
Efficient Analysis in

Multimedia Databases

Dissertation im Fach Informatik
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Peter Kunath

Tag der Einreichung: 24.11.2006
Tag der mündlichen Prüfung: 19.12.2006

Berichterstatter:
Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Bernhard Seeger, Philipps-Universität Marburg

ii

Acknowledgement

While I can not name all the people who have supported and encouraged me

during the past years, I want to thank those that notably helped me with

the development of this thesis.

First of all, like to express my warmest thanks to my supervisor, Prof.

Dr. Hans-Peter Kriegel who initiated and supported this work. I learned a

lot from his long standing experience and organizational background. Then

I want to thank Prof. Dr. Bernhard Seeger for the interest in my work. He

was kindly willing to act as second referee for this work.

Without the inspiring, productive and supportive working environment

of the database research team this work would never have been possible.

Therefore I express my gratitude to my colleagues, in particular to Matthias

Renz, Dr. Peer Kröger, Alexey Pryakhin, Dr. Matthias Schubert, Stefan

Brecheisen, Johannes Aßfalg, and Dr. Martin Pfeifle. I also want to thank

Prof. Dr. Christian Böhm, Christian Mahrt, Karsten Borgwardt, and Arthur

Zimek for many inspiring discussions. Thank you for the constructive and

productive team work. Special thanks to Elke ”Elki” Achtert, the power

woman in our research team.

Furthermore, I want to thank Otmar Hilliges for fruitful multidisciplinary

discussions about similarity of multimedia objects and musical genres.

I also appreciate the substantial help of the students whose study thesis

or diploma thesis I supervised. This includes Rolph Kreis, Markus Dolic, Ilja

Vishnevski, Tim Schmidt, Georg Straub, Oleg Galimov and Michael Gruber.

They helped me in many ways including implementation, data processing,

iii

iv

and testing.

I am very grateful for the background support of Susanne Grienberger,

who managed much of the administrative work. She also gave me invaluable

hints for improving on my English. Furthermore, I want to express spe-

cial thanks to Franz Krojer, who helped to master all technical issues. He

promptly provided tools that helped to accelerate my work.

Finally I like to thank my family and friends, who constantly supported

me during the development of this thesis. My parents who always supported

my career and encouraged me to find my way. Frank Riffel, with whom

I developed DeliTracker which sparked my interest in Multimedia content.

Florian Vorberger, who is the co-programmer of DeliPlayer and who also

implemented the MUSCLE approach. Thanks to Dr. Karen Richter for

proof-reading the intro & outro part of my thesis.

Abstract

The rapid progress of digital technology has led to a situation where com-

puters have become ubiquitous tools. Now we can find them in almost every

environment, be it industrial or even private. With ever increasing perfor-

mance computers assumed more and more vital tasks in engineering, climate

and environmental research, medicine and the content industry. Previously,

these tasks could only be accomplished by spending enormous amounts of

time and money. By using digital sensor devices, like earth observation

satellites, genome sequencers or video cameras, the amount and complexity

of data with a spatial or temporal relation has gown enormously. This has

led to new challenges for the data analysis and requires the use of modern

multimedia databases.

This thesis aims at developing efficient techniques for the analysis of com-

plex multimedia objects such as CAD data, time series and videos. It is

assumed that the data is modeled by commonly used representations. For

example CAD data is represented as a set of voxels, audio and video data is

represented as multi-represented, multi-dimensional time series.

The main part of this thesis focuses on finding efficient methods for col-

lision queries of complex spatial objects. One way to speed up those queries

is to employ a cost-based decompositioning, which uses interval groups to

approximate a spatial object. For example, this technique can be used for

the Digital Mock-Up (DMU) process, which helps engineers to ensure short

product cycles. This thesis defines and discusses a new similarity measure

for time series called threshold-similarity. Two time series are considered

similar if they expose a similar behavior regarding the transgression of a

v

vi

given threshold value. Another part of the thesis is concerned with the ef-

ficient calculation of reverse k-nearest neighbor (RkNN) queries in general

metric spaces using conservative and progressive approximations. The aim of

such RkNN queries is to determine the impact of single objects on the whole

database. At the end, the thesis deals with video retrieval and hierarchical

genre classification of music using multiple representations. The practical

relevance of the discussed genre classification approach is highlighted with a

prototype tool that helps the user to organize large music collections.

Both the efficiency and the effectiveness of the presented techniques are

thoroughly analyzed. The benefits over traditional approaches are shown by

evaluating the new methods on real-world test datasets.

Zusammenfassung

Aufgrund der rasanten Entwicklung von digitalen Technologien ist der Com-

puter, sowohl im privaten als auch im industriellen Umfeld, als zentrales

Hilfsmittel heute allgegenwärtig. Mit zunehmender Leistungsfähigkeit ha-

ben Computer wichtige Aufgaben im Maschinenbau, in der Umwelt- und

Klimaforschung, in der Medizin oder in der Medienbranche übernommen,

die vorher nur unter Aufbietung enormer zeitlicher und finanzieller Ressour-

cen bewältigt werden konnten. Durch den Einsatz von digitalen Erfassungs-

geräten wie z.B. Erdbeobachtungssatelliten, Gensequenzierern oder Videoka-

meras wachsen die Daten mit räumlichem und zeitlichem Bezug in Menge und

Komplexität drastisch an, was zu neuen Herausforderungen bei deren Analy-

se führt und den Einsatz moderner Multimedia-Datenbanksysteme notwendig

macht.

Das Ziel dieser Doktorarbeit ist es, effiziente Verfahren für die Analyse

von komplexen Multimedia-Objekten, wie z.B. CAD-Daten, Zeitreihen und

Audio- bzw. Videodaten, zu entwickeln. Ausgegangen wird dabei von der

Modellierung der Daten in geläufigen Darstellungsformen. So werden z.B.

CAD-Daten als Mengen von Voxeln, Audio- bzw. Videodaten als multire-

präsentierte, mehrdimensionale Zeitreihen aufgefaßt.

Im Einzelnen beschäftigt sich die Arbeit mit der effizienten Beantwortung

von Kollisionsanfragen auf komplexen räumlichen Objekten. Die komplexen

Objekte werden dabei mittels einer kostenbasierten Zerlegung in einen ein-

fachen Grundtyp zerlegt, mit dessen Hilfe die Anfragebearbeitung erheblich

beschleunigt werden kann. Dies ist z.B. beim digitalen Zusammenbau (Di-

gital Mock-up) von Interesse, wodurch Ingenieure die Anforderungen immer

vii

viii

kürzer werdender Produktzyklen meistern können. Des weiteren wird die

Threshold-Similarity als neues Ähnlichkeitsmaß auf Zeitreihen eingeführt.

Dabei werden zwei Zeitreihen als ähnlich angesehen, wenn sie ein ähnliches

Verhalten bezüglich der Überschreitungen eines vorgegebenen Grenzwertes

aufweisen. Ein weiterer Abschnitt beschäftigt sich mit der effizienten Berech-

nung von Reversen-k-Nächste-Nachbar-Anfragen (RkNN-Anfragen) in me-

trischen Räumen mittels konservativer und progressiver Approximationen.

Ziel von RkNN-Anfragen ist es, den Einfluß des Anfrageobjekts auf die ge-

samte Datenbank zu bestimmen. Schließlich befaßt sich die Arbeit mit der

Video-Suche sowie der hierarchischen Genre-Klassifikation von Musikstücken

basierend auf multiplen Repräsentationen. Die Praxisrelevanz des Genre-

Klassifikationsverfahrens wird in einer realen Anwendung demonstriert.

Die Effizienz und Effektivität der vorgestellten Techniken wird ausgie-

big untersucht und die Vorteile gegenüber herkömmlichen Verfahren mittels

Real-Datenbanken experimentell nachgewiesen.

Contents

Acknowledgement iv

Abstract vi

Zusammenfassung viii

I Preliminaries 1

1 Introduction 3

1.1 Outline . 5

2 Purpose of the Thesis 13

2.1 Analysis of Spatial Data . 13

2.2 Modeling Spatial Data . 14

2.2.1 Multi-Step Query Processing 15

2.2.2 Digital Mock-up . 16

2.2.3 Modeling Spatial Objects 18

2.2.4 Triangle Meshes . 19

2.2.5 Voxel-Sets and Voxel-Sequences 20

2.2.6 Decomposition Algorithm 23

2.2.7 Compression Techniques 23

2.2.8 Relational Spatial Indexing 26

2.2.9 Test Datasets . 28

ix

x CONTENTS

2.3 Analysis of Temporal Data . 28

2.3.1 Measuring Similarity 29

2.3.2 Application Ranges for Threshold Queries 32

2.3.3 Test Datasets . 34

2.4 Analysis using RkNN Queries 39

2.4.1 RkNN Search in Euclidean Space 41

2.4.2 Test Datasets . 43

2.5 Analysis of Video & Audio Data 44

2.5.1 Video Retrieval . 45

2.5.2 Summarization Techniques 47

2.5.3 Similarity Search Based on Multiple Representations . 48

2.5.4 Test Dataset . 49

2.5.5 Audio Classification . 50

2.5.6 Test Dataset . 53

II Analysis of Spatial Data 55

3 Introduction 57

4 Cost-Based Decompositioning of Complex Spatial Objects 61

4.1 Interval Groups . 62

4.2 Storing Interval Groups in an ORDBMS 64

5 Compression of Interval Groups 67

5.1 Patterns . 67

5.2 Compression Rules . 68

5.3 Spatial Compression Techniques 69

5.3.1 Quick Spatial Data Compressor (QSDC) 70

6 Grouping into Interval Groups 73

6.1 Query Distribution . 73

CONTENTS xi

6.2 Access Probability . 75

6.3 Evaluation Cost . 75

6.4 Decomposition Algorithm . 77

7 Query Processing 79

7.1 Decomposition of the Query Object 80

7.1.1 Query object is a database object 80

7.1.2 Query object is no database object 81

7.2 Intersection Query . 82

7.3 The intersect SQL Statements 83

7.4 Optimizations . 84

7.4.1 Fast Intersection Test for Interval Groups 85

7.4.2 Ranking . 86

8 Experimental Evaluation 89

8.1 Storage Requirements . 91

8.2 Update Operations . 92

8.3 Query Processing . 93

8.3.1 MaxGap . 94

8.3.2 GroupInt . 95

8.3.3 Window Queries . 97

III Analysis of Temporal Data 99

9 Introduction 101

9.1 Preliminaries . 102

9.2 Threshold Based Similarity Measure 102

9.2.1 General Idea . 104

9.2.2 Threshold Based Representation vs. Dimensionality

Reduction . 105

9.2.3 Similarity-Distance Measures for Intervals 106

xii CONTENTS

9.2.4 Contributions and Outline 108

10 Threshold Based Similarity Search 109

10.1 Threshold-Crossing Time Intervals 109

10.2 Similarity Model for Time Intervals 110

10.3 Similarity Model for Threshold-Crossing Time Intervals 111

10.4 Similarity Queries Based on Threshold Similarity 112

11 Threshold Based Indexing 115

11.1 Managing Threshold-Crossing Time Intervals with Fixed τ . . 116

11.2 Managing Threshold-Crossing Time Intervals for Arbitrary τ . 118

11.3 Trapezoid Decomposition of Time Series 121

11.4 Parameter Space Indexing . 123

12 Threshold Based Query Processing 127

12.1 Preliminaries . 128

12.2 Pruning Strategy for Threshold Queries 129

12.3 Threshold-Based ε-Range Query Algorithm 132

12.4 Filter Distance for the Threshold Similarity 133

12.4.1 Lower Bounding Threshold Distance 134

12.4.2 Pruning Based on Lower Bounding Distance 136

12.5 Threshold-Based Nearest-Neighbor Query Algorithm 139

13 Experimental Evaluation 145

13.1 System Environment . 145

13.2 Datasets . 146

13.3 Performance Results . 146

13.4 Evaluation of the Threshold Based Similarity Measure 151

13.4.1 Comparison to Traditional Distance Measures 152

13.4.2 Comparison of Different Similarity Distances for Time

Intervals . 152

CONTENTS xiii

13.4.3 Comparison of Different Similarity Distances for Sets

of Time Intervals . 153

13.4.4 Results on Scientific Datasets 153

IV Analysis using Reverse Nearest Neighbor Queries
155

14 Introduction 157

14.1 Contributions . 158

14.2 Problem Definition . 159

15 kNN Distance Approximations for RkNN Search 161

15.1 Conservative Approximation of k-NN Distances 164

15.2 Optimization Step 1 . 168

15.3 Optimization Step 2 . 171

15.4 Optimization Step 3 . 172

15.5 Summary: The Optimization Algorithm 176

15.6 Progressive Approximation of kNN Distances 178

15.7 Aggregating the Approximations 178

16 RkNN Search Algorithm 181

17 Experimental Evaluation 183

17.1 Metric RkNN Search . 183

17.1.1 Runtime w.r.t. database size 185

17.1.2 Runtime w.r.t. parameter k 185

17.1.3 Pruning capabilities . 186

17.2 Euclidean RkNN Search . 186

17.2.1 Naive approaches . 187

17.2.2 Runtime w.r.t. database size 188

17.2.3 Runtime w.r.t. parameter k 188

xiv CONTENTS

17.2.4 Pruning capabilities . 188

V Analysis of Video & Audio 191

18 Introduction 193

19 Video Retrieval 195

19.1 Multi-represented Similarity Search in Multimedia Databases . 196

19.2 Weighting Functions For Summarizations 197

19.2.1 A Weighting Function Based on Support 197

19.2.2 A Weighting Function Based on Specific Quality Mea-

sures . 198

19.2.3 A Weighting Function Based on Local Neighborhood . 200

19.2.4 A Weighting Function Based on Entropy 200

19.3 Combining Multiple Representations for Similarity Detection . 203

19.3.1 Higher-order Summarizations 204

19.3.2 First-order Summarizations 204

19.4 Experimental Evaluation . 205

19.4.1 Multi-represented vs. Uni-represented Similarity Search 205

19.4.2 Multi-represented Similarity Search Applications 207

20 Audio Classification 209

20.1 Efficient Hierarchical Genre Classification 210

20.1.1 Hierarchical Instance Reduction. 211

20.1.2 Hierarchical Genre Classification by Using Multiple Rep-

resentations. 212

20.2 Experimental Evaluation . 214

20.2.1 Effectiveness . 214

20.2.2 Efficiency . 216

20.3 Prototype . 216

20.4 Practical Benefits . 217

CONTENTS xv

VI Conclusions and Outlook 219

21 Summary 221

21.1 Summary of Contributions . 222

21.1.1 Preliminaries (Part I) 222

21.1.2 Analysis of Spatial Data (Part II) 222

21.1.3 Analysis of Temporal Data (Part III) 223

21.1.4 Analysis using Reverse Nearest Neighbor Queries (Part

IV) . 223

21.1.5 Analysis of Video & Audio Data (Part V) 224

22 Outlook 227

22.1 Future Work . 227

List of Figures 231

List of Tables 235

References 237

xvi CONTENTS

Part I

Preliminaries

1

Chapter 1

Introduction

In recent years, the processing of high-level content such as CAD-data,

graphs, audio files or movie clips has experienced a boost in public inter-

est. This was mainly possible due to the enormous progress in consumer

electronics, data transmission techniques and computer technology in gen-

eral. While in the past only a few experts had the know-how to manage

large amounts of multimedia data, nowadays, hundreds of gigabytes of im-

ages, digital videos and audio files can be found in an ordinary household.

As a consequence, the number of potential users of multimedia databases

(MMDBS) is today much higher compared to a few years ago.

This leads to the problem that the accumulated data have to be managed

in such a way that a user can easily retrieve the desired information from this

huge pile of data. In the process, the requirements for analysis- and retrieval-

systems have also increased drastically. In a professional environment, we can

still assume that the users are rather well-trained. However, systems which

are designed for private use have to operate on a much more intuitive level

or they will not become accepted. Another important factor is speed, i.e. a

fast response time. In general, most home-users lose interest in a system if

it fails to produce results in a reasonable amount of time. This is also called

efficiency.

An efficient algorithm is able to produce a result with reduced cost or

3

4 1 Introduction

in shorter time compared to an inefficient version. Efficient algorithms are

sought after when it comes to solving problems in both business and private

life. They help the industry to produce cheaper goods and to provide better

services in less time which means everyone can get more value for money,

i.e. they help to improve the quality of life. Of course it is important not to

forget effectiveness. Nowadays, an employer usually demands that employees

do their daily work in an efficient way. Moreover, the employer also assumes

that the work is done effectively. Which means that a high quality output is

generally so important that it is simply implied without stating it explicitly.

The solutions presented in this thesis are evaluated with respect to effec-

tiveness in order to demonstrate their usefulness for the analysis in case the

presented techniques have parameters which affect the output quality.

There are several different types of databases which manage multimedia

content. Databases for audio-visual content are probably the best known,

at least to the common consumer. With Internet access, videos and songs

are rather easy to acquire. All it takes is an account on a media portal

and millions of files are just a fingertip away. The easy availability of these

multimedia files also creates the need to manage this data efficiently. A cus-

tomer who likes a certain video will quite likely spend more money on similar

videos. Categorizing songs into similar classes can also help to increase the

total revenue. Ordinary music shops usually have separate areas where pop,

folk or classical music is sold. So it would be profitable for online shops to

present the content to the customers in a similar way. This thesis addresses

two problems, similarity search in video databases as well as classification of

audio files. The proposed solutions work fully content-based and do not rely

on additional information.

Other types of multimedia databases which can mainly be found in in-

dustry and science are spatial and temporal databases. Spatial data denotes

data which are related to a specific space. Typical instances of spatial data

represent objects which reproduce our physical world or they are artificial ob-

jects created by engineers. Complex spatial objects usually consist of more

than one part. This creates the need to ensure a perfect fit of the different

parts of an object during the construction phase. Usually, this is accom-

1.1 Outline 5

plished by performing collision queries during the Digital Mock-Up (DMU)

process. Another prevalent data type are time series. They can usually be

found in temporal databases. The most common similarity measures for time

series are the Euclidean distance and the Dynamic Time Warping (DTW)

distance. Both similarity measures compare one point of time of the first

time series to a compatible point of time of the second time series. In order

to become more tolerant to perturbations, it would be beneficial to restrict

the similarity of two time series to a given threshold. Our novel concept of

threshold-similarity for time series databases realizes this idea. A threshold

query reports those time series which exceed a user-defined query threshold

at similar points of time compared to the query time series. Similar to the

computation of the Euclidean and the DTW distance, our new similarity

measure can be accelerated by index structures.

The increasing complexity of multimedia data also imposes new challenges

in the area of query processing. For instance, let us consider stores which

have a rather dynamic range of articles like shops of ringtones for cellphones,

pieces of music, or computer games. In order to ensure efficient and effective

sales, it makes sense to notify only those customers who would be interested

in a new product because they have bought similar things in the past. For

this task, a list of all customers is required which have the new product

in the k-nearest neighbor (kNN) set of their previously acquired products.

This type of query is also called reverse k-nearest neighbor (RkNN) query.

A RkNN query reports these objects in a database which have a given query

object q in the set of their k-nearest neighbors. The idea of a RkNN query

is to identify the influence of the query object on the entire dataset.

1.1 Outline

In this thesis, various problems and solutions related to the efficient analysis

in multimedia databases are discussed. It is divided into a short introductory

part and four major parts called analysis of spatial data, analysis of temporal

data, analysis using RkNN queries, and analysis of video & audio data. Some

6 1 Introduction

Table 1.1: List of author’s publications on which this thesis is based.

Part II Analysis of Spatial Data

Der virtuelle Prototyp: Datenbankunterstützung für CAD-

Anwendungen.

[BKK+04]

Effective Decompositioning of Complex Spatial Objects into Intervals. [KKPR04a]

Object-Relational Management of Complex Geographical Objects. [KKPR04b]

Distributed Intersection Join of Complex Interval Sequences. [KKPR05]

Part III Analysis of Temporal Data

Threshold Similarity Queries in Large Time Series Databases. [AKK+06b]

Similarity Search on Time Series based on Threshold Queries. [AKK+06a]

Part IV Analysis using Reverse Nearest Neighbor Queries

Efficient Reverse k-Nearest Neighbor Search in Arbitrary Metric

Spaces.

[ABK+06]

Part V Video Retrieval & Audio Classification

Effective Similarity Search in Multimedia Databases using Multiple

Representations.

[KKKP06]

Hierarchical Genre Classification for Large Music Collections. [BKKP06]

MUSCLE: Music Classification Engine with User Feedback. [BKK+06]

of the ideas and techniques discussed in the different parts of this thesis have

already been published by the author. For clearness and convenience, these

publications are listed in Table 1.1.

Specialized techniques are required to manage objects in modern multi-

media databases efficiently and effectively. The contributions of this thesis

mainly focus on techniques for speeding up the analysis of various types of

multimedia data. In particular, several approaches are presented for the

efficient analysis of spatial, temporal, and audio & video data.

The major contributions of this thesis include:

• A cost-based approximation of spatial data into interval groups which

is a middle course between replicating and non-replicating spatial index

structures.

• An approximation algorithm for spatial data which takes the access

probability and the decompression cost of the interval groups into ac-

1.1 Outline 7

count in order to to reduce the I/O cost.

• A novel similarity measure for time series, enabling data mining tasks

focused on a certain amplitude value.

• An efficient decomposition method for time series, allowing a threshold

invariant representation of time series.

• An efficient query algorithm for threshold-based distance-range queries

and threshold-based nearest-neighbor queries.

• An efficient reverse k-nearest neighbor algorithm which can be applied

to general metric objects.

• A reverse k-nearest neighbor approach which is applicable to the gen-

eralized RkNN problem where the value of k is specified at query time.

• A novel approach for similarity search in multimedia databases which

takes multiple representations of multimedia objects into account.

• Several weighting functions to rate the significance of a feature of each

representation for a given database object during query processing.

• A novel approach for the hierarchical classification of music pieces into

a genre taxonomy which is able to handle multiple characteristics of

music content.

• MUSCLE, a tool which allows the user to organize large music col-

lections in a genre taxonomy and to modify class assignments on the

fly.

The following chapter of Part I provides a brief and rather general overview

of existing methods for analysis in multimedia databases. It lists several com-

mon problems and gives a short sketch of our solution for these problems.

The chapter also introduces the datasets which are used throughout this

thesis.

Part II introduces an approach involving cost-based approximations in

order to accelerate the processing of spatial intersection queries for linearized

8 1 Introduction

spatial objects. The approach is based on interval groups which are created

by using a cost-based decompositioning algorithm. This algorithm takes the

access probability and the decompression cost of the interval groups into

account.

Chapter 3 gives a brief introduction and indicates how to manage complex

spatial objects in a linearized form that supports an easy integration into

commercial database systems.

Chapter 4 introduces interval groups as a new and general concept to

approximate interval sequences. In contrast to the common interval decom-

positions that suffer from the high redundancy of complex shaped objects

rendered with high resolution, the interval groups combine sets of intervals

into approximations. The chapter also introduces three grouping rules which

help to find a good grouping of the intervals.

Chapter 5 presents a new effective data compressor which exploits gaps

and patterns that are included in the byte representations of our interval

groups. Thus, we store the exact information of the interval groups in a

compressed way. It also states two compression rules which should be fulfilled

by a good data compressor.

Chapter 6 The interval containers are created by using a cost-based de-

composition algorithm which takes the access probability and the decom-

pression cost of the interval containers into account.

Chapter 7 discusses how we can efficiently carry out intersection queries

on top of the SQL-engine. Our approach is based on the RI-tree for effi-

ciently detecting intersecting interval hulls. Furthermore, we present two

optimizations in order to avoid unnecessary intersection tests. First, we try

to determine intersecting interval groups by using aggregated information.

Second, we introduce a probability model which leads to an ordering for the

candidate pairs such that the most promising tests can be carried out first.

Chapter 8 presents the efficiency evaluation on real-world test data. The

results point out that our new concept accelerates collision queries on the

RI-tree by up to two orders of magnitude.

1.1 Outline 9

Part III introduces the new concept of threshold-based similarity search

for time series databases. In this concept, time series are also represented by

means of interval sequences, similar to the form of representation used for

the spatial objects in Part II. In particular, we introduce a novel similarity

measure which does not only provide new prospects in data mining in time

series databases but also allows the development of efficient methods for

searching in very large databases, comprising large and complex time series

objects. We propose effective similarity search methods on this new time

series representation. Furthermore, we show how the time series can be

indexed so that the new similarity queries can be processed in a very efficient

way.

Chapter 9 proposes a novel query type on time series databases called

threshold query and contains some preliminary definitions that are relevant

to the remaining chapters. Using various examples, it is shown that this new

analysis concept is important for several applications in medicine, biology and

for analysis of environmental air pollution. It also contains a short overview

of commonly used distance measures for one-dimensional intervals.

Chapter 10 formally defines threshold queries and introduces two ver-

sions of this query type, the threshold-based ε-range query and the threshold-

based k-nearest-neighbor query. First, we introduce a new form of time series

representation called threshold-crossing time intervals. This representation

consists of a sequence of intervals and indicates at which time slots the time

series is above or below a specified threshold value. Given a query time series

Q and a threshold τ , threshold queries return those time series in which the

threshold-crossing time intervals are most similar to Q. This type of query

is motivated by several practical application ranges.

Chapter 11 presents a novel approach for managing time series data to

efficiently support threshold queries. In particular, we propose a threshold

invariant representation of time series which allows the pre-computation of

the threshold-based time series representations without the need to commit

oneself to a fixed threshold value. This means that the query threshold can

be chosen at query time. The proposed concept is based on an efficient

10 1 Introduction

decomposition algorithm, decomposing time series into a set of trapezoids

which are subsequently inserted into a conventional spatial access method.

At query time, we have to access only the relevant parts of the decomposed

time series which can be efficiently retrieved from the index.

In Chapter 12, we develop a scalable algorithm to answer threshold

queries for arbitrary thresholds. The proposed methods are based on pruning

strategies for the two threshold-query variants, the threshold-based ε-range

query and the threshold-based k-nearest-neighbor query. Both pruning strate-

gies are based on a lower bound criterion for the threshold distance which is

used to filter out true drops.

Chapter 13 demonstrates the performance of the solutions proposed in the

previous chapters by an extensive experimental evaluation on real-world and

artificial time series data. The effectiveness of our novel similarity measure is

proven against several competing approaches, in particular the Euclidean dis-

tance and the dynamic time warping (DTW) distance on several established

benchmark datasets. Furthermore, we evaluate different similarity measures

for the proposed time series representation.

Part IV proposes the first approach for efficient RkNN search in arbitrary

metric spaces where the value of k is specified at query time. Our approach

takes advantage of existing metric index structures and proposes to use con-

servative and progressive distance approximations in order to filter out true

drops and true hits. In particular, we approximate the k-nearest-neighbor

distance for each data object by upper and lower bounds using two func-

tions of only two parameters each. Thus, our method does not generate any

considerable storage overhead.

Chapter 14 stresses the need for a solution for the generalized RkNN

problem where the value of k is not known in advance and may change from

query to query. It also lists some definitions which form the basis of the

proposed technique.

Chapter 15 shows how to compute space-saving functions that conserva-

tively and progressively approximate the kNN distances of a database object.

These approximations allow to identify objects that can be safely dropped,

1.1 Outline 11

or which are true hits. For the remaining objects, we need a refinement step

inducing a kNN query for each candidate.

Chapter 16 presents a RkNN search algorithm which builds on a metric

index structure. Due to the use of such a metric index structure it is appli-

cable to general metric objects. It also can answer RkNN queries for any k

specified at query time.

Chapter 17 shows in a broad experimental evaluation on real-world data

the scalability and the usability of our novel approach. In metric spaces,

our approach yields a significant speed-up over the sequential scan and naive

indexing solutions. We also demonstrate that our proposed concept even

outperforms the only existing solution for RkNN search for Euclidean vector

data.

In Part V, solutions for video retrieval and audio classification of multi-

represented objects are presented.

Chapter 18 indicates the need for efficient retrieval and classification tech-

niques in order to organize large collections containing video and audio data.

Chapter 19 introduces a video retrieval approach which is able to in-

tegrate multiple representations such as audio and image features into the

query processing. We propose methods for weighting each representation

which consist of multiple instances. The weighting techniques can be ap-

plied to higher-order and first-order summarization techniques. In addition,

we propose a method for combining multiple representations for similarity

search by weighting each representation.

Chapter 20 again handles data which are described by multiple repre-

sentations and multiple instances. We present a novel hierarchical semi-

supervised technique for instance reduction. The reduced descriptions are

used afterwards for hierarchical classification of pieces of music. Furthermore,

we use object adjusted weighting in order to take advantage of multiple rep-

resentations. Moreover, we present the tool MUSCLE which implements the

techniques introduced in the beginning of this chapter. MUSCLE features a

hierarchical classification in combination with interactive user feedback and

12 1 Introduction

a flexible multi-assignment of songs to classes.

Part VI concludes this thesis.

Chapter 21 recapitulates and discusses the major contributions of the the-

sis. Finally, some possible future research directions are indicated in Chapter

22.

Chapter 2

Purpose of the Thesis

This chapter presents several problems regarding the efficient analysis in

multimedia databases discusses previous approaches and briefly sketches our

solution. A multimedia database system (MMDBS) not only manages objects

such as video and audio data, but also spatial and temporal objects. All

these objects have one thing in common: they have a complex structure.

Since there is no definitive definition of what exactly a multimedia object is,

we consider all databases which manage complex objects a MMDBS. Thus,

spatial and temporal databases are possible occurrences of a MMDBS. This

thesis addresses various application areas of MMDBSs, like collision queries

in spatial databases, similarity search in temporal databases, reverse nearest

neighbor search, video retrieval and audio classification. For each considered

area, we describe typical problems, review previous methods and provide an

efficient solution for these problems. We also present the datasets that are

used in the following parts of this thesis in order to demonstrate the relevance

of our new techniques.

2.1 Analysis of Spatial Data

Objects from the physical world or artificial objects derived from engineer-

ing design are typical instances of spatial data. Each database object has

13

14 2 Purpose of the Thesis

a well-defined location and extension in the data space. Spatial objects are

represented by spatial data types, while spatial predicates describe the rela-

tionships between them. In this section, we give a brief introduction into the

area of spatial data modeling and spatial queries, with a special emphasis

on voxelized objects. A more detailed overview of this area can be found in

[KPP+03].

2.2 Modeling Spatial Data

A spatial object is regarded as a distinct entity occupying an individual lo-

cation in a one- or multidimensional data space. Furthermore, it may be ex-

tended along some (or all) dimensions. The spatial objects of the real world

can be considered as a collection of individual, two- or three-dimensional

parts, while each part potentially represents a complex and intricate geo-

metric shape. Examples of such complex objects are geographical regions or

parts of a car or an airplane.

Data modeling requires that at least the following three main components

be specified: spatial data type, data structures and operations on spatial

data, in particular, spatial predicates [VLB05]. As spatial data is often

associated with Geographic Information Systems (GIS), this type of data is

often defined as information that describes the distribution of objects upon

the surface of the earth. In the geographical context, spatial data contains

information concerning the location, and shape of, and relationships among,

geographic features [DeM97]. As a consequence, traditional spatial data

types include points, lines and polygons, which allow for representation of

any geographical entity.

Thus, spatial applications not only store spatial entities, but also allow

for the spatial relationships between these entities to be specified. Queries

on spatial databases typically evaluate the relationships by spatial predi-

cates, which often return true or false as an answer. Spatial predicates can

be mainly categorized into three different types: topological, directional and

metrical. Topological properties are the most fundamental primitives for spa-

2.2 Modeling Spatial Data 15

SAM

Query Object

Filter 1

Candidates

HitsDrops

Filter …

Filter n

Refinement

Figure 2.1: Multi-step query processing.

tial predicates. The principle topological relationships between two spatial

objects have been captured by the 9-intersection model proposed by Egen-

hofer and Sharma [ES93]. Metric predicates are associated with quantitative

information. This way, the user can find out, for example, the distance, the

degree of overlap, or the depth of the penetration between two objects. In

many mechanical engineering and architecture applications the intersection

predicate is most important. It is a combination of the two basic predicates

”not disjoint” and ”not meets”. In this thesis, we emphasize the efficient

evaluation of the intersection predicate applied to two- and three-dimensional

objects.

2.2.1 Multi-Step Query Processing

An efficient processing of queries on spatial data is provided by a multi-step

architecture [KBS93, BHKS93] as shown in Figure 2.1. The idea behind the

depicted spatial query processor is to reduce the number of objects for which

16 2 Purpose of the Thesis

Figure 2.2: Virtual prototype of a car.

an expensive refinement step is performed by carrying out one or more pre-

processing operations. If these preprocessing operations are selective enough,

the number of objects investigated in the expensive refinement step can be

decreased significantly. However, the cascade of filters should be inexpen-

sive to evaluate. Otherwise the desired effect, fewer refinement operations,

is dearly bought. A superset of the objects qualifying for the spatial pred-

icate is computed in each the filter step. This set is also called candidate

set. Subsequent filter steps may further reduce the number of candidates by

using, for example, more accurate representations [BKS93]. For example, the

filter for selection queries could be an intersection evaluation on the minimal

bounding rectangles (MBR) of the objects. The intersection of rectangles can

be evaluated more efficiently than the exact object geometry. Furthermore,

they are suitable object approximations used in many spatial access meth-

ods (SAM) like the R∗-tree [BKSS90]. In case of highly selective queries, the

first filter step should be processed by a spatial access method (SAM). The

multi-step query process is completed by the refinement step which tests the

exact geometry of the remaining candidates.

2.2.2 Digital Mock-up

In CAD databases, each instance of a part occupies a specific region in the

three-dimensional product space (cf. Figure 2.2). Together, all parts of a

given product version and its variant represent a virtual prototype of the

2.2 Modeling Spatial Data 17

(a) Box volume query (b) Collision query

Figure 2.3: Common queries on spatial data.

constructed geometry. Virtual engineering requires accessing the product

space by spatial predicates in order to ”find all parts intersecting a specific

query volume” or to ”find all parts in the immediate spatial neighborhood of

the disk brake”. Unfortunately, the inclusion of the respective spatial predi-

cates is not efficiently supported by common, structure-related information

systems.

In the automobile industry, late engineering changes caused by problems

with fit, appearance or shape of parts account for 20-50 percent of the total

die cost [CF91]. Therefore, tools for the digital mock-up (DMU) of engi-

neering products have been developed to enable a fast and early detection

of colliding parts, solely based on the available digital information. Unfortu-

nately, these systems typically operate in main-memory and are not capable

of handling more than a few hundred parts. They require, as input, a small,

well-assembled list of the CAD files to be examined. With the traditional

file-based approach, each user has to select these files manually. This can

take hours or even days of preprocessing time, since the parts may be gener-

ated on different CAD systems, spread over many file servers, and managed

by a variety of users [SBP98]. In a concurrent engineering process, several

cross-functional project teams may be recruited from different departments,

including engineering, production, and quality assurance, to develop their

own parts as a contribution to the whole product.

18 2 Purpose of the Thesis

For example, a team working on section ”12B” of an airplane may not

want to mark the location and the format of each single CAD file of the

adjacent sections ”12A” and ”12C”. In order to do a quick check of fit or

appearance, they are only interested in the colliding parts. Moreover, the

internet is gaining importance for industrial file exchange. Engineers work-

ing in the USA may want to upload their latest component design to the

CAD database of their European customer in order to perform interference

checks. Thus, they need a fast and comfortable DMU interface to the En-

gineering Data Management system (EDM). Figure 2.3 depicts two typical

spatial queries on a three-dimensional product space, retrieving the parts

intersecting a given box volume (box volume query), and detecting the parts

colliding with the geometry of a query part (collision query). A spatial filter

for DMU-related queries on huge CAD databases is easily implemented by a

spatial access method, which determines a tight superset of the parts qual-

ifying for the query condition. Then, the computationally intensive query

refinement on the resulting candidates, including the accurate evaluation of

intersection regions (cf. Figure 2.3(a)), can be delegated to an appropriate

main memory-based CAD tool.

2.2.3 Modeling Spatial Objects

As they are the natural instances of the real world, the modeling of three-

dimensional objects is very important and required for many application ar-

eas. Computer-Aided Design (CAD) and related areas, including Computer-

Aided Engineering (CAE), Manufacturing (CAM), and Styling (CAS), are

some of the most common emerging technologies in the field of spatial data

management. These technologies are getting more and more indispensable

in mechanical engineering facilities. In order to cope with the demands of

accurate geometric modeling, we use universal representations which can be

derived from any native geometric surface and solid. These representations

can be successfully used to develop efficient query methods, in particular,

collision queries. While geometric data models, including triangle meshes,

are typically used for visualization, voxel sets can be used as a conservative

2.2 Modeling Spatial Data 19

(a) Triangulated surface (b) Voxelized surface

Figure 2.4: Scan conversion on a triangulated surface.

approximation for spatial keys.

2.2.4 Triangle Meshes

Accurate representations of CAD surfaces are typically implemented by para-

metric bicubic surfaces, including Hermite, Bézier, and B-spline patches. For

many operations, such as graphical display or the efficient computation of sur-

face intersections, these parametric representations are too complex [MH99].

A solution is to derive approximative polygon meshes, e.g. triangle meshes,

from the accurate surface representation. These triangle meshes allow an effi-

cient and interactive display of complex objects, by means of VRML (Virtual

Reality Modeling Language) encoded files, and serve as an ideal input for the

computation of spatial interference. For the digital mock-up (DMU), spa-

tial interference detection or collision queries are a very important database

primitive.

In the following, we assume a multi-step query processor that retrieves

a candidate part S, which possibly collides with a query part Q. In order

to refine such collision queries, a fine-grained spatial interference detection

between Q and S can be implemented on their triangle meshes. We distin-

guish two actions for interference detection [MH99]: collision detection and

20 2 Purpose of the Thesis

(a) Voxelized surface (b) Filled exterior (c) Inverted result

Figure 2.5: Filling a closed voxelized surface.

collision determination:

Collision detection: This basic interference check detects if the query

part Q and a database part S collide. Thus, collision detection can be re-

garded as a geometric intersection join of the triangle sets for Q and S which

terminates early after the first intersecting triangle pair has been found.

Collision determination: The actual intersection regions between a

query part and a stored part are computed. In contrast to the collision

detection, all intersecting triangle pairs and their intersection segments have

to be reported by the intersection join.

2.2.5 Voxel-Sets and Voxel-Sequences

In order to employ efficient access methods, like the Relational Interval-

tree (RI-tree) [KPS01, KPS00], as a query engine for a spatial database, we

propose a conversion pipeline to transform the geometry of each single spatial

object to an interval sequence by means of voxelization. A basic algorithm

for the 3D scan-conversion of polygons into a voxel-based occupancy map

has been proposed by Kaufmann [Kau87]. Similar to the well-known 2D

scan-conversion technique, the runtime complexity required to voxelize a 3D

polygon is O(n), where n denotes the number of generated voxels. If we

apply this conversion to the given triangle mesh of a CAD object (cf. Figure

2.2 Modeling Spatial Data 21

Z-orderLexicographic order Hilbert order

Figure 2.6: Different space-filling curves in a two-dimensional space.

2.4(a)), a conservative approximation of the part surface is produced (cf.

Figure 2.4(b)). We assume a uniform three-dimensional voxel grid covering

the entire product space.

If a triangle mesh is derived from an originally solid object, each triangle

can be supplemented with a normal vector to discriminate the interior from

the exterior space. Consequently, not only surfaces, but also solids, could

potentially be modeled by triangle meshes. Unfortunately, triangle meshes

generated by most faceters contain geometric and topological inconsistencies,

including overlapping triangles and tiny gaps on the surface. Thus, a robust

reconstruction of the original interior becomes very laborious. Therefore, we

follow the common approach of voxelizing the triangle mesh of a solid object

first (cf. Figure 2.5(a)), which yields a consistent representation of the object

surface. Next, we apply a 3D flood-fill algorithm [FvDFH00] to compute the

exterior voxels of the object (cf. Figure 2.5(b)). Accordingly, the outermost

boundary voxels of the solid are determined. We restrict the flood-fill to the

bounding box of the object, enlarged by one voxel in each direction. The

initial fill seed is placed at the boundary of this enlarged bounding box. In

the final step, we simply declare all voxels, which are neither boundary nor

exterior voxels, as interior (cf. Figure 2.5(c)). In consequence, we obtain a

volumetric reconstruction of the original solid, marking any voxel behind the

outermost surface as interior. The above algorithm has a runtime complexity

of O(b), where b is the number of voxels in the enlarged bounding box.

The derived voxel set of an arbitrary surface or solid represents a consis-

22 2 Purpose of the Thesis

triangulated object voxel set interval sequence

Figure 2.7: Conversion from a triangulated surface into an interval se-

quence.

tent input for computing interval sequences. The voxels correspond to cells

of a grid, covering the complete data space. By means of space filling curves,

each cell of the grid can be encoded by a single integer number, and thus,

an extended object is represented by a set of integers. Most of these space

filling curves achieve good spatial clustering properties. Therefore, cells in

close spatial proximity are encoded by similar integers or, putting it another

way, contiguous integers encode cells a in close spatial neighborhood. Exam-

ples for space filling curves include Hilbert-, Z-, and the Lexicographic-order,

as depicted in Figure 2.6. The Hilbert-order generates the minimum number

of intervals per object [Jag90, FR89], but unfortunately, it is the most com-

plex linear order. Taking redundancy and complexity into consideration, the

Z-order seems to be the best solution.

Voxels can be grouped together in such a way as an extended object

can be represented by some continuous ranges of numbers. These ranges

can then be described by a sequence of intervals. Figure 2.7 summarizes

the complete transformation process from triangle meshes over voxel sets to

interval sequences.

