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Zusammenfassung

Elliptische Galaxien sind homogene, von alten Sternen dominierte dynamische
Systeme, die sich heute in einem Zustand annähernden Gleichgewichts befinden.
Ihre Entstehung liegt zeitlich weit zurück und ihr jetziger Zustand lässt nur noch
indirekte Rückschlüsse auf den genauen Zeitpunkt und die Art ihrer Entstehung
zu. Moderne Theorien zur Strukturbildung im Universum sagen vorher, dass alle
massereicheren Galaxien von Halos aus dunkler Materie umgeben sind. Die zen-
trale Dichte der dunklen Materie stellt sich dabei als ein indirektes Mass für die
Entstehungsepoche der Galaxien heraus. Hinweise auf den Enstehungsprozess –
die Literatur kennt im wesentlichen den Kollaps einer protogalaktischen Gas-
wolke oder die Verschmelzung mehrerer Vorläufergalaxien – ergeben sich aus der
Verteilung der Sternbahnen in elliptischen Galaxien. Sowohl die Verteilung der
Masse als auch die der Sternbahnen sind schwierig aus Beobachtungen zu bes-
timmen, weil elliptische Galaxien dreidimensionale Objekte sind und man nicht
von vornherein weiß unter welchem Blickwinkel man sie beobachtet. Außerdem
bilden ihre Sterne ein stossfreies dynamisches System, das beliebige Grade von
Anisotropie annehmen kann.

Seit etwa Anfang der 90er Jahre stehen mit den Messungen von projizierten
Geschwindigkeitsprofilen Beobachtungsdaten zur Verfügung, die eine Rekon-
struktion des genauen dynamischen Aufbaus einzelner Objekte zulassen. Erst
seit etwa fünf Jahren hat die Entwicklung dynamischer Modelle ein vergleich-
bares Niveau erreicht, so dass es jetzt möglich ist, zumindest die volle Bandbreite
achsensymmetrischer Modelle mit Beobachtungen einzelner Galaxien zu vergle-
ichen. Die vorliegende Arbeit ist die erste Studie einer Stichprobe von mehreren
Objekten mit achsensymmetrischen Modellen. Ähnlich umfangreiche Arbeiten
waren bisher auf die Anwendung sphärisch-symmetrischer Modelle beschränkt,
in denen weder Rotation noch Inklinationseffekte berücksichtigt werden können.

Die Datenanalyse der vorliegenden Arbeit basiert auf der sog. Schwarzschild-
Methode. Dabei wird zunächst aus Galaxienbildern das Gravitationspoten-
tial der sichtbaren Materie berechnet. Anschließend wird eine Bibliothek mit
tausenden Sternbahnen angelegt, aus deren Überlagerung dann ein Modell kon-
struiert wird. Falls nötig, wird dunkle Materie hinzugefügt bis Modell und
Daten im Rahmen der Messfehler übereinstimmen. Diese Methode wird im
Rahmen der Arbeit weiterentwickelt: Eine gleichmässige Verteilung von invari-
anten Kurven einzelner Orbits in geeignet gewählten Poincaré-Schnitten wird
als Kriterium für eine zuverlässige Berücksichtigung aller Bahntypen eingeführt.



xvi Zusammenfassung

Ein Verfahren wird implementiert, dass ebenfalls Poincaré-Schnitte verwendet,
um die Phasenvolumina einzelner Orbits und damit die Phasenraumverteilungs-
funktion von Galaxien zu berechnen. Monte-Carlo Simulationen zeigen, dass
mit optimierter Regularisierung sowohl interne Geschwindigkeiten als auch die
Massenstruktur mit einer Genauigkeit von etwa 15 Prozent aus den vorliegenden
Daten rekonstruiert werden können.

Die untersuchten elliptischen Galaxien haben näherungsweise konstante Kreis-
geschwindigkeiten außerhalb ihrer Zentren, ähnlich wie Spiralgalaxien. Die Halo
Skalenradien einiger Ellipsen sind allerdings um einen Faktor zehn kleiner als
die in gleichhellen Spiralen. Mit den flachen Rotationskurven sind 10 bis 50
Prozent dunkler Materie innerhalb des Effektivradius verknüpft. Die zentrale
Dichte der dunklen Materie ist in Ellipsen um einen Faktor ≈ 25 höher als
in Spiralgalaxien, was eine Enstehungsrotverschiebung von z ≈ 4 impliziert.
Soweit bestätigen die Modelle aus dieser Arbeit Resultate früherer Arbeiten
mit sphärisch symmetrischen Modellen.

In den Coma Galaxien mit den ältesten stellaren Populationen sind entweder
– im Vergleich zu jüngeren Galaxien – mehr Sterne geringer Masse gebildet
worden oder aber die dunkle Materie in diesen Galaxien folgt einer ähnlichen
radialen Verteilung, wie die leuchtende Materie.

Die Ergebnisse der Arbeit bestätigen kürzlich erschienene Arbeiten, nach de-
nen elliptische Galaxien im grossen und ganzen eine homologe dynamische Fam-
ilie bilden. Die verbleibende Streuung um entsprechende, aus dem Virialsatz
ableitbare, globale Skalenrelationen sind auf eine systematische Verknüpfung
des Drehimpulses mit der Leuchtkraftverteilung zurückzuführen. Der Ursprung
dieser Relation ist noch unklar, aber ihr Vorhandensein erlaubt die Streuung
in den Skalenrelationen um ein Drittel zu reduzieren. Dadurch könnte es in
Zukunft möglich sein, die Entfernung einzelner Ellipsen mit grosser Genauigkeit
aus ihrer Kinematik abzuleiten.

Die Abflachung der untersuchten Galaxien kommt durch eine relative Un-
terhäufigkeit von Sternen auf Bahnen, die den Äquator mit hoher vertikaler
Geschwindigkeit durchkreuzen, zustande. Eine solche Verteilung von Sternen
maximiert ihre Entropie im Phasenraum, wodurch elliptische Galaxien zu einem
hohen Grade dynamisch relaxiert scheinen.

Allerdings offenbart eine genaue Untersuchung der Sternverteilung im Phasen-
raum eine reichhaltige Feinstruktur. Ein Objekt besteht aus der Überlagerung
einer dünnen, rotierenden Scheibe und eines strukturlosen Sphäroids. In an-
deren Galaxien zeigt sich eine starke Asymmetrie zwischen rotierenden und
gegenrotierenden Sternen in ihren Außenbezirken, gekoppelt mit relativ niedri-
gen stellaren Altern. Beides deutet daraufhin, dass die Sterne in diesen Regio-
nen erst vor relativ kurzer Zeit zur Galaxie hinzugekommen sind. Über den
beobachteten radialen Bereich zeigt keine Galaxie die typische Struktur nach
einem Kollaps. Die Vielfalt der dynamischen Eigenschaften spricht eher für das
Verschmelzungsszenario mit seiner natürlichen Variation an Ausgangskonfigu-
rationen und -objekten.



Chapter 1

Introduction

The present work is aimed to analyse a sample of nine early-type galaxies in the
Coma cluster with respect to their dynamical structure and mass composition.
The motivation for the project, an outline of the applied method and of the
thesis’ structure are the subject of this chapter.

1.1 General motivation

Elliptical galaxies are among the brightest galactic objects in the universe. They
owe their names from a globally smooth, elliptical light distribution on the sky
and are preferentially found in environments densely populated with other galax-
ies, such as the inner parts of galaxy clusters. In contrast to spiral galaxies, they
are genuinely three dimensional objects and their dominant structural compo-
nent is the system of their stars. In further contrast to spirals, massive ellipticals
are basically old and enriched in α-elements with galaxies in high density envi-
ronments being older than their field counterparts. At lower masses indications
for occasional juvenescence become more frequent (Thomas, Maraston, Bender
& Mendes de Oliviera 2005). From the centre outwards ellipticals get bluer,
mostly caused by decreasing stellar metalicity (Mehlert et al. 2003). Stellar
mass-to-light ratios Υ∗ are radially constant to first order. Regarded as a class,
ellipticals obey several scaling relations. For example, more luminous ellipticals
are redder (Faber 1973), which in contrast to individual galaxy gradients, re-
flects a gradual increase of stellar ages with luminosity. The overall smooth and
featureless light distributions suggest ellipticals to rest in a state of approximate
dynamical equilibrium. In fact, effective radius, effective surface brightness and
central velocity dispersion of ellipticals are tightly related to form the so-called
fundamental plane (FP; Faber et al. 1987; Djorgovski & Davies 1987; Dressler
et al. 1987). Although such a relation generally follows from virial equilibrium,
the observed FP is tilted with respect to the relation expected for a family of
homologous objects. Indeed, ellipticals exhibit a gradual structural change with
luminosity. Fainter objects have more centrally concentrated light profiles than
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brighter ones (Caon, Capaccioli & d’Onofrio 1993; Graham, Trujillo & Caon
2001). This is only one aspect of a deeper dichotomy: fainter (MB > −20.5)
ellipticals are radio and X-ray quite, disk-shaped and have steep central power-
law density profiles. In contrast, their luminous counterparts are boxy, X-ray
and radio loud and exhibit shallow central cores (Bender 1988a; Bender et al.
1989). Comparison with simple isotropic rotator models let to the conjecture
that the fainter branch of ellipticals is flattened by rotation, while the brighter
branch is intrinsically anisotropic (Bender 1988a; Bender et al. 1989). Most el-
lipticals are consistent with axial symmetry, but preferentially in more luminous
ones rotational symmetry is sometimes broken, implied by isophotal twists (e.g.
Bertola & Galletta 1979) and/or minor-axis rotation (Jedrzejewski & Schechter
1989). Substructure occurs in form of photometrically and/or kinematically de-
coupled central cores (Efstathiou, Ellis & Carter 1982; Bender 1988b; Franx &
Illingworth 1988) or inner, metal-enriched stellar disks (Bender & Surma 1992;
Scorza & Bender 1995; Morelli et al. 2004). In many nearby ellipticals central
supermassive black holes have been detected. Their masses are closely linked
to the velocity dispersion and mass, respectively, of the surrounding galaxy
(Magorrian et al. 1998; Gebhardt et al. 2000b; Ferrarese & Merritt 2000).

Origin and structure. The origin of elliptical galaxies is an open issue
since a long time. For comparison, spiral galaxies exhibit an extended star for-
mation history hinting at a relatively quiescent, temporally extended gradual
growth. Thus, their evolutionary history (in very rough terms) can be seen as
an extrapolation of their present status to the past. The latter, in turn, is ob-
servationally relatively easy accessible. The case of ellipticals is different. Their
very morphology (as mentioned above) points at a long-lived state of evolution-
ary passive dynamical equilibrium. In line with high stellar population ages
and relatively short star formation time scales (implied by the α-enrichment)
this suggests a distinct formation episode far back in time. To understand their
origin, one must therefore either search for potential progenitors at high redshift
or, alternatively, scan their present day structure for characteristic relics of their
formation epoch.

Dynamical structure. One potential formation channel is the monolithic
collapse scenario, after which ellipticals formed by the collapse of a single proto-
galactic gas cloud (Eggen, Lynden-Bell & Sandage 1962; Larson 1974). Inves-
tigations of the dynamical implications of this scenario in form of computer
simulations following the collapse of a stellar systems from cold initial condi-
tions have revealed density profiles similar to those of real ellipticals (van Albada
1982). Moreover, they recovered a characteristic fingerprint of the initial col-
lapse in the orbital structure of its end product: a gradual change from central
isotropy to strong outer radial anisotropy (van Albada 1982).

Another possible formation scenario of ellipticals is by merging (e.g. Toomre
& Toomre 1972). Observational evidence for merging comes from ongoing
galaxy collisions structurally evolving towards ellipticals (e.g. Schweizer 1982).
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The merger hypothesis has been the subject of extensive computer simulations.
Compared to the characteristic structure of a monolithic collapse, mergers can
produce a rich diversity of dynamical systems. Specifically, dependencies of the
orbital structure on progenitor properties (Hernquist 1992, 1993), on the merg-
ing geometry (Weil & Hernquist 1996; Dubinski 1998) and on the mass ratio
of the progenitors (Naab & Burkert 2003; Jesseit, Naab & Burkert 2005) have
been elaborated.

It follows that the internal dynamical structure is a key to understand the
formation and evolutionary history of elliptical galaxies.

Mass structure. Similarly interesting is the mass distribution in ellipti-
cals and especially the question whether these galaxies carry dark matter halos.
Numerous studies of gas and/or stellar kinematics in spiral and dwarf galaxies,
of their satellite dynamics, of the dynamics of galaxies in clusters, of the gas
distributions and gravitational lensing signals in clusters and of the cosmic web
of structures give compelling evidence for the presence of dark matter on all
cosmic scales. Moreover, dark matter has become a necessary ingredient in cur-
rent galaxy formation theories. It is required to assist the growth of structures,
since the homogeneity of the cosmic microwave background radiation sets up-
per limits on the initial fluctuations of baryonic matter. These are too small to
grow to present day cosmic structures. By postulating that these fluctuations
exhibit only the tip of an iceberg, that they are embedded in larger fluctuations
of an invisible dark medium the so-called cold dark matter theory has been very
successful in explaining the large scale structure of the universe. A crucial point
of this theory is its prediction that essentially every galaxy should be located
in a dark matter halo, also elliptical galaxies. Beyond the question of the very
presence of dark matter in ellipticals, its actual radial distribution contains im-
portant information about their formation time. This, because the (assumed)
collisionless nature of dark matter particles gives rise to a close relationship
between the concentration of a halo and its major-assembly epoch (Navarro,
Frenk & White 1996; Jing & Suto 2000; Wechsler et al. 2002). Thus, knowing
the mass distribution in ellipticals, especially their dark matter distribution, is
important to (1) verify basic predictions of current galaxy formation theories
and (2) to constrain the formation epoch of elliptical galaxies.

Modelling approaches. The diversity of methods to study the mass dis-
tribution of ellipticals is relatively large. Occasionally, ellipticals harbour ex-
tended gas disks that can be used as direct tracers of the gravitational potential.
However, such cases are rare and so far only a handful of objects have been in-
vestigated (Bertola et al. 1993; Oosterloo et al. 2002). More promising is the
analysis of hot gas halos in the X-ray regime, but this channel is restricted to
the most luminous galaxies (Loewenstein & White 1999; Fukazawa et al. 2006).
Rarely, ellipticals are part of strong lensing configurations, putting tight con-
straints on their mass profile over a limited radial range (around the distorted
images). As regarding gas disks only a handful of cases is known and the in-
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volved systems are at intermediate redshifts (Keeton 2001; Treu & Koopmans
2004). Galaxy-galaxy lensing allows to study the properties of galaxy halos far
out, but only in a statistical manner, individual objects cannot be studied (e.g.
Brainerd, Blandford & Smail 1996).

In the past, most extensive use has been made of stellar kinematics. Com-
pared to all other mentioned methods it has the great advantage not only to
constrain the mass distribution but at the same time also the dynamical con-
figuration. As it has been outlined above, both contain important clues on the
formation and evolution of elliptical galaxies. Stellar dynamical studies divide
into two branches. Most studies so far are based on integrated stellar absorption
line kinematics. The difficulty here is that the absorption-line shape, carrying
the relevant information about the kinematics of the stars, becomes difficult to
measure in the outer faint parts of ellipticals. To circumvent the related prob-
lems, discrete kinematical tracers such as planetary nebulae (PNe) and globular
clusters have gained more and more interest recently.

As will be outlined in the following, our present knowledge about the in-
ternal structure of elliptical galaxies is still rare, both in terms of the orbital
composition and in terms of the radial mass distribution.

1.2 Dynamical modelling of early-type galaxies

The analysis of stellar kinematics in elliptical galaxies rises several problems. For
comparison, the rotation profile vcirc(r) of cold atomic hydrogen disks in spirals
can be more or less directly interpreted in terms of the radial mass distribution

v2
circ ∝

M(r)

r
. (1.1)

Crucial for this simplicity is that (1) the internal vcirc can be inferred from the
observed projected line-of-sight velocity. For flat disks this is ensured, because
the inclination angle i of the disk is uniquely related to its apparent ellipticity
and the intrinsic vcirc follows directly from the observed rotation velocity and i.
Likewise important for gas disks is that (2) the internal energy resides completely
in circular motions. None of these two critical conditions holds for the stars in
ellipticals. The internal flattening of the stellar distribution in an elliptical
galaxy is not known a priori. Instead, it is a degenerate function of apparent
ellipticity and inclination i. Regarded as a class, deprojection of the ellipticity
distribution has revealed that fainter (MB > −20.5) ellipticals are mostly oblate
axisymmetric with short to long axis ratio around b/a = 0.83, while brighter
ones are generally rounder (Tremblay & Merritt 1996). The flattening of an
individual object, however, is not directly given and, consequently, the internal
energy distribution cannot be directly derived from its observed projections.
The only way to proceed is to probe the whole range of imaginable intrinsic
stellar configurations and projection angles with respect to the observations in
each single case. This defines an ambitious program.
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The general description of a system of stars is given by its phase-space dis-
tribution function (DF) f , defined such that

f(~r, ~v, t) d3r d3v (1.2)

is the stellar light at time t, in the infinitesimal phase-space element around
(~r, ~v). It determines all relevant properties of the system. For example, the
surface brightness µ and line-of-sight-velocity-distribution (LOSVD) L at time
t and (projected) position (xp, yp) follow as

µ(xp, yp, t) =

∫

f(~rp, ~v, t) d3v dz (1.3)

and

L(xp, yp, vp, t) =

∫

f(~rp, ~vp, t) dvx dvy dz, (1.4)

with ~rp = (xp, yp, z) and ~vp = (vx, vy, vp). Since the collisional relaxation time in
galaxy-sized objects is generally larger than the age of the universe, the temporal
behaviour of the DF is governed by the incompressibility of its phase-space flow,
expressed in the collisionless Boltzmann equation

df

dt
≡ ∂f

∂t
+ ~v · ∇rf −∇Φ · ∇vf = 0. (1.5)

If the system is not explicitly time-dependent (which is assumed in the following)
equation (1.5) reduces to

df

dt
= ~v · ∇rf −∇Φ · ∇vf = 0. (1.6)

All forces acting on the system are subsumed in the potential Φ. To be consid-
ered are the gravity of stars and dark matter (DM)

Φ = Φν + ΦDM, (1.7)

where stellar self-gravity is related to the DF via

ν =

∫

f(~r, ~v, t) d3v, (1.8)

Poisson’s equation
∆Φν = −4πGΥ∗ ν (1.9)

and the actual stellar mass-to-light ratio Υ∗ (which may vary with phase-space
position).

The only further constraint on the form of f comes from its assumed sta-
tionarity. In this case Jeans theorem ensures that f depends on the phase-space
coordinates only through isolating integrals of motion (Lynden-Bell 1962b). Let
these be denoted Ij(~r, ~v), 1 6 j 6 n, then

f = f(I1, . . . , In) (1.10)
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and the distribution function of ellipticals is constant along individual orbits.
Several methods have been proposed to reconstruct the DF from observations
via equations (1.3) and (1.4).

In parameterised models a certain form for the DF is presumed and the
best-fit model is chosen among the range of parameters. Fully general mod-
els seek a non-parametrical reconstruction of the DF. An intermediate case is
the basis-function ansatz, where the weights of (several tens of) prototypical
basis functions in a linear superposition are derived from observations. Pa-
rameterised models and basis function models require explicit knowledge of all
relevant integrals to specify the DF (or the basis functions, respectively). Spher-
ical potentials with the two classical integrals E (energy) and L (total angular
momentum) provide a semi-analytic framework. Most axisymmetric potentials,
however, admit not only the two classical integrals E and Lz (angular mo-
mentum along the symmetry axis) but an additional non-classical integral of
motion, the so-called third integral I3 (e.g. Contopoulos 1963). The latter is
only in restricted subclasses of potentials known in terms of elementary func-
tions. Likewise, in most triaxial potentials the energy E is the only explicitly
given integral. One has tried to overcome the lack of explicit knowledge about
all relevant integrals by (1) resorting on moments of the DF (Jeans approach);
by (2) restriction to subclasses of DFs that vary only with respect to known
integrals; by (3) the use of approximate integrals; by (4) restriction to special
(separable) potentials, where all integrals are given explicitly.

Jeans models are physically questionable because the predicted dynamical
configuration is not ensured to correspond to an everywhere positive stellar den-
sity. Models of the second kind (2) have been extensively used in the axisym-
metric case by assuming f = f(E,Lz) (so-called two-integral, or 2I, models).
If compared to observations of real ellipticals, such 2I-models fail to match the
major and minor-axis data simultaneously (van der Marel 1991; Bender, Saglia
& Gerhard 1994; Cretton & van den Bosch 1998; Emsellem, Dejonghe & Bacon
1999). The third integral in axisymmetric potentials has been approximated
by integrals of fitted Staeckel potentials (de Zeeuw & Lynden-Bell 1985) or by
perturbations of the angular momentum (Gerhard & Saha 1991), leading to
models of the third kind (3). Concerning the fourth class, especially triaxial
symmetry has been explored in terms of Staeckel potentials, but these imply
unrealistically extended central cores.

Two fully general non-parametric methods do not suffer from the integral
issue. The made-to-measure method consists of fitting an arbitrary N -body
system to a given set of constraints (Syer & Tremaine 1996) and is even inde-
pendent from the stationarity assumption. It has yet only been applied to the
Galaxy, however (Bissantz, Debattista & Gerhard 2004). Another fully general
method, the orbit superposition technique (Schwarzschild 1979), makes literal
use of the fact that f according to equation (1.10) is constant along individ-
ual orbits. The DF is constructed as a superposition of individual orbital DFs,
whose properties are derived from integrating orbits. It is used for this work
and detailed in the following.
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1.3 The orbit superposition technique

According to equation (1.10) the DF is constant along individual orbits

f(I1, . . . , In) =

∫

f(I ′1, . . . , I
′
n) δ(I1 − I ′1) . . . δ(In − I ′n) dI ′1 . . . dI ′n (1.11)

and, thus, can be approximated as the superposition of a finite number of single
orbit distribution functions

f ≈
∑

i

fi δ(I1 − I1,i) . . . δ(In − In,i), (1.12)

where fi is the phase-density along the orbit corresponding to the set of integrals
{I1,i, . . . , In,i}.

Any property K of the stellar system is related to the DF f by a phase-space
projection

K =

∫

f K dV (1.13)

with an appropriate integral kernel K (dV denotes the six-dimensional volume-
element in phase-space). For example,

Kµ(~r, ~v) ≡
{

1 : x = xp, y = yp

0 : otherwise
(1.14)

and

KL(~r, ~v) ≡
{

1 : x = xp, y = yp, vz = vp

0 : otherwise
(1.15)

in equations (1.3) and (1.4), respectively. The discretisation in equation (1.12)
implies that

K ≈
∑

i

fi

∫

δ(I1 − I1,i) . . . δ(In − In,i)K dV ≡
∑

i

fi

∫

i

K dV. (1.16)

The subscript i in the second integration indicates that the integral is restricted
to the region in phase-space covered by orbit i. The quadrature

K ′
i ≡

∫

i

K dV (1.17)

can be evaluated conveniently via the time-averages theorem, stating that the
fractional time dt/T an orbit spends in a phase-volume dV equals the fraction
of dV with respect to the whole orbital phase volume1 V , in suggestive notation

dV

V
=

dt

T
. (1.18)

1Strictly speaking this only holds for regular, non-resonantic orbits. In potentials of interest
here, the fraction of chaotic or resonantic orbits is below one percent usually.



8 1. Introduction

Accordingly, if ψi : R → P describes the parameter curve of orbit i in phase-
space P , then equation (1.17) becomes

K ′
i = Vi

∫

K ◦ ψi
dt

T
, (1.19)

with Vi being the phase-volume represented by orbit i. In practice, orbits are
integrated numerically with finite time-steps ∆t and equation (1.19) is approx-
imated by

K ′
i ≈ Vi

∑

j

K ◦ ψi(t
j
i )

∆tji
Ti

, (1.20)

where
Ti ≡

∑

j

∆tji (1.21)

is the total integration time of orbit i and

tji ≡
∑

k<j

∆tki . (1.22)

Defining

Ki ≡
∑

j

K ◦ ψi(t
j
i )

∆tji
Ti

(1.23)

equation (1.16) finally reads

K ≈
∑

i

(fi × Vi)Ki. (1.24)

Noteworthy, by employing the time-averages theorem the distribution func-
tion shows up in the calculation of K only as the product

wi ≡ fi × Vi, (1.25)

which is the total amount of light carried by orbit i and is usually called the
weight or occupation number, respectively, of the orbit. Hence, modelling galaxy
observations does not require computation of orbital phase-volumes.

Orbit modelling has some essential advantages. First, via the time-averages
theorem (1.18) Ki can easily be calculated with any desired accuracy during the
integration of orbit i. The overall accuracy of the galaxy model then only de-
pends on the phase-space coverage with orbits. Moreover, in the orbit represen-
tation the integrals of motion enter only implicitly via orbital initial conditions.
Thus, the orbit superposition method is especially promising in systems, where
not all integrals of motion are known. Two limitations have to be regarded
in practice: (1) If resonances become frequent the orbit superposition method
in general is still valid (ensured by the Jeans theorem), but the Schwarzschild
method in a stricter sense – employing equation (1.18) to project orbits in the
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space of observables – is no longer applicable. A typical example is the Kep-
lerian character of the force field in the direct vicinity of a point source (black
hole) where all orbits are closed. (2) Orbits must be integrated over the whole
phase-space region they have access to. Chaotic orbits can reveal a quasi-regular
behaviour in a subpart of their phase-space manifold over long periods. If such
fragments of orbits are treated as regular orbits, the model is no longer station-
ary in a rigorous sense. To maintain full stationarity such suborbital building
blocks need to be combined to superorbits (Merritt & Valluri 1996; Häfner et
al. 2000).

The Schwarzschild method was originally developed to investigate dynamical
equilibrium configurations in triaxial potentials (Schwarzschild 1979) and sub-
sequently used to explore the dynamical effects of central density cusps on the
orbital structure and existence of stationary configurations (Schwarzschild 1982;
Miralda-Escudé & Schwarzschild 1989; Schwarzschild 1993; Merritt & Fridman
1996; Merritt & Valluri 1996). Other early applications were the survey of dy-
namical properties of scale free potentials (Richstone 1980, 1982, 1984; Levison
& Richstone 1984a) and exemplary studies of real galaxies (Levison & Richstone
1984b; Katz & Richstone 1985). Only recently, the focus of research shifted to-
wards modelling real galaxies extensively. Present implementations cover spher-
ical symmetry (Richstone & Tremaine 1984; Rix et al. 1997; Romanowsky et
al. 2003) axial symmetry (Cretton et al. 1999; Gebhardt et al. 2000a; Häfner et
al. 2000; Valluri, Merritt & Emsellem 2004; Cappellari et al. 2006) and triaxial
symmetry (Zhao 1996; van den Bosch et al. 2005).

1.4 State of affairs

Orbit modelling. Although the orbit modelling technique is about 20
years old, still some issues have not been addressed thoroughly. As pointed out
earlier, the integrals of motion do not enter the modelling explicitly. However,
to achieve a representative phase-space coverage with orbits the phase-space
structure related to a given potential has to be known to some degree. The
latter, closing the circle, is imprinted in the integrals of motion the potential
admits. The resolution of phase-space sampling provided by a given orbit library
can in any case checked in two ways.

Firstly, if the integrals are known somehow, then the orbit collection can be
mapped onto integral space and the related grid can be evaluated. Ideally, the
orbit sampling should be adapted to the behaviour of the system the model is
aimed to represent. For example, where the DF is expected to vary strongly,
like around the transition from a disk to a bulge in a two-component system,
orbits should be sampled densely. When modelling real galaxies, neither the
integrals nor the expected DF are given. If only one integral is unknown (for
example I3 in the axisymmetric case), then surfaces of section (SOS) can be
used to examine the orbit sampling, since they can be matched to separate
orbits according to the unknown integral (cf. Sec. 2.2.3). None of the presently
implemented orbit sampling strategies for axisymmetric potentials (reviewed in
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Sec. 2.2.3) has been examined as just described.
A second method to probe the sufficiency of the orbit sampling is to practi-

cally reconstruct synthetic template DFs. This can be done by either deriving
mock observations from a DF and studying the match of a fitted orbit model
with the input DF. Alternatively, the amount of light carried by each orbit with
respect to the input DF can be calculated (via equation 1.25) and the proper-
ties of the orbit superposition based on these weights can be compared to direct
phase-space integrations. This approach has also not yet followed fully, mainly
because the mapping from orbit libraries to phase-space and vice versa requires
knowledge of the orbital phase-volumes (cf. equation 1.25). Since these are not
necessarily required for modelling real galaxies (as mentioned above), they have
been payed little attention to. Besides enabling a rigorous check of the orbit
sampling, knowledge of the phase-volumes is essential to analyse the dynamical
structure of galaxy models. For example, two orbits with equal phase-densities
can have different weights just because one occupies a much larger phase-volume
than the other. On the other hand, even if an orbit has a lower weight than
another, it may represent an over-density in a certain phase-space region that
reveals a distinct kinematical component.

Another issue is that when using Schwarzschild models to reconstruct real
galaxies one is usually faced with the situation that the number of orbits in
the models (e.g. the number of adjustable parameters) is much larger than the
number of data constraints. As a consequence, the models tend to overfit the
data in the sense that they match individual data points better than implied by
the measurement errors. Ideally, one would like to consider only those models
that fit the data within a reasonable range of χ2-levels and to ignore all others.
This requires, however, knowing all models that fit within some χ2 limits, which
is practically impossible. Instead of exploring the whole manifold of these solu-
tions, one forces the models in practice to fulfil additional structural constraints
on top of the observational ones. Several expressions have been developed for
these constraints, such as minimising second derivatives of the DF, maximising
the entropy of the DF, minimising gradients of orbital weights and so on – all
related to theoretical considerations about the smoothness of the DF in phase-
space (cf. Sec. 3.1). Regardless of this diversity, all regularisation methods have
in common that the relative importance of both sets of constraints is controlled
by a single regularisation parameter. It follows a one-to-one relation between
the weight of structural constraints and the goodness of fit, as putting more
weight on the data constraints will inevitably lead to a lower χ2 and vice versa.
Although this is what one practically wants, it has the undesired consequence to
bias the so derived models, because at each value of the regularisation parame-
ter (or, equivalently, at each χ2) no more than one member of the full manifold
of models fitting at the actual χ2-level is picked up. Note, that the occurrence
of this bias is independent of the specific choice of the regularisation parameter,
unless the solution manifold shrinks approximately to a single point. What ac-
tually varies as a function of this parameter is the direction into which the bias
works. By construction, one usually knows this direction when the weight on
the structural constraints is large, but one does not know its direction when the
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weight is mostly on the data constraints. In the latter case, it depends strongly
on the (irreproducible) noise in the data.

The way to implement regularisation is to simulate observations from realis-
tic synthetic model galaxies and to investigate systematically which smoothing
yields the best match of fitted orbit superpositions with the input model. This
has not yet been carried out in the general axisymmetric case, but only for
two-integral approximations (Cretton et al. 1999; Krajnović et al. 2005).

Galaxy modelling. Early dark matter studies considered as kinematical
input to dynamical models only the mean rotation v and dispersion σ (e.g. Katz
& Richstone 1985; Saglia, Bertin & Stiavelli 1992). By a now well understood
mass-anisotropy degeneracy, these data alone are insufficient to reconstruct the
orbital state of a galaxy and/or its mass distribution (Binney & Mamon 1982).
Observance of the full LOSVD allows to reconstruct the DF, given the potential
is known (Dejonghe & Merritt 1992) and to put constraints on both the DF
and the potential, if the latter is not known in advance (Merritt & Saha 1993;
Gerhard 1993). Due to signal-to-noise limitations, the LOSVD is usually de-
composed into a Gauss-Hermite series and the first four coefficients – rotation
v, dispersion σ, asymmetric and symmetric deviations of a pure Gaussian H3

and H4 – are used in models (Gerhard 1993; van der Marel & Franx 1993).

Various dynamical studies have revealed that elliptical galaxy kinematical
data inside the half-light radius reff can be well reproduced under the assump-
tion of a constant mass-to-light ratio M/L. This is generally taken as evidence
for dark matter being negligible in the inner regions of elliptical galaxies. Only
very recently LOSVDs farther out have become available to probe for the pres-
ence of dark matter. Most studies with such extended data have the character
of case studies though. They have been carried out with restriction to spherical
potentials for NGC2434 (orbit models; Rix et al. 1997), NGC6703 (basis func-
tions; Gerhard et al. 1998), NGC1399 (basis functions; Saglia et al. 2000) and
NGC3258 (basis functions; de Bruyne et al. 2004) and with axisymmetric mod-
els for NGC3115 (Staeckel fits, basis functions; Emsellem, Dejonghe & Bacon
1999), NGC1700 (same method; Statler, Dejonghe & Smecker-Hane 1999) and
NGC2320 (orbit models; Cretton, Rix & de Zeeuw 2000). Two larger samples,
both comprising roughly 20 apparently round, non-rotating objects, have been
analysed in the spherical approximation based on basis functions (Kronawit-
ter et al. 2000) or parameterised models with constant anisotropy (Magorrian
& Ballantyne 2001). These models predict dark matter fractions between 20
and 50 percent inside reff . However, in the only galaxy studied with general
axisymmetric models, NGC2320, the case for DM is ambiguous and models
with constant M/L fit as well. Three objects have been declared to lack of
any dark matter on the basis of PNe kinematics (diversity of spherical models;
Romanowsky et al. 2003).

The dark matter fractions derived in all but the last mentioned studies agree
with results from other methods. The analysis of cold gas kinematics has re-
vealed roughly constant rotation curves as in spiral galaxies with the implied
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evidence for dark matter (Bertola et al. 1993; Oosterloo et al. 2002). Likewise
halo gas temperatures and densities conclude that dark matter makes about
20 percent of mass inside the half-light radius reff and up to 40-80 percent at
5− 6 reff (Loewenstein & White 1999; Fukazawa et al. 2006). Dark matter frac-
tions from lensing studies are similar (Keeton 2001; Treu & Koopmans 2004).

Taking these results together, evidence for the ubiquitous presence of dark
matter in ellipticals grows steadily. However, its radial distribution, especially
in those regions (. 2 reff) that carry crucial information about their formation
epoch, is still largely unknown. Only stellar dynamical studies can resolve these,
but only one object has been addressed allowing for axial symmetry. All other
studies rely on spherical approximations.

Concerning the dynamical structure of ellipticals, the situation is even more
heterogeneous. Apart from the very centre, spherical models mostly predict
radial anisotropy (Rix et al. 1997; Gerhard et al. 1998; Kronawitter et al.
2000; Magorrian & Ballantyne 2001; Houghton et al. 2006). Allowing for ax-
ial symmetry yields a variety of internal structure. Radial anisotropy has been
found in NGC1600 (basis functions, approximate I3; Matthias & Gerhard 1999),
NGC2320 (orbit models; Cretton, Rix & de Zeeuw 2000), NGC3379 (orbit
models; Gebhardt et al. 2000a) and M32 (orbit models; Verolme et al. 2002).
Tangential anisotropy occurred in NGC4697 (Staeckel fits; Dejonghe et al.
1996), NGC3115 (Staeckel fits; Emsellem, Dejonghe & Bacon 1999), NGC1700
(Staeckel fits; Statler, Dejonghe & Smecker-Hane 1999), IC1459 (orbit models;
Cappellari et al. 2002), the twelve ellipticals of the Nuker team (orbit models;
Gebhardt et al. 2003) and NGC3377 (orbit models; Copin, Cretton & Emsellem
2004).

Most of the above studies are based on data inside reff and dark matter has
been neglected completely (e.g. a constant M/L has been assumed). This is
questionable in view of the evidence for increasing M/L beyond reff . Even if
models are only fit to observations further in, some of the orbits that contribute
to the inner kinematics, especially in radially anisotropic systems, are shaped
during their visits of outer regions inhabited by dark matter. The results of
studies not taking into account dark matter need therefore confirmation in a
more general modelling context. The same holds for spherical models as well,
in which inclination effects and rotation are ignored.

Concluding, due to the lack of any study of a sizeable sample of galaxies
with extended data and sufficiently general models, our knowledge of both, the
mass distribution and the dynamical structure of ellipticals, is still poor and
tentative.

1.5 Aims and structure of the thesis

The present work is aimed to improve on this situation regarding our present
poor knowledge about the dynamical structure and mass composition of ellip-
tical galaxies. It advances previous work in the following points:

• It provides the first analysis of a sample of generic, flattened ellipticals
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with LOSVDs along the minor and the major axis reaching out to ≈ 3 reff ,
suitable to probe for the distribution of dark matter and the dynamical
structure over a wide radial range.

• Fully general orbit models are applied that allow to probe (1) the flat-
tening of the galaxies, (2) possible substructure in form of disks and (3)
inclination effects.

• The orbit modelling technique is advanced to yield (1) a representative
phase-space coverage with orbits, (2) to optimise regularisation and (3) to
derive for the first time the phase-space distribution function of early-type
galaxies in axial symmetry. So far, the applied code is the only tested for
its accuracy to reconstruct synthetic distribution functions.

The thesis is structured as follows. The specific implementation of the orbit
modelling method used in this work is based on a program originally developed
by the Nuker team to recover black-hole masses in the centres of galaxies (Rich-
stone & Tremaine 1984; Gebhardt et al. 2000a). The advanced implementation
developed for the investigation of dark matter halos is the subject of Chap. 2.
The treatment of regularisation and a pilot study of one sample galaxy follow
in Chap. 3. Both, Chaps. 2 and 3 are replica of papers published during this
work (Thomas et al. 2004, 2005). Chap. 4 introduces the analysis of the Coma
sample by a survey of the individual galaxies and their models. In Chaps. 5 and
6 the mass distribution and dynamical structure are discussed in detail. Scaling
relations and comparison with other works are the subject of Chap. 7. A short
thesis summary and concluding remarks are combined in Chap. 8.

A few technical issues are separately addressed in the four Apps. A-D. The
effects of seeing on the dynamical modelling is the topic of App. A. Observa-
tional evidence for central non-axisymmetry in GMP0144/NGC4957 is exposed
in App. B. In App. C the parameterisation of orbital shapes used in this work
is introduced. The calculation of radial phase-density profiles from orbit distri-
butions is the content of App. D.

Finally, in App. E the paper Bender et al. (2005) on the nuclear structure of
M31 is reproduced. The orbit models used in this publication were calculated
during the course of this work.
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Chapter 2

Mapping stationary
axisymmetric phase-space
distribution functions by
orbit libraries

2.1 Introduction

Since the pioneering work of Schwarzschild (1979) orbit superposition techniques
have become an important tool in the dynamical modelling of spheroidal stellar
systems. Stationary distribution functions (DFs) of such systems are subject
to Jeans’ theorem and hence depend on the phase-space coordinates only via
the integrals of motion. In the axisymmetric case these integrals are energy E,
angular momentum along the axis of symmetry Lz, and, for most potentials,
an additional, non-classical “third integral” I3. Because any set of integrals of
motion essentially represents an orbit and, conversely, any orbit can be repre-
sented by a set of integrals of motion, the DF can be approximated by the sum
of single-orbit DFs, with the only adjustable parameters being the total amount
of light carried by each orbit. The main task that remains to describe hot stellar
systems adequately is to find an appropriate set of orbits.

Orbit superposition techniques have been used to model spheroidal stellar
systems in various symmetries (e.g. Rix et al. 1997; Romanowsky & Kochanek
2001; van der Marel et al. 1998; Cretton et al. 1999; Cappellari et al. 2002;
Verolme et al. 2002; Gebhardt et al. 2003; van de Ven et al. 2003), with the goal
of determining dynamical parameters such as central black hole mass, internal
velocity anisotropy or global mass-to-light ratio. An orbit library tracing the
phase-space structure of a trial potential is fitted to observed photometry and
kinematics, to decide whether or not it gives a valid model of the corresponding
galaxy.
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In the spherical case there exists a well-known mass-anisotropy degeneracy
permitting in general convincing fits to the projected velocity dispersion σ, even
if the trial potential differs from the true one (Binney & Mamon 1982). With
complete knowledge of the full line-of-sight velocity distributions (LOSVDs),
however, it is possible to reconstruct the DF, given the potential is known
(Dejonghe & Merritt 1992). Furthermore, even for the realistic case where the
potential is not known in advance, Merritt & Saha (1993) and Gerhard (1993)
have shown how the information contained in the LOSVDs can constrain both
the potential and the DF.

Likewise, in the axisymmetric case, Dehnen & Gerhard (1993) have calcu-
lated realistic smooth DFs and have shown that a similarly close relationship
exists between the potential and internal kinematics on the one hand and the
projected kinematics on the other. However, fits of axisymmetric libraries still
pose some additional unanswered questions. Recently, Valluri, Merritt & Em-
sellem (2004) discussed the indeterminacy of the reconstruction of the potential
in general axisymmetric systems from two- or three-dimensional data sets by
studying the shape of the χ2-contours describing the quality of the orbital fit.
Cretton & Emsellem (2004) argued that, even in the case of a mathemati-
cally non-degenerate f(E,Lz)-system, an artificial degeneracy occurs, caused
by the discreteness of the orbit library. They emphasised the role of appropri-
ate smoothing, but did not provide a definite solution. Richstone et al. (2004)
critically analysed their arguments and emphasised that both high quality com-
prehensive data sets and orbit libraries are needed to achieve a reliable modelling
of axisymmetric systems.

In view of this discussion concerning orbit-based dynamical models it seems
worthwhile to step back and investigate how well orbit libraries represent the
phase-space structure of a given dynamical system. This includes an examina-
tion of the choice of orbits, which in the generic axisymmetric case is difficult,
since part of the phase-space structure is unknown due to our ignorance about
I3. Central to such an analysis are the orbital phase volumes, which accomplish
the transformation from the relative contributions of individual orbits to the
library, the so called orbital occupation numbers or orbital weights, into phase-
space densities (and vice versa). The availability of such phase volumes offers
several applications:

(i) Accurate phase volumes allow the calculation of internal and projected
properties such as density and velocity profiles, line-of-sight velocity dis-
tributions (LOSVDs) etc. of general axisymmetric DFs f(E,Lz, I3) via
orbit libraries. Besides the possibility of systematically studying the struc-
ture of general axisymmetric systems, these profiles provide a direct check
on the choice of orbits through a comparison with the profiles calculated
from directly integrating the DFs.

(ii) From any fitted library one can reconstruct the corresponding DF via the
phase volumes, and thus reconstruct the DF from any observed early-type
galaxy in the axisymmetric approximation.
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(iii) If the library is fitted to some reference data constructed from a DF, then
(ii) allows an investigation of how closely the fit matches the input DF, and
thus an effective regularisation scheme can be implemented, permitting
real (noisy) data sets to be fitted.

Vandervoort (1984) touched on the problem by establishing the transforma-
tion from cells of integrals to the corresponding phase-space volumes. However,
the resulting relations are only suitable for explicitly known integrals, for exam-
ple for single orbits only in the rare case in which all integrals are known. For
components integrated about the unknown integrals they have been applied by,
for example, Rix et al. (1997), Cretton et al. (1999) and Verolme & de Zeeuw
(2002).

The aim of this paper is to introduce a general implementation for the calcu-
lation of individual orbital phase volumes in any axisymmetric potential, and,
by following applications (i) and (iii) to prove that our libraries accurately map
given dynamical systems. This directly supports our setup of the library and
sets the basis for our project to recover the dynamical structure and mass com-
position of a sample of flattened early-type galaxies in the Coma cluster. In
a subsequent paper we will focus on the question of how much smoothing has
to be applied in order to obtain an optimal estimate of the dynamical system
underlying a given set of noisy and spatially incomplete observational data. The
full analysis of the data set (Mehlert et al. 2000; Wegner et al. 2002) will be
addressed in a future publication.

The paper is organised as follows. In Section 2.2 we define all quantities
related to the library used in the subsequent Sections and describe our orbit
sampling. Section 2.3 outlines the relation between orbital weights and orbital
phase-space densities. Section 2.4 contains a description of our implementation
to calculate individual orbital phase-space volumes. In a first application, we
calculate internal and projected properties of given DFs using orbit libraries in
Section 2.5. Section 2.6 we discuss how the library is fitted to given data sets,
and in Section 2.7 we reconstruct reference DFs from their projected kinematics.
Finally, in Section 2.8 we summarise the results.

2.2 The orbit library

Our method of setting up the orbit libraries used for the dynamical modelling
is based on the procedure presented in Richstone et al. (in preparation). There,
the reader finds a description of the basic properties of the program. In this
section we define quantities that are used later on in this paper.

In the following we assume that the luminosity density ν is known. In an
analysis of real data it has to be obtained by deprojection of the measured
photometry. With the stellar mass-to-light ratio Γ = M/L, the mass density ρl

of the luminous material follows from ν as ρl = Γ ν.
The total mass density ρ possibly includes a dark component ρDM and reads

ρ = ρ (Γ, rc, vc) = Γ ν + ρDM. (2.1)
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Once the mass-profile is fixed, the potential Φ follows by integrating Pois-
son’s equation. With Φ known, a large set of orbits is calculated, sampling
homogeneously the phase-space connected with Φ.

2.2.1 Spatial and velocity binning

As described in Richstone et al. (in preparation) we divide the meridional plane
into bins, equally spaced in sinϑ1, linear in r near the inner boundary rmin of the
library, and logarithmic at the outer boundary rmax. (If not stated otherwise,
we use Nr = 20 radial bins, Nϑ = 5 angular bins.) For the projection of the
library we use the same binning as for the meridional plane. Every spatial bin
in the plane of the sky is subdivided into Nvel bins linearly spaced in projected
velocity between −vmax and vmax, leading to a bin size for the LOSVDs of

∆vLOSVD = 2
vmax

Nvel
. (2.2)

Even if the potential is spherical, our spatial binning tags an axis of symmetry.
Later, when referring to a “minor-axis” we always mean the axis ϑ = 90◦ of the
library.

2.2.2 Orbital properties

Luminosity. The normalised contribution of orbit i to the luminosity in
spatial bin 1 6 j 6 Nr ×Nϑ, dLj

i , equals the fraction of time the orbit spends
in bin j. Let ∆tki denote the kth time-step in the integration of orbit i, so that

tki ≡
∑

h6k

∆thi (2.3)

is the total time elapsed until time-step k, and

J j ≡ {k : (r(tki ), ϑ(tki )) ∈ bin(j)} (2.4)

contains all time-steps during which orbit i is located in spatial bin j. Accord-
ingly, we can write

dLj
i =

∑

k∈J j

∆tki
Ti

, (2.5)

with Ti ≡
∑

∆tki being the total integration time of orbit i.
Given the orbit’s weight wi to the whole library – the integrated luminosity

along the orbit – the total luminosity of the library in spatial bin j reads

dLj =
∑

i

wi dLj
i . (2.6)

1Throughout the paper, we use spherical coordinates (r, ϑ, ϕ), with ϑ = 0◦ corresponding
to the equatorial plane. If not stated otherwise, we use superscripts or subscripts h, i, j, k as
indices, l, m, n as exponents.
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Internal velocity moments. To obtain the internal velocity moments
〈

vl
rv

m
ϑ v

n
ϕ

〉

of the orbit library, we store for each orbit i and each time step ∆tki
the product of velocities vl

rv
m
ϑ v

n
ϕ and fractional time ∆tki /Ti. All contributions

in spatial bin j are summed to yield

〈

vl
rv

m
ϑ v

n
ϕ

〉j

i
≡
∑

k∈J j

vl
rv

m
ϑ v

n
ϕ

∆tki
Ti

. (2.7)

Thus for the whole library the velocity moments in spatial bin j follow as

〈

vl
rv

m
ϑ v

n
ϕ

〉j
=

1

dLj

∑

i

wi

〈

vl
rv

m
ϑ v

n
ϕ

〉j

i
. (2.8)

Projected kinematics. For the projected kinematics of the library we
record the normalised contribution to the kinematics LOSVDjk

i at projected
position j and projected velocity 1 6 k 6 Nvel for every orbit. Again, for the
whole library the LOSVD reads

LOSVDjk =
∑

i

wi LOSVDjk
i . (2.9)

By fitting a Gauss-Hermite series to the LOSVDjk we obtain the Gauss-Hermite
parameters (Gerhard 1993; van der Marel & Franx 1993),

GHPjk = {γjk, vjk, σjk, Hjk
3 , Hjk

4 }, (2.10)

of the LOSVD.

2.2.3 Choice of orbits

To obtain a reliable representation of phase-space it is important that any al-
lowed combination of the integrals of motion (E,Lz, I3) is represented to some
degree of approximation by an orbit in the library. The absence of some or-
bit family in the library might cause certain dynamical configurations to be
misleadingly emphasised in the final fit.

Sampling E and Lz. Richstone et al. (in preparation) adjust the orbit
sampling in (E,Lz)-space according to their spatial binning. From the require-
ment that every pair of grid bins ri 6 rj in the equatorial plane should be
connected by at least one equatorial orbit with rperi = ri and rapo = rj they
derive a unique grid of orbital energies E and z-angular momenta Lz. We exper-
imented with doubling the number of pericentres and/or apocentres per radial
bin, but found, that the above-described method yields a sufficiently dense sam-
pling of the (E,Lz)-plane.
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Sampling I3. It is common practice in the various existing Schwarzschild
codes to sample I3 by dropping orbits at given energy E and angular momentum
Lz from the zero-velocity-curve [ZVC, defined byE = L2

z/(2r
2 cos2 ϑ)+Φ(r, ϑ))].

Richstone et al. (in preparation) use the intersections of the angular rays of the
meridional grid with the ZVC as starting points. This sampling ensures that
each sequence of orbits with common E and Lz contains at least one orbit that
is roughly confined to the region between the equatorial plane and each angular
ray of the meridional grid.

Figure 2.1: Example of a surface of section for a flattened Hernquist model
(details in the text). All orbits have been integrated for NSOS = 80 intersections
with the SOS.

If we consider only those potentials symmetrical about the equatorial plane
with dΦ/dz > 0, then every orbit eventually crosses the equatorial plane and
leaves a footstep in the surface of section (SOS) given by the radii r and radial
velocities vr of the upward equatorial crossings. Orbits respecting a third inte-
gral show up in the SOS as nested invariant curves, sometimes with embedded
resonances (e.g. Binney & Tremaine 1987). Fig. 2.1 shows an example of a SOS.
The dots mark representative points of invariant curves obtained by numerically
following orbits with common E and Lz in a flattened Hernquist potential with
total mass M = 1011M⊙, scaling radius rs = 10 kpc and a flattening of q = 0.5
(see Sect. 2.5.1 below for further details).

The SOS encompasses all available orbital shapes, and a representative sam-
pling of orbits should result in the SOSs being homogeneously filled with orbital
imprints. Unfortunately, we are not aware of any simple relationship between
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the drop-point of an orbit on the ZVC and its corresponding appearance in the
SOS, as long as I3 is not known explicitly. In order to guarantee a representative
collection of orbits in any potential, we sample the orbits as follows.

In a first step we drop orbits from the (outer) intersections of the angular rays
of our spatial grid with the ZVC as described in Richstone et al. (in preparation).
Then, for any pair (E,Lz) included in the library we choose NL radii rl, 1 6

l 6 NL equally spaced in log(r) on the equatorial plane between rperi and rapo

of the equatorial radial orbit with energy E and angular momentum Lz. We
start with the smallest of these radii rl and launch an orbit i from the equatorial
plane with the maximal radial velocity

vr,i =

√

2 [E − Φ(rl)] −
L2

z

r2l
≡ vmax(E,Lz, rl). (2.11)

For the subsequent orbits i′ we step-wise decrease vr,i′ by ∆vr,i′ (see equa-
tion 2.13 below) until we reach vr,i′ = 0 and pass over to the next radius rl+1.

