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Abstract

In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA)
has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared
(NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to
achieve by existing techniques of pulse amplification basedon standard laser gain media followed
by external compression. Potential applications of few-cycle pulses in the IR have also been
demonstrated.

The NIR OPCPA system produces 0.5-terawatt (10 fs, 5 mJ) pulses by use of noncollinearly
phase-matched optical parametric amplification and a down-chirping stretcher and upchirping
compressor pair.

An IR OPCPA system was also developed which produces 20-gigawatt (20 fs, 350µJ) pulses
at 2.1 µm. The IR seed pulse is generated by optical rectification of abroadband pulse and
therefore it exhibits a self-stabilized carrier-envelopephase (CEP).

In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an
inherent sub-picosecond optical synchronization betweenthe two pulses. This was achieved by
use of a custom-built Nd:YLF picosecond pump pulse amplifierthat is directly seeded with op-
tical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between
the pump and seed pulses is critical for efficient and stable amplification.

Two spectroscopic applications which utilize these uniquesources have been demonstrated.
First, the visible supercontinuum was generated in a solid-state media by the infrared optical
pulses and through which the carrier-envelope phase (CEP) ofthe driving pulse was measured
with an f -to-3f interferometer. This measurement confirms the self-stabilization mechanism of
the CEP in a difference frequency generation process and the preservation of the CEP during
optical parametric amplification. Second, high-order harmonics with energies extending beyond
200 eV were generated with the few-cycle infrared pulses in an argon target. Because of the
longer carrier period, the IR pulses transfer more quiver energy to ionized free electrons com-
pared to conventional NIR pulses. Therefore, higher energyradiation is emitted upon recombi-
nation of the accelerated electrons. This result shows the highest photon energy generated by a
laser excitation in neutral argon.
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Zusammenfassung

Im Mittelpunkt dieser Arbeit steht die Verstärkung von hochenergetischen kurzen Laser-
pulsen im nahen infraroten- und im infraroten Bereich mit optischer parametrischer Breit-
bandpulsverstärkung (OPCPA). Mit herk̈ommlicher Laserverstärkertechnologie ist es m̈uhsam,
ann̈ahernd̈ahnliche Versẗarkungsparameter zu erreichen. In dieser Arbeit sind weiterhin vielver-
sprechende Applikationen von den kurzen infraroten Laserpulsen demonstriert worden.

Mit dem NIR OPCPA haben wir Laserpulse mit 0.5-terawatt Spitzenleistung (10 fs, 5 mJ)
erzeugt. Die Methode beruht auf nichtkollineare phasenangepasste optische parametrische
Versẗarkung und wir haben einen negativ dispersiven Pulsstrecker verwendet um die positive
Dispersion der Glaskompressorblöcke zu kompensieren.

Ein IR OPCPA haben wir zusätzlich entwickelt um 20-gigawatt (20 fs, 350µJ) Pulse im
Wellenl̈angenbereich von 2.1µm zu versẗarken. Optische Gleichrichtung von den breitbandugen
Pulsen wurden eingesetzt um einen ”Seed”-Puls mit selbstabilisierende ”carrier enevelope”-
phase (CEP) zu generieren.

Im IR OPCPA wird eine einzige Laserquelle benutzt um die Pumppulse und die Seedpulse zu
erzeugen. Damit wird eine Synchronisation der beiden Pulsen mit sub-pikosekunden Präzision
erreicht. Um diese Synchronisationsmethode zu testen haben wir einen Nd:YLF Laserverstärker
mit pikosekunden Pulsdauer gebaut und damit direkt die breitbandingen Pulse eines Ti:Sapphir
Oszillators versẗarkt. Diese Synchronisationstechnik macht die optische parametrische Breit-
bandpulsverstärkung f̈ur verschiedene Einsätze robust und zuverlässig.

Mit diesen einzigartigen Laserquellen haben wir zwei Spektroskopieanwendungen demon-
striert. Eine Anwendung ist die Erzeugung eines sichtbarenSupercontinuums im Festkörper.
Das Supercontinuum verwendet man für die Detektion von der CE-Phase derselben Pulse mit-
tels einesf -to-3f Schemas. Diese Messung zeigt Selbststabilisierung der CE-Phase und dessen
Erhaltung ẅahrend des optischen parametrischen Verstärkungsprozesses. Die zweite Anwen-
dung ist die Erzeugung von höheren Harmonischen der infraroten Laserpulseüber 200 eV in
einem Argon-target. Eine höhere ”Quiver”-Energie wird bei den ionisierten Elektronen durch
die längeren Periode des optischen Trägers im Infrarotbereich angeregt. Die Periode des op-
tischen Tr̈agers im Infrarotbereich ist länger als im sichtbaren Bereich, folglich können damit
höherenergetische Harmonische bei Rekombination der beschleunigten Elektronen erzeugt wer-
den. Das ist die ḧochste experimentell je in neutralem Argon lasererzeugte Photonenergie.
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Chapter 1

Introduction

1.1 General introduction

After the first observation of the laser action in ruby [1], the temporal duration of optical pulses
obtained from the laser has been shortened from microseconds, nanoseconds, picoseconds, and
down to femtoseconds based on several techniques such asQ-switching and mode-locking as
well as broadband laser media such as Nd:YAG, Nd:glass, and laser dye. Meanwhile since 1980s,
the ultrafast spectroscopy, made possible by the highly coherent ultrafast laser pulses, has been
established and pursued intensively with ultrafast dye lasers [2]. However, the dye lasers did not
last in use for long due to the fact that they were difficult to handle and were unreliable, before
being replaced by lasers based on Ti:sapphire [3, 4, 5] with chirped pulse amplification (CPA)
[6, 7, 8]. The use of the Ti:sapphire laser with CPA has dominated the field of ultrafast optics and
spectroscopy since the beginning of 1990s. Its reliabilityand easiness to use have enabled many
ultrafast experiments: the real-time observation and coherent control of ultrafast dynamics in
chemical reactions such as nuclear motion [9], the control of chemical reaction [10], multiphoton
absorption by engineered pulses [11], and the dissociationand recombination of chemical bonds
[12]. These works on the ultrafast phenomena have been categorised as ”femtochemistry” [13]
and Prof. A. H. Zewail was awarded the Nobel prize for Chemistry in 1999 for his contribution
to this field.

By the end of the 20th century, at last, further advances in thehigh-energy, ultrashort
Ti:sapphire laser have broken through the barrier of the femtosecond time scale into the attosec-
ond regime [14]. Attosecond pulse generation based on optical high-order harmonics [15, 16]
has brought on a new field of the attosecond optics and enabledthe investigation of the attosec-
ond ultrafast phenomena. The real-time dynamics ranging from a few femtoseconds to many
attoseconds include the X-ray-generated photoelectron emission [17], the real-time observation
of Auger electron decay [18], and the generation of single attosecond pulses with a few-cycle
carrier-envelope phase (CEP) stabilized laser system [19].These works have formed a new field
called as ”attosecond physics” [20, 21]. Although successful attosecond experiments have been
performed exclusively by use of Ti:sapphire laser systems,the limitation of the output energy
from the Ti:sapphire amplifier followed by external broadening in the hollow-core fiber filled
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with a noble gas prevents the extension of the cut-off energyof high harmonics, the generation
of high-intensity attosecond pulses, and the shortening ofattosecond pulses.

To overcome these difficulties, in this thesis, we apply a novel optical pulse amplification
technique, optical parametric chirped-pulse amplification (OPCPA) [22, 23, 24, 25], to the am-
plification of few-cycle high-energy laser pulses. We also demonstrate preliminary high-field
and ultrafast experiments with such laser systems. These experiments include the generation of
visible supercontinuum by infrared pump pulses, a unique CEPdetection based on anf -to-3f
nonlinear interferometry , and the generation of extreme ultraviolet optical high-harmonics with
the photon energy of up to 250 eV.

The topics included in this thesis are summarized as follows

Chapter 1: Review of optical pulse amplification techniques: CPA, OPA, and OPCPA and sys-
tem consideration about an OPCPA system.

Chapter 2: Implementation of a few-cycle, high-energy, near-infrared OPCPA system with
electronic synchronization.

Chapter 3: Application of a reliable all-optical synchronization scheme to a few-cycle, high-
repetition-rate, near-infrared OPCPA system.

Chapter 4: Implementation of a few-cycle, high-repetition-rate, infrared OPCPA system with
optical synchronization.

Chapter 5: Applications of infrared few-cycle pulses:

1. Generation of visible supercontinuum and its application to an f -to-3f nonlinear
interferometry for carrier envelope phase (CEP) detection.

2. Generation of 250-eV optical high harmonics.

In the later sections of Chapter 1, we will introduce the fundamental concept of OPCPA in
comparison to CPA and OPA, and consider the general OPCPA performance and its dependence
on various parameters. In Chapter 2, we describe the construction of a terawatt-class, few-cycle,
high-energy (low repetition rate) near-infrared (around 800 nm) laser system based on OPCPA
[26]. In Chapter 3, a novel optical synchronization scheme without the use of electronics [27],
is proposed and implemented in the OPCPA system. The optical synchronization scheme is
realized by the home-made Nd:YLF regenerative amplifier. This concept is applied to the few-
cycle, high-repetition-rate, near-infrared pulse generation based on OPCPA. In Chapter 4, we
describe the development of an infrared OPCPA system that produces few-cycle, high-energy,
high-repetition-rate infrared optical pulses using an optically synchronized Nd:YLF amplifier.
In Chapter 5, the infrared OPCPA system is applied to the generation of visible supercontinuum
and a novelf -to-3f nonlinear interferometry with the generated white light. This experiment
demonstrates self-stabilization of the CEP in difference frequency generation process and the
preservation of the CEP in the parametric amplifier and the stretcher and compressor pair. An-
other application of the infrared driver to optical high-harmonic generation shows the production
of extreme ultraviolet photons with energies above 250 eV inargon.
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1.2 Optical pulse amplification techniques

In this section, several methods used for amplification of optical pulses are reviewed and com-
pared. These methods include CPA [28, 7], optical parametricamplification (OPA) [29], and
a newly emerging technique, OPCPA [30, 22]. We emphasize features concerning our primary
goal: amplification of broadband optical pulses to the mJ level.

So far high-energy ultrafast laser pulses, a key tool for theultrafast spectroscopy and at-
tosecond spectroscopy, have been produced [31] exclusively by CPA in Ti:sapphire [3, 4, 5].
Furthermore few-cycle, high-energy laser pulse generation used for single attosecond pulse gen-
eration and time-resolved attosecond experiments [32] arerealized by external broadening of
the Ti:sapphire amplifier output pulse in a hollow fiber filledwith a noble gas [33], and external
pulse compression by use of chirped multilayer coated mirrors [34]. With this scheme, few-
cycle, several-hundred-microjoule pulses can be obtainedand are used as a driver source for the
spectroscopic applications mentioned previously in Section 1.1. Such laser sources have resulted
in remarkable progress in high-harmonic generation (HHG),attosecond pulse generation, and
spectroscopy [20, 35, 36]. Demand for shorter attosecond pulse generation, a higher photon en-
ergy up to keV, and higher-energy attosecond pulses for the nonlinear optics in the X-ray calls
for a further upgrade of current laser sources. The energy offew-cycle pulses is limited to less
than the mJ level because of the damage to the hollow-core fiber used for spectral broadening
and the substantial loss due to the strong ionization of the noble gas contained in the fiber. To
scale up the energy of ultrashort pulses, we have to rely on a different technology.

Another amplification technique of few-cycle pulses is OPA.Soon after the demonstration of
the first laser [1], lasers had been used for the investigation of optical nonlinear phenomena such
as second-harmonic generation (SHG) [37], third-harmonicgeneration [38, 39] OPA [29], and
optical parametric generation (OPG) [40]. In the early days, OPA and OPG have served mainly
as sources for tunable radiation. However, later, optical parametric amplifiers have also been
recognized as a promising broadband amplification device. Especially, parametric oscillators [41,
42] and amplifiers [43, 44, 45, 46] using borate crystals [47]and noncollinearly phase-matching
optical parametric interaction (NOPI) [48, 49, 50] have resulted in extensive investigations in
few-cycle pulse generation, and their applications to the ultrafast spectroscopy. Ultrashort optical
pulse amplification relying on NOPA has produced few-cycle,energetic pulses [51], although so
far the energy of the few-cycle pulses obtained by NOPA is limited to the microjoule range. This
energy range is usually suitable for the low-order nonlinear spectroscopy but is not for high-field
physics.

An alternative, newly emerging amplification technique, OPCPA, which combines advan-
tages of CPA and OPA, was first demonstrated in 1986 [30] and successively in 1992 [22]. In
these experiments, the energy of stretched seed pulses was increased substantially in an optical
parametric amplifier pumped by high-energy, long pulses. The energetic stretched pulses were
recompressed in a pulse compressor. This technique had beenleft unnoticed until I. N. Rosset
al. [23] recognized its advantages, showing the possibility ofthe generation of ultrabroadband
high-energy pulses with a 10-petawatt peak power. The advantages include broadband amplifi-
cation enabled by either NOPA or degenerate OPA, less accumulation of nonlinear effects due
to extremely high gain possible in a thin crystal in contrastto a Ti:sapphire laser with CPA [52],
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a negligible thermal load on a nonlinear crystal, and flexibility and the tunability of the gain
spectral range.

At the same time, however, there exist several difficulties such as lack of the pump energy
storage (parametric process), amplified superfluorescence(ASF) [40, 53] analogous to the am-
plified spontaneous emission (ASE) in CPA, and strict phase-matching, whose direction is de-
pendent on the seed wavelength and might result in the spatial dispersion of the amplified beam
and additional difficulty in the alignment of the amplifier. Without the pump energy storage,
one needs to synchronize the pump and seed pulses strictly. This disadvantage is closely linked
to one of its advantages, negligible heat load on the crystal, because the parametric process
enables the exchange of the energy only between optical waves overlapped in time and space
without loading energy in an intermediary nonlinear crystal. The comparison between CPA in
Ti:sapphire and OPCPA using a 532 nm pump laser and noncollinear phase-matching (NCPM)
in β -barium borate (BBO) (detailed descriptions available in Sections 2.3 and 2.4) is summa-
rized in Tab. 1.1. Obviously from the table, the gain bandwidth of OPCPA is much broader than
CPA in Ti:sapphire thanks to NOPA. This is a quite important feature for our aim of few-cycle
broadband pulse amplification. Another advantage of OPCPA isa larger aperture size available

OPCPA (NOPA) CPA in Ti:sapphire
Gain bandwidth > 100 THz at 850 nm ∼ 30 THz at 800 nm
Single-pass gain ∼ 106 ∼ 10
B-integral ([54]) < 1.0 > 1.0
Thermal load on a crystal Negligible Critical in a high-power system
Energy storage No (instantaneous) Yes (∼ µs)
Background emission Amplified superfluorescenceAmplified spontaneous emission
Gain tunability Flexible Fixed by Ti:sapphire

Table 1.1: Comparison of CPA in Ti:sapphire and OPCPA based on NOPA in BBO

for its nonlinear crystal, compared to the small cross section of the hollow-core fiber, in which
the spectrum of the pulses from the laser amplifier is broadened in order to support few-cycle
pulse generation. A BBO crystal can be grown to about 20 mm× 20 mm under the current
technology. Assuming a pump intensity of 10 GW/cm2 and a pump pulse duration of 100 ps, a
BBO can stand a 5-J pump pulse energy, which can be easily converted to a 1-J amplified signal
pulse energy, resulting in a 100-terawatt peak power assuming the compressed pulse duration of
10 fs. This peak power is about 1000 times higher than the current highest peak-intensity of the
few-cycle pulses produced by external broadening and subsequent pulse compression following
CPA in Ti:sapphire.

In summary, several features of OPCPA are found to be advantageous for few-cycle, high-
energy pulse generation compared to the standard techniqueof CPA in a Ti:sapphire laser and
external broadening. In the next section, we describe considerations od an amplifier based on
OPCPA.
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1.3 Parameters in an OPCPA system and their mutual depen-
dence

1.3.1 Introduction

In this section, theoretical and physical considerations and numerical simulations for the OPA
process are given to the OPA process and the design of an OPCPA system. Specifically we de-
scribe the performance of an OPCPA system and its dependence on parameters such as the pump
intensity and duration, the optical parametric gain, phase-mismatch, the length of a nonlinear
crystal, and so on. In addition, the optimization of OPA conversion efficiency and output pulse
stability will be discussed.

The OPA process is one of the second order nonlinear optical effects (three-wave parametric
interactions) and its behaviors can be fully described withcoupled-wave equations [55]. In the
OPA process, two conditions, the energy conservation and phase-matching conditions, have to
be satisfied. These two conditions can be expressed as

ωp = ωs+ωi, (1.1)

kp ' ks+ki, (1.2)

whereω j andk j represent the angular frequency and the wave vector with suffixes j = p,s,
andi representing the pump, signal, and idler waves, respectively. These conditions are derived
from the coupled-wave equations. The phase-matching condition does not need to be satisfied
rigorously and can have certain tolerance determined by thelength of the three-wave interaction
L as

∆k ≡ kp−ks−ki, (1.3)

|∆k|L < π, (1.4)

where∆k is the wave-vector mismatch among the three involving waves. For the derivation and
examples of the coupled-wave equations for the three-wave interaction, readers are also referred
to references [56, 57, 58, 59] and books [60, 61, 62, 63]. An advanced formula including the
group-velocity mismatch effect is found in Refs. [64, 65, 66,67, 68].

A simple form for the gain calculation of OPA can be derived from the analytical solution
of the coupled-wave equations, assuming the slowly-varying-envelope approximation, flat top
spatial and temporal profiles, and no pump depletion. The intensity gainG of OPA can be
expressed as

G = 1+(gL)2
(

sinh(α)

α

)2

, (1.5)
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with

g =4πdeff

√

Ip

2ε0npnsnicλsλi
, (1.6)

α =

√

(gL)2−
(

∆kL
2

)2

, (1.7)

where∆kL≡ (kp−ks−ki)L is the scalar phase mismatch,L is the interaction length in a nonlinear
crystal,deff is the effective second order nonlinear coefficient of the nonlinear crystal,Ip is the
pump intensity,ε0 is the vacuum permittivity,n j is the refractive index for the pumpj = p,
signal j = s, and idler wavej = i, respectively,c is the velocity of light in vacuum, andλ j is the
wavelength of the signalj = s and the idler wavej = i, respectively.G can be simplified toG′

with the assumption of exact phase matching (∆k = 0) as

G′ ' (gL)2
(

sinh(gL)

gL

)2

= sinh2(gL). (1.8)

From this simple expression for the parametric gain, we can derive the relationship between the
pump intensity and the length of the crystal. As can be seen inEq. 1.8,G′ returns the same value,
if gL is constant, andgL can be related to the pump intensityIp and crystal lengthL as

gL ∝
√

IpL. (1.9)

Therefore, the OPA gain would be constant provided

√
IpL = const.. (1.10)

For example, a 10 times less pump intensity can be compensated by the increase of the crystal
thickness by 3.16 times (=

√
10 times) in order to achieve the same gain. Later in this section,

these formulas will be used to describe the OPA process.

1.3.2 Pump pulse intensity, duration and OPA gain bandwidth

In this section, relationships between the pump pulse intensity, duration, and OPA gain band-
width are analyzed. First of all, we need to find a relationship between the pump intensity and
the pulse duration. Generally speaking, the damage threshold intensity of an optical material (for
instance, fused silica) is inversely proportional to the square root of the pulse duration within
a certain pulse duration range [69]. Usually, the anti-reflection (AR) coating on the crystal is
weaker than the crystal material itself. Experimentally, astandard AR coating can stand safely
the pulse intensity of 10 GW/cm2 for 100-ps pulses (in our experiment, the damage threshold
of the AR coating proves to be about 20-30 GW/cm2 for 30-50 ps pulses). For following cal-
culations, we will adopt typical pulse intensities of 1 GW/cm2, 10 GW/cm2, and 100 GW/cm2

for simplicity. From the experimental result and the above relationship between the optical pulse
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duration and the damage threshold intensity, to some extent, 1 GW/cm2, 10 GW/cm2, and 100
GW/cm2 could be considered as the damage threshold intensities for10-ns, 100-ps, and 1-ps
pulses, respectively.

Let us look into Eqs. 1.5, 1.6, and 1.7. As discussed previously, to achieve the same gain for
the lower pump intensity, the crystal length has to be increased. Longer crystal length decreases
α in Eq. 1.7 because the phase-mismatch∆kL increases, and, consequently, lowers the gainG. If
exact phase matching is satisfied in the entire gain bandwidth, the gain bandwidth would not be
altered provided Eq. 1.10 is fulfilled. However such an idealcase cannot be realized in broadband
parametric amplification and, consequently, a finite amountof phase mismatch exists for some
wavelengths and tends to decrease the gain, in contrast to the case of exact phase matching, even
when Eq. 1.10 is satisfied. Examples of gain curves in the caseof NOPA pumped by 532
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Figure 1.1: Relationship between the pump intensities and the OPA gain. (A): Calculated OPA
gain curves with fixed parameters (noncollinearity angle and phase-matching angle) and three
different pump intensities of 1 GW/cm2 (black line), of 10 GW/cm2 (red line), and of 100
GW/cm2 (green line). A relative ratio of the crystal thicknesses isdetermined by the relation
derived in Eq. 1.10. A total gain is arbitrarily chosen as 104 at the peak. (B): OPA gain curves
with optimized parameters (noncollinearity angle and phase-matching angle) for a smooth gain
spectrum at three different pump intensities of 1 GW/cm2 (black line), of 10 GW/cm2 (red line),
and of 100 GW/cm2 (green line).

nm radiation in a type I phase-matching BBO with three different pump intensities (a detailed
description about NOPA and its gain calculation are available in Chapter 2) are shown in Fig.
1.1. In Fig. 1.1 (A), calculated OPA gain curves with fixed parameters (noncollinearity angle
and phase-matching angle) and three different pump intensities of 1 GW/cm2 (black line), of 10
GW/cm2 (red line), and of 100 GW/cm2 (green line) are shown. A relative ratio of the crystal
thicknesses is determined from Eq. 1.10. A total gain is chosen as about 104 at the peak. In
Fig. 1.1 (B), smoothed OPA gain curves with different optimized parameters (noncollinearity
angle and phase-matching angle) and three different pump intensities of 1 GW/cm2 (black line),
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Figure 1.2: Phase-matching region where a phase-mismatch is less than a certain value simulated
with the same condition as the calculation plotted in Fig. 1.1 (A).

of 10 GW/cm2 (red line), and of 100 GW/cm2 (green line) are shown. Two conclusions can be
drawn from these plots. One is that, even with the different pump intensity and crystal length, if
the both parameters satisfy Eq. 1.10, the gain values at three peaks, where exact phase-matching
is fulfilled, would be equal for three conditions. With the same calculation parameters for the
gain shown in Fig. 1.1 (A), the behavior of phase-matching are plotted in Fig. 1.2. The phase-
matching curve crosses 23.63◦ for three times where exact phase matching is achieved. The y-
axis in Fig. 1.2 represents the angle between the optical axis of the nonlinear crystal and the pump
beam propagation direction [70]. In the region other than the three points, finite phase mismatch
results in a lower gain so that, to fill the gap between the three peaks in the gain curve, one needs
to tune the parameters to obtain a smooth gain spectra for thelower pump intensity as shown in
Fig 1.1 (B). The second conclusion is that the use of high pump intensity is preferable for the
broadband amplification required for the few-cycle high-energy pulse generation, because the
thin crystal does not accumulate phase mismatch, resultingin a relatively smooth gain spectrum
such that a larger separation between the three gain peaks can be attempted to achieve a broader
spectrum by the change of parameters as shown by the green line in Fig. 1.1 (B). However, as will
be shown later, high pump intensity is not always preferablebecause of the resultant nonlinear
effects and the timing-jitter problem arising from short pulse pumping. Deliberations on these
issues will be presented later in this section.

1.3.3 B-integral, pump intensity, and gain

High-intensity short pulse generation and amplification always accompany inevitable nonlinear
effects accumulated in the amplifier even with CPA, because ofthe high intensity of the amplified
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stretched pulse [52]. As noted in Ref. [52], dependent on the amplifier design, a terawatt-class
Ti:sapphire amplifier system exhibits aB-integral between 1 and 3. The definition of theB-
integral from Ref. [54] is

B =
2π
λs

∫ L

0
n2Is(z)dz, (1.11)

whereλs is the wavelength of the signal wave,L is the nonlinear crystal length,n2 is the Kerr-
effect nonlinear refractive index of the amplifier material, and Is(z) is the position-dependent
signal intensity. The spatial and temporal beam quality of the amplified pulses is very important
for the high-peak-intensity laser system and the recompression of the amplified stretched pulse
down to the transform-limited pulse duration so that the amount of theB-integral is a key parame-
ter for the design of a laser system. As listed in Tab. 1.1, I. N. Rosset al. [23, 71] pointed out that
the value ofB-integral could be kept less than 1 in a parametric amplifier,which is much less than
that of a CPA system based on Ti:sapphire. This is because a high single-pass gain achievable
in an OPA system requires less propagation in the nonlinear crystal than that in the laser crystal
of a CPA system. However, the expression of theB-integral only includes self-nonlinear effects
induced by the intense pulse itself, such as SPM [72, 73] and self-focusing [74, 75, 73]. This
excludes cross-phase modulation (XPM) [76] between the strong pump, signal, and idler beams.
However, because the OPA process is only possible by the spatial and temporal overlap between
the pump and signal beams, the XPM should also be taken into account for the evaluation of the
nonlinear effects accumulated during the OPA process. Therefore we propose a definition of a
newB-integralBall accounting for both nonlinear effects as

Ball =
2π
λs

∫ L

0
n2(γpsIp(z)+ Is(z)+ γsiIi(z))dz, (1.12)

where the same notations as in Eq. 1.11 are used andγps andγsi are the correction factors for a
Kerr-effect nonlinear refractive index accounting for SPMand XPM.

γps is equal to 2 when a pump polarization is parallel to a signal polarization and 2/3 when
the pump polarization is orthogonal to the signal polarization [77], and the same applies forγsi

between the signal and idler beams. For example,γps andγsi are equals to 2/3 and 2 in the type I
phase-matching condition, respectively. Because the pump intensity is usually much higher than
that of the signal and idler, aB-integralBXPM, which includes only the XPM effect between the
pump and the signal, could result in a further simplified formula, from which one could derive
the relationships between theB-integral, the pump intensity, and the crystal length. Using Eq.1.6
and Eq. 1.8, in a small-signal-gain regime, the relationship between the gainG′ and theBXPM

can be derived as

G′ =sinh2(gL) ' (gL)2 ∝ IpL2 (1.13)

BXPM ∝IpL ∝
G′

L
∝

√

G′Ip (1.14)

where Ip is the pump intensity andL is the crystal length. From these equations, it can be
concluded that theB-integralBXPM is proportional to the gain and inversely proportional to the
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length of the crystal. Alternatively,B-integral is proportional to the square root of the product of
the gain and the pump intensity. The high pump intensity is preferable for the broadband gain
but not good for the output beam quality due to the resultant high B-integral.

For a further detailed investigation, we performed a numerical simulation of the coupled-
wave equations in order to demonstrate a more precise relationship and estimate a concrete value
of the B-integral Ball including all possible effects. TheBall is calculated from the position-
dependent values of pump, signal, and idler intensities given by a numerical solution to the
coupled-wave equations. A 532-nm pump wave with the initialintensities of 1, 10, and 100
GW/cm2 is used in a degenerate OPA, whose signal wavelength is 1064 nm, assuming exact
phase-matching. The effective second-order nonlinear coefficient is chosen to be a typical value
of 1 pm/V and the typical value of the Kerr-effect nonlinear refractive index coefficientn2 is
that of the fused silica (3.0× 10−16 cm2/W, see Appendix E for the value of the nonlinear
refractive index). In Fig. 1.3 (A), the evolution of the pump(black line), signal (red line), and
idler (green line) intensities are plotted with the propagation distance in the crystal. For this
calculation we used a 10-GW/cm2 pump intensity, a gain of 106, and a 5-kW/cm2 input signal
intensity. In Fig. 1.3 (B), using the same parameters, the calculatedB-integral value (blue line)
is plotted. The signal (red line) and idler (green line) are hardly distinguishable with each other.
In the saturation regime, the slope of theB-integral increases because of the different values of
γps = 2/3 andγsi = 2 in Eq. 1.12 although the sum of the three intensities is keptconstant.
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Figure 1.3: OPA process and simulatedB-integral. (A): Evolution of pump (black line), signal
(red line), and idler (green line) intensities. The 10-GW/cm2 pump initial intensity, gain of 106,
and the 5-kW/cm2 signal initial intensity are used for the calculation. (B): Evolution of pump
(black line) and signal (red line), which is hardly distinguishable from the idler (green line),
intensities and a value of theB-integral (blue line). The 10-GW/cm2 pump initial intensity, gain
of 106, and the 5-kW/cm2 signal initial intensity are used for the calculation.

Dependences of theB-integral value, which is obtained at the peak of the signal intensity, on the
parametric gain is presented in Fig. 1.3 for three differentpump intensities. From these plots, it
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Figure 1.4: Dependencies of theB-integral on the parametric gain for three different pump in-
tensities:1 (black line), 10 (red line), and 100 GW/cm2 (green line). Note that the x-axis is
represented in logarithmic scale.

is obvious that theB-integral in an OPA process is higher for the same gain with a higher pump
intensity and a thinner crystal. The ratio of theB-integrals at the same gain value between the
different intensities satisfies the relationship derived in Eq. 1.14. TheB-integral is proportional
to the square root of the pump intensity assuming the constant gain. When the totalB-integral
in a multi stage approach and a single stage for the same gain are compared, the totalB-integral
for the multiple stages becomes higher than the single stage. For example, 8 optical parametric
amplifiers, where a gain of 10 in each stage is achieved, result in a total gain of 108 and aB-
integral of 8× 0.32 = 2.56, while a gain of 108 in a single stage leads to aB-integral of 0.97
with the pump intensity of 100 GW/cm2. This means that a fewer-stage approach for the same
amount of the gain is better in terms of nonlinear effect issues. However, from the practical
and experimental point of view, the gain of 108 in a single stage has never been realized and
the multi-amplifier-stage approach was experimentally verified to suppress more the ASF than a
single stage approach.

