
Similarity Search and Data

Mining Techniques for

Advanced Database Systems.

Dissertation im Fach Informatik
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Alexey Pryakhin

Tag der Einreichung: 24.11.2006
Tag der mündlichen Prüfung: 21.12.2006

Berichterstatter:
Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Daniel A. Keim, Universität Konstanz

ii

Acknowledgement

I would like to express my warmest gratitude to all the people who supported

me during the past three years while I have been working on this thesis. I

avail myself of the opportunity to thank them, even if I cannot mention all

of their names here.

First of all, I would like to express my warmest and sincerest thanks to my

supervisor, Professor Dr. Hans-Peter Kriegel, who provided the productive

and inspiring environment and created a great working atmosphere within

our group. I warmly thank Professor Dr. Daniel Keim for his immediate

willingness to act as a second referee for my thesis.

This work could not have grown and matured without the discussions with

my colleagues in the database research group. In particular, I would like to

give my thanks to Elke Achtert, Johannes Aßfalg, Karsten Borgwardt, Pro-

fessor Dr. Christian Böhm, Stefan Brecheisen, Dr. Karin Kailing, Dr. Peer

Kröger, Peter Kunath, Dr. Matthias Schubert, Matthias Renz, Arthur Zimek

for their help, support, interesting hints, constructive and productive team-

work. Furthermore, I want to thank Alexander Harhurin, Otmar Hilliges,

Florian Vorberger for other fruitful multidisciplinary discussions about soft-

ware engineering, similarity of multimedia objects, and music genres which

were useful for this work. Last, but not least, I had the pleasure to supervise

and to work with several students who supported my work and who have

been beneficial for this work. In particular, I would like to mention here

Oleg Galimov, Franz Graf, Michael Gruber, Georg Straub, Michael Kats,

Sergey Wetzstein, Andrew Zherdin, and Karina Zöhrer.

iii

iv

I would like to express my deep appreciations to Susanne Grienberger.

Besides bearing much of the administrative burdens for me, she helped me

a lot by carefully reading the thesis, and by polishing the English. I wish

to specially thank Franz Krojer for taking care of our hard- and software

environment and for his invaluable technical hints that allowed me to save a

lot of time during experimental evaluation.

I owe special thanks to my wife Anna for her love, care, and patience

during the period of my PhD thesis. Without her encouragement and un-

derstanding, it would have been impossible for me to complete this work. I

would also like to thank the rest of my family and my friends.

Alexey Pryakhin

Munich, October 2006.

Abstract

Modern automated methods for measurement, collection, and analysis of

data in industry and science are providing more and more data with drasti-

cally increasing structure complexity. On the one hand, this growing com-

plexity is justified by the need for a richer and more precise description of

real-world objects, on the other hand it is justified by the rapid progress

in measurement and analysis techniques that allow the user a versatile ex-

ploration of objects. In order to manage the huge volume of such complex

data, advanced database systems are employed. In contrast to conventional

database systems that support exact match queries, the user of these ad-

vanced database systems focuses on applying similarity search and data min-

ing techniques.

Based on an analysis of typical advanced database systems — such as

biometrical, biological, multimedia, moving, and CAD-object database sys-

tems — the following three challenging characteristics of complexity are de-

tected: uncertainty (probabilistic feature vectors), multiple instances (a set

of homogeneous feature vectors), and multiple representations (a set of het-

erogeneous feature vectors). Therefore, the goal of this thesis is to develop

similarity search and data mining techniques that are capable of handling

uncertain, multi-instance, and multi-represented objects.

The first part of this thesis deals with similarity search techniques. Ob-

ject identification is a similarity search technique that is typically used for

the recognition of objects from image, video, or audio data. Thus, we develop

a novel probabilistic model for object identification. Based on it, two novel

types of identification queries are defined. In order to process the novel query

v

vi 0 Abstract

types efficiently, we introduce an index structure called Gauss-tree. In addi-

tion, we specify further probabilistic models and query types for uncertain

multi-instance objects and uncertain spatial objects. Based on the index

structure, we develop algorithms for an efficient processing of these query

types. Practical benefits of using probabilistic feature vectors are demon-

strated on a real-world application for video similarity search. Furthermore,

a similarity search technique is presented that is based on aggregated multi-

instance objects, and that is suitable for video similarity search. This tech-

nique takes multiple representations into account in order to achieve better

effectiveness.

The second part of this thesis deals with two major data mining tech-

niques: clustering and classification. Since privacy preservation is a very

important demand of distributed advanced applications, we propose using

uncertainty for data obfuscation in order to provide privacy preservation dur-

ing clustering. Furthermore, a model-based and a density-based clustering

method for multi-instance objects are developed. Afterwards, original exten-

sions and enhancements of the density-based clustering algorithms DBSCAN

and OPTICS for handling multi-represented objects are introduced. Since

several advanced database systems like biological or multimedia database

systems handle predefined, very large class systems, two novel classification

techniques for large class sets that benefit from using multiple representa-

tions are defined. The first classification method is based on the idea of

a k-nearest-neighbor classifier. It employs a novel density-based technique

to reduce training instances and exploits the entropy impurity of the lo-

cal neighborhood in order to weight a given representation. The second

technique addresses hierarchically-organized class systems. It uses a novel

hierarchical, supervised method for the reduction of large multi-instance ob-

jects, e.g. audio or video, and applies support vector machines for efficient

hierarchical classification of multi-represented objects. User benefits of this

technique are demonstrated by a prototype that performs a classification of

large music collections.

The effectiveness and efficiency of all proposed techniques are discussed

and verified by comparison with conventional approaches in versatile exper-

vii

imental evaluations on real-world datasets.

viii 0 Abstract

Zusammenfassung

Moderne Methoden zur automatischen Sammlung, Messung und Analyse

von Daten in allen Bereichen der Industrie und Forschung liefern immer

mehr Daten, deren Struktur darüber hinaus eine zunehmende Komplexität

aufweist. Diese Komplexitätszunahme ist durch die folgenden zwei Aspekte

begründet: erstens der Bedarf an präziseren Beschreibungen von Objekten

der realen Welt, zweitens durch einen rapiden Fortschritt in Mess- und Analy-

setechniken, die eine vielseitigere Untersuchung von Objekten ermöglichen.

Um sehr große Mengen solcher komplexen Objekte zu verwalten, werden

hochentwickelte Datenbanksysteme eingesetzt. Im Gegensatz zu herkömm-

lichen Datenbanksystemen, die exakte Anfragen auf Objekten bearbeiten,

konzentrieren sich die Benutzer von hochentwickelten Datenbanksystemen

auf Ähnlichkeitssuche und Data Mining.

Ausgehend von einer Analyse der typischen hochentwickelten Datenbank-

systeme, die biometrische, biologische, mobile, Multimedia- und CAD-Objek-

te verwalten, werden die folgenden drei grundlegenden Charakteristika fest-

gestellt: Unsicherheit (probabilistische Merkmalsvektoren), multiple Instanz-

en (Mengen von homogenen Merkmalsvektoren) und multiple Repräsenta-

tionen (Mengen von heterogenen Merkmalsvektoren). Das Ziel dieser Dok-

torarbeit ist, Methoden für Ähnlichkeitssuche und Data Mining zu entwickeln,

die mit unsicheren, multiinstantiierten und multirepräsentierten Objekten

arbeiten können.

Der erste Teil der Arbeit beschäftigt sich mit Methoden der Ähnlichkeits-

suche. Objektidentifizierung, wie z.B. Personenidentifizierung anhand von

biometrischen Merkmalen, ist eine Methode der Ähnlichkeitssuche, die typ-

ix

x 0 Zusammenfassung

ischerweise zur Erkennung von Objekten in Bild-, Video- und Audiodaten

eingesetzt wird. Wir entwickeln ein neues Wahrscheinlichkeitsmodell für

Objektidentifizierung, das zwei neuartige Typen von Anfragen unterstützt.

Zur effizienteren Bearbeitung dieser neuartigen Anfragetypen wird eine In-

dexstruktur eingeführt. Zusätzlich werden weitere Wahrscheinlichkeitsmod-

elle sowie Anfragetypen für probabilistische Multiinstanzobjekte und für pro-

babilistische Beschreibungen von räumlichen Objekten spezifiziert. Unter

Benutzung der Indexstruktur werden Algorithmen vorgestellt, die eine ef-

fiziente Bearbeitung dieser Anfragetypen erlauben. Die Praxisrelevanz von

probabilistischen Objektbeschreibungen wird in einer realen Anwendung zur

Ähnlichkeitssuche auf Videos demonstriert. Des Weiteren wird eine neue

Technik vorgeschlagen, die aggregierte Multiinstanzobjekte verwendet und

z.B. für die Ähnlichkeitssuche auf Videos geeignet ist. Dabei werden mul-

tiple Repräsentationen eines Objektes betrachtet, um die Effektivität der

Suche zu erhöhen.

Der zweite Teil der Arbeit befasst sich mit zwei wichtigen Data Mining

Techniken: Clustering und Klassifikation. Da die hochentwickelten Daten-

banksysteme häufig in verteilten Umgebungen agieren, schlagen wir vor,

durch den Einsatz von unsicheren Beschreibungen die Verschleierung der

exakten Daten zu erreichen, um den Datenschutz beim Clustering zu ge-

währleisten. Um Multiinstanzobjekte zu clustern, wird ein modellbasiertes

und ein dichtebasiertes Verfahren entwickelt. Des Weiteren behandelt die

Arbeit zwei neue dichtebasierte Clusteringverfahren, die dichtebasierte Al-

gorithmen um die Verarbeitung von multirepräsentierten Objekten erweit-

ern. Zahlreiche hochentwickelte Datenbanksysteme im Molekularbiologie-

oder Multimediabereich arbeiten mit bereits vordefinierten Klassensystemen

oder Klassenhierarchien, die eine große Klassenanzahl aufweisen. Um mit

solch hohen Klassenanzahlen und multiplen Repräsentationen effizient und

effektiv umgehen zu können, entwickeln wir zwei neuartige Klassifikationsver-

fahren. Ausgehend von der Idee eines k-Nächsten-Nachbarn-Klassifikators

wird eine neue dichtebasierte Technik zur Reduktion der Trainingsdaten erar-

beitet. Außerdem wird eine Methode definiert, die Repräsentationen anhand

der lokalen Entropie gewichtet und kombiniert. Das zweite, auf Klassen-

xi

hierarchien agierende Klassifikationsverfahren verwendet eine neue Methode

zur Reduktion großer Multiinstanzobjekte, wie z.B. bei Audiodaten, und

setzt Support-Vektor-Maschinen für die Klassifikation ein. Die praktischen

Vorteile dieser Methode werden an einem Prototyp für Klassifikation von

großen Musiksammlungen demonstriert.

Effizienz und Effektivität aller vorgeschlagenen Verfahren werden aus-

führlich diskutiert und durch experimentelle Vergleiche mit herkömmlichen

Methoden auf Daten aus realen Anwendungen verifiziert.

xii 0 Zusammenfassung

Contents

Acknowledgement iv

Abstract v

Zusammenfassung ix

I Preliminaries 1

1 Introduction 3

1.1 Advanced Database Systems 6

1.1.1 Biometric Database Systems 6

1.1.2 Moving Object Database Systems 8

1.1.3 Sensor Network Database Systems 9

1.1.4 Biological Database Systems 10

1.1.5 Database Systems for CAD-Data 12

1.1.6 Multimedia Database Systems 12

1.1.7 Database Systems for Web Data 14

1.1.8 Distributed Data . 15

1.2 Similarity Search . 16

1.3 Data Mining . 18

xiii

xiv CONTENTS

1.4 Advanced Database Systems: Challenges for Similarity Search

and Data Mining Techniques 22

1.5 Outline of the Thesis . 24

2 Related Work 33

2.1 Similarity Search . 33

2.1.1 Similarity Search based on Feature Vectors 33

2.1.2 Similarity Search based on Probabilistic Feature Vectors 34

2.1.3 Similarity Search based on Multiple Representations . . 35

2.1.4 Similarity Search based on Multiple Instances 37

2.1.5 Summarization Techniques 39

2.2 Data Mining . 41

2.2.1 Basic Clustering Approaches 41

2.2.2 Classification and Clustering of Multi-Represented Ob-

jects . 45

2.2.3 Classification and Clustering of Multi-Instance Objects 47

2.2.4 Evaluation Techniques 48

II Similarity Search Techniques 49

3 Efficient Object Identification 51

3.1 Introduction . 51

3.2 Related Work . 53

3.3 The Gaussian Uncertainty Model for Identification Task . . . 55

3.3.1 Probabilistic Feature Vectors 55

3.3.2 Queries on a database of probabilistic feature vectors . 56

3.4 Processing of Identification Queries 59

3.5 The Gauss-Tree . 63

CONTENTS xv

3.5.1 Structure of the Gauss-Tree 64

3.5.2 Query Processing . 65

3.5.3 k-Most-Likely Identification Query (k-MLIQ) 69

3.5.4 Determining the Result Probability for k-MLIQ 71

3.5.5 Threshold Identification Queries (TIQs) 72

3.5.6 Tree Construction . 72

3.6 Experimental Evaluation . 76

3.7 Conclusions . 80

4 High Performance Video Retrieval using Probabilistic Fea-

ture Vectors 81

4.1 Introduction . 82

4.2 Related Work . 85

4.3 Video Retrieval using Probabilistic Feature Vectors 86

4.4 Indexing Summarized Videos 90

4.4.1 Answering Set-Valued Queries 91

4.4.2 Set-Valued Probabilistic Threshold Query 95

4.4.3 Set-Valued Probabilistic Ranking Query 97

4.5 Experimental Evaluation . 99

4.6 ProVeR: Probabilistic Video Retrieval using the Gauss-Tree . 103

4.6.1 System Architecture and Implementation 103

4.6.2 Practical Benefits . 105

4.7 Conclusions . 106

5 Probabilistic Ranking Queries for Spatial Database Systems107

5.1 Introduction . 108

5.2 Related Work . 110

5.3 Spatial Uncertainty Model and Query Types 111

xvi CONTENTS

5.3.1 Gaussian Uncertainty Model 111

5.3.2 Spatial Queries on the Gaussian Uncertainty Model . . 112

5.4 Processing Spatial Probabilistic Queries 114

5.5 Efficient Query Processing using the Gauss-Tree 116

5.6 Experimental Evaluation . 119

5.7 Conclusions . 123

6 Effective Similarity Search in Multimedia Databases using

Multiple Representations 125

6.1 Introduction . 126

6.2 Related Work . 127

6.3 Multi-Represented Similarity Search in Multimedia Databases 128

6.3.1 Weighting Functions for Summarizations 129

6.3.2 Combining Multiple Representations for Similarity De-

tection . 135

6.4 Experimental Evaluation . 137

6.4.1 Multi-Represented vs. Uni-Represented Similarity Search138

6.4.2 Multi-Represented Similarity Search Applications . . . 139

6.5 Conclusions . 140

III Data Mining Techniques 143

7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering 145

7.1 Introduction . 146

7.2 Related Work . 147

7.3 Distributed Model-based Clustering 149

7.3.1 Problem Analysis . 149

CONTENTS xvii

7.3.2 Computation of Local Models 151

7.3.3 Computation of the Global Model 154

7.3.4 Scaling to High Dimensional Datasets 157

7.4 Experimental Evaluation . 159

7.5 Conclusions . 162

8 An EM-Approach for Clustering Multi-Instance Objects 163

8.1 Introduction . 164

8.2 Related Work . 164

8.3 A Statistical Model for Multi-Instance Objects 165

8.4 EM-Clustering for Multi-Instance Objects 168

8.4.1 Generating a Mixture Model for the Instance Set . . . 168

8.4.2 Finding a Start Partitioning of Multi-Instance Objects 169

8.4.3 EM for Clustering Multi-Instance Objects 170

8.5 Experimental Evaluation . 171

8.6 Conclusions . 174

9 Conceptually Specified Multi-Instance Clusters 177

9.1 Introduction . 178

9.2 Related Work . 182

9.3 Preliminaries . 184

9.4 COSMIC . 188

9.4.1 Deriving a Concept Hierarchy 188

9.4.2 Deriving Attributes and Concepts 193

9.5 Experimental Evaluation . 198

9.5.1 Experiments on Synthetic Datasets 198

9.5.2 Experiments on Real-World Datasets 200

9.6 Conclusions . 205

xviii CONTENTS

10 Density-based Clustering of Multi-Represented Objects 207

10.1 Introduction . 208

10.2 Related Work . 210

10.3 Clustering of Multi-Represented Objects with Noise 210

10.3.1 Union of Multiple Representations 212

10.3.2 Intersection of Multiple Representations 213

10.4 Handling Semantics . 214

10.4.1 A Model for Local Semantics 215

10.4.2 Combining Multiple Representations 218

10.5 Hierarchical Clustering of Multi-Represented Objects 220

10.5.1 Normalization . 220

10.5.2 Multi-Represented OPTICS 220

10.6 Performance Evaluation . 223

10.6.1 Multi-Represented DBSCAN 226

10.6.2 Multi-Represented OPTICS 228

10.7 Conclusions . 232

11 Multi-Represented kNN-Classification 233

11.1 Introduction . 233

11.2 Related Work . 235

11.3 kNN-Classification of Complex Objects 237

11.3.1 Problem Definition . 238

11.3.2 Density-based Training Instance Reduction 238

11.3.3 kNN-Classification of Multi-Represented objects 241

11.4 Experimental Evaluation . 243

11.5 Conclusions . 247

12 Hierarchical Genre Classification for Large Music Collections

CONTENTS xix

using Multiple Representations 249

12.1 Introduction . 250

12.2 Related Work . 251

12.3 Efficient Hierarchical Genre Classification 253

12.3.1 Hierarchical Instance Reduction. 254

12.3.2 Hierarchical Genre Classification by Using Multiple Rep-

resentations. 255

12.4 Experimental Evaluation . 257

12.5 Practical Benefits . 259

12.6 Conclusions . 260

IV Conclusions 261

13 Summary of Contributions 263

13.1 Preliminaries (Part I) . 263

13.2 Similarity Search Techniques (Part II) 264

13.3 Data Mining Techniques (Part III) 267

14 Future Work 271

List of Figures 277

List of Tables 280

References 281

xx CONTENTS

Part I

Preliminaries

1

Chapter 1

Introduction

Database systems have evolved from specialized computer applications to

a central component of each modern computing environment. A database

system is a system that describes, stores, and retrieves large amount of data.

It consists of a database management system and a database. A database is

defined as the collection of all stored data. A database management system is

piece of software that controls accesses to a database. Moreover, it manages

and updates a given database. Nowadays, database systems are employed

for applications ranging from multimedia data management and location

based services to computer aided design and science exploration. This broad

use of database systems is a result of the natural evolution of information

technology. The evolutionary path of the database functionalities can be

divided into the following steps, illustrated in Figure 1.1: data collection

and database creation, data management, advanced databases, and advanced

data analysis (cf. [HK06]).

As illustrated in Figure 1.1, the database technology has evolved from

primitive file processing to powerful database systems. Research and devel-

opment efforts in databases from the 70s to the 80s have led from early hier-

archical and network databases to the creation of widely accepted relational

3

4 1 Introduction

Data Collection and Database Creation
(1960s and earlier)

Primitive file processing

Database Management Systems
(1970s-early 1980s)

Hierarchical and network database systems
Relational database systems
Data modeling tools: entity-relational models, etc.
Indexing and accessing methods: B-trees, hashing, etc.
Query languages: SQL, etc.
User interfaces, forms and reports
Query processing and query optimization
Transactions, concurrency control and recovery
On-line transaction processing (OLTP)

Advanced Data Analysis: Data
Warehousing and Data Mining
(late 1980s-present)

Data warehouse and OLTP
Data mining and knowledge
discovery: clustering,
classification, generalization,
association, frequent pattern
and structured pattern analysis,
outlier analysis, trend and
deviation analysis, etc.
Advanced data mining
applications: stream data mining,
bio-data mining, time-series
analysis, text mining, Web
mining, intrusion detection, etc.
Data mining and society:
privacy-preserving data mining

Advanced Database
Systems
(mid-1980s-present)

Advanced data
models: extended
relational,
object-relational,
etc.
Advanced
applications:
spatial, temporal,
multimedia, active,
stream, and sensor,
scientific and
engineering,
knowledge-based,
etc.

Web-based
Databases
(1990s-present)

XML-based
database systems
Integration with
information
retrieval
Data and
information
integration

New Generation of Integrated Data
and Information Systems (present-future)

Figure 1.1: The evolutionary phases of database technology (cf. [HK06]).

5

technology, efficient query processing, and transaction management. Since

the mid-80s, database technology has created various data models such as ex-

tended relational, object-oriented, object-relational, and deductive models.

Based on these sophisticated data models, a broad variety of application-

oriented database systems — advanced database systems — have been de-

veloped. These advanced database systems include among others biometric,

biological, spatial, temporal, multimedia, active, stream, sensor, scientific

and engineering database and information systems for decision support and

business intelligence. With the development of Internet-based global infor-

mation systems, the role of distribution and data-sharing in database systems

gets more and more important.

The advanced database systems require novel, application-oriented tech-

niques for efficient storage, retrieval and management of large amounts of

data. Furthermore, the rapidly growing, tremendous amount of data exceeds

human ability to comprehend, overview and analyze the complex informa-

tion stored in the advanced databases. As a result, similarity search and

data mining techniques have become more and more popular in the past

decade. In contrast to conventional exact-match queries usual for traditional

database systems, similarity search finds data objects that differ only slightly

from the given query object. “Data Mining refers to extracting or “mining”

knowledge from large amounts of data”[HK06]. Alternatively, data mining

can be seen as a step or a phase in the process of knowledge discovery as

discussed below in Section 2.

The remainder of this chapter is organized as follows. First, we consider

in Section 1.1 several advanced database systems and characteristics of data

objects that are typical for these database systems from the application point

of view. Section 1.2 and Section 1.3 introduce basics of similarity search and

data mining techniques. Based on the demands of the advanced database

systems, we elaborate in Section 1.4 the new challenges for similarity search

and data mining techniques for advanced database systems.

6 1 Introduction

1.1 Advanced Database Systems

This section aims at surveying database systems that have been established

for advanced applications in the past decade. Furthermore, this section spec-

ifies several characteristics that are often required in these advanced database

systems.

1.1.1 Biometric Database Systems

In recent years, biometrics has gained in importance enormously. Biometrics

employs physiological or behavioral characteristics of a person in order to

verify an identity. It distinguishes two major types of identification: phys-

iological and behavioral. Physiological identification considers unique body

characteristics such as the features of the iris, fingerprints, size and shape

of a hand or a facial scan. Behavioral identification uses unique traits such

as keystroke, a person’s signature, and a voice scan. The major biometric

technologies that are used nowadays are facial scan, finger scan, iris scan,

hand scan, voice scan, retina scan, and signature scan (cf. [Deb04]).

Face recognition is one of the most widely applied technologies in person

identification. Face recognition is broadly used in human-computer interfaces

or in applications related to security, e.g. surveillance applications produce

video sequences on which face identification is employed (cf. [Deb04]). Rea-

sons for this broad usage are the availability of feasible technologies and the

wide range of commercial and law enforcement applications.

Figure 1.2 illustrates a typical system architecture of a generic face recog-

nition system using geometrical facial features (cf. [Deb05]). The input is a

video stream that is captured by using a video camera. The output of the

video capturing unit is later used by the face detection module where the

position of a face is localized. In the next phase, facial features, e.g. width

1.1 Advanced Database Systems 7

input
video
stream

video
capturing
unit

facial
feature
extraction

face
detection

1 2 3 4
5
67 8
910 12
11

13

14

15 16

17 18

19 20
21

22

identification
query

DBS

Figure 1.2: Face identification from video sequences.

of nose and depth of eye sockets, are extracted. The extraction of these fea-

tures is based on feature points on the human face as depicted in Figure 1.2,

e.g. left corner of the left eyebrow (point 1), left corner of the right eyebrow

(point 3) and tip of the nose (point 6). Based on those facial feature val-

ues, an identification query can be performed according to the maintained

database. Though several techniques for face recognition have been proposed

recently, e.g. approaches using so-called “eigenfaces”, local face features or

line-based face recognition methods, it seems that techniques based on geo-

metrical features provide the best accuracy of face recognition. This is shown

in comparison to different approaches in [Deb04].

Although, the information extracted from facial images or even videos is

very useful for person identification, the feature values are quite uncertain.

This uncertainty can be individual for each feature and for each observed

object. For instance, in a forensic image database some images may be taken

under very controlled conditions while others are not, e.g. some images might

be captured from a video of the surveillance camera at an airport. Depending

on illumination aspect, pose, angle and distance to the camera or partial

occlusion, some features may be measured with a varying degree of exactness.

One further aspect influencing the exactness of measured feature values is

the fact that a person changes appearance through aging, shaving a beard,

8 1 Introduction

consequences of a trauma, wearing glasses or simply through mood swings.

Therefore, the use of biometrical features corresponds to dealing with the

individual uncertainty of features and objects.

To sum up, the data objects stored in biometrical databases have two

challenging characteristics. First, data objects are represented by feature

vectors with a varying degree of exactness. Second, an individual can be de-

scribed by different kind of features like face, fingerprint, and voice features,

i.e. multiple representations of the same object are available.

1.1.2 Moving Object Database Systems

In the last decade, rapid progress in wireless technology and miniaturiza-

tion of computing devices has led to a broad usage of mobile computers

instead of stationary desktops. Advances in mobile computer technology

enable a wide range of novel applications like location-based services, mo-

bile electronic commerce, tourist services and the digital battlefield. Several

existing application types that will benefit from the development of mobile

computer technology are transportation and traffic control, weather forecast-

ing, emergency response and mobile resource management, cf. [MPV05] for

more information. The key technique for all of the mentioned applications

is the location management or the management of transient location infor-

mation. The task of a moving object database system is the storage and

management of location as well as other dynamic information about moving

objects [MPV05].

In order to record the position of a moving object, the Global Positioning

System (GPS) is typically used. More specially, GPS and telecommunica-

tion technologies sample the object position, i.e. the position is obtained at

discrete time instances such as every two minutes. Figure 1.3(a) illustrates

an example for GPS deployment in location based services. The accuracy

of query results in moving object databases is conditioned by uncertainty

1.1 Advanced Database Systems 9

(a) Global Positioning System (GPS) and

location-based services.

(b) Positional probability: the mea-

surement error of a typical GPS mod-

ule corresponds to a bivariate normal

distribution.

Figure 1.3: Positional uncertainty in Global Positioning System (GPS).

caused by the measurement process in the sampling of positions. The er-

ror in a positional GPS measurement can be described by the bivariate

Gaussian distribution, centered at the receiver’s true antenna position as

described in [PJ99]. The positional measurement error of a typical GPS

module used in vehicle navigation systems is shown in Figure 1.3(b). More

information about uncertainty in moving object databases can be found in

[MPV05, PJ99, TWZC02].

To summarize, usually the accuracy of query results in moving object

databases depends on spatial uncertainty in data. Conditioned by properties

of GPS modules, this uncertainty can be described by a two-dimensional

Gaussian distribution, centered at the true antenna position.

1.1.3 Sensor Network Database Systems

Recently, sensor networks are being used more and more frequently because

of the rapid progress in sensor technologies. Sensors at multiple physical

locations are employed in advanced applications such as environmental mon-

itoring, weather prediction, process monitoring, medical monitoring, network

10 1 Introduction

Figure 1.4: Uncertainty in sensor network databases caused by measure-

ment error and transfer of a measured value after a certain time period has

passed.

traffic flow controlling, flood prediction, and seismic detection. For instance,

sensor networks in environmental monitoring collect data like temperature,

noise level or CO2 emissions, cf. Figure 1.4. Usually, the sensors send the

collected information back to a database and due to bandwidth, power and

storage limitations the exact values may only be obtained in certain time

intervals. Again, if a query is posed at a time when the last exact value

was recorded some time ago, the object value would become uncertain. The

second factor causing uncertainty are measurement errors corresponding to

physical properties of a given device. These measurement errors are usually

modeled by a normal distribution, see e.g. [Zhu05].

1.1.4 Biological Database Systems

The huge volume and data-driven nature of modern experimental biology

has led to a vast amount of databases that contain genomes, protein, and

gene expression data. Because of the data driven character of modern bi-

ological research methods, researchers often retrieve or analyze information

from these huge databases. The information is based on one or several as-

pects like annotation in textual form, amino acid sequence or 3D shape of a

protein. Furthermore, bio-molecules are very complex objects according to

1.1 Advanced Database Systems 11

3D structure:

Bio-Data

Retrieval
and

Analysis

The shape of a bio-molecule has
multiple spatial conformations

rotated bond

Multiple aspects: Multiple feature
extraction methods:

MDYQVSSPTYIDYDTSEPCINVKQI
AARLLPPLYSLVFIFGFVGNMLVILI
NCKR ……

amino acid sequence:

textual annotation:
BINDS TO MIP-1-ALPHA, MIP-1-BETA
AND RANTES AND SUBSEQUENTLY
TRANSDUCES A SIGNAL BY …

molecule
surface

Figure 1.5: Retrieval and analysis in biological databases w.r.t. multiple

characteristics and spatial conformations of bio-molecules.

their structure or their physical and chemical attributes. The more complex

a data object is the more feature extraction methods exist that can be used

to map the object to a representation suitable for data retrieval or analy-

sis. As an example, the 3D shape of a bio-molecule can be described by

volume, surface properties or features of 2D projections. Last but not least,

bio-molecules are analyzed more precisely with respect to all of their possible

spatial conformations [DLLP97a]. Bio-molecules may have different spatial

conformations because they can adopt multiple shapes through rotation of

their internal bonds as illustrated in Figure 1.5. Every angle combination of

the rotatable bonds of a bio-molecule defines a spatial conformation.

We can summarize the challenging properties of biological databases as

follows. First, there are different kinds of descriptions for the same biological

object because of existing different aspects like a textual annotation or a se-

quence of amino acids, and using different feature transformation techniques

like extraction of surface- or volume-oriented attributes for 3D structure.

Second, a bio-molecule can be described by a set of feature vectors modeling

different spatial conformations.

12 1 Introduction

1.1.5 Database Systems for CAD-Data

In automotive and aerospace applications, a huge number of technical doc-

uments are generated during the development of complex engineering prod-

ucts. In order to support the development process, Computer Aided Design

(CAD) is typically applied from the very first design to the final product. The

demand for managing terabytes of data leads to the usage of database sys-

tems for CAD data management. To retrieve and analyze CAD-data, each

object is usually mapped to a feature vector. There are several methods

that extract feature values from 3-dimensional CAD-objects, e.g. [BKS+05a]

gives an overview of these feature extraction methods. In CAD-catalogues,

the parts are represented by some kind of 3D model like Bezier curves, vox-

els, polygon meshes, and additional textual information like descriptions of

technical and economical key data. Furthermore, CAD-parts are usually de-

composed into a set of spatial primitives — so-called covers — as described

in [BKK+03]. The reasons for this decomposition are as follows: (1) Descrip-

tion of a CAD-object as a set of vectors is a generalization of the use of just

one large feature vector. (2) The use of more sophisticated ways to model

data can enhance both the effectiveness and the efficiency of applications

using large amounts of data.

To summarize, we observe two frequent properties of CAD-data. First,

an object is often given by multiple representations. Second, an object is

modeled in a more natural and intuitive manner by taking a set of feature

vectors into account.

1.1.6 Multimedia Database Systems

With the rapid development of digital technologies, computer networks and

the Internet, the amount of multimedia data is growing enormously. One

reason is that digital images, videos and pieces of music are easily copied and

1.1 Advanced Database Systems 13

distributed. Thus, multimedia database systems (MMDBS) are employed in

order to store such image, audio and video data. The typical fields for the

usage of multimedia databases are content-based retrieval, video on demand

systems, and speech or appearance based identification of individuals.

Multimedia objects like video clips or pieces of music can be considered as

a sequence of scenes. If the order of the scenes is irrelevant, the multimedia

object is represented by a set of scene descriptors. An example for such

a setting is the clustering of news clips taken from different TV stations.

Though, the order of the news might be varying, all stations will broadcast

similar scenes of the current top stories.

Multimedia data such as movies can usually be viewed as objects with

different kinds of descriptions, i.e. for each object there are multiple repre-

sentations modeling different features of the object. For example, for music

videos, we can collect audio features, such as pitch [TK00] or rhythm [TC02],

and video features, such as color histograms or textures [AY99] as illustrated

in Figure 1.6. Each of these multiple representations models a different aspect

of a music video. Furthermore, the existence of different feature extraction

techniques, like color and texture features, leads to the creation of multiple

representations in multimedia object descriptions.

Unlike the traditional database systems which perform exact matches

between the stored data and the query parameters, the MMDBS needs to

handle the uncertain data and queries [CKG02]. The uncertainty is caused by

the demand to consider high level or semantical features (cf. [CKG02, SN05]

for details) in order to guarantee effectiveness in the retrieval of multime-

dia data, e.g. [Deb05] describes the usage of face detection and recognition

techniques in order to calculate a compact description of video data. The un-

certainty of describing and querying objects in MMDBS is also determined by

the fact that the meaning of multimedia content is very often context sensi-

tive. Furthermore, multimedia objects are usually audiovisual and, therefore,

14 1 Introduction

DBS
capturing

unit
feature

extraction

query by
humming

query by
example

Figure 1.6: Feature extraction and query performing in multimedia

database systems.

amenable to multiple interpretations conditioned by perception.

A typical MMDBS creates additional challenges due to the nature of mul-

timedia data and the requirements of possible applications. We can summa-

rize these challenges as follows. First, MMDBS must support the storage of

large objects, because multimedia data such as audio or video can require gi-

gabytes of storage. Thus, special preprocessing, storage and similarity search

techniques are needed. Second, descriptions of multimedia objects are likely

to be subjective and uncertain. Third, a multimedia object can be repre-

sented by a set of homogeneous descriptions — multiple instances. Fourth,

the availability of versatile aspects and different feature transformations for

multimedia data leads to the demand of handling multiple, heterogeneous

descriptions — multiple representations — in retrieval and analysis meth-

ods.

1.1.7 Database Systems for Web Data

The invention of the World Wide Web (WWW) in the mid-1990s has cre-

ated a demand for methods to gather, analyze, and utilize data available on

1.1 Advanced Database Systems 15

the Web. Web data consist of HTML-documents that are published by an

organization or an institution. Unlike common text documents, webpages

provide a rich structure given by HTML tags. According to this structure, a

webpage can be divided in a set of paragraphs. On the other hand, a set of

webpages published by the same institution can be considered as a website

as described in [EKS02]. Furthermore, a webpage or a website often contains

different types of information like text, image or multimedia content.

In summary, we can observe two common characteristics of Web data.

First, an object can be described by multiple aspects like text and images.

Second, a webpage consists of several simple parts like paragraphs, and a

website is given by a set of pages. Thus, web data are described in a more

natural manner by using multiple instances.

1.1.8 Distributed Data

The progress in network technology, the globalization of industrial and sci-

entific organizations, and the rapid increase of data volume and system scale

have led to the fact that many data storage and processing systems are

geographically dispersed. Therefore, not all data related to an application

query or data analysis task is stored and managed in a centralized structure.

Typical examples for geographically dispersed data sources include nation-

ally or globally distributed branches of pharmaceutical research institutions

operating on biological data, financial service institutions, or surveillance

applications collecting and querying biometrical data.

Despite several advantages of distributed databases, e.g. including tremen-

dous expansion in storage capacity, processing speed, and improvements in

robustness, there typically exists a rapidly growing need for privacy preser-

vation in distributed environments.

16 1 Introduction

Figure 1.7: Feature extraction.

1.2 Similarity Search

Similarity search is an important technique in a broad range of applications

like retrieval in multimedia, biological, biometrical, spatial, Web and CAD

databases. To capture the similarity of complex domain-specific objects, the

feature extraction is typically applied. The feature extraction aims at trans-

forming characteristic object properties into feature values. Examples of such

properties are the position and velocity of a spatial object, relationships be-

tween points on the face of a person such as the eyes, the nose, the mouth

etc.Ṫhe extracted values of features can be interpreted as a vector in a mul-

tidimensional vector space. This vector space is usually denoted as feature

space F . The basic idea of a feature extraction on CAD data is demonstrated

in Figure 1.7.

The most important characteristic of a feature space is that whenever two

of the complex, application-specific objects are similar, the associated feature

vectors have a small distance according to an appropriate distance function

(e.g., the Euclidean distance). In other words, two similar, domain-specific

objects should be transformed to two feature vectors that are close to each

other w.r.t. the appropriate distance function. In contrast to similar objects,

the feature vectors of dissimilar objects should be far away from each other.

Thus, the similarity search is naturally translated into a neighborhood query

1.2 Similarity Search 17

in the feature space.

The two most important types of neighborhood queries in feature data-

bases are:

Definition 1.1 (ε-Range Query) :

The user specifies a query object q ∈ F and a query radius ε. The system re-

trieves all objects from the database that have a distance from q not exceeding

ε. More formally: Let DB ⊂ F be a database consisting feature vectors from

F and let d : F ×F −→ R be a similarity distance function. Then, the result

RQε of an ε-range query w.r.t. a query object q ∈ F is defined as follows:

RQε(q) = {v ∈ DB|d(q, v) 6 ε}

Definition 1.2 (k-Nearest Neighbor Query (k-NN Query)) :

The user specifies a query object q and the cardinality k of the result set. The

system retrieves those k objects from the database that have the least distance

from q. More formally: Let DB ⊂ F be a database containing feature vectors

from F and let d : F × F −→ R be a similarity distance function. Then,

the result NNk of a k-nearest neighbor query w.r.t. a query object q ∈ F is

defined as follows:

∀v ∈ NNk(q),∀w ∈ DB \NNk(q) : d(q, v) < d(q, w)

For most types of feature spaces, there are multiple distance functions

that are appropriate for similarity measure in certain applications. The most

established type of distance functions are Lp distance metrics. Lp distance

metrics in a d-dimensional feature space can be defined as follows:

Definition 1.3 (Lp Distance Metric)

Lp : Rd × Rd −→ R, Lp(x, y) = (
d∑

i=1

|xi − yi|p)1/d

where p > 1 and x, y ∈ Rd

18 1 Introduction

For p = 2 the Lp distance is called Euclidian distance function. The

Euclidian distance function is very often used as similarity measure for feature

spaces. The Lp distances are metrics because they fulfill the metric property

that can be defined as follows:

Definition 1.4 (Metric Distance Function)

Let µ : Rd × Rd −→ R be a distance function. µ is called a metric iff:

1.

µ(x, y) = 0 ⇐⇒ x = y ∀x, y ∈ Rd

2.

µ(x, y) = µ(y, x) ∀x, y ∈ Rd

3.

∀x, y, z ∈ Rd : µ(x, z) 6 µ(x, y) + µ(y, z)

For an effective and efficient management of the feature vectors, several mul-

tidimensional index structures were proposed, e.g. R-Tree [Gut84] or R∗-Tree

[BKSS90]. Most feature databases are high-dimensional. Thus, the appear-

ance of an effect called the “curse of dimensionality” causes particular perfor-

mance problems for indexing structures. Therefore, a number of dedicated

index structures for high-dimensional indexing have been proposed such as

the X-tree [BKK96], the VA-file [WSB98], and the IQ-tree [BBJ+00].

1.3 Data Mining

In the last decades, the amount of collected data in information and database

systems has increased tremendously. To analyze this enormous amount of

data, the interdisciplinary field of Knowledge Discovery in Databases (KDD)

has emerged. The field of KDD combines disciplines like database systems,

1.3 Data Mining 19

Figure 1.8: The KDD process — discovery of knowledge in large databases.

statistics, machine learning, visualization, and information science. In the

following, the definition for the KDD process is proposed [FPSS96]:

Knowledge Discovery in Databases is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns

in data. Figure 1.8 gives a detailed overview of the KDD process and il-

lustrates the basic flow of steps. Frequently, multiple iterations among these

steps or even partial repeats of one or several steps are necessary.

1. Focusing: This step focuses on the definition of the goal for the partic-

ular KDD task. Another important aspect of this step is to determine

the data to be analyzed and how to obtain and manage it.

2. Preprocessing: The main goals of this step are the integration, clean-

ing and (if necessary) completion of the data specified in the first step.

The data from different sources should be integrated because they are

typically obtained and maintained under considering different conven-

20 1 Introduction

tions. A cleaning of the data is necessary in order to remove noisy or

inconsistent data. Furthermore, the description of several objects may

be incomplete. Thus, missing values or even missing attributes need to

be completed.

3. Transformation: A further reduction of the, e.g. by selecting useful

features or by using dimensionality reduction to minimize the effective

number of attributes depending on the goal of the discovery task.

4. Data Mining: The goal of this essential step is to identify the relevant

data mining task, e.g. clustering or classification. In this step, efficient

and intelligent algorithms are used in order to extract novel, unknown

and useful patterns from data.

5. Evaluation: The interesting patterns extracted in the previous step

are prepared using knowledge visualization and representation tech-

niques. In addition, the mined patterns are evaluated by domain ex-

perts according to the task definition.

The core step in the KDD-process is data mining. In [FPSS96], data mining

is defined as follows.

Data Mining is a step in the KDD process consisting of applying data

analysis algorithms that, under acceptable computational efficiency limita-

tions, produce a particular enumeration of patterns over the data. The diverse

data mining methods proposed recently in the literature can be categorized

according to the following primary data mining tasks:

• Clustering: It groups objects of a database into classes (clusters)

such that objects within one cluster are most similar to each other and

objects of different clusters are most dissimilar to each other.

1.3 Data Mining 21

• Outlier Detection: The goal of these methods is to find data objects

that do not correspond to the general behavior or model of the data.

• Classification/Prediction: Classification aims at assigning data ob-

jects to a subset of given classes. In order to perform the assignment, a

function is typically learned on a small set of objects with known class

assignments.

• Association Rules: The main task of these algorithms is to find asso-

ciation rules that show attribute-value conditions that occur frequently

together in transaction databases. A transaction is a set of different

items where each item has a different type.

• Regression Analysis: Regression methods estimate the relationship

between the values of a target, or between the response variable and

the predictor variable. Regression is related to the classification task

because both learn a function from a training dataset.

• Data Generalization: The main goal of these algorithms is to derive

a compact representation for a subset of data objects.

In the third part of this thesis, we focus on clustering and classification

techniques. These very important data mining techniques are defined more

precisely in the following.

Clustering Clustering methods group objects of a database into clusters

by maximizing the intra-cluster similarity and minimizing the inter-cluster

similarity. Thus, after applying a clustering algorithm, similar objects are

assigned to the same cluster and dissimilar objects to different clusters.

Clustering aims at detecting new classes of data without any a priori

knowledge. Thus, clustering is often also called unsupervised learning in

contrast to classification where the classes are predefined and which is often

also called supervised learning.

22 1 Introduction

Classification Classification algorithms learn a function that maps data

objects to a subset of given classes. In order to learn this function, a small

set of data objects with known assignment to subsets of classes C is provided.

The process of learning is often denoted as training. The given set of assigned

objects is usually called training set. Formally, a classifier is a function

γ : O → C that maps each data object o ∈ F ⊆ Rd to its correct classes

c ⊂ C.

1.4 Advanced Database Systems: Challenges

for Similarity Search and Data Mining

Techniques

As demonstrated in Section 1.1, advanced database and information systems

collect enormous amounts of data every day. In addition to the sheer amount

of data, the complexity of data objects increases as well. Biological databases

store more detailed information about molecules, multimedia applications

store a huge amount of complex data consisting of images, audio and video,

and HTML-documents provide embedded multimedia content which makes

them much more complicated than ordinary text documents. The analysis of

large collections of complex objects yields several new challenges to similarity

search and data mining algorithms. In this thesis, we focus on the following

challenges.

• Uncertainty in the Object Description:

We argue that uncertainty is an important and challenging property

appearing in advanced database systems. Let us consider the follow-

ing advanced database systems which were introduced in more detail

in Section 1.1. In applications of biometric or multimedia databases,

the typical task is to identify individuals or objects according to fea-

1.4 Advanced Database Systems: Challenges for Similarity Search and Data
Mining Techniques 23

tures which are not exactly known. Reasons for this inexactness are

varying measuring techniques or environmental circumstances like il-

lumination conditions. Since these circumstances are not necessarily

the same when determining the features for different individuals, the

exactness might strongly vary between the individuals as well as be-

tween the features. To identify individuals, similarity search on feature

vectors is applicable, but even the use of adaptable distance measures

is not enough to handle objects having an individual level of exactness.

The uncertainty in object description appears also in many other ad-

vanced database systems like moving object, and sensor database sys-

tems, because no exact values to describe the data objects are available.

Instead, the feature values are considered to be uncertain. This uncer-

tainty is modeled by probability distributions instead of exact feature

values. A typical application of such an uncertainty model are moving

objects where the exact position of each object can be determined only

at discrete time intervals. Queries often involve the position of objects

between two time stamps or after the last known time stamp. Then,

the objects are essentially uncertain unless the pattern of movement is

very simple. The same problem exists, for instance, in sensor networks

where continuously changing values such as temperature or wind speed

can be measured at discrete time intervals only.

• Multiple Representations:

Complex objects in several advanced database systems are often de-

scribed by multiple representations modeling various aspects or gen-

erated by various feature extraction methods (cf. Section 1.1). We

define a multi-represented object as an object that is described by a

set of heterogeneous feature vectors. For example, for music videos,

we can collect audio features such as pitch [TK00] or rhythm [TC02],

and video features such as color histograms or textures [AY99]. Each

of these multiple representations models a different aspect of a music

24 1 Introduction

video. Obviously, the effectiveness of similarity search and data mining

methods could greatly benefit from taking multiple representations into

account. Further examples for multi-represented objects are proteins

that can be described by text, amino acid sequences or 3D structures,

webpages with multimedia content that can be described by feature

vectors extracted from text and images, and CAD parts that are de-

scribed by geometrical properties of 3D shape and 2D projections.

• Multiple Instances:

In this thesis, we hold that the multi-instance character of data is a

very frequent property of complex, domain-specific objects in advanced

database systems. Recently, more and more advanced applications rep-

resent data objects as sets of feature vectors or multi-instance objects as

discussed in Section 1.1. We define a multi-instance object as an object

that is described by a set of homogeneous feature vectors. An example

for a multi-instance object is a website which can be represented as a

set of webpages. Other examples are CAD-parts represented by sets of

voxels, molecules represented by sets of possible spatial conformations,

and video clips considered as a set of images.

1.5 Outline of the Thesis

The major goal of this thesis is the development of novel techniques for

similarity search, clustering and classification to cope with challenges of the

advanced database systems as elaborated in Section 1.4 — uncertainty, multi-

ple representations and multiple instances. The ideas and concepts presented

in different chapters of this thesis are major extensions of material that has

been published partially. For convenience, we list our own publications in

Table 1.1. The main contributions of this thesis include:

1.5 Outline of the Thesis 25

Part II Similarity Search Techniques

Chapter 3 The Gauss-Tree: Efficient Object Identification in

Databases of Probabilistic Feature Vectors.

[BPS06a]

Chapter 4 ProVeR: Probabilistic Video Retrieval using the

Gauss-Tree.

[BGK+07]

Chapter 5 Probabilistic Ranking Queries on Gaussians. [BPS06b]

Chapter 6 Effective Similarity Search in Multimedia Databa-

ses using Multiple Representations.

[KKKP06]

Part III Data Mining Techniques

Chapter 7 Effective and Efficient Distributed Model-based

Clustering.

[KKPS05]

Chapter 8 An EM-Approach for Clustering Multi-Instance

Objects.

[KPS06]

Chapter 9 COSMIC: Conceptually Specified Multi-Instance

Clusters.

[KPSZ06]

Chapter 10 Clustering Multi-Represented Objects with Noise. [KKPS04a]

Hierarchical Density-Based Clustering for Multi-

Represented Objects.

[AKPS05]

Clustering Multi-Represented Objects Using

Combination Trees.

[AKPS06]

Chapter 11 Multi-Represented kNN-Classification for Large

Class Sets.

[KPS05]

Chapter 12 Using Support Vector Machines for Classifying

Large Sets of Multi-Represented Objects.

[KKPS04b]

MUSCLE: Music Classification Engine with User

Feedback.

[BKK+06]

Hierarchical Genre Classification for Large Music

Collections

[BKKP06]

Table 1.1: List of own publications this thesis is based on.

26 1 Introduction

• A novel probabilistic model for identification queries. This model is

based on the assumption that the uncertainty of feature vectors can be

modeled by Gaussian distributions.

• Novel types of queries called k-most-likely identification queries

(k-MLIQ) and threshold identification queries (TIQ). These queries are

based on the probability that a query object and a data object describe

the same object.

• A general solution to calculate the probabilities that are necessary to

process k-MLIQ and TIQ. These methods can be used in combination

with several data structures and query algorithms.

• An index structure for efficiently processing k-MLIQ and TIQ called

the Gauss-tree. The Gauss-tree belongs structurally to the R-tree fam-

ily but uses novel algorithms for query processing, insertion and tree

construction.

• The specification of two new types of probabilistic queries on sets of

probabilistic feature vectors, and efficient algorithms for processing

these new types of queries on sets of probabilistic feature vectors which

are based on the Gauss-tree.

• Definition of a new model to handle uncertainty in spatial databases

that does not rely on specifying guaranteed intervals, and introduction

of a new useful type of probabilistic queries called probabilistic rank-

ing queries (PRQs). In addition, algorithms for efficiently answering

probability threshold queries and probabilistic ranking queries on the

Gauss-tree are proposed.

• A novel similarity search approach for multi-represented multimedia

objects using the fact that it is often beneficial to summarize multiple

instances of a multimedia object for efficiency reason.

1.5 Outline of the Thesis 27

• A novel model-based distributed clustering algorithm that exploits un-

certainty in order to achieve an arbitrary, predefined level of privacy-

preserving.

• A model-based approach for statistical clustering of multi-instance ob-

jects that models instances as members of concepts in some underlying

feature space.

• An unsupervised, density-based method for knowledge discovery in

multi-instance datasets. This method specifies a multi-instance ob-

ject by a set of so-called cluster attributes. In particular, we propose

a method for hierarchical density-based clustering that avoids the cre-

ation of meaningless cluster attributes as well as a method for con-

structing a concept lattice based on concept attributes of different ab-

straction levels.

• Two density-based clustering algorithms extending DBSCAN and OP-

TICS for multi-represented data.

• A novel, density-based technique to reduce training instances for instance-

based classification methods like k-NN classifier.

• An efficient algorithm for the classification of multi-represented data in

an environment with large class sets.

• A novel semi-supervised, hierarchical reduction of large multi-instance

objects. The demand for this technique is motivated by the fact that

a multimedia object is usually described by a very large set of feature

vectors, e.g. a song is represented by 10,000 to 50,000 feature vectors.

• An effective and efficient framework for hierarchical genre classification

of music pieces in a multi-representation and multi-instance setting.

Let us note that our framework can also be used for genre classification

in flat class systems.

28 1 Introduction

The remainder of this thesis is organized as follows.

In Chapter 2, we offer a general overview of existing similarity search

techniques in the context of handling uncertain, multi-instance and multi-

represented objects. We discuss several clustering and classification tech-

niques that are able to handle multi-instance and multi-represented data.

Furthermore, we introduce a few algorithms that are necessary for the un-

derstanding of the novel techniques developed in this thesis. In particular,

we describe the notion of summarization techniques for multimedia objects,

density-based clustering algorithms DBSCAN and OPTICS, and the model-

based clustering algorithm EM. In addition, the chapter describes some basic

notations used throughout this thesis.

Part II describes novel similarity search techniques, dealing with the three

major challenges elaborated in Section 1.4.

In Chapter 3, we develop a comprehensive probabilistic theory in which

uncertain observations of individuals or objects are modeled by probabilis-

tic feature vectors (pfv), i.e. feature vectors where the conventional feature

values are replaced by Gaussian probability distribution functions. Each fea-

ture value of each object is complemented by a variance value indicating

its uncertainty. In addition, we define two types of identification queries,

the k-most-likely identification and the threshold identification. For efficient

query processing, a novel index structure, the Gauss-tree, is proposed. The

experimental evaluation demonstrates that the probabilistic feature vectors

(pfv) stored in a Gauss-tree significantly improve the result quality compared

to traditional feature vectors. Additionally, it is shown that the Gauss-tree

significantly speeds up query times when compared to other methods.

In Chapter 4, we consider content based video retrieval. An emerging

and challenging topic in this area is the content based similarity search in

video data. A video clip can be considered as a sequence of images or frames.

1.5 Outline of the Thesis 29

Since this representation is too complex to facilitate efficient video retrieval,

a video clip is often summarized by a more concise feature representation.

In this chapter, we transform a video clip into a set of probabilistic feature

vectors (pfvs), i.e. a video clip is a multi-instance object where each instance

is an uncertain description. In our case, a pfv corresponds to a Gaussian in

the feature space of frames. We demonstrate that this representation is well

suited for accurate video retrieval. The use of pfvs allows us to calculate

confidence values for frames or sets of frames for being contained within a

given video from the database. These confidence values can be employed to

specify two types of queries. The first type of query retrieves the videos stored

in the database which contain a given set of frames with a probability that is

larger than a given threshold value. Furthermore, we introduce a probabilistic

ranking query that retrieves the k database videos which contain the given

query set with the highest probabilities. To efficiently process these queries,

we introduce query algorithms on set-valued objects. The solution is based

on the Gauss-tree. Our experimental evaluation demonstrates that sets of

probabilistic feature vectors yield a compact and descriptive representation of

video clips. Additionally, we show that our new query algorithms outperform

competitive approaches on a database of over 900 real-world video clips.

In Chapter 5, we handle an uncertainty model that appears in spatial and

sensor databases. A typical application of such an uncertainty model is mov-

ing objects where the exact position of each object can be determined only at

discrete time intervals. Queries often involve the positions of objects between

two time stamps or after the last known time stamp. One of the most im-

portant probability density functions for those applications is the Gaussian

or normal distribution which can be defined by a mean value and a standard

deviation. This chapter examines a new type of query on uncertain data

objects, called probabilistic ranking queries (PRQ). A PRQ retrieves those

k objects which have the highest probability of being located inside a given

query area. To speed up probabilistic queries on large sets of uncertain data

30 1 Introduction

objects described by Gaussians, the index structure, the Gauss-tree(Chapter

3) is used. Furthermore, an algorithm for employing the Gauss-tree to an-

swer PRQs is provided. The experimental evaluation demonstrates that the

Gauss-tree achieves a considerable efficiency advantage w.r.t. PRQ compared

to other applicable methods.

In Chapter 6, we deal also with similarity search in large multimedia da-

tabases. We propose a novel approach for similarity search in multimedia da-

tabases, taking multi-represented and multi-instance characteristics of mul-

timedia objects into account. In particular, this chapter presents weighting

functions to rate the significance of each representation for a given database

object. This allows us to weight each representation during the query pro-

cessing. A broad experimental evaluation shows the suitability and the ef-

fectiveness of multi-represented similarity search in music video databases.

Part III introduces several new clustering and classification approaches for

handling the requirements of advanced database systems.

Chapter 7 focuses on the fact that many advanced application data are

geographically dispersed, i.e. each site generates its own data and manages its

own data repository. Analyzing and mining these distributed sources requires

distributed data mining techniques to find global patterns representing the

complete information. The transmission of the entire local dataset is often

unacceptable because of privacy and security aspects, performance consider-

ations, and bandwidth constraints. Traditional data mining algorithms that

demand access to complete data are not appropriate for distributed applica-

tions. Thus, we suggest a distributed clustering algorithm that employs an

uncertain data description for privacy preservation. In order to guarantee

the privacy preservation, the proposed algorithm describes local models in

terms of mixtures of Gaussian distributions. A broad experimental evalua-

tion shows that the proposed framework is scalable in a highly distributed

environment.

