

Combining Speech User
Interfaces of Different

Applications

Dissertation

An der Fakultät für
Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Dongyi Song

Tag der Einreichung: 16.11.2006

Erster Berichterstatter: Prof. Dr. Heinrich Hußmann

(Ludwig-Maximilians-Universität München)

Zweiter Berichterstatter: Prof. Dr. Dietrich Klakow

(Universität des Saarlandes)

Tag des Rigorosums: 13.12.2006

5

Acknowledgements

This doctoral thesis would not have been able to reach this final stage in less than

three years without the continuous support I have had from many people. I would like

to express my profound gratitude to all of them.

Especially, I would like to express my deepest gratitude to Prof. Dr. Heinrich

Hußmann, who is not only the supervisor and first referee of my thesis but also a

good advisor in many aspects of my life. Without his belief in my skills and his

numerous ideas this work would not have been realized. He gave me a great deal of

invaluable advice leading me to the right way in times of doubt.

This work could not have been carried out without the wholehearted cooperation of

Siemens AG.

First, I would like to thank Siemens’ former Department of Communications

Enterprise Systems and Department of Cooperate Technology for funding my whole

research and providing me with an inspiring working atmosphere.

In particular, I want to extend my warmest thanks to my two excellent advisors in

Siemens - Mr. Jürgen Trotzke and Dr. Hans-Ulrich Block.

Mr. Trotzke helped me a lot in understanding complicated communication systems,

which were necessary to use as case examples for proofing the concept of this thesis.

He also helped me a great deal with writing scientific papers and with many

administrative aspects of the study.

Dr. Block shared his considerable knowledge about natural language processing with

me and gave me much inspiration in solving different problems arising during my

research. His group developed the speech dialog system – DIANE, the example

dialog system used in this thesis. This dialog system is one of the essential

foundations for this work. My thanks go to everyone in this group for their kind

support and useful contributions in discussion and, ultimately, a well developed

system.

I have to give my exceptional thanks to Prof. Dietrich Klaklow for his support as my

second referee and for his good advice about improving the content of this thesis.

6

I also want to thank my fellow student Anne Schilling who has worked with me on this

project for a very fruitful period of time. Special thanks go to Mr. Josef Lörscher for

his useful books and patient explanations about lexical analyzers and compilers.

Finally I want to thank all of my friends. Their belief in me was a driving force behind

my efforts. At last, I want to thank my parents for their support all through my life and

their belief in me all through their lives. Without them, none of my achievements

would have been possible. So thank you so much, my dearest papa and mama!

July 2006, Dongyi Song

7

Abstract

Recent technological advances allow for building real-time, interactive multi-modal

dialog systems for a wide variety of applications ranging from information systems to

communication systems interacting with backend services. To retrieve or update

information from various information systems the user would have to interact –

simultaneously – with different man-machine-interfaces. This will inevitably lead to a

situation where a user has to interact with multiple speech dialog systems within a

single thread of activity. Exposing the users to such an environment with diverse

speech interfaces will result in increased cognitive load and thus bad usability. An

integrated speech-enabled access layer to all available information from different

applications would allow the user to access information more efficiently and easily.

This dissertation proposes a novel approach for building such an integrated speech

user interface for different applications by combining the existing speech user

interfaces of different applications automatically or semi-automatically.

Along with solving the problem of constructing an integrated speech user interfaces

for multiple applications by combining their existing speech user interfaces, this

dissertation addresses different sub-themes. It first analyzes different possible

architectures for combing speech applications and argues that the best way to

integrate different speech applications is combining their dialog specifications.

Further, it discusses different approaches for dialog specification according to the

flexibility and naturalness of the corresponding speech user interfaces, and analyzes

them regarding their suitability for the purpose of combination. The frame-based

approach is proposed as the most suitable one for the purpose of combination in the

dissertation. However, based on a thorough investigation, this dissertation argues

that combining the dialog specifications of current available frame-based systems is

not feasible because they are not fully declarative. Therefore, this dissertation

proposes a new frame-based dialog model for purely declarative and formal dialog

specifications. This dialog model covers simple applications such as information

systems, and quite sophisticated applications such as communication systems.

8

The emphasis of this dissertation is the proposal of a comprehensive combination

scheme for combining different speech applications. Different speech applications

are combined at the level of dialog specification. A unified dialog specification

describing all applications is constructed (semi-)automatically, based on which a

dialog manager can provide the user with transparent access to all applications. It

means that the user does not need to activate any applications manually and can

access any function of these applications simultaneously. Moreover, this dissertation

considers different relations particularly functional and semantic overlaps between

two applications; and provides a corresponding solution for all possible combination

scenarios.

In particular, this dissertation proposes to recognize the functional and semantic

overlaps between different applications by comparing their grammars, which serves

to describe the possible natural language expressions the user can use to indicate a

function or input any value for a system. In this context, this dissertation addresses

the problem of comparing context-free grammars used in speech dialog systems.

The theoretical backgrounds of grammars and the Chomsky grammar hierarchy are

investigated and studied in depth. Further, two different comparison algorithms –

finite-state modeling based comparison, and generation-parsing based comparison –

are introduced and compared accordingly.

Going beyond the theoretical scheme, a prototype combination tool for constructing

an integrated speech user interface has been implemented. Large industrial case

studies were carried out to validate the enhanced dialog model and the combination

scheme. The approach is proven to be full operational.

In summary, this dissertation provides a novel approach for constructing an

integrated speech user interface automatically or semi-automatically by combining

the existing speech user interfaces of different applications. By analyzing the dialog

specifications of different applications, functional and semantic overlaps between the

applications are recognized. The overlaps are successfully solved at the level of

dialog specification so that the integrated speech user interface provides transparent

access to different applications, and solves the problems of task sharing and enables

information sharing among different applications.

Notations

Notation Description
α , β Arbitrary strings of terminal or non-terminal symbols
ε Empty string
Σ a finite set of terminals, referred to as alphabet

*Σ The set of all strings (with any length) over the alphabet Σ

BAU Union of sets
BAI Intersection of sets
BA× Cartesian product of sets
BA⊆ Inclusion

φ Empty set
ß→α Transition from α to β

*→ The transitive and reflexive closer of →
∈ Membership

),,,(SPNG Σ=
Σ
N
P
S

)(GL

4-tuple representing a context-free grammar G
A finite set of terminals, referred as alphabet
A finite set of non-terminals
A finite set of derivation rules
The start symbol
The set of all strings of non-terminals derivable from the start
symbol S with the derivation rules of P , referred to as the
language defined by the grammar G

FSA =),,,,(FsK ΔΣ

K
Σ
s
F
Δ

)(FSAL

5-tuple representing a finite-state automaton FSA
A finite set of states
A finite set of input alphabet
Initial state Ks∈
A set of final states
Transition function mapping Σ×K to K
The set of all string x where }),(|{ Fxsx ∈Δ , referred to as the
language accepted by the finite-state automaton FSA

),(BASim Stating that grammar A and B are similar
)(GP Parser P checking for any string x whether)(GLx∈
BA ≈ A and B as transactions, parameters or grammars in the context

of dialog modeling are similar
BA ≠ A and B as transactions, parameters or grammars in the context

of dialog modeling are not similar

Contents

1 Introduction.. 16

1.1 Background ..17
1.2 Overview...19
1.3 An Example ..21
1.4 Thesis Contributions...23

2 Architecture ... 24

2.1 Overview...24
2.2 Dialog Manager Level Integration...26
2.3 Dialog Specification Level Integration ..29
2.4 Application Level Integration ..31
2.5 Architectural Proposal ..33

3 Dialog-modeling Concept ... 36

3.1 Classic Dialog Modeling ...36
3.1.1 State-based Dialog Modeling...37
3.1.2 Frame-based Dialog Modeling...39
3.1.3 Agent-based Dialog Modeling – Plan-based Dialog Modeling...................42

3.2 Advanced Dialog Modeling...43
3.2.1 Object-oriented Dialog Modeling – Inheritance..43
3.2.2 Information-state Approach to Dialog Modeling...48

3.3 Summary ..50

4 Extended Frame-based Dialog Model.................................... 51

4.1 Frame-based Dialog Models – State of the Art ..52
4.2 Limitations of Frame-based Dialog Models ..56

4.2.1 Transaction Dependencies ..58
4.2.2 Parameter Dependencies ..59
4.2.3 Influences of the Backend System...60

4.3 Extensions of Frame-based Dialog-modeling Approach62
4.4 Dialog Management ...67

4.4.1 Dialog Events...68
4.4.2 Transaction Identification and Activation ...68
4.4.3 Parameter Query and Verification..69
4.4.4 Interactions with Backend Applications..70

4.5 Scenario Examples...70

11

4.5.1 A Complete Application Example...70
4.5.2 Scenario for Context Application..76

4.6 Summary ..77
4.6.1 Comparison to Related Approaches ..78

5 Speech User Interface Development for Applications......... 80

5.1 Specification Language – Enhanced DIANEXML...80
5.1.1 DIANEXML...80
5.1.2 Enhanced DIANEXML ...86

5.2 Modeling Examples ..91
5.3 Summary ..100

6 Grammar Comparison... 102

6.1 Introduction...102
6.2 Theoretical Background..103

6.2.1 Chomsky Hierarchy..103
6.2.2 Context-free Grammars and Finite-state Automaton104

6.3 Context-free Grammars in Speech Processing ..105
6.3.1 Approximations of Context-free Grammars ...106
6.3.2 Different Approximation Approaches ...107

6.4 Comparison of Context-free Grammars ...108
6.4.1 Similarity of Context-free Grammars..108
6.4.2 Theoretical Considerations of Comparing Context-free Grammars.........110

6.5 Comparison of DIANE Grammars ..113
6.5.1 Comparison of DIANE Grammars Based on Finite-state Modeling114
6.5.2 Generation and Parsing-based Grammar Comparison119

6.6 Summary ..128

7 Combining Different Speech User Interfaces 131

7.1 Multi-application Dialog System ...132
7.1.1 State of the Art ...132
7.1.2 Criteria ...134

7.2 Requirements on Dialog Systems ..135
7.3 Combination Scenarios ..136

7.3.1 Essential Application Information...136
7.3.2 Scenario Overview...144
7.3.3 Functional Overlap...145
7.3.4 Semantic Overlap ..150
7.3.5 Disjunctive Applications ...151
7.3.6 Scenarios Summary...151

7.4 Combination Schemes ...152
7.4.1 Combination Process...153
7.4.2 Combination Tool...165

7.5 Combination Issues of Context Specifications ...170

12

7.6 Summary ..173

8 Conclusion... 175

8.1 Related Work..175
8.1.1 Web Service Composition..175
8.1.2 Semantic Web..179

8.2 Discussion ..182
8.2.1 Usability of Integrated Speech Application User Interfaces182
8.2.2 Evaluation of the Combination Algorithm...183

8.3 Conclusion..185

Bibliography.. 187

Appendices ... 196

Appendix 1: DTD Definition of DIANEXML...196
Transaction DTD Definition...196
Transaction Set DTD Definition ..198
Parameter DTD Definition...199
Parameter Set DTD Definition ..200
DIANE Grammar Formalism...200

Appendix 2: DTD Definition of Enhanced DIANEXML..201
Appendix 3: BNF Definition of Script Language for DIANEXML...........................205
Appendix 4: Examples of Deeply Nested Sentences ...207

13

List of Figures

Figure 2-1 Simplified architecture of a spoken dialog system.................................25
Figure 2-2 Architecture of dialog manager level integration....................................27
Figure 2-3 Architecture of dialog specification level integration30
Figure 2-4 Application level integration ...32
Figure 2-5 Combination architecture...34

Figure 3-1 Dialog state graph of a bank application..37
Figure 3-2 Structure of state-based dialog model ...38
Figure 3-3 Basic structure of frame-based systems without rules40
Figure 3-4 Structure of rule-driven frame-based systems.......................................41
Figure 3-5 Dialog state hierarchy of a spoken dialog system44
Figure 3-6 Dialog plan for a voice navigation system ...44
Figure 3-7 Use case diagrams for a spoken dialog system46
Figure 3-8 Spoken dialog system components hierarchy47
Figure 3-9 A example sequence diagram ...47
Figure 3-10 Information state used in TRINDKIT..49
Figure 3-11 Dialog plan for function “searching the phonebook”49

Figure 4-1 Task tree specification ...53
Figure 4-2 Dialog model of DIANE..55
Figure 4-3 Enhanced frame-based dialog model ..63
Figure 4-4 Query and verification process of a dialog parameter70

Figure 5-1 File structure of DIANEXML specification..81

Figure 6-1 DIANE grammar comparison algorithm based on finite-state modeling

...115
Figure 6-2 Transformation from a strong regular grammar into an equivalent finite
automaton ..117

Figure 6-3 Application of the algorithm from Figure 6-2 on a small grammar117
Figure 6-4 Algorithm for determining the intersection of two finite-state automata

...118
Figure 6-5 Algorithm for determining the emptiness of a finite-state automaton...119
Figure 6-6 DIANE grammar comparison algorithm based on generation and parsing

...121
Figure 6-7 Algorithm for reducing a context-free grammar123

14

Figure 6-8 Algorithm for approximating a recursive context-free grammar with an
arbitrary amount of recursion ...125

Figure 6-9 Algorithm for generating the language defined by a context-free
grammar...127

Figure 7-1 Extraction of essential transaction specification from an application...139
Figure 7-2 Extraction of the essential information of a transaction140
Figure 7-3 Extraction of the essential form of a parameter141
Figure 7-4 Restructuring of the essential form of an application into ET (Essential
Transaction part) and EI (Essential information part)...142

Figure 7-5 Different relations between similar transactions147
Figure 7-6 Combination process of the combination tool......................................154
Figure 7-7 Algorithm for finding functional overlaps of two speech applications...156
Figure 7-8 Algorithm for finding semantic overlaps of two speech applications....157
Figure 7-9 Combination process for merging two similar transactions163
Figure 7-10 The interactive combination tool ..166
Figure 7-11 Input dialog of the combination tool ...167
Figure 7-12 Overlap confirmation dialog of the combination tool............................168
Figure 7-13 Overlap handling dialog of the combination tool..................................169

15

List of Tables

Table 4-1 Feature comparison of different frame-based models79

Table 5-1 Elements of transaction in DIANEXML ..82
Table 5-2 Elements of transaction parameter in DIANEXML...................................83
Table 5-3 Elements of parameters in DIANEXML..84

Table 6-1 Criteria check of comparison approaches..129

Table 7-1 Combination scenario overview ...145
Table 7-2 Scenarios for combining two speech applications152
Table 7-3 Comparison of different multi-application dialog systems......................173

16

Chapter 1

Introduction

Recent technological advances allow for building real-time, interactive multimodal

dialog systems for a wide variety of application ranges from information systems to

communication systems interacting with backend services. To retrieve or update

information from various information systems the user has to interact among other

man-machine interfaces (simultaneously) with speech dialog systems. This will

inevitably lead to a situation where a user has to interact with multiple speech dialog

systems within a single thread of activity. Exposing the users to such an environment

with diverse speech interfaces will result in increased cognitive load [Pakucs, 2002]

and thus bad usability [Nielsen, 1993]. An integrated speech-enabled access layer to

all available information from different applications would allow the user to access

information more efficiently and easily.

For the sake of better understanding this problem, let us consider a simple example.

Suppose we have two separate speech user interfaces, one for air ticket reservation

and the other for hotel reservation. If a user wants to book an air ticket and

afterwards a hotel, he/she has to call one speech user interface after the other. An

integrated speech user interface would in this case provide access to both of these

two functions, so that the user could finish both tasks within the same interface. Such

an integrated speech user interface has several advantages. First, the user does not

have to remember or dial different numbers for different services. Second, common

information such as user name, credit card information can be shared by both

applications. Furthermore, speech user interfaces of different information systems

and services could be integrated into a single unified speech user interface to

construct a speech-accessible “smart agent”. This agent is capable of providing

different information on, for example, weather, stock, train schedules, etc. and

different services such as ticket reservation or hotel reservation. For example, in an

integrated speech user interface for different applications, the following dialog is

possible (with a little bit of imagination applied):

U: What will the weather be like tomorrow in Munich?

S: Tomorrow will be sunny, and the temperature will be 20 degrees Celsius.

17

U: That's great. I want to go to Berlin by train.

S: What time do you want to leave Munich?

U: 9 am.

S: Shall I reserve a ticket for you, departing at 9 am on the first of May, from Munich

to Berlin?

U: Yes please.

U: I need a hotel too.

S: Do you want to book a hotel in Berlin for tomorrow?

U: Yeah, for two nights.

S: I found the hotel Ibis near the central train station in Berlin for 50 Euros per

night, is this ok for you?

U: Yeah. Please book it.

S: The hotel has been booked.

U: Good, now turn off the light and wake me up tomorrow at 7 am.

S: The light is off and the wake up call has been set.

How to construct such an integrated speech user interface is the question to be

answered in this dissertation. To facilitate optimal reusability, I claim and argue in this

dissertation that the best way to construct such an integrated speech user interface is

to combine the existing speech interfaces of different applications.

1.1 Background

A speech user interface is provided by a spoken dialog system, which allows users to

interact with computer-based applications such as databases and expert systems by

using natural spoken language. To enable the interactions, a spoken dialog system

involves the integration of a number of components that typically provide the

following functionalities [Wyard et al., 1996]:

 Speech recognition – the conversion of an input speech utterance, consisting of

a sequence of acoustic-phonetic parameters, into a string of words;

 Language understanding – the analysis of this string of words with the aim of

producing a meaning representation for the recognized utterance that can be

used by the dialog management component;

 Dialog management – the control of the interaction between the system and the

user, including the coordination of the other components of the system;

 Communication with an external system (backend application) – for example,

with a database system, expert system, or other computer application;

 Response generation – the specification of the message to be output by the

system;

18

 Speech output – the use of text-to-speech synthesis or prerecorded speech to

output the system’s message.

Different applications are endowed with their own speech user interfaces supported

by such a spoken dialog system. With the growth of speech accessible applications,

the user is exposed to an environment consisting of diverse speech user interfaces.

This environment can cause increased cognitive load and thus bad usability. For

example, a user wants to book a cheap hotel and there are several systems

providing reservation services in different hotels. So he/she calls each system to ask

the price there. In this process, the user has to remember all the numbers of the

different systems and dial them one after the other. Second, the user has to write

down the price information provided by each system because he/she has already

forgotten the offering of the first system after his/her last call. Third, the user has to

reenter the details, such as arrival and departure date, for each hotel. This process is

obviously cumbersome.

An integrated speech user interface for different applications would solve this

problem. With an integrated speech user interface, the systems providing reservation

services can be joined together, so that the user only needs to call one number to get

different offerings during the same call.

Such an integrated speech user interface across different applications requires a

multi-application dialog system. A multi-application dialog system allows the user to

access different applications in a dialog. There exist several architectural approaches

for a multi-application dialog system such as GALAXY architecture [Seneff et al.,

1999] or the multi-domain Mandarin dialog system [Lin et al., 1998]. However, the

corresponding speech user interfaces are not application transparent, which means

the user has to activate each application explicitly and can not access the functions

of different applications simultaneously. Therefore, these speech user interfaces

provide only limited flexibility.

A clear reason for limited flexibility in existing integrated speech user interfaces is

that the applications are integrated as independent and/or closed units. The

applications are not analyzed and integrated corresponding to their dependencies in

functions and semantics. The consequence is that the user has to switch applications

explicitly and cannot benefit from the advantages of an integrated speech user

interface. A notable exception is the dialog-modeling approach for multi-application

dialog systems provided in Bui et al. [2005], which allows the user to access different

applications transparently without having to switch the domain explicitly. However,

this approach does not analyze the functions and information provided by each

application. As a consequence, the problems of task sharing and information sharing

19

are left for future work. A more detailed description about different multi-application

dialog systems can be found below in Chapter 7.1.

Compared with existing integrated speech user interfaces, the goal of this

dissertation is to construct a flexible speech user interface which enables transparent

access to different applications simultaneously, solves different conflicts between

them and allows for information sharing among them.

Nowadays applications are all developed in a distributed style, and many applications

are endowed with their own speech user interfaces. To integrate these applications is

one of the greatest challenges for software engineers. Distributed developed

applications must not follow the same architectural and conceptual schemes and

vary also in their implementations. Integrating different applications in the user

interface layer is a novel idea being presented in this dissertation. Though the

applications are developed independently from each other and can therefore have

different conflicts with each other, by means of the integration in a unified speech

access layer they will appear to be a seamlessly integrated unit to the user. How to

integrate the applications, and how to recognize as well as handle the conflicts

between different applications, are the main issues addressed in this thesis.

1.2 Overview

In this thesis, I design and implement a novel approach to build an integrated speech

user interface by combining existing speech user interfaces automatically or semi-

automatically. Based on the analyses of functions and semantics of applications,

different relations between applications are declared and solved accordingly. As a

result, the generated speech user interface allows the user to access different

applications transparently, solves task-sharing problem in different applications and

supports interoperability between different applications.

Construction of an integrated speech user interface involves the integration of

different applications. There are different possible architectures for combing different

applications: different speech applications can be integrated at the level of the actual

backend applications or at the level of the dialog manager, which controls the

interaction between the user and each application, or at the level of dialog

specification, which specifies the domain specific information of each application for

the dialog manager. Chapter 2 analyzes these three different possibilities and argues

that the best architecture integrates different applications at the level of dialog

specifications.

This dissertation seeks to construct a natural, flexible and composable speech user

interface. There exist different dialog-modeling approaches to specify the domain

20

specific information of each application. Some provide a rather robust and static

speech user interface; some provide a flexible and quite natural speech user

interface. So in Chapter 3, I discuss these approaches according to the flexibility and

naturalness of the corresponding speech user interfaces and analyze them according

to their suitability for the combination issue. At the end of the chapter, I argue that the

frame-based approach is the best one for this purpose.

However, it is not feasible to combine the dialog specifications of current available

frame-based systems. In order to be combined with each other, a dialog specification

must be specified declaratively and formally. The current frame-based dialog

specifications involve more or less native coding and are not fully declarative. This is

partly due to the fact that the basic frame-based dialog model is still not powerful

enough. So in Chapter 4, I extend the frame-based dialog model and propose an

enhanced frame-based dialog model, such that only declarative and formal dialog

specifications are needed to specify an application, which can range from simple

applications such as information systems to quite sophisticated applications such as

communication systems. In Chapter 5, I explain how to construct a speech user

interface for an application based on the enhanced frame-based dialog model.

The combination approach proposed in this dissertation applies to any frame-based

dialog systems, which fulfill the requirements of being formal and declarative. Under

the assumption that the speech user interfaces to be combined are all supported by a

single frame-based dialog system following the requirements, in Chapter 7 I analyze

the dialog specifications of each application. Different applications are compared with

each other at the level of functions and semantics. In this context a problem arises -

how can the dependencies between the functions and semantics of different

applications be recognized? The dialog specifications, which describe the application

in the aspect of speech user interface, are exploited for this purpose. I argue that the

most suitable element in the dialog specification to indicate any dependencies

between different applications is the grammar, which serves to describe possible

natural language expressions the user can use to indicate a function or input any

value for a system. Chapter 6 then discusses how two grammars can be compared

with each other in order to find out their similarities, which can indicate the

dependency of two functions/semantics and two applications respectively.

Based on grammar comparison, the relations between two applications can be

determined once they are specified with a frame-based dialog model. In Chapter 7,

several possible relations between applications are identified, and, accordingly, a

solution to each relation is proposed. Going beyond a theoretical scheme, I

implemented a prototype combination tool for constructing an integrated speech user

21

interface based on the DIANE speech dialog system [Block et al., 2004]. This tool is

also introduced in Chapter 7.

Chapter 8 closes the thesis with a discussion of related work, a summary of

achievements and an outlook to further open research issues.

1.3 An Example

As an example let us consider two applications, hotel reservation and flight

reservation.

A hotel reservation application provides the user with the possibility of reserving a

hotel via speech. Since there is payment information stored for each user, the user is

required to log in to the system at the beginning. Furthermore the user can check

his/her credit card information.

A flight reservation application provides the user with the possibility of booking a flight

ticket via speech. The user must log in to the system at the beginning and if required

check his credit card information.

When combining these two applications to build an integrated speech user interface

for both applications, the following overlaps arise:

1. In both applications, the user has to log in.

2. In both applications, there is credit card information, which the user can change

or check via speech.

3. The destination city of the flight reservation is most likely the same as the city of

the hotel reservation.

4. The arrival date of the flight is most likely the same as the check in date at the

hotel.

The integrated speech user interface should not only provide both flight reservation

and hotel reservation services but also solve the overlaps appropriately.

One possible solution for the task- and information-sharing issues in these two

applications is that the duplicated functions will be provided only once in the user

interface but will be executed by both applications; the common information will be

shared in both applications.

So the integrated speech user interface acts as follows:

1. The user must log in first in the interface; thereby the user will be logged in to

both systems.

2. The user can book a hotel or reserve a flight ticket in the interface.

3. If the user has reserved a ticket, the information will be reused if he/she

continues on to book a hotel.

22

4. If the user asks for his credit card information, both systems will provide the

stored information.

Such an integrated speech user interface will provide a dialog such as the following:

S: Welcome to systems for hotel and flight reservation, please enter your ID first.

U: Two four five seven.

S: Welcome, Mr. Miller! What can I do for you?

U: I want to book a flight from Berlin to Munich tomorrow.

S: What time do you want to leave tomorrow from Berlin to Munich?

U: 9 am.

S: Shall I reserve a ticket for you, tomorrow 9 am, from Munich to Berlin?

U: Yes please.

U: I need a hotel too

S: Do you want to book a hotel in Berlin for tomorrow?

(The information of the flight is reused.)

U: Yeah, for two nights.

S: Hotel Hilton for 150 Euros per night located in the centre of Berlin?

U: Yeah, that sounds good.

S: The hotel has been booked.

U: Which credit card has been taken?

S: Flight reservation system: the credit card is the Visa card with number one two

three four. Hotel reservation system: the credit card is the MasterCard with number

five six seven eight.

U: Ok, thanks! Good bye!

To generate such an integrated speech user interface, there are several problems to

solve:

1. At which layer are the applications integrated?
They can be first integrated at the core application layer, and then a speech user

interface can be constructed for the integrated application; or they can be

integrated at the speech interface layer. In this dissertation, I propose and argue

that the best way to integrate two applications with speech user interfaces is to

integrate the applications at the level of dialog specifications, which describe the

application for speech user interfaces.

2. How are the applications specified for the speech user interface?
There are different approaches to specify dialog specifications. I analyze different

approaches and claim the most suitable one for my approach is the frame-based

approach. An application can be viewed as a set of functions. Each function

23

corresponds to a frame in the frame-based dialog system. The required

information for a frame is represented as parameters of a frame.

3. Is it feasible to integrate two frame-based dialog specifications?
The dialog specification must be declarative and formal, so it is feasible to

combine them. I explain in this dissertation the limitation of existing frame-based

dialog-modeling approaches and propose an enhanced frame-based dialog

model, in which the declarativity and formality are ensured.

4. How can two frame-based dialog specifications be combined?
The dialog specifications of two applications can be integrated trivially, by

merging two sets of frames. This dissertation is inspired by this idea.

5. How can duplicated functions (like “logging in” and “checking credit card
information” in the example) and shared information (like “city” and “date”
in the example) be determined?
The comparison and dependency of combined applications are among the core

themes addressed in this dissertation. I elaborate in this dissertation how to

determine the dependency based on the formal specification.

6. How can the different overlaps be handled automatically?
A concrete combination scheme and an interactive combination tool are

introduced; the latter has been prototyped within the scope of this dissertation.

Different patterns are given for different overlap scenarios.

1.4 Thesis Contributions

Along with solving the problem of combing different speech user interfaces in order to

build an integrated speech user interface, this dissertation makes several

contributions:

 It gives a thorough analysis of different architectures for building an integrated

speech user interface.

 It provides an enhanced frame-based dialog model, which is capable of modeling

different applications formally and declaratively, and serves as a preserved

model for the combination issues addressed in the dissertation.

 It analyzes different scenarios for the task of combining two applications.

 It proposes a novel approach for constructing an integrated speech user

interface and solves the task-sharing and information-sharing problems, which

are addressed as future work in the current scientific literature.

24

Chapter 2

Architecture

A speech user interface is enabled by a dialog system. To build an integrated speech

user interface for different applications involves first of all the integration of an

appropriate dialog system and further the integration of different applications. This

chapter introduces the basic architecture for a speech user interface, discusses

different possible architectures for integrating applications, and, finally, proposes an

appropriate architecture for building an integrated speech user interface for different

applications.

2.1 Overview

An integrated speech access layer involves first of all a corresponding spoken dialog

system, which enables conversation between human and machine. The spoken

dialog system provides a voice portal allowing users to access information services

or engage in transactions provided by backend applications via speech. From a

simplified point of view such a spoken dialog system can be regarded as an

integration of three main parts: the speech recognition component, the dialog

management component and the speech generation component. The dialog

manager integrates the other components, initiates transactions, controls the

interactions between users and system and interacts with backend applications. In

doing so, the dialog manager needs a description of the application, for which the

speech user interface is provided. This application is usually called “backend

application”. Currently these descriptions (usually called dialog specification) are

mostly proprietary, depending on each spoken dialog system. The emerging

VoiceXML [McGlashan, et al., 2003] is a standard for development and specification

of speech applications. A speech application described in VoiceXML can be

interpreted by any VoiceXML-supported dialog systems. These systems are also

called VoiceXML browser [Teppo & Vuorimaa, 2001]. Some dialog systems [Block, et

al., 2004] can generate run-time resources for speech recognition and generation in

25

adequate formats automatically based on the dialog specifications of individual

applications.

The following figure illustrates the simplified architecture of a spoken dialog system:

Figure 2-1 Simplified architecture of a spoken dialog system

Based on the architecture of a spoken dialog system we can see that building an

integrated speech user interface for different applications means using one proper

dialog manager to engage in conversations between users and different applications.

Since the key purpose is the integration of different applications, there are two kinds

of integration paradigms to consider. One is to use a meta-dialog manager to control

the different dialog managers of underlying applications. That means each

application to be integrated in the speech user interface must provide its own dialog

manager, which enables the interaction between the user and this application. I call

this approach “dialog manager level integration”. An example of this kind of

integration is the turn-management mechanism introduced in Seneff et al. [1999].

The other possible paradigm is to use a single dialog manager based on a unified

specification for all applications to enable access to different applications via speech.

The core component of this paradigm is the unified specification. This specification

integrates different applications, so that the dialog manager can provide one

integrated speech user interface for them. There are two different ways for

generating such a unified specification. One way is to integrate/combine the different

dialog specifications of the underlying applications, which is called “dialog

26

specification level integration”. The other possible approach, called “application level

integration”, integrates different applications directly and generates the unified dialog

specification based on the integrated application afterwards.

I will elaborate on these three different architecture approaches in the following

sections and discuss the pros and cons of each approach, in particular according to

the following criteria:

 Feasibility of the approach

 Extensibility of the architecture to a new application

 Interoperability of different applications – to enable different applications to

interact with each other, meaning different applications can share certain

information with each other

 Suitability for different kinds of applications – It is not realistic to consider all

different applications together, so this thesis assumes that the integrated

applications follow certain preconditions. So I will discuss each architecture

according to which kind of applications the approach is particularly suited,

and for which kind of applications the approach causes extra complexity

 Flexibility for dialog design of each application – whether each application

can configure and personalize the dialogs according to their particular

requirements

 Integration with the speech recognition component – based on dialog

specifications, in particular the grammars, some speech user interface

development platforms can generate the run-time recognition resources for

speech recognition components automatically. Different speech recognition

components support different formats. If the speech recognition resources

are provided prior and proprietary before integration, it turns out to be a non-

trivial problem of how these resources can be integrated. So I will compare

each architecture according to the fact of whether or not it is feasible to

integrate or generate the run-time recognition resources of different

applications for an integrated speech access layer

According to these criteria, I will propose an adequate architecture at the end of this

chapter.

2.2 Dialog Manager Level Integration

The dialog manager level integration assumes that each application is speech-

enabled by an appropriate dialog manager. The integration of different applications

takes place at the level of these dialog managers. A meta-dialog manager integrates

27

and manages different dialog managers, which are responsible for the interaction

between the user and the applications. The meta-dialog manager does not engage in

concrete application-specific conversations, and only delegates user utterances to a

corresponding sub-dialog manager. Figure 2-2 shows the architecture of this

approach.

Figure 2-2 Architecture of dialog manager level integration

In such a system, the speech recognition component first transfers the user

utterances into a string of words, and then the meta-dialog manager tries to interpret

the words. If the meta-dialog manager is able to understand the user request, e.g.

“tell me what I can do”, “which information may I ask here”, then it generates the

answer and gives the feedback. Otherwise the meta-dialog manager broadcasts

these words to all sub-dialog managers. If exactly one sub-dialog manager is capable

of interpreting the user request, the meta-dialog manager passes the control to this

dialog manager and follows up. If more sub-dialog managers can interpret the user

request, the meta-dialog manager has to identify the actual task by engaging in

conversations with the user. For example, a user utterance “What about Munich?”

can mean “What will the weather be like in Munich?” or “How far is Munich from

here?” After the task identification, the sub-dialog manager controls the dialog and

the meta-dialog manager only keeps listening till the user switches the task. Then the

meta-dialog manager is active again.

28

Pros of dialog manager level integration
A major advantage of this architecture is its plug-in feature. As long as a dialog

manager implements the required interface for interacting with the meta-dialog

manager, it can be plugged into the integration layer simply. In addition, the

applications encapsulated by the dialog managers do not need to be analyzed for

integration. So it is simple to extend the integrated speech user interface to a new

application. This architecture is of particular interest for legacy applications with an

integrated proprietary speech user interface.

Another advantage of this approach is that it is easy to personalize each application

with a different synthesized voice, because different TTS components can be

plugged to the meta-dialog manager and the underlying dialog managers.

Cons of dialog manager level integration
The difficulty of this architecture is the implementation of the meta-dialog manager.

This meta-dialog manager has to control and communicate with all the underlying

sub-dialog managers, and it should also be able to engage in general purpose

conversations with the user.

For those applications that are developed by the same team and have no integrated

speech user interface initially, this approach increases the complexity. In this case

the integration could be achieved already, at a lower level such as at the application

level, relatively easily; therefore only one dialog manager will suffice.

In order to be integrated into this meta- and sub-dialog manager architecture, existing

dialog managers must implement certain interfaces. This means for applications with

an integrated dialog manager, it is not trivial to integrate them into the integrated

speech access layer. An extra interface must be implemented for integration. There

exist many voice-enabled web services supported by different VoiceXML browsers.

To integrate these services, the VoiceXML browsers must implement the interface as

well. However, there is no standard meta-dialog manager, and a meta-dialog

manager is realized rather in the integration stage. It means that different existing

dialog managers or VoiceXML browsers must be re-implemented according to

certain requirements and the interface of the meta-dialog manager.

To achieve interoperability between different applications would be a tedious and

difficult task in this approach. First, each dialog manager could have a proprietary

data format, so to achieve data format transparency for interoperability, some

common repository with standard data format and some data format transmission

modules for different data formats would have to be designed and integrated in the

29

integration layer. Secondly, after delegating a task to one sub-dialog manager, the

meta-dialog manager has still to be always informed by this sub-dialog manager

about every successful user input, so that some information (e.g. username, account

password, address) can be saved centrally and shared among different

applications/sub-dialog managers.

To generate run-time resources for speech recognition automatically is not trivial in

this architecture, because each proprietary dialog manager may have a different

format for the grammar specification. A solution for this problem is to adopt the

standard grammar specification language SRGS (Speech Recognition Grammar

Standard) for grammar specification and a SRGS-compatible speech recognition

component [Hunt & McGlashan, 2004].

2.3 Dialog Specification Level Integration

A dialog manager uses the dialog specification describing the task and domain of the

backend application to provide a speech user interface for that application. The

integration based on dialog specifications involves only one dialog manager, which

enables the interactions between the user and the backend applications based on a

unified dialog specification, which describes all underlying applications. This unified

dialog specification will be generated in the integration layer based on the dialog

specifications of different applications. This unified dialog specification describes the

tasks and domains of all the underlying applications. A dialog specification can be

formulated in different formats. This approach assumes that the underlying dialog

specifications use the same format among a group of dialogs to be integrated. Figure

2-3 illustrates the architecture of this approach.

30

Figure 2-3 Architecture of dialog specification level integration

Pros of dialog specification level integration
It is feasible to implement this approach with moderate complexity as long as the

corresponding dialog specifications can be combined without having to change the

existing structures defined in each dialog specification. The integrated unified dialog

specification distinguishes from a normal dialog specification only in the fact that it

describes more applications. And, if more applications can be regarded as a “big

application” consisting of all functions from different applications, it is natural that a

portable dialog system supporting the original applications will support the “big

application” as well.
Extending the integrated speech user interface to a new application requires that the

application provides its own dialog specification and a new generation of the unified

dialog specification. I claim and argue later in this thesis that the unified dialog

specification can be generated automatically or semi-automatically, so this approach

remains simple to extend to new applications.

The interoperability of different applications can be supported by the unified dialog

specification, which could specify the dependencies between the applications

accordingly.

