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1. Introduction 

1.1. The kidney 

The kidneys are a pair of bean-shaped organs in the paravertebral retroperitoneum. They are 

protected by three layers of connective tissue: the renal fascia, a fibrous membrane, surrounds the 

kidney and binds the organ to the abdominal wall; the adipose capsule, a layer of fat, cushions the 

kidney; and the renal capsule, a fibrous sac, surrounds the kidney and protects it from trauma and 

infection. 

The kidney has three critical functions: (1) to clear the blood of nitrogenous and other waste 

metabolic products by filtration and excretion; (2) to balance the concentration of body fluids and 

electrolytes; (3) to recover by reabsorption small molecules (amino acids, glucose, and peptides), 

ions (Na+, Cl-, Ca2+, PO-), and water, in order to maintain blood homeostasis by producing 

urine. The urine is produced glomerular filtration followed by tubular reabsorption and secretion 

(Kierszenbaum, 2002). 

The urinary system consists of paired kidneys and ureters and a single urinary bladder and 

urethra. Each kidney has an external cortex and an internal medulla. The cortex is divided into 

inner and outer regions. The medulla is formed by conical masses, the medullary pyramids. A 

medullary pyramid together with the associated covering cortical region, constitutes a renal lobe. 

The renal artery enters the kidney and the renal vein emerges from the kidney at an indentation in 

the middle of the organ called the hilum. The renal artery supplies oxygen and blood to the 

kidney. The blood flows from the kidney through the renal vein after waste products have been 

removed. 

The kidneys receive about 20% of the cardiac output per minute and filter about 1.25 l of blood 

per minute. Essentially, all the blood of the body passes through the kidneys every 5 minutes. 

About 180 l of glomerular ultrafiltrate are produced in 24 hours and transported through the 

uriniferous tubules. Of this amount, 178.5 l are recovered by the tubular cells and returned to the 

blood circulation, whereas only 1.5 l are excreted as urine (Tisher et al., 1991).  
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Figure 1 : Cross section of the kidney.  

This normal adult kidney demonstrates the lighter outer cortex and the darker medulla, with the renal pyramids into 

which the collecting ducts coalesce and drain into the calyces and central pelvis. (Source: 

anatomy.iupui.edu/courses/histo_D502/D502f04/lecture.f04/urinaryf04/urinaryf04.html). 

 

The generation of urine occurs in the basic units of the kidney, called nephrons. Each human 

kidney contains over 1 million nephrons. Nephrons consist of a network of capillaries, a 

glomerulus, a renal tubule, and a membrane that surrounds the glomerulus and functions as filter, 

called Bowman’s capsule. The glomeruli are where urine production begins with the 

ultrafiltration of plasma. Urine formation occurs in the renal tubules, which travel from the outer 

tissue of the kidney, the cortex, to the inner tissue, the medulla, and return to the cortex. 
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Figure 2: the nephron. 

It is a tiny tubule consisting of a cluster of capillaries called the glomerulus, surrounded by a hollow bulb known as 

Bowman's capsule. Bowman's capsule leads into a long, convoluted tubule consisting of four sections: the proximal 

tubule, loop of Henle, distal tubule, and collecting duct. The collecting ducts empty into the central cavity of the 

kidney, the renal pelvis, which connects to the ureter. Each human kidney has about a million nephrons. (Source: 

forum.myspace.com). 

  

1.1.1. The glomerular filtration barrier 

The glomerulus is a specialized filtration unit of the kidney. Its function is to provide a molecular 

sieve for blood plasma so that low molecular waste products are excreted into the urine, while 

essential macromolecules, such as plasma proteins, are retained in the blood. About 150-180 L 

plasma are filtered every day in the kidney. Most of the primary urine is reabsorbed. Since less 

than 40 mg albumin is normally excreted with urine each day. Golmeruli are efficient filters in 

restricting protein transfer into the primary urine.  
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Figure 3: Glomerulus. 

The capillaries are fenestrated without diaphragms, the thick basal lamina are produced by both endothelial cells of 

capillaries and podocytes that wrap around 10-20 capillary loops. The blood enters glomerulus at the afferent 

arteriole, passes through glomeruli capillaries then exits at the efferent arteriole. Both afferent and efferent arteriole 

are located at the vascular pole of the renal corpuscle. (Source: anatomy.iupui.edu/courses/histo_D502/ 

D502f04/lecture.f04/urinaryf04/urinaryf04.html).  

 

The glomerular filtration barrier of the capillary walls is comprised of a complex structural 

arrangement of three elements: a fenestrated endothelium, the glomerular basement membrane 

(GBM), and highly specialized visceral epithelial cells, named podocytes, where the foot 

processes cover the outer surface of the GBM (Kritz et al., 1996a, 1996b). 

In the human kidney, the diameter of the endothelial fenestrae ranges from 70 to 100 nm which 

permits direct contact between blood plasma and the GBM, so the endothelium does not seem to 

represent a direct passage of macromolecules. 
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1.1.2. Glomerular basement membrane 

The GBM is composed of a unique combination of laminins ( laminin 11, α5, β2, γ1 chains), 

collagen IV (α3, α4 and α5), entactin/ perlecan and proteoglycans (Miner, 1999). These 

components provide the GBM with unique compositional and functional characteristics found 

nowhere else in the body. The complex inter- and intramolecular interactions of these molecules 

make the GBM a unique permeable scaffold that provides the capillary wall with tension strength 

and flexibility. Detachment of podocyte foot processes from the GBM is a key step in foot 

process retraction and podocyte loss, leading eventually to glomerulosclerosis. Attachment of the 

podocyte to the GBM is mediated by molecules that include α3 β1- integrin heterodimers and β-

dystroglycan. These molecules provide a dynamic link between cell and matrix, which allows 

both a link to the actin cytoskeleton in the foot process. 

 

 

 

Figure 4: Transmission electron micrograph of the glomerular filtration barrier.  

Detail of end feet of podocyte on the basement membrane. The basement membrane (basal lamina) is continuous, but 

the fenestrated capillary endothelium has pores. Glomerular filtrate passes from the capillary lumen, through the 

layers seen here, into the lumen of Bowman's capsule (where the foot processes are lying). Between the foot 

processes are thin slit membranes. (Source: cmm.ucsd.edu).  
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1.1.3. Podocyte 

Podocytes are unique cells with a complex cellular organization and cytoarchitecture. Podocytes 

or visceral glomerular epithelial cells are attached to the outer aspect of the glomerular basement 

membrane. They are highly differentiated and divided structurally and functionally into three 

differents segments: cell body, major processes, and foot processes.  

 

 

 

Figure 5: Scanning electron microscope (SEM) micrograph of a glomerular podocyte as seen from the urinary 

space.  

The large cell body sends out thick primary processes that futher ramify into fine secondary (foot) processes that 

interdigitate with foot processes from adjacent podocytes. Under the foot processes is the glomerular basement 

membrane that surrounds the glomerular capillary (not visible in this view, source: Benninghof: Lehrbuch der 

Anatomie: W. Kriz: Die Niere). 

 

The cell bodies and major processes are generally not directly attached to the GBM, but are rather 

”free floating” in the filtrate in Bowman’s space. In contrast, the foot processes cover the outer 

aspect of the GBM and interdigitate with foot processes of neighboring cells (Mundel and Kriz, 

1995). The latter are connected by a specialized cell-cell junction, the glomerular slit diaphragm, 

which represents the main size-selective filter barrier in the kidney (Endlich et al., 2001). 
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Figure 6: The renal glomerulus.  

The glomerular filtration barrier consists of podocytes and fenestrated endothelium. Mesangial cells sit between 

capillary loops. Poodcytes are the largest cells in the glomerulus, possessing long cytoplasmic processes which in 

turn divide into numerous secondary foot processes that cover the outer aspect of the GBM. Normal Podocyte 

Structure. (Source: anatomy.iupui.edu/courses/histo_D502/D502f04/lecture.f04/urinaryf04/urinaryf04.html). 

 

Podocytes are injured in many forms of human and experimental glomerular disease, including 

minimal-change disease (MCD), focal segmental glomerulosclerosis (FSGS), collapsing 

glomerulopathy, diabetic nephropathy, membranous glomerulopathy, crescentic 

glomerulonephritis, and lupus nephritis (Eddy and Schnaper, 1998; Somlo and Mundel, 2000). 

The early events are characterized by alterations in foot process and slit diaphragm configuration, 

with loss of foot processes and loss of slit diaphragm integrity. Foot process effacement and 

fusion are associated with the onset of proteinuria (Whiteside et al., 1993) and are accompanied 

by a reorganization of the actin cytoskeleton into a dense network (Shirato et al., 1996). 

However, the molecular mechanisms causing these morphological alterations of podocyte foot 

processes are poorly understood and remain an active area of ongoing research (Smoyer et al., 

1997). 
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1.1.3.1. The sole of the podocyte foot process  

The basal membrane domain of foot processes contains several adhesion proteins that link 

podocytes to the extracellular matrix. These proteins encountered at this domain also form 

specialized, interconnected complex. The integrin α3β1 localized to the soles of foot processes 

(Kerjaschki et al., 1989), is essential for the maturation of podocyte. 

Dystroglycan is also found at the sole of the podocyte’s foot. Dystroglycan is heterodimeric 

protein composed of a transmembrane component, the beta subunit, and an extracellular 

component, the alpha subunit. Dystroclycans are connected to the actin-based cytoskeleton 

through utrophin. Both integrins and dystroglycans are coupled to the podocyte actin 

cytoskeleton (Barisoni and Mundel, 2003). 

1.1.3.2. Podocyte proteins 

Several podocyte proteins are located in the foot process. Foot processes contain an elaborate and 

dynamic actin-based cytoskeleton. This structure maintains the normal architecture of foot 

processes, including the proper positioning of transmembrane proteins and the slit diaphragms. 

The major molecular components of the podocyte are actin, α-actinin-4, podocin, ZO-1(Andrews, 

1981; Akhtar and Al Mana, 2004), and synaptopodin (Mundel et al., 1997). 

CD2-associated protein (CD2AP) is an 80-kDa cytoplasmic protein expressed in all tissues. The 

protein has been localized by immunoelectron microscopy to the lateral wall of the foot process 

in close proximity to the insertion of nephrin (Yuan et al., 2002a). Several recent studies reveal a 

direct interaction between podocin, nephrin, and CD2AP; moreover, CD2AP interacts with actin, 

indicating a close relationship between the cytoskeletal structure and the configuration of the slit 

diaphragm (Yuan et al., 2002b). 

Podocin is a protein that is exclusively expressed in the podocyte and seems to play a role in 

controlling the permeability of the filtration barrier, at the level of the slit diaphragm. Podocin 

localizes to the podocyte foot process membrane, at the insertion site of the slit diaphragm where 

it binds to the cytoplasmic tail of nephrin and CD2AP (Barisoni and Mundel, 2003). 

Alpha-actinin-4 is another podocyte protein that binds with cytoskeleton proteins, especially 

filamentous actin. It is a widely expressed protein, and only one of four isoforms is significantly  
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expressed in podocytes. It interacts with a large number of cytoskeletal cell surfaces and 

signaling. One important podocyte marker is WT1, a tumor-suppressor gene that is widely 

expressed in epithelial cells of early nephron and is restricted to podocytes in the mature 

glomeruli (Akhtar and Al Mana, 2004). 

 

 

Figure 7: Schematic drawing of a latero-basel portion of a podocyte.  

In this greatly simplified graph, molecules are not draw to a correct scale or shape. Intracellulary, nephrin interacts 

directly with CD2AP and possibly also podocin. Actin filaments are cross-linked and stabilized by α-actinin-4. 

Mutations in nephrin, CD2AP or podocin lead to proteinuria and nephritic syndrome, while mutations in α-actinin-4 

lead to focal segmental glomerulorsclerosis (Kerjaschki, 2001). 

 

Zona occludens (ZO) 1 is located on foot process at the point of insertion of slit diaphragms 

(Schnabel et al., 1990). ZO-1 interacts with the actin-based cytoskeleton and may also have an 

important role in regulating the function of the slit diaphragm (Reiser et al., 2000a). 

Synaptopodin is an actin-associated protein of glomerular podocytes and telencephalic dendrites 

(Mundel et al., 1991) without significant homology to any known protein. In both brain and 

kidney, in vivo and in vitro, synaptopodin gene expression is differentiation-dependent (Mundel 

et al., 1997). 
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1.1.3.3. The slit diaphragm 

The slit diaphragms are thin structures connecting interdigitated podocyte foot processes along 

the glomerular basement membrane. The slit diaphragm is a complex of proteins located in the 

extracellular space, and measuring 30- 40 nm in lengh (Tryggvason and Wartiovaara, 2001). 

Rodewald and Karnovsky showed 30 years ago that the slit diaphragm is made up of rod-like 

units connected in the center to a linear bar, forming zipper-like pattern. Several novel podocyte 

proteins and their mutation analysis, including mFat1 (Ciani et al., 2003), the nephrin homologue 

Neph1 (Donoviel et al., 2001), nephrin (Kestila et al., 1998), CD2-associated protein (CD2AP) 

(Shih et al., 1999), and podocin (Boute et al., 2000), have emphasized the critical role of the slit 

diaphragm in maintaining the normal function of the glomerular filtration barrier. 

1.2. Glomerular disease and podocyte 

Glomerular diseases damage the glomeruli, letting protein and sometimes red blood cells leak 

into the urine. Sometimes a glomerular disease also interferes with the clearance of waste 

products by the kidney, so they begin to build up in the blood. Furthermore, loss of blood proteins 

like albumin in the urine can result in a fall in their serum level. 

A number of different diseases can result in glomerular disease. It may be the direct effect of an 

infection or a drug toxic to the kidneys, or it may be the result from a disease that affects the 

entire body, like diabetes or lupus. Many different kinds of diseases can cause swelling or 

scarring of the nephron or glomerulus. 

A number of glomerular disorders that may lead to chronic kidney disease are characterized by 

simplification and retraction of podocyte foot processes (FP) (Reiser et al., 2002). FP effacement 

requires a precise interplay of multiple cellular functions including structural alterations of the 

cytoskeleton, movement of FP over the basement membrane, and reconstruction of the slit 

diaphragm (Somlo and Mundel, 2000). Podocytes are injured in many forms of human and 

experimental glomerular disease, including minimal change disease, focal segmental 

glomeruloschlerosis, diabetes mellitus and lupus nephritis (Somlo and Mundel, 2000; Endlich et 

al., 2001; Kerjaschki, 2001).  

Podocyte injury leads to severe progressive glomerular disease (Mundel and Shankland, 1999). 

Early podocyte manifestations of injury include vacuolization, pseudocyst formation, and 

detachment from the GBM, resulting in podocyte depletion (Barisoni and Mundel, 2003). The 
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discovery of several novel podocyte proteins and their mutation analysis including nephrin 

(Kestila et al., 1998), CD2AP (Shih et al., 1999), α-actinin-4 (Kaplan et al., 2000) and podocin 

(Boute et al., 2000) have shed light on the pathogenesis of FP effacement and proteinuria and 

emphasized the critical role of podocyte FP and the slit diaphragm in maintaining the function of 

the glomerular filtration barrier (Reiser et al., 2004). 

As discussed above, the form of acquired glomerular disease in which podocyte dysfunction is 

most clearly implicated is minimal change and FSGS. Other causes of renal diseases excluding 

those that involve altered podocyte function are reviewed below. 

1.2.1. IgA nephropathy 

IgA nephropathy is an inflammatory glomerular disease with immunoglobulin A (IgA) deposition 

in the glomeruli. The most common symptom of IgA nephropathy is hematuria, but it is often a 

silent disease that may go undetected for many years. It appears to affect men more often than 

women. Although IgA nephropathy is found in all age groups, young people rarely display signs 

of kidney failure because the disease usually takes several years to progress to the stage where it 

causes detectable complications. 

1.2.2. Hereditary nephritis- Alport syndrome 

The primary indicator of Alport syndrome is a family history of chronic glomerular diseases, but 

it may also involve hearing or vision impairment. Alport syndrome is characterized by irregular 

thinning, thickening and splitting of the glomerular basal lamina. The X-linked dominant version 

of the syndrome affects only men, the autosomal disease both men and women. Men with Alport 

syndrome usually first show evidence of renal insufficiency while in their twenties and reach the 

end stage renal disease by age 40. Autosomal disease course can vary with many women rarely 

showing significant renal impairment, and hearing loss may be so slight that can be detected only 

through testing with special equipment. 

1.2.3. Diabetic nephropathy 

Diabetic nephropathy is the leading cause of end stage renal disease in the Western world. 

Kidney disease is one of several problems caused by prolonged elevation in blood glucose, the 

central feature of diabetes. Diabetic nephropathy is typically defined by either macroalbuminuria 
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or by abnormal renal function as represented by an abnormality in serum creatinine or glomerular 

filtration rate. Renal disease is suspected to be secondary to diabetes in the clinical setting of 

long-standing diabetes. The natural history of diabetic nephropathy is a process that progresses 

gradually over years. Early diabetes is heralded by glomerular hyperfiltration and an increase in 

glomerular filtration rate. This is thought to be related to increased cell growth and expansion in 

the kidney, possibly mediated by hyperglycemia itself. In addition to directly damaging the 

kidney, elevated glucose levels appear to increase the renal blood flow, putting an additional 

strain on the filtering glomeruli. 

1.2.4. Glomerulosclerosis and Focal Segmental Glomerulosclerosis  

Glomerulosclerosis refers to scarring (sclerosis) of the glomeruli in the kidneys. This scarring 

impairs kidney function and may lead to kidney failure. In several sclerotic conditions, a 

systematic disease like lupus or diabetes mellitus is responsible. Glomerulosclerosis is caused by 

the activation of glomerular cells. This may be stimulated by growth factors, which may be 

produced by glomerular cells themselves or may be brought the glomerulus by the circulating 

blood. Early stages of glomerulosclerosis may not cause any symptoms. The most important 

warning sign of glomerular disease is proteinuria. However, the loss of large amounts of protein 

can result in the nephrotic syndrome with systemic edema formation. 

In Focal segmental glomerulosclerosis (FSGS), segments of some glomeruli are affected initially. 

FSGS is the most frequent cause of intractable proteinuria in children and adults and is emerging 

as a major glomerular cause of chronic kidney disease in the US (Braden et al., 2000). FSGS 

describes scarring initially in scattered regions of the kidney, typically limited to one part of the 

glomerulus and to a minority of glomeruli in the affected region. Recent advances in molecular 

genetics of FSGS led to the identification of several genes responsible for familial forms. In 

general, they code for proteins of the podocyte and are associated with the glomerular slit-

diaphragm where they play a critical role in the control of glomerular permeability (Ghiggeri et 

al., 2004). 

1.2.5. Minimal change disease 

Minimal change disease (MCD) is the diagnosis given when a patient has the nephrotic syndrome 

and the kidney biopsy reveals little or no change to the structure of glomeruli or surrounding 

tissues when examined by light microscopy. MCD is the most common cause of nephrotic 



Introduction 

 14

syndrome in children and accounts for 10 to 15 percent of cases in adults. There is no evidence of 

immune deposits and the only ultrastructural abnormality is fusion of the podocytes foot 

processes, which is common to proteinuric states. The underlying molecular defect has not been 

identified. The nephrotic syndrome and podocyte damage can be reversible spontaneously or in 

response to systemic steroid therapy (Barisoni and Mundel, 2003). 

1.2.6. Conginital nephrotic syndrome 

Conginital nephrotic syndrome (CNF) is an autosomal-recessive disease found in the Finnish 

population with an incidence of about 1 in 10 000 newborns, but it is less frequent in other 

population (Huttunen, 1976). CNF is characterized by massive nonselective proteinuria already in 

utero, and development of nephrosis immediately after birth. The disorder commonly results in 

infection, malnutrition, kidney failure and, prior to renal transplantation, death. The disease is 

known for the defect on NPHS1 gene. The NPHS1 gene product, termed nephrin, is a 180 kD 

type-1 transmembrane glycoprotein belonging to the immunoglobulin superfamily (Kestila et al., 

1998). 

1.3. Integrins 

Integrins are heterodimeric cell surface adhesion receptors that mediate cell adhesion and 

migration by providing a physical link between the extracellular matrix and the cytoskeleton 

(Hynes, 1992). They are composed of two subunits, α and β and each αβ combination have its 

own binding specificity and signaling properties. To date these proteins are formed from 18 α and 

8β subunits, which dimerize to yield at least 24 different integrin heterodimers, each with distinct 

ligand binding and signaling properties (Brakebusch et al., 2002).  

Integrin can bind to different extracellular matrix molecules, such as collagens and laminins, or to 

cellular receptors, such as VCAM-1, which constitute the ligand binding domains. On the another 

hand the cytoplasmic domains play a critical role in the promotion of the cell anchorage as they 

interact with the cytoskeleton and provide a physical connection between the internal and 

external environment. A number of intracellular proteins have recently been identified, which 

directly interact with the cytoplasmic tails of β1, β2 and β3 integrin subunit. In addition to their 

anchoring function, integrins also mediate cell signaling by transducing multiple pathways 

through their cytoplasmic tails following activation by ligands (“outside-in” signaling) (Schwartz 
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et al., 1995). The cytoplasmic domains also modulate integrin affinity for their ligands by 

changing the conformation of the extracellular domains via a process called integrin activation, or 

“inside-out” signal transduction. Integrins are, therefore, signaling receptors that transmit 

information in both directions across the plasma membrane and provide an intersection where 

mechanical forces, cytoskeletal organization and biochemical signals meet (Pozzi and Zent, 

2003).This binding results in the activation of intracellular signal processes regulating cell 

growth, differentiation, anoikis and cell survival (Attwell et al., 2000). Integrin signaling occurs 

via the interaction of integrin cytoplasmic tails with intracellular regulatory or signaling 

molecules known to be involved in focal adhesion kinase (FAK) and mitogen-activated protein 

(MAP) kinase signaling cascades (Juliano, 1994).  

