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"[One] topic we touched on was mutation ... We totally missed the possible role of … 

[DNA] repair although … I later came to realise that DNA is so precious that probably 

many distinct repair mechanisms would exist. Nowadays, one could hardly discuss 

mutation without considering repair.” 

Francis Crick in "The double helix: a personal view" (Crick, 1974). 



 Table of contents 

Table of contents 

1 INTRODUCTION .......................................................................................................................................1 

1.1 DNA REPAIR .........................................................................................................................................1 
1.1.1 Nucleotide excision repair .......................................................................................................2 

1.1.1.1 NER in bacteria .................................................................................................................................. 3 
1.1.1.2 Comparison of NER in eukaryotes to the bacterial system ............................................................... 5 

1.1.2 Transcription-coupled DNA repair..........................................................................................5 
1.1.2.1 Transcriptional arrest and rescue........................................................................................................ 6 
1.1.2.2 The Mfd protein is the bacterial transcription-repair coupling factor ............................................... 6 
1.1.2.3 Domain architecture and biochemical properties of Mfd .................................................................. 8 
1.1.2.4 UvrA binding .................................................................................................................................... 10 
1.1.2.5 Eukaryotic TCR................................................................................................................................ 11 

1.2 STRUCTURE DETERMINATION BY X-RAY CRYSTALLOGRAPHY.......................................................... 12 
1.2.1 Structural biology.................................................................................................................. 12 
1.2.2 Structure determination by X-ray crystallography............................................................... 13 

1.2.2.1 Theory of X-ray diffraction.............................................................................................................. 13 
1.2.2.2 Structure factors and electron density .............................................................................................. 14 
1.2.2.3 Phasing by use of anomalous dispersion.......................................................................................... 15 

1.3 OBJECTIVES........................................................................................................................................ 18 

2 MATERIALS AND METHODS............................................................................................................. 20 

2.1 MATERIALS ........................................................................................................................................ 20 
2.2 MOLECULAR BIOLOGY METHODS ...................................................................................................... 20 

2.2.1 Cloning .................................................................................................................................. 20 
2.2.2 Site-directed mutagenesis...................................................................................................... 21 

2.3 MICROBIOLOGY METHODS................................................................................................................. 23 
2.3.1 Transformation of E.coli ....................................................................................................... 24 
2.3.2 Protein expression................................................................................................................. 25 
2.3.3 Selenomethionine-labelling................................................................................................... 25 

2.4 PROTEINCHEMICAL METHODS............................................................................................................ 27 
2.4.1 Protein purification ............................................................................................................... 27 
2.4.2 Protein-protein interaction assay ......................................................................................... 28 

2.5 PROTEIN ANALYSIS ............................................................................................................................ 29 
2.5.1 Analytical size exclusion chromatography ........................................................................... 29 
2.5.2 Limited proteolysis ................................................................................................................ 29 
2.5.3 Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) ............................................ 30 
2.5.4 Protein sequencing (Edman, 1950)....................................................................................... 30 
2.5.5 Matrix assisted laser desorption ionisation Time-of-Flight analysis .................................. 30 

 

 



 Table of contents 

2.6 FUNCTIONAL ASSAYS......................................................................................................................... 31 
2.6.1 ATPase activity assay............................................................................................................ 31 
2.6.2 DNA binding assay................................................................................................................ 32 

2.7 STRUCTURAL ANALYSIS OF MFD-N2................................................................................................. 33 
2.7.1 Protein crystallization by sitting drop vapour diffusion....................................................... 33 
2.7.2 Crystallization of Mfd-N2...................................................................................................... 35 
2.7.3 Data collection, structure determination, model building and refinement.......................... 35 

3 RESULTS .................................................................................................................................................. 37 

3.1 FULL-LENGTH E.COLI MFD................................................................................................................ 37 
3.1.1 Purification and crystallization of full-length Mfd............................................................... 37 
3.1.2 Limited proteolysis ................................................................................................................ 38 

3.2 PURIFICATION, CRYSTALLIZATION AND STRUCTURE DETERMINATION OF MFD-N2 ......................... 41 
3.2.1 Purification of Mfd-N2 .......................................................................................................... 41 
3.2.2 Crystallization ....................................................................................................................... 42 
3.2.3 Data collection ...................................................................................................................... 44 
3.2.4 Structure determination and refinement ............................................................................... 45 
3.2.5 Mfd-N2 crystallized with two molecules in the asymmetric unit.......................................... 49 

3.3 STRUCTURE OF MFD-N2.................................................................................................................... 51 
3.3.1 Mfd-N2 crystal structure ....................................................................................................... 51 
3.3.2 Conservation of the Mfd N-terminus..................................................................................... 52 
3.3.3 Comparison of Mfd-N2 to UvrB............................................................................................ 53 
3.3.4 Domain 2 ............................................................................................................................... 57 

3.3.4.1 Superposition of domain 2 of Mfd and UvrB .................................................................................. 57 
3.3.4.2 Potential interaction sites.................................................................................................................. 58 
3.3.4.3 Interaction of Mfd mutants with UvrA ............................................................................................ 60 

3.3.5 Functional sites ..................................................................................................................... 64 
3.3.5.1 The Mfd N-terminus does not bind to DNA.................................................................................... 64 
3.3.5.2 The Mfd N-terminus contains a degenerated ATPase motif ........................................................... 65 

4 DISCUSSION............................................................................................................................................ 70 

4.1 THE MFD N-TERMINUS RESEMBLES UVRB........................................................................................ 70 
4.2 THE ROLE OF MFD IN RECRUITMENT OF THE UVRA-UVRB COMPLEX .............................................. 73 

5 SUMMARY ............................................................................................................................................... 78 

6 REFERENCES ......................................................................................................................................... 79 

 

 



 Table of contents 

7 SUPPLEMENTARY MATERIAL......................................................................................................... 86 

7.1 STABLE FRAGMENTS OF MFD ............................................................................................................ 86 
7.2 ABBREVATIONS.................................................................................................................................. 89 
7.3 AMINOACIDS AND NUCLEOTIDES....................................................................................................... 91 

8 CURRICULUM VITAE .......................................................................................................................... 92 

9 ACKNOWLEDGEMENTS..................................................................................................................... 93 



 Introduction  1 

1 Introduction 

 

1.1 DNA repair 

DNA, the carrier of genetic information, is constantly threatened by a variety of damaging 

agents. Sources of DNA damage can be either exogenous (like chemicals or radiation) or 

endogenous (reactive metabolites like oxygen radicals or replication errors). They affect 

either the nucleobases or the backbone of the DNA helix (Lodish et al., 2000; 

Hoeijmakers, 2001). Examples for common DNA lesions are listed in table 1.1. 

 

Table 1.1:  DNA damage types (according to Lodish et al., 2000; Hoeijmakers, 
2001). 

DNA damage types Examples Caused by 

Base modifications Oxidation: 8-oxoguanine  
Alkylation: 7-methylguanine 
Deamination of cytosine to uracil 

Oxygen radicals 
Alkylating reagents 
Spontaneous deamination 

Mismatches G/T or A/C pairs Replication errors 

Breaks in the backbone Single strand breaks (SSBs) 
Double strand breaks (DSBs) 

Ionizing radiation or chemicals  

Bulky photoadducts Cyclobutane-pyrimidine dimers  
(CPDs), 6-4-Photoproducts 

UV radiation 

Cross-links Intrastrand cross-links 
Interstrand cross-links 

Cross-linking agents 
(bifunctional alkyklating agents) 

 

 

If left unrepaired, these DNA lesions can lead to mutations – which may in higher 

organisms result in cancer – or cell death.  

DNA damaging agents are often used as chemotherapeutics in cancer therapy in order to 

inhibit DNA replication and therefore stop cell division. In particular, DNA cross-linking 

agents, e.g cis-diammine dichloroplatinum(II) (cisplatin) or mitomycin C, are applied 

(Jamieson and Lippard, 1999; Siede et al., 2005). 

Cells have evolved multiple repair mechanisms, which use different enzymes and deal with 

different kinds of lesions (see table 1.2) (reviewed in Lindahl and Wood, 1999; 

Hoeijmakers, 2001; Alberts et al., 2002; Siede et al., 2005; Friedberg et al., 2006). In 

humans, several inherited disorders were found to be associated with defects in DNA 
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damage repair genes (see chapters 1.1.1.2. and 1.1.2.5.). Many of these syndromes are 

characterized by premature ageing and cancer predispositions (Hoeijmakers, 2001). 

 

Table 1.2:  DNA repair systems (Friedberg et al., 2006) 

Repair mechanism Repair systems Applied to 

Direct damage 
reversal 

Photoreactivation  
Oxidative demethylation 
Ligation of SSBs 

Photoproducts (CPDs) 
Alkylated bases 
SSBs 

Damage removal 
(Excision repair) 

Nucleotide excision repair (NER) 
  - Global genome repair (GGR) 
  - Transcription coupled repair (TCR) 
Base excision repair (BER) 
Mismatch repair (MMR) 

Bulky, helix-distorting lesions  
like photoproducts, cisplatin- 
adducts, or cross-links 
Modified bases 
Single-base mispairs 

Double strand break 
(DSB) repair 

Homologous recombination (HR) 
Non-homologous end-joining (NHEJ) 

Double strand breaks 

Damage tolerance Trans-lesion synthesis (TLS)  
 

 

In the following chapters, the repair systems of nucleotide excision repair (NER) and 

transcription-coupled repair (TCR) will be described in more details. 

 

1.1.1 Nucleotide excision repair 

Nucleotide excision repair (NER) is a functionally conserved DNA repair system which 

can be found in all kingdoms of life (Sancar, 1996; Ogrunc et al., 1998; Batty and Wood, 

2000). NER deals with a broad range of chemically and structurally unrelated helix-

distorting DNA lesions like UV-induced photoproducts, bulky chemical adducts as well as 

inter- and intrastrand cross-links (Sancar and Rupp, 1983; Batty and Wood, 2000; Van 

Houten et al., 2005). The basic NER mechanisms have been strongly conserved throughout 

evolution, although the enzymes involved in the process differ between prokaryotes and 

eukaryotes (Batty and Wood, 2000). Interestingly, some mesophilic Archaea use the 

bacterial system, while in most Archaea, proteins homologous to eukaryotic nucleotide 

excision repair factors are found (Kelman and White, 2005). 
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1.1.1.1 NER in bacteria 

In bacteria (and in some archaea as well), nucleotide excision repair is mediated by the 

UvrABC system (reviewed in Batty and Wood, 2000; Van Houten et al., 2005; Truglio et 

al. 2006).  

 

Upon ATP-binding, UvrA dimerizes (Mazur and Grossman, 1991) and forms a complex 

with UvrB which contains either the UvrA2-UvrB1 heterotrimer (Orren and Sancar, 1989) 

or the UvrA2-UvrB2 heterotetramer (Verhoeven et al., 2002). This so-called UvrAB 

damage-recognition complex binds to DNA and scans the molecule for sites of helix-

distorting DNA lesions.  

The role of the second UvrB subunit is still being discussed. The UvrA-dimer seems to 

interact directly with only one UvrB molecule, while the second UvrB binds to the first 

one. The UvrB-dimer is proposed to function in damage recognition in both DNA strands. 

The second UvrB dissociates upon UvrC-binding (Hildebrand and Grossman, 1999; 

Verhoeven et al., 2002). 

After damage verification, UvrB is loaded onto the damaged DNA, and UvrA dissociates 

from the lesion site (Orren and Sancar, 1989; Sancar and Hearst, 1993). DNA becomes 

wrapped around UvrB (Verhoeven et al., 2001), and UvrB inserts a hairpin motif ("β-

hairpin") into the DNA duplex (Truglio et al., 2006b). This step is energy-dependent and 

requires ATP hydrolysis both by UvrA and UvrB (Van Houten et al., 1988; Moolenaar et 

al., 2000). UvrB possesses cryptic helicase activity (Orren and Sancar, 1989; Theis et al., 

2000; Verhoeven et al., 2002) which is proposed to function in destabilization of the 

double-helix, so that UvrB can insert the β-hairpin between the two strands (Skorvaga et 

al., 2004; Truglio et al., 2006a). A kinetic analysis has shown that the formation of the 

UvrB-DNA pre-incision complex (PIC) is the rate-limiting step of the NER process (Orren 

and Sancar, 1990). 

UvrC is then recruited to the lesion. The UvrB C-terminus interacts with a homologous 

region located in the N-terminal half of UvrC (Moolenaar et al., 1998; Sohi et al., 2000) 

UvrC mediates two incisions in the damaged strand (Lin and Sancar, 1992; Verhoeven et 

al., 2000): The first incision takes place 3 or 4 nucleotides 3’ to the lesion. This step 

requires ATP-binding by UvrB (Orren and Sancar, 1990; Moolenaar et al., 2000; Goosen 

and Moolenaar, 2001; Truglio et al., 2005). The second incision by UvrC is independent of 

UvrB. It occurs at the eighth phosphodiesterbond 5’ to the damage site (Moolenaar et al., 

1995). The first incision is performed by the N-terminal part of UvrC, while the C-terminal 
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half mediates the 5’-incision. UvrD (helicase II) mediates removal of UvrC and the excised 

12- or 13-mer oligonucleotide. DNA polymerase I displaces UvrB and filles the gap. The 

DNA is finally sealed by DNA ligase (Caron et al., 1985; Husain et al., 1985). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Bacterial nucleotide excision repair is mediated by the UvrABC system 

(adopted from Goosen and Moolenaar, 2001). The mechanism of this 
repair pathway is described in the text (DNA lesion, red star; UvrA, 
orange; UvrB, green; UvrC, blue). 

 

A second endonulease in nucleotide excision repair, Cho (UvrC homologue), was recently 

identified. Cho is a homologue to the N-terminal part of UvrC. Moolenaar and colleagues 

pointed out that, in the presence of UvrA and UvrB, Cho can perform the 3’ incision to 

damaged DNA. The incision takes place 4 nucleotides further downstream than the UvrC-

mediated cleavage. The incised DNA is further processed by UvrC (Moolenaar et al., 

2002).  
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1.1.1.2 Comparison of NER in eukaryotes to the bacterial system 

Nucleotide excision repair in eukaryotic cells shows many remarkable similarities to the 

bacterial system. The general mechanism is highly conserved, but different proteins are 

used in the repair process. While bacteria require only three proteins – UvrA, UvrB and 

UvrC – for damage recognition and the incision reactions, human NER uses up to 19 

polypeptides for these steps (table 1.3) (Sancar, 1996; Batty and Wood, 2000; Coin et al., 

2006). 

 

Table 1.3:  Proteins involved in bacterial and eukaryotic nucleotide excision repair 
(adopted from Batty and Wood, 2000). 

 bacteria human (yeast) 

Damage recognition UvrA2B1/2  XPC–hHR23B (Rad4–Rad23) 

Opening, pre-inscision complex UvrB XPA (Rad14), RPA, TFIIH 

3'-incision UvrC XPG (Rad2) 

5'-incision UvrC    ERCC1–XPF (Rad10–Rad1) 

Excison, repair synthesis UvrD, PolI, ligase PCNA, ligase, RFC, RPA, Pol δ/ε 
 

 

Humans deficient in nucleotide excision repair suffer from xeroderma pigmentosum (XP), 

a rare, recessively inherited disease which is mainly characterized by extreme UV 

sensitivity, parchment skin ("xeroderma") and freckles ("pigmentosum"). XP is associated 

with an increased risk to develop malignancies, especially skin cancers (Cleaver and 

Kraemer, 1995; de Boer and Hoeijmakers, 2000; Andressoo and Hoeijmakers, 2005).  

 

1.1.2 Transcription-coupled DNA repair 

Damage repair in active genes occurs much faster than in the overall genome. This 

phenomenon is not due to the better accessibility of transcribed DNA regions. It could be 

shown that the higher repair rate is only true for the transcribed strand, while the non-

transcribed strand is repaired at the same rate than the overall genome. These observations 

lead to the discovery of a mechanism called transcription-coupled repair (TCR) (Mellon et 

al., 1986; Mellon et al., 1987; Mellon and Hanawalt, 1989). Transcription-coupled repair is 

present in eukaryotes as well as in prokaryotes. 
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1.1.2.1 Transcriptional arrest and rescue 

RNA polymerase (RNAP) pauses frequently during transcriptional elongation (Fish and 

Kane, 2002). This transcriptional pausing is a temporary interruption of transcription. 

Paused polymerase slowly changes its conformation and isomerizes to an arrested state 

which is accompanied by reverse movement ("backtracking") by several nucleotides 

(Komissarova and Kashlev, 1997). In this position, the active site is not aligned with the 

RNA 3’- hydroxyl end, and RNA polymerase cannot resume transcription by itself. In 

theory, a single RNA polymerase molecule which is stalled irreversibly in an essential 

gene could cause cell death (Svejstrup, 2002a).  

Transcriptional arrest may occur in case of nucleotide starvation or when RNA polymerase 

encounters a roadblock like a DNA-binding protein (Komissarova and Kashlev, 1997; Fish 

and Kane, 2002). In addition, intrinsic signals in DNA and RNA have been identified to 

cause pausing or arrest of RNA polymerase (Artsimovitch and Landick, 2000). 

Transcription factors (GreA/GreB in bacteria, TFIIS in eukaryotes) are required to 

reactivate arrested RNA polymerase by inducing internal cleavage of the RNA (Reines et 

al., 1992; Tornaletti et al., 1999; Kettenberger et al., 2003; Nickels and Hochschild, 2004). 

Thereby, a new 3’-OH-end is created, and transcription proceeds in the correct DNA-RNA 

register (Borukhov et al., 1993). 

However, one of the most common causes for transcriptional arrest is a non-coding lesion 

in the transcribed DNA strand (Tornaletti and Hanawalt, 1999), over which transcription 

cannot continue. Instead, dissociation of the transcription elongation complex and 

recruitment of damage repair proteins take place. This process is known as transcription-

coupled repair (TCR) (reviewed in Svejstrup, 2002a; Mellon, 2005; Saxowsky and 

Doetsch, 2006). 

TCR is mainly considered as a sub-pathway of nucleotide excision repair (NER), but Le 

Page and colleagues could demonstrate recently that TCR also plays a role in the base 

excision repair (BER) system (Le Page et al., 2000). 

 

1.1.2.2 The Mfd protein is the bacterial transcription-repair coupling factor 

In Escherichia coli, the Mfd protein was identify to be responsible for connecting the 

processes of transcription and DNA repair. Mfd is therefore also termed transcription–

repair coupling factor (TRCF) (Selby et al., 1991).  
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Mfd was already discovered in the 1960s by E. Witkin in a genetic screen. Mutation 

frequency decline (Mfd) stands for a rapid decrease in the frequency of occurring nonsense 

suppressor mutations when protein synthesis is transiently inhibited immediately after UV-

irradiation (Witkin, 1966). In cells lacking the mfd gene product this phenomenon is 

strongly reduced. Additionally, mfd - cells are characterized by a high spontaneous 

mutation rate, increased sensitivity to UV, and a decreased damage repair rate (Selby and 

Sancar, 1993). Furthermore, it could be shown that mfd - cells are incapable of strand-

specific repair. This defect could be complemented by adding purified Mfd protein (Selby 

et al., 1991). 

 

Recently, Park and colleagues could demonstrate that Mfd is able to rescue stalled RNA 

polymerase to resume transcription elongation. Mfd binds to template DNA upstream of 

the transcription machinery. In contrast to GreA/GreB, Mfd acts by translocating the 

backtracked transcription elongation complex forward. Thereby, the catalytic center is 

realigned with the original 3′-OH end of the transcript, and RNA synthesis is allowed to 

resume (Park et al., 2002) (figure 1.2, left panel).  

However, if RNA polymerase is blocked by non-coding lesions, productive transcription 

cannot proceed. In this case, Mfd induces dissociation of the RNA polymerase from 

template DNA in an ATP-dependent manner (Selby and Sancar, 1995b; Selby and Sancar, 

1995a; Park et al., 2002) (figure 1.2, right panel). Mfd is suggested to induce the 

dissociation of RNA polymerase by pushing it hard over the damage (Park et al., 2002). 

Mfd, remaining bound at the lesion, then recruits the nucleotide excision repair machinery. 

Mfd interacts with UvrA and recruits the UvrA-UvrB complex to the damage site (Selby 

and Sancar, 1993). Therefore, Mfd can be considered both as a transcription elongation 

factor (Park et al., 2002; Borukhov et al., 2005) and as a terminator of transcription 

(Roberts and Park, 2004).  
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Figure 1.2:  Mechanism of bacterial TCR (adopted from Svejstrup, 2002b; Roberts 

and Park, 2004; Mellon, 2005). Left panel: RNA polymerase 
(transparent box) is stalled in the backtracked position, the active site 
and the 3’-end of the RNA (light blue) are not aligned. Mfd (yellow 
sphere) recognizes stalled RNA polymerase and binds upstream of the 
transcription elongation complex. Subsequently, Mfd induces forward 
translocation leading to resumption of transcription (left). Right panel: If 
RNAP is blocked by DNA damage (red star), transcription elongation 
cannot resume. Mfd promotes release of RNA polymerase and RNA from 
the transcribed DNA followed by recruitment of the UvrABC nucleotide 
excision repair system (UvrA, orange; UvrB, green). 

 

The mechanism of UvrAB recruitment and the subsequent formation of the UvrB-DNA 

pre-incision complex at stalled transcription sites, however, are not fully understood. 

 

1.1.2.3 Domain architecture and biochemical properties of Mfd 

Mfd is a highly conserved monomeric protein. With 1148 residues (130 kDa), it is among 

the largest 1% of all Escherichia coli proteins (Roberts and Park, 2004). Selby and Sancar 
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could show that Mfd consists of distinct functional regions (figure 1.3) (Selby and Sancar, 

1995a; Roberts and Park, 2004). 

 

The N-terminal third of Mfd is involved in UvrA binding. It will be described in more 

detail in chapter 1.1.2.4. 

The RNA polymerase interacting domain of Mfd (RID, residues 379-571) binds to the 

N-terminus (the first 142 residues) of the RNA polymerase β subunit, near the upstream 

junction of the transcription bubble (Selby and Sancar, 1995a; Park et al., 2002; Smith and 

Savery, 2005). In the presence of the σ70 factor, RNAP binding by Mfd is blocked (Park et 

al., 2002). 

 

 

 

 

 

 
 
Figure 1.3:  Functional domains of the E.coli Mfd protein (adopted from Selby and 

Sancar, 1995a/b; Roberts and Park, 2004). Residues 1-378, orange: 
UvrA-binding domain, includes UvrB homology region (residues 82-219, 
light orange); residues 379-571, green: RNA polymerase interacting 
domain (RID); residues 598-968, yellow: RecG homology domain, 
includes dsDNA translocase region with superfamily II helicase motifs 
(red) and translocation in RecG (TRG) motif (residues 926-965, violet); 
residues 1005-1113, grey: TRCF domain. 

 

A module related to superfamily II helicases is located in the C-terminal half of Mfd 

(Gorbalenya et al., 1989; Selby and Sancar, 1993; Mahdi et al., 2003).  

This section of the protein bears the DNA binding region and contains the DNA-stimulated 

ATPase activity of Mfd. Binding to preferentially double stranded polynucleotides requires 

ATP binding while ATP hydrolysis promotes dissociation (Selby and Sancar, 1995a). 

Despite its homology to the RecG helicase, Mfd possesses no strand-separating activity. It 

is rather believed to function as dsDNA translocase (Selby and Sancar, 1995b).  

In addition, Mfd and RecG have a helical hairpin motif in common, termed TRG 

(translocation in RecG) motif which is situated downstream of the translocase domain 

(Chambers et al., 2003; Mahdi et al., 2003). Mutational analysis confirmed that the TRG 
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motif in Mfd is required for its RNA polymerase displacement activity (Chambers et al., 

2003).  