1.5 Outline of the Thesis 31

In Chapter 8, we present an expectation maximization approach to clus-

ter multi-instance objects. A statistical process that models multi-instance

objects is defined. Furthermore, we propose algorithms for estimating good

initial segmentations of multi-instance datasets and for optimizing this seg-

mentation by an expectation maximization algorithm. An experimental eval-

uation demonstrates that the new EM algorithm is capable of increasing the

cluster quality for three real-world datasets when compared to results of ex-

isting clustering methods.

In Chapter 9, we propose a new method for clustering multi-instance

objects, called COSMIC. COSMIC derives a hierarchy of so-called concept

attributes corresponding to density-based clusters in the instance space. Af-

terwards formal concepts are derived, i.e. maximal sets of objects that can

be described by a common set of concept attributes. Due to subset relations

between sets, there is a natural relation between the concepts, connecting the

set of all valid concepts into a so-called concept lattice. A broad experimen-

tal evaluation demonstrates that COSMIC outperforms other methods with

respect to efficiency and cluster quality and is capable of extracting patterns

from multi-instance datasets.

Chapter 10 presents an efficient density-based approach to cluster multi-

represented data, taking all available representations into account. There-

fore, we develop two different techniques to combine the information of all

available representations dependent on the application. The evaluation part

shows that the developed approach is superior to existing techniques. Af-

terwards, a hierarchical density-based clustering approach is introduced that

distinguishes two basic types of representation semantics. To cluster multi-

represented data we propose the use of combination trees for describing ar-

bitrary semantic relationships between all representations. Furthermore, the

hierarchical density-based clustering algorithm OPTICS is extended to the

setting of multi-represented objects by employing combination trees. To sup-

port the usability of the proposed method, we present encouraging results

32 1 Introduction

for clustering two real-world datasets describing images and proteins.

In Chapter 11, we propose a new technique for the classification of multi-

represented objects that is capable of distinguishing large numbers of classes.

This technique can also cope with the data objects defined in general met-

ric spaces. The proposed method is based on k-nearest-neighbor classifica-

tion and employs density-based clustering as a new approach to reduce the

amount of training data for instance-based classification. To predict the most

likely class, the classifier employs a new method to use multiple object rep-

resentations for making accurate class predictions. The introduced method

is evaluated by classifying proteins according to the classes of Gene Ontol-

ogy, one of the most established class systems for bio-molecules comprised of

several thousand classes.

In Chapter 12, we present a novel content-based, hierarchical classification

method to organize large music collections automatically, using a given genre

taxonomy. To provide a versatile description of the music content, several

kinds of features like rhythm, pitch or timbre characteristics are used, i.e.

each piece of music is considered as a multi-represented object. Taking the

highly dynamic nature of music into account, each of these features should be

calculated up to several hundreds of times per second, i.e. each representation

is described by multiple instances. Thus, a piece of music is represented

by a complex object given by several large sets of feature vectors. The

proposed approach is able to handle multiple characteristics of music content

and efficiently achieves a high classification accuracy as shown in experiments

performed on a real-world dataset.

Part IV concludes this thesis with a short summary.

Chapter 13 sums up and discusses the main contributions of the thesis.

In addition, Chapter 14 indicates some ideas for possible future work in the

areas of similarity search and data mining for advanced database systems.

Chapter 2

Related Work

In this chapter, we discuss well established similarity search and data min-

ing techniques that are used by our novel solutions. Furthermore, we survey

topics that are related to this thesis. Section 2.1 begins with a description

of conventional similarity search methods. In addition, we deal with sim-

ilarity search methods that are applicable to uncertain, multi-represented,

and multi-instance objects. In the last part of Section 2.1, we consider es-

tablished summarization techniques for the aggregation of large multimedia

objects like videos. Section 2.2 starts with a short explanation of basic clus-

tering algorithms like EM, DBSCAN and OPTICS. Afterwards, we deal with

established classification and clustering methods, that are capable of handling

multi-instance and multi-represented objects.

2.1 Similarity Search

2.1.1 Similarity Search based on Feature Vectors

Similarity search for feature vectors is an important technique for information

retrieval and data mining. Example applications include similarity search on

33

34 2 Related Work

structural features of 2D contours [MG93], 3D shape histograms for biomolec-

ular objects [AKKS99], time series [FRM94, ALSS95], multimedia objects,

and color histograms in image databases [NBE+93, FBF+94]. To compare

different feature vectors, most systems employ a metric distance measure

like the Euclidian distance. If some of the features are more important

than others, the standard Euclidean query can be replaced by a weighted

Euclidean query or a general ellipsoid query [NBE+93]. To increase the ef-

ficiency of similarity queries, various index structures have been proposed

for high-dimensional feature spaces like [LJF94, BKK96]. For a survey cf.

[BBK01].

In order to evaluate results of similarity search, we can use basic measures:

precision and recall. Let A be a set of relevant objects. Let B be a set of

retrieved objects. Then, Precision = Card(A
⋂

B)/Card(B) and Recall =

Card(A
⋂

B)/Card(A).

2.1.2 Similarity Search based on Probabilistic Feature

Vectors

Recently, the research on probabilistic queries over uncertain data has gained

increasing attention. In [CKP03] a new uncertainty model is introduced and

several new types of queries are described that allow the user to handle of

uncertain data. This model is based on the assumption that it is possible to

determine an interval for each feature value containing the exact value. Addi-

tionally, a feature value is described by an individual probability density func-

tion over this interval. We will refer to this model as the interval or spatial

uncertainty model. [CXP+04] describes two methods for efficiently answer-

ing probabilistic threshold queries that are based on the R-Tree [Gut84]. A

probabilistic threshold query (PTQ) returns all data objects that are placed

in a given query interval with a probability exceeding a specified threshold

value. The first of these methods does not rely on any assumptions about

2.1 Similarity Search 35

the underlying probability distributions. The second method is only suitable

for a certain class of distribution functions, so-called symmetric and smooth

variance monotonic density functions. The most prominent member of this

class of distribution functions is the Gaussian distribution. The idea of this

approach is based on precalculating so-called x-bounds. An x-bound limits

an area in the value set for which it can be guaranteed that any interval

being completely contained within this area has a probability of less or equal

to x%. For storing x-bounds the method exploits the observation that the

behavior of two density functions of the same type only depends on a single

parameter.

In [TCX+05], the U-Tree for indexing uncertain 2D objects was intro-

duced. The paper relies again on the interval uncertainty model. In the

U-tree, each object is guaranteed to be placed within a given polygon and

a density function is given over this polygon. To index uncertain objects,

the U-tree builds a conservative approximation for each node of an U-tree

which consists of the minimum bounding rectangles (MBRs) of the polygons.

The density functions are approximated by planes, starting at each side of

a MBR. Besides the mentioned methods for indexing spatially uncertain ob-

jects, [DYM+05] introduces existential uncertainty. The idea of this approach

is that the existence of each data object is uncertain. Thus, each object is

coupled with the probability that it is indeed real.

2.1.3 Similarity Search based on Multiple Representa-

tions

Considering objects with multiple representations has attracted more and

more attention in several research communities. A multi-represented object

is described by a set of heterogeneous feature vectors. Each object O ∈ DB
is represented by a given set of D representations O1, . . . , OD, where each

representation is a feature vector in a separate feature space, i.e. Oi ∈ Fi

36 2 Related Work

where Fi ⊆ Rdi , and di ∈ N denotes the dimensionality of the feature space

of representation Fi (1 ≤ i ≤ D).

In recent years, some work has been done on multi-represented similarity

search in multimedia, biological and CAD databases. A common way to

combine these representations is the use of a weighted linear combination.

Various approaches have been proposed to compute the weights with the help

of the user feedback. In order to give the feedback, an user has to label certain

representations as relevant or irrelevant for the similarity. For instance, the

approaches in [CLC98, RHM97] compute the weights based on the idea of

relevance feedback. Authors of [AHCG00] suggest another relevance feedback

based technique. This technique realizes a weighted distance approach that

uses standard deviations of the features. From the user’s point of view, it is

rather inconvenient to provide feedback several times to get the result.

The interactive search fusion method [SJL+03a] provides a set of fusion

functions, e.g. min, max, sum and product function that can be used for

combining different representations in order to improve the effectiveness of

similarity search. This method supports a manual and an interactive search

that is supervised by the user’s assistance or by a user-defined query. In addi-

tion, Boolean operators on aggregation functions are supported, e.g. “AND”

can be applied to the product aggregation function. Let us note that this

technique is supervised, i.e. it requires strong interaction with the user. This

is not always desirable because for that the user has to understand the basic

concepts of the method. In [NWH01a], a template matching method based

on the time warping distance is presented. This approach can measure the

temporal edit similarity. However, temporal order is not necessary in many

applications. In addition, this technique is not applicable to large multimedia

databases because it is linear in the number of feature vectors.

The authors of [BKS+04] introduce two methods for improving the ef-

fectiveness in a retrieval system that operates on multiple representation of

2.1 Similarity Search 37

3D objects. The proposed techniques are based on the entropy impurity

measure. The first method chooses the best representation w.r.t. a given

query object. The second method performs so-called dynamical weighting

of the available representations that is performed at query time, and that

depends on entropy impurity in the local neighborhood of a query object.

This work presents also encouraging experimental results that demonstrate

for both proposed techniques a significantly improvement in effectiveness of

the similarity search. The techniques, described in [BKS+04], need a set of

labelled data in order to measure entropy impurity.

In [BKS05b], a pivot-based indexing schema for an efficient processing of

similarity search queries on multi-represented objects and algorithms for effi-

cient k-NN queries are presented. This method supports dynamically as well

as statically parameterized distance functions. An example for a dynamically

parameterized distance function is a weighted linear combination of distances

in single representations while weights depend on a query object. In con-

trast to the dynamical parametrization, the statical parametrization relies

on weights that are independent on query object, and are known in advance.

The proposed solution is based on a combination of several pivot-based met-

ric indices. The authors define the index structure, specify algorithms for

performing k-NN queries on these index structures, and demonstrate a sig-

nificant performance improvement in comparison to existing approaches.

2.1.4 Similarity Search based on Multiple Instances

A multi-instance object is an object that is described by a set of homogeneous

feature vectors. More formally, each multi-instance object O ∈ DB is rep-

resented by a given set of D feature vectors O1, . . . , OD, where each feature

vector Oi is a vector in the same feature space, i.e. Oi ∈ F where F ⊆ Rd, and

d ∈ N denotes the dimensionality of the feature space. Multi-instance ob-

jects are often called in literature as “set-valued” or “set of feature vectors”.

38 2 Related Work

Thus, we use in this work denotations “multi-instance object”, “set-valued

object”, and “set of feature vectors” as synonyms.

Multi-instance objects were usually handled by complex distance mea-

sures like [EM97, RB01]. In [EM97], the authors survey the following distance

functions which are computable in polynomial time: the Hausdorff distance,

the sum of minimal distances (SMD), the (fair-)surjection distance and the

link distance. The Hausdorff distance is a metric, but does not seem to be

suitable as a similarity measure, because it relies too much on the extreme

positions of the elements of both sets. The last three distance measures are

suitable for modelling similarity, but they are not metric. This circumstance

makes them unattractive since there are only limited possibilities for process-

ing similarity queries efficiently when using a non-metric distance function.

In [EM97], the authors introduce a method for expanding the distance mea-

sures into metrics, but as a side effect the complexity of distance calculation

becomes exponential. Furthermore, the possibility to match several elements

in one set to only one element in the compared set is questionable when

comparing general object sets with different cardinality.

Employing these distance measures for multi-instance objects, it is possi-

ble to pose similarity queries. However, the approach yields several problems.

The selection of a suitable distance measure for a particular application is

often quite difficult and the proposed distance measures for multi-instance ob-

jects often vary strongly when measuring the distance between multi-instance

objects. Therefore, it is often necessary to try out a large variety of distance

measures. Another problem is the understandability of the derived similarity

distances. For complex distance measures and large multi-instance objects

containing hundreds of instances, it is very difficult to understand why the

multi-instance objects are similar. Finally, employing some of the distance

measures yields efficiency problems. Since a considerable part of the distance

measures for set-valued objects is non-metric, employing index structures is

not always possible. Additionally, useful filter steps avoiding time consuming

2.1 Similarity Search 39

distance calculations (like a filter-based approach in [BKK+03]) were intro-

duced for a minority of multi-instance distance measures only.

The Hausdorff distance is probably one of the best-known similarity mea-

sures for vector sets. For each element of both objects this method considers

the nearest neighbor in the other object and takes the maximum of all these

values as result. In other words, it identifies the most distant point of both

sets and returns the distance to its closest point in the other set. The Haus-

dorff distance is a metric. More formally, let d : F ×F −→ R be a similarity

distance function then the Hausdorff distance between two set-valued objects

A and B can be defined as H(A, B):

H(A, B) = max(max a ε A min b ε B d(a, b), max b ε B min a ε A d(b, a)).

The sum of minimal distances (SMD) between two set-valued objects A

and B is defined as SMD(A, B) [EM97]:

SMD(A, B) = 1
2
(1
|A|

∑|A|
i=1 (min b ε B d(ai, b)) + 1

|B|
∑|B|

i=1 (min a ε A d(bi, a))).

This function takes into account the distances between all elements and their

nearest neighbor in the other vector set.

2.1.5 Summarization Techniques

Usually, multimedia objects like video clips or pieces of audio consist of

thousands or even millions of feature vectors. For instance, a video consists

of 25 or 30 frames per second. Thus, we get 1,500 or 1,800 feature vectors per

minute of a video while describing each frame by a feature vector, e.g. color

histogram. In order to handle such data efficiently, summarization techniques

are usually applied to the original data, i.e. the original feature vectors are

grouped together and each group is represented by a summarization vector

or summarization representative. Then, similarity is defined by a suitable

distance function based on these summarizations.

40 2 Related Work

In general, we can distinguish two classes of summarization techniques,

namely higher-order and first-order summarization. Higher-order summa-

rization techniques are usually generated by applying optimization algo-

rithms on feature vectors. They describe a video as a mix of statistical distri-

butions or cluster representatives. In [GGM02], a higher-order summariza-

tion technique is presented which is based on Gaussian distributions or mix-

tures of Gaussian distributions. This technique describes spatial-temporal

areas in a sequence of a few dozen frames by mixtures of Gaussian distribu-

tions.

The authors of [IBW+04] demonstrate that Gaussian mixture models

computed from video shots yield higher retrieval precision compared to keyframe-

based models. The authors of [CSL99a] propose an approach for obtaining

a compact representation of videos that computes the optimal representa-

tives by minimizing the Hausdorff distance between the original video and

its representation. If the Euclidian metric is used as distance function on

the feature vectors, the k-means method [HK06] can be applied for summa-

rization of video clip content [ZRHM98]. K-means minimizes the variance

w.r.t. the representative vectors (this function is also called TD2). In case

of general metric spaces, the k-medoid method [HK06] can be applied for

summarization. This method minimizes the distance between a video and

its description.

First-order techniques calculate a small set of representative feature vec-

tors as summarization vectors in order to describe a video. A randomized

technique for summarizing videos, called video signature, is proposed in

[CZ02a]. A video sequence in a database is described by selecting a number

of its frames closest to a set of random vectors. This method requires only

one single scan over the video or audio sequences and delivers a compact and

reliable description that can be used for similarity search. The authors in

[CZ02a] also propose a specialized distance function on the derived first-order

summarization vectors.

2.2 Data Mining 41

2.2 Data Mining

2.2.1 Basic Clustering Approaches

In the past decades, many algorithmic solutions for the problem of cluster-

ing have been developed. In particular, the recent clustering approaches can

be classified into the following categories (cf. [HK06]): partitioning methods

like k-means or k-medoids, hierarchical methods like single-link clustering,

density-based methods like DBSCAN, grid-based methods, and model-based

methods like Expectation Maximization (EM). In this section, we will pro-

vide a general overview of clustering approaches that are used in solutions

proposed in this thesis.

Density-Based Methods. DBSCAN [EKSX96] is a density-based cluster-

ing algorithm where clusters are considered as dense areas that are separated

by sparse areas. Based on two input parameters (ε and MinPts), DBSCAN

defines dense regions by means of core objects. An object o ∈ DB is called

core object if its ε-neighborhood contains at least MinPts objects. Usually,

clusters contain several core objects located inside a cluster, and border ob-

jects located at the border of the cluster. In addition, objects within a

cluster have to be “density-connected”. DBSCAN is able to detect arbitrar-

ily shaped clusters by a single pass over the data. To do so, DBSCAN uses

the fact that a density-connected cluster can be detected by finding one of its

core-objects o and computing all objects which are density-reachable from o.

The correctness of DBSCAN can be formally proven (cf. lemmata 1 and 2 in

[EKSX96], proofs in [SEKX98]).

OPTICS [ABKS99] extends the density-connected clustering notion of

DBSCAN by hierarchical concepts. In contrast to DBSCAN, OPTICS does

not assign cluster memberships but computes a cluster order in which the

objects are processed. Additionally it generates the information which would

be used by an extended DBSCAN algorithm to assign cluster memberships.

42 2 Related Work

This information consists of only two values for each object, the core distance

and the reachability distance. If the ε-neighborhood of an object o contains

at least MinPts objects, the core distance of o is defined as the MinPts-

nearest neighbor distance of o. Otherwise, the core distance is undefined.

The reachability distance of an object p from o is an asymmetric distance

measure that is defined as the maximum value of the core distance of o and

the distance between p and o. Using these distances, OPTICS computes a

“walk” through the dataset and assigns to each object o its core distance and

the smallest reachability distance w.r.t. all objects considered before o in the

“walk”. In each step, OPTICS selects the object o having the minimum

reachability distance to any already processed object. A special order of

the database is generated according to its density-based clustering structure,

the so-called cluster order which can be displayed in a reachability plot. A

reachability plot consists of the reachability distances on the y-axis of all

objects plotted according to the cluster order on the x-axis. The “valleys”

in the plot represent the clusters since objects within a cluster have lower

reachability distances than objects outside of a cluster.

Model-based Clustering. A model-based clustering algorithm assumes a

model of clustering structures and calculates the best fit of the data to the

given model. A very frequent applied model-based algorithm is EM [HK06].

Let us consider EM more closely.

LetDB be a set of d-dimensional points, i.e.DB ⊆ Rd. The general idea of

the EM algorithm is to describe the data by a mixture model M of k Gaussian

distributions, where k is the only input parameter. Instead of assigning each

object to a cluster as it is the case for k-means-based clustering algorithms,

EM assigns each object to a cluster according to a weight representing the

probability of membership.

Each cluster C ∈ M is a tuple C = (µC , ΣC), where µC is the mean value

of all points in C and ΣC is the d × d covariance matrix of all points in C.

2.2 Data Mining 43

To compute the probability distributions, we need the following concepts.

The probability density of a point ~x ∈ DB within a Gaussian density

distribution C = (µC , ΣC) is computed in the following way:

NµC ,ΣC
(~x) =

1√
(2π)d|ΣC |

e−
1
2
(~x−µC)T(ΣC)−1(~x−µC).

The combined density for k clusters can then be computed by:

P (~x) =
k∑

i=1

wCi
·NµCi

,ΣCi
(~x),

where wCi
is the fraction of points that belongs to cluster Ci = (µCi

, ΣCi
),

i.e. wCi
is the weight of Ci.

Then, the probability that a point ~x ∈ DB belongs to a cluster C can be

computed by the rule of Bayes:

P (C|~x) = wC
NµC ,ΣC

(~x)

P (~x)
.

The log-likelihood of a mixture model M = (C1, . . . , Ck) of k Gaussian

distributions which describes how good the model approximates the actual

dataset can be computed by:

E(M) =
∑

~x∈DB

log (P (~x)).

The higher the value of E(M), the more likely it is that the dataset DB
corresponds to the mixture model M . Thus, the aim of the EM algorithm

is to optimize the parameters of M in a way that E(M) is maximized. For

that purpose, the algorithm proceeds in four steps:

1. Initialization. Since the clusters, i.e. Gaussian distributions C1, . . . , Ck,

are unknown at the beginning, a set of k initial clusters are generated ran-

domly. For that purpose, each point ~x ∈ DB is randomly assigned to a

cluster Ci. An initial model is produced by computing µC and ΣC for each

44 2 Related Work

cluster C ∈ M .

2. Expectation. Based on the current model, the parameters µC and ΣC

can be computed for each cluster C ∈ M and the log-likelihood E(M) of this

mixture model M is obtained.

3. Maximization. In this step, E(M) is improved through a recomputa-

tion of the parameters for each of the k clusters. Given a mixture model

M , the parameters µC , ΣC , and wC of each cluster C ∈ M are recomputed.

The resulting mixture M ′ has an equal or higher log-likelihood than M , i.e.

E(M) ≤ E(M ′). For improving the mixture, the parameters are recomputed

as follows:

wC =
1

|DB|
∑

~x∈DB

P (C|~x),

µC =

∑
~x∈DB ~x · P (C|~x)∑

~x∈DB P (C|~x)
,

ΣC =

∑
~x∈DB P (C|~x)(~x− µC)(~x− µC)T∑

~x∈DB P (C|~x)
.

4. Iteration. Step 2 and 3 are iterated until the log-likelihood of the

improved mixture model M ′ differs from the log-likelihood of the previous

mixture M by a smaller value than a user specified threshold ε, i.e. until

|E(M)− E(M ′)| < ε.

The result of the EM algorithm is a set of k d-dimensional Gaussian dis-

tributions, each represented by the mean value µ and the covariance matrix

Σ and a weight w. The assignment of a point ~x ∈ DB to a cluster C is

given by the probability P (C|~x). Thus, we can compute how likely a point

is assigned to each of the k clusters.

The log-likelihood of the result of the EM algorithm is usually dependent

on the initial mixture model, i.e. on the model assumed in step 1, and on

the number of clusters k. In [FRB98], a method for producing a good initial

mixture is presented which is based on multiple sampling. It is empirically

2.2 Data Mining 45

shown that using this method, the EM algorithm achieves accurate clustering

results.

2.2.2 Classification and Clustering of Multi-Represented

Objects

Classification of Multi-Represented Objects. In general, methods that

employ multiple learners to solve a common classification problem are known

as ensemble learning. An overview over ensemble learning techniques can be

found in [VM02]. Within the area of ensemble learning, there is the subarea

of classifier combination. The aim of the classifier combination is to use mul-

tiple independently trained classifiers and combine their results to increase

the classification accuracy in comparison to the accuracy of a single classifier.

Combining classifiers to learn from objects given by multiple representations

has recently drawn some attention in the pattern recognition community

[KHDM98, KBD01, Dui02]. The authors of [KHDM98] developed a common

theoretical framework for combining classifiers which use multiple represen-

tations. Furthermore, the authors propose several combination strategies like

max, min, sum, and product rule. [KBD01] describes so-called decision tem-

plates for combining multiple classifiers. The decision templates employ the

similarity between classifier output matrices. In [Dui02], the author proposes

a method of classifier fusion to combine the results from multiple classifiers

for one and the same object. Furthermore, [Dui02] surveys the four basic

combination methods and introduces a combined learner to derive combina-

tion rules offering better accuracy.

A related subarea of ensemble learning is the co-training or the co-learning

which assumes a semi-supervised setting. The classification step of co-training

employs multiple independent learners in order to annotate unlabeled data.

[Yar95] and [BM98] were the first publications that reported an increase

of classification accuracy by employing multiple representations. [Yar95]

46 2 Related Work

presents an unsupervised algorithm for sense disambiguation. The first rep-

resentation is given by the local context of a word. The second representation

contains the senses of other occurrences of that word in the same document.

Both classifiers bootstrap each other iteratively. The authors of [BM98] train

two Naive Bayes classifiers on independent representations of web pages. The

first classifier uses the text representation of a web page. The second clas-

sifier works with the text of the hyperlinks referring to a page. New web

pages are annotated by using one of these classifiers, and then are inserted

into the set of labeled examples that is employed for the training of both

classifiers. The authors report a significant increase in classification accu-

racy of both classifiers by iteratively retraining on the bloated training data.

Recently, methods of hyper kernel learning [OS03] were introduced that are

also capable to employ several representations for learning a classifier.

Clustering Multi-Represented Objects. The goal of clustering multi-

represented objects is to find a global clustering for data objects that might

have representations in multiple feature spaces. A similar setting to the

clustering of multi-represented objects is the clustering of heterogenous or

multi-typed objects [WZC+03, ZCM02] in web mining. In this setting, there

are also multiple databases, each yielding objects in a separated data space.

Each object within these data spaces may be related to an arbitrary amount

of data objects within the other data spaces. The framework of reinforce-

ment clustering employs an iterative process based on an arbitrary clustering

algorithm. It clusters one dedicated data space while employing the other

data spaces for additional information.

In [DS05], an algorithm for spectral clustering of multi-represented ob-

jects is proposed. The author proposes to calculate the clustering in a way

that the disagreement between the cluster models in each representation is

minimized. In [BS04], a version of Expectation Maximization (EM) cluster-

ing was introduced. Additionally, the authors proposed a multi-view version

of agglomerative clustering. However, this second approach did not display

2.2 Data Mining 47

any benefit against clustering single representations.

2.2.3 Classification and Clustering of Multi-Instance

Objects

Classification of Multi-Instance Objects. Data mining in multi-instance

or set-valued data objects has been predominantly examined in the classi-

fication section so far. In [DLLP97a] Dietterich et al. defined the problem

of multi-instance learning for drug prediction and provided a specialized al-

gorithm to solve this particular task by learning axis parallel rectangles. In

the following years, new algorithms, increasing the performance for this spe-

cial task, were introduced [Zho04]. In [WFP03], a more general method for

handling multi-instance objects was introduced. It is applicable for a wider

variety of multi-instance problems. This model considers several concepts for

each class and requires certain cardinalities for the instances belonging to the

concepts in order to specify a class of multi-instance objects. Additionally to

this model, [GFKS02b] proposes more general kernel functions for comparing

multi-instance objects.

Clustering of Multi-Instance Objects. For clustering multi-instance ob-

jects, it is possible to use distance functions for sets of objects like [EM97,

RB01]. Having such a distance measure, it is possible to cluster multi-

instance objects with k-medoid methods like PAM and CLARANS [NH94]

or employ density-based clustering approaches like DBSCAN. Though this

method yields the possibility to partition multi-instance objects into clusters,

the clustering model consists of representative objects in the best case. An-

other problem of this approach is that the selection of a meaningful distance

measure has an important impact of the resulting clustering. For example,

netflow-distance [RB01] demands that all instances within two compared

objects are somehow similar, whereas for the minimal Hausdorff [WZ00] dis-

tance the indication of similarity is only dependent on the closest pair.

48 2 Related Work

2.2.4 Evaluation Techniques

Effectiveness measurement of a clustering method is a freguent task in this

work. Thus, we describe here several approaches for this task. Often, we

consider the agreement of the calculated clusterings to the given class sys-

tems. To do so, we can calculate different quality measures, e.g. precision,

recall, F-measure and average entropy.

In order to calculate the precision and F-Measure, we proceed as fol-

lows. For each cluster ci found by a clustering algorithm, its class assignment

Class(ci) is determined by the class label of objects belonging to ci that are

in the majority. Then, we calculated the precision P , recall R or F-Measure

within all clusters w.r.t. the determined class assignments by using the fol-

lowing formulas. P = (
∑

ci∈C Card({o|Class(o) = Class(ci)}))/Card(DB),

R = (
∑

ci∈C Card({o|Class(o) 6= Class(ci)}))/Card(DB) and F-Measure =

(2 ∗ Precision ∗ Recall)/(Precision + Recall).

In addition, we can measure the average entropy over all clusters. This

quality measure is based on the impurity of a cluster ci w.r.t. the class labels

of objects belonging to ci. Let pj,i be the relative frequency of the class label

Classj in the cluster ci. We calculate average entropy as following.

Avg.Entropy =
∑
ci∈C

(Card(ci) ∗ (−
∑

Classj

pj,ilog(pj,i)))/Card(DB)

Furthermore, we can measure the agreement between the reference clus-

tering and the results of a clustering algorithm using the Rand Index [HBV01],

also known as Rand Statistics.

Part II

Similarity Search Techniques

49

Chapter 3

Efficient Object Identification

Object identification is a very important task in advanced database systems

such as biometric and multimedia database systems. This chapter begins

with the introduction of object identification in Section 3.1. Section 3.2

briefly discusses related work. In Section 3.3, we introduce the Gaussian

uncertainty model for identification task. Based on this model, two novel

query types are defined. The algorithms used to determine the exact results

for both query types are described in Section 3.4. These algorithms can either

be used on top of a sequential scan of the complete database or be used in

the refinement step for the candidate set generated by our index structure,

the Gauss-tree. Section 3.5 defines the Gauss-tree along with the methods

for query processing and tree construction. In Section 3.6, we give a detailed

experimental evaluation of both the effectiveness and the efficiency of our

technique. Section 3.7 concludes this chapter.

3.1 Introduction

In many applications like face recognition [ZCPR03, CWS95], fingerprint

analysis [oI84], or voice recognition [Cam97], data objects are represented

51

52 3 Efficient Object Identification

by feature vectors with a varying degree of exactness or uncertainty (see

Section 1.1 of Chapter 1 for details). Therefore, the observed feature values

cannot be considered to be known exactly and two feature vectors describing

the same object can be significantly different from each other. The degree

of similarity between observed and exact values can vary from feature to

feature because some features cannot be determined as exactly as others. For

example, it is easier to determine the proportions of a face than the breadth

of a nose. Additionally, to varying uncertainties between the features, we

have to consider individual uncertainties for the objects as well because the

circumstances in which a given data object is transformed into a feature

vector may strongly vary. For example, most data collections consisting of

facial images do not just contain images that were taken under the same

illumination and having exactly the same distance between camera and face.

Due to these uncertainties, we are facing new problems. An object that

is observed more than once under different circumstances will most likely

generate a different feature vector for each of these observations. Thus,

object identification, i.e. determining if two feature vectors belong to the

same object, becomes much more complicated. For example, we might have

a database of facial features. When observing one of the persons that are

stored in this database, we cannot simple search for the observed feature

vector in the database.

To solve identification problems, the simplest solution is to employ feature

based similarity search. By defining a distance function like the Euclidian

distance to feature vectors, we can assume that the distance between the

feature vectors corresponds to the dissimilarity of objects. Thus, to identify

an object, we could retrieve the nearest neighbor in the database. To speed

up query processing for large databases, a variety of index structures for

feature spaces of medium to high dimensionality has been proposed, e.g. the

TV-tree [LJF94] and the X-tree [BKK96].

3.2 Related Work 53

However, this solution does not consider the varying uncertainties be-

tween features and between objects. Thus, the nearest neighbor might be

dominated by some very uncertain feature values and the retrieved object is

not the correct one. To consider varying uncertainties among each feature,

the Euclidean queries could be replaced by weighted Euclidean queries or

general ellipsoid queries [SK97]. Though, these distance measures weight the

importance of each features when comparing the objects, they assume the

same level of uncertainty for all database object.

To handle the uncertainty of features and objects, we propose a new model

to handle inexact data in databases. This model is based on the observa-

tion that the error of measurement for a feature value is assumed to follow

a normal or Gaussian distribution for most applications. Thus, we call our

model the Gaussian uncertainty model. The idea of this model is to extend a

feature value µi,j for data object i by an uncertainty parameter σi,j which is

corresponding to the standard deviation describing the exactness of feature

j. The complete probabilistic feature vector vi is then associated to a multi-

variate Gaussian distribution Nµi,σi
. Let us note that recently the concept of

uncertainty was introduced in spatial temporal databases [CKP03, CXP+04].

However, the introduced concepts are not applicable to identification prob-

lems. We will discuss the differences in more details in Section 3.2.

3.2 Related Work

Recently, the research on probabilistic queries over uncertain data has gained

increasing attention like [CKP03, CXP+04] (cf. survey in Section 2.1.2).

Why are recent spatial uncertainty models not appropriate for

identification tasks? The uncertainty model employed in [CKP03, CXP+04]

allows to determine the probabilities that a given data object is placed in a

given multi-dimensional interval within the query space. These probabilities

54 3 Efficient Object Identification

are now used for a variety of queries, e.g. the already mentioned probability

threshold queries. All of these queries are not directly applicable to iden-

tification tasks because the probability that two observations belong to the

same data object cannot be determined by calculating the probability of

containment within a certain multidimensional interval. Of course, we could

assume that the query object is given by some multi-dimensional interval and

retrieve the uncertain object in the database that provides the highest prob-

ability for being placed within this query interval. Besides the problem how

to determine this interval for a given uncertain query, we now can apply the

interval uncertainty model to object identification. However, the resulting

method has several characteristics contradicting the intuition. Consider, for

instance, a query object for which all features are known with a high degree

of exactness: Therefore, this object has to be associated to a very small in-

terval. Even if we find objects in the database which fit nicely to this query,

the identification probability tends to be 0 with increasing exactness of the

query. Inversely, if all features of the query object are known with little cer-

tainty, this would be modeled as a large interval by conventional uncertainty

models, covering almost the complete data space. Therefore, all database

objects have an identification probability of 100% in this model. To con-

clude, the probabilities of the interval uncertainty model are not applicable

to intuitively modelling identification tasks.

We will show later that it is necessary to determine the identification

probability using the Bayes’ theorem in order to meet the intuition that

identification probabilities should be close to 1 or close to 0 for exact knowl-

edge of both query and database object (depending on how good the actual

feature values fit) and be rather indifferent (tending to 1/n where n is the

number of objects which could correspond to the query object) for knowledge

which is less exact.

Similarity Search based on Feature Vectors. Similarity search for

high dimensional feature vectors is an important technique for information

3.3 The Gaussian Uncertainty Model for Identification Task 55

retrieval and data mining. To compare different feature vectors most systems

employ a metric distance measure like the Euclidian distance. If some of the

features are more important than others the Euclidean query can be replaced

by a weighted Euclidean query or a general ellipsoid query [NBE+93]. How-

ever, these approaches are not able to cope with individual uncertainty values

for different objects.

3.3 The Gaussian Uncertainty Model for Iden-

tification Task

In this Section, we formally specify inexact object representations by the

concept of probabilistic feature vectors (pfv). In addition, we define iden-

tification queries: threshold identification query (TIQ) and k-most-likely

identification query (k-MLIQ). We finish this section with presentation of a

two-dimensional example of probabilistic feature vectors.

3.3.1 Probabilistic Feature Vectors

A probabilistic feature vector v consists of d feature values µi and d uncer-

tainty values σi where σi corresponds to the uncertainty of µi. The feature

value µi is an observation e.g. from a sensor, and we assume that the mea-

surement error of this sensor follows a normal distribution around the exact

feature value with a known variance σ2
i . Therefore, the data distribution of

the observed values will follow a normal distribution Nxi,σi
, and the proba-

bility density that our feature value µi is observed, corresponds to Nxi,σi
(µi).

Due to the symmetry of the Gaussians (Nxi,σi
(µi) ≡ Nµi,σi

(xi)), we can cal-

culate Nµi,σi
(xi) to determine the probability density of the true feature value

xi for the observed feature value µi. This circumstance allows us to model

an object by a multivariate normal distribution:

56 3 Efficient Object Identification

Definition 3.1 (Probabilistic Feature Vector (pvf))

A probabilistic feature vector v is a vector consisting of d pairs of feature

values µi and standard deviations σi. Each pair defines a univariate Gaussian

distribution of the true feature value xi, defined by the following probability

density function:

Nµi,σi
(xi) =

1√
2πσi

· e
−(xi−µi)

2

2σ2
i

The probability density of a probabilistic feature vector v for a given vector

of actual values x can be calculated in the following way:

p(x|v) =
d∏

i=1

Nµi,σi
(xi)

Our database DB consists of a set of n probabilistic feature vectors vi, 1 ≤
i ≤ d where d is the feature number.

3.3.2 Queries on a database of probabilistic feature

vectors

Deriving a probability from a density function is usually done by integration

over some interval. Thus, straightforward calculation of the probability that

given a pfv, we will observe some query observation q always has a probability

that tends to be 0 because we would integrate over an infinitely thin interval.

However, for identification tasks we can employ the fact that a given obser-

vation has to belong to one pfv from a specified set. Thus, we now can use

the theorem of Bayes. This theorem allows us to calculate the conditional

probability that the query q belongs to a pfv v, under the condition that q

belongs to one pfv of the set of all considered pfv in DB:

P (v|q) =
P (v) · p(q|v)∑

w∈DB (P (w) · p(q|w))

3.3 The Gaussian Uncertainty Model for Identification Task 57

In this rule p(x|v) is the probability density for observing x under the

condition that we already observed v for the same data object. P (v) (P (w))

is the general probability that v (w) is the answer to a query at all. In

the following, we will assume that P (v) (P (w))is the same for any object

and thus we can cancel it in the fraction. This assumption is based on the

observation that it is usually not possible to anticipate the number of times

that a certain object is queried.

Once we can determine this probability P (v|q), we have a natural notion

of how the queries for the Gaussian uncertainty model should be specified.

The user can either specify a probabilistic query vector and a threshold for

the probability. Then, the system has to retrieve all database objects which

correspond to the query object with a probability of at least Pθ. We call this

query a threshold identification query:

Definition 3.2 (Threshold Identification Query (TIQ))

Let q be a probabilistic feature vector and Pθ ∈ [0 . . . 1] a probability threshold.

The answer of a threshold identification query is defined as follows:

TIQ(q, Pθ) = {v ∈ DB|P (v|q) ≥ Pθ}

An example, for a TIQ is: Give me all persons in the database that could

be shown on a given image with a probability of at least 10 %.

Similarly, we can also define a k-most-likely identification query, which

retrieves the k database objects providing the highest probability of belonging

to the database object:

Definition 3.3 (k-Most-Likely Identification Query (k-MLIQ))

Let DB be a database of probabilistic feature vectors v, let q be a proba-

bilistic query vector and let k ∈ N be a natural number. Then, the answer

to a k-most-likely identification query (k-MLIQ) on DB is defined as the

58 3 Efficient Object Identification

smallest set MLIQk(x) ⊆ DB with at least k elements fulfilling the following

condition:

∀v ∈ MLIQk(q),∀w ∈ DB \MLIQk(q) :

P (v|q) > P (w|q)

An example k-MLIQ is: Give the the 10 most likely persons in the

database that are shown on a given image.

We will show in Section and k-MLIQ can be answered in general. This

general solution is either usable as a stand-alone solution operating on top

of a sequential scan of the database DB. Additionally, our general solution

can also be applied as a refinement step following after a filter step (e.g. by

an appropriate index structure) for efficiency improvement. Several approxi-

mation techniques can be used as filter step, e.g. approximation by intervals.

However, to guarantee correctness and completeness of the result, it is nec-

essary to define a filter which guarantees no false dismissals (false hits are

removed in the following refinement step). Therefore, an index structure

guaranteeing no false dismissals is proposed in Section 3.5.

Figure 3.1 displays probabilistic feature vectors generated from 3 facial

images of varying quality that are stored in a database and one for a query

image. While feature F1 is particularly sensitive to the rotational angle, F2

is sensitive to illumination. The object O1 is taken under good conditions

(both features are relatively accurate), whereas for O2 both rotation angle

and illumination were bad. For O3 the rotation was bad but the illumination

was good. For the query object, in contrast, the rotation was good, but

illumination was bad. We can easily recognize, that O3 must be the object

providing the highest probability for describing the same object as specified

by the query. Our model derived in Section 3.4 will evaluate probabilities

which correspond to this intuition: 77% for O3 in contrast to 10% for O1 and

13% for O2. Therefore, a k-MLIQ with k = 1 would report O3 as result. A

TIQ with a threshold probability Pθ = 12% would additionally report O2.

3.4 Processing of Identification Queries 59

Figure 3.1: Probabilistic feature vectors in a 2D space. One query proba-

bilistic feature vector and three database probabilistic feature vectors.

Since conventional similarity search does not consider the individual un-

certainties, a similarity query using the Euclidean distance would obtain three

rather similar distances (d(Q,O1) = 1.53, d(Q,O2) = 1.97, d(Q, O3) = 1.74).

Thus in our example, the nearest neighbor would be O1 which is excluded

when considering the variances. Thus, employing ordinary feature vectors

cannot be used to draw conclusions about their probabilistic feature vectors

having the feature vectors as mean vectors.

3.4 Processing of Identification Queries

To answer any query over a database DB of probabilistic feature vectors

(pfv) with respect to a probabilistic query vector q, we have to model the

probability that two probability distributions given by the query pfv q and

a database pfv v correspond to the same true object. This yields again

60 3 Efficient Object Identification

a probability density function p(q|v). If the query object q would be an

exact feature vector, we could calculate this probability density as mentioned

in Section 3.3. However, if both objects are pfv, we have to consider all

possible positions of the true feature vector when calculating p(q|v). Then,

the complete probability density corresponds to the integral over all these

possible positions. Formally, we have to determine the probability density

that a value x is the true feature value of both database and query object

which implies the following term for each of the probabilistic features vi and

qi(i = 1, . . . , d):

p(qi|vi) =

∫ +∞

−∞
p(vi|x)p(qi|x)dx

Remember that we are allowed to switch the mean value and the observed

value due to the symmetry of the Gaussians. The term can be computed

using the following lemma:

Lemma 3.1 (Joint Probability Density)

Let vi = (µv, σv) be a probabilistic feature of a database object and qi =

(µq, σq) the corresponding probabilistic feature of the query object. Then, the

joint probability density can be determined in the following way:

p(qi|vi) =

∫ +∞

−∞
Nµv ,σv(x) ·Nµq ,σq(x)dx = N

µv ,
√

σ2
v+σ2

q
(µq) (3.1)

Proof. Based on the fact that σvσq is a constant and using the Definition

3.1, the integral in the Equation 3.1 can be rewritten in the following way∫ +∞

−∞
Nµv ,σv(x) ·Nµq ,σq(x)dx =

∫ +∞

−∞

σvσq

2πσ2
vσ

2
q

e−(µv−x)2/(2σ2
v)−(µq−x)2/(2σ2

q)dx

= σvσq

∫ +∞

−∞

1

2πσ2
vσ

2
q

e−(µv−x)2/(2σ2
v)−(µq−x)2/(2σ2

q)dx. (3.2)

Let us show that the following equation is satisfied.

1

2πσ2
vσ

2
q

e−(µv−x)2/(2σ2
v)−(µq−x)2/(2σ2

q) = λ · 1√
2πσ2

e−(µ−x)2/(2σ2) (3.3)

3.4 Processing of Identification Queries 61

If we apply the logarithm to the Equation 3.3, it follows that

(µv − x)2

σ2
v

+
(µq − x)2

σ2
q

− 2 ln
1

2πσ2
vσ

2
q

=
(µ− x)2

σ2
− 2 ln λ · 1√

2πσ2
.

If we replace µ and σ2 by

µ =
µv · σ2

q + µq · σ2
v

σ2
v + σ2

q

, σ2 =
σ2

v · σ2
q

σ2
v + σ2

q

(3.4)

and solve the resulting equation w.r.t. λ, it follows that the Equation 3.3 is

satisfied iff

λ =
1√

2π(σ2
v + σ2

q)
e−(µv−µq)2/(2(σ2

v+σ2
q)). (3.5)

Using the Equation 3.3, the Equation 3.2 can be rewritten in the following

way

σvσq

∫ +∞

−∞

1

2πσ2
vσ

2
q

e−...dx = σvσq

∫ +∞

−∞

λ

σ
· 1√

2πσ
e−(µ−x)2/(2σ2)dx.

Here, the first term in the integral is independent from the integration variable

x. Therefore, the first term can safely be written before the integral (as it is

a constant). The second term is the pdf of a normal distribution (with some

complex values for µ and σ) which always integrates to 1 (when integrating

from −∞ to +∞, independently of µ and σ). Therefore, we have

σvσq

∫ +∞

−∞

λ

σ
· 1√

2πσ
e−...dx = σvσq

λ

σ

∫ +∞

−∞

1√
2πσ

e−(σ−x)2/(2σ2)dx = σvσq
λ

σ
·1.

If we replace σ and λ by their definitions in 3.4, 3.5 and exploit the fact that

the resulting term corresponds to the normal distribution Nµv ,
√

σv+σq(µq), we

get

σvσq
λ

σ
· 1 = σvσq

√
(σ2

v + σ2
q)

σ2
vσ

2
q

1√
2π(σ2

v + σ2
q)

e−(µv−µq)2/(2(σ2
v+σ2

q)) =

1√
2π(σ2

v + σ2
q)

e−(µv−µq)2/(2(σ2
v+σ2

q)) = N
µv ,
√

σ2
v+σ2

q
(µq).

2

62 3 Efficient Object Identification

The lemma allows us to calculate the probability that q and v correspond

to the same data object by using µq as exact feature vector while increasing

σv by σq. Thus, we have reduced the more general case to the easier case that

one of the objects is exact and the other is a pfv. To calculate the p(q|v), we

have to combine all probabilities for all features and than again apply the

rule of Bayes:

p(q|v) =
d∏

i=1

p(qi|vi)

P (v|q) =
p(q|v)∑

w∈DB p(q|w)

Employing this solution, we can give general algorithms for probability-

threshold queries and k-maximum probability queries over a set S of proba-

bilistic feature vectors. For the probability-threshold query, we first have to

scan over S to determine the sum of the probability densities of all objects in

S, i.e. the total probability. Afterwards, a second scan determines the actual

probability P (v|q) for each v ∈ S and reports those with a probability above

the threshold Pθ. For the k-MLIQ, a single scan over the database is suffi-

cient, keeping those k objects (among all objects that have been processed

so far) in a local list which have the highest probability density.

For the set S, we can use the whole database DB. In this case, we operate

on top of a sequential scan of the database. As an alternative, we can also use

a subset of DB which has been generated by a filter step, e.g. an appropriate

index structure.

Properties. We conclude this section by briefly summarizing some prop-

erties of our solution in order to substantiate that the solution agrees with

the intuitive requirements of the identification problem.

1. The sum of the probabilities of all retrieved objects of a TIQ or k-MLIQ

cannot exceed 100%.

3.5 The Gauss-Tree 63

2. To obtain a high identification probability it is required that both

database and query objects have a small uncertainty (σq, σv) and a

high compliance of the observed features (µq ≈ µv), i.e. the Gaussians

must have a high overlap and must be steep. Whenever we increase

the uncertainty of database or query object (or both), the identification

probability will decrease.

3. For very high uncertainty (σ →∞) of the query or a database object (or

both) our model becomes maximally indifferent, i.e. the identification

probability corresponds to 1/n where n is the number of all possible

objects.

4. If the Gaussian of a database object and that of the query object are

quite disjoint, the identification probability is close to 0. Only in this

case, it is possible that the identification probability slightly increases

(up to 1/n, see above) with increasing uncertainty because when in-

creasing the uncertainty, the degree to which the object can be certainly

excluded from identification decreases in this case.

3.5 The Gauss-Tree

In the previous Section, we have defined our basic notions of probabilistic

feature vectors and queries on top of a set of such pfv. Derived from these

basic definitions, we have introduced the basic algorithm for query process-

ing on top of a sequential scan over an unordered file of pfv. The runtime

complexity of these algorithms is linear in the number of stored objects. In

the context of a large database, this is not acceptable, and we are now going

to define the Gauss-tree, a suitable index structure improving k-most-likely

identification and threshold identification queries on top of pfv.

64 3 Efficient Object Identification

root

na nb nc

nba nbb nbc

(probabilistic feature vectors)

ncbncanabnaa

3.0 4.03.5

0.6

0.7

0.8

0.9 A

B

C
D

E

F

A

B

CD

F: N3.9, 0.6 (x)

E

x

N3.0, 4.0, 0.6, 0.9 (x)

Figure 3.2: A 3 level Gauss-tree.

3.5.1 Structure of the Gauss-Tree

The Gauss-tree is a balanced tree from the R-tree family. In contrast to the

other index structures from this family, not the space of the spatial objects

(i.e. the Gaussians) is indexed but instead the parameter space (µi, σi, 1 ≤
i ≤ d) of the Gaussian. The structure of the index is inherited from the R-

tree family which facilitates the integration into object-relational database

management systems.

Definition 3.4 (Gauss-tree)

A Gauss-tree of degree M is a search tree where the following properties hold:

• The root has between 1 and M entries unless it is a leaf. All other

inner nodes have between M/2 and M entries each. A leaf node has

between M and 2M entries.

• An inner node with k entries has k child nodes.

• Each entry of a leaf node is a probabilistic vector consisting of d prob-

abilistic features (µi, σi).

• An entry of a non-leaf node is a minimum bounding rectangle of di-

mensionality 2d defining upper and lower bounds for every feature value

[µ̌i, µ̂i] and every uncertainty value [σ̌i, σ̂i] as well as the address of the

child node.

• All leaf nodes are at the same level.

3.5 The Gauss-Tree 65

In Figure 3.2, we see an example of a Gauss-tree consisting of 3 levels.

In the middle, we have depicted the minimum bounding rectangle of a leaf

node for one of the probabilistic features. This minimum bounding rectangle

allows to store feature values between µ̌ = 3.0 and µ̂ = 4.0 and uncertainty

values between σ̌ = 0.6 and σ̂ = 0.9. A few sample pfv which are stored in

this data page are also depicted. The Gaussian functions (probability density

functions, pdfs) which correspond to these pfv are also shown on the right

side of Figure 3.2 in gray lines.

For query processing, we need a conservative approximation of the prob-

ability density functions which are stored on a page or in a certain subtree.

Intuitively, the conservative approximation is always the maximum among all

(possible) pdf in a subtree. This maximum can be efficiently derived from the

minimum bounding rectangle. In Figure 3.2, the maximum function which

has been derived from the depicted minimum bounding rectangle is shown

on the right side using a solid black line. As a formula, the approximating

pdf N̂µ̌,µ̂,σ̌,σ̂(x) is given as:

N̂µ̌,µ̂,σ̌,σ̂(x) = max
µ∈[µ̌,µ̂],σ∈[σ̌,σ̂]

{Nµ,σ(x)}

Since we assume independence in the uncertainty attributes, we can

safely determine N̂µ̌,µ̂,σ̌,σ̂(x) in each dimension separately. Please note that

N̂µ̌,µ̂,σ̌,σ̂(x) is not really a probability density function as it does not integrate

to 1 for the whole data space. It is the conservative approximation of some

probability density functions.

3.5.2 Query Processing

For efficient query processing, a closed formula for N̂µ̌,µ̂,σ̌,σ̂(x) without an

explicit maximization process over two continuous variables is needed. This

can be derived by the following lemma:

66 3 Efficient Object Identification

Lemma 3.2 The conservative approximation N̂µ̌,µ̂,σ̌,σ̂(x) of the probability

density functions stored in a data page can be exactly computed by the fol-

lowing piecewise function:

N̂µ̌,µ̂,σ̌,σ̂(x) =



Nµ̌,σ̂(x) if x < µ̌− σ̂ (I)

Nµ̌,µ̌−x(x) if µ̌− σ̂ ≤ x < µ̌− σ̌ (II)

Nµ̌,σ̌(x) if µ̌− σ̌ ≤ x < µ̌ (III)

Nx,σ̌(x) if µ̌ ≤ x < µ̂ (IV)

Nµ̂,σ̌(x) if µ̂ ≤ x < µ̂ + σ̌ (V)

Nµ̂,x−µ̂(x) if µ̂ + σ̌ ≤ x < µ̂ + σ̂ (V I)

Nµ̂,σ̂(x) if µ̂ + σ̂ ≤ x (V II)

Proof. Since N̂µ̌,µ̂,σ̌,σ̂ is the maximum of some other Gaussian functions

Nµ,σ(x) with mean values µ between µ̌ and µ̂, the hull function is monoton-

ically increasing for all x ≤ µ̌ and monotonically decreasing for all x ≥ µ̂.

Therefore, for a given x in the quadrants (I) to (III), the gaussian function

which is maximal among all possible functions Nµ,σ(x), µ ∈ [µ̌, µ̂], σ ∈ [σ̌, σ̂]

must be on the left border of the minimum bounding rectangle, i.e. on the line

parallel to the σ axis with µ = µ̌. We determine the σ value which maximizes

N̂µ̌,µ̂,σ̌,σ̂ by setting the derivative with respect to σ to zero:

∂

∂σ
Nµ̌,σ(x) = 0

As the only positive solution we obtain a local maximum at:

σmax = µ̌− x

The function Nµ̌,σ is also monotonically increasing with respect to σ for lower

values of σ and monotonically decreasing for all σ > σmax. For some x

between µ̌ − σ̂ and µ̌ − σ̌ our maximum is at the border of the minimum

bounding rectangle, i.e. σ̌ ≤ σmax ≤ σ̂, and therefore, the maximum value for

some given x in quadrant (II) is

N̂µ̌,µ̂,σ̌,σ̂(x) = Nµ̌,σmax=µ̌−x(x)

3.5 The Gauss-Tree 67

I II III IV V VI VII45°x

(, max)

Figure 3.3: The different sectors used to calculate N̂µ̌,µ̂,σ̌,σ̂(x).

In quadrant (I) the local maximum is at σmax > σ̂. Due to monotonicity,

the global maximum (with restriction to the minimum bounding rectangle)

must be at σ̂. To the same reason, the maximum is at (µ̌, σ̌) for all x in

quadrant (III).

In quadrant (IV) the maximum Nµ,σ(x) is at µ = x. For σ, we obtain to

the same reason as for quadrant (III) a global maximum value of σ̌.

The cases (V) to (VII) are symmetric to (III), (II), and (I), respectively.

2

For query processing we will also need a lower bound Ňµ̌,µ̂,σ̌,σ̂(x) for the

stored Gaussian functions corresponding to the probabilistic feature vectors.

This is defined by the following minimum:

Ňµ̌,µ̂,σ̌,σ̂(x) = min
µ∈[µ̌,µ̂],σ∈[σ̌,σ̂]

{Nµ,σ(x)}

It can be efficiently computed by considering only 4 Gaussian functions

as stated in the following lemma:

Lemma 3.3 The lower bound Ňµ̌,µ̂,σ̌,σ̂(x) for all distance functions stored in

68 3 Efficient Object Identification

a page given by the limits (µ̌, µ̂, σ̌, σ̂) can be computed by:

Ňµ̌,µ̂,σ̌,σ̂(x) = min{Nµ̌,σ̌(x), Nµ̌,σ̂(x), Nµ̂,σ̌(x), Nµ̂,σ̂(x)}

Proof. When varying µ and σ in our function Nµ,σ(x) and fixing x, we ob-

serve only one local maximum and no local minimum (and no singularities).

Therefore, the global minimum for the restricted function is at one of the

four corner points of the rectangle delimited by (µ̌, µ̂, σ̌, σ̂). The four possible

minima are tested. 2

Note that an even easier method is possible because it is very easy to

decide whether the minimum is at µ̌ or at µ̂ due to symmetry. All these

methods have a constant time complexity.

Later, we will also need the approximation for the sum of all Gaussian

functions which are stored in a data node or subtree. For this approximation,

we consider the number of objects stored in the subtree n and apply:

n · Ňµ̌,µ̂,σ̌,σ̂(x) ≤
∑

t∈node

Nµt,σt(x) ≤ n · N̂µ̌,µ̂,σ̌,σ̂(x)

The accuracy of the approximation of the sum is bounded by:

n · (N̂µ̌,µ̂,σ̌,σ̂(x)− Ňµ̌,µ̂,σ̌,σ̂(x))

In our system, a query is defined by a probabilistic feature q = (µq, σq).

The conservative approximations of the maximum, minimum, and sum can

be determined analogously to Section 3.4 by the following equations:

• N̂µ̌,µ̂,σ̌,σ̂(q) = N̂
µ̌,µ̂,
√

σ̌2+σ2
q ,
√

σ̂2+σ2
q
(µq)

• Ňµ̌,µ̂,σ̌,σ̂(q) = Ň
µ̌,µ̂,
√

σ̌2+σ2
q ,
√

σ̂2+σ2
q
(µq)

• etc.