1.3.4 Conversion efficiency, gain, initial signal intensity, and outputstabil-
ity

In this subsection, we investigate the dependence of energyconversion efficiency in the OPA
process on the gain, the durations of the pump and signal pulses, and the input signal intensity.
The stability of the amplified signal will be discussed. Although an exactly phase-matched op-
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tical parametric amplifier using a pump beam with rectangular shapes in time and space gives
maximum conversion efficiency equal to the quantum defect ofone pump photon energy to one
signal photon energy, however, Gaussian pump beams would bemore practical for the exper-
iment because an oscillator or regenerative amplifier cavity supports usually a Gaussian beam
and it is easier to obtain and handle. We derive the energy conversion efficiency in an exactly
phase-matched OPA using a Gaussian pump beam in time and space and Gaussian signal beam
in space. The temporal shape of the signal pulse is assumed tobe super-Gaussian. To simulate
the conversion efficiency, the approximation of no pump depletion is invalid so that, in order
to include the pump depletion, one has to solve numerically the coupled-wave equations. The
coupled-wave equations are solved at every point in time andspace. The pump and signal wave-
lengths are 1053 and 2106 nm, respectively. These wavelengths are used because the simulation
was originally meant to account for the low efficiency in an infrared OPCPA system. The pump
and signal intensities are 15 GW/cm2 and 15 MW/cm2, respectively, and a second-order nonlin-
ear coefficient of 16 pm/V is chosen. For this numerical simulation, we used a 30-ps (FWHM),
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Figure 1.5: OPA conversion efficiency with Gaussian beams and signal intensities at several
points. Black line: a signal intensity at time = 0 ps and the center of the signal beams in space,
red line: a signal intensity at time = 0 ps and 0.4-mm-off fromthe center of the signal beams in
space, green line: a signal intensity at time = -5.5 ps and thecenter of the signal beams in space,
and black dotted-line: overall conversion efficiency.

1.2-mm-diameter (FWHM) pump beam and a 10-ps, 1.2-mm-diameter (FWHM) signal beam. In
Fig. 1.5, amplified signal intensities at different points in time and space are plotted with black,
red, and green solid lines. The black line shows a signal intensity at time = 0 ps and the center
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of the signal beams in space. The red line shows a signal intensity at time = 0 ps and 0.4-mm-off
from the center of the signal beams in space. The green line shows a signal intensity at time =
-5.5 ps and the center of the signal beams in space. The signalintensity at each point in time
and space saturates after different propagation lengths inthe OPA crystal because, at each point,
the intensity of the pump beam is different. This effect causes the decrease of overall conversion
efficiency for the case of Gaussian pulses even with exact phase matching. Overall conversion
efficiency obtained by the integration of all the spatial andtemporal points is plotted with a black
dotted-line in Fig. 1.5. In this case, the highest conversion efficiency is calculated as 8.9%. In
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Figure 1.6: Pulse profile of the amplified signal after the propagation in the OPA crystal. (A):
temporal profiles of an input signal (black line), an input pump (red line), and an amplified signal
(green line) after 750-µm-long propagation in the OPA crystal and (B): temporal profiles of an
input signal (black line), an input pump (red line), and an amplified signal (green line) after 850-
µm-long propagation. (C): temporal and spatial profile of the amplified signal after 750-µm-
long propagation and (D): temporal and spatial profile of theamplified signal after 850-µm-long
propagation.
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Fig. 1.6 (A), the temporal profiles of the input signal (blackline), the input pump (red line), and
the amplified signal (green line) after 750-µm-long propagation in the OPA crystal are shown. In
Fig. 1.6 (B), the temporal profiles of the input signal (black line), the input pump (red line), and
the amplified signal (green line) after 850-µm-long propagation are shown. Figs. 1.6 (C) and (D)
show the spatial-temporal representation of the amplified signal after 750-µm-long propagation
in the OPA crystal and after 850-µm-long propagation, respectively. Although the highest con-
version efficiency of 8.9% can be obtained after 850-µm-long propagation in the OPA crystal,
at this point, degradation of the pulse quality is clearly observed in Fig. 1.6 (B) and (D). Sharpe
peaks in the temporal wing of the signal shown in Fig. 1.6 (B) would be converted to peaks in the
amplified spectrum in the case of an OPCPA system, where the signal is temporally stretched.
For example, despite the lower conversion efficiency of 7.9%after 750-µm-long propagation,
the shape of the amplified signal is not altered dramaticallyand relatively high conversion effi-
ciency could be achieved as shown in Fig. 1.6 (A) and (C). By the same method, we analyze the
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Figure 1.7: OPA efficiency dependence on the input signal intensity and the pulse duration ratio
between the pump and signal pulses. (A): efficiency curve plotted with the energy ratio between
the 10-ps input signal and 30-ps pump pulses. (B): efficiency curve plotted with the energy ratio
between the 30-ps input signal and 30-ps pump pulses.

relationships between the conversion efficiency, the duration ratio between the pump and signal
pulses, and the input signal intensity. In Fig. 1.7, the conversion efficiency of the parametric
amplifier is plotted with the energy ratio between the input signal and pump pulses. The same
parameters as those in the previous calculation are used except the pulse duration ratio. Fig. 1.7
(A) shows the conversion efficiency when the durations of thepump and signal pulses are 30 ps
and 10 ps, respectively. Fig. 1.7 (B) shows conversion efficiency when the durations of the pump
and signal pulses are 30 ps and 30 ps, respectively. Of course, a higher conversion efficiency is
achieved when a longer signal pulse is used. The value obtained with the 30-ps-long pump and
signal pulses corresponds well to the published reports of conversion efficiency [78, 79]. The
efficiency increases with the increase of the input signal energy. A high conversion efficiency
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is required always at the last stage in an amplifier chain so that the final OPA stage should be
seeded with as energetic as possible a signal to achieve a high conversion efficiency.
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Figure 1.8: Amplified signal stability in OPA. Amplified signal energy fluctuation induced by
10% variation of the pump intensity with different crystal thicknesses: 750µm (black line), 800
µm (red line), 850µm (green line), and 900µm (blue line).

At the same time, the stability of the amplified pulse energy is also an important topic. When
rectangular spatial and temporal profiles of the pump and signal pulses were used in the para-
metric amplifier, the saturation and stabilization of an OPAoutput was demonstrated in Ref.
[59]. This demonstration showed the stabilization of the amplified signal obtained after the OPA
saturation.

Here the output pulse energy is calculated with several different pump pulse energies and
several thicknesses of the crystal. Like previous calculations, Gaussian beams for the pump and
signal are used. The pump pulse energy is changed by± 5%. The calculated output energy is
shown in Fig. 1.8. In Fig. 1.8, the OPA output pulse energies obtained after propagation of 750
µm (black line) in the OPA crystal, 800µm (red line), 850µm (green line), and 900µm (blue
line) are shown. Although plots show positive correlations, the slopes are different. In Fig. 1.8,
the output energy after 850-µm-long propagation (green line) in the crystal fluctuates by9.7%
and this exhibits some stabilization effect of the output signal. However, as mentioned previously,
the obtained output beam profile is not good for the practicaluse. The more acceptable output
signal profile with the 750-µm-thick crystal would result in more fluctuation (17%) of theoutput
energy than the pump energy.

In summary, we have investigated several characteristics of the OPA (OPCPA) process in
detail. Several compromises have been found for the design and implementation of an OPCPA
system. With these compromises, in the near-infrared OPCPA to be described in Chapter 2, we
adopted a 60-ps pump pulse and a 40-50-ps-long stretched seed pulse. From these values, we
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could expect a lowB-integral, a relatively high conversion efficiency of more than 20%, and a
broad OPA gain bandwidth. In the infrared OPCPA to be described in Chapter 4, we used a
40-ps pump pulse for OPA stages and a 10-ps-long stretched seed pulse. This was because we
were unable to stretch the seed pulse to more than 10 ps with the only stretcher type available at
the moment. In this case, broadband amplification would be easier to achieve but the conversion
efficiency was lower than 10%.



Chapter 2

Generation of terawatt-class, few-cycle,
near-infrared laser pulses by use of OPCPA

2.1 Introduction

In this chapter, a broadband optical parametric amplifier isdesigned and experimentally demon-
strated. To obtain broadband amplification, NOPA scheme will be used in a parametric amplifier.
We demonstrate the physical origin of a broadband parametric amplification mechanism based
on NOPA by use of both mathematical procedure and numerical simulation. The choice of a
nonlinear crystal is a key issue in an OPA experiment and willbe carefully chosen with the help
of numerical simulation. An OPCPA experiment requires the synchronization of pump and seed
pulses. As seen in the last chapter, picosecond pump pulses seem to be optimum for our purpose,
ultrabroadband high-energy pulse amplification. We use an electronic phase-lock loop (PLL) to
synchronize two independent oscillators delivering picosecond pump and stretched seed pulses
for an OPCPA system. This was, when it was constructed, the first trial to utilize repetition-rate-
locked oscillators for an OPCPA system. We characterize the performance of a noncollinearly
phase-matched optical parametric amplifier using a BBO crystal as a parametric crystal, a home-
made broadband Ti:sapphire oscillator, a commercially available pump laser, and a simple pulse
stretcher. After these test experiments, we describe the generation of few-cycle, terawatt-class,
near-infrared optical pulses by use of a novel pulse stretcher and compressor pair in an OPCPA
system.

2.2 Recent advances in ultrashort optical parametric devices

In this section we review recent advances in ultrashort laser pulse generation and amplification
based on optical parametric interactions. Among many parametric interactions, noncollinearly
phase-matched optical parametric interaction (NOPI), where three involving optical waves in-
teract noncollinearly, exhibits unique features: extremely broadband parametric generation (su-
perfluorescence) and amplification. Especially, the ultrabroadband parametric amplification of
optical pulses is suitable for our purpose: the generation of few-cycle high-energy optical pulses.
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As the first NOPI phenomenon, noncollinearly phase-matchedOPG was observed in 1967,
several years after the invention of the laser [48, 49]. In the early stage, researchers had made
experimental demonstrations in many crystals and explained its physical mechanism [49]. In
addition, a preliminary application of NOPI to walk-off compensation in optical parametric os-
cillation (OPO) was demonstrated[50]. However, its applications to ultrafast optics had needed
to wait for reliable ultrafast laser sources, mainly Ti:sapphire laser, and new nonlinear crystals.

In 1985, a Chinese group invented a new crystal, BBO [47]. BBO has many interesting fea-
tures such as the wide transparency range from infrared to ultraviolet, the large birefringence
allowing many phase-matching conditions [80, 81], the relatively large nonlinear coefficient, and
the high damage threshold. With the use of BBO and Ti:sapphire lasers, broadly tunable non-
collinearly phase-matching OPOs [42, 41] were demonstrated owing to the cancellation of the
spatial walk-off of an extraordinary pump beam from a signalbeam. Although these demon-
strations were not meant to generate broadband ultrashort optical pulses, soon, researchers had
utilized the usefulness of BBO in NOPI for a broadband pulse generator and amplifier. The
experimental demonstrations of broadband ultrashort OPOswith noncollinear phase-matching
(NCPM) [82, 83] and broadband NOPAs resulting in the generation of energetic ultrashort pulses
[44, 45, 46, 84, 85, 86], have been made shortly after the previous works mentioned above. Ul-
trashort energetic pulses, with the duration of from sub-20down to a few femtoseconds, from a
broadband NOPA have owed to also the compressible OPA seed source: supercontinuum (white
light) [87, 72] generated by the self-phase modulation of anultrashort pulse propagating a trans-
parent material [88, 89]. Furthermore current state-of-art technologies ha resulted in the com-
pression of a white-light-seeded NOPA by use of an adaptive optics following a parametric am-
plifier [90, 91, 92, 93]. The shortest pulse duration of 3.9 fshas been demonstrated so far by
adaptive optics [94]. However relatively low output energyfrom a parametric amplifier, which
does not exceed more than tens ofµJ, limits the use of the generated ultrashort pulses in high-
field experiments such as high-harmonic generation, attosecond pulse generation, and extremely
nonlinear optics. To apply the advantage of an optical pulseamplifier based on a NOPA to high-
field physics, we need to upscale output pulse energy from a parametric amplifier. The concept of
NOPA, combined with the chirped-pulse amplification technique (noncollinearly phase-matched
optical parametric chirped-pulse amplification (NOPCPA)),is one of quite promising schemes
for a future few-cycle high-energy optical pulse generator.

In the next section, we will describe the physical mechanismof broadband phase-matching
and resultant amplification and a choice of a nonlinear optical crystal.

2.3 Physics of noncollinearly phase-matched optical paramet-
ric interaction

In this section, we describe the physics of a NOPI phenomenon. This makes clear the physical
origin of broadband NCPM compared to a standard collinear interaction.

As mentioned in Section 1.3, the two conditions, the energy conservation and phase-matching
conditions, have to be satisfied to achieve efficient parametric interaction. These conditions are
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represented in Eqs. 1.1 and 1.2. Whereas the energy conservation condition is automatically
fulfilled in a parametric process, the phase-matching condition needs to be satisfied by use of
several techniques: temperature-controlled phase-matching [40, 95] (typically used with non-
critical phase-matching), angle-tuned phase-matching, and quasi-phase-matching. In this thesis,
we used only type I phase-matching (angle-tuned phase-matching), in which a pump beam prop-
agates as an extra-ordinary wave in a negative uniaxial crystal and seed and idler beams propagate
as ordinary waves. This is because another type of phase-matching, type II phase-matching, does
not provide broadband amplification as type I phase-matching does. In Fig 2.1, the illustration
of pump, signal, and idler beams in NCPM and collinear phase-matching and their parameters
are presented.

Pump, kp

Signal, ks

Idler, k i

Pump, kp

Signal, ks Idler, k i
á

â(ù )i

Figure 2.1: Noncollinear phase-matching and its parameters (left) and collinear phase-matching
(right).

First of all, angular-frequency dependent phase mismatch in the case of collinear parametric
interaction can be expressed as

∆kc(ωs,ωi (≡ ωp−ωs)) ≡ kcp−kcs(ωs)−kci(ωi), (2.1)

wherekcp, kcs, andkciare the wave vectors of the pump, signal, and idler beams, respectively and
ωp, ωs, andωi are the angular frequencies of the pump, signal, and idler beams, respectively. In
this subsection, the pump wave is assumed to be monochromatic so thatωp = const.. Here the
derivative of the idler wave vector respect to the signal angular frequency can be written as

∂kci(ωi)

∂ωs
=

∂ (ωp−ωs)

∂ωs

∂kci(ωi)

∂ωi
= −∂kci(ωi)

∂ωi
. (2.2)

Because only one parameter, signal angular frequency, is independent, Eq. 2.1 can be simplified
as

∆kc(ω) ≡ kcp−kcs(ω)−kci(ω), (2.3)
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by use ofωs = ω. Using Eqs. 2.2, 2.3,ω0 ≡ ωs0, andω = ω0+∆ω, the Taylor expansion of the
phase-mismatch (Eq. 2.1) around the central angular frequency ω0 can be written as

∆kc(ω0 +∆ω) =kcp−kcs(ω0)−kci(ω0)−
(
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(∆ω)3
}

, (2.5)

where exact phase-matching is assumed to be fulfilled at a signal central angular frequencyω0

as

∆kc(ω0,) = kcp−kcs(ω0)−kci(ω0) = 0. (2.6)

The group velocities of the signal and idler waves at the central angular frequency

vgs(ωs) ≡
(

∂kcs

∂ωs

)−1

and (2.7)

vgi(ωi) ≡
(

∂kci

∂ωi

)−1

, (2.8)

are used for simplicity, respectively. From Eq. 2.5, the phase-mismatch linearly varies with the
angular frequency owing to the group-velocity mismatch (GVM) between the signal and idler
waves at the central frequency. Group-velocity mismatch (GVM) becomes zero in the case of
degenerate OPA, where signal and idler wavelengths are identical, so that phase-mismatch in
degenerate OPA would have parabolic dependence on an angular frequency. Therefore degen-
erate OPA could provide broader phase-matching and, to someextent, broader parametric gain
bandwidth.

We apply the same mathematical procedure to NOPA phase-mismatch. We demonstrate a
NOPI geometry with new parameters, noncollinearities between the pump and signal beams
and the pump and idler beams, resulting in the cancellation of not only a first-order coefficient
(GVM) but also a second-order coefficient. Detailed discussions about the cancellation of GVM
are available in some articles [96, 44, 97] and another indication about ”polychromatic phase
matching” was made in Ref. [98] without mentioning to its physical origin. For practical use,
the spatial dispersion of the seed beam would not be desirable and will be set zero. Therefore the
noncollinearity angle between the pump and signal beamsα(ω) = const.(≡ α0) is constant in
angular frequency. We define the phase-mismatches perpendicular and parallel to the direction
of the pump

k⊥(ω) ≡ ks(ω)sinα0−ki(ω)sinβ (ω), (2.9)

k‖(ω) ≡ kp−ks(ω)cosα0−ki(ω)cosβ (ω), (2.10)
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respectively. Assuming exact phase-matching in both directions at the central frequency as

k⊥(ω0) ≡ ks(ω0)sinα0−ki(ω0)sinβ (ω0), (2.11)

k‖(ω0) ≡ kp−ks(ω0)cosα0−ki(ω0)cosβ (ω0). (2.12)

The first-order coefficients of the Taylor expansions of Eqs.2.9 and 2.10 around the central
angular frequencyω0 become

k(1)
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0
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Eqs. 2.13 and 2.14 are simplified as
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The first-order coefficients of the Taylor expansions becomezero as

k(1)
⊥ (ω0) = 0, (2.17)

k(1)
‖ (ω0) = 0, (2.18)

provided
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From another point of view, assuming Eq. 2.20, Eqs. 2.9 and 2.10 are expressed as
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. (2.22)
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These equations demonstrate the cancellation of the first-order coefficients of the Taylor expan-
sions, when Eqs. 2.19 and 2.20 are satisfied. The GVM between the signal and idler waves in
the direction of the signal beam is an essential point to obtain broadband phase-matching in the
case of NOPI. From Eqs. 2.9 and 2.20, one can determine the noncollinearity angleα0, assuming
sin(α0) ' α0, as

α0 = arccos

(
vgs(ω)

vgi(ω)

){

1+
ks(ω)

ki(ω)

}−1

. (2.23)

As an example, we numerically simulate the noncollinearityangle using BBO refractive indices
presented in Ref. [80, 99] and in Eqs. A.1 and A.2 in Appendix A.Fig. 2.2 shows the frequency-
dependent noncollinearity angle calculated from Eq. 2.23,assuming the pump wavelength of
532 nm. As it follows from Fig. 2.2, the noncollinearity angle shows parabolic dependence
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Figure 2.2: Noncollinearity angles optimized for lateral phase-matching and GVM

on the signal wavelength and has the plateau around 825 nm at 2.4◦. The optimum value of
a noncollinearity angle can be calculated by this method and, at the same time, the value of
GVM is expected to be small in the wide spectral range around the plateau so that broadband
amplification can be expected in this spectral range.

We further proceed the Taylor expansions to a second-order term. After several algebraic
manipulations, we obtain the following formula for the second-order coefficients,k(2)

⊥ andk(2)
‖ ,
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as
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Equalizingk(2)
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Using Eq. 2.20, one can derive the formula excluding any angular dispersion term as
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Because further simplification seems to be impossible, we numerically evaluate the right three
terms (A, B, and C) of Eq. 2.27. In Fig. 2.3, the calculated values of the first term (A in Eq.
2.27, red line), the second term (B in Eq. 2.27, green line), the third term (C in Eq. 2.27, blue
line), and their sum (black line) are plotted. For this calculation, we used a 532 nm extraordinary
pump wave. In Fig. 2.3, it can be clearly seen that the black line, the sum of the three terms,
crosses zero around 827 nm. At this signal wavelength, the second-order coefficients of the
phase-mismatch disappear and phase-mismatch shows cubic dependence around 827 nm. This is
a unique feature in NOPI and extremely broad parametric amplification can be expected around
this region. Actually, this wavelength range coincides to the central wavelength of the plateau of
the noncollinearity angle in Fig. 2.2.

In summary, we analyzed the NOPI and collinear phase-matching interactions (degenerate
interaction) and demonstrated the physical origin of the broadband phase-matching in the case
of the degenerate interaction and the NOPI. In the next section, considerations about the choice of
a nonlinear crystal to be used in an OPCPA system and detailed calculations of a gain bandwidth
in NOPA will be carried out to envisage important parametersfor the construction of an OPCPA
system.
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Figure 2.3: Plot of three terms (first term (A): red line, second term (B): green line, and third
term (C): blue line) of Eq. 2.27 and their summation (black line) showing the cancellation of
second-order phase-mismatch around 827 nm in the case of theNOPI in the BBO crystal. A
x-axis represents the signal wavelength and pump wavelength is chosen as 532 nm.

2.4 NOPA and choice of its crystal

In this section, an OPA crystal for a NOPCPA system will be selected out from many crys-
tals. Frequently used crystals for ultrashort pulse generation are mainly borate crystals including
BBO, Lithium Triborate (LBO), and Cesium Lithium Borate (CLBO) because of several reasons
such as high damage threshold, wide transparency range, short-wavelength absorption edge in
the ultraviolet, high second order nonlinear coefficient, large birefringence, and relatively large
aperture available. The disadvantage of the borate crystals is its low resistance to humidity, es-
pecially, CLBO. Other well-known crystals such as AgGaSe (AgGaS), KTP (KTA), KDP and
LiNbO3 (KNbO3) have potentials for OPA applications and are even used for ultrafast pulse gen-
eration, mainly, in the infrared. AgGaSe, KTP, and LiNbO3 have long-wavelength absorption
edges around 710, 350, and 330 nm, respectively. Therefore this long-wavelength absorption re-
stricts their use in the parametric amplifier pumped by visible intense pulses at 532 nm. because
of problems of the linear and two-photon absorption of strong pump radiation. Also KTP (KTA)
is not used usually for type I phase-matching because of its small second order nonlinear coeffi-
cient for this phase-matching. KDP and DKDP are good candidates because of short-wavelength
absorption edge in the deep UV and its available large aperture size. However these crystals do
not have enough transparency in the near infrared so that amplification of shorter wavelengths
than 800 nm is difficult when a 532-nm laser pulse is used as a pump pulse. Therefore, for
our purpose, only two borate crystals, BBO and LBO, remain as a candidate because CLBO
is too deliquescent to handle in a normal laboratory environment. We compare the properties
and features of BBO and LBO. The NCPM curves with BBO and LBO pumped by a532-nm



2.4 NOPA and choice of its crystal 25

600 700 800 900 1000 1100 1200
22

23

24

25

26

27

28
(A) BBO noncollinear OPA K [m-1]

Wavelength (nm)

P
ha

se
 m

at
ch

 a
ng

le
 (d

eg
.)

-5000

-2500

0

2500

5000

600 700 800 900 1000 1100 1200
11

12

13

14

15

16

17
(B) LBO noncollinear OPA  K [m-1]

Wavelength (nm)

P
ha

se
 m

at
ch

 a
ng

le
 (d

eg
.)

-2500

-1250

0

1250

2500

Figure 2.4: Phase-matching curves in the NOPI for the BBO (A) and LBO (B) crystals pumped
by a 532-nm monochromatic wave.

monochromatic wave are shown in Fig. 2.4 (A) and (B), respectively. Parameters are chosen
such that the flat phase-matching curves are obtained. Two conclusions can be drawn from these
curves. The first conclusion is that the flat phase-matching for BBO lies in the shorter wave-
length range than for LBO. This difference is important for our purpose because our broadband
Ti:sapphire seed oscillator has a spectrum from 650 to 1000 nm and this oscillator spectrum
is better overlapped with the phase-matching curve of BBO thanLBO. The second conclusion
is that the phase-matching curve of LBO has the wider acceptance angle than BBO. Wide an-
gle acceptance is an attractive feature because narrow angle acceptance might result in the drop
of pump-signal conversion efficiency and the spatial chirp (non-uniform beam profile for each
wavelength) [100]. Notice that the color scale of the z-axisof BBO and LBO plots are two
times different because the second-order nonlinear coefficient of LBO is two times lower than of
BBO and therefore two-times longer interaction is required for LBO than BBO in order to obtain
the same amount of gain. We numerically simulate the gain curves of noncollinearly phase-
matched parametric amplifiers based on LBO and BBO. We use the formula for the intensity
gain calculation shown in Eq. 1.5. The beam geometry and the parameters are found in Fig. 2.1
and the amount of phase-mismatch can be obtained by Eqs. 2.9 and 2.10. From Eqs. 2.9, the
noncollinearity angleα0 between pump and signal beams determines the frequency-dependent
noncollinearity angleβ (ω) of an idler beam. The obtainedα0 andβ (ω) are used for the cal-
culation of the phase-mismatch 2.10 parallel to a pump beam direction. The refractive indices
of LBO and BBO used in this calculation are available in Eqs. A.1,A.2, A.5, A.6, and A.7 in
Appendix A. Fig. 2.5 plots the spectrum of a home-made Ti:sapphire oscillator (black line) and
calculated NOPA gain spectra for BBO (red line) and for LBO (green line). The parameters used
for these calculations are, the common pump intensityIp: 10 GW/cm2, the effective second-order
nonlinear coefficientdeff: 2.0 pm/V for BBO and 1.0 pm/V for LBO [99, 101], the interaction
lengthL: 4.0 mm for BBO and 7.4 mm for LBO, the signal noncollinearity angle α0: 2.28◦ for
BBO and 1.3◦ for LBO, and the phase-matching angle, which is the angle froman optical axis
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Figure 2.5: Seed spectrum from a Ti:sapphire oscillator (black line) and simulated gain spectra
of NOPA using BBO (red line) and LBO (green line)

to pump beam propagation direction: 23.7◦ for BBO and 13.7◦ for LBO. In the case of LBO,
pump, signal, and idler beams are in the X-Y plane and the polarization of the pump wave lies
in the X-Y plane and the signal and idler waves are polarized along z-axis. In Fig. 2.5, it is
shown that the gain spectrum of NOPA using BBO is more overlapped with the Ti:sapphire seed
oscillator than LBO. The shortest pulse duration calculatedby the Fourier transformation of the
BBO gain spectrum assuming a flat spectral phase is about 6.1 fs (FWHM of the intensity). This
corresponds to 2.2 cycle at the central wavelength of 840 nm.Although OPA results using LBO
will not be described here, we have experimentally tested LBOas a parametric crystal. This
experiment showed us more red-shifted gain spectrum than BBO.Because of the better spectral
overlap between the BBO gain and the Ti:sapphire spectrum, we use exclusively BBO for the
near-infrared OPCPA system described later.

2.5 Pump-seed synchronization

We review several synchronization methods used in previousworks on OPCPA and give con-
siderations about a synchronization scheme applicable to an OPCPA using picosecond pump
pulses. For parametric three-wave interactions (including OPA), pump and seed pulses must
have temporal and spatial overlap with each other to exchange energy between them because of
lack of an energy storage in a parametric process. Thereforean OPCPA system imposes strict
synchronization between pump and seed pulses. The stable operation of an OPCPA system re-
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quires the stabilization of relative timing jitter betweenpump and seed pulses within less than a
fraction of their pulse durations. Timing jitter of more than 10% of pump and signal pulse du-
rations severely might degrade amplified pulse compressibility, energy stability, and the stability
of amplified spectrum and the intensity of compressed amplified seed pulses. Although about 20
years has passed since the first demonstration of OPCPA, the issue of synchronization is still a
common problem and not completely solved yet even in real working systems. Dependent on an
pump pulse duration, an output energy level, a required output pulse duration, and so forth, only
two synchronization methods had been used in OPCPA systems.

1. Single narrowband oscillator approach

2. Electric trigger synchronization

and they will be discussed in the following subsections.