The C-terminal TRCF domain (residues 1005-1113; pfam03461) contains a leucine zipper 

motif (L1039, L1046, L1053, L1060). It is essential for RNAP release from damaged DNA 

(Selby and Sancar, 1993). 

 

1.1.2.4 UvrA binding 

Mfd acts as a platform for recruiting the nucleotide excision repair machinery to DNA 

lesions by binding to UvrA (Selby and Sancar, 1993). This process involves the 

N-terminus of Mfd. A truncated mutant of Mfd lacking the first 378 residues was shown to 

be defective in UvrA binding (Selby and Sancar, 1995a). 

The UvrA-binding region bears a section with close homology to a region in the nucleotide 

excision repair protein UvrB: Residues 82–219 of Mfd are 22 % identical (62 % 

homologous) to residues 114-251 of UvrB from the same organism (Selby and Sancar, 

1993) (figure 1.4). In both proteins, this section has been shown to play a role in UvrA 

binding in vitro (Hsu et al., 1995; Selby and Sancar, 1995a; Truglio et al., 2004).  

There is some evidence that Mfd and UvrB utilize a similar mode of binding to UvrA. In 

addition to the high sequence homology in the domain 2, Mfd is able to displace UvrB 

from UvrA in vitro (Selby and Sancar, 1993).  

 

 
  EcoMfd      82  SPHQDIISSRLSTLYQLPTMQRGVLIVPVNTLMQRVCPHSFLHGHALVMKKGQRLSRDAL  141 
  EcoUvrB    114  SVNEHIEQMRLSATKAMLERRDVVVVASVSAIYGLGDPDLYLK-MMLHLTVGMIIDQRAI  172 
  BcaUvrB    115  KINDEIDKLRHSATSALFERRDVIIVASVSCIYGLGSPEEYRE-LVVSLRVGMEIERNAL  173 
 
 
  EcoMfd     142  RTQLDSAGYRHVDQVMEHGEYATRGALLDLFPMG-SELPYRLDFFDDEIDSLRVFDVDSQ  200 
  EcoUvrB    173  LRRLAELQYARNDQAFQRGTFRVRGEVIDIFPAESDDIALRVELFDEEVERLSLFDPLTG  232 
  BcaUvrB    174  LRRLVDIQYDRNDIDFR-GTFRVRGDVVEIFPASRDEHCIRVEFFGDEIERIREVDALTG  232 
 
 
  EcoMfd     201  RTLEEVEAINLLPAHEFPT  219 
  EcoUvrB    233  QIVSTIPRFTIYPKTHYVT  251 
  BcaUvrB    233  KVLGEREHVAIFPASHFVT  251 
 

Figure 1.4:  Sequence alignment of residues 82-219 of Escherichia coli Mfd (EcoMfd) 
with the corresponding regions of the UvrB proteins from E.coli 
(EcoUvrB, residues 114-251) and Bacillus caldotenax (BcaUvrB, 
residues 116-251). Conserved residues are shaded, dark indicating 
stronger conservation. 
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So far, several molecular structures of UvrB are known. While domain 2 was not defined 

in the first crystal structures solved (Machius et al., 1999; Nakagawa et al., 1999; Theis et 

al., 1999), it was visible in the UvrB variant Y96A from Bacillus caldotenax (Truglio et 

al., 2004).  

Residues 157-245 form a compact globular domain (denoted domain 2). The structure of 

this domain revealed a new fold according to structural analysis by Distance matrix 

alignment (Dali) (Holm and Sander, 1995). Furthermore, some highly conserved residues 

located on its surface could be identified to be essential for UvrA binding (Truglio et al., 

2004). Until 2005, no structure of Mfd was known.  

 

1.1.2.5 Eukaryotic TCR 

The phenomenon of transcription-coupled repair is conserved. However, TCR in 

eukaryotic cells is much more complex than in bacteria and less well studied. Thus, many 

details are not fully understood (Svejstrup, 2002a; Laine and Egly, 2006; Saxowsky and 

Doetsch, 2006). 

In eukaryotic TCR, RNA polymerase II (RNAPII) functions as the damage recognition 

factor. Stalled RNAPII is recognized by the proteins XPG and CSB which then recruit, 

among others, TFIIH and CSA. Excision of the damaged oligonucleotide and repair 

synthesis in TCR share the protein repertoire with global genome NER (see 1.1.1.2).  

 

Table 1.4:  Eukaryotic proteins involved in transcription coupled repair (adopted 
from Svejstrup, 2002a; Laine and Egly, 2006; Saxowsky and Doetsch, 
2006). Repair factors marked with a star (*) are involved both in GGR 
and in TCR. 

human (yeast) factors activities interaction partners 

CSA (Rad28) E3 ubiquitin ligase CSB, XAB2, TFIIH 

CSB (Rad26) Swi2/Snf2, DNA binding CSA, XA2B, TFIIH, RNAPII, 
XPA; XPG  

XAB2 (Syf1)  CSA, CSB, RNAPII, XPA 

TFIIH (TFIIH)  * 
(Egly, 2001) 

10 subunits including 2 
helicases and a cyclin-
dependent protein kinase 

CSA, CSB, RNAPII, XPG 

XPG (Rad2) * 
endonuclease  
(3’-incision) 

CSB, RNAPII 
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Recent findings suggest that the damage is repaired without prior removing RNAPII. 

TFIIH is thought to induce conformational changes by use of the helicase subunits XPB 

(Rad25) and XPD (Rad3) (Sarker et al., 2005). A very current model proposes removal of 

RNA polymerase II together with the lesion (Brueckner et al., 2006). 

 

Mutations in TCR genes (mainly in the genes encoding for CSA or CSB) lead to a severe 

hereditary disorder named Cockayne’s syndrome (CS). CS is characterized by 

photosensitivity, growth retardation, skeletal and retinal abnormalities and progressive 

neural degradation. In contrast to xeroderma pigmentosum, CS is not associated with an 

increased risk of skin cancer or other type of malignancy (Nance and Berry, 1992; de Boer 

and Hoeijmakers, 2000; Andressoo and Hoeijmakers, 2005). 

 

1.2 Structure determination by X-ray crystallography 

1.2.1 Structural biology 

Proteins consist of one or more chains of amino acids that fold into three-dimensional 

structures. The structure of a protein is intrinsically related to its function. Therefore, 

structure determination of biological macromolecules is a powerful tool to gain 

information on their biological function and on their mechanism. In addition, structural 

studies play an important role in protein design and drug development. 

 

Several methods have been developed to determine three-dimensional structures of 

molecular machines with atomic resolution: 

Electron microscopy (EM) is a powerful tool for the determination of large structures, e.g. 

complexes, organelles or cells. At present, electron cryo-microscopy (cryo-EM) and, in 

particular, the reconstruction of single-particles can in practice reach a resolution of 4-5 Å. 

However, its application to small molecules is limited. So far, EM can be used only for 

particles with a size of at least several hundred kDa (R. Beckmann, DNA repair workshop, 

July 20, 2006).  

In contrast, nuclear magnetic resonance spectroscopy (NMR) can only be applied to small 

proteins (usually 20-30 kDa). Structures are determined in solution. Therefore, NMR 

allows time-resolved studies (e.g. folding analysis or kinetics).  

X-ray crystallography is a very high resolution method. It has no limitation with respect of 

molecular weight. However, in order to determine a structure by X-ray diffraction, the 
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molecule of interest needs to be crystallized which is the major obstacle in this technique 

(see below). Furthermore, a crystal structure can be considered as a "snapshot". Usually, a 

crystal structure provides only very little insight into dynamics.  

The first protein crystal structure solved was that of sperm whale myoglobin in the 1950s 

(Kendrew et al., 1958). In 1962, Max Ferdinand Perutz and Sir John Cowdery Kendrew 

were awarded the Nobel Prize in Chemistry “for their studies of the structures of globular 

proteins” (http://nobelprize.org/chemistry/laureates/1962/index.html).  

So far, over 37,000 biological macromolecular structures have been deposited in the RSCB 

Protein Data Bank (PDB). Most of them (> 90 %) were determined using X-ray 

crystallography (table 1.5). 

 

Table 1.5:  Biological macromolecular structures in the RSCB Protein Data Bank 
(PDB) (source: http://www.rcsb.org/pdb/holdings.do; June 20, 2006). 

 
Proteins 

Nucleic 
acids (NA) 

Protein/ NA 
complexes Other Total 

X-ray 29258 902  1353  28 31541  

NMR 4690  705  121  6  5522  

EM 88  9  29  0  126  

Other 73  4  3  0  80  

Total 34109  1620  1506  34  37269  
 

1.2.2 Structure determination by X-ray crystallography 

The theoretical background of structure determination by X-ray diffraction will be briefly 

described in the following part. More detailed information can be found in textbooks (e.g. 

Drenth, 1999; McPherson, 2001; Blow, 2002; Massa, 2002). 

 

1.2.2.1 Theory of X-ray diffraction 

X-rays are electromagnetic waves with a wavelength in the range of atomic distances 

(10-10 m = 1 Å). For typical X-ray diffraction experiments, wavelengths between 1.6 and 

0.8 Å are used. When an electron is hit by an X-ray photon, it is set into vibration at the X-

ray frequency. The vibrating electron emits spherical waves of the same wavelength as the 

original wave (elastic scattering).  
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The scattering power of a single molecule in solution is insufficient to generate a 

detectable signal. Therefore, the molecule of interest needs to be crystallized (see 2.7.1). 

Crystals are highly ordered structures, where a unit cell containing the molecule of interest 

is periodically repeated in a three dimensional lattice. Waves scattered from different 

atoms in a crystal may interfere, and, depending on the phase difference, amplify or damp 

each other. If the phase shift is proportional to 2π (“in-phase”), the signal is enhanced, and 

diffraction occurs. The conditions for this constructive interference are given by the Laue 

equations and Bragg's law. 

According to Sir W. H. Bragg and Sir W. L. Bragg, X-ray diffraction by a crystal can be 

considered as reflections at imaginary lattice planes. Lattice planes are characterized by the 

Miller indices (hkl) which represent their orientation in the crystal lattice and the spacing 

between parallel planes.  

A signal can only be detected if the distance d and the angle θ between the planes and the 

incident beam follow the rule (“Bragg’s law”) 

θdλn sin2 ⋅⋅=⋅  

where n is an integer, and λ is the wavelength of the X-rays.  

Each diffraction spot (h,k,l) corresponds to a reflection at a set of parallel lattice 

planes (hkl).  

 

1.2.2.2 Structure factors and electron density  

The structure factor F is a mathematical description of how the crystal scatters incident 

radiation. F(h,k,l) is the sum of the scattering contributions of all N atoms in the unit cell to 

a reflection (h,k,l).  

[ ] [ ]22

1

/sinexp2exp λθ⋅−⋅++⋅⋅= ∑
=

i

N

j
jjjj B)lzkyi(hxπfF(h,k,l)  

The atomic scattering factor (or form factor) fj describes the scattering power of an atom j 

and is dependent on the atom type. The last term of structure factor, the Debye-Waller 

factor (B-factor), represents the effect of thermal disorder. 

The electron density ρ of molecules in a crystal is a three-dimensional repetitive structure. 

It represents the scattering power of all atoms in the unit cell. Electron density and 

structure factor are related by Fourier transform (FT): The variation of electron density in a 

crystal can be used to determine the relative amplitudes and phases of the Fourier 
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coefficients, the structure factors, by direct FT. Reversely, structure factors can be used to 

calculate electron density by inverse FT.  

 

Fourier integral (direct FT): 

[ ] dx dy dzlz)ky(hxπρ(x,y,z)VF(h,k,l)
zyx

++⋅⋅⋅= ∫∫∫
===

2exp
1

0

1

0

1

0

 

 

Fourier series (inverse FT): 

 [ ]∑ ++⋅−⋅=
hkl

lz)kyi(hxπF(h,k,l)
V

ρ(x,y,z) 2exp1  

 

The structure factor F(h,k,l) is a complex number which is formed by the amplitude 

|F(h,k,l)| and the phase φ(h,k,l) of a scattered wave.  

[ ]),,(exp),,( lkhilkhFF(h,k,l) φ⋅⋅=  

Both amplitude and phase are required for the calculation of an electron density from 

structure factors. While the amplitude can be derived from the reflection intensity (I ~ |F²|), 

the phase cannot be directly observed from a diffraction pattern. This is referred to as the 

“phase problem” of crystallography.  

 

Phase angles can be obtained by several approaches:  

If a model for a related molecule is available, it can be used for phase determination by 

molecular replacement (MR). For de novo phasing, heavy atom methods like isomorphous 

replacement (SIR/MIR) or anomalous dispersion (SAD/MAD) are generally used. Direct 

methods can be applied only to very small molecules or substructures.  

In this PhD thesis, a multiple-wavelength anomalous diffraction (MAD) experiment was 

carried out using selenium. 

 

1.2.2.3 Phasing by use of anomalous dispersion 

If the incident beam possesses an energy close to the eigenfrequency of an atom, some 

photons are absorbed and re-emitted either at lower energy (fluorescence) or at the same 

energy with a phase-delay (anomalous dispersion). In case of anomalous dispersion, the 

atomic scattering factor fano gains an anomalous contribution which is composed of a real 
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if" 

f'=f0-∆f 
∆f

f0 

fano

part ∆f and an imaginary part if". The phase of the imaginary part if'' is always shifted by 

+90° (figure 1.5). 

'0 if'f'if''∆fff ano +=+−=  

 

 

 

 

 

 

 

Figure 1.5:  The anomalous atomic scattering factor fano. The anomalous contribution 
to the atomic scattering factor is composed of a real part ∆f and an 
imaginary component if''. 

 

Light atoms normally occuring in biological molecules (e.g. carbon, nitrogen or oxygen) 

do not have transitions in the range of energies that are used in X-ray diffraction 

experiments. Therefore, heavy metal atoms (e.g. selenium, mercury, platinum etc.) are 

introduced into proteins. These elements show detectable anomalous scattering at X-ray 

wavelengths. In this case, scattering can be described as a sum FPH of the normal scattering 

from light protein atoms FP and scattering from heavy atoms FH with a normal (FHN) and 

an anomalous part (FHA): 

HAHNPHPPH FFFFFF ++=+=  

The anomalous signal is dependent on the energy of the X-rays and hence depends on the 

applied wavelength. Thus, differences in the reflection intensities recorded at different 

wavelengths close to the absorption edge can be observed. 

A consequence of anomalous scattering is the violation of the Friedel's law: In normal 

scattering, the structure factors describing the reflections (h,k,l) and (–h,–k,–l) have the 

same amplitudes and opposite phases. FP(h,k,l) and FP(–h,–k,–l) are called Friedel mates. 

In contrast, amplitudes of anomalous structure factors FPH(h,k,l) and FPH(–h,–k,–l) (now 

named a Bijvoet pair) do not have same magnitudes. 

f''
f'l)kh(Fl)k(hF(d PHPHano 2

,,,, ⋅−−−−=  
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Using the Bijvoet differences dano, the heavy atom substructure can be localized by 

Patterson methods and/or direct methods.  

 

The Patterson function P(u,v,w) does not require phase information. It represents a Fourier 

transform of squared reflection amplitudes |F(h,k,l)| (≈ intensities). By use of this function, 

a map showing interatomic distance vectors (u,v,w) is obtained. 

( ) [ ]∑ ++⋅−=
hkl

hkl lwkvhuiFwvuP )(2exp,, 2 π  

The Patterson function calculated with differences in anomalous amplitudes results in a 

map showing only vectors between the anomalous scatterers. Using this map, heavy atoms 

can be located in the unit cell. With their coordinates, the contribution of the heavy atoms 

to the structure factors can be determined. Finally, protein phase angles can be derived, and 

an electron density can be calculated: 

HHPPPH FFF φφ ⋅+⋅= ||||  

The anomalous contribution to diffraction is generally very small. An MAD experiment 

requires synchrotron radiation which is brighter and less noisy than radiation generated by 

home sources. In addition, synchrotron sources produce continuous X-ray spectra, and the 

monochromatic beam is tuneable to the required wavelengths.  

In a typical MAD experiment, datasets at three wavelengths are recorded:  

A "peak" dataset at the wavelength with maximum f'', a dataset at the "inflection point" 

with minimal f', and a "high energy remote" dataset, where f' is close to normal. 

The resonance wavelength of a certain atom is defined by the atom type. But as it can 

differ slightly dependent on the chemical environment, the exact wavelengths are 

determined experimentally (figure 1.6). The f'' value can be directly obtained by a 

fluorescence scan on the crystal, while f' can be derived from f'' by the Kramer-Kronig 

equation: 

∫
∞

−
=

0
22

2
ω'ω

'ω'f'(ω')δω
π

f'  
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Figure 1.6:  Fluorescence scan on selenomethionine containing crystal of Mfd-N2 

around the selenium K-edge (12.6578 kEV). Values of f' and f'' are 
plotted against the X-ray energy (kEV). Wavelengths used in an MAD 
experiment are indicated. 

 

Today, many structures are solved using anomalous data collected at only one wavelength 

(single-wavelength anomalous diffraction, SAD). 

In recent years, experimental phase information could even be obtained directly from 

native protein crystals using anomalous scattering from sulfur atoms. In this approach, data 

is typically collected at one wavelength far from the absorption edge (5.02 Å). Because of 

the very weak anomalous contributions, highly accurate and redundant data are required.  

 

1.3 Objectives 

DNA damage repair plays an essential role in the maintenance of genomic integrity. 

Nucleotide excision repair (NER) is a functionally conserved repair system which is 

present in prokaryotes, archaea, and eukaryotes. NER can deal with a large variety of 

chemically and structurally unrelated helix-distorting DNA lesions.  

However, transcribing RNA polymerase frequently encounters DNA damage, before it has 

been repaired, and the transcription machinery becomes arrested. Arrested RNA 

polymerase is a severe thread to the cell, as it can neither resume transcription elongation 
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nor dissociate from the template DNA by itself. It therefore prevents replication, 

transcription and repair of this gene. 

DNA damage in the transcribed strand of active genes is repaired by a special mode of 

NER, called transcription-coupled repair (TCR). In prokaryotes, TCR is mediated by the 

Mfd (mutation frequency decline) protein. Mfd releases arrested transcription elongation 

complexes, followed by delivery of the UvrABC nucleotide excision repair machinery to 

the lesion site. The mechanistic details of this process, however, are still poorly 

understood. 

 

Aim of this PhD thesis was to gain insight into the mechanism of bacterial transcription-

coupled repair.  

Knowledge of their three-dimensional structure can provide important information on the 

biological function of proteins, and on their mode of operation. Therefore, X-ray 

crystallography should be used in order to obtain structural information on the Escherichia 

coli Mfd protein.  

Furthermore, the protein should be characterized in a functional way. In particular, the 

interaction between Mfd and the nucleotide excision repair protein UvrA was investigated. 

UvrA-binding is mediated by the N-terminus of Mfd, and is required for recruitment of the 

NER machinery.  

The major objective of these studies was to reveal new aspects of this important event 

during transcription-repair coupling in order to suggest a possible mechanism for this 

recruitment step. 
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2 Materials and methods 

 

2.1 Materials 

All common chemicals were reagent-grade reagents purchased from Merck (Darmstadt, 

Germany), Sigma (Deisenhofen, Germany) or Carl Roth (Karlsruhe, Germany), unless 

otherwise stated. Crystallization screens and crystallization tools were from Hampton 

Research (Aliso Viejo, USA), Nextal Biotechnologies (Montreal, Canada; now QIAGEN, 

Hilden, Germany) or Jena Bioscience (Jena, Germany). RP-HPLC purified 

oligonucleotides were ordered from Thermo Electron Corporation (Ulm, Germany). 

Enzymes and nucleotides for molecular biology were from Fermentas (St- Leon-Rot, 

Germany). 

 

2.2 Molecular biology methods 

Common molecular biology procedures like polymerase chain reaction (PCR), cleavage of 

phosphodiester bonds in DNA by restriction endonucleases, dephosphorylation of DNA 

ends by alkaline phosphatase, ligation of DNA ends, amplification of plasmid DNA and 

agarose gel electrophoresis were carried out according to standard protocols (Sambrook, 

1989).  

 

Bacterial genomic DNA was prepared with DNAzol® reagent (Molecular Research 

Center, Cincinnati, USA) according to the manufacturer's instructions. Plasmid DNA was 

isolated using the NucleoSpin®-Plasmid Quick Pure Kit (Macherey-Nagel, Dueren, 

Germany). DNA fragments were extracted from agarose gels with the NucleoSpin®-

Extract II Kit (Macherey-Nagel, Dueren, Germany). DNA-sequencing was performed by 

Medigenomix (Martinsried, Germany). 

 

2.2.1 Cloning 

Genes of interest were amplified by PCR from Escherichia coli K12 (XL1-Blue) genomic 

DNA with ACCUZYME™ DNA polymerase (Bioline, Luckenwalde, Germany) and 

cloned into the pET-21b, pET-28b or pET-29b vectors (both from Novagen, 
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Schwalbach/Ts., Germany) or the pTYB1 vector (New England Biolabs, Frankfurt/Main, 

Germany) according to table 2.3. Oligonucleotides used as PCR-primers were designed 

using GeneRunner (http://www.generunner.com/). 

 

Table 2.1:  List of oligonucleotides used for cloning. Underlined regions mark the 
recognition sites for restriction endonucleases. Sequences are given in 
5'-3' direction. 

Oligo name Sequence 

Mfd N0 for NheI  AAAAGCTAGCATGCCTGAACAATATCGTTATACGC 
Mfd N0 for NdeI  AAAACATATGCCTGAACAATATCGTTATACGC 
Mfd C0 rev NotI AAAAGCGGCCGCAGCGATCGCGTTCTCTTCC 
Mfd N333-STOP rev NotI TTTTTGCGGCCGCCTAGTTTTTCAGCTCTGAGAAGAGC 

Mfd N333 rev NotI TTTTTGCGGCCGCGTTTTTCAGCTCTGAGAAGAGC 
Mfd N433-STOP rev NotI AAAAAGCGGCCGCCTAACCATGTTCGGCAGCGCC 

Mfd N433 rev NotI AAAAGCGGCCGCACCATGTTCGGCAGCGCC 

Mfd D586-STOP rev NotI TTTTGCGGCCGCCTAATCGTGTTTAAACGCGAAGCCCTC 
Mfd D586 rev NotI TTTTGCGGCCGCATCGTGTTTAAACGCGAAGCCCTC 
Mfd S964 for NdeI AAAAACATATGAGCGGCTCAATGGAAACCATCGG 

UvrA N0 for NdeI AAAAACATATGGATAAGATCGAAGTTCGGGG 

UvrA C0 rev XhoI AAAAACTCGAGCAGCATCGGCTTAAGGAAGCG 

UvrB N0 for NdeI AAAAACATATGAGTAAACCGTTCAAACTGAATTCC 
UvrB G583 rev HindIII AAAAAAAGCTTTCCGTGTTCCTCGTTGTACTTCTGC 

 

 

2.2.2 Site-directed mutagenesis  

Point mutations were introduced by PCR-based site-directed mutagenesis (Ho et al., 1989). 

Complementary oligonucleotides containing the desired mutation were used in a first PCR. 

In this reaction, two PCR-products with overlapping ends were generated.  

These DNA fragments were used as templates in a subsequent reaction, the overlap 

extension. Here, the overlapping ends were annealed, allowing a 3'-extension of the 

complementary strand. After 3 cycles, the flanking primers were added, and the fusion 

product was further amplified by PCR. 
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Table 2.2: List of oligonucleotides used for site-directed mutagenesis. 
Complementary regions are underlined, nucleotides coloured in blue 
correspond to the mutated codons. Sequences are given in 5'-3' 
direction. 

