
Matthias Renz

Enhanced Query Processing on
Complex Spatial and Temporal
Data

Dissertation an der Fakultät
für Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universität München,
eingereicht am 16. Oktober 2006.

ii

Enhanced Query Processing on

Complex Spatial and Temporal

Data

Dissertation an der Fakultät
für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Matthias Renz

Tag der Einreichung: 16.10.2006
Tag der mündlichen Prüfung: 05.12.2006

Berichterstatter:
Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Thomas Seidl, Rheinisch-Westfälische Technische Hochschule Aachen

ii

Acknowledgement

I would like to express my deepest thanks to all people which supported and

encouraged me in the past years while i was working on this work, even if I

cannot mention them all by name.

I would especially like to thank my supervisor and first referee on this

thesis, Prof. Dr. Hans-Peter Kriegel. He initiated and supported this work

with his long standing experiences and the organizational background and

gave me the opportunity to work on this challenging domain. Without the

inspiring, productive and supportive working environment, he created in the

database research group, this work could never have been done. I am also

very grateful to Prof. Dr. Thomas Seidl for his interest in my work and his

immediate willingness to act as the second referee.

This work was inspired by many fruitful discussions and cooperations

with my colleagues in the database research group. In particular, I want to

thank Peter Kunath, Dr. Peer Kröger, Alexey Pryakhin, Johannes Assfalg

and Dr. Martin Pfeifle for constructive and productive team work and Elke

Achtert, Prof. Dr. Christian Böhm, Karsten Borgwardt, Stefan Brecheisen,

Dr. Matthias Schubert and Arthur Zimek for many helpful discussions.

I also appreciate the substantial help of the students whose study thesis

or diploma thesis I supervised. They helped me to manage the large amount

of necessary tasks including implementation, data processing, and testing.

I am extremely grateful for the background support of Susanne Grien-

berger, who managed much of the administrative work and carefully read

this thesis to polish my English. Furthermore, I want to express special

iii

iv

thanks to Franz Krojer, for taking care of our technical environment and

unhesitatingly providing me with all the technical tools that helped to accel-

erate the progress of this work.

Last but not least, I want to thank my family and friends for their sup-

port and encouragement during the time that I was engaged in this study.

In particular I thank my parents who always supported my career and en-

couraged me to find my way. But especially I want to thank my wife Helene

for all the love and care she gave me, for her great encouragement and for

many sacrifices she shouldered in the last month. I thank her for the moti-

vations she gave me when I was down and for giving me the power I needed

to complete this work.

Abstract

Innovative technologies in the area of multimedia and mechanical engineering

as well as novel methods for data acquisition in different scientific subareas,

including geo-science, environmental science, medicine, biology and astron-

omy, enable a more exact representation of the data, and thus, a more precise

data analysis. The resulting quantitative and qualitative growth of specifi-

cally spatial and temporal data leads to new challenges for the management

and processing of complex structured objects and requires the employment

of efficient and effective methods for data analysis.

Spatial data denote the description of objects in space by a well-defined

extension, a specific location and by their relationships to the other ob-

jects. Classical representatives of complex structured spatial objects are

three-dimensional CAD data from the sector ”mechanical engineering” and

two-dimensional bounded regions from the area ”geography”. For industrial

applications, efficient collision and intersection queries are of great impor-

tance.

Temporal data denote data describing time dependent processes, as for

instance the duration of specific events or the description of time varying

attributes of objects. Time series belong to one of the most popular and

complex type of temporal data and are the most important form of descrip-

tion for time varying processes. An elementary type of query in time series

databases is the similarity query which serves as basic query for data mining

applications.

The main target of this thesis is to develop an effective and efficient

v

vi

algorithm supporting collision queries on spatial data as well as similarity

queries on temporal data, in particular, time series. The presented concepts

are based on the efficient management of interval sequences which are suitable

for spatial and temporal data. The effective analysis of the underlying objects

will be efficiently supported by adequate access methods.

First, this thesis deals with collision queries on complex spatial objects

which can be reduced to intersection queries on interval sequences. We in-

troduce statistical methods for the grouping of subsequences. Involving the

concept of multi-step query processing, these methods enable the user to

accelerate the query process drastically. Furthermore, in this thesis we will

develop a cost model for the multi-step query process of interval sequences

in distributed systems. The proposed approach successfully supports a cost

based query strategy.

Second, we introduce a novel similarity measure for time series. It allows

the user to focus specific time series amplitudes for the similarity measure-

ment. The new similarity model defines two time series to be similar iff

they show similar temporal behavior w.r.t. being below or above a specific

threshold. This type of query is primarily required in natural science applica-

tions. The main goal of this new query method is the detection of anomalies

and the adaptation to new claims in the area of data mining in time series

databases. In addition, a semi-supervised cluster analysis method will be

presented which is based on the introduced similarity model for time series.

The efficiency and effectiveness of the proposed techniques will be exten-

sively discussed and the advantages against existing methods experimentally

proofed by means of datasets derived from real-world applications.

Zusammenfassung

Innovative Technologien in den Bereichen Multimedia und Maschinenbau

sowie neueste Methoden zur Datengewinnung in den verschiedensten Teil-

bereichen der Wissenschaft, wie z.B. Geo-Wissenschaften, Umwelt- und Kli-

maforschung, Medizin, Biologie und Astronomie, ermöglichen eine exaktere

Darstellung und somit eine präzisere Analyse der Daten. Die daraus fol-

gende quantitative und qualitative Zunahme, insbesondere von räumlichen

und zeitlichen Daten, führt zu neuen Herausforderungen bei der Verwaltung

und Verarbeitung von komplex strukturierten Objekten und erfordert den

Einsatz von effizienten und effektiven Methoden zur Datenanalyse.

Unter räumlichen Daten versteht man die Beschreibung von Objekten im

Raum durch wohldefinierte Ausdehnung, Lage im Raum und ihre Beziehun-

gen zu anderen Objekten. Klassische Vertreter von komplex strukturierten

räumlichen Objekten aus dem Bereich Maschinenbau sind CAD-Daten (3D-

Objekte) und aus der Geographie begrenzte Flächenstücke (2D-Objekte).

Für industrielle Anwendungen sind effiziente Kollisions- und Schnittanfra-

gen von großer Bedeutung.

Zeitliche Daten sind Daten, die zeitabhängige Vorgänge beschreiben, wie

beispielsweise die Dauer von bestimmten Ereignissen oder die Beschreibung

von sich zeitlich verändernden Attributen von Objekten. Zu den am häufigsten

verwendeten zeitlichen Daten gehören Zeitreihen, welche eine der komplex-

esten aber auch wichtigsten Beschreibungsformen für sich zeitlich ändernde

Vorgänge sind. Eine elementare Anfrageform in Zeitreihen-Datenbanken ist

die Ähnlichkeitsanfrage, die als Basisanfrage für ”Data Mining” Anwendun-

gen dient.

vii

viii

Ziel dieser Arbeit ist die Entwicklung von effektiven und effizienten Al-

gorithmen, die sowohl für Kollisionsanfragen auf räumliche Daten als auch

für Ähnlichkeitsanfragen auf zeitlichen Daten, insbesondere auf Zeitreihen,

verwendet werden können. Die vorgestellten Konzepte basieren auf der ef-

fizienten Verwaltung von Intervall-Sequenzen. Diese eignen sich als Basisda-

tentyp für räumliche und zeitliche Daten. Die effektive Analyse der zugrunde

liegenden Objekte wird durch den Einsatz von geeigneten Zugriffsstrukturen

effizient unterstützt.

Zum einen beschäftigt sich diese Arbeit mit Kollisionsanfragen von kom-

plexen räumlichen Objekten, die sich auf Schnitterkennung zwischen Inter-

vallsequenzen reduzieren lassen. Es werden statistische Methoden zur Grup-

pierung von Teilsequenzen eingeführt, die es ermöglichen, mittels mehrstu-

figer Anfragebearbeitung den Anfrageprozess erheblich zu beschleunigen. Fer-

ner wird ein Kostenmodell für die mehrstufige Anfragebearbeitung von Inter-

vallsequenzen in verteilten Systemen entwickelt, welches eine kostenbasierte

Anfragestrategie erfolgreich unterstützt.

Zum anderen wird ein neuer Ähnlichkeitsbegriff für Zeitreihen eingeführt,

der es erlaubt, Ähnlichkeitsmessungen auf bestimmte Amplituden der Zeitrei-

hen zu fokusieren. Dieses neue Ähnlichkeitsmaß definiert zwei Zeitreihen als

ähnlich, wenn sie ein vergleichbares Verhalten bezüglich Überschreitungen

eines bestimmten Grenzwertes aufweisen. Hauptsächlich finden Anfragen

basierend auf diesem Ähnlichkeitstyp in naturwissenschaftlichen Gebieten

Anwendung. Ziel dieser neuen Anfragemethode ist die Erkennung von Anoma-

lien und die Adaption an neue Anforderungen im Bereich ”Data Mining” in

Zeitreihen-Datenbanken. Des Weiteren wird auf der Grundlage des eingeführ-

ten Ähnlichkeitsmodells eine Methode zur semi-überwachten Cluster-Analyse

entwickelt.

Die Effizienz und Effektivität der vorgestellten Techniken wird ausgiebig

diskutiert und die Vorteile gegenüber herkömmlicher Verfahren mittels Daten-

sätzen aus realen Anwendungen experimentell nachgewiesen.

Survey of Chapters

I Complex Spatial and Temporal Data 3

1 Introduction 3

2 Complex Spatial Data 15

3 Complex Temporal Data 33

4 Intervals and Interval Sequences 55

II Spatial Query Processing for Complex Structured Objects 71

5 Introduction 71

6 Statistic Driven Acceleration of Spatial Queries 75

7 Haptic Exploration of Large Spatial Environments 97

8 Cost-Based Approximation of Complex Spatial Objects 115

9 Join Queries for Complex Spatial Objects 145

10 Distributed Spatial Join Processing 169

ix

x

III Enhanced Similarity Search on Time Series 187

11 Introduction 187

12 Similarity-Distance Measures for Intervals 199

13 Threshold Based Similarity Search 211

14 Threshold Based Indexing 217

15 Threshold Based Query Processing 229

16 Semi-Supervised Time Series Analysis 247

17 Experimental Evaluation and Discussion 259

IV Conclusions 277

18 Summary and Future Directions 277

Contents

Acknowledgement iv

Abstract vi

Zusammenfassung viii

Survey of Chapters x

I Complex Spatial and Temporal Data 1

1 Introduction 3

1.1 Complex Spatial and Temporal Objects in Information Systems 4

1.1.1 Spatial Information Systems 5

1.1.2 Temporal Information Systems 5

1.2 Applications of Spatial and Temporal Information Systems . . 7

1.2.1 Biological- and Medical Information Systems 7

1.2.2 Multimedia Information Systems 7

1.2.3 Geographic Information Systems 8

1.2.4 Computer Aided Design 8

1.3 Outline of this Thesis . 9

2 Complex Spatial Data 15

2.1 Modeling Spatial Data . 15

xi

xii CONTENTS

2.1.1 Modeling 3-dimensional Objects 17

2.1.2 Triangle Meshes . 17

2.1.3 Voxel-Sets and Voxel-Sequences 19

2.1.4 Point Shells . 21

2.2 Fundamental Spatial Queries 22

2.2.1 Spatial Selection Queries 23

2.2.2 Spatial Join Queries 24

2.2.3 Spatial Indexing . 25

2.2.4 Multi-Step Query Processing 27

2.3 Industrial Applications of CAD Databases 27

2.3.1 Digital Mock-up of Prototypes 29

2.3.2 Haptic Rendering . 30

2.3.3 Spatial Document Management 31

3 Complex Temporal Data 33

3.1 Modeling Temporal Data . 33

3.1.1 Dimensions of Time . 34

3.1.2 Modeling Complex Temporal Data 34

3.1.3 What this Thesis is Not About 35

3.2 Time Series . 35

3.2.1 Types of Time Series 36

3.2.2 Interpolation of Discrete Time Series 37

3.3 Similarity Measures for Time Series 38

3.3.1 Similarity in Time . 38

3.3.2 Similarity in Shape . 39

3.3.3 Similarity in Change 40

3.3.4 Time Warped Measures 41

3.3.5 Weighted Distance Measures 44

3.4 Similarity Search Applications 44

3.4.1 Clustering . 45

CONTENTS xiii

3.4.2 Classification . 46

3.4.3 Association Rule Mining 46

3.5 Indexing Time Series . 47

3.5.1 Rules of Indexing Time Series 47

3.5.2 Vector Space Transformation 48

3.5.3 Curse of Dimensionality 48

3.6 GEMINI: A Generic Indexing Approach for Large Time Series 50

3.7 Time Series Representations 52

4 Intervals and Interval Sequences 55

4.1 Applications on Interval Data 56

4.1.1 Interference Checks for Spatial Data 56

4.1.2 Data Mining in Time Series Databases 57

4.2 Definition . 57

4.3 Basic Operations on Intervals 58

4.3.1 Predicates on Intervals 58

4.3.2 Functions on Intervals 59

4.4 Efficient Management of Intervals and Interval Sequences . . . 60

4.4.1 Relational Interval-tree 62

4.5 Statistics on Intervals . 65

4.5.1 Interval Histogram . 66

4.5.2 Quantile Vector . 66

II Spatial Query Processing for Complex Structured
Objects 69

5 Introduction 71

6 Statistic Driven Acceleration of Spatial Queries 75

6.1 Introduction . 75

6.2 Statistics Related to the Relational Access Methods 76

xiv CONTENTS

6.2.1 Examples of Space-Partitioning Relational Access Meth-

ods . 77

6.2.2 Index Specific Statistics 78

6.3 Statistics Related to the built-in access method (B+-tree) . . . 80

6.3.1 Index Range Scan Sequences 81

6.3.2 Extended Index Range Scan Sequences 82

6.3.3 Adoption to the Linear Quad-tree 86

6.3.4 Adoption to the Relational Interval-tree 86

6.4 Statistics Related to the Object Decomposition 87

6.5 Experimental Evaluations . 88

6.5.1 Test Datasets . 89

6.5.2 System Specification 89

6.5.3 Histograms of the Test Datasets 89

6.5.4 Query Processing . 90

6.6 Summary . 94

7 Haptic Exploration of Large Spatial Environments 97

7.1 The ”Sense of Touch” and Database Systems 97

7.2 Related Work . 99

7.2.1 Haptic Rendering . 99

7.2.2 Relational Spatial Query Processing 100

7.3 Data Model for Haptic Rendering 100

7.3.1 Static Object Model 101

7.3.2 Dynamic Object Model 101

7.3.3 Collision Response . 101

7.4 Relational Embedding of the Static Environment 103

7.5 Relational Embedding of the Haptic Rendering Machine . . . 105

7.6 Accelerated Query Processing 106

7.6.1 Point Query Sequence 106

7.6.2 Range Query Sequence 107

CONTENTS xv

7.6.3 Cost Based Grouping 107

7.6.4 Accelerated SQL Query 108

7.7 Performance Evaluation . 109

7.8 Summary . 112

8 Cost-Based Approximation of Complex Spatial Objects 115

8.1 Related Work . 116

8.2 Approximation of Rasterized Spatial Objects 117

8.2.1 Interval Container . 118

8.2.2 Compression of Interval Containers 121

8.3 Cost-Based Approximation . 124

8.3.1 Grouping Rules . 124

8.3.2 Query Distribution Function QDF 125

8.3.3 Access Probability . 127

8.3.4 Cost Model . 128

8.3.5 Decomposition Algorithm 129

8.4 Intersection Detection Based on Interval Containers 130

8.5 Fast Intersection Test for Interval Containers 132

8.5.1 Fast Intersection Tests 133

8.5.2 Priority Based Intersection Tests 134

8.6 Experiments . 135

8.6.1 Test Datasets . 137

8.6.2 Storage Requirements 137

8.6.3 Update Operations . 139

8.6.4 Query Processing . 140

8.7 Summary . 143

9 Join Queries for Complex Spatial Objects 145

9.1 Introduction . 145

9.2 Related Work . 147

xvi CONTENTS

9.3 Cost Model . 148

9.4 Decomposition Algorithm . 150

9.5 Nested-Loop Based Join Processing 151

9.6 Sort-Merge Based Join Processing 154

9.7 Experimental Evaluation . 158

9.7.1 Compression Techniques 159

9.7.2 Performance Evaluation for the Nested-Loop Join . . . 160

9.7.3 Performance Evaluation for the Two-Phase Sort-Merge

Join . 162

9.8 Summary . 166

10 Distributed Spatial Join Processing 169

10.1 Introduction . 170

10.1.1 Concept of the Distributed Join Processing 171

10.2 Intersection Probability . 172

10.3 Client-Side Approximation of Interval Sequences 174

10.3.1 Local Intersection Probability 175

10.3.2 Global Intersection Probability 176

10.3.3 Cost Model . 177

10.3.4 Grouping Algorithm 178

10.4 Server-Side Join Algorithm . 178

10.4.1 Ranked Refinement Based on Join Probability 179

10.5 Experiments . 180

10.5.1 Test Datasets . 180

10.5.2 Grouping . 180

10.5.3 Client-Side Grouping 181

10.5.4 Server-Side Join . 181

10.6 Summary . 183

CONTENTS xvii

III Enhanced Similarity Search on Time Series 185

11 Introduction 187

11.1 Overview of Related Work . 188

11.1.1 Measuring Similarity 188

11.1.2 Indexing Time Series and Dimensionality Reduction

Methods . 189

11.1.3 Further Approximation Techniques 189

11.2 Preliminaries . 190

11.3 Threshold Based Similarity Measure 191

11.3.1 General Idea . 193

11.3.2 Application Ranges for Threshold Queries 194

11.3.3 Threshold Based Representation vs. Dimensionality

Reduction . 196

11.3.4 Contributions and Outline 197

12 Similarity-Distance Measures for Intervals 199

12.1 Midpoint Measure . 200

12.2 Gap Measure . 201

12.3 Ratio Gap Measure . 202

12.4 Total Distance . 202

12.5 Plus-Minus Measures . 203

12.6 Mid-Near/Mid-Far Measures 204

12.6.1 Mid-Near Measure . 205

12.6.2 Ratio Mid-Near Measures 205

12.6.3 Mid-Far Measures . 206

12.7 Overlap Measure . 206

12.8 Minkowski Metric . 208

13 Threshold Based Similarity Search 211

13.1 Threshold-Crossing Time Intervals 211

xviii CONTENTS

13.2 Similarity Model for Time Intervals 212

13.3 Similarity Model for Threshold-Crossing Time Intervals 213

13.4 Similarity Queries Based on Threshold Similarity 214

13.5 Summary . 215

14 Threshold Based Indexing 217

14.1 Managing Threshold-Crossing Time Intervals with Fixed τ . . 218

14.2 Managing Threshold-Crossing Time Intervals for Arbitrary τ . 220

14.3 Trapezoid Decomposition of Time Series 223

14.4 Parameter Space Indexing . 225

14.5 Summary . 226

15 Threshold Based Query Processing 229

15.1 Preliminaries . 230

15.2 Pruning Strategy for Threshold Queries 231

15.3 Threshold-Based ε-Range Query Algorithm 234

15.4 Filter Distance for the Threshold Similarity 235

15.4.1 Lower Bounding Threshold Distance 236

15.4.2 Pruning Based on Lower Bounding Distance 238

15.5 Threshold-Based Nearest-Neighbor Query Algorithm 241

15.6 Summary . 244

16 Semi-Supervised Time Series Analysis 247

16.1 Introduction . 247

16.1.1 General Idea of Semi-Supervised Cluster Analysis . . . 248

16.2 Related Work . 250

16.3 Framework for Semi-Supervised Time Series Analysis 251

16.4 Threshold Similarity Based Analysis 253

16.4.1 Threshold Value Quality for One Class 254

16.4.2 Derivation of a Global Suitable Threshold Value 255

16.5 Determination of the Optimal Threshold 256

CONTENTS xix

16.6 Summary . 256

17 Experimental Evaluation and Discussion 259

17.1 System Environment . 260

17.2 Datasets . 260

17.2.1 AUDIO . 260

17.2.2 SCIENTIFIC . 260

17.2.3 STANDARD . 261

17.3 Performance Results . 263

17.4 Evaluation of the Threshold Based Similarity Measure 267

17.4.1 Comparison to Traditional Distance Measures 268

17.4.2 Comparison of Different Similarity Distances for Time

Intervals . 269

17.4.3 Comparison of Different Similarity Distances for Sets

of Time Intervals . 269

17.4.4 Results on Scientific Datasets 270

17.5 Evaluation of the Semi-Supervised Time Series Analysis 271

17.5.1 Evaluation of Threshold-Based Separation Score 272

17.5.2 Evaluation of the Cluster Quality 272

17.6 Summary . 273

IV Conclusions 275

18 Summary and Future Directions 277

18.1 Summary of Contributions . 277

18.1.1 Complex Spatial and Temporal Data (Part I) 278

18.1.2 Spatial Query Processing for Complex Structured Ob-

jects (Part II) . 278

18.1.3 Enhanced Similarity Search on Time Series (Part III) . 281

18.2 Future Directions . 282

xx CONTENTS

List of Figures 285

List of Tables 289

References 291

Part I

Complex Spatial and Temporal

Data

1

Chapter 1

Introduction

The substantial progress in sensor technology in recent years and the in-

creasing growth of storage technologies have facilitated new prospects in the

recording of data derived from complex real-world objects or observed pro-

cesses. The ability to accurately map these objects in our digital world and

the request of handling larger and larger collections of data requires huge

memory space. This evolution is very challenging for modern information

systems which have to process large amounts of data in order to retrieve

the relevant information or help to find yet unknown knowledge from the

recorded data in an efficient way. In particular, due to the naturally complex

structure of objects or processes of our real life, modern information systems

ask for more and more efficient and effective data retrieval methods.

In this thesis, we first propose methods with the special focus on efficient

management and effective processing of highly resolved spatial objects. The

ability to handle complex structured spatial objects is very important as real-

world objects naturally have a spatial extension in one or more dimensions

and most of them are characterized by extremely complex shapes. Special

methods which can cope with large collections of highly resolved spatial ob-

jects are necessary. Secondly, we propose effective and efficient similarity

search methods for time series, one of the most complex structured type of

temporal data. Time series are an important type of data as they describe

time varying object states, and are the most common way to describe dy-

3

4 1 Introduction

namic processes or observations of our real life. The fact that time series may

cover an arbitrarily long time range and, moreover, that the dynamics of the

observed entities may be very high makes an efficient and effective handling

of this complex data difficult.

There are a lot of applications which require an accurate recording of

object data and the potentials of state-of-the-art digital analysis gain impor-

tance, in particular for life science, medical science, environmental science

and mechanical engineering. The efficient support of recording, processing

and retrieval of objects, derived from our physical world or created from

engineering design, is absolutely necessary for modern information systems

and pose a challenge for the development of efficient and effective query al-

gorithms.

1.1 Complex Spatial and Temporal Objects

in Information Systems

We start with a general definition of Information Systems.

Information systems are systems consisting of components for the record-

ing, managing, processing/analysis and presentation of information [LM86].

They do not only serve as simple management tools for displaying existing

data, but are mainly used to derive novel data and knowledge by means of

(complex) processing and analysis operations.

Modern information systems are able to handle complex data like spa-

tial objects and/or time varying data. In order to cope with the complex

nature of objects of a modern information system, we have to extract and

decompose them into a set of manageable entities which allows us to store,

manage, analyze, and present huge amounts of such data efficiently. The

entities used to represent the objects of, and support operations on our small

universe should have a very simple structure compared to the described ob-

jects, even though often only an approximative description, for example a

minimal bounding box, can be achieved. The choice of an adequate type of

1.1 Complex Spatial and Temporal Objects in Information Systems 5

approximation used to describe the objects of course depends heavily on the

type of objects but also depends on the particular application.

1.1.1 Spatial Information Systems

Spatial information systems efficiently manage data related to a space. More

precisely, spatial information systems are the technology of acquiring, man-

aging, analyzing, and displaying information in a spatial context. Computer

Aided Design (CAD) and Geographic Information Systems (GIS) are the

most prominent examples of this expanding technology in the spatial con-

text. Examples for complex spatial objects are real estates for land registry

or three-dimensional parts for mechanical engineering. The simplest and

most popular form of representation of the objects often used in this context

are minimal bounding rectangles (MBRs), conservatively covering the spatial

objects. This representation can be easily handled and we can apply efficient

access methods, as for instance the R∗-tree [BKSS90]. Since for complex

structured spatial objects one-value approximations are often to coarse, they

are commonly represented by a set of spatial primitives like simple tiles or

intervals which yield a more accurate conservative covering of the spatial

objects. As spatial information systems are often used in industrial envi-

ronments, e.g. for mechanical engineering tasks, it is important to provide

the integration of spatial data management into existing Engineering Data

Management systems (EDM) [Pöt01]. In particular, the interval based rep-

resentation of spatial objects is very suitable for such an integration, using

the concept of relational indexing [KPPS03b]. For this reason, in this thesis

we use the interval based form of object approximation for spatial objects.

1.1.2 Temporal Information Systems

Temporal Information systems provide handling data which change with

time. Examples are descriptions of any activity during a time frame, like

access activities for certain web sites, records of stock prizes or daily mea-

sure sequences of meteorological attributes. Generally, we can distinguish

6 1 Introduction

two research directions, distinct with respect to their focus, that can be eas-

ily identified in the literature:

• Temporal reasoning supports various inference tasks, involving time-

oriented data such as planning and execution, and traditionally has

been linked with the machine-learning and artificial-intelligence com-

munity.

• Temporal data maintenance deals with storage and retrieval of data

that have heterogeneous temporal dimensions, and typically is associ-

ated with the (temporal) database community.

In this thesis, we follow the direction of temporal data maintenance focusing

on the storage and retrieval of time series. Though time series, sometimes also

denoted as time sequences, are often disregarded in the context of temporal

database systems, they are the most important but also most complex type

of temporal data. In generally, time series are used to describe activities

of time varying entities. In most applications a time series represents the

activity of only one attribute. Time series data play a key role, for instance,

in biological- and medical information systems. Examples are blood pressures

of patients recorded over a specific range of time for medical observations of

patients. They are important for medical decision making, e.g. in clinical

diagnosis and therapy planning.

The most important type of query for time series databases are similarity

queries. Thereby, time series are commonly represented as point objects in a

high-dimensional vector space and efficiently organized in point access meth-

ods. For efficiency reasons, dimensionality reduction methods are applied on

the original time series objects before applying any access method. In this

thesis, we propose another time series reduction method based on a novel

similarity model.

1.2 Applications of Spatial and Temporal Information Systems 7

1.2 Applications of Spatial and Temporal

Information Systems

In the following, we exemplarily emphasize the importance of spatial and

temporal database systems by illustrating different applications of mod-

ern information systems from biology and medicine, multimedia, geography

[DeM97] and mechanical engineering [BKP98].

1.2.1 Biological- and Medical Information Systems

Medicine and molecular biology are nowadays data driven sciences, where

electronic access to terminology, information resources and tools is crucial

for success and leads to cross-fertilization in both domains. Medical infor-

mation systems are used to collect, process and publish health care informa-

tion. They include systems to collect, store and retrieve data about specific

patients and systems to assemble, store relations of cause and effect using

available medical knowledge. Thus, there is a wide range of medical infor-

mation resources to evaluate.

Providing effective retrieval solutions for efficient handling of time-oriented

data, in particular data which change with time are very important for

Biological- and Medical Information Systems. Hence, the design of effec-

tive and efficient analysis methods for time series is a major theoretical and

practical research area in medicine and biology.

1.2.2 Multimedia Information Systems

Obviously, one of hte main purposes of a multimedia database is to orga-

nize multimedia data. Unlike numeric or character data, multimedia data

requires huge amounts of storage capability and increased processing speed.

Multimedia comprises many kinds of media, including image, video, audio,

graphics, animation, hypertext, and hypermedia.

8 1 Introduction

A still image is just a static picture. But even a single static image can

require large amounts of storage. It is possible that a color picture needs as

much storage space as an entire book - over one million bytes. Unlike still pic-

tures, video contains temporal as well as spatial relationships across frames.

Temporal relationships such as ”before”, ”after”, and ”during” have an ad-

ditional meaning to spatial ones. Consequently, MPEG compression utilizes

spatial (intra-frame) as well as temporal (inter-frame) redundancy elimina-

tion: Frames are compressed ”spatially” (based on portions of a given frame

containing identical data) and ”temporally” (based on preceding frames con-

taining identical data). Audio such as music, human voice, and sound com-

prises frequency and amplitude. Audio, like video, can be compressed, and

it is usually interlocked (compressed and/or stored together) with its related

video. The most interesting and exciting thing about multimedia databases

is how quickly they evolve. This growth will ignite an explosion of multi-

media applications. This explosion, in turn, will fuel an intense need for

powerful multimedia databases.

1.2.3 Geographic Information Systems

In the past couple of decades, computer based systems have been developed

and designed specifically to handle geographical information. These systems

are generally known as Geographical Information Systems or more commonly

abbreviated as GIS. They are designed to allow the user the capture of

spatial information, its storage, analysis, manipulation and the production

of maps as outputs. The development of computer systems to handle spatial

information has changed our perceptions of information and there is now an

enormous range and quantity of information held within these systems.

1.2.4 Computer Aided Design

Computer aided design (CAD) is the modeling of physical systems on com-

puters, allowing both interactive and automatic analysis of design variants,

and the expression of designs in a form suitable for manufacturing. CAD sys-

1.3 Outline of this Thesis 9

tems are designed to create, manipulate and analyze detailed two- or three-

dimensional models of physical objects, such as mechanical parts, buildings,

and molecules. In contrast to GIS, CAD systems have to cope with ob-

ject models of high precision which makes it challenging for efficient retrieval

methods.

1.3 Outline of this Thesis

Specialized techniques are required to manage effectively and efficiently com-

plex spatial and temporal objects in modern information system. The con-

tributions of this thesis are mainly focused on techniques for speeding up

query processing on highly resolved spatial objects, in particular CAD data,

and the enhancement of similarity search in time series databases.

The starting point of this thesis is a broad overview of modeling tech-

niques and methods for managing complex structured spatial and temporal

data, specifically three-dimensional CAD objects and time series objects.

The mutual base of both types of data is the ability to reduce the represen-

tation to simple sequences of one-dimensional intervals. In the case of spatial

objects, the intervals describe locally the occupancies of spatial primitives as-

sociated with an object. Time series, in contrast, are represented by means

of time intervals describing the duration of certain events. The advantage of

this kind of data representations is that intervals or interval sequences are

more easy to handle than the original object representations. In this thesis,

we propose techniques which help us to cope with large collections of the

two types of complex structured objects on the basis of interval sequences

representations.

The major contributions of this thesis include:

• Using statistical models to accelerate spatial queries on interval-based

representations of spatial objects organized within object-relational

DBMS.

• An adaption of the statistic driven query processing method to provide

10 1 Introduction

database support for haptic exploration tasks.

• Data adaptive approximation of spatial objects based on a cost model

and compression techniques allowing to minimize the I/O cost.

• Statistic driven methods to accelerate the processing of spatial joins.

• A cost based spatial join algorithm for distributed data.

• A novel similarity measure for time series enabling data mining tasks

focused on certain amplitude values (threshold values).

• An efficient threshold invariant data decomposition method and an

efficient access method for threshold based similarity search.

• An efficient pruning strategy for threshold-based distance-range queries

and threshold-based nearest-neighbor queries.

• A semi-supervised time series analysis approach based on the threshold-

based similarity measure.

The remaining chapters of Part I (Chapter 2-4) provide a brief and rather

general overview over existing models of data representation for spatially

extended objects and time series objects, and give a short sketch on managing

intervals and interval sequences. The concepts described in this chapter form

the basis of the proposed techniques. In addition, the chapter introduces

some basic notations used throughout this thesis.

Part II introduces some approaches involving statistical information in

order to accelerate the processing of spatial intersection queries for linearized

spatial objects.

Chapter 5 gives a brief introduction and motivates to manage complex

spatial objects in a linearized form that supports an easy integration into

commercial database systems.

Chapter 6 shows how statistics can be used for accelerating relational ac-

cess methods by reducing the number of generated join partners which results

in fewer logical reads and consequently improves the overall runtime. We cut

1.3 Outline of this Thesis 11

down the number of join partners by suitably grouping several join partners

together according to statistics about data distribution and a statistic driven

cost model.

Chapter 7 presents an approach that achieves efficient query processing

along with industrial-strength database support for real time haptic rendering

systems which compute force feedback (haptic display). This approach exter-

nalizes and accelerates the approved main memory V oxmap−PointShellTM

(VPS) approach. Analog to Chapter 6 we group numerous independent

database queries together according to a cost model which takes statistical

information, reflecting the actual data distribution, into account.

Chapter 8 introduces interval containers as a new and general concept to

approximate interval sequences. In contrast to the common interval decom-

position that suffers from the high redundancy of complex shaped objects

resolved with high resolution, interval containers combine groups of intervals

into approximations - one approximation per group. Additionally, we store

the exact information of these interval containers in a compressed way. The

interval containers are created by using a cost-based decomposition algorithm

which takes the access probability and the decompression cost of the interval

containers into account.

Chapter 9 investigates two spatial join methods for two sets of very com-

plex spatial objects, a nested-loop based join algorithm and a sort-merge

based join algorithm. We present an approach that is based on a fast filter

step, performing the spatial join on simple primitives which conservatively

approximate the objects. Our main attention is focused on the problem

how to generate approximations adequate for speeding up the join of high-

resolution objects.

Chapter 10 presents a new distributed intersection join for interval se-

quences of high cardinality which tries to minimize these transmission cost.

This approach is based on a suitable probability model for interval intersec-

tions. The probability model is used to speed up the processing of the data

at server site as well as on the various clients. On the client sites, we group

intervals based on this probability model together. These locally created

12 1 Introduction

approximations are sent to the server. The server ranks all intersecting ap-

proximations according to our probability model. As not all approximations

have to be refined in order to decide whether two objects intersect or not,

we fetch the exact information of the most promising approximations first.

This strategy helps to cut down the transmission cost considerably.

Part III introduces the new concept of threshold-based similarity search

for time series databases. Like the form of representation used for the spatial

objects as proposed in Part II, in this concept, time series are also represented

by means of interval sequences. In particular, we introduce a novel similarity

measure which does not only provide new prospects in data mining in time

series databases but also allows to develop efficient methods for searching in

very large databases comprising large and complex time series objects. We

propose effective similarity search methods on this new time series represen-

tations. Furthermore, we show how the time series can be indexed that the

new similarity queries can be processed in an very efficient way.

Chapter 11 motivates the novel similarity model for time series and pre-

liminarily give some definitions required in the remaining chapters. Exem-

plarily it is shown that this new analysis concept is important for several

applications in medicine, biology and for analysis of environmental air pol-

lution.

Chapter 12 gives an overview of several distance measures for one-di-

mensional intervals and we discuss whether these measures suitably reflect

the similarity between the intervals.

Chapter 13 formally introduces a novel similarity measure called threshold

distance and defines two query methods based on this similarity measure,

the threshold-based ε-range query and the threshold-based k-nearest-neighbor

query.

Chapter 14 shows how time series can be decomposed into manageable en-

tities. In particular, we propose an efficient decomposition algorithm. Then

the resulting entities can be suitably transformed into (low-dimensional) spa-

tial entities which, in turn, can be efficiently organized by means of conven-

tional spatial access methods like the R∗-tree. The advantage of this indexing

1.3 Outline of this Thesis 13

concept is that at query time only those parts of the times series which are

relevant for the query have to be accessed. The retrieved information suffices

to answer the query correctly. Consequently, we do not need an additional

refinement step which usually requires to load the entire time series informa-

tion from disk.

Chapter 15 presents efficient algorithms for the two similarity queries pro-

posed in Chapter 13. Both algorithms follow the filter-refinement paradigm.

A suitable pruning strategy used to filter out true drops as early as possible

is introduced for both query algorithms. Furthermore, we develop a filter

distance that lower-bounds the threshold distance and which is used for the

pruning strategy of the threshold-based nearest-neighbor query. Thereby,

the filter step is performed in several iterations. In each iteration, the filter

distance can be efficiently computed for all objects in the database and con-

verge to the exact distance with increasing iterations. This strategy allows

us to prune several true drops as early as possible.

Chapter 16 proposes a novel approach for cluster analysis of time se-

ries based on adaptable threshold similarity. The most important issue in

threshold similarity is the choice of the threshold τ . Thus, the threshold τ is

automatically adapted to the characteristics of a small training dataset using

the silhouette width value which is a measure of cluster validity. Thus, the

optimal value of the parameter τ is learned from a small training set in order

to yield an accurate clustering of the entire time series database.

Chapter 17 demonstrates the performance of the solutions proposed in

the previous chapters by an extensive experimental evaluation on real-world

and artificial time series data. The effectiveness of our novel similarity mea-

sure is proven against several competing approaches, in particular the Eu-

clidean distance and the dynamic time warping (DTW) on several established

benchmark datasets. Furthermore, we evaluate different similarity measures

for the proposed time series representation. Additionally, we demonstrate

the usefulness of the semi-supervised time series analysis. It is shown that

our cluster analysis using adaptable threshold similarity can be successfully

applied to many scientific real-world data mining applications. For instance,

14 1 Introduction

we show that semi-supervised threshold queries applied to gene expression

data are very worthwhile.

Part IV concludes this thesis.

Chapter 18 summarizes and discusses the major contributions of the the-

sis. It concludes with indicating some potentials for possible future research

directions.

Chapter 2

Complex Spatial Data

Spatial data denotes data which is related to a specific space. Typical in-

stances of the spatial data represent objects which descend from our physical

world or artificial objects derived from engineering design. Each database ob-

ject has an identity and a well-defined location and extension in space. Spa-

tial data types represent the spatial objects while spatial predicates describe

the relationships between them. In this chapter, we give a brief introduction

into the well-studied area of spatial data modeling and spatial queries. For

in-depth descriptions, surveys, and evaluations, we refer the reader to the

referenced literature.

2.1 Modeling Spatial Data

A spatial object is regarded as a distinct entity occupying an individual lo-

cation in a one- or multidimensional data space. Furthermore, it may be ex-

tended along some (or all) dimensions. The spatial objects of our real world

can be considered as a collection of individual, two- or three-dimensional

parts, while each part potentially represents a complex and intricate geo-

metric shape. Examples of such complex objects are geographical regions or

parts of a car or an airplane. In this section, we first give a general overview

of spatial data modeling, followed by the presentation of specific modeling

15

16 2 Complex Spatial Data

techniques taking special emphasize on three-dimensional CAD-objects.

Data modeling requires specifying, at least the following three main com-

ponents: spatial data type, data structures and operations on spatial data, in

particular, spatial predicates [VLB05]. As spatial data is mainly associated

with Geographic Information Systems (GIS), it is often defined as informa-

tion that describes the distribution of things upon the surface of the earth.

Actually, in the geographical context, spatial data contains information con-

cerning the location, shape of and relationships among geographic features

[DeM97]. Consequently, traditional spatial data types include points, lines

and polygons allowing to represent any geographical entity.

The spatiality of an application is reflected by the existence of spatial

entities, but also by the existence of spatial relationships between these en-

tities. Queries on spatial databases typically evaluate the relationships by

spatial predicates, allowing users to query the database to return a true or

false answer. Spatial predicates can be mainly categorized into three dif-

ferent types: topological, directional and metrical. Topological properties

are the most fundamental primitives for spatial predicates. The principle

topological relationships between two spatial objects have been captured by

the 9-intersection model proposed by Egenhofer and Sharma [ES93]. It in-

cludes the following predicates: disjoint, meets, equal, inside, contains, cov-

ers, covered-by, and overlaps. Directional predicates evaluate the relative

position of spatial objects, like above, below, left or right. Metric predicates

are associated with quantitative information like distance between two ob-

jects or the size of the overlapping area of two objects. The most important

predicate used in many mechanical engineering and architecture applications

is the intersection predicate. It is a combination of the two basic predicates

”not disjoint” and ”not meets”. As already mentioned above, in this the-

sis we take special emphasize on the efficient evaluation of the intersection

predicate applied to three-dimensional objects, in particular CAD-objects.

2.1 Modeling Spatial Data 17

2.1.1 Modeling 3-dimensional Objects

As they are the natural instances of our real world, the modeling of three-

dimensional objects are very important and required for many application ar-

eas. Computer-Aided Design (CAD) and related areas, including Computer-

Aided Engineering (CAE), Manufacturing (CAM), and Styling (CAS) are

of the most emerging technologies in the field of spatial data management and

are getting more and more indispensable in mechanical engineering facilities.

In order to cope with the demands of accurate geometric modeling, we de-

fined a set of universal representations which can be derived from any native

geometric surface and solid. These representations can be successfully used

to develop efficient query methods, in particular selection or collision queries.

The supported geometric data models include triangle meshes for visualiza-

tion and interference detection, voxel sets as conservative approximations

for spatial keys, and point shells to enable haptic queries with interactive

response time.

2.1.2 Triangle Meshes

Accurate representations of CAD surfaces are typically implemented by para-

metric bicubic surfaces, including Hermite, Bézier, and B-spline patches. For

many operations, such as graphical display or the efficient computation of sur-

face intersections, these parametric representations are too complex [MH99].

As a solution, approximative polygon meshes, e.g. triangle meshes, can be

derived from the accurate surface representation. These triangle meshes al-

low an efficient and interactive display of complex objects, for instance by

means of VRML encoded files, and serve as an ideal input for the computation

of spatial interference. For the digital mock-up (DMU), for instance, spa-

tial interference detection or collision queries are a very important database

primitive.

In the following, we assume a multi-step query processor which retrieves

a candidate part S, possibly colliding with a query part Q. In order to

refine such collision queries, a fine-grained spatial interference detection be-

18 2 Complex Spatial Data

(a) Triangulated surface (b) Voxelized surface

Figure 2.1: Scan conversion on a triangulated surface.

tween Q and S can be implemented on their triangle meshes. We distinguish

three actions for interference detection [MH99]: collision detection, collision

determination, and collision response:

Collision detection: This basic interference check simply detects if the

query part Q and a stored part S collide. Thus, collision detection can be

regarded as a geometric intersection join of the triangle sets for S and Q

which already terminates after the first intersecting triangle pair has been

found.

Collision determination: The actual intersection regions between a

query part and a stored part are computed. In contrast to the collision

detection, all intersecting triangle pairs and their intersection segments have

to be reported by the intersection join.

Collision response: It determines the actions to be taken in conse-

quence of a positive collision detection or determination. In our case of a

spatial database for virtual engineering, a textual, visual or haptic feedback

on the interfering parts seems to be appropriate. Note, that the haptic feed-

back requires not only to compute and report the power of the resulting force,

but we have to report also the force direction and the corresponding anchor

point of the force vector.

2.1 Modeling Spatial Data 19

(a) Voxelized surface (b) Filled exterior (c) Inverted result

Figure 2.2: Filling a closed voxelized surface.

2.1.3 Voxel-Sets and Voxel-Sequences

In order to employ efficient access methods for interval sequences like the

Relational Interval-tree (RI-tree)(cf. chapter 4.4.1) as a query engine for a

spatial database, we propose a conversion pipeline to transform the geometry

of each single spatial object to an interval sequence by means of voxelization.

A basic algorithm for the 3D scan-conversion of polygons into a voxel-based

occupancy map has been proposed by Kaufmann [Kau87]. Similar to the

well-known 2D scan-conversion technique, the runtime complexity to voxelize

a 3D polygon is O(n), where n denotes the number of generated voxels. If

we apply this conversion to the given triangle mesh of a CAD object (cf.

Figure 2.1(a)), a conservative approximation of the part surface is produced

(cf. Figure 2.1(b)). In the following, we assume a uniform three-dimensional

voxel grid covering the global product space.

If a triangle mesh is derived from an originally solid object, each triangle

can be supplemented with a normal vector to discriminate the interior from

the exterior space. Consequently, not only surfaces, but also solids could

potentially be modeled by triangle meshes. Unfortunately, triangle meshes

generated by most faceters contain geometric and topological inconsistencies,

including overlapping triangles and tiny gaps on the surface. Thus, a robust

reconstruction of the original interior becomes very laborious. Therefore, we

follow the common approach to voxelize the triangle mesh of a solid object

first (cf. Figure 2.2(a)) which yields a consistent representation of the object

surface. Next, we apply a 3D flood-fill algorithm [FvDFH00] to compute the

20 2 Complex Spatial Data

(a) Hilbert order (b) Z-order (c) Lexicographic or-
der

Figure 2.3: Examples of space-filling curves in a two-dimensional space.

exterior voxels of the object (cf. Figure 2.2(b)). Accordingly, the outermost

boundary voxels of the solid are determined. We restrict the flood-fill to

the bounding box of the object, enlarged by one voxel in each direction.

The initial fill seed is placed at the boundary of this enlarged bounding box.

In the final step, we simply declare all voxels as interior which are neither

boundary nor exterior voxels (cf. Figure 2.2(c)). In consequence, we obtain a

volumetric reconstruction of the original solid, marking any voxel behind the

outermost surface as interior. The above algorithm has a runtime complexity

of O(b), where b is the number of voxels in the enlarged bounding box.

The derived voxel set of an arbitrary surface or solid represents a consis-

tent input for computing interval sequences. The voxels correspond to cells

of a grid, covering the complete data space. By means of space filling curves,

each cell of the grid can be encoded by a single integer number, and thus

an extended object is represented by a set of integers. Most of these space

filling curves achieve good spatial clustering properties. Therefore, cells in

close spatial proximity are encoded by similar integers or, putting it another

way, contiguous integers encode cells in close spatial neighborhood. Exam-

ples for space filling curves include Hilbert-, Z-, and the Lexicographic-order,

depicted in Figure 2.3. The Hilbert-order generates the minimum number

of intervals per object [Jag90][FR89] but unfortunately, it is the most com-

plex linear order. Taking redundancy and complexity into consideration, the

Z-order seems to be the best solution.

Voxels can be grouped together in such a way as an extended object can be

represented by some continuous ranges of numbers which can be described by

2.1 Modeling Spatial Data 21

(a) Triangle mesh (b) Voxel set (c) Interval se-
quence

Figure 2.4: Conversion pipeline from triangulated surfaces to interval se-

quences.

a sequence of intervals. Figure 2.4 summarizes the complete transformation

process from triangle meshes over voxel sets to interval sequences.

2.1.4 Point Shells

In order to achieve real-time interference detection for moving objects, two

properties of the geometric representation are of major importance: (1) ef-

ficient geometric transformations, e.g. translation and rotation, and (2) ef-

ficient intersection tests. Triangle meshes naturally qualify for (1), as their

topology is invariant to geometric transformations of triangle vertices. If

consecutive triangle intersection joins rely on hierarchical indexes like OBB-

Trees or k-DOPTrees [GLM96][KHM+98], criterion (2) is principally fulfilled

as well. In the case of haptic rendering, a constant refresh rate of at least

1,000 Hz has to be guaranteed to create a realistic force feedback [MPT99].

The performance of triangle-based intersections is still too slow and unstable

for this purpose [Pöt01]. For voxel sets, on the other hand, intersections can

be computed very efficiently by using bitmap operations, thus fulfilling (2)

even for the high requirements of haptic rendering. But a voxelized represen-

tation of a moving object has to be recomputed for each single position and

orientation, and therefore fails for (1). As a solution, McNeely, Puterbaugh

and Troy [MPT99] have proposed the Voxmap-PointShell technique (VPS),

combining the high performance of voxel intersections with an efficient rep-

resentation for dynamic objects. Thus, both criteria (1) and (2) are fulfilled

22 2 Complex Spatial Data

(a) Triangulation (b) Voxelization (c) Center points (d) Surface points

Figure 2.5: Computation of point shells.

for real-time haptic rendering of objects moving in a static environment.

As the basic idea of VPS, point shells representing the moving objects are

checked for interference with a voxelized static environment. We compute

the point shell for a moving object in four steps: first, a triangle mesh for the

object surface is derived (cf. Figure 2.5(a)). Next, we voxelize the resulting

mesh (Figure 2.5(b)) and get a first approximation of the point shell by the

center points of all boundary voxels (Figure 2.5(c)). As an extension to

the original algorithm, we further increase the accuracy of the point shell

in a final step to generate a smoother surface representation as proposed

in [RPP+01]: within each boundary voxel we interpolate the closest surface

point to the voxel center (cf. Figure 2.5(d)). Finally, we obtain a set of

accurate surface points which are uniformly distributed over the surface of the

moving object. In addition, for each surface point normal vectors pointing to

the interior of the object are computed. These normal vectors are required

for the computation of the direction of repulsion. The set of all resulting

surface points along with the normal vectors comprises the point shell. Its

accuracy is determined by the resolution of the underlying voxel grid and the

triangle mesh.

2.2 Fundamental Spatial Queries

In the previous section, we have shown how complex spatial objects, in par-

ticular three-dimensional CAD objects, can be transformed into manageable

2.2 Fundamental Spatial Queries 23

entities. Now, in this section we will give a coarse overview of some operations

on spatial data and show how spatial query methods can be supported.

2.2.1 Spatial Selection Queries

Spatial selection queries are of great importance as they build the fundament

or at least are used to serve as preprocessing step for the evaluation of several

spatial predicates. Even distance based operations like the distance range

query or nearest neighbor query can profit from efficient spatial selection

queries. Therefore, an efficient implementation of spatial selections is, in

general, an important requirement for a good performance of spatial queries.

The spatial selection query retrieves a subset of the stored objects which

in combination with the query object fulfil the spatial intersection predicate,

i.e. which have a common intersection with the query object. We distinguish

two types of spatial selection queries, the point query and the region query1

(cf. Figure 2.6 and 2.7):

• Point query: Given a query point P and a set of objects D. The

point query yields all the objects of D geometrically containing P .

• Region query: Given a region R and a set of objects D. The region

query yields all the objects of D sharing points with R.

Region queries in one-dimensional spaces are also called interval queries

(cf. Figure 2.6(b)). Obviously, the shape of the query region adapts to the

shape of the query object. Since the shape of the query object can have an

arbitrary complex structure, it has a great influence on the performance of the

query. As a consequence, region queries in (two or higher)-dimensional spaces

are preprocessed in a filter step using simple conservative approximations of

the query object like rectangles or windows in two-dimensional space (cf.

Figure 2.7(c)) or boxes in three-dimensional space.

1The point query can also be seen as a specialized region query having an extension
equal to zero.

24 2 Complex Spatial Data

Q

(a) One-dimensional
point query

Q

(b) One-dimensional re-
gion query

Figure 2.6: Examples of one-dimensional spatial selection queries.

2.2.2 Spatial Join Queries

One of the most common query types in Spatial Database Management Sys-

tems is the spatial join. In this thesis, we concentrate on the intersection

join, as the intersection is the most important join predicate for complex

spatial objects [GG98]. It retrieves all object pairs from two (or more) given

data sets (sources) that satisfy the spatial-intersection predicate, i.e. all pairs

of overlapping objects are reported as shown in Figure 2.8. A usual spatial

join example of 2D geographical data is ”find all cities which are crossed by

a river”. In the automobile industry, spatial join processing of complex 3D

high-resolution objects is also required, e.g. to support efficient processing

of queries like ”find all engine parts which intersect the car body”.

Q

(a) Point query

Q

(b) Region query

Q

(c) Window query

Figure 2.7: Examples of two-dimensional spatial selection queries.

2.2 Fundamental Spatial Queries 25

(a) One-dimensional intersection join (b) Two-dimensional intersection join

Figure 2.8: Spatial intersection join.

2.2.3 Spatial Indexing

An increasing number of applications require a fast access to those data ob-

jects in the database that occupy a given location in space, e.g. for spatial

selection queries. In order to improve the performance of spatial queries,

a spatial database system has to provide an effective and efficient query

processor. Spatial indexing and multi-step query processing strategies (cf.

Section 2.2.4) are the basic concepts of this fundamental system component

[BKSS94][Güt94]. A spatial index structure or spatial access method, parti-

tions the multidimensional search space for spatial queries. Particularly for

spatial selection queries, they allow the query processor to quickly exclude

large sets of irrelevant objects. Therefore, only a (generally small) subset

of the database has to be considered to detect the actual query results. As

the accurate representation of spatial objects can have arbitrary complexity,

spatial index structures typically use conservative approximations to main-

tain their knowledge about the spatial shape and location of each object

[Pöt01]. There are a lot of spatial index structures that facilitate accessing

spatial data efficiently. A broad overview of spatial access methods is given

in [GG97] and [AMW97]. In [GG97] spatial access methods are categorized

into mapping methods, object bounding methods (non-replicating methods),

clipping methods (replicating methods) and multiple layer methods.

Mapping methods simply map a d-dimensional extended object into a

point in a two-dimensional space and use existing point access methods for

26 2 Complex Spatial Data

indexing these point objects. One alternative approach used by such methods

is the decomposition of geometric objects into simple ones (e.g. rectangles)

and sorting them by using space filling curves.

The most popular access method is the object bounding method. It de-

composes the space in a hierarchical manner and stores the objects at the leaf

level of the hierarchical structure. As nodes of the same level may overlap, a

point query search may result in traversing multiple paths of the hierarchy.

Most prominent instances of this class is the R-tree [Gut84] and the R∗-tree

[BKSS90].

Clipping methods as well are based on a hierarchical organization of data

space decompositions. In contrast to the bounding method which use only

one entry per object (non-replicating method), this method uses clipping

of objects and stores the resulting sub-objects in several nodes (replicating

method). This method prevents overlapping of intermediate nodes at the

same level in order to ensure that only one path of the hierarchical structure

will be traversed for point queries.

Multiple layer methods, like the multi-layer grid file [SW88], partition the

space more than one time and each partition is referred to as a layer which

is organized in an hierarchical manner.

Although non-replicating index structures provide the minimal storage

complexity, one-value approximations of the corresponding spatially extended

objects often are far too coarse [Pöt01]. In many applications, GIS or CAD

objects feature a very complex and fine-grained geometry. The rectilinear

bounding box of the brake line of a car, for example, would cover the whole

bottom of the indexed data space. A non-replicating storage of such data

causes region queries to produce too many false hits that have to be elim-

inated by subsequent filter steps. For such applications, the accuracy can

be improved by decomposing spatial objects independently from the index

partitions or, alternatively, by using a replicating index structure which is

inherently tuned for redundancy. Due to the drawbacks of non-replicating

index structures with complex spatial objects, the query processing methods

presented in Part II of this thesis follow the replicating approach.

2.3 Industrial Applications of CAD Databases 27

ca
nd

id
at

es

ge
om

et
ry

fil
te

r

candidates

hits

false hits

exact
geometry
processor

S A M

re
sp

on
se

se
t

Figure 2.9: Multi-step query processing.

2.2.4 Multi-Step Query Processing

An efficient processing of spatial queries is provided by the multi-step proce-

dure shown in Figure 2.9 [KBS93][BHKS93]. The main goal of the depicted

spatial query processor is to reduce the expensive query evaluation step (exact

geometry processor) by preprocessing operations (geometry filter) in preced-

ing steps which reduce the number of objects investigated in the expensive

refinement step. In the filter step, a superset of the objects qualifying for

the spatial predicate is computed. This set is called candidates. A cas-

cade of subsequent filter steps may further reduce the number of candidates,

e.g. by the usage of more accurate conservative or progressive representations

[BKS93a]. The geometry filter for selection queries as shown in Figure 2.7(b)

could be, for example, an intersection evaluation on the minimal bounding

rectangles (MBR) of the objects. Intersecting rectangles can be evaluated

more efficiently than the exact object geometry and they are suitable ob-

ject approximations used in common spatial access methods (SAM) like the

R∗-tree [BKSS90]. For highly selective queries, the first filter step should be

processed on a spatial access method (SAM). The multi-step query process

is finished by the refinement step which checks the exact geometry of the

candidates.

2.3 Industrial Applications of CAD Databases

In this section, we will illustrate the practical impact of the concepts which

will be proposed in this thesis by means of realistic applications. Therefore

28 2 Complex Spatial Data

we require efficient query processing methods for complex spatial objects.

Modern spatial database applications, as for instance virtual engineering,

require a more fine-grained representation of spatial objects and special ac-

cess methods for accurate spatial selection than it is required in standard

GIS applications. In mechanical engineering, three-dimensional Computer

Aided Design (CAD) is employed throughout the entire development pro-

cess. From the early design phases to the final production of cars, airplanes

or ships, thousands to millions of CAD files and many more associated doc-

uments including technical illustrations and business documents are gener-

ated. Most of this data comprises spatial product components or spatially

related content. Recently, new CAD applications have emerged to support

virtual engineering on this data, i.e. the evaluation of product characteris-

tics without building even a single physical prototype. Typical applications

include the digital mock-up (DMU) [BKP98] or haptic rendering of product

configurations [MPT99].