3.5 The Gauss-Tree 69

Note that although we have shown in this Section only the univariate

case, it is very easy to extend all these formulas for the multivariate case

because the individual univariate densities can be multiplied as we assume

independence among the σi. This is also true for the lower and upper bound-

ing pdf Ňµ̌,µ̂,σ̌,σ̂(x) and N̂µ̌,µ̂,σ̌,σ̂(x) and for the sum approximation. Now we

can provide the algorithms for our query types defined in Section 3.3 on top

of the Gauss-tree.

3.5.3 k-Most-Likely Identification Query (k-MLIQ)

A most-likely identification query (MLIQ) reports the object for which the

probability-based similarity is maximal. For the Gauss-tree, we give an algo-

rithm operating on top of a priority queue [HS95]. The algorithm maintains

a priority queue of pointers to some of the nodes (called active nodes) of the

tree. The elements in the queue are ordered by the value of the approxima-

tion function evaluated for the query pfv. Let a be a node of the tree with

a.appx = (µ̌i, µ̂i, σ̌i, σ̂i, 1 ≤ i ≤ d) the µ and σ bounds associated to node a.

Then the priority attribute a.prio of node a in the queue is defined as follows:

a.prio(q) = N̂a.appx(q) =
∏

1≤i≤d

N̂
µ̌i,µ̂i,

√
σ̌2

i +σ2
q,i,
√

σ̂2
i +σ2

q,i
(µq,i)

Intuitively, this ordering key N̂q.appx corresponds to the maximum (rela-

tive) probability that one of the Gaussian functions stored in node a could

yield when inserting the probabilistic query vector q. The top element of the

queue is the node with maximum priority. Initially, the queue contains only

the root. The algorithm runs in a loop which removes the top element from

the queue, loads the corresponding node from disk (if not in cache), and re-

inserts pointers to the children (ordered by their priority attribute) into the

queue. The algorithm keeps a candidate object in a variable which is the max-

imum pfv that has been seen so far by the algorithm in any of the leaf nodes.

The algorithm stops when a probabilistic feature vector v = (µ1, σ1, . . .) has

70 3 Efficient Object Identification

PriorityQueue kMLI_Query(int k, Page root, Point query) {
// descending priority queues with k entries
PriorityQueue candidates = new PriorityQueue(descending, k);
// descending priority queues
PriorityQueue activePages = new PriorityQueue(descending);
//init
activePages.put(root, MAX_REAL);
//traverse Gauss-tree
do {

Page current = activePages.removeFirst();
if(current is a data page) {

for each vector in current {
probability = calcProbability(vector, query);
candidates.put(vector, probability);

}
} else {
Page successors [] = current.getSuccessors();
for each s from successors {

probability = calcMaxProbability(s, query);
activePages.put(s, probability);

}
}

} while (activePages.isNotEmpty() &&
candidates.getLastProbability ()
< activePages.getFirstProbability());

return candidates;
}

Figure 3.4: Pseudocode for the k-MLIQ.

been found for which the relative probability exceeds that of the top element

t of the queue, with t.appx= (µ̌i, µ̂i, σ̌i, σ̂i, 1 ≤ i ≤ d):

∏
1≤i≤d

N
µi,
√

σ2
i +σ2

q,i
(µq,i) >

∏
1≤i≤d

N̂
µ̌i,µ̂i,

√
σ̌2

i +σ2
q,i,
√

σ̂2
i +σ2

q,i
(µq,i)

For k-MLI queries we have to maintain the set of k probabilistic feature

vectors of maximal probability that have been found so far (the candidate

set). The algorithm can safely stop now if all pfv in the candidate set have

probabilities higher than the top element of the priority queue of the active

nodes. The pseudocode is given in Figure 3.4.

3.5 The Gauss-Tree 71

3.5.4 Determining the Result Probability for k-MLIQ

The algorithm in Section 3.5.3 is able to determine those k elements having

the highest probability with respect to the query object, but it is not able to

determine the actual value of the probability. The reason is, that the stored

Gaussian functions are only relative probabilities. These must be contrasted

to the sum of the relative probabilities (theoretically) of all other Gaussian

functions in the database, as discussed in Section 3.3:

P (t|q) =
p(q|t)∑

s∈DB p(q|s)

For pages which are far away from the query point, these relative probabilities

(and also their approximations) are close to zero. Therefore, not all database

objects need to be examined in order to determine the true denominator of

this formula with sufficient accuracy.

We modify our algorithm of Section 3.5.3 in the following way:

• Whenever a leaf node is accessed, the corresponding pfv are examined

and summed up for the total probability.

• Additionally, we maintain the upper and lower bounds for the impact

of the objects which are stored in subtrees which have not yet been

examined.

• The parent nodes of all subtrees which have not yet been examined are

stored in the priority queue. Therefore, the upper and lower bounds

are always updated whenever the top element is taken out of the queue

and when the child nodes are re-inserted.

• The lower and upper bounds of the part of the sum which is caused

by a single node in the tree in which n entries are stored, is given by

n · Ňµ̌,µ̂,σ̌,σ̂(q) and n · N̂µ̌,µ̂,σ̌,σ̂(q), respectively.

• The algorithm stops when both of the following conditions hold:

72 3 Efficient Object Identification

– The k pfv of highest probability are determined (i.e. all candidates

have higher probabilities than the top element of the queue)

– The upper and lower bounds of the sum are close enough together

to guarantee that the result is exact for all k answers according

to user’s specification of exactness (e.g. by a certain number of

digits)

3.5.5 Threshold Identification Queries (TIQs)

This algorithm is similar to that of Section 3.5.4 with the difference that an

unknown number of possible answer objects is maintained. An object must

be stored in that set until it is guaranteed (according to the lower bound

of the denominator) that the object has a probability which is below the

specified threshold. The algorithm can safely stop when for all objects in the

answer set it is guaranteed (according to the upper bound of the denominator)

that they are safely above the specified threshold. We need both a lower and

upper approximation of the Gaussian functions stored in a node.

If the user additionally specifies to report the actual probabilities of the

answer elements at a specified accuracy, the algorithm may have to access

more pages from the priority queue until all probabilities are known with

sufficient certainty, like in Section 3.5.4

The pseudocode of our method for the probability threshold query is given

in Figure 3.5.

3.5.6 Tree Construction

In the following we derive the optimization goals for the insert- and split

strategies applied in the Gauss-tree. Intuitively, we have to collect such

probabilistic feature vectors in one common leaf node (or subtree in general)

3.5 The Gauss-Tree 73

PriorityQueue TI_Query(Page root, Point query, float t) {
real minSum, maxSum, sum = 0;
PriorityQueue candidates = new PriorityQueue(desc);
PriorityQueue activePages = new PriorityQueue(desc);
//init
activePages.put(root, MAX_REAL);
minSum += root.minProb*root.size;
maxSum += root.maxProb*root.size;
//search
do {

Page current = activePages.removeFirst();
minSum -= current.minProb*current.size;
maxSum -= current.maxProb*current.size;
if(current is a data page) {

for each vector in current {
probability = calculateProbability(vector, query);
candidates.put(vector, probability);
sum += probability;

}
} else {
Page successors [] = current.getSuccessors();
for each s from successors {

probability = calculateMaximalProbability(s, query);
activePages.put(s, probability);
minSum += s.minProb*s.size;
maxSum += s.maxProb*s.size;

}
}
//delete unnecessary candidates
while(candidates.getLastProbability()/(minSum+sum) < p)
candidates.removeLast();

} while (activePages.isNotEmpty()
&& activePages.getFirstProbability()/(minSum+sum)<p);

//calculate final probabilities
for each c in candidates {
prev = candidates.getProbability(c);
candidates.updateProbability(c, prev/(maxSum+sum));

}
return candidates;

}

Figure 3.5: Pseudocode for the TIQ.

74 3 Efficient Object Identification

which share both similar µ and σ values because if one of these pfv is needed

for a given query, also the other ones are probably needed for that query.

However, the situation is not that clear as it is for conventional feature vec-

tors where the typical optimization goal is to achieve hyper-rectangles with

approximately uniform side lengths. The main difference is the following: If

we have a node which contains only pfv which have a small standard devia-

tion for one of the probabilistic features, i.e. σ̂i ' 0 then it is also beneficial

if the µ values are spread over a small range, i.e. µ̂i − µ̌i ' 0 because if we

have both small values of σ as well as small ranges of µ then this node will

be very selective, i.e. the node will only be accessed for queries for which the

stored pfv are highly probable candidates. In this case, N̂...(x) is narrow,

and unnecessary page accesses can be avoided. In contrast, if the node also

contains pfv with a high variance then a small range of µ will not help much

either because N̂...(x) will be spread over a wide range anyway. But if the

range of σ values (i.e. σ̂i− σ̌i) is small, then we know at least that this node

contains no pfv with a high probability density. In this case, the node can be

excluded for many queries (e.g. k-MLIQ) which have already found at least

k pfv with higher probability in some other nodes of the Gauss-tree.

We can summarize this intuition for the split strategy (on every node

overflow) in the following way: If σ̂i is low, then perform a node split ac-

cording to µi. Otherwise perform a split operation according to σi. In the

following, we will capture this intuition more precisely because we do not only

have to decide whether to split in µ or σ but also which of the d different µ

or σ have to be used for splitting. Additionally, our analysis gives a formal

justification for the strategy. The mathematical model can be used not only

for the decision of the split but also for resolving the situations during the

insert (i.e. whenever more than one branch of the tree is eligible for the new

pfv).

The split decision must minimize the probability of a node to be accessed

for an arbitrary query. This probability is proportional to the integral of the

3.5 The Gauss-Tree 75

hull curve: ∫ +∞

−∞
N̂µ̌,µ̂,σ̌,σ̂(x)dx

The integral can be determined for each probabilistic feature separately. The

computation of the integral is straightforward. Remember the case analysis

of lemma 3.2. Case (IV) is a constant function, and cases (I), (III), (V), and

(VII) are Gaussian functions with given µ and σ for which efficient integra-

tion methods are known. We apply sigmoid approximation by a degree-5

polynomial in order to calculate the integral efficiently. The only part which

requires a little bit of consideration is case (II) and its symmetric counterpart

(VI) where we have to integrate over Nµ̌,µ̌−x(x) from µ̌− σ̂ to µ̌− σ̌. However,

substituting (µ̌−x) for σ in the definition of the probability density function

of the Gaussian distribution yields:

Nµ̌,µ̌−x(x) =
1√

2πe · (µ̌− x)

which integrates to (ln σ̂ − ln σ̌)/
√

2πe for the above mentioned integration

limits.

For the insertion strategy, we apply the following rules to select a path

of the Gauss-tree :

• If the new pfv fits into exactly one node, this node is followed.

• If the new vector does not fit into any node, we examine all subnodes

and find the leaf node which causes the least increase of volume.

• If the new vector fits into more than one node, we follow all paths and

try to find a leaf node where the node exactly fits in (or minimize the

increase of volume, if no exactly fitting node exists).

When a node is beyond its capacity, it has to be split. We tentatively

perform a median split in each µ-dimension and each σ-dimension of the

Gauss-tree. For every tentative split, we determine the lower and upper µ and

76 3 Efficient Object Identification

σ bounds of the two resulting nodes, and evaluate the integral
∫

N̂µ̌,µ̂,σ̌,σ̂(x)dx

for both nodes. The split operation minimizing the sum of these two integrals

is made permanent.

3.6 Experimental Evaluation

For our experimental evaluation, we implemented the Gauss-tree and all

compared methods in Java. All experiments described below were performed

on a workstation that is equipped with two AMD Opteron 1.8 GHz processors

and 8 GB main memory. We used up to 50 MByte as database cache which

was cold started before each experiment. In our experiments, we compare the

effectiveness and efficiency of the proposed solution for handling uncertain

data on two different datasets.

Dataset 1 consists of 10,987 27-dimensional color histograms of an image

database. To describe these images as probabilistic feature vectors, we com-

plemented each dimension with a randomly generated standard deviation. A

total number of 100 objects was randomly selected and new observed mean

value was generated w.r.t. the corresponding Gaussian. For these queries,

new standard deviations were randomly generated. To additionally test our

method on a larger dataset, we randomly generated 100,000 probabilistic

feature vectors in a 10-dimensional feature space along with corresponding

σ values (dataset 2). For dataset 2, 500 query vectors were selected and

modified as described above.

To demonstrate that ordinary similarity search on feature vectors us-

ing Euclidean distance is not sufficient for probabilistic queries on imprecise

data, our first experiment compares precision and recall for both methods.

To compare the performance of the Gaussian uncertainty model to ordinary

similarity search, we processed an MLIQ on the Gauss-tree and a nearest

neighbor query on the mean values. For each query, we measured precision

3.6 Experimental Evaluation 77

0

20

40

60

80

100

x1 x2 x3 x4 x5 x6 x7 x8 x9

Pr
ec

is
io

n
[%

]

0

20

40

60

80

100

x1 x2 x3 x4 x5 x6 x7 x8 x9
R

ec
al

l [
%

]

NN
MLIQ / G-Tree

0

20

40

60

80

100

x1 x2 x3 x4 x5 x6 x7 x8 x9

Pr
ec

is
io

n
[%

]

(b) Data Set 2

(a) Data Set 1

0

20

40

60

80

100

x1 x2 x3 x4 x5 x6 x7 x8 x9

R
ec

al
l [

%
]

NN
MLIQ / G-Tree

Figure 3.6: Precision and Recall of 3-NN query on conventional feature

vectors and 3-MLIQ on pfv.

and recall. The recall is the percentage of retrieved and correct answers

among all objects in the database that are correct and precision is the per-

centage of the retrieved and correct objects among all objects in the result

set. For NN queries and MLIQ, both measures are the percentage of queries

that retrieved the correct object.

Figure 3.6 compares precision and recall for both methods. The MLIQ

achieved a precision and recall of 98% for dataset 1 and 99% for dataset 2.

Thus, our new query, based on the Gaussian uncertainty model, achieved

almost optimal results in this experiment. On the other hand, the NN query

displayed only a precision of 42% for dataset 1 and 61% for dataset two.

Thus, ordinary similarity search seems not to be suited well for handling

uncertain data corresponding to a Gaussian distribution. To show that ordi-

78 3 Efficient Object Identification

Figure 3.7: Performance of sequential scan, X-tree on hyper-rectangle

approximations of pfv and Gauss-tree on dataset 1 and dataset 2 (see text

for details).

nary similarity search cannot improve its performance by using larger result

sets, we increased the number of retrieved objects for the nearest neighbor

query which increases the recall but decreases the precision. For dataset 1

the recall did not significantly increase. Even for a result set being 9 times

bigger than necessary the recall reached only a value of 60%. For dataset 2

the recall could be improved to 97% when using more than 6 times the size

of the result set that is necessary. However, due to the dependency between

precision and recall, the precision dropped to only 18%. Thus, the right

selection of k cannot compensate for the missing handling of uncertainty.

In the next set of experiments, we compare the efficiency of query pro-

cessing when using the Gauss-tree to the basic solution of a sequential scan

over the complete database. To additionally compare to a more sophisticated

method, we use an X-tree to store rectangular approximation of each pfv.

To derive these approximations, we calculate the 95% quantiles in each di-

mension, i.e. we determine the interval around the mean value of a Gaussian

3.6 Experimental Evaluation 79

that contains a random observation with a probability of 95%. By combin-

ing these intervals to a hyperrectangle, we generate a good approximation

for each pfv. To process a MLIQ with this method we first calculate an

approximation for the query pfv. Afterwards, we use the X-tree to deter-

mine a candidate set consisting of all approximations that intersect with the

query approximation. To find out the final result the candidate set is refined

by calculating the exact probabilities. Let us note that this method does

not offer exact results with respect to Gaussian uncertainty model because

the used approximations allow false dismissals. However, using this method,

we observed a precision and recall that was only slightly below the values

we observed for the Gauss-tree. Figure 3.7 displays the page accesses, cpu

time and complete query time for an MLIQ and two TIQ (Pθ = 0.2 and

Pθ = 0.8) on both datasets. All values are given in percent to the values

of the sequential scan using the Gaussian uncertainty model. For dataset

1, the Gauss-tree was able to reduce the page accesses as well as the CPU

time up by a factor of 4.2 compared to the sequential scan for all three query

types. Though, the all over time suffered from additional seeks on the hard

disc, the Gauss-tree was still able to improve query processing by at least

46% for all three types of queries. For dataset 2, the Gauss-tree achieved

a speed up of 4.3 with respect to the number of accessed pages and of 4.8

for the cpu time of the MLIQ. For the TIQ, it even achieved to improve the

page accesses by a factor between 35.7 and 43.2 of the page accesses of the

sequential scan and the cpu time by a factor of 13.2 of the cpu time of the

sequential scan. The speed up of the all over query time was between 3.1

for the MLIQ and about 7.5 for both TIQ. Thus, the Gauss-tree offered a

significant improvement of the efficiency compared to the sequential scan.

The X-tree storing rectangular approximations on the other hand did not

offer any speed up against the sequential scan for MLIQ. Though it achieved

some improvement for the TIQ, it was only capable to decrease the all over

time of both queries by 17.3% for dataset 1 and 23.2% for dataset 2. Thus,

it did not offer any real benefit.

80 3 Efficient Object Identification

3.7 Conclusions

In this chapter, we introduced the Gaussian uncertainty model for identi-

fication queries on inexact, probabilistic feature vectors (pfv). This model

extends feature vectors by an additional uncertainty value for each dimen-

sion, associating each feature vector to a multivariate Gaussian distribution.

Based on this model, we defined novel types of queries called k-most-likely

identification queries (k-MLIQ) and threshold identification queries (TIQ).

To speed up query types such as TIQ or k-MLIQ, we proposed the Gauss-

tree, a balanced index structure from the R-tree family which does not index

the Gaussian curves as spatial objects but instead the parameter space of

the means and standard deviations of the Gaussians. We developed the al-

gorithms for both insertion and split as well as query processing for TIQ

and k-MLIQ. In our experimental evaluation, we demonstrated the superior

quality of the query result when using probabilistic feature vectors as well as

the efficiency when using the Gauss-tree.

Chapter 4

High Performance Video

Retrieval using Probabilistic

Feature Vectors

Content based multimedia retrieval is an important topic in advanced database

systems. Specifically, an emerging and challenging task in this area is the

content based search in video data. This chapter introduces a novel method

for similarity search in video databases. It is organized as follows. Section

4.1 motivates similarity search in video databases. Afterwards, Section 4.2

surveys related topics like content based video retrieval and similarity search

using point sets, and probabilistic feature vectors. In Section 4.3, we for-

malize our model and the new query types. In Section 4.4, we describe the

new algorithms for processing the proposed query types. To demonstrate the

quality of our approach to video retrieval and show the superior efficiency

of our query algorithms, we provide several experiments on a database of

over 900 video clips in Section 4.5. In Chapter 4.6, we propose ProVeR, a

prototype search engine for content-based video retrieval which represents a

video as a set of Gaussians. This chapter is concluded by Section 4.7.

81

82 4 High Performance Video Retrieval using Probabilistic Feature Vectors

Figure 4.1: A news video clip summarized as set of probabilistic feature

vectors.

4.1 Introduction

Video clips are an important type of multimedia data. Due to recent technical

advances, the amount of video data that is available in digital formats as

well as the possibility to access and display such video files has increased

enormously. Nowadays, it is possible to view complete movies on mobile

phones and MP3 players. Another important aspect is that broadcasting

videos over the WWW (e.g. in video podcasts) allows to distribute video

data to a large number of people while spending minimum effort and budget.

The enormous amount of video clips and movies that is currently available

causes a need for database techniques to manage, store and retrieve video

data for various applications. In this chapter, we focus on the following

scenario: Given a database of movies or video clips, we want to retrieve all

movies from the database that are likely to match a given set of query images.

The query images might consist of a continuous image sequence of a scene or

might be sampled from the complete movie. For this type of scenario, there

4.1 Introduction 83

are various applications. For example, a company wants to determine if a

given video podcast or shared video file contains scenes from any copyright

protected movie or video clip. In this scenario, the company would store all

of its movies in the database and automatically check if the scenes in the

video podcast match any scenes in the database.

Another example is a database of news programs recorded on various

days from various tv stations. A user can retrieve all news programs that are

likely to contain a given video clip featuring a particular event. Since most

news programs use videos which are provided by video news agencies, it is

very likely that the news programs dealing with similar topics contain similar

news clips. Another application is the detection of commercials in video data

recorded from television. In this case, the commercial is the query and the

programs are stored in the database. Thus, there are varying applications for

this scenario varying from the detection of single scenes to similarity search

on complete movies.

From a technical point of view video data consists of a sequence of images

(so-called frames) that might be accompanied with some soundtrack. In our

approach, we focus on the image part only. To allow similarity search on

video clips, each frame is usually represented by a feature vector. So-called

summarization [ZRHM98, GGM02, CSL99b] techniques are used to reduce

the enormous number of frames. For summarization, a video is decomposed

into shots, i.e. a sequence of frames within a movie showing the same sce-

nario recorded from the same camera position. The images within a shot

are usually very similar and thus, the images are usually associated to very

similar feature vectors. Therefore, each shot can be summarized by some

representative object and only the representative objects are stored in the

database. To represent a shot, it is often sufficient to simply take the centroid

or mean vector of all feature vectors within the shot. Newer approaches like

[IBW+04] represent shots as Gaussian probability density functions (pdf)

where each component µi of the mean vector is complimented by a variance

84 4 High Performance Video Retrieval using Probabilistic Feature Vectors

σ2
i . We call such feature vectors where each vector component is associated

to a variance value probabilistic feature vector (pfv). This type of summa-

rization is usually more accurate because the method additionally considers

the variance among the summarized feature values. In our new approach, we

condense the given video data even more, by representing all similar frames

by one Gaussian regardless of the shot they belong to. To conclude, each

movie in the database is represented by a set of probabilistic feature vectors

(pfvs) where each Gaussians represents a set of similar frames.

Our work is focused on similarity search and scene detection in movie

databases. To pose a query, a user has to provide a video clip that might

comprise a scene in the movie or even the complete movie. The query clip

can be transformed into a set of frames, corresponding to a set of traditional

feature vectors or a set of probabilistic feature vectors. To use probabilistic

(rather than traditional) feature vectors for the queries yields advantages

as well as disadvantages: extracting a set of frames and determining tra-

ditional feature vectors without further summarization might be computa-

tionally simpler and less expensive. In contrast, probabilistic feature vectors

might represent the information contained in the query in a more concise

way. Therefore, we will examine both possibilities.

Furthermore, we develop a method for comparing both types of query

representations to objects stored in the database which is based on the like-

lihood that the query matches the database object. Based on this method,

we describe two types of probabilistic queries. The first type is the set-valued

probabilistic threshold query retrieving all movies matching the given query

frames with a likelihood which is higher than a specified threshold value. The

second query type is the set-valued probabilistic ranking query retrieving the

top k movies from the database which are most likely query hits.

Although summarization considerably decreases the size of the represen-

tation of each database object, query processing still requires to examine

4.2 Related Work 85

every movie description in the database. Therefore, we will introduce algo-

rithms for query processing that are facilitated by the Gauss-tree in Chapter

3, an index structure for probabilistic feature vectors. However, previous

work on the Gauss-tree was focused on querying single objects. In this chap-

ter, we introduce techniques for querying set-valued objects which are more

complex.

4.2 Related Work

Video Summarization Techniques. Since video data consists of large

sequences of images or frames, a straightforward feature representation of a

movie might contain thousands or even millions of feature vectors. In order

to handle such data efficiently, summarization techniques are usually applied

to the original data, i.e. the original feature vectors are grouped together

and each group is represented by a summarization vector or summarization

representative, cf. Section 2.1.5 in Chapter 2 for details. However, to the

best of our knowledge, none of these techniques uses an index structure for

the pfvs to accelerate query processing.

Similarity Search Based on Set-Valued Objects. Set-valued objects

are usually compared by complex distance measures like [EM97, RB01] al-

lowing similarity queries as discussed in Section 2.1.4 in Chapter 2. However,

selecting a suitable distance measure for a particular application is often quite

difficult because there exist many different notions of similarity between two

sets of feature vectors. Another problem is the understandability of the

derived distances. For complex distance measures and large set-valued ob-

jects containing hundreds of instances, it is very difficult to understand why

the set-valued objects are similar. Finally, employing the proposed distance

measures often yields efficiency problems. Since most of the distance mea-

sures for set-valued objects are non-metric, employing index structures is

86 4 High Performance Video Retrieval using Probabilistic Feature Vectors

not always possible. Additionally, useful filter steps avoiding time consum-

ing distance calculations like in [BKK+03] were introduced for a minority of

multi-instance distance measures only. To the best of our knowledge there

is so far no query algorithm handling sets of probabilistic feature vectors,

instead of ordinary set-valued objects.

Similarity Search Based on Probabilistic Feature Vectors. In [CKP03]

a new uncertainty model is introduced and several new types of queries

are described that allow the handling of inexact data. [CXP+04] describes

two methods for efficiently answering probabilistic threshold queries that are

based on the R-Tree [Gut84]. A probabilistic threshold query returns all data

objects that are placed in a given query interval with a probability exceeding

a specified threshold value. [TCX+05] introduced the U-Tree for indexing

uncertain 2D objects. All these approaches do not handle sets of probabilis-

tic feature vectors and do not apply a Baysian setting. Thus, the mentioned

approaches are rather dealing with data objects having an uncertain location.

4.3 Video Retrieval using Probabilistic Fea-

ture Vectors

In this section, we will formalize video summarization using sets of probabilis-

tic feature vectors (pfvs) following a Gaussian density function. Additionally,

we will provide the probabilistic framework for comparing queries to movies

and specify the new types of queries.

As mentioned before, the video part of a movie is a sequence of images

which can be transformed into d-dimensional feature vectors f ∈ Rd. Apply-

ing summarization techniques, a video is represented by a set of pfvs. Let us

note that there are other notions of pfvs which are based on different density

function, but in this chapter the distribution function of a pfv is considered

4.3 Video Retrieval using Probabilistic Feature Vectors 87

to be Gaussian. Thus, our pfvs are defined as proposed in definition 3.1.

To represent a movie, we employ a set of pfvs. Each pfv is considered to

represent a set of similar frames in the movie. Additional to each pfv, we

consider a weight expressing the average amount of frames represented by

the given pfv in the complete movie. Thus, pfvs representing more frames

have larger weights than pfvs representing a smaller fraction of the frames.

We can now define a movie descriptor as follows:

Definition 4.1 (Movie Descriptor)

A movie descriptor M is a set of pfvs {v1, . . . , vk} and a weighting {w1, . . . , wk}.
wi corresponds to the a priori likelihood that a frame in the movie is described

by the pfv vi. Furthermore, the following condition holds:

k∑
i=1

wi = 1.

A query is posed by specifying a video clip or only a part of it. To

calculate the likelihood that the query is contained in some database object,

we first of all have to apply some feature transformation to the query as well.

Thus, a query Q can be considered as a set of feature vectors {q1, . . . , ql}
with qi ∈ Rd. To calculate the probability that Q is contained in a movie

described by M , we first of all have to derive a probability for a single query

frame qi for being contained in a given pfv vj ∈ M having the weight wj.

A pfv corresponds to a density function over Rd. Thus, we can calculate

the density of qi w.r.t. vi. However, to calculate a probability for a single

vector in a continues space, we would have to integrate over some interval.

Since for a single vector this interval converges to 0, the probability of the

vector converges to 0 as well. However, since we already observed qi, we

actually do not need to calculate the probability that exactly qi occurs in the

given video. Instead, we can apply the theorem of Bayes and calculate the

conditional probability that qi belong to vj under the condition it appeared

88 4 High Performance Video Retrieval using Probabilistic Feature Vectors

at all. To formalize this condition, we have to distinguish three cases. First,

qi belongs indeed to vj. Second, qi belongs to some other pfv vk in the

same movie M . Finally, qi is not contained in M but is part of some other

movie. To approximate the last case, we specify H0(qi) which is modeled by

a uniform distribution or the average density of any known pfv for the vector

qi. Additionally, we multiply this density with the number of pfvs in the

compared movie descriptor to have a weighting which is equal to the movie

descriptor.

Thus, the probability that qi appears at all is the sum of the probabili-

ties p(qi|vi) that qi belongs to some vi describing the current movie M and

the probability that qiis not contained in M which is formulated in H0(qi).

Formally, we can calculate the probability P (vj|qi) :

P (vj|qi) =
wj · p(qi|vj)∑

v̂∈V ŵ · p(qi|v̂) + H0(qi)

Since a movie is given by a set of pfvs, the probability that a frame qi

is contained in the complete movie described by M , can be computed by

summing up the probabilities for each pfv:

P (M |qi) =
∑

vj∈M

P (vj|qi)

Finally, we have to consider all frames qi ∈ Q of a query. Thus, we

calculate the average probability for any frame in the query qi for being

contained in the given movie descriptor M by:

P (M |Q) =

∑
q∈Q P (M |q)
|Q|

If a query comprises large numbers of frames this method yields perfor-

mance problems. Thus, we have to reduce the number of frames for the

query object as well. If the query must be answered in interactive time, so-

phisticated summarization techniques cannot be applied. Thus, we propose

4.3 Video Retrieval using Probabilistic Feature Vectors 89

a simple reduction by considering every ith frame only. If time is less impor-

tant, summarization by sets of pfvs is applicable. In this case, the query is

represented by a movie descriptor itself. For calculating the probability that

a movie descriptor Mq describes frames which are contained in the movie

described by M , we will proceed as follows. We first of all determine the

probability that a query pfv vq describes the same set of feature vectors as a

pfv vm contained in the movie. This probability can be defined as follows:

The probability density of two Gaussians for describing the same vector

can be specified as follows:

p(vq, vm) =

∫ +∞

−∞
p(vq|x)p(vm|x)dx

Having this probability, we can calculate the conditional probability for

vm under the condition of vq in the following way:

P (vm|vq) =
wm · wq · p(vq, vm)∑

v̂∈M ŵ · wq · p(vq, v̂) + H0

Using this probability, we can proceed as above. The probability for

P (M |Mq) is the average probability of P (M |vq) which is the sum over all

P (vj|vq) in M :

P (M |Mq) =

∑
vq∈Mq

∑
vj∈M P (vj|vq)

|Q|

Based on these probabilities, we can specify probabilistic queries retriev-

ing any movie in the database having a large enough probability for contain-

ing a query video clip. To decide which probability is large enough for being

contained in the result set, there are two general approaches. The first is to

define a fixed probability threshold, e.g. 80%. Thus, we retrieve all movies

containing the specified query frames with a probability of more than 80%.

Formally, we can define a set-valued probabilistic threshold query on movie

descriptors as follows:

90 4 High Performance Video Retrieval using Probabilistic Feature Vectors

Definition 4.2 (Set-Valued Probabilistic Threshold Query)

(SVPTQ)

Let DB be a database of movie descriptors, let Q be a set of query frames

and let Pθ ∈ [0 . . . 1] be a probability threshold. The answer of a threshold

identification query is defined as follows:

SV PTQDB(Q,Pθ) = {M ∈ DB|P (M |Q) ≥ Pθ}

The second method for deciding containment in the query result is to

retrieve the k most likely results. Thus, the threshold is relative to the

database content. An example for this type of query is: Retrieve the 5

movies from the database having the highest probability for containing the

query scene. We will call this type of query set-valued probabilistic ranking

query (SVPRQ). In the following we will formalize SVPRQs:

Definition 4.3 (Set-Valued Probabilistic Ranking Query)

(SVPRQ)

Let DB be a database of movie descriptors M , let Q be a set of query frames

and let k ∈ N be a natural number. Then, the answer to a set-valued

probabilistic ranking query (SVPRQ) on DB is defined as the smallest set

RQk(Q) ⊆ DB with at least k elements fulfilling the following condition:

∀Ma ∈ RQk(Q),∀Mdb ∈ DB \RQk(Q) : P (Ma|Q) > P (Mdb|Q)

4.4 Indexing Summarized Videos

After describing the queries, we are now introducing our solution for efficient

query processing based on sets of probabilistic feature vectors.

4.4 Indexing Summarized Videos 91

4.4.1 Answering Set-Valued Queries

In contrast to searching in a database where each object is represented by a

single pfv, our application requires the use of set-valued objects for both the

query and the database objects. For query processing, we have to match all

the elements of the query representation (being traditional or probabilistic

feature vectors) against all the movie descriptors in the database. The dif-

ficulty of this task lies in the problem that even if a movie descriptor offers

a high likelihood for containing one of the elements of our query, the corre-

sponding movie needs not necessarily to be a likely candidate for containing

the complete query. Thus, in order to prune a movie descriptor from the

search space, it is necessary to approximate the probability of the complete

movie descriptor for matching the complete query.

Our new method for indexing movie descriptors uses a single Gauss-tree

for managing all pfvs belonging to any movie descriptor in the database.

Each pfv is identified by its movie ID and an additional sequence number

identifying the pfv within the movie. To utilize this data structure for an-

swering matching queries, we will describe conservative approximations of

the likelihood that the elements of a query Q are described by some movie

descriptor being stored in a set of nodes belonging to the Gauss-tree.

Therefore, we will first of all calculate the probability of a query element

qi ∈ Q that qi is contained in some movie M descriptor which is completely

stored in a set of nodes P :

Lemma 4.1 Let Q be a set valued query, let P = {p1, . . . , pm} be a set of

nodes in the Gauss-tree T containing the pfvs of a movie Descriptor M ∈ DB.

We define the function maxDenseP (q) as follows:

maxDenseP (q) = max
pi∈P

Npi
(q)

Then the following condition holds for all q ∈ Q:

92 4 High Performance Video Retrieval using Probabilistic Feature Vectors

∀M ∈ P : P (M |q) ≤ maxDenseP (q)

maxDenseP (q) + H0

Proof.

P (M |q) =

∑
vi∈M

wi · p(q|v)∑
vi∈M

wi · p(q|v) + H0(q)
≤

max
pj∈P

Npj
(q)

max
pj∈P

Npj
(q) + H0(q)

⇔
∑
vi∈M

wi · p(q|v) ≤ max
pj∈P

Npj
(q)

⇔
∑
vi∈M

wi · p(q|v) ≤
∑
vi∈M

wi ·max
pj∈P

Npj
(q)

= max
pj∈P

Npj
(q) ·

∑
vi∈M

wi = max
pj∈P

Npj
(q) · 1

2

Based on this lemma, we can determine the maximum probability for

each element q of the query Q of being contained in a movie M which is

completely stored in the set of pages P . To employ this lemma for approx-

imating the likelihood of the complete query Q, we must take the average

of the conservative approximations over all elements of the query Q. The

average of a set of conservative approximations must be a conservative ap-

proximation of the average of the exact values. Since each part of the sum

in the average of approximations is greater or equal to the exact value, the

sum of approximations is greater or equal than the sum of exact values as

well. The average is the mentioned sum divided by the number of elements.

Therefore, the following condition holds:

∀M ∈ P : P (M |Q) ≤ 1

|Q|
·
∑
qi∈Q

maxDenseP (q)

maxDenseP (q) + H0(q)

Though we can now approximate the probability that Q matches some

movie M ∈ P , the approximation is potentially depending on several nodes

4.4 Indexing Summarized Videos 93

p ∈ P at the same time. For ranking and pruning nodes in the query algo-

rithms, we therefore prove the following lemma:

Lemma 4.2 Let Q be a set-valued query, let P = {p1, . . . , pm} be a set

of nodes in the Gauss-tree T containing the pfvs of any movie descriptor

M ∈ DB. Then the following condition holds:

∀M ∈ P : P (M |Q) ≤ max
p∈P,q∈Q

Np(q)

Np(q) + H0(q)

= max
p∈P

maxProb(Q,n)

Proof.

∀M ∈ P : P (M |Q) ≤ 1

|Q|
·
∑
q∈Q

max
p∈P

Np(q)

max
p∈P

Np(q) + H0(q)

≤ |Q|
|Q|

·max
qi∈Q

max
p∈P

Np(q)

max
p∈P

Np(q) + H0(q)

= max
q∈Q

max
p∈P

Np(q)

Np(q) + H0(q)
= max

p∈P,q∈Q

Np(q)

Np(q) + H0(q)

2

We can now approximate the probability P (M |Q) that M is completely

stored in the set of nodes P on the basis of a single node pmax where pmax

is the node p maximizing maxProb(Q, p). An important property of this

approximation is that it can be used to rank the access order of the nodes in

the Gauss-tree for query processing. Additionally, we will employ this lemma

for pruning unnecessary pages and terminate our queries.

Our algorithms employ two data structures. The first is a priority queue

containing the nodes of the Gauss-tree that have not been examined yet. The

priority is ranked with respect to maxProb(Q, p) in descending order. Due

to Lemma 4.2, maxProb(Q, p) yields an upper bound of the probability of a

movie descriptor to be completely stored in the remaining nodes of the tree.

94 4 High Performance Video Retrieval using Probabilistic Feature Vectors

Additionally, maxProb(Q, p) can be considered as the maximum probability

for all query elements that are yet unknown.

The above lemmas describe the case that there is a set of the nodes which

are guaranteed to contain the complete set of considered movie descriptors.

However, during query processing we will encounter the case that we already

retrieved some pfvs for a movie M , but there are still some v ∈ M which

are stored in the part of the Gauss-tree that has not been examined yet. For

those movie descriptors, we have to store the already known densities in the

so-called candidate table until the complete set of pfvs is retrieved. Each

entry in the candidate table corresponds to a movie descriptor. For each

movie stored in the candidate table, we additionally store the sum of the

densities for each query element q and each density function vi that has been

retrieved so far. Let us note that each density p(q|vi) in each sum is weighted

with wi which is the weight of the pfv vi in the descriptor M . Finally, we

store the number of all already retrieved density functions for each movie

descriptor M . Based on this data and the current maxProb(Q, p) on the

top of our priority queue, we can also approximate the density of any partly

known movie descriptor. The approximation is formulated in the following

lemma:

Lemma 4.3 Let M be a partially retrieved movie descriptor, A ⊂ M be the

set of already known pfvs with weight wa and let B ⊂ M be the still unknown

elements of M . Furthermore, let P be the set of node in the Gauss-tree P

containing B. We define the function partDensityA(q) as follows:

partDensityA(q) =
∑
vi∈A

wi · p(q|vi) + (1−
∑
vi∈A

wi) ·maxDenseP (q)

Then, the following condition holds:

P (M |q) ≤ partDensityA(q)

partDensityA(q) + H0(q)

4.4 Indexing Summarized Videos 95

Furthermore, we can state for the complete query Q:

P (M |Q) ≤ 1

|Q|
·
∑
q∈Q

partDensityA(q)

partDensityA(q) + H0(q)

Proof. The proof is analogue to the proof of lemma 4.2. 2

4.4.2 Set-Valued Probabilistic Threshold Query

In our first query, we have a fixed global probability threshold PΘ which

can be employed to decide whether a movie is part of the result set. We

will now explain our algorithm for processing SVPTQs using the Gauss-tree.

The pseudocode of this algorithm is displayed in Figure 4.2. The algorithm

starts by reading the root node of the Gauss-tree. For each node p being a

child node of the root, we now calculate maxProb(Q, p) and insert the nodes

into the priority queue which is sorted in descending order. Afterwards,

the algorithm enters its main loop which iterates until the priority queue

is empty. Additionally, the algorithm terminates if we can guarantee that

there cannot be any movie descriptor left matching the given query Q with

a likelihood larger than PΘ. In each step, the algorithm removes the top

element of the queue. If the element is a node, it is loaded and pointers to its

child nodes are inserted into the priority queue, ranked by maxProb(Q, p).

If the top element of the queue is a pfv, we check if there is already an entry

in the candidate table corresponding to the movie descriptor M of the pfv.

If not, we insert a new entry into the candidate table. In both cases, we

can update the sum for each query element for the movie descriptors in the

candidate table. If the current entry for the movie descriptor M is complete,

i.e. all of its pfvs have been retrieved, we can calculate the likelihood. If this

likelihood is larger than t, we can add M to the result set. Finally, the entry

for M is removed from the candidate table.

If the movie descriptor M is not complete after updating the priority

96 4 High Performance Video Retrieval using Probabilistic Feature Vectors

SVPTQ(Query Q, float PΘ)

activePages := new PriorityQueue(descending)

candidateTable := new CandidateTable()

result := new List()

pruned := new List()

activePagesQueue.insert(root, 1.0)

DO

aktNode = activePages.removeFirst()

IF aktNode is a directory node THEN

FOR each node in aktNode DO

activePages.insert(node,maxProb(Q, node))

END FOR

END IF

IF aktNode is a data node THEN

FOR each pfv in aktNode DO

IF pfv.MovieID in pruned THEN

CONTINUE

END IF

candidateTable.update(pfv.MovieID, pfv(Q))

candidateEntry := candidateTable.get(pfv.MovieID)

IF candidateEntry.isComplete THEN

IF candidateEntry.probability(Q) ≥ PΘ THEN

result.add(pfv.MovieID)

END IF

candidateTable.delete(pfv.MovieID)

ELSE

IF andidateEntry.approximation(Q) ≤ PΘ THEN

pruned.add(pfv.MovieID)

candidateTable.delete(pfv.MovieID)

END IF

END IF

END FOR

END IF

WHILE((not candidateTable.isEmpty

or activePages.topProbability > PΘ)

and not activePages.isEmpty())

RETURN result;

Figure 4.2: Pseudocode of set-valued probabilistic threshold query

(SVPTQ).

4.4 Indexing Summarized Videos 97

queue, we approximate the current maximum likelihood of M and Q. If the

conservative approximation is smaller than t, we can exclude M from the

result set. Thus, we store the ID of M in a separated pruning list and delete

its entry from the candidate table. If we later encounter a pfv belonging to

M , we can safely skip its computation after checking the pruning list. Our

algorithm terminates if maxProb(Q, p) for the top element of the priority

is smaller than PΘ. Additionally, we have to continue processing until the

candidate table is empty, to make sure that the result is complete.

4.4.3 Set-Valued Probabilistic Ranking Query

The second query type proposed in this chapter are SVPRQs. For SVPRs

the minimum probability for a result depends on the movie having the k

highest probabilities for containing the query set. The idea of the algorithm

is quite similar to the previous algorithm. However, for this type of query,

we need a second priority queue storing those k movies which currently have

the largest probabilities for containing Q. We will sort this second priority

queue in ascending order and refer to it as result queue. The pseudocode

for this algorithm is displayed in Figure 4.3. We start again by ordering

the descendant nodes of the root page w.r.t. maxProb(Q, p). Afterwards

we enter the main loop of the algorithm and remove the top element of the

queue. If this element is a node, we load its child nodes. If these child

nodes are nodes themselves, we determine maxProb(Q, p) and update the

priority queue. If the child nodes are pfvs, we check the candidate table

for corresponding movie descriptor M and insert a new descriptor, in the

case that there is not already a descriptor for the movie M . Afterwards, we

can update the candidate table as mentioned before. If a movie descriptor

M has been read completely, we can delete it from the candidate table and

compare its probability P (M |Q) to the probability of the top element of

the result queue, i.e. the movie descriptor encountered so far having the k

98 4 High Performance Video Retrieval using Probabilistic Feature Vectors

SVPRQ(Query Q, integer k)

activePages := new PriorityQueue(descending)

resultQueue := new PriorityQueue(ascending)

candidateTable := new CandidateTable()

pruned := new List()

activePagesQueue.insert(root, 1.0)

DO

aktNode = activePages.removeFirst()

IF aktNode is a directory node THEN

FOR each node in aktNode DO

activePages.insert(node,maxProb(Q, node))

END FOR

END IF

IF aktNode is a data node THEN

FOR each pfv in aktNode DO

IF pfv.MovieID in pruned THEN

CONTINUE

END IF

candidateTable.update(pfv.MovieID, pfv(Q))

candidateEntry := candidateTable.get(pfv.MovieID)

IF candidateEntry.isComplete THEN

prob := candidateEntry.probability(Q)

IF prob≥ resultQueue.topProbability THEN

IF resultQueue.size = k THEN

resultQueue.removeFirst

END IF

resultQueue.add(pfv.MovieID,prob)

END IF

candidateTable.delete(pfv.MovieID)

ELSE

IF candidateEntry.approximation(Q) ≤
resultqueue.topProbability THEN

pruned.add(pfv.MovieID)

candidateTable.delete(pfv.MovieID)

END IF

END IF

END FOR

END IF

WHILE((not candidateTable.isEmpty

or activePages.topProbability > resultqueue.topProbability)

and not activePages.isEmpty())

RETURN result;

Figure 4.3: Pseudocode of set-valued probabilistic ranking query (SVPRQ).

4.5 Experimental Evaluation 99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

1 2 3 4
K

SVPRQ(Point Set)
SVPRQ(Gaussians)
SMD
HD

(a) Precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ec

al
l

1 2 3 4
K

SVPRQ(Point Set)
SVPRQ(Gaussians)
SMD
HD

(b) Recall.

Figure 4.4: Precision and recall achieved on similarity search by SVPRQ

and its comparison partners on complete video retrieval.

highest probability. If the probability of M is higher than that of the top

element, we need to add M to the queue. However, to make sure that we

do not retrieve more than k elements, we have to check the size of the result

queue. If there are already k elements, we have to remove the top element

before inserting M . In the case, that the entry in the candidate table does

not contain the complete information about M yet, we still can calculate a

probability estimation and compare it to the top element of the result queue.

If P (M |Q) is smaller than the k highest probability in the result queue, we

can guarantee that M is not a potential result. Thus, M is deleted from the

candidate table and stored in our list for excluded movie descriptors. The

algorithm terminates if the top of the priority containing the remaining notes

provides a lower value than the top of the result queue and the candidate

table is empty.

4.5 Experimental Evaluation

Testbed. All experiments were performed on a workstation featuring a

2.2 GHz Opteron CPU and 8GB RAM. All algorithms are implemented in

100 4 High Performance Video Retrieval using Probabilistic Feature Vectors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr

ec
is

io
n

1 2 3 4
K

SVPRQ(Point Set)
SVPRQ(Gaussians)
SMD
HD

(a) Precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ec

al
l

1 2 3 4
K

SVPRQ(Point Set)
SVPRQ(Gaussians)
SMD
HD

(b) Recall.

Figure 4.5: Precision and recall achieved on similarity search by SVPRQ

and its comparison partners using scene retrieval.

Java 5. We evaluated our SVPTQ, SVPRQ and their comparison partner

using a database of 902 music video clips recorded from various TV stations.

The average length of a video clip within our collection is 4 minutes and 14

seconds. We extracted the image representations of the videos on a per-frame

basis, i.e. we generated 25 features/second for PAL and 30 features/second

for NTSC videos. From each image, we extracted a color histogram. For

the color histogram, we used the HSV color space which was divided into 32

subspaces, 8 ranges of hue and 4 ranges of saturation.

In order to obtain the summarization for each video clip, we applied the

EM clustering algorithm. The EM clustering provided us with approximately

100 multivariate Gaussians per video clip. In our experiments, we performed

video similarity search. As setup step, we picked 40 query videos from our

database and manually selected a set of videos which are similar to the query

videos.

To generate queries, we employed two methods for collecting query frames.

The first method tried to capture the complete video clip. Thus, we sampled

every 50th frame from the complete clip to derive a representative sample

of frames. The second method simulated queries which are posed by giving

4.5 Experimental Evaluation 101

0

10

20

30

40

50

60

70

80

90

El
ap

se
d

Ti
m

e
(C

PU
 +

 I/
O

),
Se

c

SVPRQ/SVPTQ(PointSet)
SVPRQ/SVPTQ(Gaussians)
SMD
HD

Figure 4.6: Elapsed average query time for SVPRQs and SVPTQs for the

query on the complete video clips.

only a scene or shot from the video. Therefore, we sampled a random in-

terval from the sequence of all frames in the video corresponding to about

500 frames, i.e. 20 seconds. For this type of query, we used every 10th frame

of the query interval, i.e. we used 50 frames per query. Additional to these

queries, we also generated queries which are represented by sets of probabilis-

tic feature vectors. For representing the complete video, we again employed

EM clustering for 100 clusters on the complete set of frames in one video

clip. For the queries on the scenes, we clustered the 500 frames, deriving 5

Gaussians.

To have comparison partners for retrieving videos on sets of ordinary

feature vectors, we generated a database containing color histograms for all

frames of every video clip in our test set. We employed two well-established

distance measures for set-valued objects to pose queries to this database, the

Hausdorff (HD) distance and the sum of minimum distances (SMD)[EM97].

For these methods we could only use the query consisting of sets of feature

vectors.

Our first set of experiments examined the precision and recall of video

retrieval for all 4 types of generated queries. Therefore, we performed kNN

queries for our comparison partners and SVPRQ for the methods proposed

in this chapter. The result for the queries on the complete video clips is

displayed in Figure 4.4. As a first result it can be seen that our new method

102 4 High Performance Video Retrieval using Probabilistic Feature Vectors

significantly outperformed the compared methods w.r.t. precision and recall.

For k = 1, we should retrieve the database object from which the query was

generated, we achieved a precision of almost 1.0. For the 2nd nearest neighbor

our method still achieved a precision of about 0.9 which is about 40% better

than the best of our comparison partners (SMD). The chart displaying the

recall of our query results displays a similar picture. The recall of our new

methods considerably outperformed the compared methods. Furthermore,

we achieved a recall of over 70 % for k = 3 which is the average number of

similar videos for a query object in our test bed.

The experiments on the queries on parts of video clips display similar

results. Our methods outperformed the compared method w.r.t both pre-

cision and recall. Though the performance advantage w.r.t. precision was

smaller than in the previous experiment, our proposed method still managed

to outperform the best comparison partner, SMD, by more than 20% for all

values of k. The results w.r.t. recall display similar improvements as well.

To conclude, representing video clips as sets of Gaussians is well suited for

accurate video retrieval and outperforms method based on sets of feature

vectors w.r.t. precision and recall.

For measuring the efficiency of our new methods for query processing,

we recorded the time taken for processing all 40 queries representing the

complete movie. For each query object, we performed several queries corre-

sponding to several parameter setting (1 < k < 7 and 0.1 < PΘ < 0.7). The

results are displayed in Figure 4.6. The average query time for our new meth-

ods was approximately 7 times smaller than that of the compared methods.

Additionally, it can be seen that using sets of probabilistic feature vectors as

query representation did not cause a considerable longer average query time.

Let us note that the time for generating the Gaussians of the query was not

added to the query time. To conclude our new query algorithm considerably

outperformed the compared methods w.r.t. efficiency as well.

4.6 ProVeR: Probabilistic Video Retrieval using the Gauss-Tree 103

Video Repository
Index Repository

Gauss-TreeGauss-TreeGauss-Tree

Management Module Query-Processor

Video Decoder Module

Video Decoder Module

Query InterfaceVideo Player Module

Video

Video

ProVeR-
Client

ProVeR-Server / Database

Figure 4.7: Architecture of a prototype video search engine.

4.6 ProVeR: Probabilistic Video Retrieval us-

ing the Gauss-Tree

4.6.1 System Architecture and Implementation

In order to demonstrate practical benefits of modeling objects by probability

density functions, we propose a prototype search engine called ProVeR for

content-based video retrieval which represents a video as a set of Gaussians.

Figure 4.7 illustrates the client/server architecture of ProVeR. ProVeR pro-

vides even non-expert users with an intuitive method for efficient, content-

based retrieval of videos containing similar shots and scenes. The server

manages a video repository that contains video data that can be queried by

the clients. Whenever a video is added to the repository by the management

module, the video decoder module computes a summarization in form of a

set of Gaussians. This step is performed for several different features, like

e.g. color histograms. To support efficient query processing, each summa-

rization for each representation is stored in a separate Gauss-tree. During

query time, the user can choose between these feature representations. The

server also manages a list of clients that are connected to its query processor

module. A client processes query videos given by a user. For each query

104 4 High Performance Video Retrieval using Probabilistic Feature Vectors

shot
detection

Video Decoder Module

decoder

compressed
video file

frame
sequence
feature

transform
feat. vector
sequence

set of
shots

Gauss
encoder

set of
Gaussians

Figure 4.8: Video Decoder.

video, a summarization is generated by the client-side video decoder module.

The calculated summarization is sent to the server which returns references

to the k most likely videos in the repository. The videos in the result can be

viewed by the video player module of the client.

An important part for the server as well as the client is the video decoder

module. It generates a set of Gaussians for a given input video, cf. Figure 4.8.

The output is computed in 4 steps. First, the video is decoded into a sequence

of single images. While decoding, feature vectors for several different image

representations are calculated. In the next step, a shot detection is performed

for each representation. The sequence of feature vectors which corresponds

to a single shot is then aggregated by a Gaussian. Let us note that the

Gaussians for all representations can be simultaneously generated. Thus,

the input video is described by a set of Gaussians.

ProVeR is implemented in Java 5.0 and runs on all platforms supporting

the current version of the Java Runtime Environment. The feature extraction

builds on the highly flexible Java Media Framework (JMF) 2.1, which pro-

vides easy access to a variety of video formats, e.g. MPEG-1. The videos are

associated to several different representations. We extract color histograms,

color moments and texture descriptions on a per-frame basis. The color

histograms use the HSV color space which is divided into 32 subspaces, 8

4.6 ProVeR: Probabilistic Video Retrieval using the Gauss-Tree 105

Figure 4.9: Screenshot of ProVeR.

ranges of hue and 4 ranges of saturation. Additionally, we compute the color

moments for the HSV color space. To capture the structural nature of the

images, we also calculate the Haralick texture features [HSD73].

4.6.2 Practical Benefits

The ProVeR client starts with a list of known multimedia servers. Initially,

the user chooses one of the available servers from the list. The client es-

tablishes a connection to the multimedia database on the server. In order

to perform a query, the user has to supply a video file. While decoding the

video, ProVeR extracts the image representations mentioned in Section 4.6.

Depending on the selected representation, the client displays a distance graph

in the bottom of the window (cf. Figure 4.9), providing information about

the shot structure of the video. A valley in the distance graph indicates a se-

quence of similar images, which usually form a short. To specify a query, the

user selects either a single shot or a sequence of subsequent shots. To display

the content of the query selected query frames, ProVeR offers a preview con-

sisting of a frame for each shot. For each selected shot, the client transforms

the corresponding sequence of feature vectors into a single Gaussian. Thus,

106 4 High Performance Video Retrieval using Probabilistic Feature Vectors

the sequence of selected shots is summarized by a set of Gaussians. This set

is sent to the server as a query. Since the client sends only aggregated infor-

mation to the server, the user doesn’t have to share the original video data.

Besides, this helps to save a lot of transmission bandwidth. Additionally,

the decentralized approach also saves CPU time on the server. The server

processes the query and returns a list of video repository references which

contains the k most likely videos corresponding to the query. The user can

browse through this result list and play a video file by selecting it, in which

case it is streamed to the client.

4.7 Conclusions

In this chapter, we proposed efficient techniques for high performance video

retrieval. Our methods are based on a summarization technique using prob-

abilistic feature vectors, i.e. Gaussian probability density functions. For stor-

age and efficient retrieval of probabilistic feature vectors, a specialized index

structure, the Gauss-tree, was applied. Every video clip in the database is

associated to a set of probabilistic feature vectors. A query video clip is

also transformed into either a set of conventional feature vectors or into a

set of probabilistic feature vectors. In both cases, query processing involves

matching of sets of vectors. We defined two kinds of set-valued queries, set-

valued probabilistic ranking queries and set-valued probabilistic threshold

queries, and proposed efficient algorithms for query evaluation on top of the

Gauss-tree. Our experimental evaluation using over 900 music video clips

demonstrated the superiority of our approach with respect to both accuracy

as well as efficiency of retrieval. In addition, we proposed ProVeR — a search

engine for content-based video retrieval that offers an intuitive access to the

shots and scenes contained in large video repositories. To allow efficient and

effective retrieval, ProVeR represents shots as Gaussians which are stored in

several Gauss-trees, one for each representation.