With (E,Lz) and (rl, vr,i) fixed, the orbital vϑ,i is determined by

vϑ,i(E,Lz, rl, vr,i) =

√

2 [E − Φ(rl)] − v2
r,i −

L2
z

r2l
. (2.12)

When vr,i = 0, then vϑ,i(E,Lz, rl, vr,i) = vmax(E,Lz, rl). For each velocity pair
we launch an orbit from the equatorial plane at the actual rl with the actual
velocities vr,i and vϑ,i. This procedure is repeated for each of the NL radii.
If, at a specific launch position, we find an imprint in the SOS of a previously
integrated orbit that differs from the current launch position by less than 10
per cent in radius and radial velocity, we regard this part of the SOS as already
sampled and discard the orbit.

The velocity step-size ∆vr,i is set as

∆vr,i = min {∆vLOSVD , ξ vm,i−1} , (2.13)

where ∆vLOSVD is the width of the LOSVD bins (cf. equation 2.2), and

vm,i = max
16s6Nsos

{vs
i : (rs

i , v
s
i ) ∈ SOS} . (2.14)

Here SOS denotes the set of the Nsos orbital imprints in the SOS and i is the
index of the actual orbit. We usually take ξ = 1/3.5. From trying different
values for NL we found that NL = 30 was sufficient to yield a dense filling of
the SOS with approximately one invariant curve crossing the r-axis of the SOS
in each of the equatorial meridional grid bins.

The velocity step-size is largest for the radial orbits and gradually decreases
when the SOS is filled with orbits (note that vm,i−1 is the maximum of the radial
velocities in the SOS of the “precursor” orbit i − 1). For the shell orbits, the
step-size becomes smallest. The adjustment of the step-size in each step ensures
that we sample the more radial orbits with a resolution that corresponds at least
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to the width of the LOSVD bins and that the sampling is refined for the shell
orbits. The shell orbits have a large ϑ-motion and need to be included in the
library to avoid a radially biased collection of orbits.

After the above sampling, we measure the maximum fs of all rmin,i/rmax,i,
with

rmin,i = min
16s6Nsos

{rs
i : (rs

i , v
s
i ) ∈ SOS} (2.15)

and rmax,i defined analogously. To ensure that the sequence contains all orbits
up to (approximately) the thin-shell orbit, we complete the library if necessary
by launching orbits from the equatorial plane with vr = 0 at

r =
3 rmin,i′ + rmax,i′

4
, (2.16)

where fs = rmin,i′/rmax,i′ , until fs > 0.9.
Fig. 2.1 illustrates for a flattened Hernquist potential the dense coverage of

the SOS with invariant curves after all orbits are integrated.

2.2.4 Use of the library

If the relative contribution of each orbit to the whole library, the orbital weight
wi, is specified, then according to equations (2.6), (2.8) and (2.9) the library
provides a specific model including the LOSVDs, internal density distribution,
internal velocity moments and so on of this particular orbit superposition.

If the library is constructed to test whether or not a given trial mass distri-
bution leads to a consistent model of an observed galaxy, then the model and
in particular the LOSVDs have to be compared with the observations. If the
comparison turns out not to yield a satisfactory fit, then either the weights can
be recalculated (see Section 2.6 for details) or the actual mass distribution has
to be rejected. If, on the other hand, the fit shows that the actual set of weights
seems to be a valid model of the galaxy, then one can reconstruct the internal
velocity structure and DF from the wi.

Conversely, if one has a DF at hand and wants to calculate, for example,
its projected kinematics without going through the appropriate integrals, one
can assign the orbital weights according to the DF (see Section 2.5) without
any fitting procedure and analyse the output of the library. This can be useful
in systematic studies of the projected properties of stationary axisymmetric
distribution functions depending on all three integrals (E,Lz, I3).

In the following we will make use of both applications with the goal of
investigating the accuracy of our orbit libraries.

2.3 Orbital weights and phase-space densities

In order to reconstruct the DF from the library or to calculate spatial profiles of
internal or projected properties of some given DF, it is necessary to convert or-
bital weights into phase-space densities and vice versa. This section summarises
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the connection between orbital weights and orbital phase-space densities under
the regime of Jeans’ theorem.

2.3.1 Phase-space densities of orbits

Consider a system in which the orbits respect n integrals of motion I1, . . . , In.
Because the phase-space density of stationary systems is constant along indi-
vidual orbits (Jeans’ theorem), the phase-space density along orbit i is given as
the orbital weight wi divided by the phase-space volume Vi. More formally, let
I denote the n-dimensional set of orbital integrals (I1, . . . , In), let V denote the
6-dimensional phase-space, P(V) its power set, and let ξ : I → P(V) map a n-
tuple of orbital integrals (I1, . . . , In) ∈ I onto the hypersurface ξ(I1, . . . , In) ⊆ V
in phase-space covered by the corresponding orbit,

ξ(I1, . . . , In) ≡ {p ∈ V : I1(p) = I1, . . . , In(p) = In}. (2.17)

With Ui ⊆ I being the small cell in integral space represented by the orbit i,

Ui ≡ {(I1, . . . , In) ∈ I : I1 ∈ [I1,i − ∆I1,i, I1,i + ∆I1,i],

. . . , In ∈ [In,i − ∆In,i, In,i + ∆In,i]} (2.18)

we define the characteristic function

χi ≡
{

1 : (r, ϑ, ϕ, vr , vϑ, vϕ) ∈ Oi

0 : (r, ϑ, ϕ, vr , vϑ, vϕ) /∈ Oi
(2.19)

of the image set

Oi ≡
⋃

W∈ξ(Ui)

W (2.20)

of Ui in phase-space. The volume of the phase-space region represented by orbit
i then follows as

Vi =

∫

χi d3r d3v (2.21)

and accordingly the phase-space density along the orbit reads

fi ≡
wi

Vi
. (2.22)

2.3.2 Orbital weights from DFs

If we reverse the application of equation (2.22), and assign the orbital weights
according to some given DF f ,

wi = fi Vi, (2.23)

with fi ≡ f(I1,i, . . . , In,i) now being the DF f evaluated at the orbit’s position
in integral space, then the DF flib of the entire library, which consists of the
combined contributions of all orbits

flib =
∑

i

fiχi, (2.24)
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will be the mapped version of f onto the library. Equation (2.23) together with
equations (2.6), (2.8) and (2.9) can be used to calculate the LOSVDs, internal
velocity profiles and density distribution of any axisymmetric DF with known
potential.

2.4 Orbital phase volumes

Two degrees of freedom. Binney, Gerhard & Hut (1985) have shown
that, for autonomous Hamiltonian systems with two degrees of freedom the
phase volume of any orbit can be derived from the SOS by integrating the times
between successive orbital visits of the SOS:

V ≈ ∆E

∫

SOS

T (r, vr) dr dvr, (2.25)

where T (r, vr) is the time the orbit needs from (r, vr) to the next intersection
with the SOS, and ∆E defines a small but finite cell around the orbit’s actual
energy E characterising the hypersurface in phase space represented by the
orbit.

Axisymmetric case. Richstone et al. (in preparation) carry over this
result to axisymmetric systems and approximate the phase volumes as

V ≈ ∆Lz ∆E

∫

SOS

T (r, vr) dr dvr. (2.26)

Here ∆Lz and ∆E stand for the range of energies and angular momenta repre-
sented by the orbit under consideration. Equation (2.26) is valid whether the
orbit is regular or chaotic.

Calculating the SOS-integral. In what follows we describe our novel
implementation of equation (2.26) which improves on the method of Richstone
et al. (in preparation) to deliver higher precision phase-space volumes.

For all orbits in a sequence with common energy E and angular momentum
Lz we obtain a representative sample S of the SOS by storing Nsos imprints of
each orbit in the SOS given by the radial positions and velocities2 at the times

t
k(s)
i of the orbital equatorial crossings:

S ≡
{

(rs
i , v

s
i ) : rs

i ≡ r(t
k(s)
i ), vs

i ≡ |vr(t
k(s)
i )|,

Ei = E,Lz,i = Lz, 1 6 s 6 Nsos

}

. (2.27)

Typically, we integrate each orbit up to Nsos = 80 intersections with the SOS
and choose N ′

sos = 60 points for the calculation of the phase volumes randomly
out of the whole set of intersections. We also store the time intervals

t(rs
i , v

s
i ) ≡ t

k(s+1)
i − t

k(s)
i (2.28)

2To reduce the computational effort we take the absolute value of the radial velocities,
thereby exploiting the symmetry of the SOS with respect to the r-axis in our application.
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between two successive intersections.

Inspection of Fig. 2.1 shows that only a tessellation approach can be used
to numerically integrate equation (2.26) in the general case, including regular,
resonant and chaotic orbits. To this end we decided to perform a Voronoi tes-
sellation of S using the software of Shewchuk (1996). This tessellation uniquely
allocates a polygon to each element of S. The edges of the polygon are located
on the perpendicular bisections of pairs containing the element under consid-
eration and one of its neighbours, and are equidistant to the actual pair and a
third element. For almost all elements the polygons are closed and encompass
an area containing the actual element and all points that are closer to it than
to any other element. The areas enclosed by the polygons completely cover the
space between the elements and therefore characterise the fractional area inside
the SOS occupied by each orbit.

Fig. 2.2 shows the same SOS as Fig. 2.1. The open circles represent r and vr

at the orbital equatorial crossings. The thin lines around these circles mark the
Voronoi cells allocated to the elements of S and the solid dots show boundary
points (see below).

With ∆As
i denoting the surface area inside the polygon around (rs

i , v
s
i ) ∈ S,

the integral expression in the phase volume of orbit i (cf. equation 2.26) can be
approximated3 as

∫

SOS

T (r, vr) dr dvr ≈
∑

s

t(rs
i , v

s
i ) ∆As

i . (2.29)

At the boundary of the distribution of sampled points, there may not be
enough neighbours around a given element of S to close its polygon. In order
to ensure that every Voronoi polygon is closed and confined to an area enclosed
by the ZVC of the SOS (given by vr of equation 2.11) we construct an envelope
around the distribution of sampled orbital intersections. In Fig. 2.2 the points
of the envelope are marked by the solid dots. They are constructed as follows.

The first step is to determine the maximum v̂0 of radial velocities in S:

v̂0 ≡ max {vr : (r, vr) ∈ S} . (2.30)

To ensure that no Voronoi cell exceeds below the axis vr = 0, all imprints in the
SOS with vs

i 6 ǫ v̂0 are mirrored about the axis vr = 0 (typically ǫ = 0.1). For
the rest of the SOS we construct an envelope in an iterative loop starting from

(r̂0, v̂0) ≡ (r, vr) ∈ S, vr = v̂0. (2.31)

In each iteration n+ 1 we search for (r̂n+1, v̂n+1) ∈ S obeying

v̂n+1 = max {vr : (r, vr) ∈ S, r > r̂n} . (2.32)

3Note that the Poincaré map of the SOS onto itself is area-preserving, and ∆As

i
should

be independent of s. The Voronoi tessellation, however, yields only approximately constant
∆As

i
. Nevertheless, as Section 2.5 shows, the resulting phase volumes are of high accuracy.
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Figure 2.2: A Voronoi tessellation of the SOS of Fig. 2.1. Open circles mark
individual intersections of orbits with the SOS; solid dots are points added to
make the Voronoi cells well behaved at the boundaries.

The envelope consists of points densely sampled from the line segment connect-
ing (r′n, v

′
n) and (r′n+1, v

′
n+1), where the prime indicates that the coordinates are

slightly shifted outwards, i.e. r′n = (1 + δ)r̂n and v′n = (1 + δ)v̂n, with a typical
value of δ = 0.01. The loop eventually stops after N iterations at r̂N = rup and
is followed by an analogous procedure running from r̂0 to rlo to complete the
envelope along the left part of the SOS. The points on the envelope are used as
additional seeds for the Voronoi tessellation.

As Fig. 2.2 shows, the apposition of the boundary points as described above
ensures that all orbital Voronoi cells are closed and confined to an area roughly
bounded by the outermost invariant curve of the SOS. The definition of the
boundary is purely geometrical and is insensitive to numerical uncertainties in
the orbit integration. The spiky cells along the upper boundary belong to seeds
of the envelope and do not affect the calculation of the orbital phase volumes.

The Voronoi tessellation used to approximate the integral expression in equa-
tion (2.26) via equation (2.29) defines a robust method to calculate the relative
phase volume of any orbit inside a particular sequence of orbits with common E
and Lz, including resonances and chaotic orbits. The areas assigned to the indi-
vidual orbital imprints in the SOS completely fill the area below the ZVC of the
SOS. Thus, a cruder sampling of the SOS is compensated by larger individual
orbital phase volumes. In the limit of an infinitely dense sampling, the assigned
“phase-space weights” obtained by the tessellation approach single-orbit phase
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volumes.

Calculating ∆E∆Lz. For a complete determination of the phase volumes
we also need the relative contribution of a whole sequence of orbits with common
(E,Lz) as compared with other sequences with different energies and angular
momenta. These are described by the factors ∆Lz ∆E of the orbital phase
volumes (cf. equation 2.26). They are in fact equal for all orbits in the same
sequence and need to be calculated only once for each sequence.

Fig. 2.3 shows an example of the (E,Lz)-plane of a typical library. The
dots show the grid of sampled orbital energies and angular momenta. Each dot
represents a sequence of orbits with common E and Lz but different I3. To
calculate ∆Lz ∆E for a particular sequence, we construct a quadrangle around
the sequence’s (E,Lz) and estimate the product ∆Lz ∆E as the surface area
enclosed by this quadrangle. The thin lines in Fig. 2.3 show the boundaries of
these quadrangles, which are constructed as follows.

As described in Section 2.2.1, the grid in (E,Lz)-space is derived from the
requirement, that for every pair ri < rj of equatorial grid bins, the library con-
tains at least one equatorial orbit with rperi = ri and rapo = rj . Consider now
a sequence of orbits with (Eseq, Lz,seq) and corresponding rperi,seq and rapo,seq

of the equatorial orbit. In (E,Lz)-space all sequences inside the boundary of
the sampled area are surrounded by four other sequences having both their
pericentre and their apocentre in adjacent spatial bins. Let rperi,j and rapo,j ,
1 6 j 6 4, denote the corresponding pericentres and apocentres of the equato-
rial orbits of these sequences. We construct a quadrangle around the sequence
(Eseq, Lz,seq) by connecting the energies and angular momenta of four fictitious
orbit sequences characterised by the pericentre r̂peri,j and apocentre r̂apo,j of
their equatorial orbits:

r̂peri,j =
1

2
(rperi,j + rperi,seq) (2.33)

and

r̂apo,j =
1

2
(rapo,j + rapo,seq). (2.34)

The sequences with the largest apocentres and the smallest pericentres are
surrounded by less than four sequences having both their pericentre and their
apocentre in adjacent spatial bins. For these sequences we calculate the edges
of the quadrangle as if there were further sequences around, whose energies and
angular momenta follow from our spatial grid at smaller radii than rmin and
larger radii than rmax.

Sequences with rperi,seq ≈ rapo,seq (lying on the upper boundary of the sam-
pled area in Fig. 2.3 and usually containing only one, approximately circular,
orbit) are also not surrounded by four sequences as described above. For these
sequences we take the (Eseq, Lz,seq) of the actual sequence as the upper right
edge of the quadrangle.

As can be seen in Fig. 2.3 the quadrangles around the sequences’ energies
and angular momenta completely cover the sampled part of the allowed area in
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Figure 2.3: Typical distribution of sampled energies E and angular momenta
Lz of an orbit library. The thin red lines show the boundaries of small cells
assigned to each sequence. Their surface area is taken to estimate ∆E∆Lz.
The potential equals that of Figs. 2.1 and 2.2.

(E,Lz)-space below the curve Lz(E) = Lz,circ. They give a reasonable measure
of the fractional area in (E,Lz)-space, occupied by each orbit sequence.

2.5 Mapping distribution functions onto the li-

brary

In this section we describe how to use the phase volumes from the previous
Section to calculate internal and projected properties of stationary DFs using
an orbit library. To this end, starting with a density profile ρ and a stationary
distribution function fρ connected to ρ via ρ =

∫

fρ d3v, a library is constructed
as described in Section 2.2. Instead of fitting the library to the kinematics of
fρ,

LOSVDf (vlos) =
1

ρ

∫

fρ d2v⊥, (2.35)

we assign an appropriate weight to each orbit such that the superposition of all
orbits represents fρ (see Section 2.3.2 above). We then compare the internal
density distribution ρlib and the anisotropy profile βlib, as well as the projected
kinematics GHPlib, obtained from the library with the same properties ρ, β and
GHP calculated directly from the DF (see Sections 2.5.1 and 2.5.2). Thereby
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we can check to what accuracy the orbit library reproduces a given dynamical
system.

2.5.1 Spherical γ-models

As a first reference case, we explore spherical γ-models.

Properties of the input model. The stellar body of the reference model
is constructed from γ-models (Dehnen 1993) with density

ργ(r) =
M

4π

rs(3 − γ)

rγ(rs + r)4−γ
. (2.36)

These models approximate the de Vaucouleurs law of ellipticals quite well for
γ ∈ [1, 2]. The DF is assumed to be of the Osipkov-Merritt type fOM =
fOM(E −L2/2r2a) (Osipkov 1979; Merritt 1985a,b). The corresponding systems
are isotropic inside the anisotropy radius ra, at r ≪ ra, and radially anisotropic
at r ≫ ra:

β ≡ 1 −
σ2

ϑ + σ2
φ

2 σ2
r

=
r2

r2 + r2a
. (2.37)

We tested various combinations of the parameters (γ, rs, ra). However, since
the conclusions drawn from the comparisons do not depend strongly on γ, the
following contains only a discussion of the results for the Hernquist model (γ =
1), where the DF can be written in terms of elementary functions and reads
(Hernquist 1990)

f(E,L) ∝ 1

8(1 − q2)5/2
− 3 arcsin q + (1 − 2q2)

[

q
√

1 − q2(8q4 − 8q2 − 3) +
r2s
r2a
q

]

(2.38)

with q =
√

rs(E − L2/2r2a)/GM .

Comparison of model and library. Fig. 2.4 shows the GHPs, density
and anisotropy profiles of a library with ≈ 2 × 8800 orbits, extending from
≈ 5 × 10−4 rs to ≈ 28 rs. For this library we used a closed meshed sampling
containing two different pericentres for each radial bin. The weights for the
orbits were directly derived from equation (2.23) and the Hernquist DF of equa-
tion (2.38) with rs = 10.5 kpc, a total mass of M = 7.5× 1011M⊙, and ra = ∞
(isotropic model). The big dots show the expected kinematics, density and
anisotropy of the Hernquist model. The GHPs were obtained by first calcu-
lating the LOSVDs at the position of the corresponding spatial bin from the
DF using the method described in Carollo, de Zeeuw & van der Marel (1995)
and then fitting a Gauss-Hermite (GH) series to the LOSVDs. For the density
distribution and anisotropy we used equations (2.36) and (2.37), respectively.
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Figure 2.4: Comparison of a Hernquist model (big dots) and a library with
weights directly derived from the spherical, isotropic Hernquist DF (lines). The
upper panel shows the projected kinematics along the major axis (solid line)
and minor axis (dashed line). The lower panel shows the density distribution
(upper two rows, [ρ] = M⊙/pc3) and the anisotropy parameter (lower two rows)
for the minor and major axis, respectively.



2.5 Mapping distribution functions onto the library 31

Figure 2.5: As Fig. 2.4, but for an anisotropic Hernquist model with ra = 4 rs.
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As the figure shows, the library is able to reproduce the GHP and internal
density distribution of the model to a high degree of accuracy. The mean frac-
tional difference in σ is below ∆σ < 1 per cent and the mean difference in H4

is below ∆H4 < 0.01. The largest deviations between model and library occur
in the anisotropy profile with rms(β) = 0.06 (taken over a whole angular ray).
The individual differences, however, are smaller than ∆β = 0.1 over almost the
whole spatial range covered by the library. Near the inner and outer boundaries
of the library the orbit sampling becomes incomplete, with mostly radial orbits
coming either from outside the outer boundary or from inside the inner bound-
ary are missing. Consequently, the anisotropy of the library is lower than in the
isotropic reference model.

Fig. 2.5 is as Fig. 2.4, but for an anisotropic Hernquist model with ra = 4 rs.
It confirms the results from the isotropic model. The offset in the H4-profiles
at large radii is due to errors in the GH fit. At these radii the resolution of
our LOSVD-bins is too low to give reliable GHPs. However, the match of the
individual LOSVDs itself is as good as at smaller radii.

Again the largest deviations show up in the β-profiles, with a mean rms(βhern−
βlib) = 0.03. As in the isotropic case the differences between model and library
increase when approaching the edges of the library, where the radial velocity
dispersion of the library is systematically lower than expected.

2.5.2 Flattened Plummer model

We now go one step further and use a flattened test object, namely the flattened
Plummer model of Lynden-Bell (1962a) (normalised such that in the spherical
limit M defines the total mass of the model):

ρpl(r, ϑ) =
Mλ−9/4

4π
[
(

3a2 − 2b2
) (

r2 + a2
)2

+
(

4a2 − b2
)

b2r2 cos2(ϑ)], (2.39)

λ =
(

r2 + a2
)2 − 2b2r2 cos2(ϑ). The parameters a and b describe the extension

of the core and the flattening. The part of the distribution function that is even
in Lz is

fpl(E,Lz) =

√
2

4π3/2

[

Γ(6)

Γ(9
2 )
DE

7

2 +
Γ(10)

Γ(15
2 )
CL2

zE
13

2

]

, (2.40)

C ∝ (3a2 − 2b2) and D ∝ 5b2(2a2 − b2). The Plummer models do not rotate
as long as the uneven part of fpl vanishes and prograde and retrograde orbits
exactly balance each other.

Comparison of model and library. Fig. 2.6 shows a flattened Plummer
model with a = 5.0 kpc, b = a/2 and M = 7.5× 1011M⊙ (big dots) and profiles
obtained from a library with ≈ 2 × 4400 orbits, extending from ≈ 10−3 a to
≈ 20 a (solid and dashed lines as in Figs. 2.4 and 2.5). The weights were derived
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Figure 2.6: Comparison of a flattened Plummer model (big dots) and a library
with weights directly derived from the DF (lines). Upper panel: projected
kinematics along the major axis (solid lines) and minor axis (dashed lines).
Only moments independent from the uneven part of the DF are shown. Lower
panel: density distribution (upper two rows, [ρ] = M⊙ pc−3) and the anisotropy
parameter (lower two rows) for the two axes.
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from fpl via equation (2.23). The kinematics along the major and the minor axis
have been calculated from higher order Jeans equations (Magorrian & Binney
1994). Before the GH parameters were determined, the projected moments
were integrated along a 3.6-arcsec wide major-axis slit and a 2.0-arcsec wide
minor-axis slit. (Note that for the axisymmetric case we take β = 1 − σ2

ϑ/σ
2
r .)

As in the spherical case, the Gauss-Hermite parameters of the projected
kinematics are reproduced to better than a few percent. Deviations in the
outer parts of the H4-profile stem from the GH-fit and are not seen in the
LOSVDs. The density distribution is also well reproduced down to ≈ a/10, and
the anisotropy parameter is |β| < 0.1 from the outer edge of the library down
to ≈ a/10.

2.5.3 Changing the spatial coverage of the library

The library only discretely represents a finite part of the available phase space.
To check how this affects the accuracy of the calculation of phase-space integrals
of a given DF with the library, we did the profile comparisons described in Sec-
tions 2.5.1 and 2.5.2 for libraries with different spatial extents and for different
resolutions in the space of orbital integrals.

The upper panel of Fig. 2.7 shows σ and H4 along the major and the minor
axis for the isotropic Hernquist model (big dots). The four lines show the
outcome of four libraries with different spatial coverages. For the solid line
rmin = 2.5×10−4, rmax = 10 (in units of the effective radius); for the dotted line
rmin = 2.5×10−3, rmax = 10; for the short dashed line rmin = 2.5×10−4, rmax =
5; and for the long dashed line rmin = 2.5 × 10−3, rmax = 5.

As expected, the less extended libraries fail to reproduce the innermost or
outermost data points. In the vicinity of the equatorial plane (along the major
axis and at the central parts of the minor axis), the library becomes dominated
by azimuthal motion when approaching rmin or rmax , since orbits coming from
further outside or inside are missing. Consequently, the LOSVDs are too flat (H4

too small) as compared with the expectations (see for example the outermost
parts of the dashed lines of the libraries with small rmax along the major axis,
and the innermost parts of the long-dashed and dotted lines of the libraries with
large rmin in the minor-axis H4-profile).

The effect can also be seen in the internal dynamical structure, which is
illustrated in the lower panel of Fig. 2.7, where the anisotropy of the library
with respect to ϕ and to ϑ is plotted:

βϕ ≡ 1 −
σ2

ϕ

σ2
r

, βϑ ≡ 1 − σ2
ϑ

σ2
r

. (2.41)

Near the centre βϕ < 0 along the major and minor axes, confirming the domi-
nance of ϕ-motion brought about by the dominance of orbits having their inner
turning points there and consequently rotating rapidly around the axis of sym-
metry. The effect is less pronounced at the outer points of the major axis, where
the effective potential of the meridional-plane motion is less dominated by the
Lz-term.
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Figure 2.7: σ and H4 (upper panel) and anisotropy (lower panel) along the
major and minor axes for the isotropic Hernquist model (big dots) and four
libraries with different spatial extension (rmin/reff , rmax/reff): (2.5 × 10−4, 10)
solid line; (2.5 × 10−3, 10) dotted line; (2.5 × 10−4, 5) short dashed line; (2.5 ×
10−3, 5) long dashed line.
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The βϑ-profiles lack boundary effects because they are independent from the
(E,Lz)-sampling and simply reflect the degree to which the SOSs are filled with
orbital invariant curves.

Along the minor axis the agreement of library and model in projected σ is
quite good. Near the centre the library’s σ is enhanced because the orbits have
their pericentre there.

2.5.4 Changing the number of orbits in the library

Fig. 2.8 shows the same comparison as Fig. 2.7, but for libraries in which we
have omitted every second rperi, resulting in only ≈ 2× 4700 orbits per library.
The overall appearance of Fig. 2.8 is quite similar to that of Fig. 2.7, but there
are some minor differences. First, the scatter in the GHPs has increased slightly;
however, the match of predictions and library is still on a level of a few percent.

The most striking difference is the increase of radial relative to azimuthal
motion near the centre of the library. This probably reflects the fact that the
pericentres of the orbit sequences are located at the inner edge of each radial bin.
Therefore the most radial orbits, which contribute also significantly to vφ near
their turning points, move through the whole bin before turning around and
thus raise the radial velocity dispersion. This effect is strongest in the centre,
since our binning there becomes relatively large compared with the variation of
the potential. The balance between radial and meridional motion is not affected
by this resolution effect, because the sampling inside each sequence (in the SOS)
is independent from the (E,Lz)-grid, and thus independent from the resolution
of the sampled pericentres and apocentres.

2.6 Fitting the library

So far we have not tackled the problem of finding the orbital weights wi accord-
ing to some given kinematical constraints. This section contains a brief descrip-
tion of our use of the maximum entropy technique of Richstone & Tremaine
(1988) to fit the library to some LOSVDs.

2.6.1 Maximum entropy technique

Given a set of kinematic constraints, we seek the orbital weights that best fit
the library to the constraints. These weights are derived from the maximisation
of an entropy-like quantity (Richstone & Tremaine 1988)

Ŝ ≡ S − αχ2, (2.42)

where

χ2 =
∑

j,k

(

LOSVD(lib)jk − LOSVD(data)jk

∆LOSVD(data)
jk

)2

(2.43)
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Figure 2.8: Same profiles as in Fig. 2.7, but the libraries have been set up with
a coarser sampling with roughly half the number of orbits as compared with
Fig. 2.7.
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gives the departure between the predicted kinematics of the library LOSVD(lib)
(cf. equation 2.9) and the data kinematics LOSVD(data) . Note that the lumi-
nosity density ν is not fitted, but used as a boundary condition (see Richstone
et al. in preparation for details). S is an approximation to the usual Boltzmann-
entropy:

S ≡
∫

flib ln (flib) d3r d3v =
∑

i

wi ln

(

wi

Vi

)

. (2.44)

In the absence of any other condition, the maximisation of S forces the
weights wi to be proportional to the phase volumes Vi. This fact can be used
to bias the library towards any set of predefined weights. If, for example, we
substitute the phase volumes in equation (2.44) by Vi → fi Vi, then

S → S′ =
∑

i

wi ln

(

wi

fi Vi

)

, (2.45)

and the maximisation of S′ yields weights wi proportional to fi Vi. According
to equation (2.23) the factors fi can be chosen to bias the library towards any
given DF f . The Boltzmann entropy corresponds to the case of equal a priori
probabilities fi = fj in phase space.

2.6.2 The smoothing parameter α

The smoothing parameter α controls the influence of the entropy S on the fitted
weights. If α is small, the maximum of Ŝ is less affected by χ2 and the library
gives a poor fit to the data. Consequently, it will not represent the true structure
of the object to which it is fitted. If, on the other hand, α is large, the maximum
of Ŝ is largely determined by the minimum of χ2. In this case the library fits
the noise in the data. The DF of the library is then highly unsmooth and again
does not represent the true DF of the corresponding object.

The problem of how much smoothing has to be applied in order to obtain an
optimal estimate of the true underlying DF for a given set of observational data
with specific errors and spatial sampling will be the subject of a forthcoming
paper. Here, we focus on illustrating the accuracy of our method to setup the
orbit libraries. In the following, we will always choose α such that the library
yields the best match to the input DF.

2.7 Reconstructing distribution functions from

fitted libraries

In this Section we use the DFs of Section 2.5, but instead of exploiting equa-
tion (2.23) to assign the orbital weights and to compare spatial profiles of the
library and the original DF, we now fit the library to the DF as follows. First,
we calculate the density profile and GHPs connected with the DF:

ρ =

∫

f d3v (2.46)
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and

LOSVDf (vlos) =
1

ρ

∫

f d2v⊥ (2.47)

where the GHPs are obtained from the LOSVDs as described in Section 2.5.1.
We compose a library as described in Section 2.2 and fit it to the GHPs via
the maximum entropy technique of Section 2.6. Finally, we compare the or-
bital weights wi(α) resulting from the fit with those expected from the DF via
equation (2.23). By showing that the fitted weights approximate the input DF
over a large region in phase space, we justify the decision that we can use the
degree to which the library approximates the DF as a criterion to determine the
optimal amount of smoothing, a fact that we will exploit in a subsequent paper
in more detail.

In order to find the best fit weights that minimise the χ2 of Eq.(2.43), we
derived error bars for the LOSVDs by first assigning error bars to the GHPs
and then determining LOSVD errors by means of Monte Carlo simulations.
The error for σ was chosen to increase linearly with r from 2 per cent at the
innermost data point to 10 per cent at the outermost data point. For H3 and H4

the errors increase from 0.01 to 0.05. The definition of the errors is somewhat
arbitrary since we do not add noise to the data points, but they are roughly
comparable with real data error bars. Since v = 0 in the models, the error for
v is set to ∆v = 2 kms−1. A detailed investigation of the influence of realistic
errors on the accuracy of the reconstructed internal properties of a fitted library
will be presented in a forthcoming paper.

2.7.1 Hernquist model

Fig. 2.9 shows a comparison of characteristic properties of a library fitted to the
kinematics corresponding to the dots in the upper panel and the original DF.
The definition of the lines and dots as well as the input DF are the same as
for Fig. 2.4, and the fit was obtained with α = 0.0046. As expected, the match
to the kinematics and the internal density profile is excellent after the fit. The
anisotropy is smaller than |β| < 0.1 over a spatial region greatly exceeding the
area where the LOSVDs were fitted. Only near the very centre does the minor-
axis β-profile drop significantly because of the lack of radial orbits coming from
inside the inner boundary of the library (cf. Section 2.5).

Fig. 2.10 shows the DF reconstructed from the fitted weights via equa-
tion (2.22) (dots) together with the input DF (thick line). Each dot represents
the phase-space density along one single orbit, and the densities are scaled ac-
cording to

∑

wi =
∑

Vi = 1 . Over a region covering 90 per cent of the library’s
mass, the rms difference between the Hernquist DF and the orbital phase-space
densities is 12.1 per cent. The remaining departures between model and fit are
mostly due to boundary effects arising from the discrete and finite nature of the
library.

Fig. 2.11 shows the fractional differences of input model and library as a
function of orbital energy E and angular momentum Lz. For each dot, the
contributions of individual orbits with common E and Lz have been integrated.
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Figure 2.9: Comparison of a library fitted to the LOSVDs of a spherical,
isotropic Hernquist DF (lines) and the Hernquist model itself (big dots). The
upper panel shows the projected kinematics along the major axis (solid line) and
minor axis (dashed line). The lower panel shows the density distribution (upper
two rows, [ρ] = M⊙ pc−3) and the anisotropy parameter (lower two rows) for
the two axes.
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Figure 2.10: Comparison of the DF of a spherical Hernquist model (solid line,
units defined in the text) with the phase-space densities obtained from a library
fitted to GHPs along two perpendicular axes in the galaxy (details in the text).
Each dot represents a single orbit. The rms between library and model is 12.1
per cent over a region covering 90 per cent of the library’s mass.

Larger dots correspond to larger differences between input DF and fitted library.
From Fig. 2.11 it can be seen that the remaining deviations between library
and input DF mostly stem from orbits lying at the boundary of the phase-
space region covered by the library. Since the library only contains a finite
number of all orbits, the fit to the kinematics with the density as a boundary
condition enforces some redistribution of orbits as compared with the original
DF. For example, at the outer boundary of the library (E ≈ 0) the fitted orbital
phase-space densities are too large as compared with the input DF. These orbits
compensate the cut-off in energy and contain all the light that should have been
distributed along even less bound orbits. For the same reason, the library fails
to reproduce the Hernquist DF near the most bound orbits.

Fig. 2.12 shows the results when fitting the same library to the projected
kinematics of the anisotropic Hernquist model with ra = 4rs, corresponding
to the dots in the upper panel of the figure. Again, after the fit the library
perfectly reproduces the internal density profile and the projected kinematics.
The mismatch in the outer parts of the H4-profiles result from errors in the
GHP fit (cf. Section 2.5.1). However, we do not fit the library to the GHP, but
directly to the LOSVD. The β-profiles of the library follow the expected curves
well inside the region covered by kinematical constraints. In the outer parts,
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Figure 2.11: The fractional difference between a spherical Hernquist model and
a fitted library as a function of orbital energy E and z-angular momentum Lz.
Larger dots correspond to larger differences. For open dots the DF of the library
overestimates the real DF, and for the solid dots it underestimates the DF.

however, they do not follow the input model to predominantly radial motion
but turn back to an isotropic appearance. This is a reflection of the entropy
maximisation used in the fit, which forces those parts of the library that are not
constrained by data points to isotropy.

To confirm this effect of entropy maximisation, we refitted the library, but
replaced the Vi in equation (2.44) by the weights of the anisotropic Hernquist
DF following from equation (2.23). Since for the maximum entropy solution of
equation (2.44) (without any other condition) the weights wi are proportional to
the values Vi, now being the weights of the anisotropic DF instead of the phase
volumes, the fit is biased towards the anisotropic Hernquist model. The charac-
teristics of the corresponding fit are displayed by the dotted lines in Fig. 2.12.
The projected kinematics and internal density are indistinguishable from the
maximum entropy fit, but now the anisotropy profile is in perfect agreement
with the input model.

2.7.2 Flattened Plummer model

Fig. 2.13 shows the GHPs and internal density and anisotropy of the Plummer
model with b = a/2 of Section 2.5.2, together with a fitted library containing
≈ 2 × 4400 orbits. The library was fitted to the LOSVDs corresponding to the
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Figure 2.12: As Fig. 2.9, but for an anisotropic Hernquist model with ra = 4 rs.
The dotted line shows the result of a fit with “biased weights” (see text for
details).
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dots of the upper panel of the figure with a smoothing parameter of α ≈ 0.03.
The small deviations between the library’s kinematics and the model in the
upper panel of the figure are due to the low resolution in the GH fit and are not
seen in the LOSVDs used for the fit. The anisotropy parameter is confined to
|β| < 0.1 over all the region where the library is constrained by kinematic data.

The rms difference between the reconstructed DF and the input model is ≈
15 per cent over a region covering 90 per cent of the library’s mass. As Fig. 2.14
shows, differences between the model and library are confined to the boundaries
of the sampled (E,Lz)-region of the phase space. As for the Hernquist model,
the reason for these differences is the incomplete orbit sampling at the edges of
the library.

2.8 Summary

We have presented a modified version of the Schwarzschild code of Richstone
et al. (in preparation). The code involves a new orbit sampling at given energy
E and angular momentum Lz and a new implementation for the calculation of
the orbital phase volumes.

For our libraries we supplement the drop of orbits with common energy E
and angular momentum Lz from the ZVC as described in Richstone et al. (in
preparation) by scanning the SOS with a resolution that varies as the sampling
progresses from the more radial to the more shell-type orbits. This sampling
has been shown to completely fill the SOS connected with a pair (E,Lz) with
orbital imprints.

A Voronoi tessellation of the SOSs of orbits with common E and Lz allows
us to calculate the phase-space volumes of individual orbits in any axisymmetric
potential. With the phase volumes we can convert the orbital weights describing
the relative contribution of the orbits to the whole library into phase-space
densities and vice versa. As a first application we use the densities to check our
method of setting up the library in two different ways.

First, we calculate the spatial profiles of internal and projected properties of
isotropic and anisotropic DFs of spherical γ-models as well as of the flattened
Plummer model with the library. The density profiles, anisotropy profiles and
projected kinematics of the library closely match those inferred directly from the
corresponding DF. The errors in the higher-order GH parameters Hn, ∆Hn <
0.01 for n = 3, 4, and the fractional error in the projected dispersion, ∆σ < 1
per cent, are accurate on a level better than that of present-day observational
errors. The largest deviations occur in the anisotropy profile, but are smaller
than ∆β < 0.1 at almost all positions in the library; however, they increase
towards the edges of the spatial region that is covered by the orbits. This
boundary effect is caused by the locally incomplete orbit sampling there. If in
practical applications the libraries are constructed to extend beyond the area
with observational constraints, these inaccuracies are negligible. Hence, our
libraries fairly represent the phase-space structure of the models considered.

As a second application we fitted libraries to the GHPs of the same spherical
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Figure 2.13: Comparison of a flattened Plummer model (big dots) and a fitted
library (lines). The upper panel shows the projected kinematics along the major
axis (solid lines) and minor axis (dashed lines). The lower panel shows internal
moments along the minor and major axis, respectively (units as in Fig. 2.6).
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Figure 2.14: Deviations from the reconstructed DF of a fitted library and the
Plummer DF of Fig. 2.13. Each dot represents one sequence of orbits with
common E and Lz. For the open dots the DF of the library overestimates the
real DF, and for the solid dots it underestimates it. Larger dots indicate larger
differences.

γ-models and flattened Plummer models. The reconstructed DFs match the
input DF with a rms of about 15 per cent over a region covering 90 per cent
of the library’s mass. The remaining deviations are mostly restricted to orbits
at the boundary of the phase-space volume represented by the library. This is
not unexpected since the library only discretely represents a finite subregion of
the input system. Consequently some redistribution of orbits is necessary to
compensate for orbits not included in the library.

We will investigate the influence of observational errors on the reconstructed
DFs and of the amount of smoothing applied in the fit in a forthcoming pub-
lication. In a further step we will reconstruct the internal structure and mass
composition of a sample of flattened early-type galaxies in the axisymmetric
approximation.



Chapter 3

Regularised orbit models
unveiling the stellar
structure and dark matter
halo of the Coma elliptical
NGC 4807

3.1 Introduction

Interpreting the stellar kinematical data of ellipticals in terms of galaxy struc-
tural parameters requires knowing the gravitational potential as well as the
distribution of stellar orbits, which – due to projection effects – is not directly
given by observations. In equilibrium stellar systems, the phase-space distri-
bution function (DF) describing the orbital state depends on phase-space coor-
dinates only through the integrals of motion, admitted by the actual potential
(Jeans theorem; e.g. Binney & Tremaine 1987).

In cases where integrals of motion can be expressed (or, approximated) in
terms of elementary functions, the DF can be parametrised explicitly. Several
round as well as a couple of flattened ellipticals have been modelled based on
this approach (e.g. Dehnen & Gerhard 1994; Carollo et al. 1995; Qian et al.
1995; Dejonghe et al. 1996; Gerhard et al. 1998; Emsellem, Dejonghe & Bacon
1999; Matthias & Gerhard 1999; Statler, Dejonghe & Smecker-Hane 1999; Kro-
nawitter et al. 2000; Saglia et al. 2000; Gerhard et al. 2001). On the other hand,
the orbit superposition modelling technique of Schwarzschild provides fully gen-
eral dynamical models for any axisymmetric or triaxial potential and has been
successfully applied to a growing number of early-type galaxies (e.g. Rix et al.
1997; Cretton & van den Bosch 1998; Cretton, Rix & de Zeeuw 2000; Gebhardt
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et al. 2000a; Cappellari et al. 2002; Verolme et al. 2002; Gebhardt et al. 2003;
Romanowsky et al. 2003; Copin, Cretton & Emsellem 2004; Valluri, Merritt &
Emsellem 2004; Krajnović et al. 2005).

Even if the number of dynamical models is steadily increasing, the only
comprehensive investigation of elliptical galaxy DFs addressing the question of
dark matter in these systems is still the basis-function based spherical modelling
of 21 round galaxies by Kronawitter et al. (2000) and Gerhard et al. (2001). To
extend the results found there and in the handful of studies of individual objects
quoted above, we started a project aimed to probe a sample of flattened early-
type galaxies in the Coma cluster, collecting major (Mehlert et al. 2000) and
minor axis (Wegner et al. 2002) kinematical data. The goal is to investigate the
dynamical structure and dark matter content of these galaxies.

Most present-day orbit superpositions, conceptionally based on the origi-
nal implementation of Schwarzschild, do not automatically provide the entire
phase-space DF, but only orbital occupation numbers or weights, respectively,
characterising the total amount of light carried by each orbit. In principle,
changing the orbit sampling strategy allows one to infer the DF from any orbit
superposition (Häfner et al. 2000), but this approach has not yet been followed
fully. To take advantage of both, the full generality of orbit superpositions and
the availability of DFs, we extended the orbit superposition code of Richstone
& Tremaine (1988) and Gebhardt et al. (2000a) to reconstruct phase-space DFs
in the axisymmetric case (Thomas et al. 2004).

Recovering stellar DFs from photometric and kinematic observations – in
particular the application of non-parametric methods like orbit superpositions –
invokes regularisation in order to pick up smooth phase-space distributions (e.g.
Richstone & Tremaine 1988; Merritt 1993). Different regularisation schemes
have been applied in the context of orbit libraries, among them variants of min-
imising occupation number gradients in orbit space (Zhao 1996) and maximum
entropy (Richstone & Tremaine 1988). The proper amount of regularisation has
thereby commonly been adjusted to the data (e.g. Rix et al. 1997; Verolme et
al. 2002; Richstone et al., in preparation).

One aim of this paper is to readdress the question of how much regularisation
is needed to recover galaxy internal structural properties from observations with
spatial sampling and noise typical for our sample of Coma galaxies. To this end
we study observationally motivated reference models under realistic observa-
tional conditions and optimise regularisation with respect to the reconstruction
of intrinsic input-model properties (see e.g. Gerhard et al. 1998; Cretton et al.
1999). By simulating and recovering reference galaxies we also determine to
which degree the internal mass structure and orbital content are constrained
by observational data in our sample. Furthermore χ2-statistics are measured to
assign confidence intervals to real galaxy orbit superpositions.

To demonstrate the prospects of regularised orbit superpositions for our
project we also present an application to one galaxy. We have chosen the faint
giant E2 elliptical NGC 4807 (MB = −20.76 for H0 = 69 km/s/Mpc from
Hyperleda) for the following reasons: (1) The galaxy has a prominent boxy
photometric feature in the outer parts constraining its inclination. (2) Stel-
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lar kinematic data reach out to 3 reff along the major axis probing its dark
halo outside the galaxy main-body. (3) NGC 4807 lacks significant minor-axis
rotation and isophotal twist and thus is an ideal target for axisymmetric mod-
elling. (4) The galaxy is only mildly flattened and the dynamical models can be
compared with earlier studies of similar galaxies done mostly in the spherical
approximation.

The paper is organised as follows. Sec. 3.2 summarises the observations
of NGC 4807, Sec. 3.3 outlines the orbit superposition technique. In Sec. 3.4
Monte-Carlo simulations performed to derive the optimal regularisation are de-
scribed and the achieved accuracy of galaxy reconstructions follows in Sec. 3.5.
Orbit models for NGC 4807 are presented in Secs. 3.6-3.8. The paper is closed
with a combined summary and discussion of the results in Sec. 3.9.

3.2 NGC 4807: model input

In the following we assume a distance d = 100 Mpc to NGC 4807 (corresponding
to H0 = 69 km/s/Mpc) and take reff = 6.7 arcsec as its effective radius (Mehlert
et al. 2000).

3.2.1 Photometric data

The photometric data are combined from two different sources. For the outer
parts of NGC 4807 Kron-Cousins RC band CCD photometry is drawn from
Mehlert et al. (2000), consisting of profiles for the surface brightness µR, ellip-
ticity ǫ and isophotal shape parameters a4 and a6 out to ≈ 5.5 reff (see Bender &
Möllenhoff 1987 for a definition of an). A seeing of 2 arcsec during the observa-
tions causes the profiles to be unresolved in their central parts (at d = 100 Mpc
one arcsec corresponds to 0.485 kpc). To increase the central resolution, the
ground-based data are supplemented by corresponding profiles for µV , ǫ, a4 and
a6 extracted from archival HST V band data (Principal Investigator: John
Lucey; Proposal ID: 5997).

The two surface brightness profiles µR and µV are joined by shifting the HST
V band according to the average 〈µR − µV 〉 taken over the region 0.75 reff 6

R 6 3 reff , where both data sets overlap and seeing effects are negligible. The
shift 〈µR − µV 〉 is well defined with a rms of only 0.015 mag.

For the orbit models ground-based photometry is used outside R > 3 reff
and HST data inside R < 3 reff . Fig. 3.1 shows the combined µR, ǫ, a4 and a6

profiles applied for the modelling.

3.2.2 Deprojection

In the implementation of Schwarzschild’s modelling technique used here, orbit
models are not directly fitted to observed photometry. Instead, the deprojected
luminosity density is used as a boundary condition for any orbit superposition
(see Sec. 3.3.4).
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Figure 3.1: Photometric data for NGC 4807 (dots with error bars, from top to
bottom: surface brightness µR, ellipticity ǫ, isophotal shape parameters a4 and
a6) and three deprojections: edge-on deprojection (solid); i = 50◦-deprojection
(dashed); disky i = 50◦- deprojection (dotted).

Deprojection of axisymmetric galaxies is unique only for edge-on systems
(inclination i = 90◦; Rybicki 1987). For any inclination i < 90◦ disk-like konus-
densities can be added to the luminosity profile without affecting its projected
appearance for any i′ < i (Gerhard & Binney 1996). From i = 90◦ to i = 0◦

the variety of different luminosity models projecting to the same galaxy image
generally increases.

Deprojections for NGC 4807 are obtained with the program of Magorrian
(1999). The code allows one to explore the full range of luminosity densities
consistent with the photometric data by forcing the deprojection towards differ-
ent internal shapes. For example, at any given inclination i the goodness of fit
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of the deprojection can be penalised towards any degree of internal boxiness and
diskiness, respectively. The deprojections are fitted without seeing-correction,
since our joint photometry includes ground-based data only outside R > 3 reff ,
where seeing effects are negligible. Outside the last measured photometric data
point (R > 5.5 reff), the photometry is extrapolated by a de Vaucouleurs profile
fitted to the inner parts of the galaxy. The isophotes outside R > 5.5Reff are
assumed to be perfect ellipses with a constant flattening corresponding to the
galaxy’s outermost measured ellipticity.

From the average flattening 〈q〉 = 0.8 of NGC 4807 we expect an inclina-
tion angle i > 38◦. Lower viewing angles would require density distributions
intrinsically flatter than E7, which are not observed. In Fig. 3.1 three repre-
sentative deprojections are overplotted to the photometric data: the (unique)
i = 90◦-deprojection; a deprojection at i = 50◦ without any shape penalty; a
disky i = 50◦-deprojection. All three luminosity models are equally consistent
with the data. The differences between the models are illustrated in Fig. 3.2,
which displays the isophotal shape parameters and the corresponding isophotes
of the deprojections as they appear viewed from edge-on. At this viewing angle
internal density distortions show up the strongest.

As Fig. 3.2 reveals, both deprojections at i = 50◦ are heavily boxy around
R ≈ 2 reff (a4 ≈ −10 per cent for the deprojection without shape preference and
a4 ≈ −8 per cent for the disky deprojection). These distortions are a reflection
of the drop in a4 at R > 3 reff in the data of NGC 4807. Projected density
distortions progressively strengthen in deprojection from i = 90◦ to i = 0◦ and
assuming i = 50◦ already causes a considerable amplification. Near the centre
– where the observed isophotes are consistent with being purely elliptical – the
disky deprojection appears smoother with on average larger a4, albeit lacking
the strong a4-peak occurring in the deprojection without shape preference at
R = 0.05 reff .

We have constructed orbit models for both, the i = 90◦ and the non-disky
i = 50◦ deprojections, but the heavily distorted density distributions at i = 50◦

lead us to expect that we likely view NGC 4807 close to edge-on.

3.2.3 Kinematic data

The kinematic data are described in Mehlert et al. (2000) and Wegner et al.
(2002). They consist of two long-slit spectra for the major and the minor axis,
respectively. Profiles of lower order Gauss-Hermite coefficients γ0, v, σ, H3 and
H4 (Gerhard 1993; van der Marel & Franx 1993) parameterising the line-of-sight
velocity distribution (LOSVD) reach out to 3 reff along the major-axis and out
to 0.6 reff along the minor-axis. Our orbit models are not directly fitted to the
observed Gauss-Hermite parameters, but to binned LOSVDs. Therefore the
Gauss-Hermite parameters are transformed into suitable LOSVDs as follows.
First, the Gauss-Hermite series according to the observed γ0, v, σ, H3 and H4

is evaluated at 1000 values of line-of-sight velocity vlos, linearly spaced in the
range −4 σ 6 vlos 6 4 σ. At each of the sampled projected velocities error
bars ∆LOSVD are assigned to the LOSVD from the errors in the corresponding
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Figure 3.2: Projected appearance of the three deprojections shown in Fig. 3.1
when seen edge-on. The top panel shows isophotal shape parameters (cf.
Fig. 3.1), the bottom panel displays the corresponding isophotes. Solid: i = 90◦

deprojection; dashed: i = 50◦-deprojection; dotted: disky i = 50◦-deprojection.
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Gauss-Hermite parameters by means of Monte-Carlo simulations. The LOSVD
is then binned appropriately for comparison with the orbit library (see Sec. 3.3.1
below).

For NGC 4807, the scatter in kinematical data from different sides of the
galaxy is mostly negligible compared with the statistical errors in the data.
Therefore, the orbit models are fitted to a symmetrized data set, derived by
averaging the Gauss-Hermite parameters from each side. The largest scatter
appears in the outermost major-axis H4-measurement. To infer the impact of
its uncertainty on the reconstructed DF, we separately refitted the mass model
that most closely matches the symmetrized data set, to the kinematics of the
two different sides of NGC 4807. Both fits lead to similar models in terms of
DF and internal kinematical structure, suggesting that the asymmetry in this
single measurement does not largely affect our results.