Single narrowband oscillator approach

An approach that one narrowband oscillator delivers seed pulses to a parametric amplifier and a
pump amplifier has been widely used since the use in the first demonstration of OPCPA [30, 22].
As a typical example of this approach, in Ref. [22], a Nd:glassoscillator seeded simultaneously a
Nd:glass regenerative amplifier for pump pulse generation and an OPCPA system. Stretched seed
pulses from the oscillator were amplified in a degenerate optical parametric amplifier pumped by
the frequency-doubled output from the regenerative amplifier. Many works using this approach
have been demonstrated [102, 103, 104, 105, 106] and they inevitably rely on an optical paramet-
ric amplifier operating at the degeneracy point because the choice of available wavelengths for
pump and seed pulses is limited to the fundamental and its harmonics. However, we could not
use this approach because of lack of spectral overlap between our Ti:sapphire and an Nd:YAG
amplifier, which will be used as a pump laser for our OPCPA system. This method cannot meet
our requirement, high-energy few-cycle pulse generation,because degenerate OPA provides usu-
ally narrower gain bandwidth than NOPCPA except one special case [104] and the difficulty in
high-energy pump laser development based on Ti:sapphire necessary for this approach. In Ref.
[104], spectrally broadband pump pulses are specially engineered in time and space to be able
to amplify extremely broadband (from 630 to 1050 nm) seed spectrum obtained by a photonic
crystal fiber. This idea is quite attractive for low-energy ultrabroadband pulse amplification.
However this special case cannot be applicable for high-energy pulse generation simply because
of its low energy conversion efficiency due to the complicated system and a Ti:sapphire amplifier
required for pump pulse generation. This scheme could be a good approach when femtosecond
high-energy pulses from an laser amplifier based on emergingYb3+-doped host materials will
be able to serve as pump and seed sources for an OPCPA system. The second harmonic of fem-
tosecond high-energy pulses can be used as a pump source for an optical parametric amplifier of
supercontinuum generated by the small portion of femtosecond high-energy pulses from an Yb
laser amplifier.
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Pump-seed synchronization by an electric trigger

an electric trigger is frequently used to synchronize optical pulses. For example, this is used
for the synchronization between Ti:sapphire oscillator pulses andQ-switch Nd:YAG laser pulse
pumping a Ti:sapphire amplifier. Limitation of this method is possible precision of an electric
signal respect to optical pulses. The precision of an electric signal is sub-nanosecond under
the current technology. Therefore the synchronization of picosecond pulses is hardly achievable
by electronics. Usually nanosecondQ-switched or injection-seeded lasers are used as a pump
source with this synchronization method. Advantages of this method includes its simplicity and
easiness in use, wavelength tunability of a pump laser, available high-energy pump pulse, and
commercial availability of well-developed inexpensive nanosecond lasers. At the same time,
there exist several disadvantages such as narrow OPA gain bandwidth, inability for broadband
few-cycle pulse amplification, low conversion efficiency, and multiple pulse amplification in a
nonlinear crystal. Narrower gain bandwidth results from large phase-mismatch accumulated
during propagation in a long OPA crystal because a damaged threshold intensity is lower for
nanosecond pulses than picosecond pulses [69] so that a longer parametric crystal is necessary for
nanosecond pump pulses. Detailed considerations about this topic will be given in Section 1.3.
Another difficulty in the recompression of ultrabroadband stretched pulses from nanosecond to
sub-10-fs restricts the practical use of nanosecond pump pulses for few-cycle, high-energy pulse
generation. So far, the recompression of 300-ps stretched pulses down to sub-10-fs pulses has
been demonstrated with the help of adaptive optics [107]. Conversion efficiency of a parametric
amplifier using nanosecond pump pulses tends to be low because of typical unmatched durations
between pump and seed pulses. AQ-switched laser has typically a duration of more than 5 ns,
while seed pulses can be stretched to less than few nanoseconds at most. This mismatch results
in lowering the energy conversion efficiency from a pump pulse to a seed pulse. Multiple pulse
amplification, caused by reflections of amplified pulses on the surfaces of an OPA crystal, has
been demonstrated in our group for the first time [108]. A highgain in a parametric amplifier
is one of advantages of OPA or OPCPA. However reflections of a highly amplified pulse on the
surfaces of an OPA crystal cannot be neglected any more in such an high gain operation of a
parametric amplifier. A reflected pulse become a seed to be amplified again by a long pump
pulse when pump pulse length is much longer than a crystal thickness and a high OPA gain
overcomes substantial losses at the anti-reflection coatedsurfaces of a crystal. As an example,
1% reflection at both surfaces can be easily compensated by anOPA gain of 104, which is not
so rare in the case of OPA. In the worst case, this mechanism causes parametric oscillations
(optical parametric oscillation) between the surfaces of anonlinear crystal [109]. This effect is
schematically illustrated in Fig. 2.6. The scheme of retro-reflection and re-amplification ((A)-
(C))and the high-dynamic range autocorrelation trace (D) ofamplified signal pulses in an OPCPA
system after pulse compression are shown in Fig. 2.6 (Courtesy of Mr. Tavella Franz, the Max-
Planck-Institute for Quantum Optics, Garching, Germany).Fig. 2.6 (A) illustrates pump pulse
(green), whose spatial duration is longer than a crystal, and stretched seed pulses (from yellow to
orange) coming into an OPA crystal. Fig. 2.6 (B) shows reflection of an amplified seed pulse at
the back surface of the crystal. Fig. 2.6 (C) the re-reflectionand re-amplification of the reflected
amplified seed pulse. Fig. 2.6 (D) shows the high-dynamic range autocorrelation trace of multi-



2.5 Pump-seed synchronization 29

(A)

(B)

(C)

OPA crystal
Pump

Seed

-100 -50 0 50 100 150

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

Detection limit

2 x 5.5 mm BBO

4.4 mm and 5.5 mm BBOs

5.5 mm BBO4.4 mm BBO

In
te

n
si

ty
(a

rb
.u

n
its

)

Delay (ps)

(D)

Figure 2.6: (A)-(C): Schematic illustrations of the retro-reflection in the OPA stage by use
of a pump pulse with the duration longer than the crystal thickness. (B): High-dynamic range
autocorrelation trace of multi-millijoule few-cycle near-infrared pulses based on OPCPA [108]
(Courtesy of Mr. Tavella Franz, the Max-Planck-Institute for Quantum Optics, Garching, Ger-
many). See the main text for details.

millijoule few-cycle near-infrared pulses generated froma near-infrared OPCPA system. In Fig.
2.6 (D), two pre-pulses do not exist and are ghosts [108] of two post-pulses around 50 ps (one
peak at 48 ps from a 4.4-mm-long BBO crystal and the other at 61 psfrom a 5.5-mm-long BBO
crystal). The other two post-pulses after 100 ps are createdby two-times retro-reflection (one at
110 ps from the 4.4-mm- and 5.5-mm-long BBO crystals and the other at 123 ps from the two
times in the 5.5-mm-long BBO crystal). The ASF contributes to asmooth pedestal in the range
from -100 ps to 150 ps, which would be a critical issue for high-intensity applications using solid
targets (e.g. high harmonic generation on a solid). However, generally, higher-contrast amplified
pulses have been demonstrated by use of OPCPA in contrast to amplified pulses obtained by CPA
in Ti:sapphire [110, 111]. In a high-contrast OPCPA system, even small ripples of a pump pulse
obtained from a Q-switched laser imprints the modulation inan amplified spectrum, causing the
degradation of a pulse contrast [112]. Proposals for further improvement of the pulse contrast of
an parametrically amplified pulse have been made by use of cascaded OPAs [113] and by use of
a third-order nonlinear effect in a MgF2 plate [114].

An electric trigger method has been applied to the synchronization method of an OPCPA
system since 1998 when A. Galvanauskaset al. [115] demonstrated the first application of
electric trigger synchronization and aQ-switch laser. Especially, after a proposal [23] made
by I. N. Rosset al. , which pointed out an OPCPA method applicable for extremely high-
peak-intensity ultrashort laser pulse generation up to 10 PW, large institutes in the world have
applied an OPCPA approach to the development of high-energy,high-intensity, and ultrashort
laser pulse systems [116, 117, 118, 119, 120, 121, 122]. In these demonstrations, a high-energy
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nanosecondQ-switched laser is exclusively use as a pump source. So far, the highest pulse
peak intensity reaches up to more than 100 terawatt in sole OPCPA systems, respectively [123,
124]. More than 1 petawatt (PW) peak intensities in the hybridamplifier systems comprising
an OPCPA front-end and Nd:glass power amplifiers have been realized [125, 120]. Notice that
the first PW laser built in Lawrence Livermore National Laboratory [126] relied on Ti:sapphire
regenerative amplifiers operating at 1053 nm as a front-end of the petawatt laser system [127]
, instead of using an OPCPA as a front-end simply because, at that moment, OPCPA was not
widely noticed. Apart from these high-energy OPCPA systems,this approach has been employed
in a hybrid system using OPCPA and Ti:sapphire amplifiers [128, 111] and OPCPA systems using
periodically poled KTP [129] and periodically poled LiTaO3 [130]. All experiments listed above
have demonstrated high-energy and/or more than tens of femtosecond laser pulse generation. The
electronic synchronization approach has been applied to narrowband amplification and relatively
long pulse amplification and not been used for few-cycle pulse amplification.

Picosecond pump and seed pulses synchronization by use of a phase-lock
loop

As mentioned above, synchronization of picosecond pump andseed pulses cannot be achieved by
an electronic synchronization method. However, few-cycleultrabroadband pulse amplification
based on an OPCPA scheme requires the use of picosecond pump pulses, therefore, synchroniza-
tion in the picosecond range. The precise synchronization and timing-jitter reduction of optical
pulses have been one of topics in laser physics [131, 132, 133, 134, 135]. A repetition rate of
a laser oscillator was stabilized by use of an electronic phase-locked loop (PLL) using a double
balanced mixer [131]. The timing-jitter of optical pulses respect to a reference clock was re-
duced to less than a picosecond (rms jitter of 0.3 ps in the frequency range from 0.25 Hz to 25
kHz) by use of Nd3+ oscillators [132]. Further reduction of timing jitter was achieved by use
of a self-mode-locked Ti:sapphire oscillator (150 fs (100−500 Hz) and 80 fs (500−5000 Hz))
[134]. Two picosecond oscillators were synchronized within timing jitter of 20 fs and applied
to a time-resolved anti-Stokes Raman scattering measurement [135]. We have chosen an elec-
tronic PLL repetition-rate stabilization for pump-seed synchronization in our OPCPA system.
At the same time or after our demonstration, this scheme has been recognized as a pulse syn-
chronization method for picosecond OPCPA systems [136, 137,138]. Fig. 2.7 shows a detailed
synchronization scheme. See Section 2.6 for details about oscillators, an amplifier, and an OPA
and Section 2.7 for a stretcher. A synchronization unit is based on a PLL electronic circuit by use
of a double balanced mixer and stabilizes repetition rates of two oscillators, an actively mode-
locked Nd:YVO4 used for a pump seed and a Ti:sapphire used for a OPCPA seed. To increase
the precision of repetition-rate lock, actually, we lock a fourth harmonics of the repetition rate
frequency. We checked its timing precision by the cross-correlation between the oscillators based
on sum-frequency generation. The Ti:sapphire oscillator pulses are not intentionally stretched in
time. The cross-correlation trace (B) and the autocorrelation trace of the actively mode-locked
Nd:YVO4 oscillator (A) are shown in Fig. 2.8. The pump oscillator pulse duration of 62 ps
deconvolved from the 87-ps-wide autocorrelation trace well corresponds to the cross-correlation
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Figure 2.7: Scheme of synchronization of picosecond pump and seed pulses in the OPCPA
system by use of a PLL. Master clock:, synchronization unit:PLL electronic circuit using a
double balanced mixer, stretcher: seed pulse stretcher prior to the OPA stage, amplifier: Nd:YAG
amplifier for the pump pulse generation, and OPA: optical parametric amplifier adopting a BBO
crystal.
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Figure 2.8: Autocorrelation of pump pulses and cross-correlation between the synchronized
pump and seed pulses. (A): autocorrelation trace of the actively mode-locked Nd:YVO4 oscilla-
tor. (B): cross-correlation trace between the Nd:YVO4 oscillator and the Ti:sapphire oscillator.
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width of 60 ps. Because this method does not provide enough precision necessary of an OPCPA
application, another method [135] is used to determine timing-jitter more precisely. The short
pulse from the Ti:sapphire oscillator is placed at half peakof the long picosecond pump pulse,
where the slope of the pump pulse is steepest, and the fluctuation of sum-frequency intensity is
measured to estimate the timing-jitter. Of course this method requires a stable oscillator but can
determine the worst possible value of timing-jitter. The obtained value of timing-jitter in short
term is less than 4.5 ps, which is less than 10% of the pump pulse duration. Details about this
measurement can be found in Ref. [139]. During this measurement we found a long term timing
drift, which is attributed to a double balanced mixer employed in our PLL circuit. The double
balanced mixer has critical disadvantages such as thermal phase shift and phase noise affected
by an amplitude noise [132]. These drifts change the relative timing of pump and seed pulses
in time scale of an hour. Later this effect will be solved by use of the optical synchronization
between pump and seed pulses, which was developed after thisnear-infrared OPCPA system.
Details about optical synchronization will be described inChapter 3. A comparison between the
electronic and optical synchronizations is summarized in Appendix B.

2.6 Broadband near-infrared OPCPA

First we describe NOPCPA using BBO and a Ti:sapphire seed pulse stretched in SF57 glass
blocks in order to investigate the characteristics of a parametric amplifier. The layout of our

Nd:YVO4
pump oscillator

PLL
Synchronization

5 fs, 2 nJ, 76 MHz

Ti:sa oscillator

Flash Lamp pumped
Nd:YAG amplifier

60 ps, 50 mJ,
20 Hz, 532 nm
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2nd BBO
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Figure 2.9: Layout of the NOPCPA system with the bulk stretcher. PPL: phase-lock loop for
oscillators’ repetition-rate lock; RTP PC: RTP Pockels cell; SHG: second-harmonic generator
(type I phase matching KD∗P); B.S.: beam splitter.

NOPCPA system with the bulk stretcher is presented in Fig. 2.9. The home-made broadband
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Ti:sapphire oscillator has been employed as the seed sourcefor the parametric amplifier. The
repetition rate of the Ti:sapphire seed laser is locked to that of an actively mode-locked 60-ps
Nd:YVO4 pump oscillator by use of a PLL electronics. Relative timing between these oscilla-
tors’ pulses is stabilized to less than 5 ps. Details about the active synchronization of the pump
and seed pulses are described in Section 2.5. The pulses fromthe picosecond Nd:YVO4 pump
oscillator are amplified to 100 mJ at a 20-Hz repetition rate in a flash-lamp-pumped Nd:YAG
amplifier (EKSPLA). 50-mJ pump pulses at 532 nm for the OPCPA system are obtained by
frequency-doubling the output from the Nd:YAG amplifier in atype I phase-matching KD∗P
crystal. The seed pulses for OPCPA from the Ti:sapphire oscillators are temporally stretched
by 20-cm-long propagation in the SF57 blocks. The seed-pulse repetition rate is reduced to 20
Hz from 76 MHz by a RTP pulse picker, otherwise the 76-MHz seedpulses from the oscilla-
tor would be too powerful for any measurement of the low-repetition-rate amplified pulse. The
SF57 blocks and the RTP Pockels cell temporally stretch the seed pulse to about 50 ps (700 -
1000 nm) to achieve both good efficiency. The seed beam is recollimated by a pair of concave
silver mirrors to have good spatial overlap with the pump beam at a first OPA stage. 3-mm-
and 4-mm-thick AR-coated type I phase-matching BBO crystals are used in the first and second
parametric amplifier stages, respectively. In the first amplifier stage, the pump beam at the first
OPA stage has a 500-µm diameter by the recollimation of an amplifier output beam bya pair of
positive and negative lenses. In the second amplifier stage,the output beam from the Nd:YAG
amplifier [140] is relay-imaged from the second-harmonic generator to the OPA stage and colli-
mated down to 2.5 mm in diameter. The pump beam profile at the second stage is shown in Fig.
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Figure 2.10: Near-field beam profiles of the pump (A) at the second stage and of the amplified
seed (B) after the second stage.
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2.10 (A). The pump beam sizes in the first and second stages aredetermined by a compromise
between the gain bandwidth and the amount of gain. The use of athinner crystal results in a
broader OPA gain bandwidth in exchange of a less gain [71], although a strong pump intensity,
which is limited by a damage threshold of optics, is necessary to obtain a required gain in a thin
crystal. The pump intensities are set about 20 GW/cm2 at the first stage and 10 GW/cm2 at the
second stage, respectively. Under these conditions, aB-integral value by the XPM of the ampli-
fied seed pulse by the pump pulse is estimated to be 0.3. The third-order nonlinearity refractive
index of the BBO crystal is available in Appendix E. The internal noncollinearity angle between
the pump and seed beams is set at approximately 2.3◦ for both stages to provide broadest gain
bandwidth. The corresponding external angle is about 3.7◦.
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Figure 2.11: Schematics of two possible beam geometries in NOPA: tangential phase matching
(TPM) (left) and Poynting-vector walk-off compensation (PVWC) (right).

There exist two possible beam geometries in NOPA, both of which we have tested, illustrated
in Fig. 2.11. Their difference is the seed-beam propagationdirection relative to an optical axis
of a uniaxial crystal and the pump beam direction [83]. In a negative uniaxial crystal, the direc-
tion of a pump wave vector lies between the direction of a pumpPoynting vector and the optical
axis [99, 83]. Tangential phase matching (TPM) is the beam geometry where the direction of
a signal beam lies between a pump beam and the optical axis. The other geometry is called
Poynting vector walk-off compensation (PVWC). Experimentally, a TPM configuration resulted
in a higher gain and a more efficient OPA operation and, in addition, less second-harmonic gen-
eration (SHG) of an amplified seed. This is because an angle between the propagation direction
of the amplified seed and the optical axis is 24◦ so that the SHG of the amplified seed cannot
be phase-matched in this direction. Phase-matching anglesfor SHG of 800 and 900-nm lights
are about 29◦ and 26◦ in the case of type I phase-matching BBO, respectively. In contrast to
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the TPM geometry, the PVWC configuration leaded to less gain and the generation of strong
blue radiation (second-harmonics of the amplified seed) because the angle of the amplified seed
beam direction from the optical axis is close to 26-29◦, which are the phase-matching angles
of near-infrared radiation. Fig. 2.12 shows the photographof superfluorescence generated by
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Figure 2.12: Photograph of the superfluorescence and schematic illustration of the pump, signal,
and idler beams in the TPM geometry and the optical axis of BBO.

strong 532-nm pumping pulses. The TPM beam geometry used in our experiment is also illus-
trated correspondingly with the photograph. The strong redlight indicated by (A) in Fig. 2.12
should be closer to the optical axis than the strong blue light direction indicated by (B) in Fig.
2.12 because of the SHG phase-matching condition above mentioned. Fig. 2.12 (C) shows the
second-harmonics of the idler. In this picture, the stronger superfluorescence is observed in the
direction (A) and this also indicates that the efficient amplifier operation is possible when a seed
beam is sent into the direction (A). With the TPM geometry, the amplified pulse energy from
the first stage is obtained up to 250µJ, which is 2.5 times more than 100µJ output energy
obtained with the PVWC geometry. The 250µJ output energy corresponds to the OPA gain
of about 2.5×105. We checked high energy contrast between the generated superfluorescence
(uncompressible parametric noise) [53, 40] and the amplified seed output at the first stage. The
diverging output beam from the first OPA stage is collimated by a curved mirror (not shown in
Fig. 2.9) and sent to the second OPA stage. The lower pump intensity at the second stage than
at the first stage resulted in the gain of 30 and the signal pulse is amplified up to 8 mJ with a 40-
mJ pump pulse. The low gain is favorable to increase the conversion efficiency as discussed in
Section 1.3. Amplified superfluorescence has the energy of 3 mJ when the seed beam is blocked.
Onset of the seed pulse reduces the amount of the superfluorescence so that the output pulse can
have more than 5 mJ. When the signal beam path between the first stage and the second stage
is blocked, we do not observe any superfluorescence from the second stage. Therefore, it can
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be concluded that the superfluorescence is generated and successively amplified in the first stage
and further amplified in the second stage. The amplified seed beam profile is shown in Fig. 2.10
(B). The cause of modulation in the beam profile can be attributed to the consequence of cumu-
lative nonlinear effects, space-dependent saturation effect as shown in Fig. 1.6, and/or the little
modulation of the pump beam profile. The ellipticity of the amplified seed beam results from
different phase-matching tolerances in the horizontal andvertical planes [141, 84, 142]. The
measured spectra of the seed (red line) and the amplified seedfrom the second stage OPA (black
line) and the calculated BBO gain spectrum (blue line) are plotted in Fig. 2.13. The amplified
spectrum is well consistent with the overlapped region between the calculated BBO gain and the
oscillator spectra. The short-wavelength cut-off of the amplified spectrum is due to the phase-
matching condition of NOPA pumped by the second-harmonics of a Nd:YAG laser. The long
wavelength cut-off of the amplified spectrum around 1000 nm is due to lack of the Ti:sapphire
oscillator spectrum. Energy conversion efficiency of a parametric amplifier stage is an impor-
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Figure 2.13: Spectra of amplified seed (black line), seed (red line), and calculated gain (blue
line) with the bulk stretcher. Inset: Transform-limited pulse profile calculated from the amplified
spectrum assuming a flat spectral phase. This pulse has the duration of 6.2 fs (FWHM).

tant issue in a high-energy OPCPA system. The pump-to-signalenergy conversion efficiency in
the first and the second stage is summarized in Fig. 2.14 (A) and (B), respectively. Notice that
constant conversion efficiency means that an amplified seed output is proportional to an pump
input energy. Therefore the stability of the output energy is the same as that of the pump energy.
With the Gaussian temporal and spatial beam profile of the pump pulse, the peak pump-to-signal
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conversion efficiency in the second stage reaches 27% (Fig. 2.14 (B)). At the maximum conver-
sion efficiency, the energy stability of the amplified pulsesafter the second parametric stage is
measured to be 2.9% rms, whereas the pump energy stability is1.5% rms.
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Figure 2.14: Conversion efficiency in the first stage (A) and the second stage (B).

In summary, we demonstrated the ultrabroadband high-energy NOPCPA system. This system
employs a broadband chirped pulse as a seed, the high-energyfrequency-doubled output from
the Nd:YAG amplifier as a pump, and the BBO crystal as an amplifiermedium. The efficient
operation of the parametric amplifier is demonstrated and results in the 8-mJ broadband ampli-
fied output pulse obtained with the 40 mJ pump pulse. The broadband amplified pulse has the
potential bandwidth, which could support generation of theultrashort pulses with the duration
of 6.2 fs assuming a flat spectral phase. As a result, from these experiments, terawatt-class laser
pulse generation would be possible with an appropriate pulse stretcher and compressor. In the
next section, we will describe few-cycle pulse generation based on broadband NOPCPA with an
inverse stretcher and compressor pair.

2.7 Few-cycle terawatt-class optical pulse generation by use
of OPCPA

In this section, we introduce a pair of a novel down-chirpingpulse stretcher and an up-chirping
pulse compressor in the NOPCPA system described in the last section in order to achieve the
amplification of few-cycle high-energy pulses. The down-chirping stretcher gives negative dis-
persion to seed pulses prior to the parametric amplifier. Thedown-chirped amplified pulses are
temporally compressed by the up-chirping pulse compressor. Obtained high-energy pulses from
the NOPCPA system are characterized by spectral phase interferometry for direct electric-field
reconstruction (SPIDER) [143, 144]. The generation of high-intensity ultrashort pulses always
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accompanies the use of the chirped-pulse amplification (CPA)technique [7], otherwise high-
energy ultrashort pulses would suffer from the damage of optics and severe nonlinear effects.
The invention of CPA [7], which used a fiber stretcher and a Treacy grating compressor [145],
has been followed by many stretching and compression schemes: a positively chirping grating
stretcher [146] and a grating compressor [8], a quintic-phase limited pulse stretcher and a grating
compressor [147], an all-reflective stretcher and a gratingcompressor [148], a stretcher based
on anÖffner type magnification system [149, 150, 151] and a grating compressor [152, 153],
and additional adaptive optics to a standard grating stretcher and compressor supporting sub-
20-fs spectral bandwidth [154, 155, 156]. So far the shortest pulse duration of 8.9-fs has been
achieved by the recompression of 300-ps stretched pulses with the help of adaptive optics[107].
However the recompression of 50-ps stretched pulses down tofew femtoseconds has not been
demonstrated yet even with adaptive optics, a grating stretcher, and a grating compressor. Re-
cently a novel CPA technique by use of a pair of a down-chirpingstretcher and a up-chirping
compressor, which is opposite to a pair of a up-chirping stretcher and a down-chirping compres-
sor used in the standard CPA technique, has been used in the high-power Ti:sapphire amplifier
system [157, 158]. As mentioned in Ref. [157], this inverse CPA(down-chirped-pulse amplifi-
cation) technique is quite suitable for the stretching and recompression of extremely broadband
pulses because a seed pulse with a broadband spectrum can be easily stretched to several tens of
picosecond by the small amount of chromatic dispersion. In down-chirped-pulse amplification, a
seed pulse is negatively chirped using a grating stretcher and/or a prism pair prior to an amplifier.
Amplified stretched pulses from the amplifier chain are recompressed by positively dispersive
materials such as SF57, SF11, and fused silica. An advantageof an up-chirping compressor is
the high transmittance (close to unity) of broadband amplified pulses through a compressor.
The pulse stretching and compression scheme used in this development is illustrated in Fig. 2.15
(A). The seed pulse from the oscillator is negatively chirped by a grating-based stretcher and
sent into an acousto-optic programmable dispersive filter (Dazzler, Fastlite), which will be used
later for correction of a residual phase measured with a SPIDER apparatus. After the paramet-
ric amplifier, the stretched amplified pulse is recompressedby a sequence of dispersive optical
materials, SF57 and FS, and custom-made designed positively dispersive chirped mirrors. Fig.
2.15 (B) plots group delays given by dispersive components: the 45-mm-long TeO2 (black line),
BBO crystals used (red line), the 150-mm-long SF57 (green line), the 100-mm-long fused silica
(blue line), and the grating-based stretcher (light blue).The group delay of the stretched pulse
in the amplifier (pink line) is also shown in Fig. 2.15 (B). The refractive indices of BBO, TeO2,
SF57, and fused silica are available in Appendix A. In the grating stretcher, shown in Fig. 2.16
(left photograph), the seed beam is dispersed by a 900-grooves transmission grating (Wasatch
Photonics) and collimated by a parabolic lens (f=80 mm) to make a Fourier plane at the focus
of the lens where a micromachined fused silica plate is inserted. The fused silica plate corrects
for higher-order spectral dispersion given in a compressorchain (mainly 3rd-order dispersion
later given by the glass compressors). Fig. 2.16 (B) plots theinput seed spectrum (black line),
the measured seed spectrum behind the stretcher (red line),the calculated transmitted seed spec-
trum behind the stretcher (blue line), the single diffraction efficiency of the transmission grating
(green dashed line), and the four-times diffraction efficiency of the grating (orange dashed line).
Although the shape of the seed spectrum was dramatically altered after the stretcher, 50% energy
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acousto-optic programmable dispersive filter (Dazzler, Fastlite). (B): Group delay of components
in the stretcher and compressor of the NOPCPA system. Group delay in a 45-mm-long TeO2
(black line), BBO crystals used (red line), a 150-mm-long SF57(green line), a 100-mm-long
fused silica (blue line), a grating-based stretcher (lightblue), and a group delay of the stretched
pulse in the amplifier (pink line).

transmittance is achieved and The necessary seed spectrum for the parametric amplifier remains
after the stretcher. The Dazzler made of a 45-mm-long TeO2 diffracts an input pulse through the
interaction between an optical wave and an acoustic wave [159, 160]. A monochromatic input
optical wave polarized along one of two optical axes is diffracted by an acoustic wave in TeO2

to another optical wave polarized along the other axis, whena certain phase-matching condition
is satisfied by the acoustic wave. Each monochromatic wave ofa broadband pulse propagates
with different time determined by the position where the diffraction occurs in the TeO2 crystal
because of the different refractive indices along the two axes. Therefore, arbitrary dispersion
can be given to an optical pulse by a programmable acoustic wave. The arbitrary control of a
spectral phase of optical pulses has been demonstrated by use of ultrashort laser pulses [161].
A disadvantage of the Dazzler is its low diffraction efficiency of about 10% in our case of the
300-nm-wide band input pulse. The NOPCPA system, whose layout is shown in Fig. 2.17, is
slightly modified from that described in the last section since the input seed energy is reduced
substantially after the stretcher and the Dazzler to less than 5% of the pulse energy obtained from
the oscillator. 50-pJ seed pulses behind the stretcher and the Dazzler can be used as seed pulses
for the first OPA stage (3-mm-thick AR-coated type I phase-matching BBO). After first-pass
amplification in the first stage, the retro-reflected amplified pulse is amplified again in the same
crystal by the residual retro-reflected pump pulse and the resultant 250-µJ amplified pulses are
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Figure 2.16: (A): Photograph and illustration of the down-chirping stretcher. TG: 900-grooves
transmission grating; PL: parabolic lens (f=80 mm); MP: micromachined plate. (B): Transmit-
tance of the grating and the stretcher. Input seed spectrum (black line), measured seed spectrum
behind the stretcher (red line), calculated transmitted seed spectrum behind the stretcher (blue
line), single diffraction efficiency of the transmission grating (green dashed line), and four-times
diffraction efficiency of the grating (orange dashed line).

ejected from the first stage. In the second parametric amplifier stage (4-mm-thick AR coated type
I phase-matching BBO) following a beam collimator of the amplified beam from the first stage,
two-pass amplification in the second stage boosts the pulse energy from 250-µJ to 5 mJ. The 5
mJ output was limited by the onset of uncompressible ASF, which is more prominent than in the
previous amplifier chain because of the reduced seed energy.The beam distortion of the input
seed in the stretcher also contributes to loss of the effective seed energy. The obtained amplifica-
tion results in the NOPCPA system using the grating stretcherare summarized in Fig. 2.18. The
Fourier transform of the amplified spectrum, assuming a flat spectral phase, results in the pulse
duration of 7.3 fs. The narrower amplified spectrum can be attributed to gain narrowing accumu-
lated during longer propagation length in the parametric crystals and the narrower spectrum of
the seed pulse after the pulse stretcher. The energy stability and the mode profile of the amplified
pulse are not changed dramatically from the previous results obtained with the bulk stretcher.
Because of twice long propagation length in BBO crystals compared to the previous OPA ex-
periment using the bulk pulse stretcher, the total estimated B-integral is about 0.6. After the
parametric amplifier, the amplified output beam was expandedto 3 cm in diameter (FWHM) and
sent into a compressor chain consisting of the 15-cm-long SF57 glass (Schott), the 10-cm-long
Suprasil glass (Heraeus), and a set of three custom-made positive-dispersive dielectric chirped
mirrors. This stepwise pulse compression reduces pulse distortion by nonlinear effects inside
the bulk materials. Fig. 2.19 (A) plots the pulse duration (dashed line) during compression in
the bulk compressors and the calculatedB-integral (solid line). The amount of theB-integral in
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Figure 2.17: Layout of the near-infrared NOPCPA system with the grating stretcher and bulk
compressor. PPL: phase-lock loop; SHG: second-harmonic generator (type I phase-matching
KD∗P); B.S.: beam splitter for 532 nm; SPIDER: spectral phase interferometry for direct electric
field reconstruction.
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Figure 2.18: Amplification results in the near-infrared NOPCPA system using the grating
stretcher. Seed spectrum behind the stretcher (red line), amplified spectrum (black line), and
calculated BBO gain spectrum (blue line).
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the compressor chain for the 5-mJ amplified pulse is estimated below 0.45. Therefore the esti-
mated totalB-integral in the NOPCPA system is about 1. Fig. 2.19 (B) shows the group-delay
dispersion of the specially designed up-chirping dielectric mirror. The total measured loss in the
compressor chain is measured to be below 4%. After the down-collimation of the output beam
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Figure 2.19: (A): Pulse duration (dashed line) in the compressor and the B-integral (solid line)
accumulated in the bulk materials (calculated using 20 cm ofSF57 and 11 cm of FS for the
worst case scenario). The energy and the duration of the amplified pulse are 5 mJ and 50 ps for
this calculation, respectively. (B): Measured group-delaydispersion of the up-chirping dielectric
mirror.

from the compressor chain, the compressed pulse is characterized by the home-made SPIDER
apparatus [143, 144]. Using the feedback from a SPIDER result, dispersion controlled by the
Dazzler compensates a residual phase of the amplified pulses. The example of the feedback is
demonstrated in Fig 2.20 (A) and (B). Fig. 2.20 (A) shows the spectral phases of the amplified
pulses before the feedback (black line) and after the feedback (red line). Fig. 2.20 (B) shows
the amplified temporal pulse profiles before the feedback (black line) and after the feed back
(red line). The shortest pulse duration of 9.6 fs (FWHM) has been obtained and the SPIDER
measurement results are summarized in Fig. 2.21. Fig. 2.21 (A) shows the measured SPIDER
trace. Fig. 2.21 (B) shows the seed spectrum behind the stretcher (black line), the amplified
spectrum (red line), and the retrieved residual group delay(blue line). Fig. 2.21 (C) shows the
reconstructed pulse with the duration of 9.6 fs (FWHM) (blackline), the transform-limited pulse
with the duration of 7.3 fs (FWHM) (red line) calculated from the amplified spectrum assuming
a flat spectral phase, and the retrieved residual temporal phase (blue line). The shot-to-shot varia-
tion of the pulse duration and the spectral phase has been observed and could be attributed to the
pulse-to-pulse change of accumulated nonlinear phase modulation in time and space caused by
the pump pulse intensity fluctuation and/or timing-jitter between the pump and seed pulses. The
intensity fluctuation of the pump changes a nonlinear phase given in the BBO parametric ampli-
fiers and the successive compressor chain. A single-shot pulse characterization device such as a
single-shot SPIDER [162, 163] and a GRENOUILLE (Swamp Optics) would help to investigate
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Figure 2.20: Optimum pulse compression by the feedback system using the Dazzler and the
SPIDER. (A): Spectral phases before the feedback (black line) and after the feedback (red line)
and (B): reconstructed temporal profiles before the feedback(black line) and after the feedback
(red line).

shot-to-shot variations of an output pulse duration and a spectral phase [164].
In summary, we have achieved the generation of more than 0.5-terawatt (5 mJ, 9.6 fs) optical

pulses by use of NOPCPA with the unique pulse stretching and compression technique. Be-
cause of the absence of thermal load on the nonlinear opticalcrystal, the demonstrated concept
is scalable both in an output energy and a pulse repetition rate. The limitation of output en-
ergy would be determined by an available aperture size of nonlinear crystals. Although current
highest peak-intensity is achieved by our colleagues [165], this work was the demonstration of
the highest-peak intensity optical pulse generation at that time and opened the way toward not
only the generation of few-cycle high-peak-intensity near-infrared pulses but also the genera-
tion of few-cycle infrared OPCPA pulses which will be described later in virtue of wavelength
tunability of an OPCPA approach.
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Figure 2.21: SPIDER results of the near-infrared few-cycleterawatt-class optical pulses from
the NOPCPA system. (A): measured SPIDER trace. (B): measured amplified spectrum (red
line), seed spectrum behind the stretcher (black line), andresidual group delay (blue line). (C):
reconstructed temporal pulse profile with the duration of 9.6 fs (FWHM) (black line), transform-
limited temporal pulse profile with the duration of 7.3 fs (FWHM) (red line), and residual tem-
poral phase (blue line).