1.3.1. Signaling machinery of Integrins 

Integrins transduce signals by associating with adapter proteins that connect the integrin to the 

cytoskeleton, cytoplasmic kinases, and transmembrane growth factor receptors. 

Integrin signaling and assembly of the cytoskeleton are intimately linked. As integrins bind to the 

ECM, they become clustered in the plane of the cell membrane and associate with a cytoskeletal 

and signaling complex that promotes the assembly of actin filaments. The reorganization of actin 

filaments into larger stress fibers, in turn, causes more integrin clustering, thus enhancing the 

matrix binding and organization by integrins in a positive feedback system. 

Integrins activate various protein tyrosine kinases, including focal adhesion kinase (FAK), Src-

family kinases, and a serine-threonine kinase, integrin-linked kinase (ILK) (Delcommenne et al., 

1998). 

1.4. The extracellular matrix 

The extracellular matrix (ECM) is the material found around cells. The ECM is a biologically 

active tissue composed of a complex mixture of macromolecules, that in addition to serving a 

structural function, also profoundly affects the cellular physiology of an organism. Eukaryotic 

cell adhesion, migration, proliferation and differentiation are examples of biological processes 

influenced by the composition and structural organization of surrounding extracellular matrices. 

The ECM not only affects the behavior of cells of the host organism, but also can serve as a 

substrate for the attachment and colonization of pathogenic microorganisms. 
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The extracellular matrix is made up of two classes of macromolecules. The first class is called 

glycosaminoglycans, which are polysaccaride chains. Members of this class are usually found to 

be covalently linked to proteins in the form of proteoglycans. The second class is made up by 

fibrous proteins. There are two functional types of fibrous proteins: the ones that are mainly 

structural, like collagen and elastin for example, and the ones that are mainly adhesive, like 

fibronectin and laminin. Members of both classes come in a great variety of shapes and sizes. 

The members of the glycosaminoglycans form a highly hydrated, gel-like substance, in which the 

members of the fibrous proteins are embedded. Collagen fibers strengthen and help to organize 

the matrix, while elastin fibers give it resilience. The adhesive proteins help cells to attach to the 

extracellular matrix. Fibronectin for example promotes the attachment of fibroblasts and other 

cells to the matrix in connective tissues via the extracellular parts of some members of the 

integrin family, while laminin promotes the attachment of epithelial cells to the basal lamina, 

again via the extracellular domains of some members of integrins. 

1.5. The cytoskeleton 

The cytoskeleton is unique to eukaryotic cells. It is a dynamic three-dimensional structure that 

fills the cytoplasm. This structure acts as both muscle and skeleton, for movement and stability. 

The long fibers of the cytoskeleton are polymers of subunits. The primary types of fibers 

comprising the cytoskeleton are microfilaments, microtubules, and intermediate filaments. 

The three cytoskeletal components have distinct sub-cellular localizations. Microfilaments are 

enriched in a layer known as the cell cortex, immediately beneath the plasma membrane, and in 

cell projections such as microvilli. Microtubules extend from the perinucleus towards the cell 

periphery. The plus ends of microtubules point to the cell periphery. Intermediate filaments are 

distributed in a similar pattern to microtubules. 

The cytoskeleton perceives gravity or any force through special proteins known as integrins, 

which poke through the cell’s surface membrane (Ingber et al., 1994). Inside the cell, they are 

hooked to the cytoskeleton. Outside, they latch onto a framework known as the extracellular 

matrix. Ingber and his collegues have shown that when integrins move, the cytoskeleton stiffens 

with corresponding increase in stress. 
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1.6. Integrin linked kinase (ILK) 

The human ILK was initially identified in a yeast two-hybrid screen using a “bait” plasmid 

expressing the cytoplasmic domain of β1 integrin subunit. It encodes a polypeptide of 451 amino 

acids with a molecular mass of 59 kDa (Dedhar et al., 1999). The ILK orthologue gene was 

isolated from mice by cDNA library screening using a human ILK probe (Li et al., 1997). The 

coding regions of these two ILK genes share 91.5% identity of nucleotide acid sequences and 

99.1% of deduced amino acid sequences. ILK is highly conserved evolutionarily, with 

homologues identified in human, mouse, rat, Drosophila, and Caenorhabditis elegans. The gene 

encoding human ILK has been localized to human chromosome 11p15.5-p15.4 (Dedhar et al., 

1999). Regional loss of heterozygosity indicates that this part of chromosome 11 is strongly 

associated with tumorgenesis in a manner that might involve genomic imprinting (Yoganathan et 

al., 2002).  

1.6.1. ILK structure 

ILK is a serine-threonine kinase that is ubiquitously expressed in mammalian cells as a major 

transcript of 1.8 kb, with strongest expression of the human ILK gene in heart, skeletal muscle 

and pancreas and of the mouse ILK in heart, lung, liver and kidney. ILK was first identified based 

on its interaction with the cytoplasmic domain of β1 integrin subunit using a yeast two-hybrid 

screen.However, ILK can also interact with the cytoplasmic tail of β3-integrin subunit (Li et al., 

1997; Dedhar et al., 1999). 

ILK is composed of three highly conserved structurally and functionally distinct domains: (1) the 

N- terminus domain; (2) the plekstrin homology domain; (3) the C-terminal domain and an 

integrin binding site (Dedhar et al., 1999). 

The ankyrin repeats: the N-terminus of ILK contains four ankyrin repeats (ANK) (amino acid 

residues 33-164), which allow its interaction directly to PINCH, an intracellular protein 

containing five LIM domains (Huttunen, 1976). The LIM domain is a protein-binding motif 

consisting of a cysteine-rich consensus sequence of approximately 50 residues that form two 

separate zinc fingers (Dawid et al., 1998). PINCH appears to regulate the localization of ILK to 

focal adhesion plaques where ILK transduces downstream signaling via its Ser/Thr protein kinase 

activity (Li et al., 1999). PINCH was initially identified by Rearden (Rearden, 1994) screening a 

human cDNA library with antibodies recognizing senescent erythrocytes. Yeast two-hybrid 
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screens using the N-terminal ANK-repeat domain of ILK as bait reveal that PINCH binds to ILK. 

The interaction between ILK and PINCH occurs in mammalian cells as well as in vitro 

(Huttunen, 1976). A series of mutational studies have defined the structural basis underlying the 

ILK-PINCH interaction. The PINCH-binding activity requires all four ANK repeats of ILK (Li et 

al., 1999). 

 

Figure 8: Functional domains of integrin linked kinase (ILK).  

ILK is an intracellular serine/threonine protein kinase with a C-terminal kinase catalytic domain. There are four 

ankyrin repeats in the N-terminus (residues 33-164) and a phosphoinositide-binding motif between the ankyrin 

domain and the catalytic domain (residues 180-212). The integrin-binding site is in the extreme C-terminus of the 

kinase domain (residues 293-451) (Dedhar et al., 1999). 

 

The pleckstrin homology: the pleckstrin homology (PH) domain containing a consensus 

sequence is present in the center of ILK (residues 180-212) (Delcommenne et al., 1998). PH 

domains have been implicated in interactions with other proteins and lipids (Haslam et al., 1993; 

Mayer et al., 1993). 

The kinase catalytic domain: the C-terminal domain is homologous to the catalytic domain of a 

large number of protein kinase containing twelve subdomains and an integrin binding site (Lux et 

al., 1990; Hanks and Quinn, 1991). Evolutionary, ILK appears to be highly conserved and ILK 

homologues have been found in humans, mice, and drosophila and C. elegans. However, 

subdomains I, VI and VII are less conserved between ILK and other known protein kinases 

(Dedhar et al., 1999). Furthermore, in vitro kinase assays revealed that a single point mutation at 

position 359 within subdomain VIII resulted in the complete kinase deficiency (Novak et al., 

1998), which indicates subdomain VIII is critical for the ILK activity. 

The integrin binding site: the binding site of the cytoplasmic domain of β1 integrin subunit was 

initially mapped to the C-terminus with the protein kinase catalytic domain (Dedhar et al., 1999). 

Several studies suggest that ILK may also interact with the cytoplasmic domains of the β2 and β3 

integrin subunits (Delcommenne et al., 1998). 
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1.7. The kinase activity of ILK 

ILK has a low kinase activity, which is stimulated transiently by cell-ECM interactions and by 

certain growth factors (Dedhar et al., 1992). The activity of ILK is stimulated in a 

phosphatidylinositol (PI) 3-kinase-dependent manner and likely involves binding of the 

phosphoinositide phosopholipid product of PI 3-kinase, PI 3,4,5-triphosphate, to the PH-like 

domain of ILK (Dedhar et al., 1992).  

 

Figure 9: Schematic representation of the signal transduction pathways from integrins and growth factor 

receptors through ILK.  

ILK interacts with the cytoplasmic domains of β1 or β3 integrins, and with the first LIM domain of PINCH via its N-

terminal ankyrin repeats. ILK phosphorylates PKB/Akt on Ser 473. ILK phosphorylates and inhibits the activity of 

GSK-3 β (Yoganathan et al., 2002).  

 

Inhibition of ILK kinase activity suppresses cell growth in culture as well as growth of human 

colon carcinoma cells in SCID mice (Tan et al., 2001). Several lines of experimental evidence 

suggest that these phenotypes are largely attributed to enhanced ILK kinase activity and 

phosphorylation of glycogen synthase kinase 3 (GSK 3β) on Serine 9 and PKB/Akt on Serine 473 

(Delcommenne et al., 1998; Persad et al., 2001), two key proteins involved in a diverse array of 

cell functions including cell proliferation, survival and insulin responses (Cohen and Frame, 

2001; Lawlor and Alessi, 2001). The ILK phosphorylation of PKB on Ser473 is positively 

regulated by the activity of PI3-kinase and negatively regulated by the tumor suppressor gene 
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PTEN that encodes a lipid phosphatase (Morimoto et al., 2000). PTEN encodes a 3´-phosphatase 

that converts phosphatidylinositol 3, 4-bisphosphate into phosohatidylinositol-4-phosphate and 

phosphatidylinositol-3, 4, 5-triphosphate. ILK-dependent phosphorylation of GSK 3β in epithelial 

cells down regulates GSK 3β kinase activity (Delcommenne et al., 1998). This in turn is 

associated with reduced E-cadherin expression, enhanced AP1 activity and increased β-catenin-

Lef/Tcf activity (Novak et al., 1998), which induces the expression of cell-cycle-promoting genes 

such as cyclins and c-myc (Radeva et al., 1997).  

Other targets of the ILK kinase activity are β-parvin (Yamaji et al., 2001), the regulatory myosin 

light chain (MLC) (Deng et al., 2001), and MLC phosphatase (Kiss et al., 2002; Muranyi et al., 

2002), and its regulators CPI-17 (protein-kinase-C-dependent phosphatase inhibitor of 17 kDa) 

and PHI-1 (phosphatase holoenzyme inhibitor 1) (Deng et al., 2001). The significance of their 

phosphorylation, however, is not clear. 

1.7.1. ILK expression in human cancers 

Recent findings in a number of cancers indicate that ILK expression is increased in tumors, and 

that higher-grade tumors express higher levels of ILK protein. Analysis of ILK expression in 

human prostate cancer biopsy samples demonstrated that ILK expression levels increased with 

tumor grade (Graff et al., 2001). ILK expression levels are also increased in human colon 

adenocarcinomas (Bravou et al., 2003), ILK expression is also increased in gastric cancers, with 

higher levels in higher-grade cancers and in metastases (Ninomiya et al., 1995). In ovarian 

cancers, ILK expression is increased relative to benign tumours and normal ovarian epithelium. 

Increased expression of ILK has been reported in malignant melanomas relative to benign lesions 

and melanocytes. Again, higher levels of ILK were correlated with the depth of the melanoma 

lesions and with metastases, and an inverse correlation between the level of ILK expression and 

patient survival was demonstrated (Dai et al., 2003). These findings that ILK protein levels are 

increased in several types of cancer indicate that ILK gene transcription, translation or protein 

stability could be dysregulated in cancer cells. At present, little is known about the mechanisms 

of regulation of ILK transcription. 

1.7.2.  Role of ILK in relevance to nephrophathy 

To identify novel molecules activated in proteinuria, Kretzler and his colleagues undertook an 

expression screen on glomeruli from children with the congenital nephrotic syndrom of the Finish 
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type (CNF). Displaying 5800 mRNAs, 37 differentially regulated PCR products were isolated 

and 12 were further characterized (Haltia et al., 1999). One cDNA with induction in the nephrotic 

glomeruli was identical to ILK (Kretzler et al., 2001). ILK a serine threonine kinase, appeared to 

be a good candidate for regulating podocyte matrix interaction in proteinuria. ILK induction was 

found in glomeruli of three different renal diseases, all with severe alterations of the filtration 

barrier (Kretzler et al., 2001).  

In CNF, a mutation of a single molecule in the slit diaphragm, nephrin, causes a severe 

disturbance of the glomerular filtration unit (Haltia et al., 1999; Kawachi et al., 2000). In the 

murine model of nephrotoxic serum nephritis the acute inflammatory insult of the anti-GBM 

antibodies induces the rapid onset of a severe nephrotic syndrome (Schadde et al., 2000). In the 

chronic progressive glomerulosclerosis of mice transgenic for growth hormone (GH), glomerular 

hypertrophy induces slowly progressive podocyte failure (Wanke et al., 1992). These results are 

the first indications that changes in ILK expression occur in the damaged glomerulus and may 

play a role in the disturbed filtration barrier on proteinuria, irrespective of the initial insult 

(Kretzler, 2002). A significant increase of ILK mRNA was confirmed in podocytes from 

proteinuric mice compared to wild-type littermates using the real-time RT-PCR. 

1.7.3. ILK in kidney disease 

Recent studies have implicated ILK dysregulation in the development of several chronic 

glomerular diseases. Kretzler et al. identified ILK as a candidate downstream effector in 

proteinuria in patients with congenital nephritic syndrome (Kretzler et al., 2001). An induction 

and disruption of ILK was also observed in mesangial matrix expansion by hyperglycemia in 

diabetic nephropathy (Hammes et al., 2001). Li and al. have shown a tubule-specific induction of 

ILK in mouse kidney after both obstructive and diabetic injury, this induction is consistent with a 

role for ephithel to mesenchymal transition (EMT) (Sakai et al., 2003). 

Induction of ILK activity was found in podocytes cell culture grown on plastic or collagen I 

compared to collagen IV and fibronectin matrix molecules found in the normal glomerulus. ILK 

activity was assessed after in vitro challenge of podocytes with the polycation protamine sulfate 

(Reiser et al., 2000b). Protamine induces foot process effacement probably via alteration of the 

luminal podocyte surface charge (Kerjaschki et al., 1989). This result indicates ILK as a 

downstream effector of podocyte damage (Kretzler, 2002). 
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1.8. Transgenic mice 

A transgenic mouse is an organism that had artificially DNA introduced into one or more of its 

cells. Transgenic mice are developed into a useful research tools in biological sciences. The 

mouse is an excellent experimental model for defining human gene function because of its 

anatomic, physiologic, and genetic similarity to humans (van der Weyden et al., 2002). The 

mouse is also a popular model because of its relatively short life cycle and because its genome 

can be readily manipulated by molecular means. 

In the last few years, a number of significant technological advances have dramatically increased 

our ability to create mouse models of human disease. Techniques including viral transgenics, 

pronuclear microinjection, and microinjection of genetically altered embryonic stem (ES) cells 

have been used to either add gene copies or disrupt genes (“knockout”) in the mouse genome. 

Studies of normal gene function, altered gene expression, gene regulation, as well as the 

generation of mice with specific mutant genes and the production of mouse models for human 

diseases are some of the important types of studies to which transgenic mouse technology has 

made a significant impact (Cuthbertson and Klintworth, 1988; Denny and Justice, 2000; 

Malakoff, 2000). 

1.8.1. Conventional transgenic mice 

1.8.1.1. Pronuclear injection 

Pronuclear injection results in random integration of the injected DNA into the genome and relies 

on the overexpression of the transgene to produce a phenotype. In most cases, the transgene can 

be defined as an expression cassette consisting of a gene driven by a promoter of choice (Brinster 

and Palmiter, 1984). To this end, the DNA containing the transgene is microinjected into the male 

pronucleus of fertilized mouse oocytes. Subsequently, viable embryos are implanted into pseudo-

pregnant surrogate mothers. On average, 10-30 % of the resulting littermates bear the transgene 

in their genome. In general, a transgenic mouse line is established when the transgene is 

effectively transmitted to the following generations in a mendelian way. Although the transgenic 

DNA is present in all cells, transgene expression is dependent on many factors such as the chosen 

promoter and enhancer elements, the number of incorporated copies, and the locus of integration 

(Gassmann and Hennet, 1998).  

The main limitation of the pronuclear injection is linked to the uncontrolled integration of the 
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transgene into the host genome. This random integration may influence the expression of genes 

situated close to the transgene, and the locus of integration may affect the expression of the 

transgene itself. Therefore, it is mandatory to generate several transgenic mouse lines with 

comparable transgene expression patterns that show identical phenotypes. This cumbersome 

drawback became obsolete with the emergence of targeted mutagenesis techniques. 

1.8.1.2. Gene targeting 

One of the most common uses of targeted insertion of DNA is to generate "knockout mice". The 

underlying mechanistic principle of this technology is homologous recombination. When an 

exogenous DNA sequence is integrated into the mouse genome, there is an extremely small but 

finite probability that it recombines itself at the site where the native sequence is similar to that of 

the exogenous sequence. For the homologous recombination to occur, the two sequences must be 

as close to identical as possible. Homologous genes from even closely related mammalian species 

may not be similar enough, particularly in the intron sequence. The probability of homologous 

recombination can be dramatically greater when the gene used to disrupt the endogenous gene is 

derived from the same strain of mouse as that of the recipient cells.  

Targeted insertion is accomplished by introducing the DNA into embryonic stem (ES) cells. 

These are undifferentiated multipotent cells from mouse blastocysts which can develop into any 

type of cell and organ in the body. Under certain specific culture conditions, they can be 

maintained in the multipotent status. To increase the usefulness of recombinant ES cells, a 

mechanism for selection is usually constructed into the exogenously introduced DNA sequence. 

A selection marker, like the neomycin resistance gene, is normally added to targeting vectors to 

allow selection of ES cells that have integrated the vector into their genome. The exogenous 

DNA sequence is introduced into the ES cells most commonly by electroporation. Cells in which 

the introduced sequence is integrated into the homologous sequence in the host genome are 

selected and injected into the cavity of a mouse embryo at the blastocyst stage. The injected 

blastocyst is returned to a pseudo-pregnant host female mouse. Thus, the embryo consists of two 

types of cell, each with different genetic makeup; the native cells of the blastocyst and the 

injected ES cells. Since both are multipotent, the embryo develops to a whole animal which is 

chimeric, consisting of varying proportions of both cells. Male mice showing a high percentage 

of chimerism are then mated with wild type mice to check for germ-line transmission of the 

targeted allele in the F1 offspring. 
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1.8.2. Conditional transgenic mice  

Conventional transgenic technologies are invaluable for modeling genetic disorders and 

answering specific questions in relation to developmental biology. However, this all or nothing 

approach is inflexible and cannot be used to answer more subtle questions about gene function. 

Furthermore, conventional knockout strategies affect every cell in an animal, so that it is often 

impossible to distinguish primary and secondary changes in a complex phenotype. In order to 

tease out more precise information about the role of a gene in a specific cell type at a critical 

stage of disease or development, a more sophisticated approach is required. Building on 

conventional transgenic techniques, conditional technologies allow flexible spacio-temporal 

control of gene expression. In these systems the switching on or off of a particular gene is 

conditional on a specific stimulus (Ryding et al., 2001). 

1.8.2.1. Conditional knockout 

To overcome the limitation of conventional knockout animals, conventional genome 

modifications have been combined with site-specific recombination systems that rely on 

recombinases that promote the reciprocal exchange between two short DNA recognition 

sequences (Kwan, 2002). Currently there are two recombinase systems that have been applied in 

mouse gene targeting: Cre and Flp. 

Cre is the 38-kDa product of the cre (cyclization recombination) gene of bacteriophage P1 and is 

a site specific DNA recombinase of the Int family (Sternberg et al., 1986) which efficiently 

catalyzes reciprocal conservative DNA recombination between pairs of loxP (locus of X-over of 

P1) sites (Hoess et al., 1990). In a similar manner the Flp from the budding yeast Saccharomyces 

cerevisiae (Dymecki, 1996) mediates recombination between FRT (FLP recombination target) 

sites. 

