha  

• SCF  

• Leukämie inhibierender Faktor (LIF) 

• Interleukin -11, -8, - 6, -1 

 

Da Cytokine, allen vorangehend das Interleukin-6, in der Pathophysiologie des 

Multiplen Myeloms eine wichtige Rolle spielen, musste untersucht werden, ob 

CAM-DR auch besteht, wenn der direkte Zell-Zell-Kontakt der beiden Zelltypen 

aufgehoben ist.  

Dafür wurden NCI-H929 auf einen vorinkubierten konfluenten HS-5-Monolayer 

gegeben und 5 µM Melphalan entweder direkt auf die Zellen oder in Inserts 

gegeben, welche den Zell-Zell-Kontakt aufheben, aber freien Stoffaustausch 

gewährleisten. Die Messung und Auswertung erfolgte nach 96 Stunden durch 

Doppelfärbung mit CD38-FITC und PI im Durchflusszytometer. 
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Abbildung 3.10: Bedingung für CAM-DR ist ein direkter Zell-Zell-Kontakt.  NCI-H929 
wurden über 96h mit Melphalan 5 µM in An- oder Abwesenheit von HS-5-Zellen kultiviert. 
Zusätzlich wurden NCI-H929 im selben Kulturgefäß wie HS-5-Zellen kultiviert. Der direkte 
Zell-Zell-Kontakt wurde hier durch ein Insert verhindert. Die ungehinderte Stoffdiffusion ist 
trotzdem gegeben. Anschließend wurden die Zellen mit CD38 und PI gefärbt und der 
apoptotischen Zellanteil im Durchflusszytometer bestimmt. Es wurden jeweils die Mittelwerte 
und die Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 
 

 

Aus Abbildung 3.10 wird ersichtlich, dass CAM-DR hier zum Tragen kommt, 

jedoch der Effekt der Stromazellen durch die Kulturgefäßeinsätze komplett 

aufgehoben werden kann. Demzufolge spielt der direkte Zell-Zell-Kontakt bei 

CAM-DR eine maßgebliche Rolle.  

 

Wie mehrfach gezeigt wurde (Giuliani et al., 2004; Chaudan et al., 1995), ändert 

sich die Zytokinexpression von Stromazellen, wenn Myelomzellen an 

Stromazellen adhärieren. Aus diesem Grund sollte untersucht werden, ob das 

sezernierte Cytokingemisch aus einer Stromazellkultur oder das Cytokingemisch 

aus einer Stroma-Myelomzell-Kokultur in Myelomzellen ohne Zell-Zell-Kontakt 

eine Apoptoseresistenz hervorrufen kann.  

NCI-H929-Monokulturen wurden 48 Stunden lang mit 30µM Melphalan und 

konditioniertem Medium inkubiert. Das konditionierte Medium bestand aus 50- 

oder 75-prozentigem HS-5-Medium aus einer einen Tag alten HS-5-Kultur. Das 
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konditionierte Medium aus einer HS-5/NCI-Kokultur war ebenfalls einen Tag alt 

und wurde in 50-, 75- und 100-prozentiger Konzentration zu den Myelomzellen 

zugeben. 

Nach 48 Stunden wurden die Zellen mit Annexin–V–FITC und PI gefärbt und 

durchflusszytometrisch gemessen und ausgewertet. 
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Abbildung 3.11: Konditioniertes Medium führt nicht zu einem antiapoptotischen Effekt. 
NCI-H929 wurden über 48h mit 30µM Melphalan inkubiert. Dabei wurde das Kulturmedium im 
angegebenen Verhältnis mit dem einer ein Tag alten HS-5-Kultur oder NCI/HS-5-Kokultur 
gemischt.  Die Zellen wurden mit Annexin-V-FITC  und Propidiumjodid gefärbt und der Anteil 
der Annexin/PI-positiven Zellen im Durchflusszytometer bestimmt. Es wurden jeweils die 
Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 

 
 
 

Abbildung 3.11 zeigt, dass sowohl Medium aus einer HS-5-Kultur als auch aus 

einer NCI/HS-5-Kultur nicht zu einem antiapoptotischen Effekt bei zytostatisch 

behandelten Myelomzellen führen. 

 

Aus den beiden letzten vorgestellten Experimenten muss geschlossen werden, 

dass der direkte Zell-Zell-Kontakt von Stroma- und Myelomzellen für das 

Auftreten von primärer Chemoresistenz unabdingbar ist.  

 

3.2.6 Expressionsmuster auf den Myelomzelllinien und der Stromazelllinie  

Wie in 3.2.5 gezeigt wurde, kann das Medium einer HS-5-Kultur und Medium 

einer Kokultur bei Myelomzellen keinen antiapoptotischen Effekt erzielen. Es 
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musste deshalb untersucht werden, welche Oberflächenantigene den Zell-Zell-

Kontakt herstellen. 

In diesem Sinne wurden die wichtigsten Oberflächenantigene bezüglich des 

Kokulturmodells auf den Stromazellen und den Myelomzellen bestimmt. 
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Auf beiden Zelltypen waren Integrine stark exprimiert, sodass eine Adhäsion 

möglich und sehr wahrscheinlich ist. Auch besaßen die Myelomzellen auf ihrer 

Tabelle 3.2: Oberflächenantigene auf der Stromazelllinie HS-5 und den Myelomzelllinien 
NCI-H929, OPM-2, U266 und RPMI-8226.  4 –5 x 105 Zellen wurden bei 1500U/min, 8°C, 6 
Minuten lang abzentrifugiert und nach Abschütten des Überstandes zwei mal mit kaltem PBS 
gewaschen und dann in 1ml kaltem PBS resuspendiert. 100 µl dieser Zelllösung wurden mit 10µl 
der Antikörperlösung für 10 Minuten im Dunkeln inkubiert. Nach Zugabe von 2 ml kaltem PBS 
und nochmaligem Zentrifugieren (1500 U/min, 6 min, 8°C) wurde der Überstand verworfen und 
die Zellen in 400 µl PBS resuspendiert. Die Analyse erfolgte im Durchflusszytometer. Die in 
Klammern angegebene Expressionsstärke wurde berechnet und durch den Index angeben.  Index 
= Expression des Antigens / Expression der Isotypkontrolle. Bei Indices zwischen 1.0 und 1.1 
wurde das Antigen als „nicht exprimiert“ (-), zwischen 1.2 und 1.9 als „exprimiert“ (+), zwischen 
2.0 und 2.9 als „stark exprimiert“ (++) und ab 3.0 als „sehr stark exprimiert“ (+++) gewertet. 
„N.d.“ = nicht bestimmt 
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Oberfläche Rezeptoren für Cytokine (CD126 und CD114), weshalb der 

Mechanismus von CAM-DR auch bei den von den HS-5 Zellen sezernierten 

Stoffen hätte liegen können. Dies ist jedoch in 3.2.5 ausgeschlossen worden. 

 

 

3.2.7 Änderung der Integrinexpression auf Myelom- und Stromazellen 

Damiano et al. haben auf chemoresistenten Myelomzelllinien eine Erhöhung der 

Integrine gegenüber der nicht veränderten Zelllinie nachgewiesen.  

Deshalb wurde der Vermutung nachgegangen, ob sich auch bei einer kurzfristigen 

Zytostatikaexposition über 48h die Expressionsstärke der Integrine VLA-4 und 

ICAM-1 ändert. Dafür wurden  NCI-H929 48h lang mit Melphalan 20 µM 

inkubiert, mit LFA-1-FITC oder VLA4-FITC-Antikörpern markiert und im 

Durchflusszytometer analysiert. 

Abbildung 3.12: Modell der wichtigsten im Knochenmark vorkommenden Integrininteraktionen 
zwischen Stromazellen, EZM (Extrazellulärmatrix) und Myelomzellen. 
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LFA-1-FITC log
 

Abbildung 3.13 zeigt die Zunahme der Expressionsstärke von LFA-1 auf den 

Myelomzellen. Diese wurde in mehreren voneinander unabhängigen 

Experimenten nachgewiesen. Die Expressionsstärke von VLA-4 nahm in 

denselben Experimenten weder ab noch zu. 

 

Des Weiteren stellte sich die Frage, ob Myelomzellen, welche ohne Zytostatika 

mit HS-5 kokultiviert wurden, ebenfalls veränderte Integrinexpressionen 

aufweisen. 

Dafür wurden OPM-2 für 48h mit HS-5 kokultiviert und anschließend mit 

CD138-PE und VLA-4- oder LFA-1-FITC gefärbt. Die Expressionsstärke wurde 

durchflusszytometrisch bestimmt. Es konnte dabei jedoch keine Änderung der 

Integrinexpression festgestellt werden. 

 

Da die Expressionsstärke von Integrinen auf den Myelomzellen bereits nach 

kurzer Inkubationszeit signifikant ansteigt, wurde weiterhin untersucht, ob dies 

auch für die Bindungspartner VCAM und ICAM-1 auf den HS-5-Zellen der Fall 

ist. 

Um dies zu untersuchen, wurden HS-5-Zellen über 48 Stunden mit 10µM 

Treosulfan und 5µM Melphalan  inkubiert und anschließend mit PI und VCAM-

FITC oder ICAM-1-FITC gefärbt. 

 

Abbildung 3.13: Kurzfristige 
Inkubation mit Melphalan führt zu 
einer erhöhten LFA-1-Expression. 
NCI-H929 wurden über 48h in der An- 
oder Abwesenheit  von 20µM 
Melphalan kultiviert und anschließend 
mit PI und LFA-1-Antikörpern gefärbt 
und im Durchflusszytometer 
ausgewertet. Es wird nur die LFA-1-
Expressionsstärke der PI-negativen 
Zellen angezeigt. Die gestrichelte Linie 
entspricht der Isotypkontrolle, die 
durchgezogene Linie der LFA-1-
kontrolle, die grau hinterlegte Fläche der 
mit Melphalan stimulierten LFA-1-
Expression 
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Abbildung 3.14: Zytostatika induzieren erhöhte Integrinexpression in HS-5-Stromazellen. HS-5 
Zellen wurden über 48h mit entweder 5µM Melphalan oder 10µM Treosulfan inkubiert und 
anschließend die Expressionsstärke von ICAM-1 und VCAM der PI-negativen Zellen am 
Durchflusszytometer ermittelt. 

 

Wie Abbildung 3.14 zeigt, kommt es auch bei den HS-5-Zellen nach kurzer 

Inkubationszeit und sehr niedriger Zytostatikakonzentration zu einer leichten 

Expressionsverstärkung der Integrine VCAM und ICAM-1. 

 

Durch die erhöhte Expression der Integrine nach Zytostatikainkubation sowohl 

auf den Stromazellen als auch auf den Myelomzellen wird eine Adhäsion der 

Tumorzellen und damit eine verminderte Ansprechrate der Myelomzellen auf 

Zytostatika wahrscheinlicher.  