Chapter 3

Optical synchronization between the pump
and seed pulses in an OPCPA system

3.1 Introduction

In this chapter, we describe the demonstration of a novel pump-seed synchronization scheme
in an OPCPA system. This synchronization method is achieved by a single ultrabroadband
Ti:sapphire oscillator, which seeds both an OPCPA pump laserand an optical parametric ampli-
fier. The Ti:sapphire oscillator is modified to have a wider spectrum reaching beyond 1µm. We
build a diode-pumped high-repetition-rate Nd:YLF amplifier to test its seeding with a Ti:sapphire
oscillator. The Nd:YLF regenerative amplifier is carefullycharacterized and an intracavity etalon
is introduced to control the pump pulse duration to make it suitable for our OPCPA application.
This scheme has a potential for the optical synchronizationof the pump and seed pulses in an
OPCPA system because the method only relies on light pulses without any electronics. We also
discuss about issues of residual timing jitter and drift in an optically synchronized amplifier. This
amplifier is applied to a few-cycle near-infrared OPCPA system, experimentally demonstrating
the usefulness of the optical synchronization in an opticalamplifier. This scheme realizes a re-
liable and simple synchronization technique, resulting inthe development of an experimentally
applicable OPCPA system.

3.2 Advanced pump pulse synchronization methods

In the previous near-infrared OPCPA system described in Chapter 2, we used the electronic PLL
to stabilize two oscillators’ repetition rates and, therefore, the timing between the pump and seed
pulses at the parametric amplifiers. However the OPCPA systemperformance was affected by a
long term timing drift, which comes from a phase drift in a double balanced mixer used in the
PLL circuit. These effects cause a long term timing drift in the time scale of an hour. However,
to build a usable OPCPA system for spectroscopic applications, this issue has to be solved.

There exists a novel synchronization method using a digitalphase detector for a electronic
PLL [166]. This type of a PLL without using a mixer is potentially insensitive to thermal drift



46 3. Optical synchronization between the pump and seed pulses in an OPCPA system

and the amplitude drift and noise of laser oscillators. Timing jitter of less than 20 fs (25 mHz−
10 kHz) was demonstrated by use of a PLL electronics using a digital phase detector. However,
this system is fairly complex and its long-term stability has not yet been proven, whereas such
tight synchronization precision is superfluous. Even with rigorous cavity synchronization of the
two master oscillators in an OPCPA system, the actual pump-seed timing at the nonlinear crystal
is affected by the thermal expansion of the beam path length.The beam path length can reach
many tens of meters in a typical regenerative or multipass amplifier, which results in the timing
drift between the pump and seed pulses by hundreds of femtoseconds.

We have found three possible candidates for the pulse synchronization in an OPCPA system.
K. Finsterbuschet al. [167] employed an OPO as a frequency converter device of a pump

oscillator to generate new radiation used as seed pulses in an optical parametric amplifier. They
used the half of an output from a 1-µm master oscillator as a pump pulse and the other half to
pump an optical parametric oscillator generating new radiation around 2µm to be used as a seed
pulse in the parametric amplifier.

H. Zenget al. [168] demonstrated the generation of synchronized seed pulses for a pump
amplifier by use of OPA. The pump amplifier was seeded with femtosecond idler pulses of an
optical parametric amplifier pumped by femtosecond pump laser pulses, which parametrically
amplified and created femtosecond pulses from a CW seed laser.

C. Y. Teisset, the author, and others [169] demonstrated the generation of seed pulses for a
pump amplifier using a soliton self-frequency shift phenomena [170] in a photonic crystal fiber
(PCF) [171]. A frequency-shifted radiation around 1064 nm was obtained from the PCF injected
by a portion of a Ti:sapphire oscillator output pulse[172] and the resulting frequency-shifted
radiation was amplified up to sub-mJ level in a diode-pumped Nd:YAG regenerative amplifier.
Later not only the frequency-down-shifted radiation but also frequency-up-shifteďCerenkov ra-
diation was used as a seed source for an OPA system [173]. The use of frequency conversion in
a nonlinear process is a promising way for tunable seed source generation. However its energy
instability and sensitivity to alignment might restrict the performance of an amplifier.

In the next section, thanks to an extremely broadband Ti:sapphire oscillator, we demon-
strate the direct seeding of a Nd:YLF regenerative amplifierfrom a home-made ultrabroadband
Ti:sapphire. With this scheme we establish all-optical pulse synchronization for amplifier sys-
tems including an OPCPA. We investigate performances of the Nd:YLF amplifier and discuss
about issues in this seeding method.

3.3 Seeding of a Nd:YLF amplifier with a Ti:sapphire oscilla-
tor

In this section, we describe the development of a home-made Nd:YLF regenerative amplifier
and the seeding of the regenerative amplifier with a broadband Ti:sapphire oscillator. The way
to control the pump pulse duration is proposed and experimentally demonstrated by use of an
etalon in the regenerative amplifier cavity.
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Broadband Ti:sapphire oscillator

A key tool for optical synchronization is the broadband Ti:sapphire oscillator , whose spectrum
needs to cover the wavelength range from 700 to more than 1000nm. This is because, high-
energy picosecond pulse amplification is possible by use of Nd3+-doped host materials, which
have their emission line beyond 1000 nm.

Ti:sapphire has been known as a widely tunable solid-state laser medium [3, 5, 4]. In the
1990s, Ti:sapphire has brought revolutionary advances in laser physics and ultrafast optics. These
progresses include a continuous wave lasing operation [174], ultrashort femtosecond laser pulse
generation from oscillators [175, 176, 177, 178, 179, 180] enabled by wide-spectral-range dis-
persion control by use of a prism pair [181, 182, 183]. A new self-mode-locking mechanism,
Kerr-lens mode-locking, has enabled simple and reliable operation of the generation of ultra-
short laser pulses from a solid-state laser oscillator [184, 185, 186, 187, 188]. Another invention,
chirped multilayer coatings (chirped mirror) [34], capable of ultra broadband dispersion control
has pushed the limitation of the duration of Ti:sapphire oscillator pulses to the sub-10 fs regime
[189, 190, 191, 192]. Further advance in the designing and fabrication technique of chirped mir-
rors enables simultaneous oscillation in the whole emission bandwidth of Ti:sapphire, resulting
in few-cycle laser pulse generation from laser oscillator without external spectral broadening
[193, 194, 195, 196]. These ultrabroadband Ti:sapphire oscillators can have its spectrum beyond
1000 nm and make possible the direct seeding of Nd3+ amplifiers from a Ti:sapphire oscillator.
In this demonstration, we use our home-made ultrabroadbandprism-less Ti:sapphire oscillator
[196]. In addition, the use of a broadband Ti:sapphire oscillator with megahertz-repetition-rate
CEP stabilization [195, 197, 198, 199] permits further straightforward amplification of CEP-
controlled pulses in a kilohertz-repetition-rate OPCPA system [103, 136].

Nd:YLF regenerative amplifier

For a home-made diode-pumped laser amplifier used as an OPCPA pump source, we have cho-
sen Nd:YLF as a gain medium from several Nd3+-doped host materials (Nd:YAG, Nd:YLF,
Nd:YVO4, and Nd:glass). Nd:YLF has several advantages over other Nd3+-doped host materials
such as

1. Natural birefringence (uniaxial crystal)

2. Weak and negative thermal-induced lensing effect [200, 201, 202]

3. Long fluorescence lifetime (500µs) [203]

4. Low stimulated emission cross section (= 1.8×10−19 cm2 (π, c-axis, 1047 nm) and 1.2×
10−19 cm2 (π, a-axis, 1053 nm)) [204, 200]

5. Moderate thermal conductivity (0.06 W/cm/K, two times lower than YAG).

At the same time, Nd:YLF has several disadvantages such as fragility and low pump power
fracture limit, low single-pass gain, long population decay time from a terminal lasing level to
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the ground state [205, 206], excited-state absorption of laser wavelengths [207, 202], and the
difficulty in crystal growth, cutting and polishing processes [208]. Weak thermal lensing and
natural birefringence are quite attractive in spite of several disadvantages. The weak thermal
lensing simplifies the design of a regenerative amplifier cavity and its compensation. The nat-
ural birefringence suppresses thermal-induced depolarization, which is typical in a high power
Nd:YAG amplifier and effectively reduces the usable energy.Nd3+-doped YLF has different flu-
orescence emissions along a-axis and c-axis (optical axis)at 1053 nm and 1047 nm, respectively.
In this experiment, because of the weaker thermal lensing along a-axis (1053 nm), the 1053-nm
fluorescence line has been chosen for the development of a regenerative amplifier.

Q-switch operation of the amplifier cavity

Picosecond pulse amplification based on Nd3+-doped host materials has been extensively investi-
gated from 1980s both in a multipass amplifier [209] and a regenerative amplifier [210, 211, 212].
Current technologies required for picosecond pulse amplification have been well established and
even a picosecond amplifier is commercially available. Therefore we describe briefly the devel-
opment of the Nd:YLF regenerative amplifier. Fig. 3.1 illustrates the layout of the home-made
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Figure 3.1: Layout of the home-made Nd:YLF regenerative amplifier with the Ti:sapphire seed-
ing scheme. OPCPA: near-infrared optical parametric chirped-pulse amplifier; BS: broadband
50% beam splitter; L1, L2: mode-matching lenses (fL1 = 100 mm, fL2 = 50 mm); FI: Faraday
isolator; TFP: thin-film polarizer;λ/2: half-wave plate; FR: Faraday rotator;λ/4: quarter-wave
plate; PC: KD∗P Pockels cell; ND:YLF: continuous-diode-pumped Nd:YLF laser head; MS:
mode selector (pinhole); HR 1: 100% high reflector (radius ofcurvature =∞); HR 2: 100%
high reflector (radius of curvature = 1500 mm); SHG: second-harmonic generator (10-mm-long
type I phase-matching LBO); DM: Dichroic mirror reflecting second harmonics at 527 nm and
transmitting fundamental radiation at 1053 nm.
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Nd:YLF regenerative amplifier with several optics necessary to utilize a weak seed pulse. A
laser crystal, 63-mm-long 3-mm-diameter a-cut Nd:YLF rod,is mounted in a continuous-diode-
pumped gain module (model RD40, Northrop Grumman Cutting EdgeOptronics). The thermal-
lensing focal distance of the diode-pumped rod is measured to be from−2 to−5 m dependent on
the pump power. A single-pass gain of about 1.5 is obtained ata pump level above which YLF
rods were cracked. The weak thermal lens allows a relativelysimple cavity comprising one con-
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Figure 3.2: Eigenmodes of the Nd:YLF regenerative amplifiercavity with three different thermal
lenses.

cave mirror and one flat high reflectors separated by 1.38 m. A calculated cavity eigenmode for
three focal distances of the thermal lens are shown in Fig. 3.2, including the effect of propagation
in the long YLF rod and the thermally induced lensing effect [54, 69]. The calculation confirms
the stable operation of the regenerative amplifier with different thermal lensing focal distances
from−2 to−5 m. The AR coating on the Pockels cell crystal is found to be the weakest against
the optical damage and, therefore, it is placed close to the curved HR side where the beam size
is the largest. Under this condition, after the 400-ns-longopening of the regenerative cavity,
ejectedQ-switched nanosecond pulses have the energy of above 3 mJ at 1kHz. The evaluation
of the output power and energy with respect to the saturationfluence and power of Nd:YLF and
a formula for the estimation of the effective power and energy in the regenerative amplifier are
described in Appendix C.

Seeding of the regenerative amplifier

A standard oscillator-amplifier system is seeded with the pulse energy of more than a nanojoule
from an oscillator. In this case, amplified spontaneous emission (ASE) would not be a problem
because the strong seed could be amplified to the required energy without producing a noticeable
amount of ASE. However, in our case, the quite low pulse energy around 1053 nm is available
from the Ti:sapphire oscillator whose spectrum is shown in Fig. 3.3(A). The reason is that
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the Ti:sapphire oscillator pulses have a weaker spectral intensity at 1050 nm than the central
wavelength and the spectral intensity itself is not strong because of its wide spectral breadth.
The regenerative amplifier has to be seeded carefully with the weak pulse and characterized
because the competition between amplification of the seed and ASE might result in a useless
amplifier operation. A spectrum after a 10-nm-wide interference filter at 1050 nm is shown
in Fig. 3.3 (B) and this filter is used for estimation of the seedenergy. A transmitted seed
power after the 10-nm-wide, 50%-transmitance interference filter was about 380µW at a 76-
MHz repetition rate, from which the spectral intensity can be calculated as 1.0 pJ/nm around
1050 nm. An effective seed energy, defined as the spectral width (FWHM) of the Nd:YLF
fluorescence (1.3 nm) multiplied by the spectral intensity (1.0 pJ/nm), is 1.3 pJ, which is 2-3
order of magnitude less than the usual seed energy. As seen inFig. 3.1, we used a mode-matching
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Figure 3.3: (A): Spectrum of the home-made broadband Ti:sapphire oscillator (output power:
400 mW; repetition rate: 76 MHz). (B): Spectrum of the Ti:sapphire oscillator after a 10-nm-
wide transmittance interference filter at 1050 nm.

telescope (L1 and L2) and a Faraday isolator (FI) for the seeding procedure. In addition, a
translation stage attached to one of the mode-matching lenses allows the fine adjustment of the
seed beam divergence to match itself into the regenerative amplifier cavity mode and increase
the coupling efficiency. The Faraday isolator was employed to protect the oscillator from the
feedback of the regenerative amplifier, which might cause the unstable operation of the oscillator
and the cw emission in the mode-locked oscillator. With the careful seed beam alignment, the
1.3-pJ seed pulse was successfully amplified up to 3.7 mJ after 35 round trips in the regenerative
amplifier. The maximum output pulse energy of 3.7 mJ is limited by the average-power saturation
at the 1-kHz repetition rate [210, 211, 212]. This fact can beseen in Fig. 3.4 where an intracavity
pulse train (black line) and an output pulse (red line) of theNd:YLF regenerative amplifier are
shown. The single amplified pulse cannot be saturated by itself because additional round trips
did not increase the output energy of the amplified pulse and shifted the whole pulse train by
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corresponding round trips. Details about the roll-off frequency between the power and energy
saturation are given in Appendix C. The single-pass gain of the amplifier operated at 1 kHz for
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Figure 3.4: Intracavity pulse train (black line) and outputpulse (red line) of the Nd:YLF regen-
erative amplifier.

a certain pulse is estimated to be dependent on the output energy of a 1-ms separated previous
pulse. Therefore high energy extracted from the Nd:YLF rod by the previous pulse decreases
the gain for a successive pulse. This is a reason why the pulsetrain was shifted when further
round trips were added. This is quite dangerous for the amplifier operation, especially, at a
high-repetition rate because the first pulse after a long interception of the injection seed will
be amplified more strongly than those in the stationary operation and might cause a damage
in the amplifier. Autocorrelation traces of the output pulses from the Nd:YLF amplifier are
measured with and without the etalon (a 0.8-mm-thick fused silica plate) in the amplifier cavity
and shown in Fig 3.5(A). As can be seen in Fig. 3.5 (A) (red line), the short pulses amplified in the
regenerative amplifier without the etalon have a ripple in the temporal pulse profile because self-
phase modulation caused by the intense short pulse results in spectral broadening, multiple-pulse
production, and self-compression [209, 211]. Therefore westretch the pulse during amplification
in the regenerative cavity by use of an etalon. Smooth amplified pulses with a duration of 26
ps assuming a Gaussian temporal pulse profile are obtained with the 0.8-mm-thick etalon. An
output temporal pulse profile is numerically simulated including the effects of etalon spectral
filtering and gain narrowing of Nd:YLF. An autocorrelation trace shown in Fig. 3.5(A) (green
line) is reconstructed from the simulated pulse. The simulated and measured autocorrelation
correspond well with each other. With this simulation, the pulse duration can be predicted and
engineered arbitrarily with an appropriate etalon. An analysis of the etalon effect is described in
Appendix D. The insertion of the etalon results in a smooth, narrow spectrum (Fig. 3.5(B) (black
line) ), which corresponds to a spectral resolution of an optical frequency analyzer (AQ6315B,
Ando). The spectral width of the amplified pulse can be calculated as 0.04 nm assuming the
chirp-free pulse, which is much narrower than the spectral resolution of the optical frequency
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Figure 3.5: (A): Autocorrelation traces with (black line) and without the intracavity etalon (red
line) and a calculated autocorrelation trace (green line).(B): Output pulse spectra with the 0.8-
mm-thick intracavity etalon (black line) and without the etalon (red line) and a fluorescence
spectrum of Nd:YLF (green line). Note that a resolution of the spectrometer is 0.3 nm.

analyzer. In Fig. 3.5(B) (red line), an amplified pulse spectrum without the etalon is shown. This
broad spectrum, in contrast to the amplified pulse spectrum with the etalon, indicates the spectral
broadening effect due to self-phase modulation in the Nd:YLF rod and KD∗P Pockelscell. With
the etalon, an estimatedB-integral accumulated in the Nd:YLF rod and a KD∗P Pockels cell is
7.4. Nonlinear refractive indices of YLF and KD∗P are listed in Appendix E. To utilize the output
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Figure 3.6: (A): Near-field beam profile of second harmonics (527 nm) of the output pulses from
the Nd:YLF amplifier. (B): Histogram of shot-to-shot output energies of the second harmonics
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pulses from the regenerative amplifier as pump pulses for near-infrared OPCPA, a 1.6-mJ second-
harmonic pulse at 527 nm is obtained by frequency-doubling in a 10-mm-long type I phase-
matching LBO crystal. A near-field beam profile of second harmonics is shown in Fig. 3.6(A)
and has good quality because of the beam mode confined with thepinhole (mode selector) in the
regenerative amplifier. The measured energy stability of second-harmonics is 1.33% rms because
of average-power saturation. Its histogram is shown in Fig.3.6(B). Without the seed pulse into
the amplifier, theQ-switched pulse produces a 200-µJ second-harmonic pulse. Because ASE
would be suppressed with the onset of the seed injection, at least, the energy of 1.4-mJ can be
assumed to be contained in the picosecond range. Later, in Section 3.4, a pulse contrast in a
picosecond and nanosecond range will be measured and a necessary seed energy to overcome
the ASE will be discussed.

Conclusion

In summary, the weak seed pulses from the broadband Ti:sapphire oscillator are successfully
amplified in the picosecond Nd:YLF regenerative amplifier. Resultant amplified pulses at 1053
nm have the output energy of 3.7 mJ at the repetition rate of 1kHz and the duration of 26 ps.
The smooth temporal profile and spectrum of the amplified pulse are obtained with the insertion
of the etalon in the regenerative cavity. The estimatedB-integral accumulated in the Nd:YLF
regenerative amplifier is 7.4 with the intracavity etalon. The 1.6-mJ, out of which the 1.4-mJ is
contained in the picosecond range, second-harmonic pulseswith good beam quality and energy
stability of 1.33% rms were obtained by frequency-doublingin the LBO crystal.

This picosecond amplifier will be used as a pump source of an optically synchronized near-
infrared OPCPA system. The seeding method, demonstrated here, also could be applied to all-
optical synchronization of amplifiers based on different gain media in the spectral range from 600
to 1100 nm. This spectral range covers workhorse solid-state laser media such as Ti:sapphire,
Yb3+-doped, and Nd3+-doped host materials.

3.4 Picosecond pump pulse contrast measurement

In this section we describe the contrast measurement of the picosecond output pulses from the
Nd:YLF regenerative amplifier seeded with the broadband Ti:sapphire oscillator pulses. The
pulse contrast is measured by a high-dynamic-range autocorrelator based on third-harmonic
generation (THG). The contrast between the main picosecondpulse and background nanosec-
ond ASE will reveal the ratio between the energies containedin the picosecond and nanosecond
range. This is important because the seed pulse energy into the amplifier is weak, and the growth
of the ASE may severely reduce the amount of the useful energyin the picosecond time scale.

In the previous section, the lowest limit of the amplifier output energy was estimated by a
comparison of the amplifier output energies with and withoutthe seed. However, the onset of
the amplified seed pulse reduces the gain of the Nd:YLF amplifier (especially in the saturation
regime) and, therefore, suppresses ASE. The precise pulse contrast between the picosecond am-
plified seed and the nanosecond background can be measured byuse of a high-dynamic-range
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autocorrelator [213, 214, 215]. From this contrast measurement, we could estimate the actual
energy ratio in the picosecond and nanosecond range. The layout of the high-dynamic-range
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Figure 3.7: Layout of the high-dynamic-range autocorrelator based on THG. TS1: translation
stage; M1, M2: partially coated mirrors; BS: pellicle beam splitter; C1: second-harmonic gener-
ation crystal; M-Ag: silver mirrors; P1: periscope; P2: height-changer. P1 and P2 are equipped
with dichroic mirrors for second harmonics. FM: focusing mirror (f = 100 mm); M-3ω: dielec-
tric mirrors reflecting only third harmonics; C2: third-harmonic generation crystal; SL: slit; lens:
f=100 mm; TS2: translation stage for time delay.

autocorrelator is shown in Fig. 3.7. Its detailed description is available in Ref. [108]. The ampli-
fier was modified from the one described in Section 3.3. 2.5-mJoutput pulses from the regenera-
tive amplifier are successively amplified up to 6 mJ by two-pass amplification in a post-amplifier
comprising a five-diode-pumping home-made gain module witha 4-mm-in-diameter 12-cm-long
a-cut Nd:YLF rod. The 6-mJ output pulses are characterized with the above described autocorre-
lator. The measured autocorrelation traces are shown in Fig. 3.8. To collect these data, we varied
the seed energy and adjusted correspondingly the round-trip number to maintain a constant out-
put power from the amplifier. The inset in Fig. 3.8 shows the relative fraction of theQ-switched
pulse energy obtained by the interception of the seed with respect to the total amplifier output
energy when the seed pulse is injected. Unfortunately, the scanning range of the third-order au-
tocorrelator does not cover the entire extent of the nanosecond pedestal. It is shown in Fig. 3.8
that the increase of the nanosecond background results fromthe decrease of the seed energy. In
the autocorrelation trace, the intensity of the leading pedestal is higher than the tailing pedestal.
This is because the population inversion of the gain medium (Nd3+) decays during the passage
of the amplified pulse so that, always, the leading edge of thepulse feels higher gain than the
tailing edge and is more amplified [54, 216, 31]. We assume that the intensity of the nanosecond
background is flat in time and has a duration of 6 ns, which is determined by the switching time
of the Pockels cell. Under these assumptions, only a 2.3% fraction of the total output energy
is contained in the nanosecond pedestal if the nanosecond pedestal has the relative intensity of
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Figure 3.8: High-dynamic-range autocorrelation traces ofthe output pulses from the Nd:YLF
amplifier chain seeded with the full seed energy (black line)from the broadband Ti:sapphire
oscillator, half energy (red line), quarter energy (blue line), one-twentieth energy (green line),
and one-fortieth energy (orange line). Inset: ratios between output power of seeded regenerative
amplifier andQ-switched output power in the absence of the seed pulse. Seedenergies and color
notations are the same as in main panel.

10−4 respect to the picosecond peak intensity. If the nanosecondbackground intensity is a 10−3

level, the fractional energy of the nanosecond pedestal increases to 18.8%. The measurements,
presented in Fig. 3.8, prove that the seed energy of 1.3 pJ is sufficiently high to suppress the
ASE background and produce a reasonably clean picosecond pump pulse for the OPCPA sys-
tem. It could be concluded that the ASE energy is strongly reduced when the seed is injected
because the estimated energy of the nanosecond background,when the seed is injected, from the
autocorrelation trace is not equal to the output energy of the Q-switched pulses. For example,
for the half seed energy (red line) in Fig. 3.8, the nanosecond background energy can be esti-
mated as much lower than 18.8% because of its intensity is lower than 10−3 of the peak intensity.
However, in the inset of Fig. 3.8, theQ-switched pulses without the seed pulse is almost 50%
of the total output. Amplification of ASE is reduced by at least 3 times by the onset of the seed
pulse injected. As an empirical criterion, when theQ-switched pulse energy is less than the half
of the amplified seed energy, we noticed that nanosecond background is reasonably suppressed
and the main picosecond pulse contains the substantial amount of the output energy. Preferably,
this criterion is only dependent on the output energies fromthe amplifier with and without the
seed pulse. Notice that, in some case, this criterion could not be applicable, if the cavity mode
dramatically changes with the seeded and unseeded amplifieroperation by the different thermal
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condition and different nonlinear effects.
In summary, we have characterized the output pulses from theregenerative amplifier seed

with the broadband Ti:sapphire oscillator by use of the high-dynamic-range autocorrelator based
on THG. The third-harmonic autocorrelation characterization determines the intensity contrast
of the main picosecond pulse and the nanosecond ASE, consequently, the energy ratio between
them. The measured data confirmed the reasonably clean pulseobtainable with the weak seed
pulse from the Ti:sapphire oscillator. The criterion for clean pulse amplification have been de-
rived and can be applied to general cases when the seed energyis low.

3.5 Timing-jitter and drift problems in the OPCPA system

In the previous section, we demonstrated the seeding of the home-made Nd:YLF regenerative
amplifier with the Ti:sapphire laser and the characterization of its output pulses by use of high-
dynamic-range autocorrelation. Originally, the main motivation of this development is to elimi-
nate timing jitter and drift between the pump and seed pulsesin the OPCPA system. In Chapter
2, electronic synchronization of two oscillators used in the near-infrared system demonstrated
its excellent short-term timing lock within 5 ps. However wehave observed long-term timing
drift resulted from the thermal effect of the double-balanced mixer and its phase noise converted
from the laser amplitude noise, which are critical for spectroscopic applications such as high-
harmonic generation, attosecond pulse generation, and attosecond real-time spectroscopy. We
discuss about possible source for residual timing jitter and drift existing in optically synchro-
nized amplifiers. We separate the timing issues into two types, namely, short-term timing jitter
(shot-to-shot fluctuation) and long-term timing drift and discuss them one by one.