This approach is particularly qualified for applications without any speech user

interface where it is intended to have an integrated speech user interface. These

applications need only to provide their dialog specifications for the integration in the

unified speech user interface. Based on these specifications a unified dialog

31

specification will be generated more or less automatically. Another advantage in this

architecture is that each application is itself able to configure the dialog behaviors

according to its business logic and user groups. This makes it easily possible for the

dialog structure of each application to remain independent of each other.

Based on the unified dialog specification, it is possible to generate the adequate run-

time resources for the speech recognition component automatically. Because the

speech recognition component will be integrated afterwards, it is relatively free to

choose an adequate grammar specification format in the stage of dialog specification.

Correspondingly, a speech recognition component supporting the format can be

applied.

Cons of dialog specification level integration
Legacy applications with integrated speech interfaces may have an ambiguous

separation between business logic and user interface. Thus it is not adequate to split

the user interfaces and the business logic parts from each other. Therefore the

legacy applications would be forced to wrap a dialog specification around the original

speech interface.

Voice-enabled web services have already explicit descriptions about the dialog flow

in VoiceXML. If VoiceXML is adopted for dialog specification, the integration

becomes seamless. However, it is a critical point as to whether VoiceXML is suitable

for the combination purpose at all. If, rather, it is not feasible to combine different

VoiceXML dialog specifications, it will be time- and effort-consuming to wrap one

dialog specification, which is best tailored for the integration issue, around the

VoiceXML specification.

2.4 Application Level Integration

An integrated speech access layer based on application level integration involves

only one dialog manager, which is able to control conversations with users based on

a unified task and domain specification across all applications. The integration is

based on the applications directly. Interfaces for speech access will be defined in the

integration layer. Each application to be involved in the speech user interface must

implement these interfaces. For example, each application must provide a list of

speech-accessible functions and provide the necessary parameters for each function

according to the speech interface. Supported by the speech interface, a unified

dialog specification for all functions provided by different applications will be

generated in the integration layer. The following figure illustrates this architecture:

32

Figure 2-4 Application level integration

Pros of application level integration
This approach is independent of the dialog manager used. Based on the speech

interface, a unified dialog specification could be created according to different dialog

models. Thereby, it is possible to choose any appropriate spoken dialog system

without affecting the integration and the applications. The development of the

applications is isolated from the development of the integrated speech user interface.

The applications need not describe concrete dialog behaviors. This is the trade off of

the implementation of some extra interfaces for speech access.

This architecture is simple to realize if the requirement for the dialogs between the

user and the system remains low, so that it is feasible to generate a dialog

specification for the dialog manager automatically, based on the application

programming interface for speech user interface.

Extending the integrated speech access layer to a new application requires the

interface implementation of the new application only and the new unified dialog

specification can be generated automatically under the mentioned assumptions.

Data sharing should be achievable with the help of the speech interfaces without

huge efforts. For example, each application can provide a list of shareable

information so that the management component in the integration layer can enable

the interoperability between different applications.

33

Cons of application level integration
The main problem of this architecture is the fact that it is critical whether a unified

dialog specification can be generated automatically, based on the applications. The

description about dialog issues in the application can be only very limited, and it is an

open question as to whether, based on the limited description, a much more

sophisticated and comprehensive dialog specification can be generated automatically.

A further disadvantage of this architecture is that the applications cannot construct

their individual dialog behaviors in case of need. The dialog attitudes of all different

applications will be generated in the same style if at all possible. Due to this

automatism, the dialog flexibility and naturalness of the integrated speech user

interface will be rather limited.

This architecture is not suitable for applications which do not provide a clear

application programming interface. For example, web sites cannot be integrated

easily. Also, legacy applications may have no clear programming interface which can

be extended with speech programming interfaces. Voice-enabled web services are

hard to integrate in this solution because the speech access is already integrated in

the web services, e.g. using VoiceXML standards. It is effort- and time-consuming to

abstract the actual functions of these services from VoiceXML files and re-describe

them by means of the speech interfaces defined in the integration layer. However if

the dialog manager used is compatible with VoiceXML standards, and therefore the

speech interfaces are also VoiceXML-compatible, it will be feasible to integrate voice-

enabled web services in this approach with only moderate complexity.

2.5 Architectural Proposal

In summary, application level integration promises interoperability between the

applications. However, it requires support from applications and thus affects the

implementation of the applications. The dialog manager level integration facilitates

the plug in of different speech user interfaces into the integrated speech access layer

but it does not support the interoperability between different applications well. The

dialog specification level integration allows for automatic generation of a unified

dialog specification based on the individual dialog specifications of different

applications; thus, it does not affect the core application development, and promises

certain interoperability as well.

34

Regarding the objective of this dissertation – combining different speech user

interfaces to build an integrated speech access layer which promises both usability

and interoperability, the dialog specification level integration is the most suitable

approach. Each application to be combined in the integrated speech user interface

provides its dialog specification. All applications must specify their dialog

specifications following the same dialog-modeling concept. This dialog-modeling

concept is supported by the dialog manager used.

However this architecture is, of course, not applicable for legacy applications with

existing speech user interfaces.

I therefore propose to build a mixed architecture of the dialog manager level

integration and the dialog specification level integration. Thereby, the legacy

applications will also be supported by this architecture. The following figure shows

the proposed architecture.

Figure 2-5 Combination architecture

This architecture contains two integration layers. The first integration layer is based

on the dialog specification. Each application provides its own dialog specification,

which describes the domain and tasks of the application. Based on these

specifications, one unified dialog specification for all underlying applications will be

35

generated. With this unified dialog specification, a normal dialog manager is able to

provide an integrated speech user interface to different applications. The advantage

of this approach is its simplicity and extensibility as well as the interoperability. With

this approach, sharing of the common data can be achieved relatively easily, e.g.

through a repository for all common data in the “integration layer 1” in Figure 2-5.

Some applications could also have overlapped functions. In this approach, the dialog

structure of each application can be analyzed, so the conflicts or redundancies in

their dialogs can be solved accordingly. In Chapter 7, I will give a detailed elaboration

of dialog structure analyses and solution of conflicts in dialog specifications.

For other legacy applications with an integrated speech interface provided by a

proprietary dialog manager I suggest, as an extension, to build a second integration

layer upon different dialog managers and to use a meta-dialog manager to control all

of them. The interfaces between the meta-dialog manager and the underlying normal

dialog managers will be defined in this integration layer.

This mixed architecture ensures the tight intelligent integration of related applications

and also solves problems with existing legacy speech applications. It supports

interoperability, consistency and scalability. The overall architecture is quite

interesting but too challenging for one dissertation. Therefore in the remainder of this

thesis I will focus on the first layer – dialog specification level integration – and

evaluate the architectural and conceptual approach of this integration layer based on

prototypical implementation.

36

Chapter 3

Dialog-modeling Concept

In the first integration layer of the proposed architecture, the dialog specification level

integration is based on dialog specifications of different underlying applications. A

unified dialog specification is generated by merging individual dialog specifications.

Using this unified dialog specification a spoken dialog system provides an integrated

user interface for all underlying applications. In this integration layer, it is assumed

that all dialog specifications are specified with the same model. Therefore, an

adequate dialog model is a precondition for dealing with the combination issue.

Traditionally there are three different types of classic dialog models [McTear, 2002]:

1. Finite-state-based dialog model

2. Frame-based dialog model

3. Agent-based dialog model

In recent years some new advanced dialog-modeling approaches are emerging, e.g.

object-oriented dialog modeling [O’Neil & McTear, 2000] and information state

approach to dialog modeling [Larsson et al., 2001]. In this chapter, different dialog-

modeling approaches will be introduced and in particular it will be elaborated whether

these dialog models are appropriate for the purpose of combination.

3.1 Classic Dialog Modeling

Each dialog model involves some elementary specifications. For example, the main

element of a state-based dialog-modeling approach is state and the main element of

a frame-based dialog-modeling approach is frame. The speech user interface of an

application is specified as a composition of these elementary specifications.

Combining different dialog specifications means combining different elementary

specifications. The problem is that different applications can have overlapping

elementary specifications, and the combined speech user interface should take this

interoperability into account. But is the elementary specification the adequate unit for

37

combining different speech user interfaces? Or there are some bigger clusters

composed of several elementary specifications, which can be better reused in the

combined speech interface? In this section I will analyze the structures of the three

basic dialog models: state-based, frame-based and agent-based dialog models, and

address some issues of combining different speech user interfaces based on the

specification elements.

3.1.1 State-based Dialog Modeling

Basic concepts and specification elements

The state-based dialog model [Doest et al., 1996] is based on a network of dialog

states and transitions. In a state-based system the user is taken through a dialog

consisting of a sequence of predetermined states. Thus, a state-based system is

mostly based on system initiative. The basic dialog element is the state. Each state

defines possible user utterances, system prompts and next states. The system

controls the dialog based on the dialog state graph. Figure 3-1 is an example of a

dialog state graph. It is a bank application which contains two functions: balance

query and money transfer.

Figure 3-1 Dialog state graph of a bank application

38

Structure of state-based models

The basic element of a state-based model is a dialog state. The smallest units are

system prompts and grammars, which constitute each dialog state. Sub dialogs can

be constructed within the transition network to encapsulate several dialog states into

a closed module. The UML class diagram 3-2 depicts the structure of a state-based

dialog model.

GrammarSystem prompt

Dialog state

Sub dialog

Dialog/Application

Structure of state-based dialog models

*

*

Figure 3-2 Structure of state-based dialog model

Issues of combining different state-based dialogs

To combine the speech user interfaces of different applications, different specification

elements - dialog states in each dialog specification - must be reorganized into a

global state transition network. The main disadvantage of the state-based dialog

model is its inflexibility and bad scalability. To combine dialog states of different

applications if possible into one dialog graph will cause the dialog graph to grow

exponentially. Further, it is extremely time- and effort- consuming to reconstruct a

new dialog graph based on the elementary dialog states of different applications. The

cost for combining them will not be much smaller than that of designing a new dialog

state graph from all applications from scratch.

39

One optimizing consideration is to build sub dialogs consisting of several dialog

states. The speech user interface of an application will be specified as a network of

sub dialogs. Each sub dialog carries out a sub task, e.g. checking a balance, making

a money transfer. Then the combination of different speech applications will be

based on sub dialogs instead of dialog states. This will simplify the combination

process and improve the reusability. Currently there are some providers for reusable

speech components, which are actually reusable sub dialogs. For example, the

“speech objects” [SpeechObjects, 2000] and “dialog modules” [Larsson, 2001] are

sub dialogs for enquiring specific data such as digit, zip code, and so on.

3.1.2 Frame-based Dialog Modeling

Basic concepts and specification elements

In a frame-based system, the user is asked questions that enable the system to fill

slots in a template in order to perform a task such as providing train timetable

information. In this type of systems the dialog flow is not predetermined but depends

on the content of the user’s input and the information that the system has to elicit.

The frame (or template) keeps account of the items for which the system requires

information from users. Commonly these items are referred to as parameters. In a

task-oriented dialog, the user must provide information for all parameters, before the

system can execute the task. Naturally the user cannot provide all the information in

one utterance, so system prompts are involved. But these prompts do not have to be

made in a particular sequence. It depends on the current context which sequence is

used. Sometimes the questions that the system might ask are bound to some

preconditions [Austin et al., 1995], or they are associated to each parameter [Caspari,

2003], so that the system always asks for the first unknown parameter. A frame-

based system supports both system-initiative and mixed-initiative modes. Because

the dialog flow is not predetermined, the user is free to provide any information no

matter what the system has asked for. The system does not always lead the dialog

and the user is not always passive; we call this mixed-initiative.

In Allen et al. [2001], a dialog-modeling technique distinguishable from normal frame-

based systems – sets of contexts – is introduced. According to Allen et al. [2001], a

frame-based system consists of only one frame (or template) while with the sets of

contexts more frames can be used to model a series of contexts (or a series of

different tasks). Each context corresponds to one actual frame. The set of contexts

can be regarded as an extension of the simple frame-based system. In this thesis, I

40

propose to extend the definition of a frame-based system in Allen et al. [2001] to

cover systems with one or more frames.

Structure of frame-based dialog models

A frame-based system consists of one or more frames. Each frame represents an

individual task such as “book a hotel” or “rent a car”. A frame contains parameters

representing the necessary information required for executing the task. In a simple

case, a parameter encapsulates the prompt needed by the system to ask for this

parameter, and the grammar defining the legal user inputs to this parameter.

Sometimes there is more information associated with a parameter, e.g. the

confirmation message or the help prompt for that parameter [Caspari, 2003].

Alternatively, the parameters do not encapsulate information about prompts and

grammars and the dialog control is driven by rules, which define actions such as

making a system prompt or executing a database query together with preconditions

[Austin et al., 1995]. For example, a precondition could be that the destination city for

a train trip is unknown, and the corresponding action will be prompting the user for

the destination city. The following UML diagrams show the structure of both these

variants.

GrammarSystem prompt

Parameter

Frame

Dialog/Application

Structure of frame-based dialog models without rules

*

*

*

Figure 3-3 Basic structure of frame-based systems without rules

41

ActionPrecondition

Grammar

Parameter

RuleFrame

Dialog/Application

Structure of rule-driven frame-based systems

* *

*

Figure 3-4 Structure of rule-driven frame-based systems

Issues of combining different frame-based dialogs

Let us first consider frame-based systems without rules. In a trivial case, the

combination of different speech user interfaces means a unification of all frames.

This is only applicable when the applications do not have any overlaps. When the

applications overlap with each other, the problem becomes sophisticated. The

frames of different applications can be identical or partially overlapping. If the frames

are identical, which means they represent the same task, they are to be merged into

one. If the frames are only partially overlapping, their parameters have to be

analyzed and adapted with regard to interoperability issues.

The combination problem is more difficult with rule-driven frame-based systems. Not

only the frames but also the rules are to be combined. To merge different rules, it is

necessary to check their preconditions and actions. To check if two rules have the

same preconditions, the comparison of parameters involved in the rules is required.

Frame-based dialog systems with or without rules achieve similar flexibility and

effects in the dialogs between the user and the applications. In a dialog system

without rules, many preconditions and the associated actions are integrated in the

dialog management component, so that the applications do not have to specify them

externally. Therefore, I consider the first variant (without rules) for frame-based dialog

42

system as a better and more advanced one and I will refer only to this kind of frame-

based dialog systems in the following.

3.1.3 Agent-based Dialog Modeling – Plan-based Dialog Modeling

Agent-based systems are designed to permit complex communications between the

system, the user and the underlying application in order to solve some problem or

task. There are many variants of agent-based systems, depending on what particular

aspects of intelligent behavior are included in the system. In agent-based systems

communication is viewed as interaction between two agents, each of which is

capable of reasoning about its own actions and beliefs, and sometimes also about

the actions and beliefs of the other agent. According to McTear [2002], agent-based

systems include systems using theorem proving, planning, distributed architectures

and conversational agents. I do not consider all these classes in this thesis. First, it

goes beyond the scope of the current work; secondly, the agent-based dialog

systems are mostly still at the research laboratory stage and not mature enough for

combination. Heuristically, I discuss, in the following section, the most developed and

widespread agent-based system – the plan-based dialog-modeling approach.

Basic concepts and specification elements of plan-based dialog models

The key idea of plan-based approaches is the modeling of utterances as speech acts

[Traum et al., 2003]. Speech acts are fundamental communicative units. A plan to

achieve a goal using language would typically involve chaining together a series of

such speech acts, including acts representing the intentions and communicative

actions of another agent. A plan-based system recognizes the speech acts behind

the user utterance, thus the actual goal of the user. Then the system statically find or

dynamically constructs its own plan consisting of different speech acts to achieve the

goal according to the beliefs, obligations and intentions of both interlocutors. Based

on the plans the system takes actions such as responses to the user or queries to

the database.

Structure of plan-based dialog models

The plan-based dialog model is based on plans. Each plan is specified by speech

acts. The plan can be constructed dynamically in the discourse. To realize the plan

construction, there has to be some specifications of desired behaviors of the system

including the actions it will typically be asked to perform, what obligations it has, and

a specification of how to perform actions. These specifications are regarded as the

domain-specific information within a plan-based system [Allen et al., 2000]. They are

43

normally specified by some logical rules representing the basic states and behaviors

of the backend application.

Issues of combining different plan-based systems

It is an open question at the moment whether it is achievable to combine different

speech user interfaces modeled using plan-based approaches. First, there are few

application independent plan-based spoken dialog systems. Most of the plan-based

spoken dialog systems are still ad hoc designed and implemented for specific

applications. A generic dialog shell proposed by Allen et al. [2000] is based on

domain specifications. The specifications are represented by some logical rules.

Combining different logical rules is a challenging and complicated task.

3.2 Advanced Dialog Modeling

Based on the basic concept of dialog modeling, there are some novel approaches for

bringing advanced software engineering concepts such as object orientation into the

development of a dialog system. They aim to clarify the relationship between different

functionalities and the corporation of different components in a dialog system. The

proposed dialog systems strive to be more domain-transparent and intelligent. In this

section I discuss some advanced concepts for dialog modeling, particularly in regard

to the issues concerning combination of different speech user interfaces modeled

with these concepts.

3.2.1 Object-oriented Dialog Modeling – Inheritance

Inheritance of dialog states

Randall Sparks [Sparks et al., 1994] proposed an object-oriented dialog-modeling

concept based on a hierarchy of dialog states. There is an inheritance relationship

between general and domain-specific dialog states. The dialog is represented by a

dialog plan consisting of different dialog states. This approach has been adopted in

the implementation of a prototype for a dialog-based driving information service,

called “voice navigation”, which gives users driving directions. The following pictures

illustrate the dialog states' inheritance; a dialog state graph called “dialog plan”

describes the dialog flow consisting of different dialog states.

44

Figure 3-5 Dialog state hierarchy of a spoken dialog system

Source: Sparks et al. [1994]

Figure 3-6 Dialog plan for a voice navigation system

Source: Sparks et al. [1994]

45

This approach can be regarded as a combination of state-based and plan-based

approaches. The basic specification element is dialog state. Instead of explicitly

specifying the dialog flow via a transition network, the dialog control is implicitly

described by a dialog plan. Besides the properties defined by each dialog state, each

dialog state inherits common communicative abilities and properties from its parent

states. Based on the availability of general dialog states, the complexity for building a

new speech user interface for an application is essentially reduced.

Inheritance of dialog components

Ian M. O’Neil and Michael F. McTear [O’Neil & McTear, 2000] introduced an

approach to object-oriented modeling of spoken language dialog systems. They use

object-oriented modeling techniques in the creation of spoken dialog management

systems. The key idea is the separation and relationships of generic and domain-

specific components in the dialog management systems. Classic UML diagrams are

used to elaborate the relationships and corporations of different components.

As illustrated in Figure 3-7 use case diagrams are used to document the behavior

users expect from the systems and help to understand the relationships between the

system’s main areas of functionality. The diagram represents the interactions

between different groups of users and a dialog system providing travel and event

information, which are regarded as the specialized use cases of certain domains. In

the system, high-level functionality is abstracted to form generalized use cases such

as “Message I/O” for transferring the messages between the user and the system,

“Manage Discourse” for general dialog management process such as confirmation

and repeating, “Log discourse” for storing and recalling the semantic content of the

system’s and the user’s utterances and “Identify domain” for identifying the right

expertise which matches the user’s intention. Using the “generalization-

specialization” relationship in use case diagrams, the domain specific “travel enquiry”

und “event enquiry” use cases inherit all necessary functionality from the general use

case “Manage Discourse”.

46

Figure 3-7 Use case diagrams for a spoken dialog system

Source: O’Neil and McTear [2000]

Furthermore, the class diagram helps to understand the implementation of a spoken

dialog system with object-oriented techniques. Based on the use case diagram, the

classes for implementation can be constructed easily. Figure 3-8 gives an example

for a class diagram according to the use case diagram in Figure 3-7.

47

Figure 3-8 Spoken dialog system components hierarchy

Source: O’Neil and McTear [2000]

Last but not least, sequence diagrams help to model the interactions of different

components involved in a transaction. Figure 3-9 illustrates the interaction and

invocation process of different components for the situation where the user’s

utterance indicates only that he/she wants to make a booking and gives no further

details. First the domain spotter for domain identification is programmed to

interrogate the “Enquiry Expert” sub classes to find out which one can handle

bookings. The “Enquiry Expert” forwards the analyze request to its sub classes again,

so the ones which can handle booking response to the domain spotter, so the dialog

would continue with a clarification between “travel booking” and “event booking”.

Figure 3-9 A example sequence diagram

Source: O’Neil and McTear [2000]

48

The object-oriented techniques help to analyze the functionality and interaction of

different components. The modeling of dialogs is still frame-based. The behaviors of

the systems are described by different rules. In a class hierarchy a component is able

to inherit the general rules from its parents and in the mean time define its own

domain-specific rules.

Combining such systems together is similar to combining different frame-based

dialog systems, which has been described in Section 3.1.3.

3.2.2 Information-state Approach to Dialog Modeling

Information states [Traum et al., 1999b] represent the information available to a

dialog participant at a given stage of the dialog. The “information state” of a dialog

represents the information necessary to distinguish it from other dialogs, representing

cumulative additions from previous actions in the dialog, and motivation for future

action. Every utterance in the dialog leads to one or more information state updates.

This approach models the interactions in terms of information state updates. An

information state theory of dialog modeling consists of the following components:

 A description of the informational components of the information state

 Formal representations of the informational components

 A set of dialog moves that will trigger the update of the information state.

 A set of update rules, which govern the updating of the information state,

given various conditions of the current information state and performed

dialog moves. Some of these rules will also select particular dialog moves

for the system to perform.

 A control strategy for deciding which rules to select at a given point from the

set of applicable ones.

It is important to distinguish the information state approach from the well-known

structural dialog state approach. While the state-based approach describes the

information implicitly in the state itself and the relationships it plays to other states in

the transition network, the information state approach describes the information of

the participants declaratively and explicitly. Furthermore a state-based approach can

only model a finite set of states and transitions in a transition network. There is no

finiteness restriction on information states and the motivations for updating and

making dialog move may rely on only a part of the information available in a

information state, which is different from the state-based approach where the whole

information of a state is needed for making a transition decision.

49

The information state approach is somehow similar to a plan-based approach, since

the mental notions such beliefs, intentions and plans may but must not necessarily

be included in the information state. It distinguishes itself from a classical plan-based

approach, because it also includes aspects of dialog states and specifies the updates

of the information state explicitly with update and selection rules.

The following is an example of the information state purposed in the TRINDI project

[Traum et al., 1999b]:

Figure 3-10 Information state used in TRINDKIT

Source: Larsson et al. [2001]

GoDiS [Larsson et al., 2001] is an experimental dialog system implemented using

TRINDKIT [Larsson & Traum, 2000], which is a toolkit for building and experimenting

with dialog move engines and information states. The following figure shows the

dialog plan used for representing the domain in the GoDiS system.

Figure 3-11 Dialog plan for function “searching the phonebook”

Source: Larsson et al. [2001]

50

The domain of an application is described by several such dialog plans. Each plan

consists of rules specifying the correct behavior of the system. We can see from

Figure 3-11 that the dialog plan describes the flow of dialogs with logical rules.

Combining two speech-enabled user interfaces modeled with information state

approach means combining the dialog plans of an application with those of the other.

This will be problematic because the plan is not specified in a declarative and or task-

oriented way. It rather specifies a dialog flow explicitly. Combining such plans is

similar to combining transition networks of state-based dialog systems, which has

been discussed in Section 3.1.2. Therefore, this approach is not particularly

interesting to use for the combination issue.

3.3 Summary

In this chapter different dialog-modeling concepts have been introduced and

analyzed according to their suitability for combining different dialog specifications.

The state-based approach is inflexible and not scalable. As a result, the state-based

approach is not recommended for the purpose of combination. The agent-based

approach is based on logical rules, and combining logical rules is a very difficult task.

The frame-based approach enables flexible and free dialogs and facilitates the

combination of two different dialog specifications. The advanced dialog-modeling

approaches address the implementation issues and the reusability and flexibility of

the dialog manager, and do not actually provide new fundamental dialog models.

As a consequence, concerning the combination objective I propose to use the frame-

based approach for the dialog modeling and aim further in this dissertation to

combine different dialog specifications based on frame-based dialog models.

51

Chapter 4

Extended Frame-based Dialog Model

As it was shown in the previous chapter, the frame-based approach to speech dialog

systems is the one which is best suited for the purpose of combination. In a frame-

based approach, the algorithm for the dialog management is defined and

implemented in the dialog manager. The domain information needed for accessing

the individual application is specified in a set of frames. Each frame corresponds to a

task provided by the application. The additional information required to achieve the

task is modeled as parameters of the frame. The deployment of a frame-based

spoken dialog system for a specific application requires only the declarative

description of that application. Thus the combination of different speech applications

means the merging of their frames, taking into due consideration their concurrency

and interoperability.

However, not all applications can be modeled by existing frame-based approaches.

The applications which are covered by the frame-based approaches are mostly only

simple information-providing applications. The integrated speech user interface

proposed in this thesis aims to cover as many different applications as possible.

Therefore, there should be no evident restrictions for the applications, which can be

combined into the integrated speech user interface. So, as a first step, I have to

examine the limitations of current frame-based approaches, and propose in this

chapter an enhanced frame-based approach, which covers most applications ranging

from simple to sophisticated and from stateless to stateful applications.

In what follows, I will first introduce frame-based approaches in brief and give an

overview of current frame-based dialog systems. Afterwards I will analyze different

restrictions of existing frame-based approaches for modeling certain sophisticated

applications. Then I will propose an enhanced frame-based dialog model to solve the

restrictions. I will provide different application scenarios to show how the enhanced

model can be applied. At the end of the chapter, I will compare the features of the

enhanced frame-based dialog model with different existing frame-based dialog

models and summarize the chapter.

52

4.1 Frame-based Dialog Models – State of the Art

Frame-based approaches are based on the slot-filling concept. Slots are containers

for the information that must be elicited from the user. Slots are stored in structures

called frames. A frame normally corresponds to a task which can be executed by the

actual backend application. Started from single-frame dialog system, the up-to-date

dialog systems support normally multiple frames [Caspari, 2003; McGlashan et al.,

2003].

In a frame-based dialog system, the dialog flow is controlled by the dialog manager,

which is independent of the concrete application logic. Therefore, it is relatively

simple to deploy a frame-based dialog system to a new application. Normally only the

dialog specification for the application must be provided.

However, different frame-based systems provide different dialog models, which are

differently powerful in modeling different applications. Also, the required dialog

specifications vary in their declarativity. In the following, I offer a survey of several

representative frame-based dialog systems:

One of the first frame-based dialog systems was the Philips train timetable system

[Aust et al., 1995]. This system uses a frame consisting of slots to specify the

information needed to query a train timetable. The questions that the system might

ask are listed together with the conditions under which that question should be asked.

The conditions normally check whether some slots are filled by the user utterance or

not. In this way, the dialog system manages the interactions with the user. Such a

system is restricted to only one frame and does not consider the dependencies

between different slots of the frame or the influences from any backend application

with its dialog model.

In the Mercury flight reservation system [Seneff & Polifroni, 2000], the dialog

manager manipulates linguistic and world knowledge represented in the form of

semantic frames. In each dialog, it begins with an E-form representing the constraints

of the current query as a set of (key: value) pairs. This E-form provides the initial

values in the dialog state and evolves over the course of the turn. The dialogs are

controlled by a set of rules, which defines actions to different conditions. For example,

a rule for prompting source of a flight is defined as follows:

!source prompt_source

Though the dependencies between different slots can not be specified explicitly, they

can be handled by rules operatively. It is an advantage of this dialog system that the

53

designer can construct a more complex system by carefully designing different rules.

Moreover, this system considers the dialog history so it is able to fulfil a part of the E-

form based on its memory of the dialogs with the user. However, whether or not it is

able to use the dialog history explicitly in rules is not described.

A similar concept of E-form is used in the GALAXY II project for dialog control in the

turn manager [Seneff et al., 1999].

Thompson and Bliss [2000] proposed a concept to nest frame descriptions to enable

reusability and flexibility. They extend the basic frame concept by allowing frames to

be hierarchically structured in each other. A frame is not only a set of slots to be filled,

it contains both domain information and dialog information (such as grammars,

prompts and goals). This kind of extension to basic frame-based model makes the

dialog specification more transparent and more modular, so it is easier to build a new

dialog system.

Bohus and Rudnicky [2003] developed a sophisticated task hierarchy for dialog

management based on the basic frame. They propose to describe a domain as a tree

consisting of sub trees, where the leaves of the tree are comparable to a frame. Each

node in the tree has a set of preconditions to be activated; triggers to fire it and a

completion criterion for finish it. Figure 4-1 shows such a tree:

Figure 4-1 Task tree specification
Source: Bohus and Rudnicky [2003]

By extending the frame-based model with a hierarchical representation, the relations

between different sub trees (frames) can be specified directly and intuitively.

As an open standard dialog specification language for speech applications,

VoiceXML [McGlashan et al., 2003] has recently been widely used in speech

applications. A VoiceXML speech application is a set of related documents. Each

document defines a part of the dialog flow. A document is a finite-state machine

consisting of dialogs and transitions to other documents (URIs). The building blocks

54

of the dialog in the VoiceXML documents are forms and menus. A form is a dialog

containing fields (slots to be filled by the user) while a menu is a dialog containing

choices. VoiceXML supports sub dialogs and both external and embedded speech

recognition grammars.

VoiceXML actually uses both state machines and the frame-based model in its

underlying dialog control model. A speech application consisting of multiple

documents is modeled as a global state machine. Each document constitutes a state

in this global state machine. Such a document can be regarded as a state machine

and may consist of different forms which are comparable to the frames introduced

earlier in this chapter.

However, VoiceXML is not best suited for the combination issue of this dissertation

due to the following reasons:

 VoiceXML uses a mixture of state-based and frame-based models. This

causes its document to contain both declarative specifications such as

“form”, “field” and structural dialog flow specifications such as “goto”,

“submit”.

 A VoiceXML dialog specification is not task-oriented, but rather dialog-flow-

oriented. This is more like a state-based dialog system, which is not suitable

for the combination purpose. (See Chapter 3.1.1)

 A VoiceXML application is by default system-directed. To enable a mixed

initiative dialog, the developer must specify extra form elements.

In summary, VoiceXML does not provide a purely declarative frame-based dialog

specification, which is required for the purpose of combination.

DIANE (DIAlog maschiNE) [Caspari, 2003] is a frame-based dialog system

developed by Siemens CT.

In DIANE, an application is modeled as a set of transactions. A transaction is similar

to a frame. Each transaction corresponds to a function provided by the backend

application. The necessary information required for the execution of each transaction

is modeled as parameters of the transaction. For instance, the transaction “train

ticket reservation” needs information about departure, destination, date and time of

the itinerary. This information will all be modeled as parameters of the transaction

“train ticket reservation”. Each parameter defines its own grammars and prompts for

query or confirmation. Further, each transaction has trigger grammars, which define

words that indicate the transaction directly, thus distinguishing one transaction from

another. For instance, a transaction for a train ticket reservation may be triggered by

55

the words “book ticket”, “ticket reservation”, etc. These words will be defined in a

trigger grammar.

Besides these specification elements – transaction, parameter, grammar, prompt,

etc., in order to describe dependencies between parameters and influences from the

backend application, program codes such as Java classes can be used. DIANE

provides two standard interfaces for such Java code. With these interfaces the dialog

designer can implement the required callback functions to specify inference rules,

consistency conditions, the repair mechanism and invoke the corresponding

functions in the backend applications,. These factors influence the dialog flow;

however, they must be programmed in Java code and – in the DIANE model before

the new extensions described below - they cannot be described declaratively like the

other elements of the DIANE dialog model.

Figure 4-2 illustrates an overview of DIANE specification elements, depicted as white

boxes, and Java classes for describing inference rules and execution commands,

depicted as grey boxes.

Figure 4-2 Dialog model of DIANE

The DIANE dialog management allows for mixed-initiative dialogs. The mixed-

initiative strategy is a user-initiative strategy with system-initiated error handling. The

user dominates in the dialog; he/she determines the task to be executed and

provides the required information for the execution. The system only takes the

initiative in asking about the unknown parameters when the user has not provided all

information or when there is an ambiguity in the user utterances, so the system must

initiate a clarification sub dialog.

56

Most systems introduced above are mostly similar due to their frame-based nature.

Some systems use rules for dialog controlling, and some pack the dialog information

within the frame. The RavenClow system [Bohus & Rudnicky, 2003] is a little different

because it mixes a graphical tree mechanism with a frame-based scheme. VoiceXML

differs from the others because it mixes a state machine with frames. I find DIANE to

be an outstanding frame-based dialog system. Its dialog model including the mixed-

initiative strategy can represent most frame-based dialog systems, whereas it

uniquely provides Java callback interfaces. With these interfaces, DIANE allows the

application to define their sophisticated dependencies between parameters, and

between user interface and backend applications respectively. Therefore, I use

DIANE as the example dialog system for the discussion of frame-based dialog

systems in this dissertation.

The features provided by VoiceXML, the GALAXY II dialog management component

and DIANE are compared in Chapter 4.6.

4.2 Limitations of Frame-based Dialog Models

Most frame-based approaches are best tailored for stateless applications such as

information seeking. The dialog flow is determined by the central dialog control

algorithm based on the presence of required information of a task. The system action

is either asking for an unknown parameter or calling an operation of the backend

application. Many logical dependencies and other influences in more sophisticated

applications are outside this scope and cannot be described declaratively within the

existing frame-based models. In DIANE, this problem is partly solved by the Java

classes – constraint and execution.

The constraint class serves to check the consistency of different parameter values

and to determine the value of an unknown parameter (inference of a parameter)

based on the constellation of available parameter values. For example, for a flight

reservation, the departure city and the destination city must be different. Such a

condition is a kind of consistency check. And, given the departure time and the

duration of the flight, the arrival time can be computed automatically. Such a process

is called inference. The following code is an example for a section in the

corresponding constraint class:
Public class constraint{

 /* check the parameter values according to different conditions and

57

 return the inconsistent parameter.

 */

 public String getFirstInconsistentParam(Kontext kontext,

 Interpreter interpreter){

 // get the parameter values of destination city and departure

 // city

 String dest_city = kontext.getParamSem("DEST_CITY");

 String dep_city = kontext.getParamSem("DEP_CITY");

 //check if the destination city and the departure city are the

 //same. In this case, report the parameter “destination city” as

 //an inconsistent parameter.

 if(dest_city.equals(dep_city)){

 return “DEST_CITY”;

 }

 …

 }

 /* return the error message prompted by the system in case of

 inconsistence.

 */

 public String getInconsistencyMessage(Kontext kontext,

 Interpreter interpreter){

 String param = getFirstInconsistentParam(kontext, interpreter);

 if (param.equals(„DEST_CITY“)){

 return “sorry, the destination city can not be the same as

 the departure city.”;

 }

 ……

 }

 /* infer unknown parameter values based on existing parameter

 constellation.

 */

 public Kontext infer(Kontext kontext, Interpreter interpreter) {

 String dep_time = kontext.getParamSem("DEP_TIME");

 String dest_city = kontext.getParamSem("DEST_CITY");

 String dep_city = kontext.getParamSem("DEP_CITY");

58

 String duration = computeDuration(dest_city, dep_city);

 String arr_time = computeArrivalTime(dep_time, duration);

 // set the parameter “ARR_TIME” to the given value “arr_time”.

 kontext.setParamInferred("ARR_TIME",arr_time);

 ……

 }

}

The execution class serves to invoke the corresponding function in the backend

application and to return an appropriate message to inform the user about the result

of the execution. For example, the following Java code illustrates a section from the

execution class of a transaction providing weather information:

public class Execution{

 public String getMessage (Kontext kontext,

Interpreter interpreter){

 String date = kontext.getParamSem("DATE");

 String city = kontext.getParamSem("CITY");

 // get the information from the backend application

 String weather = backend.getWeatherInformation(city, date);

 return weather;

 }

}

These two classes handle some influences from the backend applications and some

dependencies between the parameters. There are yet other dependencies and

backend influences not covered by these classes. In what follows I elaborate on

various dependencies and influence factors existing in different applications, which

are not covered by the current frame-based dialog model, except that a part of them

is supported by Java callback function in DIANE already. However, this section

seeks to give an overview of all dependencies and provide a foundation for an

extended dialog model which is capable of representing these factors declaratively.

4.2.1 Transaction Dependencies

In some multi-task applications, there are dependencies between different

transactions. An analysis of different applications shows that there exist two kinds of

dependency - conditional dependency and contextual relation.

59

Conditional dependencies
A conditional dependency between different transactions means that the successful

completion of a transaction is a precondition for the execution of another transaction.

For instance, in many applications user authorization is required. The user has to log

in first, before he/she can access any other functions provided by these applications.

Between the function login and the other functions, there is a conditional dependency.

Only if the function login has been executed successfully, the other functions are

activated for user access. Such a situation is suitable rather for a state-based dialog

model, where all the other functions can be defined as successor states of the login

function. Such a stateful philosophy is not included in the frame-based models,

where all frames are equally activated in different stages of a dialog.