 

3.2.8 Die Rolle der Integrine bei CAM-DR  

Die im obigen Teil beschriebenen Cytokinversuche zeigen, dass CAM-DR durch 

direkten Zell-Zell-Kontakt begründet sein muss. Dieser Zell-Zell-Kontakt wird 

durch Integrine ermöglicht, welche in der Zellmembran verankert sind und durch 
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Bindung an einen Partner über intrazelluläre Domänen Signale an das Zytoplasma 

und den Zellkern weiter geben können. Um zu zeigen, dass bestimmte Integrine 

bei CAM-DR eine Rolle spielen, wurden in einem Kokulturversuch blockierende 

Antikörper verwendet um die Integrinfunktion zu hemmen. 

NCI-H929 wurden mit 10 µg/ml des monoklonalen Antikörpers Anti-VLA-4 

(very late antigen-4)  oder mit 10 µg/ml des monoklonalen Antikörpers LFA-1 

(leukocyte function antigen-1) oder mit 10µg/ml von beiden Antikörpern 15 

Minuten lang inkubiert und schließlich auf die einen konfluenten Monolayer der 

HS-5-Stromazellen gegeben. Nach Zugabe von Melphalan 30µM wurden die 

Kokulturen 48 Stunden lang inkubiert.  Anschließend wurden die Zellen mit 

CD38 – FITC und PI gefärbt und im Durchflusszytometer gemessen und 

ausgewertet. 
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Abbildung 3.15: Blockierung der LFA-1 und VLA-4-Int egrine kann CAM-DR reduzieren. 
NCI-H929 wurden über 48h in An- oder Abwesenheit mit 30µM Melphalan inkubiert. Die 
blockierende Antikörper VLA-4 und LFA-1 (jeweils 4 µg/ml) wurden wie in der Abbildung 
gezeigt zu Beginn der Kultur in das Kulturgefäß zugegeben. Der Anteil apoptotischer Zellen 
wurde nach Doppelfärbung mit  CD38-FITC und PI im Durchflusszytometer bestimmt. Für die 
Abbildung wurden die Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht 
signifikant“. 
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Abbildung 3.15 zeigt, dass es im Kokulturversuch zu einem starken 

antiapoptotischen Effekt von 50% kommt, welcher durch Anti-LFA1-Antikörper 

nicht aufgehoben werden kann. Durch alleinige Koinkubation mit dem VLA4-

Antikörper zeigt sich eine leichte Erniedrigung des antiapoptotischen Effekts von 

50% auf 32%. Durch die Kombination beider Antikörper ist eine starke, jedoch 

mit einer Senkung der CAM-DR auf 15% keine völlige Aufhebung von CAM-DR 

möglich. 

LFA703, ein Statinderivat, welches nicht antagonistisch auf die Aktivität der 

HMG-CoA-Reduktase wirkt (Weitz-Schmidt et al., 2001),  besitzt eine hemmende 

Wirkung auf das LFA-1-Integrin, indem es die bindende Tasche des LFA-1-

Moleküls blockiert, sodass das LFA-1 den natürlichen Bindungspartner ICAM-1 

nicht mehr binden kann. Bezüglich der Integrinblockierung hat LFA-1 damit die 

Funktion eines LFA-1-spezifischen Antikörpers. Auf diesem Hintergrund wurde 

diese Substanz im Kokulturversuch verwendet.  

Dazu wurden NCI-H929 auf den konfluenten HS-5-Zellen in 30µM 

melphalanhaltigem Medium nach Zugabe der Substanzen LFA703 insgesamt 48 

Stunden lang kultiviert. Die Auswertung erfolgte mittels Doppelfärbung mit 

CD38-FITC und PI im Durchflusszytometer. LFA703 bewirkt dabei eine 

Reduktion von CAM-DR um ca. 30%.  
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Abbildung 3.16: LFA703 
reduziert CAM-DR . NCI-
H929 wurden in der An- 
oder Abwesenheit von HS-
5-Zellen für 48h mit 20µM 
Melphalan kultiviert. 
Zusätzlich wurde LFA703 
(3µM) in das Medium 
zugegeben. Der Anteil der 
nekrotischen Zellen wurde 
nach CD38-FITC- und PI-
Färbung im 
Durchflusszytometer 
festgestellt. Für die 
Abbildung wurden die 
Mittelwerte und die 
Standardabweichung 
verwendet. „n.s.“ steht für 
„nicht signifikant“. 
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LFA703 führte im Kokulturexperiment zu einer Reduktion von CAM-DR von 

51% auf 26%, also auf die Hälfte (Abbildung 3.16). 

 

Um weitere Erkenntnis über die Funktion der Integrine VLA-4 und LFA-1 

bezüglich CAM-DR zu erlangen, wurde in zwei getrennten Versuchen gezielt der 

VLA4-Rezeptor mit Fibronektin und der LFA-1-Rezeptor mit rekombinantem 

humanem (rh)-ICAM-1 stimuliert.  

 

Im Einzelnen wurden NCI-H929 oder OPM-2-Zellen in An – oder Abwesenheit 

von entweder Fibronektin oder rekombinaten humanem (rh-) ICAM über einen 

Zeitraum von 48 Stunden mit Melphalan 30µM kultiviert. 
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Abbildung 3.17: Inkubation mit Fibronektion oder (r h) - ICAM führt nicht zu CAM-DR 
OPM-2 oder NCI-H929 wurden 48h lang in An- oder Abwesenheit von Fibronektion oder (rh)-
ICAM in melphalanhaltigem Medium (30µM) inkubiert. Es folgte eine Färbung mit Annexin-V-
FITC/PI oder PI. Der Anteil der nekrotischen Zellen wurde durchflusszytometrisch bestimmt. Für 
die Abbildung wurden die Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für 
„nicht signifikant“. 
 

Es kommt bei dem Versuch mit Fibronektin zu keinem signifikanten Unterschied 

zwischen den mit Fibronektin stimulierten Zellen und den Kontrollen. Jedoch 

zeigt sich der Trend, dass stimulierte Zellen weniger chemosensitiv sind als nicht 

stimulierte Zellen. Auch im Versuch mit (rh)-ICAM kam es zu keinem 

signifikanten Unterschied der Apoptoseraten (Abbildung 3.17). 

 

Bio 5192, eine Substanz, die z.Z. in der Erforschung der Multiplen Sklerose zur 

Hemmung der Leukozytenmigration verwendet wird, ist ein hoch spezifischer 

VLA4-Inhibitor und wurde deshalb zur Hemmung der VLA-4-Funktion im NCI-

HS-5-Zellmodell benutzt (Leone et al., 2003).  

 

Bio5192 1µM wurde in der Kokultur zusammen mit Melphalan 30µM für 48h 

zugegeben. Anschließend wurden die Zellen mit CD38-FITC und PI gefärbt und 

im Durchflusszytometer ausgewertet. 
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Abbildung 3.18: Bio5192  verhindert CAM-DR nicht. NCI-H929 wurden in An- oder 
Abwesenheit von einem konfluenten HS-5-Monolayer über 48h mit Melphalan 30µ und Bio5192 
1µM inkubiert. Anschließend wurden die Zellen mit CD38FITC und PI gefärbt und im 
Durchflusszytometer der PI-positive Anteil der Zellen bestimmt. Für die Abbildung wurden die 
Mittelwerte und die Standardabweichung verwendet. 
 

 

In Abbildung 3.18 wird deutlich, dass der VLA-4-Inhibitor BIO5192 CAM-DR 

von 30% auf 18% nur teilweise senken kann. Die Substanz führt auch nicht zu 

einer signifikanten Deadhäsion der Myelomzellen. 

 

Es wurde in 3.2.5 ausgeschlossen, dass das Auftreten von CAM-DR auf die 

Zytokinwirkung zurückzuführen ist. Trotzdem wurde weiterhin untersucht, ob die 

Hemmung von CAM-DR durch VLA-4 und LFA-1-Antikörper mit einer 

Veränderung der Interleukin-6-Sekretion assoziiert ist.  

Dafür wurden eine NCI-H929-Kokultur über 48h mit jeweils 5µg/ml der 

inhibierenden Antikörper VLA-4-AK und LFA-1-AK und 3µM LFA703 

inkubiert. Die Zellen in den Kulturgefäßen wurden anschließend abzentrifugiert. 

In Kooperation mit dem Institut für Klinische Chemie in Großhadern, München, 

wurde die Konzentration des im Medium vorhandenen IL-6 mittels ELISA 

bestimmt. 
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Wie Abbildung 3.19 zeigt, kommt es zu keinen signifikanten Unterschieden in der 

Interleukin-6-Sekretion. Die Verminderung von CAM-DR durch VLA4/LFA1 

und LFA703 basiert also nicht auf einer Änderung der Interleukin-6-Sekretion. 

 

Schließlich wurde der Frage nachgegangen, ob eine Deadhäsion der 

Myelomzellen vom Stromamonolayer der Grund für die Verminderung der CAM-

DR ist. 

Dafür wurde derselbe Versuchsaufbau wie zur IL-6-Bestimmung gewählt. Nach 

Ablauf der Inkubationszeit von 48h wurden nur die in Suspension vorliegenden 

Zellen abpipettiert und einem WST-1-Assay zugeführt.  

 

Abbildung 3.19: Abnahme der CAM-DR ist nicht auf den Rückgang von IL-6 
zurückzuführen. NCI-H929 und HS-5 wurden über 48h in An- oder Abwesenheit von 5 µg/ml 
LFA-1-AK / VLA4-AK oder 3 µM LFA703 koinkubiert. Nach 48h wurde das Medium von den 
Zellen durch Zentrifugation getrennt und schließlich die IL-6-Konzentration im Kulturmedium im 
Institut für Klinische Chemie in Grosshadern (LMU) bestimmt.  Für die Abbildung wurden die 
Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 
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Abbildung 3.20: Blockierung der Antigene VLA-4 und LFA-1 führt nicht zu einer 
signifikanten Deadhäsion.  NCI-H929 Zellen wurden auf einem konfluenten Monolayer 48h lang 
in An- oder Abwesenheit von Integrinblockierenden Antikörpern oder Substanzen inkubiert (VLA-
4-AK und LFA-1-AK 5 µg/ml, LFA703 3 µM). Die Zahl der lebenden Zellen im Überstand wurde 
durch eine WST-1-Messung bestimmt. Für die Abbildung wurden die Mittelwerte und die 
Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 

 
 

Abbildung 3.20 zeigt, dass die Blockade von VLA-4 und LFA-1 bei 

kokultivierten Myelomzellen nicht zu einer Änderung der Adhäsion der 

Myelomzellen führt. 

 

Zusammenfassend kann gesagt werden, dass die Hemmung der Integrine VLA-4 

und LFA-1 nur begrenzt CAM-DR aufheben, die IL-6 Sekretion von Stromazellen 

nicht alterieren und auch nicht zu einer starken Deadhäsion im Kokulturmodell 

führen.   

