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Zusammenfassung
Diese Arbeit befaßt sich mit zwei Hauptproblemen des Strahlungstransportes (ST) in der
Erdatmosphäre. Das erste Problem ist eng verbunden mit dem Bedarf des ST an Com-
puterresourcen innerhalb eines dreidimensionalen (3D) Atmosphärenmodells. Obgleich nur
hocheffiziente eindimensionale (1D) Modelle Säule für Säule unabhängig voneinander ver-
wandt werden, ist es nicht möglich die Strahlungstransportgrößen ebenso häufig wie die
meteorologischen Variablen zu berechnen. Daher werden die Strahlungsgrößen für einen
längeren Zeitraum konstant gehalten, während die meteorologischen Variablen ständig neu
berechnet werden. Trotz des Fehlens detaillierter Untersuchungen über die Folgen dieses
Mißverhältnisses, wird in dieser Arbeit der Versuch gemacht ein ST Modell zu entwickeln,
mit dem die schnelle Berechnung von grundlegenden Strahlungsgrößen möglich ist und
diese häufiger als bisher berechnet werden könnten. Das entwickelte Modell basiert auf
der Anwendung der Strahlungsstörungstheorie auf realistische Wolken Säule für Säule. Es
wurde durch mehrere Test demonstriert, daß dieses Verfahren, welches als Ersatz für die
Independent Pixel Approximation (IPA) dienen soll, siehe unten, anwendbar ist, und in-
nerhalb der gemachten Annahmen vielversprechende Resultate erzielt werden. Abhängig
vom konkreten Fall bleiben Fehler in der Transmission und Reflektion einzelner Pixel auf
10% − 15% beschränkt. In einem Fall konnte die erzielte Rechenzeitersparnis untersucht
werden. Obgleich keine numerische Optimierung verwandt wurde, wurde eine Beschleu-
nigung der Rechnung gegenüber dem herkömmlichen IPA Verfahren um den Faktor vier
erreicht.
Das zweite Problem betrifft die realistische Beschreibung der 3D Wechselwirkungen von
Wolken und solarer Strahlung. Wie zuvor angedeutet werden gewöhnlich 1D ST Modelle im
IPA Modus innerhalb eine Atmospärenmodells aufgerufen. Durch dieses Verfahren werden
grundlegende 3D Effekte vernachlässigt. Diese umfassen nicht nur kleinräumige Beiträge
durch diffusen ST, sondern auch großräumige Muster wie geometrische Effekte der schrägen
Sonneneinstrahlung. Beispiele sind unscharfe Strahlungsstrukturen und die verschobene
Position von Schatten. Während der letzten Jahre wurden verstärkt Anstrengungen un-
ternommen diese Effekte zu parametrisieren. Keine Methode hat sich jedoch bisher als
vollständig zufriedenstellend und implementierbar erwiesen. Um diese Entwicklung einen
Schritt weiter zu treiben wurden zwei Ansätze aufgegriffen und weiterentwickelt. Der Erste
ist die Tilted Independent Pixel Approximation (TIPA). Im Gegensatz zur IPA, die die
solare Geometrie ignoriert, bildet dieses Verfahren die schräge Beleuchtung durch eine Ver-
folgung des direkten Strahles korrekt ab. Dadurch finden sich die optischen Eigenschaften in
schrägen Säulen in einer realistischeren Reihenfolge wieder, und die Schwächung und Posi-
tion der Strahlungsgrößen werden exakter als bei der IPA wiedergegeben. Um die Methode
zu verbessern wurde eine Transformation entwickelt, die es erlaubt eine 3D Auflösung der
Strahlungsgrößen zu erhalten. Da die TIPA jedoch keinen horizontalen Photonenaustausch
gestattet, wurde noch der Ansatz der Nonlocal Independent Pixel Approximation (NIPA)
hinzugezogen. Dieses Verfahren benutzt 1D Resultate und führt ein Faltungsprodukt aus,
um Strahlungsgrößen über Säulen hinweg zu verteilen. Um eine vollständig unabhängige
Anwendung zu erhalten, wurde eine vereinfachte Bestimmung der Faltungsparameter ent-
wickelt. Zu guter Letzt wurden TIPA und NIPA zur NTIPA kombiniert. Diese Ansätze
haben sich bezüglich einer Reihe von Kriterien als der IPA überlegen erwiesen. Die Verbes-
serung gegenüber dieser bewegt sich zwischen einigen Prozent und bis zu 50% bezüglich
der maximalen Fehler von Transmission und Reflektion. Ergebnisse wie die Verteilung der
Fehler oder die Vertikalprofile sind ebenfalls günstiger als bei der IPA.
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Abstract

This thesis addresses two major problems in the field of radiative transfer (RT) in the
earth’s atmosphere. The first problem is linked with the need for significant computational
resources of RT in a three-dimensional (3D) atmospheric model. Although only highly
efficient one-dimensional (1D) RT models are employed for each pixel of the model domain
separately and independently, it is still not possible to utilize these models on a frequent
basis, compared to the rate at which meteorological variables are computed. That means
that the calculated radiative properties (RP) are held constant for a longer period of time,
while the prognostic meteorological variables are updated at a rapid rate. Even though
there is no detailed study about the consequences of this disproportion, an attempt was
made to develop an RT model which permits the fast computation of basic radiative transfer
properties which could be used in the future to update this information more frequently.
The developed model is based on the application of the radiative transfer perturbation
theory to realistic cloud fields column by column. It turned out that the application,
intended to replace the Independent Pixel Approximation (IPA), see below, is possible
and promising within the assumptions and constraints of the utilized methods. It could
be demonstrated that, depending on the actual case, errors in the pixel transmission and
reflection stay bounded to values of up to 10%−15%. In one case the achieved acceleration
could be investigated. It was about a factor of four compared to the direct application of
the usual forward variant of the model, although no numerical optimization was carried
out.
The second problem concerns the realistic treatment of the 3D interactions of clouds and
solar radiation. As implied in the above paragraph, 1D RT models are usually employed
column by column which suppresses the exchange of radiation between those columns.
Thus, fundamental 3D effects are neglected by this so-called Independent Pixel Approxi-
mation (IPA). These comprise not only small scale contributions due to diffuse radiative
transport, but also large scale patterns like geometric effects of the inclined solar illumi-
nation. Examples are blurred radiative structures due to radiative smoothing and the
shifted location of shadows and bright areas. To parameterize those effects strong efforts
have been undertaken during the last couple of years. However, no method has proven to
be completely satisfactory and ready for implementation. To carry this research one step
further two approaches have been adopted and extended. The first is the concept of the
Tilted Independent Pixel Approximation (TIPA). In contrast to the IPA, which ignores the
solar geometry, this method correctly accounts for the slant illumination due to the correct
tracking of the direct beam. As a result, the optical parameters in the slant columns are
arranged in a more realistic order and the attenuation and the positions of the RP are less
erroneous. To further improve this method a transformation has been developed which
yields 3D resolution of the RP in the original grid. Since the TIPA still does not include
any diffuse radiative exchange as another approach the Nonlocal Independent Pixel Ap-
proximation (NIPA) has been explored. This technique uses 1D results and carries out
a convolution product to distribute RP across column boundaries. In order to arrive at
a fully independent treatment of this method a simplified derivation of the convolution
parameters was developed. Finally, TIPA and NIPA are combined to form NTIPA. These
approaches have proven to be superior to IPA with respect to several aspects. The im-
provement ranges from several percent to 50% if maximum errors of the transmitted and
reflected light are considered. Criteria like the distribution of the errors or the vertical
profiles of the RP are also more preferable than their counterparts derived by IPA.
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Chapter 1

Introduction

All models are wrong, but some are
useful.

George E. P. Box

In this introductory chapter the motivation of the thesis and the potential interrelation of
the conducted work with other areas of atmospheric modeling will be described. Further-
more, a brief overview of the current state of the art of science and of the methods and
models applied for this work will be given together with an outline of the thesis.

1.1 Motivation of the Conducted Work

The presented study was part of the project 4D-clouds (2005) and is dedicated to the de-
velopment of solar radiative transfer parameterizations for cloudy atmospheres. Clouds are
highly variable in space and time. Their scales cover a broad range from several hundreds
of meters of isolated clouds to many kilometers of coherent large scale cloud clusters and
weather systems. Clouds also contribute in manyfold ways to the complexity of atmospheric
physics and chemistry. Examples are the interaction of evaporation, cloud formation and
decay, and precipitation. Solar radiation plays an important role in driving and coupling
these dynamic and thermodynamic processes with other parts of the geophysical system
like the surface of the earth and the oceans, see Figure 1.1. The detailed and realistic
treatment of cloud-radiation interactions is for these reasons an inevitable necessity. Al-
though the magnitude of the general mean and global effects of these interactions on the
radiative budget of the earth seems to be reasonably well understood and estimated, see
Figure 1.2, there are still numerous uncertainties in the details of these processes. Even
if the resulting radiative forcing is small with respect to the average global and annual
budget the implications for climate on all scales can be significant. This fact is also doc-
umented by the relatively large uncertainties associated with the radiative forcing exerted
by clouds and aerosols, see Figure 1.3. The cloud effects are summarized by the term
“Aerosol indirect effect” which refers to the role aerosols play in cloud droplet formation.
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From Figure 1.3 it can be learned that the scientific understanding of those effects is rather
low, while the assumed impact on the radiative forcing is among the highest of all processes
relevant to climate. However, this contribution refers rather to the microphysical processes
which are involved in the formation and conversion of aerosols and cloud droplets. Yet,
clouds not only solely interact via their pure microphysical parameters with radiation but
also due to the spatial distribution of those parameters and the resulting cloud texture
and shape. Those features are also believed to fundamentally affect the radiative transfer
budget by three-dimensional (3D) interactions of clouds and radiation. The inappropri-
ate treatment of those interactions can lead to related effects like errors in the computed
planetary albedo. This could further result in an erroneous estimate for the global mean
temperature. These feedbacks are not even fully accounted for and therefore not included
in the scope of uncertainties.

However, current atmospheric models, this term is supposed to comprise all kinds of classes
of models describing the interactions of the components of atmospheric physics like Large
Eddy Simulation (LES) models, weather prediction models and climate models, mostly
lack a detailed representation of clouds and the radiative processes associated, no matter at
which spatial and temporal scales they are applied. For a comparison of these models with
respect to their spatial scales see Table 2.1. As a result, atmospheric models generally suffer
from two major setbacks concerning the interaction of clouds and radiation. Both result
from the inhomogeneity of the optical properties of clouds, their distribution and shape,
and their steady evolution in time. Additionally, computational constraints exacerbate the
problem.
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Figure 1.1: Some of the interactions of clouds and radiation and their connection to other
processes.
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Figure 1.2: Annual global mean energy budget of the earth. Units are in Wm−2. Adapted
from Kiehl and Trenberth (1997).

The first drawback is the lack of realistic treatment of 3D interaction of clouds and radia-
tion. Atmospheric models usually employ one-dimensional (1D) radiative transfer models
pixel-by-pixel. This procedure is termed Independent Pixel Approximation (IPA). It only
requires the 1D radiative transfer code to be applied in each model column independently
of its neighbors, see Cahalan et al. (1994b). Because of the tremendous computational
burden, an immediate application of a 3D radiative transfer model is out of the ques-
tion. As a result of the IPA, the optical properties are incorporated in the computation
three-dimensionally correct, yet no full 3D propagation of photons is accounted for as no
horizontal radiative exchange is possible in this configuration.

The second drawback is related to the computational burden even the IPA poses. The
radiative transfer part of an atmospheric model comprises only one module among many
others, and therefore has to share computational resources. Moreover, the dynamic and
thermodynamic equations of atmospheric models have to be integrated incrementally with
the help of numerical techniques. The applied time step results from the size of the grid
and the maximum speed of propagation of the meteorological processes which are described
by the model’s physics and is a consequence of the demand for numerical stability of the
solution. It is usually in the range of several dozens of seconds for weather prediction
models, but can also be considerably smaller. In contrast to that, the radiative transfer
code is called far less frequently. Typically, radiative properties like fluxes and heating
rates are updated in weather prediction models only every hour. In the weather prediction
model which is referred to in this study for all other points of time between two updates
the radiative properties are held constant.
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Figure 1.3: Global mean radiative forcing of different anthropogenic and natural processes
and their error estimates together with the associated scientific understanding.
Units are in Wm−2. Taken from Houghton et al. (2001).

Both problems are believed to impact model results and, as a consequence of the coupling
of the atmospheric processes and scales, also the forecast reliability. Moreover, the impli-
cations of these shortcomings not only affect atmospheric models of limited domains, but
also global climate models. Thus, those uncertainties could have significant consequences
for the predicted planetary radiative budget and climate, most crucially via the influence
on the planetary albedo, see Houghton et al. (2001). The necessity of the development of
parameterizations for these groups of problems is not limited to forward radiative transfer,
but it has also value for radiative transfer inversion techniques for remote sensing of clouds,
as the underlying 3D effects and assumptions are the same, see Marshak and Davis (2005).

The presented work pursues for these reasons two separate but combinable contributions
to tackle the problems mentioned above. The first is the development a parameterization
approach in order to accelerate 1D radiative transfer calculations. Furthermore, the poten-
tial applicability of the method to independent pixel calculations for high resolution cloud
scenes is investigated. The constructed approach is based on the radiative transfer per-
turbation theory. This innovative technique is utilized to derive radiative transfer results
by interpreting the state of the optical properties of the atmosphere as a combination of
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a base case and deviations from this base case, which are then termed perturbations. The
impact of those on radiative properties can be accounted for by linearizing the radiative
transfer problem which in general permits rapid computation.

The second aim of the thesis is to develop radiative transfer parameterizations for 3D cloud-
radiation interactions and to enhance existing techniques, respectively. As a first step, a
modified version of the Tilted Independent Pixel Approximation (TIPA),
see Várnai and Davies (1999), which accounts for 1D calculations in slant columns, is
developed. The primary effect tackled by this concept is the geometrically correct trans-
fer of direct and slightly scattered light leading to the deepest shadows of clouds. As
a second parameterization, the Nonlocal Independent Pixel Approximation (NIPA), see
Marshak et al. (1995), has been adopted and has been equipped with an idealized phys-
ical background to describe horizontal photon transport. This concept aims at modeling
diffuse radiative transport which blurs radiative patterns by radiative smoothing due to
massive multiple scattering. Both approaches are then combined and all of the three re-
sulting parameterizations are applied to several cloud scenes differing due to their source
and horizontal resolution. All 3D parameterizations are compared both with the IPA and
exact 3D results from a Monte-Carlo model, see below, which serve as references.

1.2 State-of-the-art of Science

As mentioned above, the IPA is the state-of-the-art solar radiative transfer method to
compute fluxes and heating rates in atmospheric models. For a couple of years it has
been noted that this technique causes significant errors on a local level, see for example
O’Hirok and Gautier (1998). A comprehensive overview of the inabilities of the IPA with
respect to realistic 3D effects will be given in section 4.1. Ever since, there have been
efforts to improve not only the understanding of 3D cloud-radiation interactions but also
to develop parameterizations. Those are always governed by the trade-off between accu-
racy and computational resources, primarily with respect to computational speed. Some
parameterizations are based on deterministic radiative transport and can be regarded as
extensions of the 1D technique. As this includes the ones developed in this study, a detailed
description is postponed to later sections. As yet, parameterizations which truly employ a
3D radiative transfer model are rare, see for example Chen et al. (2005). Other parameter-
izations make use of stochastic approaches, see Lane-Veron and Sommerville (2004), or are
based on features concerning the 3D variablity of the optical properties, see Cairns et al.
(2000). A comprehensive overview has been compiled by Davis (2000).

Concerning the above mentioned slow update rate of radiative transfer calculations, there
seems to be no existing flexible approach facing this problem besides the radiative transfer
perturbation theory which has also been used in this study. For existing applications of
this technique to accelerate radiative transfer see Gabriel et al. (1998). These authors
applied the perturbation theory to broadband calculations while this study focuses on
monochromatic IPA calculations.

It has also to be noted that the actual impact of both the neglect of 3D effects and of the
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slow update rate of the radiative field on the forecast of atmospheric models seems to be
almost un-investigated. Regarding 3D effects, there have been studies by Fu et al. (2000)
with a climate model which reveal an impact on the planetary albedo of several percent.
Schumann et al. (2002) have investigated the consequences for vertical motion and heat
flux with the help of a simple conceptual approach together with an idealized LES model,
while a simplified realization of radiative transport and the resulting cloud shadows was
adopted. With these assumptions the authors find only small differences between modeling
the shadows directly below clouds, as computed by the IPA, and modeling them shifted
sidewards according to the solar illumination. However, both the atmospheric model and
the radiative transfer representation are rather simplified and no conclusive estimates for
realistic situations have been derived yet. There are no systematic investigations about the
impact of the update interval of the radiative transfer field on atmospheric model results
known to the author. Given the sometimes rapid formation, decay, and movement of
clouds, depending on the meteorological situation, it can only be assumed that the impact
is significant at least at a local temporal and spatial level.

This work as well does not investigate these questions directly but rather seeks to advance
the current knowledge in providing improved parameterizations. These parameterizations
are still simple enough for potential implementation in atmospheric models, yet yield ra-
diative transfer results with 3D resolution. Furthermore, the parameterizations have been
applied to several cloud scenes among them some which are originating from a weather
prediction model. The 3D effects associated with those clouds are investigated as well as
the capability of the parameterizations in accounting for them.

1.3 Outline of the Thesis and Applied Methods and

Models

As this thesis focuses on the development and modification of parameterization approaches,
extensive use of radiative transfer theory has been made of. This is mainly reflected by
chapter 2 which provides the theoretical background of radiative transfer modeling, as it
was utilized in the presented work. It introduces radiative and optical properties, as well
as the basic radiative transfer equations especially for the 1D problem, and with explicit
reference to the discrete ordinate radiative transfer model DISORT, see Stamnes et al.
(1988). This model has been used for all 1D calculations. All exact 3D results have not
been derived by the author but were provided by Sebastián Gimeno Garćıa and derived by
the Leipzig Monte Carlo Model (LMCM), if not stated otherwise. For details about the
LMCM and its application see Gimeno Garćıa (2006) and Gimeno Garćıa and Trautmann
(2003). Chapter 3 provides an introduction in adjoint radiative transfer together with its
utilization for the radiative transfer perturbation technique. This technique is elaborated
on a general 1D perspective, and several examples are given for the different stages and
features of the development. This chapter provides the background for the derived radia-
tive transfer acceleration. Chapter 4 discusses the 3D parameterizations starting with a
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general description of the problem, the different 3D effects, and an overview of the various
parameterization approaches. Subsequently, an introduction in the variant of the TIPA
which was developed here is given. As a novelty of this technique, a slant coordinate is
derived geometrically in a simple fashion and in the course of the simulation radiative
properties are derived at every position of the grid. This section is followed by several
examples in order to shed some light on the basic features of the technique. The following
section deals with the NIPA which is the second parameterization approach adapted here.
As a second novelty, the physical core of this approach has been based on a simplified
simulation of the radiative diffusion process itself. The outline of this method is briefly
described together with its assumptions and prerequisites. The chapter finally ends with
a combination of both aforementioned parameterizations, and several idealized examples
again show the capabilities and shortcomings of the techniques. Chapter 5 contains in its
first part the application of the developed radiative transfer acceleration technique to some
high resolution realistic cloud fields while the second part deals with the results of the
3D parameterization approaches for several classes of cloud scenes. These comprise high,
intermediate, and coarse resolution scenes. Chapter 6 finally reviews the developments and
results, relates them to the purpose of this study, and suggests several steps for further
improvements and prerequisites for the actual implementation in atmospheric models.
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Chapter 2

Radiative Transfer Fundamentals

Things should be made as simple as
possible, but no simpler.

Albert Einstein

This chapter mainly serves to introduce the basic definitions of radiative and optical prop-
erties of solar radiative transfer in the earth’s atmosphere which are used in the context
of this work. Furthermore, the exact equations governing this transfer in one and three
dimensions will be introduced. Yet, only the solution of the former will be further discussed
as no exact 3D radiative transfer was dealt with directly by the author.

2.1 Definition of Radiative Properties

In order to model radiative transfer (RT) and measure radiative properties some basic
quantities are defined in the next sections. A similar but more comprehensive introduction
can be found in Liou (2002) and in Chandrasekhar (1960).
The probably most basic radiative property is the photon density fν :

fν(r,Ω, t) (2.1)

It describes the number of photons per volume, propagating in a certain direction Ω into
the section dΩ of the solid angle, see Figure 2.1, in the frequency interval [ν, ν + ∆ν], at
the position r = (x, y, z), and time t. The general coordinate system is shown in Figure
2.2. Frequency ν and wavelength λ are connected by:

c = λν (2.2)

where c is the speed of light.
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Ω

r

A

Figure 2.1: Definition of the solid angle Ω created by the surface A at distance r.

The solid angle is hereby defined as:

Ω =
A

r2
(2.3)

It can be considered as the opening of a cone which cuts out the area A of the surface
of a sphere at distance r. The solid angle is measured in steradian, sr. For the general
description of the direction of propagation of light usually the spherical coordinate system
is used as the local coordinate system at the point of interest, see Figure 2.3. The unit
vector of propagation takes then the form:

Ω =

 sin θ cos ϕ

sin θ sin ϕ

cos θ

 (2.4)

The system’s origin can be considered positioned in point C in Figure 2.2 with its vertical
axis parallel to the vertical axis of the general coordinate system. The position of C is
usually prescribed in Cartesian coordinates. With the help of the azimuthal angle ϕ and
the zenith angle θ for dΩ follows:

dΩ =
dA

r2
= sin θdθdϕ (2.5)

The integration over the whole unit sphere is expressed by the following notation:

∫
4π

dΩ =

2π∫
0

π∫
0

sin θdθdϕ = 4π (2.6)

A more handy radiative property is derived by multiplying the photon density with the
photon energy hν and the speed of light c. The resulting quantity:

I(r,Ω, t) = chνfν(r,Ω, t) (2.7)

is called intensity or more often radiance. It describes the power per square meter of
the photons, propagating in direction Ω into the section dΩ, in the frequency interval
[ν, ν + ∆ν], at position r, and time t.
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r = (x,y,z)

Figure 2.2: Definition of the general Cartesian coordinate system. dS is an arbitrary sur-
face element at position r with the normal n forming the angle γ with the
radiation propagating in direction Ω centered in the solid angle dΩ.

Radiative properties, derived by integrating the intensity over the solid angle, are of special
interest for the connection of radiative power with thermodynamics and photo-chemistry.
Most important are the net flux-density EN and the actinic flux Fact. EN is defined as
the radiative power crossing the unit sphere in all directions. It has the form of a vector:

EN,ν(r, t) =

∫
4π

ΩIν(r,Ω, t)dΩ (2.8)

From here on the subscript ν, indicating frequency dependence, will be dropped, as all
radiative and optical quantities are believed to depend on the frequency of the light, if not
stated otherwise.
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ϕ

θ

x

y

z

Ω

Figure 2.3: Definition of the local coordinate system. Radiation propagates in direction
Ω which is defined by the zenith angle θ and azimuthal angle ϕ in spherical
coordinates.

After introducing µ = cos θ, the three spatial components of EN in spherical coordinates
can be written with the help of relation 2.4 in the form:

EN,x(r, t) =

2π∫
0

π∫
0

I(r, θ, ϕ, t) cos ϕ sin2 θdθdϕ (2.9)

=

2π∫
0

1∫
−1

I(r, µ, ϕ, t) cos ϕ
√

1− µ2dµdϕ (2.10)

EN,y(r, t) =

2π∫
0

1∫
−1

I(r, µ, ϕ, t) sin ϕ
√

1− µ2dµdϕ (2.11)

EN,z(r, t) =

2π∫
0

1∫
−1

I(r, µ, ϕ, t)µdµdϕ (2.12)

Components of equations 2.10 to 2.12 with respect to hemispheres are derived by choosing
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appropriate integration limits for µ. From equation 2.12 upwelling E↑ and downwelling E↓
flux-densities can be derived accordingly. These are sometimes called irradiances or slightly
incorrect just fluxes. They are important for defining transmission T and reflection R:

T (x, y) =
E↓(x, y, z = 0)

E↓(x, y, z = TOA)
; R(x, y) =

E↑(x, y, z = TOA)− E↑(x, y, z = 0)

E↓(x, y, z = TOA)
(2.13)

TOA stands for Top Of Atmosphere and represents the upper boundary of the considered
domain. Similar to the net flux-density is the definition of the actinic flux:

Fact(r, t) =

2π∫
0

1∫
−1

I(r, µ, ϕ, t)dµdϕ (2.14)

The connection of the net-flux with heating-rates is given by the first law of thermody-
namics, see Zdunkowski and Bott (2004):

cp
dT (r, t)

dt
= −α(r, t)∇ · (J q(r, t) + EN(r, t)) + αJ (r, t) · ·∇v(r, t) (2.15)

All terms except −α∇ · EN refer to non-radiative heat sources and can therefore be ne-
glected in this context. One derives:(

∂T (r, t)

∂t

)
rad

= − 1

ρ(r, t)cp

∇ ·EN(r, t) (2.16)

The different components of the net-flux can be interpreted as fluxes across the coordinate
layers. For example Ez is the flux density balance with respect to the light crossing the
surface with z = const. in vertical direction. In contrast to that, the actinic flux describes
the omnidirectional power across the unit sphere towards the sphere’s center, which can
be a molecule for example. Therefore, it is of importance when one is interested in the ra-
diative budget with respect to a point. This is the case when calculating photodissociation
coefficients in atmospheric chemistry.

2.2 Definition of Optical Properties

The effects of radiation interacting with matter can be divided in three major phenomena:
1.) absorption, 2.) scattering, 3.) emission.

Absorption

The absorption of a photon, meaning the reception of the photon’s energy by a molecule or
a particle, is described by the absorption coefficient σa and the mass absorption coefficient
χa. Both are connected by the absorber density ρa via:

σa(r, t) = ρa(r, t)χa(r, t) (2.17)
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A measure for the probability of absorption within the path increment ds is the differential
absorption optical depth dτa:

dτa(r, t) = σa(r, t)ds (2.18)

Scattering

The process of scattering changes the direction of propagation and, in case of inelastic
scattering, the energy and thus the frequency of the photon. Analogously to the absorption,
the differential scattering optical depth is defined as:

dτs(r, t) = σs(r, t)ds (2.19)

with σs being the scattering coefficient. Apart from that, the differential scattering optical
depth can be defined as:

dτs(r, t) = σs,d(r, ν ′ → ν,Ω′ → Ω, t)dsdνdΩ (2.20)

where σs,d is the differential scattering coefficient. It describes the change of the direction
of propagation from Ω′ to Ω and the shift in frequency from ν ′ to ν. Both scattering
coefficients are connected:

σs(r, t) =

∞∫
0

∫
4π

σs,d(r, ν ′ → ν,Ω′ → Ω, t)dΩdν (2.21)

The differential scattering coefficient can be split up itself:

σs,d(r, ν ′ → ν,Ω′ → Ω, t) =
1

4π
σs(r, t) p(r, ν ′ → ν,Ω′ → Ω, t) (2.22)

The phase function p describes the dependence between the sets of variables (ν ′,Ω′) and
(ν,Ω). It can be regarded as the probability density distribution for the scattering from
the primed to the unprimed state. To this end it is normalized:

1

4π

∞∫
0

∫
4π

p(r, ν ′ → ν,Ω′ → Ω, t)dΩdν = 1 (2.23)

In the atmosphere usually the reciprocity of the way the light travels is assumed. That
means that the phase function does not depend on the values of Ω′ and Ω in an absolute
manner but rather on the angle between those two which is called scattering angle Θ. It
is:

Ω′ → Ω ↔ Ω′ ·Ω = cos Θ = µµ′ +
√

1− µ′2
√

1− µ2 cos(ϕ− ϕ′) (2.24)
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Extinction

The addition of absorption and scattering coefficient leads to the extinction coefficient:

σt(r, t) = σa(r, t) + σs(r, t) (2.25)

It describes the combined attenuation of light propagating in a certain direction Ω and
frequency ν by both processes. Therefore, the extinction optical depth becomes:

dτt(r, t) = σt(r, t)ds = dτa(r, t) + dτs(r, t) (2.26)

This property is usually referred to as differential optical depth. The relation between
scattering and extinction is called single scattering albedo ωo:

ωo(r, t) =
σs(r, t)

σt(r, t)
= 1− σa(r, t)

σt(r, t)
(2.27)

It gives the fraction of scattering processes in relation to all interactions. A medium with
ωo = 1 is referred to as conservative medium.

Emission

Emission is the release of photons from a source within the medium. The source can be
either of thermal or artificial nature. The source function J is given as:

J(r,Ω, t) = hνj (2.28)

where j is the emission coefficient, describing the number of emitted photons per volume,
time, solid angle interval, and frequency interval. The source function gives the released
power per volume, solid angle interval, and frequency interval.

Integrated optical depth

The optical depth not only serves as optical property but also as coordinate, see Figure
2.4. The above introduced extinction differential optical depth can be written as:

dτ(r, t) = σt(r, t)ds

The component of dτ(r, t) along the z-axis is referred to as normal optical depth dτ⊥(r, t):

dτ⊥(r, t) = σt(r, t)ds⊥

If we assume solar illumination and the atmosphere is considered to be plane-parallel, the
optical properties are then independent of the lateral coordinates, one can connect the
optical depth with the angle θ∗o:

dτ(z, t) =
1

µ∗
o

dτ⊥(z, t)
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If the normal component ds⊥ is chosen to be oriented in the opposite direction than z,
which is natural as θoε[

π
2
, π], ds⊥ = −dz, it follows that:

dτ(z, t) = −σt(z, t)

µ∗
o

dz

As cos θ∗o = − cos θo, one derives for the integrated optical depth from TOA to position p:

τ(z, t) =

p∫
0

σt(s, t)ds =
1

µ∗
o

pz∫
0

σt(s, t)ds⊥ =
1

µo

z∫
TOA

σt(z
′, t)dz′ (2.29)

=
1

|µo|

TOA∫
z

σt(z
′, t)dz′ (2.30)

It was assumed that the origin of the coordinate s (s = 0) is located at TOA. For the
last equality in equation 2.29 to hold it was used that |µo| = µ∗

o. The optical depth
which is finally deduced is the slant optical depth along the solar beam in an horizontally
homogeneous atmosphere. However, optical depth is supposed to refer to the normal optical
depth from hereafter:

τ(z, t) =

z∫
TOA

σt(z
′, t)dz′ (2.31)

The total optical depth is then derived by integrating from TOA to the lower boundary
z = 0.

Asymmetry factor

The last property, the asymmetry factor g is the first moment of the phase function. It is
defined as:

g(r, t) =
1

4π

2π∫
0

1∫
−1

cos Θp(r, ν ′ → ν, cos Θ, t)d(cos Θ)dφ (2.32)

=
1

2

1∫
−1

cos Θp(r, ν ′ → ν, cos Θ, t)d(cos Θ) (2.33)

where Θ is the scattering angle as in equation 2.24, and the phase function was assumed
to be independent of the azimuthal direction φ.
The asymmetry factor is a measure of the shape of the phase function. If g > 0 most of
the light is scattered into the forward hemisphere, if g < 0 backscattering dominates. In
the atmosphere the former is usually the case. Isotropic and pure molecular (Rayleigh)
scattering are characterized by g = 0, see below.
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τ

ds
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z
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θ  o
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x

z

Figure 2.4: The τ -coordinate. θo is the solar zenith angle and θ∗o its supplementary angle.
pz is the geometric position with distance ds along the direction of propagation
and ds⊥ perpendicular to the horizontal axis. The coordinate system can be
considered positioned at a reference point, usually TOA.

2.3 Optical Properties of the Atmosphere

In the previous section the basic optical properties, which can be directly employed for
radiative transfer calculations, have been introduced. In this section a brief description of
the derivation of those properties and their relation to the constituents of the atmosphere
will be given. This section is based on material presented by Früh (2000) and Salby (1995).

In the earth’s atmosphere radiation interacts with molecules of various gases, with sus-
pended aerosol particles, and with cloud droplets. Furthermore, precipitation particles
and ice crystals also contribute to those interactions, but those will not be dealt with here
and were not considered for the following studies.

Gaseous absorption

Various gases in the atmosphere interact with radiation by absorption. The resulting
absorption lines create very distinct patterns in the wavelength spectrum of the radiation
which reaches the ground, see Figure 2.5. It is obvious from this figure that O3, CO2, and
H2O are the most dominant species in the solar wavelength region.
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The absorption coefficient of a species is defined as:

σa = σ̂a(T, z)Nc(z) (2.34)

where σ̂a is the absorption cross section of an individual gas molecule as a function of
temperature T and vertical position z. Nc is the vertically variable molecular concentration
of the species.
Equation 2.34 has to be considered for each atmospheric gas separately. All presented
calculations for this study have been monochromatic meaning that only one wavelength
has been taken into account. If the radiative transfer budget in a wavelength interval
has to be determined, broadband calculations have to be carried out in order to correctly
describe wavelength dependent characteristics and interactions of all gases which absorb
in this interval. A widespread method to achieve this aim is the k-distribution method,
see for example Liou (2002).

Figure 2.5: Shortwave irradiance as a function of wavelength. Solid line: Solar radiation
at the top of the atmosphere. Dashed line: Emission spectrum of a blackbody
at 6000K. Shaded area: Radiation at sea level. Several absorbing species are
indicated. Adapted from Salby (1995).

Rayleigh scattering

Apart from absorption, air molecules and solar radiation also interact due to scattering.
This so-called Rayleigh scattering, see Rayleigh (1871), appears when the particle, here
the molecule, is considerably smaller than the wavelength of the radiation. A molecule can
then be considered as an electric dipole which oscillates when excited by radiation. The
scattering coefficient can be expressed as:

σray = σ̂rayNair(z) (2.35)
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with σ̂ray the Rayleigh scattering cross section and Nair the vertically variable concentration
of air molecules. σ̂ray can be formally derived from the dipole formalism. The resulting
wavelength dependence of the scattering cross section is given by the proportionality:

σ̂ray ∝ λ−4 (2.36)

Due to this relation light with shorter wavelength, for example blue, is scattered much
more effectively than light with longer wavelength, say red. As a result, at the surface of
the earth blue light is incident as diffuse radiation from all directions. That is why the sky
appears blue. When the sun is near the horizon during sunrise or sunset, in the oblique
path photons have to travel a longer distance compared to situations where the sun is close
to the zenith. As a result of equation 2.36, light with short wavelength is then scattered
out of the direct beam which leaves the radiation with wavelengths of red and yellow to
illuminate the sky.
The wavelength independent Rayleigh phase function also follows directly from the dipole
theory:

p(cos Θ) =
3

4
(1 + cos2 Θ) (2.37)

with Θ the scattering angle. From equation 2.37 it is evident that forward and back-
ward scattering are equally prominent, and perpendicular to the incident direction a local
minimum of the scattered radiation exists which is also expressed by g = 0 for Rayleigh
scattering, see above.