Each of these recombinases (Cre or Flp) recognizes a 34-bp DNA sequence. Both loxP and FRT 

sites consists of two 13-bp inverted repeats flanking an 8-bp non-palindromic core region. One 

molecule of this recombinase binds per inverted repeat or two molecules line up at one (loxP or 

FRT) site. The recombination occurs in the asymmetric core region. These 8 bases are also 

responsible for the directionality of the site. Two site (loxP or FRT) sequences in opposite 

orientation to each other invert the inverting piece of DNA; two sites in direct orientation dictate 

excision of the inverting DNA between the sites leaving one site behind (Ryding et al., 2001). 

This precise removal of DNA can be used to eliminate an endogenous gene or transgene and to 

activate a transgene. 
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1.8.2.1.1 The Cre/LoxP system  

The Cre /loxP system is a tool for tissue-specific knockout of such genes which cannot be 

investigated in differentiated tissues because of their early embryonic lethality in mice after 

conventional knockouts. Modification of a specific gene with loxP sites flanking the region of 

interest is achieved using standard gene targeting vectors in ES cells (Gubler et al., 1993). Mice 

derived from these targeted ES cells can be bred to produce homozygotes for the floxed allele. 

This mouse line is than crossed to a conventional transgenic mouse line with Cre targeted to a 

specific tissue or cell type. Recombination, excision and consequent inactivation of the target 

gene occurs only in those cells expressing Cre recombinase. Hence, the target gene remains 

active in all cells and tissues which do not express Cre. 

 

 

 

 

 

 

 

Figure 10: Structure and sequence of the recombinase recognition loxP sites. 

A) Each site consists of two 13-bp inverted repeats flanking an asymmetric 8-bp core region which define the 

orientation of the recognition site indicated by the red arrow in the loxP sequence. 

B) Recombinase- mediated recombination between two recognition sites in forward orientation. 

1.8.2.1.2 The Flp/FRT system 

The FLP-FRT system, becoming more frequently used in mouse research, is similar to Cre-lox in 

many ways. It involves the use of flippase (FLP) recombinase, derived from Saccharomyces 

cerevisiae (yeast). In lieu of loxP sites, FLP recognizes a pair of FLP recombinase target (FRT) 

sequences flanking the genomic region of interest. As with loxP sites, orientation of the FRT 

sequences dictates inversion or deletion events in the presence of FLP. The use of Flp in 

transgenic mice is at a less advanced stage than that of Cre and a direct comparison between the 

two is not possible at this time (Ryding et al., 2001). The recombination efficiency of Flp is 

inferior to that of Cre (Buchholz et al., 1998). One of the disadvantages of Flp compared with Cre 

is that no ubiquitously expressing reporter for Flp is available. 



Aim of the study 

 26

2. Aim of the study 

The integrin linked kinase is a serine threonine kinase, which has been shown to be involved in a 

wide variety of regulatory processes associated with cell function. Recently, our group identified 

an ILK induction in glomerular disease by an expression screening on glomeruli from children 

with congenital nephritic syndrome of the Finnish type. These data suggested that ILK plays a 

central role in the podocytes damage.  

The aim of this study was to elucidate the functional role of ILK in the glomerular filtration 

barrier in vivo using transgenic mice. To address this issue ILK deletion was carried out using a 

podocyte specific cre/Lox system. Further, a mouse line overexpressing ILK was developed using 

transgenic mouse technology. The phenotypic characterization of the mouse lines was used to 

characterize the role of ILK in vivo in podocyte function. 
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3. Materials and Methods 

3.1. Animals experimentation  

Transgenic mice expressing Cre recombinase specifically in podocytes were obtained from 

L.B.Holzmann. The podocin-cre strain was engineered by subcloning the Cre-recombinase 

cassette under the regulation of the human NPHS2 promoter. (University of Michigan, Ann 

Arbor, USA) (Moeller et al., 2002). 129/ILKflox+/+ mice were provided by S.Dedhar (University 

of British Columbia, Vancouver, Canada) (Terpstra et al., 2003). For this study wild type mice 

were obtain from Charles River, Sulzfeld Germany. 

Mice were maintained on a 12-h light, 12-h dark cycle and fed standard rodent chow and tap 

water. Mice used in expression studies and for phenotypic analysis were weaned at an age of 

three weeks, marked by ear piercing and housed in cages separated by sex. At the time of 

weaning, tail tips were clipped and kept at –20°C for genotypic analysis. All experiments were 

carried out according to the German Animal Protection Law (Tierschutzgesetz; 

Genehmigungsaktenzeichen: 211-2531-31/96). 

 

Composition of the feed Normal feed Breeder feed 

Protein % 19 22.5 

Fat % 4 5 

Fiber % 6 4.5 

Ashes % 7 6.5 

Calcium % 0.9 0.9 

Phosphor % 0.7 0.7 

3.2. Generation of ILK deficient mice in podocyte 

To selectively delete ILK from glomerular podocytes, transgenic mice expressing Cre 

recombinase specifically in podocytes were bred with mice in which exon 5 to 12 of the ILK 

gene were flanked by lox sites. These mice were crossed with 2.5P-Cre-mice (podocinCre+/+) with 

the Cre-recombinase cassette under the regulation of the human NPHS2 promoter of the podocin 
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gene. The podocinCre mice were bred with homozygous floxed ILK mice. The F1 podocinCre+/-/ 

ILKflox+/- bitransgenic mice were backcrossed to homozygous ILKflox+/+/ podocin-/- mice 

generating homozygous ILKflox+/+-podocinCre+/- mice (podoILK -/-). Mice of all genotypes were 

born at the expected Mendelian frequency.  

3.3. Identification of transgenic mice 

3.3.1. Polymerase chain reaction (PCR) 

3.3.1.1. Proteinase K digest of mouse tails 

Tail tips were clipped at weaning and frozen at –80 °C. fragments of 3-5 mm were cut and 

incubated at 56 °C overnight in 1.5 ml centrifuge tubes containing 200 μl of Kawasaki buffer and 

10 μl proteinase K (Siegma, 20 mg/ml in bidistilled water). 

Kawasaki buffer (pH 8.3):  20 mM Tris-HCL, pH 8.3 

     1.5 mM MgCl2 

     25 mM KCl 

The buffer was autoclaved. Tween-20 was added to an end concentration of 0.5% (w/v) after the 

solution had cooled to RT. The resulting buffer was kept at RT. 

After the overnight digest, the samples were heated at 95 °C for 15 min to inactivate the 

proteinase K, centrifuged at 15.000 xg at 4 °C for 5 min. After that, the supernatant was 

transferred to a new tube. 1 μl of the supernatant were used as template for the PCR. 

3.3.1.2. PCR conditions 

For genotyping, the isolated genomic DNA from tails of three week old mice was used to detect 

the transgenicity. The following oligonucleotide primers were used for the Polymerase chain 

reaction (PCR); for the floxed ILK-locus: Fr-Lox: 5’-CCAGGTGGCAGAGGTAAGTA-3’ and 

Rv-Lox: 5´-CAAGGAATAAGTGAGCTCAGAA-3’. The presence of the transgene for the 

podocin-specific Cre-recombinase was detected using the PCR primer: Fr-Cre: 5-GCATAACCA 

GTAAACAGCATTGCTG-3` and Rv-Cre: 5´-GGACATGTTCAGGGATCGCC AGGCG -3´ 

(Moeller et al., 2002). The reaction was prepared in 0.5 ml PCR tubes on ice. The PCR was 

carried out with Taq DNA polymerase (5 units/ μl; Qiagen) in a total volume of 25 μl: 
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   DNA sample (template) 1.0 μl 

   10 x PCR buffer  2.5 μl 

   1 mM dNTPs   4.0 μl 

   10 pmol forword primer 1.0 μl 

   10 pmol reverse primer 1.0 μl 

   Taq DNA polymerase  0.2 μl 

   Bidistilled water  15.3 μl 

The reaction was performed as following in a Gene Amp 9700 thermoblock cycler (Applied 

Biosystems, Darmstadt, Germany). The PCR condition was as follows: 

 

CRE Lox-ILK 

94 °C     3 min 94 °C     3 min 

94 °C     45 sec 94 °C     2 min  

56 °C     45 sec           30 x 61 °C     45 sec           35 x 

72 °C    45 sec 72 °C     3 min 

72 °C    7 min 72 °C     7 min 

4  °C     ∞ 4  °C      ∞ 

 

Amplified DNA fragments were loaded on agarose gels for electrophoresis. 

3.3.2. Agarose gel electrophoresis 

Agarose   Gibco BRL Invitrogen, Karlsruhe 

10 x TBE-buffer  121.1 g Tris 

    51.35 g boric acid 

    3.72 g  EDTA 

    ad 1000 ml bidistilled water 

6x loading buffer  0.025 g Xylene 

    0.025  bromphenol blue 
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7 ml  ddH2O 

1.4 ml  0.5 M EDTA 

3.6 ml  glycerol 

500 bp DNA ladder  Peqlab, Erlangen  

1 KB DNA ladder  Gibco BRL Invitrogen, Karlsruhe 

 

Agarose gels (0.6 to 2 % depending on the length of the DNA fragment) were prepared by 

dissolving agarose in 0.5 TBE-buffer by boiling the buffer in a microwave. After the solution had 

cooled, 6 µl ethidium bromide were added and the mixture was transferred into the appropriate 

gel chamber for solidation. The gel was then covered with TBE buffer and 2µl of 6x loading 

buffer was added to each DNA samples. Then samples and DNA ladder marker were loaded onto 

the gel. The gel was run under for the first 10 min by 70 V, and then under constant voltage 120V 

in order to separate DNA fragments. After the electrophoresis, the gel was visualised under the 

UV-light and photographed with a video processor (P67E, Mitsubishi). 

3.3.3. Isolation and elution of DNA fragments from agarose gel 

DNA fragments were separated in an agarose gel cast with Ethidium bromide. After running the 

band was visualised on a UV light-box. The band of interest was carefully cut using a scalpel and 

placed in a 1.5 ml microfuge tube. The DNA extraction was done using Qiagen Kit. The gel slice 

was weighed and 3x volumes of buffer QG were added to 1 volume of gel. The microfuge tube 

was than incubated at 50°C for 10 min. to dissolve the gel by vortexing every 2-3 min during the 

incubation. After the gel slice dissolved completely, 1 volume of isopropanol was added to the 

sample and was mixed. To bind the DNA, the contents of the tube was applied to the Qiaquick 

column and centrifuged for 1 min. The flow-through was discarded and 750 µl of buffer PE was 

added to the column and centrifuged for 1 min. The flow-through was discarded and the 

centrifugation step was repeated. The Qiaquick column was than placed into a clean 1.5 ml 

microcentrifuge tube and 50 µl of buffer TE or H2O was added to the center of the Qiaquick 

membrane and centrifuged for 1 min. at maximum speed to elute the DNA. 
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3.3.4. Quantification of DNA 

 2 µl of the sample was added to 100 µl TE in microfuge tube, was mixed well and read in a 

spectrophotometer by OD 260 and OD 280 to determine the purity of the DNA. 

The ratio OD260/ OD280 should be determined in order to assess the purity of the sample. The ratio 

should be between 1.8 –2.0. A ratio less than 1.8 indicates that there may be proteins or other UV 

absorbers in the sample, and a ratio higher than 2.0 indicates the samples may be contaminated. 

3.3.5.  Enzymatic digestion of DNA 

Restriction endonucleases  Roche, Mannheim 

10x reaction buffer   Roche, Mannheim  

Restriction enzymes were used for DNA digestion applying the recommended buffers in a 50 or 

100 µl final volume. 1-3 µg DNA were usually digested with at least 10 units of the required 

enzyme, either for 1h or over night at the prescribed temperature. 

3.3.6. DNA dephosphorylation 

Treatment of digested DNA with alkaline phosphatase (calf intestinal phosphatase, CIP, NEB) 

which catalyses the removal of 5´ phosphate groups was carried out in order to prevent self-

recirculation of the plasmid vector. The following components were added to the purified DNA: 

10 x CIAP reaction buffer  10 μl 

CIAP (0.01 unit/ pmol of ends)* 1- 2 μl 

Bidistilled water   ad 100 μl 

* A general formula for calculating the picomoles of ends of linear double-stranded DNA is: (µg 

DNA/ kb size of DNA) x 3.04 = pmol of ends. 

 The reaction mixture was incubated at 37 °C for 30 min. The reaction was stopped by heating at 

85 °C for 15 min.  
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3.3.7. DNA ligation 

DNA fragment and vector were ligated with a molecular ratio of 1:3 using the T4 DNA ligase 

(Boehringer, Mannheim, Germany). For ligation with T4-ligase, the 10x ligation buffer and 1 unit 

of the ligase were used in a total volume of 20 µl and the reaction mixture was incubated over 

night at 16°C. Linearised, dephosphorylated vector in the absence of the insert was ligated for the 

negative control.  

3.3.8. Electroporation of E. coli 

The electrocompetent E. coli DH5α was thawed on ice and the plasmid of interest was diluted in 

TE or H2O and placed on ice. 15 ml tube containing LB medium without antibiotics was 

prepared. Then, 1 µl of plasmid DNA was pipetted into the electrocompetent cells and 2/ 3 times 

for mixing. Immediately, the contents were transferred into the bottom of the cuvette and 

electroporated at 1.8 kV and 1 ml of SOC medium was then added immediately to the cells. The 

contents of the cuvette were transfered into 1.5 ml Eppendorf tube and incubated at 37°C for 1-2 

hrs. 200 µl of the transformed cell suspension was plated onto LB plate with the appropriate 

antibiotic for selection. The suspension was gently spread over the surface of the agar plate. At 

the end, the plate was placed in 37°C bacterial incubator for 16-24 hrs until colonies appeared. 

SOC medium:  

Bacto-tryptone peptone 20 g 

  Bacto-yeast extract  5 g 

  NaCl    0.5 g 

  ddH2O    ad 950 ml 

The mixture was shaken until the solutes had dissolved. 10 ml of a 0.25 M KCl solution was 

added and the pH value was adjusted to 7.0, then the medium was autoclaved. The final medium 

additionally contained 100 mM MgCl2 and 20 mM glucose. 

Luria-Bertani (LB) medium:   

Bacto-tryptone  10 g 

Bacto-yeast extract   5 g 

NaCl    10 g   
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ddH2O    ad 1000 ml 

The mixture was shaken until the solutes were dissolved, the pH value was adjusted to 7.0 with 5 

M NaOH and then the medium was autoclaved. 

 

Agar-LB plates: 

LB-medium  1000 ml 

  Agar, granulated 15 g 

After autoclaving, the solution was left at RT, till the temperature dropped to 50 °C, than the 

antibiotic was added and the medium was directly poured in 90 mm Petri dishes. After the 

medium had hardened completely, the plates were inverted and stored at 4 °C.  

After incubation at 37 °C, a single colony was picked up from the agar plate and put in 50 or 200 

ml LB medium supplemented with the specific antibiotic, for Mini, Midi preparations. The 

bacteria respectively were incubated to grow overnight at 37 °C with shaking. The next day, the 

medium was centrifuged, the supernatant was discarded and the precipitate was treated following 

the Qiagen Mini/ Midii Kit protocol (provided by the manufacture). 

3.4. DNA extraction and purification 

3.4.1. Mini preparation 

The mini preparation was done by using Qiagen kit. The cells were harvest by centrifugation at 

80000 rpm for 10 minutes. The supernatant was decanted and the pellet bacterial cells was 

resuspended in 250 µl of buffer P1 and transferred to a 1.5 ml tubes. A 250 µl of buffer P2 was 

added in each tube and the tubes were gently inverted to avoide shearing of the genomic DNA. 

Further, 350 µl of buffer N3 was added and again the tubes were inverted. A centrifugation step 

was followed for 10 minutes at maximum speed. The supernatant was applied to the wells of the 

Qiaprep column. The Qiaprep column was centrifuged for 1 min. and 750 µl of buffer PE was 

added for washing and then centrifuged for 1 minute. The flow-through was discarded and the 

tubes were again centrifuged for 1 minute to remove residual wash buffer. In the end the Qiaprep 

column were placed in a clean 1.5 ml tubes and 50 µl of H2O was added to the center of each 

Qiaprep column, to elute the DNA. After 5 minutes incubation, the tubes were centrifugated. 
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3.4.2. Midi preparation 

The midi preparation was done by using Qiagen kit. A single bacterial colony was picked into 3 

ml of LB medium containing the appropriate antibiotic and the culture was incubated at 37°C 

with shaking for 8-9 hours. The content of the tube was transfered to 50 ml LB medium and 

incubated as above for 11-14 hours. The cells were harvested by transferring into a 50 ml sterile 

conical tube and spinning at 4000 rpm for 20 minutes at 4°C. The supernatant was decanted, and 

the pellet was resuspended in 10 ml of buffer P1. 10 ml of buffer P2 was added to each tube and 

mixed by gently inverting 4-6 times. Next, 10 ml of buffer P3 was added to the tube and mixed 

gently then incubated on ice for 20 minutes. The suspension was centrifuged at 4000 rpm for 20 

min. and the supernatant was removed to a fresh tube. The Qiagen-tip 100 was equilibrated by 

applying 4 ml of buffer QBT, and allowing the column to empty by gravity flow. Next, the 

supernatant was applied to the column and allowed to enter the resin by gravity flow. The 

Qiagen-tip was washed twice with 10 ml buffer QC and the DNA was eluted with 5 ml buffer 

QF. The eluted DNA was precipitated by adding 3.5 ml isopropanol. The tube was vortexed and 

centrifuged at 4000 rpm for 30 min. at 4°C. The supernatant was decanted and the DNA pellet 

was washed with 2 ml 70 % ethanol, and centrifuged at 4000 rpm for 10 min. The pellet of DNA 

was air-dried for 10 min. and redissolved in a suitable volume of TE. 

Buffer QBT (equilibration buffer) 

  750 mM NaCl 

  50 mM  MOPS, pH 7.0 

  15 %  isopropanol 

  0.15 %  Triton X-100 

3.5. Protein analysis 

3.5.1. Extraction of protein from cells 

Medium was aspirated and cells were rinsed with PBS. Approximately 106 cells were 

resuspended in 500 μl lysis buffer and lysed on ice for 20 min. Then cells were scraped. The 

cellular extracts were transferred to a microcentrifuge tube. Cell debris were removed by 

centrifugation at 10 000 rpm for 15 min at 4°C. The protein concentration of the supernatant was 
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determined using the BioRad reagent. 

Lysis buffer: 

  50 mM   Tris, pH 8 

  0.25 %   Sodium deoxycolate 

  1 %   Nonidet P-40 

1 %   SDS 

  150 mM  NaCl 

3.5.2. Extraction of proteins from tissues 

Tissues samples stored at - 80°C were weighed, placed in 1.5 ml centrifuge tubes to which 100 µl 

protein extraction buffer was added and homogenized with a tissue homogenizer for 3 min. It is 

imperative that the tissues stay cold so that protease does not have time to act on the protein. 

After homogenization 400 µl extraction buffer was added and the samples were stored on ice for 

15 minutes.  

Protein extraction buffer : 

  10 mM   Tris-HCl, pH 7.5 

  1 %   Nonidet P-40 

  0.25 %   Sodium deoxycolate 

  150 mM  NaCl 

  1 mM   NaF 

  1 mM   EGTA 

  1 mM   Na3VO4 

  1 µg/ ml  Aprotinin 

  1 µg/ ml  Leupeptin 

  1 µg/ ml  Pepstatin 
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The samples were centrifuged at 14000 rpm at 4°C for 5 minutes. The supernatant was removed 

and an aliquot was removed for the measurement of protein concentration and samples were 

stored at –20 °C. 

3.5.3. Measurement of protein concentration by Lowry 

A set of protein standards of known concentrations was prepared by serially diluting a bovine 

serum albumin (BSA) stock solution (5 mg/ml) in PBS. Samples were diluted such that their 

concentration would fall within the BSA standard range. 5 µl of the standards and samples were 

pipetted into 96-well plates containing. A mixture of 20 µl of reagent S and 1 ml of Reagent A 

was prepared. From this mixture 25 µl was then added to the samples. 200 µl of Reagnet B was 

added and mixed thoroughly with repeated pipetting. The plate was then allowed to incubate at 

room temperature for 15 minutes and the absorbance was measured at 650 nm. A standard curve 

was prepared by plotting the absorbance of the standards versus protein concentrations. The 

protein concentration of the samples was determined using the standard curve. 

 

Dc Protein Assay (Bio-Rad, München): 

  Reagent A, alkaline copper tartrate solution  

Reagent B, dilute Folin reagent  

Reagent S, surfactant 

3.5.4. Creatinine measurement 

To determine the content of creatinine in urine, the Jaffé method was used. 50 μl of samples, 

standard (3) and diluted urine 1:50, was added into a 96-well polystyrene plate. The standard 

solution was diluted 3 times to determine the standard curve. Next 100 μl of buffer solution (1) 

was added to each sample. The latter were mixed and temperated to a constant preselected 

temperature for 5 minutes. 100 μl of picric acid solution (2) was added, and mixed. Then the plate 

was immediately placed in the ELISA plate reader. After 1 minute the plate was read at 490 nm. 

This process was done again after 5 minute premeasurement. 

Buffer solution (1) 

Phospate buffer  12.5 mmol/ l 
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NaOH    313 mmol/ l 

Picric acid solution 

Picric acid   8.73 mmol/ l 

Standard solution (3) 

Creatinine 

  1 mg/ dl   (88.4 μmol/ l) 

The reagents were provided by Merckotest Creatinine Test (Diagnostika MERCK, Darmstadt). 