Desired mutation Sequences (forward / reverse primers) 

Mfd R165A 
CACGGCGGGCGCGTTGCTGGATCTCTTCC 
CGCGCCCGCCGTGGCGTATTCGCCGTGC 

Mfd R181A 
GCTGCCTTATGCGCTTGATTTCTTTGATGATGAAATC 
CAAAGAAATCAAGCGCATAAGGCAGCTCACTCCCCATCG 

Mfd R181A/D183A 
GCTGCCTTATGCGCTTGCGTTCTTTGATGATGAAATCGACAGC 
CAAAGAACGCAAGCGCATAAGGCAGCTCACTCCCCATCG 

Mfd F185A 
CGTCTTGATTTCGCGGATGATGAAATCGACAGCCTGC  
CATCATCCGCGAAATCAAGACGATAAGGCAGC 

Mfd E188A 
CTTTGATGATGCAATCGACAGCCTGCGGGTG 
GGCTGTCGATTGCATCATCAAAGAAATCAAGACG 

Mfd D190A  
GATGATGAAATCGCGAGCCTGCGGGTGTTTGACG 
GCAGGCTCGCGATTTCATCATCAAAGAAATCAAGACG 

Mfd ∆2 (AA 124 – 213) 
CCACGGTCATGGCACTAGTTCCCCCGCGCACGAATTTCCG 
GGAACTAGTGCCATGACCGTGGAGAAAACTGTGTGG 

Mfd C118A 
CTGTGTGGGGCAACACGTTGCATAAGCGTATTCACCGGAACAATC
GCAACGTGTTGCCCCACACAGTTTTCTCCACGG 

Mfd C445A 
GATCGCTTTCGGCAATCAGCGCCAGATTACGC 
GCTGATTGCCGAAAGCGATCTGCTCGGTG 

 

 

Table 2.3: Expression plasmids 

# 
Insert 

(construct) 
Vector Restriction 

sites Tag Remarks 

1 
Mfd (WT) 
full-length 

pET-21b NheI/NotI –  

2 
Mfd (WT) 
full-length 

pET-21b NheI / NotI C-HIS "Mfd-FL" 

3 
Mfd (WT) 

AA 1 – 333 
pET-21b NdeI / NotI – "Mfd-N1" 

4 
Mfd (WT) 

AA 1 – 333 
pET-21b NdeI / NotI C-HIS6 "Mfd-N2" 

5 
Mfd (WT) 

AA 1 – 433 
pET-21b NdeI / NotI – "Mfd-N3" 

6 
Mfd (WT) 

AA 1 – 433 
pET-21b NdeI / NotI C-HIS6 "Mfd-N4" 
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7 
Mfd (WT) 

AA 1 – 586 
pET-21b NdeI / NotI – "Mfd-N5" 

8 
Mfd (WT) 

AA 1 – 586 
pET-21b NdeI / NotI C-HIS6 "Mfd-N6" 

9 
Mfd (WT) 

AA 964-1148 
pET-21b NdeI / NotI – "Mfd-C1" 

10 
Mfd (WT) 

AA 964-1148 
pET-28b NdeI / NotI N-HIS6 "Mfd-C2" 

11 
UvrA (WT) 
full-length 

pTYB-1 NdeI / XhoI C-INTEIN  

12 
UvrA (WT) 
full-length 

pET-29b NdeI / XhoI C-HIS  

13 
UvrB (WT) 
AA 1 – 583 

pET-21b NdeI / 
HindIII C-HIS "UvrB-N" 

14 
Mfd (R165A) 
AA 1 – 586 

pET-21b NdeI / NotI – "Mfd-Mut1" 

15 
Mfd (R181A) 
AA 1 – 586 

pET-21b NdeI / NotI – "Mfd-Mut2" 

16 
Mfd (R181A/D183A) 

AA 1 – 586 
pET-21b NdeI / NotI – "Mfd-Mut3" 

17 
Mfd (F185A) 
AA 1 – 586 

pET-21b NdeI / NotI – "Mfd-Mut4" 

18 
Mfd (E188A) 
AA 1 – 586 

pET-21b NdeI / NotI – "Mfd-Mut5" 

19 
Mfd (E190A) 
AA 1 – 586 

pET-21b NdeI / NotI – "Mfd-Mut6" 

20 
Mfd (WT) 

AA 1 – 123 / 214 – 586  
pET-21b NdeI / NotI – "Mfd-∆2" 

21 
Mfd (C118A/C445A) 

AA 1 – 586 
pET-21b NdeI / NotI – "CYS-DM" 

 

 

2.3 Microbiology methods 

 

Bacteria were grown in shaking cultures in liquid LB medium or on LB agar plates 

containing the appropriate antibiotics. For storage, cells were kept in 40 % glycerol at 

-80°C. 
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Table 2.4:  Bacterial Strains 

Strain Genotype Source 

XL1-Blue  recA1 endA1 gyrA96 thi-1 hsdR17 supE44 
relA1 lac [F'proAB lacIqZ∆M15 Tn10 (TetR)] 

Stratagene,  
La Jolla, USA 

Rosetta (DE3) F– ompT hsdSB (rB
– mB

–) gal dcm lacY1 (DE3) 
pRARE (CmR) 

Novagen, Schwalbach/Ts., 
Germany 

B834 (DE3) 
F– ompT hsdSB (rB

– mB
–) gal dcm met (DE3), 

transformed with pRARE (CmR) isolated from 
Rosetta (DE3) cells 

Novagen, Schwalbach/Ts., 
Germany 

 

 

Table 2.5:  Composition of Luria-Bertani (LB)-broth (Miller, 1972) 

Bacto-Tryptone  1.0 % (w/v) 

Yeast-Extract   0.5 % (w/v) 

NaCl   1.0 % (w/v) 

pH 7.0 

 

1.5–2 % (w/v) of Bacto-Agar were added to the medium to prepare LB-agar plates. 

 

 

Table 2.6:  Antibiotics and supplements 

Supplement stock solution in media 

Ampicillin 100 mg/ml (H2O) 100 µg/ml 

Chloramphenicol 34 mg/ml (Ethanol) 34 µg/ml 

Kanamycin 50 mg/ml (H2O) 50 µg/ml 

Tetracycline 10 mg/ml (Ethanol) 10 µg/ml 

IPTG 0.5 M (H2O) 0.15 mM 

 

 

2.3.1 Transformation of E.coli 

Buffer TfBI       Buffer TfBII 
30 mM potassium acetate pH 5.8   10 mM MOPS pH 7.0 
100 mM KCl      10 mM KCl 
50 mM MnCl2      75 mM CaCl2 
10 mM CaCl2      15% Glycerol  
15% Glycerol  
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The preparation of transformation competent bacteria according to (Hanahan, 1983) was 

conducted by successive incubations in buffers TfBI and TfBII on ice. Aliquots of cells in 

TfBII were snap-frozen in liquid nitrogen and stored at -80°C. 

For transformation ca. 100 ng of ligated DNA or 10 ng of plasmid DNA were added to 75 

µl of competent cells. Cells were incubated on ice for 20 minutes, and a heat step at 42°C 

was carried out for 45-60 seconds. After addition of 800 µl of LB medium, cells were 

incubated for 45-60 minutes at 37°C. The suspension was plated on LB-agar plates 

containing the corresponding antibiotics and incubated over night at 37°C. 

 

2.3.2 Protein expression 

Proteins were overexpressed recombinantly in E.coli Rosetta (DE3) cells.  

Competent cells were transformed with plasmids containing the gene of interest. Cells 

were grown in LB medium supplemented with the corresponding antibiotics at 37°C. At an 

OD600 of 0.4-0.6, the cultures were cooled down to 18°C. Gene expression was induced by 

addition of 0.15 mM IPTG, and protein production was carried out overnight at 18°C. 

Cells were harvested by centrifugation and snap-frozen in liquid nitrogen. Cell pellets were 

stored at -80°C.  

 

2.3.3 Selenomethionine-labelling 

Selenomethionine-substituted protein was produced using the methionine auxotrophic 

B834 (DE3) strain. Cells were transformed with the pRARE (CmR) plasmid isolated from 

the Rosetta (DE3) strain, and with a plasmid containing the gene of interest. 

 

Cells were grown in LB medium containing the appropriate antibiotics at 37°C to an OD600 

of 0.4. Bacteria were harvested and resuspended in the same amount of LeMaster’s 

medium containing selenomethionine (table 2.7) (LeMaster and Richards, 1985). 

Appropriate antibiotics were added.  

Cells were grown at 37° C for one generation time to deplete the medium of residual 

methionine. The cultures were cooled on ice, and protein expression was induced by the 

addition of 0.15 mM IPTG. Selenomethionine-containing protein was produced over night 

at 18° C. The modified protein was purified as described above. 1 mM DTT was added to 

each buffer to prevent oxidation of selenomethionine. 
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Table 2.7:  LeMaster’s medium (LeMaster and Richards, 1985) 

autoclavable portion A for LeMaster’s medium (g / 2000 ml) 

alanine    1.0  serine     4.166  

arginine hydrochloride    1.16  threonine     0.46  

aspartic acid     0.8  tyrosine     0.34  

cystine    0.066  valine     0.46  

glutamic acid    1.5  adenine     1.0  

glutamine     0.666  guanosine     1.34  

glycine     1.08  thymine     0.34  

histidine     0.12  uracil     1.0  

isoleucine     0.46  sodium acetate    3.0  

leucine     0.46  succinic acid     3.0  

lysine hydrochloride    0.84  ammonium chloride    1.5  

phenylalanine     0.266  sodium hydroxide     1.7  

proline     0.2  dibasic potassium phosphate  21.0 
 

All amino acids were reagent-grade L-enantiomers purchased from Sigma (Deisenhofen, 

Germany). 

 

After autoclaving of solution A, the solution was cooled down to 37°C. Subsequently, 

filter-sterilized solution B (200 ml of solution B / 2000 ml of solution A) was added. 

 

non-autoclavable solution B 

glucose 20.0 g  

magnesium sulfate heptahydrate   0.5 g 

iron sulfate   8.4 mg 

sulfuric acid (concentrated) 16.0 µl 

thiamin 10.0 mg 
 

 

Selenomethionine (Calbiochem, Schwalbach/Ts., Germany) was dissolved in sterile H2O 

and added to the medium (100 mg / 2200 ml). 
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2.4 Proteinchemical methods 

Physical and chemical parameters like molecular weight, (theoretical) isoelectric point (pI), 

extinction coefficient etc. for the recombinant proteins were calculated with the ProtParam 

Tool (Gasteiger et al., 2003) from the ExPASy Proteomics Server 

(http://www.expasy.org/). Protein secondary structure prediction was carried out by the 

PSIPRED Protein Structure Prediction Server (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, 

1999; McGuffin et al., 2000; Bryson et al., 2005). Sequence alignment was performed with 

ClustalW (http://align.genome.jp/) and edited manually using GeneDoc (Nicholas and 

Nicholas, 1997) 

 

2.4.1 Protein purification 

Buffer Ni2+-A1 
50 mM NaH2PO4 pH 8.0  
200 mM NaCl  
 

Buffer Ni2+-A2 
50 mM NaH2PO4 pH 8.0  
200 mM NaCl  
10 mM imidazole 
 

Dilution Buffer  
20 mM TRIS/HCl pH 8.0 
1 mM EDTA  
10 % Glycerol  
 

Size Exclusion Buffer  
20 mM TRIS/HCl pH 8.0  
200 mM NaCl  
0.1 mM EDTA  
1 mM DTT  
 

Buffer Ni2+-HS 
50 mM NaH2PO4 pH 8.0  
2 M NaCl  
 

Buffer Ni2+-B 
50 mM NaH2PO4 pH 8.0  
200 mM NaCl  
250 mM imidazole 
 

SourceQ Buffer  
20 mM TRIS/HCl pH 8.0  
50 – 500 mM NaCl  
0.1 mM EDTA 
 
 
 
 
 
 

Cell pellets were resuspended in buffer Ni2+-A1 supplemented with 200 µM PMSF and 

disrupted by sonification. The lysate was cleared by centrifugation and loaded onto 

Ni2+-NTA column (QIAGEN, Hilden, Germany) pre-equilibrated with Ni2+-A1. The 

column was washed subsequently with buffers Ni2+-HS and with Ni2+-A2. Buffer Ni2+-B 

was used for protein elution. Elution fractions were analyzed using the Bio-Rad's protein 

assay (Bio-Rad, Munich, Germany), and protein-containing fractions were pooled. 
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After dilution with dilution buffer 1:5, the eluate was loaded onto a Resource Q anion 

exchange column (Amersham Bioscience, Freiburg, Germany) equilibrated with SourceQ 

buffer containing 50 mM NaCl. The protein was eluted with a linear gradient of 10 column 

volumes from 50 mM to 500 mM NaCl in the same buffer. Peak fractions were pooled, 

and, after concentration, applied onto a Superdex 200 size-exclusion column (Amersham 

Bioscience, Freiburg, Germany). Peak fractions were pooled and concentrated to the 

desired concentration. 

 

2.4.2 Protein-protein interaction assay 

Lysis Buffer 
50 mM NaH2PO4 pH 8.0 
100 mM NaCl 
 

Wash Buffer  
50 mM NaH2PO4 pH 8.0 
100 mM NaCl 
10 mM imidazole 
 

High Salt Buffer  
50 mM NaH2PO4 pH 8.0 
1 M NaCl 
 

Elution Buffer  
50 mM NaH2PO4 pH 8.0 
100 mM NaCl 
 250 mM Imidazol 

The interaction of UvrA with Mfd mutants was analyzed analogously to Truglio et al., 

2004. In a first step, UvrA was immobilized on agarose beads. Subsequently, Mfd mutants 

were added in excess, and the resin was washed gently in order to avoid disruption of the 

salt-sensitive complexes. Proteins were eluted and analyzed by SDS-PAGE. 

As a first step, full-length UvrA was coupled to Ni2+-NTA agarose beads (QIAGEN, 

Hilden, Germany) via its C-terminal hexahistidine tag. Cells from 600 ml expression 

culture were resuspended in lysis buffer containing 200 µM PMSF. They were lysed by 

sonification, and the lysate was cleared by centrifugation. The supernatant was mixed with 

1 ml of Ni2+-NTA resin and rotated end-over-end for 2 h at 4°C. The resin was washed 

successively with lysis buffer, high salt buffer and wash buffer. After re-equilibration with 

lysis buffer, the resin was distributed to 8 Poly-Prep Chromatography Columns (Bio-Rad, 

Munich, Germany).  

For the interaction analysis, lysates from cells expressing untagged mutants of Mfd-N5 

(residues 1-586) were added to the resin. Cells fom 200 ml expression culture were each 

resuspended in lysis buffer containing 200 µM PMSF and lysed by sonification. The 

obtained lysates were cleared by centrifugation, and each lysate was added to one of the 

UvrA-Ni2+-columns and allowed to flow through the resin. The columns were washed 
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successively with lysis buffer and wash buffer. Elution buffer was used for protein elution. 

Protein-containing elution fractions were determined using the Bio-Rad's protein assay 

(Bio-Rad, Munich, Germany), and complexes of UvrA and Mfd-N5 were analyzed by 

SDS-PAGE. Scanned gels were evaluated using the Image J software 

(http://rsb.info.nih.gov/ij/).  

 

Parts of this assay were carried out by Gabriela Guédez-Rodriguez, a Master of 

Biochemistry student at the University of Munich, Germany. 

 

2.5 Protein analysis 

2.5.1 Analytical size exclusion chromatography 

Size Exclusion Buffer  
20 mM TRIS/HCl pH 8.0  
200 mM NaCl  
0.1 mM EDTA  
1 mM DTT  
 

In order to determine the molecular weight of proteins, analytical gel filtration was 

performed using a Superdex 200 10/300 GL column (Amersham, Freiburg, Germany). The 

column was calibrated using the Gel Filtration Standard (Bio-Rad, Munich, Germany) in 

the same buffer. 

 

2.5.2 Limited proteolysis 

In order to discriminate between stable and flexible regions within a protein of interest, 

limited proteolysis was performed. The reaction was carried out in size exclusion buffer in 

a total volume of 50 µl.  

30 µg of purified protein were incubated with different amounts of Proteinase K 

(Fermentas St- Leon-Rot, Germany) (0.005/0.05/0.5/5 µg) for 45 minutes at room 

temperature. The reaction was stopped by addition of 2 µl of PMSF (saturated solution in 

2-propanol). Proteolytic digest was also carried out in the presence of 20 µM Adenosine 5′-

[γ-thio]triphosphate (ATP-γ S, Sigma, Deisenhofen, Germany) and 20 µM ATP-γ-S plus 

20 µM DNA (dsHOL-1), respectively. 1 mM MgCl2 were added to the reaction buffer. 
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-dsHOL-1: 5'-GGCGACGTGATCACCAGATGATGCTAGATGCTTTCCGAAGAGAGAGC 
           CCGCTGCACTAGTGGTCTACTACGATCTACGAAAGGCTTCTCTCTCG-3' 
 

2.5.3 Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples were analyzed by SDS-PAGE (Laemmli, 1970) using the vertical Mini-

PROTEAN 3 System (Bio-Rad, Munich, Germany). Protein bands were stained with 

Coomassie Brilliant Blue R-250 (Carl Roth, Karlsruhe). Bands of interest were excised 

from the gel using sterile disposable scalpels and analyzed by EDMAN-sequencing and/or 

mass spectrometry. 

2.5.4 Protein sequencing (Edman, 1950) 

For N-terminal sequencing, proteins were blotted onto a piece of PVDF membrane by 

passive adsorption. 

Excised bands were dried in a Speed-Vac and, after drying, reswollen in 35µl of 200 mM 

TRIS/HCl pH 8.5, 2 % SDS. After swelling, a concentration gradient was set up by 

addition of 150 µl of distilled water. A small piece of PVDF membrane (Carl Roth, 

Karlsruhe, Germany) was activated in methanol and added to the gel band. Once the 

solution started to turn blue, 20 µl of methanol were added. 

After 1-2 days, the solution had become clear and the membrane had turned blue. The 

membrane was washed 5 times with 1ml of 10 % Methanol with vortexing for 30 seconds 

each time.  

After air drying, the protein was N-terminally sequenced from the membrane in a 

PROCISE 491 sequencer (Applied Biosystems, Darmstadt, Germany). The sequencing 

reaction was carried out by Stefan Benkert (Gene Center, Munich, Germany). 

 

2.5.5 Matrix assisted laser desorption ionisation Time-of-Flight 
analysis  

For mass spectrometric analysis, protein bands of interest were tryptically digested. The 

obtained peptides were crystallized on a sample plate using an organic matrix and analyzed 

by Matrix-assisted laser desorption ionisation - Time-of-Flight (MALDI-ToF) mass 

spectrometry (MS). 

Tryptic digest was performed using a modified protocol for the Montage In-Gel Digest 96 

Kit (Millipore, Billerica, USA) (J. Rauch, personal communication). 
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Excised protein bands were cut into 1x1 mm pieces and transferred to 1.5 ml Eppendorf- 

tubes (Eppendorf AG, Hamburg, Germany: #3810). Bands were washed with ultrapure 

water from a Milli-RO 60 water purifying system (Millipore GmbH, Schwalbach/Ts., 

Germany) and twice alternately with 100% acetonitrile (ACN) and 50 mM ammonium 

bicarbonate. After washing with with 50% acetonitrile, the proteins were digested each 

with 3 µg of sequencing grade modified porcine trypsin (Promega, Mannheim, Germany) 

in 30 µl 50 mM ammonium bicarbonate over night at 30°C. 

The gel pieces were incubated twice with 100 µl of 75% ACN, 12.5 mM ammonium 

bicarbonate for 30 minutes in order to extract the peptides from the gel. The extracts were 

pooled, and the obtained peptide mixtures were concentrated in a Speed-Vac. 

Lyophilized peptides were resolved in 10 µl 0.1 % of trifluoroacetic acid (TFA) and mixed 

1+1 with freshly prepared matrix solution. 1 µl was spotted on a matrix assisted laser 

desorption ionization (MALDI) AnchorChip sample plate (Bruker Daltonik, Bremen, 

Germany). 

Peptide mass fingerprinting analysis was performed on a Bruker Reflex III MALDI-ToF 

mass spectrometer (Bruker Daltonik, Bremen, Germany) by Jens Rauch (Klinikum 

Grosshadern, Munich, Germany) and Thomas Knöfel (GSF, Munich, Germany). The list of 

peptide masses was aligned with the MASCOT Search Engine 

(http://www.matrixscience.com) using the SwissProt Database. 

 

-Matrix solution: α-cyano-4-hydroxycinnamic acid (CHCA) (Bruker Daltonik, Bremen, Germany) 
prepared as a saturated solution in 50% ACN, 0.1% TFA 

 

2.6 Functional assays 

2.6.1 ATPase activity assay 

ATPase Buffer  
40 mM HEPES, pH 7.8 
100 mM KCl  
8 mM MgCl2  
4% Glycerol  
5 mM DTT 
 

ATPase activity was tested by thin layer chromatography (TLC).  
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5 µM of purified protein were incubated with 10 µM ATP (containing 1/3000 Redivue 

γ32P-ATP (Amersham Biosciences, Freiburg, Germany)) at 37°C for 20 minutes in a total 

volume of 20 µl. ATPase activity was determined in the absence and in the presence of 

50 µM (10-fold excess) of dsDNA (dsHOL-1). 

Aliquots of 1 µl were spotted on a polyethyleneimine (PEI) cellulose plate (MERCK, 

Darmstadt, Germany). TLC plates were developed in 0.5 M LiCl, 1 M formic acid, dried 

and analyzed with a STORM Phosphor-Imager and ImageQuant Software (both Amersham 

Biosciences, Freiburg, Germany).  

The upper spot corresponds to liberated γ-32P and the lower spot to non-hydrolyzed ATP. 

 

-dsHOL-1: 5'-GGCGACGTGATCACCAGATGATGCTAGATGCTTTCCGAAGAGAGAGC 
           CCGCTGCACTAGTGGTCTACTACGATCTACGAAAGGCTTCTCTCTCG-3' 

 

2.6.2 DNA binding assay  

Annealing Buffer     Binding buffer  
100 mM TRIS/HCl pH 7.5    40 mM HEPES, pH 7.8  

100 mM NaCl     100 mM KCl  

10 mM MgCl2     8 mM MgCl2  

1 mM DTT     4 % Glycerol  

5 mM DTT  

1xTB Buffer      100 µg/ml BSA  

90 mM TRIS      2 mM ATP-γ-S 

90 mM boric acid 

 

DNA binding activities of Mfd constructs were analyzed using the electrophoretic mobility 

shift assay (EMSA). Complexes of protein and DNA migrate through a native 

polyacrylamide (PAA) gel more slowly than free oligonucleotides. 

One DNA strand was radioactively labelled. 5'-labelling of single stranded DNA was 

performed using T4 polynucleotide kinase (PNK) (Fermentas, St- Leon-Rot, Germany) 

according to manufacturer's instructions with Redivue γ32P-ATP (Amersham Biosciences, 

Freiburg). Unincorporated radionucleotides were removed using the Nucleotide Removal 

Kit (QIAGEN, Hilden, Germany). In order to generate dsDNA, two complementary 

oligonucleotide strands were annealed. 
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The gel shift assay was performed using a modified protocol according to (Selby and 

Sancar, 1995a). 

Proteins were incubated in binding buffer for 20 minutes on ice. Labelled dsDNA was 

added, and the samples were incubated for further 20 minutes at 4°C.  

The final concentration of the oligonucleotides was 0.2 nM, proteins were each present at 

1.5 µM in a total reaction volume of 20 µl. 

In order to separate free probe from protein-bound polynucleotide, 15 µl from the binding 

reaction were analyzed a on a native 6% polyacrylamide gel in 0.2x TRIS-borate (TB) 

buffer. After gel drying on a Model 583 Gel Dryer (Bio-Rad, Munich, Germany), 

radioactivity was recorded with the STORM Phosphorimager (Amersham Biosciences, 

Freiburg, Germany). The lower visible band corresponds to protein-free probe, the upper 

band to the shifted protein-bound oligonucleotide. 