Contextual relation
In a multi-task application, it is normal that the user expresses his “command”

according to the current context. Therefore, a group of transactions belonging to the

same context should be accessible in a series without requiring the context

information for each transaction every time. The comparison between the current

dialog context and the context information of a transaction gives an implicit hint for

the transaction identification. In a dialog of a stateful application, this is an important

factor, which can be considered before the system prompts to clarify the right

transaction in case of ambiguity. Consider the following scenario: The user first says

that he/she wants to listen to the next email. After that, he/she only says, “delete” to

indicate that he/she wants to delete that mail. In the current frame-based approaches,

there is no context modeling. So if the system understands that the user says

“delete”, and there are two tasks “delete email” and “delete appointment” associated

with the keyword “delete”, then the system will not know, although it is obvious in this

case, that the user means “delete email”. The action the system usually takes is to

initiate a clarification dialog to find out which task the user means exactly. The

available context information is not exploited yet.

4.2.2 Parameter Dependencies

Besides the dependencies between different transactions, there are also

dependencies between parameters of a transaction. In frame-based approaches, the

parameters may be given by the user or may be inferred by the system. The

inference is supported by the Java callback functions in DIANE, but cannot be

described declaratively. Other frame-based approaches provide only limited support

for the inference between parameters. For example, in VoiceXML a default value can

60

be provided for a parameter. In the Mercury flight system [Seneff & Polifroni, 2000], a

rule’s condition can refer to more parameters so that a rule more or less present a

relation of these parameters implicitly.

An analysis of different systems shows that there are two kinds of parameter

dependencies which influence the dialog flow.

Conditional dependencies
A conditional dependency between different parameters means that the value of a

parameter determines whether the other parameter must have a value or not. For

instance, in an application for train ticket reservation, the user is first asked if he/she

wants to make a seat reservation. If yes then he/she is asked if he/she wants to sit at

the window or aisle. If the user does not wish to reserve a specific seat, the

parameter for seat position will have to be left empty. In this case, the user input as

to whether he/she wants to reserve a seat determines whether the seat position

parameter should be asked for or not.

Such a dependency is resolved by the inference mechanism in DIANE. The inference

is defined in Java code. There is still no declarative description method for such a

dependency.

Logical dependencies
Logical dependency between parameters is more complicated than conditional

dependency. In a logical dependency, a parameter can directly infer the value of the

other parameter. For example, in an application for meeting room reservation there

are usually parameters for start time, end time and duration. Of course it suffices if

the user provides information for any two of these three parameters. The duration is

equal to the end time minus the start time. So given the availability of any two

parameters, the third parameter can be inferred automatically.

Such a dependency is also resolved by the inference Java class in DIANE.

4.2.3 Influences of the Backend System

The backend system is the application that actually executes the tasks. In the

information-seeking system, the backend system is a database. In other cases, the

backend system can be a Java stand-alone application or an electronic appliance,

etc. In the current frame-based approaches, the interactions between the dialog

manager and the backend system are restricted to task execution at the end of the

61

transaction. However, states of the backend system at runtime of the dialog may be

crucial for the interaction and thus influence the dialog flow.

Influence of the backend system on the active transactions
The states of the backend application can influence the set of accessible transactions.

For instance, an event ticket reservation system may only provide a reservation

service at certain times such as from 10 am to 6 pm. At other times, the system only

provides information for different events, and the user cannot book any ticket. Here

the time, which is managed in the backend system and can be regarded as a state

representation of the backend system, influences the available transactions to the

user.

Validation of parameter values
All possible values of a parameter are defined by its grammar. However, not all

values are valid in different situations. The validity of a parameter value may depend

on the state of the backend system. Let us consider the following scenario: in a

communication system the user can send messages to his/her contact. Each contact

may have an SMS, email and fax address. The contact does not have to have all of

these addresses. So if the user tells the dialog system that he/she wants to send a

message to a contact, the dialog system has to interact with the backend system to

be informed by the backend system about which addresses are available for this

contact. Then the dialog system can ask the user for the ways (SMS, email or fax) to

send the message accordingly or validate the user input to check if the

corresponding address is saved in the backend system. Whether the parameter

indicating the way to send a message is valid is dependent on which addresses are

saved to that contact in the backend system. So only with help of the backend

system is it possible to verify the parameter.

Information on system state
In current frame-based approaches the system assistance for task completion is very

limited and in fact is restricted to error handling. In a more sophisticated application it

is sometimes necessary to assist the user during the completing of a transaction.

One possibility is that the system should inform the user about its current state to

facilitate the user completing the task. For example, in an application for event ticket

reservation, there is a function for cancelling existing reservations. In this function, if

the user just says that he/she wants to cancel a reservation, the system can assist

62

the user to complete the cancellation by telling him/her his/her current reservations,

which ones can be cancelled, and maybe also which cannot. Such an action for

information on system status is a kind of system-initiated action, which is related to a

certain dialog state. Such a system action is not included in the existing frame-based

dialog models.

4.3 Extensions of Frame-based Dialog-modeling Approach

A very important feature of the frame-based approach is the declarative description

of the applications and a common dialog control algorithm used by the dialog

manager. This feature facilitates the specification of a new application and increases

the portability of a generic spoken dialog system. Currently the common dialog

control algorithm mainly seeks to complete the frame by prompting the user for

unknown parameters. For more sophisticated applications, this dialog control

algorithm does not suffice. Besides prompting the user for unknown information,

managing dependencies between different transactions and parameters and

providing system assistance during the dialog should be supported as well. Different

factors influencing the dialog flow have been elaborated in the last section.

There are two ways to solve this problem:

One way is to separate the data structure for storing the dialog states and the

specification of dialog policy [Bohus & Rudnicky, 2003]. This solution proposes to

manage the dialog state in a form-like structure, so that over informative user

utterances are supported in the same way as normal frame-based approaches.

Instead of using a general dialog policy, each application can specify its own dialog

policy in different ways. Some use rules with preconditions involving the dialog states

and actions that determine the next dialog step [Seneff, 1997; Traum & Larsson,

2003]. Others use transition networks to specify the dialog policy [Lemon et al., 2001;

Catizone et al., 2003; Wu et al., 2002]. The latter solution mixes the advantages of a

frame-based approach and a finite-state-based approach. However, for each

application the dialog policy has to be specified from scratch. This inhibits the

portability of spoken dialog systems and increases the complexity of creating a new

speech user interface. The use of transition networks may lead to combinatorial

explosion in the case of sophisticated applications.

An alternative solution is to extend the common dialog control algorithm and the data

structure, such that various dialog control mechanisms are supported. As far as the

investigation within the scope of this dissertation has shown, this second solution has

not yet been adopted and explored in academic research.

63

My goal is to use the frame-based approach to specify different applications, so that

their dialog specifications can be combined together to build an integrated speech

user interface with minimal effort. So a comprehensive spoken dialog manager is

required, which abstracts the common dialog policy. In addition, declarative dialog

specifications are necessary, so that it is feasible to combine different applications

with only moderate complexity. For this purpose, I follow the second route and

extend the dialog model and the general dialog control algorithms respectively.

In this section I elaborate on an enhancement proposal for frame-based dialog

models. The DIANE dialog model is taken as a reference example of frame-based

dialog models, and the enhancements are explained based on the DIANE model.

Figure 4-2 illustrates the dialog model used in DIANE, in the following Figure 4-3

illustrates the extended dialog model. All black boxes are extended specification

elements.

Figure 4-3 Enhanced frame-based dialog model

In the following all extended specification elements are explained in detail.

Precondition
Pre- and post-condition-style reasoning are frequently used approaches for web

services composition [Sheshagiri et al., 2003; Traum & Larsson, 2003]. The

dependencies between different web services and their sequential or parallel

relationships are described by pre- and post-conditions. I adapt this idea to the

frame-based approaches and introduce a specification element Precondition to

each transaction. Before a transaction can be accessed by the user, its preconditions

must be checked and have to be fulfilled. Each precondition consists of two sub

64

elements – condition and message. The condition expresses the requirement for

accessing the transaction such as that the time is between 8 am and 6 pm. The

message specifies the prompt to be uttered by the system, if the evaluation of the

condition results in false. For example, a message could be “sorry, you can’t book a

ticket right now, the service will be accessible in short time. “

The following form gives a precise definition for precondition:

>=< MessageConditiononPreconditi ,

) SYNTAX-CON as (referedsyntax defined a toaccording terma is Condition

*Σ∈Message

}9,....1,0,,...,,...{ zaZA=Σ

Postcondition
Each transaction provided by the speech user interface corresponds to a function in

the backend applications. At the end of a transaction, when all necessary parameters

have their values the corresponding function should be invoked. In many existing

frame-based dialog systems, the invocation of the functions in the backend

application is directly coded in the dialog management system [Austin et al. 1995].

Thus the spoken dialog systems are proprietary and cannot be adapted to any

application without modification in the core of the spoken dialog system. In DIANE,

the invocation of the functions in the backend application is coded in a Java class.

For a purely declarative specification of applications, I introduce here a specification

element – postcondition. This element serves to specify the execution of the

transaction in the backend application and the subsequent information prompt to

communicate the result to users. With this element the general dialog policy is freed

to specify how each transaction should be executed, so that the spoken dialog

system remains general enough to be able to be applied to any application.

The following form gives a precise definition for postcondition:

) SYNTAX-ACTION as (referedsyntax defined a toaccording terma is ionPostcondit

Context
Users are used to specify a task with reference to the currently discussed context. In

a multiple task application, different tasks can be grouped together and assigned to

the same context. For instance, “read email” and “delete email” can be grouped

together and assigned to the same context “email manipulation”. In frame-based

approaches this context information is underspecified. I introduce a specification

element, Context, to represent the contextual relation between different transactions.

65

The context is an element of the application. Each application can have one or more

contexts, and each context consists of a set of transactions, which are referred to via

their unique names.

The following form gives a precise definition for context:

},...,{ 1 nnIDTransactionIDTransactioCONTEXT = *∑∈inIDTransactio

Parameter Infer
For each parameter, I introduce further the possibility of adding an Infer element.

This element defines different ways to obtain the value of a parameter. In most

existing frame-based approaches the only way to obtain the value of a parameter is

to prompt the user. In more sophisticated applications, the value of a parameter can

be inferred based on the current dialog state or by the backend application. With the

Infer element, different ways of obtaining the value of a parameter can be specified

declaratively in a logical form. More precisely,

. SYNTAX-CON a toaccording terma isInfer

Constraint
To check the validity of the parameter values, I introduce a Constraint element as a

sub element of the transaction. Each transaction may define different constraints.

Each constraint consists of three parts – trigger parameter, condition and action.

The trigger parameters are the ones which are checked in the condition. The element

action defines the operations to be executed if the condition is not fulfilled. A

constraint can be formally defined in the following form:

>=< ActionConditionameterTriggerParConstraint ,,
";...;" 1 nParameterParameterameterTriggerPar =

 SYNTAX-CON toaccording terma is Condition

 SYNTAX-ACTION toaccording terma is Action

System Action
Sometimes the system should inform the user about the current dialog state or the

state of the backend application. The specification element System Action is

proposed to specify such system activities. System action is defined as a sub

element of a transaction. Each transaction may define more system actions. Each

system action consists of trigger parameter, condition and action. When the

66

trigger parameters change their values, the condition will be checked. The defined

actions are executed if the conditions are evaluated to true.

>=< ActionConditionameterTriggerParonSystemActi ,,

";...;" 1 nParameterParameterameterTriggerPar =

 SYNTAX-CON toaccording terma is Condition

 SYNTAX-ACTION toaccording terma is Action

Backend Application Reference
Besides the extended specification elements, a way to specify interactions with the

backend applications is needed for describing the various influences of the backend

applications on the dialog flow. For this purpose, I assume that there is a clear

interface between the speech user interface and the backend execution application.

All methods defined in this interface can therefore be referred to in the dialog

specification directly. As a reference, the name of the backend application, for

instance, can be used in the dialog specification. When the name of the backend

application occurs in the specification, the dialog engine knows that it is an invocation

of the corresponding operations defined in the interface. With such a prerequisite, the

interactions with the backend applications can be specified formally in the dialog

specification.

In the extension, three specification elements are quite similar – constraint, system

action and postcondition. The constraint and the system action differ from each

other only in the condition for executing the defined actions. In constraint, the actions

are executed if the condition is not fulfilled, so these actions are violation actions. In

system action, the actions are executed if the condition is fulfilled. Though the

difference is small, they serve to two different purposes. So I strongly suggest the

introduction of two elements instead of merging two elements with different purposes

into one more general element. The element postcondition can be regarded as a

special case of system action with the trigger parameters as all mandatory

parameters and the condition to be defined as that all mandatory parameters have

their appropriate values. However, postconditions are required for each transaction,

while system actions are just optional assistance actions.

In summary, a dialog specification based on the enhanced frame-based dialog model

can be defined with the following forms:

67

>=< },...,{},...{ 1,2,1 mn CONTEXTCONTEXTTTTA

>=< PostSYSCSTRPPROMPTPREtgIDTi ,,,,,,,

},...{ n21 onPreconditionPreconditiPRE =

},...,{ n11 promptpromptPROMPT =

}int,...,int{ 3n1 ConstraConstraCSTR =

},...,{ 4n1 onSystemActionSystemActiSYS =

},...,{ 5n1 ppP =

>=< iiiiiii InferdgigPPROMPTBOOLPIDp ,,,,,

dialog initiated systemin input user understand tousedgrammar theis
utterance initiativeuser ain input user understand tousedgrammar theis

*,

i

i

i

dg
ig
PID Σ∈

},{

},...,{ 1
falsetrueb

bbBOOL

ij

niii
∈

=

},...,{ n1i1ii ppromptppromptPPROMPT =

APostSYSCSTRPPROMPTPREtgIDTwhereIDTID
TIDTIDTIDCONTEXT

ii

lii
>∈=<=

=

,,,,,,, ,
},...,...{ 1

There is a little offset between this form and Figure 4-3. Figure 4-3 focuses on the

meaningful structures while this form considers additional elements for

implementation based on DIANE. These elements comprise the identifiers for

transaction and parameter, together with a set of Boolean values indicating the

function of the parameter in a transaction; for example, whether a parameter is

optional in a transaction. The details about implementation of this formal specification

will be elaborated in Chapter 5.

4.4 Dialog Management

For interpreting the dialog specifications based on the enhanced frame-based dialog

model, I propose a dialog management, which combines frame-based and event-

based approaches. The task of the dialog management is to make the right response

according to the user utterances and the system states. The basic mechanism in a

frame-based approach is to query the unknown parameter of a transaction. This

simple system response does not suffice for sophisticated applications, where

different constraints or system actions exist. Combining the event-handling

mechanism into the frame-based dialog management solves this problem. In this

section, I first introduce the emerging dialog events in the enhanced frame-based

68

dialog model, and then different dialog control mechanisms supported by the dialog

manager.

4.4.1 Dialog Events

In the enhanced dialog model introduced in this dissertation, the parameters are the

key for different constraints or system actions. Thus the change of parameter values

is the relevant dialog event. A parameter may have one of three different statuses:

undefined, valid defined, or invalid defined. If the status of the parameter changes to

valid defined, the bound constraint or system action will be triggered for verification or

execution. So the dialog event to be considered is the change of parameter status

from undefined or invalid defined to valid defined. This dialog event should be

captured by the dialog manager and triggers the evaluation of constraints or system

actions.

4.4.2 Transaction Identification and Activation

Besides the normal mechanism for identifying the right transaction to be executed

such as the one used in DIANE [Caspari, 2003], the context specifications help to

avoid unnecessary ambiguity arising in dialogs thus to identify the right transaction.

An application may contain different context },...{ 1 nCCA = and a context is defined

as a set of related transactions },...{ 1 ni TTC = . After the execution of a transaction T,

all contexts Ci with iCT ∈ will be saved as active contexts activeC in the dialog

management system. The next user utterance is then interpreted concerning the

actual contexts. This means, if the user utterance is ambiguous in sense of triggering

more transactions (kTT ,...1), the transactions Ti with maximal context overlapping are

always preferred

)Prefer(

}),...1{,(|}|{| |}|{|

i

activejactivei

T

kjiCCCTCCCCTC

→

∈∈∧∈≥∈∧∈

If there is only one transaction Ti with maximal context overlapping, this will be taken

by the system as the right one without asking the user for disambiguation. This

feature leads to a more intelligent dialog system, which allows the user to express

his/her request more efficiently related to the current context.

After the transaction has been identified, its preconditions will be verified. If the

preconditions are not fulfilled, then the defined message for precondition violation will

be prompted. Otherwise the transaction will be processed normally when all

preconditions are fulfilled.

69

4.4.3 Parameter Query and Verification

If the status of a parameter is undefined, the system will prompt for this parameter.

But before prompting for a parameter value, the dialog manager first checks the

value element of the parameter. If there is any defined logical dependency, this

logical form will be estimated. According to the evaluation result of the logical form,

the value of the parameter will be inferred or prompted.

After the value of the parameter has been initiated, the constraints bound to this

parameter will be checked. If the constraints are violated, the constraints violation

action will be executed by the system.

The following Pseudo code illustrates the query and verification process of a

parameter p = >< InfertQueryPrompGrammar ,...,,

Procedure)(pquery :

BEGIN

IF p is undefined

IF Infer of p is not null

THEN V = evaluate (Infer)

IF V is not null

THEN p = V

verify(p);

ELSE system prompts QueryPrompt

P = USERINPUT

verify(p)

ENDIF

ELSE system prompts QueryPrompt

P = USERINPUT

)(pverify

ENDIF

ENDIF

END

Procedure)(pverify

BEGIN

IF ameter]TriggerPar[piondition,Actameter,ConTriggerParConstra ∈>=<∃ int

THEN evaluate (constraint)

IF Condition = false

THEN execute (Action)

70

ELSE p is defined.

ENDIF

ELSE p is valid

ENDIF

END

Figure 4-4 Query and verification process of a dialog parameter

4.4.4 Interactions with Backend Applications

The backend application can be referred to in the dialog specification. The

developers use the backend application name as reference for this. When the dialog

engine engages in a dialog based on the provided dialog specifications and

encounters the backend application name, the defined expression will be sent to the

backend application. The dialog engine will wait for the results from the backend

application, and resume as normal after that.

With the element system action, the assistance of the backend application for task

completion can be specified. In the action part of the element system action, the

operations of the backend application can be invoked and thus the help messages

dynamically generated by the backend application can be prompted to the user.

4.5 Scenario Examples

In this section I introduce a concrete example to explain how to specify the speech

user interface of an application using this dialog model. It shows what the concrete

dialogs look like, and in addition, a particular example to illustrate the function of

context specification is introduced.

4.5.1 A Complete Application Example

A widespread telephone-based application is the unified messaging system. A case

study assessing the extended frame-based dialog model with the Siemens unified

messaging system – “HiPath Xpressions” has been carried out in the scope of this

dissertation. The example functions and scenarios given in this section about unified

messaging systems are based on this case study. A unified messaging system

provides a speech user interface for users to access their messages via telephone.

Currently the speech user interface of this system is an IVR system based on DTMF

input. The interface is menu-driven and system-initiated. Building a very

comprehensive menu system for such a messaging system is unavoidable. Each

71

possible interaction between the user and the system has to be covered by a menu.

Constructing a flexible speech user interface based on the extended frame-based

dialog model is thus highly recommended in this case. A unified messaging system

may provide many different functions; here my aim is to explain the enhanced dialog

specification, so only the basic functions are concerned in what follows:

• Identify (log in)

• Listen to all new messages

• Listen to the messages from a certain person

• Send a message

An application is modeled as a set of transactions at the dialog level. Each

transaction corresponds to a function provided by the backend application – here a

unified messaging system. So that means that the functions are mapped to a

transaction one by one. The dialog specification of this application involves four

transactions: log in, listen to all new messages, listen to the messages from a certain

person and send a message. In the following section, each transaction will be

elaborated.

Identify
The identify function will be modeled as a transaction. This transaction can only be

executed if the user is not logged in yet. This is the precondition for this transaction.

The user has to input his/her telephone number and a password. These are the

parameters of this function. As soon as all required information is present, the login

function of the backend application (the unified messaging system) will be invoked,

and afterwards the execution result will be prompted. These actions should be

defined as postconditions. This modeling can be summarized in the following table:

Transaction Identify

Precondition The user has not been logged in.

Parameters Username (telephone number), Password

Postcondition Invocation of login function in the unified messaging system

Prompt information about the login status (failed or successful)

Listen to all new messages
This function provides the user with all his/her new messages and is to be mapped to

a transaction. To access his/her messages, the user has first to be successfully

72

logged in to the system. This is the precondition for accessing this transaction. The

application context of this transaction is the application "unified messaging"; more

precisely, this transaction deals with all new messages. Thus, the context – “unified

messaging: all new messages” for this transaction can be modeled with the element

context. To execute this function, the backend system needs no information from the

user, thus this transaction has no parameter. To perform this transaction, the

corresponding function in the backend application has to be invoked and a suitable

message has to be generated and prompted accordingly. The following table gives

an overview of the modeling of this function:

Transaction Listen to all new messages

Precondition The user has already logged in successfully.

Postcondition Invocation of function (get all new messages) in the unified

messaging system

Generate a corresponding information message

Prompt the message(s)

Listen to all new messages from a certain person
This function provides the user with all new messages from a certain person. This

function is also to be modeled as a single transaction. To access his/her messages,

the user has first to be successfully logged into the system. This is the precondition
for accessing this transaction. To execute this function, the system needs to know

from the user what his/her name is ('person name'). So this transaction has one

parameter – requested person name. To perform this transaction, the corresponding

function of the backend application has to be invoked and a suitable message has to

be generated and prompted accordingly. The following table gives an overview of the

modeling of this function:

Transaction Listen to all new messages from a certain person

Precondition The user has already logged in successfully.

Parameter Name of the person whose messages are requested

Postcondition Invocation of function (get all messages from a certain

person) in the unified messaging system

Generate a corresponding information message

Prompt the message(s)

73

Send a message
With a unified messaging system, the user may send a voice message to a contact.

Also this function has to be mapped to a transaction in the enhanced frame-based

approach. Just as with any other function, to access this transaction the user has to

be logged into the system successfully. This has to be modeled as a precondition of

this transaction. To send a message, first the message has to be input by the user.

The message to be recorded would be the first parameter of this transaction. After

the user has input the message, the system should provide the user with the

possibility of checking the recorded message. In the case of a human-like system,

the user should have the initiative to decide if he/she wants to check the recorded

message or not. Thus, this will be modeled with a parameter (e.g. “listenYesNo”),

which specifies the information as to whether or not the user wants to listen to the

recorded message. If the user wants to check the message, then the system should

prompt the recorded message. This action has to be modeled as a system action,

which is triggered by the parameter “listenYesNo”. After the user has checked the

message, the system should support possible re-recording of the message in case

the user thinks that the message is erroneous. Thus, the information concerning

whether or not the recorded message is correct has to be modeled by a further

parameter (e.g. “confirmMessage”). If the user does not want to check the message

after recording, then this message is indirectly confirmed. That means there is a

dependency between the parameter “listenYesNo” and “confirmMessage” – if

“listenYesNo” has a value of “no”, then the “confirmMessage” has an inferred value of

“yes”. This dependency has to be defined as an inference rule in the Infer part of the

parameter “confirmMessage”. If the user thinks the recorded message is not right,

then a system action has to be defined to enable the user to re-record the message.

More precisely, a system action has to be defined to remove the value of the

parameter “message”. Further, to send a message, the receiver must be input by the

user. This is a further parameter in this transaction. As a kind of additional

information, the user can also mark a message as confidential or urgent, etc. Such

special settings can be modeled by an optional parameter. Finally, before the system

sends a message, it confirms the sending process with the user and waits for a

positive reply from the user to execute the transaction. The user reply is specified by

a parameter as well. The postcondition for this transaction sends the message and

prompts corresponding information.

The following table gives an overview of the modeling of this function:

74

Transaction Send a message

Precondition The user has already logged in successfully.

Parameter message – the message to be sent

listenYesNo – if the user wants to check the recorded message

confirmMessage – if the recorded message is correct

receiver – the receiver of the message

specialSetting – special setting of the message, e.g. confidential,

urgent

confirmSending – last confirmation before sending the message

Parameter

Inference

(Infer)

confirmMessage:

Message is confirmed indirectly if the user did not choose to listen

to the recorded message a second time.

(listenYesNo=”no” -> confirmMessage=”Yes”)

System

action

Prompt the recorded message if the user wants to check it.

Clear the value of the message parameter if the user says the

message is not right.

Postcondition Invocation of function (send message) in the unified messaging

system

Prompt the corresponding message

Based on this dialog specification, an enhanced dialog manager is able to provide a

dialog as in the following example:

S1 (System): Welcome to the unified messaging system, please identify yourself first.

U1 (User): 12345

S2: Telephone number 12345, please enter your password.

U2: 12345.

S3: You are logged in successfully. What can I do for you?

U3: Please give me all messages from Harry Hanks.

S4: Messages from Harry Hanks…a moment please…

S5: There are two messages from Harry Hanks: First message …; second

 message…

U4: Please send Harry Hanks a message.

S6: Please input your message and press # when you are finished.

U5: This is a test …. (# pressed)

S7: Do you want to check the message?

75

U6: No.

S8: Send the message normally?

U7: Yes.

S9: The message has been sent.

The following figure illustrates the changes of parameter values in the dialog session

from U4 to U7. The active changed parameters after each user utterance are

highlighted.

U4:

Action Send a message

Parameter

Message: unknown

listenYesNo: unknown

confirmMessage: unknown

Receiver: Harry Hanks

specialSetting(optional): unknown

confirmSending; unknown

U5:

Action Send a message

Parameter

Message: “This is a test…”

listenYesNo: unknown

confirmMessage: unknown

Receiver: Harry Hanks

specialSetting(optional): unknown

confirmSending; unknown

U6:

Action Send a message

Parameter

Message: “This is a test…”

listenYesNo: no

confirmMessage: yes (inferred)

Receiver: Harry Hanks

76

specialSetting(optional): unknown

confirmSending; unknown

U7:

Action Send a message

Parameter

Message: “This is a test…”

listenYesNo: no

confirmMessage: yes

Receiver: Harry Hanks

specialSetting(optional): unknown

confirmSending: yes

4.5.2 Scenario for Context Application

Let us consider an organizer system with the following transactions:

 Check new messages

 List new messages

 Check appointment

 List appointments

The “check” transactions only tell the user if there is any new message or

appointment, while the “list” transactions list all messages or appointments.

In such a system, the following situation is possible:

The user first asks if there are any new messages for him/her, then in the case that

there are some new messages, asks for a list of all new messages. Since the user

has first checked if there are any new messages, he/she maybe just says “list them”

to tell the system that he/she wants a list of all messages. However, the sentence

“list them” is ambiguous, because it triggers two transactions – "list messages" and

"list appointments". A normal frame-based spoken dialog system will initiate a

clarification dialog to ask the user if he/she wants to list messages or appointments.

However, according to the current context – the user has just executed the

transaction “check new messages” – it is actually clear that the user wants a list of

new messages.

With the context specification introduced in the extended dialog model, this problem

can be easily solved:

Two contexts can be defined in the corresponding dialog specifications:

77

},{1 eListMessaggeCheckMessaC =

C2 = {CheckAppointment,ListAppoint ment}

After the execution of “CheckMessage”, when the user utters “list”, the following

steps take place:

1. The context C1 with 1CgeCheckMessa ∈ will be stored in the dialog

management component, and {C1} is the set of active contexts.

2. Two transactions will be triggered – “list new messages” and “list

appointments”.

3. The contexts of both transactions will be checked by the dialog system, and

the following results will be found:

1CeListMessag ∈ – context match ….1 (C1 is in the set of active contexts)

2int CmentListAppo ∈ - context match … 0

4. The transaction with the most context matches – “ListMessage” – will be

chosen by the system without clarification.

A dialog example for this system is as follows:

S1 (System): Welcome to your personal organizer, please identify yourself first.

U1 (User): 12345

S2: Telephone number 12345, please enter your password.

U2: 12345.

S3: You are logged in successfully. What can I do for you?

U3: Is there any new message for me?

S4: Yes, there are two new messages.

U4: List them please:

S5: First message …; second message…

U5: List all my appointments for today please.

S6: First appointment…; second appointment…;

After U5, though the active context is still C1, the user utterance is unambiguous, so

the transaction “ListAppointment” is executed without clarification.

4.6 Summary

An enhanced frame-based dialog model and the corresponding dialog management

strategies have been introduced in this chapter. With this model and strategies it is

possible to describe various dependencies in different sophisticated applications

78

declaratively. A speech user interface for a new application can be developed by

means of specifying all tasks, their parameters and the relationships between the

tasks and parameters declaratively. This new dialog model improves the power of a

frame-based dialog system to be able to model sophisticated applications completely

declaratively without affecting the portability of the general dialog system.

4.6.1 Comparison to Related Approaches

There are different frame-based approaches aiming to improve the dialog model in

different ways. I compare the enhanced frame-based model (EFM), with the existing

VoiceXML model [McGlashan et al., 2003], the basic DIANE model [Block et al.,

2004], and the Galaxy II dialog control mechanism developed in a DARPA project

[Seneff et al., 1999]. The features comparison is summarized in Table 4-1.

Feature /

Dialog

Management

EMF DIANE VoiceXML GALAXYII

Basic model Frame-based Frame-based Frame-based

+ finite-state

machine

Frame-

based with

rules

Precondition Declarative

specification

Not supported Not supported Not

supported

Postcondition Declarative

specification

Supported by

Java callback

Function

Not specified Not

specified

Context

specification

and

application

Declarative

Specification

Not supported Not supported Not

supported

Parameter

Inference

Declarative

specification

Supported by

Java callback

function

specification

Only static

default value

supported

Not

supported

System

initiative

assistances

Declarative

specification

Not supported Supported by

control

element

System

action can

be initiated

by rules

79

Dependencies

between

different

parameters

Declarative

specification

Supported by

Java callback

function

Not supported Can be

specified

with rules

Interaction

with backend

application

Integrated into

the declarative

specification

Supported by

the java

interface

Integrated in

the declarative

specification

Not

introduced

Table 4-1 Feature comparison of different frame-based models

Based on the comparison, the outstanding features of the enhanced frame-based

dialog model proposed in this chapter have been highlighted. With the proposed

model it is possible to describe different dependencies in various applications

declaratively and thus to provide a general and portable dialog system, which can be

deployed to an enormous range of applications from weather information to

management of communication profiles. A speech user interface for a new

application can be developed by specifying all tasks, their parameters and the

relationships between the tasks and parameters declaratively.

The next chapter introduces a concrete implementation approach for this dialog

model based on the existing DIANE dialog system. This implementation proposal has

been adopted in the meantime by Siemens, based on the concepts developed in this

work, in developing a new version of DIANE supporting the enhanced frame-based

model. In the next chapter, I introduce the way that speech user interfaces of

different applications can be specified declaratively based on this dialog specification,

and how the new DIANE system engages in a conversation with the user.

Furthermore, the way in which the power of this dialog model has been assessed will

be commented on.

80

Chapter 5
Speech User Interface Development for
Applications

A dialog model suited for the combination purpose of this dissertation was introduced

in the last chapter. In this chapter, I give a detailed approach for implementing the

extended frame-based model. A specification language (called enhanced DIANEXML)

is constructed by extending the existing DIANEXML. Several typical examples are

introduced to explain how the language is applied and how the speech user interface

for applications can be specified within the enhanced frame-based model.

5.1 Specification Language – Enhanced DIANEXML

DIANEXML developed by Siemens is an XML-based dialog design language for

simplifying the development process of speech user interfaces. To provide a speech

user interface for an application, the tasks and domains are specified using

DIANEXML. The runtime resources for DIANE dialog system [Caspari, 2003] can be

generated by the system automatically, based on the DIANEXML specification. To

implement the enhanced frame-based dialog model, I extend the specification

language DIANEXML to “enhanced DIANEXML”. In this section the existing

DIANEXML will be introduced first, and then the enhanced DIANEXML will be

elaborated.

5.1.1 DIANEXML

The DTD definition of DIANEXML can be found in Appendix 1. A speech user

interface is specified with three kinds of files – a transaction file, a parameter file and

a set of grammar files.

Figure 5-1 shows the file structure for a dialog specification.

81

Figure 5-1 File structure of DIANEXML specification

The transaction file defines the speech user interface as a set of executable

transactions. The necessary information for executing the transaction is defined as

parameters. The parameters are first specified globally in the parameter file. In the

transaction file the parameters are referred to via names. For speech recognition and

language understanding, the grammar files are defined. In the transaction and

parameter files grammars are referred to via names.

Transaction definition

In the DIANE model there is no concept for an application: the set of transactions

represents the application. So the top-level element in a transaction file is

“transactionL” representing a set of transactions (See Appendix 1). The element

“transactionL” has no attributes and contains one or more transactions.

A transaction (see Appendix 1) represents an executable task provided by the

backend application of the speech user interface. Table 5-1 gives an overview of the

elements of a transaction:

Specification Element Function of the element

Name The unique identity of the transaction

ExeFunc The function to be invoked when all necessary

information of the transaction is available

ExePromt The message to be prompted before the execution of

the function in the backend application

TrPrompt The prompt used to identify this transaction in a

clarification dialog, e.g. “book a flight ticket” or “query

82

the timetable of a train”

TrConfirmBool The Boolean value to specify whether an extra

confirmation from the user is required before the

system addresses the transaction as the desired one

TrConfirmPrompt The prompt for confirming the transaction

TrGrammar The trigger grammar of the transaction

TrParameter The parameter of the transaction. This element can

be involved more times to define different parameters.

The parameters are defined globally in the parameter

XML file. Here the parameters are referred to by

names. Several transaction-specific features are

defined as sub elements. These elements are

introduced in Table 5-2.

TrAddCode Java code to be added as procedure attachment in

the dialog

CstrFunc A function defining constraints and consistency rules

of the transaction in java

SemLessGrammar Grammars defining expressions without semantics,

which should be understood by the system such as “I

mean”, “huh”, etc.

SemLessStartGrammar Grammars defining expressions without semantics,

which should be understood by the system when it

interprets the user initiative utterance such as “I want”,

“I would like to”, etc.

Table 5-1 Elements of transaction in DIANEXML

Table 5-2 shows an overview of the sub elements of the element TrParameter. They

define the transaction specific features of a parameter:

Specification
Element

Function of the element

Name The identity of the parameter; this is also the name

defined in the parameter XML file

RecBool A Boolean value indicating whether the parameter is

used recursively

OptBool A Boolean value indicating whether the parameter is

83

optional

DefaultVal The default value of the parameter

InfBool A Boolean value indicating whether the parameter can

be inferred by other parameters

AlwaysConfBool A Boolean value indicating whether the parameter

value should always be confirmed with the user

UserConfBool A Boolean value indicating whether the parameter

value should be confirmed when it is given by the user

ConfIfInfBool A Boolean value indicating whether the parameter

should be confirmed when its value is inferred by the

system

ConfIfDefBool A Boolean value indicating whether the parameter

should be confirmed when it owns a default value

InterruptBool A Boolean value indicating whether the transaction

should be interrupted when the parameter violates any

consistency rule

TestAllBool A Boolean value indicating whether the parameter

value will always be proven against the backend

application. This has only effect when the backend

application is implemented in prolog.

OutOfTaskBool A Boolean value indicating whether the parameter is

only modeled in the speech user interface but not in

the backend application. That means the backend

application cannot handle the parameter and the user

will be informed that the input is out of task.

CopyPermittedBool A Boolean value indicating whether the parameter

value can be copied from the dialog memory

Table 5-2 Elements of transaction parameter in DIANEXML

Parameter definition

All parameters used in dialog are defined globally in an extra XML file. The exact

definition can be found in Appendix 1. All parameters are defined in one file, and the

top-level element in this file is “parameterL” containing one or more parameter

elements. All global information of a parameter is defined with sub elements that are

listed in Table 5-3:

84

Specification
Element

Function of the element

Name The unique name of the parameter

PmType The type of the parameter; it can be “generating” or

“not generating”. When set to generating, the help

prompt will be generated from the parameter grammar

automatically.

IGrammar Grammar used to understand the parameter in the

initiative user input

DGrammar Grammar used to understand the parameter in the

dialog when the system asks for it

PmPrompt Prompt to query the parameter

PmRekPrompt Prompt to query a recursive parameter

PmRekDiscardPrompt Prompt to be uttered by the system after the user

discards a part of the recursive parameter

PmConfirmPrompt Message for confirming the parameter value

PmHelpFunction Function defining the help prompts in java code

PmHelpPrompt The help message for the parameter when the user

does not know what he/she should provide as values

PmInferredPrompt The message to be prompted together with the

confirmation prompt if the parameter value is inferred

by the system.

Table 5-3 Elements of parameters in DIANEXML

Grammar definition

The grammars are context-free grammars allowing only right-recursive rules as

recursive rules. In Chapter 6, the grammars will be discussed in detail. The DIANE

grammar formalism can be found in Appendix 1. The grammars will be referred to in

the transaction and parameter definition files via names.

Application example

I introduce a simple application which allows the selection of any radio channel

(defined by music genres) via speech as an example here. This example illustrates

how to define a speech application with DIANEXML.