Mie scattering

Aerosols and cloud droplets have dimensions similar to or larger than the wavelengths of
solar radiation. Additionally, cloud droplets can be regarded as spheres of liquid water.
From aerosols it is known that these often have a water coating which results in a more
spherical shape of these otherwise irregular objects. Furthermore, for radiative transfer
calculations aiming at directionally integrated radiative properties like fluxes, according
to Mishchenko et al. (1995) aerosols can also be safely regarded as spheres. As a result of
these prerequisites, optical properties of individual aerosol particles and cloud droplets can
be derived by Mie theory, see Mie (1908). A comprehensive treatment of this theory is far
beyond the scope of this section, and only the most important features are addressed next.
The scattering and extinction coefficients of cloud droplets and aerosols are connected with
the dimensionless scattering and extinction efficiencies Qs and Qt via:

σ̂s = Qsπa2 (2.38)

σ̂t = Qtπa2 (2.39)

Qs and Qt are derived by Mie theory and describe the fraction of the area of the inci-
dent beam which is removed by the spherical particle with radius a through scattering or
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extinction. For particles much smaller than the wavelength of the incident light Rayleigh
scattering is derived as a special case from Mie theory. For large particles like cloud droplets
Mie theory yields Qs ≈ 2. The wavelength dependence becomes very weak in this limit.
As a consequence, solar radiation is scattered almost equally strong for all wavelengths
which is the reason why clouds are white.

In contrast to air molecules, which are assumed to have all the same size, clouds and aerosol
populations consist of particles of a large variety of sizes. To derive their so-called bulk
optical properties, which are related to a volume rather than to an individual particle,
differential number distributions dn(a)/da have to be introduced. These give the number
of particles per radius interval per unit volume of air. The total number concentration of
particles Npart(a) in the radius interval [ao, a] is then:

Npart(a) =

a∫
ao

dn(a′)

da′
da′ (2.40)

In Figure 2.6 several examples for number distributions of different clouds are given.

Figure 2.6: Cloud droplet number distributions for several water clouds. Cu: cumulus,
fair weather cloud; Ns: nimbostratus, rain cloud; Cb: cumulonimbus, thunder-
storm cloud. Adapted from Salby (1995).
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The bulk optical properties are defined as:

σs =

∞∫
0

dn(a)

da
σ̂s(a)da (2.41)

σt =

∞∫
0

dn(a)

da
σ̂t(a)da (2.42)

g =
1

σt

∞∫
0

dn(a)

da
gpart(a)σ̂s(a)da (2.43)

where gpart is the asymmetry factor of a single particle or droplet which also has to be
calculated by Mie theory.
An approximation for cloud phase functions entirely based on g is given by the Henyey-
Greenstein phase function:

p(cos Θ) =
1− g2

(1 + g2 − 2g cos Θ)
3
2

(2.44)

Exact Mie phase functions can be derived by calculating higher moments of the phase
function than gpart.

Connection of microphysical parameters and optical properties of clouds

For many practical applications, it is not possible to carry out Mie calculations and nu-
merous integrations of size distributions due to computational limitations. Yet, to derive
the relevant optical parameters of clouds, a number of approximations exist. With regard
to the optical depth, one such approximation can be quickly derived as follows. The cloud
liquid water content ρl, which is the liquid water mass per volume of air, can be expressed
as:

ρl =
4

3
πρw

∞∫
0

a3dn(a) (2.45)

where ρw is the density of water. The vertical integral of the liquid water content is called
liquid water path Σl. If ρl is constant over the increment ∆z it is:

Σl = ∆zρl (2.46)

Let us further assume that the extinction coefficient is constant over the increment ∆z.
For the incremental cloud optical depth ∆τcl one derives then:

∆τcl = ∆zσt (2.47)
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With the help of Qt ≈ 2 in the limit of large particles and equations 2.39, 2.42, 2.45, and
2.46, one gains for the incremental cloud optical depth:

∆τcl =
3Σl

2ρwae

(2.48)

ae is called effective radius of the cloud droplet number distribution:

ae =

∞∫
0

a3dn(a)

∞∫
0

a2dn(a)

(2.49)

From equations 2.48 and 2.49 it is evident that the cloud optical depth is dominated by
the liquid water content, while details of the size distribution of the cloud have only minor
impact via the effective radius. More sophisticated approaches include parameterizations of
the asymmetry factor and the single scattering albedo. For this study the approximations
suggested by Slingo (1989) were used, see section 2.4. Furthermore, in order to avoid
the determination of the effective radius by explicitly integrating the size distribution,
parameterizations for ae have been derived as well. Those also involve the liquid water
content, see Peng and Lohmann (2003) and Ritter and Geleyn (1992). For the latter see
also section 2.4. For aerosols explicit Mie calculations have to be carried out. However,
for irregularly shaped particles Mie theory is not sufficient and has to be replaced by more
advanced techniques like the T-matrix method, see Mishchenko et al. (1996). Due to the
considerable computational burden of both of these methods, standard size distributions
and tabulated optical properties for different aerosol types have to be used in applications
where computational time is a crucial component.

2.4 Deriving Cloud Optical Properties

In order to investigate different parameterization approaches for 3D radiative transfer,
the need for accurate and realistic cloud properties arises. These microscopic parameters
can be employed to deduce cloud optical properties as described in the previous section.
However, the degree of accuracy can also be defined with respect to the clouds a numerical
weather prediction (NWP) model is able to create. These are certainly not always as close
to real clouds as clouds from specialized models are. Nevertheless, clouds from weather
prediction models are the ones for which 3D RT parameterizations have to be developed
and investigated as well. Thus, the next section gives a brief overview of the various
methods which can be used to gain realistic clouds by both measurements and models.
More emphasis is on the modeling part as all clouds which were available to the author
were based on models rather than on pure measurements. However, it is understood that
those models in turn rely on realistic initial data from measurements. This section is partly
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based on material from Zinner (2004). In the next section, the technique which was used
for the offline generation of cloud properties from a weather prediction model for this thesis
is described. The deduced clouds are possibly not completely identical with the clouds the
model had produced during its original run, but are closely related to those. The reason
for this caveat will become clear in the course of the section.

Measuring and modeling clouds

Measuring clouds is a challenging task as clouds are highly variable in space and time. The
information necessary to be able to accurately describe clouds not only comprises 3D fields
of thermodynamic quantities like the liquid water content and effective radius, but also
macroscopic information like the cloud texture via cloud top and base height information.
Satellites can be used to observe large areas of the earth, and 2D distributions of cloud
properties can be retrieved by employing radiative transfer inversion techniques. Those
properties can then be either used for direct radiative transfer simulations or for further
investigations of the cloud structure. The resolution of those measurements strongly de-
pends on the instrument and satellite system and ranges from several kilometers to several
decameters. In the latter case, this approach has been successfully applied to LANDSAT
cloud scenes whose investigation led to fundamental insights concerning the scale invari-
ance of cloud fields and radiative smoothing, see Davis et al. (1997). Furthermore, aircraft
measurements can be undertaken to infer cloud parameters either by remote sensing or
by in-situ measurements of the microphysical properties. Those measurements are usually
limited to the one-dimensional flight path or directly neighboring areas and can therefore
only cover small parts of the atmosphere but the temporal and spatial resolution is very
high. Finally, ground based measurements can be carried out by numerous techniques,
ranging from RADAR and LIDAR, which give vertical profiles and 2D cross sections of the
atmosphere, to microwave soundings to deduce the liquid water path. The most complete
impression is yielded by combining a multitude of data sources, see Löhnert et al. (2004).
These not only include the ones mentioned above but also radiosonde soundings and other
meteorological measurements. As these instruments are operated from a fixed position at
the ground, the inferred information is generally representative only for a limited area. In
summary, it can be said that all methods have their specific limitations and shortcomings
concerning accuracy and/or resolution. As a consequence, cloud models are not only used
for a direct derivation of microphysical variables but also as an important tool to fur-
ther extract and extend information from measured data. The former approach is closely
related to models which either explicitly or approximately solve the underlying thermody-
namic equations. The second approach is more attributed to statistical cloud models. The
basic idea of this class of models is to start with a measured, modeled, or idealized initial
distribution of a cloud quantity, for example the cloud liquid water, and to derive a new
or even more realistic distribution of this quantity, while a set of statistical parameters re-
mains fixed. This method assures the close relation between the derived cloud and realistic
cloud features inherent in the original data. It is motivated by the fact that a number of
cloud parameters show a very distinct scaling behavior. For example, when investigating
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the wavenumber spectrum of the liquid water content, Davis et al. (2003) found that the
energy spectrum E(k) of the data series approximately follows the proportionality:

E(k) ∝ kβ (2.50)

where k is the wavenumber. If E(k) is plotted on logarithmic scales, the resulting line has a
slope of β ≈ −5

3
. In Figure 2.7 an example for a data series of the liquid water content and

the respective energy spectrum, which approximately follows this behavior, is shown. This
power law has already been theoretically predicted by Kolmogorov (1941) and confirmed
by Corrsin (1951) for the gradual transformation of turbulent kinetic energy from larger
scales to smaller scales until the dissipation regime is reached, and all energy has been
converted to heat. The constant slope over large ranges of k means that the observed
property is scale invariant, and as a consequence the resulting structures are self-similar.

Figure 2.7: Time series of liquid water content (a) and related energy spectrum (b).
Solid circles represent averaged data with slope β = −1.45. Adopted from
Marshak and Davis (2005).

The analogical behavior of the turbulent kinetic energy and the distribution of the liquid
water content suggests that both are determined by similar or even identical physical
processes. Other quantities, like the optical depth, have also been found to follow this
power law which seems to hint at a fundamental structure of clouds. Statistical cloud
models make use of this feature. In the following, three different approaches are briefly
described to shed some light on the common basics of these models but also to underline
their distinct capabilities.
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Let F (k) be the Fourier transform of the data series f(n) consisting of N values:

F (k) =
N−1∑
n=0

f(n)e−2πikn/N (2.51)

f(n) =
1

N

N−1∑
k=0

F (k)e−2πikn/N (2.52)

Since F (k) is a complex number it can be written as:

F (k) = A(k)eiφ(k) (2.53)

A(k) is called amplitude, and φ(k) is referred to as phase. The energy spectrum of f(n) is
formally defined as:

E(k) = |F (k)|2 = F (k)F ∗(k) = A2(k) (2.54)

F ∗(k) is the complex conjugate of F (k). E(k) is obviously independent of the phase.
That means, a data series which is characterized by β = −5

3
as exponent in its energy

spectrum can be transformed in a new series, which also follows the β = −5
3

rule, by adding
an arbitrary phase to the amplitude spectrum A(k) of the original series and subsequent
transformation of the new F (k) according to equation 2.52. This is the fundamental outline
of most cloud generators. One of the more sophisticated approaches is the bounded cascade
model, see Cahalan et al. (1994b). This model starts with a uniform liquid water field and
distributes the liquid water by partitioning the domain’s volume in more and more sections
with each step (cascade), while a decreasing amount of water is transferred between the
new sections. The process, which reminds of the generation of the Cantor set, is controlled
by two variables. The first, the so called scaling parameter, is fixed and forces the scaling
behavior of the resulting fractal liquid water distribution to be in agreement with the
β = −5

3
rule. The remaining parameter, which is called variance parameter, is determined

by the standard deviation of the liquid water path of realistic measured clouds. This is an
additional feature the pure Fourier approach misses. As a result, the derived clouds also
have a realistic liquid water distribution. Another approach, which was used to generate
several of the clouds which have been subsequently made available to the author, is called
Iterative Amplitude Adapted Fourier Transform (IAAFT), see Venema et al. (2006). It
is capable of directly dealing with measured or modeled fields of cloud properties. The
scaling behavior and the amplitude distributions need not to be fixed and are adjusted to
the original data. This results in highly consistent cloud fields, in the sense that domain
averaged radiative properties are closely resembled when compared to the respective results
of the original clouds. The algorithm is best suited for broken stratiform clouds but has
also been used to generate cumulus clouds.
As mentioned above, it is also possible to directly physically model clouds by either solv-
ing the fundamental differential equations or by parameterizing the underlying thermody-
namic processes. In connection with radiative transfer calculations, clouds originating from
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dynamic models, like large eddy simulation (LES) models, numerical weather prediction
(NWP) models, and general circulation models (GCM), which are climate models operated
on a global scale, are of special interest. Those models can be used to study how radia-
tive transfer spatially and temporally interacts with other meteorological variables. These
questions are of eminent importance in relation to climate predictions. However, the scales
those models are operated on differ greatly, see Table 2.1. High resolution models like LES
models can be generally expected to simulate more realistic cloud structures than opera-
tional weather prediction models or even global climate models, as with increasing scale
and computational burden the model resolution and physical complexity has to decrease.
As a result, none of those models is able to explicitly provide sophisticated parameters like
the cloud droplet size distribution. Common to all classes of those models is the neglect of
3D radiative transfer effects. Hence, in general the 3D radiative transfer approximations
presented in chapter 4 could be applied to all of them. In order to at least carry out some
basic investigations of those approximations with respected to weather prediction models,
cloud optical properties have been deduced from data generated by the Lokal-Modell (lo-
cal model, LM) of the German Weather Service (DWD). Details are provided in the next
section.

Table 2.1: Scale and resolution of different atmospheric models. GCM: Global Circulation
Model; NWP: Numerical Weather Prediction; LES: Large Eddy Simulation.

Model Resolution Scale

LES Decameters Several kilometers

NWP Several kilometers Thousands of kilometers

GCM Hundred kilometers Global

The Lokal-Modell of the German Weather Service

This section briefly describes the relevant model features and the process of obtaining
optical properties for radiative transfer calculations from the model’s output. For a full
documentation of the LM see Doms et al. (2003) and Doms and Schättler (1999).
The LM is based on the well known differential equations for atmospheric motion and
thermodynamics, thus, comprising the unfiltered prognostic equations for the wind field,
the so-called Navier-Stokes equations, the temperature, specific humidity, specific cloud
water content, and specific cloud ice content. This makes the LM a non-hydrostatic limited
area model, which means that boundary conditions have to be provided by another model
surrounding the LM model domain. The model equations are solved on a spherical grid. In
its operational version the model is operated with a horizontal resolution of 7km and the
standard domain is composed of 325×325 grid points. This information is as of September
2003. The setup used for the case studies here has a horizontal resolution of 2.8km, which
will become operational in 2007, and includes a variable number of pixels from case to case.
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In Figure 2.8 the overall domain of the available LM data is shown. For computational
reasons actual calculations will use only subsets of this domain. The typical time step
for the integration of the prognostic equations is 25s. The vertical coordinate of the LM
for these studies is the hybrid η-coordinate. This coordinate is so-called terrain following,
meaning that the lowest coordinate layer coincides with the surface of the earth, while
the resulting curvature of the coordinate layers decreases with increasing height, reaching
a plane shape after a certain level. As the coordinate is based on a temporally constant
reference pressure value, the positions of the coordinate levels are fixed with respect to
time.

Figure 2.8: Surface elevation in meter of the approximate overall domain of the available
LM data. Solid lines represent the coastline and major rivers, dashed lines
stand for political borders.

For the purpose on focus only the clouds produced by the model and the radiative transfer
scheme itself are of interest. All other model physics will not be considered. For all cases,
which will be discussed later, the convection scheme of the LM was turned off, thus, leaving
the cloud formation explicitly to model physics. The only two types of clouds which then
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can form are grid scale clouds and subgrid scale clouds. The former are produced if in the
grid cell under consideration cloud liquid water is explicitly predicted. Thus, these clouds
are formed when supersaturation occurs. If so, the cloud is believed to occupy the whole
grid cell. The latter form of clouds are parameterized with the help of the cloud cover and
the liquid water content of the cell. The cloud cover is parameterized with the help of the
relative humidity, the height of the layer, and the vertical mass propagation.
The optical properties were not generated during an actual LM run but rather offline by
operating the radiative transfer module as a stand-alone model. The LM stores its output
in binary files complying with the GRIB format, see NCEP (2005). Each of these files is
produced for hourly output and comprises all relevant prognostic, diagnostic and auxiliary
variables. The data was provided by Dr. Nicole van Lipzig, see BBC2 Webpage (2003)
and QUEST Webpage (2005), and by Dr. Felix Ament, see DAQUA Webpage (2004). Yet,
a complication arises because of the vertical coordinate system of the LM. The radiative
transfer models used in this study all rely on the Cartesian coordinate system. In contrast
to that, the η-system produces three-dimensionally variable z-increments. This difference
makes it necessary to develop an algorithm which transforms the variables extracted from
the GRIB files to a regular Cartesian lattice.
To do so, the column whose lower boundary has the lowest elevation above sea-level is
chosen. The structure of the vertical z-increments of this column will be the vertical
structure of all columns after the algorithm is finished. Thereafter, all vertical levels of
all columns are stored in increasing order in one large vector. This vector constitutes an
intermediate vertical coordinate. As a next step, in each pixel this intermediate coordinate
is processed and filled with the properties of the respective column. The part of the column
which is below surface elevation is treated as vacuum. This way, the whole domain receives
a plane lower boundary. The upper boundary has been flat even in the original system. In
order to reduce the number of layers from Nx×Ny×Nz to the original number Nz, which is
35 for all simulations, a weighted average is carried out in the vertical, weighing all optical
properties which are located between two vertical levels of the respective original column
with its proportionate thickness. The main steps of the algorithm are shown in Figure 2.9.
It has to be admitted that this algorithm is rather clumsy as it produces a tremendous
number of vertical levels in the intermediate vertical coordinate and requires significant
computational resources. There might be more sophisticated ways to carry out the required
transformation. As a result, it is by no means applicable on a frequent basis. Yet, for just
a few case studies it is suitable. To demonstrate the accuracy of the transformation, the
differences of the partial cloud cover are investigated along a transect. It touches some of
the highest peaks of the alps as well as lowlands. In Figure 2.10(a) the elevation along
this transect is shown, and in Figure 2.10(b) the relative difference of the transformed
partial cloud cover to the original field is depicted. Even for regions of maximum elevation
the errors are negligible. The maximum error in the entire domain does not exceed 0.2%.
Similar magnitudes exist for the remaining input variables.
After this step, the thermodynamic quantities together with the uniform z-coordinate
are fed into the stand-alone radiative transfer module of the LM in order to produce
optical properties offline. The model splits up the solar spectrum into three intervals,



2.4 Deriving Cloud Optical Properties 29

Figure 2.9: Transformation from η to Cartesian coordinates in three steps. The shown
vertical structure is idealized and not deduced from the model.

0.25µm – 0.7µm, 0.7µm – 1.53µm and 1.53µm – 4.64µm, respectively. In all intervals
the atmosphere is described by grey constituents, which means only weakly wavelength
dependent, like aerosols, liquid and ice components of clouds, and Rayleigh scattering for
air molecules. Absorption coefficients for gases are determined by an exponential sum
fitting technique. For all calculations in the presented work the second spectral interval
has been chosen. Gaseous absorption was not considered in this basic investigation in
order to keep the configuration of the stand-alone model as simple as possible. This
approach also avoids difficulties with the correct calculation of absorption coefficients in
the LM by the exponential sum fitting technique and their subsequent application in the
other RT models. This certainly affects the results, yet, all qualitative findings can be
expected to hold. Gaseous absorption clearly modulates and shortens the photon paths,
but the dominant cloud effects can be expected to remain largely unaffected which in
total overemphasizes 3D effects quantitatively. Some absorption is present as aerosols are
fully considered. Explicit cloud ice, which is formed when supersaturation occurs, had
to be neglected as well. This simplification had to be introduced as it was not possible
to reproduce the corresponding interface with the radiative transfer model in agreement
with its original counterpart of the LM. However, implicit cloud ice, that means subgrid
ice water content in the cells where no supersaturation is reached, is included. A remark
concerning this inconsistent treatment will be made when the results of those scenes are
discussed. A detailed description of the RT module can be found in Ritter and Geleyn
(1992). It employs a standard 2-stream model with random/maximum overlap capabilities
for treatment of partial cloudiness. As mentioned in section 2.3, the cloud optical properties
are calculated based on the approximations proposed by Slingo (1989).
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In detail:

∆τ =

(
c1 +

c2

ae

)
ρl∆z (2.55)

ωo = c3 + c4ae (2.56)

g = c5 + c6ae (2.57)

As the model is not able to determine the effective radius ae from cloud droplet size
distributions, it is parameterized as a function of the liquid water content ρl:

ae = c7 + c8ρl (2.58)

The ci, iε{1, 2, 3, 4, 5, 6}, are a set of constants for each of the LM’s wavelength intervals.
They are determined from a fit of the parameterizations to optical properties of different
cloud types. The consideration of partial cloudiness leads to two sets of optical properties.
The first set, which represents the clear sky contribution, consists of Rayleigh scattering,
aerosol scattering and absorption. The cloudy contribution uses the same properties, plus
cloud scattering and absorption. If gaseous absorption is not neglected, it has to be in-
troduced in both sets as water vapor is included. In the LM’s radiative transfer module
both types of parameters are then further processed by the 2-stream model. Unfortunately,
both DISORT and the LMCM are not capable of treating partial cloudiness. This makes it
necessary to generate a unified set of optical properties by the following weighted average:

Ptot = (1− Cpclc)Pf + CpclcPc (2.59)

where Ptot is the resulting mixed value, Pf and Pc are the cloud-free and cloudy represen-
tatives of the optical property and Cpclc ε [0, 1] is the partial cloud cover. The resulting
3D fields of all optical properties are then stored for subsequent input for the radiative
transfer models.
Although considerable effort has been undertaken in order to assure that the LM data is
transformed into clouds which match the originally generated ones as closely as possible,
it cannot precluded that the former differ to some extent from the latter. Therefore it
is justified to state that the clouds derived from the LM output are strongly related to
those of the LM but are not absolutely identical with these. However, the intention is
not to precisely repeat the radiative transfer calculation as carried out during the original
LM run and to re-establish the exact synoptic situation with all its details. This would
not only include the consideration of all optical properties of the atmosphere but also
the two-dimensional surface albedo and the two-dimensionally variable SZA the model
uses according to the geographic position of each of the pixels. In any event, the last
two prerequisites wouldn’t have been possible to meet as the used RT models and 3D
approximations are not capable of these features. Thus, the aim here is to conduct case
studies in order to investigate the fundamental characteristics, capabilities, and the future
potential of the different approximation approaches. As a result, it is accepted that the
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Figure 2.10: Comparison of original and transformed partial cloud cover along a transect
with pronounced surface elevation.

gained clouds have some idealized features, as well as the setup of the RT calculation, but
are assumed to be sufficient for this purpose.

2.5 Radiative Transfer Equation for 1D and 3D Prob-

lems

The radiative transfer equation (RTE) describes the propagation of light in space and time,
and the interactions of light with the matter and the boundaries forming the medium.
Numerous approaches exist for its derivation, ranging from mainly straightforward phe-
nomenological approaches, see for example Liou (2002), Lenoble (1993), and Chandrasekhar
(1960), to mathematically formal ones, see Mishchenko (2006).
In order not to unnecessarily increase the amount of theoretical material presented here,
only fundamental assumptions regarding the derivation of the RTE will be addressed,
followed by the most basic forms which also can be found in most textbooks.
The RTE can be regarded as a balance equation for photons traveling in the direction Ω
and having the frequency ν. The state space therefore comprises six dimensions, namely
the position r = (x, y, z), the directions θ, ϕ, and the frequency ν. It can be regarded as a
multidimensional cube. The balance which is set up consists of five contributions:

1. Photon exchange with the cube’s surrounding environment.

2. Absorption of photons inside the cube.
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3. Scattering of photons with (Ω, ν) into (Ω′, ν ′), called outscattering as it is a photon
sink for the considered direction and frequency.

4. Scattering of photons with (Ω′, ν ′) into (Ω, ν), called inscattering as it is a photon
source for the considered direction and frequency.

5. Emission inside the cube.

For most atmospheric applications the following assumptions are justified:

1. The refractive index is spatially and temporally constant, meaning ∂Ω
∂r

= 0 and

∂Ω
∂t

= 0, resulting in linear propagation of photons between the above interactions.

2. Absorption and emission are isotropic.

3. Only elastic scattering is taken into account, ν = ν ′, that is no frequency shift due
to scattering.

4. The radiative field can be considered to be stationary ∂I
∂t

= 0.

5. The scattering particles are required to be homogeneous, meaning Ω′ → Ω′ = Ω′ ·
Ω′ = cos Θ which was already used in equation 2.24.

The radiative transfer equation for the total radiative field in three dimensions can then
be deduced as the balance where sources and sinks are combined in Q:

dI(r,Ω)

ds
≡ Ω · ∇I(r,Ω) = −σt(r) [I(r,Ω)−Q(r,Ω)] (2.60)

and explicitly:

dI(r,Ω)

ds
≡ Ω · ∇I(r,Ω) = J(r)− σt(r)I(r,Ω) +

σs(r)

4π

∫
4π

p(r,Ω′ ·Ω)I(r,Ω′)dΩ′ (2.61)

Sometimes it is useful to obtain separate equations for the direct sunlight and the diffuse
light, where photons are scattered at least once. Therefore, the intensity of the direct beam
is separated from the diffuse intensity Id:

I(r,Ω) = Id(r,Ω) + S(r,Ω)δ(Ω−Ωo) (2.62)

with Ωo containing the solar zenith angle (SZA) θoε[
π
2
, π] and solar azimuth ϕoε[0, 2π].
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The separation leads to:

dId(r,Ω)

ds
+

dS(r,Ωo)

ds
= J(r)− σt(r)Id(r,Ω)− σt(r)S(r,Ω)δ(Ω−Ωo)

+
σs(r)

4π

∫
4π

p(r,Ω′ ·Ω)Id(r,Ω′)dΩ′

+
σs(r)

4π
p(r,Ωo ·Ω)S(r,Ωo)

(2.63)

Collecting all terms in equation 2.63 relating to the direct beam retrieves after straightfor-
ward solution the well-known Lambert-Beer law:

S(r,Ωo) = Fo e
−

s(r)∫
0

σt(s
′)ds′

(2.64)

where Fo is the incoming solar flux at the top of the atmosphere. For all calculations, which
have been carried out for this study, Fo = 1.0 Wm−2 was used. The remaining terms in
equation 2.63 form the RTE for diffuse radiation:

dId(r,Ω)

ds
= J(r)− σt(r)Id(r,Ω)

+
σs(r)

4π

∫
4π

p(r,Ω′ ·Ω)Id(r,Ω′)dΩ′ +
σs(r)

4π
p(r,Ωo ·Ω)S(r,Ωo)

(2.65)

While equation 2.64 is usually not too difficult to evaluate, equation 2.65 is subject to
further treatment to be solved. Starting from equation 2.60, the formal solution of the
RTE can be gained by integration. The resulting so-called integral form of the RTE then
yields:

I(s,Ω) = I(s = 0,Ω)e−
∫ s

0
σt(s

′)ds′ +

s∫
0

σt(s
′)Q(s′,Ω)e−

∫ s

s′ σt(s
′′)ds′′ds′ (2.66)

Equation 2.61 offers the possibility to relate the flux divergence and therefore heating rates
to the actinic flux. Because of Ω · ∇I = ∇ · (ΩI) subsequent integration over the unit
sphere leads to:

∇ ·EN = 4πJ(r)− σa(r)Fact(r) (2.67)

with the consequence that a purely scattering atmosphere without internal sources con-
serves the net-flux spatially.
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If horizontal homogeneity is assumed (plane-parallel atmosphere), the RTE for the total
light becomes:

µ
dI(z, µ, ϕ)

dz
= J(z)−σt(z)I(z, µ, ϕ)+

σs(z)

4π

2π∫
0

1∫
−1

p(z, µ′, ϕ′, µ, ϕ)I(z, µ′, ϕ′)dµ′dϕ′ (2.68)

If by virtue of dτ = −σtdz the optical depth is chosen as vertical coordinate and the source
is omitted, equation 2.68 transforms into:

µ
dI(τ, µ, ϕ)

dτ
= I(τ, µ, ϕ)− ωo(τ)

4π

2π∫
0

1∫
−1

p(τ, µ′, ϕ′, µ, ϕ)I(τ, µ′, ϕ′)dµ′dϕ′ (2.69)

and for the diffuse light only:

µ
dId(τ, µ, ϕ)

dτ
= Id(τ, µ, ϕ)− ωo(τ)

4π

2π∫
0

1∫
−1

p(τ, µ′, ϕ′, µ, ϕ)Id(τ, µ
′, ϕ′)dµ′dϕ′

− ωo

4π
Fo e

− τ
|µo|p(τ, µo, ϕo, µ, ϕ)δ(µ− µo)δ(ϕ− ϕo)

(2.70)

The second term on the right hand side is called multiple scattering term as it represents
the scattering of already diffuse light. The third term is called single scattering term as it
describes the transformation of direct solar radiation in single scattered diffuse light. In
order to solve the RTE boundary conditions have to be imposed. One speaks of vacuum
boundary conditions if there is no incident diffuse radiation:

Id(µ < 0, ϕ, z = TOA, x, y) = 0

Id(µ > 0, ϕ, z = 0, x, y) = 0
(2.71)

In case of a reflecting surface at the lower boundary, the boundary conditions are:

Id(µ < 0, ϕ, z = TOA, x, y) = 0 (2.72)

Id(µ > 0, ϕ, z = 0, x, y) = Ig(µ, ϕ, x, y) (2.73)

while the determination of Ig is subject to the kind of reflection. A general discussion of
surface reflection is beyond the scope of this section.
Another variant of the upper boundary condition can be introduced if the RTE for the
total light is used, see equation 2.61. If the upper boundary condition is chosen to be
regarded as a source, the RTE reads:

dI(r,Ω)

ds
+σt(r)I(r,Ω)−σs(r)

4π

∫
4π

p(r,Ω′·Ω)I(r,Ω′)dΩ′ = |µo|Foδ(Ω−Ωo)δ(z−zo) (2.74)
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If scattering is omitted, the Lambert-Beer law is regained in a more formal form:

I(s, µ < 0, ϕ) = Foδ(µ− µo)δ(ϕ− ϕo)η(s)e
−

s∫
0

σt(s
′)ds′

(2.75)

2.6 Discrete Ordinate Method for 1D Problems

In order to solve the RTE and to gain a form which is suitable for the approximations, in
the following chapters the RTE in its representation of equation 2.68 is taken into account.
It is restated here without the source J as solar radiative transfer is treated only:

µ
dI(z, µ, ϕ)

dz
= −σt(z)I(z, µ, ϕ) +

σs(z)

4π

2π∫
0

1∫
−1

p(z, µ′, ϕ′, µ, ϕ)I(z, µ′, ϕ′)dµ′dϕ′ (2.76)

The phase function is expanded in a series of Legendre polynomials. The following form
is chosen for convenience:

p(z,Ω′ ·Ω) =
∞∑
l=0

(2l + 1)χl(z)Pl(Ω
′ ·Ω) (2.77)

where χl are the expansion coefficients and Pl is the Legendre polynomial of order l. In
order to be able to represent the phase function with the scattering angle expanded as in
equation 2.24, the addition theorem for Legendre polynomials is applied. For a summary
of the most important characteristics of Pl and the addition theorem see Liou (2002).

After some manipulations the scattering term in equation 2.76 becomes:

σs(z)

4π

∫
4π

I(z,Ω′)p(z,Ω′ ·Ω)dΩ′ =
1

4π

2π∫
0

1∫
−1

I(z, µ′, ϕ′)×

∞∑
l=0

(2l + 1)ηl(z)
l∑

m=0

(2− δm0)
(l −m)!

(l + m)!
Pm

l (µ)Pm
l (µ′) cos m(ϕ′ − ϕ)dµ′dϕ′

(2.78)

The same procedure can be translated to the single and multiple scattering terms of equa-
tion 2.70. The intensity I represents then the diffuse contribution. Furthermore, in this
equation the intensity I will be expanded in a Fourier series with the coefficients Im:

I(τ, µ, ϕ) =
∞∑

m=0

Im(τ, µ) cos m(ϕ− ϕo) (2.79)



36 2. Radiative Transfer Fundamentals

After a number of manipulations, see for example Chandrasekhar (1960), an equation for
Im is derived which has the same structural form as the original RTE for the diffuse light:

µ
dIm(τ, µ)

dτ
= Im(τ, µ)

− ωo

2

1∫
−1

∞∑
l=m

(2l + 1)
(l −m)!

(l + m)!
Pm

l (µ)Pm
l (µ′)Im(τ, µ′)dµ′

− ωo

4π
Foe

− τ
|µo| (2− δm0)

∞∑
l=m

(2l + 1)
(l −m)!

(l + m)!
Pm

l (µ)Pm
l (µo)

(2.80)

with m = 0, 1, 2 . . . . In reality, the expansion in m has to be truncated, leaving a finite
number of expansion terms and therefore equations. The whole preceeding procedure was
performed to separate µ from ϕ. After solving the system of equations in 2.80, the intensity
can then be put together by equation 2.79. One way of solving 2.80 is to further split up
µ by descretizing it in a vector:

µ =



µ−N
...

µ−1

µ1
...

µN


(2.81)

µi, iε[±1, 2, 3 . . .±N ], is referred to as discrete ordinate. 2N is called “number of compu-
tational streams”. Therefore, equation 2.80 turns into an equation for each of the µi:

µi
dIm(τ, µi)

dτ
= Im(τ, µi)

− ωo

2

N∑
j=−N
j 6=0

∞∑
l=m

(2l + 1)
(l −m)!

(l + m)!
Pm

l (µi)P
m
l (µj)Im(τ, µj)

− ωo

4π
Foe

− τ
|µo| (2− δm0)

∞∑
l=m

(2l + 1)
(l −m)!