 

-dsDNA-1: 5'-AAAAGCAAATTGCCTT-3' 
       3'-TTCGTTTAACGG-5' 
 
dsDNA-2: 5'-AAAAGCAAATTGCCGAAGACGAACGCGTT-3' 
         3'-TTCGTTTAACGGCTTCTGCTTGCGC-5' 

 

2.7 Structural analysis of Mfd-N2 

2.7.1 Protein crystallization by sitting drop vapour diffusion 

In order to determine the three-dimensional structure of a molecule by X-ray diffraction, 

high quality crystals are required. X-ray scattering from one molecule in solution would 

not generate a signal strong enough for detection. In a crystal, the molecule of interest is 

periodically repeated, all molecules having the same relative position and orientation. If 

scattered waves from these molecules interfere in a constructive manner, they give rise to a 

diffraction pattern (see 1.2.3).  

The quality of a crystal is influenced by many parameters like structural flexibility, solvent 

content, impurities, defects in the crystal lattice, mosaicity etc. The shape and size of a 

crystal also play an important role in its diffraction properties.  

Typical crystals used in X-ray diffraction experiments have a size of 100-300 µm in all 

three dimensions. Today, strong synchrotron radiation also allows structure determination 

with smaller crystals. In this case, crystals with a size of 40 µm x 40 µm x 110 µm were 

sufficient.  
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Protein crystallization requires high amounts of pure and homogeneous protein. The 

protein is slowly concentrated to a supersaturated state. During this process, crystals may 

appear. There are several crystallization techniques, including microdialysis, batch 

crystallization, hanging drop or sitting drop vapour diffusion (for an overview see for 

example http://www.hamptonresearch.com/support/Growth101Lit.aspx). Today, the 

vapour diffusion techniques are the most popular ones. In this PhD thesis, crystals were 

grown by the sitting drop vapour diffusion method (figure 2.1). 

In this technique, crystallization reagent is given into the reservoir of a crystallization 

plate. Reservoir solutions typically consist of buffer solution, precipitant, and salt. A small 

droplet of concentrated protein sample mixed with reservoir solution is set on a platform in 

vapour equilibration with the reservoir. As the drop contains a lower reagent concentration 

than the reservoir, water vapour leaves the drop. Thereby, the protein drop is slowly 

concentrated to a supersaturated state. In most cases, the protein will form aggregates and 

precipitate out of solution. Under certain conditions, stable nuclei may form, and crystals 

growth may take place. 

 

 

 

 

 

 

 

Figure 2.1:  Principle of protein crystallization by sitting drop vapour diffusion 
(adopted from http://www.hamptonresearch.com).  

 

In order to find a condition where nucleation and crystal growth are favored over 

precipitation, many crystallization reagents need to be tested. For this purpose, commercial 

sparse matrix screens are available, e.g from Hampton Research (Aliso Viejo, USA), 

Nextal Biotechnologies (Montreal, Canada) (now QIAGEN, Hilden, Germany) or Jena 

Bioscience (Jena, Germany).  

In order to improve the size and quality of obtained crystals, initial crystallization 

conditions are subsequently modified. Common approaches are variations of drop size, 

protein concentration, pH and ionic strength of the reservoir solution, and the use of 

additives like alcohols, sugars or salts. 
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2.7.2 Crystallization of Mfd-N2  

Mfd-N2 was crystallized by sitting drop vapour diffusion methods using 96-well 

crystallization plates (Corning, Schiphol-Rijk, The Netherlands). 

Crystals of Mfd-N2 were obtained with 50 µl of reservoir solution containing 0.08 M 

sodium citrate pH 5.6, 0.16 M ammonium sulfate, 20% PEG-4000, 0.8 M sodium formate. 

After mixing 1 µl of protein solution (4 mg/ml in 20 mM TRIS/HCl, 200 mM NaCl, 0.1 

mM EDTA, 1 mM DTT) with 1 µl of reservoir solution, crystals appeared overnight at 

20°C.  

For initial crystal setups with commercial screens, the Hydra II semi-automatic protein 

crystallization robot (Matrix Technologies Apogent Discoveries, Hudson, USA) was used 

to set 0.5 + 0.5 µl drops. In order to improve size and quality of obtained crystals, initial 

crystallization conditions were refined manually. 1 + 1 µl drops were set in the same 

plates. The reservoir solution composition and reservoir volume as well as the protein 

concentration were varied. Screening of additives was performed as well. 

Crystals were transferred to mother liquid containing 20% PEG-400 and snap-frozen in 

liquid nitrogen. 

 

2.7.3 Data collection, structure determination, model building and 
refinement 

All diffraction data were collected at beamline ID14-4 (ESRF, Grenoble, France) with an 

ADSC Q4 CCD detector using ProDC (http://www.esrf.fr/computing/bliss/gui/prodc/). 

MOSFLM (Powell, 1999) was used to set up a data collection strategy in order to achieve 

high redundancy and completeness. Prior to data collection the optimal wavelengths for the 

MAD experiment were determined with a fluorescence scan on the selenium containing 

crystal. 

 

Data were processed with DENZO and SCALEPACK (Otwinowski and Minor, 1997) or 

with XDS and XSCALE (Kabsch, 1993). 

 

SOLVE (Terwilliger, 2002) was used to locate heavy atom sites, and phases were 

calculated with SHARP (de la Fortelle and Bricogne, 1997). Initial phases were improved 

with SOLOMON (Abrahams and Leslie, 1996). Automated and manual model building 

were carried out using ARP/wARP (Morris et al., 2003) and MAIN (Turk, 1992), 
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respectively. CNS v.1.1 (Brunger et al., 1998) was used for refinement. Coordinates as 

well as topology and parameter files for hetero-compounds were retrieved from the HIC-

Up server (Kleywegt and Jones, 1998). Stereochemistry of the final model was analyzed 

with PROCHECK (Laskowski et al., 1993). 

  



 Results  37 

3 Results 

 

3.1 Full-Length E.coli Mfd 

3.1.1 Purification and crystallization of full-length Mfd 

The gene encoding full-length Mfd was amplified from Escherichia coli XL1 Blue 

genomic DNA and cloned into the pET-21b vector (see table 2.3). The protein was 

recombinantly overexpressed in Rosetta (DE3) cells with a C-terminal HIS6-tag (“Mfd-

FL”). 

Mfd-FL was purified as described in 2.4.1. First, lysate from Mfd-FL-experssing cells was 

loaded onto a Ni2+-NTA column. The protein was further purified using a Resource Q 

anion exchange column and by size exclusion chromatography with a HiLoad 26/60 

Superdex 200 pg column (figure 3.1). 

Using this purification protocol, about 6 mg of highly pure and homogeneous protein could 

be obtained from 12 l of expression culture. Protein identity was confirmed by EDMAN-

sequencing. 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

Figure 3.1: Elution profile of Mfd-FL from the HiLoad 26/60 Superdex 200 pg size 
exclusion column. The major peak corresponds to purified Mfd-FL. 
SDS-PAGE analysis of the peak fractions is shown as inlet. 
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Crystallization setups were carried out with 5 mg/ml protein. No three-dimensional crystals 

could be grown. Using Nextal classic screen condition #34 (0.1 M tri-sodium citrate pH 

5.6, 0.2 M potassium/sodium tartrate, 2.0 M ammonium sulfate), bushes of needles were 

obtained. However, they were not reproducible and could not be improved. Without any 

tag, no better results were achieved (data not shown). 

 

 

 

 

 

 

 

 

Figure 3.2:  Crystals of Mfd-FL were obtained from Nextal classic screen condition 
#34 (0.2 M potassium/sodium tartrate, 0.1 M tri-sodium citrate pH 5.6, 
2.0 M ammonium sulfate) using 5 mg/ml protein.  

 

3.1.2 Limited proteolysis 

Highly mobile regions in proteins can inhibit crystallization. In order to identify those 

regions in Mfd, limited proteolysis was performed. Proteolysis of natively folded proteins 

occurs mainly at highly flexible parts, like loops, while globular domains are rather rigid 

and more resistant to proteolysis (Fontana et al., 1986; Fontana et al., 2004). Therefore, 

stable fragments in the proteolysis experiment may correspond to regions which are 

compact and hence serve as good candidates for crystallization.  

The protein was incubated with different amounts of Proteinase K under native conditions. 

Compared to other proteolytic enzymes, endopeptidase Proteinase K possesses broader 

substrate specificity as it cleaves peptide bonds after aliphatic, aromatic or hydrophobic 

amino acids. Thus, it is more likely to cleave within in a distinct region.  
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Figure 3.3: Limited proteolysis of Mfd-FL. From left to right: Cleavage pattern 
without ATP or DNA, with ATP, and with ATP and dsDNA. Bands 
marked with red boxes were analyzed by EDMAN-sequencing and mass 
spectrometry.  

 

Mfd contains a dsDNA translocase domain (residues 598-968) which is involved in DNA 

binding and ATP hydrolysis (Selby and Sancar, 1995a; Selby and Sancar, 1995b) (see 

1.1.2.3). Binding of ATP or DNA may lead to conformational changes in this module. 

Therefore, the experiment was also carried out in the presence of ATP-γ-S, a non-

hydrolyzable ATP analogon, and in the presence of ATP-γ-S and dsDNA, respectively. 

However, the addition of ATP-γ-S or dsDNA did not result in any detectable difference in 

the pattern (figure 3.3). In none of the experiments, stable fragment of this part could be 

found (see below). This indicates high flexibility in this region. 

 

Stable cleavage products (figure 3.3, red boxes) were analyzed by EDMAN-sequencing 

and peptide mass fingerprinting analysis. In peptide mass fingerprinting analysis, the 

fragments of interest were tryptically digested under denaturing conditions. Peptides were 

identified by MALDI-ToF mass spectrometry. As reference, Mfd-FL (band 0) was used. 

Mfd-FL could be identified in the SwissProt database using the MASCOT Search Engine. 

Sequence coverage of 48 % (556/1162) was achieved.  
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Figure 3.4: Stable regions of Mfd identified by limited proteolysis. While the N- and 
C-termini appeared rather stable, no fragments of the catalytic domain 
could be found. N- and C-terminal constructs are schematically shown. 

 

By mass spectrometry, only peptides in the range between 800 and 3300 Da were 

analyzed. Thus, peptides shorter than 8 residues were neglected. However, in some regions 

of Mfd, tryptic cleavage sites are located closer to each other. These peptides could not be 

detected in any of the samples. For instance, the N-terminal 40 residues were found in 

none of the samples, although EDMAN-sequencing of the full-length protein as well as of 

fragments 1-4 could identify the native N-terminus. Therefore, the list of identified 

peptides for a certain fragment was always compared with that for the full-length protein 

and/or longer fragments. 

A detailed list of peptides identified for each fragment can be found in the supplementary 

material (7.1). 

 

Bands 1-4 were found to be N-terminal fragments of 35 kDa (1), 50 kDa (2/4) and 60 kDa 

(3). Band 5 corresponds to the C-terminal 163 residues. No stable fragments of the 

catalytic domain could be found (figure 3.4).  

 

Based on these results, several N- and C-terminal constructs were cloned (table 3.1). For 

construct design, protein secondary structure prediction from the PSIPRED method (Jones, 

1999) was also taken into account. 
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Table 3.1:  N- and C-terminal constructs of E.coli Mfd which were designed based 
on the results of the limited proteolysis assay. 

construct no tag molecular 
weight 

with HIS6-tag molecular 
weight 

M1 – N333 "Mfd-N1" 38.1 kDa "Mfd-N2" 39.3 kDa 

M1 – N433 "Mfd-N3" 49.2 kDa "Mfd-N4" 50.5 kDa 

M1 – D586 "Mfd-N5" 66.1 kDa "Mfd-N6" 67.3 kDa 

S964 – A1148  "Mfd-C1" 21.4 kDa "Mfd-C2" 23.6 kDa 

 

 

3.2 Purification, crystallization and structure determination of 
Mfd-N2 

3.2.1 Purification of Mfd-N2 

For structure determination, an N-terminal construct of Mfd comprising the first 333 

residues of E.coli Mfd with a C-terminal hexahistidine tag ("Mfd-N2") was used.  

Mfd-N2 was purified as described in 2.4.1. Briefly, Mfd-N2 overexpressing Rosetta (DE3) 

cells were lysed by sonification, and the clarified lysate was loaded onto a Ni-NTA 

column. After elution, the protein was further purified by anion exchange chromatography 

using a Resource Q column, and by size exclusion chromatography on a HiLoad 16/60 

Superdex 200 pg column (figure 3.5). Peak fractions from the size exclusion were pooled. 

Protein was concentrated to 5 mg/ml and used for crystallization trials. From 6 l of 

expression culture, 20 mg of highly pure Mfd-N2 could be obtained. 

 

In the original purification protocol, elution fractions from the Ni2+-NTA column were 

directly applied to the size exclusion column. Crystals could be obtained from this protein 

batch, but they could not be reproduced or refined. Therefore, the anion exchange step was 

introduced between the affinity chromatography and the size exclusion column in order to 

further improve purity and homogeneity. 
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Figure 3.5:  Elution profile of Mfd-N2 from S200 16/60 size exclusion column 
(absorption at 280 nm, blue; absorption at 260 nm, pink). SDS-PAGE 
analysis of pooled and concentrated peak fractions is shown as insert.  

 

Other N-terminal constructs, "Mfd-N4" and "Mfd-N6" (table 3.1), were purified 

analogously. 

 

3.2.2 Crystallization 

For initial crystallization trials with commercial screens, a crystallization robot was used to 

set 0.5 + 0.5 µl drops with 50 µl reservoir volume in 96-well plates. First crystals were 

obtained with 5 mg/ml at 20°C. 

Small crystals with hexagonal morphology appeared over night in the crystallization 

conditions Hampton Index #6 (0.1 M TRIS/HCl pH 8.5, 2.0 M ammonium sulfate) and 

Jena Biosciences Screen 3 #C6 (0.1 M sodium citrate pH 5.6, 0.2 M ammonium sulfate, 

25% PEG-4000).  

 

20% PEG-400 was added as cryoprotectant and crystals were snap-frozen in liquid 

nitrogen. Diffraction to ~9 Å at beamline PX (SLS, Villingen, Switzerland) could be 

detected using crystals from the Jena Biosciences condition.  
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Figure 3.6:  Initial crystals of Mfd-N2 with a diameter of < 10 µm were obtained 

from A) Hampton Index reagent #6 (0.1 M TRIS/HCl pH 8.5, 2.0 M 
ammonium sulfate) and B) Jena Biosciences Screen 3 condition #C6 (0.1 
M sodium citrate pH 5.6, 0.2 M ammonium sulfate, 25% PEG-4000).  

 

For structure determination, crystal size and quality had to be improved. Therefore, 

refinements were set up by hand using the condition from the Jena Biosciences screen. A 

lower protein concentration of 4 mg/ml and a larger drop size of 1 + 1 µl (50 µl reservoir 

volume) gave slightly bigger crystals. Variation of the reservoir solution composition, 

however, did not result in any improvement compared to the original condition.  

Therefore, extensive additive screening was performed. 80 % (40 µl) of the initial 

crystallization condition (0.1 M sodium citrate pH 5.6, 0.2 M ammonium sulfate, 25% 

PEG-4000) were mixed with 20 % (10 µl) of a crystal screen reagent. Significantly bigger 

crystals could be observed when using condition #25 from Hampton Index (3.5 M sodium 

formate) or Nextal Classic condition #48 (4.0 M sodium formate) as additive.  

By variation of the formate concentration in the additive stock solution and the proportion 

between initial condition and additive, a final optimized crystallization condition was 

achieved. Using 0.08 M sodium citrate pH 5.6, 0.16 M ammonium sulfate, 20% PEG-

4000, 0.8 M sodium formate, crystals with a maximum size of 40 µm x 40 µm x 110 µm 

were obtained (figure 3.7). Selenium-containing crystals could be grown in the same 

conditions.  

A B
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Figure 3.7:  Refined crystals were obtained with 0.08 M sodium citrate pH 5.6, 0.16 
M ammonium sulfate, 20% PEG-4000 and 0.8 M sodium formate at 4 
mg/ml. Panel A) shows native crystals, B) shows a crystal of 
selenomethionine containing Mfd-N2. The crystals were of hexagonal 
morphology and had a diameter of ca. 40 µm. 

 

Crystals belonged to space group P6522 with unit cell constants of a=b=112.56 Å, 

c=213.50 Å, α=β=90° γ=120° (native crystal). The selenium containing crystals were 

isomorphous with a larger cell volume by only 0.3 %. 

The crystals showed an extremely low mosaicity of 0.24 (derivative, determined with 

DENZO) and 0.09, respectively (native, calculated by XDS). The asymmetric unit 

contained two molecules of Mfd-N2. This results in a solvent content of 50.45 % and a 

Matthews volume of 2.48 Å³/dalton of protein (Matthews, 1968; Kantardjieff and Rupp, 

2003).  

For data collection, crystals were transferred to reservoir solution supplemented with 20% 

PEG-400 and snap-frozen in liquid nitrogen.  

 

3.2.3 Data collection 

All diffraction data used for structure determination were collected at beamline ID14-4 

(ESRF, Grenoble, France) with an ADSC Q4 CCD detector. 140 images (1° oscillation 

each) were recorded for each dataset.  

 

A native dataset at 0.97395 Å was collected to 2.1 Å resolution. 

For phase determination, a three wavelength anomalous dispersion experiment was carried 

out at the selenium K edge using one selenium containing crystal. The optimal 

wavelengths were determined experimetally with a fluorescence scan (see figure 1.7). 

A B
A B 
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Datasets for the peak wavelength at 0.97788 Å (12678.23 kEV: f' -5.32, f'' 4.27) and the 

inflection point at 0.979804 Å (12653.96 kEV: f' -9.01, f'' 2.55) were collected to 2.6 Å. 

Due to radiation damage, diffraction data for the high remote wavelength at 0.97395 Å 

(12707.6 kEV: f' -4.17, f'' 4.00) could only be obtained to 2.8 Å.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8:  Diffraction image of Mfd-N2 recorded at beamline ID14-4 (ESRF, 
Grenoble, France). Native crystals diffracted to a resolution of 2.1 Å. 

 

3.2.4 Structure determination and refinement 

Anomalous data were processed with DENZO and SCALEPACK (Otwinowski and Minor, 

1997), while the native dataset was processed using XDS and XSCALE (Kabsch, 1993). 

Data were first indexed and scaled in space group P622. By means of systematic absences 

in the dataset (figure 3.9), the potential space groups could be limited to the 

enantiomorphous P6122 and P6522 (International Tables for Crystallography, Volume A: 

Space-group symmetry, 2002). The correct space group was P6522, which was revealed 

after map calculation with the two possible screw axes. 
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Figure 3.9:  A) Presentation of the native dataset (native.mtz) with hklview (CCP4) 
on section 0kl. Data was processed in space group P622. B) Zoomed 
section of A. On the l-axis (h=0, k=0), only every sixth reflection was 
present. This corresponds to a 61 or 65 screw axis. 

 

 

18 selenium sites could be located by SOLVE (Terwilliger, 2002). Initial phases were 

calculated with SHARP (de la Fortelle and Bricogne, 1997), and were improved by solvent 

flattening with SOLOMON (Abrahams and Leslie, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10:  Section of 1σ contoured MAD map at 2.8 Å resolution (blue mesh) with 
anomalous difference density contoured at 2.5 σ (white mesh). Six 
selenium atoms are shown as red spheres. 
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The resolution of 2.8 Å allowed automated model building. ARP/wARP (Morris et al., 

2003) built 567 out of 688 possible amino acids in the asymmetric unit. The model was 

completed manually with MAIN (Turk, 1992). After bulk solvent correction and 

anisotropic overall B-value correction, the model was refined against the 2.1 Å native data 

by rigid body refinement with CNS v.1.1 (Brunger et al., 1998). The refinement was 

continued by iterative cycles of simulated annealing, positional refinement and individual 

B-factor refinement with CNS, followed by manual model building with MAIN. Initial 

NCS restraints were gradually removed in the final cycles of the refinement.  

In the refined structure, 93.9% of the residues are found in the core of the Ramachandran 

plot, and none of the residues is found in a disallowed region (Laskowski et al., 1993).  

Data collection and model statistics are given in table 3.2. 

 

The final model comprised 617 residues of which 15 were present in two conformations 

(eight residues in molecule A, seven residues in molecule B). In addition, 440 water 

molecules, one sulphate and three sodium ions were detectable. Interestingly, also two 

PEG-400 molecules were visible in the density. PEG-400 was not present in the original 

crystallization reagent. It was used for cryoprotection. Crystals were transferred into PEG-

400 containing solution only for a few seconds directly before freezing. 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.11:  A) Zoomed section of 1σ contoured MAD electron density map (blue 
mesh) showing 4 antiparallel β-sheets. B) Exemplary experimental (2.8 
Å, upper panel) and final 2Fo-Fc (2.1 Å, lower panel) electron density 
maps. The final model is shown as colour-coded sticks. 
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Table 3.2: Crystallographic data collection and model refinement 

Crystal SeMet   native 

Space Group P65221   P65222 

Dataset peak inflection point high remote native 

Wavelength (Å) 0.97788 0.9798 0.97395 0.97395 

Data range (Å) 20.0-2.6 20.0-2.6 20.0-2.8 20.0-2.1 

Observations (unique) 416744 
(46059) 

417006 
(46109) 

259154 
(36731) 

1018169 
(47377) 

Completeness (%)  
(last shell) 

98.6 (96.8)3 98.6 (97.2)3 98.3 (96.5)3 99.5 (98.7) 

Rsym
4 (last shell) 0.098 (0.273) 0.095 (0.271) 0.120 (0.324) 0.082 (0.362) 

Rmeas
5 (last shell) 0.104 (0.290) 0.101 (0.287) 0.128 (0.344) 0.084 (0.372) 

I/σI (last shell) 23.0 (7.1) 19.6 (7.9) 16.8 (6.9) 33.9 (10) 
 

Refinement    native 

Data range (Å)    19.86-2.1 

Reflections F>0 (cross validation)    47432 

Protein atoms (solvent molecules)    5064 (442) 

Rwork
6 / Rfree

7 (%)    19.8 / 23.0 

rmsd bond length (Å) / bond angles (°)    0.0084 / 1.34 

Core (disallowed) in Ramachandran plot (%)    93.9 (0) 
 
1 unit cell (P6522) (Å/°): a=b=112.56 c=213.50 α=β=90 γ=120, two molecules per asymmetric unit 
2 unit cell (P6522) (Å/°): a=b=112.65 c=213.86 α=β=90 γ=120, two molecules per asymmetric unit 
3 anomalous completeness 
4 Rsym is the unweighted R value on I between symmetry mates 
5 Rmeas is the weighted R value on I between symmetry mates (Diederichs and Karplus, 1997). 
6 Rwork = ∑hkl║Fobs(hkl)│-│Fcalc(hkl)║/ ∑hkl│Fobs(hkl)│ for reflections in the working data set 
7 Rfree = ∑hkl testset║Fobs(hkl testset)│-│Fcalc(hkl testset)║/ ∑hkl│Fobs(hkl testset)│ for 5% of 

reflections against which the model was not refined 

 

 

Near the interface of the two molecules in the asymmetric unit, six methionine residues 

(three residues of each molecule) are located very close to each other (figure 3.10). The 

intramolecular distances between the sulfur atoms are in the range of 4-5 Å (table 3.3). 

Small distances between the heavy atoms in the selenium-containing crystal can cause 

difficulties in the separation of the anomalous peaks during phase determination. This may 
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explain why other phasing attempts, e.g. by SAD with SHELXD (Ness et al., 2004), had 

failed.  

 

Table 3.3:  Intramolecular distances between the sulfur atoms of methionine 
residues M66, M68, and M101. 