The following is the transaction definition file:

<TransactionL>

85

 <Transaction>

 <Name>select_radio_channel</Name>

 <ExeFunc>select_radio_channelExe</ExeFunc>

 <TrPrompt>select a radio channel</TrPrompt>

 <TrGrammar>radio.grm</TrGrammar>

 <TrGrammar>select.grm</TrGrammar>

 <TrParameter>

 <Name>radio_channel</Name>

 <CopyPermittedBool>true</CopyPermittedBool>

 </TrParameter>

 <CstrFunc>select_radio_channelCstr</CstrFunc>

</Transaction>

</TransactionL>

The following is the parameter definition file:

<Parameter>

 <Name>radio_channel</Name>

 <PmType>generating</PmType>

 <IGrammar>radio_channel.grm</IGrammar>

 <DGrammar>radio_channel.grm</DGrammar>

 <PmPrompt>which channel?</PmPrompt>

 <PmConfirmPrompt>Do you want to listen to $radio_channel?

 </PmConfirmPrompt>

</Parameter>

86

For this application three grammars are needed. They are “radio_channel.grm” for

different radio channels, “radio.grm” and “select.grm” for triggering the transaction

“select a radio chanel”. I offer the grammar radio_channel.grm as an example here:

$radio_channel =

 hip pop {: "hip pop" :}

 | classic music {: "classic music" :}

 | sport {: “sport”};

5.1.2 Enhanced DIANEXML

To describe a speech user interface as declaratively as possible, the frame-based

dialog model has been extended in this thesis to an enhanced frame-based dialog

model which includes pre- and post-condition specification, specification of the

contextual relation of different transactions, formal specification of parameter

inference and influences of the backend system. To implement an application

specified with the extended frame-based model, I introduce a specification language

based on DIANEXML. The DTD file of enhanced DIANEXML can be found in

Appendix 2. Here the added specification elements are described briefly to provide

an overview.

Precondition

Precondition defines conditions for executing a transaction. The system only

activates a transaction if its preconditions are all fulfilled. A precondition contains

two elements – condition and message. The condition defines the actual logical

rule. The logical rule follows a syntax defined as enhanced DIANE script, which can

be found in Appendix 2. The message defines the prompt in case of precondition

violation. For one transaction one or more preconditions can be defined.

The following is an example of a precondition, which defines that the user can only

access the transaction if he/she has logged in to the backend application

successfully:

<Precondition>

 <Condition> @xpressions.isLoggedIn() == true </Condition>

 <Message>You have to log in first. </Message>

</Precondition>

87

Postcondition

Postcondition defines the execution of the transaction including the invocation in the

backend application. Each transaction is represented as a form with one or more

parameters in the enhanced DIANE model. From the dialog view, the transaction is

finished if all required parameters have got a unique value. But from the point of view

of task accomplishment, a transaction contains also the invocation of the

corresponding methods in the backend application performing the task, and the

report about the task execution results to the user. These two parts are defined in the

postcondition of a transaction.

A postcondition can be a method invocation in the backend application or a prompt

to inform the user about the task execution status. A postcondition can also be

encapsulated by an if-else-statement.
The following is an example for the postcondition of a login transaction, which

invokes the login function in the backend application (which is “xpressions” here) and

gives the user an appropriate message about the login result:
<Postcondition>

 <BackendExe expr="@xpressions.login($telnumber,$password)" />

 <If cond="@xpressions.isLoggedIn()==true">

 <Prompt> You are successfully logged in. </Prompt>

 <Else/>

 <Prompt>The id or password is wrong, login not

successful.</Prompt>

 </If>

</Postcondition>

Context

The context element serves to define the contextual relation between different

transactions. By using this contextual information in the dialog, the usability and

intelligence of the speech user interface can be enhanced. The following is an

example of the context specification for the “address book search”, “address book

edit” and “delete a contact from the address book” transactions:

<Context>

 <Transacton>AddressbookSearch</Transaction>

 <Transaction>AddressbookEdit</Transaction>

 <Transaction>AddressbookDelete</Transacton>

88

</Context>

The context is a set of transactions which are contextually related.

Infer

The Infer element is a sub element of the specification element TrParameter. With

this element it is possible to describe how the parameter can be inferred by other

parameters or system. The infer element can be either a simple term or an if-else-

expression. The term or expression should be written with the extended DIANE script

language. (See Appendix 3)

The following is an example of parameter “phoneStatus” representing the telephone

status, whose value can be inferred by another parameter “phoneStatusYesNo”.

 <TrParameter>

 <Name>phoneStatus</Name>

 <InfBool>true</InfBool>

 <Infer>

 <if cond="$phoneStatusYesNO=='no'">

 NOINPUT

 <else/>

 USERINPUT

 </if>

 </Infer>

 <UserConfBool>true</UserConfBool>

 <CopyPermittedBool>true</CopyPermittedBool>

 </TrParameter>

The parameter “phoneStatusYesNo” indicates information as to whether the user

wants to define the phone status in a transaction. In the Infer element this parameter

will be checked. If the user does not want to define the phone status then the

89

parameter “phoneStatus” will not be asked but instead inferred to a dummy value.

This mechanism increases the dialog intelligence, and the infer element keeps the

specification declarative.

Constraint

The constraint element serves to define the consistency rules of the parameters. In

practice, some parameters must have certain values in certain situations.

A constraint element contains one or more trigger parameters as sub elements.

When one trigger parameter changes its value, the constraint will be checked.

Moreover a constraint element can have one or more conditions as sub elements.

The conditions define the actual logical consistent rules. This condition should be

defined with the script language (See Appendix 3). Finally a constraint element may

have a further sub element – action. This element defines the actions to perform if

the consistent rules are violated.

The following is an example for a constraint, which declares the consistency rule

between the parameter “destination city” and “departure city” of the transaction “flight

reservation”. Particularly, these two cities must be different for a flight:

 <Constraint >

 <TriggerParameter>destinationCity</TriggerParameter>

 <TriggerParameter>departureCity</TriggerParameter>

 <Condition>$desctinationCity!=$depatureCity </Condition>

 <Action>

 <Clear name =" destinationCity" />

 <Prompt> The destination city can not be the same as the

departure city of a flight. Please provide a new

destination city.

</Prompt>

 </Action>

 </Constraint>

90

This constraint specifies that the destination city must be different from the departure

city. If this rule is violated, the value for the destination city will be removed and an

adequate message will be prompted to inform the user about the inconsistency.

System action

The element system action serves to define some system-initiated action, which can

be triggered by a parameter. That means when the trigger parameter changes its

value, the system action will be triggered. System action contains three sub

elements – trigger parameter, condition and action. There can be one or more

trigger parameters and conditions but only one action. After the system action is

triggered, the conditions will be verified. If all conditions are fulfilled, the action will be

performed.

The following is an example for a system action of the transaction “contact edition”

for editing a saved contact:

<SystemAction>

 <TriggerParameter>editContactYesNo</TriggerParameter>

 <Condition>$contactName!= Null</Condition>

 <Condition>$editContactYesNo=="Yes"</Condition>

 <Action>

 <Prompt>The contact $contactName has been defined as the following:

</Prompt>

 <Prompt>

 <Backend expr="@addressbook.getContact($contactName)"/>

 </Prompt>

 </Action>

</SystemAction>

This system action specifies that if the user utters that he/she wants to edit a contact,

the system will invoke the backend application and prompt the definition of that

contact automatically.

91

Backend method invocation

The element for backend method invocation is used in the postcondition specification.

With this element the invocation of methods provided by the backend application will

be specified. This element may contain the sub element – result, which describes

the result of the method invocation. This result can be referred to in the later

specification.

The following is an example of the postcondition of a transaction for searching for a

contact in the address book:

 <Postcondition>

 <BackendExe expr="@addressbook.search($firstname,$lastname)">

 <Result id=”result” type= “Set”/>

 </BackendExe>

 <Prompt> @addressbook.output("searchAddressbook", result) </Prompt>

 </Postcondition>

In the postcondition the backend application will be invoked, and the result will be

stored in the result variable “result”. In the result element the variable is defined to

have the type “Set”. Afterwards this result is passed to a function “output” for

generating the adequate prompt.

Sometimes the result of the method invocation is not so critical, so the sub element

“result” is optional to define.

5.2 Modeling Examples

This dissertation aims to propose a dialog model which can be applied to real

industrial applications. For this purpose, a comprehensive analysis of real industrial

applications and the feasibility of applying the enhanced dialog model to these

applications has been carried out within the scope of this dissertation. Among these

applications there are some relatively complex systems from the area of enterprise

communications. In this section, I introduce two of these systems – HiPath

Xpressions system and the HiPath CorporateConnect system of Siemens – and in

particular, address how to specify their speech user interfaces with the enhanced

frame-based dialog model.

92

HiPath Xpressions

HiPath Xpressions is a unified messaging system integrating services for voicemail,

fax and email. The system can be accessed from any telephone and any networked

computer. The user can access and manage any message with a telephone or a

computer. This system has two kinds of interfaces – a web-based graphical user

interface and a telephone-based voice user interface. The current telephone user

interface is an IVR system based on DTMF input. The interface is menu-driven and

system-initiated. Building a very comprehensive menu system for such a messaging

system is unavoidable. Each possible interaction between the user and the system

has to be covered by a menu. Constructing a flexible speech user interface based on

the enhanced DIANE model is thus highly recommended in this case.
The functions of the Xpressions system can be grouped in different sub domains.

The following are the essential functions provided by the user interface:

• Identify (login)

• Listen to the messages (Default new messages)

o Output a message to a device

o Go to previous message

o Go to next message

o Save message

o Delete message

o Repeat message playback

o Repeat message header playback

o Go directly to message without header

o Pause message playback

o Resume paused message playback

o Reply to the played message

o Forward the played message

o Call message originator

• Send a message

o Pause recording and re-record the message

o Pause recording and delete the message

o Pause recording and check the message

• Change answering options

o Set greeting for external calls

o Set greeting for internal calls

93

o Set System greeting

o Set answering machine functions (accept messages or greeting only)

o Set the number for forwarding calls

o Set the name of this mailbox

• Changing mailbox options

o Set user prompt language

o Set prompt level

o Change password

o Activate/deactivate the message notification

• Connection (call user: number or name)

The functions for changing answering options or mailbox options are independent of

the dialog system state. So we can regard them as stateless functions. The message

listening and recording functions are related to the current system state and thus

stateful. However, this system state information can be saved in the backend

application so that the front end – the user interface – can be regarded as stateless.

It is always important to keep track of the message playback in the backend

application, so that the system always knows which message is on play currently and

which message is the next one. It is outside the scope of this thesis to develop a

comprehensive speech user interface. Based on this thesis, a student project

[Schilling, 2005] developed different speech user interfaces for real industrial

applications such as the applications “Xpressions”, “CorporateConnect” and

“ComAssistant” of Siemens. Here I explain the modeling process with two example

functions. One is the function "identify". It is typical for many applications to request

the users to login first before using the speech portal. Thus the successful execution

of the identify function is a precondition to access other functions. In the following I

show how this function can be modeled as a transaction in the speech user interface.

Another function is “send message”. This function is special because during the

sending process the user can request to play back the recorded message. If he/she

is not satisfied with the message, he/she can request to re-record the message. So in

this function there are several modeling challenges. I will show how to solve them

subsequently.

Identify

The identify function will be modeled as a transaction. This transaction needs only to

be executed if the user is not logged in yet. This is the precondition for this

transaction. The user has to input his/her telephone number and password. These

are parameters of this function. When all information is complete, the login function of

94

the backend application (Xpressions) will be executed, and the execution result will

then be prompted afterwards. The formal description with enhanced DIANEXML is

included below:

<Transaction>

 <Name>identify</Name>

 <TrPrompt>Login to the application.</TrPrompt>

 <TrGrammar>identify.grm</TrGrammar>

 <Precondition>

 <Condition>@xpressions.isLoggedIn()==false</Condition>

 <Message>You are already logged in</Message>

 </Precondition>

 <TrParameter>

 <Name>telnumber</Name>

 </TrParameter>

 <TrParameter>

 <Name>password</Name>

 </TrParameter>

 <Postcondition>

 <BackendExe expr="@xpressions.login($telnumber,$password)" />

 <if cond="@xpressions.isLoggedIn()==true">

 <Prompt> You are successfully logged in. </Prompt>

 <else/>

 <Prompt> The id or password is wrong, login not successful.

95

</Prompt>

 </if>

 </Postcondition>

</Transaction>

Send a message

The function “send message” enables the user to send a message to a contact. This

function will be modeled as a transaction with parameters specifying content,

receiver, and priority of the message, the information regarding whether the user

wants to listen to the message before sending and whether he/she wants to re-record

a new message. The condition for this transaction is that the user has already logged

in. There are two system actions in this transaction. The first is that if the user

expresses that he/she wants to listen to the message before sending, the system

should play back the message. The second is that if the user utters that he/she wants

to re-record the message the system should clear the current message content and

be ready for recording a new message. To execute the transaction the message

should be sent by the system and a sending confirmation should be prompted. The

XML description is shown in the following:

<Transaction>

<Name>sendMessage</Name>

 <TrPrompt>send a message</TrPrompt>

 <TrGrammar>send.grm</TrGrammar>

 <TrGrammar>message.grm</TrGrammar>

 <Precondition>

 <Condition>%xpressions.isLoggedIn()==true</Condition>

 <Prompt>Please login first.</Prompt>

 </Precondition>

 <TrParameter>

96

 <name>message</name>

 </TrParameter>

 <TrParameter>

 <name>reciever</name>

 </TrParameter>

 <TrParameter>

 <name>priority</name>

 </TrParameter>

 <TrParameter>

 <name>listenYesNo</name>

 </TrParameter>

 <TrParameter>

 <name>newMessage</name>

 </TrParameter>

 <SystemAction>

 <TrParameter>listenYesNo</TrParameter>

 <Condition cond="$listenYesNo=='Yes'"/>

 <Action>

 <Clear name="listenYesNo"/>

 <Prompt> $message </Prompt>

 </Action>

 </SystemAction>

 <SystemAction>

97

 <TrParameter>newMessage</TrParameter>

 <Condition cond="$newMessage=='Yes'"/>

 <Action>

 <Clear name="message" />

 <Clear name="newMessge" />

 </action>

 </SystemAction>

 <Postcondition>

 <BackendExe expr="@xpressions.sendMessage($reciever,$message)"/>

 <Prompt>The message has been sent. </Prompt>

 </Postcondition>

</Transaction>

CorporateConnect

HiPath CorporateConnect is an enterprise mobility solution that allows employees to

be reached at a single business number regardless of current location. This system

provides mobile users with the ability to utilize the enterprise telephone network and

to have full-feature access to functions such as callback and conferencing. To access

these functions the mobile users can use a normal telephone or mobile phone. A

telephone user interface is provided. This telephone user interface is menu-driven

right now and thus restricted. For more complex functions the user has to use a web-

based interface. The functions provided by the telephone user interface are listed

below:
• Login

• Log on (register the remote phone)

• Log off (sign off the remote phone)

• Make call

98

• Change active profile

• Check message waiting

• Change default call routing

• Activate feature

o Message waiting notification

o Distinctive call routing

o External/internal call routing

o Callback destination routing

o All call routing

These functions are relatively simple, thus I choose the function logon as example to

illustrate the specification with the enhanced DIANEXML.

Logon

To use the one number service of CorporateConnect the user should first register the

remote phone. This function is modeled as "logon" transaction in the interface. The

conditions for executing this transaction are that the user must have been logged in

and has not registered any remote phone yet. By registering, the user has the ability

to change the default profile and give a number to which to redirect the call after

logging off. This information is modeled with parameters. As a kind of assistance, the

system first asks the user if he/she wants to change the default profile. So the

information as to whether the user wants to change the default profile influences the

value of the parameter “profile”. The following is the formal description in enhanced

DIANEXML:

<Transaction>

 <Name>logon</Name>

 <Precondition>

 <Condition> @corporateconnect.isLoggedIn()==true </Condition>

 <Message> Please identify yourself. </Message>

 </Precondition>

 <Precondition>

99

 <Condition> @corporateconnect.isLoggedOn()==false </Condition>

 <Message> You are already logged on. </Message>

 </Precondition>

 <TrPrompt>Register a remote phone</TrPrompt>

 <TrGrammar>register.grm</TrGrammar>

 <TrGrammar>corporate.grm</TrGrammar>

 <TrParameter>

 <Name>changeProfileYesNo</Name>

 </TrParameter>

 <TrParameter>

 <Name>profile</Name>

 <InfBool>true</InfBool>

 <Infer>

 <if cond="($changeProfileYesNO=='no')">

 NOINPUT

 <else/>

 USERINPUT

 </Infer>

 </TrParameter>

 <TrParameter>

 <Name>redirectYesNo</Name>

 </TrParameter>

 <TrParameter>

100

 <Name>redirect</Name>

 <InfBool>true</InfBool>

 <Infer>

 <if cond="($redirectYesNO=='no')">

 NOINPUT

 <else/>

 USERINPUT

 </if>

 </Infer>

 </TrParameter>

 <Postcondition>

 <BackendExe expr="@corporateconnect.logon($profile,$redirect)"/>

 <if cond="@corporateconnect.isLoggedOn()==true">

 <Prompt> Your phone is registered successfully. </Prompt>

 <else/>

 <Prompt> Your request can't be processed right now, it will be

cancelled.

</Prompt>

 </if>

</Transaction>

5.3 Summary

This chapter has introduced an approach for implementing the enhanced frame-

based dialog model. This approach has been adopted by Siemens to develop a new

version of the dialog system DIANE. This dissertation focuses on the combination of

101

speech applications, and thus it is beyond the scope of this dissertation to prove the

power and generality of the frame-based model. However, I have shown some non-

trivial examples in this chapter. A student project [Schilling, 2005] has addressed the

issue of power and generality of the enhanced frame-based model. In the project,

some non-trivial example applications have been developed completely, including the

above-introduced Xpressions and Corporate Connect systems. The dialogs are

proven to be flexible enough for this purpose. In addition, the project compared the

enhanced frame-based model with the AGENDA dialog manager used in CMU

communicator [Rudnicky & Xu, 2002] and assessed the enhanced frame-based

model as powerful enough for various phenomena appearing in different non-trivial

applications.

Consequently, the enhanced frame-based dialog model can be applied to various

applications. So in the following chapters, I assume the applications to be combined

into one integrated speech user interface are all specified with this model. This

makes no actual restriction on the applications. The combination scheme is therefore

general and covers various applications ranging from simple information-providing

applications to sophisticated applications in the communication areas.

102

Chapter 6
Grammar Comparison

6.1 Introduction

In order to combine the speech user interfaces of two different applications to

construct an integrated speech user interface for both applications which is usable

and intelligent, an application-level combination such as those introduced in the

approaches of Bui et al. [2005], Neto et al. [2003] and Seneff et al. [1999] no longer

suffices. To solve the problems of task sharing (the same task appears in both

applications) and information sharing (common information is used in both

applications), it is necessary to dig into the next elementary level of a dialog

specification – transactions and parameters.

Before solving the problems of identical transactions (task sharing) and identical

parameters (information sharing), it is necessary to recognize and determine these

identities first. In Chapter 4 and 5, I introduced the dialog specification elements.

Some of these elements describe the required essential information for the

transaction execution, and the others describe information which helps the system to

construct a natural dialog to obtain this necessary information. Recalling the basic

paradigm of the frame-based dialog modeling approach, an application is a set of

frames, where each frame consists of a set of slots representing the required

information to perform the frame. The natural language expressions for the frame

and the slots are all defined in the corresponding grammars. For a more flexible

dialog and a more formal dialog specification, different additional elements are

introduced such as precondition, post-condition, constraints, prompts, etc.

Based on this analysis, we can say the essential elements in a dialog specification

are the grammars and parameters, where the essential information of a parameter is

again its grammar. All other specification elements serve to support the dialog

system to construct a more natural dialog to obtain the essential information for a

frame and execute the corresponding task in the backend application.

Without a common framework for the meaning of data such as the ontologies

proposed for the semantic web, it is difficult to compare the arbitrary elements

103

expressed in “strings” designed by different designers directly in order to find the

overlaps. However, it is possible to use the properties of grammars to derive helpful

information from the formal structure without having to clarify the meaning of strings.

As the only useful semantic-carrying element, the grammar describes possible

natural user utterances required to trigger a frame and fill in a parameter – actually

what a frame or a parameter is in terms of natural language. Therefore, based on the

comparison of grammars, the overlaps between transactions or parameters can be

indicated and determined.

In this chapter, I discuss how to compare two grammars in detail. This is an essential

foundation for the later combination algorithm. First, I recall the theoretical

background for grammars and formal languages. Then I describe the use of context-

free grammars in the context of spoken dialog systems. Afterwards I describe the

theoretical considerations about comparison of the specific types of context-free

grammars which are used in the language processing areas. Then I propose two

possible approaches for comparing the specific context-free grammars used in the

DIANE spoken dialog system. Finally I discuss some related works and summarize

this chapter by highlighting the features of the two proposed comparison approaches.

6.2 Theoretical Background

As potential models for natural languages, formal grammars are classified by the

Chomsky Hierarchy into four classes.

6.2.1 Chomsky Hierarchy

The Chomsky hierarchy defines four types of grammars and the equivalent

automaton of the grammars.

The largest family of grammars in the Chomsky Hierarchy permits productions of the

form βα → , where α and β are arbitrary strings of grammar symbols, with εα ≠ .

These grammars are known as Semi-T hue, type 0, phrase structure or unrestricted

grammars. This type 0 language is exactly the set of languages accepted by a Turing

machine.

Applying the restriction on productions βα → of a phrase structure grammar that β

is at least as long as α , the resulting grammar is called context-sensitive or type 1

grammar and its language is a context-sensitive or type 1 language. The set of

languages defined by context-sensitive grammars is exactly the same as the set of

languages accepted by a linear-bounded automaton.

104

The type 2 or context-free grammar restricts the productions βα → to β→A ,

where A is one single non-terminal symbol. The language defined by a type 2

grammar is called a type 2 or context-free language. The context-free grammar is

equivalent to a push-down automaton.

If all productions of a context-free grammar are of the form wBA → or wA → , where

A and B are non-terminals and w is a string of terminals, then we say the grammar is

right-linear. If all productions are of the form BwA → or wA → , we call it left-linear.

A right- or left-linear grammar is called a regular or Type 3 grammar. The language

defined by regular expressions or the regular grammar is called Type 3 language or

regular language. The regular languages are precisely the ones accepted by finite

automata.

Of the four types of formal grammars, regular expressions and context-free grammar

have the widest practical use in different areas. Regular expressions particularly

have served as useful tools in the design of lexical analyzers, the part of a compiler

that groups characters into tokens – indivisible units such as variable names and

keywords. A number of compiler-writing systems [Mason & Brown, 1990]

automatically transform regular expressions into finite automata for use as lexical

analyzers. Context-free grammar has been used widely in the specification of

programming languages and even as part of natural languages. In addition, the

corresponding pushdown automata have aided in the design of parsers, another key

portion of a compiler, which given a grammar G and a word w can tell if)(GLw∈ .

Thanks to widespread knowledge of a variety of context-free-grammar-based

techniques, efficient parsers can be designed relatively easily [Mason & Brown,

1990].

6.2.2 Context-free Grammars and Finite-state Automaton

Context-free grammars (CFGs) are a very important class of grammars because the

formalism is powerful enough to describe most of the structure in natural languages

and programming languages, and yet is restricted enough so that efficient parsers

can be built to analyze sentences.

A context-free grammar G is a 4-tuple),,,(SPNΣ where Σ is a finite set of terminals,

called the alphabet, N is a finite set of non-terminals, including the start symbol S,

and P is a finite set of rules, called productions, having the form DA → where A is

an element of N and D is an element of *)(NIΣ . The language of the grammar G –

105

L(G) – is the set of all the strings of non-terminals derivable from the start symbol S

with the derivation rules R.

Though not as powerful as context-free grammars, finite-state automata are widely

used in the specification of regular expressions such as the lexicon of a programming

language.

A finite-state automaton is denoted by a 5-tuple),,,,(FsKFSA ΔΣ= where K is a

finite sets of states, Σ is a finite input alphabet, s in K is the initial state, KF ⊆ is the

set of final states, and Δ is the transition function mapping Σ×K to K . So that

),(aqΔ is a state for each state q and input symbol a. The language accepted by

FSA, designated L (FSA), is the set of all string x where } in is),(|{ Fxsx Δ .

Undecidable problems of Context-free Grammars
Given two different context-free grammars G1 and G2, the problem of determining

whether)2()1(GLGL ⊆ is undecidable [Theorem 8.12, Hopcroft & Ullman, 1979], in

addition to which, the problem of determining if the intersection of L(G1) and L(G2) -

)2()1(GLGL I is empty is undecidable [Theorem 8.10, Hopcroft & Ullman, 1979]. It

is also impossible to judge if the languages described by two context-free grammars

are the same -)2()1(GLGL = [Theorem 8.12, Hopcroft & Ullman, 1979].

6.3 Context-free Grammars in Speech Processing

The grammars in spoken dialog systems serve two purposes: first, they define the

natural language used formally in a certain domain and map different natural

language user utterances to the representative semantics, which can be further used

in the dialog management component; second, they are commonly used for

language modeling to improve the quality of speech recognition [Allen et al., 2000;

Bui et al., 2005; Dusan & Flanagan, 2000].

Among different types of formal models used in a natural-language processing

system, the mostly widely adopted one is the context-free grammar, due to its power

of expressing different linguistic structures existing in the natural language. Over the

years, an augmentation of context-free grammar – so called “unification grammar” –

has been established, which adds the notion of feature constraints to context-free

grammar [McTear, 1998]. The adaptation of unification grammar is due to

compactness and concision in the definition of the language. Though it is known that

in the expressivity, unification grammar is more powerful than context-free grammar,

106

it is still quite arguable whether the additional expressive power that is gained by

unification grammars is actually needed to describe natural languages [Moore, 1999].

So we regard context-free grammar as the most common formal model in speech

processing to express and map the natural user utterances to semantics and provide

a language model for better speech recognition. In the dialog systems introduced in

Allen et al. [2000], Bui et al. [2005] and Dusan & Flanagan [2000], context-free

grammars are adopted without any expressive restriction to the necessary natural

language.

6.3.1 Approximations of Context-free Grammars

Despite the availability of extensive literature on the topic of efficient context-free

parsing for large and very ambiguous grammars, context-free parsing still poses a

serious problem in many practical applications such as real-time speech recognition.

The human language user seems to process in linear time; humans understand

longer sentences with no noticeable delay. This implies that context-free grammars

are good and powerful for language interpretation, but are not likely models for

human language processing. Therefore, there are different approaches in the

academic world for approximating context-free grammars with finite-state devices,

which are known to allow very efficient processing in linear time. In practice, these

approaches solve the conflict between requirements of language modeling for

recognition and of language analysis for sentence interpretation. Current recognition

algorithms use the finite-state acceptor language models for computational efficiency.

It is known that these models are inadequate for natural language interpretation,

since they cannot express all relevant syntactic and semantic regularities. Context-

free grammars can express many of those regularities, but are computationally less

suitable for language modeling, because of the inherent cost of computing state

transitions in their parsers. The approximation of context-free grammars with finite-

state devices integrates these two techniques in a single system.

Going by the Chomsky Hierarchy, it is obvious that finite-state devices are not as

powerful as context-free grammars. But interestingly, though not mentioned in the

literature, I found that at least some of the constructions that cannot be treated with

finite-state devices are also difficult for humans. For example, constructions involving

center-embedding are very hard to process for humans, but are regarded as

grammatical by linguisticians. In English particle verb constructions, the particle can

either precede or follow the direct object (“put the book down” / “put down the book”).

If the direct object contains a relative clause, and the particle follows the direct object,

then the examples become very hard to understand (see Appendix 4 for examples).

107

If there is no restriction to the amount of center-embedding (recursion), it is equally

impossible for finite-state devices to process these sentences. This suggests that

finite-state devices could offer language models adequately accounting for the

efficiency of human language processing.

Therefore, context-free grammars used in spoken-dialog applications often represent

regular languages (which are equivalent to the languages modeled by finite-state

automata), either by construction or as a result of a finite-state approximation of a

more general context-free grammar.

6.3.2 Different Approximation Approaches

It would be perfect if the context-free grammar (generating actual regular language)

could be used as a general form of specification, and an equivalent finite-state

automaton could be transformed from it to be used in the recognition process.

Unfortunately, there is no general algorithm that would map an arbitrary context-free

grammar generating a regular language into a corresponding finite-state automaton.

(See Theorem 8.15 in Hopcroft and Ullman [1979])

However, in the existing literature, a number of methods have been proposed for

approximating a context-free language with a finite-state automaton. Nederhof

[2000a] gives a good survey of different approximation methods.

Several of these methods can be categorized into two classes: one class of

approaches constructs a pushdown automaton from the grammar, where the

language accepted by the automaton is identical to the language generated by the

grammar, and then approximates the pushdown automaton with a finite automaton

[Johnson, 1998; Grimley Evans, 1997; Pereira & Wright, 1997]. Among them, there

are two kinds of pushdown automaton approximation – subset and superset

approximation. The subset approximations such as the one of Johnson [1998] reduce

the infinite set of stacks in a pushdown automaton to a finite set leading to a finite

automaton. The superset-approximations such as the one of Pereira and Wright

[1997] build congruence classes of stack symbols and translate each congruence

class to a unique state of a non-deterministic finite automaton.

Another superset approximation approach retains only the information about

allowable terminals or pairs of adjacent parts of speech (cf. uni-gram, bi-grams, and

tri-grams) [Stolcke & Segal, 1994).

A superset approximation based on recursive transition network is introduced in

Nederhof [2000a]. The approach constructs a finite automaton for each non-terminal,

and builds the complete recursive transaction network by collecting all finite automata

of different non-terminals.

108

Many approximation approaches prove to be exact if the approximating context-free

grammar is left-linear or right-linear [Grimley, 1997; Pereira & Wright, 1997; Nederhof,

2000a] Intuitively this can be explained by the fact that a left-linear or right-linear

grammar is defined to be regular language and further equivalent to a finite-state

automaton.

Furthermore, in Nederhof [2000a] it is proven that context-free grammars that are not

self-embedding generate regular languages. According to Chomsky [1959b], a self-

embedding grammar is defined as follows:

A grammar is self-embedding if there is some NA∈ , such that βαAA *→ for

some εα ≠ and εβ ≠ .

A grammar that is not self-embedding is defined to be a strongly regular grammar.

[Nederhof, 2000b]. The proof is based on a constructive algorithm mapping a

strongly regular grammar into an equivalent finite automaton [Nederhof, 2000a;

Nederhof, 2000b]. This proof is not in conflict with the theorem [Theorem 8.15 in

Hopcroft & Ullman, 1979], since the condition of strong regularity is a sufficient

condition for the language to be regular, but is not a necessary condition. It means

there are some grammars which are not strongly regular but which generate regular

language. For such grammars, the approximations generate a larger language.

In practice, the finite automata approximation is normally applied to enhance the

recognition accuracy. They are used as a frond-end filter to the real parser. So it is

allowed that a certain percentage of ungrammatical input is recognized. Also it is

allowed that “pathological” grammatical sentences are rejected that seldom occur in

practice; an example are sentences requiring multiple levels of self-embedding.

According to these practical considerations, most approximations are accepted

according to their approximation quality. The most serious problem is actually the

complexity of the construction of the automata from the compact representation for

large grammars [Nederhof, 2000a].

6.4 Comparison of Context-free Grammars

6.4.1 Similarity of Context-free Grammars

My purpose in comparing grammars is to find out if there is any similarity between

two context-free grammars used in spoken dialog system. There are different

possible views on this similarity problem:

1. If a standard grammar library is introduced for dialog systems, where

standard grammars such as date, time, number etc. are specified formally

109

and unambiguously, the involvement of the same standard grammar could

indicate the similarity of two grammars.

2. A second possible similarity measurement can be based on the semantics of

the grammars. Many grammars used in spoken dialog systems also serve to

transform natural language phrases into semantic forms. For example,

“January first two thousand six” will be transformed to “2006-01-01”. The

similarity of two grammars can be assessed by comparing their semantic

forms and respectively the value ranges of the semantic forms.

3. The third and the most general similarity measurement can be based on the

languages produced by two grammars. Two grammars are similar if their

languages are similar.

The first similarity view requires a standard grammar library, which cannot be

assumed to be general in practice. The second similarity view assumes that each

grammar exhibits a semantic transformation. In practice, however, many grammars

appear not to have semantic forms such as the trigger grammars used in DIANE

spoken dialog systems. So the most general and appropriate similarity measurement

is based on the languages produced by the grammars.

There exist different similarity theories, which are well introduced in Lin [1998].

Adopting the general similarity theory to grammar comparison based on their

languages, the similarity of two grammars G1 and G2 would be proportional to the

ratio between common expressions existing in L(G1) and L(G2) and all expressions

in L(G1) and L(G2).

However, the quantified similarity of two grammars is actually not relevant for me.

The grammars used in spoken dialog systems serve for defining semantic structures

and concepts of the natural language formally. Concretely, they are used for

connecting natural user utterances with formal semantics and each grammar defines

in general only one single meaning, the variations of the grammar just representing

the manifold natural language representations of the same concept. So the grammar

definition defines just different synonym values for a single semantic value. Therefore,

and this is a very central observation for my approach, grammars can be assumed to

define the same semantic, if there is at least one common expression in their

languages.

For example, a grammar defining key words for a transaction “flight reservation”

would involve phrases such as “book a flight”, “make a flight reservation”, etc.

Another grammar also defining key expressions for a transaction “flight reservation”

may consist of phrases as “buy a flight ticket” “book a flight”, “reserve a flight”.

Though they do not have identical expressions in their languages but rather only one

110

common expression, they are similar, or we can even say they are identical. The

different expressions are just synonyms for the same semantic, which is identified by

the common expression “book a flight”.

Therefore, I define the similarity of grammars as the intersection of the languages

defined by them. Two grammars are similar if and only if there is at least one

common expression accepted by both grammars. That means if we can find a

common expression in their languages, we can determine that the grammars are

similar. Two grammars are different if and only if there is no common expression

defined by them. It means if we cannot find any common expression in the defined

languages, the grammars are different. This is possible only if the defined language

is finite. If the language is not finite, it is necessary to approximate the language for

determining the sameness of the grammars.

This similarity definition might not suffice for parameter grammars. In a parameter

grammar, different parameter values are defined with natural language. It means the

language defined by a parameter grammar is a set of synonyms of different values.

Therefore, the probability for a common expression to exist in the languages of two

parameter grammars is relatively high and can cause wrong decisions due to the

ambiguity of the natural language. I discuss solely the solution for finding one

common expression in two grammars, and in practice, this solution can be easily

adapted to find enough common expressions sufficing a minimal threshold. For

example, at least 5 common expressions are required, or, common expressions must

comprise at least 10% of the all expressions defined in the grammar.

Using the symbol),(BASim to express that grammar A and B are similar and I

define the similarity between two context-free grammars G1 and G2 as the following:

)2,1()2()1(GGSimGLGL →≠φI

Two context free grammars are similar if there is at least one common expression

existing in the languages defined by both grammars.

6.4.2 Theoretical Considerations of Comparing Context-free
Grammars

According to Hopcroft & Ullman's [1979] Theorem 8.10, the problem of determining if

the intersection of L(G1) and L(G2) is empty - φ=)2()1(GLGL I - is undecidable.

This means, without any approximation or restriction on the context-free grammars, it

is impossible to answer the similarity question.

When considering different existing approaches approximating a context-free

grammar with a finite-state automaton, the following idea is interesting: we could first

111

approximate a context-free grammar with a finite-state automaton or regular

languages, and then compare the finite-state-automaton or regular languages. The

intersection problem then turns into a solvable one.

Based on different approximations, different comparison mechanisms could be

considered. I distinguish two categories of approximations: approximation with a

finite-state automaton, and N-gram approximation.

Comparison based on finite-state automaton approximation

By constructing the pushdown automaton for a context-free grammar G, and further

approximating the pushdown automaton with a finite automaton or based on

recursive transition network technology, for each grammar G, a finite-state

automaton FSA could be constructed approximating G.

Depending on the regularity of G and the methods applied for approximation, we can

distinguish between superset approximation)()(GLFSAL ⊃ , subset approximation

)()(GLFSAL ⊂ and equivalent transformation)()(GLFSAL = .

If G is defined as a strongly regular grammar (without self-embedding), which is also

reasonable from the point of view of human language processing [Miller & Chomsky,

1963; Chomsky, 1963], we can construct an equivalent finite-state automaton for G

[Nederhof, 2000a]. Given two finite-state automata FSA1 and FSA2 modeling

strongly regular context-free grammars G1 and G2, it is feasible to build an

automaton FSA so that)2()1()(FASLFSALFSAL I= . The construction of the

intersection is to be found in formal language theory textbooks [Hopcroft & Ullman,

1979, p.59]. Further, it is decidable whether the language produced by a finite-state

automaton is empty [Hopcroft & Ullman, 1979, p.63-64]. An algorithm based on the

reach ability of states within an automaton starting from the start state is introduced

by Hopcroft and Ullman [1979, p.63-64]. The automaton accepts an empty language

if, and only if, no final state is within the set of reachable states.

So we can determine whether two strongly regular grammars are similar by the fact

that the intersection automaton of the finite-state automata modeling these two

grammars either does or does not produce an empty language.