(l + m)!
Pm

l (µi)P
m
l (µo)

(2.82)

with iε[±1, 2, 3 . . .±N ]. The specific choice of the weights wi and discrete angles µi which
appear because of the discretization of the integral, for example by Gauss-Quadrature, is a
feature of the numerical implementation, and is not considered any further here. Equation
2.82 and its solution procedures form the backbone of the radiative transfer model DISORT
(DIscrete Ordinate Radiative Transfer). It has been used in this work for all exact 1D
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calculations of fluxes. For a detailed discussion of the model, regarding also the treatment
of the vertical coordinate, see Stamnes et al. (1988) and Thomas and Stamnes (1999).
As for many studies, including this one, only fluxes are of significance, it is important to
note that:

E(z) =

1∫
−1

2π∫
0

µI(z, µ, ϕ)dµdϕ = 2π

1∫
−1

µIm=0(τ, µ)dµ (2.83)

and for the azimuthally averaged intensity Ī:

Ī(z, µ) =
1

2π

2π∫
0

I(z, µ, ϕ)dϕ = Im=0(τ, µ) (2.84)

which decreases the computational burden to calculate these quantities significantly as
only the first expansion term needs to be considered.
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Chapter 3

Adjoint Radiative Transfer and the
Perturbation Theory

As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain, they do
not refer to reality.

Albert Einstein

In this section, the formal outline of adjoint radiative transfer and its subsequent applica-
tion to the linearization of the radiative transfer problem, resulting in the linear radiative
transfer perturbation theory (RTPT), will be introduced. A comprehensive presentation
of the theoretical background can be found in textbooks like Bell and Glasstone (1970).
For atmospheric radiative transfer and remote sensing problems the technique has been
tailor-made by Ustinov (1990), Ustinov (1991), Box et al. (1988), and Marchuk (1964).

3.1 Adjoint Radiative Transfer Equation

For reasons explained later in the course of this section, it is appropriate to observe the total
intensity in z-coordinates. As only one-dimensional problems are treated here, equation
2.74 now reads:

µ
dI(z, µ, ϕ)

dz
+ σt(z)I(z, µ, ϕ)− σs(z)

2π

4π∫
0

1∫
−1

p(z, µ′, ϕ′, µ, ϕ)I(z, µ′, ϕ′)dµ′dϕ′ =

|µo|Foδ(µ− µo)δ(ϕ− ϕo)δ(z − zo)

(3.1)

For the formalism applied it is restated in operator notation:

LI = Q (3.2)
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with:

L = µ
d

dz
+ σt(z)− σs(z)

4π

2π∫
0

1∫
−1

dµ′dϕ′p(z, µ′, ϕ′, µ, ϕ) ◦ (3.3)

Q = |µo|Foδ(µ− µo)δ(ϕ− ϕo)δ(z − zo) (3.4)

The “◦” in equation 3.3 denotes that the intensity has to be included in the integral. As
explained in section 2.5, the term Q acts as source and upper boundary condition for the
direct light. For the diffuse light vacuum boundary conditions are applied. The adjoint
intensity I+ is then introduced as the property which is connected with the intensity I by
the relationship:

∞∫
0

dz

2π∫
0

dϕ

1∫
−1

dµI+(z, µ, ϕ)[LI(z, µ, ϕ)] =

∞∫
0

dz

2π∫
0

dϕ

1∫
−1

dµ[LI+(z, µ, ϕ)]I(z, µ, ϕ) (3.5)

For brevity the following notation is introduced:

〈a, b〉 =

∞∫
0

2π∫
0

1∫
−1

a b dµdϕdz (3.6)

Equation 3.5 then reads:

〈I+, LI〉 = 〈L+I+, I〉 (3.7)

I+ is required to fulfill the adjoint radiative transfer equation:

L+I+ = Q+ (3.8)

where Q+ represents the adjoint source which is to be defined below. The adjoint radiative
transfer operator is postulated as:

L+ = −µ
d

dz
+ σt(z)− σs(z)

4π

2π∫
0

1∫
−1

dµ′dϕ′p(z, µ′, ϕ′, µ, ϕ)◦ (3.9)

From equation 3.5 it follows that the boundary conditions for the adjoint radiative transfer
equation read:

Id(µ > 0, ϕ, z = TOA, x, y) = 0

Id(µ < 0, ϕ, z = 0, x, y) = 0
(3.10)
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if vacuum boundary conditions for the forward problem are imposed. One immediately
notes that the adjoint boundary conditions show a somewhat complementary behavior if
compared with the forward counterpart, see equation 2.71, resulting in the constraint that
no adjoint radiation leaves the medium.
Fortunately, no newly designed radiative transfer code is necessary to solve equation 3.8
as existing techniques can be readily utilized by substituting:

I+(z,−Ω) = Ψ(z,Ω) (3.11)

which transforms equation 3.8 into a pseudo problem by considering the reciprocity of the
propagation of light:

LΨ(z,Ω) = Q+(−Ω) (3.12)

That means one has to exert the usual solution technique to equation 3.12 with Q+ having
its angular dependence swapped and the forward boundary conditions applied. Moreover,
the homogeneous solution of the forward problem also applies to 3.12. After the pseudo
intensity Ψ is derived I+ is gained by rule 3.11.

3.2 Linear Perturbation Theory

For the following steps it is convenient to introduce the quantity of the radiative effect E
formally as:

E = 〈I, R〉 (3.13)

where R is called response function. If the upwelling flux at level zr was the demanded
property the response function would be:

R = µη(µ)δ(z − zr) (3.14)

At this stage, many texts dealing with this technique just postulate that, in order to
derive the linear perturbation theory, one has to chose the response function R as adjoint
source Q+. However, this can be formally motivated by a variational principle as shown by
Pomraning (1965). Another consequence of that choice is that the effect E can be written
by virtue of relation 3.5 as:

E = 〈R, I〉 = 〈I+, Q〉 (3.15)

By equation 3.15 an excellent way to verify the adjoint intensity result is at hand. But
it is also a way to calculate E for a different set of problems, namely the one where E is
derived only at one spatial position but where the dependence on the solar angle is rapidly
included by the integration represented by 〈·, ·〉. This can be achieved as I+ is independent
of the solar illumination.
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With this prerequisite it is possible to gain some insight in the behavior of the adjoint
intensity. With a response function as for the upwelling flux in equation 3.14 the adjoint
source would be radiating upwards, see Figure 3.1 a). By virtue of the pseudo problem the
source would be inverted and the pseudo intensity would look like sketched in Figure 3.1
b). After inverting the angular dependence of Ψ I+ is derived as in 3.1 c). The “adjoint
photons“ therefore travel backwards with respect to time and space. This is reflected in
the unusual boundary conditions stated above.

R(    )   Ω

Ω
+
I(    )

R(    )   Ω

R( −    )Ω

Ψ(Ω)

adjoint
source

adjoint
radiation

z pseudo problem
a) c)b)

zr

Figure 3.1: The pseudo problem for adjoint radiative transfer. a) An adjoint source R is
positioned at level zr. b) The pseudo problem yields the intermediate solution
Ψ. c) Inversion of the directions Ω leads to the adjoint solution I+.

To proceed with the perturbation theory, one splits up the atmospheric properties into
base case “b”and perturbation contributions “∆”:

σs(z) = σs,b(z) + ∆σs(z)

σa(z) = σa,b(z) + ∆σa(z)

χl(z) = χl,b(z) + ∆χl(z)

(3.16)

with χl the Legendre expansion coefficient of order l of the phase function p. The transport
operators then are:

L(z,Ω) = Lb(z,Ω) + ∆L(z,Ω) (3.17)

L+(z,Ω) = L+
b (z,Ω) + ∆L+(z,Ω) (3.18)
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Additionally to the radiative transfer equations 3.2 and 3.8, the following ones are required
to be valid:

LbIb = Qb (3.19)

L+
b I+

b = R (3.20)

Following the derivation of Ustinov (1991), see Appendix A, for the perturbation of the
effect one arrives at:

∆E = 〈I+
b , ∆Q〉 − 〈I+

b , ∆LIb〉 (3.21)

with:

∆Q = Q−Qb

∆L = L− Lb

(3.22)

The first term on the right hand side of equation 3.21 refers to the perturbation of the
source and is only in thermal radiative transfer of significance. The second term on the
right hand side represents the perturbation of the medium. The resulting perturbation
series for the effect E in solar radiative transfer is then:

E ≈ Eb + ∆E = 〈R, Ib〉 − 〈I+
b , ∆LIb〉 (3.23)

The important fact about relation 3.23 is that only base case radiative transfer results are
included. This circumstance leaves the procedure of accounting for small perturbations to
a simple integration. In general ∆L will be:

∆L = ∆σt(z)− 1

4π

2π∫
0

1∫
−1

dµ′dϕ′∆ [σs(z)p(z, µ′, ϕ′, µ, ϕ)] ◦ (3.24)

In this form, it is obvious why the z-coordinate system was chosen. If the τ -coordinate

had been chosen, ∆L would also consist of the streaming term
d

dτ
as a perturbation of the

optical properties would have resulted in a perturbation of the the optical depth. Thus,
the perturbation of the optical depth would have changed the increments of the coordinate
system with each perturbation. This undesirable effect is of course avoided in geometric
coordinates.
The scattering term in equation 3.24 can be expanded analogously as in equation 2.78.
As only azimuthally independent effects are taken into account m = 0 is chosen in the
expansion, resulting in:

∆L = ∆σt(z)− 1

4π

2π∫
0

1∫
−1

dµ′dϕ′
∞∑
l=0

(2l + 1)∆ηl(z)Pl(µ)Pl(µ
′)◦ (3.25)
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Inserting equation 3.25 in equation 3.23 one derives after some straightforward steps:

∆E(zr) = −〈I+
b , ∆LIb〉

= −2π

∞∫
0

dz

(
∆σt(z)Ξ(z)− 1

2

∞∑
l=0

(2l + 1)∆ηl(z)ξ+
l (z)ξl(z)

)
(3.26)

where:

Īb(z, µ) =
1

2π

2π∫
0

dµIb(z, µ, ϕ) Ī+
b (z, µ) =

1

2π

2π∫
0

dµI+
b (z, µ, ϕ) = I+

b (z, µ) (3.27)

Ξ(z) =

1∫
−1

dµĪ+
b (z, µ)Īb(z, µ) (3.28)

ξl(z) =

1∫
−1

dµĪb(z, µ)Pl(µ) ξ+
l (z) =

1∫
−1

dµĪ+
b (z, µ)Pl(µ) (3.29)

∆ηl(z) = ηl(z)− ηl,b(z) = ∆σs(z)χl,b(z) + σs,b∆χl(z) (3.30)

Equation 3.26 can also be expanded according to its physical meaning:

∆E(zr) = ∆Es,e(zr) + ∆Es,is(zr) + ∆Ea,e(zr) + ∆Es,p(zr) (3.31)

with:

∆Es,e(zr) = −2π

TOA∫
0

∆σs(z)Ξ(z)dz (3.32)

∆Es,is(zr) = π

TOA∫
0

∞∑
l=0

(2l + 1)∆σsχl,b(z)ξ+
l (z)ξl(z)dz (3.33)

∆Ea,e(zr) = −2π

TOA∫
0

∆σa(z)Ξ(z)dz (3.34)

∆Es,p(zr) = π

TOA∫
0

∞∑
l=0

(2l + 1)∆χlσs,b(z)ξ+
l (z)ξl(z)dz (3.35)
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Here infinity as the upper boundary of the integration in z has been replaced with the Top
Of Atmosphere (TOA) of the model domain.

Equation 3.32 accounts for the extinction (outscattering) contribution by changes in the
scattering coefficient, while equations 3.35 and 3.33 model the inscattering contribution by
changes in the phase function and the scattering coefficient, respectively. Finally, equation
3.34 reflects the extinction by absorption. By comparison with the well known Taylor
expansion one notes that the perturbation integrals simply adopt the role of derivatives
multiplied with the incremental changes ∆ of the respective property.

In the presented work, the adjoint calculation and the calculation of the perturbation inte-
grals have been implemented in the radiative transfer model DISORT, see Stamnes et al.
(1988). This work has been carried out by modifying the existing solution procedures.
For example, to solve the adjoint radiative transfer equation the implemented source func-
tion has to be replaced with the inverted adjoint source for all considered effects at all
layer interfaces and to hand over the result of both the re-inverted adjoint solution and
the forward solution to solve the perturbation integral by Gauss-Quadrature, again for all
investigated effects at all layer interfaces. Technically, to do so in the DISORT code simply
the right hand side of equation 3.2 had to be replaced by the right hand side of equation
3.12 as explained above, while observing the correct boundary conditions, externally and
internally, to guarantee the solution is steady. Effects can then be calculated at all com-
putational layer interfaces and boundaries, comprising up- and downwelling flux-densities,
the net flux-density, and the actinic flux. Perturbations of all optical parameters can be
imposed as a function of the vertical coordinate while the selected base case can be chosen
at will and can also be a function of the vertical.

3.3 Examples

At this point examples of idealized situations will be given to illuminate the features of
the perturbation theory.

Example 1: Perturbation of the extinction coefficient

In this example the atmosphere has a total geometric height of 2000m, and the atmospheric
base case is represented by a non-absorbing column with optical properties constant with
height. The extinction coefficient is σt = 0.01m−1 and ωo = 1.0. The cosine of the solar
zenith angle is µo = 0.7, and the surface albedo is zero. A Henyey-Greenstein phase
function with g = 0.75 is used, which is also constant with height, and remains unaffected
by the perturbation. For simplicity only four computational streams have been used.
This setup could be regarded as an idealized planetary boundary layer where the opacity
changes with time due to increasing activity of a particle source or by advection. As
imposed perturbation the extinction coefficient is increased by 10% per step below 500m,
by 7.5% per step between 500m and 1500m, and by 5% per step above 1500m. All relative
values refer to the original base case value. A total of ten perturbation steps is employed.
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This leads to the staircase like shape depicted in Figure 3.2.
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Figure 3.2: Vertical structure of the perturbation of the extinction coefficient for Example
1. Note that the height is given by the x-axis. Solid line: vertically constant
base case with σt = 0.01m−1. Dotted lines: perturbation steps of the base case,
z < 500m: 10% per step, 500m ≤ z ≤ 1500m: 7.5% per step, z > 1500m: 5%
per step. A total of ten steps is applied.

The result of the ten perturbation steps in comparison with the exact forward (FW) so-
lution computed by DISORT in the conventional manner is shown in Figure 3.3. There,
the net flux-density at 500m, right at the lowest discontinuity of the extinction coefficient,
is shown as a function of the perturbation step. One clearly notes the linearity of the
perturbation integral which results in a tangent to the exact solution.
As in a Taylor series, this result is in good agreement in close vicinity of the base case, but
leads to severe errors for perturbation steps larger than two. At step two, the relative error
just slightly exceeds one percent, whereas for the last step it is beyond thirty percent. If
absorption had been added the drop of the net flux-density predicted by the perturbation
theory would have been more significant, also further decreasing the range of applicability
of the perturbation integral. Thus, the perturbation theory is in this simple form not
able to accurately describe saturation effects which occur in mediums with large scattering
optical depths.

Example 2: Perturbation of the phase function

In this example, the atmosphere is vertically entirely homogeneous with σt = 0.01m−1 and
ωo = 1.0. Again, µo = 0.7 and the surface albedo is set to zero. Here, a Henyey-Greenstein
phase function with g = 0.75 is transformed in 10 steps into a phase function of the same
type with g = 0.85. This case might represent a particle cloud whose composition is
gradually transformed by chemical processes. Figure 3.4 again shows the net flux-density
as a function of the perturbation step. One recognizes that the phase function perturbation
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Figure 3.3: Example 1: Linear perturbation (solid line) and exact result (crosses) for the
net flux-density at 500m as a function of the perturbation step of the extinction
coefficient as shown in Figure 3.2. Remaining parameters: ωo = 1.0, g = 0.75,
µo = 0.7.

results in increasing net flux-density which is in agreement with the notion that a larger
asymmetry factor pronounces more the forward, here downward, scattering.
One can also gather from Figure 3.4 that the perturbation of the phase function is a crucial
component as errors grow quickly. For example, the relative error is still below one percent
after perturbation step three (g = 0.78) and reaches 30% for the last perturbation step.
However, by means of this example, it can be demonstrated that the perturbation theory
can not only serve as a tool to quickly calculate radiative transfer results by evaluating a
simple integral, but that it is also useful for gaining a better understanding of sensitivities.

3.4 Treatment of Lambertian Surface Reflection

So far every formula of the radiative transfer perturbation theory has been deduced with
respect to vacuum boundary conditions. For many purposes, including modeling radiative
transfer within an atmospheric model, it is inevitable to account for at least Lambertian
surface reflection which means isotropic backscattering at the ground. One approach which
could be pursued is to include the surface reflection by deducing boundary conditions for
the forward as well as for the adjoint mode and then directly include those in the solution
procedures of the radiative transfer model. This is the standard procedure. However, that
would result in direct incorporation of the surface albedo in the output which would be
inseparable from the contribution of the atmospheric properties. This way, a base case
with respect to certain atmospheric conditions would be coupled with a specific albedo
used in this case. For another surface albedo the complete recalculation of base case and
perturbation integral would be required, even if the change in the albedo is marginal and
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Figure 3.4: Example 2: Linear perturbation (solid line) and exact result (crosses) for the
net flux-density at 500m as a function of the phase function perturbation of
a Henyey-Greenstein phase function. The asymmetry factor is transformed in
ten steps from g = 0.75 to g = 0.85 with the constant values σt = 0.01m−1,
ωo = 1.0, µo = 0.7.

the atmospheric conditions are fully maintained. So as to keep as much flexibility as
possible, a superposition approach is applied. This approach has already been proposed
in connection with the perturbation theory by Box et al. (1988). A rigorous mathematical
derivation was recently readdressed by Muldashev et al. (1999). Similarly, the Lambertian
reflection follows from a general context which has been worked out by Landgraf et al.
(2002).

As shown by Liou (2002), the intensity is described by the following superposition:

I(z,Ω) = Iv(z,Ω) + Fv(z = 0)
A

1− As̄
Is(z,Ω) (3.36)

where Lambertian reflection of a surface with albedo A was assumed for the lower boundary.

Here, Iv is the intensity gained by the calculation with vacuum boundary conditions ap-
plied. The other quantities are:

Fv(z = 0) =
1

π

2π∫
0

dϕ

0∫
−1

dµ|µ|Iv(z = 0,Ω) (3.37)

s̄ =
1

π

2π∫
0

dϕ

0∫
−1

dµ|µ|Is(z = 0,Ω) (3.38)

Is is the solution of a special radiative transfer problem defined by the radiative transfer
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equation:

LIs = Qs (3.39)

and the source Qs:

Qs = µη(µ)δ(z) (3.40)

thus describing an artificial isotropic source at the lower boundary which is radiating
upwards. Similarly, for the adjoint radiance a related superposition exists:

I+(z, ~Ω) = I+
v (z, ~Ω) + F+

v (z = 0)
A

1− As̄
Is(z,−~Ω) (3.41)

There are two remarks worth mentioning at this point. First, formula 3.41 contains the
same radiative transfer results for Is, thus reducing the computational burden to evaluate
equations 3.41 and 3.36. Second, if one closely examines equation 3.39, one notes that
Qs is exactly the adjoint source if one needs to compute the adjoint radiance field for
upwelling flux at the lower boundary with respect to vacuum boundary conditions. This
way no additional radiative transfer calculation has to be performed, careful selection of
the required subset of the adjoint solution is the only task left. Inserting equations 3.36
and 3.41 in 3.23 leads after a tedious but straightforward calculation to:

E = Eb + ∆E = Eb,v + Eb,a + ∆Ev + ∆Ea (3.42)

where:

Eb,v =

TOA∫
0

2π∫
0

1∫
−1

RI(z, µ, ϕ)dµdϕdz

Eb,a = 2πAFv,b(0)

TOA∫
0

1∫
−1

dµdzRIs,b(z, µ)

∆Ev = −2π

TOA∫
0

dz

(
∆σt(z)Ξ(z)− 1

2

∞∑
l=0

(2l + 1)∆ηl(z)ξ+
l,v(z)ξl,v(z)

)

∆Ea = −2πA
TOA∫
0

dz
{

∆σt(z) (F1(z) + F2(z) +AF3(z))

− 1

2

∞∑
l=0

(2l + 1)∆ηl(z) (Fξ1(z) + Fξ2(z) +AFξ3(z))
}

(3.43)
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and:

A =
A

1− As̄b,v

(3.44)

For the definition of the remaining quantities see Appendix B. The subscript “v” refers to
vacuum boundary conditions, and “b” stands for a derivation with respect to the base case.
The remarkable feature of equations 3.43 is that now indeed all quantities are related either
to the forward and adjoint vacuum solution or to the special problem defined by equation
3.39. The solution of this radiative transfer equation is of course also derived with respect
to vacuum boundary conditions. As a result, the only impact on the formula the albedo
has is in the factor A. The surface reflection is then easily incorporated without the need
of any recalculation of radiative transfer results.

3.5 Examples

Example 3: Pure albedo change

At first the albedo is considered independently, meaning no perturbation is included in
this calculation. In Figure 3.5, the results are shown for an atmospheric column with a
scattering coefficient of σs = 0.01m−1, an absorption coefficient σa = 5.0 · 10−7m−1, and
a Henyey-Greenstein phase function with g = 0.75, all independent of the vertical. The
albedo has been changed over the complete considerable range from zero to one. A realistic
background of this example could be the alteration of the surface properties from purely
absorbing to totally reflecting by snowfall on a black area. It is again µo = 0.7. One clearly
notes that the solution is exact and not an approximation as one might think.

Example 4: Perturbation and albedo

Here ,the same atmospheric parameters are used as in the first perturbation example, and
the perturbation is also identical. The albedo is selected as in the previous example, thus
forming a worst case scenario where perturbation and surface albedo increase simultane-
ously. The result for the net flux-density at 500m is depicted in Figure 3.6. The accuracy
is surprisingly good, maximum errors are about seven percent. Yet, the superposition can-
not reproduce the (almost) obvious result for an albedo of one. As can be gathered from
equations 3.43, multiple multiplications of the albedo factor A and the perturbations of
the atmospheric parameters exist. As a result, errors are in general expected to amplify.

3.6 Multiple Base Cases and Interpolation

As was shown in the preceeding sections, the radiative transfer perturbation theory can-
not adequately handle massive perturbations exceeding the linear range. Basically, there
are two conceivable ways to circumvent this shortcoming. First, the extension of the
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Figure 3.5: Example 3: Comparison of the direct albedo treatment in DISORT (crosses)
by an explicit reflecting lower boundary and the superposition approach (line)
for the net flux-density at 500m. Remaining parameters: σs = 0.01m−1, σa =
5.0 · 10−7m−1, g = 0.75, µo = 0.7.

perturbation series to second and higher order terms is accomplishable, see Box (2002).
Unfortunately, this involves the Green’s function which is neither easy nor computationally
inexpensive to derive. This application of the perturbation theory is for these reasons a sub-
ject of ongoing basic research. The second possible approach involves multiple base cases
and the interpolation of values located in the range between them. As mentioned before,
the linear perturbation theory delivers the first order derivatives analytically without the
need for a lengthy and unstable derivation by finite differences. This circumstance enables
the utilization of the Hermite interpolation. This technique makes use of the derivatives
additionally to the functional values. Therefore, for a chosen pair of values the interme-
diate points can be derived by a third order interpolation. An overview of the Hermite
interpolation can be found in Maess (1988) and Kahaner et al. (1989).

There are two necessary remarks concerning the limitations associated with the application
of this technique. First, the phase function cannot easily be incorporated in the interpola-
tion as this would require a multivariate technique for each of the phase function expansion
coefficients. Second, the interpolation is only carried out with respect to the total optical
depth or more precisely with respect to the perturbation of the total optical depth. This
has several reasons. First, an interpolation with respect to scattering and absorption opti-
cal depth separately would also require a multivariate interpolation. This neither seems to
be meaningful under the computational point of view nor for reasons of accuracy. Yet, it
is possible to use the total (extinction) optical depth as interpolation parameter. However,
not the optical depth increment at each layer can be used but the optical depth pertur-
bation of the whole column. This can be motivated by the integral nature of radiative
transfer meaning that the intensity at a certain point is not only determined by the optical
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Figure 3.6: Example 4: Results for the net flux-density for DISORT (crosses) and pertur-
bation (line) computations of the net flux-density at 500m. Perturbation as
shown in Figure 3.2, albedo change and remaining parameters as in Figure 3.5.

quantities in its direct vicinity but from the whole distribution in the column. The basic
form of the Hermite interpolation for the effect E therefore is:

E(τt) = E0(τ0)(1− 3s2 + 2s3) + E1(τ1)(3s
2 − 2s3)+

∆E0(τ0)(s− 2s2 + s3) + ∆E1(τ1)(s
3 − s2)

(3.45)

with the interpolation parameter s:

s =
τt − τ0

τ1 − τ0

(3.46)

E0 and E1 stand for the base case forward solutions while ∆E0 and ∆E1 represent the
perturbation integrals. τ0 and τ1 are the total extinction optical depths for the two base
cases. All perturbations which lead to τ with τ0 < τ < τ1 are then treated by 3.45.
Perturbation results for the phase function are added linearly. This way an arbitrary
number of base cases can be involved. The interpolation is then applied in each interval
separately leading to a third order interpolation for each section.

3.7 Example

Example 5: Employing three base cases to the first example.

The original perturbation of the scattering coefficient is readdressed here, see Figure 3.2.
Three base cases are employed, one at perturbation step zero, the second at step five, and
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the last at step ten. The results of each individual linear perturbation estimate, as well
as the combined interpolation in the two sections, are shown in Figure 3.7 for the net
flux-density at 500m.
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Figure 3.7: Example 5: Results for the net flux-density at 500m for DISORT (crosses),
perturbations of the three base cases (black line: RTPT with base case 1, red
line: RTPT with base case 2, green line: RTPT with base case 3) and the
interpolation (diamonds) for the variation of the scattering coefficient as in
Example 1, see Figure 3.2. Remaining parameters: g = 0.75, µo = 0.7.

It can be recognized that base case two clearly offers the best individual result which is
not surprising as it is located in the center of the total interval. However, even the third
base case delivers superior results compared to base case one. This is supported by the
evaluation of the relative errors, see Figure 3.8.

As expected, all results are indeed exceeded in precision by the interpolation which is able
to reduce the errors to negligible values. For this reason the interpolation can be expected
to extend the range of applicability greatly. Nevertheless, this improvement does not come
without a cost as it increases the computational burden for the additional base cases as well
as for the interpolation itself. Similar results are obtained if the surface albedo is included.
In case of a simultaneous perturbation of the phase function expansion coefficients the
accuracy decreases as expected. However, in case of a superposition of phase function and
scattering perturbation, effectively combining examples one and two, the relative error
stays well limited and only reaches two percent when approaching the last perturbation
step, not shown here. All base cases were calculated with the same Henyey-Greenstein
phase function. This behavior can be explained with the opposite characteristics of both
radiative transfer features. Thus, errors are accidentally mutually canceling out, see Figures
3.3 and 3.4. This is not expected to happen in general.
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Figure 3.8: Relative errors in per cent of the perturbation and interpolation results shown
in Figure 3.7 with respect to the DISORT calculation. Lines correspond to per-
turbation estimates (black: RTPT with base case 1, red: RTPT with base case
2, green: RTPT with base case 3), the dashed line refers to the interpolation.

3.8 Remarks

To summarize the scope of the work so far it can be said that an adjoint radiative trans-
fer perturbation model for azimuthally independent effects was implemented in and built
around the core routines of DISORT. Related work has been carried out by Hu (1994).
Perturbation integrals for up- and downwelling flux-densities, the net flux-density and the
actinic flux can be derived at all computational layer interfaces for a freely selectable num-
ber of computational streams. The base cases as well as the perturbations of all three
optical parameters can be functions of height. An arbitrary number of base cases with
respect to the total optical depth can be chosen, and results are gained individually as well
as by third order Hermite interpolation between pairs of base cases. Lambertian surface
reflection can be accounted for by superposition.

The given idealized examples have been chosen to explain the basic features of the applied
methods to the reader with maximum ease. Configurations more related to RT in cloudy
atmospheres have not been shown due to their less obvious characteristics. All examples
generally show good accuracy of the perturbation results when restricted to the direct
neighborhood of base cases. The Hermite interpolation also gives good estimates of the
true forward results beyond that limit. Concerning the accuracy of the derivatives gained
by the perturbation integrals a very simple test was set up. The derivative deduced from
a vertically constant perturbation of ten percent of a base case with σs = 0.005m−1,
equally constant with height, was compared with the slope yielded by two finite difference
calculations differing by the thousandth part of a percent. The relative error was of a
magnitude of a hundredth of a percent at the most. Variations of the increment of the
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finite difference calculations showed the occurrence of numerical instabilities especially
for values at the model boundaries. In contrast to that, the derivative gained by the
perturbation is unconditionally stable.
There are several other fields of application which could not be considered here. First,
there is no obvious reason why the perturbation theory could not be applied to long-wave
radiative transfer. However, as the source function then involves the absorption coefficient
the perturbation of the source has to be included in the perturbation series, see equation
3.21. Second, an equally challenging task is the perturbation of the optical properties
with respect to their wavelength dependence. For the UV-region such an approach has
been carried out by Loughlin (1995). Finally, for a computationally efficient realization
an analytic 2- or 4-stream model would be the best choice. Gabriel et al. (1998) have
successfully linearized broadband radiative transfer by applying the RTPT to a 2-stream
model.
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Chapter 4

3D radiative transfer
parameterizations

God does not care about our
mathematical difficulties.
He integrates empirically.

Albert Einstein

4.1 Introduction

For several reasons the problem of three-dimensional (3D) radiative transfer has been at-
tracting attention for a number of years. One motivation to address this subject is the need
for atmospheric models to simulate 3D cloud-radiation interactions with reasonable accu-
racy. Those interactions have been identified as highly relevant for the climate system, see
chapter 1. However, atmospheric models, no matter whether operated for high resolution
mesoscale modeling or on a global scale, usually employ the Independent Pixel Approxi-
mation (IPA) or the Plane-Parallel assumption (PPA), an even coarser representation of
radiative transfer in realistic atmospheres. Both approaches have shown to encounter cer-
tain problems when applied to inhomogeneous cloud fields. In the following sections, these
difficulties will be related to exact 3D RT effects. Moreover, the 3D RT approximations
constructed in this study will be introduced.

There are at least three basic methods to treat radiative transfer in cloudy atmospheres.
First, it is possible to employ the Monte-Carlo (3DMC) and Spherical Harmonics Dis-
crete Ordinate Method (SHDOM) techniques to fully account for the 3D variability of the
optical properties of the atmosphere and to model the resulting spatial propagation of ra-
diation. Figure 4.1 sketches some idealized photon paths in an inhomogeneous atmosphere.
A widely used textbook about the 3DMC technique has been written by Marchuk et al.
(1980), for SHDOM see Evans (1998). 3DMC is based on the generation of a photon
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statistics and SHDOM explicitly solves the 3D RTE, see equation 2.60. Both are computa-
tionally expensive if reasonable degrees of accuracy are required which prevents them from
being considered as an operational radiative transfer module for atmospheric models.

z

x

Figure 4.1: Realistic behavior of photons in an heterogeneous medium. Different shades of
grey represent different values of the optical depth and other optical properties.

Second, in order to at least consider the 3D fluctuation of the optical properties each atmo-
spheric column can be treated independently of its neighbors. The resulting Independent
Pixel Approximation (IPA) applies then a one-dimensional (1D) radiative transfer model
to each of the columns separately, see Figure 4.2, effectively neglecting horizontal photon
exchange. Some authors inseparably connect the term Independent Pixel Approximation
with the determination of the domain averaged transmission and reflection following the
1D RT calculation in all columns. However, in agreement with Marshak and Davis (2005),
this seems in the authors point of view an unnecessary restriction of this term. As a
consequence, the IPA is here only regarded as the 3D result following from the successive
application of the 1D RT model to all columns. The basic three-dimensional effects result-
ing from the horizontal exchange and the shortcomings of the IPA with respect to their
accurate modeling can be taken from Figures 4.3 to 4.8.
In Figure 4.3 the trapping effect is shown. Multiple scattering leads to subsequent prop-
agation of photons deeper and deeper into a cloud by crossing horizontal cell boundaries.
In the IPA this effect is neglected, and photons on trajectories leaving the column at the
lateral boundaries are re-injected at the opposite side by periodic boundary conditions.
That is sketched by the open dashed arrow. The opposite effect is called leaking, see Fig-
ure 4.4, which means that photons can leave clouds by penetrating their sides from inside
out whereas in case of the IPA clouds can be entered or left only through their tops and
bottoms. The third effect is the possibility of interactions between clouds in different layers
and pixels by mutual scattering of photons. In the IPA only vertical interaction between
cloudy cells in the same column is possible, see Figure 4.5. Similar is the shadowing ef-
fect where in three dimensions the photons can travel through gaps between clouds, thus
effectively contributing to a shadow on the surface according to the geometry of the solar
illumination, see Figure 4.6. In contrast to this, the IPA can only produce shadows directly
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Figure 4.2: Example for independent pixel radiative transport. The open dashed arrow
represents periodic boundary conditions. Shades of grey stand for different
optical properties.

IPA 3DMC

Figure 4.3: Trapping of photons inside clouds represented as grey cubes. Idealized photon
paths for IPA (left) and 3DMC (right). The open dashed arrow represents
periodic boundary conditions. Adapted from O’Hirok and Gautier (1998).

below the cloud, ignoring the direction of the incoming solar illumination. A combination
of the aforementioned effects of photon exchange across columns are interactions involving
cloud sides as shown in Figure 4.7 and 4.8.

The coarsest approximation of radiative transfer in cloudy atmospheres is the so-called
Plane-Parallel Assumption (PPA), see Figure 4.9. Here the optical properties depend only
on the vertical coordinate and all lateral variations in the domain have been lost due to av-
eraging or due to another technique to build a horizontally homogeneous cloud. As a result
of the large errors, this assumption is not considered appropriate which will be addressed
below. However, it has been successfully employed by reproducing domain averaged results
of inhomogeneous clouds by rescaling the optical properties of homogeneous clouds.