Methionine residues molecule A molecule B 

M66 – M68 4.19 Å 4.20 Å 

M66 – M101 4.20 Å 4.47 Å 

M68 – M101 4.89 Å 5.28 Å 
 

 

3.2.5 Mfd-N2 crystallized with two molecules in the asymmetric unit. 

One asymmetric unit contained two molecules of Mfd-N2 (figure 3.12). The two molecules 

were highly similar (RMSD of 0.93 Å). They shared a buried surface of 1834.19 Å² 

(Brunger et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12:  Mfd-N2 crystallized with two molecules in the asymmetric unit 
(molecule A, orange; molecule B, blue).  

 

According to literature, Mfd is functional as a monomeric protein (Selby and Sancar, 1993; 

Roberts and Park, 2004). In order to distinguish between a biological dimer and a 

crystallographic complex, analytical size exclusion chromatography using a Superdex 200 

10/300 GL column was performed (figure 3.13).  
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The retention volume of macromolecules from size exclusion columns depends on the 

hydrodynamic radius which corresponds to the (approximate) molecular weight for 

globular proteins. The column had previously been calibrated with a gel filtration standard. 

Thus, the apparent molecular weight (kDa) could be calculated by use of the retention 

volume (ml). 

From a retention peak volume of 15.17 ml, a molecular weight of 32.2 kDa could be 

calculated. This is consistent with the size of a monomer (39.3 kDa). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.13: Analytical size exclusion chromatography of Mfd-N2 (absorption at 

280 nm, blue; absorption at 260 nm, pink). The retention volume of 
15.17 ml indicates that Mfd-N2 is monomeric.  
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3.3 Structure of Mfd-N2 

3.3.1 Mfd-N2 crystal structure  

Mfd-N2 is a triangular molecule of approximately 60 Å × 60 Å × 30 Å dimensions. It 

consists of three structural domains denoted domains 1A, 1B and 2 according to the UvrB 

nomenclature (Theis et al., 1999). Each domain forms one corner of the triangle 

(figure 3.14).  

Domain 1A (residues 26-70, 85-114, 266-286, 324-333, coloured orange in figure 3.14) 

contains both the N- and the C-terminus of Mfd-N2 and forms the structural framework of 

the molecule. A central parallel β-sheet (strands β1, β2, β3, β11) is sandwiched between 

two layers of α-helices (αA, αB and αC, αD, αK, αN). Domain 1A possesses the typical α/β 

fold of RecA-like ATPases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.14: Ribbon presentation of Mfd-N2 with annotated secondary structure 

(α-helices, letters A-N; β-sheets, numbers 1-11). Mfd-N2 consists of 
three domains (domain 1A, orange; domain 1B, blue with loop, magenta; 
domain 2, green) that form a triangularly shaped structure.  

 

Domain 1B (residues 115-127, 212-265, 287-323, coloured in blue) is formed by three 

segments inserted into the primary sequence of domain 1A. Domain 1B is situated "on top" 

of domain 1A and is mainly α-helical. The body of domain 1B consists of two large 
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α-helical lobes, i.e. a helix-loop-helix protrusion (αL, αM) and a three helix bundle (αG, 

αH, αI). A prominent loop (residues 71-84, magenta in figure 3.14), joining β2 and αC of 

domain 1A, binds along the interface of the two α-helical lobes and completes domain 1B.  

Domain 1A and 1B form a structural unit. Domain 1B is assembled by three insertions into 

domain 1A. In addition, the two domains share an extensive, hydrophobic interface. 

Therefore, the mutual orientation of 1A and 1B appears rather stable.  

The compact globular domain 2 (residues 127–212, green in figure 3.14) is formed by a 

single insertion between helices αE and αG of domain 1B. Domain 2 is situated at the side 

of the interface of domains 1A and 1B. Domain 2 has a βαββββββ topology. A double 

layer of β-sheets packs on one side against a single α-helix (αF). The two antiparallel 

strands of the inner β-sheet (β4, β10) connect domain 2 to domain 1B. The five strands of 

the outer β-sheet (β5-β9) pack against this inner β-sheet and form a flat, slightly twisted 

solvent-exposed surface.  

In contrast to the intimate interaction of domains 1A and 1B, domain 2 appears less firmly 

attached. The interface of domain 2 with the remainder of Mfd-N2 is formed mainly by 

two loops, the loop between αF and β5 with domain 1B, and the loop between β6 and β7 

with αC of domain 1A. The two β-strands of the inner sheet covalently attach domain 2 to 

domain 1B. The interface between domain 2 and the remainder of Mfd-N2 is rather 

hydrophilic in nature. It contains a number of hydrogen bonds, but does not possess a large 

hydrophobic component. From a structural point of view, this interaction could allow some 

movement of domain 2.  

 

3.3.2 Conservation of the Mfd N-terminus 

Sequence conservation between Mfd proteins from different organisms was mapped onto 

the molecular surface of Mfd-N2 (figure 3.15). 

Two conserved surface patches on Mfd-N2 are revealed: One patch is formed by a loop 

located across the interface of domains 1A and 1B. This loop corresponds to the “β-

hairpin" motif in UvrB which functions in DNA binding in the nucleotide excision repair 

protein (see below) (Skorvaga et al., 2002; Truglio et al., 2006b). 
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Figure 3.15: Molecular surface of Mfd-N2 (oriented as in figure 3.14) with annotated 

structural domains. The colour coding corresponds to Mfd sequence 
conservation (dark red, conserved; white, unconserved). The most strongly 
conserved region of the Mfd N-terminus is the putative UvrA binding 
domain 2.  

 

The most strongly conserved region in Mfd-N2 is found on the surface of domain 2 (Selby 

and Sancar, 1993). Domain 2 is believed to function in UvrA-binding implicating a role of 

the conserved residues (Truglio et al., 2004). This would also be consistent with the strong 

conservation in domain 2 between Mfd and UvrB. Domain 2 will be discussed in more 

detail in chapter 3.3.4.  

 

3.3.3 Comparison of Mfd-N2 to UvrB 

Both in Mfd and UvrB, the N-terminal region functions in UvrA binding (Hsu et al., 1995; 

Selby and Sancar, 1995a; Truglio et al., 2004).  

By sequence comparison between UvrB and Mfd proteins, high homology was observed 

for domain 2 and, therefore, structural similarity has been proposed for this region (Selby 

and Sancar, 1993; Truglio et al., 2004). 

The structure and topology of Mfd-N2 was compared with the crystal structure of Bacillus 

caldotenax UvrB variant Y95A (PDB-ID 1T5L; Truglio et al., 2004) (figures 3.16 and 

3.18). Surprisingly, not only domain 2 is structurally similar to the corresponding part of 

UvrB. In fact, all three domains of Mfd-N2 resemble the fold and mutual arrangement of 

the three N-terminal domains of UvrB.  
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Figure 3.16:  Comparison of the Mfd-N2 structure with B.caldotenax UvrB (PDB-ID 

1T5L; Truglio et al., 2004). The orientation and colour coding is as in 
figure 3.14 (domain 1A, orange; domain 1B, blue with loop, magenta; 
domain 2, green; UvrB domain 3, grey).  

 

A sequence alignment of UvrB and Mfd N-terminal regions was generated with ClustalW 

(http://align.genome.jp/) and edited manually using GeneDoc (Nicholas and Nicholas, 

1997) based on B.caldotenax UvrB and E.coli Mfd-N2 crystal structures.  

The sequences of E.coli Mfd-N2 (residues 26-333) and the corresponding region of 

B.caldotenax UvrB (residues 45-390) have low pair-wise sequence identity of 17 %. 

However, high structural similarity (RMSD of 2.7 Å (Potterton et al., 2002; Potterton et 

al., 2004)) can be observed. 

 

 

Figure 3.17  (next page): Structure-based sequence alignment of Mfd and UvrB 
N-terminal regions. The secondary structure of Mfd-N2 is shown on top 
of the alignment and annotated according to figure 3.14. Conserved 
residues between Mfd and UvrB are shaded, dark indicating stronger 
conservation. Functional motifs mentioned in the text are boxed. 
Residues used in mutational studies are indicated with stars. 
Abbreviations: Eco, Escherichia coli; Bsu, Bacillus subtilis; Hin, 
Haemophilus influenza; Mtu, Mycobacterium tubercolosis. 

 

Mfd-N2              UvrB 
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Mfd-N2         UvrB 

 

 

 

 

 

 

 

 

 

 

Figure 3.18:  Toplogy diagrams of domains 1A, 1B and 2 of Mfd-N2 (left panel) and 
the corresponding domains of UvrB (right panel), using the color code 
and secondary structure annotation of figure 18. Walker A and B motifs 
of Mfd-N2 are indicated with quotation marks, because they are 
degenerated from the canonical sequences. 

 

Domain 1A of Mfd possesses the typical α/β fold of RecA-type ATPase domains and 

corresponds to the first RecA-like domain of UvrB. Domain 1B is more compact in Mfd 

than in UvrB but also shares the basic architecture. Interestingly, the β-hairpin that is 

implicated in DNA binding in UvrB is missing in Mfd (see 3.3.5.2). Domain 2, as expected 

from sequence similarity, is structurally very similar to UvrB domain 2 (see 3.3.4).  

However, while this domain by itself matches well, it is rotated with respect to domains 1A 

and 1B (figure 3.19). This was also found in the full-length E.coli Mfd structure 

(Deaconescu et al., 2006). As suggested above, the hydrophilic interface between domain 2 

and the remainder of Mfd-N2 might allow some movement of domain 2 with respect to 

domains 1A and 1B. The crystal structure of B.caldotenax UvrB mutant Y95A solved by 

Truglio and colleages was the first structure of an UvrB protein where domain 2 was 

clearly defined. In several other crystal structures of UvrB proteins, no clear electron 

density of domain 2 was visible (Machius et al., 1999; Nakagawa et al., 1999; Theis et al., 

1999; Truglio et al., 2004). This indicates a high mobility of domain 2 also in UvrB. 
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Figure 3.19:  Backbone worms of domains 1A, 1B and 2 of Mfd-N2 (colour code of 
figure 3.14) and B.caldotenax UvrB (light gray) superimposed on 
domains 1A and 1B. Domain 2 is rotated with respect to the remainder 
of the molecule. 

 

UvrB possesses a second RecA-like domain, domain 3 (coloured grey in figure 3.16). 

Together with domain 1A, domain 3 forms the ATP-dependent "helicase" motor in UvrB 

(Hsu et al., 1995). The corresponding region is missing in the Mfd-N2 construct. It was 

shown recently that Mfd does not possess an equivelent domain to UvrB domain 3 

(Deaconescu et al., 2006). 

 

3.3.4 Domain 2 

3.3.4.1 Superposition of domain 2 of Mfd and UvrB 

As shown above, the architecture of Mfd-N2 very much resembles that of UvrB. The 

region with the highest structural similarity between Mfd and UvrB was found to be 

domain 2. Residues 126-213 of E.coli Mfd superimpose well (RMSD of 1.35 Å) with 

domain 2 (residues 157–245) of B.caldotenax UvrB (figure 3.20).  

Domain 2 is the most conserved region of Mfd-N2 among Mfd proteins (see above). In 

addition, high sequence homology between Mfd and UvrB can be found (figure 3.17).  
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Figure 3.20:  Superposition of domain 2 of E.coli Mfd (grey) and B.caldotenax UvrB 
(white). This region is strongly conserved between Mfd and UvrB. 

 

3.3.4.2 Potential interaction sites 

Both in Mfd and UvrB, the N-termini function in UvrA binding. (Hsu et al., 1995; Selby 

and Sancar, 1995a; Truglio et al., 2004). In UvrB, this region could be further limited 

down to domain 2, which was shown to be essential for a productive UvrA-UvrB 

interaction in vitro (Hsu et al., 1995). Due to high sequence homology and structural 

similarity (see above), this is also expected to be true in Mfd (Truglio et al., 2006a). 

Many residues that are highly conserved between Mfd and UvrB cluster at the outside of 

the five-stranded twisted β-sheet of domain 2. Some of these residues in UvrB were found 

to be critical for the interaction with UvrA (Truglio et al., 2004). Most of these conserved 

residues possess a charged character which is consistent with the salt-sensitivity of the 

UvrA-UvrB/Mfd interaction (Selby and Sancar, 1993; Selby and Sancar, 1994; Hsu et al., 

1995; Truglio et al., 2004). 

An unusually solvent-exposed hydrophobic amino acid can be found at the "tip" of 

domain 2. This phenylalanine 185 is extremely conserved, and might function as an 

"anchor" in the complex. 
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Figure 3.21:  Molecular surface of Mfd domain 2 (orientation of figure 3.20). The left 
panel shows sequence conservation between Mfd and UvrB (dark red, 
conserved; white, unconserved), the conserved patch which is implicated 
to function in UvrA binding (see below) is encircled with a dotted line. 
The right panel is coloured according to residue types (negatively 
charged residues, red; positively charged residues, blue). Strongly 
conserved amino acids of Mfd and UvrB are mapped on the surface.  

 

In order to investigate the role of these residues in UvrA binding, UvrA-binding properties 

of Mfd mutants was assayed (table 3.4). 

 

Table 3.4:  Mfd domain 2 mutants used for interaction studies and the 
corresponding residues in Bacillus caldotenax UvrB. Residues marked 
with a star (*) were shown to play a role in UvrA binding in UvrB 
(Truglio et al., 2004). 

Mfd (E.coli) UvrB (B.caldotenax) 

R165A R196* 

R181A R213* 

R181A/D183A R213/E215* 

F185A F217 

E188A E220 

D190A E222 
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3.3.4.3 Interaction of Mfd mutants with UvrA 

In order to analyse the affinities of Mfd mutants to UvrA, wild-type UvrA was 

immobilized on agarose beads. After addition of Mfd mutants, complexes were eluted and 

analyzed by SDS-PAGE. 

The gene encoding wild-type UvrA was cloned into the pET-29 vector (table 2.3), and 

UvrA was expressed with a C-terminal HIS6-tag. An untagged Mfd construct comprising 

the first 586 residues ("Mfd-N5") was used as binding partner. UvrA and Mfd possess a 

similar molecular weight. Therefore, the C-terminally truncated construct of Mfd was used. 

Mfd-N5 consists of the UvrA binding region and the RNA polymerase interacting domain. 

The affinity of this construct to UvrA had been confirmed previously. Mutants were 

generated by PCR-based site-directed mutagenesis from the wild-type gene and cloned into 

the pET-21b vector (table 2.3).  

In a first step, UvrA was bound to Ni2+-NTA resin. After extensive washing, lysates of 

cells expressing Mfd-N5 mutants were added. Lysate from untransformed cells was used 

as negative control. The immobilized proteins were washed carefully with low salt buffer, 

and complexes of UvrA and Mfd-N5 were eluted afterwards. Elution fractions were 

analyzed by SDS-PAGE, and Mfd-N5 containing protein bands were quantified using 

using the Image J software (http://rsb.info.nih.gov/ij/). The levels of UvrA-bound mutants 

were compared to the amount of retained wild-type protein (100 %). 

The experiment was carried out analogously to Truglio et al., 2004, who had analyzed the 

binding properties of UvrB mutants to UvrA. However, a different coupling method had to 

be used. For UvrA-UvrB interaction studies, proteins from Bacillus caldotenax were used. 

B.caldotenax UvrA could be expressed with a C-terminal intein-tag (Chong et al., 1997; 

Chong et al., 1998) and was immobilized on Chitin Beads (NEB, Frankfurt/Main, 

Germany). This system could not be applied for the E.coli protein. The fusion-protein of 

E.coli UvrA and the intein-tag could not be expressed, probably due to its molecular 

weight of ~160 kDa (103.8 kDa for UvrA, 55 kDa for the tag). Interestingly, the 

B.caldotenax protein which is about the same size as E.coli UvrA (105.6 kDa), could be 

produced in E.coli with the large intein-tag. Therefore, E.coli UvrA was immobilized on 

Ni2+-NTA agarose by use of a C-terminal HIS6-tag. Upon addition of Mfd, UvrA “leakage” 

from the resin could be observed (figure 3.22). Therefore, the amount of retained Mfd had 

to be compared to the amount of bound UvrA.  
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Figure 3.22:  UvrA-binding properties of Mfd wild-type protein and domain 2 mutants. 
An exemplary section of an SDS-PAGE analysis is shown. From left to 
right: protein molecular weight marker; negative control (no Mfd); wild-
type Mfd-N5, Mfd mutant R165A. Less UvrA remained bound to the 
Ni2+-NTA resin when wild-type Mfd was added. The mutant R165A 
possessed dramatically decreased affinity to UvrA than wild-type Mfd. 

 

Another problem during evaluation was the strong background level. The interaction 

between UvrA and Mfd (as well as UvrB) is salt-labile (Selby and Sancar, 1993; Hsu et al., 

1995; Truglio et al., 2004). Salt-sensitivity of the complex was tested previously (data not 

shown). Therefore, columns were washed carefully with 100 mM NaCl. Not all impurities 

could be removed (figure 3.22) 

Thus, exact quantification of protein bands was difficult, and values obtained from 

multiple experiments resulted in high standard deviations (see figure 3.23). Nevertheless, 

clear differences between the mutants could be observed. 

While mutants E188A and D190A bound to UvrA at (approximately) wild-type level, the 

mutants R165A, R181A, R181A/D183A and F185 showed a drastically decreased affinity 

to UvrA (figure 3.23 and table 3.5). 

 

Of all mutants analyzed, mutant R165A possesses the lowest affinity to UvrA. Compared 

to wild-type Mfd, only a fifth (18.6%) of protein amount was retained at the UvrA column. 

Residue R165 is absolutely conserved in all known UvrB and Mfd proteins. The 

homologous residue in B.caldotenax UvrB, R196, was also shown to play a role in UvrA 

binding (Truglio et al., 2004). 
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Figure 3.23:  Affinities of different Mfd domain 2 mutants to wild-type UvrA. Shown 

are protein levels of Mfd-N5 which were retained at the UvrA column 
± standard deviation from four independent experiments. 

 

Likewise, residues R181 and D183 seem to be involved in the UvrA-Mfd interaction. Of 

mutant R181A, protein was bound at less than half the amount (42.9%) of wild-type 

protein, the double mutant R181A/D183A was retained at a very low level level of 27.6%. 

R181 (R213 in UvrB) is strictly conserved among UvrB and Mfd. In some Mfd proteins, 

the residue corresponding to D183 (E215) is a glutamate instead of an aspartate, but the 

negatively charged character of this position is maintained in all Mfd and UvrB proteins 

(see figure 3.21). In UvrB, the double mutant R213A/E215A possessed an even lower 

affinity of 12% (table 3.5; Truglio et al., 2004).  

However, affinities of UvrB and Mfd mutants to UvrA were determined by quantification 

of SDS-PAGE bands. Therefore, the exact values obtained should be treated carefully (see 

above). Nevertheless, qualitative results from both experiments were in agreement with 

each other. UvrA-binding seems to require the same residues in Mfd as in UvrB and occurs 

electrostatically in both complexes. 
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Table 3.5:  Protein levels of Mfd mutants bound to UvrA and comparison to the 
corresponding UvrB mutants (Truglio et al., 2004); n.d. = not 
determined 

E.coli Mfd retention B.caldotenax UvrB retention 

R165A 18.6% R194A/R196A 40% 

R181A 42.9% R213A n.d. 

R181A / D183A 27.6% R213A/E215A 12% 

F185A 50.5% F217 n.d. 

∆2 n.d. ∆2 no binding 

 

 

The amino acid F185 is an extremely conserved hydrophobic residue. It is located at the 

"tip" of domain 2 and is unusually solvent-exposed. The F185A mutant showed decreased 

affinity by ca. 50% to UvrA. These findings suggest that F185 might function as an 

"anchor" for the interaction with UvrA. No results are known for the corresponding UvrB 

mutant, but they are expected to be comparable. 

All residues mentioned above are located very close to each other and form a conserved, 

mainly charged "patch" on the surface of Mfd domain 2 (figure 3.21).  

Residues E188 and D190 are located slightly outside this region. Interestingly, the mutants 

E188A and D190A bound to UvrA at wild-type level (96% and 95.6%, respectively). 

Despite the high conservation and the charged character of these solvent exposed residues, 

they do not seem to be of importance for the interaction, probably due to their position. 

An UvrB ∆2 mutant, where the complete domain 2 (residues158-244) was replaced by a 

short linker, does not bind to UvrA at all (Truglio et al., 2004). The same is expected for 

the corresponding Mfd mutant. UvrA-binding properties of an Mfd "∆2" variant will be 

analyzed.  

In order to quantify binding affinities more exactly, a different method should be used. By 

Co-IP, e.g. using anti-HIS-tag antibodies coupled to protein A or protein G beads, UvrA 

"leakage" from the column material could be avoided. In addition, this approach may 

reduce strong background signals. Careful elution would be required to prevent elution of 

the antibody chains (J. Rauch, personal communication).  

Surface plasmon resonance (SPR) is a very powerful method to determine binding 

affinities. SPR is used e.g. in the BIAcore system (BIAcore, Uppsala, Sweden). In order to 

immobilize one binding partner on a chip, chip surfaces with different functional groups 

are available. In this case, covalent coupling of UvrA would be most adequate. Ni2+-coated 
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surface for HIS-tagged proteins would not be recommended as the addition of Mfd lead to 

UvrA leakage (see above).  

 

3.3.5 Functional sites 

3.3.5.1 The Mfd N-terminus does not bind to DNA 

Comparison of the crystal structures of Mfd-N2 and B.caldotenax UvrB revealed a striking 

difference between the two molecules:  

UvrB domain 1B contains a β-hairpin (residues 90-116, magenta in figure 3.16) (Theis et 

al., 1999; Skorvaga et al., 2002; Truglio et al., 2006b). This hairpin is conserved among 

UvrB proteins and is implicated in DNA-binding (Skorvaga et al., 2002). Truglio and 

coworkers could show recently that UvrB binds to DNA by inserting the hairpin between 

the strands of the double helix. This leads to a destabilization of the damaged duplex and 

allows formation of the pre-incision complex. (Truglio et al., 2006b). The β-hairpin is 

essential for discriminating between damaged and non-damaged DNA (Moolenaar et al., 

2001).  

Interestingly, an equivalent to this β-hairpin is missing in Mfd (figure 3.16). At the 

corresponding position, between β2 and αC of domain 1A, only a short, non-functional 

loop (residues 71-84) is present. This loop region is highly conserved among Mfd (see 

3.3.2) and may represent the "base" of a degenerated hairpin.  

 

DNA binding of full-length Mfd as well as of N-terminal constructs was tested by 

electrophoretic mobility shift assay (EMSA). Proteins were incubated with radioactively 

labelled double stranded oligonucleotides. Subsequently, protein-bound DNA was 

separated from free probe by polyacrylamide gel electrophoresis under native conditions. 

DNA-binding by Mfd is dependent on the presence of ATP, whereas ATP-hydrolysis 

disrupts the interaction (Selby and Sancar, 1995a; Selby and Sancar, 1995b). Therefore, the 

experiment was carried out in the presence of ATP-γ-S, a non-hydrolyzable ATP-

analogon.  

 

Full-length Mfd interacts with dsDNA, while the N-terminus of Mfd does not possess any 

DNA binding properties (figure 3.26). 

This is consistent with the findings by Selby and Sancar who showed that ATP-dependent 

interaction between Mfd and double stranded polynucleotides is mediated by the C-
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terminal dsDNA translocase domain of Mfd (see 1.1.2.3). No DNA-binding was reported 

for other regions of Mfd (Selby and Sancar, 1995a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26:  Electrophoretic mobility shift assay (EMSA) of Mfd N-terminal 
constructs and full-length protein. An exemplary PAGE-analysis from 
one out of three independent experiments is shown. The lower band 
corresponds to free DNA probe, the upper band to protein-bound 
oligonucleotides. While full-length Mfd could bind to the probe, the 
constructs showed no affinity to DNA. 