 

 

3.2.9 Modulation klassischer Signalwege in adhärenten Myelomzellen 

Zell-Zell-Kontakt von Myelomzellen an HS-5-Zellen führt zu einer verminderten 

Chemosensitivität bei den Myelomzellen. Dieser Effekt wird durch Integrine 

vermittelt, welche durch Kontakt zum Bindungspartner an das Zytoplasma 
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signalisieren. Jedoch hat sich gezeigt, dass die alleinige Blockade der Integrine 

VLA-4 und LFA-1 CAM-DR nicht vollkommen aufheben kann. Um weitere 

Informationen über den Mechanismus von CAM-DR zu bekommen, wurden 

Experimente durchgeführt, bei welchen die wichtigsten Signalwege durch 

verschiedene  Substanzen moduliert wurden. Dabei wurden die möglichen Signale 

gehemmt, welche von Rezeptortyrosinkinasen und/oder Integrinen ausgehen 

können. Auf diesem Hintergrund wurde zuerst untersucht, ob Proteinkinase C - 

Modulatoren im Kokulturexperiment die Fähigkeit besitzen, CAM-DR 

aufzuheben. Dafür wurden U266 oder NCI-H929 in An- oder Abwesenheit von 

HS-5-Zellen inkubiert und mit verschiedenen Zytostatika und PKC-

Signalwegsmodulatoren über 48 Stunden kultiviert. Nach dieser Zeit wurden die 

Zellen geerntet, mit CD138-FITC oder CD38-FITC und PI gefärbt und am 

Durchflusszytometer gemessen. 

 

 

U266    - 
 

GÖ6976 
(400NM) 

GÖ6983 
(400NM) 

 GF109203X 
          (2µM) 

Bryostatin 
(50NM) 

Treosulfan 
(100µM) 48,7 43,4 45,7 34,2 35,1 

Melphalan 
(30µM) 

34,2 23,4 43,0 34,7 24,8 

Doxorubicin 
(10µM) 

30,8 24,8 39,9 37,0 50,0 

Gemcitabin 
(15nM) 24,1 18,9 35,0 37,1 15,5 

NCI-H929 - GÖ6976 
(400nM) 

   GÖ6983 
(400nM) 

GF109203X 
(2µM) 

Bryostat. 
(50nM) 

Treosulfan 
(100µM) 

50,3 43,5 54,3 27,0 23,7 

Melphalan  
(30µM) 50,3 42,6 41,3 31,8 35,5 

Doxorubicin 
(10µM) 

35,8 41,2 38,3 22,9 28,5 

Gemcitabin 
(15nM) 

46,8 44,1 39,1 39,2 33,2 

Tabelle 3.3:  PKC-Modulatoren in der HS-5-Kokultur. U266 oder NCI-H929 wurden in 
der An- oder Abwesenheit von HS-5-Zellen inkubiert und mit verschiedenen Zytostatika 
und PKC-Signalwegsmodulatoren über 48 Stunden kultiviert. Nach dieser Zeit wurden die 
Zellen geerntet, mit CD138-FITC oder CD38-FITC und PI gefärbt und am 
Durchflusszytometer gemessen. Die angegebenen Werte geben die prozentuale Differenz 
der Apoptoseraten zwischen Monokultur und Kokultur an. (Bryostat. = Bryostatin) 
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Es kommt durch die Modulation der Proteinkinase C im Kokultursystem nicht zu 

einer Verminderung der CAM-DR. (Tabelle 3.3) 

 

Zusätzlich zu diesen Experimenten wurde mit weiteren Modulatoren untersucht, 

welche Signalwege für CAM-DR maßgeblich sind.  Als Modulatoren wurden 

dabei jene verwendet, deren Relevanz im obigen Teil dargestellt wurde:  

 

• G-CSF   : stimuliert die  Stammzellmobilisation.  

• AG490 / Piceatannol : Janus-Kinase-Inhibitoren 

• PD98059   : ein MEK-Inhibitor.  

• Ro 32-0432   : ein Proteinkinase C Inhibitor,  

• Ly249002   : ein Inhibitor der PI3-kinase.  

 

 

Für diese Experimente wurden NCI-H929 in der An- oder Abwesenheit von HS-

5-Zellen inkubiert und mit Melphalan 5µM und PKC-Signalwegsmodulatoren 

über 48 Stunden kultiviert. Nach dieser Zeit wurden die Zellen geerntet, mit 

CD38-FITC und PI gefärbt und am Durchflusszytometer gemessen. 

 

Melphalan 
5 µM 

G-CSF 
200ng 

/ml 
+ Mel. 

AG490 
10µM 
+ Mel. 

Ly 249002 
10µM 
+ Mel. 

Ro 32-
0432 
2µM 

+ Mel. 

Piceatannol 
5µM 

+ Mel. 

PD 
98059 
50µM 
+ Mel. 

41% 41% 38% 36% 36% 49% 24% 

 

Bis auf den MEK-Inhibitor PD98059 hat kein Signalwegsmodulator die Fähigkeit, 

CAM-DR zu vermindern, der Unterschied in den Apoptoseraten war jedoch 

statistisch nicht signifikant. 

Des Weiteren wurde der Frage nachgegangen, ob bestimmte 

Signalwegsmodulatoren die Fähigkeit haben, die Expressionsstärke der Integrine 

VLA-4 und LFA-1 auf den Myelomzellen zu vermindern. 

Tabelle 3.4: Signalwegsmodulatoren in der HS-5-Kokultur. NCI-H929 wurden in der An- oder 
Abwesenheit von HS-5-Zellen inkubiert und mit Melphalan 5µM und PKC-
Signalwegsmodulatoren über 48 Stunden kultiviert. Nach dieser Zeit wurden die Zellen geerntet, 
mit CD38-FITC und PI gefärbt und am Durchflusszytometer gemessen. Die angegebenen Werte 
geben die prozentuale Differenz der Apoptoseraten zwischen Monokultur und Kokultur an.  
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Dafür wurden NCI-H929 in An- oder Abwesenheit der in der Tabelle angegeben 

Modulatoren über 48h kultiviert und dann mit VLA4-FITC oder LFA-1-FITC-

Antikörpern gefärbt. Die Expressionsstärke wurde am Durchflusszytometer 

bestimmt. 

 

Durch die Kokinkubation v.a. mit PD98059, welches die MEK-Kinase hemmt, 

oder Ly249002, welches die PI3-Kinase hemmt, kann die Integrinexpression von 

VLA4 und LFA1 bis zu 30% gesenkt werden. Dabei scheint generell das LFA-1-

Antigen in der Expression variabler reguliert zu sein als VLA4. Da jedoch CAM-

DR durch Ly249002 kaum und durch PD98059 nur leicht gehemmt wird, muss 

angenommen werden, dass die Integrinexpression auf der Oberfläche nicht linear 

mit der Stärke von CAM-DR zusammenhängt.  

 

 

 

Um weitere Informationen über den Mechanismus von CAM-DR zu gewinnen, 

wurden Western Blots gemacht, um zu bestimmen, ob bestimmte Zellproteine 

nach der Bindung der Myelomzelle vermehrt oder vermindert exprimiert wird. 

Nachgewiesen wurden wichtigste Proteine bezüglich Apoptose, Differenzierung 

und Proliferation. NCI-H929 wurden auf HS-5-Zellen kultiviert. Nach 72 Stunden 

wurden alle Zellen verworfen, die sich in Lösung befanden. Adhärente 

Myelomzellen wurden durch vorsichtiges Pipettieren geerntet und die Reinheit der 

Tabelle 3.5.  : Signalwegsmodulatoren verringern die Integrinexpressionsstärke. NCI-H929 
wurden in An- oder Abwesenheit der angegebenen Signalwegsmodulatoren über 48 h inkubiert, 
anschließend mit VLA4- oder LFA-1-FITC gefärbt und schließlich am Durchflusszytometer 
gemessen. Für die Analyse der Expressionsstärke wurden nur die Zellen verwendet, welche im 
FSC/SSC-Gate als lebend identifiziert werden konnten. Der in Prozent angegebene Wert drückt 
die Abnahme des Expressionsstärke der behandelten Probe im Vergleich zur Kontrolle aus. Die in 
Klammern angegebene Expressionsstärke wurde berechnet und durch den Index angeben.  Index 
= Expression des Antigens / Expression der Isotypkontrolle.  

NCI-
H929 

 
Keiner 
 

PD 
98059 
(50µM) 

LY 
249002 
(10µM) 

TPA 
(5NM) 

Piceatannol 
(5µM) 

Ro 32-0432 
(2µM) 

 
LFA-1 

- 
(5,23) 

26,18% 
(3,86) 

32,30% 
(3,54) 

9,43% 
(4,74) 

1% 
(5,19) 

8,40% 
(4,79) 

 
VLA-4 

- 
(73,6) 

18,4% 
(60,05) 

17,8% 
(60,50) 

7,28% 
(68,24) 

1% 
(72,97) 

7,29% 
(68,24) 
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Myelomzellen durchflusszytometrisch mittels Färbung mit CD38-FITC bestimmt. 

Die Western Blot Analyse wurde wie im Methodenteil beschrieben durchgeführt. 
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Abbildung 3.21: Western Blot Analyse der wichtigsten Signalwegsmoleküle beim 
Multiplen Myelom. NCI-H929 wurden über 72h auf einem HS-5-Monolayer kultiviert und 
anschließend wie in 4.6 beschrieben der Western Blot Analyse zugeführt.  
 

Keines der bestimmten Proteine wurde durch Kokultur auf HS-5 Zellen  vermehrt 

oder vermindert exprimiert (Abbildung 3.21). Zusammenfassend kann gesagt 

werden, dass in der Gruppe der verwendeten Signalwegsmodulatoren nur 

PD98059 CAM-DR vermindert hat.  

 

3.2.10 Statinderivate vermindern CAM-DR  

Es wurde bereits gezeigt, dass Statine eine integrinmodulatorische Funktion 

besitzen (Rezaie-Majd et a., 2003). Darüber hinaus wirken Statine toxisch auf 

Myelomzellen (Van de Donk et al., 2002). Außerdem zeigte sich, dass 

chemoresistente Myelomzellen eine erhöhte Aktivität der HMG-CoA-Reduktase 

besitzen (Hazlehurst et al., 2003).  

Auf diesem Hintergrund wurde Simvastatin in Kombination mit Melphalan auf 

die Fähigkeit untersucht, CAM-DR zu vermindern. NCI-H929 wurden über 48 
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Stunden in An- oder Abwesenheit eines konfluenten HS-5-Monolayers mit 

Melphalan 30µM und Simvastatin 1 µM inkubiert. Anschließend wurden die 

Zellen mit CD38-FITC und PI gefärbt und der nekrotische Anteil der Zellen im 

Durchflusszytometer bestimmt. 
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Abbildung 3.22: Der HMG-CoA-Reduktasehemmer Simvastatin verhindert CAM-DR. 
NCI-H929 wurden über 48 Stunden in An- oder Abwesenheit eines konfluenten HS-5-
Monolayers mit Melphalan 30µM und Simvastatin 1 µM inkubiert. Anschließend wurden die 
Zellen mit CD38-FITC und PI gefärbt und der nekrotische Anteil der Zellen im 
Durchflusszytometer bestimmt. Für die Abbildung wurden die Mittelwerte und die 
Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 

 

Es kommt in der Kokultur nach Simvastatin- und Melphalaninkubation zu einer 

starken Hemmung der CAM-DR von 32% auf 6% (Abbildung 3.22). 