The errors of the IPA and PPA with respect to 3DMC can be classified in two cate-
gories. The first one is the error between the IPA and the PPA. It is termed plane-
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IPA 3DMC

Figure 4.4: Leaking of photons through cloud sides. Remarks as for Figure 4.3.

IPA 3DMC

Figure 4.5: Interaction of cloud layers by scattering of photons. Remarks as for Figure 4.3.

parallel bias or heterogeneity effect, see Cahalan et al. (1994b) and Várnai and Davies
(1999). The second one is the error due to the neglect of horizontal photon transport. It is
called horizontal transport effect or independent pixel bias, see Cahalan et al. (1994a) and
Várnai and Davies (1999). It was demonstrated by Cahalan et al. (1994b) that the global
planetary albedo has a tremendous impact on the global temperature. These authors show
that an underestimation of the global albedo by 10% results in a global warming of about
5◦ C. This is approximately the same magnitude in global warming experienced since the
last ice age. Thus, inaccurate radiative transfer modeling can have a serious impact on the
interpretation of climate predictions. Investigations of the plane-parallel albedo bias show,
see Cahalan et al. (1994a), that it is likely to introduce errors of the above magnitude. Its
origin can be explained by the convex dependence of the reflection on the optical depth.
Figure 4.10 shows the result of a generalized reflection function, see Cahalan et al. (1994b)
for details, depending on the optical depth.
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IPA 3DMC

Figure 4.6: Shadowing by propagation of photons through cloud gaps. Remarks as for
Figure 4.3.

IPA 3DMC

Figure 4.7: Penetration of photons through cloud sides. Remarks as for Figure 4.3.

It can be easily concluded that due to its nonlinear behavior always:

R(〈τ〉) ≥ 〈R(τ)〉 (4.1)

is valid. This is a unique feature of this class of functions which was already investigated by
Jensen (1906). The direct consequence of this behavior is the plane-parallel albedo bias. In
relation 4.1 the right hand side can be identified as the mean reflection of all pixels which
can be deduced from the IPA, and the left hand side corresponds to the plane-parallel
assumption as only one calculation based on the mean optical depth of all pixels has to be
carried out. The rescaling mentioned above can be graphically motivated by choosing the
reduced optical depth τ(〈R〉) for the plane-parallel medium. A very similar dependence
exists for the transmitted light. Compared to the plane-parallel albedo bias, the differences
between 3DMC and IPA are rather small when domain averages of the transmission and
albedo are referred to, see for example Marshak et al. (1995). This is at least true if weak
internal inhomogeneity in overcast situations is considered. For broken cloud fields this
impression might vary from case to case. Yet, difficulties arise when smaller scales on a local
level are in focus. Marshak et al. (1995) and Davis et al. (1997) showed by investigating
wavenumber spectra of the optical depth field and of the radiance computed by the IPA
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IPA 3DMC

Figure 4.8: Interaction of cloud top and cloud side. Remarks as for Figure 4.3.

z

x

Figure 4.9: Plane-parallel radiative transfer. No lateral variations of optical properties,
vertical structure implied by different shades of grey.

and 3DMC that at scales of about 200m to 300m a scale break occurs, see Figure 4.11.
For scales above this break the slope of the power spectrum of the 3DMC results follows
closely the spectrum of the IPA computations which are scale invariant and which in turn
show the same scaling behavior as the optical depth, see also section 2.4. The average
slope above the scale break in the spectrum is approximately −5

3
if logarithmic axes are

applied. This was also determined from studies of 3D atmospheric turbulence by Corrsin
(1951). Below the scale break the slope steepens which is a sign of smoother structures
and an indication for a change of the physical process controlling the behavior at this scale.
Marshak et al. (1995) and Davis et al. (1997) found that this can be explained with the
diffusion process dominating this scale and driving the photon exchange between pixels.

As a result of the discussed 3D effects, in reality the local photon balance can violate the
law of energy conservation. According to that law, the sum of transmission, reflection, and
absorption has to amount to unity. An exemption from that rule for example exists if the
transmission alone exceeds unity, see equation 2.13. That implies that at a certain position
a larger number of photons is arriving at the ground than the number of photons that has
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Figure 4.10: Reflection as a function of total optical depth τ . τ1 and τ2 are individual
values of columns with average 〈τ〉. R(〈τ〉) is derived by the PPA while 〈R〉
is the average computed by the IPA from the individual pixels with R(τ1) and
R(τ2). τ(〈R〉) is the rescaled optical depth derived by inversion.

been injected at this position at the top of the atmosphere. The additional photons are
supplied by horizontal transport so that locally a photon gain is suffered at the expense of
a photon loss elsewhere. As a matter of fact, the domain’s total budget levels all of these
local imbalances as the total energy has to be conserved, meaning that the domain averaged
sum of absorption, reflection and transmission has to equal unity under all conditions.

Marshak et al. (1999) also investigate the dependence of horizontal fluxes and the accuracy
of the IPA on the scale applied. These authors demonstrate that the errors associated with
the IPA decrease with increasing averaging scale. While this result is expectable, it is also
reported that even at a scale of several kilometers a notable difference between 3DMC and
IPA persists. That is especially true for reflectance and is less pronounced for absorptance
and transmittance but even holds for absorbing wavelengths. From these findings it can
be concluded that 3D effects make also a significant contribution to radiative transfer in
case of a horizontal resolution of several hundreds of meters to several kilometers.

On the other hand, numerical weather prediction models have successively refined their
horizontal resolution from dozens of kilometers to several kilometers and are expected,
at least for high resolution modeling, to approach one kilometer or less in the immediate
future. As these models usually employ the Delta-2-stream technique in independent pixel
mode, the need for a parameterization of 3D effects arises. The spectrum of approaches
conceived can be split up into two distinct parts, see Davis (2000). The first one comprises
approaches which can be termed probabilistic. Examples are stochastic radiative transfer,
see Lane-Veron and Sommerville (2004), and renormalization approaches, see Petty (2002)
and Cairns et al. (2000), which are partly based on the rescaling described above. Many of
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Figure 4.11: Wavenumber spectrum of a LANDSAT cloud reflectivity field. The lower
horizontal axis corresponds to the wavenumber, the upper axis to the scale.
The straight lines are fits to the data and represent the different slopes and
spectral exponents, respectively. Adapted from Marshak and Davis (2005).

these models yield domain averaged results, some of them give no vertical resolution of the
radiative properties and need specially adapted input data. The second set of approaches
can be called deterministic as these derive an approximate form or application of the
radiative transfer equation suitable to describe 3D effects. Examples are the 3D realization
of the diffusion approximation (DiA), Chen et al. (2005), the Tilted Independent Pixel
Approximation (TIPA), Várnai and Davies (1999), and the Nonlocal Independent Pixel
Approximation (NIPA), see Marshak et al. (1995) and Marshak et al. (1998). With respect
to the applicability of the specific method to parameterize 3D effects in atmospheric models,
the following criteria are believed to be meaningful. First, the chosen method has to be
reasonably computationally efficient. Second, the method has to give 3D resolution in
order to enable the model to gain at least some vertical structure of heating rates and
fluxes etc. Third, the input data provided by the other modules of the model environment
have to be suitable for the radiation module without too comprehensive transformations.

4.2 Tilted Independent Pixel Approximation

The main focus of this study is the development of parameterizations for atmospheric
models with horizontal resolutions of several dozens of meters to several kilometers. The
primary 3D effect on this range of scales is believed to be the oblique path of propagation of
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radiation according to the geometry of the solar illumination. For this reason, the concept
of the Tilted Independent Pixel Approximation (TIPA) was chosen as primary parameter-
ization. The original outline of the method was presented by Várnai and Davies (1999).
The geometric realization developed in this study enables the method to be operated in
connection with an ordinary 1D radiative transfer model. For this purpose, the path the
direct solar beam would follow through the atmosphere is tracked starting at the upper
model boundary in the centers of the pixels, see Figure 4.12. All encounters with grid cells
are registered and the length of the respective line of intersection with the grid cell is stored
together with the cell’s coordinate. By means of that procedure the vertical coordinate is
transformed and redefined according to the solar azimuth and zenith, see Figure 4.13. The
optical properties are then also transformed according to the intersection length. Even if
the horizontal resolution is not too fine for the intended application, it has to be noted that
generally the penetration of horizontal grid cells generates numerous additional levels in the
new slant coordinate. In order to circumvent a subsequent increase in the computational
burden for the radiative transfer model, a weighted mean is applied. It averages all new
vertical levels introduced by horizontal transitions between two intersections of vertical
coordinate levels in the original grid. This way, no additional resources for the radiative
transfer calculation are necessary in comparison with traditional IPA calculations, as the
number of vertical levels is kept constant, see Figure 4.13. After the radiative transfer
calculations, which proceed as in the usual IPA, have been carried out, the results in the
slant columns are transformed to the appropriate positions in the original lattice. Thus, a
three-dimensional radiative transfer result is derived at the end of the process. Finally, it
has to be noted that for overhead sun by definition no difference between IPA and TIPA
exists.

x

z

Figure 4.12: Concept of the geometric TIPA. A x-z cross section of a cloud is shown as grey
cube. The path of the direct light emanating from the center of the pixels at
the top of atmosphere is depicted as solid line. Intersections with horizontal
and vertical cell boundaries are symbolized by dashed-dotted lines.
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zr
zrz

Figure 4.13: Vertical coordinates as defined by TIPA for the slant column as shown in Fig-
ure 4.12 with all intersections (zr, left) and averaged to maintain the original
number of levels (zrz, right).

4.3 Examples

Purely absorbing case

In order to give an example for the procedure described above, a highly artificial test case
which shows the main feature of the TIPA is set up, and results are compared with exact
3DMC computations. A cloud which is purely absorbing is placed inside a vacuum as shown
in Figure 4.12. The domain is 60× 20× 27 cells large. The cloud occupies one third of the
horizontal space of the domain, thus extending over 20 × 20 pixels and reaches vertically
from 1000m to 1300m. The total vertical extension is 2000m and the horizontal resolution
is 50m. The vertical resolution in the range of the cloud is 30m. The sun illuminates the
scene from left to right along the x-axis with µo = 0.5. The surface is purely absorbing.
The resulting total optical depth of the cloud is 1.5. The result for the downwelling flux
at pixel (20,10) is depicted in Figure 4.14(a). One recognizes that the TIPA matches the
3DMC profile quite accurately. This result is not unexpected as no scattering is included,
and as a consequence, no inter-column exchange of light can develop. The pronounced
curvature in the profiles stems from the simulated shadow below the cloud. In contrast to
this, the IPA profile matches half the bow and cannot correctly reproduce the increase of
radiation below the cloud due to the sideways solar illumination. This results in erroneous
downwelling flux at the ground. The impression changes if the leftmost column is chosen,
pixel (1,10), see Figure 4.14(b). Here, the slant beams enter the cloud via the side and
not from the top as before. The inverse transformation of the results leads then to a
very ragged profile of TIPA within the cloud because of errors due to the discretization
of the medium. More precisely, the inverse transformation piles results directly above one
another which originate from different slant columns. Because these columns intersect
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different parts of the medium, the results are fundamentally different, while the neglect
of inter-column exchange prevents the results to become smoothed. This is an effect that
impacts all calculations including realistic atmospheres. Yet, below and above this area the
profiles still match. The error due to the discretization of course decreases with increasing
distance from the cloud side. As this position is still below the cloud, the IPA result is the
same as in position (20,10).
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(a) Vertical profiles of IPA, TIPA and
3DMC at the right side, pixel (20,10),
of the artificial cloud.
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(b) Vertical profiles of IPA, TIPA and
3DMC at the left side, pixel (1,10), of
the artificial cloud.

Figure 4.14: Examples of vertical profiles of the downwelling flux-density in pixel (20,10)
and pixel (1,10) for the artificial cloud sketched in Figure 4.12 in the purely
absorbing case. µo = 0.5 and ϕo = 0◦.

Mixed case

To conclude this section a more realistic example is considered. Here, the horizontal
resolution is increased to 500m, while the cloud is characterized by ωo = 0.989 and g =
0.8452 of a Henyey–Greenstein phase function. It is located between 2000m and 3500m.
The surrounding atmosphere has ωo = 0.9 and isotropic scattering. The cloudy pixels
have a total optical depth of τ = 12.225 and the clear sky area has τ = 0.225. All other
parameters remain unchanged, and the cloud is again positioned as shown in Figure 4.12.

In Figures 4.15(a) and 4.15(b) the histograms of the absolute errors of transmission and
reflection (albedo) of all pixels are shown. The differences are always formed by subtracting
the 3DMC result from the result derived by the respective approximation:

∆P = P (Approx.)− P (3DMC) (4.2)
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Table 4.1: Domain averaged results of IPA, TIPA and 3DMC for the mixed example.

Model T̄ R̄

3DMC 0.592 0.294

IPA 0.606 0.286

TIPA 0.590 0.301

P stands for the investigated property, for example the transmission T , while Approx.
represents the radiative transfer approximation. This definition of ∆P applies to all results
presented in this thesis, if not stated otherwise. One clearly notes from the above mentioned
figures that TIPA improves the computation of the transmission as no extremely large
outliers occur compared to IPA. However, TIPA is less accurate than IPA with respect to
reflection. Domain averaged results, see Table 4.1, show that TIPA is slightly more precise
in this case, yet all differences are small and cannot be used to draw sound conclusions.
However, cumulative distributions of the absolute values of the errors, Figures 4.15(c)
and 4.15(d), can be derived by integrating the histograms. These figures give a graphical
impression which fraction of pixels is assigned with a specific maximum error. The main
aspects of this type of graphs are:

• All cumulative distributions approach the cumulative probability of 1.0.

• A graphical criteria for all parameterizations is the slope of the respective curves for
transmission and reflection if the same scale at the x-axis is applied. The steeper this
slope the smaller the range of errors.

• The most preferable case is a delta function approach of 1.0 within just a few percent.

As one recognizes by comparison, the transmission computed by the IPA is rather inac-
curate even if the mean does not suggest that at first sight. The transmission calculated
by TIPA is more realistic, thus confirming the original prospect of better accounting for
shadowing. Judging from the slope of the curve associated with reflection, it performs
slightly worse than the reflection computed by the IPA.
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(a) Histogram of the absolute errors ∆T
and ∆R of the IPA realization com-
pared to 3DMC.
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(b) Histogram of the absolute errors ∆T
and ∆R of the TIPA calculation com-
pared to 3DMC.
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(c) Cumulative probability of the absolute
errors ∆T and ∆R of the IPA calcula-
tion compared to 3DMC.
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(d) Cumulative probability of the abso-
lute errors ∆T and ∆R of the TIPA
calculation compared to 3DMC.

Figure 4.15: Histograms and cumulative distributions for ∆T and ∆R for the mixed case
cloud.
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4.4 Nonlocal Independent Pixel Approximation

The Nonlocal Independent Pixel Approximation (NIPA) was first conceived by
Marshak et al. (1995). The underlying concept is to account for horizontal transport of
photons across columns by using the IPA results and forming a convolution product for
each pixel. It formally reads:

RNIPA(x, y, z) = G ∗R1D =

xb∫
xa

yb∫
ya

G(σ, x, y, xk, yk, z)R1D(xk, yk, z)dykdxk (4.3)

where x, y, z are the coordinates of the domain, and xk, yk are the local coordinates which
constitute the convolution kernel which reaches from [xa, xb] and [ya, yb], see Figure 4.16.
R1D represents the original IPA result, and RNIPA is finally derived by integrating the
former together with the convolution kernel G. σ symbolizes one or more parameters which
control the shape of the kernel. If the problem was exactly determined, one would derive
the Green’s function as a kernel. However, for practical purposes the derivation of the exact
Green’s function is not feasible in this context. Yet, in order to carry out the convolution
though, the kernel is approximated by an appropriate distribution. Marshak et al. (1995)
originally seize an approach of v. d. Hulst (1980) and propose to use gamma distributions
to model the problem’s Green’s function. The distribution is assumed to have the following
form:

G = C
αα

Γ(α)

1

〈ρ〉

[√
x2

k + y2
k

〈ρ〉

]α−1

exp

{
−α

√
x2

k + y2
k

〈ρ〉

}
(4.4)

with:

α =

[
〈ρ2〉
〈ρ〉2

− 1

]−1

(4.5)

Other authors, see Zuidema and Evans (1998), have used Gaussian distributions as kernels
which are numerically easier to handle. This type of distribution was adopted for this
study as well. The kernel is assumed to have the form:

G = C exp

{
−x2

k + y2
k

σ2

}
(4.6)

and:

σ2 = 〈ρ2〉 − 〈ρ〉2 (4.7)

The properties 〈ρ〉 and 〈ρ2〉 are the first and second moment of the distances between
photon entry and photon exit. As the medium is in general inhomogeneous, the parameters
of the kernel will depend on x and y. A more comprehensive description is given in the next
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Figure 4.16: Convolution of a 2D field. Each pixel (x, y) is visited by the kernel (grey
square) which covers the local area [xa, xb] × [ya, yb]. “Edge-wrap” ensures
periodic boundary conditions and energy conservation.

section together with the details of the derivation of those parameters which was conceived
in the presented study.
The resulting field RNIPA is smoother than the original R1D field as the local redistribution
of photons across columns levels differences to some extend. However, domain averages
remain the same due to energy conservation. This is mathematically realized by demanding
that the following normalization holds:

xb∫
xa

yb∫
ya

G(x, y, xk, yk)dykdxk = 1 (4.8)

Practically, via equation 4.8 the normalization constant C is determined. In Figure 4.17
cross-sections of kernels for different values of σ are shown. The resulting contribution
of the pixels to the convolution kernel is plotted as a function of the position along the
x-axis. Given the low weights even in the centers of the kernels, one can understand why
this approximation is termed nonlocal.

4.5 Diffusion Approximation

The convolution parameters for the NIPA approach are usually determined numerically
by exact 3D RT modeling. This can be either achieved by direct numerical modeling
of the diffusion process or by comparison of NIPA results for carefully chosen values of
these parameters with the 3D RT result for the scene. The former approach has been
carried out by Marshak et al. (1995), the latter by Zuidema and Evans (1998) and Kniffka
(2006). In order to use the NIPA as a fully autonomous parameterization approach, it is
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Figure 4.17: Example of 2D Gaussian convolution kernels for different values of σ given in
meters. All curves are central cross-sections and give the contribution to the
convolution product in % as a function of horizontal position.

desirable to eliminate the need for a mandatory exact 3D calculation and yet to obtain a
reasonable estimate for the convolution kernels. In order to tackle this issue, the Diffusion
Approximation (DiA) was employed. This technique has been applied by Davis et al.
(1997) and Marshak et al. (1995) in order to form the basis for the approach of these
authors to estimate the number of transmitted and reflected photons by a cloud which
successively led to the concept of the NIPA approach. In the work carried out here, it
was investigated whether DiA can be directly utilized for the determination of NIPA’s
convolution parameters. To this end a brief introduction in the DiA technique will be
presented in the following.
The Diffusion Approximation originates from neutron transport theory. Comprehensive
introductions in this technique can be found in textbooks like Case and Zweifel (1967),
Bell and Glasstone (1970), and Ishimaru (1997). In the context of the diffusion equation
two radiative properties of the diffuse light are of special importance. The first one is
the net flux-density defined as in equation 2.8 for the total light and restated here for the
diffuse part:

Ed(r) =

∫
4π

ΩId(r,Ω)dΩ (4.9)

and the so-called density:

Ud(r) =

∫
4π

Id(r,Ω)dΩ∫
4π

dΩ
=

1

4π

∫
4π

Id(r,Ω)dΩ (4.10)
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In diffusion theory both are assumed to be connected by the diffusion approximation of
the diffuse intensity, see Ishimaru (1997):

Id(r,Ω) = Ud(r) +
3∫

4π

dΩ
Ed(r) ·Ω = Ud(r) +

3

4π
Ed(r) ·Ω (4.11)

The explicit integrals of the solid angle over the unit sphere in equations 4.10 and 4.11
are necessary to normalize the respective quantities and assure the correct units of the
resulting properties.

Ud

I d

dE

Ω

Figure 4.18: Diffusion approximation of the intensity. The isotropic contribution Ud

(dashed line) forms together with Ed ·Ω (arrows) the resulting anisotropic Id

(solid line) according to equation 4.11. Adapted from Ishimaru (1997).

Equation 4.11 can be interpreted as a superposition of a large isotropic part, which is Ud,
and a smaller anisotropic part, Ed ·Ω, which has only a simple angular dependence, see also
Figure 4.18. From equation 4.11 one can already conclude the overall features of DiA. As
the resulting diffuse intensity has only weak angular dependence and is hardly entangled,
the DiA can be expected to be a good approximation if the single scattering albedo is close
to unity, the asymmetry parameter is close to zero, and if the point of interest is located
sufficiently distant from sources and sinks of radiation. Starting from equations 2.65 and
4.11, the 3D diffusion equation can be derived as:

∇2Ud(r)− 3σa(r)σtr(r)Ud(r) =

3

(4π)2
σs(r)∇ ·

∫
4π

ΩS(r)p(r,Ωo ·Ω)dΩ− 3

4π
σtr(r)σs(r)S(r)

− 3σtr(r)J(r,Ω)

(4.12)
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with the transport coefficient:

σtr(r) = σt(r)− g(r)σs(r) (4.13)

The strength of the DiA is the fact that for equation 4.12 powerful solution methods exist.
For example, it is possible to solve the diffusion equation analytically in 1D and 3D if some
additional assumptions are made.
Concerning boundary conditions, it is obvious from equation 4.11 that exact boundary
conditions for the diffuse intensity like the ones given in equation 2.71 cannot be fulfilled
by the diffusion approximation. As a result, the boundary condition is usually required to
match the solution of the Milne problem, which is the determination of the radiation in an
infinite source-free half space with zero incident flux and a source at infinity. This leads to
the conditions:

Ud(z = −χ, x, y) = 0

Ud(z = zT + χ, x, y) = 0
(4.14)

where χ is the extrapolated endpoint length beyond the boundary of the Milne problem.

Isotropic localized source

In the following, the analytical solution of equation 4.12 for an homogeneous medium with a
localized isotropic source is discussed. If these assumptions are implemented, the resulting
equation reads:

∇2Ud(r)− 3σaσtrUd(r) = −3σtrJ(r) (4.15)

where the source is:

J(r) = Joδ(z − zs)δ(x)δ(y) (4.16)

meaning that the source is always located horizontally centered in the homogeneous do-
main. The vertical location of the source is given by zs. Jo is the source strength which
describes the released power per solid angle interval.
The solution for this diffusion equation was carried out by Polonsky and Davis (2003).
With the help of these authors it was deduced in geometric coordinates for this work:

Ud(ρ, z) =
3

4π
Joσtr

∞∑
n=−∞

{
1

Sa

e−3
√

σaσtrSa − 1

Sb

e−3
√

σaσtrSb

}
(4.17)

with the following definitions:

Sa =
√

ρ2 + a2
n Sb =

√
ρ2 + b2

n (4.18)

an = |2(zT − 2χ)n + |z − zs|| bn = |2(zT n + χ(2n + 1)) + z + zs| (4.19)
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and:

χ =
2

σt(1− ωog)
(4.20)

χ is the extrapolation length, zs is the vertical location of the source, zT is the geometrical
thickness of the medium and ρ is the horizontal distance from the source, ρ =

√
x2 + y2.

Results

To show the accuracy of the DiA with respect to numerical solutions, a test case was
set up. The model domain has a geometrical thickness of 300m, the optical depth is 16,
and the asymmetry factor is zero and 0.85, respectively. The single-scattering albedo is
0.99999 which had to be chosen in order to avoid singularities of the solution. The source
is located at the top of the medium, and the source strength was set to π. Figure 4.19
shows the density derived from equation 4.17 compared with exact 3DMC simulations as
a function of the radius ρ at the lower boundary of the medium. It has been divided by
the transmission of the domain which was derived from an approximate formula based on
diffusion theory. The 3DMC data was kindly provided by I. Polonsky and A. Davis from
Los Alamos National Laboratory.
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Figure 4.19: Comparison of Ud/T derived from DiA (crosses) and 3DMC (line) as a func-
tion of ρ for the two different asymmetry factors g = 0.0 and g = 0.85 at the
bottom of the homogeneous medium with τ = 16 and ωo = 0.99999 and a
geometrical thickness of 300m.

For the isotropic case the agreement is quite reasonable as one would expect from the
features of DiA, although DiA is expected to deteriorate at model boundaries. For g = 0.85
one notes a difference between DiA and 3DMC. However, the slope of the radial dependence
is still modeled quite accurately, and DiA is expected to yield a good estimation for the
moments of the density distribution even in that case.
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For the DiA simulation it is necessary to truncate the infinite series of equation 4.17 to
a meaningful number of terms. For the presented examples the limit was set so that
−120 ≤ i ≤ 120. The truncation is mainly influenced by the amount of absorption.
The larger the single scattering albedo is, the more terms have to be used. Otherwise
the DiA result saturates for larger distances from the symmetry axis, meaning that the
slope approaches zero. In the next section, a quantitative statement about the range of
applicability of the DiA will be made. The overall impression of DiA is not expected to
change for results at the upper boundary, yet it is necessary to exclude the source from
any successive computations to avoid numerical problems.

Connection to NIPA

It was pointed out that the meaningful estimation of the convolution parameters for NIPA
independent of a lengthy computation is desirable. In order to carry out that task the
DiA was employed to calculate the zeroth, first and second moment of the density with
respect to its radial dependence. This approach is motivated by the notions conveyed by
Marshak et al. (1995). These authors use DiA as a basis for first principle estimations of
the number of reflected and transmitted photons and arrive in the course of the paper at
an approximate formula for each of these values. This concept was further developed to
form the basis for off-beam LIDAR remote sensing inversion techniques, see Davis et al.
(1999). Those use Fourier space representations for the convolution parameters. The aim
of the presented study here is to directly derive the convolution parameters for NIPA
from a diffusion calculation in physical space. This approach is closely related with the
implemented remote sensing concept of the above mentioned LIDAR technique for practical
applications, see also Polonsky et al. (2005). This is an example for the fruitful exploitation
of a theoretical concept for both active and passive applications.
It can be gathered from equations 4.5 and 4.7 that the crucial parts of information for
the convolution kernel are the expectation values 〈ρ〉 and 〈ρ2〉. 〈ρ〉, which is called “spot-
size”, can be regarded as the mean distance between the entry point of the light in the
domain, which is fixed, to the exit points of the photons. From this explanation it is clear
that always two sets of expectation values exist, one for the transmitted and one for the
reflected light. That is where DiA comes into play. It is obvious from definition 4.10 that
the density is proportional to the number of photons. Hence, the moments are estimated
by DiA by numerically integrating the derived radial distribution of Ud at the bottom and
the top of the model domain. The computed moments are defined as:

〈Ud〉 =

∫
A

Ud(ρ, z)dA (4.21)

〈ρ〉 =

∫
A

Ud(ρ, z)ρ dA

〈Ud〉
(4.22)

〈ρ2〉 =

∫
A

Ud(ρ, z)ρ2 dA

〈Ud〉
(4.23)
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Figure 4.20 gives an impression of the 2D result of Ud/T and also shows the deduced
moments 〈ρ〉 and 〈ρ2〉.
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Figure 4.20: 2D field of Ud/T at the lower boundary of a 500m × 500m domain for the
previous example, see Figure 4.19, with g = 0.85. The arrows symbolize the
first moment and the square-root of the second moment of ρ.

Analogously, results for the reflected light can be derived at the upper boundary. The
procedure is then made available for NIPA by averaging horizontally and vertically over
the area chosen to be affected by the convolution kernel. The derived homogeneous domain
is then used by DiA to deliver the moments which are in turn fed into a convolution
procedure which was developed from routines kindly provided by A. Kniffka, Institute for
Meteorology, University of Leipzig. See also Kniffka (2006). The whole domain is worked
on as depicted in Figure 4.16.
One major theoretical setback of this approach is certainly the requirement of the applied
technique for a homogeneous domain. However, the underlying process which is to be
modeled is the diffusion driven horizontal propagation of photons. This process is known
to smooth radiative fields. For the pursued approach, it is then assumed that small scale
variations of the optical properties are less important, once the diffusion regime is reached
meaning that then multiple scattering levels the impact small inhomogeneities of the optical
properties have on the radiative field.
Davis and Marshak (2001) give an overview of the features of DiA and relate the optical
properties to the applicability of the method. The main results which are of importance
here are briefly discussed. First, for diffusion of photons to happen in a conservative
medium the smallest dimension H of the model domain is required to be connected with
the optical properties so that:

(1− g)σtH ? 1 (4.24)

holds. Second, it is understood that the more scattering and the less absorption occurs,
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the more the diffusion approximation is justified. It is believed that a sufficiently large
number of scattering events occurs if:

ωo ?
2

3− g
(4.25)

is valid. It can then be assumed that the diffusion approximation for the intensity, equation
4.11, is fulfilled. Third, concerning the value of the asymmetry factor, it is obvious that
phase functions with large forward scattering peaks contradict the diffusion approximation.
However, in summary it can be said that for typical magnitudes of H, which would generally
be the vertical extension of the cloud, it can be assumed that the first requirement is fulfilled
even for asymmetry factors of over 0.85. On the other hand, from the second condition it
can be estimated that even for those values of g realistic clouds exceed the required value
of ωo. From these conclusions it seems to be reasonable to employ DiA for the purpose in
focus, even though the required homogeneity remains a strong assumption.

4.6 Example

Alike the other sections presenting a technique, this theoretical discussion of the NIPA
with diffusion kernel is succeeded by an example in order to illustrate the preceeding state-
ments. In this case a “sin x× cos y” shaped variation of the cloud extinction coefficient in
a model domain of 66× 66× 68 grid cells is used. This variation is confined to a vertical
layer of 400m thickness while the clouds single scattering albedo is set to the constant
value of ωo = 1.0, and the asymmetry factor is chosen to be g = 0.85 in order to generate
a Henyey-Greenstein phase function and is equally held constant. The cloud base is 600m
above ground. This idealized periodic, but completely closed cloud, is superimposed on a
vertically inhomogeneous atmosphere which includes optical properties for Rayleigh scat-
tering and ozone absorption characteristic for a wavelength of 330nm. The resulting optical
depth field is depicted in Figure 4.21. It varies between τmin = 2.91 and τmax = 18.8 with
a mean of 〈τ〉 = 10.84. For the calculation the illumination was set to µo = 0.5, ϕo = 0◦

and surface reflection was not considered. The horizontal resolution is ∆x = ∆y = 40m
while the vertical resolution in the range of the cloud is ∆z = 40m and variable elsewhere.
In Figure 4.22(a) the histogram of the absolute errors of transmission and reflection of
the IPA calculation with respect to 3DMC is shown. Once more, one notes the ragged
behavior of ∆T whose magnitude and shape owes its existence to the inability of IPA to
correctly represent shadows. The symmetry of the results is also remarkable. In Figure
4.22(b) the cumulative distributions of ∆T and ∆R are depicted. Both curves virtually
coincide underlining the equal accuracy of both properties. As Rayleigh scattering is quite
strong in this example and the cloud field is not broken, either errors of transmission and
reflection are moderate leading to maximum errors of ∆Tmax = 16%, ∆Tmin = −11% and
∆Rmax = 11%, ∆Rmin = −16%.
In Figures 4.23(a) and 4.23(b) ∆T and ∆R are shown as a function of total optical depth.
Interestingly, both have convex shape just as generally the values of T and R itself have,
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Figure 4.21: 2D field of the total optical depth of the sin x × cos y example consisting of
66× 66 pixels with ∆x = ∆y = 40m.

see Figure 4.10. The same graphs but with the relative error depicted, not shown here,
give no distinct pattern. The scaling behavior is investigated with the help of Figures
4.24(a) and 4.24(b). Here, the coarse grained moving average is used to determine the
dependence of the maximum residual error on the size of the area used for averaging.
More precisely, a moving average is successively applied to the IPA field by increasing the
averaging area with each step by two pixels in each direction. The absolute values of the
maximum and minimum errors of the resulting smoothed fields are shown as a function of
the edge lengths of the averaging area. This kind of investigation or deduced information
will also be synonymously addressed as scaling behavior in the course of the thesis.
The resulting functions generally have the following characteristics:

• In the trivial case of a 1pixel × 1pixel area, the maximum and minimum errors of the
original field are retrieved which can be confirmed by comparing with Figure 4.22(a).

• For an increasing number of pixels the functions generally decline,

• moreover, the functions converge to each other, and

• for sufficiently large pixel numbers, the functions approach the domain averaged
values of ∆T and ∆R.

In the case here, the decline is strong for the first couple of pixels but still leaves a residual
error of about three percent in case of the transmission and nearly two percent for the
reflection if an area with 7pixels ≡ 280m edge length is chosen. Variables depending on T
and R should be in reasonable agreement with 3DMC results if averaged over areas with
an edge length of seven or more pixels for this cloud. However, even in that case errors of
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(a) Histogram of ∆T and ∆R for the com-
parison of IPA and 3DMC.
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(b) Cumulative probability of ∆T and
∆R for the comparison of IPA and
3DMC.

Figure 4.22: Histograms and cumulative distributions of the absolute errors ∆R and ∆T
derived from IPA and 3DMC for the sin x× cos y example. The geometry of
the illumination was µo = 0.5, ϕo = 0◦. Remaining parameters as in Figure
4.21.

several percent persist, and increasing the edge length by one or two pixels not necessarily
improves the results. This behavior seems to be one facet of the characteristics of the IPA
results. Because of the roughness of the IPA fields, including more pixels into the average
might even lead to an even rougher averaged result, especially in the case of a periodic or
quasiperiodic cloud.
The aforementioned interrelations mainly apply to the maximum values of the errors. As
for the minimum value two remarks are necessary:

• It can also be gathered from Figure 4.22(a) that quite a number of IPA results show
no or no significant deviation from 3DMC.

• For this reason the minimum error can in this context generally only increase for
increasing edge lengths till it finally reaches the domain averaged value.