3.5.5. Biochemical analysis 

To investigate the potential effect of transgene expression on the immune function, the following 

assays were carried out at the Institute of Medical Microbiology, Immunology and Hygiene, 

Technical University of Munich. Blood (400-600 µl) of 12 week-old mice was collected by 

bleeding from the retroorbital sinus in a 1-ml lithium-heparin tube (Kabe Labortechnik GmbH, 

Nümbrecht-Elsenroth, Germany), centrifuged at 2000 rpm for 5 min, and urea nitrogen, total 

protein, albumin and cholesterol was determined in plasma using a Hitachi autoanalyzer (Hitachi, 

Tokyo, Japan). 

3.5.6. Enzyme linked immunosorbent assay (ELISA) 

This technique (Engvall and perlmann, 1971) allows the detection of antibodies that bind to a 

plate-bound antigen or antibody by an enzymatic reaction and was used to determine serum 

antibody titers and specificities. 

96-well ELISA plates (polystyrene plate) were coated for 1h at RT with 5 μg/ml antigen in 

coating buffer (50 μl/ well). The plates were washed 3 x with wash solution and unspecific 

binding sites on the plate were blocked with 100 μl/ well blocking buffer for at least 1 h at RT. 

After this, the plates were washed again and 50 μl of mice urine were added to each well at an 

appropriate dilution in sample/ conjugate buffer and incubated at least 1 h at RT, followed by a 

washing step. Bound antibodies were then detected using 50 μl/ well Goat anti-Mouse 

Albuminaffinity purified (1h, RT), which were either directly coupled to Goat anti-Mouse 

Albumin-HRP conjugate, which were diluted 1/10000- 1/200000 in coating buffer. Plates were 

washed 3 times.  
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To develop a colored reaction, ABTS.development solution was used as substrate for the alkaline 

phosphatase. 50 μl substrate buffers were added in each well and reaction was developed for 5 to 

30 min. The plate was read at 405 nm in a spectrophotometer (Geniosplus, Switzerland) at 

different time points. 

Coating Buffer: 

  0.05 M carbonate-bicarbonate, pH 9.6 

Wash solution: 

  50 mM Tris 

  0.14 M NaCl 

  0.05% Tween 20 

  Ad 1000 ml Aqua dest, pH 8.0 

Blocking (Postcoat) solution: 

  50 mM Tris 

  0.14 M NaCl 

  1% BSA 

  Ad 1000 ml Aqua dest, pH 8.0 

Sample/ Conjugate solution 

  50 mM Tris 

  0.14 M NaCl   

1% BSA 

  0.05% Tween 20 

  Ad 1000 ml Aqua dest, pH 8.0 

ABTS (Invitrogen: 

  5 ml ABTS- buffer 

  1 ABTS- tablet 

  Ad 50 ml Aqua dest 
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3.6. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Sodium dodecyl sulphate (SDS) is an anionic detergent which denatures proteins by wrapping 

around the polypeptide backbone. In doing so, SDS confers a negative charge to the polypeptide 

in proportion to its length. The negative charges on SDS destroy most of the complex structure of 

proteins, and are strongly attracted toward an anode in an electric field. 

A polyacrylamide gel with acrylamide content above a critical density restrains larger molecules 

from migrating as fast as smaller molecules. Because the charge-to-mass ratio is nearly the same 

among SDS- denatured polypeptides, the final separation of proteins is dependent almost entirely 

on the differences in molecular weight (MW). 

Running gel 10 % 

  1.5 M Tris/ HCl pH 8.8    5 ml 

  30 % Acrylamide/ Bis     6.7 ml 

10 % SDS      200 μl 

H2O (Aqua bidest)     7.9 ml 

  10 % APS (ammonium persulfate)   200 μl 

  TEMED (Tetraethylethylenediamine )      8 µl 

Stacking gel 

  0.5 M Tris/ HCl pH 6.8    2.5 ml 

  30 % Acrylamide/ Bis     1.7 ml 

10 % SDS      100 μl 

H2O (Aqua bidest)     5.6 ml 

  10 % APS (ammonium persulfate)   100 μl 

  TEMED (Tetraethylethylenediamine )  10 µl 

Running buffer (stock) 10 x 

  Tris base (Roth, Germany)    30.3 g 

  Glycine (Merck, Germany)    144 g 

  ad 1 l distilled water 
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Running buffer (ready to use) 

  Stock solution      40 ml 

  SDS 10 %       4 ml 

  Distilled water      ad 400 ml 

Loading buffer, 2 x 

  1.25 M Tris/ HCl, pH 6.8    2.5 ml 

  Glycerol (87 %)     5.8 ml 

Bromphenol blue     5 mg 

SDS       1 g 

β-Mercaptoethanol     2.5 ml  

  Aqua bidest      35 ml 

3.7. Western Blot 

Samples were diluted with 2x Loading buffer and heated at 95°C for 10 min. Samples were 

loaded and the electrophoresis was performed initially at 80 V for a few minutes and then at 130 

V. A molecular weight standard (Low molecular weight range, Biorad, MA, USA) was loaded in 

the first slot for estimation or the protein size. The SDS-PAGE is stopped few minutes after the 

dye front had reached the end of the gel. 

Then the whole setup was dismantled and the stacking gels were discarded. The gel was removed 

from the electrophoresis chamber and the separated proteins were transferred to an Immobilon-P 

PVDF membrane (Millipore, Bradford, MA, USA) by semidry electrophoretic blotting in a 

MilliBlot-Graphite Electroblotter (Biorad, München, Germany). Twelve sheets of gel blotting 

paper cut to the same sizes as the gel (8,3 cm x 5,5 cm) and were soaked in anode buffer I, anode 

buffer II or the cathode buffer. 

After the transfer, the membrane was stained with Ponceau red for 8 min while shaking. Then, 

the membrane was washed with distilled water, the molecular weight standard bands were 

marked and photographed. The membrane was incubated in blocking solution using in 

phosphate-buffered saline PBS supplemented with 5% skimmed milk powder for 1h at room 

temperature to block unspecific binding of the antibody. The primary antibody was then applied 
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to the membrane and incubated overnight at 4°C by gently shaking. The dilution of the antibody 

was mostly varied between 1:1000 to 1:3000 in TBS-T or in milk. After incubation, the 

membrane was washed 3 times for 10 min. with TBS-T. Following washing, the secondary 

antibody diluted to 1:5000 -1:10 000 was applied to the membrane and incubated for 1 hr at room 

temperature with gently shaking. After that, the membrane was washed 3 times for 10 min. with 

TBS-T. 

For the detection of proteins the following detection system was used: The enhanced 

chemiluminescence (ECL). ECL is a non-radioactive immunoassay technology; it’s defined as 

the emission of light resulting from the dissipation of energy from substance in an excited state. 

In chemiluminescence the excitation is effected by luminol. The HRP/ hydrogen peroxide 

catalysed oxidation of luminol in alkaline condition. Following oxidation, the luminol is in an 

excited state which then decays to ground state via light emitting pathway. Enhanced 

chemiluminescence is achieved by performing the oxidation of luminol by the HRP in the 

presence of chemical enhancers such as phenols. This has the effect of increasing light output 

approximately 1000 fold and also extending the time of light emission.The light produced by the 

ECL reaction peaks after 5-20 min and decays slowly thereafter with a half life of approximately 

60 min. 

 2ml of the solution from bottle 1 and bottle 2 was mixed and then given to the membrane for 1 

min at room temperature. The membrane was shortly drained and placed and covered with a 

transparency foil. Immediately, the membrane and a film were transferred in a cassette, for an 

exposure of 15 seconds to 10 minutes. The exposure time was varied from 15 seconds to 20 

minutes till an optimal detection was reached. 

Anode buffer I 

  1 M Tris pH 10.4     150 ml (0.3 M) 

  Methanol 20 %     100 ml 

  Aqua bidest      ad 500 ml 

Anode Buffer II 

1 M Tris pH 10.4     12.5 ml (25 mM) 

  Methanol 20 %     100 ml 

  Aqua bidest      ad 500 ml 
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Cathode buffer 

  1 M Tris pH 9.4     12.5 ml (25 mM) 

  1 M 6-Aminohexanacid    20 ml (40 mM) 

  Methanol 20 %     100 ml 

  Aqua bidest      ad 500 ml 

Blotting buffer 

  Tris base (Roth, Germany)    25 mM (3.03 g) 

  Glycine (Merck, Germany)    190 mM (14.4 g) 

  SDS       0.1 % (w/ v) 

  Methanol (Merck, Germany)    200 ml 

  Distilled water      800 ml 

Wash buffer (TBS) 10* stock solution  

  Tris base (Roth, Germany)    60.6 g 

  Sodium chloride (Merck, Germany)   87.6 g 

  ad 1 l distilled water, adjust pH 7,5 using 1N HCL (Merck, Germany) 

Wash buffer (TBS-T) 

  1*TBS (10* TBS stock solution diluted 1:10) 

  0.05% Tween (Sigma, Germany) 

 

Blocking buffer 

  dried milk powder     5 % (w/ n) in TBS-T 

Ponceau red 

  Ponceau S (Roth)     0.2 g 

  glacial acetic acid     1 ml 

  distilled water      ad 100 ml 
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3.7.1. Coomassie blue staining of protein gels 

Polyacrylamide gels were stained for approximately 15 minutes with Coomassie staining solution 

(0.025 %Coomassie Blue in 10 % Acetic acid). To visualize proteins, gels were destained in 

destaining solution with shaking. After destaining, the blue protein bands appeared against a clear 

background. The gel could be stored in water or directly photographed and dried to maintain a 

permanent record. 

Coomassie blue solution 

  Coomassie R 250   1 g  

Methanol    200 ml 

  Acetic acid    100 ml 

  Distilled water    700 ml  

Destaining solution 

  Methanol    300 ml     

  Acetic acid     100 ml     

  Distilled water    600 ml      

3.7.2. Drying of SDS-PAGE gels 

The DryEaseTM Mini-Gel Drying system, Novex, Germany was used for drying polyacrylamide 

gels. The stained gels are washed in distilled water 3 times for 3 minutes. The gels were then 

equilibrated in Gel-dry solution for 15-20 minutes in a rotary shaker. 2 Pre-wet pieces of 

cellophane were incubated in Gel-Drying Solution for 15-20 seconds. After that the DryEase gel 

drying frame was placed on the gel dryer base and was covered with a piece of cellophane. The 

gel was placed in the center of the cellophane sheet with no air trapped between gel and 

cellophane. The gel was covered with a second layer of cellophane. The remaining frame was 

aligned so that its corner pins fit into the holes on the bottom frame. The plastic clamps are 

pushed onto the four edges of the frame. At the end, the assembly was put upright on a benchtop 

and the gel was dried for 12-36 hours. After drying the gel/ cellophane sandwich was removed 

and the excess cellophane was trimmed off. The dried gels were pressed between pages of a book 

for approximately 2 days. 
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3.8. Mice Perfusion 

For perfusion, mice were killed by ether inhalation. They were placed on their back on a small 

surgical platform rack and fixed with needle. The animals were swapped with 70% alcohol to wet 

the fur. The abdominal skin was cut by a longitudinal incision. The skin and the gut were 

removed to expose abdominal aorta and vena cava and connective tissue and fat were cleaned. 

The left kidney was clamped. The left ventricle was fixed with a tweezers. A needle to which the 

perfusion tubes were attached was inserted into the left ventricle of the heart and immediately the 

vena cava was cut. The perfusion was started with PBS (pH 7.4, 37°C) for 20 seconds and then 

the perfusion valve was switched to a 3% glutaraldehyde solution at 37°C. The animals were 

perfused for five minutes. The kidney were cut and post-fixed in situ by immersion in 3% 

glutaraldehyde for 24 hours.  

3.9. Histological techniques 

3.9.1. Paraffin section 

Mice were perfused with 3% glutaraldehyde in PBS. The kidney was separated from the body, 

cut and a portion were placed in tissue cassettes and then fixed in 3% PBS-buffered formalin for 

24 hours. The fixed tissues were dehydrated in an ascending ethanol series in a Histomaster 

2050/DI (Bavimed, Germany) and embedded in paraffin. Approximately 3-5 µm thick sections 

were cut using a HM 315 microtome (Micron GmbH, Germany). Sections were transferred into a 

water bath and mounted on glass slides (Marienfeld, Germany). 

3.9.2. Frozen sections 

Kidney tissue was placed on a thin layer of OCT (optimum cutting temperature). More OCT was 

added until the tissue was completely covered and placed onto a dry ice container. After a few 

minutes the OCT was completely solidified, and the tissue can be stored in a -80°C freezer. 

Frozen section was then cut in a microtome of the desired thickness 4 – 8 µm. The sections were 

placed on gelatin-coated slides and stored at -20°C until immunostaining. 
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3.9.3. Immunohistochemistry 

Immunohistochemistry is the localization of antigens in tissue sections by the use of labeled 

antibodies as specific reagents through antigen-antibody interactions. Antibodies are visualized 

by a marker such as fluorescent dye, enzyme, radioactive elements or colloidal gold. IHC makes 

it possible to visualize the distribution and localization of specific cellular components within a 

cell or tissue. 

The principle of immunohistochemistry has existed since the 1930’s, but it was not until 1942 

that the first immunohistochemistry study was reported. Coons and his colleagues used FITC-

labeled antibodies to localize Pneumococcal antigens in infected tissues. Since then 

improvements have been made in protein conjugation, tissue fixation methods, detection labels 

and microscopes, making immunohistochemistry a routine and essential tool in many 

laboratories. 

In order to perform the standard staining procedure, first the tissue section was deparaffinized and 

then rehydrated before applying the primary antibody. Enzyme-conjugated secondary antibodies 

were then applied and the specific staining was visualized after adding the enzyme-specific 

substrate. 

After deparaffinization and rehydration, the sections were incubated in 1 % hydrogen peroxide in 

phosphate-buffered saline (PBS) (pH 7.4) for 15 minutes to block endogenous peroxidase 

activity, followed by a 10 minutes washing in PBS. Tissue sections were then incubated with the 

first antibody with the appropriate dilution for 1 h. The antibody was diluted in PBS or milk and 

incubations were performed at room temperature in a humidity chamber. After this step, slides 

were washed 2 times for 5 min in PBS. Next the slides were incubated with the secondary 

antibody generally horseradish peroxidase conjugated anti-rabbit or anti-mouse for 1 h. After 10 

minutes washing in PBS, the immunoreactivity was visualized using 3,3’ diaminobenzidine 

tetrahydrochloride dihydrate (Fluka, Buchs, Switzerland) as a chromogen. Tissues sections were 

counterstained with Mayer’s hemalaun solution, dehydrated in an ascending series percentage of 

alcohols, cleared in xylene and mounted under glass coverslips using HistofluidR (Superior, 

Lauda-Königshofen, Germany). 
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3.9.4. Immunofluorescence 

Immunofluorescence is a technique calling for a solubilisation of membranes in a buffer that 

preserves the nucleo- and cytoskeleton prior to fixation. Cells were grown on coverslips in a 6 

well plate. At the indicated time points, the medium was removed from the dish, the grown cells 

on the coverslips were rinsed in 1x PBS. Cells were then fixed in a 2 % paraformaldehyde (PFA) 

for 5 minutes, at room temperature. The fixation buffer was removed and cells were 

permeabilized with 0.3% Triton in PBS for 10 minutes at room temperature. Next, the triton 

solution was removed, the coverslips were rinsed and washed 1x for 3 minutes with PBS. Fresh 

PBS will be added and the coverslips were stored at 4°C. The cells were blocked for 30 minutes 

in blocking buffer in humid chamber, which was lined with PBS soaked Whatmann paper. A 

piece of parafilm was placed on top of it. The coverslips were incubated with the primary 

antibody diluted in blocking buffer for 1 hour in the humid chamber. After incubation the 

coverslips were washed 3 times every 5 minutes with PBS. Again the coverslips were incubated 

with the secondary antibody diluted in blocking buffer for 1 hour. This was followed by 3 times 

washing steps per 5 minutes with PBS and then 2 times with distilled water. At the end the 

coverslips were mounted in Moviol, and stored at 4°C overnight to dry and kept covered to avoid 

photobleaching.  

For nephrin and podocin staining, cryosections were fixed in cold acetone, rinsed, and incubated 

in a bovine serum albumin-PBS solution to block unspecific binding sites. Sections were then 

incubated with the primary rabbit polyclonal antibody against nephrin (provided by L.B. 

Holzmann, Univesity of Michigan) or with the primary polyclonal anti-podocin (provided by C. 

Antignac, Hopital Necker, Paris), both diluted 1:100. After washing, sections were incubated 

with the secondary antibody (Alexa-Fluor 488 goat anti-rabbit; Molecular Probes, Invitrogen, S. 

Giuliano Milanese, Milan, Italy), then mounted with an anti-fading aqueous medium (Fluorsave, 

Chemicon Iinternational, Prodotti Gianni, Milano) and observed under a microscope equipped for 

fluorescence.  

GBM components were stained using a rat anti-mouse laminin alpha1 mAb 8B3 (St John and 

Abrahamson, 2001) a gift from D.Abrahamson, University of Kansas Medical Center. Rat anti-

mouse laminin alpha2 mAb 4H8-2 (Schuler and Sorokin, 1995) was purchased from Alexis 

Biochemicals (San Diego, CA). Rabbit antiserum 8948 to mouse laminin alpha5 has been 

described (Miner et al., 1997). Rabbit polyclonal antisera to mouse laminin beta1 and 2 (Sasaki et 

al., 2002) were gifts from T.Sasaki (Max Planck Institute for Biochemistry, Martinsried, 
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Germany). Rabbit antisera specific for the mouse alpha3, 4, and 5 chains of type IV collagen 

were as described (Miner and Sanes, 1994) . Rat mAbs to the human alpha1 (mAb H11) and 2 

(mAb H22) chains of type IV collagen (Ninomiya et al., 1995), which cross-react with the 

orthologous mouse proteins, were gifts from Y.Sado and Y.Ninomiya (Okayama, Japan). Alexa 

488- and Cy3- conjugated secondary antibodies were obtained from Molecular Probes (Eugene, 

OR) and Chemicon (Temecula, CA), respectively. For laminin staining, sections were fixed in 

2% paraformaldehyde in PBS for 10 minutes and rinsed in PBS. For collagen IV staining, 

sections were fixed and denatured in urea and blocked in 5% nonfat dry milk in PBS. Antibodies 

were diluted in PBS with 1% BSA, applied to sections for 1 hour, and rinsed in PBS. Secondary 

antibodies were then applied in a similar fashion. After rinsing the sections were mounted in 90% 

glycerol containing 0.1x PBS and 1 mg/ml p-phenylenediamine and viewed under 

epifluorescence with a Nikon Eclipse 800 compound microscope. Images were captured with a 

Spot 2 cooled color digital camera (Diagnostic Instruments, Sterling Heights, MI). The 

streptavidin-biotin-method was used on formalin fixed, paraffin embedded tissue to localize ILK 

(Clone 65.9.1, Upstate Biotechnologies, USA).  

Negative controls were performed concurrently by substituting buffer or isotype control 

immunoglobulins (Rabbit primary antibody isotype control, Zymed, Histoline, Milan, Italy) for 

the primary antibody. 

PFA fixing buffer: 

  2 % PFA 

  4 % Sucrose 

  in 1x PBS 

Blocking buffer: 

  2 % FCS 

  2 % BSA 

  0.2 % Fish-gelatine in PBS 

Moviol: 

  40 ml PBS + 10 g Moviol (Calbiochem), stir at RT for 24 h 

  add 20 ml Glycerol, stir another 24 h at RT 

  spin in 50 ml Facon at 4000 RPM for 15 min. 

  take the supernatant, aliquot and store at -20°C  
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3.10. Transmission electron microscopy 

Following perfusion fixation, the left kidney was postfixed by immersion in 3% glutaraldehyde 

for 24 hours for light microscopic investigations, scanning electron microscopy (SEM), and 

transmission electron microscopy (TEM), respectively. For transmission electron microscopy 

(TEM), two to four 1 mm3 samples of the renal cortex per animal were post-fixed in 1% osmium 

tetroxide and routinely embedded in Epon. Semithin sections (0.5 μm) were stained with 

toluidine blue and safranin. Ultrathin sections (70-80 nm) were stained with uranyl citrate and 

lead citrate and examined with a transmission electron microscope (EM10, Zeiss, Oberkochen, 

Germany). 2-3 kidney tissue samples per mouse belonging to wt and podoILK -/- mice (n= 2-6) 

were examined. 

3.11. Scanning electron microscopy 

For scanning electron microscopy (SEM), 2 mm thick kidney slices were dried by the critical 

point technique (critical point dryer CPD 030, BAL-TEC, Germany) with liquid carbon dioxide 

as the transitional medium, mounted on metal stubs with conductive carbon cement (Neubauer 

Chemikalien, Germany), sputter coated with gold (Sputter Coater 050, BAL-TEC, Germany) and 

examined with a scanning electron microscope (DSM 940A, Zeiss, Germany) at 15 or 20 kV. 

Two podoILK -/- mice were examined by scanning electron microscopy each at 3, 4 and 12 

weeks of age. At least one wild-type mouse per age-group served as control. 