Gaede pointed out that the number of voxels representing a spatially ex-

tended object exponentially depends on the granularity of the grid approxi-

mation [Gae95]. Furthermore, the extensive analysis given in [MJFS96] and

[FJM97] shows that the asymptotic redundancy of an interval- and tile-based

decomposition is proportional to the surface of the approximated object.

Thus, in the case of large high-resolution parts, e.g. wings of an airplane,

2.2 Modeling Spatial Data 23

the number of tiles or intervals can become unreasonably high.

2.2.6 Decomposition Algorithm

In [SK93], Kriegel and Schiwietz tackled the complex problem of ”complexity

versus redundancy” for 2D polygons. They investigated the natural trade-

off between the complexity of the components and the redundancy, i.e. the

number of components, with respect to the effect on efficient query process-

ing. The presented empirically derived root-criterion suggests to decompose

a polygon consisting of n vertices in many O(
√

n) index entries. As this

root-criterion was designed for 2D polygons and was not based on any ana-

lytical reasoning, it cannot be adapted to complex 3D objects. In this thesis,

in contrast, we present an analytical decomposition approach which can be

used for 2D and 3D objects.

2.2.7 Compression Techniques

In [KPPS03b], the interval representation of a spatial object is either stored

uncompressed in the database, called bit-oriented approach, or by means of

a simple run-length encoding, called offset-oriented approach. Depending on

the length and the cardinality of the interval representation, it is individually

decided which approach is preferable with respect to the use of secondary

storage. The variant that uses less secondary disk space is then used for

storage purposes. This approach is denoted as OPTRLE throughout the

rest of this thesis. Because the OPTRLE technique is a combination of two

different algorithms, each spatial object has to be compressed twice in order

to chose which one leads to a more compact result.

Due to its simple design, OPTRLE achieves a rather poor compression

ratio and slow (de-)compression speed (cf. Part II). In Figure 2.8(a) we see

a bounding object of a three-dimensional automobile part, and in Figure

2.8(b) a small section of the corresponding bit-oriented representation taken

from a hex-editor. Two observations are apparent in this figure. First, the

24 2 Purpose of the Thesis

(a) Spatial object (b) Sequence representation with patterns

Figure 2.8: Patterns contained in a linearized object.

bit representation contains large portions of zeros, which belong to dead

space. Second, some sections of the non-zero parts occur repeatedly. The

offset-oriented approach of the OPTRLE technique tries to address the first

observation, but achieves only mediocre results. The second observation is

not exploited at all by OPTRLE.

Thus, applying more sophisticated compression techniques on the interval

representations could be promising. In the following, we shortly describe

some of the most prominent lossless decompression techniques. For a more

detailed survey on lossless and lossy compression techniques, we refer the

reader to [RH93] and [SN02].

Run-Length Coding

Data often contains sequences of identical bytes. By replacing these repeated

byte sequences with the number of occurrences, a substantial reduction of

data can be achieved. This is known as run-length coding.

2.2 Modeling Spatial Data 25

Pattern Substitution

This technique substitutes single characters for patterns that occur frequently.

This pattern substitution can be used to code, for example, the terminal sym-

bols of high-level languages (begin, end, if, etc.). The eliminated patterns

are often stored in a separate dictionary. A widespread pattern substitution

algorithm is LZ77 [LZ77]. This compression algorithm detects sequences of

data that occur repeatedly by using a sliding window. An n-byte sliding win-

dow is a record of the last n characters in the input respectively the output

data stream. If a sequence of characters is identical to one that can be found

within the sliding window, the current sequence is replaced by two numbers:

a distance value, indicating the starting point of the found sequence within

the sliding window, and a length value, representing the maximum number

of characters for which the two sequences are identical.

Statistical Coding

There is no fundamental reason that different characters need to be coded

with a fixed number of bits. For instance, in the case of morse code, frequently

occurring characters are coded with short strings, while seldom occurring

characters are coded with longer strings. Such statistical coding depends on

the frequency of individual characters or byte sequences. There are different

techniques based on statistical coding, e.g. arithmetic coding and Huffman

coding.

Huffman Coding

Given the characters that have to be encoded, together with their proba-

bilities of occurrence, the Huffman algorithm determines the optimal coding

using the minimum number of bits [Huf52]. Frequently occurring characters

are assigned to short code words, whereas seldom occurring characters are

replaced by longer code words. A Huffman code can be determined by succes-

sively constructing a binary tree, whereby the leaves represent the characters

26 2 Purpose of the Thesis

that have to be encoded. The resulting Huffman coding table is necessary

for the compression and decompression process and has to be stored along

with the encoded data.

ZLIB

This popular approach compresses data first with LZ77, followed by Huffman

coding. A compressed dataset consists of a series of chunks, corresponding to

successive chunks of input data. The chunk sizes are arbitrary. Each chunk

has its own Huffman tree, whereas the LZ77 algorithm is not confined to

these chunks, and may refer to identical byte sequences in previous chunks

[Deu96].

BZLIB2

This rather new approach implements the Burrows-Wheeler transform (BWT)

followed by Move To Front (MTF) transformation and Huffman coding. The

BWT algorithm takes a chunk of data and applies a sorting algorithm to

it. The rearranged output chunk contains the same characters in a different

order. The original ordering of the characters can be restored, i.e. the trans-

formation is reversible [BW94]. MTF is a transformation algorithm that

does not compress data, but can help to reduce redundancy. This reduction

is especially apparent after a BWT where the data is likely to contain a lot

of repeated characters.

2.2.8 Relational Spatial Indexing

In order to guarantee efficient query processing together with industrial

strength, spatial index structures have to be integrated into fully-fledged

object-relational database management systems (ORDBMSs). A wide va-

riety of access methods for spatially extended objects has been published.

For a general overview on spatial index structures, we refer the reader to

the surveys of Manolopoulos, Theodoridis and Tsotras [MTT00] or Gaede

2.2 Modeling Spatial Data 27

and Günther [GG98]. Recently, a general survey on the paradigm of rela-

tional index structures has been published [KPPS03a]. The basic idea of

relational access methods relies on the exploitation of the built-in function-

ality of existing database systems. A relational access method delegates the

management of persistent data to an underlying relational database system,

by strictly implementing the index definition and manipulation on top of an

SQL interface. In this manner, the SQL layer of the ORDBMS is employed

as a virtual machine managing persistent data. The Relational Interval Tree

(RI-tree) [KPS01, KPS00], Relational R-tree (RR-tree) [KRSB99] and the

Relational Quadtree (RQ-tree) [FFS00], which are all based on the B+-tree,

are examples of this paradigm. In [KPS01] and [KPS00] the RI-tree, the RR-

tree and the RQ-tree were compared to each other. It was shown that the

RI-tree outperforms the RR-tree and the RQ-tree by factors between 4.6 and

58.3. Therefore, we focus on the RI-tree in this thesis. Please note that the

developed techniques can also be applied to other relational index structures

with little modification.

In [KPPS03b], a new indexing approach was presented that considerably

accelerates the RI-tree for high resolutions. Nevertheless, the authors only

addressed high resolution spatial data, and even in this case, they did not

show how to decompose a spatial object. Their presented approach for storing

the spatial objects was rather inefficient, as they did not exploit the fact that

voxel sequences obtained from space filling curves tend to contain patterns.

In this thesis, we use the approach presented in [KPPS03b] as comparison

partner and show that our new approach, based on interval group sequences,

outperforms it by more than one order of magnitude.

A promising way to cope with spatial data can be found somewhere in

between replicating and non-replicating spatial index structures. We use

the concept of interval groups which is a compromise between these two

extremes. Based on the interval groups, we introduce a cost-based decom-

position method for accelerating the Relational Interval Tree (RI-tree). Our

approach uses compression algorithms for the effective storage of the decom-

posed spatial objects. The experimental evaluation on real-world 2D and 3D

test data points out that our new concept outperforms the RI-tree by up

28 2 Purpose of the Thesis

to two orders of magnitude with respect to overall query response time and

secondary storage space.

2.2.9 Test Datasets

Our tests are based on three test datasets CAR, PLANE and SEQUOIA.

The first two test datasets were provided by our industrial partners, a Ger-

man car manufacturer and an American plane producer, in the form of high

resolution voxelized three-dimensional CAD parts. The third dataset is based

on a subset of two-dimensional GIS data representing woodlands, rivers,

and transportation networks derived from the SEQUOIA 2000 benchmark

[SFGM93], called SEQUOIA throughout this thesis, for simplicity. The CAR

dataset consists of approximately 14 · 106 voxels and 200 parts, whereas the

PLANE dataset consists of about 18 · 106 voxels and 10,000 parts. The

SEQUOIA dataset is composed of about 3,500 rasterized polygons approx-

imated by 50 · 106 voxels. The CAR data space is of size 233, the PLANE

data space is of size 242 and the SEQUOIA data space is of size 234.

2.3 Analysis of Temporal Data

In the past decades, time series have become an increasingly prevalent type

of data. As a result, a lot of work on similarity search in time series databa-

ses has been published. The analysis of time series data, in particular, the

recognition of relationships in time series databases that have not previously

been discovered, is of great practical importance in many application areas.

Such applications include the stock market, astronomy, environmental anal-

ysis, molecular biology, and pharmacogenomics. As a consequence, a lot of

research has recently focused on similarity search in time series databases.

2.3 Analysis of Temporal Data 29

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21

deucl(X,Y) = 1.26

time series Y

time series X

deucl(X‘,Y‘) = 0.76

time series Y‘

time series X‘

Figure 2.9: Euclidean distance between time series.

2.3.1 Measuring Similarity

The complex nature of time series represents a big challenge for effective

and efficient search algorithms. The proposed methods mainly differ in the

desired type of similarity, the type of application and the form of representa-

tion used for the time series objects. A survey is given in [KCMP01]. In the

following, we review existing solutions for efficient similarity search on time

series.

The most prominent (dis)similarity measure for time series is the Euclid-

ean distance, which is defined as follows:

deucl(X, Y) =
1

N

√∑
i=1..N

|xi − yi|2.

An example is shown in Figure 2.9. The Euclidean distance between time

series X and Y is about 1.26 and the distance between X ′ and Y ′ is about

0.76. Consequently, time series X ′ and Y ′ are more similar than X and Y

with respect to the Euclidean distance measure. Comparing the two pairs of

time series in our example, the Euclidean distance conforms with our intuitive

perception of similarity.

For many applications, the Euclidean distance may be too sensitive to

minor distortions in the time axis. It has been shown that Dynamic Time

Warping (DTW) [BC94] can fix this problem [KCMP01]. Using DTW to

measure the distance between two time series X and Y , each value of X is

matched with the best fitting value of Y based on certain constraints. The

30 2 Purpose of the Thesis

10 20 30 40 501

X

f1(X) f2(X) f3(X)

original time series feature extraction vector space mapping

f (X)

Figure 2.10: Feature based dimensionality reduction (GEMINI approach).

DTW distance can be computed by means of dynamic programming.

Indexing Time Series and Dimensionality Reduction Methods

Usually, time series are considered as points in n-dimensional space and any

Lp-norm, e.g. the Euclidean distance, is used to measure the similarity be-

tween two time series. In this manner, time series can be indexed by spatial

access methods, such as the R-tree and its variants [Gut84]. Nevertheless,

most spatial access methods degrade rapidly with increasing data dimen-

sionality due to the ”curse of dimensionality”. In order to utilize existing

spatial access methods conveniently for time series, it is necessary to involve

dimensionality reduction methods combined with the concept of multi-step

query processing, as proposed in the GEMINI approach [FRM94]. Standard

techniques for dimensionality reduction have been successfully applied to sim-

ilarity search in time series databases, including Discrete Fourier Transform

(DFT) [AFS93], Discrete Wavelet Transform (DWT) [CF99], Piecewise Ag-

gregate Approximation (PAA) [YF00], Singular Value Decomposition (SVD)

[KJF97], Adaptive Piecewise Constant Approximation (APCA) [KCMP01],

and Chebyshev Polynomials [CN04]. All these methods qualify for the GEM-

INI framework since they provide similarity-distance measures in the reduced

vector space as long as they lower bound the desired similarity-distance mea-

sure applied to the original time series.

The general idea of the GEMINI approach is to extract a few key features

for each time series and map each time sequence X of length n to a point

f(X) in a lower dimensional feature space Rn′ (n′ << n) which can be

2.3 Analysis of Temporal Data 31

efficiently handled by spatial access methods. The transformation chain of

GEMINI is depicted in Figure 2.10.

In [RKBL05] a novel bit level approximation of time series for similarity

search and clustering is proposed. Each value of the time series is represented

by a bit. The bit is set to 1 if the value of the time represented by the bit

is strictly above the mean value of the entire time series, otherwise it is set

to 0. Then, distance functions that lower bound the Euclidean distance and

DTW, are defined on this bit level representation.

Threshold-based Similarity

In contrast to these traditional approaches that consider the course of the

time series for the purpose of matching, coarse trend information about the

time series could be sufficient to solve the above mentioned problem. In par-

ticular, temporal dependencies in time series can be detected by determining

the points of time at which the time series exceeds a specific threshold. In

this thesis, we introduce the novel concept of threshold queries in time se-

ries databases which report those time series exceeding a user-defined query

threshold at similar time frames compared to the query time series. We

present a new efficient access method which uses the fact that only partial

information of the time series is required at query time.

Though the type of time series representation in [RKBL05] is quite similar

to our threshold-based representation, it does not meet our needs. Further-

more, this kind of representation is restricted to a fixed threshold and, in

contrast to our approach, does not allow the user to define the threshold at

query time.

Moreover, all techniques which are based on dimensionality reduction can-

not be applied to threshold queries because necessary temporal information

is lost. Usually, in a reduced feature space, the original intervals indicating

that the time series is above a given threshold cannot be generated. In ad-

dition, the approximation generated by dimensionality reduction techniques

cannot be used for our purposes directly because they still represent the exact

32 2 Purpose of the Thesis

56

58

60

62

64

66

68

70

72

74

0 10 20 30 40 50 60

110

120

130

140

150

160

170

180

190

200

0 10 20 30 40 50 60

S
y
s
to

lic
B

lo
o
d

P
re

s
s
u
re

(m
m

H
g
)

H
e
a
rt

ra
te

 (
B

P
M

)

Time (sec) Time (sec)

Patient A

Patient B Patient B

Patient A

(a) heart rate

56

58

60

62

64

66

68

70

72

74

0 10 20 30 40 50 60

110

120

130

140

150

160

170

180

190

200

0 10 20 30 40 50 60

S
y
s
to

lic
B

lo
o
d

P
re

s
s
u
re

(m
m

H
g
)

H
e
a
rt

ra
te

 (
B

P
M

)

Time (sec) Time (sec)

Patient A

Patient B Patient B

Patient A

(b) systolic blood pressure

Figure 2.11: Patients heart rate and systolic blood pressure after drug

treatment.

course of the time series rather than intervals of values above a threshold.

To the best of our knowledge, threshold-based analysis in time series

databases has not been addressed before in the database community. In

particular, there exists neither an access method for time series nor any

similarity search technique which supports efficient threshold queries.

2.3.2 Application Ranges for Threshold Queries

The novel concept of threshold queries is an important technique, useful for

many practical application areas.

Application 1

For the pharmaceutical industry it is interesting which drugs cause similar

effects in the blood values of a patient. Obviously, effects like a certain blood

parameter exceeding a critical level τ are of particular interest. We assume

that after a certain drug treatment the heart rate and systolic blood pressure

of several patients are measured for one minute, as shown in Figure 2.11, and

the data were stored within a database. In our example, the recorded data of

patient A shows an immediate effect of the drugs, which differs significantly

2.3 Analysis of Temporal Data 33

Measurement A Measurement B

T
e
m

p
e
ra

tu
re

O
z
o

n
e

 (
O

3
)

Figure 2.12: Detection of associations between different environmental and

climatical attributes.

from the effects on patient B. A threshold query could return for a certain

patient all other patients in the database whose heart rates and blood pres-

sures show similar temporal reaction on the medical treatment with respect

to certain thresholds which may be significant for the observed attributes.

Application 2

The amount of time series data, derived from environment observation cen-

ters, for example, has increased drastically. Furthermore, modern sensor

techniques enable the user to record many attributes of the observed objects

or scenes simultaneously. For instance, the analysis of environmental air

pollution has been the focus of many European research projects in recent

years. Many sensor stations have been installed at different locations in Eu-

ropean cities and in rural areas. Each sensor station is equipped with several

types of sensors that are used to measure multiple air pollution attributes

(e.g. SO2, NO,NO2, CO,BTX, O3, H2S and CmHn − O) as well as mete-

orological parameters such as wind direction, speed and temperature. As

a result, German state offices for environmental protection maintain about

127 million time series, each representing the daily course of air pollution

parameters. The gathered data are stored in terms of time series which

have to be analyzed. Geo- and environmental scientists could be interested

34 2 Purpose of the Thesis

in the dependencies that exist between meteorological attributes, e.g. hu-

midity, and environmental attributes, e.g. particulate matter (PM10). To

discover which attributes nearly simultaneously exceed their legal threshold

could help to find such dependencies. Hence, an effective and efficient pro-

cessing of queries like ”return all ozone time series that exceed the threshold

τ1 = 75µg/m3 when the temperature reaches the threshold τ2 = 25◦C” could

be very valuable. An example is depicted in Figure 2.12, showing two pairs of

temperature-ozone curves where the characteristic of the ozone concentration

(lower time series) is very similar to that of the corresponding temperature

(upper time series) w.r.t. τ1, τ2 respectively. Analysis based on such sim-

ilarity is provided by threshold queries. Obviously, the increasing amount

of data to be analyzed represents a big challenge for methods supporting

efficient threshold queries.

Application 3

The analysis of gene expression data is important for understanding of gene

regulations and cellular mechanisms in molecular biology. Gene expression

data contains the expression level of thousands of genes, indicating how active

one gene is over a set of time slots. The expression level of a gene can be

”up” (indicated by a positive value) or ”down” (negative value). From a

biologist’s point of view, it is interesting to find genes that have a similar

up and down pattern because this indicates a functional relationship among

the particular genes. Since the absolute up/down-value is irrelevant, this

problem can be solved by means of threshold queries with a threshold of

τ = 0. Each gene provides its own interval sequence, indicating the time

slots classified as ”up”. Genes with a similar interval sequence have a similar

”up” and ”down” pattern.

2.3.3 Test Datasets

Our experimental evaluation of the threshold similarity is based on a wide

variety of test datasets. In order to guarantee the reproducibility of the

2.3 Analysis of Temporal Data 35

experiments and to compare the results to other approaches, we used several

publicly available datasets, mostly from the UCI KDD Archive1, which we

describe in the following.

The AUDIO dataset contains time sequences expressing the temporal

behavior of the energy, the dynamics and the strongest peak in pieces of

music. The three representations are computed 25 times per second for 6

octaves by using a cascade of bandpass filters. The resulting time series are

then cut into pieces of length 300, resulting in an overall database of 700,000

time series. If not otherwise stated, the database size was set to 50,000

objects and the length of the objects was set to 50. This dataset is used to

evaluate the performance of our approach (cf. Section 13.3).

The SCIENTIFIC datasets are derived from two different applications:

• the analysis of environmental air pollution (SCIEN ENV) and

• gene expression data analysis (SCIEN GEX).

The data on environmental air pollution is derived from the Bavarian

State Office for Environmental Protection, Augsburg, Germany2 and contains

the daily measurements of 8 sensor stations distributed in and around the city

of Munich, Germany from the year 2000 to 2004. One time series represents

the measurement of one station at a given day, and contains 48 values for

one of 10 different parameters such as temperature, ozone concentration etc.

The gene expression data from [SSZ+98] contains the expression level of

approximately 6,000 genes measured at 24 different time slots.

The STANDARD datasets are derived from diverse fields and cover

the complete spectrum of data characteristics, including stationary/non-

stationary, noisy/smooth, cyclical/non-cyclical, symmetric/asymmetric etc.

They are available from the UCR Time Series Data Mining Archive [KF02].

Due to their variety, they are often used as a benchmark for novel approaches

in the field of similarity search in time series databases. We used the following

1kdd.ics.uci.edu/
2www.bayern.de/lfu

kdd.ics.uci.edu/
www.bayern.de/lfu

36 2 Purpose of the Thesis

four datasets: GUN/POINT (GunX), TRACE (Trace), CYLINDER-BELL-

FUNNEL (CBF) and CONTROL CHART (SynCtrl).

Figure 2.13: Example time series taken from the GunX dataset.

The GunX dataset is a two-class dataset which comes from the video

surveillance domain [KR04]. It has two classes, each containing 100 instances.

All instances were created by using one female actor and one male actor in

a single session. The two classes are:

• Gun-Draw: The actors have their hands by their sides. They draw

a replica of a gun from a hip-mounted holster, point it at a target for

approximately one second, then return the gun to the holster, and their

hands to their sides.

• Point: The actors have their hands by their sides. They point with

their index fingers to a target for approximately one second, and then

return their hands to their sides.

For both classes, we tracked the centroid of the right hand in X-axes. Each

instance has a length of 150 data points and is z-normalized (i.e., µ = 0,

σ = 1).

The examples of this dataset, which are depicted in Figure 2.13, exhibit

the classification-problem of this dataset: the actual time for pointing at

the target greatly varies within the allowed time frame of one second. This

inconsistency poses a challenge for classifying this dataset. It is often the case

that the classification is based on the length of the pointing time interval,

and not on the slight irregularities when drawing the gun.

The Trace dataset is a four-class dataset which is a subset of the Tran-

sient Classification Benchmark (trace project) used in [Rov02] for nuclear

2.3 Analysis of Temporal Data 37

Figure 2.14: Example time series taken from the Trace Data dataset.

power plant malfunction diagnostics. It is a synthetic dataset designed by

Davide Roverso to simulate instrumentation failures in a nuclear power plant.

The full dataset consists of 16 classes, 50 instances in each class. Each in-

stance has 4 features. The Trace subset only uses the second feature of class

2, and the third feature of classes 3 and 7. Hence, this dataset contains 200

instances, 50 for each class. All instances are linearly interpolated to have

the same length of 275 data points, and are z-normalized.

Figure 2.14 depicts some examples from this dataset. It is clearly visible

that the time series within a class are relatively similar, but are heavily

shifted along the time axis.

Figure 2.15: Example time series taken from the Cylinder-Bell-Funnel

dataset.

The CBF dataset is an artificial dataset that was defined by Saito in

[Sai94] and later used in several other publications (cf. [Geu01]). It consists

of three classes cylinder, bell and funnel which are defined by the following

functions:

38 2 Purpose of the Thesis

c(t) = (6 + η) · χ[a,b](t) + ε(t)

b(t) = (6 + η) · χ[a,b](t) ·
t− a

b− a
+ ε(t)

f(t) = (6 + η) · χ[a,b](t) ·
b− t

b− a
+ ε(t)

with

χ[a,b](t) =

1 if a ≤ t ≤ b

0 otherwise

The values for η and ε(t) are standard normal variates, a and b are uni-

formly distributed integers in the range [16, 32], respectively [64, 128]. For

our experiments, we generated a CFB dataset containing 50 time series of

each class.

The biggest problem when classifying this dataset is the rather strong

noise which is added on the time series and the large window where the

characteristic feature of each class can be located (cf. Figure 2.15).

Figure 2.16: Example time series taken from the Synthetic Control dataset.

The SynCtrl dataset was created by Alcock and Manolopoulos for [AM99]

and contains 600 examples of synthetically generated control charts. It con-

sists of the cyclic pattern subset of the control chart data from the UCI

KDD archive. The data is effectively a sine wave with noise consisting of

6,000 data points. There are six different classes (100 instances per class)

of control charts: normal cyclic, increasing trend, decreasing trend, upward

2.4 Analysis using RkNN Queries 39

shift and downward shift. Figure 2.16 depicts three representations each from

these classes.

The biggest challenge for most distance measures is to distinguish be-

tween an increasing trend and an upward shift, resp. a decreasing trend and

downward shift.

2.4 Analysis using RkNN Queries

A reverse k-nearest neighbor (RkNN) query returns the data objects that

have the query object in the set of their k-nearest neighbors. It is the com-

plimentary problem to that of finding the k-nearest neighbors (kNN) of a

query object and has been studied extensively in the past few years for Eu-

clidean data [KM00, SAA00, YL01, SFT03]. The goal of a reverse k-nearest

neighbor query is to identify the ”influence” of a query object on the whole

dataset.

For example, consider a decision support system with the goal of choos-

ing the location for a new store. Given several choices for the new location,

the strategy is to pick the location that can attract the most customers. A

RkNN query would return the customers who would be likely to use the new

store because of its geographical proximity. The RkNN problem appears

in many practical situations such as geographic information systems (GIS),

traffic networks, or molecular biology where the database objects are general

metric objects rather than Euclidean vectors. In these application areas, the

database objects are polygons or sequences and an arbitrary metric distance

function is defined on these objects to evaluate object similarity. For ex-

ample, the increasing progress in telecommunication techniques and location

tracking systems like GPS, significantly extends the scope for location-based

service applications. Beside the nearest neighbor search, the reverse nearest

neighbor query is one of the most important query types for location based

services, e.g. in applications where stationary or moving objects agree to pro-

vide some kind of service to each other. Objects or individuals usually want

to request services from their nearest neighbors. Conversely, the objects or

40 2 Purpose of the Thesis

Giacomo‘s
Pizza Pipo‘s

Pizza

Giovanni‘s
Pizza

Paolo‘s
Pizza

Franco‘s
Pizza

(a) Merchandising (b) Game tactics

Figure 2.17: Applications for RkNN queries.

individuals which provide some services may be interested in the number of

expected service requests, or which objects could be interesting candidates

to provide the services, and maybe, where they are actually located. For

example, all filling stations of one company in a town want to provide their

own advertisements to all cars of which they are the nearest neighbor.

Another example consisting of pizza restaurants (large dots) and potential

customers (small dots) is depicted in Figure 2.17(a). To keep down costs

when carrying out an advertising campaign, it would be profitable for a

restaurant owner to send menu cards only to those customers which have his

restaurant as the nearest pizza restaurant. RkNN queries can also be useful

to improve the game tactics in real-life and video games, as shown in Figure

2.17(b). To identify possible uncovered players, and therefore to improve

the strategy of defense, each player should always closely watch his reverse

nearest neighbors on the opposing team.

In many cases, the objects are nodes in a traffic network. Instead of the

Euclidean distance, graph algorithms like Dijkstra have to be applied. An-

other important application area of RkNN search in general metric databases

is molecular biology. Here, the detection of new sequences call for efficient

2.4 Analysis using RkNN Queries 41

solutions of the general RkNN problem in sequence databases. These data-

bases usually contain a large number of biological sequences. Researchers all

over the world steadily detect new biological sequences that need to be tested

for originality and importance. To decide about the originality of a newly

detected sequence, the RkNNs of this sequence are computed and examined.

Usually, in this context, the similarity of biological sequences is defined in

terms of a metric distance function such as the edit distance or the Leven-

stein distance. More details on this application of RkNN search in metric

databases can be found in [DP03].

2.4.1 RkNN Search in Euclidean Space

All RkNN methods proposed so far are only applicable to Euclidean vector

data, i.e. D contains feature vectors of arbitrary dimensionality d (D ∈ Rd).

In [KM00], an index structure called RNN-Tree is proposed for reverse

1-nearest neighbor search. The basic idea is that if the distance from an

object p to the query q is smaller than the 1-nearest neighbor distance of p,

then p can be added to the result set. This approach saves a nearest neighbor

query w.r.t. p. Thus, the RNN-Tree stores for each object p the distance

to its 1-nearest neighbor, i.e. nndist1(p). In particular, the RNN-Tree does

not store the data objects itself but for each object p a sphere with radius

nndist1(p). Thus, the data nodes of the tree contain spheres around objects,

rather than the original objects. The spheres are approximated by minimal

bounding rectangles (MBRs). Since the tree suffers from a high overlap of the

data MBRs and, thus, from a high overlap of the directory MBRs, [KM00]

propose to use two trees: (1) a traditional R-Tree-like structure for nearest

neighbor search (called NN-Tree) and (2) the RNN-Tree for reverse 1-nearest

neighbor search.

The RdNN-Tree [YL01] extends the RNN-Tree by combining the two

index structures (NN-Tree and RNN-Tree) into one common index. It is

also designed for reverse 1-nearest neighbor search. For each object p, the

distance to p’s 1-nearest neighbor, i.e. nndist1(p) is precomputed. In general,

42 2 Purpose of the Thesis

the RdNN-Tree is a R-Tree-like structure containing data objects in the data

nodes and MBRs in the directory nodes. In addition, for each data node

N , the maximum of the 1-nearest neighbor distance of the objects in N is

aggregated. An inner node of the RdNN-Tree aggregates the maximum 1-

nearest neighbor distance of all its child nodes. A reverse 1-nearest neighbor

query is processed top down by pruning those nodes N where the maximum

1-nearest neighbor distance of N is greater than the distance between query

object q and N , because in this case, N cannot contain true hits anymore.

Due to the materialization of the 1-nearest neighbor distance of all data

objects, the RdNN-Tree needs not to compute 1-nearest neighbor queries for

each object.

A geometric approach for reverse 1-nearest neighbor search in a 2D dataset

is presented in [SAA00]. It is based on a partition of the data space into six

equi-sized units where the gages of the units cut at the query object q. The

nearest neighbors of q in each unit are determined and merged together to

generate a candidate set. This considerably reduces the cost for the nearest-

neighbor queries. The candidates are then refined by computing for each

candidate c the nearest neighbor. If this nearest neighbor is q then c is

added to the result. Since the number of units in which the candidates are

generated increases exponentially with d, this approach is only applicable for

2D datasets.

An approximative approach for reverse k-nearest neighbor search in higher

dimensional space is presented in [SFT03]. A two-way filter approach is used

to generate the results. However, the method cannot guarantee the com-

pleteness of the result, but trades loss of accuracy for a gain of performance.

Recently, in [TPL04], the first approach for reverse k-nearest neighbor

search that ensures complete results, was proposed. The method uses any

hierarchical tree-based index structure such as R-Trees to compute a nearest

neighbor ranking of the query object q. The key idea is to iteratively con-

struct a Voronoi cell around q from the ranking. Objects that are beyond

k Voronoi planes w.r.t. q can be pruned and need not to be considered for

Voronoi construction. The remaining objects must be refined. For each of

2.4 Analysis using RkNN Queries 43

Figure 2.18: Road network graph of the city of Oldenburg.

these candidates, a k-nearest neighbor query must be launched.

We propose the first approach for efficient RkNN search in arbitrary met-

ric spaces where the value of k is specified at query time. Our approach uses

the advantages of existing metric index structures but proposes to use con-

servative and progressive distance approximations in order to filter out true

drops and true hits. In particular, we approximate the k-nearest neighbor

distance for each data object by upper and lower bounds using two func-

tions of only two parameters each. Thus, our method does not generate any

considerable storage overhead.

2.4.2 Test Datasets

Our RkNN experiments are based on several real-world datasets. For the

metric RkNN search, we used a road network dataset derived from the city

of Oldenburg, which contains 6,105 nodes and 7,035 edges. The average

degree of the nodes in this network is 1.15. The dataset is available online3.

The nodes of the network graph were taken as database objects from which

3www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/

www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/

44 2 Purpose of the Thesis

subsets of different size were selected to form the test data set. For the

distance computation we used the shortest-path distance computed by means

of the Djikstra algorithm. The Oldenburg road network graph is depicted in

Figure 2.18.

The used Euclidean datasets include a set of 5-dimensional vectors gen-

erated from the well-known SEQUOIA 2000 benchmark dataset and two

”Corel Image Features” benchmark datasets from the UCI KDD Archive.

One dataset contains 9 values for each image, the other dataset contains

16-dimensional texture values.

2.5 Analysis of Video & Audio Data

With the rapid development of digital technologies, computer networks and

the Internet, the amount of multimedia data is growing enormously. This

is mainly possible because digital images, videos and pieces of music are

easily copied and distributed. Thus, multimedia databases are employed in

order to store such audio and video data. Typical applications in the area of

multimedia databases are content-based retrieval and automatic annotation.

While content-based retrieval systems are often unsupervised and do not

need any assistance from the user besides a query object, the quality of the

annotations usually improves if some training data is provided. If a classifier

is used in the annotation process which has been trained by user-labeled data,

the generated annotations are more likely to match the user’s expectations.

A typical MMDBS creates additional challenges due to the nature of

multimedia data and the requirements of possible applications. We can sum-

marize these challenges as follows. A MMDBS must support storage of large

objects, because multimedia data such as audio or video can require giga-

bytes of storage. Thus, special preprocessing, storage and similarity search

techniques are needed. Furthermore, the availability of versatile aspects and

different feature transformations for multimedia data leads to demand for

handling multiple, heterogeneous descriptions in retrieval and analysis meth-

ods.

2.5 Analysis of Video & Audio Data 45

Video clips are an important type of multimedia data. Due to recent

technical advances, the amount of video data that is available in digital

formats as well as the possibility to access and display such video files has

increased enormously. The approach in this thesis focuses on the following

scenario: given a database of movies or video clips, we want to retrieve all

movies from the database that are similar to the given query video. For this

type of scenario, there are various applications. For example, a company

wants to determine if a given video podcast or shared video file is similar

to a copyrighted movie or video clip. In this scenario, the company would

store all of its movies in a database and automatically check if the the video

podcast matches to a video in the database. Another example is a database

of news programs recorded on various days from various TV stations. A user

can retrieve all news programs that are likely to contain a given video clip

featuring a particular event. Since most news programs use videos that are

provided by video news agencies, it is very likely that the news programs

dealing with similar topics contain similar news clips.

In addition to the content-based retrieval of similar objects it is often

useful to assign objects to different classes, which helps to manage them

more effectively. With this technique, only objects in the same or similar

classes have to be analyzed in order to locate similar objects. This can

be achieved in a preprocessing step which identifies classes that contain a

certain number of similar objects. Another possibility would be to assign the

given multimedia objects to predefined classes, which can either reflect the

personal preferences of a user or be created by some experts. The process of

assigning objects to these classes is then typically performed by classification

algorithms.

2.5.1 Video Retrieval

Efficient and effective similarity search in such huge amounts of multimedia

data has become a major issue in several important applications such as video

copyright matters and multimedia retrieval [TKR99]. In fact, video similarity

detection has been proposed as a promising approach for copyright issues

46 2 Purpose of the Thesis

Figure 2.19: An image described by multiple representations.

which is complementary to the approach of digital watermarking [HB01]. In

addition, video similarity search is the key step towards content-based video

retrieval. As a consequence, a large amount of work has been directed toward

the field of similarity search in multimedia databases [CZ02, IL00, NWH01,

TKR99].

Multimedia data such as movies can usually be viewed as multi-represented

objects, i.e. for each object there are multiple representations modeling dif-

ferent features of the object. For example, for music videos, we can collect

audio features, such as pitch [TK00] or rhythm [TC02], and video features,

such as color histograms or textures [AY99]. Each of these multiple repre-

sentations models a different aspects of a music video. Figure 2.19 depicts an

image which is described by multiple representations: a color histogram, a

shape descriptor, and a segment tree. Obviously, the effectiveness of similar-

ity search methods could greatly benefit from taking multiple representations

into account. However, most existing approaches for multimedia similarity

search do not consider the multi-represented structure of multimedia objects

but usually use only one representation for similarity search.

Usually, multimedia objects consist of thousands or even millions of fea-

ture vectors. In order to handle such data efficiently, summarization tech-

niques are usually applied to the original data, so that the original feature

vectors are grouped together and each group is represented by a summa-

rization vector or summarization representative. Similarity is then defined

between these summarizations or the according summarization representa-

2.5 Analysis of Video & Audio Data 47

tives.

2.5.2 Summarization Techniques

In general, we can distinguish two classes of summarization techniques: higher-

order and first order summarization.

Higher-order summarization techniques are usually generated by apply-

ing optimization algorithms on feature vectors. They describe a multi-

instance object as a mix of statistical distributions or cluster representatives.

In [GGM02], a higher-order summarization technique is presented which is

based on Gaussian distributions or mixtures of Gaussian distributions. The

authors use methods such as Expectation-Maximization for parameter esti-

mation [GGM02]. The resulting summarizations are represented by Gaus-

sian distributions. The Kullback-Leibler distance can be used to compute the

distance between two Gaussian distributions [IL00]. The authors of [CSL99]

propose an approach for obtaining a compact representation of videos that

computes the optimal representatives by minimizing the Hausdorff distance

between the original video and its representation. If the Euclidian metric is

used as distance function on the feature vectors, the k-means method can

be applied for the summarization of video clip content [ZRHM98]. K-means

minimizes the variance w.r.t. the representative vectors, this function is also

called TD2. For the case of general metric spaces, the k-medoid method can

be applied for summarization. This method minimizes the distance between

a video and its description.

First-order techniques calculate a small set of representative feature vec-

tors as summarization vectors in order to describe a video. A randomized

technique for summarizing videos, called video signature, is proposed in

[CZ02]. A video sequence in the database is described by selecting a number

of its frames closest to a set of random vectors. This method requires only

a single scan over the video or audio sequences, and delivers a compact and

reliable description that can be used for similarity search. The authors in

[CZ02] also propose a specialized distance function on the derived first-order

48 2 Purpose of the Thesis

summarization vectors.

2.5.3 Similarity Search Based on Multiple Represen-

tations

Recently, some work has been done on multi-represented similarity search

in multimedia databases. The interactive search fusion method [SJL+03]

provides a set of fusion functions that can be used for combining different

representations. This method supports a manual and an interactive search

that is supervised by the user’s assistance or by a user-defined query. In addi-

tion, boolean operators on aggregation functions are supported, e.g. ”AND”

can be applied to the product aggregation function. Let us note that this

technique is supervised. It requires strong interaction with the user, which

is not always desirable since it requires the user to understand the basic con-

cepts of the method. Moreover, the proposed technique does not support

individual weighting for each query object. In [NWH01], a template match-

ing method based on the time warping distance is presented. This approach

can measure the temporal edit similarity. However, temporal order is not

necessary in many applications. In addition, this technique is not applicable

to large databases because it is linear in the number of feature vectors of all

video and audio sequences in the database.

From a technical point of view, video data consists of a sequence of im-

ages, so-called frames, that might be accompanied by some soundtracks. In

our approach, we exploit both the image- and the sound-track. To allow

similarity search on video clips, each frame is represented by a several fea-

ture vectors. For example, we use color histograms and texture features for

the image part of the video, i.e. our novel approach for similarity search in

multimedia databases takes multiple representations of multimedia objects

into account. In particular, we present weighting functions to rate the signif-

icance of a feature of each representation for a given database object. This

allows to weight each representation during query processing. Let us note

that the same video taken from different sources might be described by a

considerably different set of feature vectors due to varying encoding quality.

2.5 Analysis of Video & Audio Data 49

Figure 2.20: Screenshots of similar music videos.

In Figure 2.20, two screenshots of similar music videos are depicted. The left

hand image was taken from a TV broadcast and contains a TV station logo,

while the image on the right hand side comes from a DVD version and has a

higher resolution and brighter colors.

2.5.4 Test Dataset

We evaluated our concepts using a database of 500 music videos collected

by a focused web crawler. The video collection is herein referred to as MU-

SICVIDEO from now on. We extracted the image representations of the

videos on a per-frame basis, i.e. we generated 25 features/second for PAL

and 30 features/second for NTSC videos. From each image, we extracted

four representations, namely a color histogram and three textural features.

For the color histogram, we used the HSV color space (cf. Figure 2.21). In

order to be independent from the brightness of the color, we discarded the

Value (V) information. The idea is to use a feature representation which

is somewhat insensitive to the recording media. Old recordings that have

been digitized from a VHS tape often show a loss of brightness or brightness

fluctuations. So we divided the HSV color space into 32 subspaces, 8 ranges

of hue and 4 ranges of saturation. The textural features were generated from

16 gray-scale conversions of the images. We computed contrast, entropy and

inverse difference moment using the co-occurrence matrix [HSD73]. For ex-

tracting the audio features, we divided the audio signal of a video into short

time frames, each having a length of 1/50 second. Every audio frame is rep-

50 2 Purpose of the Thesis

Figure 2.21: Conical representation of the HSV color space.

resented by two features in the time- and frequency-domain. We computed

autocorrelation and threshold-crossing for the time-domain, spectral flux and

mel-frequency cepstral coefficients for the frequency-domain [TC02].

2.5.5 Audio Classification

Recently, powerful music compression tools and cheap mass storage devices

have become widely available. This allows average consumers to transfer

entire music collections from distribution media, such as CDs and DVDs, to

their computer hard drive. To locate specific pieces of music, they are usually

labeled with artist and title. Yet the user would benefit from a more intu-

itive organization based on the music style to get an overview of the music

collection. This means there is a need for content-based music classification

methods to organize these collections automatically using a given genre tax-

onomy. To provide a versatile description of the music content, several kinds

of features like rhythm, pitch or timbre characteristics are commonly used.

Taking the highly dynamic nature of music into account, each of these fea-

tures should be calculated up to several hundred times per second. Thus, a

piece of music is represented by a complex object given by several large sets

of feature vectors.

2.5 Analysis of Video & Audio Data 51

max. margin hyper planelinear separation

Figure 2.22: Basic idea of a Support Vector Machine (SVM).

Support Vector Machines

In recent years, support vector machines (SVMs) [CV95] have received much

attention since they offer superior performance in various applications. For

example, [WLCS04] presents a fusion technique for multimodal objects. Ba-

sic SVMs use the idea of linear separation of two classes in feature space

and distinguish between two classes by calculating the maximum margin hy-

perplane between the training examples of both given classes as illustrated

in Figure 2.22. To employ SVMs for distinguishing more than two classes,

several approaches were introduced [PCST99]. In order to handle sets of fea-

ture vectors in SVMs so called kernel functions were introduced [GFKS02]. A

weakness of multi-instance kernels is the need to calculate distances between

all instances, i.e. O(n2) single distance calculations are required in order to

compare two multi-instance objects with n instances. Thus, multi-instance

kernels seem to be unsuitable for solving large-scale classification problems

in music collections.