Concerning the 2D fields of ∆T and ∆R, not shown here, those spatial distributions closely
resemble the distribution of the total optical depth. Bearing the results already discussed
in mind, this consequence of the scale invariance of IPA is not surprising.
As for the NIPA, all results change significantly. The convolution has been carried out
with an edge length of the kernel of 25 pixels ≡ 1000m. One immediately notes from
the histogram, Figure 4.25(a), that NIPA improves the results considerably. Not only
that the magnitude of the errors of ∆T and ∆R is reduced to about ±4 − 6%, but also
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Figure 4.23: Absolute errors ∆T and ∆R derived from IPA and 3DMC as functions of
optical depth for the sin x × cos y example. Parameters as given for Figure
4.22 and 4.21.

the histograms are not ragged anymore hinting at the smoothing of the radiative field.
Comparing the cumulative distributions, Figure 4.25(b) shows almost an ideal behavior
compared to Figure 4.22(b) as both curves almost instantaneously approach the terminal
value. The dependence of the errors on the optical depth, shown in Figures 4.26(a) and
4.26(b), does not seem to follow any distinct function as more or less the full bandwidth
of errors is adopted for every given optical depth interval. As a result of this blurred
functional dependence, the coarse grained moving averages, Figures 4.27(a) and 4.27(b),
now show monotonically decreasing behavior. Unlike the IPA results, both pairs of curves
have smooth shape and almost steadily converge to each other. At an edge length of 7 pixels
≡ 280m the residual maximum error in the field has dropped to about one percent for both
reflection and transmission. From these results it is clear that the adopted realization of
NIPA is capable of improving IPA calculations for this simple cloud. However, as mentioned
above, NIPA is not able to change any domain averages. While T̄ (3DMC) = 0.288 and
R̄(3DMC) = 0.583, it is T̄ (IPA) = T̄ (NIPA) = 0.291 and R̄(IPA) = R̄(NIPA) = 0.580.
The last two sets of equalities are consequences of the energy conservation of NIPA. Yet,
in this case the 3D effect on domain averages is very small.
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Figure 4.24: Absolute errors ∆T and ∆R derived from IPA and 3DMC as functions of
averaging area (coarse grained moving average) for the sin x× cos y example.
Parameters as for Figure 4.22 and 4.21.
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(a) Histogram of ∆T and ∆R derived from
NIPA and 3DMC.
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Figure 4.25: Distributions of absolute errors ∆R and ∆T derived from NIPA and 3DMC
for the sin x× cos y example. Parameters as for Figure 4.22 and 4.21.
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Figure 4.26: Absolute errors ∆T and ∆R deduced from NIPA and 3DMC as functions of
optical depth for the sin x× cos y example. Parameters as for Figure 4.22 and
4.21.
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Figure 4.27: Absolute errors ∆T and ∆R deduced from NIPA and 3DMC as functions of
averaging area for the sin x × cos y example. Parameters as for Figure 4.22
and 4.21.
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4.7 Nonlocal Tilted Independent Pixel Approxima-

tion

The obvious combination of TIPA and NIPA finally leads to the Nonlocal Tilted Indepen-
dent Pixel Approximation (NTIPA). The intention of this concept is of course to superim-
pose the respective advantages of both methods complementing each other.

(a) Concept of the TIPA
for geometric effects.

(b) Concept of the NIPA for horizontal
diffusion effects.

Figure 4.28: Combination of TIPA and NIPA to form NTIPA.

It was pointed out that TIPA lacks photon exchange across columns just like IPA does.
Furthermore, it was discussed that 3D results of TIPA suffer from discretization errors
due to the applied inverse transformation. On the other hand, it was described that
NIPA smoothes the radiative field but cannot accurately account for geometric effects like
shadowing. NIPA is also not able to influence domain averages. These shortcomings are
tackled by the combination of TIPA and NIPA which then could be called NTIPA. The
basic idea of this concept is reflected by Figure 4.28. Technically, the convolution is carried
out with the computed radiative properties still in the slant columns. After the convolution
is complete, the resulting radiative properties are mapped to the original Cartesian grid.
Obviously, the converse procedure is also possible meaning that the convolution is carried
out after the inverse transformation. However, some tests have suggested to follow the
former procedure as results have been slightly more favorable. Apart from that, in the
authors point of view, it also seems to be the more natural succession. A conceptually
similar, but in detail different approach which also lacks the DiA driven derivation of the
convolution kernels, was implemented by Zuidema and Evans (1998).
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4.8 Examples

To investigate the overall characteristics of this last method developed, two examples will
be discussed. The first is identical with the previous one. The second consists of cloudy
and clear sky areas in a chequered pattern style. It is used to investigate the capabilities
of the method in case of a broken cloud field.

Extinction variation sin x× cos y

This example is the same as the one for NIPA. All properties and parameters remain
unchanged.

Figure 4.29 shows the histogram of ∆T and ∆R of the NTIPA calculation in relation to
3DMC. NTIPA clearly improves the results similar to the results of NIPA as shown before.
For NTIPA the magnitude of the maximum errors is only 5% which is slightly better than
NIPA. The structure of the histograms is now more centered and symmetric compared to
NIPA. Moreover, as NIPA is now coupled with TIPA, the domain averages change as well.
Table 4.2 presents these values for all calculations.
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Figure 4.29: Histograms of transmission and reflection errors for NTIPA with respect to
3DMC for the trigonometric example. Parameters as for Figure 4.22 and 4.21.

As for the scaling behavior, Figures 4.30(a) and 4.30(b), NTIPA slightly outperforms NIPA
and clearly beats TIPA which shows the same bumpy characteristics of |∆T |max,min and
|∆R|max,min as a function of averaging edge length as IPA does. For brevity only NTIPA
results are shown.

The curves for NTIPA are smooth and decline monotonously. However, the mutual con-
vergence does hardly start in the investigated range of edge lengths. When seven pixels
are reached the residual error has reached and passed, respectively, the one percent mark.
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Table 4.2: Domain averaged results of the trigonometric example for all models.

Model T̄ R̄

3DMC 0.288 0.583

IPA and NIPA 0.291 0.580

TIPA and NTIPA 0.287 0.584
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Figure 4.30: Coarse grained moving averages of ∆T and ∆R of NTIPA with respect to
3DMC for the trigonometric example. Parameters as for Figure 4.22 and
4.21.

Concerning the dependence of ∆R and ∆T on the optical depth, the impression of the NIPA
results are confirmed, thus leaving blurred 2D fields with hardly any notable structure.

Chequered pattern

This example is comprised of isolated cubic clouds which are characterized by a single
scattering albedo of unity, ωo = 1.0, an asymmetry factor of g = 0.85, and an extinction
coefficient of σt = 0.05m−1. All optical properties are held constant within the clouds.
The clouds have a geometrical thickness of 400m, and the uniform cloud base is 600m
above ground. The horizontal distance between them is 320m in each direction. The
horizontal resolution is ∆x = ∆y = 40m with a total number of 64 × 64 × 68 cells. The
vertical resolution in the range of the clouds is also ∆z = 40m. Thus, they are forming
a chequered pattern, while the parameters of the superimposed Rayleigh scattering and
ozone absorption are again typical for a wavelength of 330nm. The resulting optical depth
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field is depicted in Figure 4.31. The two resulting values of the combined total optical
depth are 20.85 and 0.85.

For this example two solar zenith angles are considered. The first one, µo = 0.5, ensures
that at y-direction between the clouds at the ground a pattern of regularly increasing and
decreasing intensity occurs. The second angle is chosen to be µo = 0.95. With this angle
the direct light can partly reach the ground in y-direction between the clouds without
encountering cloudy areas such that shaded areas and bright spots alternate. In both
cases the surface albedo is zero.
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Figure 4.31: 2D field of the total optical depth of the chequered pattern composed of 64×64
pixels with ∆x = ∆y = 40m.

Experiment 1: µo = 0.5, ϕo = 0◦

As implied above, for this solar zenith angle all direct beams which encounter the scene
in y-direction at regions of x-values which are occupied by clouds have to penetrate these.
Nevertheless, 3D effects exist as the histogram of ∆T and ∆R for the IPA to 3DMC
differences, see Figure 4.32(a), shows. Both transmission and reflection are affected to a
significant extent.

This is contrasted by the respective results for NTIPA, Figure 4.32(b). For this case results
clearly deteriorate due to the inhomogeneity of the scene, but NTIPA is still capable of
reducing errors significantly. This is reflected by errors for transmission of −7% to −3%
and for reflection of −5% to 8%. This finding is supported by the cumulative distributions.
Deduced from these are the results of Table 4.3 which shows the approximate fraction of
pixels which have an absolute error value for ∆T and ∆R of 5% or less for all four approx-
imations. The value of 5% was chosen because it allows a better distinction between the
different approximations due to the steep slope of the respective cumulative distributions.
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(a) Histogram for transmission and reflec-
tion errors for IPA.
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(b) Histogram for transmission and reflec-
tion errors for NTIPA.

Figure 4.32: Histograms of transmission and reflection errors for IPA and NTIPA with
respect to 3DMC for Experiment 1 of the chequered pattern example. For
the remaining parameters see Figure 4.31.

Table 4.3: Comparison of the pixel fractions for a 5% error threshold for T and R for the
four approximations for Experiment 1 of the chequered pattern.

Model Fraction of pixels with ∆T ≤ 5% Fraction of pixels with ∆R ≤ 5%

IPA 50% > 1%

TIPA 84% > 1%

NIPA 64% 96%

NTIPA 96% 93%

Although only rounded values are given for the fraction, it is clear that NTIPA outperforms
all other approximations in this example. TIPA can gain some ground compared to IPA
for the transmitted light while NIPA does well for the reflected light and is even for the
transmitted light more accurate than IPA. For reflection it is also actually slightly better
than NTIPA. These two findings are certainly related to the geometry of the applied
illumination.

The scaling behavior is worth investigating for this example as well. Table 4.4 gives the
maximum residual errors of transmission and reflection for an edge length of seven pixels
≡ 280m for all four approximations. This length is chosen because the scale break in real-
istic clouds mentioned in the introductory sections which was found by Davis et al. (1997)
is supposed to occur at 200m−300m. Therefore, it can be assumed that in these idealized
clouds at this scale also no or only slight horizontal diffusion occurs. In general the conclu-
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sions from the cumulative distributions are confirmed. However, from the perspective of
the averaged results TIPA seems to deliver smoother fields for transmission than IPA which
is due to the geometric blurring of the optical depth field by the slant path. NIPA cannot
accurately describe the true path of the direct beam while it is the best approximation for
the averaged reflection. NTIPA proves again to be the best approximation if ∆T and ∆R
are considered in combination.

Table 4.4: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max for
an edge length of seven pixels for all four approximations for Experiment 1 of
the chequered pattern.

Model |∆T |max(s = 7pix.) |∆R|max(s = 7pix.)

IPA 19% 20%

TIPA 5% 13%

NIPA 16% 3%

NTIPA 3% 3%

To conclude the statistical discussion of this case the domain averages of T and R are shown
in Table 4.5. Judging from this criteria, TIPA and NTIPA drop slightly behind IPA and
NIPA. The slight degradation of the results of TIPA and NTIPA does not come unexpected
as the small differences between IPA and TIPA were already observed in section 4.3. The
reason for this behavior remains ambiguous but contributes only to a tenth of a percent to
the error.

Table 4.5: Domain averaged results of all models for Experiment 1 of the chequered pat-
tern.

Model T̄ R̄

3DMC 0.414 0.467

IPA and NIPA 0.430 0.452

TIPA and NTIPA 0.395 0.485

Experiment 2: µo = 0.95, ϕo = 0◦

The cosine of the solar zenith angle of µo = 0.95 of this case ensures that some light
unaffected by clouds reaches the area which lies in y-direction between the clouds. For
illustration the resulting slant optical depth field used by TIPA and NTIPA is shown in
Figure 4.33. Although the SZA has been decreased compared to the previous case, stronger
3D effects are expected since now a mixture of interactions between shaded and unshaded
areas can occur.
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Figure 4.33: 2D field of the slant optical depth of the chequered pattern for µo = 0.95.
Parameters of the domain as given in Figure 4.31.

Table 4.6 shows the fraction of pixels associated with an error of 5% or less for ∆T and
∆R. The overall succession of the quality of the approximations nearly stays the same as
for µo = 0.5. TIPA shows again better results concerning transmission than IPA.

Table 4.6: Comparison of the pixel fractions for a 5% error threshold for T and R for the
four approximations for Experiment 2 of the chequered pattern.

Model Fraction of pixels with ∆T ≤ 5% Fraction of pixels with ∆R ≤ 5%

IPA 19% > 1%

TIPA 40% 6%

NIPA 27% 98%

NTIPA 94% 95%

However, for reflection it can gain some ground. NIPA though significantly falls back
behind TIPA for the downwelling light and is just able to slightly outperform IPA. For the
reflected light IPA and TIPA are yet no match for NIPA. The reason clearly is the relative
dominance of the direct light causing distinct alternations of shadows and bright areas at
the ground. The pure convolution is inadequate to account for these patterns. Yet, the
reflection, mainly emerging from the cloud tops, is more realistically modeled by NIPA.
NTIPA tops all other three approximations if both T and R are considered in combination.
This result is also supported by the scaling behavior. In Table 4.7 the maximum residual
error after forming the coarse grained moving average over 7 pixels is shown again. The
accuracy of NIPA is now at the level of IPA for transmission while TIPA nearly matches
NTIPA. For reflection NTIPA and NIPA are nearly equally accurate.
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Table 4.7: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max for
an edge length of seven pixels for all four approximations for Experiment 2 of
the chequered pattern.

Model |∆T |max(s = 7pix.) |∆R|max(s = 7pix.)

IPA 36% 27%

TIPA 6% 26%

NIPA 37% 3%

NTIPA 3% 4%

Table 4.8: Domain averaged results of all models for Experiment 2 of the chequered pat-
tern.

Model T̄ R̄

3DMC 0.581 0.346

IPA and NIPA 0.573 0.354

TIPA and NTIPA 0.564 0.362

Concerning domain averages, see Table 4.8, TIPA and NTIPA yield about 2% percent error
for both transmission and reflection while IPA and NIPA are below one percent. Thus, the
solar zenith angle has no significant impact on this feature and the general result that IPA
already delivers a good estimate is affirmed.

Lastly a remark about 3D resolution will be made. It was emphasized in the respective
sections that all methods which have been developed here are capable of determining 3D
results in the domain’s original Cartesian lattice. To illustrate this capability, several ver-
tical profiles of the net flux, which is important for the atmosphere’s thermodynamics, see
equations 2.16 and 2.15, will be given. It has been already mentioned that the implemented
realization of TIPA is able to produce these 3D results by an inverse transformation from
the slant coordinate system to the original Cartesian system. It was pointed out that
profiles of 3DMC are reasonably met, but at the positions where cloud sides are encoun-
tered very ragged profiles due to discretization errors appear. It was suggested that this
discretization error could be appeased if inter-column exchange was included. With the
combination of TIPA and NIPA to NTIPA this is now the case. To investigate this capa-
bility, profiles near the cloud sides in pixel (18, 4) are compared for TIPA and NTIPA, see
Figures 4.34. From this figure it can be easily concluded that NTIPA is superior to TIPA
in all sections of the vertical. In the upper part of the cloud and above till TOA the TIPA
profile is heavily fluctuating which is a result of the discretization error of the upwelling
flux. Even the vertical average does not improve the offset from the exact profile. Con-
trary to this, the NTIPA profile is smooth due to the convolution and closely resembles the
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(a) Vertical profiles of the net flux-density
in position (18,4) for TIPA.
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(b) Vertical profiles of the net flux-density
in position (18,4) for NTIPA.

Figure 4.34: Vertical profiles of the net flux-density in position (18,4) with τ = 20.84
for TIPA and NTIPA compared with 3DMC for the chequered pattern and
µo = 0.95.

3DMC profile. Above the cloud only a trace of the strong fluctuations persists. From the
examples given here, it can be concluded that generally both upwelling and downwelling
fluxes are subject to the fluctuations with the upwelling stronger affected. This is a result
of the dominating geometric effects of the downwelling radiation. NIPA produces a good
profile above the cloud while below the cloud the profiles do not match at all. Needless to
say that IPA only accidentally gets reasonably close to the 3DMC results at a short section
inside the cloud. In all other vertical sections of this pixel it is nowhere near the actual
profile. For brevity no graphs are shown for IPA and NIPA. Exactly at the boundary of
the clouds, which would be one pixel to the left, similar results can be deduced for TIPA
while NTIPA does not match the exact profile as closely as shown for position (18, 4) but
still outperforms TIPA by far.

4.9 Remarks

In summary, for the 3D parameterizations it can be claimed that a cascade of three approx-
imations for 3D cloud–radiation interactions has been developed. The first two, the Tilted
Independent Pixel Approximation and the Nonlocal Independent Pixel Approximation, are
combined to form the third, the Nonlocal Tilted Independent Pixel Approximation.

Remarkable features of the implemented realization of TIPA are the geometric tracking of
the direct beam in order to compose the slant coordinate and the inverse transformation
of the radiative transfer results succeeding the 1D computation in order to retrieve the
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correct positions of the results in the original grid. A special feature of the implemented
variant of NIPA is the derivation of the convolution parameters by direct utilization of a
diffusion theory result from an analytical solution in physical space for each of the applied
convolution kernels.
Common to all three approaches is the usage of three-dimensionally variable optical prop-
erties, and all three yield in turn three-dimensional results of the upwelling, downwelling,
and net flux-densities. An extension to include the actinic flux is straightforward.
As input data no newly deduced parameters specific for these approximations have to
be supplied, the standard set of optical properties comprising scattering and absorption
coefficient plus the phase function expansion coefficients or at least the asymmetry factor
as for any usual 1D radiative transfer model suffices.
Regarding the size of the convolution kernel a definite rule was neither found nor applied.
As demonstrated by Davis et al. (1997), the scale break in the radiative behavior occurs
around 200m. As a result, the convolution kernel always extends significantly beyond that
range. Generally, an edge length of at least 1000m is maintained, given the horizontal
resolution is not too large kernels are extended if the computational cost stays limited.
As for the intermediate findings of the idealized applications presented in the previous
sections all approximations give reasonable output in the respective field of applicability
and results look promising so that realistic cloud scenes can be tackled as a next step.
A precise estimate concerning the computational cost is neither reasonable nor fair to give,
as none of the presented 3D approximations can currently match the IPA with regard to
computational optimization. All of them are at an experimental stage where rather the
overall applicability is in focus than the quest for computational efficiency. However, a
general description is possible. As far as TIPA is concerned, it has been explained before
that the actual RT calculation consumes the same time as IPA. Although, additional
computational time is necessary to build the slant coordinate and to perform the inverse
transformation. For the presented examples, including the realistic examples in section
5.2, the computational time for the former is of the magnitude of several dozens of seconds
to just a few minutes depending of course on the number of grid points. For the inverse
transformation less time is required, typically several seconds, as only grid indices have
to be recomputed from information which has already been derived by the transformation
of the optical properties. These coarse estimates apply to a workstation with an Intel
Xeon 2.8GHz processor. The computational cost of the convolution necessary for NIPA
and NTIPA is about of the magnitude of the IPA, respectively TIPA calculation both
are based on. Thus, the computational time is about doubled depending largely on the
size of the convolution kernel. However, the opening statement about comparability of
computational time applies especially to this method. Considerable simplifications could
be made once investigations of the fundamental characteristics of this method have been
finished.
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Chapter 5

Application of the Methods and
Results

If the only tool you have is a hammer,
you tend to see every problem as a
nail.

Anonymous

In this chapter, the parameterization approaches of chapter 3 and chapter 4 will be applied
to clouds based on the methods introduced in section 2.4. In the first part, the accuracy
and applicability of the radiative transfer perturbation theory (RTPT) to radiative transfer
calculations in IPA mode is investigated. Results are compared with the usual forward
calculations, and the subject of a possible calculation acceleration is briefly touched on.
In the second part, the TIPA and NIPA approaches are applied both individually and in
combination to parameterize 3D effects. All results there are compared with 3DMC results
which have not been derived by the author but were provided by Sebastián Gimeno Garćıa
and computed with the Leipzig Monte Carlo Model (LMCM), if not stated otherwise. For
details about the 3DMC model and its application see again Gimeno Garćıa (2006) and
Gimeno Garćıa and Trautmann (2003).

5.1 1D Radiative Transfer Perturbation Theory

A possible application of the RTPT arises when considering IPA calculations. This can be
realized by selecting a certain number of pixels as base cases with respect to the total opti-
cal depth. Radiative transfer results of the pixels with optical depths located between the
ones of the base cases are calculated by applying the RTPT and subsequent interpolation
as presented in chapter 3. The motivation for studying this type of application is the dis-
proportion of the dynamic time step of atmospheric models, that is the update interval for
prognostic meteorological variables, and the update interval for radiative transfer results.
In the case of the LM, the former is about several dozens of seconds, whereas the latter
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is one hour. RT results are held constant throughout that period of time until the next
update. Although no comprehensive study about the impact of the ratio between both
on the forecast reliability and quality seem to exist, it can be assumed that especially in
conjunction with cloud formation and decay there is room for improvement by accelerating
radiative transfer calculations leading to more frequent updates of heating rates.

The RTPT could be used to find a remedy for this problem by carrying out adjoint cal-
culations for the base cases additionally to the usual forward calculation. By applying the
RTPT and the interpolation for pixels in the model domain with suitable optical depth at
additional points of time, a correction to the otherwise constant radiative transfer results
could be derived. The overall applicability to IPA calculations in cloudy atmospheres is
investigated in the following examples. Their characteristics with respect to the cloud type
and total optical depth is summarized in Table 5.1.

Table 5.1: Overview of the three examples for the radiative transfer perturbation theory.
“Sc”: stratocumulus, “St”: stratus, “Cu”: cumulus.

Example Horizontal resolution 〈τ〉 τmax τmin

1 INSPECTRO Sc 200m 3.13 34 0.14

2 FIRE St 50m 25.05 27.64 14.98

3 ARM Cu 100m 3.78 106.8 0.85

5.1.1 Example 1: INSPECTRO stratocumulus

The cloud data of this example was kindly provided by A. Kniffka from the University of
Leipzig, see Kniffka (2006). It was derived from data generated by the statistical cloud
model CLABAUTAIR (CLoud liquid wAter content and effective radius retrieval By an
AUTomated use of AIRcraft measurements), see Scheirer and Schmidt (2005), which used
data from measurements derived during the campaign INSPECTRO. This campaign fo-
cuses, among other topics, on the investigation of the effect broken cloud fields have on the
3D variability of the actinic flux and the resulting consequences for chemical transport and
its modeling. For details see the INSPECTRO Webpage (2002). In a later section of this
thesis, a subset of the domain will be utilized for the study of the 3D parameterizations
as well. The 2D field of the total optical depth is shown in Figure 5.1(a). The domain is
composed of 112 × 193 pixels and 75 vertical layers. The horizontal resolution is 200m.
The cloud is rather inhomogeneous, clear sky areas alternate with cloudy parts of optical
depth of up to 34. Vertically, the cloud is roughly located between 1425m and 1725m,
thus forming a geometrically rather thin layer. To activate all terms of the perturbation
series, a surface albedo of 0.08 was assumed. The solar angles were set to µo = 0.398 and
ϕo = 38.69◦ and the incident solar flux Fo was set to unity. The number of computational
streams, see equations 2.81 and 2.82, was set to N = 4.



5.1 1D Radiative Transfer Perturbation Theory 97

20 40 60 80 100
x-axis No. of pixel

50

100

150

y-
ax

is
 N

o.
 o

f p
ix

el

Total optical depth

20 40 60 80 100
x-axis No. of pixel

50

100

150

y-
ax

is
 N

o.
 o

f p
ix

el

   0.00
   2.00
   4.00
   6.00
   8.00
  10.00
  12.00
  14.00
  16.00
  18.00
  20.00
  22.00
  24.00
  26.00
  28.00
  30.00
  32.00
  34.00
  36.00

 

(a) 2D field of the total optical depth of the
stratocumulus.
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Figure 5.1: Total optical depth information of the stratocumulus of RTPT Example 1. The
scene consists of 112× 193 pixels with ∆x = ∆y = 200m.

As shown in chapter 3, one can only expect the RTPT to yield meaningful results if multiple
base cases and interpolation between those is used. The eight pixels selected as base cases
are presented in Table 5.2. The base cases are chosen in a semi-automatic manner, the
first three and the last one are determined by the distribution of optical depths in cloudy
and clear sky pixels. All other base cases are chosen at will. As for the angular scattering
contribution to the perturbation, two different base case phase functions were used. The
first is computed by forming the average of the expansion coefficients layer by layer of
all pixels which are considered as clear sky. The second is derived by proceeding in the
same way with all cloudy pixels. In the resulting seven intervals radiative transfer results
are then computed by RTPT and Hermite-Interpolation. The clear sky phase function is
assigned to the first two base cases and its cloudy counterpart to all remaining base cases.
One recognizes that the base cases are clustered at low and moderate optical depths to
account for the rapid decay of the radiative field in this range.
In Figure 5.2(a), the histograms of the absolute differences of pixel-by-pixel transmission
and reflection, often also termed albedo, computed according to equations 2.13, are shown.
Inserted in Figure 5.2(a) are the values for the mean transmission and reflection of forward
(FW) calculation and perturbation (RTPT). Most individual pixel values are located in the
sharp peaks around zero, but a smaller number of errors at the far sides of the spectra exist
as well. However, the cumulative distributions, Figure 5.2(b), show that only a relatively
small number of pixels is affected by large errors. From this figure, the symmetry of
transmission and reflection, which results in two inseparable curves, is also evident. The
domain averaged absolute errors are |∆T | = 0.031 and |∆R| = 0.029. The maximum and
minimum errors of individual pixels are ∆Tmax = 0.093, ∆Tmin ≈ 0.0 and ∆Rmax ≈ 0.0,
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Table 5.2: Base Case setup and phase functions for the stratocumulus cloud: cl: cloud
phase function, cs: clear-sky phase function.

No. Pixel (x,y) Optical Depth (approx.) Phase Function

1 (16,1) Min(τt)= 0.14 cs

2 (5,172) 0.282 cs

3 (16,40) 0.283 cl

4 (112,155) 1.01 cl

5 (112, 132) 1.99 cl

6 (112,160) 7.99 cl

7 (101,132) 16.02 cl

8 (66,189) Max(τt)=34 cl

∆Rmin = −0.09. Although no investigation about the feedback on atmospheric dynamics
was carried out, an absolute error of about 5% can be roughly regarded as tolerable, as
this is also a typical value for the error of forward 2-stream models used for RT in dynamic
models with respect to benchmark methods like the doubling algorithm, see Liou (1980)
and Meador and Weaver (1980).

The relationship of the errors as a function of the total optical depth can investigated with
the help of Figure 5.3. In Figures 5.3(a) and 5.3(b) errors for both R and T behave like a
fading wave. Interestingly, around base cases No. 6 and No. 8 errors are at a maximum,
while for base case No. 7 errors are significantly reduced. Similar patterns exist for the
base cases at smaller optical depths.

In Figures 5.4(a) and 5.4(b) the same is plotted but for the case that the phase function
is isotropic throughout the whole medium, thus effectively canceling the phase function
perturbation. Errors are now considerably smaller, but also the approach of the wave-
like structures towards the base case optical depths is much more evident. The large peak
around an optical depth of four suggests to use one more base case. From these two figures,
it is apparent that the largest uncertainty results from the phase function perturbation,
while the error due to the pure extinction perturbation does not exceed two percent and
would become negligible if another base case at τ = 4 was employed. One inevitable
problem is the fact that a column which has an optical depth close to a base case optical
depth has not necessarily the same vertical distribution of optical properties as the base
case column has. This can lead to an interpolation of the values in the column which does
not reflect the actual change of the optical properties. In the special case of a vertical
redistribution of the optical properties in a pixel which has the same total optical depth
as one of the base cases and where the redistribution preserves the total optical depth, no
interpolation is carried out at all. The perturbation of the phase function adds to that
problem. In general, it can be said that the more uniform upper and lower cloud boundaries
are and the smoother varying the optical properties are from pixel to pixel and with height,
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Figure 5.2: Distributions of the absolute errors of T and R for the RTPT with respect to
the forward IPA calculation for Example 1 (µo = 0.398 and ϕo = 38.69◦). For
information about the domain see Figure 5.1.

the more accurate the RTPT will be. This result will be readdressed and made more clear
in the next two examples. It also seems to be reasonable to develop a more sophisticated
algorithm to determine the optimal base cases with respect to optical depth and phase
function in the future. The distribution of the optical depth, Figure 5.1(b), might be one
foundation of this automatic algorithm.

As for the vertical structure of the results, one example column is chosen. In Figure 5.5
vertical profiles of net flux and mean intensity in pixel (30, 130) with τ = 28.7 are depicted.
This position is affected by comparatively large absolute transmission and reflection errors,
see Figure 5.3. The mean intensity is proportional to the actinic flux, see equation 2.14. It
is modeled quite accurately by the RTPT, thus rather qualifying equation 2.67 to determine
heating rates by means of equation 2.16, than using the vertical derivative of the net flux-
density directly, as that would involve very small numbers as finite differences which might
result in numerical problems.

Another feature that is remarkable is the symmetry of the errors in the histograms, Figure
5.2(a). This is not only a statistical effect, but also notable in individual pixels. In these,
the upwelling flux is overestimated by the RTPT above the cloud and fairly accurate
below. As for the downwelling flux, the result of the RTPT above the cloud matches the
exact calculations with reasonable accuracy and underestimates it below cloud base. This
can be explained by the fact that the cloud modulates the fluxes by perturbing the base
case results. Naturally, the downwelling radiation is largely unaffected by the cloud above
cloud top. While penetrating the cloud, the RTPT error comes into play causing the
uncertainties below the cloud. In the same way the upwelling flux gets modulated twice.
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Figure 5.3: ∆T and ∆R of the RTPT with respect to the forward IPA as a function of
total optical depth of RTPT for Example 1. For the applied parameters see
Figure 5.2.

Once by the contribution of the fraction of the downwelling flux below cloud base, which
is transformed into upwelling radiation by scattering, and once by the resulting upwelling
flux when encountering the cloud on its way to the upper boundary of the medium.
To finish this section, a brief statement about computational speed is made, as acceleration
of RT modeling is the long term aim of the RTPT. To yield full vertical resolution, meaning
that a result is computed at every vertical level of each pixel, an adjoint solution is necessary
at all levels of all base cases. This requires considerable computational time. Another
computationally demanding part is the calculation of the phase function perturbation, as
this perturbation integral has to be evaluated at every grid cell. However, if only three
output levels are chosen, for example top and bottom of the column and cloud base,
the RTPT calculations are about four times faster than the forward calculations in this
example. The time for choosing base cases is not included in this figure. This way, the
heating rates of the cloud and the surface could be determined together with column albedo
and transmission. In this connection, it has to be emphasized that the developed code is by
no means optimized and with the appropriate realization of the technique in an analytical
2-stream model a more advantageous acceleration might be possible. This was pointed out
by Gabriel et al. (2000). These authors did not consider interpolation between multiple
base cases but broadband radiative transfer which is another topic also of importance in
NWP.
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Figure 5.4: As Figure 5.3 but for the modified cloud (homogenous isotropic phase function).
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(a) Vertical profile of the net flux density.
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Figure 5.5: Vertical profiles of the net flux-density and the mean intensity in pixel (30,130)
with τ = 28.7 derived from the RTPT and the forward IPA for Example 1.
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5.1.2 Example 2: FIRE stratus

In order to give an example of a cloud attributed to the less critical part of the spectrum
of cases, a stratus cloud is chosen. It was derived from FIRE (First ISCCP Regional
Experiment) I data, see FIRE I Webpage (2002), and has been originally modeled by
Duynkerke et al. (2004) with an LES model and postprocessed by Venema et al. (2006)
with the IAAFT algorithm to determine liquid water content and liquid water path. The
scene is made up of 52× 52× 79 grid points where each pixel has a horizontal resolution of
50m. Solar illumination, surface albedo, and all other parameters remain as in the previous
example. The cloud stands out by its moderate horizontal and vertical inhomogeneity
which can be taken from Figure 5.6. The distinct cloud top and bottom has virtually no
vertical variation with horizontal position. The histogram of the optical depth, Figure
5.7(a), restates the difference to the previous case, thus it suggests to reduce the number
of base cases and makes their selection less crucial.
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(a) Total optical depth field of the stratus
cloud.
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(b) Vertical cross-section of the horizontal
optical depth integrated in x direction.

Figure 5.6: Optical depth information of the 52× 52 pixel stratus cloud with ∆x = ∆y =
50m.

As a result, the minimum number of four base cases is chosen, see Table 5.3, and no clear
sky base case phase functions have been generated. In Figure 5.7(b) the histograms of the
absolute differences are depicted as before. The RTPT is fairly accurate, only three pixels
have small outliers not exceeding 3% error. As expected, the symmetry of the errors in
the histograms persists as well. At zero percent error there are only few pixels contrasting
with the picture of the stratocumulus where the maximum of pixels was associated with
that error region. This is a result of the total cloud cover of this scene. The domain
averaged errors are ∆T = 3.95 · 10−3 and ∆R = −4.88 · 10−3. As the scene consists only
of a small number of pixels, no comparison between forward calculation and RTPT with
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Table 5.3: Base case setup and phase functions for the stratus cloud of Example 2.

No. Pixel (x,y) Optical Depth (approx.) Phase Function

1 (44,3) Min(τt)= 14.98 cl

2 (44,49) 16.29 cl

3 (46,5) 16.7 cl

4 (9,22) 27.64 cl
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(a) Histogram of the total optical depth of
the stratus cloud of Example 2.
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Figure 5.7: Histograms of the total optical depth and ∆T and ∆R of RTPT with respect
to the forward IPA calculation for Example 2 with µo = 0.398 and ϕo = 38.69◦.

respect to computational speed has been carried out. The RTPT cannot make use of its
computational advantage if the scene is not composed of a reasonably large number of
pixels, which enables the interpolation to (over)compensate the longer calculation of the
base cases.
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5.1.3 Example 3: ARM cumulus

In order to point out the limitations of the RTPT and to show the breakdown of the
applicability, the following example of a cumulus cloud was chosen. The cloud was de-
rived from measurements of the Atmospheric Radiation Measurement (ARM) Program,
see ARM Webpage (2004). Based on these measurements, the data was postprocessed by
an LES model, and the stochastic IAAFT algorithm was used to derive 3D liquid water
content distributions. For details see Venema et al. (2006), who also provided the data.
The model domain comprises 66×66×70 grid points with a horizontal resolution of 100m.
The setup concerning the illumination, computational angles etc. is unchanged.
From the 2D field of the total optical depth, Figure 5.8(a), one recognizes that the scene
consists of a number of cloudy areas with large optical depths of up to over 100. However,
most of the scene is clear atmosphere. Contrary to the examples before, the cloud here
is not confined to a flat layer but has considerable vertical structure which is depicted in
Figure 5.8(b). In order to account for the large span of optical depths, ten base cases as
shown in Table 5.4 have been employed.
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(a) Total optical depth field of the cumulus
cloud.
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(b) Vertical cross-section of the horizontal
optical depth integrated in y direction.

