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Chapter 2 

 

ABSTRACT 
                  
 

Tumor angiogenesis is a process that requires migration, proliferation, and differentiation of 

endothelial cells. We hypothesized that decrease in pancreatic tumor growth due to inhibition of 

src activity is associated with the inability of src kinase to trigger a network of such signaling 

processes, which finally leads to endothelial cell death and dormancy of angiogenesis. 

The therapeutic efficacy of Src kinase inhibitor AZM475271 was tested in nude mice 

orthotopically xenografted with L3.6pl pancreatic carcinoma cells. No liver metastases and 

peritoneal carcinosis were detected and a significant effect on the average pancreatic tumor 

burden was observed following treatment with AZM475271, which in turn correlated with a 

decrease in cell proliferation and an increase in apoptotic endothelial cells. AZM475271 was 

shown to significantly inhibit migration of human umbilical vein endothelial cells in an in vitro 

Boyden Chamber cell migration assay. In a rat aortic ring assay we could demonstrate as well 

inhibition of endothelial cell migration and sprouting following therapy with Src kinase inhibitor 

at similar doses. Furthermore, we could show reduced proliferation of HUVECs determined with 

the TACS MTT Cell Viability Assay Kit. The blockade of Src kinase significantly reduced the 

level of VEGF in L3.6pl medium, the effect which was found also in the cell culture supernate 

from HUVECs. Inhibition of Src kinase by AZM475271 also showed prevention of survival 

signalling from VEGF and EGF receptors. Treatment with AZM475271 resulted in VEGF – 

dependent inhibition of tyrosine phosphorylation of FAK. HUVECs were also examined using 

propidium iodide staining for cell cycle analysis by FACS. Inhibition of src kinase promoted 

HUVEC apoptosis in a dose-dependent manner. 

Taken together, our results suggest that the Src kinase inhibitor AZM475271, in addition to its 

effects on tumor cells, suppresses tumor growth and metastasis in vitro and in vivo potentially 

also by anti-angiogenic mechanisms.  
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3.1 Pancreatic cancer 

 

3.1.1 Epidemiology and clinical characteristics  

 

Pancreatic cancer is one of the most fatal malignancies in humans and continues to be a major 

medical challenge in the western world. The incidence rate of about 10 per 100,000 equals the 

mortality rate, underscoring the devastating nature of this disease (Van Cutsem et al., 2004). The 

five-year survival rate for pancreatic cancer is very low, less than 3% (Jemal et al., 2002), the 

median overall survival is 3-6 months with a 12-month survival rate of 10% (Bramhall et al., 

1995). The very poor prognosis is due to late symptoms and the inability to detect this disease at 

early stages. Even with current diagnostic modalities, the inaccessible location of the pancreas 

often makes the diagnosis of pancreatic cancer a real challenge. Pancreatic cancer spreads early 

and most of the patients show liver or lymph node metastases at the time of diagnosis. More than 

80% of patients have disease-related symptoms, such as jaundice, pain, asthenia, weight loss, and 

poor performance status (Cascinu et al., 1999). Even though painless jaundice occurs in about 

50% of patients with respectable lesions of the pancreatic head, in general early symptoms are 

non-specific, and jaundice may also occur as a late symptom of large tumors of the body of the 

gland. Pain is the most frequent symptom and is present in 80% of patients with locally 

advanced tumors and metastatic disease (Van Cutsem et al., 2004). Nearly 90% of pancreatic 

neoplasms are adenocarcinomas, arising from the exocrine ductal system. They are most often 

multicentric and 75% are located in the head of the pancreas. The etiology of pancreatic cancer is 

not well understood but risk factors such as smoking, chronic pancreatitis and positive family 

history are implicated (Ahlgren, 1996; Hruban et al., 1998; Li et al., 2004). To date, surgical 

resection is the only potentially curative treatment, but the majority of patients are not surgical 

candidates due to advanced disease or significant co-morbidity (Brand 2001). For over 80% of 

pancreatic carcinoma patients, palliative treatment protocols represent the only reasonable 

therapeutic option (ASCO, 2006 Gastrointestinal Cancers Symposium).  

This information indicates that current interventions to prevent, diagnose, and cure the disease 

are far from satisfactory. Only the understanding of the molecular mechanisms of pancreatic 

carcinogenesis will provide novel clues for preventing, detecting and ultimately curing patients 

with this life-threatening disease. 
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3.1.2 Standard chemotherapy of pancreatic cancer 

 

Gemcitabine (2',2'-difluoro-2'-deoxycytidine) represents the current standard drug for cytotoxic 

therapy of advanced pancreatic cancer. Gemcitabine is a pyrimidine analog with a wide spectrum 

of antitumor activity (Abbruzzese, 1996). It is metabolized intracellulary by nucleoside kinases 

to the active species gemcitabine-diphosphate (dFdCDP) and gemcitabine-triphosphate 

(dFdCTP). Incorporation of dFdCTP into DNA is responsible for the cytotoxic effects of 

gemcitabine, via inhibition of DNA synthesis, DNA repair and ultimately via induction of 

apoptosis. Moreover, gemcitabine is a radio-sensitizing agent which acts specifically in the S and 

G1/S phase of the cell cycle.  

5-Fluorouracil (5-FU), a fluoropyrimidine analogue, is also one of the most commonly used 

anticancer drugs for the treatment of pancreatic cancer. Some studies reported that the 

cytotoxicity of fluoropyrimidines is mediated, in large part, by inhibition of the thymidylate 

synthase (Carreras et al; 1995). Thymidylate synthase (TS) is the critical target for 

fluoropyrimidine cytotoxic drugs. It provides the sole de novo source of thymidylate for DNA 

synthesis. TS catalyzes the methylation of dUMP (deoxyuridine-5'-monophosphate) to dTMP 

(deoxythymidine-5'-monophosphate), which forms a tight-binding covalent complex with TS 

(Danenberg, 1977).  

Based on the results from different randomized trials, first-line and second-line gemcitabine 

treatment in patients with advanced pancreatic cancer reveal significant advantages compared to 

5-FU treatment regarding disease stabilization, overall survival and clinical benefit response 

measured as a decrease in pain, functional impairment and weight loss (Burris et al., 1997; 

Carmichael et al., 1996; Casper et al., 1994; Rothenberg et al., 1996). Several studies have 

focused on gemcitabine plus cisplatin (Philip, 2002; Lund et al., 1996). However, a very recent 

meta-analysis of larger Phase II and Phase III trials did not show a significant advantage for 

gemcitabine-cisplatin combinations over gemcitabine monotherapy, regarding 6-month survival 

rate, clinical benefit and toxicity (Xie et al., 2006). Similary, combination of gemcitabine and 

irinotecan resulted in superior response rates but not in improvement of progression-free or 

overall survival (Rocha Lima et al., 2002, 2004; Stathopoulos et al., 2003). Other combinations 

with gemcitabine, such as the addition of docetaxel, pemetrexed and exatecan mesylate, have 

proved disappointing in larger trials (Jacobs, 2002; Kindler 2002; O’Reilly et al., 2004; Richards 

et al., 2004; Stathopoulos et al., 2001).  

Taken together, gemcitabine represents the current standard drug for therapy of advanced 

pancreatic cancer, and surgical patients might benefit from adjuvant gemcitabine therapy. New 
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conventional cytotoxic agents and other gemcitabine combinations might improve survival, but 

the improvement is likely to be small. Therefore, there is an urgent need for a better 

understanding of the mechanisms that contribute to pancreatic cancer growth and metastasis and 

for the design of more effective therapies for it.  

 

3.1.3 Molecular mechanisms of pancreatic carcinogenesis 

 

Over the past few years, our knowledge of the pathogenesis of pancreatic cancer has advanced 

significantly because of a rapid increase in our understanding of the molecular biology of it. Like 

many other malignant diseases, pancreatic cancer results from the accumulation of inherent and 

acquired genetic and epigenetic alterations. The multigenic nature of most pancreatic cancers is 

reflected by abnormalities of three broad classifications of genes: oncogenes, tumor suppressor 

genes and genomic maintenance genes (Sohn et al., 2000; Sakorafas et al., 2001). Accumulated 

alterations of such genes are believed to occur over a predictable time course. Based on the 

understanding of the histological and molecular genetic profiles of pancreatic cancer, 

investigators have developed a progression model that describes pancreatic ductal 

carcinogenesis: the pancreatic ductal epithelium progresses from normal epithelium to increasing 

grades of pancreatic intraepithelial neoplasia to invasive cancer (Hruban et al., 2000).  

The majority of pancreatic cancers occur sporadically and have been fairly well characterized at 

the genetic level. Pancreatic cancer pathogenesis is apparently involved in the activation of 

several oncogenes and/or inactivation of various tumor suppressor genes (Sohn et al., 2000; 

Kern, 2000). Since the identification of the first notable genetic alteration of the K-ras oncogene, 

there has been an explosion in our understanding of pancreatic cancer genetics (Sohn et al., 

2000; Kern, 2000). For examples, more than 85% of pancreatic cancers have an activating point 

mutation in the K-ras gene at a very early stage of development (Almoguera et al., 1988). Also, 

the tumor suppressor gene p16 is inactivated in about 95% of pancreatic cancers, and 

inactivation typically occurs late in pancreatic carcinogenesis. TP53, a well-characterized tumor 

suppressor gene located on chromosome 17p, is the second most frequently inactivated gene. 

Furthermore, DPC4 or SMAD4 is inactivated in 55% of pancreatic adenocarcinomas. Both TP53 

and DPC4 inactivation are late events in pancreatic tumorigenesis. Other less common genetic 

alterations continue to be described in pancreatic cancer. In a comprehensive mutational analysis 

of 42 pancreatic cancers, Rozenblum et al. (1997) found that all of the tumors harboured 

mutations of the K-ras oncogene. The individual mutational frequency of the tumor suppressor 

genes p16, TP53, MADH4 and BRCA2 was 82, 76, 53 and 10%, respectively. Presumably, these 
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alterations promote cellular proliferation, suppress apoptotic pathways, and facilitate tumor 

angiogenesis, invasion and metastasis. 

However, the molecular mechanisms that link these genetic changes with the aggressive nature 

of pancreatic cancer remain poorly understood. These genetic alterations are generally perceived 

to eventually lead to various abnormalities in the expression and functions of a variety of growth 

factors and their receptors and to affect their downstream signal transduction pathways involved 

in the control of cell proliferation and differentiation (Li et al., 2004; Sakorafas et al., 2001; 

Kern, 2000; Korc, 2003). For example, pancreatic cancer cells overexpress many families of 

growth factors and their receptors, including epidermal growth factor (EGF), vascular 

endothelial growth factor (VEGF), fibroblast growth factor (FGF) and its receptor and plateled-

derived growth factor (PDGF), as well as many cytokines, such as transforming growth factor 

(TGF)-β, tumor necrosis factor-α, interleukin (IL)-1, IL-6 and IL-8, which enhances mitogenesis 

(Korc, 2003; Xie et al., 2001, 2003 and 2004). Pancreatic cancer also exhibits loss of 

responsiveness to various growth-inhibitory signals, such as members of the TGF-β family 

(Korc, 2003). The disturbed production and function of growth-promoting and -inhibiting factors 

are believed to confer a tremendous survival and growth advantage to pancreatic cancer cells, as 

manifested by the development of angiogenic, invasive and metastatic phenotypes that are 

resistant to all conventional treatments. The clinical importance of the findings described above 

is underscored by numerous experimental and clinical observations (Korc, 2003). For example, 

the concomitant presence of EGF receptor (EGFR) and either EGF or TGF-β in the cancer cells 

is associated with disease progression and decreased survival. EGFR blockade with an anti-

EGFR antibody attenuates pancreatic tumor growth, and inhibition of EGFR tyrosine kinase 

activity suppresses pancreatic angiogenesis (Bruns et al., 2000). These findings are among the 

many that support the hypothesis that dysregulated production and function of growth factors has 

an important role in pancreatic cancer.  

 

3.2 The role of angiogenesis in local and systemic tumor growth 

 

3.2.1 Tumor angiogenesis 

Tumor angiogenesis is the formation of new blood vessels from existing vessels and new 

circulating endothelial progenitor cells from bone marrow (Folkman, 1990). In 1971, Folkman 

proposed that tumor growth and metastasis are angiogenesis-dependent, and hence, blocking 

angiogenesis could be a strategy to arrest tumor growth (Folkman, 2000). This possibility 

stimulated an intensive search for pro- and anti-angiogenic molecules. In 1976, Gullino showed 
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that cells in pre-cancerous tissue acquire angiogenic capacity on their way to becoming 

cancerous (Gullino, 1978). He proposed that this concept be used to design strategies to prevent 

cancer (Gullino, 1978), a hypothesis later confirmed by genetic approaches (Hanahan et al., 

2000). 

 

3.2.2 The angiogenic switch 

It is now widely accepted that the “angiogenic switch” is “off” when the effect of pro-angiogenic 

molecules is balanced by that of anti-angiogenic molecules, and is “on” when the net balance is 

tipped in favour of angiogenesis (Hanahan et al., 2000; Bouck et al., 1996). Various signals that 

trigger this switch have been discovered (Table 3.1). Pro- and anti-angiogenic molecules can 

emanate from cancer cells, endothelial cells, stromal cells, blood and the extracellular matrix 

(Fukumura et al., 1998). Their relative contribution is likely to change with tumor type and 

tumor size, tumor growth, regression and relapse.  

 

3.2.3 Formation of tumor vessels 

Tumor vessels develop by sprouting or intussusception from pre-existing vessels. Circulating 

endothelial precursors, shed from the vessel wall or mobilized from the bone marrow, can also 

contribute to tumor angiogenesis (Asahara et al., 2000; Rafii, 2000). In addition, tumor vessels 

lack protective mechanisms that normal vessels acquire during growth. For example, they may 

lack functional perivascular cells, which are needed to protect vessels against changes in oxygen 

or hormonal balance, provide them necessary vasoactive control to accommodate metabolic 

needs, and induce vascular quiescence (Benjamin et al., 1999). Finally, the vessel wall is not 

always formed by a homogenous layer of endothelial cells (Jain, 1988). Instead, it may be lined 

with only cancer cells or a mosaic of cancer and endothelial cells.  
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Activators Function 

VEGF family members Stimulate angio/vasculogenesis and permeability 

VEGFR, NRP-1 Integrate angiogenic and survival signals 

Ang1 and Tie2 Stabilize vessels, inhibit permeability 

PDGF-BB and receptors Recruit smooth muscle cells 

TGF-β and receptors Stimulate extracellular matrix production 

FGF, HGF Stimulate angiogenesis 

Integrins Receptors for matrix macromolecules and proteinases 

Plasminogen activators, MMPs Remodel matrix, release and activate growth factors 

  

  

Inhibitors Function 

VEGFR-1, soluble VEGFR-1 Sink for VEGF, VEGF-B 

Ang2 Antagonist of Ang1 

TSP-1,-2 Inhibit endothelial migration, growth, adhesion and survival 

Angiostatin Suppresses tumor angiogenesis 

Endostatin Inhibits endothelial survival and migration 

Platelet factor-4 Inhibits binding of bFGF and VEGF 

Prolactin Inhibits bFGF/VEGF 

Interferons and interleukins Inhibit endothelial migration; downregulate bFGF 

 

Table 3.1 Angiogenesis activators and inhibitors 

 

 

3.2.4 Structure and function of tumor vessels 

Tumor vessels are structurally and functionally abnormal: their walls have numerous “openings” 

and a discontinuous or absent basement membrane. In addition, the endothelial cells are 

abnormal in shape, growing on top of each other and projecting into the lumen. These defects 

make tumor vessels leaky (Hobbs et al., 1998; Hashizume et al., 2000; Dvorak et al., 1999).  
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3.3 Angiogenic phenotype of pancreatic cancer 

 

Although pancreatic cancer is not a grossly vascular tumor, it often exhibits enhanced foci of 

endothelial cell proliferation. Moreover, several (Korc, 2003; Seo et al., 2000; Linder et al., 

2001; Fujioka et al., 2001; Mirecka et al., 2001; Stipa et al., 2002; Niedergethmann et al., 2002; 

Khan et al., 2002; Kuwahara et al., 2003; Shibaji et al., 2003; Karademir et al., 2000; Ikeda et al., 

1999; Ellis et al., 1998) but not all (Fujimoto et al., 1998) studies have reported a positive 

correlation between blood vessel density and disease progression in cases of pancreatic cancer, 

supporting the important role of angiogenesis in this disease.  

At the molecular level, numerous factors have been shown to be involved in pancreatic cancer 

angiogenesis. Among this growing list of growth factors, VEGF is believed to be critical for 

pancreatic cancer angiogenesis (Korc, 2003; Xie et al., 2004). Several studies have shown that 

VEGF expression correlates with microvessel density and disease progression (Korc, 2003; Seo 

et al., 2000; Niedergethmann et al., 2002, 2000; et al., 1999; Knoll et al., 2001). Additionally, 

VEGF-c is overexpressed in pancreatic cancer and correlated with enhanced lymph node 

metastasis (Tang et al., 2001). Moreover, pancreatic cancers overexpress several other mitogenic 

growth factors that are also angiogenic, such as EGF, TGF-α, HGF, FGFs and PDGF-β (Korc, 

2003; Balaz et al., 2001). Together, these factors may produce mitogenic activity in an autocrine 

and paracrine fashion, promoting pancreatic tumor cell growth and angiogenesis and eventually 

enhancing pancreatic tumor invasion and metastasis.  

 

3.4 Therapeutic angiogenesis 

 

Inhibition of neo-angiogenesis is a new and attractive target for tumor therapy, since it 

theoretically offers the hope of long-term control of tumor progression. Antiangiogenic therapy 

offers a number of potential benefits including lack of resistance to some agents, synergistic 

interaction to other modalities, lack of significant toxicity compared with conventional agents, 

and a potent antitumor effect. Administration of angiogenesis inhibitors might keep the tumor 

and its metastases dormant (rather than killing it), and co-administration of cytotoxic drugs 

might kill it (Teicher et al., 1995; Satoh et al., 1998).  

Consistent with the roles of the factors described above, anti-angiogenic therapies have been 

demonstrated to suppress tumor growth in animal models of pancreatic cancer (Bruns et al., 

2000-2004).  
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Based on successful preclinical data, several anti-angiogenic agents alone or in combination with 

conventional therapies are now in clinical trials (Table 3.2; www.cancertrials.nci.nih.gov). 

Numerous studies have been conducted to investigate the effects of different receptor tyrosine 

kinase inhibitors (Table 3.2).  

 

Drug Mechanism 
  
Phase I  
PTK787/ZK2284 Blocks VEGF-receptor signaling 
Matuzumab EGFR1 monoclonal antibody 
Erlotinib EGFR kinase inhibitor  
Vatalanib VEGFR kinase inhibitor 
SU6668 Blocks VEGF-, FGF- and PDGF-receptor signaling 
Phase II  
Imatinib PDGFR kinase inhibitor 
Cetuximab EGFR1 monoclonal antibody 
Erlotinib EGFR kinase inhibitor  
Phase III  
SU5416 Blocks VEGF-receptor signaling 
Thalidomide Unknown 
AG3340 Synthetic MMP inhibitor 
Interferon-α Inhibition of bFGF and VEGF production 
IM862 Unknown mechanism 
Marimastat Synthetic MMP inhibitor 

 

Table 3.2 Angiogenesis inhibitors in clinical trials for cancer (including pancreatic cancer) 

 

However, as tumors grow, they begin to produce a wider array of angiogenic molecules. 

Therefore, if only one molecule (for example, VEGF) is blocked, tumors may switch to another 

molecule (for example, bFGF or IL-8). Thus we may require a cocktail of antibodies/inhibitors. 

 

Several oncogenes and their intracellular protein products such as v-src and v-ras induce the up-

regulation of angiogenic factors such as VEGF, EGF, bFGF and PDGF and increase the 

production of cytokines and proteolytic enzymes (Mukhadopathyay et al., 1995; Jiang et al., 

1997; Kerbel et al., 1998; Okada et al., 1998; Kypta et al., 1990; Arbiser et al., 1997). In this 

respect, targeting intracellular proteins might be a promising approach in angiogenesis therapy of 

pancreatic cancer.  
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3.5 Kinases of the Src family nonreceptor protein tyrosine kinases 

 

One of the potential intracellular therapeutic targets receiving considerable recent attention is 

activation of c-Src, a nonreceptor protein tyrosine kinase. In pancreatic adenocarcinomas, src is 

activated in more than 70% of primary tumors (Coppola, 2000). 