3.3 Orbit superposition models

Our method of setting up orbit libraries to construct best fitting models is
described in detail in Richstone et al. (in preparation) and in Thomas et al.
(2004). Here, we only briefly outline some aspects of the method relevant to the
present paper.

To recover the mass distribution of a given galaxy by orbit libraries, a grid
of (parameterised) trial potentials is probed. In each trial potential (Sec. 3.3.2)
a large set of orbits is calculated (Sec. 3.3.3) and an orbit superposition is
constructed that best matches the observational constraints (Sec. 3.3.4). The
best-fitting mass parameters with corresponding errors then follow from a χ2-
analysis.

3.3.1 Basic grids

For comparison with observations the meridional plane of the orbit model as
well as its projection onto the plane of the sky are divided into bins in radius
r and polar angle ϑ. The grid in radius is logarithmic in the outer parts and
becomes linear in the inner parts; the angular bins cover equal steps in sinϑ
(see Richstone et al, in preparation, for details). For NGC 4807 the models are
calculated in Nr × Nϑ = 200 bins with Nr = 20 and Nϑ = 10. Each spatial
bin of the model’s sky-projection is subdivided into Nvel = 15 bins in projected
velocity for the purpose of fitting the library to the observed kinematics.

3.3.2 Luminous and dark mass distributions

Luminous matter. We assume that the luminous mass of NGC 4807 is suffi-
ciently characterised by a constant stellar mass-to-light ratio Υ (see also Sec. 3.9
and Fig. 3.22 for a verification of this assumption). The stellar mass density
then reads Υ ν, where the luminosity density ν is taken from the deprojections
of Sec. 3.2.2.
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Dark matter. Modelling of spiral and dwarf galaxy rotation curves indicates
shallow inner dark matter density distributions, i.e. logarithmic density slopes
γ ≡ d ln(ρDM)/d ln(r) ≈ 0 (e.g. de Blok et al. 2001; Gentile et al. 2004). Flat
dark matter density cores also fit to the kinematics of round ellipticals (Gerhard
et al. 2001), although Rix et al. (1997) found steeper profiles consistent with
observations of NGC 2434. Some optical or radio rotation curves also allow
density slopes up to γ 6 −1, but they do not prefer steep profiles (Swaters et
al. 2003).

Shallow dark matter density profiles conflict with predictions of (pure dark
matter) cosmological N -body simulations. In the ΛCDM scenario, dark matter
distributions with central density cusps around −1.5 < γ < −1 are found (e.g.
Moore et al. 1999; Navarro et al. 2004). Similar steep profiles emerge in warm
dark matter (Colin, Avila-Reese & Valenzuela 2000; Knebe et al. 2002), whereas
self-interacting dark matter offers central γ ≈ 0 (Davé et al. 2001).

To probe the whole diversity of theoretically and observationally motivated
profiles we allow for two different dark matter distributions, one with central
γ = 0, representative of shallow profiles and another with central γ = −1,
representative of the steeper cases.

Cored profiles. A dark matter distribution that provides asymptotically
flat circular velocity curves in combination with flat (γ = 0) inner density cores
is given by the logarithmic potential (Binney & Tremaine 1987)

ΦLOG(R, z) =
v2

c

2
ln

(

r2c +R2 +
z2

q2

)

, (3.1)

where R = r cos(ϑ), z = r sin(ϑ) are Cartesian coordinates in the meridional
plane and ϑ = 0◦ corresponds to the equator. The density distribution gener-
ating ΦLOG reads (Binney & Tremaine 1987)

ρLOG(R, z) ∝ v2
c

(2q2 + 1)r2c + R2 + 2(1 − 1
2q2 )z2

(r2c +R2 + z2/q2)2 q2
(3.2)

and is positive everywhere for q ∈ [1/
√

2, 1]. The flattening of the density
distribution (3.2) differs from that of the potential q. It is generally smaller and
varies with radius. In the following, we will only consider cored profiles with
q = 1.0 (spherical). Together with the assumption of a constant mass-to-light
ratio Υ models with dark matter distributions according to equation (3.2) can
be seen as analogues to maximum-disk models of spiral galaxies and have been
called maximum-stellar-mass models (Gerhard et al. 1998).

Cuspy profiles. A representative cuspy mass distribution fitting simu-
lated dark matter halos over a wide range of radii is the Navarro-Frenk-White
(NFW) profile (Navarro, Frenk & White 1996)

ρNFW(r, rs, c) ∝
δc

(r/rs)(1 + r/rs)2
, (3.3)
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with a central logarithmic density slope γ = −1. The parameter δc in equation
(3.3) is related to a concentration parameter c via

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
. (3.4)

By the substitution r → r
√

cos2(ϑ) + sin2(ϑ)/q2 equation (3.3) provides halos

with a constant flattening q.
In CDM cosmology the two parameters c and rs turn out to be correlated in

the sense that higher mass halos are less concentrated, with some scatter due to
different mass assembly histories (Navarro, Frenk & White 1996; Jing & Suto
2000; Wechsler et al. 2002). The corresponding relation reads

r3s ∝ 10(A−log c)/B

(

200
4π

3
c3
)−1

. (3.5)

Here, we take A = 1.05 and B = 0.15 (Navarro, Frenk & White 1996; Rix et al.
1997), which – for the concentrations 5 < c < 25 considered here – is equivalent
to within 10 per cent to the relation given in Wechsler et al. (2002) for the now
standard ΛCDM.

Total gravitating mass and potential. Luminous and dark matter com-
ponents combine to the total mass density

ρ = Υ ν + ρDM, (3.6)

with ρDM being either ρLOG or ρNFW. The potential Φ follows by integrating
Poisson’s equation.

3.3.3 Orbit collection

Given Φ, a large set of orbits is calculated in order to sample the phase-space of
the potential. Energies E and angular momenta Lz of the orbits are chosen to
connect every pair of equatorial radial grid bins by at least one equatorial orbit.
The surfaces of section (SOS) connected to pairs of (E,Lz) – here the upward
orbital crossings with the equator – are densely filled with orbits of all available
shapes (Thomas et al. 2004). A typical orbit library contains between 6500 and
9500 orbits for Lz > 0. Each orbit’s retrograde counterpart with Lz < 0 is
included in the library by reversing the azimuthal velocities appropriately. In
total a typical library then contains between 13000 to 19000 orbits.

3.3.4 Orbit superposition

Any superposition of a library’s orbits generates a model with a specific internal
density distribution and specific projected kinematics that can be compared with
the observations. The relative contribution of each orbit to the superposition –
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the orbital weight wi – represents the total amount of light carried by orbit i.
To fit a library to a given dataset the maximum entropy technique of Richstone
& Tremaine (1988) is applied by maximising

Ŝ ≡ S − αχ2
LOSVD, (3.7)

where

χ2
LOSVD ≡

NL
∑

j=1

Nvel
∑

k=1

(

Ljk
mod − Ljk

dat

∆Ljk
dat

)2

(3.8)

quantifies the deviations between the model LOSVDs Lmod and the observed
LOSVDs Ldat atNL spatial positions j and in the Nvel bins of projected velocity
k. By S, the Boltzmann entropy

S ≡
∫

f ln (f) d3r d3v =
∑

i

wi ln

(

wi

Vi

)

(3.9)

of the library’s DF f is denoted, Vi is the orbital phase-volume of orbit i,
computed as in Thomas et al. (2004), and α is a regularisation parameter (see
Sec. 3.4).

The decomposition of the library potential Φ into two components generated
by the stellar and the dark matter mass distributions, respectively, is meaningful
only if the final orbit model self-consistently generates the stellar contribution
to the potential. Therefore, the luminosity density ν is used as a boundary
condition for the maximisation of equation (3.7). This also guarantees a perfect
match of the orbit model to the photometric observations.

3.3.5 Comparing model with data kinematics

Since our original data set for NGC 4807 consists of Gauss-Hermite parameters
up to H4 we will quote the deviations between model and data kinematics in
terms of

χ2
GH ≡

NL
∑

j=1





(

vj
mod − vj

dat

∆vj
dat

)2

+

(

σj
mod − σj

dat

∆σj
dat

)2

+

(

Hj
3,mod −Hj

3,dat

∆Hj
3,dat

)2

+

(

Hj
4,mod −Hj

4,dat

∆Hj
4,dat

)2


 . (3.10)

The sum in equation (3.10) over NL LOSVDs contains Ndata ≡ 4 × NL terms
and the parameters vmod, σmod, H3,mod and H4,mod are obtained from the corre-
sponding LOSVDs of equation (3.8) by fitting a 4th-order Gauss-Hermite series1.

1The fifth parameter of the fit, the intensity γ0, is not included in equation (3.10) since
we scale data as well as model LOSVDs to the same surface brightness before comparison.
This does not automatically imply that the fitted intensities γ0 of model and data LOSVDs
are identical, but it largely affects their differences. Following the approach of Gerhard et al.
(1998) we therefore omit γ0 in χ2

GH
.
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Equation (3.10) can only be applied if the sampling of the LOSVD is sufficient
to get reliable and unbiased estimates of the Gauss-Hermite parameters and it
should be noticed that in the implementation of the orbit superposition method
applied here (in contrast to the programs building up on the work of Rix et al.
1997 and Cretton et al. 1999) χ2

GH is not explicitly minimised. We discuss the
effects of using equation (3.10) instead of equation (3.8) to derive confidence
regions in Sec. 3.9.3.

3.4 Regularisation

The regularisation parameter α in equation (3.7) controls the relative impor-
tance of entropy maximisation and χ2-minimisation in the model. Basically,
increasing α puts more weight on the χ2-minimisation in the orbit superpo-
sition and reduces the influence of S in equation (3.7). For data sets with
relatively sparse spatial sampling as considered here, the freedom in the orbit
superpositions allows to fit models to the noise in the data when applying α > 1.
Such orbit models show, however, large density depressions and contradict the
traditional view of relaxed dynamical systems. On the other hand, models with
lower α have smoother distribution functions in the sense that the adopted form
for S tends to isotropize the orbital DF, thereby reducing its dependency on Lz

and I3. Fitting orbit models to data sets with different spatial coverage and
quality will likely change the effect of α on the final fit. Likewise, changing the
functional form of S can be used to bias the models towards other than isotropic
DFs (Thomas et al. 2004). The best choice for α and S has to be investigated
case-by-case, depending on the galaxies under study and on the amount and
form of information that is to be extracted from the observations.

3.4.1 Motivation

Figs. 3.3 and 3.4 exemplify the effects of regularisation in terms of two distribu-
tion functions reconstructed from fits of the same library for an edge-on isotropic
rotator model of NGC 4807. The Gauss-Hermite profiles in the lower panels of
the figures are derived from velocity moments obeying higher-order Jeans equa-
tions in the self-consistent potential of the deprojection (Magorrian & Binney
1994). Before calculating the Gauss-Hermite parameters the velocity moments
are slit averaged and seeing convolved to simulate the observations of Sec. 3.2.3.
Noise is added to v and σ according to the fractional errors of the observations
and to H3 and H4 according to the absolute errors. The lower panels of Figs. 3.3
and 3.4, respectively, display the rotator kinematics along the major and minor
axes, together with fits of an orbit library containing 2×6922 orbits. For Fig. 3.3
the fits were obtained at α = 0.02 and for Fig. 3.4 at α = 6.73. The distribution
functions reconstructed from the two fits are plotted against orbital energy E
in the upper panels of the figures. Each dot represents the phase-space density
wi/Vi along a single orbit, scaled according to

∑

wi =
∑

Vi = 1 (Thomas et al.
2004). The more regularised fit in Fig. 3.3 yields χ2

GH/Ndata = 0.3 (Ndata = 48),



58 3. Regularisation and orbit models for NGC 4807

while for Fig. 3.4 the goodness of fit is χ2
GH/Ndata = 0.17.

The DF at α = 6.73 has density depressions of several orders of magnitude for
orbits with roughly the same energy. Orbit models with such DFs are difficult
to interpret as the result of relaxation processes like violent relaxation and
others, occurring in the dynamical evolution of real galaxies (e.g. Lynden-
Bell 1967). They often predict uncommon kinematics along position angles
not covered by observational data. To illustrate this, the projected kinematics
predicted along a diagonal axis (position angle ϑ = 45◦) by the two DFs of
Figs. 3.3 and 3.4 are plotted in Fig. 3.5. For comparison the (undisturbed)
kinematics of the isotropic rotator model are also overplotted. The profiles of
the almost non-regularised (α = 6.73) fit show large point-to-point variations,
which cannot easily be reconciled with the scatter in real observations. Also,
the mean deviation between the non-regularised orbit superposition and the
input isotropic rotator (IR) model are larger for the non-regularised one than
for the regularised one, e.g. 〈HIR

3 − H3〉 = 0.06 for α = 6.73 compared with
〈HIR

3 −H3〉 = 0.02 for α = 0.02.
The above example demonstrates the importance of regularisation in the

context of recovering internal dynamics of isotropic rotators from sparse data
sets typical for our sample of Coma galaxies. For NGC 4807 we have determined
the optimal amount of regularisation by means of Monte-Carlo simulations of
several such isotropic rotator models (see Sec. 3.4.2 below).

The DFs of isotropic rotator models are of the form f = f(E,Lz) and repre-
sent only a minority of all possible DFs, since they are constant along I3. The
choice of such reference models for galaxies like NGC 4807 (fast rotating, faint
giant ellipticals) is observationally motivated (Kormendy & Bender 1996) and
further supported by the weak velocity anisotropy found in previous dynamical
studies (e.g. Gerhard et al. 2001; see also Sec. 3.7 for the case of NGC 4807),
implying only a mild dependence of the DF on I3. For more luminous ellipticals
(shaped primarily by velocity anisotropy) or lenticulars embedded in roundish
halos other reference models should be explored. We will turn to this in a future
publication.

3.4.2 Regularisation from isotropic rotator models

The isotropic rotator models constructed to determine the optimal regularisa-
tion with respect to the analysis of NGC 4807’s internal structure are based
on the edge-on as well as the i = 50◦ deprojections. For numerical reasons,
however, the models at i = 50◦ are forced to have isophotes close to pure el-
lipses by setting a4 ≡ a6 for the deprojection. Six models have been probed,
three at each of the inclinations i = 50, 90◦: one self-consistent, one embedded
in a LOG-halo and a third embedded in a NFW-halo. Kinematic profiles are
calculated from higher order internal velocity moments (Magorrian & Binney
1994) following the procedure described in Sec. 3.4.1. Orbit libraries are fit-
ted to the kinematic profiles and the internal velocity moments reconstructed
from the fits are compared with the original input-moments for various values
of α. The optimal balance between entropy maximisation and χ2-minimisation
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Figure 3.3: Reconstructed phase-space densities of individual orbits against
energy (upper panel) for an isotropic rotator model of NGC 4807 (details in
the text). For the underlying fit (lower panel; dots/squares: major/minor axis
isotropic rotator model; solid/dashed lines: major/minor axis orbit model) a
regularisation of α = 0.02 is used.
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Figure 3.4: As Fig. 3.3, but for regularisation with α = 6.73. Note that the
lower boundary of phase-space densities in the upper panel is partly due to the
program setting all orbital weights smaller than wi < wmin ≡ 10−37 equal to
wi ≡ wmin.
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Figure 3.5: Projected kinematics of the two DFs of Figs. 3.3 and 3.4 along a
diagonal axis with position angle ϑ = 45◦. Solid lines: α = 0.02 (→ Fig. 3.3);
dashed lines: α = 6.73 (→ Fig. 3.4); dots: kinematics of the isotropic rotator
model. Note that the orbit superpositions were fitted to the model only along
the major and minor axes.

is revealed where the reconstructed internal velocity moments are closest to the
input model.

Fig. 3.6 shows the results for a self-consistent model based on the i = 90◦-
deprojection. The upper panel shows the rms difference ∆(α) between original
and reconstructed internal velocity moments (up to second order) as a function
of the regularisation parameter α. The rms is evaluated between the innermost
and outermost fitted data points, at all position angles ϑ, including intermediate
ones, not covered by data points. The lower panel illustrates the goodness of fit
χ2

GH/Ndata. Solid lines correspond to the mean obtained by fitting orbit models
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input model α0 ∆(α0) χ2
GH(α0) Norbit

i = 90◦, SC 0.0199 13.5 % 0.712 2 × 6922
i = 90◦, LOG 0.0166 12.7 % 0.719 2 × 8273
i = 90◦, NFW 0.0138 13.2 % 0.692 2 × 8469
i = 50◦, SC 0.0238 12.6 % 0.539 2 × 6697
i = 50◦, LOG 0.0166 13.8 % 0.826 2 × 8126
i = 50◦, NFW 0.0166 13.5 % 0.797 2 × 8324

Table 3.1: Summary of simulations aimed at optimising the regularisation
parameter α. Columns from left to right: inclination of reference model; po-
tential of reference model (SC = self-consistent, LOG = logarithmic spherical
halo, NFW = spherical NFW-halo, details in the text); regularisation param-
eter α0 that yields the best reconstruction of internal velocity moments; rms
∆(α0) between internal velocity moments of reference models and reconstruc-
tions achieved with α = α0; goodness of fit χ2

GH(α0); number of orbits Norbit

used for the modelling.

to 60 Monte-Carlo realisations of the simulated data. Shaded areas comprise
the 68 per cent fraction of best reconstructions (upper panel) and 68 per cent
fraction of best fitting solutions (lower panel), respectively.

The best results are obtained for α = 0.02, when internal kinematics of the
fits follow the input moments to an accuracy of about 15 per cent in the mean.
Lower α yield less accurate reconstructions since the orbit superpositions do
not fit the data enough (see χ2

GH in the lower panel). For larger α on the other
hand, the rms ∆(α) increases, because the library starts to fit the noise in the
data.

On average, the orbit models at α = 0.02 fit with χ2
GH/Ndata < 1. A proper

normalisation for χ2
GH is however hard to obtain, since we do not exactly know

the number of free parameters in the library. For α = 0 this number is zero,
because χ2 does not appear in equation (3.7) while for α→ ∞ there are roughly
as many free parameters as orbits in the library2, because then S becomes
negligible in equation (3.7). Thus, we do not try to calculate a reduced χ2.

Table 3.1 summarises the total of simulations done to fix α. The first column
labels the three models investigated at each of the two inclinations i = 50◦

and i = 90◦ (SC: self-consistent models without halo; LOG: a dark halo with
rc = 5 kpc and vc = 265 km/s according to equation (3.2) is added to the stars;
NFW: dark halo profile like in equation (3.3) with rs = 10.0 kpc, c = 27.0; for
all models Υ = 3.0). The halo models are constructed to produce a roughly
flat circular velocity. In the second column of Table 3.1 the regularisation α0

is quoted attaining the best reconstruction of the internal velocity moments,
quantified in the third column as ∆(α0) = min(∆(α)). The corresponding
goodness of fit χ2

GH(α0) is given in the fourth column of the table. The number
of orbits in each of the fitted libraries is found in the last column.

2We have neglected the boundary condition related to ν. This is expected to reduce the
number of free parameters, but is unlikely to break its dependency on α.
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Figure 3.6: Match ∆(α) of internal velocity moments and χ2
GH/Ndata of the

Gauss-Hermite parameters as a function of the regularisation parameter α.
Lines represent the mean over 60 fits to Monte-Carlo realisations of the isotropic
rotator’s kinematic profiles; shaded regions encompass 68 per cent of the simu-
lations closest to the corresponding minimum in ∆(α) and χ2

GH/Ndata, respec-
tively.

On average, the six probed models yield 〈α0〉 = 0.0179 ± 0.0035. The low
scatter seems to indicate that α0 does not depend strongly on the potentials
tested. In the implementation of the maximum entropy technique used here, α
is increased iteratively in discrete steps (see Richstone et al., in preparation).
For the models of NGC 4807 we apply α = 0.0199 ≈ 0.02, which is the closest
larger neighbour of 〈α0〉 in these iterations.

In the remainder of the paper, by quoting 68 (90, 95) per cent confidence
levels, we always refer to all orbit models whose χ2

GH/Ndata are below the corre-
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sponding maximum χ2-level of the 68 (90, 95) per cent best-matching fits in the
simulations. For these fits parameters like Υ, i, rc, vc . . . are set equal to the true
input values, but in the analysis of real galaxies they are varied. Strictly speak-
ing then, the χ2-statistics from the simulations are not directly applicable to
real galaxies. For example, to determine the correct statistics for the case where
Υ, rc and vc are varied to find the best-fitting mass-model, about 102 orbital
fits for each triple of (Υ, rc, vc) are necessary to yield the corresponding three
dimensional χ2-distribution. Such simulations however cannot be performed in
a reasonable amount of time with present-day computer power.

Probably, our confidence regions derived as described above overestimate
the error budget. For example, in the simulations we find 68 per cent of all
orbits within ∆χ2

GH/Ndata = 0.38 from the mean best-fit values. In contrast,
applying classical ∆χ2-statistics for a two parameter fit, yields about 95 per
cent confidence at the same ∆χ2

GH/Ndata = 0.38.

3.5 Recovering isotropic rotator models

The aim of this Section is to quantify in a practical sense to which degree a sparse
data set like the one described in Sec. 3.2.3 constrains the internal kinematics
and mass structure of a typical galaxy in our sample.

3.5.1 Mass-to-light ratio Υ and inclination i

First, we disregard the possible presence of a dark halo and try to recover
the mass-to-light ratio and inclination of the self-consistent edge-on model in
Table 3.1. Therefore, Fig. 3.7 resumes the results of fitting libraries with mass-
to-light ratios in the range 2.0 6 Υ 6 4.0 and inclinations i = 50, 70, 90◦ to the
kinematics of this isotropic rotator model. The goodness of fit χ2

GH/Ndata for
each pair (Υ, i) is averaged over 10 Monte-Carlo realisations of the kinematic
profiles and evaluated at two different regularisations. For the upper panel
α = 0.02 according to the simulations described in Sec. 3.4.2. Horizontal dotted
lines in the plot correspond to 68, 90 and 95 per cent confidence levels as derived
from the statistics of the simulations in Sec. 3.4.2.

One can read from the plot that the mass-to-light ratio is well recovered:
the orbital fits reveal Υ = 3.0± 0.5, where the input model has ΥIR = 3.0. The
minimum χ2

GH occurs at the true value independent of the assumed inclination.
The latter is only weakly constrained. For Υ = 3.0 an inclination of i = 70◦

results in nearly the same χ2
GH/Ndata as the fit with the input iIR = 90◦. Even

the orbit models with i = 50◦ can only be rejected with less than 90 per cent
confidence.

For the lower panel the fits are evaluated at α = 0.44 (this choice of α
is motivated in Sec. 3.6). Although at this less restrictive regularisation the
confidence intervals shrink as compared with α = 0.02 the mass-to-light ratio
is now less constrained, Υ = 3.0 ± 1.0. The same holds for the inclination: at
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Υ = 3.0 all three probed inclinations are now within the 68 per cent confidence
interval.

1
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3

Figure 3.7: χ2
GH per data point (Ndata = 48) as function of stellar M/L for

three different inclinations i. Top panel: with optimal smoothing, bottom panel:
weak smoothing. The input 2I-model has M/L = 3.0 and is edge-on. Pointed
horizontal lines in each panel represent the χ2

GH values enclosing 68, 90 and 95
per cent of the Monte-Carlo simulations, respectively.

3.5.2 Internal kinematics

To give an impression about the ability to recover internal motions (assuming the
potential is known) Fig. 3.8 compares internal velocity moments reconstructed
from libraries fitted to the self-consistent edge-on isotropic rotator model of
Sec. 3.4.1 with the corresponding moments of the input model. Solid lines
portray the isotropic rotator model and points show the average reconstructed



66 3. Regularisation and orbit models for NGC 4807

moments from fits to 60 Monte-Carlo simulations of the kinematic profiles; error
bars indicate 1 σ deviations from the mean. For the reconstructions α = 0.02 is
used.

The three upper rows demonstrate that for the internal major axis the second
order moments σR, σz and σϕ are accurately reproduced by the fit over the
region between the pointed vertical lines indicating the radii of the innermost
and outermost kinematical points included in the fit. The fractional errors of
σR and σϕ are below 3 per cent and of σz are below 6 per cent. For the internal
rotation velocity vϕ the fractional errors are larger than 10 per cent at some
points. The match of the rotation velocity can be increased when going to
larger α, but then the second order moments start to wiggle around the input
moments and the overall match of reconstructed to original moments becomes
worse. Fig. 3.8 is representative also for the remaining internal position angles of
the libraries. It follows that most of the rms in Fig. 3.6 results from a mismatch
in vϕ.

The last row shows a comparison of the anisotropy parameter βϑ = 1−σ2
ϑ/σ

2
r ,

which vanishes for isotropic rotator distribution functions f = f(E,Lz). The
reconstructions are consistent with βϑ = 0 given the scatter caused by the noisy
data. The small offset of ∆βϑ = 0.05 is due to a slight overestimation of the
radial velocity dispersion and emphasises how sensitive βϑ responds to small
inaccuracies in the velocity dispersions.

3.5.3 Mass distribution

The next step is to recover the structure of the isotropic rotator model in the
second row of Table 3.1, where a logarithmic dark halo is present. To this end, we
fitted libraries with different dark halos to pseudo data sets of the rotator model,
keeping the stellar mass-to-light ratio constant. Fig. 3.9 combines the results of
the simulations. It shows, from top to bottom, cumulative mass-to-light ratio
M(r)/L(r), circular velocity vcirc(r) and dark matter fraction MDM(r)/M(r) as
a function of radius. Vertical dotted lines mark the boundaries of the spatial
region covered with kinematic data, thick lines display the input model. The
shaded areas have been constructed by determining at each radius the minimum
and maximum of M/L, vcirc and MDM/M of all libraries within the 68 per cent
confidence range derived from the simulations of Sec. 3.4.2. Libraries with LOG-
halos as well as NFW-halos have been tried (see below) and for each library fits
to 10 realisations of the isotropic rotator kinematics were averaged.

The figure demonstrates that in the region covered by the data the mass
structure of the input model is well reproduced, with progressively larger scatter
towards the outer edge of the data. The uncertainty of the mass-to-light ratio is
∆M/L ≈ 1.0 at 1 reff , the circular velocity is accurate to 10 per cent at the same
central distance. In the outer parts orbit superpositions with larger masses than
the input model are better consistent with the data than smaller mass models.
Nevertheless, the dark matter fraction is determined to ∆(MDM/M) = 0.2 even
at the outermost data point.

The top panel of Fig. 3.10 displays 68, 90 and 95 per cent confidence intervals
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Figure 3.8: Internal velocity moments along the major axis of libraries fitted
to the self-consistent edge-on isotropic rotator model of Sec. 3.4.1. Dots: mean
from fits to 60 Monte-Carlo realisations of the kinematic data; shaded regions:
1 σ deviation from the mean; solid lines: velocity moments of the input model;
dotted lines: boundaries of the radial region included in the fit.

for the two parameters rc and vc of LOG-halos (cf. equation 3.2). Each dot
marks a pair of (rc, vc) probed by fitting a library to 10 realisations of the
pseudo-data as described above. The input model’s dark halo parameters are
marked by the asterix, the circle designates the best-fitting orbit model.

As expected, the halo parameters are not well constrained. Although the
best-fitting parameter pair is close to the input model, the 68 per cent confidence
contour comprises a large set of libraries and remains open to the upper right
edge of the plot. This follows from a degeneracy between the two parameters
rc and vc (e.g. Gerhard et al. 1998). Increasing rc and vc appropriately puts



68 3. Regularisation and orbit models for NGC 4807

5

10

0

100

200

300

400

0.1 1 10

0.2

0.4

0.6

0.8

1

Figure 3.9: Accuracy of the mass reconstruction. Thick lines: the isotropic
rotator model marked by the asterix in Fig. 3.10; shaded areas: 68 per cent
confidence regions of fits to pseudo data sets of the model. For each mass-model
the goodness-of-fit is averaged over 10 fits to MC-realisations of pseudo-data.

more mass in the outer parts of the halos while rendering the regions covered
by kinematics roughly unchanged. The increasing width of the shaded areas in
the upper two panels of Fig. 3.9 is an illustration of this degeneracy.

We also fitted one parameter NFW-halos according to equation (3.5) to the
same isotropic rotator model in order to examine whether these profiles can be
excluded by the data set at hand. The lower panel of Fig. 3.10 displays the
results in terms of χ2

GH/Ndata as a function of concentration index c. Horizontal
dotted lines correspond to 68, 90 and 95 per cent confidence levels, the solid
line shows fits with spherical halos (q = 1.0), while for the dashed line q = 0.7.
Apparently, neither the halo flattening nor the central halo density slope are
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constrained by the data, because both spherical as well as flattened NFW-halos
exist that provide fits equally as good as the LOG-halos. These NFW-halos join
smoothly to the mass-distribution recovered in Fig. 3.9 and mimic LOG-halos
over the limited spatial region covered by kinematic data.
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Figure 3.10: Recovering an isotropic rotator model’s dark halo: rc and vc of
the input model model are marked by the asterix in the top panel, the best-fit
reconstruction is marked by the circle. Lines in the top panel display 68, 90
and 95 per cent confidence contours of the fits. The lower panel shows – for
the same input model – χ2 of NFW-type fits (solid/dashed: q = 1.0/q = 0.7);
horizontal lines: 68, 90 and 95 per cent confidence levels. Each library has been
fitted to 10 realisations of the input-model kinematics.

Fig. 3.10 suggests that it is not possible to discriminate between LOG and
NFW halos insofar as they provide similar mass distributions over the spatial
region sampled by kinematic data. More extended data sets are likely to reduce
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this degeneracy, but will probably not completely remove it. On the other hand,
as Fig. 3.9 reveals, the mass distribution and composition of the input model
can be recovered well, independently of the specific parameterisation chosen to
emulate it.

3.6 Dark matter in NGC 4807

Now, we turn to the analysis of the distribution of luminous and dark mass
in NGC 4807. Fig. 3.11 shows the minimum χ2

GH/Ndata (scaled, see below)
at each modelled stellar mass-to-light ratio Υ ∈ {1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}.
Horizontal lines indicate the 68, 90 and 95 per cent confidence limits derived
from the simulations of Sec. 3.4.2. For the upper panel α = 0.02 is used and
LOG-potentials with stellar mass-to-light ratios 2.5 6 Υ 6 3.0 fit best to the
data. Projected kinematics of the best-fitting orbit model are plotted in the
upper panel of Fig. 3.12 together with the data. The model is edge-on, has stellar
Υ = 3.0 and a spherical dark halo of LOG-type with core radius rc = 6.8 kpc
and asymptotic circular velocity vc = 300 km/s. It fits the data very well with
(unscaled) min(χ2

GH/Ndata) = 0.17, even too well when compared with the
average 〈χ2

GH/Ndata〉 = 0.71 expected from the Monte-Carlo simulations. Since
both, the scatter in the kinematic data from different sides of the galaxy (cf.
Sec. 3.2.3) and the point-to-point variations in the profiles are smaller than the
statistical error bars, the latter might be slightly overestimated. Hence, in the
following all χ2

GH/Ndata are rescaled such that min(χ2
GH/Ndata) = 〈χ2

GH/Ndata〉.
The good match of model and data nevertheless reconfirms that NGC 4807 is
consistent with axisymmetry.

Applying regularisation with α = 0.02, self-consistent models (mass follows
light) are ruled out by more than 95 per cent confidence (see thin solid line in
the upper panel of Fig. 3.11). The best-fitting self-consistent model fits with
(rescaled) χ2

GH/Ndata = 1.67 and is compared with the data in the bottom
panel of Fig. 3.12. It has Υ = 3.5, larger than the best-fitting halo model,
but fails to reach the measured rotation in the outer parts of the galaxy. A
drop in the outer major axis H3-profile indicates that the model maintains
the measured dispersion σ around the observed v partly by putting light on
retrograde orbits. This causes the LOSVD to fall off too sharply at velocities
larger than v and to develop a wing at negative velocities, resulting in the too
negative H3. Lack of support for dispersion at large rotation velocities hints
at mass missing in the outer parts of this model. Higher mass-to-light ratios,
however, would strengthen the mismatch between the central regions of the
model and the innermost (minor axis) velocity dispersions.

To push the self-consistent model to the same level of agreement with the
data reached in the upper panel of Fig. 3.12, regularisation must be lowered to
α = 0.45. Although the best-fitting self-consistent model then gives a satisfac-
tory fit in the sense of a reasonable χ2

GH/Ndata, it is again ruled out by more
than 95 per cent confidence when compared with the mean 〈χ2

GH/Ndata〉 using
the Monte-Carlo simulations. This, because halo models at α = 0.45 still give
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Figure 3.11: Deviations between the observed kinematics of NGC 4807 and the
fitted libraries in terms of χ2

GH as a function of Υ. At each Υ the minimum
min(χ2

GH) is plotted, separately for the case of LOG-halos (thick solid line),
one-parameter NFW-halos (thick dashed) and for the self-consistent case (thin
solid). For the top row the regularisation parameter is α = 0.02, for the bottom
row α = 0.45.

significantly better fits to the data. The only effect of lower regularisation – as
shown in the run of χ2

GH/Ndata versus Υ in the lower panel of Fig. 3.11 – is a
slight broadening of the minimum region in χ2

GH/Ndata and, consequently, an ex-
pansion of the allowed range of mass-to-light ratios, yielding now 2.0 6 Υ 6 3.5
as compared with 2.5 6 Υ 6 3.0 at α = 0.02. Concluding, NGC 4807 can-
not be convincingly modelled with self-consistent orbit models, even at weak
regularisation.

In Fig. 3.13 (from top to bottom) the 68 per cent confidence regions of cu-
mulative mass-to-light ratio M(r)/LR(r), circular velocity vcirc and dark mat-
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Figure 3.12: Comparison of NGC 4807 (dots: major axis kinematic data;
squares: minor axis) with the overall best-fitting model (upper panel) and best-
fitting self-consistent model (lower panel). Both orbit models are at i = 90◦.
For each data point two error bars are given: the statistical error from the ob-
servational data (larger, without marks) and the error bar corresponding to the
scaled χ2

GH (marks).
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ter fraction MDM(r)/M(r) are shown (analogue to Fig. 3.9). Within 1 reff dark
matter is negligible and the dynamical mass-to-light ratio equals the stellar one,
M(r)/LR(r) = Υ = 3.0. Between 1 reff and 3 reff dark matter comes up from
MDM/M = 0.21 ± 0.14 to MDM/M = 0.63 ± 0.13 and combines with the lumi-
nous matter to a roughly flat circular velocity curve with vcirc = 280± 30 km/s
at 1 reff and vcirc = 318±48 km/s at the last kinematic data point. In the same
spatial region the total mass-to-light ratio rises from M(r)/LR(r) = 3.8 ± 0.8
to M(r)/LR(r) = 8.4 ± 2.4. Dark mass equals luminous mass at roughly two
effective radii. Beyond the last kinematic data point, the models are not well
constrained and the profiles start to diverge.
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Figure 3.13: Mass-structure of NGC 4807. Shaded regions are constructed as
for Fig. 3.9. In the middle panel, the circular velocity curve of the best-fitting
orbit model (solid line) and its decomposition into the stellar (dotted) and dark
matter part (dashed) are displayed.
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In accordance with the isotropic rotator simulations the halo parameters
rc and vc are not well constrained – demonstrated by the 68, 90 and 95 per
cent confidence contours in Fig. 3.14. The tilted contour cones are narrower
than expected from Fig. 3.10. Note however, that we have rescaled the χ2

GH

and hence effectively reduced the error bars as compared with the simulations.
Therefore, also the shaded areas in Fig. 3.13 are smaller than the corresponding
in Fig. 3.9.
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Figure 3.14: As Fig. 3.10, but for libraries fitted to the kinematics of NGC
4807. The best-fitting LOG-model is designated by the ring. In the lower panel
results for spherical (solid line) as well as flattened NFW halos are illustrated
(dashed line: q = 0.7).

In the lower panel of Fig. 3.14 the goodness of fit χ2
GH/Ndata is plotted

versus concentration c for the one parameter family of NFW-profiles. As in
the simulations of Sec. 3.5.3, the halo flattening is not constrained and with
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a best-fit χ2
GH/Ndata ≈ 0.77 spherical as well as flattened NFW-halos provide

almost indistinguishable good fits to the data as the best-fitting LOG-halos. In
the innermost regions of those libraries that match the observations, we find
ρ/ρDM > 10; the logarithmic density slope of the best-fitting spherical NFW
model is γ = −1.8 at the outermost major-axis data point and γ = −2.41 at the
outer edge of the orbit library. Hence, as already pointed out in Sec. 3.5.3, the
mass distributions of the data-allowed NFW models – over the modelled spatial
region – resemble halos of LOG type. Fig. 3.15 illustrates the data-allowed
range of dark matter densities along the major axis. Note that the lower limit
on ρDM is likely due to the limited range of profile shapes probed in our study.
Dark matter distributions with negative central density slopes γ < 0 (not tested
here) might also provide acceptable orbit models.

Models at i = 50◦ are ruled out by more than 68, but less than 90 per cent
confidence. The best-fitting case is confronted with the kinematic observations
in Fig. 3.16. Representative for all low-inclination models, it fails to reproduce
the minor-axis H4-profile, but the mass structure of this model joins to the
profiles in Fig. 3.13 and the inferred structural properties of the galaxy are
robust against the assumed inclination.

3.7 Stellar motions in NGC 4807

Visual inspection of the surfaces of section reveals that none of the orbit libraries
for NGC 4807 contains a significant fraction of chaotic orbits. In the best-fitting
models, at all inclinations, no indication for chaos is detectable at all.

The internal orbital structure of the best-fitting edge-on halo model near the
major and minor axes is shown in Fig. 3.17. Around the equatorial plane, at radii
1 reff < r < 3 reff , the model is characterised by radial anisotropy. Enhanced
radial velocity dispersion σr causes βϑ ≈ βϕ ≈ 0.3, whereas σϑ ≈ σϕ. Taking
the large rotation velocity into account, energy in azimuthal motion turns out to
be roughly equal to the energy in radial motion, 〈v2

ϕ〉 ≡ v2
rot + σ2

ϕ ≈ σ2
r . On the

other hand, motion perpendicular to the equator is suppressed. Approaching
the central parts the velocity structure changes to isotropy and inside r < 0.5 reff
stays isotropic.

Close to the minor axis, NGC 4807 appears nearly isotropic in the outer
parts 1 reff < r < 3 reff with decreasing radial dispersion towards the centre,
such that βϑ ≈ βϕ < −0.5 inside r < 0.5 reff .

68 per cent confidence intervals analogous to Fig. 3.9 for velocity anisotropies
βϑ and βϕ as well as internal rotation velocities near the major and minor axes
are shown in Fig. 3.18. Most tightly constrained is the major-axis rotation,
rising from the central parts outwards until settling constant between reff (vrot =
124±6 km/s) and 3 reff (vrot = 107±4 km/s). Velocity anisotropy is determined
to at least ∆β 6 0.2 and the trends in the anisotropy structure of the best-fitting
model in Fig. 3.17 are clearly seen in all allowed orbit models.

Fig. 3.19 illustrates the internal close-to-major axis kinematics of the best-
fitting orbit model at i = 50◦. In contrast to the edge-on models βϑ ≈ 0
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Figure 3.15: Major-axis stellar mass-density according to the edge-on depro-
jection (solid line, Υ = 3.0) and data allowed dark matter densities. Both,
LOG and NFW-halos are included in the plot. (The shaded area is constructed
analogously to Fig. 3.9.)

over almost the whole region constrained by observations, with a slight raise
towards the centre. Isotropy in the meridional plane (σr ≈ σϑ) is accompanied
by suppressed azimuthal dispersion σϕ. But in contrast to the edge-on model
of Fig. 3.17, the rotation of the actual model causes 〈v2

ϕ〉/σ2
r ≈ 1.7, so that this

model is dominated by azimuthal motion near the equatorial plane.

3.8 Phase-space structure of NGC 4807

In Fig. 3.20 phase-space densities wi/Vi of individual orbits are plotted against
orbital energy E for the best-fitting orbit model of NGC 4807. The top panel
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Figure 3.16: As Fig. 3.12, but for the best-fitting model at i = 50◦.

only includes orbits whose maximally reached latitude, ϑmax, is lower than
ϑmax < 45◦. These orbits are confined to a cone with opening angle ϑ < 45◦

around the equatorial plane. The remaining orbits are plotted separately in
the bottom panel. As in Figs. 3.3 and 3.4 the phase-space densities are scaled
according to

∑

wi =
∑

Vi = 1, where wi and Vi are the orbital weights and
orbital phase volumes, respectively. Whereas the orbits maintaining the bulge
of the galaxy follow a DF similar to the one shown in Fig. 3.3, some of the
orbits confined around the equatorial plane are strongly depopulated. Around
E ≈ 3000 km2/s2 phase-space densities are up to 20 orders of magnitude below
the main stream DF.

In the upper panel of Fig. 3.21 orbital phase densities are plotted against
maximum orbital elongation ϑmax in the meridional plane. The three rows
show orbits located in three different spatial regions separately. The top row
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Figure 3.17: Internal kinematics of the best-fitting halo model near the major
axis (top panel; position angle ϑ = 2.9◦) and near the minor axis (bottom panel;
ϑ = 77.1◦), respectively. From top to bottom: velocity dispersions σr (solid),
σϑ (short-dashed) and σϕ (long-dashed); velocity anisotropy βϑ, βϕ; internal
rotational velocity vrot = vϕ. Vertical, dotted lines indicate the innermost and
outermost radius of kinematic data. Note, that the minor axis data reach only
out to 0.6 reff .
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Figure 3.18: Confidence regions for meridional velocity anisotropy βϑ, az-
imuthal velocity anisotropy βϕ and internal rotational velocity vrot (upper panel:
near major axis, position angle ϑ = 2.9◦; lower panel: near minor axis, position
angle ϑ = 77.1◦) of NGC 4807. Shaded areas are constructed as for Fig. 3.9.
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Figure 3.19: Internal close-to-major axis kinematics (position angle ϑ = 2.9◦)
of the best-fitting orbit model at i = 50◦. Line definitions as in Fig. 3.17.

includes only orbits whose invariant curves in the surface of section are confined
to 0.5 reff < rSOS < 1 reff

3. The spatial regions for the other two rows are 1 reff <
rSOS < 2 reff and 2 reff < rSOS < 4 reff , respectively. Crosses denote orbits with
positive Lz > 0 while open circles denote orbits with negative Lz < 0. From
the centre outwards, orbits with negative angular momentum are progressively
depopulated as compared with their counterparts at positive Lz. The difference
between prograde and retrograde orbits is most noticeable near the equatorial
plane and disappears completely for bulge orbits reaching up to higher latitudes.
In the bottom panel of Fig. 3.21 orbital phase densities are plotted against

3Here we use rSOS as a short cut for the radii of orbital equatorial crossings, defining the
surface of section. Fig. 1 in Thomas et al. (2004) gives an example of a typical surface of
section in the actual context. The equatorial crossings locate orbits in the meridional plane
fairly well.
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Figure 3.20: Reconstructed distribution function of the best-fitting orbit model
at α = 0.02. Each dot represents the phase-space density along a single orbit.
Upper row: orbits confined to a konus with opening-angle ϑmax < 45◦ around
the equator; lower row: remaining orbits.

Lz/Lz,circ, Lz,circ being the angular momentum of a circular orbit with the
actual energy. Phase-space densities are extracted in the same spatial regions
as for the upper panel of the Figure. It is now apparent that the keel in the
DF of Fig. 3.20 is caused by a depopulation of (retrograde) circular orbits (at
|Lz| ≈ Lz,circ).

In fact, depopulation of retrograde near-circular orbits leading to the just
described keel appears in all data-allowed DFs, with a slight tendency to be
less pronounced in flattened halos. Even the DFs obtained assuming NGC 4807
is inclined by i = 50◦ are featured by this structure, albeit there, the keel is
not exclusively made of retrograde orbits: also some of the prograde orbits
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Figure 3.21: The same model as in Fig. 3.20. Top panel: phase densities versus
maximum orbital elongation ϑmax in the meridional plane. Bottom panel: phase
densities versus “circularity” (Lz scaled by the angular momentum Lz,circ of a
circular orbit with same energy). Crosses (open circles) denote orbits with
positive (negative) Lz. Orbits are extracted from different spatial regions of the
model as designated in the panels (see text for details). For each spatial region
the number of prograde orbits (crosses) equals the number of retrograde orbits
(open circles).
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are suppressed. In the low inclination DFs a third prominent substructure
in phase-space emerges in form of a significant fraction of high-energy orbits
(around E ≈ −2500 km2/s2) being suppressed by about 6 orders of magnitude
in density, independent from Lz. This structure partly overlays the keel and is
caused by the distorted luminosity density at i = 50◦ since it shows up even in
the maximum entropy models (α ≈ 0) which are only forced to reproduce the
density profile, but not fitted to the kinematics.

Orbits in the keel together with their prograde counterparts (approximately
all orbits i with w+

i /w
−
i > 99, where w±

i ≡ w(Ei,±Lz,i, I3,i), 1 6 i 6 Npro and
Npro prograde orbits in the model) make only 4.3 per cent of the total model.
Without these orbits, a slowly rotating bulge (v ≈ 70 km/s at r > reff) with a
slightly peaked velocity distribution (H4 > 0.04 at r > reff) appears (see also
Sec. 3.9.4). On the other hand, the extracted orbits rotate with about 200 km/s
and produce a narrow, low-dispersion LOSVD. They develop a dumbbell-like
structure extending to 2 reff above the equatorial plane. The fraction of ex-
tracted orbits additionally obeying ϑmax < 10◦ shrinks to 0.7 per cent of the
total model.

3.9 Summary and Discussion

3.9.1 Regularised orbit models

We have investigated how closely the internal mass distribution and kinematic
structure of a galaxy can be recovered from a sparse kinematic data set typical
for our project aimed at investigating a sample of flattened early-type galaxies
in the Coma cluster. The degree to which orbit models follow internal galaxy
properties depends on the amount of regularisation applied in the fits. In the
maximum entropy technique of Richstone & Tremaine (1988) used here, a regu-
larisation parameter α controls the relative importance of entropy maximisation
(regularisation) on the one side, and fit to the data on the other. To find out
which choice of α is optimal with respect to our goal of determining galaxy
structural parameters, we simulated observationally motivated isotropic rota-
tor models under realistic observational conditions. The models are based on
a prototypical elliptical in our sample, NGC 4807. By varying α in the fits of
appropriate orbit libraries to pseudo data of the reference models, the match
between internal velocity moments of input model and orbital reconstruction
can be evaluated as a function of regularisation.

Our simulations indicate that the mass-structure of an elliptical can be re-
covered to about 15 per cent accuracy in terms of mass-to-light ratio and circular
velocity curve, if a regularisation parameter α = 0.02 is applied. For the dy-
namical models tested here, the optimal choice of α turns out to be roughly
independent from the galaxy’s gravitational potential. The same accuracy as
for the mass structure is achieved in the reconstruction of internal velocity mo-
ments. On the other hand, halo flattening and galaxy inclination are only weakly
constrained by our data.
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Regularisation biases orbit models towards some given idealised galaxy model,
assumed to represent the object under study reasonably well. For early-type
galaxies, regularisation has been commonly implemented to isotropize the final
fit. How much of regularisation is optimal in the reconstruction of a given galaxy
depends on the specific data set (spatial coverage, quality) on the one hand and
the degree to which the regularisation bias approximates the given galaxy on
the other. Isotropizing the DF might, for example, be a good recipe for relaxed
early-type galaxies but less favourable for lenticulars with a significant, dynam-
ically cold, component. In that case either the value of α or, preferentially, the
functional form of S has to be reconsidered. In any case, and for any regulari-
sation technique, the optimal balance between fit to data and smoothing of the
DF can be examined case-by-case from simulations similar to those described
here.

Cretton et al. (1999) and Verolme & de Zeeuw (2002) have determined opti-
mal regularisation for an implementation of Schwarzschild’s method with two-
integral components by reconstructing similar DFs as used here. The resulting
regularisation has proven to yield plausible results in subsequent applications
(e.g. Cappellari et al. 2002; Verolme et al. 2002; Copin, Cretton & Emsellem
2004; Cretton & Emsellem 2004; Krajnović et al. 2005). It is difficult to quan-
titatively compare the amount of regularisation applied in these works with the
results of our simulations since the regularisation techniques differ. However,
in each case the achieved accuracy in the recovery of test model parameters
and the derived dynamical structure of real galaxies indicate that the applied
amount of regularisation is comparable.

3.9.2 Luminous and dark matter in NGC 4807

We then applied our code with the simulation-derived regularisation to the
elliptical NGC 4807. The dynamical models require substantial dark matter
in the outer parts of the galaxy. Evidence for dark matter in the form of flat
circular velocity curves from (integrated) stellar kinematics of ellipticals has also
been found by Rix et al. (1997), Gerhard et al. (1998), Emsellem, Dejonghe &
Bacon (1999), Cretton, Rix & de Zeeuw (2000), Kronawitter et al. (2000), Saglia
et al. (2000) and Gerhard et al. (2001). Dynamical models of five galaxies with
planetary nebulae kinematics complementing stellar kinematics out to ≈ 5 reff
lead the authors to different appraisals: Romanowsky et al. (2003) argue for
non-dark matter models consistent with three galaxies observed by the planetary
nebulae spectrograph, while Peng, Ford & Freeman (2004) require dark matter
in NGC 5128 and the models of NGC 1399 also point at a dark halo (Saglia et
al. 2000).

Spherical models for the 21 round ellipticals in the sample of Kronawitter
et al. (2000) reveal dark matter fractions of 10 − 40 per cent at 1 reff and dark
mass equals luminous mass at roughly 2 − 4 reff (Gerhard et al. 2001), both
comparable to our results for NGC 4807. The halo core density ρc of our best-
fitting model is about 30 per cent below the predictions of their ρc−LB relation
(taking MB = −20.76), although still consistent with it. Among the allowed
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LOG-halos however, the core densities vary by a factor of ten and taking into
account NFW-fits, even halos 90 times denser then the best-fitting model are
consistent with the data (cf. Fig. 3.15). From the concentration of our best-
fitting (spherical) NFW-halo nevertheless a relatively low formation redshift
zf ≈ 2.5 follows. Still, we need a larger number of flattened ellipticals modelled
in sufficient generality to recover the detailed properties and physical origin of
their mass distributions.

To crosscheck our mass decomposition for NGC 4807 we compared stel-
lar mass-to-light ratios of the orbit superpositions with stellar mass-to-light
ratios determined completely independent. In Fig. 3.22 mass-to-light ratios
from stellar population models (Maraston 1998; Thomas, Maraston & Bender
2003; Maraston 2004) of NGC 4807’s major-axis spectrum (Mehlert et al. 2000;
Mehlert et al. 2003) are compared to the best-fitting orbit models (dashed line:
stellar mass-to-light ratio in orbit model; hatched region: 68 per cent confi-
dence region of surface mass SM over surface brightness SB in orbit models;
different symbols refer to different initial-mass-functions (IMFs) underlying the
populations). Systematic uncertainties stemming from the unknown IMF are
roughly comparable to the statistical errors, indicated for the Kroupa-IMF by
the pointed area. Only libraries with Υ = 3.0 are taken into account in the
figure.

As the figure demonstrates, the stellar mass-to-light ratios determined dy-
namically agree with stellar populations following a Kroupa IMF to ∆Υ ≈ 0.5.
This (1) confirms our mass decomposition and (2) justifies a posteriori the as-
sumption of a constant stellar mass-to-light ratio. The total surface mass of
the dynamical models, as indicated by the shaded region in Fig. 3.22, exceeds
the stellar contribution by far and underlines the evidence for dark matter in
NGC 4807. Since our best-fitting orbit models have LOG-halos (or NFW-halos
imitating the mass distribution of LOG-halos over the kinematically sampled
spatial region) they have maximum stellar mass (e.g. Gerhard et al. 1998). This
is in accordance with most previous studies that did not require steep central
dark matter profiles (Gerhard et al. 1998; Emsellem, Dejonghe & Bacon 1999;
Cretton, Rix & de Zeeuw 2000; Kronawitter et al. 2000; Saglia et al. 2000 and
Gerhard et al. 2001). On the other hand, Rix et al. (1997) found such profiles
consistent with NGC 2434.