Instance Reduction Techniques

As mentioned above, a piece of music is usually described by a set of feature

vectors and is an multi-instance object. The number of instances can vary

from tens to hundreds per second, i.e. a song is represented by 10,000 to

50,000 feature vectors. Similar to video data, we can apply higher-order and

first order instance reduction techniques on multi-instance audio objects.

52 2 Purpose of the Thesis

Both first and higher-order techniques reduce a multi-instance object to a

small set of feature vectors. In order to process the reduced set-valued repre-

sentations of a multi-instance object by an SVM, special kernel functions are

required. As indicated before, the use of kernel functions seems impractical

for efficient classification in the context of large databases.

Hierarchical Classification

The general idea of hierarchical classification is that a classifier located on an

inner node solves only a small classification problem and therefore achieves

more effective results more efficiently than a classifier that works on a large

number of flat organized classes. The use of class hierarchies to improve

large-scale classification problems has predominantly been applied in text

classification. Several approaches have been introduced picking up this idea.

The authors of [KKPS04] investigated multiple representations of objects

in the context of hierarchical classification and proposed an object adjusted

weighting for a linear combination of multi-represented objects.

There exist only a few approaches for automatic genre classification of

audio data. In [CVK04], music pieces are classified into either rock or classical

music using k-NN and MLP classifiers. An approach for hierarchical genre

classification which does not support user feedback is presented in [TC02].

Zhang [Zha03] proposes a method for a hierarchical genre classification which

follows a fixed schema, and there is only limited support for user-created

genre folders. Moreover, all of above mentioned hierarchical classification

methods do not take full advantage of multi-instance and multi-represented

music objects.

In contrast, we present an approach that handles such rich object repre-

sentations as well as an arbitrary genre hierarchy, deals with user feedback

and supports multi-assignment of songs to classes. We also demonstrate the

practical relevance of our approach in a prototype called MUSCLE.

2.5 Analysis of Video & Audio Data 53

2.5.6 Test Dataset

A music collection consisting of almost 500 songs was the basis for the classi-

fication experiments. This collection is herein referred to as SONGDATA.

The SONGDATA dataset contains musical pieces from 15 different classes,

which results in approximately 30 songs per class. Depending on the repre-

sentation, we extracted 30 to 200 features per second.

Timbre features are derived from the frequency domain and were mainly

developed for the purpose of speech recognition. The extraction of the tim-

bral texture is performed by computing the short time Fourier transform. We

use the Mel-frequency cepstral coefficients (MFCCs), spectral flux and spec-

tral rolloff as timbral representations [TC02]. Rhythmic content features are

useful for describing the beat frequency and beat strength of a piece of music.

In our framework, we use features derived from beat histograms [TC02] as

the description of the rhythmic content. Pitch extraction tries to model the

human perception by simulating the behavior of the cochlea. Similar to the

rhythmic content features, we derive pitch features from pitch histograms

which were generated by a multipitch analysis model [TK00].

54 2 Purpose of the Thesis

Part II

Analysis of Spatial Data

55

Chapter 3

Introduction

The efficient management of spatially extended objects has become an en-

abling technology for many novel database applications including geographi-

cal information systems (GIS), computer-aided design (CAD), medical imag-

ing, molecular biology or haptic rendering. As a common and successful

approach, spatial objects can conservatively be approximated by a set of

voxels, i.e. cells of a grid covering the complete data space. By expressing

spatial region queries as an intersection of the corresponding voxel sets, vital

operations for two-dimensional GIS and environmental information systems

[MP94] can be supported. Efficient and scalable database solutions are also

required for three-dimensional CAD applications to cope with rapidly grow-

ing amounts of dynamic data. Such applications include the digital mock-up

of vehicles and airplanes, and virtual reality applications, e.g. haptic simula-

tions in virtual product environments [MPT99]. For instance, the ”777” from

boeing was completely digitally designed and assembled. It consists of about

three million parts, whereby some of these parts are composed of several mil-

lions of voxels. Although the voxels can further be grouped together to in-

tervals, the number of the resulting spatial primitives still remains very high.

On the other hand, one-value approximations of spatially extended objects

often are far too coarse. In many applications, GIS or CAD objects feature a

very complex and fine-grained geometry. The rectilinear bounding box of the

brake line of a car, for example, would cover the whole bottom of the indexed

57

58 3 Introduction

data space. A non-replicating storage of such data causes region queries to

produce too many false hits that have to be eliminated by subsequent filter

steps. For the above mentioned application ranges suitable index structures,

which guarantee efficient spatial query processing and industrial-strength, are

indispensable. Fortunately, a lot of traditional database servers have evolved

into Object-Relational Database Management Systems (ORDBMS). Object

types and other features, such as binary large objects (BLOBs), external

procedures, extensible indexing, user-defined aggregate functions and query

optimization, can be used to build powerful, reusable server-based compo-

nents. Relational access methods perfectly fit to the common relational data

model and are highly compatible with the extensible indexing frameworks

of existing object-relational database systems. In this part, we introduce a

cost-based decompositioning algorithm of complex spatial objects managed

by relational index structures. Our approach takes compression algorithms

for the effective storage of decomposed spatial objects and access probabili-

ties of these decompositions into account. Thereby, it helps to range between

the two extremes of one-value approximations and the use of unreasonably

many approximations. For modern engineering tasks and GIS applications

this new approach is highly beneficial, as it yields an excellent query response

behavior along with industrial strength.

The remainder of this part is organized as follows. In Chapter 4, we in-

troduce interval group objects, which can be stored within a spatial index.

Chapter 4.2 is dedicated to the storage of these interval groups. In Chapter

5, we first discuss why it is beneficial to store the interval groups in a com-

pressed way. Furthermore, we introduce a new spatial packer, called QSDC.

In Chapter 6, we discuss in detail our cost-based grouping algorithm which

can be used together with arbitrary packing algorithms but is especially use-

ful in combination with our new Quick Spatial Data Compressor (QSDC). In

Chapter 7, we discuss how intersection queries based on compressed interval

groups can be posted on top of the SQL engine. In Chapter 8, we present the

empirical results, which are based on three real-world test datasets. The 2D

dataset was derived from the SEQUOIA 2000 benchmark [SFGM93], while

the 3D datasets were provided by our industrial partners, a German car man-

59

ufacturer and an American plane producer. We show in a broad experimental

evaluation that our new concept accelerates spatial query processing based

on the Relational Interval Tree (RI-tree) [KPS01, KPS00].

60 3 Introduction

Chapter 4

Cost-Based Decompositioning

of Complex Spatial Objects

High resolution spatial objects may consist of several hundreds of thousands

of voxels (cf. Figure 4.1). For each object, there exist a lot of different pos-

sibilities to decompose it into approximations by grouping numerous voxels

together. We call these groups interval groups throughout the rest of this

paper (cf. Figure 4.2). Informally spoken, interval groups bridge the gap

between single intervals; a formal definition follows later. The question at

issue is, which grouping is most suitable for efficient query processing. A

good grouping should take the following ”grouping rules” into consideration:

• The number of interval groups should be small.

• The dead area of all interval groups should be small.

• The interval groups should allow an efficient evaluation of the contained

voxels.

The first rule guarantees that the number of index entries is small, as

the hulls of the interval groups are stored in appropriate index structures,

e.g. the RI-tree (cf. Figure 4.2). The second rule guarantees that many

unnecessary candidate tests can be omitted, as the number and size of gaps

61

62 4 Cost-Based Decompositioning of Complex Spatial Objects

Spatial Object Voxel Set Voxel Linearization

object voxel

z-curve

Figure 4.1: Voxel Linearization Process Chain

included in the interval groups is small. Finally, the third rule guarantees

that a candidate test can be carried out efficiently. A good query response

behavior results from an optimum trade-off between these grouping rules.

4.1 Interval Groups

Interval groups are formed by voxels which are used for describing complex

spatial objects. We start with defining voxelized objects formally:

Definition 4.1 (voxelized object).

Let O be the domain of all object identifiers and let id ∈ O be an object

identifier. Furthermore, let Nd be the domain of d-dimensional points. Then

we call a pair (id, {ν1, ..., νn}) ∈ O × 2Nd
a d-dimensional voxelized object.

We call each of the νi an object voxel, where i ∈ {1, ..., n}.

A voxelized object consists of a set of d-dimensional points, which can

be naturally ordered in the one-dimensional case. If d > 1, such an ordering

does not longer exist. By means of space filling curves, ρ : Nd → N, all mul-

tidimensional voxelized objects can be mapped to one-dimensional voxelized

objects (cf. Figure 4.1).

After linearization, we can group adjacent voxels together to intervals

and store these intervals in appropriate index structures, e.g. the RI-tree.

If we conservatively approximate an object by only one interval, numerous

error voxels are included in this approximation, which requires an expensive

refinement step during the query process. A promising trade-off between

4.1 Interval Groups 63

intervals (obtained from encoding voxels via a space filling curve)

I1 I2 I3

576 584 592 600 608

interval groups (obtained from grouping intervals together)

Figure 4.2: Intervals and interval groups.

the filter and refinement step can be found by means of interval groups.

Intuitively, an interval group sequence is a covering of our voxelized and

linearized object, where each voxel is assigned to exactly one interval group

(cf. Figure 4.2).

Definition 4.2 (interval group, interval group sequence).

Let (id, {ν1, ..., νn}) be a d-dimensional voxelized object, and let π : {1, ..., n} →
{1, ..., n} be a bijective function. Moreover, let m ≤ n and 0 = i0 < i1 <

i2 < ... < im = n ∈ N+. Then we call Ogroup = (id, 〈{νπ(i0+1), ..., νπ(i1)}, ...,
{νπ(im−1+1), ..., νπ(im)}〉) an interval group sequence. We call each of the

j = 1, ...,m groups Ij = {νπ(ij−1+1), ..., νπ(ij)} of Ogroup an interval group.

In the following, we present operators for interval groups which enable

us to introduce our approach formally. Throughout this paper, we refer

repeatedly to the definitions summarized in Table 1 which assumes that

Igroup = {ν1, ..., νc} is a d-dimensional interval group and ρ : Nd → N an

arbitrary space filling curve. For clarity, Figure 4.2 demonstrates the values

of the most important operators on interval groups. We use B(Igroup) as

an abbreviation for a byte sequence containing the complete information of

the intervals which have been grouped together to Igroup. In other words

B(Igroup) corresponds to a sequence of voxels within H(Igroup) along the

space filling curve ρ, transformed into a bit sequence of length L(Igroup). A

”1” bit denotes an object voxel and a ”0” bit denotes a non-object voxel.

For high data space resolutions, the byte-string B(Igroup) might contain long

sequences of zero bytes, i.e. large gaps.

In the following, we confine ourselves to non-overlapping approximations,

64 4 Cost-Based Decompositioning of Complex Spatial Objects

Table 4.1: Operators on interval groups.

Operator Description and Definition

H(Igroup) minimal covering of the interval group Igroup

H(Igroup) = (lr, us)

L(Igroup) length of the interval group Igroup

L(Igroup) = us − lr + 1

D(Igroup) density of interval group Igroup

D(Igroup) = c/L(Igroup)

G(Igroup) maximum gap between two intervals in Igroup

G(Igroup) =

{
0 r = s

max{li − ui−1 − 1, i = r + 1, ..., s} else

B(Igroup) byte sequence describing the interval group Igroup

B(Igroup) = 〈s0, ..., sn〉, where si ∈ N and 0 ≤ si < 28, n = bu/8c − bl/8c

si =
7∑

k=0

{
27−k ∃(lt, ut) ∈ Igroup : lt ≤ blr/8c · 8 + 8i + k ≤ ut, for r ≤ t ≤ s

0 otherwise

which are more suitable for efficient query processing, as no expensive dupli-

cate elimination is required.

Definition 4.3 (non-overlapping interval groups).

Let Ogroup = (id, 〈I1, ..., Im〉) be an interval group sequence. Ogroup is non-

overlapping, iff ∀i, j ∈ {1, ...,m}∀ν ∈ Nd : (i 6= j)∧ (ν ∈ S(Ii)) ⇒ ν /∈ S(Ij).

4.2 Storing Interval Groups in an ORDBMS

The traditional approach for storing an object id in a database is to map its

intervals to a set of tuples in an object-relational table Interval (id, cnt, data)

(cf. Table 4.3). The primary key is formed by the object identifier id and

a unique number cnt for each interval. If we map our d-dimensional spatial

object via space-filling curves onto one dimension, the result is an interval.

A spatial index on the attribute data supports efficient query processing.

4.2 Storing Interval Groups in an ORDBMS 65

Table 4.2: Operators applied on the example given in Figure 4.2.

Operator I1 I2 I3

H(Ix) [578,579] [586,593] [600,605]

L(Ix) 2 8 6

D(Ix) 1 5
8

3
6

G(Ix) 0 2 3

B(Ix) ’00110000’B ’00110011 01000000’B ’11000100’B

For high resolution spatial data, this approach yields a high number of table

and index entries and, consequently, leads to a critical query response be-

havior. A key idea of our approach is to store the non-overlapping interval

group sequence Ogroup = (id, 〈I1, ..., Im〉) in a set of m tuples in an object-

relational table IntervalGroup (id, cnt, data) (cf. Table 4.3(b)). Again, the

primary key is formed by the object identifier id and a unique number cnt

for each interval group. The set of voxels {ν1, ..., νc} of each interval group

Igroup = {ν1, ..., νc} is mapped to the complex attribute data which consists

of aggregated information, i.e. the hull H (Igroup) and the density D (Igroup),

and a byte sequence B(Igroup) containing the complete information of the

voxel set. In order to guarantee efficient query processing, we apply spatial

index structures on H(Igroup) and store B(Igroup) in a compressed way within

a binary large object (BLOB). H(Igroup) is an interval group having a length

L(Igroup). If we map our d-dimensional spatial object via space-filling curves

onto one dimension, H(Igroup) is an interval group which can be managed by

an index structure suitable for intervals, e.g. the RI-tree.

The two important advantages of this approach are as follows: First, the

number of table and index entries can be controlled and reduced dramati-

cally. Secondly, the access to the interval groups is efficiently supported by

established relational access methods, e.g. the RI-tree. Note that the usage

of interval groups is not restricted to the RI-tree. The approach can be ex-

tended to other relational spatial index structures such as the RQ-tree or the

RR-tree by using using hyper-rectangular boxes. In any case, these access

methods have to be created on H(Igroup). There are two different problems

66 4 Cost-Based Decompositioning of Complex Spatial Objects

Table 4.3: Storage of interval groups applied on the example given in Figure

4.2.

(a) traditional approach

Interval

id cnt data

· · · · · · · · ·
1 1 [578, 579]

1 2 [586, 587]

1 3 [590, 591]

1 4 [593, 593]

1 5 [600, 601]

1 6 [605, 605]

· · · · · · · · ·

(b) new approach

IntervalGroup

id cnt data

H(Ix) B(Ix)

· · · · · · · · · · · ·
1 1 [578, 579] ’30’H

1 2 [586, 593] ’33 40’H

1 3 [600, 605] ’C4’H

· · · · · · · · · · · ·

related to the storage of interval group sequences: the compression problem

and the grouping problem which is discussed in the following two chapters.

Chapter 5

Compression of Interval Groups

In this chapter, we first motivate the use of data compressors, by show-

ing that B(Igroup) contains patterns. Therefore, B(Igroup) can efficiently be

shrunken down by using data compressors. After discussing the properties

which a suitable compression algorithm should fulfill, we introduce a new ef-

fective packer which exploits gaps and patterns included in the byte sequence

B(Igroup) of our interval group Igroup.

5.1 Patterns

To describe a rectangle in a 2D vector space we only need 4 numerical val-

ues, e.g. we need two 2-dimensional points. In contrast to the vector repre-

sentation, an enormous redundancy is contained in the corresponding voxel

sequence of this object as depicted in Figure 5.1. As space filling curves

enumerate the data space in a structured way, we can find such ”structures”

in the resulting voxel sequence representing simply shaped objects. We can

pinpoint the same phenomenon not only for simply shaped parts but also for

more complex real-world spatial parts. Assuming we cover the whole voxel

sequence of an object id by one group, i.e. Ogroup = (id, 〈Igroup〉), and survey

its byte representation B(Igroup) in a hex-editor, we can notice that some

byte sequences occur repeatedly. We now discuss how these patterns can be

67

68 5 Compression of Interval Groups

B(Igroup) = …33CC33CC0000000033CC33CC…

• • •• • •

Igroup

• • •• • •

Figure 5.1: Pattern derivation by linearizing a voxelized object.

used for the efficient storage of interval groups in an ORDBMS.

5.2 Compression Rules

A voxel set belonging to an interval group Igroup = {ν1, ..., νn} can be materi-

alized and stored in a BLOB in many different ways. A good materialization

should consider two ”compression rules”:

• As little as possible secondary storage should be occupied.

• As little as possible time should be needed for the (de)compression of

the BLOB.

A good query response behavior is based on the fulfillment of both as-

pects. The first rule guarantees that the I/O cost cload
I/O are relatively small

whereas the second rule is responsible for low CPU cost cdecomp
CPU . The over-

all time cBLOB = cload
I/O + cdecomp

CPU for the evaluation of a BLOB is composed

of both parts. Unfortunately, these two requirements are not necessarily in

accordance with each other. If we compress the byte sequence B(Igroup), we

5.3 Spatial Compression Techniques 69

End-Of-File
Test

Input

Output RLE Scan

Short RLE
(2 Bytes)

Long RLE
(3 Bytes)

Pattern Scan

Short Pattern
(2 Bytes)

Long Pattern
(3 Bytes)

Store Byte
 unpacked

3 <= Len <= 18 18 < Len < 4114 3 <= Len < 16 16 <= Len < 272Store
Control-Byte
(every eight

cycles)

Figure 5.2: Flow diagram of QSDC compression algorithm.

can reduce the demand of secondary storage and consequently cload
I/O . Un-

fortunately, cdecomp
CPU might rise because we first have to decompress the data

before we can evaluate it. On the other hand, if we store B(Igroup) without

compressing it, cload
I/O might become very high whereas cdecomp

CPU might be low.

Furthermore, a good update behavior also depends on the fulfillment of both

rules.

As we show in our experiments, it is very important for a good query

response- and update-behavior to find a well-balanced way between these

two compression rules.

5.3 Spatial Compression Techniques

In this section, we look at a new specific compression technique, which is

designed for storing the voxel set of an interval in a BLOB. According to our

experiments, the new data compressor outperforms popular standard data

compressors such as ZLIB or BZIP2.

70 5 Compression of Interval Groups

5.3.1 Quick Spatial Data Compressor (QSDC)

The QSDC algorithm is especially designed for high resolution spatial data

and includes specific features for the efficient handling of patterns and gaps.

It is optimized for speed and does not perform time intensive computations

as for instance Huffman compression. QSDC is a derivation of the LZ77 tech-

nique [LZ77]. However, it compresses data in only one pass and much faster

than other Lempel-Ziv based compression schemes as for example XRAY

[CW00]. QSDC operates on two main memory buffers. The compressor

scans an input buffer for patterns and gaps (cf. Figure 5.2). QSDC replaces

the patterns with a two- or three-byte compression code, the gaps with a

one- or two-byte compression code. Then it writes the code to an output

buffer. QSDC packs an entire BLOB in one piece, the input is not split into

smaller chunks. At the beginning of each compression cycle QSDC checks

if the end of the input data has been reached. If so, the compression stops.

Otherwise another compression cycle is executed. Each pass through the

cycle adds one item to the output buffer, either a compression code or a non-

compressed character. To distinguish compressed from uncompressed data,

a control bit is written at the end of each compression cycle. Unlike other

data compressors, no checksum calculations are performed to detect data

corruption because the underlying ORDBMS ensures data integrity. The de-

compressor reads compressed data from an input buffer, expands the codes to

the original data, and writes the expanded data to the output buffer. When

an extremely long run-length sequence occurs, the actual output buffer con-

taining the decompressed data is returned to the calling process, and a new

output buffer is allocated.

Lemma 5.1 (worst case compression ratio of QSDC).

The worst packed vs. unpacked ratio of QSDC for an input sequence of L

bytes is (dL/8e+ L)/L.

Proof. The QSDC packing algorithm makes sure that a compression code is

always shorter than the original unpacked sequence. This means the only sit-

uation where the output can grow is when the compressor encounters unpack-

able bytes. An input byte which cannot be packed is directly passed through.

5.3 Spatial Compression Techniques 71

Plus, an additional bit is consumed by the control byte. This sums up to L

control bits, i.e. dL/8e control bytes, which proves the lemma. 2

72 5 Compression of Interval Groups

Chapter 6

Grouping into Interval Groups

Our grouping algorithm is based on the following two parameters:

• An average query distribution function QDF which is used to compute

the access probability P (Igroup, QDF) of an interval group Igroup.

• A look-up table LUT related to the evaluation of the BLOB.

6.1 Query Distribution

For many application areas, e.g. in the field of CAD and GIS, the average

query distribution can be predicted very well. It is obvious that queries in

rather dense areas, e.g. a cockpit in an airplane or a big city like New York,

are much more frequently inquired than less dense areas. Furthermore, often

small selective queries are posted.

As we do not know the actual query distribution, we have to assume

an average query distribution function QDF which influences our grouping

algorithm. We start with normalizing the coordinates of our one-dimensional

query intervals to ensure that all data lies within the normalized data space

D := {(l, u) ∈ [0, 1]2 : l ≤ u} (cf. Figure 6.1 for one-dimensional query

intervals Qi).

73

74 6 Grouping into Interval Groups

Q2=(l2,u2)

0 1

1

lower

upper

l1
l2

u1

u2Q2

Q1

QDF1(Q1) > QDF2(Q2)

QDF1(p,q)
0.0

1.0

Q1=(l1,u1)

*D

Q2=(l2,u2)

Q1=(l1,u1)

0 1

1

lower

upper

l1
l2

u1
u2Q2

Q1

k
2
k

QDF2(p,q)

0

)2/(
1
2kk

*
kD

Figure 6.1: Query distribution functions QDFi(x, y).

In the following, we examine intervals and their point transformation

into the upper triangle D := {(l, u) ∈ [0, 1]2 : l ≤ u} of the two-dimensional

hyper cuboid. An interval Q = [x, y] therefore corresponds to the point (x, y)

with x ≤ y. Examples are visualized in Figure 6.1. To each of these points

Q = (x, y) we assign a numerical value QDF (Q) ≥ 0. As the probability is

equal to one that a query is somewhere located in the upper triangle D, the

following equation has to hold:

l=1∫
l=0

u=1∫
u=l

QDF ((l, u)) du dl = 1.

Figure 6.1 shows two different query distribution functions. A potential query

Q2 is unlikely in Figure 6.1(a) and does not occur at all in Figure 6.1(b). On

the other hand, query Q1 is very likely in both cases. Let us note, that

we used the simple query distribution function of Figure 6.1(b) throughout

our experiments. In all considered application areas the common query ob-

jects only comprise a very small portion of the data space D. Therefore, we

introduce the parameter k ∈ [0, 1], which restricts the extension of the pos-

sible query objects. For the computation of the access probability we only

consider normalized query objects whose extensions do not exceed k in each

dimension.

6.2 Access Probability 75

A(I1)

I1=(l1,u1)

0 1

1

lower

upper

I1
l1 u1

0 1

1

lower

upper

I1

I2 I3

l1 u1

I3=(l3,u3)

A(I2) A(I3)

A(I3)

A(I2) I2=(l2,u2)

Figure 6.2: Computation of the access probability of interval groups.

6.2 Access Probability

The access probability P (I0, QDF) related to a grouped object I0 denotes

the probability that an arbitrary query object has an intersection with the

two-dimensional hull H(I0). All possible query intervals that intersect I0

are visualized by the shaded area A(I0) in Figure 6.2(a). The area displays

all intervals whose lower bounds are smaller or equal to b and whose upper

bounds are larger or equal to a. These query intervals are exactly the ones

that have a non empty intersection with I0. The probability that an interval

I0 = [a0, b0] is intersected by an arbitrary query interval is

P (I0, QDF) =

∫
l∈A(I0)

∫
u∈A(I0)

QDF ((l, u)) du dl.

6.3 Evaluation Cost

Furthermore, the expected query cost depend on the cost related to the eval-

uation of the byte sequence stored in the BLOB of an intersected interval

76 6 Grouping into Interval Groups

0

5

10

15

20

25

0 2 4 6
 compressed size [MB]

ev
al

ua
tio

n
co

st

UNPACKED
PACKER 1
PACKER 2

Figure 6.3: Evaluation cost costeval for different data compressors.

group Igroup. The evaluation of the BLOB content requires to load the BLOB

from disk and decompress the data. Consequently, the evaluation cost de-

pends on both the length L(Igroup) of the uncompressed BLOB and the length

Lcomp(Igroup) � L(Igroup) of the compressed data. Additional, the evaluation

cost costeval depend on a constant cload
I/O related to the retrieval of the BLOB

from secondary storage, a constant cdecomp
CPU related to the decompression of the

BLOB, and a constant ctest
CPU related to the intersection test. The cost cload

I/O

and cdecomp
CPU heavily depend on how we organize B(Igroup) within our BLOB,

i.e. on the used compression algorithm. A highly effective but not very time

efficient packer, e.g. an arithmetic packer, would cause low loading cost but

high decompression cost. In contrast, using no compression technique, leads

to very high loading cost but no decompression cost. On the other hand, e.g.

ZLIB is an effective and very efficient compression algorithm which yields a

good trade-off between the loading and decompression cost. Finally, ctest
CPU

solely depends on the used system. The overall evaluation cost are defined

by the following formula:

costeval(Igroup) = Lcomp(Igroup) · cload
I/O + L(Igroup) · (cdecomp

CPU + ctest
CPU)

For each compression algorithm we provide statistics, i.e. a empirically

derived look-up table LUT (cf. Figure 6.3), by means of which we can esti-

mate the cost cload
I/O and cdecomp

CPU related to a possible evaluation of the BLOB.

Roughly speaking, the evaluation cost depend on the length of our interval

6.4 Decomposition Algorithm 77

ALGORITHM GroupInt(Igroup, QDF, LUT)
BEGIN

interval pair := split at maximum gap(Igroup);
Ileft := interval pair.left;

Iright := interval pair.right;

costgroup := P (Igroup, QDF) · costeval(Igroup, LUT);
costdec := P (Ileft, QDF) · costeval(Ileft, LUT) +

P (Iright, QDF) · costeval(Iright, LUT);
IF costgroup > costdec THEN

GroupInt(Ileft, P);
GroupInt(Iright, P);

ELSE

report(Igroup);

END IF;

END

Figure 6.4: Decomposition Algorithm GroupInt.

group L(Igroup) and on the used data compressor.

To sum up, the access cost related to an interval group Igroup can be

computed as follows

cost(Igroup) = P (Igroup, QDF) · costeval(Igroup, LUT)

6.4 Decomposition Algorithm

Orenstein [Ore89] introduced the size- and error bound decomposition ap-

proach. Our first grouping rule ”the number of interval groups should be

small” can be met by applying the size-bound approach, while applying the

error-bound approach results in the second rule ”the dead area of all interval

groups should be small”. For fulfilling both rules, we introduce the following

top-down grouping algorithm for interval groups, called GroupInt (cf. Figure

6.4). GroupInt is a recursive algorithm which starts with an approximation

Ogroup = (id, 〈Igroup〉), i.e. we approximate the object by one interval group.

In each step of our algorithm, we look for the maximum gap g within the

actual interval group. We carry out the split along this gap, if the aver-

78 6 Grouping into Interval Groups

age query cost caused by the decomposed intervals is smaller than the cost

caused by our input interval Igroup. The expected cost related to an interval

group Igroup can be computed as described in the foregoing paragraph. An

interval group which is reported by the GroupInt algorithm is stored in the

database and no longer taken into account in the next recursion step. Data

compressors which have a high compression rate and a fast decompression

method, result in an early stop of the GroupInt algorithm generating a small

number of interval groups. Our experimental evaluations suggest that this

grouping algorithm yields results which are very close to the optimal ones

for different data compression techniques and data space resolutions.

Chapter 7

Query Processing

In this chapter, we discuss how we can efficiently carry out intersection

queries on top of the SQL-engine. Our approach uses the RI-tree for effi-

ciently detecting intersecting interval hulls. In contrast to the last section, we

do not assume any arbitrary data distribution but use statistical information

reflecting the distribution of the interval group hulls managed by the RI-tree.

The algorithm for decomposing a query object is basically the same as the

one presented in Figure 6.4. The main difference is that the assumed inter-

section probability P , is replaced by a more accurate selectivity estimation

σ reflecting the actual data distribution. In [KPPS02] it was shown how we

can effectively and efficiently estimate the selectivity of interval intersection

queries based on the RI-tree. Both index structure and the corresponding

cost-model can be integrated into modern object relational database systems

by using their extensible indexing and optimization frameworks (cf. Figure

7.1). By exploiting the statistical information provided by the cost model,

we can find an optimum decomposition for the query object. The tradi-

tional error- and size-bound decomposition approaches [Ore89] decompose

a large query object into smaller query objects optimizing the trade-off be-

tween accuracy and redundancy. In contrast, the idea of taking the actual

data distribution into account in order to decompose the query object, leads

to a new selectivity-bound decomposition approach, which tries to minimize

the overall number of logical reads.

79

80 7 Query Processing

User-defined Index Structure

Extensible Indexing Framework
Object-relational interface for index
maintenance and querying functions.

Relational Implementation
Mapping to built-in indexes (B+-trees);
SQL-based query processing

User-defined Cost Model

Extensible Optimization Framework
Object-relational interface for selectivity
estimation and cost prediction functions.

Relational Implementation
Mapping to built-in statistics facilities;
SQL-based evaluation of cost model

Figure 7.1: Analogous architectures for the object-relational embedding.

7.1 Decomposition of the Query Object

In this section, we shortly sketch the decompositioning of the query object

into suitable interval group sequences. Thereby two different cases have to be

distinguished. First, the query object is already stored in a decomposed way

in the database. Second, it has to be decomposed in real-time from scratch.

7.1.1 Query object is a database object

In this case, the query object is already stored in a decomposed way within

the database according to our GroupInt algorithm which assumes a potential

query distribution QDF (cf. Figure 6.1). Usually areas which are often

inquired also contain a lot more objects than seldomly inquired areas. For

instance, New York contains a lot of geographical objects and is much more

often inquired than Alaska. As we assume that the characteristic QDF

coincides with the data distribution σ of the actual databases objects, we

use the already decomposed objects as starting point for a further statistic-

driven generation of the interval groups instead of starting from scratch.

In order to carry-out a fine-tuning of our grouped query-sequence we test

whether two already decomposed interval groups should be merged to one

interval group. This is beneficial if σ < QDF holds for the query region. On

7.1 Decomposition of the Query Object 81

the other hand, if σ > QDF holds, we further decompose the query interval

group according to the algorithm presented in Figure 6.4. That way, we do

not assume a potential query distribution QDF , but replace QDF by the

actual selectivity estimation σ w.r.t. the corresponding interval group. We

carry out the selectivity estimation for Igroup and for the two potentially new

interval groups Ileft and Iright which result from a split at the maximum gap

of Igroup. Based on the computed cost, we decide whether we actually carry

out the split.

7.1.2 Query object is no database object

Second, if the query object has to be decomposed from scratch, we carry out

a decompositioning starting with one interval group conservatively approxi-

mating the query object. Similar to the approach of the last paragraph, we

decide based on an accurate selectivity estimation whether to further decom-

pose the query object. This approach is quite feasible if the query object

is already available as voxelized object. If not, which is the case for some

common query objects used in GIS or CAD, they are often very simple and

can be described by a few parameters, e.g. a rectilinear box or cube can be

described by two points. Again, we approximate the query object by one

interval group and apply the already sketched decompositioning approach

for query objects. The few parameters which are necessary to describe the

query object can be stored in the BLOB of each interval group instead of

the exact interval sequence. These few values contain the whole information

in the most compressed way. In the blobintersection routines of Figure 7.2,

B(Igroup) is created on demand from this simple and compact geometric in-

formation. As the geometric information is already in the most compressed

form we do not need a special data compressor, but only a decompression

algorithm specific to the geometry of the query object.

In the following, we show how we can carry out an interval intersection

query on top of an ORDBMS.

82 7 Query Processing

7.2 Intersection Query

In this section, we discuss the query processing of a boolean and a ranked

intersection predicate on top of the SQL-engine. The presented approaches

can easily be embedded by means of extensible indexing interfaces (cf. Fig-

ure 7.1) into modern ORDBMS. Most ORDBMSs, including Oracle [Cor99b,

SMS+00], IBM DB2 [Cor99a, CCF+99] or Informix IDS/UDO [IS98, BSSJ99],

provide these extensibility interfaces in order to enable database developers

to seamlessly integrate custom object types and predicates within the declar-

ative DDL and DML. As we represent spatial objects by interval group se-

quences, we first clarify when two of these sequences intersect.

Definition 7.1 (Object Intersection).

Let W = {(l, u) ∈ N2, l ≤ u} be the domain of intervals and let i1 = (l1, u1)

and i2 = (l2, u2) be two intervals. Further, let I1 = 〈i11, ..., i1n〉 and I2 =

〈i21, ..., i2n〉 be two interval groups, and let O1 = (id1, 〈I1
1 , I

1
2 , ..., I

1
m1
〉) and

O2 = (id2, 〈I2
1 , I

2
2 , ..., I

2
m1
〉) be two interval group sequences. Then, the no-

tions intersect, Xintersect and interlace are defined in the following way:

1a. Two intervals i1 and i2 intersect if l1 ≤ u2 and l2 ≤ u1.

1b. Xintersect(i1, i2) = max{0, min{u1, u2} −max{l1, l2}+ 1}.

2a. Two interval groups I1 and I2 intersect if for any i ∈ {1, ..., n1}, j ∈
{1, ..., n2} the intervals i1i and i2j intersect.

2b. Xintersect(I1, I2) =
∑

i=1...n1,j=1...n2
Xintersect(ii, ij).

2c. Two interval groups I1 and I2 interlace, if their hulls H(I1) and H(I2)

intersect.

3a. Two objects O1 and O2 intersect, if for any i ∈ {1, ...,m1}, j ∈ {1, ...,m2}
the interval groups I1

i and I2
j intersect.

3b. Xintersect(O1, O2) =
∑

i=1...m1,j=1...m2
Xintersect(I1

i , I2
j).

3c. Two objects O1 and O2 interlace, if for any i ∈ {1, ...,m1}, j ∈ {1, ...,m2}
two interval groups I1

i and I2
j interlace.

7.3 The intersect SQL Statements 83

In other words, the intersect-predicate returns a boolean result whether

two intervals or interval groups have an empty intersection or not. The

Xintersect-predicate measures the intersection magnitude of two intervals

or interval groups.

7.3 The intersect SQL Statements

In [KPPS03a], many index structures for interval intersection queries were

surveyed, which can be integrated into the extensible indexing framework

of modern ORDBMSs. These index structures also support the evaluation

of the interlace predicate on interval groups. As we defined object interval

group sequences as a conservative approximation of normal object interval

sequences, we can use the hulls of the interval groups in a first conservative

filter step. Thereby, we can take advantage of the same access methods as

used for the detection of intersecting interval pairs. As shown in Section 4.2,

the interval group sequences can be mapped to an object-relational schema

IntervalGroups. Following this approach, we can also clearly express the

intersect predicates on top of the SQL engine (cf. Figure 7.2).

In the case of the intersect-predicate (cf. Figure 7.2(a)), the nesting func-

tion table groups references of interlacing grouped query and database inter-

val pairs together. The NF2-operator table was realized by a user-defined

aggregate function as provided in the SQL:1999 standard. In order to find

out which database objects are intersected by a specific query object, the

interlacing grouped intervals have to be tested for intersection. This test

is carried out by a stored procedure blobintersection. If one intersecting

grouped database and query interval pair is found, no grouped interlacing

interval pairs belonging to the same database object have to be examined.

This skipping principle is realized by means of the exists-clause within the

SQL-statement. In the case of the Xintersect-predicate (cf. Figure 7.2(a)),

the intersection length has to be determined for each interlacing interval

pair. No BLOB tests can be skipped. The results are summed up in the

user-defined aggregate function Xblobintersection. In both blobintersection

84 7 Query Processing

SELECT candidates.id FROM (

SELECT db.id AS id, table (pair(db.rowid, q.rowid)) AS ctable

FROM IntervalGroups db, :QueryIntervalGroups q

WHERE intersects (hull(db.data), hull(q.data))

GROUP BY db.id

) candidates

WHERE EXISTS (

SELECT 1

FROM IntervalGroups db, :QueryIntervalGroups q, candidates.ctable ctable

WHERE db.rowid = ctable.dbrowid AND q.rowid = ctable.qrowid

AND blobintersection (db.data, q.data)

);

(a) intersect-predicate

SELECT db.id, Xblobintersection(db.data, q.data)

FROM IntervalGroups db, :QueryIntervalGroups q

WHERE intersects (hull(db.data), hull(q.data))

GROUP BY db.id;

(b) Xintersect-predicate

Figure 7.2: SQL statements for spatial object intersection, based on interval

group sequences.

routines, we first decompress the data and then test the two byte sequences

in the interlacing area for intersection. As already mentioned in Section 5.2

it is important that the compressed BLOB size is small in order to reduce

the I/O cost. Obviously, the small I/O cost should not be at the expense of

the CPU cost. Therefore, it is important that we have a fast decompressing

algorithm in order to evaluate the BLOBs quickly.

7.4 Optimizations

For the intersect predicate, it suffices to find a single intersecting query and

database group pair in order to issue the database id. Obviously, it is desir-

able to detect such intersecting pairs as early as possible in order to avoid

unnecessary blobintersection tests. In this section, we present two optimiza-

7.4 Optimizations 85

tions striking for this goal. First, we introduce a fast second filter step which

tries to determine intersecting pairs without examining the BLOBs. This test

is entirely based on aggregated information of the interval groups. Second,

we introduce a probability model which leads to an ordering for the candi-

date pairs such that the most promising blobintersection tests are carried out

first. In order to put these optimizations into practice, we pass D(Igroup)

and H(Igroup) as additional parameters to the user-defined aggregate func-

tion table. Thus, the following two optimizations can easily be integrated

into this user-defined aggregate function. If the fast second filter step deter-

mines an intersecting interval group, all other candidate pairs are deleted so

that the resulting table of candidate pairs, called ctable, consists only of one

intersecting pair (cf. Section 7.4.1). Nevertheless, there might be database

objects where this second filter step does not determine an intersection for

any of the corresponding candidate pairs. In this case, we sort the candidate

pairs at the end of our user-defined aggregation function table such that the

most promising blobintersection tests are carried out first (cf. Section 7.4.2).

7.4.1 Fast Intersection Test for Interval Groups

We speak of ’overlapping’ intervals, if the hulls of the intervals intersect.

We now discuss how interval groups have to look like so that we can decide

whether two overlapping intervals actually intersect each other or not without

accessing their BLOBs. If any of the following five conditions holds, then two

interval groups intersect:

• If two intervals overlap, they necessarily intersect as well.

• If an interval is longer than the maximum gap between two intervals

contained in Igroup, then the two intervals intersect (cf. Figure 7.3(a)).

• If an interval overlaps the start or end of an interval group, then the

intervals intersect. This is due to the fact that any interval group ends

and starts with a ”1” voxel (cf. Figure 7.3(b)).

• If interval groups start or end at the same point, then the intervals

86 7 Query Processing

L(I1)

G(I2)

I1

I2

D(I1) = 1 L(I1) > G(I2) interlace(H(I1), H(I2))
I1 and I2 intersect

(a) detection based on maximal gap

I1
I2

I1
I2

D(I1) = 1 H(I1).lower H(I2).lower H(I1).lower
H(I1).lower H(I2).upper H(I1).upper
I1 and I2 intersect

H(I1).lower = H(I2).lower H(I1).upper = H(I2).upper
I1 and I2 intersect

(b) detection based on starting and end points

I1
I2

Loverlap

Loverlap > L(I1)·(1-D(I1)) + L(I2)·(1-D(I2))
I1 and I2 intersect

(c) detection based on density

Figure 7.3: Intersection optimizations for interval groups.

intersect. This is due to the fact that any interval group ends and

starts with a ”1” voxel (cf. Figure 7.3(b)).

• If the sum of the number of the white voxels of two grouped overlapping

intervals is smaller than the length of the overlapping area, then the

two intervals necessarily intersect. (cf. Figure 7.3(c)).

Note that the above mentioned optimizations are only suitable for the intersect-

predicate on interval groups.

7.4.2 Ranking

As shown above, we can sometimes pinpoint, based on relatively little infor-

mation, whether two interval group pairs intersect. Nevertheless, there might

be cases where we cannot do this for any of the database and query candi-

date pair. But if the hulls of two interval groups intersect, it is still helpful if

7.4 Optimizations 87

we can predict how likely an object intersection according to Definition 7.1

might be in order to rank the pairs properly in the set of all candidate pairs

belonging to the same database object.

The following probability model is rather simple as it is equal to the

coin-toss experiment, i.e. it is a Bernoulli experiment. It assumes that the

intervals and gaps covered by an interval group are equally distributed.

Lemma 7.1 (Probability for an Intersection).