Short-term jitter

We used a cross-correlation technique based on OPA to examine timing fluctuation within tens of
minutes [217]. The experimental set up is described in Fig. 3.12 in the next section. The second-
harmonic pump pulses from the regenerative amplifier followed by the frequency-doubling LBO
crystal are cross-correlated with unstretched pulses directly from the broadband Ti:sapphire os-
cillator. The second harmonics and the unstretched pulses act as the pump pulses and seed
pulses in type I NOPA by use of BBO. This cross-correlation technique provides the highest
temporal resolution to assess the timing jitter between theOPCPA seed and pump pulses. We
artificially shortened the amplified pulse from the Nd:YLF amplifier by removing the intracav-
ity etalon so that the self-compressed laser pulse train wasobtained and used for the parametric
cross-correlation. The measured trace, shown in Fig. 3.9, has the width of only 1 ps (FWHM),
which gives the upper limit of the possible synchronizationimperfection in our system. This
short temporal resolution is obtained not only by the self-compressed pulse but also by the ex-
treme nonlinearity of OPA, effectively improving the correlation resolution to less than the pump
pulse duration. Although the shot-to-shot timing fluctuation is difficult to assess, a novel work
to examine shot-to-shot timing fluctuation between output pulses from a Ti:sapphire regenera-
tive amplifier and from a Ti:sapphire oscillator has been achieved by use of the detection of the
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Figure 3.9: OPA-based cross-correlation trace, showing the upper limit of the timing-jitter of less
than 1 ps.

sum-frequency spectrum between the chirped and chirp-freepulses [218]. With this method,
they have observed pulse timing fluctuation of less than± 20 fs (100-m-long propagation in the
regenerative amplifier cavity and the oscillator). They found the cause of the short-term timing
fluctuation related to the frequency of the alternating current of the power supply. The result of
the work [218] is consistent with our experimental result and shows potential precise synchro-
nization of much less than picosecond time scale.

Long-term timing drift

The long-term drift, regardless of the type of pump and seed pulse synchronization, is related to
the thermal expansion of the cavities of the pump amplifier and the seed oscillator. An illus-
tration of the timing synchronization scheme in the OPCPA system is shown in Fig. 3.10. The
timing-drift problem results from the relative path lengthdrift between two arms from a splitting
optic to a combining optic. In the case of the OPCPA system, shown in Fig. 3.10, the path length
corresponds to the distance from the output coupler to the OPA stage through the laser amplifier.
Note that the splitting optic in this case is not the beamsplitter but the output coupler. This can
be understood by the fact that, in principle, the beamsplitter can be replaced by the Pockels cell,
which can select out a seed for the laser amplifier and the other seed for the parametric amplifier
at a different time. A seed pulse 1 (seed 1 in Fig. 3.10) pickedup by the Pockels cell (PC in Fig.
3.10) travels in the amplifier, while another seed pulse 2 (seed 2 in Fig. 3.10) is stored in the
oscillator and waits for the amplified seed pulse 1 to be ejected from the amplifier. Then, when
the amplified seed pulse 1 is ejected from the laser amplifier,the seed pulse 2 is ejected from
the oscillator and the two pulses are temporally and spatially overlapped at the OPA crystal. The
amount of timing drift depends on relative thermal variation of the pump and seed arms. The
pump arm length is governed by the total path length in the laser amplifier (for the case of the
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Figure 3.11: (A): Repetition rate drift of the Ti:sapphire oscillator (black curve) and calculated
repetition rate drift (red curve) from the temperature drift of the oscillator breadboard. A right
y-axis represents the corresponding timing drift after the700-ns-long (210-m-long) travel in the
regenerative amplifier. (B): Temperature drifts of the oscillator (black curve) and the amplifier
breadboards (red curve).
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regenerative amplifier, the cavity length in one round trip× the round-trip number). The seed
arm length is governed by the oscillator cavity length× its round-trip number. For example,
assuming a 100-m path length on a stainless steel breadboard, a relative temperature change by
0.1 K between the seed and the pump arms causes 0.3-ps timing shift. 0.1-K temperature stabi-
lization of the optical table represents the practical limit for the laboratory environment. Further
improvement of the timing synchronization has to rely on active stabilization of both the oscil-
lator and the regenerative amplifier cavities [219]. Such measures would be required for pump
and seed pulses with the duration of less than a couple of picoseconds. The thermal drift of the
oscillator and the laser amplifier bases was measured to estimate the amount of the slow drift
in our infrared OPCPA system, which will be described later inChapter 4. In Fig. 3.11 the
repetition rate ((A) black curve) of the Ti:sapphire seed oscillator and the temperature of the os-
cillator breadboard ((B) black curve) and the regenerative-amplifier breadboard ((B) red curve)
are shown. In Fig. 3.11(A) (red curve), expected oscillator-repetition-rate shift is calculated
from temperature drift of the oscillator breadboard, shownin Fig. 3.11(B) (black curve). This
relationship verifies that the oscillator frequency shift is related with the thermal expansion of
the breadboard. However the factor of two difference between the frequency shifts , shown in
Fig. 3.11(A), has not been attributed yet. The estimated timing drift amounts to about 8 ps in the
oscillator cavity. However the similar tendency of the temperature drift between the oscillator
and the amplifier breadboard could result in the cancellation with each other. Several-hour-long
warming up time also stabilizes the optical table and breadboard temperatures , resulting in less
than 2-ps drift after warming up. Although day-to-day timing shift in OPCPA systems has been
observed because of the repetition-rate shift of the oscillator and the environmental temperature
change, any shift in one day has not been noticed so far.

In summary, in this section, short term and long term timing drifts have been investigated by
the cross-correlation technique based on OPA and estimatedby temperature drifts in the oscil-
lator and the amplifier, respectively. 100-m beam path length on the stainless steel would cause
0.3-ps timing drift by 0.1-K temperature change. Comparisonbetween electronic and optical
synchronization for an OPCPA system is summarized in Appendix B.

3.6 Near-infrared OPCPA system with optical synchroniza-
tion

In this section, we apply the optically synchronized picosecond pump pulses from the Nd:YLF
regenerative amplifier to a near-infrared OPCPA system similar to the one represented in Chap-
ter 2. The scheme of the optically synchronized OPCPA system is illustrated in Fig. 3.12. A
Ti:sapphire oscillator pulse is split by a 50% broadband beamsplitter and one of the pulses is
directed into the OPA stage following a pulse stretcher chain to expand temporally the seed pulse
approximately to 22 ps to ensure appropriate overlap with the 26-ps pump pulse. The stretcher
chain consists of a SF57 prism pair, the Dazzler, and a 10-cm-long SF57 block. The energy of the
transmitted seed pulse after the stretchers is reduced to 50pJ from about 2.5 nJ (2% throughput)
because of the low diffraction efficiency of the broadband Dazzler and losses of the optics. The
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Figure 3.12: Near-infrared OPCPA system by use of the optically synchronized pump laser. BS:
broadband 50% beam splitter; NOPA: noncollinearly phase-matched optical parametric amplifier
using BBO; TG: transmission grating; SPIDER: SPIDER apparatus.

noncollinear parametric amplifier employs a single-pass geometry in a 4-mm-long type I phase-
matching BBO. We used the same noncollinearity angle and phase-matching angle as for the first
parametric amplifier stage in the near-infrared OPCPA systemdescribed in Chapter 2. The pump
intensity on the BBO crystal is estimated as about 15GW/cm2 assuming the pulse duration of
26 ps for the second harmonic. The near-field beam profile of the amplified seed pulse with the
energy of 100µJ (corresponding gain of 2× 106) is shown in Fig. 3.13(A). The shot-to-shot
energy stability was measured as 11% (RMS) and its histogram is shown in Fig. 3.13(B). Al-
though we did not observed the shot-to-shot shift of the amplified spectrum, which could result
from the timing-jitter between the pump and the stretched seed, the unsaturated operation in the
parametric amplifier causes degradation of the energy stability of the output pulses. This can
be easily solved by use of a new second OPA stage by use of a stronger pump laser. However,
in this section, we concentrate on the development of the OPCPA system based on the optical
synchronization and its characterization. In Fig. 3.13 (A), the ellipticity of the amplified-beam
results from the different phase-matching tolerances along the signal polarization direction and
along the pump polarization direction [141, 84, 142]. The amplified pulses are recompressed
in a compressor consisting of a pair of 900 lines/mm transmission gratings (Wasatch Photonics)
separated by about 14 mm. The throughput of the pulse compressor is about 50%. The amplified
spectrum after the grating compressor (solid line) is shownin Fig. 3.14 (A). The compressed
pulses were characterized by SPIDER. The residual spectral phase retrieved by a SPIDER anal-
ysis program was corrected for by use of the feedback mechanism from a SPIDER system to the
Dazzler.

The residual spectral phase (dashed line) obtained after several feedbacks is plotted in Fig.
3.14(A). Fig. 3.14(B) depicts the retrieved temporal pulse profile with the duration of 11.3 fs
(FWHM) (solid line), a transform-limited pulse profile (dashed line) calculated from the ampli-
fied spectrum (its duration is 8.3 fs (FWHM)), and the retrieved temporal phase (dotted line).
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Figure 3.13: (A): NOPA output beam profile. (B) Shot-to-shot output energy histogram. The
energy stability is 11% RMS.
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Figure 3.14: SPIDER results of the amplified pulses from optically synchronized NOPCPA. (A):
measured amplified spectrum (solid line); retrieved spectral phase (dashed line). (B): retrieved
temporal pulse profile (solid line); transform limited pulse calculated from the measured ampli-
fied spectrum assuming flat spectral phase (its duration is 8.3 fs (FWHM)); retrieved spectral
phase (dotted line).
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High-order dispersion (mainly third-order dispersion) ofthe 10-cm-long SF57 block could not
be fully compensated over the entire spectral range of interest because of the limited aperture of
the second prism in the prism pair and the limited dispersiontuning range of the Dazzler.

In summary, the optically synchronized pump amplifier is applied to the 11-fs near-infrared
OPCPA system. These amplifiers are seeded with the common single broadband Ti:sapphire
oscillator. The main problem, the timing-jitter are substantially reduced so that we could not no-
tice any timing-drift during the experiment and the fluctuation of the amplified spectrum, which
would result from the short-term timing fluctuation.

3.7 Upscaling of output pulse energy from an amplifier seeded
with weak pulses

Upscaling of the output energy from an amplifier chain seededwith a several-picojoule pulse
is an interesting topic. In our laboratory, Ti:sapphire oscillators are being modified to further
extend the infrared wing of the output spectrum to attain thestrong infrared spectral intensity.
As a result, so far, a modified Ti:sapphire oscillator has produced five times more energy at
1053 nm compared to the oscillator used in the seeding experiment. With this seed, two post
amplifiers following the Nd:YLF regenerative amplifier boost the pulse energy from 4 mJ to 11
mJ. The ratio between the output energies with and without seed pulses is kept below 0.5, which
satisfies the criterion described in this section. As an example, a much larger 100-ps, 1.5-J,
10-Hz Nd:YAG amplifier system [220] is successfully seeded with the frequency-shifted output
pulse from the photonic crystal fiber [169]. A 1-mJ output pulse from a Nd:YAG regenerative
amplifier seeded with an about 1-pJ pulse from a photonic crystal fiber is further amplified to 1.5
J in a chain of post-amplifiers. The fundamental energy of theQ-switched pulse in the absence
of the seed pulse is measured as 150 mJ. This Q-switched pulseenergy, based on the same
criterion, corresponds to the less than 2% ASE energy contained in the 1.5-J output. Therefore,
we could conclude that the main source of the contrast deterioration of the amplifier output
pulses is the regenerative amplifier because of its very highgain, typically 109 in the case of
weak seeding. Consequently, an unsaturated power booster following the regenerative amplifier
does not enhance the ASE background so much because of its lowgain.

3.8 Conclusion

We have implemented direct optical seeding of the picosecond Nd:YLF regenerative amplifier
amplifier with the broadband Ti:sapphire oscillator. This novel scheme established reliable opti-
cal synchronization of two amplifiers operating in non-overlapping spectral ranges. This method
was applied to the broadband OPCPA system by use of the optically synchronized pump source.
The use of a common Ti:sapphire oscillator dramatically simplifies the whole OPCPA system
in comparison with OPCPA schemes adopting two oscillators synchronized by use of the PLL
electronics. This work also offers a blueprint for buildinglarge-scale OPCPA systems that would
be particularly suitable for the applications in high-fieldphysics, extreme nonlinear optics, and
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attosecond spectroscopy. The demonstrated simple OPCPA system would be necessary for the
attosecond real-time spectroscopy, high-harmonic generation, and attosecond optics. In addi-
tion, the demonstrated synchronization method opens a new way for all-optical synchronization
of high-intensity laser amplifiers based on various gain media that do not have mutual spectral
overlap. This optically synchronized Nd:YLF amplifier system will serve as a pump source of an
infrared OPCPA system in the next chapter with additional boosting power amplifiers after the
regenerative amplifier.
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Chapter 4

Few-cycle high-energy infrared pulse
generation by use of OPCPA

4.1 Introduction

In this chapter, we will describe the design and experimental implementation of an broadband op-
tical parametric amplifier of chirped pulses in the infrared. Unique high-energy, ultrafast optical
pulses at 2.1µm are generated by this OPCPA system. Seed pulses are generated by difference
frequency generation (DFG) and their CEP is self-stabilized[221, 222, 223]. We use the Nd:YLF
amplifier seeded with a Ti:sapphire oscillator, whose development was described in Chapter 3,
as a pump source for the infrared OPCPA system. A pump amplifierchain is upgraded by addi-
tional post amplifiers following the regenerative amplifierand produces 11-mJ, 40-ps, 1053-nm
pulses at 1kHz.

In Chapter 5, we demonstrate preservation of the CEP of the seedpulses during parametric
amplification. The obtained few-cycle infrared pulses are applied to generation of the visible
supercontinuum. The supercontinuum and THG of the fundamental pulses make possible a novel
f -to-3f nonlinear interferometry and the detection of the CEP of the infrared pulses.

4.2 Infrared seed pulse generation by use of difference fre-
quency generation

In this section, we review infrared optical light sources and describe generation of an infrared
broadband seed source for the infrared OPCPA system based on DFG [224] in periodically poled
lithium niobate (PPLN). High-energy pulses from a commercial Ti:sapphire amplifier are spec-
trally broadened by self-phase modulation (SPM) and used aspump pulses of DFG.

A straightforward way to obtain infrared seed pulses is to use a broadband oscillator based on
a laser medium. However so far the shortest pulse duration oflaser oscillators operating around
2 µm has been limited to sub ps [225].

Because of the lack of an appropriate ultrafast laser oscillator, in the infrared, an optical
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parametric oscillator (OPO) [226, 227, 228] has been used asan ultrashort tunable light source.
However, for our purpose, the OPO does not provide an important feature: few-cycle pulse
generation.

Another approach to obtain the infrared radiation is optical rectification of the broadband
optical pulses. This scheme as well as the use of a photoconductor and the electro-optic effect
is frequently used in ultrafast terahertz (THZ) optics and spectroscopy [229, 230, 231]. Recent
advance in the ultrabroadband laser oscillator in the visible has naturally resulted in genera-
tion of high-photon-energy THZ radiation, which has reached the mid-infrared range. Mid-
infrared pulses at 7µm has been demonstrated by use of optical rectification (DFG)of sub-20-fs
Ti:sapphire oscillator pulses [232]. Few-cycle or even mono-cycle pulses with the stable electric
field, which indicates the stabilization of the CEP of the THZ radiation, is exactly what we want
to have as a seed source except its wavelength.

By use of DFG and its self-stabilization mechanism of the CEP, aprevious work by T. Fujiet
al. in our group demonstrated detection and stabilization of a carrier-envelope offset (CEO) fre-
quency based on the interference between a 1.4-µm difference frequency (DF) and Ti:sapphire
fundamental spectral components at this wavelength [198].This mechanism satisfies two impor-
tant requirements for the OPCPA seed source. First, with an appropriate nonlinear crystal, 2-µm
broadband radiation could be expected to be acquired simplybecause of less requirement of the
bandwidth of the Ti:sapphire oscillator spectrum. Secondly, the CEP of the DF generated by the
CEP-unlocked pump laser pulse is automatically self-stabilized [233, 221, 222, 223]. The mech-
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...

Fundamental spectrum

Frequency

Mixing

DFG spectrum

Frequency

comb

fceo

f rep

f = 0ceo

Figure 4.1: CEP stabilization and CEO frequency stabilization in a DFG process. fceo: CEO
frequency and frep: laser repetition-rate frequency.

anism of DFG and its CEP stabilization is illustrated in Fig. 4.1. This can be easily understood
by the spectral domain representation of pump laser frequency combs. An optical frequency
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of each comb in the DF spectrum is the laser repetition rate multiplied by an integer because
each comb is generated by parametric mixing between the different combs of the fundamental
spectrum whose offset frequencies are the same and these offset frequencies are cancelled out
through the DFG process. This can be confirmed by use of simplemathematics. A DF( fDFG)
generated by the difference frequency mixing between the oscillator combs

(
n frep+ fCEO

)
and

(
m frep+ fCEO

)
depends only on the laser repetition ratefrep as

fDFG = n frep+ fCEO−
(
m frep+ fCEO

)
= (n−m) frep (4.1)

, where frep and fCEO represent the laser repetition rate and the CEO frequency, respectively.
Therefore, the pulse-to-pulse CEP does not change and every DF pulse has a temporal phase
defined by the exciting-pulse envelope. Resultant self-stabilization of the CEP is a quite useful
feature, when few-cycle laser pulses are used as a driver forHHG and attosecond optics and spec-
troscopy [19], because a peak value of the electric-field amplitude of the few-cycle optical pulse
becomes dependent on the CEP [234]. In a previous infrared OPCPA system described in Ref.
[235], a home-made broadband Ti:sapphire oscillator was used for DFG, resulting in a DF with
the energy of 2 pJ. An infrared parametric amplifier seeded with this weak DF produced about
50-µJ, 20-fs pulses around 2µm. The energy is limited to 50µJ because further amplification
just results in the dramatic increase of the ASF and it is difficult to distinguish the amplified pulse
energy from the ASF energy. Therefore, higher-energy seed pulses are required to achieve the
higher output energy without suffering from the ASF. Since then we have changed the method
to generate the seed pulse by use of DFG, aiming at the high-energy seed source. High-energy
100-fs, 1-mJ, 1-kHz pulses at 800 nm are obtained from a commercial Ti:sapphire regenerative
amplifier followed by an additional two-pass post amplifier (Spitfire, Spectra physics) and are
sent into a gas cell containing 3-bar Kr to broaden its spectrum by SPM. The output beam is
weakly focused with a 1-m lens into the gas cell, forming a long single filament visualized by
ionization of Kr atoms. This long filament is sustained by thebalance of three effects: self-
focusing, natural divergence of the laser beam, and plasma defocusing [236, 237, 238]. The
narrowband 100-fs pulse is spectrally broadened in the longfilament where the high laser inten-
sity is kept to enhance spectral broadening based on SPM. Generated broadened pulses show,
recently, self-compression phenomena in the filament, leading to few-cycle high-energy pulse
generation [239, 240, 241, 242]. Note that this is one of promising ways toward high-energy,
few-cycle, near-infrared laser pulse generation, although the infrared few-cycle pulses can be
uniquely obtainable by use of the OPA process under current technology. Fig. 4.2 (A) shows the
fundamental spectrum (black line), the broadened spectrumbefore band-stop mirrors (red line),
and the broadened spectrum after the band-stop mirrors (green line). Fig. 4.2 (B) shows the spec-
trum of the supercontinuum before the band-stop mirrors in logarithmic scale. The home-made
band-stop mirrors are used behind the gas cell to eliminate the strong central part of the output
broadened spectrum from the gas cell, while maintaining smooth variation of the spectral phase
of the reflected pulse.

The broadened pulse is temporally compressed by use of a set of chirped mirrors after the
band-stop mirrors. The pulse compression by 4 bounces on chirped mirrors seemed to be opti-
mum for generation of the broadband DF spectrum in 1-mm-longMgO-doped periodically-poled
stoichiometric lithium niobate (MgO:PPSLN) crystals. After 4 bounces on the chirped mirrors,
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Figure 4.2: (A): Fundamental spectrum (black line), broadened spectrum before the band-stop
mirrors (red line), and broadened spectrum after the band-stop mirrors (green line). (B): broad-
ened spectrum before the band-stop mirrors in logarithmic scale.
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Figure 4.3: (A): Measured DF spectra generated in the MgO:PPSLNs with the quasi-phase-match
(QPM) period of 13.87µm (black line) and 11.21µm (red line). Simulated DF spectra with the
QPM period of 13.87µm (green line) and 11.21µm (blue line). (B): Broadened spectrum before
the band-stop mirrors (red line) and DF (black line) spectrain the frequency domain, showing
correspondence of the central frequency of the DF to the frequency width between the blue and
red wings of the broadened spectrum.



4.2 Infrared seed pulse generation by use of difference frequency generation 69

-400 -200 0 200 400
0.0

0.5

1.0

-15

-10

-5

0

5

10

1750 2000 2250 2500 2750
0.0

0.5

1.0

-5

0

5

-200 -100 0 100 200

620

600

580

560

540
Measured XFROG trace

Delay (fs)

SF
G

 W
av

el
en

gt
h 

(n
m

)

0

0.2500

0.5000

0.7500

1.000

-200 -100 0 100 200

620

600

580

560

540
  Intensity 
(arb. units)

Reconstructed XFROG trace

Delay (fs)

SF
G

 W
av

el
en

gt
h 

(n
m

)

0

0.2500

0.5000

0.7500

1.000

Ph
as

e 
(ra

d.
)

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Time (fs)

 Temporal profile
 Temporal phase

Ph
as

e 
(ra

d.
)

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Wavelength (nm)

 Retrieved spectrum

  Intensity 
(arb. units)

(D)(C)

(B)(A)

 Spectral phase

Figure 4.4: Characterization of the DF pulses by use of XFROG.(A): Measured XFROG trace,
(B): reconstructed XFROG trace, (C): retrieved temporal pulse profile (solid line) and temporal
phase (dashed line), and (D): retrieved spectrum (solid line) and spectral phase (dashed line).

the energy of the supercontinuum pulse is measured as 50µJ. We tried two MgO:PPSLN crys-
tals with different quasi-phase-match (QPM) periods of 11.21 and 13.87µm for DFG. Fig. 4.3
plots the DF spectra generated by the MgO:PPSLN crystals with the QPM periods of 11.21µm
(red line) and 13.87µm (black line). In Fig. 4.3, numerically simulated DF spectra by use of the
MgO:PPSLN with the QPM periods of 11.21 (blue line) and with the QPM periods of 13.87µm
(green line) are compared with the experimentally obtainedDF spectra. A theoretical description
about the simulation of the DFs is given in [61, 243, 244, 245]. This calculation uses the spectral
intensity and phase of the broadened spectrum by use of frequency-resolved optical gating based
on second-harmonic generation (SHG FROG) [246].

To examine the compressibility of the DF, we characterize the spectral phase and intensity
of the DF by use of a cross-correlation FROG (XFROG) based on the sum-frequency generation
between the DF and the fundamental pulse from the Spitfire. Inthis pulse characterization,
the MgO:PPSLN with the QPM period of 11.21µm was used. Fig. 4.4 shows a measured
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XFROG trace (A), a reconstructed XFROG trace (B), a retrievedtemporal pulse profile (solid
line) and a temporal phase (dashed line) (C), and a retrieved spectrum (solid line) and a spectral
phase (dashed line) (D). From these traces, although the chirp of the DF pulses are not only
governed by the second-order chromatic dispersion but alsoother higher-order dispersion, the
smooth variation of the group delay of the DF pulses could be aproof for the possible pulse
compression with suitable adaptive optics. The energy of the DF is measured as 50 nJ with the
maximum pump energy. However, the DF generated by the maximum pump energy turned out
to be useless due to the bad quality of its temporal pulse profile showing multiple peaks. This
might be attributed by the onset of the nonlinear effects in the MgO:PPSLN generating the DF by
the strong compressed supercontinuum. The pump pulse energy was reduced and the resultant
DF was checked as described above to have the clean temporal pulse profile. The energy of the
reduced DF pulses was hardly measurable because of their weakness.

In summary, we have demonstrated a broadband DF around 2µm by use of the broadened
Ti:sapphire amplifier output pulses. The fundamental pulses broadened in the long-distance
filament formed in 3-bar Kr are used as the pump source for DFG in the MgO:PPSLN. The
generated DF has been characterized with XFROG, showing itspotential compressibility. This
energy is much higher than the previously used seed energy of2 pJ and, consequently, the high-
energy output from the infrared OPCPA system is expected.

4.3 Infrared optical parametric amplifiers

In this section, we review past works on infrared OPAs, whichgive us helpful ideas for the
development of an infrared OPCPA system. Especially our attention will be paid to broadband
and high-energy amplification and ultrashort laser pulse generation. The optically synchronized
1053-nm pulses, which are produced by an upgraded Nd:YLF amplifier chain to be described in
Section 4.4, are used as a pump source for amplification of thebroadband seed source around
2 µm obtained in the last section. Therefore only degenerate optical parametric amplification
would provide broad gain bandwidth necessary for few-cyclepulse amplification. A suitable
OPA crystal for this purpose will be selected out from many possible candidates.

Here we look through demonstrations of OPAs and OPCPAs for ultrashort infrared pulse
amplification with bulk nonlinear crystals (experiments using periodically-poled crystals will be
discussed later): 200-fs pulse generation at 3-4µm by use of KNbO3-based OPA [247], 125-fs
pulse at 3µm by use of a bulk LiNbO3 (LN) [248], 5-cycle at 3µm using MgO-doped LN
(MgO:LN) [249], a review of femtosecond OPAs with KTP, KTA, and KNbO3 crystals in Ref.
[250], 75-fs pulses at 5µm with dispersion compensation in transparent materials [251], and 65-
fs pulses tunable from 2.7 to 4.5µm based on a KNbO3 [252]. From the papers above, so far, the
shortest pulse duration is 5-cycle around 3µm. However its output energy is less than 10µJ and
they generate ultrashort laser pulses by slicing a long seedpulse using ab ultrashort pump pulse.
Although 5-cycle optical pulses around 3µm have been demonstrated by use of MgO:LN, the
broadband seed spectrum, described in the last section, prefers a wider parametric amplification
bandwidth to achieve high-energy few-cycle pulse generation. Recently a new type of infrared
ultrafast pulse generation has been demonstrated: broadband (not compressed yet) phase-stable
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near-infrared (1.2-1.5µm) pulses by use of DFG followed by boosting OPA [253]. This isquite
interesting but there seems to be several problems such as the rather complex setup to be used
and the unreliable phase-stabilization scheme dependent on the interferometer.

Two things can be considered to enhance the gain bandwidth: higher pump intensity and the
use of thin crystals. The use of the high pump intensity is, inany case, limited by the damage
threshold of the optics (mainly bulk damage and surface damage of the crystal). As pointed out
in Section 1.3, shorter pump pulses would result in broadband parametric amplification because
the parametric amplifier could be pumped by the higher-intensity pump. However the shortest
duration of the amplified pulse from the Nd:YLF amplifier is limited by amplifier gain narrowing
and the damage of the amplifier optics so that dramatic increase of the pump pulse intensity is
implausible. The second idea, the use of thin crystals, are not easy to implement because a certain
amount of gain has to be realized to amplify the weak seed energy to millijoule-level. However
the higher second-order nonlinearity coefficient could compensate for the gain decreasing due to
the thin nonlinear crystal. From the formulas for the gain calculation described in Eqs. 1.5, 1.6,
and 1.7, small gain coefficientg multiplied by the interaction lengthL can be expressed by the
second-order nonlinearity coefficientdeff, the pump intensityIp andL as

gL ∝ deff
√

IpL. (4.2)

Therefore, to sustain a certain gain, the crystal lengthL can be reduced whendeff is larger, re-
sulting in broadband parametric amplification due to less phase mismatch. Actually, recently
emerging periodically-poled nonlinear crystals have an extremely high second-order nonlinear-
ity coefficient so that the use of thin periodically-poled nonlinear crystals could result in the
broadband and high gain at the same time.

In 1993, first fabrication of periodic antiparallel domainsin the ferroelectric crystal, LiNbO3,
by use of the electric external field was demonstrated[254].The use of the QPM technique, which
was predicted initially by a first theoretical paper concerning OPA [55] and later theoretically ex-
plained in detail [255], has been widespread owing to this relatively easy fabrication technique of
periodically-poled crystals by use of the electric field. Inthe QPM technique, periodic reversal
of the domains in the crystal causes the periodic reversal ofthe sign of the second-order nonlin-
ear coefficient. This modulation compensates for phase-mismatch accumulated among the three
waves involved in the parametric interaction and enables effective parametric interactions. Ad-
vantageous features of the QPM method include the noncritical phase-matching possible for any
three-wave interaction within the transparency of the material, if fabrication techniques allow a
required domain reversal, and the use of the largest second-order nonlinear coefficient.

For periodically-poled crystals, many interesting experiments in the infrared regime and
advances in crystal fabrication and engineering have been demonstrated: early demonstration
of an OPO by use of MgO:PPLN [256], fabrication of MgO-doped stoichiometric LiTaO3

(MgO:PPSLT) [257], OPA and OPO applications by use of MgO:PPLN [249] and [258], re-
spectively, a high-power OPO operation using large aperture MgO:PPLN [259], and relatively
broadband OPG by use of MgO:PPSLT [260]. Not only OPAs but also several OPCPAs have
been demonstrated with periodically-poled crystals: high-energy femtosecond OPCPA by use of
a Q-switched laser as a pump source [115], ultrashort pulse generation based on periodically-
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poled KTP (PPKTP) [129], first use of MgO:PPSLT in an OPCPA [130], broadband amplifi-
cation of mid-infrared pulses in PPKTP [261], and high-contrast OPCPA system using PPKTP
[110]. The periodically poled crystals have been applied tomany OPAs and OPCPAs and shown
its potentials and, especially, the highest second-order nonlinear coefficient for the parametric
interaction is quite favorable.