Chapter 5

Probabilistic Ranking Queries

for Spatial Database Systems

In many advanced applications, there are no exact values available to de-

scribe the data objects. Instead, the feature values are considered to be

uncertain. This uncertainty is modeled by probability distributions instead

of exact feature values. A typical application of such an uncertainty model

are moving objects where the position of each spatial object can be described

by a bivariate normal distribution as illustrated in Figure 5.1. This chapter

begins with an introduction into spatially uncertain objects in Section 5.1.

Section 5.2 contains a brief description of related work in the area of indexing

uncertain objects. In Section 5.3, we define the spatial Gaussian uncertainty

model and two probabilistic query types for spatially uncertain data. Two

novel query algorithms on the top of a Gauss-tree are discussed in Section

5.4. In our experimental evaluation in Section 5.6, we demonstrate that the

Gauss-tree outperforms previously introduced query processing methods that

are applicable to the spatial Gaussian uncertainty model. Finally, Section

5.7 concludes the chapter with a summary.

107

108 5 Probabilistic Ranking Queries for Spatial Database Systems

Figure 5.1: Spatial uncertainty in moving object database systems.

5.1 Introduction

In order to manage spatially uncertain objects in a database, an uncertainty

model is needed to derive a probability distribution from the last observed

feature values. A common approach which is described in [CKP03] is to

assume that there is at least a certain interval where it can be guaranteed

that the current value of the data object is contained in. Within this interval

an arbitrary density distribution function is specified. We will refer to this

approach as the interval uncertainty model. Though there exists a large

variety of probability density functions, most applications rely on standard

distributions like the uniform distribution or the Gaussian distribution for

each data object. A disadvantage of the interval uncertainty model is the

need to specify an interval which must contain the current object value.

Though it is quite often possible to make some worst-case estimation, the

resulting intervals often tend to be crude approximations of the current value

which might be a problem for the selectivity of query processing. A solution

to this approach is the use of distribution functions like the Gaussian where it

is not necessary to specify an explicit interval. Since the density of a Gaussian

rapidly decreases after a given distance to the mean value is reached, the area

5.1 Introduction 109

for which it is likely that the current object value is contained in, is limited

in a natural way.

In this chapter, we therefore introduce another uncertainty model for

spatial and sensor data, called Gaussian uncertainty model. The Gaussian

density distribution is one of most established ways to describe uncertainty

in a variety of applications. A Gaussian is defined w.r.t. two parameters,

the mean value and the standard deviation. For example, to model the

change of temperature, recorded by a sensor in a sensor network, the mean

value can be assumed at the last observed exact value and the variance value

can be estimated based on recent variations of the observed temperatures.

For moving objects, applying the Gaussian uncertainty model is applicable

as well (cf. Section 1.1 in Chapter 1 for further details). The mean vector

corresponds to the position of the GPS antenna and the variance vector to

positional uncertainty caused by measurement error (see Figure 5.1).

To conclude, the Gaussian uncertainty model relies on the Gaussian dis-

tribution to model the uncertain values only and is not bound to find an

interval that is guaranteed to contain the actual current value. An impor-

tant advantage of the Gaussian uncertainty model is that each object value

is only complemented with one additional uncertainty attribute. Employing

other distributions having p additional parameters increases the size of the

database p times as well. This is a problem if we already assume limited

storage capacity and bandwidth. Based on the Gaussian uncertainty model,

we will discuss two important types of queries, probabilistic threshold queries

(PTQs) defined in [CXP+04] and probabilistic ranking queries (PRQs). The

second type of queries, the PRQs, has not been studied in context of spatial

and sensor data yet. A PRQ retrieves those k objects which have the highest

probabilistic of being located inside a given query area. To speed up process-

ing these queries, we propose using the Gauss-tree(cf. Chapter 3). Based on

the Gauss-tree, we describe algorithms for answering PRQs and PTQs.

110 5 Probabilistic Ranking Queries for Spatial Database Systems

5.2 Related Work

The Gauss-tree is a member of the R-Tree family which is a spatial index

structure for indexing high dimensional data. The Gauss-tree was introduced

in Chapter 3 to answer so-called identification queries which are based on a

Bayesian uncertainty model that cannot be used for spatial uncertainty as

discussed in this chapter.

As discussed in Section 2.1.2 of Chapter 2, several new techniques have

been proposed in last years for handling uncertainty of spatiotemporal ob-

jects, e.g. method described in [CXP+04, TCX+05]. The differences of the

approach introduced in [CXP+04] to our new approach are the following. The

method described in [CXP+04] relies on a table to approximate the properties

of one type of distribution function. Our method is based on the Gauss-tree

introduced in Chapter 3. The Gauss-tree is for Gaussians only and thus, di-

rectly employs the Gaussian density function. In [CXP+04] a table is used to

derive x-bounds for a given node in an index structure. For Gaussians, this

parameter is equivalent to the standard deviation. Though the method were

not originally designed for this purpose the method is adaptable to answering

probabilistic ranking queries on the Gaussian uncertainty model as well. Our

method calculates directly the maximum probability for any Gaussian in a

data node for any given query interval. Unlike the method in [CXP+04] the

Gauss-tree has its own split heuristic incorporating the non-linear character-

istic of the standard deviation. [CXP+04] exclusively deals with probabilistic

threshold queries and not with probabilistic ranking queries as we do in this

chapter. [TCX+05] introduced the U-Tree for indexing uncertain 2D objects

(cf. Section 2.1.2 for details). This method is not applicable to the Gaussian

uncertainty model, because the planes start on the edges of the MBR. Thus,

since we do not have any guaranteed area in the Gaussian uncertainty model.

[DYM+05] introduces existential uncertainty. Though this method handles

uncertainty as well, the methods for query processing cannot be applied to

5.3 Spatial Uncertainty Model and Query Types 111

the problems discussed in this chapter.

5.3 Spatial Uncertainty Model and Query Types

In this section, we formalize notion of spatial uncertainty. Afterwards, we

adapt the existing probabilistic threshold queries (PTQ) to our probabilistic

model and define a novel query type — probabilistic ranking query (PRQ).

5.3.1 Gaussian Uncertainty Model

An uncertain data object v is described by d uncertain attribute values vi with

1 ≤ i ≤ d. For each uncertain attribute vi, we cannot store an exact feature

value, but store a probability density function describing the likelihood of all

possible attribute values. In the Gaussian uncertainty model, we consider this

density distribution function to be a Gaussian which is defined in Chapter

3, Definition 3.1.

To calculate the probability that an uncertain attribute value is contained

in a certain query interval, we can integrate the Gaussian density function

on the query interval.

Definition 5.1 (Gaussian Interval Probability)

For a < b with a, b ∈ R the Gaussian probability for a given mean value µ

and a standard deviation σ can be defined as follows:

Pµ,σ(a, b) = Pr(v ∈ [a, b], µ, σ) =

∫ b

a

Nµ,σ(x) dx.

An object having d uncertain attributes which are specified by a vector

of mean values ~µ and a vector of standard deviations ~σ is called probabilistic

feature vector (pfv) as defined in Chapter 3, Definition 3.1. For this pfv, we

can calculate the probability that each attribute value vi is contained in an

112 5 Probabilistic Ranking Queries for Spatial Database Systems

attribute specific query interval [ai, bi]. Under the common assumption of

attribute independency, calculating this probability can be done as follows:

Pr(vi ∈ [ai, bi], µi, σi,∀i : 1 ≤ i ≤ d) =
d∏

i=1

Pµi,σi
(ai, bi).

5.3.2 Spatial Queries on the Gaussian Uncertainty Model

After describing a method to model uncertain data objects using Gaussians,

we will now formally define two important types of queries on uncertain data

objects. The first is the probabilistic threshold query (PTQ) which was first

defined in [CKP03] for the interval uncertainty model. A PTQ computes

all uncertain data objects that might be contained in a given query interval

with a probability exceeding a given query threshold. For example, we want

to retrieve all ships, that are likely to be found in a certain area of the ocean

with a probability of at least 75%. Formally, a PTQ can be defined as follows:

Definition 5.2 (Probabilistic Threshold Query (PTQ))

Let DB be a set of uncertain data objects described by pfvs having d uncer-

tain dimensions and let t ∈ [0, 1] be a probability threshold. Given d query

intervals [ai, bi] with 1 ≤ i ≤ d and ai, bi ∈ R, a probabilistic threshold query

(PTQ) returns all objects ~v ∈ DB for which the following condition holds:

Pr(vi ∈ [ai, bi],∀i : 1 ≤ i ≤ d) ≥ t.

Let us note that if we cannot specify a query interval for one of the

attributes, we may assume that the attribute is allowed to have any value.

In this case, the probability for this dimension is 1 which is the integral over

the complete value set of the Gaussian density function. To compute a PTQ,

the straightforward approach is to retrieve each pfv in the database DB and

calculate the probability that the corresponding object has attribute values

which are contained in the query area. If this probability is larger than t the

object is part of the result set.

5.3 Spatial Uncertainty Model and Query Types 113

Formulating a PTQ often proves to be more complicated then necessary.

Though the given query interval might be available, finding a useful threshold

probability is often difficult. Thus, a PTQ might have to be repeated with

varying threshold values until a reasonable result set is found.

To avoid this problem, we introduce a new type of uncertainty queries

called probabilistic ranking queries (PRQs). A PRQ retrieves the k most

likely data objects that might be placed in the given query interval. Speci-

fying the number of results is usually much more intuitive and can easily be

done by any user. In the ship example, a possible PRQ would be : “Retrieve

the 10 ships which are most likely in the given area”. Formally, a PRQ is

defined as follows:

Definition 5.3 (Probabilistic Ranking Query (PRQ))

Let DB be a database of uncertain objects described by pfvs and let k ∈ N be a

natural number. Given d query intervals [ai, bi] with 1 ≤ i ≤ d, ai < bi, ai, bi ∈
R, a probabilistic ranking query (PRQ) over DB returns the smallest set of

data objects kSet(~a,~b), having at least k elements, for which the following

condition holds:

∀p ∈ kSet(~a,~b),∀q ∈ DB \ kSet(~a,~b) :

Pr(pi ∈ [ai, bi],∀i : 1 ≤ i ≤ d) >

Pr(qi ∈ [ai, bi],∀i : 1 ≤ i ≤ d).

If the number of result objects is not clear, PRQs can be extended to

incremental PRQs which always retrieve the object having the next largest

probability. Since the introduced query algorithms yields a close similarity

to the query algorithm for nearest neighbor search described in [HS95], an

extension to incremental queries is straight forward.

114 5 Probabilistic Ranking Queries for Spatial Database Systems

5.4 Processing Spatial Probabilistic Queries

In the previous section, we have introduced the Gaussian uncertainty model

and queries on top of a set of uncertain data objects. We are now going

describe algorithms for efficiently answering PRQs and PTQs on the Gauss-

tree.

For query processing, we need a conservative approximation of the prob-

ability that any possible Gaussian which is stored in a node or in a certain

subtree, can achieve over the given query area. As a formula, the conserva-

tive approximation of this probability P̂µ̌,µ̂,σ̌,σ̂(a, b) is given as:

P̂µ̌,µ̂,σ̌,σ̂(a, b) = max
µ∈[µ̌,µ̂],σ∈[σ̌,σ̂]

{Pµ,σ(a, b)}

For efficient query processing, a closed formula for P̂µ̌,µ̂,σ̌,σ̂(a, b) without

an explicit maximization process over two continuous variables is needed. To

derive this closed form, we first of all derive the following lemma.

Lemma 5.1 Let [a, b] with a < b and a, b ∈ R be a given query interval and

let σ ∈]0,∞[be a given standard deviation. Then, the Gaussian for the given

σ having the maximum probability over the interval [a, b] has the mean value:

µmax = a+b
2

.

Furthermore, the probability of the Gaussian decreases monotonically with

the distance of µ from µmax.

Proof. We can differentiate Pµ,σ(a, b) by µ and see that there is only one

extremum µmax. Furthermore, the limes of Pµ,σ(a, b) for µ → ±∞ is 0. Since

Pµmax,σ(a, b) > 0, Pµ,σ(a, b) is monotonic on both sides of the maximum. 2

Based on that lemma we can state that the mean value µ∗ ∈ [µ̌, µ̂] of the

wanted conservative approximation is always the one closest to the middle

5.4 Processing Spatial Probabilistic Queries 115

of the query interval:

µ∗ = max{µ̌, min{1/2(a + b), µ̂}}

To find the corresponding σ∗ for the conservative approximation, we for-

mulate the following lemma:

Lemma 5.2 Let [a, b] with a < b and a, b ∈ R be a given query interval, let

µ be a given mean value and let [σ̌, σ̂] be the interval of valid σ values with

0 < σ̌ < σ̂. Then, we can maximize Pµ,σ(a, b) by selecting σ∗ from [σ̌, σ̂] as

follows:

Case I a < b < µ:

σmax = −

√
2 ln (µ−b

µ−a
)(a− b)(2µ− a− b)

2 ln (µ−b
µ−a

)

and σ∗ = max{σ̌, min{σmax, σ̂}}.

Case II a ≤ µ ≤ b : σ∗ = σ̌.

Case III µ < a < b:

σmax =

√
2 ln (µ−b

µ−a
)(a− b)(2µ− a− b)

2 ln (µ−b
µ−a

)

and σ∗ = min{σ̂, max{σmax, σ̌}}.

Proof. Case I We can differentiate Pµ,σ(a, b) for σ and receive the above

formula for σmax which is the only extremum in]0,∞[. Examining the limes

σ → 0 and σ → ∞, we observe that Pµ,σ(a, b) converges against 0 in both

cases. Since Pµ,σmax(a, b) > 0, Pµ,σ(a, b) decreases monotonic on both sides

of σmax. Thus, σ∗ can be chosen to be the closest value to σmax in [σ̌, σ̂].

116 5 Probabilistic Ranking Queries for Spatial Database Systems

xl
xu

p =0.55

=0.45

=0.02

=0.1=0.55=0.45
=0.1

=0.02

p

p

Figure 5.2: Visualization of probabilities for P̂µ,σ(a, b) in the µ-σ space.

Case II In this case, µ is inside [a, b] and if σ → 0 then Pµ,σ(a, b) → 1. Since

if σ →∞ then Pµ,σ(a, b) → 0 and there is no defined extremum, Pµ,σ(a, b) is

monotonic and the smallest σ ∈ [σ̌, σ̂] causes the largest value for Pµ,σ(a, b).

Case III This case is symmetric to case I. 2

Using both lemmas, we can calculate Pµ∗,σ∗(a, b) which is the largest pos-

sible probability for any Gaussian stored in a given node or subtree of the

Gauss-tree. Let us note that this bound is tight which means that there

could be indeed a Gaussian in the node having exactly the calculated prob-

ability. Figure 5.2 displays the probabilities for a given query interval [a, b]

for arbitrary µ and σ.

5.5 Efficient Query Processing using the Gauss-

Tree

After deriving a conservative approximation of the maximum probability of

Gauss-tree nodes, we are now going to describe algorithms for query process-

ing which are suitable for answering PTQs and PRQs in efficient time.

PTQs. The algorithm for answering PTQs traverses the Gauss-tree from

the root node in a depth-first order. Thus, the algorithm starts with inserting

5.5 Efficient Query Processing using the Gauss-Tree 117

the subtrees of the root node into a stack. Now, the algorithms always takes

the first object from the stack until the stack is empty. If the object is

a node the algorithm determines µ∗ and σ∗ and calculates P̂µ̌,µ̂,σ̌,σ̂(a, b) for

each dimension. After multiplying the probabilities for each dimension the

resulting approximation is compared to the threshold t. If the approximation

is smaller than t, we can prune the corresponding subtree. If not, we must

push the son objects of the node onto the stack. If the object on top of the

stack is a pfv, we determine its probability for lying within the query area.

If this probability is larger than t we have found a result and store it for

output. Let us note that this algorithm is given for demonstrating that the

Gauss-tree is applicable to PTQs as well. However, the main focus of this

chapter are PRQs which are described in the following.

PRQs. For the answering PRQs, we employ the same idea as proposed

in [HS95]. Instead of using a stack, the algorithm ranks the yet unprocessed

entries of the Gauss-tree with a priority queue, which we will call entry queue.

The entry queue has to be ordered in descending order w.r.t. to the largest

probability value. Furthermore, we need a second priority queue to store

the k best results being retrieved so far. This second queue is ordered in

ascending order which means the result pfv having the smallest probability

is always on top of the queue. We will refer to this queue as result queue.

Figure 5.3 denotes the algorithm in pseudocode. The algorithms starts

with pushing the root node onto the entry queue with a probability of 1.

Afterwards, we always remove the top object from the entry queue until the

entry queue is empty or the algorithms can be guaranteed to have found

all valid results. If the top element is a inner node, we load all son nodes,

calculate their conservative approximation probabilities and insert them into

the entry queue w.r.t. to these probabilities. In the case, a leaf node is placed

on top of the entry queue, the exact probabilities for all pfvs stored in the

node are calculated and the objects are pushed on the entry queue as well.

If the top element of the entry queue is a pfv, we check if the result queue

118 5 Probabilistic Ranking Queries for Spatial Database Systems

ProbabilisticRankingQuery(Query q, integer k)

entryQueue: ascending priority queue;

resultQueue: descending priority queue;

entryQueue.insert(root, 1);

WHILE notentryQueue.isEmpty() or

entryQueue.getF irst() > resultQueue.getF irst() DO

currentNode = entryQueue.removeF irst();

IF currentNode is a data node THEN

FOR EACH d in currentNode DO

prob = calculate probability of d w.r.t. q;

IF resultQueue.size() < k THEN

resultQueue.insert(d, prob);

ELSE IF resultQqueue.getF irst() < prob THEN

resultQueue.removeF irst();

resultQueue.insert(d, prob);

END IF

END FOR

ELSE IF currentNode is a directory node THEN

FOR EACH entry e in currentNode DO

prob = calculate probability of e w.r.t. q;

entryQueue.insert(e, prob);

END FOR

END IF

END WHILE

RETURN result;

Figure 5.3: Pseudocode of probabilistic ranking query.

5.6 Experimental Evaluation 119

threshold Sequ. Scan x-b. tree GX-tree Gauss-tree

0.5 200.3 140.0 139.0 137.6

0.75 258.1 101.4 101.6 101.1

Table 5.1: Comparison of average query time on DS1 for PTQs.

already contains k results. If not, we can add the pfv as a possible result. If

we have already encountered k pfvs, we must check if the new pfv has a larger

probability than the top element of the result queue. If the new pfv is a more

likely result than the top of the result queue, the top of the result queue is

removed and the new pfv is added to the result queue. The algorithm can be

terminated if the top of the result queue has a larger probability than the top

of the entry queue. In this case, it can be guaranteed that there are no pfvs

which have a larger probability than the k objects in the result queue. Let us

note that this algorithm is optimal since it guarantees that no unnecessary

nodes are read from the hard drive.

5.6 Experimental Evaluation

In our experimental evaluation, we implemented the Gauss-tree and its com-

parison partners in Java 1.5. To make the results reproducible, we measured

the CPU time and counted logical page accesses on the hard drive. For calcu-

lating the complete query time, we assumed a hard drive having 6 ms access

time and 50 MB/s transfer rate.

We employed two datasets. The first dataset (DS1) was a set of 100.000

1-dimensional Gaussians for which the µ and σ values were randomly gener-

ated. Dataset 2 (DS2) was taken from the TIGER1 database containing 2D

spatial coordinates of landmarks in the US. For DS2, we used the county of

Sacramento having 62.182 objects. Since we did not have any uncertainty

1available at http://www.census.gov/geo/www/tiger

120 5 Probabilistic Ranking Queries for Spatial Database Systems

values, we generated random standard deviations for each of the coordinates.

We randomly generated 200 query intervals for DS1 or 200 query rectangles

for DS2.

To have a baseline comparison partner, we compared our methods to a se-

quential scan over the complete database. Additionally, we implemented the

method for symmetric and smooth variance-monotonic distribution functions

being described in [CXP+04]. We will refer to this method as ”x-bounds-

tree”. To extend the x-bound-tree to the multi-dimensional case, we pruned

each dimension separately, i.e. when testing the pruning criteria, we assumed

a maximum probability of 1 in all other dimensions. Let us note that this

is not optimal, since multiplying several dimensions usually decreases the

probability. However, since the method does not allow to derive a concrete

maximum probability for any dimension but only checks if the closest bound

is violated, this method is a feasible solution. For demonstrating the effect of

our splitting and insertion method, we implemented a Gauss-tree employing

the split and insertion algorithm of the x-tree [BKK96] to which we refer to

as GX-tree.

Our first experiment compares the average query time for 200 PTQs on

DS1. Table 5.1 compares the average elapsed time for a PTQs with t =

0.5 and t = 0.75 for all 4 methods. The results indicate that all indexing

techniques were capable to answer the given queries significantly faster than

the sequential scan. However, all three index structures used almost exactly

the same number of accessed pages for each query and used very similar

CPU times. Therefore, we can conclude that the more exact approximations

of the Gauss-tree do not yield an advantage when answering PTQs and the

x-bounds are an efficient method for this type of queries.

The main part of our experiments was examining the performance of the

Gauss-tree when answering PRQs. To process PRQs on the x-bounds-tree,

we had to find a way to rank pages w.r.t. this maximum probability. This

5.6 Experimental Evaluation 121

10

110

210

310

410

510

610

710

810

0 10 20 30 40 50 60
K

A
vg

.
Ti

m
e

pe
r Q

ue
ry

 [m
se

c] Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(a) Average query time on DS1.

0

100

200

300

400

500

600

0 10 20 30 40 50 60
K

A
vg

. T
im

e
pe

r Q
ue

ry
 [m

se
c]

Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(b) Average query time on DS2.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60
K

A
vg

. C
PU

 T
im

e
pe

r Q
ue

ry
 [m

se
c]

Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(c) Average CPU time on DS1.

0

50

100

150

200

250

300

0 10 20 30 40 50 60
K

A
vg

. C
PU

 T
im

e
pe

r Q
ue

ry
 [m

se
c]

Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(d) Average CPU time on DS2.

Figure 5.4: Complete runtime (above row) and CPU time (lower row) for

PRQs for varying values of k.

is a problem because the described method only determines if a page can

contain a pfv having a larger probability than some threshold. In order to

apply ranking, we had to find a way to determine the largest probability any

object in a node could have in the query interval. We solved this problem

by searching the proposed ratio table for the closest x-bound to the query

interval which is still outside the interval. The x corresponding to this bound

was used to rank the entry queue. Let us note that the decision about pruning

a node was done as proposed for PTQs in [CXP+04].

In our first experiment for PRQs, we tested all four methods for varying

values of k on both datasets. The results are displayed in figure 5.4. The

upper row of figure 5.4 displays the average elapsed time per query, i.e.

CPU time together with calculated IO costs, and the lower row displays the

122 5 Probabilistic Ranking Queries for Spatial Database Systems

20

21

22

23

24

25

0 10 20 30 40 50 60
K

A
vg

.
Ti

m
e

pe
r Q

ue
ry

 [m
se

c]

GX-Tree

Gauss-Tree

(a) Average query time DS1.

35

40

45

50

55

0 10 20 30 40 50 60
K

A
vg

. T
im

e
pe

r Q
ue

ry
 [m

se
c]

GX-Tree

Gauss-Tree

(b) Average query time on DS2.

Figure 5.5: Average time for a PRQs for the Gauss-tree and the GX-tree.

observed CPU time only. As a result it can be observed that the Gauss-tree

and the GX-tree retrieved the query results between 8 to 10 times faster than

the sequential scan. Our adapted version of the x-bound tree worked even

worse than the sequential scan w.r.t to the all over query time. However,

the x-bound-tree clearly beats the sequential scan w.r.t. CPU time. Finally,

the better selectivity of the Gauss-tree related methods achieves an average

CPU time which again is orders of magnitudes smaller than the comparison

partner on both datasets.

Due to the overwhelming speed up compared to the sequential scan, the

figure cannot display the difference between the Gauss-tree and the GX-tree.

To still demonstrate that our new split heuristic was capable to improve

the structure of the tree, we display figure 5.5 which is a zoomed version of

figure 5.4(a) and 5.4(b). As it can be seen the new split heuristic additional

decreased the average complete query time by an additional msec.

To demonstrate that our method scales well even for larger datasets, we

posed PRQs with k = 3 on dataset DS1 and increased the size of the database

from 10.000 to 500.000. The results are displayed in figure 5.6. Again our

adaption of the x-bound tree for PRQs did not function very well. However,

the Gauss-tree and the GX-tree again display a considerable speed up which

is growing with the size of the database as shown by experimental results

5.7 Conclusions 123

0

50

100

150

200

250

300

350

400

0 100000 200000 300000 400000 500000 600000
DB Size

A
vg

. C
PU

 T
im

e
[m

se
c]

Seq.Scan
X-Bound Tree
GX-Tree
Gauss-Tree

(a) Average query time on DS1.

15

20

25

30

35

40

45

50

55

60

65

0 100000 200000 300000 400000 500000
DB Size

A
vg

. T
im

e
pe

r Q
ue

ry
 [m

se
c]

GX-Tree

Gauss-Tree

(b) Zoomed average query time on DS1.

Figure 5.6: Average time for a PRQs on DS1 with increasing database size.

illustrated in 5.6(a). In order demonstrate that our new split heuristic was

capable to improve the structure of the tree, we display figure 5.6(b) which is

a zoomed version of figure 5.6(a). Thus, we can conclude that the Gauss-tree

is especially well suited for very large datasets of uncertain objects modeled

by Gaussians.

To conclude, the performance of the Gauss-tree for answering PTQs was

rather similar to the x-bound tree in its original use. However, when answer-

ing PRQs the Gauss-tree outperformed all comparison partners by orders of

magnitude. Furthermore, our novel split heuristic introduced in Chapter 3

further improved the structure of the tree when answering PRQs.

5.7 Conclusions

In this chapter, we introduced the Gaussian uncertainty model for describ-

ing uncertain spatial data objects. This model describes a spatially uncertain

data object as probabilistic feature vector (pfv) consisting of a mean value

and a standard deviation for any uncertain feature value. Assuming a Gaus-

sian density distribution based on these parameters, we can now determine

the probability for any data object for being contained in a certain interval

or (hyper-) rectangle. Applications for spatially uncertain objects are sensor

124 5 Probabilistic Ranking Queries for Spatial Database Systems

network and moving object database systems where the exact feature value

cannot be constantly monitored. To query databases of uncertain objects,

we can pose probabilistic queries like probabilistic threshold queries (PTQs).

A PTQ retrieves all data objects in a database that are contained in the

query rectangle with a larger probability than some probability threshold t.

Since the threshold is often difficult to decide, we introduced probabilistic

ranking queries (PRQs) which retrieve the k data objects in a database that

are contained in the query rectangle with the highest probability. To answer

both types of queries in efficient time, we derived the conservative approx-

imation of probability for a node w.r.t. a given query range. This tight

approximation is the basis of the described algorithms for answering PTQs

and PRQs. In our experimental evaluation, we compared the Gauss-tree

on both types of queries to 3 comparison partners on one artificial and two

real-world datasets with artificial uncertainty. The results demonstrates that

the Gauss-tree achieves a query performance which is comparable to existing

methods on PTQ. For the new query type of PRQs the Gauss-tree clearly

outperforms established methods which were modified to answer PRQs.

Chapter 6

Effective Similarity Search in

Multimedia Databases using

Multiple Representations

Similarity search in large multimedia databases is an important issue in the

modern multimedia environment. Multimedia objects such as music videos

usually consist of multiple representations like audio or video features. Since

each representation may be of significantly different quality for a given mul-

timedia object, similarity search methods could greatly benefit from taking

these multiple representations into account. Therefore, in this chapter we

develop an intelligent similarity search technique that considers all avail-

able representations of the database objects, and is capable of judging the

importance of a representation automatically depending on a given query ob-

ject. This chapter starts in Section 6.1 with an introduction into the multi-

represented similarity search in multimedia databases. We review related

work in Section 6.2. Details of our novel method are presented in Section

6.3. In Section 6.4, we present an experimental evaluation. We conclude this

chapter in Section 6.5 with a short summary.

125

126
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

6.1 Introduction

With the rapid development of digital technologies, computer networks and

Internet, the amount of multimedia data is growing enormously because dig-

ital videos are easily copied and distributed. Efficient and effective similarity

search in such huge amounts of multimedia data has become a major issue in

several important applications such as video copyright matters and multime-

dia retrieval [TKR99]. In fact, video similarity detection has been proposed

as a promising approach for copyright issues which is complementary to the

approach of digital watermarking [HB01]. In addition, video similarity search

is the key step towards content-based video retrieval. As a consequence, lots

of work has been done in the field of similarity search in multimedia databases

so far (e.g. [CZ02b], [IL00], [NWH01b], [TKR99]).

Multimedia data such as movies can usually be viewed as multi-represented

objects, i.e. for each object there are multiple representations modeling dif-

ferent features of the object. For example, for music videos, we can collect

audio features, such as pitch [TK00] or rhythm [TC02], and video features,

such as color histograms or textures [AY99]. Each of these multiple rep-

resentations models a different aspects of a music video. Obviously, the

effectiveness of similarity search methods could greatly benefit from taking

multiple representations into account. However, most existing approaches for

multimedia similarity search do not consider the multi-represented structure

of multimedia objects but usually use one representation for similarity search

only.

In this chapter, we propose a novel framework for video similarity search

that takes the multi-represented nature of the data objects into account. In

particular, our framework is able to integrate multiple representations such

as audio and video features into the query processing. The most important

issue for multi-represented similarity search is the weighting of each repre-

sentation, i.e. the decision “how significant is a given representation for a

6.2 Related Work 127

given query object”. We propose methods for this task that can be applied

to both types of summarization techniques, i.e. higher-order and first-order

summarization, that are commonly used in multimedia similarity search (cf.

Section 2.1.5 in Chapter 2 for details). In addition, we propose a method for

combining multiple representations for similarity search by weighting each

representation. A broad experimental evaluation of our methods using a

database of music videos demonstrates the benefit of our methods for simi-

larity search in multimedia databases.

6.2 Related Work

Similarity Search Based on Multiple Representations. Recently, some

work has been done on multi-represented similarity search in multimedia

databases as discussed in Section 2.1.3. The interactive search fusion method

[SJL+03b] provides a set of fusion functions that can be used for combining

different representation. Let us note that this technique is supervised, i.e.

requires strong interaction with the user, which is not always desirable since it

requires the user to understand the basic concepts of the method. Moreover,

the proposed technique does not support individual weighting for each query

object.

In [NWH01b], a template matching method based on the time warping

distance is presented. This approach can measure the temporal edit simi-

larity. However, temporal order is not necessary in many applications. In

addition, this technique is not applicable to large databases because it is lin-

ear in the number of feature vectors of all video and audio sequences in the

database. The authors of [BKS+04] proposed two methods for improving the

effectiveness in a retrieval system that operates on multiple representation of

3D objects. These techniques need a set of labeled data in order to measure

entropy impurity. Such set of labeled data is not always available. Further-

128
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

more, these techniques are not directly applicable to set-valued objects like

videos.

Summarization Techniques. Usually, multimedia objects like video clips

or pieces of audio consists of thousands or even millions of feature vectors.

In order to handle such data efficiently, summarization techniques are usu-

ally applied to the original data, i.e. the original feature vectors are grouped

together and each group is represented by a summarization vector or sum-

marization representative. Then similarity is defined based on these sum-

marizations. In general, we can distinguish two classes of summarization

techniques: higher-order and first-order summarization. A detailed intro-

duction into summarization techniques was given in Section 2.1.5 of Chapter

2. Our weighting approach can use an arbitrary summarization technique.

Furthermore, it is rather general because it does not depend on a particular

summarization technique.

6.3 Multi-Represented Similarity Search in

Multimedia Databases

In the following, we assume DB to be a database of N multimedia objects.

Each object Oi ∈ DB, i = 1, . . . , N , is represented by a given set of D rep-

resentations R1, . . . , RD, where each representation is a feature space, i.e.

Ri ⊆ Rdi , and di ∈ N denotes the dimensionality of the feature space of rep-

resentation Ri (1 ≤ i ≤ D). The j-th representation of Oi is denoted by Oj
i ,

i.e. Oi = (O1
i , . . . , O

D
i). We further assume that each representation Oj

i of

Oi consists of a series of feature vectors of length nj, i.e. Oj
i = (oj

i 1, . . . , o
j
i nj

)

with oj
i l ∈ Ri. The definitions are summarized in Figure 6.1. In addition,

we assume that the distances within each representation are normalized suf-

ficiently over all representations, e.g. using any of the methods of [SJL+03b].

6.3 Multi-Represented Similarity Search in Multimedia Databases 129

…

…

o
i 1

1 o
i n1

1

…o
i 1

D o
i nD

D

O
i

1

O
i

D

=

=

object Oi

DB = {O1 … ON}

…

o
i j

1 R1

o
i j

D RD

Database

Representation 1

Representation D

RI
d1

RI
dD

Figure 6.1: Basic notations.

In order to combine multiple representations within the similarity eval-

uation, we have to determine for each object Oi ∈ DB and for each of its

representations Oj
i a weight for each of the nj feature vectors oj

i 1, . . . , o
j
i nj

.

Having weights for each feature vector of each representation of each ob-

ject, we can use any common distance measure between sets of points such as

the Hausdorff distance in order to compute a weighted distance between two

multi-represented multimedia objects. We will first introduce novel methods

to determine the weights for a feature vector of a given representation and

then describe how these weights can be used to improve similarity search on

multimedia objects.

6.3.1 Weighting Functions for Summarizations

As described above, a multimedia object usually consists of a large set of

feature vectors per representation. For efficiency reasons, these large sets of

feature vectors are usually summarized within each representation. The de-

rived summarizations can be classified as first-order or higher-order summa-

rizations (cf. Chapter 2, Section 2.1.5). Thus, the feature vectors oj
i 1, . . . , o

j
i ni

of object Oi ∈ DB of representation Rj are representative points of the de-

rived summarizations Sj
i 1, . . . , S

j
i ni

. In the following, an original point p

130
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

belongs to a summarization S if it is a member of the according cluster (in

case of higher-order summarizations) or if the according representative of S

is the representative with the lowest distance to p among the representatives

of all summarizations.

Since different users may have a different notion of similarity among

videos, it is desirable to consider this diversity in a best possible way when

defining a similarity measure between multimedia objects. For our multi-

represented approach, we have to take this diversity into account when we

design a weighting function for the feature vectors of each representation.

Thus, in the following, we present four methods to determine weights for

representative feature vectors of a summarization that rates the significance

of these summarization vectors in order to represent the according original

feature vectors. The different weighting functions reflect different notions

of similarity. Note that the weighting factor of each representative point is

evaluated for each data object and each representation separately.

A Weighting Function Based on Support. The idea behind our first

weighting function is that each summarization vector represents a given

amount of original feature vectors. This amount is a good indication on

the significance of this representative, i.e. how good this summarization rep-

resents the original feature vectors. Thus, in our first approach, the weight

of the l-th feature vector oj
i l of the j-th representation of object Oi ∈ DB,

denoted by Wsupp(o
j
i l), is computed by the fraction of points that are repre-

sented by oj
i l. Formally, if |Sj

i l| denotes the fraction of original points that

are summarized by Sj
i l, then the weight of the representative oj

i l is computed

by

Wsupp(o
j
i l) = |Sj

i l|/nj.

This weighting function is illustrated in Figure 6.2(a). The original points

that contribute to the weight of the representative denoted by “4” are shaded

in light gray, whereas the original points that contribute to the weight of

6.3 Multi-Represented Similarity Search in Multimedia Databases 131

x xx

x representatives
objects that are taken into

account for weighting of

objects that are taken into

account for weighting of x

(a) Wsupp

x xx

x representatives
objects that are taken into

account for weighting of

objects that are taken into

account for weighting of x

(b) Wqual

x

(c) Wlocal

x xx

x representatives
objects that are taken into

account for weighting of

objects that are taken into

account for weighting of x

Figure 6.2: Illustration of three different weighting functions.

the representative denoted by “x” are shaded in black. The weight for the

representative denoted by “4” is simply computed by the fraction of gray

points. The weight for the representative denoted by “x” is computed by the

fraction of black points.

A Weighting Function Based on Specific Quality Measures. The

first weighting function only considers the number of objects the given sum-

marization vector represents. However, it does not take the distances to the

representative object into account. For example, consider a representative

point rl representing l objects rather bad, i.e. the average distance of the

l points to their representative rl is significantly high, and a representative

point rk representing k < l points significantly better, i.e. the average dis-

tance of the k points to their representative rk is significantly low. Using

our first weight function, rl would be weighted higher than rk (since k < l)

although this contradicts the intuitive aim of our weighting function. A bet-

ter idea might be to consider the distances of the original points within one

summarization to their representative.

Usually, the summarization is generated optimizing a specific quality

function. For example, for higher-order summarizations, the summariza-

132
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

tion is derived from a clustering algorithm such as k-means or EM, which

optimizes a clustering quality criterion (e.g. TD2, log-likelihood). In case of

first-order summarization techniques, we can e.g. use the method described

in [CZ02a] and the according quality function. Our second quality measure

is based on the quality criterion upon which the summarization is generated.

Intuitively, a summarization vector with high representative power should be

weighted high.

Let CQ(oj
i l) be the quality measure for the l-th summarization vector of

the j-th representation of object Oi ∈ DB, based on which the summarization

is generated, e.g. TD2 in case of higher-order features generated by k-means.

Then, the weight of oj
i l is computed by:

Wqual(o
j
i l) = CQ(oj

i l).

An example of this weighting function is visualized in Figure 6.2(b). The

weight for the representative denoted by “4” is computed by e.g. the average

distance of the original objects in its summarization to the representative.

A Weighting Function Based on Local Neighborhood. The second

weighting function takes each original object into account when computing

the weights for the derived summarizations. However, the original multime-

dia objects may contain some noise points, e.g. feature vectors that do not

fit properly to any summarization, or — in case of an ineffective summariza-

tion procedure — one summarization may contain feature vectors of different

clusters. In general, due to noisy original objects, the second weighting strat-

egy may also fail. In this case, it would be more reliable to rate the weight

of a representative point r based only on the original points in the local

neighborhood of r. Our third weighting function follows this idea.

Let Nε(r
j
i) = {qj

i |dist(rj
i , q

j
i) ≤ ε} be the ε-neighborhood of a represen-

tative rj
i of the i-th database object Oi ∈ DB in the j-th representation Rj.

Let us note that Nε(r
j
i) only contains original feature vectors qj

i of Oi in

6.3 Multi-Represented Similarity Search in Multimedia Databases 133

representation Rj. We define the weight of oj
i l by the number of objects in

its local neighborhood, formally

Wlocal(o
j
i l) = |Nε(o

j
i l)|/nj.

This weighting function is illustrated in Figure 6.2(c). The original points

that contribute to the weight of the representative denoted by “4” are again

shaded in light gray, whereas the original points that contribute to the weight

of the representative denoted by “x” are shaded in black. Original points that

do not contribute to the weight of any summarization vector are shaded in

white. The weights for both representatives are derived by the number of

original points within their ε-neighborhood, normalized by nj.

A Weighting Function Based on Entropy. The three weighting func-

tions which we have introduced so far are rather local in the following sense:

in order to compute the weight of a representative o of a summarization So,

they only consider the objects that are summarized by So, i.e. belong to So.

However, it may be more appropriate to consider all original features of a

given representation Ri in order to rate a summarization vector oi of this

representation. Our fourth weighting strategy follows this idea.

When computing the weight of a summarization vector oi of a representa-

tion Ri, we want to take the distances of all original feature vectors qi
1, . . . , q

i
m

of representation Ri to oi into account. In fact, the distances of qi
l to oi can

be considered as a random variable x following a Gaussian distribution G(x).

The information content of such a random variable can be measured by its

entropy. For example, if the entropy of the variable x equals 1, the distances

dist(qi
l , o

i) are randomly distributed, whereas if the entropy of the variable x

is considerably low, the distances dist(qi
l , o

i) are most likely densely packed

around the mean value of x and thus, oi is a good representation of the vec-

tors qi
1, . . . , q

i
m. Figure 6.3 illustrates two Gaussians with different standard

deviations derived from two summarizations of different quality. The Gaus-

sian displayed in the upper part of Figure 6.3 has a lower deviation because

134
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

x

x

Figure 6.3: Different Gaussian distributions of distances from original ob-

jects to a summarization vector x.

the summarized original feature vectors are clustered. Its entropy will be

considerably lower than the entropy of the Gaussians depicted in the lower

part of Figure 6.3 which has a considerably higher standard deviation. This

is due to the randomized distribution of the summarized feature vectors in

the lower example.

Formally, let xoi = {dist(oi, qi
l) | 1 ≤ l ≤ m} be a random variable. The

Gaussian distribution G(xoi) of this random variable xoi is represented by

the mean

µG(xoi) =

∑m
l=1 dist(oi, qi

l)

m

and the standard deviation

σG(xoi) =

√√√√ 1

m
·

m∑
j=1

(dist(o, qj)− µG(xoi))
2.

The entropy of xoi is then defined as

H(xoi) =

+∞∫
−∞

G(xoi) · log G(xoi) dxoi .

Let oj
i l be the l-th summarization vector of object Oi ∈ DB in repre-

sentation Rj and let xoj
i l

be the random variable built by the distances of

6.3 Multi-Represented Similarity Search in Multimedia Databases 135

the original features of Oi in representation Rj to oj
i l as defined above. The

weight of oj
i l is defined as the entropy of the random variable xoj

i l
, formally

Wentropy(o
j
i l) = 1−H(xoj

i l
).

The weighting function evaluates to zero if the entropy equals 1, i.e. the

distances are distributed randomly. On the other hand, the weighting is near

1 if the distance distribution has a small standard deviation, i.e. the original

feature vectors are considerably dense around the summarization vector.

Let us note, that we can efficiently calculate the entropy by using an

appropriate five-order polynomial approximation that depends on the mean

and standard deviation.

6.3.2 Combining Multiple Representations for Simi-

larity Detection

Having defined a weighting function for each summarization vector for each

representation of a database object, we can combine multiple representations

for the process of similarity detection. The key step for efficient similarity

search is the design of a dedicated distance measure that takes the weights

of each summarization vector into account.

In general, we can adapt any distance measure that has been designed

for multimedia objects to consider the weights of each feature vector. Let

O = (O1, . . . , OD) ∈ DB be an arbitrary database object and let Q =

(Q1, . . . , QD) be the query object. Furthermore, let disti be the distance

function for comparing the i-th representation of O and Q, i.e. Oi and Qi.

Then, the distance between query object Q and a database object O can be

computed by

dist(Q, O) =
D∑

i=1

λi · disti(Qi, Oi).

136
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

The most important part is to determine the weight λi of represen-

tation Ri. Obviously, λi should be derived from the weights of summa-

rization vectors of the i-th representation of the query object Q, i.e. from

W (qi
1), . . . ,W (qi

ni
). The use of the weights of the query object Q only rather

is more intuitive than using the weights of both Q and O because we want

to ensure that we find database objects that are most similar to Q. Thus,

the weights of Q are much more important than that of the database object

O.

Regarding the distance function which should be used on the summariza-

tions in each representation, we propose to distinguish between higher-order

summarizations and first-order summarizations. Of course, we can combine

representations of higher-order summarizations with representations of first-

order representations.

Higher-order Summarizations. For higher-order summarizations, we use

the Hausdorff distance which is an approved and frequently used distance

measure in multimedia similarity search to compute the similarity between

a database object Oi = {oi
1, . . . , o

i
n} and a query object Q = {qi

1, . . . , q
i
n}

w.r.t. a given representation Ri. In general, an arbitrary distance func-

tion appropriate for multi-instance objects is applicable as similarity but the

Hausdorff distance can be efficiently supported by an index structure like

M-tree [CPZ97] because it satisfies metric properties.

In fact, the Hausdorff distance (cf. Definition 2.1.4 in Chapter 2) relies

on the distance of two specific summarizations, one from Qi, say qi
h, and one

from Oi, say oi
h. In other words, there are two summarizations qi

h ∈ Qi and

oi
h ∈ Oi, such that H(Qi, Oi) = dist(qi

h, o
i
h). Then the weight of the i-th

representation λi is determined by the the weight of qi
h, formally

λi = W (qi
h).

Let us note that the distance function dist(a, b) between two summariza-

6.4 Experimental Evaluation 137

tion representatives a and b can be arbitrary. If the summarization represen-

tatives are feature vectors, e.g. derived by k-means clustering, any common

distance measure such as the Euclidean distance can be used. If the summa-

rization technique generates Gaussian distributions, e.g. using EM clustering,

we use the Kullback-Leibler distance [IL00].

First-order Summarizations. For first-order summarizations, we use the

distance function proposed in [CZ02a] called ranked ViSig Similarity (V SS).

This similarity measure relies on a set of distances between summarizations

of the query Q and a database object O in each representation. Analogously

to higher-order features, we weight each distance with the weight of the

participating query summarization.

6.4 Experimental Evaluation

All experiments were performed on a workstation featuring a 1.8 GHz Opteron

CPU and 8GB RAM. We evaluated our concepts using a database of 500 mu-

sic videos recorded from various TV stations. The average length of a video

clip within our collection is 4 minutes and 5 seconds. We extracted the im-

age representations of the videos on a per-frame basis, i.e. we generated 25

features/second for PAL and 30 features/second for NTSC videos. From

each image, we extracted four representations, namely a color histogram and

three textural features. For the color histogram, we used the HSV color

space which was divided into 32 subspaces, 8 ranges of hue and 4 ranges of

saturation. The textural features were generated from 16 gray-scale conver-

sions of the images. We computed contrast, entropy and inverse difference

moment using the co-occurrence matrix [HSD73]. For extracting the audio

features, we divided the audio signal of a video clip into short time frames,

each having a length of 1/50 second. Every audio frame is represented by two

features in the time- and frequency-domain. We computed autocorrelation

138
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

and threshold-crossing for the time-domain, spectral flux and mel-frequency

cepstral coefficients for the frequency-domain [TC02].

6.4.1 Multi-Represented vs. Uni-Represented Simi-

larity Search

First, we show that multi-represented similarity search is usually more ef-

fective than similarity search using only one representation. In addition, we

show in this subsection, that weighting the different representations yield

a significant benefit compared to un-weighted multi-represented similarity

detection.

In a first experiment, we performed video similarity search. As setup step,

we picked 50 query videos from our database and manually selected a set of

videos which are similar to the query videos. We compared recall and preci-

sion achieved on the best single representation to the query result computed

by using the ε-neighborhood and entropy weighting functions. Furthermore,

we investigated the performance of our weighting strategies on three summa-

rization techniques, namely video signatures (ViSig), K-Means and expecta-

tion maximization (EM). The results of this comparison is depicted in Figure

6.4. For all evaluated summarization techniques, we observed a significant

performance improvement when using multiple representations in compari-

son to the best single representation. Furthermore, our weighted approach

leads to better results on all considered summarization techniques.

Using the same test setup as described before, we compared different stan-

dard combination techniques for multi-represented objects to our weighted

combination method is shown in Figure 6.5. We investigated the perfor-

mance of commonly used standard combination techniques such as product,

sum, minimum and maximum. In most cases, our weighted approach is

more effective than the standard combination algorithms. Especially the ε-

6.4 Experimental Evaluation 139

0

0.25

0.5

0.75

1

0.33 0.66 1.00

recall

pr
ec
is
io
n

single combi (entropy) combi (epsilon)

(a) ViSig

0

0.25

0.5

0.75

1

0.33 0.66 1.00

recall

pr
ec
is
io
n

single combi (entropy) combi (epsilon)

(b) K-Means

0

0.25

0.5

0.75

1

0.33 0.66 1.00

recall

pr
ec
is
io
n

single combi (entropy) combi (epsilon)

(c) EM

Figure 6.4: Precision vs recall for different summarization techniques on

best single representation and two best weighting functions.

0

0.25

0.5

0.75

1

0.33 0.66 1.00
recall

pr
ec
is
io
n

epsilon entropy quality support
product sum min max

(a) ViSig

0

0.25

0.5

0.75

1

0.33 0.66 1.00recall

pr
ec
is
io
n

epsilon entropy quality support
product sum min max

(b) K-Means

0

0.25

0.5

0.75

1

0.33 0.66 1.00
recall

pr
ec
is
io
n

epsilon entropy quality support
product sum min max

(c) EM

Figure 6.5: Precision vs recall for different summarization techniques on

standard combination strategies and proposed weighted combination strate-

gies.

neighborhood and entropy weighting methods show good precision and recall

values for all considered summarization strategies.

6.4.2 Multi-Represented Similarity Search Applications

In the following, we identify two common applications that may pose different

challenges to multimedia similarity search techniques and propose the most

appropriate weighting functions for these tasks.

Application 1: Finding Similar Videos. Our first application addresses

copyright issues. In order to detect plagiarism, we want to find videos that are

140
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

similar to a given query video. We argue that in this application, similarity

should be considered more locally because several representations are usually

almost identical. This is the case if e.g. the image or audio part of a video

is encoded in different resolutions or sampling rates. To distinguish these

videos from the rest of the database, it is necessary to examine a small

neighborhood. Otherwise, we would obtain results which are similar, but do

not violate the copyright.

The ε-neighborhood weighting function follows this idea and can success-

fully be applied for this task as shown in Figure 6.4 and Figure 6.5.

Application 2: Finding Videos of a Given Artist. In our second

application, we address content-based multimedia retrieval in music video

databases. Given a query video of a specific artist, we want all videos of this

artist in our database. Obviously, in this application, a more global notion

of similarity is necessary.

In order to demonstrate this idea, we selected a set of 20 query videos

associated with different artists. For each video in our query set, we extracted

all videos of the same artist from our database. The results of our artist

search are depicted in Figure 6.6. In all experiments, the entropy-based

weighting function outperforms the ε-neighborhood approach. This can be

explained by the fact that the entropy weighting function takes all distances

into account in opposite to the local character of the ε-neighborhood function.

6.5 Conclusions

Similarity search in multimedia databases can be improved by using multiple

representations of the multimedia objects. When searching for similar videos,

one can e.g. use audio features such as rhythm and pitch as well as video

features such as color histograms and textures.

6.5 Conclusions 141

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1
recall

pr
ec
is
io
n

epsilon entropy

(a) ViSig

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1
recall

pr
ec
is
io
n

epsilon entropy

(b) K-Means

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8 1
recall

pr
ec
is
io
n

epsilon entropy

(c) EM

Figure 6.6: Precision vs. recall for different weighting strategies when

performing similarity search for videos of the same artist.

In this chapter, we presented a method for effective similarity search in

multimedia databases that takes multiple representations of the database ob-

jects into account. In particular, we proposed several weighting functions for

summarization vectors of different representations of each database object.

Our concepts are independent of the underlying summarization method and

compute a weight for each summarization vector of each representation for

each object separately. Using these weighting factors, we further show how

well-known distance measures for non-multi-represented, multi-instance ob-

jects can be adopted to multi-represented objects. In our experiments, we

evaluated the proposed methods and showed the benefits of our approach.

142
6 Effective Similarity Search in Multimedia Databases using Multiple

Representations

Part III

Data Mining Techniques

143

Chapter 7

Using Uncertainty to Provide

Privacy Preservation

for Distributed Clustering

Privacy preservation is a new area in data mining research that deals with

obtaining valid data mining results without learning the underlying data.

In this chapter we introduce a novel method for clustering distributed data

that achieves an arbitrary level of privacy preservation through the obfus-

cation of the original data using aggregation by the mixture of Gaussians.

This chapter starts with an introduction into privacy preservation for dis-

tributed clustering in Section 7.1. In Section 7.2, we survey related work

on distributed and parallel clustering. In Section 7.3, we describe our novel

privacy-preserving clustering algorithm that describes original data by un-

certain models. Section 7.4 provides an extensive experimental evaluation of

the performance and the accuracy of the proposed approach. In Section 7.5,

we summarize this chapter.

145

146
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

7.1 Introduction

As discussed in Chapter 1, advanced application have often to perform data

mining task on distributed data under privacy preservation requirements. A

good distributed data mining framework performs data mining operations

based on the type and the availability of the distributed resources. As sug-

gested in [PK03], a distributed data mining solution consists of the following

steps. First, a data mining algorithm is locally applied to each of the k sites

separately and independently. The results are k local sets of patterns called

local models. Second, the local models are transferred to a central server. The

central server combines the local models to generate a global model. Third,

the global model may optionally be sent back to local sites.

The data mining technique we address in this chapter is clustering which

aims at partitioning the data objects into distinct groups (clusters) while

maximizing the intra-cluster similarity and minimizing the inter-cluster sim-

ilarity. Many clustering algorithms for the centralized approach have been

proposed so far using different clustering notions, e.g. distribution-(or model-

)based, center-based, or density-based (cf. [HK06] for an overview). In gen-

eral, all those methods are applicable for a distributed solution as far as they

produce a local model in Step 1 of the distributed data mining process that

is as compact as possible but provides as much information as needed for

building a global model in Step 2. Unfortunately, many traditional clus-

tering algorithms produce a clustering that cannot be easily described by a

simple prototype. For example, density-based clustering [EKSX96] detects

clusters of arbitrary shape. However, describing a cluster having a complex

shape might become quite expensive possibly causing large transfer rates.

Thus, a local model should describe each cluster by a “suitable” prototype.

Obviously, such prototyping should also meet privacy constraints. We ar-

gue, that the expectation maximization (EM) clustering algorithm provides

exactly such prototypes. EM describes the dataset by a set of Gaussian

7.2 Related Work 147

distributions consisting of the cluster center (mean) and covariance matrix.

The latter describes the density of points around the center of the cluster. If

certain constraints are met, privacy is preserved because the exact values of

the data objects cannot be retrieved from the distribution.

We propose a novel distributed clustering algorithm called DMBC (Dis-

tributed Model-Based Clustering). The local models are acquired using EM

clustering. Since the necessary number of clusters on each site might be

strongly varying, DMBC automatically determines a suitable number of lo-

cal clusters based on privacy and performance constraints. The constraints

control the maximum transfer volume that is allowed from an individual site

and assure that each local data object is described as good as possible and

prohibit the transfer of clusters that could lead to a violation of privacy as-

pects. To combine the local clusters at the central server, the aggregation

step of DMBC can employ two variants of parametrization to either derive

a global clustering offering k clusters or an arbitrary set of clusters that

are considerably different from each other. In both cases, DMBC derives a

meaningful global mixture model of Gaussian in efficient time. Our broad

experimental evaluation shows that DMBC is a scalable solution for cluster-

ing in a distributed environment that achieves comparative results compared

to a centralized EM-based approach.

7.2 Related Work

In the following, we will review recent work on parallel and distributed clus-

tering. Parallel clustering is related to the problem of distributed clustering

because the data objects are also distributed over several clients where a local

clustering is performed. The local clusterings are merged to produce the final

model. However, parallel clustering methods can control the assignment of

data objects to each site. Thus, the merge step is usually less complex and

148
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

implying different problems than the merge step of distributed data mining

approaches. However, several recent approaches for distributed data mining

are adoptions of parallel clustering algorithms and do not consider privacy

preservation issue.

Parallel versions of k-means, k-Harmonic-Means, EM [DM00, FZ00], and

DBSCAN [XJK03] are all not applicable within distributed environments

because all methods rely on a centralized view of the data during or before

the clustering is computed.