 

3.5.1 The discovery of c-Src proto-oncogene 

In 1911, Peyton Rous first described a viral agent capable of inducing tumors in chickens 

providing evidence for the transmissible nature of cancer (Rous, 1911). This seminal work went 

largely unappreciated and uncorroborated until the 1950s, when tumor cells were shown to arise 

from infection with the Rous sarcoma virus (Rubin, 1955). This finding was confirmed when 

temperature sensitive activated v-Src mutants failed to transform cells at non-permissive 

temperatures, demonstrating a requirement for the active virus in cellular transformation (Martin, 

1970). In the 1970s, Brugge and colleagues isolated and identified v-Src as the transforming 

protein of the oncogenic Rous sarcoma virus utilizing tumor bearing rabbit serum (Brugge et al., 

1977). Additional experiments demonstrated that the viral Src gene (v-Src) has a highly 

conserved and ubiquitously expressed cellular homologue, c-Src, which is present in normal 

cells (Stehelin et al., 1976). Src was not only the first proto-oncogene identified, it was also the 

first demonstrated to possess intrinsic protein kinase activity (Collett et al., 1978; Levinson et al., 

1978) spawning both a search for similar protein tyrosine kinases and investigations into the role 

of Src in regulating cellular behavior. The last two decades have witnessed an explosion in Src 

research, including the recent development of selective small molecule inhibitors that target Src.  

 

3.5.2 Src family members 

The non-receptor protein tyrosine kinase Src is the prototypical member of a kinase family that 

includes Yes, Fyn, Lyn, Lck, Hck, Fgr, Yrk, Frk and Blk. This group is collectively known as 

the Src family kinases (SFKs), and, in contrast to receptor protein tyrosine kinases (VEGFR, 

EGFR, PDGFR), is not comprised of transmembrane proteins (Neet et al., 1996).  

Tyrosine kinases catalyze the transfer of phosphate from ATP to a tyrosine residue of specific 

cell protein targets. 

 

3.5.3 Structural organization of Src proteins 

As a result of mutational studies and structural modeling based on crystallography data, the 

structure of Src has been well characterized.  
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In vertebrates the proteins of the Src family have similar structure (Brown et al., 1996). The 

proteins of this group, ranging in molecular mass from 52 to 62 kD, comprise six distinct 

functional domains (Fig. 3.1 and 3.2): Src homology domain 4 (SH4), a unique domain, SH3 

domain, SH2 domain, a catalytic domain (SH1), and a C-terminal regulatory region. 

The SH4 domain is a region containing from 15 to 17 amino acid residues which comprises 

signals for modification with fatty acids (Rech, 1993). The glycine at position 2 is myristylated, 

thus binding protein tyrosine kinase (PTK) to the cell membrane. Nonmyristylated Src molecules 

do not bind to membranes. On the other hand, some Src molecules carrying this modification can 

be found unlinked in the cytosol. Myristylation probably does not guarantee association of the 

protein with the membrane. In addition to myristylation signals, the Src SH4 domain contains 

basic amino acid residues which are substrates for post-translational palmitylation. Only 

myristylated molecules are palmitylated and consequently this process probably occurs on the 

membrane. Palmitylation is a reversible process. Regulated depalmitylation and repalmitylation  

 

 
 

Figure 3.1 Ribbon diagram illustrating the structure of human Src. Key phosphorylation sites are 

included. 
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Figure 3.2 Domain structure of Src protein. Key phosphorylation sites are included. 

 

may be a mechanism for the changing of the Src family kinases localization in response to 

corresponding stimulation (Kaplan et al., 1988; Pellman et al., 1985). 

The unique domain (amino acid residues 18-84) is specific for each Src family protein. This 

region is suggested to be responsible for specific interaction of the PTK with particular receptors 

and protein targets (Thomas et al., 1997). At the same time, Src is a single member of the Src 

kinase group which is phosphorylated at Thr-34, Thr-46, and Ser-72 by a cyclin-dependent 

kinase (Cdc2) and cyclin B complex in M phase (Superti-Furga et al., 1995). The effect of this 

phosphorylation is unclear. Moreover, the unique domain contains the protein kinase C (PKC) 

binding sites – Ser-12 and Ser-48 – which are phosphorylated in the cells during PKC activation. 

The SH3 domain (amino acid residues 85-140) is necessary for interactions with protein 

substrates and it also ensures the intramolecular bindings controlling catalytic activity, protein 

localization in the cell, and association with protein targets (Pawson, 1995). The SH3 domain of 

Src has a globular structure, one side of which is slightly hydrophobic and contains a cluster of 

acidic residues. This domain binds to the proline-rich regions of PTK substrates. All known SH3 

ligands carry a consensus sequence PXXP. Amino acid residues adjacent to pro-line determine 

specificity of SH3 domains (Riskles et al., 1995). The SH3 ligands may bind to this domain both 

in NH2–COOH and COOH–NH2 orientation (Yu et al., 1994). 

The SH3 sequences as well as the SH2 and the catalytic domains shown below, have been found 

in cellular proteins of different classes. 

The SH2 domain is a second modulating region (amino acid residues 141-260), which controls 

the range of proteins interacting with the Src family kinases. The SH2 domains of different PTK 

recognize a short amino acid sequence carrying phosphotyrosine. From three to five amino acid 
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residues following tyrosine determine the specificity of individual SH2 domains (Songyang et 

al., 1993). In kinases of the Src family this region is more conserved than the SH3 domain and 

can be tightly bound with specific proteins phosphorylated by tyrosine. The SH2 domains of Src 

and Lck kinases carry deep hydrophobic pockets for interactions of amino acid Ile at position pY 

+ 3. Some proteins interacting with Src contain an optimum binding structure, pYEEI. However, 

not all proteins binding to the SH2 domain of Src possess such phosphorylated sequence. 

A mutation in the SH2 domain in the region of amino acid residues from 142 to 169 leads to cell 

transformation (Raymond et al., 1987). This mutation probably affects Src binding to substrates, 

cytoskeletal proteins in particular (see below). 

The kinase domain (amino acid residues 265-516) is found in all proteins of the Src family as 

well as in other PTK. It is responsible for tyrosine kinase activity and plays a crucial role in 

substrate specificity (Hesketh, 1995). Certain amino acid residues within this domain are 

identical in all kinases and involved in ATP binding and the phosphotransferase reaction 

(Hughes, 1996). 

The kinases of the Src family may bind some substrates after phosphorylation, thus promoting 

phosphorylation of other sequences of one or several neighboring substrate molecules (Mayer et 

al., 1995). A strict specificity towards Tyr but not towards Ser or Thr is due to the close 

proximity of a conserved loop present in all tyrosine kinases (FP425IKWTA in Src) to the main 

chain of the substrate. Proline facilitates binding to the phenylalanine ring of tyrosine, but is 

ineffective in binding substrates carrying serine or threonine. 

Phosphorylation of Tyr-416 stimulates complete activation of Src and provides a binding site for 

SH2 domains of other cellular proteins. The elimination of Leu-516, highly conserved in all 

protein tyrosine kinases and located in the catalytic domain, interferes with the transforming 

activity of p60 v-Src (Yaciuk et al., 1986). 

The C-terminal region (amino acid residues from 517 to ~536) plays a significant role in 

regulation of Src kinase activity. All kinases of the Src family have a C-terminal region of 15-19 

amino acid residues with tyrosine at the constant position surrounded by conserved amino acids 

(Tyr-527 in Src). It has been shown that elimination of phosphotyrosine from the normal Src 

increases its kinase activity (Schwartzberg, 1998). Phosphorylation of the C-terminal Tyr 

inhibits kinase activity by more than 98% and suppresses all stimulating effects caused by 

phosphorylation of Tyr-416 in the catalytic domain (Van Hoek et al., 1997). 

 

 

 



  Chapter 3. Introduction  

 - 20 - 

3.5.4 Structural differences between v-Src and c-Src proteins 

The main difference between v-Src and c-Src is found in the structure of their C-terminal regions 

(Fig. 3.3). The last “tail” 19 amino acids of c-Src contain Tyr-527, which plays a regulatory role 

controlling kinase activity (Yaciuk et al., 1986; Dorai et al., 1991). In v-Src these 19 amino acids 

are replaced by 12 amino acids present in all known RSV strains. The only exception is v-SrcLM 

whose atypical structure is associated with a decreased metastatic potential of transformed cells 

(Tatosyan et al., 1996). It has been recently demonstrated that in metastases of human colon 

cancer, the c-Src protein has mutations just in this region. It should be mentioned that now this is 

the most reliable example of the role of mutations in the src gene in human carcinogenesis (Irby 

et al., 1999). 

 

 
 

Figure 3.3 Domain structure of cellular (c-) and viral (v-) Src 

 

 

3.5.5 Regulation of Src kinases 

The SH2 and SH3 domains play a key role in regulation of catalytic activity of the Src family 

kinases. X-Ray analysis has demonstrated how intramolecular interactions between SH2 and 

SH3 domains stabilize inactive conformational structure of Src kinases. Both domains are 

adjacent to the kinase domain from the side opposite to the catalytic cleft. The SH3 domain 

interacts with the catalytic domain and linker sequences located between SH2 and catalytic 

domains (Fig. 4) (Xu et al., 1999). The SH2 domain interacts with phosphotyrosine at position 

527 localized in the C-terminal region of the protein. Tyr-527 in c-Src, as well as the 

corresponding tyrosine residues in other PTK are the primary phosphorylation sites in vivo. This 

base is phosphorylated by the cytoplasmic kinase Csk (Nada et al., 1991). The loss of Tyr-527 or 

its dephosphorylation leads to stimulation of Src catalytic activity. This conclusion is based on a 

number of experimental data: the substitution of Tyr-527 by another amino acid residue 

constitutively activates c-Src (Kmiecik et al., 1987); this region is absent from the v-Src protein 

(Reynolds et al., 1987); the inhibition of the csk gene activity stimulates activity of PTK of the 
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Src family (Imamoto et al., 1993). Therefore, it has been suggested that phosphorylation of the 

C-terminal tyrosine by Csk kinase provides intramolecular interaction of this region with the 

SH2 domain thus preserves the Src protein in a closed inactive form. 

Mutations in the SH3 domain also lead to activation of Src kinases, although the role of the SH3 

domain in inhibition of protein enzymatic activity is obscure. The kinase domain apparently 

remains accessible even in “closed” conformation, namely, when the SH2 domain is associated 

with phosphotyrosine at position 527 (Fig. 3.4). The SH3 domain forms an independent 

intramolecular contact with the N-terminal fragment of the kinase domain. Accordingly, kinase 

inactivation may result from the formation of a rigid structure stabilized by double bonds 

between the SH2 and SH3 domains and the catalytic region of the protein. Such structure 

prevents any movement inside the kinase domain. Mutations in any of the interacting regions of 

the Src protein disrupt the rigid structure of the molecule; this, in turn, destabilizes other 

intramolecular interactions. Consequently, both the SH2 and SH3 domains regulate kinase 

activity by intramolecular contacts. Abnormal interactions may be the main activation  

 

 
 

Figure 3.4 Regulation of Src activity: 
a) Closed autoinhibited state;  
b) Open intermediate state induced either by interactions of the SH3 and SH2 domains 
with the Src protein partners or by dephosphorylation of the C-terminal Tyr-527. This 
makes Tyr-416 accessible for phosphorylation;  
c) Open activated form with phosphorylated Tyr-416 
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mechanism of the Src proteins. It cannot be excluded that these domains play a similar role in 

regulation of kinase activity in proteins that lack phosphotyrosine in the C-terminal region (Fps, 

Abl) (Pawson et al., 1992). It should be noted that the above-mentioned mechanism not only 

precisely regulates kinase activity of the Src proteins, but controls the interactions of SH2 and 

SH3 domains with other molecules, thus providing different levels of Src regulation. 

As shown above, the regulation of Src activity occurs at two sites, the modification of each of 

them leads to opposite results. The phosphorylation of Tyr-416 in the activating loop of the 

kinase domain activates the enzyme, while the phosphorylation of the C-terminal Tyr-527 causes 

its inactivation. Different regulatory elements controlling Src activity affect only particular 

regions in the kinase domain. These effectors contain amino acid residues involved in catalysis 

or substrate binding (Sichei et al., 1997). They may be the activating loop (amino acid residues 

404-432), the catalytic loop (the region around the amino acid at position 382), and the C-helix 

(the region around the amino acid at position 310). The modulation of their position and 

conformation by phosphorylation and interaction with regulatory subunits may control catalytic 

activity. 

In vivo the Src kinase can be phosphorylated only at one of two tyrosine residues. The model for 

Src tyrosine kinase activation includes three subsequent stages (Fig. 3.4). 

The activating loop plays a central role in regulating kinase activity. Its phosphorylation at Tyr-

416 in Src (or homologous amino acid residues in other tyrosine kinases) is necessary for 

complete activation of most kinases studied so far. In the absence of phosphorylation, the 

activating loop acquires different conformations, which often inhibit protein–protein 

interactions. A nonphosphorylated activating loop can inhibit kinase activity either directly, 

disturbing the region involved in activation, or indirectly, conferring a specific conformation, 

which prevents substrate binding. Conversely, in the phosphorylated state, the conformation of 

the activating loop is similar in all known kinases. In this active conformation the loop forms a 

part of the site recognized by the substrates (Xu et al., 1997). 

 

3.5.6 Src substrates 

The proteins tyrosine phosphorylated as a result of src gene function are briefly summarized in 

Table 3.3.   

 

3.5.7 Role of Src in regulation of cellular processes 

c-Src is a multifunctional protein involved in the regulation of a variety of normal processes, 

including proliferation, differentiation, survival, motility, angiogenesis, and functions of fully 
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differentiated cells (Thomas and Brugge, 1997). To carry out these activities, c-Src interacts with 

numerous cellular factors, including cell surface receptors (EGF family, CSF-1, PDGF, and FGF 

receptors, as well as integrins, cell-cell adhesion molecules, etc. [Biscardi et al., 2000; Irby and 

Yeatman, 2000; Owens et al., 2000; Moro et al., 2002]), steroid hormone receptors (Migliaccio 

et al., 1996, 2000; Boonyaratanakornkit et al., 2001), components of pathways regulated by 

heterotrimeric G proteins (Luttrell et al., 1999; Ma et al., 2000), STATs (Silva et al., 2003), focal 

adhesion kinase (FAK) (Kaplan et al., 1994), the adaptor proteins p130Cas (Burnham et al., 

2000) and Shc (Sato et al., 2002), and many others. Each of these partners represents a different 

class of proteins and functions in unique signaling pathways for       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Target proteins for Src kinases 
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which the molecular nature and biological consequences of the interactions with c-Src have been 

investigated. The interactions between c-Src and other molecules can be found in Figure 3.5. Src 

is also implicated in invasion and angiogenesis, the latter property of which will be extensively 

discussed below (3.7).  

 

 
 
 

Figure 3.5 c-Src is a protein involved in the regulation of a variety of biological processes, including 
proliferation, differentiation, survival, motility, angiogenesis, and functions of fully differentiated 

cells. 
RTK, receptor tyrosine kinase; PI3K, phosphatidylinositol 3-kinase; STAT3, signal transducers 
and activators of transcription 3; IKK, InB kinase; MAPK, mitogen-activated protein kinase; 
MEK, mitogen-activated protein kinase kinase; ERK, extracellular signal-regulated kinase; NF-
κB, nuclear factor-κB; FAK, focal adhesion kinase.  
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3.6 Src activation and tumor progression 

 

The likely regulators, or types of regulation, which can lead to Src’s conformational “opening” 

and activation that might occur in cancer cells are shown in Figure 3.6.  

 

 
 

Figure 3.6 Regulation of Src activity in tumor cells 

 

The relationship between Src activation and cancer progression appears to be significant. The 

evidence underlying this hypothesis is largely based on the observation that both Src protein 

levels and, to a greater degree, Src protein kinase activity, are frequently elevated in human 

neoplastic tissues when compared to adjacent normal tissues. Moreover, these levels appear to 

increase with the stage of disease. Similarly, increased Src protein kinase activity has been 

observed in numerous human cancer cell lines derived from these tumors. 

Src kinase activity, from 4 – 20-fold higher than normal tissues, has been found in human 

mammary carcinomas (Egan et al., 1999; Jacobs and Rubsamen, 1983; Muthuswamy et al., 

1994; Verbeek et al., 1996). Similarly, cell lines derived from these tumors display up to a 30-

fold elevation in Src activity. 

The c-Src proto-oncogene has frequently been implicated in the initiation and progression of 

human colon cancer (Bolen et al., 1987a; Cartwright et al., 1989, 1990, 1994; Weber et al., 

1992). Src activity is increased 5 – 8-fold in the majority of colon tumors.  

Elevated Src protein levels and/or kinase activity has been reported in lung (50 – 80%) 

(Mazurenko et al., 1992), neural (23/27 neuroblastomas, 3/3 retinoblastomas) (Bjelfman et al., 
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1990; Bolen et al., 1985), ovarian (Budde et al., 1994; Wiener et al., 1999), esophageal (3 – 4-

fold increases in activity in Barrett’s esophagus and 6-fold elevations in adenocarcinomas) 

(Kumble et al., 1997) and gastric cancers (Takeshima et al., 1991), as well as melanoma (Bjorge 

et al., 1996) and Kaposi’s sarcoma (Munshi et al., 2000).  

Src activity has recently been studied in pancreatic cancer. Lutz et al. (1998) examined 

pancreatic ductal carcimonas as well as pancreatic cell lines for elevated Src protein levels and 

kinase activity. Src protein levels were elevated in 13/13 pancreatic cancers and in 14/17 

pancreatic cell lines. Kinase activity was only detectable in cancer cells and this activity did not 

correlate with either the c-Src or Csk protein levels. 

 

3.7 Src and tumor angiogenesis 

 

There is a significant amount of data supporting the influence of Src on tumor angiogenesis and 

metastasis.  

Src activation is required for hypoxia-mediated expression of VEGF (Mukhopadhyay et al., 

1995). More recently, Trevino et al. (2005) have shown that Src regulates both constitutive and 

growth factor-induced VEGF and interleukin-8 expression and that Src activation up-regulates 

VEGF mRNA transcription by activation of signal transducers and activators of transcription 3, 

which forms a complex with hypoxia-inducible factor-1 and other factors on the VEGF promoter 

(Gray et al., 2005). The experiments by Ellis et al. (1998) demonstrated that antisense Src 

strategy was effective in reducing both constitutive and hypoxic-induced VEGF production in a 

human colon carcinoma cell line. In addition, how Src links between VEGF stimulation and the 

control of cell survival remains to be determined. It has been shown that receptor tyrosine 

kinases activate Src by autophosphorylation of tyrosine residues that function as docking sites 

for the SH2 domain of Src kinases on the receptor itself or by phosphorylation of docking 

proteins. Binding of the SH2 domain of Src to tyrosine phosphorylation site on VEGFR or on a 

docking protein releases Src from the autoinhibited state and enables the catalytic activity to be 

stimulated by autophosphorylation of a key tyrosine residue in the activation loop of the catalytic 

core. Once activated, Src could link VEGF-stimulation with the PDK/PKB signaling cassette 

leading to stimulation of endothelial cell survival and angiogenesis.  

There is also evidence that Src cooperates with the EGFR in growth signaling (Roche et al., 

1995; Wilson et al., 1989). Fibroblasts that overexpress Src display an enhanced mitogenic 

response to EGF, an effect that is independent on Src’s myristylation and catalytic activity 

(Luttrell et al., 1988). However, the molecular understanding of synergy between Src and the 



  Chapter 3. Introduction  

 - 27 - 

EGFR in mitogenic signaling is much less advanced than for PDGFR (Mori et al., 1993; Broome 

et al., 1999; Stover et al., 1996), although it seems likely that Src and activated EGFR form a 

complex and that EGF induces Src activation (Biscardi et al., 1999). 

Further, Karni et al. have demonstrated the ability of constitutively active Src to induce HIF-

1alpha under normoxic conditions (Karni et al., 2002) suggesting that Src activation, regardless 

of mechanism, can augment VEGF production and angiogenesis. Ongoing work from this 

laboratory has demonstrated a role for Src in regulating VEGF expression in other tumor types 

including pancreatic cancer, where Src activation of the PI3kinase/Akt signaling pathway is 

required (Summy et al., 2006). As Src is a regulator of multiple signal transduction pathways, it 

should not be surprising that Src is important in regulating other pro-angiogenic factors such as 

bFGF, and IL-8.  

In addition to regulating VEGF and bFGF expression, Src regulates responses to these factors in 

both tumor and endothelial cells. Elicieri and co-workers have shown both bFGF and VEGF are 

able to induce Src activation in avian endothelial cells (Elicieri et al., 1999). Additionally, 

overexpression of the dominant negative Src induces apoptotic cell death in the VEGF-treated 

endothelial cells suggesting a survival function for Src during VEGF-induced angiogenesis. 

Similar results were obtained when utilizing a virus that encodes Csk, a protein tyrosine kinase 

that inhibits Src activity by phosphorylating Tyr-530 in the c-terminal tail.  