3.9.3 Comparing the kinematics: χ2
GH versus χ2

LOSVD

The confidence intervals for the structural properties of NGC 4807 have been
derived from χ2

GH as defined in equation (3.10). However, our models do not
explicitly minimise χ2

GH but instead χ2
LOSVD as given by equation (3.8). In

order to investigate how the properties of the best-fitting orbit model and the
corresponding confidence limits of the halo parameters depend on the choice
of χ2 we have analysed the Monte-Carlo simulations as well as the models for
NGC 4807 also in terms of

χ̂2
LOSVD ≡ χ2

LOSVD/N̂data, (3.11)
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Figure 3.22: Projected mass-to-light ratio along the major axis of NGC 4807.
Hatched area: 68 per cent confidence region of surface mass (SM) over surface
brightness (SB) for all orbit models with Υ = 3.0 (dashed line). For comparison
the projected stellar mass-to-light ratios from population analysis (see text) are
shown for two different IMFs: Salpeter-IMF (triangles), Kroupa-IMF (dots).
The pointed area encompasses the statistically allowed Υ based on the Kroupa-
IMF. For the sake of clarity, the similar, but shifted, error region for the Salpeter-
based Υ is omitted.

where N̂data is the number of velocity bins for which Ljk
dat > 0 (cf. equation

3.8).
Fig. 3.23 shows the best-fitting halo parameters and corresponding confi-

dence intervals for the simulated isotropic rotator model of Sec. 3.5.3. The
figure is as Fig. 3.10, besides that all confidence regions and model-with-data
comparisons are computed in terms of χ̂2

LOSVD. Comparing Figs. 3.10 and 3.23,
it turns out that both χ2-definitions yield identical best-fitting models (desig-
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nated by the rings in the upper panels, and given by the minima of the two
curves in the lower panels). Concerning the confidence regions, however, the
computations based on χ̂2

LOSVD lead to smaller confidence limits for both, the
logarithmic and the NFW-halos.
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Figure 3.23: As Fig. 3.10, but the confidence regions are derived from χ̂2
LOSVD

(see Sec. 3.3.5).

For NGC 4807, the analysis based on χ̂2
LOSVD leads to the results shown in

Fig. 3.24. Again, besides the different χ2-definition applied, it is as Fig. 3.14.
The best-fitting NFW-halos in Fig. 3.24 are the same as in Fig. 3.14. The shapes
of the χ̂2

LOSVD curves for q = 1.0 and q = 0.7 in the bottom panel of Fig. 3.24
prefer halos slightly more concentrated than in the χ2

GH-case, but, as for the
isotropic rotator simulations, the differences in the results obtained from χ2

GH

and χ̂2
LOSVD are small.

Regarding the best-fitting logarithmic-halo models (marked by the rings in



88 3. Regularisation and orbit models for NGC 4807

the upper panels) both χ2-calculations give consistent, but, in contrast to the
Monte-Carlo simulations, not identical results. As already indicated in the
NFW-fits, the logarithmic halo that best fits in the sense of χ̂2

LOSVD is more
concentrated: the dark matter fraction inside reff is MDM/M = 0.35, compared
with MDM/M = 0.22 for the best-fitting model in the upper panel of Fig. 3.14.
A more striking difference between the upper panels of Fig. 3.14 and 3.24 is
the closure of the 68 per cent χ̂2

LOSVD-confidence contour to the upper right.
The contour differences maybe related to the ignorance of γ0 in equation (3.10),
since the mismatch between model and data intensities progressively increases
from the lower left to the upper right in the upper panel of Fig. 3.14.

Nevertheless, the comparison of the results obtained from χ2
GH and χ̂2

LOSVD

reveals that both methods – within the errors – give the same results. The
confidence limits quoted in this paper, based on equation (3.10), are the more
conservative choice, but maybe slightly too pessimistic.

3.9.4 The outer parts of NGC 4807

Based on a recent refinement (Thomas et al. 2004) of the Schwarzschild code
of Richstone & Tremaine (1988) and Gebhardt et al. (2000a), we recovered a
depopulation of retrograde, near-circular orbits in the phase-space DF of NGC
4807, giving rise to a keel when plotting orbital phase-space densities against
orbital energy. The prograde counterparts of the depopulated orbits form a
dumbbell-like structure extending about ≈ 2 reff above the equatorial plane.

To investigate what might cause the depopulation of retrograde orbits in the
outer parts of NGC 4807, we projected a sequence of distribution functions in
which all orbits involved in the keel (w+

i /w
−
i > 99, see Sec. 3.8) are repopulated

according to

w+
i,new ≡ ξ ×

(

w+
i + w−

i

)

w−
i,new ≡ (1 − ξ) ×

(

w+
i + w−

i

)

.
(3.12)

Since w+
i,new+w−

i,new = w+
i +w−

i this does not alter the fit to the luminosity pro-
file but just levels the relative fraction ξ of light on the prograde and retrograde
specimen of all keel-involved orbit pairs. Roughly speaking, equation (3.12)
transforms the keel into a narrow cloud of points parallel to the main-stream
DF with an offset increasing with |ξ − 0.5|. Figure 3.25 shows the resulting
projected (major-axis) kinematics for ξ = 0.7, 0.94, 1.0. As expected, shifting
light from prograde to retrograde orbits reduces the amount of rotation v and
lowers H3 in the outer parts, while at the same time leading to a larger velocity
dispersion σ and enhanced H4. As shown by the goodness of fit in the lower
panel of Fig. 3.25, the best fit to the data is achieved for ξ = 1.0 (all retrograde
keel-orbits completely depopulated). Comparing the corresponding solid lines
in Fig. 3.25 with the upper panel of Fig. 3.12 reveals that ξ = 1.0 provides
essentially the same fit as the best-fitting orbit model. Consequently, the ret-
rograde keel-orbits can be regarded as completely depopulated in our models of
NGC 4807. Reducing the relative fraction of light on the prograde counterparts
of keel-orbits to ξ = 0.94 is only consistent with the observations at the 68 per
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Figure 3.24: As Fig. 3.14, but the confidence regions are derived from χ̂2
LOSVD

(see Sec. 3.3.5).

cent confidence level. A further equalisation to ξ = 0.7 is already incompatible
with the observed velocity profiles.

The outer major-axis LOSVDs of NGC 4807 might indicate weak triaxiality,
for example in form of a weak, nearly end-on bar (e.g. Bureau & Athanassoula
2005). A weak bar-like structure would also fit to the boxy appearance of
the galaxy’s outer isophotes. Assuming that NGC 4807 is slightly triaxial, the
keel in the DF might be an artifact of the assumption of axisymmetry. Note,
however, that NGC 4807 is consistent with being axisymmetric, albeit then the
depopulation of single orbit families, especially around the equatorial plane, is
hard to understand in the course of dynamical processes.

Depopulation of retrograde orbits in the outer parts of the galaxy is accom-
panied by a change in stellar ages from τ ≈ 5 Gyr inside r < reff to τ ≈ 10 Gyr
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Figure 3.25: Upper panel: projected major-axis kinematics of three distribu-
tion functions calculated in the gravitational potential of the best-fitting mass
model: (1) all retrograde orbits in the keel depopulated completely (solid);
relative fraction of light on prograde keel-orbit counterparts (2) ξ = 0.94 (short-
dashed) and (3) ξ = 0.7 (dotted). Lower panel: goodness of fit (including the
minor-axis LOSVDs, which are not affected by the redistribution of keel-involved
orbits) as a function of the relative fraction ξ of light on prograde keel-orbit cor-
respondents; horizontal dotted lines indicate 68, 90 and 95 per cent confidence
levels.

at larger radii (Mehlert et al. 2003). Towards 3 reff stellar ages become uncer-
tain and no clear trend is visible. It seems also possible, that the keel in the DF
is an artifact related to a distinct stellar component and an associated (slight)
change in Υ. It should be noted that because the orbit models are fitted to
deprojections and stellar kinematics, the derived DFs characterise the amount
of light per volume element in phase-space, not the mass-density in phase-space.
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Accordingly, depressions in the DF might (at least partly) reflect enhanced Υ.
A distinct stellar component in the outer parts must not necessarily take

the form of a bar, but could also be a faint axisymmetric stellar disk. Indeed,
the photometry as well as the orbit models suggest that NGC 4807 is close to
edge-on, but a dynamically cold, outer stellar disk made of only 0.7 per cent
prograde orbits at latitudes ϑ < 10◦ (see Sec. 3.8) is consistent with the non-
disky isophotes (max a4 < 1). A disk carrying 2 per cent of the total luminosity
would show up with maxa4 ≈ 4 when seen exactly edge-on and max a4 < 1 for
such a disk would require i < 75◦ (Rix & White 1990). From our simulations it
seems impossible to distinguish kinematically between i = 70◦ and i = 90◦ and,
consequently, there is some freedom for an outer disk in NGC 4807.

In any case further investigations are necessary to verify the significance of
the keel-structure in the DF of NGC 4807. (1) Kinematic measurements along
intermediate position angles in the galaxy would likely put more constraints on
the DF. (2) Detailed comparison of orbit superpositions with realistic galaxy
models are required to estimate how relics of triaxiality, faint disks and multi-
component (multi-Υ) structures show up in our axisymmetric models. These
questions will be addressed in a forthcoming publication.

3.9.5 Internal stellar kinematics of NGC 4807

Along the major-axis, NGC 4807 is mildly radially anisotropic. Radial anisotropy
has been found in a number of ellipticals (Gerhard et al. 1998; Matthias &
Gerhard 1999; Cretton, Rix & de Zeeuw 2000; Gebhardt et al. 2000a; Saglia
et al. 2000). The amount of anisotropy (β ≈ 0.3) in the outer parts as well
as the isotropy of the central region (inside 0.3 reff) matches with the typical
anisotropy structure found for round, non-rotating ellipticals by Gerhard et al.
(2001). Along the minor axis, NGC 4807 is dominated by tangential motions.
Gebhardt et al. (2003) report tangential anisotropy for some galaxies (mostly
enhanced azimuthal, but suppressed meridional dispersions) and also Dejonghe
et al. (1996), Cretton & van den Bosch (1998), Statler, Dejonghe & Smecker-
Hane (1999), Cappellari et al. (2002), Verolme et al. (2002) and Copin, Cretton
& Emsellem (2004) find predominantly tangential motions. For NGC 3115 Em-
sellem, Dejonghe & Bacon (1999) notice σz > σr. All these studies are based on
data sets with different spatial sampling and use various dynamical modelling
techniques, particularly differing in the amount and functional form of the ap-
plied regularisation. As for the mass structure and the dark matter properties,
a large and homogeneous sample of galaxies is needed to address the physical
processes shaping elliptical galaxies.
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Chapter 4

The coma sample and its
modelling: general survey

Before analysing the Coma galaxies in detail, the present chapter aims to pro-
vide a general overview about the observations and the modelling of the Coma
galaxies.

4.1 Summary of observations

As already outlined in the introduction the Coma sample comprises in total
nine early-type galaxies: eight ellipticals and one lenticular. The galaxies span
a moderate range in luminosities between −20.3 < MB < −21.4 with a single
fainter elliptical at MB = −18.8 (magnitudes from Hyperleda; cf. Tab. 4.11).
Similarly, their effective radii vary only between 6.′′7 < reff < 18.′′4 (reff = 3.′′3 for
the fainter elliptical; cf. Tab. 4.1). They all share the same distance and, thus,
the spatial resolution in the photometric as well as the kinematical observations
is comparable in all galaxies.

Photometric observations are summarised in Tab. 4.1. For all galaxies but
GMP1176 a composite photometry has been constructed from ground-based
(outer parts) and HST imaging (inner parts), as described in Sec. 3.2.1. For the
lenticular GMP1176 no archival HST photometry is available (cf. the comments
in Sec. 4.3 and the additional discussion in App. B).

The kinematical data is resumed in Tab. 4.2. Apart from GMP0144 (diag-
onal slit) and GMP1176 (major-axis parallel slit) all galaxies have kinematical
observations along two position angles (major and minor axis).

1 The Coma sample is subdivided into two classes (different colours in Tabs. 4.1, 4.2,
4.3 and all subsequent tables and plots dealing with the whole sample). The two classes
distinguish galaxies with different dark matter halos as discussed in Sec. 5.4.1. Up to that
section the subdivision is actually insignificant but is kept anyhow throughout the whole
thesis for better comparison of different parts of the thesis. Within each subclass, galaxies are
ordered according to their B-band luminosity.
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galaxy type photometry reff MB rms〈µgrd − µHST〉
GMP NGC HST grd [arcsec] [mag] [mag]
(1) (2) (3) (4) (5) (6) (7) (8)
5279 4827 E2 L97 M00 13.6 −21.36 0.019
3792 4860 E2 L97 J94 8.5 −20.99 0.071
0282 4952 E3 L97 M00 14.1 −20.69 0.009
3510 4869 E1 L97 J94 7.6 −20.40 0.033
1176 4931 S0 – M00 7.4 −20.32 –
3958 IC 3947 E3 L97 J94 3.3 −18.79 0.024
1750 4926 E1 L97 J94 11.0 −21.42 0.058
0144 4957 E3 L97 M00 18.4 −21.07 0.011
5975 4807 E2 L97 M00 6.7 −20.73 0.015

Table 4.1: Summary of photometric data. (1,2) galaxy id (GMP No. from God-
win, Metcalfe & Peach 1983); (3) morphological type from Mehlert et al. (2000);
(4,5) photometry (L97 = HST V-band WFPC2 data, Principal Investigator:
John Lucey, Proposal ID: 5997; M00 = Kron-Cousins RC -band CCD photom-
etry from Mehlert et al. 2000; J94 = Gunn r CCD photometry from Jørgensen
& Franx 1994); (6) effective radius from Mehlert et al. (2000); (7) absolute B-
band magnitude (from Hyperleda; H0 = 70 km/s/Mpc); (8) rms〈µgrd − µHST〉
between shifted HST surface brightness µHST and corresponding ground-based
µgrd (see Section 3.2.1 for details).

galaxy type maj min off dia
GMP NGC [reff ] [reff ] [reff ] [reff ]
(1) (2) (3) (4) (5) (6) (7)
5279 4860 E2 1.6 0.7 – –
3792 4869 E2 1.1 1.0 – –
0282 4952 E3 1.7 0.5 – –
3510 4827 E1 2.0 1.1 – –
1176 4931 S0 4.7 0.8 3.7 –
3958 IC 3947 E3 1.7 0.9 – –
1750 4926 E1 0.9 0.9 – –
0144 4957 E3 1.4 0.7 – 0.2
5975 4807 E2 2.9 0.5 – –

Table 4.2: Summary of kinematic data. (1-3) as Tab. 4.1; (4-7) radius of the
outermost kinematic data point along various slit positions: maj/dia/min =
position angle of 0◦/45◦/90◦ relative to major axis; off = parallel to major axis
with an offset of reff/2.
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4.2 Modelling setup and regularisation

Each Coma early-type galaxy has been modelled using exactly the same depro-
jection technique and library setup as introduced in Chap. 3. For each galaxy
but GMP1176 three representative inclinations have been probed: (1) at i = 90◦

(edge-on); (2) at a minimum inclination where the deprojection looks like an
E7 from edge-on; (3) at an intermediate inclination, where it looks like an E5
from edge-on. Limited by computation time it was not possible to probe a finer
grid of inclinations. For the lenticular GMP1176 only the edge-on case has been
considered, because the galaxy is rather flat and disky (ǫ ≈ 0.6 and a4 & 5
in the outer parts). Already an inclination of i = 77◦ yields an edge-on E7
deprojection. In view of the MC simulations of Sec. 3.4.2 it is barely possible
to discriminate between i = 77◦ and i = 90◦ from the dataset at hand.

As it has been pointed out in Sec. 3.4, the optimal regularisation parameter
α has to be derived ideally case-by-case for each galaxy. The reason is firstly
that spatial resolution and coverage as well as signal-to-noise of the observations
vary from galaxy to galaxy. The smoothing in the models should be adapted
to the particular data set in each case, which mainly requires to adjust the
relative weight of regularisation constraints to data constraints in each single
case. More subtle problems arise from structural differences between galaxies.
The essential reason is that the concept of smoothing must be matched to the
system at hand. Specifically the maximum entropy method seems a natural
choice for dynamically hot, relaxed stellar systems, but already the presence of
rotation leads to deviations from maximum entropy. Moreover, galaxies may
be dynamically inhomogeneous. Consider, for example, a cold disk inside a hot
spheroid. To fit the rotation of the disk α should be large, but on the other
hand, in the dynamically more relaxed regions of phase-space, a large α will
amplify the noise in the models. The dilemma as to the choice of α could be
solved by defining an appropriate function S that allows different amounts of
smoothing in different regions of phase-space.

Concluding, different data sets require the specific balance of regularisa-
tion and data-match to be adjusted for each galaxy, while structural differences
require additional modification of the regularisation constraints itself (the func-
tional form of S). For the Coma sample it has been decided to use the same
function S and the same regularisation parameter α for all galaxies. The reason
is, that the determination of α takes as much computer time as the complete
data analysis for a galaxy. From the overall homogeneity of the Coma data
one would expect only slight variations of α over the sample and the effort to
calculate these seems not justified. Moreover, structural differences between the
galaxies, especially the fact that some rotate and other do not, are likely the
more critical issue. Accordingly, it would be necessary to explore different forms
of S, which is out of the scope of this work. In view of the fact that α has been
determined from isotropic rotators (cf. Sec. 3.4.2) its value may be too large
for the non-rotating galaxies, but is unlikely to be too small for the rotating
galaxies. In any case, the dependency of the modelling results on α is discussed
for each galaxy in Secs. 5.6 and 6.7, respectively.
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galaxy type rC vC c Υdyn i (χ̂2
GH)0

GMP NGC [kpc] [km/s] [M⊙/L⊙] [◦]
(1) (2) (3) (4) (5) (6) (7) (8) (9)
5279 4860 E2 28.4 482 – 6.5 90 0.10
3792 4869 E2 – – 10.0 8.0 40 0.35
0282 4952 E3 17.97 502 – 5.0 60 0.24
3510 4827 E1 11.64 287 – 5.5 90 0.39
1176 4931 S0 9.70 150 – 3.0 90 1.03
3958 IC 3947 E3 6.79 274 – 5.0 90 0.16
1750 4926 E1 2.67 300 – 6.0 90 0.46
0144 4957 E3 – – 17.9 4.5 65 0.14
5975 4807 E2 1.70 228 – 2.5 90 0.17

Table 4.3: Summary of bestfit model parameters. (1-3) as Tab. 4.1; (4,5) core
radius rC and asymptotic velocity vC of NIS-halo (if NIS halo fits best); (6)
concentration c of NFW-halo (if NFW-halo fits best); (7) stellar Υdyn (RC -
band); (8) inclination i; (9) bestfit (χ̂2

GH)0 ≡ min(χ2
GH/Ndata).

The bestfit model parameters are summarised in Tab. 4.3. A detailed anal-
ysis of the models follows in Chaps. 5-7. Notes on individual galaxies are the
subject of Sec. 4.3.

4.3 Notes on individual galaxies

Figs. 4.1 - 4.9 survey the photometric and kinematical observations together
with the model fits. In the upper panels the appearance of the models from
edge-on is shown for comparison with the photometric data. The majority of
bestfit models is edge-on and blue and red lines (deprojection fit and edge-on
reprojection, respectively) coincide. Note, that the models are not fitted directly
to the kinematical data shown in the lower panels, but to a symmetrized data
set (cf. Sec. 3.2.3). The last column (9) in Tab. 4.3 is computed from the
symmetrized input data as well.

GMP5279. GMP5279 is one of the two brightest galaxies in the sample. As
most galaxies in the sample it has a fairly flat ellipticity profile. Apart from weak
boxiness in the very outer parts significant deviations from elliptical isophotes
lack. Rotation is marginal, but peaks distinctly around 0.3 reff accompanied by
a dip in H3. Possibly a dynamically cold subsystem, maybe a ring or small
disk, causes this peak, but there is no corresponding photometric evidence for
this. The galaxy’s minor-axis dispersion is slightly larger than along the major-
axis and both profiles are rather flat. Noteworthy, the strongly negative H4-
profile along the minor-axis. The bestfit yields i = 90◦, possibly because of the
rotational structure seen along the major-axis. On the other side, in all galaxies
with negative minor-axis H4 < 0 the bestfit model is edge-on.
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GMP3792. GMP3792 appears a bit rounder than GMP5279, especially near
the centre. In the outer parts the diskiness rises strongly, unfortunately only
outside the kinematically sampled region. In the inner region there is barely
any rotation. Instead, the large and spatially constant major-axis dispersion to-
gether with the steeply decreasing minor-axis dispersion hint for the presence of
two counter-rotating flat subsystems. In that case the relatively round isophotes
would imply that the system is seen significantly inclined. Indeed, the bestfit
dynamical model predicts i = 40◦.

GMP0282. GMP0282 shows a wealth of structure: most noteworthy a local
peak in a4 around 0.5 − 1.0 reff followed by strong diskiness in the outer parts.
Around the inner peak in a4 the major-axis exhibits a little break in v and a
dip in H3. Along the same axis the dispersion falls off steeply from the centre
outwards and levels in the outer, disky region roughly with rotation – possibly
indicating a smooth transition to an outer disk-like orbital configuration. In
the outer parts the LOSVDs become triangular shaped (H4 > 0). According to
Tab. 4.3 the bestfit model is at i = 60◦, but the difference to the edge-on case
is marginal (the latter is overplotted by the dashed lines in the lower panel of
Fig. 4.3).

GMP3510. The observations of GMP3510 are difficult to interpret. While
the a4 parameter hints at a central disk, the ellipticity peaks around reff/3. None
of these features can easily be traced into the kinematical structure, which is in-
stead characterised by a smooth but mild increase of rotation and a correspond-
ing decrease of dispersion with radius. Significant deviations from Gaussian
LOSVDs lack at all. Interestingly, the minor-axis dispersion profile is rather
flat (but noisy). Along the minor-axis H4 becomes negative. As stated above,
this may cause the models to prefer i = 90◦.

GMP1176. The lenticular GMP1176 is the flattest object in the sample. The
central decrease in ellipticity is likely caused by the uncorrected seeing (σ =
2′′ ≈ reff/3). The a4 parameter exhibits two distinct maxima in the outer
parts (at 1− 2 reff and 5 reff , respectively). In between (≈ 2 reff) the major-axis
rotation drops and H3 ≈ 0. Moreover, around the inner a4-peak rotation is
anti-correlated with H3, while towards the very outer parts, where H3 tends
to rise, the dynamical structure might change. The dashed lines in the lower
panel of Fig. 4.5 show that the fit can be improved with less regularisation –
reasonably in view of a possibly strong disk that causes substantial deviations
from maximum entropy. The main uncertainty for the models of this galaxy,
however, comes from the unknown central light profile. This issue is further
discussed in App. A.

GMP3958. The faintest galaxy of the sample is GMP3958. HST photometry
and ground-based imaging do not match very well (revealed by the discontinuity
in ǫ slightly beyond the half-light radius). From the HST image evidence for
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a disk comes from a4 > 0 (although the profile oscillates). A rotating disk
superimposed on a dynamically hot spheroid is also consistent with the anti-
correlation of v and H3 around the apparent major-axis. Along the small axis
H4 is negative, possibly driving the fit towards i = 90◦.

GMP1750. The brightest galaxy in the sample is GMP1750. It is quite fea-
tureless in both the photometric and kinematical observations. Its luminosity
and the low but distinct rotational signal around reff/3 let it appear similar to
GMP5279. In contrast to this galaxy, however, GMP1750 lacks of the negative
H4 < 0 in the minor-axis kinematics. Even more, the major and minor-axis
kinematics, respectively, are remarkably similar, making GMP1750 a candidate
(close-to) face-on system. Quite in opposite, the bestfit model is at i = 90◦. As
in the case of GMP0282 the significance of this result is marginal (less than one
sigma; the bestfit model at i = 50◦ is overplotted in the lower panel of Fig. 4.7).

GMP0144. GMP0144 is a complex system. As discussed in more detail in
App. B, the observations provide evidence that its central region lacks of axial
symmetry. Even around reff the major-axis dispersion (and H4) shows a plateau
(and dip) which may reveal some additional dynamical substructure. GMP0144
is among the systems with negative minor-axis H4, but – exceptionally – the
bestfit model is not edge-on. On the other hand, the model does not follow the
H4-observations very well (even with low regularisation).

GMP5975. GMP5975 has already been discussed in Chap. 3.

Summary. Phenomenologically, the sample is best summarised as a family of
objects related by qualities that some – but never all – galaxies share. These
qualities itself and the affinities they imply are not mutually associated. For
example, some galaxies show photometric characteristics of disks, partly in the
centre but more prominently in the very outer parts. Most of these galaxies
also rotate, but not all (e.g. GMP3792 does not). Among those objects that
rotate, in turn, not all are disky/boxy (e.g. GMP3510 is neither). Rotation
itself is partly correlated with H3, partly anti-correlated – both independent
from diskiness. A few galaxies have negative H4 along the minor-axis, again
unrelated to rotation and/or diskiness/boxiness.

Note on H4. Every model with negative H4 at the small axis is edge-on.
This hints at a certain combination of major-axis and minor-axis kinematics
on the one side with axisymmetry on the other that interrelates negative H4

with inclination in the fits. It is not clear yet, what causes this correlation and
whether the objects in question are really close to edge-on. The relevant orbital
distributions are discussed in Sec. 6.3.
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Figure 4.1: Upper panel: Joint ground-based and HST photometry of
NGC 4827. Lines: bestfit deprojection (red) and its edge-on reprojection
(blue). Lower panel: stellar kinematics along major (left/red) and minor axis
(right/blue).
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Figure 4.2: As Fig. 4.1, but for NGC 4860. Solid (dashed) lines in lower panel:
bestfit model at i = 40◦ (i = 90◦).
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Figure 4.3: As Fig. 4.1, but for NGC 4952.
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Figure 4.4: As Fig. 4.1, but for NGC 4869.
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Figure 4.5: As Fig. 4.8, but for NGC 4931. Solid (dashed) lines in lower panel:
bestfit models with α = 0.02 (α = 0.9).
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Figure 4.6: As Fig. 4.1, but for IC 3947.
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Figure 4.7: As Fig. 4.1, but for NGC 4926. Solid (dashed) lines in lower panel:
bestfit models at i = 90◦ (i = 50◦).
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4.4 Confidence levels

Using the same regularisation α for all galaxies allows in principle to adopt
the χ2-levels from the MC simulations for GMP5975 to calculate confidence
intervals. In case of GMP5975, however, χ̂2

GH ≡ χ2
GH/Ndata was rescaled to

compute confidence intervals, because the minimum

(χ̂2
GH)0 ≡ min(χ̂2

GH) (4.1)

in the fits turned out to be lower than the mean minimum 〈(χ̂2
GH)0〉 in the MC

simulations (performed with the same error bars and the same regularisation).
The χ2-distributions of fits and simulations were matched via

∆χ̂2
GH

(χ̂2
GH)0

∣

∣

∣

∣

5975

=
∆χ̂2

GH

(χ̂2
GH)0

∣

∣

∣

∣

MC

. (4.2)

Rescaling the errors of GMP5975 is justified, because the point-to-point scatter
in the data is small compared to individual error bars. However, it follows from
equation (4.2) that the actual χ2-level,

∆χ̂2
GH

∣

∣

5975
= (χ̂2

GH)0
∣

∣

5975
× ∆χ̂2

GH

(χ̂2
GH)0

∣

∣

∣

∣

MC

, (4.3)

from which confidence intervals are computed, scales with (χ̂2
GH)0. Modelling

the other galaxies revealed a correlation of (χ̂2
GH)0 with the number of minor-axis

data points, which is shown in the upper panel of Fig. 4.10. In the lower panel
of the same figure is demonstrated that this correlation is mostly due to minor-
axis rotation. Not correcting for this effect would imply that the uncertainties
of model quantities depend on the occurrence of minor-axis rotation.

Minor-axis rotation can arise from:

(i) Rotation of an axisymmetric, prolate object around its axis of symmetry

(ii) A slight misalignment of the observing slit with respect to the minor axis

(iii) Intrinsic deviations from axial symmetry

Case (i) should not affect (χ̂2
GH)0, because it can be fit by the models at hand.

For the Coma galaxies, however, this case is not relevant since all galaxies with
signs of minor-axis rotation have simultaneous major-axis rotation.

A slight misalignment of type (ii) should also not affect (χ̂2
GH)0, given that

it is known to the models. A reconstruction of the exact slit orientation for the
Coma galaxies is practically impossible, however.

Finally, if some galaxies are intrinsically non axisymmetric, the minor-axis
rotation cannot be fitted in the models, but the corresponding mismatch accu-
mulates to (χ̂2

GH)0. Thereby (χ̂2
GH)0 will be more affected in galaxies with a

relatively large fraction of minor-axis data points. In practice, the same will
follow if the minor-axis rotation arises according to case (ii). Both adds in prin-
ciple to the systematic errors of the models. In absolute terms, the amount of
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Figure 4.10: Best-fit min(χ2
GH) versus number of minor-axis data points (top)

and minor-axis rotation (bottom), respectively. GMP1176 is not included in the
plot since its unusually large min(χ2

GH) = 1.033 is likely affected by the missing
seeing correction and too strict regularisation.

rotation is so small (v/σ < 0.1) that its negligence in the models is energetically
unimportant. In any case however, it should not be mixed with the statistical
errors.

Classically, for systems with one degree of freedom2, confidence levels are
derived from “∆χ2 = 1”, without scaling by the number of data points. Specif-

2For all error bars assigned to internal model quantities given in the following the models
are marginalized about all other relevant quantities.
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ically for the kinematical data at hand one would use

∆χ2
GH ≡ ∆χ̂2

GH ×Ndata. (4.4)

Inserting the numbers for GMP5975 (after rescaling the fits according to equa-
tion 4.3) yields

∆χ2
GH

∣

∣

5975
≈ 1.1, (4.5)

a bit more conservative than the classical value. A possible reason for the offset
may be the relatively low number of simulations performed (cf. Sec. 3.4.2).
Independent of its exact value, using ∆χ2

GH avoids the correlation with minor-
axis rotation discussed above. Therefore, all model uncertainties for the Coma
galaxies are based on

∆χ2
GH ≡ 1.1 ≈ ∆χ2

GH

∣

∣

5975
. (4.6)



Chapter 5

Mass composition of Coma
ellipticals

5.1 Outline

In the present chapter the mass composition of the Coma galaxies is analysed
in detail. By the nature of gravity only the total mass can be derived from
the data. Its decomposition into contributions from luminous and dark matter
is a question of interpretation of the fitted mass profile. For the present work
mass profiles with two components, one that follows light plus an additional
halo component are probed (cf. Sec. 3.3.2). It is assumed that the mass-to-
light ratio of the first component represents the stellar mass-to-light ratio and
that evidence for dark matter comes from an increase of the total mass-to-
light ratio with radius. Evidence for increasing total mass-to-light ratios in
the Coma galaxies is discussed in Sec. 5.2. Because the mass decomposition
is not constrained by photometric and kinematical observations, it needs other
verification. Stellar population modelling provides an independent method to
derive stellar mass-to-light ratios. In Sec. 5.3 the dynamically derived stellar
mass-to-light ratios are crosschecked with stellar population modelling. The
spatial distribution of dark and luminous matter is then presented in Sec. 5.4
and ambiguities of the mass decomposition are further discussed in Sec. 5.5.
The dependency of the results on regularisation is analysed in Sec. 5.6. Another
probe of the mass decomposition, its stationarity, is the subject of Sec. 5.7.
Sec. 5.8 closes the chapter with a short summary

5.2 Evidence against constant mass-to-light ra-

tios

Fig. 5.1 quantifies the different levels to which the kinematical data can be
reproduced under different assumptions about the distribution of luminous and
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dark matter: the mass-follows-light hypothesis (dotted) yields in all cases less
accurate fits than the assumption of an additional outer halo (solid: NIS; dashed:
NFW; cf. Sec. 3.3.2). On the basis of the plotted curves self consistent models
are ruled out with at least 90 percent confidence.

Two galaxies are best fit with an NFW halo but in the majority of cases NIS
halos match marginally better (∆χ2

GH . 1). With the data at hand no clear
decision for one of the two profiles is possible.

GMP5279

GMP3510

GMP1750

GMP3792

GMP1176

GMP0144

GMP0282

GMP3958

GMP5975

Figure 5.1: Confidence levels ∆χ2
GH versus Υ (normalised to the best-fit Υdyn).

Solid: NIS; dashed: NFW; dotted: mass follows light; horizontal dashed: 90
percent confidence limit. Where a dotted line is missing the self-consistent case
is ruled out with more than 95 percent confidence.
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5.3 Crosscheck with stellar populations

Luminous and dark matter are identified in the models according to their radial
density distributions. Even if the assumption that luminous mass follows light
is adequate for real ellipticals, the derived Υdyn can differ from the actual stellar
value Υ∗ (see below). A reliable interpretation of Υdyn requires comparison with
independent results from stellar population modelling.
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Figure 5.2: Comparison of line index based ΥSSP and dynamical Υdyn for the
Kroupa IMF (all mass-to-light ratios in RC band). Solid black/shaded: Υdyn

with error; blue: major-axis ΥSSP (with errors); magenta: minor-axis ΥSSP

(errors are of the order of the point-to-point scatter). Note different scalings in
the lower two rows.
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5.3.1 Independent stellar mass-to-light ratios

This comparison is the content of Figs. 5.2 and 5.3, which show radial profiles
of dynamical Υdyn and single stellar population (SSP) ΥSSP (derived from the
models of Maraston 1998; Thomas, Maraston & Bender 2003; Maraston 2004).
Mass-to-light ratios of SSP models depend on the assumed initial stellar mass
function (IMF), which is not well constrained by observations. Two represen-
tative cases are considered in the following: Kroupa’s IMF with a shallow run
at low masses (Fig. 5.2) and Salpeter’s steeper IMF with an accordingly higher
ΥSSP (Fig. 5.3)1. The IMF of real galaxies can be of any other form as well,
or even spatially varying inside a galaxy. The following discussion is restricted
to either the Kroupa or the Salpeter case with the aim to delimit a range of
plausible cases.

The comparison with stellar population models implies two important is-
sues. Firstly, in every galaxy Υdyn & ΥSSP if Kroupa’s IMF is adopted (cf.
Fig. 5.2). Dynamical Υdyn larger than ΥSSP could imply that a fraction of the
mass included in Υdyn is not of stellar nature. In any case, it is not in conflict
with stellar population modelling. Inconsistency between dynamical and stellar
population modelling is only indicated where Υdyn < ΥSSP. This is not the case
for the Kroupa-IMF and, consequently, dynamical models are in every galaxy
consistent with a Kroupa-IMF. In the majority of galaxies Υdyn > ΥSSP, but
occasionally dynamical models directly agree with SSP-models (Υdyn ≈ ΥSSP in
GMP1750 and GMP5975). Noteworthy, where Υdyn > ΥSSP the offset in many
cases exactly accounts for the differences between a Kroupa and a Salpeter IMF
(cf. Fig. 5.3; for example GMP0282). A direct interpretation of ΥSSP in terms
of the intrinsic stellar population is hampered by the second important issue
brought up by Figs. 5.2 and 5.3, respectively: the presence of radial as well as
vertical stellar population gradients.

Before following this point further the stellar population ages implied by
the SSP models devote some further examination. They are shown in Fig. 5.4
and are often unphysically large (exceeding the age of the universe, ≈ 14 Gyr).
Although the statistical errors are large this point is important because a com-
parison of Figs. 5.2 and 5.4 reveals that age variations are the main driver behind
the ΥSSP variations. A possible source of error in SSP models is gas emission,
which refills the stellar Hβ absorption feature. If not corrected, the resulting
stellar populations are biased mainly towards higher ages and, consequently,
higher mass-to-light ratios. The Hβ-profiles of the Coma ellipticals are plotted
in Fig. 5.5 and indeed reveal occasionally low Hβ detections connected to large
ages. Consistent with the usually patchy distribution of emitting gas most of
the scatter and most of the asymmetries with respect to the centre in some
major-axis SSP models (e.g. GMP5279) can be traced back to corresponding
Hβ features. Hence, gas emission cannot be neglected in the discussion of the
stellar populations but must be regarded as a source of systematic uncertainties.

1For the sake of clarity, minor-axis errors on ΥSSP are omitted in both figures. They are
in every case of the order of the (large) point-to-point scatter.
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Figure 5.3: As Fig. 5.2 but for the Salpeter IMF. Red: major-axis ΥSSP (with
errors); orange: minor-axis ΥSSP.

5.3.2 Stellar population gradients

The presence of stellar population gradients can affect the comparison between
dynamical and stellar population mass-to-light ratios in several ways. It is
thereby out the scope of this work to explore a possible bias in SSP models
arising if line-of-sight projection and population modelling are not commutable.
In that case the effective population derived from the line-of-sight averaged in-
dices would differ from the line-of-sight average of the true intrinsic population.
Leaving this point aside the four following topics have to be considered in the
present context:

(i) Subsystems. If the difference between stellar populations along different
slits is due to a minor subsystem oriented along one observing slit (e.g. a
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Figure 5.4: Stellar population ages according to the SSP models used for Fig. 5.7.
Blue: major-axis; magenta: minor-axis; open/closed symbols: different sides of
galaxy.

disk along the major-axis or a polar ring along the minor-axis) than the
corresponding ΥSSP of this slit may not be representative for the bulk of
stars in the galaxy and the population models of that slit should not be
used in the comparison to Υdyn. This concerns the comparison mostly in
edge-on systems.

(ii) Positive ΥSSP-gradients. Radially increasing Υ∗ are well covered by the
“constant Υ + halo” models probed in this work. It is therefore reasonable
to expect a good match of Υdyn with the central minimum of Υ∗. The
corresponding “halo” component in the models, however, may be rather
massive accounting for both, possible outer dark matter and the increasing
stellar mass. Implications are (1) that the dark matter fraction may be
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Figure 5.5: Observed Hβ for all galaxies. Symbols and colours as in Fig. 5.4.

overestimated and (2) that the comparison between Υdyn and ΥSSP should
be restricted to the central regions.

(iii) Negative ΥSSP-gradients. Radially decreasing Υ∗ are not explicitly
included in the models here and, hence, can be reconstructed only ap-
proximately. Contrasting case (ii) it is generally unlikely that Υdyn will
match the central maximum of the intrinsic Υ∗, because the constancy of
Υdyn would then imply too much mass in regions further out. Instead,
Υdyn will likely equal an average 〈Υ∗〉 representing a region whose exten-
sion will depend on the details of Υ∗(r) and the distribution of matter in
a possible halo. Opposite to case (iii) the comparison between Υdyn and
ΥSSP should not be done in the central regions.
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(iv) Projection effects. In both cases (ii) and (iii) projection effects may
be important, depending on the galaxy’s inclination and the detailed Υ∗-
profiles.

Before discussing the Coma galaxies with respect to the above issues the next
subsection is aimed to provide an order of magnitude estimation of pure pro-
jection effects as raised under (iv).

5.3.3 Projection effects

To give an example of how projection effects can enter the comparison between
Υdyn and ΥSSP, assume that Υdyn approximates the local intrinsic stellar mass-
to-light ratio, Υdyn ≈ Υ∗(r). Assume further that ΥSSP is a pure projection of
Υ∗(r), i.e. ΥSSP ≈ ΣM/ΣL, where

(

ΣM

ΣL

)

(r) ≡
∫

Υ∗(r) × ν(r) dz
∫

ν(r) dz
, (5.1)

with ΣM and ΣL denoting the surface mass and surface brightness, respectively,
ν being the intrinsic luminosity profile, and the integration being performed
along the line of sight. If, for example, a galaxy’s intrinsic Υ∗ is monotonically
decreasing with radius r, then the projected mass-to-light ratio ΣM/ΣL(R) (at
projected radius R) will be smaller than the intrinsic Υ∗(R). This, because
along the line of sight r > R and, thus, Υ∗(r) < Υ∗(R) in the integral of
equation (5.1).

To quantify this effect, the projection quadratures in equation (5.1) have to
be solved for different Υ∗(r). This can be done conveniently by means of orbit
libraries as calculated for each galaxy. To this end, recall that the integrated
luminosity dLj and surface brightness dSBj in bin j of an orbit model read

dLj =
∑

i

wi dLj
i (5.2)

and
dSBj =

∑

i

wi dSBj
i (5.3)

(cf. equation 2.5; dSBj
i is the total projected light of orbit i in bin j). The

orbital weight wi equals the total amount of light carried by the corresponding
orbit. Given an arbitrary Υ∗(r), a mass weight µi can be assigned to orbit i via

µi ≡ wi × Υ∗(〈rorb〉i), (5.4)

where 〈rorb〉i is the mean orbital radius defined in App. C. Analogously to
equations (5.2, 5.3) the intrinsic and projected mass in bin j can be expressed
via

dMj =
∑

i

dLj
i µi (5.5)
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and
dSMj =

∑

i

dSBj
i µi. (5.6)

Equations (5.2, 5.3) and (5.5, 5.6), respectively, determine the projected mass-
to-light ratio (in bin j)

ΣM

ΣL

∣

∣

∣

∣

j

≡ dSMj

dSBj (5.7)

the local mass-to-light ratio
ρ

ν

∣

∣

∣

j

≡ dMj

dLj
(5.8)

and the cumulative mass-to-light ratio

M

L

∣

∣

∣

∣

j

≡ Σk<j dMk

Σk<j dLk
. (5.9)

The sums on the right hand side of equation (5.9) are intended to comprise ev-
ery bin k with radius smaller than that of the actual bin j. Note, that the local
mass-to-light ratio ρ/ν of the final orbit superposition will not necessarily equal
the original Υ∗(r) of equation (5.4) exactly. Apart from noise due to finite orbit
sampling and finite bin sizes the main reason is that radially extended orbits
spread the Υ∗ of their mean radius to larger and smaller radii. In this sense,
an orbit library calculated in a (not necessarily self-consistent) gravitational po-
tential that allows for a superposition with much emphasis on radially confined
orbits will yield ρ/ν closer to Υ∗(r) than another potential that requires a sub-
stantial fraction of radially floating orbits. For the purpose here, however, the
exact shape of ρ/ν doesn’t matter but only the consistency between ρ/ν and
ΣM/ΣL. The aim is to cover the profile shapes found in Figs. 5.2 and 5.3 with
a handful of representative profiles only whose global qualities such as being
monotonic or having a maximum/minimum need to be specified. In any case,
application of equation (5.4) has the advantage of ensuring that the final ρ/ν is
supported by an orbit distribution and, thus, is stationary.

Fig. 5.6 shows exemplary for GMP5975 projected, local and cumulative
mass-to-light ratio profiles for three different Υ∗(r) with piecewise constant
logarithmic gradient

(i) left column:
d log Υ

d log r
≡ ± 0.23 (5.10)

(ii) middle column:

d log Υ

d log r
= ±

{

0.15 : r 6 0.75 reff
−0.7 : r > 0.75 reff

(5.11)

(iii) right column:
d log Υ

d log r
= ±

{

0 : r 6 0.75 reff
1 : r > 0.75 reff

(5.12)
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(Υ∗ and r are scaled to solar units and the half-light radius reff , respectively).
The projections are performed in the best-fit mass distribution of GMP5975. In
the lower panel of the figure the fractional difference

D ≡ diff ≡ ΣM/ΣL − M(r)/L(r)

M(r)/L(r)
(5.13)

between ΣM/ΣL and M(r)/L(r) is plotted. As will become clear below it pro-
vides conservative limits on the offset between Υ∗ and ΣM/ΣL.

As expected, for a monotonic Υ∗ the local ρ/ν is bracketed between ΣM/ΣL

(steeper than Υ∗) and M(r)/L(r) (shallower than Υ∗). In case (i) D is below
20 percent inside 0.2 reff but increases to about 35 per cent at large radii. A
monotonic Υ∗ with a break like in case (iii) bounds D to about 10 percent
inside 0.2 reff but results in a steeper increase with radius. Finally, in case (ii)
the sign change in the slope of Υ∗ is reflected in a similar sign change of D. In
the particular case shown in the middle column of Fig. 5.6 D reaches 40 per
cent in the outer parts, but remains low near the centre (positive and negative
variations along the line of sight cancel out).

The fractional difference D will not only depend on Υ∗ but also on the
specific light profile of each galaxy. Ellipticals, to first order, follow similar light
profiles, allowing to apply the above results to the whole sample for an order of
magnitude estimate. Projection effects also depend on inclination. In the limit
i→ 0◦ vertical gradients affect the projection as radial gradients do in the edge-
on case. Vertical gradients can be generally as important as radial gradients,
but are unlikely to lead to qualitatively different results. Thus, the edge-on case
can be regarded as being representative to cover all possible projection effects.

The profile shapes and slope magnitudes of Fig. 5.6 roughly comprise the
cases in Figs. 5.2 and 5.3, respectively. Furthermore, inspection of the blue,
cyan and red curves reveals that the deviations between ρ/ν and ΣM/ΣL are
commonly smaller than those between M(r)/L(r) and ΣM/ΣL (this holds at
least out to reff). Thus, the above defined D limits for the Coma galaxies the
possible bias between Υdyn and ΥSSP related to pure projection effects.

5.3.4 Discussion

Next the impact of stellar population gradients on the comparison between Υdyn

and ΥSSP is discussed with respect to each galaxy. The discussion is aimed to
end up in a quantitative comparison of Υdyn with a suitably defined 〈ΥSSP〉
reflecting the four issues (i) - (iv) related to stellar population gradients raised
above. This final comparison is made for the Kroupa and the Salpeter case
separately in Figs. 5.7 and 5.8, respectively. The exact specification of 〈ΥSSP〉
in each single galaxy is detailed below. Concluding remarks on the results follow
after that.

GMP5279. The galaxy exhibits a considerable discrepancy between minor
and major-axis populations and, on top of that, a pronounced radial decrease of
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Figure 5.6: Top: projected (blue), local (cyan) and cumulative (red) mass-to-
light ratios according to different internal Υ∗(r) (details in the text). Bottom:
fractional difference between projected and cumulative mass-to-light ratios. All
mass-to-light ratios are evaluated along the equatorial plane and scaled to the
central value of Υ∗.

ΥSSP along the major-axis. The low population ages along the short axis could
indicate a distinct stellar component. A prolate configuration with a (young)
disk along the minor-axis is excluded by the galaxy’s major-axis rotation (cf.
Fig. 4.1), unless the system would be substantially triaxial. There is no in-
dication for triaxiality from the lack of isophotal twists (the position angle is
constant to 4◦) and the lack of minor-axis rotation, however. In fact, strong
variations among the minor-axis Hβ measurements indicate possible gas emis-
sion and restriction to the major-axis profiles seems the safest option for the
comparison with Υdyn. According to the radial gradient in the major-axis ΥSSP
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and Fig. 5.6 the central intrinsic Υ∗ may be 10-20 percent larger than the cen-
tral ΥSSP. This is enough to match Υ∗ with Υdyn in the centre. On the other
side, due to the negative ΥSSP-gradient one wouldn’t expect Υdyn to match the
central maximum of Υ∗ but rather to equal a radially averaged 〈ΥSSP〉. Indeed,
Υdyn fits fairly well the radial average of the major-axis Salpeter ΥSSP-profile
(cf. Fig. 5.3). For the final comparison to Υdyn the latter is averaged within
reff . No correction for projection effects is applied to the radial average since it
should not depend strongly on the steepness of the Υ-slope.

GMP3792. As GMP5279 the galaxy exhibits a negative radial ΥSSP gra-
dient along the major-axis, but in contrast to GMP5279 the minor-axis mass-
to-light ratios are consistent with the major-axis. This is in line with the galaxy
being possibly inclined as suggested by the dynamical models. Like in GMP5279
correcting for projection effects by 10-20 percent is sufficient to match the cen-
tral Υ∗ with Υdyn. But (1) for the same reasons as in GMP5279 a match to
the central intrinsic Υ∗ is unlikely and (2) if the galaxy is really significantly
inclined, projection effects are likely less important than in GMP5279. Instead,
focussing on the central regions, ΥSSP has been defined as the radial average of
ΥSSP out to reff with the only difference to GMP5279 being that for GMP3792
also the minor-axis profiles are taken into account.

GMP0282. As in the just discussed systems Υdyn is close to the major-
axis Salpeter-ΥSSP (cf. Figs. 5.3). Minor-axis ΥSSP are significantly larger
than their major-axis counterparts. Just taking the former, results in a good
correspondence between Υdyn and the Kroupa-ΥSSP and would be consistent
with a young disk (dominating along the major-axis) embedded in an older
spheroid (dominating along the minor-axis). On the other hand, the minor-axis
ΥSSP may be up-shifted by line emission as well (cf. Fig. 5.5). In the comparison
of Figs. 5.7 and 5.8 the extreme point of view is taken that the whole difference
between major and minor-axis populations is caused by line emission. 〈ΥSSP〉
is defined as the average of the major-axis SSP models out to reff (although in
this system the averaging has no significant effect).

GMP3510. The stellar population properties of this system are hard to
interpret. The large stellar ages make many of the ΥSSP values questionable.
For the comparison with Υdyn it has been decided to take every point predicting
an age below τ < 14 Gyr.

GMP1176. The lenticular exhibits rather constant ΥSSP-profiles, consis-
tent with each other along the major and the minor-axis. Their radial averages
out to 0.4 reff are compared to Υdyn in Figs. 5.7 and 5.8 (to avoid the scatter
beyond that radius). The limiting factor for this galaxy are the dynamical mod-
els, however (cf. Sec. 4.3) and for Figs. 5.7 and 5.8 Υdyn has been reduced by
∆Υdyn = 1.0 to correct for the unresolved central light profile.
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Figure 5.7: Dynamical versus stellar population modelling (upper panel). De-
tails on the derivation of 〈ΥSSP〉 are given in the text for each galaxy. Dotted:
Υdyn = 〈ΥSSP〉. Lower panel: Offset between the mass-to-light ratios as func-
tion of Υdyn.

GMP3958. No stellar population models are available for this galaxy.

GMP1750. The major-axis ΥSSP of this galaxy show a little bump around
0.3 reff but are on average constant out to reff . Along the minor-axis they drop
by almost a factor of 5 over the same radial range. The dynamical Υdyn is
close to the major-axis Kroupa-ΥSSP, but the stellar ages along the same axes
are mostly unreasonably large. If only the minor-axis ΥSSP is considered Υdyn
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is a factor of two larger than expected taking the radial average of ΥSSP out
to reff (again for the Kroupa case). On the other hand, if the bump along
the major-axis is real it would be more appropriate to restrict the comparison
between Υdyn and ΥSSP to the central regions. This last option is supported by
the dynamical M/L discussed in Sec. 5.5.2. Therefore ΥSSP has been averaged
about the inner 0.2 reff for Figs. 5.7 and 5.8 (both axes are included).

Figure 5.8: As Fig. 5.7 but for a Salpeter IMF.

GMP0144. In GMP0144 all kinds of complications arise: side-to-side
asymmetries in the major-axis profiles of ΥSSP, radial gradients in both ma-
jor and minor-axis profiles and a difference of minor with respect to major-axis
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ΥSSP (at the same central distance). This allows for many different interpre-
tations. If the lower population ages along the major-axis are interpreted as
a disk embedded in an older spheroid that dominates the minor-axis ΥSSP be-
yond r & 0.1 reff , then one would expect a good match between Υdyn and the
outer minor-axis ΥSSP. Unfortunately, the minor-axis ΥSSP rises up to the last
data points such that its continuation beyond 0.2 reff is uncertain. On the other
hand, the match of Υdyn with the mean major-axis Salpeter ΥSSP is remarkably
good. If the asymmetry in the SSP models is due to line emission, then the
branch with the negative gradient is the more trustworthy one and Υdyn should
not be expected to correspond to the central intrinsic Υ∗. The central match
is instead plausible in case the lower branch is more representative. Following
this point and the arguments under (ii) 〈ΥSSP〉 for GMP0144 is defined as the
radial average of ΥSSP inside the inner 0.2 reff .