In [SS00] a parallel algorithm is proposed for clustering web documents

distributed randomly over several sites. Any clustering algorithm can be

used to generate local clusters. The entire local clusters are sent back to the

server rather than compact prototypes. Clusters are merged if they share

a given number of documents which is determined by deriving maximum-

sized itemsets from the documents. Obviously, since all local documents are

transferred to the server, this approach does not consider any privacy issues.

In [JKP04] a distributed version of DBSCAN [EKSX96] is presented. The

local clusters are represented by special objects that have the best representa-

tive power. This representative power is based on two quality measures that

take the density-based clustering concepts into account. For each represen-

tative, a covering radius and a covering number is aggregated for the global

merge step. The performance of the proposed method is heavily dependent

on the number of representatives. If it is chosen too small, the accuracy sig-

nificantly decreases. Otherwise, the runtime increases due to high transfer

cost. In addition, since real data objects are sent to the global server, this

approach does also not consider any privacy issues.

In [JK99] a single-link hierarchical clustering algorithm for vertically dis-

tributed data is proposed. However, our new approach DMBC is focused on

horizontally distributed data.

7.3 Distributed Model-based Clustering 149

7.3 Distributed Model-based Clustering

In the following, we will refer to the clustering generated by the centralized

approach as centralized clustering and call the clusters that are part of the

global clustering centralized clusters.

7.3.1 Problem Analysis

As discussed above, the centralized solution has several drawbacks which led

to the distributed approach where the data is clustered locally at each site.

Afterwards only the information about the local clusters are transfered to a

central server. The server can now reconstruct the global clustering which

should be as similar to the centralized clustering as possible, by combining

the local clusters. For this recombination, we can distinguish the following

cases:

Case 1: All objects of a global cluster are found on a single local site. In

this case, the global cluster can be spotted easily at the local site and should

be added to the global clustering on the central site.

Case 2: The objects of a global cluster are spread over several sites. In this

case, we have to distinguish:

Case 2(a): All objects are rather well described by some local cluster. In

this subcase, a good clustering algorithm should discover which local clusters

belong to the same global cluster and merge them at the central site.

Case 2(b): Some of the objects of a global cluster are locally considered as

noise or as members of local clusters that are built from object predominantly

belonging to other global clusters. These objects contribute to the wrong

global cluster or noise.

Case 2(c): A cluster is distributed over several sites and none of them

150
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

contains enough data objects for deriving a local cluster. In this case, the

objects of the global cluster are considered as noise or parts of other clusters

at each client site. Only by combining the local objects the global cluster

would become visible.

Because of the last two subcases, it is quite difficult, if not impossible, to de-

velop an efficient distributed clustering algorithm that transmits local clus-

ters and exactly rebuilds the centralized clustering for all cases. Since some

of the centralized clusters may only be discovered if the noise objects of sev-

eral sites are combined, the clustering algorithm would have to transmit all

objects that are not well described by any local cluster as well as the clusters.

However, transmitting all these objects has two major drawbacks. First, pri-

vacy preservation gets almost impossible by transmitting single data objects.

Second, with large amounts of noise, it becomes necessary to transmit large

amounts of data as well and thus, the advantages of distributed clustering

might get lost. However, since there is no other solution for this dilemma,

a good distributed clustering algorithm should at least offer the possibility

to adjust to the users preferences on privacy, performance and the degree

of how good the derived distributed clustering corresponds to the central-

ized clustering. In the following, we will refer to the degree of how good a

distributed clustering corresponds to the centralized clustering as the agree-

ment of both clusterings. Note, that a good distributed clustering algorithm

cannot guarantee an agreement of 100% in all scenarios as discussed above.

In the following, we describe a method, called Distributed Model-based

Clustering (DMBC) that is based on the EM clustering of local sites. Instead

of transmitting the complete local dataset, we only transmit a number of local

Gaussians and their weights to the central site. Since a Gaussian distribution

is represented only by a mean vector and a covariance matrix, the amount of

transferred information is much smaller. Therefore, the needed bandwidth is

much smaller. Furthermore, the Gaussians derived by EM are always built

according to all underlying data objects and drawing detailed conclusions

7.3 Distributed Model-based Clustering 151

about individual data objects is not possible in almost all settings. Since we

will additionally control the remaining cases, the privacy of local data objects

is preserved. Thus, our method avoids the problem of building a global

clustering and still derives a mixture of Gaussian distributions achieving a

high agreement with the centralized clustering.

The DMBC algorithm proceeds in 4 steps:

Step 1: The local data on each client site is clustered using EM. Thus,

the data at each client site is now represented by a small but descriptive set

of Gaussian distributions and a distribution of weights over these Gaussians.

The number of clusters for the EM algorithm is optimized automatically with

respect to the parametrization controlling the privacy level and the transfer

volume.

Step 2: The local Gaussians and weights are transmitted to the central

site.

Step 3: Similar local Gaussians are joined to find a compact global distri-

bution. Thus, each cluster in a global EM clustering is only represented by

a single Gaussian.

Step 4: The calculated global clustering can optionally be transmitted back

to the client sites.

7.3.2 Computation of Local Models

To cluster the data at each client site, we employ the EM algorithm as

described in Section 2.2.1. The most important aspect of this step is the

question how to choose the parameter k, i.e. the number of Gaussians that

is used to describe the local data distribution. Since the data distribution

can strongly vary between each site, simply selecting a global value for k

as the expected number of global clusters might be rather inappropriate.

152
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

Therefore, our algorithm automatically determines a particular value ki for

each site Si. Let us note that ki not only influences the transfer volume,

but also the privacy and exactness of the clustering as well. The larger ki,

the higher is the probability that a Gaussian is strongly influenced by only a

few datasets. In this case, the privacy can be seriously jeopardized because

it might be easy to approximate the instances that are represented by this

Gaussian. On the other hand, a large number of ki usually increases the

tendency that all local data objects are well represented by a local Gaussian.

To conclude, a very high value for ki will increase the agreement between

our derived clustering and the global clustering, but it will also increase the

transferred data volume.

To find a clustering containing an appropriate number of clusters, we

first of all introduce the parameter kmax describing the maximum number of

Gaussians for each local site. kmax limits the maximum transfer from a local

site to the central site in step 2 and thus can be derived from the available

bandwidth. To measure the degree that all data objects are well represented

by the given clustering, we introduce the function cover(Ci,j).

Definition 7.1 (Cover)

Let M = C1, . . . , Ck be a mixture of Gaussians describing the density distri-

bution within DB. Furthermore, let t ∈ [0, . . . , 1] be a probability threshold.

Then, the cover of the model M , denoted by Cov(M), is defined as follows:

Cov(M) = |{ ~x |~x ∈ DB ∩ ∃ Ci ∈ M : P (Ci|~x) ≥ t}|

Intuitively, the cover is the number of data objects that provide at least a

probability of t for some Gaussian in the clustering. Let us note that Cov(M)

is related but different to the log-likelihood E(M) that is optimized by the

EM algorithm.

The pseudocode of the algorithm localEM to derive a local clustering is

depicted in Figure 7.1. The algorithm chooses the smallest clustering M that

7.3 Distributed Model-based Clustering 153

localEM(Database DB, Integer kmax)
maxcover = 0;
bestClustering = ∅;
for k := 1 to kmax do

M := EM(DB, k);
if cover(M) = |DB| then

return M ;
end if
if cover(M) > maxcover then

maxcover = cover;
bestClustering = M;

end if
end for
return bestClustering;

Figure 7.1: Algorithm for local clustering.

achieves a maximum cover by successively increasing k and testing the cover

of the resulting clustering.

At last, we have to control the level of privacy, we need to ensure. Thus,

we have to measure how far it is possible to draw conclusions about individual

datasets from the found clustering C. Therefore, we define the so-called

privacy score (PScore):

Definition 7.2 (Privacy Score)

Let Ci ∈ M be a cluster that is described by a d-dimensional Gaussian deter-

mined by the mean vector µi and a covariance matrix Σi. Then, the privacy-

score, denoted by PScore(Ci), is defined as follows:

PScore(Ci) =
d∑

j=1

Σj,j

The idea of the PScore(Ci) is quite simple. Only if the variance in

each dimension is very small, it is possible to draw conclusions about the

underlying feature vectors. Let us note that the local cluster description of a

cluster determined by the EM algorithm is always built using the complete

154
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

dataset. As a result, it is impossible to derive detailed information about

single feature vectors even for clusters having small weights if the variance

values are large enough for at least a single dimension. Thus, we define a

privacy threshold τp that is the lower limit for the PScore(Ci) of a cluster Ci

that is allowed to be transferred. If a cluster Ci has a smaller privacy-score,

i.e. PScore(Ci) < τp, we do not transmit the cluster because it would be

possible to conclude that there is at least one feature vector stored on the

local site that strongly resembles the transferred mean value.

To conclude, at each site we determine the smallest EM clustering provid-

ing a maximum cover and afterwards transfer all clusters that do not violate

the predefined level of privacy.

7.3.3 Computation of the Global Model

The purpose of this step is to combine the locally derived clusters to a dis-

tributed clustering describing the complete data distribution in a best pos-

sible way. The difficulty in this step is to find out which of the clusters are

likely to describe the same global cluster. To find out which of the given

local clusters should be joined, first of all we need a measure that describes

the likelihood of two local Gaussians C1 and C2 to model the same global

cluster. Simply, using the distance between mean vectors is not applicable

here because the significance of this distance strongly decreases with increas-

ing variance values. Therefore, we define a new measure that considers the

dependency between variance and mean value, called mutual support.

Definition 7.3 (Mutual Support)

Let C1, C2 be two Gaussian determined by a mean vector µi and a covariance

matrix Σi. Then the mutual support of C1, C2 is given by:

MS(C1, C2) =

∫ +∞

−∞
Nµ1,Σ1(~x) ·Nµ2,Σ2(~x)d~x

7.3 Distributed Model-based Clustering 155

The probability density of a point ~x ∈ DB within a Gaussian density

distribution C = (µC , ΣC) is computed in the following way:

NµC ,ΣC
(~x) =

1√
(2π)d|ΣC |

e−
1
2
(~x−µC)T(ΣC)−1(~x−µC).

Let us note that ~x is a d-dimensional feature vector and thus MS(~x) is

defined using the integral over all d dimensions. The mutual support has

several characteristics that makes it well suited for measuring the similarity

between two Gaussians. The larger the variance values become, the less steep

are the probability density functions of the Gaussians and the less important

is the distance between the mean values. Comparing a low variance distri-

bution with a high variance Gaussian, will display a small mutual support.

In the comparably small range where a low-variance distribution displays

strong density the high-variance distribution provides only moderate den-

sity and in the large area where the high-variance distribution displays still

moderate density, the density of the low-variance distribution decreases the

product very strongly. Thus, the mutual support of two Gaussians specified

by very similar mean values but quite different covariance matrices is also

rather small.

After finding a method to compare two local Gaussians, we now start

to determine which of the local clusters should be merged. To determine a

distributed clustering from a set of local clusters C with a number of k global

clusters, we can now proceed as described in Figure 7.2.

Another alternative for deriving a joined distributed clustering is to spec-

ify a threshold parameter τ and join all clusters displaying a mutual sup-

port of at least τ . In this case, all pairs of clusters (Ci, Cj) are marked if

MS(Ci, Cj) ≥ τ . Again we first of all, find the marked pairs of clusters

that are connected by common clusters and afterwards merge all clusters in

this connected set. Therefore, both approaches are independent of the order

the clusters are merged. After determining which clusters have to be joined,

we still need to derive a common Gaussian from a connected set of local

156
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

globalMerge(SetOfLocalClusters C, Integer k)
for each pair (Ci, Cj) ∈ C do

compute MS(Ci, Cj);
end for
sort the pairs w.r.t. descending mutual support;
mark the first |C| − k pairs of clusters;
build the transitive closure over the pairs having some

common clusters and unite them into a common
global cluster;

Figure 7.2: Algorithm for global clustering.

clusters. Therefore, we derive a new mean µC for a set of Gaussian clusters

C = {C1, . . . , Cm} that are specified by µi and Σi in the following way.

µC =

∑m
k=1(wCk

· λ(Ck) · µk)∑m
k=1(wCk

· λ(Ck))
.

Here, λ(Ck) = Cov(Ml) where cluster Ck has its origin on site l, i.e. λ(Ck)

denotes the cover of site l. The entries of the covariance matrix for the ith

line and the jth column are calculated as following:

Σi,j
C =∫ +∞

−∞ (
∑m

k=1 wCk
λ(Ck)Nµk,Σk

(~x) · (~xi − µi
C)(~xj − µj

C))d~x∑m
k=1(

∫ +∞
−∞ wCk

λ(Ck)Nµk,Σk
(~x))d~x)

Let us note that we again need to employ a multiple integral to calculate

the new covariance matrix because we do not have the actual data distribu-

tion at each site. Therefore, we assume that the local density given by each

local clustering is a well enough description of this distribution. To con-

sider the number of data objects that are stored at each site, we additionally

weight the influence of each distribution with the cover we transmitted from

this site.

The weight of C can be determined as

wC =

∑
Ci∈C wCi

· λ(Ci)∑
Ci∈C λ(Ci)

.

7.3 Distributed Model-based Clustering 157

7.3.4 Scaling to High Dimensional Datasets

If we apply DMBC as proposed in the previous subsection on higher dimen-

sional datasets (d > 2), we face the problem that, in order to compute both

the mutual support as well as the covariance matrix of a merged cluster, we

have to evaluate multiple integrals.

Thus, in order to be scalable for higher dimensional datasets, we propose

a variant of DMBC that uses variances instead of covariances for cluster

representation. In particular, we assume the attributes to be independent

of each other and represent a cluster C by its mean vector µC and its d-

dimensional variance vector νC . The i-th value of νC , denoted by νi
C , indicates

the variance of the Gaussian along attribute i.

As a consequence, the resulting Gaussians form ellipsoid-shaped clusters

that are constrained to be axis-parallel. We will see later in the experimental

evaluation, that this simplification does not cause a significant loss of quality.

However, the benefits of this modification are the following. First, we are able

to solve the integral of the mutual support analytically. Second, to compute

the variance vector of a merged cluster, we need to solve only one integral

rather than multiple integrals. Third, the transfer cost for each local cluster

are reduced from O(d2) for the covariance matrix to O(d) for the variance

vector.

In fact, the mutual support of a pair of clusters C = {C1, C2} can be

computed as

MS(C1, C2) =
d∏

i=1

∫ +∞

−∞
Nµi

1,νi
1
(~xi) ·Nµi

2,νi
2
(~xi)d~xi

where

Nµi,νi(~xi) =
1√
2πνi

· e
−(~xi−µi)2

2νi .

The following lemma enables us to solve this integral over d-dimensions

analytically.

158
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

Lemma 7.1 Let C1 = (µC1 , νC1) and C2 = (µC2 , νC2) be local clusters. Then

MS(C1, C2) =
d∏

i=1

1√
2π · (νi

1 + νi
2)
· exp− (µi

1 − µi
2)

2

2 · (νi
1 + νi

2)

Proof. Let 1√
2π·νi

1

· 1√
2π·νi

2

exp− (µi
1−~xi)2

2·νi
1

− (µi
2−~xi)2

2·νi
2

= ϑi · 1√
2π·νi

·exp− (µi−~xi)2

2·νi .

If we apply the logarithm to the equation, and replace µi and νi by:

µi =
µi

1 · νi
2 + µi

2 · νi
1

νi
2 + νi

1

and νi =
νi

2 · νi
1

νi
2 + νi

1

,

it follows that

ϑi =
1√

2π · (νi
1 + νi

2)
· exp− (µi

1 − µi
2)

2

2 · (νi
1 + νi

2)

Thus, we obtain (cf. proof of Lemma 3.1)

MS(C1, C2) =
d∏

i=1

∫ +∞

−∞
Nµi

1,νi
1
(~xi) ·Nµi

2,νi
2
(~xi)d~xi =

d∏
i=1

∫ +∞

−∞

√
νi

1ν
i
2

1√
2π · νi

1

· 1√
2π · νi

2

exp−(µi
1 − ~xi)2

2 · νi
1

− (µi
2 − ~xi)2

2 · νi
2

d~xi =

d∏
i=1

∫ +∞

−∞

√
νi

1ν
i
2 · ϑi ·

√
νi

2 + νi
1

νi
2ν

i
1

Nµi,νi(~xi)d~xi =

d∏
i=1

1√
2π · (νi

1 + νi
2)
· exp− (µi

1 − µi
2)

2

2 · (νi
1 + νi

2)
·
∫ +∞

−∞
Nµi,νi(~xi)d~x =

d∏
i=1

1√
2π · (νi

1 + νi
2)
· exp− (µi

1 − µi
2)

2

2 · (νi
1 + νi

2)
· 1.

2

The j-th component of the variance vector of the global cluster C which

evolved from the merge of m clusters Ci is given as:

νj
C =

√√√√∫ +∞
−∞ (

∑m
i=1 wCi

λ(Ci)Nµj
i ,σj

i
(~xj)) · (~xj − µj

C)2d~xj∑m
i=1(

∫ +∞
−∞ wCi

λ(Ci)Nµj
i ,νj

i
(~xj)d~xj)

7.4 Experimental Evaluation 159

Note that for component νj
C we compute only a 1-dimensional integral

over dimension j.

7.4 Experimental Evaluation

We implemented our versions of DMBC in Java and run several tests on a

workstation featuring two 1.8 GHz Opteron processors and 8 GByte main

memory. The test bed consists of one artificial 2-dimensional dataset (de-

noted as DS1) and two real-word datasets (denoted as DS2 and DS3). The

latter two are derived from 68,040 images of the corel image feature collec-

tion of the UCI KDD archive[NHBM98]. DS2 contains 9-dimensional color

moments of images in HSV color space (mean, standard deviation and skew-

ness). DS3 comprises a description of the corel images based on co-occurrence

textures with 16 dimensions.

The experimental results of DMBC on the synthetic DS1 (Figure 7.3)

demonstrates that our algorithm is capable to handle cases 1, 2(a)-(c) de-

scribed in Section 7.3.1: DMBC finds the global cluster “A” the objects of

which are existent on only one single client, i.e. client 2 (Case 1). DMBC

finds the global clusters “B”, “D”, and “E” the objects of which are rather

well described by local clusters on all sites (Case 2(a)). DMBC finds the

global cluster “C” the objects of which are distrubuted over all sites such

that none of the sites exhibit a local cluster (Case 2(c)). Several objects of

clusters “D” and “E” are prototypes for Case 2(b) because they are mem-

bers of local clusters that are built from objects predominantly belonging to

another global cluster.

In order to demonstrate the robustness of our clustering algorithm w.r.t.

the number of clusters on each client site, we performed distributed cluster-

ing with a predetermined number of clusters. We measured the agreement

between the distributed clustering and the results of the centralized EM al-

160
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

Site 1 Site 2 Site 3

Server Site

A

B

C

D

E

Figure 7.3: Results of DMBC on DS1.

gorithm using the Rand Index [HBV01], also known as Rand Statistics.

On the 2-dimensional synthetic dataset (DS1) shown in Figure 7.3 DMBC

achieved a Rand index of approximately 99.9%, indicating a high agreement

of our method with the centralized clustering. For data DS2 and DS3 we

used the variant of DMBC based on variances (cf. Section 7.3.4). As shown

in Figure 7.4, DMBC achieves high Rand Index values, i.e. our distributed

approach produces a high level of agreement with the results of centralized

clustering algorithms on all numbers of clusters. This also indicates that the

variant proposed in Section 7.3.4 using variances instead of covariances does

produce accurate results, too. We evaluated the scalability of the proposed

algorithm w.r.t. the number of clusters on each client site. The results are

depicted in Figure 7.4(a). As it can be observed, in all settings, the Rand

Index is near the optimal value. Thus, the agreement between the centralized

clustering and the global distributed clustering is very high.

7.4 Experimental Evaluation 161

(a) (b)

(c) (d)

10

20

30

40

50

60

70

80

90

100

R
a
n

d
 I
n

d
e
x
,
%

2 20 50 100

Cluster

Data Set 2 Data Set 3

10

20

30

40

50

60

70

80

90

100

R
a
n

d
 I
n

d
e
x
,
%

2 5 10

Client Sites

0

0,2

0,4

0,6

0 20 40 60 80 100

Cluster

T
ra

n
s

m
is

s
io

n
 R

a
te

,
%

Data Set 2 Data Set 3

0

0,02

0,04

0,06

0 2 4 6 8 10

Client Sites

T
ra

n
s

m
is

s
io

n
 R

a
te

,
%

Figure 7.4: Results of DMBC on DS2 and DS3.

In addition, we investigated the scalability of the proposed algorithm

w.r.t. the number of client sites. Figure 7.4(b) presents the agreement using

the Rand Index between results calculated by our approach and the cen-

tralized clustering algorithm. The number of client sites involved in the

distributed clustering was varying from 2 to 10. The high value of the Rand

Index in all experiment evaluations shows that our algorithm is scalable w.r.t.

the number of client sites and delivers results that do not differ from that of

the global acting algorithm.

We also investigated the transfer cost w.r.t. the number of clusters on

each client site and w.r.t. the number of client sites. The results are depicted

in Figure 7.4(c) and 7.4(d). As transfer cost we measured the ratio of the

number of bytes that are transfered using DMBC and of the number of

bytes that are transfered using the centralized approach. As it can be seen,

the transfer cost is in general very low. Even for a very large number of

162
7 Using Uncertainty to Provide Privacy Preservation

for Distributed Clustering

clusters, DMBC needs less than 1% of the bytes transfered by the centrailized

approach. In addition, we can observe, that the transfer cost increases only

linearly w.r.t. the number of local clusters and w.r.t. the number of client

sites. Compared to other existing distributed clustering approaches, e.g. the

density-based distributed approach in [JKP04], where the local transfer cost

is at least 15% of the local data in order to achieve a high agreement, our

DMBC reduces the transfer cost dramatically.

Last, we investigated the robustness of DMBC w.r.t. the probability

threshold t which affects the cover of the local models. As the results (not

shown due to space limitations) suggest, DMBC is rather robust w.r.t. a

broad range of values for t. In fact, we observed a Rand Index over 98%

when varying the values of t from 0.05 up to 0.45.

To sum up, our experiments demonstrated the robustness, the efficiency,

and the applicability of both of our proposed variants for distributed model-

based clustering.

7.5 Conclusions

In this chapter, we proposed a novel privacy-preserving clustering algorithm

called distributed model-based clustering (DMBC). Our method can achieve

an arbitrary level of privacy preservation by applying the EM algorithm at

the local sites generating a model containing a set of Gaussian distributions.

Each Gaussian is represented by its mean and its covariance matrix or — for

higher dimensions the variance vector. We also proposed a merge step of the

local Gaussians that can handle covariances as well as variances. Compared

to recent approaches for pure distributed clustering, DMBC enables respect-

ing an arbitrary level of privacy and dramatically reduces the transfer costs.

Our experimental evaluation demonstrates the robustness, the efficiency, and

the applicability of both of our proposed variants for distributed clustering.

Chapter 8

An EM-Approach for

Clustering Multi-Instance

Objects

Clustering multi-instance data is a very important but challenging task in

mining advanced database systems as demonstrated in Chapter 1. This

chapter introduces a novel model-based clustering algorithm for clustering

multi-instance data. First, a short introduction into the clustering of multi-

instance objects is given in Section 8.1. Section 8.2 surveys previous work

in data mining multi-instance objects. Section 8.3 describes our statistical

model for multi-instance data. In Section 8.4, this model is employed for

EM clustering. To demonstrate the usefulness of the developed approach,

Section 8.5 presents the results on several real-world datasets. Section 8.6

concludes the chapter with a summary.

163

164 8 An EM-Approach for Clustering Multi-Instance Objects

8.1 Introduction

To cluster multi-instance (MI) objects, the common approach so far is to

select some distance measures for point sets like [EM97, RB01] and then apply

a distance-based clustering algorithm e.g. k-medoid methods like CLARANS

[HK06] or a density-based algorithm like DBSCAN [EKSX96]. However, this

approach does not yield expressive cluster models. Depending on the used

algorithm, we might have some representative for some cluster, but we do

not have a good model for describing the mechanism behind this clustering.

To overcome this problem, we will refer to the model of MI objects that

was introduced in [WFP03] stating that a MI object of a particular class

(or in our problem each cluster) needs to provide instances belonging to a

certain concept or several concepts. We will adapt this view of MI objects

to clustering. Therefore, we propose a statistical model that is based on 2

steps. In the first step, we use a standard EM Clustering algorithm on the

union set of all MI objects. Thus, we determine a mixture model describing

the instances of all MI objects. Assuming that each of the found clusters

within each mixture model corresponds to some valid concept, we now can

derive distributions for the clustering of MI objects. For this second step, we

assume that a MI object containing k instances can be modeled as k draws

from the mixture model over the instances. Thus, each cluster of MI objects

is described by a distribution over the instance clusters derived in the first

step and some prior probability.

8.2 Related Work

Data mining in multi-instance data objects has so far been predominantly

examined in the classification section [DLLP97a, Zho04, WFP03, GFKS02a]

as discussed in Section 2.2.3 of Chapter 2. To the best of our knowledge none

8.3 A Statistical Model for Multi-Instance Objects 165

of these approaches handles unsupervised learning or clustering.

For clustering multi-instance objects, it is possible to use distance func-

tions for sets of objects like [EM97, RB01] (cf. Section 2.1.4 in Chapter 2

for details). Having such a distance measure, it is possible to cluster multi-

instance objects with k-medoid methods like PAM and CLARANS [NH94] or

employ density-based clustering approaches like DBSCAN [EKSX96]. Though

this method yields the possibility to partition multi-instance objects into

clusters, the clustering model consists of representative objects in the best

case. Another problem of this approach is that the selection of a meaning-

ful distance measure has an important impact of the resulting clustering.

For example, netflow-distance [RB01] demands that all instances within two

compared objects are somehow similar, whereas for the minimal Hausdorff

[WZ00] distance the indication of similarity is only dependent on the closest

pair.

In this chapter, we introduce an algorithm for clustering multi-instance

objects that optimizes probability distributions to describe the dataset. Part

of this work is based on expectation maximization (EM) clustering for ordi-

nary feature vectors using Gaussians. Details about this algorithm can be

found in Chapter 2.

8.3 A Statistical Model for Multi-Instance Ob-

jects

In this section, we will introduce our model for multi-instance clustering.

Therefore, we will first of all define the terms instance and multi-instance

(MI) object.

Definition 8.1 (instance and MI object)

Let F be a feature space. Then, i ∈ F is called an instance in F . A multi-

166 8 An EM-Approach for Clustering Multi-Instance Objects

instance (MI) object o in F is given by an arbitrary sized set of instances

o = i1, .., ik with ij ∈ F . To denote the unique MI object an instance i

belongs to, we will write MiObj(i).

To cluster multi-instance objects using an EM approach, we first of all need

a statistical process that models sets of multi-instance objects. Since multi-

instance objects consist of single instances in some feature space, we begin

with modeling the data distribution in the feature space of instances. There-

fore, we first of all define the instance set of a set of multi-instance objects:

Definition 8.2 (Instance Set)

Given a database DB of multi-instance Objects o = i1, . . . , ik, the correspond-

ing instance set IDB =
⋃

DB o is the union of all multi-instance objects.

To model the data distribution in the instance space, we assume a mixture

model of k independent statistical processes. For example, an instance set

consisting of feature vectors could be described by a mixture of Gaussians.

Definition 8.3 (Instance Model)

Let DB be a dataset consisting of multi-instance objects o and let IDB be

its instance set. Then, an instance model IM for DB is given by a mixture

model of k statistical processes that can be described by a prior probability

Pr[kj] for each component kj and the necessary parameters for the process

corresponding to kj, e.g. a mean vector µj and co-variance matrix Mj for

Gaussian processes.

After describing the instance set, we can now turn to the description of multi-

instance objects. Our solution is based on the idea of modeling a cluster of

multi-instance objects as a multinomial distribution over the components

of the mixture model of instances. For each instance and each concept, the

probability that the instance belongs to this concept is considered as result of

8.3 A Statistical Model for Multi-Instance Objects 167

one draw. If the number n of instances within an object o is considered to be

important as well, we can integrate this into our model as well by considering

some distribution over the number of draws, e.g. a binomial distribution. To

conclude, a mixture model of multi-instance clusters can be described by a

set of multinomial distributions over the components of a mixture model of

instances. A multi-instance object is thus derived in the following way:

1. Select a multi-instance cluster ci w.r.t. some prior distribution over the

set of all clusters C.

2. Derive the number of instances n within the multi-instance object w.r.t

some distribution depending on the chosen cluster ci.

3. Repeat n-times:

(a) Select some model component kj within the mixture model of

instances w.r.t. the multi-instance cluster specific distribution.

(b) Generate an instance, w.r.t. to the distribution corresponding to

component kj.

Formally, the underlying model for multi-instance datasets can be defined as

follows:

Definition 8.4 (Multi-Instance Model)

A multi-instance model M over the instance model IM is defined by a set

C of l processes over IDB. Each of these processes ci is described by a

prior probability Pr[ci], a distribution over the number of instances in the

bag Pr[Card(o) |ci] and an conditional probability describing the likelihood

that a multi-instance object o belonging to process ci contains an instance

belonging to the component kl ∈ IM . The probability of an object o in the

model M is calculated as following:

Pr[o] =
∑
ci∈C

Pr[ci] · Pr[Card(o)|ci] ·
∏
i∈o

∏
k∈MI

Pr[k|ci]
Pr[k|i]

168 8 An EM-Approach for Clustering Multi-Instance Objects

The conditional probability of process ci under the condition of a given multi-

instance object o can be calculated by:

Pr[ci|o] =
1

Pr[o]
· Pr[ci] · Pr[Card(o)|ci] ·

∏
i∈o

∏
k∈MI

Pr[k|ci]
Pr[k|i]

Let us note that the occurrence of an instance within the data object is

only dependent on the cluster of instances it is derived from. Thus, we do

not assume any dependencies between the instances of the same objects.

Another important characteristic of the model is that we assume the same

set of instance clusters for all multi-instance clusters. This assumption leads

to the following 3 step approach for multi-instance EM clustering.

8.4 EM-Clustering for Multi-Instance Objects

After introducing a general statistical process for multi-instance objects, we

will now introduce an EM algorithm that fits the distribution parameters to

a given set of multi-instance objects. Our method works in 3 steps:

1. Derive a Mixture Model for the Instance Set.

2. Calculate a start partitioning.

3. Use the new EM algorithm to optimize the start partitioning.

8.4.1 Generating a Mixture Model for the Instance Set

To find a mixture of the instance space, we can employ a standard EM ap-

proach as proposed in Chapter 2. For general feature vectors, we can describe

the instance set as a mixture of Gaussians. If the feature space is sparse us-

ing a mixture of multinomial processes usually provides better results. If the

number of clusters in the instance is already known, we can simply employ

8.4 EM-Clustering for Multi-Instance Objects 169

EM clustering. However, if we do not know how many clusters are hid-

den within the instance set, we need to employ a method for determining a

suitable number of processes like [Smy96].

8.4.2 Finding a Start Partitioning of Multi-Instance

Objects

After deriving a description of the instance space, we now determine a good

start partitioning for the final clustering step. A good start partitioning is

very important for finding a good cluster model. Since EM algorithms usually

do not achieve a global maximum likelihood, a suitable start partitioning has

an important impact on both, the likelihood of the cluster and the runtime

of the algorithm. The versions for EM in ordinary feature spaces often use

k-means clustering for finding a suitable start partitioning. However, since

we cluster sets of instances instead of single instances, we cannot use this

approach directly.

To overcome this problem, we proceed as follows. For each multi-instance

object we determine a so-called confidence summary vector in the following

way.

Definition 8.5 (Confidence Summary Vector)

Let IM be an instance model over database DB containing k processes and

let o be a multi-instance object. Then the confidence summary vector −→csv(o)

of o is a k dimensional vector that is calculated as follows:

csvj(o) =
∑
i∈o

Pr[kj] · Pr[i|kj]

After building the confidence summary vector for each object, we can now

employ k-means to cluster the multi-instance objects. Though the resulting

clustering might not be optimal, the objects within one cluster should yield

similar distributions over the components of the underlying instance model.

170 8 An EM-Approach for Clustering Multi-Instance Objects

8.4.3 EM for Clustering Multi-Instance Objects

In this final step, the start partitioning for the dataset is optimized using

the EM algorithm. We therefore describe a suitable expectation and maxi-

mization step and then employ an iterative method. The likelihood of the

complete model M can be calculated by adding up the log-likelihoods of the

occurrence of each data object in each clusters. Thus, our model is (locally)

optimal if we obtain a maximum for the the following log-likelihood term.

Definition 8.6 (Log-Likelihood for M)

E(M) =
∑
o∈DB

log
∑
ci∈M

Pr[ci|o]

To determine Pr[ci|o], we proceed as mentioned in definition 8.4. Thus, we

can easily calculate E(M) in the expectation step for a given set of dis-

tribution parameters and an instance model. To improve the distribution

parameters, we employ the following updates to the distribution parameters

in the maximization step:

Wci
= Pr[ci] =

1

Card(DB)

∑
o∈DB

Pr[ci|o]

where Wci
denotes the prior probability of a cluster of multi-instance objects.

To estimate the number of instances contained in an MI object belong-

ing to cluster ci, we can employ a binomial distribution determined by the

parameter lci
. The parameters are updated as follows:

lci
=

∑
o∈DB Pr[ci|o] · Card(o)

Card(DB)
· 1

MAXLENGTH

where MAXLENGTH is the maximum number of instances for any MI

object in the database.

Finally, to estimate the relative number of instances drawn from concept

kj for MI objects belonging to cluster ci, we derive the parameter updates in

8.5 Experimental Evaluation 171

Dataset 1

(DS1)

Dataset 2

(DS2)

Dataset 3

(DS3)

Name Brenda MUSK 1 MUSK 2

Number of MI-Objects 6082 92 102

Average Number of Instances

per MI-Object

1.977 5.2 64.7

Number of MI-Object classes 6 2 2

Table 8.1: Details of the test environments.

the following way:

Pkj ,ci
= Pr[kj|ci] =

∑
o∈DB (Pr[ci|o] ·

∑
u∈o Pr[u|kj])∑

o∈DB Pr[ci|o]

Using these update steps, the algorithm is terminated after the improve-

ment of E(M) is less than a given value σ. Since the last step of our algo-

rithm is a modification of EM clustering based on multinomial processes, our

algorithm always converges against a local maximum value for E(M).

8.5 Experimental Evaluation

All algorithms are implemented in Java 1.5. The experiments described below

are carried out on a work station that is equipped with two 1.8 GHz Opteron

processors and 8 GB main memory.

Our experiments were performed on 3 different real-world datasets. The

properties of each test bed are illustrated in Table 8.1. The Brenda dataset

contains of enzymes taken from the protein data bank (PDB) 1. Each enzyme

comprises several chains given by amino acid sequences. In order to derive

feature vectors from the amino acid sequences, we employed the approach

1http://www.rcsb.org/pdb/

172 8 An EM-Approach for Clustering Multi-Instance Objects

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Pr
ec

is
io

n

DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(a) Precision.

0.55

0.6

0.65

0.7

0.75

F-
M

ea
su

re

DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(b) F-Measure.

0.3

0.35

0.4

0.45

0.5

0.55

A
vg

.E
nt

ro
py

DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(c) Average entropy.

Figure 8.1: Effectiveness evaluation on DS2 and DS3 (no. of clusters is 2).

described in [WMSW01]. The basic idea is to use local (20 amino acids) and

global (6 exchange groups) characterization of amino acid sequences. In order

to construct a meaningful feature space, we formed all possible 1-grams for

each kind of characteristic. This approach provided us with 26 dimensional

histograms for each chain. To obtain the class labels for each enzyme we used

a mapping from PDB to the enzyme class numbers from the comprehensive

enzyme information system BRENDA 2.

MUSK 1 and MUSK 2 datasets come from UCI repository [NHBM98]

and describe a set of molecules. The MI-objects in MUSK 1 and MUSK 2

datasets are judged by human experts to be in musks or non-musks class.

The feature vectors of MUSK datasets have 166 numerical attributes that

describe these molecules depending on the exact shape or conformation of

the molecule.

In order to demonstrate that the proposed clustering approach for multi-

instance objects outperforms standard clustering algorithms working on a

suitable distance functions, we compared precision, F-Measure and average

entropy of the MI-EM with that of k-medoid clustering algorithm (PAM). To

enable cluster analysis of multi-instance objects by PAM, we used the Haus-

dorff distance (HD)[EM97], the minimum Hausdorff distance (mHD)[WZ00]

and the Sum of Minimum Distances (SMD)[EM97]. Due to the fact that

2http://www.brenda.uni-koeln.de/

8.5 Experimental Evaluation 173

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

DS1 DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(a) Precision.

0.35

0.45

0.55

0.65

0.75

0.85

F-
M

ea
su

re
DS1 DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(b) F-Measure.

0.08

0.1

0.12

0.14

0.16

0.18

Av
g.

E
nt

ro
py

DS1 DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(c) Average entropy.

Figure 8.2: Effectiveness evaluation on DS1, DS2 and DS3 where no. of

clusters is 6.

the dataset DS1 has 6 classes and the datasets DS2 and DS3 have 2 classes,

we investigated the effectiveness of the cluster analysis where the number of

clusters is equal to or slightly than the number of the desired classes. Thus,

we set in our experiments the number of clusters equal to 6 and 8 for DS1,

and equal to 2, 6 and 8 for the datasets DS2 and DS3. The results of our

comparison are illustrated in Figures 8.1,8.2 and 8.3.

In all our experiments, PAM working on distance functions suitable for

multi-instance objects achieved a significantly lower precision than MI-EM.

For example, the MI-EM algorithm reached a precision of 0.833 on DS1

and the number of clusters equal to 8 (cf. Figure 8.3(a)). In contrast to

the result of MI-EM, the precision calculated for clusterings found by all

competitors lies between 0.478 and 0.48. Furthermore, MI-EM obtained

in all experiments higher or comparable values of F-Measures. This fact

indicates that the cluster structure found by applying of the proposed EM-

based approach is more exact w.r.t. precision and recall than that found by

PAM with 3 different MI distance functions. For example, the F-Measure

calculated for MI-EM clustering of DS2 with 8 clusters is 0.63 whereas PAM

clustering with different MI distance functions shows values between 0.341

and 0.41 (cf. Figure 8.3(b)). Finally, the values of average entropy observed

by the MI-EM results are considerably lower than those of PAM on HD,

174 8 An EM-Approach for Clustering Multi-Instance Objects

0.45

0.55

0.65

0.75

0.85

0.95

P
re

ci
si

on

DS1 DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(a) Precision.

0.25

0.35

0.45

0.55

0.65

0.75

0.85

F-
M

ea
su

re

DS1 DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(b) F-Measure.

0.06

0.08

0.1

0.12

Av
g.

E
nt

ro
py

DS1 DS2 DS3

MI-EM PAM+HD
PAM+mHD PAM+SMD

(c) Average entropy.

Figure 8.3: Effectiveness evaluation on DS1, DS2 and DS3 where no. of

clusters is 8.

mHD and SMD. The lower values of average entropy imply a lower level of

impurity in the cluster structures detected by applying MI-EM.

To summarize, the values of the different quality measures observed on

real-world datasets when varying the number of clusters show that the pro-

posed EM-based approach for cluster analysis of MI-objects outperforms the

considered competitors w.r.t. effectiveness.

8.6 Conclusions

In this chapter, we described an approach for statistical clustering of multi-

instance objects. Our approach models instances as members of concepts

in some underlying feature space. Each concept is modeled by a statisti-

cal process in this feature space, e.g. a Gaussian. A multi-instance object

can now be considered as the result of selecting several times a concept and

generating an instance with the corresponding process. Clusters of multi-

instance objects can now be described as multinomial distributions over the

concepts. In other words, different clusters are described by having differ-

ent probabilities for the underlying concepts. An additional aspect is the

length of the MI object. To derive multi-instance clusters corresponding to

this model, we introduce a three step approach. In the first step we de-

8.6 Conclusions 175

rive a mixture model describing concepts in the instance space. The second

step finds a good initialization for the target distribution by subsuming each

multi-instance object by a so-called confidence summary vector (csv) and

afterwards clustering these csvs using the k-means method. In the final, step

we employ a final EM clustering step optimizing the distribution for each

cluster of multi-instance objects. To evaluate our method, we compared our

clustering approach to clustering multi-instance objects with the k-medoid

clustering algorithm PAM for 3 different similarity measures. The results

demonstrate that the found clustering model offers better cluster qualities

w.r.t. to the provided reference clusterings.

176 8 An EM-Approach for Clustering Multi-Instance Objects

Chapter 9

Conceptually Specified

Multi-Instance Clusters

Recently, more and more applications represent data objects as sets of feature

vectors or multi-instance objects as discussed in Chapter 1. In this chapter,

we propose a new method for clustering multi-instance objects, called COS-

MIC (COnceptually Specified Multi-Instance Clusters). We start with a

motivation of multi-instance clustering in Section 9.1. Afterwards, Section

9.2 surveys previous work in data mining with multi-instance objects. Fur-

thermore, we will provide a short introduction to OPTICS which is the foun-

dation of our method to derive concept hierarchies. Section 9.3 provides the

necessary formal framework for our approach to clustering multi-instance

objects. Then, Section 9.4 describes the complete COSMIC algorithm for

generating a concept lattice. Section 9.5 displays the results of our experi-

mental evaluation, and Section 9.6 concludes the chapter with a summary.

177

178 9 Conceptually Specified Multi-Instance Clusters

C
on
ce
pt
s

M
ul
ti-
In
st
an
ce

O
bj
ec
ts

Politics Weather

News Video Baseball Video

Sport

Figure 9.1: Example of a Multi-Instance object: a video clip as a set of

scene concepts.

9.1 Introduction

In advanced data mining applications, the complexity of the data objects is

increasing as rapidly as their plain number. Therefore, more and more data

mining applications employ sets of feature vectors or multi-instance objects

to represent a single data object. For example, a molecule can be described

by the set of all conformations or shapes it might adopt [DLLP97b]. Other

examples are websites where each site can be considered as a set of webpages

as described in [EKS02], and CAD-parts which are decomposed into several

spatial primitives or covers as in [BKK+03]. In this chapter, we will encounter

another application by decomposing a protein into a set of subunits, i.e. each

strand of amino acids that builds the protein is considered separately. One

final example for using sets of feature vectors is the clustering of video clips.

A video can be considered as a sequence of scenes. If the order of the scenes

is irrelevant, the video clip is represented by a set of scene descriptors. An

example for such a setting is the clustering of news clips taken from different

9.1 Introduction 179

tv-stations. Though the order of the news might be varying, all stations will

broadcast similar scenes of the current top stories (cf. Figure 9.1).

In general, a multi-instance object is represented by a set of object de-

scriptions of one and the same type, e.g. color histograms or text vectors.

We will call the elements of a multi-instance object instances. Each instance

can describe a different view of the complete object like in [DLLP97b] or a

different part of the complete object like in [BKK+03, EKS02].

The main direction for clustering multi-instance objects so far was the

development of distance measures for set-valued objects like [EM97, RB01].

Given a distance measure, standard clustering algorithms like DBSCAN

[EKSX96], OPTICS [ABKS99], or k-medoid clustering [HK06] are applica-

ble to cluster multi-instance objects. Though distance measures for multi-

instance objects yield a solution for the given problem, they also have serious

drawbacks. The selection of the right distance function has a great impact

on the success of clustering. Additionally, the resulting clusters are often

hard to interpret.

In this chapter, we propose COSMIC, a method for deriving (COncept-

ually Specified Multi-Instance Clusters). The idea of COSMIC is to derive

a so-called concept lattice as known from formal concept analyzes [GW99]

to describe the rich relationships between sets of feature vectors. Based on

the concept lattice we can derive flat as well as hierarchical clusterings.

In formal concept analysis, each object o can be described by a set of

nominal attributes Desc(o). A concept C is now defined by a set of objects

and a set of attributes Desc(C) if for each object o ∈ C, Desc(C) ⊆ Desc(o)

holds. In other words, a concept is the maximal set of objects that can be

described by Desc(C). Let us note that it is possible that the elements of

a concept C contain additional attributes and thus, concepts can overlap,

i.e. one object can be contained in multiple concepts. Additionally, concepts

can be specialized and generalized to sub- or super concepts by adding or

180 9 Conceptually Specified Multi-Instance Clusters

dropping attributes which decreases or increases the set of objects that are

covered by the concept. Therefore, the set of all concepts for a given set of

objects and attributes is organized in the so-called concept lattice.

Having a concept lattice instead of a plain clustering yields much more in-

formation about the contained patterns. Concepts can be interpreted easily

by the given concept description. Overlapping concepts naturally describe

the characteristics of sets because some multi-instance object o1 might be

similar to another multi-instance object o2 w.r.t. a certain subset of its in-

stances and also be similar to another multi-instance object o3 w.r.t. to an-

other subset. For example, when considering web sites as sets of web pages,

a site containing “disclaimer page”, “job vacancies”, “business reports”, and

“pharmacy products” could be assigned to a cluster of sites which is de-

scribed by “disclaimer pages”, “job vacancies”, and “business reports” in

one sense. Additionally, the same site should be assigned to a cluster of web

sites containing “job vacancy” and “pharmacy products” pages. A concept

lattice expresses these multiple relationships in a natural way.

To derive a concept lattice from a set of multi-instance objects, the key

issue is to describe each object by a set of attributes drawn from the cor-

responding instances. Thus, we have to find groups of instances having a

similar meaning. One obvious solution to this problem is to cluster the in-

stances. Each cluster of instances does now provide a so-called attribute and

an multi-instance object can be described by the set of clusters its instances

belong to. We will refer to the attributes describing clusters as concept at-

tributes (CA) to distinguish them from the numerical attributes spanning

the instance feature space. However, in order to subsume the instances of a

multi-instance object by a set of meaningful attributes, the employed clus-

tering algorithm has to cope with several demanding challenges.

The clustering algorithm should only group objects into a cluster that

are really similar. Otherwise, multi-instance objects might be described by

9.1 Introduction 181

so-called phantom attributes. A phantom attribute is caused by an instance

that is assigned to a cluster that does not really describe its content. As a

result the corresponding object description becomes misleading. Let us note

that this is especially a problem of partitioning clustering algorithms because

in this approach each instance has to be assigned to some cluster regardless

whether there are any similar instances in the dataset at all. Therefore, the

employed clustering algorithms should rather skip these instances or assign

a noise label instead of generating phantom attributes. Another problem of

many partitioning methods is that it is necessary to specify the number of

clusters to be found in the dataset. A too small number might lead to phan-

tom attributes because dissimilar instances have to be packed into the same

clusters. A too large number will lead to so-called duplicate attributes that

actually describe the same type of instance. Thus, very similar multi-instance

objects might not be recognized. An effect further escalating this problem is

that the question of disjunctive attributes or joined attributes also depends

on the level of abstraction. In other words, in some applications it would

make sense to separate the concepts “scientific job pages” and “administra-

tive job pages”. In other applications it would be more useful to consider

the more general attribute “job pages”. Another important challenge is to

prevent the clustering algorithms to derive useless clusters corresponding to

attributes that only describe a too small number of objects. However, this

can easily happen if each multi-instance object contains a large number of

very similar instances which are naturally grouped into the same cluster.

As a result, we might end up with attributes like “page that was found in

www.dbs.ifi.lmu.de”.

To cope with all these problems, COSMIC relies on the hierarchical

density-based notion of clustering which offers suitable solutions to the named

problems. Density-based clustering as proposed in [ABKS99, EKSX96] can

automatically detect the number of clusters in a given dataset and assigns a

“noise” label to instances that are not similar enough to a sufficiently large

182 9 Conceptually Specified Multi-Instance Clusters

subset of other instances. Thus, we prevent the generation of phantom and

duplicate attributes. However, since we additionally need to consider the

relationships between the derived attributes, we generate a hierarchical clus-

tering providing an attribute hierarchy. This way, similar attributes might

be subsumed into a more general attribute on a higher abstraction level.

To cope with the problem of meaningless attributes, COSMIC is based on

a modified version of reachability distance compared to general hierarchical

density-based clustering [ABKS99].

9.2 Related Work

Data mining in multi-instance data objects has so far been predominantly

studied w.r.t. classification. In [DLLP97b], Dietterich et al. defined the prob-

lem of multi-instance learning for drug prediction and provided a specialized

algorithm to solve this particular task (see Section 2.2.3 for details). In the

following years, new algorithms for this rather specialized task were intro-

duced (for a survey cf. [Zho04]). Since the methods for this approach are

limited to the case that there is only one single concept attribute (CA) and

relevant multi-instance objects carry at least one instance belonging to this

CA, [WFP03] introduced a more general method for handling multi-instance

objects. This model considers several CAs for each class and defines classes

by multiple CAs that must occur in a certain cardinality. However, all of

these approaches are supervised because they require sets of labeled MI ob-

jects.

Additionally, multi-instance objects were handled by complex distance

measures [EM97, RB01] or kernel functions [GFKS02a]. Employing these

similarity measures, it is possible to employ distance-based data mining ap-

proaches like k-NN classification, k-medoid Clustering [HK06] or OPTICS

[ABKS99], or kernel methods [GFKS02a]. However, the selection of a suitable

9.2 Related Work 183

similarity measure for a particular application is often quite difficult and the

proposed similarity measures for multi-instance objects often vary strongly

when measuring the similarity between multi-instance objects. Therefore, it

is often necessary to try out a large variety of parameters and distance mea-

sures. Another problem is the tangibility of the derived clusters. For complex

similarity measures and large MI objects containing hundreds of instances,

it is very difficult to understand why the multi-instance objects belonging to

the same cluster are considered to be similar. Finally, employing complex

distance measures often leads to efficiency problems. Since a considerable

part of the similarity measures for multi-instance objects is non-metric, em-

ploying index structures is not always possible. Additionally, useful filter

steps avoiding time consuming distance calculations as in [BKK+03] were

introduced for a minority of multi-instance distance measures only.

Clustering data objects based on a concept lattice was previously used

for other data types such as text data [SC99]. However, to the best of our

knowledge none of these methods deals with multi-instance objects and the

question of how to derive CAs from a set of multi-instance objects.

Our method adapts the OPTICS algorithm [ABKS99] to derive CAs. The

OPTICS algorithm derives a cluster hierarchy that is displayed within the

so-called reachability plot (see 2.2.1. To derive a cluster hierarchy, several

methods have been proposed [ABKS99, SQL+03, BKKP04] which extract

the hierarchy of all occurring clusters based on several input parameters. In

contrast to these methods, COSMIC does not employ any parameters to de-

cide whether or not a cluster should be extracted. Instead, the usefulness for

describing a further concept determines the existence of an instance cluster.

184 9 Conceptually Specified Multi-Instance Clusters

9.3 Preliminaries

In this section, we will formalize multi-instance (MI) objects and concept

lattices which are the result of COSMIC. As mentioned before, an MI object

is a set of object descriptions called instances. For example, a web site is an

MI object and its instances are the web pages within this site. Formally, we

can define an MI object as follows:

Definition 9.1 (Instance and MI object)

Let F be a feature space. Then, i ∈ F is called an instance in F . A multi-

instance (MI) object o is given by an arbitrary sized set of instances o =

{i1, . . . , ik} where ij ∈ F . To denote the unique MI object an instance i

belongs to, we will write MiObj(i).

To derive a concept lattice, we need to transform MI objects to objects

that are described by a set of nominal attributes. Thus, we employ clustering

to group several instances to so-called concept attributes:

Definition 9.2 (Concept Attribute (CA))

Let F be a feature space. A concept attribute (CA) c describes a set of

similar instances Ic ⊂ F . For any i ∈ Ic, we will denote ConAttr(i) = c.

Each CA c can now be considered as a nominal attribute describing each

MI object containing at least one element of Ic. As mentioned above, we

consider the CAs to be organized in a hierarchy. Thus, a CA might gener-

alize several more specialized CAs. Consider for example the CA “product

descriptions”. Subconcept Attributes (SubCAs) might be “descriptions of

hardware products” and “descriptions of software products”. A CA s is

called direct SubCA of c if there is no other SubCA t of c such that s is also

a SubCA of t. We formalize this idea in the relation SubCA:

9.3 Preliminaries 185

Definition 9.3 (SubConcept Attribute (SubCA))

Let s, c be two concept atttibutes in F where Is ⊆ F and Ic ⊆ F are the sets

of members of s and c, respectively. Then, s is called subconcept attribute

(SubCA) of c, denoted by SubConAttrc(s) if Is ⊂ Ic. Additionally, s is called

direct subconcept attribute of c iff

@r : SubConAttrc(r) ∧ SubConAttrr(s)

To define a hierarchy, we start with one root CA call containing all in-

stances in F . Then, all CAs except for the root CA are a SubCA of at least

one other CA. More formally:

Definition 9.4 (Concept Attribute Hierarchy)

Let H = {c1, ..., cn} be a set of concept attributes in F . H is called a concept

hierarchy if the following conditions hold:

(1) ∃call ∈ H : ∀i ∈ F : i ∈ Icall

(2) ∀ci ∈ H\call ∃cj ∈ H : SubConAttrcj
(ci)

Having derived a mapping of instances to CAs, we now will formalize the

resulting concept lattice as introduced in formal concept analysis. Therefore,

we will first of all introduce a formal context (similar to [GW99]) to specify

the complete set of objects, the describing attributes and which object is

described by which attribute:

Definition 9.5 (Formal Hierarchical Context)

Let DB be a set of objects and let H be a CA hierarchy. A formal hierarchi-

cal context is now given by the triple (O,H, I) where I is a binary relation

between O and H: I ⊆ (O ×H), and the following condition holds:

∀ci, cj ∈ H, ∀o ∈ DB :

SubConAttrcj
(ci) ∧ (o, ci) ∈ I ⇒ (o, cj) ∈ I.

186 9 Conceptually Specified Multi-Instance Clusters

Thus, the context defines which CAs are contained in which object. Fur-

thermore, the condition states that if an object is described by a CA ci, then

it must also be described by all of the ancestors of ci in the CA hierarchy.

To describe the output of COSMIC, we first of all need to specify a single

concept:

Definition 9.6 (Concept)

Let (DB, H, I) be a formal hierarchical context. An object set C ⊆ DB
together with a CA set Desc(C) ⊆ H is called concept if the following condi-

tions hold:

(1) C = {o ∈ DB|∀a ∈ H : (o, a) ∈ I}

(2) Desc(C) = {a ∈ H|∀o ∈ DB : (o, a) ∈ I}

We will call Desc(C) the concept description of C.

Since a concept that is not general enough is not useful for examining

patterns in a dataset, we will call the cardinality of a concept C the support

of C, denoted by support(C). For building a concept lattice, it is therefore

often sufficient to only consider concepts that have a support above a certain

minimum threshold MinSup.

In other words, a concept is the maximal subset of the objects which con-

tains elements of the concept description Desc(C). For example, a concept of

websites could be described by the concept attributes “employment”, “finan-

cial reports”, and “software development”. Each website belonging to the

concept must contain at least one web page belonging to each of these CAs.

At the same time there is no website in the given context being described

by these concept attributes that is not part of the concept. To describe the

relationship between two concepts, we will now specify the subconcept:

Definition 9.7 (Subconcept)

Let C1, C2 be two concepts in DB w.r.t. to the context (DB, H, I). Then C1

9.3 Preliminaries 187

is called subconcept of C2, denoted by SubConceptC2
(C1) iff

C1 ⊂ C2 ⇔ Desc(C1) ⊃ Desc(C2)

In other words, a subconcept C2 of concept C1 contains only a subset of

the objects in C1. Additionally, the concept description must contain at least

one additional attribute that is not contained in the description of the father

concept. For example, a concept of web sites which is described by the CAs

“faculty pages” and “lectures” is a generalization of the subconcept being

described by “faculty pages”, “lectures” and the additional CA “computer

science lectures”.