 

Um zu untersuchen ob dieser Effekt ein substanzspezifischer Effekt des 

Simvastatins ist, wurde das oben gezeigte Experiment mit Lovastatin, einem 

anderen Statinderivat, wiederholt. 

Hierfür wurden beim selben Versuchsaufbau und denselben Konzentrationen statt 

Simvastatin nun Lovastatin 1µM in die  Mono- und Kokultur gegeben. 
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Abbildung 3.23: Lovastatin verhindert CAM-DR. NCI-H929 wurden über 48 Stunden in An- 
oder Abwesenheit eines konfluenten HS-5-Monolayers mit Melphalan 20µM und Lovastatin 1 
µM inkubiert. Anschließend wurden die Zellen mit CD38-FITC und PI gefärbt und der 
nekrotische Anteil der Zellen im Durchflusszytometer bestimmt. Für die Abbildung wurden die 
Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 

 

Abbildung 3.23 zeigt eine deutliche Abnahme von CAM-DR durch Lovastatin 

von 49% auf 17%. 

Es handelt sich also bei der Verringerung der CAM-DR durch Statine nicht um 

einen substanzspezifischen Effekt des Simvastatins, sondern einen allgemeinen 

Effekt, der auftritt, wenn die HMG-CoA-Reduktase in adhärenten Myelomzellen 

gehemmt wird. Da sich Simvastatin in Bezug auf die Hemmung der CAM-DR als 

potenter als Lovastatin erwiesen hat, wurde in den weiteren Experimenten 

Simvastatin verwendet. 

 

Um weiterhin auszuschließen, dass Simvastatin über eine Änderung des 

Zytokinmilieus wirkt, wurden kokultivierte NCI-H929 mit Simvastatin 10µM für 

48 Stunden inkubiert. Die Zellen in den Kulturgefäßen wurden anschließend 

abzentrifugiert. In Kooperation mit dem Institut für Klinische Chemie in 

Großhadern, München, wurde die Konzentration des im Medium vorhandenen IL-

6 mittels ELISA bestimmt. 
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Abbildung 3.24: Die Verhinderung von CAM-DR durch Simvastatin basiert nicht auf einer 
Reduktion der IL-6 Sekretion. NCI-H929 und HS-5 wurden nach Zugabe von 10µM Simvastatin 
über 48 Stunden koinkubiert. Die IL-6 Konzentration wurde im Institut für Klinische Chemie in der 
Universitätsklinik Grosshadern (LMU) durch ELISA bestimmt. Für die Abbildung wurden die 
Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 

 

Abbildung 3.24 zeigt, dass sich die Menge an Interleukin-6 durch die Inkubation 

mit Simvastatin sowohl in der Monokultur also auch in der Kokultur nicht ändert.    

 

Da bereits gezeigt wurde, dass Statine sowohl die Integrinexpression von 

Leukozyten beeinflussen als auch die Funktion der Integrine verändern können, 

wurde untersucht, ob sich NCI-H929 unter Kokulturbedingungen während 

Simvastatininkubation von Stromazellen ablösen. 

 

Im Einzelnen wurden dazu für 48h NCI-H929 mit HS-5-Zellen koinkubiert und 

Simvastatin 10µM zugegeben. Danach wurde das Medium der Kulturgefäße 

abpipettiert und durch ein WST-1-assay die Vitalität der Zellen bestimmt. 
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Simvastatin führt trotz seiner 

integrinmodulierenden Eigenschaften bezüglich Expression und Funktion im 

NCI-H929/HS-5-Kokulturmodell nicht zu einer signifikant erhöhten Deadhäsion 

der Myelomzellen (Abbildung 3.25). 

 

Abschliessend kann festgehalten werden, dass Simvastatin und die verwandte 

Substanz Lovastatin unter Kokulturbedingungen bei Zytostatikaexposition zu 

einer Erniedrigung der CAM-DR führen. Diese Erniedrigung ist statistisch 

signifikant und weder durch eine Deadhäsion von Stromazellen noch eine 

Änderung der IL-6-Konzentration erklärbar.  

 

3.2.11 Der HMG-CoA/GG-PP/Rho/Rho-kinase-Signalweg vermittelt CAM-

DR 

Da Simvastatin sich als potenteste Substanz zur Erniedrigung von CAM-DR 

herausgestellt hat, wurde der Frage nachgegangen, welche Moleküle und welche 

Signalwege für die primäre Zytostatikaresistenz eine Rolle spielen. 

Abbildung 3.25: 
Reduktion von CAM-DR 
basiert nicht auf einer 
Änderung der 
Myelomzelladhärenz.  
NCI-H929 wurden in An-
oder Abwesenheit von HS-
5-Zellen mit/ohne 
Simvastatin 10µM 
inkubiert. Nach 48h wurden 
die lebenden Zellen in 
Suspension durch ein WST-
1-Assay bestimmt. Für die 
Abbildung wurden die 
Mittelwerte und die 
Standardabweichung 
verwendet. „n.s.“ steht für 
„nicht signifikant“. 
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Abbildung 3.26 Der GG-PP/Rho/Rho-Kinase-Signalweg. Die Grafik zeigt den Syntheseweg des 
Cholesterols mit den Möglichkeiten, einzugreifen.Statine hemmen die HMG-CoA-Reduktase, FOH 
und GGOH sind die Vorformen von Farnesylpyrophosphat und Geranylgeraniolpyrophosphat, da 
sie in der Zelle phosphoryliert werden. FTI-277 hemmt die Farnesyltransferase, welche wichtig in 
Ras-Kaskade ist. GGTI-298 hemmt die Geranylgeranioltransferase, welche u.a. die Modifizierung 
von kleinen G Proteinen hemmt. Y-27632 ist ein Rho-kinase Inhibitor. 

 

Abbildung 3.26 zeigt den Syntheseweg des Cholesterins. Neben den Produkten 

Dolichol, Cholesterin, und Ubiquinon werden nur Farnesylpyrophosphat (FPP) 

und Geranylgeraniolpyrophosphat (GGPP) für Modifikationen an 

Signalwegsproteinen verwendet. Während die Farnesylierung für die Ras-

Kaskade von Bedeutung ist, ist die Geranylgeranylierung wichtig für die 

Modifikation von u.a. kleinen G Proteinen wie z.B. Rho, Rab und Rap. Rho 

wiederum stellt das Substrat für die Rho-Kinase dar. 
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Um feststellen zu können ob die oben dargestellten Signalwege für CAM-DR von 

Bedeutung sind, wurden NCI-H929 für 48h in Anwesenheit oder Abwesenheit 

von HS-5-Zellen mit Mephalan 20µM und Simvastatin 1µM inkubiert. Zusätzlich 

wurde entweder GGOH 10µM oder FOH 10µM, zugegeben. Dabei sind GGOH 

oder FOH Substanzen, welche in den Zellen zu GGPP oder FPP phosphoryliert 

werden. Die anschließend mit PI und CD38-FITC gefärbten Zellen wurden im 

Durchflusszytometer ausgewertet. 
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Abbildung 3.27: Simvastatin-induzierte Hemmung von CAM-DR wird durch GG-PP 
aufgehoben. NCI-H929 wurden über 48h in An- oder Abwesenheit eines konfluenten HS-5-
Monolayers kultiviert. Wie dargestellt wurden Simvastatin 1µM, Melphalan 20µM, GGOH 10µM 
und FOH 10µM zugegeben. Nach 48h wurde am Durchflusszytometer auf CD38-positive Zellen 
gegated und der Anteil der PI-positiven Zellen bestimmt. Für die Abbildung wurden die 
Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 
 

Abbildung 3.27 zeigt noch einmal die CAM-DR, also das verminderte 

Ansprechen adhärenter Zellen auf ein Zytostatikum, welche hier 33% beträgt. 

Durch Simvastatin kann CAM-DR hier auf 0% gesenkt werden. Nur GGOH, nicht 

FOH, kann die durch Simvastatin verursachte Verminderung der CAM-DR von 

0% auf 16% rückgängig machen. Dies zeigt, dass GGOH, welches in der vitalen 
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Zelle zu GG-PP phosphoryliert wird, das für CAM-DR verantwortliche 

Stoffwechselprodukt sein muss. 

Um sichergehen zu können, dass GGOH zum Signalweg von CAM-DR gehört, 

wurde diesmal in einem Kokulturversuch CAM-DR nicht durch Simvastatin, 

sondern durch GGTI-298 und FTI-277 gehemmt. Beide Stoffe hemmen 

Transferasen, welche für die Modifizierung posttranslationaler Proteine 

verantwortlich sind. 

Dafür wurden NCI-H929 über 48 Stunden in An- oder Abwesenheit eines 

konfluenten HS-5-Monolayers mit Melphalan 20µM und GGTI-298 5 µM oder 

FTI-277 2, 5µM inkubiert. Anschließend wurden die Zellen mit CD38-FITC und 

PI gefärbt und der nekrotische Anteil der Zellen im Durchflusszytometer 

bestimmt. 
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Abbildung 3.28: CAM-DR wird durch GGTase ausgelöst.  NCI-H929 wurden 48h lang in der 
An- oder Abwesenheit von HS-5-Stromazellen kultiviert. Simvastatin 1µM, Melphalan 20 µM, 
FTI-277 2,5 µM (Farnesyltransferaseinhibitor) und GGTI 5 µM 
(Geranylgeranioltransferaseinhibitor) wurden wie angegeben vor der Kultur zugegeben. Nach 
48h wurden die Zellen mit CD38-FITC und PI gefärbt und der Anteil der toten Zellen am 
Durchflusszytometer bestimmt. Für die Abbildung wurden die Mittelwerte und die 
Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 

 

Wie durch Abbildung 3.28 gezeigt werden kann, vermag nur GGTI-298 CAM-DR 

zu erniedrigen. So sind auf 37% der auf HS-5 adhärenten NCI-H929, 35% FTI-

277-behandelten NCI-H929, jedoch nur 13% der mit GGTI-298 behandelten 

Zellen weniger apoptotisch als die NCI-h929-Monokulturen, was am ehesten 

einer Simvastatininkubation entspricht. 
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Diese Daten zeigen, dass GGTI-298 CAM-DR verhindern kann, und GG-PP teil 

des für CAM-DR relevanten Signalwegs ist. 

 

Viele verschiede Proteine werden durch die GGTase und FTase verändert. 