Figure 5.8: Optical depth information of the cumulus cloud with 66× 66 pixels and ∆x =
∆y = 100m.

Yet, in this example significant errors occur. The domain averaged errors amount to
∆T = 3.95 · 10−2 and ∆R = −3.84 · 10−2. Investigation of their respective histograms, see
Figure 5.9(a), reveals that both have a strong peak around zero error but also suffer from
large outliers. The symmetry of the errors is also remarkable. The error of the transmission
is always positive while the one of the reflection consists only of negative values. One group
of values is located at about |17%| and a smaller number at |19%|. Investigation of the
dependence of the errors on the optical depth, Figure 5.9(b), shows that maximum errors
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occur not at the largest optical depths but rather at cloudy areas of comparatively low
optical depth of about 1 to 15.

Table 5.4: Base Case setup and phase functions for the cumulus cloud: cl: cloud phase
function, cs: clear-sky phase function

No. Pixel (x,y) Optical Depth (approx.) Phase Function

1 (1,1) Min(τt)= 0.13 cs

2 (40,59) 0.19 cs

3 (40,29) 0.2 cl

4 (66,63) 0.73 cl

5 (66,58) 4.9 cl

6 (66,61) 7.56 cl

7 (65, 23) 15.7 cl

8 (66,24) 31.1 cl

9 (66,31) 60.94 cl

10 (44,54) Max(τt)=106.4 cl

As already addressed in the example of the stratocumulus cloud, these errors seem to stem
from the choice of the phase function. The cloudy phase function is derived by forming
the average of the expansion coefficients in each layer in all pixels which are considered to
have a total optical depth above a threshold. Unfortunately, this leads to an unrealistic
vertical phase function in the pixels where the cloud top is geometrically lower than the
average. As shown in section 3.3, large perturbations of the phase function can lead to
tremendous errors and should be avoided. By performing additional calculations, which
employed another two base cases with respect to optical depth, not shown here, it could be
demonstrated that the results only slightly improve, thus backing the above explanation for
the errors. With this example, it is clear that a more sophisticated and flexible treatment
of the phase function perturbation is necessary if highly variable cloud tops and bottoms
are to be treated.

5.1.4 Remarks

Concluding this topic, it can be summarized that the RTPT is applicable to IPA calcu-
lations in cloudy atmospheres if some constraints are observed. As long as the horizontal
and more important the vertical inhomogeneity of the clouds remains moderate, results
with justifiable error of typically around an absolute value of 5% for transmission and re-
flection of individual pixels are obtained. This demand is especially necessary for the phase
function. In view of a computational acceleration of the IPA calculations by the RTPT, it
is important to select only a few output levels where results are desired. This is a result
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Figure 5.9: Errors of T and R for Example 3 with µo = 0.398 and ϕo = 38.69◦.

of the computational cost which is attributed to the calculation of the adjoint solution for
each output level in each base case. Similarly, the phase function perturbation and the
albedo contribution to the perturbation integral have to be computed in each output level
in each pixel. Moreover, the computational domain should preferably comprise a larger
number of pixels than in the last two examples so as to make good advantage of the fast
interpolation between base cases. A general rule of thumb cannot be easily stated as it
would involve the number of pixels, output levels, base cases, and computational streams.
Issues which remain undone are the fully automatic selection of base cases based on the
distribution of the total optical depth. Equally important is the flexible and more re-
alistic determination of base case phase functions in order to at least partially level the
shortcoming in the aforementioned example. Lastly the implementation of the RTPT in
a NWP model remains a challenging task and should be preceded by studies investigating
the meaningful update interval of radiative transfer calculations. This recommendation
could be used as “target criteria” for the RTPT implemented in an analytic 2- or 4-stream
model.



5.2 3D Approximations 107

5.2 3D Approximations

In this section the investigation of the different 3D cloud–radiation parameterizations will
be extended from idealized cases, which have been discussed in sections 4.6 and 4.8, to
realistic clouds. In all experiments, the applied approximations are compared with the
LMCM 3DMC, see Gimeno Garćıa (2006) and Gimeno Garćıa and Trautmann (2003). It
is understood that all denoted errors and differences are calculated by comparing the ap-
proximations with this 3DMC in the way presented by rule 4.2, if not stated otherwise.
As only a very limited number of cloud scenes was available to the author, the following
analysis had to be confined to just a few case studies. However, a more systematic dis-
cussion involving numerous scenes and set-ups concerning solar illumination and surface
albedo as well as optical properties would have been highly desirable in order to arrive
at a more general and statistically more reliable result. Yet, to associate at least some
systematic structure with the derived results and conclusions, the cases investigated here
will be grouped, according to the respective horizontal resolution, into three categories.

The first group is considered to comprise resolutions from several meters to about 100m.
Thus, the cases two and three of phase one of the I3RC project, see Várnai (2006a), were
chosen to represent this range. However, not all experiments which are suggested by the
I3RC group have been carried out. Furthermore, the original cloud setups do not involve
any atmospheric effect which mainly means that the clouds are embedded in vacuum.
Although this is completely reasonable if exact models are compared, it is not suitable
in the authors point of view for approximate methods. These mainly rely on emulating
one or more physical processes in a planetary atmosphere. For example, NIPA tries to
mimic horizontal photon diffusion. If the cloud scenes miss a fundamental element of
the natural behavior, in this example this is scattering and absorption by an atmosphere
surrounding the cloud, the approximations generally cannot be expected to yield results or
even encounter numerical problems. For this reason, the I3RC clouds have been embedded
in a very simple idealized atmosphere which will be specified below. This first class of
clouds is completed by a cloud scene deduced from the ARM program. All the three of
these clouds scenes stand for high resolution cloud scenes where horizontal photon diffusion
is expected to play an important role.

For the second class of resolutions it seems to be meaningful to cover the range of the
scale break at around 200m, where the major influence of horizontal diffusion is expected
to fade, and the regions extending beyond up to 1000m. However, this class comprises
just one cloud, namely a section of the INSPECTRO cloud which was already introduced
in one of the preceeding sections. This cloud can be regarded as a medium resolution
cloud which poses a significant challenge for the 3D parameterizations because of its small
vertical extension and its highly inhomogeneous structure. It will be investigated in three
different setups.

For the third and last class of cloud scenes the future horizontal resolution of operational
weather prediction models was taken into account. These are believed to arrive at 3000m
and less in the immediate future. As a result, this range comprises two cases which have
been deduced from the Lokal-Modell (LM) and stand for coarse resolution clouds. Table 5.5
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gives an overview of all investigated cloud fields. For all examples at least two experiments
have been carried out. The first experiment always employs vertical solar illumination
(µo = 1.0) while the second experiment deals with slant illumination (µo = 0.5). In some
cases additional experiments have been carried out.

Table 5.5: Overview of the cloud fields available to investigate the 3D approximations.
“Sc”: stratocumulus, “Cu”: cumulus. “Hor. res.”: Horizontal resolution.

Category Example Hor. res. 〈τ〉 τmax τmin

1 ARM Cu 100m 3.78 106.8 0.85

High resolution 2 I3RC Phase 1 Case 2 50m 19.71 51.73 6.69

3 I3RC Phase 1 Case 3 30m 10.28 43.33 0.22

Medium resolution 4 INSPECTRO Sc 200m 4.3 34.0 0.141

5 LM DAQUA 2800m 14.85 179.8 0.086
Coarse resolution

6 LM QUEST 2800m 18.3 317.6 0.99

5.2.1 High Resolution Clouds

Example 1: ARM cumulus

In this example, the same cumulus cloud scene is discussed as in the last example of the
RTPT, see page 104. The whole atmosphere reaches up to 60000m. Just as in some of
the idealized examples, it is composed of the cloud optical properties and an atmosphere
with Rayleigh scattering and O3 absorption characteristic for 330nm. The 2D distribution
of the total optical depth is depicted in Figure 5.8(a). The cloud’s distribution is rather
speckled which is reflected by the values τmin = 0.85, τmax = 106.8, and 〈τ〉 = 3.78.

Experiment 1: µo = 1.0, ϕo = 0◦, A = 0.0

In this case, the cloud is vertically illuminated by the sun, and the surface is non-reflecting.
It can serve as an example for pure horizontal diffusion as geometric effects are not supposed
to occur. As a result, only IPA and NIPA are investigated. The latter is employed twice
differing in the size of the convolution kernels. In accordance with the remarks made with
regard to the size of the kernel at the end of the idealized example on page 92, a kernel
comprising 11× 11 pixels ≡ 1100m× 1100m was chosen. The second kernel processed has
25× 25 pixels. The former is termed NIPA(11), and the latter is termed NIPA(25) in the
following.
In Figure 5.10 the histograms of ∆T and ∆R of the three calculations compared to 3DMC
are plotted. The IPA calculation produces an extended but sharp peak for the reflected light
at small error values but has large outliers at the same time. In contrast to that, for both
NIPAs the distributions are less peaked but generally smoother and more consolidated
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towards the centers. For transmission NIPA(25) produces a distinct peak compared to
NIPA(11). These findings are supported by the results of Table 5.6 which shows the
fraction of pixels for a 5% and 8% error threshold. Although the peak in the histogram for
∆R for IPA is slightly below 5% error, both NIPA calculations turn out to be more accurate
as a consequence of the more composed distributions. Between both NIPA calculations
differences are rather small and tend to be more significant for transmission.
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(a) Histogram of the errors for IPA.
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(b) Histogram of the errors for NIPA(11).
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(c) Histogram of the errors for NIPA(25).

Figure 5.10: Histograms of ∆R and ∆T for IPA, NIPA(11) and NIPA(25) for Experiment
1 of the ARM cumulus. The figures in parentheses give the edge length of the
convolution kernel in pixels.

Table 5.7 shows the scaling behavior of the three computations by comparing maximum
residual errors of |∆T | and |∆R| at averaging kernels of one, seven, and 15 pixels edge
lengths. The first being located within the diffusion regime, the second clearly above it, and
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Table 5.6: Comparison of the pixel fractions for a 5% and 8% error threshold of T and R
for the three simulations of Experiment 1 of the ARM cumulus.

Model ∆T ≤ 5% ∆R ≤ 5% ∆T ≤ 8% ∆R ≤ 8%

IPA 49% 65% 73% 84%

NIPA(11) 89% 72% 99% 85%

NIPA(25) 91% 78% 99% 89%

Table 5.7: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max for
edge lengths of one, seven, and 15 pixels for the three simulations of Experiment
1 of the ARM cumulus.

Model |∆T |(1) |∆R|(1) |∆T |(7) |∆R|(7) |∆T |(15) |∆R|(15)

IPA 26% 51% 9% 38% 4% 21%

NIPA(11) 10% 34% 5% 28% 3% 17%

NIPA(15) 11% 26% 4% 22% 2% 15%

the third beyond the scope of the 11×11 convolution kernel. As for transmission, differences
between NIPA(11) and NIPA(25) are rather small due to the geometric dominance of the
downwelling radiation. However, with regard to IPA one notes that NIPA cuts the error
in half at one and seven pixels, whereas the difference at 15 pixels is almost negligible.
Yet, that is not true for the reflected light. Here, the differences between both NIPAs are
larger and remain two percent even for the largest averaging kernel. The differences of
both NIPAs with respect to IPA decline from large values to just a few percent. This is a
result of the inherent averaging nature of the reflected light.

In summary, it can be claimed that within and slightly beyond the diffusion regime NIPA
delivers by far superior results. However, at scales in excess of 1000m the differences
in this example for the reflected light were still notable, yet for the transmitted light
negligible. One has to keep in mind that the quoted errors are the maximum residuals.
Between both NIPAs there is almost no difference for transmission, yet for reflection there
is. When comparing both NIPAs with IPA the conclusions hardly change qualitatively.
As a result, convolution kernels with larger edge lengths will be discussed only as an
exception in the following examples. Finally, the domain averages are T̄ (3DMC) = 0.636
and T̄ (IPA) = 0.625 and R̄(3DMC) = 0.297 and R̄(IPA) = 0.307 which leaves one
percent error. Due to the conservation of energy NIPA cannot improve any domain averages
regardless of the size of the convolution kernel.
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Experiment 2: µo = 0.5, ϕo = 0◦, A = 0.0

Here, the solar illumination has been inclined to 60◦, thus effects are expected to consist of
a mixture of geometric and diffuse components. As a result, the full set of approximations
has been applied. As for NTIPA, two convolution calculations have been carried out, one
with 11× 11 pixels and the second with 25× 25 pixels just as in the previous case. NIPA
was employed only with a kernel with the former number of pixels.
In Table 5.8 the 5% and 8% thresholds for the five simulations are shown. Without dis-
cussing each single figure, one notes that IPA’s shortcomings for both threshold values are
equally unsatisfying with respect to transmission. Although the scene consists of many
clear sky pixels, the cloud cover being only about 30%, this bad performance of IPA is
caused by the structure of the cloud top height which leads to pronounced shadows, see
below.

Table 5.8: Comparison of the pixel fractions for a 5% and 8% error threshold of T and R
for the five simulations of Experiment 2 of the ARM cumulus.

Model ∆T ≤ 5% ∆R ≤ 5% ∆T ≤ 8% ∆R ≤ 8%

IPA 53% 63% 59% 83%

TIPA 76% 61% 88% 81%

NIPA 54% 72% 58% 88%

NTIPA(11) 90% 71% 97% 86%

NTIPA(25) 91% 77% 98% 90%

In contrast, both NTIPA realizations yield results superior to all other approximations.
When comparing both NTIPAs with TIPA one can estimate that the convolution actually
accounts for an improvement of 10−15% of all pixels. When comparing NTIPA with NIPA
the difference, this time caused by the correct geometric tracking, is even 35%− 40%. The
differences with respect to reflection are smaller, NIPA is even superior to NTIPA(11)
and IPA outperforms TIPA. These values clearly underline the importance to include a
parameterization for horizontal diffusion but also emphasize the inabilities of NIPA to
solely account for shadows.
In order to give an impression of the 2D distribution of the 3D effects, for this case the
2D fields of ∆T for IPA and NTIPA(25) are shown in Figure 5.11. As for IPA, one clearly
recognizes that due to the incorrect succession of optical properties large errors occur not
only in the “radiative lee” of the clouds but also in the “radiative luff”. For NTIPA there
is only little structure in the field, the fringes of the cloud shadows remain mostly traces.
Only one larger contiguous area of significant errors exists as a result of the coherent cloudy
area around pixel (20,30).
Table 5.9 shows the results for the coarse grained moving average for one, seven, and
15 pixels edge length. Due to the shadows being shifted sidewards the ∆T (1) error for
IPA is now significantly larger than in Experiment 1. Yet, for the reflected light errors



112 5. Application of the Methods and Results

10 20 30 40 50 60
x-axis No. of pixel

10

20

30

40

50

60

y-
ax

is
 N

o.
 o

f p
ix

el

Abs. Difference in T

10 20 30 40 50 60
x-axis No. of pixel

10

20

30

40

50

60

y-
ax

is
 N

o.
 o

f p
ix

el

  -0.50

  -0.40

  -0.30

  -0.20

  -0.10

   0.00

   0.10

   0.20

   0.30

 

(a) 2D field of ∆T for IPA.
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(b) 2D field of ∆T for NTIPA(25).

Figure 5.11: 2D field of ∆T for IPA and NTIPA(25) of Experiment 2 of the ARM cumulus.
The scene consists of 66×66 pixels with ∆x = ∆y = 100m. The illumination
was set to µo = 0.5 and ϕ0 = 0◦.

are diminished. TIPA seems to be only of use for the transmitted light where for all
smoothing kernels better results are obtained while the reflected light stay as erroneous
as for IPA. For NIPA it is almost visa versa, yet the reflected light is only improved if
no smoothing is applied, and the transmitted light is slightly improved by blurring the
shadows directly below the cloud. However, both NTIPAs combine the advantages and
outperform the respective individual parameterizations, that is TIPA for transmission and
NIPA for reflection. The larger convolution kernel is especially useful for the reflected light.

Table 5.9: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max with
edge lengths of one, seven, and 15 pixels for all simulations of Experiment 2 of
the ARM cumulus.

Model |∆T |(1) |∆R|(1) |∆T |(7) |∆R|(7) |∆T |(15) |∆R|(15)

IPA 47% 39% 33% 30% 15% 17%

TIPA 29% 37% 19% 30% 7% 16%

NIPA 34% 28% 28% 23% 14% 14%

NTIPA(11) 16% 25% 11% 20% 6% 13%

NTIPA(25) 14% 20% 10% 16% 5% 11%

Concerning domain averages, see Table 5.10, IPA and NIPA are superior with errors below
one percent. For TIPA and NTIPA errors are just slightly above one percent.
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(a) Vertical profile of the IPA calculation.
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(b) Vertical profile of the TIPA calculation.
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(c) Vertical profile of the NTIPA(11) calcu-
lation.

Figure 5.12: Vertical profiles of the net flux-density in pixel (4,30), τ = 101.5, see also
Figure 5.11, derived by IPA, TIPA and NTIPA(11) for Experiment 2 of the
ARM cumulus.

As a last feature of this investigation, an example for the vertical profile is discussed, see
Figure 5.12. The investigated pixel (4, 30) is one of the pixels with very high optical depth.
At the same time, it is located in the middle of a cloud which is vertically extensive, thus
cloud tops and sides are both encountered in close neighborhood, see Figure 5.8(b). Hence,
this position is ideally suited to investigate the discretization problem of TIPA and NTIPA
and to compare both with the vertical profile delivered by IPA. Mean profiles are available
as well, but those are useless for this task as all individual fluctuations are lost due to
averaging. From this figure it is evident that IPA is clearly a technique which can only
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yield meaningful domain averaged results, if any. Although, it is widely used in atmospheric
models to compute vertical distributions of radiative properties. TIPA, however, describes
the flux inside and below the cloud quite accurately while above cloud top it is prone to
large artificial fluctuations. In contrast to that, NTIPA reduces those fluctuations but as
the convolution can only be regarded as an estimate of horizontal transport its results inside
the cloud are inferior compared to TIPA. These examples demonstrate the advantages and
shortcomings of the different parameterizations. Their complementary aspects underline
that none of them is an ideal solution for all features at a time.

Experiment 3: µo = 0.5, ϕo = 0◦, A = 0.04

As a last step, the surface of the model domain is assigned with a constant albedo of
A = 0.04 which is realistic for this wavelength of 330nm according to Wendisch et al.
(2004).

Comparison with the previous case shows almost no difference with regard to the overall
results. Although this conclusion could have been inferred from the small albedo, the
good news is that the qualitative results of the approximations hold in the case of weakly
reflecting surfaces. In order to complement the result of Experiment 2 the 2D plots of ∆R
for IPA and NTIPA, carried out with a 25× 25 pixels kernel, are shown, see Figure 5.13.
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(a) 2D field of ∆R for IPA.
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(b) 2D field of ∆R for NTIPA(25).

Figure 5.13: 2D field of ∆R for IPA and NTIPA of Experiment 3 of the ARM cumulus.
See also Figure 5.11.

Compared to Figures 5.11 the visual impression is that that for IPA there is less structure
and especially the variations of the errors are less significant than for the transmitted
light while in the respective plot for NTIPA there is more structure. Because of the slant
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Table 5.10: Domain averaged results for T and R for Experiment 2 and 3 of the ARM
cumulus for all models.

Experiment 2 Experiment 3

Model T̄ R̄ T̄ R̄

3DMC 0.467 0.419 0.475 0.409

IPA and NIPA 0.459 0.426 0.466 0.418

TIPA and NTIPA 0.455 0.429 0.462 0.421

coordinate the patterns are shifted to the right. As a result, the upwelling light is usually
more accurately described by IPA than the downwelling light.
Domain averaged results also do not change qualitatively, see Table 5.10. Interestingly,
the average reflection is slightly decreased compared to Experiment 2 although the ground
is now reflecting. This might be explained by the trapping of the additional upwelling
radiation inside the cloud which could be enhanced by the multiple reflections between
cloud base and surface. However, a final conclusion of the reason behind this effect needs
more detailed studies.
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Example 2: I3RC Phase 1 Case 2

As mentioned in the beginning of this section, the adopted cloud scene from the Intercom-
parison of 3D Radiation Codes (I3RC, see Várnai (2006b), has been modified as a simple
atmosphere is superimposed. The atmosphere uses O3 absorption with σa = 3.4 · 10−7m−1

and Rayleigh scattering with σs = 8.5 ·10−5m−1, both homogeneously distributed through-
out the medium. The domain is originally two-dimensional, but in order to avoid numerical
problems with the convolution it was homogeneously extended along the y-axis to yield a
lattice with 640× 50× 54 grid cells. The horizontal resolution is 50m, and the top of the
domain is located at 2430m. The single scattering properties of the cloud are ωo = 1.0 and
g = 0.85 where higher orders of the phase function expansion coefficients are determined
by the Henyey-Greenstein phase function. The distribution of the total optical depth along
the x-axis is shown in Figure 5.14. It has the following values: τmax = 51.73, τmin = 6.69
and 〈τ〉 = 19.71.
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Figure 5.14: Total optical depth along the x-axis of the modified I3RC Phase 1 Case 2
cloud with 640× 50 pixels and ∆x = ∆y = 50m.

Experiment 1: µo = 1.0, ϕo = 0◦, A = 0.0

Although the cloud cover is 100%, notable 3D effects exist even for vertical illumination.
The maximum and minimum errors of IPA and NIPA with respect to 3DMC results for
transmission and reflection are presented in Table 5.11. One recognizes that NIPA roughly
cuts the maximum and minimum errors in half by applying a kernel composed of 25× 25
pixels ≡ 1250m × 1250m. According to the horizontal resolution of the cloud scene and
the computational burden associated no larger convolution kernel was applied.
In this example the fraction of pixels below a certain error threshold and the scaling behav-
ior investigated by comparing residual errors are less meaningful as no distinct separation
of IPA and NIPA can be drawn from these results. However, the influence of the convolu-
tion can be demonstrated not only by quantifying maximum and minimum errors but also
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Table 5.11: Maximum and minimum errors of T and R of IPA and NIPA for the modified
I3RC Phase 1 Case 2 Experiment 1.

Model ∆Tmax ∆Tmin ∆Rmax ∆Rmin

IPA 0.11 −0.09 0.09 −0.08

NIPA 0.06 -0.05 0.05 −0.03

by means of the power spectrum of the absolute values of the errors. In order to reduce
the strongest fluctuations values are averaged along the y-direction which is meaningful in
this case anyway. In Figure 5.15 the power spectra of |∆R| for IPA and NIPA are shown.
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(a) Power spectrum of |∆R| of IPA.
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(b) Power spectrum of |∆R| of NIPA.

Figure 5.15: Power spectra of |∆R| of IPA and NIPA for the modified I3RC Phase 1 Case
2 Experiment 1. E(L, |∆R|) is plotted as a function of scale.

Although both curves are heavily fluctuating, it can be stated for IPA that the power
increases for increasing scales. As for NIPA, there is an indifferent area reaching up to
about 1000m clearly visible. This indifferent behavior, which is attributed to white noise,
is a result of the averaging nature of the convolution. Even though the convolution kernel
reaches to up to 1250m in both directions, the missing impact of the outermost 250m can
be explained with the weights associated with those pixels. These contribute only with
tenths of a percent to the kernel for a typical value of σ = 500m, see Figure 4.17.
In Figure 5.16 reflection values for IPA and NIPA are shown over the respective results
of 3DMC. One clearly notes the narrowed distribution in case of NIPA. Results for the
transmission behave analogously. This is reflected by the standard deviations of the errors,
see Table 5.12, which also states the respective values for transmission. Domain averages
agree with less than one percent error.
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(a) Comparison of reflection values of IPA
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Figure 5.16: Comparison of reflection values of IPA and NIPA with 3DMC for the modified
I3RC Phase 1 Case 2 Experiment 1.

Table 5.12: Standard deviation of ∆T and ∆R of IPA and NIPA for the modified I3RC
Phase 1 Case 2 Experiment 1 as shown in Figure 5.16.

Model σdev(∆T ) σdev(∆R)

IPA 0.034 0.026

NIPA 0.022 0.012

Experiment 2: µo = 0.5, ϕo = 0◦, A = 0.0

For this example with inclined illumination the overall impression of the results changes. So
far TIPA, NIPA and NTIPA have been superior to IPA with regard to local improvements.
Domain averages have been equally good or slightly inferior if compared to IPA. However,
in this experiment TIPA, NIPA and NTIPA do not significantly improve results. Table
5.13 gives an overview of the maximum and minimum errors of all calculations with respect
to 3DMC. For TIPA and NTIPA ∆Rmin and ∆Tmin results deteriorate by several percent,
only NIPA can insignificantly reduce the already low errors if compared to IPA. These
inabilities become more obvious when observing the 5% error threshold, see Table 5.14.
TIPA as well as NTIPA fall significantly back behind IPA for the transmitted light. The
reason for this result remains unclear.
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Table 5.13: Maximum and minimum errors of T and R for all four approximations for the
modified I3RC Phase 1 Case 2 Experiment 2.

Model ∆Tmax ∆Tmin ∆Rmax ∆Rmin

IPA 0.1 −0.07 0.13 −0.14

TIPA 0.12 -0.13 0.12 −0.18

NIPA 0.09 -0.05 0.12 −0.14

NTIPA 0.09 -0.12 0.11 −0.18

Table 5.14: Comparison of the pixel fractions for the 5% error threshold of T and R for
the four simulations for the modified I3RC Phase 1 Case 2 Experiment 2 for
ϕo = 0◦ and ϕo = 180◦.

ϕo = 0◦ ϕo = 180◦

Model ∆T ≤ 5% ∆R ≤ 5% ∆T ≤ 5% ∆R ≤ 5%

IPA 83% 73% 84% 74%

TIPA 68% 68% 66% 45%

NIPA 91% 74% 90% 73%

NTIPA 68% 71% 67% 46%
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Figure 5.17: Total optical depth and ∆T of NTIPA along the x-axis of the modified I3RC
Phase 1 Case 2 Experiment 2.

Figure 5.17 depicts ∆T together with the total optical depth along the x-axis. Gradients
of the optical depth seem to be accompanied by peaks of ∆T most obvious in the region
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beyond pixel 380 where the error changes its sign and reaches its largest negative value
during the drop of the optical depth. This region seems to be crucial for the overall
performance of the approximations as large errors last for about a sixth of the total domain.
As a further test, the solar azimuth was changed from 0◦ to 180◦ thus illuminating the
scene from the opposite direction. However, no significant qualitative change in the results
can be observed, see Table 5.14. Again, NIPA can only increase the fraction of pixels which
is below 5% error by several percent in case of transmission when compared to IPA. One
even observes a significant deterioration of the results of TIPA and NTIPA with respect
to the fraction of the reflected light. The other approximations roughly maintain their
performance.
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Example 3: I3RC Phase 1 Case 3

Another example for a high resolution cloud field is Case 3 of Phase 1 of the I3RC project,
see again Várnai (2006a). This cloud field is determined by a horizontally variable but
vertically homogeneous extinction coefficient of the cloud, a constant Henyey–Greenstein
phase function with g = 0.85, a uniform cloud base height at 200m above ground, and a two-
dimensionally variable cloud top height. The cloud’s single scattering albedo was equally
set to the constant value of ωo = 1.0. Superimposed are again the homogeneous values for
Rayleigh scattering with σs = 8.5 · 10−5m−1 and O3 absorption with σa = 3.4 · 10−7m−1.
The whole scene is composed of 128 × 128 × 417 grid cells. The large number of vertical
layers is a result of the fine structure of the cloud top height distribution. The domain is
limited to an overall vertical extension of 2580m, and the horizontal resolution is 30m in
each direction. The resulting two-dimensional total optical depth field with τmax = 43.33,
τmin = 0.22, and 〈τ〉 = 10.28 is shown in Figure 5.18.
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Figure 5.18: Total optical depth of the modified I3RC Phase 1 Case 3 cloud. The scene is
composed of 128× 128 pixels with ∆x = ∆y = 30m horizontal resolution.

Experiment 1: µo = 1.0, ϕo = 0◦, A = 0.0

As this cloud has a very high resolution small scale structure even for vertical illumination
strong 3D effects are expected. Hence, cumulative distributions for both IPA and NIPA
show slow increase, see Figure 5.19. NIPA, which has been applied with a 35 × 35 pixels
kernel which is equivalent to 1050m edge length, can improve the results with limited
success.
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(a) Cumulative distributions of ∆T and
∆R for IPA.

0.0 0.2 0.4 0.6 0.8 1.0
|Absolute Error|

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

ed
 P

ro
ba

bi
lit

y

Transmission
Reflection

Binsize: 0.010
N: 16384

(b) Cumulative distributions of ∆T and
∆R for NIPA.

Figure 5.19: Cumulative distributions of ∆T and ∆R for IPA and NIPA for Experiment 1
of the modified I3RC Phase 1 Case 3.

Table 5.15: Comparison of the pixel fractions for a 5% and 10% error threshold of T and R
for both IPA and NIPA for Experiment 1 of the modified I3RC Phase 1 Case
3.

Model ∆T ≤ 5% ∆R ≤ 5% ∆T ≤ 10% ∆R ≤ 10%

IPA 29% 17% 56% 33%

NIPA 33% 28% 70% 57%

Table 5.16: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max of
IPA and NIPA for edge lengths of one, five, 15, and 35 pixels for Experiment
1 of the modified I3RC Phase 1 Case 3 cloud.

Model |∆T |(1) |∆T |(5) |∆T |(15) |∆T |(35)

IPA 76% 56% 45% 34%

NIPA 44% 35% 32% 25%

|∆R|(1) |∆R|(5) |∆R|(15) |∆R|(35)

IPA 46% 40% 35% 27%

NIPA 35% 29% 26% 23%
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However, the technique in this case arrives at a point where a further increase of the
convolution kernel is no longer meaningful as no significant improvement is expected, and
at the same time the computational burden heavily increases. This is of course also a result
of the tremendous number of vertical layers of this example. To quantify the improvement
NIPA achieves, the contributions for errors thresholds of 5% and 10% are given in Table
5.15. Differences between IPA and NIPA for the 5% threshold are rather insignificant
for transmission and about 10% for reflection while NIPA can gain at least an advantage
over IPA of 14% and 24%, respectively in case of the 10% error threshold. However,
results become more positive if the maximum residual errors are investigated. This task
has been carried out for averaging kernels of one, five, 15, and 35 pixels edge length, see
Table 5.16. As smoothing is already inherent in NIPA by means of the convolution kernel,
the maximum residual errors decline more slowly than with IPA. Yet, with an averaging
kernel of 5pixels ≡ 150m edge length the maximum residual errors of NIPA already nearly
match the ones of IPA for the 15pixels ≡ 1050m edge length kernel. However, although
tremendous local errors exist, see Table 5.16 for one pixel edge length, the domain averages
are underestimated by IPA and NIPA only by two percent.

Experiment 2: µo = 0.5, ϕo = 0◦, A = 0.0

The slant illumination in this experiment again causes a superposition of pure horizontal
diffusion effects and geometric effects. Later in the discussion a brief investigation of the
respective impact will be given. In Figure 5.20 the histograms of ∆T and ∆R of IPA, TIPA,
NIPA, and NTIPA are shown. TIPA again produces a rather pronounced but quite ragged
distribution of errors. Contrary to this, the distribution for NIPA is smoother and has a
narrow Gaussian shaped central part but suffers for transmission from larger outliers than
IPA. NTIPA clearly shows a mixed characteristic which means that due to the additional
convolution the distributions are less ragged, and at least for the transmitted light they do
not include large outliers.

This result is confirmed by the error thresholds given in Table 5.17. As in other examples,
TIPA generally produces better results for the transmitted light than IPA especially for
the 10% error threshold which is a result of the significant number of large outliers of IPA.
For reflection TIPA stays at the level of IPA. For NIPA the result is qualitatively vice
versa but quantitatively NIPA can still improve the transmitted light by several percent.
NTIPA combines these features to some extent meaning that it can even slightly excel
TIPA’s values for transmission yet fails to match NIPA for the reflected light and only
slightly outperforms TIPA in this respect. This is a deterioration of NTIPA’s applicability
and might be explained with the highly structured cloud top height. As the primary
parameterization is TIPA, these structures cause rather large errors, see below, which the
succeeding convolution is unable to smooth and diminish any further.
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(a) Histogram of ∆T and ∆R of IPA.
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(b) Histogram of ∆T and ∆R of TIPA.
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(c) Histogram of ∆T and ∆R of NIPA.
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(d) Histogram of ∆T and ∆R of NTIPA.

Figure 5.20: Histograms of ∆T and ∆R of IPA, TIPA, NIPA and NTIPA for the modified
I3RC Phase 1 Case 3 Experiment 2.

Concerning the scaling behavior, values of the maximum residual errors for averaging
kernels of four different edge lengths are given in Table 5.18. As for the transmitted light,
NTIPA produces significantly smaller errors than TIPA without averaging while both result
in the same error for 35 pixels edge length of the averaging kernel. The first result might
not have been expected judging from the rather small differences indicated in Table 5.17
for the 5% error threshold. The same is true for IPA and TIPA with the reflected light,
see Table 5.18. Here, TIPA produces significantly smaller maximum errors for one and
five pixels averaging edge length while judging from Table 5.17 both seem to be equal.
Similarly, Table 5.17 suggests that NIPA is by far superior to NTIPA with respect to
reflection, but Table 5.18 puts this finding into perspective.
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Table 5.17: Comparison of the pixel fractions for a 5% and 10% error threshold of T and R
for both IPA and NIPA for Experiment 2 of the modified I3RC Phase 1 Case
3.