GMP5975. The last object to discuss is GMP5975. The SSP profiles are
flat within reff as in GMP0282. Again as there, the minor-axis population is
predicted older and more massive, driven by Hβ variations with respect to the
long axis. For the same reasons as in GMP0282, the comparison to Υdyn is
restricted to the radially averaged major-axis ΥSSP out to 0.6 reff (to avoid the
outer jumps in ΥSSP).

In GMP1750, GMP0144 and GMP5975 the flatness of ΥSSP over the consid-
ered radial ranges makes projection effects insignificant. Finally to be mentioned
that in every case, only those ΥSSP values are considered for Figs. 5.7 and 5.8
that yield population ages τ < 14 Gyr. The case for stellar subcomponents is
again addressed in Sec. 6.6 in the context of the internal dynamical structure.

5.3.5 Conclusions

The justification for 〈ΥSSP〉 is ambiguous in some objects and with the data at
hand, a quantitative comparison between Υdyn and ΥSSP remains accordingly
uncertain. Nevertheless, the refined comparison confirms the impression raised
by Figs. 5.2 and 5.3 that a Kroupa IMF is consistent with the dynamical models
in every galaxy. However, in many systems Υdyn > ΥSSP, implying that part
of the mass included in Υdyn is not made of stars. The offset Υdyn − 〈ΥSSP〉
increases systematically with Υdyn, but vanishes if turning to the Salpeter IMF
(Fig. 5.8). A Salpeter IMF is excluded by stellar kinematics only for GMP1176
and GMP5975, where a steep IMF yields Υdyn < ΥSSP.

From spherical models of round, non-rotating ellipticals Gerhard et al. (2001)
concluded that ellipticals have roughly maximum stellar masses in their can-
ters. If adopting a Kroupa IMF for GMP1176, GMP5975 and GMP1750 and
a Salpeter IMF for the remaining galaxies, this conclusion holds for the Coma
galaxies as well. The only exception is GMP3792, where the dynamical models
even in the Salpeter case allow for about 20 percent of central dark matter. Ac-
cidentally, GMP0144 and GMP0282, where stellar population results are most
ambiguous, are also consistent with maximum stellar mass and a Kroupa IMF
if the minor-axis population models are regarded as the more representative
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ones (see discussion above). At least two systems, GMP5279 and GMP3792,
are incompatible with maximum stellar mass and a Kroupa IMF in any case.

The findings that (1) there is consistency between dynamical models and the
Kroupa IMF in every case and that (2) with increasing Υdyn the mass fraction
that follows light gets closer to the predictions of the Salpeter IMF are similar
to results of the SAURON team for ellipticals with integral field spectroscopy
(Cappellari et al. 2006). While for this thesis dark matter has been explicitly
included in the models, Cappellari et al. (2006) only probe self-consistent mass
distributions. The Coma results thus imply that the equivalence of Υdyn with
a Salpeter IMF at large Υdyn is not due to an increasing dark matter fraction,
unless dark matter follows a distinctly different radial distribution than covered
by NIS and NFW profiles.

Figure 5.9: Offset between dynamical and stellar population Kroupa-ΥSSP ver-
sus metalicity 〈[Z/H]〉, α-element abundance 〈[α/Fe]〉 and stellar population age
〈τ〉 (from left to right; brackets indicate averages over the same spatial regions
than for 〈ΥSSP〉).

From the extreme point of view that dark matter always follows a distinct
radial distribution than the light the difference between Υdyn and the Kroupa
〈ΥSSP〉 would measure the deviation of a galaxy’s IMF from Kroupa’s IMF.
Fig. 5.9 probes whether a hypothetical IMF variation is correlated with metal-
icity, α-enhancement or population age, which would strengthen its significance.
No strong correlation is found, but a weak trend of Υdyn−ΥSSP increasing with
[α/Fe] and population age cannot be ruled out on the basis of the present sam-
ple.
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Concluding the section, comparison of dynamical and independent stellar
population modelling reveals that the mass decomposition made in Sec. 3.3.2
is approximately correct, if the IMF is allowed to vary from galaxy to galaxy
within the limits set by the Kroupa and the Salpeter functions.

5.4 Spatial distribution of luminous and dark

matter

The relative distribution of luminous and dark matter is now further explored
based on the mass decomposition made in equation (3.6). Ambiguities of the
decomposition are discussed in Sec. 5.5.

5.4.1 Circular velocity curves

Fig. 5.10 shows the best-fit circular velocity curves for the nine Coma galaxies.
Based on this figure the sample is subdivided into galaxies with rising dark
matter circular velocity curves all over the modelled range (red labels, referred
to as galaxies with extended halos in the following) and the remaining objects
(blue labels, compact halos) where the dark matter vcirc reaches its maximum
or asymptotic value inside the library range. Albeit being almost flat (at the 15
percent level) over the kinematically sampled radial range, the circular velocity
curves vary from cases with two local extrema (most luminous systems with
extended halos) to a case of monotonic increase (faintest object). Galaxies with
compact halos have decreasing outer vcirc.

To probe for variations in circular velocity curve shapes from galaxy to
galaxy all profiles are scaled to their maximum value inside the observationally
sampled radial region and combined in Fig. 5.11. Towards the centre, vcirc
becomes nearly universal, at least when radii are scaled to reff (cf. right panels in
Fig. 5.11). The outstanding case of GMP1176 is flagged by the dashed line. The
modelling of this galaxy is unreliable in the photometrically unresolved central
region. The two red and one blue lines staying roughly flat to the innermost
radii represent the galaxies GMP5279, GMP0282 and GMP0144 with relatively
large reff (cf. Tab. 4.1) and young outer stellar populations. The inward shifts
of the peak in circular velocity may reflect differences in their outer light profiles
with respect to the other systems. In any case, the offset becomes smaller when
switching to absolute central distances (left panels in Fig. 5.11).

The total circular velocity curves of galaxies with extended halos and those
with compact ones start to diverge beyond 2 reff . Between 0.1 reff and the half-
light radius circular velocities are fairly constant. In the same radial region
the halo-vcirc of objects with extended halos and those with compact ones are
already well separated. Apart from the three objects GMP5279, GMP0282
and GMP0144 mentioned above, the red and the blue curves, taken separately,
have similar radial profiles. Flat circular velocity curves are ubiquitous in spiral
galaxies and have been found by Gerhard et al. (2001) in spherical models of
round, non-rotating ellipticals as well.
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Figure 5.10: Compilation of circular velocity curves. Thick: luminous+dark (68
per cent confidence region shaded); dotted: luminous only; dashed: dark matter
only; vertical dotted lines: boundaries of kinematic data.

5.4.2 Mass-density profiles

Spherically averaged mass density profiles of all Coma galaxies are surveyed
in Fig. 5.12. All objects except the unresolved GMP1176 have steep central
luminosity and mass distributions. The slope of the total mass profile in galaxies
with compact halos smoothly changes from the inner, light dominated parts to
the outer, halo regulated regions. The corresponding transition in galaxies with
extended halos induces instead a noticeable break in the total mass profile –
more pronounced in more massive systems. In every Coma galaxy the radius
where dark matter and stellar density equal (locally) is inside the kinematically
sampled region. And in every case, the central halo density is at least one order
of magnitude lower than the stellar mass density – independent from the profile
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dark+luminous

dark

luminous

Figure 5.11: Circular velocity curves normalised by the maximum inside the
observationally sampled radial range. Left: versus absolute central distance;
right: in units of reff . From top to bottom: total, dark matter and luminous
matter. Colors as in Fig. 5.10.

shape. In that sense even the galaxies which are best fit with a NFW halo
can be regarded as having maximum central stellar masses (ambiguities related
to the IMF issue left aside). Note that the lower limits for the (central) dark
matter density are likely a result of ignoring halo profiles with vanishing central
density.

As already implied by the approximate flatness of the circular velocity curves,
the overall effect of the halo component is to keep the outer logarithmic slope
of the total mass density around −2 (i.e. the case of an exactly constant vcirc).
This can be achieved either asymptotically with NIS halos or by suitably scaled
NFW halos over a limited radial range (around the scaling radius). Differences
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Figure 5.12: Spherically averaged mass densities. Red: total mass; blue (dot-
ted): luminous mass; black (dashed): dark matter with errors (shaded). Vertical
dotted lines as in Fig. 5.10.

in the profiles’ inner slopes play a minor role because the central regions are
apparently dominated by a mass distribution that follows well the luminosity
profile. If elliptical galaxy circular velocity curves are roughly flat over a very
extended radial range, then NFW fits will break down at some point. Vice
versa, outer mass densities decreasing steeper than r−2 would rule out NIS
halos eventually. Neither of these cases is realized within the spatial region
probed by stellar kinematics (. 3 reff).

Concluding, the nearly similar fits achieved under the quite different regimes
of NIS and NFW halos strengthen the evidence that the true mass profile around
reff has a logarithmic slope γ in the intersection of both cases (−1 < γ < −2).
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5.4.3 Dark matter fractions
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Figure 5.13: Spherically averaged dark matter fractions for the nine Coma early-
types. Solid lines: best-fitting models; shaded areas: 68 per cent confidence
regions; vertical dotted lines as in Fig. 5.10.

Finally, Fig. 5.13 summarises the dark matter fractions in the nine Coma
objects. Galaxies with compact halos have generally larger dark matter frac-
tions: 0.40±0.04 at reff and 0.51±0.06 at 2 reff , respectively. The corresponding
numbers for galaxies with extended halos are 0.14 ± 0.1 at reff and 0.34 ± 0.16
at 2 reff .
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5.5 Uncertainties in the mass decomposition

According to the discussion in Sec. 5.3.5 the mass decomposition is ambiguous
in two directions. Firstly, a fraction of dark matter may be included in the mass
assigned to the luminous component. This possibility is quantitatively treated
in Sec. 5.5.1. Secondly, part of the halo mass may be made of stars in reality.
This case is dealt with in Sec. 5.5.2.

5.5.1 Central dark matter

Assuming a universal Kroupa IMF, the amount of dark matter in the dynamical
models consists of the generic halo component ρDM plus the fraction of extra
mass

ρ+
DM ≡ (Υdyn − 〈ΥSSP〉) × ν (5.14)

that follows light on top of the stellar contribution

ρ∗ ≡ 〈ΥSSP〉 × ν (5.15)

expected for a given IMF. The total dark matter density ρ̂DM thus follows to be

ρ̂DM ≡ ρDM + (Υdyn − 〈ΥSSP〉) × ν. (5.16)

Fig. 5.14 shows the resulting “maximum-halo” dark matter fractions2. For
better comparison, shaded areas repeat the allowed range of “minimum-halo”
dark matter fractions (from Fig. 5.13). The range of central dark matter frac-
tions in Fig. 5.14 reflects the increasing Υdyn − 〈ΥSSP〉 in the lower panel of
Fig. 5.7, from the galaxy GMP5975 with no space for dark matter hidden in
Υdyn up to the system GMP3792 central dark matter fractions reach up to 50
percent. In extended-halo galaxies the dark matter fraction becomes approxi-
mately constant within reff .

Corresponding maximum-halo mass densities are surveyed in Fig. 5.15. As
a consequence of Fig. 5.14 in many systems the central dark and luminous mass
densities become comparable. In compact-halo systems dark matter profiles
keep their concave shapes, but in all other systems develop a break around reff .
From Fig. 5.14 it is clear that in the extended-halo cases the dark matter dis-
tribution differs significantly from the original NIS or NFW form, respectively.

5.5.2 Radially increasing stellar mass-to-light ratios

The last point to discuss is whether in cases of an increasing stellar mass-to-light
ratio the derived halo is actually tuned to (partly) follow this luminous M/L
trend. This possibility is explored in Fig. 5.16, comparing major-axis stellar
mass-to-light ratios from Figs. 5.2 and 5.3 with local dynamical ρ/ν along the
same axis. Remarkably, in some cases (e.g. GMP0282, GMP1176, GMP0144

2The lack of SSP models for GMP3958 inhibits the construction of a maximum halo model.
The galaxy is left out in Figs. 5.14 and 5.15.
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Figure 5.14: As Fig. 5.13 but for maximum halos (see text for details).

and GMP5975) the increase in ρ/ν is accompanied by a comparable increase
in the stellar population ΥSSP. This would support the idea that these halo
components overestimate the actual dark matter content. However, if the cor-
responding upturn in the stellar population ΥSSP is real, then by projection
effects one would expect ρ/ν < ΥSSP. The opposite is revealed by Fig. 5.16,
instead. Additionally, in all cases the local enhancement of stellar population
ΥSSP only appears over a limited radial range and/or only along one side of the
object suggesting that it could be caused by gas emission. In this case, how-
ever, the congruence between ρ/ν and the SSP features would reflect a striking
coincidence.

It could be, that the increase in ρ/ν is only partly made by stars but partly by
dark matter. Then, ρ/ν is no longer related to ΥSSP via projection quadratures
but can be larger – consistent with Fig. 5.16. Another option is that the increase
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Figure 5.15: As Fig. 5.12 but for the maximum halo case (see text for details).

in ρ/ν involves baryonic matter, e.g. gas. In this case ρ/ν and ΥSSP are not
related via projection quadratures as well. The galaxies in question have low
stellar ages in their outskirts (. 1-5 Gyr, deprojected ages may be even lower).
A relatively recent accretion of a young, low-mass, gas-rich object cannot be
directly excluded, therefore. If the increase of ρ/ν would be purely baryonic,
however, gas masses of the order of the local stellar masses would be required.

Concluding, some fraction of the mass in the halos of especially GMP0144
and GMP5975 (and possibly GMP0282 and GMP1176) may be baryonic. But
additional data at larger radii are required to distinguish between the different
possibilities more firmly.
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Figure 5.16: As Figs. 5.2, 5.3 but only the major-axis stellar population models
are shown and compared to the local major-axis ρ/ν.

5.6 Regularisation

As has been discussed in Sec. 4.2 the same regularisation is adopted for all
Coma galaxies. In the following the influence of the choice of α on the fits is
investigated.

Fig. 5.17 surveys the best-fit stellar mass-to-light ratios Υdyn over the regu-
larisation interval α ∈ [10−5, 3]. Two conclusions can be drawn from the figure.
Firstly, no systematic trend of Υdyn with α is noticeable. In GMP5279, for
example, less regularisation yields larger Υdyn, while in GMP1750 on the other
hand, Υdyn drops with α. In about half of the sample galaxies, regularisation
has barely any effect on Υdyn at all (e.g. GMP5975, GMP0282, GMP3510,
GMP3792, GMP0144).

The best-fit dark matter fractions at three representative radii are shown in
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Figure 5.17: Best-fit Υdyn versus regularisation parameter α. Dotted line: α =
0.02.

Fig. 5.19 as a function of α. As expected, occasional drops in Υdyn showing up in
Fig. 5.17 are correlated with peaks in the dark matter fractions of Fig. 5.19. In
general, as for the stellar mass-to-light ratio, no systematic trend of the models’
dark matter fraction with α is seen and the variation of dark matter fractions
with α are within the error budget of the data.

5.7 Dark matter distribution functions

As has been outlined in Sec. 5.1, the mass decomposition is not directly con-
strained by photometric and kinematic observations. Therefore it is valuable
to collect as many independent constraints on it as possible. The most direct
approach is followed in Sec. 5.3 by the comparison of dynamically and spectro-



5.7 Dark matter distribution functions 137

200

400

600 GMP5279

100

200

300

400

500 GMP3510

0.1 1

100

200

300

400

500 GMP1750

GMP3792

GMP1176

0.1 1

GMP0144

200

400

600GMP0282

100

200

300

400

500GMP3958

0.1 1

100

200

300

400

500GMP5975

Figure 5.18: Best-fit circular velocity curves at different regularisations: α =
0.001 (blue, solid), α = 2.7 (blue, dotted) and the galaxy fits (α = 0.02; black,
solid).

scopically derived stellar mass-to-light ratios. Another, not yet fully followed
approach is the stationarity of the mass decomposition, which is considered here.

As mentioned in Sec. 1.2, a density distribution is stationary, if it is sup-
ported by a DF that depends on the phase-space coordinates only via the in-
tegrals of motion (Jeans theorem). Furthermore, to be physically reasonable,
this DF should be everywhere positive. As yet, the existence of such a DF is
only ensured for the luminous mass distribution, for which it has been explicitly
calculated in terms of the orbital weights wi. It is the basic aim of this section
to investigate, whether the dark matter distribution in each best-fit Coma mass-
model is supported by such a DF as well. The dark matter DF can be computed
with the orbit superposition technique just as the DF for the luminous matter.
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Figure 5.19: Dark matter fractions at 0.1 reff (black), 0.5 reff (red) and 1.0 reff
(blue) versus regularisation parameter α. Vertical dotted lines: α = 0.02.

As the only differences, the dark matter density profile has to be used as the
boundary condition to solve equation (3.7) and the regularisation parameter has
to be set α = 0 (because no kinematical constraints exist).

It turns out that the dark matter distribution in the Coma models is in
every case supported by a positive distribution function. Corresponding orbital
phase-densities are shown in Fig. 5.20 as a function of the mean orbital radius
defined in App. C. In galaxies with best-fit NFW-halos (GMP3792, GMP0144)
the DF is monotonic with respect to 〈rorb〉. In all other cases, the DF reaches
a maximum and drops towards the centre.

Studying a two-parameter family of isotropic spherical galaxy models Baes,
Dejonghe & Buyle (2003) found a similar drop of phase-densities when (1) a
central black hole adds to an otherwise self-consistent gravitational potential
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and (2) the central logarithmic slope γ of the density distribution is shallower
than γ < 3/2. Fig. 5.20 does not reveal a drop in the galaxies with NFW-
halos which have a central logarithmic slope γ = 1. However, the results of
Baes, Dejonghe & Buyle (2003) cannot directly be compared to the case here,
because (1) NIS halos have mass profiles different from the two-parameter family
of Baes, Dejonghe & Buyle (2003) and (2) the way a black-hole modifies the
central potential is different from the way a typical stellar mass distribution
does. In any case, although the numerical resolution in the orbit models is not
sufficient to study the innermost behaviour of the DF in detail, the drop of
central phase-densities is likely not a modelling artifact.

Figure 5.20: Luminous and dark matter phase-densities (all orbits). Black: dark
matter; grey: luminous; red: dark matter 〈rorb〉 < 0.1 reff ; blue average phase-
density of red points; vertical dotted lines: boundaries of kinematical data.

From the orbital phase-densities shown in Fig. 5.20 a mean central phase-
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density can been defined as

fh ≡
(∑

wi
∑

Vi

)

0.1

, (5.17)

where the sums on the right hand side are intended to comprise all orbits with
〈rorb〉 < 0.1 reff . These orbits are highlighted in red in Fig. 5.20. The central
halo phase-densities are used in Sec. 7.7. It should be noted that the DFs shown
in Fig. 5.20 are not unique. At least, it is always possible to change the odd
part of the DF with respect to Lz without affecting the density in configuration
space. It may further be that DFs differing in other respects from the maximum
entropy case support the dark matter distributions as well. This adds to the
uncertainties of fh.

The non-monotonic shape of the NIS-DFs implies that they could be unsta-
ble. If they are indeed unstable, then the mass decomposition discussed above
is physically unreasonable. In this case a systematic survey of dark matter dis-
tribution functions could independently constrain the range of reasonable mass
decompositions. A stability analysis of the halo DFs is out of the scope of this
work, however.

5.8 Summary

The dynamical modelling of Coma galaxies provides evidence for dark matter
in each galaxy. Dynamically derived stellar Υdyn are in good agreement with
stellar population modelling, if a variation of the IMF is allowed for. In the
low-Υdyn regime dynamical models are compatible with a Kroupa IMF, but
with increasing Υdyn, they shift towards the predictions of a Salpeter IMF. This
result is similar to the findings of Cappellari et al. (2006) from self-consistent
modelling of SAURON-galaxies. A slight tendency for low-Υdyn galaxies being
younger and less α-enhanced is seen in the Coma sample. For a firm conclusion
the sample is too small, however.

Dark matter halos required to fit the kinematical data are in two of nine
cases of the NFW-type and in all other cases of the NIS-type. Differences in the
fit to the data based on one or the other halo model are marginal in every case.
In combination with luminous matter, the distribution of dark matter results
in roughly flat circular-velocity curves. In detail, the sample separates in two
subgroups. One is characterised by an increasing outer vcirc, the other by an
outer decreasing vcirc. A similar shape-variation is found in the temperature
profiles of elliptical galaxy X-ray halos (Humphrey et al. 2006).

Central dark matter densities are one to two orders of magnitude lower than
the corresponding mass density in stars. Between 10 and 50 percent of the mass
included by the half-light radius reff is dark in the Coma galaxies. This is in
agreement with results for round, non-rotating ellipticals (Gerhard et al. 2001).
The distributions of dark matter and the shapes of the circular velocity curves
are robust against different choices of regularisation.
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For the first time, DFs for the dark matter component have been computed.
In halos following the NIS-type, phase-densities drop towards the centre, while
NFW-halos provide on-average monotonic DFs. Central phase densities are in
each case orders of magnitudes below central stellar phase-densities.
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Chapter 6

Dynamical structure of
Coma ellipticals

6.1 Outline

The present chapter deals with the dynamical structure of the galaxies in the
Coma sample. Velocity anisotropies as well as the orbital distribution in phase-
space are addressed. The latter is fully described by the phase-space distribution
function f of the isolating integrals of motion E, Lz and I3. Instead of exact
integrals, orbital shape parameters are used in the following. To allow a fluent
reading of the text, the definition of these shape parameters is separated in
App. C. The DFs of the models (and of real galaxies as well) are sums of δ-
functions. To illustrate the main trends in phase-space a smoothed local DF
is defined that represents the average phase-density in the neighbourhood of a
given orbit. The smoothing is detailed in App. D.

The chapter is composed as follows. In Sec. 6.2 the global dynamical struc-
ture is related to the flattening of the objects. In the following Secs. 6.3- 6.5
the orbital distributions around the minor-axis, intermediate position angles
and around the equatorial plane are investigated separately and discussed in
Sec. 6.6. The influence of regularisation is explored in Sec. 6.7 and the chapter
is summarised in Sec. 6.8.

6.2 Flattening and anisotropy

The flattening of axisymmetric galaxies can be supported by different orbital
configurations. Studying self-consistent synthetic 3I model galaxies, Dehnen &
Gerhard (1993) identified four principal configurations. The corresponding DFs
in two cases involve only two integrals of motion. In classical 2I systems with
f = f(E,Lz) the flattening stems from extra-light on high angular-momentum
orbits. These configurations have characteristic velocity anisotropies βϑ ≡ 1 −
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σ2
ϑ/σ

2
r = 0 and βϕ ≡ 1 − σ2

ϕ/σ
2
r < 0. This case is shortly referred to as

flattening by rotation in the following. Strictly speaking, the flattening depends
on the part of the DF that is even in Lz, while rotation depends on the part
that is uneven in Lz. However, the exact balance of light on the prograde and
retrograde specimen of each orbit does not play a role in the discussion below.

The other 2I option is flattening by a depression of orbits reaching high lati-
tudes, or shortly, flattening by anisotropy. The corresponding velocity anisotropies
are βϑ > 0 and βϕ = 0. Other flattening mechanisms involve dependencies of
the DF on all integrals and correspondingly complex anisotropy structures. The
flattening of the Coma galaxies is discussed in the following.

6.2.1 Galaxy fits

Fig. 6.1 shows meridional 〈βϑ〉 and azimuthal 〈βϕ〉 anisotropies averaged be-
tween 0.05 and 2.5 reff , versus the average intrinsic ellipticity 〈ǫν〉 of the models.
The latter is calculated by ellipse-fits to isodensity-contours of the deprojection.
The chosen radial range roughly covers the region with kinematical data. In
the figure also the two 2I flattening cases mentioned above are shown for com-
parison. Flattening by rotation is coloured blue and the velocity anisotropies
are calculated for each galaxy by solving higher-order Jeans equations with the
program of Magorrian & Binney (1994). As stated above, the purpose here is
only to recover the general flattening mechanism of the Coma galaxies, which
depends on the even part of the DF. Therefore, rotation has been included into
the azimuthal velocity anisotropy by considering

β∗
ϕ ≡ 1 −

σ2
ϕ + v2

ϕ

σ2
r

. (6.1)

Given an arbitrary density distribution, β∗
ϕ is uniquely defined under the as-

sumption that f = f(E,Lz).
Concerning the second 2I flattening mechanism, flattening by anisotropy,

velocity anisotropies are calculated from an approximation of the tensor virial
theorem (Saglia, Bender & Dressler 1993)

βϑ = 1 − (1 − ǫν)0.9 (6.2)

(red curves in Fig. 6.1). The relation (6.2) is almost linear over ǫν ∈ [0, 1] and
can be well fit by

βϑ = −0.02 + 0.99 × ǫν . (6.3)

Fig. 6.1 reveals a close relationship between intrinsic flattening and merid-
ional velocity anisotropy. A linear fit yields

〈βϑ〉 = (−0.10 ± 0.19) + (1.11 ± 0.61)× 〈ǫν〉 (6.4)

and is traced by the black line in the upper panel. The actual relation in the
Coma sample is slightly steeper than the red curve, but both are consistent
within the errors. Most galaxies with 〈βϑ〉 lower than expected from flattening
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Figure 6.1: Top: meridional average velocity anisotropy 〈βϑ〉 versus average in-
trinsic ellipticity 〈ǫν〉; error bars: standard deviation about the mean; red/blue:
flattening by anisotropy/rotation (cf. text); black: linear fit. Bottom: same for
azimuthal anisotropy 〈β∗

ϕ〉 (see text for details).

by anisotropy, have azimuthal 〈β∗
ϕ〉 approaching the f(E,Lz) case in the lower

panel. An exception is GMP3958 that is close to the red line in the upper panel
but close to the blue line in the lower. From the isophotal fits in Fig. 4.6 it is
clear that the ellipticity of this galaxy varies strongly with radius, and from the
dynamical analysis in Sec. 6.6 it will come out that the system is made of a disk
superimposed on a spheroidal background. This may explain its exceptional
behaviour.
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A general trend in Fig. 6.1 is that from the most flattened to the roundish sys-
tems the importance of high angular-momentum orbits increases. The present
sample is however too small to draw any firm conclusion about this issue.

Figure 6.2: As Fig. 6.1 but for the maximum entropy models.

6.2.2 Maximum entropy models

For two reasons, it is interesting to compare the galaxy fits to maximum entropy
models: (1) the fits are regularised towards maximum entropy and it is useful
to understand exactly in which direction this smoothing works; (2) deviations
from maximum entropy configurations may contain information about the for-
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mation mechanisms and evolutionary histories of the galaxies. Fig. 6.2 shows
for the maximum entropy models velocity anisotropies versus intrinsic elliptic-
ity. Maximum entropy models are calculated in the best-fit mass distribution
of each galaxy by setting the regularisation parameter α = 0 (cf. Sec. 3.3.4).
They reproduce the luminosity distribution, but do not fit to the kinematical
data. Since the purpose is to understand the effects of entropy maximisation
(data constraints do not matter), the comparison in Fig. 6.2 covers the whole
library.

Without any boundary condition, the maximisation of S in equation (3.7)
populates orbits proportional to their phase-volumes. The phase-space density
thus becomes constant and any dependency of the DF on the integrals of motion
is suppressed. Coupling the DF to match a flattened density distribution breaks
this overall symmetry. Still, the maximisation of S under this boundary condi-
tion will minimise gradients in the DF. One may therefore expect the maximum
entropy models to be close to one of the two above mentioned cases where the
DF depends on only two integrals.

Indeed, in Fig. 6.2 the maximum entropy models are located closely to the
relation predicted by flattening through anisotropy. A linear fit yields

〈βϑ〉 = (0.05 ± 0.16) + (0.81 ± 0.47)× 〈ǫν〉. (6.5)

It is shown as the black line in Fig. 6.2 and coincides well with the red curve
over the region 〈ǫν〉 ∈ [0.2, 0.6] covered by the Coma models. Moreover, the
relation (6.5) is consistent with the galaxy fits (6.4). Interestingly, the maximum
entropy models do not yield exactly 〈βϕ〉 = 0, but tend to be slightly azimuthally
anisotropic. A possible reason may be the bias of the libraries towards azimuthal
anisotropy at their boundaries (cf. Sec. 2.5.3). Another issue may be that the
maximum entropy models are not self-consistent, but calculated in spherical
dark matter halos.

From the similarity of the dynamical structure in the maximum entropy
models and the galaxy fits one may suspect that the Coma models are largely
driven by the regularisation prior. However, a decrease of the fraction of energy
in vertical versus horizontal motions with flattening has also been found in the
SAURON survey (Cappellari et al. 2005). The models applied to the SAURON
galaxies are based on a completely different regularisation scheme. Therefore,
the consistency of the results of Cappellari et al. (2005) and the Coma galaxies
suggests that ellipticals are mostly flattened by anisotropy and, accordingly,
globally in a near maximum entropy state.

6.3 Local dynamical structure around the poles

6.3.1 Velocity anisotropies

Figs. 6.3 and 6.4 survey velocity anisotropy profiles along the intrinsic minor-
axis of the Coma galaxy sample. By axial symmetry azimuthal and meridional
velocity dispersions equal directly on the symmetry axis, implying βϑ ≡ βϕ
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Figure 6.3: Radial profiles of meridional anisotropies βϑ in the minor-axis bins.
Thick/shaded: best-fit model with error; dotted: range of kinematical data.

there. This explains the overall similarity between Figs. 6.3 and 6.4. They do
not match exactly, because the minor-axis bins of the models form a cone with
opening angle θ = 25◦ around the z-axis. Off the symmetry axis, at latitudes
ϑ < 90◦, the equivalence of azimuthal and meridional dispersions does not hold.

In Figs. 6.3 and 6.4, the very central anisotropies should not be regarded
as reliable. Firstly, because the central bins are affected from incomplete orbit
sampling producing artificially large azimuthal dispersions (cf. Sec. 2.5.3). Sec-
ondly, for numerical reasons the innermost bin is not resolved in ϑ, but averaged
over all ϑ ∈ [0◦, 90◦].

In the spatial region with kinematical data the Coma galaxies offer differ-
ent degrees of minor-axis anisotropy, from strongly tangential (GMP5279) to
moderately radial (GMP3792). Towards the centre βϑ → 0, while βϕ becomes
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Figure 6.4: As Fig. 6.3, but for azimuthal anisotropies βϕ.

negative (most likely due to the incomplete orbit sampling). Going outward,
many but not all galaxies exhibit a gradual change in dynamical structure. Of-
ten in form of a minimum or maximum in β. Around the last data points most
models are isotropic or tangentially anisotropic. The only radial systems are
GMP1176 and, with respect to βϕ only, GMP3792.

6.3.2 Anisotropy and H4

The intrinsic short-axis velocity anisotropies are mostly driven by the H4-
observations. This can be taken from Fig. 6.5, where the models’ H4(R) (at
projected radius R) are plotted against internal anisotropy β(r = R) at the
same radial distance. Internal radii have not been corrected for inclination
since most models are edge-on. From the figure a tight correlation of βϑ with
H4 follows (quoted in the plot), and a weaker one of βϕ with H4.
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Figure 6.5: Short-axis anisotropy against minor-axis H4. The line in the upper
panel shows a linear fit (quoted in the panel).

6.3.3 The local distribution function

The orbital structure underlying the anisotropy profiles of Figs. 6.3 and 6.4,
respectively, is presented in Fig. 6.6. Curves show for each galaxy the average
local DF (defined in App. D) of orbits contributing to the minor-axis bins of the
models. These orbits are chosen by having maximum latitudes ϑmax > 70◦ (cf.
App. C). For convenience they are labelled minor-axis orbits or polar orbits in
the following.

In axial symmetry, angular momentum conservation implies infinite azimuthal
velocities vϕ = Lz/r/ cos(ϑ) on the symmetry axis, unless Lz ≡ 0. Therefore,
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Figure 6.6: Average polar distribution function versus 〈rorb〉. Orbits are ar-
ranged in radiality bins from shell orbits (low ζ, yellow) to radial orbits (large
ζ, green). Over-plotted in black: meridional anisotropy βϑ along the minor-axis
(scale on the right). In each panel the total number N of involved orbits and
the fraction of light

∑

wi they carry is quoted.

only orbits with vanishing angular momentum can reach the symmetry axis and
the local DF there depends only on the two remaining integrals E and I3. The
dependency of the DF on E is documented in Fig. 6.6 by the dependency of the
smoothed DF on 〈rorb〉, which is roughly equivalent to the orbital energy (cf.
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App. C). The remaining part of the DF can be extracted by plotting phase-
densities for orbit subsets binned in I3. As I3 is not known explicitly, orbits are
binned with respect to their radiality ζ (cf. App. C) in Fig. 6.6.

According to the approximate 2I-character of the local DF around the sym-
metry axis, the anisotropy at a given radius on the minor-axis can be expected
to be directly related to the dependency of the DF on I3 (or ζ, respectively).
The latter, in turn, translates into a separation of the phase-density profiles of
different orbit bins in Fig. 6.6. The velocity anisotropy βϑ is over-plotted in
Fig. 6.6 for comparison (scale on the right). The ζ-bin [0.95, 1], containing the
most radial orbits, is omitted in Fig. 6.6, because it is contaminated by orbits
with low pericentre distances rperi that reach their maximum latitude ϑmax close
to rperi but do not linger in polar bins outside the centre.

As expected, galaxies with strong tangential anisotropy (GMP5279, GMP3510
and GMP5975) are characterised by an over-density of radially confined orbits
(low ζ) relative to radially floating orbits (large ζ). Likewise, radially anisotropic
objects like GMP1750 or GMP0282 have enhanced phase-densities of radial po-
lar orbits. Furthermore, gradual changes in the velocity anisotropy profiles
revealed by Figs. 6.3 and 6.4 result from shell orbits (low ζ) and radial polar
orbits following distinct radial distributions. For example, over the kinemati-
cally sampled radial regions in GMP5279 or GMP5975 the shell orbits exhibit
a shallower radial decrease than the radial orbits. Other systems like GMP0282
and GMP3510 do not show a gradual change in velocity anisotropy. Instead
they separate in regions that seem kinematically different: an isotropic inner
region (. 0.5 reff) and anisotropic outlets. Taking GMP0282 exemplary, its ra-
dial polar orbits smoothly decrease from the inner to the outer parts while the
distribution of shell orbits exhibits a break, located around the outermost data
point. The situation is similar in GMP3510, albeit the roles of shell and radial
orbits in the outer parts have flipped.

By the close relationship between H4 and velocity anisotropy (cf. Fig. 6.5)
most of the structure in the DF is a result of the minor-axis H4-profiles. To
check, whether these just reflect structural differences in the luminosity profile or
contain independent information about the internal kinematics, Fig. 6.7 shows
the best-fit DF of Fig. 6.6 normalised to the maximum entropy DF fS (α = 0,
cf Sec. 6.2.2). A galaxy in a maximum entropy state should show up with
log(f/fS) ≡ 0 in Fig. 6.7. For orbits that are not significantly constrained by
observations, regularisation implies f ≈ fS , as well.

The latter is most likely responsible for all DFs converging with the maxi-
mum entropy distributions in the outer parts that are not covered by kinematical
observations. However, in the data-covered inner regions, the radial and tan-
gential anisotropies require deviations from maximum entropy. As could have
been expected, the relation between H4 and anisotropy is therefore not driven
by the luminosity profiles.
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Figure 6.7: Difference between best-fit model DF f = log(w/V ) and correspond-
ing maximum entropy DF fS.

6.4 The bulk of stars at intermediate latitudes

According to the last section, the orbital distribution around the short-axis
is closely coupled to the observed H4. By projection, orbits with lower ϑmax

contribute to the minor-axis LOSVDs as well. The present section is aimed
to investigate in how far these orbits are constrained by the observations. To
this end Fig. 6.8 repeats Fig. 6.6, but for orbits at intermediate latitudes 30◦ <
ϑmax < 70◦.
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The distribution of orbits at intermediate latitudes in Fig. 6.8 is much
smoother than in Fig. 6.6. Most systems appear slightly radial in the sense
that orbits with large ζ owe the highest phase-densities. In GMP1750, this trend
continues the orbital distribution around the minor-axis. But in the three galax-
ies with strong minor-axis anisotropy (GMP5279, GMP3510 and GMP5975) it
implies a sudden change in the orbital structure between the poles and inter-
mediate latitudes. Considering the differential DF in Fig. 6.9 (the analog to
Fig. 6.7), the DFs of Fig. 6.9 differ not much from maximum entropy functions.
This can be read in two ways. Either, the system of intermediate orbits has
higher entropy, or alternatively, it is less constrained by the data. The second
variant seems more plausible for two reasons. Firstly, all orbits involved in
Fig. 6.8 spent most of their time in regions not covered by kinematical data.
Second, as will be discussed in the next section, in both neighbouring regions
(along the poles as well as along the equator) the orbital system deviates from
maximum entropy. It would be hard to understand why, in every case, it is
more entropic in between.

6.5 Local dynamical structure around the equa-
torial plane

6.5.1 Velocity anisotropy

Velocity anisotropy profiles in the equatorial plane are shown in Figs. 6.10 and
6.11. In contrast to Figs. 6.3 and 6.4 axial symmetry does not imply any rela-
tionship between βϕ and βϑ at low latitudes.

Meridional anisotropy. Contrasting the situation around the poles, no
galaxy exhibits tangential anisotropy βϑ < 0. The only exception is the central
region of GMP1176, where negative βϑ and βϕ imply σr < σϕ, σϑ. The low
radial dispersion may be an artifact of the unresolved central light profile and the
resulting extended flat density core (cf. Fig. 5.12). Better resolved photometry
is needed to clarify this issue. Apart from GMP1176, the lack of tangential
anisotropy reflects the relation between flattening and meridional anisotropy
discussed in Sec. 6.2.

Azimuthal anisotropy. More diversity is offered by azimuthal velocities.
In GMP3792, for example, the negative βϕ supports the hypothesis that the
system may be composed of two flattened subsystems with low overall angular
momentum, resulting in large ϕ-motions. GMP3510, GMP1176, GMP3958 and
GMP0144 are relatively isotropic (σr ≈ σϕ) over the kinematically sampled
spatial region. GMP1750, instead, offers βϑ ≈ βϕ > 0, implying σr > σϕ, σϑ

over the kinematically sampled radial region in this system.
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Figure 6.8: As Fig. 6.6, but for orbits at intermediate latitudes 30◦ < ϑmax <
70◦.

6.5.2 The local distribution function

The orbital structure responsible for the anisotropy profiles along the equato-
rial plane is more complex than around the poles. The reason is that in the
potentials considered here all orbits cross the equatorial plane and, thus, all
orbits contribute to the anisotropy there. The local DF therefore depends on all
three integrals. On the other side, the close relation between minor-axis H4 and
the distribution of polar orbits discussed in Sec. 6.3 implies that the minor-axis
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Figure 6.9: As Fig. 6.7, but for the orbits of Fig. 6.8.

orbits are little affected by the major-axis observations. The smoothness and
maximum-entropy fashion of the orbital distribution at intermediate latitudes
likewise implies that it is little influenced by the major-axis data (cf. Sec. 6.4).
Both considerations are plausible in view of the fact that the corresponding or-
bits cross the equatorial plane with large orthogonal velocities, spent little time
there and contribute accordingly little light to the major-axis LOSVDs. In turn
then, these LOSVDs do not put tight constraints on their phase-densities.

The major-axis data therefore mostly constrains orbits that do not extend
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Figure 6.10: As Fig. 6.3, but for the major axis.

much above the equatorial plane (low zmax; cf. App. C for an exact definition
of zmax). Orbits become planar in the limit zmax → 0 and the local DF of
these, constrained, orbits depends only on energy and angular momentum, or
〈rorb〉 and ζ, respectively. This limit should be kept in mind when interpreting
Fig. 6.12 that shows the local DF around the equatorial plane. It is analogous
to Figs. 6.6 and 6.8, but only orbits entirely covered by the major-axis slit (in
the vertical direction) are considered. Let the major-axis slit-width be w, then
all orbits with zmax < w/2 are included in Fig. 6.12. These orbits are shortly
referred to as equatorial orbits or major-axis orbits below. In Fig. 6.12 orbits
are binned with respect to ζ. Circular orbits have ζ → 0 and are plotted in blue
(prograde) and red (retrograde). Radially floating orbits correspond to ζ → 1
and are plotted light blue (prograde) and light red (retrograde).
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Figure 6.11: As Fig. 6.4, but for the major axis.

Rotating galaxies. Necessarily, rotating galaxies (GMP0282, GMP3510,
GMP3958, GMP1176 and GMP5975) have angular momentum gradients in
their DFs. In the Coma sample these tend to increase with radius. Mostly,
because retrograde circular orbits are strongly suppressed towards the outer
parts. GMP3958 is an exceptional case, as in this galaxy retrograde orbits fol-
low a power-law like distribution up to the outermost data points. In GMP1176
and GMP3958 the radial phase-density profiles of prograde circular orbits form
a plateau of roughly constant phase-density (log f ≈ 1) and the dominant orbits
are circular.

The other three rotating galaxies lack of a comparable plateau and are not
clearly dominated by circular orbits. These only occasionally exceed the densi-
ties in radial orbits (GMP3510 around 1.5 reff , GMP5975 around 0.8 reff) or are
continuously populated on a lower level (outer parts of GMP0282).
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Non-rotating galaxies. In the most luminous objects GMP5279 and
GMP1750 circular orbits are suppressed. In GMP5279, only the prograde com-
ponent reaches the level of radial orbits but only around 0.3 reff , a region with a
weak rotational signal (cf. Fig. 4.1). Similar, in GMP1750 around reff/2 a local
circular orbit enhancement occurs with a weak rotational signal. Overall, both
galaxies are dominated by radial orbits, with little difference between prograde
and retrograde specimen. GMP3792 appears homogeneous with respect to ζ on
the major-axis. The structure of GMP0144 is uncertain as its central parts lack
of axial symmetry.

For the sake of completeness Fig. 6.13 shows the differential DF correspond-
ing to Fig. 6.12 (analogously to Figs. 6.7 and 6.9). Since maximum entropy
enforces equal densities on the prograde and retrograde specimen of each orbit
any rotation causes a deviation from the regularisation prior. Thereby it is clear
from Fig. 6.13 that these deviations are much larger along the equatorial plane
than anywhere else in the models.

The distribution of major-axis orbits in GMP3792 is compatible with maxi-
mum entropy and the same holds for the central regions of the rotating systems
GMP0282, GMP3510, GMP3958 and GMP5975. The dominance of circular or-
bits in GMP1176 implies low entropy, while rotation in GMP0282 and GMP5975
is different and less deviant from maximum entropy. The depression of circular
orbits in GMP5279 and GMP1750 is not compatible with maximum entropy at
all.

Apart from the obvious fact that certain angular momentum gradients are
caused by rotation it is difficult to qualify what drives the orbital DFs around
the equatorial plane. For example, no correlation between H4 and velocity
anisotropy is found as can be drawn from Fig. 6.14, the equatorial counterpart
of Fig. 6.5.

The only loose connection recovered is between the steep drop of retrograde
orbits in GMP0282, GMP3510, GMP1176 and GMP5975 and H3. To illustrate
this, Fig. 6.15 shows the phase-densities of the most circular and most radial,
respectively, prograde and retrograde equatorial orbits of Fig. 6.12. Over-plotted
is the H3-profile (scale on the right). In the rotating systems positive1 H3

occurs whenever (1) retrograde orbits are strongly underpopulated and (2) radial
prograde orbits roughly level with circular orbits. In the only rotating system
that is not affected from the retrograde orbit suppression (GMP3958) H3 is
negative and rotation is mostly maintained by near circular orbits. Noteworthy,
the depopulation of retrograde orbits is restricted to the outer regions (beyond
reff) in each case.

6.5.3 The vertical structure

To complete the analysis of orbits around the major-axis, Fig. 6.16 shows the
vertical structure of the DF. Orbits are binned with respect to their vertical

1Note that the observed rotation is always scaled positive. Thus, positive H3 are (pos-
itively) correlated with v, while negative are anti-correlated. Inside the effective radius H3

and v are anti-correlated in most ellipticals (Bender, Saglia & Gerhard 1994).
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Figure 6.12: As Fig. 6.6, but for orbits entirely covered by the major-axis slit.
Prograde orbits are plotted in blue colours, retrograde orbits in red colours (cf.
colour bar).

extension in slices of ∆zmax = 0.2 reff . As in previous figures, prograde and
retrograde orbits are plotted in blue and red colours, respectively.
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Figure 6.13: As Fig. 6.7, but for the orbits of Fig. 6.12.

From the figure it can be seen that the vertical structure of the orbital sys-
tems varies, especially among the rotating galaxies. For example, GMP3958,
the galaxy that lacks the depression of retrograde orbits, is characterised by a
thin rotating structure where orbits closest to the equatorial plane are populated
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Figure 6.14: As Fig. 6.5, but for the major-axis.

strongest. This configuration extends up to the outermost data-point. Com-
pletely different is GMP5975. While up to reff the galaxy is as well characterised
by a thin rotating component the over-density in the lowest z-bin disappears
towards larger radii. There, instead, orbits with higher vertical extension carry
most of the phase-density. The transition from the inner, thin to the outer, thick
rotation structure spatially coincides with the onset of boxiness in the galaxy’s
outer parts (cf. Fig. 4.9).

The phase-densities of prograde orbits in GMP3958 and GMP1176 decrease
with z. However, concerning retrograde orbits, GMP1176 resembles GMP5975
in that this trend is reversed and phase-densities decrease towards the equator.
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Figure 6.15: As Fig. 6.12, but only the most circular prograde and retrograde
orbits are considered. Over-plotted to the orbital phase-densities is the observed
major-axis H3 (black, scale on the right).

In GMP3958 the phase-densities of retrograde orbits do not change much with
z.
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Non-rotating galaxies are mostly featureless with respect to z (the case of
GMP0144 is uncertain due to the lack of axial symmetry in the centre). How-
ever, GMP3792 is dominated by orbits close to the equatorial plane.
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Figure 6.16: As Fig. 6.12, but orbits are binned in zmax from zmax = 0 to
zmax = reff in bins of ∆zmax = 0.2. Blue/red colours distinguish prograde/
retrograde orbits (averaged about the angular momentum).
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6.6 Discussion of the dynamical structure

Analysis of the local DFs of orbits around the equatorial plane and around the
poles, where the observations at hand constrain the orbits best, has recovered a
wealth of disparate structures. The present section is aimed to interpret these
in terms of the global dynamical composition of the systems. To this end,
Fig. 6.17 combines the DFs of Figs. 6.6 and 6.12, respectively. For the sake
of clarity only the radially most extended and radially most confined orbits of
Fig. 6.6 are shown (and referred to as radial polar orbits and shell orbits in the
following). The equatorial orbits (shortly disk orbits) are binned in each two
prograde and two retrograde families, a more circular one (ζ < 0.5, in following
just circular orbits) and a more radial one (ζ > 0.5, in following just radial
orbits).

GMP5279. GMP5279 is one of the galaxies with strong minor-axis anisotropy.
As Fig. 6.17 reveals, the responsible phase-space structure along the short-axis
has a correspondent along the equator: the distribution of shell orbits in the
inner parts (r . reff/2) resembles the distribution of radial orbits along the
equator. At the same time, the distribution of radial polar orbits coincides with
retrograde, circular disk orbits. Such coincidences of orbital distributions are
interesting, because the involved orbits are constrained by completely indepen-
dent data sets. One may speculate that spatially separated orbital families that
share the same DF behaviour have a common origin. Vice versa, distinctly dif-
ferent phase-space profiles may indicate distinct assembly mechanisms for other
orbit families.

GMP3792. An example for a system that may be composed of two compo-
nents, one spheroidal and one equatorial, is GMP3792. Both, the equatorial
as well as the polar orbits follow similar, but distinct radial density distri-
butions. Thereby, the equatorial component dominates over most of the ra-
dial range. This confirms the conjecture that the system may be composed of
two counter-rotating flat structures. On top of these, Fig. 6.17 reveals a faint
background spheroidal component. However, the lack of any ζ-gradient in the
equatorial component (or angular momentum gradient, respectively) and its
rather maximum-entropy like fashion lets the equatorial component appear as
a homogeneous entity. May be the galaxy is such inclined, that any intrinsic
angular-momentum gradient is washed out by projection. It could also be, that
the equatorial structure is not a two component system, but a relaxed, highly
flattened dynamical entity.

GMP0282. The orbital distribution of GMP0282 is hard to interpret. Nearly
all orbital subclasses exhibit small-scale structures in terms of local density-
enhancements (most prominently the peak in the retrograde near circular orbits
around ≈ 0.6 reff). Interesting in this object, that the outer rotation is not
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Figure 6.17: Combination of Figs. 6.6 and 6.12. Orbital binning as specified in
the colour bars.
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supported by the most circular orbits but by an over-density of orbits that are
radially extended.

GMP3510. GMP3510 offers some similarity with GMP5279 in the sense that
polar orbits and disk orbits partly follow similar radial distributions. However,
in GMP3510 the structure is more complex. In the inner regions the distri-
butions of shell orbits and retrograde circular orbits are similar. Likewise, the
distributions of radial polar orbits and prograde disk orbits are similar. Around
reff/2 the radial polar orbits drop as the prograde circular orbits do. Over the
same region the shell orbits join with the equatorial orbits and follow their dis-
tribution towards larger radii. This transition in the dynamical structure causes
the peaks in the anisotropy profiles (cf. Figs. 6.3, 6.4 and 6.10, 6.11). Beyond
reff a radially localised region of high density in prograde circular orbits appears,
similar to the feature in the retrograde orbits of GMP0282 around 0.6 reff . This
could unravel a ring, but a firm conclusion needs systematic orbit modelling of
synthetic templates with known structures. In the region of the hypothetical
ring, retrograde circular orbits are effectively missing.

GMP1176. The lenticular GMP1176 is dominated by prograde disk orbits.
Most striking is the absence of retrograde orbits beyond reff/2, which is more
pronounced in this galaxy than in GMP3510 and includes retrograde orbits of
all shapes. It is hard to imagine how such a selective depression of retrograde
orbits could result from a merger or a collapse. On the other hand, if first
a bulge-like object forms in a rapid collapse the orbit distribution would be
radially anisotropic (van Albada 1982) and circular orbits (both prograde and
retrograde) orbits would be less populated. At this stage, the polar orbits
could gain their actual phase-space distribution. Later, a relatively quiescent
assembly of stars on prograde orbits could bring their phase-densities step by
step to their present values without altering the retrograde orbits much. It is not
clear, whether such a mechanism could account quantitatively for the structure
of GMP1176. In any case one would expect older stars along the minor-axis
than along the major-axis. While the stellar ages around the major-axis are
indeed low, the case on the minor-axis is ambiguous (cf. Fig. 5.4).

The strong depression of retrograde orbits may also be an artifact in the
models to compensate for intrinsic non-axial symmetry in the outer parts. In
this case, the DFs cannot be interpreted directly, but first axisymmetric models
need to be fit to synthetic triaxial template objects to investigate if and, as the
case may be, which orbital configurations are mapped by orbit depressions as,
for example, in GMP1176.