If we look at CAD databases from a spatial point of view, each instance

of a part occupies a specific region in the three-dimensional product space

(cf. Figure 2.10). Together, all parts of a given product version and variant

thereby represent a virtual prototype of the constructed geometry. Virtual

engineering requires access to this product space by spatial predicates in order

to ”find all parts intersecting a specific query volume” or to ”find all parts

in the immediate spatial neighborhood of the disk brake”. Unfortunately, the

inclusion of the respective spatial predicates is not efficiently supported by

common, structure-related information systems.

Figure 2.10: Virtual prototype of a car.

2.3 Industrial Applications of CAD Databases 29

(a) Box volume query. (b) Collision query.

Figure 2.11: Spatial query on CAD data.

In the following, we present three industrial applications of virtual engi-

neering which immediately benefit from efficient access methods on spatial

CAD data. We have analyzed and evaluated them in cooperation with part-

ners in the automotive and aerospace industry, including the Volkswagen

AG, Wolfsburg, Germany, the German Aerospace Center DLR e.V., Ober-

pfaffenhofen, Germany and the Boeing Company, Seattle, USA.

2.3.1 Digital Mock-up of Prototypes

In the car industry, late engineering changes caused by problems with fit,

appearance or shape of parts already account for 20-50 percent of the total

die cost [CF91]. Therefore, tools for the digital mock-up (DMU) of engi-

neering products have been developed to enable a fast and early detection of

colliding parts, purely based on the available digital information. Unfortu-

nately, these systems typically operate in main-memory and are not capable

of handling more than a few hundred parts. They require as input a small,

well-assembled list of the CAD files to be examined. With the traditional

file-based approach, each user has to select these files manually. This can take

hours or even days of preprocessing time, since the parts may be generated

on different CAD systems, spread over many file servers and are managed

by a variety of users [BKP98]. In a concurrent engineering process, several

cross-functional project teams may be recruited from different departments,

including engineering, production, and quality assurance to develop their own

30 2 Complex Spatial Data

(a) Haptic device. (b) Virtual environment. (c) Haptic interaction.

Figure 2.12: Sample scenario for haptic rendering.

parts as a contribution to the whole product. For example, a team working

on section ”12B” of an airplane may not want to mark the location and the

format of each single CAD file of the adjacent sections ”12A” and ”12C”. In

order to do a quick check of fit or appearance, they are only interested in the

colliding parts. Moreover, the internet is gaining importance for industrial

file exchange. Engineers working in the USA may want to upload their latest

component design to the CAD database of their European customer in order

to perform interference checks. Thus, they need a fast and comfortable DMU

interface to the Engineering Data Management system (EDM). Figure 2.11

depicts two typical spatial queries on a three-dimensional product space, re-

trieving the parts intersecting a given box volume (box volume query), and

detecting the parts colliding with the geometry of a query part (collision

query). A spatial filter for DMU-related queries on huge CAD databases

is easily implemented by a spatial access method which determines a tight

superset of the parts qualifying for the query condition. Then, the compu-

tationally intensive query refinement on the resulting candidates, including

the accurate evaluation of intersection regions (cf. Figure 2.11(a)), can be

delegated to an appropriate main memory-based CAD tool.

2.3.2 Haptic Rendering

The modern transition from the physical to the digital mock-up has exac-

erbated the well-known problem of simulating real-world engineering and

maintenance tasks. Therefore, many approaches have been developed to

2.3 Industrial Applications of CAD Databases 31

Figure 2.13: Virtual environment of the International Space Station.

emulate the physical constraints of natural surfaces, including the compu-

tation of force feedback, to capture the contact with virtual objects and

to prevent parts and tools from interpenetrating [GLM96][LSW99][MPT99].

Figure 2.12(a) [Ren00] depicts a common haptic device to transfer the com-

puted force feedback onto a data glove. The simulated environment along

with the force vectors is visualized in Figure 2.12(b). By using this combi-

nation of haptic algorithms and hardware, a realistic force loop between the

acting individual and the virtual scene can be achieved. Naturally, a real-

time computation of haptic rendering requires the affected spatial objects to

reside in main memory. In order to perform haptic simulations on a large

scale environment comprising millions of parts, a careful selection and effi-

cient prefetching of the spatially surrounding parts is indispensable. Figure

2.13 illustrates the complexity of usual virtual environments by the example

of the International Space Station (ISS). In order to simulate and evaluate

maintenance tasks, e.g. performed by autonomous robots, an index-based

prefetching of persistent spatial objects can be coupled with real-time haptic

rendering [Ren02].

2.3.3 Spatial Document Management

During the development, documentation, and maintenance of complex engi-

neering products, many other files besides the geometric surfaces and solids

of product components are generated and updated. Most of this data can

also be referenced by spatial keys in the three-dimensional product space (cf.

Figure 2.14), including kinematic envelopes which represent moving parts in

32 2 Complex Spatial Data

Figure 2.14: Spatial referencing of engineering documents.

any possible situation or spatial clearance constraints to reserve unoccupied

regions, e.g. the minimal volume of passenger cabins or free space for air

circulation around hot parts. Furthermore, technical illustrations, evalua-

tion reports or even plain business data like cost accounting or sales reports

for specific product components can be spatially referenced. Structurally

referencing such documents can become very laborious. For example, the

meeting minutes concerning the design of a specific detail of a product may

affect many different components. Spatial referencing provides a solution by

simply attaching the meeting minutes to a spatial key created for the region

of interest. A very intuitive query could be: ”retrieve all meeting minutes

of the previous month concerning the spatial region between parts A and B”.

Such queries can be efficiently supported by spatial indexes.

Chapter 3

Complex Temporal Data

The continuously decreasing cost of storage capacity, the associated growth

in the volumes of data being stored and the mounting recognition in the value

of data varying with time has resulted in the prospect of organizing a large

amount of complex structured data that search tasks can be performed in a

very efficient way. Search problems in databases are rarely based on exact

matches but rather on some application specific notion of similarity. In simi-

larity search methods and mining techniques the time component provides us

the ability to suggest cause and effect. This information is missed when the

temporal component is ignored. In particular, temporal data mining is an

important extension to mining static data as it has the capability of mining

activity rather than just states and, thus, inferring relationships of contex-

tual and temporal proximity, some of which may also indicate a cause-effect

association. The consideration of the behavioral aspects in similarity search

and mining tasks seems to be very promising for understanding ”why” rather

than merely ”what”.

3.1 Modeling Temporal Data

Temporal data denotes data which vary with time. Time varying data is

essential to explain aspects of behavior associated with the implicit time-

33

34 3 Complex Temporal Data

varying nature of the universe.

In temporal databases, the objects to be managed are assigned to a (se-

quence of) time point(s) or time interval(s) expressing at which time a certain

event on the object starts and ends. Instances of such kind of temporal data

are sequences of time intervals. For example, records representing phone-call

activities of an employee in a calling center.

In the following, we will give a short sketch about the data model generally

used in temporal databases. For a deeper insight into the field of temporal

databases we refer the interesting reader to the overview given in [JS99] and

[EJS98].

3.1.1 Dimensions of Time

In the context of temporal databases two dimensions of time are of general

interest, the valid time and the transaction time.

Valid time concerns the time at which a fact was true in reality. The valid

time of an event is the time at which the event occurred in the real world,

independent on the recording of that event in the database.

Transaction time concerns the range of time at which a fact was present in

the database as stored data. The transaction time (usually a time interval)

of a fact identifies the transaction that inserted the fact into the database

and the transaction that removes the fact from the database.

3.1.2 Modeling Complex Temporal Data

Many applications associated with time varying data would suffer from simple

temporal object information describing merely the event driven behavior of

an object, just like when a certain event concerning an object starts and ends

or the time frame at which an object appears and disappears in the dataset.

In particular, record-keeping applications such as personnel- and medical-

record management, and scientific applications such as weather monitoring

3.2 Time Series 35

require a more detailed description of what happened in our mini-world dur-

ing a specific range of time. Simple descriptions of the current state of the

objects like ”active” or ”inactive” do not provide such information. Instead

of qualitative information describing whether an object or event is active

or not, assigning quantitative object-state information to the time attribute

considered as an additional dimension of the object description widen the

range of opportunities in temporal analysis. Time series (or time sequences)

are the well-known type of temporal data providing the ”rich” behavioral

description of time varying objects.

3.1.3 What this Thesis is Not About

In this thesis, we do not consider classical temporal databases, for instance,

databases with time stamps. As mentioned above, for a broad overview of

classical temporal databases we refer the interesting reader to [JS99] and

[EJS98].

Furthermore, in this thesis we will not consider classical methods for

analyzing stationarity, trends, seasonally and autocorrelation in sequences.

This topic is well discussed in [Cha03].

Rather, this thesis is about efficient and effective methods for measuring

similarity between time-series objects stored in large time-series databases.

3.2 Time Series

Time series also known as time sequences are sequences, discrete or contin-

uous, of quantitative data assigned to specific moments in time. They occur

in virtually every medical, scientific and business domain and can be simple

or complex, depending on the complexity of the data assigned to each time

slot.

36 3 Complex Temporal Data

CO2

Temperature

PM1

A7

A9

time

CO2

time1 [hour]

time2
[day]

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

time

CO2

one-dimensional time series
(univariate)

multidimensional
time series (univariate)

double time series
(bivariate)

a) b) c)

Figure 3.1: Different types of time series

3.2.1 Types of Time Series

(Univariate) One-dimensional time series assign a single value to each time

slot. The daily averaged CO2 concentration in Munich, Germany, is an

example of a one-dimensional time series (cf. Figure 3.1(a)). If the data

assigned to each time slot comprise several attributes (maybe of different

domains), we call it multidimensional time series, one dimension for each

attribute. An example of this type of time series is the time sequence of

several meteorological and environmental attributes like temperature, CO2

concentration and particulate matter PM1 as depicted in Figure 3.1(b).

Furthermore, we can distinguish time series by the dimension of the used

variable. In general, time sequences represent the variation over one single

time attribute which we call univariate time series as the time series depicted

in Figure 3.1(a) and 3.1(b). However, if we need to express the variation of

one (or more) attribute(s) depending on multiple time variables, e.g. time

t1 = course of the day in steps of one hour and time t2 = course of the year

in steps of one day, we need multi-variate time series. In case of two time

dimensions they are called bivariate time series. An example is depicted in

Figure 3.1(c). Let us note that not all variables in multivariate time series

necessarily need to be time dimensions. They can also be variables on other

domains, e.g. spatial domains like the distance to a certain location.

3.2 Time Series 37

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

time series X = < 81 ; 15 ; 65 ; 0 ; 18 ; 83 ; 57 ; 5 ; 42 ; 86 ; 95 ; 84 ; 71 ; 88 ; 89 ; 61 >

discrete representation linear interpolation complex interpolation

Figure 3.2: Interpolation of discrete time series

3.2.2 Interpolation of Discrete Time Series

Usually time series are discrete, i.e. they describe time varying attribute

values by measurements made at discrete time slots. An example of a dis-

crete representation of a time series is depicted in Figure 3.2 on the left hand

side. The quality of the representation of the temporal variation of any phe-

nomenon is often limited by the incompleteness of our observations. Repre-

sentative observations of highly dynamical data are very difficult in practice.

In particular, if the sampling rate of the observation (sensor) is much smaller

than the variation frequency of the observed signal, i.e. the amplitude of the

observed attributes can change significantly between two consecutive obser-

vations, the observation does not comply with the real signal. However, in

general we can assume that the sampling rate of the observations is adjusted

to the dynamic of the observed attribute in such a way that the frequency,

phase, and amplitude of a signal cannot change significantly between the

time slots of two subsequent measurements. In this case, the missing data

can be interpolated with high fidelity. Due to its simplicity, the most popular

method for time series interpolation is the linear interpolation. An example

is depicted in Figure 3.2 (center). Depending on the already available knowl-

edge of the dynamic behavior of the observed attribute, we can interpolate

the missing data by more complex functions like polynomial functions of

higher degree, as shown in Figure 3.2 (right).

38 3 Complex Temporal Data

3.3 Similarity Measures for Time Series

The similarity measure defined on time series objects is the basis of time series

mining applications/tasks. Since we are dealing with subjective notions of

similarity, the choice of an appropriate similarity measure depends on the

user, the domain and the task at hand. We need the ability to handle this

subjectivity. The similarity between time series can be categorized into three

types of objectives [RKBL05]:

• similarity in time

• similarity in shape

• similarity in change

In the following, we will briefly give an understanding of these three types.

3.3.1 Similarity in Time

Similarity in time denotes the grade of correlation, i.e. time series which are

correlated are defined to be similar in time. A common metric of similarity

in time is the Euclidean distance deucl(X, Y) between two time series X =

(x1, .., xN) and Y = (y1, .., yN). The Euclidean distance is the most popular

similarity measure for time series and formally, applied to time series, it is

defined as follows:

deucl(X, Y) =
1

N

√ ∑
i=1..N

|xi − yi|2.

An example is shown in Figure 3.3. The Euclidean distance between time

series X and Y is about 1.26 and the distance between X ′ and Y ′ is about

0.76. Consequently, time series X ′ and Y ′ are more similar than X and Y

w.r.t. the Euclidean distance measure. Comparing the two pairs of time

series in our example, the Euclidean distance conforms with our intuitive

perception of similarity, at least in this example.

3.3 Similarity Measures for Time Series 39

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21

deucl(X,Y) = 1.26

time series Y

time series X

deucl(X‘,Y‘) = 0.76

time series Y‘

time series X‘

Figure 3.3: Euclidean distance between time series

Some times, instead of the Euclidean distance (L2-norm) the Manhattan

distance (L1-norm) is applied to measure the (dis)similarity of time series.

The difference between the Euclidean distance and the Manhattan distance

in the context of measuring the similarity between time series is that the

Euclidean distance more penalizes large amplitude differences at certain time

slots.

3.3.2 Similarity in Shape

Similarity in shape denotes the grade of similar patterns, i.e. time series are

defined to be similar in shape if they have similar patterns of change irrespec-

tive of time. The temporal synchronism of the amplitude response of two

time series is less relevant than for similarity in time. Rather, this similar-

ity measure focuses the shape characteristics of the time series independent

of the time and duration of occurrence of significant patterns. Similarity in

shape is invariant for temporal distortions or different amplitude scales which

makes this similarity measure very important for many applications. For ex-

ample, some patients have delayed responses on medical treatments, though

the response characteristics are quite similar. The most common distance

function which measures the similarity in shape is the dynamic time warping

(DTW). A detailed description will be given in Section 3.3.4. In the example

shown in Figure 3.4 we compare the similarity in shape with the similarity in

time. We have given one reference time series Q, and two other time series

A and B. Now we will consider the Euclidean distance deucl representing the

40 3 Complex Temporal Data

A Q

time

am
pl

itu
de

deucl(Q,A) = 7.3 dDTW(Q,A) = 0.34

(a) Shape similar time series

B Q

time

am
pl

itu
de

deucl(Q,B) = 5.0 dDTW(Q,B) = 1,13

(b) Time similar time series

Figure 3.4: Comparison between similarity in shape and similarity in time.

similarity in time and the DTW-distance dDTW representing the similarity

in shape between Q and the other time series A and B respectively. Intu-

itively, the similarity in shape between A and Q (cf. Figure 3.4(a)) is higher

than between B and Q (cf. Figure 3.4(b)). Contrary, the similarity in time

between A and Q is smaller than between B and Q. In other words, Q is

more shape similar to A and more time similar to B. Obviously, this is also

reflected by the two distance functions deucl and dDTW . Note that deucl and

dDTW are not directly comparable because they are different distance (simi-

larity) functions. For this reason we took the relative similarity between the

time series objects into account.

3.3.3 Similarity in Change

Similarity in change denotes the grade of similar autocorrelation. This sim-

ilarity measure is important for trend analysis in time series databases. For

example, in financial analysis applications a query could be to retrieve all

stock prices in the year 2005 which show a positive trend from the 15th July

to the beginning of December and afterwards fall back again. Figure 3.5

depicts an example of three time series A, B and C showing the stock prizes

over the period of one year. Time series A and B have similar autocorrela-

tions which differ significantly from that of C.

3.3 Similarity Measures for Time Series 41

time

pr
ic

e

A
B

C

Figure 3.5: Example of stock prize time series

3.3.4 Time Warped Measures

For the determination of the similarity in shape the Euclidean distance func-

tion is too sensitive to minor distortions in the time axis. As mentioned

above, Dynamic Time Warping (DTW) can fix this problem [BC94]. Using

DTW to measure the distance between two time series X and Y , each value

of X is matched with the best fitting value of Y in consideration of some

constraints. The DTW distance can be computed by means of dynamic pro-

gramming. Suppose there are given two time series X =< x1, x2, ..., xn >

and Y =< y1, y2, ..., ym > of different length n and m, respectively. Let

d(i,j) denote the distance between one value xi of X and another value yj

of Y . The distance between two time series elements is defined as follows:

d(i,j) = (xi − yj)
2. In order to apply the DTW method, we define a n ×m-

matrix where the (ith, jth) element of this matrix contains the distance d(i,j).

A warping path W is a contiguous set of matrix elements that defines a map-

ping between X and Y . The kth element of W = 〈w1, w2, ..., wk, ..., wK〉 is

defined as wk = (i, j)k and

max(m, n) ≤ K < m + n− 1.

The warping path W is subject to the following three constraints: boundary

condition, continuity and monotonicity.

• Boundary condition: w1 = (1, 1) and wK = (m,n), simply stated, that

it requires the warping path to start and finish in diagonally opposite

corner cells of the matrix.

42 3 Complex Temporal Data

• Continuity: given wk = (a, b) then wk−1 = (a′, b′) where a− a′ ≤ 1 and

b − b′ ≤ 1. This restricts the allowable steps in the warping path to

adjacent cells (including diagonally adjacent cells).

• Monotonicity: Given wk = (a, b) then wk−1 = (a′, b′) where a− a′ ≥ 0

and b− b′ ≥ 0. This forces the points in W to be monotonically spaced

in time.

Out of the many warping paths that satisfy the above conditions, the

dynamic time warping method detects the path which minimizes the warping

cost:

DTW (X, Y) = min{

√∑
w∈W dw

|W |
},

where W is a correct warping path of X and Y , i.e. it is any warping path

which fulfills the three warping conditions above.

The length of the path W , denoted as |W |, in the denominator is used to

compensate for the fact that warping paths may have different lengths. This

path can be found very efficiently by using dynamic programming to evaluate

the following recurrence which defines the cumulative distance γ(i, j) as the

distance d(i,j) found in the current cell and the minimum of the cumulative

distances of the adjacent elements:

γ(i, j) = d(i,j) + min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}.

In the example shown in Figure 3.6(c), we can see the alignment of the

DTW distance between the two time series X and Y which are depicted in

Figure 3.6(a). In order to achieve a better display of the alignment, we add

an additional offset to the time series. The alignment shows which values

of the time series are matched. For comparison, Figure 3.6(b) shows the

alignment of the Euclidean distance between the two time series. We can

see that the DTW distance is less sensitive to minor distortions in time, and

thus, matches both time series more suitable than the Euclidean distance.

However, the DTW distance has problems when the two sequences partially

differ in their amplitudes, for instance, a valley in one time series may be

deeper than the corresponding valley in the other time series. Then, DTW

3.3 Similarity Measures for Time Series 43

X
Y

(a) Original time series X and Y

X

Y

(b) Alignment of Euclidean distance

X

Y

(c) Alignment of DTW

X

Y

(d) Alignment of DDTW

Figure 3.6: Alignment between two time series for different distance mea-

sures (Euclidean distance, DTW and DDTW).

attempts to explain the difference in terms of the time-axis and produces

singularities, i.e. long sequences of asynchronous time warping, as shown in

Figure 3.6(c).

Keogh et al. presented in [KP01] an enhanced distance function based on

the DTW function called Derivative Dynamic Time Warping (DDTW). The

DDTW tries to avoid singularities which commonly occurred with DTW. The

DDTW alignment of our example is shown in Figure 3.6(d). However, singu-

larities still occur due to other phenomenons like misleading discrepancies in

the derivations of the time series. Nevertheless, dynamic time warping and

variant approaches achieve often better results than the Minkowski metric

based approaches, but the main problem of dynamic time warping tech-

niques, their expensive computation, is still apparent. Only by approximat-

ing the time series with some compressed or down-sampled representation,

the performance of DTW applied on the new representation can be improved

drastically [KP99b].

44 3 Complex Temporal Data

3.3.5 Weighted Distance Measures

The intuition of weighted distance measures is that for some queries different

parts of the sequence may have different importance for the analysis task.

The weighted distance approach can be easily applied to the Minkowski met-

ric based similarity measure. Assume we have two time series X = (x1, .., xN)

and Y = (y1, .., yN) and the corresponding weights wi ∈ R for each time slot

i. Then, the weighted Lp-distance between X and Y is defined as follows:

deucl(X,Y) =
1

N
p

√ ∑
i=1..N

wi · |xi − yi|p.

In the example shown in Figure 3.7 the similarity between the two time series

X and Y in the time sector 0 - 10 has more importance than the similarity

in sector 20 - 30.

The problem is that the weights which lead to a good mining quality are

often unknown in advance. One possibility to solve this problem is performing

queries with relevance feedback. Relevance Feedback is the reformulation of

a search query in response to feedback provided by the user for the results of

previous versions of the query [KP99a]. The basic idea is to perform initially

a query by choosing the same value for all weights and display the results

to the user. Based on these results, the user can now change those weights

which seem to be not promising for the mining task. Afterwards, the new

query cycle with the new weights can be executed. This procedure can be

repeated with the hope that the iterative weight updates will converge to the

optimal query. An example approach using relevance feedback according to

weighted distance measurement based analysis of time series is proposed in

[KP99a].

3.4 Similarity Search Applications

In the medical, biological and environmental sector an immense amount of

time series data are acquired for analysis tasks. As a consequence, efficient

and effective data mining methods on time series data are very important.

3.4 Similarity Search Applications 45

wi wjre
le

va
nc

e

distance-weight histogram

X

Y

high relevant distance

low relevant
distance

Figure 3.7: Weighted Similarity Measure

Similarity search in time series databases is a vital operation for many data

mining applications, including clustering, classification and mining of asso-

ciation rules. As they are the most prominent mining methods, they will be

briefly discussed in the following.

3.4.1 Clustering

Clustering determines which elements in a dataset are similar. It works to

group records together according to an algorithm or mathematical formula

that attempts to find centroids or centers around which similar records gravi-

tate. It is the process of dividing a dataset into mutually exclusive subgroups

without relying on predefined classes. The dataset is divided in such a way

that similar records belong to the same subgroup and records of different

subgroups are dissimilar. The clustering algorithms can be broadly classified

into the following types [JMF99]:

Partition based clustering directly decomposes the data set into a set

of disjoint clusters. More specifically, it determines an integer number of

partitions that optimize a certain criterion function. The criterion function

may emphasize the local or global structure of the data and its optimization

46 3 Complex Temporal Data

is an iterative procedure. Most prominent instances of partitional cluster

methods are k-means [McQ67], PAM [KR90], and CLARANS [NH94].

Hierarchical clustering proceeds successively by either merging smaller

clusters into larger ones or by splitting larger clusters. The result of the

algorithm is a tree of clusters, called dendrogram, which shows how the

clusters are related. By cutting the dendrogram at a desired level, a clustering

of the data items into disjoint groups is obtained. Example approaches are

Single Link (SL) [Sib73] and BIRCH [ZRL96].

Density-based clustering. The key idea of this type of clustering is to

group neighboring objects of a dataset into clusters based on density condi-

tions. A flat density-based cluster algorithm is DBSCAN [EKSX96] and a

hierarchical density-based variant is OPTICS [ABKS99].

Distribution- or model-based clustering uses a distribution-based qual-

ity function. Each object is assumed to be drawn from one of k underlying

Gaussian distributions [JD88]. Usually, objects are assigned to one of the

k clusters using a maximum likelihood decision. Sample algorithms include

the EM-algorithm [DLR77] and DBCLASD [XEKS98].

3.4.2 Classification

Classification is the systematic grouping of records into predefined categories

which we call classes based upon shared characteristics. Classifications that

are created non-empirically are called a priori classifications. Classifications

that are created empirically by looking at the data are called a posterior

classification.

3.4.3 Association Rule Mining

Association rule mining finds interesting associations and/or correlation re-

lationships among large set of data items. Association rules show attribute

value conditions that occur frequently together in a given dataset. They

provide information of this type in the form of ”if-then” statements. These

3.5 Indexing Time Series 47

rules are computed from the data and, unlike the if-then rules from the logic,

association rules are probabilistic in nature. In addition to the antecedent

(the ”if” part) and the consequent (the ”then” part), an association rule

has two numbers that express the degree of uncertainty about the rule. In

association analysis the antecedent and consequent are sets of items (called

itemsets) that are disjoint (do not have any items in common). Association

rules are very important for many time series mining applications, in par-

ticular for environmental and medical data analysis because the association

rules describe dependencies between the courses of different records. Espe-

cially association rules help to identify causations of anomalies in time series

which could be an indication of a specific disease.

3.5 Indexing Time Series

Typically time series data occupy a large amount of memory space. Thus

large databases require giga/tera-bytes of storage. As a consequence, we

need a representation of the data we can efficiently manipulate and suitable

access methods allowing efficient access to the data. In particular, similarity

search methods require appropriate access methods. They should allow to

efficiently determine the time series which are similar to a given query time

series according to the specified similarity model.

3.5.1 Rules of Indexing Time Series

Faloutsos et al. [FRM94] give the following desirable properties for an in-

dexing method for time series:

• Queries using the index structure should be faster than a sequential

scan. The processing of each single time series will be to slow for

large databases. The more time series objects can be pruned based

on fast similarity approximations, the higher the performance gain of

the index structure. Obviously, insertions and deletions of time series

objects must not result in a complete rebuilding of the index structure.

48 3 Complex Temporal Data

• In order to achieve a correct result, no false dismissals must occur.

This implies that similarity distance measures associated with the index

structure have to fulfill the lower bounding property, or in other words,

the estimated similarity distance between two time series has always to

be less than or equal to the exact similarity distance between them.

• Furthermore, the index should incur little space overhead and should

allow queries of various length in order to avoid poor applicability.

Keogh et al. [KCPM01] added the following criteria to the list above:

• The index structure should be possible to build the index in reasonable

time and it should preferably be able to handle more than one distance

measure.

3.5.2 Vector Space Transformation

The common approach for indexing time series is to project time series of

length n into n-dimensional space Rn. In this representation the dissimilarity

between two time series objects are represented by the distance1 between

them, i.e. a small distance between two points in the feature space indicates

a high similarity of the corresponding time series objects. The advantage

of doing this is that we have abstracted away the details of ”time series”

that all query processing can be imagined as finding points in space. Now,

common spatial access methods like the R-tree can be used to organize the

transformed time series objects efficiently.

3.5.3 Curse of Dimensionality

Naturally, the dimensionality of the vector space which is used to bring the

time series objects in a spatial context according to the above transforma-

tion is very high. A general property of high-dimensional feature spaces is

1Here, we assume any Minkowski metric as similarity measure.

3.5 Indexing Time Series 49

0 1

1

0.90.1

0.1

0.9

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40

dimension

P surface(0,1)

Figure 3.8: Probability of a point near by the data space boundary.

that they have an impact on the performance of similarity search algorithms.

These phenomena are usually summed up by the term ”curse of dimension-

ality”.

The curse of dimensionality refers to the exponential growth of hyper-

volume as a function of dimensionality [Bel61]. It can be explained in the

following way: let us assume a uniform distribution of the data points inside

a hypercube with side length 1, i.e. D ⊆ [0, 1]d (cf. Figure 3.8 left). The

volume of such a data space is 1d = 1. The probability Psurface(r) that a

point randomly taken from a uniform and independent distribution in a d-

dimensional space has at most a distance of r to the space boundary can be

computed as follows:

Psurface(r) = 1− (1− 2 · r)d.

As it is shown in Figure 3.8, the probability that a point is inside a 10%

border of the data boundary rapidly increases with growing dimensionality.

For d = 3 dimensions, Psurface(0.1) is already 0.488% and reaches 0.965% for

d = 15 dimensions.

This observation has great influence on the performance of the similarity

search algorithms and, in particular, cause problems for index supported

similarity queries. The performance of R-Trees degrades exponentially with

the number of dimensions. Somewhere above 6 - 20 dimensions, the R-Tree

degrades to linear scanning. However, usually the time series have a length

50 3 Complex Temporal Data

of hundreds or perhaps thousands. In order to cope large time series with the

feature vector based indexing method, we have to reduce the dimensionality

of the time series objects artificially.

3.6 GEMINI: A Generic Indexing Approach

for Large Time Series

In general, a time series of length n corresponds to a n-dimensional feature

vector. The (dis)similarity between two time series is usually measured by

an appropriate distance function in this feature space, e.g. the Euclidean

distance, Dynamic Time Warping (DTW) [KP99b], Pearson’s correlation

coefficient [Coh88], or angular separation also known as cosine distance which

is measured in terms of the cosine value of the angle between two vectors.

Recent approaches either focus on an entire matching of the query time series

with the database objects or on subsequence matching.

Entire matching approaches compute the similarity between the query time

series and the database time series by considering the entire time course using

any of the above mentioned distance measures. Since the length n of the time

series objects is usually very large, the analysis of time series data based on

the entire time series information is usually very limited. Due to the curse of

dimensionality, the efficiency of data analysis methods decrease rapidly with

increasing time series length. Thus, it is mandatory to find more suitable

representations of time series data, e.g. by reducing the dimensionality. The

key idea is that such a suitable representation satisfies the lower bounding

property, i.e. the distance between two time series based on the compact

representation is always lower or equal to the true distance of the two time

series. In [FRM94] the GEMINI method is introduced. It can exploit any

dimensionality reduction method to allow efficient indexing of time series

based on the lower bounding property. The general idea of this approach

is to extract a few key features for each time series and map each time

sequence X of length n to a point f(X) in a lower dimensional feature space

Rn′ (n′ << n) which can be efficiently handled by any spatial access method

3.6 GEMINI: A Generic Indexing Approach for Large Time Series 51

10 20 30 40 501

X

f1(X) f2(X) f3(X)

original time series feature extraction vector space mapping

f (X)

Figure 3.9: Feature based dimensionality reduction (GEMINI approach).

of our choice. The transformation chain of GEMINI is depicted in Figure

3.9.

Given the lower bounding property, one can safely drop a subset of

database objects based on the evaluation of the distance applied to the

reduced representation. This condition is absolutely necessary in order to

avoid false dismissals, i.e. no true result are lost by performing the query

on the dimensionality reduced feature space. This pre-selection based on the

compressed representation is also called filter step. The remaining objects

need to be refined, i.e. the distance on the exact representation needs to be

computed. In [KSF+96], the GEMINI framework is adapted for k-nearest

neighbor search. Later, Seidl and Kriegel proposed in [SK98] an improved

k-nearest neighbor search algorithm which minimizes the number of candi-

dates to be considered. In fact, the authors propose to use several filter steps

in order to reduce the number of candidates that need to be refined. Several

dimensionality reduction techniques that lower bound the Euclidean distance

have been successfully applied to similarity search in time series databases,

e.g. [AFS93, WFS04, CF99, YF00, KJF97, ABB03, KCMP01, CN04] (cf.

Section 3.7).

Subsequence matching approaches usually try to match a query sub-

sequence to subsequences of the database objects. A time series object o is

similar to the query subsequence q as long as o has a subsequence similar to q.

Usually, a subsequence matching problem is transferred into an entire match-

ing problem by moving a sliding window (window size is set to the size of the

corresponding subsequence) over each time series object in the database and

materializing the corresponding subsequence. Thereby, it is assumed, that

52 3 Complex Temporal Data

the length of the query subsequence is fixed. If this length changes, a cor-

responding sliding window has to be moved over each database time series

again. Obviously, subsequence matching is orthogonal to interval-focused

similarity. In interval-focused similarity, the time slot relevant for matching

is fixed. Two time series are not considered similar even if they have a sim-

ilar subsequence but at different time intervals. In addition, the concept of

interval-focused similarity allows to specify multiple relevant time intervals

of different length. Both, the number of relevant intervals and the length of

these intervals may change from query to query.

3.7 Time Series Representations

In the literature, there are a lot of different approaches concerning efficient

similarity search algorithms for time series. Most of them refer to dimension-

ality reduction. The proposed approaches mainly differ in the representation

of the time series. Figure 3.10 gives an overview of the most important tech-

niques, including DFT [AFS93] and extensions [WFS04], DWT [CF99], PAA

[YF00], SVD [KJF97, ABB03], APCA [KCMP01], Chebyshev Polynomials

[CN04]. Keogh et al. [RKBL05] has grouped them into the categories: Model

Based, Data Adaptive, Non Data Adaptive and Data Dictated.

These categories can be further split into several subcategories. A sur-

vey is given in [KCMP01]. We have added one representation (Threshold-

Crossing time Intervals) into the category Data Dictated as a novel approach

proposed in this thesis (cf. Chapter 13). This new representation is sil-

houetted against the other techniques by the used similarity model. While

the traditional techniques (partially lower bounding) approximate Minkowski

metrics and DTW by aggregating over the time axis, we propose to aggregate

time series over the amplitude axis. In contrast to the other approaches our

time series representation allows us to focus the similarity search to certain

maybe more relevant amplitude values.

3.7 Time Series Representations 53

Time Series
Representations

Time Series
Representations

Model BasedModel Based

Data AdaptiveData Adaptive

Non Data AdaptiveNon Data Adaptive

Data DictatedData Dictated

•Hidden Markov Models
•Statistical Models

•Hidden Markov Models
•Statistical Models

•Piecewise Linear Approximation (PLA)
•Adaptive Piecewise Constant Approximation (APCA)
•Singular Value Decomposition (SVD)
•Symbolic Aggregate Approximation (SAA)

•Piecewise Linear Approximation (PLA)
•Adaptive Piecewise Constant Approximation (APCA)
•Singular Value Decomposition (SVD)
•Symbolic Aggregate Approximation (SAA)

•Piecewise Aggregate Approximation (PAA)
•Wavelets (DWT)
•Discrete Fourier Transformation (DFT)
•Chebyshev Polynomials

•Piecewise Aggregate Approximation (PAA)
•Wavelets (DWT)
•Discrete Fourier Transformation (DFT)
•Chebyshev Polynomials

•Clipped Data
•Threshold-Crossing Time Intervals

•Clipped Data
•Threshold-Crossing Time Intervals

novel approach

Figure 3.10: Classification of all (relevant) time series representations pro-

posed for data mining.

54 3 Complex Temporal Data

Chapter 4

Intervals and Interval

Sequences

One-dimensional intervals or interval sequences are a very suitable data struc-

ture for representing temporal and spatial data [Pöt01]. Originally, interval

sequences are used to handle finite domain constraints [Ram97] or repre-

sent periods on transactions or valid time dimensions [TCG+93]. Recently,

they are used to represent complex-structured objects, in particular those

objects having a temporal or even spatial component (cf. Figure 4.1). For in-

stance, rasterized three-dimensional objects can be transformed into interval

sequences by means of space-filling curves (cf. Section 2.1.3). Furthermore,

any time series may be aggregated to an interval sequence, such as periods of

”high” stock prices for technical chart analysis. As mentioned in Section 3.7,

this type of representation is required for our novel similarity search approach

based on threshold-crossing time intervals which is proposed in Part III of

this thesis. Another typical application of one-dimensional interval sequences

includes the temporal tracing of user activity for service providers. The ad-

vantage of intervals or interval sequences is, that they are easy to manage and

can be organized in an efficient way by means of adequate access methods.

55

56 4 Intervals and Interval Sequences

00:00 02:24 04:48 07:12 09:36 12:00 14:24

Firs t team m eeting

Team m eeting preparation

Team m eeting

Research webs ite

Research vers ion control

Team m eeting

Research webs ite

Making Diagram s

Team presentation

Making Diagram s

Updating Web Page

Time Series

Time LogsSpatial Objects

time /
space

Figure 4.1: Applications of one-dimensional interval sequences

4.1 Applications on Interval Data

Intervals occur as transaction time and valid time ranges in temporal databases

[SOL94] [Ram97] [BÖ98] or as line segments on a space-filling curve in spatial

applications [FR89] [BKK99] (cf. Section 2.1.3).

4.1.1 Interference Checks for Spatial Data

Spatially extended objects, mainly objects of geographical information sys-

tems or objects of CAD-systems, usually have very complex and intricate

shapes. Consequently, even simple spatial operations like interference checks

performed on the original data could be very costly. Approximating the

objects by a sequence of intervals reduces the interference check problem to

simple and cheap interval intersection operations. Based on this approach, in

this thesis we present solutions for redundancy problems that occur especially

for high resolution spatial data (cf. Part II).

4.2 Definition 57

4.1.2 Data Mining in Time Series Databases

Another important application of interval sequences is abstracting time series

for supporting a higher level of understanding dynamic processes. They are

sometimes used for the retrieval of similar time series [KP99b] [KCPM01],

and more often applied in the medical domain [KF00] [GU99] [BLMB02]. Es-

pecially in the medical domain expert knowledge is quite often necessary in

early stages to fix thresholds and make design decisions. Temporal descrip-

tion of events in time series, e.g. interval time series, are of vital importance

for data mining tasks, for instance in mining rules [VHTM99]. Mining such

relationships allows the user to gain insight on the temporal relationships

among various items. In this thesis we propose a novel similarity measure

for time series data based on aggregating time series by interval sequences

of threshold events and show how these representations can be organized to

speed-up query processing and data mining tasks (cf. Part III).

4.2 Definition

Generally, in mathematics different types of intervals are distinguished. In

the real number space R intervals are closed, open or half open. As simple

closed intervals suffices for our approaches, in this thesis, we define intervals

as follows:

Definition 4.1 (Interval) Let B ⊆ R be a domain of boundary points. A

tuple t = (l, u) ∈ B2 is called interval, iff l ≤ u. It represents all elements

x ∈ B, where l ≤ x ≤ u. The components l and u are the lower and upper

bound of t, respectively. The interval t is called degenerate or point, iff l = u.

Now, we can define an interval sequence as a sequence of disjunctive

intervals.

Definition 4.2 (Interval Sequence) Let B2 be a domain of intervals. A

sequence S =< b1, b2, .., bn > of intervals b1 = (l1, u1), b2 = (l2, u2), ... ,

bn = (ln, un) ∈ B2 is called interval sequence, iff ∀i ∈ {1, .., n−1} : ui < li+1.

58 4 Intervals and Interval Sequences

4.3 Basic Operations on Intervals

As we have seen in the previous section, interval sequences are disposed to

represent spatially or temporally extended objects1. Consequently, there is a

practical need for a clear and proper treatment of various useful operations

on interval data in the context of spatial- and temporal data.

4.3.1 Predicates on Intervals

The most popular predicate used in retrieval applications dealing with inter-

val data is the intersection predicate.

Definition 4.3 (Interval Intersection) Let D = {(l, u) ∈ B2|l ≤ u} be a

domain of intervals with boundaries of B ⊆ R. In the following, we say that

two intervals s1 = (l1, u1), s2 = (l2, u2) intersect (i.e. intersect(s1, s2) = true

or, alternatively, s1 intersects s2), iff (l1 ≤ u2) ∧ (l2 ≤ u1).

A more general predicate definition is given in Allen’s temporal interval

logic [All83]. It describes relations between temporal intervals and is often

applied for spatial and temporal reasoning and data-mining tasks [Höp01].

For any pair of intervals we have 13 possible relationships as illustrated in

Figure 4.2. For instance, we say ”A meets B” if interval A terminates at

the same point in time at which B starts. The inverse relationship is ”B

is-met-by A”. The intersect predicate can now be formulated by ¬(A after

B) ∧ ¬(B after A).

Allen’s algebra gives qualitative information about the relationship be-

tween two intervals. However, qualitative information like ”A before B” may

not necessarily suffice for some applications. For example, let the intervals

A and B describe the occurrence of two events which may be dependent

of each other. Then, if we know that the event denoted by B follows the

1We consider time as an additional dimension of the object representation. Since time
series cover several consecutive time slots, they have an extension in the time dimension
and we call them temporal extended objects.

4.3 Basic Operations on Intervals 59

time
A

A after B:
A is-met-by B:
A is-overlapped-by B:
A finishes B:
A during B:
A is-started-by B:
A equals B:

B before A:
B meets A:
B overlaps A:
B is-finished-by A:
B contains A:
B starts A:
B equals A:

B

Figure 4.2: Allen’s interval relationsships.

event denoted by A, i.e. ”A before B”, the temporal distance between the

occurrences of both events could be very valuable for the analysis of their

temporal dependency.

4.3.2 Functions on Intervals

Due to the lack of quantitative information associated with predicates on

intervals, we will now define some useful functions on intervals providing

more information about the relationship between two intervals. At first,

we define the function intersection length which computes the length of the

intersection between two intervals.

Definition 4.4 (Intersection Length) Let D = {(l, u) ∈ B2|l ≤ u} be a

domain of intervals with boundaries of B ⊆ R. The length of the intersection

between two intervals s1 = (l1, u1), s2 = (l2, u2) is computed by the function

intersection length : D ×D → R+
0 as follows:

intersection length(s1, s2) =

 min(u1, u2)−max(l1, l2), if intersect(s1, s2);

0, otherwise;

The intersection length routine can be very vital for applications which

require to return intersection-query results in descending order of the inter-

section length, i.e. for intersection ranking queries.

60 4 Intervals and Interval Sequences

Beside the intersection based functions on intervals, distance functions

reflecting the ”similarity” between intervals are also important. The most

important similarity function for intervals is the Euclidean distance based

on endpoints, taking for two given time intervals the difference between the

lower values and that between the upper values into account.

Definition 4.5 (Endpoint Based Euclidean Distance) Let D = {(l, u) ∈
B2|l ≤ u} be a domain of intervals with boundaries of B ⊆ R. The End-

point Based Euclidean distance deucl between two intervals s1 = (l1, u1),

s2 = (l2, u2) is defined as follows:

deucl(s1, s2) =
√

(l1 − l2)2 + (u1 − u2)2.

A detailed discussion on different similarity distance measures for inter-

vals is given in chapter 12.

4.4 Efficient Management of Intervals and In-

terval Sequences

A variety of methods has been published concerning interval management in

databases, most of them addressing temporal applications. In the following

we give a short summary of the survey on interval handling given in [KPS00a].

For in-depth descriptions of some of the specialized techniques, including

append-only structures for transaction time intervals, we refer the reader to

the survey of Tansel et. al. [TCG+93].

In the context of computational geometry, several main memory based

data structures that support 1D interval data have been developed [PS93]

[Sam90]. Among them, the Segment Tree of Bentley, the Priority Search Tree

of McCreight and the Interval-tree of Edelsbrunner are the most popular.

More recent developments include the Interval Skip List and the IBS-Tree

of Hanson et al. [HJ96]. As major limitation, the main memory resident

data structures do not meet the characteristics of secondary storage. In a

4.4 Efficient Management of Intervals and Interval Sequences 61

disk-oriented context, access is block-oriented and only small portions of a

structure may reside in main memory at a given point of time. The concept

of Segment Indexes [KS91] is a way to overcome the problem by combining

optimal interval structures with efficient disk-oriented indexing techniques.

A variety of block-oriented access methods for intervals has been pre-

sented in the literature [TCG+93] [MTT00].

The Time Index of Elmasri, Wuu and Kim [EWK90] is an index structure

for valid time intervals. A set of linearly ordered indexing points is main-

tained by using a B+-tree, and for each point, a bucket of pointers refers to

the associated set of intervals. The Interval B-tree (IB-tree) of Ang and Tan

[AT95] can be regarded as an implementation of Edelsbrunner’s Interval-tree

[Ede80] using an augmented B+-tree rather than a binary tree. The original

main memory model is thus transformed to an efficient secondary storage

structure while preserving the optimal space and time complexity. Never-

theless, the complex three-fold structure of the Interval-tree is retained, and

a dedicated structure of its own is used for each level. The Interval B+-tree

(IB+-tree) of Bozkaya and Özsoyoglu [BÖ98] is a secondary storage model

of the Interval-tree of [CLR90] that differs from Edelsbrunner’s Interval-tree

by the fact that it utilizes the lower bounds of the intervals as primary keys.

As a result, predicates referring to the upper bounds of intervals such as

”meets” or ”after” are not supported well. The TP-Index of Shen, Ooi and

Lu [SOL94] is based on a transformation of intervals into a triangular 2D

space. Duplicates are avoided and the index is well suited for appending

intervals since the data space may grow dynamically at the upper bound.

A similar mapping organized by a grid file is presented by Lee and Tseng

[LT98]. The External Segment Tree of Blankenagel and Güting [BG94] also

provides a block-based storage of intervals. As in the main memory segment

tree, intervals are decomposed into segments and referenced by a skeleton

structure. Similarly, the External Memory Interval-tree of Arge and Vitter

[AV96] is a stand-alone externalization of Edelsbrunner’s Interval-tree. The

fan-out of the original backbone tree is increased from 2 to
√

b for disk blocks

of size b.

62 4 Intervals and Interval Sequences

Beside originally one-dimensional interval index structures even multi-

dimensional index structures can be employed for the task of managing 1D

intervals. In general, however, spatial access methods such as Guttman’s R-

tree [Gut84] and its variants including R+-tree [SRF87] and R∗-tree [BKSS90]

may not behave well for one-dimensional intervals. Particularly the long

durations and high overlaps of intervals in many temporal applications induce

severe performance problems [EWK90] [GLOT96].

There are methods which use B+-tree index structures to organize inter-

vals rather than to augment indexes or to introduce new structures. Follow-

ing the paradigm of relational indexing [Pöt01] they can be easily integrated

into an existing Relational Database Management System (RDBMS). The

positional Interval-Spatial Transformation (IST) of Goh et al. [GLOT96]

is based on encoding intervals by space-filling curves called D-, V- and H-

ordering that map the boundary points into a linear space. Recently, the

Relational Interval-tree (RI-tree) [KPS00b] has been proposed which is a

relational implementation of Edelsbrunner’s Interval-tree. As we use this

concept to organize the intervals for managing spatial data as proposed in

[KPS00a], we shortly review the general concept of the RI-tree in the follow-

ing.

4.4.1 Relational Interval-tree

The Relational Interval-tree (RI-tree) is an access method for intervals which

is very suitable for interval-collision queries. Since we used RI-tree in our

approaches, we want to give a short overview on this access method.

The conceptual structure of the RI-tree is based on a virtual binary tree

of height h which acts as a backbone over the range [0...2h− 1] of potential

interval bounds. Traversals are performed purely arithmetically by starting

at the root value 2h and proceeding in positive or negative steps of decreasing

length 2h− i, thus reaching any desired value of the data space in O(h) time.

This backbone structure is not materialized, and only the root value 2h is

stored persistently in a meta-file. For the storage of intervals, the nodes of

4.4 Efficient Management of Intervals and Interval Sequences 63

interval sequence A:

interval sequence B:

interval sequence C:

1

2

3 5 7 9 11 13 15

6 10 14

4 12

root = 8

3B

7A

9A

8B

1A 3A

1C 1C

11A

11C

15A

14C

13B 14B

a) Sample interval sequences

b) virtual backbone which

positions the intervals

1, 1, C 2, 1, A 8, 3, B 8, 7, A 12, 11, A 12, 11, C 14, 13, B

1, 1, C 2, 3, A 8, 9, A 8, 8, B 12, 15, A 12, 14, C 14, 14, B

lowerIndex(node,lower,id)

upperIndex(node,upper,id)

c) lower/upper list, each indexed by a B+-trees

Figure 4.3: Block-based Relational Interval Tree

the tree are used as artificial key values: each interval is assigned to a fork

node which is the first intersected node when descending the tree from the

root node down to the interval location.

An instance of the RI-tree consists of two sorted page lists lowerIndex(node,

lower, id) and upperIndex(node, upper, id), each organized in a B+-tree. The

lists store the artificial fork node value node, the bounds lower and upper and

the id of each interval or interval sequence. Thereby, the entries are primary

sorted in ascending order of the attribute node. They are secondary sorted

by the attributes lower and upper, whereas lower is in ascending order and

upper is in descending order. Any interval is represented by exactly one en-

try in each of the two B+-trees and, thus, O(n/b) disk blocks of size b suffice

to store n intervals. For inserting or deleting intervals, the node values are

determined arithmetically, and updating the indexes requires O(logbn) I/O

operations per interval. We store an interval sequence by simply labeling

each associated interval with the sequence identifier. Figure 4.3 illustrates

the Relational Interval-tree by an example.

Now, we will consider simple interval intersection queries (lower, upper)

which are processed in two steps. In the preparation step, range queries are

collected in two lists, leftNodes and rightNodes which are obtained in the

64 4 Intervals and Interval Sequences

following way: by a purely arithmetic traversal of the virtual backbone from

the root node down to lower and to upper, respectively, at most 2 ·h different

nodes are visited. Nodes left of lower are collected in leftNodes since they

may contain intervals who overlap lower. Analogously, nodes right of upper

are collected in rightNodes since their intervals may contain the value of

upper. As a third class of affected nodes, the intervals registered at nodes

between lower and upper are guaranteed to overlap the query and, therefore,

are reported without any further comparison by a so-called inner query. The

query preprocessing procedure is purely main memory-based and, thus, re-

quires no I/O operations. In the second step, all three node lists are joined

with the B+-tree indexes upperIndex and lowerIndex. The upper bound of

each interval registered at nodes in leftNodes is checked against lower (left

queries), and the lower bounds of the intervals from rightNodes are checked

against upper (right queries). The inner query corresponds to a simple range

scan over the nodes within (lower, upper) and, thereby, can be applied to

lowerIndex or upperIndex. The query requires O(h · logbn+r/b) I/Os to re-

port r results from an RI-tree of height h. The height h of the backbone tree

depends on the expansion and resolution of the data space, but is indepen-

dent of the number n of intervals. An example query for one query interval

is depicted in Figure 4.4. A right directed arrow for a node denotes that the

upper bounds of the intervals of this node has to be considered, whereas a

left directed arrow denotes that the lower bounds of the intervals has to be

taken into account. The example query is split into the left queries combined

with the inner query 2,3,4-5 which are applied to the upperIndex and the

right queries 6,7,8 which are applied to the lowerIndex. The naive approach

disregards the important fact that the intervals of an interval sequence rep-

resent the same object. As a major disadvantage, many overlapping queries

are generated. This redundancy causes an unnecessary high main memory

footprint for the transient query tables, an overhead of query time, and lots

of duplicates in the result set that have to be eliminated. In our approach

we follow the basic idea in [KPS01] which avoids the generation of redundant

queries rather than to discard the respective queries after their generation.

4.5 Statistics on Intervals 65

leftNodes rightNodescenterNodes

lower upper

query interval (4,5)

1

2

3 5 7 9 11 13 15

6 10 14

4 12

root = 8

left queries {2,3} and inner query {4-5} applied to upperIndex;

right queries {6,7,8} applied to lowerIndex;

Figure 4.4: Interval Query onto the Relational Interval-tree

4.5 Statistics on Intervals

Statistics about the current distribution of the indexed data is a very impor-

tant component to estimate the selectivity of queries, and thus, is a required

input for query optimization. The selectivity of a predicate is used by the

query optimizer to determine an efficient execution plan. In order to achieve

a good estimation for the selectivity of a specific predicate without retriev-

ing the actual results, the predicate has to be evaluated on an accurate

approximation of the data distribution. Beside parametric techniques which

approximate the given data by using a standard mathematical distribution

and sampling which adapts to the actual data distribution by processing a

small fraction of the stored tuples, statistics are a very popular approach in

database systems, as they typically can be efficiently computed and occupy

only a small amount of secondary storage [Pöt01]. Furthermore, statistics do

not require a priori assumptions about the data distribution.

In this section, we will present two approaches for statistics, the interval

histogram and the quantile vector, both reflecting the current distribution of

66 4 Intervals and Interval Sequences

interval data. Both statistics are specially designed for linearly ordered data.

We use them in our approaches in order to generate appropriate interval

approximations (cf. Part II).

4.5.1 Interval Histogram

Histograms are a very popular method to capture the distribution of spatially

or temporally extended data, in particular intervals, at any desired resolution.

Definition 4.6 (Interval Histograms) Let D = [1, 2h−1] be a domain of

interval bounds h ≥ 1. Let the natural number ν ∈ N be the resolution, and

βν = (2h−1)/ν the corresponding bucket size. Let bi,ν = [1+(i−1)·βν , 1+i·βν]

denote the span of bucket i, i ∈ {1, .., ν}. Let further I = {(l, u), l ≤ u} ⊂ D2

be a database of intervals. Then, IH(I, ν) = (n1, .., nν) ∈ Nν is called the

interval histogram on I with resolution ν, iff for all i ∈ {1, .., ν}:

ni = |{Ψ ∈ I|Ψ intersects bi,ν}|.

The main drawback of interval histograms is that possible intervals may

span multiple histogram buckets if they have large extensions or if the res-

olution of the histogram is very accurate. As a consequence, the interval

replications among multiple histogram buckets can be very high, causing the

accuracy of interval-based selectivity estimation to deteriorate.

4.5.2 Quantile Vector

Another approach to build statistics reflecting the current distribution of in-

tervals is the quantile-based approach. Whereas histograms can be naturally

applied to one-dimensional interval data, a quantile-based approach has to

operate on a linear representation of the original intervals, for example the

RI-tree key values of the fork nodes of the intervals.

Definition 4.7 (Quantile Vector) Let (M,≤) be a totally ordered multi-

set. Without loss of generality, let M = {m1, m2, ...,mN} with mj ≤ mj+1,

4.5 Statistics on Intervals 67

1 ≤ j < N . Then, Q(M, ν) = (q0, ..., qν) ∈ M ν is called a quantile vector for

M and a resolution ν ∈ N, iff the following conditions hold:

• q0 = m1.

• ∀i ∈ {1, .., ν} : ∃j ∈ {1, .., N} : qi = mj ∧ j−1
N

< i
ν
≤ j

N
.

The multi-set M of our quantile vector (q0, ..., qν) is formed by the values of

the first attribute A1 of the domain values of our index I. By using the node

quantiles for the RI-tree index, we get an aggregated view on the locations

of the stored intervals.

68 4 Intervals and Interval Sequences

Part II

Spatial Query Processing for

Complex Structured Objects

69

Chapter 5

Introduction

Modern database applications including computer-aided design impose new

requirements on efficient spatial query processing. Particular problems arise

from the need of high resolutions for large spatial objects, including cars,

space stations, planes and industrial plants. Applications which need an

integration into industrial-strength systems need that the spatial objects are

efficiently managed within commercial database management systems. As

a consequence, a seamless and capable integration of spatial indexing into

industrial-strength databases is essential. Unfortunately, most commercially

relevant database systems provide no built-in access method for temporal

and spatial data types, nor do they offer a generic framework to facilitate the

integration of user-defined search trees based on disk blocks. In [KPPS03b]

the paradigm of relational indexing is proposed. The idea is to use relational

access methods to integrate index support for temporal and spatial data

types. As access methods of this class are designed on top of the pure SQL

layer, they can be easily virtually implemented on any available relational

database server. A comprehensive overview about relational access methods

for spatial data and how to integrate them into modern Object Relational

Database Management Systems (ORDBMS) is given in [Pöt01].

In the previous sections we have shown how complex spatial objects can

be suitably modeled by sequences of points or intervals of space primitives

(Voxels/Points), and how these interval sequences can be efficiently orga-

71

72 5 Introduction

nized by the Relational Interval-tree. However, the representation of highly

resolved spatial objects having an intricate structure which are consistent

with spatial access methods either cause to much approximation error which

drastically lowers the query selectivity or implicate very high redundancy. A

good trade-off between the opposing attributes redundancy and accuracy is

indispensable for efficient spatial query processing on high resolution objects.

The approaches presented in the following chapters involve statistical in-

formation in order to accelerate the processing of spatial intersection queries

for linearized spatial objects.

First, we will show in Chapter 6 how statistics can be used for acceler-

ating relational access methods by reducing the number of generated join

partners which results in fewer logical reads and consequently improves the

overall runtime. We take special emphasis on replicating (space partitioning)

access methods like the Relational Quad-tree and the Relational Interval-tree

(RI-tree). Both access methods are based on the build-in B+-tree already

integrated in standard database management systems. The advantage of

replicating storage of complex three-dimensional objects (e.g. CAD parts of

an airplane) is that it does not cause region queries to produce too many

false hits that have to be eliminated by subsequent filter steps compared to

one-value approximations organized in a non-replicating access method like

the R-tree [Pöt01].