Overexpression of a kinase-inactive Src also resulted in reduced phosphorylation of paxillin and 

cortactin, suggesting a role for Src in actin cytoskeletal rearrangement and migration (Kilarski et 

al., 2003).  

As in tumor cells, activated Src promotes a mesenchymal-like phenotype in endothelial cells, 

increasing migratory potential of these cells as well (Potter et al., 2005). 

There is convincing evidence that the linked activities of Src and focal adhesion kinase (FAK) 

control cell migration. In support of a role for Src, cells expressing kinase-defective v-Src have 

enlarged focal adhesions and their migration is suppressed (Fincham et al., 1998). Src and FAK 

co-localize at integrin adhesion sites and cooperate with growth factor receptors, such as EGF 

and PDGF to induce signaling pathways that control diverse aspects of cell behavior, including 

growth, survival and migration (Figure 3.7).  
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Figure 3.7 Src, FAK and adhesion turnover during fibroblast migration (Frame, 2002) 

 

Current results suggest Src activation in tumor cells indirectly regulates Src activity in 

endothelial cells. Increased Src activity in the tumor cells increases VEGF expression, resulting 

in increased binding to VEGF receptors on endothelial cells. This process then leads to 

association of Src with these receptors, increasing Src activity in endothelial cells as well. This 

continuing cycle promotes Src-mediated increases in migratory potential and permeability of 

endothelial cells and facilitates tumor cell extravasation (Figure 3.8). The importance of 

targeting tumor-associated endothelial cells for therapeutic efficacy has been highlighted from 

recent work on inhibitors of receptor tyrosine kinases in clinical trial (Table 3.2) (Yokoi et al., 

2005; Thaker et al., 2005; Yazici et al., 2005; Lev et al., 2005, Yigitbasi et al., 2004). Inhibitors 

of Src thus have the potential to interfere with this cycle by affecting biological functions in both 

tumor and tumor-associated endothelial cells that contribute to metastasis.  
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Figure 3.8 Model by which Src activity mediates biologic functioning of tumor cells and 
endothelial cells, and promotes intercellular signaling to promote tumor progression and 
metastasis. * Indicates the signaling molecules and/or cellular functions potentially affected by 
Src kinase inhibition. 
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Chapter 4 

 

THESIS PROPOSAL 
               
 
 

The prevalence of activated Src in cancer indicates that this protein plays a significant role in the 

progression of many cancers, but since all of them (and specially pancreatic cancer) are 

angiogenesis dependent, the main goal of the work described in this thesis was to demonstrate 

the role of Src family protein kinases in pancreatic tumor progression with special emphasis on 

angiogenic regulation, and how Src inhibitors may affect this process (Figure 4). 
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Figure 4 Thesis proposal: inhibition of Src tyrosine kinase as an anti-angiogenic therapy of 
human pancreatic cancer 
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5.1  Materials 

 

5.1.1 Laboratory equipment 

 0.45 µm sterile filters     BD Falcon, France 

 –20ºC Freezer      Siemens AG, Germany   

 4ºC Fridge      Siemens AG, Germany 

 5 ml FACS tubes     BD Biosciences, Belgium  

 –80ºC Freezer      Heraeus, Hanau, Germany 

 Automatic pipettes     Gilson, Middleton, WI, USA 

 AxioCam MRc5 camera    Carl Zeiss GmbH, Germany 

 Blotting chamber     Bio-rad, Munich, Germany 

 BD Biocoat™ Matrigel invasion chamber  BD Biosciences, Belgium 

 Cell counting chambers    Bürker-Türk, Germany 

 Centrifuges      Eppendorf, Germany 

 CO2 Incubators     Heraeus, Rodenbach, Germany 

 Digital Precision Scale    KERN & Sohn GmbH, Germany 

 Embedding cassettes     Leica Microsystems GmbH, Germany 

 Fluorescence-activated cell sorter (FACS)  Becton Dickinson, USA 

 Gel electrophoresis systems    Bio-rad, Munich, Germany 

 Heating block      Biometra, Germany 

 Hybond-P membrane     Amersham Biosciences, Germany 

 Hyperfilm      Amersham Biosciences, Germany 

 Kinetic microplate reader    υ max, USA    

 Laminar flow hoods     Heraeus, Hanau, Germany 

 Liquid nitrogen tank     MVE, New Prague, MN, USA 

 Microscopes      Carl Zeiss GmbH, Germany 

 pH-meter      WTW, Weilheim, Germany 

 Positively-charged superfrost slides   Menzel-Glaeser, Germany  

 Rocking Platforms     Biometra GmbH, Göttingen, Germany 

 Rotary microtome     Leica Microsystems GmbH, Germany 

 Semi-Dry Electrophoretic Transfer Cell  Bio-rad, Munich, Germany   
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 Sterile cell scrapers     TPP, Switzerland 

 Sterile cryotube vials     TPP, Switzerland 

 Sterile tissue culture plastic flasks and plates NUNC, Denmark 

 Sterile tissue culture plastic tubes, dishes, pipets TPP, Switzerland 

 Tissue embedding console system   Sakura, Torrance, CA, USA  

 Vortex       IKA Works, Wilmington, NC, USA 

 Water bath      GFL, Burgwedel, Germany 

 X-ray film developing machine   AGFA, Germany 

 

5.1.2 Chemical reagents and other research solutions 

 2-Mercaptoethanol     Merck, Darmstadt, Germany 

 3,3′,5,5′-Tetramethylbenzidine tablets (TMB) Sigma-Aldrich GmbH, Germany 

 30% Acrylamide/Bis Solution   Roth, Karlsruhe, Germany 

 4',6-diamino-2-phenylindole (DAPI)   Molecular Probes, USA  

 D,1-Dithiothreitol (DTT)    Sigma-Aldrich GmbH, Germany 

 Acetic acid 96%     Sigma-Aldrich GmbH, Germany 

 Ammonium Persulfate    Sigma-Aldrich GmbH, Germany 

 Aprotinin      Roche Diagnostics GmbH, Germany 

 ATP       Sigma-Aldrich GmbH, Germany   

 Bovine serumalbumin (BSA)    Sigma-Aldrich GmbH, Germany 

 Dimethylsulfoxide (DMSO)    Sigma-Aldrich GmbH, Germany

 EDTA       Sigma-Aldrich GmbH, Germany

 Protein G Sepharose 4 fast flow   Amersham Biosciences, Germany 

 Ethanol      Merck, Darmstadt, Germany  

 Glycerol      Merck, Darmstadt, Germany 

 Glycine for electrophoresis    Merck, Darmstadt, Germany 

 HEPES      NeoLab GmbH, Germany 

 Isopropanol      Merck, Darmstadt, Germany   

 Leupeptin A      Roche Diagnostics GmbH, Germany 

 Magnesium Chloride     Merck, Darmstadt, Germany 

 Methanol      Merck, Darmstadt, Germany 

 Nonidet P-40      Roche Diagnostics GmbH, Germany 

 Phenylmethylsulfonyl fluoride (PMSF)  Sigma-Aldrich GmbH, Germany 

 Phosphate citrate buffer with Sodium Perborate Sigma-Aldrich GmbH, Germany 
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 Poly (Glu, Tyr) sodium salt    Sigma-Aldrich GmbH, Germany 

 Ponceau S      Sigma-Aldrich GmbH, Germany 

 Pre-stained protein ladder    Invitrogen Corporation, Germany 

 Protease inhibitor cocktail tablets   Roche Diagnostics GmbH, Germany 

 Skim milk powder (blotting grade)   Sigma-Aldrich GmbH, Germany 

 Sodium Chloride     Merck, Darmstadt, Germany 

 Sodium Citrate     Sigma-Aldrich GmbH, Germany 

 Sodium Hydroxide     Sigma-Aldrich GmbH, Germany 

 Sodium Vanadate     Sigma-Aldrich GmbH, Germany 

 Sodiumdodecylsulfat (SDS)    Biorad, Munich, Germany 

 Sulphuric Acid     Merck, Darmstadt, Germany 

 Tetramethylethylendiamine (TEMED)  ICN Biomedicals Inc, Aurora, USA 

 Tris base      Sigma-Aldrich GmbH, Germany 

 Triton-X100      Sigma-Aldrich GmbH, Germany 

 Propidium Iodide     Sigma-Aldrich GmbH, Germany 

 Human fibronectin     Sigma-Aldrich GmbH, Germany 

 Trypan blue      Serva, Heidelberg, Germany 

 Tween 20      Merck, Darmstadt, Germany  

 Water for molecular biology    Maxim Biotech GmbH, Germany  

 Xylene       Merck, Darmstadt, Germany 

  

5.1.3 Drugs 

AZM475271 (Scheme 5.1) is a novel anilinoquinazoline inhibitor of c-Src. AZM475271 was 

synthesized and kindly provided by AstraZeneca Pharmaceuticals (Macclesfield, United 

Kingdom). For in vivo administration, AZM475271 was dissolved in Tween 20 diluted 1:100 in 

NaCl, for in vitro applications the AZM475271 stock was prepared in DMSO and stored at + 

4°C.  
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Scheme 5.1 Structure of the novel anilinoquinazoline inhibitor of c-Src AZM475271 
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4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2, Calbiochem, San 

Diego, CA, USA) is a potent and selective inhibitor of the Src family of tyrosine kinases that is 

similar to PP1. For in vitro studies PP2 (Scheme 5.2) was used as a comparable 

chemotherapeutic agent. PP2 was supplied as a 3.33 mmol/L stock in DMSO and stored at + 

4°C.  

 

 
 

Scheme 5.2 Structure of the selective inhibitor of the Src family of protein tyrosine kinases PP2 

 

5.1.4 Cell lines  

 

Human highly metastatic pancreatic carcinoma cell line L3.6pl 

For our in vivo and in vitro experiments we used variants of a human pancreatic adenocarcinoma 

cell line COLO 357. This cell line derived from a celiac axis lymph node that was partially 

replaced by neoplastic foci of well differentiated mucin-containing pancreatic ducts and it was 

originally isolated 1980 by a group from Colorado Morgan et al.  

For in vivo selection of highly metastatic human pancreatic cancer cells, we injected cells from 

the original fast growing, low metastatic FG cell line derived from COLO 357 into the pancreas 

of nude mice. To produce liver lesions, human pancreatic cancer cells implanted into the 

pancreas must complete all the steps of the process. The lesions then are designated as 

spontaneous metastases. Spontaneous liver metastases were then harvested, established in tissue 

culture, and designated as L3.4pl. Cells harvested from these cultures were injected into the 

pancreas of another set of nude mice. Liver lesions were again isolated and cells were 

established in culture. After three such selection cycles, the cell line L3.6pl was established in 

culture (Fig. 5.1). Cytogenetic analysis confirmed the human origin of the cells.  
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Figure 5.1 In vivo selection of metastatic human pancreatic cancer cells 
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The highly metastatic cell line L3.6pl showed an aggressive primary tumor growth in nude mice 

with spontaneous liver metastases (50% of animals) and spontaneous lymph nodes metastases 

(100% of animals), 50% of animals bearing L3.6pl cancer died after 36 days, whereas more then 

60% of animals after the injection of parental FG cell line survived up to 100 days (Fig. 5.2). 

L3.6pl cells produced pro-angiogenetic factors such as VEGF, bFGF, as well as IL-8 and tumor 

samples presented with a high amount of microvascularisation. In vitro studies, IHC analyses 

and in situ hybridization of tumor samples showed a significantly low expression of E-cadherine 

and MMP-9/2 level in L3.6pl cells in contrast to the parental cell line (Bruns et al., 1999). 
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Figure 5.2 Kaplan-Meier survival test 

 

Human umbilical vein endothelial cells (HUVECs) 

 

HUVECs were purchased from PromoCell (PromoCell GmbH, Heidelberg, Germany). 

 

5.1.5 Media and supplements 

 

 10-fold trypsin-EDTA    Biochrom AG, Berlin, Germany 
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 10-fold vitamin solution    Biochrom AG, Berlin, Germany 

 Ampicillin      Gibco Invitrogen, Germany 

 Dulbecco´s Modified Eagle Medium (D-MEM) Gibco Invitrogen, Germany 

 Endothelial Cell Growth Medium   PromoCell GmbH, Germany 

 Fetal Bovine Serum (FBS)    Biochrom AG, Berlin, Germany 

 Fetal Calf Serum     PromoCell GmbH, Germany 

 Human  fibronectin     Sigma-Aldrich GmbH, Germany 

 Kanamycin      Gibco Invitrogen, Germany  

 L-Glutamin      Biochrom AG, Berlin, Germany 

 Nonessential amino acids (10-fold solution)  Biochrom AG, Berlin, Germany 

 Penicillin-streptomycin mixture   Biochrom AG, Berlin, Germany 

 Sodium Pyruvate     Gibco Invitrogen, Germany 

 

5.1.5 Growth factors  

 

bFGF       PromoCell GmbH, Germany 

ECGS/H      PromoCell GmbH, Germany 

Human recombinant EGF    R&D Systems, Wiesbaden, Germany 

Human recombinant VEGF165    R&D Systems, Wiesbaden, Germany 

Hydrocortison      PromoCell GmbH, Germany 

PDGF       PromoCell GmbH, Germany 

 

5.1.6 Kits and other research products 

   

Avidin-biotinylated Horseradish  

Peroxidase Complex (ABC Kit)   Vector Laboratories, CA, USA 

BCA™ Protein Assay Reagent Kit   Pierce, Rockford, USA  

DeadEnd™ Fluorometric TUNEL System  Promega, Madison, WS, USA 

ECL® Western Blotting Detection System   Amersham Biosciences, Germany 

Enhanced Chemiluminescence System   Amersham Biosciences, UK 

Human VEGF Immunoassay Kit   R&D Systems, Minneapolis, MN, USA 

Immunoprecipitation Kit    Sigma-Aldrich GmbH, Germany 

Restore™ Western Blot Stripping Buffer  Pierce, Rockford, IL, USA 

TACS MTT Cell Proliferation and  
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Viability Assay Kit     R&D Systems, Minneapolis, MN, USA 

 

 

5.1.8 Antibodies  

  

 Anti-FAK monoclonal    Cell Signaling Inc., Germany 

Anti–phospho-tyrosine monoclonal, HRP   Santa Cruz Biotechnology, CA, USA 

Anti-pTyr 576/577 FAK monoclonal  Cell Signaling Inc., Germany 

Anti-ß-actin monoclonal    Sigma-Aldrich GmbH, Germany 

Anti-v-src (Ab-1) monoclonal    Oncogene, San Diego, CA, USA  

CD31/PECAM-1 rat anti-mouse monoclonal Pharmingen, San Diego, CA, USA 

 Goat anti-rabbit polyclonal, biotinylated  Vector Laboratories, CA, USA 

 Goat anti–rabbit, HRP     Amersham, Freiburg, Germany 

Ki-67-specific rabbit anti-human polyclonal   Zymed GmbH, Germany  

 Rabbit anti-rat polyclonal, HRP   DAKO, Germany 

      

5.1.9 Animals for in vivo experiments 

 

Male immunodeficient Balb/c nu/nu mice were purchased from Charles River Laboratories 

(Sulzfeld, Germany). The mice were housed and maintained in laminar flow cabinets under 

specific-pathogen-free conditions in facilities of Institute for Surgical Research (Munich, 

Germany). The mice were quarantined during the acclimatization period of at least a week. Food 

(Standard 1320 and 1430; Altromin, Lange, Germany) and acidified water (pH 2.5-3.0) were 

available ad libitum. Regular health checks were done. The mice were used in accordance with 

institutional guidelines when they were 8-12 week of age.  

Male ACI rats were purchased from Harlan Winkelmann GmbH (Borchen, Germany). The rats 

were kept at two per cage under climatized conditions and were given standard food (Standard 

1320 and 1430; Altromin, Lange, Germany) and water ad libitum. The rats were used in 

accordance with institutional guidelines when they were 6-8 weeks old. 

All procedures were performed in accordance with current regulations and standards of the 

animal protect orders. 

 

5.1.10 Materials used for in vivo studies  
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Atropine Sulfate     Braun AG, Germany 

 Cotton applicators     NOBA Verbandmittel GmbH, Germany 

 Cutasept® F      Bode Chemie, Hamburg, Germany 

 Disposable scalpels     Feather Safety Razor Co., Japan   

 Gauze swabs      NOBA Verbandmittel GmbH, Germany 

Ketavet      Pfizer Pharmacia GmbH, Germany 

Mouse gavage feeding needle   Kent Scientific, Torrington, USA 

Pushbutton-controlled dispensing device  Hamilton Syringe Company, USA 

 Sodium Chloride Solution    Braun AG, Germany 

 Suture material     Braun AG, Germany 

Syringes, needles     BD Biosciences, Spain 

Xylazin (Rompun), 2%    Bayer HealthCare, Germany 

 

5.1.11 Software     

 

Adobe Acrobat 5.0     Adobe Systems Inc., USA 

Adobe Acrobat Distiller 5.0    Adobe Systems Inc., USA 

Adobe Photoshop 5.0     Adobe Systems Inc., USA 

AxioVision 4.4     Carl Zeiss GmbH, Germany  

SOFTmax 2.32     Molecular Devices Corp., USA 

Cellquest Pro      Beckton Dickinson, USA 

Image2PDF 1.4.5     Verypdf.com Inc., USA 

ImageJ 1.33u      NIH 

InStat 3.0      Graphpad Software, USA 

Microsoft Office 2002    Microsoft Corporation, USA 

Origin 6.0      Microcal Software Inc., USA 

SPSS 8.0      SPSS STATISTICS Inc., USA 

Windows XP Professional    Microsoft Corporation, USA 

WinMDI 2.8       Joseph Trotter 

 

5.1.12 Buffers 

 

PBS Wash Buffer, 1X 

 140 mM  NaCl 
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 2.7 mM  KCl 

 10 mM  Na2HPO4 

 1.8 mM  KH2PO4 

          High purity dH2O, pH 7.4 

 

PBS-T 

 1X PBS 

 0.1%    Tween-20 

 

Kinase Buffer, 1X 

 25 mM  Tris-HCl, pH 7.5 

 5 mM  Beta-glycerophosphate 

 2 mM  Dithiothreitol 

 0.1 mM Na3VO4 

 10 mM  MgCl2 

 

Src Kinase Dilution Buffer, 1X 

 100 mM HEPES 

 2 mM  Dithiothreitol 

 0.2 mM activated Na3VO4 

 0.02%  BSA 

 3 Unit/ml Src Kinase 

 

RIPA Lysis Buffer, 1X      

 50 mM  Tris-HCl, pH 7.4 

 150mM  NaCl   

 1%  Nonidet P-40  

 1 mM  activated Na3VO4  

 1 mM  PMSF   

 5 mM  EDTA, pH 8.0 

 1 µg/ml Aprotinin 

 1 µg/ml Leupeptin 

        Filter sterilized 
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Protease and phosphatase inhibitors were added freshly before cell lysis. 

 

 

Laemmli Buffer, 2X 

  0.5 M   Tris-HCl, pH 6.8 

 5%  β-Mercaptoethanol 

 0.1%  Bromophenol Blue 

 20%  Glycerol 

 4%  SDS 

  

Towbin Transfer Buffer, 1X 

 25 mM  Tris-HCl, pH 8.3 

 192 mM  Glycine  

 20%   Methanol 

              High purity dH2O 

 

Tris Buffered Saline (TBS) Buffer, 10X 

 1M  Tris-HCl, pH 7.4 

 1.5M  NaCl 

 

TBS-T Buffer 

 1X TBS 

 0.1%    Tween-20 

 

SDS Electrophoresis Buffer, 10X 

 0.25 M  Tris 

1.92 M  Glycine 

1%   SDS 

High purity dH2O, pH 8.3 to 1000 ml 
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Solutions for Casting One 10% Separating and One Stacking Gel 

      Separating gel, 10%  Stacking gel  

 H2O       1.9 ml        1.4 ml 

 30% Acrylamide/Bis Solution   1.7 ml        0.33 ml 

 1.5M Tris-HCl (pH 8.8)    1.3 ml           - 

 1M Tris-HCl (pH 6.8)       -       0.25 ml 

 10% SDS     0.05 ml      0.02 ml 

 10% Ammonium Persulfate   0.05 ml      0.02 ml 

 TEMED               0.002 ml     0.002 ml  

 

Milk Blocking Solution 

 5% w/v nonfat dry milk dissolved in TBS-T buffer 

 

Ponceau S Staining Solution 

 0.5g of Ponceau S was dissolved in 1 ml of glacial acetic acid and the volume was 

adjusted to 100 ml with H2O. 

 

TMB Substrate Solution 

 One tablet of the HRP substrate TMB was dissolved in 100 µl of DMSO and added per 

10 ml of phosphate citrate buffer with Sodium Perborate.  