 

In nucleotide excision repair, UvrB uses the β-hairpin to bind to damaged DNA (Skorvaga 

et al., 2002; Truglio et al., 2006b). It is essential for the discrimination between damaged 

and non-damaged DNA (Moolenaar et al., 2001). In Mfd, DNA damage recognition occurs 

by recognition of stalled RNA polymerase (Selby and Sancar, 1993). This is mediated by 

the RNA polymerase interacting domain which is located C-terminal of the UvrA-binding 

region (Selby and Sancar, 1995a). Binding to and translocation along double stranded 

DNA is mediated by the C-terminal translocase module. 

 

3.3.5.2 The Mfd N-terminus contains a degenerated ATPase motif 

The fold of Mfd domain 1A is that of RecA-like domains. However, it lacks the functional 

motifs of active RecA-like ATPases (table 3.6): Walker A motif (identical to helicase 

motif I) residues are involved in nucleotide binding and positioning of the γ-phosphate. 
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Residues of the Walker B motif (DExx, helicase motif II) coordinate the magnesium ion 

and polarize the water molecule for nucleophilic attack (Walker et al., 1982). 

In UvrB domain 1A, the functional ATPase motifs are present. UvrB is an ATP-dependent 

helicase. By itself, it only possesses cryptic ATPase activity which is activated in the 

presence of UvrA and damaged DNA. Full-length UvrB possesses a C-terminal regulatory 

domain 4 which inhibits DNA binding and ATPase activity in the absence of UvrA (Caron 

and Grossman, 1988; Wang et al., 2006). C-terminally truncated UvrB lacking this 

autoinhibitory domain shows increased binding to DNA and enhanced ATPase activity 

(Wang et al., 2006). 

 

Table 3.6:  Alignment of Walker A and Walker B motifs from UvrB proteins and the 
corresponding regions in Mfd. "o" stands for hydrophobic residues, 
residues coloured in green are in accordance with the canonical 
sequences. 

Walker A  Walker B  
consensus       G  G GK(S/T) consensus  oooDESH 

EcoUvrB QTLLGVTGSGKT EcoUvrB LLVVDESHV 

BsuUvrB QTLLGATGTGKT BsuUvrB MIVVDESHV 

HinUvrB QTLLGVTGSGKT HinUvrB ILIIDESHV 

MtuUvrB VVLLGATGTGKS MtuUvrB LLVIDESHV 

BcaUvrB QTLLGATGTGKT BcaUvrB LIIVDESHV 

EcoMfd RLLGELTGAACA EcoMfd LLVNTG-DL 

BsuMfd QLLAGLSGSARS BsuMfd LLILDEVSR 

HinMfd KILGNVLPGADA HinMfd LFVDME--N 

MtuMfd DELTLIAPASAR MtuMfd PVLVCDPEK 

 

 

In B.caldotenax UvrB, residues Thr41, Gly42, Thr43 and Lys45 of helicase motif I are 

involved in phosphate binding (Theis et al., 1999). In Mfd-N2, the corresponding region 

was not ordered in the crystal structure. Sequence alignment (table 3.6) indicates that the 

canonical Walker A residues are not present in Mfd.  

 

Side chains of the conserved amino acids Glu338 and Asp339 of helicase motif II point 

toward the Mg2+-ion in UvrB (Theis et al., 1999). The corresponding region in Mfd lacks 

these acidic residues (figure 3.24). In addition, the typical three-dimensional conformation 

of active ATPases cannot be found in Mfd. 
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Figure 3.24:  Detailed view of the Walker B (DESH) motif of ATP-bound UvrB (PDB-
ID 1D9Z; Theis et al., 1999) and the corresponding region of Mfd 
(domain 1A, orange; domain 1B, blue; non-carbon atoms are coloured 
according to the atom type: magnesium, grey; nitrogen, green; oxygen, 
red; phosphorus, magenta). 

 

Interestingly, the "Walker A" and "Walker B" motifs of Bacillus subtilis Mfd show higher 

similarity to the canonical sequences (table 3.6). Therefore the B.subtilis Mfd N-terminus 

might be able to bind and/or hydrolyze ATP. 

 

ATPase activity of different N-terminal constructs was tested by thin layer 

chromatography. As controls, Mfd-FL (see 3.1) and UvrB-N were used.  

UvrB-N comprises the first 583 residues of E.coli UvrB. It lacks the regulatory C-terminal 

domain 4. The gene encoding UvrB residues 1-583 was amplified by PCR from genomic 

E.coli XL1 Blue DNA and cloned into the pET-21b vector (table 2.3). UvrB-N was 

expressed with a C-terminal hexahistidine-tag and purified analogously to Mfd-N2.  

ATPase activity was determined in the absence (light blue) and in the presence (violet) of 

dsDNA (figure 3.25). 

UvrB      Mfd 
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Figure 3.25:  ATPase activity assay of Mfd-N2 (1-333), Mfd-N4 (1-433), Mfd-N6 
(1-586), Mfd-FL and UvrB-N (1-583) without (light blue) and with 
(violet) dsDNA. Shown are mean values and standard deviation of three 
independent experiments.  

 

It could be shown that the Mfd N–terminus does not possess ATPase activity. Full-length 

Mfd is able to hydrolyze ATP by use of its C-terminal dsDNA translocase domain (Selby 

and Sancar, 1995b) (see 1.1.2.3). Constructs Mfd-N2, Mfd-N4 and Mfd-N6 lacking the C-

terminus are not able to hydrolyze ATP. UvrB-N contains functional Walker A and Walker 

B motifs and possesses DNA-stimulated ATPase activity (Caron and Grossman, 1988; 

Theis et al., 1999).  

 

ATP binding and hydrolysis by UvrB are required in two steps of nucleotide excision 

repair: UvrA-mediated loading of UvrB onto damaged DNA does not only require ATP 

hydrolysis by UvrA but also by UvrB (Van Houten et al., 1988; Moolenaar et al., 2000). 

UvrB probably destabilizes the DNA duplex in an energy-consuming reaction in order to 

insert the β-hairpin between the strands (Goosen and Moolenaar, 2001; Truglio et al., 

2006b). UvrC-mediated incision into the damaged DNA requires binding of a new ATP 

molecule by UvrB (Orren and Sancar, 1990; Moolenaar et al., 2000; Truglio et al., 2005). 
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This induces a conformational change in the DNA, resulting in higher sensitivity to 

nucleases (Moolenaar et al., 2000).  

In contrast, Mfd acts on sites of transcription. Here, the DNA double helix has already 

been opened (Selby and Sancar, 1994). In the incision reactions, Mfd is not involved. 

Therefore, functional ATPase motifs are not essential in this region of Mfd. 

Full-length Mfd does possess ATPase activity. Mfd translocates along double stranded 

DNA in an ATP-dependent manner. ATPase activity is also used for the dissociation of 

stalled RNA polymerase. ATP hydrolysis is carried out by the C-terminal translocase 

domain (Selby and Sancar, 1995a; Selby and Sancar, 1995b).  
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4 Discussion 

 

Cells frequently encounter DNA damage caused by variable exo- or endogeneous sources. 

DNA lesions are a severe threat to genomic integrity and can lead to mutations, cancer, or 

cell death. Therefore, different DNA repair mechanisms exist in order to deal with all 

different types of lesions (reviewed in Lindahl and Wood, 1999; Lodish et al., 2000; 

Hoeijmakers, 2001; Friedberg et al., 2006) 

Bulky DNA lesions that affect structure of the DNA double helix are repaired by a 

mechanism called nucleotide excision repair (NER). NER can be found in all kingdoms of 

life and is functionally conserved throughout evolution (Sancar, 1996; Ogrunc et al., 1998; 

Batty and Wood, 2000). In baceria, nucleotide excision repair is performed by the UvrABC 

system (Van Houten et al., 2005; Truglio et al., 2006a). 

DNA damage in active genes is repaired by a special mode of NER, called transcription-

coupled repair (TCR). Non-coding lesions in the transcribed strand cause transcription 

elongation complexes to arrest. A "transcription-repair coupling factor" functions in the 

release of arrested RNA polymerase and delivers the NER machinery to the lesion-site. 

 

Aim of this work was to gain structural insights into the mechanism of bacterial 

transcription-coupled repair. During this PhD thesis, the crystal structure of the N-terminal 

333 residues of the Escherichia coli transcription-repair coupling factor, the Mfd protein, 

was solved. The Mfd N-terminus binds to the nucleotide excision repair protein UvrA and 

is involved in the recruitment of the UvrABC repair system to DNA lesions at stalled 

transcription sites. The interaction between Mfd and UvrA was further analyzed 

biochemically in order to reveal mechanistic details of this process.  

 

4.1 The Mfd N-terminus resembles UvrB 

The Mfd N-terminus has a triangular structure consisting of three domains (domains 1A, 

1B and 2). The structure of the Mfd N-terminus very much resembles the architecture of 

the three N-terminal domains of UvrB (also denoted domain 1A, 1B and 2, respectively). 

However, it lacks functional elements that are implicated in ATP-driven damage 

recognition of UvrB (Theis et al., 1999; Moolenaar et al., 2000; Truglio et al., 2006b).  
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Both in Mfd and UvrB, the N-terminus is implicated in UvrA-binding. In Mfd, this is the 

only function associated with this region (Hsu et al., 1995; Selby and Sancar, 1995a; Selby 

and Sancar, 1995b). Both in Mfd and in UvrB, the interaction to UvrA is mediated by 

domain 2 (Hsu et al., 1995; Truglio et al., 2004, and this work). Domain 2 of Mfd 

possesses high sequence homology to UvrB as well as close structural similarity (Selby 

and Sancar, 1993; Truglio et al., 2004, and this work). In both proteins, strongly conserved 

residues are located at the surface of domain 2. Several of these residues could be shown to 

be essential for UvrA-binding both in UvrB and in Mfd (Truglio et al., 2004, and this 

work). Therefore, binding to UvrA seems not only to be a conserved function between 

UvrB and Mfd. In addition, both proteins seem to use a similar mechanism. 

 

In UvrB, two additional activities reside within the N-terminus. The UvrB protein is a 

weak helicase and possesses cryptic ATPase activity. Functional ATPase motifs are 

located in domain 1A (Caron and Grossman, 1988; Hsu et al., 1995; Theis et al., 1999). In 

contrast, the corresponding region of Mfd does not adopt the conformation of active 

ATPases. Only a degenerated ATPase motif can be found in domain 1A. We could confirm 

that the Mfd N-terminus is not able to hydrolyze ATP (Selby and Sancar, 1995a; Selby and 

Sancar, 1995b).  

Domain 1B of UvrB contains a conserved β-hairpin motif which functions in DNA binding 

(Theis et al., 1999; Skorvaga et al., 2002; Truglio et al., 2006b). In Mfd, the corresponding 

region is more compact and lacks the DNA-binding motif. Instead, a short, non-functional 

loop can be found which may correspond to a degenerated hairpin. No DNA binding can 

be found for this part of Mfd.  

 

However, the fold and overall arrangement of domains 1A and 1B is conserved in Mfd. In 

UvrB as well as in Mfd, the three N-terminal domains form a compact module with a 

central domain 1A. Domains 1B and 2 are inserted into the primary sequence of domain 

1A (Theis et al., 1999; Truglio et al., 2006b, and this work). Hence, domains 1A and 1B 

may play an important role in forming the architecture of the N-terminal module.  

 

UvrB possesses a second RecA-like domain, domain 3, which is located beside the 

compact module of domains 1A, 1B and 2 (Theis et al., 1999). Domain 3, together with 

domain 1A, forms the "helicase" motor of UvrB (Hsu et al., 1995). Domain 3 as well as a 

regulatory domain 4 (Sohi et al., 2000; Wang et al., 2006) are not present in Mfd 
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(Deaconescu et al., 2006). These domains do not contribute to the compact structure of 

domains 1A, 1B and 2. In addition, their primary sequence is found C-terminal of domains 

1A/1B/2.  

 

Taken together, these findings suggest that the N-terminal part of Mfd might have evolved 

from an UvrB molecule or from a common precursor: Mfd and UvrB have a common 

function by binding to UvrA. In both proteins, this function is mediated by the highly 

conserved domain 2. No biochemical function is associated with domains 1A and 1B in 

Mfd. They seem to be involved in maintaining the architecture of the compact module. In 

UvrB, additional functional motifs are present. Nucleic acid binding and ATP hydrolysis 

are mediated by the N-terminal region. There is evidence that these activities might have 

been present in an Mfd precursor, but – as they are not required for the function of Mfd – 

have been degenerated. 

 

For most other functional domains of Mfd, "counterparts" can be found as well: 

The RNA polymerase interacting domain resembles the KOW domain of the bacterial 

transcripton factor NusG wich is believed to function in RNA polymerase binding as well 

(Li et al., 1992; Steiner et al., 2002; Deaconescu et al., 2006). 

The RecG homology module located in the C-terminal half of Mfd, possesses motifs 

related to superfamily II helicases (Selby and Sancar, 1993; Selby and Sancar, 1995b). It 

possesses high sequence homology to RecG (Chambers et al., 2003; Mahdi et al., 2003), 

and both proteins share structural similarity (Singleton et al., 2001; Deaconescu et al., 

2006). In both proteins, this region was found to function as dsDNA translocase (Singleton 

et al., 2001; Park et al., 2002).  

Swi2/Snf2 ATPases translocate on double stranded DNA by travelling along both minor 

groove backbone strands (Durr et al., 2005). Structural resemblance of the Mfd translocase 

domain to the Sulfolobus solfataricus Swi2/Snf2 ATPase suggests a similar translocation 

mechanism for Mfd (Deaconescu et al., 2006).  

The domain which is unique to the Mfd protein is the very C-terminal TRCF domain 

which protects the UvrA-binding surface. This domain revealed a novel protein fold with 

only very weak similarity to the Rpb1 subunit of eukaryotic RNA polymerase II (Selby and 

Sancar, 1993; Cramer et al., 2001; Deaconescu et al., 2006). 
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The crystal structure of the Mfd N-terminus provides a first structural insight into bacterial 

TCR. The remarkable similarity between Mfd and UvrB indicates an evolutionary 

connection between global genome and transcription-coupled nucleotide excision repair. In 

addition, it suggests a mechanism by which Mfd might form an UvrA recruitment factor at 

stalled transcription complexes. 

 

4.2 The role of Mfd in recruitment of the UvrA-UvrB complex 

In bacterial nucleotide excision repair, DNA damage recognition is performed by the 

UvrA2-UvrB1/2 complex (Orren and Sancar, 1989; Mazur and Grossman, 1991). Upon 

damage verification, the UvrB-DNA pre-incision complex (PIC) is formed by the action of 

UvrA: UvrA loads UvrB onto the damaged DNA in an energy-consuming reaction. This 

step is the rate-limiting reaction in the nucleotide excision repair process (figure 4.1, left 

panel) (Van Houten et al., 1988; Orren and Sancar, 1990; Myles et al., 1991). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  Recruitment of the UvrAB complex and formation of the pre-incision 
complex (PIC) in global genome (left panel) and in transcription-
coupled nucleotide excision repair (right panel) (DNA lesion, red star; 
Mfd, yellow; UvrA, orange; UvrB, green). 
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In transcription-coupled repair, DNA damage is recognized by elongating RNA 

polymerase. As consequence, RNA polymerase becomes arrested (Tornaletti and 

Hanawalt, 1999). Arrested RNA polymerase is recognized and subsequently released by 

the transcription-repair coupling factor, Mfd (Selby and Sancar, 1995b; Park et al., 2002). 

Mfd itself remains bound at the lesion site and recruits the nucleotide excision repair 

system to the lesion site (Selby et al., 1991; Selby and Sancar, 1993; Roberts and Park, 

2004). However, the mechanistic details of UvrAB recruitment and the subsequent 

formation of the UvrB-DNA pre-incision complex at stalled transcription sites are not fully 

understood (figure 4.1, right panel).  

 

So, what could be the function of Mfd in these steps? 

The role of Mfd seems to involve binding to UvrA. Mfd can interact directly with UvrA 

(Selby and Sancar, 1995a). There is high evidence that Mfd and UvrB use a similar mode 

of binding to UvrA: High structural similarity of domain 2 can be found, and in both 

proteins, highly conserved residues are essential for UvrA binding (Truglio et al., 2004, 

and this work). In addition, UvrB can be displaced from UvrA by Mfd in vitro (Selby and 

Sancar, 1993). These findings suggest that Mfd and UvrB compete for binding to UvrA. 

 

In vitro, Mfd can bind directly to the UvrA dimer (Mazur and Grossman, 1991). However, 

the existence of a free UvrA2-Mfd complex in vivo is rather unlikely. In full-length Mfd, 

the UvrA binding region is buried in the interface between domain 2 and the TCRF domain 

(denoted domain 7), and therefore seems to be protected (Deaconescu et al., 2006). A 

C-terminally truncated version of Mfd lacking domain 7 causes defects not only in 

transcription-coupled repair but also in global nucleotide excision repair by interacting 

with UvrA in an unproductive manner (Selby and Sancar, 1995a). Hence, UvrA and Mfd 

are not likely to interact independently of transcriptional arrest. Deaconescu and colleagues 

suggest that, upon binding to RNA polymerase, Mfd undergoes conformational changes by 

which the UvrA binding domain becomes surface-exposed and thus accessible 

(Deaconescu et al., 2006). Therefore, in contrast to UvrB, Mfd seems to interact with 

UvrA only at sites of arrested transcription.  

 

After binding to RNA polymerase and its dissociation, Mfd remains bound at the DNA in 

close proximity to the damage site (Selby et al., 1991; Selby and Sancar, 1993; Roberts 
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and Park, 2004). Thus, the exposed UvrA-binding region of Mfd may act as recruitment 

signal for UvrA and attract the UvrA-UvrB complex.  

The subsequent formation of the UvrB-DNA pre-incision complex probably involves Mfd 

as well (see below).  

 

On the other hand, it is also possible that Mfd only attracts the UvrAB complex to the 

lesion site and does not take part in the subsequent reaction ("attraction model", figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2:  Attraction model: Mfd attracts the UvrAB complex close to the damage 
site. The formation of the pre-incision complex occurs independently of 
Mfd (colour code as in figure 4.1).  

 

Damage repair in active genes occurs at a much higher rate than in the overall genome 

(Mellon et al., 1986; Mellon et al., 1987; Mellon and Hanawalt, 1989). The rate limiting 

step in global nucleotide excision repair is the UvrA-dependent loading of UvrB onto the 

damaged DNA (Orren and Sancar, 1990). Therefore, this step is probably facilitated in 

transcription-coupled repair (Selby and Sancar, 1995b).  

One difference between global and transcription-coupled nucleotide excision repair 

concerning this reaction is quite evident: During formation of the pre-incision complex, 

UvrB inserts a β-hairpin motif between the two strands of the DNA double helix (Truglio 

et al., 2006b). In global NER, the UvrAB complex acts on double stranded DNA, and the 
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DNA duplex has to be destabilized beforehand. This requires ATP-hydrolysis by UvrB. 

Before UvrC can incise the damaged DNA, a new ATP molecule has to be bound by UvrB 

resulting in conformational changes in the DNA molecule (Moolenaar et al., 2000; Goosen 

and Moolenaar, 2001). In contrast, TCR takes place at transcription bubbles where the 

DNA double helix has already been opened (Selby and Sancar, 1994). UvrB can insert the 

hairpin without hydrolysis and rebinding of ATP. Mfd possesses affinity to transcription-

bubble like DNA structures in vitro (Selby and Sancar, 1995a). It therefore is imaginable 

that Mfd forms a "placeholder", until the UvrA-UvrB complex approaches the damage site. 

This feature probably has an effect on the repair rate. However, by itself, it is presumably 

insufficient to explain the dramatical discrepancies in the repair rates between global and 

transcription-coupled repair. 

 

Mfd might therefore also be actively involved in the formation of the UvrB-DNA complex. 

Mfd is able to displace UvrB from UvrA in vitro (Selby and Sancar, 1993). Hence, Mfd 

could also help to release UvrA from UvrB in vivo. 

Recognition of lesion-bound Mfd may promote the dissociation of the UvrAB complex 

and, in consequence, enhances formation of the UvrB-DNA pre-incision complex. UvrB-

loading is an energy-consuming reaction (Myles et al., 1991). Thus, it would be interesting 

to investigate, if ATPase-activity of UvrA can be stimulated by the presence of Mfd.  

 

In this scenario, Mfd directly interacts with UvrA which is still involved in the UvrA2-

UvrB complex. As mentioned above, Mfd and UvrB seem to interact with UvrA in a 

highly similar way (see above). It is therefore quite likely that Mfd and UvrB compete for 

the same binding site on UvrA ("competitive model"). On the other hand, it is also 

imaginable that Mfd induces conformational changes in UvrA leading to UvrB-release. 

This would require a second, allosteric binding site on UvrA. 

 

Although much is known about the UvrA-binding domains of UvrB and Mfd, the 

UvrB-/Mfd-interacting region of UvrA is only poorly understood. The UvrB-binding site 

of UvrA could be narrowed down to the first 230 amino acids (Claassen and Grossman, 

1991). For binding of UvrB or Mfd, dimerization of UvrA is essential (Claassen and 

Grossman, 1991; Myles et al., 1991). This is achieved at high concentrations of UvrA or in 

the presence of ATP (Myles et al., 1991). At physiological concentrations, most UvrA is 

present as a dimer in the UvrA2-UvrB1/2 complex (Orren and Sancar, 1989).  
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UvrA contains two ABC ATPase domains (Doolittle et al., 1986). The N-terminal ATPase 

motifs are involved in dimer formation. They are located within the UvrB-binding region 

(Myles et al., 1991). It is therefore imaginable that two equivalent binding sites for 

UvrB/Mfd are present in one UvrA dimer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Allosteric model:According to this model, Mfd directly takes part in the 
release of UvrB from UvrA and in the formation of the PIC. This 
reaction may involve a transient quaternary complex.  

 

Properties of the UvrA-UvrB complex have been intensively studied. There is no evidence 

that two UvrB molecules can bind to different sites on UvrA simultaneously. Due to 

intrinsic asymmetry, only one binding site may therefore be occupied at one time. In this 

case, binding at one site by Mfd may induce conformational changes in UvrA leading to 

the release of UvrB at the other binding site. This displacement-mechanism certainly 

would accelerate the process of pre-incision complex formation. It would require the 

presence of a short-living quarterny complex containing both UvrB and Mfd ("allosteric 

model", figure 4.3). In order to confirm the existence of such a complex, fluorescence 

methods, like fluorescence correlation spectroscopy (FCS), could be applied.  

 

According to the latter models, Mfd is directly involved in the dissociation of the UvrA-

UvrB complex and hence in the formation of the UvrB-DNA pre-incision complex.  
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5 Summary 

 

The Mfd (mutation frequency decline) protein is responsible for connecting the cellular 

processes of transcription and DNA repair in bacteria. Mfd, also termed transcription-

repair coupling factor (TRCF), recognizes arrested transcription elongation complexes and 

catalyzes their dissociation from damaged template DNA in an ATP-dependent manner. 

Subsequently, Mfd recruits the UvrABC nucleotide excision repair machinery to the 

damage site. The mechanistic details of this process are not fully understood.  

X-ray crystallography was used in order to give structural insights into the mechanism of 

bacterial transcription-coupled repair. During this PhD thesis, the crystal structure of the 

N-terminus (residues 1-333) of Escherichia coli Mfd ("Mfd-N2") was solved. The Mfd 

N-terminus is implicated to function in UvrA-binding. It bears a region with high 

homology to the nucleotide excision repair protein UvrB. 

Mfd-N2 is a triangularly shaped molecule of approximately 60×60×30 Å dimensions 

which contains three structural domains (domains 1A, 1B and 2). Interestingly, the 

structure of Mfd-N2 very much resembles that of the three N-terminal domains of UvrB. 