Wichtige, von der FTase modifizierte Proteine sind z.B Ras, welches direkt in den 

Ras/Raf/MEK/MAPK-Signalweg mündet. Von der GGTase werden v.a. kleine G 

Proteine modifiziert, z.B.  Rho, Rap, Rab und Ran. Da die Relevanz von GG-PP 

bereits nachgewiesen wurde, stellte sich nun die Frage, ob ein Rho-Kinase-

Inhibitor wie Y-27632 einen ähnlichen Effekt auf die CAM-DR hat wie 

Simvastatin. 

Dafür wurden NCI-H929 auf einen vorinkubierten konfluenten HS-5-Monolayer 

geben mit 20 µM Melphalan, 1µM Simvastatin oder 20µM Y27632 über 48h 

inkubiert. Die Messung und Auswertung erfolgte nach 48 Stunden durch 

Doppelfärbung mit CD38-FITC und PI im Durchflusszytometer. 
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Abbildung 3.29: CAM-DR wird durch die Rho-Kinase aktiviert.  Den kokultivierten NCI-H929 
und HS-5-Zellen wurden 20 µM Melphalan, 1µM Simvastatin und 20µM Y-27632 zugegeben. Die 
Auswertung fand nach Doppelfärbung mit CD38-FITC und PI im Durchflusszytometer statt. Für die 
Abbildung wurden die Mittelwerte und die Standardabweichung verwendet. „n.s.“ steht für „nicht 
signifikant“. 
 

Wie Abbildung 3.29 zeigt, kommt es bei den mit Y-27632 inkubierten Zellen wie bei 

Simvastatin zu einer starken Erniedrigung er CAM-DR. Adhärente NCI-H929 gehen 



Ergebnisse 

  52 

um 39% weniger in Apoptose, bei Simvastatininkubation sind es 14%, bei Y-27632 

15%. Dies legt nahe, dass beide Substanzen im selben Signalweg eingreifen.  

 

Da Rho und die Rho-kinase bei Zellmigration und Zelladhäsion eine wichtige Rolle 

spielen, wurde ein Zelladhäsionsassay für diese beiden Substanzen wiederholt. Im 

Einzelnen wurden dazu für 48h NCI-H929 mit HS-5-Zellen koinkubiert und GGTI-

298 5µM oder Y-27632 zugegeben. Danach wurde das Medium der Kulturgefäße 

abpipettiert und durch ein WST-1-Assay die Vitalität der Zellen bestimmt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

GGTI-298 oder Y-27632 führen im NCI-H929/HS-5-Kokulturmodell nicht zu 

einer signifikant erhöhten Deadhäsion der Myelomzellen, was wiederum zeigt, 

dass die Myelomzelldeadhäsion nicht der tragende Mechanismus bei der 

Verringerung von CAM-DR durch Simvastatin ist (Abbildung 3.30). 

 
Da bereits dargestellte Ergebnisse gezeigt haben, dass Simvastatin Expression und 

Funktion der Integrine auf Leukozyten verändern kann, wurden NCI-H929 für 

48h mit 1µM Simvastatin oder 5µM GGTI-298 oder 20µM Y-27632 inkubiert 

und anschließend die Expression von VLA-4, LFA-1 und CD126 am 

Durchflusszytometer durch Oberflächenfärbung bestimmt. 

Abbildung 3.30: Hemmung des GG-PP/Rho/Rho-kinase-Signalwegs führt nicht zur 
Deadhäsion. Zu den NCI-H929, die in An- oder Abwesenheit von HS-5-Zellen kultiviert worden 
sind, wurde GGTI-298 5 µM oder Y-27632 20µM zugegeben. Nicht adhärente Zellen wurden 
durch Abpipettieren aus dem Kulturgefäss gewonnen und die Vitalität der Lebenden Zellen in 
einem WST-1-Assay bestimmt. Für die Abbildung wurden die Mittelwerte und die 
Standardabweichung verwendet. „n.s.“ steht für „nicht signifikant“. 
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Zusammenfassend kann gesagt werden, dass der GG-PP/Rho/Rho-kinase-

Signalweg für CAM-DR von großer Bedeutung ist. CAM-DR kann in diesem 

Zellmodell durch Simvastatin vollkommen gehemmt werden. 

 

 

Wie Abbildung 3.31 zeigt, kommt es bei den mit Simvastatin behandelten Zellen 

zu einer leichten Expressionsabnahme der Integrine, welche sicherlich nicht die 

100%-ige Verminderung der CAM-DR erklären kann. 

Da jedoch die Inkubation mit Y-27632 nicht eine Minderexpression der Integrine 

nach sich zieht, ist eine Regulation der Integrine durch den GG-PP/Rho/Rho-

kinase-Signalweg nicht wahrscheinlich. 

Zusammenfassend kann gesagt werden, dass der GG-PP/Rho/Rho-kinase-

Signalweg für CAM-DR von großer Bedeutung ist. CAM-DR kann in diesem 

Zellmodell durch Simvastatin vollkommen gehemmt werden. 

 

Abbildung 3.31: Simvastatin, GGTI-298 und Y-27632 führen nicht zu einer Änderung der 
Integrinexpression. NCI-H929 wurden über 48 Stunden mit oder ohne Simvastatin 1µM, GGTI-
298 5 µM oder Y-27632 20µM inkubiert, anschließend mit Antikörpern gefärbt und schließlich 
die Integrinexpression im Durchflusszytometer bestimmt. Die gestrichelte Linie zeigt die 
Isotypkontrolle mit IgG1, die durchgezogene Linie die unbehandelte Kontrolle und die grau 
hinterlege Fläche die behandelte Probe. 

VLA4                              LFA1                          CD126

Simvastatin

GGTI-298

Y-27632
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4. DISKUSSION 

 

4.1 Etablierung des Kokulturmodells 

Ziel dieser Dissertation war es, die primäre Chemoresistenz beim multiplen 

Myelom zu untersuchen. Dafür war die Etablierung eines Zellmodells notwendig, 

welches die Verhältnisse in vivo berücksichtigt und zudem die leichte 

Durchführung der für die Erforschung der primären Chemoresistenz benötigten  

Experimente garantiert. Die meist verwendeten Kokultur-Systeme mit primären 

Stromazellen haben den Nachteil, dass für die Generierung des Stromazelllayers 

bis zu 8 Wochen vergehen, bevor eine Kokultur mit den Myelomzellen möglich 

ist (Dankbar et al., 2000). Im Gegensatz dazu sind HS-5-Stromazellen mit einer 

Zellverdopplungszeit von ca. 3 Tagen eine hochproliferative Zelllinie, bei welcher 

die Zellzahl innerhalb von Tagen auf die benötigte Menge expandiert werden 

kann und dementsprechend schnell für ein Kokulturexperiment in ausreichender 

Menge verfügbar ist. Da es sich bei den HS-5 Zellen um eine proliferierende 

Zelllinie handelt, musste zuallererst ausgeschlossen werden, dass HS-5 

vergleichbar sensibel auf gängige Zytostatika reagieren. Alle fünf getesteten 

Zytostatika konnten in den HS-5-Zellen Apoptose auslösen, jedoch lag die 

Chemosensitivität deutlich unter derjenigen der Myelomzellen, so dass prinzipiell 

die protektive Funktion der Stromazellen gewährleistet blieb. Interessanterweise 

zeigte sich, dass bei den HS-5-Zellen - wie auch bei den primären Stromazellen - 

nur die Zytostatika aus der Gruppe der Alkylantien einen dosisabhängigen 

Anstieg der Apoptoseraten erzielen konnten. Bei Gemcitabin, Cytarabin und 

Doxorubicin kam es trotz Dosiseskalation zu keiner weiteren Steigerung des 

Apoptose. Die humanen BMSC von 8 Patienten reagierten interessanterweise 

weniger sensibel auf Zytostatika als HS-5-Zellen, was möglicherweise mit der 

langsameren Proliferation dieser primären BMSC in Verbindung gebracht werden 

kann. 

Diese vorbereitenden Experimente haben gezeigt, dass Kokulturmessungen mit 

HS-5-Zellen und Myelomzellen durchführbar sind, da sich die Apoptoseraten der 

HS-5-Zellen von der der Myelomzellen deutlich abhebt und nicht zuletzt wegen 

der großen Zahl der von den HS-5-Zellen sezernierten Cytokine eine in-vivo-

Situation nachgestellt werden kann (Roecklein et al., 1995). Für die Auswertung 

wurde das Zellgemisch mit konjugierten CD38-Antiköpern gefärbt und so die 
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Myelomzellen im Zellgemisch für die Durchflusszytometrie markiert. Schließlich 

wurde die Apoptoserate der Myelomzellen bestimmt. Die im HS-5-Zellmodell 

gewonnen Ergebnisse gleichen den Ergebnissen aus einer hBMSC-Kokultur und 

zeigen die Gültigkeit der in der HS-5-Kokultur gewonnen Ergebnisse an. 

 

4.2. Zelladhäsionsvermittelte Chemoresistenz in Myelomzellen 

Zelladhäsionsvermittelte Chemoresistenz wird als wichtigste Ursache der 

primären Chemoresistenz beim multiplen Myelom als auch bei vielen anderen 

Tumoren angesehen (Hazlehurst et al., 2003). Für deren Analyse wurden zuerst 

Experimente mit Myelomzellen durchgeführt, welche auf Fibronektin- und (rh)-

ICAM-beschichteten Zellkulturgefässen kultiviert und Zytostatika ausgesetzt 

wurden. Dabei stellt VLA-4 den Bindungspartner für Fibronektin, LFA-1 den 

Bindungspartner für (rh)-ICAM dar. Für alle verwendeten Myelomzelllinien 

wurde das Vorhandensein von VLA-4 und LFA-1 nachgewiesen. Im Gegensatz zu 

den Forschungsarbeiten von Damiano et al. konnte jedoch in unseren 

Experimenten Fibronektin und das daran bindende Integrin VLA-4 nicht als 

alleiniger Faktor für CAM-DR identifiziert werden (Damiano et al., 1999). Es 

kristallisierte sich zwar ein Trend heraus, dass Fibronektin CAM-DR ermöglicht; 

die Verminderung der Apoptoseraten war jedoch nicht statistisch signifikant. 

Auch das rekombinante rh-ICAM, welches an LFA-1 auf den Myelomzellen 

bindet, trug kaum zur Chemoresistenz bei. Der Grund hierfür mag bei der 

möglichen fehlenden Aktivierung des LFA-1-Rezeptors durch (rh)-ICAM liegen. 

Da jedoch auf den Myelom- und Stromazellen die Integrine ICAM und LFA-1 bei 

Inkubation mit einem Zytostatikum vermehrt auf der Zelloberfläche exprimiert 

werden, wird es wahrscheinlicher, dass  es zur Adhäsion der Myelomzellen an die 

Stromazellen kommt. Insofern könnte die ICAM/LFA-1-Interaktion indirekt zu 

CAM-DR beitragen.  