Without any restriction on G1 and G2, instead of testing equivalence it is only

possible to compute an approximating finite-state automaton FSA1 and FSA2.

112

If we have a superset approximation ()()(GLFSAL ⊃), the finite-state automaton

intersection is sufficient but not necessary for the intersection of context-free

grammars. The following consequence illustrates the soundness:

φφ =→=)2()1()2()1(GLGLFSALFSAL II .

If the intersection of L(FSA1) and L(FSA2) is empty, we can be sure L(G1) and L(G2)

have no overlaps. But conversely, if the intersection of L(FAS1) and L(FSA2) is not

empty, we cannot tell whether the intersection comes from the original grammars or

the imprecise approximation, so we cannot make any judgement about the

intersection of L(G1) and L(G2).

If we have a subset approximation ()()(GLFSAL ⊂), the finite-state automaton

intersection is necessary but not sufficient for the intersection of context-free

grammars. The following conclusion from the intersection of L(FSA1) and L(FSA2)

can be drawn:

φφ ≠→≠)2()1()2()1(GLGLFSALFSAL II

If the intersection of L(FSA1) and L(FSA2) is not empty, we can tell that L(G1) and

L(G2) have overlaps with each other. But by contrast, if the intersection is empty, we

cannot be sure if we have reduced the intersection of two grammars in the

approximation, so we cannot judge the intersection of L(G1) and L(G2).

Interestingly, if we combine the superset and subset approximations, we get

correspondingly sufficient conditions for empty and non-empty intersections of

context-free grammars G1 and G2. Namely:

φφ =→=)2()1()2()1(GLGLASupersetFSLASupersetFSL II

φφ ≠→≠)2()1()2()1(GLGLSubsetFSALSubsetFSAL II

With such a combination, we could judge the intersection of two context-free

grammars in most cases up to one, namely when the intersection of their supersets

is non-empty but the intersection of their sub-sets is empty. Because it is non-

transparent how an approximation actually changes the language [Nederhof, 2000b],

at the moment we are not able to answer the intersection question in this case.

Though this is an interesting point to be researched further, a deep investigation of

this question would go beyond the scope of this dissertation. Second, presumably all

approximations strive to be as close as possible to the original grammars; we could

intuitively suppose the probability of this case is quite rare in practice.

113

Comparison based on N-gram Approximation

The N-gram approximation translates a context-free grammar G, with an alphabet E,

into a list of phrases consisting of N symbols from E. The transformation is a pure

“approximation” without the possibility of “equivalence”. Based on an N-gram

approximation N1 and N2 of two context-free grammars G1 and G2, N1 and N2 can

be compared with each other literally. The set N0 of identical N-grams can be easily

found. With this consideration, the ratio R (10 ≤≤ R) of the size of N0 and summary

of the sizes of N1 and N2 could give evidence for the similarity of L(G1) and L(G2).

Applying a reasonable (better statistically counted) threshold for the relation R, a

similarity between G1 and G2 could be derived from R. E.g.)2,1(8.0 GGSimR →> .

The challenge in this approach is to determine the right threshold for R, which might

not be constant, but rather inconstant according to different grammars.

The similarity could be assessed by either of the comparison models introduced

above. However, this thesis aims to find one approach which fits best for the

grammar formalism used in DIANE.

Recalling the question, we want to know if two context-free grammars G1 and G2 are

similar where this similarity is defined to be a yes-no answer to the question of

whether the languages defined by both grammars contains at least one identical

expression. Therefore, the comparison approach A should satisfy the following

requirements:

Soundness:)2,1()2,1(GGSimYesGGA →=

Necessity: YesGGAGGSim =→)2,1()2,1(

Efficiency: I assess the efficiency of an algorithm by its time complexity, which is

represented by the number of steps that the algorithm takes to solve the problem as

a function of the size of the input.

In the next section, I will introduce the grammar formalism used in this system. I will

also discuss the suitability of applying the different possible comparison approaches

to this type of grammar according to the requirements.

6.5 Comparison of DIANE Grammars

For the context-free grammar),,,(SPNΣ used in DIANE the following condition

holds:

Let }|{' * βαAANAN →∈=

114

][' * εβεαβα =∧≠∧→∈∀ AANA

What this actually means is that right recursion is the only way allowed in a DIANE

grammar to express recursion in the corresponding language. This class of grammar

is equal to the right-recursive grammar defined in Nederhof [2000a]. “Self-

embedding” “cyclic” and “left recursion” [Nederhof, 2000a] is not allowed in DIANE

grammar. Obviously, this class of grammar is strongly regular, as defined in

Nederhof [2000a], and generates only regular languages.

In practice, the grammars used in other dialog systems [JSGF, 1998; Hunt &

McGlashan, 2004] also exploit only the regular expressive power of a context-free

grammar. So we can say that in general it is sufficient to consider context-free

grammars used in different dialog management systems as strongly regular

[Nederhof, 2000a]. The theoretical argument is that the expressive power of

Chomsky-2 grammar is not needed in human-computer interaction (see Section 6.3).

Therefore, the contributions in this section can be actually applied to all spoken

dialog systems, and I just take DIANE grammars as example for discussion.

Strongly regular grammars can be modeled by finite-state automata [Nederhof,

2000a; Mohri & Nederhof, 2001], and they can also be approximated by N-gram

models. Therefore, all theoretically-discussed approaches in the last section can be

applied to DIANE grammars. I will discuss two comparison approaches for comparing

two DIANE grammars.

6.5.1 Comparison of DIANE Grammars Based on Finite-state
Modeling

Based on theories in the area of finite-state automata and context-free grammars, I

propose a comparison approach which first models a context-free grammar with a

finite-state automaton, then constructs the intersection automaton of the two

generated constructed automata, and finally checks if the intersection automaton

generates empty language. If the intersection finite-state automaton generates empty

language, the compared grammars are different. Otherwise, they have at least one

common expression, and are similar according to my definition.

Figure 6-1 illustrates this comparison algorithm:

Given two DIANE grammars G1 and G2

Run procedure FA (G1, G2)

Return Boolean Similarity of G1 and G2

Procedure FA:

115

Input: DIANE grammars G1 and G2

Output: Sim – the Boolean value representing Sim(G1,G2).

FSA1 = MAKE_FSA(G1)

FSA2 = MAKE_FSA(G2)

FSA=MAKE_INTERSECTION(FSA1,FSA2)

IF IS_EMPTY(FSA) THEN return false ELSE return true

Figure 6-1 DIANE grammar comparison algorithm based on finite-state modeling

This algorithm contains three sub-procedures. They are:

 MAKE_FSA for constructing a finite-state automaton modeling a given DIANE

grammar

 MAKE_INTERSECTION for constructing the intersection of two finite-state

automata

 IS_EMPTY for determining if a given finite-state automaton produces an empty

language.

There exist different approaches for each sub-procedure. In the following I briefly

introduce a variant algorithm for each sub-procedure.

Finite-state modeling of DIANE grammar

I have referred to the algorithm introduced in Nederhof [2000a] for modeling a

strongly regular grammar. This is applicable to strongly regular grammars, so I have

just adapted it and taken only the part needed for non-recursive grammars and

grammars with only right recursion (non-left-recursive and non-center-embedding).

The following pseudo-code illustrates this procedure.

Procedure MAKE_FSA:

Input: DIANE grammar),,,(SPNG Σ=

Output: An equivalent finite-state automaton),,,,(FsKFSA ΔΣ=

Let φ=K , φ=Δ , statefreshs _= , statefreshf _= , }{ fF = ;

),,(_ fSsfamake

Pre-procedure for determining the sets of mutually recursive non-terminals:

Determine the set of all recursive non-terminals as:

]*[,|{ βαβα AANAN →∃∈=

Determine the partition N of N to be the sets of mutually recursive non-terminals:

 },...,2,1{ kNNNN =

116

 NkNNN =UUU ...21

][φ≠∀ iNi

][, φ=⇒≠∀ jNiNjiji I

And for all NBA ∈, :

]2
*

1
*[2,1][ABBAiNBiNAi αααα →∧→∃⇔∈∧∈∃

Procedure)1,,(_ 0 qqfamake α :

 IF εα =

 THEN let)}
1

,,{(0 qq εUΔ=Δ

 ELSEIF a=α , some Σ∈a

 THEN let)}1,,0{(qaqUΔ=Δ

ELSEIF βα X= , some *, VVX ∈∈ β such that

THEN let statefreshq _= ;

);,,0(_ qXqfamake

);1,,(_ qqfamake β

ELSE let α=A ; (α must consist of a single non-terminal)

 IF there exists i such that iNA∈

 THEN FOR EACH iNB∈ do let statefreshBq _= END FOR

 FOR EACH PmXXC ∈→)...1(such that iNmXXiNC ∉∧∈ ,...,1

 Do)1,...1,(_ qmXXcqfamake

 END FOR

 FOR EACH PDmXXC ∈→)...1(such that iNmXXiNDC ∉∧∈ ,...,1,

 Do),...1,(_ DqmXXcqfamake

 END FOR

END FOR

Let)},,0{(Aqq εUΔ=Δ

 ELSE for each PA ∈→)(β do)1,,0(_ qqfamake β

 END IF

END IF

END Procedure

Procedure ()_ statefresh :

 Create some object q such that ;Kq∉

 Let };{qKK U=

117

 Return q

END Procedure

Figure 6-2 Transformation from a strong regular grammar into an equivalent finite
automaton

Source: Nederhof [2000a]

An example of constructing the equivalent finite-state automaton for a small grammar

is given in Figure 6-3.

Figure 6-3 Application of the algorithm from Figure 6-2 on a small grammar

The states number of the resulting finite-state automaton could be exponential in the

original grammar size, if the grammar is descended in all ways [Nederhof, 2000b].

But in Nederhof [2000a] a compact representation for finite-state automata has been

proposed to avoid the exponential behavior and keep the complexity polynomial. It

means given a grammar of size n, the approximation procedure may produce
mn states. Based on different empirical tests introduced in Nederhof [2000a], m can

be assessed to be definitely greater than 1.

Intersection of finite-state automaton
The intersection of two deterministic finite-state automata can be constructed. The

algorithm for constructing this intersection finite-state automaton is introduced in

Hopcroft and Ullman [1979] . It is based on the idea of taking the Cartesian product

of states and building the transitions appropriately. The following figure illustrates this

algorithm.

Aq Sq Bq0q 1q '
B

q fq
ε a

b

ε

c

d

ε

c

d

dB
cBB

bBA

BSA

aAS

→
→

→

→

→

}{2

},{1

}2,1{

},,{

BN

ASN

NNN

BASN

=

=

=

=

118

Procedure MAKE_INTERSECTION

Input: Finite-state automata)1,1,1,1,1(1 FsKFSA ΔΣ= and)2,2,2,2,2(2 FsKFSA ΔΣ=

Output: Finite-state automaton FSA as Intersection of 1FSA and 2FSA so that

)2()1()(FSALFSALFSAL I=

)21],2,1[,,21,21(FFssKKFSA ×ΔΣΣ×= I

21 KK × - Cartesian product of states of 1FSA and 2FSA

21 ΣΣ I - Intersection alphabet of both original automata

]2,1[ss - Cartesian product of the initial states of both original automata

21 FF × - Final states of the intersection automaton, which could be any Cartesian product of

any valid final states of the original automata.

For all 1q in 1K , 2q in 2K , and a in 21 ΣΣ I ,

)],2(),,1(1[)],2,1([aqaqaqq ΔΔ=Δ

Figure 6-4 Algorithm for determining the intersection of two finite-state automata

The size of the intersection automaton is equal to 21 KK × . So the complexity of this

algorithm is)(2nO .

Emptiness problem of deterministic finite-state automaton
The problem of whether the language produced by a finite-state automaton is empty

is decidable [Hopcroft & Ullman, 1979, p63]. The algorithm introduced by Hopcroft

and Ullman [1979] deletes all states that are not reachable by any input from the start

state. If one or more final states remain, the language is non-empty. I illustrate this

algorithm in the following figure:

Procedure IS_EMPTY

Input: finite-state automaton),,,,(FsKFSA ΔΣ=

Output: Boolean value indicating if the language produced by FSA is empty

Begin

 Let φ=R φ=L

 Mark s

}{sRR U=

Add s to the end of L

WHILE L is nonempty

119

Choose one state q from the front of L

 IF for some input a,),(' aqq Δ= is unmarked

 THEN Mark q’

IF Fq ∈' terminate the procedure and return true END IF

Add q’ to the end of L

Add q’ to R

Remove q from L

ELSE remove q from L

END IF

END WHILE

IF φ≠FRI return false ELSE return true END IF

Figure 6-5 Algorithm for determining the emptiness of a finite-state automaton

This algorithm is derived from the breadth-first search of graph traversal algorithms.

In the worst case, K×Σ steps are needed for computation with this algorithm. So

this procedure has the complexity of)(nO .

The complexity of the comparison algorithm can be calculated as the following:

For a given right-linear grammar of size n, the approximating finite-state automaton

has a size of)1(>mnm .

Then the intersection procedure has a complexity of)(2mnO with the original grammar

size n.

The emptiness procedure has a linear complexity, so the summarized complexity of

the whole comparison process can be assessed to be)(2mnO .

The number of states in a finite-state automaton modeling a grammar is obviously

more than the number of productions in the grammar, so the complexity can be

assessed to be greater than)(2nO . This complexity is more or less acceptable in

practice. In the next section, I introduce another algorithm considering the similarity

problem from the beginning and thus working more efficiently.

6.5.2 Generation and Parsing-based Grammar Comparison

The algorithm based on finite-state automaton approximation introduced above is

rather complicated. I investigate another simpler approach in this section. It is based

on the consideration of how the common expression indicating the grammar similarity

can be found most efficiently.

We can easily determine the intersection of two grammars G1 and G2 by parsing all

expressions of L(G1) with the parser of G2 (P(G2)), or vice versa. If any generated

120

expression is accepted by the parser, the two grammars accept some common

expression, and thus have an intersection. Obviously, this basic algorithm is

extremely inefficient for grammars which generate a large number of expressions

and is not applicable to grammars which generate infinite language.

In this section, I propose a comparison approach based on generation and parsing,

which solves the problems of large size and infinite grammars. This approach seems

to be more efficient than the first comparison approach because of the fact that the

grammars are compared at the beginning. The complexity spent in constructing

“disjunctive” parts of finite-state automata can be therefore saved in this approach.

The approach proposed in this section is inspired by two different types of production

rules used for specifying context-free grammars. In the following, I first introduce the

classification of production rules, and based on it I give the basic principle for the

comparison.

Enumeration rules vs. derivation rules

A grammar defines its language using different production rules. With respect to the

way of how a production rule is defined, production rules can be categorized into

enumeration rules and derivation rules.

An enumeration rule α→A provides possible expressions for a non-terminal symbol,

where A is a non-terminal symbol, and α is a string of terminal symbols.

A derivation rule zA → gives the possible derivation ways for a non-terminal symbol,

in the definition A is a non-terminal symbol, and z is a string of non-terminal and

terminal symbols.

Possible expressions for a non-terminal symbol are enumerated by enumeration

rules explicitly, whereas production rules define the way to calculate the expressions

for a non-terminal symbol implicitly.

In practice, derivation rules are used for defining the recursive part of a grammar

since it is impossible to enumerate infinite expressions. Also, for languages with

certain semantic structures and/or large size, derivation rules are adopted, e.g.

grammars for date and time. Otherwise, if the language to be defined has a relatively

limited size, or there is no semantic structure inside the language which means that

the expressions defined by the grammar are not decomposable, enumeration rules

are used for defining the atomic expressions.

Obviously, each grammar must have enumeration rules, or else it would be

impossible to determine any valid expressions generated by the grammar (assuming

that there is no ε production allowed in the grammar).

121

Grammar comparison based on enumeration and derivation

The grammar comparison task can be split into two sub-tasks – comparison of

atomic “sub-expression” (enumeration rules) and comparison of patterns (derivation

rules). The idea is that the identical “sub-expressions” in two grammars can be first

determined; then the potential identical expressions can be generated with the

patterns defined in each grammar; finally the potential identical expressions can be

parsed by the parsers of each grammar. If any expression is accepted by the other

parser, a “common expression” has been found, and the grammars have any

intersection. If no expression is accepted by the parser of the other grammar, there is

no possible “common expression”, and the grammars have no intersection.

 The following algorithm illustrates the process of my comparison algorithm:

Procedure FA:

Input: DIANE grammars G1 and G2

Output: Sim – the Boolean value representing the similarity of G1 and G2

Grammar G1’ = REDUCTION(G1)

Grammar G1’’=APPROXIMATION(G1’)

L(G’’)=GENERATION(G1’’)

Return PARSE(L(G’’), G2)

Procedure PARSE

Input: Language L(G1) and DIANE grammars G2

Output: a Boolean value indicating if there is any expression w in L(G1) so that)1(GLw∈

Parser P = Generate a parser for G2

FOR EACH)1(GLw∈ Do IF P(w) =true THEN return true ENDIF

End FOR

Return false

Figure 6-6 DIANE grammar comparison algorithm based on generation and parsing

This algorithm contains four sub-procedures. They are:

REDUCTION for reducing the grammar for potential grammar intersection

APPROXIMATION for handling the recursion in a grammar

GENERATION for generating all potential overlap expressions of both grammars

PARSE for parsing one grammar G1 - generated expressions with a parser for the

grammar G2

122

In the following I give the details of each step.

6.5.2.1 Reduction of enumeration rules

Atomic “sub-expressions” are defined by enumeration rules in a grammar. Different

enumeration rules for one “non-terminal” symbol refer to the same semantic category.

E.g. the following grammar defines natural language for date:

MONTHDAYDATE →

FirstThirtySecondFirstDAY −→ |...||

DecemberFebruaryJanuaryMONTH |...||→

In this example, a “DAY” expression ranges from “first” to “thirty-first”. Suppose there

is another grammar which is being compared with this grammar to determine their

similarity, all enumerations for “DAY” can be reduced to one single representative

instance, if different instances of “DAY” all correspond to the same semantic category

in the other grammar. This is similar to different transitions between two states in a

finite-state automaton. The transitions could be various, but the destination state is

always the same. In addition, different values of the same semantic category cannot

affect the state transition in a finite-state automaton. In other words, assuming that

“first” and “second” correspond to an identical semantic category in another grammar

G, if “first January” will not be accepted by G, “second January” will not be accepted

either. So with respect to a single non-terminal, when comparing with another

grammar G, different enumerations of it corresponding to a single semantic category

of G will always produce the same similarity result. We could remove all “redundant”

enumerations from “DATE” grammar, so that the language generation becomes

much simpler. If no identical expression is found in G2, all enumeration rules of

“DAY” will be removed from G1 before language generation. This is because that

“DAY”-expressions are not in the vocabulary of G2.

I assume the grammars are all in Chomsky normal form [Hopcroft & Ullman, 1979, p.

94-96]. The following figure illustrates the reduction process:

Procedure REDUCTION (G1, G2)

Input: Context-free grammars G1, G2 in Chomsky normal form:)1,1,1,1(1 SPNG Σ= and

)2,2,2,2(2 SPNG Σ=

Output: Reduced context-free grammar)1,1,1,1(1 SPNG Σ=

BEGIN

 Let φ=W

123

FOR each 1PaA ∈→ , where 1NA∈ , 1Σ∈a DO

 Let f = false

 FOR each 2PbB ∈→ DO

 IF a=b

 THEN

 f=true

 IF WBA ∈),(

 THEN remove aA → from 1P

 ELSE)},{(BAWW U=

END IF

END IF

END FOR

IF f = false, THEN remove aA → from 1P END IF

END FOR

END

Figure 6-7 Algorithm for reducing a context-free grammar

This algorithm has a complexity of)(2nO (21 nn ×) in the worst case.

After reduction of different enumeration rules, the size of the grammar is in most

practical cases more moderate, so all expressions can be generated relatively

efficiently.

6.5.4.2 Approximation of recursive rules

The problem of infiniteness is not solved yet by the reduction of enumeration rules

since the recursiveness of a grammar is caused by derivation rules. In this case, I

propose to approximate the recursion with only finite loops. For flexibility, I introduce

a recursion parameter j for the approximation process to indicate the unfolding levels

of applications of rules. A recursion parameter j with value 1 means no recursive loop.

The following figure describes my approximating algorithm. In this algorithm,

recursive non-terminals are replaced by new non-recursive non-terminals, which

define the finite (j-1) recursive loops.

Procedure APPROXIMATION (G, j)

Input: Context-free grammars G:),,,(SPNG Σ= and Integer j for recursive levels

Output: Approximated non-recursive context-free grammar),,,(SPNG Σ=

124

Pre-procedure for determining the sets of mutually recursive non-terminals:

Determine the set of all recursive non-terminals as:

]*[,|{ βαβα AARAR →∃∈=

Determine the partition N of N to be the sets of mutually recursive non-terminals:

 },...,2,1{ kRRRR =

 RkRRR =UUU ...21

][φ≠∀ iRi

][, φ=⇒≠∀ jRiRjiji I

And for all RBA ∈, :

]22
*

11
*[2,2,1,1][βαβαβαβα ABBAiRBiRAi →∧→∃⇔∈∧∈∃

BEGIN

 FOR each ki ≤≤1 DO

 Assign an ordering (),...,1,,..2,1 nAiAiAAA + to all recursive non-terminals of iR :

]1[PiAiAiA ∈+→∀ βα

 mAiAmi <→<

 FOR each iRA∈ DO

 FOR jh ≤≤1 DO

]}[{ hANN U=

END FOR

 END FOR

 FOR each iRAPmXXA ∈∧∈→ ...1

 FOR each jh ≤≤1 DO

}''...1][{ mXXhAPP →= U Where

 'kX]1[+= hkX , if jhkXAiRkX <∧≥∧∈

 =][hkX , if kXAiRkX <∧∈

 kX= , otherwise

END FOR

 Remove mXXA ...1→ from P

 END FOR

 FOR each PmXXjA ∈→ ...1][DO

 IF iRmnnX ∈≤≤)1(THEN Remove mXXjA ...1][→ from P

 END FOR

 FOR each iRAPmXXA ∉∧∈→ ...1 DO

125

 Remove mXXA ...1→ from P

 }''...1{ mXXAPP →= U Where

 'kX]1[kX= , if iRkX ∈

 kX= , otherwise

 END FOR

 IF iNS ∈ ,]1[SS =

END

Figure 6-8 Algorithm for approximating a recursive context-free grammar with an
arbitrary amount of recursion

For the sake of understanding, I give the following grammar as example:

aAS →

bBA →

cSB →

cB →

The mutually recursive non-terminals are },,{ BSA .

We can assign the order },,{ BAS for these three non-terminals, so that BAS << .

After approximation with the parameter j to be 2, the grammar becomes:
]1[aAS →]2[]2[aAS →

]1[]1[bBA →]2[]2[bBA →

]2[]1[cSB →

cB →]1[cB →]2[

Normally an approximation up to the first recursion level with a recursion parameter 2

is adopted. Obviously, the language is approximated to a smaller set. But we are

aware of the fact that natural language used in spoken dialog systems is rather

defined in a simple way, and recursive grammars are actually only used to define

sequences of numbers or letters. So if the approximations do not have any overlaps

in their language, it can be asserted that the recursion with more loops will not bring

any overlaps either.

For example, let us assume that a grammar defines all possible lists of integer

numbers. The one-loop approximation of it defines all lists of integer numbers with a

length up to 2. If another grammar also defines integer lists, it will surely accept lists

with 2 numbers as well. So in such a case, the algorithm terminates with the right

result. If another grammar does not define integer lists, it accepts no expressions in

the approximation grammar, and the result is also correct. The only “real”

approximation in the algorithm is that the other grammar also defines integer lists but

126

with a length of more than 2. In this case, the algorithm will not be able to find the

actual overlap with 3 integers in a list due to the approximation. This problem can be

solved by adopting a greater j (i.e. a recursion level up to 5 can be taken). The result

will then be more precise, but the calculation would be less efficient. So there is

always a trade-off here between precision and efficiency.

In real life, there are seldom such complicated situations, and as mentioned in

Section 6.3 the natural language specification in a spoken dialog system is usually

simple, so I recommend an approximation with a maximal recursion to the second

level with awareness of the offset in very special cases.

According to my thorough experiments this approximation has not affected any

comparison result.

6.5.4.3 Generation and Parsing

The generation and parsing steps are straightforward. Based on the reduced

grammar G1, all possible identical strings are generated.

The following algorithm is used in my prototype for language generation:

Given the start symbol A, Grammar G
Run procedure p(S, G)

Return L(G)

Procedure P:

Input: symbol S, Grammar G

Output: RESULT – the set of all strings derivable from S.

Let R be all Rules in G with S at the left-hand-side.

FOR each rule r1 in R:

 Get all symbols in the right-hand-side of r1.

 FOR i=0;i<length(r1);i++;

 Symbol B = the i-th symbol in r1.

 IF B is a terminal symbol

THEN IF RESULT is empty

 THEN

 Construct a new empty string STRING

 Add B to STRING

 Add STRING to RESULT

 ELSE add B to the end of each string in RESULT

 END IF

 ELSE run procedure P(B,G) = SUBSTRING

 IF RESULT is empty

127

 THEN

 RESULT = SUBSTRING

 ELSE

Construct SUBSTRINGRESULT × new strings by adding each string in SUBSTRING to the

end of each string in RESULT.

 RESULT = the set of all new constructed strings

 END IF

 END IF

 END FOR

END FOR

Figure 6-9 Algorithm for generating the language defined by a context-free grammar

The complexity of this algorithm is)(2nO .

After potential expressions generation, each expression will be checked by the

parser of the other grammar G2. The parser for a grammar can be automatically

generated by a parser generator [Mason & Brown, 1990]. For parsing, CKY algorithm

[Kasami, 1965] and Early’s algorithm [Early, 1970] are most well-known. Both have a

complexity of)(32wnO with n to be the size of the grammar and w to be the size of

the input string. Of course there are also more efficient parsing (but more restricted

in the form of grammars) algorithms such as SLR, LALR [Taylor, 2000] with a

complexity of)(nwO .

6.5.4.4 Complexity of the algorithm

The complexity of the whole algorithm can be calculated with the following form:

)(2nO (Reduction) +)(nO (recursion approximation) +)(2nO (generation) +

)(nO (Parsing) (with n to be the size of the grammar)

Thus the complexity of this algorithm is)(2nO , which can be more or less accepted

in practice. Compared with the first algorithm based on finite-state modeling)(2mnO ,

this approach achieves certain efficiency.

However, it must be stated that the number of generated strings is not of concern in

this theoretical complexity calculation, though they may influence the efficiency

greatly. This is because after reduction, the number of generated strings becomes

moderate in all practical cases I have evaluated. This comes from the fact that

grammars used in spoken dialog systems tend to express relatively simply structured

semantics. In other words, the semantics expressed in a grammar tend to be atomic,

128

so that enumeration rules are mainly used in grammar specification. The grammars

do not normally involve several semantics in one grammar category.

6.5.4.5 Soundness and completeness of the algorithm

Comparing grammar G1 and G2 with the algorithm described above, all strings S

generated by the reduced grammar can be generated by the original grammar G1. If

any string S is accepted by the parser of G2, S is in L(G2). Thus if the algorithm finds

one expression w, so that)2()1(GLwGLw ∈∧∈ , it can derive φ≠)2()1(GLGL I .

An extensive mathematical proof of the correctness of the algorithms introduced in

this section would be superfluous and goes also far beyond the scope of this

dissertation. Therefore, based on the assumption that all the algorithms work

appropriately and are correct, I can declare that my algorithm based on generation

and parsing is sound.

Despite the approximation of recursion, the reduction does not affect the state

transition of the parser because only “identical transitions with respect to state

transition” are removed from the original grammar. Thus the algorithm is complete in

most cases except certain special situations with recursive grammars, which are not

usual in natural language processing in spoken dialog systems. I abandon a

complete mathematical proof for this issue for the same reason as that described

above.

6.6 Summary

There are few contributions in the existing literature discussing the comparison of

context-free grammars. My best efforts found only one approach introduced by

Nederhof and Satta [2002] which describes an algorithm to determine if the

intersection of two non-recursive context-free grammars G1 and G2 is empty. A

finite-state automaton FSA1 is constructed for one context-free grammar G1. An

inference mechanism is controlled by both the transitions of the finite-state

automaton FSA1 and the rules of the other context-free grammar G2. The inference

rules allow only transitions, which are also allowed by productions of the other

context-free grammar. So if the inference mechanism can derive the final state of

FSA1 from the initial state of FSA1 and the start symbol of G2, the intersection

between L(G1) and L(G2) is not empty [Nederhof & Satta, 2002]. This is an

interesting approach, though it only applies to non-recursive context-free grammars.

129

In this chapter two comparison approaches have been proposed. The finite-state-

modeling-based approach uses the established models in formal language and

methods for regular approximating of context-free grammars. The generation-and-

parsing-based comparison approach uses mature parsing and generating techniques

for context-free grammars. The heuristic of the second approach is the reduction

and approximation of complicated grammars, which could otherwise generate

thousands of expressions. After reduction the number of generated expressions is

cut down enormously, according to my experiments.

Table 6-1 gives an overview of the criteria fulfilled by the two approaches provided in

this section - the finite-state-automaton-based comparison approach (FSAC) and the

generation-and-parsing-based comparison approach (GPC) - and also by the

approach for parsing non-recursive context-free grammars introduced by Nederhof

and Satta [2002] (NS). The complexity of the parsing algorithm is not mentioned in

Nederhof and Satta [2002], but it has been mentioned that the size of inference items

could be exponential to the grammar size. The column “right-recursion” indicates if

grammars with right recursion are accepted by the approach.

 Soundness Completeness Complexity Right-Recursion

FSAC yes Yes)1)((2 >mnO m Yes

GPC yes y/n)(2nO Yes

NS yes Yes unknown No

Table 6-1 Criteria check of comparison approaches

Both FSAC and GPC approaches provide the right results in cases of assessing two

grammars as similar.

The approach FSAC is also complete, meaning similar grammars are always

assessed as similar by the algorithm.

The GPC approach does not give 100% completeness because of the approximation

of recursions. Nevertheless, it suffices for applications in area of spoken dialog

systems, because humans tend to produce natural utterances with much more

simple structures for less cognitive loads. Both algorithms provide the right result in

case of declaring two grammars as similar and both algorithms are capable of

handling right-recursive grammars.

The FSAC has a higher complexity than GPC; the algorithm of FSAC is also more

complicated and non-trivial than the one used in GPC. The main complexity of FSAC

130

is the constructing of a finite-state automaton from a strongly regular context-free

grammar, which is actually superfluous if two grammars have no common

expressions at all. The greater efficiency achieved by GPC over FSAC comes from

the early consideration of the sameness problem in the comparison approach. The

FSAC has a bearing on higher complexity regardless of the question of whether two

grammars are similar at all. Most grammars used in spoken dialog systems are either

disjunctive or identical, so the high complexity is well avoided by reducing redundant

enumerations in the GPC approach.

The NS approach is interesting but excludes recursive grammars, and so is not

suited for many relevant use cases in practice.

Therefore, I propose to use the GPC approach for comparing grammars in dialog

systems to determine functional or semantic overlaps in different dialog systems. I

have also developed a prototype for empirical experiments. The comparison

algorithm involved in the combining process will be described in the next chapter.

Based on thorough experiments on different grammars used in practical dialog

systems, the GPC approach has been proven to be efficient in real-time and

sufficient for different grammars.

131

Chapter 7

Combining Different Speech User
Interfaces

An integrated speech user interface for different applications is often referred to as a

“voice portal”. A voice portal allowing for simultaneous access to different

applications is supported by a multi-application/multi-domain dialog system. The

process of endowing the corresponding dialog systems with the necessary

information about the actual applications is normally referred to as dialog design.

There exist different models for dialog design, which, however, only aim at single-

domain/single-applications. To date, there is still no very efficient standard dialog

design methodology for developing a “voice portal” for multiple applications. This

chapter describes a novel methodology for constructing a multi-dialog system – a

“voice portal” – for different applications, automatically or semi-automatically, based

on existing single-domain dialog systems.

Different architectures for constructing a multi-dialog system and their advantages

and disadvantages were introduced in Chapter 2. I decided to use the architecture

based on integration at the level of dialog specifications for maximum reusability of

existing resources (i.e. dialog specifications) and minimum complexity for designers

to construct the multi-dialog system based on existing single-dialog systems.

Multi-application dialog systems face problems that have not occurred in the context

of single-domain dialog systems. In Section 7.1 I introduce the concept of a multi-

application dialog system, list some existing approaches to constructing multi-

application dialog systems and declare my criteria for a good multi-application dialog

system. Before I introduce my combination scheme, the requirements for the dialog

systems that are to be combined together will be described in section 7.2. Based on

the definition of dialog systems to be combined, I analyze different combination

scenarios in Section 7.3. In Section 7.4, I elaborate my combination scheme. In

Section 7.5, I explain the special issue of combing context specifications. In Section

132

7.6, I compare my approach with the existing approaches and summarize this

chapter.

7.1 Multi-application Dialog System

A multi-application dialog system also referred to as a multi-domain dialog system is

defined as a dialog system allowing the user to access a set of different applications

simultaneously. Typical applications range from simple tasks such as operating a

home device or booking a flight to more complex tasks such as intelligent traffic

management or smart room-control.

Though dialog-modeling approaches have been extensively exploited in many

research studies, they mostly concentrate on the development of a single-domain

dialog system. Different open architectures of dialog systems supporting multiple

applications/domains have been purposed, but few contributions have been made to

the issue of how to deploy the multi-application supported (or application-transparent)

dialog system to a set of different applications. In other words, it has not yet been

exclusively discussed how the dialog system can be configured with the necessary

information from different applications.

7.1.1 State of the Art

A voice portal enabling access to multiple applications was introduced in Nouza and

Holada [2000]. Different applications are statically modeled as separate tree

branches under the same root node. The dialogs between the user and the system

are navigated in the tree in a menu-based style. The dialog specification is written in

a script, which can be interpreted by the dialog manager. Though the dialog

specification is decoupled from the dialog manager core, extending the system to

new services is not trivial in the static architecture. The user cannot access different

applications transparently. At any time there is only one branch of the tree which is

active thus only one application is accessible. The user has to switch the application

explicitly.

The open architecture of GALAXY-II [Seneff et al., 1999] developed in the context of

a DARPA project addresses the issue of multiple applications. Different applications

are controlled by different dialog managers individually and a meta-dialog manager is

applied for managing all dialog managers. Simple domain extension is promised by

this architecture by plugging a new application and its corresponding dialog manager

into the existing system, though this architecture also suffers the disadvantage of

requiring an explicit domain switch for accessing other passive applications.

133

With the appearance of multi-dialog systems, more research studies are striving to

address the problem of easy portability of a dialog system to different domains. In Lin

et al. [1998b], a multi-domain dialog system is introduced. The advantage of this

system over the existing GALAXY-II architecture is the application of a single dialog

manager in controlling different applications. Each application is described by a Task-

Description-Table, which provides the necessary information about the application for

the dialog manager. The dialog manager can host different Task-Description-Tables

in runtime, so that different applications can be addressed. Domain extension means

the implementation of the appropriate Task-Description-Table (TDT) and the

integration of this TDT in the dialog manager. Domain switch is realized as activating

the corresponding Task-Description-Table by the dialog manager. No meta-dialog

manager is needed in this approach. However, at each time there is at most only one

TDT active, so that only one application is accessible. The domain switch requires

also an explicit command uttered by the user.

Very similar to the approach introduced by Lin et al. [1998b], an approach for

dynamic multi-domain dialog processing is introduced by Pakucs [2003]. This

proposed multi-domain dialog system focuses on dynamically extending the dialog

systems with new applications. In this system, each domain is specified by a dialog

specification, which is collected in a component named “dialog specification

collection”. The dialog manager can interpret the content of the dialog specification

collection in runtime and address the right dialog specification to enable the user to

access the desired application. New domains can be easily plugged into the system

at runtime by providing the corresponding dialog specification. A dynamic domain

switch is enabled, but an explicit “switch command” such as “switch to the application

A” from user is still necessary.

An advanced approach following a similar architecture as in Lin et al. [1998b] and

Pakucs [2003] is introduced in Bui et al. [2005]. This approach brings different

applications together into one dialog system by arranging existing dialog

specifications of each application automatically into an application hierarchy. Based

on the description provided by the dialog specification of each application, the

similarity between two applications is calculated. According to the similarities, the

applications are clustered in a binary tree with the most similar applications clustered

under the same node in the tree. Given a user utterance, the similarity between the

utterance and all applications are computed. If the difference between the highest

similarity value and the next similarity value is beyond a predefined threshold, the

desired application is determined to be the one with the highest similarity value.

Otherwise the dialog system navigates along the binary tree with clarification dialogs

134

until the intended application is reached. The outstanding part of this multi-application

dialog system against existing systems is the transparent application switching. All

applications are active at any time in the dialog, so the user can navigate the

application hierarchy to access different applications with the help of the dialog

system simultaneously and does not have to switch the active application explicitly by

some predefined command.

An agent-based multi-application dialog system based on information state [Larsson

& Traum , 2000] is introduced in Vrugt et al. [2004]. This system supports multiple

applications by adopting an application-independent knowledge processing

management system. Modular ontological descriptions for different applications are

provided as dialog specifications. By integrating these descriptions, transparent

access to different applications is enabled by the system. By using a common

ontology space for all applications, the system supports reuse of knowledge of the

same ontology type across applications.