Let Igroup and I ′group be two interval groups with densities d = D(I ′group) and

d′ = D′(I ′group), hulls H(Igroup) = [hl, hu] and H(I ′group) = [h′l, h
′
u] and an

intersection length of L = min{hu, h
′
u}−max{hl, h

′
l}+1. Then the probability

P (Igroup, I
′
group) that the two grouped intervals Igroup and I ′group intersect is

equal to:

P (Igroup, I
′
group) = 1− (1−D ·D′)L

Proof. Let x be one of the points in the interlacing area. Obviously, the

probability that this point is covered by an interval contained in Igroup is equal

to the density D. Subsequently, the probability that two intervals Igroup and

I ′group intersect at the point x is Px = D · D′. The probability, that either

x or another point y 6= x is covered by intervals from Igroup and I ′group is

Px,y = D ·D′+(1−D ·D′) ·D ·D′. As we assume that the interval bounds are

mapped to discrete integer values, the probability that Igroup and I ′group share

at least one point can be computed as follows

P (Igroup, I
′
group) =

L−1∑
i=0

D ·D′ · (1−D ·D′)i

= D ·D′1− (1−D ·D′)L

1− (1−D ·D′)

= 1− (1−D ·D′)L

2

In [KKPR05], the idea of ranking the intervals has been developed further

to a distributed intersection join for interval sequences of high-cardinality

which tries to minimize the transmission cost. The approach is based on the

88 7 Query Processing

above probability model for interval intersections which is used on the server

as well as on the various clients. On the client sites, intervals are grouped

together based on this probability model. The locally created approxima-

tions are sent to the server. The server ranks all intersecting approximations

according to our probability model. As not all approximations have to be

refined in order to decide whether two objects intersect, we fetch the exact

information of the most promising approximations first. This strategy helps

to cut down the transmission cost considerably.

Chapter 8

Experimental Evaluation

In this section, we evaluate the performance of our generic approach for

accelerating relational spatial index structures, with a special emphasis on

the various data compression techniques introduced in Chapter 2.1. We

evaluate different grouping algorithms GRP in combination with various

data compression techniques DC. We used the following data compressors

DC:

NOOPT: B(Igroup) is unpacked.

BZIP2: B(Igroup) is packed according to the BZIP2 approach [BW94].

ZLIB: B(Igroup) is packed according to the ZLIB approach [Deu96].

OPTRLE: B(Igroup) is packed according to the approach in [KPPS03b].

QSDC: B(Igroup) is packed according to the QSDC approach.

Furthermore, we grouped voxels into interval groups depending on two

grouping algorithms, called MAXGAP and GroupInt.

MaxGap. This grouping algorithm tries to minimize the number of

interval groups while not allowing that a maximum gap G(Igroup) of any

interval group Igroup exceeds a given MAXGAP parameter. By varying this

MAXGAP parameter, we can find the optimum trade-off between the first

two opposing grouping rules of Chapter 4, namely a small number of interval

groups and a small amount of dead space included in each of these interval

groups.

89

90 8 Experimental Evaluation

Table 8.1: Summary of the Spatial Test Datasets.

Dataset dimensions data space size # objects voxels

SEQUOIA 2 234 3500 50 · 106

CAR 3 233 200 14 · 106

PLANE 3 242 10,000 18 · 106

GroupInt. We grouped the interval groups according to our cost-based

grouping algorithm GroupInt (cf. Chapter 6), where we used the query dis-

tribution function from Figure 6.1(b) with k = 1/100, 000 and a look-up

table for each packer. The look-up table was created by experimentally

determining the average cost for evaluating an interval group Igroup, depen-

dent on the length of its byte sequence. Note, that the grouping based on

MaxGap(DC) ignores the DC parameter (i.e. does not depend on DC),

whereas GroupInt(DC) takes the actual data compressor DC into account

for performing the grouping.

In order to support the first filter step of GRP(DC), we can take any arbi-

trary access method for spatial data, e.g. the RI-tree. We have implemented

the RI-tree [KPS01, KPS00] on top of the Oracle9i Server using PL/SQL for

most of the computational main memory based programming. The evalua-

tion of the blobintersection routines was delegated to a DLL written in C. All

experiments were performed on a Pentium III/700 machine with IDE hard

drives. The database block cache was set to 500 disk blocks with a block size

of 8 KB and was used exclusively by one active session.

Test Datasets. The tests are based on three test datasets CAR, PLANE

and SEQUOIA. Table 8.1 contains a short summary of the characteristics of

all datasets.

In all cases, the Z-curve was used as a space filling curve to enumerate

the voxels. Figure 8.1 depicts the interval and gap histograms for our test

data sets. All three datasets consist of many short intervals and short gaps,

and only a few longer ones. We tested all compression techniques for both

the intersect and the Xintersect predicate.

8.1 Storage Requirements 91

1

100

10000

1000000

1 65536 4294967296

length

in

te
rv

al
s

/ g
ap

s

Intervals Gaps

(a) CAR dataset

1

100

10000

1000000

1 65536 4294967296

length

in

te
rv

al
s

/ g
ap

s

Intervals Gaps

(b) PLANE dataset

1

100

10000

1000000

1 65536 4294967296

length

in

te
rv

al
s

/ g
ap

s

Intervals Gaps

(c) SEQUOIA dataset

Figure 8.1: Histograms for intervals and gaps.

8.1 Storage Requirements

First we look at the storage requirements of the RI-tree on the PLANE

dataset. In Figure 8.2(a), the storage requirements for the index, i.e. the two

B+-trees underlying the RI-tree, as well as for the complete IntervalGroups

table are depicted for the MaxGap(QSDC) approach. In the case of small

MAXGAP parameters, the number of disk blocks used by the index domi-

nates the number of disk blocks for the IntervalGroups table. With increas-

ing MAXGAP parameters, the number of disk blocks used by the index

92 8 Experimental Evaluation

0

10

20

30

40

50

10 10,000 10,000,000
MAXGAP

nu
m

be
r o

f b
lo

ck
s

[x
10

00
] index

table

(a) Index & BLOB for MaxGap(QSDC)

1

10

100

1,000

10,000

10 1,000 100,000 10,000,000
MAXGAP

su
m

 o
f B

LO
B

-s
iz

es
 [x

1,
00

0,
00

0]
 b

yt
es

NOOPT
OPTRLE
ZLIB
BZIP2
QSDC

(b) BLOB for MaxGap(DC)

Figure 8.2: Storage requirements for the RI-tree (PLANE).

dramatically decreases hand in hand with the number of interval group se-

quences, and at high parameter values they yield no significant contributions

any more to the overall sum of used disk blocks.

Figure 8.2(b) shows the different storage requirements for the BLOB with

respect to the different data compression techniques. Due to an enormous

overhead, the ZLIB and BZIP2 approaches occupy a lot of secondary storage

space for small MAXGAP values. On the other hand, for high MAXGAP

values they yield very high compression rates. For the PLANE dataset the

BZIP2 approach yields a compression rate of more than 1:500 and is at

least 20 times more efficient than the approach used in [KPPS03b]. The

QSDC approach yields good results over the full range of the MAXGAP

parameter. For high MAXGAP values, the number of disk blocks used for

the BLOBs corresponds to the number of disk blocks used overall. For these

high MAXGAP parameters, the MaxGap(QSDC), MaxGap(ZLIB) and

MaxGap(BZIP2) approach lead to a much better storage utilization than

the MaxGap(NOOPT) and the MaxGap(OPTRLE) approach.

8.2 Update Operations

In this section we investigate the time needed for updating complex spatial

objects in the database. For most of the investigated application ranges, it

8.3 Query Processing 93

1

10

100

1000

10000

(i) (ii) (iii)

in
se

rt
tim

e
[s

ec
.]

group
pack
store

(a) Insert operation

0

1

10

100

1000

(i) (ii) (iii)

de
le

te
 ti

m
e

[s
ec

.]

(b) Delete operation

Figure 8.3: Update operation cost for the RI-tree (CAR)

(i) numerous intervals, (ii) one interval group, (iii) interval groups generated

by GroupInt(QSDC).

is enough to confine ourselves to insert and delete operations, as updates are

usually carried out by deleting the object out of the database and inserting

the altered object again. Figure 8.3(a) shows that inserting all objects into

the database takes very long if we store the numerous intervals in the RI-tree

(i) or if we store one value approximations of the unpacked object in the

RI-tree (ii). On the other hand, using our GroupInt(QSDC) approach (iii)

accelerates the insert operations by almost two orders of magnitude. The

time spent for grouping and packing pays off, if we take into consideration

that we save a lot of time for storing grouped and packed objects in the

database.

Obviously, the delete operations are also carried out much faster for our

GroupInt(QSDC) approach as we have to delete much less disk blocks (cf.

Figure 8.3(b)).

8.3 Query Processing

In this section, we want to turn our attention to the query processing by

examining different kinds of collision queries. The figures presented in this

paragraph depict the average result obtained from collision queries where we

have taken every part from the CAR dataset and the 100 largest parts from

94 8 Experimental Evaluation

0

1

10

100

10 1,000 100,000 10,000,000
MAXGAP

re
sp

on
se

 ti
m

e
[s

ec
.]

NOOPT
OPTRLE
ZLIB
BZIP2
QSDC

Figure 8.4: MaxGap(DC) evaluated for boolean intersection queries on

the RI-tree (PLANE).

the PLANE dataset as query objects.

8.3.1 MaxGap

In Figure 8.4 it is shown in which way the overall response time for boolean

intersection queries based on the RI-tree depends on the MAXGAP pa-

rameter. If we use small MAXGAP parameters, we need a lot of time

for the first filter step whereas the blobintersection test is relatively cheap.

Therefore, the different MaxGap(DC) approaches do not differ very much

for small MAXGAP values. For high MAXGAP values we can see that

the MaxGap(QSDC) approach performs best with respect to the overall

runtime. The MaxGap(QSDC) approach is rather insensitive against too

large MAXGAP parameters. Even for values where the first filter step is

almost irrelevant, e.g. MAXGAP = 107, the MaxGap(QSDC) approach

still performs well. This is due to the fact that for large MAXGAP values

the MaxGap(QSDC) approach needs much less physical reads, about 1%

of the MaxGap(NOOPT) approach. As a consequence, the query response

time of the MaxGap(QSDC) approach is approximately 1/35 of the query

response time of the MaxGap(NOOPT) approach.

In Figure 8.6 it is shown in what way the different data space resolutions

influence the query response time. Generally, the higher the resolution, the

8.3 Query Processing 95

28.08

20.91

16.40
13.68

12.00

10.83
7.80

4.63
2.57 1.74 1.37

11.14

0

10

20

30

40

10 1000 100000
MAXGAP

ob

je
ct

s

Cand. after 1.step
Hits after 2. step
Hits after BLOB test

Figure 8.5: Filter quality for boolean intersection queries on the RI-tree

(CAR).

slower is the query processing. Our MaxGap(QSDC) is especially suitable

for high resolutions, but also accelerates medium or low resolution spatial

data. To sum up, the MaxGap(QSDC) approach improves the response

time of collision queries for varying index structures and resolutions by up

to two orders of magnitude. In Figure 8.5, it is illustrated that at small

MAXGAP values the number of the different object IDs resulting from the

first filter step is only marginally higher than the number of different IDs in

the final result set. Likewise, the number of detected hits in the second filter

step is only marginally smaller. With increasing MAXGAP values the two

curves diverge. To sum up, the optimizations presented in Section 7.4 are

especially useful for small MAXGAP parameters.

8.3.2 GroupInt

Figure 8.4 shows that for packed data, the optimum MAXGAP value is

higher than for unpacked data. Furthermore, Figure 8.6 shows that for in-

creasing resolutions the optimum MAXGAP also increases. We now experi-

mentally show that the GroupInt algorithm produces object decompositions

which yield almost optimum query response times for varying index struc-

tures, compression techniques and data space resolutions. Please note that

the grouping of the 3D datasets has been performed without the help of statis-

96 8 Experimental Evaluation

0

1

10

100

10 1,000 100,000
MAXGAP

re
sp

on
se

 ti
m

e
[s

ec
.]

33 bit QSDC
30 bit QSDC
27 bit QSDC
24 bit QSDC

(a) CAR dataset

0

1

10

10 1,000 100,000 10,000,000
MAXGAP

re
sp

on
se

 ti
m

e
[s

ec
.]

34 bit ZLIB
32 bit ZLIB
30 bit ZLIB
28 bit ZLIB

(b) SEQUOIA dataset

Figure 8.6: MaxGap(QSDC) evaluated for boolean intersection queries

for the RI-tree using different resolutions.

tics modeling the data distribution (cf. Section 7.1). For our 3D datasets, the

initial grouping of the objects turned out to be quite stable and the enhanced

grouping with the help of statistics showed only little differences.

Table 8.2 depicts the overall query response time for boolean and ranking

intersection queries for the RI-tree based on the GroupInt algorithm.

We can see that for boolean intersection queries this grouping delivers

results quite close to the minimum response times depicted in Figure 8.4.

Furthermore, we notice that the GroupCon(QSDC) approach outperforms

the RI-tree [KPS01] by a factor of 180 for boolean intersection queries on

the PLANE dataset. For ranking intersection queries the RI-tree [KPS00] is

not applicable due to the enormous amount of generated join partners. On

the other hand, the GroupInt(QSDC) approach yields interactive response

times even for such queries. The GroupInt algorithm adapts to the opti-

Table 8.2: GroupInt(DC) evaluated for boolean∗ and ranking∗∗ intersection

queries for the RI-tree (PLANE).

NOOPT BZIP2 QSDC RI-tree

[KPS01]∗ [KPS00]∗∗

interval groups 24,453 16,063 15,468 9,289,569

runtime∗ [sec] 1.35 0.71 0.55 135.01

runtime∗∗ [sec] 2.42 1.23 0.92 ∞ (not applicable)

8.3 Query Processing 97

Table 8.3: GroupInt(ZLIB) evaluated for boolean intersection queries for

the RI-tree with different resolutions (SEQUOIA).

34 bit 32 bit 30 bit 28 bit

runtime [sec] 0.29 0.24 0.21 0.19

mum MAXGAP parameter for varying compression techniques, by allowing

greater gaps for packed data, i.e the number of generated interval group

objects is smaller in the case of packed data.

In Table 8.3 it is shown that the query response times resulting from the

GroupInt algorithm for varying resolutions, are almost identical to the ones

resulting from a grouping based on an optimum MAXGAP parameter (cf.

Figure 8.6)

To sum up, the GroupInt algorithm produces object decompositions

which yield almost optimum query response times for varying compression

techniques and data space resolutions.

8.3.3 Window Queries

In a last experiment, we carried out different window queries. Figure 8.7

depicts the average runtime for window queries, where we moved each win-

dow to 10 different locations. As shown in Figure 8.7(a) and 8.7(b), our

statistic-based decomposition approach of the query object can improve the

query response behavior by more than one order of magnitude, compared to

the granularity-bound decompositioning approach where we decompose the

query objects into normal intervals. This speed-up is mainly due to the re-

duced decomposition time resulting from the fact that we do not decompose

the interval groups completely into normal intervals, but take the actual data

distribution into account to guide the decompositioning process. If our se-

lectivity estimation indicates low selectivity for the actual interval group, we

do not further decompose the interval group but use it directly as query in-

terval, where the actual window coordinates are stored in the corresponding

BLOB. The experiments show that the query response time does not suffer

98 8 Experimental Evaluation

1

10

100
tim

e
[s

ec
.]

response time
decomposition time

(a) Window size equals 0.00001%
of the data space yielding approx.
0.01% selectivity

1

10

100

1000

tim
e

[s
ec

.]

response time
decomposition time

(b) Window size equals 0.01% of the
data space yielding approx. 1.0% se-
lectivity

Figure 8.7: Window queries (SEQUOIA).

from the fact that we did not decompose the windows with the maximum

possible accuracy. The time we need for the additional refinement step to

filter out false hits is compensated by the much smaller number of query

intervals resulting from a coarser decomposition of the query window. To

sum up, our statistic-based decomposition approach is especially useful for

commonly used window queries.

Part III

Analysis of Temporal Data

99

Chapter 9

Introduction

In this part, we introduce the new concept of threshold-based similarity

search for time series databases. In Part II we used interval group sequences

as basic representation of complex spatial objects. Now, we propose to use

interval sequences as basic representation of complex shaped time series ob-

jects. Certainly, one advantage for this type of representation is, similar to

that of representing complex spatial objects, that interval sequences are eas-

ier to handle than the original object representations. However, in case of

time series there is another very important advantage. Based on this new

type of time series representation, we can define a novel but very promising

similarity measure for time series. This measure does not only provide new

prospects in data mining in time series databases but also allows to develop

efficient methods for searching in very large databases comprising large and

complex time series objects.

In particular, we present efficient and effective similarity search algo-

rithms for time series. As mentioned above, we use sequences of intervals

in order to approximate our objects. In opposite to Part II, we consider

intervals with a temporal instead of a spacial dimension. A particular inter-

val sequence representation of a time series object is associated with a given

amplitude threshold.

101

102 9 Introduction

9.1 Preliminaries

Time series are sequences, discrete or continuous, of quantitative data as-

signed to specific moments in time. Formally, we define a time series as

follows:

Definition 9.1 (Time Series).

A time series X is a sequence of tuples

〈(x1, t1), .., (xN , tN)〉,

where ti ∈ T denotes a specific time slot and xi ∈ R denotes the data corre-

sponding to time ti. Naturally, we assume that the sequence is sorted w.r.t.

the time slots, i.e. ∀i ∈ 1, .., N − 1 : ti < ti+1.

Time series often represent continuously changing attributes and their

values are sampled at discrete time slots. In case of missing values, i.e.

nonexistent values between two measurements, we assume that the gaps are

filled by means of interpolation. There exists a large range of appropriate so-

lutions for time series interpolation. Because linear interpolation is the most

prevalent interpolation method for time series, we assume that the time se-

ries curves are supplemented by linear interpolation, if required. Throughout

the rest of this thesis, x(t) ∈ R denotes the (interpolated) time series value

of time series X at time t ∈ T .

9.2 Threshold Based Similarity Measure

Time series are usually very large, containing several hundreds or even thou-

sands of values per sequence. Consequently, the comparison of two time series

can be very expensive, particularly when considering the entire sequence of

values of the compared objects. There are a lot of data mining applications

where the mining process does not need the entire course of the time series.

Vague qualitative information about the shape like ”above” or ”below” a cer-

tain threshold may often be sufficient and even desired in some applications.

9.2 Threshold Based Similarity Measure 103

In this thesis, we introduce a novel type of similarity measure for time series

called threshold distance or threshold similarity. The corresponding similar-

ity query on time series databases is called threshold query (TQ). Threshold

queries enable the analysis of time series tightly focused on specific amplitude

values, which are important and significant for the analysis goal.

In many application areas it could be beneficial if the analysis of time

series data would be concentrated on certain amplitudes (or amplitude spec-

tra). A sample application from medical analysis is visualized in Figure 9.1

where three real electrocardiogram (ECG) plots T1, T2 and T3 are shown.

Plot T1 indicates a high risk for cardiac infarct due to the abnormal deflec-

tion after the systole (ST-T-phase), whereas T2 and T3 both show a normal

curve after the systole which indicates a low risk. For the examination of

times series w.r.t. this abnormal characteristic, there is no need to exam-

ine the entire curve. A better way to detect such kind of characteristics is

to analyze only the relevant parts of the time series, for instance observing

those parts of the time series which exceed a specified threshold as depicted

in our example. Let us now consider the time interval sequences displayed

below the ECG-curves. Each time interval sequence belongs to one time se-

ries. They correspond to the time frames within a time series that exceed

the specified threshold τ . We can observe that the time interval sequences

derived from T2 and T3 differ only marginally. In contrast, the time series

T1 shows quite different characteristics caused by the ECG-aberration which

indicates the heart disease.

The applicability of threshold based time series analysis can be also

demonstrated by the example depicted in Figure 9.2. There are four time

series from the real time series dataset Trace depicted, each representing a

class of several time series which are hidden for clarity reasons. A detailed

description of this dataset is given in Section 2.3. Basically, the four classes

differ significantly at two certain positions. The time series may vary slightly

in time. For a good classification, it seems promising to concentrate the sim-

ilarity search on the significant amplitude instead of taking the entire time

series into account. In fact, we observed in our experiments that we achieve

the best classification accuracy for this dataset when considering only the

104 9 Introduction

indication of heart desease

normal form

T1

T2

T3

time

T1
T2
T3

Figure 9.1: Threshold-based detection of risk patients for heart diseases.

significant amplitude value. The achieved classification accuracy by far out-

performs the traditional time-similarity measure Euclidean distance w.r.t.

the classification accuracy.

9.2.1 General Idea

The general concept of threshold based similarity search is as follows: given

two time series X and Y , and an amplitude threshold τ . X and Y are

considered similar if their amplitudes exceed the threshold τ within similar

time intervals. Using threshold similarity, the exact values of the time series

are not considered. Rather, it is only examined whether the time series

are above or below the given threshold τ at similar time intervals. Thus,

time series can be considered as similar, even if their absolute values are

considerably different, as long as they have similar time frames during which

9.2 Threshold Based Similarity Measure 105

Samples from TRACE dataset
Class 1

Class 2

Class 3
Class 4

significant
amplitudes

deflections which are most
relevant for classification

Figure 9.2: Threshold-based classification of time series.

the time series exceeds the specified query threshold τ . Then, the processing

of queries like ”retrieve all pairs of sequences of ozone concentration which

are above the critical threshold of 50µg/m3 at similar time” is reduced to

compare sequences of time intervals. Usually, the number of intervals is much

less than the number of ozone values per ozone sequence and can be organized

more efficiently. If the aggregated threshold based representation in form of

time intervals for each time series is given in advance, it is obvious that the

threshold queries can be answered more efficiently compared to the situation

where the time intervals are not given in advance.

9.2.2 Threshold Based Representation vs.

Dimensionality Reduction

Even though dimensionality reduction techniques are generally very impor-

tant for many similarity search problems, they are not very adequate for

threshold queries. The reason is that dimensionality reduction techniques

naturally aggregate time series values over time. In contrast, the threshold

based representation of time series, i.e. the set of time intervals indicating

that the time series is above a given threshold, aggregates time series over the

amplitude spectrum. The advantage of threshold queries is that they pre-

106 9 Introduction

time

B

d1 = lB - lA:
d2 = μB - lA:
d3 = uB - lA:
d4 = lB - μA:
d5 = μB - μA:
d6 = uB - μA:
d7 = lB - uA:

A
lA μA uA lB μB uB

d1
d2
d3

d4
d5
d6
d7
d8
d9

d8 = μB - uA:
d9 = uB - uA:

A B

Figure 9.3: The nine basic distances between two intervals A and B.

serve the original time dimension. In addition, threshold queries are designed

to suppress certain amplitude spectra which would interfere the results. Di-

mensionality reduction techniques cannot be directly used for this purposes

because they still represent the exact course of the time series rather than

intervals of values above a threshold. We can apply data reduction tech-

niques in order to compress the threshold based representation of time series

as proposed in [RKBL05]. However, the compressed information does not

support the computation of the threshold-based similarity. The compressed

representations have to be decompressed before we are able to compute the

similarities.

9.2.3 Similarity-Distance Measures for Intervals

It is obvious that the similarity between two points in time can be measured

by their distance in time. However, the similarity between two time intervals

is harder to model.

Figure 9.3 shows two intervals A and B, each described by four attributes

which might be relevant for the similarity measure, the two end points lower

9.2 Threshold Based Similarity Measure 107

l and upper u, one midpoint µ and the latitude ρ = µ− l. Since the latitude

ρ is not a point in time, usually only the first three attributes l, u and µ are

considered. Based on these three attributes, nine basic distances between the

two intervals can be defined [Joh06]. A major disadvantage of these distance

measures is that none fulfills all metric properties, i.e. positive definite,

symmetry and the triangle inequality.

A well-known class of distance measures is the Minkowski-class of met-

rics. We can use their metric properties for our purpose, in particular for

accelerating the query process (cf. Chapter 11). The triangle inequality al-

lows us to apply spatial access methods, like the R∗-tree, in order to speed up

similarity queries on intervals. Another advantage is that both parameters

that completely define an interval are taken into consideration for similarity

computation and not just only one parameter.

The Minkowski metric is a class of models where the distance is given by:

dAB = r

√√√√ n∑
i=1

dr
ABj

,

where dAB is the overall distance between A and B, dABj
is the distance

between these two points on the j-th of a set of mutually orthogonal axes

in n-dimensional space, and the exponent r (1 ≤ r ≤ ∞) is the parameter

which determines the particular metric.

Since we are using intervals, there are just two mutually independent

(orthogonal) axes so that the Minkowski metric can be simplified to

dAB = r

√
dr

AB1
+ dr

AB2
.

The parameter r may be considered as parameter of component weight.

If r = 1, all components are weighted equally in their effect on the overall

distance measure. If r increases, the components become increasingly differ-

entially weighted according to the differences on individual components. If r

approaches infinity, the largest of the component distances completely dom-

inates the overall distance measure. In the following, we consider the three

most common Minkowski-metric parameter values r = 1, 2 and ∞. The case

108 9 Introduction

where r = 1 is referred to as the Manhattan metric. A value of r = 2 provides

the standard distance formula for Euclidean space. The third metric takes

an r-value of ∞, and has been referred to as the maximum metric. Under

this model, only the largest of the component distances contributes to the

overall distance.

9.2.4 Contributions and Outline

The main contributions of this part can be summarized as follows:

• We introduce and formalize the novel concept of threshold-based simi-

larity and define threshold queries on time series databases.

• We present a novel data representation of time series and an access

method which support threshold queries efficiently.

• We introduce a selective pruning strategy and propose an efficient algo-

rithm for threshold queries based on the new time series representation.

In a broad experimental evaluation, we show that the new type of query

yields important information and therefore is useful for several application

fields. Furthermore, performance tests show that our proposed algorithms

achieve a high speed-up of threshold queries.

Chapter 10 formally introduces our novel similarity measure and pro-

poses a new query type called threshold query. In Chapter 11 we show how

time series can be represented in order to support threshold queries for arbi-

trary threshold values efficiently. An efficient query algorithm based on the

proposed representation is described in Chapter 12.

Chapter 10

Threshold Based Similarity

Search

In this chapter, we formally introduce the novel concept of threshold queries.

We consider one-dimensional (univariate) time series represented by a se-

quences of N value-time pairs 〈(x1, t1), .., (xN , tN)〉 as defined in Section 9.1.

10.1 Threshold-Crossing Time Intervals

We start with the definition of threshold-crossing time intervals, an aggre-

gated information of time series used to compute the threshold similarity.

Definition 10.1 (Threshold-Crossing Time Intervals).

Let X = 〈(xi, ti) ∈ R × T : i = 1..N〉 be a time series and τ ∈ R be a

threshold value. Then the threshold-crossing time intervals of X with respect

to τ is a sequence Sτ,X = 〈(lj, uj) ∈ T 2 : j ∈ {1, ..,M}, M ≤ N〉 of time

intervals such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj) ⇔ x(t) > τ.

Note that we shortly write SX for threshold-crossing time intervals of a

time series Object X if no threshold parameter is specified.

109

110 10 Threshold Based Similarity Search

time

timeseries A

timeseries B

B

time

A

Threshold-Crossing Time-Intervals:

time

Timeseries:

AA
S ,

BB
S ,

Figure 10.1: Threshold-Crossing Time Intervals.

The example shown in Figure 10.1 depicts the threshold-crossing time

intervals SτA,A and SτB ,B of the time series A and B respectively. After we

have defined which aggregated information we extract from the time series

and how we can represent this information, we now present our similarity

model based on this representation. In the following, we choose a suitable

similarity distance between single intervals which are the basic components

of our representation.

10.2 Similarity Model for Time Intervals

There are lot of different possibilities to compute distances between intervals,

commenced with the nine basic distance measures depicted in Figure 9.3.

Following the discussion in Chapter 9.2.3, we choose the Euclidean distance

as it seams the most intuitive one, i.e. two time intervals are defined to be

similar if they have ”similar” starting and end points. Our approach works

with the other Minkowski metrics as well, but we use the Euclidean distance

throughout this thesis. An empirical comparison of the different similarity

10.3 Similarity Model for Threshold-Crossing Time Intervals 111

measures is given in Chapter 13.

Definition 10.2 (Similarity between Time Intervals).

Let t1 = (t1l, t1u) ∈ T × T and t2 = (t2l, t2u) ∈ T × T be two time intervals.

The (dis)similarity between two time intervals is expressed by the distance

function dint : (T × T)× (T × T) → R which is defined as follows:

dint(t1, t2) =
√

(t1l − t2l)2 + (t1u − t2u)2.

10.3 Similarity Model for Threshold-Crossing

Time Intervals

For a certain threshold τ a time series object is represented by a sequence

of time intervals. Consequently, we need a similarity distance measure for

sequences of intervals. For any time series X, the order of the threshold-

crossing time intervals of X is naturally given by the interval parameters

and the fact that all intervals are disjunctive. For this reason, we can define

the threshold-crossing time intervals as a set of intervals without loss of

generality. Now, we have to employ a distance measure suitable to set based

objects. Several distance measures for set based objects have been introduced

in the literature [EM97]. In our approach, we employ the Sum of Minimum

Distances (SMD). The SMD tries to find the best match of each entity of

one set with any entity of the other set. This matching of one entity is done

independently of the other entities of the same set. If we adopt this to our

time series representation, each threshold-crossing of one time series will be

matched with the best fitting threshold-crossing time interval of the other

time series. Hence, the SMD most adequately reflects the intuitive notion of

similarity between two threshold-crossing time intervals. As our time interval

sets have different cardinalities, we slightly modify the SMD by normalizing

the distance with the cardinalities of the interval sets. The threshold-distance

dTS based on the normalized SMD [KS04] is defined as follows:

Definition 10.3 (Threshold-Distance).

Let X and Y be two time series and SX and SY be the corresponding threshold-

112 10 Threshold Based Similarity Search

crossing time intervals. Then the threshold distance is defined as follows:

dTS(SX , SY) =
1

2
·

(
1

|SX |
·
∑
s∈SX

min
t∈SY

dint(s, t) +
1

|SY |
·
∑
t∈SY

min
s∈SX

dint(t, s)

)
.

As mentioned above, the idea of this distance function is to map every

interval from one sequence to the closest (most similar) interval of the other

sequence and vice versa. This set-valued distance measure has further ad-

vantages. Time series having similar shapes, i.e. showing a similar behavior,

may be transformed into threshold-crossing time intervals of different cardi-

nality. Since the above distance measure does not take the cardinalities of the

interval sequences into account, it is adequate for our purpose. Another ad-

vantage is that the distance measure mainly considers local similarity. This

means that for each time interval of one time series only its closest coun-

terpart of the other time series is taken into account. Consequently, local

similarity related to the threshold crossing will be detected and incorporated

into the overall similarity distance.

The threshold-distance according to a certain threshold τ is also called

”τ -similarity”. We use these both expressions alternately in the remainder

of this thesis.

10.4 Similarity Queries Based on Threshold

Similarity

Finally, based on our new similarity model introduced above, we can define

novel similarity queries for time series. The most prominent similarity queries

are the distance-range query and the k-nearest-neighbor query. The distance-

range query reports for a given query object Q and a specific range ε ∈ R+
0

those objects of which their similarity distance to Q is smaller or equal to

ε. The k-nearest-neighbor query reports for a given query object Q and a

specific parameter k ∈ N+ the k most closest objects to Q according to the

used similarity distance measure. Applying our similarity model, we can

incorporate these two similarity queries as follows:

10.4 Similarity Queries Based on Threshold Similarity 113

Definition 10.4 (Threshold-Based ε-Range Query).

Let D denote the domain of time series objects. The threshold-based ε-range

query consists of a query time series Q ∈ D, a query threshold τ ∈ R and

a parameter ε ∈ R+
0 . It reports the set TQε−range

ε (Q, τ) ⊆ D of time series

from D such that

∀X ∈ TQε−range
ε (Q, τ) : dTS(Sτ,Q, Sτ,X) ≤ ε.

Similar to the distance-range similarity query we can adopt the nearest-

neighbor similarity query as well.

Definition 10.5 (Threshold-Based k-Nearest-Neighbor Query).

Let D be the domain of time series objects. The threshold-based k-nearest-

neighbor query consists of a query time series Q ∈ D, a query threshold τ ∈ R
and a parameter k ∈ N+. It reports the smallest set TQk−NN

k (Q, τ) ⊆ D of

time series objects that contains at least k objects from D such that

∀X ∈ TQk−NN
k (Q, τ),∀Y ∈ D\TQk−NN

k (Q, τ) :

dTS(Sτ,X , Sτ,Q) < dTS(Sτ,Y , Sτ,Q).

Note that we call both similarity queries defined above simply Threshold

Query if the specific query type (ε-range or k-nearest-neighbor) does not

make any difference in the context. Furthermore, if there is no specification of

the parameter k for the threshold-based k-nearest-neighbor query, we assume

that k = 1.

114 10 Threshold Based Similarity Search

Chapter 11

Threshold Based Indexing

A straightforward approach for executing a threshold query is to read sequen-

tially each time series X from the database. Then compute the corresponding

threshold-crossing time interval sequence Sτ,X which is used to compute the

threshold-similarity distance dTS(Sτ,X , Sτ,Q). Finally, we report those time

series whose distance dTS(Sτ,X , Sτ,Q) fulfill the query predicate. However, if

the time series database contains a large number of objects and the time

series are reasonably large, then this type of performing the query becomes

unacceptably expensive. As a solution, in this chapter we introduce an access

method which is convenient for the proposed time series representation. In

particular, it allows an efficient access to the threshold-crossing time intervals

of the time series.

We present two approaches for the management of time series data, both

of which efficiently support threshold queries. The key point of the proposed

approaches is that we do not need to access the complete time series data

at query time. Instead, only partial information of the time series objects

is sufficient to compute the query results. At query time, we only need the

information at which time frames the time series exceed and fall below the

specified threshold. The ability to access only the relevant parts of the time

series at query time would save a lot of I/O cost. The basic concept of

our approach is to pre-compute the threshold-crossing time intervals Sτ,X for

each time series object X and store them on disk in such a way that it can

115

116 11 Threshold Based Indexing

be accessed efficiently.

For the sake of clarity, we first present a straightforward approach, as-

suming that the threshold value τ is constant for all queries and known in

advance. Afterwards, we present the general approach which supports arbi-

trary choice of τ at query time.

11.1 Managing Threshold-Crossing Time

Intervals with Fixed τ

Let us assume that the query threshold τ is fixed for all queries. Then,

we can compute the corresponding Sτ,X for every time series X in advance.

Consequently, each time series object is represented by a sequence of inter-

vals. There are several methods to store intervals efficiently, e.g. the RI-

tree [KPS01]. However, like the other interval access methods, the RI-tree

supports intersection queries on interval data very well but does not effi-

ciently support the computation of similarity distances between intervals or

sequence of intervals according to our similarity model. Moreover, the exist-

ing approaches cannot be applied to our general approach where we assume

that τ is not fixed. Contrary, we propose a simple solution which efficiently

supports similarity queries on intervals (or more generally sequences of in-

tervals) and which can be easily extended to support queries with arbitrary

τ .

Time intervals can also be considered as points in a two-dimensional

plane [GG98]. In the following, we refer to this plane as time-interval plane.

The one-dimensional intervals (native space) are mapped to the time-interval

plane by taking their start and end points as two-dimensional coordinates.

An example is depicted in Figure 11.1. This representation has some advan-

tages for the efficient management of intervals:

• First, the distances between intervals are preserved.

• Second, the position of large intervals which are located within the

11.1 Managing Threshold-Crossing Time Intervals with Fixed τ 117

 lower

time

 u

pp
er

time interval plane

interval space
b c

b

c

time series

space

time

Figure 11.1: Mapping of Time Intervals to the Time Interval Plane.

upper-left region substantially differs from the position of small inter-

vals (located near the diagonal).

• However, the most important advantage is that the Euclidean distance

in this plane corresponds to the similarity of intervals according to

Definition 10.2.

The complete set of threshold-crossing time intervals of a time series is

represented by a set of two-dimensional points in the time interval plane.

The transformation chain from the original time series to the point set in the

time interval plane is depicted in Figure 11.1.

In order to efficiently manage the point sets of all time series objects, we

can use any index structure which can handle point data, e.g. the R∗-tree

[BKSS90]. In particular, the R∗-tree is very suitable for managing points

in low-dimensional spaces which are not equally distributed. Additionally,

it well supports the distance-range and nearest-neighbor query which will

be required to perform the threshold queries efficiently. Note that since

each object is represented by a set of points in the time interval plane, it is

referenced by the index structure multiple times. This property has to be

taken into account for the query process. Details of our query algorithm are

be presented later in Chapter 12.

118 11 Threshold Based Indexing

segl

1

2

s2

s1

si

c) parameter space
lower

upper

threshold

1

2

s1

s2

i si

b) native space

time

amplitude (threshold)

segl

segu

segu

time

amplitude

a) time series (native space)

1

2

X

XS ,2

XS ,1s1

s2

Figure 11.2: Time Intervals in Parameter Space for Arbitrary Threshold.

11.2 Managing Threshold-Crossing Time In-

tervals for Arbitrary τ

In contrast to the first approach, we now describe how to manage efficiently

threshold queries for arbitrary threshold values τ . First, we have to extend

the transformation task of the simple approach that the time-interval plane

representations of the threshold-crossing time intervals of the time series are

available for all possible threshold values τ . Therefore, we extend the time

interval plane by one additional dimension which indicates the corresponding

threshold values. In the following, we call the extended time-interval space

”parameter space”. A two-dimensional plane in the parameter space spanned

by the two interval-endpoint dimensions at a certain threshold τ is called

time-interval plane of threshold τ .

In the following, we assume that the time series objects are linearly in-

terpolated, i.e. consecutive time series values (xi, ti) and (xi+1, ti+1) are

connected by a two-dimensional segment ((xi, ti), (xi+1, ti+1)) in the time-

amplitude space (native space). Hence, the time series consists of a sequence

of segments which starting and end points are defined by the time series

values and the corresponding time slots (cf. Figure 11.2(a)).

Lemma 11.1.

Let X ∈ D be a time series and Sτ1,X and Sτ2,X be two threshold-crossing

time intervals of X, where w.l.o.g. τ1 < τ2. Let s1 ∈ Sτ1,X and s2 ∈ Sτ2,X be

two time intervals which start points lie on one segment segl of the linearly

11.2 Managing Threshold-Crossing Time Intervals for Arbitrary τ 119

interpolated time series and the end points lie on another segment segu. Then

all threshold-crossing time-intervals Sτi,X with τ1 ≤ τi ≤ τ2 contains exactly

one time interval si ∈ Sτi,X which also starts at segment segl and ends on

segment segu. Transformed into the parameter space si lies on the three-

dimensional straight line: gP : −→x = −→p1 +4t · (−→p2 −−→p1),

where −→p1 = (s1.lower, s1.upper, τ1)
T and −→p2 = (s2.lower, s2.upper, τ2)

T .

Proof. Both, the start point and the end point of si linearly depend on the

threshold τi. Consequently, all si lie on a three-dimensional straight line in

the parameter space. Let 4t = (τi − τ1)/(τ2 − τ1). Then,

si = (si.lower, si.upper, τi),

where

si.lower = s1.lower +4t · (s2.lower − s1.lower),

si.upper = s1.upper +4t · (s2.upper − s1.upper)

and

τi = τ1 +4t · (τ2 − τ1).

2

Let us consider the following example shown in Figure 11.2 in order to

clarify Lemma 11.1. Figure 11.2(a) shows a linearly interpolated time series

X. Let the time interval s1 be an entity of the threshold-crossing time in-

tervals Sτ1,X and s2 be an entity of Sτ2,X . Both time intervals s1 and s2 are

left bounded by the time series segment segl and right bounded by segu. All

threshold-crossing time intervals Sτi,X which are between Sτ1,X and Sτ2,X , i.e.

τ1 ≤ τi ≤ τ2 contain exactly one time interval si which is also bounded by

the time series segments segl and segu as depicted in Figure 11.2(b). Given

the time intervals s1 and s2 transformed into the parameter space, the time

interval si lies on the straight line between s1 and s2 in the parameter space

as depicted in Figure 11.2(c).

Following Lemma 11.1, all time intervals which are bounded by the same

time series segments can be transformed into one segment in the parameter

120 11 Threshold Based Indexing

time

amplitude

a) building time interval
groups (native space)

X

lower

upper

threshold
(amplitude) time-interval plane

at threshold

XS ,

b) determination of S ,X
in parameter space

time

amplitude

c) threshold-crossing
time intervals
(native space)

X

XS ,

Figure 11.3: Determination of threshold-crossing time intervals from pa-

rameter space.

space. In order to represent all threshold-crossing time intervals of one time

series in the parameter space, we have to identify all sets of time intervals

where each set contains those time intervals which are bounded by the same

time series segment in the native space (cf. Figure 11.3(a)). Each set is then

transformed into a three-dimensional segment in the parameter space (cf.

Figure 11.3(b)).

The entire set of all possible threshold-crossing time intervals of a time

series X is represented as a set of segments in the parameter space. The time

intervals which correspond to one threshold-crossing time interval Sτ,X can be

retrieved by intersecting the parameter-space segments which correspond to

X with the two-dimensional time-interval plane at threshold tau (cf. Figure

11.3(b)). The resulting intersection points correspond to the time intervals

of Sτ,X as depicted in Figure 11.3(c).

We can efficiently handle the entire set of threshold-crossing time intervals

in the parameter space as follows:

• We try to represent the entire set of threshold-crossing time intervals

by the smallest number of segments in the parameter space.

• Then, we organize the resulting parameter-space segments by means of

a spatial index structure, e.g. the R∗-tree.

11.3 Trapezoid Decomposition of Time Series 121

In the following, we introduce a method which enables us to efficiently

compute the smallest number of parameter-space segments for a given time

series.

11.3 Trapezoid Decomposition of Time

Series

If we consider the time intervals from all possible threshold-crossing time

intervals, the following observation can be made:

Lemma 11.2.

All intervals from Threshold-crossing time intervals always start at increasing

time series segments (positive segment slope) and end at decreasing time

series segments (negative segment slope).