 

Versuche mit Fibronektin und rh-ICAM können nicht die in-vivo Situtation 

repräsentieren, da sie jeweils nur einen im Microenvironment des Knochenmarks 

vorkommenden Bindungspartner für Myelomzellen repräsentieren. Im 

Microenvironment stehen aber viele Integrinbindungspartner für die 

Myelomzellen zur Verfügung, zusätzlich sind die Myelomzellen einem 
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Interleukinmilieu aus z.B. IL-3 und IL-6 ausgesetzt, was ebenfalls im Zellmodell 

mit rh-ICAM und Fibronektin nicht berücksichtigt wurde (Dalton et al., 2003).  

Aus diesem Grund wurde ein Kokulturmodell mit HS-5-Stromazellen und 

Myelomzelllinien etabliert. In diesem Modell wurden mehrere verschiedene 

Zytostatika getestet: Doxorubicin und Melphalan sind die zwei wichtigsten 

Zytostatika in der Behandlung des multiplen Myeloms. Für Treosulfan und 

Gemcitabine wurde die apoptoseinduzierende Wirkung auf Myelomzellen von 

Meinhardt et al. nachgewiesen (Meinhardt et al., 2003). Bei allen vier Substanzen 

reduzierte die CAM-DR den Zytostatika-induzierten Zelltod um bis zu 63%.  

Dieses Ergebnis korreliert mit Ergebnissen anderer Arbeitsgruppen, welche als 

Zytostatikum Mitoxantrone aus der Gruppe der Anthrachinone verwendet haben 

(Nefedova et al., 2003). Diese Substanz gehört jedoch nicht zur Standardtherapie 

der Patienten mit Multiplen Myelom. Der antiapoptotische Effekt von CAM-DR 

kommt auch bei Dexamethason und der im Jahre 2004 neu zugelassenen Substanz 

Bortezomib zum tragen, wie Schmidmaier et al. gezeigt haben (Schmidmaier et 

al., 2004). Des Weiteren wurden vier Myelomzelllinien in diesem Kokultursystem 

getestet. Bei allen vier kommt es zu einer starken Apoptoseminderung, wenn die 

Myelomzellen in Anwesenheit von HS-5-Zellen oder primären BMSC mit 

Zytostatika inkubiert werden. Interessanterweise ist die Verminderung der 

Apoptose bei der Zelllinie U266 geringer ausgeprägt. Die Zellen dieser Zelllinie 

sind bereits in der normalen Kultur auf Plastik adhärent ist. Außerdem wurde in 

dieser Arbeit gezeigt, dass frühe Apoptose (Annexin-positiv) wie auch späte 

Apoptose (Propidiumjodid-positiv) durch Kontakt mit BMSC verhindert werden 

kann. Daran wird deutlich, dass CAM-DR über eine Hemmung von Apoptose und 

nicht von Nekrose zu stande kommt. 

Lösliche Faktoren, wie z.B. Interleukin-6, werden auch als Resistenzfaktoren 

angesehen, tragen aber nicht in dem Maße zur Chemoresistenz bei wie es bei 

CAM-DR der Fall ist (Klein et al., 1995; Chatterjee et al., 2002). Dies wurde in 

der vorliegenden Arbeit mit dem hier vorgestellten Modell in den Versuchen mit 

Kultureinsätzen und mit konditioniertem Medium bestätigt. Folglich ist der 

direkte Zell-Zell-Kontakt entscheidend für die Entstehung von CAM-DR beim 

multiplen Myelom. 

Damiano et al. haben bereits gezeigt, dass resistente Myelomzelllinien vermehrt 

die relevanten Integrine LFA-1 und VLA-4 exprimieren (Damiano et al., 1999). In 
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der vorliegenden Arbeit wurde gezeigt, dass sich die Expression des LFA-1-

Antigens auf den Myelomzellen bereits nach kurzer Inkubation mit Zytostatika 

verstärkt; die des VLA-4 blieb unverändert. Die korrespondierenden 

Adhäsionsmoleküle auf den Stromazellen werden ebenfalls nach nur 48-stündiger 

Zytostatikainkubation vermehrt exprimiert. Trotz dieser Ergebnisse haben 

Kokulturexperimente mit blockierenden LFA-1- und VLA-4-Antikörpern nicht zu 

einer vollkommenen Reduktion der CAM-DR geführt, was vermuten lässt,  dass 

andere Mechanismen für CAM-DR verantwortlich sind. Dementsprechend ist die 

nur partielle Inhibition von CAM-DR durch den funktionellen VLA-4-

Rezeptorblocker BIO5192 ein weiterer Beleg. Dieser Rezeptorantagonist wird 

derzeit zur Erforschung der Multiplen Sklerose und anderen inflammatorischen 

Erkrankungen in präklinischen Studien verwendet (Theien et al., 2003).  

Die Interaktion zwischen LFA-1 und ICAM-1 kann durch den selektiven LFA-1-

Blocker LFA703 verhindert werden. Diese Substanz ist ein Derivat der Statine, 

welches die Fähigkeit zur Hemmung der HMG-CoA-Reduktase verloren hat, 

jedoch αLβ2 und damit LFA-1 blockiert (Weitz-Schmidt  et al., 2001). In den für 

diese Arbeit durchgeführten Experimenten konnte diese Substanz im 

Kokulturversuch CAM-DR zu einem geringen Teil verhindern. 

  

4.3 Modulation der klassischen Signalwege 

Es hat sich gezeigt, dass die alleinige Blockade der Integrine VLA-4 und LFA-1 

CAM-DR nicht vollkommen aufheben kann. Um weitere Informationen über den 

Mechanismus von CAM-DR zu bekommen, wurden Experimente durchgeführt, 

bei denen die wichtigsten, beim Plasmozytom bekannten Signalwege durch 

verschiedene Substanzen moduliert wurden. Dabei wurden die möglichen Signale 

gehemmt, welche von Rezeptortyrosinkinasen und/oder Integrinen ausgehen 

können. In den nachfolgenden Abbildungen werden diese ersichtlich: 
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Abbildung 4.1: Vereinfachtes Schema der Tyrosinkinaserezeptoren und deren 

Signaltransduktion. Prinzipiell lassen sich vier wichtige Signalwege am Tyrosinkinaserezeptor 

finden. Der JAK/STAT-Signalweg, der PI3-Kinase-Signalweg, der PLCγ/PKC-Signalweg und v.a. 

der Ras/Raf/MEK/MAPK-Signalweg. 

 

 

Sowohl bei der von den Integrinen als auch den Tyrosinkinaserezeptoren 

ausgehenden Signalen können die wichtigsten Signalwege identifiziert werden.  

Dies sind v.a.: 

• Der JAK/STAT-Signalweg: Durch die Dimerisierung des Rezeptores kommt 

es zur Phosphorylisierung von JAK, welches wiederum am Rezeptor die 

Bindungsstelle für Src homolgy-2 (SH-2) des STAT phosphorylisiert. Dies 

führt zur Dimerisation von zwei STAT-Molekülen, welche so in den Zellkern 

translozieren und als Transskriptionsfaktoren wirken können. 

• Der PI3-Kinase/Akt-Signalweg: Viele Oberflächenrezeptoren generieren via 

second messenger eine Aktivierung der PI3-Kinase, welche in der 

Signalkaskade proximal von Akt liegt. Die PI3-Kinase, welche auch  
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integringebunden durch FAK aktiviert werden kann, generiert PIP2 und PIP3, 

welches an Akt bindet. PIP2 und PIP3 aktivieren ebenfalls die 

Phosphoinositide–Dependent Kinase PDK, welche wiederum Akt 

phosphoryliert. Das aktivierte Akt  hemmt zum einen Apoptose durch 

Phosphorylierung des Bad/Bcl-xL-Komplexes, wodurch es zu einer 

Dissoziation von Bad und Bcl-xL und damit zur Antiapoptose kommt. Zum 

anderen aktiviert Akt IKK-α, welches zur Aktivierung von NF-κB und damit 

zu einer Verhinderung der Apoptoseinduktion führt. 

• Der PLCγ/PKC Signalweg: Über second messenger oder β2-Integrine wird die 

Phospholipase Cγ aktiviert, sodass es zu einer Konzentrationssteigerung von 

DAG und Ca2+ kommt. Dadurch werden die Isoenzyme der PKC akiviert 

(Kanner et al., 1993). Die Proteinkinase C hat vielfältigste Funktionen in der 

Zelle und wirkt oft kommunizierend zwischen den einzelnen Signalwegen, so 

ist die PKCα z.B. Bindeglied in der Signaltransduktion bei der VEGF-

induzierten Migration von Myelomzellen auf Fibronektin (Podar et al., 2002). 

Interessanterweise wurde auch gezeigt, dass die PKC bei der Aktivierung der 

Integrine eine Rolle spielen (Kanner et al., 1997).  

• Der Ras/Raf/MEK/MAPK-Signalweg kann ebenfalls sowohl von den 

Wachstumsrezeptoren als auch den Integrinen aktiviert werden. Dabei werden 

je nach Stimulus verschiedene Adaptorproteine (Shc, Grb2, etc) benötigt, 

welche den Rezeptor bzw. das Integrin an einen „Guanin-exchange-factor“ 

(GEF´s: Sos, C3G) binden, um Ras zu aktivieren bzw eine Translokation zur 

Zellmembran zu bewirken. Dort bindet Ras an Raf, beide zusammen 

aktivieren MEK. Die Hauptwirkung der Ras/Raf-Kaskade zeichnet sich durch 

eine Proliferationssteigerung aus. 
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Abbildung 4.2  Schema der Integrinsignaltransduktion. 

Die Ras/Raf – Kaskade kann sowohl über die FAK (Focal adhesion Kinase) als auch über CAV 

aktiviert werden. Weitere Signalwege beziehen die PI3-kinase/Akt(PKB) und die kleinen G-

Proteine, welche mannigfaltige Funktionen wie cytoskelettale Organisation, Adhäsion und 

Proliferation regulieren, mit ein (Juliano et al., 2002) 

 

  

Auf diesem theoretischen Hintergrund wurde zuerst untersucht, ob die 

verschiedenen Signalwegsmodulatoren im Kokulturexperiment die Fähigkeit 

besitzen, CAM-DR aufzuheben.  

Unsere Experimente zeigten, dass bis auf PD98059, ein MEK-Inhibitor,  keine der 

Substanzen CAM-DR vermindern kann. Dies steht im Einklang mit den 

Ergebnissen aus der Western Blot Analyse, welche gezeigt haben, dass trotz 

Adhäsion der Myelomzellen auf den Stromazellen viele Signalwegsproteine nicht 

verstärkt oder vermindert exprimiert werden.   