  

Nicoletti buffer (Propidium Iodide Staining) 

 0.1%  Sodium Citrate, pH 7.4 

 0.1%  Triton X-100 

 50 µg/ml Propidium Iodide 
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5.2 Methods 

 

5.2.1 Cell biological methods 

   

5.2.1.1  Cell culture techniques 

 

The cells were cultivated under aseptic conditions in 75-cm2 tissue culture flasks. All tissue 

culture flasks have caps with filters which allow gaseous exchange, allowing maintenance of 

correct pH (which is monitored by the colour of the phenol red present in the medium) and the 

right percentage of CO2 (5%). The optimal atmosphere conditions are allowed by CO2 incubator, 

which automatically control temperature and pCO2; it operates with a try of water on the base in 

an attempt to maintain more than 98% relative humidity. Temperature of the incubator was set at 

37°C and regularly controlled.  

Human highly metastatic pancreatic carcinoma cells L3.6pl were maintained as monolayer 

cultures in Dulbecco´s Modified Eagle Medium (D-MEM) supplemented with 10% FBS, L-

glutamine, sodium pyruvate, nonessential amino acids, vitamins, and penicillin-streptomycin 

mixture. The cultures were tested and found to be free of Mycoplasma and the following 

pathogenic murine viruses: reovirus type 3, pneumonia virus, K virus, Theiler’s encephalitis 

virus, Sendai virus, minute virus, mouse adenovirus, mouse hepatitis virus, lymphocytic 

choriomeningitis virus, ectromelia virus, and lactate dehydrogenase virus (assayed by M. A. 

Bioproducts, Walkersville, MD). The cultures were maintained for no longer than 12 weeks after 

recovery from frozen stocks. 

Human umbilical vein endothelial cells were grown in Falcon "surface-modified", polystyrene 

flasks with complete Endothelial Cell Growth Medium. After adding the “SupplementMix” the 

concentrations of growth factors in the complete medium were as follows: 

Fetal Calf Serum  2% 

ECGS/H   0.4% 

Epidermal Growth Factor  0.1 ng/ml 

Hydrocortison   1 µg/ml 

Basic Fibroblast Factor  1 ng/ml 

The cells cultured in Endothelial Cell Growth Medium were checked regarding their 

morphology, the adherence rate and the population doubling time. All experiments were 

performed with cells passaged three to seven times after their receipt from the supplier.  
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Growth medium was changed every 2-3 days. The cells were split into the new culture flasks 

when they reached 80-90% confluence. Old medium was removed and the cells were washed 

twice with sterile PBS buffer. Then 1 ml of trypsin-EDTA solution was added, the culture flask 

was incubated at 37°C and observed under the microscope until cells detached from the surface 

of the flask. Then 10 ml of complete fresh medium was added to inactivate the activity of 

trypsin. Cells were centrifuged (except for HUVE cells) at 1000 g for 4 min at room temperature. 

Medium was discarded and the cells were resuspended in fresh growth medium. 

       

5.2.1.2  Cell quantification and evaluation of viability    

 

An efficient way of counting cells and at the same time the evaluation of percentage of viable 

cells is the technique of “dye exclusion”. This test is based on the concept that viable cells do not 

take up some dyes, whereas dead cells are permeable to these dyes. Trypan blue is the most 

commonly used dye. In the cell culture some misleading situations such as recent trypsinization 

and freezing and thawing in presence of dymethylsulphoxide (DMSO) may lead to membrane 

leakeness. From each suspension cells an aliquot of 10 µl was harvested, mixed with 10 µl of 

tryplan blue and counted on a counting chamber under the microscope. The mean of at least 

three counts of viable cells (not stained with trypan blue)/quadrant was considered and 

multiplied to the magnitude (104) and the dilution factor. 

 

5.2.1.3  Cell stimulation with different factors     

 

For cytokine induction HUVE cells were maintained overnight (16 h) in the appropriate medium 

with 0.5% fetal calf serum (reduced medium) in order to synchronize the cell culture. The factors 

were diluted to the stock concentrations recommended by the manufacture in BSA 0.1% in 

sterile PBS. For further use the cytokines were diluted directly in the cell culture reduced 

medium at the indicated concentrations for desired period of time. 

 

5.2.1.4  Storage of cells        

 

In order to minimize the cellular injury induced by freezing and thawing procedures 

(intracellular ice crystals and osmotic effects), a cryoprotective agent DMSO was added. A 

variable number of L3.6pl cells (between 1-2 x 106) was spin down and resuspended in 10% 

DMSO solution (DMSO diluted in FBS). Afterwards, 1 ml aliquots of cell suspension were 
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dispensed into criotubes (1.8 ml). The tubes were placed into wells of a brass block pre-cooled at 

4°C. The block was then kept at –70°C for 24 h after which the ampoules of cells were 

transferred to liquid nitrogen for long-term storage.  

For revival of cells a frozen ampoule was thawed rapidly in a 37°C water bath, disinfected and 

the content was put in a cell culture flask with pre-warmed medium. After 6 hours the medium 

was discarded and fresh pre-warmed medium was added. 

 

5.2.1.5  Detection of viable cells       

 

Measurement of cell viability forms the basis for in vitro assays of a cell population’s response 

to external factors. The reduction of tetrazolium salts is now widely accepted as a reliable way to 

examine cell proliferation. The yellow tetrazolium MTT (3-[4, 5-dimethylthiazolyl-2]-2, 5-

diphenyltetrazolium bromide) is reduced by metabolically active cells, in part by the action of 

dehydrogenase enzymes, to generate reducing equivalents such as NADH and NADPH. The 

resulting intracellular purple formazan can be solubilized and quantified by spectrophotometric 

means. 

For an assessment of AZM475271 activity directed against cultured L3.6pl and HUVE cells, we 

used an in vitro TACS MTT Cell Proliferation and Viability Assay Kit. Cells were removed 

from subconfluent cultures by treatment with trypsin-EDTA. Trypsinization was stopped with 

complete medium. Cell suspension was harvested by centrifugation (400 g for 4 min at room 

temperature), 15 × 103 cells/well were plated in 96-well plates in complete medium (amount of 

the cells was determined by trypan blue method, 5.2.1.2). After 24 hours of attachment, cells 

were treated with AZM475271 (1 – 25 µmol/L), and the plates were incubated for another 72 

hours (37°C, 5%CO2). Cells were washed with PBS; the MTT Reagent was added according to 

the manufacturer’s recommendations to each well, including controls. The plates were returned 

to cell culture incubator for 2 to 4 hours, and when the purple precipitate was clearly visible 

under the microscope the MTT Detergent was added to all wells, including controls. The plates 

were left with cover in the dark for 2 to 4 hours at room temperature. The absorbance in each 

well (OD, optical density) was measured at 570 nm in a microplate spectrophotometer. The IC50 

(the concentration of AZM475271 at which 50% of cells were viable compared to cells grown in 

the absence of Src kinase inhibitor) was calculated using the following formula: 

IC50 = OD of the cells treated / OD of untreated cells x 100% 

All experiments were replicated three times. 
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5.2.1.6  Inhibition of growth factor-mediated endothelial proliferation   

 

HUVEC proliferation in the presence and absence of growth factors was evaluated using 3-(4, 5-

dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) incorporation. Briefly, HUVE 

cells were plated in 96-well plates (15 × 103 cells/well) in reduced medium and dosed with 

AZM475271 ± VEGF165 or EGF (both growth factors at concentration 25 ng/ml were taken). 

The cultures were incubated for 72 hours (37°C, 5%CO2) and then assayed for the incorporation 

of MTT using the microplate spectrophotometer, as described above (5.2.1.5). The IC50 dose of 

AZM475271 was assumed as the dose which inhibited 50% of HUVE cell proliferation. 

All experiments were replicated at least three times. 

 

5.2.1.7  Chemotaxis assay        

 

Chemotaxis experiments were performed using BD BioCoat™ Matrigel invasion chambers. The 

apparatus consists of a BD Falcon TC companion plate with Falcon cell culture inserts 

containing an 8 µm pore size PET membrane with a thin layer of MATRIGEL Basement 

Membrane Matrix. The Matrigel Matrix serves as a reconstituted basement membrane in vitro. 

The layer occludes the pores of the membrane, blocking non-invasive cells from migration 

through the membrane. In contrast, invasive cells (malignant and non-malignant) are able to 

detach themselves from and invade through the Matrigel Matrix and the 8 µm membrane pores. 

The membrane may be processed for light and electron microscopy and can be easily removed 

after staining.  

HUVECs (105 cells/well) resuspended in reduced medium were seeded into the upper well of the 

chamber system on a human fibronectin-coated polyethylene terephthalate membrane with 8 µm 

pores. Human recombinant VEGF165 diluted in the cell culture reduced medium was added as a 

chemo-attractant into the lower well at 20 ng/ml. Inhibition of VEGF-induced chemotaxis was 

assessed after including AZM475271 at relevant doses to the upper compartment of the chamber. 

The cells were allowed to migrate for 4 hours at 37°C, after which the filter was fixed with cold 

methanol and stained with haematoxylin. The non-invading cells were removed from the upper 

surface of the membrane by “scrubbing” with a cotton swab, and the number of migrated cells 

was counted in 5 random 0.159-mm2 fields at x100 magnification. 

The average of triplicate inserts from three representative experiments was obtained.   
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5.2.2 Biochemical methods         

 

5.2.2.1  Inhibition of protease/phosphatase activity      

A commercially available cocktail of protease/phosphotase inhibitors (final concentrations: 0.02 

mg/ml pancreas extract, 5 µg/ml pronase, 0.5 µg/ml thermolysin, 3 µg/ml chymotrypsin and 0.33 

mg/ml papain) was prepared just before use and employed when needed. 

 

5.2.2.2  Preparation of cellular extracts using RIPA buffer  

  

During RIPA lysis intracellular and membrane proteins are solubilized due to the presence of 

detergent and high salt concentration in the lysis buffer. Nonsolubilized proteins are precipitated 

by centrifugation. Protease inhibitor cocktail is included in the lysis buffer to prevent proteolysis, 

phosphotase inhibitor cocktail - to maintain the phopsphorylation status of phosphoproteins, 

EDTA - to chelate divalent ions that are essential for metalloproteases. 

Trypsinized HUVE cells (5.2.1.1) were washed twice with ice cold PBS, collected by 

centrifugation at 400 g for 4 min at 4°C. Cells were than resuspended in ice cold RIPA buffer 

supplemented with the cocktail of protease/phosphotase inhibitors to a final concentration of 

about 107-108 cells/ml. Cells were incubated on ice for 10 min and centrifuged at 14000 g at 4°C 

for 10 min. The supernatant containing total cellular proteins was collected and stored at –20°C. 

Total protein concentration in the supernatant was determined as described below (5.2.2.3). 

 

5.2.2.3  Determination of protein concentration     

 

The BCA™ Protein Assay Reagent Kit was used to measure protein concentration in cellular 

lysates.  The BCA method combines the well-known reduction of Cu+2 to Cu+1 by protein in an 

alkaline medium and selective colorimetric detection of the cuprous cation (Cu+1) with a reagent 

containing bicinchoninic acid (BCA). The purple-colored reaction product of this assay is 

formed by the chelation of two molecules of BCA with one cuprous cation. This complex has a 

strong absorbance at 562 nm that is nearly linear with increasing protein concentrations. 

Five µl of protein lysates were diluted in 45 µl of water and plated in 96-well plate. Protein 

standards for calibration were prepared by diluting 0, 5, 15 and 30 µg of bovine serum albumin 

(BSA) from 2 mg/ml stock solution in water to the final volume of 100 µl. Working BCA 

reagent was prepared freshly by mixing reagent A (containing bicinchoninic acid, sodium 

carbonate, sodium bicarbonate and sodium tartrate in 0.1M sodium hydroxide) and reagent B 
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(containing 4% cupric sulfate) from the kit at the ratio of 1:50 vol./vol.. Fifty µl/well of working 

BCA reagent was added to protein samples. Plates were placed in 60°C for 30 minutes, and then 

were allowed to cool down at room temperature for about 10 minutes. The absorbance was 

measured at or about 562 nm on the microplate spectrophotometer. A standard curve was 

prepared by plotting the average Blank-corrected 562 nm measurement for each BSA standard 

vs. its concentration in µg/ml. The standard curve was used to determine the protein 

concentration of each unknown sample. 

 

5.2.2.4  Immunoprecipitation of proteins from cellular lysates 

 

In this approach, specific antibody is added to the cellular lysate to bind protein of interest. 

Antibody-protein complexes are then precipitated using solid-phase matrix. Bacterial proteins A 

and G which have specific binding sites for Fc-parts of antibodies, covalently coupled to cross-

linked agarose, are usually used as solid-phase matrix to precipitate protein-antibody complexes. 

Cellular lysates containing 0.5-1 mg of total protein were mixed with about 1 µg of antibody in 

pre-chilled 1.5 ml tubes on ice. Volumes of the mixture were adjusted to 200-300 µl to obtain 

equal protein concentrations in each sample. Tubes were incubated for 4 hours at 4°C with 

constant rotation. 20-25 µl of Protein A or G coupled agarose was added to each sample and 

tubes were incubated for additional 4 hours at 4°C with constant rotation. Following incubation 

with Protein A or G agarose, immuno-complexes were pelleted by centrifugation at 4500 g at 

4°C for 1 minute and washed 3 times with ice-cold RIPA lysis buffer and one time with ice-cold 

1X kinase buffer. Each time complexes were collected by centrifugation at 4500 g at 4°C for 1 

minute. Five-10 µl of the kinase buffer used for the last wash were left above the agarose pellet. 

Ten µl of 2X Laemmli loading buffer were added to the samples and proteins were denatured by 

heating to 95°C for 5 minutes. Samples were cooled down on ice and analyzed immediately or 

frozen at –80°C for later analyses. Protein A or G agarose was pelleted by centrifugation at 

14000 g at 4°C for 30 minutes and supernatants, containing immunoprecipitated proteins were 

analyzed by SDS-PAGE electrophoresis (5.2.2.5). 

 

5.2.2.5  SDS-Polyacrylamidgelelectrophoresis PAGE     

   

In this approach proteins in the mixture are denatured by heating in the presence of 2-

mercaptoethanol and SDS. Denatured polypeptides bind SDS and become negatively charged. 

The amount of bound SDS is almost always proportional to the molecular weight of a 
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polypeptide, and is independent of its sequence. Therefore proteins and protein subunits are 

separated according to their size during migration through the pores in the gel matrix in response 

to an electrical field.  

Protein samples for electrophoresis were prepared by dissolving a mixture of proteins in SDS-

PAGE loading buffer and heating up the samples at 95°C for 5 minutes (5.2.2.4). 

Separation gels with the following dimensions were used: thickness 1.0 mm, length 7.3 cm and 

width 8.3 cm. One µl TEMED per 1 ml of gel mix was used for the catalysis of the 

polymerization reaction, which was initiated by adding APS to a final concentration of 0.1%. 

The stacking gel was composed similar to the running gel, only Tris-HCl with pH 6.8 was used 

and the acrylamid had a final concentration of 3%. Proteins were separated at 250V and 30 mA 

until the dye front has left the separation gel. 

 

5.2.2.6  Transfer of proteins to PVDF membrane     

 

Proteins separated by SDS-PAGE were transfered to a PVDF membrane Hybond P. The transfer 

was done in a semi-dry TRANS-BLOT SD cell (Fig. 5.3) applying 25V and 100mA for 90 

minutes. In semi-dry blotting the electrodes are placed directly in contact with the 

gel/nitrocellulose membrane sandwich to provide a fast, efficient transfer. Because of this direct 

contact there is a minimum of transfer buffer required for this process. 

PVDF membrane was soaked in methanol for a few minutes and then transferred to a container 

with Towbin transfer buffer. Gel and attached PVDF membrane were sandwiched between two 

pieces of Whatman paper and soaked in the transfer buffer. 
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Figure 5.3 An exploded view of the Trans-Blot SD cell: 1, safety lid; 2, cathode assembly with 
latches; 3, filter paper; 4, gel; 5, membrane; 6, filter paper; 7, spring-loaded anode platform, 
mounted on four guide posts; 8, power cables; 9, base. 

 

 The prestained protein ladder served as a control for the transfer. 

 

5.2.2.7  Ponceau S staining of proteins on PVDF membrane   

 

Staining with Ponceau S was used to provide visiual evidence that electrophoretic transfer of 

proteins has taken place. Ponceau S is a negative stain which binds to the positively charged 

amino groups of the protein.  

PVDF membrane was incubated for 5-10 seconds in Ponceau S staining solution and then 

washed with water until the protein bands became visible.  

 

5.2.2.8  Analysis of proteins on PVDF membrane by immunoblotting   

 

In this method, specific antibodies are used to identify proteins transferred to PVDF membrane. 

First, membrane is immersed in blocking buffer to fill all protein binding sites with non-reactive 

protein. Then membrane is incubated in a solution containing antibody directed against the 

antigen(s) in the protein to be detected. Primary antibody bound to the protein of interest are 

recognized by secondary antobody conjugated with horseradish peroxidase (HRP). The complex 

containing the antigen, primary antibody and secondary antibody-HRP conjugate is detected by 

chem luminescent visualization using ECL detection system. 

PVDF membranes were blocked in the blocking solution either for 1-3 hours at room 

temperature or overnight at 4°C. After blocking, membranes were then washed once for 15 

minutes and twice for 5 minutes in TBS-T buffer with agitation. After the washes membranes 

were incubated with antibodies appropriately diluted in 5% BSA in TBS-T overnight at 4°C with 

agitation. After incubation with primary antibodies, membranes were washed again as described 

above, then transferred to the containers with secondary antibody-HRP conjugates in 5% BSA in 

TBS-T and incubated for 1 hour at room temperature shaking gently. Membranes were then 

rinsed twice and washed with agitation twice for 15 minutes, twice for 10 minutes, and twice for 

5 minutes. For detection, membranes were incubated in a mixture of ECL Western Blotting 

detection reagents for 2 minutes. Remaining drops of ECL buffer were removed and membranes 

were placed into a transparent folder. Hyperfilm ECL was then exposed for an appropriate time 

and developed with an AGFA developing system. 
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5.2.2.9  Stripping and re-probing of western blot 

 

PVDF membranes were stripped and re-probed using Restore™ Western Blot Stripping Buffer.  

Twenty ml of Restore™ Western Blot Stripping Buffer were warmed to room temperature. 

Membranes were placed in the buffer to be stripped and incubated for 15 minutes at room 

temperature. After incubation, the blots were removed from the buffer and washed 3 times for 15 

min in TBS-T. After determining that the membranes were properly stripped, next 

immunoprobing experiments were performed. 

 

5.2.3 Determination of apoptotic cells by FACS analysis via propidium iodide staining 

 

Propidium Iodide (PI) binds to double-stranded DNA, but it can only cross the plasma membrane 

of non-viable cells. For analysis by flow cytometry, the PI staining can be monitored in the FL2 

channel.  

HUVE cells were plated into T75 flasks and treated with different concentrations of 

AZM475271 (0 – 25 µM). After 12 hours, cells were collected and suspended in a Nicoletti 

buffer and incubated for 15 min protected from light at room temperature. The supernatant was 

discarded by centrifugation of cell suspension at 1300 g for 4 min. After 2 washing steps with 

PBS, cells were finally resuspended in sterile PBS and the DNA content present in the resulting 

nuclei was determined on a fluorescence-activated cell sorter (FACS). Signal height, area, and 

width were recorded for the PI channel. Data analysis was done using the WinMDI 2.8 software. 

Sub-G0/G1 was then quantified and used as an estimate of the amount of the cells undergoing 

apoptosis. The cellular debris was excluded from the analysis. Experiments were repeated three 

times.  

 

5.2.4 Enzyme-linked immunoassays       

 

5.2.4.1  Determination of human vascular endothelial growth factor concentrations 

in cell culture supernates   

 

This assay employs the quantitative sandwich enzyme immunoassay technique. A monoclonal 

antibody specific for VEGF has been pre-coated onto a microplate. Standards and samples are 

pipetted into the wells and any VEGF present is bound by the immobilized antibody. After 
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washing away any unbound substances, an enzyme-linked polyclonal antibody specific for 

VEGF is added to the wells. Following a wash to remove any unbound antibody-enzyme 

reagent, a substrate solution is added to the wells and color develops in proportion to the amount 

of VEGF bound in the initial step. The color development is stopped and the intensity of the 

color is measured. 

The level of VEGF was measured in cell culture supernates collected on day 0, 2, and 4 from 

L3.6pl or HUVE cells following treatment with Src kinase inhibitor AZM475271 at different 

concentrations (0.1, 1 µM). The assay was performed according to the manufacturer’s 

recommendations. Absorbance at 450 nm was measured and corrected using the 540-nm reading 

on the microplate reader. VEGF content was calculated according to the parameter of the 

calibration curve. Calibration curves with a correlation coefficient at least 0.998 were used. All 

experiments were replicated three times.  