Proof. Due to Definition 10.1, all values of X within a time interval

from threshold-crossing time intervals Sτ,X are greater than the corresponding

threshold value τ . Let us assume that the time series segment segl which

lower-bounds the time interval at time tl has a negative slope. Then, all

x(t) on sl with t > tl are lower than τ which contradicts definition 10.1.

The validity of Lemma 11.2 w.r.t. the right bounding segment can be shown

analogously. 2

Due to Lemma 11.2, the set of all time intervals which start and end at

the same time series segment segl and segu respectively, can be described by

a single trapezoid which left and right bounds are congruent with segl and

segu. Let segl = ((xl1, tl1), (xl2, tl2)) denote the segment of the left bound

and segu = ((xu1, tu1), (xu2, tu2)) denote the segment of the right bound. The

top-bottom bounds correspond to the two time intervals sτtop and sτbottom
at

the threshold values:

τtop = min(max(xl1, xl2), max(xr1, xr2));

τbottom = max(min(xl1, xl2), min(xr1, xr2));

122 11 Threshold Based Indexing

time series (native space)

th
re

sh
ol

d

time

decomposed time series

Figure 11.4: Time Series Decomposition.

In order to determine the minimal but complete set of parameter-space

segments of a time series, we have to determine the minimal set of trape-

zoids completely covering all possible threshold-crossing time intervals. The

optimal set of trapezoids can be determined by decomposing the space be-

low the time series into a set of disjunctive trapezoids. A time series object

can be considered as half-open uni-monotone polygon in the time-amplitude

plane (native space). In the area of computational geometry, there are sev-

eral sweep-line based polygon-to-trapezoid decomposition algorithms known

[FM84] which can be processed in O(n · logn) time w.r.t. the number of

vertices. According to the sweep-line based decomposition algorithms, we

can develop an algorithm which decomposes a time series into the desired

set of trapezoids. Figure 11.4 shows an example of a time series which is

decomposed into the set of trapezoids. Since the time series values naturally

are already sorted by time, our decomposition algorithm can be processed in

linear time w.r.t. the length of the sequence. Our decomposition algorithm

is depicted in Figure 11.6.

Let us illustrate the decomposition algorithm by means of the following

example depicted in Figure 11.5. In the for -loop we sequentially process the

time series segments s1,..,s11. As s1 and s2 have positive slopes, i.e. they

open trapezoids, we push them on the stack. Next, we consider the segment

next seg = s3 which has a negative slope, i.e. we can close the first trapezoids.

At this time (see step (1)), the stack contains the segments s2, s1. We pop s2

from the stack and compute and output the first trapezoid T1 by means of

11.4 Parameter Space Indexing 123

time

x0

x1

x2

x3

x4

x5 x6

x7

x8

x9

x10

x11

1 2 3

s1

s2

s1

s‘2
s‘1

s‘7

s9

stack snapshots

time series

s1

am
pl

itu
de

s2 s3

s4

s5

s6

s7

s8
s9

s10

s11

s4

T1
T2

T3

T4

T5

T6 T7

T8

T9

T10

Figure 11.5: Time Series Decomposition Example.

the procedure compute trapezoid(s2,s3). Then we cut the segment s2 at the

amplitude value s3.xe = x3 and push the cut segment s2 denoted by s′2 back

on the stack. We continue with the next segment s4 which is pushed on the

stack. Next, we proceed segment s5 by taking s4 from stack, compute the

trapezoid T2, then taking s′2 from stack in order to compute T3 and finally

taking s1 from stack, compute T4, cut s1 w.r.t. x5 and push the cut segment

s′5 back on the stack. The algorithm continues with processing segment s6

and so on.

11.4 Parameter Space Indexing

We apply the R∗-tree for the efficient management of the three-dimensional

segments, representing the time series objects in the parameter space. As

the R∗-tree index can only manage points and rectangles, we represent the

three-dimensional segments by rectangles where the segments correspond to

one of the diagonals of the rectangles.

For all trapezoids which result from the time series decomposition, the

lower bound time interval contains the upper bound time interval. Further-

more, intervals which are contained in another interval are located in the

124 11 Threshold Based Indexing

TYPE TSSegment = {start time ts, start value xs, end time te, end value xe};
decompose(time series TS = {(xi, ti) : i = 0..tmax}){

/*initialize start and end point of the time series*/

stack.push(TSSegment(t0,⊥, t0, x0)); //left time series border on stack

TS.append((tmax,⊥)); //append right time series border

for i = 1..tmax do

next seg := TSSegment(ti−1, xi−1, ti, xi);

if (xi+1 < xi), then //segment with positive slope ⇒ open trapezoid

stack.push(next seg);

else if (xi+1 > xi), then //segment with negative slope ⇒ close trapezoids

while (stack.top.xs ≥ next seg.xe) do

stack seg = stack.pop();

compute trapezoid(stack seg,next seg);

end while;

stack seg = stack.pop();

compute trapezoid(stack seg,next seg);

stack seg = cut segment at(next seg.xe);

stack.push(stack seg);

else /*nothing to do*/; //horizontal segment =¿ can be ignored

end if;

end for;

}

TYPE Trapezoid = {bottom start (Time), bottom end (Time), bottom (float), top start

(Time), top end (Time), top (float)};
compute trapezoid(TSSegment seg1, TSSegment seg2){

float τbottom = max(seg1.xs,seg2.xe);

float τtop = min(seg1.xe,seg2.xs);

Time tbottom
s = intersect(seg1,τbottom);

Time tbottom
e = intersect(seg2,τbottom);

Time ttop
s = intersect(seg1,τtop);

Time ttop
e = intersect(seg2,τtop);

output(Trapezoid(tbottom
s ,tbottom

e ,τbottom,ttop
s ,ttop

e ,τtop));

}

Figure 11.6: Linear time series decomposition.

11.4 Parameter Space Indexing 125

lower-right area of this interval representation in the time interval plane.

Consequently, the locations of the segments within the rectangles in the pa-

rameter space are fixed. Therefore, in the parameter space the bounds of the

rectangle which represents a segment suffice to uniquely identify the covered

segment. Let ((xl, yl, zl), (xu, yu, zu)) be the coordinates of a rectangle in the

parameter space. Then the coordinates of the corresponding segment are

((xl, yu, zl), (xu, yl, zu)).

126 11 Threshold Based Indexing

Chapter 12

Threshold Based Query

Processing

In this chapter, we present an efficient algorithm for our two threshold

queries, the threshold-based ε-range query and the threshold-based k-nearest-

neighbor query. Both consist of a query time series Q and a query threshold

τ , as well as the query type specific parameters ε and k (cf. Definition 10.4

and 10.5).

Given the query threshold τ , the first step of the query process is to

extract the threshold-crossing time intervals Sτ,Q from the query time series

Q. This can be done by one single scan through the query object Q. Next,

we have to find those time series objects X from the database which fulfill

the query predicate, i.e. the threshold distance dTS(Sτ,Q, Sτ,X) ≤ ε in case

of the threshold-based ε-range query or the objects belong to the k closest

objects from Q w.r.t. dTS(Sτ,Q, Sτ,X) in case of the threshold-based k-nearest-

neighbor query.

A straightforward approach for the query process would be as follows:

first, we access all parameter space segments of the database objects which

intersect the time-interval plane at threshold τ by means of the R∗-tree in-

dex in order to retrieve the threshold-crossing time intervals of all database

objects. Then, for each database object we compute the τ -similarity to the

127

128 12 Threshold Based Query Processing

query object and evaluate the query predicate in order to build the result

set. We only have to access the relevant parameter space segments instead of

accessing the entire object. But we can process threshold queries in a more

efficient way. In particular, for selective queries we do not need to access all

parameter space segments of all time series objects covering the threshold

amplitude τ . We can achieve a better query performance by using the R∗-

tree index to prune the segments of those objects which cannot satisfy the

query anymore as early as possible.

12.1 Preliminaries

In the following, we assume that each time series object X is represented by

its threshold-crossing time intervals SX = Sτ,X = x1, .., xN which correspond

to a set of points lying on the time-interval plane P within the parameter

space at query threshold τ . Hence, SX denotes a set of two-dimensional

points1. Furthermore, let D denote the set of all time series objects and S
denote the set of all time-interval points on P derived from all threshold-

crossing time intervals Sτ,X of all objects X ∈ D.

For our proposal, we need the two basic set operations on single time

interval data (represented as points on the time-interval plane P), the ε-

range set and the k-nearest-neighbor which are defined as follows:

Definition 12.1 (ε-Range Set).

Let q ∈ P be a time interval, S = {xi : i = 1..N} ⊆ P be a set of N time

intervals and ε ∈ R+
0 be the maximal similarity-distance parameter. Then

the ε-range set of q is defined as follows:

Rε,S(q) = {s ∈ S|dint(s, q) ≤ ε}.

Definition 12.2 (k-Nearest-Neighbor).

Let q ∈ P be a time interval, S = {si : i = 1..N} ⊆ P be a set of N

1For the description of the threshold-crossing time intervals in the native space (set of
time intervals) and in the parameter space (set of points) we use the same notion SX .

12.2 Pruning Strategy for Threshold Queries 129

Table 12.1: Notations and operations on time interval sets.

D Set of all time series objects (database).

P Time-interval plane along the lower-upper dimensions

at query threshold τ .

S Set of all time intervals ∈ Sτ,X ⊆ P of all time series

objects in D.

Rε,S(q) Set of time intervals from S which belongs to the ε-range

set of q (cf. Definition 12.1).

NNS(q) The nearest neighbor of q in S (cf. Definition 12.2).

NNk,S(q) The kth nearest neighbor of q in S (cf. Definition 12.2).

kNNS(q) The k nearest neighbors of q in S (cf. Definition 12.2).

time intervals and k ∈ N+ be the ranking parameter. The k-nearest-neighbor

NNk,S(q) ∈ P (k ≤ N) of q in the set S is defined as follows:

s = NNk,S(q) ∈ S ⇔ ∀s′ ∈ S\{NNl,S(q) : l ≤ k} : dint(q, s) ≤ dint(q, s
′).

The distance dint(q, NNk,S(q)) is called k-nearest-neighbor distance. For k =

1, we simply call NN1,S(q) ≡ NNS(q) ∈ P the nearest-neighbor of q in S.

The set kNNS(q) = {NNl,SX
(q)|l = 1..k} ⊆ P is called k-nearest-neighbors

of q.

In Table 12.1 we summarized the most important parameters required

throughout the following sections.

12.2 Pruning Strategy for Threshold Queries

In this section, we show that we do not need to access all the time intervals in

S in order to compute the threshold queries for any time series object in D.

That means that we can prune some objects without accessing them. The

solution for our pruning strategy is based on the following two observations:

Lemma 12.1.

Let SQ = {q1, .., qMQ
} ⊆ P be the set of points which correspond to the

130 12 Threshold Based Query Processing

query object Q. Then, each database object X ∈ D represented by SX =

{x1, .., xMX
} ⊆ P which has no time interval s ∈ SX in the ε-range of one of

the query time intervals q ∈ SQ cannot belong to the result of the threshold-

based ε-range query TQε−range
ε (Q, τ), formally:

∀s ∈ SX ,∀q ∈ SQ : s /∈ Qε−range
ε (q) ⇒ X /∈ TQε−range

ε (Q, τ).

Proof. Let X ∈ D be the database object which has no time interval s ∈ SX

in the ε-range of one of the query time intervals q ∈ SQ. That means that

∀s ∈ SX ,∀q ∈ SQ : dint(s, q) > ε.

Then the following statement holds:

dTS(SQ, SX) =
1

2
·

 1

|SQ|
·
∑
q∈SQ

min
s∈SX

dint(q, s) +
1

|SX |
·
∑
s∈SX

min
q∈SQ

dint(s, q)



>
1

2
·

 1

|SQ|
·
∑
q∈SQ

ε +
1

|SX |
·
∑
s∈SX

ε

 =
1

2
·
(

1

|SQ|
· |SQ| · ε +

1

|SX |
· |SX | · ε

)
= ε.

2

An example is depicted in Figure 12.1(a) which shows the threshold-

crossing time intervals SQ = {q1, q2, q3} for the query object Q and the

threshold-crossing time intervals SA = {a1, a2, a3}, SB = {b1, b2}, SC =

{c1, c2, c3} and SD = {d1, d2, d3} of the four database objects A, B, C and

D, respectively. Due to Lemma 12.1, object D cannot be in the result set

of TQε−range
ε (Q, τ). The same holds for all the other objects having no time

interval instance within the three ε-range circles.

Similar to the ε-range query, we can also identify pruning candidates for

the k-nearest-neighbor query with the following observation. Here, w.l.o.g.

we assume that the ranking parameter k is set to 1.

Lemma 12.2.

Let SQ = {q1, .., qMQ
} ⊆ P be the set of points which corresponds to the

query object Q. Furthermore, let dprune be the threshold distance dTS(SQ, SX)

12.2 Pruning Strategy for Threshold Queries 131

lower

up
pe

r

q1

q2

q3

a1

a2

a3

b1

b2

c1

c2
c3

d1

d2

d3

(a) threshold based ε-range query

q1

q2

q3

a1

a2

a3

b1

b2

c1

c2
c3

d1

d2

d3

lower

up
pe

r

dprune

dprune

dprune

(b) threshold based k-nearest-neighbor
query

Figure 12.1: Properties of threshold queries w.r.t. object pruning.

between Q and any database object X. Then each database object Y ∈ D
represented by SY = {x1, .., xMX

} ⊆ P which has no time interval s ∈ SY

in the dprune-range of one of the query time intervals q ∈ SQ, cannot belong

to the result of the threshold-based k-nearest-neighbor query TQkNN
1 (Q, τ),

formally:

∀s ∈ SY ,∀q ∈ SQ : s /∈ Qε−range
dprune

(q) ⇒ Y /∈ TQkNN
1 (Q, τ).

Proof. Let Y ∈ D be the database object which has no time interval s ∈ SY

in the dprune-range of one of the query time intervals q ∈ SQ. That means

that

∀s ∈ SY ,∀q ∈ SQ : dint(s, q) > dprune.

Then the following statement holds:

dTS(SQ, SY) =
1

2
·

 1

|SQ|
·
∑
q∈SQ

min
s∈SY

dint(q, s) +
1

|SY |
·
∑
s∈SY

min
q∈SQ

dint(s, q)


>

1

2
·

 1

|SQ|
·
∑
q∈SQ

dprune +
1

|SY |
·
∑
s∈SX

dprune



132 12 Threshold Based Query Processing

=
1

2
·
(

1

|SQ|
· |SQ| · dprune +

1

|SY |
· |SY | · dprune

)
= dprune = dTS(SQ, SX).

According to Definition 10.5, Y cannot be in the result set TQkNN
1 (Q, τ).

2

Let us illustrate Lemma 12.2 by means of our example depicted in Figure

12.1(b). Let dprune be the threshold distance dTS(SQ, SX) between Q and

X. Then object B cannot be a result of TQkNN
1 (Q, τ), because all distances

dint(q, b) between any time interval q of SQ and any time interval b of SB

exceeds dprune, and thus, the overall threshold distance dTS(SQ, SB) must be

greater than dprune = dTS(SQ, SX). The same holds for object D. All the

other objects have no time interval instance within the three dprune-range

circles.

Based on the two lemmas above, we can develop efficient threshold queries

using the R∗-tree for the efficient organization of the threshold-crossing time

intervals in the parameter space. The proposed algorithms for our two thresh-

old queries aim at keeping the cost required for the expensive set-valued dis-

tance computation as low as possible. For this reason, both algorithms follow

the multi-step query paradigm. They first try to reduce conservatively the

result-set candidates by a cheap filter step and afterwards retrieve the exact

result by performing the expensive refinement step on the reduced candidate

set.

12.3 Threshold-Based ε-Range Query Algo-

rithm

The algorithm for the threshold-based ε-range query is depicted in Figure

12.2. We assume that the threshold-crossing time intervals of the query

object Q are already available. The algorithm follows the filter-refinement

paradigm: in a filter step, we efficiently retrieve the ε-range set Rε,S(q) for

each time interval q ∈ SQ by means of the R∗-tree and determine the cor-

responding time series candidate set. Afterwards, in the refinement step we

12.4 Filter Distance for the Threshold Similarity 133

ALGORITHM TQε−range(SQ, ε,D,S)
BEGIN

result set := ∅;
candidate set := ∅;
FOR EACH q ∈ SQ DO

candidate set := candidate set ∪{X ∈ D|SX ∩Rε,S(q) 6= ∅}; // filter step

END FOR;

FOR EACH X ∈ candidate set DO

IF dTS(SQ, SX) ≤ ε THEN // refinement step

result set := result set ∪X;

END IF;

END FOR;

report result set;

END

Figure 12.2: Threshold-based ε-range query algorithm.

refine each candidate X by computing the threshold distance to Q and put

them into the result set if dTS(SQ, SX) ≤ ε.

12.4 Filter Distance for the Threshold

Similarity

Before we start with the algorithm for the threshold-based k-nearest-neighbor

query, we have to develop a suitable filter distance for our pruning strategy

in order to reduce the expensive refinements as much as possible. The perfor-

mance of our algorithm mainly depends on the quality of our filter. Primarily,

the filter step should be at least faster than the refinement step. Furthermore,

for our purpose the filter should:

• retrieve the most promising threshold-based k-nearest-neighbor first.

• be conservative but as accurate as possible w.r.t. the threshold simi-

larity distance.

134 12 Threshold Based Query Processing

Both properties aim at pruning many false candidates very early. The

first one enables an early detection of a suitable pruning distance dprune

which should be as low as possible, while the second property avoids false

dismissals and aims at detecting the true drops as early as possible. Since

the filter should be conservative, we require a lower bound criterion for the

threshold distance.

12.4.1 Lower Bounding Threshold Distance

Now, we introduce a lower bound criterion for the threshold distance dTS on

the basis of partial distance computations between the query object and the

database objects. This lower bound criterion enables the detection of false

candidates (true drops) very early, i.e. only partial information of the false

candidates suffices to prune the corresponding object from the candidate list.

The amount of information which is necessary to prune an object depends

on the locations of the query object and the candidate objects.

In the following, we assume that SQ ⊆ P is the threshold-crossing time

intervals corresponding to the query object and SX ⊆ P corresponding to

any object X from the database. Furthermore, we need the following two

distance functions

D1(SQ, SX) =
∑
q∈SQ

dint(q, NNSX
(q))

and

D2(SQ, SX) =
∑
x∈SX

dint(x, NNSQ
(x)).

D1(SQ, SX) and D2(SQ, SX) are the parts of the threshold distance which

can be written now as follows:

dTS(SQ, SX) =
1

2
·
(

1

|SQ|
·D1(SQ, SX) +

1

|SX |
·D2(SQ, SX)

)
.

We use two auxiliary functions κk(qi) and κ̄k(SQ) which help us to divide

our database objects into two sets. κk(qi) ⊆ D denotes the set of all objects X

12.4 Filter Distance for the Threshold Similarity 135

which has at least one entity x ∈ SX within the set kNNX(qi). Furthermore,

κ̄k(SQ) ⊆ D denotes the set of all objects which are not in any set κk(qi), i.e.

κ̄k(SQ) = D\(
⋃

q∈SQ
κk(q)).

Lemma 12.3.

For any object X ∈ κ̄k(SQ) the following inequality holds :

D1(SQ, SX) ≥
∑
q∈SQ

dint(q, NNk,S(q)).

Proof. According to Definition 12.2 the following statement holds:

∀q ∈ SQ : dint(q, NNk,S(q)) ≤ dint(q, NNSX
(q)).

Therefore,∑
q∈SQ

dint(q, NNk,S(q)) ≤
∑
q∈SQ

dint(q, NNX(q)) = D1(SQ, SX).

2

The following lemma is a generalization of Lemma 12.3 and defines a

lower bound of D1(SQ, SX) for all database objects X ∈ D for any k ∈ N+.

Lemma 12.4.

Let X ∈ D be any database object and let Q be the query object. The distance

D1(SQ, SX) can be estimated by the following formula:

dmin
1 (SQ, SX) =

∑
q∈SQ

{
dint(q, NNX(q)), if X ∈ κk(q)

dint(q, NNk,S(q)), else

}
≤ D1(SQ, SX).

Proof. Let X ∈ D be any database object and Q be the query object.

According to Definition 12.2 the following holds:

∀q ∈ SQ : X /∈ κk(q) ⇒ dint(q, NNk,S(q)) ≤ dint(q, NNX(q)).

Consequently, dmin
1 (Q,X) ≤

∑
q∈SQ

dint(q, NNX(q)) = D1(SQ, SX). 2

Furthermore, we can also lower bound the distance D2(SQ, SX) as follows:

136 12 Threshold Based Query Processing

Lemma 12.5.

Let X ∈ D be any database object and let Q be the query object. The distance

D2(SQ, SX) can be estimated by the following formula:

dmin
2 (SQ, SX) =

min
q∈SQ

{
dint(q, NNX(q)), if dint(q, NNX(q)) < dint(q, NNk,S(q))

dint(q, NNk,S(q)), else

}

≤ 1

|SX |
·D2(SQ, SX).

Proof. Let X ∈ D be any database object and Q be the query object.

Generally, the following statement holds:

min
q∈SQ

(dint(q, NNSX
(q))) = min

s∈SX

(dint(s, NNSQ
(s))) ≤ 1

|SX |
·D2(SQ, SX).

If ∀q ∈ SQ : NNX(q) ≥ minq∈SQ
(NNk,S(q)), then all time intervals s ∈ SX

must have at least the distance to any q ∈ SQ which is greater or equal to the

smallest k-nearest-neighbor distance of any q ∈ SQ, i.e.

∀s ∈ SX ,∀q ∈ SQ : dint(q, s) ≥ NNk,S(q) ≥ min
q∈SQ

dint(q, NNk,S(q)).

With the equation above and Definition 12.2 the following statement holds:

∀s ∈ SX : dint(s, NNSQ
(s)) ≥ min

q∈SQ

dint(q, NNk,S(q))

which obviously holds also for the average nearest-neighbor distance of all

s ∈ SX , i.e.

1

SX

·
∑
s∈SX

dint(s, NNSQ
(s)) =

1

SX

·D2(SQ, SX) ≥ min
q∈SQ

dint(q, NNk,S(q)).

2

12.4.2 Pruning Based on Lower Bounding Distance

In this section, we show which objects can be pruned, based on the informa-

tion retrieved so far, i.e. without accessing the complete object information.

12.4 Filter Distance for the Threshold Similarity 137

Let us assume that the object Q ∈ D is the query object, X ∈ D is any

object which has been already refined, i.e. dTS(Q,X) is known and Y ∈ D
is another object which is not refined, yet. Then we can prune Y for the

threshold query TQk−NN
1 (Q, τ) iff

dTS(SQ, SY) > dTS(SQ, SX)

⇔ 1

|SQ|
D1(SQ, SY) +

1

|SY |
D2(SQ, SY) > 2 · dTS(SQ, SX)

⇔ D1(SQ, SY) +
|SQ|
|SY |

·D2(SQ, SY) > 2 · |SQ| · dTS(SQ, SX).

If we now apply Lemma 12.4 and 12.5, we can prune Y iff

dmin
1 (SQ, SY) + |SQ| · dmin

2 (SQ, SY) > 2 · |SQ| · dTS(SQ, SX).

In the following, we let dprune = 2 · |SQ| ·dTS(SQ, SX) be our pruning distance.

From the computational point of view, we should distinguish the objects

in κ̄k(SQ) from the other objects. Now we can infer the two statements below

which directly follows from Lemma 12.4 and 12.5:

Lemma 12.6.

All objects Y which are in the set κ̄k(SQ), i.e. Y ∈ κ̄k(SQ), can be pruned iff∑
q∈SQ

dint(q, NNk,S(q)) + |SQ| · min
q∈SQ

dint(q, NNk,S(q)) > dprune.

Lemma 12.7.

All objects Y which are not in the set κ̄k(SQ), i.e. Y /∈ κ̄k(SQ), can be pruned

iff

dmin
1 (SQ, SY) + |SQ| · min

q∈SQ

(min(dint(q, NNk,S(q)), dint(q, NNY (q))) > dprune.

Our query procedure is based on an iterative ranking query for each query

time interval q ∈ SQ ⊆ P, i.e. we iteratively compute the k-nearest-neighbors

NNk,S(q) ⊆ P for all q ∈ SQ with increasing k ∈ N+. After each iteration,

we determine the lower bound distances for all objects. Note that we only

need to materialize the partial distance information for those objects which

138 12 Threshold Based Query Processing

are not in κ̄k(SQ), i.e. for which we have retrieved at least one time interval

so far. These objects are organized in a list which will be possibly expanded

in each iteration. We call this list object list. Now, we can compute the lower

bounding distance for all objects in the object list and prune them according

to Lemma 12.7. The lower bounding distance estimation for all other objects

can be computed with global parameters, in particular dint(q, NNk,S(q) (cf.

Lemma 12.6). As soon as we have found a pruning distance dprune for which

Lemma 12.6 holds, we do not need to expand the object list anymore.

At the moment, we have found the nearest neighbor of each q ∈ SQ w.r.t.

any database object X, i.e. ∀q ∈ SQ : SX ∈ κk(q), the lower bound distance

dmin
1 (SQ, SX) is equal to D1(SQ, SX). Then, both lower bound distances dmin

1

and dmin
2 cannot be improved by further query iterations. For this reason, we

refine the distance dTS(SQ, SX) by accessing the complete threshold-crossing

time intervals SX in order to exactly compute the distance D2(SQ, SX). The

resulting distance dTS(SQ, SX) is then used as new pruning distance dprune

for the remaining query process unless dTS(SQ, SX) is lower than the old

pruning distance.

Let X be the object with the lowest exact distance to Q, i.e. dprune =

2 · |SQ| · dTS(SQ, SX). The pruning distance may be updated as soon as an

object SY which has next to be refined is found. In doing so, we have to

consider two cases:

case 1: 2·|SQ|·dTS(SQ, SY) ≥ dprune → remove object SY from the candidate

set,

case 2: 2 · |SQ| · dTS(SQ, SY) < dprune → set dprune := 2 · |SQ| · dTS(SQ, SY)

and remove object SX from the candidate set.

After each query iteration, we have to prune all objects Y ∈ D\{X}
from the object list according to Lemma 12.7. The pruned objects can be

omitted from the remaining search steps. The search proceeds by continuing

the computation of the next ranking iteration NNk+1,S .

The search algorithm terminates as soon as all object candidates, except

12.5 Threshold-Based Nearest-Neighbor Query Algorithm 139

for the most similar one (in case of the threshold-based 1st-nearest-neighbor

query), have been pruned from the object list.

A demonstrative example for the pruning process is included in the next

section which presents the threshold-based nearest-neighbor query algorithm.

12.5 Threshold-Based Nearest-Neighbor Query

Algorithm

The query algorithm of the TQk−NN
1 query is depicted in Figure 12.5. It iter-

atively computes for a given query object SQ the database object X, having

the smallest threshold distance dTS(SQ, SX). In each iteration (repeat-loop),

we retrieve the next ranked time interval s ∈ S (k-nearest-neighbor) for each

q ∈ SQ by calling the function fetch-next() and store it with its distance to

q in the array act kNN. This can be efficiently done by applying the near-

est neighbor ranking method as proposed in [HS95]. We maintain for each

q ∈ SQ a priority queue, each storing the accessed R∗-tree nodes in ascending

order of their distances to the corresponding query point q. Note that the

R∗-tree indexes the three-dimensional segments in the parameter space, but

we are only interested in distances along the time-interval plane at threshold

τ . For this reason, we simply ignore the threshold-dimension for the distance

computations and consider only those R∗-tree nodes intersecting the time-

interval plane at threshold τ . Obviously, the ranking function only considers

those objects which were not already pruned from the object list and which

cannot be pruned according to Lemma 12.6.

Furthermore, we update the object list object distList which keeps for

each object X accessed so far an array which stores for each q ∈ SQ the

nearest-neighbor distance NNX(q) in case this information is already avail-

able. For this reason, we search for each time interval s retrieved by NNk,S(q)

the corresponding object in the object list object distList and store the dis-

tance dint(s, q), iff, w.r.t. q and X there is no distance available from earlier

iterations. As soon as we retrieved for an object X all NNX(q)-distances

140 12 Threshold Based Query Processing

q1

q2

q3

a1

a2

a3

b3

c1

c2

d1

d2

lower

up
pe

r

e1

f1

b1

b2

(a) Time interval instances on
the time-interval plane P

q1 q2 q3

NN1,S(qi)
NN2,S(qi)
NN3,S(qi)

a3 f1 b3

c2 b1 d2

b1 b2 e1

iterative
computation
of NNk,S(qi)

(b) Table of nearest-neighbor query
iterations

Figure 12.3: Example of the threshold-based nearest-neighbor query.

for all q ∈ SQ, we refine this object by accessing the full object information

and computing the threshold distance dTS(SQ, SX). After the refinement, we

update the pruning distance dprune and remove X from the object list. By

means of the new pruning distance, we decide whether the previous result has

to keep, and then prune X. If X is closer than the previous result according

to the threshold distance, we replace the previous result with X.

Next, we compute the lower-bounding distance lb dist for each object in

the object list and prune those objects for which lb dist≥ dprune holds.

As long as the object list is not empty, we repeat this procedure in the

next iterations. Finally, we get the (1st-)nearest-neighbor of Q, based on our

threshold-based similarity measure.

In order to enable the computation of threshold-based k-nearest-neighbor

queries, we have to modify our algorithm marginally. First, we have to keep

the k closest objects w.r.t. the threshold distance during the query process.

Instead of pruning the objects according to the distance of the currently clos-

est object, we have to take the k closest object into account. Except these

little modifications, the algorithm for threshold-based k-nearest-neighbor

queries hardly differs from our threshold-based nearest-neighbor-query al-

gorithm.

12.5 Threshold-Based Nearest-Neighbor Query Algorithm 141

A

NN1,S(qi)
dint(q1,a3)

-
-

-
-

dint(q3,b3)

-

-
dint(q2,f1)

-
dint(q2,b1)
dint(q3,b3)

dint(q1,c2)

-
-

dint(q3,d2)
dint(q2,f1)

dint(q1,b1)
dint(q2,b2)
dint(q3,b3)

dint(q1,c2)
-

-
-

dint(q3,d2)

-
-

dint(q3,e1)

-
dint(q2,f1)

B F

C D

E
NN2,S(qi)

NN3,S(qi)

af
te

rt
he

co
m

pu
ta

tio
n

of

entries are complete refine B and update pruning
distance dprune = 2 |SQ| dint(SQ,SB) = 6 dint(SQ,SB)

object list

dint(q1,a3)
-
-

-

-

-
-

dint(q1,a3)
-
-

(a) Object list

A

NN1,S(qi)

B C D E F

NN2,S(qi)

NN3,S(qi)af
te

rt
he

co
m

pu
ta

tio
n

of

lower bounding distances: d1
min(SQ,SX) + |SQ| d2

min(SQ,SX)
min(NNk,S(q)

QSq

dint(q2,f1)

dint(q2,b1)

dint(q2,b2)

dint(q1,a3)
+ dint(q2,f1)
+ dint(q3,b3)
+3 dint(q2,f1)

dint(q1,a3)
+ dint(q2,b1)
+ dint(q3,d2)
+3 dint(q2,b1)

dint(q1,c2)
+ dint(q2,b1)
+ dint(q3,b3)
+3 dint(q2,b1)

dint(q1,c2)
+ dint(q2,f1)
+ dint(q3,d2)
+3 dint(q2,f1)

dint(q1,c2)
+ dint(q2,b1)
+ dint(q3,d2)
+3 dint(q2,b1)

dint(q1,a3)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q1,a3)

dint(q1,b1)
+ dint(q2,b1)
+ dint(q3,b3)
+3 dint(q2,b1)

dint(q1,c2)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q1,c2)

dint(q1,b1)
+ dint(q2,b2)
+ dint(q3,d2)
+3 dint(q2,b2)

dint(q1,b1)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q2,b2)

dint(q1,b1)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q2,f1)

(b) Lower-bounding distance computation

Figure 12.4: Step-wise lower-bounding distance computation of the

threshold-based nearest-neighbor query example.

We now step through our algorithm with the query example depicted in

Figure 12.3. In our example, the query consists of three time-interval plane

points SQ = {q1, q2, q3}. Figure 12.3(a) shows the time-interval plane P with

the three query time-interval points of SQ and several time-interval points

of six database objects SA = {a1, a2, a3}, SB = {b1, b2, b3}, SC = {c1, c2},
SD = {d1, d2}, SE = {e1} and SF = {f1}. The table depicted in Figure

12.3(b) shows the results of the first three query iterations of the incremental

k-nearest-neighbor queries NN1,S(qi), NN2,S(qi) and NN3,S(qi). The state

of the corresponding object list object distList after each iteration is shown

142 12 Threshold Based Query Processing

in Figure 12.4(a). Figure 12.4(b) depicts the lower bounding distances for

each object after each query iteration.

The first iteration retrieves the points a3, f1 and b3 of the objects A, F ,

and B, respectively. As a result, we add the objects A, B, and F to the

object list and compute their lower bounding distances dmin
1 (SQ, SX) + |SQ| ·

dmin
2 (SQ, SX) according to Lemma 12.7. In this case, all database objects

have equal lower bounding distances as depicted in Figure 12.4(b). As the

pruning distance dprune is actually set to ∞, no object can be pruned.

In the next iteration, we retrieve c1, b1 and d2, update the object list and

recompute the lower bounding distances in order to check if something can

be pruned.

Next, we retrieve b1, b2 and e1. After updating the object list, we detect

that its entries are complete for object B, i.e. we have found for each query

time-interval the corresponding nearest neighbor w.r.t. object B. Conse-

quently, we refine object B by accessing its complete set SB and compute

the exact threshold distance dTS(SQ, SB) in order to update the pruning dis-

tance dprune. Afterwards, we remove object B from the object list and try to

prune the other objects according to their lower bounding distances following

Lemma 12.7 and 12.6.

The runtime complexity of our threshold query algorithm is O(nq · nk ·
log np), where nq denotes the size of the threshold-crossing time interval se-

quence SQ, nk denotes the number of query iterations required to determine

the query result, and np denotes the overall number of segments in the pa-

rameter space. In the experiments (cf. Section 13.3) we demonstrate that in

average nq is very small in comparison to the length of the time sequences.

Furthermore, we show that the number of required nearest-neighbor query

iterations nk is small, i.e. the query process terminates early. The number

np of segments in the parameter space is quite similar to the sum ns of length

of all time sequences in the database. We observed in our experiments that

in fact np is slightly smaller than ns.

12.5 Threshold-Based Nearest-Neighbor Query Algorithm 143

TYPE Q ARRAY[N] := ARRAY[N] of DOUBLE;

ALGORITHM TQk−NN
1 (SQ, D, S)

BEGIN

act kNN : ARRAY[|SQ|] of (OID,DIST); /*current ranking status*/

object distList : LIST of (OID,DIST : Q ARRAY[|SQ|]); /*object list

result := null; with lb-distances*/

dprune := +∞
k := 0;

REPEAT

k := k + 1;

act kNN = fetch-next(SQ,S,dprune);

FOR i = 1..|SQ| DO

s := act kNN[i].DIST;

IF (s.oid not exists in object distList) THEN

object distList.add(s.oid);

END IF;

IF (object distList[s.oid].DIST[i] is empty) THEN

object distList[s.oid].DIST[i] := act kNN[i].DIST;

END IF;

END FOR;

FOR EACH obj ∈ object distList DO /*refinement step*/

IF (obj.DIST.complete() = true) THEN

d′prune = 2 · |SQ| · dTS(SQ, o);
IF (d′prune < dprune) THEN

result := obj.OID;

dprune := d′prune;

END IF;

delete obj from object distList and prune it for further consideration;

END IF;

END FOR;

FOR EACH obj ∈ object distList DO

lb dist := dmin
1 (SQ, SY) + |SQ| · dmin

2 (SQ, SY);
IF (lb dist ≥ dprune) THEN

delete obj from object distList and prune it for further consideration;

END IF;

END FOR;

UNTIL (object distList = empty);

report result;

END

Figure 12.5: Threshold-based nearest-neighbor query algorithm.

144 12 Threshold Based Query Processing

Chapter 13

Experimental Evaluation

In this chapter, we present the results of experiments performed on a broad

selection of different real-world and artificial time series datasets.

First, we demonstrate in Section 13.3 that threshold queries can be ef-

ficiently performed by using our proposed time series decomposition and

query concept. In particular, we evaluated our time series decomposition ap-

proach (cf. Chapter 11) and our query processing strategy (cf. Chapter 12)

by measuring the selectivity, execution time and pruning power of similarity

queries. Furthermore, we experimentally show in Section 13.4 that our novel

threshold-based similarity measure can be very valuable for mining tasks like

the classification of time series. We demonstrate that our approach achieves

a high classification accuracy on a wide range of different time series datasets

which are well established in the time series mining community. However,

our approach can be processed significantly faster than the DTW [BC94]

approach. For some datasets our approach even outperforms dynamic time

warping with respect to classification accuracy.

13.1 System Environment

All experiments were performed on a workstation featuring a 1.8 GHz Opteron

CPU and 8 GB RAM. We used a disk with a transfer rate of 100 MB/sec, a

145

146 13 Experimental Evaluation

Table 13.1: Summary of the Temporal Test Datasets.

Dataset # time series length # classes

AUDIO 7 · 105 300 -

SCIEN ENV - 48 -

SCIEN GEX 6 · 103 24 -

GunX 200 150 2

Trace 200 275 4

CBF 150 127 3

SynCtrl 600 6000 6

seek time of 3 ms and a latency delay of 2 ms. Furthermore, we set the disk

block size to 8 KB. Performance is presented in terms of the elapsed time

including I/O time and CPU time.

13.2 Datasets

We used several real-world and synthetic datasets in our evaluation, one

audio dataset (AUDIO), two scientific datasets (SCIENTIFIC) and a set of

well-established test datasets often used as a benchmark (STANDARD). We

applied our approach to both scientific datasets and on the four standard

datasets in order to show the effectiveness of threshold queries. A short

summary of the characteristics of all datasets is given in Table 13.1.

13.3 Performance Results

We compared the efficiency of our proposed approach, in the following de-

noted by ‘RPar’, for answering threshold queries, using one of the following

techniques.

The first competing approach, denoted by ‘SeqNat’, works on the native

time series data. It corresponds to a sequential processing of the native data.

13.3 Performance Results 147

The threshold-crossing time intervals of each time series was computed at

query time.

The second competitor, denoted by ’SeqPar’, works on the parameter

space rather than on the native data. It assumes that all time series objects

are already transformed into the parameter space, but without using any

index structure. At query time, this method requires a sequential scan over

all segments of the parameter space.

We further compare the performance of our approach to traditional sim-

ilarity search approaches based on the following dimension reduction meth-

ods: Chebyshev Polynomials (Cheb) [CN04], Discrete Fourier Transformation

(DFT) [AFS93] and Fast Map (FM) [FL95]. In particular, we implemented

the algorithm proposed by Seidl and Kriegel in [SHP98] which adapts the

GEMINI framework (cf. Section 2.3) for k-nearest-neighbor search. Since

the applied dimensionality reduction techniques approximate the Euclidean

space, they can only be used to accelerate similarity queries based on the

Euclidean distance. They cannot be applied to threshold-based similarity

search applications.

To obtain more reliable and significant results, in the following experi-

ments we used 5 randomly chosen query objects. Furthermore, these query

objects were used in conjunction with 5 different thresholds, so that we ob-

tained 25 different threshold-based nearest-neighbor queries. The presented

results are the average results of these queries.

First, we performed threshold queries against database instances of dif-

ferent sizes to measure the influence of the database size to the overall query

time. The elements of the databases are time series of fixed length l = 50.

Figure 13.1 exhibits the performance results for each database. In Figure

13.1(a) it is shown that the performance of both approaches SeqNat and

SeqPar significantly decreases with increasing database size, whereas our ap-

proach RPar scales very well, even for large databases. Furthermore, our

approach shows similar scalability behavior than the three dimensionality

reduction approaches Cheb, DFT and FM as depicted in Figure 13.1(b).

Yet, our approach even outperforms them by a factor of 4 to 5.

148 13 Experimental Evaluation

0

10

20

30

40

50

60

70

80

90

100000 200000 300000 400000 500000 600000 700000

R-Par
Seq-Par
Seq-Nat

E
la

ps
ed

 ti
m

e
[s

ec
]

Number of Objects in the Database

(a)

0

1

2

3

4

5

6

7

8

9

100000 200000 300000 400000 500000 600000

Cheb
DFT
FM
R-Par

Number of Objects in the Database

E
la

ps
ed

 ti
m

e
[s

ec
]

(b)

Figure 13.1: Scalability of the threshold-query algorithm against database

size.

Second, we explored the impact of the length of the query object and the

time series in the database. The results are shown in Figure 13.2. Again, our

technique outperforms the competing approaches SeqNat and SeqPar whose

cost increase very quickly due to the expensive distance computations (cf.

Figure 13.2(a)). In contrast, our approach, like DFT and FM, scales well

for larger time series objects. For small time series it even outperforms

by far the three dimensionality reduction approaches as shown in Figure

13.2(b). If the length of the time series objects exceeds 200, then both

approaches DFT and FM scale better than our approach. In contrast, Cheb

scales relatively bad for larger time series. The reason is that the number

of required Chebyshev coefficients has to be increased with the time series

13.3 Performance Results 149

0

50

100

150

200

250

50 100 150 200 250 300

R-Par
Seq-Par
Seq-Nat

E
la

ps
ed

 ti
m

e
[s

ec
]

Length of Time Series in Database

(a)

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300

Cheb
DFT
FM
R-Par

Length of Time Series in Database

E
la

ps
ed

 ti
m

e
[s

ec
]

(b)

Figure 13.2: Scalability of the threshold-query algorithm against time series

length.

length for constant approximation quality. Obviously, the cardinality of our

time series representations increases linear with the time series length.