3.12. Determination of the mean glomerular volume 

Morphometric evaluation was carried out on a Videoplan® image analysis system (Zeiss-Kontron, 

Germany) attached to a microscope by a colour video camera. The mean glomerular volume was 

determined from the mean glomerular profile area according to the method developed by Weibel 

and Gomez (Weibel and Gomez, 1962). Cross-sectional area of glomerular profiles in H&E 

stained plastic sections were systematically sampled according to the unbiased counting rule 

(Gundersen and Osterby, 1977) and measured planimetrically. The mean glomerular profile area 

( A Glom) was determined for an average of 115 glomerular profiles per animal (range: 104-133) 

and the mean glomerular volume ( v (Glom)) was calculated as v Glom A
k

∗=
β

Glom
3/2, where the 
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shape coefficient β=1.38 pertained to spheres and k=1.04 is a size distribution coefficient 

assuming a 15% coefficient of variation (Weibel and Gomez, 1962). 

3.13. Determination of the filtration slit frequency  

In the identical glomerular TEM micrographs, the determination of the filtration slit frequency 

(FSF) was carried out. The FSF was determined by counting the number of epithelial filtration 

slits and dividing that number by the length of the peripheral capillary wall at the epithelial 

interface. On average 324 filtration slits (range 265-387) were counted per animal. 

3.14.  Microdissection and RNA isolation 

3.14.1. Microdissection  

Murine renal tissue was used for the microdisection. Mice were sacrificed and the kidneys were 

removed immediately. The microdissection was performed manually under a stereomicroscope 

using two dissection needle holders. The material was microdissected in an ice-cold solution. The 

microdissection was performed in phosphate-buffered saline (PBS) with vanadyl ribonucleoside 

complex (VRC), VRC (10 mmol/ L; Life Technologies, Karlsruhe, Germany). Only glomeruli 

without tubuli were transfered in a 1.5 centrifugation tube with 350 μ RLT-buffer, and stored at –

20 °C or directly for the RNA isolation. 

3.14.2. RNA isolation 

Total RNA was isolated from the glomerulus and from the kidney cortex using the RNeasy kit 

(Qiagen, Hilden, Germany) according to the manufacturer's instructions. cDNA synthesis was 

carried out with the SuperScript Choise System kit (Invitrogen, Life Technologies, Breda, The 

Netherlands). Real-time reverse transcription-PCR (RT-PCR) analysis was performed as 

previously described 3.16.4 

Tissue were minced with a razor blade and 350 μl RLT buffer was added, the same was added for 

the glomerulus, and homogenised at RT for 30 min. on a shaker. In RLT buffer β-ME (2-

Mercaptoethanol) was added before use (β-ME must be added to buffer RLT and RLC before 

use, Rneasy Mini handbook, Qiagen). The samples were centrifuged for 3 min at 13 000 rpm. 
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The supernatant was transferred to a new tube and 350 μl of 70 % ethanol was added. The lysate 

were mixed by pipetting. The contents of the samples were applied to a mini spin column sitting 

in a 2 ml collection tube and than centrifuged for 15 sec. The flow-through was discarded and 

350 μl of RW 1 solution was added then centrifuged for 15 sec at 13 000 rpm. DNAse I mix (10 

μl DNAse I + 70 μl RDD buffer) was added to each sample and incubated at RT for 15 min. After 

the incubation, 350 μl RW 1 was added and centrifuged for 15 sec at 13 000 rpm. The column 

was placed in the new 2 ml collection tube, and washed 2 times with 500 μl RPE buffer for 2 min 

at 13 000 rpm. The column was again centrifuged for 1 min. The column was then transferred 

into a new 1.5 ml collection tube and eluted with 30 μl RNase-free water for 5 min at room 

temperature incubation, after that the collection tube was centrifuged for 2 min at 13 000 rpm. 

The RNA was stored at –80 °C or directly transcribed to cDNA. The concentration and purity of 

RNA was determined by measuring the absorbance (optical density) at 260 nm (A260) and 280 nm 

(A280). The purity was given trough the ratio between the absorbance values at 260 and 280 nm 

and had to be in the range from 1.5-1.9. 

3.14.3. Reverse transcription 

Reverse transcription was performed in a 45 µl volume, containing 9 µl buffer, 2 µl dithiothreitol 

(DTT; both from Life Technologies), 0.9 µl 25 mmol/L dNTP (Amersham Pharmacia, Freiburg, 

Germany), 1µl RNase inhibitor (Rnasin; Promega, Mannheim, Germany) and 0.5 µl Microcarrier 

(Molecular Research Center, Cincinnati, OH, USA), 1µg random hexamers (2 mg/mL stock; 

Roche, Mannheim, Germany) and 200 U reverse transcriptase (Superscript, Life Technologies) 

for one hour at 42°C. No DNase treatment was performed, as cDNA-specific primers are 

available for most targets, the contamination by genomic DNA was low, and a contamination of 

the cDNA solution by DNase may lead to the loss of the template during prolonged storage. 

3.14.4. Real-time quantitative RT-PCR  

Real-time RT-PCR was performed on a TaqMan ABI 7700 Sequence Detection System (Applied 

Biosystems, Weiterstadt, Germany) using heat-activated TaqDNA polymerase (Amplitaq Gold; 

Applied Biosystems). After an initial hold of 2 min at 50°C and 10 min at 95°C, the samples were 

cycled 40 times at 95°C for 15 s and 60°C for 60 s. Target gene forward and reverse primers and 

probes were designed using Primer Express 1.5 software (Applied Biosystems, Foster City, CA). 

Commercially available predeveloped TaqMan assay reagents were used for the internal 
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standards human glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and 18S ribosomal RNA 

(18 S rRNA). All primers and probes were obtained from Applied Biosystems. The primers for 

GAPDH, ACTN4, WT-1, synaptopodin, nephrin (NPHS1), and podocin (NPHS2) were cDNA-

specific, not amplifying genomic DNA. The following sequences of oligonucleotide primers (300 

nM) and probes (100 nM) were used (see Primer list 3.17). 

3.15. Statistics 

Statistical analysis was performed using the SPSS software (version 11.0; SPSS, Inc., Chigago, 

IL, USA). Data are generally given as mean ± standard deviation, if not otherwise stated. Student 

t test was used for paired data. Mean differences of non-parametric data were analysed by the 

Mann-Whitney U test. Significance was assessed using a Monte Carlo approach with a post-hoc 

Bonferroni correction. A difference was considered to be statistically significant at p< 0.05. 

3.16. Antibody list 

A detailed list of primary and secondary antibodies used in the study, containing the respective 

hosts and fixation, is given in Table below:  

 Species 
 

Source Fixation 

Nephrin Rabitt polyclonal L. B. Holzman 
 

Podocin Rabitt polyclonal C. Antignac 
 

Cryosection 

Laminin alpha1 Rat mAb 8B3 D. Abrahamson (St John and 
Abrahamson, 2001) 
 

Laminin alpha2 Rat mAb 4H8-2 Alexis Biochem.(Schuler and 
Sorokin, 1995) 
 

Laminin alpha5 Rabbit polyclonal 
8948 

J. Miner (Miner et al., 1997) 
 

Laminin beta1+2 Rabitt polyclonal T.Sasaki (Sasaki et al., 2002) 
 

2%Paraformald
ehyde 

Coll IV alpha 3,4,5 Rabitt polyclonal J.Miner (Miner and Sanes, 1994) 
 

Coll IV alpha 1,2 Rat mAbs H11 and 
H12 

Y.Sado,Y.Ninomiya (Ninomiya 
et al., 1995) 
 

Urea (Miner 
and Sanes, 
1994) 
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3.17. Primer list for RT-PCR: 

Gene   Primer Accession No. 
Alpha-Actinin 4 FP 5'-AGTGCATGGTCCCTCTTTGG-3' AJ289242 
  RP 5'-CGCTGAGAGCAATCACATCAA-3'   
  Probe FAM 5'-ACCAGCTGCTGCACCTTCTCCCA-3'   
Agrin AoD, Context Seq 5´-GACTGAGAGTGAGAAAGCGCTGCAG-3´ NM_021604 
Coll1alpha1 FP 5'-TGCTTTCTGCCCGGAAG A-3' X54876 
  RP 5'-GGGATGCCATCTCGTCCA-3'   
  Probe FAM 5'-CCAGGGTCTCCCTTGGGTCCTACATCT-3'   
Coll4 alpha 1  AoD, Context Seq 5´-GGCTATTCCTTCGTGATGCACACCA-3´ NM_009931 
Coll4 alpha 2 AoD, Context Seq 5´-TTGGCCAGGAAGGGGAGCCAGGCCG-3´ NM_009932 
Coll4 alpha 3 AoD, Context Seq 5´-TCACCCAGGAAAACCAGGTCCTGCT-3´ NM_007734 
Coll4 alpha 4 AoD, Context Seq 5´-ATCAAGATCTTGGTTTGGCAGGCTC-3´ NM_007735 
Coll4 alpha 5 AoD, Context Seq 5´-TGTCAGACATGTTCAACAAACCTCA-3´ NM_007736 
Coll4 alpha 6 AoD, Context Seq 5´-CCAGGATCTGGGATTTGCTGGCTCC-3´ NM_053185 
Dystroglycan AoD, Context Seq 5´-GGGAGATCATCAAGGTGTCTGCAGC-3´ NM_010017 
Fibronectin 1 AoD, Context Seq 5´-GTTTCGGAGGCCAGCGGGGCTGGCG-3´ NM_010233 
ILK FP 5'-ATGAGAATCATTCTGGAGAGCTTTG-3' U94479 
  RP 5'-TGTACTCCAGTCTCGAACCTTCAG-3'   
Integrin alpha3 AoD, Context Seq 5´-GCCTCGCTCAGCTTAATGAATCATC-3´ NM_013565 
Integrin beta 1 AoD, Context Seq 5´- GTGGAGCCTGCAGGTGCAATGAGGG-3´ NM_010578 
Laminin beta2 AoD, Context Seq 5´-GAGGCTGAGAAACAACTACGGGAAC-3´ NM_008483 
Nephrin AbD, FP 5'-ACCCTCCAGTTAACTTGTCTTTGG-3' AF168466 
  AbD, RP 5'-ATGCAGCGGAGCCTTTGAA-3'   
  AbD, Probe FAM 5'-TCCAGCCTCTCTCC-3'   
Nidogen-1 AoD, Context Seq 5´-TGGGTGGATGCAGGCACCCATAGGG-3´ NM_010917 
P-Cadherin FP 5'-GCTCTACCACGACGGCAGAG-3' X06340 
  RP 5'-GCCTCATACTTCTGCGGCTC-3'   
  Probe FAM 5'-CCTTGATGCCAACGATAACGCTCCG-3'   
Perlecan AoD, Context Seq 5´-GTACGGCCAAGAGCAAATCCCCAGC-3´ M77174 
Podocin AbD, FP 5'-GGGACATCTGCTTCCTGGAA-3' AY050309 
  AbD, RP 5'-TGATAGGTGTCCAGACAGGGTAAAA-3'   
  AbD, Probe FAM 5'-AACAGGCCAGGACCT-3'   
18S rRNA PDAR     
Synaptopodin AbD, FP 5'-TTCCTTGCCCTCACTGTTCTG-3' AF077003 
  AbD, RP 5'-TCCTAGCAGCAATCCACATCTG-3'   
  AbD, Probe FAM 5'-CCTAGCTTTCTAAAGGAC-3'   
WT-1 AbD, FP 5'-CAGCTCAAAAGACACCAAAGGA-3' M55512 
  AbD, RP 5'-CGCTGACAAGTTTTACACTGGAAT-3'   
  AbD, Probe FAM 5'-ACACAGGTGTGAAACC-3'   
ZO-1 AoD, Context Seq 5´-TCTGAGGGGAAGGCGGATGGTGCTA-3´ NM_009366 
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Forward-Cre 5’ GCA TAA CCA GTG AAA CAG CAT TGC TG 3’ 

Reverse-Cre 5’ GGA CAT GTT CAG GGA TCG CCA GGC G 3’ 

Forward-ILK 5’ CCA GGT GGC AGA GGT AAG TA  3’ 

New-For-ILK 5’ AAG GTG CTG AAG GTT CGA GA  3’ 

Reverse-ILK 5’ CAA GGA ATA AGG TGA GCT TCA GAA  3’ 
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3.18.  Equipment and reagents 

Cell culture incubator      Cytoperm 8080, Heraeus 

        GmbH, Hanau, Germany 

Electrophoresis equipment     Biorad laboratories, München  

        Hercules, CA, USA 

Confocal microscope      Leica, Bensheim 

E. coli Pulser       Biorad, München 

Zentrifuge 5417      Eppendorf, Hamburg 

Spectrophotometer      Pharmacia, Hamburg 

Water bath       Köttermann labortechnik, 

        Uetze-Hänigsen 

3.18.1. Product list 

Name        Supplier 

Acrylamid       Bio Rad, München 

Agarose (electrophorese)     Biozym 

Agarose high EEO      Biomol 

Ammoniumpersulfate (APS)     Sigma, Deisenhofen 

Ampicillin       Sigma, Deisenhofen 

Anti-DIG-FAB-fragments alkaline phosphatase  Roche, Karlsruhe 

Bacto-Agar       DIFCO laboratories 

Beta-mercaptoethanol      Merck, Darmstadt 

Blocking reagent      Roche, Karlsrhe 

Boric acid       Merck, Darmstadt 

Bromphenol blue      Merck, Darmstadt 

BSA        Sigma, Deisenhofen 
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CaCl2        Sigma, Deisenhofen 

CO2-Gas       Air Liquide 

Coomassie brilliant blue R 250    Serva, Heidelberg 

DAPI        Pierce 

Denhardt’s solution      Sigma, Deisenhofen 

Dextran sulfate      Sigma, Deisenhofen 

Diethylether       Hoechst 

DIG-RNA labelling mix (10x; GIG-UTP)   Roche, Karlsruhe 

Di-Sodiumhydrogenphosphate Na2HPO4   Merck, Darmstadt 

DMEM/Nut. Mix.F12      Gibco BRL, Karlsruhe 

DNTP        Pharmacia Biotech 

Dulbecco’s modified Eagle Medium (DMEM)  Gibco BRL, Karlsruhe 

ECL        Amersham Biosciences 

EDTA        Merck, Darmstadt 

EGF        Sigma, Deisenhofen 

Ethanol absolute (EtOH)     Merck, Darmstadt 

Foetal Calf Serum (FCS)     Life technologies, Karlsruhe, 

Formamide       Merck, Darmstadt 

Gentamycin       Gibco BRL, Karlsruhe 

Glycerol       Merck, Darmstadt 

Glycin        Sigma, Deisenhofen 

Hank’s buffered salt solution (HBSS)   Gibco BRL, Karlsruhe 

Heparin sodium salt, grade II     Sigma, Deisenhofen 

HEPES-Buffersolution     Gibco BRL, Karlsruhe 

HotStar Taq-Polymerase     Qiagen, Hilden 

HRP-conjugated secondary anti-mouse antibody  Amersham LifeScience 
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Immersion oil       Zeiss, Oberkochen 

Insulin        Sigma, Deisenhofen 

Isopropanol       Merck, Darmstadt 

Kaliumchloride KCl      Merck, Darmstadt 

Kaliumdihydrogenphosphate KH2PO4   Merck, Darmstadt 

LB broth base       Gibco BRL, Karlsruhe 

l-glutamine       Gibco BRL, Karlsruhe 

Maleic acid       Fluka, Buchs, Switzerland 

Methanol absolute (MeOH)     Merck, Darmstadt 

MgCl2        Merck, Darmstadt 

MgSO4-7H2O       Merck, Darmstadt 

MidiPrep-Kit       Qiagen, Hilden 

MidiTip 100 column      Qiagen, Hilden 

Molecular weight marker (1kb-ladder)   Gibco BRL, Karlsruhe 

Molecular weight marker (500bp-ladder)   Peqlab, Erlangen 

NaCl        Merck, Darmstadt 

NaH2PO4       Merck, Darmstadt 

NaHCO3       Merck, Darmstadt 

Natriumtetraborate (Borax) Na2B4O7-H2O   Sigma, Deisenhofen 

Paraformaldehyde (PFA)     Merck, Darmstadt 

PCR-buffer (10x)      Invitrogen 

Penicillin/Streptomycin-solution    Gibco BRL, Karlsruhe 

Polyoxyethylenesorbitanmonolaurate (Tween-20)  Biorad, München 

Ponceau       Roth, Karlsruhe 

Propidium-iodide (PI)      Sigma, Deisenhofen 

Proteinase K       Roche, Karlsruhe 
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PVDF-membrane HybondECL    Amersham LifeScience 

Restriction enzymes      New England Biolabs 

RNA polymerase      Stratagene 

RNAse A       Qiagen, Hilden 

RNAse inhibitor      Boehringer Mannheim 

RNeasy Kit       Qiagen, Hilden 

RT-PCR Enzyme Mix      Roche, Karlsruhe 

RT-PCR Reaction Mix SYBR green    Roche, Karlsruhe 

SDS/Natriumlaurylsulfat     Roth, Karlsruhe 

Selenite       Sigma, Deisenhofen 

Skimmed dry milk      Glücksklee 

Sodium citrate       Merck, Darmstadt 

Sodiumacetate       Merck, Darmstadt 

Sucrose       Merck, Darmstadt 

Superscript Reverse Traskriptase    Gibco BRL, Karlsruhe 

Taq-DNA-Polymerase     Qiagen, Hilden 

TaqMan Master Mix      PE Applied Biosystems 

TEMED       Sigma, Deisenhofen 

Thyraxine       Sigma, Deisenhofen 

Transcription buffer (5x)     Stratagene 

Transferrin       Sigma, Deisenhofen 

Tris-base       Merck, Darmstadt 

Tris-HCl       Merck, Darmstadt 

Triton X-100       Roth, Karlsruhe 

Trypsin-EDTA      Gibco BRL, Karlsruhe 

Tween 20       Sigma-Aldrich, St.Louis, 

        Mo, USA 
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Xylol        Roth, Karlsruhe, 

Yeat extract       ICN pharmaceuticals, 

        Aurora, OH, USA 

3.18.2. Consumables 

Name        Supplier 

Cell culture dishes      Falcon 

Cell culture flasks      Falcon 

Cell culture tubes      Falcon 

Color slide film Elite Chrome     Kodak 

Coverslips       Peske 

Eppendorf tubes      Eppendorf, Hamburg 

Glass slides       Menzel Gläser 

Multi-well cell culture-plates     Nunc 

Parafilm       American National can 

Pasteur pipettes      Volac 

PCR-tubes (0.2 ml)      Roth, Karlsruhe 

Permeable filtermembrane inserts Millicell-CM  Millipore 

Pipettes, sterile (5, 10, 25 ml)     Falcon 

Razor blades       Gilette 

Syringe filters       Renner 

Syringe needles      Terumo 

Syringe fine dosage 1 ml     Braun 

Syringes (10-50 ml)      Becton Dickinson 

Whatman chromatography paper    Whatman 

X-ray films       Kodak 
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3.18.3. Instruments 

Name        Supplier 

Agarose gel chambers      MPI-workshop 

Bacterial incubater      Heraeus, Hanau 

Bacterial shaker       New Brunswick Science 

Bench centrifuge      Eppendorf, Hamburg 

Cell culture incubator      Heraeus, Hanau 

Cooling centrifuge Sepatech Omnifuge   Heraeus, Hanau 

Cryostate       Leica, Bensheim 

Lightcyler       Roche, Karlsruhe 

Neubauer-counting chamber     Superior 

Phase contrast microscope Diavert    Leitz, Wetzlar 

Semibry blotting chamber     MPI-workshop 

Sorvall RC-5B refrigerated superspeed centrifuge  DuPont Instruments 

Spectrophotometer, Ultrospec 3000    Pharmacia Biotech 

Stereomicroscope      Leica, Bensheim 

Steril hood Edge Gard Hood     The Baker Combany  

Tissue chopper      Mickle Laboratorye  

Vibratome Vibraslice 752M     Campden Instruments 

Waterbath       GFL 

Western-blotting chamber     Biorad, München 
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4. Results 

4.1. Cre transgenic mouse  

The podocin-specific Cre recombinase transgenic male mice were backcrossed with wild-type 

C57BL/6 female mice to maintain the transgenic background. The resulting offspring were 

heterozygous for Cre and wild type littermates.  

To determine the presence of Cre transgene in a diverse offspring population consisting of 

heterozygous and wild-type littermates, genomic DNA isolated from the tails of 3 week old 

littermates was subjected to PCR (Moeller et al., 2002) as described in detail in materials and 

methods. This resulted in the amplification of a 364 bp DNA fragment (Fig.11) indicating the 

presence of the Cre transgene. Mice lacking the presence of this DNA fragment were considered 

to be wild type. As expected, the Cre-transgenic mice were born according to the Mendelian 

frequency. 

 

 

Figure 11 : Genotypic analysis for Cre mice.  