 

5.2.4.2  In vitro Src kinase inhibition test      

 

A poly (Glu, Tyr) 4:1 random copolymer was used as the tyrosine-containing substrate. This is 

stored as a 10 mg/ml stock solution in PBS at 20°C and diluted 1:200 with PBS to coat 96-well 

plates (100 µl/well). Substrate was plated the day before the assay, and the plates were covered 

with adhesive seals and stored overnight at 4°C. On the day of the assay, the substrate solution 

was discarded, and the plates were then incubated with 120 µl/well of 5% BSA in PBS for 10 

minutes. The plates were then washed once with PBS-T and incubated with 50 mmol/L HEPES 

(pH 7.4) at 100 µl/well until the next stage. Confluent HUVE or L3.6pl cells were treated with 

different concentrations of AZM475271 or PP2. After 12 hours cells were washed and lysed in 1 

ml of ice-cold RIPA lysis buffer. Lysates were clarified by centrifugation at 14000 g for 10 

minutes and active src was then precipitated using 15µg of v-src (Ab-1) monoclonal antibody 

pre-adsorbed to 50µl of protein G-sepharose. The immune complexes containing precipitated src 

were washed 3 times with ice-cold RIPA lysis buffer, one time with ice-cold 1X kinase buffer 

and used in kinase reaction as an active src kinase. Solutions of 80 µmol/L ATP in 80 mmol/L 

MgCl2 and 80 mmol/L MgCl2 alone (negative controls) were prepared. The HEPES was 

discarded from the substrate plates and the following additions were now made in this order: 25 

µl/well ATP/MgCl2 or MgCl2 alone; 50 µl/well beads to start the reaction. The reaction time 

allowed was 30 minutes at room temperature on a plate shaker. The assay was stopped by 

washing the plates four times with PBS-T (150 µl/well). Detection of the resultant tyrosine 

phosphorylation was facilitated by the addition of an anti–phospho-tyrosine monoclonal antibody 
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conjugated to HRP (diluted 1:5000 in PBS-T + 0.5% BSA + 0.1 mmol/L sodium orthovanadate), 

added at 100 µl/well and incubated for 1 hour. The plates were again washed (six times). TMB 

substrate solution (100 µl/well) was added. After 5 minutes of color development, the reaction 

was stopped by the addition of 50 µl/well 0.8 mol/L H2SO4. Control and blank wells were 

included on all plates containing compound diluent and MgCl2 solution with and without ATP, 

respectively, to determine the dynamic range of the assay. The in vitro VEGF-R2 kinase 

inhibition assay determines the ability of AZM475271 to inhibit VEGF-R2 kinase activity and 

has been used as a selectivity screen. The method was performed as reported previously (Lu et 

al., 2003). 

 

5.2.5 In vitro study of angiogenesis       

 

5.2.5.1  Aortic ring assay 

 

Angiogenesis was studied by culturing aortic explants in three-dimentional matrix gels according 

to the procedure of Nikosia and Ottineri (Nikosia et al., 1990). Thoracic aortas were removed 

from 6- to 8- week-old male ACI rats and immediately transferred to a culture dish containing 

cold serum-free Dulbecco´s Minimal Essential Medium. The peri-aortic tissue was carefully 

removed with fine microdissecting forceps and scissors, paying special attention not to damage 

the aortic wall. One mm long aortic slices (approximately 15 per one aorta) were sectioned and 

extensively rinsed in 5 consecutive washing steps with D-MEM. Ring-shaped explants of the 

aorta were then embedded on Matrigel-coated 24-well plates. HEPES-buffered D-MEM 

containing AZM475271 in different concentrations was added and the plates were incubated at 

37°C, 5% CO2, for 4 days. Fresh medium with respective additives was reintroduced into the 

cultures on day 2. The rings were examined by phase contrast microscopy with a Zeiss Axiotech 

Vario microscope at ×10 magnification. An estimation of the length of the capillary was 

performed by measuring the distance from the aortic explant to the approximate mean point of 

capillary. The length of the capillary was measured using AxioVision software. 

 

5.2.5.2  Spheroid angiogenesis assay 
 

To evaluate the anti-angiogenic properties of AZM475271, we used an in vitro angiogenesis 

assay as described in detail, previously (Korff et al., 1998). 103 HUVECs (passage 4 to 6) per 

spheroid were plated into a non-adhesive, round bottom 96-well plate. After 24 hours, the 
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spheroids were harvested and half the spheroids of a 96-well plate (approximately 48 spheroids) 

were embedded in 1 ml of a collagen matrix and transferred into a 24-well plate. For the next 24 

hours we incubated the embedded spheroids with the allocated treatment and thereafter, the 

spheroids were fixed in a 4% formalin solution to prepare them for the subsequent analysis. 

Spheroid sprouting was stimulated with human recombinant VEGF-A165 (25 ng/ml) in the 

presence or absence of AZM475271. The pictures of the spheroids were taken under trans-

illumination using an Achroplan objective (n.a. = 0.45) providing a 20-fold magnification.  

 

5.2.6 Orthotopic xenograft pancreatic tumor model     

 

5.2.6.1  Tumor cell implantation       

 

For in vivo injection, L3.6pl human pancreatic carcinoma cells were harvested from culture 

flasks by a treatment with trypsin-EDTA and resuspended in sterile ice-cold PBS. Only single-

cell suspensions of >90% viability (trypan blue exclusion) were used for injection. Male nude 

mice were anesthetized with ketavet (100 mg/kg mouse body weight) and xylazin (5 mg/kg 

mouse body weight) followed premedication with atropine sulfate. A small left abdominal flank 

incision was made and the spleen exteriorized (Fig. 5.4a). L3.6pl tumor cells (1x106 in 40µl 

PBS) were injected subcapsularly in a region of the pancreas just beneath the spleen. We used a 

30-gauge needle, a 1 ml disposable syringe, and a calibrated pushbutton-controlled dispensing 

device to inject the tumor cell suspension (Fig. 5.4b). A successful subcapsular intrapancreatic 

injection of tumor cells was identified by the appearance of a fluid bleb without intraperitoneal 

leakage (Fig. 5.4c). To prevent such leakage, a cotton swab was held for 1 min over the site of 

injection. One layer of the abdominal wound was closed by suture.  
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A 

 
 

B 

 
 

C 

 
Figure 5.4 Orthotopic tumor cell injection 
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The animals tolerated the surgical procedure well, and no anesthesia-related deaths occurred. 

 

5.2.6.2  Treatment of established tumors growing in the pancreas of nude mice 

 

Seven days after implantation of tumor cells, mice were randomly assigned to one of the 

following groups of 5-9 mice each: 

1) Daily intragastral administration of Src tyrosine kinase inhibitor  AZM475271 at 

a dose of 25 mg/kg mouse body weight;  

2) Daily intragastral vehicle solution for AZM475271 (Tween 20 diluted 1:100 in 

NaCl).  

 

5.2.6.3  In vivo evaluation of plasma concentration levels of AZM475271  

 

Healthy nude mice were treated with a single dose of 50 mg/kg AZM475271 by oral 

administration. The plasma concentration of AZM475271 was measured by mass spectrometry 

2, 6, and 24 hours after oral feeding of the compound.  

 

5.2.6.4  Monitoring of mouse body weight and tumor volume   

 

Starting 3 days after the initiation of therapy with AZM475271, the measurement of tumor 

volume (by transcutaneous palpation) and mouse body weight was performed.  

 

5.2.6.5  Necropsy procedure and histopathological studies   

 

The animals were sacrificed 32 days after the initiation of treatment, when > 50% of the control 

animals had become moribund. Primary pancreatic tumor size, liver and lymph node metastasis, 

and local peritoneal carcinosis were assessed. All palpable or visible masses in the pancreas were 

considered pancreatic tumors and the presence of tumor was later confirmed by Haematoxylin 

and Eosin (H&E) staining. Excised pancreatic tumors were weighed. The tumor volume was 

then calculated using the formula V = π/6 (a × b × c), where a, b and c represent the length, width, 

and height of the mass. Microscopically, tumor nodules ≥1 mm in diameter were counted on the 

entire liver surface. Where visible liver metastases were evident, the tissue was processed for 

H&E staining to confirm the macroscopic observations. Furthermore, macroscopically-enlarged 

regional lymph nodes (celiac and para-aortic) were excised and H&E staining performed to 
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confirm the presence of metastases. Tumor lesions were harvested, some were fixed in 10% 

buffered formalin and embedded in paraffin, and some were embedded in optimum cutting 

temperature (OCT) compound, snap-frozen in liquid nitrogen, and stored at -70°C.  

 

5.2.7 Immunohistochemical analyses       

 

5.2.7.1  Immunohistochemistry of paraffin embedded tissues   

 

5.2.7.1.1 Haematoxylin and Eosin staining     

 

Staining of the nucleus of the cells was done with haematoxylin; eosin was used for the 

cytoplasm staining. Samples were deparaffinized by incubation in xylene for 20 min, 2 minutes 

in 100%, one minute in 96 %, one minute in 75% ethanol and finally washed in distilled water. 

The samples were then rinsed in haematoxylin for one minute, washed in distilled water and 

incubated with eosin for 2 minutes. After washing the slides were mounted with Mayer gel. 

 

5.2.7.1.2 Staining for Ki-67 antigen (The assessment of cell proliferation) 

 

Evaluation of cell proliferation was performed using Ki-67-specific polyclonal rabbit anti-human 

antibody. Tissues were embedded in paraffin and 4–6 µm sections were prepared and mounted 

on positively-charged superfrost slides. Sections were dried overnight, deparaffinized in xylene 

and incubated in 100%, 95% and 80% ethanol (v/v in distilled water), before rehydrating in PBS. 

Ki-67 antigen retrieval was achieved by microwaving tissue sections for 15 minutes at 750W. 

After cooling down, the slides were rinsed with PBS, and nonspecific binding sites were blocked 

with 5% bovine serum albumin (BSA) in PBS. After another washing step with PBS, the 

primary antibody (1:75, a polyclonal rabbit anti-human antibody against Ki-67) was applied, and 

the slides were incubated for 2 hours at room temperature. The samples were then incubated with 

biotinylated goat anti-rabbit secondary antibody (1:200) for 1 hour at room temperature, 

followed by incubation with an avidin-biotinylated horseradish peroxidase (HRP) complex from 

an ABC kit. Sections were examined microscopically and the average number of cells staining 

positively for Ki-67 per high-power field (0.159 mm2) was counted at x100 magnification.  
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5.2.7.2  Immunohistochemistry of snap-frozen tissues    

 

5.2.7.2.1 Terminal deoxynucleotidyl transferase–mediated nick end labeling  

(TUNEL) staining    

 

Terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining was 

performed using a commercially available apoptosis detection kit (DeadEnd™ Fluorometric 

TUNEL System). In many cell types, apoptosis is characterized by the generation of DNA 

fragments through the action of endogenous endonucleases. The DNA of apoptotic cells is 

cleaved into multimers of 180–200bp fragments, corresponding to the oligonucleosomal size. 

Therefore, the DNA of apoptotic cells typically migrates as a ladder of 180–200bp multimers on 

an agarose gel. The generation of single strand breaks also has been reported. The DeadEnd™ 

Fluorometric TUNEL System measures the fragmented DNA of apoptotic cells by catalytically 

incorporating fluorescein-12-dUTP(a) at 3´-OH DNA ends using the enzyme Terminal 

Deoxynucleotidyl Transferase (TdT). TdT forms a polymeric tail using the principle of the 

TUNEL (TdT-mediated dUTP Nick-End Labeling) assay. The fluorescein-12-dUTP-labeled 

DNA can then either be visualized directly by fluorescence microscopy or quantitated by flow 

cytometry.  

Tissue sections (8-10 µm thick) were fixed by immersing slides in freshly prepared 4% 

methanol-free formaldehyde solution in PBS (pH 7.4) in a Coplin jar for 25 minutes at 4°C and 

washed twice by immersing in fresh PBS for 5 minutes at room temperature. Then cells were 

premeabilized by immersing the slides in 0.2% Triton X-100 solution in PBS for 5 minutes and 

then rinsed twice in PBS for 5 minutes. After removing excess liquid by tapping, slides were 

covered with 100µl of equlibration buffer and equilibrated at room temperature for 10 minutes. 

Then, a sufficient TdT incubation buffer for all experimental and optional positive control 

reactions was prepared according to manufacture protocol. 50µl of TdT incubation buffer were 

added, slides were covered with plastic coverslips to ensure even distribution of the reagent and 

incubated at 37°C for 60 minutes inside the humidified chamber covered with aluminium foil to 

protect from direct light. After the incubation plastic coverslips were removed and reaction was 

terminated by immersing the slides in 2X SSC in a Coplin jar for 15 minutes at room 

temperature. Samples were washed twice by immersing the slides in PBS for 5 minutes at room 

temperature to remove unincorporated fluorescein-12-dUTP. Slides were mounted using glass 

coverslips and DEPEX gel. Samples were immediately analysed under a fluorescence 

microscope using a standard fluorescent filter set to view the green fluorescence of fluorescein at 
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520 ± 20nm. Results were expressed as the average of apoptotic cells in 10 random fields at x40 

magnification. 

 

5.2.7.2.2 Staining for CD31       

 

Frozen tissue sections (8-10 µm thick) were fixed with cold acetone for 5 min, acetone and 

chloroform (1:1, v/v) for 5 min, and acetone for 5 min, then washed in PBS. Endogenous 

peroxidase was blocked by incubation of slides in 3% H2O2 diluted in methanol for 5 min and 

3x3 min washed in PBS. Non-specific binding sites were blocked for 20 min with 5% horse 

serum and 1% goat serum in PBS. After the incubation, primary antibodies dissolved in 1% 

blocking buffer were applied and incubated overnight at 4°C: CD-31, monoclonal rat anti-mouse 

(1:200) which reacts to a surface antigen (CD-31) presented on all endothelial cells. Next day the 

samples were washed 3x3min in PBS and the slides were incubated for 10 min with blocking 

buffer at room temperature. Then secondary antibodies (biotinylated polyclonal rabbit anti-rat 

immunoglobulin, Ig-fraction, HRP- conjugated (1: 400) dissolved in blocking buffer were 

applied for 1 hour at room temperature. After washing 3x3 min in PBS the slides were rinsed 

with 0.2% Tween solution in PBS. Then the samples were incubated with AEC chromogen 

dissolved in H2O2 substrate, washed in distillate water and stained with haematoxylin for 1 min. 

After washing with distillate water the slides were mounted using glass cover slips and DEPEX 

gel. For the quantification of microvascular density, 10 random 0.159-mm2 fields at x100 were 

captured for each tumor using an AxioCam camera mounted on a Carl Zeiss universal 

microscope and AxioVision software. Two investigators counted the microvessels independently 

in a blinded fashion. Tissues were examined at a low power (x40), and the three x200 fields of 

highest microvessel density were identified for vessel counts. Microvessels were quantitated 

according to the method described by Bruns (Bruns et al., 2000). Clusters of stained endothelial 

cells distinct from adjacent microvessels, tumor cells, or other stromal cells were counted as one 

microvessel. The results were expressed as the highest number of microvessels identified within 

a single x200 field.  

 

5.2.7.2.3 Immunofluorescence double staining for CD31 and TUNEL   

 

Frozen tissue was used for CD31/TUNEL immunofluorescence double staining. The procedure 

used is as described previously (Baker et al., 2002).  
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TUNEL assay was done with the use of a commercial apoptosis detection kit as described above 

(5.2.7.2.1). TUNEL-positive apoptotic cells were detected by localized green fluorescence within 

the cell nuclei, and endothelial cells were identified by red fluorescence. Apoptotic endothelial 

cells were identified by yellow fluorescence within the nuclei. The total number of apoptotic 

cells was quantified in 10 randomly selected microscopic fields and expressed as the ratio of 

apoptotic endothelial cells to the total number of endothelial cells in  5–10 random 0.011-mm2 

(at x400 magnification). 

 

5.2.8 Statistical analysis  

 

Pancreatic tumor weight, mouse body weight, and quantification of Ki67, TUNEL, and CD31 

were compared using one-way ANOVA with a Student-Newman-Keuls multiple comparison 

test. The relative rates of liver and lymph node metastases within groups were compared by 

Fisher´s exact test. Survival analysis was computed by the Kaplan–Meier method and compared 

by the log-rank test (Hosmer et al., 1980). Significance was taken as p < 0.05. Results of the 

ELISA tests, proliferation assays, migration and aortic ring assays were analyzed using the 

paired Student’s t-test with p < 0.05 considered to be significant. 
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The initial goal of the work described in this thesis was to demonstrate the in vivo efficacy of the 

Src tyrosine kinase inhibitor AZM475271 in an orthotopic xenograft pancreatic tumor model. 

However, early results, which have raised questions as to the role of Src family kinases in tumor 

angiogenesis and metastasis, lead to a change the direction of the project. 

 

6.1 In vitro enzyme inhibition in HUVE and L3.6pl cells 

 

AZM475271 is a potent inhibitor of the Src tyrosine kinase activity in HUVE and L3.6pl cells. 

To demonstrate the selectivity of AZM475271, an in vitro Src inhibition ELISA was performed 

measuring the IC50 of AZM475271 necessary to prevent the ability (i.e. activity) of src kinase 

precipitated from HUVE or L3.6pl cells to phosphorylate an immobilized substrate in the 

presence of ATP. AZM475271 demonstrated a strong inhibition of Src kinase activity in HUVE 

and L3.6pl cells in a dose-dependent manner. The IC50 concentration of AZM475271 to inhibit 

the phosphorylation of Src in HUVE and L3.6pl cells was 0.1 µmol/L (Fig. 6.1, a and b, 

respectively). 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) was used 

as a positive control for Src kinase inhibition. 

 

6.2 In vitro selectivity profile of AZM475271 

A receptor tyrosine kinase inhibitor should prevent the phosphorylation of tyrosine residues on 

protein substrates following stimulation of the kinase with its specific ligand. The ability of 

AZM475271 to inhibit receptor tyrosine kinase activity (at the Michaelis constant [Km] for 

adenosine triphosphate [ATP]) was examined using an ELISA with recombinant cytoplasmic 

domains of Src non-receptor tyrosine kinases. Table 6.1 presents the kinase inhibition and 

selectivity profile of AZM475271 (data were kindly provided by AstraZeneca Pharmaceuticals). 

AZM475271 has considerable selectivity for Src versus kinase insert domain-containing receptor 

(KDR) (IC50 = 20.9 µmol/L), fms-like TK 1 (Flt-1) (IC50 > 100 µmol/L), fibroblast growth factor 

(FGF) TK, fms-like TK 4 (Flt-4), aurora kinase (AUR-3), mitogen-activated protein kinase 

(MAPK) kinase (MEK) (IC50 > 10 µmol/L), cyclin-dependent kinase-2 (CDK-2) (IC50 > 9 

µmol/L), epidermal growth factor receptor (EGF) TK (IC50 = 2.6 µmol/L). AZM475271 has 

equipotent activity against Src family members c-Yes and Lck (IC50 ≤ 0.004 µmol/L). Since the 

kinase domain is virtually identical in each member, it would be reasonable to assume that 

AZM475271 will inhibit the other family members with similar potency. The activities of Src 

kinases are normally highly regulated and AZM475271 will inhibit those that have been 
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activated. AZM475271 has poor activity against Csk, a negative regulator of Src (IC50 = 0.84 

µmol/L).  

 

 

Kinase IC50 
(µmol/L) 

Fold 
selectivity 

vs. Src 
   
Src 0.0027  
KDR (kinase insert domain-containing receptor) 20.9 >7700 
Csk (negative controller of Src) 0.843 312 
Flt-1 (VEGFR1) >100 >37000 
Flt-4 (VEGFR3) >10 >3700 
FGF TK >10 >3700 
EGF TK 2.59 960 
MEK 14.03 >5000 
CDK-2 9.753 3612 
c-Yes (ubiquitous Src family member) 0.004 1.48 
Lck (T cell restricted Src family member) <0.004 <1.48 
   

 

Table 6.1 AZM475271 inhibition of Src non-receptor tyrosine kinase and selectivity profile. 
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Figure 6.1 In vitro inhibition of Src Kinase. 
ELISA was performed measuring the IC50 of AZM475271 necessary to inhibit the 
activity of src kinase, expressed in L3.6pl (A) or in HUVECs (B). 4-Amino-5-(4-
chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) was used as a positive 
control for src kinase inhibition (*, p<0.001 versus control reaction; #, p<0.001 
versus control reaction). 
 