GMP3958. A clear-cut case for a two-component system is GMP3958. In
this galaxy, polar orbits follow the same radial distribution as retrograde equa-
torial orbits. The latter are not vertically structured. Prograde equatorial orbits
exceed the density of all other orbits. All together this can be interpreted as a
system that is composed of a relatively featureless spheroidal component (polar
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orbits, retrograde equatorial orbits) on top of which a prograde equatorial com-
ponent is superimposed (prograde equatorial orbits). The prograde component
is thereby relatively thin. According to the dynamical status one may specu-
late that the spheroidal background has formed before the equatorial rotating
component has grown on top of it. This could imply that the system is made
of two distinct stellar populations and could explain why SSP models failed for
this object.

GMP1750. Little can be said to GMP1750, but that the radial equatorial and
polar orbits follow roughly the same distribution. As stated above the galaxy
is a candidate (close-to) face-on system, but the model prefers an edge-on con-
figuration. To the expense that circular orbits need to be taken out to account
for the overall similarity of the minor and major-axis observations, respectively
(this symmetry is broken most effectively by circular and shell orbits). On the
other hand, an under-population of circular orbits may result from a collapse,
as discussed for GMP1176. Data along more position angles would be valuable
for this system.

GMP0144. The orbital structure of GMP0144 is likely affected by the lack
of axial symmetry in the centre. It is therefore not further discussed here.

GMP5975. In GMP5975, as in GMP5279 and GMP3510, the distinct dis-
tributions of radial polar orbits and shell orbits have correspondents in the
prograde and retrograde disk orbits: shell orbits follow prograde equatorial or-
bits, radial polar orbits follow retrograde equatorial orbits. In the outer parts,
retrograde circular orbits lack as in GMP1176, rising the same implications as
already discussed there.

Additional remark. In Sec. 5.3 the possibility was discussed that the in-
crease of stellar population ages along the minor-axis of GMP0282, GMP0144
and GMP5975 could imply the presence of a flat, distinct stellar population
localised along the major-axis (a young disk, basically). The dynamical anal-
ysis supports the view-point taken in Sec. 5.3, that this is likely not the case.
The strongest evidence against a distinct equatorial component is provided by
GMP5975, where the dominating orbits along the poles (shell orbits) and along
the equatorial plane (prograde orbits) follow the same radial distribution. This
does not proof, but makes likely, that they share the same origin and carry more
or less the same stellar populations. In GMP0282 and GMP0144 the situation is
less obvious. In any case, the DFs of GMP0282 and GMP0144 certainly do not
show the clear two-component structure as found in GMP3958. The arguments
against distinct major and minor-axis stellar populations given for GMP5975
also apply to GMP5279 with its low minor but large major-axis stellar ages.
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6.7 Regularisation

In the present section the influence of α on the dynamical structure of the galaxy
fits is investigated. To this end Figs. 6.18 and 6.19 show best-fit meridional
and azimuthal velocity anisotropies at three representative radii in the best-fit
models as a function of α. The figures show that maximum entropy fits (α →
0) yield isotropy along the minor-axis. Lowering the weight on regularisation
constraints increases the amount of anisotropy in the models. There is no specific
trend of β with α. Some systems gain more tangential anisotropy with increasing
α (e.g. GMP5279), while others become more radial (GMP1176). In most cases
the dependency of β on α is monotonic, ensuring that the global quality of a
galaxy being tangentially or radially anisotropic does not depend on α. However,
the exact degree of anisotropy depends on α.

From Fig. 6.18 it is clear that the relation between anisotropy (α-dependent)
and H4 (α-independent) changes with the amount of regularisation in the mod-
els. This is illustrated in Fig. 6.20, which repeats the upper panel of Fig. 6.5
for two different values of α. For comparison the linear fit of Fig. 6.5 is shown
by the dashed line. The figure shows that the general effect of lowering regu-
larisation is to increase the scatter about the mean relation. The relation itself
is robust against different choices of α. The general conclusion for the polar
axis is therefore that no systematic change of the dynamical structure with α is
noticeable.

This holds for the major-axis as well. To show this, major-axis velocity
anisotropies are plotted in Figs. 6.21 and 6.22 analogously to Figs. 6.18 and
6.19, respectively. In contrast to the minor-axis, there is no object with βϑ = 0
along the major-axis at α = 0. The reason is the relation between intrinsic
flattening and meridional anisotropy discussed in Sec. 6.2 together with the lack
of apparently round objects in the Coma sample. The figure also reflects the
tendency of maximum entropy models to yield βϕ . 0 (cf. Sec. 6.2). Compared
to the minor-axis, the variation of intrinsic velocity anisotropies with α is slightly
lower along the equator. Since the trend of β with α is again monotonic in
most cases, the general properties of the galaxies (being radially or tangentially
anisotropic) are insensitive to the particular choice of α.

The general conclusion of this section is that the dynamical structure of the
fits depends stronger on the choice of α than the mass distribution does (cf.
Sec. 5.6). Thereby, no clear trend of velocity anisotropies with α is noticeable.
The monotonic trend of β with α could rise the suspicion that increasing α
does not only amplify the noise in the models, but that low-α models are biased
towards isotropy. However, at least the H4-anisotropy relation does not change
significantly with α. The main effect of larger α is to increase the scatter around
the relation.

As a general note of caution, Fig. 6.23 exemplifies the distribution of orbital
weights in the best-fit mass-model of GMP5975 for three different α. As can be
seen, the model at large α is dominated by a few orbits that carry almost the
entire light. All other orbits are essentially missing in the model (only orbits
with weights logw > −15 are included in the plot). The model at α = 0.02 is
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Figure 6.18: Best-fit meridional anisotropy at 0.1 reff (black), 0.5 reff (red) and
1.0 reff (blue) on the minor-axis versus regularisation parameter α. Horizontal
dotted lines: α = 0.02.

still relatively close to the maximum entropy distribution.

6.8 Summary

The analysis of the dynamical structure of the Coma galaxies has revealed that
they are mostly flattened by anisotropy. This is consistent with the systems be-
ing globally close to maximum entropy. No system shows the typical anisotropy
structure found in cold collapse simulations with an isotropic centre and in-
creasing radial anisotropy towards the outer parts. Instead, the orbital structure
around the poles and along the equator, that are best constrained by the data at
hand, reveals a wealth of individual structures. Along the poles these are driven
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Figure 6.19: As Fig. 6.18, but for azimuthal anisotropy.

by the H4 observations, which turn out to be closely related to the minor-axis
anisotropy. Such a relation could in principle reflect the influence of regulari-
sation. A comparison of the orbital structure along the poles and around the
equator – two regions that are constrained from completely independent data
sets – recovers several correspondences. These strengthen the significance for
the H4-anisotropy relation. If it would be just an regularisation artifact, it
would be hard to understand why independently constrained orbits share sim-
ilar distributions. Moreover, the relation is relatively robust against different
choices of α, albeit the scatter around it increases at lower regularisation.

Similarity in the phase-space properties of orbits separated in configuration
space may possibly suggest a common origin. Together with occasional breaks,
peaks and plateaus in the radial profiles of certain orbit families, the phase-
space structures of the galaxies may contain important signals of individual
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Figure 6.20: As upper panel of Fig. 6.5, but for different values of the regular-
isation parameter α (indicated in the panels). Dashed: linear fit for α = 0.02
(cf. Fig. 6.5).

evolutionary events in their histories. A further interpretation of these phase-
space structures requires systematic modelling of elliptical galaxy simulations
with a similar modelling approach.

The orbital analysis has confirmed the conclusions on the stellar population
analysis drawn in Sec. 5.3 in the sense that no strong kinematical evidence exists
for distinct equatorial components. The only exception is GMP3958, where the
orbital structure clearly recovers a disk superimposed on a background spheroid.
Most gradients of SSP-models do not coincide with obviously distinct dynami-
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Figure 6.21: As Fig. 6.18 but for the major axis.

cal components in the Coma sample. Possible reasons for a discrepancy could
be gas emission driving SSP-gradients (cf. Sec. 5.3) or inadequacies in the dy-
namical models. If the inclination in the dynamical models is overestimated,
for example, the signal of a hypothetical equatorial component could be washed
out. On the other hand, gradients in stellar populations could well represent
gradual changes instead of component superpositions. Analysis of further galax-
ies, ideally with data covering the full two-dimensional area of the galaxy on the
sky and combined modelling of stellar populations and kinematics may clarify
the situation in the future.

Rotation occasionally occurring in the outer parts of some systems is mostly
not disk-like and involves a depression of retrograde orbits. The two-component
system GMP3958 is the only counterexample. It proofs, that the depression of
retrograde orbits is not a modelling artifact related to rotation, but is driven
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Figure 6.22: As Fig. 6.19 but for the major axis.

by the details of the LOSVDs. Generally, angular momentum gradients become
larger, where stars become younger. An increasing diversity in the dynamical
structure and the related lower degree of relaxation towards the outer parts could
just reflect the longer dynamical time scales in low-density regions. On the other
hand, the coincidence of large angular momentum gradients with young stellar
ages suggests a recent, dynamically relatively quiescent stellar assembly in the
outer parts of some, rotating, systems.

Concerning regularisation, its effect on the dynamical structure is more sig-
nificant than on the mass distribution. In general the overall quality of a galaxy
to be radially or tangentially anisotropy does not depend on the specific weight
of regularisation versus data constraints. With increasing α anisotropies be-
come larger, without a systematic preference of tangential or radial anisotropy,
however. The H4-anisotropy relation is robust against different α, albeit the
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Figure 6.23: Distribution of orbital weights for three differently regularised mod-
els in the best-fitting mass distribution of NGC4807. Red: maximum entropy;
black: galaxy fit with α = 0.02; blue: α = 3.93.

scatter around the relation increases with the regularisation parameter.
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Chapter 7

Scaling relations

7.1 Outline

In the previous Secs. 5 and 6 the Coma sample galaxies were addressed individ-
ually. In the present chapter scaling relations are investigated and compared to
other works.

As outlined in the introduction, a directly comparable dynamical study has
not yet been undertaken. The three relevant samples to which the results of
this work (shortly COMA in the following) are compared to in the remainder
of this chapter, are

• SAURON The subsample of the SAURON-survey modelled with self-
consistent, axisymmetric orbit models (Cappellari et al. 2006)

• NUKER The ten ellipticals of Gebhardt et al. (2003) modelled with
axisymmetric orbit models

• ROUND The 21 round, non-rotating ellipticals with spherical models of
Gerhard et al. (2001)

The chapter is organised as follows. Mass-to-light ratios are discussed in
Sec. 7.2. The comparison of internal velocity moments is made in Sec. 7.3. In
Secs. 7.4, 7.5 and 7.6 the FP-relation, the Tully-Fisher relation for ellipticals and
the relation between outer circular velocity and central velocity dispersion are
discussed, respectively. Dark matter scaling relations are analysed in Sec. 7.7
and compared to the results of Gerhard et al. (2001).

7.2 Stellar mass-to-light ratios

Stellar mass-to-light ratios of the Coma galaxies are compared to the SAURON,
NUKER and ROUND-sample, respectively, in Fig. 7.1. The SAURON-results
for the I-band are transformed to B-band using apparent magnitudes mB from
Hyperleda and the distance modulus of Cappellari et al. (2006). NUKER-ΥV
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Figure 7.1: Comparison of dynamical mass-to-light ratios. Solid: COMA; dot-
dashed: SAURON; short-dashed: ROUND; dotted: NUKER.

are converted to B-band using MB of Gebhardt et al. (2003) and B−V colours
from Hyperleda. Stellar masses are taken from the corresponding literature
where given, or are calculated from the luminosity and the stellar mass-to-light
ratios.

Inspection of Fig. 7.1 reveals that models based on the assumption that
mass-follows-light (SAURON, NUKER) yield larger Υdyn than those taking into
account dark matter explicitly (this work, ROUND). Focussing on the first kind
of models, linear fits to the SAURON and the NUKER sample yield almost
identical scalings of Υdyn with M∗ (cf. Tab. 7.1). Both samples have been
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sample in Fig. 7.1 m n
(1) (2) (3) (4)
COMA solid 0.49 ± 0.06 −4.64± 0.67
SAURON dotted 0.35 −2.96
NUKER dot-dashed 0.33 −2.81
ROUND dashed 0.26 −2.19

Table 7.1: Summary of fits in Fig. 7.1. (1,2) sample and appearance in Fig. 7.1;
(3,4) linear-fit parameter log Υ = m × log (M∗/M⊙) + n. Fits to the Coma
sample have been obtained with “fitexy” of Press et al. (1992), all other fits
with “olsq” of Super Mongo.

analysed with similar models, but the SAURON-survey provides integral field
kinematics, while the NUKER-sample is based on long-slit data. The similarity
of the Υdyn-scaling suggests that the usage of integral field kinematics does not
yield qualitatively different results, which implicitly strengthens the results of
this work, that are based on long-slit data.

Regarding models taking into account dark matter, the scaling of Υdyn in
the COMA-sample is steeper, in the ROUND-sample is shallower than in self-
consistent models (cf. Tab. 7.1). That both samples provide different scaling
relations could be due to the different modelling symmetries or due to low-
number statistics. The fact that the COMA and the ROUND-sample yield lower
Υdyn than self-consistent models is not surprising, as Υdyn in the former only
quantifies the luminous fraction of the total mass. This is further illustrated in
Fig. 7.2, which is similar to Fig. 7.1 except that total mass-to-light ratios (stellar
+ dark) are considered, where available (COMA, ROUND). As the linear-fit
parameters in Tab. 7.2 proof, the scaling relations of the different samples are
now consistent within the errors.

In Fig. 7.1, the distribution of Coma-Υdyn is closer to the SAURON-Υdyn

in more massive systems. Although the scatter is large and the range of M∗

probed in the present sample is relatively narrow, this could indicate that more
massive systems are better compatible with the assumption that mass-follows
light (within reff) than lower-mass systems.

sample in Fig. 7.2 m n
(1) (2) (3) (4)
COMA solid 0.38 ± 0.07 −3.24± 0.82
SAURON dotted 0.35 −2.96
NUKER dot-dashed 0.33 −2.81
ROUND dashed 0.33 −2.84

Table 7.2: As Tab. 7.1, but for Fig. 7.2.
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Figure 7.2: As Fig. 7.1, but total (stellar + dark) mass-to-light ratios are con-
sidered for the COMA and the ROUND-sample, respectively.

7.3 Orbital anisotropy

The comparison of orbital anisotropies with previous work is split into two
parts. Luminosity weighted average orbital anisotropies of the Coma galaxies
are compared to the ROUND-sample in Fig. 7.3. Radially averaged anisotropies
are compared in Fig. 7.4 additionally to the NUKER-galaxies.

Concerning the comparison with spherical models the bottom panel of Fig. 7.3
reveals on average similar anisotropies in the two samples. However, spherical
models have equal anisotropies along every position angle, whereas in axisym-
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metric models anisotropies along the major and the minor-axis can differ. Ac-
cording to the upper two panels of Fig. 7.3, the COMA-galaxies are more tan-
gentially anisotropic than the ROUND-models along the minor-axis. Along the
major-axis, both samples yield comparable anisotropies. The latter is somewhat
surprising in view of the relation between meridional anisotropy and intrinsic
flattening revealed by Fig. 6.1. According to this relation one would expect the
axisymmetric models to have larger βϑ. However, only two objects in the Coma
sample are flattened enough to have anisotropies 〈βϑ〉 ≈ 0.5. One of the two
– GMP0282 – is indeed most deviant from the ROUND-galaxies in the upper
panel of Fig. 7.3. The other – GMP3792 – is dominated by equatorial orbits
of all kinds resulting in large azimuthal motions and, thus, in βt ≈ 0 (inside
reff). There is no systematic trend of orbital anisotropy with vcirc,max. Instead,
both samples are compatible with approximate dynamical homology of elliptical
galaxies.

Fig. 7.4 extends the comparison to the NUKER-sample. For the latter
neither luminosity weighted anisotropies nor maximum circular velocities are
available. Therefore, radially averaged velocity anisotropies and absolute B-
band magnitudes are used in Fig. 7.4. The comparison is made separately
for the major-axis (upper two panels) and the minor-axis (lower two panels).
For each axis, it is further split into a comparison of azimuthal and meridional
anisotropies, respectively. For comparison, average anisotropies of the ROUND-
sample are shown as well.

It is clear from Fig. 7.4 that meridional anisotropies in the NUKER and the
COMA-sample are roughly consistent, although the Coma models with i 6= 90◦

(GMP3792, GMP0282 and GMP0144) yield larger βϑ as a result of the relation
between βϑ and flattening. Both samples have thereby meridional anisotropies
consistent with spherical models. On the other hand, the NUKER-models pre-
dict significantly larger azimuthal velocities – on both axes – than found in the
COMA-sample. This discrepancy could either indicate a real difference between
the galaxies in the NUKER and the COMA sample or could be related to dif-
ferences in the modelling (and the data). The first case cannot be excluded, as
the NUKER-ellipticals are on average fainter than the COMA and the ROUND
samples.

The second case, especially differences in the modelling approach, could be
checked directly by analysing the same galaxy with the different versions of
the modelling software. This is beyond the scope of this work. Here, it can
only be speculated about possibly relevant issues: (1) the orbit sampling in the
NUKER-analysis potentially leaves out shell orbits (cf. Sec. 2.2.3). This could
be responsible for the differences between meridional and azimuthal anisotropies
in the NUKER-models along the minor-axis. Although it cannot be expected
that βϑ = βϕ holds exactly (along the minor-axis, cf. Sec. 6.3), the differences
between both anisotropies are significantly larger in NUKER-models than in
this work. (2) NUKER-models are based on the assumption that mass follows
light. This may lead to an underestimation of mass, preferentially around the
outermost data points, which may be compensated in the models by an enhanced
fraction of energy in azimuthal motions. (3) NUKER-models are not regularised.
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Figure 7.3: Comparison of luminosity-weighted, average tangential anisotropies
〈βt〉 ≡ 〈(βϕ + βϑ)/2〉. Coloured: COMA; black: ROUND; top/middle:
major/minor-axis (each averaged out to maximum data-radius along the cor-
responding axis); bottom: whole model, averaged out to the larger of reff and
outermost data-radius rdat. ROUND-anisotropies are similarly averaged out to
max(reff , rdat).

As has been shown in Sec. 6.7, lower regularisation can in principle lead to larger
anisotropies. However, this increase in internal anisotropies has no preferred
direction, but is related to the particular data of each galaxy. Therefore, it seems
unlikely that regularisation alone can account for the differences in the azimuthal
anisotropies. But it could amplify small differences between the NUKER and
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Gebhardt et al. 2003

Figure 7.4: Similar to Fig. 7.3, but anisotropies are plotted versus absolute
MB and split into their meridional and azimuthal components. Coloured/open:
COMA/NUKER, radially averaged within reff ; black: ROUND-anisotropies
from Fig. 7.3.

the COMA galaxies.

7.4 Fundamental plane

As outlined in the introduction elliptical galaxies follow a close relation between
effective radius, effective surface brightness and central velocity dispersion, the
fundamental plane (FP). According to virial equilibrium, luminosity L and mass
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M of a galaxy obey
L = cL 2 π r2eff 〈I〉eff (7.1)

and

M =
3cM
G

reffσ
2
0.1, (7.2)

where 〈I〉eff is the average surface brightness within the effective radius and cL
and cM , respectively, are structure constants (Faber et al. 1987). Thus, the
virial theorem predicts

log reff = log
σ2

0.1

〈I〉eff(M/L)
− log

GcL 2π

3cM
(7.3)

and, for a homologous dynamical family with constant cL and cM , a correlation
of log reff with log σ2

0.1/〈I〉eff/(M/L) with a slope of one. If additionally M/L is
constant then a slope-one relation follows between the observables log reff and
log σ2

0.1/〈I〉eff :
log reff ∼ 2 log σ0.1 − 1 log〈I〉eff . (7.4)

The actual relation observed for ellipticals is instead (e.g. Jørgensen, Franx &
Kjærgard 1996)

log reff ∼ 1.24 logσ0.1 − 0.82 log〈I〉eff . (7.5)

This tilt between the observed FP (7.5) and the virial prediction (7.4) could
be either caused by structural non-homology or by a systematic variation of
M/L with galaxy luminosity (or by a combination of both). Stellar dynamical
modelling suggests the tilt to reflect a systematic variation of the mass-to-light
ratio M/L with mass/luminosity (Gerhard et al. 2001; Cappellari et al. 2006).
The present work is implicitly consistent with that, insofar as the scaling of the
total dynamical M/L with stellar mass in the Coma galaxies is similar to these
works.

The case of the Coma sample is further illustrated in Fig. 7.5. The upper
panels show virial scaling relations according to equation (7.3). As a linear fit
with slope one (black line) reveals, the galaxies are fully consistent with the
assumption of structural homology. The scatter around the virial relation is
plotted in the lower panels against

ΛC ≡ sgn(reff − rC) ×
∑

(

w+ − w−
)

. (7.6)

Thereby sgn is the signum-function

sgn(x) ≡
{

1 : x > 0
−1 : x < 0

(7.7)

and
∑

(w+ −w−) is the difference between the fractional amount of light
∑

w+

on prograde and,
∑

w−, on retrograde orbits (all orbits with 〈rorb〉 6 3 reff are
considered). The quantity rC in equation (7.6) is the halo core-radius. For
NIS-halos it is defined in equation (3.2), for NFW-halos it is explicitly defined
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Figure 7.5: Top: Virial scaling relations for a homologous dynamical family
compared with the Coma ellipticals. Solid line: best-fit relation with fixed slope
of one to all galaxies (left) and to the non-rotating galaxies (right). Bottom:
residuals from the fit in the upper panels versus angular momentum in the
models (see text for details).

in Sec. 7.7 below. For the purpose here, the only important issue related to
rC is that ΛC is defined to be negative in galaxies with extended halos and
positive in galaxies with compact halos. The use of rC in equation (7.6) is
nothing but a convenient way to formalise the division between compact halos
(rC 6 reff) and extended halos (rC > reff) in the Coma sample. The close
relationships apparent in the lower panels of Fig. 7.5 can be read as follows. (1)
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Deviations from the virial relations increase with the total angular momentum
in the models, measured by

∑

(w+ − w−). (2) Rotating galaxies with compact
halos have reff larger than predicted from virial relations, while rotating galaxies
in extended halos have reff smaller than predicted from virial relations. The only
clear outlier in the lower panels is the two-component system GMP3958, whose
offset from the virial relations has a different origin compared with the other
systems.

Deviations of the models with respect to virial scaling relations are not
unexpected since angular momentum gradients are not included in equation
(7.4), but characteristic for rotating galaxies. Moreover, the systematic variation
of circular velocity curve shapes among the sample (cf. Sec. 5.4.1) implies the
models to be non-homologous, again in contrast to the assumptions underlying
equation (7.4). Non-homology in the total mass-distribution is thereby likely
driven by non-homology of the luminous mass, because the halos are homologous
in the models (all but two are NIS-distributions, the remaining two NFW-halos
are similar to NIS-halos over the observationally sampled radial region). What
is surprising in Fig. 7.5 is that both sources of scatter are correlated and that
rotation can scatter galaxies to both sides of the virial relation. In Sec. 5.5.2
it has been pointed out that especially in rotating galaxies (except in the two-
component system GMP3958) the onset of dark matter (where ρ/ν starts to
increase, cf. Fig. 5.16) is correlated with outliers in the ΥSSP-profiles, which
may originate from gas emission. If this indicates a fraction of dark matter to
be baryonic, it could explain a correlation like in the lower panels of Fig. 7.5, if
rotation (and the related excess mass) is more centrally concentrated in galaxies
with compact halos than in galaxies with extended halos.

In any case, regardless of its physical origin, the rms scatter in log reff is
0.086 in the upper left panel. It reduces to 0.031, if all log reff (but that of
GMP3958) are corrected according to the relation in the lower left panel. The
corresponding numbers for the right panels are 0.084 and 0.029, respectively.

If the tilt of the FP is driven by M/L-variations, then the question remains
whether these are due to a variation of the dark matter fraction or due to a
variation of stellar populations. Based on Figs. 7.1 and 7.2 the answer is that
both contribute. On the one side, Fig. 7.1 implies that stellar mass-to-light
ratios in the Coma galaxies do vary systematically with M∗. On the other side,
the tilt between the fits in Fig. 7.1 and 7.2 leads to the conclusion that this
scaling is different from the scaling of the total M/L with M∗, that corresponds
to the tilt of the FP. It follows that the dark matter fraction must vary with
M∗ in a way correlated to the scaling of Υdyn with M∗. It has been argued in
Sec. 5.3 that the variation of Υdyn over the COMA-sample is not purely an age,
metalicity or α-abundance effect. If Υdyn is purely stellar, then its variation
implies a change of the IMF from Kroupa-like at low Υdyn to Salpeter-like at
large Υdyn. From the tilt between the COMA-fits in Figs. 7.1 and 7.2 it further
follows that lower-mass ellipticals must have larger dark matter fractions (but
this point is uncertain yet, cf. Sec. 7.2). All in all then, a steeper IMF would
be related to a lower dark matter fraction. Another possibility is that Υdyn

is not purely stellar and that the increasing offset to the Kroupa-IMF reflects
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an increasing amount of dark matter approximately following the same radial
distribution as the luminous matter.

With the data at hand, these cases cannot be firmly distinguished. A varia-
tion of the IMF-slope with stellar mass implies a rotation of the FP with redshift
(Renzini & Ciotti 1993), which has been observed recently at z ≈ 1 (di Serego
Alighieri et al. 2005; Jørgensen et al. 2006) but not yet fully analysed with re-
spect to an IMF-variation. Final conclusions on this issue require also more
local galaxies to be analysed, ideally with data reaching further out to allow
a better distinction between different dark matter profiles. A combined orbit
modelling of kinematical and spectral observations would be helpful to reduce
ambiguities in the comparison with stellar mass-to-light ratios and to put better
constraints on the IMF.

7.5 Tully-Fisher relation of ellipticals

The rotation velocity of spiral galaxies is closely related to their luminosity
by the Tully-Fisher (TF) relation (Tully & Fisher 1977). Ellipticals do not
necessarily rotate, but the flatness of their outer circular velocity curves allows
to define an effective rotation velocity for these systems as well. ROUND-
ellipticals have been shown to follow a Tully-Fisher like relation, thereby being
about ∆MB = 1 magnitude fainter than spiral galaxies at the same circular
velocity (Gerhard et al. 2001). The results for the Coma galaxies are presented
in Fig. 7.6.

A linear fit to the Coma sample (cf. Tab. 7.3) yields a slope fully consistent
with that of spiral galaxies in the B-band (Sakai et al. 2000). The offset to
spirals is ∆MB ≈ 1, as in the ROUND-sample. In detail, the slope of the Coma
relation is slightly steeper than in the ROUND-ellipticals. Reasons could be the
relatively small sample size or the fact that the fit to the Coma ellipticals is
partly driven by the single fainter object GMP3958. More galaxies have to be
modelled in the axisymmetric approximation to clarify this point. In any case,
the ROUND and the COMA results are consistent within the errors. Lenticulars
in Fig. 7.6 homogeneously populate the region in the TF-plot between elliptical
galaxies and spiral galaxies.

sample in Fig. 7.6 m n
(1) (2) (3) (4)
Coma solid −7.68 ± 1.45 −0.96 ± 3.75
Gerhard et al. (2001) dashed −5.92 −6.02
Sakai et al. (2000) red, dashed −7.97 0.13

Table 7.3: As Tab. 7.1 but for Fig. 7.6 (MB = m× log vcirc,max + n).

Differences in MB at the same galaxy mass could partly reflect different
stellar population properties of ellipticals and spirals. A more direct comparison
between stellar masses in ellipticals and spirals is provided by the baryonic TF-
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Gerhard et al. 2001 (round E)

Mathieu et al. 2002 (S0)

Neistein et al. 1999 (field S0)

Hinz et al. 2001 (Coma S0)

Hinz et al. 2003 (Coma S0)

Coma early-types

Gerhard et al. 2001

Figure 7.6: Tully-Fisher relation of early-type galaxies. Coloured: COMA;
black: ROUND; solid: linear fit to Coma galaxies; dashed: best-fit of Gerhard
et al. (2001); red dashed: B-band spiral TF relation of Sakai et al. (2000).

relation, the scaling between stellar mass and rotation velocity. This is the
content of Fig. 7.7. The best-fit linear relation between M∗ and vcirc,max for the
Coma sample is

logM∗ = (2.95 ± 1.0) + (3.28 ± 0.38)× log vcirc,max, (7.8)

slightly shallower than the slopem = 4 proposed by McGaugh (2005) for spirals.
Independently from that, elliptical galaxies have clearly lower stellar masses
than spiral galaxies of the same circular velocity.
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Gerhard et al. 2001

Coma early-types

McGaugh 2005

Figure 7.7: Baryonic TF relation. Black dots: Gerhard et al. (2001); black solid
line: best-fit to the combined early-type galaxies with stellar dynamical models;
red: baryonic TF relation of McGaugh (2005) (the dotted part is extrapolated).

7.6 Centre-halo relation

The existence of a TF-like relation between MB and vcirc,max together with the
well-known Faber-Jackson relation (Faber & Jackson 1976) between σ0.1 and
MB implies a correlation of σ0.1 with vcirc,max. This can also be seen as a con-
sequence of the uniformity of elliptical galaxy rotation curves, specifically, that
their approximate flatness implies a single velocity scale (Gerhard et al. 2001).
The σ0.1 − vcirc,max relation of the Coma galaxies is displayed in Fig. 7.8. For
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consistency with the ROUND-sample the same definition of σ0.1 as in Gerhard
et al. (2001) is adopted here. Fits to different samples of spiral and elliptical
galaxies (and combinations of both) shown in the figure yield consistently the
same relation (cf. Tab. 7.4).

galaxies:

Gerhard et al. 2001

Coma early-types

Baes et al. 2003 (Spirals)

Ferrarese 2002 (Spirals)

fits:

from Gerhard et al. 2001 (   )

Coma early-types

from Baes et al. 2003 (   &    )

from Ferrarese 2002 (   &    )

Figure 7.8: Maximum vcirc versus central velocity dispersion σ0.1. Symbols and
fits as quoted in the figure.

7.7 Dark matter scaling relations

Gerhard et al. (2001) presented for the first time dark halo scaling relations for
elliptical galaxies. In the ROUND-galaxies they found ≈ 4 times smaller halo
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sample in Fig. 7.8 m n
(1) (2) (3) (4)
Coma solid 1.07 ± 0.10 −0.36 ± 0.28
Baes et al. (2003) dotted 1.04 −0.33
Ferrarese (2002) dot-dashed 1.12 0.49
Gerhard et al. (2001) dashed 1.00 −0.18

Table 7.4: As Tab. 7.1 but for Fig. 7.8 (log σ0.1 = m× log vcirc,max + n).

core-radii and ≈ 25 times larger central dark matter densities than in spiral
galaxies of the same circular velocity. The present section is aimed to compare
these results to the COMA-sample.

7.7.1 Halo scaling relations

Fig. 7.9 plots effective radii, halo core radii rC and halo asymptotic velocities
vC versus B-band luminosity. Strictly speaking, rC and vC are only defined
for NIS-halos. The two galaxies with NFW-halos (GMP3792 and GMP0144)
are included in the plot as follows. In a NIS-halo the circular velocity curve
monotonically increases towards its asymptotic value, but in NFW-halos vcirc
reaches a maximum and vanishes in the limit r → ∞. A quantity vC that
matches with the asymptotic velocity in the NIS-case and is uniquely defined
for NFW-halos is

vC ≡ sup
r

{vcirc(r)} . (7.9)

Concerning rC , it is uniquely defined in NIS-halos by the implicit equation

vcirc(rC) ≡ vC√
2
. (7.10)

In NFW-halos there are two solutions of equation (7.10), one inside the radius of
maximum vcirc and the other outside. For GMP3792 and GMP0144 the smaller
of the two is used as rC .

The separation of the red and blue symbols in the second row of Fig. 7.9 re-
flects the subdivision of the Coma sample in compact-halo galaxies and extended-
halo galaxies, respectively (cf. Sec. 5.4.1). The two subgroups bracket the dis-
tribution of halo core-radii recovered in the ROUND-sample. Galaxies with
extended halos follow closely the black line representing the case of spiral galax-
ies (Persic, Salucci & Stel 1996a,b).

The difference between compact and extended halos is not primarily a differ-
ence in the radius where dark matter becomes important. This can be seen by
consideration of the radius rM that encloses equal amounts of dark and luminous
mass,

M∗(rM) = MDM(rM), (7.11)

or, equivalently, by the radius rρ of equal spherically averaged local densities,

ρ∗(rρ) = ρDM(rρ). (7.12)
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Gerhard et al. 2001

Coma early-types

Figure 7.9: Effective radius reff , halo core radius rC (in kpc) and halo maximum
circular velocity vC (in km/s) versus luminosity. Solid line: spiral galaxies
(Persic, Salucci & Stel 1996a,b).

Fig. 7.10 illustrates the dependency of rC , rM and rρ on the effective radius
reff . The separation between compact and extended halos is clearly seen in rC
(top panel) but washes out in the lower two panels dealing with rM and rρ. The
systematic increase of rM with reff implies that rC and vC must be correlated.

That this is indeed the case can be drawn from Fig. 7.11 where rC and vC

are plotted against each other. A linear fit to the COMA-sample yields

log rC = (−6.47 ± 5.53) + (2.93 ± 1.64)× log vC . (7.13)
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Figure 7.10: From top to bottom: dark halo core-radius rC , equal-mass radius
rM and equal-density radius rρ (all in kpc) versus reff . Solid: spiral galaxies
(Persic, Salucci & Stel 1996a,b).

GMP1176 has been omitted from the fit, since its vC (and possibly also rC)
are likely affected by the unresolved central light profile. The distribution of rC
and vC in the ROUND-sample (black dots in Fig. 7.11) is consistent with the
relation (7.13).

The different scalings of galaxies with compact halos on the one side and
galaxies with extended halos on the other, are therefore at least partly driven
by the correlation between rC and vC . A relation between rC , vC and luminosity
would not be helpful to derive approximate halo parameters from easy to de-



194 7. Scaling relations

Gerhard et al. 2001

Coma early-types

Figure 7.11: Correlation between halo core radius rC and halo maximum circular
velocity vC . Coloured: Coma galaxies; black dots: ROUND; solid: linear fit to
Coma galaxies.

termine observational quantities. However, the close relationship between outer
vcirc and σ0.1 (cf. Sec. 7.6) suggests a relation between rC or vC , respectively,
on the one side and σ0.1 and L on the other.

This is probed by Fig. 7.12, which presents the scaling of log vC with log σ0.1

and logL. The figure indeed reveals a linear relation in the COMA-sample. The
best-fit (shown by the black line) is

log vC = (3.00±1.78)× logσ0.1− (0.66±0.39)× log
L

L⊙

+(2.28±0.09). (7.14)
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Figure 7.12: Scaling of the maximum halo velocity vC with σ0.1 and B-band
luminosity L. Coloured: Coma galaxies; black dots: ROUND-sample; solid:
linear fit.

As for equation (7.13), GMP1176 has been omitted from the fit. The correlation
between rC and vC implies the existence of a similar relation between rC , σ0.1

and L. If relations (7.13) and (7.14) can be verified on the basis of a larger
sample they would provide means to derive approximate halo parameters from
the central velocity dispersion σ0.1 and the luminosity L of ellipticals.
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Gerhard et al. 2001

Coma early-types

Figure 7.13: Central dark matter density ρh (in M⊙/pc3) and phase-space
density fh (in M⊙/pc3/(km/s)3) versus luminosity. Coloured: Coma phase-
densities from dark matter DFs; open/grey: Coma phase-densities from equa-
tion (7.19); black: ROUND; solid: spiral galaxies (Persic, Salucci & Stel
1996a,b).

7.7.2 Central dark matter

To investigate the COMA-sample with respect to central dark matter proper-
ties, the upper panel of Fig. 7.13 plots central dark matter densities ρh versus
luminosity. The central dark matter density ρh is defined as the average mass-
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density of the halo inside r < reff/4:

ρh ≡ MDM(reff/4)

V (reff/4)
, (7.15)

where

MDM(r) ≡
r
∫

0

ρDM(r′) 4πr′2dr′ (7.16)

and

V (r) =

r
∫

0

4πr′2dr′. (7.17)

From the upper panel in Fig. 7.13 it can be drawn that dark matter halos of
Coma ellipticals have larger central dark matter densities compared to spiral
galaxies at the same luminosity. Over the luminosity range covered by the
present work, the distribution of central halo densities is on average comparable
to the ROUND-sample, implying in the mean ≈ 25 times higher central dark
matter densities in ellipticals than in spirals of the same luminosity. Assum-
ing proportionality between central dark matter densities and the mean cosmic
density at the halo assembly epoch yields for the formation epoch zE of an
elliptical

(

1 + zE

1 + zS

)3

≈ ρh

ρS
, (7.18)

where ρS is the central dark matter density in a comparably bright spiral and
zS the formation epoch of the corresponding spiral galaxy halo (e.g. Gerhard
et al. 2001). With zS = 1, Gerhard et al. (2001) conclude zE ≈ 4 unless the
excess of central dark matter is due to baryonic dark mass. From the upper
panel of Fig. 7.13 it can be drawn that this holds on average for the Coma
sample, as well. However, the galaxies with extended halos tend to have lower
central dark matter densities, only a factor ≈ 5 larger than in spirals (implying
zE ≈ 2.5), while the compact-halo objects have central dark matter densities a
factor ≈ 100 larger (yielding rather large zE ≈ 8.5).

The large central dark matter densities in galaxies with compact halos could
indicate that a fraction of the mass in their halos is baryonic. This would be
consistent with the coincidences between local dynamical mass-to-light ratios
ρ/ν and ΥSSP-profiles, discussed in Sec. 5.5.2 (cf. Fig. 5.16). To clarify this
issue, more galaxies need to be analysed.

In the lower panel of Fig. 7.13, central densities in phase-space are compared.
Coloured symbols show central phase-densities for the Coma galaxies derived
from their dark matter DFs (cf. Sec. 5.7). These densities are lower than the
values for the ROUND-galaxies given in Gerhard et al. (2001). The discrepancy
arises from different definitions for fh. Gerhard et al. (2001) define the central
phase-density for their galaxies as

fh ≡ 23/2 ρh

v3
C

, (7.19)
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which corresponds to the average central phase-density of their NIS-halos in a
self-consistent potential. Explicit calculation of the dark matter DFs for the
Coma galaxies in Sec. 5.7 has revealed a drop of phase-densities towards the
centre, if the contribution of the luminous matter to the central potential is
taken into account. This explains the different results for the ROUND and
the COMA-sample. For comparison, open grey symbols in the lower panel of
Fig. 7.13 display Coma galaxy fh from equation (7.19). Not surprising in view of
the similar distributions of ρh(L) and vC(L) in both samples, the grey symbols
are in good agreement with the ROUND-results.

7.8 Summary

The main results from the investigation of scaling relations in this chapter are:

• The scaling of total dynamical mass (inside reff) of the Coma galaxies is
similar to the scalings found in other dynamical studies.

• Orbital anisotropies show no systematic dependency on galaxy mass, re-
vealing the overall dynamical homology of elliptical galaxies over the con-
sidered luminosity interval. This result is consistent with the findings of
Gerhard et al. (2001). In contrast, the on average fainter ellipticals of the
NUKER-sample are significantly more azimuthally anisotropic.

• The dynamical homology and the M/L-scalings are compatible with the
tilt of the FP caused mainly by a M/L-variation with stellar mass, consis-
tent with other recent dynamical studies (Gerhard et al. 2001; Cappellari
et al. 2006). The Υdyn-scaling of the Coma models is tilted with respect to
the M/L-scaling predicted by the FP-tilt. The range of stellar masses M∗

probed is narrow in the present sample, but if confirmed over a broader
M∗-range, this result would indicate that galaxies with lower Υdyn have
larger dark matter fractions – provided Υdyn is purely stellar.

• In the Coma sample the rms-scatter around the virial relation between reff ,
σ0.1, 〈I〉eff and M/L for a homologous dynamical family is 0.086 in log reff .
In all galaxies but the two-component system GMP3958 the scatter is cor-
related with the total angular momentum in the models. The direction of
the offset from the virial relations is thereby opposite for galaxies having
compact halos and those having extended halos, respectively. The corre-
lation between offset and angular momentum can be used to decrease the
scatter around the virial relation down to 0.031 in the Coma sample.

• The results of the ROUND-analysis, that (1) elliptical galaxies follow a
Tully-Fisher relation similar to spiral galaxies but being about magnitude
fainter at the same velocity and that (2) they have . 3 times lower stellar
masses at the same circular velocity are confirmed by this study.
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• Likewise, the Coma galaxies follow a similar relation between central veloc-
ity dispersion σ0.1 and outer circular velocities as found for spiral galaxies
and round ellipticals.

• In the nine objects of the present sample, the halo parameters rC and vC

are correlated. Both parameters are further correlated with the central
velocity dispersion σ0.1 and luminosity L. If these correlations can be ver-
ified on the basis of a larger sample, they allow to determine approximate
halo parameters from easy-to-access observational properties.

• Central halo densities in Coma galaxies are larger than in spiral galaxies
of the same luminosity, confirming the results of Gerhard et al. (2001).
Implicitly, their conclusion that elliptical galaxy halos assembled at higher
redshifts zE ≈ 4 is consistent with the Coma galaxies as well. However,
galaxies with extended halos in the present sample have on average ≈
5 times larger central densities, implying zE ≈ 2.5, while compact-halo
objects have ≈ 100 times larger central densities (yielding zE ≈ 8.5). This
could possibly indicate that a fraction of dark matter in the latter systems
is baryonic.
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Chapter 8

Summary and conclusions

The main goal of the present work is a detailed analysis of nine moderately bright
early-type galaxies in the Coma cluster with respect to their dynamical structure
and dark matter content. In contrast to earlier studies using spherical models,
axisymmetric models are applied to take into account rotation, substructure in
form of disks and inclination effects in the models.

Dynamical modelling. During the first part of the work the axisymmet-
ric orbit superposition code of Gebhardt et al. (2000a), originally developed to
measure masses of supermassive black-holes in galaxy centres, was adapted to
the problem of reconstructing dark matter halos. The code was advanced in
three respects.

Firstly, a new implementation to calculate phase-volumes of orbits has been
developed. To this end the invariant curves of orbits in surfaces of section de-
fined by the radii and radial velocities of orbital equatorial crossings (at given E
and Lz) are integrated by the use of Voronoi tesselations. Knowledge of orbital
phase-volumes allows to convert the weights of orbits in superposition models
into phase-space densities and vice versa. Applications include the comparison
of orbit superpositions with synthetic phase-space distribution functions for ac-
curacy tests and the determination of phase-space distribution functions from
observations of real galaxies.

Secondly, a new method to sample the available phase-space with orbits
for the models has been implemented. It is designed to yield a homogeneous
coverage of suitably chosen surfaces of section with individual orbital invariant
curves, implying a representative collection of orbits in the models. Compar-
isons with synthetic phase-space distribution functions via the refined orbital
phase-volumes have shown that both, the implementation of phase-volumes and
the new orbit sampling, yield an accurate representation of phase-space in the
models (remaining deviations are significantly below the level of observational
errors).

A third refinement of the modelling is the determination of the optimal
amount of regularisation with respect to a typical data set in the Coma sample.
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This has been achieved by Monte-Carlo simulations of observationally moti-
vated synthetic galaxy models under realistic observational conditions. The
result is that the mass distribution and the internal velocity moments can be
reconstructed with about 15 per cent accuracy from the typical a data set in
the sample.

The advanced orbit code has been applied to photometric and kinematic
observations of nine early-type galaxies in the Coma cluster. The photometric
input data is composed of HST photometry with high spatial resolution in the
central parts and ground-based photometry out to ≈ 5 reff . The kinematic data
consists of measurements of the shape of the line-of-sight-velocity-distribution
in terms of Gauss-Hermite parameters v, σ, H3 and H4 out to ≈ 3 reff .

Mass composition. The nine galaxies have on average roughly flat circu-
lar velocity curves, similar to spiral galaxy rotation curves. In detail, the sample
divides into two groups of objects. One has extended dark matter halos with
rising circular velocity curves at the outer edge of the models (≈ 10 reff). The
other group has compact halos with decreasing circular velocities at the model’s
outer edge. The shapes of the circular velocity curves require in each case out-
wardly increasing mass-to-light ratios. The contribution of the luminous matter
to the overall potential is in good agreement with stellar population models, if a
variation of the IMF is allowed for in the latter. Galaxies with low (dynamically
derived) stellar mass-to-light ratios Υdyn are compatible with a shallow IMF at
low stellar masses (Kroupa-like), while systems with larger Υdyn are closer to a
steeper, Salpeter-like IMF. The offset between dynamical Υdyn and stellar pop-
ulation ΥSSP based on the Kroupa-case is weakly correlated with population
age and α-enhancement. Low dynamical Υdyn rule out a Salpeter-like IMF in a
few systems. On the other hand, adopting a Kroupa-IMF in galaxies with large
dynamical Υdyn implies significant amounts of dark matter (up to 50 percent)
hidden in Υdyn and, thus, following approximately the same radial distribution
as the luminous matter. In any case, there is at least a two-sigma evidence for
an additional fraction of 10 to 50 percent of (dark) mass inside the half-light
radius reff that follows a roughly isothermal radial distribution. These results
are robust against different weights on regularisation in the models and confirm
earlier studies of round, non-rotating galaxies (Gerhard et al. 2001).

For the first time, the phase-space distribution function of dark matter in
the combined gravitational potential of luminous and dark matter has been
calculated. The phase-densities of non-singular isothermal halos drop towards
the very central parts, where luminous matter dominates the potential. Halos
following a NFW-profile do not show a comparable phase-density drop, although
with the present models the shape of the DF cannot be followed into the very
central parts (r < 0.01 reff). The non-monotonic behaviour of dark matter DFs
with respect to energy implies that the actual mass decomposition could be
unstable.
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Orbital structure. The dynamical models of the nine Coma galaxies fol-
low closely the predictions of the virial theorem for galaxies that are flattened by
anisotropy, meaning here that they have approximately σϕ ≈ σr, but σϑ < σr.
This relation can be achieved by maximising the entropy of the DF in a given
mass distribution (subject to a given luminosity distribution as boundary condi-
tion). Together with similar results found in the SAURON sample (Cappellari
et al. 2006) this implies that moderately bright ellipticals are mostly flattened
by anisotropy and are globally close to a dynamically relaxed maximum-entropy
state.

The dynamical structure of the galaxies around their poles is largely driven
by a close relationship between velocity anisotropy and the observational H4-
parameter, 〈βϑ〉 = 8.77H4. This relation is robust against regularisation, but
the scatter around it increases with lowering the weight on regularisation in the
fits.

In one system a clear two-component structure in form of a rotating disk
superimposed on a spheroidal background is recovered analysing the DF. Other
systems show a wealth of small-scale structures. Occasionally, orbits reaching
the poles and circular orbits around the equator follow similar radial phase-
density distributions, which may be interpreted as that the stars on these orbits
share a common origin. In all but one of the rotating galaxies, a strong depres-
sion of retrograde circular orbits towards large radii is seen in the models. The
exception is the two-component system mentioned above. Density-differences
between prograde and retrograde orbits are largest, where stellar ages are low-
est. This could indicate that the retrograde orbit depopulation reflects recently
structured and not yet dynamically relaxed regions of the galaxies.

Generally, the orbital composition of the Coma galaxies does not follow
the typical anisotropy structure found in collapse simulations, where the centre
comes out isotropic and the outer parts strongly radially anisotropic. Instead,
the rich diversity of internal structures indicates differences in the evolutionary
histories of the objects, which are a natural consequence of different initial
conditions in various merging configurations.

Galaxy scaling relations. The scaling of the total mass-to-light ratio
M/L with stellar mass M∗ in the Coma galaxies is consistent with other recent
dynamical studies with less general models or less extended data. The conclu-
sions of these works, that the tilt of the fundamental plane is mostly due to
a variation of dynamical mass with M∗ (Gerhard et al. 2001; Cappellari et al.
2006), is confirmed by this work. In the Coma sample, the stellar mass-to-light
ratio follows a steeper scaling relation with M∗ than the total dynamical mass-
to-light ratio. The sample size is too small for a firm conclusion, but if this
trend is verified in a larger sample it would imply that lower mass galaxies have
larger dark matter fractions inside the half-light radius, unless with increasing
M∗ an increasing fraction of dark matter follows the same spatial distribution
as the stars and is represented by Υdyn in the models.

The rms scatter of the Coma ellipticals with respect to the virial scaling
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relations of a homologous dynamical family is 0.086 in log reff . The scatter
is found to be strongly correlated to the angular momentum in the models.
Moreover, the direction of the scatter is different for galaxies with compact
halos on the one side and systems with extended halos on the other. Correcting
individual systems for this correlation allows to reduce the scatter to 0.031. If
this relation is not an artifact of low-number statistics in the present sample,
it would provide means to measure elliptical galaxy distances with improved
accuracy.

The present study confirms the results from round, non-rotating galaxies
that ellipticals follow a Tully-Fisher like relation with roughly the same slope
as spirals but being ∆MB = 1 magnitudes fainter in the B-band than spirals
of the same circular velocity (Gerhard et al. 2001). The Coma ellipticals have
thereby about 3 times lower stellar masses at the same circular velocity than
spirals. As found for round ellipticals (Gerhard et al. 2001), elliptical galaxy
outer circular velocity curves scale linearly with the central velocity dispersion,
vcirc,max ∝ σ0.1.

In the present sample, the galaxies with extended dark matter halos follow
the same scaling relation between halo-core radius and luminosity than spiral
galaxies. In contrast, galaxies with compact halos have core-radii at least a
factor of 10 smaller. Halo-core radii and velocities are correlated in the sense
that more extended halos have larger asymptotic velocities. In the nine Coma
ellipticals of the present sample halo velocities are correlated with L (luminos-
ity) and σ0.1 (central velocity dispersion). If this relation is found to hold for
ellipticals in general, it allows to compute approximate halo velocities from σ0.1

and L. The correlation between rC and vC further implies, that halo core-radii
could be derived from L and σ0.1 as well.

Galaxies with extended halos have on average ≈ 5 times larger central den-
sities than spiral galaxies of the same brightness, implying a formation epoch
around zE ≈ 2.5 (if spiral galaxy halos form around zS ≈ 1 and dark matter is
purely collisionless). Compact-halo systems have a factor of ≈ 100 higher cen-
tral dark matter densities than corresponding spirals, implying zE ≈ 8.5. High
central dark matter densities and low halo-core radii in compact-halo galaxies
could indicate that their halos are at least partly made of baryonic dark matter.
This would also fit with the coincidence between the rise of the local mass-to-
light ratio ρ/ν with up-shifts in stellar population ΥSSP that may be related to
gas emission (cf. Fig. 5.16).

Outlook. Further progress in the investigation of elliptical galaxy forma-
tion, evolution and present structure can be made by extending the analysis
to a larger sample, covering a wider range of luminosities. The strength of the
mass decomposition into luminous and dark matter could be improved by in-
cluding not only kinematical constraints in the models, but to populate orbits
with different stellar populations and try to match line-strength profiles as well.
Specifically, this includes the consideration of arbitrary stellar mass-to-light ra-
tio profiles. Independent constraints for the mass decomposition could come



205

from a stability analysis of dark matter distribution functions in the combined
potential of luminous and dark matter.