We numerically calculate the OPA gain bandwidth by use of theEqs. 1.5, 1.6, and 1.7 for
three crystals (MgO:PPSLN, MgO:PPSLT, and bulk-LN). This simulation clarifies the effect of
the high second-order nonlinear coefficient value on the gain bandwidth. The calculation of the
OPA gain adopting 1st-order QPM with the duty cycle of 50% does not change the OPA gain
formula except the notation of the phase-match condition and the replacement of the second-
order nonlinear coefficient [255]. The wave-vector mismatch can be expressed as

∆k≡ kp−ks−ki −
2π

ΛQPM
, (4.3)

whereΛQPM is the QPM period of the periodically poled crystal. The effective second-order
nonlinear coefficientdeff in Eq. 1.6 has to be replaced by that for QPMdQPM [255]. Their
relationship can be expressed as

dQPM =
2
π

deff. (4.4)

Values of the second-order nonlinear coefficients of SLT andSLN ared33 = 25.0 pm/V [262]
andd33 = 15.7 pm/V [262, 263] both in the case of zzz interaction, respectively, resulting in
effective second-order nonlinear coefficients ofdQPM = 16 pm/V for PPSLN and 10 pm/V for
PPSLT, respectively. Temperature dependent extraordinary refractive indices of MgO:LN from
HC Photonics and SLT are available from Eqs. A.10 and A.11 in Appendix A, respectively.
Refractive indices of 5 mol% MgO-doped congruent LN are available from Eqs. A.8 and A.9 in
Appendix A. Calculated gain curves with MgO:PPSLN (black line), MgO:PPSLT (red line), and
bulk MgO:LN (green line) are shown in Fig. 4.5 (A). The obtained seed spectrum (blue line) is
plotted in Fig. 4.5 (A). Fig. 4.5 (B) depicts temporal pulse profiles, assuming flat spectral phase,
calculated from the gain spectra with MgO:PPSLN (black line), MgO:PPSLT (red line), and
bulk MgO:LN (green line), respectively. For the calculations, the following parameters are used:
common pump intensity: 5 GW/cm2, QPM periods of MgO:PPSLN and MgO:PPSLT: 30.2 and
31.8µm, temperature of MgO:PPSLN and MgO:PPSLT: 300 and 100◦C, and crystal length of
MgO:PPSLN and MgO:PPSLT: 2 and 2.9 mm. The crystal length, phase-matching angle, and
second order nonlinear coefficient of MgO:LN are 6.5 mm, 42.93 ◦, and 5 pm/V, respectively.
Nearly two-cycle pulses could be amplified by use of MgO:PPSLN (carrier period at 2.1µm is 7
fs), while even the narrowest gain bandwidth obtained with bulk MgO:LN is expected to support
amplification of less than 3-cycle pulses.

In summary, we have conducted the OPA gain calculation usingMgO:PPSLN, MgO:PPSLT
(red line), and bulk MgO:LN. The high second-order nonlinear refractive index, enabled by the
QPM technique and periodically poled crystals, resulted inbroadband gain, making possible
amplification of few-cycle pulses in the infrared regime. Inthis experiment, we will adopt ex-
clusively MgO:PPLNs because of the broader gain bandwidth and available large-aperture (5
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Figure 4.5: (A): Calculated OPA gain spectra in the infrared by use of MgO:PPSLN (black line),
MgO:PPSLT (red line), and bulk MgO:LN (green line) and the obtained seed spectrum (blue
line). (B): Temporal pulse profiles, assuming flat spectral phase, calculated from the gain spectra
with MgO:PPSLN (black line), MgO:PPSLT (red line), and bulkMgO:LN (green line).

mm × 5 mm) crystals [264] supplied by a collaborating institute,Dr. H. Ishizuki and Prof. T.
Taira (Institute for Molecular Science, Okazaki, Japan). With this MgO:PPLN, amplification
of the whole seed spectrum is expected, leading to few-cyclepulse generation in the infrared.
Although MgO:PPSLT and bulk MgO:LN are not used in this experiment, especially, in the case
of higher-energy pulse amplification, a higher damage threshold of MgO:SLT and much larger
available aperture size of bulk LN might be superior to the low damage threshold and a limited
aperture size of MgO:SLN. Other periodically-poled nonlinear crystals such as PPKTP and PP-
KTA and bulk crystal KNbO3 also have not been tried. This is because their use is rare andtheir
properties for the OPA application are equivalent or inferior compared to PPSLN, although they
exhibit stronger tolerance for the photorefractive effectand this advantage could be preferable
for some cases.

4.4 Upgrade of the Nd:YLF pump amplifier for the infrared
OPCPA system

In this section, we describe upgrade of the optically synchronized Nd:YLF regenerative amplifier
established in Section 3.3. Additional post amplifiers are placed after the Nd:YLF regenerative
amplifier seeded with the Ti:sapphire oscillator in order toincrease the picosecond output pulse
energy to more than 11 mJ. Because of cumulative nonlinear effects in the Nd:YLF amplifier, two
intracavity etalons are used to stretch the amplified pulse duration, resulting in smoother high-
energy, high-intensity pulse generation from the amplifierchain. Details about the two etalon
approach is described in Appendix D.
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In the Nd:YLF amplifier, the KD∗P Pockels cell has been exchanged with a BBO Pock-
els cell. This exchange enables higher-energy and higher-power operation of the regenerative
amplifier [265] because of the low absorption of the fundamental light at 1053 nm and BBO’s
stronger resistance to the heat deposition than KD∗P. A better thermal property of BBO and the
improvement of the amplifier cavity resulted in the higher output energy of more than 4 mJ at
1 kHz repetition rate and saturation of the amplified pulses.Saturation of the amplified pulse
is caused by a nonlinear loss of the fundamental amplified pulse because a part of the ampli-
fied pulse is converted to second harmonics generated in the BBOPockels cell in contrast to the
KD∗P Pockels cell. The stronger amplified pulse loses more energy due to the higher conversion
of the fundamental pulses into the second harmonics.

To examine picosecond amplification with the weak seed pulse, we tried to compare the out-
put between theQ-switched and the seeded operations as described in Section3.4. However
we could not precisely measure the output ratio of the modified Nd:YLF regenerative amplifier
between theQ-switched and the seeded operations. This is because a cavity design is dramati-
cally dependent on the thermal condition of the Nd:YLF rod. Therefore the round-trip gain and
the amplifier performance become dependent on the thermal load on the Nd:YLF rod and, con-
sequently, its output power itself. A less output energy in theQ-switched operation, compared
to the output of the seeded amplifier, changes the amplifier performance from the seeded oper-
ation so that simple comparison of the output powers betweenthe Q-switched and the seeded
operations is not possible anymore. Therefore, as shown in Fig. 4.6, we measured the shot-to-
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Figure 4.6: Regenerative amplifier output energy with and without the seed. (A): Output energy
change due to the variation of the thermal condition in the cavity. (B): Expanded plot around the
seed interception.

shot output energy with and without the seed pulse. The output energy after the seed injection
slowly increases for about 2.5 seconds to reach saturation around the 4-mJ output energy and
the Q-switched output also decreases slowly with the same time scale after the seed blocked.
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By comparing the output energy just before and after the seed interception, the output energy
ratio between theQ-switched and the seeded operations can be determined from the plot as 1/2
because, in such a time scale, thermal condition of the Nd:YLF rod is not changed so much. This
value satisfies the criterion for clean pulse amplification defined in Section 3.4. This ratio is im-
proved from the previous amplifier configuration mainly because of the 5 times higher spectral
intensity around 1053 nm of an improved Ti:sapphire oscillator.

The 4-mJ output pulses from the regenerative amplifier are sent to a post-amplifier chain
consisting of two home-made continuous-diode-laser Nd:YLF gain modules. A first module
(Nd:YLF 2 in Fig. 4.10) contains a 63-mm-long 3-mm-diametera-cut Nd:YLF rod. This module
exhibits a single-pass gain of about 2 with the diode-laser power well below the fracture limit of
the Nd:YLF rod (about 50-60 W/cm in our case). A second module (Nd:YLF 3 in Fig. 4.10)
contains a 120-mm-long 4-mm-diameter a-cut Nd:YLF rod and exhibits a slightly less single-
pass gain of 1.8. These Nd:YLF crystals of the two modules areoriented such that their c-axes
become orthogonal with each other. This configuration helpsto compensate the elliptical thermal
lens of the YLF crystal. Additionally a cylindrical lens is placed between the modules for further
compensation of the ellipticity of the beam. Taking into account self-focusing of the amplified
beam propagating in the long Nd:YLF rod, the beam size is optimized by an appropriate lens
such that the clipping of the transmitted beam by the Nd:YLF rod disappears at the highest output
operation. With this optimization, a maximum output energyof 12 mJ at 1 kHz is achieved using
high pump-diode input power close to the fracture limit. A lower safe pump power results in
the less output energy of 11 mJ at 1 kHz. Its beam profile is shown in Fig. 4.7 (A). We have
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Figure 4.7: Output beam profiles from the Nd:YLF amplifier chain. (A): Beam profile of 11.2-
mJ output pulses from the two post-amplifiers following the Nd:YLF regenerative amplifier. (B):
Beam profile of 15.1-mJ output pulses from the three post-amplifiers.

measured autocorrelation traces of the output pulse from the post amplifier chain following the
Nd:YLF regenerative amplifier with a single etalon inside. We observed multiple prominent
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Figure 4.8: Autocorrelation traces of the amplified output pulses from the post amplifier. Auto-
correlation traces of the post-amplifier 1-mJ output pulses(black line) and of the post-amplifier
1-mJ output pulses (red dashed line), clearly indicating the pulse temporal narrowing effect.

peaks in the autocorrelation trace and attributed this phenomenon to a shallow ripples introduced
by a single etalon and its enhancement by a self-compressioneffect caused by SPM and gain
narrowing [209, 211]. Therefore, to stretch the amplified pulse more and remove the ripples,
two etalons are inserted in the regenerative cavity. This two-etalon approach is theoretically
demonstrated to cancel out ripples introduced by indvidualetalons and its details are described
in Appendix D. Fig. 4.8 shows the measured autocorrelation traces of resultant 1-mJ and 12-
mJ output pulses from the post-amplifier chain adopting the two etalon inside the regenerative
cavity. Because the 1-mJ pulses are obtained by attenuating the regenerative amplifier output
pulses in front of the post amplifier, difference of the pulsedurations of 1-mJ and 12-mJ output
pulses is caused by the self-compression effect caused by SPM and gain-narrowing in the post
amplifiers [209, 211]. The pulse duration at the full output energy operation is 40 ps, assuming a
Gaussian pulse temporal profile. Although we have succeededin obtaining an output energy of
17 mJ from an additional third Nd:YLF amplifier using the samecrystal as in the second module,
the output pulses from the three post amplifiers are severelydistorted so they are less usable as
OPCPA pump pulses than the 11-mJ pulse from the two amplifiers.This is because the critical
degradation of the spatial and temporal pulse profile effectively reduces the usable energy. A
beam profile presented in Fig. 4.7 (B) shows the sharp peak at the center of the beam due to
the self-focusing in the last amplifier, although the diffraction at the exit of the third amplifier
clips an output beam profile, causing the diffraction pattern. This is because the intense part of
the input beam self-focuses more strongly during propagation in the third post amplifier than the
wings. TheB-integrals accumulated in the post-amplifiers are estimated as 0.54 for 2 stages and
1.14 for 3 stages.

In summary, the optically synchronized Nd:YLF amplifier chain is upgraded with the two
additional boosters and produces the 11-mJ pulses at the 1-kHz repetition rate. These output
pulses will be used as a pump source for the infrared OPCPA system to be described in the next
section. Further upgrade of the amplifier seems to be difficult and, at least, the rod aperture size
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has to be increased to avoid nonlinear effects in a long Nd:YLF rod.

4.5 Few-cycle high-energy infrared optical pulse generation
by use of OPCPA

Introduction

In this section, we demonstrate the experimental implementation of a MgO:PPSLN OPCPA sys-
tem by use of the optically synchronized Nd:YLF pump laser. Similar to the stretching and
compression method adopted in near-infrared OPCPA, we used anovel down-chirping stretcher
and up-chirping compressor for the dispersion control in the OPCPA system. The infrared seed
pulses are negatively stretched in a Dazzler prior to the parametric amplifiers. The stretched
pulses are amplified in two OPA stages using MgO:PPLNs. The amplified pulses are com-
pressed by the chromatic dispersion of silicon (Si) down to about 20 fs. The compressed pulses
are characterized by FROG using surface-third-harmonic generation (THG FROG) [266].

Pulse stretching and compression

The infrared Dazzler functions as both a main stretcher and aresidual dispersion compensator in
infrared OPCPA (IR OPCPA) in contrast to the near-infrared OPCPA. After coarse pulse com-
pression, the Dazzler corrects for the residual spectral phase whose information is obtained by
the THG FROG measurement. The Dazzler gives negative dispersion to the infrared seed pulses,
stretching it to about 13 ps in the spectral range from 1.8 to 2.8 µm. After amplification of
the down-chirped seed pulses, positively dispersive 50-mm-long Si compresses the amplified
stretched pulses from 13 ps down to about 20 fs. The advantageof the bulk compressor approach
is the excellent transmission of the pulse energy and its simplicity without causing spatial chirp
usual in CPA based on a grating compressor. Fig. 4.9 shows a calculated group delay of the
stretcher, amplifier, and compressor: sign-inversed (multiplied by −1) group delay of 50-mm-
long Si (black line), sign-inversed group delay of 6-mm-long MgO:LN (red line), group delay of
TeO2 (ordinary wave) (blue line), and group delay of TeO2 (extraordinary wave) (orange line).
A refractive index of Si is available in Eq. A.18 in Appendix A. Refractive indices of TeO2 in
the infrared region are given in Ref. [267] and in Eqs. A.14 andA.15 in Appendix A. Note that
these Sellmeier equations are different from those used forthe dispersion calculation in the near-
infrared OPCPA stretcher. The diffracted beam by the acoustic wave in the Dazzler propagates
in TeO2 as an extraordinary wave. An angle between the polarizationdirection of the diffracted
beam and the optical axis of TeO2 is 51.5◦. This means that the propagation direction of the
diffracted beam is 38.5◦ away from the optical axis. This is included in the dispersion calcula-
tion of TeO2 for the extraordinary wave. The sign of the group delay of Si and MgO:PPSLN is
inverted to represent the dispersion to be compensated by the Dazzler. Although, in Fig. 4.9, an
offset of each group delay is arbitrarily subtracted, relative difference between the group delays
in TeO2 (ordinary wave) and TeO2 (extraordinary wave) has been kept constant. In Fig. 4.9, a
range between the group delays of the ordinary (thick blue line) and extraordinary (thick orange
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Figure 4.9: Calculated group delay of the stretcher, amplifier, and compressor for IR OPCPA.
Sign-inversed group delay of 50-mm-long Si (black line), sign-inversed group delay of 6-mm-
long MgO:PPSLN (red line), group delay of 45-mm-long TeO2 (Dazzler crystal) for an ordinary
wave (blue line), and group delay of 45-mm-long TeO2 for an extraordinary wave (orange line).
Note that, although, all group delays have been arbitrarilyoffset, difference between the group
delays of TeO2 (ordinary wave) and TeO2 (extraordinary wave) is kept constant.

line) waves in TeO2 indicates the dispersion compressible by use of the Dazzler. For example,
shown in Fig. 4.9, the Dazzler can only compensate the dispersion of 50-mm-long Si (black line)
in the wavelength range from 1.8 to 2.8µm. From a different point of view, the Dazzler can
stretch an input pulse to about 10 to 15 ps regardless of its spectrum. The amount of stretching
given by the Dazzler is determined by the difference of the group delay between the ordinary and
extraordinary waves and the length of the Dazzler.

Infrared optical parametric amplifier with the Dazzler stretcher and bulk
compressor

In this section, we describe the implementation of the infrared optical parametric amplifier with
the stretcher and compressor by use of an optically synchronized Nd:YLF pump amplifier chain.
The schematics of the infrared OPCPA system is presented in Fig. 4.10. Output pulses from a
broadband Ti:sapphire oscillator are split by a dichroic mirror, which reflects a seed pulse at 800
nm for the Ti:sapphire amplifier (Spitfire, Spectra physics)and transmits a seed pulse at 1053
nm for the Nd:YLF amplifier, respectively. We have previously described generation of the seed
pulses for the infrared OPCPA based on DFG in MgO:PPSLN, the seeding scheme from the
Ti:sapphire oscillator into the Nd:YLF regenerative amplifier, and the upgrade of the Nd:YLF
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Figure 4.10: Layout of the infrared OPCPA system. BS 1: beamsplitter reflecting a seed pulse at
800 nm for the Ti:sapphire amplifier and transmitting a seed pulse at 1053 nm for the Nd:YLF
amplifier; FI: Faraday isolator; TFP: thin-film polarizer;λ /2: half-wave plate; FR: Faraday ro-
tator; λ /4: quarter-wave plate; PC: BBO Pockels cell; NdYLF 1: continuous-laser-diode gain
module (Northrop Grumman Cutting Edge Optronics) with a 63-mm-long 3-mm-in-diameter a-
cut Nd:YLF rod; Etalons: 0.7-mm- and 1.0-mm-thick uncoatedfused silica windows; Nd:YLF 2:
home-made laser-diode gain module with a 63-mm-long 3-mm-in-diameter a-cut Nd:YLF rod;
Nd:YLF 3: home-made laser-diode gain module with a 120-mm-long 4-mm-in-diameter a-cut
Nd:YLF rod; BS 2: beamsplitter to split the pump pulses to a first and second stages; BS mirrors:
three band-stop mirrors; CMs: pair of two chirped mirrors; DFG: DF generator (MgO:PPSLN
with an 11.21-µm QPM period (HC Photonics)); Dazzler: acousto-optic programmable disper-
sive filter (Fastlite); PPLN 1: first parametric amplifier stage using 3-mm-thick MgO:PPSLN
with a 30.2-µm QPM period (HC Photonics); PPLN 2: second parametric amplifier stage using
3-mm-thick MgO:PP congruent LN (MgO:PPCLN) with a 30.6 or 30.8-µm QPM period; THG
FROG: THG FROG apparatus.

amplifier chain with additional two post amplifiers in Sections 4.2, 3.3, and 4.4, respectively.
The Ti:sapphire oscillator spectrum is plotted in Fig. 4.11. The spectral regions used as the seeds
for the Spitfire and Nd:YLF regenerative amplifiers are indicated, respectively. The OPCPA seed
pulse generated in the DFG crystal is collimated and sent to the Dazzler, which only diffracts 10%
of the input pulse energy to the output pulse energy. After a periscope behind the Dazzler changes
the vertical polarization of the DF to the horizontal polarization, the seed beam is focused to 180
µm in diameter (FWHM) at the first parametric crystal (MgO:PPLN) and overlapped with the
pump beam. The about 300-µJ pump beam is focused to the same diameter as the seed, leading
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Figure 4.11: Ti:sapphire oscillator spectrum. Spectral regions used as the seeds for the
Ti:sapphire amplifier and the Nd:YLF regenerative amplifierare indicated.

to the pump intensity of about 10 GW/cm2 at the first parametric amplifier. Pulse intensity of
more than 20 GW/cm2 would results in, first, a prominent photorefractive effect[268]. The even
stronger pump pulses cause the damage on the surface of the crystal. The first OPA stage employs
a 3-mm-thick, 1-mm-wide, 3-mm-high MgO:PPSLN crystal (HC Photonics) with a QPM period
of 30.2 µm. To maximize the gain bandwidth, we have tried several geometries between the
seed and pump beams and found the external noncollinearity angle of about 3◦ is optimum for
broadband amplification and the output pulse energy. The nonlinear crystal is heated to about 280
◦C to avoid the photorefractive effect. Because of the temperature dependence of the refractive
index of MgO:SLN, fine tuning of the crystal temperature is also a good tool for the control of
the gain bandwidth and the output power. Although the amplified seed energy reaches up to 10
µJ without causing the damage on the surface of the parametriccrystal, we have kept the pump
intensity lower than the maximum intensity in order not to enhance the superfluorescence, which
would be successively amplified in the second stage. Amplified beam is recollimated to 1.2 mm
in diameter and sent to the second OPA stage. The pump beam from the Nd:YLF amplifier is
also collimated up to the same diameter as the seed beam, resulting in the pump intensity of
10 GW/cm2 with the pump energy of 9 mJ. The pump beam profile at the secondstage before
up-collimation is shown in Fig. 4.12. The good pump beam profile is sustained from the post
Nd:YLF amplifiers even without the use of a relay-imaging technique. The second stage crystal
is 5-mm× 5-mm aperture, 3-mm-thick MgO:PPCLN crystals with QPM periods of 30.6 or 30.8
µm. No difference in the performance of the parametric amplifier has been observed between
the QPM periods of 30.6 and 30.8µm. A noncollinearity angle of 4◦ between the seed and pump
beams turned out to be optimum to maximize the gain bandwidthand the output energy. The
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Figure 4.12: (A): Pump beam profile at the second parametric amplifier stage. (B): Amplified
beam profile after the second-pass in the second parametric amplifier stage.

output energy obtained after first-pass amplification is about 200µJ and further amplification is
gained by the second-pass with the retro-reflection configuration. The 500-µJ amplified pulse is
ejected from the amplifier part and sent to the beam expander in front of the Si pulse compressor.

Results of infrared parametric amplification are summarizedin Fig. 4.13. Fig. 4.13 plots an
amplified spectrum after the second stage (black line), an amplified spectrum after the first stage
(red line), a calculated gain curve (green line), and a superfluorescence spectrum after the second
stage obtained by the interception of the seed pulse (blue line). The cut-off of the amplified
spectrum around 1.9µm and 2.7µm are attributed to the lack of the seed spectrum and the
diffraction range of the Dazzler, respectively. A good beamprofile of the amplified pulse after
the second stage, shown in Fig. 4.12 (B), is obtained. The amplified beam is spatially expanded
in order to avoid nonlinear effects in the bulk compressor and sent to the 50-mm-long anti-
reflection-coated Si block. This is because of a relatively high third-order nonlinear refractive
index of Si [269]. The third-order nonlinear refractive index of Si, available in Appendix E, is
about hundred times higher than that of fused silica. After the compressor, the transmitted pulse
energy is reduced from 500µJ to 350µJ because of loss of optics and the absorption of the
second- and third-harmonics collinearly generated in the OPA crystal.

The infrared beam transmitting through the Si block is recollimated down and a part of the
output pulse is split and sent into a THG-FROG apparatus shown in Fig. 4.14. The beam splitters
are placed such that the dispersion of two arms are equally balanced to be capable of the precise
measurement of the ultrashort pulses. The two infrared beams are focused onto the surface of
CaF2 using a gold-coated parabolic mirror with the focal distance of 50 mm. One of four third-
harmonic beams emitted at the surface is selected by a diaphragm and focused by a CaF2 lens into
a multi-mode glass fiber connected to a visible spectrometer(Ocean Optics). The third-harmonic
spectrum is recorded at each delay point and a THG FROG trace is obtained. A temporal pulse
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Figure 4.13: Results of infrared parametric amplification: amplified spectrum after the second
stage (black line), amplified spectrum after the first stage (red line), calculated gain curve (green
line), and superfluorescence spectrum obtained after the second stage by the interception of the
seed pulse (blue line).
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Figure 4.14: THG FROG apparatus. BSs: dielectric beamsplitters; PM: parabolic mirror (f=50
mm) coated with gold; Iris: diaphragm selecting only one of four third harmonics emitted at the
surface of a CaF2 plate.
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Figure 4.15: Results of few-cycle infrared pulse characterization by THG FROG. (A): measured
THG FROG trace; (B): reconstructed THG FROG trace; (C): retrieved temporal pulse profile
(solid line) with the duration of 19.2 fs (FWHM) and temporal phase (dashed line); (D): retrieved
spectral intensity (solid line) and phase (dashed line).

shape, temporal phase, spectral intensity, and spectral phase are retrieved from the measured
FROG trace. The measured residual spectral phase is fedbackto the Dazzler for its correction.
After several iterations, a typical FROG trace is obtained and shown in Fig. 4.15 (A). A FROG
retrieve program reconstructs a FROG trace presented in Fig. 4.15 (B). From the reconstructed
FROG trace, a temporal pulse profile (solid line) and a temporal phase (dashed line) are obtained
and shown in Fig. 4.15 (C). A spectral intensity (solid line) and a spectral phase (dashed line) are
obtained and shown in Fig. 4.15 (D). The duration of the reconstructed pulse is 19.2 fs (FWHM
of the intensity). 19.2 fs corresponds to the 2.7 optical cycle at 2.1µm. A pulse with the duration
of about 16 fs is calculated by Fourier transform of the retrieved spectrum assuming a flat spectral
phase.

In summary, we have built the few-cycle, high-energy infrared OPCPA system producing
350-µJ, sub-20-fs optical pulses around 2.1µm at 1 kHz repetition rate. This system demon-
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strated chirped pulse amplification in this wavelength range by use of the bulk stretcher and
compressor and, as a result, produces the highest-energy ultrashort (for the pulse with the du-
ration of less than hundred femtoseconds) laser pulses in the infrared. The CEP detection and
stabilization of the output pulses from the infrared OPCPA system will be described in a next
chapter by use of a novelf -to-3f nonlinear interferometry. In addition, another application of
high-harmonic generation in a noble gas will be described aswell in the next chapter.



Chapter 5

Applications of few-cycle infrared pulses

5.1 Visible supercontinuum generation in solid-state materi-
als and CEP detection of infrared pulses by use of anf -
to-3 f interferometry

5.1.1 Introduction

Advance in ultrafast optics has resulted in the production of extremely ultrashort pulses whose
duration corresponds to a few optical cycles of the carrier in the visible to near-infrared
[270, 234]. The CEP, defined as a carrier phase of an ultrashortpulse at a peak of the pulse
envelope, has become a key parameter for the few-cycle laserpulses [271]. Stabilization of the
CEP of Ti:sapphire oscillator pulses was achieved independently in two groups [272, 273]. Sub-
sequently, a CEP-preserving Ti:sapphire amplifier was constructed and its phase-locked high-
energy output pulses was applied to generation of a CEP-dependent high-harmonic spectrum
in a noble gas [19] and the demonstration of reproducible single attosecond pulse generation
[32]. A key point in the use of few-cycle optical pulses for high-harmonic generation, single-
attosecond-pulse generation, and its application to spectroscopic experiments is the stabilization
and control of its CEP. In this section, we will describe experimental demonstration of visible
supercontinuum generation in solid-state materials by theinfrared pulses. Then, we will show
detection of the CEP of the few-cycle infrared pulses based ona novel scheme, a uniquef -to-3f
nonlinear interferometry, enabled by the spectral overlapbetween the visible supercontinuum
and the third-harmonics (TH) of the fundamental pulses.

5.1.2 Nonlinear interferometries for CEP detection

In this subsection, we describe the experimental scheme forthe detection of the CEP of laser
pulses by use of nonlinear interferometries and its theoretical background. Detection and stabi-
lization of a CEO frequency of the ultrashort pulses from a oscillator has been achieved usually
by use of af -to-2f nonlinear interferometry [272, 273, 274, 275]. The CEO frequency is the
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frequency of the pulse-to-pulse CEP drift. By use of this nonlinear interferometry, the CEO in-
formation can be derived from the phase information of the spectral interference between a high-
frequency components of an octave-spanning spectrum obtained in a photonic crystal fiber [276]
and a second harmonics of its low-frequency component. Recent advance in a CEP-detection
technology has enabled another type of a nonlinear interferometry, which is a 0f -to- f nonlinear
interferometer based on the interference between the CEP-stable DF spectrum and the funda-
mental spectrum. [221, 222, 198]. In the case of CEP detectionof a high-energy pulse, again, an
octave-spanning supercontinuum generated in a sapphire plate was used for anf -to-2f nonlinear
interferometer [277]. In both cases, the octave spanning spectrum is necessary for detection of
the CEP or CEO frequency to use thef -to-2f nonlinear interferometry. Theoretical background
of this f -to-2f nonlinear interferometry can be derived easily below [277]and is applicable to a
new f -to-3f nonlinear interferometry. A Gaussian input electric fieldE1(t) with a phase offset
between the carrier and envelope (CEP)φcep can be expressed in the time domain as

E1(t) ∝ exp

(

− t2

τ2

)

exp
{
−i

(
ωct +φcep

)}
, (5.1)

where i is the imaginary unit andτ is a half width at 1/e of the electric field amplitude. An
electric field in the frequency domaiñE1(ω) can be expressed by the Fourier transform ofE1(t)
as

Ẽ1(ω) ∝exp

{

−τ2(ω −ωc)
2

4

}

exp
(
−iφcep

)
, (5.2)

≡Ã1(ω)exp
(
−iφcep

)
. (5.3)

From this equation, a second-order nonlinear polarizationin the frequency domaiñP2(ω) can be
derived as

P̃2(ω) ∝ exp
(
−2iφcep

)
∫ ∞

∞
Ã1(ω ′)Ã1(ω −ω ′)dω ′. (5.4)

A second-harmonic electric field in the frequency domainẼ2(ω) emitted by the second-order
nonlinear polarizatioñP2(ω) is given by

Ẽ2(ω) ∝ iP̃2(ω), (5.5)

∝ exp
{

−i
(

2φcep−
π
2

)}∫ ∞

∞
Ã1(ω ′)Ã1(ω −ω ′)dω ′, (5.6)

≡ Ã2(ω)exp
{

−i
(

2φcep−
π
2

)}

. (5.7)

From Eqs. 5.3 and 5.7, assuming a spectral overlap between the fundamental and second-
harmonics and a relative group delayτd between them, the spectral intensity of the fundamental
and second-harmonics exhibits a CEP-dependent spectral-interference term as

Ĩ(ω) ∝
[

Ã1(ω)exp
(
−iφcep

)
+ Ã2(ω)exp

{

−i
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)}]2
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The phase of the interference pattern is dependent on the CEPφcepso that CEPφcepshot-to-shot
change can be detected by the measurement of a interference fringe pattern. The above derivation
can be extended in the case of thef -to-3f interferometry and a resultant formula can be derived
as

Ĩ(ω) ∝
[

Ã1(ω)exp
(
−iφcep

)
+ Ã3(ω)exp

{

−i
(

3φcep+ωτd−
π
2

)}]2
(5.10)

=
∣
∣Ã1(ω)
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∣2 +

∣
∣Ã3(ω)

∣
∣2 +2

∣
∣Ã1(ω)

∣
∣
∣
∣Ã3(ω)

∣
∣cos

(

2φcep+ωτd−
π
2

)

, (5.11)

whereÃ3(ω) is a spectral amplitude of a TH. We derived the CEP effect on thephase of the
interference pattern obtained by the nonlinear interferometry. The phase shift of an interference
fringe is affected by the CEP of the laser pulses two times morefor the f -to-3f interferometry
than for thef -to-2f interferometry. From these dependence, we could distinguish the order of
an optical nonlinear effect from the analysis of the amount of the phase shift in the interference
pattern induced by a arbitrary CEP change. Therefore we couldexamine an origin of a unknown
nonlinear effect by this method. Later this technique will be used to determine the physical origin
of the visible supercontinuum.