Mfd domain 1A adopts a typical RecA fold. However, it lacks the functional motifs of 

active ATPases, and we could confirm that the Mfd N-terminus does not possess any 

ATPase activity. Domain 1B matches the damage-binding domain of the UvrB. 

Interestingly, Mfd is bereft of the damage-binding motif of UvrB domain 1B, and no DNA 

binding is associated with this part of Mfd. Domain 2, which possesses the highest 

sequence homology to UvrB, closely matches the three-dimensional structure of the 

implicated UvrA-binding domain of UvrB.  

Highly conserved amino acids between Mfd and UvrB can be found on the surface of 

domain 2. Using site-directed mutagenesis, several of these residues could be shown to 

function in the UvrA-Mfd interaction. Remarkably, the corresponding residues in UvrB are 

required for productive interaction between UvrA and UvrB as well. 

Taken together, these results suggest that Mfd and UvrB interact with UvrA in a similar 

manner. Mfd may form an UvrA-recruitment factor at stalled transcription complexes that 

resembles UvrB architecturally but not catalytically. The molecular similarity between 

Mfd and UvrB indicates an evolutionary connection between global genome and 

transcription-coupled nucleotide excision repair in bacteria. 

 



 References  79 

6 References 

Abrahams, J.P. and Leslie, A.G. (1996). Methods used in the structure determination of 
bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr 52(Pt 1): 30-
42. 

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002). Molecular 
Biology of the Cell. New York, Garland Science. 

Andressoo, J.O. and Hoeijmakers, J.H. (2005). Transcription-coupled repair and premature 
ageing. Mutat Res 577(1-2): 179-194. 

Artsimovitch, I. and Landick, R. (2000). Pausing by bacterial RNA polymerase is mediated 
by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A 97(13): 
7090-7095. 

Batty, D.P. and Wood, R.D. (2000). Damage recognition in nucleotide excision repair of 
DNA. Gene 241(2): 193-204. 

Blow, D. (2002). Outline of Crystallography for Biologists. New York, Oxford University 
Press. 

Borukhov, S., Lee, J. and Laptenko, O. (2005). Bacterial transcription elongation factors: 
new insights into molecular mechanism of action. Mol Microbiol 55(5): 1315-1324. 

Borukhov, S., Sagitov, V. and Goldfarb, A. (1993). Transcript cleavage factors from E. 
coli. Cell 72(3): 459-466. 

Brueckner, F., Hennecke, U., Carell, T. and Cramer, P. (2006). CPD damage recognition 
by transcribing RNA polymerase II. Submitted. Cited with permission of F.B. 

Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, 
R.W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., 
Simonson, T. and Warren, G.L. (1998). Crystallography & NMR System: A New 
Software Suite for Macromolecular Structure Determination. Acta Crystallogr D 
54(5): 905-921. 

Bryson, K., McGuffin, L.J., Marsden, R.L., Ward, J.J., Sodhi, J.S. and Jones, D.T. (2005). 
Protein structure prediction servers at University College London. Nucleic Acids 
Res 33(Web Server issue): W36-W38. 

Caron, P.R. and Grossman, L. (1988). Involvement of a cryptic ATPase activity of UvrB 
and its proteolysis product, UvrB* in DNA repair. Nucleic Acids Res 16(20): 9651-
9662. 

Caron, P.R., Kushner, S.R. and Grossman, L. (1985). Involvement of helicase II (uvrD 
gene product) and DNA polymerase I in excision mediated by the uvrABC protein 
complex. Proc Natl Acad Sci U S A 82(15): 4925-4929. 

Chambers, A.L., Smith, A.J. and Savery, N.J. (2003). A DNA translocation motif in the 
bacterial transcription--repair coupling factor, Mfd. Nucleic Acids Res 31(22): 
6409-6418. 

Chong, S., Mersha, F.B., Comb, D.G., Scott, M.E., Landry, D., Vence, L.M., Perler, F.B., 
Benner, J., Kucera, R.B., Hirvonen, C.A., Pelletier, J.J., Paulus, H. and Xu, M.Q. 
(1997). Single-column purification of free recombinant proteins using a self-
cleavable affinity tag derived from a protein splicing element. Gene 192(2): 271-
281. 

Chong, S., Montello, G.E., Zhang, A., Cantor, E.J., Liao, W., Xu, M.Q. and Benner, J. 
(1998). Utilizing the C-terminal cleavage activity of a protein splicing element to 
purify recombinant proteins in a single chromatographic step. Nucleic Acids Res 
26(22): 5109-5115. 



 References  80 

Claassen, L.A. and Grossman, L. (1991). Deletion mutagenesis of the Escherichia coli 
UvrA protein localizes domains for DNA binding, damage recognition, and 
protein-protein interactions. J Biol Chem 266(17): 11388-94. 

Cleaver, J.E. and Kraemer, K.H. (1995). Xeroderma pigmentosum and Cockayne 
syndrome. In: Scriver, C.R., Beaudet, A.L., Sly, W.S. and Valle, D. (editors). The 
Metabolic Basis of Inherited Disease (seventh ed.). New York, McGraw-Hill. 
4393–4419. 

Coin, F., Proietti De Santis, L., Nardo, T., Zlobinskaya, O., Stefanini, M. and Egly, J.M. 
(2006). p8/TTD-A as a repair-specific TFIIH subunit. Mol Cell 21(2): 215-26. 

Cramer, P., Bushnell, D.A. and Kornberg, R.D. (2001). Structural basis of transcription: 
RNA polymerase II at 2.8 angstrom resolution. Science 292(5523): 1863-1876. 

Crick, F. (1974). The double helix: a personal view. Nature 248(5451): 766-769. 
de Boer, J. and Hoeijmakers, J.H. (2000). Nucleotide excision repair and human 

syndromes. Carcinogenesis 21(3): 453-360. 
de la Fortelle, E. and Bricogne, G. (1997). Maximum-likelihood heavy-atom parameter 

refinement for multiple isomorphous replacement and multiwavelength anomalous 
diffraction methods. Methods Enzymol 276: 472-494  

Deaconescu, A.M., Chambers, A.L., Smith, A.J., Nickels, B.E., Hochschild, A., Savery, 
N.J. and Darst, S.A. (2006). Structural basis for bacterial transcription-coupled 
DNA repair. Cell 124(3): 507-520. 

Diederichs, K. and Karplus, P.A. (1997). Improved R-factors for diffraction data analysis 
in macromolecular crystallography. Nat Struct Biol 4(4): 269-275. 

Doolittle, R.F., Johnson, M.S., Husain, I., Van Houten, B., Thomas, D.C. and Sancar, A. 
(1986). Domainal evolution of a prokaryotic DNA repair protein and its 
relationship to active-transport proteins. Nature 323(6087): 451-3. 

Drenth, J. (1999). Principles of Protein X-Ray Crystallography. Heidelberg, Springer-
Verlag. 

Durr, H., Korner, C., Muller, M., Hickmann, V. and Hopfner, K.P. (2005). X-ray structures 
of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. 
Cell 121(3): 363-73. 

Edman, P. (1950). Method for determination of the amino acid sequence in peptides. Acta 
Chem Scand 4: 283-293. 

Egly, J.M. (2001). The 14th Datta Lecture. TFIIH: from transcription to clinic. FEBS Lett 
498(2-3): 124-8. 

Fish, R.N. and Kane, C.M. (2002). Promoting elongation with transcript cleavage 
stimulatory factors. Biochim Biophys Acta 1577(2): 287-307. 

Fontana, A., de Laureto, P.P., Spolaore, B., Frare, E., Picotti, P. and Zambonin, M. (2004). 
Probing protein structure by limited proteolysis. Acta Biochim Pol 51(2): 299-321. 

Fontana, A., Fassina, G., Vita, C., Dalzoppo, D., Zamai, M. and Zambonin, M. (1986). 
Correlation between sites of limited proteolysis and segmental mobility in 
thermolysin. Biochemistry 25(8): 1847-1851. 

Friedberg, E.C., Walker, G.C., Siede, W., Wood, R.D., Schultz, R.A. and Ellenberger, T. 
(2006). DNA repair and mutagenesis. Washington D.C., ASM Press. 

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D. and Bairoch, A. (2003). 
ExPASy: The proteomics server for in-depth protein knowledge and analysis. 
Nucleic Acids Res 31(13): 3784-3788. 

Goosen, N. and Moolenaar, G.F. (2001). Role of ATP hydrolysis by UvrA and UvrB 
during nucleotide excision repair. Res Microbiol 152(3-4): 401-409. 

Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P. and Blinov, V.M. (1989). Two related 
superfamilies of putative helicases involved in replication, recombination, repair 
and expression of DNA and RNA genomes. Nucleic Acids Res 17(12): 4713-4730. 



 References  81 

Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol 
Biol 166(4): 557-580. 

Hildebrand, E.L. and Grossman, L. (1999). Oligomerization of the UvrB nucleotide 
excision repair protein of Escherichia coli. J Biol Chem 274(39): 27885-90. 

Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989). Site-directed 
mutagenesis by overlap extension using the polymerase chain reaction. Gene 77(1): 
51-59. 

Hoeijmakers, J.H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 
411(6835): 366-374. 

Holm, L. and Sander, C. (1995). Dali: a network tool for protein structure comparison. 
Trends Biochem Sci 20(11): 478-80. 

Hsu, D.S., Kim, S.T., Sun, Q. and Sancar, A. (1995). Structure and function of the UvrB 
protein. J Biol Chem 270(14): 8319-8327. 

Husain, I., Van Houten, B., Thomas, D.C., Abdel-Monem, M. and Sancar, A. (1985). 
Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC 
excision nuclease. Proc Natl Acad Sci U S A 82(20): 6774-6778. 

International Tables for Crystallography, Volume A: Space-group symmetry. (2002). 
Jamieson, E.R. and Lippard, S.J. (1999). Structure, Recognition, and Processing of 

Cisplatin-DNA Adducts. Chem Rev 99(9): 2467-98. 
Jones, D.T. (1999). Protein secondary structure prediction based on position-specific 

scoring matrices. J Mol Biol 292(2): 195-202. 
Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of 

initially unknown symmetry and cell constants. J Appl Cryst 26(6): 795-800. 
Kantardjieff, K.A. and Rupp, B. (2003). Matthews coefficient probabilities: Improved 

estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex 
crystals. Protein Sci 12(9): 1865-1871. 

Kelman, Z. and White, M.F. (2005). Archaeal DNA replication and repair. Curr Opin 
Microbiol 8(6): 669-76. 

Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H. and Phillips, D.C. 
(1958). A three-dimensional model of the myoglobin molecule obtained by x-ray 
analysis. Nature 181(4610): 662-666. 

Kettenberger, H., Armache, K.J. and Cramer, P. (2003). Architecture of the RNA 
polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114(3): 
347-357. 

Komissarova, N. and Kashlev, M. (1997). Transcriptional arrest: Escherichia coli RNA 
polymerase translocates backward, leaving the 3' end of the RNA intact and 
extruded. Proc Natl Acad Sci U S A 94(5): 1755-1760. 

Laine, J.P. and Egly, J.M. (2006). When transcription and repair meet: a complex system. 
Trends Genet. 

Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993). PROCHECK: 
a program to check the stereochemical quality of protein structures. J Appl Cryst 
26(2): 283-291. 

Le Page, F., Kwoh, E.E., Avrutskaya, A., Gentil, A., Leadon, S.A., Sarasin, A. and Cooper, 
P.K. (2000). Transcription-coupled repair of 8-oxoguanine: requirement for XPG, 
TFIIH, and CSB and implications for Cockayne syndrome. Cell 101(2): 159-171. 

LeMaster, D.M. and Richards, F.M. (1985). 1H-15N heteronuclear NMR studies of 
Escherichia coli thioredoxin in samples isotopically labeled by residue type. 
Biochemistry 24(25): 7263-7268. 

Li, J., Horwitz, R., McCracken, S. and Greenblatt, J. (1992). NusG, a new Escherichia coli 
elongation factor involved in transcriptional antitermination by the N protein of 
phage lambda. J Biol Chem 267(9): 6012-9. 



 References  82 

Lin, J.J. and Sancar, A. (1992). Active site of (A)BC excinuclease. I. Evidence for 5' 
incision by UvrC through a catalytic site involving Asp399, Asp438, Asp466, and 
His538 residues. J Biol Chem 267(25): 17688-17692. 

Lindahl, T. and Wood, R.D. (1999). Quality control by DNA repair. Science 286(5446): 
1897-905. 

Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell, J. (2000). 
Molecular Cell Biology. N.Y., W.H. Freeman and Company. 

Machius, M., Henry, L., Palnitkar, M. and Deisenhofer, J. (1999). Crystal structure of the 
DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus. Proc 
Natl Acad Sci U S A 96(21): 11717-11722. 

Mahdi, A.A., Briggs, G.S., Sharples, G.J., Wen, Q. and Lloyd, R.G. (2003). A model for 
dsDNA translocation revealed by a structural motif common to RecG and Mfd 
proteins. Embo J 22(3): 724-734. 

Massa, W. (2002). Kristallstrukturbestimmung. Stuttgart, B.G. Teubner. 
Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33(2): 491-497. 
Mazur, S.J. and Grossman, L. (1991). Dimerization of Escherichia coli UvrA and its 

binding to undamaged and ultraviolet light damaged DNA. Biochemistry 30(18): 
4432-4443. 

McGuffin, L.J., Bryson, K. and Jones, D.T. (2000). The PSIPRED protein structure 
prediction server. Bioinformatics 16(4): 404-405. 

McPherson, A. (2001). Crystallization of Biological Macromolecules. Cold Spring Harbor 
Laboratory Press. 

Mellon, I. (2005). Transcription-coupled repair: a complex affair. Mutat Res 577(1-2): 
155-161. 

Mellon, I., Bohr, V.A., Smith, C.A. and Hanawalt, P.C. (1986). Preferential DNA repair of 
an active gene in human cells. Proc Natl Acad Sci U S A 83(23): 8878-8882. 

Mellon, I. and Hanawalt, P.C. (1989). Induction of the Escherichia coli lactose operon 
selectively increases repair of its transcribed DNA strand. Nature 342(6245): 95-
98. 

Mellon, I., Spivak, G. and Hanawalt, P.C. (1987). Selective removal of transcription-
blocking DNA damage from the transcribed strand of the mammalian DHFR gene. 
Cell 51(2): 241-249. 

Miller, J.H. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory, 
Cold Spring Harbor, N.Y. 

Moolenaar, G.F., Bazuine, M., van Knippenberg, I.C., Visse, R. and Goosen, N. (1998). 
Characterization of the Escherichia coli damage-independent UvrBC endonuclease 
activity. J Biol Chem 273(52): 34896-34903. 

Moolenaar, G.F., Franken, K.L., Dijkstra, D.M., Thomas-Oates, J.E., Visse, R., van de 
Putte, P. and Goosen, N. (1995). The C-terminal region of the UvrB protein of 
Escherichia coli contains an important determinant for UvrC binding to the 
preincision complex but not the catalytic site for 3'-incision. J Biol Chem 270(51): 
30508-30515. 

Moolenaar, G.F., Herron, M.F., Monaco, V., van der Marel, G.A., van Boom, J.H., Visse, 
R. and Goosen, N. (2000). The role of ATP binding and hydrolysis by UvrB during 
nucleotide excision repair. J Biol Chem 275(11): 8044-8050. 

Moolenaar, G.F., Hoglund, L. and Goosen, N. (2001). Clue to damage recognition by 
UvrB: residues in the beta-hairpin structure prevent binding to non-damaged DNA. 
Embo J 20(21): 6140-6149. 

Moolenaar, G.F., van Rossum-Fikkert, S., van Kesteren, M. and Goosen, N. (2002). Cho, a 
second endonuclease involved in Escherichia coli nucleotide excision repair. Proc 
Natl Acad Sci U S A 99(3): 1467-1472. 



 References  83 

Morris, R.J., Perrakis, A. and Lamzin, V.S. (2003). ARP/wARP and automatic 
interpretation of protein electron density maps Methods Enzymol 374: 229-244. 

Myles, G.M., Hearst, J.E. and Sancar, A. (1991). Site-specific mutagenesis of conserved 
residues within Walker A and B sequences of Escherichia coli UvrA protein. 
Biochemistry 30(16): 3824-3834. 

Nakagawa, N., Sugahara, M., Masui, R., Kato, R., Fukuyama, K. and Kuramitsu, S. 
(1999). Crystal structure of Thermus thermophilus HB8 UvrB protein, a key 
enzyme of nucleotide excision repair. J Biochem (Tokyo) 126(6): 986-990. 

Nance, M.A. and Berry, S.A. (1992). Cockayne syndrome: review of 140 cases. Am J Med 
Genet 42(1): 68-84. 

Ness, S.R., de Graaff, R.A., Abrahams, J.P. and Pannu, N.S. (2004). CRANK: new 
methods for automated macromolecular crystal structure solution. Structure 12(10): 
1753-1761. 

Nicholas, K.B. and Nicholas, H.B. (1997). GeneDoc: a tool for editing and annotating 
multiple sequence alignment. Distibuted by the author. 

Nickels, B.E. and Hochschild, A. (2004). Regulation of RNA polymerase through the 
secondary channel. Cell 118(3): 281-284. 

Ogrunc, M., Becker, D.F., Ragsdale, S.W. and Sancar, A. (1998). Nucleotide excision 
repair in the third kingdom. J Bacteriol 180(21): 5796-5798. 

Orren, D.K. and Sancar, A. (1989). The (A)BC excinuclease of Escherichia coli has only 
the UvrB and UvrC subunits in the incision complex. Proc Natl Acad Sci U S A 
86(14): 5237-5241. 

Orren, D.K. and Sancar, A. (1990). Formation and enzymatic properties of the UvrB.DNA 
complex. J Biol Chem 265(26): 15796-15803. 

Otwinowski, Z. and Minor, W. (1997). Processing of X-ray Diffraction Data Collected in 
Oscillation Mode Methods Enzymol 276(A): 307-326. 

Park, J.S., Marr, M.T. and Roberts, J.W. (2002). E. coli Transcription repair coupling 
factor (Mfd protein) rescues arrested complexes by promoting forward 
translocation. Cell 109(6): 757-767. 

Potterton, E., McNicholas, S., Krissinel, E., Cowtan, K. and Noble, M. (2002). The CCP4 
molecular-graphics project. Acta Crystallogr D 58(Pt 11): 1955-7. 

Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K., Emsley, P., 
Murshudov, G.N., Cohen, S., Perrakis, A. and Noble, M. (2004). Developments in 
the CCP4 molecular-graphics project. Acta Crystallogr D 60(Pt 12 Pt 1): 2288-94. 

Powell, H. (1999). The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta 
Crystallogr D 55(10): 1690-1695. 

Reines, D., Ghanouni, P., Li, Q.Q. and Mote, J., Jr. (1992). The RNA polymerase II 
elongation complex. Factor-dependent transcription elongation involves nascent 
RNA cleavage. J Biol Chem 267(22): 15516-15522. 

Roberts, J. and Park, J.S. (2004). Mfd, the bacterial transcription repair coupling factor: 
translocation, repair and termination. Curr Opin Microbiol 7(2): 120-125. 

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory 
Manual. Cold Spring Harbor Laboratory Press, NY. 

Sancar, A. (1996). DNA excision repair. Annu Rev Biochem 65: 43-81. 
Sancar, A. and Rupp, W.D. (1983). A novel repair enzyme: UVRABC excision nuclease of 

Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 
33(1): 249-260. 

Sarker, A.H., Tsutakawa, S.E., Kostek, S., Ng, C., Shin, D.S., Peris, M., Campeau, E., 
Tainer, J.A., Nogales, E. and Cooper, P.K. (2005). Recognition of RNA 
polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for 
transcription-coupled repair and Cockayne Syndrome. Mol Cell 20(2): 187-198. 



 References  84 

Saxowsky, T.T. and Doetsch, P.W. (2006). RNA polymerase encounters with DNA 
damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 
106(2): 474-488. 

Selby, C.P. and Sancar, A. (1993). Molecular mechanism of transcription-repair coupling. 
Science 260(5104): 53-58. 

Selby, C.P. and Sancar, A. (1994). Mechanisms of transcription-repair coupling and 
mutation frequency decline. Microbiol Rev 58(3): 317-329. 

Selby, C.P. and Sancar, A. (1995a). Structure and function of transcription-repair coupling 
factor. I. Structural domains and binding properties. J Biol Chem 270(9): 4882-
4889. 

Selby, C.P. and Sancar, A. (1995b). Structure and function of transcription-repair coupling 
factor. II. Catalytic properties. J Biol Chem 270(9): 4890-4895. 

Selby, C.P., Witkin, E.M. and Sancar, A. (1991). Escherichia coli mfd mutant deficient in 
"mutation frequency decline" lacks strand-specific repair: in vitro complementation 
with purified coupling factor. Proc Natl Acad Sci U S A 88(24): 11574-11578. 

Siede, W., Kow, Y.W. and Doetsch, P.W. (2005). DNA Damage Recognition. New York, 
Taylor & Francis Group. 

Singleton, M.R., Scaife, S. and Wigley, D.B. (2001). Structural analysis of DNA 
replication fork reversal by RecG. Cell 107(1): 79-89. 

Skorvaga, M., DellaVecchia, M.J., Croteau, D.L., Theis, K., Truglio, J.J., Mandavilli, B.S., 
Kisker, C. and Van Houten, B. (2004). Identification of residues within UvrB that 
are important for efficient DNA binding and damage processing. J Biol Chem 
279(49): 51574-51580. 

Skorvaga, M., Theis, K., Mandavilli, B.S., Kisker, C. and Van Houten, B. (2002). The beta 
-hairpin motif of UvrB is essential for DNA binding, damage processing, and 
UvrC-mediated incisions. J Biol Chem 277(2): 1553-1559. 

Smith, A.J. and Savery, N.J. (2005). RNA polymerase mutants defective in the initiation of 
transcription-coupled DNA repair. Nucleic Acids Res 33(2): 755-764. 

Sohi, M., Alexandrovich, A., Moolenaar, G., Visse, R., Goosen, N., Vernede, X., 
Fontecilla-Camps, J.C., Champness, J. and Sanderson, M.R. (2000). Crystal 
structure of Escherichia coli UvrB C-terminal domain, and a model for UvrB-uvrC 
interaction. FEBS Lett 465(2-3): 161-164. 

Steiner, T., Kaiser, J.T., Marinkovic, S., Huber, R. and Wahl, M.C. (2002). Crystal 
structures of transcription factor NusG in light of its nucleic acid- and protein-
binding activities. Embo J 21(17): 4641-53. 

Svejstrup, J.Q. (2002a). Mechanisms of transcription-coupled DNA repair. Nat Rev Mol 
Cell Biol 3(1): 21-29. 

Svejstrup, J.Q. (2002b). Transcription repair coupling factor: a very pushy enzyme. Mol 
Cell 9(6): 1151-1152. 

Terwilliger, T.C. (2002). Automated structure solution, density modification and model 
building. Acta Crystallogr D 58(11): 1937-1940. 

Theis, K., Chen, P.J., Skorvaga, M., Van Houten, B. and Kisker, C. (1999). Crystal 
structure of UvrB, a DNA helicase adapted for nucleotide excision repair. Embo J 
18(24): 6899-6907. 

Theis, K., Skorvaga, M., Machius, M., Nakagawa, N., Van Houten, B. and Kisker, C. 
(2000). The nucleotide excision repair protein UvrB, a helicase-like enzyme with a 
catch. Mutat Res 460(3-4): 277-300. 

Tornaletti, S. and Hanawalt, P.C. (1999). Effect of DNA lesions on transcription 
elongation. Biochimie 81(1-2): 139-146. 



 References  85 

Tornaletti, S., Reines, D. and Hanawalt, P.C. (1999). Structural characterization of RNA 
polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the 
transcribed strand of template DNA. J Biol Chem 274(34): 24124-24130. 