In the next experiment, we demonstrate the speed-up of the query pro-

cess caused by our pruning strategy. We measured the number of result

candidates considered in the filter step of our query algorithm, denoted by

’Filter ’, and the number of objects which has to be refined finally, denoted

by ’Refinement ’. We will again compare our approach to the three dimen-

sionality reduction methods Cheb, DFT and FM. Figure 13.3(a) and Figure

13.3(b) show the results relatively to the database size and length of the

time series objects. Generally, only a very small portion of the candidates

has to be refined to report the result. Similar to the dimension reduction

150 13 Experimental Evaluation

0,0001

0,001

0,01

0,1

1

100000 200000 300000 400000 500000 600000

Cheb
DFT
FM
Filter
Refinement

R
el

at
iv

e
nu

m
be

r o
f o

bj
ec

ts
 [%

]

Number of Objects in the Database

(a) Pruning power for varying database size.

0,001

0,01

0,1

1

10

50 100 150 200 250 300

Cheb
DFT
FM
Filter
Refinement

Length of Time Series in Database

R
el

at
iv

e
nu

m
be

r o
f o

bj
ec

ts
 [%

]

(b) Pruning power for varying time series length.

Figure 13.3: Pruning Power of the threshold-based nearest-neighbor algo-

rithm.

methods, our approach scales well for large databases. For small time series,

our approach has a lightly better pruning power than Cheb and FM. We can

observe that the pruning power of our approach decreases with increasing

time series length. An interesting point is that the number of candidates to

be accessed in the filter step increases faster for larger time series than the

number of finally refined candidates. Yet, for the AUDIO dataset the DFT

method shows the best results w.r.t. the pruning power.

Furthermore, we examined the number of nearest-neighbor search itera-

tions of the query process for varying length of the time series and varying

size of the database. We observed that the number of iterations was between

5 and 62. The number of iterations increases linear to the length of the time

series and remains nearly constant w.r.t. the database size. Nevertheless,

13.4 Evaluation of the Threshold Based Similarity Measure 151
C o mpariso n with tradit io nal distance measures

0

0,2

0,4

0,6

0,8

1

1,2

Euclid. Dist .
DTW
DDTW
Thresh. Dist . (Eucl.)

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Trace SynCtrl GunX CBF

Figure 13.4: Comparison to Traditional Distance Measures.

only a few iterations are required to report the result.

The bottom line is that, with respect to query performance, our approach

obviously outperforms by far both competing approaches SeqNat and SeqPar.

However, it is comparable to the three Euclidean distance-based dimension-

ality reduction methods Cheb, DFT and FM. For small to medium large

time series, our approach slightly outperforms the three dimensionality re-

duction methods. In the next experiments, we demonstrate that, for some

applications, our approach is also more effective for data mining tasks than

Euclidean distance-based similarity measures.

13.4 Evaluation of the Threshold Based

Similarity Measure

In this section, we experimentally evaluate the effectiveness of threshold

queries. In particular, we prove the suitability of our similarity model against

other approaches by using threshold queries for classification tasks performed

on well established test datasets. The quality of our similarity model is ex-

pressed by the classification accuracy using a k-nearest-neighbor classifier (k

= 5) with 10-fold cross validation. In order to achieve a large variety of

different data characteristics in our test bed, we apply the STANDARD test

datasets for the following experiments.

152 13 Experimental Evaluation
C omp arison o f t hresho ld based Lp - N orms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Thresh. Dist . (Eucl.)
Thresh. Dist . (M an.)
Thresh. Dist . (M ax.)

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Trace SynCtrl GunX CBF

Figure 13.5: Comparison of Different Interval Similarity Distances.

13.4.1 Comparison to Traditional Distance Measures

In the first experiment (cf. Figure 13.4), we compare our approach to compet-

ing similarity measures traditionally used for time series data, the Euclidean

distance (Euclid. Dist.), Dynamic Time Warping (DTW) and Derivative

Dynamic Time Warping (DDTW) [KP01]. Our approach achieves a good

classification quality for all four datasets. For the dataset Trace the Eu-

clidean distance achieves only an accuracy of about 45% while our approach

achieves about 86%. With the GunX dataset our approach even outperforms

the DTW distance measure.

13.4.2 Comparison of Different Similarity Distances

for Time Intervals

First, we examine different Lp-norms (p = 1, 2,∞) applied to the interval-

similarity distance measure dint. Figure 13.5 depicts the results of the clas-

sification accuracy achieved, respectively. All three Lp-norms show similar

behavior w.r.t. the classification accuracy.

13.4 Evaluation of the Threshold Based Similarity Measure 153
C omparison o f d if f erent set d ist ances

0

0,2

0,4

0,6

0,8

1

1,2

Euclid. Dist .
Thresh. Dist . (Eucl.)
Thresh. (Kernel)

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Trace SynCtrl GunX CBF

Figure 13.6: Comparison of Different Set Similarity Distances.

13.4.3 Comparison of Different Similarity Distances

for Sets of Time Intervals

In the next experiment, we evaluate the effectiveness of the Sum of Mini-

mum Distance (SMD) for measuring the threshold similarity between two

time series. For comparison, we used the set kernel function as proposed in

[GFKS02]:

dset−kernel(SX , SY) :=

∑
x∈SX ,y∈SY

e
−dint(x,y)2

σ

|SX | · |SY |
,

where σ is a parameter which can be used to adjust the sensitivity of the

similarity. For low σ values, large interval distances have only little influence

on the similarity. Figure 13.6 shows the results of the achieved classification

accuracy for all four datasets. Additionally, we again depict the results of

the simple Euclidean distance (Euclid. Dist.). The set-kernel distance mea-

sure (Thresh. (kernel)) falls by far below our proposed SMD-based distance

measure (Thresh. Dist. (Eucl.)) for all four datasets. The problem of the

set-kernel distance measure is that one time interval of one time series is

matched to all time intervals of the other time series.

13.4.4 Results on Scientific Datasets

Now we evaluate the results on the air pollution dataset SCIEN ENV. We

performed 10-nearest neighbor threshold queries with randomly chosen query

objects. Interestingly, when we choose time series as query objects that were

154 13 Experimental Evaluation

derived from rural sensor stations representing particulate matter parame-

ters (PM10), we obtained only time series representing the same parameters

that were also measured at rural stations. This confirms that the pollution

by particle components in the cities in fact differs considerably from the pol-

lution in rural regions. A second interesting result was produced when we

used PM10 time series of working days as queries. The resulting time series

were also derived from working days representing PM10 values.

The results on the gene expression dataset were also very interesting.

Our task was to find the most similar gene with τ = 0 to a given query

gene. The idea behind this task is to find a gene that is functionally related

to the query gene. We posed several randomized queries to this dataset

with τ = 0 and evaluated the results w.r.t. biological significance, using the

SGD database1. Indeed, we retrieved functionally related genes for most of

the query genes. For example, for query gene CDC25 we obtained the gene

CIK3. Both genes play an important role during the mitotic cell cycle. For

the query gene DOM34 and MRPL17 we obtained two genes that are not yet

labeled (ORF-names: YOR182C and YGR220C, respectively). However, all

four genes participate in the protein biosynthesis. In particular, threshold

queries can be used to predict the function of genes whose biological role is

not resolved yet.

To summarize, the results on the real-world datasets suggest the practical

relevance of threshold queries for important real-world applications.

1http://www.yeastgenome.org/

http://www.yeastgenome.org/

Part IV

Analysis using Reverse Nearest

Neighbor Queries

155

Chapter 14

Introduction

Although the reverse k-nearest neighbor problem is the complement of the

k-nearest neighbor problem, the relationship between kNN and RkNN is not

symmetric and the number of the reverse k-nearest neighbors of a query

object is not known in advance. A naive solution of the RkNN problem

requires O(n2) time, as the k-nearest neighbors of all of the n objects in the

dataset have to be found. Thus, more efficient algorithms are required.

As we discussed in Section 2.4, the well-known methods for reverse k-

nearest neighbor search can be categorized into two classes, the hypersphere-

approaches and the Voronoi-approaches. All these approaches are only de-

signed for Euclidean vector data but cannot be applied to general metric

objects. Hypersphere-approaches such as [YL01] extend a multidimensional

index structure to store each object along with its nearest neighbor distance

and, thus, actually store hyperspheres rather than points. In contrast, the

Voronoi-approaches such as [TPL04] store the objects in conventional multi-

dimensional index structures without any extension and compute a Voronoi

cell during query processing. In principle, the possible performance gain of

the search operation is much higher in the hypersphere approaches while

only Voronoi-approaches can be extended to the reverse k-nearest neighbor

problem with an arbitrary k > 1 in a straightforward way. However, this ap-

proach is not extendable to general metric spaces since it relies on explicitly

computing Voronoi hyperplanes which are complex to compute in arbitrary

157

158 14 Introduction

metric spaces.

In this part, we propose an efficient solution based on the hypersphere

approach for the RkNN problem with an arbitrary k not exceeding a given

threshold parameter kmax for general metric objects. The idea is not to store

the true nearest neighbor distances for each k of every object separately but

rather to use suitable approximations of the set of nearest neighbor distances.

This way, we approximate both, the kNN distances of a single object stored

in the database as well as the k-nearest neighbor distances of the set of all

objects stored in a given subtree of our metric index structure. To ensure

the completeness of our result set (i.e. to guarantee no false dismissals)

we need a conservative approximation which never under-estimates any k-

nearest neighbor distance but also approximates the true k-nearest neighbor

distances of a single object or a set of objects with minimal approximation

error (in a least squares sense). To reduce the number of candidates that

need to be refined, we additionally store a progressive approximation of the

kNN distances which is always lower or equal to the real kNN distances.

Thus, only objects that have a kNN distance to a given query object which

is between the lower bound (progressive approximation) and the upper bound

(conservative approximation) need to be refined. We demonstrate in Chapter

15 that the k-nearest neighbor distances follow a power law which can be

exploited to efficiently determine such approximations. Our solution requires

a negligible storage overhead of only two additional floating point values

per approximated object. The resulting index structure called MRkNNCoP

(Metric reverse kNN with conservative and progressive approximations)-Tree

can be based on any hierarchically organized, tree-like index structure for

metric spaces. In addition, it can also be used for Euclidean data by using a

hierarchically organized, tree-like index structure for Euclidean data.

14.1 Contributions

Most recent methods for the reverse k-nearest neighbor search suffer from

the fact that they are only applicable to k = 1 or at least a fixed value of

14.2 Problem Definition 159

k. The most generic approach is that of using Voronoi cells [TPL04]. Since

it does not rely on precomputed kNN distances, it can handle queries with

arbitrary values for k. However, the approach proposed in [TPL04] relies on

the computation of the Voronoi (hyper-)plane which only exists in Euclidean

vector spaces. In general metric spaces, the hyperplanes that separate the

Voronoi cells are hard to compute. So far, there exist only methods for R-tree

like index structures. Thus, these approaches cannot be extended for metric

databases.

To the best of our knowledge, this approach is the first contribution to

solve the generalized RkNN search problem for arbitrary metric objects. In

particular, our method provides the following new features:

1. It can be applied to general metric objects, i.e. databases containing

any type of complex objects as long as a metric distance function is

defined on these objects.

2. It is applicable to the generalized RkNN problem where the value of k

is specified at query time.

The remainder of this part is organized as follows: Section 14.2 introduces

preliminary definitions. In Chapter 15 we introduce our new index structure,

the MRkNNCoP-Tree, for efficient reverse k-nearest neighbor search in gen-

eral metric spaces in detail. Chapter 17 contains an extensive experimental

evaluation and concludes this part of the thesis.

14.2 Problem Definition

Since we focus on the traditional reverse k-nearest neighbor problem, we

do not consider recent approaches for related or specialized reverse nearest

neighbor tasks such as the bichromatic case, mobile objects, etc.

In the following, we assume that D is a database of n metric objects,

k ≤ n, and dist is a metric distance function on the objects in D. The set

of k-nearest neighbors of an object q is the smallest set NN k(q) ⊆ D that

160 14 Introduction

q

Figure 14.1: Example for a RkNN query with k = 1.

contains at least k objects from D such that

∀o ∈ NN k(q),∀ô ∈ D − NN k(q) : dist(q, o) < dist(q, ô).

The object p ∈ NN k(q) with the highest distance to q is called the k-nearest

neighbor (kNN) of q. The distance dist(q, p) is called k-nearest neighbor

distance (kNN distance) of q, denoted by nndistk(q).

The set of reverse k-nearest neighbors (RkNN) of an object q is then

defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.

In Figure 14.1, an example RkNN query for query object q and k = 1 is

depicted. The result objects and their 1NN radii are shown in light color.

The naive solution to compute the reverse k-nearest neighbor of a query

object q is rather expensive. For each object p ∈ D, the k-nearest neighbors

of p are computed. If the k-nearest neighbor list of p contains the query

object q, i.e. q ∈ NN k(p), object p is a reverse k-nearest neighbor of q. The

runtime complexity of one query is O(n2). It can be reduced to an average

of O(n log n) if an index such as the M-tree [CPZ97] (or, if the objects are

feature vectors, the R-tree [Gut84] or the R∗-tree [BKSS90]) is used to speed-

up the nearest neighbor queries.

Chapter 15

kNN Distance Approximations

for RkNN Search

As discussed above, the Voronoi approach is not applicable to general metric

spaces because in these spaces, the explicit computation of hyperplanes is not

possible. As a consequence, we want to base our generic index for reverse

kNN search on the ideas of the RdNN-Tree which is only applicable for

Euclidean vector data and the specialized case of k = 1. The generalizations

to enable the application of metric objects is rather straightforward. Instead

of using an Euclidean index structure such as the R-Tree [Gut84] or R∗-tree

[BKSS90] we can use a metric index structure such as the M-Tree [CPZ97].

However, in order to solve the generalized RkNN problem where the value

for k could be different from query to query is much more challenging. The

key idea of the RdNN-Tree is to precompute the kNN distance for an a priori

fixed value1 of k for each object. If a query object q has a larger distance

to an object o than the kNN distance of o, we can safely drop o. Otherwise,

object o is a true hit. However, as indicated above, this approach requires to

specify the value of k in advance.

In general, there are two possibilities to generalize the RdNN-Tree in

order to become independent of k. First, we could store the kNN distances

1originally for k = 1

161

162 15 kNN Distance Approximations for RkNN Search

of each object for each k ≤ kmax, where kmax is the maximum value of

k depending on the application. Obviously, this approach results in high

storage costs and, as a consequence, in a very large directory of the index

tree. Thus, the response times will be significantly enlarged. Second, we can

conservatively approximate the kNN distances of each object by one distance,

i.e. the kmaxNN distances. However, if kmax is considerably higher than the

k needed in a given query, the pruning power of the kmaxNN distance in

order to identify true drops will obviously be decreased dramatically. As a

consequence, the response time will also be significantly increased due to this

bad kNN distance estimation and the resulting poor pruning. In addition,

for each object o where dist(o, q) ≤ distkmax(o) a refinement is needed since

it cannot be ensured that dist(o, q) < distk(o), i.e. for each of these objects

o another kNN query needs to be launched.

Here, we propose a novel index structure that overcomes these problems

by approximating the kNN distances of each object for all k ≤ kmax using a

function. We store for each object o ∈ D such a function that conservatively

approximates the kNN distances of o for any k ≤ kmax. The approximation

is always greater or equal to the real distances. This conservative approx-

imation allows to identify objects that can be safely dropped because they

cannot be true hits. For the remaining objects, we need a refinement step

inducing a kNN query for each candidate.

In fact, we can even further reduce the number of candidates, i.e. the

number of necessary kNN queries for refinement by storing also a progressive

approximation of the kNN distances of each o ∈ D for any k ≤ kmax. The

progressive approximation is always lower or equal to the real distances and,

thus, enables to identify true hits. Only objects that have a distance to the

query q less or equal than the conservative approximation and greater than

the progressive approximation need to be refined, i.e. induce a kNN query.

The idea of using conservative and progressive approximations is illus-

trated in Figure 15.1. If q1 is the query object, p is a true hit and need not to

be refined because the progressive approximation ensures that dist(p, q1) <

nndistk(p). If q3 is the query object, p can be dropped safely because the

163

Queries

conservative approximation

of kNN distance

progressive approximation

of kNN distance

p x q2x

q1

q3

Figure 15.1: Using conservative and progressive approximation for RkNN

search.

progressive approximation ensures that dist(p, q3) > nndistk(p). If q2 is the

query object, p is a candidate that needs refinement, i.e. we must launch an

exact kNN query around p.

Thus, for each object, instead of the kNN distance(s) of a given value of k

or all possible values of k, we simply store two approximation functions. We

can use an extended M-Tree, that aggregates for each node the maximum of

all conservative approximations and the minimum of all progressive approx-

imations of all child nodes or data objects contained in that node. These

approximations are again represented as functions. At runtime, we can es-

timate the maximum kNN distance for each node using the approximation

in order to prune nodes analogously to the way we can prune objects. The

resulting candidate objects can be identified as true hits or candidates that

need further pruning using the progressive approximation.

In the following, we explain how to compute a conservative approximation

of the kNN distances for arbitrary k ≤ kmax (cf. Section 15.1). We then sketch

how a progressive approximation can be generated analogously (cf. Section

15.6). After that, we describe how these approximations can be integrated

into an M-Tree. The resulting structure is called MRkNNCoP-Tree (Metric

RkNN with conservative and progressive approximations — cf. Section 15.7).

At the end of this section, we outline our novel RkNN search algorithm (cf.

164 15 kNN Distance Approximations for RkNN Search

Section 16).

15.1 Conservative Approximation of k-NN Dis-

tances

As discussed above, a conservative approximation of the kNN distances of

each data object is needed in order to determine those objects that can be

safely dropped because they cannot be part of the final result.

First, we have to address the problem to select a suitable model function

for the conservative approximation of our k-nearest neighbor distances for

every k ≤ kmax. In our case, the distances of the neighbors of an object o

are given as a sequence

NNdist(o) = 〈nndist1(o), nndist2(o), ...nndistkmax(o)〉

and this sequence is ordered by increasing k. Due to monotonicity, we also

know that i < j ⇒ nndisti(o) ≤ nndistj(o). Our task here is to describe the

discrete sequence of values by some function appxo : N → R with appxo(k) ≈
nndistk(o). As the approximation function is required to be conservative we

have the additional constraint appxo(k) ≥ nndistk(o).

From the theory of self-similarity [Sch91] it is well-known that in most

datasets the relationship between the number of objects enclosed in an ar-

bitrary hypersphere and the scaling factor (radius) of the hypersphere (the

same is valid for other solids such as hypercubes) approximately follows a

power law:

encl(ε) ∝ εdf

where ε is the scaling factor, encl(ε) is the number of enclosed objects and

df is the fractal dimension. The fractal dimension is often (but not here)

assumed to be a constant which characterizes a given dataset. Our k-nearest

neighbor sphere can be understood to be such a scaled hypersphere where the

distance of the k-nearest neighbor is the scaling factor and k is the number

15.1 Conservative Approximation of k-NN Distances 165

0

1

2

3

4

0 1 2 3 4 5
ln(k)

ln
(k
N
N
-D
is
t)

0

10

20

30

40

0 20 40 60 80 100
k

kN
N
-D
is
ta
nc
e

0

20

40

60

80

100

0 20 40 60 80 100

ba

b
a

a
b

Uniform data distribution.

0

5

10

15

20

25

30

0 20 40 60 80 100
k

kN
N
-D
is
ta
nc
e

0

20

40

60

80

100

0 20 40 60 80 100
-1

0

1

2

3

4

0 1 2 3 4 5

ln(k)

ln
(k
N
N
-D
is
t)

a b
a

b

a

b

Two Gaussian clusters.

Figure 15.2: Illustration of the relationships between k and the kNN dis-

tance for different synthetic data distributions.

of enclosed objects. Thus, it can be assumed that the k-nearest neighbor

distances also follow the power law and form approximately a line in log-log

space (for an arbitrary logarithmic basis) [Sch91], i.e.:

log(nndistk(o)) ∝
log(k)

df

.

This linear relationship between k and the kNN distance in log-log space

is illustrated for different synthetic sample data distributions in Figure 15.2.

Obviously this linear relationship is not perfect. However, as it can be antic-

ipated from Figure 15.2, the relationship between log(k) and log(nndistk(o))

for any object o in a database of arbitrary distribution, exhibits a clear linear

tendency.

From this observation, it follows that it is generally sensible to use a

model function which is linear in log-log space — corresponding to a parabola

in non-logarithmic space — for the approximation. Obviously, computing

and storing a linear function needs considerable less overhead than a higher

order function. Since we focus in this section on the approximation of the

166 15 kNN Distance Approximations for RkNN Search

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5

log (k)

lo
g

(n
nd

is
t (

k)
)

0

0.4

0.8

1.2

1.6

2

2.4

0 5 10 15 20 25 30 35

k

nn
di

st
 (k

)

x

k=10

k=20

k=30

Figure 15.3: Visualizations of the conservative and progressive approxi-

mations of the k-nearest neighbor distances of a sample object for different

values of k.

values of the k-nearest neighbor distance over varying k in a log-log sense,

we consider the pairs (log(k), log(nndistk(o)) as points of a two-dimensional

vector space (xk, yk). These points are not to be confused with the objects

stored in the database (e.g. the object o the nearest neighbors of which

are considered here) which are general metric objects. Whenever we speak of

points (x, y) or lines ((x1, y1), (x2, y2)) we mean points in the two-dimensional

log-log space where log(k) is plotted along the x-axis and log(nndistk(o)) for

a given general metric object o ∈ D is plotted along the y-axis.

In most other applications of the theory of self-similarity it is necessary

to determine a classical regression line without any constraint conditions, ap-

proximating the true values of nndistk(o) with least square error. A conven-

tional regression line would find the parameters (m, t) of the linear function

y = m · x + t minimizing least square error:

∑
1≤k≤kmax

((m · xk + t)− yk)
2 = min

which evaluates the well known formula of a regression line in 2D space.

This line, however, is not a conservative approximation of a point set. In

order to guarantee no false dismissals we need here a line which minimizes

the above condition while observing the constraint that all actual yk-values,

i.e. log(nndistk), are less or equal than the line, i.e. yk ≤ m · xk + t, and

we derive a method with a linear time complexity in the number kmax of k-

15.1 Conservative Approximation of k-NN Distances 167

nearest neighbor distances to be approximated (provided that the distances

are ordered according to increasing k). We formally state this optimization

problem:

Optimization Goal. The optimal conservative approximation of a se-

quence NNk(o) of k-nearest neighbor distances of an object o is a line

Lopt(o) = (mopt, topt) : y = mopt · x + topt

in the log-log space. This line defines the following approximation function:

log(appxo(k)) = mopt · log(k) + topt

with the following constraints:

C1. Lopt(o) is a conservative approximation of yk, i.e.

yk ≤ mopt · xk + topt (∀k : 1 ≤ k ≤ kmax).

C2. Lopt(o) minimizes the mean square error, i.e.∑
1≤k≤kmax

(mopt · xk + topt − yk)
2 = min

An example is visualized in Figure 15.3. Here we have a sequence of

k-nearest neighbor distances for 1 ≤ k ≤ kmax = 30 which are depicted as

squares in the left diagram in a log-log space and in the middle diagram in

non-logarithmic space. The corresponding visualization of the conservative

and progressive approximations in the data space for k = 10, 20, 30 are de-

picted on the right hand side in Figure 15.3. In the left diagram the optimal

line for the conservative approximation is the upper limit of the shaded area.

In Section 15.6, we also introduce the progressive approximation which is the

lower limit of the shaded area. These two limiting lines correspond to the

parabolic functions depicted in the middle diagram where we can directly de-

termine the conservative and progressive approximations for a given k. On

the right hand side in Figure 15.3, we have an object x together with its

actual k-nearest neighbor distance for k = {10, 20, 30}. The three shaded

shapes mark the conservative and progressive approximations for these three

k-values.

168 15 kNN Distance Approximations for RkNN Search

We develop our method to determine the approximation function in three

steps. At first, we show that the line must interpolate (pass through) either

two neighboring points or one single point of the upper part of the convex hull

of the set to be approximated. Second, we show how to optimize a regression

line (mA, tA) under the constraint that it has to interpolate one given anchor

point A (in our method, only points of the upper convex hull have to be

considered as anchor points). As a third step, we show that the line obtained

in the second step is the optimal line according to our optimization goal if

and only if both the successor and the predecessor of A in the upper convex

hull are under the line (mA, tA).

Moreover, we show the following: If the predecessor exceeds the line, then

the optimum line cannot pass through one of the successors of A. Vice versa,

if the successor exceeds line (mA, tA) the optimum line cannot pass through

one of the predecessors of A. This statement gives us the justification to

search for a suitable anchor point using a bisection search (in contrast to

linear search the bisection search improves the total runtime but not the

complexity of the overall method which will be shown to be linear in kmax).

Finally, we show that the global optimum is either found directly by the

bisection search or interpolates the last two points considered in the bisection

search.

15.2 Optimization Step 1

First, we show that the line must interpolate either two neighboring points

or one single point of the upper convex hull of the approximated point set.

The upper convex hull (UCH) is a sequence

UCH = 〈(xk1 , yk1), (xk2 , yk2), ..., (xku , yku)〉
composed from u points (2 ≤ u ≤ kmax). UCH always starts with the first

point and ends with the last point to be approximated, i.e. k1 = 1; ku =

kmax. It contains the remaining points in ascending order, i.e. ki < kj ⇔
i < j, and due to monotonicity we know also xki

< xkj
and yki

< ykj
.

UCH forms a poly-line composed from one or more (exactly u − 1) line

15.2 Optimization Step 1 169

segments Si = ((xki
, yki

), (xki+1
, yki+1

)) where the most important property

is that the slope s(Si) = (yki+1
− yki

)/(xki+1
− xki

) of the line segments Si is

strictly monotonically decreasing (i < j ⇔ s(Si) > s(Sj)), i.e. the segments

form a right turn. UCH is the maximal sequence with this property, and,

therefore, the composed UCH line forms an upper limit of the points to be

approximated. The upper convex hull has some nice properties which are

important to solve our optimization problem. First, as we prove in Lemma

15.1, the optimal conservative approximation must interpolate one or two

points of the convex hull. Second, and more importantly for the complexity

of our method, it facilitates the test whether or not the constraint is fulfilled

that all approximated points are below a given line. We will see later that

only two points of UCH have to be tested. In contrast, if we do not know

the UCH, all the points (xk, yk), 1 ≤ k ≤ kmax of the complete approximated

set need to be tested.

It is easy to see that an optimal line must interpolate at least one point

of the approximated set:

Lemma 15.1.

The optimal line Lopt must interpolate at least one point of the set of conser-

vatively approximated points.

Proof. Assume Lopt is above all points of the dataset but does not touch

one of the points of the dataset. Then we could move the line downwards

(leaving it parallel to the original line) until it touches one of the points

without violating the constraints. When moving downwards, the distance

of the line to every point decreases. Therefore the original line cannot be

optimal. 2

This is visualized in Figure 15.4a. In our next lemma, we show that it is

not possible that the approximating line interpolates only points which are

not in UCH. In other words, it cannot happen that none of the points that

are interpolated by Lopt are not in UCH.

Lemma 15.2.

Any line L interpolating a point (xk, yk), 1 ≤ k ≤ kmax which fulfills the

170 15 kNN Distance Approximations for RkNN Search

P

succ(P)

pred(P)

a) b)

Figure 15.4: Constraints on the optimal line: Line intersects at least a)

one point of the approximated set (Lemma 15.1) b) one point of the UCH

(Lemma 15.2)

constraint that all approximated points are upper bound by it must interpolate

at least one point P ∈ UCH.

Proof. Let us assume, that L interpolates only one point P /∈ UCH. Let

pred(P) be the last point before P which is member of UCH and succ(P)

be the first point after P in UCH. According to the definition of UCH,

the two segments S1 = (pred(P), P) and S2 = (P, succ(P)) form a left turn

(otherwise, P would have to be member of UCH), i.e. s(S1) < s(S2). The

slope of L must be less than the slope of S1 and greater than the slope of S2

to upper bound both pred(P) and succ(P). This is not possible as the slope

of S1 is less than that of S2 (left turn). 2

The idea of the proof is visualized in Figure 15.4b. From Lemma 15.2

and the obvious observation that no straight line can interpolate more than

two points of UCH (which form a right turn), we know that Lopt must

interpolate one or two points of UCH. We show later that both cases occur,

indeed. In Figure 15.4, the 4 points of UCH are marked with darker frames

and additionally connected by lines. This example also visualizes how the

conservative approximation interpolates two points of UCH.

UCH can be determined from the ordered set of points (xk, yk), 1 ≤ k ≤
kmax in linear time by sequentially putting the points onto a stack and delet-

ing the second point after the top-of-stack whenever the slope is increasing

among the three points on the top-of-stack. Obviously, the determination of

UCH can be done in O(kmax).

15.3 Optimization Step 2 171

15.3 Optimization Step 2

From Step 1 we know that our optimal line interpolates at least one point

of UCH. Our next building block for the generation of the conservative ap-

proximation is the derivation of a regression line under the constraint that

one given point is interpolated. We call this point the anchor point. Note

that, until now, we have not yet shown how to select this anchor point among

the points in UCH. For the moment, we can assume that we do this opti-

mization for every point in UCH, but we show later how the anchor can be

determined in a more directed way using bisection search. Furthermore, note

that the optimization described in this step does not necessarily yield a line

which fulfills all constraints. Our final method will do so, but the method

here need not yet meet this requirement.

Given an anchor point A = (xA, yA) and an approximated point set S,

we call a line LA = (mA, tA) anchor-optimal w.r.t. A and S if it interpolates

A and approximates S with least square error. As we know that our anchor

point (xA, yA) is interpolated, in our optimization problem (to select the

optimal line y = m · x + t) we have only one variable (say m) as degree of

freedom, because t is fixed by the constraint yA = m · xA + t. Therefore, we

can integrate the constraint into our line formula:

y = mx−mxA + yA

We search for that line which minimizes the sum of squared distances from

the actual points to be approximated:∑
1≤k≤kmax

(mxk −mxA + yA − yk)
2 = min

An example is visualized in Figure 15.5 where we can see the anchor point

as well as the distances from an arbitrary line which interpolates the anchor

point. A necessary condition for a minimum is that the derivative vanishes:

∂

∂m
(
∑

1≤k≤kmax

(mxk −mxA + yA − yk)
2) = 0

172 15 kNN Distance Approximations for RkNN Search

Anchor

Figure 15.5: Illustration of an anchor point.

There exists only one solution m = mA to this equation with

mA =

∑
k (yk − yA)(xk − xA)∑

k (xk − xA)2
=

=
kmaxxAyA − yA(

∑
k xk) + (

∑
k xkyk)− xA(

∑
k yk)

kmaxx2
A + (

∑
k x2

k)− 2xA(
∑

k xk)

This local optimum is a minimum, and there are no further local minima

or maxima (except m = ±∞). Although the second formula for mA looks

complex at the first glance, it is very efficient to evaluate: the ”expensive”

sum-terms are independent from the anchor point A and need, thus, to be

evaluated only once. If mA is determined for more than one anchor point,

those terms which need evaluation of all xk and yk must be evaluated only

once. We show in the next section that, in general, we need to evaluate mA

for a number of anchor points which is logarithmic in the number of points

in the convex hull, and, therefore, is in the worst case also in O(log kmax).

15.4 Optimization Step 3

So far, we know that our optimal line interpolates at least one point of the

UCH (Step 1). Together with Step 2, we know how to compute the optimal

line: we need to construct an anchor optimal line given the right anchor point.

We also know that this anchor point is part of the UCH. The remaining

task is to find this right anchor point of the UCH. In the third step, we show

that the correct anchor point and, thus, the global optimum approximation

15.4 Optimization Step 3 173

k

S0 S1
S2

(mA,tA)

A

A+

P-

(mA2,tA2)

(mA1,tA1)

(mA3,tA3)

dx

dxdy

dy

(mA‘,tA‘)

Figure 15.6: Illustration of the proof of Lemma 15.3: Monotonicity of the

error of the conservative approximation of kNN distances

can be found efficiently by means of bisection search. The goal is to find

that point (xopt, yopt) ∈ UCH which is intersected by the global-optimum

approximation-line. The search starts by the median MUCH = (xkm , ykm) of

the UCH which we first take as anchor point and compute its local optimum

line (mkm , tkm). By means of the location of (mkm , tkm), we decide in which

direction the bisection search has to proceed to find the correct anchor point.

Thereby we distinguish three cases:

1. Both the predecessor and successor of MUCH in the UCH, i.e. pred(MUCH)

and succ(MUCH) are not above (mkm , tkm) (i.e. below or exactly on it).

2. The predecessor pred(MUCH) is above (mkm , tkm).

3. The successor succ(MUCH) is above (mkm , tkm).

As state above, the search starts at the median of the UCH, i.e. at

MUCH . At each step of the bisection search, we examine the three cases for

174 15 kNN Distance Approximations for RkNN Search

the current point (xkm , ykm) ∈ UCH with its local optimum line (mkm , tkm).

As we see in the next lemma, in the first case we can stop our search, because

(mkm , tkm) is the global optimum. In the second case we proceed the search

with the corresponding predecessor (xkp , ykp) of (xkm , ykm). If the correspond-

ing predecessor has been already considered during the bisection search we

can stop the search and the global optimum line passes through (xkp , ykp)

and (xkm , ykm). In the third case we proceed the search with the successor

of (xkm , ykm) analogous to the second case. In this way, the global optimum

approximation can be found due to the following lemma:

Lemma 15.3.

Let A ∈ UCH be the anchor point of an anchor optimal line (mA, tA), i.e.

the line interpolate A and approximates the points with least square error.

Furthermore, let (mA2, tA2) be another line which also passes through A and

additionally passes through any successor A+ ∈ UCH of A, whereas mA2 <

mA. Then the global optimum line passes through A or any predecessors

A− ∈ UCH of A.

Proof. Let A ∈ UCH be the anchor point of a line (mA, tA) which is

anchor optimal w.r.t. A. Furthermore, let (mA2, tA2) be another line which

pass through two points A and any successor A+ ∈ UCH of A, whereas

mA2 < mA. In the following we assume, that the global optimum line pass

through A+ but pass not through A. Let this line be (mA′ , tA′), as depicted in

Figure 15.6. Following the above assumption, the sum of squared distances

from the actual points to line (mA2, tA2) must be greater than the squared

distances to line (mA′ , tA′). In the following, we show that this assumption

does not hold.

Let us first group all points into three sets S0, S1 and S2. Whereas,

S0 denotes the set of all preceding points of A, S1 denotes the set of all

points succeeding A (A included) but preceding A+ and S2 denotes the set

of all points succeeding A+ (A+ included). In the following we consider two

additional lines (mA1, tA1) and (mA3, tA3), such that (mA1, tA1) pass through

A and (mA3, tA3) pass through A+. Furthermore, without loss of generality,

let the slopes of (mA1, tA1) and (mA3, tA3) be in such a way, that mA1 ≤ mA

15.4 Optimization Step 3 175

and mA1 − mA2 = mA2 − mA3 and mA ≥ mA1 ≥ mA2 ≥ mA3 ≥ mA′ (cf.

Figure 15.6).

Let IA
i be the sum of all squared distances from the points in Si to the line

(mA, tA), i.e.

IA
i = Σ(x,y)∈Si

dist((x, y), (mA, tA)),

where

dist((x, y), (mA, tA)) = (mAx−mAxA + yA − y)2.

Then, the sum of the squared distances between all points and a line (mA, tA)

is equal to the sum IA
0 + IA

1 + IA
2 . If we assume that (mA, tA) is local optimal

according to its anchor point A and mA ≥ mA1 ≥ mA2, then

IA
0 + IA

1 + IA
2 ≤ IA1

0 + IA1
1 + IA1

2 ≤ IA2
0 + IA2

1 + IA2
2 .

The latter inequality is equivalent to:

IA2
0 − IA1

0 ≥ IA1
1 − IA2

1 + IA1
2 − IA2

2

By means of the theorems on intersecting lines and the assumption that mA1−
mA2 = mA2 −mA3, the following statements hold:

1. IA3
0 − IA2

0 ≥ IA2
0 − IA1

0

2. IA3
0 − IA2

0 ≥ IA2
0 − IA1

0

3. IA1
1 − IA2

1 ≥ 0

4. IA3
1 − IA2

1 ≥ 0

With 1) the following statement holds:

IA3
0 − IA2

0 ≥ IA1
1 − IA2

1 + IA1
2 − IA2

2

With 2) this leads to

IA3
0 − IA2

0 ≥ IA1
1 − IA2

1 + IA2
2 − IA3

2

Due to 3) and 4), the inequality can be resolved to:

IA3
0 − IA2

0 + IA3
1 − IA2

1 ≥ IA2
2 − IA3

2

176 15 kNN Distance Approximations for RkNN Search

which is equivalent to

IA2
0 + IA2

1 + IA2
2 ≤ IA3

0 + IA3
1 + IA3

2 ≤ IA′

0 + IA′

1 + IA′

2

This means, that the sum of squared distances from the actual points to line

(mA2, tA2) is lower than the squared distances to line (mA3, tA3) which con-

tradicts the assumption. 2

15.5 Summary: The Optimization Algorithm

The algorithm which computes the optimal conservative approximation line

is depicted in Figure 15.7. It requires as input an object o, the sequence

NNdist(o) of kNN distances of o which should be approximated and the

upper limit kmax. The algorithm reports the line Lopt = (m, t) corresponding

to the line y = m·x+t which denotes the optimal conservative approximation

line. The algorithm shown in Figure 15.7 consists of two main parts.

In the first part we compute the UCH of the kNN distances in NBNdist(o)

in the log-log space, i.e. of the points (log k, log nndistk(o)). For this task, we

apply a modification of Graham’s scan algorithm for the convex hull [And79]

which parses all kNN-distances from k = 1 to kmax and buffers references to

those kNN-distances within a stack which build a conservative right-curved

sequence denoting the upper convex hull of the points (log k, log nndistk(o))

in log-log space. This step is performed because we have shown that at least

one point of the convex hull must be interpolated by Lopt (cf. Lemma 15.2).

In the second main part we perform a bisection search for the optimum

approximation line. Our algorithm starts with the complete UCH. It selects

the median point of the UCH as the first anchor point and computes its

anchor optimal line (aol). By inspecting its direct predecessor and successor,

respectively, it distinguishes between 3 cases: (1) Both neighbor points are

below aol: Then the global optimum is reached. (2) The right neighbor

point (successor) is above the aol: We proceed recursively with the right half

of the UCH (this time considering the median of the right half). Case (3),

15.5 Summary: The Optimization Algorithm 177

ALGORITHM optimize(o, NNdist(o), kmax)

BEGIN

// First Part

compute upper convex hull UCH of the points (log k, log nndistk(o))
according to [And79];

// Second Part

WHILE UCH still contains unmarked points DO

(xa, ya) = median of UCH;

compute anchor optimal line (ma, ta) w.r.t. anchor point (xa, ya);
mark (xa, ya);
(xp, yp) = pred((xa, ya)); // predecessor in UCH

(xs, ys) = succ((xa, ya)); // successor in UCH

IF yp ≤ ma · xp + ta AND ys ≤ ma · xs + ta THEN

// global optimum found

RETURN (ma, ta);
ELSE IF yp > ma · xp + ta THEN

// examine predecessor

IF (xp, yp) is already marked THEN

mp = (ya − yp)/(xa − xp); tp = yp − xp ·mp;

RETURN (mp, tp);
ELSE // proceed with left side of UCH

UCH = left side of UCH;

ELSE IF ys > ma · xs + ta THEN

// examine successor

IF (xs, ys) is already marked THEN

ms = (ya − ys)/(xa − xs); ts = ys − xs ·ms;

RETURN (ms, ts);
ELSE // proceed with right side of UCH

UCH = right side of UCH;

END WHILE

END

Figure 15.7: Finding the optimal approximation.

178 15 kNN Distance Approximations for RkNN Search

left neighbor above aol is handled analogously. The slope of the computed

line is used to identify the search space of the subsequent search step (as

substantiated by Lemma 15.3). In each step of this algorithm, the problem

size is divided by two. Finally, the parameters (m, t) of the computed line

are reported.

15.6 Progressive Approximation of kNN Dis-

tances

As discussed above, a progressive approximation of the kNN distances of

each data object can be used to determine true hits. Analogously to the

optimal conservative approximation, the optimal progressive approximation

of a sequence NNk(o) of k-nearest neighbor distances of an object o is a line

Lopt(o) in log-log space. The only difference is that the line Lopt(o) must

satisfy a progressive constraint, i.e. constraint C1 in Section 15.1 is changed

as follows:

yk ≥ mopt · xk + topt (∀1 ≤ k ≤ kmax).

We can generate the progressive approximation analogously as described

in Section 15.1. The difference is that we have to consider the lower convex

hull instead of the upper convex hull. Obviously, the resulting progressive

approximation line must be below all real kNN distances.

15.7 Aggregating the Approximations

So far, we have shown how to generate a conservative and progressive ap-

proximation for each object of the database. However, the conservative and

progressive approximations can also be used for the nodes of the index to

prune irrelevant sub-trees. Similar to the RdNN-Tree, we need to aggre-

gate for each data node the maximum kNN distances of the objects within

that node. For this aggregation, the conservative approximations must be

used. In addition, we could aggregate the minimum kNN distance of the

15.7 Aggregating the Approximations 179

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5

lo
g
(n
n
d
is
t(
k
))

log(k)

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

n
n
d
is
t(
k
)

k

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5

lo
g
(n
n
d
is
t(
k
))

log(k)

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

n
n
d
is
t(
k
)

k

Figure 15.8: Aggregated approximation lines.

objects within the node in order to detect true hits. For this aggregation,

the progressive approximation should be used. However, in most cases the

progressive aggregation does not pay off because for a node it is not selective

enough.