Finally, we can specify the concept lattice for a given context:

Definition 9.8 (Concept Lattice)

Let (DB, H,C) be a formal context. The set of all concepts that can be found

in the context (DB, H,C) together with the subconcept relation between these

concepts is called concept lattice.

The resulting concept lattice now describes an overlapping hierarchical

grouping of an MI dataset that can be explored directly. Additionally, we

can use the concept lattice to derive a flat disjunctive clustering by assigning

each MI object to the most specialized concept it belongs to.

The goal of COSMIC is to derive a concept lattice over a dataset of MI

objects containing all concepts having at least a support of MinSup. The

CAs this lattice is based on are organized in a hierarchy and it is guaranteed

that each CA in this hierarchy is employed to describe at least one cluster.

While processing, COSMIC avoids considering useless candidates for CAs

whenever possible. Hence, COSMIC is rather efficient.

188 9 Conceptually Specified Multi-Instance Clusters

9.4 COSMIC

In this section, we will introduce COSMIC, our new approach to derive con-

cept lattices from MI objects. Therefore, we will start by giving a general

description of our algorithm. Subsequently, we will describe the two main

steps of our method in more detail.

The input of COSMIC is a set of MI objects over an arbitrary feature

space F . Additionally, we need a distance measure dist : F × F → R+ for

comparing the instances. The result of COSMIC is a concept lattice which

is defined on the basis of a CA hierarchy. COSMIC proceeds in two steps:

1. The first step determines a cluster order representing a cluster hierarchy

containing all potential CAs.

2. The second step derives a concept lattice and a hierarchy of CAs that

are used to describe these clusters.

The first step is based on the density-based notion of clustering and, thus,

needs the parameters which are specific for this approach, i.e. MinPts and

ε. In the second step, we only need to specify the minimum support of the

concepts called MinSup.

9.4.1 Deriving a Concept Hierarchy

The first step of COSMIC aims at the construction of an expressive clus-

ter hierarchy of instances which provides candidates for CAs. The clusters

are only candidates since we will only consider a cluster to be a CA if it is

contained in the description of at least one concept. Our approach is based

on the density-based hierarchical clustering algorithm OPTICS [ABKS99].

Though OPTICS derives rather a reachibility plot than a real cluster hierar-

chy, it yields several advantages. The algorithm is very robust w.r.t. its two

9.4 COSMIC 189

parameters ε and MinPts. Specifying the ε-parameter in OPTICS is more or

less only necessary when employing index structures for efficiently processing

ε-range queries. If no index structure is applicable, the ε-parameter can al-

ways be set to infinity to guarantee that all clusters for the given MinPts are

found. Thus, specifying ε is rather a question of performance tuning than

a question of clustering quality. The result of OPTICS is mostly dependent

on the MinPts parameter which controls how many other instances have to

be found in a local neighborhood to indicate a dense area in the dataset.

The value of MinPts controls the smoothness of the resulting reachability. If

MinPts is too small, even small variations in local density will cause the exis-

tence of new clusters. Though OPTICS provides a meaningful description of

the cluster structure in the instance space, the clusters derived by OPTICS

are often not suitable for describing a CA hierarchy.

The reason for this problem is that OPTICS does not distinguish between

instances belonging to the same MI object and instances that were taken from

different MI objects. In the following, we will motivate the problem with an

example, we encountered during our experiments. When clustering the pages

of a website dataset using OPTICS, we obtained several clusters. However,

a closer investigation of the generated clusters indicated that the web pages

within one cluster often belonged to a single website. Similar observations

were made on datasets describing molecules as sets of their conformations.

Obviously the similarity between the instances of the same MI object was

considerable higher than the similarity to the instances belonging to any

other MI object. This is a problem because a CA describing a single MI

object is useless to describe an MI cluster, i.e. a group of MI objects. For

example, the candidate CA “page of www.lmu.de” is unlikely to describe a

web page in any other website than “www.lmu.de”. Besides the problem

that these clusters are useless for describing concepts, allowing this type of

clusters often prevents the detection of useful clusters which are capable to

describe similar groups of instances taken from various MI objects.

190 9 Conceptually Specified Multi-Instance Clusters

A solution to this problem needs to make sure that each cluster contains

MinSup instances belonging to at least MinSup different MI objects. Thus,

the cluster order is guaranteed to exclusively contain clusters that are at

least potentially useful CAs describing at least one concept with the minimum

support MinSup. To integrate this requirement into density-based clustering,

we redefine the core-distance of OPTICS into the concept core-distance:

Definition 9.9 (Concept core-distance)

Let MinPts ∈ N, ε ∈ R+ and let DB be a set of MI objects and I =⋃
o∈DB o. The MinPts-nearest MI neighbors of an instance i are the smallest

set NMI

MinPts(i) ⊆ I that contains (at least) MinPts instances for which the

following conditions hold:

(1) ∀p ∈ NMI

MinPts(i),∀q ∈ DB \NMI

MinPts(i) :

dist(p, i) < dist(q, i)

(2) |{MiObj(x)|x ∈ NMI

MinPts(o)}| ≥ MinPts

Then, distMinPts(i) = max {dist(i, q) | q ∈ NMI

MinPts(i)}, and the concept

core-distance of instance i, denoted by

ConceptCoreDistεMinPts(i), is defined as follows:

ConceptCoreDistεMinPts(i) =

{
distMinPts(i) : distMinPts(i) ≤ ε

∞ : distMinPts(i) > ε
.

The definition of the concept core-distance guarantees that the dense

areas captured in the reachability plot are based on at least MinPts different

MI objects. To derive an instance plot based on the concept core-distance,

we additionally need to adjust the definition of the reachability distance to

the concept reachability distance.

Definition 9.10 (Concept reachability distance)

Let MinPts ∈ N, ε ∈ R+. The concept reachability distance of an instance i

9.4 COSMIC 191

COSMIC
employment pages

OPTICS

Figure 9.2: Comparison of a reachability plot created by COSMIC (upper

plot) and OPTICS (lower plot) on a website dataset.

to another instance j w.r.t. ε and MinPts, denoted by

ConceptReachDistεMinPts(i, j), is defined by

ConceptReachDistεMinPts(i, j) =

max{ConceptCoreDistεMinPts(i), dist(i, j)}

Let us note that it is still possible to reach all other instances, even

those from the same MI object. However, the reachability distance is at

least the concept core-distance of the first instance in the predicate. The

rest of the algorithm proceeds as described in [ABKS99]. To conclude, the

clusters contained in the reachability plot of COSMIC generalize instances

from at least MinPts MI objects and are thus suitable to describe clusters

192 9 Conceptually Specified Multi-Instance Clusters

hot spot 1

hot spot 2

A

Reach. plot and hot spots CA Hierarchy Concept Lattice

B C

D E

A

AA
B C AB AC

ABC

A

A

B C
D E

A
AB AC

ABC ACEACD

ABCEABCD
ABCDE

ACDE

Step 1

Step 2

Step 3

Figure 9.3: Example of derived CA hierarchy and concept lattice. The left

column displays the reachability plot, the middle column the CA hierarchy

and right column the maximum concept lattice that could occur.

that need to contain at least MinSup ≤ MinPts MI objects. Let us note that

in case MinSup > MinPts there might be concepts that cannot be used to

describe an MI cluster. Figure 9.2 compares the reachability plot of COSMIC

to the plot generated by ordinary OPTICS on a dataset of webpages taken

from 46 sites. In the upper plot generated by COSMIC, it can be seen that

pages concerning “employment” still cluster well even though they belong to

various websites. In the lower plot generated by OPTICS the same pages

do not cluster at all because the similarity of pages belonging to the same

website prevents the detection of this descriptive concept.

The resulting cluster order implies a hierarchical clustering of instances.

However, not all of the clusters might be useful for describing a concept and

are thus suitable CAs. Therefore, it is not necessary for COSMIC to derive

the complete cluster hierarchy of instances in order to find all potential CAs.

Instead, COSMIC collects so-called hot spots while generating the plot itself.

The hot spots mark positions in the plot where a more general instance

cluster can be separated into two more specialized clusters. Technically, a

hot spot is a position in the reachability plot, where the reachability distance

9.4 COSMIC 193

is smaller on the right side and is smaller or equal on the left side. Thus, a

hot spot corresponds to a peak or the rightmost position of a plateau in the

reachability plot. We will now specify a hot spot more formally:

Definition 9.11 (Hot Spot)

Let reach(i) denote the reachability distance at the ith position of a given

reachability plot. Then, i is the position of a hot spot if both of the following

conditions hold:

(1) reach(i) > reach(i + 1)

(2) ∃l ∈ N : reach(i− l) < reach(i)

∧∀k : (i− l) < k < i : reach(i) = reach(k)

Two examples of hot spots are illustrated in Figure 9.3. To derive all hot

spots from a reachability plot, it is not necessary to perform an additional

scan of the reachability plot. Instead, it is possible to collect all necessary hot

spots while generating the reachability plot by monitoring the local minima

and maxima which were encountered so far. Figure 9.4 explains the collection

of hot spots in more detail.

To subsume, the result of the first step of COSMIC is a reachability plot

that guarantees that the induced clusters provide concepts which are suitable

to describe MI clusters. Additionally, a set of so-called hot spots within the

reachability plot is derived indicating the splitting points of the clusters in

the plot.

9.4.2 Deriving Attributes and Concepts

Having analyzed the general patterns in the set of all instances, the second

step of COSMIC generates all concepts that contain at least MinSup MI

objects. MinSup is the only parameter that has to be specified for the actual

194 9 Conceptually Specified Multi-Instance Clusters

ConceptReachPlot(MIObject[] DB, real ε, integer MinPts)

ConceptReachabilityPlot plot;

I ←
S

o∈DB o;

plot.prevDist ←∞;

plot.prevPos ← 0;

plot.isAscending ← FALSE;

plot ← Cluster I using ConceptCoreDist,

ConceptReachDist and ConceptReachabilityPlot.add;

sort hot spots in plot descending w.r.t. ConceptReachDist;

RETURN plot;

ConceptReachabilityPlot.add (Instance i)

add i to plot;

IF prevDist > i.ConceptReachDist DO

IF isAscending DO

add new hotSpot with

ConceptReachDist ← prevDist;

position ← prevPos;

END IF

isAscending ← FALSE;

prevDist ← i.ConceptReachDist;

prevPos ← current length of plot;

ELSE IF prevDist < i.ConceptReachDist DO

isAscending ← TRUE;

prevDist ← i.ConceptReachDist;

prevPos ← current length of plot;

END IF

Figure 9.4: Pseudocode: collection of hot spots.

extraction of MI clusters. Let us note that MinSup = 1 allows COSMIC

to derive any concept that can be found in the dataset w.r.t. to the given

reachability plot. However, since most of the concepts will be rather specific

to a single MI object, the resulting concept lattice will be very complex

containing a large variety on very specific concepts that are not interesting

from the data mining point of view.

The input for the second part of COSMIC is the reachability plot derived

in the first step and the hot spots collected within this plot. The general idea

of this algorithm is to employ a top-down sweep line algorithm to the reach-

ability plot which simultaneously extracts CAs and concepts. The algorithm

starts with a trivial set of one CA, namely call, and a trivial concept which

corresponds to the complete dataset DB and is described by {call}. Before

starting the sweep line algorithm, we first of all sort the hot spots descending

9.4 COSMIC 195

w.r.t. their reachability distance in the plot. The sweep line stops at each

hot spot in this generated order and determines the CA the hot spot is con-

tained in. In the following, we will refer to this CA as the split CA. If the

split CA is not used for describing any concept, we already can examine the

next hot spot because there cannot be any concept being described by any

SubCA of the split CA. This observation can be formalized in the following

monotonicity criterion:

Lemma 9.1 (monotonicity criterion)

Let C = {c1, . . . , cm} be a set of CAs over the feature space F and M =

{M1, . . . ,Ml} be a set of concepts which are described by C. Furthermore, let

cg ∈ C be some CA and let Mg ∈ M be some concept with cg ∈ Desc(Mg).

Then for any subconcept Ms that can be described by

Desc(Mg) \ cg

⋃
SubConAttr(cg)

the following rule holds:

|MG| ≤ k ⇒ |Ms| ≤ k.

Proof.

Desc(Ms) = Desc(Mg) \ cg

⋃
SubConAttr(cg)

⇒ Ms ⊆ Mg

⇒ |Mg| ≥ |Ms|

2

If the split CA is an element of any concept description, the algorithm

determines the expansion of the new SubCAs. Therefore, the plot is traversed

in both directions beginning with the hot spot and ending with a position for

which the reachability distance is again at least as large as at the hot spot.

Let us note that it might be necessary to cross some plateau, i.e. an area of

196 9 Conceptually Specified Multi-Instance Clusters

deriveConceptLattice(ReachabilityPlot plot, integer MinSup)

init ConceptLattice conceptLattice;

init CAHierarchy h CA;

h CA.rootCA ← {i|i ∈ plot}
IF |{MiObj(i)|i ∈ h CA.rootCA }| > MinSup THEN

conceptLattice.rootConcept ← new Concept({h CA.rootAttribute });
FOR EACH hotSpot FROM plot DO

c ← leaf node in h CA containing hotSpot;

IF ∃concept ∈ conceptLattice: c ∈ ClustDesc(MICluster) THEN

(c1,c2) ← deriveSubcluster(c, hotSpot);

c.addSubConcept(c1,c2);

FOR EACH concept B with c ∈ ClustDesc(B) DO

m(c1)← {O ∈ B|∃i ∈ O : i ∈ c1};
m(c2)← {O ∈ B|∃j ∈ O : j ∈ c2};
m(c1c2)← {O ∈ B|∃i, j ∈ O : i ∈ c1 ∧ j ∈ c2};
IF (card(m(c1)) > MinSup) THEN

concept sub1 = new Concept(m(c1),B.desc.add(c1));

B.addSubConcept(sub1);

ENDIF

IF(card(m(c2)) > MinSup) THEN

concept sub2 = new Concept(m(c2),B.desc.add(c2));

B.addSubConcept(sub2);

ENDIF

IF(card(m(c1c2) > MinSup)

concept sub3 = new Concept(m(c1c2),B.desc.add(c1, c2));

sub1.addSubConcept(sub3);

sub2.addSubConcept(sub3);

ENDIF

END FOR

END IF

END FOR

END IF

RETURN conceptLattice and h CA;

Figure 9.5: Pseudocode: concept lattice.

the plot having the same reachability distance, before finding the indicated

cluster. The CAs are now stored in the CA hierarchy below the split CA.

Since it is possible to split a CA which is an inner node of the CA hierarchy,

the degree of the CA hierarchy is arbitrary.

After determining the SubCAs of the split CA, COSMIC has to check

if it is possible to extend any concept that is described by the split CA.

Thus, all concepts being described by the split CA are checked if they can be

specialized into subconcepts that can be described by any of the new SubCAs

or the combination of both. If any of the resulting cluster descriptions denotes

9.4 COSMIC 197

a cluster having more than MinSup elements, the concept lattice is extended.

In the first two cases, the new subconcept can be described by one of the

SubCAs and the new concepts are direct subconcepts of the concept that is

currently examined. In the third case, the existence of a concept containing

both SubCAs implies that both previous cases form also a subconcept because

the new concept contains the intersection of the subconcepts generated in

the previous cases. Thus, if the concept being described by both SubCAs

has more than MinSup objects, then the concepts containing only one of

the SubCAs must also have at least MinSup members. Let us note that

determining the cardinality of the subconcepts can be done quite efficiently.

For every element of a concept that might be split, we simply have to check if

it has at least one instance in any of the new subconcepts and then combine

the results. After a concept is processed that contains the split CA in its

description, additional links have to be added to the concept lattice between

each pair of newly constructed concepts for which there was a subconcept

relation between their father concepts.

The algorithm terminates when there are no more hot spots that could

be processed. Figure 9.3 illustrates the process of CA extraction and concept

expansion on a simple example having a plot based on two hot spots. The

left column displays hot spots and corresponding concept attributes in the

reachability plot, the middle column displays the CA hierarchy that can

be derived from this plot. The right column contains all possible concept

descriptions that can be derived from the CA hierarchy.

Let us note that in an ordinary task it is very unlikely that there exists

a concept corresponding to any possible combination of CAs. Thus, a real

concept lattice is usually smaller than that displayed in the right column of

figure 9.3.

Figure 9.5 summarizes the second step of COSMIC in pseudocode nota-

tion.

198 9 Conceptually Specified Multi-Instance Clusters

7

6

5

4

1

3

2

0

(a) data space

0

2 3

5

6

4

1

7

(b) CA Hierarchy

0

0,1 0,2

0,1,2 0,1,4 0,1,5

0,1,5,6,7

0,1,5,7

0,1,2,5,7

0,1,2,5,6,7

0,3

0,1,3 0,2,3

0,1,2,4 0,1,2,5

(c) Concept Lattice

Figure 9.6: COSMIC on artificial data.

9.5 Experimental Evaluation

In this section, we present the results of our experimental evaluation w.r.t. ef-

fectiveness, efficiency and parameter insensitivity. All experiments described

below were carried out on a workstation equipped with 2 Opteron 1.8 GHz

processors and 8 GB memory. The compared algorithms are implemented in

Java 1.5.

9.5.1 Experiments on Synthetic Datasets

To illustrate the capability of COSMIC to identify a specific concept lattice,

we generated an artificial 2D dataset of 100 MI objects. Each instance be-

longing to some MI object belongs to 1 of 5 CAs, or noise, respectively. To

generate MI objects, we assumed 3 basis types, each specified by a subset

of the CAs. Furthermore, we introduced noise as an additional CA possibly

occuring in all of the basis types. An MI object belonging to one of the types

is built by selecting ten times a random CA describing the type. To generate

an instance, we used a fixed Gaussian for each CA. The Gaussian modeling

noise exhibits a relatively large variance. Figure 9.6 displays the results of

COSMIC with MinPts = 20 and MinSup = 10. The left column depicts

the instances in the 2D dataset. The middle column shows the correspond-

9.5 Experimental Evaluation 199

Table 9.1: Description of the test datasets.

Dataset

DS 1

Dataset

DS 2

Dataset

DS 3

Dataset

DS 4

Dataset

DS 5

Name MUSK 1 MUSK 2 Dobson

& Doig

Brenda Web

No. MI-Obj. 92 102 969 10,254 46

Avg. No. of Inst.

per MI-Obj.

5.2 64.7 2.4 1.977 7.72

No. of Classes 2 2 7 115 4

ing CA hierarchy containing the 5 clusters as leaf concept attributes. The

right column illustrates the concept lattice derived by COSMIC. The grey

nodes are the concepts which are the most specialized for some MI object.

The dataset was generated employing the following basis types (2, 3), (2, 4)

and (2, 6, 7). In our concept lattice, these concepts were found as (0, 2, 3),

(0, 1, 2, 4) and (0, 1, 2, 5, 6, 7) w.r.t. to the given CA hierarchy. Additionally,

some of the objects were assigned to the more general concepts (0, 1, 4) and

(0, 1, 5, 6, 7). Since not all MI objects must contain a representative instance

for each CA describing its basis type, these MI object could not be assigned

to the concept corresponding to their basis type. However, the MI objects

were still assigned to generalizations of these concepts. To conclude, COS-

MIC derived all valid concepts that could be found in the given dataset. Let

us note that the concept lattice is complete though not all generalizations of

any concept can be found in it. For example, there is no concept (0, 1, 2, 5, 6)

because the MI objects belonging to this concept are exactly the same as

for the concept (0, 1, 2, 5, 6, 7). Therefore, (0, 1, 2, 5, 6) is technically not a

concept w.r.t. Definition 9.6. This is indicated in the lattice by an direct

edge between the concept (0, 1, 2, 5) and (0, 1, 2, 5, 6, 7).

200 9 Conceptually Specified Multi-Instance Clusters

9.5.2 Experiments on Real-World Datasets

Datasets. Table 9.1 provides a summary of the 5 real-world datasets used

in our evaluation. The MUSK 1 and MUSK 2 datasets were taken from the

UCI repository [NHBM98] and describe a set of molecules. The MI objects

in MUSK 1 (DS 1) and MUSK 2 (DS 2) are labeled by human experts. The

relevant class represents all molecules having a musky smell. The feature

vectors of the MUSK datasets have 166 numerical attributes describing the

molecules w.r.t. their exact shapes and their spatial conformations. Let us

note that this is the classic benchmark dataset for multi-instance learning as

proposed in [DLLP97b]. The Dobson&Doig (DS 3) and BRENDA (DS 4)

datasets consist of high-resolution data of enzymes taken from the protein

data bank (PDB)1. Each enzyme comprises several chains given by amino

acid sequences. In order to derive feature vectors for these instances, we de-

rived a histogram over the occurrences of the 20 amino acids. Additionally,

we aggregated the amino acids to 6 different exchange groups, considering

alltogether 26 dimensions. The class labels of the Dobson&Doig (DS 3)

dataset were obtained as described in [DD05]. The class labels for the en-

zymes in DS 4 correspond to the level three of the enzyme class numbers of

the comprehensive enzyme information system BRENDA2. The last dataset

(DS 5) contains 355 webpages taken from WebKB3. The webpages belong

to 46 websites corresponding to 4 classes in the health care sector. We used

8,000 dimensional feature vectors reflecting the occurrence of certain words

in webpages.

Effectivity. In order to demonstrate the advantages of COSMIC ana-

lyzing MI datasets in an unsupervized way, we compared COSMIC to densi-

ty-based and k-medoid clustering algorithms working on set-valued distance

functions. Therefore, we compared the effectiveness and the efficiency of

1http://www.rcsb.org/pdb/
2http://www.brenda.uni-koeln.de/
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

http://www.rcsb.org/pdb/
http://www.brenda.uni-koeln.de/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

9.5 Experimental Evaluation 201

COSMIC with that of PAM and OPTICS. To enable PAM and OPTICS to

compare MI objects, we used the Hausdorff distance (HD) [EM97], the mini-

mum Hausdorff distance (mHD) [WZ00] and the Sum of Minimum Distances

(SMD) [EM97].

COSMIC provides us with a concept lattice that cannot be directly com-

pared to the flat class labels in our test datasets. In order to find a unique

mapping of MI objects to one dedicated cluster, we determine the most spe-

cialized concept containing the MI object. The most specialized concept is

always the concept having the most CAs in its description. If this method

does not provide a unique mapping, we additionally weight each CA with the

inverse number of instances supporting the CA and calculate the sum over

all CAs in the concept description. Thus, a description of very specialized

CAs is favored. As a result, each MI object is labeled with a single concept

and the set of all used concepts provides a flat clustering of MI objects. To

assess the quality of these clusters, we determined the majority class in each

cluster w.r.t. to the provided class labels and calculated the relative number

of objects belonging to the majority class, i.e. the precision. The precision

now indicates whether the objects in the cluster are indeed similar or not.

To combine the precision over each cluster, we computed the weighted sum

over all clusters using the size of each cluster as its weight.

OPTICS provides us with a reachability plot w.r.t. the mentioned dis-

tance functions. Afterwards, we calculated the cluster hierarchy by applying

a cluster extraction method that is based on hot spots. On the resulting clus-

tering, we mapped each object to its most specialized cluster and summed

up the precision of the most special cluster an MI object was placed in. For

the clustering computed by PAM, the precision was determined directly. We

compared all results of the compared clustering approaches w.r.t. an equal

number of clusters. On the average, the derived number of clusters was about

four times the number of classes. Since the classes are usually rather complex

and do not really indicate clusters, we argue that it is feasible to allow one

202 9 Conceptually Specified Multi-Instance Clusters

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

Pr
ec

is
io

n

DS 1 DS 2 DS 3 DS 4 DS 5

COSMIC SMD+OPTICS
mHD+OPTICS HD+OPTICS
SMD+PAM HD+PAM
mHD+PAM

Figure 9.7: Average Cluster Precision.

class to be represented by more than one cluster. However, in some cases

PAM generated empty clusters, i.e. PAM found less clusters than indicated

by the parametrization. Furthermore, in some cases OPTICS did not derive

an adequate number of clusters regardless of any parameter setting. In these

cases, we compared the results of COSMIC to the best results of PAM and

OPTICS, respectively.

The results are illustrated in Figure 9.7. For all datasets, COSMIC

achieved a higher precision than the other methods. This suggests that

the MI clusters derived from the concept lattice are more precise than using

established set-valued distance functions. For example, for DS 1 COSMIC

achieved a precision of 0.858, whereas the best result of the remaining meth-

ods was 0.772. The second best clustering was calculated by OPTICS using

Hausdorff distance.

To conclude, COSMIC showed a superior precision compared to its com-

parison partners.

To illustrate the understandability of the learned cluster descriptions,

we will describe some concepts found in the concept lattice of the website

dataset DS 5. The cluster hierarchy displayed several leaf concepts that

9.5 Experimental Evaluation 203

1.0E+02

1.0E+04

1.0E+06

1.0E+08
El

ap
se

d
Ti

m
e,

 m
s

DS 1 DS 2 DS 3 DS 4 DS 5

COSMIC SMD+OPTICS
mHD+OPTICS HD+OPTICS
SMD+PAM HD+PAM
mHD+PAM

Figure 9.8: Complete Runtime of COSMIC and its comparison Partners.

1

10

100

1000

10000

100000

1000000

10000000

DS 1 DS 2 DS 3 DS 4 DS 5

COSMIC Step1

COSMIC Step2

Figure 9.9: Runtime comparison between both steps of COSMIC.

were easy to understand. Among them were the following concepts: Menu

Pages, Contact Pages, Employment Pages, Quarter Results, Disclaimers and

Company Descriptions.

We identified concepts of websites that were described by Employment

Pages, Company Descriptions and Contact Pages. The member websites of

this concept represent companies from the biotech area that were trying to

recruit new employees. Another concept corresponding to companies in the

major drug industry was described by the concepts: Menu Pages, Contact

Pages and Disclaimers.

204 9 Conceptually Specified Multi-Instance Clusters

Efficiency. To measure the efficiency of COSMIC and its competitors,

we compared the elapsed runtime. For COSMIC, we consider the time spent

for deriving the reachability plot, the CA hierarchy, and the concept lattice.

For OPTICS, the runtime consists of the time for deriving the reachability

plot and the cluster hierarchy. The runtime of PAM can be measured di-

rectly. The results are depicted in Figure 9.8. COSMIC showed a runtime

behavior which is comparable to the best of the remaining methods. For

example, on DS 4, the largest of the used datasets, COSMIC needed 1714

seconds, whereas OPTICS with minimum Hausdorff distance needed 1724

seconds, OPTICS with SMD ran in 2124 seconds, and OPTICS with Haus-

dorff distance ran in 2324 seconds. Let us note that the use of CLARANS

[NH94] would have been more efficient, but less effective than PAM. However,

since PAM already shows inferior effectiveness (cf. Figure 9.7) compared to

COSMIC, using CLARANS instead of PAM seemed inappropriate.

Another interesting result can be observed when comparing the runtimes

of the two steps of COSMIC. As indicated in Figure 9.9, the time that was

spent on deriving the reachability plot from the set of all instances took on

the average about two orders of magnitude more time than the second step

deriving the concept lattice from the plot. Let us note that we had to use

a logarithmic scale to plot the bar diagram because of the huge differences

between the values. This is an important observation because the worst case

complexity of the second step is exponential in the number of derived CAs

while the complexity of the first step is only quadratic w.r.t. to the number of

instances in all MI objects. However, in our experiments it turned out that

the number of CAs that can be used to describe a concept is rather low. Thus,

deriving the concept lattice required only an disappearingly small fraction

of the complete runtime in all of the experiments we performed. There-

fore, COSMIC displayes a runtime behavior that is comparable to running

OPTICS on the set of all instances.

Insensitivity to parameter setting. We analyzed the behavior of

9.6 Conclusions 205

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 7 9 11 13 15

Pr
ec

is
io

n

DS 1 DS 2
DS 3 DS 4
DS 5

Figure 9.10: Insensitivity w.r.t. MinPts.

COSMIC w.r.t. different parameter settings. As mentioned above, the pa-

rameter ε is only influencing the efficiency if an index structure is available

for managing the data. Thus, we generally used ε = ∞. Therefore, we

performed several runs of COSMIC on our test bed with varying parameters

MinPts and MinSup, respectively. The experimental results are illustrated in

Figure 9.10 and Figure 9.11. The precision of COSMIC on all datasets stays

relatively stable with varying MinPts and MinSup. The variation of precision

is strongest for the DS 1 ranging from 0.66 to 0.85 for varying MinPts, and

ranging from 0.68 to 0.83 for varying MinSup. This effect can be explained by

the fact that the difference of 5 in the parameter MinPts or MinSup, respec-

tively, corresponds to approximately 5.5 percent of the dataset containing

only 92 MI objects. As a result it is not necessary to spend a large amount

of time optimizing the parameter settings.

9.6 Conclusions

In this chapter, COSMIC was proposed, a method for deriving concept lat-

tices from MI datasets. An MI object is specified by a set of feature repre-

sentations that belong to one and the same data space. COSMIC describes

206 9 Conceptually Specified Multi-Instance Clusters

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 7 9 11 13 15

Pr
ec

is
io

n

DS 1 DS 2
DS 3 DS 4
DS 5

Figure 9.11: Insensitivity w.r.t. MinSup.

concepts of MI objects by sets of so-called cluster attributes (CAs). A CA

is a common pattern in the data space of instances that might be used to

characterize at least MinPts MI objects. To use CAs on different abstraction

levels and thus, to be less dependent on the parameter setting, COSMIC em-

ploys a hierarchy of CAs. The CA hierarchy is calculated employing density-

based hierarchical clustering while considering that a CA has to describe

instances from at least MinPts MI objects. The second step of COSMIC

extracts a concept lattice along with the CA hierarchy used for the concept

descriptions. In our experimental evaluation, we compare COSMIC to two

distance-based approaches for clustering MI data on 5 real-world datasets.

The results demonstrate that COSMIC generates more precise clusterings

w.r.t. a reference class set. Additionally, we show that COSMIC scales well

to even larger datasets and is very insensitive to the choice of its two main

parameters MinPts and MinSup.

Chapter 10

Density-based Clustering of

Multi-Represented Objects

One of the challenging properties of advanced database systems is the fact

that objects are usually described by multiple representations. Thus, the

idea of clustering multi-represented objects is getting increasing attention

from the research community. In this chapter, we propose a density-based

solution to the subspace clustering problem. First, we motivate the proposed

techniques in Section 10.1, Next, we review and discuss recent methods and

related work in Section 10.2. Section 10.3 formalizes the problem and intro-

duces a multi-represented version of DBSCAN using an intersection and an

union paradigm for the combination of multiple representations. In Section

10.4, we start with a theoretical discussion of the semantics problem leading

to the definition of combination trees for multiple semantics. Section 10.5

describes the multi-represented version of OPTICS which is capable of deriv-

ing a cluster hierarchy for any given combination tree containing intersection

and union operators. In our experimental evaluation in Section 10.6.2, it is

shown that the cluster quality can be improved using the proposed methods.

Finally, we conclude the chapter in Section 10.7 with a short summary.

207

208 10 Density-based Clustering of Multi-Represented Objects

10.1 Introduction

In recent years, the research community spent a lot of attention to clustering

resulting in a large variety of different clustering algorithms [HK06]. How-

ever, all those methods are based on one representation space, usually a vec-

tor space of features and a corresponding distance measure. But for a variety

of advanced applications such as biometrics, biomolecular data, CAD- parts

or multimedia data, it is problematic to find a common feature space that in-

corporates all given information. Molecules like proteins are characterized by

an amino acid sequence, a secondary structure and a 3D representation. Ad-

ditionally, protein databases such as Swissprot [BBA+03] provide meaningful

text descriptions of the stored proteins. In CAD-catalogues, the parts are

represented by some kind of 3D model like Bezier curves, voxels or polygon

meshes and additional textual information like descriptions of technical and

economical key data. Another example is biometric data comprising speech

patterns, fingerprints and facial features.

To cluster multi-represented data using the established clustering meth-

ods would require to restrict the analysis to a single representation or to

construct a feature space comprising all representations. However, the re-

striction to a single feature space would not consider all available information

and the construction of a combined feature space demands great care when

constructing a combined distance function. In Section 10.3 of this chapter,

we propose a method to integrate multiple representations directly into the

clustering algorithm. Our method is based on the density-based clustering

algorithm DBSCAN [EKSX96] that provides several advantages over other

algorithms, especially when analyzing noisy data. Since our method employs

a separated feature space for each representation, it is not necessary to de-

sign a new suitable distance measure for each new application. Additionally,

the handling of objects that do not provide all possible representations is

integrated naturally without defining dummy values to compensate for the

10.1 Introduction 209

missing representations. Last but not least, our method does not require a

combined index structure, but benefits from each index that is provided for a

single representation. Thus, it is possible to employ highly specialized index

structures and filters for each representation.

Basically, we can distinguish two problems when clustering multi-repre-

sented objects, comparability and semantics. The comparability problem

subsumes several issues when comparing features, distances or statements

from different representations. The semantics problem is caused by differ-

ences between the knowledge that can be derived from each representation.

For example, two images described by very similar text annotations are very

likely to be very similar as well. On the other hand, if the words describing

two images are completely disjunctive the implication that both images are

dissimilar is rather weak as it is possible to describe the same object using

completely different sets of words. Another type of semantics can be found

in color histograms. An image of a plane in blue skies might provide the

same color distribution as a sailing boat in the water. However, if two color

images have completely different colors, it is usually a strong hint that the

images are really dissimilar.

In Section 10.4, we will discuss how to exploit multiple representations

with varying semantics. We distinguish two types of representations and

show which basic combination method is used for which representation type.

To combine a set of representations containing both types, we introduce

so-called combination trees that can be used to describe a large variety of

combination rules. To employ these combination trees for clustering, we

introduce a multi-represented version of the hierarchical density-based clus-

tering algorithm OPTICS. OPTICS derives so-called cluster orderings and

is quite insensitive to the parameter selection. The introduced version of

OPTICS is capable to derive meaningful cluster hierarchies with respect to

an arbitrary combination tree.

210 10 Density-based Clustering of Multi-Represented Objects

10.2 Related Work

A few clustering approaches appropriate for multi-represented objects like an

algorithm for spectral clustering [DS05], a version of Expectation Maximiza-

tion (EM) clustering [BS04] and the framework of reinforcement clustering

[WZC+03] are proposed (cf. Section 2.2.2 in Chapter 2 for details). The

proposed approaches result in a partitioning clusterings of the data spaces,

which makes the maximization of the agreement between local models a

beneficial goal to optimize. However, in a density-based setting, there is an

arbitrary number of clusters and there are no explicit clustering models that

can be optimized to agree with each other. Furthermore, the three formerly

mentioned approaches do not consider any semantic aspect of the underlying

data spaces.

In addition, the reinforcement clustering [WZC+03] is applicable for multi-

represented objects. However, due to its dependency on the data space for

which the clustering is started, it is not well suited to solve the task of multi-

represented clustering.

10.3 Clustering of Multi-Represented Objects

with Noise

To formalize the multi-represented clustering problem, we first define the σ-

neighborhood of an object o w.r.t. a representation Ri. Let DB be a set

of objects and let R = {R1, . . . , Rm} be a set of m different representations

existing for objects in DB. The σ-neighborhood of o w.r.t. Ri is defined as

the set of objects around o with distances in representation Ri less than or

equal to σ, formally:

Definition 10.1 (σi-neighborhood w.r.t Ri)

10.3 Clustering of Multi-Represented Objects with Noise 211

Figure 10.1: The left figure displays local clusters and a noise object that

are aggregated to a multi-represented cluster C. The right figure illustrates,

how the intersection-method divides a local clustering into clusters C1 and

C2.

Let o ∈ DB, σi ∈ R+, R = {R1, . . . , Rm}, and let di be the distance function

of Ri. The local σi-neighborhood of o w.r.t. Ri, denoted by NRi
σi

(o), is defined

by NRi
σi

(o) = {x ∈ DB | di(o, x) ≤ σi}.

Note that σi can be chosen optimally for each representation. The sim-

plest way of clustering multi-represented objects, is to select one represen-

tation Ri and cluster all objects according to this representation. However,

this approach restricts data analysis to a limited part of the available infor-

mation and does not use the remaining representations to find a meaningful

clustering. Another way to handle multi-represented objects is to combine

the different representations and use a combined distance function. Then

any established clustering algorithm can be applied. However, it is very dif-

ficult to construct a suitable combined distance function that is able to fairly

weight each representation and handle missing values. Furthermore, a com-

bined feature space, does not profit from specialized data access structures

for each representation.

The idea of our approach is to combine the information of all different

representations as early as possible, i.e. during the run of the clustering

algorithm, and as late as necessary, i.e. after using the different distance

functions of each representation. To do so, we adapt the core object property

212 10 Density-based Clustering of Multi-Represented Objects

proposed for DBSCAN. To decide whether an object is a core object, we use

the local σ-neighborhoods of each representation and combine the results

to a global neighborhood. Therefore, we must adapt the predicate direct

density-reachability proposed for DBSCAN. In the next two subsections, we

will show how we can use the concepts of union and intersection of local

neighborhoods to handle multi-represented objects.

10.3.1 Union of Multiple Representations

This variant is especially useful for sparse data. In this setting, the clusterings

in each single representation will provide several small clusters and a large

amount of noise. Simply enlarging σ would relief the problem, but on the

other hand, the separation of the clusters would suffer. The union-method

assigns objects to the same cluster, if they are similar in at least one of the

representations. Thus, it keeps up the separation of local clusters, but still

overcomes the sparsity. If the object is placed in a dense area of at least

one representation, it is still a core object regardless of how many other

representations are missing. Thus, we do not need to define dummy values.

The left part of figure 10.1 illustrates the basic idea.

We adapt some of the definitions of DBSCAN to capture our new notion

of clusters. To decide whether an object o is a union core object, we unite

all local σi-neighborhoods and check whether there are enough objects in the

global neighborhood, i.e. whether the global neighborhood of o is dense.

Definition 10.2 (union core object)

Let σ1, σ2, ..., σm ∈ R+, k ∈ N. An object o ∈ DB is called union core

object, denoted by CoreUk
σ1,..,σm

(o), if the union of all local σ-neighborhoods

contains at least k objects, formally:

CoreUk
σ1,..,σm

(o) ⇔ |
⋃

Ri(o)∈o

NRi
σi

(o) | ≥ k.

10.3 Clustering of Multi-Represented Objects with Noise 213

Definition 10.3 (direct union-reachability)

Let σ1, σ2, .., σm ∈ R+, k ∈ N. An object p ∈ DB is directly union-reachable

from q ∈ DB if q is a union core object and p is an element of at least one

local NRi
σi

(q), formally:

DirReachUk
σ1,..,σm

(q, p) ⇔ CoreUk
σ1,..,σm

(q)∧∃ i ∈ {1, ..,m} : Ri(p) ∈ NRi
σi

(q).

The predicate direct union-reachability is obviously symmetric for pairs

of core objects, because the disti are symmetric distance functions. Thus,

analogously to DBSCAN reachability and connectivity can be defined.

10.3.2 Intersection of Multiple Representations

The intersection method is well suited for data containing unreliable repre-

sentations, i.e. there is a representation, but it is questionable, whether it is

a good description of the object. In those cases, the intersection-method re-

quires that a cluster should contain only objects which are similar according

to all representations. Thus, this method is useful, if all different representa-

tions exist, but the derived distances do not adequately mirror the intuitive

notion of similarity. The intersection-method is used to increase the cluster

quality by finding purer clusters.

To decide, whether an object o is an intersection core object, we examine,

whether o is a core object in each involved representation. Of course, we use

different σ-values for each representation to decide, whether locally there are

enough objects in the σ-neighborhood. The parameter k is used to decide,

whether globally there are still enough objects in the σ-neighborhood, i.e.

the intersection of all local neighborhoods contains at least k objects.

Definition 10.4 (intersection core object)

Let σ1, σ2, ..., σm ∈ R+, k ∈ N. An object o ∈ DB is called intersection

214 10 Density-based Clustering of Multi-Represented Objects

core object, denoted by CoreISk
σ1,..,σm

(o), if the intersection of all its local

σi-neighborhoods contain at least k objects, formally:

CoreISk
σ1,..,σm

(o) ⇔ |
⋂

i=1,..,m

NRi
σi

(o) | ≥ k.

Using this new property, we can now define direct intersection-reachability

in the following way:

Definition 10.5 (direct intersection-reachability)

Let σ1, σ2, ..., σm ∈ R+, k ∈ N. An object p ∈ DB is directly intersection-

reachable from q ∈ DB if q is an intersection core object and p is an element

of all local NRi
σi

(q), formally:

DirReachISk
σ1,..,σm

(q, p) ⇔ CoreISk
σ1,..,σm

(q) ∧ ∀i = 1, ..,m : Ri(p) ∈ NRi
σi

(q) .

Again, reachability and connectivity can be defined analogously to DB-

SCAN. The right part of figure 10.1 illustrates the effects of this method.

10.4 Handling Semantics

In the previous Section 10.3, the idea of DBSCAN has been adapted to multi-

represented objects. Two different methods have been proposed to decide

whether a multi-represented object is a core object: the union and the inter-

section method. The union method assumes an object to be a core object if at

least MinPts objects are found within the union of its local σ-neighborhoods

of each representation. The intersection method requires that at least MinPts

objects are within the intersection of all local σ-neighborhoods of each rep-

resentation of a core object. Though this method was capable to distinguish

two basic semantics for combining representations, the method still suffers

from two drawbacks. First, DBSCAN is quite sensitive w.r.t. to the choice

10.4 Handling Semantics 215

of σ and second, for applications having more than two representations, the

two basic combination methods often fail to achieve a good combination of

representations having varying semantics.

10.4.1 A Model for Local Semantics

Since feature spaces are usually not a perfect model of the intuitive notion

of similarity, a small distance in the feature space does not always indicate

true object similarity. Therefore, we denote two objects that a human user

would classify as similar as truly similar. To formalize the semantic problem,

we can distinguish two characteristics of representation spaces:

Definition 10.6 (Precision Space)

A precision space is a data space Ri where for each data object o there exists

a σ-neighborhood NRi
σi

(o) in which the percentage of all truly similar data

objects among data objects in NRi
σi

(o) normalized to |NRi
σi

(o)| exceeds a given

value π. Formally, a precision space Ri is defined as:

∃σ ∈ R+, ∀o ∈ DB :
|NRi

σi
(o) ∩ sim(o)|
|NRi

σi (o)|
≥ π

where sim(o) denotes all objects in DB truly similar to object o.

Definition 10.7 (Recall Space)

A recall space is a data space Ri where for each data object o there exists

a σ-neighborhood NRi
σi

(o) in which the percentage of all truly similar data

objects among the data objects in NRi
σi

(o) normalized to |sim(o)| exceeds a

given value ρ. Formally, a recall space Ri is defined as:

∃σ ∈ R+, ∀o ∈ DB :
|NRi

σi
(o) ∩ sim(o)|
|sim(o)|

≥ ρ

where sim(o) denotes all objects in DB truly similar to object o.

216 10 Density-based Clustering of Multi-Represented Objects

+

_

+
+

+

+

+
+

+

_

_

_

_

_

_

_

_

_

__

_

_

_

_

_

+ truly similar objects

- truly unsimilar objects

p

r

Figure 10.2: Maximal σp-neighborhood and minimum σr-neighborhood of

an optimal precision and recall space.

A precision space and a recall space are called optimal, iff there exists

a σ for which π = 1 and a σ for which ρ = 1, respectively. Figure 10.2

displays a maximal σp-neighborhood for object o for the case that Ri is an

optimal precision space. Additionally, the figure displays the minimum σr-

neighborhood of o for the case that Ri is an optimal recall space as well. Note

that the σp-neighborhood is a subset of the σr-neighborhood in all optimal

precision and recall spaces.

Though it is possible that a representation space is as good a precision

space as a recall space, most real-world feature spaces are usually more suited

to fulfill only one of these conditions. An example for a precision space are

text vectors. Since we can assume that two very similar text annotations

indicate that the described data objects are very similar as well, text anno-

tations usually provide a good precision space. However, descriptions of two

very similar objects do not have to use the same words. An object repre-

sentation that is often well-suited for providing a good recall space are color

histograms. If the color histograms of two color images are quite different

from each other, the images are unlikely to display the same object. On the

other hand, two images having similar color histograms, are not necessarily

displaying the same motive.

10.4 Handling Semantics 217

When combining optimal precision and recall spaces for density-based

clustering, our goal is to find maximum density-connected clusters where

each object has only truly similar objects in its global neighborhood. In

general, we can derive the following useful observations:

1. A data space that is as optimal a precision space as a recall space for

the same value of σ is already optimal w.r.t our goal and thus does not

need to be combined with any other representation.

2. A set of optimal precision spaces should always be combined by the

union method because the union method improves the recall. If there

is at least one representation Ri for all objects s that are similar to an

object o, in which s belongs to the σ-neighborhood of o, the resulting

combination is optimal w.r.t. recall.

3. A set of optimal recall spaces should always be combined by the inter-

section method because the intersection method improves the precision.

If there exists no object s which is dissimilar to object o and is part of

the σ-neighborhoods of o in all representations Ri, the resulting inter-

section is optimal w.r.t. precision.

4. Combining an optimal recall space with an optimal precision space

with either union or intersection method, does not make any sense.

Applying the union method is equivalent to only using the recall space

and applying the intersection method is equivalent to only using the

precision space.

The derived statements only hold for optimal precision and recall spaces.

Since a representation is always a precision space as well as a recall space

to some degree, the observations generally do not hold for the non-optimal

case. For example, it might make sense to combine a very good recall space

with a very good precision space, if the recall space has a good quality as a

precision space as well at some other σ level. However, the implications to

218 10 Density-based Clustering of Multi-Represented Objects

R
1

R
2

R
3

R
4

Figure 10.3: Combination tree of the image dataset.

the general case are strong enough to derive useful heuristics. A final problem

for applying our model is the fact that it is not possible to determine π and

ρ values for the given representations without additional information about

true similarity. Thus, we have to employ domain knowledge when deriving

some heuristics for building a well-suited combination of representations for

clustering.

10.4.2 Combining Multiple Representations

Though we might not be able to exactly determine the parametrization for

which a representation fulfills the precision and recall space conditions in a

best possible way, we can still reason about the suitability of a representa-

tion for each of both conditions as in our running example of text vectors

and color histograms. The most important implication of our model is that

combining a good precision space and a good recall space with a rather bad

precision space and a rather bad recall space, respectively will not increase

the all over quality of clustering. Considering only two representations, there

are only three options: use the union method for two precision spaces, the

intersection method for two recall spaces or cluster only the more reliable

representation in case of a mixture. For more than two representations, the

combination of precision and recall spaces still can make sense. The idea is

to combine these representations on different levels. Since the intersection

method increases the precision and the union method increases the recall, we

10.4 Handling Semantics 219

are able to construct recall spaces or precision spaces from a subset of the

representations. To formalize this method, we will now define the so-called

combination tree:

Definition 10.8 (Combination Tree)

Let R = {R1, . . . , Rm}. A combination tree CT for R is a tree of arbitrary

degree fulfilling the following conditions:

• CT.root denotes the root of the combination tree CT.

• Let n be a node of CT, then n.label denotes the label of n and n.children

denotes the children of n.

• The leaves are labeled with representations, i.e. for each leaf n ∈ CT :

n.label ∈ {R1, . . . , Rm}.

• The inner nodes are labeled with either the union or the intersection

operator, i.e. for each inner node n ∈ CT : n.label ∈ {∪,∩}.

A good combination according to our heuristics can be described by a

combination tree where the sons of each intersection node are all quite good

recall spaces and the sons of each union node are all quite good precision

spaces. Figure 10.3 displays the combination tree of the image dataset, we

used in our experiments. R1, R2 and R3 represent the content-based feature

representations expressing texture features and color distributions. In each

of these representations a small distance between the feature vectors does not

necessarily indicate that the underlying images are truly similar. Therefore,

we use all of these 3 representations as recall spaces. Representation R4

consists of text annotations. As mentioned before, text annotations usually

provide good precision spaces but may also provide good recall spaces. Thus,

we use the text annotation as a precision space.

220 10 Density-based Clustering of Multi-Represented Objects

10.5 Hierarchical Clustering of Multi-Represented

Objects

10.5.1 Normalization

In order to obtain the comparability of distances derived from different fea-

ture spaces, we perform a normalization of the distances for each represen-

tation. Let DB be a set of n objects and let R := {R1, . . . , Rm} be a set of

m different representations existing for objects in DB.

We normalize the distance with respect to the mean value µorig
i of the

original distance dorig
i in representation Ri. The mean value can be calculated

by sampling a small set of objects from the current representation Ri. The

normalized distance between two objects o, q ∈ DB w.r.t. Ri is denoted by

di(o, q) and can be calculated as follows: di(o, q) = dorig
i (o, q)/µorig

i .

10.5.2 Multi-Represented OPTICS

The algorithm OPTICS [ABKS99] works like an extended DBSCAN algo-

rithm, computing the density-connected clusters w.r.t. all parameters εi

that are smaller than a generic value of ε. Since we handle multi-represented

objects, we have not only one ε-neighborhood of an object o but several

ε-neighborhoods, one for each representation Ri.

In contrast to DBSCAN, OPTICS does not assign cluster memberships,

but stores the order in which the objects have been processed and the infor-

mation which would be used by an extended DBSCAN algorithm to assign

cluster memberships. This information consists of two values for each object,

its core distance and its reachability distance. To compute these information

during a run of the OPTICS algorithm on multi-represented objects, we must

adapt the core distance and reachability distance predicates of OPTICS to

10.5 Hierarchical Clustering of Multi-Represented Objects 221

our multi-represented approach. In the following, we will show how we can

use a combination tree CT for a given set of representations R to cluster

multi-represented objects.

The (global) distance between two objects o, p ∈ DB w.r.t. a combination

tree CT is defined as the combination of the distances of the nodes of CT.

Definition 10.9 (distance w.r.t. CT)

Let o, p ∈ DB, R = {R1, . . . , Rm}, di be the distance function of Ri, CT

be a combination tree for R, and let n be a node in CT, i.e. n.label ∈
{∪,∩, R1, . . . , Rm}.

The distance between o and p w.r.t. node n ∈ CT, denoted by dn(o, p), is

recursively defined by

dn(o, p) =


min

c∈n.children
{dc(o, p)} if n.label = ∪

max
c∈n.children

{dc(o, p)} if n.label = ∩

di(o, p) if n.label = Ri

The distance between o and p w.r.t. CT, denoted by dCT(o, p), is defined

by

dCT(o, p) = dCT.root(o, p)

The (global) ε-neighborhood of an object o ∈ DB w.r.t. a combination

tree CT is defined as the combination of the ε-neighborhoods of the nodes of

CT.

Definition 10.10 (ε-neighborhood w.r.t. CT)

Let o ∈ DB, ε ∈ R+, R = {R1, . . . , Rm}, CT be a combination tree for R,

and let n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

222 10 Density-based Clustering of Multi-Represented Objects

The ε-neighborhood of o w.r.t. node n ∈ CT, denoted by N o
ε n, is recur-

sively defined by

N o
ε n =



⋃
c∈n.children

N o
ε c if n.label = ∪⋂

c∈n.children
N c

εi
(o) if n.label = ∩

NRi
εi

(o) if n.label = Ri

The ε-neighborhood of o w.r.t. CT, denoted by NCT,ε
(o), is defined by

NCT,ε
(o) = N o

ε CT.root

Since the core distance predicate of OPTICS is based on the concept

of MinPts-nearest neighbor (MinPts-NN) distances, we have to redefine the

MinPts-nearest neighbor distance of an object o w.r.t. a combination tree

CT.

Definition 10.11 (MinPts-NN distance w.r.t. CT)

Let o ∈ DB, MinPts ∈ N, |DB| ≥ MinPts, R = {R1, . . . , Rm}, CT be a com-

bination tree for R, and let n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The MinPts-nearest neighbors of o w.r.t. CT is the smallest set

NNCT,MinPts(o) ⊆ DB that contains (at least) MinPts objects and for

which the following condition holds:

∀p ∈ NNCT,MinPts(o),∀q ∈ DB \NNCT,MinPts(o) : dCT(o, p) < dCT(o, q).

The MinPts-nearest neighbor distance of o w.r.t. CT, denoted by

nn-distCT,k
(o), is defined as follows:

nn-distCT,k
(o) = max{dCT(o, q)} | q ∈ NNCT,MinPts(o)}.

Now, we can adopt the core distance definition from OPTICS to our com-

bination approach: If the ε-neighborhood w.r.t. CT of an object o contains at

least MinPts objects, the core distance of o is defined as the MinPts-nearest

neighbor distance of o. Otherwise, the core distance is infinity.

10.6 Performance Evaluation 223

Definition 10.12 (core distance w.r.t. CT)

Let o ∈ DB, MinPts ∈ N, |DB| ≥ MinPts, R = {R1, . . . , Rm}, CT be a com-

bination tree for R, and let n be a node in CT, i.e. n.label ∈ {∪,∩, R1, . . . , Rm}.

The core distance of o w.r.t. CT, ε and MinPts, denoted by CoreCT,ε,k
(o),

is defined by

CoreCT,ε,k
(o) =

{
nn-distCT,k

(o) if |NCT,ε
(o)| ≥ MinPts

∞ otherwise.

The reachability distance of an object p ∈ DB from o ∈ DB w.r.t. CT

is an asymmetric distance measure that is defined as the maximum value of

the core distance of o and the distance between p and o.

Definition 10.13 (reachability distance w.r.t. CT)

Let o, p ∈ DB, MinPts ∈ N, |DB| ≥ MinPts, R = {R1, . . . , Rm}, CT

be a combination tree for R, and let n be a node in CT, i.e. n.label ∈
{∪,∩, R1, . . . , Rm}.

The reachability distance of o to p w.r.t. CT, ε, and MinPts, denoted by

ReachCT,ε,k
(p, o), is defined by

ReachCT,ε,k
(p, o) = max{CoreCT,ε,k

(p), dCT(o, p)}

By first normalizing the distances within the representations, we are now

able to use OPTICS applying an arbitrary combination tree.

10.6 Performance Evaluation

Protein Databases. The first set of experiments with multi-represented

DBSCAN and OPTICS was performed on protein data that is represented by

amino-acid sequences and text descriptions. Therefore, we employed entries

of the SWISSPROT protein database [BBA+03] belonging to 5 functional

224 10 Density-based Clustering of Multi-Represented Objects

Table 10.1: Description of the protein datasets.

Set 1 Set 2 Set 3 Set 4 Set 5

Name Isomerase Lyase Signal

Trans-

ducer

Oxidore-

ductase

Transferase

Classes 16 35 39 49 62

Objects 501 1640 2208 3399 4086

groups (cf. Table 10.1) and transformed each protein into a pair of feature

vectors. Each amino acid sequence was mapped into a 436 dimensional fea-

ture space. The first 400 features are 2-grams of successive amino-acids.

The last 36 dimensions are 2-grams of 6 exchange groups that the single

amino-acids belong to [DK02]. To compare the derived feature vectors, we

employed Euclidian distance. To process text documents, we rely on project-

ing the documents into the feature space of relevant terms. Documents are

described by a vector of term frequencies weighted by the inverse document

frequency (TFIDF) [Sal89]. We chose 100 words of medium frequency as

relevant terms and employed cosine distance to compare the TFIDF-vectors.

Since SWISSPROT entries provide a unique mapping to the classes of Gene

Ontology [BBA+03], a reference clustering for the selected proteins was avail-

able. Thus, we are able to measure a clustering of SWISSPROT entries by

the degree it reproduces the class structure provided by Gene Ontology.