DNA from 3 week old Cre/ C57BL-6 backcrossed offspring was subjected to PCR as described in materials and 

methods. The amplified product was subjected to 2% agarose gel electrophoresis. Ethidium bromide staining of the 

gel confirmed the presence of a 364 bp band corresponding to the transgenic and no band for the wild type litter 

mates.  
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4.2. ILK-Lox transgenic mice 

The flox-ILK transgenic mice having LoxP sites inserted downstream from exons 4 and 12 at the 

ILK locus had been created through homologous recombination in embryonic stem cells as 

described (Terpstra 2003). Male and female flox-ILK mice were bred to maintain the same 

background genotype. Genomic DNA isolated from the tails of 3 week old littermates was 

subjected to normal PCR with the conditions described in materials and methods. Offspring 

which were homozygous for flox-ILK gave a band of 2.1 Kb indicating homozygosity for the 

floxed allele (ILKflox+/+). Backcrossing flox-ILK with another mouse line showed an additional 

band of 1.9 Kb for wild type and 2 bands of 2.1 Kb and 1.9 kb indicating the heterozygosity of 

the mice. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 : Generation of ILK lox mice 

A. DNA from 3 week old Flox-Ilk mice was subjected to PCR as described in materials and methods. The amplified 

product was subjected to 0.7% agarose gel electrophoresis. Ethidium bromide staining of the gel confirmed the 

presence of a 2.1 kb band corresponding to the homozygous flox-ILK +/+ transgenic, 2 bands for the heterozygote 

flox ILK+/- and a band of 1.9 kb for wild type littermates. 

B. Schematic representation of the floxed ILK allele. Red triangles are the loxP sites, E: exon. 
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4.3. Breeding scheme for the inactivation of ILK 

 

Figure 13: Strategy of podocyte specific ILK deletion.  

Two mouse lines are needed to delete the ILK gene. The first line expressing, the Cre-recombinase under the control 

of the podocin promoter and the second mouse line is containing the flox sequences flanking the ILK gene. The two 

mouse lines were crossed to get a line with deleted ILK. 

 

This strategy was designed to delete the kinase domain of the ILK. By mating floxed ILK mice 

with Podocin-Cre transgenic mice lines, mice heterozygous from the F1 generation were obtained 

having the genotype ILKflox+/-, Cre+/-. These mice were crossed with the homozygous floxed ILK 

mice to inactive both ILK alleles by Cre-mediated excision having the genotype ILKflox+/+ and 

Cre+/-. The ability of Cre to recombine the floxed ILK allele was examined by PCR analysis of 

tail genomic DNA. DNA from other tissues like lung, spleen, muscles and thymus was also used 

for the PCR analysis. The 396bp amplicon corresponding to the excised floxed ILK allele was 

detected only in kidney cortex in both ILKflox+/-, Cre+/- (heterozygous for Lox-ILK) and ILKflox+/+, 

Cre+/- (homozygous for Lox-ILK) mice, indicating that Cre was expressed only in podocytes and 

that the Cre was capable of recombining the loxP sites within the ILK gene. Mice of all 

genotypes were born at the expected Mendelian frequency. 
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4.4. Targeted inactivation of ILK in podocytes of podoILK-/- mice 

To prevent embryonic mouse lethality in ILK null embryos (Sakai et al., 2003), the mice with 

flanking LoxP sites (floxed) of the ILK exons 5 to 12 (ILKflox+/+) were crossed with mice 

expressing the Cre recombinase under the control of a podocyte specific promoter podocinCre+/- as 

shown in the Fig. 13. Resulting bitransgenic mice were crossed to homozygous ILKflox+/+ mice to 

obtain the ILKflox+/+/podocinCre+/- (podoILK -/-).  

To determine whether the ILK gene was specifically depleted or inactivated in podocytes of 

ILKflox+/+ mice, and to evaluate the ability of the podocin-Cre recombinase to excise the floxed 

ILK alleles, DNA from kidney cortex was subjected to PCR amplification by using appropriate 

primers . The PCR amplification resulted into a 369 bp amplicon corresponding to the excised 

floxed ILK allele. This amplicon product was neither detected in tail or in lungs (Fig. 14) nor in 

other organs like thymus, heart, muscles etc. (data not shown) of ILKflox+/+/podocinCre+/- mice 

(podoILK -/-). This data confirms a tissue specific recombination of the loxP sites within the ILK 

locus. 

 

 

 

 

 

 

 

 

 

Figure 14: Genotypic analysis of Cre-mediated excision of the floxed ILK allele in podocytes.  

A. DNA was prepared from kidney cortex and analyzed by PCR, resulting in a 1.9kb product in wild type, a 2.1kb 

product in floxed and a 230bp product after Cre mediated-excision in podocytes. Lanes 4, 5 and 6 are floxed not 

expressing Cre – tail DNA. 

B. Schematic representation of the deletion strategy. 
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To investigate changes in the basal expression of the ILK gene, mRNA from microdissected 

glomeruli of podoILK -/- mice was analyzed by a Real Time quantitative RT-PCR. The results 

showed that the steady state ILK mRNA was reduced by 74% (Fig. 15) in Cre-positive littermates 

i.e. podoILK -/- vs. 18S rRNA (0.59 ±0.53 x 10-3; n=4) as compared with Cre-negative i.e. 

podoILK +/+ vs. 18S rRNA (2.29 ±1 x 10-3; n=7).  

 

 

 

 

 

 

 

 

 

 

Figure 15: ILK mRNA levels in microdissected glomeruli.  

25 microdissected glomeruli per mouse of 2 week old mice were examined. The diagram showed a reduction of ILK 

mRNA by 74% in real-time RT-PCR, expressed as ratio to 18s rRNA as the reference gene. 

 

ILK has been shown to be expressed in glomerular mesangial cells and glomerular podocytes 

(Hammes et al., 2001; Kretzler et al., 2001). To demonstrate ILK deletion and the localization of 

ILK protein expression in podocytes by immunohistochemical (IHC) analysis, a monoclonal 

mouse anti-ILK antibody was used to detect the expression of ILK in various segments of the 

kidney of podoILK +/+ and podoILK -/- mice. Intra-glomerular ILK protein expression was 

detected in the mesangium and at the periphery of the GBM to which the podocyte foot processes 

are firmly attached. In podoILK -/- mice the mesangial staining remained unchanged, but the 

GBM-associated signal was lost, confirming loss of podocyte ILK expression (Fig. 16). 
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Figure 16: Glomerular ILK protein expression.  

In wild type animals (podoILK +/+), ILK is detected by immunohistochemistry in the mesangium and in podocyte 

foot processes along the filtration barrier (perimesangial and pericapillary GBM). In homozygous floxed ILK / 

heterozygous podocin Cre mice (podoILK -/-) the ILK signal is lost at the filtration barrier (arrow). The ILK staining 

in the mesangium (arrow head) remained unaltered. 

 

4.5. PodoILK -/- mice exhibit changes in bio-physical parameters 

4.5.1. Body weight 

Female and male wild type podoILK +/+ and podoILK -/- mice were weighed at 4 weeks and 12 

weeks of age. There was no difference in body weight of podoILK -/- and wildtype mice at 4 

weeks in either sex (Fig. 17). 

At 12 weeks of age the body weight decreased significantly in female and male podoILK -/- mice 

compared to the wild type mice (Figure 17). 

There was no difference in the body weight of Flox-ILK transgenic (alone) and Cre transgenic 

mice (alone) compared to the wild type control mice irrespective of the sexes (data not shown). 
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Figure 17: Body weight at 4 and 12 weeks.  

Male and female wild type and podoILK -/- mice were weighted at 4 and 12 week. Only at 12 weeks of age a 

significant decrease of body weight of podoILK -/- mice was observed. Number of animals was at least 6 in each 

group. 

4.5.2. Kidney weight 

Kidney weight was determined at 4 and 12 weeks of age when mice were sacrificed. No 

differences was seen in kidney weight and kidney-to-body weight ratio at 4 weeks of age in male 

and female podoILK -/- compared to the control mice.  

 

 

 

 

 

 

 

 

Figure 18: Absolute (A) and relative (B) kidney weight.  

Kidneys from control and knockout mice were weighed at 4 and 12 week of age. Number of animals examined was 6 

in each group. 
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At 12 weeks of age, no significant differences of kidney weight in female podoILK -/- was 

observed as compared to sex matched wild type mice. Both absolute and relative kidney weights 

of male podoILK -/- mice were decreased and increased respectively.  

4.5.3. Urine protein analysis 

To determine the level of proteinuria, urine from 2, 4 and 12 week old podoILK -/- and podoILK 

+/+ mice was examined using SDS-PAGE. A mouse albumin standard was used as a positive 

control. A 66 kDa band corresponding to the albumin standard was detected in some 2 and 

consistently in 4 and 12 week old podoILK -/- mice (Fig. 19 A, lanes 1-6). However, wild type 

podoILK +/+ mice did not show any presence of albumin in the urine. 

Heterozygous mice for the floxed ILK allele (ILKflox+/-/podocinCre+/-) had no overt phenotype and 

urine analysis showed the absence of albuminuria up to 15 month of age (data not shown). 

Moreover, podoILK -/- mice show rapid progression of proteinuria to terminal renal failure.  

Additionally, the total protein level was measured using the Bradford method as described in the 

material and methods. 12 week old podoILK -/- mice showed a massive increase in total urine 

protein content as compared to 4 and 2 week old podoILK -/- mice. PodoILK +/+ mice did not 

show an increase in the total urine protein content (Fig. 19 B). 

 

 

 

 

 

 

 

Figure 19: SDS-PAGE. 

A) 3 μl of mouse urine is analysed on SDS-PAGE stained with comassie blue. PodoILK -/- mice show a selective 

albuminuria as early as 2 weeks of age (lane 1- 2; 2 week old animals) and progresses rapidly to unselective 

proteinuria (lane 3-4; 4 week old animals and lane 5-6; 12 week old animals). Wild type control shows no proteinuria 

(lane 7-8; 12 week old animals). Lane 1 contains molecular weight markers. Lane 9 shows albumin standard. 

B) Protein to creatinine ratio detects progressive proteinuria in podoILK -/- mice. The bar graphs show elevated 

protein/ creatinine ratio at 4 and 12 weeks.  

A B 



Results 

 69

4.5.4. Biochemical analysis of blood 

To determine the biochemical alteration in the disease, blood was collected from wild type und 

podoILK -/- mice at 12 weeks of age to determine serum parameters. The biochemical analysis 

was consistent with massive proteinuria and impaired renal function. Creatinine, cholesterol and 

triglyceride levels were significantly increased compared to wild type mice. In contrast, blood 

urea nitrogen, albumin and total protein levels were not changed comparing both groups (table 1.) 

 

Group 

(n) 

  Crea-            Urea                Choles-            Albumin             Total              Triglyc- 

  tinine                                     terol                                           protein            eride 

 

  mg/dl             mg/dl               mg/dl                  g/dl                   g/dl                 mg/dl 

Podo 

ILK +/+ 

 

0,36 27,15 78,25 3,44 5,55 86,00 
 

 ± 0,03             ± 4,57             ± 7,59             ±  0,28            ±  0,24            ± 24,86 

Podo 

ILK -/- 

 

0,66* 79,42 400,25* 2,54 5,72 124,0* 
 

 ± 0,24             ± 61,65           ± 189,65         ± 0,43             ± 0,54             ± 30,08 

 

Table 1: Serum analysis.  

Wild type; n = 4 (podoILK +/+) and podoILK -/-; n = 4 at 12 weeks of age were analysed. An increase of creatinine, 

cholesterol and triglyceride were observed in podoILK -/- mice. Data presented are the means ± SD. The statistical 

analysis was carried out using the students t test. * p< 0.05.  

4.5.5. Survival curve 

Transgenic mice were observed up to 1 year of age. PodoILK -/- mice appeared normal at birth, 

but showed a drastically reduced life span with a median age of death at 19 weeks (Range: 8-32 

w) (Fig. 20). Sequential urine analysis revealed the first appearance of selective albuminuria at 2-

4 weeks of age, progressing to unselective proteinuria between 4 -12 weeks (Fig. 19A). In 

contrast, all ILKflox+/-/podocinCre+/- survived the 12 months observation period as well as the the 

control mice ILKflox+/+/podocinCre-/- (data not shown). 
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Figure 20: Caplan Meyer survival curve. 

PodoILK +/+ and podoILK -/- mice were observed for 12 months, demonstrating 100% lethality of podoILK -/- with 

an average of 19 weeks (range 8-32 weeks). All transgenic animals died within the period investigated. Green line is 

the wild type mice and the rust line is the ILKflox+/+/podocinCre+/-.  Green line represents the wild type mice and the 

brown represents podoILK -/- mice. 

4.5.6. Histological analysis 

Macroscopically, kidneys from podoILK -/- mice showed the classical features of nephrotic, 

endstage kidneys with rough surface and yellow appearance, but were comparable in size to 

podoILK +/+ mice (Fig. 21 A). From 12 weeks of age on wards, all podoILK -/- mice show this 

classical end stage phenotype of the kidney. Histological staining of the sections of the kidney 

showed normal glomerular and tubular staining in the wild type in contrast to the podoILK -/- 

mice. Tubules were loaded with proteinacouse casts and the glomeruli showed a total loss of 

texture (Fig. 21 B).  
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Figure 21: Structural alteration in podoILK -/- mice. 

A) Kidneys from podoILK +/+ and podoILK -/- mice at 16 weeks of age. Endstage, fibrotic kidneys with loss of 

renal architecture are observed in podoILK -/- mice. 

B) Section of the kidney stained with H&E from wild type and podoILK -/- at 12 weeks. Glomeruli from wild type 

mice are with a normal tubular interstitium.  

4.6.  PodoILK -/- mice develop progressive focal segmental 

glomerulosclerosis 

Histological examination of kidneys from wild-type mice, podoILK +/- and podoILK -/- mice 

from 1 to 16 weeks of age revealed the development of progressive filtration barrier failure in 

podoILK -/- mice (Fig. 22 and 23). Light microscopic examination was carried out on the kidneys 

from six wildtype mice, seven podoILK +/- and seven podoILK -/- mice at 1 and 12 days of age, 

five wildtype and five podoILK -/- mice at 19 days of age, five wildtype, four podoILK +/- and 

six podoILK -/- mice at 25-28 days of age as well as four wildtype and 12 podoILK -/- mice 

A 

B 
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ranging from 53 to 119 days of age. 

Kidneys from 1 and 12-day-old podoILK -/- mice showed the typical gradient of postnatal renal 

development and were indistinguishable from those of wild-type mice, thereby indicating normal 

nephrogenesis in podoILK -/- mice. 

At the onset of microalbuminuria at 3 weeks of age, podoILK -/- mice showed hypertrophy of 

single podocytes and their nuclei, predominantly in juxtamedullary glomeruli, as compared to 

wildtype mice. At 4 weeks, juxtamedullary glomeruli of podoILK -/- mice frequently 

demonstrated enlarged podocytes, which occasionally exhibited vacuolization and pseudocyst 

formation as well protrusions and microvillous transformation of the epithelial surface, which 

became particularly evident in semithin sections (Fig. 23). Further findings in juxtamedullary 

glomeruli included segmental mesangial expansion with increased matrix deposition and large 

distorted capillaries. 

More advanced glomerular lesions, associated with tubulointerstitial changes, were consistently 

found in podoILK -/- animals ranging from 8-16 weeks of age. Numerous podocytes were 

severely enlarged, showed multiple vacuoles, protrusions and microvillous transformation. 

Glomerular changes included focal and segmental sclerotic lesions, characterized by tuft 

adhesions to Bowman’s capsule with collapse and occasional occlusion of capillaries by hyaline 

material, detachment of podocytes and loss into the urinary space, crescent formation, mesangial 

expansion with increased matrix deposition, dilated and distorted capillaries and focal glomerular 

obsolescence. Protein reabsorption droplets were observed in proximal tubular epithelia as well 

as proteinaceous casts in some distal tubules, and small fibrotic foci were evident in the 

interstitium. End-stage kidney lesions were characterized by diffuse glomerulosclerotic changes, 

with severe vacuolization of podocytes and epithelia of Bowman’s capsule, segmental to 

circumferential synechiae, fibrocellular or epithelial crescents with pseudotubular structures, and 

mesangial expansion with accumulation of mesangial matrix. Less severely damaged glomeruli 

showed distortion of the tuft structure including derangements of the capillary folding pattern as 

well as dilatation of capillaries. Further, glomerular obsolescence due to hyalinosis was a 

common finding. Tubulo-interstitial lesions included cystic dilation of tubules with proteinaceous 

casts in distal tubules, tubular atrophy, severe interstitial fibrosis and focal edema as well as 

predominantly perivascular, mononuclear infiltration and accumulation of hemosiderin 

containing macrophages. PodoILK +/- and wild-type mice of the different age-groups showed no 

pathological kidney changes. 
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Figure 22: Progressive glomerulosclerosis and tubulointerstitial fibrosis in podoILK -/- mice.  

At 3 weeks of age, no differences in podoILK -/- mice are seen compared to wild type animals. At 4 weeks of age, 

juxtamedullary glomeruli of podoILK -/- mice frequently demonstrate hypertrophy of podocytes and segmental 

mesangial expansion with increased matrix deposition and large distorted capillaries.  

At 12 weeks of age, more advanced glomerular lesions, associated with tubulo-interstitial changes, are seen in 

podoILK -/- mice. Glomeruli showed focal and segmental sclerotic lesions, characterized by tuft adhesions to 

Bowman’s capsule with collapse and occasional occlusion of capillaries by hyaline material, detachment of 

podocytes and loss into the urinary space, crescent formation, mesangial expansion with increased matrix deposition, 

large distorted capillaries and focal glomerular obsolescence. Tubulointerstitial lesions show tubular atrophy, severe 

interstitial fibrosis and a mononuclear infiltration. 
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Figure 23: Glomerular architecture in semi-thin sections of podoILK -/-. 

At 3 weeks of age, in the juxtamedullary glomerulus shown, podoILK -/- mice show single hypertrophic podocytes 

compared to wild type mice.  

At 4 weeks, juxtamedullary glomeruli of podoILK -/- mice demonstrate hypertrophy of podocytes with protrusions 

and microvillous transformation of the epithelial surface. 
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4.7. PodoILK -/- mice show GBM and podocyte alteration at onset of 

albuminuria 

As albuminuria preceded the development of the FSGS lesions, the ultrastructure of the filtration 

barrier was evaluated at the first sign of filtration barrier damage in podoILK -/- and thereafter. 

Two to three samples per mouse of two to three wild type and two to six podoILK -/- mice of 

each age group were examined by transmission electron microscopy.  

At 1 and 12 days of age, no differences between podoILK -/- and wildtype mice were observed. 

At 3 weeks with onset of albuminuria, prominent podocytes in the juxtamedullary glomeruli of 

podoILK -/- mice were frequently enlarged and demonstrated few pseudocysts and occasional 

vacuoles, focal microvillous transformation and protrusions. Foot processes showed a normal 

architecture and slit diaphragm remained morphologically intact. The glomerular basement 

membrane was homogenously thickened (Fig. 24, see below).  

At 4 weeks of age, podocytes of podoILK -/- mice were enlarged, showed pseudocysts and 

vacuolization, focal microvillous transformation and protrusions as well as multifocal foot 

process effacement. The glomerular basement membrane was clearly thickened, both 

homogenously and in a nodular manner and showed electron-lucent areas in the lamina densa 

(Fig. 24). 

At 8-12 weeks of age, glomeruli of podoILK -/- mice displayed severely enlarged podocytes, 

exhibiting massive vacuolization and occasional accumulation of absorption droplets, multiple 

pseudocysts, as well as microvillous transformation and protrusions of the epithelial surface.  

Further, widespread foot process effacement and focal detachment from the basement membrane 

was observed. The glomerular basement membrane exhibited diffuse and irregular thickening and 

showed electron-lucent areas, and was sometimes collapsed and tortuous. Severe vacuolization 

was also found in the epithelia of Bowman`s capsule (Fig. 24). 
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Figure 24: Transmission Electron Micrographs of 3, 4, and 12 week old glomeruli.  

At 3 weeks, no obvious differences between podoILK -/- podocytes and podoILK +/+ controls can be seen. Foot 

processes and slit diaphragm appear intact. The glomerular basement membrane seemed homogenously thickened.  

At 4 weeks of age, podoILK -/- podocytes show focal effacement of foot processes, the glomerular basement 

membrane is clearly thickened, both homogenously and in a nodular manner and showed electron-lucent areas in the 

lamina densa. 

At 12 weeks of age, glomeruli of podoILK -/- mice displayed prominent podocytes, exhibiting microvillous 

transformation and protrusions of the epithelial surface. Widespread foot process effacement and elongated, flattened 

primary processes are seen. The glomerular basement membrane exhibited diffuse and irregular thickening and 

shows electron-lucent areas. 
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4.7.1. Morphometric analysis of GBM composition in podoILK -/- mice 

As the GBM alterations were the first ultrastructural lesions seen, morphometric analysis of the 

GBM width was performed at 3 weeks of age in animals with selective albuminuria. Using 

orthogonal intercepts, the true harmonic mean GBM thickness was found to be significantly 

increased by 22.6% in podoILK -/- compared to wild-type litter mates (n=4, p<0.05, Fig. 25). The 

mean glomerular volume, as a parameter for overall glomerular architecture, was not different 

comparing wild-type and podoILK-/- mice (wt: 91,300 ± 15,600 vs. podoILK-/-: 78,500 ± 8,600 

µm3).  

 

 

 

 

 

 

 

Figure 25: True harmonic GBM thickness is increased in podoILK -/- mice. 

Morphometric analysis of the GBM width of 3 week old animals with selective albuminuria. Using orthogonal 

intercepts, the true harmonic mean GBM thickness was found to be significantly increased by 22.6 % in podoILK -/- 

compared to wild type litter mates, n=4 in each group, p<0.05. 