Furthermore, in Chapter 7 we present an approach which achieves efficient

query processing along with industrial-strength database support for real

time haptic rendering systems, providing force feedback (haptic display).

In Chapter 8 we introduce interval containers as a new and general con-

cept. In contrast to the common interval decomposition which suffer from

the high redundancy of highly resolved complex shaped objects, interval con-

tainers combine groups of intervals into approximations - one approximation

per group.

Based on the interval container concept, we present in Chapter 9 inter-

section join methods adequate for interval sequences representing complex

spatial objects. Our main focus are methods for generating the object ap-

73

proximations adequate for speeding up the join processing of high-resolution

objects.

Finally, in Chapter 10 we present a new distributed intersection join al-

gorithm for interval sequences of high-cardinality, distributed over several

clients. Our approach aims at minimizing the transmission cost to the server

which performs the join processing. This approach is based on a suitable

probability model for interval intersections.

74 5 Introduction

Chapter 6

Statistic Driven Acceleration of

Spatial Queries

6.1 Introduction

Relational access methods perfectly fit to the common relational data model

and are highly compatible in many cases with the extensible indexing frame-

works of existing object-relational database systems. In order to integrate

these index structures into modern ORDBMSs, we need suitable cost mod-

els [KPPS02], which exploit the built-in statistics facilities of the database

server. Based on these statistics, it is possible to estimate the selectivity of a

given query and to predict the cost of processing it. In this chapter, we will

show how these statistics can be used to minimize the overall navigational

cost of space partitioning relational index structures which are organized

by the built-in B+-tree of the DBMS. In particular, we will consider the

Relational Interval-tree and the Relational Quad-tree, the most prominent

space partitioning relational access methods which are adequate for organiz-

ing complex spatial objects.

Our approach accelerates the relational access methods by trying to re-

duce the total number of logical reads for a given interval sequence query.

Former approaches which try to generate efficient read schedules for a given

75

76 6 Statistic Driven Acceleration of Spatial Queries

set of disk pages [SLM93] must know the actual position of the pages on

the storage media. However, in an ORDBMS, the user has no access to

the exact information where the blocks are located on the disk. As this

information is not available in an ORDBMS, we pursue another idea which

exploits statistics related to the corresponding relational access method in or-

der to accelerate spatial query processing. The relational access method can

be any custom index structure mapped to a fine granular relational schema

organized by built-in access methods, as for instance the B+-tree. We intro-

duce our approach in general as well as exemplarily for spatial intersection

queries performed on the Relational Quad-tree (RQ-tree) and the Relational

Interval-tree (RI-tree). This work has been published in [KKPR04c].

We first look at very comprised statistic values which can already be

very useful for accelerating the relational access methods. Then we will

show how we can benefit from simple statistics related to the underlying B+-

tree. Afterwards, we introduce a new statistic-based query decomposition

approach in addition to the existing error- and size-bound decomposition

approaches [Ore89].

6.2 Statistics Related to the Relational

Access Methods

In [KPPS03b] relational access methods are defined as follows:

Definition 6.1 (Relational Access Method) An access method is called

a relational access method, iff any index-related data is exclusively stored in

and retrieved from relational tables. An instance of a relational access method

is called a relational index. The following tables comprise the persistent data

of a relational index:

• User table: a single table, storing the original user data being indexed.

• Index tables: n tables, n ≥ 0, storing index data derived from the

user table.

6.2 Statistics Related to the Relational Access Methods 77

• Meta table: a single table for each database and each relational access

method, storing O(1) rows for each instance of an index.

The stored data is called user data, index data, and meta data.

As already indicated in the definition, the metadata table is a single table for

each database and each relational access method, storing O(1) rows for each

instance of an index. All schema objects belonging to the relational index,

in particular the name of the index table, and other index parameters are

stored in this global meta table.

6.2.1 Examples of Space-Partitioning Relational

Access Methods

The most prominent examples for space-partitioning relational access meth-

ods are the Relational Interval-tree (RI-tree) and the Relational Quad-tree

which is a relational mapping of the Linear Quadtree [Sam 90]. In Section

4.4.1 we have already introduced the basic concept of the RI-tree. In this

section, we present the basic idea of the Linear Quadtree according to the

in-depth discussion of Freytag, Flasza and Stillger [FFS 00].

The Relational Quad-tree organizes the multidimensional data space by

a regular grid. Any spatial object is approximated by a set of tiles. Among

the many possible one-dimensional embeddings of a grid approximation, the

Z-order is one of the most popular [Güt94]. The corresponding index rep-

resentation of a spatial object comprises a set of Z-tiles which is computed

by recursively bi-partitioning the multidimensional grid. By numbering the

Z-tiles of the data space according to a depth-first recursion into this parti-

tioning, any set of Z-tiles can be represented by a set of linear values. Note

that thereby redundancy is introduced to approximate spatially extended

data. Figure 6.1 depicts some Z-tiles on a two-dimensional grid along with

their linear values. The linear values of the Z-tiles of each spatial object

can be stored in an index table obeying the schema (zval, id), where both

columns comprise the primary key. Each row in the index table exclusively

78 6 Statistic Driven Acceleration of Spatial Queries

176

29

5
A

B

(a) Regular grid

12 15 27

0

1 16

2 17

9 24

3 6 18 21

10 13 25 28

4 7 19 22
5 8 20 23

11 14 26 29
30

(b) Recursive partitioning

……
B29
B17
B6
A5
idzval

(c) Index table

Figure 6.1: Relational Quad-tree.

belongs to a single data object. The linear ordering positions each Z-tile of

an object on its own row in the index table.

In order to process spatial selection on the Relational Quad-tree, the

query region is also required to be decomposed to a set of Z-tiles. For each

resulting linear value zval, the intersecting tiles have to be extracted from

the index table. Due to the Z-order, all intersecting tiles having the same

or a smaller size than the tile represented by zval occupy the range ZLower-

Hull(zval) = [zval, ZHi(zval)] which can be easily computed [FFS00]. In the

example of Figure 6.1, we obtain ZLowerHull(17) = [17, 23]. In a similar way,

we also compute ZUpperHull(zval), the set of all larger intersecting tiles. As

in the case of ZUpperHull(17) = 0, 16 the corresponding linear values usually

form no consecutive range. To find all intersecting tiles for a given zval, a

range scan on the index table is performed with ZLowerHull(zval) and mul-

tiple exact match queries are executed for ZUpperHull(zval). These queries

are optimally supported by a built-in B+-tree on the zval column.

6.2.2 Index Specific Statistics

Especially in the case of space partitioning index structures, often a few

values describing the actual data distribution help to reduce the I/O cost

dramatically. If we assume for instance that one half of the data space is

6.2 Statistics Related to the Relational Access Methods 79

denotation explanation

MaxNodeLevel/

MinNodeLevel

(RI-tree)

These two parameters reflect the highest and lowest level

of the fork nodes of the intervals in the database. If we

arithmetically traverse the primary structure for a given

query interval q = (l, u), we only have to collect those

nodes n as join partners, for which MinNodeLevel ≤
Level(n) ≤ MaxNodeLevel holds.

MaxLeftDist/

MaxRightDist

(RI-tree)

These two parameters reflect the maximum distance of

the boundary values of any database interval to its cor-

responding fork-node. If we arithmetically traverse the

primary structure for a given query interval q = (l, u),

we only have to collect those nodes n as join partners for

which n−MaxLeftDist ≤ u and n+MaxRightDist ≥
l holds.

MaxTileLevel/

MinTileLevel

(RQ-tree)

These two parameters reflect the highest and lowest

level of stored tiles within the database. If we com-

pute the upper hull of a given query tile q, we only

have to consider those tiles t as join partners for which

MinTileLevel ≤ Level(t) ≤ MaxTileLevel holds.

Table 6.1: Simple statistics for the RI-tree and RQ-tree.

completely empty, and we carry out a range query in this area, we can omit

a lot of unnecessary I/O accesses if we take the actual data distribution

into consideration. Consequently, it is beneficial to store the variable data

extension along with the fixed data space extension.

In Table 6.1, we summarized some optimizations which are suitable for

the RI-tree and the RQ-tree. These simple statistics are especially useful for

indexing extended spatial objects. Very often only the lower levels of the

virtual primary structure are engaged, as spatial objects tend to decompose

into numerous small tiles or intervals [KPPS03a].

80 6 Statistic Driven Acceleration of Spatial Queries

6.3 Statistics Related to the built-in access

method (B+-tree)

In this section, we show how to apply suitable statistics in order to estimate

the selectivity of a query or sub-queries. Selectivity estimation for queries is

a very important component to guide the strategy of the query processor. In

particular, it helps to predict the potential execution times of a query. The

selectivity information can then be used to estimate the cost of different query

strategies which helps to select or build the cost optimal solution of the query

processing. Generally, this information is used to select the most promising

access method for a query. But it can also be used at a more fine granular

level - it enables to reduce the processing cost of access methods by helping to

find the ”cost optimal” navigation through the index structure. In particular,

access methods like the B+-tree allowing different execution strategies, i.e.

hierarchical navigation or linear scan on the leaf level, to obtain the result

set can potentially benefit from such a guided search algorithm. This idea is

primarily pursued by the approach introduced in this section.

We have already introduced two methods to build statistics on interval

data, the interval histogram and a quantile-based method. In [KPPS02] it

was shown that applying quantiles (’equi-count histograms’) is more suitable

for estimating the selectivity and the corresponding I/O cost than using

histograms (’equi-width histograms’). We will now discuss how we can utilize

the quantile based information to accelerate the query process for interval

sequences itself. An interval intersection query leads to several index range

scans on the corresponding built-in index structure, the B+-tree. The general

idea of our approach is to minimize the overall navigational cost of the B+-

tree by applying extended index range scans. Thereby, we read false hits

from the index which have to be filtered out by a subsequent refinement

step. As shown in Figure 6.2, our approach closes the gaps between the index

scan ranges if and only if the number of additional read data is comparably

small, more precisely, the cost related to these false hits is smaller than the

navigational cost related to an additional range scan. The decision whether

to close a gap or not is based on the quantile statistics. In the following we

6.3 Statistics Related to the built-in access method (B+-tree) 81

B+-tree

navigational cost

index range scans

gap

cost related to scan
over false hits blocks of index data

Figure 6.2: Minimizing navigational cost of the B+-tree.

will formally introduce this idea.

6.3.1 Index Range Scan Sequences

For spatial intersection queries, the query object Q leads to many disjoint

range queries si = (li, ui) on the index I, e.g. the B+-tree. We consider them

as a sequence SeqQ,I = (〈s1, ..., sn〉) of index range scans (cf. Figure 6.3a)

for which the following assumptions hold:

• The elements ri stored in the index are of the same type as li, ui.

Furthermore, we assume that the elements ri can be regarded as a

linear ordered list L(I) = 〈r1, ..., rN〉 for which r1 ≤ ... ≤ rN holds.

• We assume that the data pages pi of the index obey a linear ordering

≤ and fulfill the following property:

r′ ≤ r′′ ⇔ p(r′) ≤ p(r′′),

where p(r) denotes the disk page of the index I which contains the

entry r.

I/O-cost. The I/O cost CI/O(s) associated with one index range scan s =

(l, u) of SeqQ,I = (〈s1, ..., sn〉) are composed from two parts:

82 6 Statistic Driven Acceleration of Spatial Queries

• CI/O
n (s) the navigational I/O cost for finding the first page of the result

set, and

• CI/O
s (s) the cost for scanning the remaining pages containing the com-

plete result set.

Formally,

CI/O(s) = CI/O
n (s) + CI/O

s (s),

with the following two properties:

1. CI/O
n (s) = CI/O

n (p(r′)) (navigational cost)

2. CI/O
s (s) = CI/O

s (〈p(r′), ..., p(r′′)〉) (scan cost),

where r′, r′′ ∈ L(I) and ∀r ∈ L(I) : (r′ ≤ r ≤ r′′) ⇔ (l ≤ r ≤ u) holds.

The I/O cost CI/O(SeqQ,I) associated with SeqQ,I = (〈s1, ..., sn〉) are

determined by

CI/O(SeqQ,I) =
∑

i=1..n

CI/O(si).

6.3.2 Extended Index Range Scan Sequences

The main purpose of our approach is to minimize the overall cost for the

navigational part of the index. Therefore, we try to reduce the number of

generated range queries on the index I, while only allowing a small increase

in the output cost. This can be achieved by merging two suitable adjacent

range scans s′ = (l′, u′) and s′′ = (l′′, u′′) together to one extended range scan

xs = (l′, u′′).

Intuitively, an extended range scan xs = 〈sr, ..., ss〉 is an ordered list of

index range scans. When carrying it out, we traverse the index directory

only once and perform a range scan (lr, us), as for example (l3, u4) in Figure

6.3b. Performing the extended range scan, we read false hits from the index

I which have to be filtered out in a subsequent refinement step. The overall

cost C(xs) of an extended range scan xs is composed from the sum of the I/O

6.3 Statistics Related to the built-in access method (B+-tree) 83

C s
I/O(s 1, s 2) = 1

s3

pb

qu ery o bject Q

qu ery o bject Q yi eld s t o an
in dex r ang e sca n s equ ence Seq Q,I = (s 1, s 2, s3, s 4)

s 1 s 2 s 4

l1 u1 l 2 u2 l 3 u3 l4 u4

p1

C n
I/O(s1) C n

I/O(s 2) C n
I/ O(s3) C n

I/O(s 4)

exten ded in dex r ang e sca n s equ ence
X Seq Q,I = (s1, s2 , s 3, s 4)

s3, s 4

pb

s 1, s 2

l1 u 2 l3 u4

p1

C n
I/O(s 1, s 2) = C n

I/ O(s1)

C s
I/ O(s3, s4) = 7

C n
I/O(s 3, s4) = Cn

I/O(s 3)

bloc k s of i nde x d at a I

b lo ck s of in de x data I
C s

I/O(s 4) = 2C s
I/O(s 3) = 4C s

I/O(s1) = C s
I/O(s2) = 1

a)

b)

Figure 6.3: Accelerated query processing.

cost of the extended range scan and the CPU cost related to the refinement

step:

C(xs) = CI/O(xs) + CCPU(xs).

I/O-cost. CI/O(xs) associated with one extended range scan xs = 〈sr, ..., ss〉
are composed from two parts

CI/O(xs) = CI/O
n (xs) + CI/O

s (xs),

with the following properties:

1. CI/O
n (xs) = CI/O

n (sr) (navigational cost)

2. CI/O
s (xs) = CI/O

s (lr, us) (scan cost).

CPU-cost. CCPU(xs) associated with one extended range scan xs = 〈sr, ..., ss〉
denotes the cost which is required to perform the filter operation for all tuples

84 6 Statistic Driven Acceleration of Spatial Queries

resulting from the extended range scan:

CCPU(xs) = CCPU(〈r′, .., r′′〉),

where

∀r ∈ L(I) : (r′ ≤ r ≤ r′′) ⇔ (lr ≤ r ≤ us).

The total cost C(XSeqQ,I) associated with an extended index range scan

sequence XSeqQ,I = (〈xs1, .., xsm〉) can be computed as follows:

C(XSeqQ,I) =
∑

j=1..m

C(xsj).

Obviously, there might exist extended index range scan sequences XSeqQ,I

for which C(XSeqQ,I) << C(SeqQ,I) holds. For each gap g between two ad-

jacent range queries s′ and s′′ we decide if the cost of scanning over the gap g

are lower than the navigational I/O cost related to s′′. The decision whether

to merge range scan s′ and s′′ to one extended range scan and apply an ad-

ditional refinement step afterwards in order to filter out false hits is based

on statistics which are necessary for the cost models anyway.

Selectivity Estimation. The multi-set M of our quantile vector (q0, ..., qv)

(cf. Definition 4.7) is formed by the values of the first attribute of the domain

values of our index I, i.e. the fork-node ids in case of the RI-tree and the tile

ids in case of the RQ-tree. By means of these statistics, we can estimate the

I/O cost CI/O
s (s) associated with one range scan s = (l, u). In the following

formula, b denotes the number of disk blocks at the leaf level of I, v denotes

the resolution of the quantile vector, N denotes the overall number of entries

stored in the index I and overlap() returns the intersection length of two

intersecting intervals:

CI/O
s ((l, u)) ≈ Cest

s ((l, u)) =

∑
i=1..v

overlap((l,u),(qi−1,qi))
qi−qi−1

· N
v

N/b
.

We can also apply the above formula to estimate the total cost Cs(g) =

CI/O
s (g) + CCPU(g) related to scanning over a gap g =]u′, l′′[between two

adjacent range queries s′ and s′′. The CPU cost can be estimated by

CCPU(g) = k · CI/O
s (g)

6.3 Statistics Related to the built-in access method (B+-tree) 85

0 8 16 24 30

0 0.1 0.7 0.8 1.0

0 8 16 24 30

0.2 0.4 0.6 0.9

fork nodes

fork node quantile

fork nodes

corresponding join partners = index range scan sequence

compute selectivity for each gap using statistics of data distribution

cost based grouping of the query ranges

Figure 6.4: Cost-Based Tile Grouping.

with a parameter k > 0, since both the I/O cost and the CPU cost are

directly proportional to the size of the result set of the range scan. If Cs(g)

are lower than Cn(s′′), we close the gap g.

Building Extended Index Range Scan Sequences. We can find the

extended range scan sequence XSeqQ,I trying to minimize C(XSeqQ,I), by

deciding for each of the n − 1 gaps between the index range scans s1, ..., sn

of the index range scan sequence SeqQ,I = (〈s1, ..., sn〉) whether we close this

gap or skip it. Thus, we obtain an extended index range scan sequence

XSeqQ,I = (〈〈si0+1, ..., si1〉, ..., 〈sim−1+1, ..., sim〉〉)

which satisfies the following property:

∀i ∈ 1...n− 1 : i ∈ i1..im−1 ⇔ Cest
n (si+1) < Cest

s ((ui, li+1)).

Usually, the actual navigational cost CI/O
n is independent of the actual

range scan and can easily be estimated by Cest
n , e.g. by the height of the

B+-directory.

In the following, we will show how our approach can be applied to the

intersect predicate for the two B+-tree based index structures, the Relational

Interval-tree and the Relational Quad-tree.

86 6 Statistic Driven Acceleration of Spatial Queries

6.3.3 Adoption to the Linear Quad-tree

Assume object Q in Figure 6.4 is used as query object. Then there are mul-

tiple exact match and range scan queries building a query interval sequence

which have to be performed in order to detect all intersecting database ob-

jects. We can reduce the cost by closing small gaps on the leaf-level of the

underlying B+-tree. By using the information stored in the statistics, i.e. us-

ing the tile quantiles, the number of join partners which correspond directly

to the navigational cost CI/O
n can be reduced drastically. The quantile vector

is built over the values stored in the leaf-level of the corresponding B+-tree.

We investigate all gaps included in the sequence of our generated join

partners and decide whether it is beneficial to close this gap. Assume, the

height of our B+-directory is n. If we close the gap, we reduce the naviga-

tional cost as follows:

CI/O
n = CI/O

n − n.

On the other hand, we estimate the cost Cs(g) required to read the leaf

blocks on our index (zval) which are covered by the database tiles of the

actual investigated gap g. If these estimated cost are lower than n, we close

this gap. Thus, we reduce the join cost CI/O
n by n, while not increasing the

output cost Cs by more than n. This procedure is depicted in Figure 6.4.

6.3.4 Adoption to the Relational Interval-tree

Similarly to the Linear Quad-tree, we can prepare the interval sequence query

for the Relational Interval-tree (cf. Section 4.4.1) using our cost-based group-

ing algorithm. This algorithm is independent of the index structure at the

primary level, i.e. the structure of the Linear Interval-tree. It is only based

on a B+-tree and on a quantile vector. In the case of the Relational Interval-

tree, the quantile vector is formed by the fork nodes of the intervals stored

in the database.

6.4 Statistics Related to the Object Decomposition 87

6.4 Statistics Related to the Object

Decomposition

Both, the error− and size − bound decomposition approach for spatially

extended objects lead to a sequence of simple query objects, e.g. a sequence of

tiles or intervals. The resulting sequence of entities in turn leads to a sequence

of range queries on the embedding B+-tree. In this section, we introduce an

additional decomposition approach which decomposes the query object based

on the expected I/O cost. The expected I/O cost can be estimated in the

same way as a query optimizer estimates the cost for a given query. Like

the approach of the last section, the decomposition of the query object is

controlled by our statistics.

QV : quantile vector

Q: query object

Decompose(Q, QV){
query sequence list := split at maximum gap(Q);

cost0 := statistic look up(Q, QV);

costdec := 0;

for each q in query sequence list do

costdec := costdec + statistic look up(q, QV);

if cost0 > costdec then

for each q in query sequence list do

Decompose(q, QV);

else report(Q);

}

Figure 6.5: Grouping Algorithm Decompose.

Figure 6.5 depicts this top down grouping algorithm which is beneficial for

the both discussed index structures. The algorithm starts with a query object

comprising the complete object. In each step, we determine the maximum

included gap and split along this gap, resulting in a sequence of query objects.

Then we estimate the I/O cost related to the original query object and the

88 6 Statistic Driven Acceleration of Spatial Queries

cost related to the sequence. If the cost of the original query object is smaller

than the cost of the sequence, we terminate the algorithm. The query object

now consists of a sequence of query objects. In an additional refinement

step, we eliminate the false hits which result from the fact that we have not

decomposed the spatial object with the maximum possible accuracy.

Box Volume Queries. The introduced approach is especially useful for

highly selective box volume queries on the RI-tree or the RQ-tree. The tra-

ditional error- and size bound decomposition approaches [Ore89] decompose

a large query object into smaller query objects, optimizing the trade-off be-

tween accuracy and redundancy. In contrast, the idea of taking the actual

data distribution into account in order to decompose the query object leads

to a new selectivity−bound decomposition approach which tries to minimize

the overall number of logical reads. We decompose a query box dependent

on the stored data. If there are not many data stored in the query area,

the box is decomposed into comparable few simple query objects, i.e. tiles

or intervals. On the other hand, if the query returns a lot of results, we

decompose the query into comparable many simple query objects.

A box can be described by a few parameters, e.g. by two points. The

few parameters which are necessary to describe the box are attached to each

incompletely decomposed interval or tile. In the refinement step, we further

decompose the query intervals or tiles on demand from the compact geometric

information.

6.5 Experimental Evaluations

In this section, we will experimentally investigate the performance of the

proposed statistic-based decomposition method. First, we will specify the

experimental environment.

6.5 Experimental Evaluations 89

6.5.1 Test Datasets

The tests are based on two test datasets CAR and PLANE. Both were pro-

vided by our industrial partners, a German car manufacturer and an Amer-

ican plane producer, in form of high-resolution voxelized three-dimensional

CAD parts. The CAR dataset consists of approximately 14 million voxels

and 200 parts, whereas the PLANE dataset consists of about 18 million vox-

els and 10,000 parts. The CAR data space is of size 233 and the PLANE

data space has a size of 242. In both cases the Z-curve was used as a space

filling curve to enumerate the voxels. Table 6.2 gives a summarization of the

dataset specification.

datasets CAR PLANE

voxels 14 · 106 18 · 106

parts 200 10000

data space

(# voxels)

233 242

Table 6.2: Dataset specification.

6.5.2 System Specification

We have implemented our approach for the RI-tree and the RQ-tree on top

of an object-relational DBMS, the Oracle9i Server using PL/SQL for the

computational main memory based programming. All experiments were per-

formed on a PentiumIII/700 machine with IDE hard drives. The database

block cache was set to 500 disk blocks with a block size of 8 KB and was

used exclusively by one active session.

6.5.3 Histograms of the Test Datasets

Figure 6.6 depicts the interval and gap histograms for our two test datasets.

Both consist of many short intervals and short gaps and only a few longer

ones. Consequently, mainly the lowest levels of the RQ-tree and RI-tree

90 6 Statistic Driven Acceleration of Spatial Queries

1

100

10000

1000000

1,00E+00 1,60E+01 2,56E+02 4,10E+03 6,55E+04
interval length

nu
m

be
r o

f i
nt

er
va

ls

CAR PLANE

(a) Intervals

1

100

10000

1000000

1,00E+00 6,55E+04 4,29E+09
gap length

nu
m

be
r o

f g
ap

s

CAR PLANE

(b) Gaps

Figure 6.6: RI-tree histogram.

contain index entries. Figure 6.7a shows that in the case of the RQ-tree

on the CAR dataset only the five lowest of 33 levels are occupied. Similar

observations are made for the RI-tree (cf. Figure 6.7b) where most intervals

are registered at very low fork-node levels. The observation that spatial

objects are decomposed into many small intervals and tiles, are not confined

to our two test datasets but holds for spatial objects in general [Gae95]

[KPPS03a]. Therefore, the statistics presented in Table 6.1 are very beneficial

for efficient query processing on spatially extended objects.

6.5.4 Query Processing

In this section, we examine the benefits of using extended index range scans.

For the RI-tree and the RQ-tree, we used 10% of the database objects as

60%27%

12%

0,19%

1,12%
Level 0

Level 1

Level 2

Level 3

 Level 4

(a) Tile Levels (CAR)

1

100

10000

1000000

1 4 7 10 13 16 19 22 25
tree-level

nr
. f

or
k

no
de

s

CAR PLANE

(b) Fork Node Levels (CAR,
PLANE)

Figure 6.7: Used index levels.

6.5 Experimental Evaluations 91

0

400

800

1200

1600

0 5 10 15 20

scanned tree levels

nu
m

be
r o

f

logical reads / 1000
physical reads
join partners / 1000

(a) Number of logical/physical reads

1

10

100

0 5 10 15 20
scanned tree levels

ru
nt

im
e

[s
]

runtime preperation query

(b) Runtime performance

Figure 6.8: RI-tree optimizations without using statistics.

query objects and report the average results from these queries.

Extended range scans without statistics. In a first experiment, which

does not use any statistical information, we point out the benefits of using our

extended index range scans (cf. Section 6.3.2). For a given query object, we

did not collect all possible join partners, but omitted the last levels and used

an extended index range scan instead. Figure 6.8a shows that the number of

join partners decreases with an increasing number of scanned tree levels. At

the beginning, the number of logical reads also decreases, but if we neglect

too many tree levels of the RI-tree, the number of logical reads increases

again along with the increasing number of physical reads. The number of

physical reads stays almost constant if we scan over only a small number

of levels. On the other hand, the number of physical reads dramatically

increases if the number of scanned tree levels exceeds 18 because of the

increasing number of false hits which are filtered out in a consecutive filter

step. In Figure 6.8b it is shown that the preparation time decreases with an

increasing number of scanned tree levels. Due to the reduced number of join

partners and the decreasing preparation time, the overall runtime reaches a

minimum if we neglect the last 10 levels of the RI-tree and apply an extended

range scan instead. By using a fixed scan level, we can already improve the

query response time by 30%. In the following sections, we will see that if we

use statistics to form our extended range scans, we can further improve the

overall query response behavior.

Extended range scans with statistics. In Figure 6.9 it is shown in detail

92 6 Statistic Driven Acceleration of Spatial Queries

100

10000

1000000

nu
m

be
r o

f r
ea

ds
logical reads
physical reads

0

20

40

60

80

tim
e

[s
ec

.]

query time
preparation time

RI-tree* stat. driven
RI-tree*

RI-tree** stat. driven
RI-tree**

RI-tree* stat. driven
RI-tree*

RI-tree** stat. driven
RI-tree**

(a) CAR dataset

10

1000

100000

10000000

nu
m

be
r o

f r
ea

ds

logical reads
physical reads

0

1

2

3

tim
e

[s
ec

.]

query time
preparation time

RI-tree* stat. driven
RI-tree*

RI-tree** stat. driven
RI-tree**

RI-tree* stat. driven
RI-tree*

RI-tree** stat. driven
RI-tree**

(b) PLANE dataset

Figure 6.9: Cost-Based Tile Grouping.

that our new statistic-based approach accelerates both, the basic variant

of the RI-tree [KPS00a](*), and a variant which is optimized for efficient

handling of interval sequences [KPS01](**). The interval sequence optimized

approach (**) merges in a preprocessing step all join partners (fork node

ids) of all query intervals into one query interval sequence. Redundant join

partners are dropped from the query sequence. Figure 6.9 depicts that we can

reduce the number of logical reads approximately by an order of magnitude

if we exploit the available statistics. This reduction is achieved without

increasing the number of physical reads so that the overall runtime decreases.

If we use the statistics, we outperform the simple scanning approach even for

the optimum scanning level (cf. Figure 6.8). In all our tests we accelerate the

query process by 20% to 150% if we form the extended range scans according

to the available statistics.

In the next experiments, we applied the statistic based approach to the

6.5 Experimental Evaluations 93

0

100

200

300

400

500

tim
e

[s
ec

.]

query time
preparation time

basic
RQ-tree

statistic driven
RQ-tree

(only B+-tree statistics)

statistic driven
RQ-tree
(all statistics)

(a) Number of logical/physical reads

0

10

20

30

40

50

tim
e

[s
ec

.]

query time
preparation time

RQ-tree with
sequence

optimization
(analog to [KPS01])

statistic driven
RQ-tree

(only I/O cost)

statistic driven
RQ-tree

(CPU + I/O cost)

(b) Runtime performance

Figure 6.10: Statistic based accelerated RQ-tree on the CAR dataset.

RQ-tree (cf. Figure 6.10). Figure 6.10(a) shows that the use of our quantile

statistics (cf. Section 6.3) accelerates the RQ-tree by a factor of about 2. A

further improvement can be achieved by using the information of the highest

and lowest level of stored tiles within the database (cf. Section 6.2), leading

to a speed-up factor of almost 3. Figure 6.10(b) depicts the acceleration

of the sequence optimized RQ-tree incorporating the same query optimiza-

tions as applied to the RI-tree in [KPS01], i.e. redundant join partners (tile

ids) are pruned from the query sequence. We compare the statistic driven

variant without incorporating the CPU cost of the refinement step with the

statistic driven variant including the CPU cost (cf. Section 6.3.2). The first

variant considers only the I/O cost and neglects the CPU cost for forming

the extended range scan sequences: Figure 6.10(b) shows that this approach

leads only to an acceleration in the preparation step, but the overall query

time increases due to the expensive refinement process. On the other hand,

if we incorporate the CPU cost for the cost estimation, we can achieve an

overall speed-up of approximately 30%, even for this highly specialized index

structure.

To sum up, similar to the experiments related to the RI-tree, we achieve

an acceleration factor of the query process by 0.3 to 3 if we form the extended

range scans according to the available statistics, considering both expected

I/O-cost and expected CPU-cost.

Statistic based decomposition. In a last experiment, we carried out

94 6 Statistic Driven Acceleration of Spatial Queries

different box volume queries on the RI-tree for the PLANE dataset. Figure

6.11 depicts the average runtime for three different boxes, where we moved

each box to 10 different locations. As shown in Figure 6.11, our statistic −
based decomposition approach can improve the query response behavior up

to 10,000%, i.e. by two orders of magnitude, compared to the granularity−
bound approach. This speed-up is mainly due to the reduced decomposition

time. On the other hand, the query response time does not suffer from

the fact that we did not decompose the boxes with the maximum possible

accuracy. The time we need for the additional refinement step to filter out

false hits is compensated by the much smaller number of query intervals,

resulting from a coarser decomposition of the query box. To sum up, our

statistic-based decomposition approach is especially adequate for commonly

used box volume queries.

1

10

100

1000

10000 response time
decomposition time

granularity- selectivity-
bound decomposition

Ti
m

e
[s

]

(a) box size equal to
0.00002% of data space
yielding 0.03% selectivity

1

10

100

1000

10000 response time
decomposition time

granularity- selectivity-
bound decomposition

Ti
m

e
[s

]

(b) box size equal to
0.003% of data space yield-
ing 0.1% selectivity

1

10

100

1000

10000 response time
decomposition time

granularity- selectivity-
bound decomposition

Ti
m

e
[s

]

(c) box size equal to
0.008% of data space yield-
ing 1.0% selectivity

Figure 6.11: Box queries on the PLANE data (decomposition and response

time).

6.6 Summary

In this chapter, we have shown how we can accelerate spatial query processing

by means of statistics which are available for free, as they are maintained by

the cost models belonging to the corresponding spatial index structures. Ac-

cording to our experiments, we achieved speed-up factors of up to two orders

of magnitude. The achieved performance is due to the fact that it can dy-

namically switched between a further use of the index structure and a linear

6.6 Summary 95

scan. Our statistic-driven approach adapts the access method continuously

variable to the best of these two worlds.

In the next chapter, we show that our statistic-based acceleration ap-

proach can successfully be applied to time critical applications, in particular

Virtual Reality applications with haptic rendering of complex spatial envi-

ronments.

96 6 Statistic Driven Acceleration of Spatial Queries

Chapter 7

Haptic Exploration of Large

Spatial Environments

The efficient management of complex spatial information has become an en-

abling technology for novel database applications in the area of Multimedia

and Virtual Reality (VR). Unfortunately, the integration of modern database

systems into human centered VR applications, e.g. haptic- and visual explo-

ration of virtual worlds, fails to achieve the indispensably required interactive

response times. In this chapter, we will show that our efficient access methods

applied to commercial database systems suffices to provide haptic rendering

systems with real-time contact-force computation in very large and complex

structured virtual 3D-worlds.

7.1 The ”Sense of Touch” and Database

Systems

In the past decades, the interest in haptic applications has increased enor-

mously. In combination with VR applications, haptic rendering enables to

simulate a physical environment in such a way that humans can readily vi-

sualize, feel, explore and interact with the objects in the environment. For

97

98 7 Haptic Exploration of Large Spatial Environments

Cyber Grasp Haptic Device

Haptic DeviceHaptic Joystick

Figure 7.1: Concurrent virtual engineering using different haptic devices.

example, simulation of complex engineering tasks, e.g. installation of an

electric bulb within a car, requires more than visual cues, we need to ”feel”

it. The potential applications of this emerging technology include virtual

prototyping, animation, robotic, cooperative design, and education among

many others. In all these areas the haptic feedback has a great potential.

Figure 7.1 shows a collection of different haptic devices which enable the

manipulation of virtual objects and the feedback of the computed forces to

the operators.

Generally the environment is given to us as a boundary representation

of a set of polyhedral obstacles, each of which is a component part that

has designed and modeled within a CAD system. Most of the earlier work

has assumed that the virtual environment entirely fits into the main mem-

ory [MPT99]. However, this assumption is no longer reasonable. There are

several example applications which need the integration of haptic rendering

into large scaled virtual environments, including ”support of tele-operation

for maintenance tasks in space”, ”simulation of human centered robots” or

”haptic walk-through systems”. A realistic virtual environment typically con-

sists of thousands of objects which may occupy gigabytes of storage space,

especially for high resolution objects. Furthermore, we assume that we have

7.2 Related Work 99

to provide shared access for multiple users concurrently exploring the same

data space (cf. Figure 7.1). In order to fulfill these requirements, we inte-

grate an off-the-shelf database system into a haptic rendering system for the

management of the complete environment data. Thereby, we use the sub-

stantial advantages of modern database systems, such as logical and physical

data independence, concurrency control, recovery and security [Dat99]. In

our approach, we employ the object-relational data model, as it is widely

accepted and implemented by many database systems. Furthermore, its ex-

tensibility is a necessary precondition for the seamless embedding of spatial

data types and operations. This work as been published in [KKPR05a].

7.2 Related Work

A lot of work has been done in the field of haptic rendering. A survey is

given in [LG98]. To the best of our knowledge, there does not exist any

published work that addresses the issue how to combine haptic rendering

methods with novel database technologies, so that the force computation

can be externalized. For that reason, we separately point out the related

work on haptic rendering.

7.2.1 Haptic Rendering

In real-world simulations object models are mostly approximate descriptions

of the simulated objects used in the virtual environment. In many rendering

algorithms, the geometrical complexity of the particular modeled objects is

restricted due to high rendering times. The V oxmap−PointShellTM (V PS)

approach [MPT99] and its extensions [RPP+01][MPT06] are very promising

due to constant sample rates, independent of the static environment. The

real-time capability of the V PS approach qualifies for online haptic interac-

tions between a human operator and a large virtual environment. However,

the traditional approach requires that the static environment fits in main

memory which limits the size or resolution of the haptic scenario. In this

100 7 Haptic Exploration of Large Spatial Environments

chapter, we present an externalization of the V PS approach which allows

the user to explore a very large static environment but still provides suffi-

cient high haptic rendering frame rates.

7.2.2 Relational Spatial Query Processing

The database integration into the haptic rendering system requires that col-

lision queries are forwarded to the database query engine. In order to achieve

the interactive response times required for real-time haptic exploration, the

use of efficient spatial access methods based on the relational indexing are in-

dispensable. A general survey on the paradigm of relational index structures

can be found in [KPPS03b]. The basic idea of relational access methods

relies on the exploitation of the built-in functionality of existing database

systems. A relational access method delegates the management of persistent

data to an underlying relational database system by strictly implementing

the index definition and manipulation on top of an SQL interface. Thereby,

the SQL layer of the ORDBMS is employed as a virtual machine managing

persistent data.

In our haptic rendering approach, we focused on the acceleration of

database queries following the statistic based query processing techniques

presented in Chapter 6. By means of the statistic driven acceleration of spa-

tial queries, we try to achieve the performance requirements of the haptic

rendering systems.

7.3 Data Model for Haptic Rendering

In the V PS approach [MPT99], the virtual environment consists of objects

which can be divided into dynamic and static objects. Dynamic objects can

freely move through the virtual space, whereas the static objects are fixed

in the world coordinate system. Using a haptic device, a user can touch the

static objects (static environment) with a dynamic probe, e.g. a virtual clone

of the users hand, and the rendered collision forces will be fed back to the

7.3 Data Model for Haptic Rendering 101

operator. From the haptic point of view, the dynamic objects perform the

action, whereas the static environment objects provoke the reaction within

the haptic loop. The employed haptic rendering method requires a voxel set

(voxmap) for the spatial representation of the static objects and a point set

(pointshell) to represent the dynamic objects.

7.3.1 Static Object Model

The virtual environment can be regarded as a collection of individual 3-

dimensional objects, representing a complex and intricate geometric shape,

e.g. a completely digitally modeled automobile or aircraft. Thereby the sur-

faces and solids are designed at a very high precision. This environment is

collectively represented by a single spatial occupancy map, called a voxmap

(volume map). It is created by discretizing the static environment space

which is partitioned into regions of free space, and object space. The collec-

tion of the discrete volume elements (voxels) of the object spaces builds the

voxmap (cf. Section 2.1.3).

7.3.2 Dynamic Object Model

The dynamic object is described by a collection of points (pointshell) which

models its surface. A surface normal vector is assigned to each surface point,

pointing to the interior of the object (cf. Section 2.1.4).

7.3.3 Collision Response

The haptic rendering algorithm includes a fast collision detection technique

based on probing the voxmap with the surface point samples of the pointshell.

By using the normal vectors of the pointshell, an approximate collision force

can be computed in constant time for each point-voxel interpenetration. The

time consumed to render a single frame depends only on the number of

pointshell points.

102 7 Haptic Exploration of Large Spatial Environments

original

objects
Point Shell with

surface plane normals

(dynamic object)

Voxmap of

the static object

Figure 7.2: Collision detection by probing voxmap with pointshell.

The interference detection is reduced to point-voxel intersections which

can be computed by a plain three-dimensional address computation for each

point. If the resolution of the voxel grid and the dynamic point shell are cho-

sen properly, point-voxel intersections are guaranteed to occur in the case of

a surface interpenetration. Figure 7.2 [MPT99] depicts a voxmap describing

the surface of a static object which is probed by a pointshell describing the

surface of the dynamic object. The associated collision forces are computed

by the local interference of a surface point p of the dynamic point shell with

a voxel v of the static environment (cf. Figure 7.3(a) and 7.3(b)). The depth

of interpenetration d is calculated as the distance from p to the tangent plane

T (p, v). This tangent plane is dynamically constructed to pass through the

d<0

force vector along point

normal

Tangent Plane

Point Shell

Static Surface

(a) No surface interpenetration

d>0

force vector along point

normal

Tangent Plane

Point

Shell

Static Surface

(b) Surface interpenetration

Figure 7.3: Force feedback computation.

7.4 Relational Embedding of the Static Environment 103

Figure 7.4: Display of the contact forces in a virtual scene.

center of v and to have n(p) as normal vector. If p has not penetrated below

the tangent plane, i.e. in the direction to the interior of the static object, we

obtain d < 0 and produce no local force feedback (cf. Figure 7.3(a)). Con-

trary, if p is inside of voxel v, and n(p) directs to the corresponding tangent

plane of v, we detect a positive interpenetration d > 0 (cf. Figure 7.3(b)).

According to Hooke’s law, the contact force is proportional to d, and the

force direction is given by n(p), i.e. the local force vector is determined by

interpenetration depth d and the normal vector n(p). The average over all

local force vectors of the point shell is transferred to the haptic device to

exert the resulting force feedback. In the haptic exploration scene depicted

in Figure 7.4, the average force vectors for each fingertip are visualized as

arrows pointing towards the effective contact force.

7.4 Relational Embedding of the Static

Environment

In this section, we show how to embed the haptic rendering method into a re-

lational schema in order to enable the integration into a commercial database

management system. Let us first mention that the Point-Shell representing

the dynamic object is small enough, to fit easily into main memory.

The static environment consists of a large set of 3-dimensional objects,

each described in a separate CAD-file (object files). The objects of the static

environment are stored in a relational table which we call object table. It

104 7 Haptic Exploration of Large Spatial Environments

id link

A file_A

B file_B

C file_C

… …

Object Table

id zval

A 105

A 106

A 753

… …

Index Table

B 21

original object description

voxmap

object files

Figure 7.5: Relational embedding of the static environment.

contains a set of tuples (id, link) where id denotes a unique object identifier

and link refers to the external file containing the complete object as high

order surface representation (cf. Figure 7.5).

In order to carry out point-voxel queries efficiently, we propose a simple

relational access method which consists of the object table and an additional

index table storing all index data exclusively derived from the object table as

depicted in Figure 7.5. Each object from the static environment is initially

converted into a set of voxels (cf. Section 2.1.3) which are stored with the

corresponding object identifier in the index table. The table consists of tuples

(id, zval), where the foreign key id denotes the identifier of the associated

object and zval denotes the encoded position of the voxel using the Z-order.

We employ the Z-order to achieve a good trade-off between its spatial cluster-

ing property and its computational complexity. Due to the linear ordering

of the object voxels, the objects can be dynamically indexed by the zval

attribute using built-in index structures, e.g. a B+-tree.

7.5 Relational Embedding of the Haptic Rendering Machine 105

7.5 Relational Embedding of the Haptic

Rendering Machine

Most ORDBMSs, including Oracle, IBM DB2 or Informix IDS/UDO, provide

extensibility interfaces in order to enable database developers to seamlessly

integrate custom object types and predicates within the declarative DDL

and DML. These interfaces form a necessary prerequisite for the seamless

embedding of user-defined spatial objects, functions and access methods into

off-the-shelf ORDBMSs. On this basis, we define the haptic query (contact-

force computation) which is expressed on top of the SQL engine as follows:

SELECT sum(X), sum(Y), sum(Z)

FROM (

SELECT force x(PS) AS X, force y(PS) AS Y , force z(PS) AS Z

FROM :POINTSHELL PS

WHERE EXISTS (

SELECT 1

FROM INDEX TABLE I

WHERE PS.zval = I.zval)

)

Figure 7.6: SQL statement for haptic query processing

The input of this nested SQL query is the index table and a collection

of points as transient table (POINTSHELL) derived from the dynamic ob-

ject which obey the following schema (id,zval,point,n vec). For each query

cycle we assume that the 3-dimensional pointshell points are mapped to the

corresponding zval values associated with the global voxel grid of our static

environment. In the projection part of the SQL statement, we use the func-

tions force x(), force y() and force z() which are user-defined aggregate

functions as provided in the SQL:1999 standard. These functions collect all

points of the pointshell which intersect any object voxel stored in the index

table and return the corresponding aggregated contact force vector separated

into the x, y and z dimension components. The exist-quantifier used in our

SQL statement is necessary to filter out any redundant results.

106 7 Haptic Exploration of Large Spatial Environments

7.6 Accelerated Query Processing

Our approach aims at reducing the total query cost associated with the built-

in B+-tree. If we assume that our pointshell consists of n points, the simple

query process as proposed in Section 7.5 leads to n point queries on the index

table. Thus, we have to navigate n times through the built-in index (B+-

tree) directory. The general idea of our approach is to apply the statistic

based query techniques, as presented in the previous chapter, on top of the

SQL interface in order to minimize the overall navigational cost of the built-

in index. Based on the cost model, we group the n query points into m

query ranges, where m � n holds. For each query range, the built-in index

directory has to be traversed only once, and the corresponding results can

be read by a single scan on the leaf level of the built-in index.

At first, we formally introduce two different possibilities to carry out a

pointshell query, the point query sequence and the range query sequence. We

also consider the cost associated with both query types. In the following, we

assume that all points of the pointshell are transformed to the corresponding

zval values. We start with a straightforward approach of a pointshell query,

the point query sequence.

7.6.1 Point Query Sequence

The pointshell query Q leads to an ordered sequence SeqQ,I = (〈p1, ..., pn〉)
of query points on the index table I, where pi < pi+1 for all i ∈ 1, ..., n− 1.

For SeqQ,I the following assumptions hold:

• The elements ri stored in the index are of the same type as pi. Fur-

thermore, we assume that the elements ri can be regarded as a linear

ordered list L(I) = 〈r1, ..., rN〉 for which r1 ≤ ... ≤ rN holds.

• We assume that the disk blocks bi of the index obey a linear ordering

and fulfill the following property: r′ ≤ r′′ ⇔ b(r′) ≤ b(r′′), where b(r)

denotes the disk block of the index I which contains the entry r.

7.6 Accelerated Query Processing 107

7.6.2 Range Query Sequence

Consecutive query points of the point query sequence SeqQ,I = (〈p1, ..., pn〉)
can be grouped into subsequences 〈seq1, ..., seqm〉 of the form

(〈〈p1, ..., pl1〉, 〈pl1+1, ..., pl2〉, ..., 〈plm−1+1, ..., pn〉〉)

where li−1 < li and 1 ≤ li ≤ n for all i ∈ 1, ..,m, m < n. Each subsequence

seqi builds the new query range si, which is bounded by the first and last

point of seqi. Thus, the large amount of point queries is reduced to a small

sequence RSeqQ,I of query ranges associated with the pointshell Q and index

table I. When carrying out a range query s = (pu, pv) derived from the sub-

sequence 〈pu, ..., pv〉, we traverse the index directory only once and perform

a range scan (pu, pv) on the leaf-level. Thereby, we read false hits from the

index table I which have to be filtered out in a subsequent refinement step.

7.6.3 Cost Based Grouping

For each haptic query, there are a lot of different possibilities to group the

pointshell points into a range query sequence. We can apply statistics related

to the build-in index and the corresponding cost model as presented in Section

6.3 in order to find a cost optimum grouping for the pointshell points.

Unfortunately, there are exponentially many grouping possibilities which

results in an exponential runtime O(2n) of an optimum cost-based grouping

algorithm, where n denotes the number of pointshell points. In this section,

we will present an algorithm with a guaranteed worst-case runtime complex-

ity of O(n) which produces a cost optimal range query sequence, helping

to accelerate the query process considerably. Our approach closes the gaps

between two query points if and only if the estimated cost related to the ad-

ditional read data is smaller than the estimated navigational cost related to

an additional point query following the extended index range scan approach

of Section 6.3.2. The grouping algorithm CBGroup is presented in Figure

7.7.

Let us note that our cost based grouping method reports the cost optimal

108 7 Haptic Exploration of Large Spatial Environments

CBGroup(PointShell PS, QuantileVector Q){
Integer left := compute zvalue(PS.point[1]);
Integer right := left;

Integer next := 0;

Float navcost := estimate navigational cost();

for i=2 to PS.size() do {
next := compute zvalue(PS.point[i]);
if estimate gap cost(right,next,Q) ¿ navcost then {

report(left,right);

left := next;

}
right := next;

}
report(left,right);

}

Figure 7.7: PointShell Grouping Algorithm CBGroup.

solution w.r.t. our selectivity estimation method (cf. Section 6.3.2) because

each modification of the reported sequence would increase the overall query

cost.

7.6.4 Accelerated SQL Query

In order to apply our cost optimal query method on top of the SQL engine,

we have to rewrite the SQL statement of Section 7.5 as depicted in Figure

7.8.

Now, the input of the nested SQL query is the index table I and a col-

lection of zval intervals covering the pointshell points as transient table

POINTSHELL INTERVALS which obey the following schema (id, lower,

upper, exactPointList). In each query cycle we retrieve the voxels from I

which are covered by a zval interval in a filter step. Subsequently, we collect

the voxels which match the zval values of the pointshell points covered by

the zval interval in a refinement step by means of the function test Exact().

7.7 Performance Evaluation 109

SELECT sum(X), sum(Y), sum(Z)

FROM (

SELECT agg force x(PSI,zval tab) AS X,

agg force y(PSI,zval tab) AS Y ,

agg force z(PSI,zval tab) AS Z

FROM :POINTSHELL INTERVALS PSI,

TABLE(SELECT DISTINCT I.zval

FROM INDEX TABLE I

WHERE I.zval BETWEEN PSI.lower AND PSI.upper

AND test Exact(I.zval,PSI.exactPointList)) zval tab

)

Figure 7.8: Accelerated SQL statement for haptic query processing

The resulting collection of voxels and the corresponding zval interval are dele-

gated to the aggregate functions agg force x(), agg force y() and agg force z()

separately computing the force vector component in each dimension.

7.7 Performance Evaluation

In this section, we evaluate the performance of our approach with a special

emphasis on the haptic frame rate. The tests are based on a real-world test

dataset CAR which was provided by our industrial partner, a German car

manufacturer, in form of high resolution voxelized 3-dimensional CAD parts.

Table 7.1 shows the properties of this dataset.

dataset #voxels #objects size of data space

CAR 14 · 106 200 233 cells

Table 7.1: Datasets.

The query processing functionality of our approach is implemented on top

of the Oracle9i Server using PL/SQL for the computational main memory

based programming. All experiments were performed on a Pentium 4/2600

machine with IDE hard drives. The database block cache was set to 500

110 7 Haptic Exploration of Large Spatial Environments

0
200

400
600

800
1000

1200

1E+01 1E+03 1E+04 5E+04 1E+05

group query refinement

number of quantiles

qu
er

y
pr

oc
es

si
ng

tim
e

[m
ic

ro
se

c]

Figure 7.9: Avg. query processing time for different quantile resolutions.

disk blocks with a block size of 8 KB and was used exclusively by one active

session.

In the following, we examine the benefits of using range query sequences

instead of point query sequences. In order to point out the difference of

the data access cost between the simple query and the accelerated query, we

removed the aggregate functions from both SQL statements in our experi-

ments. We carried out several pointshell queries at different locations and

logged the average response times. The query pointshell consists of about

300 points.

In a first experiment, we investigated how different resolutions of the

quantile vector influence the performance of our approach (cf. Figure 7.9).

A low quantile resolution leads to a cheap grouping, but badly estimates the

query selectivity. Contrary, if we choose a high quantile resolution, the query

is well adjusted to the respective selectivity at the expense of the grouping

performance. In our experiments we achieved the best results with a quantile

resolution of about 10,000.

Throughout the following experiments we used the best possible quantile

resolution of 10,000 for our CBGroup algorithm. Furthermore, we take a

comparison approach for generating range scans which does not use any

statistical information at all. The comparison algorithm, called MaxGap

approach, groups query points into a range query in which the gap between

two adjacent query points does not exceed a specified MAXGAP parameter.

Note that the setting MAXGAP = 0 corresponds to the original point query

7.7 Performance Evaluation 111

0

500

1000

1500

2000

2500

5E+0 5E+1 5E+2 5E+3 5E+4

query refinement

MAXGAP CBGroup

qu
er

y
pr

oc
es

si
ng

tim
e

[m
ic

ro
se

c]

Figure 7.10: Performance of range query sequences.

sequence.

The next experiment compares the runtime of our cost-optimum CBGroup

algorithm which corresponds to the best possible runtime achieved by the

MaxGap approach. By varying the MAXGAP parameter, we can find a

good trade-off between navigational overhead and filter performance, i.e. the

number of query ranges should be small while keeping the result size of the

filter low. Figure 7.10 shows that using low MAXGAP values results in a low

query performance. This is caused by a substantial navigational overhead of

the index because we have to carry out many range queries. On the other

hand, high MAXGAP values result in a very low filter performance which

leads to high I/O and refinement cost. We can observe that a good trade-off

between the navigational overhead and filter performance is achieved if we

use a MAXGAP value of 500. The results presented in Figure 7.10 also

show that our CBGroup approach adapts well to the data characteristics

and achieves a performance which is comparable to the MaxGap approach

when the best MAXGAP parameter is chosen.

In the last experiment (cf. Figure 7.11), we performed haptic queries in

regions having different voxel density. The voxel density denotes the ratio

of object voxels to free space voxels. In areas where the voxel density is

low, a high MAXGAP value performs best. Although the query ranges are

large, which results in low navigational cost, the result set stays small due

to low voxel density. With increasing voxel density, high MAXGAP values

result in many false hits, leading to high I/O and refinement cost. For all

112 7 Haptic Exploration of Large Spatial Environments

0

500

1000

1500

2000

2500

5E+00 5E+01 5E+03 5E+04 5E+05

query time filter time

MAXGAP CBGroup

qu
er

y
pr

oc
es

si
ng

tim
e

[m
ic

ro
se

c]

(a) voxel density = 0% - 3%

CBGroup

0

1000

2000

3000

4000

5000

5E+00 5E+01 5E+02 5E+03 5E+04

MAXGAP

qu
er

y
pr

oc
es

si
ng

tim
e

[m
ic

ro
se

c]

(b) voxel density = 3% - 30%

CBGroup

0

5000

10000

15000

20000

5E+00 5E+01 5E+02 5E+03 5E+04

MAXGAP

qu
er

y
pr

oc
es

si
ng

tim
e

[m
ic

ro
se

c]

(c) voxel density = 30% - 100%

0

2

4

6

8

10

5.E+00 5.E+01 5.E+02 5.E+03 5.E+04

0 - 3%

3 - 30%

30 - 100%

CBGroupMAXGAP

q
u
e
ry
p
ro
c
e
s
s
in
g
ti
m
e

[m
s
e
c
]

voxel density

(d) voxel density = 0% - 100%

Figure 7.11: Average query performance dependent on the voxel density.

voxel density settings, our cost-based grouping algorithm adapts to the voxel

density automatically as shown in Figure 7.11d. Independent of the voxel

density, CBGroup achieves a performance that is very close to the respective

best MAXGAP parameter which in fact differs for varying voxel densities.

Obviously, the CBGroup algorithm locally adapts the grouping to the data

distribution.

7.8 Summary

The experiments show that the approved main memory Voxmap-PointShell

method can be indeed successfully externalized and integrated into a fully-

fledged database management system. This application clearly demonstrates

the advantage of our cost-optimum access method which groups different in-

dependent point queries together to larger range scans. In a broad experi-

mental evaluation based on a real-world test dataset, we have demonstrated

7.8 Summary 113

the enormous acceleration of the query process. We obtain even a frame rate

of the haptic rendering loop which is sufficient for many haptic rendering

applications [MPT99].

114 7 Haptic Exploration of Large Spatial Environments

Chapter 8

Cost-Based Approximation of

Complex Spatial Objects

In the previous chapters, we have presented efficient solutions for spatial

collision queries on voxelized objects. The proposed methods are based on

adjusting the query to the characteristics of the distribution of the datasets

by means of simple statistics. In this chapter, we propose to use similar sta-

tistical information in order to reduce the complexity of the database objects

by building more adequate object approximations. The concept proposed in

this chapter is published in [KKPR04a].

Three-dimensional CAD applications require efficient and scalable database

solutions to cope with rapidly growing amounts of dynamic data. Such appli-

cations include the digital mock-up of vehicles and airplanes, virtual reality

applications or haptic simulations in virtual product environments (cf. Chap-

ter 7). For instance, the ”777” from Boeing was completely digitally designed

and assembled. It consists of about three million parts, having very complex

shapes.

We assume that the spatial objects are conservatively be approximated

by a set of voxels, i.e. cells of a grid covering the complete data space. This

is a common and successful approach since spatial selection queries can be

easily expressed as an intersection of the corresponding voxel sets. However,

115

116 8 Cost-Based Approximation of Complex Spatial Objects

for high resolution objects the voxel sets representation can result in a very

large amount of primitives which have to be managed and can become very

expensive w.r.t. memory space and indexing cost. For example, some parts of

the ”777” from Boeing are composed of several millions of voxels. Although

the voxels can further be grouped together to intervals, the number of the

resulting voxel intervals still remains very high. In order to overcome the

high cardinality of the voxel based representation which makes an efficient

processing of the objects difficult, we introduce a cost-based decomposition

algorithm for linearized high-resolution spatial objects. This decomposition

helps to range between the two extremes of one-value approximations and the

use of unreasonably many approximations. Our approach takes compression

algorithms for the effective storage of decomposed interval representations of

spatial objects and access probabilities of these decompositions into account.