Speculations raised in this work about relics of characteristic evolutionary
events in the phase-space distribution function can be further explored by ap-
plying the same models as used here to a survey of synthetic model galaxies (N -
body simulations) that systematically includes various evolutionary scenarios.
Similarities between characteristic features of galaxy models and orbit models
of N -body simulations could be used to link real galaxies to the corresponding
evolutionary scenario.
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Appendix A

The sensitivity of Υdyn on
the central photometric
resolution

For the lenticular GMP1176 no archival HST imaging exists. Its light profile
is thus unresolved in the central parts (a seeing FWHM of 2 ′′ corresponds to
≈ 0.3 reff or ≈ 1 kpc, respectively). In principle, seeing convolution can be
included in the deprojection, but it would only add another free parameter (the
central steepness of the light profile) to the modelling. Since by computation
time limits the range of implied deprojections can anyway not be explored fully,
it has been decided to ignore seeing corrections entirely. This causes a mismatch
in the central stellar mass-profile and, thus, the central gravitational potential.
To investigate the sensitivity of Υdyn on this mismatch self-consistent models
have been constructed with and without additional HST data exemplary for
GMP5975. The resulting fits are shown in Fig. A.1 and imply the following.
(1) The significance of the dark matter detection is reduced: self-consistent
models based on the ground-based photometry only fit generally better (they
fall below the 3 σ limit). (2) The best-fit self-consistent mass-to-light ratio
without additional HST data is significantly larger than in models that resolve
the central light profile. A possible explanation for these results is the following:
The need for dark matter in the outer parts of ellipticals implies that their total
mass profiles are shallower than their luminosity profiles. Now, the overall effect
of seeing is to flatten the luminosity profile and thus to reshape it towards the
shallower total mass profile. Additional upscaling by a higher Υdyn then yields
the better match to the mass density than in case of a fully resolved central
light profile. If this is really the case then Υdyn would be always overestimated
without proper resolution of the central light profile. In this sense, the results
for GMP5975 likely apply also to GMP1176. The exact offset in Υdyn should
be expected to depend on the actual central light profile, though, and cannot
be easily quantified.
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Figure A.1: Confidence levels ∆(χ2/Ndata) for self-consistent models of
GMP5975. Blue, dotted: with joint HST + ground-based imaging; red, dashed:
without ground-based photometry only.
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The centre of
GMP0144/NGC4957

The model fits to GMP0144 are unexpectedly poor, even with low regularisation
(cf. Sec. 4.3). A likely explanation for the mismatch is that GMP0144 deviates
significantly from axisymmetry. Observational support for this comes from: (1)
significant differences in the central velocity dispersions from several long-slit
observations (reviewed in Fig. B.11); (2) relatively large side-to-side asymmetries
in all kinematical data sets (Fig. B.1); (3) isophotal twist in the central parts
of the HST image (Fig. B.2). Fig. B.3 overviews the various slit positions from
which the profiles of Fig. B.1 are obtained. Unfortunately, it is not possible to
reconstruct the exact mapping of positive/negative radii onto the sky for every
slit. So, positive/negative radii in Fig. B.1 do not necessarily refer to consistent
parts of the galaxy. Albeit the definite structure in the centre of GMP0144 thus
remains uncertain, the data at hand can be consistently interpreted in terms of
a dynamically hot, decoupled structure in the lower-left quarter of Fig. B.3.

What ever the real structure of the centre finally is, the observations at
hand are not consistent with exact axisymmetry. To avoid a direct influence
of the central region on the dynamical models only the kinematical data out-
side r > 0.2 reff have been considered for the fits. This excludes the whole
diagonal axis and implies a lack of kinematical constraints inside r < 1.8 kpc.
Consequently, the statistical uncertainties of the galaxy models are rather large.
Systematic errors due to a possible mismatch of the central potential cannot be
quantified easily. These depend – among other things – on whether the centre
is intrinsically really non-axisymmetric, or whether only the projection appears
non-axisymmetric (due to dust, for example).

1 The data of the three HET observing runs (provided by E. M. Corsini and R. P. Saglia,
respectively) are not yet published.
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Figure B.1: Central velocity dispersion profiles from several observations
(quoted in the panels; note also the exact slit positions shown in Fig. B.3).
For comparison, the shaded area repeats the central major-axis dispersion (top
panel) in each case.



211

Figure B.2: Isophotal twist in the centre of GMP0144: position angles from
isophotal fits to the central HST imaging.
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Wegner et al. 2002

HET 2003A

HET 2003B

Figure B.3: Orientation of observing slits for GMP0144; colours correspond to
Fig. B.1 (minor-axis observations are further labelled for the sake of clarity; the
major-axis slit is bounded by the dashed lines); dotted line: PSF (σ = 2 ′′ ≈
0.1 reff); black solid lines: distinct central structure (r . 0.05 reff from Fig. B.2)
and orientation of the most twisted isophote (P.A. = 60◦).
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Orbital shape parameters

Most axisymmetric potentials provide three integrals of motion: E, Lz and I3.
While E and Lz confine orbits to the region inside the ZVC (cf Sec. 2.2.3),
the third integral is related to the orbital contact points with the ZVC (e.g.
Ollongren 1962). In practice, however, (1) the contact points are difficult to
determine numerically and (2) the quantities E, Lz and the angle of the contact
point cannot be directly interpreted in terms of the orbital shape. To label or-
bits with respect to their shapes Dehnen & Gerhard (1993) introduced “shape
invariants” as approximate integrals of motion. Shape invariants simultaneously
identify orbits (nearly) unambiguously and carry easy-to-interpret information
about their shapes. In the same spirit, but with less attention on their approx-
imate integral-of-motion character, here some computationally easy accessible
orbital properties are defined that allow to identify orbits populating different
regions in configuration space:

• Mean radius. A mean orbital radius 〈rorb〉 is defined via

〈rorb〉i ≡
∑

k

∆tki
Ti

rk
i , (C.1)

where Ti is the total integration time of orbit i and rk
i is its radius at

time-step k (lasting ∆tki ). As Fig. C.1 shows, 〈rorb〉 is a measure of the
orbital binding energy.

• Radiality. At a given energy – or mean radius – the angular momentum
Lz is closely related to the pericentre rperi and, thus, to the radial extension
of an orbit. For the purpose of this work the radial extension near the
equatorial plane (where most observational constrains come from) is of
special interest. The (equatorial) “radiality” can be quantified by

ζ ≡ rsos,max − rsos,min

rsos,max
, (C.2)
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where rsos,max and rsos,min are the innermost and outermost crossings of
an orbit with the SOS defined in Sec. 2.2.3. Radially floating orbits have
ζ → 1, whereas radially localised orbits are described by ζ → 0. For orbits
whose invariant curves consist of islands (near resonances) the radiality ζ
may differ from the true radial extension. For example, the 1:1 resonance
in the meridional plane (so-called banana orbit) has ζ = 0, albeit being
radially spread (e.g. Richstone 1982). In any case, ζ gives the radiality on
the equator.

Figure C.1: Mean orbital radius 〈rorb〉 versus orbital binding energy E in the
bestfit potential of GMP5975.

• Maximum latitude. Fig. C.2 surveys orbits in a typical potential, the
bestfit mass distribution of GMP5975. From the left column, for example,
it can be drawn that given 〈rorb〉 and ζ (roughly speaking energy and
angular momentum) orbits differ basically in their vertical extension. An
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appropriate measure of the latter is the maximum latitude

(ϑmax)i ≡ max
k

{

ϑ(tki )
}

, (C.3)

where ϑ(tki ) denotes the angle between the position along orbit i and the
equator at time-step k.

• Maximum vertical extension. Similar to ϑmax the maximum vertical
extension zmax can be defined as

(zmax)i ≡ max
k

{

z(tki )
}

, (C.4)

where z is the vertical distance to the equatorial plane.

Radiality ζ and maximum latitude ϑmax approximately correspond to the
shape invariants DR and θ∞ of Dehnen & Gerhard (1993) and are used in the
discussion of the orbital composition in Sec. 6. There, also zmax is used to (1)
specify orbits that are entirely covered by the major-axis slits and (2) to study
the vertical structure of the DF.
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Figure C.2: Survey of orbits in the bestfit mass distribution of GMP5975. Orbits
are arranged according to the scheme used in Chap. 6: polar orbits (top), in-
termediate tubes (middle) and disk orbits (bottom). Radiality ζ and maximum
latitude ϑmax are quoted for each orbit.
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The average local
distribution function

To visualise the distribution of light on different types of orbits an average local
distribution function is used in Sec. 6. Given a set of orbits I it is defined at
every 〈rorb〉i, i ∈ I, as follows:

f(〈rorb〉i) ≡
〈w

V

〉

I(i)
, (D.1)

where
I(i) ≡ {j ∈ I : |〈rorb〉i − 〈rorb〉j | < 0.1 × 〈rorb〉i} . (D.2)

In words, the average phase-density of all orbits within 10 percent of the actual
radius.

An example is given by Fig. D.1 for the most circular orbits of Fig. 6.12.
Besides the red and the blue line showing the above defined average local DF f
for the corresponding prograde and retrograde orbit subsets also the individual
orbital phase-densities are plotted for comparison. If the scatter in the latter
is large, then the average local DF traces the orbits with the largest densities
(uppermost points). The low-density orbits do not contribute significantly to the
average of equation (D.1). This is advantageous for the analysis of orbit models,
since the modelling software cannot remove orbits completely but commonly
produces a large spread among individual orbits in the low phase-density regions.
Mainly, because if an orbit has a density, say, 5 orders of magnitude below the
surrounding mean, its contribution to the model disappears in the numerical
noise, it is effectively absent and its exact phase-density becomes insignificant.



218 D. The average local distribution function

GMP5279

-6

-4

-2

0

2

4

GMP3510

-6

-4

-2

0

2

4

GMP1750

0.1 1

-6

-4

-2

0

2

4

GMP3792

GMP1176

GMP0144

0.1 1

GMP0282

-6

-4

-2

0

2

4

GMP3958

-6

-4

-2

0

2

4

GMP5975

0.1 1

-6

-4

-2

0

2

4
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the most circular orbits from Fig. 6.12. Same colours as there. Note that blue
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Appendix E

The triple nucleus of M31

In the following the paper Bender et al. (2005) on the nuclear structure of M31 is
reproduced. It contains an application of the orbit superposition code advanced
during the course of this work to the determination of black hole masses in the
centres of galaxies.



220 E. The triple nucleus of M31

HST STIS SPECTROSCOPY OF THE TRIPLE NUCLEUS OF M31:
TWO NESTED DISKS IN KEPLERIAN ROTATION AROUND

A SUPERMASSIVE BLACK HOLE

Ralf Bender,
1, 2, 3

John Kormendy,
4
Gary Bower,

5
Richard Green,

6
Jens Thomas,

1,2
Anthony C. Danks,

7

Theodore Gull,
8
J. B. Hutchings,

9
C. L. Joseph,

10
M. E. Kaiser,

11
Tod R. Lauer,

6
Charles H. Nelson,

12

Douglas Richstone,
13

Donna Weistrop,
12

and Bruce Woodgate
8

Received 2004 December 20; accepted 2005 May 9

ABSTRACT

We present Hubble Space Telescope (HST ) spectroscopy of the nucleus of M31 obtained with the Space
Telescope Imaging Spectrograph (STIS). Spectra that include the Ca ii infrared triplet (k ’ 85008) see only the red
giant stars in the double brightness peaks P1 and P2. In contrast, spectra taken at k ’ 3600 51008 are sensitive to
the tiny blue nucleus embedded in P2, the lower surface brightness nucleus of the galaxy. P2 has a K-type spectrum,
but we find that the blue nucleus has an A-type spectrum: it shows strong Balmer absorption lines. Hence, the blue
nucleus is blue not because of AGN light but rather because it is dominated by hot stars. We show that the spectrum
is well described by A0 giant stars, A0 dwarf stars, or a 200 Myr old, single-burst stellar population. White dwarfs,
in contrast, cannot fit the blue nucleus spectrum. Given the small likelihood for stellar collisions, recent star for-
mation appears to be the most plausible origin of the blue nucleus. In stellar population, size, and velocity disper-
sion, the blue nucleus is so different from P1 and P2 that we call it P3 and refer to the nucleus of M31 as triple.

Because P2 and P3 have very different spectra, we can make a clean decomposition of the red and blue stars and
hence measure the light distribution and kinematics of each uncontaminated by the other. The line-of-sight velocity
distributions of the red stars near P2 strengthen the support for Tremaine’s eccentric disk model. Their wings
indicate the presence of stars with velocities of up to 1000 km s�1 on the anti-P1 side of P2.

The kinematics of P3 are consistent with a circular stellar disk in Keplerian rotation around a supermassive black
hole. If the P3 disk is perfectly thin, then the inclination angle i ’ 55

�
is identical within the errors to the inclination

of the eccentric disk models for P1+P2 by Peiris & Tremaine and by Salow & Statler. Both disks rotate in the same
sense and are almost coplanar. The observed velocity dispersion of P3 is largely caused by blurred rotation and has
a maximum value of � ¼ 1183 � 201 km s�1. This is much larger than the dispersion � ’ 250 km s�1 of the red
stars along the same line of sight and is the largest integrated velocity dispersion observed in any galaxy. The ro-
tation curve of P3 is symmetric around its center. It reaches an observed velocity of V ¼ 618 � 81 km s�1 at radius
0B05 ¼ 0:19 pc, where the observed velocity dispersion is � ¼ 674 � 95 km s�1. The corresponding circular ro-
tation velocity at this radius is �1700 km s�1. We therefore confirm earlier suggestions that the central dark object
interpreted as a supermassive black hole is located in P3.

Thin-disk and Schwarzschild models with intrinsic axial ratios b/aP 0:26 corresponding to inclinations between
55

�
and 58

�
match the P3 observations very well. Among these models, the best fit and the lowest black hole mass

are obtained for a thin-disk model with M� ¼ 1:4 ; 108 M�. Allowing P3 to have some intrinsic thickness and
considering possible systematic errors, the 1 � confidence range becomes (1:1 2:3) ; 108 M�. The black hole mass
determined from P3 is independent of but consistent with Peiris & Tremaine’s mass estimate based on the eccentric
disk model for P1+P2. It is �2 times larger than the prediction by the correlation between M

.
and bulge velocity

dispersion �bulge . Taken together with other reliable black hole mass determinations in nearby galaxies, notably the
MilkyWay andM32, this strengthens the evidence that theM

.
-�bulge relation has significant intrinsic scatter, at least

at low black hole masses.
We show that any dark star cluster alternative to a black hole must have a half-mass radius P0B03 ¼ 0:11 pc in

order to match the observations. Based on this, M31 becomes the third galaxy (after NGC 4258 and our Galaxy) in
which clusters of brown dwarf stars or dead stars can be excluded on astrophysical grounds.

Subject headinggs: black hole physics — galaxies: individual (M31) — galaxies: nuclei

1 Universitäts-Sternwarte, Scheinerstrasse 1, Munich D-81679, Germany; bender@usm.uni-muenchen.de, jthomas@usm.uni-muenchen.de.
2 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching-bei-München, Germany; bender@mpe.mpg.de.
3 Beatrice M. Tinsley Centennial Visiting Professor, University of Texas at Austin.
4 Department of Astronomy, University of Texas, RLM 15.308, C-1400, Austin, TX 78712; kormendy@astro.as.utexas.edu.
5 Computer Sciences Corporation, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; bower@stsci.edu.
6 National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726; green@noao.edu, lauer@noao.edu.
7 Emergent-IT, 1315 Peachtree Court, Bowie, MD 20721; danks@yahoo.com.
8 NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771; gull@sea.gsfc.nasa.gov, woodgate@stars.gsfc.nasa.gov.
9 Herzberg Institute of Astrophysics, National Research Council of Canada, 5071West Saanich Road, Victoria, BC V9E 2E7, Canada; john.hutchings@hia .nrc.ca.
10 Department of Physics and Astronomy, Rutgers University, P.O. Box 849, Piscataway, NJ 08855; cjoseph@physics.rutgers.edu.
11 Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore, MD 21218; kaiser@pha.jhu.edu.
12 Department of Physics, University of Nevada, 4505 South Maryland Parkway, Las Vegas, NV 89154; cnelson@physics.unlv.edu, weistrop@physics .unlv.edu.
13 Department of Astronomy, University of Michigan, Dennison Building, Ann Arbor, MI 48109; dor@umich.edu.



221

1. INTRODUCTION

M31 was the second14 galaxy in which stellar dynamics re-
vealed the presence of a supermassive black hole (BH;Kormendy
1987, 1988; Dressler &Richstone 1988). The spatial resolution of
the discovery spectra was FWHM � 100. Axisymmetric dynam-
ical models implied BH masses of M� ¼ (1 10) ; 107 M�. The
smallest masses were given by disk models, and the largest were
given by spherical models.

In 1988, it was already known that axisymmetry is only an
approximation to a more complicated structure. With Strato-
scope II, Light et al. (1974) had observed that the nucleus is
asymmetric. The brightest point is offset both from the center of
the bulge (Nieto et al. 1986) and from the velocity dispersion peak
(Dressler 1984; Dressler & Richstone 1988; Kormendy 1988).
Then, using Hubble Space Telescope (HST ), Lauer et al. (1993)
discovered that the nucleus is double. The brighter nucleus, P1, is
offset from the bulge center by �0B5. The fainter nucleus, P2, is
approximately at the bulge center. Early concerns that an appar-
ently double structure might only be due to dust were laid to rest
when infrared images proved consistent with optical and ultra-
violet images (Mould et al. 1989; Rich et al. 1996; Davidge et al.
1997; Corbin et al. 2001). These results were confirmed at higher
resolution and signal-to-noise ratio (S/N) using WFPC2 (Lauer
et al. 1998).With the discovery of the double nucleus, work on the
central parts of M31 went into high gear.

Bacon et al. (1994, 2001) used integral-field spectroscopy to
map the two-dimensional velocity field near the center of M31.
They found that the kinematical major axis of the nucleus is not
the same as the line that joins P1 and P2. The rotation curve is
approximately symmetric about P2, i.e., about the center of the
bulge. However, this is not the point of maximum dispersion.
Instead, the brightest and hottest points are displaced from the
rotation center by similar amounts in opposite directions.

The above results created two acute needs. First, the rich
phenomenology of the double nucleus cried out for explanation.
Second, the P1-P2 asymmetry raised doubts about BH mass
measurements. This paper is mainly about the BH. HST allows
us to take an important step inward by studying a blue cluster of
stars embedded in P2. We introduce this cluster in x 1.1. Second,
our spectroscopy of P1+P2 (xx 2 and 3) provides further sup-
port for the preferred model of the double nucleus (Appendix).
Since that model affects much of our discussion, we summarize
it in x 1.2. For comprehensive reviews, see Peiris & Tremaine
(2003) and Salow & Statler (2004).

1.1. P3: The Blue Star Cluster Embedded in P2

Nieto et al. (1986), using a photon-counting detector on the
Canada-France-Hawaii Telescope (CFHT), were the first to il-
lustrate that P2 is brighter than P1 at 3750 8 (contrast their Fig. 3
with Fig. 4 in Light et al. 1974; cf. Fig. 3 below). However, they
did not realize this. Instead, they focused on the strong color
gradient (bluer inward) and worried because this was inconsis-
tent with published data. But these data were taken in the red or
else had poor spatial resolution; they could not have seen the
ultraviolet center. Nieto and collaborators found no problemwith
their data but concluded that ‘‘further observations are required
to settle this question.’’

King et al. (1992) confirmed the ultraviolet excess in the
nucleus using the HST Faint Object Camera (FOC) at 1750 8.

Using the same image, Crane et al. (1993a) illustrated that P2 is
brighter than P1 but did not comment on this. Bertola et al.
(1995) illustrated the same effect using FOC+F150W+F130LP
images but again did not comment that it is P2, not P1, that is
brighter in the ultraviolet.

Therefore, it was King et al. (1995) who discovered that P2 is
much brighter than P1 in the ultraviolet. This result was again
based on the 1750 8 FOC images. The blue light comes from a
compact source that is embedded in P2 and that is similar in
color and brightness to post–asymptotic giant branch (PAGB)
stars seen elsewhere in the bulge (King et al. 1992; Bertola et al.
1995). King et al. (1995) proposed that the source might be
nonthermal light from the weak active galactic nucleus (AGN)
that is detected in the radio (Crane et al. 1992, 1993b), although
they recognized that it could be a single PAGB star. Subse-
quently, Lauer et al. (1998) and Brown et al. (1998) resolved the
source; its half-power radius is ’0B06 ¼ 0:2 pc. Both papers
argued that it is a cluster of stars. Lauer et al. (1998) combined
the King et al. (1995) UV fluxes with optical fluxes to conclude
that the source is consistent with an A star spectrum.

In this paper we present STIS spectra and show directly that
the source is composed of A stars (x 4). We also demonstrate
that it is most consistent with a disk structure rather than with
a dynamically hot cluster (xx 5 and 6). Because the blue clus-
ter is so distinct from P1+P2 in terms of stellar content and
kinematics, we call it P3 and refer to the nucleus of M31 as
triple.

The disk structure of P3 allows us to make a new and more
reliable measurement of the central dark mass (x 7). From the
kinematics of P3 we also show that the dark object must be con-
fined inside a radius rP 0B03¼ 0:11 pc. This implies that alter-
natives to a BH, such as a cluster of brown dwarf stars or stellar
remnants, are inconsistent with the observations (x 8).

1.2. The Eccentric Disk Model of P1+P2

Tremaine (1995) proposed what is now the standard model of
P1 and P2. Hismotivationwas the realization (see also Emsellem
& Combes 1997) that the simplest alternative, an almost com-
pleted merger, is implausible. Two clusters in orbit around each
other at a projected separation of 0B49 ¼ 1:8 pc would merge in
P108 yr by dynamical friction. Instead, Tremaine proposed that
both nuclei are parts of the same eccentric disk of stars. The
brighter nucleus, P1, is farther from the BH and results from the
lingering of stars near apocenter. The fainter nucleus, P2, is ex-
plained by increasing the disk density toward the center. A BH is
required in P2 to make the potential almost Keplerian; only then
might the alignment of orbits be maintained by the modest self-
gravity of the disk.

Statler et al. (1999), Kormendy & Bender (1999, hereafter
KB99), and Bacon et al. (2001) showed that the nucleus has the
signature of the eccentric diskmodel. Themost direct evidence is
the asymmetry inV(r) and �(r). Eccentric disk stars should linger
at apocenter in P1; V and � are observed to be relatively small
there. The same stars should pass pericenter in P2, slightly on the
anti-P1 side of the BH; the velocity amplitude is observed to be
high on the anti-P1 side of the blue cluster. Because the PSF and
the slit blur light from stars seen at different radii and viewing
geometries, the apparent velocity dispersion should also have a
sharp peak slightly on the anti-P1 side of the BH. All of the above
papers demonstrated that the dispersion has a sharp peak in P2.
KB99 showed further that the � peak is slightly on the anti-P1
side of the blue cluster. Therefore, they suggested that the BH is
in the blue cluster. Finally, KB99 demonstrated that the spectra
and metal line strengths of P1 and P2 are similar to each other

14 The first was M32 (Tonry 1984, 1987). In retrospect, the resolution was
barely good enough for a successful BH detection (Kormendy 2004); i.e., the
BH was discovered essentially as early as possible.
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but different from those of the bulge. Therefore, P1 cannot be an
accreted globular cluster or dwarf galaxy.

Peiris & Tremaine (2003) refined the eccentric disk model to
optimize the fit to the higher resolution andmore detailed ground-
based spectroscopy now available. Even the Gauss-Hermite co-
efficients h3 and h4 , which were not used in constructing the
model, were adequately well fitted. These models were then used
to predict the kinematics that should be observed in our Ca triplet
HST spectra of the red stars. This is a stringent test because the
new models were used to predict observations taken at much
higher resolution than those used to construct the models. Ex-
cellent fits were obtained. This is a resounding success of the
eccentric disk model. The structural and velocity asymmetries of
the nucleus can be explained almost perfectly if the eccentric disk
is inclinedwith respect to the plane of the outer disk of M31.Here
we publish the kinematic data used by Peiris & Tremaine (2003)
in the above comparison (x 3), and we revisit particularly interest-
ing features of the STIS kinematics of P1+P2 in the Appendix.

The main shortcoming of the Peiris & Tremaine (2003) mod-
els is that they do not include the self-gravity of the stars in the
eccentric disk. If the disk has a mass of 10% of the BH, then self-
gravity is needed to keep the model aligned (Statler 1999). The
most detailed such models are by Salow & Statler (2001, 2004).
They model all available observations but do not fit the data as

well as the models by Peiris & Tremaine (2003). Other self-
consistent models are based onN-body simulations (Bacon et al.
2001; Jacobs & Sellwood 2001); again, they reproduce only
some of the observations. Sambhus & Sridhar (2002) use the
Schwarzschild (1979) method to model the double nucleus. The
above models differ in many details. For example, the Salow &
Statler (2001, 2004) models precess rapidly, with pattern speeds
of 36 � 4 km s�1 pc�1; the models of Sambhus & Sridhar (2002)
precess at 16 km s�1 pc�1, and the simulations of Bacon et al.
(2001) precess at only 3 km s�1 pc�1. Not surprisingly, the
construction of dynamical models that include self-gravity is a
challenge. The conclusion that such models are long lived is less
secure than the result that they can instantaneously fit the pho-
tometry and kinematics of P1+P2. Tremaine (2001) gives a gen-
eral discussion of slowly precessing eccentric disks.
Because of these complications, the BH mass in M31 has

remained uncertain. Estimates of M
.
by Dressler & Richstone

(1988), Kormendy (1988), Richstone et al. (1990), Bacon et al.
(1994), Magorrian et al. (1998), KB99, Bacon et al. (2001),
Peiris & Tremaine (2003), and Salow & Statler (2004) have
ranged over a factor of about 3, M� ’ (3 10) ; 107 M�. These
results are reviewed and error bars are tabulated on a uniform
distance scale (D ¼ 0:76Mpc) inKormendy (2004). In this paper
we show that an analysis of the UV-bright nucleus P3 allows us
to estimate the BH mass independent of P1+P2.

2. STIS SPECTROSCOPY

The STIS CCD observations of M31 were obtained on 1999
July 23–24. The slit was aligned at P:A: ¼ 39

�
. Other details of

the STIS configuration are given in Table 1. We obtained a
spectrum that includes the calcium triplet, kk8498, 8542, and
8662, and one at 2700–52008 that includes several Balmer lines
and Ca ii H and K (kk3933 and 3968). Both wavelength regions
were observed because we wanted to analyze separately the
double nucleus P1+P2 and the central blue cluster P3. Figure 1
shows that the double nucleus P1+P2 contributes almost all of
the light at red wavelengths, while P3 dominates at 3000 8. The
color difference between P1+P2 and P3 is illustrated further in
the brightness cuts in Figure 3 below. The red spectrum was
obtained using the 5200 ; 0B1 slit, while the blue spectrum was

TABLE 1

STIS Instrument Configurations

Parameter Red Spectrum Blue Spectrum

Detector gain (e� ADU�1) ........................ 1.0 1.0

Grating ....................................................... G750M G430L

Wavelength range (8)................................ 8272–8845 2900–5700

Reciprocal dispersion (8 pixel�1) ............. 0.56 2.73

Slit width (arcsec) ...................................... 0.1 0.2

Comparison line FWHM (pixels) ............. 3.1 3.5

R ¼ k/�k ................................................... 4930 450

Instrumental dispersion �instr (km s�1) ..... 56 284

Scale along slit (arcsec pixel�1) ................ 0.051 0.051

Slit length (arcmin) .................................... 0.8 0.8

Integration time (s) .................................... 20790 2040

Fig. 1.—STIS slit positions superimposed on the WFPC2 images from Lauer et al. (1998). The left panel shows the 0B1 slit position for the Ca ii spectrum on
the F555W image, and the right panel shows the 0B2 slit position for the blue spectrum on the F300W image. The images cover the central 6B4 ; 6B4. North is 55N7
counterclockwise from up.
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taken with the 5200 ; 0B2 slit. Awider slit was chosen for the blue
spectrum to ensure that P3 would fall inside the slit. Figure 1
shows the placement of the slit relative to the WFPC2 F555W
and F300W images from Lauer et al. (1998). These slit positions
were determined by comparing the light profiles along the slit in
our STIS spectra with brightness cuts through the WFPC2 im-
ages. We measured the slit positions to an accuracy of 0B005 for
the red spectrum and 0B01 for the blue spectrum. The total in-
tegration time for the red spectrum was split into two exposures
of approximately 1200 s each per HST orbit. M31’s nucleus was
shifted by 4.1 pixels along the slit between orbits.

The total integration time for the blue spectrum was split into
three equal exposures within one HST orbit. The nucleus was
shifted by 4.3 pixels between successive exposures. Wavelength
calibrations (wavecals) were interspersed among the galaxy ex-
posures to allow wavelength calibration, including correction for
thermal drifts. For the red spectrum, we obtained contempora-
neous flat-field exposures through the same slit while M31 was
occulted by the Earth. These provide proper calibration of internal
fringing, which is significant at k � 75008 (see Goudfrooij et al.
1997).

The spectra were reduced as described in Bower et al. (2001).
Unlike red spectra taken at k � 7500 8 with the G750M grat-
ing, blue spectra taken with the G430L grating are not affected
by fringing. Consequently, we flat-fielded the G430L data using
the library flat image from the STScI archive. The final reduced
spectra have maximum S/N values of S/N ¼ 25 (G750M) and
50 8�1 (G430L).

A stellar template spectrum is needed to measure the stellar
kinematics implied by the galaxy spectra. For the red spectrum of
M31, our template is the STIS spectrum of HR 7615 fromBower
et al. (2001). They document the observational setup and data
reduction for this spectrum. For the blue spectrum we used
template A stars from Le Borgne et al. (2003), white dwarf stars
observed in the SloanDigital Sky Survey (SDSS; Kleinman et al.
2004) ormodeled by Finley et al. (1997) andKoester et al. (2001),
and spectral syntheses of various stellar population models by
Bruzual & Charlot (2003). These sources were supplemented
for checking purposes by using standard stars from Pickles (1998).
Spectral resolution is not an issue for standard stars because the
intrinsic width of the absorption lines in A-type stars is much
larger than the instrumental width of STIS with the G430L
grating and because the spectrum of P3 proves to have exceed-
ingly broad lines.

3. KINEMATICS OF THE DOUBLE NUCLEUS P1+P2

The calcium triplet spectroscopy sees only the red giant stars
that make up the double nucleus, P1+P2. It is blind to P3, which
contributes essentially no light at k ’ 8500 8. The kinematic
properties of the red stars are illustrated in Figure 2.

In Figure 2, the spectrum of the bulge has been subtracted
following procedures discussed in KB99. Bulge subtraction is
analogous to sky subtraction in the sense that it removes the effects
of a contaminating spectrum that is not of present interest. As
shown in KB99, the bulge of M31 dominates the light distribu-
tion only at radii rk 200. At r < 100, it contributes about 20% of
the light. So over the radii of interest in Figure 2, bulge stars are a
minor foreground and background contaminant; they do not sig-
nificantly participate in the dynamics of the double nucleus. It is
routine to estimate the small contribution of bulge stars to the STIS
red spectrum and to subtract it. Figure 2 is therefore a pure mea-
sure of the kinematics of the stars that make up the double nucleus.

Figure 2 also shows the bulge-subtracted nuclear kinematics
measured with CFHT (KB99). Taking into account both the PSF

and the slit, the effective Gaussian dispersion radius of the ef-
fective PSFwas �� ¼ 0B297 (Kormendy 2004). The correspond-
ing resolution of the STIS red spectroscopy is �� ¼ 0B052.

Confirming results of KB99, the dispersion profile of the
red stars reaches a sharp peak slightly on the anti-P1 side of P3.
The peak dispersion is higher at STIS resolution (� ¼ 373 �
50 km s�1) than at CFHT resolution (� ¼ 287 � 9 km s�1).
The rotation curve is also asymmetric; the maximum rotation
velocity is larger on the anti-P1 side than it is in P1. Again, the

Fig. 2.—Panel 1 shows the double nucleus of M31 rotated �185
�
clockwise

with respect to Fig. 1. It is a I+V+3000 8 composite from KB99. P1 is brighter
than P2 in red light. Embedded in P2 is P3, i.e., a tiny cluster of blue stars that is
invisible in I but brighter than P1 in the ultraviolet. The background image in
panel 2 is a similar V+30008 composite that better shows the small radius of P3.
Panel 2 includes an I-band brightness cut along the P1-P2 axis (lower line) and
a V-band cut through the blue cluster P3 (upper line). The filled circles are the
brightness profile in the STIS spectrum; they are used to register the kinematics
with the photometry in radius. Along the P1-P2 axis, radius r ¼ 0 is chosen to be
the center of P3 (note that in KB99 we centered the radius scale at 0B068, not P3).
Panels 3 and 4 show velocity dispersions and rotation velocities along the P1-P2
axis after subtraction of the bulge. The ground-based points (crosses) are from the
Subarcsecond Imaging Spectrograph (‘‘SIS’’) and the CFHT (KB99). The STIS
data ( filled circles) are Fourier quotient reductions. Bacon et al. (2001) made an
independent reduction of our red STIS spectrum; it is consistent with ours.
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asymmetry is larger and the radius of maximum rotation is
smaller at STIS resolution than at CFHT resolution. These
observations are consistent with and provide further evidence
for Tremaine’s (1995) model for the double nucleus as an ec-
centric disk of stars orbiting the central BH. The Appendix
provides more detailed discussion.

4. THE INTEGRATED SPECTRUM OF P3

4.1. P3 Is Made of A-Type Stars

P3, the compact blue cluster, is illustrated in the two panels of
images in Figure 2. It is embedded in P2 but is not concentric
with it; the photocenter of P2 is �0B03 on the anti-P1 side of
the blue cluster. The center of the bulge is slightly off in the op-
posite direction, i.e., toward P1 (see KB99 and discussion be-
low). Note that we choose r ¼ 0 to be the center of P3, whereas
KB99 chose r ¼ 0 to be the center of the bulge.

We obtained our STIS spectrum at k ’ 3500 5000 8 in part
to study this issue. Over the above wavelength range, P3 pro-
vides a strong signal, much stronger than that indicated by the
V-band brightness cut in Figure 2. Figure 3 shows brightness
cuts through the red and blue STIS spectra in various wave-
length ranges. The blue cluster is essentially invisible at 8300–
8800 8 in the red spectrum. We assume that this spectrum
provides the surface brightness profile of the underlying double
nucleus. With respect to this profile, P3 is, in general, more
prominent at bluer wavelengths.15 The contrast over P1+P2 is

highest at 3800–3950 8. Then P3 gets less prominent at 3600–
37508; the reason turns out to be that the spectrum has a strong
Balmer break (Fig. 4). The important conclusion from Figure 3
is that the spectrum of P3 is almost as bright as the underlying
spectrum of P1+P2 at just the wavelengths where hydrogen
Balmer lines are strongest.
It is therefore possible to extract a clean spectrum of P3 despite

the short integration time and modest S/N. We averaged the
spectrum of P3 over the 0B2 (i.e., four spectral rows) in which it
is brightest (Fig. 3, right pair of dashed lines). We approximated
the spectrum of the underlying P2 stars by averaging 14 rows of
the spectrum on the anti-P1 side of P3 (Fig. 3, left pair of dashed
lines). The 8300–8800 8 brightness cut was used to scale this
average P2 spectrum to the P2 brightness underlying P3. The re-
sult was subtracted from the four-row average spectrum of P2+P3.
The resulting spectrum of P3 is shown in black in Figures 4, 5,
and 6.
The stellar population of P3 is dramatically different from that

of P1 and P2. The spectrum in Figure 4 is dominated by Balmer
absorption lines. At least five Balmer lines are visible, starting
with H� at kobs ’ 4856 8. Also prominent is a strong Balmer
break. In fact, the spectrum is very well matched by velocity-
broadened spectra of A giant and dwarf stars. This confirms that
the nucleus is made mostly of A-type stars as Lauer et al. (1998)
and Brown et al. (1998) suggested.

4.2. The Remarkably High Velocity Dispersion of P3:
The Supermassive Black Hole Is in the Blue Cluster

The blue cluster has a remarkably high velocity dispersion.
Using anA0 dwarf star fromLeBorgne et al. (2003) as a template,

Fig. 3.—Linear intensity cuts through the blue and red spectra of P1+P2+P3.
Each cut is an average over the wavelength range given in the key. The con-
trast between the blue cluster P3 and the underlying red nucleus P2 is largest at
4000 8. It is smaller at redder wavelengths because the stars in P3 are blue. It is
smaller at bluer wavelengths because the spectrum of P3 has a strong Balmer
break (Fig. 4). The two leftmost vertical dashed lines indicate the region in
which the background spectrum was derived. The two rightmost vertical dashed
lines indicate the radius range over which we averaged the background-
subtracted P3 spectrum shown in Figs. 4, 5, and 6.

Fig. 4.—Spectrum (black line) of the central 0B2 of the blue cluster P3. The
superposed spectrum of the stars in the bulge and nucleus has been subtracted.
Flux is in arbitrary linear units. In the bottom panel, the spectrum has been
divided by a polynomial ck fitted to the continuum; it has been normalized to
zero intensity and multiplied by the mean ratio � of the line strength in the
standard stars to that in P3. The colored lines show the spectra of an A0 dwarf
star, an A0 giant star, and a Bruzual & Charlot (2003) starburst of age 200 Myr
before (top) and after (overplotted on the data) broadening to the LOSVD that
best fits the cluster spectrum. The fit was carried out with the Fourier correlation
quotient program (Bender 1990).

15 P3 looks fainter at 4700–51008 in Fig. 3 than at 55008 (V band) in Fig. 2.
The reason is that Fig. 2 shows a brightness cut through the deconvolved V-band
image from Lauer et al. (1998); this has higher spatial resolution than an un-
deconvolved STIS spectrum. Also, the V-band cut is 0B046 wide, while the
spectrum was obtained through a 0B2 wide slit.
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the Fourier correlation quotient program (Bender 1990) gives a
velocity dispersion of � ¼ 962 � 105 km s�1. An A0 giant star
gives � ¼ 984 � 107 km s�1. A-type stars have intrinsically
broad lines, but � is so large that the difference between using
giants and dwarfs is insignificant. The above fits are illustrated in
Figure 4. The match to the lines and to the Balmer break is ex-
cellent. The results are robust; plausible changes in the intensity
scaling of the P2 spectrum that was subtracted produce no sig-
nificant change in �.

The best-fitting 200Myr old stellar population model (Fig. 5,
x 4.3) gives a dispersion of � ¼ 984 � 106 km s�1. We adopt
the average of the dispersion values given by the A dwarf star, the
A giant star, and the 200 Myr old stellar population model; this
gives � ¼ 977 � 106 km s�1 as our measure of the velocity
dispersion of P3 integrated over the central 0B02.

Despite its tiny size (half-power radius’0B06 ’ 0:2 pc; Lauer
et al. 1998), P3 has the highest integrated velocity dispersion
measured to date in any galaxy. The velocity dispersion of P3 is
even larger than the line-of-sight velocity dispersion of the Sgr A�

cluster in our Galaxy (� ¼ 498 � 52 to 840 � 104 km s�1, de-
pending on the sample of stars chosen; Schödel et al. 2003).16The
high velocity dispersion of P3 is especially remarkable in view
of the observation (Fig. 2) that the velocity dispersion of the
red stars along the same line of sight is only �250 km s�1. The
maximum velocity dispersion of P2, 373 � 48 km s�1 at �r ’
0B06 on the anti-P1 side of the blue cluster, is much smaller than
that of P3. Even the remarkably high velocity dispersion � ¼
440 � 70 km s�1 measured in P2 by Statler et al. (1999) is much

smaller than the velocity dispersion of P3. This confirms the
conclusion of KB99 that the M31 supermassive BH is in the blue
cluster.

4.3. Fit of a Starburst Spectrum to P3

The overall continuum slope of P3 is best fitted not by a single
A-type star but rather by the spectrum (Bruzual & Charlot 2003)
of a single starburst population (SSP in Figs. 4 and 5) of age
�200 � 50 Myr and solar metallicity. The blue continuum fit is
essentially perfect; the red continuum fit is improved slightly
over the single-star fits. Starburst spectra with a range of ages are
shown in Figure 5. Using older starbursts allows us to fix the fit to
the 5000 8 continuum, but only at an unacceptable price: the
bluest Balmer lines are no longer well fitted. Complicating the
model further would be overinterpretation; the error in the red
continuum fit could be due to imperfect P2 subtraction or to
small amounts of dust. But it is clear that we cannot exclude
some admixture of older stars. Reasonable changes in metallicity
also do not affect the fit: metallicity changes are largely degen-
erate with age changes.

How many stars make up P3? For an absolute visual magni-
tude ofMV 	 �5:7 (Lauer et al. 1998), we estimate the answer in
Figure 6, using IAC-STAR, the synthetic color-magnitude dia-
gram (CMD) algorithm of the Instituto deAstrofisica de Canarias
(Aparicio & Gallart 2004). A 200 Myr old, single-burst popu-
lation of solar abundance implies that about 200 stars between
spectral types A5 and B5 dominate the spectrum. The large num-
ber of stars at the same temperature of �10,000 K explains why
the spectrum of P3 is so similar to that of a single A0 star. Fig-
ure 6 also showswhy P3 has a fairly smooth appearance, although
surface brightness fluctuations are visible in Figure 8 below.
Only a few red evolved stars are present, and they do not con-
tribute significantly to the light of P3. Future observations with
resolutions of about 0B01 should resolve the brightest stars close
to the BH.

Fig. 5.—This figure is analogous to Fig. 4, except that the spectrum of the blue
cluster P3 is compared with Bruzual & Charlot (2003) starbursts of various ages
given in the key. The fit to the red continuum is best for an age of�510 Myr, but
then the strengths of the Balmer lines Hn for n � 5 are wrong relative to the
strengths of the redder lines. This problem gets worse for older starburst ages.
Starbursts younger than 200Myr are too blue; their Balmer breaks are too small to
fit the observed spectrum.

Fig. 6.—Sample CMD of a 200 Myr old single-burst population with solar
metallicity and a total luminosity ofMV ¼ �5:7. The spectrum is dominated by
stars of �10,000 K temperature. The diagram has been generated using the
synthetic CMD algorithm of the Instituto de Astrofisica de Canarias (Aparicio &
Gallart 2004).

16 Of course, the pericenter velocities of the innermost individual stars in
our Galaxy are in some cases much larger. The current record is held by S0-16,
which was moving at 12; 000 � 2000 km s�1 when it passed within 45 AU ¼
0:0002 pc ¼ 600 Schwarzschild radii of the Galaxy’s BH (Ghez et al. 2005).
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For a Salpeter (1955) initial mass function with a lower mass
cutoff at 0.1M�, the total number of stars on the main sequence
at present is �15,000; their total mass is about 4200 M�. If the
burst originally produced stars up to 100 M�, then the initial
total mass of P3 was �5200 M�. Given the inefficiency of star
formation, the total gas mass required to form P3 probably was
of the order 106 M�.

Forming stars so close to a BH is not trivial. It may be possible
if �3 ; 106 M� of gas could be concentrated into a thin disk of
radius 0.3 pc and velocity dispersion 10 km s�1. Then Toomre’s
(1964) stability parameter Q ’ 1. It is not easy to see how such
an extreme configuration could be set up, especially without form-
ing stars already at larger radii. Well before the BH makes star
formation difficult, the surface density of the dissipating and shrink-
ing gas disk would get high enough so that the Schmidt (1959)
law observed in nuclear starbursting disks (Kormendy&Kennicutt
2004, Fig. 21) would imply a very high star formation rate. This
star formation would have to be quenched until the gas disk got
small enough to form P3. And then the star formation would have
to be very inefficient to put only�5200M� of the�3 ; 106 M�

of gas into stars. Similar considerations make it difficult to un-
derstand young stars near the Galactic center BH (e.g., Morris
1993; Genzel et al. 2003, Ghez et al. 2003, 2005). Nevertheless,
young stars (or at least high-luminosity, hot stars) are present.
Complicated processes of star formation (e.g., Sanders 1998)
may not realistically be evaluated by a simple argument based
on the Toomre Q instability parameter. So, if a dense enough
and cold enough gas disk can be formed, star formation may be
possible, even close to a supermassive BH.

4.4. Could the Hot Stars in P3 Result From Stellar Collisions?

The alternative to a starburst could be that the hot stars of P3
are formed via collisions between lower mass stars in P3 or even
in P1+P2. Yu (2003) argues that the collision timescales are too
long to be of interest. It would be interesting to revisit this issue
given the conclusion of x 6.1 that P3 is a cold stellar disk. In any
case, it is worth noting that the conversion of, say, a high-mass,
0.5M�main-sequence star in P2 into an A star requires merging
roughly six stars without mass loss. It is not easy to see how the
A stars in P3 could originate by collisions.

Thus, the situation in P3 is similar to that in our Galaxy. No
explanation of the hot stars looks especially plausible.

4.5. P3 Is Not Made of White Dwarf Stars

Finally, we need a sanity check to make sure that we are not
completely misinterpreting the observations. Dynamically, we
detect a 108M� central dark object. This is associated with a tiny
and faint nucleus comprised of hot stars that have extraordinarily
broad absorption lines. White dwarf stars have extraordinarily
broad absorption lines. If they are not too old, they can easily have
an A-type spectrum, and if they are not too young, they can easily
contribute mass without contributing much light. It is natural to
wonder, could P3 be a cluster of white dwarfs? Could they si-
multaneously explain the broad-lined, A-type spectrum and the
central dark mass? This possibility is not excluded by stellar
collision or cluster evaporation timescales (Maoz 1995, 1998).

Figures 7 and 8 show that P3 cannot be made of white dwarfs.
Figure 7 compares the spectrum of P3 with that of a typical
DA white dwarf observed in the SDSS. The star was chosen
to have Balmer line strengths comparable to those in P3. It is
approximately the best match to P3 that can be achieved with
white dwarf spectra. Its lines are narrower than those of P3, so
we can fit the observed line widths (Fig. 7, bottom panel ) with

� ¼ 885 � 126 km s�1. That is, this relatively narrow-lined
white dwarf gives a dispersion similar to those implied by main-
sequence and giant A stars. The fit to the line widths is less good
than the fit provided by A0V stars, but it is not inconsistent with
our low-S/N spectrum of P3. If we had only the spectrum of this
white dwarf as observed over the relatively narrow wavelength
region redward of the Balmer break, we could not exclude white
dwarf stars.
However, the continua of white dwarf stars do not fit the large

Balmer break in P3. SDSS J094624.30+581445.4 (Fig. 7) does
not show this: it and most other white dwarfs have not been
observed at blue enough wavelengths to reach the Balmer break.
Therefore, we resort to model spectra kindly provided by Detlev
Koester (Finley et al. 1997; Koester et al. 2001). Figure 7 shows
a model spectrum that has line profiles similar to those in the
observed white dwarf. The price of having narrow enough lines
to fit the absorption lines in P3 is that there is essentially no
Balmer break. Such a star cannot fit the continuum of P3. This
result is very robust; it is not affected by uncertainties in the
subtraction of the spectra of P1+P2.
Choosing different white dwarf parameters does not solve this

problem. No combination of temperature and gravity allows a
simultaneous match to the Balmer line strengths and the Balmer
break. Figure 8 shows fits of model white dwarf spectra with
temperatures T ¼ 7000, 8000, 10,000, and 12,000 K. For each
temperature, we try surface gravities of 107, 108, and 109 cm s�2.
Temperature T ’ 7000 K is too cold. The stellar lines are too

weak. Not surprisingly, these stars have no Balmer break at
all. Despite the bad continuum fit, the narrow lines in the white
dwarf templates give dispersions � ¼ 945 � 103, 987 � 107, and
1063 � 115 km s�1 that are consistent with our adopted result.

Fig. 7.—Spectrum of P3 fitted with approximately matched observed and
model white dwarf spectra. The observed spectrum is from the SDSS (Kleinman
et al. 2004; see http://www.sdss.org). The model spectra used in Figs. 7 and 8 are
from Finley et al. (1997) and Koester et al. (2001). The fits of white dwarf spec-
tra to P3 are significantly worse than the ones in Figs. 4 and 5. The absorption
lines of the white dwarfs are intrinsically too strong, and the white dwarfs fail
completely to fit the large Balmer continuum break in the P3 spectrum. How-
ever, the implied velocity dispersion, � ¼ 885 � 126 km s�1, is consistent with
our adopted value, � ¼ 977 � 106 km s�1.
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At T ¼ 8000 K, the fit to the lines is better, although not as
good as for A0 dwarf or giant stars. The dispersion remains high
(� ¼ 930 � 101, 929 � 101, and 952 � 103 km s�1). Again,
the Balmer break in the white dwarfs is too weak.

At T ¼ 10;000 K, the stellar lines are much broader. The
fit to P3 is acceptable after scaling the line strengths. For
log g ¼ 7, 8, and 9, � ¼ 784 � 120, 769 � 134, and 821 �
150 km s�1, respectively. Note that without line-strength scal-
ing, the broadened white dwarf spectrum does not fit the gal-
axy. And, even though the lines are now strong enough when
log g is large to produce a Balmer break, it is still too small to
fit the spectrum of P3. The green line emphasizes how much

an A0 V star fits the spectrum of P3 better than does any white
dwarf.

Increasing the temperature further is counterproductive.
At T ¼ 12;000 K, the lines are too strong and too broad to fit
P3, although we still obtain high dispersions (� ¼ 705 � 144,
676 � 166, and 680 � 190 km s�1). Even high temperatures do
not produce strong enough Balmer breaks.

We conclude that no spectral synthesis of white dwarf stars of
different temperatures or gravities would fit P3. The ones that
fail least badly, those that fit the lines but not the Balmer break,
imply velocity dispersions that are consistent with values de-
rived from A0 dwarf or giant stars.

Fig. 8.—Fits to the spectrum of P3 (black line) of model white dwarf spectra (red line) with temperature TeA ¼ 7000, 8000, 10,000, and 12,000 K (see the key). At
each temperature, surface gravities of g ¼ 107, 108, and 109 cm s�2 are used. The green line shows the fit of an A0 dwarf star. Compare Fig. 6.
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For a compact cluster of white dwarfs to be a viable alter-
native to a supermassive BH, it must be dark. That is, it must be
old. We explore this option further in x 8.

5. LIGHT DISTRIBUTION OF P3

For a dynamical analysis of P3 (x 6), we need its light distri-
bution with P1+P2 subtracted. To derive this, we scaled the HST

F555Wimage to theHSTF300Wimage such that P1 disappeared
after subtraction. The resulting image of P3 is shown in Figure 9.
We then fitted P3 with Sérsic (1968) models,

I rð Þ ¼ I0 exp � r=r0ð Þ1=n
h i

;

convolved with the HST point-spread function (PSF) as in
Lauer et al. (1998). The PSF was constructed from two ex-
posures of the standard star GRW +70D5824 (u2tx010at,
u2tx020at). The free parameters in the fit were central surface
brightness SB0, scale length r0 ¼ (a0b0)

1=2 (where a and b are
semimajor and semiminor axis, respectively), Sérsic n, position
angle P.A., ellipticity 1� b/a, and center coordinates. Individ-
ual faint pointlike sources in the outskirts of P3 were masked
before fitting. The best fit over the radius range r < 0B3 was
obtained for Sérsic index n ¼ 1, major-axis scale length a0 ¼
0B1 � 0B01, PSF-convolved ellipticity 1� b/a ¼ 0:33 � 0:03,
and position angle P:A: ¼ 63

� � 2
�
(this is 119

�
counterclock-

wise from vertical in Fig. 9).
The PSF-convolved model and the difference between P3 and

the model are illustrated in Figure 9. We also compare the model
and P3 with respect to their isophotal parameters. Figure 10
shows the surface brightness, ellipticity, and position angle pro-
files of the observed P3, the model, and the PSF-convolved model.
Also shown are deconvolved P3 profiles, which were obtained
from 15 iterations with the Richardson-Lucy deconvolution al-
gorithm implemented in the ESO MIDAS package. The de-
convolved surface brightness profile obtained here agrees well
in shape with the one by Lauer et al. (1998). Figure 10 shows that
the model represents P3 reasonably well, especially over the
radius range for which we can analyze the kinematics (x 6).
Surface brightness fluctuations become large at radii beyond
0B25. Still, the model is adequate out to �0B4.
If P3 is an inclined, thin disk, then the observed ellipticity

implies an inclination i ¼ 55
� � 2

�
. This is compatible with the

Fig. 9.—Left to right: F300W image of the blue nucleus, P3, superposed on nuclei P1 and P2; F300W image of P3 after subtraction of the F555W image intensity
scaled to the F300W image in the first panel; PSF-convolved inclined disk model for P3; and difference between images in the second and third panels showing the
quality of the model and the residual surface brightness fluctuations. All images are 2B5 ; 2B5. North is 55N7 counterclockwise from up, as in Fig. 1.