Model ∆T ≤ 5% ∆R ≤ 5% ∆T ≤ 10% ∆R ≤ 10%

IPA 21% 28% 42% 52%

TIPA 35% 25% 70% 52%

NIPA 26% 44% 55% 75%

NTIPA 37% 29% 72% 60%

Obviously, for slant illumination a mixture of geometric and diffuse effects exists. When
comparing the 2D fields of ∆R for TIPA and NIPA, see Figure 5.21, one notes that the
geometric blurring of the former is strong enough to dissolve any distinct structure of the
cloud which would have been present in the IPA field. It is also evident that the blurring is
directional according to the slant path. Contrary to that, the smoothing exerted by NIPA
is omnidirectional as the convolution kernel is symmetric with regard to both horizontal
directions. This might be an advantage of TIPA over IPA as the TIPA results seem to be
less biased towards the local total optical depth than the ones of IPA in this example. The
last conclusion is also supported by Figure 5.22 which shows ∆R and τ as a function of
the x-coordinate where the position in y-direction is held constant with y=35.

Table 5.18: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max of
IPA and NIPA for edge lengths of one, five, 14, and 35 pixels for Experiment
2 of the modified I3RC Phase 1 Case 3.

Model |∆T |(1) |∆T |(5) |∆T |(15) |∆T |(35)

IPA 74% 62% 44% 34%

TIPA 45% 32% 20% 15%

NIPA 84% 29% 26% 23%

NTIPA 31% 20% 17% 15%

|∆R|(1) |∆R|(5) |∆R|(15) |∆R|(35)

IPA 53% 42% 29% 24%

TIPA 38% 31% 29% 26%

NIPA 30% 24% 23% 18%

NTIPA 37% 29% 27% 25%



126 5. Application of the Methods and Results

20 40 60 80 100 120
x-axis No. of pixel

20

40

60

80

100

120

y-
ax

is
 N

o.
 o

f p
ix

el

Abs. Difference in R

20 40 60 80 100 120
x-axis No. of pixel

20

40

60

80

100

120

y-
ax

is
 N

o.
 o

f p
ix

el

  -0.35

  -0.30

  -0.25

  -0.20

  -0.15

  -0.10

  -0.05

   0.00

   0.05

   0.10

   0.15

   0.20

   0.25

   0.30

   0.35

   0.40

 

(a) 2D field of ∆R for TIPA.
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(b) 2D field of ∆R for NIPA.

Figure 5.21: 2D fields of ∆R for TIPA and NIPA of Experiment 2 of the modified I3RC
Phase 1 Case 3.
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Figure 5.22: Total optical depth and ∆R of IPA as function of the x-coordinate in y=35
for Experiment 2 of the modified I3RC Phase 1 Case 3.

When observing the same feature for TIPA and NIPA, see Figure 5.23, it is easily recognized
that the pattern TIPA produces fundamentally differs from the one of NIPA. Although
that has been demonstrated numerous times, it is worth mentioning as almost the same
structure as for TIPA is yielded by NTIPA, not shown here, meaning that the geometric
blurring dominates the diffuse one in case of NTIPA. One has to keep in mind that this
conclusion only applies to the chosen approximations in this specific example. The real
effects in the cloud might be different and should be investigated in conjunction with a
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(a) τ and ∆R for TIPA.
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(b) τ and ∆R for NIPA.

Figure 5.23: Total optical depth and ∆R for TIPA and NIPA as a function of the x-
coordinate in y=35 for Experiment 2 of the modified I3RC Phase 1 Case
3.

model realistically treating diffuse horizontal transport. As for the domain averages, no
parameterizations stands out, errors are about 3% for all of them.
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5.2.2 Medium Resolution Cloud

Example 4: INSPECTRO stratocumulus

The optical properties of this medium resolution cloud have been kindly provided by A.
Kniffka and are based on data derived during the INSPECTRO campaign, for details see
the INSPECTRO Webpage (2002). This cloud scene is the upper right part of the scene
used for the RTPT experiment presented on page 96. The optical properties of the cloud
,which comprise Rayleigh scattering, aerosol scattering and absorption, cloud scattering
and absorption, and gaseous absorption of NO2 and O3, all characteristic for a wavelength
of 550nm, are defined on 100× 50× 75 grid cells. The domain reaches up to 60000m and
has a horizontal resolution of 200m. For further details concerning the derivation of the
optical properties see page 96. The resulting optical depth is shown in Figure 5.24.

10 20 30 40 50
x-axis No. of pixel

20

40

60

80

100

y-
ax

is
 N

o.
 o

f p
ix

el

Total optical depth

10 20 30 40 50
x-axis No. of pixel

20

40

60

80

100

y-
ax

is
 N

o.
 o

f p
ix

el

   0.00
   2.00
   4.00
   6.00
   8.00
  10.00
  12.00
  14.00
  16.00
  18.00
  20.00
  22.00
  24.00
  26.00
  28.00
  30.00
  32.00
  34.00
  36.00

 

Figure 5.24: Total optical depth of the INSPECTRO Sc cloud. The scene consists of
100× 50 pixels with a horizontal resolution of ∆x = ∆y = 200m.

The cloud field is highly structured and has a mean optical depth of 〈τ〉 = 4.3 with
τmax = 34.0 and τmin = 0.141. In the vertical, the cloud forms a geometrically thin deck
located between 1425m and 1725m.

Experiment 1: µo = 1.0, ϕo = 0◦, A = 0.0

As usual, the investigation is started with the pure diffusion. The histograms for both
IPA and NIPA are shown in Figure 5.25. The size of the kernel was set to 25 × 25 pixels
≡ 5000m× 5000m due to the increased horizontal resolution. One recognizes a sharp peak
at about an error of −0.15 for the reflection of IPA. Although this peak is missing for NIPA,
the distributions there show a more bimodal character, and NIPA reduces the maximum
and minimum errors of the transmitted light which are nearly cut in half. However, NIPA
does not significantly diminish the maximum errors for the reflected light. Yet, although
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the peak contributes to the errors of R below 5%, differences between IPA and NIPA are
rather larger compared to their counterparts of the transmitted light, see Table 5.19.
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(a) Histograms of ∆T and ∆R of IPA.
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(b) Histograms of ∆T and ∆R of NIPA.

Figure 5.25: Histograms of ∆T and ∆R of IPA and NIPA for Experiment 1 of the IN-
SPECTRO cloud.

Table 5.19: Comparison of the pixel fractions for error thresholds of 5%, 10%, 15% and
25% of T and R for both IPA and NIPA for Experiment 1 of the INSPECTRO
cloud.

Model ∆T ≤ 5% ∆T ≤ 10% ∆T ≤ 15% ∆T ≤ 25%

IPA 7% 17% 34% 72%

NIPA 10% 40% 78% 100%

∆R ≤ 5% ∆R ≤ 10% ∆R ≤ 15% ∆R ≤ 25%

IPA 11% 22% 67% 84%

NIPA 21% 48% 82% 95%

Regarding the scaling behavior, see Table 5.20, differences are notable, yet not extraor-
dinarily large. However, one has to remark that considerable areas have to be used as
averaging kernels to finally yield convergence between IPA and NIPA. The large residual
errors of NIPA at this resolution show that it is not able to completely dissolve the primary
IPA error structures.
This feature becomes more obvious when comparing ∆T for both IPA and NIPA along
the transection in x-direction at y=95, see Figure 5.26. One recognizes in Figure 5.26(a)
and Figure 5.26(b) the distinct gradients of the errors which appear in direct vicinity of
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gradients of the optical depth. Although in case of NIPA the jumps and drops have reduced
magnitudes compared to IPA, a ragged behavior still persists even in the cloud gaps due
to the horizontal transport which is unaccounted for by NIPA.

Table 5.20: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max

for edge lengths of 5, 15, and 29 pixels for IPA and NIPA for Experiment 1 of
the INSPECTRO cloud.

Model |∆T |(5) |∆T |(15) |∆T |(29) |∆R|(5) |∆R|(15) |∆R|(29)

IPA 30% 17% 5% 49% 25% 10%

NIPA 22% 13% 4% 41% 21% 10%
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(a) τ and ∆R for IPA.
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(b) τ and ∆R for NIPA.

Figure 5.26: Total optical depth and ∆T of IPA and NIPA as a function of x in y=95 for
Experiment 1 of the INSPECTRO cloud.

The result can be interpreted as a hint that NIPA loses its ability to smooth out errors if
the horizontal resolution is in the range of the smoothing scale and the optical depth has
significant horizontal gradients.

Experiment 2: µo = 0.5, ϕo = 0◦, A = 0.0

Although the vertical structure of this cloud is limited, in this example IPA suffers from the
largest errors concerning the transmitted light due to its strong horizontal inhomogeneity.
In order to illuminate this feature, the cumulative distributions of ∆T and ∆R for IPA
and NTIPA are depicted in Figure 5.27. Similar results are obtained for NIPA and TIPA.
NTIPA reduces not so much the maximum errors of the reflected light, these are just
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diminished by several percent, but influences more the lower parts of the distribution. Yet,
for the transmitted light the improvement is remarkable cutting the maximum error in
half. This fact is especially noteworthy as the maximum error of IPA for the transmitted
light slightly exceeds unity. This is only possible if at the respective position the local
photon balance violates the law of energy conservation as discussed in section 4.1. None
of the developed parameterization approaches can adequately simulate such a surplus of
photons as all of them are based on 1D approaches and explicitly demand and assure energy
conservation even at the local level. However, as stated above, NTIPA at least diminishes
the errors to more favorable magnitudes. To quantitatively assess the performance of all
four approximations the error thresholds for 5%, 10%, 20%, and 30% percent error are
evaluated in Table 5.21.
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(a) Cumulative distributions of ∆T and
∆R for IPA.
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(b) Cumulative distributions of ∆T and
∆R for NTIPA.

Figure 5.27: Cumulative distributions of ∆T and ∆R of IPA and NTIPA for Experiment
2 of the INSPECTRO cloud.

Obviously, even NTIPA struggles in accounting for the 3D effects. However, it manages
to yield results of almost identical quality for both ∆T and ∆R. This is not the case
for any of the other three parameterizations. For transmission the pair IPA and NIPA
has about the same limitations while NTIPA is enhanced by the horizontal diffusion and
therefore yields slightly better results than TIPA. For the reflected light IPA and TIPA
can be grouped together while NIPA and NTIPA are almost identically outperforming the
former. In general, the reflected light seems to be less crucial and prone to 3D effects than
the transmitted light which is as a matter of course heavily affected by geometric effects
at this resolution.
These findings are certainly not unexpected, nevertheless it is a) remarkable that very
serious errors occur at this scale and with that type of cloud and b) nevertheless the overall
performance and relations of the parameterizations are confirmed. The same conclusion is
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Table 5.21: Comparison of the pixel fractions for a 5%, 10%, 20% and 30% error threshold
of T and R for Experiment 2 of the INSPECTRO cloud for all four approxi-
mations.

Model ∆T ≤ 5% ∆T ≤ 10% ∆T ≤ 20% ∆T ≤ 30%

IPA 6% 12% 25% 37%

TIPA 16% 48% 59% 90%

NIPA 10% 19% 32% 39%

NTIPA 19% 44% 76% 96%

∆R ≤ 5% ∆R ≤ 10% ∆R ≤ 20% ∆R ≤ 30%

IPA 8% 16% 36% 90%

TIPA 9% 19% 43% 91%

NIPA 17% 36% 77% 98%

NTIPA 19% 38% 77% 98%

valid for the scaling behavior which is omitted for this reason.

To shed some light on the local features of NTIPA ∆T is plotted as a function of x in y=95,
see Figure 5.28. Again, the spatial correlation of cloud gaps coincides with significant
variations of the errors in case of IPA. As for NTIPA, several distinct peaks are obvious in
the “radiative luff” of the clouds. NTIPA strongly overestimates the exact 3DMC result
in these areas. This might be caused by insufficiently modeled horizontal transport which
is not able to successfully diminish the downwelling light. Changing the edge length of the
convolution kernel has no significant influence on this feature as it is inherent in TIPA, not
shown here. One way to alleviate this problem might be a more accurate NIPA, namely a
convolution with vertically variable kernel.

To further investigate this feature, the vertical profiles in position (13,95) from the bottom
of the atmosphere to 5000m of the net flux-density of NTIPA and 3DMC are shown in
Figure 5.29(a). NTIPA overestimates only the flux directly at the ground. However,
NTIPA quite accurately models the bow of the net flux-density below the cloud, but starts
the previously addressed unsteady ragged behavior above cloud top. It has to be noted
that this feature, which stems from the discretization errors of the upwelling flux, persists
till TOA is reached. The downwelling flux, not shown, does not seem to be affected.
Although both effects heavily deteriorate the results of NTIPA, the IPA result is by far
more unrealistic leaving an almost vertically constant net flux-density of about 0.43Wm−2

in this pixel. In Figure 5.29(b) the same profiles are shown for pixel (12,95) demonstrating
that the overestimation of the downwelling flux is a spatially limited error which Figure
5.28(b) already suggests.

To conclude the discussion of this example, the domain averages of T and R are given in
Table 5.23. IPA and NIPA again yield superior results, even so local values are strongly
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erroneous. The reason why TIPA and NTIPA are not able to at least match the accuracy
of IPA remains unclear.
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(a) τ and ∆R for IPA.
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(b) τ and ∆R for NTIPA.

Figure 5.28: Total optical depth and ∆T of IPA and NTIPA as a function of x in y=95
for Experiment 2 of the INSPECTRO cloud.
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(a) Profile of the net flux-density in pixel
(13,95).
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Figure 5.29: Vertical profiles of the net flux-density of 3DMC and NTIPA in pixels (13,95)
and (12,95), both with τ = 0.141, of Experiment 2 of the INSPECTRO cloud.
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Experiment 3: µo = 0.5, ϕo = 0◦, A = 0.1

In this example a surface albedo of 10% is applied. All other parameters remain unchanged.
The error thresholds for five, ten, 20, and 30 percent error are given in Table 5.22. Generally
speaking, results and conclusions concerning this feature are maintained if compared to
Experiment 2. However, TIPA shows some mixed characteristic which can be observed in
the values for T (10%) and R(20%) where the former is worse and the latter better than in
Experiment 2.

Table 5.22: Comparison of the pixel fractions for a 5%, 10%, 20% and 30% error threshold
of T and R for Experiment 3 of the INSPECTRO cloud for all four approxi-
mations.

Model ∆T ≤ 5% ∆T ≤ 10% ∆T ≤ 20% ∆T ≤ 30%

IPA 6% 12% 25% 37%

TIPA 16% 32% 58% 88%

NIPA 10% 19% 32% 40%

NTIPA 19% 43% 74% 95%

∆R ≤ 5% ∆R ≤ 10% ∆R ≤ 20% ∆R ≤ 30%

IPA 7% 15% 40% 87%

TIPA 10% 21% 64% 94%

NIPA 15% 31% 67% 95%

NTIPA 16% 42% 84% 98%

As for domain averages, see Table 5.23, the relationships of Experiment 2 are qualitatively
maintained. Conclusively it can be said this experiment supports the results of Example
3 on page 114, and TIPA and NTIPA yield meaningful results.

Table 5.23: Domain averaged results for Experiment 2 and 3 of the INSPECTRO cloud
for all models.

Experiment 2 Experiment 3

Model T̄ R̄ T̄ R̄

3DMC 0.625 0.309 0.645 0.286

IPA and NIPA 0.628 0.306 0.642 0.289

TIPA and NTIPA 0.614 0.319 0.629 0.301
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5.2.3 Coarse Resolution Clouds

Example 5: DAQUA cloud

The data of this cloud field was kindly provided by F. Ament, University of Bonn, and
has been generated during the DAQUA project. This project aims at the improvement of
short range quantitative precipitation forecasting with high resolution weather prediction
models, see DAQUA Webpage (2004). As a result, output from a number of model runs
of the LM featuring several distinct convective cloud structures were made available to the
author. One of those was chosen for the presented example. The generation of the optical
properties from the provided thermodynamic quantities during an offline calculation of the
2-stream module is described in section 2.4 on page 26.

To limit the computational time of the simulation, only a section of the original cloud
field was used. It comprises 171 × 101 × 35 cells with a horizontal resolution of 2.8km.
The 2D field of the total optical depth for this case is depicted in Figure 5.30. A wide
spectrum of optical depths is covered reaching from τmin = 0.086 to τmax = 179.8 with
〈τ〉 = 14.85. Particularly remarkable are the isolated spots of extreme optical depths and
the relatively large areas of low to intermediate optical depths. As a matter of course,
both are closely related to the method the LM uses for the derivation of clouds from
thermodynamic properties. The model explicitely forecasts cloud liquid water. In the cells
where this is the case, it is assumed that the cloud completely occupies the cell meaning
that the partial cloud cover is 100% which in turn leads to the maximum values of the
optical depth.
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Figure 5.30: Total optical depth of the DAQUA cloud with 171 × 101 pixels and ∆x =
∆y = 2800m horizontal resolution.

In all other cells where no cloud liquid water is explicitly predicted the cloud optical prop-
erties are derived by a parameterization scheme which uses the current relative humidity,
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the vertical velocity, and other thermodynamic properties to arrive at a partial cloud cover,
a subgrid cloud liquid water content, and subsequently a cloud optical depth.

Experiment 1: µo = 1.0, ϕo = 0◦, A = 0.0

Although the horizontal resolution is 2800m for overhead sun, 3D effects exist as can be
gathered from Figure 5.31. The reflected light computed by IPA is more affected by 3D
errors than the transmitted light. However, NIPA calculations cannot be employed as only
the IPA results are regained. This can be understood by the fact that even the smallest
kernel, 3×3 pixels ≡ 8.4km×8.4km, is already that large that the Gaussian distributions,
see equation 4.6 and Figure 4.17, have declined to a value at the edges of the center pixel
which is numerically zero. As a result, the center pixel is assigned with the weight of
approximately one which makes NIPA reproduce the IPA results.
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Figure 5.31: Histograms of ∆T and ∆R of IPA for Experiment 1 of the DAQUA cloud.

In order to parameterize horizontal diffuse transport effects different techniques seem to be
necessary in order to associate the pixels with sub scale information which might be used
to approximate horizontal transport across cell boundaries.
Figure 5.32 depicts the scaling behavior of the maximum and minimum residual errors of R
and T of IPA for different sizes of averaging kernels. One can observe a rapid decline with
increasing edge length of the averaging kernel for both |∆R|max and |∆T |max. However,
the steep slope is followed by a very slow decline for large edge lengths. While this seems to
be reasonable, interestingly the residual errors associated with this slow decline still mount
up to several percent. For example, |∆R|max(s = 53.2km) = 0.148 and |∆T |max(s =
53.2km) = 0.027.
These maximum errors especially for the reflected light are certainly remarkable. It has to
be noted that a total of 1.0 ·107 photons was used for the 3DMC calculation. Judging from
the domain averages, see Table 5.27, the results fit very well with errors of less than one
percent. However, it can be argued whether the number of photons employed is sufficient.
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To this end, the data was compared with another 3DMC simulation with 1.3 ·108 photons.
The results of the individual pixels of course change, yet |∆R|max(s = 53.2km) = 0.145 and
|∆T |max(s = 53.2km) = 0.024 remain almost the same. The relatively large error of ∆Rmax

for large averaging kernels seems to hint at a physical explanation of the phenomenon rather
than at a numerical one.

20 40 60 80 100
Number of pixels

0.0

0.1

0.2

0.3

0.4

||∆
T|

| m

Max
Min

(a) Scaling behavior of |∆T |max,min as a
function of edge length.

20 40 60 80 100
Number of pixels

0.0

0.2

0.4

0.6

0.8

||∆
R

|| m

Max
Min

(b) Scaling behavior of |∆R|max,min as a
function of edge length.

Figure 5.32: Coarse grained moving averages of |∆T |max,min and |∆R|max,min as functions
of edge length of the averaging area for Experiment 1 of the DAQUA cloud.
For the 3DMC a total number of 1.0 · 107 photons was used.

As a result, it must be assumed that the transmitted light is affected by 3D effects to
a minor extent while the reflected light is strongly affected. To further investigate this
phenomenon as a second experiment the solar zenith angle is set to µo = 0.5 which makes
is possible to employ TIPA and IPA.

Experiment 2: µo = 0.5, ϕo = 0◦, A = 0.0

The slant illumination of the cloud scene in this experiment leads to large errors in several
pixels for the transmitted light computed by IPA, see Figure 5.33(a). Maximum and
minimum errors for the transmitted light are−1.26 and 0.74. Errors larger than unity again
stem from a local photon gain due to 3D effects. This results in a surplus of downwelling
radiation compared to the incoming radiation at the top of the domain which is the IPA
unable to account for. However, both distributions for ∆T and ∆R have Gaussian shape
and are centered around zero. TIPA significantly reduces the errors of the transmitted light,
see Figure 5.33(b). Maximum errors of the reflected light deteriorate while the peaked
Gaussian shape of the distribution is only maintained for the transmitted light. TIPA
returns for the reflected light a wider and far less pronounced and centered distribution.
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(a) Histograms of ∆T and ∆R of IPA.
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(b) Histograms of ∆T and ∆R of TIPA.

Figure 5.33: Histograms of ∆T and ∆R of IPA and TIPA for Experiment 2 of the DAQUA
cloud.

Both aforementioned features result in the values for the error thresholds of five, ten, and
20 percent presented by Table 5.24. TIPA can only improve the transmitted light by several
percent, the large outliers of IPA mainly contribute to errors beyond 20%, but TIPA also
falls significantly back behind IPA for the reflected light. Moreover, although the errors
of the transmitted light are by far larger than the ones for the reflected light, the area
associated with significant errors of the latter outnumbers the one of the former. This
result might not have been obvious from the pure investigation of the histograms.

Table 5.24: Comparison of the pixel fractions for a 5%, 10% and 20% error threshold of T
and R for Experiment 2 of the DAQUA cloud for IPA and TIPA.

Model ∆T ≤ 5% ∆T ≤ 10% ∆T ≤ 20%

IPA 47% 72% 89%

TIPA 50% 77% 95%

∆R ≤ 5% ∆R ≤ 10% ∆R ≤ 20%

IPA 27% 50% 77%

TIPA 18% 36% 65%

Similar to Experiment 1 even for large averaging kernels significant differences prevail
between 3DMC and IPA, respectively TIPA. The relevant information has been compiled
in Table 5.25 for an edge length of one, five, and 19 pixels. The large errors for transmission
have already been briefly addressed. TIPA can cut them roughly in half, and this ratio
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persists for the shown averaging kernels. For the reflected light the un-averaged maximum
residual errors are about the same for IPA and TIPA while for all other averaging kernels
IPA can achieve an advantage of 10%. Both values of |∆T |max and |∆R|max for IPA
and TIPA suggest as in Experiment 1 a remaining non-statistical error associated with
the residual 3D effect. In order to further explore its relation with the cloud field, the
dependence of the locations of the errors on the geometrical height of cloud base and top
are briefly investigated.

Table 5.25: Comparison of the coarse grained moving averages of |∆T |max and |∆R|max

for edge lengths of one, five, and 19 pixels of IPA and TIPA for Experiment 2
of the DAQUA cloud.

Model |∆T |(1) |∆T |(5) |∆T |(19) |∆R|(1) |∆R|(5) |∆R|(19)

IPA 126% 41% 12% 57% 39% 16%

TIPA 65% 22% 7% 60% 49% 27%

(a) Cloud top height of the DAQUA cloud. (b) 2D field of ∆R of IPA for Experiment 2
of the DAQUA cloud.

Figure 5.34: Cloud top height and ∆R of IPA for Experiment 2 of the DAQUA cloud. The
criteria for an encounter of cloud matter was g > 0.8, ωo > 0.95 and τ > 0.9.
For the optical depth see also Figure 5.30.

In Figure 5.34(a) and 5.35(a) the 2D fields of the lowest cloud bases and the highest cloud
tops are depicted. To deduce this information, it was assumed that a cloud is encountered
in a cell if the asymmetry factor is larger than 0.8, the single scattering albedo is larger
than 0.95, and the pixel under consideration has an optical depth in excess of 0.9. One
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recognizes, for both the cloud base and cloud top, a rather inhomogeneous structure where
clear sky areas, low and high clouds alternate in close vicinity. It has to be noted that the
difference between both figures does not necessarily yield the cloud geometric thickness as
only the first and the last encounter of clouds in the vertical has been counted according to
the aforementioned criteria, and the vertical space between lowest cloud base and highest
cloud top is not necessarily completely filled with cloud matter.

(a) Cloud base height of the DAQUA cloud. (b) 2D field of ∆T of IPA for Experiment 2
of the DAQUA cloud.

Figure 5.35: Cloud base height and ∆T of IPA for Experiment 2 of the DAQUA cloud.
Criteria as for Figure 5.34. See also Figure 5.30.

Nevertheless, some interesting features are worth mentioning. Maximum errors of the
reflected light occur in regions of transitions between clear sky areas and cloudy pixels,
as well as in regions of disrupted cloud top heights. One example for this feature has
been marked with “R1” in both Figure 5.34(a) and 5.34(b). Furthermore, large errors are
assigned with variations of the cloud top height ranging from several hundreds of meters
to several thousand meters and within small clear sky areas. The larger clear sky areas,
see area “R2”, are less erroneous as these seem to act as plan-parallel areas themselves and
large errors occur predominantly at the fringes.
As for the transmitted light, the error patterns are less pronounced and large errors occupy
only a small number of pixels, see Figure 5.35(b). The explanation of this characteristic
is analogous to the one given for the reflected light. The area marked with “T1” features
some pixels of very large errors. These can be connected with variations of the cloud
base height of several thousand meters, see Figure 5.35(a). Large clear sky areas are less
affected by errors compared to the reflected light but also have a small fringe of larger
errors, see area “T2”. Maximum errors occur in region “T3”. Although located directly
at the boundary and thus being artificial, this area gives a good example as cloud base
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heights vary significantly due to the periodic boundary conditions. Similar features and
characteristics can be found for TIPA. By comparing Figure 5.35(a) and 5.34(a), it is also
evident that in the regions discussed the variations of cloud top and cloud base height are
correlated to a certain degree. As a result, at least for the transmitted light a superposition
of the influences of both is likely.

Table 5.26: Vertical coordinate for the DAQUA cloud.

Level Height in m Level Height in m Level Height in m Level Height in m

1 0.0 11 1461.85 21 5566.94 31 13630.05

2 67.71 12 1719.99 22 6147.36 32 14977.85

3 153.02 13 2016.33 23 6768.02 33 16567.65

4 256.36 14 2354.33 24 7435.49 34 18464.05

5 378.33 15 2727.09 25 8158.13 35 20782.75

6 519.59 16 3126.76 26 8924.55 36 23590.75

7 680.99 17 3556.36 27 9717.9

8 854.29 18 4019.46 28 10567.25

9 1040.1 19 4506.87 29 11484.25

10 1239.11 20 5021.53 30 12484.25

The reason for the strong and abrupt variations of both cloud base and more significantly
cloud top might be not so much a true physical variation but could also stem from the
structure of the LM’s coordinate system. One can gather from Table 5.26, which shows
the vertical coordinate for the presented example, that at low levels the z-increments are
rather small but later, above 3000m, quickly increase to several hundreds of meters. Thus,
in vertical regions where predominantly the cloud tops of vertically extended clouds are
located a variation of the cloud top of one vertical index is assigned to a local depression
or curvature of the cloud. Hence, an increased number of coordinate levels or even an
adaptive scheme might be desirable but difficult to implement.

During the explanation of the derivation of the cloud optical properties in section 2.4, it has
been mentioned that explicit cloud ice has been neglected due to technical difficulties and
that the exact synoptic situation has only little relevance for these case studies. However,
although explicit cloud ice is not included, implicit cloud ice is generated by the RT module
due to a parameterization scheme involving the partial cloud cover, see above. This implicit
cloud ice is responsible for the very high cloud tops. One can argue that the inconsistent
treatment of the cloud ice makes it difficult to interpret the above mentioned structures.
Yet, the 2D fields of the total cloud cover which are directly deduced from the original
model output and thus unaffected by the inconsistent treatment, show the same patterns
of variations as for example in area “R1”. This finding implies that neglecting the explicit
cloud ice does not significantly alter the results and conclusions in this respect.
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To finish this experiment in Table 5.27 the domain averaged results are given. For both
approximations errors slightly exceed one percent with TIPA being insignificantly more
precise.

Table 5.27: Domain averaged results for Experiment 1 and 2 of the DAQUA cloud for all
models. For Experiment 1 TIPA was not applicable.

Experiment 1 Experiment 2

Model T̄ R̄ T̄ R̄

3DMC 0.570 0.393 0.427 0.535

IPA 0.562 0.401 0.415 0.547

TIPA – – 0.416 0.546
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Example 6: QUEST cloud

In order to confirm the results of the DAQUA cloud another coarse resolution cloud has
been investigated. This cloud was deduced in the same manner as the DAQUA cloud, yet
the original data was generated within the project QUEST. This project focuses on the
quantitative assessment of precipitation forecasts using remote sensing observations, see
QUEST Webpage (2005). The generated LM data has been kindly provided by Nicole van
Lipzig from the University of Leuven, then at the University of Munich, and features like
the previous example a mixture of stratified and convective cloud structures.
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Figure 5.36: Total optical depth of the QUEST cloud. The domain is 241 × 259 pixels
large with ∆x = ∆y = 2800m.

Just as Example 5, the data actually used is only a subset of the full model domain but
still consists of 241 × 259 × 35 grid cells with a horizontal resolution of 2.8km. In Figure
5.36 the 2D field of the total optical depth is depicted. It contains some speckled areas of
even larger optical depth than in the previous example. It has τmax = 317.6, τmin = 0.062
and 〈τ〉 = 18.3.

Experiment 1: µo = 1.0, ϕo = 0◦, A = 0.0

As in previous examples, even for overhead sun significant 3D effects exist which is shown
by the histograms in Figure 5.37. Although ∆T is again more nicely Gauss-shaped than
∆R, maximum errors of the transmitted light have indeed risen compared to Experiment
1 of the DAQUA cloud. With absolute values of |∆T |max = 0.6 and |∆R|max = 0.65, both
are now of about the same magnitude.
Table 5.28 again shows the pixel fraction for error thresholds of five, ten, and 20 percent.
The pixels associated with transmission errors exceeding 20% are singular and far less
numerous than the errors of the reflected light. This was already implicitly contained in
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Figure 5.37: Histograms of ∆T and ∆R of IPA for Experiment 1 of the QUEST cloud.

the histograms. Concerning the scaling behavior, previous results are again confirmed.
Table 5.28 also lists the maximum residual errors of both transmission and reflection for
averaging edge lengths of one, five, and 19 pixels. As before, the maximum residual errors
decay for the transmitted light by far faster than for the reflected light. A discussion of
the heights of cloud top and cloud base leading to these effects is postponed to Experiment
2, yet individual pixels are investigated by means of Figure 5.38. There the individual
results of 3DMC and IPA are plotted together. From Figure 5.38(a) it is obvious that the
large errors of T do not result from an extremely large spread of the values but rather
from some very large outliers where even for overhead sun a transmission in excess of 1.0
is reached while IPA gets only close to 1.0. Opposed to that the reflected light seems to be
that strongly affected by 3D effects that almost for any increment of exact 3D values the
whole range of (wrong) IPA results is returned. The 3DMC calculation employed 1.3 · 108

photons which leads again to marginal domain averaged errors of less than one percent,
see Table 5.30.

Table 5.28: Comparison of the pixel fractions for a 5%, 10% and 20% error threshold
of T and R (upper part) and coarse grained moving averages of |∆T |max and
|∆R|max for edge lengths of one, five, and 19 pixels (lower part) for Experiment
1 of the QUEST cloud for IPA.

∆T ≤ 5% ∆T ≤ 10% ∆T ≤ 20% ∆R ≤ 5% ∆R ≤ 10% ∆R ≤ 20%

76% 93% 99% 31% 56% 84%

|∆T |(1) |∆T |(5) |∆T |(19) |∆R|(1) |∆R|(5) |∆R|(19)

60% 13% 3% 65% 43% 16%
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(a) Comparison of transmission values of
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Figure 5.38: Comparison of transmission and reflection values of IPA with 3DMC for Ex-
periment 1 of the QUEST cloud.

Experiment 2: µo = 0.5, ϕo = 0◦, A = 0.0

The transmitted light calculated by IPA is again affected by very large errors exceeding 1.0
by far while TIPA still suffers from significant errors yet successfully eliminates the very
large outliers of IPA, see Figure 5.39. As before, the distributions of TIPA are less peaked
than the ones of IPA and in case of the reflected light also contain larger errors.
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(a) Histograms of ∆T and ∆R of IPA.
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(b) Histograms of ∆T and ∆R of TIPA.

Figure 5.39: Histograms of ∆T and ∆R of IPA and TIPA for Experiment 2 of the QUEST
cloud.
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Table 5.29 demonstrates that TIPA can gain only an advantage of several percent with
regard to the transmitted light for the error thresholds of 10% and 20%. For the reflected
light previous impressions are confirmed. TIPA fails to match IPA which in turn is not
able to deliver satisfactory results as large portions of the domain are affected by errors
over 10%.

Table 5.29: Comparison of the pixel fractions for a 5%, 10% and 20% error threshold
of T and R (upper part) and coarse grained moving averages of |∆T |max and
|∆R|max for edge lengths of one, five, and 19 pixels (lower part) for Experiment
2 of the QUEST cloud for IPA and TIPA.

Model ∆T ≤ 5% ∆T ≤ 10% ∆T ≤ 20% ∆R ≤ 5% ∆R ≤ 10% ∆R ≤ 20%

IPA 56% 76% 90% 36% 61% 86%

TIPA 52% 79% 95% 25% 48% 75%

|∆T |(1) |∆T |(5) |∆T |(19) |∆R|(1) |∆R|(5) |∆R|(19)

IPA 129% 58% 19% 73% 44% 21%

TIPA 69% 33% 10% 79% 60% 39%

As for the scaling behavior, TIPA shows due to its internal smoothing a more preferable
characteristic which is represented by its ability to cut transmission errors in half compared
to IPA, see also Table 5.29. For the reflected light the conclusion is reversed, here IPA
maintains its advantage as expected, yet the difference between IPA and TIPA is smaller
than for the transmitted light.