This work has been published in [KKPR04a].

8.1 Related Work

First, we will shortly discuss different aspects related to an effective decom-

position of complex-structured spatial objects for efficient query processing.

Approximations of extended objects generally consist of either one or

several simple spatial primitives such as minimal bounding boxes which are

often used for one-value approximations [BKSS94][GG98]. Although provid-

ing the minimal storage complexity, one-value approximations of spatially

extended objects often are far too coarse. This is in particular the fact for

many spatial applications where GIS or CAD objects feature a very complex

and fine-grained geometry.

In contrast, approaches which use multi-value approximations, i.e. ap-

proximations which are composed of several spatial primitives, can achieve a

better approximation than a single rectangle. In the case of a very accurate

approximation, the number of primitives can become very high. For instance,

Gaede [Gae95] pointed out that the number of z-value intervals representing

a spatially extended object exponentially depends on the granularity of the

8.2 Approximation of Rasterized Spatial Objects 117

grid approximation. Furthermore, the extensive analysis given in [MJFS96]

and [FJM97] shows that the asymptotic redundancy of an interval-based de-

composition is proportional to the surface of the approximated object. Thus,

in the case of highly resolved huge parts, e.g. wings of an airplane, the num-

ber of intervals can become unreasonably high which results in too many

intersect verifications for any spatial query procedure.

A promising solution for a good trade-off between these conflicting objec-

tives may be found somewhere in between one-value and multi-value object

approximations. In [SK93], Kriegel and Schiwietz tackled the complex prob-

lem of ”complexity versus redundancy” for 2D polygons. They investigated

the natural trade-off between the complexity of the components and the

redundancy, i.e. the number of components, with respect to its effect on

efficient query processing. The presented empirically derived root-criterion

suggests to decompose a polygon consisting of n vertices into O(
√

n) many

simple approximations. As this root-criterion was designed for 2D polygons

and was not based on any analytical reasoning, it cannot be adapted to com-

plex 3D objects. In this chapter, in contrast, we will present an analytical

cost-based decomposition approach which can be used for 2D and 3D objects.

It takes the cost of the multi-step query processing method, i.e. the filter

and refinement cost, into account.

8.2 Approximation of Rasterized

Spatial Objects

Objects having a very complex structured shape often need to be represented

with high resolution in order to pattern their complex structure as accurate

as possible. We assume objects which are rasterized with a given resolution

as depicted in Figure 8.1.

Definition 8.1 (rasterized objects) Let O be the domain of all object

identifiers and let id ∈ O be an object identifier. Furthermore, let Nd be the

domain of d-dimensional points. Then, we call a pair Ovoxel = (id, ν1, ..., νn) ∈

118 8 Cost-Based Approximation of Complex Spatial Objects

O × 2Nd
a d-dimensional rasterized object. We call each of the νi an object

voxel, where i ∈ 1, ..., n.

Generally, a rasterized d-dimensional object (cf. Figure 8.1(b)) consists

of a set of d-dimensional points which can be naturally ordered in the one-

dimensional case. If d is greater than 1, such an ordering does not longer

exist. By means of space filling curves ρ : Nd → N, all multidimensional

rasterized objects are mapped to a set of integers (cf. Figure 8.1(c)). As

a principal design goal, space filling curves achieve good spatial clustering

properties since voxels in close spatial proximity are encoded by contiguous

integers which can be grouped together to intervals. Examples for space

filling curves include the lexicographic-, Z- or Hilbert-order, whereas with

the Hilbert-order the least intervals per object are generated [FR89][Jag90],

but it is also the most complex linear ordering. As a good trade-off between

redundancy and complexity, we use the Z-order throughout this chapter.

In form of voxel sets, high resolution spatial objects may consist of several

hundreds of thousands of voxels. Applying space filling curves in order to

linearize the voxelized objects, we achieve a sequence of intervals which is

marginally smaller. For instance, one of our engineering test datasets com-

poses about 18 million voxels results in about 9 million intervals using the

z-order based linearization. The resulting sequence of intervals, representing

a high resolution spatially extended object, often consists of very short in-

tervals connected by short gaps. Experiments suggest that both gaps and

intervals obey an exponential distribution [KPPS03a]. In order to overcome

this obstacle, it seems promising to pass over some ”small” gaps in order to

obtain much less intervals, which we call interval container.

In the following, the geometry of a spatial object is assumed to be de-

scribed by a sequence of voxels.

8.2.1 Interval Container

An interval container is a covering of one or more ρ-order-values, i.e. integer

values resulting from the application of a space filling curve ρ to a rasterized

8.2 Approximation of Rasterized Spatial Objects 119

a) spatial object b) voxelized spatial
object

c) z-order based
linearization

voxelization

object voxel

z-curve

Figure 8.1: Voxelized spatial object

set of object-
voxel intervals

set of interval
container

576 584 592 600 608

576 584 592 600 608

C1 C2 C3

Figure 8.2: Interval container sequence

object (id, ν1, ..., νn), where the interval container may contain integer values

which are not in the set {ρ(ν1), ..., ρ(νn)} (cf. Figure 8.2).

Definition 8.2 (interval container) Let (id, ν1, ..., νn) be a rasterized ob-

ject and ρ : Nd → N be a space filling curve. Furthermore, let W =

{(l, u), l ≤ u} ⊂ N2 be the domain of intervals and let b1 = (l1, u1), ..., bn =

(ln, un) ∈ W be a sequence of intervals with ui + 1 < li+1, representing

the set ρ(ν1), ..., ρ(νn). Moreover, let m ≤ n and let i0, i1, i2, ..., im ∈ N

such that 0 = i0 < i1 < i2 < ... < im = n holds. Then, we call Ocont =

(id, 〈〈bi0+1, ..., bi1〉, ..., 〈bim−1, ..., bim〉〉) an interval container sequence of car-

dinality m, and each of the j = 1, ...,m groups Ij = 〈bij−1+1, ..., bij〉 of Ocont

an interval container.

Intuitively, an interval container covers consecutive z-value intervals, where

there is at least one gap of one z-value between adjacent intervals. Next,

we will define some useful operators on interval containers which we use

throughout this thesis. Table 8.1 summarizes the operators for the interval

120 8 Cost-Based Approximation of Complex Spatial Objects

Operators Description

H(CI) hull interval minimal covering the interval container CI .

H(CI) = (lr, us)

L(CI) length of interval container CI .

L(CI) = (us − lr + 1)

D(CI) density of interval container CI .

D(CI) =

∑
b∈CIL(b)

L(CI)

G(CI) maximum gap between two intervals in CI .

G(CI) =

 0 r = s

max{li − ui−1 − 1, i = r + 1, ..., s} else

B(CI) byte sequence of interval container CI .

B(CI) = 〈s0, ..., sn〉, where si ∈ N and 0 ≤ si < 28, n = bu/8c − bl/8c

si =
7∑

k=0

 27−k ∃(lt, ut) ∈ Igroup : lt ≤ blr/8c · 8 + 8i + k ≤ ut, for r ≤ t ≤ s

0 otherwise

Table 8.1: Operators on interval containers.

container CI = 〈(lr, ur), ..., (ls, us)〉. The byte sequence B(CI) corresponds to

a sequence of voxels within H(CI) along the space filling curve ρ, transformed

into a bit sequence of length L(CI), where ”1” denotes an object voxel and

”0” denotes free space voxels. Table 8.2 demonstrates the values of these

operators for the interval containers in our example shown in Figure 8.2.

Note that the operators defined on interval containers can naturally also be

applied to simple intervals. Let b = (l, u) be an interval, then H(b) = b,

L(b) = u− l + 1, D(b) = 1, G(b) = 0 and B(b) =′ 1
′L(b)
b .

In the next section, we discuss how the I/O cost required to load the

exact content of the interval containers, i.e. the byte sequence (B(CI)), can

be drastically reduced by applying compression techniques.

8.2 Approximation of Rasterized Spatial Objects 121

Operators C1 C2 C3

H(Cx) [578,579] [586,593] [600,605]

L(Cx) 2 8 6

D(Cx) 1 5
8

3
6

G(Cx) 0 2 3

B(Cx) 00110000b 00110011 01000000b 11000100b

Table 8.2: Operators for the interval containers C1, C2 and C3 of the ex-

ample given in Figure 8.2.

8.2.2 Compression of Interval Containers

In this section, we motivate the use of packers by showing that B(CI) con-

tains patterns. Therefore, B(CI) can efficiently be shrunk by using data

compressors. Furthermore, we discuss the properties which a suitable com-

pression algorithm should fulfill. In the following, we give a brief presentation

of a new effective packer. It exploits gaps and patterns included in the byte

sequence B(CI) of our interval container CI .

Patterns. To describe a rectangle in a 2D vector space, we only need four

numerical values, e.g. two 2-dimensional points. In contrast to the vector

representation, an enormous redundancy might be contained in the corre-

sponding voxel sequence of an object. An example is shown in Figure 8.3.

As space filling curves, in particular the Z-order, enumerate the data space

in a structured way. Such ”structures” can be found in the resulting voxel

sequence, representing simply shaped objects. We can pinpoint the same

phenomenon not only for simply shaped parts, but also for more complex

real-world spatial parts. Assuming we cover the whole voxel sequence of an

object id by one interval, i.e. Ocont = (id, 〈CI〉), and survey its byte repre-

sentation B(CI) in a hex-editor. We can notice that some byte sequences

occur repeatedly. For more details about the existence of patterns in B(CI)

we refer the reader to [Kun02]. We will now discuss how these patterns can

be used for the efficient storage of interval containers.

Compression Rules. A voxel set belonging to an interval container CI

122 8 Cost-Based Approximation of Complex Spatial Objects

B(CI) = …33CC33CC0000000033CC33CC…

z-value of
box.lower

z-value of
box.upper

CI

a simple rectangular object in a 2D data space
which is linearly ordered by a z-curve

Figure 8.3: Pattern derivation by linearizing a rasterized object using a

space-filling curve (Z-order).

can be materialized in many different ways. A good materialization should

consider two ”compression rules”:

• Least possible secondary storage should be occupied.

• Least possible time should be needed for the (de)compression of B(CI).

A good query response behavior is based on the fulfillment of both aspects.

The first rule guarantees that the I/O cost is relatively small whereas the

second rule is responsible for low CPU cost. A good behavior related to an

efficient retrieval and evaluation of B(CI) depends on the fulfillment of both

rules.

As we will show in our experiments, it is very important for a good

retrieval and evaluation behavior to find a well-balanced way between these

two compression rules.

Spatial compression techniques. In this section, we look at a new spe-

cific compression technique which we call Quick Spatial Data Compressor

(QSDC). It is designed for storing the byte sequence of an interval con-

tainer in a compressed way. According to our experiments, the new data

compressor outperforms popular standard data compressors such as BZIP2

[BW94].

8.2 Approximation of Rasterized Spatial Objects 123

End-Of-File
Test

Input

Output RLE Scan

Short RLE
(2 Bytes)

Long RLE
(3 Bytes)

Pattern Scan

Short Pattern
(2 Bytes)

Long Pattern
(3 Bytes)

Store Byte
 unpacked

3 <= Len <= 18 18 < Len < 4114 3 <= Len < 16 16 <= Len < 272Store
Control-Byte
(every eight

cycles)

Figure 8.4: Flow diagram of QSDC compression algorithm.

The QSDC algorithm is especially designed for high resolution spatial

data and includes specific features for the efficient handling of patterns and

gaps. It is optimized for speed and does not perform time intensive compu-

tations as for instance the Huffman compression does. QSDC is a derivation

of the ZLIB technique [LZ77]. However, it compresses data in only one pass

and much faster than other Lempel-Ziv based compression schemes.

QSDC operates on two main memory buffers. The compressor scans an

input buffer for patterns and gaps (cf. Figure 8.4). It replaces the patterns

with a two- or three-byte compression code and the gaps with a one- or

two-byte compression code. Then it writes the code to an output buffer.

QSDC packs an entire byte sequence in one piece, the input is not split into

smaller chunks. At the beginning of each compression cycle, QSDC checks

if the end of the input data has been reached. If so, the compression stops.

Otherwise, another compression cycle is executed. Each pass through the

cycle adds one item to the output buffer, either a compression code or a

non-compressed character.

The decompressor reads compressed data from an input buffer, expands

124 8 Cost-Based Approximation of Complex Spatial Objects

the codes to the original data, and writes the expanded data to the out-

put buffer. When an extremely long run-length sequence occurs, the actual

output buffer containing the decompressed data is returned to the calling

process, and a new output buffer is allocated. For more details we refer the

reader to [Kun02], where it was shown that QSDC is more suitable for spa-

tial query processing than ZLIB [LZ77] due to the higher (un)pack speed

and an almost as high compression ratio.

8.3 Cost-Based Approximation

Now, we will show how to build interval containers in a reasonable way, trying

to speed up spatial intersection queries.

8.3.1 Grouping Rules

For each object, there exist a lot of different possibilities to group the voxel

intervals into interval containers. The question is, which grouping is most

suitable for efficient query processing. A good grouping should take the

following ”grouping rules” into consideration:

• The number of interval containers should be small.

• The approximation error of the interval containers should be small.

• Interval containers should allow an efficient evaluation of the contained

voxel intervals.

The first rule assures that the number of index entries is small, as the

conservative representations of the interval containers are stored in appropri-

ate index structures, e.g. the RI-tree. The second rule guarantees that many

unnecessary candidate tests, i.e. false hits, can be omitted, as the number

and size of gaps included in the interval containers is small. Finally, the

third rule ensures that a candidate can be refined efficiently. A good query

8.3 Cost-Based Approximation 125

response behavior results from an optimum trade-off between these grouping

rules.

A common approach is to determine the optimal grouping solution with

respect to accuracy and redundancy of the resulting approximation of the

actually considered object. However, other factors like ”regions which are

frequently covered by queries” could be very valuable to build promising ap-

proximations. Our grouping algorithm is based on the following parameters:

• An average query distribution function QDF which is used to compute

the access probability P (CI , QDF) of an interval container CI .

• The cost model related to the used index structure CSTIDX .

• The cost model related to the evaluation of the compressed container

content CSTPAC .

8.3.2 Query Distribution Function QDF

For many application areas, e.g. in the field of CAD and GIS, the average

query distribution can be predicted very well. It is obvious that queries in

rather dense areas, e.g. a cockpit in an airplane or a big city like Tokyo,

are much more frequently inquired than less dense areas. Furthermore, often

small selective queries are posted. From the grouping point of view, it would

be unadvisable to allow large gaps within interval containers covering such

frequently asked regions.

The assumed query distribution function QDF can be successfully applied

to our grouping algorithm. First, we transform the interval queries into a

two-dimensional normalized data space D := {(l, u) ∈ [0, 1]2 : l ≤ u}, an

example for two query intervals Q1 = (l1, u1) and Q2 = (l2, u2) is shown in

Figure 8.5. We start with normalizing the coordinates of our query intervals

to ensure that all data lies within the two-dimensional cuboid. Therefore, an

interval Q = [l, u] corresponds to the point (l, u) with l ≤ u (cf. Figure 8.5).

To each of these two-dimensional points Q = (l, u), we assign a numerical

126 8 Cost-Based Approximation of Complex Spatial Objects

l1

u1

u2

l20 1

1

lower

up
pe

r

low
QDF1(x,y):

high

l1 u1l1 u2

Q2

Q1query intervals:

Q2=(l2,u2)

Q1=(l1,u1)

QDF1(Q1) >> QDF1(Q2)

(a)

l1

u1

u2

l20 1

1

lower

up
pe

r

0

QDF2(x,y):

l1 u1l1 u2

Q2

Q1query intervals:

Q2=(l2,u2)

Q1=(l1,u1)

QDF2(Q2) = 0

k

2
k

22
2

kk

QDF2(Q1) = 22
2

kk

(b)

Figure 8.5: Query Distribution Functions QDF (x, y).

value QDF (Q), where 0 ≤ QDF (Q) ≤ 1 holds and which has the following

property:

∀(a, b) ∈ [0, 1]2, a ≤ b : P ((l, u)) =

l=b∫
l=a

u=b∫
u=l

QDF ((l, u)) du dl,

where P (Q) denotes the probability that the query interval Q is completely

covered by the interval (a, b), i.e. 0 ≤ a ≤ l ≤ u ≤ b ≤ 1. As the probability

is equal to one that a query is somewhere located in the upper triangle D,

the following equation has to hold:

l=1∫
l=0

u=1∫
u=l

QDF ((l, u)) du dl = 1.

Figure 8.5 shows two different query distribution functions. A potential

query Q2 is very unlikely in Figure 8.5(a) and does not occur at all in Figure

8.5(b). On the other hand, query Q1 is very likely in both cases.

In the following, we assume a very simple query distribution function as

depicted in Figure 8.5(b). In all considered application areas, the common

query objects only comprise a very small portion of the data space D. There-

fore, we introduce the parameter k ∈ [0, 1] which restricts the extension of

8.3 Cost-Based Approximation 127

l1

uI

0 1

1

lower

up
pe

r

lI uI
Iinterval:

I=(lI,uI)

A(I)

lI

uI

0 1

1

lower

up
pe

r

I1 I2
intervals:

I2=(l2,u2)

A(I1) A(I2)

I

I1=(l1,u1)

A(I1)

A(I2)

Figure 8.6: Computation of access probabilities of interval containers.

the possible query objects. For the computation of the access probability,

we only consider query intervals whose extensions do not exceed k. Let us

denote the restricted area D∗. As we assume that the query intervals are

equally distributed within the restricted area D∗, the function QDF (l, u) is

equal to 2
2·k−k2 for all positions (l, u) ∈ D∗ and otherwise zero. In our exper-

iments, we used this simple query distribution function which is specified by

the parameter k.

8.3.3 Access Probability

The access probability Pacc(I) related to an interval I = H(CI) of an interval

container CI denotes the probability that an arbitrary query object has an

intersection with the interval I = (lI , uI). All possible query intervals that

intersect an interval I1 are visualized by the shaded area A(I) in Figure 8.6.

The area displays all intervals whose lower bounds are smaller or equal to uI

and whose upper bounds are larger or equal to lI . These query intervals are

exactly the ones that have a non-empty intersection with I. The probability

that the interval I is intersected by an arbitrary query interval is

Pacc(I) =
∫

l∈A(I)

∫
u∈A(I)

QDF ((l, u)) du dl.

128 8 Cost-Based Approximation of Complex Spatial Objects

8.3.4 Cost Model

In order to evaluate the compressed information of an intersected interval

container CI , we have to retrieve it from disk first. Thus, the expected

access cost consists of two parts:

• the access probability and

• the cost of the evaluation.

The evaluation cost heavily depend on the used compression algorithm. The

compression ratio mainly influences the I/O cost, i.e. the cost required to

load the compressed information from disk. Furthermore, we have to take

the CPU cost required to decompress the information into account which

also depends on the used compression algorithm. For each compression al-

gorithm we provide statistics, i.e. a look-up table LUT , by means of which

we estimate the I/O cost and CPU cost related to an evaluation of an inter-

val container. Roughly speaking, the evaluation cost depends on the length

of our container interval H(CI) and on the used packer. Figure 8.7 depicts

an empirically derived look-up table for two packers. Let c
I/O
load be a factor

relating to the I/O cost, ccpu
decomp be a factor relating to the CPU cost of the

decompression and let ccpu
test be a factor relating to the CPU cost of the in-

tersection test. Then, the evaluation cost costeval can be estimated by the

following formula:

costeval = |CI |compr · cI/O
load + |CI | · (ccpu

decomp + ccpu
test),

where |CI |compr denotes the size of the compressed information of CI and |CI |
denotes the size of the uncompressed information of CI .

To sum up, the expected access cost related to an interval container object

CI can be computed as follows:

cost(CI) = P (CI) · costeval(CI , LUT).

8.3 Cost-Based Approximation 129

0

1

2

3

4

5

0 0,5 1 1,5 2
size of compressed information [MB]

ev
al

ua
tio

n
co

st

UNPACKED

BZIP2

QSDC

Look Up Table (LUT)

Figure 8.7: Look-Up table for different Packers

8.3.5 Decomposition Algorithm

Orenstein [Ore89] introduced the size- and error-bound decomposition ap-

proach. Our first grouping rule ”the number of interval containers should be

small” can be met by applying the size-bound approach, while applying the

error-bound approach results in the second rule ”the dead area of all inter-

val containers should be small”. For fulfilling both rules, we introduce the

following top-down decomposition algorithm for interval containers, called

CoDec (cf. Figure 8.8). CoDec is a recursive algorithm which starts with an

approximation O = (id, 〈CI〉), i.e. we approximate the interval sequence ob-

ject by one single interval. In each step of our algorithm, we look for the gap

g within the interval approximation CI which seems most promising to split

CI at this gap into two interval containers Cleft and Cright, incorporating the

query-distribution function QDF . From all possible splits1, we choose the

one that yields the highest decrease in the cost according to our cost model.

We carry out the split along this gap if the average query cost caused by

the decomposed interval containers is smaller than the cost caused by our

input interval container CI . The interval containers which are reported by

the CoDec algorithm are stored in the database and no longer taken into

account in further recursion steps. Data compressors which have a shallow

1We only try to split at real gaps. Splitting an object interval would obviously not
yield any performance gain.

130 8 Cost-Based Approximation of Complex Spatial Objects

LUT : look-up table with packer specific cost

CoDec(CI , QDF , LUT){
costcomp := P (CI , QDF) · costeval(CI , LUT);
container pair := split(CI ,QDF);

Cleft := container pair.left;

Cright := container pair.right;

costdec := P (Cleft, QDF) · costeval(Cleft, LUT) +
P (Cright, QDF) · costeval(Cright, LUT);

if costcomp > costdec then

CoDec(Cleft,QDF ,LUT);

CoDec(Cright,QDF ,LUT);

else

report(CI);

end if;

}

Figure 8.8: Decomposition Algorithm CoDec.

LUT curve, as e.g. PACKER2 in Figure 8.7, result in an early stop of the

CoDec algorithm, generating a small number of interval containers.

Our experimental evaluations suggest that the above grouping algorithm

yields results which are very close to an optimal decomposition for many

data compression techniques and data space resolutions.

8.4 Intersection Detection Based on Interval

Containers

We first present two rather obvious lemmas which state whether two interval

containers intersect or not, based on relatively little information. The first

lemma can be used as a filter for detecting non-intersecting interval sequence

objects.

8.4 Intersection Detection Based on Interval Containers 131

We speak of ”overlapping” interval containers if their hulls intersect. Re-

spectively, if two overlapping interval containers CI and CI′ contain at least

one interval which intersect, i.e.

∃b ∈ CI ,∃b′ ∈ CI′ : intersect(b, b′),

we speak of ”intersecting” interval containers.

Lemma 8.1 (non-intersecting interval containers) Let CI = 〈b1, .., bn〉
and CI′ = 〈b′1, .., b′n′〉 be two interval containers. Then, the following state-

ment holds:

¬overlap(CI , CI′) ⇒ ¬intersect(CI , CI′).

Proof. At first we convert the statement as follows:

¬overlap(CI , CI′) ⇒ ¬intersect(CI , CI′) ⇔ intersect(CI , CI′) ⇒ overlap(CI , CI′).

Then,

intersect(CI , CI′) ⇒ ∃(bi, b
′
j) ∈ b1, .., bn × b′1, .., b

′
n′ : intersect(bi, b

′
j) = true.

Let bi = (li, ui), b′j = (l′j, u
′
j), H(CI) = (l, u) and H(CI′) = (l′, u′), then

follows Definition 4.3:

l ≤ li ≤ u′j ≤ u′ ∧ l′ ≤ l′j ≤ ui ≤ u

⇒ l ≤ u′ ∧ l′ ≤ u ⇒ intersect((l, u), (l′, u′))

holds which proves that CI and C ′
I overlaps. 2

Let us note that we cannot pinpoint any intersecting interval sequence

objects by means of Lemma 8.1, as

overlap(CI , C
′
I) ⇒ intersect(CI , C

′
I)

does not hold. Thus, a refined evaluation of the intersect predicate is neces-

sary when two interval containers overlap. However, in the case where both

interval containers have maximum density, we can do without this refinement

step.

132 8 Cost-Based Approximation of Complex Spatial Objects

Lemma 8.2 (intersecting interval containers) Let CI = 〈b1, .., bn〉 and

CI′ = 〈b′1, .., b′n′〉 be two interval containers. Then, the following statement

holds:

(D(CI) = 1 ∧D(CI′) = 1 ∧ overlap(CI , CI′)) ⇒ intersect(CI , CI′).

Proof. According to Definition 8.2 and the definitions of the operators

given in Table 8.1: D(CI) = 1 ⇒ n = 1 and D(C ′
I) = 1 ⇒ n′ = 1. Then, the

following statement holds:

overlap(CI , CI′) ⇒ intersect(b1, b
′
1) ⇒ intersect(CI , CI′).

2

Lemma 8.2 shows that we can sometimes pinpoint whether two interval-

container pairs intersect based on relatively little information. Unfortunately,

as in most cases the precondition of Lemma 8.2 does not hold, we will not be

able to apply it very often. Nevertheless, there are some more information

given by the interval container operators (cf. Table 8.1). In the next sec-

tion, we will explain how these operators can be successfully used to detect

intersecting interval containers without accessing the covered intervals more

often.

8.5 Fast Intersection Test for Interval

Containers

For the intersect predicate, it suffices to find a single interval of a database

object which intersects an interval of the query object in order to report the

database object. Obviously, it is desirable to detect such intersecting interval

pairs as early as possible in order to avoid unnecessary refinement tests. In

this section, we present an optimization aiming at this goal. As we assume

that the query objects are approximated in the same way as the database

objects, the determination of intersecting interval pairs approximated by

8.5 Fast Intersection Test for Interval Containers 133

interval containers without examining the exact interval information can be

successfully used as fast second filter step. If this filter step determines an

intersecting interval container pair (CI , CI′), i.e. H(CI) intersects H(CI′), all

remaining candidate tests of the database object can obviously be skipped.

Thus, this filter step acts as an additional filter between the first filter step

and the refinement step.

In the following, we present the fast intersection test which is entirely

based on aggregated information of the interval containers.

8.5.1 Fast Intersection Tests

We will now discuss in which cases we can decide whether two overlapping

interval containers CI and CI′ intersect each other without accessing their

exact content. Let us note that an interval container CI with density equal

to 1 exactly represents the single interval b contained in CI . Consequently,

when we use interval b ∈ CI instead of CI , we assume that D(CI) = 1. If any

of the following three conditions holds, then two interval containers intersect:

• If the interval b (or the interval container CI with density of 1) is longer

than the maximum gap between two intervals contained in the other

interval container CI′ , then the two interval containers intersect (cf.

Figure 8.9(a)).

• If the interval b (or an interval container CI with density of 1) over-

laps the start or end point of the other interval container CI′ , then the

interval containers intersect. This is due to the fact that any interval

container ends and starts with an interval (cf. Figure 8.9(b)). Further-

more, if both interval containers start or end at the same point, then

they intersect.

• If the summarized gap lengths of both interval containers exceeds the

length of their overlapping, then the two interval containers necessarily

intersect. The length of the summarized gaps of an interval container

CI can be easily computed by L(CI) · (1−D(CI)) (cf. Figure 8.9(c)).

134 8 Cost-Based Approximation of Complex Spatial Objects

b:

CI:
L(b)

G(CI)

intersect(b,H(CI) L(b) > G(CI)
b‘ CI: intersect(b,b‘)

(a) detection based on maximal gap

b:
CI:

b.l H(CI).l b.u b.l H(CI).u b.u
b‘ CI: intersect(b,b‘)

H(CI).l = H(CI‘).l H(CI).u = H(CI‘).u
b CI, b‘ CI‘: intersect(b,b‘)

CI‘:
CI:

(b) detection based on starting and end points

Loverlap > L(CI) (1-D(CI))+L(CI‘) (1-D(CI‘))
b CI, b‘ CI‘ : intersect(b,b‘)

CI:
CI‘:

Loverlap = intersection_length(H(CI),H(CI‘))

(c) detection based on densities

Figure 8.9: Fast Intersection Detection on Interval Containers.

Let us note that we carry out this fast intersection test for all overlapping

interval containers before testing the exact interval intersection. If one of

these fast intersection tests yields true, the intersection routine returns true

without testing the data stored in the interval containers.

8.5.2 Priority Based Intersection Tests

If none of these fast-intersection-tests yields true, it is beneficial to order the

relevant test candidate pairs of two objects. As soon as an intersection be-

tween two intervals belonging to two objects can be detected, we know that

these two objects intersect, and thus, all other intersection candidates with

respect to these two objects do not need to be evaluated any more. Con-

sequently, promising intersection candidate pairs should be preferred tested.

First, we need to define the minimal intersection length Lmin between two

interval containers, i.e. the minimal summarized intersection lengths of the

intervals contained in the interval containers.

8.6 Experiments 135

Definition 8.3 (minimal intersection length) Let CI and CI′ be two over-

lapping interval containers. Furthermore, let Lgap(CI) = L(CI) · (1−D(CI))

denote the summarized gap length of interval container CI . Then, the mini-

mal intersection length Lmin is defined as follows:

Lmin(CI , CI′) = intersection length(H(CI), H(CI′))−(Lgap(CI)+Lgap(CI′)).

Note that this measure can also receive negative values. If the minimal

intersection length has a positive value, the interval containers definitely

intersect according to the third fast-intersection-test condition (cf. Figure

8.9(c)). Otherwise, for Lmin(CI , CI′) < 0, the interval container pairs may be

intersect. Generally, the higher the minimal intersection length between two

interval containers the higher the chance that they intersect. Let (CI , CI′)

and (CJ , CJ ′) be two overlapping interval container pairs. If Lmin(CI , CI′) >

Lmin(CJ , CJ ′) holds, then the pair (CI , C
′
I) intersect with a higher probability

than the pair (CJ , C ′
J). The closer Lmin converge 0, the closer the summarized

gap length of both interval containers to the length of their overlapping, and

thus, the smaller the chance that all gaps of both containers are completely

within the overlapping area.

After the fast-intersection-test, we propose to rank the remaining can-

didate pairs (CI , CI′) of two objects in descending order of their minimal

intersection length Lmin(CI , CI′) before refining the interval containers and

carrying out the expensive interval-intersection tests. Thus, interval con-

tainer pairs having the highest minimal-intersection-length value are tested

first which increases the probability for an early intersection detection.

8.6 Experiments

In this section, we evaluate our approximation technique with respect to the

achieved performance of the RI-tree with a special emphasis on the various

data compression techniques introduced in Section 8.2.2. We exploit differ-

ent grouping algorithms GRP in combination with various data compression

techniques DC. For the compression of the byte sequence B(CI) of an in-

136 8 Cost-Based Approximation of Complex Spatial Objects

terval container CI , we used the data compressors (DC) explained in the

following table:

compr. type description

NOOPT: The B(CI) is unpacked.

BZIP2: B(CI) is packed according to the BZIP2 approach.

ZLIB: B(CI) is packed according to the ZLIB approach.

OPTRLE: B(CI) is packed with a simple run-length encoding

according to the approach in [KPPS03a].

QSDC: B(CI) is packed according to the QSDC approach.

Table 8.3: Data compressors.

Furthermore, we grouped voxel intervals into interval containers depend-

ing on two grouping algorithms GRP :

MaxGap. This grouping algorithm tries to minimize the number of inter-

val containers while not allowing that a maximum gap G(CI) of any inter-

val container CI exceeds a given MAXGAP parameter. By varying this

MAXGAP parameter, we can find the optimum trade-off between the first

two opposing grouping rules of Section 8.3.1, namely a small number of in-

terval containers and a high accuracy, i.e. small gaps are included in each of

these containers.

CoDec. We grouped the interval containers according to our cost-based

grouping algorithm CoDec (cf. Section 8.3.5), where we chose the query

distribution parameter k = 10−5 (cf. Section 8.3) and used a look-up table for

each packer. The look-up table was created by experimentally determining

the average cost for evaluating an interval container CI dependent on the

length of its byte sequence.

The grouping based on MaxGap(DC) does not depend on DC, whereas

CoDec(DC) takes the actual data compressor DC into account for perform-

ing the grouping.

In order to support the first filter step of GRP (DC), we have imple-

mented the RI-tree [KPS00a][KPS01] on top of the Oracle9i Server using

8.6 Experiments 137

PL/SQL for most of the computational main memory based programming.

The evaluation of the byte sequence routines (exact intersection evaluation)

was delegated to a DLL written in C. All experiments were performed on a

Pentium III/700 machine with IDE hard drives. The database block cache

was set to 500 disk blocks with a block size of 8 KB and was used exclusively

by one active session.

8.6.1 Test Datasets

The tests are based on two test data sets CAR and PLANE. These test

datasets were provided by our industrial partners, a German car manufac-

turer and an American plane producer, in form of high resolution voxelized

three-dimensional CAD parts. The CAR dataset consists of approximate 14

million voxels and 200 parts, whereas the PLANE dataset consists of about

18 million voxels and 10,000 parts. The CAR data space is of size 233 and

the PLANE data space is of size 242. In both cases, the Z-curve was used

as a space filling curve to build the voxel intervals.

8.6.2 Storage Requirements

First we look at the storage requirements of the RI-tree on the PLANE

dataset. In Figure 8.10(a), the storage requirements for the index, i.e. the

two B+-trees underlying the RI-tree, as well as for the complete interval-

container representations are depicted for the MaxGap(QSDC) approach.

In the case of small MAXGAP parameters, the number of disk blocks used

by the index dominates the number of disk blocks for the interval containers.

With increasing MAXGAP parameters, the number of disk blocks used by

the index dramatically decreases hand in hand with the number of interval

container objects, and at high parameter values, i.e. large gaps and intervals,

they yield no significant contributions to the overall sum of used disk blocks

any more.

Figure 8.10(b) shows the different storage requirements for the com-

138 8 Cost-Based Approximation of Complex Spatial Objects

0
10
20
30
40
50

10 10.000 10.000.000

MAXGAP

nu
m

be
r o

f
bl

oc
ks

 [x
10

00
] index

table

(a) Index & B(CI) for MaxGap (QSDC)

1

10

100

1.000

10.000

10 1.000 100.000 10.000.000
MAXGAP

su
m

 o
f B

LO
B

-s
iz

es
 [x

1,
00

0,
00

0]
 b

yt
es

NOOPT OPTRLE
ZLIB BZIP2
QSDC

(b) B(CI) for MaxGap(DC)

Figure 8.10: Storage requirements for the RI-tree (PLANE).

pressed data with respect to the different data compression techniques. Due

to an enormous overhead, the ZLIB and BZIP2 approaches occupy a lot of

secondary storage space for small MAXGAP values. On the other hand,

for high MAXGAP values they yield very high compression rates. For

the PLANE dataset the BZIP2 approach yields a compression rate of

more than 1:500 and is at least 20 times more efficient than the approach

used in [KPPS03a]. The QSDC approach yields good results over the full

range of the MAXGAP parameter. For high MAXGAP values, the num-

ber of disk blocks used for the compressed data corresponds to the num-

ber of disk blocks used overall. For these high MAXGAP parameters, the

MaxGap(QSDC), MaxGap(ZLIB) and MaxGap(BZIP2) approach lead

to a much better storage utilization than the MaxGap(NOOPT) and the

MaxGap(OPTRLE) approach.

8.6 Experiments 139

1
10

100

1000
10000

(i) (ii) (iii)

CPU group
CPU pack
I/O costin

se
rt

tim
e

[s
ec

]

(a) insert-operation

0
1

10

100
1000

(i) (ii) (iii)

de
le

te
 ti

m
e

[s
ec

]

(b) delete-operation

Figure 8.11: Update operations for the RI-tree (CAR). (i) one interval

container per interval; (ii) one interval container per object; (iii) interval

containers grouped by CoDec(QSDC).

8.6.3 Update Operations

In this section, we will investigate the time needed for updating complex spa-

tial objects in the database. For most of the investigated application ranges,

it is enough to confine ourselves to insert and delete operations, as updates

are usually carried out by deleting the object out of the database and insert-

ing the altered object again. Figure 8.11(a) shows that inserting all objects

into the database takes very long if we store the numerous object intervals in

the RI-tree (i) or if we store one value approximations of the unpacked object

in the RI-tree (ii). On the other hand, using our CoDec(QSDC) approach

(iii) accelerates the insert operations by almost two orders of magnitude. The

time spent for grouping and packing pays off if we take into consideration

that we save a lot of time for storing grouped and compressed objects in the

database.

Obviously, the delete operations are also carried out much faster for our

CoDec(QSDC) approach, as we have to delete much less disk blocks (cf.

Figure 8.11(b)).

140 8 Cost-Based Approximation of Complex Spatial Objects

8.6.4 Query Processing

In this section, we want to turn our attention to the query processing by

examining different kinds of intersection queries. In addition to the pure

intersection query, we will call it boolean intersection query, we also inves-

tigated intersection volume queries additionally reporting the intersection

volume. While the query optimizing concepts of Section 8.5 can be success-

fully applied to the boolean intersection queries, we cannot use them for the

intersection volume queries. Comparing the performance results of these two

query types shows the effect of our optimization concept.

The figures presented in this paragraph depict the average result obtained

from intersection queries where we have taken every part from the CAR data

set and the 100 largest parts from the PLANE dataset as query objects.

Experiments with MaxGap:

In Figure 8.12 it is shown in which way the overall response time for boolean

intersection queries based on the RI-tree depends on the MAXGAP pa-

rameter. If we use small MAXGAP parameters, we need a lot of time

for the first filter step, whereas the refinement is relatively cheap. There-

fore, the different MaxGap(DC) approaches do not differ very much for

small MAXGAP values. For high MAXGAP values, we can see that the

MaxGap(QSDC) approach performs best with respect to the overall run-

time. The MaxGap(QSDC) approach is rather insensitive against too large

MAXGAP parameters. Even for values where the first filter step is almost

irrelevant, e.g. MAXGAP = 107, the MaxGap(QSDC) approach still per-

forms well. This is due to the fact that for large MAXGAP values the

MaxGap(QSDC) approach needs much less physical reads, about 1% of the

MaxGap(NOOPT) approach. As a consequence, the query response time of

the MaxGap(QSDC) approach is approximately 1/35 of the query response

time of the MaxGap(NOOPT) approach.

In Figure 8.13 it is shown in which way the different data space resolutions

influence the query response time. Generally, the higher the resolution the

8.6 Experiments 141

0

1

10

100

10 1.000 100.000 10.000.000
MAXGAP

re
sp

on
se

 ti
m

e
[s

ec
.]

NOOPT OPTRLE
ZLIB BZIP2
QSDC MaxGap(NOOPT)

resp.time: 20.67 sec.
phy. reads: 10,175

MaxGap(QSDC)
resp.time: 0.61 sec.
phy. reads: 84

Figure 8.12: MaxGap(DC) evaluated for boolean intersection queries on

the RI-tree (PLANE).

0

1

10

100

10 1.000 100.000
MAXGAP

re
sp

on
se

 ti
m

e
[s

ec
.]

33 bit QSDC
30 bit QSDC
27 bit QSDC
24 bit QSDC

Figure 8.13: MaxGap(QSDC) evaluated for boolean intersection queries

for the RI-tree using different resolutions (CAR).

slower the query processing. Our MaxGap(QSDC) is especially suitable for

high resolutions, but also accelerates medium or low resolution spatial data.

To sum up, the MaxGap(QSDC) approach improves the response time

of collision queries for varying index structures and resolutions by up to two

orders of magnitude.

In Figure 8.14 it is illustrated that at small MAXGAP values the num-

ber of different object candidates resulting from the first filter step is only

marginally higher than the number of the final result set. Likewise, the num-

ber of detected hits in the second filter step is only marginally smaller. With

increasing MAXGAP values the two curves diverge. To sum up, the opti-

mizations presented in Section 8.5 are especially useful for small MAXGAP

parameters.

142 8 Cost-Based Approximation of Complex Spatial Objects

28,08

20,91
16,40

13,68
12,00

10,83 7,80
4,63

2,57 1,74 1,37

11,14

0

10

20

30

40

10 1000 100000
MAXGAP

nu
m

be
r o

f I
D

s

Cand. after 1.step
Hits after 2. step
Hits after BLOB test

Figure 8.14: Object candidates and result sets for boolean intersection

queries on the RI-tree (CAR).

Experiments with CoDec:

Figure 8.12 shows that for packed data the optimum MAXGAP value is

higher than for unpacked data. Furthermore, Figure 8.13 demonstrates that

for increasing resolutions the optimum MAXGAP also increases. We will

now experimentally show that the CoDec algorithm produces object decom-

positions which yield almost optimum query response times for varying index

structures, compression techniques and data space resolutions.

Table 8.4 depicts the overall query response time for boolean intersection

queries and intersection volume queries for the RI-tree based on the CoDec

algorithm.

NOOPT BZIP QSDC RI-tree without CoDec

number of containers 24,453 16,063 15,468 9,289,569

Overall Runtime∗ [s] 1.35 0.71 0.55 135.01

Overall Runtime∗∗ [s] 2.42 1.23 0.92 ∞ (not applicable)

Table 8.4: CoDec(DC) evaluated for Boolean intersection∗ and intersection

volume∗∗ queries for the RI-tree (PLANE).

We can see that for boolean intersection queries this grouping delivers re-

sults quite close to the minimum response times depicted in Figure 8.12. Fur-

thermore, we notice that the CoDec(QSDC) approach outperforms the tra-

8.7 Summary 143

ditional RI-tree [KPS01] by a factor of 180 for boolean intersection queries on

the PLANE dataset. For intersection volume queries, the RI-tree [KPS00a]

is not applicable due to the enormous amount of generated join partners.

On the other hand, the CoDec(QSDC) approach yields interactive response

times even for such queries. The CoDec algorithm adapts to the optimum

MAXGAP parameter for varying compression techniques by allowing larger

gaps for packed data, i.e the number of generated container objects is smaller

in the case of packed data.

In Table 8.5 it is shown that the query response times resulting from

the CoDec algorithm for varying resolutions are almost identical to the ones

resulting from a grouping based on an optimum MAXGAP parameter (cf.

Figure 8.13).

33 bit 30 bit 27 bit 24 bit

Overall Runtime [s] 0.64 0.7 0.29 0.22

Table 8.5: CoDec(QSDC) evaluated for Boolean intersection queries for

the RI-tree with different resolutions (CAR).

To sum up, the CoDec algorithm produces object decompositions which

yield almost optimum query response times for varying compression tech-

niques and data space resolutions.

8.7 Summary

In this chapter, we introduced a new generic approach for accelerating spa-

tial query processing for relational index structures. We presented interval

containers as a new concept and showed how we can efficiently store them by

means of data compression techniques. In particular, we presented a quick

spatial data compressor QSDC in order to emphasize those packer character-

istics which are important for efficient spatial query processing, namely good

compression ratio and high unpack speed. Furthermore, we proposed a cost-

based decomposition algorithm for complex spatial objects, called CoDec.

144 8 Cost-Based Approximation of Complex Spatial Objects

CoDec takes the decompression cost of the interval containers and their ac-

cess probabilities into account. This decomposition algorithm is applicable

for different data space resolutions and compression algorithms. We showed

in a broad experimental evaluation that our new approach, i.e. the combi-

nation of CoDec and QSDC, accelerates the Relational Interval-tree by up

to two orders of magnitude.

Chapter 9

Join Queries for Complex

Spatial Objects

Modern database applications, including computer-aided design (CAD), med-

ical imaging, molecular biology or Multimedia Information Systems, impose

new requirements on efficient spatial query processing. One of the most

common query types in spatial databases is the spatial join. In this chapter,

we concentrate us on the intersection join, as it is the most important join

predicate for complex spatial objects [GG98]. It retrieves all object pairs

from two given datasets that satisfy the spatial-intersection predicate, i.e.

all pairs of intersecting objects are reported. A usual spatial join example of

2D geographical data is ”find all cities which are crossed by a river”. In the

automobile industry, spatial join processing of complex 3D high-resolution

objects is also required, e.g. to support efficient processing of queries like

”find all engine parts which intersect the car body”. Therefore, an efficient

processing of spatial joins is indispensable.

9.1 Introduction

In many applications, GIS or CAD objects feature a very complex and fine-

grained geometry. An important new requirement for large objects, including

145

146 9 Join Queries for Complex Spatial Objects

cars or planes, is a high approximation quality. High resolutions yield a

high approximation quality but result in high efforts in terms of identifying

candidate pairs in a spatial join process. In this chapter, we follow the

approach of Chapter 8 where spatial objects are conservatively approximated

by a set of voxels, i.e. cells of a grid covering the complete data space. By

means of space filling curves, an extended object is represented by a set of

intervals which we call voxel intervals. In the last chapter, we have seen that

in particular for high-resolution data, where the number of resulting intervals

still remains very high, further grouping of the intervals can significantly

speed up intersection queries. For the join processing, we adopt the approach

where voxel intervals are grouped into interval containers (cf. Section 8.2)

which are approximations of interval sequences, comprising some aggregate

information of the covered intervals. This chapter comprises the approaches

published in [KKPR04b] and [KKPR05c].

In contrast to the last chapter, where we focused on building approxi-

mations based on an assumed query-distribution function, and a cost model

for single intersection queries supported by the RI-tree, in this chapter, we

turn our attention to spatial join queries. In Section 9.5, we first present a

simple join algorithm, the nested-loop join. It is based on a combination of

two decomposition methods: the cost-based decomposition as presented in

Chapter 8 and the statistic driven query-decomposition approach presented

in Section 6.4.

In Section 9.6, we will introduce a sort-merge-based join procedure which

also uses statistics in order to build adequate object approximations for an

efficient join processing. In opposition to the nested-loop join algorithm it

does not need a full table scan on the one relation for each query object of the

other relation. It tries to join only those objects sharing the same location

in space.

9.2 Related Work 147

9.2 Related Work

At first, we will shortly discuss related work on efficient spatial join processing

of complex spatial objects.

Spatial Join. Numerous spatial join algorithms have been proposed over

the last decade. Most of them rely on the paradigm of multi-step query

processing [BKSS94]. A fast filter step excludes all objects that cannot satisfy

the join predicate. The subsequent refinement step is applied to the join

candidate pairs which are returned from the filter step. Thereby, the main

focus of research is on the filter step which is applied to geometric object

approximations. On the basis of the availability of indices for processing the

filter step, spatial join methods operating on two relations can be classified

into three classes:

• Class 1: Index on both relations

• Class 2: Index on one relation

• Class 3: No indices

Common solutions for the spatial join methods of Class 1 are the algo-

rithms based on matching the two spatial access methods in order to identify

the sets of potential join candidates during the traversal of the index struc-

tures. The most prominent approach is based on a hierarchical matching

of two R-trees as presented in [BKS93b] and [HJR97]. This method syn-

chronously traverses both R-trees from top to bottom and builds for each

step the sets of potential join candidates based on the rectangle entries of

the corresponding directory pages. Given to directory pages only if the rect-

angles of both directory pages match the join predicate. Both sets of data

objects (in)directly referenced by the directory pages have to be considered

for the remaining join process. Recently, a join algorithm for interval data

in relational databases has been proposed [EHS04]. This approach is based

on matching two RI-trees by identifying pairs of RI-tree nodes representing

sets of intervals which are potential join candidates.

148 9 Join Queries for Complex Spatial Objects

In the last few years, the international research community has focused

on methods of Class 2 and Class 3. A simple Class 2 approach is the in-

dex nested-loop, where each tuple of the non-indexed relation is used as

query applied to the indexed relation. More efficient solutions are presented

in [PD96][PRS99][LR96]. These algorithms are based on building an in-

dex for the non-indexed relation in order to reduce the problem to the join

where both relations are indexed (Class 1). For spatial join algorithms of

Class 3, initially no indices are available which could be used to improve

the query performance. Several partitioning techniques have been proposed

which partition the tuples into buckets and then use either hash-based or

sweep-line techniques, e.g. the spatial-hash join [LR96], the Partition-Based

Spatial-Merge join (PBSM) [PD96] or the Scalable Sweeping-Based Spatial

Join (SSSJ) [APR+98]. The latter approaches work well for relative sim-

ply shaped 2D objects which can be well approximated by their minimal

bounding boxes. In contrast to these approaches, our approach deals with

very complex 3D objects, where the minimal bounding box is a rather poor

approximation. In order to use the PBSM or the SSSJ with decomposed

objects, some modifications has to be done, as for instance duplicate elimi-

nation.

9.3 Cost Model

For our decomposition algorithm we take the estimated join cost between

an interval container CI and a join-partner relation T into account. Let

us note that T can be either one of the two join relations R or S or any

temporary table containing derived information from the original relations

R and S. The overall join cost costjoin for an interval container CI and a

join-partner relation T are composed of two parts, the filter cost costfilter

and the refinement cost costrefine:

costjoin(CI , T) = costfilter(CI , T) + costrefine(CI , T).

Filter Cost. The filter cost costfilter(CI , T) can be computed by the ex-

pected number of interval containers CI,T of the join partner relation T . We

9.3 Cost Model 149

penalize each intersection test by a constant cf which reflects the cost re-

lated to the access of one interval container CI,T and the evaluation of the

join predicate for the pair (H(CI), H(CI,T)):

costfilter(CI , T) = Ncont(T) · cf ,

where Nint(T) (number of voxel intervals) ≥ Ncont(T) (number of interval

containers) ≥ Nobj(T) (number of objects) holds for the join-partner relation

T . The value of the parameter cf depends on the used system.

Refinement Cost. The cost of the refinement step costrefine is determined

by the selectivity of the filter step. For each candidate pair resulting from

the filter step, we have to retrieve the exact geometry B(CI) in order to

verify the intersection predicate. Consequently, our cost-based decomposition

algorithm is based on the following two parameters:

• Selectivity σfilter of the filter step.

• Evaluation cost costeval of the exact geometries.

The refinement cost of a join related to an interval container CI can be

computed as follows:

costrefine(CI , T) = Ncont(T) · σfilter(CI , T) · costeval(CI).

In Section 8.3 it was shown how to calculate the evaluation cost costeval

of interval containers approximating the spatial objects. In the following,

we show how to estimate the selectivity of the filter step σfilter. We use

simple statistics of the join-partner relation T to estimate the selectivity

σfilter(CI , T). In order to cope with arbitrary interval distributions, his-

tograms can be employed to capture the data characteristics at any desired

resolution (cf. Section 4.5.1). The selectivity σfilter(CI , T) related to an

interval container CI can be determined by using an appropriate interval

histogram IH(T, ν) of the join partner relation T . Based on IH(T, ν), we

compute a selectivity estimated by evaluating the intersection of CI with

each bucket span bi,ν .

σfilter(CI , T) =

∑ν
i=1

overlap(H(CI),bi,ν)

β
· ni∑ν

i=1 ni

,

150 9 Join Queries for Complex Spatial Objects

where overlap returns the intersection length of two intersecting intervals,

and 0 if the intervals are disjoint.

Note that long intervals may span multiple histogram buckets. Thus, in

the above computation, we normalize the expected output to the sum of the

number ni of intervals intersecting each bucket i rather than to the original

cardinality n of the relation T .

Join Cost. To sum up, the join cost costjoin(CI) related to an interval

container CI and a join-partner relation T can be expressed as follows:

costjoin(CI , T) = Ncont(T) · (cf + σfilter(CI , T) · costeval(CI)).

9.4 Decomposition Algorithm

Based on the formulas for join cost related to an interval container CI and

a join-partner relation T , we propose a cost optimum decomposition algo-

rithm CoDecJ in order to build the interval containers. In this section,

we will show how the decomposition algorithm CoDec presented in Section

8.2 can be easily adapted to produce decompositions helping to accelerate

join queries considerably. Note that like the algorithm CoDec, CoDecJ is a

greedy algorithm with a guaranteed worst-case runtime complexity of O(n).

The top-down decomposition algorithm called CoDecJ is depicted in Fig-

ure 9.1. CoDecJ is a recursive algorithm which starts with an interval con-

tainer CI , initially covering the complete object. In each step of our algo-

rithm, we look for the longest remaining gap. We carry out the split at this

gap if the estimated join cost caused by the decomposed intervals is smaller

than the estimated cost caused by our input interval CI . The expected join

cost costjoin(CI , T) can be computed as described above. Data compressors

which have a high compression rate and a fast decompression method result

in an early stop of the CoDecJ algorithm, generating a small number of

interval containers. Let us note that the inequality ”costcomp > costdec” in

Figure 9.1 is independent of Ncont(T), and thus, Ncont(T) is not required any

more during the decomposition algorithm.

9.5 Nested-Loop Based Join Processing 151

CoDecJ(CI , IH(T, ν), T){
costcomp := costjoin(CI , T, IH(T, ν));
container pair := split at maximum gap(CI);

Cleft := container pair.left;

Cright := container pair.right;

costdec := costjoin(Cleft, T, IH(T, ν)) + costjoin(Cright, T, IH(T, ν));
if costcomp > costdec then

CoDecJ(Cleft,IH(T, ν),T);

CoDecJ(Cright,IH(T, ν),T);

else

report(CI);

end if;

}

Figure 9.1: Decomposition Algorithm CoDecJ .

In the next section, we turn our attention to the processing of two different

join algorithms. Exemplarily, we explain in detail how our decomposition

algorithm can help to accelerate a variant of the nested-loop join and the

sort-merge join. Let us note that the main focus of this chapter is not the

presentation of new join algorithms, but the presentation of a theoretically

sound and practically relevant object decomposition concept which helps to

accelerate known join algorithms on complex spatial objects linearized with

high precision.

9.5 Nested-Loop Based Join Processing

In the following, we assume that we have to join relation R with relation S

containing complex spatial objects in form of voxel interval sequences. Our

nested-loop join algorithm will be processed in two phases, the preprocessing

phase and the join phase, as depicted in Figure 9.2.

Preprocessing Phase. For each object objS in relation S we apply the

decomposition function CoDecJ (cf. Figure 9.1) which builds the interval

152 9 Join Queries for Complex Spatial Objects

(A,)

(A,)
(A,)
(B,)
(B,)

…

(E,)

(E,)
(F,)
(F,)
(F,)

…

Relation R Relation S

(E,)

(F,)
(F,)
(G,)
(G,)

…

Relation S‘

(A,)

(A,)
(A,)
(B,)
(B,)

…

(E,)

(F,)
(F,)
(G,)
(G,)

…

approx(A)

group voxel
intervals
using
statistics of
S‘

nested-
loop join

(A,)
(A,)

pr
e-

pr
oc

es
si

ng
st

ep
jo

in
st

ep

group voxel
intervals

using
statistics of

R

Figure 9.2: Nested-Loop Based Join Processing.

containers. This grouping algorithm takes the statistics of the data distri-

bution with respect to relation R, i.e. the interval histogram IH(R, ν), into

account. Then the resulting interval containers of each object are material-

ized in an auxiliary relation S ′.

Note that we assume that the objects objR of relation R will be accessed

only once. Thus, there is no need to materialize the interval containers of

objR in the database as done for the objects in relation S. Furthermore,

we assume that one object completely fits in memory so that its interval

containers can be built on-the-fly during the join phase.

Join Phase. The join phase is performed in a nested − loop fashion. In

an outer loop we decompose each object objR from R by means of CoDecJ

into interval containers. This time, we apply the data distribution statistics

of relation S ′, i.e. the interval histogram IH(S ′, ν). In the inner loop, we

test each object objS for intersection with object objR, calling the boolean

function intersect().

The nested-loop join algorithm is depicted in Figure 9.3. The func-

9.5 Nested-Loop Based Join Processing 153

R relation (id,voxel-interval); // objects of relation R

S relation (id,voxel-interval); // objects of relation S

S′ temporal relation (id,interval-container);

NL-join(R, S){
// preprocessing phase:

for each object objS in S do

objS′ := CoDecJ(objS .CI , IH(R, ν), R);
store(objS′) in S′;

end for;

// join phase:

result set := ∅;
for each object objR in R do {

objR′ := CoDecJ(objR.CI , IH(S′, ν), S′);
for each object objS′ in S′ do {

if intersect(objR′ , objS′) then

result set := result set∪(objR′ .id, objS′ .id);
end if; end for;

end for;

}

Figure 9.3: Nested-Loop Join Algorithm NL-join.

tion intersect(objR′ , objS′) checks whether two objects objR′ and objS′ inter-

sect. They intersect iff there is at least one interval-container pair (objR′ .CI ,

objS′ .C
′
I) which intersects. As soon as an intersection between two objects is

detected, the remaining tests according to these two objects can be skipped.