We build the conservative approximation of a data node N by conserva-

tively approximating the conservative approximation lines Lopt(oi) = (mi, ti)

of all data objects oi ∈ N . The resulting approximation line is defined by

the points (log(1),y1) and (log kmax,ykmax), where y1 is the maximum of all

lines at k = 1 and ykmax is the maximum of all lines at kmax, formally

y1 = maxoi∈N mi · log 1 + ti = maxoi∈N ti,

ykmax = maxoi∈N mi · log kmax + ti.

The progressive approximation can be determined analogously. Figure

15.8 illustrates both concepts.

The approximation information can be propagated to parent, i.e. di-

rectory, nodes in a straightforward way. The resulting storage overhead is

negligible because the additional information stored at each node is limited

to two values for the conservative approximation. Nevertheless, the kNN

distance for any value of k can be estimated at each node.

180 15 kNN Distance Approximations for RkNN Search

We call the resulting index structure MRkNNCoP (Metric reverse kNN

with conservative and progressive approximations) - Tree. The original con-

cepts of the MRkNNCoP-Tree presented here can be incorporated within

any hierarchically organized index for metric objects. Let us note that the

concepts can obviously also be used for RkNN search in Euclidean data. In

that case, we need to integrated the proposed approximations into Euclidean

index structures such as the R-tree [Gut84], the R∗-tree [BKSS90], or the

X-tree [BKK96].

Chapter 16

RkNN Search Algorithm

The search algorithm for RkNN queries on our MRkNNCoP-Tree is similar

to that of the RdNN-Tree. However, our index structure can answer RkNN

queries for any k specified at query time and, due to the use of a metric index

structure, is applicable to general metric objects.

The pseudo code of the query algorithm is depicted in Figure 16.1. A

query q is processed by starting at the root of the index. The index is

traversed such that the nodes having a smaller mindist to q than their ag-

gregated kNN distance approximations are refined. Those nodes, where the

mindist to q is larger than their aggregated kNN distance approximation are

pruned. A node N of a M-Tree is represented by its routing object No and

the covering radius Nr. All objects represented by N have a distance less

than Nr to No. The mindist of a node N and a query point q, denoted by

mindist(N, q), is the maximum of the distance of q to No minus the covering

radius Nr (if dist(q, No) > Nr) and zero (if dist(q, No) ≤ Nr), formally:

mindist(N, q) = max{dist(q, No)−Nr, 0}.
The aggregated kNN distance of a node N , denoted by kNNagg(N) can be

determined from the conservative approximation Lopt(N) = (mN , tN) of N

by

kNNagg(N) = mN · log k + tN .

Thus, we can prune a node N with approximation Lopt(N) = (mN , tN) if

181

182 16 RkNN Search Algorithm

ALGORITHM RkNN query(D, q, k)

BEGIN // Assumption: D is organized as MRkNNCoP

queue := new Queue;

insert root of D into queue;

WHILE NOT queue.isEmpty()

N := queue.getFirst();

IF N is node THEN {
IF mindist(N, q) ≤ mN · log k + tN THEN

insert all elements of N into queue;}
ELSE // N is a point

IF dist(N, q) < mp
N · log k + tpN THEN

add N to result set;

ELSE IF mc
N · log k + tcN > dist(N, q)

add N to candidate set;

END WHILE

END

Figure 16.1: The RkNN search algorithm.

mindist(N, q) > mN · log k + tN .

The traversal ends up at a data node. Then, all points pi inside this

node are tested using their conservative approximation Lcon(pi) = (mc
pi
, tcpi

)

and their progressive approximation Lprog(pi) = (mp
pi
, tppi

). A point p can be

dropped if dist(p, q) > mc
p · log k+ tcp. Otherwise, if dist(p, q) < mp

p · log k+ tpp,

point p can be added to the result. Last but not least, if mc
p · log k + tcp >

dist(p, q) > mp
p · log k + tpp, point p is a candidate that need an exact kNN

query as refinement. Using this strategy, we get a set of true hits and a set

of candidates from the RkNNCoP-Tree. The set of candidates are refined

using a batch kNN search as proposed in [YL01].

Chapter 17

Experimental Evaluation

All experiments have been performed on Windows workstations with a 32-

bit 3.2 GHz CPU and 2 GB main memory. We used a disk with a transfer

rate of 50 MB/s, a seek time of 6 ms and a latency delay of 2 ms. In each

experiment we applied 100 randomly selected RkNN queries to the particular

dataset and reported the overall result. The runtime is presented in terms of

the elapsed query time including I/O and CPU-time. All evaluated methods

have been implemented in Java. We applied our approach on metric as well as

Euclidean datasets. The main characteristics of all datasets are summarized

in Table 17.1.

17.1 Metric RkNN Search

Since there is no recent approach for RkNN search in general metric spaces,

we compared our MRkNNCoP-Tree with two already discussed variants.

The first variant, denoted by “MRkNN-Max”, stores for each object of the

database the kNN distance for one arbitrary kmax ≥ 1. Obviously, this

approach has less storage overhead than the MRkNNCoP-Tree but needs

expensive refinement steps if the parameter k of the query differs from the

precomputed kmax value. The second variant, denoted by “MRkNN-Tab”,

stores all kNN distances for k = 1 . . . , kmax in a table for each data object

183

184 17 Experimental Evaluation

10

100

1000

10000

100000

1000 2500 5000 6105

DB size

El
ap

se
d

R
un

tim
e

[s
ec

]

MRkNNCoP MRkNN-Max
MRkNN-Tab SeqScan

Figure 17.1: Runtime w.r.t. database size on Oldenburg dataset.

and each node of the tree, respectively. The advantage of this approach is

that only true hits are computed, i.e. we do not need any refinement step.

However, the distance table becomes quite large for increasing kmax values.

This leads to a smaller branching factor of the tree nodes. Thus, the tree is

higher suffering from large directory traversal overhead. A third competitor

of our MRkNNCoP-Tree is the sequential scan, denoted as “SeqScan”.

Our experiments were performed using a real-world road network data

set derived from the city of Oldenburg. The nodes of the network graph were

taken as database objects from which subsets of different size were selected

to form the test dataset. For the distance computation we used the shortest-

path distance computed by means of the Djikstra algorithm.

Table 17.1: Summary of the RkNN Test Datasets.

Dataset Distance measure dimensions

Oldenburg Dijkstra -

Sequoia Euclidean 5

Color moments Euclidean 9

Color texture Euclidean 16

17.1 Metric RkNN Search 185

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110 120 130 140
k

El
ap

se
d

R
un

tim
e

[s
ec

]

MRkNNCoP MRkNN-Max MRkNN-Tab SeqScan

Figure 17.2: Runtime w.r.t. parameter k on Oldenburg dataset (2.500 data

objects).

17.1.1 Runtime w.r.t. database size

In Figure 17.1 the runtime of the competitive algorithms w.r.t. varying data

base size is illustrated in a log-scale. The parameter k was set to k = 50, while

kmax = 100. It can be observed that our MRkNNCoP approach clearly out-

performs the simple “MRkNN-Max” and “MRkNN-Tab” approaches. This

is due to the already discussed shortcomings of the two naive approaches.

“MRkNN-Max” suffers from a poor pruning capability, whereas “MRkNN-

Tab” suffers from a large directory and, thus, from a costly tree traversal.

17.1.2 Runtime w.r.t. parameter k

A similar result can be observed when comparing the runtime of MRkNNCoP

and its competitors w.r.t. varying parameter k (cf. Figure 17.2). In this ex-

periment we set kmax = 150. Again, the runtime axis is in log-scale to

visualize the sequential scan. Obviously, the sequential scan is almost inde-

pendent from k and lies significantly above the runtime of the other tech-

niques. Again, the MRkNNCoP-Tree performs significantly better than the

naive approaches.

186 17 Experimental Evaluation

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

k

n
u

m
b

e
r

o
f

o
b

je
c
ts

results true hits candidates

Figure 17.3: Pruning capability w.r.t. parameter k on Oldenburg data set

(5.000 data objects).

17.1.3 Pruning capabilities

Figure 17.3 shows the pruning capability of MRkNNCoP w.r.t. k on the

Oldenburg dataset. Compared with the size of the result set only a small

number of candidates has to be refined, i.e. the conservative approximation

yields a sound upper bound. Furthermore, the number of true hits we get

from our progressive approximation increases with increasing k. For example,

for k ≥ 70 the pruned true hits are more than 75% of the result set. For

these objects no expensive refinement step is necessary, thus our progressive

approximation provides a very efficient lower bound for the kNN distance.

17.2 Euclidean RkNN Search

We also integrated our concepts into an X-tree [BKK96] in order to sup-

port RkNN search in Euclidean data. We made the same experiments as

presented already above for metric data using three real-world datasets. It

turned out that our approach even outperforms recent RkNN search methods

that are specialized for Euclidean data. The used datasets include a set of

5-dimensional vectors generated from the well-known SEQUOIA 2000 bench-

17.2 Euclidean RkNN Search 187

20

40

60

80

100

120

140

160

180

200

10000 30000 50000 100000
DB size

R
un

tim
e

[s
ec

]

TPL MRkNNCoP

(a) Sequoia (5-dimensional)

200

400

600

800

1000

1200

1400

1600

1800

10000 30000 50000 68040
DB size

R
un

tim
e

[s
ec

]

SeqScan TPL MRkNNCoP

(b) Color moments (9-
dimensional)

200

400

600

800

1000

1200

1400

1600

1800

10000 30000 50000 68040
DB size

R
un

tim
e

[s
ec

]

SeqScan TPL MRkNNCoP

(c) Color texture (16-
dimensional)

Figure 17.4: Comparison of runtime w.r.t. database size.

40

50

60

70

80

90

100

110

1 3 10 30 100
k parameter

R
un

tim
e

[s
ec

]

TPL MRkNNCoP

(a) Sequoia (5-dimensional)

200

300

400

500

600

700

800

900

1000

1 3 10 30 100
k parameter

R
un

tim
e

[s
ec

]

TPL MRkNNCoP

(b) Color moments (9-
dimensional)

400

500

600

700

800

900

1000

1 3 10 30 100
k parameter

R
un

tim
e

[s
ec

]

TPL MRkNNCoP

(c) Color texture (16-
dimensional)

Figure 17.5: Comparison of runtime w.r.t. parameter k.

mark data set and two ”Corel Image Features” benchmark datasets from the

UCI KDD Archive, one contains 9 values for each image, the other data set

contains 16-dimensional texture values. The underlying X-tree had a node

size of 2 KByte.

17.2.1 Naive approaches

Again, in our first experiment we compared our approach with the ”MRkNN-

Max” and the ”MRkNN-Tab” approaches, both also based on an X-tree. The

experiment was performed on the sequoia dataset consisting of 20.000 objects.

The MRkNN-Max approach stores the kmaxNN distance for kmax = 100.

Again, it turns out that our approach has much better runtime performance

than the other two techniques due to the already discussed shortcomings

of these naive approaches. We observed similar results for the two other

188 17 Experimental Evaluation

datasets.

17.2.2 Runtime w.r.t. database size

We compared our approach with the Voronoi-based approach [TPL04] (short

”TPL”) and the sequential scan (short ”SeqScan”). TPL is the only existing

approach for the generalized RkNN search. In Figure 17.4 the runtime of the

three algorithms w.r.t. varying data base size is illustrated. The parameter k

was set to k = 10. For clearness reasons, the sequential scan is not visualized

for all database sizes. It can be observed that our MRkNNCoP approach

also outperforms the existing TPL approach. For example the performance

gain is more than 40% for the 9-dimensional dataset. This is due to the fact

that MRkNNCoP needs substantially less refinement steps than TPL.

17.2.3 Runtime w.r.t. parameter k

A comparison of the runtime of MRkNNCoP and TPL w.r.t. varying param-

eter k is depicted in Figure 17.5. In this experiment the database size was set

to 30.000 objects. The runtime of the sequential scan is almost independent

from k and lies significantly above the runtime of the two other techniques.

Due to clearness reasons it is again not visualized. Again, the MRkNNCoP

performs better than TPL. It is also worth noting that the performance gap

between MRkNNCoP and TPL increases with increasing parameter k.

17.2.4 Pruning capabilities

Figure 17.6 shows the pruning capability of MRkNNCoP w.r.t. k on the 16-

dimensional color texture dataset (30.000 objects). Compared with the size

of the result set only a small number of candidates has to be refined, i.e. the

conservative approximation yields a sound upper bound. Furthermore, the

number of true hits we get from our progressive approximation is about 66%

to 86% of the result set and increases with increasing k. For these objects no

17.2 Euclidean RkNN Search 189

0

500

1000

1500

2000

2500

1 3 10 30 100
k parameter

N
um

be
r o

f o
bj

ec
ts

Candidates True Hits Results

Figure 17.6: Pruning capability w.r.t. parameter k on color texture dataset.

expensive refinement step is necessary, thus our progressive approximation

provides a very efficient lower bound for the kNN distance. We show only

the color texture dataset, as the results on the two other datasets are similar.

190 17 Experimental Evaluation

Part V

Analysis of Video & Audio

191

Chapter 18

Introduction

Video and music clips are an important type of multimedia data. Due to

recent technical advances, the amount of video and audio data that is avail-

able in digital formats as well as the possibility to access and display such

files has increased enormously. Nowadays, it is possible to view complete

movies on mobile phones and MP3 players. Another important aspect is

that broadcasting streams over the Internet (e.g. in video podcasts or web

radios) allows to distribute video and audio data to a large number of people

while spending minimum effort and budget. Thus, new database techniques

are needed which efficiently manage video and audio data.

193

194 18 Introduction

Chapter 19

Video Retrieval

In the following, we propose a novel framework for video similarity search

that takes the multi-represented nature of the data objects into account. In

particular, our framework is able to integrate multiple representations such

as audio and video features into the query processing. The most important

issue for multi-represented similarity search is the weighting of each represen-

tation, i.e. the decision “how significant is a given representation for a given

object”. We propose methods for this task that can be applied to both types

of summarization techniques, i.e. higher-order and first-order summariza-

tion, that are commonly used in multimedia similarity search. In addition,

we propose a method for combining multiple representations for similarity

search by weighting each representation. A broad experimental evaluation

of our methods using a database of music videos demonstrates the benefit of

our methods for similarity search in multimedia databases.

The remainder is organized as follows. Details of our novel method for

multi-represented similarity search in multimedia databases are presented in

Section 19.1, Section 19.4 we present our experimental evaluation.

195

196 19 Video Retrieval

…

…

oi 1
1 oi n1

1

…oi 1
D oi nD

D

Oi
1

Oi
D

=

=

object Oi

D = {O1 … ON}

…

oi j
1 R1

oi j
D RD

Database

Representation 1

Representation D

RI d1

RI dD

Figure 19.1: Basic notations.

19.1 Multi-represented Similarity Search in

Multimedia Databases

From now on, we assume D to be a database of N multimedia objects. Each

object Oi ∈ D, i = 1, . . . , N , is represented by a given set of D representations

R1, . . . , RD, where each representation is a feature space, i.e. Ri ⊆ Rdi , and

di ∈ N denotes the dimensionality of the feature space of representation Ri

(1 ≤ i ≤ D). The j-th representation of Oi is denoted by Oj
i , i.e. Oi =

(O1
i , . . . , O

D
i). We further assume that each representation Oj

i of Oi consists

of a series of feature vectors of length nj, i.e. Oj
i = (oj

i 1, . . . , o
j
i nj

) with

oj
i l ∈ Ri. The definitions are summarized in Figure 19.1.

In addition, we assume that the distances within each representation are

normalized sufficiently over all representations, e.g. using any of the methods

of [SJL+03].

In order to combine multiple representations within the similarity eval-

uation, we have to determine for each object Oi ∈ D and for each of its

representations Oj
i a weight for each of the nj feature vectors oj

i 1, . . . , o
j
i nj

.

Having weights for each feature vector of each representation of each

object, we can use any common distance measure between sets of points such

as the Hausdorff distance in order to compute a weighted distance between

two multi-represented multimedia objects. We first introduce novel methods

to determine the weights for a feature vector of a given representation and

19.2 Weighting Functions For Summarizations 197

then describe how these weights can be used to improve similarity search on

multimedia objects.

19.2 Weighting Functions For Summarizations

As described above, a multimedia object usually consists of a large set of

feature vectors per representation. For efficiency reasons, these large sets

of feature vectors are usually summarized within each representation. The

derived summarizations can be classified as first-order or higher-order sum-

marizations (cf. Section 2.5). Thus, the feature vectors oj
i 1, . . . , o

j
i ni

of object

Oi ∈ D of representation Rj are representative points of the derived sum-

marizations Sj
i 1, . . . , S

j
i ni

. In the following, an original point p belongs to

a summarization S if it is a member of the according cluster (in case of

higher-order summarizations) or if the according representative of S is the

representative with the lowest distance to p among the representatives of all

summarizations.

Since different users may have a different notion of similarity among

videos, it is desirable to consider this diversity in a best possible way when

defining a similarity measure between multimedia objects. For our multi-

represented approach, we have to take this diversity into account when we

design a weighting function for the feature vectors of each representation.

Thus, in the following, we present four methods to determine weights for

representative feature vectors of a summarization that rates the significance

of these summarization vectors in order to represent the according original

feature vectors. The different weighting functions reflect different notions

of similarity. Note that the weighting factor of each representative point is

evaluated for each data object and each representation separately.

19.2.1 A Weighting Function Based on Support

The idea behind our first weighting function is that each summarization

vector represents a given amount of original feature vectors. This amount

198 19 Video Retrieval

is a good indication on the significance of this representative, i.e. how good

this summarization represents the original feature vectors. Thus, in our first

approach, the weight of the l-th feature vector oj
i l of the j-th representation of

object Oi ∈ D, denoted by Wsupp(o
j
i l), is computed by the fraction of points

that are represented by oj
i l. Formally, if |Sj

i l| denotes the fraction of original

points that are summarized by Sj
i l, then the weight of the representative oj

i l

is computed by

Wsupp(o
j
i l) = |Sj

i l|/nj.

This weighting function is illustrated in Figure 19.2(a). The original

points that contribute to the weight of the representative denoted by “4”

are shaded in light gray, whereas the original points that contribute to the

weight of the representative denoted by “x” are shaded in black. The weight

for the representative denoted by “4” is simply computed by the fraction of

gray points. The weight for the representative denoted by “x” is computed

by the fraction of black points.

19.2.2 A Weighting Function Based on Specific Qual-

ity Measures

The first weighting function only considers the number of objects the given

summarization vector represents. However, it does not take the distances to

the representative object into account. For example, consider a representa-

tive point rl representing l objects rather bad, i.e. the average distance of

the l points to their representative rl is significantly high, and a representa-

tive point rk representing k < l points significantly better, i.e. the average

distance of the k points to their representative rk is significantly low. Using

our first weight function, rl would be weighted higher than rk (since k < l)

although this contradicts the intuitive aim of our weighting function. A bet-

ter idea might be to consider the distances of the original points within one

summarization to their representative.

Usually, the summarization is generated optimizing a specific quality

function. For example, for higher-order summarizations, the summariza-

19.2 Weighting Functions For Summarizations 199

x xx

x representatives
objects that are taken into

account for weighting of

objects that are taken into

account for weighting of x

(a) Wsupp

x xx

x representatives
objects that are taken into

account for weighting of

objects that are taken into

account for weighting of x

(b) Wqual

x

(c) Wlocal

x xx

x representatives
objects that are taken into

account for weighting of

objects that are taken into

account for weighting of x

Figure 19.2: Illustration of three different weighting functions.

tion is derived from a clustering algorithm such as k-means or EM, which

optimizes a clustering quality criterion (e.g. TD2, log-likelihood). In case of

first-order summarization techniques, we can e.g. use the method described

in [CZ02] and the according quality function. Our second quality measure is

based on the quality criterion upon which the summarization is generated.

Intuitively, a summarization vector with high representative power should be

weighted high.

Let CQ(oj
i l) be the quality measure for the l-th summarization vector of

the j-th representation of object Oi ∈ D, based on which the summarization

is generated, e.g. TD2 in case of higher-order features generated by k-means.

Then, the weight of oj
i l is computed by:

Wqual(o
j
i l) = CQ(oj

i l).

An example of this weighting function is visualized in Figure 19.2(b). The

weight for the representative denoted by “4” is computed by e.g. the average

distance of the original objects in its summarization to the representative.

200 19 Video Retrieval

19.2.3 A Weighting Function Based on Local Neigh-

borhood

The second weighting function takes each original object into account when

computing the weights for the derived summarizations. However, the original

multimedia objects may contain some noise points, e.g. feature vectors that

do not fit properly to any summarization, or — in case of an ineffective

summarization procedure — one summarization may contain feature vectors

of different clusters. In general, due to noisy original objects, the second

weighting strategy may also fail.

In this cases, it would be more reliable to rate the weight of a represen-

tative point r based only on the original points in the local neighborhood of

r.

Our third weighting function follows this idea. LetNε(r
j
i) = {qj

i |dist(rj
i , q

j
i) ≤

ε} be the ε-neighborhood of a representative rj
i of the i-th database object

Oi ∈ D in the j-th representation Rj. Let us note that Nε(r
j
i) only contains

original feature vectors qj
i of Oi in representation Rj. We define the weight

of oj
i l by the number of objects in its local neighborhood, formally

Wlocal(o
j
i l) = |Nε(o

j
i l)|/nj.

This weighting function is illustrated in Figure 19.2(c). The original

points that contribute to the weight of the representative denoted by “4”

are again shaded in light gray, whereas the original points that contribute to

the weight of the representative denoted by “x” are shaded in black. Original

points that do not contribute to the weight of any summarization vector are

shaded in white. The weights for both representatives are derived by the

number of original points within their ε-neighborhood, normalized by nj.

19.2.4 A Weighting Function Based on Entropy

The three weighting functions which we have introduced so far are rather local

in the following sense: in order to compute the weight of a representative o

19.2 Weighting Functions For Summarizations 201

of a summarization So, they only consider the objects that are summarized

by So, i.e. belong to So. However, it may be more appropriate to consider all

original features of a given representation Ri in order to rate a summarization

vector oi of this representation. Our fourth weighting strategy follows this

idea.

When computing the weight of a summarization vector oi of a representa-

tion Ri, we want to take the distances of all original feature vectors qi
1, . . . , q

i
m

of representation Ri to oi into account. In fact, the distances of qi
l to oi can

be considered as a random variable x following a Gaussian distribution G(x).

The information content of such a random variable can be measured by its

entropy. For example, if the entropy of the variable x equals 1, the distances

dist(qi
l , o

i) are randomly distributed, whereas if the entropy of the variable x

is considerably low, the distances dist(qi
l , o

i) are most likely densely packed

around the mean value of x and thus, oi is a good representation of the vec-

tors qi
1, . . . , q

i
m. Figure 19.3 illustrates two Gaussians with different standard

deviations derived from two summarizations of different quality. The Gaus-

sian displayed in the upper part of Figure 19.3 has a lower deviation because

the summarized original feature vectors are clustered. Its entropy will be

considerably lower than the entropy of the Gaussians depicted in the lower

part of Figure 19.3 which has a considerably higher standard deviation. This

is due to the randomized distribution of the summarized feature vectors in

the lower example.

Formally, let xoi = {dist(oi, qi
l) | 1 ≤ l ≤ m} be a random variable. The

Gaussian distribution G(xoi) of this random variable xoi is represented by

the mean

µG(xoi) =

∑m
l=1 dist(oi, qi

l)

m

and the standard deviation

σG(xoi) =

√√√√ 1

m
·

m∑
j=1

(dist(o, qj)− µG(xoi))
2.

202 19 Video Retrieval

x

x

Figure 19.3: Different Gaussian distributions of distances from original

objects to summarizations.

The entropy of xoi is then defined as

H(xoi) =

+∞∫
−∞

G(xoi) · log G(xoi) dxoi .

Let oj
i l be the l-th summarization vector of object Oi ∈ D in represen-

tation Rj and let xoj
i l

be the random variable built by the distances of the

original features of Oi in representation Rj to oj
i l as defined above. The

weight of oj
i l is defined as the entropy of the random variable xoj

i l
, formally

Wentropy(o
j
i l) = 1−H(xoj

i l
).

The weighting function evaluates to zero if the entropy equals 1, i.e. the

distances are distributed randomly. On the other hand, the weighting is near

1 if the distance distribution has a small standard deviation, i.e. the original

feature vectors are considerably dense around the summarization vector.

Let us note, that we can efficiently calculate the entropy by using an

appropriate five-order polynomial approximation that depends on the mean

and standard deviation.

19.3 Combining Multiple Representations for Similarity Detection 203

19.3 Combining Multiple Representations for

Similarity Detection

Having defined a weighting function for each summarization vector for each

representation of a database object, we can combine multiple representations

for the process of similarity detection. The key step for efficient similarity

search is the design of a dedicated distance measure that takes the weights

of each summarization vector into account.

In general, we can adopt any distance measure that has been designed for

multimedia objects to consider the weights of each feature vector. Let O =

(O1, . . . , OD) ∈ D be an arbitrary database object and let Q = (Q1, . . . , QD)

be the query object. Furthermore, let disti be the distance function for

comparing the i-th representation of O and Q, i.e. ai and Qi. Then, the

distance between query object Q and a database object O can be computed

by

dist(Q,O) =
D∑

i=1

λi · disti(Oi, Qi).

The most important part is to determine the weight λi of representa-

tion Ri. Obviously, λi should be derived from the weights of summariza-

tion vectors of the i-th representation of the query object Q, i.e. from

W (qi
1), . . . ,W (qi

ni
). The use of the weights of the query object Q only rather

is more intuitive than using the weights of both Q and O because we want

to ensure that we find database objects that are most similar to Q. Thus,

the weights of Q are much more important than that of the database object

O.

Regarding the distance function which should be used on the summariza-

tions in each representation, we propose to distinguish between higher-order

summarizations and first-order summarizations. Of course, we can combine

representations of higher-order summarizations with representations of first-

order representations.

204 19 Video Retrieval

19.3.1 Higher-order Summarizations

For higher-order summarizations, we use the Hausdorff distance which is

an approved and frequently used distance measure in multimedia similaritry

search to compute the similarity between a database object Oi = {oi
1, . . . , o

i
n}

and a query object Q = {qi
1, . . . , q

i
n} w.r.t. a given representation Ri. For-

mally, the Hausdorff distance is defined as

H(Qi, Oi) = max(h(Qi, Oi), h(Oi, Qi)),

where

h(A, B) = max
a∈A

min
b∈B

dist(a, b).

In fact, the Hausdorff distance relies on the distance of two specific

summarizations, one from Qi, say qi
h, and one from Oi, say oi

h. In other

words, there are two summarizations qi
h ∈ Qi and oi

h ∈ Oi, such that

H(Qi, Oi) = dist(qi
h, o

i
h). Then the weight of the i-th representation λi is

determined by the the weight of qi
h, formally

λi = W (qi
h).

Let us note that the distance function dist(a, b) between two summariza-

tion representatives a and b can be arbitrary. If the summarization represen-

tatives are feature vectors, e.g. derived by k-means clustering, any common

distance measure such as the Euclidean distance can be used. If the summa-

rization technique generates Gaussian distributions, e.g. using EM clustering,

we use the Kullback-Leibler distance [IL00].

19.3.2 First-order Summarizations

For first-order summarizations, we use the distance function proposed in

[CZ02] called ranked ViSig Similarity (V SS). This similarity measure relies

on a set of distances between summarizations of the query Q and a database

object O in each representation. Analogously to higher-order features, we

weight each distance with the weight of the participating query summariza-

tion.

19.4 Experimental Evaluation 205

Table 19.1: Summary of the Video Test Dataset.

Dataset # video avg. duration # video # audio

clips (mins:secs) features features

MUSICVIDEO 500 4:05 3 4

19.4 Experimental Evaluation

All experiments were performed on a workstation featuring a 1.8 GHz Opteron

CPU and 8GB RAM. We evaluated our concepts using a database of music

videos (MUSICVIDEO) collected by a focused web crawler. A short sum-

mary of the characteristics of the dataset is given in Table 19.1.

19.4.1 Multi-represented vs. Uni-represented Similar-

ity Search

First, we show that multi-represented similarity search is usually more ef-

fective than similarity search using only one representation. In addition, we

show in this subsection, that weighting the different representations yield

a significant benefit compared to un-weighted multi-represented similarity

detection.

In a first experiment, we performed video similarity search. As setup step,

we picked 50 query videos from our database and manually selected a set of

videos which are similar to the query videos. We compared recall and preci-

sion achieved on the best single representation to the query result computed

by using the ε-neighborhood and entropy weighting functions. Furthermore,

we investigated the performance of our weighting strategies on three summa-

rization techniques, namely video signatures (ViSig), K-Means and expecta-

tion maximization (EM). The results of this comparison is depicted in Figure

19.4. For all evaluated summarization techniques, we observed a significant

performance improvement when using multiple representations in compari-

son to the best single representation. Furthermore, our weighted approach

leads to better results on all considered summarization techniques.

206 19 Video Retrieval

0

0.25

0.5

0.75

1

0.33 0.66 1.00

recall

pr
ec
is
io
n

single combi (entropy) combi (epsilon)

(a) ViSig

0

0.25

0.5

0.75

1

0.33 0.66 1.00

recall

pr
ec
is
io
n

single combi (entropy) combi (epsilon)

(b) K-Means

0

0.25

0.5

0.75

1

0.33 0.66 1.00

recall

pr
ec
is
io
n

single combi (entropy) combi (epsilon)

(c) EM

Figure 19.4: Precision vs recall for different summarization techniques on

best single representation and two best weighting functions.

0

0.25

0.5

0.75

1

0.33 0.66 1.00
recall

pr
ec
is
io
n

epsilon entropy quality support
product sum min max

(a) ViSig

0

0.25

0.5

0.75

1

0.33 0.66 1.00recall

pr
ec
is
io
n

epsilon entropy quality support
product sum min max

(b) K-Means

0

0.25

0.5

0.75

1

0.33 0.66 1.00
recall

pr
ec
is
io
n

epsilon entropy quality support
product sum min max

(c) EM

Figure 19.5: Precision vs recall for different summarization techniques on

standard combination strategies and proposed weighted combination strate-

gies.

Using the same test setup as described before, we compared different stan-

dard combination techniques for multi-represented objects to our weighted

combination method is shown in Figure 19.5. We investigated the perfor-

mance of commonly used standard combination techniques such as product,

sum, minimum and maximum. In most cases, our weighted approach is

more effective than the standard combination algorithms. Especially the ε-

neighborhood and entropy weighting methods show good precision and recall

values for all considered summarization strategies.

19.4 Experimental Evaluation 207

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1
recall

pr
ec
is
io
n

epsilon entropy

(a) ViSig

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1
recall

pr
ec
is
io
n

epsilon entropy

(b) K-Means

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1
recall

pr
ec
is
io
n

epsilon entropy

(c) EM

Figure 19.6: Precision vs recall for different weighting strategies when per-

forming similarity search for videos of the same artist.

19.4.2 Multi-represented Similarity Search Applications

In the following, we identify two common applications that may pose different

challenges to multimedia similarity search techniques and propose the most

appropriate weighting functions for these tasks.

Application 1: Finding Similar Videos

Our first application addresses copyright issues. In order to detect plagiarism,

we want to find videos that are similar to a given query video. We argue

that in this application, similarity should be considered more locally because

several representations are usually almost identical. This is the case if e.g.

the image or audio part of a video is encoded in different resolutions or

sampling rates. To distinguish these videos from the rest of the database, it

is necessary to examine a small neighborhood. Otherwise, we would obtain

results which are similar, but do not not violate the copyright.

The ε-neighborhood weighting function follows this idea and can success-

fully be applied for this task as shown in Figure 19.4 and Figure 19.5.

208 19 Video Retrieval

Application 2: Finding Videos of a Given Artist

In our second application, we address content-based multimedia retrieval in

music video databases. Given a query video of a specific artist, we want all

videos of this artist in our database. Obviously, in this application, a more

global notion of similarity is necessary.

In order to demonstrate this idea, we selected a set of 20 query videos

associated with different artists. For each video in our query set, we extracted

all videos of the same artist from our database. The results of our artist

search are depicted in Figure 19.6. In all experiments, the entropy-based

weighting function outperforms the ε-neighborhood approach. This can be

explained by the fact that the entropy weighting function takes all distances

into account in opposite to the local character of the ε-neighborhood function.

Chapter 20

Audio Classification

The progress of computer hardware and software technology in recent years

made it possible to manage large collections of digital music on an average

desktop computer. Often meta information, such as artist, album or title,

is available along with the audio file. However, the amount and quality

of the available meta information in publicly accessible online databases,

e.g. freedb.org, is often limited. This meta data is especially useful when

searching for a specific piece of music in a large collection. To organize and

structure a collection, additional information such as the genre would be

very useful. Unfortunately, the genre information stored in online databases

is often incorrect or does not meet the user’s expectations.

In this chapter, a content-based hierarchical genre classification frame-

work for digitized audio is presented as sketched in Figure 20.1. It is often

problematic to assign a piece of music to exactly one class in a natural way.

Genre assignment is a somewhat fuzzy concept and depends on the taste of

the user. Therefore, our approach allows multi-assignment of one song to

several classes. The classification is based on feature vectors obtained from

three acoustic realms namely timbre, rhythm and pitch. Thus, each song

is described by multiple representations, each of them containing a set of

feature vectors, so called multiple instances.

Our main contributions are:

209

freedb.org

210 20 Audio Classification

Features

Timbre

Rhythm

Pitch

CPiece of Music Genre Tree Node Classifier

C

C C

Genre Tree Leaf

Figure 20.1: Architecture of the proposed framework.

1. a novel semi-supervised, hierarchical instance reduction technique which

enables us to use only a small number of relevant features for each clas-

sifier.

2. An effective and efficient framework for hierarchical genre classification

(HGC) of music pieces in a multi-representation and multi-instance

setting.

Let us note that our framework can also be used for genre classification (GC)

in flat class systems.

20.1 Efficient Hierarchical Genre Classifica-

tion

In this section, we describe our approach for classifying large collections of

music pieces in a genre taxonomy (cf. Figure 20.2). Since a music piece is

described by a set of feature vectors, we first describe a novel hierarchical

semi-supervised technique for instance reduction. The reduced descriptions

are used afterwards for hierarchical classification of music pieces with SVMs.

Furthermore, we use object adjusted weighting in order to take advantage

from multiple representations.

20.1 Efficient Hierarchical Genre Classification 211

root

Rock/Pop

Hard Rock

Latin

Brazil TangoSalsa

SwingBlues JazzBig Band

Jazz

PopMetal

TropicaliaSamba

Mariachi

Figure 20.2: An example genre hierarchy.

20.1.1 Hierarchical Instance Reduction.

Let DB be a set of music objects. We argue that a multi-instance object

X = {x1, . . . , xn} ∈ DB can be described by a vector Xreduced containing

minimal distances to a given set of so called support objects S = {s1, . . . , sm}
where m � n. Formally,

Xreduced = (min
xi∈X

dist(xi, s1), . . . , min
xi∈X

dist(xi, sm)).

The set S can either be calculated by a random selection of m instances from

DB , or it is possible to choose each si ∈ S as a centroid of a clustering that

can be calculated on a small sample of instances from DB . An example for

the instance reduction is illustrated in Figure 20.3.

The number of elements in Xreduced may still be too large for solving the

classification problem efficiently. Thus, we propose to exploit the hierarchical

organization of classes and to select only a small subset SN ⊆ S for each inner

node N of the genre taxonomy. The elements of SN should be selected so

that the subclasses CN of N can be distinguished in the best possible way.

Therefore, the subset of support objects is individual for each inner node N .

To calculate SN we suggest to apply a semi-supervised method based on

the information gain criterion. Let T (CN) be a set of all training objects

belonging to CN . The domains D(si) are discretized by using the method

described in [FI92]. After discretization the information gain criterion for

each attribute can by calculated by

InfoGain(si, T (CN)) = H(T (CN))−
∑

t∈T (CN)

|t|
|T (CN)|

·H(t),

212 20 Audio Classification

X, Y: sets of feature vectors
s1, s2, s3: support objects

0.3
5.4
5.1

reducedX

0.4
5.1
0.7

reducedY

s1
s2

s3

3.0
4.0

1.5 7.0 4.5

1.5
X

Y

Figure 20.3: Instance reduction with help of support objects.

where H(t) denotes the entropy. Finally, SN is calculated as follows: SN =

{sj ∈ S | |SN | = k∧∀sj ∈ SN∀a ∈ S : InfoGain(a, T (CN)) ≤ InfoGain(sj, T (CN))}.
After that, SN is used for training and classification on the node N .

20.1.2 Hierarchical Genre Classification by Using Mul-

tiple Representations.

A two layer classification process (2LCP) handles the hierarchical classifica-

tion problem on each inner node N of the genre taxonomy. This process acts

as a guidepost for the hierarchical classification. We train SVMs in the first

layer of the 2LCP that distinguishes only single classes Csingle in each repre-

sentation. Since standard SVMs are able to make only binary decisions we

apply the so-called one-versus-one (OvO) approach (cf. Figure 20.4) in order

to make a classification decision for more than two classes. We argue that for

our application the OvO approach is best suitable because the voting vectors

Φi provided by this method are a meaningful intermediate description that

is useful for solving the multi-assignment problem in the second layer of our

2LCP. In order to perform the multi-assignment we take advantage of the

class properties in our application domain. We limit the possible class combi-

nations to a subset Ccombi ⊂ 2Csingle because there exist several combinations

that do not make sense, e.g. a piece of music belonging to the class ’salsa’

20.1 Efficient Hierarchical Genre Classification 213

dA, dB: distances between ocurr and borders of its class

Class Set C = { , , }

dA
dB

Current object

Hyper-
planes
of SVMs

ocurr

Figure 20.4: Border distance based derivation of weights for a multi-

represented object.

is very implausible to be also in the class ’metal’. For this purpose, we only

take those c ∈ 2Csingle into account, which occur in the training set.

The SVM classifier in the second layer of the 2LPC uses an aggregation

of the voting vectors Φi from the first layer of the 2LPC as input to assign an

object to a class c ∈ CN = Csingle ∪ Ccombi. The second task that is handled

by the classifier in the second layer is the aggregation of multiple represen-

tations. The voting vectors Φ1, . . . , Φk provided by the first layer SVMs for

each representation R1, . . . , Rk ∈ R are aggregated by using a weighted linear

combination V =
∑k

i=1 ωiΦi. Then V is used as the input for the classifier

in the second layer. The weights ωi in the combination are calculated by

using object adjusted weighting. The intuition behind the object adjusted

weighting is that the current object ocurr used in training or to be classified

needs to have a sufficient distance from any of the other classes. Furthermore,

the closer surrounding of the hyperplane is treated in a more sensitive way.

More formally, let cj be the class of ocurr determined by majority vote in Φi,

then ωi = sigmoid(minci∈Csingle∧ci 6=cj
dist(ocurr,HyperPlane(cj, ci))), where

HyperPlane(cj, ci) denotes the maximum margin hyperplane separating the

classes cj and ci, sigmoid denotes sigmoid function defined as sigmoid(x) =
1

1+exp(α×x+β)
. A suitable optimization algorithm (e.g. Levenberg-Marquardt

algorithm [Lev44]) is used to determine the parameters α and β that min-

imize the least squares error for the sigmoid target function accuracy(o) =

214 20 Audio Classification

Table 20.1: Summary of the Audio Test Dataset.

Dataset # music avg. duration # classes

pieces (mins:secs)

SONGDATA 486 4:14 15

1
1+exp(α×x+βj)

given the observed pairs of confidence ranges and classification

accuracy. Figure 20.4 depicts an example of weight calculation where the

weight ω should be set according to the value of dA.

20.2 Experimental Evaluation

We implemented our approach in Java 1.5 and performed all experiments on

a Pentium IV workstation equipped with 2 GB main memory. The genre

hierarchy depicted in Figure 20.2 was used in all following experiments. A

brief description of the SONGDATA dataset used for the evaluation can be

found in Table 20.1.

We performed 10-fold cross-validation for evaluating the classification ac-

curacy. In the following, we present the results of our experiments with

particular emphasis to efficiency and effectiveness.

20.2.1 Effectiveness

In the first experiment, we compared the quality of GC on multiple, and HGC

on single and multiple representations. Figure 20.5 depicts the experimental

results. When working with multiple representations, our HGC approach

(70.03%) achieves higher classification accuracy than using a single represen-

tation only. Furthermore, the classification accuracy of HGC is comparable

to that of the flat GC approach (72.01%).

In the next experiment, we investigated how the classification accuracy

of our approach is influenced by the number and the choice of the support

20.2 Experimental Evaluation 215

40 50 60 70 80

AUTOCORRELATION

MFCC

ONSET

ROLLOFFS

THRESHOLD CROSSINGS

SPECTRAL CENTROID

SPECTRAL FLUX

SPECTRAL MEDIAN

SPECTRAL MEAN

SPECTRAL SKEW

SPECTRAL STDDEV

GC

HGC

Classification Accuracy %

Figure 20.5: Accuracy for classification on single- and multi-

representations.

50

55

60

65

70

75

0 100 200 300 400 500
Support Objects

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y,

 %

our approach random

Figure 20.6: Accuracy for classification on single- and multi-

representations.

objects. For choosing SN , we either randomly picked the support objects

or applied our strategy described in Section 20.1. The experimental results

are depicted in Figure 20.6 and show that our approach always outperforms

the random selection. For both approaches, the accuracy increases with an

increasing number of support objects. However, especially for a low number

of support objects, the random approach achieves a lower accuracy compared

to our method. For a high number of support objects, both approaches yield

a similar classification accuracy.

216 20 Audio Classification

0

50

100

150

200

250

300

350

0 100 200 300 400 500
Support Objects

C
la

ss
ifi

ca
tio

n
Ti

m
e

pe
r O

bj
ec

t [
m

se
c] HGC GC

Figure 20.7: Classification time per object.