 
 

6.3 AZM475271 inhibits tumor growth and metastasis in an orthotopic nude mouse 

model 

 

Tumors generated by orthotopic implantation of the metastatic L3.6pl cell line were used to 

evaluate the effects of AZM475271 on growth, metastasis, and angiogenesis in a nude mouse 

model. Pancreatic tumors were allowed to become established for 7 days before initiation of 

treatment. Starting 3 days after the initiation of therapy with AZM475271, the measurement of 

mouse body weight and tumor volume (by transcutaneous palpation) was performed (Fig. 6.2, a 

and b). Treatment with AZM475271 did not significantly change animal weight (at the end of 

experiment the mean animal body weight after therapy with AZM475271 was 21.6 g, compared 

to the untreated group with 22.6 g) (Fig. 6.2a). Monitoring of the tumor volume over the course 

of experiment revealed a decrease in the tumor growth progression in all animals treated with 

AZM475271 (Fig. 6.2b).  
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The animals were sacrificed 32 days after the initiation of treatment, when > 50% of the control 

animals had become moribund. At the time of necropsy, all control and treated mice had 

developed primary pancreatic tumors. Primary pancreatic tumor size, liver and lymph node 

metastasis, and local peritoneal carcinosis were assessed. Treatment with AZM475271 

significantly reduced spontaneous liver metastasis (no animals had metastases) compared with 

treatment using vehicle solution. Mice who received AZM475271 had also a significant 

reduction in the incidence of lymph node metastases (five of nine animals) (Table 6.2). Tumor 

weight for treatment group was assessed using Fisher’s Exact test. Other comparisons were made 

using the unpaired Student’s t-test. The mean tumor volume was significantly decreased (~40% 

inhibition of primary tumor growth) in all animals treated with AZM475271 (AZM475271-

treated animals, 817 mm3; control animals, 1359 mm3). Primary pancreatic tumor weight after 

AZM475271 therapy was also significantly less than that in control mice (mean weight 1.03 and 

1.45, respectively). Results are presented in the Figures 6.3a and 6.3b.  

In addition, daily intragastral administration of AZM475271 was well tolerated. 
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Figure 6.2 Monitoring of the mouse body weight (A) and L3.6pl tumor growth 
progression (B) in the orthotropic nude mouse model. 

 
 
 
 
 
 

 
 
 
 
 
 
 

Table 6.2 In vivo therapeutic efficacy of AZM475271 on primary pancreatic tumor 
growth and metastasis in the orthotopic nude mouse model 
a Incidence presented as number of animals with tumor type/ number of animals in 
group 
b Visible nodules (≥1 mm in diameter) 
c p<0.03 compared with control (Fisher’s Exact Test) 
 

 

 

Incidence of macroscopic tumorsa 

Treatment group 
Pancreas tumor Liver metastasisb Regional LN metastasis 

Saline control 5/5 3/5 5/5 

AZM475271 9/9 0/9c 5/9c 
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The photograph below shows the tumors harvested from the mice in the experiment on day 32. 

Scale bar, 1 cm.  
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Figure 6.3 In vivo inhibition of L3.6pl pancreatic tumor volume (A) and 
pancreatic tumor weight (B) in the orthotopic nude mouse model. 

L3.6pl human pancreatic cancer cells were injected into the pancreas of nude 
mice. Seven days after implantation of tumor cells, mice randomly were assigned 
to one of the following groups of 5-9 mice each: 1) daily intragastral 
administration of Src tyrosine kinase inhibitor AZM475271 at a dose of 25 mg/kg; 
2) daily intragastral vehicle solution for AZM475271. The animals were sacrificed 
32 days after the initiation of treatment. 
Box plots represent the means for each group with standard deviation of data (min 
and max) and standard error of the mean.   
 
 

6.4 In vivo evaluation of plasma concentration levels 

 

After a single oral dose (gavage) of 50 mg/kg AZM475271 to healthy nude mice, the plasma 

concentration was measured 2, 6, and 24 hours later. The plasma concentration of AZM475271 

in nude mice was 32.1 µmol/L (14.206 ng/ml), 20 µmol/L (8879 ng/ml), and 11.7 µmol/L (5187 

ng/ml) at 2, 6, and 24 hours after oral dosing with 50 mg/kg AZM475271 (Figure 6.4). 
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Figure 6.4 The plasma concentration of AZM475271 in nude mice after the single 
oral dose of 50 mg/kg AZM475271. Error bars are expressed as a 5% average of 
data. 

 

6.5 Histological analysis of tissue sections 

 

6.5.1 In vivo effect of AZM475271 on tumor cell proliferation  

 

We next analyzed the effect of AZM475271 on tumor cell proliferation in vivo by assessing the 

level of the nuclear antigen Ki-67, which is present in all phases of the cell cycle except G0. The 

mean number of Ki-67-positive tumor cells in the pancreatic tumors of control mice was 480 ± 

14. After therapy with AZM475271, the mean number of Ki-67-positive cells was 185 ± 85 

(reduced over more than 50 % compared to control mice) (Table 6.3; Fig. 6.5). These results 

indicate the in vivo antiproliferative effect of AZM475271.  

 

6.5.2 In vivo effect of AZM475271 on tumor cell apoptosis 

 

To determine the ability of AZM475271 to induce apoptosis in pancreatic carcinoma cells 

TUNEL staining was carried out. The mean number of TUNEL-positive cells was 8 ± 2 and 26 ± 

11 (p < 0.05 versus control) in control and AZM475271-treated group, respectively. Results 

showed a significant enhancement of apoptotic tumor cells in the AZM475271 therapy group 

compared to control tumors. (Table 6.3; Fig. 6.5).  
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 Positively staining cells (mean ± SD)a 

 Tumor cells 

Treatment group Ki-67 TUNEL 

Saline control 480 ± 14 8 ± 2 

AZM475271 185 ± 85b 26 ± 11c 

 
a Positive cells per field determined from measurement of 10 random 0.159-
mm2 fields at ×100 magnification. 
b p<0.001 compared with controls. 
c p<0.05 compared with controls. 

 
Table 6.3 Quantification of Ki-67- and TUNEL-positive cells in primary 
pancreatic tumors after therapy with AZM475271.  
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Figure 6.5 Immunohistochemical analyses of proliferation (Ki-67), microvessel 
density (CD31), and apoptotic cells (TUNEL) in L3.6pl pancreatic tumors 

growing in nude mice. 
A, histological sections of control and AZM475271-treated tumors; B, mean 
number of positively stained cells per field (bars represent mean ± SD), # p<0.001 
compared with controls; * p<0.05 compared with controls. 
Histopathologic evaluation of cell proliferation was performed using Ki-67 
staining. Sections were examined microscopically and the average number of cells 
staining positive for Ki-67 per high-power field (0.159 mm2) was counted at ×100 
magnification. The mean number of Ki-67 positive tumor cells after therapy with 
AZM475271 was reduced by > 50 % compared with control mice. Frozen tissues 
were used for the evaluation of microvessel density (CD31-positive structures). 
CD31 staining demonstrated no significant influence of AZM475271 on MVD of 
tumors compared with controls (p = 0.14967, the arrow delineates CD31-positive 
cells). 
In contrast, terminal deoxynucleotidyl transferase-mediated nick end labeling 
(TUNEL) staining for apoptotic cells revealed an increase in the number of cells 
undergoing apoptosis in pancreatic cancer in the AZM475271 group. The number 
of TUNEL-positive cells was counted in 10 random fields (0.159 mm2) at ×100 
magnification (bars = 100 µm).  

 

 

6.5.3 Quantification of microvessel density in primary pancreatic tumors 

 

Frozen tissues were used for the evaluation of microvessel density (CD31-positive structures). 

Clusters of stained endothelial cells distinct from adjacent microvessels, tumor cells, or other 

stromal cells were counted as one microvessel. The number of CD31-positive microvessels 



  Chapter 6. Results  

 - 75 - 

counted per x100 field in the pancreatic tumors was lower in mice after therapy with 

AZM475271, but not significant (p = 0.14967) (Figure 6.5, the arrow delineates CD31-positive 

cells).  

 

6.5.4 In vivo effect of AZM475271 on endothelial cell survival 

 

We speculated that tumor cell apoptosis may have been due to poor perfusion after endothelial 

cell apoptosis rather then due to decreasing in microvessel density. Therefore, we developed a 

technique with which we could evaluate endothelial cell apoptosis in vivo in tissue sections. 

Endothelial cells were detected by localized red fluorescence, whereas green fluorescence was 

detected within the nuclei of apoptotic cells. Double-labeling of endothelial cells undergoing 

apoptosis resulted in localized yellow fluorescence. The total number of apoptotic cells was 

quantified in 10 randomly selected microscopic fields and expressed as the ratio of apoptotic 

endothelial cells to the total number of endothelial cells in  5–10 random 0.011-mm2 (at x400 

magnification).  

The number of endothelial cells undergoing apoptosis was significantly greater in pancreatic 

tumors from mice treated with AZM475271 compared to control tumors (24 ± 9.1 for 

AZM475271 compared with 0.7 ± 1.5 for untreated control, p = 0.01) (Fig. 6.7). Clusters of 

apoptotic tumor cells were seen surrounding apoptotic endothelial cells when treated with 

AZM475271 (Fig. 6.6, the arrows delineate TUNEL-positive endothelial cells). 

This finding suggests that the reduced tumor size that followed therapy with Src inhibitor was 

not wholly a direct consequence of inhibition of tumor cell proliferation. There was a statistically 

significant induction of endothelial cell apoptosis in the pancreatic tumor model when 

AZM475271-treated tumors and control tumors were compared, suggesting that the reduction in 

tumor growth and metastasis in the treated group was due to endothelial cell death and not to a 

direct effect on the tumor cells themselves. 
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Figure 6.6 Immunofluorescent staining of L3.6pl human pancreatic tumors from 
mice treated with AZM475271. 

Serial tissue sections were stained with the immunofluorescent endothelial cell 
marker (CD31) and the immunofluorescent apoptosis marker (TUNEL). A 
representative sample (×100 magnification) of this CD31/TUNEL fluorescent 
double-staining is shown. Fluorescent red, CD31-positive endothelial cells; 
fluorescent green, TUNEL-positive cells; fluorescent-yellow, TUNEL-positive 
endothelial cells; bar = 100 µm, the arrows delineate TUNEL-positive endothelial 
cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Apoptosis of endothelial cells of microvessels after therapy with 
AZM475271. 

§ The total number of apoptotic cells was quantified and expressed as the ratio of 
apoptotic endothelial cells to the total number of endothelial cells in 5–10 
random 0.011-mm2 (at x400 magnification).  
Box plots represent the means for each group with standard deviation of data 
(min and max) and standard error of the mean.  

 

6.6 In vitro antiproliferative activity of AZM475271 in L3.6pl and HUVE cells 

 

Viability assays for L3.6pl and HUVE cells were performed with the TACS MTT Cell 

Proliferation and Viability Assay Kit. Treatment of HUVECs with AZM475271 at high 

concentrations (> 10 µmol/L) caused a rapid decrease in cell proliferation that could be linked to 

the ability of AZM475271 to induce HUVEC death, whereas a significant antiproliferative 

activity of AZM475271 on HUVECs could be already observed at concentrations of 2 µmol/L or 
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above (IC50 = 6 µmol/L) (Fig. 6.8). Interestingly, no significant inhibition of proliferation was 

seen on L3.6pl cells at doses up to 5 µmol/L. The antiproliferative effect of AZM475271 on 

L3.6pl was seen exclusively at very high doses (IC50 = 25 µmol/L) (Fig. 6.8). These results 

suggest that the anti-angiogenic properties of AZM475271 might predominantly be mediated 

through a direct effect on the endothelial cells rather than via inhibition of tumor cells. 
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Figure 6.8 In vitro effects of AZM475271 on tumor and endothelial cell 
proliferation. 

Viability assays for HUVE (a) and L3.6pl (b) cells with AZM475271 were 
performed with the TACS MTT Cell Proliferation and Viability Assay Kit. 
Treatment of HUVECs with AZM475271 at high concentrations (>10 µmol/L, p< 
0.0001 versus AZM475271 0 µmol/L) caused a rapid decrease in cell proliferation 
that could be linked to the ability of AZM475271 to induce HUVEC death. The 
IC50 concentration was reached at 6 µmol/L for HUVECs and at 25 µmol/L for 
L3.6pl cells, respectively. 

 

6.7 In vitro effects of AZM475271 on VEGF- and EGF- dependent endothelial cell 

proliferation 

 

The effects of exogenous VEGF or EGF on endothelial cell proliferation were analyzed using the 

TACS MTT Cell Proliferation and Viability Assay Kit.  

To address the functional importance of HUVEC proliferation in response to growth factors, we 

incubated the cells for 48 hours in serum reduced medium (0.5% FCS) in the presence or 

absence of VEGF or EGF. Both growth factors at concentrations of 25 ng/ml induced endothelial 

cell proliferation under the starved conditions (Fig. 6.9). The results allow us to speculate that 

VEGF and EGF signalling pathways play a critical role in promoting endothelial cell survival 

under our in vitro conditions.  

Cell proliferation assays were performed to examine an in vitro inhibition of VEGF and EGF 

induced HUVEC growth following treatment with AZM475271. Inhibition of Src kinase in 

HUVECs by AZM475271 showed prevention of survival signaling from VEGF – and EGF – 

induced cell growth in a dose-dependent cytostasis. Interestingly, the IC50 concentration for 

AZM475271 in both VEGF- and EGF- stimulated HUVECs was significantly higher (Fig. 6.10) 

than that found under unstimulated conditions (Fig. 6.8a). The results allow us to speculate that 

VEGF and EGF signalling pathways play a critical role in promoting endothelial cell 

proliferation. 
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Figure 6.9 The effects of exogenous VEGF or EGF on endothelial cell 
proliferation. 

Both growth factors at concentrations of 25 ng/ml induced endothelial cell 
proliferation under the starved conditions. (* p<0.05 compared with 2% FCS 
control, # p<0.05 compared with 0.5% FCS starved control). 
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Figure 6.10 Inhibition of VEGF (A) – and EGF (B) – mediated endothelial cell 
proliferation. 

Cells were treated with AZM475271 (1 – 10 µmol/L) in the presence of human 
recombinant VEGF165 or human recombinant EGF at concentrations of 25 ng/ml 
in serum reduced Endothelial Cell Basal Medium. Inhibition of Src kinase in 
HUVECs by AZM475271 showed prevention of survival signaling from VEGF 
(A) – and EGF (B) – induced cell growth in a dose-dependent cytostasis. Box 
plots represent the means for each group with standard deviation of data (min and 
max) and standard error of the mean; *, p< 0.05 versus VEGF – stimulated cells; 
#, p< 0.05 versus EGF – stimulated cells. 

 

6.8 In vitro effect of AZM475271 in the aortic ring assay 

 

Angiogenesis was studied by culturing aortic explants in three-dimensional matrix gels 

according to the procedure of Nikosia and Ottineri. Endothelial cell sprouting from cultured rat 

aortic rings was abrogated by AZM475271 at any of the concentrations tested (1 µmol/l to 5 

µmol/L; Fig. 6.11). At a concentration of 1 µmol/L endothelial migration and sprouting was 52 

% relative to untreated controls (p = 0.0024 versus control). In contrast, a concentration of 5 

µmol/L inhibited sprouting by 93 % relative to controls (p < 0.0005 versus control; Fig. 6.7).  
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Figure 6.11 Effect of AZM475271 on rat aortic ring formation. 
An estimation of the length of the capillary was performed by measuring the 
distance from the aortic explant to the approximate mean point of capillary. 
Endothelial cell sprouting from cultured rat aortic rings was abrogated by 
AZM475271 (a) at any of the concentrations tested (1 µmol/L to 5 µmol/L). At a 
concentration of 1 µmol/L endothelial migration and sprouting was 52 % relative 
to untreated controls. By contrast, a concentration of 5 µmol/L inhibited sprouting 
by 93 % relative to controls (#, p<0.0004 versus AZM475271 0 µmol/L; *, p = 
0.0024 versus AZM475271 0 µmol/L). Representative photographs (b) showing 
the in vitro anti-angiogenic activity of the Src kinase inhibitor (the rings were 
examined by phase contrast microscopy with a Zeiss Axiotech Vario microscope 
at ×10 magnification, bar = 10 µm, the arrows delineate capillary outgrowth).  
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6.9 AZM475271 inhibits endothelial sprouting in vitro in the spheroid angiogenesis 

model 

 

To investigate the complex processes of angiogenesis in vitro, we used the spheroid assay. We 

measured the ability of the endothelial cells to form sprouts in the spheroid model as a result of 

angiogenic stimulation, a prerequisite for an engagement of these cells in the formation of blood 

vessels.  

Interestingly, AZM475271 inhibited sprouting of HUVEC at lower concentrations than 

suggested by the MTT proliferation assay (1 µmol/L for the sprouting assay versus 6 µmol/L for 

the MTT assay). At concentrations higher than the IC50, sprouting of the endothelial cell 

spheroids was completely prevented (Fig. 6.12).  
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Figure 6.12 AZM475271 inhibits endothelial sprouting in vitro in the spheroid angiogenesis 
model 

Spheroids were stimulated with 25 ng/ml VEGF-A165 and the inhibiting properties 
of AZM475271 were investigated. AZM475271 was able to overcome the 
stimulating effect of VEGF-A165 at micromolar concentrations. Representative 

Unstimulated VEGF 25 ng/ml 

AZM 1 µmol/L 

AZM 10 µmol/L AZM 5 µmol/L 
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pictures of spheroids are presented (the pictures of the spheroids were taken under 
trans-illumination using an Achroplan objective providing a 20-fold 
magnification; the arrows delineate spheroid sprouting). 
 

6.10 Inhibition of VEGF production by L3.6pl and HUVE cells following treatment with 

AZM475271 

 

The level of VEGF was measured in cell culture supernates collected on day 0, 2, and 4 from 

L3.6pl or HUVE cells at one passage during treatment with Src kinase inhibitor AZM475271 at 

different concentrations (0.1 and 1 µmol/L). The assay was performed according to the 

manufacturer’s recommendations. Absorbance at 450 nm was measured and corrected using the 

540-nm reading on the microplate reader. VEGF content was calculated according to the 

parameter of the calibration curve. Calibration curves with a correlation coefficient at least 0.998 

were used and data are expressed as picograms per millilitre per 106 cells. All experiments were 

replicated three times. 

The concentrations of AZM475271 below or equal 1 µmol/L (the concentrations with a 

maximum of inhibitory effect against Src tyrosine kinase [Fig. 6.1] without antiproliferative 

activity on tumor or endothelial cells [Fig. 6.8]) were taken to show that the production of VEGF 

by tumor or endothelial cells is “Src-dependent”. We found that the level of VEGF in HUVE cell 

supernate on Day 0 (the beginning of experiment) as well as the level of VEGF in Endothelial 

Cell Basal Medium completed with supplemented growth factors was mostly non-detectable. 

The level of VEGF in HUVE cell supernate increased on Day 4, although this difference did not 

reach a significant level (Fig. 6.13a).  

The level of VEGF in supernate taken from L3.6pl cells was significantly higher (> 50-fold) 

compare to those found in the HUVE cell supernate on Day 2. The amount of VEGF expressing 

by L3.6pl cells on Day 4 after the beginning of experiment increased significantly (Fig. 6.13b).  

Most interestingly, the blockade of Src kinase by AZM475271 dramatically reduced the level of 

VEGF in L3.6pl supernate, the effect which was found also in the cell culture supernate from 

HUVE cells (Fig. 6.13, a and b). The inhibition of VEGF production by L3.6pl and HUVE cells 

following treatment with AZM475271 was day- and dose- dependent. 
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Figure 6.13 VEGF production by HUVE (a) and L3.6pl (b) cells following 

treatment with AZM475271. 
The level of VEGF was measured in cell culture supernates collected on day 0, 2, 
and 4 from L3.6pl or HUVECs at one passage. The blockade of Src kinase by 
AZM475271 significantly reduced the level of VEGF in L3.6pl supernate in a 
dose-dependent manner (b), the effect which was found also in the cell culture 
supernate from HUVECs (a). (*, p<0.05 versus AZM475271 0 µmol/L, Day 2; #, 
p<0.05 versus AZM475271 0 µmol/L, Day 4).    
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6.11 In vitro induction of cell death in HUVECs 

 

FACS analysis was used to determine the effects of AZM475271 on HUVEC cell cycle 

progression. Quantification of apoptosis was performed using propidium iodide staining. HUVECs 

were treated with AZM475271 in different concentrations for 12 hours, and then cells were collected 

and suspended in a Nicoletti buffer. Inhibition of Src kinase in HUVECs resulted in the induction of 

apoptosis in 99% of the cells treated with AZM475271 at concentrations from 10 up to 25 µM as 

compared with 6.3% of apoptotic cells present in the untreated control (Fig. 6.14, b). Interestingly, at 

the more physiologically relevant submicromolar doses of AZM475271 (5, 1 and 0.1 µmol/L) the 

level of apoptotic fraction was also significantly higher (60%, 40% and 15%, respectively) when 

compared with untreated cells (6%; Fig. 6.14, a). 
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Figure 6.14 In vitro effect of AZM475271 on endothelial cell survival. 
Quantification of apoptosis was performed using propidium iodide staining for 
cell cycle analysis by FACS. AZM475271 promotes HUVEC apoptosis in a dose-
dependent manner (a), (*, p<0.05 versus AZM475271 0 µmol/L). Histograms (b) 
show one representative of three independent experiments. 
 