Most existing multi-application dialog systems aim only to support more than one

application within the same dialog system. Transparent domain switch [Bui et al.,

2005] and information sharing across different applications [Vrugt et al., 2004] have

been focused on in several research studies. A very important issue in multi-

application dialog systems is the task sharing problem. This has not yet been solved

by any study: it is addressed as future work in Bui et al. [2005].

7.1.2 Criteria

There are no other standard requirements for a multi-application dialog system than

to support multiple applications in one dialog system. But a good multi-application

dialog system should be more flexible and intelligent. From the existing research

work, we can also see these trends. In this section, I analyze the important features

of a multi-application dialog system with respect to the issue of “multiple

applications.”

One important feature, which is also addressed by much recent research, is the

domain extensibility. A multi-application dialog system should be able to be extended

by new applications as simply as possible. It means that for the extension of new

applications, no modification will be needed in the core of the dialog system. Only the

description of the new application is needed, or, additionally, the corresponding

dialog manager, if the dialog manager based multi-application dialog system is

adopted.

As it acts as a speech user interface general to different applications, transparent

access to different applications needs to be supported by the voice portal. This

135

means the user can access any function of any application at any time

simultaneously without having to name the right application. An explicit application

switch may increase the cognitive load and decrease the flexibility and naturalness of

a dialog system. Among many research studies, only the approach presented in Bui

et al. [2005] achieves this feature.

Furthermore, a set of applications under the same voice portal is actually more than

just a set of independent units. Rather, there can be cross-application functions or

cross-application information. It means different applications may provide the same

function for the user or share some common information. The voice portal should

actually solve the interoperability problem between different underlying applications.

Only in this way can the multi-dialog system act as a harmonic front-end to different

applications. To my best knowledge, this issue has not been solved by any

approaches yet and is addressed as future work in Bui et al. [2005].

In summary, a multi-application dialog system allows the user to access different

applications within the same dialog system. The criteria for a good multi-application

dialog system are domain extensibility, transparent access to different applications,

interoperability of different applications in regards to the issues of task and

information sharing. There is no existing approach which satisfies all these criteria. In

the following sections of this chapter, my novel approach to solving all these issues

will be introduced.

7.2 Requirements on Dialog Systems

Before I introduce the detailed combination scheme, I declare the requirements on

the dialog systems adopted for the “voice portal” in this section.

I do not intend to combine dialog systems following different dialog models, but rather

I aim to combine dialog systems written in the same language and following the

same dialog model. In other words, different dialog systems to be combined with my

approach are distinguished from each other only in the application specific parts – i.e.

the dialog specifications for different applications. Since most spoken dialog systems

strive to support as many applications as possible, this assumption does not make an

obvious restriction on the combinable applications.

The spoken dialog system adopted must be application-independent. This means

that it is possible to port the spoken dialog system to a new application without any

modification in the core of the spoken dialog system. Despite the possible

architecture of the meta-dialog manager, this can only be achieved by separating the

domain-independent dialog management component from the domain-dependent

136

knowledge. Porting the dialog system to a new application means exchanging the

domain-dependent knowledge, which is often referred to as dialog specification for

the domain/application.

Further, the spoken dialog system must be capable of supporting multiple tasks in

one dialog in order to support different tasks from different applications in the voice

portal.

The domain-dependent description such as that of the dialog specifications must be

defined formally and declaratively. An example is VoiceXML [McGlashan et al., 2003]

or DIANEXML [Block et al., 2004]. Because only declarative specifications can be

compared and merged, while native coding e.g. program codes implementation is not

appropriate for these issues. Further, the dialog specifications should be task-

oriented. This means an application is modeled as a set of tasks. Only in this way

could we analyze the application according to the task sharing and information

sharing among them.

In Chapter 3, I analyzed different classes of dialog modeling approaches and argued

that the frame-based dialog modeling approach is the most suitable one for the

combination issue. In Chapter 4, I gave an example of a dialog modeling approach

which can describe an application declaratively and formally.

The combination scheme introduced in the following sections is based on the

assumption that a frame-based spoken dialog system is used to support a set of

applications whose dialog specifications are defined formally and declaratively. My

combination scheme aims to combine exactly this set of systems.

7.3 Combination Scenarios

To combine two applications, there are different scenarios owing to the different

dependencies between these applications. In this section, I discuss how to compare

two applications and define different relations of two applications.

7.3.1 Essential Application Information

There are many elements in the dialog specification of an application. However, not

all of them represent the essential information of an application. Some elements are

only used for dialog design, so they are not crucial in the process of determining the

relations of two applications. In this subsection, I analyze which part of the dialog

specification represents the essential information of an application.

An application can be defined by the following form according to the dialog modeling

approach proposed in Chapter 4:

137

>=< },...,{},...{ 1,2,1 mn CCTTTA

>=< PostSYSCSTRPPROMPTPREtgIDTi ,,,,,,,

},...{ n21 preprePRE =

},...,{ n11 promptpromptPROMPT =

},...,{ 3n1 cstrcstrCSTR =

},...,{ 4n1 syssysSYS =

},...,{ 5n1 ppP =

>=< iiiiiii InferdgigPPROMPTBOOLPIDp ,,,,,

},...,{ 1 niii bbBOOL =

},...,{ n1i1ii ppromptppromptPPROMPT =

APostSYSCSTRPPROMPTPREtgIDTwhereIDTID
TIDTIDTIDC

ii

lii
>∈=<=

=
,,,,,,, ,

},...,...{ 1

A dialog specification representing an application may contain a context

specification },...,{ 1 mCC . The context specification can be regarded as an extra part

of the dialog specification of an application, and I consider the combination issues of

contexts and transactions separately. In the main combination scheme, I ignore the

context specifications inside a dialog specification and consider an application in the

form of a transaction specification }...{' ,2,1 nTTTA = . In section 7.5, I discuss the

combination issue of context specification separately.

A (backend) application is modeled as a set of transactions (frames) in the view of a

speech dialog system. Each transaction represents an atomic function provided by

the backend application.

The essential part of a transaction is represented by its trigger grammar and

parameters.

A trigger grammar defines all possible natural utterances which can indicate the

corresponding transaction directly. For example, the trigger grammar for a

transaction “flight reservation” would comprise phrases as “book a flight”, “reserve a

flight”, “make a flight reservation”, etc. The trigger grammar of a transaction is

functionally similar to the ID of a function, which can be used to refer to the

transaction/function in a speech application/program unambiguously.

The parameters of a transaction represent all necessary information required in order

to invoke the corresponding function in the backend application. For example, in

order to book a flight, parameters such as “departure city”, “departure date”,

“departure time”, “destination city”, etc. are required information for performing flight

reservation transactions in the backend application.

138

The essential information of a parameter is again specified by its grammars –

initiative grammar (ig) and dialog grammar (dg). The initiative grammar serves to

understand the parameter value if the user provides the input initiatively, while the

dialog grammar is used to understand the user’s answer when the system asks

about a parameter in dialog.

In a user initiative utterance, where the initiative grammar is adopted, the system

does not know which parameters will be addressed by certain utterances, so inputs

for different parameters must be disambiguated from each other. For example, in the

sentence “I want to fly to Paris from Munich via Frankfurt” for a flight reservation,

“Paris”, “Munich” and “Frankfurt” are all cities, but they are indicated by their

prepositions to be “destination city” (“to”), “departure city” (“from”) and “transfer city”

(“via”). For this user initiative situation, initiative parameter grammars are used to

interpret the sentences. Obviously, in any one transaction initiative grammars for

different parameters are always unique. Otherwise, it is unrealistic to distinguish

different parameter values from each other in one utterance.

The dialog grammar is used when the system asks the user about the value of a

parameter in the dialog. In this situation, a certain parameter is focused, so this

parameter must not be designated by the “indicator” any more. For example, when

the system asks the user “where are you flying to?” the user can simply answer

“Paris” without “to”. Therefore, the dialog grammar is more relaxed than the initiative

grammar. And, actually, the language defined by the dialog grammar is a part of the

language defined by the initiative grammar without indicating words. In one

transaction, different parameters may have overlapping dialog grammars. For

example, dialog grammars for “departure city”, “arrival city” and “transfer city” can all

comprise different city names such as “Paris”, “Munich”, etc without any preposition

such as “to”, “from”, “via”, etc. The dialog grammar is quite similar to the data type

used in program language. A data type tells if a parameter is of type integer or

Boolean, etc and a dialog grammar tells whether a parameter is of type CITY, DATE

or TIME, etc.

The dialog grammar defines the actual values of a parameter, whereas the initiative

grammar tells us more about what a parameter actually is - the semantic concept of a

parameter. So, the initiative grammar is more specific and representative for

representing what a parameter is in the context of transaction. So I propose to use

initiative grammars to represent the essential information of a parameter in a

transaction and dialog grammars for representing the essential information (the value

range) of a parameter in general sense.

139

The other elements such as PROMPT, PRE, CSTR, SYS etc. of a transaction serve

to support the dialog management of a spoken dialog system. Nevertheless, these

elements also provide some useful information about the function of a transaction.

However, due to the ambiguity of natural languages and various possibilities of

natural language expressing the same meaning, comparison of these elements gives

only very weak evidence for the dependency of the corresponding transactions.

So an application can be regarded as a set of transactions indicated by its trigger

grammars, and consists of a set of parameters. The parameters in the transactions

can be further represented by their initiative grammars. Further, the dialog grammars

of different parameters represent the value ranges of different parameters and the

actual value needed to execute various transactions in an application respectively.

Therefore, the dialog grammars can represent the essential information of an

application, which is required to be input by the user. In fact, dialog grammars can be

regarded as a part of the initiative grammars, but in order to represent the essential

required user input of an application, I propose to consider the dialog grammars

instead of initiative grammars.

The following figures illustrate the process of extracting the essential form of a dialog

specification:

Figure 7-1 Extraction of essential transaction specification from an application

Application

'A (Transaction
Specification)

T1

Tn

……

Contextual
Relation of
Transactions

 C1

Cm

……

'A (Transaction Specification)

Tn

T1

……Essentialize

140

Figure 7-2 Extraction of the essential information of a transaction

'A (Transaction Specification)

Tn

T1

……

Essentialize
IDi

tgi

PREi

PROMPTi

Pi

CSTRi

SYSi

Posti

Ti

''A (Transactional essentilized
specification)

Tn

T1

……

tgi

Pi

Ti

141

Figure 7-3 Extraction of the essential form of a parameter

''A

tgi

Ti

T1

Pi

Tn

……

Pim

……

pi1

pik
IDik

BOOLik

PPROMPTik

igik

dgik

Inferik

Essentialize

tgi

Ti

T1

Pi

Tn

……

Pim

……

pi1

pik

igik

dgik

'''A (essentialized at

 transaction and parameter level)

142

Figure 7-4 Restructuring of the essential form of an application into ET (Essential

Transaction part) and EI (Essential information part)

More precisely, the essence of an application can be extracted into two parts – the

essential transaction part and the essential information part. The transaction part

consists of a set of transactions represented by their trigger grammars and initial

'''A

T1

Ti

tgi

pi1

pik

igik

dgik

Pim

……

Tn

……

T1

Ti
tgi

Tn

……

Pigi

igi1

……
igim

igik

 Pdgi

dgi1

……
dgik

dgim

Pdg1

……

Pdgn

ET (Essential Transaction)

EA (Essence of Application)

EI (Essential Information)

Restructure

143

parameter grammars, and the information part consists of a set of information items

represented by the parameter dialog grammars:

>=< EIETAEssence ,)(

)}(),...,({ 1 nTETEET =

>=< iii PigtgTE ,)(},...,{ 1 imii igigPig =)1(ni ≤≤

},...,{ 1 nPdgPdgEI =

},...,{ 1 imii dgdgPdg =)1(ni ≤≤

),,,...,},,...,1{,),...,...,((>=<=∈= InferikdgikigikIDikpimpipiPAPostiPitgiIDiT

For the sake of understanding, let us consider a simple application example:

Assume an application consists of two transactions – “transport dinnerware from a

room to another room” (TD) and “turn on the light in a room” (TL).

The first transaction TD will be modeled as the following:

 The trigger grammar for TD (TRANSPORT) defines phrases such as “transport”,

“carry”, etc: } etc. ,carry"",transport""{=TRANSPORT

 TD has three parameters – dinnerware, first room, second room.

 The initiative grammar and the dialog grammar (WARE) for the “dinnerware” are

the same. They defines all transportable dinnerware such as “plate”, “bowl”,

“fork”, etc: } etc. ,fork"" ,bowl"",plate""{=WARE

 The initiative grammar for the “first room” (FROMROOM1) defines possible

expressions such as “from the kitchen”, “from the dining room”, etc. The

corresponding dialog grammar (ROOM1) defines all possible values for the

rooms such as “kitchen”, “dining room”:
 etc.} ,room" dining thefrom" ,kitchen" thefrom{" 1 =FROMROOM

etc.} ,room" dining " ,kitchen" {" 1 =ROOM

 The initiative grammar for “the second room” (TOROOM2) defines possible

expressions such as “to the kitchen”, “to the dining room”, etc. The

corresponding dialog grammar (ROOM2) defines all possible values for the

rooms such as “kitchen”, “dining room”.
 etc.} ,room" dining theto" ,kitchen" theto{"2 = TOROOM

etc.} ,room" dining" ,kitchen"{" 2 =ROOM

The second transaction TL will be modeled as the following:

 The trigger grammar for TL (TURNON) defines phrases such as “turn on the

light”, “switch on the light”, etc:
 } etc. ,light" on theswitch ",light" on theturn "{=TURNON

 TD consists of one parameter – room.

144

 The initiative grammar of “room” (INROOM3) defines possible expressions such

as “in the kitchen”, “in the dining room”, etc. The corresponding dialog grammar

(ROOM3) defines all possible values for the rooms such as “kitchen”, “dining

room”.
etc.} ,room" dining in the" ,kitchen" in the{" 3 =INROOM

etc.} ,room" dining" ,kitchen"{" 3 =ROOM

The essence of this application can be represented in the following structure:

>=< EIETAEssence ,)(

}3
,}2,1,{,{

><
><=

}NROOMTURNON, {I
TOROOMFROMROOMWARETRANSPORTET

}}3{},2,1,{{ ROOMROOMROOMWAREEI =

7.3.2 Scenario Overview

When combining two different speech applications, their dependency can be

determined by comparing their essential information.

Assume that two applications are expressed in the form introduced in the last section:

>=< 1,1)1(EIETAEssence

>=< 2,2)2(EIETAEssence

Comparison of these applications involves the comparison of the transaction parts

and information parts.

Comparing two transaction parts with each other means comparing the essential

information of each transaction T (>=< PigtgTE ,)() in one application with each

transaction in the other application. If there are similar transactions in two

applications, the transactions parts are regarded as overlapping:

)]2()1([2)2(,1)1(21 TETEETTEETTEETET ≈∈∈∃↔≠ φI

If two applications provide similar transactions in their speech user interfaces, it

means the actual functions executed by the applications are similar. I refer to this

scenario as functional overlap. Section 7.3.3 elaborates this scenario in detail.

Comparing two information parts with each other means comparing each dialog

grammar dg1 in one application with each dialog grammar in the other application. If

there are similar dialog grammars, the information parts are regarded as overlapping:

]21[22,1121 dgdgEIdgEIdgEIEI ≈∈∈∃↔≠ φI

If two applications have similar dialog grammars, it means the applications can

probably share the information represented by the parameters with the similar dialog

grammars. I refer to this scenario as semantic overlap. Section 7.3.4 elaborates the

scenario of semantic overlap in detail.

145

If there is no dependency in both parts, two applications are disjunctive. This

scenario will be introduced in Section 7.3.5.

Table 7-1 gives an overview of all possible scenarios when combing two applications:

 φ=21 ETET I φ≠21 ETET I

φ=21 EIEI I Disjunctive applications Functional overlap

φ≠21 EIEI I Semantic overlap Functional overlap and

Semantic overlap

Table 7-1 Combination scenario overview

For formal expression, I have adopted the symbol≠ to represent that two transactions,

parameters or grammars in the context of dialog modeling are not similar. The

following convention is assumed in the formal expressions introduced in the rest of

this thesis, when objects A and B are transactions, parameters or grammars:

)(BABA ≈¬↔≠

7.3.3 Functional Overlap

If the transaction parts of two applications have overlap with each other, we say

these applications have functional overlap. This overlap consists in similar

transactions defined in both applications.

The functional overlap of two applications can be formally defined as the following:

]
21

[
2211

 overlap functional has 2 and 1
TTA,TAT

 AA

≈∈∈∃

↔

The similarity of two transactions can be determined by the similarity of their trigger

grammars, because trigger grammar is an indicator for the actual function provided

by a transaction. The similarity of trigger grammars has been defined in Section 6.

For example, a transaction with trigger grammars containing phrases such as “flight

reservation”, “reserve a flight” and “book a flight”, and a transaction with trigger

grammars specifying phrases such as “flight reservation” and “reserve an air ticket”

are functionally similar – both provide a service of “flight reservation”. Based on the

assumption that each trigger grammar always defines as many key phrases as

possible to enable a flexible natural interaction, I state two transactions as

functionally similar only when there is at least one common key expression defined in

their trigger grammars.

>=< 111 ,)(PigtgTE },...,{ 1111 nigigPig =

146

>=< 222 ,)(PigtgTE },...,{ 2212 migigPig =

2121 g TT tgt ≈↔≈

)]()([g 2121 tgLwtgLwwtgt ∈∧∈∃↔≈

To determine the similarity of two transactions, only the trigger grammars are

required. The similarity of trigger grammars is sufficient to indicate the fact that two

transactions are similar. However, depending on the corresponding parameter sets

represented by the initiative dialog grammars Pig, there are different kinds of

“similarity”.

Comparing two sets of initiative grammars means comparing each grammar in one

set with each grammar in the other set. Two grammars are compared with respect to

their similarity. Based on the introduction in Section 6, two initiative grammars are

similar if they have at least one common expression as an intersection.

)]()([2121 igLwigLwwigig ∈∧∈∃↔≈

Based on the similarity comparison of each pair of initiative grammars, four different

relations between two sets of initiative grammars can be drawn out. The following

decision tree illustrates these relations as a complete logical case analysis.

147

Figure 7-5 Different relations between similar transactions

In the following sections, I discuss each relation in detail.

7.3.3.1 Identical transactions

Similar transactions are identical if they consist of exactly the same number of

parameters and their parameters are one-to-one similar. For example, System A

provides a transaction et1 to search its address book for a contact with name and

last name as parameters. System B provides a transaction et2 to search its

corresponding address book for a contact with name and last name as parameters

as well. We say et1 and et2 are identical. This relation can be defined by the

following form:

][
][

212211

211122

21

igigPigigPigig
igigPigigPigig

nm
tgtg

≈∈∃∈∀
∧≈∈∃∈∀

∧=
∧≈

>=< 111 ,)(PigtgTE },...,{ 1111 nigigPig =

>=< 222 ,)(PigtgTE },...,{ 2212 migigPig =

2121 similar are T ndT tg tga ≈↔

][, 21 ji igigji ≈∃)1,1(mjni ≤≤≤≤

Disjunctively
similar

)1,1]([, 21 mjniigigji ji ≤≤≤≤≈∃∀

)1,1(

][, 21
mjni

igigij ji
≤≤≤≤

≈∃∀

General-Specific
(et2,et1)

General-Specific
(et1,et2)

complementary

)1,1(

][, 21
mjni

igigij ji
≤≤≤≤

≈∃∀

Yes No

Yes

Yes
Yes

No

No
No

Identical

148

7.3.3.2 General-specific transactions

Two similar transactions et1 and et2 have a general-specific relation, if transaction

et1 is more specific than et2. This is the case, if et1 has more parameters and each

parameter involved in et2 has a similar parameter in et1. For example, system A

provides a transaction et1 for hotel reservation with parameters city, date, duration,

room type and smoking room. And system b provides a transaction et2 for hotel

reservation with parameters city, date, duration and room type. The transaction et1 is

therefore more specific than et2, because it allows the user to specify his wish more

specifically. This relation can be defined by the following form:

][211122

21

igigPigigPigig
nm
tgtg

≈∈∃∈∀
∧<

∧≈

Pgr1i

ig1m

….

T1

Pgr2j

ig2m

….

T2

…

ig1n

ig11

ig1i

T1

ig21

ig2j

T2

tg1 tg2
≈

≈

ig11

ig1i

ig1n

….

T1

ig21

ig2j

ig2m

T2

….

tg1 tg2≈

≈

149

7.3.3.3 Complementary transactions

Two similar transactions are complementary to each other if each transaction has

some specific parameters which are not considered in the other one. For example,

System A provides a transaction et1 for searching a contact in address book with

“first name”, “last name” or “nickname” as parameters. System B provides a

transaction et2 for searching a contact n address book with “first name”, “last name”

or “telephone number” as parameters. The transactions et1 and et2 are therefore

complementary, because et1 requires/allows the user to enter a nickname and et2

requires/allows the user to enter a telephone number for searching. The transactions

et1 and et2 are functionally similar, but both have some specific parameters, which

are not contained in the other transaction. No single one can replace the other one.

This relation can be defined by the following form:

][,
][,
][,

212211

212211

211122

igigPigigPigig
igigPigigPigig
igigPigigPigig

≈∈∃∈∃
∧≠∈∀∈∃
∧≠∈∀∈∃

7.3.3.4 “Disjunctive similar transactions”

Two similar transactions are disjunctive if they have no similar parameters at all. For

example, transaction et1 for “weather information” with parameter “city” and “date”

and transaction et2 for “contact search” with parameter “first name” and “last name”

are disjunctive. This case is however not realistic in practice, because two

transactions are already judged as similar based on the comparison of their trigger

grammars. It could only happen if the similarity of trigger grammars is caused by the

ambiguity of natural languages. For example “book” as “something to read” is judged

to be the same as “book” with the meaning of “reservation”. Particularly, such two

Pgr1i

Pgr1k

….

T1

Pgr2j

Pgr2k

….

T2

…

ig1n ig2m

…

Pgr1i

ig1k

….

T1

Pgr2j

ig2k

….

T2

ig11

ig1i

T1

ig21

ig2j

tg1 tg2≈

≈

150

transactions cannot be treated as similar, and they are independent from each other.

This problem can be solved by involving the human designer, who features in the

domain knowledge of both transactions/applications. In the next section, I propose an

interactive combination tool for this kind of cooperation.

This relation can be defined by the following form:

][, 211122 igigPigigPigig ≠∈∀∈∀

In summary, the similar transactions of two applications can be categorized into four

types: identical transactions, general-specific transactions, complementary

transactions and disjunctive similar transactions. The corresponding figures show

intuitively that these scenarios include all possible functional overlapping scenarios.

7.3.4 Semantic Overlap

If the information parts (EI) of two applications have overlap with each other, we say

these applications have semantic overlap. This overlap is due to the similar

parameters required in both applications. In this consideration, each parameter is

regarded as an individual object, not as an element of a transaction. The dependency

between two parameters should thus be determined by the similarity of their dialog

grammars. If the dialog grammars of two parameters are similar according to the

definition in Section 6, the represented information is related, so two applications

could share this information appropriately. For example, there is an application

"hotel" and an application "flight". The application "hotel" provides a function "hotel

reservation". The application "flight" provides a function "flight reservation". These

two applications do not have any functional overlap with each other. However, the

dialog grammar of the parameter “destination city” of the flight contains expressions

such as “Munich”, “Berlin”, etc. The dialog grammar of the parameter

“accommodation city” of the hotel contains city names such as “Berlin”, “Frankfurt”,

etc. Based on the overlapping city “Berlin” in both grammars, the parameter

“destination city” and the parameter “accommodation city” can be considered as

ig11

ig1i

….

ig21

ig2j

….

ig1n ig2m

T1 T2T1 T2T1
tg1 tg2≈

≠

151

related and the applications can share the city information mutually. Similarly, the

“arrival date” of the flight and the “hotel check in date” are similar and the “return

date” of the flight is a semantic overlap with the “hotel check out date”.

The semantic overlap of two applications can be formally defined as the following:

)]()([21

 overlap semantic has 2 and 1
mTEnTEmjdgnidgAmj,dgAnidg

 AA
≠∧≈∈∈∃

↔

The expression)()(
m

tE
n

TE ≠ means that the semantic overlap are not considered in

case of functional overlaps. If two transactions are indicated as similar, their

corresponding information items (the corresponding dialog grammars) will no longer

be compared with respective to the semantic overlap.

7.3.5 Disjunctive Applications

Two applications are disjunctive if there are no overlaps in their transaction parts and

information parts. It means that there is no functional overlap and no semantic

overlap between two applications.

Based on the introductions in the last two sections about functional and semantic

overlap, the following definition for disjunctive applications can be obtained:

]21[]21[
]2,2)2([]1,1)1([edisjunctiv are 2 and 1

φφ =∧=∧

>=<∧>=<↔

EIEIETET
EIETAEssenceEIETA EssenceAA

II

])21[22,11(21 etetETetETetETET ≈∈∈∃¬↔=φI

])21[22,11(21 dgdgEIdgEIdgEIEI ≈∈∈∃¬↔= φI

For example, the applications “intelligent home environment” and “remote access to

information database” [Neto et al., 2003] are disjunctive applications. They do not

provide any similar functions and or have any shared information with each other.

7.3.6 Scenarios Summary

In Section 7 above, all possible combination scenarios have been discussed. In order

to demonstrate the completeness of these scenarios, the following table lists all

scenarios together. The formal definitions show that all possible relations between

two applications have been covered by these scenarios.

Scenario Definition Example

Disjunctive
][2,1

][21

mdgkdgAmdgAkdg

jetietAj,etAiet

≠∈∈∀

∧≠∈∈∀

intelligent home

environment and remote

database access

152

Functional overlap (FO)

>=<

>=<

≈↔≈∈∈∃

jPigjtgjet
iPigitgiet

jtgitgjetietAj,etAiet

,

,

][21

contact search in A1

(CS1) and contact search

in A2 (CS2)

Identical

Transactions ∧≈∈∃∈∀

∧≈∈∃∈∀

]21[12

]21[21

igigiPigigjPigig

igigjPigigiPigig

CS1 with parameter “last

name” and “first name”

CS2 with parameter “last

name” and “first name”

General-Specific

Transactions]21[12

]21[21

igigiPigigjPigig

igigjPigigiPigig

≠∈∀∈∃

∧≈∈∃∈∀

CS1 with parameter “last

name” and “first name”

CS2 with parameter “last

name”, “first name” and

“telephone number”

Complementary

transactions]21[2,1

]21[2,1

igigjPigigiPigig

igigjPigigiPigig

≠∈∃∈∃

∧≈∈∃∈∃

CS1 with parameter “last

name”, “first name” and

“email address”

CS2 with parameter “last

name”, “first name” and

“telephone number”

Disjunctive

similar

transactions

]21[2,1 igigjPigigiPigig ≠∈∀∈∀

Unrealistic scenario

Semantic Overlap][21 jdgidgAj,dgAidg ≈∈∈∃
 “city” of hotel reservation

and “destination” of flight

reservation

Table 7-2 Scenarios for combining two speech applications

7.4 Combination Schemes

The combination approach proposed in this dissertation is inspired by the idea that

different transactions from two dialog specifications can be merged together into one

unified dialog specification:

},...,,{ 112111 nTTTA = },...,,{ 222212 nTTTA =

}2,...,22,21,1,...,12,11{21 nTTTnTTTAA =+

A dialog system supporting 1A and 2A supports the unified dialog specification

naturally. Obviously, this basic idea can only be applied to the disjunctive

153

applications without any overlaps. Since there are no overlaps between different

transactions, no other modification is needed for the merging process.

In more sophisticated combination scenarios as described in the last section, certain

handling modifications to the transactions are required for constructing a useful

unified dialog specification. These handling modifications cannot be performed

completely automatically by the computer, and some assistance from the designer is

required in the combination process. Therefore, I have constructed an interactive

combination tool to enable a semi-automatic merging process.

In the next section, I elaborate this merging process.

7.4.1 Combination Process

Constructing an integrated speech user interface completely automatically is not

possible, because the specific domain information is not provided, e.g. it is not known

how two “price information” transactions should be merged together – simply keep

only one and remove the other, or merge two transactions in a specific way. Neither

is it known that the “destination city” of “flight reservation” (i.e. not the “departure city”

of “flight reservation”) is the same as the “accommodation city” of “hotel reservation”,

even when the semantic overlap can be assessed based on grammar comparison.

One way to solve this problem is to use a common knowledge basis for all

applications such as the technology used in Semantic Web [Decker et al., 2000].

Using a semantic web, the computer can not only represent given contents but also

understand them by mapping the contents to standard definitions in the semantic

web. By connecting semantics used in the dialog specification to some standard

defined in a semantic network, the identification of two terms can be formally

assessed. However, building such a knowledge base for an enormous range of

different applications tends to be a very complex research undertaking, which goes

beyond the scope of this dissertation. Moreover, the dialog specification of an

application already gives a formal and declarative description, except for the use of

different words and meaning in the specification of grammars, and this is in fact due

to the ambiguity of natural languages. So, I propose that the most efficient way of

assessing the right relationship between two concepts described in natural

languages is to let the human support the computer.

Therefore, I propose a semi-automatic combination process to involve the dialog

designer, who holds domain specific knowledge, to support the computer with the

sophisticated merging scenarios, and, further, suggest in the next section a

combination tool to make this process as automatic as possible.

154

There are four main steps in the semi-automatic combination process. The following

figure illustrates this process. In the next sections, I elaborate each step in detail.

Figure 7-6 Combination process of the combination tool

7.4.1.1 Application preparation

Given two speech applications based on the same dialog model, the combination tool

generates a unified dialog specification from their individual dialog specifications.

The dialog specifications will first be prepared by the tool for combination. This step

is required for the uniqueness of identities of each transaction and parameter. Each

object in the dialog application has an identity, which is unique in the dialog

155

specification. Without any preparation, merging two dialog specifications might

destroy this uniqueness.

So in this step the tool adds the application identity as a prefix to the identity of each

object in the dialog specification of this application. Different applications have

different identities and the ID inside an application is guaranteed to be unique by the

designer, so by this modification all IDs become unique in the unified dialog

specification.

For example, in the applications “petStore” and “unifiedMessaging” there is a

parameter called “name”. Obviously, in pet store, the “name” refers to a pet’s name

and in unified messaging system the “name” refers to the user’s name. To distinguish

one from the other in the unified dialog specification, the ID “name” in pet store

application will be changed to “petStore_name” and the ID “name” in unified

messaging system will be changed to “unifiedMessaging_name”.

7.4.1.2 Application Comparison

The different dependencies between two applications have been discussed in the

last section. In order to handle these scenarios accordingly, the different scenarios

must be recognized based on the grammar comparison. In the scenario section, the

definition of each scenario has been elaborated, and by means of these definitions, it

is not hard to determine different scenarios automatically.

Recognition of functional overlap

Different kind of functional overlaps were introduced in Section 7.3. Based on the

existing definitions, in order to recognize the functional overlap of two applications,

the trigger grammars of all transactions in two applications must first be compared

with each other. If any similar trigger grammars are determined, the initiative

grammars of the parameters belonging to the corresponding transactions are further

compared with each other. Depending on whether the initiative grammars are

completely identical, or in a super- and sub-set relation, or complementary, the

similarity of the transactions and, respectively, the functional overlap are reported

appropriately. This process is illustrated in the following algorithm:

Procedure FIND_FUNCTIONAL_OVERLAP (A1, A2)

Input: Applications A1 and A2,

A1=<{T11,T12,…T1n},{C11,…C1m}>

A2=<{T21,T22,…T2k},{C21,…C2l}>

156

Output: Set of functional overlaps S={s1,s2..,sn} si =<Type,ID1,ID2>

BEGIN

 S = make a new empty set;

 FOR each ni ≤≤1 DO

 IF]12[itgjtgj ≈∃

 THEN

IF]21[22,11 igigjPigigiPigig ≈∈∃∈∃

THEN

IF (
]21[11,22

]21[22,11
igigiPigigjPigig

igigjPigigiPigig

≈∈∃∈∀∧

≈∈∃∈∀
)=true

 THEN >=< jIDiIDidenticals 2,1,""

 }{sSS U=

 ELSEIF (
]21[11,22

]21[22,11
igigiPigigjPigig

igigjPigigiPigig

≠∈∀∈∃∧

≈∈∃∈∀
)=true

 THEN >−=< jIDiIDspecificgenerals 2,1,""

 }{sSS U=

 ELSEIF (
]21[22,11

]21[11,22
igigjPigigiPigig

igigiPigigjPigig

≠∈∀∈∃∧

≈∈∃∈∀
)=true

 THEN >−=< iIDjIDspecificgenerals 1,2,""

}{sSS U=

 ELSE >=< ji IDIDarycomplements 21 ,,""

}{sSS U=

ENDIF

 ENDIF

 ENDIF

 ENDFOR

END

Figure 7-7 Algorithm for finding functional overlaps of two speech applications

157

Recognition of semantic overlap

The semantic overlap has been introduced and precisely defined in Section 7.3.4.

The semantic overlaps are recognized based on the comparison of dialog parameter

grammars of different transactions in two applications. If two transactions are already

accessed as similar, their parameters will not be considered in the semantic overlap

scenarios. This recognition process is illustrated in the following Pseudo-code:

Procedure SEMANTIC_OVERLAP (A1, A2)

Input: Applications A1 and A2,

A1=<{T11,T12,…T1n},{C11,…C1m}>

A2=<{T21,T22,…T2k},{C21,…C2l}>

Output: Set of semantic overlaps O={o1,o2..,on} oi =<PID1,PID2>

BEGIN

 O = make new set

 S = FUNCTIONAOVERLAP(A1,A2)

 FOR each ni ≤≤1 DO

 IF]2111[2,1,"'" IDiIDIDiIDSIDIDtcaredon ≠∧≠>∈<∀

 THEN

 FOR each iPq 11 ≤≤ DO

 IF (
]21[]22[]11[

)21(),1(

jgdgiqdgjPdgjgdgiPdgiqdg
jPggkjj

≈∧∈∧∈

≤≤≤≤∃
)=true

 THEN >=< PIDgiqPIDo ,1

 }{oOO U=

 ENDIF

 ENDIF

 ENDFOR

 RETURN O

END

Figure 7-8 Algorithm for finding semantic overlaps of two speech applications

7.4.1.3 Handling of Overlaps

The transactions and parameters are compared based on literal grammar

comparison, which is not always exact due to the ambiguity of natural languages.

Therefore the handling of different overlaps has to be interactive, to involve the dialog

158

designer in bringing necessary domain specific knowledge into the combination

process.

I propose a combination scheme for each scenario in the following.

Functional overlap - similar transaction

Two similar transactions provide the same abstract functionality to the user. Their

differences become apparent to the user only in the details of a dialog. For example

one transaction requires/allows more parameter input than another. The transactions

are distinguished from each other only in their execution by different backend

applications. These differences are not transparent to the user, so the user is not

able to distinguish one from the other, and in the case of transaction ambiguity the

user would not be able to address the right one. So, these transactions should be

merged together into one. In addition, the differences should be shifted to the dialog

modeling and execution parts of the merged transaction, so that the merged

transaction represents the two similar transactions in the same way.

Therefore similar transactions from different applications will be merged together in

the following way:

1. Only one single transaction will be generated from two transactions of two

different applications, the new transaction will be given a new unique identity -

new
ID .

2. The new trigger grammar for the merged transaction can be constructed as a

unification of trigger grammars of two similar transactions, because both

grammars define only synonyms for triggering a certain function.

3. Different prompts for the new transaction can be inherited from both original

transactions. Regarding the constraints and system actions, it suffices to

inherit the definition of constraints and system actions from any of two similar

transactions. Because the function is the same, we can assume most

prompts, constraints and system actions are similarly defined in two

applications.

4. Precondition combination:

If the transactions have any preconditions, the new merged transaction

would be accessible if all preconditions for transaction 1t are satisfied or all

preconditions for transaction 2t are satisfied. Therefore, all conditions of the

same transactions are first connected together with logical “and”. Then the

159

conditions of different transactions are connected with logical “or”. The new

condition is built up in this way. There is only one precondition for the new

merged transaction. In order to maintain the necessary help messages in

case of precondition violation, the new message for precondition violation will

be constructed by combining original messages together, e.g. the transaction

“check email” in Application A1 requires the user to be logged in to the

system, and gives the information “You have to login before checking any

email” if the precondition is not fulfilled. Likewise, another transaction “check

email” in Application A2 requires that the user has provided his username,

and gives the information “You have to provide your username first” if the

precondition is not fulfilled. Merging these two “check email” transactions

together with respect to the precondition handling, a new precondition will be

generated consisting of a new condition and a new message. The new

condition defines that the user has to be logged in or has provided his

username. The new message will be constructed as “one of the following

problems occurred – ‘you have to login before checking any email’ or ‘You

have to provide your username first’”.

5. Post-conditions combination:

The construction of the postcondition for the merged transaction depends on

the preconditions of the original transactions. If the original transactions

define some preconditions, in the postcondition these preconditions should

be checked and the corresponding postcondition should be executed only

when the precondition of the corresponding original transaction is satisfied.