In Figure 5.40 the 2D fields of the cloud base height and the distribution of the errors of
the transmitted light for IPA are shown. In region “T1” one notes very large errors which
coincide with a region of relatively narrow clear sky areas and which are surrounded by
cloud base heights of several hundred to several thousand meters. As before, the patterns
are more pronounced for the reflected light, see Figure 5.41 for the 2D plot of the cloud top
height and ∆R for IPA. The regions marked with “R1” and “R2” show that large negative
errors occur in clear sky areas and at the fringes of those whereas large positive errors are
located at cloudy areas where significant changes of the cloud top height occur. The same
conclusions as in Experiment 2 of the DAQUA cloud for the variations of the cloud top
height apply here as well as the vertical coordinate has almost the same structure.

Figure 5.42 depicts the dependence of ∆T and ∆R calculated by IPA on the optical depth.
As for ∆T , largest errors occur at small to intermediate optical depths which confirms the
notion that at cloud fringes maximum errors occur where predominantly changes of the
cloud base height are located. Interestingly, only for negative errors, that is where the
3DMC result is larger than the IPA result, some spread of the values occurs. For large
optical depths errors decline and quickly approach zero. However this is contrasted by the
reflected light.
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(a) Cloud base height of the QUEST cloud. (b) 2D field of ∆T of IPA for Experiment 2
of the QUEST cloud.

Figure 5.40: Cloud base height and ∆T of IPA for Experiment 2 of the QUEST cloud.
Criteria as for Figure 5.34. See also Figure 5.36.

(a) Cloud top height of the QUEST cloud. (b) 2D field of ∆R of IPA for Experiment 2
of the QUEST cloud.

Figure 5.41: Cloud top height and ∆R of IPA for Experiment 2 of the QUEST cloud.
Criteria as for Figure 5.34. See also Figure 5.36.

Although the values show a distinct behavior for small optical depths, large errors occur
over almost the whole range of optical depths covering values from small negative to large
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positive errors. It underlines the above findings that, although the maximum errors of R
are smaller than the ones of T , the overall impact of the 3D effects on the reflected light is
larger. The remarks of the previous example concerning the cloud ice contributions apply
here as well.
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(a) ∆T as a function of the total optical
depth.
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Figure 5.42: Absolute errors ∆T and ∆R of IPA as functions of the total optical depth for
the QUEST cloud.

To conclude the discussion of this experiment, in Table 5.30 domain averaged results are
shown. IPA and TIPA accurately describe the mean results with errors less than one
percent while the differences between both approximations are marginal.

Table 5.30: Domain averaged results for Experiment 1 and 2 of the QUEST cloud for
3DMC, IPA and TIPA. For Experiment 1 TIPA was not applicable.

Experiment 1 Experiment 2

Model T̄ R̄ T̄ R̄

3DMC 0.502 0.461 0.378 0.586

IPA 0.496 0.468 0.369 0.596

TIPA – – 0.368 0.597



Chapter 6

Discussion and Conclusions

The whole is more than the sum of
the parts.

Metaphysica
Aristotle

6.1 Review of the Results

Radiative Transfer Perturbation Theory

In the course of the presented study, an adjoint calculation mode for azimuthally averaged
radiative transfer properties has been implemented in the radiative transfer model DIS-
ORT. Building up on this implementation, the Radiative Transfer Perturbation Theory
(RTPT) has been constructed around the model core. It allows by linearizing the radiative
transfer problem to consider the optical properties as being composed of a base case and
perturbations of this base case. The realized concept permits the base case, as well as
the perturbations, to arbitrarily vary with height. Perturbations include variations of the
scattering and absorption coefficient as well as the phase function expansion coefficients. In
turn, results for the upwelling- and downwelling flux, the net flux-density, and the actinic
flux can be rapidly derived at any computational level separately and independently while
the number of computational streams with a minimum of four is freely selectable.
As this basic concept can only account for perturbations in the linear range around the
base case with reasonable error, an extension in order to employ multiple base cases was
constructed. With the help of the Hermite-interpolation a third order interpolation with
respect to perturbations of the total optical depth between pairs of base cases was realized.
The number and the arrangement of the base cases is freely selectable, the only restriction
is that the maximum and minimum optical depth considered by the perturbation is repre-
sented by one base case each. Within this framework perturbations of the phase function
expansion coefficients are still accounted for linearly. In order to keep all results as flexible
as possible Lambertian surface reflection is included via a superposition approach which
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allows all equations to be solved with respect to vacuum boundary conditions. All of the
above developments have been first realized in a stand-alone version of the model and were
then, after slight alteration according to technical needs, translated into an independent
pixel realization which allows the operation on three-dimensionally variable cloud fields.
For this technical part of the work it can be stated that the developed model is the first
and so far the only one of its kind within the presented complexity. Thus, a flexible and at
the same time comprehensive tool for a comparatively new and innovative way to derive
radiative transfer results has been gained. Tests with the stand-alone model applied to ide-
alized atmospheric columns and perturbations yield promising results especially with the
Hermite-interpolation being able to significantly reduce errors with respect to the results
derived by DISORT in forward mode.
The aim of the application of the completed work to realistic cloud scenes was firstly to
investigate whether reasonable results can be obtained at all and secondly whether the
method has the potential to accelerate the calculation of radiative properties. It turned
out that the applicability with respect to both criteria depends in a complex manner on the
cloud field and the required resolution of the results. Concerning the overall precision of
the method, in general the achieved accuracy depends on the magnitude of the variation of
the optical properties in 3D space. The more uniform for example cloud top and cloud base
are, the more precise the method is as then the interpolation is applied to only internally
variable columns of otherwise the same extent within the cloud. If the cloud field is
very inhomogeneous, broken and if the clouds have a ragged structure results degrade.
This was demonstrated with several high resolution cloud fields where maximum errors
of transmission and albedo assigned to individual pixels range from just a few percent in
case of the former structure to over ten percent for clouds with the latter characteristics.
However, the concept has proven that an application is possible and yields, with the above
remarks in mind, meaningful results. As for the second intention, the possible acceleration
of the radiative transfer computation, it was found that a number of prerequisites have to
be met in order to achieve this aim. First, it is required that the cloud scene is composed
of a sufficiently large number of pixels. This is especially meaningful if the scene is highly
inhomogeneous. In this case, the RTPT has to be applied with several base cases whose
radiative transfer calculations are time consuming and only the rapid execution of the
Hermite-interpolation on a sufficiently large number of pixels can make up for this delay.
Furthermore it is necessary to constrain the number of positions in the columns where
radiative transfer perturbation results are derived to just a few. This is necessary as for
each position in each base case pixel where a result is demanded the adjoint radiative
transfer equation has to be solved. Moreover, the interpolation and the perturbation
integrals with respect to the phase function and the surface albedo have to be evaluated
in each pixel of the domain in this position. If these limitations are observed the method
has proven to be able to gain a significant acceleration of up to a factor of four for one
of the investigated cases, although no importance could be attached to computational
optimization of the developed routines. The actual implementation of the technique and
its implications on the forecast of atmospheric models is yet to be achieved and explored.
Suggestions and hints concerning this point are given in the next section.
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In summary it can be said that the development of the presented technique was successful
and new and important insights in its features related to real world applications have been
gained.

3D Parameterizations

The developed parameterizations for cloud-radiation interactions are composed of two sep-
arate approaches, each tackling a different component of 3D effects, and a combination
of both. The primary parameterization is the Tilted Independent Pixel Approximation
(TIPA) which is based on the tracking of the oblique path the direct light travels within
the atmosphere. Technically, the optical properties are encountered, registered, and subse-
quently stored in a new slant vertical coordinate. This procedure leads to a more realistic
succession of the optical parameters, as encountered by the direct light, compared to the
always vertically aligned order the usual Independent Pixel Approximation (IPA) is based
on and which effectively ignores the geometry of the solar illumination.
This part of the work has been carried out in a computationally simple fashion which per-
mits the straightforward implementation of the new tilted domain in 1D radiative transfer
models. As a new variant of the TIPA, the developed approach is also able to carry out
the inverse transformation meaning that the computed radiative properties in the slant
coordinate system are mapped to the original rectangular Cartesian grid by means of the
information stored during the first processing of the optical properties. By virtue of this
novel feature of this development the method is capable of yielding true 3D resolution of
the results. This way geometric 3D effects like the shifted location of cloud shadows can
be accounted for at the ground and below cloud base.
However, just as the original IPA, this concept as well does not include the estimation
of horizontal exchange of photons between the single columns of the model. As a result,
as a second approximation the concept of the Nonlocal Independent Pixel Approximation
(NIPA) was investigated. With this method it is possible to mimic horizontal radiative
transfer by means of a convolution product of 1D results. However, existing realizations
were not fully autonomous from exact 3D radiative transfer as the parameters of the convo-
lution kernel have to be acquired one way or another. In order to overcome this limitation
a direct yet idealized estimation of the parameters in physical space was introduced in this
study as a novelty. This estimation utilized an analytic solution of a technique termed
diffusion approximation in order to gain the convolution parameters from the radial mo-
ments of this analytic solution. Thus, the whole method becomes independent of any other
information provided by exact 3D models or other approximations and estimates.
Both methods, TIPA and NIPA, are then combined by applying NIPA to the results gained
by TIPA which finally results in the successive approximate consideration of both geometric
and diffuse 3D effects. While similar concepts have been conceived in the past, the new
features mentioned above stand out to some extent as two crucial characteristics which are
indispensable for real world applications are realized and combined for the first time.
Yet, there are certainly some concerns and shortcomings the parameterizations suffer from.
Beginning with the TIPA, it was found that technically the inverse transformation of the
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radiative transfer results works fine, yet leads at times to very ragged vertical profiles.
For most realistic applications investigated here, this shortcoming seems to be restricted
to the upwelling flux above cloud top. The origin of this effect has to be sought in the
independence of the slant columns and in the confinement of one path-tracking per pixel.
While in the slant columns the profiles are smooth and steady, the inverse transformation
arranges results originating from different neighboring slant columns in vertical succession
in the same column in the Cartesian lattice. Thus, radiative transfer results from slant
columns, which in general penetrate different parts of the atmosphere, are mixed. In other
terms, the rough horizontal 2D distribution of radiative quantities, which is also known
to occur with IPA calculations, is partly translated by the inverse transformation into
a vertical roughness. The problem is believed to be most prominent if clouds are first
encountered by the slant path through their sides while encounters of the top are less
crucial. An alleviation of this defect can be partly achieved by the NIPA as it accounts for
the missing horizontal transport. With the investigated idealized clouds it was proven that
indeed NIPA not only improves the 2D results of TIPA but also partly eliminates or at
least weakens the ragged behavior in the vertical. 2D transmission and reflection fields are
already smoothed by TIPA alone as the slant coordinate blurs the rough optical depth field.
With regard to NIPA itself there are also some concerns and assumptions. For the analytic
diffusion solution to exist it is necessary that all optical properties are homogeneously
distributed throughout the convolution kernel. That is achieved by averaging the columns
of the optical properties which are supposed to be covered by the kernel. Although this
seems to be a crude manner, it is justified not only by the demonstrated improvement of
the pure 1D calculations which NIPA can gain but also from fundamental prerequisites for
the diffusion approximation to work.
As mentioned above, the conceptual development was succeeded by some more or less
idealized examples which already shed some light on the main features of the parameteri-
zations. For the realistic validation of the techniques cloud fields from different sources were
selected and classified according to their horizontal resolution. The first group consisted
of high resolution cloud fields where the horizontal resolution is in the range of several
dozens of meters and reaches up to 100m. This range was deliberately chosen to encounter
small scale effects like radiative smoothing. The second class is represented by one cloud
with a horizontal resolution of 200m which is supposed to be the upper limit for dominant
photon diffusion to occur. Lastly, coarse resolution cloud fields from a weather prediction
model with 2800m horizontal resolution have been investigated. While for the preceding
cases a complete application of all parameterization approaches is possible, for the coarse
resolution NIPA and as a result NTIPA as well cannot be used. This results from the large
resolution and the rapid decay of the convolution kernel with radial distance from the
center. All pixels but the center pixel are then occupied by values which are numerically
zero. Thus, in this case NIPA reproduces the IPA values.
A generally valid numerical quantification of the respective impact of each of the param-
eterizations is hard to find. Results are diverse and vary not only from group to group
but also within groups of clouds and even with the same cloud as usually numerical exper-
iments for different solar zenith angles have been carried out. It has to be stressed that
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comparisons of domain averaged results have shown to be no adequate measure to assess
the quality of parameterizations for a given cloud. This follows from the negligibly small
differences these comparisons show. Although that is not entirely a bad result as it at
least shows that mean values are derived almost equally good for any of the approxima-
tions, it requires to focus on more sophisticated parameters. Qualitatively, this has been
achieved by comparing the shape of the error distributions, their cumulative distributions,
and the shape of the decay of the maximum residual errors prevailing in the reflection and
transmission fields after averaging over areas differing in size. On the quantitative side,
those measures are represented by the fraction of pixels which are assigned to errors below
certain thresholds and by the value of the maximum residual errors for a limited set of
averaging areas. Those criteria were believed to be meaningful for the following reasons.
First, the error threshold gives a feasible estimate that permits an atmospheric modeler
to get an impression how strong the impact of the 3D errors might be on the surround-
ing atmospheric model and on the forecasted meteorological variables closely related to
the radiative transfer field. The decay of the maximum residual errors gives in turn an
estimate of the worst error which might be encountered at different scales. This measure
is believed to be meaningful for effects which are sought on a larger scale or area than
the single pixel resolution. Applications might not only be atmospheric models but also
remote sensing instruments whose horizontal resolution is generally larger than the high
and medium resolutions introduced here.

As mentioned above, a statistically reliable result has not been gained yet as the number of
investigated clouds is too small. Despite that, averaged results for the different resolutions
are roughly presented in the following tables. Table 6.1 presents the gain of pixels due to
the different approximations relative to the IPA which have a maximum error of 5% or less
for ∆T and ∆R for all clouds and both solar zenith angles µo = 1.0 and µo = 0.5. The
deduced variable is defined as:

Again(∆P ≤ 5%) = |Apara(∆P ≤ 5%)− AIPA(∆P ≤ 5%)| (6.1)

Table 6.2 shows the reduction of the absolute values of the maximum errors of transmission
and reflection gained by the approximations relative to the maximum absolute error of IPA.
In detail:

∆Pgain
max

=
|∆Ppara

max
−∆PIPA

max
|

|∆PIPA
max

|
(6.2)

where P stands either for R or T and the subscript para refers to TIPA, NIPA or NTIPA.

From Table 6.1 one can learn that for both investigated solar zenith angles the approxima-
tions work best for the high resolution part. For the medium resolution results with regard
to Again(∆T ≤ 5%) deteriorate while Again(∆R ≤ 5%) maintains its performance. For the
coarse resolution cloud fields the application was either not feasible or gained only little
or no improvements. From Table 6.2 a similar yet in detail different conclusion can be
drawn. While again the reduction of the maximum errors is largest for the high resolution
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Table 6.1: Increase in percent of the area affected by errors with 5% or less due to the
developed parameterizations with respect to values gained by IPA related to the
entire domain as defined by rule 6.1. Values for µo = 1.0 and µo = 0.5 are shown.
“n.a.” stands for “not applicable” and “n.i.” stands for “no improvement”
which was assigned if the difference was close to zero or even negative.

Resolution Model Again(∆T ≤ 5%) Again(∆R ≤ 5%)

µo = 1.0

High NIPA 10%− 40% 10%

Medium NIPA 3% 10%

Coarse n.a.

µo = 0.5

High TIPA 20% n.i.

High NIPA 1%− 5% 10%− 15%

High NTIPA 15%− 40% 5%− 10%

Medium TIPA 10% 1%

Medium NIPA 5% 10%

Medium NTIPA 10%− 15% 10%

Coarse TIPA 3%− 4% n.i.

clouds in the medium range, the approximations can keep up their improvement, if there
is any, with respect to ∆Tgain

max
whereas ∆Rgain

max
degrades. For the coarse resolution clouds

this behavior prevails as ∆Tgain
max

is on the level of the medium resolution and ∆Rgain
max

shows

no improvement. It has to be noted that for this highly condensed analysis the overall
subjective judgment of all approximations in combination and both solar zenith angles
was taken into account. These results are certainly somewhat unexpected as one would
have rather expected the coarse resolution to be the least crucial range as the dimensions
and the cloud structure were expected to be closest to the plane-parallel and independent
pixel assumption. However, the details of those clouds seem to contradict these character-
istics. Especially the discussed structure of the cloud top height where large areas form
abrupt staircase-like surfaces seems to add to the unexpected challenges these clouds pose.
Nevertheless, the large spread of values, the singularity of those, and the holes in Tables
6.1 and 6.2 make well clear how necessary a larger series of results is in order to pin down
the range of values and uncertainties in the individual resolutions.
Based not only on Tables 6.1 and 6.2 but also on material presented in Chapter 5 as well
as on material not shown at all, in order not to overload the presentation, a subjective
recommendation of the different approximations for different radiative effects is given in
Table 6.3. To deduce this information two separate categories have been included. First,
“Precision” stands for the preferred choice if in the relation between accuracy and compu-
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Table 6.2: Reduction of the maximum errors by the different approximations with respect
to the maximum errors of IPA as defined by rule 6.2. Values for µo = 1.0 and
µo = 0.5 are shown. “n.a.” stands for “not applicable” and “n.i.” stands for
“no improvement” which was assigned if the difference was close to zero or even
negative. “n.d.” stands for “not definite” and was assigned once as the results
of different clouds were ambiguous.

Resolution Model ∆Tgain
max

∆Rgain
max

µo = 1.0

High NIPA 40%− 50% 20%− 50%

Medium NIPA 50% 13%

Coarse n.a.

µo = 0.5

High TIPA 40% 2%− 30%

High NIPA n.d. 30%− 45%

High NTIPA 60%− 70% 30%− 50%

Medium TIPA 54% n.i.

Medium NIPA n.i. 13%

Medium NTIPA 45% 10%

Coarse TIPA 45% n.i.

tational speed the emphasis is on accuracy. The section “Computational time” should be
considered if for the reader an efficient computation is more valuable. As stated numer-
ous times, this “final verdict” can only be regarded as preliminary due to the statistical
unreliability of the results and is by no means a definite conclusion.

A general comprehensive discussion of 3D effects and the respective dependence of those
on the geometry of the solar illumination, the horizontal and vertical resolution and shape
of the clouds was not the intention of this thesis. To arrive at definite results concerning
this topic the number of clouds and 3DMC results available was certainly not sufficient.
However, from the gained results it is clear that in general for slant solar illumination
3D effects are more prominent than for vertical illumination, which is also documented
by the fact that in those cases the transmission even can exceed unity. Although this
statement is slightly commonplace, the existing 3D effects for overhead illumination are
still surprisingly strong. Concerning the resolution and shape of the clouds the influence
exerted by the coarse resolution clouds on the radiative field was also startlingly strong. As
discussed, this feature mainly results from the areas with irregular shaped cloud top and
bottom. A comprehensive analysis and discussion of 3D effects and their causal dependence
on the mentioned parameters can be found in Gimeno Garćıa (2006).
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Table 6.3: Recommended application of the approximations. Compiled from all resolutions
and solar zenith angles with respect to the criteria precision and computational
time for reflection and transmission. The three lines in each of the two criteria
are referred to in Table 6.4.

Criteria T R

IPA IPA

Precision NTIPA NIPA

NTIPA NIPA

IPA IPA

Computational time TIPA NIPA

TIPA NIPA

Table 6.4: Explanation of the three lines in each criteria in Table 6.3.

Feature

Domain averages

Vertical structure

2D fields

Finally, in order to come full circle it can be stated that several already existing approaches
have been improved, physically enhanced and extended, and combined. Furthermore, the
study has not been limited to one characteristic of the clouds or the radiative properties
but has rather addressed a diverse set of clouds while the investigated results are numerous
and have been illuminated from several views to gain insights in the respective features of
the parameterization approaches.

From the findings of the presented study, it is obvious that from the radiative transfer
point of view an implementation of 3D parameterizations in atmospheric models seems
to be necessary in that the developed, more sophisticated, techniques are better suited
to describe 3D effects than the usual IPA. The illumination of this question was one of
the main purposes of this work. However, the consequences of the 3D effects and their
treatment by the various parameterizations on meteorological quantities were beyond the
scope of this study and are therefore still unclear. Interesting issues do not only touch on
directly cloud related questions like cloud formation and precipitation but might also have
consequences for atmospheric dynamics. To tackle these questions, it is finally inevitable
to implement both the preferred set of parameterizations as well as an exact 3D radiative
transfer model in an atmospheric model. In conjunction with that challenging task not
only the technical implementation has to be carried out carefully, but also several other
pressing issues have to be clarified beforehand. One of them is the validation of the fluxes
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computed by the already embedded 1D RT module with satellite measurements. This work
seems to be necessary to arrive at a first estimate of the 3D effects and to gain confidence in
the correct implementation of the 1D RT module as most applicable 3D parameterizations
would be building up on this part of the model.

An interesting point concerning this issue, especially with regard to large scale models,
is the treatment of partial cloudiness. There does not seem to exist any study detailing
the finest resolution where this concept can still be applied with reasonable justification.
As the resolution of weather prediction models can be expected to reach 1km in the near
future, it is however necessary to be investigated. The validation of the cloud shape and
properties computed by atmospheric models is connected to this problem. At least for
large scale models the realistic prediction of these parameters can be questioned. To do
so, radar and satellite data could provide interesting information for comparisons not only
with existing cloud modules but also with possible new techniques like cloud generators
which might replace the classical microphysical parameterizations.

Finally, if all of these tasks have been at least partly accomplish, a detailed investigation of
the results has to be carried out. In the light of the number of approaches and parameters
available and given the diversity of meteorological situations and the necessary computa-
tional time to operate such a model system, a study of this kind is supposed to be rather
painstaking and tedious. However, until it has been completed most notions about the
feedback of 3D cloud-radiation interactions on atmospheric dynamics and climate remains
speculative.

Another question is the future development of the 3D approximations themselves. As for
the ones developed here, thoughts concerning future studies and the implementation in
atmospheric models are conveyed in the next section. However, it seems to be necessary
and meaningful to carry on with the development of true 3D parameterizations as well.
That means that approximate techniques for the solution of the 3D radiative transfer
equation should replace and/or complement the parameterizations based on 1D models in
the long term. The direct solution of the 3D diffusion equation might emerge as one of the
most promising techniques in this respect. A number of studies and developments have
already been carried out during the past years, see Chen et al. (2005) and Davis (2000).

6.2 Future Research and Improvements

In this section, suggestions for future research and improvements closely related to the
implementation of the methods building up on the achieved results are given.

Radiative Transfer Perturbation Theory

In order to focus on a utilization of the presented techniques it is inevitable to implement
the adjoint mode in an analytical 2- and/or 4-stream radiative transfer model which is part
of an atmospheric model. Pioneer work in this respect has been carried out by Gabriel et al.
(1998). In this context the fully automatic selection of the base cases is also a necessity.
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The realization of this task could be achieved in combination with a criterion which checks
the quality of the selected base cases by analyzing the structure of the optical properties
of the atmosphere. As similar techniques are used in remote sensing an adaption might
be possible. However, this package of tasks is challenging as it would make considerable
restructuring of the model environment necessary to get complete and simultaneous access
to the three-dimensional optical properties. This is usually not the case as the forward
independent pixel approximation does not require the accessibility of 3D optical properties
but rather optical properties in successive 1D columns.
Another involved problem is the perturbation of the phase function. It was shown that
this element of the perturbation is largely responsible for the growing errors in case of
inhomogeneous cloud fields. One aspect of the solution is the incorporation of the base
case phase function in the automatic selection of the base cases, see above. Another
is the treatment of the phase function perturbation itself. In the presented study its
contribution was only added linearly to the interpolated result. However, to significantly
reduce the errors a multivariate interpolation of the base cases in the phase space of the
optical properties seems to be necessary. As the potential application of the RTPT would
be mainly 2-stream models one could limit this problem to two dimensions namely the
perturbation of the total optical depth and the asymmetry factor. Since most of these
measures would consume even more computational time it remains necessary to limit the
number of output levels at which results of the RTPT are derived.
Moreover, to determine whether all these efforts make sense any of the proposed improve-
ments should be preceeded by careful studies. These should comprise the exploration of the
meaningful update interval of the radiative properties which are fed into the atmospheric
model under consideration and the investigation of the reasonable number and positions
of output levels.

3D Parameterizations

The above remarks concerning the 3D availability of the optical properties apply for the 3D
parameterizations as well as both TIPA and NIPA make use of the 3D distribution of op-
tical parameters while preparing the slant optical coordinate and the averaged convolution
kernel, respectively.
Furthermore, both require an adaption to curvilinear coordinate systems as these are state-
of-the-art in most atmospheric models. As for TIPA, that would mean the development
of a more sophisticated tracking of the direct beam. Furthermore, the tracking would be
required to be repeated for each pixel as the structure of the coordinate system generally
would be inhomogeneous itself. Concerning NIPA the implementation might be more
simple as the averaging to gain a homogeneous local domain for the space of each kernel
can be carried out regardless of the coordinate system.
Another problem concerning TIPA, if applied to large scale models, is the treatment of
the solar zenith angle. As these models cover vast areas of the earth, the local solar zenith
angle of the respective geographic area is used. This does not pose a significant problem to
IPA and NIPA, yet for TIPA a multi solar zenith angle variant would have to be developed.
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In this connection close attention has to be paid to the steady derivation of the optical
properties in the slant columns as well as to the contiguous computation of the radiative
results of the inverse transformation.
After all it might be preferable to preceed this work by several case studies of 3D effects
in atmospheric models with the help of Monte-Carlo models as these models have proven
to be able to handle irregularly gridded meshes and variable solar zenith angles.
All of the problems mentioned above rather concern the implementation of the 3D approx-
imations in atmospheric models. However, a number of investigations can be carried out
for the approximations themselves. One approach of modifying TIPA could be the inves-
tigation of other inverse transformations. First steps in this direction have been carried
out during this study. Another approach might be the exploration of different concepts
concerning the tracking of the slant path.
As already mentioned, a more systematic and statistically reliable investigation of the 3D
parameterizations is highly desirable. Special focus should be on the sound study of the
dependence of the results on the solar zenith and azimuth angle for clouds of different
horizontal resolutions as well as on the realistic wavelength dependence of the surface
albedo. Regarding the last point, it would also be preferable to carry out calculations
with realistic 2D values of a larger domain. For this study data was available for the LM
clouds, yet the application was omitted as the 3DMC model was not ready to handle a
2D variable surface albedo. As for the different resolutions, it would be interesting to fill
the gap between 200m and 2800m which could not be investigated during this work. This
range would include both the resolution of existing high resolution mesoscale models as
well as the future resolution of weather prediction models.
With regard to NIPA improvements could be achieved by the implementation of different
convolution kernels. Apart from other technical details worth investigating especially the
Gamma-distribution originally proposed by Marshak et al. (1995) might be more advan-
tageous to use.
Finally, in principle both RTPT and the 3D approximations are combinable. In order to
energetically drive an atmospheric model, it might be sufficient to gain only results at a
few output levels which could be rapidly computed by combining RTPT and NTIPA. As
stated numerous times before, this approach should be preceeded by thorough investiga-
tions whether this reduction of vertical levels for radiative transfer results still leads to
reliable predictions of the meteorological quantities. Moreover, special attention should be
paid to the comparison of the predicted cloud structure and resulting radiative transfer
with measured cloud fields which could be achieved by consulting satellite data. This way
both major problems, the lack of a realistic treatment of 3D RT effects and slow update
rate, which atmospheric models usually suffer from, could be tackled at the same time.
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Appendix A

First Order Perturbation Expansion

The derivation of the linear perturbation formula after Ustinov (1991) is briefly addressed.
The basic equations are restated as:

LI = Q (A.1) LbIb = Qb (A.2) L+
b I+

b = R (A.3)

Multiplying A.3 by Ib and multiplying A.2 by I+
b leads to:

IbL
+
b I+

b = RIb (A.4) I+
b LbIb = QbI

+
b (A.5)

Subtracting A.5 from A.4 and applying the phase space integral 〈·, ·〉 leads to:

Eb = 〈Qb, I
+
b 〉 − 〈I+

b , LbIb〉+ 〈Ib, L
+
b I+

b 〉 (A.6)

Multiplying now A.3 by I and multiplying A.1 by I+
b leads to:

IL+
b I+

b = RI (A.7) I+
b LI = QI+

b (A.8)

Subtraction of A.8 from A.7 and integration leads to:

E = 〈Q, I+
b 〉 − 〈I+

b , LI〉+ 〈I, L+
b I+

b 〉 (A.9)

Finally:

E − Eb = ∆E = 〈I+
b , ∆Q−∆LIb〉 (A.10)

with:

∆Q = Q−Qb

∆L = L− Lb

(A.11)
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Appendix B

Expressions for the Albedo Related
Perturbation Integral

The remaining identities from page 49 are defined as follows:

F1(z) = Fv,b(0) Ξ1(z) ; Fξ1(z) = Ξξ1(z)Fv,b(0)

F2(z) = F+
v,b(0) Ξ2(z) ; Fξ2(z) = Ξξ2(z)F+

v,b(0)

F3(z) = Fv,b(0)F+
v,b(0)Ξs(z) ; Fξ3(z) = Fv,b(0)F+

v,b(0)Ξξ3(z)

Ξ1(z) =

1∫
−1

dµI+
v,b(z, µ)Is,b(z, µ) ; Ξξ1(z) = ξ+

l,v(z)ξl,s(z)

Ξ2(z) =

1∫
−1

dµIs,b(z,−µ)Īb,v(z, µ) ; Ξξ2(z) = ξ+
l,s(z)ξl,v(z)

Ξs(z) =

1∫
−1

dµIs,b(z,−µ)Is,b(z, µ) ; Ξξ3(z) = ξ+
l,s(z)ξl,s(z)

ξl,s(z) =

1∫
−1

dµIs,b(z, µ)Pl(µ) ; ξ+
l,s(z) =

1∫
−1

dµIs,b(z,−µ)Pl(µ)
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Symbols

In the following, the most important symbols, their meaning, and their common units are
listed. “-” stands for “dimensionless” and “variable” was assigned if no definite unit was
applicable. Units in parentheses denote wavelength dependence.

Symbol Meaning Unit

Latin letters

a particle radius µm

ae effective radius µm

c speed of light ms−1

cp specific heat capacity at constant pressure JK−1kg−1

fν photon density m−3sr−1(µm−1)

g asymmetry factor 1

gpart single particle asymmetry factor 1

h Planck’s constant 6.625 · 10−34Js

j emission coefficient m−3s−1sr−1(µm−1)

k wavenumber m−1

dn(a)
da

differential particle number concentration cm−3µm−1

p phase function sr−1

s geometric pathlength m

A surface albedo -

E vector of the net flux-density Wm−2(µm−1)

E effect variable

Fact actinic flux Wm−2(µm−1)

Fo solar constant Wm−2(µm−1)

I intensity Wm−2sr−1(µm−1)

I+ adjoint intensity variable

J source function Wm−3sr−1(µm−1)

Jo source strength Wsr−1(µm−1)

Nc molecular absorbing gas concentration cm−3

Nair molecular air concentration cm−3
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Symbol Meaning Unit

Npart particle number concentration cm−3

Q source term Wm−2sr−1(µm−1)

Q+ adjoint source variable

Qs scattering efficiency -

Qt extinction efficiency -

R reflection -

R response function variable

S solar flux Wm−2(µm−1)

T transmission -

T temperature K

Ud radiative density Wm−2sr−1(µm−1)

Greek letters

θ zenith angle ◦ or rad

θo solar zenith angle ◦ or rad

λ wavelength µm

ρ density kgm−3

ρa absorber density kgm−3

ρl liquid water content kgm−3

ρw water density kgm−3

σa absorption coefficient m−1

σ̂a absorption cross section cm2

σ̂ray Rayleigh scattering cross section cm2

σ̂s scattering cross section cm2

σ̂t extinction cross section cm2

σs scattering coefficient m−1

σt extinction coefficient m−1

τ optical depth -

ϕ azimuthal angle ◦ or rad

ϕo solar azimuthal angle ◦ or rad

χ extrapolation length m

χa mass absorption coefficient m2kg−1

ωo single scattering albedo 1

Θ scattering angle ◦ or rad

Σl liquid water path gcm−2

Ψ pseudo intensity variable

Ω solid angle sr
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Symbol Meaning Unit

Ω direction of propagation -
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Acronyms

Acronym Meaning

3DMC 3D Monte-Carlo

ARM Atmospheric Radiation Measurement

BBC Baltex Bridge Campaign

DAQUA Combined Data Assimilation with

Radar and Satellite Retrievals

and Ensemble Modeling for the

Improvement of

Short Range Quantitative Precipitation Forecasts

DISORT DIscrete Ordinate Radiative Transfer

DiA Diffusion Approximation

DWD Deutscher Wetterdienst/German Weather Service

FIRE First ISCCP Regional Experiment

FW Forward

GCM Global Circulation Model

I3RC Intercomparison of 3D Radiation Codes

IAAFT Iterative Amplitude Adapted Fourier Transform

INSPECTRO Influence of Clouds on the Spectral Actinic Flux in the lower Troposphere

IPA Independent Pixel Approximation

ISCCP International Satellite Cloud Climatology Project

LES Large Eddy Simulation

LIDAR LIght Detection And Ranging

LM Lokal-Modell/Local Model

LMCM Leipzig Monte-Carlo Model

NIPA Nonlocal Independent Pixel Approximation

NTIPA Nonlocal Tilted Independent Pixel Approximation

NWP Numerical Weather Prediction

PPA Plane Parallel Assumption

QUEST Quantitative Evaluation of Precipitation Forecasts
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Acronym Meaning

RADAR RAdio Detection And Ranging

RP Radiative Properties

RT Radiative Transfer

RTE Radiative Transfer Equation

RTPT Radiative Transfer Perturbation Theory

SHDOM Spherical Harmonics Discrete Ordinate Method

ST Strahlungstransport

SZA Solar Zenith Angle

TIPA Tilted Independent Pixel Approximation

TOA Top Of Atmosphere
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T. Trautmann, and A. Macke. Surrogate cloud fields generated with the iterative am-
plitude adapted fourier transform algorithm. Tellus A, 58:104–120, 2006.

http://i3rc.gsfc.nasa.gov/cases_new.html
http://i3rc.gsfc.nasa.gov/I3RC-intro.html


BIBLIOGRAPHY 177
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