The intersection test of an interval-container pair is performed in two steps:

In a filter step the pair is tested with respect to their hulls. If the result

of the filter step is positive, i.e. the hulls intersect, a subsequent refinement

step verifies the intersection with respect to the exact geometric object rep-

resentations. Note that before loading the exact voxel-interval information

for the refinement, we usually can apply the fast-intersection-test methods

presented in Section 8.5 in order to detect true hits.

154 9 Join Queries for Complex Spatial Objects

Before evaluating two interval containers for intersection, we have to load

the compressed byte code of the exact geometric representations from disk

and decompress it. Certainly, it is important that the size of the compressed

interval-containers is small in order to reduce the I/O cost. Obviously, the

small I/O cost should not be at the expense of the CPU cost. Therefore, it is

important that only the objects of the inner relation S ′ are in a compressed

form, since the objects of R does not influence the I/O cost very much.

Furthermore, a fast decompression algorithm is required to evaluate the byte

sequence B(CI) of the interval container IC quickly.

9.6 Sort-Merge Based Join Processing

The join algorithm introduced in this section is based on the worst-case

optimal interval join algorithm described in [APR+ 1998] and on the cost-

based decomposition approach described in Section 9.4. We again consider

R and S as input relations. The starting point of this algorithm is like

that of the nested-loop join algorithm (cf. Section 9.5), i.e. each object is

preliminarily approximated by one interval container covering the complete

voxel-interval sequence of the object. In contrast to the nested-loop join

algorithm, our sort-merge join algorithm is performed in plane-sweep fashion

according to the preliminary interval containers. We process the interval

containers in ascending order of their starting points, i.e. H(CI).lower. Note,

for the prior sorting of the interval containers we assume that we can access

the hulls H(CI) without accessing the detailed object description, i.e. the

entire content of the interval containers. As we cannot assume that the

sweep-line status completely fits in memory, we additionally use two auxiliary

relations R′ and S ′ to hold the actual sweep-line status on disk.

In analogy to the nested-loop join, we apply the algorithm CoDecJ (cf.

Figure 9.3) in order to adjust the object approximations to the data distri-

bution of the respective join-partner relation. Again, for the computation

of the data distribution, we use interval histograms with the exception that

we perform the decomposition in two steps in which we employ two different

9.6 Sort-Merge Based Join Processing 155

ni n+i+1 ni+2 ni+3

sweep-line

decomposed interval
containers of the
sweep-line status R‘
actually considered
interval container
not yet decomposed
interval containers

interval histogram
IHsweep,R‘

interval histogram
IHall,R‘

Figure 9.4: Interval containers from relation R and the corresponding

interval histograms IHsweep,R′ and IHall,R′ .

interval histograms for each dataset. The interval histograms IHsweep,R′ and

IHsweep,S′ represent the data distribution within the actual sweep-line status.

The other interval histograms IHall,R′ and IHall,S′ represent the overall data

distribution derived from R and S in conjunction with the actual sweep-line

status. In the following, we assume that all interval histograms have the

same resolution ν, so that their bucket borders are congruent. An example

is shown in Figure 9.4.

During the join processing, we try to estimate the filter selectivity for

each actual considered interval container as precisely as possible. For those

objects which have already been processed, we take the exact interval dis-

tribution into account which is retrieved from the actual sweep-line status,

i.e. from R′ respective S ′. For the contribution of the remaining objects,

where no decomposition was performed yet, we take the distribution of the

corresponding undecomposed objects into account which can be derived from

R and S.

Our sort-merge join algorithm consists of two phases where the second

phase in turn consists of three steps which are performed for each object.

156 9 Join Queries for Complex Spatial Objects

(r1,)
(r2,)
(r3,)
(r4,)
(r5,)

…

(s1,)
(s2,)
(s3,)
(s4,)
(s5,)

…

R S

sweep-line

Cr1
Cr2

Cs1
Cs2

Cr3
Cr4

Cs3

interval containers from the objects of relation R and S
initially containing the complete interval sequence of
each object

retrieving the interval-containers CI of both relations in
ascending order of their lower bound, i.e. H(CI).lower

Step 0: fetch of Cs2

Step 1a:
decomposition of Cs2
using IHsweep(R‘,)

id CI
r1
r2
r2

R‘

Step 2:
intersection query
of decomposed s2
with relation R‘

join results

Step 1b: decomposition
of Cs2 using IHall(R‘,)

id CI
s1
s1
s2

S‘

Step 3: storage of decomposed
s2 in relation S‘

pr
ep

ro
se

ss
in

g
ph

as
e

jo
in

 p
ha

se

Figure 9.5: Two-Phase Sort Merge Join.

The complete join algorithm described in the following is depicted in Figure

9.5.

1. Phase (Preprocessing Phase). Initially, we gather the statistics

about the data distribution of R and S and store them in the two interval

histograms IHall,R′ and IHall,S′ , respectively. Thereby, IHall,R′ is generated

from the data of R and IHall,S′ from the data of S. Next, we order all prelim-

inary interval containers of both relations R and S according to their starting

point, i.e. H(CI .lower). Let us note that sorting the objects is rather cheap

if we assume that we have comparatively few objects but rather complex

ones.

2. Phase (Join Phase). We apply a plane sweep algorithm to walk

through the sorted lists of interval containers of both relations R and S.

The event points of this algorithm are the starting points of the interval

9.6 Sort-Merge Based Join Processing 157

containers of both relations. Each encountered interval container CI from

relation S (R) is now processed according to the following three steps:

• Step 1: CI is decomposed, based on the data distribution of the actual

sweep-line status by applying IHsweep,R′ (IHsweep,S′) and stored in a

temporary list Q. In the same step, we decompose CI applying the

statistics IHall,R′ (IHall,S′) and buffer the result in another temporary

list D.

• Step 2: The resulting decomposed interval containers of Q are used as

query objects for the relation R′ (S ′). We report all objects having an

interval container C ′
I stored in R′ (S ′) which intersects at least one of

the decompositions of CI . These intersection queries can be efficiently

carried out as outlined in Section 8.5.

• Step 3: The decomposed interval containers of D are stored in the tem-

porary relation S ′ (R′). In order to keep the relations R′ and S ′ small,

we delete all interval containers C ′
I from R′ and S ′ where H(C ′

I .upper)

is smaller than H(CI .lower), i.e. all interval containers which are cer-

tainly not accessed anymore. Finally, we have to update the interval

histograms IHall,S′ and IHsweep,S′ (IHall,R′ and IHsweep,R′).

Let us note that our algorithm CoDecJ considers in each step i the i-th

longest gap gi independent of the chosen histogram. We suggest to compute

the object decompositions for the respective interval histograms in parallel.

This approach guarantees that we consider each gap only once.

Similar to the nested-loop join algorithm, the presented sort-merge join

does not require any duplicate elimination. Furthermore, the main memory

footprint of our sort-merge join algorithm is negligible because we do not keep

the sweep-line status in main memory. Even if we kept it in main memory,

the use of suitable data compressors would lead to a small main memory

footprint.

158 9 Join Queries for Complex Spatial Objects

9.7 Experimental Evaluation

In this section, we evaluate the performance of our approach with a special

emphasis on different decomposition algorithms in combination with various

data compression techniques DC. We used the following data compressors:

no compression (NOOPT), the BZIP2 approach [Sew06] and the QSDC

approach. Furthermore, we decomposed object voxels into interval containers

according to two decomposition algorithms MaxGap and CoDecJ .

MaxGap (cf. Section 8.6). This decomposition algorithm tries to minimize

the number of interval containers while not allowing that a maximum gap

G(CI) of any interval container CI exceeds a given MAXGAP parameter.

By varying this MAXGAP parameter, we can find the optimum trade-off

between the first two opposing decomposition rules, namely a small number of

interval containers and a small approximation error of each of these intervals.

A one-value interval approximation is achieved by setting the MAXGAP

parameter to infinite.

CoDecJ. We decomposed the linearized objects according to our cost-based

decomposition algorithm CoDecJ , presented in Figure 9.1, where we set the

resolution of the used interval histograms to 100 buckets.

Let us note that the decomposition based on MaxGap(DC) does not

depend on DC or any statistical information about the data distribution,

whereas CoDecJ(DC) takes the actual data compressor DC and the actual

data distribution into account for performing the decomposition.

The refinement-step evaluation of the intersect() routine was delegated to

a DLL written in C. All experiments were performed on a Pentium 4/2600

machine with IDE hard drives. The database block cache was set to 500

disk blocks with a block size of 8 KB and was used exclusively by one active

session.

Test datasets. The tests are based on two test datasets CAR (3D CAD

data) and SEQUOIA (subset of 2D GIS data representing woodlands derived

from the SEQUOIA 2000 benchmark [SFGM93]). The characteristics of both

9.7 Experimental Evaluation 159

datasets are summarized in Table 9.1. The first test dataset was provided by

our industrial partner, a German car manufacturer, in form of high resolution

rasterized three-dimensional CAD parts.

dataset #voxels #objects size of data space

CAR (3D) 14 · 106 200 233 cells

SEQUOIA (2D) 32 · 106 1100 234 cells

Table 9.1: Test data sets.

Both datasets are linearized by means of a space filling curve in Z-order.

They consist of many short intervals and short gaps and only a few longer

ones.

9.7.1 Compression Techniques

Figure 9.6 shows the different storage requirements of the materialized inter-

val containers with respect to the different data compression techniques. For

high MAXGAP values, the BZIP2 approach yields very high compression

rates, i.e. compression rates up to 1:100 for the SEQUOIA dataset and

1:500 for the CAR dataset. Note that the higher compression rates for the

CAR dataset are due to fact that it is a 3D dataset, whereas the SEQUOIA

dataset is a 2D dataset. This additional dimension leads to an enormous

increase of the size of the materialized interval containers, making suitable

compression techniques indispensable. On the other hand, due to a notice-

able overhead, the BZIP2 approach occupies even more secondary storage

space than NOOPT for small MAXGAP values. Contrary, the QSDC ap-

proach yields good results over the full range of the MAXGAP parameter.

Using the QSDC compression technique, we achieve low I/O cost for storing

(Step 3 in two-phase sort-merge join) and fetching (Step 2 in two-phase sort-

merge join) the interval containers which drastically enhances the efficiency

of the join process.

In the following, we want to investigate the runtime behavior of our two

decomposition-based join algorithms, the nested-loop join and the two-phase

160 9 Join Queries for Complex Spatial Objects

1,E+05

1,E+06

1,E+07

1,E+08

1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08

NOOPT

QSDC
BZIP2

in
te

rv
al

 c
on

ta
in

er
 s

iz
e

in
 b

yt
es

MAXGAP

(a) SEQUOIA

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

NOOPT

QSDC
BZIP2

MAXGAP

in
te

rv
al

 c
on

ta
in

er
 s

iz
e

in
 b

yt
es

(b) CAR

Figure 9.6: Storage requirements for the interval containers.

sort-merge join. We performed the intersection join queries over two re-

lations, each containing approximately a half of the parts from the CAR

dataset. We took care that the data of both relations have similar charac-

terizations with respect to the object size and distribution. Similarly, the

intersection join is performed on parts of the SEQUOIA dataset which is

divided into two relations, consisting of deciduous-forest and mixed-forest

areas.

9.7.2 Performance Evaluation for the Nested-Loop Join

In Figure 9.7 it is shown in which way the response time for the intersec-

tion join query, including the preprocessing step, depends on the MAXGAP

parameter using the QSDC compression (cf. Figure 9.7(a)) and no compres-

sion (cf. Figure 9.7(b)). The figures depict the overall contributions of the

preprocessing phase of the on-the-fly decomposition (cf. Figure 9.2) and of

the filter and refinement step. If we use small MAXGAP parameters, we

need a lot of time for the filter step, whereas the refinement step which is

9.7 Experimental Evaluation 161

09

86

864

8640

86400

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

preprocessing grouping
filter refinement

MAXGAP CoDecJ

pr
oc

es
si

ng
 ti

m
e

[s
]

(a) QSDC compression

09

86

864

8640

86400

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

MAXGAP CoDecJ

pr
oc

es
si

ng
 ti

m
e

[s
]

(b) NOOPT (no compression)

Figure 9.7: MaxGap and CoDecJ evaluated for intersection joins on the

CAR dataset.

influenced by the size of the byte sequence of the interval container is rel-

atively cheap. On the other hand, for high MAXGAP values we can see

that the refinement step is very expensive in contrast to the filter step which

shows very little contribution. Due to the fact that the performance mainly

depends on the I/O cost, the preprocessing step shows a similar performance

behavior as the pure join. We can observe that for both compression cases

the CoDecJ approach exceeds the best MAXGAP approach with respect

to both compression variants. The marginally higher preprocessing cost of

the CoDecJ algorithm result from the computation of the cost-estimations

required for the decomposition.

Figure 9.8 illustrates how the overall join runtime depends on the dif-

ferent grouping techniques for both datasets, CAR (cf. Figure 9.8(a)) and

SEQUOIA (cf. Figure 9.8(b)). For packed data, the optimum MAXGAP

value is higher than for unpacked data, i.e. MAXGAP = 105 for NOOPT

and MAXGAP = 106 for BZIP2 and QSDC. The CoDecJ algorithm pro-

162 9 Join Queries for Complex Spatial Objects

09
86

864
8640

86400

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

NOOPT BZIP2 QSDC

MAXGAP CoDecJ

pr
oc

es
si

ng
 ti

m
e

[s
]

(a) CAR dataset

86

864

8640

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
MAXGAP CoDecJ

pr
oc

es
si

ng
 ti

m
e

[s
]

(b) SEQUOIA dataset

Figure 9.8: Overall join performance for different packers.

duces for both datasets object decompositions which yield almost optimum

join response time for varying compression techniques. It adapts to the opti-

mum MAXGAP parameter for varying compression techniques by allowing

greater gaps for packed data, i.e the number of generated interval containers

is smaller in the case of packed data.

To sum up, the CoDecJ algorithm produces object decompositions which

yield the optimal trade-off between the filter and refinement cost for both

high-resolution datasets.

9.7.3 Performance Evaluation for the Two-Phase

Sort-Merge Join

In Figure 9.9 and Figure 9.10 it is shown how the response time for the in-

tersection join, including the preprocessing step, depends on the MAXGAP

parameter if we use no cache, i.e. the temporary relations R′ and S ′ are not

kept in main memory. The preprocessing time, i.e. the time for the creation

9.7 Experimental Evaluation 163

00

86

173

259

346

432

10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

preprocessing step 0 step 1 step 2 step 3

MAXGAP CoDecJ

pr
oc

es
si

ng
 ti

m
e

[s
]

(a) QSDC

00
86
173
259
346
432

10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

MAXGAP CoDecJ

pr
oc

es
si

ng
 ti

m
e

[s
]

(b) BZIP2

00

173

346

518

10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

MAXGAP CoDecJ

pr
oc

es
si

ng
 ti

m
e

[s
]

3407 4292

(c) NOOPT

Figure 9.9: MaxGap and CoDecJ grouping on SEQUOIA for different

compression algorithms (main memory cache disabled).

of the statistics, is negligible. Step 0 of the join phase, i.e. the loading of the

exact object descriptions, is rather high and almost constant w.r.t. a vary-

ing MAXGAP parameter. On the other hand, Step 1, the statistic-based

decomposition of our interval containers is very cheap for our CoDecJ algo-

rithm, and for the Maxgap approach it is not needed. Step 2, i.e. the actual

intersection query, heavily depends on the used MAXGAP value and the

applied compression algorithm. For small MAXGAP values, we have rather

high cost for all compression techniques as the number of used query interval

containers is very high. For high MAXGAP values, we only have high cost

if we use the NOOPT compression approach. On the other hand, if we use

our QSDC approach, the actual cost for the intersection queries stay low,

164 9 Join Queries for Complex Spatial Objects

CoDecJ

00
432
864

1296
1728
2160
2592
3024
3456

10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

preprocessing step 0 step 1 step 2 step 3

MAXGAP

pr
oc

es
si

ng
 ti

m
e

[s
]

(a) QSDC

00

864

1728

2592

3456

10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

CoDecJMAXGAP

pr
oc

es
si

ng
 ti

m
e

[s
]

(b) BZIP2

00
864
1728
2592
3456
4320
5184

10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

CoDecJMAXGAP

pr
oc

es
si

ng
 ti

m
e

[s
]

18048 472095310

(c) NOOPT

Figure 9.10: MaxGap and CoDecJ grouping on CAR for different com-

pression algorithms (main memory cache disabled).

as we have rather low I/O cost and can efficiently decompress the interval

containers. If we use the BZIP2 approach for high MAXGAP values, we

also have low I/O cost but higher CPU cost than for the QSDC approach.

Due to these rather high CPU cost, the BZIP2 approach performs worse

than the QSDC approach. The incidental cost for Step 3, i.e. the storing of

the decomposed interval containers in temporary relations, can be explained

similar to the cost for Step 2. Note that the cost for Step 2 and Step 3 are

smaller if we allow a higher main memory footprint.

For MAXGAP values around 106, our join algorithm works most effi-

ciently for the QSDC and BZIP2 compression approaches. Our CoDecJ-

9.7 Experimental Evaluation 165

09

86

864

0E+00 5E+01 2E+02 5E+02 2E+03 5E+03 2E+04 5E+04 2E+05 5E+05

preprocessing step 0 Step 1 Step 2 Step 3

cache size in kB

pr
oc

es
si

ng
 ti

m
e

[s
]

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

N
O

O
P

T
Q

SD
C

Figure 9.11: Sort-merge join performance with CoDecJ algorithm for dif-

ferent cache sizes of the sweep-line status (CAR dataset).

based decomposition yields results quite close to these optimum ones. For the

NOOPT approach, the best possible runtime can be achieved for MAXGAP

values around 104. Again, the runtime of our join based on the CoDecJ algo-

rithm is close to this optimum one, justifying the suitability of our grouping

algorithm.

Figure 9.11 demonstrates for the CAR dataset how the runtime of the

complete join algorithm depends on the available main memory. We keep as

much as possible of the sweep-line status in main memory instead of imme-

diately externalizing it. The figure shows that for uncompressed data Step 2

and Step 3 (cf. Figure 9.5) are very expensive if the available main memory is

limited. If we use our CoDecJ algorithm without any compression, we need

about 50 MB or more to get the best possible runtime. If we use CoDecJ

in combination with the QSDC approach, we only need about 2 MB to get

the best runtime. The two optimum runtimes are almost identical because

one of the main design goals of the QSDC was high unpack speed. Already

with a main memory footprint of 0 KB, i.e. the sweep-line status cache is

disabled, the QSDC approach achieves runtimes close to the optimum ones,

demonstrating a high compression ratio of the QSDC.

Figure 9.12 for the CAR dataset and Figure 9.13 for the SEQUOIA

dataset show the influence of the available main memory for one-value in-

terval approximations, i.e. Ocont = (id, CI), and container approximations

formed by our CoDecJ algorithm. The one-value interval approximations

166 9 Join Queries for Complex Spatial Objects

produce more false hits resulting in higher refinement cost. One-value inter-

val approximations of uncompressed data cannot be kept in main memory

even if allowing a main memory footprint of up to 1.5 GB. Furthermore, the

figures demonstrate the superiority of the QSDC approach compared to the

BZIP2 approach, independent of the available main memory. This supe-

riority is due to the high (un)pack speed of the QSDC and a comparable

compression ratio.

To sum up, our cost-based decomposition algorithm CoDecJ together

with our QSDC approach can significantly speed up the nested-loop join

and the sort-merge join while keeping the required main memory small. For

reasonable main memory sizes, we achieve an acceleration by more than one

order of magnitude for the SEQUOIA dataset and by more than two orders

of magnitude for the CAR dataset compared to the traditionally used non-

compressed one-value approximations. Let us note that the sort-merge join

outperforms the nested-loop join only with the SEQUOIA dataset. The

reason is the different characteristics of the datasets, in particular differ-

ent dimensionality and density of the object locations. In contrast to the

SEQUOIA objects, the objects of the CAR dataset are all very close to

each other which leads to a significant overlap of the one-value approxima-

tions of all objects. As a result, almost all objects intersect the sweep-line

at the same time, and thus, they are nearly simultaneously in the sweep-line

status.

9.8 Summary

In this chapter, we introduced a new approach for efficient processing of

spatial intersection joins over high-resolution objects. In our approach, it is

assumed that there is no spatial index available. In particular, we presented

solutions for two joins, one for the nested-loop join and one for the sort-merge

join. Both join procedures are based on fast filter steps performed on object

approximations and an expensive refinement step. We used the concept of

interval containers for the object approximation. The core of our approach

9.8 Summary 167

10

100

1000

10000

100000

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

CoDecJ(NOOPT) one-value(NOOPT)
CoDecJ(BZIP2) one-value(BZIP2)
CoDecJ(QSDC) one-value(QSDC)

cache size in kB

pr
oc

es
si

ng
 ti

m
e

[s
]

Figure 9.12: Overall sort-merge join performance for different cache sizes

of the sweep-line status (CAR dataset).

1

10

100

1000

10000

1E-2 5E+1 2E+2 5E+2 2E+3 5E+3 2E+4 5E+4 2E+5 5E+5

one-value(NOOPT) CoDecJ(QSDC)

cache size in kB

pr
oc

es
si

ng
 ti

m
e

[s
]

Figure 9.13: Sort-merge join performance for different cache sizes of the

sweep-line status (SEQUOIA dataset).

is a cost-based decomposition algorithm, building the object approximations

in a for the corresponding join process convenient way. The decomposition

algorithm takes cost of the filter and refinement step of the join procedure into

consideration. The cost model takes the actual data distribution reflected by

statistical information into account. In a broad experimental evaluation on

real-world datasets, we demonstrated the efficiency of our both spatial join

algorithms for complex spatial objects.

168 9 Join Queries for Complex Spatial Objects

Chapter 10

Distributed Spatial Join

Processing

In many different application areas, e.g. space observation systems or en-

gineering systems of world-wide operating companies, there is a need for

an efficient distributed intersection join in order to extract new and global

knowledge. A solution for carrying out a global intersection join is to trans-

mit all distributed information from the clients to a central server, leading to

high transfer cost. In this section, we present a new distributed intersection

join for interval sequences of high-cardinality which tries to minimize these

transmission cost.

Our approach is based on a suitable probability model for interval inter-

sections which is used on the server as well as on the various clients. On the

client sites, we group intervals together into interval containers (cf. Section

8.2.1) based on this probability model. These locally created approxima-

tions are sent to the server. The server ranks all intersecting approximations

according to our probability model. As not all approximations have to be

refined in order to decide whether two objects intersect, we fetch the exact

information of the most promising approximations first. This strategy helps

us to cut down the transmission cost considerably which is proven by our

experimental evaluation based on synthetic and real-world test datasets.

169

170 10 Distributed Spatial Join Processing

10.1 Introduction

In this section, we consider interval data or, more generally, interval-sequence

data residing on different, independently working computers which are con-

nected to each other via local or wide area networks (LANs or WANs). Ap-

plications of this type of data comprise distributed mobile networks, sensor

networks or vehicle manufacturers, where the development agencies are lo-

cated at different places, distributed all over the world. For instance, in-

ternational companies such as Daimler-Chrysler AG have some development

agencies which are located in Europe, Asia, and the USA. In the areas of

digital mock-up of vehicles and airplanes [KPPS03a], haptic simulations in

virtual product environments [MPT99] or engineering data management as

well as in the areas of two-dimensional GIS and environmental information

systems [MP94], the locally collected data can only, with great difficulty, be

transmitted to a central site and centrally joined there. Meeting the need of

all these application ranges, in this chapter, we will present a distributed in-

terval intersection join which extracts global knowledge while taking limited

bandwidth and security aspects into account.

Considerable work has been done in the area of distributed data manage-

ment [ÖV99], for instance in the area of Distributed Data Mining (DDM)

[KC00]. Generally, distributed databases constitute a very important and

emerging research area which crucially depends on efficient query processing.

In the following, we present a distributed algorithm which detects in-

tersecting interval sequences, e.g. interval sequences representing complex

spatial objects, residing on different local clients. Note that determining

pairs of intersecting interval sequences located at the same local site is a

rather straightforward task which can be handled independently by the cor-

responding local clients (cf. Section 9). These locally determined result

sets can easily be combined with the global result set determined by the

distributed intersection join. The approaches presented in this chapter has

been published in [KKPR05b].

10.1 Introduction 171

transmitting
client
histograms
to server

transmitting
server
histogram to
clients

decompose interval
containers on the clients

transmitting
decomposed
interval
containers to
the server

server-side
intersection
join based on
interval
containers
(filter)

reloading and
joining exact
intervals on
demand
(refinement)

step 1 step 2 step 3

step 4 step 5 step 6

Figure 10.1: Distributed Intersection Join on Interval Sequences.

10.1.1 Concept of the Distributed Join Processing

We start with shortly sketching the complete join process. The distributed

join process is performed in multiple steps as depicted in Figure 10.1.

Step 1. At first, all clients collect statistical information, e.g. interval

histograms, reflecting the interval distributions of the data residing at their

own local site. Then, the clients send this statistical information to the

server.

Step 2. At the server site, the local client statistics are merged into a global

statistic, reflecting the interval distribution of all local clients. This global

statistic is sent back to each client.

Step 3. Each client groups the original intervals belonging to the same

voxel-interval sequence together to interval containers. This grouping process

is decisively based on the data distribution of the join partners residing on the

other local clients reflected by the global statistic minus the own local client

statistic. The resulting statistic is not only used for the grouping process but

also for a fast filter step on the client sites.

172 10 Distributed Spatial Join Processing

Step 4. If by means of this statistic a global intersection of an interval

container cannot be ruled out, the hull of the interval container along with

additional aggregated information, i.e. the density of the interval container

(cf. Table 8.1) and the number of bytes required for sending the correspond-

ing (compressed) exact information (cf. Section 8.2.2), is sent to the server.

Step 5. The server detects all overlapping interval containers based on their

hulls. We say that two interval containers overlap iff their hulls intersect (cf.

Section 8.4). Based on the intersection length of the hulls and the density of

the interval containers, the server computes a probability that the interval

containers intersect, i.e. the probability that they contain at least one pair

of intervals that intersect. The pairs of overlapping interval containers are

ranked in ascending order according to a cost model, in particular a combi-

nation of the determined probability value and the estimated transmission

cost of the exact information.

Step 6. Finally, the server iteratively refines the top-listed pairs by fetching

the exact information from the local clients, i.e. the (compressed) original

voxel intervals. Interval container pairs which belong to objects from which

we already know that they intersect, do not have to be refined. Thereby, we

can enormously save on the overall transmission cost.

In Section 8.5 we have shown that we can sometimes pinpoint whether

two interval container pairs intersect, based on relatively little information,

in particular the operators of interval containers given in table 8.1. Unfortu-

nately, as in most cases, the preconditions allowing to detect the intersections

in that way does not hold, we will not be able to apply it very often. Nev-

ertheless, it is still helpful if we can predict how probable an intersection of

overlapping interval containers might be.

10.2 Intersection Probability

Since we want to integrate this probability model into the first filter step of

our join algorithm and we do not want to neglect completely the CPU cost,

10.2 Intersection Probability 173

its computation should be rather cheap. The probability model introduced in

this section is easy to compute and will be applied in various different forms

throughout our approach. The model is equal to the coin− toss experiment,

i.e. it is a Bernoulli experiment. It assumes that the cells within an interval

container occupied by object voxels are equally distributed1.

Theorem 10.1 (intersection probability) Let CI and CI′ be two interval

containers with densities D = D(CI) and D′ = D(CI′). Furthermore, let

L = intersection length(H(CI), H(CI′)). Then, the probability P (CI , CI′)

that the two interval containers CI and CI′ intersect is equal to:

P (CI , CI′) = 1− (1−D ·D′)L.

Proof. Let x be one of the cells in the overlapping area of both interval

containers CI and CI′. Obviously, the probability that this cell is covered by

a voxel interval contained in CI is equal to the density D. Subsequently, the

probability that two intervals b and b′ from CI and CI′, respectively, intersect

at the point x is Px = D · D′. The probability that either x or another cell

y 6= x is covered by intervals b and b′ from CI and CI′ is

Px,y = D ·D′ + (1−D ·D′) ·D ·D′.

As we assume that the interval bounds are mapped to discrete integer values,

the probability that b and b′ share at least one point can be computed as

follows:

P (b, b′) =
L−1∑
i=0

(D ·D′ · (1−D ·D′)i)

= D ·D′ · 1− (1−D ·D′)L

1− (1−D ·D′)
= 1− (1−D ·D′)L.

2

Note that Lemma 8.1 and 8.2 can be derived from the above theorem by

setting the overlapping length L to 0 (Lemma 8.1) or setting D and D′ to

1We neglect the fact that the interval containers represent (parts of) spatial objects
and that in this case the corresponding intervals covered by the containers tend to form
no equally distributed groups.

174 10 Distributed Spatial Join Processing

1 (Lemma 8.2). Similar to the above reasoning, we are going to derive the

probability that one interval container CI0 intersects at least one of n other

interval containers CI1 , .., CIn .

Theorem 10.2 (combined intersection probability) Let CI0 be an in-

terval container that intersects with n other interval containers CIi
, i ∈ 1..n

with a probability of P (CI0 , CIi
). Then, the total probability P (CI0) that CI0

intersects with at least one of the other interval containers can be computed

by

P (CI0) = 1−
n∏

i=1

(1− P (CI0 , CIi
)).

Proof. The probability P ′(CI0) that none of the interval containers CI1 , .., CIn

intersect with CI0 is

P ′(CI0) = (1− P (CI0 , CI1)) · ... · (1− P (CI0 , CIn)).

Consequently, the total probability P (CI0) that CI0 intersects with at least one

of the other interval containers is P (CI0) = 1− P ′(CI0). 2

This intersection probability model can be used for building appropriate

object approximations and helps us to minimize the cost of the refinement

step. How we can exploit our probability model in detail will be shown in

the next two sections.

10.3 Client-Side Approximation of Interval

Sequences

The central question is how to group the interval sequence of a client object

into interval containers, serving as suitable object approximations. We first

introduce probability histograms which are used to estimate the intersection

probability of interval containers. Secondly, we present our cost model which

takes the probability histograms as well as the transmission cost into account.

10.3 Client-Side Approximation of Interval Sequences 175

Finally, we present a cost-based grouping algorithm CoDecDJ , a variant of

the CoDecJ algorithm (cf. Section 9.4), which aims at minimizing the overall

transmission cost.

10.3.1 Local Intersection Probability

We utilize simple statistics of the interval sequence objects to estimate the

probability P (CI) that any interval container CI intersects with at least one

other interval container located on a different client. In order to cope with

arbitrary interval distributions, histograms can be employed to capture the

data characteristics at any desired resolution. The expected intersection

probability P (CI) can be determined by using an appropriate intersection

probability histogram which reflects aggregated information over all interval

sequence objects distributed over all local clients.

Definition 10.1 (intersection probability histogram) Let IB = [0, max ∈
N] be a domain of voxel-interval bounds. Let the natural number ν ∈ N de-

notes the resolution, and βν = max
ν

be the corresponding bucket size of the

histogram. Let

βi,ν = [1 + (i− 1) · βν,1 + i · βν)

denote the span of bucket i, i ∈ 1, .., n. Let further DB be a database of

interval sequence objects and the function Ω(oj, bi,n) denotes the sum

Ω(oj, bi,n) =
∑

i

(intersectlength(i, bi,n)

over all intervals i of the interval sequence object oj. Then, Ψ(DB, n) =

(n1, .., nν) ∈ Nν is called the intersection probability histogram on DB with

resolution ν iff for all i ∈ 1, .., ν:

ni = 1−
∏

∀oj∈DB

(1− Ω(oj, bi,ν)

βν

).

In the above definition, we map an interval sequence object to ν inter-

val containers congruent to the histogram buckets, each having a density

176 10 Distributed Spatial Join Processing

Ω(oj ,bi,ν)

βν
. This density corresponds to the probability that one point x ∈ βi,ν

is intersected by the interval sequence object of oj. Theorem 10.2 shows

that the value ni in Definition 10.1 reflects the probability that x ∈ βi,ν is

intersected by at least one interval sequence object of the domain DB.

10.3.2 Global Intersection Probability

All local clients send their own intersection probability histogram to the

server. The server computes for each client Cj a specific global intersection

probability histogram Ψj.

Definition 10.2 (global intersection probability histogram) Let DB1,

.., DBm be the datasets of m different local clients with congruent intersec-

tion probability histograms Ψ(DBs, ν) = (n1, s, .., nν,s), s ∈ 1, ..,m. Then, the

global intersection probability histogram Ψj(∪s=1..m,s 6=jDBs, ν) = (nj
1, .., n

j
ν)

for the client Cj can be computed as follows:

nj
i = 1−

m∏
s=1,s 6=j

(1− ni,s).

Similar to the argumentation following Definition 10.1, the value nj
i of Ψj

in Definition 10.2 reflects the probability that x ∈ bi,ν is intersected by at least

one interval sequence object located at a client Cs where s ∈ 1, ..,m, s 6= j.

For the computation of the expected intersection probability P (CI), we

apply our probability model of Section 10.2 in combination with the intersec-

tion probability histograms Ψ(DB, ν). For each histogram bucket i ∈ 1, .., ν

we separately compute the combined intersection probability P (CI) (cf. The-

orem 10.2) according to an interval container CI by applying the global in-

tersection probability histogram (cf. Defintition 10.2):

PΨ(CI) = 1−
ν∏

i=1

(1−D(CI) · ni(DB))overlap(H(CI)),bi,ν ,

where ni(DB) denotes the accumulated interval density described by the ith

bucket bi,ν of the global intersection probability histogram (cf. Definition

10.2).

10.3 Client-Side Approximation of Interval Sequences 177

10.3.3 Cost Model

The approximation quality has a significant influence on the performance

of the multi-step join process. If we adjust the approximation quality too

low, for example by taking one-value approximations, the filter step is not

very selective, thus, many exact object information has to be requested from

the server. On the other hand, if we choose very accurate approximations,

the initial transmission cost for sending the aggregated information of the

interval containers to the server is very high.

The overall join cost costjoin related to an interval container CI are com-

posed of two parts, the filter cost costfilter and the refinement cost costrefine:

costjoin(CI , Ψ
j) = costfilter(CI) + costrefine(CI , Ψ

j).

Filter cost. The filter cost costfilter(CI) related to an interval container

CI depends mainly on the cost required to transmit the aggregated informa-

tion of CI to the server. Furthermore, transmission includes the necessary

identifier of CI , the hull H(CI) and the density D(CI). The total size of

each transmitted entity for the filter step is constant, thus, we penalize each

transmission by a constant ctrans which reflects the transmission cost related

to one interval container.

Refinement cost. The refinement cost related to CI depends on whether

the server asks for the exact information of CI during the join process or not.

Obviously, the probability that the server asks for the exact information de-

pends on the probability whether CI intersects at least one interval container

or not. Thus, we can estimate the refinement cost as follows:

costrefine(CI , Ψ) = PΨ(CI) · costtrans(CI),

where costtrans(CI) denotes the cost required to transmit the interval con-

tainer CI from client Cj to the server.

178 10 Distributed Spatial Join Processing

CoDecDJ(CI , Ψj(DB, ν)){
costcomp := costjoin(CI ,Ψj(DB, ν));
container pair := split at maximum gap(CI);

Cleft := container pair.left;

Cright := container pair.right;

costdec := costjoin(Cleft,Ψj(DB, ν)) + costjoin(Cright,Ψj(DB, ν));
if costcomp > costdec then

CoDecDJ(Cleft,Ψj(DB, ν));
CoDecDJ(Cright,Ψj(DB, ν));

else

report(CI);

end if;

}

Figure 10.2: Decomposition Algorithm CoDecDJ .

10.3.4 Grouping Algorithm

Our cost-based grouping algorithm CoDecDJ , depicted in Figure 10.2, is

a greedy approach which is performed in top-down fashion. It starts with

a one-value approximation of the input interval sequence, i.e. all intervals

are grouped into one large interval container CI . At first, we search the

largest gap of CI and split it at this gap into two smaller interval containers

CIleft
and CIright

. As long as the estimated accumulated transmission cost of

the resulting interval containers are smaller than the cost according to the

un-split interval container CI , the algorithm is applied recursively to both

interval containers CIleft
and CIright

.

10.4 Server-Side Join Algorithm

The server-side join algorithm is based on the paradigm of multi-step query

processing [BKSS94]. First, we detect all overlapping objects, i.e. overlap-

ping interval containers of the objects. In order to decide whether an over-

10.4 Server-Side Join Algorithm 179

lapping object pair intersects, it suffices to detect one intersecting interval-

container pair of this object combination. Consequently, all remaining inter-

section tests according to these two objects can be discarded and the corre-

sponding transmission cost can be saved. Therefore, it would be promising to

carry out a fast-intersection test (cf. Section 8.5) for all overlapping interval

containers before accessing and testing the exact geometry for any interval

container pair. As the preconditions according to the fast-intersection-tests

may be too restrictive for many test candidates and does not hold very of-

ten, it would be desirable to rank overlapping interval containers according

to their intersection probability.

10.4.1 Ranked Refinement Based on Join Probability

Following the discussions above, an overlapping interval-container pair (CI , CI′)

should be top ranked if the following conditions are fulfilled:

• the intersection probability of (CI , CI′) is high and

• the cost required to transmit (CI , CI′) from the clients to the server is

low.

If the intersection probability of (CI , CI′) is high, then this pair seems to have

an intersection and we can expect that further intersection tests between the

corresponding objects can be discarded. If the transmission cost of (CI , CI′)

is rather small, the overall transmission rate can be significantly reduced,

provided that we perform the intersection test for the interval container pair

(CI , CI′) as early as possible.

We compute the ranking value for an interval pair (CI , CI′) as follows:

rank(CI , CI′) = (1− P (CI , CI′)) · (costtransmit(CI) + costtransmit(CI′)).

Thereby, the intersection probability P (CI , CI′) between two overlapping in-

terval containers is computed according to Theorem 10.1. Note that all

transmitted information is stored on the server site. Therefore, for each in-

terval container CI which has already been transmitted from a local client

to the server, the cost attribute costtransmit(CI) is set to zero.

180 10 Distributed Spatial Join Processing

10.5 Experiments

In this section, we evaluate the performance of our approach with a special

emphasis on the overall transmission cost which is measured in bytes. All

experiments were performed on a Pentium 4/2600 machine with IDE hard

drives.

10.5.1 Test Datasets

The tests are based on a test dataset CAR which consists of 200 3D CAD

objects (voxelized with high-resolution) provided by our industrial partner,

a German car manufacturer. These voxelized objects have been linearized

via a space filling curve, leading to 200 interval sequence objects. Each of

these objects consists of approximately 50,000 voxel intervals. Furthermore,

we used an artificial test dataset ART consisting of 1,024 interval sequence

objects, each represented by 10,000 voxel intervals. The objects are equally

distributed in a range of [0..227-1] and the gap lengths inside an object follow

a normal distribution. During the experiments, the objects of both test

datasets were equally distributed on the available clients.

10.5.2 Grouping

We used two different grouping strategies for forming the interval containers.

The MaxGap approach tries to minimize the number of interval containers

while not allowing that a maximum gap G(CI) of any interval container CI

exceeds a given MAXGAP parameter. By varying this MAXGAP param-

eter, we can find the optimum trade-off between accuracy and redundancy.

A one-value interval approximation is achieved by setting the MAXGAP

parameter to infinite. If the parameter is set to zero, each interval container

is identical to one voxel-interval. Furthermore, we used the decomposition

algorithm CoDecDJ , where we set the resolution of the used histograms to

10,000 buckets by default.

10.5 Experiments 181

10.5.3 Client-Side Grouping

In a first set of experiments, we compare our different client-side grouping

strategies to each other. Figure 10.3 shows that for the MaxGap approach

we have rather high transmission cost when using too small or too large

MAXGAP parameters. If the parameter is too small, many hulls have

to be transmitted. On the other hand, if the parameter is very high, the

filter selectivity is very bad, leading to high transmission cost during the

refinement step of the server-side join algorithm. Furthermore, it is shown

that by applying suitable packers for compressing the exact information of

the interval containers, these cost can dramatically be reduced. Note that

our CoDecDJ approach does not produce higher transmission cost than the

”optimal” MaxGap approach that is independent of whether a packer (ZLIB

[LZ77]) is used or not (denoted by NONE).

In a next experiment, we investigated the dependency of the different

grouping approaches for a varying number of clients. Here, we transmitted

the exact information of the interval containers in a compressed way. Figure

10.4 shows that our CoDecDJ approach yields optimum results, indepen-

dent of the number of used clients. Again, for low MAXGAP values, the

number of hulls sent to the server is quite large and dominates the overall

transmission cost. High MAXGAP values lead to a very small number of

interval containers per object, thus, almost all join candidates have to be

refined.

10.5.4 Server-Side Join

In Figure 10.5 it is shown how the intersection probability based ranking

function (cf. Section 10.4.1) influences the transmission cost of the refinement

step. Therefore, we compare our cost-based ranking approach (CBR) with

the following methods which differ in the order in which the join candidates

are refined:

• Ordered exclusively by the intersection probability (PBR),

182 10 Distributed Spatial Join Processing

1,E+00

1,E+01

1,E+02

1,E+03

1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 NONE ZLIB
MAXGAP

NONE

ZLIB
tra

ns
m

is
si

on
 c

os
t [

M
B

]

CoDecDJ

(a) CAR

1,E+00

1,E+01

1,E+02

1,E+03

1,E+00 1,E+03 1,E+06 NONE ZLIB
MAXGAP

NONE

ZLIB

tra
ns

m
is

si
on

 c
os

t [
M

B
]

CoDecDJ

(b) ART

Figure 10.3: Grouping strategies using (un)compressed data equally dis-

tributed on 4 local clients.

• Ordered exclusively by the transmission cost (LBR),

• Ordered in a randomized order (RND).

This experiment shows that our approach achieves the lowest transmission

cost as well as the lowest number of transmission requests. Consequently, our

cost-based ranking approach produces the smallest additional communication

overhead. Note that we made similar results for the CAR dataset, a varying

number of clients, and if we transmit the exact information uncompressed.

10.6 Summary 183

1,E+00

1,E+01

1,E+02

1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 2 4 8 16
MAXGAP

4,8,16 clients

2 clients

tra
ns

m
is

si
on

 c
os

t [
M

B
]

CoDecDJ

(a) CAR

1,E+00

1,E+01

1,E+02

1,E+00 1,E+02 1,E+04 1,E+06 1,E+08 2 4 8 16
MAXGAP

tra
ns

m
is

si
on

 c
os

t [
M

B
]

CoDecDJ

4,8,16 clients

2 clients

(b) ART

Figure 10.4: Different grouping strategies on the two datasets (compressed

with ZLIB) which were equally distributed on 2, 4, 8 and 16 local clients.

10.6 Summary

In this chapter, we presented an intersection join for distributed complex spa-

tial objects represented by interval sequences. The objects are assumed to be

distributed on clients located at different sites. The intersection join is exe-

cuted at a central server which is connected to all clients via local or wide area

networks. The main goal of this approach is to minimize the client-server-

communication cost incurred by the server side join process. Our proposed

solution is based on generating approximations of the interval sequence data

which are transmitted from the clients to the server site for a filter step.

In contrast to existing solutions, e.g. error-bound approaches, our statistic

driven proposal achieves a good trade-off between the communication cost

184 10 Distributed Spatial Join Processing

0

1

2

3

4

5

CBR PBR LBR RND

tra
ns

m
is

si
on

 c
os

t [
M

B
]

(a) transmission cost

0
10
20
30
40
50
60
70
80

CBR PBR LBR RNDtra
ns

m
is

si
on

 re
qu

es
ts

 [x
 1

00
0]

(b) transmission requests

Figure 10.5: Different join strategies (4 Clients, ZLIB, CoDecDJ , ART).

of the filter and the refinement step. It adapts automatically to different

client-server characteristics, e.g. different datasets, varying number of clients

or the used compression technique. Another contribution of this work is a

cost based strategy for the refinement step. The experiments show that our

approach leads to a speed-up of more than one order of magnitude compared

to the use of one-value approximations or the use of no approximations at

all.

Part III

Enhanced Similarity Search on

Time Series

185

Chapter 11

Introduction

In this part, we introduce the new concept of threshold-based similarity

search for time series databases. In Part II we used interval sequence ob-

jects as basic representation of complex spatial objects. Now, we propose to

use interval sequences as basic representation of complex shaped time series

objects. Certainly, one advantage for this type of representation is, simi-

lar to that of representing complex spatial objects, that interval sequences

are easier to handle than the original object representations. However, in

case of time series there is another very important advantage. Based on this

”unusual” type of time series representation, we can define a novel but very

promising similarity measure for time series. This measure does not only pro-

vide new prospects in data mining in time series databases but also allows

to develop efficient methods for searching in very large databases comprising

large and complex time series objects.

The analysis of time series data, in particular the recognition of relation-

ships in time series databases that have not previously been discovered, is

of great practical importance in many application areas, e.g. stock market-

ing, astronomy, environmental analysis, molecular biology, and pharmacoge-

nomics. As a consequence, a lot of research work has recently focused on

similarity search in time series databases. Similarity search on time series

can be classified into the following three objectives: similarity in time, sim-

ilarity in shape and similarity in change which have been already discussed

187

188 11 Introduction

in detail in Section 3.3.

In this part, we present efficient and effective similarity search algorithms

for time series with special emphasize on similarity in time. As mentioned

above, we use sequences of intervals in order to approximate our objects.

This time we consider time intervals instead of space intervals. A particular

interval sequence representation of a time series object is associated with a

given amplitude threshold.

11.1 Overview of Related Work

The complex nature of time series represents a big challenge for effective

and efficient search algorithms. The proposed methods mainly differ in the

desired type of similarity (cf. Section 3.3), the type of application (cf. Sec-

tion 3.4) and the form of representation used for the time series objects (cf.

Section 3.7); a survey is given in [KCMP01]. In the following, we will review

existing solutions for efficient similarity search on time series and give reasons

why they do not suit for threshold-based similarity search.

11.1.1 Measuring Similarity

The most prominent (dis)similarity measure for time series is the Euclidean

distance. For many applications, the Euclidean distance may be too sensitive

to minor distortions in the time axis. It has been shown that Dynamic

Time Warping (DTW) can fix this problem [KCMP01]. Using DTW to

measure the distance between two time series t1 and t2, each value of t1

may be matched with any value of t2. However, the Euclidean distance

as well as DTW are obviously not applicable to threshold-based similarity

search because they take the absolute values of the entire time series curve

into account rather than tightly focusing on the time series characteristic at

”relevant” amplitudes.

11.1 Overview of Related Work 189

11.1.2 Indexing Time Series and Dimensionality

Reduction Methods

Usually, time series are considered as points in n-dimensional space and any

Lp-norm, e.g. the Euclidean distance, is used to measure the similarity be-

tween two time series. In that way, time series can be indexed by spatial

access methods such as the R-tree and its variants [Gut84]. Nevertheless,

most spatial access methods degrade rapidly with increasing data dimen-

sionality due to the ”curse of dimensionality”. In order to utilize existing

spatial access methods conveniently for time series, it is necessary to involve

dimensionality reduction methods combined with the concept of multi-step

query processing, as proposed in the GEMINI approach [FRM94]. Standard

techniques for dimensionality reduction have been successfully applied to sim-

ilarity search in time series databases, including Discrete Fourier Transform

(DFT) [AFS93], Discrete Wavelet Transform (DWT) [CF99], Piecewise Ag-

gregate Approximation (PAA) [YF00], Singular Value Decomposition (SVD)

[KJF97], Adaptive Piecewise Constant Approximation (APCA) [KCMP01],

and Chebyshev Polynomials [CN04]. All these methods qualify for the GEM-

INI framework since they provide similarity-distance measures in the reduced

vector space that lower bound the desired similarity-distance measure ap-

plied to the original time series. Nevertheless, the proposed representations

are only applicable for the Minkowski metrics or time warping similarity

measures but do not support threshold-based similarity computations.

11.1.3 Further Approximation Techniques

In [RKBL05] a novel bit level approximation of time series for similarity

search and clustering is proposed. Each value of the time series is represented

by a bit. The bit is set to 1 if the value of the time represented by the bit is

strictly above the mean value of the entire time series, otherwise it is set to 0.

Then, distance functions are defined on this bit level representation that lower

bounds the Euclidean distance and DTW. Though, this type of time series

representation is quite similar to our threshold-based representation, it does

190 11 Introduction

not meet our needs. Furthermore, this kind of representation is restricted to

a fixed threshold and, in contrast to our approach (cf. Chapter 14), does not

allow the user to define the threshold at query time.

To the best of our knowledge, threshold-based analysis in time series

databases has not been addressed before in the database community. In

particular, neither exists any access method for time series nor any similarity

search technique which supports threshold queries efficiently.

11.2 Preliminaries

Time series are sequences, discrete or continuous, of quantitative data as-

signed to specific moments in time. Formally, we define a time series as

follows:

Definition 11.1 (Time Series) A time series X is a sequence of tuples

〈(x1, t1), .., (xN , tN)〉,

where ti ∈ T denotes a specific time slot and xi ∈ R denotes the data corre-

sponding to time ti. Naturally, we assume that the sequence is sorted w.r.t.

the time slots, i.e. ∀i ∈ 1, .., N − 1 : ti < ti+1.

Time series often represent continuously changing attributes and their

values are sampled at discrete time slots. As already mentioned, missing

values, i.e. values between two measurements, are estimated by means of

interpolation. From the large range of appropriate solutions for time series

interpolation, in this section we assume that the time series curves are sup-

plemented by linear interpolation, the most prevalent interpolation method

for time series (cf. Section 3.2.2). Throughout the rest of this thesis, x(t) ∈ R

denotes the (interpolated) time series value of time series X at time t ∈ T .

11.3 Threshold Based Similarity Measure 191

11.3 Threshold Based Similarity Measure

Time series are usually very large, containing several thousands of values

per sequence. Consequently, the comparison of two time series can be very

expensive, particularly when considering the entire sequence of values of the

compared objects. There are a lot of data mining applications where their

mining process does not need the entire course of the time series. Vague

”qualitative” course information like whether ”above” or ”below” a certain

threshold, may often be sufficient and even desired in some applications. In

this thesis, we introduce a novel type of similarity measure for time series

called threshold distance or threshold similarity. The corresponding similar-

ity query on time series databases is called threshold query (TQ). Threshold

queries enable the analysis of time series tightly focused on a specific ampli-

tude spectrum, in particular amplitudes that are important and significant

for the analysis goal.

In many application areas it could be beneficial if the analysis of time

series data would be concentrated on certain amplitudes (or amplitude spec-

tra). A sample application from medical analysis is visualized in Figure 11.1

where three real electrocardiogram (ECG) plots T1, T2 and T3 are shown.

Plot T1 indicates a high risk for cardiac infarct due to the abnormal deflec-

tion after the systole (ST-T-phase), whereas T2 and T3 both show a normal

curve after the systole which indicates a low risk. For the examination of

times series w.r.t. this abnormal characteristic, there is no need to examine

the entire curve. A better way to detect such kind of characteristics is to

analyze only the relevant parts of the time series, for instance observing those

parts of the time series which exceed a specified threshold as depicted in our

example. Let us now consider the time interval sequences displayed below the

ECG-curves. Each time interval sequence belongs to one time series. They

correspond to the time frames within a time series that exceeds the specified

threshold τ . We can observe that the time interval sequences derived from

T2 and T3 differs marginally. In contrast, the time series T1 shows quite

different characteristics caused by the ECG-aberration which indicates the

heart disease.

192 11 Introduction

indication of heart desease

normal form

T1

T2

T3

time

T1
T2
T3

Figure 11.1: Threshold-based detection of risk patients for heart diseases.

The applicability of threshold based time series analysis can be also

demonstrated by the example depicted in Figure 11.2. There are four time

series from the real time series dataset Trace depicted, each representing

a class of several time series which are hidden for clarity reasons. A de-

tailed description of this dataset is given in Section 17.2. Basically, the four

classes differ significantly at two certain positions. The time series may vary

slightly in time. For a good classification, it seems promising to concentrate

the similarity search at the significant amplitude instead of taking the en-

tire time series into account. In fact, we observed in our experiments that

we achieve for this dataset the best classification accuracy when considering

only the significant amplitude value. The achieved classification accuracy by

far outperforms the Euclidean distance in consideration of the classification

accuracy.

11.3 Threshold Based Similarity Measure 193

Samples from TRACE dataset
Class 1

Class 2

Class 3
Class 4

significant
amplitudes

deflections which are most
relevant for classification

Figure 11.2: Threshold-based classification of time series.

11.3.1 General Idea

The general concept of threshold based similarity search is as follows: Given

two time series X and Y , and an amplitude threshold τ . X and Y are

considered similar if their amplitudes exceed the threshold τ within similar

time intervals. Using threshold similarity, the exact values of the time series

are not considered. Rather, it is only examined whether the time series

at similar time intervals are above or below the given threshold τ . Thus,

time series can be considered as similar, even if their absolute values are

considerably different, as long as they have similar time frames during which

the time series exceeds the specified query threshold τ . Then, the processing

of queries like ”retrieve all pairs of sequences of ozone concentration which

are above the critical threshold of 50µg/m3 at similar time” is reduced to

compare sequences of time intervals. Usually, the number of intervals is much

less than the number of ozone values per ozone sequence and can be organized

more efficiently. If the aggregated threshold based representation in form of

time intervals for each time series is given in advance, it is obvious that the

threshold queries can be answered more efficiently compared to the situation

where the time intervals are not given in advance.

194 11 Introduction

56

58

60

62

64

66

68

70

72

74

0 10 20 30 40 50 60

110

120

130

140

150

160

170

180

190

200

0 10 20 30 40 50 60

S
y
s
to

lic
B

lo
o
d

P
re

s
s
u
re

(m
m

H
g
)

H
e
a
rt

ra
te

 (
B

P
M

)

Time (sec) Time (sec)

Patient A

Patient B Patient B

Patient A

(a) heart rate

56

58

60

62

64

66

68

70

72

74

0 10 20 30 40 50 60

110

120

130

140

150

160

170

180

190

200

0 10 20 30 40 50 60

S
y
s
to

lic
B

lo
o
d

P
re

s
s
u
re

(m
m

H
g
)

H
e
a
rt

ra
te

 (
B

P
M

)

Time (sec) Time (sec)

Patient A

Patient B Patient B

Patient A

(b) systolic blood pressure

Figure 11.3: Patients heart rate and systolic blood pressure after drug

treatment.

11.3.2 Application Ranges for Threshold Queries

The novel concept of threshold queries is an important technique, useful for

many practical application areas.

Application 1 For the pharma industry it is interesting which drugs cause

similar effects in the blood values of a patient. Obviously, effects like a

certain blood parameter exceeding a critical level τ are of particular interest.

We assume that after a certain drug treatment the heart rate and systolic

blood pressure of several patients are measured for one minute, as shown in

Figure 11.3, and the data were stored within a database. In our example,

the recorded data of Patient A shows an immediate effect on the drugs and

differs significantly from the effects on patient B. A threshold query could

return for a certain patient all other patients in the database whose heart

rates and blood pressures show similar temporal reaction on the medical

treatment w.r.t. certain thresholds which may be significant for the observed

attributes.

Application 2 The amount of time series data, e.g. derived from environ-

ment observation centers, increases drastically. Furthermore, modern sensor

techniques enable the user to record many attributes of the observed objects

or scenes simultaneously. For instance, the analysis of environmental air pol-

lution has been focused by many European research projects in the recent

11.3 Threshold Based Similarity Measure 195

years. Many sensor stations have been installed at different locations in Eu-

ropean cities and in rural areas. Each sensor station is equipped with several

types of sensors that are used to measure multiple air pollution attributes

(e.g. SO2, NO,NO2, CO,BTX, O3, H2S and CmHn − O) as well as meteo-

rological parameters such as wind direction, speed and temperature. As a

result, German state offices for environmental protection maintain about 127

million time series, each representing the daily course of air pollution param-

eters. The gathered data are stored in terms of time series which have to be

analyzed. Geo- and environmental scientists could be interested in the de-

pendencies which exist between meteorological attributes, e.g. humidity, and

environmental attributes, e.g. particulate matter (PM10). To know which

attributes nearly simultaneously exceed their legal threshold could help to

find such dependencies. Hence, an effective and efficient processing of queries

like ”return all ozone time series which exceed the threshold τ1 = 75µg/m3 at

a similar time as the temperature reaches the threshold τ2 = 25◦C” could be

very valuable. An example is depicted in Figure 11.4, showing two pairs of

temperature-ozone curves where the characteristic of the ozone concentration

(lower time series) is very similar to that of the corresponding temperature

(upper time series) w.r.t. τ1, τ2 respectively. Analysis based on such kind of

similarity is provided by threshold queries. Obviously, the increasing amount

of data to be analyzed represents a big challenge for methods supporting

threshold queries efficiently.