5.1.3 Visible supercontinuum generation in solid-state materials excited
with infrared pulses

As seen above, to obtain the information about the CEP of an ultrashort pulse, an octave-spanning
spectrum is necessary to utilize a nonlinear interferometry. For our case, because the few-cycle
infrared pulses obtained from the infrared OPCPA system do not have an octave-spanning spec-
trum, we have to resort to any spectral broadening to achieveit. We have tried broadening by
two ways, spectral broadening in a gas-filled hollow fiber [33] and supercontinuum generation in
solid-state materials [72]. The use of supercontinuum generation in solid-state materials turned
out to be the only choice for this purpose. The gas-filled hollow fiber did not produce any broad-
ening of the infrared pulses. The generated supercontinuum, shown in Fig. 5.1 (A) and (B),
has its broadened spectrum mainly in the visible and not in the infrared. Several-µJ compressed
pulses were focused by a concave mirror (f=100 mm) into transparent materials (fused silica,
sapphire, and undoped YAG). Fig. 5.1 (A) shows visible supercontinuum spectra obtained with
1.5-mm-thick fused silica (blue line), 2.0-mm-thick sapphire (green line), and 2.0-mm-thick un-
doped YAG (red line), compared to the fundamental spectrum without any sample (black line).
Fig. 5.1 (B) shows the fundamental infrared pulse spectrum without any sample (black line) and
the broadened spectrum with sapphire (red line). From this figure, in the infrared range around
2.1 µm, while a red wing of the fundamental spectrum was not extended so much, its blue
part was slightly broadened in sapphire. However the fundamental spectrum is still not enough
broadened for CEP detection. Despite the unexpected spectral range of the obtained supercon-
tinuum, several features such as its conical emission [278,279], its large beam divergence more
than that of the fundamental [280], and its polarization identical to the fundamental pulses were
convincing, to some extent, to be identified as the supercontinuum.
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Figure 5.1: Spectral broadening of the few-cycle infrared pulse in solids: generation of supercon-
tinuum in the visible. (A): supercontinua in the visible obtained with 1.5-mm-thick fused silica
(blue line), 2.0-mm-thick sapphire (green line), and 2.0-mm-thick undoped YAG (red line) and
the fundamental spectrum without any sample (black line). (B): Fundamental spectra without
broadening (black line) and with broadening in sapphire (red line).

In the early days, spectral broadening of the nanosecond-picosecond pulses has been ob-
served in liquid [281] and solid [282, 283] and main contribution to spectral broadening has
been attributed to the SPM effect. Because of the availability of ultrashort laser pulses with the
duration of hundred femtoseconds from 1980s, supercontinuum generation has been observed by
use of femtosecond laser pulses [87]. In the case of the femtosecond pump pulse, self-steepening
of the exciting pulse as well as SPM plays an important role inthe spectral broadening [284]. Al-
though the wider broadening should be expected for a sample with the higher Kerr-nonlinearity
in this scenario this is not the case in the real experiment [285] and even supercontinuum in a less
nonlinear medium proves to be broader [286]. A currently accepted scenario is that self-focusing
and self-steepening of the ultrashort laser pulse contribute to the asymmetric broadening [287]
and self-focusing is halted before the catastrophic pulse collapse due to the negative contribution
to the refractive index from the plasmas created by the multiphoton ionization in the medium.
Therefore the cut-off of spectral broadening becomes dependent on the band gap of a medium and
the cut-off becomes more extended for a medium with the higher band gap [286, 288, 289, 280].
This tendency is clearly observed in Fig. 5.1. The supercontinuum obtained in the fused silica,
which has the highest band gap among the three samples has thebluest cut-off of the supercon-
tinuum and the undoped YAG resulted in the spectral broadening in the infrared region. So far
the longest wavelength of pump pulses, which can generate a visible supercontinuum, is 1.5µm
[290]. To confirm the origin of the visible emission, where CEPdetection and stabilization will
be achieved by use of nonlinear interferometry, the spectral phase relation between the funda-
mental and supercontinuum could be derived using the above formulation of CEP dependence
from the spectral phase of the interference pattern. In the next subsection, nonlinear interfer-
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ometry will be achieved by spectrally overlapping the TH of the fundamental and the obtained
visible supercontinuum possibly around 700 nm (anf -to-3f nonlinear interferometry) and we
will study its phase dependence on the CEP.

5.1.4 f -to-3 f nonlinear interferometer based on visible continuum and
third harmonics of infrared pulses

Figure 5.2: (A): Setup of thef -to-3f nonlinear interferometer. VD: variable delay; Wedges:
fused silica wedge pair; BBO: BBO crystal for THG; BS: beamsplitter; Iris: diaphragm for
mode selection; PL: polarizer; OMA: optical multichannel analyzer (spectrometer). (B): Spectra
of the TH (red line, indicated as THG) and the supercontinuum(blue line). Note that the red line
has another peak, which results from the second harmonics ofthe infrared generated from BBO
used for THG.

In this subsection, we describe the implementation of thef -to-3f nonlinear interferometry
by use of the TH of the infrared fundamental pulses and visible supercontinuum. Fig. 5.2 (A)
shows an experimental setup for thef -to-3f nonlinear interferometry. In one of two arms of the
interferometer, the TH of the infrared fundamental pulse isgenerated in the type I (ooo→ e)
phase-matching 1-mm-thick BBO crystal [291]. In the other arm, the supercontinuum is gen-
erated in a 2-mm-thick sapphire plate because sapphire is more robust than the undoped YAG
and produces supercontinuum with a more appropriate spectral overlap with the TH than fused
silica. Fig. 5.2 (B) plots the spectra of the TH (red line, indicated as THG) obtained in BBO
and the supercontinuum (blue line) in sapphire. The second harmonics of the fundamental pulse,
indicated as SHG in Fig. 5.2 (B), was simultaneously generated in BBO with almost the same
condition as THG. We failed to spectrally overlap the SH and TH (a 2f -to-3f nonlinear interfer-
ometry) by this way because of the lack of the fundamental spectral bandwidth. The two beams
are spatially overlapped by a beamsplitter and their orthogonal polarizations are mixed by use of
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a cubic polarizer. The combined beam is focused into a fiber connected to an optical multichan-
nel analyzer (spectrometer). Measured interferograms areshown in Fig. 5.3. The left graph in
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Figure 5.3: Interferogram and CEP stability measurement. Left: single-shot interferogram and
Right: successively obtained interferograms.

Fig. 5.3 is a single-shot interferogram in the overlapped region and shows a clear interference
fringe in the overlapped region. This interference patternwas dependent on the relative delay
between the two interferometer arms and not observed when one of the two interferometer arms
was blocked. The right trace is a shot-to-shot interferogram accumulated for 1 ms. This trace
clearly shows that the phase of the interferogram is kept constant and indicates that the CEP is
stabilized by the DFG process and preserved during parametric amplification. We have checked
the phase dependence of the interferogram on the CEP. A fused silica wedge pair was inserted in
front of the interferometer to shift the CEP. The difference of group and phase velocities of light
is used to alter the relative phase of the carrier respect to the pulse envelope. The change of the
fused silica thickness∆L is related to the CEP∆φCEP shift as

∆φCEP= ωc
∆L

vp−vg
, (5.12)

whereωc is a central angular frequency of the infrared pulse andvp andvg are the phase ve-
locity and group velocity, respectively. We scanned the fused silica wedge and recorded the
interferogram at each insertion depth. Fig. 5.4 (A) represents the recorded interferogram with
different wedge insertion depth. An x-axis represents the differential insertion depth from the
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Figure 5.4: (A): Phase shift of the interference pattern by the CEP shift. (B): Phase shift depen-
dence on the fused silica thickness and the resultant CEP. Predicted phase shift (blue line) when
the phase shift of the interferogram is related to two times shift of the CEP and predicted phase
shift (red line) when the phase shift of the interferogram isequal to the shift of the CEP.

first measurement point and a white line is drawn for a guide. Clearly a phase of the interference
pattern shifts almost linearly with the fused silica insertion depth, indicating this interferometer
is a nonlinear interferometer [253]. To the amount of the phase drift, the phase of the interference
pattern is retrieved by use of the Fourier transform technique [292, 293]. An average value of
intensity-weighted spectral phases at each scan point is plotted in Fig 5.4 (B). The equation 5.12
can relate the fused silica insertion depth and CEP phase drift. In Fig 5.4 (B), the interference
pattern phase and the fused silica insertion depth are related as a red line for thef -to-2f nonlin-
ear interferometry, where the phase change of the interference pattern is equivalent to the change
of the CEP, and as a blue line for thef -to-3f nonlinear interferometry, where the phase change
of the interference pattern is two times more than the changeof the CEP. The measured phase
data are fit on the line for thef -to-3f nonlinear interferometry and a linear fit of the data gives
a slope value of 2.28± 0.01. This is quite close to 2 and clear demonstration of the nonlinear
interference fringe drift equal to 2φCEP. and indicates that the supercontinuum has the same CEP
dependence as the fundamental because the TH carries 3× CEP and their difference should be 2
× CEP. Although it is possible that this supercontinuum carries 5× CEP, however the fifth-order
nonlinear effect is unlikely with such weak pulse energy andthe wavelength of the supercon-
tinuum does not corresponds to the fifth harmonics of the infrared pulse so that we exclude this
possibility. Therefore the broadband visible emission from transparent media can be concluded
as the supercontinuum generation carrying the same CEP as thefundamental.

In summary, we have observed and characterized the visible emission from the transparent
solid-state materials. We attributed this visible emission to the supercontinuum by the ultrafast
infrared optical pulse. This was confirmed by thef -to-3f nonlinear interferometry and the ex-
amination of the relationship between the nonlinear interference phase shift and the CEP shift.
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We have constructed the novelf -to-3f nonlinear interferometer, which demonstrated the CEP
stabilization by the DFG process and its preservation during the OPA process and the propagation
through the stretcher and compressor.

5.2 High-harmonic generation by use of few-cycle infrared
pulses

In this section, we demonstrate optical HHG of the few-cycleinfrared laser pulses in a noble gas.
The infrared driver laser is expected to extend the cut-off energy of the high-harmonics (HH)
compared to the near-infrared driver laser based on Ti:sapphire and CPA.

After the first demonstration of third-harmonic generation[38], generation of odd-order op-
tical harmonics in gases has been extensively investigatedby use of high-peak intensity laser
pulses with the relatively long nano- and picosecond duration [294, 295, 296, 297, 298]. From
these experiments, a mechanism of HHG and a physical explanation of its cut-off energy have
been derived and [299] and explained in detail by a three-step model [300] illustrated in Fig. 5.5.
First, a bound electron in an atom is ionized either by tunneling ionization through a suppressed

t

Ionization and acceleration

Electron

Deceleration Recombination and emission

(B)(A) (C)

Figure 5.5: Illustration of the three-step model accounting for optical HHG. (A): bound electron
ionized from an atom by tunneling ionization through the potential barrier or multiphoton ion-
ization under a laser field and the ionized electron accelerated by the laser field. (B): The moving
electron decelerated by the inversed laser field. (C): The still electron accelerated toward the
parent nucleus and recombined with an emission of an extremeUV (EUV) or X-ray photon.

Coulomb barrier under the strong laser field [301] or by multiphoton ionization [302]. A dom-
inant process between these two ionization mechanisms willbe mainly determined by the laser
field strength and its wavelength. Secondly, the ejected free electron is accelerated by the laser
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field and, successively, decelerated by the inversed laser field after a half carrier cycle. Finally,
further deceleration changes the direction of the electronmotion toward the parent atom and the
electron is interacted with the parent atom with certain probability and recombined with it. The
recombination accompanies an emission of an EUV or soft X-ray photon, whose the energy cor-
responds to the sum of the kinetic energy acquired during acceleration and an atomic ionization
potential energy. Therefore the emitted photon energy becomes dependent on the laser carrier
period and the atomic ionization potential energy. The cut-off energy was empirically determined
[299] and, later, derived using a semi-classical model [300] as

h̄ωcut =Ip +3.17Up (5.13)

Up =
e2E2

4mω2 ∝ Iλ 2, (5.14)

whereIp is the atomic ionization potential energy,Up is a ponderomotive or quiver energy given
to the free electron by the laser field,E is the amplitude of the laser field,ω, I , andλ are an
angular frequency, intensity, and wavelength of the laser pulse, ande andm is the charge and
mass of the electron. In addition to this formula, a criterion, called Keldysh parameter [301],
determines a dominant process for the electron ionization under the strong laser field either by
the tunneling ionization through a suppressed Coulomb barrier or by the multiphoton ionization.
This can be expressed as

γ =

(
Ip

2Up

) 1
2

. (5.15)

Whenγ < 1, the tunneling ionization becomes dominant over the multiphoton ionization [301].
Although the cut-off energy of the HH increases linearly with the laser intensity, at some point,
this formula becomes inapplicable in the case of strong depletion of the electric ground-state
of an atom and resultant plasmas generated in the target [303]. Several options can be found
to maximize the cut-off energy with the fixed driver laser wavelength. One way is the use of
shorter pump pulse, which are able to use efficiently the highpeak intensity without problems
of pre-ionization of a target caused by a long pulse [304]. By this approach, recent advance in
ultrahigh-peak few-cycle laser pulse generation has pushed the cut-off limit to the keV range
[305, 306, 307] Another way is to use an ion as a target [299, 308] because it possesses a higher
ionization potential energy than a neutral atom. In addition, a novel technique using a modulated
gas target is capable of quasi-phase-matching between the infrared and X-ray pulses and resulted
in the keV-level HHG [309, 310]. However these demonstrations only observed the keV photon
yield in the very edge of the generated HH spectrum and its spectral intensity is quite low.

The use of the infrared driver laser is more promising route to the extension of the HH cut-
off, whose energy scales with the square of the driver laser wavelength indicated in Eq. 5.14.
However so far HHG experiments have been exclusively investigated with a Ti:sapphire driver
laser around 800 nm. A switch of the driver laser wavelength from the near-infrared to the
infrared would result in the tremendous improvement in the extension of the HH photon energy.
However only few theoretical and experimental works have been demonstrated so far about this
topic: theoretical works on HHG cut-off extension by infrared exciting pulses [311, 312] and few
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preliminary demonstrations [313, 314]. In these studies, B.Sheehyet al. [313] observed up to the
19th harmonics by use of 3-4µm picosecond drive laser pulses exciting rubidium atoms. B. Shan
et al. [314] revealed the cut-off dependence on the driving laser wavelength using argon (Ar)
and xenon as targets and achieved up to 150-eV high harmonicswith the Ar gas jet. Our infrared
few-cycle laser source described in Chapter 4 is a quite attractive device for this application.
The central wavelength of about 2.1µm of the infrared laser pulses is 2.7 times longer than that
of the Ti:sapphire laser, resulting in a 7-times higher ponderomotive energy. Simple theoretical
calculations employing the single atom response without the propagation effect of the generated
HH predict the extension of the cut-off up to 400 eV with an Ar target and a 2.1-µm driver laser,
and above 1 keV with a neon (Ne) target [314].

C1

W
L

TP1F

C2

CCD
P2

Figure 5.6: Experimental setup for HHG. L: CaF2 lens with a focal distance of 100 mm; W:
CaF2 entrance window set at the Brewster angle; C1: HHG vacuum chamber; T: gas target (a
squeezed Ni tube with holes); P1: diaphragm for alignment; C2: experimental vacuum chamber;
F: 150-nm-thick zirconium (Zr) filter; P2: vacuum isolationfilter between C1 and C2; CCD:
back illuminated CCD, which can resolve a spectrum of the high harmonics.

The setup for the HHG experiment is shown in Fig. 5.6. The infrared laser pulses (350µJ,
20 fs) from the infrared OPCPA system were focused with a CaF2 100-mm lens (L in Fig. 5.6)
into the target. The laser beam propagates through holes made on both surfaces of a Ni tube
filled with a pressurized noble gas (T in Fig. 5.6). The tube was squeezed to about 1 mm in
order to avoid the phase-mismatch accumulated in the long interaction length. Measured focal
spot size of the infrared pulses was about 30µm in diameter (FWHM). The resultant intensity
at the focus is about 1.1×1015 GW/cm2. From these numbers and the use of an Ar as a target,
Keldysh parameterγ in Eq. 5.15 becomes 0.13 , which indicates that ionization isdominated
by the tunneling ionization. The ellipticity of the polarization was measured as less than 0.5%
in the intensity (7% in amplitude). The ellipticity of the drive laser has been proven to decrease
the high-harmonic photon yield [315]. A 150-nm-thick zirconium filter (F in Fig. 5.6) is placed
behind the target to block the low harmonics and the strong fundamental light. Another pinhole
(P2 in Fig. 5.6) separates vacuum conditions between the twochambers. A back-illuminated
charge-coupled device (CCD) (CCD in Fig. 5.6), which is sensitive within the photon energy of
from 1 eV to above 10 keV, is set up to attain the high-harmonicphoton. The CCD can resolve a
single photon energy by the conversion of the number of electrons generated in a pixel into the
photon energy. Therefore the number of photons captured in asingle pixel should be reduced
to much less than one per scan in order to be sure that only lessthan one photon hits the single
pixel. Otherwise two photons detected in a pixel per scan cannot be distinguished from a single
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photon with the sum of the energies of two photons. We tried two noble gases, Ar and Ne, as
targets. With Ne, no harmonics had been observed due to the weak driver laser pulses. By use of
Ar with backpressure of several hundred mbar, high harmonics have been successfully obtained
and its measured spectrum is shown in Fig. 5.7 (black line) (left linear scale and right logarithmic
scale). The acquisition time to attain the data was about 1.5hours. Dark counts obtained with the
laser pulses and without Ar are shown in Fig. 5.7 (red line) asa comparison. Further gas pressure

0 100 200 300
0

250

500

0 100 200 300
1

10

100

1000

 

 

C
ou

nt
s

Photon energy (eV)

 HHG spectrum by Ar target with 150 nm Zr filter
 Background counts without Ar and with laser

 HHG spectrum by Ar target with 150 nm Zr filter
 Background counts without Ar and with laser

 

 

C
ou

nt
s

Photon energy (eV)

Figure 5.7: High-harmonic spectrum by use of Ar as a target excited with the few-cycle infrared
laser pulses: high-harmonics spectrum with the Ar target and the driver laser (black line: linear
scale in a left plot and logarithmic scale in a right plot) andbackground spectrum with the laser
and without the Ar gas (red line). The acquisition time of thehigh-harmonic spectrum is about
1.5 hours.

decreased a photon yield because the vacuum pressure of 10−1 mbar was estimated to introduce
the absorption of the generated X-ray. The experimental cut-off is about two times lower than
that of the calculation based on the single atom response [314]. This effect can be explained by
the propagation and phase-mismatch effects in the gas jet.

In summary we have generated the high-order harmonics from an argon gas target excited
by the few-cycle infrared laser pulses. We have observed thecut-off energy of the generated
harmonics around 250 eV. This is the highest photon energy achieved by the HHG mechanism
in neutral Ar excited with a laser driver.
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Appendix A

Refractive indices (Sellmeier equations) of
crystals and optical materials

A.1 Refractive indices of birefringent crystals

Sellmeier equations used to calculate refractive indices of some optical materials are listed below.
The unit of wavelength in the Sellmeier equations isµm.

• BBO (best set of Sellmeier eq., valid range UV - 2.5µm, [80]),

n2
o = 2.7359+

0.01878
λ 2−0.01822

−0.01354λ 2 (A.1)

n2
e = 2.3753+

0.01224
λ 2−0.01667

−0.01516λ 2 (A.2)

• BBO (better accuracy in the infrared absorption edge, valid range UV - 3.2µm, [316]),

n2
o = 2.7359+

0.01878
λ 2−0.01822

−0.01471λ 2 +6.081×10−4λ 4−6.740×10−5λ 6 (A.3)

n2
e = 2.3753+

0.01224
λ 2−0.01667

−0.01627λ 2 +5.716×10−4λ 4−6.305×10−5λ 6 (A.4)

• LBO (best set of Sellmeier eq., valid range 0.23 - 1.8µm [317]),

n2
x =2.4542+

0.01125
λ 2−0.01135

−0.01388λ 2 (A.5)

n2
y =2.5390+

0.01277
λ 2−0.01189

−0.01849λ 2 +4.3025×10−5λ 4−2.9131×10−5λ 6 (A.6)

n2
z =2.5865+

0.01310
λ 2−0.01223

−0.01862λ 2 +4.5778×10−5λ 4−3.2526×10−5λ 6 (A.7)
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• MgO:LiNbO3 (5 mol% MgO-doped congruent LiNbO3 at 294 K, valid range 0.4 - 5.0µm,
[318]),

n2
o =1+

2.4272λ 2

λ 2−0.01478
+

1.4617λ 2

λ 2−0.05612
+

9.6536λ 2

λ 2−371.216
(A.8)

n2
e =1+

2.2454λ 2

λ 2−0.01242
+

1.3005λ 2

λ 2−0.05313
+

6.8972λ 2

λ 2−331.33
(A.9)

• MgO:LiNbO3 (temperature dependent extraordinary refractive index,T in ◦C, [319]),

Ft ≡(T −33.5)∗ (T +564.5)

CMgO ≡1.0270295−4.56346827×10−5T

n2
e =

{

5.3558+4.6290×10−7Ft +
0.10047+3.862×10−8Ft

λ 2− (0.20692−8.9×10−9Ft)2

+
100+2.657×10−5Ft

λ 2− (11.349)2 −0.015334λ 2
}

/C2
MgO (A.10)

• Stoichiometric LiTaO3 (valid range 0.44 - 1.05µm, T in K, [320]),

n2
o = 4.5281+

0.079841
λ 2−0.047857

−0.032690λ 2

n2
e = 4.5096+

0.082712
λ 2−0.041306

−0.031587λ 2

• Stoichiometric LiTaO3 (temperature dependent extraordinary refractive index, valid range
0.39 - 4.1µm, T in K, [321]),

n2
e(λ ,T) =4.502483+

0.007294+3.483933×10−8T2

λ 2− (0.185087+1.607839×10−8T2)2

+
0.073423

λ 2− (0.199595)2 +
0.001

λ 2− (7.99724)2 −0.02357λ 2 (A.11)

• TeO2 (valid range 0.4 - 1.0µm, [322]),

n2
o =1.0+

2.584λ 2

λ 2− (0.1342)2 +
1.157λ 2

λ 2− (0.2638)2 (A.12)

n2
e =1.0+

2.823λ 2

λ 2− (0.1342)2 +
1.542λ 2

λ 2− (0.2631)2 (A.13)

• TeO2 (better accuracy in the infrared, valid range 0.4 - 3.5µm, [267]),

n2
o =1.0+

3.71789λ 2

λ 2− (0.19619)2 +
0.07544λ 2

λ 2− (4.61196)2 (A.14)

n2
e =1.0+

4.33449λ 2

λ 2− (0.20242)2 +
0.14739λ 2

λ 2− (4.93667)2 (A.15)
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A.2 Refractive indices of isotropic materials

• SF57 (from Schott, [323]),

n = 1.0+
1.81651371λ 2

λ 2−0.0143704198
+

0.428893641λ 2

λ 2−0.0592801172
+

1.07186278λ 2

λ 2−121.419942
(A.16)

• FS (valid from 0.210 to 3.710µm, available in Chapter 33 of Ref. [324]),

n = 1.0+
0.6961663λ 2

λ 2− (0.0684043)2 +
0.4079426λ 2

λ 2− (0.1162414)2 +
0.8974794λ 2

λ 2− (9.896161)2 (A.17)

• Silicon (at room temperature, [325]),

n = 11.6858+
0.939816

λ 2 +
8.10461×10−3∗ (1.1071)2

λ 2− (1.1071)2 (A.18)

• BK7 (from Schott, [326]),

n = 1.0+
1.03961212λ 2

λ 2−0.00600069867
+

0.231792344λ 2

λ 2−0.0200179144
+

1.01046945λ 2

λ 2−103.560653
(A.19)
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Appendix B

Comparison of electronic and optical
synchronizations

In Tab. B.1, characteristics of optical synchronization andelectronic synchronization between
the seed and pump pulses in an OPCPA system are summarized. Detailed discussions are found
in Sections 2.5 and 3.2 for the electronic synchronization method and in Sections 3.3, 3.4, and
3.5 for the optical synchronization method.

Electronic Optical
synchronization synchronization

Timing jitter < few ps < 1 ps
(short term)
Timing drift several ten ps several ps
(long term)
Wavelength flexible flexible within
tunability oscillator’s spectrum
Coarse timing everyday fixed oscillator rep. rate
(coarse timing realignment fixed amplifier path length
adjustment required) required (fixed round trip)
Seed energy to high low (ASE problem)
pump amplifier
Handling complicated simple
Cost two oscillators ultrabroadband oscillator

+ locking electrics

Table B.1: Comparison of electronic and optical synchronization methods
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Appendix C

Saturation of Nd:YLF amplifier

In this appendix, the saturation effect in a regenerative amplifier amplifier either by the average
power or by an individual energy is discussed. A simple formula to calculate the accumulated
effective power or energy is also derived.

In Section 3.3, theQ-switched output power of more than 3 W from a Nd:YLF regenerative
amplifier was obtained. Let us compare the obtained output result with the saturation fluence and
intensity of Nd:YLF at 1053 nm. The saturation fluence and intensity of Nd:YLF at 1053 nm are
0.79 J/cm2 and 1.57 kW/cm2, respectively. To calculate the pulse intensity in the regenerative
amplifier described in Section 3.3, the amplified beam radius, defined by the half width at 1/e2

of the peak intensity at the Nd:YLF crystal, is determined as0.8 mm from Fig. 3.2. From this
radius, one can derive the effective mode area (2 mm2) and, consequently, the saturation energy
and power of 16 mJ and 31.6 W, respectively. In our case, the performance of the regenerative
amplifier operated at 1 kHz should be limited by energy saturation and not by power saturation
because the fluorescence life-time of Nd:YLF is 500µs so that the roll-off frequency between the
power and energy saturation should be 2 kHz. The output energy and power from the regenerative
amplifier with the seed injected is 3.7 mJ and 3.7 W.

The effective intracavity energy and power are dependent not only on the output energy and
power, but also on the initial seed energy and the gain in the amplifier. This is because the total
energy and power of the pulses passing through the laser crystal in the cavity are accumulated
during amplification. The following formula is suitable to calculate the optimistic (higher than
real) effective energyEe f f and powerPe f f in the cavity

Ee f f =
n−1

∑
i=0

Ein ∗gi =
gn−1
g−1

Ein ' g
g−1

Eout, (C.1)

Pe f f =
n−1

∑
i=0

Pin ∗gi =
gn−1
g−1

Pin ' g
g−1

Pout, (C.2)

whereg, Ein, Pin, Eout(≡ Ein ×gn−1), andPout(≡ Pin ×gn−1) are the single pass gain (not round
trip gain in the regenerative amplifier), input energy into the regenerative amplifier, input power,
output energy from the regenerative amplifier, and output power, respectively. In the pessimistic
(less than real) case, the values could be obtained by dividing the above results by the single-pass
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gain. The last approximations of the equations are verified by the total gain much higher than
1 (gn−1 � 1). This equation does not take into account the loss and the saturation effect in the
amplifier. In our system condition with a single pass gain of 1.5 and output power of 3.7 mJ (3.7
W and 1 kHz), the effective energy in the cavity is calculatedas 11.1 mJ, which is close to the
Nd:YLF saturation energy of 16 mJ.
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Figure C.1: Output power and energy from the Nd:YLF amplifier and intracavity pulse train and
output pulse. (A): Output power (black line) and energy (redline) from the Nd:YLF amplifier
with a different repetition rate. (B): Intracavity pulse train (black line) and output pulse (red
line).

We have also investigated the roll-off frequency of the regenerative amplifier by changing its
repetition rate. The plot in Fig. C.1 shows the output power (black line) and the output energy
(red line) from the regenerative amplifier. The output powerstays constant above about 750 Hz,
which contradicts with the above predicted 2 kHz roll-off frequency. However, this character
has been pointed out from early Nd:YLF regenerative amplifier development [210, 212]. Both
experiment observed the roll-off frequency of about 750 Hz or less. This fact is also shown in Fig.
C.1, where an intracavity pulse train and an output pulse of the Nd:YLF regenerative amplifier
are plotted. The intracavity pulse train does not show the saturation by itself. However, when
one more round trip is added, the whole intracavity pulse train is just shifted to the right and the
output is not increased as would be expected by the round tripgain. Despite of the discrepancy
from the simple calculation and experimental result, we conclude that the regenerative amplifier
is saturated by the average power and not by the individual pulse energy.



Appendix D

Spectral filtering effect in a regenerative
amplifier by use of an etalon

D.1 Introduction

In this appendix, we experimentally and theoretically analyze spectral filtering and pulse shaping
of a pulse by an etalon in an amplifier (either a regenerative amplifier or a multipass amplifier).

As described in Section 3.3, the intense short strong pulsesproduced in an amplifier without
any spectral filtering severely suffer from nonlinear effects such as self-phase modulation (SPM),
self-focusing (especially small-scale self-focusing), pulse splitting, and spectral broadening. To
avoid these effects and obtain a clean amplified pulse, whichincreases the usable energy in a
pump pulse used for OPA, the pulse has to be temporally stretched either before or during am-
plification. In addition, a controllable stretching technique would be quite attractive. Although
a pulse stretcher in front of the amplifier is frequently usedin CPA, in our case, the narrow gain
bandwidth of a Nd:YLF amplifier prevents the use of the chirped-pulse amplification technique.
An etalon inside the amplifier cavity (a regenerative amplifier is considered here instead of a
multipass amplifier) seems to be a promising candidate, which is suggested by Drs. A. Michailo-
vas and J. Kolenda of EKSPLA Co. Ltd. in Lithuania. Another approach producing a long seed
pulse for a picosecond amplifier in a near-infrared OPCPA system [136] was demonstrated by
use of a 4-f system to select a narrow spectrum out of a broaderoscillator pulse spectrum. The
effect of the etalon can be explained both in the time and frequency domains. In the time do-
main, multiple reflections from the surfaces of the etalon result in pulse stretching provided that
gaps between the multiple pulses are smaller than the indvidual pulse duration. In the frequency
domain, the periodically varying transmittance of the etalon narrows the input pulse spectrum,
resulting in spectral filtering and pulse stretching. In later sections, details of the effect of the
etalon inside an amplifier cavity will be analyzed.
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D.2 Etalon spectral filtering and gain narrowing

Usually the linear propagation of light through optics is more easily described in the frequency
domain than in the time domain.