Fig. 10.—Observed radial profiles (red line) of P3 surface brightness SB, el-
lipticity 1� b/a, and position angle P.A. vs. semimajor axis a. Lucy-deconvolved
profiles are shown in green. The HST PSF is shown in light blue (with arbitrary
zero point). The inclined disk model before and after convolution with the HST
PSF is represented by blue and black lines, respectively. The observed profiles
are oversampled: neighboring points are not independent.

TABLE 2

Parameters of the Thin-Disk Model of P3

Parameter Value

mF300W ...................................................... 18.6 � 0.1

MF300W...................................................... �5.8 � 0.1

Sérsic n..................................................... 1

Scale length a0 (arcsec) ........................... 0.1 � 0.01

SB0;F300W (face-on) (mag arcsec�2) ........ 15.6 � 0.1

Inclination (deg)....................................... 55 � 2

Position angle (deg) ................................. 63 � 2
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inclination of the eccentric disk P1+P2: Peiris & Tremaine
(2003) derive i ¼ 54

�
, and Bacon et al. (2001) get i ¼ 55

�
. The

model parameters of P3 are summarized in Table 2. Whether P3
really is a thin disk can only be checked with kinematical data.
We discuss these in the next section.

6. DYNAMICS OF P3

Figure 11 shows the rotation velocity and velocity dispersion
profiles of P3. Table 3 lists the data. We used FCQ for the
analysis but did not fit the h3 and h4 Gauss-Hermite parameters
because the S/N of the data is only �3 8�1. Outside of the
central pixel, P3 rotates rapidly, with an observed amplitude of
573 � 61 km s�1 (weighted mean of all points with rj j > 0B01).
P3 rotates in the same sense as P1+P2. The apparent velocity
dispersion drops from �1200 km s�1 in the central pixel to
<500 km s�1 at r ¼ 0B15 ¼ 0:55 pc. These values are consis-
tent with the velocities seen in the extreme wings of the line-of-
sight velocity distribution (LOSVD) of the red stars at r � �0B1
(see the Appendix). The kinematic data securely locate the BH at
the center of P3 with an uncertainty of about 1

3
of a pixel, i.e.,

0B02 ¼ 0:07 pc.
We wish to combine the surface brightness data (Table 2) and

the kinematic data (Table 3) tomake dynamical models. Because
the pixel size, slit width, and PSF are all similar to the size of
P3, unresolved rotation must contribute to the apparent velocity
dispersion. Actually, almost all of the light of P3 falls into the
slit. Despite this and despite the modest apparent flattening, P3’s
apparent rotation velocity and velocity dispersion are similar.
Therefore, it is reasonable to expect that P3 is an intrinsically flat
object with V 3�.

For these reasons, we first model P3 as a flat disk with an
exponential profile and an inclination i � 55

�
(x 6.1). Then (x 6.2),

we explore more nearly edge-on models in which P3 has some
intrinsic thickness.

6.1. P3 as a Flat Exponential Disk

We construct a dynamical model in which we assume that P3
is a flat disk with the parameters in Table 2 and a negligible
intrinsic velocity dispersion. The BH affects the structure of the
galaxy interior to rcusp ’ GM�/�

2 ¼ 5B6½M�/(10
8 M�)
, where

G is the gravitational constant and � ¼ 145 km s�1 (Kormendy
1988) is the velocity dispersion of the bulge just outside the
region affected by the BH. Since P3 is tiny compared to rcusp,
the BH dominates the gravitational potential. The distribution
of the stars is completely constrained by the photometry, so the
only free parameter is the BH mass. To compare the model with
the observed rotation and velocity dispersion profiles, we con-
volve the Keplerian velocity field with the PSF and integrate it
over the 0B2 slit width and 0B05 CCD pixels (see Fig. 11, top
middle panel ). This is done with small subpixels to obtain
smooth profiles of rotation velocity and velocity dispersion.

Figure 11 shows the results. The observed rotation and dis-
persion profiles (open and filled symbols) are well matched by
the model (dotted lines). Estimating the mass of the BH is
straightforward becauseM

.
is the only free parameter. The best

fit gives M� ¼ (1:4 � 0:2) ; 108 M�. The reduced �2
n is �1

(Fig. 12).
The BH mass derived with the thin-disk model does not de-

pend significantly on inclination over the range allowed by the
photometry (�2

�
). Changing the inclination away from the best

value increases V and decreases � or vice versa. Then �2 in-
creases slightly, but the shape of the �2 distribution as a function
of BH mass does not change significantly. We also varied the

scale length of the P3 disk, its total luminosity, and its position
angle on the sky within the errors. There was no significant effect
on M

.
. The total luminosity and mass of P3 are irrelevant pro-

vided that the BH dominates the potential. The position angle
would have to be changed well beyond its estimated errors to
achieve a visible effect on the velocities. Changing the radial
scale length redistributes light and makes the rotation and dis-
persion profiles flatter or steeper. Within the errors, M

.
is not

affected.
The circular velocities for the thin-diskmodel are shown in the

top panel of Figure 11. Future observations that resolve individ-
ual stars should see velocities of 1000–2000 km s�1. Such mea-
surements can also test how much the observed velocities and
dispersions are affected by shot noise due to the small number of
stars in P3. Checking how close to circular the disk really is will
also be important.

If P3 is a thin stellar disk, can it be stable? The answer
is yes, as long as its stellar mass is not very much larger than
5200M�. Even relatively small dispersions will not lead to sig-
nificant two-body relaxation. Using equation (8-71) in Binney
& Tremaine (1987), we obtain relaxation times of the order of
a Hubble time. Moreover, the critical velocity dispersion for
local stability (Toomre 1964) is small, �critT1 km s�1. This is
a consequence of the fact that the potential is dominated by the
BH. That is, the P3 disk is dynamically analogous to Saturn’s
rings rather than to a self-gravitating disk. Therefore, if earlier
starbursts contributed mass without affecting its present spec-
trum, the P3 stellar disk is likely to be locally stable and im-
mune from two-body relaxation. And if P3 consists only of
young stars, then it has not had time for significant dynamical
evolution.

6.2. P3 Schwarzschild Models

To investigate the effect on M
.
of allowing P3 to have some

thickness in the axial direction z and therefore to be more nearly
edge-on than i ¼ 55

�
, we fitted Schwarzschild (1979) models to

the photometric and kinematic data. We used the regularized
maximum entropy method as implemented by Gebhardt et al.
(2000a, 2003) and Thomas et al. (2004). The program was con-
strained to reproduce the observed surface brightness distri-
bution of P3.We considered three inclinations i ¼ 58

�
, 66

�
, and

90
�
, corresponding to intrinsic axial ratios of P3 of 0.26, 0.44,

and 0.57, respectively. BH masses were varied until the kine-
matic data were reproduced as well as possible, as indicated by
the �2 values in Figure 12.

In the Schwarzschild code, phase space is quantized on a
polar grid that is not optimized for closed orbits. It is therefore
helpful if the orbits are not quite closed. For this reason, we did
not use a point mass for the central dark object but rather used a
Plummer sphere with a half-mass radius rh ¼ 0B01. Given the
spatial resolution of the data, this is essentially equivalent to a
BH (see Fig. 14 below).

Models that put significant weight on entropy maximization
did not fit the kinematics. They rotated too slowly because they
contained retrograde orbits. This is expected because entropy
maximization is not appropriate for highly flattened systems
with strong rotational support.

Switching off the entropy maximization (this corresponds
to a high regularization parameter in Thomas et al. 2004) results
in better fits. Figure 12 shows �2 values as a function of incli-
nation and dark mass M

.
. We conclude that the lowest inclina-

tion, i ¼ 58
�
, is preferred by ��2 	 2 relative to the i ¼ 66

�

model and with higher significance relative to the more inclined
models.
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Fig. 11.—The three color images at the top show the PSF-broadened thin-disk model of P3. The images cover 0B5 ; 0B5. Shown from left to right are (1) P3 surface
brightness (intensities range from 0 [black] to 1 [white]); (2) P3 rotation velocity field with the slit and radial bins superposed (the velocity amplitudes range from
�700 [black] to +700 km s�1 [white]); and (3) P3 velocity dispersion, ranging from 150 (black) to 1000 km s�1 (white). The panels of plotted data points show the P3
radial profiles (red) of rotation velocity (bottom) and velocity dispersion (middle), folded around P3’s center. Open and filled symbols are from opposite sides of the
center. The sense of rotation is the same as for the eccentric disk P1+P2. The top panel shows the best-fitting Keplerian circular velocity curve as a dashed line. It implies
a BH mass of �1:4 ; 108 M�. Convolving the circular velocity field with the PSF and integrating it over the pixel size and slit width yields the model rotation and
dispersion profiles shown as dotted lines in the bottom and middle panels.
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Rotation velocity and velocity dispersion profiles for the
lowest �2 model at each inclination are shown in Figure 13.
Reassuringly, the i ¼ 58

�
Schwarzschild model most nearly

resembles the i ¼ 55
�
thin-disk model. The fits then become

progressively more different (and less good) as the models are
made more edge-on.

Higher inclinations require higher BH masses. The reason is
that, at higher inclinations, line-of-sight integration through the
nearly edge-on, thick disk includes stars at relatively large radii
that move mostly across, not along, the line of sight. They reduce
the velocity moments and consequently require higher M

.
to

match the observed rotation velocities. The preferredBHmass for
the i ¼ 58

�
and 66

�
Schwarzschild models is �2 ; 108 M�. The

highest BH mass that is consistent with the data to within�1 � is
given by the i ¼ 58

�
Schwarzschild model and is�2:3 ; 108 M�

(Fig. 12). The lowest BH mass implied by the dynamics of P3
is given by the thin-disk, i ¼ 55

�
model and is �1:2 ; 108 M�

(x 6.1).
It is instructive to examine the i ¼ 58

�
Schwarzschild model

in more detail. Figure 14 shows its velocity moments. Rotation
dominates the dynamics; V� is P20% smaller than the circular
velocity. At radii rk 0B1, the model is approximately isotropic.

To provide the thickness that is necessitated by the inclination
i > 55

�
, �z then increases substantially inward, although it re-

mains smaller than the rotation velocity. The difference between
the adopted Plummer model and a central point mass is small
except for the innermost data point.

Figure 15 shows the corresponding orbit structure. As ex-
pected for a Schwarzschild model that is not too different from
the thin-disk model, retrograde orbits are strongly suppressed.
However, as indicated by Figure 14, noncircular orbits get
significant weight in order to produce an axial ratio b/a ’ 0:26.
As expected, this happens more near the center than at larger
radii. However, nearly circular orbits dominate; otherwise, V�

would not be almost equal to Vc in Figure 14.

TABLE 3

Kinematics of P3

Radius

(arcsec)

V

(km s�1)

�V

(km s�1)

�

(km s�1)

��

(km s�1)

�0.16 ......................... 525 197 237 233

�0.11.......................... 616 144 337 170

�0.06 ......................... 582 111 583 131

�0.01 ......................... 170 169 1183 200

+0.04 .......................... �659 117 777 139

+0.09 .......................... �387 179 769 211

+0.14 .......................... �420 273 505 322

Fig. 12.—The�2 profiles for models of P3. The black lines refer to the thin-disk
model with inclination 55

�
, while the colored lines show three Schwarzschild

models with inclinations 58
�
, 66

�
, and 90

�
. The dashed lines assume that the

MDO is a Plummer sphere with radius 0B01; the solid black line assumes a BH.

Fig. 13.—Rotation velocities and velocity dispersions of P3 as in Fig. 11
(red open and filled symbols). Overplotted as colored dashed lines are three
Schwarzschild models with different inclinations and BH masses. The thin-disk
model of Fig. 11 is shown as a dotted black line.

Fig. 14.—Major-axis velocity moments of the best i ¼ 58
�
Schwarzschild

model for P3, corresponding to M� ¼ 2 ; 108 M�. The MDO is a Plummer
sphere with half-mass radius rh ¼ 0B01; its circular velocity is shown as a solid
black line. A BH of the same mass would produce the Keplerian circular ve-
locities indicated by the dashed curve.
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6.3. Summary: Comparison of P3 and P1+P2

We conclude that the triple nucleus of M31 is made of two
nested, disklike systems. The P1+P2 disk is elliptical, has a radius
of about 8 pc, and consists of old, metal-rich stars. If it is thin, it
has an inclination of�54

�
and amajor-axis position angle of�43

�

(Peiris & Tremaine 2003). The P3 disk is approximately circular
and has a radius of about 0.8 pc. If it is thin, P3 has an inclination
i � 55

�
that is the same as that of P1+P2. P3’s major-axis posi-

tion angle at r � 0B25 is �63
� � 2

�
. That is, the inner P3 disk is

slightly tilted with respect to the P1+P2 disk but is relatively close
to the kinematical major axis, P:A: � 56

�
, found by Bacon et al.

(2001). At r > 0B25, the major axis of P3 twists to �40
�
, essen-

tially the position angle of P1+P2. The nested disks rotate in the
same sense and have almost parallel angular momentum vectors.

7. THE MASS OF THE CENTRAL DARK OBJECT

We have demonstrated that disklike models for P3 fit both the
photometry and the kinematics of P3 exceedingly well. This
allowed an estimate of M

.
that is independent of all previous

determinations. Besides BH mass, only inclination is a free pa-
rameter in the fit to the rotation curve and the dispersion profile
(Figs. 11 and 13).

Could systematic effects cause additional errors that are not
included in the statistical errors, especially toward lowBHmasses?
We mentioned in the previous section that some clumpiness in
the distribution of stars could be hidden by PSF blurring andmay
affect the measured velocities and dispersions. We carried out a
simple check for this effect by fitting subsamples of data points.
For example, a fit to just the innermost three points in Figure 11
typically yields BH masses about 15% higher, while omitting
these three points results in 25% lower masses. All values ob-
tained in this way fell in the range allowed by the �2 profiles in
Figure 12, so this effect does not seem to be very important.

Some noncircularity of the P3 disk could be hidden as well. P3
could contain stars on elongated orbits that have their pericenters
within the range of the kinematic data (0B15) but apocenters
spread out over radii well beyond this radius. Figure 9 shows
faint blue stars that could be such objects. This would imply that
P3’s velocity amplitudes are increased by rotation velocities that
are faster than circular. It is difficult to estimate the size of this
effect, but pericenter velocities of very radial stars can be at most
a factor of 2 larger than pericenter velocities of stars on nearly
circular orbits. Averaging over a set of orbits will reduce this
number considerably. And if we wanted to fully exploit this
effect, many more stars of P3 would have to be found outside
of �0B18 than inside, which is in contradiction with the obser-
vations. The Schwarzschild models also show that this trick
does not work well. More radially biased models (obtained with
higher entropy weighting and not shown here) require larger BH
masses. Finally, if P3 originated in a star-forming gas disk, it
could not contain nearly radial orbits, and we noted above that
subsequent internal evolution of the P3 disk should be slow.
So, very special circumstances would be required to decrease

M
.
below 1 ; 108 M�. On the high-mass end, the BHmass grows

with increasing inclination of the model. However, the �2 values
become unacceptably large for inclinations above �60

�
; there-

fore, it is unlikely that the BH mass is significantly larger than
�3 ; 108 M�. Viable models for P3 are found in the inclination
range 55

� < i < 58
�
and in the BH mass range 1:1 ; 108 M� <

M� < 2:3 ; 108 M�. The upper limit takes into account that the
Schwarzschild models were calculated assuming a massive dark
object (MDO) with rh ¼ 0B01 and not a BH; the upper limit for
a BH is 	0:2 ; 108 M� lower than for an MDO with rh ¼ 0B01.
The best-fit and at the same time lowest BH mass of M� ¼
1:4 ; 108 M� is obtained for the thin-disk model. This model is
also preferred on astrophysical grounds, if P3 formed out of a
thin gaseous disk. Therefore, our best estimate for the mass of
the supermassive BH in M31 is M� ¼ 1:4þ0:9

�0:3 ; 10
8 M�.

How does this compare with previous results? The BH
mass has now been estimated by five largely independent tech-
niques: (1) standard dynamical modeling that ignores asym-
metries, (2) the KB99 center-of-mass argument that depends
on the asymmetry of P1+P2, (3) the Peiris & Tremaine (2003)
nuclear disk model that explains the asymmetry of P1+P2, (4)
full dynamical modeling that takes into account the self-gravity
of the P1+P2 disk (Salow & Statler 2004), and (5) dynamical
modeling of the blue nucleus P3, which is independent of
P1+P2. The good news is that all methods require a dark mass
with high significance. The bad news is that some of the results
differ by more than two standard errors. In particular, the dis-
agreement between the KB99 center-of-mass argument and the
P3 models presented here is a concern. We therefore revisit the
KB99 derivation in the subsection below. The models that best
fit both the photometry and the kinematics, the Peiris & Tremaine
(2003) eccentric disk model of P1+P2 and our thin-disk model
of P3, agree within the errors and favor a high BH mass of
M� � 1 ; 108 M�. We also note that a higher BH mass can be
accommodated more easily in almost all models than a lower
BH mass.
The mass of the M31 BH derived here is a factor of �2.5

above the ridgeline of the correlation between M
.
and bulge

velocity dispersion �bulge (Ferrarese & Merritt 2000; Gebhardt
et al. 2000b). Using the Tremaine et al. (2002) derivation,

log
M�

M�

� �

¼ 8:13þ 4:02 log
�bulge

200 km s�1

� �

;

Fig. 15.—Orbit structure of the Schwarzschild model with i ¼ 58
�
, Plummer

model dark mass M� ¼ 2 ; 108 M�, and half-mass radius rh ¼ 0B01. For each
orbit, the orbit weight wi per phase space volume is shown as a function of the
z-component of its angular momentum Lz normalized by the angular momentum
Lc of the circular orbit that has the same energy. In this figure only, r is the
average of the pericenter and apocenter radii of the orbit. Note that at all radii,
only prograde orbits are significantly populated.
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�bulge ’ 160 km s�1 implies thatM� ’ 5:5 ; 107 M�. We derive
M� ¼ 1:4þ0:9

�0:3 ; 10
8 M�. Tremaine et al. (2002) already found

significant scatter in the M
.
-�bulge relation at low masses. With

the increased BH mass for M31, scatter has become even more
prominent. Considering, in addition to M31, only the two clos-
est other supermassive BHs, i.e., M32 and the Galaxy, we get
the following: M32 has �bulge � 75 km s�1, a predicted M� ¼
2:6 ; 106 M�, and an observed M� ¼ (2:9 � 0:6) ; 106 M�

(Verolme et al. 2002; corrected to distance 0.81 Mpc from
Tonry et al. 2001). Our Galaxy has �bulge � 103 km s�1, a
predicted M� ¼ 9:4 ; 106 M�, and an observed M� ¼ (3:7 �
0:2) ; 106 M� (Ghez et al. 2005). SoM31,M32, and our Galaxy
have BH masses that are 2.5 times larger than, consistent with,
and 3 times smaller than the ridgeline of the M

.
-�bulge relation,

respectively. This is strong indication for significant intrinsic
scatter in the M

.
-�bulge relation, at least at the low-mass end.

7.1. Black Hole Mass from the Center-of-Mass
Argument: KB99 Revisited

KB99 estimated that the center of P3 (Fig. 16, blue filled circle)
is offset from the bulge center (horizontal dashed line) by about
0B06. They then assumed that the central dark object is in P3 and
estimated its mass based on the assumption that the combined
system,BH+P1+P2+P3, is in dynamical equilibrium. That is, they
assumed that the center of mass of BH+P1+P2+P3 is at the cen-
ter of the bulge. ThenM

.
is inversely proportional to its distance

from the bulge center and, if the mass of P3 is negligible, is
proportional to the mass of P1+P2. The latter was given by the
light distribution and the measured mass-to-light ratioM /LV ¼
5:7. The resulting BH mass was M� ’ (3:3 � 1:5) ; 107 M�.
This is at the low end of the range of published values and a
factor of �4 smaller than the value derived here. As the stellar
M/LV can hardly be a factor of 4 larger, two explanations are
possible for the discrepant BH masses: (1) P3 and the BH are
a factor of 4 closer to the bulge center than KB99 derived, or
(2) the BH+P1+P2+P3 system is not in equilibriumwith respect
to the bulge center.

We believe that the observations can be consistent with
equilibrium and that the distance of P3 to the bulge center was
overestimated by KB99 for the following reasons.

Figure 16 revisits the center-of-mass argument. It is repro-
duced from KB99 and shows their estimate of the position of the
center of the bulge as the dashed line at X ¼ 0. The isophote
center coordinate X is measured along the line joining P1 and P2.
A conclusion about the position of the center of the bulge de-
pends on the radius range chosen in which to average isophote
X-values. KB99 calculated the average at 2B9 < a < 25B0. A
larger radius range was not possible because of the small size
of the high-resolution images used. If M� � 3 ; 107 M�, then
the above radius range is no problem: it is beyond the radii
affected by the BH. However, if M

.
is as big as 1:4 ; 108 M�,

then rcusp ’ 7B2 and it is necessary to calculate the mean bulge X
at larger radii.17

If we calculate the bulge center outside of rcusp ’ 7B2, we
obtain a mean X-position of �0B033 in Figure 16, i.e., halfway
between the KB99 bulge center and P3. Note that, unlike KB99,
we do not limit the averaging to points with a < 25B0 but now
also include two further points that we extracted from the

QUIRC H-band image beyond this radius. In addition, we omit
all center coordinates with errors larger than 0B2.

A least-squares fit to the points with a > 7B2 gives the short
black line in Figure 16. It shows that the bulge isophote centers
drift with increasing radius toward the X-position of P3. Thus,
the luminosity-weighted center of the bulge is close to P3.

This discussion suggests that the determination of the bulge
center is less reliable than KB99 assumed. There are three rea-
sons: (1) the BH sphere of influence is much larger than KB99
assumed, (2) the bulge isophote centers drift toward P3 with
increasing radius beyond a ¼ 2B9, and (3) the isophote centers
oscillate (or at least fluctuate) with radius because of dust or
surface brightness fluctuations or perhaps a physical effect that
we have not identified. If the BH is much more massive than
P1+P2, then it is so close to the center of mass thatM

.
cannot be

determined accurately from the center-of-mass argument.
The important conclusion, however, is that the observations

of M31 are consistent with dynamical equilibrium and with a
large BH mass of M� ¼ 1:4 ; 108 M�.

8. ASTROPHYSICAL CONSTRAINTS ON A MASSIVE
DARK OBJECT MADE OF DARK STARS

Central dark masses are detected dynamically in 38 galaxies
(for reviews see Kormendy &Gebhardt 2001; Kormendy 2004).

17 What we should expect at r < rcusp is not clear. Because the potential is
dominated by the BH, asymmetries like those of the P1-P2 eccentric disk are
possible and isophotes do not need to be concentric to represent an equilibrium
configuration.

Fig. 16.—From KB99, isophote center coordinates X along the line joining P1
and P2 as a function of isophotemajor-axis radius a. AV-bandHSTWFPC2 image
was measured twice, once masking out P2 (green) to measure the convergence of
the P1 isophotes on the center of P1 (green filled circle) and once masking out P1
(blue) tomeasure the convergence of the P2+P3 isophotes on the center of P3 (blue
filled circle). The brown and red symbols aremeasurements of individual isophotes
inH- andK 0-band images. The positions of the velocity center and of the center of
mass of the BH and nucleus (ifM� ¼ 3 ; 107 M�), each with error bars, are shown
by the symbols labeled ‘‘V ¼ 0’’ and ‘‘COM,’’ respectively. The dashed line at
X ¼ 0 marks the center position of the bulge that was adopted by KB99. It was
estimated by averaging all isophote center coordinates at 2B9 < a < 25B0
(1:3 < a1/4 < 2:24). However, if M� ¼ 1:4 ; 108 M�, then the BH’s radius of
influence is rcusp ’ 7B2. Therefore, KB99 estimated the bulge center position
partly from isophotes that are at a < rcusp.Within this radius, theBHdominates the
potential and isophotes do not need to be concentric to be in equilibrium (witness
the eccentric disk). Since we now believe that the BH mass is large, we should
derive the bulge center from correspondingly larger radii. The solid line is a least-
squares fit to the bulge Xcenter values at a > rcusp. It shows that the isophote centers
at the largest radii in the figure are approximately at the X-coordinate of P3.
Therefore, the BH is close to the luminosity-weighted center of the bulge.
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They are commonly assumed to be supermassive BHs, although
clusters of dark stars are consistent with the dynamics in most
galaxies. Justifying this assumption, many authors cite the im-
plausibility of producing so many stellar remnants (often 100 times
the mass in visible stars) in the small volume defined by the PSF
in which the dark mass must lie. Another argument is the con-
sistency of the dark masses with energy requirements for BHs to
power AGNs. More rigorous arguments against dark clusters
are available for two galaxies, NGC 4258 and our own Galaxy
(Maoz 1995, 1998; Genzel et al. 1998; Schödel et al. 2002, 2003;
Ghez et al. 2005). Clusters of failed stars are not viable because
brown dwarfs collide on short timescales and either evaporate
or merge and become visible stars. Clusters of dead stars are not
viable because their two-body relaxation times are so short that
they evaporate. InNGC4258, the timescales associatedwith these
processes are at least as short as 108.5 yr. In our own Galaxy, they
are remarkably short indeed,�104 yr. Even balls of neutrinos with
cosmologically allowable neutrino masses are excluded in our
Galaxy. The BH cases in NGC 4258 and in our Galaxy are now
very strong and are taken as indications that dynamically detected
central dark masses in other galaxies are BHs, too.

However, a great deal is at stake. It would be very important
if astrophysical arguments ruled out BH alternatives in more
than two galaxies. M32 has been the next best case (van der
Marel et al. 1997, 1998), but Maoz (1998, Fig. 1) shows that a
white dwarf cluster could survive for �1011 yr.

Applying our results on the dynamics of P3, M31 becomes
the third galaxy in which dark star cluster alternatives to a BH
can be excluded. For the most conservative estimate that M� ’
3 ; 107 M�, the arguments are discussed in Kormendy et al.
(2002) and Kormendy (2004). Here we update these arguments
to the best kinematic fits and resulting BH masses implied by
xx 6 and 7. More detail is given in J. Kormendy et al. (2005, in
preparation).

8.1. Limits on the Size of a Dark Cluster Alternative to a BH

Figure 17 derives our adopted limit on the size of any dark
cluster alternative to a BH. It shows �2 countours for fits to the
rotation and dispersion profiles of P3 using the thin-disk model
of Figure 11 that gave the lowest BH mass. As in Maoz (1995,
1998), we assume that the dark object is a Plummer sphere, i.e.,
a reasonably realistic dynamical model with a very steep outer
profile. We wish to use a relatively truncated mass distribution,
one that is not excessively core-halo, because we need to fit the
rapid rise in V(r) and the corresponding drop in �(r) (Fig. 13)
with a distributed object. Dark mass that is at several times the
half-mass radius rh hurts rather than helps us to do this.

We need to know how large rh can be and still allow an ade-
quate fit to the kinematics. As rh is increased, the inner rotation
curve drops, and it gets more difficult to fit the high central � and
especially the rapid central rise in V(r). To compensate, an ad-
equate fit requires that we increaseM

.
. Therefore, rh andM.

are
coupled (Fig. 17). How extended can the dark object be? We
adopt the parameters at the upper right extreme of the 68% �2

contour: rh ¼ 0B031 ¼ 0:113 pc andM� ¼ 2:15 ; 108 M�. Note
that choosing values corresponding to, e.g., the 90% �2 contour
(or a larger one) does not significantly weaken the arguments
against a dark cluster presented below because with increasing rh
the required dark cluster mass increases as well.

8.2. Arguments Against a Dark Cluster

The half-mass radius rh ¼ 0:113 pc is the same as the radius of
the Ring Nebula (Cox 2000), a typical planetary nebula. We are

considering a situation in which this volume contains 108 M� of
brown dwarf stars or stellar remnants. Themean density inside rh
is �h ¼ 1:8 ; 1010 M� pc�3, and the density at rh is �(rh) ¼ 6:5 ;

109 M� pc�3. This is �10 times larger than the largest stellar
mass density observed in any galaxy, 7 ; 108 M� pc�3 at r ¼
0B1 ¼ 0:004 pc in the stellar cusp around Sgr A� in our Galaxy
(Genzel et al. 2003). However, only about 300 M� of stars are
inside the above radius (Genzel et al. 2003). Not surprisingly, a
dark cluster as extreme as the one that we require to explain the
kinematics of P3 gets into trouble.

8.2.1. Brown Dwarfs Collide and Destroy Themselves

It is easiest to eliminate brown dwarfs. They collide with each
other so violently that they get converted back into gas. Figure 18
shows the timescale on which every typical brown dwarf col-
lides with another brown dwarf. As in Maoz (1995, 1998), the
zero-temperature brown dwarf radius is taken from Zapolsky &
Salpeter (1969) and Stevenson (1991), and the calculation is
an average interior to rh. Typical collision velocities at rh are
�2500 km s�1; this is fast enough compared to the surface
escape velocity (�600 km s�1 for a 0.08M� star and smaller for
lower mass brown dwarfs) that the brown dwarfs would get de-
stroyed, i.e., converted back into gas. Brown dwarfs are strongly
excluded.

8.2.2. Intermediate-Mass White Dwarfs Collide
and Make Type Ia Supernovae

Relatively short collision times provide an argument against
intermediate-masswhite dwarfs. For 0:8 M�Pm�P 1:2 M�, col-
lision times at the quarter-mass radius r1/4 are (4 7) ; 109 yr.
Given the implied numbers of white dwarfs interior to this radius
and the fact that the collision timewould be shorter at smaller radii,
collisions should happen more often than every 50–150 yr. Each
collision would bring the remnant well above the Chandrasekhar
limit. Presumably Type Ia supernovae would result. Near maxi-
mum brightness, they would be visible to the naked eye. The fact
that no such supernovae have been observed in M31 might barely

Fig. 17.—Contours of�2 for fits to the P3 kinematics of Plummer sphereswith
half-mass radii rh and total massesM

.
. The P3 model is a flat disk, as in Fig. 11.

Our adopted constraint on the fluffiness of the darkmass is the upper right extreme
of the 68% �2 contour, i.e., rh ¼ 0B031 ¼ 0:113 pc and M� ¼ 2:15 ; 108 M�.
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be consistent with the above rates, but if intermediate-mass
white dwarfs in similar dark clusters are the explanation for
other galaxies’ central dark objects, the resulting supernovae
would easily have been seen. Intermediate-mass white dwarfs
are implausible.

In addition, the supernova ejecta would be lost to the cluster.
The above collision times imply that most of the mass inside r1/4
and a significant fraction of the mass inside rhwould be lost in a
few billion years. For the dark cluster to have its present mass, it
would have had to be more massive in the past. All problems
involving collision rates would get more severe.

White dwarfs with masses less than half of the Chandrasekhar
limit will turn out to be excluded because their progenitors would
be destroyed and converted into gas or, if they succeed to merge,
become progenitors of intermediate-mass white dwarfs or still
heavier remnants (x 8.2.4).

White dwarfs with masses near the Chandrasekhar limit are
small. Their collision times are long. For these objects, we need
stronger arguments. These arguments will militate against in-
termediate-mass white dwarfs, also.

8.2.3. Dark Cluster Formation Scenario: Let’s Imagine Six
Impossible Things before Breakfast

Heavy remnants are too small to collide. Instead, relaxation
gives positive energies to a steady trickle of stars that are lost to
the system. InP300 half-mass relaxation times, the cluster evapo-
rates. Figure 18 shows the evaporation times for dark clusters
made of 0.6M�white dwarfs, 0.8M�white dwarfs, 1.2M�white
dwarfs, 1.5M� neutron stars, and 3M�BHs (left to right; symbols
WD,WD,WD, NS, and BH). Unlike the case in NGC 4258 and
our Galaxy (Maoz 1995, 1998), these evaporation times are not

implausibly short except for m�k 10 M� BHs. So, for most
remnants, we need stronger arguments.

Fortunately, we can add new arguments. They depend only on
canonical, well-understood stellar evolution and simple stellar
dynamics. A dark cluster made of stellar remnants is viable only if
its progenitor stars can safely live their lives and deliver their
remnants at suitable radii. The properties of the dark cluster con-
strain how it can form. We describe the most benign formation
scenario in this subsection. It requires fine-tuning of the star for-
mation inways that we do not know are possible. However, we do
not base our arguments against the resulting dark clusters on these
problems, becausewe do not understand star formationwell enough.
But main-sequence stars are well understood, and we know
progenitor star masses well enough for the present purposes. It
turns out that progenitor stars get into trouble because they must
be so close together that they collide. The consequences are
untenable, as discussed in the following subsections.

Finding a plausible formation scenario is comparable to
imagining six impossible things before breakfast. The argument
is summarized as follows. The progenitor cluster must be as
small as the dark cluster because dynamical friction is too slow
to deliver remnants from much larger radii. From Lauer et al.
(1998), the density of P2 at r � 0:1 0:2 pc is �106 M� pc�3.
Then the characteristic time for dynamical friction (Binney &
Tremaine 1987, eq. [7-18]) to change velocities v � 103 km s�1

is v/(dv/dt) � 1012 yr for 10M� stars. This drives us to imagine
the following impossible things:

1. Let us form progenitor stars with a density distribution
proportional to that of the dark cluster, i.e., a Plummer sphere
with half-light radius rh ¼ 0:113 pc.

2. We get into less trouble with collisions if fewer progenitors
are resident at one time. Therefore, the safest strategy is to form
stars at a constant rate during the formation time of, say, 1010 yr.
This is not the obvious strategy in a hierarchically clustering
universe; it is more natural to postulate episodic formation by
more vigorous events that are connectedwithmajor mergers. But
shortening the formation time increases the number of progen-
itors that must be resident at the same time, and this greatly
increases difficulties with stellar collisions.

3. We assume that all progenitor stars have the samemass. In
particular, we cannot allow a Salpeter (1955) mass function
because we cannot tolerate any significant numbers of dwarf
stars with lifetimes long enough so that the stars or their white
dwarf remnants remain visible today.

4. We assume that sufficient gas for star formation is always
present. Some gas could come frommass lost by evolving stars,
but some gas must be added continuously to make the cluster
grow. We assume that stars can form despite any energy feed-
back from massive or evolved stars.

5. We do notworry about the fact that the young cluster is easy
to unbind gravitationally by the mass loss from evolved stars.
This is a difficult problem. Progenitors outmass their remnants by
factors of at least a few (for low-mass stars) or �10 (for high-
mass stars). During the first stellar generations, the progenitors
outmass the remnants. Since they lose most of their mass during
the course of stellar evolution, it is easy to reduce the total mass
of the cluster substantially when stars die. Impulsive loss of more
than half of the mass (say, if the star formation happened in a
coeval starburst) unbinds the cluster. Slower mass loss fights
the formation process by expanding the cluster. We ignore all of
these difficulties and assume that the cluster can safely evolve
beyond the fragile initial stage when the mass of progenitors
present at one time is significant.

Fig. 18.—Timescales on which dark cluster alternatives to a BH get into
trouble in M31. The dark star mass is m�. For a cluster made of brown dwarfs
(‘‘BD’’), the left line shows the timescales on which every typical star suffers a
physical collision with another star. Points WD, NS, and BH show the times in
which dark clusters made of white dwarfs, neutron stars, or stellar-mass BHs
would evaporate. Points P with ‘‘error bars’’ are the timescales on which every
typical progenitor star collides with another progenitor at the radius in the
Plummer model dark cluster that contains one-quarter of the total mass. The
letter P is for the time when the dark cluster is three-quarters assembled;
the ‘‘error bars’’ end at the collision times when the cluster is half assembled
(top) and fully assembled (bottom).
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6. We assume that the only evolution in rh is that resulting
from a gradual increase of the cluster mass. Then rh / M�1

� .

Using the above assumptions, we calculate the evolution of
the cluster for various combinations of progenitors and their
remnants. Progenitor masses are from Iben et al. (1996) for white
dwarfs and from Brown&Bethe (1994) for BHs. The progenitor
clusters get into the following trouble.

8.2.4. If M31 Is Typical, Then Progenitor Clusters Are Too Bright

The above progenitor clusters have absolute magnitudes
ranging from MV ’ �16:3 to �17.5 for the duration of their
formation. These absolute magnitudes are almost independent
of progenitor star mass; higher mass progenitors are much more
luminous, but they live much less long, so far fewer are present
at one time. Nuclei as bright as the above could not be hidden in
nearby (or even moderately distant) galaxies. They are rare
(e.g., Lauer et al. 1995, 2005). It is unreasonable to assume that
dark cluster formation lasted for �1010 yr in every bulge and
then stopped recently in all galaxies.

If the formation of the dark cluster tookT1010 yr, then the
progenitor clusters are brighter but it is easier to hide them at
large redshifts. But then all problems that involve stellar col-
lisions get much worse (see below).

This problem applies to all types of stellar remnants.

8.2.5. Dynamical Friction Deposits Remnants at Small Radii

As noted above, progenitor stars are much more massive than
the remnants of previous generations that already make up the
dark cluster. The dynamical friction of the progenitors against
the remnants makes the progenitors sink quickly to small enough
radii so that the progenitor cluster becomes self-gravitating. Two
problems result. Progenitor collision times get shorter; these are
discussed further below. Second, remnants are deposited at small
radii, inconsistent with the density distribution that we are trying
to construct. As heavy stars sink, remnants are lifted to higher
radii; the effect is not large for one generation of progenitors, but
it adds up by the time the cluster is finished. The result is a dark
cluster that is much more core-halo in structure than a Plummer
model. That is, it is inherently impossible to make a dark cluster
that is as centrally concentrated as a Plummer model via pro-
genitor stars that greatly outmass their remnants. This is one of
the stiffest problems of our formation scenario.

If the dark cluster is less compact than a Plummer sphere, then
its half-mass radiusmust be smaller than 0.113 pc in order to fit the
kinematics. All problems with stellar collisions get much worse.

This problem also applies to all types of remnants.

8.2.6. White Dwarfs that Cannot Merge to Form Type Ia
Supernovae Cannot Be Relevant

Interior to rh, essentially all progenitors of 0.6M� white dwarfs
collide and either get destroyed (their surface escape velocities are
�600 km s�1) or, in the earlier phases of the dark cluster formation,
merge. If they merge, they get converted to progenitors of white
dwarfs that have masses k0.8 M�. Progenitors of white dwarfs
withmassesP0.55M� live too long to have died and, provided that
they were not destroyed, would still be visible. Therefore, white
dwarfs that are low enough inmass so that a collision of twoof them
results in a remnant that is less massive than the Chandrasekhar
limit are not relevant.

8.2.7. Progenitors Collide andEvaporate orMerge intoHigh-Mass Stars

Figure 18 shows progenitor star collision times for the sec-
ond half of the dark cluster formation process. At rP r1=4,

progenitors of low-mass remnants get destroyed and converted
into gas or, in earlier phases, merge to become progenitors of
high-mass remnants. We note that the stellar evolution clock is
reset to essentially zero in every nondestructive collision be-
cause the merging stars get thoroughly mixed. Dynamical fric-
tion is neglected in constructing Figure 18; if it is included, then
most of the progenitors participate in the collisions. Also ne-
glected is the fact that successive mergers increase the mass
range and hence decrease both the dynamical friction sinking
time and the relaxation time of the cluster.
Three consequences spell trouble for the formation scenario:

1. If progenitors are not destroyed, they merge up to form
stars of high enough masses so that they die as Type II super-
novae. Their luminosity is not a problem for the hypothetical,
present M31 dark cluster because its formation process is fin-
ished or at least in hiatus. But again, if M31 is typical, then the
formation of many such objects at intermediate and high red-
shifts should produce one Type II supernova per galaxy per
�100 yr at the center of the galaxy. They would have been seen.
2. The supernova ejecta again would not be bound to the

dark cluster unless a large amount of gas is also present.
3. Relatively few, high-mass remnants would be formed. Dy-

namical friction would guarantee that they got deposited at small
radii. The mass range that resulted from heterogeneous stellar
merger histories would create a large mass range even if none was
present initially. The result would be that relaxation times would
be much shorter, plausibly an order of magnitude shorter, than the
single-mass relaxation times that gave rise to the cluster evapo-
ration times in Figure 18. For all of these reasons, evaporation
times are likely to be much shorter than the several billion years
indicated for 3 M� BHs in Figure 18. This is implausibly short.

8.2.8. Summary on BH Alternatives

Therefore, astrophysically reasonable alternatives to a super-
massive BH are likely to fail. The arguments against brown
dwarfs seem bomb proof. The arguments against stellar rem-
nants are more complicated, but they are based on secure aspects
of stellar and star-cluster evolution. Also, there are many argu-
ments, even a few of which are sufficient. So we are not very
vulnerable to uncertainties involving any one argument (‘‘Are
we sure that we have not missed those supernovae or confused
themwith AGN activity?’’). The problem (x 8.2.5) that remnants
are deposited at excessively small radii is particularly important.
In this paper we have derived the largest published estimate of
M

.
using data at the smallest radii. This leaves little room for

distributed dark matter, i.e., for a dark cluster with core-halo
structure. In addition, x 8.2.3 on the formation scenario, while
not formally part of our argument against dark clusters, presents
formidable challenges. Our arguments are discussed in more
detail in J. Kormendy et al. (2005, in preparation). However, our
conclusion that dark cluster alternatives to a BH are excluded
seems robust.

9. CONCLUSIONS

M31 is now the third galaxy in which astrophysical argu-
ments strongly favor the conclusion that a dynamically detected
central dark object is a BH. M31 is the only galaxy for which
such arguments are based on HST observations. Similar con-
clusions for NGC 4258 and our Galaxy result from ground-
based observations. The present result is therefore an important
contribution of HST to the BH paradigm of AGNs. It increases
our confidence that all dynamically detected central dark ob-
jects in galaxies are BHs.
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APPENDIX

Peiris & Tremaine (2003) show that their eccentric disk model fitted to ground-based kinematic data also agrees remarkably well
with our STIS kinematic measurements of P1 and P2. The comparison includes not only V and � but also the parameters h3 and h4,
which measure the lowest order departures from Gaussian line profiles. The data that they use are presented here in Tables 4 and 5 and
Figures 19 and 20. We do not repeat their discussion. Instead, we focus on the generic properties of the LOSVDs. In particular, we
confirm an unusual property of the LOSVDs that directly implies aligned, eccentric orbits. This effect was seen and interpreted in
KB99, but it is much larger atHST spatial resolution. Since the effect was inherent in but not explicitly predicted by Tremaine (1995),
it is compelling evidence in favor of his model.

Figure 19 compares the FQ and FCQ reductions of the Ca infrared triplet spectra. The velocities are almost identical. The
dispersions agree where the higher order Gauss-Hermite coefficients are small and differ in the expected way when they are not.
Where FCQ measures an extended wing of the LOSVD in the prograde direction (h3 < 0 at r ’ �0B1), it finds a smaller dispersion
than FQ because FQ fits a Gaussian to the whole LOSVD, including wings. Similarly, where h4 > 0 at r ’ þ0B1, FCQ fits a broader
Gaussian than FQ and then clobbers the intermediate-velocity shoulders of the Gaussian with h4 to make the fitted LOSVD triangular.

Kinematic asymmetries inherent in an eccentric disk provided the basic test of that model in Tremaine (1995), KB99, and Peiris &
Tremaine (2003). We now know that the BH is in the blue nucleus P3 at r ¼ 0 in Figure 19. Stars in the eccentric disk linger at
apocenter to form P1; as a result, both the rotation amplitude Vj j and the velocity dispersion � are relatively small at r ’ þ0B5. Other
stars in the eccentric disk are passing pericenter slightly on the anti-P1 side of the BH; as a result, the rotation amplitude is large at
r ’ �0B2 in P2. The apparent velocity dispersion is highest at approximately the same radii because the slit and PSF average over stars
moving in a variety of directions as they swing around the BH. Figures 11 and 12 in Peiris & Tremaine (2003) show that their
nonaligned model accurately accounts for the asymmetric rotation and dispersion profiles.

TABLE 4

Kinematics of M31 Derived from the Red CaT Spectra with the Fourier Quotient Method

Radius

(arcsec)

V

(km s�1)

�V

(km s�1)

�

(km s�1)

��

(km s�1)

�1.075 ....................................... �177 14 130 15

�0.726 ....................................... �189 13 151 14

�0.474 ....................................... �244 13 179 14

�0.304 ....................................... �299 23 207 24

�0.230 ....................................... �319 32 274 35

�0.180 ....................................... �332 34 298 38

�0.130 ....................................... �276 36 345 39

�0.080 ....................................... �232 45 373 48

�0.005 ....................................... �118 23 247 25

0.070........................................... �52 28 221 31

0.120........................................... 0 22 195 23

0.170........................................... 32 23 220 26

0.220........................................... 84 21 182 23

0.270........................................... 108 14 174 15

0.320........................................... 140 15 186 17

0.396........................................... 175 10 146 11

0.495........................................... 207 8 131 8

0.595........................................... 192 7 122 8

0.694........................................... 200 7 117 8

0.794........................................... 200 7 104 8

0.894........................................... 185 9 103 11

0.994........................................... 178 11 111 13

1.094........................................... 156 10 91 12

1.262........................................... 175 11 99 13

1.513........................................... 147 19 108 23
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An important additional property of the LOSVDs (and the unusual one mentioned above) is the observation that h3 has the same
sign as V over a radius range of �r ’ 0B4 centered �0B1 on the anti-P1 side of P3. This effect was seen at ground-based spatial
resolution in KB99. It is much larger here. It is opposite to the normal behavior of rotating stellar systems, in which velocity projection
along the line of sight makes h3 antisymmetric with V (van der Marel et al. 1994; Bender et al. 1994). Also, the maximum amplitude,
h3 ’ �0:3, is unusually large compared to values in other galaxies. All this is easily seen in the LOSVDs (Fig. 20; radii �0B15 and
�0B10) as the broad wings on the�V side of the line centers. These wings tell us that, on the anti-P1 side of the P3, where the average
galactic rotation is toward us (V is negative in Fig. 20), many stars are rotatingmore rapidly and few stars are rotatingmore slowly than
the mean rotation velocity averaged within the PSF.

TABLE 5

Kinematics of M31 Derived from the Red CaT Spectra with the Fourier Correlation Quotient Method

Radius

(arcsec)

V

(km s�1)

�V

(km s�1)

�

(km s�1)

��

(km s�1) h3 �h3 h4 �h4

�1.390 ......... �130.8 11.7 135.4 10.6 0.040 0.079 �0.092 0.079

�1.023 ......... �189.6 11.0 140.0 11.6 0.056 0.072 �0.043 0.072

�0.776 ......... �192.2 8.3 144.2 10.2 0.110 0.053 0.013 0.053

�0.578 ......... �217.0 11.2 188.7 11.8 0.037 0.054 �0.046 0.054

�0.401 ......... �267.2 7.2 168.3 7.1 0.168 0.039 �0.070 0.039

�0.254 ......... �316.4 12.7 240.2 12.2 0.082 0.048 �0.074 0.048

�0.180 ......... �313.6 14.4 279.6 15.5 �0.089 0.047 �0.035 0.047

�0.130 ......... �247.9 16.3 296.5 22.1 �0.188 0.050 0.060 0.050

�0.080 ......... �181.4 16.1 300.7 23.1 �0.264 0.049 0.084 0.049

�0.030 ......... �137.6 14.5 273.7 18.2 �0.147 0.048 0.026 0.048

0.020............. �99.0 13.0 263.9 17.3 �0.156 0.045 0.051 0.045

0.070............. �59.6 15.6 286.1 27.5 �0.061 0.050 0.194 0.050

0.120............. �4.8 12.6 226.0 21.5 �0.072 0.051 0.176 0.051

0.170............. 36.0 13.0 231.1 18.4 �0.001 0.051 0.079 0.051

0.246............. 96.2 8.4 184.9 11.5 0.009 0.041 0.062 0.041

0.346............. 152.2 7.0 170.3 8.2 �0.042 0.038 �0.007 0.038

0.446............. 198.2 4.8 143.3 5.7 �0.075 0.031 �0.002 0.031

0.592............. 203.6 3.5 126.1 3.9 �0.072 0.025 �0.021 0.025

0.788............. 199.2 3.5 109.2 3.8 �0.016 0.029 �0.029 0.029

0.989............. 185.5 5.7 117.0 6.1 �0.185 0.045 �0.037 0.045

1.213............. 173.6 5.9 103.1 8.2 0.014 0.052 0.075 0.052

1.569............. 140.3 7.0 108.7 12.5 �0.379 0.059 0.221 0.059

Fig. 19.—Red filled circles: Rotation velocity V, velocity dispersion �, and Gauss-Hermite parameters h3 and h4 as a function of radius as derived with FCQ from the
red spectrum of the nucleus of M31. Blue filled circles: FQ results from Fig. 2.
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Our interpretation is the same as in KB99. The velocity dispersion is expected to look big near pericenter in the eccentric disk
because the slit and PSF integrate over stars that are at different positions along orbits that are rapidly turning around the BH. A
prograde LOSVD wing follows naturally if there are many stars still closer to the BH and if they also are in eccentric orbits with
apocenters that point toward P1. In the almost Keplerian potential of the BH, these stars have larger pericenter velocities than themean
V farther out; in fact, their velocities should be larger than the local circular velocity. Consistent with this interpretation, the LOSVD
asymmetry is most obvious at r ¼ �0B05 to �0B15, i.e., at slightly more than one PSF radius on the anti-P1 side of P3. The highest
velocities reach �1000 km s�1, indeed somewhat larger than what we measure at about the same location for the PSF-blurred
velocities of the blue stars in P3. Of course, this explanation only works if the BH is embedded in P3.

The fact that we can understand naturally an observation not predicted by Tremaine (1995) increases our confidence in his model.
With improved disk parameters, Peiris & Tremaine (2003, see Figs. 13 and 14) accurately predict the h3 and h4 profiles near the BH. At
this point, there seems little doubt that the interpretation of the double nucleus as an eccentric disk is correct and that its main
parameters have been determined. The important next step is self-consistent dynamical models to investigate whether the present
configuration can be long lived (e.g., Statler et al. 1999; Statler 1999; Bacon et al. 2001; Salow & Statler 2004). A larger BH mass, as
estimated here, will likely help to construct more long-lived models. Beyond that, the origin of the eccentric disk remains essentially
unknown.
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Lelièvre, G. 1986, A&A, 165, 189

Peiris, H. V., & Tremaine, S. 2003, ApJ, 599, 237
Pickles, A. J. 1998, PASP, 110, 863
Rich, R. M., Mighell, K. J., Neill, J. D., & Freedman, W. L. 1996, in
New Extragalactic Perspectives in the New South Africa, ed. D. L. Block &
J. M. Greenberg (Dordrecht: Kluwer), 325

Richstone, D., Bower, G., & Dressler, A. 1990, ApJ, 353, 118
Salow, R. M., & Statler, T. S. 2001, ApJ, 551, L49
———. 2004, ApJ, 611, 245
Salpeter, E. E. 1955, ApJ, 121, 161
Sambhus, N., & Sridhar, S. 2002, A&A, 388, 766
Sanders, R. H. 1998, MNRAS, 294, 35
Schmidt, M. 1959, ApJ, 129, 243
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