If the preconditions of both transactions are fulfilled, the combination tool is

not able to determine how the merged transaction should be executed in

different backend applications, because the same transaction may produce

different results in different applications and it cannot be known in advance

what result will arise in the applications. For constructing the postcondition

part for this purpose, two solutions for automatic generation and a semi-

automatic generation are possible with designer’s cooperation: execution

only in one application, execution in both applications and manual

customization of a new postcondition.

Executing the transaction only in one application means that if both

preconditions are fulfilled, only the postcondition of the chosen application

will be performed accordingly. For example, the transaction “reserve a train

ticket” in Application A1 and another transaction “reserve a train ticket” in

Application A2 are to be combined together. In such a case, it suffices to

160

execute the merged transaction in one application only – for example reserve

the ticket in A1 and inform the user “your ticket has been reserved,”

Executing the transaction in both applications means combining the

post-conditions of both transactions. So for execution of the merged

transaction, the postconditions of both transactions will be called after each

other; e.g. the transaction “login” of an email application and the transaction

“login” of a voicemail application should be merged together and the

transaction should be executed in both applications. At the end of the

transaction, the login will be processed in the “email” application and the

“voicemail” application and the user will be informed about the results by e.g.

the following system prompts:

“In application email, login succeeded; in application voicemail, login

succeeded.”

“In application email, login failed; in application voicemail, login succeeded.”

Manual specification of new postcondition for the merged transaction

aims to produce a better natural system prompt to inform the user about the

transaction execution result. The automatically constructed system prompts in

the above section may sometimes confuse the user and thus cause bad

usability. However, a more intelligent prompt based on the limited knowledge

is not feasible. For this purpose the designer can be involved to construct a

more intelligent post-condition for the merged transaction. In the above

example, the designer could construct the post-condition to form a prompt

“login succeeded” if the login in both applications succeeds, and a prompt

“login failed” if the login in any application fails. In this way the single-sign-on

feature is guaranteed for the user, and there will not occur a prompt such as

“In application email, login succeeded; in application voicemail, login

succeeded. In application email, login failed; in application voicemail, login

failed.”

6. Parameter specification in the merged transaction

There are different scenarios for functional overlaps, and they are

distinguished from each other by their parameter specifications. So the

construction for the new parameter specifications depends on the concrete

kind of similarity.

161

Identical transaction

The parameter specification of two identical transactions is exactly the same,

so the new parameter specification can be inherited from any transaction.

ii pp 1=

General-specific transactions

A specific transaction 1T has more parameters than its general transaction 2T :

},...,,{ 212 npppP =

},...,,,...,,{ 1211 mnn pppppP +=

The different parameters },...,{ 1 mn pp + are a particular specification, which is

only supported by 1T , but not by 2T . For example, two transactions provide a

hotel reservation service. One transaction can handle the user’s request for a

room with ocean view and the other cannot differentiate between one type of

room and another. In this scenario, all mandatory information for a transaction

is actually contained in the general transaction. The more specific transaction

allows the user to make a more specific requirement. These more specific

parameters are thus optional for executing the transactions. So the new

parameter specification would contain all parameters of the general

transactions in the way they are and also include the differentiated parameters

in the more specific transactions as optional parameters. So the user can

specify his/her wish more specifically, but does not have to do so.

}',...,',,...,,{ 121 mnn pppppP +=

>=< InferdgigPROMPTPROMPTBOOLBOOLIDp n11ni ,,},,...,}{,...,{, 1

>=< InferdgigPROMPTPROMPTBOOLBOOLBOOLIDp n11nopti ,,},,...,}{,...,',..{,' 1

trueBOOL opt ='

optBOOL is the Boolean value in the parameter specification to define if a

parameter is optional or mandatory. With a value “true”, this element indicates

that the corresponding parameter is optional, so the system does not require

the information from the user but accept the user’s initiative input for this

parameter.

Complementary transactions

162

Two complementary transactions have common and different parameters.

This is a common scenario for optional parameters. Optional parameters

represent information which is not required but just supported by the backend

application. Two complementary transactions provide the same essential

function to the user, but they may allow the user to make different special

wishes for the same function. For example, two transactions both provide

restaurant information. One can categorize the restaurants according to the

average menu price whereas the other one can distinguish different

restaurants by their cooking style. In this situation, the new merged transaction

can include all optional parameters and allow the user to make any specific

requirements supported by any transaction. The parameter information can

then be sent to the back end application accordingly. Depending on the

designer’s decision of merging post-conditions, the transaction will be

executed appropriately. In these cases, the transactions would be executed by

both systems.

Another possible scenario for complementary transactions is that the

necessary information can be combined by different elements. Each

combination suffices to execute the transaction in the backend application.

For example, two transactions provide the user with the service of looking up

a book. One transaction requires the user to provide the author’s name and

the title of the book, and the other requires the user to provide the ISBN of the

book. For the first transaction, “author name” and “book title” are mandatory

parameters. For the second transaction, “ISBN” is a mandatory parameter. In

this situation, the user only has to provide one set of necessary information.

This problem can be solved by first inheriting all different mandatory

parameters into the new merged transaction. Depending on which group of

parameters is addressed by the user first, the other group of parameters will

all be inferred to a dummy value, so that the system will not ask the user to

provide this information, which is no longer necessary. If the user has

provided the information for “author name”, the system will then inference the

“ISBN” to a dummy value, so the “ISBN” will not be asked for anymore, and

the user is only asked to provide the ”title”. Similarly, if the user has provided

the “ISBN”, the system will inference “author name” and “book title” to an

arbitrary value, so the user will not be asked to provide this information.

The following algorithm illustrates the combination process for merging two similar

transactions as described above:

163

>=< 1,1,1,1},1,...11{,1,1,11 PostSYSCSTRPmprepretgPROMPTIDT

>=< imessageicondition1ipre 1,1

}',...,1',,...,2,1{1 mpnpnpppP +=

>=< 2,2,2,2},2,...21{,2,2,22 PostSYSCSTRPmprepretgPROMPTIDT

>=< imessageiconditionipre 2,22

}...,,,...,,{ ,1212 knn pppppP +=

newTTTcombineTT =↔≈)2,1(21

},1,1,,,1,,{ newPostSYSCSTRnewPnewPREPROMPTnewtgnewIDnewT =

21 tgtgnewtg U=

},{ ><= messageconditionnewPRE

)...()...(2mcondition21condition1mcondition11conditioncondition ∧∧∨∧∧=

mmessageormessageormmessageor
 messagenemessage

2...""21""1...""
11 " :occurs problems following theof O"

+++++++

++=

}''',...,1''','',...,1'',,...,2,1{ mpnpkpnpnpppnewP ++=

>=< iInferidgiigin1PROMPTi1PROMPTinBOOLiBOOLiIDip ,,},,...,}{,...,1{,

>=< iInferidgiigin1PROMPTi1PROMPTinBOOLiBOOLiIDip ',','},',...,'}{',...,1'{,''

trueipiP == ip of optBOOL if ''

 >=< '',,},,...,,...}{1{, iInferidgiigin1PROMPTi1PROMPTiBOOLiID Otherwise

"'"''])"'"[]}[''',...,1'''{('' tcaredoniptcaredonpnullpmpnppifiInferiInfer =≠∧≠+∈∃∪=

trueipiP == ip' of optBOOL if ''''

 >=< ''',',',...},',...}{1'{,' iInferidgiigi1PROMPTiBOOLiID Otherwise

"'"''])'[]}['',...,1''{('''' tcaredoniptcaredonpnullpmpnppifiInferiInfer =≠∧≠+∈∃∪=

)21,2,1ER(ASK_DESIGN
1)2...2(

)...(

PostPostPostPost
PostfalsemCondition1Condition

2Postfalse1mCondition11ConditionIFnewPost

+

==∧∧

==∧∧=

 ELSE

 THEN IF ELSE

 THEN

Figure 7-9 Combination process for merging two similar transactions

This solution for parameter merging has a disadvantage, namely, if the user does not

provide any initial information for one parameter of },...,{ 1 kn pp + or }',...,'{ 1 mn pp + , the

system will ask for the first unknown necessary parameter, and this would be one

of },...,{ 1 kn pp + . It is not possible to switch to the other

possibility }',...,'{ 1 mn pp + afterwards. But this is acceptable; because we assume the

systems all work well before combination, disabling the other possible option after the

164

first system’s question to one deviated parameter does not affect the usability and

function of the transaction.

Similar parameters

Similar parameters might share the corresponding information provided by the user

for them. But not all similar parameters have to share the information with each other.

For example “city” for weather does not have to be the same as “departure city” for

flight even when they both contain city names such as “Munich”, “Berlin”, etc.

Therefore, the designer will be consulted as to whether the judged “information

shared parameter pair” is valid.

In a confirmed case, the parameters should be inferred from each other in some

correlation. The correlation of information-shared parameters can be specified by the

inference rules of each parameter accordingly. The correlation could be a simple

equation or have a more complicated form. In the following form, I adopt f(p) to

express some calculation with p such as “p+2”, “p-3”, etc.
)"1f(2"2)"2f(1"1)2,1(ppInferppInferppmerge ==∧==→

In DIANE, all parameter values in a dialog session are continuously stored in the

engine’s memory. So any parameter value of executed transactions can be accessed

again later in the same dialog session. This memory of the dialog engine is “public

storage”, where the values of different parameters are stored and can be accessed

by different transactions.

Due to the limited domain knowledge of the combination tool, it is not capable of

determining the exact parameter correlation. The designer must assist the

combination tool by telling it the right correlation. If it is just a simple equation, then

the combination tool can automatically generate the corresponding inference rule, e.g.

the city of a hotel reservation would be inferred by the destination city of a flight

reservation, and vice versa.

If the correlation is more sophisticated, the designer has to write the inference rule

manually, e.g. the time of the transaction “wake up call” could be related to the

departure time of a flight in the morning. The two “times” are not identical but are

related to each other. It is normal to get up 2 hours earlier to prepare for a trip, but in

reality the exact time difference may vary from user to user. Such an inference rule is

always domain-specific, and thus must be specified by the designer.

With the general algorithm and inference mechanism, the combination tool can

handle the simple information-sharing cases almost automatically, based on the

designer’s guidance. Due to the limited domain knowledge, which is unavoidable as

165

long as no standard definition of language meaning exists and there is no common

basic reference information layer for all applications, the best I can offer is a

customization in more sophisticated information-sharing cases.

Applications merging and new application construction

After solving all overlaps the applications can be combined, thanks to the basic

combination principle. Disjunctive transactions will all be one-to-one written in the

unified transaction file. Overlapped transactions will be merged and constructed

according to the handling in Step 3. Information sharing will be implemented by

parameter inferences.

7.4.2 Combination Tool

For the interactive combination process introduced in last section, a prototype for an

interactive combination tool has been developed. The following figure illustrates the

control flow of the combination tool:

166

Figure 7-10 The interactive combination tool

White boxes refer to the steps performed by the combination tool automatically. Grey

boxes indicate steps requiring designer’s corporation. The combination tool works as

follows:

1. The combination tool obtains two dialog specifications D1 and D2 as input. Figure

7-11 shows the screen shots of the implemented combination tool for this step:

167

Figure 7-11 Input dialog of the combination tool

2. The tool compares D1 and D2, finds the set of overlaps S which has to be handled.

The overlaps which occur in the combination scenarios are functional overlap, and

semantic overlap.

3. If the set S is not empty, then go to Step 4. If the set S is empty, it means that

there are no overlaps between two speech applications or the overlaps have all been

handled appropriately, so go to Step 7.

4. The tool takes the next overlap O in the set S and asks the designer for a

confirmation if the judged overlap is valid. If the designer declines the judgment, then

this overlap is removed from Set S, and the next move is to go to Step 3. Otherwise

the designer confirms the tool’s judgment, then goes to Step 5. I tested the

combination tool with the case of combining two communication systems –

ComAssistatnt and CorporateConnect – developed as HiPath applications by

Siemens. These two applications have a set of overlaps. One is that both

applications have transactions for logging in. Figure 7-12 shows the screen shots of

this tool for Step 4 when combining these two applications:

168

Figure 7-12 Overlap confirmation dialog of the combination tool

5. The tool makes several handling suggestions for the overlap O. The designer can

either choose one suggestion to solve the overlap, or input a customized modification.

Figure 7-13 shows the screen shots of the combination tool for suggesting the

designer should handle the overlap mentioned above in Step 4.

169

Figure 7-13 Overlap handling dialog of the combination tool

6. The decision in Step 5 will be applied to D1 and D2. The overlap O will be

removed from the set S, then the next move is to go back to Step 3.

7. A unified dialog specification for both applications will be generated according to

the basic combination principle, since all overlaps have been handled in the previous

steps.

In this design the tool cooperates with the designer in order to generate an intelligent

speech user interface with moderate efforts from the designer side.

This combination tool has been developed as a prototype which has been proven to

be fully operational. Different applications have been combined with this tool. There

are complex communication systems developed by Siemens such as ComAssistant,

CorporateConnect and Xpressions, test applications developed by ourselves such as

coffee machine control, light control and also information-providing systems such as

geographic information about Asia and football match results. The combination

results are fully operational in the DIANE dialog system. Based on the generated

dialog specification, the DIANE dialog system can provide an integrated speech user

interface for the user to access the applications directly.

170

7.5 Combination Issues of Context Specifications

The combination issues of context specification are discussed separately because

most frame-based dialog systems do not contain the concept of context specification.

“Context” as an element for dialog specification is somewhat lately introduced in this

dissertation. Compared with transactions or parameters, “context” is not a necessary

element that must be specified in the dialog specification. It is rather a very good

assistance element, with which the dialog between the user and the system can be

constructed more intelligently.

In this section I discuss the combination issue with respective to the element

“context”. In Chapter 4, the helpful specification element context and the

corresponding dialog management mechanism were introduced. With the help of

context specification, the user can express his intention related to the current dialog

context. For example, in an application the user can “delete an Email”, “delete an

SMS”, “read an Email”, etc. With a “context” element, “delete an Email” and “read an

Email” are supposed to be specified in the same context, whereas the transaction

“delete an SMS” will be in a different context from the other two transactions. After

listening an Email by saying “please read the first new email”, the user can delete this

email by saying “delete it” without having to specify “it” to be an Email or an SMS.

This is obvious for the human; however for the computer, without context

specification it is ambiguous.

There are different issues for using the context scheme in an integrated speech user

interface which combines two speech applications with different contexts. In the

following I explain these issues and their solutions accordingly.

Basic Principle
Context Specification

The contextual relations between different transactions do not change because of the

merging. So after merging the transactions of two applications together, the contexts

defined in each application should be retained in the new application.

Concerning the normal work routine of a user, he/she always tends to execute the

transactions in the same application successively. So for each application, a new

context will be introduced to connect the transactions in the same application

contextually. This new context contains all transactions in the corresponding

application. This basic principle can be applied to the disjunctive combination

scenario.

>=< },...{},,...{ 1111111 nn CCTTA

171

>=< },...{},,...{ 2212212 nn CCTTA

>=<+→ },,,...,,...,{{....},edisjunctiv are and 2122111121 21 AAnn CCCCCCAAAA

},...{ 1111 nA TIDTIDC =

},...{ 2212 nA TIDTIDC =

Context specification in case of functional overlap
If there are any similar transactions in two applications, which are merged together in

the integrated speech user interface, the contexts containing these transactions

should be modified accordingly, because the original transactions do not exist

anymore.

After merging two similar transactions T1 and T2 into a unified transaction T3, the

occurrence of T1 and T2 in all contexts should be replaced by T3.

>=<+→≈ }',',',...',',...,'{{....}, 212211112121 AAnn CCCCCCAATT

iiii CTIDCTIDCC ∉∧∉= 21 if '

 iii CTIDCTIDC ∈∨∈+= 21321 if }{TID}TID,{TID-

Adapting the context specification for the integrated speech application, the dialog

system can address the right transaction more efficiently. Through the introduction of

a new context for each application, we simulate the fact that the user normally

prefers to access transactions inside one application, rather than execute cross-

application transactions.

For example, an application A1 consisting of transactions “activate SMS notification

of lottery win” (ASN), “deactivate SMS notification of lottery win”, “buy a lottery ticket”

(BL) and “search a contact” (SC) and an application consisting of transactions

“activate SMS notification of email reception” (ASE), “deactivate SMS notification of

email reception”, “check email”(CE), “search a contact” (SC) and “edit a contact” (EC)

should be combined together. In Application A1, the transactions related to the lottery

are grouped into the same context. In Application A2, the transactions related to

email are grouped into the same context and the transactions related to contact are

grouped into the same context. The original context specifications of both

applications are defined as following:

>=<
>=<

}}"","{"},"","","{{"},,,,,{2

}}"","","{{"},,,,{1
ECSCCEDSEASEECSCCEDSEASEA

BLDSNASNSCBLDSNASNA

When combining A1 and A2 together, two transactions are found to be similar – SC

in A1 and SC in A2. So these two transactions are merged together into a new

transaction SC1.

172

The context specification of the new merged application will be generated into the

following according to the algorithm introduced above:

>=<+ },,,{},,,,,1,,,{ 543,2121 CCCCCECCEDSEASESCBLDSNASNAA

}"","","{"1 BLDSNASNC =

}"","1{"2 ECSCC =

}"","","{"3 CEDSEASEC =

}"1","","","{"4 SCBLDSNASNC =

}"","1","","","{"5 ECSCCEDSEASEC =

The context C1 is inherited from application A1. The contexts C2 and C3 are

inherited from Application A2. The context C4 is constructed to bind the transactions

in Application A1 in one group. The context C5 is constructed to bind the transactions

in Application A2 in one group. The overlapped transactions “SC” in both applications

are replaced by the new ID “SC1” in the contexts of the merged application.

With the help of this context specification, the new version of the DIANE System

which has been created based on the concepts of this thesis and which supports the

enhanced frame-based model can engage in a conversation such as the following:

S: Welcome to the system, how can I help you?

U: I want to buy a lottery ticket …

…. (Dialog for buying lottery ticket)

S: Your lottery ticket has been bought.

U: Notify me by SMS.

(Two transactions are triggered by the utterance “ASB” and “ASE”, due to the active

contexts {C1, C4}, the transaction ASB is chosen without a clarification dialog)

S: The SMS notification for lottery win has been activated.

U: Activate the SMS notification for email reception.

U: Edit a contact.

… (Dialog for contact editing)

U: Deactivate the SMS notification.

 (Two transactions are triggered by the utterance “DSB” and “DSE”, due to the active

contexts {C5}, the transaction DSE is chosen without further clarification, the user

stays in the same application A2)

S: The SMS notification for email reception has been deactivated.

173

7.6 Summary

The combination scheme proposed in this chapter can generate a unified dialog

specification based on the declarative specifications of two applications. This

integrated speech user interface enables speech access to both applications. The

construction of this multi-dialog system is automatic in simple cases and is semi-

automatically supported by a combination tool, which allows for customization by a

dialog designer. More speech applications can be combined together by applying the

same process iteratively to add another speech application to the merged application.

The tool has proven to be fully operational on different non-trivial realistic applications.

Compared with existing multi-domain or multi-application dialog systems, my

approach merges different dialog specifications at the functional layer and thus

enables transparent access to different applications with a normal frame-based

dialog system. The approach also solves the task-sharing and information-sharing

problems, which, due to my best knowledge, are not addressed in other research

studies yet.

The following table compares my approach – Frame-based Multi-application Dialog

System (FMDS) - with two existing approaches for constructing multi-application

dialog systems, which are particularly representative of research focusing on multi-

application dialog systems. One is the meta-dialog manager based Multi-domain

Dialog System (MDMDS) [Seneff & Polifroni, 1999]. The other one is the Application-

based Multi-application Dialog System (AMDS) [Bui et al., 2005].

Automatic
Construction

Transparent
Access

Task sharing Information
sharing

FMDS Y/N Yes Yes Yes

MDMDS No No No No

AMDS Yes Yes No No

Table 7-3 Comparison of different multi-application dialog systems

The automatic construction represents the process to construct a multi-application

dialog system from several single-domain dialog systems automatically without

changing the existing infrastructures. My frame-based approach (FMDS) handles

simple cases without task and information sharing completely automatically. Only in

more sophisticated scenarios is the involvement of the designer required. The meta-

dialog manager in MDMDS must be extended to support a new dialog manager, so

this approach does not support any automatic construction. The AMDS proposed in

174

Bui et al. [2005] constructs an application hierarchy automatically, but the

corresponding scenarios handled here can also be handled automatically in the

FMDS approach.

The transparent access to different applications is supported by both FMDS and

AMDS. An explicit domain switch is required in MDMDS.

The task-sharing and information-sharing problems are so far only considered and

solved in FMDS.

In summary, the combination scheme proposed in this chapter is novel owing to the

idea of constructing a multi-application dialog system by combining the dialog

specifications of different applications at the frame/function layer.

175

Chapter 8

Conclusion

This chapter first introduces other scientific work related to this dissertation. It then

discusses interesting issues that surfaced while writing this dissertation and suggests

directions for future work. The last section concludes the thesis.

8.1 Related Work

This dissertation aims to propose a methodology for constructing an integrated

speech user interface by combining existing dialog specifications. The methodology

works even better if the interfaces of the applications are constructed in a way such

that they can be combined easily. As far as I know, this perspective – combining

speech user interfaces – has not been studied by anyone yet. The existing research

on multi-domain speech dialog systems has been reported further above in Chapter

7.1.1 and does not really address the combination of pre-existing service building

blocks. However, there is a similar research trend in the area of Web services where

complex services are composed from smaller building blocks. So I give an overview

of research work in the Web services composition area in the following section.

Further, another issue addressed by this thesis is the comparison of semantics. The

proposed solution here is to use the grammar as indicator for semantics of different

functions and information. There is a general research trend called “semantic web”

for constructing a common and standard semantic foundation for various websites. I

will give an overview of semantic web in the second sub-section.

8.1.1 Web Service Composition

I have discussed how to combine different speech user interfaces in this thesis. This

composition aspect has not been discussed much in the area of dialog systems, but

in the area of web services the composition aspect has been increasingly in focus in

the last few years. Some ideas in this thesis are inspired by the solutions in the web

service areas. In the following, I give an overview of general web service concepts

and web service composition approaches.

176

A web service is defined as a software application identified by a URI (Universal

Resource Identifier), whose interfaces and binding are capable of being defined and

discovered by XML artifacts and supports direct interactions with other software

applications using XML based messages via internet-based protocols. SOAP

(Simple Object Access Protocol) [Gudgin, et al., 2003], WSDL(Web service Definition

Language) [Christensen et. al, 2001] and UDDI (Universal Description, Discovery

and Integration) [UDDI, 2001], which are based on XML and Internet technology,

constitute the core standards of Web services. SOAP defines a simple XML based

protocol for exchange of structured information in a decentralized and distributed

environment. A SOAP message, which encapsulates information on the encoding

rule for expressing application-defined data types and the invocation of remote

procedure calls and their response in a so-called SOAP envelope, is used to access

Web services by users in a platform-independent and language-neutral approach.

WSDL provides an XML format for describing network services as a set of endpoints

operating on messages containing either document-oriented or procedure-oriented

information. The operations and messages are described in an abstract fashion, and

then bound to a concrete network protocol and message format to define an endpoint.

UDDI is a set of definitions for a services registry where information on businesses,

organizations, available Web services and technical interfaces for accessing services

are stored, including the definition for services of publishing and discovery of

information. SOAP, WSDL and UDDI have gained wide support and consensus, and

serve as fundamental cornerstone of Web services technology.

The key to Web services is on-the-fly software creation through the use of loosely

coupled, reusable software components. Applications are assembled from a set of

appropriate Web services and no longer written manually. Seamless composition of

Web services has enormous potential in streamlining business-to-business

transactions or in enterprise application integration.

Compositions of Web services are created in many different ways. Many

compositions are created manually by the service provider by taking simple Web-

accessible programs, such as a form-validation program or database lookup program,

and composing these programs using typical procedural programming constructs

such as if-then-else, sequence or while-loop. A number of software systems are

available to facilitate manual composition of Web services. Such programs including

a diversity of workflow tools [Van der Alast & Woflan, 1999] enable a user to

manually specify a composition of Web services to perform some task. Most recently,

technologies have been proposed that use some form of semantic markup of Web

177

services in order to automatically compose Web services to perform some desired

task.

Manual composition supported by flow specification languages
To support the manual composition of Web services, different Web service

composition languages such as BPEL4WS [Curbera et al., 2002], WSFL [Leymann,

2001], and BPML [Arkin, 2002] have been proposed by different major software

vendors like IBM, Microsoft and Sun Microsystems. They help to specify the workflow

of different Web services. Here I explain the BPEL4WS scheme as an example.

BPEL4WS (Business Process Execution Language for Web Service) is an XML-

based language for the formal specification of business processes and business

interaction protocols. To model the composition of different Web services, it specifies

the roles of each of the partners (Web services) and the logical flow of the message

exchanges. BPEL4WS binds Web services into cohesive units encapsulated in

activities. An activity is either a primitive activity or structured activity. The major

primitive activities include:

 invoke – invoking an operation of external Web services

 receive – waiting for the messages from external source

 replay – used together with receive to replay results to external source

 assign – the assignment of values to variables

To represent complex control structures, structured activities are incorporated. Five

structured activities are defined including:

 Sequence – defines the sequence of execution of activities

 Pick – used for making a choice of process based on conditions

 While – supports the repeated execution of activities

 Switch – supports conditional behavior

 Flow – used for parallel execution of activities

The structured activities can be nested and combined in arbitrary ways. By this

means, the composition of different Web services can be specified with BPEL4WS

accordingly. An example composing customer, flight and hotel services together with

BPEL4WS and WSDL can be found in Srivastava and Koehler [2003].

BPEL4WS provides a specific language in addition to the existing Web service

specification languages, so that it is possible to describe the composition of different

Web services in a formal way. It considers Web services as the minimal composition

unit and aims at a combination at the structural, not the semantic, layer. The

composition is sequential. The problem solved by BPEL4WS is how to use a set of

178

Web services to provide a new function. It constructs a set of Web services as a

result.

In comparison, the combination scheme proposed in this thesis analyzes the dialog

specifications in the next smallest building blocks – transactions, parameters – and

aims at a combination at the semantic, not the structural, layer. It splits the dialog

specifications of different applications into smaller building blocks and reconstructs

these building blocks into an integrated dialog specification. The composition is

parallel. The goal is not to provide any new functions, but to bring different functions

provided by different applications together in parallel. The problem solved by this

thesis is how to solve the conflicts between different applications to provide an

integrated speech user interface. The conflicts are after all the redundant functions

provided by more applications. The combination results of this thesis are not a set of

dialog specifications but one exact integrated dialog specification. This dialog

specification solves all conflicts between different applications and represents

domains and functions of all these applications.

In summary, BPEL4S aims at a structural, sequential composition of Web Services.

My combination scheme aims at a semantic, parallel composition of dialog

specifications. Furthermore, Web services cannot actually be compared with the

dialog specification; they are rather similar to the next smallest building blocks of a

dialog specification – transactions. However, both propositions confront one common

problem. That is, how to determine the exact semantic of a Web service/transaction.

The semantic is the function these elements exactly provide. BPEL4S counts on the

comparison of input and output of Web services. My thesis is based on the

comparison of grammars which represent how a user expresses the transaction. This

is actually the semantic of a transaction expressed in natural language. Again, we

see the difference of a structural composition (BPEL4S) and a semantic merging (my

combination scheme).

Automatic Composition of Semantic Web Services
The automatic composition of semantic web services can be regarded as a solution

involving two parts – semantic markup of the content and capabilities of Web

services based on pre-agreed ontologies and AI planning for automatic composition

of semantically well-described web services.

OWL-S [Martin et al., 2004], formerly DAML-S [Ankolekar et al., 2002], is the usually

used ontology for web services. OWL-S defines Service class to model web

services with the properties presents, describedBy and supports. The properties in

179

turn have classes ServiceProfile, ServiceModel and ServiceGrounding as their

respective ranges.

 The ServiceProfile gives a high-level description of the service that can be used

to advertise its features and used by clients to select and locate the service from

registries. The most important information it contains are the inputs, outputs,

preconditions and postconditions of the service.

 The ServiceModel is a detailed description of the service in which it is modeled

as a process. This description is further sub-divided into a process model, which

describes the sub-components of the service and a process control model, which

provides a runtime framework to monitor the execution of the service. In the

process model description of a composite process, the sub-processes

dependencies and interactions can be expressed by Sequences, Split,

Unordered, etc.

 The ServiceGrounding provides the binding level information of how a client can

access the service, e.g. by using SOAP or JAVA RMI.

The services capabilities annotated in OWL-S are now machine-understandable. So,

given a goal description, an appropriate plan for composing corresponding web

services to achieve the goal can be constructed based on AI planning techniques

[McIlraith & Son, 2002]

Compared to the purpose of this dissertation, web service composition aims more at

constructing a composite service on-the-fly, based on declarative description

statically or dynamically and manually or automatically. The objective is to construct

a new service. In this dissertation the main goal is to combine different speech user

interfaces into a unified speech-enabled access layer. To construct new functions

based on existing ones is not the goal of this thesis. Rather a harmonized access

layer facilitating reusability of existing individual speech user interfaces and

interoperability between different applications has been achieved here. Nevertheless,

the idea of describing services more specifically and semantically with pre- and

postconditions (as in the OWL service profiles), and various composition

constructions introduced in web service composition approaches, inspired many

ideas in this thesis.

8.1.2 Semantic Web

Semantic web knowledge has been already introduced as a pre-agreed knowledge

base for describing the semantic content and capabilities of different web services.

This has already been discussed in the last section. Here I refer to semantic web as

180

a related work in the area of common knowledge bases for general semantic

understanding. In combining different speech user interfaces, one crucial problem I

have met is comparing different functions and finding out their relations. However,

without a general common knowledge base for all applications, the relations cannot

be determined mechanically. This dissertation proposes a heuristic solution based on

comparison of grammars which define natural languages. In this section, I discuss

the use of semantic web for providing a common framework that allows data to be

shared and reused across application, enterprise and community boundaries.

For the semantic web to function, computers must have access to structured

collections of information and sets of inference rules that they can use to conduct

automated reasoning. For this purpose, two technologies are adopted in the

Semantic Web - eXtensible Markup Language (XML) and the Resource Description

Framework (RDF). XML allows users to add arbitrary structure to their documents but

says nothing about what the structures mean. Meaning is expressed by RDF, which

encodes it in sets of triples, each triple being rather like the subject, predicate and

object of an elementary sentence. These triples can be written using XML tags. In

RDF, a document makes assertions that particular things (people, Web pages or

whatever) have properties (such as "is a sister of," "is the author of") with certain

values (another person, another Web page). This structure turns out to be a natural

way to describe the vast majority of the data processed by machines. Subject and

object are each identified by a Universal Resource Identifier (URI), just as used in a

link on a Web page. (URLs, Uniform Resource Locators, are the most common type

of URI.) The predicates are also identified by URIs, which enables anyone to define a

new concept, a new predicate, just by defining a URI for it somewhere on the Web.

The triples of RDF form webs of information about related things. Because RDF uses

URIs to encode this information in a document, the URIs ensure that concepts are

not just words in a document but are tied to a unique definition that everyone can find

on the Web. For example, imagine that we have access to a variety of databases

with information about people, including their addresses. If we want to find people

living in a specific zip code area, we need to know which fields in each database

represent names and which represent zip codes. RDF can specify that "(field 5 in

database A) (is a field of type) (zip code)," using URIs rather than phrases for each

term.

However, two databases may use different identifiers for what is in fact the same

concept, such as zip code. A program that wants to compare or combine information

across the two databases has to know that these two terms are being used to mean

181

the same thing. Ideally, the program must have a way to discover such common

meanings for whatever databases it encounters.

A solution to this problem is provided by the third basic component of the Semantic

Web, collections of information called ontologies. In philosophy, an ontology is a

theory about the nature of existence, of what types of things exist; ontology as a

discipline studies such theories. Artificial-intelligence and Web researchers have co-

opted the term for their own jargon, and for them an ontology is a document or file

that formally defines the relations among terms. The most typical kind of ontology for

the Web has a taxonomy and a set of inference rules.

The taxonomy defines classes of objects and relations among them. For example, an

address may be defined as a type of location, and city codes may be defined to apply

only to locations, and so on.

With ontology pages on the Web, solutions to terminology (and other) problems

begin to emerge. The meaning of terms or XML codes used on a Web page can be

defined by pointers from the page to an ontology. However, the same problems as

before now arise if one points to an ontology that defines addresses as containing a

zip code and the other point to one that uses postal code. This kind of confusion can

be resolved if ontologies (or other Web services) provide equivalence relations: one

or both of the ontologies may contain the information that the zip code in the first

ontology is equivalent to the postal code in the second ontology.

So the ontology as a shared conceptualization based on the semantic proximity of

terms in a specific is the proposed solution for information-comparing in Semantic

Web. Transferring this philosophy to the comparing issue discussed in this thesis

means that a general ontology for different domains and applications must be

constructed first. And in the dialog specification, each function and each parameter

must be identified by a unique URI, which points to some term in a defined ontology.

Also, different ontologies defined by different designers must be connected with each

other so that there are no two different concepts in two different ontologies which are

not related but are meant to be the same object. Assuming the existence of such a

large ontology base, the comparison of two applications can be based on the

comparison of the ontology concepts behind their functions and parameters. So we

do not need to compare the natural language, which is sometimes ambiguous,

anymore.

However, whether it is realistic to build such a network of ontologies for various

speech applications remains an open question, which can be researched further.

Considering the unlimited domains in practice, this plan is rather unrealistic. But if the

182

goal is to combine applications in a certain domain such as travel planning, this

proposal becomes considerable.

8.2 Discussion

This dissertation addresses issues in the area of user interaction. In this area, the

usability – the user acceptance of the integrated speech user interface and the

designer acceptance of the interactive combination tool is a key issue. This issue

should be considered in the context of this dissertation. However, due to the

enormous complexity of addressing this issue, I leave this point to future research

based on this dissertation.

8.2.1 Usability of Integrated Speech Application User Interfaces

In an integrated speech user interface for different applications, the usability

regarding accessing different applications is an open question. In this dissertation, I

assume that an integrated user interface without application separation results has

better usability than one requiring the user to switch the application explicitly.

However, this proposition should be proved based on a comprehensive usability

evaluation. Such an evaluation should consider the following points:

 What are the criteria for a good integrated speech user interface?

Besides the criteria for a good normal single-domain speech user interface, the

special criteria particular to an integrated speech user interface for multiple

applications should be discussed. It is an open question as to what the best way

to integrate different applications into a speech user interface is. One possibility

is proposed in this dissertation – merging all overlapping transactions and

sharing common information in different applications, with the application

boundary being transparent to the user. Another possibility has been proposed

by many existing multi-domain dialog systems (e.g. [Seneff et. al., 1999]) – the

applications remain separate from each other and no interoperability is enabled,

and the user has to remember different applications and switch the domain

explicitly. These two approaches stand for two extreme directions – no

interoperability and maximum interoperability. There are also other possibilities

in between these two extremes. For example, the applications can remain

separate from each other but can share the common information in the

integrated speech user interface. How we can compare these different

approaches depends first on what criteria are important.

 How can the usability of an integrated speech user interface be empirically

tested?

183

What kind of dialogs is more interesting for a user – crossing different

applications or concentrating on a single application? What kind of tasks should

be designed to indicate the usability of a speech user interface? These are all

challenging questions which would be interesting to research in more detail.

 How to assess the usability based on empirical tests?

There are different evaluation benchmarks for a speech user interface, such as

number of turns for accomplishing a task. Which of them are suitable for judging

the usability of an integrated speech user interface is an open question, which

should be addressed in detail.

To provide such a comprehensive usability test and evaluation is far beyond the

scope of this dissertation. Nevertheless, this dissertation provides the necessary

foundations for such an evaluation. The algorithm provided enables the construction

of an integrated speech user interface with maximum interoperability. With little

modification, an integrated speech user interface with only information sharing and

explicit domain switch can be constructed as well. Therefore, this dissertation can be

regarded as a necessary precondition for such a comprehensive usability research of

integrated speech user interfaces for multiple applications.

8.2.2 Evaluation of the Combination Algorithm

The combination algorithm has been evaluated over certain non-trivial industry

applications and has been proven to work well in these scenarios However, to prove

the complexity and correctness of the combination algorithm, a systematic

methodology is required. This comprehensive evaluation framework should consider

the following points:

 What kind of applications should be combined with the algorithm?

Obviously, not all applications are suitable to have a speech access layer. And, it

is still an open question which kind of applications should own a speech user

interface. Only by being based on a systematical analysis of different

applications can the general applicability of the combination algorithm to all

different applications be proven.

 Can all speech-suited applications be combined with the combination algorithm?

The applications suited to have a speech user interface range from thousands to

unlimited. How to prove that the combination algorithm can be applied to all

these applications remains a challenging open question.

 The usability of the combination tool

The combination tool is an interactive tool involving the designer in a

combination process. It is an open question whether it is good to involve the

184

designer in all uncertain decision points, or rather whether it is preferred by the

designer to use some default setting.

 The correctness of the combination tool

How can it be proved that the combination tool works correctly? Two possibilities

exists theoretically – judgment based on the constructed speech user interfaces,

or proof of the correctness of each sub-step in the combination tool.