4.7.2. Analysis of GBM composition in podoILK -/- mice  

To define the molecular composition of the GBM alterations, the expression levels and 

distribution of the major GBM components were evaluated by real-time RT-PCR and 

immunofluorescence. Analysis of laminin-β 1-2, laminin-α 1, 2, 4 and 5, collagen type IV α 1-6, 

agrin, perlecan, nidogen-1 and fibronectin did not reveal an increase on mRNA and / or protein 

level in any of these molecules (Figure 26 and table 2 for more details). However, in animals with 

progressive filtration barrier failure and glomerular scarring (> 8 weeks of age), increased mRNA 

and immunostaining for fibronectin and collagen type I α1 in glomeruli with mesangial 

expansion or sclerotic changes was evident. In contrast collagen type IV α 3, 4 and 5, a 

significant decrease was observed only by 12 weeks of age compared to wild type mice.  
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Figure 26: Quantification of GBM candidate gene expression by real-time RT-PCR in wild type and podoILK 

-/- mice.  

Microdissected glomeruli were isolated and cDNA was used for the RT-PCR as described in materials and methods. 

All expression levels are given as ratio to 18S rRNA. No significant difference was seen at 4 weeks of age between 

wild type and podoILK -/- mice. But at 12 weeks this was significantly increased or decreased (**P< 0.05). 
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 4 week 12 week 

Target 
PodoILK 

+/+ 
PodoILK 

-/-  
PodoILK 

 +/+ 
PodoILK 

-/-  
 mean SD mean SD p mean SD mean SD p 
 N=6  N= 5   N= 4  N= 6   
Collagen I, α 1 3.0610-6 2.7210-6 2.6910-6 1.6610-6 n.s. 0.3310-6 0.1810-6 3.1710-6 4.2210-6 < 0.05 
Collagen IV, α 1 2.1810-3 2.1010-3 1.4710-3 1.2110-3 n.s. 5.1810-4 2.2910-4 7.2210-4 5.0910-4 n.s. 
Collagen IV, α 2 4.7310-5 3.1410-5 4.1310-5 3.3010-5 n.s. 0.6210-5 0.3010-5 1.3510-5 0.8810-5 n.s. 
Collagen IV, α 3 7.8410-5 5.9110-5 12.210-5 11.710-5 n.s. 9.3610-5 3.3610-5 1.6910-5 1.3410-5 < 0.05 
Collagen IV, α 4 1.8310-3 1.1610-3 1.7510-3 1.5210-3 n.s. 7.6510-4 3.1610-4 2.6310-4 1.8910-4 < 0.05 
Collagen IV, α 5 1.1210-4 6.1210-4 1.0310-4 0.7810-4 n.s. 3.3410-5 0.9410-5 1.3410-5 0.7810-5 < 0.05 
      
Fibronectin 1 7.6010-5 6.9910-5 4.6310-5 3.8110-5 n.s. 0.1510-4 0.0510-4 1.4610-4 1.4010-4 < 0.05 
Laminin, beta 2 3.9710-5 2.7810-5 3.0810-5 2.2810-5 n.s. 1.7910-5 0.5610-5 1.1710-5 0.2610-5 n.s. 
Agrin 5.2810-1 2.9910-1 3.5410-1 1.7010-1 n.s. 2.5210-1 1.4910-1 3.0210-1 1.7110-1 n.s. 
Perlecan 2.7210-4 1.9910-4 1.3110-4 0.8910-4 n.s. 8.3710-5 3.3610-5 9.6810-5 5.7310-5 n.s. 
Nidogene 1 4.8910-4 7.2210-4 2.5010-4 1.7710-4 n.s. 9.7210-5 4.3710-5 7.2810-5 4.5310-5 n.s. 

 

Integrin alpha 3 2.7110-4 2.0810-4 3.3010-4 2.4210-4 n.s. 1.9310-4 0.3010-4 1.4710-4 1.0010-4 n.s. 
Integrin beta 1 6.6010-4 5.6010-4 5.2010-4 3.0010-4 n.s. 4.1910-4 2.1010-4 4.1610-4 2.5010-4 n.s. 

Dystroglycan 9.9810-4 9.3110-4 9.8610-4 5.6610-4 n.s. 3.7710-4 1.5810-4 3.4110-4 2.3510-4 n.s. 
 

Nephrin 5.3810-4 4.9010-4 21.710-4 14.310-4 n.s. 1.0110-3 0.6610-3 0.1810-3 0.1010-3 < 0.05 
Podocin 1.8210-4 1.0910-4 1.3610-4 0.7810-4 n.s. 1.3310-4 0.7910-4 0.6010-4 0.2910-4 n.s. 
P-Cadherin 4.1310-6 2.4310-6 3.1910-6 2.7010-6 n.s. 2.9710-6 1.7710-6 9.1810-6 8.6410-6 n.s. 
ZO-1/Tjp1 7.2610-4 5.9210-4 7.2210-4 5.3910-4 n.s. 3.5310-4 1.1310-4 2.0110-4 0.7610-5 n.s. 
WT-1 2.1610-4 1.3810-4 1.8610-4 1.5710-4 n.s. 1.3610-4 0.4710-5 0.7610-5 0.2710-5 < 0.05 
Alpha-Actinin 4 5.1510-4 4.0310-4 7.6410-4 3.3610-4 n.s. 3.8510-4 2.2710-4 1.4210-4 0.6910-5 < 0.05 
Synaptopodin 2.7010-4 3.5410-4 1.2610-4 0.7610-5 n.s. 6.3310-5 1.9910-5 1.6910-5 0.6410-6 < 0.05 

 

Table 2: Glomerular gene expression of GBM, podocyte slit membrane molecules and cell-matrix receptors.  

mRNA levels were determined by real-time mRNA quantification from 4 and 12 week old mice. Significant 

expression induction is displayed in bold, significant expression repression in bold italics. At 4 weeks in proteinuric 

animals no significant differences are seen, at 12 weeks in mice showing progressive glomerulosclerosis repression 

of podocyte specific molecules and induction of the matrix molecules Col I α 1 and fibronectin is detected. 
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Figure 27: Immunofluorescence of GBM molecules. 

The distribution and signal intensity of the major components of the murine GBM was evaluated and did not show 

any consistent difference between wild type and podoILK -/- mice at onset of albuminuria at 4 weeks of age. 

Staining for developmental and mature laminins and collagen type IV minor chains are shown. For corresponding 

mRNA expression analysis see table 2. 

 

As ILK has been reported to be involved in matrix assembly via transmembrane matrix receptor 

(Wu et al., 1998b), concentration and distribution of integrin-α3 and -β1 were evaluated. In 

immunofluorescence studies, no difference in the distribution of integrin- β 1, found in 

mesangial, endothelial and podocytes, could be observed. For integrin-α3, concentrated in 

podocyte foot processes facing the GBM, the staining in podoILK -/- mice showed a more 

granular pattern, consistent with an ILK dependent redistribution of this integrin at the onset of 

albuminuria (Fig. 27- 28). 



Results 

 81

 

Figure 28: Immunofluorescence of α3-integrins. 

The main transmembrane matrix receptors in podocytes, α3-/β1 integrins were evaluated and a granular signal of α3-

integrins in 2 weeks old podoILK -/- compared to wild type littermates found. α3 integrin expressed as red and 

entactin expressed as green after staining. β1-integrins, expressed on endothelium, mesangium and podocytes did not 

show a significant different staining pattern (data not shown). 

 

4.7.2.1.  Immunohistochemistry staining for GBM components  

Two podoILK -/- and two wild type mice were analyzed immunohistochemically each at 3 week, 

4 week and over 12 weeks of age, respectively. At 19 and 25 days of age, staining for collagen 

type IV, laminin and fibronectin was indistinguishable between podoILK -/- and wild type 

kidneys (Fig. 29- 30).  

Over 12 week of age, increased immunostaining for collagen type IV, laminin and fibronectin in 

glomeruli with mesangial expansion or sclerotic changes were evident (Fig. 30).  
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VEGF-immunohistochemistry revealed staining of a small portion of podocytes of glomeruli 

from wildtype mice, whereas in podoILK -/- animals, the majority of podocytes was VEGF-

positive. The GBM staining for murine IgA, IgG or IgM showed no difference (data not shown). 

 

 

 

Figure 29: Immunohistochemistry for Fibronectin.  

There is a marked increase in fibronectin deposition in the glomerulus of podoILK -/- mice (b,d) as compared to 

conrols (a,c). 

 

 

 

 

 

 

 



Results 

 83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Immunohistochemistry for laminin and collagen IV.  

PodoILK -/- shows a massive deposition of laminin (b,d) as compared to conrols (a,c). Note the accumulation of 

collagen IV in the glomerulus of podoILK -/- mice (b,d) as compared to conrols (a,c). 
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4.8. Effects of ILK deletion on podocyte gene expression 

 Several podocyte specific molecules (podocin, synaptopodin, and α-actinin-4) were analyzed to 

determine the first affected genes after ILK deletion. Only WT-1 showed significantly reduced 

mRNA levels in microdissected glomeruli at 12 weeks of age, consistent with loss of podocytes 

from the glomeruli or repression of podocyte specific molecules. In contrast no significance was 

seen at 4 weeks of age compared to wild type mice. 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Real time RT-PCR quantification of mRNA expression of the WT-1 gene. 

The graph shows expression ratios to 18S rRNA. A significant decrease of WT-1 was seen at 12 weeks of age in 

podoILK -/- mice (n = 5). 

Further candidate genes such as dystroglycan, nidogen, agrin and perlecan, showed no difference 

in expression levels (data not shown). 

4.8.1. Raster Electron Microscopy 

To evaluate the consequences of ILK deletion on podocyte foot process architecture, raster 

electron microscopic analysis was performed. Two podoILK -/- mice were examined by scanning 

electron microscopy each at 19, 25 and over 53 days of age. At least one wildtype mouse per age-
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group served as control. 

Podocytes of glomeruli from 3 week old podoILK -/- mice demonstrated focal cell body 

attenuation and occasional pseudocyst formation, and major processes as well as pedicles 

appeared flattened and showed knobby protuberances. Further, ruptures of pseudocysts and 

occasional microvillous transformation were observed. Analysis of the older animals revealed 

progressive podocyte changes with age, including widespread flattening of the cell bodies and 

major processes, thus covering major parts of the filtration area without any visible interdigitating 

foot processes and massive microvillous transformation and numerous bulbous protrusions of the 

epithelial surface (Fig. 32).  

 

 

 

 

 

 

 

 

 

  

Figure 32: Scanning Electron Micrographs at 12 glomeruli. 

View of capillar loop from Bowman’s space, 10 000x magnification. For scanning electron microscopy, 2 mm thick 

kidney slices were used. Podocytes in podoILK -/- mice demonstrated focal cell body attenuation, flattening of major 

processes as well as foot process effacement. Note the irregular interdigitation in podoILK -/- compared to the highly 

regular pattern in wild type controls (podoILK +/+). 
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Figure 33: Comparison of TEM (left panel) and REM (lright panal). 

 A/B: Pseudocyst (top left) and ruptured pseudocyst (top right). Thickening of the GBM and foot process effacement 

may be seen in the TEM picture. Flattening of the foot processes and the cell bodies as well as irregular 

interdigitating foot processes are shown in the REM picture.  

C/D: microvillous transformation of the epithelial surface (2nd row).  

E/F: invasive protrusions of the epithelial surface (3nd row). The TEM picture also shows vacuoles in the podocyte 

cytoplasm.  

G/H: Irregular thickening of the GBM and microvillous transformation of the epithelial surface may be seen in the 

TEM picture (bottom left). The REM shows multiple ruptured pseudocysts, and protrusions of the epithelial surface 

of a severely flattened podocyte. 

4.9. The slit diaphragm and associated molecules are intact in 

proteinuric podoILK -/- mice 

As the podocyte slit diaphragm (SD) is considered to be a key element of the filtration barrier, 

transmission electron microscopic analysis focused on SD alterations at onset of albuminuria (3 

weeks), did not identify alterations visible on the ultrastructural level (Fig. 24). In addition, 

overall foot process architecture appeared intact (Fig. 34). At later stages of progressive 

glomerulosclerosis, SD was lost and severe foot processes effacement was observed.  

 

 
 

Figure 34: Transmission elctron microscopy of slit diaphragm. 

Electron micrograph of an ultra thin section of slit diaphragm at 3 weeks of age showing no difference between the 

podoILK +/+ and podoILK -/- mice.  
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4.9.1. Determination of the filtration slit frequency  

The determination of the filtration slit frequency (FSF) was carried out on the same TEM 

photographs, used for evaluation of the GBM thickness of 3-week-old animals. The filtration slit 

frequency was determined by counting the number of epithelial filtration slits and dividing that 

number by the length of the peripheral capillary wall at the epithelial interface. On average 324 

filtration slits (range 265-387) were counted per animal. The filtration slit frequency (FSF) was 

equal in podoILK -/- mice (n=4) and wild type controls (n=4) (1,655.47 +/- 107.21 vs. 1,714.18 

+/- 81.57 no. /mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Determination of the filtration slit frequency in podoILK -/- mice. 

Analysis of the filtration slit frequency of 3 weeks old animals with selective albuminuria. FSF was determined by 

counting the number of epithelial filtration slits and dividing that number by the length of the peripheral capillary 

wall at the epithelial interface. No significant difference was found in podoILK -/- compared to wild-type litter 

mates, n=4 in each group. 

 

To further evaluate the status of the slit diaphragm, the expression levels and localization of two 

key SD components, nephrin and podocin, were evaluated in glomeruli from podoILK -/-. Steady 

state mRNA levels for both molecules did not show a significant difference in microdissected 

glomeruli from podoILK -/- mice to wild type littermates at 4 weeks of age. RT-PCR results 

demonstrated a significant decrease in nephrin expression at the age of week 12 weeks (Fig. 36) 

but in the case of podocin the expression remains same (Table 2). Immunofluorescence studies 

also demonstrated comparable signal intensities and distribution for both molecules (Fig. 37). 
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Figure 36: Real time RT-PCR quantification of mRNA expression of the nephrin gene. 

The graph shows expression ratios to 18S rRNA. A significant decrease of nephrin was seen at 12 weeks of age in 

podoILK -/- mice. 

   

Figure 37: Slit membrane associated proteins in podoILK -/- mice. 

In 4 week old animals, two key elements of the glomerular filtration barrier were analyzed for nephrin and podocin 

staining. Cryosections were incubated with the primary rabbit polyclonal antibody against nephrin or with the 

primary polyclonal anti-podocin both diluted 1:100, podocin and nephrin, were evaluated by immunofluorescences 

studies and showed comparable staining intensities and signal distribution along the GBM. The glomeruli showed a 

simplified lobular appearance as a consequence of mesangial expansion in the more severely affected glomeruli. 
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5. Discussion 
 

 

The glomerular podocyte is a terminally differentiated cell that lines the outer aspect of the 

glomerular basement membrane (GBM). It, therefore, forms the final barrier to protein loss, 

which explains why podocyte injury is typically associated with marked proteinuria. Podocytes 

are injured in many forms of human and experimental glomerular disease, including minimal 

change disease, focal segmental glomerulosclerosis, membranous glomerulopathy, diabetes 

mellitus, and lupus nephritis (Mundel and Shankland, 2002). Based on recent progress in 

molecular pathology podocytes have been linked to impaired formation of the slit function (Raats 

et al., 2000; Reiser et al., 2000a) and adhesive cell-cell interactions due to abnormalities in actin 

cytoskeleton (Smoyer et al., 1997).  

One such abnormality associated with the impaired podocyte function is a characteristic feature 

of the congenital nephritic syndrome of the Finnish type. A mRNA expression screen performed 

on human biopsy samples from a child population suffering from congenital nephritic syndrome 

of the Finnish type revealed marked induction of Integrin-liked kinase (Kretzler et al., 2001). A 

role for ILK was therefore hypothesized in affecting the renal glomerular filtration barrier 

function. To elucidate the functional role of ILK in the glomerular filtration barrier, this study 

was designed. The deletion of the ILK gene from the podocytes in a tissue specific manner was 

performed using the Cre/Lox system. 

To maintain an intact filtration barrier against the high transcapillary pressure gradient of the 

glomerulus an intimate molecular crosstalk between podocyte foot processes and the GBM is 

crucial (Kretzler, 2002). α3-/β1-Integrins are the main transmembrane matrix receptors of 

podocytes and collagen IV and laminins their GBM ligands. Integrins are the cell surface 

receptors that transduce signals from the GBM to the cell interior. They regulate cell function and 

matrix assembly via a protein complex associated with their cytoplasmic tail in focal adhesion 

plaques (Geiger et al., 2001). Integrin linked kinase; an ankyrin repeat-containing 

Serine/Threonine kinase has emerged as a multifunctional protein in this complex at the 

cytoplasmatic domains of integrins. In cultured podocytes, ILK has been shown to orchestrate a 

wide array of functions, including focal adhesion plaque assembly (Kretzler et al., 2001), F-actin 

cytoskeletal organization (Yang et al., 1993; Kretzler et al., 2001), membrane proximal initiation 

of signal transduction via Akt, GSK-3β and β-catenin (Kretzler et al., 2001), regulating cell 
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phenotype and survival (Yang et al., 1993; Kretzler et al., 2001) and integrin binding affinity and 

avidity responsible for podocyte adhesion and extracellular matrix assembly (Yang et al., 1993; 

Kretzler et al., 2001). 

 As ILK levels have been found to be induced in progressive glomerular damage such as that 

characteristic of the nephritic syndrome of the Finnish type and in podocyte damage in vivo and 

in vitro (Hammes et al., 2001; Kretzler et al., 2001), the physiological role of ILK had to be 

addressed in the glomerular environment in vivo. Recent studies using genetic models have 

demonstrated a high degree of context dependency of ILK function. ILK deletion in 

Caenorhabditis elegans resulted in a phenotype resembling some aspects of α 1-integrin deletion 

underscoring ILK as a key adaptor between the cytoskeleton and integrins (Mackinnon et al., 

2002). A complete knock-out of ILK affects the ability to polarize and to generate the 

cytoskeleton in the epiblast, resulting in early embryonic lethality. Fibroblasts lacking ILK have 

been shown to poorly adhere to the ECM and showed defects in cell spreading, delayed formation 

of focal adhesion sites and stress fibers, and diminished proliferation rates (Sakai et al., 2003). 

Tissue specific deletion of ILK in chondrocytes (Sakai et al., 2003; Terpstra et al., 2003) and 

endothelial cells in mice and zebra fish (Friedrich et al., 2004) demonstrated key roles of ILK for 

intergrin-mediated cell adhesion and spreading, actin stress fiber formation, cell survival and 

proliferation (Sakai et al., 2003; Terpstra et al., 2003; Friedrich et al., 2004).  

 

5.1. Development of mouse lines with podocyte specific deletion of 

ILK 

To evaluate ILK function in the glomerular context in vivo, a podocyte specific knockout mouse 

model was established using the Cre-Lox system. In this study, a mouse line bearing a targeting 

gene construct for the promoter region of Podocin (a protein almost exclusively located in 

podocytes) was generated. This line allowed the expression of the Cre-recombinase only in 

podocytes (Moeller, 2002). Likewise a second mouse line bearing the ILK gene flanked by two 

loxP sites was generated (Terpstra et al., 2003). A crossing between these mouse lines yielded 

double transgenic mice in which the loxP-ILK gene had been specifically excised in their 

podocytes. This construct is known to activate the Cre-recombinase late in glomerular 

development during the capillary loop stage (Moeller et al., 2003). In the present study, ILK 

excision was detectable at birth most likely in mature glomeruli found in the juxtaglomerular 

region of newborn mouse kidneys. At 2 weeks of age a loss of the ILK signal from podocyte foot 
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processes at the GBM could be shown with unchanged ILK expression in the mesangium. ILK 

mRNA levels were reduced by 76%, consistent with only mesangial ILK mRNA being detectable 

in the glomerular preparation. In contrast to the former cell type specific deletions, podoILK -/- 

mice did not show a developmental phenotype, most likely do to the timing of ILK excision in 

the late in development, but developed the first functional alteration (selective albuminuria) 2-3 

weeks after birth. Albuminuria quickly progressed to non-selective proteinuria and classic 

progressive FSGS with terminal renal failure in all mice examined to date. This well-defined and 

easy to monitor onset of podocyte damage allowed the dissection of early events after ILK loss 

and to segregate them from late, unspecific lesions associated with FSGS. 

 

5.2. Effect of ILK deletion on the expression of slit diaphragm 

component proteins 

As glomerular filtration barrier loss has been linked to alterations in the slit diaphragm, this 

crucial unit of the filter was studied at disease onset. Ultrastructural and molecular analysis from 

podoILK -/- mice indicated an intact slit diaphragm complex. Several molecules have been 

shown to be crucial for an intact filtration barrier in humans and /or animal model systems. The 

expression of these molecules was assessed in the podoILK -/- mice, to define potential 

downstream consequences of ILK loss. 

The SD complex is a modified adherent junction comprising of least four known transmembrane 

proteins: nephrin; NEPH1, which is structurally related to nephrin (Donoviel et al., 2001); P-

cadherin (Reiser et al., 2000a); and FAT, a large cadherin homolog (Ciani et al., 2003). 

Mutations of the nephrin gene NPHS1 were identified by positional cloning as the pathogenic 

cause of the congenital nephrotic syndrome of the Finish type (CNF) In CNF a severe nephrotic 

sydrome is evident even in utero and is accompanied by the complete flattening of foot processes. 