 

4.4 Der GG-PP/Rho/Rho-kinase-Signalweg 

Hazlehurst et al. haben erst kürzlich vorgestellt, dass sowohl de novo als auch 

erworbende Chemoresistenz mit einer erhöhten Expression der HMG-CoA-
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Reduktase einhergeht (Hazlehurst et al., 2003). Außerdem ist bekannt, dass 

Statine in inflammatorische Prozesse eingreifen können und auf deren Verlauf 

mildernd wirken. So wurde gezeigt, dass Statine die Oberflächenexpression von 

Integrinen auf Monozyten erniedrigen, welche die Entzündung in 

atherosklerotisch veränderten Gefäßen auslösen (Rezaie-Majd et al. 2003). In den 

hier gezeigten Experimenten konnten Statine die Integrinexpression auf 

Myelomzellen nur begrenzt herabregulieren. Trotzdem musste auf diesem 

Hintergrund die Rolle der HMG-CoA-Reduktase bei der zelladhäsionsvermittelten 

Chemosensitivität weiter untersucht werden. 

Statine sind Substanzen, welche die HMG-CoA-Reduktase kompetitiv hemmen. 

Die gängigsten Medikamente auf dem Markt sind Atorvastatin, Lovastatin, 

Simvastatin, Pravastatin und Fluvastatin. Dabei vollzieht die HMG-CoA-

Reduktase den geschwindigkeitsbestimmenden Schritt in der Biosynthese des 

Cholesterols. Heute werden Statine weltweit zur Therapie der 

Hypercholesterinämie eingesetzt. Neben der Senkung des Serumcholesterins 

häufen sich die Hinweise, dass Statine neben z.B. der Prophylaxe von 

kardiovaskulären Ereignissen noch bei anderen Erkrankungen nützlich sein 

könnten, wie z.B. Alzheimer (Simons et al., 2001)  und Osteoporose (Coons et al., 

2002). Außerdem induzieren Statine in Tumorzellen sowohl in vitro als auch in 

Tiermodellen Apoptose. So haben DeNoyelle et al. gezeigt, dass Cerivastatin das 

Wachstum von Tumorzellen von Brustkrebszelllinien stoppen kann (DeNovelle et 

al., 2001). Weiterhin konnte gezeigt werden, dass Statine in in vitro Experimenten 

in Zellen von Melanomen (Felezko et al., 2002), Schilddrüsenkarzinomen (Li et 

al., 2002), Kolonkarzinomen (Agarwal et al., 2002), und in der akuter 

lymphatischer Leukämie (Park et al., 1999) Apoptose induzieren können. 

Außerdem waren Metastatisierung (Kusama et al., 2002) und Angioneogenese 

(Park et al., 2002) in Tierversuchen in der Statingruppe im Vergleich zu 

Plazebogruppe vermindert. Auch wurde gezeigt, dass Statine in Myelomzelllinien 

Apoptose induzieren können (Van de Donk et al., 2002; Van de Donk 2003). Auf 

diesem Hintergrund wurden die Statine Simvastatin und Lovastatin in nicht-

toxischen Konzentrationen zusammen mit den entsprechenden Zytostatika zu den 

Kulturen zugegeben. Dies führte zu einer vollkommenen Reduktion der CAM-

DR. Dieses Ausmaß der Reduktion der CAM-DR wurde bei ähnlich aufgebauten 
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Experimenten mit den Signalwegsmodulatoren, welche JAK/STAT, MEK, PI3-

Kinase und PKC modulierten, nicht erreicht. 

Im Licht anderer Arbeiten, bei welchen die Cholesterolbiosynthese auf der Ebene 

der Mevalonatkinase gehemmt wird, erscheinen die hier vorgestellten Ergebnisse 

passend und plausibel (Gordon et al., 2002; Toyataka et al., 2003). Darüber hinaus 

blockieren Statine weitere Signalwege (Van de Donk et al., 2003). Die der HMG-

CoA-Reduktase nachgestellten Synthesemoleküle Farnesiol und Geranylgeraniol 

werden in der Zelle pyrophosphoryliert und dienen anschließend der 

posttranslationalen Modifikation von sog. kleinen G Proteinen. Bei Ihnen handelt 

es sich um monomerische Proteine mit einer molekularen Masse von 20-30 kDa. 

In  verschiedenen eukaryotischen Zellen sind bis heute in etwa 100 dieser kleinen 

G Proteine (engl.: small G-proteins) bekannt. Diese Superfamilie kann in 5 

Untergruppen eingeteilt werden: Die Ras-, Rho-, Rab-, Sar1/Arf-, und Ran-

Familie. Dabei wird Ras farnesyliert, Rho jedoch geranylgeranyliert. Erst nach der 

dieser Modifikation können G Proteine ihre Funktion ausüben. Aufgrund ihrer 

GTP-hydrolysierenden Eigenschaft haben sie die Funktion einer biologischen 

Uhr, welche Funktionen einer Zelle an- und abschalten können. Die Funktion der 

einzelnen Untergruppen reicht von der Änderung der Genexpression über 

Vesikeltransport bis hin zur zytoskelettalen Reorganisation in einer Zelle. 

Interessanterweise sind in vielen Tumoren die kleinen G Proteine überexprimiert, 

was den Verdacht aufkommen lässt, dass die in der Tumorgenese eine wichtige 

Rolle spielen (Benitah et al., 2003). Es wurde gezeigt, dass Rho Proteine in 

Fibroblasten von Integrinen aktiviert werden (Bourdoulous et al., 1998) und 

weiterhin für den Eintritt der Fibroblasten in die S-Phase im Zellzyklus sowohl 

eine Ras als auch RhoA-akivierung vorliegen muss (Danen et al., 2000). Ihre 

Rolle im Zellzyklus wurde noch genauer charakterisiert: Durch die Hemmung von 

p21WAF1, p27KIP1 und p16Ink4 (Olson et al., 1998), Hyperphosphorylierung 

von Rb (Bourdoulous et al., 1998) und Hochregulation der CyclinD1-Expression  

(Welsh et al., 2001) wird eine erhöhte Proliferationsrate in Fibroblasten erreicht. 

Neben dem wachstumsstimulierenden Eigenschaften der G-Proteine führt v.a. in 

Epithelzellen die Aktivierung von RhoA zu einer Aktivierung von NFκB. NFκB 

erhöht die CyclinD1-transskription, führt ebenfalls zur Hyperphosphorylierung 

von Rb und wirkt antiapoptotisch (Hideshima et al., 2002; Landowski et al., 

2003).  
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Abbildung 4.3 : Downstream Signalwege von RhoA in verschiedenen Tumorentitäten 

(Benitah et al., 2004) 

 

Nachdem Statine CAM-DR in den Kokulturexperimenten fast vollkommen 

verhindern konnten, wurden die beiden der HMG-CoA-Reduktase 

nachgeschalteten Signalwege selektiv mit FOH (entspricht 

Farnesylpyrophosphat), GGOH (entspricht Geranylgeraniolpyrophosphat), FTI-

277 und GGTI-298 modifiziert. In allen damit durchgeführten Experimenten 

erwiesen sich GGTI-298 und GGOH als relevant für die Modifikation von CAM-

DR. Im Gegensatz dazu spielten FTI-277 und FOH keine Rolle. Dies steht im 

Einklang mit Ergebnissen von zwei Arbeitsgruppen, welche die Hemmung der 

Geranylgeranylierung in Lymphomzellen und Myelomzellen als wichtigen 

Apoptoseinduktor identifiziert haben (Van de Donk et al., 2002, 2003). In diesen 

Publikationen wird gezeigt, dass es zur Apoptoseinduktion kommt, weil die 

Konzentration des antiapoptotischen Proteins Mcl-1 erniedrigt wird.  
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In den Experimenten der vorliegenden Arbeit wurden Statindosierungen 

verwendet, welche nicht toxisch wirken. Auch konnte in den kokultivierten 

Myelomzellen keine Änderung der Mcl-1-Konzentration entdeckt werden. Im 

Hinblick auf die Ergebnisse der Experimente mit GGOH und GGTI erschien die 

Geranylgeranylierung als Signalweg für CAM-DR. Wie oben beschrieben werden 

v.a. Rho und Rab geranylgeranyliert. Effektoren von Rho sind Proteine wie z.B. 

ROCK, PKN, Citron/CitronKinase, Rhotekin, Rhophilin, mDia1/2, PLD und 

PIP5-kinase. Dabei wird der Rho-Kinase eine Rolle in der Aktinreorganisation, 

Zelladhäsion, Transkriptionsregulation, Transformation und Metastasierung 

zugesprochen (Aznar et al., 2004). Ishizaki et al. haben gezeigt, dass durch die 

Hemmung der Rho-kinase in Fibroblasten der Zellzyklus stark verlangsamt 

werden kann und die Zellen länger im Stadium der G1-S-Phase bleiben, also 

Einfluss auf den Zellzyklus haben (Ishizaki et al., 2000). Auf diesem Hintergrund 

wurde Y-27632 im hier vorgestellten Kokulturmodell untersucht. Y-27632 führte 

wie Simvastatin zu einer Verhinderung von CAM-DR und stellte die 

Chemosensitivität der Myelomzellen wieder her, ohne dabei auf die 

Integrinexpression oder die Zelladhäsion Einfluss zu nehmen. 

 

 

Diese Arbeit zeigt, dass der HMG-CoA-Reduktase/GG-PP/Rho/Rho-kinase-

Signalweg für CAM-DR verantwortlich ist. Dieser Signalweg kann durch Statine, 

Hemmer der Geranylgeranioltransferase und der Rho-Kinase geblockt werden. Da 

Statine bereits heute weltweit zur Senkung der Hypercholesterinämie Anwendung 

finden und zusätzlich hier gezeigt wurde, dass nur minimale Konzentrationen der 

Statine ausreichen um CAM-DR zu hemmen, sollte unbedingt eine klinische 

Evaluation der Statine in Kombination mit Zytostatika bei Patienten mit multiplen 

Myelom erfolgen. Da CAM-DR nicht nur beim Myelom eine Rolle zu spielen 

scheint, wären weitere Experimente mit Zellen anderer Tumorentitäten mit 

Sicherheit lohnenswert. 
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5. ZUSAMMENFASSUNG 

 

Das multiple Myelom ist eine Erkrankung, bei der terminal differenzierte 

Plasmazellen das Knochenmark infiltrieren, wodurch das typische klinische Bild 

eines Myelompatienten zustande kommt. In den letzten Jahren haben sich die 

Hinweise gehäuft, dass die Bindung der Myelomzellen im Knochenmark an 

Stromazellen die Chemosensitivität der Myelomzellen vermindert und somit zur 

„de-novo drug resistance“ beiträgt.  

 

Das primäre Ziel dieser Arbeit war es, ein Zellmodell zu entwerfen, mit welchem 

die Untersuchung der Interaktionen von Stromazelle und Myelomzelle und damit 

der zelladhäsionsabhängigen Zytostatikaresistenz (CAM-DR) möglich ist. 

Darüber hinaus sollte diese Zytostatikaresistenz charakterisiert und mögliche 

molekulare Therapietargets identifiziert werden, welche eine Verhinderung von 

CAM-DR ermöglichen. 