Application 3 The analysis of gene expression data is important in molec-

ular biology for understanding gene regulation and cellular mechanisms.

Gene expression data contains the expression level of thousands of genes,

indicating how active one gene is over a set of time slots. The expression

level of a gene can be ”up” (indicated by a positive value) or ”down” (neg-

ative value). From a biologist’s point of view, it is interesting to find genes

that have a similar up and down pattern because this indicates a functional

relationship among the particular genes. Since the absolute up-/down-value

is irrelevant, this problem can be solved by means of threshold queries with a

threshold of τ = 0. Each gene provides its own interval sequence, indicating

the time slots of being ”up”. Genes with similar interval sequence have a

196 11 Introduction

Measurement A Measurement B

T
e
m

p
e
ra

tu
re

O
z
o

n
e

 (
O

3
)

Figure 11.4: Detection of associations between different environmental and

climatical attributes.

similar ”up” and ”down” pattern.

11.3.3 Threshold Based Representation vs.

Dimensionality Reduction

Even though dimensionality reduction techniques are generally very impor-

tant for many similarity search problems, they are not very adequate for

threshold queries. The reason is that dimensionality reduction techniques

naturally aggregate time series values over time. In contrast, the threshold

based representation of time series, i.e. the set of time intervals indicating

that the time series is above a given threshold, aggregates time series over the

amplitude spectrum. The advantage of threshold queries is that they pre-

serve the original time dimension. In addition, threshold queries are designed

to suppress certain amplitude spectra which would interfere the results. Di-

mensionality reduction techniques cannot be directly used for this purposes

because they still represent the exact course of the time series rather than in-

tervals of values above a threshold. We can apply data reduction techniques

in order to compress the threshold based representation of time series as pro-

posed in [RKBL05]. But the compressed information does not support the

computation of the threshold-based similarity. The compressed representa-

11.3 Threshold Based Similarity Measure 197

tions have to be decompressed before we are able to compute the similarities.

11.3.4 Contributions and Outline

The main contributions of this part can be summarized as follows:

• We introduce and formalize the novel concept of threshold-based simi-

larity and define threshold queries on time series databases.

• We present a novel data representation of time series and an access

method which support threshold queries efficiently.

• We introduce a selective pruning strategy and propose an efficient algo-

rithm for threshold queries based on the new time series representation.

• We propose a semi-supervised time series analysis framework adapted

from threshold-based similarity measures.

In a broad experimental evaluation, we show that the new type of query

yields important information and therefore is required in several application

fields. Furthermore, performance tests show that our proposed algorithms

achieve a high speed-up of threshold queries.

The remainder starts with a discussion about several different similarity

measures for interval data in Chapter 12. Then, Chapter 13 formally in-

troduces our novel similarity measure and proposes a new query type called

threshold query. In Chapter 14 we show how time series can be represented in

order to support threshold queries for arbitrary threshold values efficiently.

An efficient query algorithm based on the proposed representation is de-

scribed in Chapter 15. Based on our new similarity measure, we introduce in

Chapter 16 a semi-supervised time series analysis approach. The effectiveness

and efficiency of our methods are evaluated in Chapter 17.

198 11 Introduction

Chapter 12

Similarity-Distance Measures

for Intervals

The similarity between two objects is usually measured by the distance be-

tween the attributes or features describing them. Since the distance is usually

a quantitative relation between two points in space, we have to map the at-

tributes or features into a multi-dimensional space, called feature space. The

problem is to extract or identify the relevant object features which are re-

quired to measure the similarity and which constitute a well-defined feature

space. For example, it is obvious that the similarity between two points in

time can be measured by their distance in time. But how can we measure

the similarity between two time intervals? In this chapter, we will discuss

several similarity distances defined on different attributes of intervals.

Figure 12.1 shows two intervals, each described by four attributes which

might be relevant for the similarity measure, the two end points lower l and

upper u, one midpoint µ and the latitude ρ = µ − l. Since the latitude ρ is

not a point in time, initially we consider the first three attributes l, u and µ.

Based on these three attributes, we can define nine basic distances between

the two intervals, as depicted in Figure 12.1. In the following, we will briefly

discuss several interval similarity distances which are based on the nine basic

distances. A detailed discussion is given in [Joh06].

199

200 12 Similarity-Distance Measures for Intervals

time

B

d1 = lB - lA:
d2 = μB - lA:
d3 = uB - lA:
d4 = lB - μA:
d5 = μB - μA:
d6 = uB - μA:
d7 = lB - uA:

A
lA μA uA lB μB uB

d1
d2
d3

d4
d5
d6
d7
d8
d9

d8 = μB - uA:
d9 = uB - uA:

A B

Figure 12.1: The nine basic distances between two intervals A and B.

In the remainder of this chapter, we need the following two notions: Given

two intervals A and B. We call B ”upper interval” and A ”lower interval”

iff the midpoint µB of interval B is greater than the midpoint µA of interval

A.

12.1 Midpoint Measure

The Midpoint measure denotes the distance between the midpoints of two

intervals (d5). An example is given in Figure 12.2(a). This is a simple way

of measuring the distance. A disadvantage of this method is that it cannot

distinguish between intervals which have different widths but share the same

BA

dAB

(a)

B

A

dAB=dAC

C

(b)

Figure 12.2: Interval distance measured by Midpoint measure.

12.2 Gap Measure 201

BA

dAB

(a)

B

A
dAB

(b)

B

A

dAB=dAC

C

(c)

BA

dAB

C
dBC

dAC

(d)

Figure 12.3: Interval distance measured by Gap measure.

midpoint. As shown in the example given in Figure 12.2(b), the intervals B

and C have an equal distance to A. Since this distance measure does not

take the extension of the intervals into account, it does not intuitively reflect

the similarity between intervals.

12.2 Gap Measure

This distance is determined by the gap between two disjoint intervals (d7).

In the case where the two intervals are disjoint, this measure is easy to define

(cf. Figure 12.3(a)). However, it becomes more difficult when the intervals

overlap. Overlapping intervals could be regarded as being at zero distance

from one another since there is no gap. Alternatively, we can consider the

absolute distance from the upper bound of the lower interval to the lower

bound of the upper interval. Then, the distances between two intervals,

shown in Figures 12.3(a) and 12.3(b), could be treated as equal. Since the

distance between ”equal” intervals is not zero, neither of the two alternatives

is appealing for measuring the similarity between intervals.

Intuitively, a larger intersection would argue for a higher similarity. Ac-

cording to the Gap measure, we can describe the distance between two inter-

vals as the lower bound of the upper interval minus the upper bound of the

lower interval. One disadvantage of the Gap measure is, when two intervals

having the same lower bound, they have the same distance to a lower interval,

202 12 Similarity-Distance Measures for Intervals

regardless of their extensions. In the example shown in Figure 12.3(c), both

intervals B and C would have the same similarity to interval A, irrespective

of the difference in their length. Another drawback of the Gap measure is

that the triangle inequality does not hold, in particular when the distances

between intervals are positive as shown in Figure 12.3(d). Anyway, the fact

that the Gap measure can result in negative distances disqualifies it from

being a well-defined distance measure fulfilling the metric properties.

12.3 Ratio Gap Measure

The disadvantage of the Gap measure not being a metric can be removed by

using a ratio rather than a sum measure. The Ratio Gap measure is defined

as

dAB =
|µA − µB|
ρA + ρB

.

This measure of course guarantees non-negative values because both, the

numerator and denominator are necessarily non-negative. If two intervals

are equal, the distance between them is zero. But any pair of intervals with

the same midpoint will have a zero distance between them, even if they differ

in length.

12.4 Total Distance

The next measure, the Total Distance, takes the distance from the extreme

of one interval to the extreme of the other interval into account. This is the

distance from the lower bound of the lower interval to the upper bound of

the upper interval (cf. Figure 12.4(a)). Unlike the Gap measure, there are

no immediate complications if the intervals overlap. However, if one interval

is completely contained within another interval (cf. Figure 12.4(b)), it is

not clear how the Total Distance is to be defined. Nevertheless, like the

Gap measure, this distance measure suffers from the fact that the length of

the intervals are ignored in some cases. As shown in the example in Figure

12.5 Plus-Minus Measures 203

BA

dAB

(a)

B

A

dAB?

(b)

B

A

dAB=dAC

C

(c)

Figure 12.4: Interval distance measured by Total Distance.

12.4(c), both intervals B and C of different length have the same distance

to interval A. The drawback is that the two closest bounds of two intervals

contribute nothing to the distance. An interval pair that touch each other can

have the same distance than another interval pair that is widely separated if

the extreme ends of both pairs have the same distance.

12.5 Plus-Minus Measures

The next two possibilities relate to the corresponding bounds of two intervals.

The Lower Bound measure which is the distance from the lower bound of

an interval to the lower bound of the other interval (cf. Figure 12.5(a))

or alternatively the Upper Bound measure which is the distance from the

upper bound of an interval to the upper bound of the other interval could

be considered. The Lower Bound measure is easily defined for situations as

represented in Figure 12.5(a). If the absolute value of the difference between

lower bounds is maintained, we can get situations which are not very intuitive

as shown in Figure 12.5(b). The strict Lower Bound distance between the

interval A and the interval B is the same as the distance from interval B to

C. This equivalence holds despite the fact that B’s midpoint is closer to A’s

midpoint than to C’s, and that A and B overlap each other while B and C

are distinct. The Upper Bound measure can be defined similarly. This time

we take the upper bounds of the intervals into account as shown in Figure

12.5(c). Of course, the Upper Bound measure has the same disadvantage

as the Lower Bound measure. The main drawback of both distances is that

they are concentrated on only one bound of the intervals. Let us consider

204 12 Similarity-Distance Measures for Intervals

BA

dAB

(a)

B

A

dAB

C

dBC

(b)

BA

d’AB

(c)

B
A

dAB

C
dAC d’AC

d’AB

(d)

Figure 12.5: Interval distance measured by Plus-Minus measure.

the example given in Figure 12.5(d). Here, the intervals B and C have the

same length and the same distance w.r.t. the midpoint of interval A but on

opposite sides. It seems reasonable that both should be judged equidistant

from the interval A. However, using a measure based on lower bounds, B is

considered closer to A, i.e. dAB < dAC , while applying the same measure on

the upper bounds, C is considered closer, i.e. dAB > dAC .

12.6 Mid-Near/Mid-Far Measures

The discussion in the previous section is relevant to another set of mea-

sures which take the distance from the midpoint of one interval to one of

the endpoints of another interval into account. There are two pairs of mea-

sures of this type which can be categorized as ”midpoint to nearer endpoint”

(Mid-Near measure) and ”midpoint to further endpoint” (Mid-Far measure),

respectively.

12.6 Mid-Near/Mid-Far Measures 205

BA

dAB*

dAB

(a)

BA

dAB

C

dBC

dAC

(b)

BA

dAB*

dAB

(c)

Figure 12.6: Interval distance measured by Mid-Near / Mid-Far measure.

12.6.1 Mid-Near Measure

In this section, the two nearer endpoint measures, referred to as the Mid-Near

measures, are considered. The two relevant measures are illustrated in Figure

12.6(a). These models are closely related to the Gap measure considered in

Section 12.2. The same problem encountered in the Gap measure of obtaining

negative distances appear also in the Mid-Near measure. In fact, in none of

the presented cases, the metric axioms were satisfied. The distance between

identical intervals will be −ρX = −(µX − lX), and only zero if their lengths

are zero. In contrast to the Gap measure, the symmetry condition is not

fulfilled anymore. Finally, the triangle inequality does not hold in the same

way as in the Gap measure. Figure 12.6(b) illustrates that the distance from

A to C exceeds the summed distance of A to C via B, i.e. dAC > dAB +dBC .

12.6.2 Ratio Mid-Near Measures

A possible modification to the measure identified above is to move to a ratio

measure rather than an absolute difference measure. This approach is sug-

gested by the parallels between the present measure and the Gap measure.

In that instance, the adoption of a ratio measure solved the positivity prob-

lem and set up equivalence classes based on shared midpoints. The ratio

Mid-Near measure can be computed by one of the following ratios:

dAB =
|µA − µB|

ρB

,

or

dAB =
|µA − µB|

ρA

.

206 12 Similarity-Distance Measures for Intervals

The metric properties of both of these measures will be the same and both will

bear close resemblance to the Ratio Gap measure described in 12.3. Clearly,

the distance between an object and itself will be zero. However, non-identical

intervals will also have zero distance from one another if they have the same

midpoint. Furthermore, like the Mid-Near measure this distance measure is

not symmetric.

12.6.3 Mid-Far Measures

The other category of measures which combine a midpoint and an endpoint is

called Mid-Far measure. It involves the farther rather than nearer endpoint as

depicted in Figure 12.6(c). In the previous section, the relationship between

the Gap measure and the Mid-Near measures were noted. There is a similar

relationship between the Mid-Far measures and the total distance. The metric

properties are also similar to those of the total distance. The distance between

an object and itself will not be zero, except in the case where its length is

equal to zero. Contrary to the total distance, here the symmetry does not

hold.

The discussions so far have involved the nine basic interval distances.

However, there are more complex distance measures to consider, an overlap

based distance measure and the Minkowski metric which is the most popular

one.

12.7 Overlap Measure

This distance measure takes the overlap between two intervals, i.e. the

amount of points commonly shared by the two intervals into account. Ini-

tially we define the overlap doverlap between two intervals as follows:

doverlap(A, B) = min{uA, ub} −max{lA, lB}.

Note, that doverlap results in a negative value, iff both intervals do not inter-

sect.

12.7 Overlap Measure 207

doverlap = 2.55

A

B

A

B

A

B

A

B

doverlap = 0^
doverlap = 1.35

doverlap = 0.64^
doverlap = 0

doverlap = 1.0^
doverlap = -0.52

doverlap = 1.1^

Figure 12.7: Examples of the overlap based interval distance measure.

Usually large intervals have a higher overlap than small intervals. In

order to avoid that pairs of large intervals tend to be more similar than pairs

of small intervals, we have to normalize the overlap by the length of both

intersecting intervals. Furthermore, our distance measure should also be able

to assess the similarity between intervals which have no intersection. For this

reason we have to incorporate the gap between the intervals. Generally, our

distance measure should fulfill the following conditions:

• The distance between equal intervals should be zero.

• The distance between non-equal intervals should be larger than zero.

• The larger the overlap between two intervals relative to their extensions,

the smaller their similarity distance.

• The larger the gap between two intervals relative to their extensions,

the higher their similarity distance.

All these properties are fulfilled with the following overlap based similarity

distance d̂overlap which is defined as follows:

d̂overlap(A, B) = 1− doverlap(A, B)

2 · ρA + 2 · ρB −max{0, doverlap(A, B)}
.

Examples of the overlap based similarity distance between two intervals

are depicted in Figure 12.7. If the two intervals A and B are equal, the

distance d̂overlap(A, B) is equal zero and increases with increasing displace-

ments of the both intervals. As long as both intervals overlap, d̂overlap(A, B)

is between 0 and 1. Otherwise, the distance exceeds 1 and increases with

increasing extension of the gap between both intervals.

208 12 Similarity-Distance Measures for Intervals

12.8 Minkowski Metric

The Minkowski metric is a class of models where the distance is given by:

dAB = r

√√√√ n∑
i=1

dr
ABj

,

where dAB is the overall distance between A and B, dABj
is the distance

between these two points on the j-th of a set of mutually orthogonal axes

in n-dimensional space, and the exponent r (1 ≤ r ≤ ∞) is the parameter

which determines the particular metric.

Since using intervals, there are just two mutually independent (orthogo-

nal) axes so that the Minkowski metric can be simplified to

dAB = r

√
dr

AB1
+ dr

AB2
.

The parameter r may be considered as parameter of component weight.

If r = 1, all components are weighted equally in their effect on the overall

distance measure. If r increases, the components become increasingly dif-

ferentially weighted according to the differences on individual components.

If r approaches infinity, the largest of the component distances completely

dominates the overall distance measure. In the following, we will consider

the three most common Minkowski-metric parameter values r = 1, 2 and ∞.

The case where r = 1 is referred to us as the city-block metric which has also

been called the Manhattan metric1. A value of r = 2 provides the standard

distance formula for Euclidean space. The third metric takes an r-value of

∞, and has been referred to as the maximum metric or dominance metric.

Under this model, only the largest of the component distances contributes

to the overall distance.

Now, with this background, specific models can be examined. In the

following, we will discuss more closely three different Minkowski models:

1The various names are intended to represent the fact that this metric simply adds the
component distances together to obtain an overall distance. It is the same as traveling
some distance in a city, first traveling along a North-South street and then along an East-
West street.

12.8 Minkowski Metric 209

BA

d1,AB

d2,AB

dAB = d1,AB + d2,AB

(a)

BA

d1,AB

d2

dAB = d1,AB + d2 – d3

d3

(b)

BA

d1,AB

d2,AB

dAB = (d1,AB
2 + d2,AB

2)1/2

(c)

Figure 12.8: Interval distance measured by Minkowski-Metric.

• The Manhattan metric based on endpoints of intervals (cf. Figure

12.8(a)),

• the Manhattan metric based on the midpoint and latitude of intervals

(cf. Figure 12.8(b)) and

• the Euclidean distance based on endpoints (cf. Figure 12.8(c)).

Note that it makes no difference whether the endpoints of the intervals or

the midpoint and length attributes are used for the Euclidean distance. This

is due to the fact that the space which is spanned by the endpoints of the

intervals can be transferred into the space spanned by the midpoint and

latitude by a 45◦ clockwise rotation and proportional scaling by a factor of
1√
2
. Since the Euclidean distance is rotation invariant and the two spaces

differ by a proportional rescaling which makes no difference to comparative

judgements, it would not make any difference using the endpoints or the

midpoints and latitudes.

The advantage of the Minkowski-metrics against the nine basic distance

measures is that two parameters that completely define an interval are taken

into consideration and not only one parameter. This fact restricts the degree

of variance of interval pairs having similar distance. Figure 12.9 sketches for

the interval A all intervals having the same distance to A w.r.t. our three

Minkowski metrics. Obviously, the parameters of the equidistant intervals

are not independent from each other. Intervals that differs in length from

A are more centered to A. Contrary, intervals which length is close to the

length of A are more displaced. This observation corresponds to the intuitive

210 12 Similarity-Distance Measures for Intervals

A

(a) Manhattan-Metric
based on endpoints.

A

(b) Manhattan-
Metric based on
midpoint and
latitude.

A

(c) Euclidean Distance
based on endpoints.

Figure 12.9: Equi-distant intervals for different Minkowski-Metrics.

meaning of interval similarity. However, as similarity is a subjective notion,

we have to evaluate the various similarity-distance measures empirically.

Nevertheless, the main advantage of the Minkowski metrics against the

other distance measures is that the metric properties, i.e. positive definite,

symmetry and triangle inequality, are fulfilled. We can use these metric

properties for our purpose, in particular for accelerating the query process

(cf. Chapter 14). The triangle inequality allows us to apply spatial access

methods, like the R∗-tree, in order to speed up similarity queries on intervals.

Chapter 13

Threshold Based Similarity

Search

In this chapter, we will formally introduce the novel concept of threshold

queries. We consider one-dimensional (univariate) time series represented

by a sequences of N value-time pairs < (x1, t1), .., (xN , tN) > as defined in

Section 11.2.

13.1 Threshold-Crossing Time Intervals

We start with the definition of threshold-crossing time intervals, an aggre-

gated information of time series used to compute the threshold similarity.

Definition 13.1 (Threshold-Crossing Time Intervals) Let X = 〈(xi, ti) ∈
R × T : i = 1..N〉 be a time series and τ ∈ R be a threshold value. Then

the threshold-crossing time intervals of X with respect to τ is a sequence

Sτ,X = 〈(lj, uj) ∈ T 2 : j ∈ {1, ..,M}, M ≤ N〉 of time intervals such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj) ⇔ x(t) > τ.

Note that we shortly write SX for threshold-crossing time intervals of a

time series Object X if no threshold parameter is specified.

211

212 13 Threshold Based Similarity Search

time

timeseries A

timeseries B

B

time

A

Threshold-Crossing Time-Intervals:

time

Timeseries:

AA
S ,

BB
S ,

Figure 13.1: Threshold-Crossing Time Intervals.

The example shown in Figure 13.1 depicts the threshold-crossing time

intervals SτA,A and SτB ,B of the time series A and B respectively. After we

have defined which aggregated information we extract from the time series

and how we can represent this information, we will now present our similarity

model based on this representation. In the following, we choose a suitable

similarity distance between single intervals which are the basic components

of our representation.

13.2 Similarity Model for Time Intervals

There are lot of different possibilities to compute distances between intervals,

commenced with the nine basic distance measures depicted in Figure 12.1.

Following the discussion in Chapter 12, we choose the Euclidean distance

based on endpoints as it seams the most intuitive one, i.e. two time intervals

are defined to be similar if they have ”similar” starting and end points. Our

approach works with the other Minkowski metrics as well, but we will use

the Euclidean distance throughout this thesis. An empirical comparison of

13.3 Similarity Model for Threshold-Crossing Time Intervals 213

the different similarity measures is given in Chapter 17.

Definition 13.2 (Similarity between Time Intervals) Let

t1 = (t1l, t1u) ∈ T × T and t2 = (t2l, t2u) ∈ T × T be two time intervals.

The (dis)similarity between two time intervals is expressed by the distance

function dint : (T × T)× (T × T) → R which is defined as follows:

dint(t1, t2) =
√

(t1l − t2l)2 + (t1u − t2u)2.

13.3 Similarity Model for Threshold-Crossing

Time Intervals

For a certain threshold τ a time series object is represented by a sequence

of time intervals. Consequently, we need a similarity distance measure for

sequences of intervals. For any time series X, the order of the threshold-

crossing time intervals of X is naturally given by the interval parameters

and the fact that all intervals are disjunctive. For this reason, we can define

the threshold-crossing time intervals as a set of intervals without loss of

generality. Now, we have to employ a distance measure suitable to set based

objects. Several distance measures for set based objects have been introduced

in the literature [EM97]. In our approach, we employ the Sum of Minimum

Distances (SMD). The SMD tries to find the best match of each entity of

one set with any entity of the other set. This matching of one entity is done

independently of the other entities of the same set. If we translate this to our

time series representations, each threshold-crossing of one time series will be

matched with the best fitting threshold-crossing time interval of the other

time series. Hence, the SMD most adequately reflects the intuitive notion of

similarity between two threshold-crossing time intervals. As our time interval

sets have different cardinalities, we slightly modify the SMD by normalizing

the distance with the cardinalities of the interval sets. The threshold-distance

dTS based on the normalized SMD is defined as follows:

214 13 Threshold Based Similarity Search

Definition 13.3 (Threshold-Distance) Let X and Y be two time series

and SX and SY be the corresponding threshold-crossing time intervals.

dTS(SX , SY) =
1

2
·

 1

|SX |
·
∑

s∈SX

min
t∈SY

dint(s, t) +
1

|SY |
·
∑

t∈SY

min
s∈SX

dint(t, s)

 .

As mentioned above, the idea of this distance function is to map every

interval from one sequence to the closest (most similar) interval of the other

sequence and vice versa. But this distance measure has further advantages.

Though, time series having similar shapes, i.e. showing a similar behavior,

may be transformed into threshold-crossing time intervals of different cardi-

nality. Since the above distance measure does not take the cardinalities of the

interval sequences into account, it is adequate for our purpose. Another ad-

vantage is that the distance measure mainly considers local similarity. This

means that for each time interval of one time series only its closest coun-

terpart of the other time series is taken into account. Consequently, local

similarity related to the threshold crossing will be detected and incorporated

into the global similarity measure.

The threshold-distance according to a certain threshold τ is also called ”τ -

similarity”. We will use these both expressions alternately in the remainder

of this thesis.

13.4 Similarity Queries Based on Threshold

Similarity

Finally, based on our new similarity model introduced above, we can define

novel similarity queries for time series. The most prominent similarity queries

are the distance-range query and the k-nearest-neighbor query. The distance-

range query reports for a given query object Q and a specific range ε ∈ R+
0

those objects of which their similarity distance to Q is smaller or equal to

ε. The k-nearest-neighbor query reports for a given query object Q and a

specific parameter k ∈ N+ the k most closest objects to Q according to the

13.5 Summary 215

used similarity distance measure. Applying our similarity model, we can

reformulate these two similarity queries as follows:

Definition 13.4 (Threshold-Based ε-Range Query) Let D denote the

domain of time series objects. The threshold-based ε-range query consists

of a query time series Q ∈ D, a query threshold τ ∈ R and an ε ∈ R+
0

parameter. It reports the set TQε−range
ε (Q, τ) ⊆ D of time series from D

such that

∀X ∈ TQε−range
ε (Q, τ) : dTS(Sτ,Q, Sτ,X) ≤ ε.

Similar to the modification of the distance-range similarity query we can

modify the nearest-neighbor similarity query as well.

Definition 13.5 (Threshold-Based k-Nearest-Neighbor Query) Let D
be the domain of time series objects. The threshold-based k-nearest-neighbor

query consists of a query time series Q ∈ D, a query threshold τ ∈ R and

a parameter k ∈ N+. It reports the smallest set TQk−NN
k (Q, τ) ⊆ D of time

series objects that contains at least k objects from D such that

∀X ∈ TQk−NN
k (Q, τ),∀Y ∈ D\TQk−NN

k (Q, τ) :

dTS(Sτ,X , Sτ,Q) < dTS(Sτ,Y , Sτ,Q).

Note that we call the similarity queries defined above simply Threshold

Query if the specific query type (ε-range or k-nearest-neighbor) does not

make any difference in the context. Furthermore, if there is no specification of

the parameter k for the threshold-based k-nearest-neighbor query, we assume

that k = 1.

13.5 Summary

In this chapter, we motivated and proposed a novel query type on time series

databases called threshold query and introduced two versions of this query

216 13 Threshold Based Similarity Search

type, the threshold-based ε-range query and the threshold-based k-nearest-

neighbor query. First we introduced a new form of time series representation

called threshold-crossing time intervals. This representation which consists

of a sequence of intervals indicates at which time slots the time series is

above or below a specified threshold value. Given a query time series Q and

a threshold τ . Threshold queries return those time series which threshold-

crossing time intervals are most similar to that of the query time series. This

type of query is motivated by several practical application ranges. Examples

are discussed in Chapter 11.

Chapter 14

Threshold Based Indexing

A straightforward approach for executing a threshold query is to read sequen-

tially each time series X from the database. Then compute the corresponding

threshold-crossing time interval sequence Sτ,X which is used to compute the

threshold-similarity distance dTS(Sτ,X , Sτ,Q). Finally, we report those time

series which distance dTS(Sτ,X , Sτ,Q) fulfill the query predicate. However, if

the time series database contains a large number of objects and the time

series are reasonably large, then this type of performing the query becomes

unacceptably expensive. As a solution, in this chapter we introduce an access

method which is convenient for the proposed time series representation. In

particular, it allows an efficient access to the threshold-crossing time intervals

of the time series.

We present two approaches for the management of time series data, both

of which efficiently support threshold queries. The key point of the proposed

approaches is that we do not need to access the complete time series data

at query time. Instead, only partial information of the time series objects

is sufficient to compute the query results. At query time, we only need the

information at which time frames the time series exceeds and falls below

the specified threshold. The ability to access only the relevant parts of the

time series at query time would save a lot of I/O cost. The basic concept

of our approach is to pre-compute the threshold-crossing time intervals Sτ,X

for each time series object X and store them on disk in such a way that it

217

218 14 Threshold Based Indexing

can be accessed efficiently. The work presented in this chapter is published

in [AKK+06c].

For the sake of clarity, we first present a straightforward approach, as-

suming that the threshold value τ is constant for all queries and known in

advance. Afterwards, we present the general approach which supports arbi-

trary choice of τ at query time.

14.1 Managing Threshold-Crossing Time

Intervals with Fixed τ

Let us assume that the query threshold τ is fixed for all queries. Then, we

can compute the corresponding Sτ,X for each time series X. Consequently,

each time series object is represented by a sequence of intervals. There are

several methods to store intervals efficiently (cf. Section 4.4), e.g. the RI-tree

[KPS01]. However, like the other interval access methods, the RI-tree well

supports intersection queries on interval data but does not efficiently sup-

port the computation of similarity distances between intervals or sequence

of intervals according to our similarity model. Moreover, the existing ap-

proaches cannot be applied to our general approach where we assume that τ

is not fixed. Contrary, we propose a simple solution which efficiently supports

similarity queries on intervals (or more generally sequences of intervals) and

which can be easily extended to support queries with arbitrary τ .

Time intervals can also be considered as points in a two-dimensional plane

[GG98]. In the following, we will refer to this plane as time-interval plane.

The one-dimensional intervals (native space) are mapped to the time-interval

plane by taking their start and end points as two-dimensional coordinates.

An example is depicted in Figure 14.1. This representation has some advan-

tages for the efficient management of intervals:

• First, the distances between intervals are preserved.

• Second, the position of large intervals which are located within the

14.1 Managing Threshold-Crossing Time Intervals with Fixed τ 219

 lower

time

 u

pp
er

time interval plane

interval space
b c

b

c

time series

space

time

Figure 14.1: Mapping of Time Intervals to the Time Interval Plane.

upper-left region substantially differs from the position of small inter-

vals (located near the diagonal).

• However, the most important advantage is that the Euclidean distance

in this plane corresponds to the similarity of intervals according to

Definition 13.2.

The complete set of threshold-crossing time intervals of a time series is

represented by a set of two-dimensional points in the time interval plane.

The transformation chain from the original time series to the point set in the

time interval plane is depicted in Figure 14.1.

In order to efficiently manage the point sets of all time series objects, we

can use any index structure which can handle point data, e.g. the R∗-tree

[BKSS90]. In particular, the R∗-tree is very suitable for managing points

in low-dimensional spaces which are not equally distributed. Additionally,

it well supports the distance-range and nearest-neighbor query which will

be required to perform the threshold queries efficiently. Note that since

each object is represented by a set of points in the time interval plane, it is

referenced by the index structure multiple times. This property has to be

taken into account for the query process. Details of our query algorithm will

be presented later in Chapter 15.

220 14 Threshold Based Indexing

segl

1

2

s2

s1

si

c) parameter space
lower

upper

threshold

1

2

s1

s2

i si

b) native space

time

amplitude (threshold)

segl

segu

segu

time

amplitude

a) time series (native space)

1

2

X

XS ,2

XS ,1s1

s2

Figure 14.2: Time Intervals in Parameter Space for Arbitrary Threshold.

14.2 Managing Threshold-Crossing Time In-

tervals for Arbitrary τ

In contrast to the first approach, we will now describe how to manage ef-

ficiently threshold queries for arbitrary threshold values τ . First, we have

to extend the transformation task of the simple approach that the time-

interval plane representations of the threshold-crossing time intervals of the

time series are available for all possible threshold values τ . Therefore, we ex-

tend the time interval plane by one additional dimension which indicates the

corresponding threshold values. In the following, we will call the extended

time-interval space ”parameter space”. A two-dimensional plane in the pa-

rameter space spanned by the two interval-endpoint dimensions at a certain

threshold τ is called time-interval plane of threshold τ .

In the following, we assume that the time series objects are linearly in-

terpolated, i.e. consecutive time series values (xi, ti) and (xi+1, ti+1) are

connected by a two-dimensional segment ((xi, ti), (xi+1, ti+1)) in the time-

amplitude space (native space)(cf. Section 3.2.2). Hence, the time series

consists of a sequence of segments which starting and end points are defined

by the time series values and the corresponding time slots (cf. Figure 14.2a).

Lemma 14.1 Let X ∈ D be a time series and Sτ1,X and Sτ2,X be two

threshold-crossing time intervals from X, where w.l.o.g. τ1 < τ2. Let s1 ∈
Sτ1,X and s2 ∈ Sτ2,X be two time intervals which start points lie on one seg-

ment segl of the linearly interpolated time series and the end points lie on an-

14.2 Managing Threshold-Crossing Time Intervals for Arbitrary τ 221

other segment segu. Then all threshold-crossing time-intervals Sτi,X with τ1 ≤
τi ≤ τ2 contains exactly one time interval si ∈ Sτi,X which also starts at seg-

ment segl and ends on segment segu. Transformed into the parameter space

si lies on the three-dimensional straight line: gP : −→x = −→p1 +4t · (−→p2 −−→p1),

where −→p1 = (s1.lower, s1.upper, τ1)
T and −→p2 = (s2.lower, s2.upper, τ2)

T .

Proof. Both, the start point and the end point of si linearly depend on the

threshold τi. Consequently, all si lie on a three-dimensional straight line in

the parameter space. Let 4t = (τi − τ1)/(τ2 − τ1). Then,

si = (si.lower, si.upper, τi),

where

si.lower = s1.lower +4t · (s2.lower − s1.lower),

si.upper = s1.upper +4t · (s2.upper − s1.upper)

and

τi = τ1 +4t · (τ2 − τ1).

2

Let us consider the following example shown in Figure 14.2 in order to

clarify Lemma 14.1. Figure 14.2(a) shows a linearly interpolated time series

X. Let the time interval s1 be an entity of the threshold-crossing time in-

tervals Sτ1,X and s2 be an entity of Sτ2,X . Both time intervals s1 and s2 are

left bounded by the time series segment segl and right bounded by segu. All

threshold-crossing time intervals Sτi,X which are between Sτ1,X and Sτ2,X , i.e.

τ1 ≤ τi ≤ τ2 contain exactly one time interval si which is also bounded by

the time series segments segl and segu as depicted in Figure 14.2(b). Given

the time intervals s1 and s2 transformed into the parameter space, the time

interval si lies on the straight line between s1 and s2 in the parameter space

as depicted in Figure 14.2c.

Following Lemma 14.1, all time intervals which are bounded by the same

time series segments can be transformed into one segment in the parameter

space. In order to represent all threshold-crossing time intervals of one time

series in the parameter space, we have to

222 14 Threshold Based Indexing

time

amplitude

a) building time interval
groups (native space)

X

lower

upper

threshold
(amplitude) time-interval plane

at threshold

XS ,

b) determination of S ,X
in parameter space

time

amplitude

c) threshold-crossing
time intervals
(native space)

X

XS ,

Figure 14.3: Determination of threshold-crossing time intervals from pa-

rameter space.

• identify all sets of time intervals where each set contains those time

intervals which are bounded by the same time series segment in the

native space (cf. Figure 14.3a).

• Each set is then transformed into a three-dimensional segment in the

parameter space (cf. Figure 14.3b).

The entire set of all possible threshold-crossing time intervals of a time series

X is represented as a set of segments in the parameter space. The time

intervals which correspond to one threshold-crossing time interval Sτ,X can be

retrieved by intersecting the parameter-space segments which correspond to

X with the two-dimensional time-interval plane at threshold tau (cf. Figure

14.3b). The resulting intersection points correspond to the time intervals of

Sτ,X as depicted in Figure 14.3c.

We can efficiently handle the entire set of threshold-crossing time intervals

in the parameter space as follows:

• We try to represent the entire set of threshold-crossing time intervals

by the smallest number of segments in the parameter space.

• Then, we organize the resulting parameter-space segments by means of

a spatial index structure, e.g. the R*-tree.

14.3 Trapezoid Decomposition of Time Series 223

In the following, we will introduce a method which enables us to compute

efficiently the smallest number of parameter-space segments for a time series.

14.3 Trapezoid Decomposition of Time

Series

If we consider the time intervals from all possible threshold-crossing time

intervals, the following observation can be made:

Lemma 14.2 All intervals from Threshold-crossing time intervals always

start at increasing time series segments (positive segment slope) and end at

decreasing time series segments (negative segment slope).

Proof. Due to Definition 13.1, all values of X within a time interval

from threshold-crossing time intervals Sτ,X are greater than the corresponding

threshold value τ . Let us assume that the time series segment segl which

lower-bounds the time interval at time tl has a negative slope. Then, all

x(t) on sl with t > tl are lower than τ which contradicts definition 13.1.

The validity of Lemma 14.2 w.r.t. the right bounding segment can be shown

analogously. 2

Due to Lemma 14.2, the set of all time intervals which start and end at

the same time series segment segl and segu respectively, can be described by

a single trapezoid which left and right bounds are congruent with segl and

segu. Let segl = ((xl1, tl1), (xl2, tl2)) denote the segment of the left bound

and segu = ((xu1, tu1), (xu2, tu2)) denote the segment of the right bound. The

top-bottom bounds correspond to the two time intervals sτtop and sτbottom
at

the threshold values:

τtop = min(max(xl1, xl2), max(xr1, xr2));

τbottom = max(min(xl1, xl2), min(xr1, xr2));

224 14 Threshold Based Indexing

time series (native space)

th
re

sh
ol

d

time

decomposed time series

Figure 14.4: Time Series Decomposition.

In order to determine the minimal but complete set of parameter-space

segments of a time series, we have to determine the minimal set of trape-

zoids completely covering all possible threshold-crossing time intervals. The

optimal set of trapezoids can be determined by decomposing the space be-

low the time series into a set of disjunctive trapezoids. A time series object

can be considered as half-open uni-monotone polygon in the time-amplitude

plane (native space). In the area of computational geometry, there are sev-

eral sweep-line based polygon-to-trapezoid decomposition algorithms known

[FM84] which can be processed in O(n · logn) time w.r.t. the number of

vertices. According to the sweep-line based decomposition algorithms, we

can develop an algorithm which decomposes a time series into the desired

set of trapezoids. Figure 14.4 shows an example of a time series which is

decomposed into the set of trapezoids. Since the time series values naturally

are already sorted by time, our decomposition algorithm can be processed in

linear time w.r.t. the length of the sequence. Our decomposition algorithm

is depicted in Figure 14.6.

Let us illustrate the decomposition algorithm by means of the following

example depicted in Figure 14.5. In the ”for”-loop we sequentially process

the time series segments s1,..,s11. As s1 and s2 have positive slopes, i.e. they

open trapezoids, we push them on the stack. Next, we consider the segment

next seg = s3 which has a negative slope, i.e. we can close the first trapezoids.

Actually (see step (1)), the stack contains the segments s2, s1. We pop s2

from the stack and compute and output the first trapezoid T1 by means of

the procedure compute trapezoid(s2,s3). Then we cut the segment s2 at the

14.4 Parameter Space Indexing 225

time

x0

x1

x2

x3

x4

x5 x6

x7

x8

x9

x10

x11

1 2 3

s1

s2

s1

s‘2
s‘1

s‘7

s9

stack snapshots

time series

s1

am
pl

itu
de

s2 s3

s4

s5

s6

s7

s8
s9

s10

s11

s4

T1
T2

T3

T4

T5

T6 T7

T8

T9

T10

Figure 14.5: Time Series Decomposition Example.

amplitude value s3.xe = x3 and push the cut segment s2 denoted by s′2 back

on the stack. We continue with the next segment s4 which is pushed on the

stack. Next, we proceed segment s5 by taking s4 from stack, compute the

trapezoid T2, then taking s′2 from stack in order to compute T3 and finally

taking s1 from stack, compute T4, cut s1 w.r.t. x5 and push the cut segment

s′5 back on the stack. The algorithm continues with processing segment s6

and so on.

14.4 Parameter Space Indexing

A straight forward approach to manage the time series trapezoids in the na-

tive space is to approximate them by a minimal bounding box and insert

them into a convenient spatial access method like the R*-tree. The main

disadvantage of this naive method is the significant overlap of the trape-

zoid approximations of the time series objects. Trapezoids that cover similar

amplitudes would be grouped together into one page according to their mu-

tual overlap. That means that trapezoids with a small extension along the

time axis would be grouped together with trapezoids with a large exten-

sion along the time axis. This would be done regardless the fact that two

trapezoids which significantly differ in their time extension represent time

226 14 Threshold Based Indexing

intervals that are very dissimilar according to our similarity model. Rather,

for our approach we need an indexing method which builds clusters of trape-

zoids representing similar intervals according to our similarity model. For

this reason we propose to index the trapezoids which are transformed into

the parameter space.

We apply the R*-tree for the efficient management of the three-dimensional

segments, representing the time series objects in the parameter space. As the

R*-tree index can only manage rectangles, we represent the 3-dimensional

segments by rectangles where the segments correspond to one of the diagonals

of the rectangles.

For all trapezoids which result from the time series decomposition, the

lower bound time interval contains the upper bound time interval. Further-

more, intervals which are contained in another interval are located in the

lower-right area of this interval representation in the time interval plane.

Consequently, the locations of the segments within the rectangles in the pa-

rameter space are fixed. Therefore, in the parameter space the bounds of the

rectangle which represents a segment suffice to uniquely identify the covered

segment. Let ((xl, yl, zl), (xu, yu, zu)) be the coordinates of a rectangle in the

parameter space. Then the coordinates of the corresponding segment are

((xl, yu, zl), (xu, yl, zu)).

14.5 Summary

In this chapter, we presented a novel approach for managing time series data

to efficiently support such threshold queries. In particular, we proposed a

threshold invariant representation of time series which allows to pre-compute

the threshold-based time series representations without the need to commit

oneself to a fixed threshold value. This means that the query threshold can

be chosen at query time. The proposed concept is based on an efficient

decomposition algorithm, decomposing time series into a set of trapezoids

which are subsequently inserted into a conventional spatial access method.

At query time, we have to access only the relevant parts of the decomposed

14.5 Summary 227

time series which can be efficiently retrieved from the index.

228 14 Threshold Based Indexing

TYPE TSSegment = {start time ts, start value xs, end time te, end value xe};
decompose(time series TS = {(xi, ti) : i = 0..tmax}){

/*initialize start and end point of the time series*/

stack.push(TSSegment(t0,⊥, t0, x0)); //left time series border on stack

TS.append((tmax,⊥)); //append right time series border

for i = 1..tmax do

next seg := TSSegment(ti−1, xi−1, ti, xi);

if (xi+1 < xi), then //segment with positive slope ⇒ open trapezoid

stack.push(next seg);

else if (xi+1 > xi), then //segment with negative slope ⇒ close trapezoids

while (stack.top.xs ≥ next seg.xe) do

stack seg = stack.pop();

compute trapezoid(stack seg,next seg);

end while;

stack seg = stack.pop();

compute trapezoid(stack seg,next seg);

stack seg = cut segment at(next seg.xe);

stack.push(stack seg);

else /*nothing to do*/; //horizontal segment =¿ can be ignored

end if;

end for;

}

TYPE Trapezoid = {bottom start (Time), bottom end (Time), bottom (float),

top start (Time), top end (Time), top (float)};
compute trapezoid(TSSegment seg1, TSSegment seg2){ float τbottom =

max(seg1.xs,seg2.xe);

float τtop = min(seg1.xe,seg2.xs);

Time tbottom
s = intersect(seg1,τbottom);

Time tbottom
e = intersect(seg2,τbottom);

Time ttop
s = intersect(seg1,τtop);

Time ttop
e = intersect(seg2,τtop);

output(Trapezoid(tbottom
s ,tbottom

e ,τbottom,ttop
s ,ttop

e ,τtop));

}

Figure 14.6: Linear time series decomposition.

Chapter 15

Threshold Based Query

Processing

In this chapter, we present an efficient algorithm for our two threshold

queries, the threshold-based ε-range query and the threshold-based k-nearest-

neighbor query. Both consist of a query time series Q and a query threshold

τ , as well as the query type specific parameters ε and k (cf. Definition 13.4

and 13.5). The proposed algorithms have been published in [AKK+06b].

Given the query threshold τ , the first step of the query process is to

extract the threshold-crossing time intervals Sτ,Q from the query time series

Q. This can be done by one single scan through the query object Q. Next,

we have to find those time series objects X from the database which fulfill

the query predicate, i.e. the threshold distance dTS(Sτ,Q, Sτ,X) ≤ ε in case

of the threshold-based ε-range query or the objects belong to the k closest

objects from Q w.r.t. dTS(Sτ,Q, Sτ,X) in case of the threshold-based k-nearest-

neighbor query.

A straightforward approach for the query process would be as follows:

first, we access all parameter space segments of the database objects which

intersect the time-interval plane at threshold τ by means of the R∗-tree in-

dex in order to retrieve the threshold-crossing time intervals of all database

objects. Then, for each database object we compute the τ -similarity to the

229

230 15 Threshold Based Query Processing

query object and evaluate the query predicate in order to build the result

set. We only have to access the relevant parameter space segments instead of

accessing the entire object. But we can process threshold queries in a more

efficient way. In particular, for selective queries we do not need to access all

parameter space segments of all time series objects covering the threshold

amplitude τ . We can achieve a better query performance by using the R*-

Tree index to prune the segments of those objects which cannot satisfy the

query anymore as early as possible.

15.1 Preliminaries

In the following, we assume that each time series object X is represented by

its threshold-crossing time intervals SX = Sτ,X = x1, .., xN which correspond

to a set of points lying on the time-interval plane P within the parameter

space at query threshold τ . Hence, SX denotes a set of two-dimensional

points1. Furthermore, let D denote the set of all time series objects and S
denote the set of all time-interval points on P derived from all threshold-

crossing time intervals Sτ,X of all objects X ∈ D.

For our proposal, we need the two basic set operations on single time

interval data (represented as points on the time-interval plane P), the ε-

range set and the k-nearest-neighbor which are defined as follows:

Definition 15.1 (ε-Range Set) Let q ∈ P be a time interval, S = {xi :

i = 1..N} ⊆ P be a set of N other time intervals and ε ∈ R+
0 be the maximal

similarity-distance parameter. Then the ε-range set of q is defined as follows:

Rε,S(q) = {s ∈ S|dint(s, q) ≤ ε}.

Definition 15.2 (k-Nearest-Neighbor) Let q ∈ P be a time interval, S

= {si : i = 1..N} ⊆ P be a set of N other time intervals and k ∈ N+ be the

1For the description of the threshold-crossing time intervals in the native space (set of
time intervals) and in the parameter space (set of points) we use the same notion SX .

15.2 Pruning Strategy for Threshold Queries 231

D Set of all time series objects (database).

P Time-interval plane along the lower-upper dimensions

at query threshold τ .

S Set of all time intervals ∈ Sτ,X ⊆ P of all time series

objects in D.

Rε,S(q) Set of time intervals from S which belongs to the ε-range

set of q (cf. Definition 15.1).

NNS(q) The nearest neighbor of q in S (cf. Definition 15.2).

NNk,S(q) The kth nearest neighbor of q in S (cf. Definition 15.2).

kNNS(q) The k nearest neighbors of q in S (cf. Definition 15.2).

Table 15.1: Notations and operations on time interval sets.

ranking parameter. The k-nearest-neighbor NNk,S(q) ∈ P (k ≤ N) of q in

the set S is defined as follows:

s = NNk,S(q) ∈ S ⇔ ∀s′ ∈ S\{NNl,S(q) : l ≤ k} : dint(q, s) ≤ dint(q, s
′).

The distance dint(q, NNk,S(q)) is called k-nearest-neighbor distance. For k =

1, we simply call NN1,S(q) ≡ NNS(q) ∈ P the nearest-neighbor of q in S.

The set kNNS(q) = {NNl,SX
(q)|l = 1..k} ⊆ P is called k-nearest-neighbors

of q.

In Table 15.1 we summarized the most important parameters required

throughout the following sections.

15.2 Pruning Strategy for Threshold Queries

In this section, we show that we do not need to access all the time intervals in

S in order to compute the threshold queries for any time series object in D.

That means that we can prune some objects without accessing them. The

solution for our pruning strategy is based on the following two observations:

Lemma 15.1 Let SQ = {q1, .., qMQ
} ⊆ P be the set of points which corre-

spond to the query object Q. Then, each database object X ∈ D represented

232 15 Threshold Based Query Processing

by SX = {x1, .., xMX
} ⊆ P which has no time interval s ∈ SX in the ε-range

of one of the query time intervals q ∈ SQ cannot belong to the result of the

threshold-based ε-range query TQε−range
ε (Q, τ), formally:

∀s ∈ SX ,∀q ∈ SQ : s /∈ Qε−range
ε (q) ⇒ X /∈ TQε−range

ε (Q, τ).

Proof. Let X ∈ D be the database object which has no time interval s ∈ SX

in the ε-range of one of the query time intervals q ∈ SQ. That means that

∀s ∈ SX ,∀q ∈ SQ : dint(s, q) > ε.

Then the following statement holds:

dTS(SQ, SX) =
1

2
·

 1

|SQ|
·
∑

q∈SQ

min
s∈SX

dint(q, s) +
1

|SX |
·
∑

s∈SX

min
q∈SQ

dint(s, q)



>
1

2
·

 1

|SQ|
·
∑

q∈SQ

ε +
1

|SX |
·
∑

s∈SX

ε

 =
1

2
·
(

1

|SQ|
· |SQ| · ε +

1

|SX |
· |SX | · ε

)
= ε.

2

An example is depicted in Figure 15.1(a) which shows the threshold-

crossing time intervals SQ = {q1, q2, q3} for the query object Q and the

threshold-crossing time intervals SA = {a1, a2, a3}, SB = {b1, b2}, SC =

{c1, c2, c3} and SD = {d1, d2, d3} of the four database objects A, B, C and

D, respectively. Due to Lemma 15.1, object D cannot be in the result set

of TQε−range
ε (Q, τ). The same holds for all the other objects having no time

interval instance within the three ε-range circles.

Similar to the ε-range query, we can also identify pruning candidates for

the k-nearest-neighbor query with the following observation. Here, w.l.o.g.

we assume that the ranking parameter k is set to 1.

Lemma 15.2 Let SQ = {q1, .., qMQ
} ⊆ P be the set of points which corre-

sponds to the query object Q. Furthermore, let dprune be the threshold dis-

tance dTS(SQ, SX) between Q and any database object X. Then each database

15.2 Pruning Strategy for Threshold Queries 233

lower

up
pe

r

q1

q2

q3

a1

a2

a3

b1

b2

c1

c2
c3

d1

d2

d3

(a) threshold based ε-range query

q1

q2

q3

a1

a2

a3

b1

b2

c1

c2
c3

d1

d2

d3

lower

up
pe

r

dprune

dprune

dprune

(b) threshold based k-nearest-neighbor
query

Figure 15.1: Properties of threshold queries w.r.t. object pruning.

object Y ∈ D represented by SY = {x1, .., xMX
} ⊆ P which has no time in-

terval s ∈ SY in the dprune-range of one of the query time intervals q ∈ SQ,

cannot belong to the result of the threshold-based k-nearest-neighbor query

TQkNN
1 (Q, τ), formally:

∀s ∈ SY ,∀q ∈ SQ : s /∈ Qε−range
dprune

(q) ⇒ Y /∈ TQkNN
1 (Q, τ).

Proof. Let Y ∈ D be the database object which has no time interval s ∈ SY

in the dprune-range of one of the query time intervals q ∈ SQ. That means

that

∀s ∈ SY ,∀q ∈ SQ : dint(s, q) > dprune.

Then the following statement holds:

dTS(SQ, SY) =
1

2
·

 1

|SQ|
·
∑

q∈SQ

min
s∈SY

dint(q, s) +
1

|SY |
·
∑

s∈SY

min
q∈SQ

dint(s, q)



>
1

2
·

 1

|SQ|
·
∑

q∈SQ

dprune +
1

|SY |
·
∑

s∈SX

dprune



234 15 Threshold Based Query Processing

=
1

2
·
(

1

|SQ|
· |SQ| · dprune +

1

|SY |
· |SY | · dprune

)
= dprune = dTS(SQ, SX).

According to Definition 13.5, Y cannot be in the result set TQkNN
1 (Q, τ).

2

Let us illustrate Lemma 15.2 by means of our example depicted in Figure

15.1(b). Let dprune be the threshold distance dTS(SQ, SX) between Q and

X. Then object B cannot be a result of TQkNN
1 (Q, τ), because all distances

dint(q, b) between any time interval q of SQ and any time interval b of SB

exceeds dprune, and thus, the overall threshold distance dTS(SQ, SB) must be

greater than dprune = dTS(SQ, SX). The same holds for object D. All the

other objects have no time interval instance within the three dprune-range

circles.

Based on the two lemmas above, we can develop efficient threshold queries

using the R∗-tree for the efficient organization of the threshold-crossing time

intervals in the parameter space. The proposed algorithms for our both

threshold queries aim at keeping the cost required for the expensive distance

computation as low as possible. For this reason, both algorithms follow the

multi-step query paradigm. They first try to reduce conservatively the result-

set candidates by a cheap filter step and afterwards retrieve the exact result

by performing the expensive refinement step on the reduced candidate set.

15.3 Threshold-Based ε-Range Query Algo-

rithm

The algorithm for the threshold-based ε-range query is depicted in Figure

15.2. We assume that the threshold-crossing time intervals of the query

object Q is already available. The algorithm follows the filter-refinement

paradigm: in a filter step, we efficiently retrieve the ε-range set Rε,S(q) for

each time interval q ∈ SQ by means of the R∗-tree and determine the cor-

responding time series candidate set. Afterwards, in the refinement step we

refine each candidate X by computing the threshold distance to Q and put

15.4 Filter Distance for the Threshold Similarity 235

TQε−range(SQ, ε,D,S){
result set := ∅;
candidate set := ∅;
for each q ∈ SQ do

candidate set := candidate set ∪{X ∈ D|SX ∩Rε,S(q) 6= ∅}; // filter step

end for;

for each X ∈ candidate set do

if dTS(SQ, SX) ≤ ε then // refinement step

result set := result set ∪X;

end if;

end for;

report result set;

}

Figure 15.2: Threshold-based ε-range query algorithm.

them to the result set if dTS(SQ, SX) ≤ ε.

15.4 Filter Distance for the Threshold

Similarity

Before we start with the algorithm for the threshold-based k-nearest-neighbor

query, we have to develop a suitable filter distance for our pruning strat-

egy in order to reduce the expensive refinements as much as possible. The

performance of our algorithm mainly depends on the quality of our filter.

Primarily, the filter should be fast, at least, faster than the refinement step.

Furthermore, for our purpose the filter should:

• retrieve the most promising threshold-based k-nearest-neighbor first.

• be conservative but as accurate as possible w.r.t. the threshold simi-

larity distance.

236 15 Threshold Based Query Processing

Both properties aim at pruning many false candidates very early. The

first one enables an early detection of a suitable pruning distance dprune

which should be as low as possible, while the second property avoids false

dismissals and aims at detecting the true drops as early as possible. Since

the filter should be conservative, we require a lower bound criterion for the

threshold distance.

15.4.1 Lower Bounding Threshold Distance

Now, we will introduce a lower bound criterion for the threshold distance dTS

on the basis of partial distance computations between the query object and

the database objects. This lower bound criterion enables the detection of false

candidates (true drops) very early, i.e. only partial information of the false

candidates suffices to prune the corresponding object from the candidate list.

The amount of information which is necessary to prune an object depends

on the locations of the query object and the candidate objects.

In the following, we assume that SQ ⊆ P is the threshold-crossing time

intervals corresponding to the query object and SX ⊆ P corresponding to

any object X from the database. Furthermore, we need the following two

distance functions

D1(SQ, SX) =
∑

q∈SQ

dint(q, NNSX
(q))

and

D2(SQ, SX) =
∑

x∈SX

dint(x, NNSQ
(x)).

D1(SQ, SX) and D2(SQ, SX) are parts of the threshold distance which can be

written now as follows:

dTS(SQ, SX) =
1

2
·
(

1

|SQ|
·D1(SQ, SX) +

1

|SX |
·D2(SQ, SX)

)
.

We use two auxiliary functions κk(qi) and κ̄k(SQ) which help us to divide

our database objects into two sets. κk(qi) ⊆ D denotes the set of all objects X

which has at least one entity x ∈ SX within the set kNNX(qi). Furthermore,

15.4 Filter Distance for the Threshold Similarity 237

κ̄k(SQ) ⊆ D denotes the set of all objects which are not in any set κk(qi), i.e.

κ̄k(SQ) = D\(⋃q∈SQ
κk(q)).

Lemma 15.3 For any object X ∈ κ̄k(SQ) the following inequality holds :

D1(SQ, SX) ≥
∑

q∈SQ

dint(q, NNk,S(q)).

Proof. According to Definition 15.2 the following statement holds:

∀q ∈ SQ : dint(q, NNk,S(q)) ≤ dint(q, NNSX
(q)).

Therefore,

∑
q∈SQ

dint(q, NNk,S(q)) ≤
∑

q∈SQ

dint(q, NNX(q)) = D1(SQ, SX).

2

The following lemma is a generalization of Lemma 15.3 and defines a

lower bound of D1(SQ, SX) for all database objects X ∈ D for any k ∈ N+.