Truglio, J.J., Croteau, D.L., Skorvaga, M., DellaVecchia, M.J., Theis, K., Mandavilli, B.S., 
Van Houten, B. and Kisker, C. (2004). Interactions between UvrA and UvrB: the 
role of UvrB's domain 2 in nucleotide excision repair. Embo J 23(13): 2498-2509. 

Truglio, J.J., Croteau, D.L., Van Houten, B. and Kisker, C. (2006a). Prokaryotic nucleotide 
excision repair: the UvrABC system. Chem Rev 106(2): 233-252. 

Truglio, J.J., Karakas, E., Rhau, B., Wang, H., DellaVecchia, M.J., Van Houten, B. and 
Kisker, C. (2006b). Structural basis for DNA recognition and processing by UvrB. 
Nat Struct Mol Biol 13(4): 360-364. 

Truglio, J.J., Karakas, E., Rhau, B., Wang, H., Dellavecchia, M.J., Van Houten, B. and 
Kisker, C. (2006b). Structural basis for DNA recognition and processing by UvrB. 
Nat Struct Mol Biol. 

Truglio, J.J., Rhau, B., Croteau, D.L., Wang, L., Skorvaga, M., Karakas, E., Dellavecchia, 
M.J., Wang, H., Van Houten, B. and Kisker, C. (2005). Structural insights into the 
first incision reaction during nucleotide excision repair. Embo J 24(5): 885-894. 

Turk, D. (1992). Weiterentwicklung eines Programms fuer Molekülgraphik und 
Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-
Strukturaufklärungen. PhD Thesis, Technical University, Munich. 

Van Houten, B., Croteau, D.L., Dellavecchia, M.J., Wang, H. and Kisker, C. (2005). 
'Close-fitting sleeves': DNA damage recognition by the UvrABC nuclease system. 
Mutat Res 577(1-2): 92-117. 

Van Houten, B., Gamper, H., Hearst, J.E. and Sancar, A. (1988). Analysis of sequential 
steps of nucleotide excision repair in Escherichia coli using synthetic substrates 
containing single psoralen adducts. J Biol Chem 263(32): 16553-16560. 

Verhoeven, E.E., van Kesteren, M., Moolenaar, G.F., Visse, R. and Goosen, N. (2000). 
Catalytic sites for 3' and 5' incision of Escherichia coli nucleotide excision repair 
are both located in UvrC. J Biol Chem 275(7): 5120-5123. 

Verhoeven, E.E., Wyman, C., Moolenaar, G.F. and Goosen, N. (2002). The presence of 
two UvrB subunits in the UvrAB complex ensures damage detection in both DNA 
strands. Embo J 21(15): 4196-4205. 

Verhoeven, E.E., Wyman, C., Moolenaar, G.F., Hoeijmakers, J.H. and Goosen, N. (2001). 
Architecture of nucleotide excision repair complexes: DNA is wrapped by UvrB 
before and after damage recognition. Embo J 20(3): 601-611. 

Walker, J.E., Saraste, M., Runswick, M.J. and Gay, N.J. (1982). Distantly related 
sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and 
other ATP-requiring enzymes and a common nucleotide binding fold. Embo J 1(8): 
945-951. 

Wang, H., DellaVecchia, M.J., Skorvaga, M., Croteau, D.L., Erie, D.A. and Van Houten, 
B. (2006). UvrB domain 4, an autoinhibitory gate for regulation of DNA binding 
and ATPase activity. J Biol Chem 281(22): 15227-15237. 

Witkin, E.M. (1966). Radiation-induced mutations and their repair. Science 152(727): 
1345-1353. 

 



 Supplementary material  86 

7 Supplementary material 

 

7.1 Stable fragments of Mfd 

Band 0: Mfd-FL (control) 

MASMPEQYRYTLPVKAGEQRLLGELTGAACATLVAEIAERHAGPVVLIAPDMQNALRLHDE 
ISQFTDQMVMNLADWETLPYDSFSPHQDIISSRLSTLYQLPTMQRGVLIVPVNTLMQRVCP 
HSFLHGHALVMKKGQRLSRDALRTQLDSAGYRHVDQVMEHGEYATRGALLDLFPMGSELPY 
RLDFFDDEIDSLRVFDVDSQRTLEEVEAINLLPAHEFPTDKAAIELFRSQWRDTFEVKRDP 
EHIYQQVSKGTLPAGIEYWQPLFFSEPLPPLFSYFPANTLLVNTGDLETSAERFQADTLAR 
FENRGVDPMRPLLPPQSLWLRVDELFSELKNWPRVQLKTEHLPTKAANANLGFQKLPDLAV 
QAQQKAPLDALRKFLETFDGPVVFSVESEGRREALGELLARIKIAPQRIMRLDEASDRGRY 
LMIGAAEHGFVDTVRNLALICESDLLGERVARRRQDSRRTINPDTLIRNLAELHIGQPVVH 
LEHGVGRYAGMTTLEAGGITGEYLMLTYANDAKLYVPVSSLHLISRYAGGAEENAPLHKLG 
GDAWSRARQKAAEKVRDVAAELLDIYAQRAAKEGFAFKHDREQYQLFCDSFPFETTPDQAQ 
AINAVLSDMCQPLAMDRLVCGDVGFGKTEVAMRAAFLAVDNHKQVAVLVPTTLLAQQHYDN 
FRDRFANWPVRIEMISRFRSAKEQTQILAEVAEGKIDILIGTHKLLQSDVKFKDLGLLIVD 
EEHRFGVRHKERIKAMRANVDILTLTATPIPRTLNMAMSGMRDLSIIATPPARRLAVKTFV 
REYDSMVVREAILREILRGGQVYYLYNDVENIQKAAERLAELVPEARIAIGHGQMRERELE 
RVMNDFHHQRFNVLVCTTIIETGIDIPTANTIIIERADHFGLAQLHQLRGRVGRSHHQAYA 
WLLTPHPKAMTTDAQKRLEAIASLEDLGAGFALATHDLEIRGAGELLGEEQSGSMETIGFS 
LYMELLENAVDALKAGREPSLEDLTSQQTEVELRMPSLLPDDFIPDVNTRLSFYKRIASAK 
TENELEEIKVELIDRFGLLPDPARTLLDIARLRQQAQKLGIRKLEGNEKGGVIEFAEKNHV 
NPAWLIGLLQKQPQHYRLDGPTRLKFIQDLSERKTRIEWVRQFMRELEENAIAAAALEHHH 
HHH& 
 
Band 1 (approximately 35 kDa) 

MASMPEQYRYTLPVKAGEQRLLGELTGAACATLVAEIAERHAGPVVLIAPDMQNALRLHDE 
ISQFTDQMVMNLADWETLPYDSFSPHQDIISSRLSTLYQLPTMQRGVLIVPVNTLMQRVCP 
HSFLHGHALVMKKGQRLSRDALRTQLDSAGYRHVDQVMEHGEYATRGALLDLFPMGSELPY 
RLDFFDDEIDSLRVFDVDSQRTLEEVEAINLLPAHEFPTDKAAIELFRSQWRDTFEVKRDP 
EHIYQQVSKGTLPAGIEYWQPLFFSEPLPPLFSYFPANTLLVNTGDLETSAERFQADTLAR 
FENRGVDPMRPLLPPQSLWLRVDELFSELKNWPRVQLKTEHLPTKAANANLGFQKLPDLAV 
QAQQKAPLDALRKFLETFDGPVVFSVESEGRREALGELLARIKIAPQRIMRLDEASDRGRY 
LMIGAAEHGFVDTVRNLALICESDLLGERVARRRQDSRRTINPDTLIRNLAELHIGQPVVH 
LEHGVGRYAGMTTLEAGGITGEYLMLTYANDAKLYVPVSSLHLISRYAGGAEENAPLHKLG 
GDAWSRARQKAAEKVRDVAAELLDIYAQRAAKEGFAFKHDREQYQLFCDSFPFETTPDQAQ 
AINAVLSDMCQPLAMDRLVCGDVGFGKTEVAMRAAFLAVDNHKQVAVLVPTTLLAQQHYDN 
FRDRFANWPVRIEMISRFRSAKEQTQILAEVAEGKIDILIGTHKLLQSDVKFKDLGLLIVD 
EEHRFGVRHKERIKAMRANVDILTLTATPIPRTLNMAMSGMRDLSIIATPPARRLAVKTFV 
REYDSMVVREAILREILRGGQVYYLYNDVENIQKAAERLAELVPEARIAIGHGQMRERELE 
RVMNDFHHQRFNVLVCTTIIETGIDIPTANTIIIERADHFGLAQLHQLRGRVGRSHHQAYA 
WLLTPHPKAMTTDAQKRLEAIASLEDLGAGFALATHDLEIRGAGELLGEEQSGSMETIGFS 
LYMELLENAVDALKAGREPSLEDLTSQQTEVELRMPSLLPDDFIPDVNTRLSFYKRIASAK 
TENELEEIKVELIDRFGLLPDPARTLLDIARLRQQAQKLGIRKLEGNEKGGVIEFAEKNHV 
NPAWLIGLLQKQPQHYRLDGPTRLKFIQDLSERKTRIEWVRQFMRELEENAIAAAALEHHH 
HHH& 
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Band 2 (approximately 50 kDa) 

MASMPEQYRYTLPVKAGEQRLLGELTGAACATLVAEIAERHAGPVVLIAPDMQNALRLHDE
ISQFTDQMVMNLADWETLPYDSFSPHQDIISSRLSTLYQLPTMQRGVLIVPVNTLMQRVCP
HSFLHGHALVMKKGQRLSRDALRTQLDSAGYRHVDQVMEHGEYATRGALLDLFPMGSELPY
RLDFFDDEIDSLRVFDVDSQRTLEEVEAINLLPAHEFPTDKAAIELFRSQWRDTFEVKRDP
EHIYQQVSKGTLPAGIEYWQPLFFSEPLPPLFSYFPANTLLVNTGDLETSAERFQADTLAR
FENRGVDPMRPLLPPQSLWLRVDELFSELKNWPRVQLKTEHLPTKAANANLGFQKLPDLAV
QAQQKAPLDALRKFLETFDGPVVFSVESEGRREALGELLARIKIAPQRIMRLDEASDRGRY
LMIGAAEHGFVDTVRNLALICESDLLGERVARRRQDSRRTINPDTLIRNLAELHIGQPVVH
LEHGVGRYAGMTTLEAGGITGEYLMLTYANDAKLYVPVSSLHLISRYAGGAEENAPLHKLG
GDAWSRARQKAAEKVRDVAAELLDIYAQRAAKEGFAFKHDREQYQLFCDSFPFETTPDQAQ
AINAVLSDMCQPLAMDRLVCGDVGFGKTEVAMRAAFLAVDNHKQVAVLVPTTLLAQQHYDN
FRDRFANWPVRIEMISRFRSAKEQTQILAEVAEGKIDILIGTHKLLQSDVKFKDLGLLIVD
EEHRFGVRHKERIKAMRANVDILTLTATPIPRTLNMAMSGMRDLSIIATPPARRLAVKTFV
REYDSMVVREAILREILRGGQVYYLYNDVENIQKAAERLAELVPEARIAIGHGQMRERELE
RVMNDFHHQRFNVLVCTTIIETGIDIPTANTIIIERADHFGLAQLHQLRGRVGRSHHQAYA
WLLTPHPKAMTTDAQKRLEAIASLEDLGAGFALATHDLEIRGAGELLGEEQSGSMETIGFS
LYMELLENAVDALKAGREPSLEDLTSQQTEVELRMPSLLPDDFIPDVNTRLSFYKRIASAK
TENELEEIKVELIDRFGLLPDPARTLLDIARLRQQAQKLGIRKLEGNEKGGVIEFAEKNHV
NPAWLIGLLQKQPQHYRLDGPTRLKFIQDLSERKTRIEWVRQFMRELEENAIAAAALEHHH
HHH& 
 
Band 3 (approximately 60 kDa) 

MASMPEQYRYTLPVKAGEQRLLGELTGAACATLVAEIAERHAGPVVLIAPDMQNALRLHDE
ISQFTDQMVMNLADWETLPYDSFSPHQDIISSRLSTLYQLPTMQRGVLIVPVNTLMQRVCP
HSFLHGHALVMKKGQRLSRDALRTQLDSAGYRHVDQVMEHGEYATRGALLDLFPMGSELPY
RLDFFDDEIDSLRVFDVDSQRTLEEVEAINLLPAHEFPTDKAAIELFRSQWRDTFEVKRDP
EHIYQQVSKGTLPAGIEYWQPLFFSEPLPPLFSYFPANTLLVNTGDLETSAERFQADTLAR
FENRGVDPMRPLLPPQSLWLRVDELFSELKNWPRVQLKTEHLPTKAANANLGFQKLPDLAV
QAQQKAPLDALRKFLETFDGPVVFSVESEGRREALGELLARIKIAPQRIMRLDEASDRGRY
LMIGAAEHGFVDTVRNLALICESDLLGERVARRRQDSRRTINPDTLIRNLAELHIGQPVVH
LEHGVGRYAGMTTLEAGGITGEYLMLTYANDAKLYVPVSSLHLISRYAGGAEENAPLHKLG
GDAWSRARQKAAEKVRDVAAELLDIYAQRAAKEGFAFKHDREQYQLFCDSFPFETTPDQAQ
AINAVLSDMCQPLAMDRLVCGDVGFGKTEVAMRAAFLAVDNHKQVAVLVPTTLLAQQHYDN
FRDRFANWPVRIEMISRFRSAKEQTQILAEVAEGKIDILIGTHKLLQSDVKFKDLGLLIVD
EEHRFGVRHKERIKAMRANVDILTLTATPIPRTLNMAMSGMRDLSIIATPPARRLAVKTFV
REYDSMVVREAILREILRGGQVYYLYNDVENIQKAAERLAELVPEARIAIGHGQMRERELE
RVMNDFHHQRFNVLVCTTIIETGIDIPTANTIIIERADHFGLAQLHQLRGRVGRSHHQAYA
WLLTPHPKAMTTDAQKRLEAIASLEDLGAGFALATHDLEIRGAGELLGEEQSGSMETIGFS
LYMELLENAVDALKAGREPSLEDLTSQQTEVELRMPSLLPDDFIPDVNTRLSFYKRIASAK
TENELEEIKVELIDRFGLLPDPARTLLDIARLRQQAQKLGIRKLEGNEKGGVIEFAEKNHV
NPAWLIGLLQKQPQHYRLDGPTRLKFIQDLSERKTRIEWVRQFMRELEENAIAAAALEHHH
HHH& 
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Band 4 (approximately 50 kDa) 

MASMPEQYRYTLPVKAGEQRLLGELTGAACATLVAEIAERHAGPVVLIAPDMQNALRLHDE
ISQFTDQMVMNLADWETLPYDSFSPHQDIISSRLSTLYQLPTMQRGVLIVPVNTLMQRVCP
HSFLHGHALVMKKGQRLSRDALRTQLDSAGYRHVDQVMEHGEYATRGALLDLFPMGSELPY
RLDFFDDEIDSLRVFDVDSQRTLEEVEAINLLPAHEFPTDKAAIELFRSQWRDTFEVKRDP
EHIYQQVSKGTLPAGIEYWQPLFFSEPLPPLFSYFPANTLLVNTGDLETSAERFQADTLAR
FENRGVDPMRPLLPPQSLWLRVDELFSELKNWPRVQLKTEHLPTKAANANLGFQKLPDLAV
QAQQKAPLDALRKFLETFDGPVVFSVESEGRREALGELLARIKIAPQRIMRLDEASDRGRY
LMIGAAEHGFVDTVRNLALICESDLLGERVARRRQDSRRTINPDTLIRNLAELHIGQPVVH
LEHGVGRYAGMTTLEAGGITGEYLMLTYANDAKLYVPVSSLHLISRYAGGAEENAPLHKLG
GDAWSRARQKAAEKVRDVAAELLDIYAQRAAKEGFAFKHDREQYQLFCDSFPFETTPDQAQ
AINAVLSDMCQPLAMDRLVCGDVGFGKTEVAMRAAFLAVDNHKQVAVLVPTTLLAQQHYDN
FRDRFANWPVRIEMISRFRSAKEQTQILAEVAEGKIDILIGTHKLLQSDVKFKDLGLLIVD
EEHRFGVRHKERIKAMRANVDILTLTATPIPRTLNMAMSGMRDLSIIATPPARRLAVKTFV
REYDSMVVREAILREILRGGQVYYLYNDVENIQKAAERLAELVPEARIAIGHGQMRERELE
RVMNDFHHQRFNVLVCTTIIETGIDIPTANTIIIERADHFGLAQLHQLRGRVGRSHHQAYA
WLLTPHPKAMTTDAQKRLEAIASLEDLGAGFALATHDLEIRGAGELLGEEQSGSMETIGFS
LYMELLENAVDALKAGREPSLEDLTSQQTEVELRMPSLLPDDFIPDVNTRLSFYKRIASAK
TENELEEIKVELIDRFGLLPDPARTLLDIARLRQQAQKLGIRKLEGNEKGGVIEFAEKNHV
NPAWLIGLLQKQPQHYRLDGPTRLKFIQDLSERKTRIEWVRQFMRELEENAIAAAALEHHH
HHH& 
 
Band 5 (approximately 18 kDa) 

MASMPEQYRYTLPVKAGEQRLLGELTGAACATLVAEIAERHAGPVVLIAPDMQNALRLHDE
ISQFTDQMVMNLADWETLPYDSFSPHQDIISSRLSTLYQLPTMQRGVLIVPVNTLMQRVCP
HSFLHGHALVMKKGQRLSRDALRTQLDSAGYRHVDQVMEHGEYATRGALLDLFPMGSELPY
RLDFFDDEIDSLRVFDVDSQRTLEEVEAINLLPAHEFPTDKAAIELFRSQWRDTFEVKRDP
EHIYQQVSKGTLPAGIEYWQPLFFSEPLPPLFSYFPANTLLVNTGDLETSAERFQADTLAR
FENRGVDPMRPLLPPQSLWLRVDELFSELKNWPRVQLKTEHLPTKAANANLGFQKLPDLAV
QAQQKAPLDALRKFLETFDGPVVFSVESEGRREALGELLARIKIAPQRIMRLDEASDRGRY
LMIGAAEHGFVDTVRNLALICESDLLGERVARRRQDSRRTINPDTLIRNLAELHIGQPVVH
LEHGVGRYAGMTTLEAGGITGEYLMLTYANDAKLYVPVSSLHLISRYAGGAEENAPLHKLG
GDAWSRARQKAAEKVRDVAAELLDIYAQRAAKEGFAFKHDREQYQLFCDSFPFETTPDQAQ
AINAVLSDMCQPLAMDRLVCGDVGFGKTEVAMRAAFLAVDNHKQVAVLVPTTLLAQQHYDN
FRDRFANWPVRIEMISRFRSAKEQTQILAEVAEGKIDILIGTHKLLQSDVKFKDLGLLIVD
EEHRFGVRHKERIKAMRANVDILTLTATPIPRTLNMAMSGMRDLSIIATPPARRLAVKTFV
REYDSMVVREAILREILRGGQVYYLYNDVENIQKAAERLAELVPEARIAIGHGQMRERELE
RVMNDFHHQRFNVLVCTTIIETGIDIPTANTIIIERADHFGLAQLHQLRGRVGRSHHQAYA
WLLTPHPKAMTTDAQKRLEAIASLEDLGAGFALATHDLEIRGAGELLGEEQSGSMETIGFS
LYMELLENAVDALKAGREPSLEDLTSQQTEVELRMPSLLPDDFIPDVNTRLSFYKRIASAK
TENELEEIKVELIDRFGLLPDPARTLLDIARLRQQAQKLGIRKLEGNEKGGVIEFAEKNHV
NPAWLIGLLQKQPQHYRLDGPTRLKFIQDLSERKTRIEWVRQFMRELEENAIAAAALEHHH
HHH& 
 

Peptides found by mass spectrometry are shaded in light grey. The dotted line corresponds 
to the next peptide found in the full-length protein and/or in larger fragments. Residues 
which were identified by EDMAN-sequencing are underscored in bold. 
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7.2 Abbrevations 

Å   ångström (=10-10 m) 
AA   amino acid or residue 
ACN   acetonitrile 
ATP   adenosine triphosphate 
ATP-γ-S   adenosine 5'-O-(thio-triphosphate) 
Bca   Bacillus caldotenax 
BER   base excision repair 
bp    base pair(s) 
BSA   bovine serum albumin 
Bca   Bacillus caldotenax 
Bsu   Bacillus subtilis 
ca.   circa 
CHCA   α-cyano-4-hydroxy-cinnamic acid 
CS   Cockayne's syndrome 
Dali   distance matrix alignment 
DNA   deoxyribonucleic acid 
dsDNA  double stranded DNA 
DSB   double strand break 
Eco / E.coli  Escherichia coli 
e.g.   exempli gratia (for example) 
EMSA   electrophoretic mobility shift assay 
GGR   global genome repair 
Hin    Haemophilus influenza 
HPLC   high performance liquid chromatography 
HR   homologous recombination 
IEX   ion exchange chromatography 
kb   kilobase pair(s); 
LB   Luria-Bertani 
M   molar 
MAD  multiple-wavelength anomalous dispersion 
MALDI  matrix-assisted laser desorption ionisation 
Mfd   mutation frequency decline 
MMR   mismatch repair 
MR   molecular replacement 
MS   mass spectrometry 
Mtu    Mycobacterium tubercolosis 
mut   mutator 
NCBI   National Center for Biotechnology Information 
n.d.   not determined 
NER   nucleotide excision repair 
NHEJ   non-homologous end-joining 
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NMR  nuclear magnetic resonance spectroscopy 
o/n   over night 
PAGE   polyacrylamide gel electrophoresis 
PCR   polymerase chain reaction 
PDB   Protein Data Bank 
PEG   polyethylene glycol 
PEI   polyethyleneimine 
pI   isoelectric point 
PIC   pre-incision complex 
PEG   polyethylene glycol 
PMSF  phenyl methyl sulfonyl fluorid 
PNK   polynucleotide kinase 
PVDF   polyvinyliden fluorid 
RID  RNA polymerase interacting domain 
RMSD   root mean square deviation 
RNA   ribonucleic acid 
RNAP   RNA polymerase 
RNAPII   eukaryotic RNA polymerase II 
RPA   replication protein A 
RP-HPLC  reversed phase HPLC 
SAD  single-wavelength anomalous diffraction 
SDS   sodium dodecyl sulfate 
SPR   surface plasmon resonance 
ssDNA   single stranded DNA 
TB   tris-borate 
TCR   transcription-coupled repair 
TEC  transcription elongation complex 
TF   transcription factor 
TFA   trifluoroacetic acid 
TLC   thin layer chromatography 
TLS   translesion synthesis 
ToF   Time-of-Flight 
TRCF   transcription-repair coupling factor 
TRG   translocation in RecG 
v   volume 
w   weight 
w/o   without 
wt   wild-type 
XP   xeroderma pigmentosum 
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7.3 Aminoacids and nucleotides 

One letter code Three letter code Amino acid 

A Ala alanine 

B Asx asparagine or aspartic acid 

C Cys cystein 

D Asp aspartic acid 

E Glu glutamic acid 

F Phe Phenylalanine 

G Gly glycine 

H His histidine 

I Ile isoleucine 

L Leu leucine 

K Lys lysine 

M Met methionine 

N Asn asparagine 

P Pro proline 

Q Gln glutamine 

R Arg arginine 

S Ser serine 

T Thr threonine 

V Val valine 

W Trp tryptophan 

X Xaa unknown or other 

Y Tyr tyrosine 

Z Glx glutamine or glutamic acid 
 

 

One-letter code Nucleobase 

A adenine 

C cytosine 

G guanine 

T thymine 
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