To have an exact measure for this degree, we employed the class entropy

in each cluster. However, there are two effects that have to be considered to

obtain a fair measure of a clustering with noise. First, a large cluster of a

certain entropy should contribute more to the overall quality of the clustering

than a rather small cluster providing the same quality. The second effect is

that a clustering having a 5 % noise ratio should be ranked higher than a

clustering having the same average entropy for all its clusters, but contains

50 % noise.

10.6 Performance Evaluation 225

To consider both effects we propose the following quality measure for

comparing different clusterings with respect to a reference clustering.

Definition 10.14 Let O be the set of data objects, let C = {Ci|Ci ⊂ O} be

the set of clusters and let K = {Ki|Ki ⊂ O} be the reference clustering of

O. Then we define:

QK(C) =
∑
Ci∈C

|Ci|
|O|

· (1 + entropyK(Ci))

where entropyK(Ci) denotes the entropy of cluster Ci with respect to K.

The idea is to weight every cluster by the percentage of the complete

data objects being part of it. Thus, smaller clusters are less important than

larger ones and a clustering providing an extraordinary amount of noise can

contribute only the percentage of clustered objects to the quality. Let us note

that we add 1 to the cluster entropies. Therefore, we measure the reference

clustering K with the quality score of 1 and a worst case clustering — e.g.

no clusters are found at all — with the score of 0.

To relate the quality of the clustering achieved by our multi-represented

DBSCAN and OPTICS to the results of former methods, we compared the

introduced density based methods to 4 alternative approaches. First, we

clustered text (R1) and sequences (R2) separately using only one of the rep-

resentations. A second approach combines the features of both representa-

tions into a common feature space (CFS) and employs the cosine distance

to relate the resulting feature vectors. As the only other clustering method

that is able to handle multi-represented data, we additionally compared re-

inforcement clustering using DBSCAN as underlying cluster algorithm. For

reinforcement clustering, we ran 10 iterations and tried several values of the

weighting parameter α. All approaches were run for both settings and the

best results are displayed.

226 10 Density-based Clustering of Multi-Represented Objects

Figure 10.4: Clustering quality and noise ratio.

10.6.1 Multi-Represented DBSCAN

To demonstrate the capability of multi-represented DBSCAN, we performed

a versatile experimental evaluation for protein data and image dataset. We

implemented the proposed clustering algorithm in Java 1.4. All experiments

were processed on a work station with a 2.6 GHz Pentium IV processor and

2 GB main memory.

Deriving Meaningful Groupings in Protein Databases. In order to

apply the multi-represented version of DBSCAN, we selected the local ε-

parameters as described above and we chose k = 2. To consider the different

requirements of both intersection and union methods, for each dataset a

progressive and a conservative ε-value was determined. The left diagram

of figure 10.4 displays the derived quality for those 4 methods and the two

variants of our method. In all five test sets, the union-method using con-

servative ε-values outperformed any of the other algorithms. Furthermore,

the noise ratio for each dataset was between 16% and 28% (cf. figure 10.4,

right), indicating that the main portion of the data objects belongs to some

cluster. The intersection method using progressive ε-parameters performed

comparably well, but was to restrictive to overcome the sparseness of the data

as good as the union-method. Clustering Images by Multiple Repre-

sentations. Clustering image data is a good example for the usefulness of

the intersection-method. A lot of different similarity models exists for image

10.6 Performance Evaluation 227

Figure 10.5: Example of an image cluster found by multi-represented DB-

SCAN.

data, each having its own advantages and disadvantages. Using for exam-

ple text descriptions of images, one is able to cluster all images related to a

certain topic, but these images must not look alike. Using color histograms

instead, the images are clustered according to the distribution of color in

the image. But as only the color information is taken into account a green

meadow with some flowers and a green billiard table with some colored shots

on it, can of course not be distinguished by this similarity model. On the

other hand, a similarity model taking content information into account might

not be able to distinguish images of different colors.

Our intersection approach is able to get the best out of all these different

types of representations. Since the similarity in one representation is not

really sound, the intersection-method is well-suited to find clusters of better

quality for this application. For our experiments, we used two different rep-

resentations. The first representation was a 64-dimensional color histogram.

In this case, we used the weighted distance between those color histograms,

represented as a quadratic form distance function as described for example

228 10 Density-based Clustering of Multi-Represented Objects

in [HSW+95]. The second representation were segmentation trees. An image

was first divided into segments of similar color by a segmentation algorithm.

In a second step, a tree was created from those segments by iteratively ap-

plying a region-growing algorithm which merges neighboring segments, if

their colors are alike. In [KKSS04] an efficient technique is described to

compute the similarity between two such trees using filters for the complex

edit-distance measure.

As we do not have any class labels to measure the quality of our cluster-

ing, we can only describe the results we achieved. In general, the clusters

we got using both representations were more accurate than the clusters we

got using each representation separately. Of course, the noise ratio increased

for the intersection-method. We show one sample cluster of images we found

with the intersection-method (see Figure 10.5). The left rectangle of Figure

10.5 contains images clustered by the intersection-method. The right rect-

angles display additional images that were grouped with the corresponding

cluster when clustering the images with respect to a single representation.

Using this method, very similar images are clustered together. When cluster-

ing each single representation, a lot of additional images were added to the

corresponding cluster. As one can see, using the intersection-method only

the most similar images of both representations still belong to the cluster.

10.6.2 Multi-Represented OPTICS

In order to show the capability of the multi-represented OPTICS, we per-

formed a thorough experimental evaluation for two types of applications. We

implemented the proposed clustering algorithm in Java 1.5. All experiments

were performed on a work station with two 1.8 GHz Opteron processors and

8 GB main memory.

Clustering Protein Data. The first set of experiments was performed on

protein data that is described by two representations R1 and R2: R1 consists

10.6 Performance Evaluation 229

Table 10.2: Comparison of multi-represented OPTICS to different cluster-

ing approaches w.r.t. quality measure.

Set 1 Set 2 Set 3 Set 4 Set 5

R1 ∪R2 0.66 0.56 0.43 0.50 0.38

R1 0.61 0.54 0.32 0.46 0.35

R2 0.31 0.25 0.36 0.39 0.24

CFS 0.62 0.46 0.28 0.41 0.29

RCL 0.55 0.43 0.25 0.33 0.19

of text descriptions and R2 stores amino-acid sequences. To evaluate the

derived cluster structure C we extracted flat clusters from OPTICS plots

and applied the quality measure 10.14 for comparing different clusterings

w.r.t. a reference clustering K.

We applied our method to the union of representation R1 and R2 and

compared the result to four other approaches. All approaches were run for

settings described above and the best results are displayed. Table 10.2 illus-

trates the derived quality for our method and the four competitive methods

mentioned above. As it can be seen, our method clearly outperforms any of

the other algorithms.

Clustering Images. We used a dataset containing 500 images manually

annotated by a short text. From each image, we extracted 3 representations

R1, R2, R3, namely a color histogram (R1) and two textural feature vectors

(R2, R3). We used the HSV color space and calculated 32 dimensional color

histograms based on 8 ranges of hue and 4 ranges of saturation. The textu-

ral features were generated from 16 gray-scale conversions of the images. We

computed contrast and inverse difference moment using the co-occurrence

matrix [HSD73]. The fourth representation R4 consists of text annotations.

For comparing text annotations, we applied the cosine coefficient and used

the Euclidian distance in the rest of the representations. To verify the re-

230 10 Density-based Clustering of Multi-Represented Objects

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Color Histograms

…

(a) OPTICS plot using only color histograms.

Additionally, a representative sample set for

one of the clusters is shown.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Intersection of Texture and ColorHistograms

(b) OPTICS plot when employing the inter-

section of color histograms and both texture

representations. The displayed cluster shows

promising precision.

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494

Text Annotations

…

(c) OPTICS plot using only Text annotations.

The displayed cluster has a high precision but

is incomplete.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Combination of all Rep.

…

(d) OPTICS plot of the combination of all

representations. The precise cluster observed

in the text representation is completes with

similar images.

Figure 10.6: OPTICS plots of image data.

10.6 Performance Evaluation 231

sults of the found clustering, we visually verified the similarity of images in

each cluster. To demonstrate the results of multi-represented OPTICS with

the combination method described above, we ran OPTICS on each single

representation. Additionally, we examined the clustering for the combina-

tion of color histograms and texture features using the intersection method

like proposed in the combination tree. Finally, we ran OPTICS using the

complete combination of image and text features. For all clusterings, we

used MinPts = 3 and ε = 10. Normalization was achieved using the average

distances between two objects in the dataset.

The result for the text annotations provided a very precise clustering.

However, due to the fact that some annotations used different languages for

describing the image, some of the clusters were incomplete. Figure 10.6(c)

displays the result of clustering the text annotations. The observed cluster

displays only similar objects. The cluster order derived for color histograms

found some clusters. However, though the images within the clusters had

similar colors, the objects were not necessarily similar. Figure 10.6(a) dis-

plays the cluster order using color histograms. It displays an image cluster

containing two similar groups of images and some noise. Let use mention that

the clustering of the two texture representations performed similarly. How-

ever, due to space limitations, we do not display the corresponding plots.

In Figure 10.6(b) the clustering of all 3 image feature spaces using the in-

tersection method is displayed. Though the number of clusters decreased,

the quality of the remaining clusters increased considerably, as expected.

The cluster shown in figure 10.6(b) contains exclusively very similar images.

Finally, figure 10.6(d) displays the result on the combination of all repre-

sentations. Obviously, the cluster observed for text annotations displayed in

figure 10.6(c) is completed with additional similar images that are described

in German instead of English language. To conclude, examining the com-

plete clustering, the all over quality of clustering was improved by using all

4 representations.

232 10 Density-based Clustering of Multi-Represented Objects

10.7 Conclusions

In this chapter, we discussed the problem of clustering multi-represented ob-

jects. Contrary to existing approaches our proposed methods are capable of

clustering cluster this kind of data using all available representations. The

idea of our approach is to combine the information of all different represen-

tations as early as possible and as late as necessary. To do so, we adapted

the core object property proposed for DBSCAN. To decide whether an ob-

ject is a core object, we use the local ε-neighborhoods of each representation

and combine the results to a global neighborhood. Based on this idea, we

proposed two different methods for varying applications. For sparse data, we

introduced the union-method that assumes that an object is a core object, if k

objects are found within the union of its local ε-neighborhoods. Respectively,

we defined the intersection-method for data where each local representation

yields rather big and unspecific clusters. Therefore, the intersection-method

requires that at least k objects are within the intersection of all local ε-

neighborhoods of a core object.

In this chapter, we discussed also the problem of hierarchical density-

based clustering of multi-represented objects having arbitrary semantics.

Since each representation might have a different meaning, we first of all di-

vided representation spaces into two basic types, precision and recall spaces.

After drawing elementary conclusions about the basic types and how they

should be combined using union and intersection operators, we introduced

combination trees for describing arbitrary combinations of multiple represen-

tations. To cluster multi-represented objects w.r.t. a combination tree, we

adapted the hierarchical clustering algorithm OPTICS to the multi-represented

setting. In our experimental evaluation, we demonstrated the improvement

of clustering results for an image dataset that is described by 4 representa-

tions as well as for protein datasets.

Chapter 11

Multi-Represented

kNN-Classification

This chapter starts with Section 11.1 which gives an introduction to the

classification of multi-represented objects. In Section 11.2, we discuss re-

lated work on speeding up kNN classification and the classification of multi-

represented objects. Section 11.3 describes the use of density-based clustering

to reduce the number of training instances without losing essential concepts.

Additionally, our new approach to combine multi-represented classification

is introduced. Section 11.4 provides an experimental evaluation based on

protein data that consists of sequential and text representations. The last

section sums up the introduced solutions.

11.1 Introduction

One of the most important tasks of data mining is classification. Classifi-

cation learns a function Cl : O → C that maps each object o ∈ O to the

class c ∈ C that it most likely belongs to. The class set C is a predefined

set of categories. In order to make a class prediction, a classifier has to be

233

234 11 Multi-Represented kNN-Classification

trained. For the classification of complex objects, there are various important

applications, e.g. the classification of proteins into functional catalogues or

secure personal identification using several biometric characteristics. These

applications yield interesting challenges to novel classification techniques.

First of all, the more complex a data object is, the more feature trans-

formations exist that can be used to map the object to a representation

suitable for data mining. Furthermore, many objects are describable by dif-

ferent aspects, e.g. proteins can be described by text annotations and amino

acid sequences. This yields a problem for data mining in general because

it is not clear which of these aspects is most suited to fulfill the given task.

Therefore, it would be beneficial if a classification algorithm could employ all

of the given representations of an object to make accurate class predictions.

Another important aspect is that many classification algorithms rely on an

object representation providing feature vectors. However, complex objects

are often represented in a better way by treating them as sequences, trees

or graphs. Last but not least, the number of classes in the given example

applications can be exceptionally high. Gene Ontology [Con00], one of the

most established class systems for proteins, currently has more then 14,000

classes and biometric databases will have to identify one special person among

thousands of people. Though this problem is not directly connected to the

complexity of the given data objects, it often co-occurs in the same appli-

cation and should therefore be considered when selecting the classification

method.

To cope with these challenges, we introduce a new classification technique

based one k nearest neighbor (kNN) classification [CH67]. A kNN classifier

decides the class of an object by analyzing its k nearest neighbors within the

training objects. kNN classifiers are well-suited to solve the given problem

because they do not have to spend additional effort for distinguishing ad-

ditional classes. The new training objects are simply added to the training

database and are only considered for classification if they are among the near-

11.2 Related Work 235

est neighbors of the object to be classified. Additionally, kNN classifiers can

be applied to any type of object representation as long as a distance measure

is available. Unfortunately, kNN classification has a major drawback as well.

The efficiency of classification is rapidly decreasing with the number of train-

ing objects. Though the use of index structures such as the M-tree [CPZ97]

or the IQ-Tree [BBJ+00] might help to reduce query times in some cases, it

does not provide a general solution. Another approach to limit the problem

is the reduction of the training objects to some basic examples as proposed

in [BM99]. However, these approaches are aimed at limited training data

and are therefore very inefficient when applied to large training sets.

Thus, to apply kNN classification to the described classification sce-

nario, we introduce a more efficient method to speed up kNN classification

by employing density-based clustering to reduce the necessary training in-

stances. Afterwards, we introduce a new method for the classification of

multi-represented (MR) objects. The idea of the method is to determine the

k nearest neighbors in a database for each representation. Then, the class

prediction is derived by considering the normalized distances within each re-

sult. To demonstrate the good performance, we apply our new method to

four scenarios of protein classification. Each protein is represented by an

amino acid sequence and a text annotation. Our results demonstrate that

density-based clustering outperforms other methods of reducing the training

set for kNN classification. Furthermore, the achieved results indicate that

our new decision rule for multi-represented kNN classification yields better

accuracy than other classification methods applicable to large class sets.

11.2 Related Work

k Nearest Neighbor Classifier. The k nearest neighbor (kNN) classification

[CH67] mentioned above classifies a new data object o by finding its k nearest

236 11 Multi-Represented kNN-Classification

neighbors with respect to a suitable distance function. In its basic form, kNN

classification predicts the class that provides the most training objects within

the k-nearest neighbors. To the best of our knowledge, there exists no form

of kNN classification that is directly applicable to multi-represented data

objects. The common approach to apply kNN classification to this kind

of data is to build a joint distance measure on the complete MR object.

However, we argue that this method is not suitable to derive good results

because it is not capable to weight the different representations on the basis

of the given object.

Reduction of Training Instances. In the last decades, the research commu-

nity introduced several methods for reduction of training instances [BM99,

Gat72, RWLI75, WM97, Aha92]. All approaches try to reduce the number

of instances in the training set in a way that the classifier provides compa-

rable or even better accuracy and demands less processing time. In [WM97]

the authors discuss several reduction techniques and [WM00] illustrates an

experimental evaluation of these algorithms on 31 datasets. This evaluation

demonstrates that the RT3 algorithm [WM97] outperforms other techniques

of instance reduction for many datasets. Another approach to instance re-

duction is called iterative case filtering (ICF)[BM99]. This novel and effec-

tive approach to data reduction employs two steps. The first step performs

so-called “Wilson editing”. It detects all instances that are classified incor-

rectly by the kNN classifier. These instances are afterwards removed. The

second step calculates for each remaining object the so-called reachability

and coverage [BM99]. Every object o with |reachable(o)| < |coverage(o)|
is removed. The second step is iterated until no removable object exists. A

broad experimental evaluation [BM02] on 30 databases compares ICF with

the reduction technique RT3 [WM97]. Both algorithms achieve the highest

degree of instance reduction while maintaining classification accuracy.

GDBSCAN. GDBSCAN [SEKX98] is a density-based clustering algo-

rithm. Clusters are considered as dense areas that are separated by sparse

11.3 kNN-Classification of Complex Objects 237

areas. Based on two input parameters (ε and MINPTS), GDBSCAN de-

fines dense regions by means of core objects. An object o ∈ DB is called

core object, if its ε-neighborhood contains at least MINPTS objects. Usu-

ally clusters contain several core objects located inside a cluster and border

objects located at the border of the cluster. In addition, the objects within

a cluster must be “density-connected”. GDBSCAN is able to detect clusters

by one single pass over the data. The algorithm uses the fact, that a density-

connected cluster can be detected by finding one of its core-objects o and

computing all objects which are density-reachable from o. To determine the

input parameters, a simple and effective method is described in [EKSX96].

This method can be generalized and used for GDBSCAN as well.

Classifier Fusion. The task of learning from objects, when more than

a single classifier has been trained, has recently drawn some attention in

the pattern recognition community as discussed in Section 2.2.2 of Chapter

2. The most important difference of co-learning approaches to our new ap-

proach of multi-represented classification is that we do not consider a semi-

supervised setting. Additionally, co-training retrains its classifiers within

several iterations whereas the classifiers in our approach are only trained

once. In contrast to our method the hyper kernel learners optimize the use

of several kernels that can be based on multiple representations within one

complex optimization problem which is usually quite difficult to solve.

11.3 kNN-Classification of Complex Objects

In the following, we present a brief problem description. Afterwards, we

introduce an approach to reduce the given training data with the help of

density-based clustering. Finally, we use multiple object representations to

derive accurate class predictions.

238 11 Multi-Represented kNN-Classification

11.3.1 Problem Definition

In our given application scenario, we want to find a classifier Cl : O → C

that maps each data object o ∈ O to its correct class c ∈ C. The data space

O is given by the cartesian product of m representations R1 × . . . × Rm.

Each representation Ri consists of a feature space Fi ∪ {−}. A feature space

Fi may consist of varying data types. For comparing two objects u, v ∈ Fi,

there exists a distance measure disti : Fi×Fi → R+
0 . To apply our method, it

is necessary that disti is symmetric and reflexive. The symbol {−} denotes

that a particular object representation is missing. However, for a usable

class prediction a tuple should provide at least one instance ri ∈ Fi. To

conclude, the task of multi-represented classification is to find a function

Clmr : (R1 × . . . × Rm) → C that maps as many objects o to their correct

class c ∈ C as possible. For training, a set T of tuples (o, c) of objects

o = (r1, . . . , rm) and their correct classes c are given to the classifier, the

so-called training set. We denote in further sections the correct class of an

object o by c(o) and the class detected by multi-represented classification as

Clmr(o).

11.3.2 Density-based Training Instance Reduction

The performance of kNN classification depends on the number of objects in

the training set. Though a lot of methods that reduce the training data for

kNN classification have been proposed so far, most of these techniques per-

form poorly for large amounts of training data. In order to reduce the number

of available training objects more efficiently, we suggest a novel approach –

density-based instance reduction (DBIR).

The DBIR-algorithm works as follows. For each representation and each

class, the training data is clustered by using the algorithm GDBSCAN. Let

us note that the input parameters can be chosen as described in [EKSX96].

11.3 kNN-Classification of Complex Objects 239

1

(a) (b)

Let C={ , , } be a class set. Representant NoiseΩ
After applying of DBIR:

C
CΩ

d d

Figure 11.1: Density-based instance reduction: (a) Objects before reduc-

tion, (b) Objects after reduction.

GDBSCAN provides a set of clusters Clust = {Clust1, . . . , Clustj, . . . , Clustl},
where j = 1, . . . , l is the index of the cluster, and additionally a set of objects

N that are noise, i.e. objects that cannot be associated with any clusters. An

important characteristic of GDBSCAN for our problem is that the number

of found clusters l is not predefined, but a result of the clustering algorithm.

Thus, the number of important concepts is determined by the algorithm and

not manually. Another important advantage of GDBSCAN is that it is ca-

pable to cluster any data type as long as there is a reflexive and symmetric

distance measure to compare the objects. After clustering, DBIR iterates

through the set Clust and determines for each cluster Clustj a representant

Ωj. The representant Ωj is the centroid of the cluster Clustj in the case

of a representation given by a vector space and the medoid of the cluster

Clustj otherwise. Afterwards, all objects belonging to the set Clustj \ Ωj

are removed from the dataset.

Like most other instance reduction methods, we assume that the training

data for each class contains all important examples to specify a given class.

240 11 Multi-Represented kNN-Classification

To reduce the number of training objects without losing accuracy, we have

to discard the training objects that are likely to represent a concept that is

not typical for the given class. Furthermore, if a typical concept is described

by several training objects, we reduce the representatives of this concept

to a single one to save classification time. We argue that a density-based

clustering of the training objects for a given class is sufficient to decide both

cases. Objects that are not typical for a given class do not have any close

neighbors and are usually separated from the rest of the training set. Thus,

the noise objects in a density-based clustering are likely to correspond to these

objects. Of course, it is possible that a noise object alone is an important

concept. However, a single object is not likely to change the decision of a

kNN classifier and the decision would most likely be wrong even without

the deletion. Important concepts that are represented by several training

objects are usually located very closely to each other in the feature space.

Thus, these concepts are likely to correspond to a density-connected cluster

in our density-based clustering. For each of these clusters it is sufficient that

the training set contains a single object to represent it. Figure 11.1 displays

both effects in a two dimensional example. As depicted in Figure 11.1, the

density-based cluster C can be reduced to a representant ΩC . The noise

object d is not removed. However, it can not change the decision of a kNN

classifier with k > 2.

Our method has a runtime complexity of O(
∑

cj∈C |{o ∈ O | c(o) = cj}|2)
for the case that it is not supported by index structures. ICF has a runtime

complexity of O(2× (#Iteration)×|DB|2) where #Iteration is the number

of iterations (in our experiments it was between 9 and 12) and |DB| is the

size of the database. Thus, our method is considerably faster than other

state of the art feature reduction techniques.

As described above, we apply the DBIR-algorithm separately to the train-

ing objects in one representation and for one class. Afterwards we integrate

all instances of a representation i into one training database DBi. Let us

11.3 kNN-Classification of Complex Objects 241

note that it is possible to speed up k nearest neighbor queries in each of

these training databases as long as there are suitable index structures for the

given object type. For example, if the distance function is metric it might

be beneficial to further increase the classification time by employing a metric

tree like the M-Tree [CPZ97].

11.3.3 kNN-Classification of Multi-Represented objects

Based on the training databases for each representation, we apply the fol-

lowing method of kNN-based classification. To classify a new data object

o = (ri, . . . , rm), the kNN sphere spherei(o, k) in each representation with

ri 6= ” − ” is determined. Formally, the spherei(o, k) can be described as

follows:

spherei(o, k) = {o1, . . . , ok | o1, . . . , ok ∈ DBi ∧ @o
′ ∈ DBi \ {o1, . . . , ok}

∧@ξ, 1 6 ξ 6 k : disti(o
′
, ri) 6 disti(oξ, ri)}

To combine these kNN spheres and achieve accurate classification, we first

of all derive a confidence vector cvi(o) from each available spherei(o, k). Let

c(o) denote the correct class of object o and let dnorm
i (u, v) be a normalized

distance function. Then the confidence vector for an object o with respect

to its kNN sphere spherei(o, k) for the representation i is defined as follows:

cvi(o) = (cvi,1(o), . . . , cvi,|C|(o)), (11.1)

∀j, 1 6 j 6 |C| : cvi,j(o) =

∑
u∈spherei(o,k)∧c(u)=cj

1
dnorm

i (o,u)2∑|C|
k=1 cvi,k(o)

(11.2)

To normalize our distance function for each representation, we apply the

following modification:

242 11 Multi-Represented kNN-Classification

dnorm
i (o, u) =

disti(o, u)

maxv∈spherei(o,k) disti(o, v)
(11.3)

where disti is the distance function between two objects in the i-th rep-

resentation. The normalization in formula 11.3 maps the distance values

for each representation to the range [0, 1] with respect to the radius of

spherei(o, k). Thus, the confidence vector of the i-th representation at the

j-th position (cf. formula 11.2) is a normalized sum of the inverse quadratic

distances.

After we have determined the confidence vectors cvi(o) for each represen-

tation i, we use a weighted linear combination for combining them. Let us

note that the combination of confidence vectors to achieve multi-represented

classification has been proposed in [Dui02]. However, the used weights in

the former approaches do not adjust to the individual classification object.

We argue that in order to use each representation in a best possible way,

a multi-represented decision rule must weight the influence of all available

representations individually for each object.

To achieve this individual weighting, our classification rule is built as

follows:

Clmr(o) = max
j=1,...,|C|

m∑
i=1

wi · cvi,j(o) (11.4)

where m is the number of representations and

wi =


0 , if ri = ”− ”

1+
P|C|

j=1(cvi,j(o)·log|C| cvi,j(o))Pm
k=1(1+

P|C|
j=1(cvk,j(o)·log|C| cvk,j(o)))

, otherwise
(11.5)

The idea of our method is that a kNN sphere containing only a small

number of classes and several objects of one special class is ”purer” than

11.4 Experimental Evaluation 243

Set 1 Set 2 Set 3 Set 4

Name Enzyme

Activity

Metabolism Transferase Cell

Growth

Number of

Goal Classes

267 251 62 37

References

to proteins

16815 19639 4086 4401

Table 11.1: Details of the test environments.

a kNN sphere containing one or two objects for each of the classes. Thus,

the ”purer” a kNN-sphere for a representation is, the better is the quality

of the class prediction that can be derived from this representation. To

measure this effect, we employ the entropy with respect to all possible classes.

The weight is now calculated by normalizing the entropy of its kNN sphere

with respect to the entropy of the kNN spheres in all representations. As

a result the weights of all representations add up to one. In conclusion,

our decision rule for multi-represented objects measures the contribution of

each available representation by the entropy in the local kNN spheres of all

available representations.

11.4 Experimental Evaluation

Test Bed In order to demonstrate the advantages of our approach, we car-

ried out a versatile experimental evaluation. All algorithms are implemented

in Java and were tested on a work station that is equipped with a 1.8 GHz

Opteron processor and 8 GB main memory. We used the classification accu-

racy to measure the effectiveness of algorithms and 5-fold cross-validation to

avoid overfitting.

The properties of each test bed are shown in table 11.1. The 4 test

244 11 Multi-Represented kNN-Classification

Runtime (in sec.) and Reduction Rate (in %).

Set 1

Rep.1

Set 2

Rep.1

Set 3

Rep.1

Set 4

Rep.1

Set 1

Rep.2

Set 2

Rep.2

Set 3

Rep.2

Set 4

Rep.2

DBIR 163.0 253.9 8.0 27.5 275.9 1069.6 36.6 119.9

ICF 12,809 15,616 590.0 632.0 93,416 112,248 4,258 3,772

Reduction Rate (in %)

DBIR 26.1 27.4 33.1 32.0 28.1 22.9 33.8 35.0

ICF 57.0 64.3 71.8 77.7 37.8 46.5 64.0 65.5

Table 11.2: Runtime (in sec.) and reduction rate (in %) reached by DBIR

and ICF.

beds consist of 37 to 267 Gene Ontology[Con00] classes. The corresponding

objects were taken from the SWISS-PROT [BBA+03] protein database and

consist of a text annotation and an amino acid sequence of a protein. In

order to obtain a flat class-system with sufficient training objects per class,

the original environment was pruned.

We employed the approach described in [DK02] to extract features from

the amino acid sequences. The basic idea is to use local (20 amino acids)

and global (6 exchange groups) characteristics of a protein sequence. To

construct a meaningful feature space, we formed all possible 2-grams for

each kind of characteristic, which generated us the 436 dimensions of our

sequence feature space. For text descriptions, we employed a TFIDF [Sal89]

vector for each description that was built of 100 extracted terms. We used

the cosine distance function as distance measure for both representations.

Experimental Results

To demonstrate that DBIR is suitable for large datasets w.r.t. efficiency,

we compared the run time needed for data reduction by using DBIR and ICF

on single-represented data. As presented in table 11.2, the DBIR outperforms

ICF in terms of efficiency, e.g. on the 1st representation of dataset 1, DBIR

11.4 Experimental Evaluation 245

Classification Accuracy (in %)

Set 1

Rep.1

Set 2

Rep.1

Set 3

Rep.1

Set 4

Rep.1

Set 1

Rep.2

Set 2

Rep.2

Set 3

Rep.2

Set 4

Rep.2

kNN 64.43 61.41 72.01 76.2 46.6 43.9 47.48 62.92

kNN

DBIR

61.95 60.29 72.56 73.91 44.5 45.5 48.97 56.58

kNN

ICF

46.44 35.56 47.92 40.72 37.85 33.21 31.37 34.58

Table 11.3: Classification accuracy (in %) of kNN classifier on: unreduced

data, data reduced by DBIR and ICF.

needed only 163 sec. whereas ICF spends 12,809.1 sec. for the data reduction.

To show the effectiveness of DBIR, we compared the classification ac-

curacy achieved by the kNN classifier on unreduced data, data reduced by

DBIR and data reduced by ICF (cf. table 11.3). All these experiments were

performed on single-represented data. The accuracy achieved by the kNN

classifier on data reduced by using DBIR was for all of the datasets compa-

rable to the unreduced dataset. In contrast to these results, the classification

accuracy achieved while using ICF was considerably lower. E.g. on the 1st

representation of dataset 1, the kNN classification on the data reduced by

DBIR reaches 61.95% accuracy, whereas the kNN classification on the data

reduced by ICF reaches only 46.44% accuracy. Though the reduction rate

achieved by ICF is higher than that of DBIR, the clearly superior accuracy

that is achieved by using DBIR indicates that ICF removed important infor-

mation from the training dataset.

In order to demonstrate the effectiveness of the proposed multi-represented

kNN classifier (MR-kNN DBIR), we compared it to the kNN classifier on sin-

gle representations, naive Bayes (NB) on unreduced single-represented data,

NB classification combined by the sum rule and kNN classification combined

246 11 Multi-Represented kNN-Classification

Classification accuracy (in %)

Set 1 Set 2 Set 3 Set 4

1st Rep., kNN DBIR 61.95 60.29 72.56 73.91

2nd Rep., kNN DBIR 44.5 45.5 48.97 56.58

1st and 2nd Rep., MR-kNN

DBIR

67.65 65.17 75.52 76.8

1st Rep., NB 43.45 39.95 58.41 41.08

2nd Rep., NB 28.44 22.36 32.87 31.35

1st and 2nd Rep., NB with

sum rule fusion

39.64 35.47 51.15 36.03

1st and 2nd Rep., kNN classi-

fier fusion by sum rule

62.1 63.18 64.14 74.67

Average classification time per object (in msec.)

1st Rep., kNN DBIR 196.1 198.87 38.22 39.86

2nd Rep., kNN DBIR 740.5 907.78 160.42 161.88

1st and 2nd Rep., MR-kNN

DBIR

1,005.4 1,105.4 198.3 201.6

1st Rep., NB 45.06 43.54 15.4 9.04

2nd Rep., NB 155,91 150,75 48,34 29,62

1st and 2nd Rep., NB with

sum rule fusion

206.37 198.3 61.54 36.73

1st and 2nd Rep., kNN classi-

fier fusion by sum rule

1,251.3 1,456.2 295.6 316.8

Table 11.4: Classification accuracy (in %) and average classification time

per object (in msec.).

11.5 Conclusions 247

by the sum rule. The sum rule described in [Dui02] adds up the confidence

vectors delivered by classifiers responsible for single representations. Table

11.4 illustrates the experimental results of this comparison of our approach

(MR-kNN DBIR) compared to: kNN on single representations reduced by

DBIR; Naive Bayes (NB) on single representations and on multiple represen-

tations combined by sum rule [Dui02]; kNN classifiers combined by sum rule.

Our method showed the highest classification accuracy on all datasets and

achieved a significant increase of accuracy in comparison to single-represented

classification, e.g. on the first set the kNN classifier delivered 61.95% accu-

racy on the first and 44.5% accuracy on the second representation whereas

our approach achieved a significantly higher accuracy of 67.65%. NB showed

in our experiments low accuracy both on single representations and when

combining single NB classifiers employing the sum rule. Our method outper-

forms also the combination of kNN classifiers using the sum rule in all test

environments (cf. table 11.4).

11.5 Conclusions

In this chapter, we proposed a novel approach for classifying multi-represented

data objects into flat class-systems with huge number of classes that is typical

for several advanced applications e.g. in biological or multimedia area. The

proposed approach is able to cope with complex objects that might be de-

scribed by representations that are not necessarily in feature vector form. An

important contribution of our method is also a new way of instance reduction

to limit the number of employed training objects and thus to speed up classi-

fication time without significantly loosing accuracy. Our results indicate that

DBIR is capable to reduce the training database faster and provides better

accuracy than ICF. To demonstrate the effectiveness of our multi-represented

kNN classifier, we compared the classification accuracy using related meth-

ods and employing classification based on single representations.The results

248 11 Multi-Represented kNN-Classification

demonstrate that our novel method is capable of outperforming the com-

pared approaches and significantly increases the accuracy by integrating all

representations.

Chapter 12

Hierarchical Genre

Classification for Large Music

Collections using Multiple

Representations

In this chapter, we concentrate on hierarchical classification of music content.

Section 12.1 gives an introduction to content based classification of music

data and addresses the multi-represented and multi-instance characteristics

of features extracted from music content. After a short overview of related

work in Section 12.2, we introduce a semi-supervised, hierarchical method for

reduction of multiple instances and elaborate a framework for hierarchical

classification of multi-represented music pieces. Section 12.4 demonstrates

results of a versatile experimental evaluation of the proposed techniques.

Section 12.5 discusses practical benefits of the developed solution. Section

12.6 concludes this chapter with a short summarization.

249

250
12 Hierarchical Genre Classification for Large Music Collections using Multiple

Representations

Features

Timbre

Rhythm

Pitch

CPiece of Music Genre Tree Node Classifier

C

C C

Genre Tree Leaf

Figure 12.1: Architecture of the proposed framework.

12.1 Introduction

The progress of computer hardware and software technology in recent years

made it possible to manage large collections of digital music on an average

desktop computer. Often meta information, such as artist, album or title,

is available along with the audio file. However, the amount and quality

of the available meta information in publicly accessible online databases,

e.g. freedb.org, is often limited. This meta data is especially useful when

searching for a specific piece of music in a large collection. To organize and

structure a collection, additional information such as the genre would be

very useful. Unfortunately, the genre information stored in online databases

is often incorrect or does not meet the user’s expectations.

In this chapter, a content-based hierarchical genre classification frame-

work for digitized audio is presented as sketched in Figure 12.1. It is often

problematic to assign a piece of music to exactly one class in a natural way.

Genre assignment is a somewhat fuzzy concept and depends on the taste of

the user. Therefore, our approach allows multi-assignment of one song to

several classes. The classification is based on feature vectors obtained from

three acoustic realms namely timbre, rhythm and pitch. Thus, each song

is described by multiple representations, each of them containing a set of

feature vectors, so called multiple instances.

12.2 Related Work 251

12.2 Related Work

Feature extraction. Timbre features are derived from the frequency do-

main and were mainly developed for the purpose of speech recognition. The

extraction of the timbral texture is performed by computing the short time

fourier transform. We use the Mel-frequency cepstral coefficients (MFCCs),

spectral flux and spectral rolloff as timbral representations [TC02]. Rhyth-

mic content features are useful for describing the beat frequency and beat

strength of a piece of music. In our framework, we use features derived from

beat histograms [TC02] as the description of the rhythmic content. Pitch

extraction tries to model the human perception by simulating the behavior

of the cochlea. Similar to the rhythmic content features, we derive pitch fea-

tures from pitch histograms which were generated by a multipitch analysis

model [TK00].

Genre classification. The general idea of hierarchical classification is that

a classifier located on an inner node of the genre tree solves only a small

classification problem and therefore achieves more effective results more effi-

ciently than a classifier that works on a large number of flat organized classes.

There exist only a few approaches for automatic genre classification of audio

data. In [CVK04], music pieces are classified into either rock or classic using

k-NN and MLP classifiers. Zhang [Zha03] proposes a method for a hierarchi-

cal genre classification which follows a fixed schema and where is only limited

support for user-created genre folders. Moreover, the above mentioned hier-

archical classification methods do not take full advantage of multi-instance

and multi-represented music objects. In contrast, our approach handles such

rich object representations as well as an arbitrary genre hierarchy, and sup-

ports multi-assignment of songs to classes.

Hierarchical Classification. The use of class hierarchies to improve large

scale classification problems has predominantly been applied in text classifi-

cation. Several approaches have been introduced picking up this idea. The

252
12 Hierarchical Genre Classification for Large Music Collections using Multiple

Representations

max. margin hyper planelinear separation

Figure 12.2: Basic idea of Support Vector Machine (SVM).

authors of [KKPS04b] investigated multiple representations of objects in the

context of hierarchical classification and proposed a so called object adjusted

weighting for linear combination of MR objects.

Support Vector Machines. In recent years, support vector machines

(SVMs) [CV95] have received much attention offering superior performance

in various applications. For example, [WLCS04] presents a fusion technique

for multimodal objects. Basic SVMs use the idea of linear separation of

two classes in feature space and distinguish between two classes by calculat-

ing the maximum margin hyperplane between the training examples of both

given classes as illustrated in Figure 12.2. To employ SVMs for distinguish-

ing more than two classes, several approaches were introduced [PCST99]. In

order to handle sets of feature vectors in SVMs so called kernel functions

were introduced [GFKS02a]. A weakness of multi-instance kernels is the

need to calculate distances between all instances, i.e. O(n2) single distance

calculations are required in order to compare two multi-instance objects with

n instances. Thus, multi-instance kernels seem to be unsuitable for solving

large scale classification problems in music collections.

Classifier Fusion. All methods of clasifier fusion or ensemble learning dis-

cussed in Section 2.2.2 assume that a classifier provides reliable values of

the posteriori probabilities for all classes. In contrast to these solutions, we

propose a method that calculates a object adjusted weighting that reflects

the correctness of each particular class decision.

12.3 Efficient Hierarchical Genre Classification 253

root

Rock/Pop

Hard Rock

Latin

Brazil TangoSalsa

SwingBlues JazzBig Band

Jazz

PopMetal

TropicaliaSamba

Mariachi

Figure 12.3: An example genre hierarchy.

Instance Reduction Techniques. As mentioned above, a piece of music is

usually described by a set of feature vectors and is an multi-instance object.

The number of instances can vary from tens to hundreds per second, i.e. a

song is represented by 10,000 to 50,000 feature vectors. In order to han-

dle such multi-instance objects two classes of instance reduction techniques

can be distinguished, namely higher-order and first-order (cf. Section 2.1.5

in Chapter 2 for details). Both first and higher-order techniques reduce the

multi-instance object to a small set of feature vectors. Thus, using the re-

duced representations of the multi-instance object requires the application of

kernel functions for SVMs. In context of large databases, the use of kernel

functions seems impracticable for efficient classification.

12.3 Efficient Hierarchical Genre Classifica-

tion

In this section, we describe our approach for classifying large collections of

music pieces in a genre taxonomy (cf. Figure 12.3). Since a music piece is

described by a set of feature vectors, we first describe a novel hierarchical

semi-supervised technique for instance reduction. The reduced descriptions

are used afterwards for hierarchical classification of music pieces with SVMs.

Furthermore, we use object adjusted weighting in order to take advantage

from multiple representations.

254
12 Hierarchical Genre Classification for Large Music Collections using Multiple

Representations

X, Y: sets of feature vectors
s1, s2, s3: support objects

0.3
5.4
5.1

reducedX

0.4
5.1
0.7

reducedY

s1
s2

s3

3.0
4.0

1.5 7.0 4.5

1.5
X

Y

Figure 12.4: Instance reduction with help of support objects.

12.3.1 Hierarchical Instance Reduction.

Let DB be a set of music objects. We argue that an MI object X =

{x1, . . . , xn} ∈ DB can be described by a vector Xreduced containing mini-

mal distances to a given set of so called support objects S = {s1, . . . , sm}
where m � n. Formally,

Xreduced = (min
xi∈X

dist(xi, s1), . . . , min
xi∈X

dist(xi, sm)).

The set S can either be calculated by a random selection of m instances from

DB , or it is possible to choose each si ∈ S as a centroid of a clustering that

can be calculated on a small sample of instances from DB . An example for

the instance reduction is illustrated in Figure 12.4.

The number of elements in Xreduced may still be too large for solving the

classification problem efficiently. Thus, we propose to exploit the hierarchical

organization of classes and to select only a small subset SN ⊆ S for each inner

node N of the genre taxonomy. The elements of SN should be selected so

that the subclasses CN of N can be distinguished in the best possible way.

Therefore, the subset of support objects is individual for each inner node N .

To calculate SN we suggest to apply a semi-supervised method based on

the information gain criterion. Let T (CN) be a set of all training objects

belonging to CN . The domains D(si) are discretized by using the method

12.3 Efficient Hierarchical Genre Classification 255

dA, dB: distances between ocurr and borders of its class

Class Set C = { , , }

dA
dB

Current object

Hyper-
planes
of SVMs

ocurr

Figure 12.5: Border distance based derivation of weights for a multi-

represented object.

described in [FI92]. After discretization the information gain criterion for

each attribute can by calculated by

InfoGain(si, T (CN)) = H(T (CN))−
∑

t∈T (CN)

|t|
|T (CN)|

·H(t),

where H(t) denotes the entropy. Finally, SN is calculated as follows: SN =

{sj ∈ S | |SN | = k∧∀sj ∈ SN∀a ∈ S : InfoGain(a, T (CN)) ≤ InfoGain(sj, T (CN))}.
After that, SN is used for training and classification on the node N .

12.3.2 Hierarchical Genre Classification by Using Mul-

tiple Representations.

A two layer classification process (2LCP) handles the hierarchical classifica-

tion problem on each inner node N of the genre taxonomy. This process acts

as a guidepost for the hierarchical classification. We train SVMs in the first

layer of the 2LCP that distinguishes only single classes Csingle in each repre-

sentation. Since standard SVMs are able to make only binary decisions we

apply the so-called one-versus-one (OvO) approach (cf. Figure 12.5) in order

to make a classification decision for more than two classes. We argue that for

our application the OvO approach is best suitable because the voting vectors

256
12 Hierarchical Genre Classification for Large Music Collections using Multiple

Representations

Φi provided by this method are a meaningful intermediate description that

is useful for solving the multi-assignment problem in the second layer of our

2LCP. In order to perform the multi-assignment we take advantage of the

class properties in our application domain. We limit the possible class combi-

nations to a subset Ccombi ⊂ 2Csingle because there exist several combinations

that do not make sense, e.g. a piece of music belonging to the class ’salsa’

is very implausible to be also in the class ’metal’. For this purpose, we only

take those c ∈ 2Csingle into account, which occur in the training set.

The SVM classifier in the second layer of the 2LPC uses an aggregation

of the voting vectors Φi from the first layer of the 2LPC as input to assign

an object to a class c ∈ CN = Csingle ∪ Ccombi. The second task that is

handled by the classifier in the second layer is the aggregation of multiple

representations. The voting vectors Φ1, . . . , Φk provided by the first layer

SVMs for each representation R1, . . . , Rk ∈ R are aggregated by using a

weighted linear combination V =
∑k

i=1 ωiΦi. Then V is used as the input

for the classifier in the second layer. The weights ωi in the combination are

calculated by using object adjusted weighting. The intuition behind the ob-

ject adjusted weighting is that the current object ocurr used in training or to

be classified needs to have a sufficient distance from any of the other classes.

Furthermore, the closer surrounding of the hyperplane is treated in a more

sensitive way. More formally, let cj be the class of ocurr determined by major-

ity vote in Φi, then ωi = sigmoid(minci∈Csingle∧ci 6=cj
dist(ocurr,HyperPlane(cj,

ci))), where HyperPlane(cj, ci) denotes the maximum margin hyperplane

separating the classes cj and ci and sigmoid denotes sigmoid function de-

fined as sigmoid(x) = 1
1+exp(α×x+β)

. A suitable optimization algorithm (e.g.

Levenberg-Marquardt algorithm [Lev44]) is used to determine the parame-

ters α and β that minimize the least squares error for the sigmoid target

function accuracy(o) = 1
1+exp(α×x+βj)

given the observed pairs of confidence

ranges and classification accuracy. Figure 12.5 depicts an example of weight

calculation where the weight ω should be set according to the value of dA.

12.4 Experimental Evaluation 257

40 50 60 70 80

AUTOCORRELATION

MFCC

ONSET

ROLLOFFS

THRESHOLD CROSSINGS

SPECTRAL CENTROID

SPECTRAL FLUX

SPECTRAL MEDIAN

SPECTRAL MEAN

SPECTRAL SKEW

SPECTRAL STDDEV

GC

HGC

Classification Accuracy %

Figure 12.6: Accuracy for classification on single- and multi-

representations.

12.4 Experimental Evaluation

We implemented our approach in Java 1.5 and performed all experiments on

a Pentium IV workstation equipped with 2 GByte main memory. The genre

hierarchy depicted in Figure 12.3 was used in all following experiments. A

music collection consisting of almost 500 songs with an average duration of

4 minutes 14 seconds was the basis for the classification experiments, which

results in approximately 30 songs per class. Depending on the representation,

we extracted 30 to 200 features per second. We performed 10-fold cross-

validation for evaluating the classification accuracy. In the following, we

present the results of our experiments with particular emphasis to efficiency

and effectiveness.

Effectiveness. In the first experiment, we compared the quality of GC on

multiple, and HGC on single and multiple representations. Figure 12.6 de-

picts the experimental results. When working with multiple representations,

our HGC approach (70.03%) achieves higher classification accuracy than us-

ing a single representation only. Furthermore, the classification accuracy of

HGC is comparable to that of the flat GC approach (72.01%).

In the next experiment, we investigated how the classification accuracy

258
12 Hierarchical Genre Classification for Large Music Collections using Multiple

Representations

50

55

60

65

70

75

0 100 200 300 400 500
Support Objects

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y,

 %

our approach random

Figure 12.7: Accuracy for classification on single- and multi-

representations.

0

50

100

150

200

250

300

350

0 100 200 300 400 500
Support Objects

C
la

ss
ifi

ca
tio

n
Ti

m
e

pe
r O

bj
ec

t [
m

se
c] HGC GC

Figure 12.8: Classification time per object.

of our approach is influenced by the number and the choice of the support

objects. For choosing SN , we either randomly picked the support objects

or applied our strategy described in Section 12.3. The experimental results

are depicted in Figure 12.7 and show that our approach always outperforms

the random selection. For both approaches, the accuracy increases with an

increasing number of support objects. However, especially for a low number

of support objects, the random approach achieves a lower accuracy compared

to our method. For a high number of support objects, both approaches yield

a similar classification accuracy.

12.5 Practical Benefits 259

Efficiency. In a last experiment, we examined the runtime performance of

GC and HCG for a varying number of support objects. As depicted in Figure

12.8, the runtime increases with an increasing number of support objects.

The higher the number of support objects, the larger the runtime difference.

Altogether, our approach achieves a good trade-off between the quality of

the result and the required runtime when using 300 support objects.

12.5 Practical Benefits

A framework, called “MUSCLE:Music Classification Engine with User Feed-

back” (cf. [BKK+06]), with settings similar to described in this chapter is

implemented in C/C++ and runs on the Windows platform. Its hierarchical

playlist acts as a jukebox. The installation archive of MUSCLE contains a

default genre taxonomy including the necessary training data in the form of

feature vectors for each song. This data is used in the demonstration. Using

aggregated information such as feature vectors makes it possible to share the

training data without having to distribute the underlying music data. Classes

and training data in the genre taxonomy can be deleted, moved or added by

the user. When the user commits the changes of the class hierarchy or of the

corresponding training data, MUSCLE trains the affected classifiers. Note

that usually only a small subset of the entire classifier hierarchy has to be

trained because a modification at a node requires a partial adaptation of the

node and all parent nodes only. It is also possible to start the training auto-

matically after each modification or to run the training in the background.

When the user is satisfied with the training setup, a folder to automatically

classify all contained songs can be selected.

Fig. 12.9 illustrates MUSCLE’s user interface. In the main window the

playlist containing the classification result in form of a genre tree is displayed.

An example for a multiple assignment of the song ’Anticipating’ to the classes

260
12 Hierarchical Genre Classification for Large Music Collections using Multiple

Representations

(a) Multi-Assignment of Songs (b) User Feedback
Figure 12.9: MUSCLE User Interface

’pop’ and ’rhythm & base’ can be seen in Fig. 12.9(a). In case the user wants

to manually adjust the genre assignment of a song, entries can be re-arranged

using drag & drop as shown in Fig. 12.9(b).

12.6 Conclusions

In this chapter, we introduced a novel semi-supervised, hierarchical instance

reduction technique which enables us to use only a small number of rele-

vant features for each classifier. Furthermore, we elaborated a framework

for hierarchical music classification using multiple representations consist-

ing of multiple instances. We showed that our hierarchical classification can

compete with a flat class system in terms of effectiveness and greatly sur-

passes it in terms of efficiency. An implementation of our framework has

been demonstrated recently [BKK+06].

Part IV

Conclusions

261

Chapter 13

Summary of Contributions

In recent years, advanced database systems have emerged. They are neces-

sary because of the demand for storage, management and retrieval of large

amounts of data in application areas such as molecular biology, biometrics,

multimedia, and location based services. In contrast to conventional database

systems, users of advanced database systems focus on similarity search and

data mining tasks. Based on an extensive analysis of objects and properties

typical for advanced database systems, we have determined three require-

ments — uncertain, multi-instance, and multi-represented data — which so

far were insufficiently considered in similarity search and data mining ar-

eas. This thesis presents novel similarity search, clustering, and classifica-

tion approaches that are designed to handle uncertain, multi-represented and

multi-instance descriptions of data to achieve enhanced results. This chapter

summarizes the major theoretical and practical contributions of this work.

13.1 Preliminaries (Part I)

In Section 1.1 of Chapter 1 we considered advanced database systems and

analyzed characteristics of data objects and tasks that are typical for ad-

263

264 13 Summary of Contributions

vanced database systems. In Sections 1.2 and 1.3 we introduced state-of-

the-art similarity search and data mining techniques. Based on the typical

characteristics of data objects and tasks in advanced database systems, new

challenges for similarity search and data mining techniques were elaborated

in Section 1.4. After a short outline of this thesis in Section 1.5, in Chapter

2 we surveyed important previous work in similarity search, clustering and

classification areas related to techniques proposed in this thesis.

13.2 Similarity Search Techniques (Part II)

In the first chapter of Part II we introduced the Gaussian uncertainty model

for identification queries on inexact, probabilistic feature vectors. This model

extends feature vectors by an additional uncertainty value for each dimension,

associating each feature vector with a multivariate Gaussian distribution.

Applications of uncertain data are biometric identification using fingerprints,

facial images, speech patterns, etc. Furthermore, this model is applicable for

object identification in multimedia databases.

Based on the probabilistic model, we proposed two novel query types

– Threshold Identification Queries (TIQ) and k-Most Likely Identification

Queries (k-MLIQ). To speed up query types such as TIQ or k-MLIQ, we

developed the Gauss-tree, a balanced index structure from the R-tree family

which does not index the Gaussian curves as spatial objects but the parame-

ter space of the means and variances of the Gaussians. In order to adapt the

defined index structure for handling Gaussians, the algorithms for both in-

sertion and split were proposed. The split and the insertion algorithm of the

Gauss-tree is based on the density hull curve of a node. If the integral of this

curve is rather small, the indexed Gaussians are rather similar. Thus, the

split algorithm favors splits resulting in nodes which have a rather small in-

tegral over the density hull. In our experimental evaluation, we observed the

13.2 Similarity Search Techniques (Part II) 265

superior quality of the query result when using probabilistic feature vectors

as well as the efficiency when using the Gauss-tree.

In Chapter 4, we proposed an efficient technique for high performance

video retrieval. This approach is based on a summarization technique by us-

ing probabilistic feature vectors, i.e. Gaussian probability density functions.

For the storage and efficient retrieval of probabilistic feature vectors, the spe-

cialized index structure, Gauss-tree, see Chapter 3, was extended to handle

sets of probabilistic feature vectors. Every video clip in the database is asso-

ciated with a set of probabilistic feature vectors. Query video clips are also

transformed either into a set of conventional feature vectors or into a set of

probabilistic feature vectors. In both cases, query processing involves match-

ing of sets of vectors to sets of vectors. We defined two kinds of set-valued

queries, set-valued probabilistic ranking queries and set-valued probabilistic

threshold queries, and proposed efficient algorithms for query processing on

top of the Gauss-tree. An extensive experimental evaluation using 900 video

clips demonstrated the superiority of our approach with respect to both ac-

curacy as well as efficiency of retrieval.

In Chapter 5, we suggested the Gaussian uncertainty model for describ-

ing uncertain spatial objects. This model describes an uncertain data object

as a probabilistic feature vector consisting of a mean value and a standard

deviation for any uncertain feature value. Assuming a Gaussian density dis-

tribution based on these parameters, we can now determine the probability

of any data object being contained in a certain interval or (hyper-) rect-

angle. Applications for uncertain spatial objects are databases of moving

objects and sensor networks where the exact feature value cannot be con-

stantly monitored. To query databases of uncertain spatial objects, we can

pose probabilistic queries like probabilistic threshold queries (PTQs). A PTQ

retrieves all data objects in a database that are contained in the query rect-

angle with a larger probability than some probability threshold t. Since it is

often difficult to determine the threshold value, we introduced probabilistic

266 13 Summary of Contributions

ranking queries (PRQs) which retrieve the k data objects in a database that

are contained in the query rectangle with the highest probability. To answer

both types of queries within a reasonable time, we applied the Gauss-tree,

see Chapter 3. The idea of the Gauss-tree is to index the parameter space

of the probabilistic feature vectors (pfv) in the database. A node in the

Gauss-tree contains pfvs having mean values and standard deviation con-

tained in a certain mean range and a certain range of standard deviations.

Based on these ranges, a conservative approximation for a node and a given

query rectangle can be calculated. This tight approximation is the basis of

the described algorithms for answering PTQs and PRQs. In our experimen-

tal evaluation, we compared the Gauss-tree on both types of queries with

three comparison partners on one artificial and two real-world datasets with

artificial uncertainty. The results demonstrated that the Gauss-tree achieves

a query performance which is comparable to state-of-the-art methods on

PTQs. For the new query type of PRQs, the Gauss-tree clearly outperforms

established methods which were modified to answer PRQs as well.

Similarity search in multimedia databases can be improved by using mul-

tiple representations of the multimedia objects. When searching for similar

videos, e.g. we can use audio features such as rhythm and pitch as well as

video features such as color histograms and textures. In Chapter 6, we pre-

sented a method for effective similarity search in multimedia databases that

takes multiple representations of the database objects into account. This

technique exploits the fact that it is often beneficial to summarize multiple

instances of a multimedia object, e.g. video, in order to achieve a higher

efficiency during query processing. We introduced four quality scores to de-

rive the weight for each representation. Our concepts are independent of

the underlying summarization method and compute a weight for each sum-

marization vector of each representation for each object separately. Using

these weighting factors, we further showed how well-known distance mea-

sures for multi-instance multimedia objects can be combined w.r.t. multiple

13.3 Data Mining Techniques (Part III) 267

representations. In our experiments, we evaluated the proposed methods and

demonstrated the benefits of our approach.