 

6.12 In vitro inhibition of migration of HUVECs by AZM475271 

 

To investigate the anti-migratory effects of AZM475271 on endothelial cells we demonstrated 

whether Src inhibition in HUVECs prevented cell migration in a modified Boyden chamber 

assay. Inhibition of Src kinase resulted in a dose depended decrease of HUVEC migration. (p < 

0.05; Fig. 6.15). 
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Figure 6.15 In vitro inhibition of migration of HUVECs by AZM475271. 
Migration of HUVECs was demonstrated using a modified Boyden chamber 
assay. Inhibition of VEGF-induced chemotaxis was assessed after including 
AZM475271 at relevant doses. Migration through the membrane was determined 
after 4 hours of incubation at 37oC by fixing, staining with hematoxylin and eosin, 
and counting the migrated cells in five random fields at ×100 magnification. The 
average of triplicate inserts from three representative experiments was obtained. 
Bars, SD; *, p< 0.001; #, p< 0.0004 (both versus VEGF stimulation); §, positive 
cells in 5 random 0.159-mm2 fields at x100 magnification. 

 

 

6.13 AZM475271 abolishes VEGF-induced FAK phosphorylation in HUVECs 

 

Src tyrosine kinase has been shown to mediate the tyrosine phosphorylation signal from VEGFR 

to FAK. Focal adhesion kinase is involved in integrin-mediated signal transduction. It plays an 

important role in the control of several biological processes, including cell spreading, migration 

and survival (Parsons et al., 2000). The recruitment of Src family kinases results in the 

phosphorylation of tyrosine residues 576 and 577 in the catalytic domain. Phosphorylation of 

tyrosines 576 and 577 is significantly elevated in the presence of c-Src in vitro and v-Src in vivo 

(Calalb et al., 1995). Furthermore, the maximal kinase activity of FAK immune complexes 

requires phosphorylation of both tyrosines 576 and 577.  
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Here, we test the possibility that AZM475271 could affect VEGF-induced FAK kinase activity 

in HUVECs. Using Western Blots, we found src-dependent up-regulation of FAK 

phosphorylation (Fig. 6.16). Treatment of HUVECs with 10 µmol/L of AZM475271 resulted in 

the significant inhibition of VEGF-activated pTyr 576/577 FAK phosphorylation, indicating that 

VEGF mediates its effect in HUVECs at least in part via Src kinase.  

 

     
 
 

Figure 6.16 VEGF-induced HUVEC FAK phosphorylation is inhibited by 
AZM475271. 

 Lysates of VEGF-stimulated HUVECs were prepared as described in Materials 
and Methods and subjected to immunoblotting with anti-phosphotyrosine antibody 
specific for 576/577 within FAK.  
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Chapter 7 

 

DISCUSSION 
               
 

 

Currently, a large variety of chemotherapeutic drugs is being used to treat pancreatic cancer, but, 

unfortunately, many compounds show only limited efficacy due to problems of delivery and 

development of drug resistance in tumor cells. Tumor cells are rapidly changing targets because 

of their genetic instability, heterogeneity, and high rate of mutation, leading to selection and 

outgrowth of drug-resistant tumor cell populations (Gasparini et al., 1999; Kerbel, 1997). 

Anti-angiogenic therapy offers several advantages over therapy directed against tumor cells. 

First, endothelial cells are a genetically more stable, diploid, and spontaneous mutations rarely 

occur. Second, the turnover of tumor endothelial cells is approximately 50 times higher than of 

endothelial cells in normal quiescent tissues. Third, tumor endothelial cells as target are easily 

accessible by systemic administration. Finally, a high number of tumor cells is sustained by a 

single capillary, that means, inhibition of a small number of tumor vessels may affect the growth 

of many tumor cells (Kerbel, 1997). It has been shown, that the intratumoral blood vessel density 

is a prognostic marker in a variety of solid tumors, including invasive breast (Kumar et al., 

1999), lung (Fontanini et al., 1996), malignant melanoma, gastrointestinal, (Tanigawa et al., 

1997) and genitourinary cancers (Pepper, 1997). The progressive growth of pancreatic 

neoplasms also depends on the induction of angiogenesis, in these tumors a positive correlation 

was found between tumor angiogenesis and the risk of metastasis, tumor recurrence, and death 

(Kumar et al., 1999; Fontanini et al., 1996; Tanigawa et al., 1997). However, as tumors grow, 

they begin to produce a wider array of angiogenic molecules. Therefore, if only one molecule 

(for example, VEGF) is blocked, tumors may switch to another molecule (for example, bFGF or 

IL-8). Thus we may require a cocktail of antibodies/inhibitors. In this respect, targeting 

intracellular proteins might be a promising approach in angiogenesis therapy of pancreatic 

cancer. Indeed, our results support the theory that the inhibition of intracellular transducers of 

receptor tyrosine kinase signaling can avoid these disadvantages.  
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The purpose of the current study was to determine whether the intracellular tyrosine kinase Src 

might play a role in angiogenesis of pancreatic cancer. c-Src is a multifunctional protein 

involved in the regulation of a variety of normal processes, including proliferation, 

differentiation, survival, motility, and functions of fully differentiated cells (Thomas and Brugge, 

1997). There are several recent reports that Src contributes to the control of tumor angiogenesis. 

Specifically, Src is needed for hypoxia-induced vascular endothelial growth factor (VEGF) 

production in a number of cell types (Mukhadopathyay et al., 1995). Furthermore, it has been 

shown, that suppression of Src in HT29 colon cancer cells by an antisense approach, led to a 

reduction of VEGF expression (Ellis et al., 1998). Thus, it appears that Src cannot only regulate 

the production of VEGF, but also control the consecutive endothelial cell response (see Chapter 

3). 

To investigate the hypothesis, that Src inhibitory drugs do not only affect tumor cell proliferation 

and survival, but also angiogenesis and migration, we conducted an in vivo experiment using a 

novel orally available Src kinase inhibitor AZM475271 (AstraZeneca) in nude mice bearing 

L3.6pl human pancreatic cancer implanted orthotopically in the pancreas. Treatment with 

AZM475271 did not significantly change animal weight (at the end of experiment the mean 

animal body weight after therapy with AZM475271 was 21.6 g, compared to the untreated group 

with 22.6 g). Monitoring of the tumor volume over the time of experiment revealed a decrease in 

the tumor growth progression in all animals treated with AZM475271. The animals were 

sacrificed 32 days after the initiation of treatment, when > 50% of the control animals had 

become moribund. At the time of sacrifice, all animals developed primary pancreatic tumors, 

however the mean tumor volume was significantly decreased (~40% inhibition of primary tumor 

growth) from 1125 ± 460 mm3 (control animals) to 508 ± 205 mm3 in animals treated with 

AZM475271. Furthemore, treatment with AZM475271 significantly reduced spontaneous liver 

metastasis (no animals had metastases) compared with treatment using vehicle solution. Mice 

who received AZM475271 had also a significant reduction in the incidence of lymph node 

metastases (five of nine animals). In addition, daily intragastral administration of AZM475271 

was well tolerated. IHC analyses of primary pancreatic tumors demonstrated a significant 

decrease in proliferating tumor cells, the mean number of Ki-67 positive tumor cells after 

therapy with AZM475271 was reduced by > 50 % compared to control mice. The mean number 

of apoptotic cells in the tumors treated with AZM475271 was significantly elevated compared to 

control tumors (26 ± 11 versus 8 ± 2, respectively). The number of CD31-positive microvessels 

counted per x100 field in the pancreatic tumors was lower in mice after therapy with 

AZM475271, but not significant (p = 0.14967). We speculated that tumor cell apoptosis may 



  Chapter 7. Discussion  

 - 94 - 

have been due to poor perfusion after endothelial cell apoptosis rather then due to decreasing in 

microvessel density. Indeed, double staining of endothelial cells with antibodies against CD31 

and TUNEL revealed that the reduction in MVD was attributable to a significant increase of 

apoptosis in endothelial cells (24 ± 9.1 for AZM475271 compared with 0.7 ± 1.5 for untreated 

control, p = 0.01) and not to a direct effect on the tumor cells themselves (clusters of apoptotic 

tumor cells were seen surrounding apoptotic endothelial cells when treated with AZM475271). 

This finding suggests that the reduced tumor size that followed therapy with Src inhibitor was 

not wholly a direct consequence of inhibition of tumor cell proliferation. There was a statistically 

significant induction of endothelial cell apoptosis in the pancreatic tumor model when 

AZM475271-treated tumors and control tumors were compared. This is the first report to our 

knowledge demonstrating that therapy with AZM475271 leads to apoptosis of endothelial cells 

within pancreatic tumors as determined by a double-labeling immunofluorescence procedure. 

Moreover, the antiangiogenic activity of the Src kinase inhibitor was also evident in vitro, where 

proliferation, invasion, and migration of the endothelial cells were significantly reduced by 

AZM475271.  

In vitro, AZM475271 was shown to inhibit proliferation and to induce apoptosis of human 

umbilical vein endothelial cells (HUVECs) in a dose dependent manner. Treatment of HUVECs 

with AZM475271 at high concentrations (> 10 µmol/L) caused a rapid decrease in cell 

proliferation that could be linked to the ability of AZM475271 to induce HUVEC death, whereas 

a significant antiproliferative activity of AZM475271 on HUVECs could be already observed at 

concentrations of 2 µmol/L or above (IC50 = 6 µmol/L). Interestingly, no significant inhibition of 

proliferation was seen on L3.6pl cells at doses up to 5 µmol/L. The antiproliferative effect of 

AZM475271 on L3.6pl was seen exclusively at very high doses (IC50 = 25 µmol/L). These in 

vitro findings support our theory that the anti-tumor properties of AZM475271 might 

predominantly be mediated through a direct effect on the endothelial cells rather that on the 

tumor cells. 

Inhibition of Src kinase in HUVECs also showed prevention of survival signaling from VEGF 

and EGF. The IC50 concentration for AZM475271 in both VEGF- and EGF- stimulated 

HUVECs was higher (IC50 = 10 µmol/L) than that found in HUVECs under unstimulated 

conditions. The results allow us to speculate that VEGF and EGF signalling pathways play a 

critical role in promoting endothelial cell proliferation and survival. Indeed, it has been shown 

that receptor tyrosine kinases activate Src by autophosphorylation of tyrosine residues that 

function as docking sites for the SH2 domain of Src kinase on the receptor itself or by 

phosphorylation of docking proteins. Once activated, Src could link VEGF- or EGF-stimulation 
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with the PDK/PKB signaling cassette leading to stimulation of endothelial cell survival and 

angiogenesis (Schlessinger et al., 2000). However, although both growth factors stimulate Src 

activation, it has only been shown that VEGF-induced angiogenesis can be inhibited by 

treatment with a retrovirus that encodes for Src-251, a dominant-negative mutant of Src. 

Moreover, overexpression of Src-251 in avian blood vessels induces apoptotic death, indicating 

that VEGF-induced activation of Src is essential for endothelial cell survival and angiogenesis. 

Interestingly, VEGF-induced vascular permeability is impaired in Src-/- and in Yes-/- but not in 

Fyn-/- mice (Eliceiri et al., 1999), suggesting that the function of Src kinases in endothelial cells 

is not comparable to the function of other family members.  

Furthemore, we found that in addition to regulating the VEGF response of HUVE cells, Src also 

regulates the expression of VEGF in both tumor and endothelial cells. The level of VEGF was 

measured in cell culture supernates collected on day 0, 2, and 4 from L3.6pl or HUVE cells at 

one passage during treatment with Src kinase inhibitor AZM475271 at different concentrations 

(0.1 and 1 µmol/L). The concentrations of AZM475271 below or equal 1 µmol/L (the 

concentrations with a maximum of inhibitory effect against Src tyrosine kinase without 

antiproliferative activity on tumor or endothelial cells) were taken to show that the production of 

VEGF by tumor or endothelial cells is “Src-dependent”. We found that the level of VEGF in 

HUVE cell supernate on Day 0 (the beginning of experiment) as well as the level of VEGF in 

Endothelial Cell Basal Medium completed with supplemented growth factors was mostly non-

detectable. The level of VEGF in HUVE cell supernate increased on Day 4, although this 

difference did not reach a significant level. The level of VEGF in supernate taken from L3.6pl 

cells was significantly higher (> 50-fold) compare to those found in the HUVE cell supernate on 

Day 2. The amount of VEGF expressing by L3.6pl cells on Day 4 after the beginning of 

experiment increased significantly. Most interestingly, the blockade of Src kinase by 

AZM475271 dramatically reduced the level of VEGF in L3.6pl supernate, the effect which was 

found also in the cell culture supernate from HUVE cells.  

To gain more relevant information in terms of angiogenic processes, we measured the ability of 

the endothelial cells to form sprouts in the spheroid assay as a result of angiogenic stimulation, a 

prerequisite for an engagement of these cells in the formation of blood vessels. Cells organized 

in a spheroid that is embedded in a collagen matrix, are much more sensitive to pro-angiogenic 

as well as anti-angiogenic stimuli as compared to the same cells in a monolayer culture. This 

finding was also apparent in our experiments and is rationalized by the fact that proliferation is 

only one of the features of angiogenic processes. Additional processes such as cell plasticity and 

mobility are also pivotal features of angiogenesis. Therefore, our finding that AZM475271 
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abrogated the stimulating effect of VEGF-A165 even at submicromolar concentrations 

demonstrates the high susceptibility of sprouting endothelial cells to AZM475271.  

Image analysis was also used to quantify angiogenesis on the rat aortic ring model by culturing 

aortic explants in three-dimensional matrix gels according to the procedure of Nikosia and 

Ottineri. This model bridges the gap between in vivo and in vitro models and is suitable to 

quantify spontaneous angiogenesis as well as to analyze a complex microvascular network 

induced by VEGF. Interestingly, endothelial cell sprouting from cultured rat aortic rings was 

abrogated by AZM475271 at any of the concentrations tested (1 µmol/l to 5 µmol/L). At a 

concentration of 1 µmol/L endothelial migration and sprouting was 52 % relative to untreated 

controls. In contrast, a concentration of 5 µmol/L inhibited sprouting by 93 % relative to 

controls. 

Recent reports have demonstrated a major role for Src activity in the control of cell adhesion and 

cytoskeletal changes, which in turn regulate cell invasion and migration (Frame, 2002). To 

produce new vessels, endothelial cells must migrate, degrade extracellular matrix, divide, form 

tubes, and survive (Fidler et al., 1994; Folkman, 1995). Evidence is provided that VEGF 

activates Src kinase, which induces the phosphorylation of tyrosines 576/577 within FAK, 

facilitating the association of FAK with integrin αvβ3. Blockade of Src activity by AZM475271 

inhibits the formation of a VEGF-induced FAK/ αvβ3 complex. Integrin αvβ3 is known to bind a 

number of ECM proteins, among them vitronectin, fibrinogen, von Willebrand factor, 

fibronectin and denatured collagen. More recent studies show that integrin αvβ3 can also bind 

directly to matrix metalloproteinase 2, thereby localizing the MMP-2-mediated matrix-

degradation capacity to the invasive/migratory site of vascular cells during angiogenesis (Brooks 

et al., 1996). This enables endothelial cells to degrade and remodel the ECM during their 

invasion.  

We confirmed the antimigratory effect of AZM475271 by analysis of endothelial cell migration 

using a modified Boyden chamber assay revealing a strong inhibition of HUVEC migration. 

These findings suggest that one major role of Src activity is to cooperate with activated growth 

factor receptors to induce adhesion and cytoskeletal changes that are associated with invasion 

and metastasis. Therefore, it is possible, that Src-specific inhibitory drugs, such as AZM475271, 

might primarily affect these pathways in endothelial cells, and so be useful in preventing further 

tumor spread, while not necessarily having such a strong influence on cancer cell growth.  
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Chapter 8 

 

SUMMARY 
               
 

The results of all experiments can be summarized as follows: 

 

•  AZM475271 is the selective inhibitor of the Src tyrosine kinase activity in HUVE and 

L3.6pl cells with the IC50 = 0.1 µmol/L; 

•  Monitoring of the tumor volume in mice bearing human pancreatic cancer revealed a 

decrease in the tumor growth progression in all animals treated with AZM475271; 

•  Daily intragastral administration of AZM475271 was well tolerated; 

•  At the time of necropsy, the mean tumor volume was significantly decreased (~40% 

inhibition of primary tumor growth) in all mice treated with AZM475271; 

•  Treatment with AZM475271 significantly reduced spontaneous liver metastasis (no 

animals had metastases) compared with treatment using vehicle solution. Mice who 

received AZM475271 had also a significant reduction in the incidence of lymph node 

metastases (five of nine animals); 

•  The mean number of proliferating tumor cells (Ki-67-positive) in harvested tumors was 

reduced over than 50 % in the AZM475271 therapy group compared to the control group; 

•  The mean number of apoptotic cells (measured by TUNEL staining) was significantly 

higher in the AZM475271 therapy group; 

•  The number of endothelial cells undergoing apoptosis (determined by a double CD31 and 

TUNEL staining) was significantly greater in pancreatic tumors from mice treated with 

AZM475271 compared to control tumors; 

•  A significant antiproliferative activity of AZM475271 on HUVECs can be already 

observed at concentrations of 2 µmol/L or above (IC50 = 6 µmol/L); 

•  Treatment of HUVECs with AZM475271 at high concentrations (> 10 µmol/L) caused a 

rapid decrease in cell proliferation that could be linked to the ability of AZM475271 to 

induce HUVEC death (measured by MTT proliferation assay); 
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•  Inhibition of Src kinase in HUVECs by AZM475271 showed prevention of survival 

signaling from VEGF – and EGF – induced cell growth in a dose-dependent manner 

(measured by MTT proliferation assay); 

•  Endothelial cell sprouting from cultured rat aortic rings was abrogated by AZM475271 at 

any of the concentrations tested (1 µmol/l to 5 µmol/L); 

•  AZM475271 inhibited sprouting of HUVEC in the spheroid angiogenesis model at lower 

concentrations than suggested by the MTT proliferation assay (1 µmol/L for the spheroid 

assay versus 6 µmol/L for the MTT assay).  

•  The blockade of Src kinase by AZM475271 dramatically reduced the level of VEGF in 

L3.6pl and HUVEC supernates; 

•  Src inhibition in HUVECs prevented VEGF – induced cell migration in the modified 

Boyden chamber assay; 

•  Treatment of HUVECs with AZM475271 resulted in the significant inhibition of VEGF-

activated pTyr 576/577 FAK phosphorylation. 

 

Taken together, our results suggest that the Src kinase inhibitor AZM475271, in addition to its 

antiproliferative effects on pancreatic tumor cells, suppresses tumor growth in vivo potentially by 

anti-angiogenic mechanisms by inducing intratumoral endothelial cell apoptosis and finally 

reducing the MVD. It is an exciting prospect that Src inhibitory drugs might not only affect more 

traditional Src activities, such as cell growth, migration, and invasion, but could also induce 

endothelial cell death in regions of pancreatic tumors where neovascularisation is occurring. 

These findings are consistent with our in vitro studies, where AZM475271 was shown to 

significantly inhibit VEGF-induced endothelial cell proliferation, migration, spreading, and 

survival. VEGF production by L3.6pl cells was also inhibited following treatment with 

AZM475271, so angiogenesis inhibition found in vivo may be mediated, at least in part, by 

paracrine effects. 