 

Da das etablierte Kokulturmodell auf einer Kultur mit der Stromazelllinie HS-5 

beruhte, wurde diese zuerst bezüglich der Oberflächenmarker und des 

Apoptoseverhaltens charakterisiert. Es wurde gezeigt, dass sich primäre 

Stromazellen aus Knochenmarksspiraten und die Stromazelllinie HS-5 zwar in 

ihrer Chemosensibilität unterscheiden, sie prinzipiell jedoch gleich reagieren. 

Beide lösen bei einer direkten Kokultur mit Myelomzellen im selben Maße CAM-

DR in den Myelomzellen aus. Die anschließende Charakterisierung von CAM-DR 

bewies, dass CAM-DR nicht zelllinienspezifisch und nicht zytostatikaspezifisch 

ist. HS-5-Zellen verhinderten nicht nur die Entstehung von später sondern auch 

von früher Apoptose. Es zeigte sich, dass das Ausmaß von CAM-DR maßgeblich 

von der Dauer der Kokultivierung abhängt.  

 

Des Weiteren stellte sich heraus, dass in diesem Zellmodell die von den HS-5-

Zellen sezernierten Zytokine keinen Einfluss auf die Apoptoseinduktion hatten.  

Konsequenterweise wurden die Oberflächenantigene auf den Myelomzellen und 

den Stromazellen quantifiziert und teilweise deren Alteration nach einer 

Inkubation mit Zytostatika festgestellt. Sowohl eine Blockade der wichtigsten 
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Integrine VLA-4 und LFA-1 als die Modulation der wichtigsten Signalwege 

konnte CAM-DR zwar teilweise, aber nicht vollkommen verhindern.  

 

Allein Vertreter der Statine, Simvastatin und Lovastatin, konnten CAM-DR 

drastisch reduzieren. Wie weiterhin gezeigt werden konnte, lag dies nicht an einer 

verminderten Expression von Oberflächenintegrinen, einer verminderten 

Zytokinsekretion der Stromazellen oder einer verstärkten Deadhäsion der 

Myelomzellen von den Stromazellen, sondern an der Hemmung der 

Geranylgeraniolpyrophosphatsynthese. Wir wiesen nach, daß Statine in der 

Kokultur über die Hemmung des HMG-CoA-Reduktase/GG-PP/Rho/Rho-kinase-

Signalwegs wirken. Dies wurde in weiteren Experimenten, in denen selektiv die 

Geranylgeranioltransferase mittels GGTI-298 und die Rho-Kinase mit Y-27632 

gehemmt wurden, bestätigt.  

 

Die Ergebnisse der vorliegenden Arbeit können als Grundlage für einen 

potentiellen Einsatz von Statinen in der Therapie des multiplen Myeloms dienen, 

denn bezüglich des dargestellten Signalwegs wirken die Statine bereits im 

subtoxischen Bereich. Die weitere Erforschung von CAM-DR und deren 

assoziierte Signalwege bei anderen Tumorentitäten sowie die Evaluation der 

klinischen Relevanz der Gabe von Statinen zur Blockade von CAM-DR  ergeben 

sich als wichtige nächste Schritte als Konsequenz der vorliegenden Arbeit. 
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7. ANHANG 

 

7.1 Verwendete Materialien und Methoden 

 
7.1.1 Zellkultur 

Kurzbezeichnung Bestell-Nr. Hersteller 

RPMI – 1640 E12 – 702F Gibco Invitrogen, Karlsruhe, D 

PBS 14040 – 091 Dto. 

FCS 16170 – 078 Dto. 

Flask 75 cm2 353.136 BD Biosciences, Heidelberg, D 

96-Well-Plates 353.872 Dto. 

6-Well-plates 353.453 Dto 

Trypanblaulösung 15250-061 Gibco Invitrogen, Karlsruhe, D 

Kryoröhrchen 1148 33 Brand GMBH, Wertheim, D 

Kulturgefässeinsätze 353092 BD Falcon, Bedford, USA 

 

7.1.2 Zytostatika 

Name Bestellnummer Firma 

Melphalan M2011 Sigma, Taufkirchen, D 

Treosulfan Ovostat® Medac, Hamburg, D 

Doxorubicin Adriblastin® Pharmacia, Erlangen, D 

Gemcitabine Gemzar® Lilly , Homburg, D 

Cytarabine Alexan® Mack, Jllertissen, D 
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7.1.3 Inhibitoren und Aktivatoren  

Name Bestellnummer   Firma     

Bryostatin ST-103 Biomol, Butler Pike, USA 

UO-126 662005 Calbiochem, Schwalbach, D 

AG490 658407 dto. 

Piceatannol 527948 dto. 

Gö76 EI-269 Biomol, Butler Pike, USA 

Gö83 EI-296 dto. 

GF109203X EI-246 dto. 

G-CSF Filgrastim® Amgen, München, D 

Ly249002 440204 Calbiochem, Schwalbach, D 

MG132 474790 dto. 

Ro 32-0432 EI-284 Biomol, Butler Pike, USA 

PD98059 513000 Calbiochem, Schwalbach, D 

LFA703 - Novartis, Basel, CH 

Simvastatin 567021 Calbiochem, Schwalbach, D 

Lovastatin 438186 dto. 

GGOH G2378 Sigma, Taufkirchen, D 

FOH 46191 Fluka, Buchs, CH 

FTI-277 344555 Calbiochem, Schwalbach, D 

GGTI-298 345883 dto. 

Y-27632 688001 dto. 
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7.1.4 Antikörper für Oberflächenmessungen 

Antikörper Klon Bestellnummer Firma 

CD54-FITC  84H10 IM0726 Beckman Coulter, Krefeld, D 

CD49a-PE SR84 559594 Pharmingen, Heidelberg, D 

CD49d-FITC HP2/1 IM1404 Beckman Coulter, Krefeld, D 

CD49e-FITC SAM1 IM0771 dto. 

CD126α-PE M91  IM1979 dto. 

CD106-FITC 51-10C9 551146 Pharmingen, Heidelberg, D  

CD11a-FITC 25.3 IM0860 Beckman Coulter, Krefeld, D  

CD38-FITC T16 IM0775 dto. 

CD138-FITC MI15 347214 Pharmingen, Heidelberg, D 

CD38-PE T16 IM1832 Beckman Coulter, Krefeld, D  

D114-PE LMM741 554538 dto. 

IgG1-PE 679.1Mc7 IM0670 Beckman Coulter, Krefeld, D 

IgG1-FITC 679.1Mc7 IM0639 dto. 

 

7.1.5 Antikörper für die Western Blot Analyse 

 

7.1.5.1 Primärantikörper 

Antikörper      Klon Bestellnummer Firma 

Bcl-2 

 

4C11 Sc-578 SantaCruz Biotechnology, 

Califonia, USA 

Bcl-XL A20 Sc-7122 dto. 

Bax N20 Sc-493 dto. 

Mcl-1 S19 Sc-819 dto. 

Stat3 H190 Sc-7179 dto. 

Erk1 C16 Sc-93 dto. 

Erk2 C14 Sc-154 dto. 

PKCα C20 Sc-208 dto. 

PKCβ C16 Sc-209 dto. 

PKCδ C20 Sc-937 dto. 

Aktin I19 Sc-1616 dto. 
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Bad C20 Sc-943 dto. 

Akt D17 Sc-7126 dto. 

PI3-kinase 

(p85α) 

Z8 Sc-423 dto. 

ILP N18 Sc-8790 dto.  

IAP-1 H83 sc-7943 dto. 

IAP-2 F20 sc-1957 dto. 

 

7.1.5.2 Sekundärantikörper 

Antikörper Bestellnummer Firma 

Anti-Maus, HRP NA 931 Amersham Biosciences, Uppsala, S 

Anti-Ziege, HRP P0449 DAKO Cytomation, Glostrup, DK 

Anti-Kaninchen, 

HRP 

NA 9340 Amersham Biosciences, Uppsala, S 
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7.1.6 Enzyme                      

Enzym Bestellnummer Firma 

Trypsin-EDTA T3924 Sigma, Taufkirchen, D 

        

7.1.7 Kits 

Kit Bestellnummer Firma 

ECL RPN2106 Amersham, Little Chalfont, UK 

Annexin-FITC 

Apoptosekit 

65874X BD Pharmingen, Heidelberg, D 

WST-1 

Proliferationskit 

1644807 Roche Diagnostics, Penzberg, D 

Bio-Rad, 

Marker 

161-0373 Bio-Rad Labs, München, D 

Bio-RAD 

Proteinfärbeagens 

500-0006 Bio-RAD, München, D 
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7.1.8 Chemikalien 

 

7.1.9 Sonstige Artikel für den Western Blot  

Artikel Bestellnummer Firma 

Kamm, 10 wells, 

1mm 

165-3359 Biorad, München, D 

Spacer Plates 165-3311 dto. 

Schwämme, 8 x 

11cm 

170-3933 dto. 

SDS-PAGE 

Standards, broad 

range 

161-0318 dto. 

Immobilon-P 

PVDF Membran 

IPVH00010 Millipore, Schwalbach, D 

 

Hyperfilm ECL RPN2103 Amersham Biosciences, Uppsala, 

S 

NaCl S7581 Mallinckrodt, Hazelwood, USA 

NaF S1504 Sigma, Taufkirchen, Deutschland 

Substanz Bestellnummer Firma 

Propidiumjodid P4170 Biomol, Hamburg, D 

Ficoll Paque 17-1440-03 Amersham Biosciences, Uppsala, S 

PMSF 93482 Sigma, Taufkirchen, D 

Leupeptin L2884 dto. 

EDTA 351-027-100 Quality Biological , Inc. 

Gaithersburg, USA 

Aprotinin A6279 Sigma, Taufkirchen, D 

Tween 20 P7949 Sigma, Taufkirchen, D 

Acrylamid 

30%(v/v) 

161-0158 Biorad, München, D 

APS 161-0700 dto. 

Temed 161-0800 dto. 

NP-40 74385 Sigma, Taufkirchen, D 
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Na3VO4 S6508 dto. 

Na4P2O7 S6422 dto. 

Tris, pH 7,5 1M 351-006-100 Quality Biological, Inc. 

Gaithersburg, USA 

 

7.1.10 Geräte 

Gerät Bestellnummer Firma 

Durchflusszytometer 

 

Epics CL 

System II 

Version 3.0 

Coulter Electronics, Miami, 

USA 

Elektrophoreseset Ready Gel Cell 

 

Bio-rad, München, D 

Homogenisator BBI-8530742 Sartorius, Göttingen, D 

Power Pac 165-5050 Bio-rad, München, D 

BioFuge 75005181 Haraeus instruments, Osterode, 

D 

Biophotometer - Eppendorf, Hamburg, D 

Cell scraper 353.086 Sarstaedt, Nümbrecht, D 

Neubauer 

Zählkammer 

- Sarstaedt, Nümbrecht, D 

Brutschrank Serie II 3110  Forma Scientific,  

Zentrifuge Sigma 4K15 Sigma, Taufkirchen, 

Deutschland 

ELISA Reader Multiscan Thermo Lab Systems, 

Sorvaajankatu, FIN 
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