E i1

(Index:  1)

Air
(Refractive index: 1)

Air Material
( Index: n)

E r1

E i2

E r2

E i3 E i4

E r3 E r4

L

(A) (B)

Figure D.1: Configuration and parameters for the calculationof the etalon response.Ei1: electric
field incident on the air side of the surface (A);Er1: electric field reflected on the surface (A);Ei2:
electric field transmitting through the surface (A);Er2: electric field returned from the material
side of the surface (A);Ei3: electric field incident on the material side of the surface (B); Er3:
electric field reflected from the material side of the surface(B); Ei4: electric field transmitting
through the surface (B);Er4: electric field coming into the air side of the surface (B) (=0). The
material thickness is L.

In order to describe the light propagation through the etalon, we use a calculation procedure
written in a section ”Electromagnetic Propagation in Periodic Media” in [327]. The configuration
and parameters are shown in Fig. D.1. With the boundary conditions of the Maxwell equations
[328, 70] and the approximation of monochromatic plane waves normally incident on the surface
(A), the relationships among the electric fields are derivedas

Ei1 +Er1 = Ei2 +Er2, (D.1)

ik(Ei1−Er1) = ikn(Ei2−Er2) , (D.2)

Ei3 = Ei2exp(−iknL) , (D.3)

Er3 = Er2exp(iknL) , (D.4)

Ei4 = Ei3 +Er3, (D.5)

ikn(Ei3−Er3) = ikEi4, (D.6)

wherek (= ω/c), kn (= nω/c), n, ω, andc represent the wave vector of the monochromatic
wave in air, the wave vector in the material, the refractive index of the material, the angular
frequency of the monochromatic wave, and the velocity of thelight in vacuum, respectively. In
a real experiment, a slight tilt of the etalon is introduced to avoid the back reflection of the input
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beam into the amplifier and to match the peak of the etalon transmittance to the peak of the
fluorescence spectrum of the laser medium.

After algebraic procedures,Ei1 andEi4 are related as

Ei1 =

{

cos(knL)+ i
n+ 1

n

2
sin(knL)

}

Ei4, (D.7)

⇐⇒ Ei4 =

{

cos(knL)+ i
n+ 1

n

2
sin(knL)

}−1

Ei1, (D.8)

⇐⇒ Ii4 =

{

cos2(knL)+

(
n+ 1

n

)2

4
sin2(knL)

}−1

Ii1, (D.9)

whereIi4
(

∝ |Ei4|2
)

and Ii1
(

∝ |Ei1|2
)

are the intensities of the output and input waves, re-

spectively. Consequently, formulas for transfer functionsof the amplitudeTE (complex) and the
intensityTI (real) become

TE =
Ei4

Ei1
=

1

cos(knL)+ i
n+ 1

n
2 sin(knL)

, (D.10)

TI =
Ii4
Ii1

=
1

cos2(knL)+
(n+ 1

n)
2

4 sin2(knL)

, (D.11)

respectively. Examples of the calculated single-pass transmittances of a 500-µm-thick fused
silica (black line), a 1-mm-thick fused silica (red line), and a 500-µm-thick sapphire (z-cut or
c-cut) (green line) and a 1.3-nm-wide simulated fluorescence spectrum of Nd:YLF (blue line) are
plotted in Fig. D.2, respectively. Another spectral filtering effect in the amplifier other than the
etalon effect is gain narrowing [54]. The stimulated emission cross section of the laser medium
varies with wavelength and so does the amount of gain. Due to the higher gain values at the cen-
tral region than at the wings, the spectrum is narrowed during amplification. The amplified-pulse
spectrum becomes narrower with higher gain. Detailed description is available in many books
such as ”Lasers” by A.E. Siegman [54]. A calculated result isshown in Fig. D.3 for the single-
pass transmittance of the 500-µm-thick fused silica (black line), the 1.3-nm-wide (FWHM) flu-
orescence spectrum (red line), and a 0.27-nm-wide (FWHM) output spectrum obtained after
amplification of 1011 (green line) at the peak of the fluorescence spectrum. In Fig.D.4 (A)
(in linear scale) and (B) (in logarithmic scale), a calculated spectrum (black spectrum) including
gain narrowing is compared with the calculated amplified spectra including gain narrowing and
spectral filtering by the 0.8-mm-thick etalon (black line) and gain narrowing and spectral filter-
ing by the 1.0-mm-thick etalon (red line). The comparison between the spectral widths with and
without the etalon clearly demonstrates the spectral narrowing effect of the etalon inside the am-
plifier and resultant effective stretching of the amplified pulse. From Fig. D.4 (A), it also follows
that the neighboring maxima of the single-pass transmittance of the etalon with respect to the
gain peak produces periodic modulation in the gain-narrowed amplified spectrum. This periodic
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Figure D.2: Etalon transmittances and the Nd:YLF fluorescence spectrum. Transmittances: a
500-µm-thick fused silica (black line), a 1-mm-thick fused silica (red line), and a 500-µm-thick
sapphire (green line). A simulated Nd:YLF fluorescence spectrum (blue line).
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Figure D.3: Gain narrowing in the Nd:YLF amplifier: the single-pass transmittance of the 500-
µm-thick fused silica (black line), the 1.3-nm-wide (FWHM) fluorescence spectrum (red line),
and a 0.27-nm-wide (FWHM) output spectrum obtained after amplification of 1011 (green line)
at the peak of the fluorescence spectrum.
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Figure D.4: Spectral filtering by the etalon and gain narrowing. Calculated amplified spectra in
linear scale (A) and logarithmic scale (B) including gain narrowing (black line), gain narrowing
and spectral filtering by the 0.8-mm-thick etalon (red line), and gain narrowing and spectral
filtering by the 1.0-mm-thick etalon (green line).

-50 -25 0 25 50
0.0

0.5

1.0

-50 -25 0 25 50
0.0

0.5

1.0

 Simulated AC with 0.8 mm fused silica
 Simulated AC with 1.0 mm fused silica

(A)

 0.8 mm fused silica
 1.0 mm sused silica

 

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Time (ps)

(B)

 

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Time (ps)

 Measured AC with 0.8 mm fused silica
 Measured AC with 1.0 mm fused silica

Figure D.5: Effects of gain narrowing and etalon spectral filtering on temporal pulse profiles.
(A): Calculated temporal profiles of the amplified pulses including gain narrowing and spectral
filtering by the 0.8-mm-thick etalon (black line) and gain narrowing and spectral filtering by the
1.0-mm-thick etalon (red line). (B): Simulated (line) and measured (dotted line) autocorrelation
traces with the 0.8-mm-thick etalon (black) and the 1.0-mm-thick etalon (red), respectively.
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modulation of the spectrum causes ripples in the temporal profile of the amplified pulse. Simu-
lated temporal pulse profiles including gain narrowing and spectral filtering by the 0.8-mm-thick
etalon (black line) and gain narrowing and spectral filtering by the 1.0-mm-thick etalon (red line)
are shown in Fig. D.5 (A). Simulated (line) and measured (dotted line) autocorrelation traces (B)
with the 0.8-mm-thick etalon (black) and the 1.0-mm-thick etalon (red) are shown in Fig. D.5
(B). In Fig. D.5 (B), the good correspondence between the simulated (solid lines) and measured
(dotted lines) autocorrelation traces in the both cases using the 0.8-mm-thick etalon (black) and
the 1.0-mm-thick etalon (red), demonstrates the validity of our model and calculation.

In the experiment, although the calculation shows the shallow ripples in the amplified pulse
with the 0.8-mm thick etalon, the degradation of the pump pulse has been hardly noticeable.
However, further amplification of the pulse leads to observable effects, which are enhanced dur-
ing amplification by the accumulated nonlinear effects. To extinguish completely the ripples in
the temporal pulse profile, we have tried an idea to insert twodifferent intracavity etalons, by
which the oscillation of the transmittance of one etalon is cancelled out by the other. This re-
sults in a smoother amplified spectrum and a cleaner temporalpulse profile. In Fig. D.6 (A),
the measured autocorrelation traces of amplified pulses with energies of 1 mJ (black line) and
17 mJ (red line) from three stage post amplifiers tried in an infrared OPCPA pump development
and a simulated autocorrelation trace (green line) are shown. Enhancement of the multiple peaks
found in the 17-mJ trace (Fig. D.6 (A), red line) can be explained by the self-compression of each
peak caused by SPM and gain narrowing [209, 211]. In Fig. D.6 (B), the multi-etalon approach
results in a measured smooth autocorrelation trace (black line), which corresponds well to the
calculated autocorrelation trace (red line), and also the smooth simulated temporal pulse profile
(green line). Transmittances of a 0.7-mm-thick etalon (black dashed line) and a 1.0-mm-thick
etalon (red dashed line) and the amplified spectra with the 0.7-mm-thick etalon (black solid line)
and the 1.0-mm-thick etalon (red solid line) are shown in Fig. D.7 (A). The transmittances of the
0.7-mm and the 1.0-mm-thick etalons show a unique oscillatory structure with different periods.
The effect of the multi-etalon approach is demonstrated in Fig. D.7 (B): the single-pass trans-
mittance (black dashed line) and the amplified spectrum (black solid line) with the 0.7-mm and
1.0-mm-thick etalons. As a result, each amplified spectrum has its own periodically modulated
structure with the same period as in their transmittance curve. By using two etalons of differ-
ent thicknesses, the oscillation of the transmittance of one etalon cancels the other and, totally,
the transmittance of the two etalons has the only single peakat the center, resulting in a clean
amplified spectrum without any side peak above the level of 10−7 of the peak intensity.

D.3 Summary

The simple formula for the transmittance of an etalon has been derived, compared, and verified
with experiments. The simulation results of the amplified pulse spectrum including the gain
narrowing effect and etalon spectral filtering have helped the experimental implementation. Ex-
perimental problems due to multiple pulses caused by the nonlinear effects have been solved
by adopting the two-etalon approach. The application of this technique, however, is limited by
physical dimensions (thickness of the etalon), the amount of gain narrowing caused by a laser
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Figure D.6: (A): Measured autocorrelation traces of 1-mJ output pulses (black line) and 17-mJ
output pulses (red line) and an autocorrelation trace of a calculated pulse (green line) by use of
the 1-mm-thick fused silica. (B): Measured (black line) and simulated (red line) autocorrelation
traces when the 0.7-mm- and 1.0-mm-thick fused silicas are used and a simulated temporal pulse
profile (green line).
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Figure D.7: (A): Calculated transmittance (black dashed line) and amplified spectrum (black
solid line) with the 0.7-mm-thick etalon and calculated transmittance (red dashed line) and am-
plified spectrum (red solid line) with the 1.0-mm-thick etalon. (B): Calculated transmittance
(dashed line) and amplified spectrum (solid line) with the 0.7-mm and 1.0-mm-thick etalons.
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medium, and the possible number of intracavity etalons, which introduce small amounts of loss.
Although the peak value of transmittance of the etalon is 100%, the energy in the other parts of
the spectrum is reduced by the reflection from the etalon which introduces loss. The tilt of the
etalon is used to adjust the effective thickness of the crystal and to avoid the back reflection into
the amplifier. So far, the use of a 2-mm and a 4-mm-thick etaloninside a Nd:YAG regenerative
amplifier allowed us to obtain 2-mJ, 100-ps pulses using the optical seeding by the photonic
crystal fiber. Subsequent amplification in a Nd:YAG post amplifier chain produced 1.5 J pulses
with a smooth temporal profile. The pulse duration from 10 to 200 ps seems to be an applicable
range in the case of Nd3+ doped-crystals. If a long pulse with the duration of more than 200 ps
is needed, many etalons have to be placed in the cavity and a stronger seed energy is required.



Appendix E

Nonlinear refractive indices of optical
materials

Nonlinear refractive indices of materials frequently usedin laser science are listed in Tab. E.1.

Material Nonlinear refractive index [cm2/W] Reference and note
(multiply by 10−4 by a unit [m2/W])

Fused silica 3.6×10−16 at 351 nm [329]
Fused silica 3.0×10−16 at 527 nm [329]
Fused silica 2.74×10−16 at 1053 nm [329]
SF57 4.1×10−15 [330]
Silicon 4.5×10−14 [269]
GaAs 1.59×10−13 [269]
YAG (Nd3+ doped) 6.2×10−16 [331]
YAG (Nd3+ doped) 8.1×10−16 [332]
YLF (Nd3+ doped) 1.73×10−16 0.6×10−13 [esu] [333]
YLF (Nd3+ doped) 1.43×10−16 [334]
BBO 5.0×10−16 [335], [336]
BBO 7.4×10−16 at 1064 nm [337]
BBO 8.0×10−16 at 532 nm [337]
KTP 2.4×10−15 [335]
KDP 2.3×10−16 (o) @ 1053 nm LLE review Vol. 74 p 125
KDP 2.5×10−16 (e) @ 1053 nm LLE review Vol. 74 p 125

Table E.1: Nonlinear refractive indices of frequently usedmaterial
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Appendix F

Thermal expansion coefficients of materials

Thermal expansion coefficients of several materials frequently used in laser science are listed in
Table F.1.

A scientific grade optical table (RS4000TM series) from New Port, is made of 400 series
ferromagnetic stainless steel, which expands by 10×10−6 with 1 K increase in temperature.

Material Thermal expansion coefficient
Carbon steel 10×10−6/K
400 series ferromagnetic stainless steel 10×10−6/K
Super invar at 20◦C −0.2×10−6/K (0 at 50◦C)
300 series non-ferromagnetic stainless steel 16.6×10−6/K
6061 aluminum 23×10−6/K

Table F.1: Thermal expansion coefficients of some common materials
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[220] F. Tavella and A. Marcinkevičius, “A 1.5 J picosecond amplifier system seeded with pho-
tonic crystal fiber output pulses,” private communication,2006.

[221] M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, and T. W. Hänsch, “Optical clock-
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F. Krausz, “Few-cycle optical waveform synthesis,”Appl. Phys. B, vol. 72, pp. 373–376,
2001.

[275] F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier-envelope-
offset dynamics and stabilization of femtosecond pulses,”Appl. Phys. B, vol. 74, pp. S35–
S42, 2002.



138 BIBLIOGRAPHY

[276] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical
fiber with photonic crystal cladding,”Opt. Lett., vol. 21, pp. 1547–1549, 1996.

[277] M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Taka-
hashi, “Single-shot measurement of carrier-envelope phase changes by spectral interfer-
ometry,”Opt. Lett., vol. 26, pp. 1436–1438, 2001.

[278] Q. Xing, K. M. Yoo, and R. R. Alfano, “Conical emission by four-photon parametric
generation by using femtosecond laser pulses,”Appl. Opt., vol. 32, pp. 2087–2089, 1993.

[279] A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentationand the white light continuum
divergence,”Opt. Commun., vol. 129, pp. 193–198, 1996.

[280] M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, “Physical Factors Limiting the
Spectral Extent and Band Gap Dependence of Supercontinuum Generation,”Phys. Rev.
Lett., vol. 91, p. 043905, 2003.

[281] F. Shimizu, “Frequency Broadening in Liquid by a Short Light Pulse,”Phys. Rev. Lett.,
vol. 19, pp. 1097–1100, 1967.

[282] R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale
Filaments in Crystals and Glasses,”Phys. Rev. Lett., vol. 24, pp. 592–594, 1970.

[283] P. B.Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared su-
percontinuum covering 3-14µm in dielectrics and semiconductors,”Opt. Lett., vol. 10,
pp. 624–626, 1985.

[284] G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,”
Opt. Lett., vol. 9, pp. 510–512, 1984.

[285] G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, “Difference of spectral superbroadening
behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,”
Appl. Opt., vol. 32, pp. 4507–4512, 1993.

[286] A. Brodeur and S. L. Chin, “Band-Gap Dependence of the Ultrafast White-Light Contin-
uum,” Phys. Rev. Lett., vol. 80, pp. 4406–4409, 1998.

[287] A. L. Gaeta, “Catastrophic Collapse of Ultrashort Pulses,” Phys. Rev. Lett., vol. 84,
pp. 3582–3584, 2000.

[288] A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing
in transparent condensed media,”J. Opt. Soc. Am. B, vol. 16, pp. 637–650, 1999.

[289] C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and char-
acterization of ultrafast white-light continuum in condensed media,”Appl. Opt., vol. 41,
pp. 3735–3742, 2002.



BIBLIOGRAPHY 139

[290] A. Saliminia, S. L. Chin, and R. Vallée, “Ultra-broad and coherent white light generation
in silica glass by focused femtosecond pulses at 1.5µm,” Opt. Express, vol. 13, pp. 5731–
5738, 2005.

[291] P. S. Banks, M. D. Feit, and M. D. Perry, “High-intensitythird-harmonic generation in beta
barium borate through second-order and third-order susceptibilities,” Opt. Lett., vol. 24,
pp. 4–6, 1999.

[292] L. Lepetit, G. Ch́eriaux, and M. Joffre, “Linear techniques of phase measurement by fem-
tosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B,
vol. 12, pp. 2467–2474, 1995.

[293] A. W. Albrecht, J. D. Hybl, S. M. G. Faeder, and D. M. Jonas, “Experimental distinction
between phase shifts and time delays: Implications for femtosecond spectroscopy and
coherent control of chemical reactions,”J. Chem. PHys., vol. 111, pp. 10934–10956, 1999.

[294] J. F. Reintjes,Nonlinear Optical Parametric Processes in Liquids and Gases. Orland:
Academic Press, 1984.

[295] B. W. Shore and P. L. Knight, “Enhancement of high optical harmonics by excess-photon
ionisation,”J. Phys. B: At. Mol. Phys., vol. 20, pp. 413–423, 1987.

[296] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and
C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the
rare gases,”J. Opt. Soc. Am. B, vol. 4, pp. 595–601, 1987.

[297] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompŕe, G. Mainfray, and C. Manus, “Multiple-
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I would like to thank Andrius Baltǔska for his supervision of my Ph.D. study , his excellent
leadership, and knowledge about the laser physics. His passion for the research has stimulated
me many times and resulted in the excellent works.

I would like to express my appreciation to Takao Fuji for prompting me to work in the current
laboratory, his supports not only for the research but also for my daily life, and educational
discussion about the ultrashort pulse generation and characterization.

Xun Gu is gratefully acknowledged for his leadership for thedevelopment of the infrared
OPCPA system and experimental implementation of the infrared pulse characterization based on
his profound knowledge about it.
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The concept of optical parametric chirped-pulse amplification is applied to attain pulses with energies up to
8 mJ and a bandwidth of more than 100 THz. Stretched broadband seed pulses from a Ti:sapphire oscillator
are amplified in a multistage noncollinear type I phase-matched b-barium borate parametric amplifier by use
of an independent picosecond laser with lock-to-clock repetition rate synchronization. Partial compression of
amplified pulses is demonstrated down to a 10-fs duration with a down-chirped pulse stretcher and a nearly
lossless compressor comprising bulk material and positive-dispersion chirped mirrors. © 2005 Optical Society
of America
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Typical processes in laser-driven strong-field physics1

are conf ined to one or a few optical oscillations and
therefore require appropriately short laser pulses of
the highest possible peak power. The proven way to
obtain intense few-cycle laser fields relies on external
bandwidth broadening of amplif ied pulses in gas-filled
capillaries2,3—a method that involves heavy energy
losses and is not easily scalable in the multimillijoule
regime. In contrast with laser media, the gain band-
width of some noncollinearly phase-matched nonlinear
optical crystals, especially b-barium borate (BBO),4 is
directly suitable for amplification of two-cycle visible
pulses without subsequent spectral broadening.5 – 7

Since the nonlinear optical crystal does not provide
inversion storage, eff icient broadband amplif ication
with a narrowband pump pulse becomes possible
only if the seed pulse is stretched to match the pump
duration. Such optical parametric chirped-pulse
amplification (OPCPA) was originally proposed and
demonstrated by Dubietis et al.8 and has since found
broad recognition as a promising scheme for designing
ultrahigh-peak-power laser systems.9 – 11 To date,
high-energy subpicosecond parametric systems12 – 15

and few-cycle 100-mJ-level OPCPA16,17 have been
reported. In this Letter we demonstrate a terawatt-
class 10-fs scheme that, in our opinion, presents a
feasible alternative to a similar-level amplifier based
on a Ti:sapphire laser.

The schematic of our OPCPA setup is presented in
Fig. 1(a). Similarly to Refs. 16 and 17, the employed
seed source is a nanojoule broadband Ti:sapphire seed
oscillator. The repetition rates of the femtosecond
seed laser and an actively mode-locked 60-ps Nd:YVO4
oscillator are synchronized with an external rf clock.
The pulses from the picosecond oscillator are amplified
to 100 mJ at a 20-Hz repetition rate in a Nd:YAG
amplifier (EKSPA Ltd.) and frequency doubled to
produce a 50-mJ, 532-nm pump for OPCPA.

Our parametric amplif ier consists of two 4-mm-thick
antiref lection-coated type I BBO crystals. The inter-
0146-9592/05/050567-03$15.00/0
nal noncollinearity angle between the pump and the
seed beams is set at approximately 2.3± to provide the
broadest gain bandwidth. Although we can achieve a
factor of 106 gain in a single-stage parametric ampli-
fier, the multistage, multipass arrangement shown in

Fig. 1. Two-stage, four-pass chirped-pulse parametric
amplifier: (a) layout of the optical setup, (b) relay-imaged
pump beam profile at the second-stage crystal, (c) beam
profile of the signal beam amplif ied to 5 mJ, (d) horizontal
cross section of the signal beam at several wavelengths.
HTG, holographic transmission diffraction grating; PL,
parabolic lens; AP, micromachined aspheric plate; TDM,
thermally activated mirror; PC, Pockels cell; l�2, 532-nm
half-wave plate; TFP, thin-f ilm polarizer; SF57, block
of Schott SF57 glass; FS, block of synthetic fused silica;
CM, positive-dispersion chirped mirror; SHG, second-
harmonic generation; Ti:sa, Ti:sapphire laser. SPIDER,
spectral phase interferometry for direct electric field
reconstruction.
© 2005 Optical Society of America
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Fig. 1(a) is used for its pulse contrast and bandwidth.
In this scheme, by using a weaker pump, we reduce
the gain in a single stage below 104. On the one hand,
this measure suppresses the competition between the
external seed and the internal parametric superf luo-
rescence generated in the presence of a strong pump,
and, on the other hand, it prevents amplif ication of
the seed replica that is caused by a small double retro-
ref lection from the crystal surfaces.

The BBO length was chosen as a compromise
between the gain bandwidth and the amplif ication
factor. In the f irst noncollinear optical parametric
amplifier [NOPA 1; Fig. 1(a)] the collimated pump and
signal beams are retroref lected onto the nonlinear
optical crystal by f lat mirrors located �25 cm behind
the crystal that filters, to some degree, the parametric
superf luorescence acquired in the f irst pass. In
contrast with NOPA 1, the ref lectors in NOPA 2 are
located only 7 cm behind the crystal and are slightly
tilted horizontally to change both the phase matching
and the noncollinearity angles for the second pass.
This angular detuning in NOPA 2, in combination
with an independent alignment of NOPA 1, allows
us to reshape the gain bandwidth18,19 and reduce
the cumulative bandwidth narrowing through the
amplifier. Another important aspect of an optical
parametric amplifier is the potential angular chirp
of a broadband signal wave whereby a thick non-
collinearly phase-matched crystal plays the role of
a dispersive monochromator.20 To characterize this
distortion, we monitored the beam profile of the signal
amplified to 5 mJ [Fig. 1(c)] and frequency resolved
the beam profile behind NOPA 2. As can be seen
from the frequency-dependent cross sections in the
pump–signal intersection plane, the high-gain ampli-
fication causes signif icant modulation of the output
beam but does not lead to a clearly observable mode
displacement characteristic of angular chirp. This
result ascertains the usability of the chosen crystal
length for a broadband noncollinear amplif ication un-
der the condition of seed collimation, which overrides
the selection of output direction imposed by phase
matching.

The pump-to-signal energy conversion efficiency of
NOPA 1 and NOPA 2, both optimized for the broadest
bandwidth, is summarized in Fig. 2. Theoretically,
the most eff icient performance of OPCPA requires
the pump pulse to have roughly top-hat spatial
and temporal profiles. Nonetheless, even without
adequate temporal (a nearly Gaussian pump pulse
intensity profile) and spatial [Fig. 1(b)] shaping, the
peak pump-to-signal conversion efficiency in NOPA 2
reaches 27% [Fig. 2(b)]. As can be seen in Figs. 2(a)
and 2(b), the pump spot sizes were chosen to permit
gain saturation and to improve signal pulse stability.
However, deep saturation, observed for the pump
energy around 30 mJ, was found to be detrimental
because it dramatically enhances the uncompressible
background of the signal pulse consisting of amplified
superf luorescence. The safe operating conditions in
terms of superf luorescence suppression and pulse
stability correspond to approximately 5 mJ in the
signal pulse, at which the rms intensity f luctuation of
the signal pulse is approximately 2.9%, whereas the
pump rms f luctuation is nearly 1.5%.

To match the pump pulse duration, the seed pulse
was chirped with two alternative stretchers: positive-
dispersion bulk material and a negative-dispersion
4f dispersion line, both presented in Fig. 1(a). Am-
plification results obtained with bulk chirping are
summarized in Fig. 3. The advantages of this stretch-
ing technique are its simplicity, excellent transmitted
beam quality, and high throughput for the entire
bandwidth of the seed. The solid curve in Fig. 3
shows the spectrum of the signal wave amplif ied to
8 mJ, which compares well with the overlap between
the seed spectrum (dotted curve) and the theoretically
calculated gain bandwidth (dashed curve).

Lacking an appropriate high-throughput pulse com-
pressor for the bulk stretcher, we designed a matched
pair consisting of a down-chirping stretcher and an
up-chirping compressor.21 In our stretcher [Fig. 1(a)]
the beam is dispersed by a holographic 900-line�mm
transmission grating (Wasatch Photonics) and
passed through an f � 80 mm parabolic quartz
lens. In the Fourier plane of this lens we introduced
a micromachined quartz plate for higher-order

Fig. 2. Energy conversion efficiency into the signal wave.
(a) First amplif ier stage in a double pass. The pump and
the seed beam diameters are �0.5 and �0.4 mm FWHM,
respectively. (b) Second amplif ier stage in a double pass.
The pump and the seed beam diameters are �2.5 and
�3.2 mm FWHM, respectively. Dashed curves are guides
to the eye.

Fig. 3. Parametric amplification of a positively chirped
seed pulse. The dotted curve and the shaded contour show
the spectra of the seed pulse (2 nJ) and the amplif ied pulse
(8 mJ) spectra, respectively. The dashed curve depicts the
calculated gain of a 4-mm type I BBO. The inset shows a
pulse profile calculated assuming an ideal compression of
the amplified pulse. TL, transform-limited.
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Fig. 4. Results of amplification and recompression of a
negatively chirped seed pulse. (a) Seed spectrum behind
the grating stretcher (dotted curve), amplified pulse spec-
trum (shaded contour), and residual group delay (dashed
curve). (b) Recompressed 5-mJ pulse (dashed–dotted
curve) and temporal phase (dashed curve). The dark
contour shows the intensity profile assuming ideal pulse
compression.

dispersion correction and a thermally activated de-
formable mirror (OKO Technologies) for wave-front
correction. In total, the beam propagates through the
grating four times, which significantly reshapes the
transmitted seed spectrum [Fig. 4(a), dotted curve].
To provide the target pulse duration of 50 ps at the
NOPAs, the stretcher precompensates the positive
dispersion of the programmable acousto-optic filter
(DAZZLER, Fastlite) containing a 45-mm-long TeO2
crystal. After amplification, the beam is expanded
to a FWHM diameter of �3 cm and is sent through
a compressor consisting of 15 cm of SF57 glass
(Schott), followed by 10 cm of Suprasil synthetic
quartz (Heraeus) and a set of three custom-made
positive-dispersion dielectric chirped mirrors. This
stepwise compression is used to reduce pulse self-
action inside the bulk material, and the B-integral
value for a fully compressed 5-mJ pulse is estimated to
be below 1.3. The measured losses in the compressor
are below 4%. The amplified bandwidth in the case
of the grating-based stretcher [Fig. 4(a), solid curve]
is somewhat narrower in comparison with the bulk
stretcher and potentially supports �7-fs pulses. By
use of the feedback from a SPIDER measurement of
spectral phase, the dispersion of the DAZZLER is
tuned to recompress the amplif ied pulses to �10 fs
[Fig. 4(b)]. We expect to achieve a better pulse
compression after upgrading the DAZZLER synchro-
nization and the single-shot SPIDER setup.

In summary, we have designed multistage OPCPA
for broadband multimillijoule pulse amplif ication
around 800 nm and employed a unique pulse stretch-
ing and compression scheme. Because of the absence
of thermal load on the nonlinear optical crystal, the
demonstrated concept is scalable both in energy and
repetition rate.

This work was supported by the Fonds zur
Förderung wissenschaftlichen Forschung (Austria) un-
der grants P15382, Z63, and F016 and by the LaserLab
Europe and the European Community’s Human Poten-
tial Programme under contract MRTN-CT-2003-50138
(XTRA). The authors gratefully acknowledge the
help of S. Köhler, F. Tavella, and G. Tempea. N.
Ishii’s e-mail address is nobuhisa.ishii@mpq.mpg.de.

*Also with Ludwig-Maximilians-Universität,
D-85748 Garching, Germany.

†Present address, Light Conversion, Ltd., Saulėtekio
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Piskarskas, Opt. Commun. 203, 435 (2002).

20. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, Opt.
Lett. 26, 932 (2001).

21. D. M. Gaudiosi, A. L. Lytle, D. Kohl, M. M. Murnane,
H. C. Kapteyn, and S. Backus, Opt. Lett. 29, 2665
(2004).