Since AZM475271 is well tolerated when given to animals, we believe that the findings of the 

present study may shed light on the pharmacological basis for the clinical application of Src 

kinase inhibitors for suppression of angiogenesis, which plays a crucial role in pancreatic tumor 

growth and metastasis. 
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Chapter 9 

 

ZUSAMMENFASSUNG 
               
 

Die Ergebnisse der Doktorarbeit können wie folgt zusammengefasst werden: 

 

•  AZM475271 ist ein selektiver inhibitor der Scr Tyrosinkinase-Aktivität in humanen 

vasklären Endothelzellen undin humanen Pankreaskarzinomzellen L3.6pl mit einem IC50 

= 0,1µmol/l 

•  Durch regelmäßiges Monitring konnte im Tierexperiment eine Abnahme des 

Pankreastumorwachstums nach Behandlung mit AZM475271 festgestellt werden 

•  Die tägliche intragastrale Verabreichung von AZM475271 wurde von allen Tieren gut 

vertragen 

•  Zum Zeitpunkt der Tötung war das Tumorvolumen nach Behnadlung mit AZM475271 

signifikant niedriger (~ 40% niedriger) 

•  Die Behandlung mit AZM475271 führte zu einer signifikanten Reduktion der Inzidenz 

von Leber- und Lymphknotenmetastasen   

•  Die Anzahl der proliferierenden Zellen (Ki67 positiv) in den Pankreastumoren war nach 

Behandlung mit AZM475271 bis zu 50% im Vergelich zu den Kontrolltieren reduziert 

•  Die mittlere Anzahl apoptotischer Zellen (TUNEL-Färbung) in den Pankreastumoren war 

signifikant höher nach Therapie mit AZM475271 als in den Kontrolltumoren 

•  Die mitlere Anzahl apoptotischer Endothelzellen (TUNEL/CD31-Doppelfärbung) in den 

Pankreastumoren war signifikant höher nach Therapie mit AZM475271 als in 

Kontrolltumoren 

•  In HUVECs zeigt sich bereits ab einer Konzentration von 2µmol/l (IC50 = 6µmol/l) ein 

signifikant anti-prolferativer Effekt im MTT-Assay 

•  Die Behandlung von HUVECs mit hohen Dosen von AZM475271 (>10µmol/l) führt 

zum Zelltod  

•  Die Blockade der Src Kinase in HUVECs durch AZM475271 zeigte eine dosis-

abhängige Inhibition des VEGF- und EGF induzierten Zellwachstums 
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•  Das endotheliale „Sprouting“ kultivierter Rattenaortenringe konnte mit AZM475271 in 

Dosieurungen von 1-5µmol/l unterbunden werden. 

•  AZM475271 führte zur Hemmung des „Sproutings“ im Spheroid-Angiogenese-Assay 

•  Die Blockade der Src Kinase mit AZM475271 führte zur deutlichen Reduktion der 

VEGF-Konzentrationen in Überständen von kultivierten L3.6pl und HUVE-Zellen 

•  Src Inhibition in HUVECs verhindert VEGF-induzierte Zellmigration in eine 

modifizieren Boyden Chamber Assay 

•  Die Behandlung von HUVECs mit AZM475271 resultierte in einer signifikanten 

Inhibition der VEGF-aktivierten pTyr576/577 FAK-Phosphorylierung 

 

Schlußfolgernd lassen diese Ergebnisse vermuten, daß die Reduktion des 

Pankreastumorwachstums durch den Src Kinase inhibitor AZM475271 zum einen durch den 

anti-proliferativen Effekt auf die Pankreastumorzellen bedingt ist, desweiteren allerdings durch 

einen potentiell anti-angiogenetischen Mechanismus durch Induktion der intratumoralen 

Apoptose von Endothelzellen und damit Reduktion der Mikrogefäßdichte im Tumor. Das 

Spektrum Src-inhibierender Substanzen beschränkt sich daher nicht nur auf ihre anti-

migratorische, anti-invasive oder anti-proliferative Wirkunsgweisen, sondern kann auch auf anti-

angiogenetische Effekte erweitert werden.  

Die in vivo Ergebnisse im orthotopen Pankreastumor-Mausmodell sind in den in vitro 

Experimenten nachvollziehbar: der Src Kinase Inhibitor AZM475271 führte zur signifikanten 

Reduktion des VEGF-induzierten Überlebens, der Proliferation, Migration und des „Sproutings“. 

Die tumorzelleigene VEGF-Produktion konnte durch den Src Kinase Inhibitor AZM475271 

deutlich reduziert werden, so daß anzunehmen ist, daß die Angiogenese-Inhibition auch zum 

Teil  durch parakrine Effekte vermittelt wird.  

Da AZM475271 im Tierexperiment gut verträglich war, ist vorstellbar, daß Src Kinase 

Inhibitoren nach Kenntnis ihrer pharmakologischen Effektivität – auch als anti-angiogenetische 

Substanz – eine klinische Applikation insbesondere beim metastasierten Pankreaskarzinom 

finden könnten. 
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ABBREVIATIONS 
               
 

5-FU 5-Fluorouracil 
Ang1 Angiopoietin 1 
APS Ammonium-persulfate 
ATP Adenosine triphosphate 
AUR-3 Aurora kinase  
BCA Bicinchoninic acid  
bFGF Basic fibroblast growth factor 
BSA Bovine serum albumine 
CDK-2 Cyclin-dependent kinase-2  
cDNA Complementary deoxyribonucleic acid 
Chk Csk-homologous kinase 
CSF1-R Colony stimulation factor-1 receptor 
Csk C-terminal Src kinase 
DAPI 4',6-diamino-2-phenylindole  
dFdCDP Gemcitabine-diphosphate  
dFdCTP Gemcitabine-triphosphate  
DMEM Dulbecco's modified Eagles medium 
DMSO Dimethylsulfoxide 
DNA Deoxyribonucleic acid 
dTMP Deoxythymidine-5'-monophosphate 
DTT D,1-Dithiothreitol  
dUMP Deoxyuridine-5'-monophosphate 
ECL Enhanced chemiluminescence 
ECM Extracellular matrix 
EDTA Ethylenediamine-tetra acetic acid 
EGF Epidermal growth factor  
ERK Extracellular regulated kinase 
FACS Fluorescence-activated cell sorting 
FAK Focal adhesion kinase 
FBS Fetal bovine serum  
FCS Fetal calf serum 
FGF Fibroblast growth factor  



  Chapter 11. Abbreviations  

 - 122 - 

Flt-1 fms-like tyrosine kinase 1  
Flt3 Fms like tyrosine kinase-3 
GDP Guanosine 5'-Diphosphate 
GTP Guanosine 5'-Triphosphate 
H&E Haematoxylin and eosin 
HGF Hepatocyte growth factor 
HRP Horseradish peroxidase 
HUVEC Human umbilical vein endothelial cells  
Ig Immunoglobulin 
IGF Insulin growth factor 
IL Interleukin 
JAK Janus kinase 
JM Juxtamembrane 
KDR Kinase insert domain-containing receptor  
Lck Lymphocyte-specific protein tyrosine kinase 
LN Lymph node 
Lyn Lck/Yes related novel tyrosine kinase 
MAPK Mitogen-activated protein kinase 
MEK Mitogen-activated protein kinase kinase 
MMP Matrix metalloproteinase  
mRNA Messenger ribonucleic acid 
MVD Microvessel density 
NF-κB Nuclear factor-κB 
PAGE Polyacrylamid gel electrophoresis 
PDGF Plateled-derived growth factor 
PI Propidium iodide  
PI3-K Phosphatidylinositol 3-kinase 
PKB Protein kinase B 
PKC Protein kinase C 
PML Promyelocytic leukemia 
PMSF Phenylmethylsulfonyl fluoride  

PP2 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-
d]pyrimidine 

PTK Protein tyrosine kinase  
PTP Protein tyrosine phosphatase 
RNA Ribonucleic acid 
RTK Receptor tyrosine kinase 
SDS Sodium dodecyl sulfate 
SFK Src family kinase 
SH Src homology 
Src Raus sarcoma virus proto-oncogene product 
STAT Signal transducers and activators of transcription 
TEMED N,N,N',N'-Tetra-methylethylenediamine 
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TGF-β transforming growth factor-β 
TKD Tyrosine kinase domain 
TMB 3,3′,5,5′-Tetramethylbenzidine 
TNF-α tumor necrosis factor-α 
TS Thymidylate synthase  

TUNEL Terminal deoxynucleotidyl transferase-mediated nick end 
labeling  

VEGF Vascular endothelial growth factor 
Yes Yamaguchi 73 and Esh avian sarcoma 
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Basic cell culture techniques 

In vitro and in vivo development of drug-resistant cell lines 

Detection of viable cells 

BrdU incorporation assay 

Invasion and chemotaxis methods 

Cell cycle analyses  

Determination of apoptotic cells by FACS analysis 

Enzyme-linked immunoassays  

Immunoprecipitation analysis 

Western blot analysis 

In vitro kinase assays 

Proteomics 

Plasmid DNA isolation 

Transfection techniques  

Total RNA extraction and RT-PCR 

Aortic ring assay  

Spheroid angiogenesis assay 

In vitro wound-healing assay 

Murine Matrigel™ plug assay  

In vivo allograft and xenograft tumor models 

In vivo examination of antitumor activity 

In vivo determination of tissue hypoxia  

Immunohistochemistry of paraffin embedded tissues 

Immunohistochemistry of snap-frozen tissues  

Immunofluorescence staining and microscopy  

Quantification of immunohistochemical and immunofluorescence tissue staining  

In vivo gene delivery of nacked DNA via hydrodynamic injection technique 
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Participation in scientific meetings 

 

Posters: 

 

2003 15th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer 

Therapeutics, November 18-21, 2003, Boston, USA 

Bruns, CJ., Yezhelyev M., Ischenko I., Guba M., Jauch K.-W., Ryan A., 

Barge A., Green T., Fennell M. Synergistic effect of the Src kinase 

inhibitor AZM475271 and gemcitabine in human pancreatic cancer 

growing orthotopically in nude mice 

2004 8th Annual Meeting on Surgical Research (Chirurgische Forschungstage), 

27-30 October, Mannheim, Germany 

Ischenko, I., Yezhelyev, M., Papyan, A., Guba, M., Jauch, KW., Bruns, 

CJ. Effect of Src Kinase Inhibition on Metastasis and Tumor Angiogenesis 

in Human Pancreatic Cancer 

2004 8th Annual Meeting on Surgical Research (Chirurgische Forschungstage), 

27-30 October, Mannheim, Germany 

Schmid, G., Guba, M., Papyan, A., Ischenko, I., Brückel, M., Bruns, CJ., 

Jauch, KW., Graeb, C. Administration of FTY720 Inhibits Angiogenesis 

and reduces Tumor Growth 

2004 First European Conference on Tumor Angiogenesis and Antiangiogenic 

Therapy, 1-3 October, Nymphenburger Chateau Munich, Germany 

Papyan, A., Werner,A., Ischenko, I., Teifel, M., Michaelis, U., Jauch, KW, 

Bruns, CJ. Combination of Standard Chemotherapy with MBT-0206 

Enhances the Anti-tumor Efficacy in a Highly Metastatic Human 

Pancreatic Cancer Mouse Model 

2004 First European Conference on Tumor Angiogenesis and Antiangiogenic 

Therapy, 1-3 October, Nymphenburger Chateau Munich, Germany 

Ischenko, I., Yezhelyev, M., Papyan, A., Guba, M., Jauch, KW., Bruns, 

CJ. Effect of Src Kinase Inhibition on Metastasis and Tumor Angiogenesis 

in Human Pancreatic Cancer  

2004 American Association for Cancer Research, 95th Annual Meeting, 27-31 

March, Orlando, USA 
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Bruell, D., Yezhelyev, M., Ischenko, I., Huhn, M., Bruns, CJ., Brabletz, 

T., Fischer, R., Finnern, R., Barth, S. Specific Cytotoxic Activity of a 

Recombinant Anti-EGF Receptor Immunotoxin 425(scFv)-ETA towards a 

Highly Metastatic Pancreatic Carcinoma Cell Line 

2004 American Association for Cancer Research, 95th Annual Meeting, 27-31 

March, Orlando, USA 

Yezhelyev, M., Ischenko, I., Guba, M., Ryan, A., Barge, A., Jauch, K-W., 

Green, T., Fennell, M., Bruns, CJ. Synergistic Effect of the Src Kinase 

Inhibitor AZM475271 and Gemcitabine in Human Pancreatic Cancer 

Growing Orthotopically in Nude Mice 

2004 American Association for Cancer Research, 95th Annual Meeting, 27-31 

March, Orlando, USA 

Papyan, A., Ischenko, I., Werner, A., Yezhelyev, M., Teifel, M., 

Michaelis, U., Bruns, CJ. MBT-0206 Enhances the Anti-tumor Efficacy in 

a Highly Metastatic Human Pancreatic Cancer Mouse Model 

2004 Kongress der Deutschen Gesellschaft für Chirurgie, 27-30 April, Berlin, 

Germany 

Papyan, A., Werner, A., Ischenko, I., Teifel, M., Michaelis, U., Jauch, K-

W., Bruns, CJ. Combination of Standard Chemotherapy with MBT-0206 

Enhances the Anti-tumor Efficacy in a Highly Metastatic Human 

Pancreatic Cancer Mouse Model  

2005 American Association for Cancer Research, 96th Annual Meeting, 16-20 

April, Anaheim, USA 

Bruns, CJ., Ischenko, I., Papyan, A., Guba, M., Green, T., Fennel, M., 

Jauch, K-W. Effect of Src Kinase Inhibition on Metastasis and Tumor 

Angiogenesis in Human Pancreatic Cancer  

2005 9th Annual Meeting on Surgical Research (Chirurgische Forschungstage), 

19-21 September, Frankfurt, Germany 

Ischenko, I., Yezhelyev, M., Guba, M., Schmid, G., Jauch, K-W., Bruns, 

CJ. Inhibition of Src Tyrosine Kinase by AZM475271 Enhances the 

Efficacy of 5-Fluorouracil and Gemcitabine in Human Pancreatic 

Carcinoma Cells  

2005 9th Annual Meeting on Surgical Research (Chirurgische Forschungstage), 

19-21 September, Frankfurt, Germany 
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Schwarz, B., Ischenko, I., Guba, M., Schmid, G., Jauch, K-W., Bruns, CJ. 

Blokade of Src Tyrosine Kinase Inhibits Angiogenesis and Reduces 

Growth of Pancreatic Carcinoma in vivo 

2005 9th Annual Meeting on Surgical Research (Chirurgische Forschungstage), 

19-21 September, Frankfurt, Germany 

Schmid, G., Guba, M., Papyan, A., Ischenko, I., Brückel, M., Bruns, CJ., 

Jauch, KW., Graeb, C. Administration of FTY720 Inhibits Angiogenesis 

and reduces Tumor Growth 

2006 ASCO Gastrointestinal Cancers Symposium, 26-28 January, San 

Francisco, USA 

Ischenko, I., Čamaj, P., De Toni, E., Heeschen, C., Jauch, C-W., Bruns, 

CJ. The Effect of Src Kinase Inhibition on 5-Fluorouracil Chemosensitivity 

Is Related to Thymidylate Synthase Expression in Human Pancreatic 

Carcinoma Cells 

2006 Pancreatic Cancer 2006, 1-3 June, Munich, Germany 

Ischenko, I., Čamaj, P., De Toni, E., Heeschen, C., Jauch, C-W., Bruns, 

CJ. The Effect of Src Kinase Inhibition on 5-Fluorouracil Chemosensitivity 

Is Related to  

Thymidylate Synthase Expression in Human Pancreatic Carcinoma Cells 

2006 10th Annual Meeting on Surgical Research (Chirurgische Forschungstage), 

21-23 September, Muenster, Germany 

Ischenko, I., Čamaj, P., De Toni, E., Heeschen, C., Jauch, C-W., Bruns, 

CJ. The Effect of Src Kinase Inhibition on 5-Fluorouracil Chemosensitivity 

Is Related to Thymidylate Synthase Expression in Human Pancreatic 

Carcinoma Cells 

2006 10th Annual Meeting on Surgical Research (Chirurgische Forschungstage), 

21-23 September, Muenster, Germany 

Conrad, C., Valesky, M., Huss, R., Ischenko, I., Mojaat, A., Jauch, K-W., 

Nelson, PJ., Bruns, CJ. Homing of circulating MSC (CD 34-) in 

regenerating liver and hepatic coloncarcinoma metastases 

2006 Second European Conference on Tumor Angiogenesis and Antiangiogenic 

Therapy, September, Munich, Germany 

Ischenko, I., Schmid, G., Huber, S., Guba, M., Jauch, K-W., Bruns, CJ. 

Involvement of Src Family Tyrosine Kinases in Lymphangiogenesis 
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2006 Second European Conference on Tumor Angiogenesis and Antiangiogenic 

Therapy, September, Munich, Germany  

Čamaj, P., Brückel, M., De Toni, E., Ischenko , I., Guba, M., Jauch, K-W., 

Bruns, CJ. The interaction of apoptosis and angiogenesis in a tumor cell 

enviroment 

2006 Second European Conference on Tumor Angiogenesis and Antiangiogenic 

Therapy, September, Munich, Germany 

 Albrecht, U., Ischenko, I., Schwarz, B., Schrepfer, S., Schmid, G., 

Baumann, C., Guba, M., Heeschen, C., Jauch, K-W., Bruns, CJ. Efficacy 

of CXCR2 Inhibition on Tumor Angiogenesis in Pancreatic Cancer 

2006 Second European Conference on Tumor Angiogenesis and Antiangiogenic 

Therapy, September, Munich, Germany 

 Schmid, G., Huber, S., Ischenko, I., Guba, M., Joka, M., Schröferl, S., 

Bruns, CJ., Heeschen, C., Jauch, K-W., Graeb, C. Impact of FTY720 on 

Lymph- and Hemangiogenesis 
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Oral presentations: 

 

2006 Deutsche Krebskongress, 22-26 March, Berlin, Germany 

Ischenko, I., Čamaj, P., De Toni, E., Heeschen, C., Jauch, C-W., Bruns, 

CJ. The Effect of Src Kinase Inhibition on 5-Fluorouracil Chemosensitivity 

Is Related to Thymidylate Synthase Expression in Human Pancreatic 

Carcinoma Cells 

2006 Kongress der Deutschen Gesellschaft für Chirurgie, 2-5 Mai, Berlin, 

Germany 

 Ischenko, I., Čamaj, P., De Toni, E., Heeschen, C., Jauch, C-W., Bruns, 

CJ. The Effect of Src Kinase Inhibition on 5-Fluorouracil Chemosensitivity 

Is Related to Thymidylate Synthase Expression in Human Pancreatic 

Carcinoma Cells 
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Chapter 13 

 

OWN PUBLICATIONS 
               
 

Conrad, C.,* Ischenko I.,* Köhl, G., Wiegand, U., Guba, M., Yezhelyev, M., Ryan, AJ., Barge, 

A., Geissler, EK., Wedge SR., Jauch, K-W., Bruns, CJ. Antiangiogenic and antitumor activity of 

a novel VEGFR-2 tyrosine kinase inhibitor ZD6474 in a metastatic human pancreatic tumor 

model. Manuscript accepted for the publication in “Anticancer Drugs”, 2007 

 

Ischenko, I., Schmid, G., Huber, S., Guba, M., Jauch, K-W., Bruns, CJ. Involvement of Src 

Family Tyrosine Kinases in Lymphangiogenesis. Angiogenesis 2006 (manuscript in preparation) 

 

Ischenko, I., Čamaj, P., Guba, M., Graeb, C., Jauch, K-W., Bruns, CJ. The Effect of Src Kinase 

Inhibition on 5-Fluorouracil Chemosensitivity Is Related to Thymidylate Synthase Expression in 

Human Pancreatic Carcinoma Cells. Clin Can Res 2006 (manuscript in preparation) 

 

Ischenko, I., Yezhelyev, M., Guba, M., Papyan, A., Jauch, K-W., Bruns, CJ. Effect of Src 

Kinase Inhibition on Metastasis and Tumor Angiogenesis in Human Pancreatic Cancer. 

Angiogenesis 2006 (manuscript submitted) 

 

Čamaj, P., Ziegelaar, B., Ischenko, I., Schmid, G., Jauch, K-W., Bruns, CJ. Antiangiogenic 

effect of primary human chondrocytes. Angiogenesis 2006 (manuscript submitted) 

 

Schmid, G., Guba, M., Ischenko, I., Brückel, M., Bruns, CJ., Jauch, K-W., Graeb, C. 

Administration of FTY720 Inhibits Angiogenesis and reduces Tumor Growth. Transplant Proc, 

2006 

 

Guba, M., Yezhelyev, M., Eichhorn, ME., Schmid, G., Ischenko, I., Papyan, A., Graeb, C., 

Seeliger, H., Geissler, EK., Jauch, K-W., Bruns, CJ. Rapamycin Induces Tumor-specific 

Thrombosis via Tissue Factor in the Presence of VEGF. Blood 2005  
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Bruell, D., Bruns, CJ., Yezhelyev, M., Huhn, M., Muller, J., Ischenko, I., Fischer, R., Finnern, 

R., Jauch, K-W., Barth, S. Recombinant Anti-EGFR Immunotoxin 425(scFv)-ETA 

Demonstrates Anti-tumor Activity Against Disseminated Human Pancreatic Cancer. Int J Mol 

Med 2005  

 

* Both authors have contributed equally to this work 

 