Lemma 15.4 Let X ∈ D be any database object and let Q be the query

object. The distance D1(SQ, SX) can be estimated by the following formula:

dmin
1 (SQ, SX) =

∑
q∈SQ

 dint(q, NNX(q)), if X ∈ κk(q)

dint(q, NNk,S(q)), else

 ≤ D1(SQ, SX).

Proof. Let X ∈ D be any database object and Q be the query object.

According to Definition 15.2 the following holds:

∀q ∈ SQ : X /∈ κk(q) ⇒ dint(q, NNk,S(q)) ≤ dint(q, NNX(q)).

Consequently, dmin
1 (Q,X) ≤ ∑

q∈SQ
dint(q, NNX(q)) = D1(SQ, SX). 2

Furthermore, we can also lower bound the distance D2(SQ, SX) as follows:

238 15 Threshold Based Query Processing

Lemma 15.5 Let X ∈ D be any database object and let Q be the query

object. The distance D2(SQ, SX) can be estimated by the following formula:

dmin
2 (SQ, SX) =

min
q∈SQ

 dint(q, NNX(q)), if dint(q, NNX(q)) < dint(q, NNk,S(q))

dint(q, NNk,S(q)), else


≤ 1

|SX |
·D2(SQ, SX).

Proof. Let X ∈ D be any database object and Q be the query object.

Generally, the following statement holds:

min
q∈SQ

(dint(q, NNSX
(q))) = min

s∈SX

(dint(s, NNSQ
(s))) ≤ 1

|SX |
·D2(SQ, SX).

If ∀q ∈ SQ : NNX(q) ≥ minq∈SQ
(NNk,S(q)), then all time intervals s ∈ SX

must have at least the distance to any q ∈ SQ which is greater or equal to the

smallest k-nearest-neighbor distance of any q ∈ SQ, i.e.

∀s ∈ SX ,∀q ∈ SQ : dint(q, s) ≥ NNk,S(q) ≥ min
q∈SQ

dint(q, NNk,S(q)).

With the equation above and Definition 15.2 the following statement holds:

∀s ∈ SX : dint(s, NNSQ
(s)) ≥ min

q∈SQ

dint(q, NNk,S(q))

which obviously holds also for the average nearest-neighbor distance of all

s ∈ SX , i.e.

1

SX

·
∑

s∈SX

dint(s, NNSQ
(s)) =

1

SX

·D2(SQ, SX) ≥ min
q∈SQ

dint(q, NNk,S(q)).

2

15.4.2 Pruning Based on Lower Bounding Distance

In this section, we will show which objects can be pruned, based on the

information retrieved so far, i.e. without accessing the complete object in-

formation. Let us assume that the object Q ∈ D is the query object, X ∈ D

15.4 Filter Distance for the Threshold Similarity 239

is any object which has been already refined, i.e. dTS(Q, X) is known and

Y ∈ D is another object which is not refined, yet. Then we can prune Y for

the threshold query TQk−NN
1 (Q, τ) iff

dTS(SQ, SY) > dTS(SQ, SX)

⇔ 1

|SQ|
D1(SQ, SY) +

1

|SY |
D2(SQ, SY) > 2 · dTS(SQ, SX)

⇔ D1(SQ, SY) +
|SQ|
|SY |

·D2(SQ, SY) > 2 · |SQ| · dTS(SQ, SX).

If we now apply Lemma 15.4 and 15.5, we can prune Y iff

dmin
1 (SQ, SY) + |SQ| · dmin

2 (SQ, SY) > 2 · |SQ| · dTS(SQ, SX).

In the following, we let dprune = 2 · |SQ| ·dTS(SQ, SX) be our pruning distance.

From the computational point of view, we should distinguish the objects

in κ̄k(SQ) from the other objects. Now we can infer the two statements below

which directly follows from Lemma 15.4 and 15.5:

Lemma 15.6 All objects Y which are in the set κ̄k(SQ), i.e. Y ∈ κ̄k(SQ),

can be pruned iff∑
q∈SQ

dint(q, NNk,S(q)) + |SQ| · min
q∈SQ

dint(q, NNk,S(q)) > dprune.

Lemma 15.7 All objects Y which are not in the set κ̄k(SQ), i.e. Y /∈
κ̄k(SQ), can be pruned iff

dmin
1 (SQ, SY) + |SQ| · min

q∈SQ

(min(dint(q, NNk,S(q)), dint(q, NNY (q))) > dprune.

Our query procedure is based on an iterative ranking query for each query

time interval q ∈ SQ ⊆ P, i.e. we iteratively compute the k-nearest-neighbors

NNk,S(q) ⊆ P for all q ∈ SQ with increasing k ∈ N+. After each iteration, we

determine the lower bound distances for all objects. Note that we only need

to materialize the partial distance information for those objects which are not

in κ̄k(SQ), i.e. for which we have retrieved at least one time interval so far.

240 15 Threshold Based Query Processing

These objects are organized in a list which will be possibly expanded in each

iteration. We will call this list object list. Now, we can compute the lower

bounding distance for all objects in the object list and prune them according

to Lemma 15.7. The lower bounding distance estimation for all other objects

can be computed with global parameters, in particular dint(q, NNk,S(q) (cf.

Lemma 15.6). As soon as we have found a pruning distance dprune for which

Lemma 15.6 holds, we do not need to expand the object list anymore.

At the moment, we have found the nearest neighbor of each q ∈ SQ w.r.t.

any database object X, i.e. ∀q ∈ SQ : SX ∈ κk(q), the lower bound distance

dmin
1 (SQ, SX) is equal to D1(SQ, SX). Then, both lower bound distances dmin

1

and dmin
2 cannot be improved by further query iterations. For this reason, we

refine the distance dTS(SQ, SX) by accessing the complete threshold-crossing

time intervals SX in order to exactly compute the distance D2(SQ, SX). The

resulting distance dTS(SQ, SX) is then used as new pruning distance dprune

for the remaining query process unless dTS(SQ, SX) is lower than the old

pruning distance.

Let X be the object with the lowest exact distance to Q, i.e. dprune =

2 · |SQ| · dTS(SQ, SX). The pruning distance may be updated as soon as an

object SY which has next to be refined is found. In doing so, we have to

consider two cases:

case 1: 2·|SQ|·dTS(SQ, SY) ≥ dprune → remove object SY from the candidate

set,

case 2: 2 · |SQ| · dTS(SQ, SY) < dprune → set dprune := 2 · |SQ| · dTS(SQ, SY)

and remove object SX from the candidate set.

After each query iteration, we have to prune all objects Y ∈ D\{X}
from the object list according to Lemma 15.7. The pruned objects can be

omitted from the remaining search steps. The search proceeds by continuing

the computation of the next ranking iteration NNk+1,S .

The search algorithm terminates as soon as all object candidates, except

for the most similar one (in case of the threshold-based 1st-nearest-neighbor

query), have been pruned from the object list.

15.5 Threshold-Based Nearest-Neighbor Query Algorithm 241

A demonstrative example for the pruning process is included in the next

section which presents the threshold-based nearest-neighbor query algorithm.

15.5 Threshold-Based Nearest-Neighbor Query

Algorithm

The query algorithm of the TQk−NN
1 query is depicted in Figure 15.5. It iter-

atively computes for a given query object SQ the database object X, having

the smallest threshold distance dTS(SQ, SX). In each iteration (repeat-loop),

we retrieve the next ranked time interval s ∈ S (k-nearest-neighbor) for each

q ∈ SQ by calling the function fetch-next() and store it with its distance to

q in the array act kNN. This can be efficiently done by applying the nearest

neighbor ranking method as proposed in [HS95]. Therefore, we maintain for

each q ∈ SQ a priority queue, each storing the accessed R∗-tree nodes in

ascending order of their distances to the corresponding query point q. Note

that the R∗-tree indexes the three-dimensional segments in the parameter

space but we are only interested in distances along the time-interval plane at

threshold τ . For this reason, we simply ignore the threshold-dimension for

the distance computations and consider only those R∗-tree nodes intersecting

the time-interval plane at threshold τ . Obviously, the ranking function only

considers those objects which were not already pruned from the object list

and which cannot be pruned according to Lemma 15.6.

Furthermore, we update the object list object distList which keeps for

each object X accessed so far an array which stores for each q ∈ SQ the

nearest-neighbor distance NNX(q) in case this information is already avail-

able. For this reason, we search for each time interval s retrieved by NNk,S(q)

the corresponding object in the object list object distList and store the dis-

tance dint(s, q), iff, w.r.t. q and X there is no distance available from earlier

iterations. As soon as we retrieved for an object X all NNX(q)-distances

for all q ∈ SQ, we refine this object by accessing the full object information

and computing the threshold distance dTS(SQ, SX). After the refinement, we

update the pruning distance dprune and remove X from the object list. By

242 15 Threshold Based Query Processing

q1

q2

q3

a1

a2

a3

b3

c1

c2

d1

d2

lower

up
pe

r

e1

f1

b1

b2

(a) Time interval instances on
the time-interval plane P

q1 q2 q3

NN1,S(qi)
NN2,S(qi)
NN3,S(qi)

a3 f1 b3

c2 b1 d2

b1 b2 e1

iterative
computation
of NNk,S(qi)

(b) Table of nearest-neighbor query
iterations

Figure 15.3: Example of the threshold-based nearest-neighbor query.

means of the new pruning distance, we decide whether the previous result has

to keep, and then prune X. If X is closer than the previous result according

to the threshold distance, we replace the previous result with X.

Next, we compute the lower-bounding distance lb dist for each object in

the object list and prune those objects for which lb dist≥ dprune holds.

As long as the object list is not empty, we repeat this procedure in the

next iterations. Finally, we get the (1st)-nearest-neighbor of Q, based on our

threshold-based similarity measure.

In order to enable the computation of threshold-based k-nearest-neighbor

queries, we have to modify marginally our algorithm. First, we have to keep

the k closest objects w.r.t. the threshold distance during the query process.

Instead of pruning the objects according to the distance of the currently clos-

est object, we have to take the k closest object into account. Except these

little modifications, the algorithm for threshold-based k-nearest-neighbor

queries hardly differs from our threshold-based nearest-neighbor-query al-

gorithm.

We will now run through our algorithm with the query example depicted

in Figure 15.3. In our example, the query consists of three time-interval plane

points SQ = {q1, q2, q3}. Figure 15.3(a) shows the time-interval plane P with

15.5 Threshold-Based Nearest-Neighbor Query Algorithm 243

A

NN1,S(qi)
dint(q1,a3)

-
-

-
-

dint(q3,b3)

-

-
dint(q2,f1)

-
dint(q2,b1)
dint(q3,b3)

dint(q1,c2)

-
-

dint(q3,d2)
dint(q2,f1)

dint(q1,b1)
dint(q2,b2)
dint(q3,b3)

dint(q1,c2)
-

-
-

dint(q3,d2)

-
-

dint(q3,e1)

-
dint(q2,f1)

B F

C D

E
NN2,S(qi)

NN3,S(qi)

af
te

rt
he

co
m

pu
ta

tio
n

of

entries are complete refine B and update pruning
distance dprune = 2 |SQ| dint(SQ,SB) = 6 dint(SQ,SB)

object list

dint(q1,a3)
-
-

-

-

-
-

dint(q1,a3)
-
-

(a) Object list

A

NN1,S(qi)

B C D E F

NN2,S(qi)

NN3,S(qi)af
te

rt
he

co
m

pu
ta

tio
n

of

lower bounding distances: d1
min(SQ,SX) + |SQ| d2

min(SQ,SX)
min(NNk,S(q)

QSq

dint(q2,f1)

dint(q2,b1)

dint(q2,b2)

dint(q1,a3)
+ dint(q2,f1)
+ dint(q3,b3)
+3 dint(q2,f1)

dint(q1,a3)
+ dint(q2,b1)
+ dint(q3,d2)
+3 dint(q2,b1)

dint(q1,c2)
+ dint(q2,b1)
+ dint(q3,b3)
+3 dint(q2,b1)

dint(q1,c2)
+ dint(q2,f1)
+ dint(q3,d2)
+3 dint(q2,f1)

dint(q1,c2)
+ dint(q2,b1)
+ dint(q3,d2)
+3 dint(q2,b1)

dint(q1,a3)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q1,a3)

dint(q1,b1)
+ dint(q2,b1)
+ dint(q3,b3)
+3 dint(q2,b1)

dint(q1,c2)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q1,c2)

dint(q1,b1)
+ dint(q2,b2)
+ dint(q3,d2)
+3 dint(q2,b2)

dint(q1,b1)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q2,b2)

dint(q1,b1)
+ dint(q2,b2)
+ dint(q3,e1)
+3 dint(q2,f1)

(b) Lower-bounding distance computation

Figure 15.4: Step-wise lower-bounding distance computation of the

threshold-based nearest-neighbor query example.

the three query time-interval points of SQ and several time-interval points

of six database objects SA = {a1, a2, a3}, SB = {b1, b2, b3}, SC = {c1, c2},
SD = {d1, d2}, SE = {e1} and SF = {f1}. The table depicted in Figure

15.3(b) shows the results of the first three query iterations of the incremental

k-nearest-neighbor queries NN1,S(qi), NN2,S(qi) and NN3,S(qi). The states

of the corresponding object list object distList after each iteration is shown

in Figure 15.4(a). Furthermore, we depicted in Figure 15.4(b) the lower

bounding distances for each object after each query iteration.

The first iteration retrieves the points a3, f1 and b3 of the objects A, F ,

and B, respectively. As a result, we add the objects A, B, and F to the

object list and compute their lower bounding distances dmin
1 (SQ, SX) + |SQ| ·

244 15 Threshold Based Query Processing

dmin
2 (SQ, SX) according to Lemma 15.7. In this case, all database objects

have equal lower bounding distances as depicted in Figure 15.4(b). As the

pruning distance dprune is actually set to ∞, no object can be pruned.

In the next iteration, we retrieve c1, b1 and d2, update the object list and

recompute the lower bounding distances in order to check if something can

be pruned.

Next, we retrieve b1, b2 and e1. After updating the object list, we detect

that its entries are complete for object B, i.e. we have found for each query

time-interval the corresponding nearest neighbor w.r.t. object B. Conse-

quently, we refine object B by accessing its complete set SB and compute

the exact threshold distance dTS(SQ, SB) in order to update the pruning dis-

tance dprune. Afterwards, we remove object B from the object list and try to

prune the other objects according to their lower bounding distances following

Lemma 15.7 and 15.6.

The runtime complexity of our threshold query algorithm is O(nq · nk ·
log np), where nq denotes the size of the threshold-crossing time interval se-

quence SQ, nk denotes the number of query iterations required to determine

the query result, and np denotes the overall number of segments in the pa-

rameter space. In the experiments (cf. Section 17.3), we will demonstrate

that in average nq is very small in comparison to the length of the time

sequences. Furthermore, we will show that the number of required nearest-

neighbor query iterations nk is small, i.e. the query process terminates early.

The number np of segments in the parameter space is quite similar to the

sum ns of length of all time sequences in the database. We observed in our

experiments that in fact np is slightly smaller than ns.

15.6 Summary

In this chapter, we developed a scalable algorithm to answer threshold queries

for arbitrary thresholds. The proposed methods are based on pruning strate-

gies for the two threshold-query variants, the threshold-based ε-range query

15.6 Summary 245

and the threshold-based k-nearest-neighbor query. Both pruning strategies

are based on a lower bound criterion for the threshold distance which is used

to filter out true drops.

246 15 Threshold Based Query Processing

TYPE Q ARRAY[N] := ARRAY[N] of DOUBLE;

TQk−NN
1 (SQ, D, S) {

act kNN : ARRAY[|SQ|] of (OID,DIST); /*current ranking status*/

object distList : LIST of (OID,DIST : Q ARRAY[|SQ|]); /*object list

result := null; with lb-distances*/

dprune := +∞
k := 0;

repeat

k := k + 1;

act kNN = fetch-next(SQ,S,dprune);

for i = 1..|SQ| do

s := act kNN[i].DIST;

if (s.oid not exists in object distList) then

object distList.add(s.oid);

end if;

if (object distList[s.oid].DIST[i] is empty) then

object distList[s.oid].DIST[i] := act kNN[i].DIST;

end if;

end for;

for each obj ∈ object distList do /*refinement step*/

if (obj.DIST.complete() = true) then

d′prune = 2 · |SQ| · dTS(SQ, o);
if (d′prune < dprune) then

result := obj.OID;

dprune := d′prune;

end if;

delete obj from object distList and prune it for further consideration;

end if;

end for;

for each obj ∈ object distList do

lb dist := dmin
1 (SQ, SY) + |SQ| · dmin

2 (SQ, SY);
if (lb dist ≥ dprune) then

delete obj from object distList and prune it for further consideration;

end if;

end for;

until (object distList = empty);

end repeat;

report result;

}

Figure 15.5: Threshold-based nearest-neighbor query algorithm.

Chapter 16

Semi-Supervised Time Series

Analysis

The novel concept of threshold based similarity enables us to analyze time

series tightly focused to a specific amplitude spectrum, in particular ampli-

tudes which are significant for the analysis. However, the most important

issue of threshold similarity is obviously the choice of an appropriate thresh-

old τ . In this chapter, we propose an approach for semi-supervised analysis of

time series based on our threshold-similarity measure. The key point of this

approach is that a promising query threshold τ is automatically adjusted to

the characteristics of a small training dataset. This work has been published

in [AKK+06a].

16.1 Introduction

The most important issue of threshold similarity is obviously the choice of

the threshold τ . In the example for medical analysis, depicted in Figure 11.1,

a suitable threshold τ can be selected by the domain expert which should

know about the characteristics of an abnormal ECG curve in case of a cardiac

infarct patient. The expert knows best a promising threshold value which can

be used to discriminate between patients with a high risk for cardiac infarct

247

248 16 Semi-Supervised Time Series Analysis

and patients with a low risk. Seldom it is so simple. Often it is difficult to

identify the most promising threshold value, even for domain experts. For

example, sometimes the ”best” threshold value is very close to values which

are not very promising. This could make a ”blind” justification difficult. Let

us again consider the example in Figure 11.1. If the threshold would have

been chosen a little bit lower than the depicted threshold τ , all three time

series would result in rather similar time intervals and, thus, it might be

difficult to discriminate time series T1 from the other two time series T2 and

T3.

Generally, in data mining applications an optimal threshold for discrimi-

nating a predefined class system by means of threshold-based similarity is not

known in advance. As a result, a method for the automatical determination

of the optimal threshold using a small number of labeled time series as train-

ing set is mandatory. Thus, for cluster analysis, a semi-supervised approach

is envisioned. First, the best suitable threshold is determined automatically

by means of a small training set. Second, a cluster analysis using the con-

cept of threshold similarity (based on the previously learned, i.e. adapted

threshold) is performed in order to detect novel and important patterns. So

far, there is no approach to ’optimally’ adapt the threshold for a threshold

similarity analysis of time series, except the approach which we will present

in this chapter.

16.1.1 General Idea of Semi-Supervised Cluster

Analysis

In this chapter, we present a novel semi-supervised framework for the cluster

analysis of time series using adaptable threshold similarity. This frame work

consists of two phases, a training and a clustering phase as depicted in Figure

16.1. In the first phase, the most suitable parameter setting, i.e. the choice

of the threshold value, is determined by applying training datasets for the

complete clustering process. Our proposed method uses the observation that

the classification of some labeled objects leads to different results, depending

on the chosen threshold τ , i.e. τ influences the separability of the classes

16.1 Introduction 249

training
dataset

threshold similarity
based analysis

threshold similarity
based analysis

determine
optimal threshold

determine
optimal threshold

training phase

threshold based
clustering

threshold based
clustering

clustering phaseinput

dataset
to be

analyzed

output

results

time

am
pl

itu
de

time series

threshold

qu
al

ity

Figure 16.1: Framework for semi-supervised clustering.

which we quantify by a so-called separation score. Therefore, we compute

the separation score for each threshold of a given training set in a training

step first. This results in a quality curve depending on τ . The optima of

this curve can give us useful hints how to adapt the threshold for the second

phase where the entire dataset is clustered. One might argue that performing

a number of clusterings for different thresholds followed by a clustering qual-

ity computation can lead to the same results and even eliminates the training

phase. However, this ignores the fact that many clustering algorithms have a

runtime of O(n2) or require several iterations until they terminate. Besides,

we use only a small training set for calculating the separability score whereas

the clusterings would have to be computed on the entire dataset. Further-

more, additional time would be required to analyze whether the clustering

results are meaningful or not.

250 16 Semi-Supervised Time Series Analysis

16.2 Related Work

Having defined a distance measure on time series data, we can apply any

analysis task. For clustering time series data, most of the various clustering

methods proposed in the past decades have been successfully applied. A

general overview over clustering methods is given in [HK01]. In addition to

the similarity information used by unsupervised clustering, in many cases a

small amount of knowledge is available concerning either pairwise (must-link

or cannot-link) constraints between data items or class labels for some items.

In contrast to clustering which does not use any knowledge except for the

similarity information of the data, semi-supervised analysis can profit from

this knowledge to guide or adjust the clustering. Obviously, semi-supervised

analysis methods achieve better results than their unsupervised counterparts.

In recent years, several methods in the area of semi-supervised cluster anal-

ysis have been proposed. The main idea of semi-supervised clustering is to

determine clusters that are ’immaculate’ w.r.t. the class labels of the objects

that are analyzed. It can also be considered as using labeled data as feedback

in order to help to cluster unlabeled data. Most of the proposed methods

for semi-supervised clustering assume that class labels for all objects to be

processed are given.

[SCSS05] proposes a method based on a mixture of hidden Markov models

that makes use of prior knowledge in order to improve the robustness and the

quality of the local optima found. The author of [Zho05] introduces a semi-

supervised classification for time sequences based on hidden Markov models.

Two different semi-supervised learning paradigms are discussed. The author

observed that using unlabeled data can increase the classification accuracy.

Several extensions of existing standard clustering algorithms have been

proposed in the literature. A brief survey is given in [EZZ04] describing

SPAM, a supervised variant of PAM, SRIDHCR, a greedy algorithm with

random restart, SCEC, an evolutionary algorithm, and TDS, a medoid-based

top down partitioning algorithm. In [WCRS01], a variant of a k-means based

clustering algorithm is proposed. The authors derive constraints from the

labeled objects which are used during the clustering. They distinguish be-

16.3 Framework for Semi-Supervised Time Series Analysis 251

tween explicit and cannot-link constraints. In [BBM04a], a k-means based

method is introduced which is based on both types of constraints and which

exploits the data distribution. The authors of [DBE99] describe an evolution-

ary method for semi-supervised clustering. This approach has to be initial-

ized with k arbitrary centroids and optimizes a quality measure considering

cluster dispersion and impurity. In order to detect a cluster structure that

reflects the class distribution of the labeled training data, further methods

have been developed which use a standard clustering algorithm by apply-

ing an adaptive similarity measure. The authors of [KKM02] propose to

apply a complete-link clustering algorithm after replacing the Euclidean dis-

tance with the shortest path algorithm. The approach described in [BM03]

weights the edit distance using an expectation maximization algorithm to

detect approximately duplicate objects in a database. [BBM04b] describes

a probabilistic framework for semi-supervised clustering to additionally sup-

port several non Euclidian distance measures, e.g. the cosine distance.

All mentioned methods for semi-supervised clustering do not take the

threshold-based similarity of time series data into account. In our approach,

we use the density-based hierarchical clustering algorithm OPTICS [ABKS99].

However, any clustering algorithm is applicable in our framework.

16.3 Framework for Semi-Supervised Time

Series Analysis

As stated above, our main goal is to yield an accurate clustering of the

database D of time series using threshold similarity. In order to choose the

optimal threshold value τ , we want to apply a semi-supervised clustering

procedure, where we learn the optimal threshold from a small training set

TS ⊆ D of already labeled time series before clustering (cf. Figure 16.2).

This learning phase, preceding the clustering phase, is the key step in our

framework.

Let TS be the training set containing time series objects that are labeled

252 16 Semi-Supervised Time Series Analysis

- Classification of the training

objects w.r.t. -similarity for

varying thresholds.

- Determination of the

achieved separatipon score

for each threshold.

separation

score

thresholdii-1 i+1

i i+1i-1

threshold

threshold yielding the

highest classification score

C1

C2

C3

i

Clustering of the entire dataset

w.r.t. the -similarity where

denotes the threshold yielding

the highest classification score

in the training phase.

training phase:

clustering phase:

C1
C2

C3

Figure 16.2: General approach.

according to a predefined class system CS = {C1, . . . Ck} of k ≥ 2 classes.

We need to learn the threshold values from the objects in TS that are able

to separate time series data of one training class Ci from the other training

classes Cj (i 6= j), i.e. threshold values that yield low similarity values for

time series belonging to different classes and high similarity values for time

series belonging to the same class.

The class system CS defined for the training data TS need not be com-

plete. There may be some further classes Ĉ 6∈ CS for which no training data

is at hand, i.e. none of the objects in TS is labeled with one of these classes

Ĉ. Furthermore, it is also possible that the user is not aware of the existence

of all classes. The dataset may contain unknown classes which could also be

interesting for the user.

Obviously, these classes are excluded from the learning phase, i.e. the

learned threshold need not be optimal for these classes. However, threshold

values that exhibit a high separability for only a few classes in the training

16.4 Threshold Similarity Based Analysis 253

data are quite often also a good choice for the detection of unknown or

missing classes during the clustering phase, as we show in the experimental

section (cf. Chapter 17). Thus, by providing only partial information during

the training phase, our approach is able to retrieve novel information in the

clustering phase. This is contrary to a fully supervised approach, where novel

classes cannot be detected.

As already mentioned, the optimal threshold τopt separates the classes

Ci ∈ CS, 1 ≤ i ≤ k in our training set TS in the best possible way. We

formalize the separability of a threshold τ by means of a separation score. In

fact, we measure the separation score of a broad range of possible thresholds.

Note that our semi-supervised approach allows different methods for the

computation of this separation score. We will present one possibility for

semi-supervised cluster analysis on the basis of our framework (cf. Figure

16.1). The separability is measured by using the minimum of all pairwise

silhouette widths of each pair of classes Ci and Cj in TS. Though, this is a

quite simple heuristic, we achieved promising results in our experiments.

In the following, we first introduce a quality measure for a threshold-

based time series clustering (cf. Section 16.4). Afterwards we explain how

the optimal threshold is determined (cf. Section 16.5) in order to yield a

good clustering of the entire database D.

16.4 Threshold Similarity Based Analysis

In the following, we assume that the user’s expectation is modeled by means

of a small training dataset. Results for a given query are considered as good,

if a lot of results are marked with the same class label as the query time

series. The general idea of our technique is to search for threshold values

that promise high similarity scores between objects with similar behavior

and low scores between objects with different behavior. In the next sections,

we will explain how we derive quality values for different thresholds and how

we use this information to obtain global high quality values.

254 16 Semi-Supervised Time Series Analysis

16.4.1 Threshold Value Quality for One Class

In this section, we will outline how to detect suitable threshold values for

a fixed class. Let us assume that a training data set CM is given which

consists of k classes, CM = {C1, ..., Ck}. For a fixed class Ci we need to

determine these threshold values which yield a good separability of Ci from

the remaining classes. To evaluate the score of a query for a fixed class Ci

and a fixed threshold τ , we pairwise compute the silhouette width [KR90] of

Ci and all the other classes Cj, j 6= i, in CM . The silhouette width value is a

measure of cluster validity. Assume that we have a clustering of N time series

objects into k clusters such that an object X belongs to cluster C of size r.

The average dissimilarity between X and all the other entries in cluster C is

c(X) =
1

r − 1
·

∑
Y ∈C,Y 6=X

dint(SX , SY).

The average dissimilarity of X to all objects Y that belong to another cluster

U 6= C of size t is

g(X, U) =
1

t

∑
Y ∈U

dint(SX , SY).

The dissimilarity between X and the closest cluster that is different from C

can be defined as

v(X) = min
U 6=C

g(X, U).

The silhouette width s(X) for object X and the average silhouette width s̄

for the set in C are defined as

s(X) =


v(X)−c(X)

max{c(X),v(X)} , r 6= 1 and r 6= N

0 r = 1 or r = N

s̄ =
1

r
·
∑

X∈C

s(X).

Silhouette values lie in the range of [-1, 1]. Entries with a silhouette value

s(X) close to 1.0 are well clustered because in the sense that the average

distance to entries in the same cluster is small compared to the average

distance to the closest other cluster. If the silhouette value is smaller than

0, the object is misclassified.

16.4 Threshold Similarity Based Analysis 255

threshold

separation score (C1)

separation score (C2)

global

separation

score

th
re

s
h
o
ld

threshold

threshold

threshold

C1

C2

C3

object classification for threshold

Figure 16.3: Determination of the threshold dependent class separation

score.

The minimal average silhouette width of all clusters is used as separation

score of a threshold τ . Calculating the separation score for any existing

threshold results in a quality measure which estimates the separability score

for a training dataset CM , a class Ci ∈ CM and a given threshold τ .

16.4.2 Derivation of a Global Suitable Threshold Value

In the last section, we have developed a quality measure which computes the

separation score for each class Ci of our training dataset CM . Now, we need

a suitable combination of all k separation score functions. For our approach,

we choose the sum of all score functions, i.e. compute the silhouette coeffi-

cient [KR90] for CM . The global separation score function now reflects the

overall separability score of our training dataset for an arbitrary threshold τ .

Based on the idea of semi-supervised learning, the global score function gives

the user hints to choose the most promising threshold values. The example

depicted in Figure 16.3 points up one step of this procedure for a certain

threshold.

256 16 Semi-Supervised Time Series Analysis

threshold

promising threshold values
bad threshold

values

class separability
(= avg. margin width of

the SVM)

Figure 16.4: Determination of the most promising threshold values.

16.5 Determination of the Optimal

Threshold

Having determined the separation score for a range of interesting values, we

can consider a quality curve over all these threshold values (cf. Figure 16.4).

In such a separability diagram, we plot the examined threshold values along

the x-axis and the corresponding separation scores along the y-axis. From

this diagram, we can easily determine those threshold values which yield high

curve values which are most promising for the clustering step.

In the last step, we picked out one of the most promising threshold val-

ues and perform a clustering on the entire dataset based on the threshold

similarity. Let us note that the separability diagram not only helps to de-

tect a certain threshold for cluster analysis, but also helps to readjust the

parameter setting if the first cluster analysis returns dissatisfying results or

the user wants to confirm the validity of the results by alternative threshold

parameterizations.

16.6 Summary

In this chapter, we proposed a framework for semi-supervised cluster analysis

using adaptable threshold similarity. In particular, we proposed a method to

adapt the threshold by learning the optimal threshold from a small training

16.6 Summary 257

set in order to yield an accurate clustering of the entire time series.

258 16 Semi-Supervised Time Series Analysis

Chapter 17

Experimental Evaluation and

Discussion

In this chapter, we present the results of experiments performed on a broad

selection of different real-world and artificial time series datasets.

First, we will demonstrate in Section 17.3 that threshold queries can be

efficiently performed by using our proposed time series decomposition and

query concept. In particular, we evaluated our time series decomposition

approach (cf. Chapter 14) and our query processing strategy (cf. Chapter 15)

by measuring the selectivity, execution time and pruning power of similarity

queries. Furthermore, we will experimentally show in Section 17.4 that our

novel threshold-based similarity measure can be very valuable for mining

tasks like the classification of time series. We demonstrate that our approach

achieves a high classification accuracy on a wide range of different time series

datasets which are well established in the time series mining community.

Though, our approach can be processed significantly faster than the DTW

approach; for some datasets our approach even outperforms the dynamic

time warping w.r.t. classification accuracy.

Second, we evaluate our semi-supervised analysis approaches in Section

17.4.

259

260 17 Experimental Evaluation and Discussion

17.1 System Environment

All experiments were performed on a workstation featuring a 1.8 GHz Opteron

CPU and 8 GB RAM. We used a disk with a transfer rate of 100 MB/s, a

seek time of 3 ms and a latency delay of 2 ms. Furthermore, we set the disk

block size to 8 KB. Performance is presented in terms of the elapsed time

including I/O time and CPU time.

17.2 Datasets

We applied several real-world and synthetic datasets for our evaluation, one

audio dataset (AUDIO), two scientific datasets (SCIENTIFIC) and a set of

well-established test datasets often used as Benchmark (STANDARD).

17.2.1 AUDIO

The audio dataset contains time sequences, expressing the temporal behavior

of the energy and frequency in music sequences. It contains up to 700,000

time series objects with a length of up to 300 values per sequence. If not

otherwise stated, the database size was set to 50,000 objects and the length

of the objects was set to 50. This dataset is used to evaluate the performance

of our approach (cf. Section 17.3).

17.2.2 SCIENTIFIC

The scientific datasets are derived from two different applications:

• the analysis of environmental air pollution (SCIEN ENV) and

• gene expression data analysis (SCIEN GEX).

17.2 Datasets 261

The data on environmental air pollution is derived from the Bavarian

State Office for Environmental Protection, Augsburg, Germany 1 and con-

tains the daily measurements of 8 sensor stations distributed in and around

the city of Munich, Germany from the year 2000 to 2004. One time series rep-

resents the measurement of one station at a given day, containing 48 values

for one of 10 different parameters such as temperature, ozone concentration

etc.

The gene expression data from [SSZ+98] contains the expression level of

approximately 6,000 genes measured at 24 different time slots.

17.2.3 STANDARD

The standard datasets are derived from diverse fields and cover the complete

spectrum of stationary/non-stationary, noisy/smooth, cyclical/non-cyclical,

symmetric/asymmetric etc. data characteristics. They are available from the

UCR Time Series Data Mining Archive [KF02]. Due to their variety, they are

often used as benchmark for novel approaches in the field of similarity search

in time series databases. We used the following four datasets: GUN/POINT

(GunX), TRACE (Trace), CYLINDER-BELL-FUNNEL (CBF) and CON-

TROL CHART (SynCtrl).

The GunX dataset is a two-class dataset which comes from the video

surveillance domain. The dataset has two classes, each containing 100 in-

stances. All instances were created by using one female actor and one male

actor in a single session. The two classes are:

• Gun-Draw: The actors have their hands by their sides. They draw

a replicate gun from a hip-mounted holster, point it at a target for

approximately one second, then return the gun to the holster, and

their hands to their sides.

• Point: The actors have their hands by their sides. They point with

their index fingers to a target for approximately one second, and then

1www.bayern.de/lfu

262 17 Experimental Evaluation and Discussion

return their hands to their sides.

For both classes, we tracked the centroid of the right hand in X-axes. Each

instance has the same length of 150 data points (plus the class label), and is

z-normalized (mean = 0, std = 1).

The Trace dataset is a four-class dataset which is a subset of the Tran-

sient Classification Benchmark (trace project) used in [Rov02] for plant diag-

nostics. It is a synthetic dataset designed to simulate instrumentation failures

in a nuclear power plant, created by Davide Roverso. The full dataset con-

sists of 16 classes, 50 instances in each class. Each instance has 4 features.

The Trace subset only uses the second feature of class 2, and the third fea-

ture of class 3 and 7. Hence, this dataset contains 200 instances, 50 for each

class. All instances are linearly interpolated to have the same length of 275

data points, and are z-normalized.

The CBF dataset is derived from the artificial cylinder-bell-funnel task,

originally proposed by Saito [Sai94]. The task is to classify a time series as

one of the three classes, cylinder, bell or funnel. We used a subset (50 time

series from each class) of the original dataset, containing 100 cylinders, 100

bells and 100 funnels.

The SynCtrl data set2 contains 600 examples of control charts synthet-

ically generated by a process in Alcock and Manolopoulos [AM99]. This

dataset consists of the Cyclic pattern subset of the control chart data from

the UCI KDD archive (kdd.ics.uci.edu). The data is effectively a sine wave

with noise consisting of 6,000 data points. There are six different classes

(100 instances per class) of control charts: normal cyclic, increasing trend,

decreasing trend, upward shift and downward shift.

We applied the two scientific datasets and the four standard datasets

in order to show the effectiveness of threshold queries and to evaluate our

semi-supervised analysis approach. All datasets are summarized with their

attributes in Table 17.1.

2This dataset was donated by Dr. Robert Alcock.

17.3 Performance Results 263

Dataset # time series length # classes

AUDIO 7 · 105 300 -

SCIEN ENV - 48 -

SCIEN GEX 6 · 103 24 -

GunX 200 150 2

Trace 200 275 4

CBF 150 127 3

SynCtrl 600 6000 6

Table 17.1: Summary of Test Datasets.

17.3 Performance Results

We compared the efficiency of our proposed approach, in the following de-

noted by ‘RPar’, for answering threshold queries, using one of the following

techniques.

The first competing approach, denoted by ‘SeqNat’, works on the native

time series data. It corresponds to a sequential processing of the native data.

The threshold-crossing time intervals of each time series was computed at

query time.

The second competitor, denoted by ’SeqPar’, works on the parameter

space rather than on the native data. It assumes that all time series objects

are already transformed into the parameter space, but without using any

index structure. At query time, this method requires a sequential scan over

all segments of the parameter space.

We further compare the performance of our approach to traditional sim-

ilarity search approaches based on the following dimension reduction meth-

ods: Chebyshev Polynomials (Cheb) [CN04], Discrete Fourier Transformation

(DFT) [AFS93] and Fast Map (FM) [FL95]. In particular, we implemented

the algorithm proposed by Seidl and Kriegel in [SK98] which adapts the

GEMINI framework (cf. Section 3.6) for k-nearest-neighbor search. Since

the applied dimensionality reduction techniques approximate the Euclidean

space, they can only be used to accelerate similarity queries based on the

264 17 Experimental Evaluation and Discussion

0

10

20

30

40

50

60

70

80

90

100000 200000 300000 400000 500000 600000 700000

R-Par
Seq-Par
Seq-Nat

E
la

ps
ed

 ti
m

e
[s

ec
]

Number of Objects in the Database

(a)

0

1

2

3

4

5

6

7

8

9

100000 200000 300000 400000 500000 600000

Cheb
DFT
FM
R-Par

Number of Objects in the Database

E
la

ps
ed

 ti
m

e
[s

ec
]

(b)

Figure 17.1: Scalability of the threshold-query algorithm against database

size.

Euclidean distance. They cannot be applied to threshold-based similarity

search applications.

To obtain more reliable and significant results, in the following experi-

ments we used 5 randomly chosen query objects. Furthermore, these query

objects were used in conjunction with 5 different thresholds, so that we ob-

tained 25 different threshold-based nearest-neighbor queries. The presented

results are the average results of these queries.

First, we performed threshold queries against database instances of dif-

ferent sizes to measure the influence of the database size to the overall query

time. The elements of the databases are time series of fixed length l = 50.

Figure 17.1 exhibits the performance results for each database. In Figure

17.3 Performance Results 265

0

50

100

150

200

250

50 100 150 200 250 300

R-Par
Seq-Par
Seq-Nat

E
la

ps
ed

 ti
m

e
[s

ec
]

Length of Time Series in Database

(a)

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300

Cheb
DFT
FM
R-Par

Length of Time Series in Database

E
la

ps
ed

 ti
m

e
[s

ec
]

(b)

Figure 17.2: Scalability of the threshold-query algorithm against time series

length.

17.1(a) it is shown that the performance of both approaches SeqNat and

SeqPar significantly decreases with increasing database size, whereas our ap-

proach RPar scales very well, even for large databases. Furthermore, our

approach shows similar scalability behavior than the three dimensionality

reduction approaches Cheb, DFT and FM as depicted in Figure 17.1(b).

Yet, our approach even outperforms them by a factor of 4 to 5.

Second, we explored the impact of the length of the query object and the

time series in the database. The results are shown in Figure 17.2. Again, our

technique outperforms the competing approaches SeqNat and SeqPar whose

cost increase very fast due to the expensive distance computations (cf. Figure

17.2(a)). In contrast, our approach, like DFT and FM, scales well for larger

266 17 Experimental Evaluation and Discussion

0,0001

0,001

0,01

0,1

1

100000 200000 300000 400000 500000 600000

Cheb
DFT
FM
Filter
Refinement

R
el

at
iv

e
nu

m
be

r o
f o

bj
ec

ts
 [%

]

Number of Objects in the Database

(a) Pruning power for varying database size.

0,001

0,01

0,1

1

10

50 100 150 200 250 300

Cheb
DFT
FM
Filter
Refinement

Length of Time Series in Database

R
el

at
iv

e
nu

m
be

r o
f o

bj
ec

ts
 [%

]

(b) Pruning power for varying time series length.

Figure 17.3: Pruning Power of the threshold-based nearest-neighbor algo-

rithm.

time series objects. For small time series it even outperforms by far the

three dimensionality reduction approaches as shown in Figure 17.2(b). If

the length of the time series objects exceeds 200, then the both approaches

DFT and FM scales better then our approach. In contrast, Cheb scales

relatively bad for larger time series. The reason is that the number of required

Chebyshev coefficients has to be increased with the time series length for

constant approximation quality. Obviously, the cardinality of our time series

representations increases linear with the time series length.

In the next experiment, we demonstrate the speed-up of the query pro-

cess caused by our pruning strategy. We measured the number of result

candidates considered in the filter step of our query algorithm, denoted by

’Filter ’, and the number of objects which has to be refined finally, denoted

by ’Refinement ’. We will again compare our approach to the three dimen-

17.4 Evaluation of the Threshold Based Similarity Measure 267

sionality reduction methods Cheb, DFT and FM. Figure 17.3(a) and Figure

17.3(b) show the results relatively to the database size and length of the

time series objects. Generally, only a very small portion of the candidates

has to be refined to report the result. Similar to the dimension reduction

methods, our approach scales well for large databases. For small time series,

our approach has a lightly better pruning power then Cheb and FM. We can

observe that the pruning power of our approach decreases with increasing

time series length. An interesting point is that the number of candidates to

be accessed in the filter step increases faster with larger time series than the

number of finally refined candidates. Yet, for the AUDIO dataset the DFT

method shows the best results w.r.t. the pruning power.

Furthermore, we examined the number of nearest-neighbor search itera-

tions of the query process for varying length of the time series and varying

size of the database. We observed that the number of iterations was between

5 and 62. The number of iterations increases linear to the length of the time

series and remains nearly constant w.r.t. the database size. Nevertheless,

only a few iterations are required to report the result.

The bottom line is that, with respect to query performance, our approach

obviously outperforms by far both competing approaches SeqNat and SeqPar.

But it is comparable to the three Euclidean distance based dimensionality

reduction methods Cheb, DFT and FM. For small to medium large time

series, our approach slightly outperforms the three dimensionality reduction

methods. In the next experiments, we will demonstrate that, for some ap-

plications, our approach is also more effective for data mining tasks then

Euclidean distance based similarity measures.

17.4 Evaluation of the Threshold Based

Similarity Measure

In this section, we will experimentally evaluate the effectiveness of threshold

queries. In particular, we will proof the suitability of our similarity model

268 17 Experimental Evaluation and Discussion
C o mpariso n with tradit io nal distance measures

0

0,2

0,4

0,6

0,8

1

1,2

Euclid. Dist .
DTW
DDTW
Thresh. Dist . (Eucl.)

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Trace SynCtrl GunX CBF

Figure 17.4: Comparison to Traditional Distance Measures.

against other approaches by using threshold queries for classification tasks

performed on well established test datasets. The quality of our similarity

model is expressed by the classification accuracy using a k-nearest-neighbor

classifier (k = 5) with 10-fold cross validation. In order to achieve a large

variety of different data characteristics in our test bed, we apply the STAN-

DARD test datasets for the following experiments.

17.4.1 Comparison to Traditional Distance Measures

In the first experiment (cf. Figure 17.4), we compare our approach to com-

peting similarity measures traditionally used for time series data, the Eu-

clidean distance (Eucld. Dist.), Dynamic Time Warping (DTW) and Deriva-

tive Dynamic Time Warping (DDTW) [KP01]. Our approach achieves good

classification qualities for all four datasets. For the dataset Trace the Eu-

clidean distance achieves only an accuracy of about 45% while our approach

achieves about 86%. With the GunX dataset our approach even outperforms

the DTW distance measure.

17.4 Evaluation of the Threshold Based Similarity Measure 269

17.4.2 Comparison of Different Similarity Distances

for Time Intervals

First, we will examine different Lp-norms (p = 1, 2,∞) applied to the interval-

similarity distance measure dint. Figure 17.5(a) shows the results of the clas-

sification accuracy achieved, respectively. As we have expected in Section

12.8, all three Lp-norms show similar behavior w.r.t. the classification accu-

racy.

For comparison, we also applied other similarity measures including mid

point measure (Mid Point) (cf. Chapter 12.1), ratio gap measure (Ratio Gap)

(cf. Chapter 12.3) and our similarity distance measure d̂overlap (Overl.) which

takes the overlap between two time intervals into account (cf. Chapter 12.7).

However, as depicted in Figure 17.5(b), none of them achieves the quality of

the Euclidean distance for all datasets. Except for the Trace dataset, they

rather show poor effectiveness against the Euclidean distance.

17.4.3 Comparison of Different Similarity Distances

for Sets of Time Intervals

In the next experiment, we evaluate the effectiveness of the Sum of Mini-

mum Distance (SMD) for measuring the threshold similarity between two

time series. For comparison, we used the set kernel function as proposed in

[GFKS02]:

dset−kernel(SX , SY) :=

∑
x∈SX ,y∈SY

e
−dint(x,y)2

σ

|SX | · |SY |
,

where σ is a parameter which can be used to adjust the sensitivity of the

similarity. For low σ values, large interval distances have only little influence

on the similarity. Figure 17.6 shows the results of the achieved classification

accuracy for all four datasets. Additionally, we depicted again the results of

the simple Euclidean distance (Euclid. Dist.). The set-kernel distance mea-

sure (Thresh. (kernel)) falls by far below our proposed SMD-based distance

measure (Thresh. Dist. (Eucl.)) for all four datasets. The problem of the

270 17 Experimental Evaluation and Discussion
C omp arison o f t hresho ld based Lp - N orms

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Thresh. Dist . (Eucl.)
Thresh. Dist . (M an.)
Thresh. Dist . (M ax.)

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Trace SynCtrl GunX CBF

(a)Compa r i son of di f f e r e nt i nt e r v a l di st a nc e s

0

0,2

0,4

0,6

0,8

1

1,2

Thresh. Dist. (Eucl.)
Thresh. Dist. (Overl.)
Thresh. (M id Point)
Thresh. (Rat io Gap)

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Trace SynCtrl GunX CBF

(b)

Figure 17.5: Comparison of Different Interval Similarity Distances.

set-kernel distance measure is that one time interval of one time series is

matched to all time intervals of the other time series.

17.4.4 Results on Scientific Datasets

Now we will evaluate the results on the air pollution dataset SCIEN ENV.

We performed 10-nearest neighbor threshold queries with randomly chosen

query objects. Interestingly, when we choose time series as query objects

that were derived from rural sensor stations representing particulate matter

parameters (PM10), we obtained only time series representing the same pa-

rameters measured also at rural stations. This confirms that the pollution

by particle components in the cities in fact differs considerably from the pol-

lution in rural regions. A second interesting result was produced when we

used PM10 time series of working days as queries. The resulting time series

were also derived from working days representing PM10 values.

17.5 Evaluation of the Semi-Supervised Time Series Analysis 271
C omparison o f d if f erent set d ist ances

0

0,2

0,4

0,6

0,8

1

1,2

Euclid. Dist .
Thresh. Dist . (Eucl.)
Thresh. (Kernel)

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Trace SynCtrl GunX CBF

Figure 17.6: Comparison of Different Set Similarity Distances.

The results on the gene expression dataset were also very interesting.

Our task was to find the most similar gene with τ = 0 to a given query gene.

The intuition behind that is to find a gene that is functionally related to

the query gene. We posed several randomized queries to this dataset with

τ = 0 and evaluated the results w.r.t. biological interestedness, using the

SGD database3. Indeed, we retrieved functionally related genes for most of

the query genes. For example, for query gene CDC25 we obtained the gene

CIK3. Both genes play an important role during the mitotic cell cycle. For

the query gene DOM34 and MRPL17 we obtained two genes that are not

yet labeled (ORF-names: YOR182C and YGR220C, respectively). However,

all four genes are participating in the protein biosynthesis. In particular,

threshold queries can be used to predict the function of genes whose biological

role is not resolved yet.

To sum up, the results on the real-world datasets suggest the practical

relevance of threshold queries for important real-world applications.

17.5 Evaluation of the Semi-Supervised Time

Series Analysis

In this section, we investigated the effectiveness of semi-supervised threshold

queries which are used to find the optimal threshold value by means of a

3http://www.yeastgenome.org/

272 17 Experimental Evaluation and Discussion

training dataset. We applied the density-based clustering method OPTICS

[ABKS99] for the cluster analysis step. We used OPTICS due to its robust-

ness w.r.t. data distribution and parameter setting. Again, let us note that

any other clustering method is also applicable.

17.5.1 Evaluation of Threshold-Based Separation Score

At first, we are interested in how the optimal threshold values change when

the expected results differ, i.e. when the focus of the query changes. The

following experiments were performed on the datasets GDS30 and GDS38

from Gene Expression Omnibus (GO)4. For the first experiment, we used

the GO functional classes on level 4. Afterwards, we changed the focus of

our queries to the GO level 5. As expected, we obtained different separation

score curves as depicted in Figure 17.7. These results raise the question

whether the computed optimal threshold values indeed yield good results

on the whole dataset or not. To evaluate this, we clustered the time series

for varying threshold values and determined the rand index [HBV01]. For

example, the threshold value 0.73 which corresponds to a high separation

score on the GDS30 dataset for GO level 4 resulted in a rand index equal to

0.94. Contrary, when using a threshold value of 0.2, the rand index decreased

to 0.86. Similar results were observed for other levels, for other threshold

values, and on other datasets.

17.5.2 Evaluation of the Cluster Quality

Last but not least, we evaluated the cluster quality for several datasets (from

SCIEN GEX and STANDARD) using our semi-supervised analysis approach.

We compared our method to another similarity measure, in particular the

Euclidean distance, denoted as(Eucl. dist.). The results of the comparison

are depicted in Figure 17.8. Figure 17.8(a) depicts the rand index [HBV01]

and Figure 17.8(b) depicts the average entropy [HBV01]. The higher the

rand index the higher the clustering quality, whereas high average entropy

4http://www.ncbi.nlm.nih.gov/geo/

17.6 Summary 273

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 0.2 0.4 0.6 0.8 1

Threshold

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

(a) GO level 4

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Threshold

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

(b) GO level 5

Figure 17.7: Separation score curves for different GO levels (GDS.

values indicate low clustering qualities. The rand index results show that the

threshold-based clustering analysis always outperforms the analysis based

on the Euclidean distance in terms of effectiveness. For the gene datasets

GDS38 and GDS30 the Euclidean distance achieves slightly better results

w.r.t. the entropy but fails drastically for the STANDARD datasets AUDIO,

Trace, GunX and CBF, while our approach still yields good results. This

underlines the capability of our semi-supervised analysis approach.

17.6 Summary

In a broad experimental evaluation, presented in this chapter, we demon-

strated the importance of the new concepts proposed in the previous chapters.

In particular, we demonstrated that threshold queries can be successfully

applied to several applications. Furthermore, we examined the scalability

of our proposed algorithms and compared it to straightforward approaches.

The evaluation of the query algorithm proposed in Chapter 15 clearly demon-

strated the power of our pruning strategy which is mainly responsible for the

achieved query performance.

In the experimental evaluation of the semi-supervised time series analysis,

we have shown that our proposed approach yields valuable clustering results,

274 17 Experimental Evaluation and DiscussionRand Index

0,00

0,20

0,40

0,60

0,80

1,00

Eucl.Dist.

Thresh. Dist

GDS38 GDS30 AUDIO Trace GunX CBF

R
an

d
In

de
x

(a) Rand Index
Entropy

0,00

0,20

0,40

0,60

0,80

1,00

1,20

Eucl. Dist.

Thresh. Dist.

GDS38 GDS30 AUDIO Trace GunX CBF

E
nt

ro
py

(b) Entropy

Figure 17.8: Effectiveness comparison to the Euclidean Distance.

even if only partial information is available for adapting the threshold to

an optimal value. Beside the analysis of a dataset, according to specific

class labels our approach can help to find unknown but potentially useful

knowledge.

Part IV

Conclusions

275

Chapter 18

Summary and Future

Directions

The increasing advancement in sensor technology and the growing progress

of recording more and more complex objects and processes of our real life

requires computational assistance on the preservation, recovery, analysis, and

reporting of a very large quantity of complex data. Modern information

systems which can cope with complex data open up new perspectives for

several scientific disciplines and engineering facilities. Present data retrieval

methods have to be adapted to this emerging evolution. The methods and

concepts presented in this thesis contribute to the solution of novel challenges

for retrieval algorithms, in particular for complex spatial and temporal data.

This chapter summarizes the main contributions of this thesis (Section 18.1)

and shows potentials for future research directions (Section 18.2).

18.1 Summary of Contributions

The rapidly increasing amount of complex structured objects stored and or-

ganized in databases is challenging for query procedures retrieving relevant

information out of the collected data. The effective and efficient process-

ing of complex objects are indispensable for many modern application areas,

277

278 18 Summary and Future Directions

such as geographical information systems, digital-mock-up, computer-aided

design, medical imaging, molecular biology or real-time virtual reality appli-

cations, e.g. haptic rendering. This thesis contributes in the field of query

processing on complex structured objects. New and original solutions for

collision queries on three-dimensional CAD-parts and GIS data as well as

similarity queries on time series are proposed. In the following, we give a

detailed summary of these contributions.

18.1.1 Complex Spatial and Temporal Data (Part I)

Part I of this thesis provides a brief and rather general overview over existing

models of data representation for spatially extended objects and time series

objects. We give a short overview of modeling and managing spatial and

temporal data. In particular, we motivate the interval based representation

and show that interval sequences are a suitable basic data type for both,

spatial and temporal data. The advantage of intervals is that they are very

easy to handle and can be easily integrated into commercial database man-

agement systems. In addition, efficient access methods which are applicable

for fully-fledged object-relational database systems exist for interval data.

18.1.2 Spatial Query Processing for Complex

Structured Objects (Part II)

In this part, we showed how to accelerate spatial intersection queries per-

formed on highly resolved spatial data and represented by means of interval

sequences. The basic concept of the presented techniques was to take statis-

tics about the data distribution into account.

Using Statistics to Accelerate Intersection Queries on Complex

Spatial Objects. Since the interval based representation of spatial ob-

jects can be suitably organized within object-relational database manage-

ment systems we started with the introduction of statistics which help us to

minimize the overall navigational cost of space partitioning relational access

18.1 Summary of Contributions 279

methods. First of all, we demonstrated that using our proposed statistic

based decomposition algorithm Decompose(), grouping the replicating repre-

sentations of the query object, achieved an acceleration of the query process

by 30% to 300% compared to queries performed on the traditional relational

access methods. In addition, we showed that our efficient access methods

applied to commercial database systems even suffices to provide haptic ren-

dering systems with real-time contact-force computation in very large and

complex structured virtual 3D-worlds. Thereby, we obtained a frame rate of

about 1,000 Hz for the haptic rendering loop which is by far sufficient for

many haptic rendering applications.

Applying Statistics for Decomposing Highly Resolved Spatial

Objects. Next, we introduced a cost-based decomposition algorithm for

linearized high-resolution spatial objects which helps to range between the

two extremes of one-value approximations and the use of unreasonably many

approximations. We presented interval containers as a new concept and

showed how we can efficiently store them by means of data compression

techniques. In particular, we introduced a quick spatial data compressor

QSDC in order to emphasize those packer characteristics which are impor-

tant for efficient spatial query processing, namely good compression ratio

and high unpack speed. Furthermore, we presented a cost-based decomposi-

tion algorithm for complex spatial objects, called CoDec. CoDec takes the

decompression cost of the interval containers and their access probabilities

into account. This decomposition algorithm is applicable for different spatial

index structures, data space resolutions and compression algorithms. We

showed in a broad experimental evaluation that our new approach, i.e. the

combination of CoDec and QSDC, accelerates the Relational Interval-tree

(RI-tree) and the Relational Quad-tree (RQ-tree) by up to two orders of

magnitude.

We introduce efficient intersection joins for complex rasterized objects

based on a cost-based decomposition algorithm CoDecJ , an adaption of the

decomposition algorithm CoDec. The cost model again takes the actual data

distribution reflected by statistical information and the used packer char-

acteristics into account. In a broad experimental evaluation on real-world

280 18 Summary and Future Directions

geographical and 3D CAD datasets, we demonstrated the efficiency of our

new spatial join algorithm for complex rasterized objects. It is experimen-

tally shown that CoDecJ builds interval-sequence approximations having

the best trade-off between redundancy and accuracy and good adapts to the

characteristics of the datasets and the used compression method. As a result,

CoDecJ gains a speed-up of the join queries of about one to two orders of

magnitude.