20.2.2 Efficiency

In a last experiment, we examined the runtime performance of GC and HCG

for a varying number of support objects. As depicted in Figure 20.7, the

runtime increases with an increasing number of support objects. The higher

the number of support objects, the larger the runtime difference. Altogether,

our approach achieves a good trade-off between the quality of the result and

the required runtime when using 300 support objects.

20.3 Prototype

In the following, we present MUSCLE [BKK+06], a prototype of a powerful

hierarchical genre classification tool for digitized audio. MUSCLE is based

on the theoretical foundations introduced in this chapter and allows the user

to organize large music collections in a genre taxonomy and to modify class

assignments on the fly. It is often problematic to assign a piece of music to

exactly one class in a natural way. Genre assignment is a somewhat fuzzy

concept and depends on the taste of the user. Therefore, MUSCLE allows

multi-assignments of one song to several classes. The classification is based

on feature vectors obtained from three acoustic realms namely timbre, rhythm

and pitch.

20.4 Practical Benefits 217

(a) Multi-Assignment of Songs (b) User Feedback

Figure 20.8: MUSCLE User Interface.

20.4 Practical Benefits

MUSCLE is implemented in C/C++ and runs on the Windows platform. Its

hierarchical playlist acts as a jukebox. The installation archive of MUSCLE

contains a default genre taxonomy including the necessary training data in

the form of feature vectors for each song. This data is used in the demonstra-

tion. Using aggregated information such as feature vectors makes it possible

to share the training data without having to distribute the underlying mu-

sic data. Classes and training data in the genre taxonomy can be deleted,

moved or added by the user. When the user commits the changes of the class

hierarchy or of the corresponding training data, MUSCLE trains the affected

classifiers. Note that usually only a small subset of the entire classifier hier-

archy has to be trained because a modification at a node requires a partial

adaptation of the node and all parent nodes only. It is also possible to start

the training automatically after each modification or to run the training in

the background. When the user is satisfied with the training setup, a folder

to automatically classify all contained songs can be selected.

218 20 Audio Classification

Fig. 20.8 illustrates MUSCLE’s user interface. In the main window the

playlist containing the classification result in form of a genre tree is displayed.

An example for a multiple assignment of the song ’Anticipating’ to the classes

’pop’ and ’rhythm & base’ can be seen in Fig. 20.8(a). In case the user wants

to manually adjust the genre assignment of a song, entries can be re-arranged

using drag & drop as shown in Fig. 20.8(b).

Part VI

Conclusions and Outlook

219

Chapter 21

Summary

The analysis of multimedia data is a challenging field of research, especially

because the amount of data keeps growing rapidly due to advances in sensor,

transmission and storage technology. This increases the need for solutions

which can handle the enormous amount of data in an efficient way. The

methods and concepts presented in this thesis contribute to the solution of

novel analysis algorithms with a special emphasis on the efficiency.

This chapter summarizes the main contributions of this thesis. Directions

for possible future research are given in the next chapter (Chapter 22).

221

222 21 Summary

21.1 Summary of Contributions

The rapidly increasing amount of data stored in multimedia databases re-

quires efficient and effective analysis methods to make full use of the col-

lected data. This thesis contributes in the field of analyzing spatial, temporal

and video & audio data. It proposes new and original solutions for acceler-

ating collision queries during the Digital Mock-Up process, proposes a new

threshold-based similarity model for time series, shows how to efficiently per-

form reverse k-nearest neighbor search in arbitrary metric spaces, and deals

with video retrieval and audio classification.

In the following, we give a detailed summary of these contributions.

21.1.1 Preliminaries (Part I)

The preliminaries in Part I provide some motivation and illustrate the topic

and the background of this work. For each area, we describe typical problems

and briefly sketch an efficient solution for these problems. We also review

the related work and introduce the datasets which are used in the following

parts to evaluate the new techniques.

21.1.2 Analysis of Spatial Data (Part II)

This part introduces a new generic approach for accelerating spatial query

processing for the RI-tree. We use the promising concept of interval groups

and show how we can efficiently store them by means of data compression

techniques within ORDBMSs. In particular, we introduce a quick spatial

data compressor QSDC in order to emphasize those packer characteristics

which are important for efficient spatial query processing, i.e. good compres-

sion ratio and high unpack speed. Furthermore, we introduce a cost-based

decompositioning algorithm for complex spatial objects, called GroupInt.

GroupInt takes the decompression cost of the interval groups and their ac-

cess probabilities into account. The approach is presented primarily for the

21.1 Summary of Contributions 223

RI-tree, but it can be adapted to other relational index structures with only

a few modifications. So the decompositioning algorithm is applicable for

different spatial index structures, data space resolutions and compression

algorithms. We show in a broad experimental evaluation that our new ap-

proach, i.e. the combination of GroupInt and QSDC, accelerates the RI-tree

by up to two orders of magnitude.

21.1.3 Analysis of Temporal Data (Part III)

Part III proposes a novel query type on time series databases called threshold

query. Given a query object Q and a threshold τ , a threshold query returns

time series in a database that exhibit the most similar threshold-crossing time

interval sequence. The threshold-crossing time interval sequence of a time

series represents the interval sequence of elements that have a value above

the threshold τ . We mentioned several practical application domains for

such a query type. In addition, we presented a novel approach for managing

time series data to efficiently support such threshold queries. Furthermore,

we developed a scalable algorithm to answer threshold queries for arbitrary

thresholds τ . A broad experimental evaluation demonstrates the importance

of the new query type for several applications and shows the scalability and

quality of our proposed technique in comparison to straightforward as well

as existing approaches.

21.1.4 Analysis using Reverse Nearest Neighbor Queries

(Part IV)

In Part IV, we propose the MRkNNCoP-Tree as the first index structure for

reverse k-nearest neighbor (RkNN) search in general metric spaces where the

value for k is specified at query time. Our index is based on the pruning power

of the kNN distances of the database points. We propose to approximate

these kNN distances conservatively and progressively by a simple function

in order to avoid a significant storage overhead. We demonstrate how these

approximation functions can efficiently be determined and how any tree-like

224 21 Summary

metric index structure can be built with this aggregated information. In our

broad experimental evaluation, we illustrate that our MRkNN-CoP-Tree effi-

ciently supports the generalized RkNN search in arbitrary metric spaces. In

particular, our approach yields a significant increase in speed over the sequen-

tial scan and naive indexing solutions. In addition, we demonstrated that

our proposed concepts are also applicable for Euclidean RkNN search. We

show that our MRkNNCoP-Tree even outperforms the only existing solution

for RkNN search for Euclidean vector data.

21.1.5 Analysis of Video & Audio Data (Part V)

Similarity search in multimedia databases can be improved by using multi-

ple representations of the multimedia objects. For example, when searching

for similar videos, music features such as rhythm and pitch as well as image

features such as color histograms and textures can be used. Multiple rep-

resentations and multiple instances can also be beneficially applied to data

mining tasks, such as classification.

In the first half of Part V, we present a method for effective similarity

search in multimedia databases that takes multiple representations of the

database objects into account. In particular, we proposed several weight-

ing functions for summarization vectors of different representations of each

database object. Our concepts are independent of the underlying summa-

rization method and compute a weight for each summarization vector of each

representation for each object separately. Using these weighting factors, we

further show how well-known distance measures for non-multi-represented

multimedia objects can be adapted to multi-represented objects. In our ex-

periments we evaluate the proposed methods and show the benefits of our

approach. The second half of Part V introduces a framework for hierarchi-

cal music classification using multiple representations consisting of multiple

instances. Our approach is able to handle multiple characteristics of music

content and achieves a high classification accuracy efficiently, as shown in

our experiments performed on a real-world dataset. We also developed a

demonstration tool called MUSCLE which builds on this framework. While

21.1 Summary of Contributions 225

approaches exist in the field of musical genre classification, none of them fea-

tures a hierarchical classification in combination with interactive user feed-

back and a flexible multiple assignment of songs to classes. MUSCLE allows

the user to organize large music collections in a genre taxonomy and to mod-

ify class assignments on the fly.

226 21 Summary

Chapter 22

Outlook

In this chapter, we point out potentials for future work.

22.1 Future Work

In conclusion, let us emphasize the potentials of the proposed methods for

analyzing multimedia data.

• In Part II, we presented a cost-based decomposition approach for vox-

elized data on the basis of interval groups. The fact that the lineariza-

tion of the voxels leads to patterns in the byte representation of a spatial

object is currently exploited for efficient storage purposes only. A new

spatial similarity model which treats the byte sequence as a string of

characters could be developed from this representation. A promising

approach might be to process the byte-string using the sequence-based

similarity models from the field of bioinformatics which extract com-

mon subsequences. Another approach would be to transform the spatial

objects into time series with the help of space-filling curves. Instead

of interpreting the byte representation of an object as a time series

consisting of 8-bit measurement points, it could be more promising to

measure the density of the spatial object around each voxel. By count-

227

228 22 Outlook

Figure 22.1: A cylinder as approximation of the segments in the parameter-

space.

ing the number of voxels in an ε-environment for each position of the

space-filling curve, an object could be transformed into a smooth time

series. The similarity between objects could then be measured by using

the threshold-based technique for time series introduced in Part III.

• Currently, the threshold-based approach in Part III does not perform

any grouping of the segments into which a time series is transformed.

However, grouping spatial primitives can dramatically improve the per-

formance, as we have shown, by introducing the interval groups. Sim-

ilar to the interval groups in Part II, spatially close segments in the

parameter space could be grouped together before indexing them. A

promising conservative approximation of the segments is a cylinder as

illustrated in Figure 22.1. It can be described by an axis and the radius,

i.e. it needs only one additional parameter compared to a segment.

• We use the Sum of Minimum Distances (SMD) as set-valued distance

function for computing the threshold similarity of two time series in

Part III. The SMD consists of two parts, the sum of the nearest-

neighbor distances from the query object to the database object and

the sum of the nearest-neighbor distances from the database object to

the query object. The second part of the SMD could also be carried

out as a R1NN query. However, the R1NN query has to be performed

on a per-object basis and not on the entire database.

• The video retrieval and the audio classification presented in Part V of

this thesis rely on low-level features only. Nowadays, there is a shift

22.1 Future Work 229

of interest towards high-level features. High-level features describe the

content of multimedia files on a semantic level, for example, by us-

ing keywords. Such an object description can be used to enhance the

query process. For example, keywords can be used to formulate seman-

tic queries for a retrieval processor. Another application of high-level

features is a semantic analysis of the objects. It is possible, for ex-

ample, to associate high-level semantics to low-level features with the

help of relevance feedback or classification. In the area of image an-

notation, we could divide an image into several segments, semantically

annotate a certain segment and then apply the same annotation to all

other segments which have similar low-level feature values.

230 22 Outlook

List of Figures

2.1 Multi-step query processing. 15

2.2 Virtual prototype of a car. 16

2.3 Common queries on spatial data. 17

2.4 Scan conversion on a triangulated surface. 19

2.5 Filling a closed voxelized surface. 20

2.6 Different space-filling curves in a two-dimensional space. . . . 21

2.7 Conversion from a triangulated surface into an interval sequence. 22

2.8 Patterns contained in a linearized object. 24

2.9 Euclidean distance between time series. 29

2.10 Feature based dimensionality reduction (GEMINI approach). . 30

2.11 Patients heart rate and systolic blood pressure after drug treat-

ment. 32

2.12 Detection of associations between different environmental and

climatical attributes. 33

2.13 Example time series taken from the GunX dataset. 36

2.14 Example time series taken from the Trace Data dataset. . . . 37

2.15 Example time series taken from the Cylinder-Bell-Funnel dataset. 37

2.16 Example time series taken from the Synthetic Control dataset. 38

2.17 Applications for RkNN queries. 40

2.18 Road network graph of the city of Oldenburg. 43

2.19 An image described by multiple representations. 46

2.20 Screenshots of similar music videos. 49

231

232 LIST OF FIGURES

2.21 Conical representation of the HSV color space. 50

2.22 Basic idea of a Support Vector Machine (SVM). 51

4.1 Voxel Linearization Process Chain 62

4.2 Intervals and interval groups. 63

5.1 Pattern derivation by linearizing a voxelized object. 68

5.2 Flow diagram of QSDC compression algorithm. 69

6.1 Query distribution functions QDFi(x, y). 74

6.2 Computation of the access probability of interval groups. . . . 75

6.3 Evaluation cost costeval for different data compressors. 76

6.4 Decomposition Algorithm GroupInt. 77

7.1 Analogous architectures for the object-relational embedding. . 80

7.2 SQL statements for spatial object intersection, based on inter-

val group sequences. 84

7.3 Intersection optimizations for interval groups. 86

8.1 Histograms for intervals and gaps. 91

8.2 Storage requirements for the RI-tree (PLANE). 92

8.3 Update operation cost for the RI-tree (CAR)

(i) numerous intervals, (ii) one interval group, (iii) interval

groups generated by GroupInt(QSDC). 93

8.4 MaxGap(DC) evaluated for boolean intersection queries on

the RI-tree (PLANE). 94

8.5 Filter quality for boolean intersection queries on the RI-tree

(CAR). 95

8.6 MaxGap(QSDC) evaluated for boolean intersection queries

for the RI-tree using different resolutions. 96

8.7 Window queries (SEQUOIA). 98

9.1 Threshold-based detection of risk patients for heart diseases. . 104

LIST OF FIGURES 233

9.2 Threshold-based classification of time series. 105

9.3 The nine basic distances between two intervals A and B. . . . 106

10.1 Threshold-Crossing Time Intervals. 110

11.1 Mapping of Time Intervals to the Time Interval Plane. 117

11.2 Time Intervals in Parameter Space for Arbitrary Threshold. . 118

11.3 Determination of threshold-crossing time intervals from pa-

rameter space. 120

11.4 Time Series Decomposition. 122

11.5 Time Series Decomposition Example. 123

11.6 Linear time series decomposition. 124

12.1 Properties of threshold queries w.r.t. object pruning. 131

12.2 Threshold-based ε-range query algorithm. 133

12.3 Example of the threshold-based nearest-neighbor query. 140

12.4 Step-wise lower-bounding distance computation of the threshold-

based nearest-neighbor query example. 141

12.5 Threshold-based nearest-neighbor query algorithm. 143

13.1 Scalability of the threshold-query algorithm against database

size. 148

13.2 Scalability of the threshold-query algorithm against time series

length. 149

13.3 Pruning Power of the threshold-based nearest-neighbor algo-

rithm. 150

13.4 Comparison to Traditional Distance Measures. 151

13.5 Comparison of Different Interval Similarity Distances. 152

13.6 Comparison of Different Set Similarity Distances. 153

14.1 Example for a RkNN query with k = 1. 160

234 LIST OF FIGURES

15.1 Using conservative and progressive approximation for RkNN

search. 163

15.2 Illustration of the relationships between k and the kNN dis-

tance for different synthetic data distributions. 165

15.3 Visualizations of the conservative and progressive approxima-

tions of the k-nearest neighbor distances of a sample object

for different values of k. 166

15.4 Constraints on the optimal line: Line intersects at least a) one

point of the approximated set (Lemma 15.1) b) one point of

the UCH (Lemma 15.2) . 170

15.5 Illustration of an anchor point. 172

15.6 Illustration of the proof of Lemma 15.3: Monotonicity of the

error of the conservative approximation of kNN distances . . . 173

15.7 Finding the optimal approximation. 177

15.8 Aggregated approximation lines. 179

16.1 The RkNN search algorithm. 182

17.1 Runtime w.r.t. database size on Oldenburg dataset. 184

17.2 Runtime w.r.t. parameter k on Oldenburg dataset (2.500 data

objects). 185

17.3 Pruning capability w.r.t. parameter k on Oldenburg data set

(5.000 data objects). 186

17.4 Comparison of runtime w.r.t. database size. 187

17.5 Comparison of runtime w.r.t. parameter k. 187

17.6 Pruning capability w.r.t. parameter k on color texture dataset. 189

19.1 Basic notations. 196

19.2 Illustration of three different weighting functions. 199

19.3 Different Gaussian distributions of distances from original ob-

jects to summarizations. 202

LIST OF FIGURES 235

19.4 Precision vs recall for different summarization techniques on

best single representation and two best weighting functions. . 206

19.5 Precision vs recall for different summarization techniques on

standard combination strategies and proposed weighted com-

bination strategies. 206

19.6 Precision vs recall for different weighting strategies when per-

forming similarity search for videos of the same artist. 207

20.1 Architecture of the proposed framework. 210

20.2 An example genre hierarchy. 211

20.3 Instance reduction with help of support objects. 212

20.4 Border distance based derivation of weights for a multi-represented

object. 213

20.5 Accuracy for classification on single- and multi-representations. 215

20.6 Accuracy for classification on single- and multi-representations. 215

20.7 Classification time per object. 216

20.8 MUSCLE User Interface. 217

22.1 A cylinder as approximation of the segments in the parameter-

space. 228

236 LIST OF FIGURES

List of Tables

1.1 List of author’s publications on which this thesis is based. . . 6

4.1 Operators on interval groups. 64

4.2 Operators applied on the example given in Figure 4.2. 65

4.3 Storage of interval groups applied on the example given in

Figure 4.2. 66

8.1 Summary of the Spatial Test Datasets. 90

8.2 GroupInt(DC) evaluated for boolean∗ and ranking∗∗ intersec-

tion queries for the RI-tree (PLANE). 96

8.3 GroupInt(ZLIB) evaluated for boolean intersection queries

for the RI-tree with different resolutions (SEQUOIA). 97

12.1 Notations and operations on time interval sets. 129

13.1 Summary of the Temporal Test Datasets. 146

17.1 Summary of the RkNN Test Datasets. 184

19.1 Summary of the Video Test Dataset. 205

20.1 Summary of the Audio Test Dataset. 214

237

238 LIST OF TABLES

Bibliography

[ABK+06] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and

M. Renz. Efficient reverse k-nearest neighbor search in arbitrary

metric spaces. In Proc. SIGMOD, 2006.

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity

search in sequence databases. In Proc. 4th Conf. on Foundations

of Data Organization and Algorithms, 1993.

[AKK+06a] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and

M. Renz. Similarity search on time series based on threshold

queries. In Proc. EDBT, 2006.

[AKK+06b] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin,

and M. Renz. Threshold similarity queries in large time series

databases. In Proc. ICDE, 2006.

[AM99] R. J. Alcock and Y. Manolopoulos. Time-series similarity queries

employing a feature-based approach. In Proc. 7th Hellenic Con-

ference on Informatics, Ioannina, Greece, 1999.

[And79] A. M. Andrew. Another efficient algorithm for convex hulls

in two dimensions. Information Processing Letters, 9:216–219,

1979.

[AY99] Y. A. Aslandogan and C. T. Yu. Techniques and systems for

image and video retrieval. IEEE Transactions on Knowledge

and Data Engineering, 11(1):56–63, 1999.

239

240 BIBLIOGRAPHY

[BC94] D. Berndt and J. Clifford. Using dynamic time warping to find

patterns in time series. In AAAI-94 Workshop on Knowledge

Discovery in Databases (KDD-94), 1994.

[BHKS93] T. Brinkhoff, H. Horn, H.-P. Kriegel, and R. Schneider. A stor-

age and access architecture for efficient query processing in spa-

tial database systems. In SSD, 1993.

[BKK96] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-Tree: An

index structure for high-dimensional data. In Proc. VLDB, 1996.

[BKK+04] S. Brecheisen, H.-P. Kriegel, P. Kunath, M. Pfeifle, and

M. Renz. Der virtuelle prototyp: Datenbankunterstützung für

cad-anwendungen. Datenbank-Spektrum, 4(10):22–29, 2004.

[BKK+06] S. Brecheisen, H.-P. Kriegel, P. Kunath, A. Pryakhin, and

F. Vorberger. Muscle: Music classification engine with user feed-

back. In Proc. EDBT, 2006.

[BKKP06] S. Brecheisen, H.-P. Kriegel, P. Kunath, and A. Pryakhin. Hier-

archical genre classification for large music collections. In ICME,

2006.

[BKS93] T. Brinkhoff, H.-P. Kriegel, and R. Schneider. Comparison of ap-

proximations of complex objects used for approximation-based

query processing in spatial database systems. In Proc. ICDE,

1993.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The

R*-Tree: An efficient and robust access method for points and

rectangles. In Proc. SIGMOD, pages 322–331, 1990.

[BSSJ99] R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. Devel-

oping a datablade for a new index. In Proc. ICDE, 1999.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data

compression algorithm. Technical Report 124, Digital Systems

Research Center, Palo Alto, California, 1994.

BIBLIOGRAPHY 241

[CCF+99] W. Chen, J.-H. Chow, Y.-C. Fuh, J. Grandbois J., M. Jou,

N. Mattos, B. Tran, and Y. Wang. High level indexing of user-

defined types. In Proc. VLDB, 1999.

[CF91] K. B. Clark and T. Fujimoto. Product Development Performance

- Strategy, Organization, and Management in the World Auto

Industry. Harvard Business Scholl Press, Boston, MA, 1991.

[CF99] K. Chan and W. Fu. Efficient time series matching by wavelets.

In Proc. ICDE, 1999.

[CN04] Y. Cai and R. Ng. Index spatio-temporal trajectories with

chebyshev polynomials. In Proc. SIGMOD, 2004.

[Cor99a] IBM Corp. Ibm db2 universal database application development

guide, version 6, 1999. Armonk, NY.

[Cor99b] Oracle Corp. Oracle8i data cartridge developer’s guide, release

2 (8.1.6), 1999. Redwood Shores, CA.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: an efficient access

method for similarity search in metric spaces. In Proc. VLDB,

1997.

[CSL99] H. S. Chang, S. Sull, and S. U. Lee. Efficient video indexing

scheme for content-based retrieval. IEEE Transactions on Cir-

cuits and Systems for Video Technology, 9, 1999.

[CV95] C. Cortes and V. Vapnik. Support-vector networks. Machine

Learning, 20(3), 1995.

[CVK04] C. H. L. Costa, J. D. Jr. Valle, and A. L. Koerich. Automatic

classification of audio data. IEEE Transactions on Systems,

Man, and Cybernetics, 3(6), 2004.

[CW00] A. Cannane and H. Williams. A compression scheme for large

databases. In Australasian Database Conference, 2000.

242 BIBLIOGRAPHY

[CZ02] S.S. Cheung and A. Zakhor. Efficient video similarity measure-

ment with video signature. In Proc. ICIP, 2002.

[DeM97] M. DeMers. Fundamentals of Geographic Information Systems.

John Wiley & Sons, New York, 1997.

[Deu96] P. Deutsch. Rfc1951, deflate compressed data format specifica-

tion, May 1996. http://rfc.net/rfc1951.html.

[DP03] C. Ding and H. Peng. Minimum redundancy feature selection

from microarray gene expression data. In Proc. CSB, 2003.

[EM97] T. Eiter and H. Mannila. Distance measures for point sets and

their computation. Acta Informatica, 34(2):103–133, 1997.

[ES93] M. Egenhofer and J. Sharma. Topological relations between

regions in r2 and z2. In SSD, 1993.

[FFS00] J. C. Freytag, M. Flasza, and M. Stillger. Implementing geospa-

tial operations in an object-relational database system. In SS-

DBM, 2000.

[FI92] U. M. Fayyad and K. B. Irani. On the handling of continuous-

valued attributes in decision tree generation. Machine Learning,

8, 1992.

[FJM97] C. Faloutsos, H. V. Jagadish, and Y. Manolopoulos. Analysis of

the n-dimensional quadtree decomposition for arbitrary hyper-

rectangles. TKDE, 9(3):373–383, 1997.

[FL95] C. Faloutsos and K.-I. Lin. Data-mining and visualization of

traditional and multimedia datasets. In Proc. SIGMOD, 1995.

[FM84] A. Fournier and D. Y. Moniwno. Triangulating simple polygons

and equivalent problems. In ACM Trans. Graph., 3, 2, pages

153–174, 1984.

[FR89] C. Faloutsos and S. Roseman. Fractals for secondary key re-

trieval. In PODS’89, 1989.

http://rfc.net/rfc1951.html

BIBLIOGRAPHY 243

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Maolopoulos. Fast sub-

sequence matching in time-series databases. In Proc. SIGMOD,

1994.

[FvDFH00] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Com-

puter Graphics: Principles and Practice. Addison-Wesley Long-

man, 2000.

[Gae95] V. Gaede. Optimal redundancy in spatial database systems. In

SSD, 1995.

[Geu01] P. Geurts. Pattern extraction for time series classification. In

PKDD, 2001.

[GFKS02] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. Smola. Multi-

instance kernels. In Proc. ICML, 2002.

[GG98] V. Gaede and O. Günther. Multidimensional access methods.

ACM Computing Surveys, 30(2):170–231, 1998.

[GGM02] H. Greenspan, J. Goldberger, and A. Mayer. A probabilistic

framework for spatio-temporal video representation & indexing.

In Proc. ECCV, 2002.

[Gut84] A. Guttman. R-Trees: A dynamic index structure for spatial

searching. In Proc. SIGMOD, 1984.

[HB01] A. Hampapur and R. M. Bolle. Comparison of distance measures

for video copy detection. In IEEE International Conference on

Multimedia and Expo (ICME’01), page 188, 2001.

[HS95] G. R. Hjaltason and H. Samet. Ranking in spatial databases.

In Proc. SSD, 1995.

[HSD73] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural fea-

tures for image classification. IEEE TSAP, 3(6):6103–623, 1973.

[Huf52] D. A. Huffman. A method for the construction of minimum-

redundancy codes. Proc. Inst. Radio Engineers, 40(9):1098–

1101, 1952.

244 BIBLIOGRAPHY

[IL00] G. Iyengar and A. B. Lippman. Distributional clustering for

content-based retrieval of images and videos. In Proc. Int. Conf.

Image Processing, pages 81–84, 2000.

[IS98] Inc. Informix Software. Datablade developers kit user’s guide,

version 3.4, 1998. Menlo Park, CA.

[Jag90] H. V. Jagadish. Linear clustering of objects with multiple at-

tributes. In Proc. SIGMOD, 1990.

[Joh06] T. K. Johnson. A reformulation of Coombs’ Theory of Unidi-

mensional Unfolding by representing attitudes as intervals. PhD

thesis, University of Sydney, Psychology, Sydney, Australia,

2006.

[Kau87] A. Kaufman. An algorithm for 3d scan-conversion of polygons.

In Proc. Eurographics, 1987.

[KBS93] H.-P. Kriegel, T. Brinkhoff, and R. Schneider. Efficient spatial

query processing in geographic database systems. IEEE Data

Engineering Bulletin, 16(3):10–15, 1993.

[KCMP01] E. Keogh, K. Chakrabati, S. Mehrotra, and M. Pazzani. Locally

adaptive dimensionality reduction for indexing large time series

databases. In Proc. SIGMOD, 2001.

[KF02] E. Keogh and T. Folias. The ucr time series data mining archive,

2002. http://www.cs.ucr.edu/~eamonn/TSDMA/index.html.

[KJF97] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting

ad hoc queries in large datasets of time sequences. In Proc.

SIGMOD, 1997.

[KKKP06] H.-P. Kriegel, P. Kröger, P. Kunath, and A. Pryakhin. Effective

similarity search in multimedia databases using multiple repre-

sentations. In Proc. MMM, 2006.

http://www.cs.ucr.edu/~eamonn/TSDMA/index.html

BIBLIOGRAPHY 245

[KKPR04a] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Effective

decompositioning of complex spatial objects into intervals. In

DBA, 2004.

[KKPR04b] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Object-

relational management of complex geographical objects. In

ACM-GIS, 2004.

[KKPR05] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Distributed

intersection join of complex interval sequences. In Proc. DAS-

FAA, 2005.

[KKPS04] H.-P. Kriegel, P. Kröger, A. Pryakhin, and M. Schubert. Us-

ing support vector machines for classifying large sets of multi-

represented objects. In Proc. SDM, 2004.

[KM00] F. Korn and S. Muthukrishnan. Influenced sets based on reverse

nearest neighbor queries. In Proc. SIGMOD, 2000.

[KP01] E. Keogh and M. Pazzani. Derivative dynamic time warping. In

Proc. SDM, 2001.

[KPP+03] H.-P. Kriegel, M. Pfeifle, M. Pötke, M. Renz, and T. Seidl. Spa-

tial data management for virtual product development. Com-

puter Science in Perspective: Essays Dedicated to Thomas

Ottmann, 2598:216–230, 2003.

[KPPS02] H.-P. Kriegel, M. Pfeifle, M. Pötke, and T. Seidl. A cost model

for interval intersection queries on ri-trees. In SSDBM, 2002.

[KPPS03a] H.-P. Kriegel, M. Pfeifle, M. Pötke, and T. Seidl. The paradigm

of relational indexing: a survey. In BTW, 2003.

[KPPS03b] H.-P. Kriegel, M. Pfeifle, M. Pötke, and T. Seidl. Spatial query

processing for high resolutions. In Proc. DASFAA, 2003.

[KPS00] H.-P. Kriegel, M. Pötke, and T. Seidl. Managing intervals effi-

ciently in object-relational databases. In Proc. VLDB, 2000.

246 BIBLIOGRAPHY

[KPS01] H.-P. Kriegel, M. Pötke, and T. Seidl. Interval sequences: An

object-relational approach to manage spatial data. In SSTD,

2001.

[KR04] E. Keogh and C. Ratanamahatana. Making time-series classifi-

cation more accurate using learned constraints. In SDM, 2004.

[KRSB99] K. V. R. Kanth, S. Ravada, J. Sharma, and J. Banerjee. Index-

ing medium-dimensionality data in oracle. In Proc. SIGMOD,

1999.

[KS04] H.-P. Kriegel and M. Schubert. Classification of websites as sets

of feature vectors. In Proc. DBA, 2004.

[Lev44] K. Levenberg. A method for the solution of certain problems in

least squares. Quarterly J. Appl. Math., 2:164–168, 1944.

[LZ77] A. Lempel and J. Ziv. A universal algorithm for sequential

data compression. IEEE Transactions on Information Theory,

23(3):337–343, 1977.

[MH99] T. Möller and E. Haines. Real-Time Rendering. A.K. Peters

Ltd., Natick, MA, 1999.

[MJFS96] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis

of the clustering properties of hilbert space-filling curve. Tech-

nical Report 3611, University of Maryland, College Park, MD,

1996.

[MP94] C. B. Medeiros and F. Pires. Databases for gis. SIGMOD Record,

23(1):107–115, 1994.

[MPT99] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy. Six degree-of-

freedom haptic rendering using voxel sampling. In SIGGRAPH,

1999.

[MTT00] Y. Manolopoulos, Y. Theodoridis, and V. J. Tsotras. Advanced

Database Indexing. Kluwer, Boston, 2000.

BIBLIOGRAPHY 247

[NWH01] M. Naphade, R. Wang, and T. Huang. Multimodal pattern

matching for audio-visual query and retrieval. In Proc. SPIE,

2001.

[Ore89] J. Orenstein. Redundancy in spatial databases. In Proc. SIG-

MOD, 1989.

[PCST99] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin dags

for multiclass classification. In Proc. NIPS, 1999.

[RH93] M. A. Roth and S. J. Van Horn. Database compression. SIG-

MOD Record, 22(3), 1993.

[RKBL05] C. A. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi.

A novel bit level time series representation with implication for

similarity search and clustering. In Proc. 9th Pacific-Asian Int.

Conf. on Knowledge Discovery and Data Mining (PAKDD’05),

Hanoi, Vietnam, 2005.

[Rov02] D. Roverso. Plant diagnostics by transient classification: The

aladdin approach. IJIS, Special Issue on Intelligent Systems for

Plant Surveillance and Diagnostics, 17:767–790, 2002.

[SAA00] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Re-

verse nearest neighbor queries for dynamic databases. In Proc.

DMKD, 2000.

[Sai94] N. Saito. Local feature extraction and its application using a

library of bases. PhD thesis, Yale University, New Haven, Con-

necticut, 1994.

[SBP98] H.-P. Kriegel S. Berchtold and M. Pötke. Database support for

concurrent digital mock-up. In Proc. IFIP Int. Conf. PROLA-

MAT, 1998.

[Sch91] M. Schroeder. Fractals, Chaos, Power Laws: Minutes from an

infinite paradise. W.H. Freeman and company, New York, 1991.

248 BIBLIOGRAPHY

[SFGM93] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The

sequoia 2000 storage benchmark. In Proc. SIGMOD, 1993.

[SFT03] Amit Singh, Hakan Ferhatosmanoglu, and Ali Saman Tosun.

High dimensional reverse nearest neighbor queries. In Proc.

CIKM, 2003.

[SHP98] T. Seidl and Kriegel H.-P. Optimal multi-step k-nearest neigh-

bor search. In Proc. SIGMOD, 1998.

[SJL+03] J. R. Smith, A. Jaimes, C-Y. Lin, M. Naphade, A. P. Nat-

sev, and B. Tseng. Interactive search fusion methods for video

database retrieval. In Proc. ICIP, 2003.

[SK93] M. Schiwietz and H.-P. Kriegel. Query processing of spatial

objects: Complexity versus redundancy. In SSD, 1993.

[SMS+00] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, and S. De-

Fazio. Extensible indexing: A framework for integrating

domain-specific indexing schemes into oracle8i. In Proc. ICDE,

2000.

[SN02] R. Steinmetz and K. Nahrstedt. Multimedia Fundamentals, Vol-

ume 1: Media Coding and Content Processing, Second Edition.

Prentice Hall, 2002.

[SSZ+98] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders,

M. Eisen, P Brown, D. Botstein, and B. Futcher. Comprehen-

sive identification of cell cycle-regulated genes of the yeast sac-

charomyces cerevisiae by microarray hybridization. Molecular

Biolology of the Cell, 9:3273–3297, 1998.

[TC02] G. Tzanetakis and P. Cook. Musical genre classification of audio

signals. IEEE TSAP, 10(5):293–302, 2002.

[TK00] T. Tolonen and M. Karjalainen. A computationally efficient

multipitch analysis model. IEEE TSAP, 8(6):708–716, 2000.

BIBLIOGRAPHY 249

[TKR99] Y.-P. Tan, S.R. Kulkarni, and P.J. Ramadge. A framework for

measuring video similarity and its application to video query by

example. In IEEE International Conference on Image Process-

ing (ICIP’99), volume 2, pages 106–110, 1999.

[TPL04] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse kNN

search in arbitrary dimensionality. In Proc. VLDB, 2004.

[VLB05] J. R. R. Viqueira, N. A. Lorentzos, and N. R. Brisaboa. Survey

on Spatial Data Modelling Approaches. Idea Group, 2005.

[WLCS04] Y. Wu, C.-Y. Lin, E. Chang, and J. R. Smith. Multimodal

information fusion for video concept detection. In Proc. ICIP,

2004.

[YF00] B. K. Yi and C. Faloutsos. Fast time sequence indexing for

arbitrary lp norms. In Proc. VLDB, 2000.

[YL01] Congjun Yang and King-Ip Lin. An index structure for efficient

reverse nearest neighbor queries. In Proc. ICDE, 2001.

[Zha03] T. Zhang. Semi-automatic approach for music classification. In

Proc. SPIE Conf. on Internet Multimedia Management Systems,

2003.

[ZRHM98] Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra. Adaptive key

frame extraction using unsupervised clustering. In Proc. ICIP,

1998.

250 BIBLIOGRAPHY

	Acknowledgement
	Abstract
	Zusammenfassung
	I Preliminaries
	1 Introduction
	1.1 Outline

	2 Purpose of the Thesis
	2.1 Analysis of Spatial Data
	2.2 Modeling Spatial Data
	2.2.1 Multi-Step Query Processing
	2.2.2 Digital Mock-up
	2.2.3 Modeling Spatial Objects
	2.2.4 Triangle Meshes
	2.2.5 Voxel-Sets and Voxel-Sequences
	2.2.6 Decomposition Algorithm
	2.2.7 Compression Techniques
	2.2.8 Relational Spatial Indexing
	2.2.9 Test Datasets

	2.3 Analysis of Temporal Data
	2.3.1 Measuring Similarity
	2.3.2 Application Ranges for Threshold Queries
	2.3.3 Test Datasets

	2.4 Analysis using RkNN Queries
	2.4.1 RkNN Search in Euclidean Space
	2.4.2 Test Datasets

	2.5 Analysis of Video & Audio Data
	2.5.1 Video Retrieval
	2.5.2 Summarization Techniques
	2.5.3 Similarity Search Based on Multiple Representations
	2.5.4 Test Dataset
	2.5.5 Audio Classification
	2.5.6 Test Dataset

	II Analysis of Spatial Data
	3 Introduction
	4 Cost-Based Decompositioning of Complex Spatial Objects
	4.1 Interval Groups
	4.2 Storing Interval Groups in an ORDBMS

	5 Compression of Interval Groups
	5.1 Patterns
	5.2 Compression Rules
	5.3 Spatial Compression Techniques
	5.3.1 Quick Spatial Data Compressor (QSDC)

	6 Grouping into Interval Groups
	6.1 Query Distribution
	6.2 Access Probability
	6.3 Evaluation Cost
	6.4 Decomposition Algorithm

	7 Query Processing
	7.1 Decomposition of the Query Object
	7.1.1 Query object is a database object
	7.1.2 Query object is no database object

	7.2 Intersection Query
	7.3 The intersect SQL Statements
	7.4 Optimizations
	7.4.1 Fast Intersection Test for Interval Groups
	7.4.2 Ranking

	8 Experimental Evaluation
	8.1 Storage Requirements
	8.2 Update Operations
	8.3 Query Processing
	8.3.1 MaxGap
	8.3.2 GroupInt
	8.3.3 Window Queries

	III Analysis of Temporal Data
	9 Introduction
	9.1 Preliminaries
	9.2 Threshold Based Similarity Measure
	9.2.1 General Idea
	9.2.2 Threshold Based Representation vs. Dimensionality Reduction
	9.2.3 Similarity-Distance Measures for Intervals
	9.2.4 Contributions and Outline

	10 Threshold Based Similarity Search
	10.1 Threshold-Crossing Time Intervals
	10.2 Similarity Model for Time Intervals
	10.3 Similarity Model for Threshold-Crossing Time Intervals
	10.4 Similarity Queries Based on Threshold Similarity

	11 Threshold Based Indexing
	11.1 Managing Threshold-Crossing Time Intervals with Fixed
	11.2 Managing Threshold-Crossing Time Intervals for Arbitrary
	11.3 Trapezoid Decomposition of Time Series
	11.4 Parameter Space Indexing

	12 Threshold Based Query Processing
	12.1 Preliminaries
	12.2 Pruning Strategy for Threshold Queries
	12.3 Threshold-Based -Range Query Algorithm
	12.4 Filter Distance for the Threshold Similarity
	12.4.1 Lower Bounding Threshold Distance
	12.4.2 Pruning Based on Lower Bounding Distance

	12.5 Threshold-Based Nearest-Neighbor Query Algorithm

	13 Experimental Evaluation
	13.1 System Environment
	13.2 Datasets
	13.3 Performance Results
	13.4 Evaluation of the Threshold Based Similarity Measure
	13.4.1 Comparison to Traditional Distance Measures
	13.4.2 Comparison of Different Similarity Distances for Time Intervals
	13.4.3 Comparison of Different Similarity Distances for Sets of Time Intervals
	13.4.4 Results on Scientific Datasets

	IV Analysis using Reverse Nearest Neighbor Queries
	14 Introduction
	14.1 Contributions
	14.2 Problem Definition

	15 kNN Distance Approximations for RkNN Search
	15.1 Conservative Approximation of k-NN Distances
	15.2 Optimization Step 1
	15.3 Optimization Step 2
	15.4 Optimization Step 3
	15.5 Summary: The Optimization Algorithm
	15.6 Progressive Approximation of kNN Distances
	15.7 Aggregating the Approximations

	16 RkNN Search Algorithm
	17 Experimental Evaluation
	17.1 Metric RkNN Search
	17.1.1 Runtime w.r.t. database size
	17.1.2 Runtime w.r.t. parameter k
	17.1.3 Pruning capabilities

	17.2 Euclidean RkNN Search
	17.2.1 Naive approaches
	17.2.2 Runtime w.r.t. database size
	17.2.3 Runtime w.r.t. parameter k
	17.2.4 Pruning capabilities

	V Analysis of Video & Audio
	18 Introduction
	19 Video Retrieval
	19.1 Multi-represented Similarity Search in Multimedia Databases
	19.2 Weighting Functions For Summarizations
	19.2.1 A Weighting Function Based on Support
	19.2.2 A Weighting Function Based on Specific Quality Measures
	19.2.3 A Weighting Function Based on Local Neighborhood
	19.2.4 A Weighting Function Based on Entropy

	19.3 Combining Multiple Representations for Similarity Detection
	19.3.1 Higher-order Summarizations
	19.3.2 First-order Summarizations

	19.4 Experimental Evaluation
	19.4.1 Multi-represented vs. Uni-represented Similarity Search
	19.4.2 Multi-represented Similarity Search Applications

	20 Audio Classification
	20.1 Efficient Hierarchical Genre Classification
	20.1.1 Hierarchical Instance Reduction.
	20.1.2 Hierarchical Genre Classification by Using Multiple Representations.

	20.2 Experimental Evaluation
	20.2.1 Effectiveness
	20.2.2 Efficiency

	20.3 Prototype
	20.4 Practical Benefits

	VI Conclusions and Outlook
	21 Summary
	21.1 Summary of Contributions
	21.1.1 Preliminaries (Part I)
	21.1.2 Analysis of Spatial Data (Part II)
	21.1.3 Analysis of Temporal Data (Part III)
	21.1.4 Analysis using Reverse Nearest Neighbor Queries (Part IV)
	21.1.5 Analysis of Video & Audio Data (Part V)

	22 Outlook
	22.1 Future Work

	List of Figures
	List of Tables
	References