Due to the scope of this dissertation, such a comprehensive evaluation cannot be

finished.

However, based on certain non-trivial example applications, the combination tool has

been verified as able to construct a flexible integrated speech user interface with

moderate complexity.

The full operational feature of the combination tool can be highlighted by the case of

combing the speech user interfaces of two Siemens HiPath applications –

ComAssistant and CorporateConnect. In a student project [Schilling, 2005], speech

user interfaces for both applications were developed with the extended frame-based

dialog model introduced in this thesis. Due to the complexity of these applications,

the expressive power of the extended dialog model has been assessed as enough

for real speech-suited applications [Schilling, 2005]. There are both functional and

semantic overlaps between these two applications. Both of them provide function –

log in, call management, etc. In both application there is a parameter called “context”,

which represents the user’s communication profile. A “context” parameter can be

“work place”, “vacation” or “on the way” etc.

With the combination tool, it is possible to construct an integrated speech user

interface for these two applications in a few minutes. The constructed speech user

interface can be launched in the DIANE dialog system directly. An example dialog

between the user and the integrated speech user interface is shown below:

System (S): Welcome! Please state your user ID.

User (U): One two three four five.

S: Let me repeat that: your user ID is one two three four five, is that correct?

U: Yes.

S: Please say your password!

U: One two three four.

S: Your password is one two three four, is that correct?

U: Yes.

185

S: Hello Mrs. Williams, welcome to ComAssistant and CorporateConnect! What can I

help you?

(Two “log in” transactions of both applications have been merged into one, and the

user is logged in to both systems in one log in process.)

U: Call one one one.

S: Calling one one one ….

(The “call” transactions of both applications have been merged, the function is

provided by ComAssistant only.)

U: Change my profile.

(“Change profile” is a transaction of CorporateConnect.)

S: To which profile do you want to change?

U: To office.

S: Your profile has been changed to office.

U: What is my active context now?

(“Context query” is a transaction provided by ComAssistant.)

S: Your active context is office.

(“Profile” in CorporateConnect and “context” in ComAssistant refer to the same

semantic, are therefore sharing the same value in the integrated speech user

interface. For this, a corresponding inference rule is constructed automatically.)

….

Although the verification based on case studies is convincing, a more comprehensive

evaluation would extend this dissertation very well.

8.3 Conclusion

This dissertation was motivated to address the issue of combining different speech

user interfaces to construct an integrated speech user interface.

Along with this motivation, different approaches for modeling applications to develop

their speech user interfaces have been discussed. In particular, different dialog

modeling approaches have been compared as regards to their suitability to be

combined together. Based on the analysis result that no existing dialog-modeling

approach is actually best tailored to the combination issue, a new frame-based dialog

model has been introduced. This dialog model extends the existing frame-based

models to describe different dependencies in applications declaratively. This model

improves the general power of frame-based approaches. In addition, the generality

and power of this model has been verified in a student project [Schilling, 2005].

Based on the enhanced frame-based dialog model, a comprehensive combination

scheme for combining different speech applications following the enhanced model

186

has been proposed as the emphasis of this dissertation. Different relations between

two applications have been elaborated in detail and a corresponding solution for

each combination scenario has been proposed. Based on non-trivial empirical tests

the combination scheme has been verified.

During the analysis of application relations, a side issue of comparing context-free

grammars has surfaced as an interesting and challenging theme, which had to be

solved in order to finish the combination task. Therefore, the theoretical background

of grammars and formal languages has been taken into account in an in-depth study.

Further, two different comparison algorithms – finite-state modeling based

comparison and generation-parsing based comparison – have been introduced and

compared accordingly. The generation-parsing based comparison has been

proposed as a more simple and efficient algorithm. Later, in the combination tool, this

algorithm has been implemented and proven to be acceptable in runtime regarding

its efficiency.

Based on the proposed approaches in this thesis, a flexible integrated speech user

interface for different applications can be constructed automatically or semi-

automatically based on the existing dialog specification of each application. This

integrated speech user interface not only enables transparent speech access to

multiple applications but also supports maximum interoperability among different

applications.

187

Bibliography

[1] Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L. and Stent, A.: “An
architecture for a generic dialog shell”, In: Natural Language Engineering,

Vol. 6(3-4), pp 213-228, Cambridge University Press, 2000

[2] Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L. and A. Stent:

“Towards conversational human-computer interaction”, In: AI Magazine, Vol.

22(4): pp 27-37, 2001

[3] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott,

McIlraith, S., Narayanan, S., Paolucci, M., Payne, T. and Sycara, K.: "DAML-S:
web service description for the semantic web", In: Proceedings of the 1st

International Semantic Web Conference (ISWC), 2002

[4] Austin, H., Oerder, M. and Steinbiss, V.: “The Philips automatic train
timetable information system”, In: Speech Communication, Vol. 17: pp 249-

262, 1995

[5] Arkin, A.: “Business process modeling language (BPML)”,
http://www.bpmi.org/ , 2002

[6] Block, H.U., Caspari, R. and Schachtl, S. “Callable manuals - access to
product documentation via voice”, In: Wahlster, W. (ed.) Special Journal

Issue Conversational User Interface. it - Information Technology 46 (2004) 6,

München, Oldenbourg Wissenschaftsverlag (ISSN 1611-2776): 299-304,

Munich, 2004

[7] Bohus, D. and Rudnicky, A. I.: "RavenClaw: Dialog management using
hierarchical task decomposition and an expectation agenda", In:

Proceedings of EUROSPEECH 2003, pp 597-600, Geneva, 2003

188

[8] Bui, T. H., Zwiers, J., Nijholt, A., and Poel, M.: “Generic dialog modeling for
multi-application dialog systems”, In: Proceedings of 2nd Joint Workshop on

Multimodal Interaction and Related Machine Learning Algorithms, Edinburgh,

UK, 2005

[9] Caspari R.: “Dokumentation zum SUIBuilder für ViCA“, Version 1.1, Siemens

AG, CT IC 5, 2003

[10] Catizone, R., Setzer, A. and Wilks, Y.: “Multimodal dialog management in
the COMIC project“, In: Proceedings of EACL 2003 Workshop on Dialog

Systems: interaction, adaptation, and styles of management, 2003

[11] Chomsky, N. “Formal properties of grammars”, In: R. Duncan Luce, Robert

R. Bush, and Eugene Galanter, editors, Handbook of Mathematical Psychology;

Volume II, pp 323-418, John Wiley, 1963

[12] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.: “Web
services description language (WSDL) 1.1”, W3C, http://www.w3.org/TR/wsdl,

15 March 2001

[13] Chu-Carroll, J.: “Form-based reasoning for mixed-initiative dialog
management in information-query systems”, In: Proceedings of

EUROSPEECH 99, pp 1519-1522, Budapest,1999

[14] Cover, T.M. and Thomas, J.A: “Elements of information theory”, Wiley

series in telecommunications, Wiley New York, 1991

[15] Curbera, F., Goland, Y., Klein, J., Leyman, F., Roller, D., Thatte, S. and

Weerawarana, S.: “Business process execution language for web services
(BPEL4WS) 1.0”, http://www.ibm.com/developerworks/library/ws-bpel, Aug.

2002

[16] Decker, S., van Harmelen, F., Broekstra, J., Erdmann, M., Fensel, D.,

Horrocks, I., Klein, M. and Melnik, S.: “The semantic web: The roles of xml
and rdf”, In: IEEE Expert, 15(3), 2000

189

[17] Doest, T., Hugo, Moll, M., Bos, R., Van de Burgt, S. and Nijholt,

A,.: ”Language engineering in dialog systems”, In: Computers in Engineering

Symposium, pp 68–79, Houston, TX, 1996

[18] Dusan, S. and Flanagan, J.: "An adaptive dialog system using multimodal
language acquisition", In: Proceedings of the International CLASS Workshop:

Natural, Intelligent and Effective Interaction in Multimodal Dialog Systems,

Copenhagen, Denmark, 2002

[19] Earley, J. C.: “An efficient context-free parsing algorithm”,

Communications of the ACM, 13(2), pp 94--102, February 1970

[20] Grimley E. E.: “Approximating context-free grammars with a finite-state
calculus”, In: Proceedings of the 35th Annual Meting of the Association for

Computational Linguistics, Proceedings of the Conference, pp 452--459, Spain,

1997

[21] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J. and Nielsen, F.: “SOAP
version 1.2 part 1: Messaging framework”, W3C Recommendation,

http://www.w3.org/TR/soap12-part1/, 2003

[22] Hopcroft, J. E. and Ullman, J. D.: “Introduction to automata theory,
languages, and computation”, Addison-Wesley, 1979

[23] Hunt, A. and McGlashan, S.: ”Speech recognition grammar specification
version 1.0”, W3C, http://www.w3.org/TR/2004/REC-speech-grammar-

20040316/, 2004

[24] Hsu, W. T., Wang, H. M. and Lin, Y. C.: “The design of a multi-domain
Chinese dialog system”, In: International Symposium on Chinese Spoken

Language Processing, Taiwan, 2002

[25] Johnson, M.: ”Finite-state approximation of constraint-based grammars
using left-corner grammar transforms”, COLING-ACL, pp 619-623, 1998

[26] JSGF, “Java speech grammar format specification 1.0”,

http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/, 1998

190

[27] Kasami T.: “An efficient recognition and syntax algorithm for context-free
languages” Technical Report AF-CRL-65-758, Air Force Cambridge Research

Laboratory, Bedford, MA, 1965

[28] Larsson, S., Cooper, R. and Ericsson, S.: ”Menu2dialog”, In: IJCAI Workshop

on Knowledge and Reasoning in Practical Dialog Systems, 2001

[29] Larsson, S. and Traum, D.: “Information state and dialog management in
the TRINDI dialog move engine toolkit”, Natural Language Engineering, 6(3-

4), pp 323--340, 2000

[30] Lemon, O., Bracy, A., Gruenstein, A. and Peters, S.: “The WITAS multi-
modal dialog system“, In: Proceedings of EUROSPEECH 2001, 2001

[31] Leymann F.: “Web service flow language (WSFL1.0) “, http://www-

4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf , 2001

[32] Lin, D.: “An information-theoretic definition of similarity”, In: Proceedings

of the 15th International Conf. on Machine Learning, pp 296—304, Morgan

Kaufmann, San Francisco, CA, 1998

[33] Lin, Y. C., Chiang, T. H., Wang, H. M., Peng, C. M. and Chang, C. H.: ”The
design of a multi-domain mandarin Chinese spoken dialog system” In:

Proceedings ICSLP1998, pp 41-44, 1998

[34] Lin, B., Wang, H. and Lee, L.: “Consistent dialog across concurrent topics
based on an expert system model”, In Proceedings of EUROSPEECH 99,

Budapest, 1999

[35] Litman, D. and Allen, J.: “A plan recognition model for subdialogs in
conversation”, In: Cognitive Science, Vol. 11: pp 163-200, 1987

[36] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N. and

Sycara, K.: “Owl-s: Semantic markup for web services”,

http://www.daml.org/services/owl-s/1.1/overview/, 2004

191

[37] Mason, T. and Brown, D.: “Lex & Yacc”. O'Reilly and Associates, Inc., CA,

1990

[38] McGlashan, S., Burnett, D., Carter, J., Tryphonas, S., Ferrans, J., Hunt, A.,

Lucas, B. and Porter, B.: ”Voice extensible markup language (voicexml)
version 2.0”, Technical report, World Wide Web Consortium (W3C),

http://www.w3.org/TR/voicexml20/ , Feb. 2003

[39] McIlraith, S. and Son, T.C.: “Adapting golog for composition of semantic
web services”, In: Proceedings of 8th International Conference on Principles of

Knowledge Representation and Reasoning, pp 482-493, 2002

[40] McTear, M.: “Spoken dialog technology: Enabling the conversational
interface”, In: ACM Computing Surveys, Vol. 34(1): pp 90 – 169, 2002

[41] Miller, G. and Chomsky, N.: “Finitary models of language users”, In: R.

Luce, R. Bush, and E. Galanter, editors, Handbook of Mathematical Psychology.

Volume 2. John Wiley, 1963

[42] Mohri, M. and Nederhof, M. J.: “Regular approximation of context-free
grammars through transformation“, In: Robustness in Language and Speech

Technology. pp 153-163, Kluwer Academic Publishers, 2001

[43] Moore, R. C.: "Using natural-language knowledge sources in speech
recognition”, In: Computational Models of Speech Pattern Processing, Ponting

(ed.), Springer-Verlag, pp 304-327, 1999

[44] Nederhof, M. J.: “Practical experiments with regular approximation of
context-free languages”, Computational Linguistics, 26(1), pp 17-44, March

2000a

[45] Nederhof, M. J.: “Regular approximation of CFLs: a grammatical view”, In:

H. Bunt and A. Nijholt, editors, Advances in Probabilistic and other Parsing

Technologies, chapter 12, pp 221-241, Kluwer Academic Publishers, 2000b

192

[46] Nederhof, M. J. and Satta, G.: “Parsing non-recursive context-free
grammars”, In: 40th Annual Meeting of the Association for Computational

Linguistics, Proceedings of the Conference, pp 112-119, USA, 2002

[47] Neto, J. P., Mamede, N. J., Cassaca, R. and Oliveira, L. C.: “The
development of a multi-purpose spoken dialog system”, In: Proceedings of

EUROSPEECH 2003, 2003

[48] Nouza, J. and Holada, M. “A voice-operated multi-domain telephone
information system”, In: Proceedings Acoustics, Speech, and Signal

Processing, 2000

[49] O’Neil, I. M. and McTear, M. F.: ”Object-oriented modelling of spoken
language dialog systems”, In: Natural Language Engineering, Vol. 6(3-4): pp

341-362, Cambridge University Press, 2000

[50] Pakucs, B.: “Towards dynamic multi-domain dialog processing”, In:

Proceedings of EUROSPEECH 2003, Geneva, 2003

[51] Paul, M., Frederick, C., Stuart, A., Eric, B. and Nicole, Y.: “SpeechActs: a
spoken language framework”, In: IEEE Computer Vol. 29(7): pp 33-40, 1996

[52] Pereira, F.C.N. and Wright, R.N..: "Finite-state approximation of phrase-
structure grammars", In: Emmanuel Roche and Yves Schabes, editors,

FiniteState Language Processing, MIT Press, Cambridge, pp 149—173, 1997

[53] Polifroni, J. and Chung, G.: ”Promoting portability in dialog management”,
In: Proceedings ICSLP, pp 2721-2724, Denver, CO, 2002

[54] Sanford, D.L.: “A theory of dialog structures to help manage human-
computer interaction”, In: IEEE Transactions on systems, man and

cybernetics, Vol. 18(4): pp 567-574, 1988

[55] Schilling, A.: ”Modeling of speech dialog applications“, Student Project,

2005

193

[56] Seneff, S.: “Discourse and dialog modeling in the galaxy system”, In:

Proceedings of Dialog System and Discourse Analysis Workshop, Taiwan, 1997

[57] Seneff S., Goddeau, D., Pao C. and Polifroni, J.: “Multimodal discourse
modelling in a multi-user multi-domain environment”, In: Proceedings of

ICSLP’96, USA, 1996

[58] Seneff, S., Lau, R. and Polifroni, J.: “Organization, communication, and
control in the galaxy-II conversational system”, In: Proceedings of

EUROSPEECH 99, pp 1271-1274, Budapest, Hungary, 1999

[59] Sheshagiri, M., Desjardins, M. and Finin, T.: ”A planner for composing
service described in daml-s”, In: Proceedings Workshop on Planning for Web

Services, International Conference on Automated Planning and Scheduling,

Trento, 2003

[60] Sparks, R., Meiskey, L. and Brunner, H.: “An object-oriented approach to
dialog management in spoken language systems”, In: Proceedings of the

SIGCHI conference on Human factors in computing systems, 1994

[61] SpeechObjects specification version 1.0,

http://www.w3.org/TR/2000/NOTE-speechobjects-20001114/#speechobjects,

2000

[62] Srivastava, B. and Koehler, J.: “Web service composition - current
solutions and open problems”, In: Proceedings of International Conference

on Automated Planning and Scheduling 2003, 2003

[63] Strum, J., den Os, E. and Boves, L.: “Dialog management in the Dutch
ARISE train timetable information system”, In: Proceedings of

EUROSPEECH 99, 1999

[64] Stolcke, A. and Segal, J.:” Precise n-gram probabilities from stochastic
context-free grammars”, In: Proceedings of the 32th Annual Meeting of the

Association for Computational Linguistics pp 74-79, 1994

194

[65] Taylor, C. R.: “LL parsing, LR parsing, complexity, and automata”, ACM

SIGCSE Bulletin, Volume 34, Issue 4, pp 71-75, 2000

[66] Teppo, A., and Vuorimaa, P.: “Speech interface implementation for XML
browser”, International Conference on Auditory Display, Espoo, Finland, 2001

[67] Traum, D., Andersen, C., Chong, Y., Josyula, D., O'Donovan-Anderson, M.,

Okamoto, Y., Purang, K. and Perlis, D.: “Representations of dialog state for
domain and task independent meta-dialog”, In: Electronic Transactions on

Artificial Intelligence, Vol. 3: pp 125--152, 1999a

[68] Traum, D., Bos, J., Cooper, R., Larsson, S., Lewin, I., Matheson, C. and

Poesio, M.: “A model of dialog moves and information state revision”,

Technical report, TRINDI Deliverable D2.1, 1999b

[69] Traum, D. and Larsson, S.: “The information state approach to dialog
management”, In: Jan van Kuppevelt and Ronnie Smith, editors, Current and

New Directions in Discourse and Dialog, Kluwer, 2003

[70] UDDI. “Universal description, discovery, and integration (uddi v2.0)”.
http://www.uddi.org/ , October 2001

[71] Vrugt, J. and Protele, T.: “Application-independent knowledge-processing
in a task-oriented speech-dialog-system”, it – Information Technology, 46(6),

pp 306-314, 2004

[72] Wang, K.: ”An event driven model for dialog systems”, In: Proceedings of

ICSLP 1998, Sydney, 1998

[73] Wu, D., Sirin, E., Parsia, B., Hendler, J., Nau, D.: “Automatic web services
composition using SHOP2”, In: Proceedings of Planning for Web Services

Workshop in ICAPS 2003, 2003

[74] Wu, X., Zheng, F. and Wu, W.: ”Hybrid dialog management approach for a
flight spoken dialog system”, In: Proceedings of the First International

Conference on Machine Learning an Cybernetics, Beijing, 2002

195

[75] Wyard, P. J., Simons, A. D., Appelby, S., Kaneen, E., Williams, S. H. and

Preston, K. R.: ”Spoken language systems – beyond prompt and response”,

In: BT Technology Journal, Vol. 14(1): pp 187-205, 1996

196

Appendices

Appendix 1: DTD Definition of DIANEXML

Transaction DTD Definition

<!ENTITY % parameterDTD SYSTEM "Parameter.dtd">

%parameterDTD;

<!ENTITY % boolean "#PCDATA">

<!-- Elements -->

<!ELEMENT Transaction

 (Name

 ,ExeFunc

 ,ExePrompt?

 ,TrPrompt?

 ,TrConfirmBool?

 ,TrConfirmPrompt?

 ,TrGrammar*

 ,TrParameter*

 ,TrAddCode*

 ,(CstrFunc | ConfirmFunc)

 ,CstrPrompt?

 ,SemLessGrammar*

 ,SemLessStartGrammar*

)>

<!ATTLIST Transaction uri %uri; #IMPLIED>

197

<!ELEMENT ExeFunc (#PCDATA)>

<!ELEMENT CstrFunc (#PCDATA)>

<!ELEMENT ExePrompt (%Prompt;)>

<!ELEMENT CstrPrompt (%Prompt;)>

<!ELEMENT ConfirmFunc (%Prompt;)>

<!ELEMENT TrPrompt (%Prompt;)>

<!ELEMENT TrConfirmPrompt (%Prompt;)>

<!ELEMENT TrConfirmBool (%boolean;)>

<!ELEMENT TrGrammar (%grammar;)>

<!ATTLIST TrGrammar uri %uri; #IMPLIED>

<!ELEMENT SemLessGrammar (%grammar;)>

<!ATTLIST SemessGrammar uri %uri; #IMPLIED>

<!ELEMENT SemLessStartGrammar (%grammar;)>

<!ATTLIST SemLessStartGrammar uri %uri; #IMPLIED>

<!ELEMENT TrParameter

 (Name

 ,RecBool?

 ,OptBool?

 ,DefaultVal?

 ,InfBool?

 ,AlwaysConfBool?

 ,UserConfBool?

 ,ConfIfInfBool?

 ,ConfIfDefBool?

 ,InterruptBool?

 ,TestAllBool?

198

 ,OutOfTaskBool?

 ,CopyPermittedBool?

)>

<!ELEMENT RecBool (%boolean;)>

<!ELEMENT OptBool (%boolean;)>

<!ELEMENT InfBool (%boolean;)>

<!ELEMENT AlwaysConfBool (%boolean;)>

<!ELEMENT UserConfBool (%boolean;)>

<!ELEMENT ConfIfInfBool (%boolean;)>

<!ELEMENT ConfIfDefBool (%boolean;)>

<!ELEMENT InterruptBool (%boolean;)>

<!ELEMENT TestAllBool (%boolean;)>

<!ELEMENT OutOfTaskBool (%boolean;)>

<!ELEMENT CopyPermittedBool (%boolean;)>

<!ELEMENT DefaultVal (#PCDATA)>

<!ELEMENT TrAddCode (#PCDATA)>

Transaction Set DTD Definition

<!-- Entities -->

<!ENTITY % TransactionDef SYSTEM "Transaction.dtd">

%TransactionDef;

<!ELEMENT TransactionL

 (Transaction*

 ,SemLessStartGrammar*

 ,SemLessGrammar*

)>

199

Parameter DTD Definition

<!-- Entities -->

<!ENTITY % Prompt "#PCDATA">

<!ENTITY % uri "CDATA">

<!ENTITY % grammar "#PCDATA">

<!ENTITY % name "#PCDATA">

<!ELEMENT Parameter

 (Name

 ,PmType?

 ,IGrammar?

 ,DGrammar?

 ,PmPrompt?

 ,PmRekPrompt?

 ,PmRekDiscardPrompt?

 ,PmConfirmPrompt?

 ,PmHelpFunction?

 ,PmHelpPrompt?

 ,PmInferredPrompt?

)>

<!ELEMENT Name (%name;)>

<!ELEMENT PmType (#PCDATA)>

<!ELEMENT IGrammar (%grammar;)>

<!ATTLIST IGrammar uri %uri; #IMPLIED>

<!ELEMENT DGrammar (%grammar;)>

200

<!ATTLIST DGrammar uri %uri; #IMPLIED>

<!ELEMENT PmPrompt (%Prompt;)>

<!ELEMENT PmRekPrompt (%Prompt;)>

<!ELEMENT PmRekDiscardPrompt (%Prompt;)>

<!ELEMENT PmConfirmPrompt (%Prompt;)>

<!ELEMENT PmHelpPrompt (%Prompt;)>

<!ELEMENT PmInferredPrompt (%Prompt;)>

<!ELEMENT PmHelpFunction (#PCDATA)>

Parameter Set DTD Definition

<!-- Entities -->

<!ENTITY % ParDef SYSTEM "Parameter.dtd">

%ParDef;

<!ELEMENT ParameterL (Parameter*)>

DIANE Grammar Formalism

Grammar ::= Grammar_Element*

Grammar_Element ::= Production | LexiconEntry | Code_Element | Comment_Element

Code_Element ::= “{:“ <Java Code> “:}“

Comment_Element ::= “/*“ <Comment> “*/“

Production ::= <Nonterminal> “=“ Alternatives “;“

Alternatives ::= Right_Hand_Side (“|“ Right_Hand_Side)*

Right_Hand_Side ::= Symbol* (Code_Element)

Symbol ::= (<Terminal> | <Nonterminal>) (“:“ <IndexSymbol>)

LexiconEntry ::= “/“ <Terminal> “=“ <Terminal> “;“

201

<Terminal>, <IndexSymbol> = Alphanumeric ASCII string

<Nonterminal> = Alphanumeric ASCII string starting with $

Appendix 2: DTD Definition of Enhanced DIANEXML

The enhanced DIANEXML extends only the transaction part of the whole DIANEXML.

The added elements are emphasized.

<!ENTITY % parameterDTD SYSTEM "Parameter.dtd">

%parameterDTD;

<!ENTITY % boolean "#PCDATA">

<!ENTITY % expression "CDATA">

<!ENTITY % executable.content

 " Assign|Clear|If|Prompt|BackendExe ">

<!ENTITY %if.attrs "cond %expression; #REQUIRED">

<!-- elements for system prompt -->

<!ELEMENT Prompt (#PCDATA)>

<!-- assign value to a parameter -->

<!ELEMENT Assign EMPTY>

<!ATTLIST Assign

 Name CDATA #REQUIRED

 Expr CDATA #REQUIRED >

<!-- backend operation access -->

<!ELEMENT BackendExe

 (Output?

)>

<!ATTLIST BackendExe

 expr %expression #REQUIRED >

202

<!ELEMENT Output EMPTY >

<!ATTLIST Output

 id CDATA #REQUIRED

 type CDATA #REQUIRED >

<!-- delete parameter value -->

<!ELEMENT Clear EMPTY>

<!ATTLIST Clear

 Namelist CDATA #IMPLIED>

<!-- if elseif else statement -->

<!ELEMENT If (#PCDATA|%executable.content;|elseif|else)*>

<!ATTLIST If %if.attrs;>

<!ELEMENT Elseif EMPTY>

<!ATTLIST Eleseif %if.attrs;>

<!ELEMENT Else EMPTY>

<!ELEMENT Transaction

 (Name

 ,TrPrompt?

 ,TrConfirmBool?

 ,TrConfirmPrompt?

 ,TrGrammar*

 ,TrParameter*

 ,Precondition?

 ,Context?

 ,Constraint?

 ,SystemAction?

203

 ,Postcondition?

 ,SemLessGrammar*

 ,SemLessStartGrammar*

)>

<!ELEMENT Precondition

 (Condition, Message?)>

<!ELEMENT Condition (#PCDATA)>

<!ELEMENT Message (#PCDATA)>

<!ELEMENT Context (#PCDATA)>

<!ELEMENT Constraint

 (TriggerParameter*

 ,Condition*

 ,VoilatAction)>

<!ELEMENT TriggerParameter (#PCDATA)>

<!ELEMENT VoilateAction (%Executable.content;)>

<!ELEMENT SystemAction

 (TriggerParameter*

 ,Condition*

 ,Action)>

<!ELEMENT Action (%Executable.content;)>

<!ELEMENT Postcondition (%Executable.context;)>

<!ATTLIST Transaction uri %uri; #IMPLIED>

<!ELEMENT ConfirmFunc (%Prompt;)>

<!ELEMENT TrPrompt (%Prompt;)>

<!ELEMENT TrConfirmPrompt (%Prompt;)>

<!ELEMENT TrConfirmBool (%boolean;)>

204

<!ELEMENT TrGrammar (%grammar;)>

<!ATTLIST TrGrammar uri %uri; #IMPLIED>

<!ELEMENT SemLessGrammar (%grammar;)>

<!ATTLIST SemessGrammar uri %uri; #IMPLIED>

<!ELEMENT SemLessStartGrammar (%grammar;)>

<!ATTLIST SemLessStartGrammar uri %uri; #IMPLIED>

<!ELEMENT TrParameter

 (Name

 ,Value?

 ,RecBool?

 ,OptBool?

 ,DefaultVal?

 ,InfBool?

 ,AlwaysConfBool?

 ,UserConfBool?

 ,ConfIfInfBool?

 ,ConfIfDefBool?

 ,InterruptBool?

 ,TestAllBool?

 ,OutOfTaskBool?

 ,CopyPermittedBool?

)>

<!ELEMENT RecBool (%boolean;)>

<!ELEMENT OptBool (%boolean;)>

<!ELEMENT InfBool (%boolean;)>

205

<!ELEMENT AlwaysConfBool (%boolean;)>

<!ELEMENT UserConfBool (%boolean;)>

<!ELEMENT ConfIfInfBool (%boolean;)>

<!ELEMENT ConfIfDefBool (%boolean;)>

<!ELEMENT InterruptBool (%boolean;)>

<!ELEMENT TestAllBool (%boolean;)>

<!ELEMENT OutOfTaskBool (%boolean;)>

<!ELEMENT CopyPermittedBool (%boolean;)>

<!ELEMENT DefaultVal (#PCDATA)>

<!ELEMENT Value (%expression|If)>

Appendix 3: BNF Definition of Script Language for DIANEXML

Expression ::= ConditionalExpression
 | ConditionalSimpleExpression
 | ValueExpression
BackendExpression ::= "%" <CLASS_NAME> "." <METHOD_NAME> "("

Argument ")"
Argument ::= ValueExpression ("," ValueExpression)*
ConditionalExpression ::= ConditionalSimpleExpression "&&"

ConditionalSimpleExpression
 | ConditionalSimpleExpression "||"

ConditionalSimpleExpression
 | "!" ConditionalSimpleExpression
ConditionalSimpleExpression ::= RelationalExpression
 | ConditionalExpression
 | BooleanLiteral
RelationalExpression ::= ValueExpression "==" ValueExpression
 | ValueExpression "!=" ValueExpression
 | ValueExpression "<" ValueExpression
 | ValueExpression ">" ValueExpression
 | ValueExpression "<=" ValueExpression
 | ValueExpression ">=" ValueExpression
ValueExpression ::= Literal
 | BackendExpression
 | Parameter

206

 | Variable
Parameter ::= "$" <PARAMETER>
Variable ::= "?" <VARIABLE>
Literal ::= StringLiteral
 | FloatLiteral
 | IntegerLiteral
 | CharLiteral
 | StringLiteral
 | BooleanLiteral
 | "null"
BooleanLiteral ::= "true"
 | "false"
StringLiteral ::= <STRING_LITERTAL>
FloatLiteral ::= <FLOAT_LITERTAL>
IntegerLiteral ::= <INTEGER_LITERAL>
CharLiteral ::= <CHARCTER_LITERTAL>

207

Appendix 4: Examples of Deeply Nested Sentences

a) I called the man who put the book that you told me about down up.

b) The man who the boy who the students recognized pointed out is a friend of

mine.

c) The man the boy the students recognized pointed out is a friend of mine.

d) The rat the cat the dog chased bit ate the cheese.

208

209

Curriculum Vitae

Dongyi Song was born on November 22, 1979 in Sichuan, China. She attended

primary school there from 1986 to 1992, and high-school from 1992 to1998. In

February 1998 she came to Germany.

She entered the Technological University of Dresden in October 1998, studying

Computer Science with a minor in business studies. During her studies, she gained a

variety of practical experience from industrial internships – she was twice in a

software company in Sindelfingen working there as an internal software developer,

she served as a student assistant for programming at the university, and she also

worked for Siemens in Munich doing website development. In June 2003 she came

to Munich to write her Diploma thesis at Siemens. The thesis was titled

“Sprachsteuerung für die Verwaltung von Kommunikationsprofilen” (“Speech User

Interface for the Management of Communication Profiles“). Supervised by Prof. Dr.

Heinrich Hußmann from the University of Munich and Mr. Jürgen Trotzke from

Siemens, she finished her Diploma thesis in December 2003. In January 2004 she

received her diploma.

In January 2004, Dongyi started work on her thesis “Combining Speech User

Interfaces of Different Applications”, supervised by Prof. Dr. Heinrich Hußmann from

the University of Munich, and financially and administratively supported by Siemens

AG in Munich. Her research interests include modeling and developing speech user

interfaces, dialog models, dialog systems and all software engineering techniques

and technologies in general.

	
	
	
	Chapter 1
	Introduction
	1.1 Background
	1.2 Overview
	1.3 An Example
	1.4 Thesis Contributions
	
	Chapter 2
	Architecture
	2.1 Overview
	2.2 Dialog Manager Level Integration
	2.3 Dialog Specification Level Integration
	2.4 Application Level Integration
	2.5 Architectural Proposal

	
	Chapter 3
	Dialog-modeling Concept
	3.1 Classic Dialog Modeling
	3.1.1 State-based Dialog Modeling
	Basic concepts and specification elements
	Structure of state-based models
	Issues of combining different state-based dialogs

	3.1.2 Frame-based Dialog Modeling
	Basic concepts and specification elements
	Structure of frame-based dialog models
	Issues of combining different frame-based dialogs

	3.1.3 Agent-based Dialog Modeling – Plan-based Dialog Modeling
	Basic concepts and specification elements of plan-based dialog models
	Structure of plan-based dialog models
	Issues of combining different plan-based systems

	3.2 Advanced Dialog Modeling
	3.2.1 Object-oriented Dialog Modeling – Inheritance
	Inheritance of dialog states
	Inheritance of dialog components

	3.2.2 Information-state Approach to Dialog Modeling

	3.3 Summary

	
	
	Chapter 4
	Extended Frame-based Dialog Model
	4.1 Frame-based Dialog Models – State of the Art
	4.2 Limitations of Frame-based Dialog Models
	4.2.1 Transaction Dependencies
	4.2.2 Parameter Dependencies
	4.2.3 Influences of the Backend System

	4.3 Extensions of Frame-based Dialog-modeling Approach
	4.4 Dialog Management
	4.4.1 Dialog Events
	4.4.2 Transaction Identification and Activation
	4.4.3 Parameter Query and Verification
	4.4.4 Interactions with Backend Applications

	4.5 Scenario Examples
	4.5.1 A Complete Application Example
	
	4.5.2 Scenario for Context Application

	4.6 Summary
	4.6.1 Comparison to Related Approaches

	
	Chapter 5
	Speech User Interface Development for Applications
	5.1 Specification Language – Enhanced DIANEXML
	5.1.1 DIANEXML
	Transaction definition
	Parameter definition
	Grammar definition
	Application example

	5.1.2 Enhanced DIANEXML
	Precondition
	Postcondition
	Context
	Infer
	Constraint
	System action
	Backend method invocation

	5.2 Modeling Examples
	Identify
	Send a message
	Logon

	5.3 Summary

	
	
	Chapter 6
	Grammar Comparison
	6.1 Introduction
	6.2 Theoretical Background
	6.2.1 Chomsky Hierarchy
	6.2.2 Context-free Grammars and Finite-state Automaton

	6.3 Context-free Grammars in Speech Processing
	6.3.1 Approximations of Context-free Grammars
	6.3.2 Different Approximation Approaches

	6.4 Comparison of Context-free Grammars
	6.4.1 Similarity of Context-free Grammars
	6.4.2 Theoretical Considerations of Comparing Context-free Grammars
	Comparison based on finite-state automaton approximation
	
	Comparison based on N-gram Approximation

	6.5 Comparison of DIANE Grammars
	6.5.1 Comparison of DIANE Grammars Based on Finite-state Modeling
	Finite-state modeling of DIANE grammar
	Intersection of finite-state automaton
	Emptiness problem of deterministic finite-state automaton

	6.5.2 Generation and Parsing-based Grammar Comparison
	Enumeration rules vs. derivation rules
	Grammar comparison based on enumeration and derivation
	6.5.2.1 Reduction of enumeration rules
	6.5.4.2 Approximation of recursive rules
	6.5.4.3 Generation and Parsing
	6.5.4.4 Complexity of the algorithm
	6.5.4.5 Soundness and completeness of the algorithm

	6.6 Summary

	
	Chapter 7
	Combining Different Speech User Interfaces
	7.1 Multi-application Dialog System
	7.1.1 State of the Art
	7.1.2 Criteria

	7.2 Requirements on Dialog Systems
	7.3 Combination Scenarios
	7.3.1 Essential Application Information
	7.3.2 Scenario Overview
	7.3.3 Functional Overlap
	7.3.3.1 Identical transactions
	7.3.3.2 General-specific transactions
	
	
	7.3.3.3 Complementary transactions
	7.3.3.4 “Disjunctive similar transactions”

	7.3.4 Semantic Overlap
	7.3.5 Disjunctive Applications
	7.3.6 Scenarios Summary

	7.4 Combination Schemes
	7.4.1 Combination Process
	
	7.4.1.1 Application preparation
	7.4.1.2 Application Comparison
	Recognition of functional overlap
	
	
	Recognition of semantic overlap

	7.4.1.3 Handling of Overlaps
	Applications merging and new application construction

	7.4.2 Combination Tool

	
	7.5 Combination Issues of Context Specifications
	
	7.6 Summary

	
	
	Chapter 8
	Conclusion
	8.1 Related Work
	8.1.1 Web Service Composition
	8.1.2 Semantic Web

	8.2 Discussion
	8.2.1 Usability of Integrated Speech Application User Interfaces
	8.2.2 Evaluation of the Combination Algorithm

	8.3 Conclusion

	
	
	Bibliography
	
	Appendices
	Appendix 1: DTD Definition of DIANEXML
	Transaction DTD Definition
	Transaction Set DTD Definition
	Parameter DTD Definition
	Parameter Set DTD Definition
	DIANE Grammar Formalism

	Appendix 2: DTD Definition of Enhanced DIANEXML
	Appendix 3: BNF Definition of Script Language for DIANEXML
	 Appendix 4: Examples of Deeply Nested Sentences