Applying Statistics for Joining Complex Spatial Objects Dis-

tributed Over Several Clients. In addition, an intersection join for dis-

tributed complex spatial objects represented by interval sequences is pre-

sented. The objects were assumed to be distributed on clients located at

different sites. The intersection join was executed at a central server which

was connected to all clients via local or wide area networks. Our proposed

solution is based on generating approximations of the interval sequence data

at client site which were transmitted from the clients to the server site for a

filter step. The main goal was to minimize the client-server-communication

cost of the server site join process. The main contributions of this approach

are

• an intersection probability model which is used to build suitable ap-

proximations at client side and

• a cost-based refinement strategy taking the intersection probability and

the transmission cost into account.

In contrast to existing solutions, e.g. error-bound approaches, our approxi-

mation technique CoDecDJ achieves a good trade-off between the commu-

nication cost of the filter and the refinement step. It adapts automatically to

different client-server characteristics, e.g. different datasets, varying number

of clients, or the used compression technique. Furthermore, the experiments

show that the cost-based refinement achieves the lowest transmission cost as

well as the lowest number of transmission requests.

18.1 Summary of Contributions 281

18.1.3 Enhanced Similarity Search on Time Series

(Part III)

In the third part of this thesis we motivated and proposed a novel similarity

model for time series called threshold similarity. In contrast to traditional

similarity models including the Euclidean distance or dynamic time warping,

the proposed similarity measure allows us to focus the observation of time-

series characteristics at a certain amplitude value. The advantage is that

we can take relevant amplitudes into account while suppressing less relevant

amplitude values. This kind of similarity search on time series has been

insufficiently addressed so far by other approaches or not yet addressed at

all.

Based on the new similarity measure we defined two similarity queries

called threshold queries, the threshold-based ε-range query and the threshold-

based k-nearest-neighbor query. Given a query object Q and a threshold τ ,

a threshold query returns time series in a database that exhibit the most

similar threshold-crossing time intervals reflecting the behavior at a certain

time-series amplitude τ . More exactly threshold-crossing time intervals of

a time series represents the interval sequence of elements that have a value

above the threshold τ . We mentioned several practical application ranges for

such a query type. In addition, we presented a novel approach for managing

time series data to efficiently support such threshold queries. Furthermore,

we developed a scalable algorithm to answer threshold queries for arbitrary

thresholds τ . A broad experimental evaluation demonstrates the importance

of the new query type for several applications and shows the scalability of our

proposed algorithms in comparison to competing approaches. Furthermore,

we experimentally evaluated the effectiveness of our novel similarity model

by means of classification accuracy. It can be shown that in fact the new

similarity measure can be successfully applied to several datasets and outper-

forms the traditional similarity measures. In addition, we discussed several

other variants of amplitude, focused on similarity search and experimentally

showed the superiority of our proposed model.

Based on the threshold-similarity model, we presented a framework for

282 18 Summary and Future Directions

semi-supervised cluster analysis using adaptable threshold similarity. In par-

ticular, we proposed a method to adapt the threshold by learning the optimal

threshold from a small training set in order to yield an accurate clustering

of the entire time series. In our experimental evaluation, we showed that our

proposed approach yields valuable clustering results, even if only partial in-

formation is available for adapting the threshold to an optimal value. Beside

the analysis of a dataset according to specific class labels, our approach can

help to find unknown but potentially useful knowledge.

18.2 Future Directions

At the end of this thesis, let us emphasize the potentials of the proposed

methods for query processing on complex objects.

For spatial query processing based on interval representations, we see the

following opportunities for future research:

• Currently, the intervals approximated by interval containers are as-

sumed to be equally distributed within the bounds of the interval con-

tainers. However, the interval patterns within the approximations de-

pends on the used dataset, e.g. the dimensionality of the used dataset,

and the used linearization method, i.e. the used space filling curve.

Incorporating more pattern characteristics within the interval contain-

ers would be an enhancement for the computation of the intersection

probability, and thus, maybe would improve the object decomposition

and the corresponding query performance. However, more parameters

yield more expensive object approximations. The number and the type

of parameters which should additionally be taken to optimize the ap-

proximations is still an open question.

• Another interesting idea would be to extend the interval based rep-

resentation of spatially extended objects with additional information

concerning the object topology, e.g. the depth of penetration. This

additional information could be used to determine the intensity of the

18.2 Future Directions 283

intersection between two objects. Instead of simply distinguishing only

the object voxel from the free-space voxel, we can store the depth of

object penetration for each object voxel. Consequently, each two- or

three-dimensional object can be represented as a sequence of intersec-

tion depths. The main advantage of this kind of object representation

would be that the complete spectrum of query and indexing techniques

developed for time series, like dimensionality reduction and threshold

based representation, can be used. This kind of spatial object repre-

sentation especially seems promising for haptic query processing, since

distance information achieves a better enhancement of the haptic ren-

dering methods than simple collision information.

For the similarity search on time series data, future research could be

guided in the following directions:

• Analogue to the object approximation approaches proposed for com-

plex spatial data, the threshold-crossing time intervals of a time series

can also be approximated by means of interval containers. That means,

that close time intervals can be suitably grouped into larger approxima-

tions in a compressed form in order to apply efficient filter steps during

the query process. Following this idea, we have to develop adequate

approximations for the trapezoid segments in the parameter space.

• Currently, we assume that for some datasets and some applications

there is exactly one amplitude and one threshold value respectively

which has to be taken into consideration for similarity search. However,

investigating threshold similarity analysis with multiple thresholds at

the same time could yield an potential improve of data mining tasks.

• Last but not least, it is interesting to generalize the concept of thresh-

old queries to threshold-range queries. Instead of taking one certain

threshold value into account, threshold-range queries allows us to fo-

cus the similarity search on one or more amplitude ranges. An open

question is how to define similarity measures for threshold ranges and

how to process threshold-queries efficiently.

284 18 Summary and Future Directions

List of Figures

2.1 Scan conversion on a triangulated surface. 18

2.2 Filling a closed voxelized surface. 19

2.3 Examples of space-filling curves in a two-dimensional space. . 20

2.4 Conversion pipeline from triangulated surfaces to interval se-
quences. 21

2.5 Computation of point shells. 22

2.6 Examples of one-dimensional spatial selection queries. 24

2.7 Examples of two-dimensional spatial selection queries. 24

2.8 Spatial intersection join. 25

2.9 Multi-step query processing. 27

2.10 Virtual prototype of a car. 28

2.11 Spatial query on CAD data. 29

2.12 Sample scenario for haptic rendering. 30

2.13 Virtual environment of the International Space Station. 31

2.14 Spatial referencing of engineering documents. 32

3.1 Different types of time series 36

3.2 Interpolation of discrete time series 37

3.3 Euclidean distance between time series 39

3.4 Comparison between similarity in shape and similarity in time. 40

3.5 Example of stock prize time series 41

3.6 Alignment between two time series for different distance mea-
sures (Euclidean distance, DTW and DDTW). 43

3.7 Weighted Similarity Measure 45

3.8 Probability of a point near by the data space boundary. 49

3.9 Feature based dimensionality reduction (GEMINI approach). . 51

285

286 LIST OF FIGURES

3.10 Classification of all (relevant) time series representations pro-
posed for data mining. 53

4.1 Applications of one-dimensional interval sequences 56

4.2 Allen’s interval relationsships. 59

4.3 Block-based Relational Interval Tree 63

4.4 Interval Query onto the Relational Interval-tree 65

6.1 Relational Quad-tree. 78

6.2 Minimizing navigational cost of the B+-tree. 81

6.3 Accelerated query processing. 83

6.4 Cost-Based Tile Grouping. 85

6.5 Grouping Algorithm Decompose. 87

6.6 RI-tree histogram. 90

6.7 Used index levels. 90

6.8 RI-tree optimizations without using statistics. 91

6.9 Cost-Based Tile Grouping. 92

6.10 Statistic based accelerated RQ-tree on the CAR dataset. . . . 93

6.11 Box queries on the PLANE data (decomposition and response
time). 94

7.1 Concurrent virtual engineering using different haptic devices. . 98

7.2 Collision detection by probing voxmap with pointshell. 102

7.3 Force feedback computation. 102

7.4 Display of the contact forces in a virtual scene. 103

7.5 Relational embedding of the static environment. 104

7.6 SQL statement for haptic query processing 105

7.7 PointShell Grouping Algorithm CBGroup. 108

7.8 Accelerated SQL statement for haptic query processing 109

7.9 Avg. query processing time for different quantile resolutions. . 110

7.10 Performance of range query sequences. 111

7.11 Average query performance dependent on the voxel density. . 112

8.1 Voxelized spatial object . 119

8.2 Interval container sequence . 119

8.3 Pattern derivation by linearizing a rasterized object using a
space-filling curve (Z-order). 122

LIST OF FIGURES 287

8.4 Flow diagram of QSDC compression algorithm. 123

8.5 Query Distribution Functions QDF (x, y). 126

8.6 Computation of access probabilities of interval containers. . . 127

8.7 Look-Up table for different Packers 129

8.8 Decomposition Algorithm CoDec. 130

8.9 Fast Intersection Detection on Interval Containers. 134

8.10 Storage requirements for the RI-tree (PLANE). 138

8.11 Update operations for the RI-tree (CAR). (i) one interval con-
tainer per interval; (ii) one interval container per object; (iii)
interval containers grouped by CoDec(QSDC). 139

8.12 MaxGap(DC) evaluated for boolean intersection queries on
the RI-tree (PLANE). 141

8.13 MaxGap(QSDC) evaluated for boolean intersection queries for
the RI-tree using different resolutions (CAR). 141

8.14 Object candidates and result sets for boolean intersection queries
on the RI-tree (CAR). 142

9.1 Decomposition Algorithm CoDecJ 151

9.2 Nested-Loop Based Join Processing. 152

9.3 Nested-Loop Join Algorithm NL-join. 153

9.4 Interval containers from relation R and the corresponding
interval histograms IHsweep,R′ and IHall,R′ 155

9.5 Two-Phase Sort Merge Join. 156

9.6 Storage requirements for the interval containers. 160

9.7 MaxGap and CoDecJ evaluated for intersection joins on the
CAR dataset. 161

9.8 Overall join performance for different packers. 162

9.9 MaxGap and CoDecJ grouping on SEQUOIA for different
compression algorithms (main memory cache disabled). 163

9.10 MaxGap and CoDecJ grouping on CAR for different com-
pression algorithms (main memory cache disabled). 164

9.11 Sort-merge join performance with CoDecJ algorithm for dif-
ferent cache sizes of the sweep-line status (CAR dataset). . . . 165

9.12 Overall sort-merge join performance for different cache sizes
of the sweep-line status (CAR dataset). 167

9.13 Sort-merge join performance for different cache sizes of the
sweep-line status (SEQUOIA dataset). 167

288 LIST OF FIGURES

10.1 Distributed Intersection Join on Interval Sequences. 171

10.2 Decomposition Algorithm CoDecDJ 178

10.3 Grouping strategies using (un)compressed data equally dis-
tributed on 4 local clients. 182

10.4 Different grouping strategies on the two datasets (compressed
with ZLIB) which were equally distributed on 2, 4, 8 and 16
local clients. 183

10.5 Different join strategies (4 Clients, ZLIB, CoDecDJ , ART). . 184

11.1 Threshold-based detection of risk patients for heart diseases. . 192

11.2 Threshold-based classification of time series. 193

11.3 Patients heart rate and systolic blood pressure after drug treat-
ment. 194

11.4 Detection of associations between different environmental and
climatical attributes. 196

12.1 The nine basic distances between two intervals A and B. . . . 200

12.2 Interval distance measured by Midpoint measure. 200

12.3 Interval distance measured by Gap measure. 201

12.4 Interval distance measured by Total Distance. 203

12.5 Interval distance measured by Plus-Minus measure. 204

12.6 Interval distance measured by Mid-Near / Mid-Far measure. . 205

12.7 Examples of the overlap based interval distance measure. . . . 207

12.8 Interval distance measured by Minkowski-Metric. 209

12.9 Equi-distant intervals for different Minkowski-Metrics. 210

13.1 Threshold-Crossing Time Intervals. 212

14.1 Mapping of Time Intervals to the Time Interval Plane. 219

14.2 Time Intervals in Parameter Space for Arbitrary Threshold. . 220

14.3 Determination of threshold-crossing time intervals from pa-
rameter space. 222

14.4 Time Series Decomposition. 224

14.5 Time Series Decomposition Example. 225

14.6 Linear time series decomposition. 228

15.1 Properties of threshold queries w.r.t. object pruning. 233

LIST OF FIGURES 289

15.2 Threshold-based ε-range query algorithm. 235

15.3 Example of the threshold-based nearest-neighbor query. 242

15.4 Step-wise lower-bounding distance computation of the threshold-
based nearest-neighbor query example. 243

15.5 Threshold-based nearest-neighbor query algorithm. 246

16.1 Framework for semi-supervised clustering. 249

16.2 General approach. 252

16.3 Determination of the threshold dependent class separation score.255

16.4 Determination of the most promising threshold values. 256

17.1 Scalability of the threshold-query algorithm against database
size. 264

17.2 Scalability of the threshold-query algorithm against time series
length. 265

17.3 Pruning Power of the threshold-based nearest-neighbor algo-
rithm. 266

17.4 Comparison to Traditional Distance Measures. 268

17.5 Comparison of Different Interval Similarity Distances. 270

17.6 Comparison of Different Set Similarity Distances. 271

17.7 Separation score curves for different GO levels (GDS. 273

17.8 Effectiveness comparison to the Euclidean Distance. 274

290 LIST OF FIGURES

List of Tables

6.1 Simple statistics for the RI-tree and RQ-tree. 79

6.2 Dataset specification. 89

7.1 Datasets. 109

8.1 Operators on interval containers. 120

8.2 Operators for the interval containers C1, C2 and C3 of the
example given in Figure 8.2. 121

8.3 Data compressors. 136

8.4 CoDec(DC) evaluated for Boolean intersection∗ and intersec-
tion volume∗∗ queries for the RI-tree (PLANE). 142

8.5 CoDec(QSDC) evaluated for Boolean intersection queries for
the RI-tree with different resolutions (CAR). 143

9.1 Test data sets. 159

15.1 Notations and operations on time interval sets. 231

17.1 Summary of Test Datasets. 263

291

292 LIST OF TABLES

References

[ABB03] O. Alter, P. Brown, and D. Botstein. ”Generalized Singular
Value Decomposition for Comparative Analysis of Genome-Scale
Expression Data Sets of two Different Organisms”. In Proc. Natl.
Aca. Sci. USA, volume 100, pages 3351–3356, 2003.

[ABKS99] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. ”OP-
TICS: Ordering Points to Identify the Clustering Structure”. In
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’99), Philadelphia, PA, pages 49–60, 1999.

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. ”Efficient Similar-
ity Search in Sequence Databases”. In Proc. 4th Int. Conf. on
Foundations of Data Organization and Algorithms, pages 69–84,
1993.

[AKK+06a] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and
M. Renz. ”Semi-Supervised Threshold Queries on Pharmacoge-
nomics Time Sequences”. In Proc. 4th Asia Pacific Bioinformat-
ics Conference (APBC 2006), Taipei, Taiwan, pages 307–316,
2006.

[AKK+06b] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and
M. Renz. ”Similarity Search on Time Series based on Thresh-
old Queries”. In Proc. 10th Int. Conf. on Extending Database
Technology (EDBT 2006), Munich, Germany, pages 276–294,
2006.

[AKK+06c] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin,
and M. Renz. ”Threshold Similarity Queries in Large Time
Series Databases”. In Proc. 22nd Int. Conf. on Data Engineering
(ICDE 2006), Atlanta (GA), U.S.A., page 149, 2006.

[All83] J. Allen. ”Maintaining knowledge about temporal intervals”. In
Commun. ACM 26, 11, pages 832–843, 1983.

293

294 REFERENCES

[AM99] R. J. Alcock and Y. Manolopoulos. ”Time-series similarity
queries employing a feature-based approach”. In Proc. 7th Hel-
lenic Conference on Informatics, Ioannina, Greece, 1999.

[AMW97] H. K. Ahn, N. Mamoulis, and H. M. Wong. ”A survey on mul-
tidimensional access methods”. In Lecture COMP630c,”Spatial,
Image and Multimedia Databases”, University of Science and
Technology, Clearwater Bay, Hong Kong, 1997.

[APR+98] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vit-
ter. ”Scalable Sweeping-Based Spatial Join”. In Proc. 24th
Int. Conf. on Very Large Databases (VLDB’98), New York, NY,
pages 570–581, 1998.

[AT95] C.-H. Ang and K.-P. Tan. ”The Interval B-Tree”. In Information
Processing Letters 53(2), pages 85–89, 1995.

[AV96] L. Arge and J. S. Vitter. ”Optimal Dynamic Interval Manage-
ment in External Memory”. In Proc. 37th Annual Symp. on
Foundations of Computer Science, pages 560–569, 1996.

[BBM04a] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic
framework for semi-supervised clustering. In Proc. 10th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD’04), Seattle, WA, pages 59–68, 2004.

[BBM04b] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints
and metric learning in semi-supervised clustering. In Proc. 21st
Int. Conf. on Machine Learning (ICML 2004), Banff, Alberta,
Canada, 2004.

[BC94] D. Berndt and J. Clifford. ”Using dynamic time warping to find
patterns in time series”. In AAAI-94 Workshop on Knowledge
Discovery in Databases (KDD-94), pages 229–248, 1994.

[Bel61] R. Bellman. ”Adaptive Control Processes: A Guided Tour”. In
Princeton University Press, 1961.

[BG94] G. Blankenagel and R. H. Güting. ”External Segment Trees”.
In Algorithmica, 12(6), pages 498–532, 1994.

[BHKS93] T. Brinkhoff, H. Horn, H.-P. Kriegel, and R. Schneider. ”A
Storage and Access Architecture for Efficient Query Processing
in Spatial Database Systems”. In 3rd Int. Symp. on Large Spatial
Databases (SSD’93), pages 357–376, 1993.

REFERENCES 295

[BKK99] C. Böhm, G. Klump, and H.-P. Kriegel. ”XZ-Ordering: A Space-
Filling Curve for Objects with Spatial Extension”. In Proc. 6th
Int. Symp. on Large Spatial Databases, LNCS 1651, pages 75–
90, 1999.

[BKP98] S. Berchtold, H.-P. Kriegel, and M. Pötke. ”Database Sup-
port for Concurrent Digital Mock-Up”. In Proc. IFIP Int.
Conf. PROLAMAT, Globalization of Manufacturing in the Dig-
ital Communications Era of the 21st Century, pages 499–509,
1998.

[BKS93a] T. Brinkhoff, H.-P. Kriegel, and R. Schneider. ”Comparison of
Approximations of Complex Objects Used for Approximation-
based Query Processing in Spatial Database Systems”. In Proc.
9th Int. Conf. on Data Engineering (ICDE’93), Vienna, Aus-
tria, pages 40–49, 1993.

[BKS93b] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. ”Efficient Process-
ing of Spatial Joins Using R-trees”. In Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’93), Washington,
D.C., pages 237–246, 1993.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. ”The
R∗-tree: An Efficient and Robust Access Method for Points and
Rectangles”. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data (SIGMOD’90), Atlantic City, NJ, pages 322–331,
1990.

[BKSS94] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger. ”Multi-
Step Processing of Spatial Joins”. In Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’94), Minneapolis,
MN, pages 197–208, 1994.

[BLMB02] R. Bellazzi, C. Larizza, P. Magni, and R. Bellazzi. ”Quality
assessment of dialysis services through intelligent data analy-
sis and temporal data mining”. In Proc. ECAI’02 Workshop
on Knowledge Discovery from (Spatio-) Temporal Data, Lyon,
France, pages 3–9, 2002.

[BM03] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proc. 9th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD’03), Washington, D.C., pages 39–48, 2003.

296 REFERENCES

[BW94] M. Burrows and D. J. Wheeler. ”A Block-sorting Lossless Data
Compression Algorithm”. In Digital Systems Research Center
Research Report 124, 1994.

[BÖ98] T. Bozkaya and Z. M. Özsoyoglu. ”Indexing Valid Time Inter-
vals”. In Proc. 9th Int. Conf. on Database and Expert Systems
Applications, LNCS 1460, pages 541–550, 1998.

[CF91] K. B. Clark and T. Fujimoto. ”Product Development Perfor-
mance - Strategy, Organization, and Management in the World
Auto Industry”. Harvard Business Scholl Press, Boston, MA,
1991.

[CF99] K. Chan and W. Fu. ”Efficient Time Series Matching by
Wavelets”. In Proc. 15th Int. Conf. on Data Engineering
(ICDE’99), Sydney, Australia, 1999.

[Cha03] C. Chatfield. ”The Analysis of Time Series”. Chapman and
Hall, 6th edition, 2003.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. ”Introduction
to Algorithms”. MIT-Press, Cambridge, MA, 1990.

[CN04] Y. Cai and R. Ng. ”Index Spatio-Temporal Trajectories with
Chebyshev Polynomials”. In Proc. ACM SIGMOD Int. Conf.
on Management of Data (SIGMOD’04), Paris, France, pages
599–610, 2004.

[Coh88] J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Ass., New Jersey, 1988.

[Dat99] C. J. Date. ”An Introduction to Database Systems”. Addison
Wesley Longman, Boston, MA, 1999.

[DBE99] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-
supervised clustering using genetic algorithms. In Intelligent En-
gineering Systems Through Artificial Neural Networks 9, pages
809–814, 1999.

[DeM97] M. DeMers. ”Fundamentals of Geographic Information Sys-
tems”. J. Wiley & Sons, New York, 1997.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. ”Maximum
Likelihood from Incomplete Data via the EM Algorithm”. In

REFERENCES 297

Journal of the Royal Statistical Society, Series B, volume 39(1),
pages 1–38, 1977.

[Ede80] H. Edelsbrunner. ”Dynamic Rectangle Intersection Searching”.
Institute for Information Processing Report 47, Technical Uni-
versity of Graz, Austria, 1980.

[EHS04] J. Enderle, M. Hampel, and T. Seidl. ”Joining Interval Data
in Relational Databases”. In Proc. ACM SIGMOD Int. Conf.
on Management of Data (SIGMOD’04), Paris, France, pages
683–694, 2004.

[EJS98] O. Etzion, S. Jajodia, and S. Sripada. ”Temporal Databases:
Research and Practice”. Lecture Notes in Computer Science,
Vol. 1399, Springer-Verlag, Berlin, 1998.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. ”A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise”. In Proc. 2nd Int. Conf. on Knowledge Discov-
ery and Data Mining (KDD’96), Portland, OR, pages 291–316,
1996.

[EM97] T. Eiter and H. Mannila. ”Distance Measure for Point Sets and
Their Computation”. In Acta Informatica, 34, pages 103–133,
1997.

[ES93] M. Egenhofer and J. Sharma. ”Topological Relations Between
Regions in R2 and Z2”. In Proc. 3rd Int. Symp. on Large Spa-
tial Databases (SSD’93), Singapore, LNCS 692, pages 316–336,
1993.

[EWK90] R. Elmasri, G. T. J. Wuu, and Y.-J. Kim. ”The Time Index: An
Access Structure for Temporal Data”. In Proc. 16th Int. Conf.
on Very Large Databases (VLDB’90), Brisbane, Australia, pages
1–12, 1990.

[EZZ04] C. F. Eick, N. M. Zeidat, and Z. Zhao. Supervised clustering
- algorithms and benefits. In 16th IEEE Int. Conf. on Tools
with Artificial Intelligence (ICTAI 2004), Boca Raton, FL, pages
774–776, 2004.

[FFS00] J.-C. Freytag, M. Flasza, and M. Stillger. ”Implementing
Geospatial Operations in an Object-Relational Database Sys-
tem”. In Proc. 12th Int. Conf. on Scientific and Statistical

298 REFERENCES

Database Management (SSDBM 2000), Berlin, Germany, pages
209–219, 2000.

[FJM97] C. Faloutsos, H. V. Jagadish, and Y. Manolopoulos. ”Analy-
sis of the n-Dimensional Quadtree Decomposition for Arbitrary
Hyperrectangles”. In IEEE Trans. on Knowledge and Data En-
gineering 9(3), pages 373–383, 1997.

[FL95] C. Faloutsos and K.-I. Lin. ”FastMap: A Fast Algorithm for In-
dexing, Data-Mining and Visualization of Traditional and Mul-
timedia Datasets”. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data (SIGMOD’95), San Jose, CA, pages 163–174,
1995.

[FM84] A. Fournier and D. Y. Moniwno. ”Triangulating simple polygons
and equivalent problems”. In ACM Trans. Graph., 3, 2, pages
153–174, 1984.

[FR89] C. Faloutsos and S. Roseman. ”Fractals for Secondary Key Re-
trieval”. In Proc. ACM Symp. on Principles of Database Systems
(PODS’89), Philadephia, PA, pages 247–252, 1989.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. ”Fast
Subsequence Matching in Time-series Databases”. In Proc.
ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’94), Minneapolis, MN, pages 419–429, 1994.

[FvDFH00] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Com-
puter Graphics: Principles and Practice. Addison Wesley Long-
man, 2000.

[Gae95] V. Gaede. ”Optimal Redundancy in Spatial Database Systems”.
In Proc. 4th Int. Symp. on Large Spatial Databases (SSD’95),
LNCS 951, Portland, ME, pages 96–116, 1995.

[GFKS02] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola. ”Multi-
Instance Kernels”. In Proc. 19th Int. Conf. on Machine Learning
(ICML 2004), Sydney, Australia, pages 179–186, 2002.

[GG97] V. Gaede and O. Günther. ”Survey on Multidimensional Access
Method”. Technical Report ISS-16, Department of Economics
and Business Administration, Humboldt University Berlin, re-
vised version, 1997.

REFERENCES 299

[GG98] V. Gaede and O. Günther. ”Multidimensional Access Methods”.
In ACM Computing Surveys, volume 30(2), pages 170–231, 1998.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. ”A Hierarchical
Structure for Rapid Interference Detection”. In Proc. ACM
SIGGRAPH Int. Conf. on Computer Graphics and Interactive
Techniques (SIGGRAPH’96), New Orleans, LA, pages 171–180,
1996.

[GLOT96] C. H. Goh, H. Lu, B. C. Ooi, and K.-L. Tan. ”Indexing Tem-
poral Data Using Existing B+-Trees”. In Data & Knowledge
Engineering, Elsevier, 18(2), pages 147–165, 1996.

[GU99] G. Guimarães and A. Ultsch. ”A method for temporal knowl-
edge conversion”. In Proc. 3rd Int. Symp. on Intelligent Data
Analysis, Amsterdam, The Netherlands, pages 369–380, 1999.

[Gut84] A. Guttman. ”R-Trees: A Dynamic Index Structure for Spatial
Searching”. In Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD’84), Boston, MA, pages 47–57, 1984.

[Güt94] R. H. Güting. ”An introduction to spatial database systems”.
In VLDB Journal, volume 3(4), pages 357–400, 1994.

[HBV01] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. ”On Clustering
Validation Techniques”. In Journal of Intelligent Information
Systems, volume 17(2-3), pages 107–145, 2001.

[HJ96] E. Hanson and T. Johnson. ”Selection Predicate Indexing for
Active Databases Using Interval Skip Lists”. In Information
Systems, 21(3), pages 269–298, 1996.

[HJR97] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. ”A Cost Model
for Estimating the Performance of Spatial Joins Using R-trees”.
In Proc. 9th Int. Conf. on Scientific and Statistical Database
Management (SSDBM’97), Olympia, WA, pages 30–38, 1997.

[HK01] J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Academic Press, 2001.

[HS95] G. Hjaltason and H. Samet. ”Ranking in Spatial Databases”.
In Proc. Int. Symp. on Large Spatial Databases (SSD’95), Port-
land, OR, pages 83–95, 1995.

300 REFERENCES

[Höp01] F. Höppner. ”Discovery of temporal patterns – learning rules
about the qualitative behavior of time series”. In Proc. of the 5th
European Conf. on Principles and Practice of Knowledge Dis-
covery in Databases, Freiburg, Germany, pages 192–203, 2001.

[Jag90] H. V. Jagadish. ”Linear Clustering of Objects with Multiple
Attributes”. In Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD’90), Atlantic City, NJ, pages 332–342, 1990.

[JD88] A. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flyn. ”Data Clustering: A
Review. ACM Computing Surveys”. In ACM Computing Sur-
veys, 31(3), pages 264–323, 1999.

[Joh06] T. K. Johnson. ”A reformulation of Coombs’ Theory of Uni-
dimensional Unfolding by representing attitudes as intervals”.
Doctoral thesis, University of Sydney, Psychology, 2006.

[JS99] C. S. Jensen and R. T. Snodgrass. ”Temporal Data Manage-
ment”. In Proc. IEEE Trans. on Knowledge and Data Engi-
neering (TKDE’99), pages 36–44, 1999.

[Kau87] A. Kaufman. ”An Algorithm for 3D Scan-Conversion of Poly-
gons”. In Proc. Eurographics, Portland, OR, 1987.

[KBS93] H.-P. Kriegel, T. Brinkhoff, and R. Schneider. ”Efficient Spatial
Query Processing in Geographic Database Systems”. In IEEE
Data Engineering Bulletin, volume 16(3), pages 10–15, 1993.

[KC00] H. Kargupta and P. Chan. ”Advances in Distributed and Par-
allel Knowledge Discovery”. In AAAI/MIT Press, 2000.

[KCMP01] E. Keogh, K. Chakrabati, S. Mehrotra, and M. Pazzani. ”Lo-
cally Adaptive Dimensionality Reduction for Indexing Large
Time Series Databases”. In Proc. ACM SIGMOD Int. Conf.
on Management of Data (SIGMOD’01), Santa Barbara, CA,
pages 151–162, 2001.

[KCPM01] E. Keogh, K. Chakrabati, M. Pazzani, and S. Mehrotra. ”Di-
mensionality reduction for fast similarity search in large time
series databases”. In Knowledge and Information Systems 3(3),
pages 263–286, 2001.

REFERENCES 301

[KF00] P.-S. Kam and A. W.-C. Fu. ”Discovering temporal patterns for
interval-based events”. In Proc. of Int. Conf. on Data Warehous-
ing and Knowl. Discovery, LNCS 1874, pages 317–326, 2000.

[KF02] E. Keogh and T. Folias. ”The UCR
Time Series Data Mining Archive”. In
http://www.cs.ucr.edu/∼eamonn/TSDMA/index.html, 2002.

[KHM+98] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan. ”Efficient Collision Detection Using Bounding Volume
Hierarchies of k-DOPs”. In IEEE Trans. on Visualization and
Computer Graphics, 4(1), pages 21–36, 1998.

[KJF97] F. Korn, H. Jagadish, and C. Faloutsos. ”Efficiently Support-
ing Ad Hoc Queries in Large Datasets of Time Sequences”. In
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’97), Tucson, AZ, pages 289–300, 1997.

[KKM02] D. Klein, S. D. Kamvar, and C. Manning. ”From Instance-level
Constraints to Space-Level Constraints: Making the Most of
Prior Knowledge in Data Clustering”. In Proc. 19th Int. Conf.
on Machine Learning (ICML 2000), Sydney, Australia, pages
307–314, 2002.

[KKPR04a] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. ”Effective
Decompositioning of Complex Spatial Objects into Intervals”. In
Proc. IASTED Int. Conf. on Databases and Applications (DBA
2004), Innsbruck, Austria, 2004.

[KKPR04b] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. ”Spatial
Join for High-Resolution Objects”. In Proc. 16th Int. Conf. on
Scientific and Statistical Database Management (SSDBM 2004),
Santorini Island, Greece, pages 151–160, 2004.

[KKPR04c] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. ”Statistic
Driven Acceleration of Object-Relational Spatial Index Struc-
tures”. In Proc. 9th Int. Conf. on Database Systems for Ad-
vanced Applications (DASFAA 2004), Jeju Island, Korea, pages
169–183, 2004.

[KKPR05a] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. ”Database
Support for Haptic Exploration in Very Large Virtual Environ-
ments”. In Proc. 11th Int. MultiMedia Modelling Conference
(MMM 2005), Melbourne, Australia, pages 352–357, 2005.

302 REFERENCES

[KKPR05b] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. ”Distributed
Intersection Join of Complex Interval Sequences”. In Proc.
10th Int. Conf. on Database Systems for Advanced Applications
(DASFAA 2005), Beijing, China, pages 748–760, 2005.

[KKPR05c] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. ”Efficient
Join Processing for Complex Rasterized Objects”. In Proc. 7th
Int. Conf. on Enterprise Information Systems (ICEIS 2005),
Miami, FL, pages 20–30, 2005.

[KP99a] E. Keogh and M. Pazzani. ”Relevance Feedback Retrieval of
Time Series Data”. In Research and Development in Information
Retrieval, pages 183–190, 1999.

[KP99b] E. Keogh and M. Pazzani. ”Scaling up Dynamic Time Warp-
ing to Massive Datasets”. In 3rd European Conf. on Principles
and Practice of Knowledge Discovery in Databases (PKDD’99),
Prague, Czech Republic, pages 1–11, 1999.

[KP01] E. J. Keogh and M. J. Pazzani. ”Derivative Dynamic Time
Warping”. In Proc. 1st SIAM Int. Conf. on Data Mining
(SDM’01), Chicago, IL, 2001.

[KPPS02] H.-P. Kriegel, M. Pfeifle, M. Pötke, and T. Seidl. ”A Cost Model
for Interval Intersection Queries on RI-Trees”. In Proc. 14th
Int. Conf. on Scientific and Statistical Database Management
(SSDBM 2002), Edinburgh, Scotland, pages 131–141, 2002.

[KPPS03a] H.-P. Kriegel, M. Pfeifle, M. Pötke, and T. Seidl. ”Spatial
Query Processing for High Resolutions”. In Proc. 8th Int. Conf.
on Database Systems for Advanced Applications (DASFAA’03),
Kyoto, Japan, pages 17–26, 2003.

[KPPS03b] H.-P. Kriegel, M. Pfeifle, M. Pötke, and T. Seidl. ”The Paradigm
of Relational Indexing: A Survey”. In 10th GI-Conf. on
Database Systems for Business, Technology, and the Web (BTW
2003), Leipzig, Germany. GI-Edition Lecture Notes in Informat-
ics, P-26, pages 285–304, 2003.

[KPS00a] H.-P. Kriegel, M. Pötke, and T. Seidl. ”Managing Intervals
Efficiently in Object-Relational Databases”. In Proc. 26th Int.
Conf. on Very Large Databases (VLDB’00), Cairo, Egypt, pages
407–418, 2000.

REFERENCES 303

[KPS00b] H.-P. Kriegel, M. Pötke, and T. Seidl. ”Relational Interval
Tree”. European Patent Office (EPO), Patent Application No.
00112031.0, 2000.

[KPS01] H.-P. Kriegel, M. Pötke, and T. Seidl. ”Interval Sequences: An
Object-Relational Approach to Manage Spatial Data”. In Proc.
7th Int. Symp. on Spatial and Temporal Databases (SSTD 2001),
Los Angeles, CA, LNCS 2121, pages 481–501, 2001.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[KS91] C. P. Kolovson and M. Stonebraker. ”Segment Indexes:
Dynamic Indexing Techniques for Multi-Dimensional Interval
Data”. In Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’91), Denver, CO, pages 138–147, 1991.

[KSF+96] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Pro-
topapas. ”Fast Nearest Neighbor Search in Medical Image
Databases”. In Proc. 22nd Int. Conf. on Very Large Databases
(VLDB’96), Mumbai (Bombay), India, pages 215–226, 1996.

[Kun02] P. Kunath. ”Compression of CAD data”. In Diploma Thesis,
University of Munich, 2002.

[LG98] M. C. Lin and S. Gottschalk. ”Collision detection between geo-
metric models: a Survey”. In Proc. IMA Conf. on Mathematics
of Surfaces, page 20, 1998.

[LM86] P. C. Lockemann and H. C. Mayr. ”Information System Design:
Techniques and Software Support”. Springer, Amsterdam, The
Netherlands, 1986.

[LR96] M.-L. Lo and C. V. Ravishankar. ”Spatial Hash-Joins”. In
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’96), Montreal, Canada, pages 247–258, 1996.

[LSW99] C. Lennerz, E. Schömer, and T. Warken. ”A Framework for Col-
lision Detection and Response”. In Proc. 11th European Simu-
lation Symposium (ESS), pages 309–314, 1999.

[LT98] C. Lee and T.-M. Tseng. ”Temporal Grid File: A File Structure
for Interval Data”. In Data & Knowledge Engineering, Elsevier,
26(1), pages 71–97, 1998.

304 REFERENCES

[LZ77] A. Lempel and J. Ziv. ”A Universal Algorithm for Sequential
Data Compression”. In IEEE Transactions on Information The-
ory, Vol. IT-23, No. 3, pages 337–343, 1977.

[McQ67] J. McQueen. ”Some Methods for Classification and Analysis
of Multivariate Observations”. In 5th Berkeley Symp. Math.
Statist. Prob., volume 1, pages 281–297, 1967.

[MH99] T. Möller and E. Haines. ”Real-Time Rendering”. In A K
Peters, Natick, MA, 1999.

[MJFS96] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. ”Anal-
ysis of the Clustering Properties of Hilbert Space-filling Curve”.
In Tech. Rep. CS-TR-3611, University of Maryland, 1996.

[MP94] C. B. Medeiros and F. Pires. ”Databases for GIS”. In Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’94),
Minneapolis, MN, pages 107–115, 1994.

[MPT99] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy. ”Six Degree-
of-Freedom Haptic Rendering Using Voxel Sampling”. In Proc.
ACM SIGGRAPH Int. Conf. on Computer Graphics and Inter-
active Techniques, pages 401–408, 1999.

[MPT06] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy. ”Voxel-
Based 6-DOF Haptic Rendering Improvements”. In Haptics-e
(http://www.haptics-e.org), volume 3(7), 2006.

[MTT00] Y. Manolopoulos, Y. Theodoridis, and V. J. Tsotras. ”Advanced
Database Indexing”. Kluwer, Boston, MA, 2000.

[NH94] R. Ng and J. Han. ”Efficient and Effective Clustering Methods
for Spatial Data Mining”. In Proc. 20th Int. Conf. on Very Large
Databases (VLDB’94), Santiago, Chile, pages 144–155, 1994.

[Ore89] J. A. Orenstein. ”Redundancy in Spatial Databases”. In
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’89), Portland, OR, pages 294–305, 1989.

[PD96] J. M. Patel and D. J. DeWitt. ”Partition Based Spatial-Merge
Join”. In Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’96), Montreal, Canada, pages 259–270, 1996.

REFERENCES 305

[PRS99] A.N. Papadopoulos, P. Rigaux, and M. Scholl. ”A Performance
Evaluation of Spatial Join Processing Strategies”. In Proc.
Symp. on Large Spatial Databases (SSD’99), Hong Kong, China,
pages 286–307, 1999.

[PS93] F. P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. 5th ed. Springer, 1993.

[Pöt01] M. Pötke. ”Spatial Indexing for Object-Relational Databases”.
Doctoral thesis, University of Munich, 2001.

[Ram97] S. Ramaswamy. ”Efficient Indexing for Constraint and Tem-
poral Databases”. In Proc. 6th Int. Conf. on Database Theory
(ICDT’97), Delphi, Greece, pages 419–431, 1997.

[Ren00] M. Renz. ”Dynamic Collision Detection in Virtual Environ-
ments”. In Advanced Term Project, University of Munich, Ger-
man Aerospace Center (DLR), Oberpfaffenhofen, 2000.

[Ren02] M. Renz. ”Real-Time Support of Haptic Simulations Using Very
Large Data Bases”. In Diploma Thesis, University of Munich,
2002.

[RKBL05] C. A. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi.
”A Novel Bit Level Time Series Representation with Implication
for Similarity Search and Clustering”. In Proc. 9th Pacific-
Asian Int. Conf. on Knowledge Discovery and Data Mining
(PAKDD’05), Hanoi, Vietnam, pages 771–777, 2005.

[Rov02] D. Roverso. ”Plant diagnostics by transient classification: The
aladdin approach”. In IJIS,Special Issue on Intelligent Systems
for Plant Surveillance and Diagnostics, volume 17, pages 767–
790, 2002.

[RPP+01] M. Renz, C. Preusche, M. Pötke, H.-P. Kriegel, and
G. Hirzinger. ”Stable Haptic Interaction with Virtual Environ-
ments Using an Adapted Voxmap-PointShellTM Algorithm.”. In
Proc. Int. Conf. Eurohaptics 2001, Birmingham, UK, pages 149–
154, 2001.

[Sai94] N. Saito. ”Local feature extraction and its application using
a library of bases”. In PhD thesis, Yale University, December,
1994.

306 REFERENCES

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison Wesley Longman, Boston, 1990.

[SCSS05] A. Schliep, I. G. Costa, C. Steinhoff, and A. Schonhuth. ”Ana-
lyzing Gene Expression Time-Courses”. In IEEE/ACM Trans.
Comput. Biol. Bioinformatics, volume 2(3), pages 179–193,
2005.

[Sew06] J. Seward. ”The bzip2 and libbzip2 official home page”. In
http://sources.redhat.com/bzip2, 2006.

[SFGM93] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. ”The
SEQUOIA 2000 Sorage Benchmark”. In Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’93), Washington,
D.C., pages 2–11, 1993.

[Sib73] R. Sibson. ”SLINK: An Optimally Efficient Algorithm for the
Single-Link Cluster Method”. In The Computer Journal, volume
16(1), pages 30–34, 1973.

[SK93] M. Schiwietz and H.-P. Kriegel. ”Query Processing of Spatial
Objects: Complexity versus Redundancy”. In Proc. 3rd Int.
Symp. on Large Spatial Databases (SSD’93), Singapore, LNCS
692, pages 377–396, 1993.

[SK98] T. Seidl and H.-P. Kriegel. ”Optimal Multi-Step k-Nearest
Neighbor Search”. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data (SIGMOD’98), Seattle, WA, pages 154–165,
1998.

[SLM93] B. Seeger, P. Larson, and R. McFadyen. ”Reading a Set of
Disk Pages”. In Proc. 19th Int. Conf. on Very Large Databases
(VLDB’93), Dublin, Ireland, pages 592–603, 1993.

[SOL94] H. Shen, B. C. Ooi, and H. Lu. ”The TP-Index: A Dynamic
and Efficient Indexing Mechanism for Temporal Databases”. In
Proc. 10th Int. Conf. on Data Engineering (ICDE’94), Houston,
TX, pages 274–281, 1994.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos. ”The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects”. In Proc.
13th Int. Conf. on Very Large Databases (VLDB’87), Brighton,
England, pages 507–518, 1987.

REFERENCES 307

[SSZ+98] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders,
M. Eisen, P. Brown, D. Botstein, and B. Futcher. ”Comprehen-
sive Identification of Cell Cycle-Regulated Genes of the Yeast
Saccharomyces Cerevisiae by Microarray Hybridization.”. In
Molecular Biolology of the Cell, volume 9, pages 3273–3297,
1998.

[SW88] H. Six and P. Widmayer. ”Spatial searching in geometric
databases”. In Proc. 4th IEEE Int. Conf. On Data Engineering
(ICDE’88), Los Angeles, CA, pages 496–503, 1988.

[TCG+93] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass. ”Temporal Databases: Theory, Design and Im-
plementation”. Benjamin-Cummings, 1993.

[VHTM99] R. Villafane, K. A. Hua, D. Tran, and B. Maulik. ”Mining Inter-
val Time Series”. In Proc. on Data Warehousing and Knowledge
Discovery, pages 318–330, 1999.

[VLB05] J. R. Viqueria, N. Lorentzos, and N. Brisaboa. ”Survey on Spa-
tial Data Modelling Approaches”. Idea Group 2005, 2005.

[WCRS01] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. ”Constrained
K-means Clustering with Background Knowledge”. In Proc. Int.
Conf. on Machine Learning (ICML 2001), Williamstown, MA,
pages 577–584, 2001.

[WFS04] S. Wichert, K. Fokianos, and K. Strimmer. ”Identifying Period-
ically Expressed Transcripts in Microarray Time Series Data”.
In Bioinformatics, volume 20(1), pages 5–20, 2004.

[XEKS98] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander. ”A Distribution-
Based Clustering Algorithm for Mining in Large Spatial
Databases”. In Proc. 14th Int. Conf. on Data Engineering
(ICDE’98), Orlando, FL, pages 324–331, 1998.

[YF00] B. K. Yi and C. Faloutsos. ”Fast Time Sequence Indexing for
Arbitrary Lp Norms”. In Proc. 26th Int. Conf. on Very Large
Databases (VLDB’00), Cairo, Egypt, pages 385–394, 2000.

[Zho05] S. Zhong. ”Semi-Supervised Sequence Classification With
Hmms”. In IJPRAI, volume 19(2), pages 165–182, 2005.

308 REFERENCES

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. ”BIRCH: An Ef-
ficient Data Clustering Method for Very Large Databases”. In
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’96), Montreal, Canada, pages 103–114, 1996.

[ÖV99] T. Özsu and P. Valduriez. ”Principles of Distributed Database
Systems”. In Prentice Hall, ISBN 0-13-659707-6, 1999.

Curriculum Vitae

Matthias Alexander Renz was born on September 6, 1971 in Munich, Ger-

many. He attended primary school and high-school until 1992.

From 1992 to 1997, he studied Electrical Engineering at the University

of Applied Sciences in Munich. During this time he worked as a student

assistant at the Maurer Electronics GmbH, Munich, a company which is

specialized in laser technology systems, culminating in his diploma thesis

on ”Development of a computer-controlled illumination-system” (written in

German).

In 1997 he entered the University of Munich (LMU), studying Computer

Science with a minor in Computer linguistics. His diploma thesis was on

”Real-Time Support of Haptic Simulations Using Very Large Databases”,

supervised by Prof. Dr. Hans-Peter Kriegel, Dr. Marco Pötke and Prof. Dr.

Thomas Seidl from the University of Munich and co-supervised by Dr. Ger-

hard Grunwald and Dr. Max Fischer from the German Aerospace Center.

During this time he worked as a student assistant for the German Aerospace

Center, Institute of Robotics and Mechatronics, in Oberpfaffenhofen, Ger-

many for the MORPHA project and also for the University of Munich.

In 2002, he started working at the University of Munich as a research and

teaching assistant in the group of Prof. Dr. Hans-Peter Kriegel, the chair

of the teaching and research unit for database and information systems at

the Institute of Computer Science. The research interests of Matthias Renz

include spatial data management and knowledge discovery in large spatial,

temporal and multimedia databases. Recently he received the ”Best Paper

Award” at the International Conference on Database Systems for Advanced

Applications (DASFAA 2006) in Singapore.

	Acknowledgement
	Abstract
	Zusammenfassung
	Survey of Chapters
	I Complex Spatial and Temporal Data
	1 Introduction
	1.1 Complex Spatial and Temporal Objects in Information Systems
	1.1.1 Spatial Information Systems
	1.1.2 Temporal Information Systems

	1.2 Applications of Spatial and Temporal Information Systems
	1.2.1 Biological- and Medical Information Systems
	1.2.2 Multimedia Information Systems
	1.2.3 Geographic Information Systems
	1.2.4 Computer Aided Design

	1.3 Outline of this Thesis

	2 Complex Spatial Data
	2.1 Modeling Spatial Data
	2.1.1 Modeling 3-dimensional Objects
	2.1.2 Triangle Meshes
	2.1.3 Voxel-Sets and Voxel-Sequences
	2.1.4 Point Shells

	2.2 Fundamental Spatial Queries
	2.2.1 Spatial Selection Queries
	2.2.2 Spatial Join Queries
	2.2.3 Spatial Indexing
	2.2.4 Multi-Step Query Processing

	2.3 Industrial Applications of CAD Databases
	2.3.1 Digital Mock-up of Prototypes
	2.3.2 Haptic Rendering
	2.3.3 Spatial Document Management

	3 Complex Temporal Data
	3.1 Modeling Temporal Data
	3.1.1 Dimensions of Time
	3.1.2 Modeling Complex Temporal Data
	3.1.3 What this Thesis is Not About

	3.2 Time Series
	3.2.1 Types of Time Series
	3.2.2 Interpolation of Discrete Time Series

	3.3 Similarity Measures for Time Series
	3.3.1 Similarity in Time
	3.3.2 Similarity in Shape
	3.3.3 Similarity in Change
	3.3.4 Time Warped Measures
	3.3.5 Weighted Distance Measures

	3.4 Similarity Search Applications
	3.4.1 Clustering
	3.4.2 Classification
	3.4.3 Association Rule Mining

	3.5 Indexing Time Series
	3.5.1 Rules of Indexing Time Series
	3.5.2 Vector Space Transformation
	3.5.3 Curse of Dimensionality

	3.6 GEMINI: A Generic Indexing Approach for Large Time Series
	3.7 Time Series Representations

	4 Intervals and Interval Sequences
	4.1 Applications on Interval Data
	4.1.1 Interference Checks for Spatial Data
	4.1.2 Data Mining in Time Series Databases

	4.2 Definition
	4.3 Basic Operations on Intervals
	4.3.1 Predicates on Intervals
	4.3.2 Functions on Intervals

	4.4 Efficient Management of Intervals and Interval Sequences
	4.4.1 Relational Interval-tree

	4.5 Statistics on Intervals
	4.5.1 Interval Histogram
	4.5.2 Quantile Vector

	II Spatial Query Processing for Complex Structured Objects
	5 Introduction
	6 Statistic Driven Acceleration of Spatial Queries
	6.1 Introduction
	6.2 Statistics Related to the Relational Access Methods
	6.2.1 Examples of Space-Partitioning Relational Access Methods
	6.2.2 Index Specific Statistics

	6.3 Statistics Related to the built-in access method (B+-tree)
	6.3.1 Index Range Scan Sequences
	6.3.2 Extended Index Range Scan Sequences
	6.3.3 Adoption to the Linear Quad-tree
	6.3.4 Adoption to the Relational Interval-tree

	6.4 Statistics Related to the Object Decomposition
	6.5 Experimental Evaluations
	6.5.1 Test Datasets
	6.5.2 System Specification
	6.5.3 Histograms of the Test Datasets
	6.5.4 Query Processing

	6.6 Summary

	7 Haptic Exploration of Large Spatial Environments
	7.1 The "Sense of Touch" and Database Systems
	7.2 Related Work
	7.2.1 Haptic Rendering
	7.2.2 Relational Spatial Query Processing

	7.3 Data Model for Haptic Rendering
	7.3.1 Static Object Model
	7.3.2 Dynamic Object Model
	7.3.3 Collision Response

	7.4 Relational Embedding of the Static Environment
	7.5 Relational Embedding of the Haptic Rendering Machine
	7.6 Accelerated Query Processing
	7.6.1 Point Query Sequence
	7.6.2 Range Query Sequence
	7.6.3 Cost Based Grouping
	7.6.4 Accelerated SQL Query

	7.7 Performance Evaluation
	7.8 Summary

	8 Cost-Based Approximation of Complex Spatial Objects
	8.1 Related Work
	8.2 Approximation of Rasterized Spatial Objects
	8.2.1 Interval Container
	8.2.2 Compression of Interval Containers

	8.3 Cost-Based Approximation
	8.3.1 Grouping Rules
	8.3.2 Query Distribution Function QDF
	8.3.3 Access Probability
	8.3.4 Cost Model
	8.3.5 Decomposition Algorithm

	8.4 Intersection Detection Based on Interval Containers
	8.5 Fast Intersection Test for Interval Containers
	8.5.1 Fast Intersection Tests
	8.5.2 Priority Based Intersection Tests

	8.6 Experiments
	8.6.1 Test Datasets
	8.6.2 Storage Requirements
	8.6.3 Update Operations
	8.6.4 Query Processing

	8.7 Summary

	9 Join Queries for Complex Spatial Objects
	9.1 Introduction
	9.2 Related Work
	9.3 Cost Model
	9.4 Decomposition Algorithm
	9.5 Nested-Loop Based Join Processing
	9.6 Sort-Merge Based Join Processing
	9.7 Experimental Evaluation
	9.7.1 Compression Techniques
	9.7.2 Performance Evaluation for the Nested-Loop Join
	9.7.3 Performance Evaluation for the Two-Phase Sort-Merge Join

	9.8 Summary

	10 Distributed Spatial Join Processing
	10.1 Introduction
	10.1.1 Concept of the Distributed Join Processing

	10.2 Intersection Probability
	10.3 Client-Side Approximation of Interval Sequences
	10.3.1 Local Intersection Probability
	10.3.2 Global Intersection Probability
	10.3.3 Cost Model
	10.3.4 Grouping Algorithm

	10.4 Server-Side Join Algorithm
	10.4.1 Ranked Refinement Based on Join Probability

	10.5 Experiments
	10.5.1 Test Datasets
	10.5.2 Grouping
	10.5.3 Client-Side Grouping
	10.5.4 Server-Side Join

	10.6 Summary

	III Enhanced Similarity Search on Time Series
	11 Introduction
	11.1 Overview of Related Work
	11.1.1 Measuring Similarity
	11.1.2 Indexing Time Series and Dimensionality Reduction Methods
	11.1.3 Further Approximation Techniques

	11.2 Preliminaries
	11.3 Threshold Based Similarity Measure
	11.3.1 General Idea
	11.3.2 Application Ranges for Threshold Queries
	11.3.3 Threshold Based Representation vs. Dimensionality Reduction
	11.3.4 Contributions and Outline

	12 Similarity-Distance Measures for Intervals
	12.1 Midpoint Measure
	12.2 Gap Measure
	12.3 Ratio Gap Measure
	12.4 Total Distance
	12.5 Plus-Minus Measures
	12.6 Mid-Near/Mid-Far Measures
	12.6.1 Mid-Near Measure
	12.6.2 Ratio Mid-Near Measures
	12.6.3 Mid-Far Measures

	12.7 Overlap Measure
	12.8 Minkowski Metric

	13 Threshold Based Similarity Search
	13.1 Threshold-Crossing Time Intervals
	13.2 Similarity Model for Time Intervals
	13.3 Similarity Model for Threshold-Crossing Time Intervals
	13.4 Similarity Queries Based on Threshold Similarity
	13.5 Summary

	14 Threshold Based Indexing
	14.1 Managing Threshold-Crossing Time Intervals with Fixed
	14.2 Managing Threshold-Crossing Time Intervals for Arbitrary
	14.3 Trapezoid Decomposition of Time Series
	14.4 Parameter Space Indexing
	14.5 Summary

	15 Threshold Based Query Processing
	15.1 Preliminaries
	15.2 Pruning Strategy for Threshold Queries
	15.3 Threshold-Based -Range Query Algorithm
	15.4 Filter Distance for the Threshold Similarity
	15.4.1 Lower Bounding Threshold Distance
	15.4.2 Pruning Based on Lower Bounding Distance

	15.5 Threshold-Based Nearest-Neighbor Query Algorithm
	15.6 Summary

	16 Semi-Supervised Time Series Analysis
	16.1 Introduction
	16.1.1 General Idea of Semi-Supervised Cluster Analysis

	16.2 Related Work
	16.3 Framework for Semi-Supervised Time Series Analysis
	16.4 Threshold Similarity Based Analysis
	16.4.1 Threshold Value Quality for One Class
	16.4.2 Derivation of a Global Suitable Threshold Value

	16.5 Determination of the Optimal Threshold
	16.6 Summary

	17 Experimental Evaluation and Discussion
	17.1 System Environment
	17.2 Datasets
	17.2.1 AUDIO
	17.2.2 SCIENTIFIC
	17.2.3 STANDARD

	17.3 Performance Results
	17.4 Evaluation of the Threshold Based Similarity Measure
	17.4.1 Comparison to Traditional Distance Measures
	17.4.2 Comparison of Different Similarity Distances for Time Intervals
	17.4.3 Comparison of Different Similarity Distances for Sets of Time Intervals
	17.4.4 Results on Scientific Datasets

	17.5 Evaluation of the Semi-Supervised Time Series Analysis
	17.5.1 Evaluation of Threshold-Based Separation Score
	17.5.2 Evaluation of the Cluster Quality

	17.6 Summary

	IV Conclusions
	18 Summary and Future Directions
	18.1 Summary of Contributions
	18.1.1 Complex Spatial and Temporal Data (Part I)
	18.1.2 Spatial Query Processing for Complex Structured Objects (Part II)
	18.1.3 Enhanced Similarity Search on Time Series (Part III)

	18.2 Future Directions

	List of Figures
	List of Tables
	References