13.3 Data Mining Techniques (Part III)

In Chapter 7, we proposed a distributed clustering algorithm that achieves

privacy perceivation by using an uncertain description of the data. Our

method applies the EM algorithm at the local sites generating a model con-

taining a set of Gaussian distributions. We also proposed a merge step of

the local Gaussians. Compared to recent approaches for pure distributed

clustering, our method enables us to set an arbitrary level of privacy and

dramatically reduces the transfer cost. Our experimental evaluation demon-

strated robustness, efficiency, and applicability of the proposed technique.

In Chapter 8, we described an approach for the statistical clustering of

multi-instance objects. Our approach models instances as members of con-

cepts in some underlying feature space. Each concept is modeled by a sta-

tistical process in this feature space. A multi-instance object can now be

considered as the result of selecting several times a concept and generating

an instance with the corresponding process. Clusters of multi-instance ob-

jects can now be described as multinomial distributions over the concepts.

In other words, different clusters are described by having different probabil-

ities for the underlying concepts. An additional aspect is the length of the

multi-instance object. To derive multi-instance clusters corresponding to this

model, we introduced a three-step approach. The first step derives a mixture

model that describes concepts in the instance space. The second step finds

a good initialization for the target distribution by subsuming each multi-

instance object by a so-called confidence summary vector and afterwards

clustering these confidence summary vectors by using the k-means method.

The final step employs an EM clustering step, optimizing the distribution

268 13 Summary of Contributions

for each cluster of multi-instance objects. To evaluate our method, we com-

pared our clustering approach to clustering multi-instance objects with the

k-medoid clustering algorithm PAM for three different similarity measures

that are appropriate for multi-instance objects. The results demonstrate

that the found clustering model offers better cluster qualities w.r.t. to the

provided reference clusterings.

In Chapter 9, we proposed COSMIC (Conceptually Specified Multi-

Instance Clusters), a method for deriving concept lattices from multi-instance

datasets. COSMIC describes concepts of multi-instance objects by sets of so-

called cluster attributes (CAs). A CA is a common pattern in the data space

of instances that might be used to characterize at least MinPts multi-instance

objects. To use CAs on different abstraction levels and thus to be less depen-

dent on the parameter setting, COSMIC employs a hierarchy of CAs. The

CA hierarchy is calculated by employing density-based hierarchical clustering

while considering that a CA has to describe instances from at least MinPts

multi-instance objects. The second step of COSMIC extracts a concept lat-

tice along with the CA hierarchy used for the concept descriptions. In our

experimental evaluation, we compared COSMIC to two distance-based ap-

proaches for clustering multi-instance data on five real-world datasets. The

results demonstrated that COSMIC generates more precise clusterings w.r.t.

a reference class set. Additionally, we showed that COSMIC scales well to

even larger datasets and is very insensitive to the choice of its two main

parameters MinPts and MinSup.

In Chapter 10, we discussed the problem of the density-based clustering of

multi-represented objects and suggested two novel clustering techniques. The

idea of our first approach is to combine the information of all different repre-

sentations as early as possible and as late as necessary. To do so, we adapted

the core object property proposed for DBSCAN. To decide whether an object

is a core object, we use the local ε-neighborhoods of each representation and

combine the results to a global neighborhood. Based on this idea, we pro-

13.3 Data Mining Techniques (Part III) 269

posed two different methods for varying applications. For sparse data, we

introduced the union-method that assumes that an object is a core object if k

objects are found within the union of its local ε-neighborhoods. Respectively,

we defined the intersection-method for data where each local representation

yields rather big and unspecific clusters. Therefore, the intersection-method

requires that at least k objects are within the intersection of all local ε-

neighborhoods of a core object.

Furthermore, we discussed the problem of hierarchical density-based clus-

tering of multi-represented objects having arbitrary semantics. Since each

representation might have a different meaning, we first divided the represen-

tation spaces into two basic types, the precision and the recall spaces. After

drawing elementary conclusions about the basic types and how they should be

combined by using union and intersection operators, we introduced combina-

tion trees for describing arbitrary combinations of multiple representations.

To cluster multi-represented objects w.r.t. a combination tree, we adapted

the hierarchical clustering algorithm OPTICS to the multi-represented set-

ting. In our experimental evaluation, we introduced an entropy based quality

measure that compares a given clustering with noise to a reference clustering.

Employing this quality measure, we demonstrated that the union method was

most suitable to overcome the sparsity of a given protein dataset. To demon-

strate the ability of the intersection method to increase the cluster quality,

we applied it to a set of images using two different similarity models. Exper-

imental results with our hierarchical multi-represented clustering approach

showed the improvement of clustering results for an image dataset that is

described by four representations as well as for protein datasets.

In Chapter 11, we proposed a novel approach for classifying multi-rep-

resented objects into flat class-systems with many classes. The proposed

method addresses the three following requirements that are frequent in the

advanced database systems: (1) multi-represented objects, (2) representa-

tions that are not necessarily in feature vector form, (3) large class sets. To

270 13 Summary of Contributions

cope with these requirements, our new method for classification of multi-

represented objects employs kNN classification because this approach is nat-

urally able to handle the last two requirements. The contribution of our

method is a new way of training instance reduction based on a density-based

paradigm to limit the number of employed training objects and thus speed

up classification time without significantly loosing accuracy. To integrate the

information of several representations, we present a new decision rule that

employs a weighted combination of confidence values to derive a class predic-

tion. The idea of the used weighting is to measure the entropy of each kNN

sphere. Thus representations are weighed in a different way for different data

objects. In our experimental evaluation, we compared our new density-based

instance reduction technique to one of the best performing instance reduc-

tion techniques so far. Our results indicated that the proposed method is

capable of reducing the training database faster and provides better accuracy

when compared to competing methods. To demonstrate the effectiveness of

our multi-represented kNN classifier, we compared the classification accuracy

using related methods and employed classification based on single represen-

tations. The results demonstrate that our new method can outperform the

compared approaches and significantly increases the accuracy by integrating

all representations.

In Chapter 12, we introduced a novel method for the reduction of large

multi-instance objects and a framework for hierarchical classification of mul-

timedia objects, e.g. music pieces. Our method uses multiple representations

consisting of multiple instances. We showed that our hierarchical classifica-

tion can compete with a flat class system in terms of effectiveness and greatly

surpasses it in terms of efficiency.

Chapter 14

Future Work

At the end of this thesis let us consider possible further directions for research

which have been motivated by novel techniques for similarity search, clus-

tering and classification developed in this thesis. First, we discuss promising

enhancements of the methods proposed in this work. In addition, we sketch

our vision of the future of similarity search and data mining techniques for

advanced database systems.

Short-term Considerations: Enhancements of the Proposed Meth-

ods. In Chapters 3 through 5 we proposed and employed an index structure

for probabilistic feature vectors based on a hierarchical paradigm. An inter-

esting direction for future work is to investigate the storage of probabilistic

feature vectors using paradigms different from hierarchical index structures

such as vector approximation. Uncertain spatial, biometrical and multime-

dia data are often generated and stored at different geographical locations.

Therefore, a very interesting direction for future research could be the devel-

opment of approaches indexing distributed uncertain data in general, and to

parallelize the Gauss-tree for a distributed database environment in particu-

lar.

In Chapter 6, we developed a novel method for an effective similarity

271

272 14 Future Work

search in multimedia databases using multiple representations. Current re-

search aims also at employing as much information from multiple representa-

tions as possible in order to achieve better precision and recall (cf. methods

described in [BKS+04, SJL+03a, CLC98]). However, combining multiple fea-

ture representations yields various problems. Not all feature transformations

are suitable for each dataset. Additionally, even if a representation is not very

well suited for a given dataset in general, it is still possible that the distances

between some of the objects still model similarity rather well. Therefore,

a system using multiple representations should consider the quality of each

object in each representation. Thus, an interesting direction for further re-

search is developing methods based on similarity and dissimilarity estimates.

While the similarity estimates represent the likelihood that the compared

objects are similar, the dissimilarity estimates indicate that the compared

objects are dissimilar. Based on both types, we can estimate the likelihood

over all representations that the compared objects are indeed similar or not.

Furthermore, it seems to be promising that we derive both types of estimates

for each representation without manually labeling pairs of similar objects.

In Chapters 7 and 8 we proposed to employ Gaussian distributions in

order to describe the uncertainty of objects or to model underlying data. One

of the possible promising directions for future work is to examine the use of

other distribution functions instead of the normal distribution. For instance,

we could develop statistical processes that describe more complex objects

than multi-instance objects and employ these processes for EM clustering as

well.

In Chapter 10, we discussed precision and recall spaces. For future work,

it is interesting to find the best possible way to quantify the usability of repre-

sentations as precision or recall spaces. A very interesting research direction

is the development of a general theory for describing optimal combination

trees.

273

Another interesting idea would be to investigate the use of various in-

dex structures to speed up classification methods like a method described in

Chapter 11 or in Chapter 12. Furthermore, it would be an enhancement to

apply our methods introduced in Chapters 11 and 12 to biometric identifi-

cation. Biometric identification yields several individual challenges like the

combination of different classification methods. For example, facial features

can be checked by kNN classification. However, in order to recognize a per-

son by speech pattern, other ways like hidden Markov models are reported

to provide better accuracy. Thus, a flexible model should allow different

classification algorithms. Another interesting direction is to speed up classi-

fication by employing only some of the representation. For example, it might

be unnecessary to query the sequence database if the text database provides

sufficient confidence.

We suggested in this work two classification approaches which deal with

complex objects described by multiple representations, modeling various as-

pects, and using various feature transformations (cf. Chapter 11 and Chapter

12). To integrate all the information from different representations into the

classification, we trained a classifier on each representation and combined

the results based on the local class probabilities. It is an interesting idea to

derive confidence estimates for each of the classifiers, reflecting the correct-

ness of the local class prediction and use the prediction having the maximum

confidence value. The confidence estimates can be based on the distance to

the class border as proposed in Chapter 12. Then we can derive the confi-

dence estimates for various types of classifiers like support vector machines,

k-nearest neighbor classifiers, Bayes classifiers and decision trees. This ap-

proach promises the following two advantages. First, we can employ different

classifier types for different representations. Second, the comparability of

classification results is guaranteed because we apply the same approach on

each classifier in order to estimate the confidence.

Long-term Considerations: Coping with Increasing Complexity of

274 14 Future Work

Real-World Objects. Modern automated methods for measurement, col-

lection, and analysis of data in all fields of science, and industry are providing

more and more data with drastically increasing structure complexity. This

growing complexity is justified on the one hand by the need for a richer

and more precise description of real-world objects, and on the other hand

by the rapid progress in measurement and analysis techniques allowing ver-

satile exploration of objects. In order to manage the huge volume of such

complex data, advanced database systems are employed. Thus, advanced

database systems provide and manage manifold information concerning all

kinds of real-world objects, ranging from customers and molecules to shares

and patients.

Traditionally, relational databases keep this information in the form of at-

tributes from a certain range of possible domains, usually as numbers, dates,

strings, or restricted to a certain list of values. Object-relational databases

even allow the user to define types that model arbitrary objects. In view of

the fact that the manual analysis of enormous volumes of complex data col-

lected in a database is practically infeasible, there is an ever growing need for

similarity search and data mining techniques that are able to discover novel,

interesting knowledge in this complex and voluminous data. Quite some ef-

forts lead in various directions of coping with complexity of data objects like

similarity search and data mining techniques for uncertain, multi-instance

and multi-represented objects that were developed and discussed this thesis.

While modeling the world obviously creates a merely simplified repre-

sentation, considering the complexity of the objects as adequate as possible

remains a worthwhile goal for all directions of science. In computer science,

the concept of “object-oriented modeling” describes complex objects in a

simple and thoroughly formalized manner. Here, attributes of an object may

be primitive types or objects themselves. Object-oriented and also object-

relational databases are able to present collections of such objects. It seems

highly desirable to be able to directly mine on these objects instead of min-

275

ing only parts of them (like their numerical attributes or numerical models of

their complex attributes). In recent years, many steps were taken to mine ob-

jects modeled as multi-represented, multi-relational or multi-instance data.

In some respects, these approaches are generalizations of former approaches

on unstructured data. On the other hand, the very same approaches could be

understood as adjustments to certain more general, but not universal types

of representations. We envision similarity search and data mining being uni-

versalized to tackle with truly general objects. However, all these methods

consider static properties of objects. The picture of “object-oriented model-

ing” does also include a modeling of behavior of objects, called “methods”,

i.e. dynamical properties. Furthermore, sequence diagrams or activity dia-

grams model the chronology of behavior patterns. Indeed, the behavior of

software is a common data mining task (cf. e.g. [LYH06, LYY+05]). Some

steps towards directly mining object-oriented systems can be found e.g. in

[KDTM06].

Recently, domain experts seek ways to extract the important features of

an object. Thus, representing complex objects by means of simple objects

like numerical feature vectors could be understood as a way to incorporate

domain knowledge into the similarity search and data mining process. In

the progress to generalized similarity search and data mining, one should

not disregard the advances made so far. Incorporating domain knowledge

as naturally as possible facilitates meaningful results of similarity search and

data mining. However, the specific way to make use of the domain knowledge

of experts should also be generalized to keep pace with more complex ways

of mining complex objects.

Furthermore, the knowledge specific to a certain domain is increasing in

amount and complexity. Usually it cannot be surveyed by a single human

expert anymore. Therefore, the communities provide their knowledge often in

databases or knowledge bases. Thus, in the future, similarity search and data

mining algorithms should be able to take reliable domain knowledge, which

276 14 Future Work

is available in databases, automatically into account in order to improve their

effectiveness.

In order to process complex objects, distributed similarity search and data

mining seems to gain in importance [LKBR06]. Several application domains

consider the same complex object according to the same characteristics at

different locations and/or at different times (e.g. a patient can consult differ-

ent doctors, or a continuous observation of a star is only possible by involving

several telescopes around the world). On the other hand, similarity search

and data mining algorithms requires significantly more computation power

on complex objects than on data given by feature vectors. Finally, not all

participants in a joint activity would like to share all of their collected data,

possibly in order to protect the privacy of their customers. Thus, there is a

growing need for distributed, privacy preservation exploration and analysis

algorithms for complex data like the method proposed in Chapter 7.

List of Figures

1.1 The evolutionary phases of database technology (cf. [HK06]). . 4

1.2 Face identification from video sequences. 7

1.3 Positional uncertainty in Global Positioning System (GPS). . . 9

1.4 Uncertainty in sensor network databases caused by measure-
ment error and transfer of a measured value after a certain
time period has passed. 10

1.5 Retrieval and analysis in biological databases w.r.t. multiple
characteristics and spatial conformations of bio-molecules. . . 11

1.6 Feature extraction and query performing in multimedia database
systems. 14

1.7 Feature extraction. 16

1.8 The KDD process — discovery of knowledge in large databases. 19

3.1 Probabilistic feature vectors in a 2D space. One query proba-
bilistic feature vector and three database probabilistic feature
vectors. 59

3.2 A 3 level Gauss-tree. 64

3.3 The different sectors used to calculate N̂µ̌,µ̂,σ̌,σ̂(x). 67

3.4 Pseudocode for the k-MLIQ. 70

3.5 Pseudocode for the TIQ. 73

3.6 Precision and Recall of 3-NN query on conventional feature
vectors and 3-MLIQ on pfv. 77

3.7 Performance of sequential scan, X-tree on hyper-rectangle ap-
proximations of pfv and Gauss-tree on dataset 1 and dataset
2 (see text for details). 78

4.1 A news video clip summarized as set of probabilistic feature
vectors. 82

277

278 LIST OF FIGURES

4.2 Pseudocode of set-valued probabilistic threshold query (SVPTQ).
. 96

4.3 Pseudocode of set-valued probabilistic ranking query (SVPRQ).
. 98

4.4 Precision and recall achieved on similarity search by SVPRQ
and its comparison partners on complete video retrieval. . . . 99

4.5 Precision and recall achieved on similarity search by SVPRQ
and its comparison partners using scene retrieval. 100

4.6 Elapsed average query time for SVPRQs and SVPTQs for the
query on the complete video clips. 101

4.7 Architecture of a prototype video search engine. 103

4.8 Video Decoder. 104

4.9 Screenshot of ProVeR. 105

5.1 Spatial uncertainty in moving object database systems. 108

5.2 Visualization of probabilities for P̂µ,σ(a, b) in the µ-σ space. . 116

5.3 Pseudocode of probabilistic ranking query. 118

5.4 Complete runtime (above row) and CPU time (lower row) for
PRQs for varying values of k. 121

5.5 Average time for a PRQs for the Gauss-tree and the GX-tree. 122

5.6 Average time for a PRQs on DS1 with increasing database size.123

6.1 Basic notations. 129

6.2 Illustration of three different weighting functions. 131

6.3 Different Gaussian distributions of distances from original ob-
jects to a summarization vector x. 134

6.4 Precision vs recall for different summarization techniques on
best single representation and two best weighting functions. . 139

6.5 Precision vs recall for different summarization techniques on
standard combination strategies and proposed weighted com-
bination strategies. 139

6.6 Precision vs. recall for different weighting strategies when per-
forming similarity search for videos of the same artist. 141

7.1 Algorithm for local clustering. 153

7.2 Algorithm for global clustering. 156

7.3 Results of DMBC on DS1. 160

LIST OF FIGURES 279

7.4 Results of DMBC on DS2 and DS3. 161

8.1 Effectiveness evaluation on DS2 and DS3 (no. of clusters is 2). 172

8.2 Effectiveness evaluation on DS1, DS2 and DS3 where no. of
clusters is 6. 173

8.3 Effectiveness evaluation on DS1, DS2 and DS3 where no. of
clusters is 8. 174

9.1 Example of a Multi-Instance object: a video clip as a set of
scene concepts. 178

9.2 Comparison of a reachability plot created by COSMIC (upper
plot) and OPTICS (lower plot) on a website dataset. 191

9.3 Example of derived CA hierarchy and concept lattice. The left
column displays the reachability plot, the middle column the
CA hierarchy and right column the maximum concept lattice
that could occur. 192

9.4 Pseudocode: collection of hot spots. 194

9.5 Pseudocode: concept lattice. 196

9.6 COSMIC on artificial data. 198

9.7 Average Cluster Precision. 202

9.8 Complete Runtime of COSMIC and its comparison Partners. . 203

9.9 Runtime comparison between both steps of COSMIC. 203

9.10 Insensitivity w.r.t. MinPts. 205

9.11 Insensitivity w.r.t. MinSup. 206

10.1 The left figure displays local clusters and a noise object that
are aggregated to a multi-represented cluster C. The right
figure illustrates, how the intersection-method divides a local
clustering into clusters C1 and C2. 211

10.2 Maximal σp-neighborhood and minimum σr-neighborhood of
an optimal precision and recall space. 216

10.3 Combination tree of the image dataset. 218

10.4 Clustering quality and noise ratio. 226

10.5 Example of an image cluster found by multi-represented DB-
SCAN. 227

10.6 OPTICS plots of image data. 230

280 LIST OF FIGURES

11.1 Density-based instance reduction: (a) Objects before reduc-
tion, (b) Objects after reduction. 239

12.1 Architecture of the proposed framework. 250

12.2 Basic idea of Support Vector Machine (SVM). 252

12.3 An example genre hierarchy. 253

12.4 Instance reduction with help of support objects. 254

12.5 Border distance based derivation of weights for a multi-represented
object. 255

12.6 Accuracy for classification on single- and multi-representations. 257

12.7 Accuracy for classification on single- and multi-representations. 258

12.8 Classification time per object. 258

12.9 MUSCLE User Interface . 260

List of Tables

1.1 List of own publications this thesis is based on. 25

5.1 Comparison of average query time on DS1 for PTQs. 119

8.1 Details of the test environments. 171

9.1 Description of the test datasets. 199

10.1 Description of the protein datasets. 224

10.2 Comparison of multi-represented OPTICS to different cluster-
ing approaches w.r.t. quality measure. 229

11.1 Details of the test environments. 243

11.2 Runtime (in sec.) and reduction rate (in %) reached by DBIR
and ICF. 244

11.3 Classification accuracy (in %) of kNN classifier on: unreduced
data, data reduced by DBIR and ICF. 245

11.4 Classification accuracy (in %) and average classification time
per object (in msec.). 246

281

282 LIST OF TABLES

References

[ABKS99] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OP-
TICS: Ordering points to identify the clustering structure. In
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’99), Philadelphia, PA, USA, 1999.

[Aha92] D.W. Aha. Tolerating noisy, irrelevant and novel attributes in in
instance-based learning algorithms. Int. Jurnal of Man-Machine
Studies, 36:267–287, 1992.

[AHCG00] S. Aksoy, R. M. Haralick, F. A. Cheikh, and M. Gabbouj. A
weighted distance approach to relevance feedback. In Proc. of
the 14th Int. Conf. on Pattern Recognition (ICPR), Barcelona,
Spain, 2000.

[AKKS99] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl. 3d
shape histograms for similarity search and classification in spa-
tial databases. In Proc. 6th Int. Symposium on Large Spatial
Databases (SSD’99), Hong Kong, China, volume 1651, pages
207–226, 1999.

[AKPS05] E. Achtert, H.-P. Kriegel, A. Pryakhin, and M. Schubert. Hier-
archical density-based clustering for multi-represented objects.
In Workshop on Mining Complex Data (MCD’05), ICDM’05,
Houston, TX, 2005.

[AKPS06] E. Achtert, H.-P. Kriegel, A. Pryakhin, and M. Schubert. Clus-
tering multi-represented objects using combination trees. In
Proc. of 10th Pacific-Asia Conf. on Advances in Knowledge Dis-
covery and Data Mining (PAKDD’06), Singapore, 2006, volume
3918, pages 174–178, 2006.

[ALSS95] R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim. Fast sim-
ilarity search in the presence of noise, scaling, and translation

283

284 REFERENCES

in time-series databases. In Proc. 21st Int. Conf. on Very Large
Data Bases (VLDB’95), Zurich, Switzerland, pages 490–501,
1995.

[AY99] Y. A. Aslandogan and C. T. Yu. Techniques and systems for
image and video retrieval. IEEE Transactions on Knowledge
and Data Engineering, 11(1):56–63, 1999.

[BBA+03] B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Es-
treicher, E. Gasteiger, M.J. Martin, K. Michoud, C. O’Donovan,
I. Phan, S. Pilbout, and M. Schneider. The swiss-prot protein
knowledgebase and its supplement trembl in 2003. Nucleic Acid
Research, 31:365–370, 2003.

[BBJ+00] S. Berchtold, C. Böhm, H.V. Jagadish, H.-P. Kriegel, and
J. Sander. Independent quantization: An index compression
technique for high-dimensional spaces. In Int. Conf. on Data
Engineering, ICDE 2000., 2000.

[BBK01] C. Böhm, S. Berchthold, and D. Keim. Searching in high-
dimensional spaces: Index structures for improving the per-
formance of multimedia databases. ACM Computing Surveys,
3(33), 2001.

[BGK+07] C. Böhm, M. Gruber, P. Kunath, A. Pryakhin, and M. Schu-
bert. Prover: Probabilistic video retrieval using the gauss-tree
(demonstration). to appear. In Proc. 23rd Int. Conf. on Data
Engineering (ICDE’07), Istanbul, Turkey, 2007.

[BKK96] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-Tree: An
index structure for high-dimensional data. In Proc. 22nd Int.
Conf. on Very Large Data Bases (VLDB’96), Mumbai (Bom-
bay), India, pages 28–39, 1996.

[BKK+03] S. Brecheisen, H.-P. Kriegel, P. Kröger, M. Pfeifle, and M. Schu-
bert. Using sets of feature vectors for similarity search on vox-
elized CAD objects. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data (SIGMOD’03), San Diego, CA, USA, pages
587–598, 2003.

[BKK+06] S. Brecheisen, H.-P. Kriegel, P. Kunath, A. Pryakhin, and
F. Vorberger. Muscle: Music classification engine with user

REFERENCES 285

feedback (demonstration). In Proc. of 10th Int. Conf. on Ex-
tending Database Technology (EDBT’06), Munich, Germany,
pages 1164–1167, 2006.

[BKKP04] S. Brecheisen, H.-P. Kriegel, P. Kröger, and M. Pfeifle. Visually
mining through cluster hierarchies. In Proc. of the 4th SIAM Int.
Conf. on Data Mining (SDM’04), Lake Buena Vista, Florida,
USA, pages 400–412, 2004.

[BKKP06] S. Brecheisen, H.-P. Kriegel, P. Kunath, and A. Pryakhin. Hier-
archical genre classification for large music collections. In Proc.
of 7th IEEE Int. Conf. on Multimedia and Expo (ICME’06),
Toronto, Ontario, Canada, pages 1385–1388, 2006.

[BKS+04] B. Bustos, D. A. Keim, D. Saupe, T. Schreck, and D. V.
Vranic. Using entropy impurity for improved 3d object simi-
larity search. In Proc. of 5th IEEE Int. Conf. on Multimedia
and Expo (ICME’04), Taipei, Taiwan, pages 1303–1306, 2004.

[BKS+05a] B. Bustos, D. A. Keim, D. Saupe, T. Schreck, and D. V. Vranic.
Feature-based similarity search in 3d object databases. ACM
Comput. Surv., 37(4):345–387, 2005.

[BKS05b] B. Bustos, D. A. Keim, and T. Schreck. A pivot-based index
structure for combination of feature vectors. In SAC ’05: Proc.
of the 2005 ACM Symposium on Applied computing, pages 1180–
1184. ACM Press, 2005.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-Tree: An efficient and robust access method for points and
rectangles. In SIGMOD Rec., pages 322–331, 1990.

[BM98] A. Blum and T. Mitchell. Combining labeled and unlabeled data
with co-training. In In Proc. of the eleventh annual Conf. on
Computational learning theory (COLT’98), pages 92–100, 1998.

[BM99] H. Brighton and C. Mellish. On the consistency of information
filters for lazy learning algorithms. In Proc. of the 3rd European
Conf. on Principles of Data Mining and Knowledge Discovery
(PKDD’99), pages 283–288, 1999.

[BM02] H. Brighton and C. Mellish. Advances in Instance Selection for
Instance-Based Learning Algorithms, volume 6. Kluwer Aca-
demic Publishers, 2002.

286 REFERENCES

[BPS06a] C. Böhm, A. Pryakhin, and M. Schubert. The gauss-tree: Ef-
ficient object identification in databases of probabilistic fea-
ture vectors. In Proc. 22nd Int. Conf. on Data Engineering
(ICDE’06), Atlanta, GA, USA, page 9, 2006.

[BPS06b] C. Böhm, A. Pryakhin, and M. Schubert. Probabilistic ranking
queries on gaussians. In Proc. of the 18th Int. Conf. on Scientific
and Statistical Database Management (SSDBM’06), pages 169–
178, 2006.

[BS04] S. Bickel and T. Scheffer. Multi-View Clustering. In Proc. 4th
IEEE Int. Conf. on Data Mining (ICDM’04), Brighton, UK,
2004.

[Cam97] J. P. Campbell. Speaker recognition: A tutorial. Proc. of the
IEEE, Vol. 85, No. 9, 1997.

[CH67] T.M. Cover and P.E. Hart. Nearest neighbor pattern classifica-
tion. IEEE Transactions on information Theory, IT-13:21–27,
1967.

[CKG02] S.-C. Chen, R.L. Kashyap, and A. Ghafoor. Semantic Mod-
els for Multimedia Database Searching and Browsing. Kluwer
Academic Publishers, 2002.

[CKP03] R. Cheng, D.V. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data (SIGMOD’03), San
Diego, CA, USA, pages 551–562, 2003.

[CLC98] T. S. Chua, W. C. Low, and C. X. Chu. Relevance feedback
techniques for color-based image retrieval. In Proc. of the 4th
IEEE Int. MultiMedia Modelling Conf. (MMM’98), Washing-
ton, D.C., USA, 1998.

[Con00] The Gene Ontology Consortium. Gene ontology: Tool for the
unification of biology. Nature Genetics, 25:25–29, 2000.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In Proc. of the
23rd Int. Conf. on Very Large Data Bases, pages 426 – 435.
Morgan Kaufmann, San Francisco, CA, USA, 1997.

REFERENCES 287

[CSL99a] H. S. Chang, S. Sull, and S. U. Lee. Efficient video indexing
scheme for content-based retrieval. In IEEE Transactions on
Circuits and Systems for Video Technology, volume 9, pages
1269–1279, 1999.

[CSL99b] H. S. Chang, S. Sull, and S. U. Lee. Efficient video indexing
scheme for content-based retrieval. In IEEE Transactions on
Circuits and Systems for Video Technology, volume 9, pages
1269–1279, 1999.

[CV95] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[CVK04] C. H. L. Costa, J. D. Jr. Valle, and A. L. Koerich. Automatic
classification of audio data. IEEE Transactions on Systems,
Man, and Cybernetics, 3(6), 2004.

[CWS95] R. Chellappa, C. Wilson, and S. Sirohey. ”Human and machine
recognition of faces: A survey”. Proc. IEEE, 83(5):705–740,
1995.

[CXP+04] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter. Effi-
cient indexing methods for probabilistic threshold queries over
uncertain data. In Proc. 30th Int. Conf. on Very Large Data
Bases (VLDB’04), Toronto, Cananda, pages 876–887, 2004.

[CZ02a] S.S. Cheung and A. Zakhor. Efficient video similarity measure-
ment with video signature. In IEEE International Conference
on Image Processing (ICIP 02), volume 1, pages 621–624, 2002.

[CZ02b] S.S. Cheung and A. Zakhor. Efficient video similarity measure-
ment with video signature. In Proc. of the IEEE Int. Conf. on
Image Processing (ICIP’02), Rochester, New York, USA, vol-
ume 1, pages 621–624, 2002.

[DD05] P. D. Dobson and A. J. Doig. Predicting enzyme class from
protein structure without alignments. J. Mol. Biol., 4(345):187–
199, 2005.

[Deb04] S. Deb. Multimedia Systems and Content-Based Retrieval. Idea
Group Publishing, 2004.

[Deb05] S. Deb. Video Data Management and Information Retrieval.
Idea Group Publishing, 2005.

288 REFERENCES

[DK02] M. Deshpande and G. Karypis. Evaluation of techniques for
classifying biological sequences. In Proc. of 6th Pacific-Asia
Conf. on Advances in Knowledge Discovery and Data Mining
(PAKDD’02), Taipei, Taiwan, 2002, pages 417–431, 2002.

[DLLP97a] T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez. ”Solving
the multiple instance problem with axis-parallel rectangles”. Ar-
tificial Intelligence, 89:31–71, 1997.

[DLLP97b] T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez. Solving
the multiple instance problem with axis-parallel rectangles. Ar-
tificial Intelligence, 89:31–71, 1997.

[DM00] I. S. Dhillon and D. S. Modha. A data-clustering algorithm on
distributed memory multiprocessors. In Revised Papers from
Large-Scale Parallel Data Mining, Workshop on Large-Scale
Parallel KDD Systems, SIGKDD, pages 245–260, 2000.

[DS05] V. R. De Sa. Spectral Clustering with two Views. In Proc.
ICML Workshop, 2005.

[Dui02] R. Duin. The combining classifier: To train or not to train? In
Proc. 16th Int. Conf. on Pattern Recognition (ICPR’02), Quebec
City, Canada), pages 765–770, 2002.

[DYM+05] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis. ”Prob-
abilistic Spatial Queries on Existentially Uncertain Data”. In
Pro. 9th Int. Symposium on Spatial and Temporal Databases
(SSTD2005),Angra dos Reis, Brazil, pages 400–417, 2005.

[EKS02] M. Ester, H.-P. Kriegel, and M. Schubert. Web site mining: A
new way to spot competitors, customers and suppliers on the
WWW. In Proc. 8th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (SIGKDD’02), Edmonton, Canada,
2002.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases with
noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data
Mining (KDD’96), Portland, OR, USA, 1996.

[EM97] T. Eiter and H. Mannila. Distance measures for point sets and
their computation. Acta Informatica, 34(2):103–133, 1997.

REFERENCES 289

[FBF+94] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, and etall. Effi-
cient and effective querying by image content. Journal of Intel-
ligent Information Systems, 3:231–262, 1994.

[FI92] U. M. Fayyad and K. B. Irani. On the handling of continuous-
valued attributes in decision tree generation. Machine Learning,
8:87–102, 1992.

[FPSS96] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge
discovery and data mining: Towards a unifying framework. In
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining
(KDD’96), Portland, OR, USA, pages 82–88, 1996.

[FRB98] U. Fayyad, C. Reina, and P. Bradley. Initialization of iterative
refinement clustering algorithms. In Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining (KDD’98), New York,
NY, USA, pages 194–198, 1998.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. ”Fast
Subsequence Matching in Time-Series Databases”. In Proc.
ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’94), Minneapolis, MN, pages 419–429, 1994.

[FZ00] G. Forman and B. Zhang. Distributed data clustering can be
efficient and exact. SIGKDD Explor. Newsl., 2(2):34–38, 2000.

[Gat72] G.W. Gates. The reduced nearest neighbour rule. IEEE Trans-
actions on Information Theory, 18(3):431–433, 1972.

[GFKS02a] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. Smola. Multi-
instance kernels. In Proc. 19th Int. Conf. on Machine Learning
(ICML’02), Sydney, Australia, pages 179–186, 2002.

[GFKS02b] T. Gärtner, P.A. Flach, A. Kowalczyk, and A. Smola. ”Multi-
Instance Kernels”. In Proc. 19th Int. Conf. on Machine Learning
(ICML’02), Sydney, Australia, pages 179–186, 2002.

[GGM02] H. Greenspan, J. Goldberger, and A. Mayer. A probabilistic
framework for spatio-temporal video representation & index-
ing. In ECCV ’02: Proceedings of the 7th European Conference
on Computer Vision-Part IV, pages 461–475. Springer-Verlag,
2002.

290 REFERENCES

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 47–57, 1984.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis. Mathematical
Foundations. Springer, 1999.

[HB01] A. Hampapur and R. M. Bolle. Comparison of distance measures
for video copy detection. In IEEE International Conference on
Multimedia and Expo (ICME’01), page 188, 2001.

[HBV01] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. ”On Cluster-
ing Validation Techniques”. Journal of Intelligent Information
Systems, 2/3(17):107–145, 2001.

[HK06] J. Han and M. Kamber. Data Mining: Concepts and Techniques.
2nd Ed. Academic Press, 2006.

[HS95] G.I. Hjaltason and H. Samet. ”Ranking in Spatial Databa-
ses”. In Proc. 4th Int. Symposium on Large Spatial Databases,
SSD’95, Portland, USA, volume 951, pages 83–95, 1995.

[HSD73] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural fea-
tures for image classification. Proc. IEEE SMC, 1973.

[HSW+95] J. Hafner, H.S. Sawhney, Equitz W., M. Flickner, and
W. Niblack. Efficient color histogram indexing for quadratic
form distance functions. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI), 17 (7):729–736, 1995.

[IBW+04] T. Ianeva, L. Boldareva, T. Westerveld, R. Cornacchia,
A. de Vries, and D. Hiemstra. Probabilistic approaches to video
retrieval. In TREKVID, 2004.

[IL00] G. Iyengar and A. B. Lippman. Distributional clustering for
content-based retrieval of images and videos. In Proc. Int. Conf.
Image Processing, pages 81–84, 2000.

[JK99] E. Johnson and H. Kargupta. Hierarchical clustering from dis-
tributed, heterogeneous data. In M. Zaki and C. Ho, editors,
Large-Scale Parallel KDD Systems, volume 1759. Springer Ver-
lag, 1999.

[JKP04] E. Januzaj, H.-P. Kriegel, and M. Pfeifle. Scalable density-based
distributed clustering. In Proc. Europ. Conf. PKDD, 2004.

REFERENCES 291

[KBD01] L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision tem-
plates for multiple classifier fusion: an experimental comparison.
Pattern Recognition, 34:299–314, 2001.

[KDTM06] Y. Kanellopoulos, T. Dimopulos, C. Tjortjis, and C. Makris.
Mining source code elements for comprehending object-oriented
systems and evaluating their maintainability. SIGKDD Explo-
rations, 8(1):33–40, 2006.

[KHDM98] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining
classifiers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(3):226–239, 1998.

[KKKP06] H.-P. Kriegel, P. Kröger, P. Kunath, and A. Pryakhin. Effective
similarity search in multimedia databases using multiple repre-
sentations. In Proc. of the 12th IEEE Int. MultiMedia Modelling
Conf. (MMM’06), Beijing, China, pages 389–393, 2006.

[KKPS04a] K. Kailing, H.-P. Kriegel, A. Pryakhin, and M. Schubert. Clus-
tering multi-represented objects with noise. In Proceedings of
Advances in Knowledge Discovery and Data Mining, 8th Pacific-
Asia Conference, PAKDD 2004, Sydney, Australia., 2004.

[KKPS04b] H.-P. Kriegel, P. Kröger, A. Pryakhin, and M. Schubert. Us-
ing support vector machines for classifying large sets of multi-
represented objects. In Proc. of the 4th SIAM Int. Conf. on Data
Mining (SDM’04), Lake Buena Vista, Florida, USA. SIAM,
2004.

[KKPS05] H.-P. Kriegel, P. Kröger, A. Pryakhin, and M. Schubert. Effec-
tive and efficient distributed model-based clustering. In Proc.
5th IEEE Int. Conf. on Data Mining (ICDM’05), Houston, TX,
USA, pages 258–265, 2005.

[KKSS04] K. Kailing, H.-P. Kriegel, S. Schönauer, and T. Seidl. Effi-
cient similarity search for hierachical data in large databases.
In Proc. of 10th Int. Conf. on Extending Database Technology
(EDBT’04), Heraklion, Greece, pages 88–105, 2004.

[KPS05] H.-P. Kriegel, A. Pryakhin, and M. Schubert. Multi-represented
knn-classification for large class sets. In Proc. 10th Int. Conf.
on Database Systems for Advanced Applications (DASFAA’05),
Beijing, China, volume 3453, pages 511–522, 2005.

292 REFERENCES

[KPS06] H.-P. Kriegel, A. Pryakhin, and M. Schubert. An em-approach
for clustering multi-instance objects. In Proc. of 10th Pacific-
Asia Conf. on Advances in Knowledge Discovery and Data Min-
ing (PAKDD’06), Singapore, 2006, pages 139–148, 2006.

[KPSZ06] H.-P. Kriegel, A. Pryakhin, M. Schubert, and A. Zimek. Cosmic:
Conceptually specified multi-instance clusters. to appear. In
Proc. 6nd IEEE Int. Conf. on Data Mining (ICDM’06), Hong
Kong, 2006.

[Lev44] K. Levenberg. A method for the solution of certain problems in
least squares. Quart. Appl. Math., 2:164–168, 1944.

[LJF94] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. ”The TV-Tree: An
Index Structure for High-Dimensional Data”. VLDB Journal,
3(4):517–542, 1994.

[LKBR06] K. Liu, H. Kargupta, K. Bhaduri, and J. Ryan. Distributed
data mining bibliography, 2006.

[LYH06] C. Liu, X. Yan, and J. Han. Mining control flow abnormality
for logic error isolation. In Proc. of the 6th SIAM Int. Conf. on
Data Mining (SDM’06), Bethesda, MD, USA, 2006.

[LYY+05] C. Liu, X. Yan, H. Yu, J. Han, and P.S. Yu. Mining behaviour
graphs for “backtrace” of noncrashing bugs. In Proc. of the 5th
SIAM Int. Conf. on Data Mining (SDM’05), Newport Beach,
CA, USA, 2005.

[MG93] R. Mehrotra and J.E. Gary. Feature-based retrieval of similar
shapes. In Proc. 9th Int. Conf. on Data Engineering (ICDE’93),
Vienna, Austria, pages 108–115, 1993.

[MPV05] Y. Manalopoulos, A. Papadopoulos, and M. G. Vassilakopoulos.
Spatial Databases: Technologies, Techniques and Trends. Idea
Group Publishing, 2005.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, H. E. Glasman,
D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The qbic
project: Querying images by content using color, texture, and
shape. In SPIE 1993 Int. Symposium on Electronic Imaging:
Science and Technology Conference 1908, Storage and Retrieval
for Image and Video Databases, San Jose, CA, 1993.

REFERENCES 293

[NH94] R. Ng and J. Han. Efficient and effective clustering methods
for spatial data mining. In Proc. 20th Int. Conf. on Very Large
Data Bases (VLDB’94), Santiago, Chile, pages 144–155, 1994.

[NHBM98] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI
repository of machine learning databases, 1998.

[NWH01a] M. Naphade, R. Wang, and T. Huang. Multimodal pattern
matching for audio-visual query and retrieval. In Proc. of the
Storage and Retrieval for Media Databases (SPIE), San Jose,
CA, pages 188–195, 2001.

[NWH01b] M. Naphade, R. Wang, and T. Huang. Multimodal pattern
matching for audio-visual query and retrieval. In Proc. SPIE,
Storage and Retrieval for Media databases, volume 4315, pages
188–195, 2001.

[oI84] Federal Bureau of Investigation. The science of fingerprints:
Classification and uses. Washington, D.C., U.S. Government
Printing Office, 1984.

[OS03] C.S. Ong and A. Smalo. Machine learning with hyperkernels. In
Proc. 20th Int. Conf. on Machine Learning (ICML’03), Wash-
ington, DC, USA, pages 576–583, 2003.

[PCST99] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin
dags for multiclass classification. In Proc. Advances in Neural
Information Processing Systems, pages 547–553, 1999.

[PJ99] D. Pfoser and C. S. Jensen. Capturing the uncertainty of
moving-object representations. Lecture Notes in Computer Sci-
ence, 1651, 1999.

[PK03] B.-H. Park and H. Kargupta. Distributed data mining: Algo-
rithms, systems, and applications. In N. Ye, editor, The Hand-
book of Data Mining. Lawrence Erlbaum Associates Publishers,
2003.

[RB01] J. Ramon and M. Bruynooghe. A polynomial time computable
metric between points sets. Acta Informatica, 37:765–780, 2001.

[RHM97] Y. Rui, T. S. Huang, and S. Mehrotra. Content-based image
retrieval with relevance feedback in mars. In Proc. of the IEEE
Int. Conf. on Image Processing (ICIP’97), Santa Barbara, CA,
USA, 1997.

294 REFERENCES

[RWLI75] G.L. Ritter, H.B. Woodruff, S.R. Lowry, and T.L. Isenhour. An
algorithm for the selective nearest neighbor decision rule. IEEE
Transactions on Information Theory, 21(6):665–669, 1975.

[Sal89] G. Salton. Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Addison-
Wesley, 1989.

[SC99] M. Sanderson and B. Croft. Deriving concept hierarchies from
text. In Proc. 22nd ACM SIGIR Conf. on Research and De-
velopment in Information Retrieval (SIGIR’99),Berkley, CA,
USA, pages 206–213, 1999.

[SEKX98] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based
clustering in spatial databases: The algorithm GDBSCAN and
its applications. Data Min. Knowl. Discov., 2(2):169–194, 1998.

[SJL+03a] J. R. Smith, A. Jaimes, C-Y. Lin, M. Naphade, A. P. Nat-
sev, and B. Tseng. Interactive search fusion methods for video
database retrieval. In Proc. of the IEEE Int. Conf. on Image
Processing (ICIP’03), Barcelona, Spain, 2003.

[SJL+03b] J.R. Smith, A. Jaimes, C.-Y. Lin, M. Naphade, A.P. Natsev, and
B. Tseng. Interactive search fusion methods for video database
retrieval. In IEEE International Conference on Image Process-
ing (ICIP 03), volume 1, pages 741–744, 2003.

[SK97] T. Seidl and H.-P. Kriegel. Efficient user-adaptable similarity
search in large multimedia databases. In Proc. 23rd Int. Conf.
on Very Large Data Bases (VLDB’97), Athens, Greece, pages
506–515, 1997.

[Smy96] P. Smyth. Clustering using monte carlo cross-validation. In
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining
(KDD’96), Portland, OR, USA, pages 126–133, 1996.

[SN05] U. Srinivasan and N. Nepal. Managing Multimedia Semantics.
IRM Press, 2005.

[SQL+03] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky. Auto-
matic extraction of clusters from hierarchical clustering rep-
resentations. In Proc. of 7th Pacific-Asia Conf. on Advances
in Knowledge Discovery and Data Mining (PAKDD’03), Seoul,
Korea, 2003, pages 75–87, 2003.

REFERENCES 295

[SS00] M. Sayal and P. Scheuermann. A distributed algorithm for web-
based access patterns. In Proc. KDD-WS on Distributed and
Parallel Knowledge Discovery, 2000.

[TC02] G. Tzanetakis and P. Cook. Musical genre classification of audio
signals. IEEE Transactions on Speech and Audio Processing,
10(5):293–302, 2002.

[TCX+05] Y. Tao, R. Cheng, X. Xiao, W.K. Ngai, B. Kao, and S. Prab-
hakar. ”Indexing Multi-Dimensional Uncertain Data with Arbi-
trary Probability Density Functions”. In Proc. 31th Int. Conf.
on Very Large Data Bases (VLDB’05), Trondheim, Norway,
pages 922–933, 2005.

[TK00] T. Tolonen and M. Karjalainen. A computationally efficient
multipitch analysis model. IEEE Transactions on Speech and
Audio Processing, 8(6), 2000.

[TKR99] Y.-P. Tan, S.R. Kulkarni, and P.J. Ramadge. A framework for
measuring video similarity and its application to video query by
example. In IEEE International Conference on Image Process-
ing (ICIP’99), volume 2, pages 106–110, 1999.

[TWZC02] G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain. The
geometry of uncertainty in moving objects databases. In Proc. of
10th Int. Conf. on Extending Database Technology (EDBT’02),
Prague, Czech Republic, pages 233–250, 2002.

[VM02] G. Valentini and F. Masulli. Ensembles of learning machines.
In Proc. of the 13th Italian Workshop on Neural Nets-Revised
Papers (WIRN VIETRI 2002), pages 3–22, 2002.

[WFP03] N. Weidmann, E. Frank, and B. Pfahringer. A two-level learning
method for generalized multi-instance problems. In Proc. ECML
2003, Cavtat-Dubrovnik, Croatia, 2003, pages 468–479, 2003.

[WLCS04] Y. Wu, C.-Y. Lin, E. Chang, and J. R. Smith. Multimodal infor-
mation fusion for video concept detection. In Proc. of the IEEE
Int. Conf. on Image Processing (ICIP’04), Singapore, 2004.

[WM97] H.R. Wilson and T.R. Martinez. Instance pruning techniques.
In Proc. 14th Int. Conf. on Machine Learning, pages 403–411.
Morgan Kaufmann Publishers, 1997.

296 REFERENCES

[WM00] H.R. Wilson and T.R. Martinez. Machine Learning, 38-3.
Reduction Techniques for Instance-Based Learning Algorithms.
Kluwer Academic Publishers, Boston., 2000.

[WMSW01] J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu. New techniques
for extracting features from protein sequences. IBM Systems
Journal, 40(2):426–441, 2001.

[WSB98] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in high-
dimensional spaces. In Proc. 24th Int. Conf. Very Large Data
Bases, VLDB, pages 194–205, 1998.

[WZ00] J. Wang and J.D. Zucker. Solving multiple-instance problem:
A lazy learning approach. In Proc. 17th Int. Conf. on Ma-
chine Learning (ICML’00), Stanford, CA, USA, pages 1119–
1125, 2000.

[WZC+03] J. Wang, H. Zeng, Z. Chen, H. Lu, L. Tao, and W. Ma. ReCoM:
Reinforcement clustering of multi-type interrelated data objects.
In Proc. SIGIR, 2003.

[XJK03] X. Xu, J. Jäger, and H.-P. Kriegel. A fast parallel clustering
algorithm for large spatial databases. Data Mining and Knowl-
edge Discovery, an International Journal, 3(3):263–290, 2003.

[Yar95] D. Yarowsky. Unsupervised word sense disambiguation rivaling
supervised methods. In Proc. of the 33rd annual meeting on
Association for Computational Linguistics, pages 189–196, 1995.

[ZCM02] H. Zeng, Z. Chen, and W. Ma. A unified framework for clus-
tering heterogeneous web objects. In Proc. 3rd WISE 2002,
Singapore, pages 161–172. IEEE Computer Society, 2002.

[ZCPR03] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld.
Face recognition: A literature survey. ACM Comput. Surv.,
35(4):399–458, 2003.

[Zha03] T. Zhang. Semi-automatic approach for music classification. In
Proc. SPIE Conf. on Internet Multimedia Management Systems,
2003.

[Zho04] Z.-H. Zhou. Multi-instance learning: A survey. Technical re-
port, AI Lab, Computer Science and Technology Department,
Nanjing University, Nanjing, China, 2004.

REFERENCES 297

[Zhu05] O. V. Zhuravskii. Error correction in an electromechanical angle
sensor for an analog-to-digital conversion, volume 34. Springer
New York, 2005.

[ZRHM98] Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra. Adaptive
key frame extraction using unsupervised clustering. In Proc. of
the IEEE Int. Conf. on Image Processing (ICIP’98), Chicago,
IL, ISA, 1998.

298 REFERENCES

	Acknowledgement
	Abstract
	Zusammenfassung
	I Preliminaries
	1 Introduction
	1.1 Advanced Database Systems
	1.1.1 Biometric Database Systems
	1.1.2 Moving Object Database Systems
	1.1.3 Sensor Network Database Systems
	1.1.4 Biological Database Systems
	1.1.5 Database Systems for CAD-Data
	1.1.6 Multimedia Database Systems
	1.1.7 Database Systems for Web Data
	1.1.8 Distributed Data

	1.2 Similarity Search
	1.3 Data Mining
	1.4 Advanced Database Systems: Challenges for Similarity Search and Data Mining Techniques
	1.5 Outline of the Thesis

	2 Related Work
	2.1 Similarity Search
	2.1.1 Similarity Search based on Feature Vectors
	2.1.2 Similarity Search based on Probabilistic Feature Vectors
	2.1.3 Similarity Search based on Multiple Representations
	2.1.4 Similarity Search based on Multiple Instances
	2.1.5 Summarization Techniques

	2.2 Data Mining
	2.2.1 Basic Clustering Approaches
	2.2.2 Classification and Clustering of Multi-Represented Objects
	2.2.3 Classification and Clustering of Multi-Instance Objects
	2.2.4 Evaluation Techniques

	II Similarity Search Techniques
	3 Efficient Object Identification
	3.1 Introduction
	3.2 Related Work
	3.3 The Gaussian Uncertainty Model for Identification Task
	3.3.1 Probabilistic Feature Vectors
	3.3.2 Queries on a database of probabilistic feature vectors

	3.4 Processing of Identification Queries
	3.5 The Gauss-Tree
	3.5.1 Structure of the Gauss-Tree
	3.5.2 Query Processing
	3.5.3 k-Most-Likely Identification Query (k-MLIQ)
	3.5.4 Determining the Result Probability for k-MLIQ
	3.5.5 Threshold Identification Queries (TIQs)
	3.5.6 Tree Construction

	3.6 Experimental Evaluation
	3.7 Conclusions

	4 High Performance Video Retrieval using Probabilistic Feature Vectors
	4.1 Introduction
	4.2 Related Work
	4.3 Video Retrieval using Probabilistic Feature Vectors
	4.4 Indexing Summarized Videos
	4.4.1 Answering Set-Valued Queries
	4.4.2 Set-Valued Probabilistic Threshold Query
	4.4.3 Set-Valued Probabilistic Ranking Query

	4.5 Experimental Evaluation
	4.6 ProVeR: Probabilistic Video Retrieval using the Gauss-Tree
	4.6.1 System Architecture and Implementation
	4.6.2 Practical Benefits

	4.7 Conclusions

	5 Probabilistic Ranking Queries for Spatial Database Systems
	5.1 Introduction
	5.2 Related Work
	5.3 Spatial Uncertainty Model and Query Types
	5.3.1 Gaussian Uncertainty Model
	5.3.2 Spatial Queries on the Gaussian Uncertainty Model

	5.4 Processing Spatial Probabilistic Queries
	5.5 Efficient Query Processing using the Gauss-Tree
	5.6 Experimental Evaluation
	5.7 Conclusions

	6 Effective Similarity Search in Multimedia Databases using Multiple Representations
	6.1 Introduction
	6.2 Related Work
	6.3 Multi-Represented Similarity Search in Multimedia Databases
	6.3.1 Weighting Functions for Summarizations
	6.3.2 Combining Multiple Representations for Similarity Detection

	6.4 Experimental Evaluation
	6.4.1 Multi-Represented vs. Uni-Represented Similarity Search
	6.4.2 Multi-Represented Similarity Search Applications

	6.5 Conclusions

	III Data Mining Techniques
	7 Using Uncertainty to Provide Privacy Preservation for Distributed Clustering
	7.1 Introduction
	7.2 Related Work
	7.3 Distributed Model-based Clustering
	7.3.1 Problem Analysis
	7.3.2 Computation of Local Models
	7.3.3 Computation of the Global Model
	7.3.4 Scaling to High Dimensional Datasets

	7.4 Experimental Evaluation
	7.5 Conclusions

	8 An EM-Approach for Clustering Multi-Instance Objects
	8.1 Introduction
	8.2 Related Work
	8.3 A Statistical Model for Multi-Instance Objects
	8.4 EM-Clustering for Multi-Instance Objects
	8.4.1 Generating a Mixture Model for the Instance Set
	8.4.2 Finding a Start Partitioning of Multi-Instance Objects
	8.4.3 EM for Clustering Multi-Instance Objects

	8.5 Experimental Evaluation
	8.6 Conclusions

	9 Conceptually Specified Multi-Instance Clusters
	9.1 Introduction
	9.2 Related Work
	9.3 Preliminaries
	9.4 COSMIC
	9.4.1 Deriving a Concept Hierarchy
	9.4.2 Deriving Attributes and Concepts

	9.5 Experimental Evaluation
	9.5.1 Experiments on Synthetic Datasets
	9.5.2 Experiments on Real-World Datasets

	9.6 Conclusions

	10 Density-based Clustering of Multi-Represented Objects
	10.1 Introduction
	10.2 Related Work
	10.3 Clustering of Multi-Represented Objects with Noise
	10.3.1 Union of Multiple Representations
	10.3.2 Intersection of Multiple Representations

	10.4 Handling Semantics
	10.4.1 A Model for Local Semantics
	10.4.2 Combining Multiple Representations

	10.5 Hierarchical Clustering of Multi-Represented Objects
	10.5.1 Normalization
	10.5.2 Multi-Represented OPTICS

	10.6 Performance Evaluation
	10.6.1 Multi-Represented DBSCAN
	10.6.2 Multi-Represented OPTICS

	10.7 Conclusions

	11 Multi-Represented kNN-Classification
	11.1 Introduction
	11.2 Related Work
	11.3 kNN-Classification of Complex Objects
	11.3.1 Problem Definition
	11.3.2 Density-based Training Instance Reduction
	11.3.3 kNN-Classification of Multi-Represented objects

	11.4 Experimental Evaluation
	11.5 Conclusions

	12 Hierarchical Genre Classification for Large Music Collections using Multiple Representations
	12.1 Introduction
	12.2 Related Work
	12.3 Efficient Hierarchical Genre Classification
	12.3.1 Hierarchical Instance Reduction.
	12.3.2 Hierarchical Genre Classification by Using Multiple Representations.

	12.4 Experimental Evaluation
	12.5 Practical Benefits
	12.6 Conclusions

	IV Conclusions
	13 Summary of Contributions
	13.1 Preliminaries (Part I)
	13.2 Similarity Search Techniques (Part II)
	13.3 Data Mining Techniques (Part III)

	14 Future Work
	List of Figures
	List of Tables
	References