Similarly, homozygous knockout mice generated by targeted inactivation of the nephrin gene fail 

to develop foot processes and are nephrotic (Kestila et al., 1998). Keeping in mind the crucial 

role of nephrin as a pathogenic factor related to nephropathy, in the present study nephrin mRNA 

expression levels were determined in young and adult mice lacking podoILK -/-. In the present 

study, no differences in the nephrin mRNA expression between the podoILK -/- mice as 

compared to the wild type mice were observed at disease onset. However, the expression of 

nephrin was found to be significantly reduced at mRNA levels in 12 week old podoILK -/- mice 
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as compared to the wild type mice.  

Other crucial candidate genes that are known to affect the diaphragm complex assembly of 

podocytes, CD2AP, p-cadherin, podocin and ZO-1 were investigated in mice lacking ILK. These 

proteins are tightly associated and are embedded into lipid rafts at the slit diaphragm (Reiser et 

al., 2002). Podocin may be critical for the stability of this complex by forming aggregates and 

lipid rafts. Intriguingly, its binding to nephrin at the lipid rafts dramatically activates the 

signalling capabilities of nephrin (Boute et al., 2000). The scaffolding proteins ZO-1 and CD2AP 

form links with F-actin and may trap other yet unidentified proteins at the slit diaphragm 

complex. ZO-1 is another component of the slit complex and the loss of the ZO-1 at the slit has 

been associated with proteinuria (Schnabel et al., 1990; Kawachi et al., 1997), suggesting that it 

plays an important functional role. However in the present study, no change in their expression 

levels was observed in the podoILK -/- mice as compared to the wild type controls.  

F-actin, is an important element of the podocyte cytoskeleton and localizes to the 

submembranous regions of podocyte foot processes (Drenckhahn and Franke, 1988). The α-

actinin-4 molecule is an actin-filament cross-linking protein, the gene mutated in an autosomal 

dominant form of focal segmental glomerulosclerosis. The α-actinin-4 gene has widespread 

expression, but immunostaining of human kidney sections has revealed a glomerular podocyte 

location (Kaplan et al., 2000). Although α-actinin-4 is less likely to be a component of the 

podocyte slit diaphragm, it may also play an important role in the integrity of podocyte foot 

processes and may be involved in cell motility. To study the biological role of α-actinin-4 further, 

Kos and colleagues (Kos et al., 2003) generated an α-actinin-4 knockout mouse. Although there 

was some unexplained fetal/ perinatal loss of homozygote mice, a number of knockout mice 

survived, and most developed advanced glomerular disease with proteinuria, blebs in the GBM 

and foot process effacement by 10 weeks of age (Kos et al., 2003). 

The membrane at the foot processes’ soles is attached to the actin meshwork via dystroclycan or 

via the integrin, talin, and paxillin complex. RT-PCR analysis of dystroglycan didn’t reveal any 

difference between the podoILK -/- and wild type mice. The exact function of the dystroglycan 

complex at the soles of foot processes remains to be determined. However, based on findings in 

myocytes, the glomerular dystroglycan complex could provide an actin-directed positioning 

system by which podocytes actively control the exact spacing of matrix proteins and thus the 

porosity and permeability of the GBM The dystroglycan complex may serve as a regional 

organizer for membrane protein clusters in the sole of foot processes (Kerjaschki, 2001). 

WT-1 is a zinc finger-containing transcription factor that is expressed in podocytes from the 
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capillary loop stage of development onwards. WT-1 knockout mice fail to form kidneys, which 

precludes the analysis of its role in glomerular development (Ly et al., 2004). Presence of 

glomerular disease in patients and murine models of Denys-Drash syndrome (DDS) (Pelletier et 

al., 1991; Natoli et al., 2002), Frasier sydrome (Hammes et al., 2001) were caused by specific 

mutations in WT-1, have clearly shown that WT-1 is required for podocyte function. In these 

experiments, the mice showed a reduction of WT-1 in RT-PCR analysis compared to the wild 

type in the later stage of unselective proteinuria. 

Elements of the podocyte cytoskeleton were also found to be normally expressed in podocyte foot 

process without ultrastructural evidence of damage to the foot processes architecture at disease 

onset in podoILK -/- mice. In the present study at onset of albuminuria, no detachment of 

podocytes from the GBM was seen and tunnel staining did not reveal an increased positivity of 

podocytes in podoILK -/- at 3 and 4 weeks of age (data not shown), consistent with ILK not 

being essential for podocyte survival, cytoskeletal organization and matrix adhesion. 

Synaptopodin is an unique actin-associated protein of glomerular podocytes and the telencephalic 

dendrites (Mundel and al). In both brain and kidney, in vivo and in vitro, synaptopodin gene 

expression is differentiation-dependent (Mundel et al., 1997). Synaptopodin colocalizes with α-

actinin in cultured podocytes and may be involved in the organization or regulation of a Z-disc 

equivalent in podocytes. In diseases with reversible foot process effacement such as minimal 

change disease and membranous glomerulopathy, synaptopodin expression in podocytes is 

preserved. In contrast, in collapsing idiopathic focal segmental glomerulsclerosis a loss of 

synaptopodin precedes the loss of foot processes and the actin cytoskeleton. The expression of 

synaptopodin commences at the capillary loop stage, i.e. the appearance of synaptopodin is linked 

to the formation of foot processes (Mundel et al., 1997; Barisoni et al., 1999). In this study the 

expression pattern of synaptopodin and α-actinin-4 was analyzed in podoILK -/- and control mice 

and diminished levels of synaptopodin and α-actinin-4 at a later disease stage was observed. This 

finding correlates with the data found in collapsing forms of FSGS. In FSGS in addition to the 

disappearance of processes associated with a loss of cytoskeletal elements, a disappearance of 

synaptopodin was noted (Barisoni et al., 1999). These findings are consistent with the loss of 

synaptopodin preceding the dysregulation of the podocyte after ILK deletion. 

Experiments with cultured cells suggested that synaptopodin plays a role in modulating the actin-

based shape and motility of dendritic spines and podocyte foot processes (Mundel et al., 1997). 

Synaptopodin knockout mice kidney structure did not reveal any obvious differences between 

podocytes of wild-type and synaptopodin knockout mice. But the lack of synaptopodin delays the 
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re-formation of the podocyte actin cytoskeleton in vivo and in vitro and synaptopodin specifically 

interacts with α-actinin. This interaction is functionally significant because synaptopodin bundles 

and elongates α-actinin-induced actin filaments (Asanuma et al., 2005). From these data a direct 

relationship between synaptopodin and α-actini-4 was inferred. 

Taken together, data from the present study shows a reduction of several podocyte specific 

proteins including nephrin, synaptopodin and α-actinin-4 levels after ILK deletion. These 

findings can be interpreted in two ways. They might suggest that ILK deletion leads to a loss of 

podocytes from a glomerulus and thereby reducing the mRNA levels of podocyte specific 

molecules in glomerular lysates. Alternatively, ILK loss might result directly in a reduced 

expression of synaptopodin which in turn leads to a reduction in α-actinin-4 and consequent 

alteration in the podocyte cytoskeleton.  

 

5.3. Effect of ILK on glomerular basement membrane 

Basement membranes are abundant specialized extracellular matrices in close vicinity to cells 

(Timpl and Brown, 1996). Major components of basement membranes are various forms of 

collagen IV and laminins, proteoglycans and small glycoproteins such as nidogen/entactin 

(Levidiotis and Power, 2005). 

In the current study, first visible lesions consistently found at onset of albuminuria were GBM 

alteration. The GBM showed an increased diameter, followed by splitting and massive extension 

at later stages. The tubular basement membrane was not altered at this stage. Possible mechanism 

for this surprising GBM phenotype could be an increased matrix synthesis or decreased 

degradation, deposition of circulating proteins in the GBM or alterations in GBM assembly.  

An analysis of the key components of the GBM did not demonstrate an increased concentration 

of GBM components at time of the onset of the lesions. This findings do not indicate an increased 

synthesis of matrix molecules or decreased production of matrix modifying enzymes, despite the 

fact that ILK had been reported to be involved in these processes in in vitro models (von 

Luttichau et al., 2002). The significant induction of fibronectin during the later stages of 

progression in the podoILK -/- has been observed in several animal models and human diseases 

and might be part of an ILK independent scarring process (Van Vliet et al., 2001).  

Fibronectin can only assemble into a disulfide-linked pericellular network in cells which express 

activated integrins. Several reports have identified α5β1 as the first integrin which is able to 
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mediate fibronectin polymerisation (Mosher et al., 1992). Yang et all, showed that other integrins 

can also assemble fibronectin (Yang et al., 1993). Several studies have demonstrated that 

multiple integrins including α5β1, α3β1 and α5β3 integrins are involved in the regulation of 

fibronectin deposition into extracellular matrix. The ability of integrins to promote fibronectin 

matrix deposition is controlled by both the integrin activation state and the cytoskeletal 

interaction. As integrin activation and cytoskeletal interaction are regulated by integrin 

cytoplasmic domains, these studies suggest that intracellular proteins associated with the integrin 

cytoplasmic domains likely play important roles in the cellular regulation of fibronectin matrix 

assembly.  

Our data suggest that fibronectin-binding integrins can assemble a fibronectin matrix when they 

are activated via ILK and interact with an intact actin cytoskeleton.  

Fibronectin matrix production remained unchanged in ILK knock-down, but the integration of 

fibronectin into a complex, focal adhesion associated matrix was impaired. Potential mechanism 

of integrin mediated matrix adhesions are the unmasking of self-assembly sites in the fibronectin 

molecule by activated integrins, allowing spontaneous polymerization into densely packed fibers 

(Geiger et al., 2001; Pankov and Yamada, 2002). Given a role for ILK in connecting integrins 

and actin cytoskeleton, it is likely, that ILK promotes the deposition of fibronectin into ECM by 

influencing the activation of integrins and/or by providing a molecular scaffold for the assembly 

of integrins that mediate fibronectin assembly and the actin cytoskeleton-associated proteins 

(Guo and Wu, 2002). Regardless of the mechanism involved, results from the current study 

establish that ILK is a crucial element in the cellular control of fibronectin deposition into the 

ECM. 

A second alternative would be passive deposition of circulating molecules into the GBM. This is 

a frequent event in autoimmune renal disease, resulting in subendothelial or subepithelial 

immuncomplexes at the GBM (Kerjaschki et al., 1989). However, immune complex deposits do 

show a typical ultrastructure not observed in the podoILK -/- mice. In addition, direct staining for 

immunoglobulins was not able to reveal a difference between controls and podoILK -/- GBM 

(data not shown).  

An alternative explanation for the GBM phenotype could be an altered matrix with impaired 

integrin function (Velling et al., 2002). Matrix molecules could be less densely packed, causing a 

broadened and split GBM parallel to the consequences of some of the collagen IV mutations in 

Alport syndrome (Hudson, 2004). Analysis of collagen IV α1 to α6 revealed no change between 

wild type and podoILK -/- mice in the earlier stage of microalbuminuria but a reduction of 



Discussion 

 98

collagen IV α3 to α5. The importance of collagen IV α3 through α5 chains to the proper function 

of the GBM is underscored by the effects of mutations in the genes that codes these chains 

(Antignac, 1995; Lemmink et al., 1997). The most severe mutations cause Alport syndrome 

(hereditary glomerulonephritis) in humans (Barker et al., 1990; Mochizuki et al., 1994) and an 

analogous disease in dogs and knockout mice (Zheng et al., 1994; Cosgrove et al., 1996; Miner 

and Sanes, 1996). Alprt syndrome, an inherited nephropathy characterized by irregular thinning, 

thickening, and splitting of the GBM and progressive renal failure, is associated with mutations 

an any of the collagen IV α3, α4 and α5 genes. The GBM shows the loss of the α3- α4- α5- 

network and the persistence of the α1- α2- network (Gubler et al., 1993). The abnormal 

composition of the collagen networks predisposes the GBM to events, such as proteolysis, that 

cause progressive deterioration and loss of function (Kalluri et al., 1997). A particularly 

interesting aspect of Alport syndrome is that in most cases, the collagen α3 through α5 chains are 

all absent from the GBM, despite the fact that only one of the three chain genes harbors a 

mutation. However, this is perfectly consistent with the hypothesis that these chains are all part of 

the same collagen IV network in the GBM and that this network requires all three chains for 

proper assembly (Kashtan et al., 1990; Hudson et al., 1993; Tryggvason et al., 1993). 

In Alport syndrome, mutations in one of the collagen IV α3 to α5 chain genes prevent 

accumulation of all three of these chains. As a consequence, the collagen IV chain transition 

cannot occur in the GBM, and this leads to a retention of the α1 and α2 chains throughout the 

width of the GBM (Miner, 1999). Although these chains function properly early in life, they 

eventually fail to maintain the proper structure and function of the GBM, leading to the delayed-

onset glomerulonephritis characteristic of Alport syndrome. An explanation of the GBM 

alteration may be the reduction of collagen α3 to α5. This results show that collagen IV α3 to α5 

have an important role in the GBM that cannot be compensated for by other chains of the 

collagen IV complex. Several lines of evidence suggest that the absence of the whole α3- α4- α5- 

(IV) network is a consequence of a post-transcriptional co-regulation of the expression of these 

three chains, which either prevents the assembly of the α3- α4- α5- protomers, or produces 

defective protomers that are degraded or unable to assemble into supramolecular network 

(Boutaud et al., 2000; Borza et al., 2002). 

Thickening of the GBM and expansion of the mesangial matrix in podoILK -/- mice reveal the 

diffuse nature of glomerulosclerosis associated with the onset of albuminuria. It has been shown 

in many studies that the collagen IV α3 through α5 chains, laminin, and fibronectin contribute to 

the thickened GBM, whereas the α1, α2 chains of collagen IV, laminin and fibronectin comprise 
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the expanded mesangium. The podoILK -/- mice show reduction in the expression of α3-α5 

chains of collagen IV at late stages of disease. This might suggest that ILK may be required to 

regulate the expression of this collagen. Alternatively, loss of podocytes might result in lower 

expression levels of podocyte gene products in the microdissected glomeruli. Further, expression 

levels of other basement membrane components not produce by podocytes alone, such as 

perlecan, laminin, and nidogen, were found to be unaltered. 

 

5.4. Podocyte specific effects as a result of ILK deletion in mice 

 Podocytes are the prime source of the GBM in the adult glomerulus (Miner, 1999) and are 

crucial for GBM dynamics and maintenance in health and disease (Martin et al., 1998; Miner, 

1999). In in vitro systems, ILK has been implicated in matrix assembly via modulation of integrin 

function by altering focal contact structure, integrin activity state and cell migration 

(Wagenknecht et al., 1997; Wu et al., 1998b; Hammes et al., 2001; Attwell et al., 2003; Friedrich 

et al., 2004; Vouret-Craviari et al., 2004). ILK depletion in endothelial cells via RNA 

interference impaired the ability to recruit α5-β1-integrins to fibrillar adhesions (as defined by 

Geiger 2001) and the maturation of the adhesions to competent matrix forming structures 

(Vouret-Craviari et al., 2004).  

After ILK knock-down in endothelial cells, an increased adhesion and reduced migration of ILK 

depleted cells was considered to be an additionally mechanism to impair matrix assembly. In 

analogy to the studies in endothelial cells, ILK function has been found to positively correlate 

with podocyte matrix adhesion (Kretzler et al., 2001). Elegant studies have demonstrated the high 

degree of mobility of podocyte foot processes moving as mobile structures across the GBM 

(Seiler et al., 1975). Podocyte migration can be studied in vitro and cathepsin L, a matrix 

modifying enzyme, has been implicated in this process (Reiser et al., 2004). Inhibiting ILK 

activity or expression is known to inhibit cell migration (Attwell et al., 2003). Although the 

precise mechanism for how ILK regulates cell migration remains to be determined, recent studies 

implicate the activation of small GTPases RAC and CDC42. In addition, absence of ILK or 

inhibition of its kinase activity is known to inhibit RAC (Mongroo et al., 2004) and CDC42 (N. 

Filipenko and S. Dedhar, unpublished observation). In another study, ILK knockdown by RNAi 

in bovine aortic endothelial cells resulted in the inhibition of endothelial-cell migration and 

capillary formation. ILK was shown to regulate vascular network formation by directing the 

assembly of integrin-dependent matrix forming adhesions (Vouret-Craviari et al., 2004). Muranyi 
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and co-workers showed in smooth muscle cells, that ILK can stimulate cell motility by activating 

the cellular contractile machinery through its ability to directly phosphorylate myosin light chain 

(MLC), and through inactivating the myosin phosphatase target subunit, leading to further 

stimulation of MLC phosphorylation (Muranyi et al., 2002). It has been postulated that foot 

processes have a certain motility, which allows them to move slowly on the GBM along the outer 

surface of the capillaries. As a consequence of these movements, the association of GBM areas 

with filtration slit and sole plates of foot processes would constantly change, thereby facilitating 

the cleansing of the glomerular filter (Mundel, 1998). 

The hypothesis of GBM matrix assembly defect in podoILK -/- podocytes is exquisitely difficult 

to test. The only indirect evidence of altered integrin function in the ILK deficient glomeruli 

could be an altered integrin distribution. α3-Integrins was found to be present in a more granular 

pattern in podoILK -/- glomeruli compared to all other GBM associated molecules studied at the 

micro-albuminuric stage of the disease.  

Interestingly, using a small molecular ILK kinase inhibitor preliminary data indicates reduced 

migratory ability of differentiated cultured podocytes in transfilter migration assays after ILK 

inhibition (own unpublished observation). 

This finding together with the altered GBM in podoILK -/- mice, suggests that ILK are involved 

in either actively organizing or, at least, in maintaining the structural integrity of basement 

membranes. The role of ILK in the assembly or maintenance of ECM matrices has significant 

implications. A number of ECM proteins bind to matrices which are assembled by ILK and 

defects in ECM assembly could consequently also result in abnormal deposition of molecules 

such as fibronectin and collagen.  

Taken together, this study clearly establishes that cell signaling is a major function of the 

podocyte, and suggests ways in which environmental cues from the glomerulus, such as changes 

in matrix composition may effect changes in the complete unit of the filtration barrier function. 

 

5.5. Alterations in α3β1 functions in absence of ILK 

The α3β1 integrin is the major ECM receptor expressed by podocytes along the GBM (Korhonen 

et al., 1990; Patey et al., 1994). It provides a dynamic link between cell and matrix, which allows 

a link to actin cytoskeleton in the foot process. α3β1 integrin was originally characterized as a 

promiscuous receptor, binding collagen, fibronectin, laminin, and entactin/nidogen (Elices et al., 
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1991; Dedhar et al., 1992; Pattaramalai et al., 1996). More recent studies have demonstrated that 

although ECM components might be weak ligands, α3β1 binds with much higher affinity to 

isoforms of laminin, including laminin-5 and laminin-10/11 (Delwel et al., 1994; Kikkawa et al., 

1998). In maturing glomeruli, α3β1 is highly expressed in GBM (Korhonen et al., 1990; Rahilly 

and Fleming, 1992) and is essential for maturation of podocytes, α3-integrin null mice 

demonstrate foot process effacement at birth and an immature GBM (kreidberg, 1996 alpha1). 

Likewise the knockouts of s-laminin/ laminin- β2 show a similar phenotype (Noakes et al., 1995). 

These facts raise an important question: how does GBM/ receptor interaction affects podocyte 

morphology and cell proliferation? Podocytes deficient in α3β1 integrin appear unable to 

assemble mature foot processes, and form instead, flattened cytoplasmic projections from the 

podocyte cell body to the GBM (Kreidberg et al., 1996). The lack of formation of mature foot 

processes in α3β1-integrin–deficient podocytes suggests that signals transduced by this integrin 

are essential for triggering the cytoskeletal rearrangements required to assemble and maintain 

foot process structure (Wang et al., 1999). α3β1 is normally localized in FSGS and other 

glomerular diseases in which podocytes are extensively flattened, suggesting that α3β1 integrin 

constitutes stable, static bonds between podocytes and the GBM. Studies have shown that 

podocytes α3β1 associates on its cytoplasmic side with paxilin, talin, and vinculin (Drenckhahn 

and Franke, 1988), which mediate its connection to the actin cytoskeleton. It has been 

demonstrated that integrin linked kinase monitors and influences the state of activity of the α3β1 

integrin and serves a signaling function (Kretzler et al., 2001).  

As α3β1 deficient podocytes appear to remain adherent to the basement membrane along their 

entire length of contact, the concept that integrins are simple adhesion receptors is oversimplified. 

Instead, it may be more appropriate to consider integrins as receptors transducing signals on 

contact with the ECM that elicit specific responses such as adhesion, migration, filopodial 

extension and, in the case of podocytes, foot processes assembly. Importantly, all of these 

responses involve cytoskeletal rearrangement, and there is an emerging understanding of how 

integrin-ECM interactions affect cytoskeletal assembly.  

ILK deletion has a diverse array of effects via interactions with several molecules important for 

normal functioning of the podocytes. 
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5.6. Kinase activity of ILK 

ILK was described in 1995 as a Ser/Thr kinase that binds to the cytoplasmic tails of β1, β2 and 

β3- integrin subunits (Dedhar et al., 1999). It was suggested that ILK activation might be crucial 

for the stimulation of various integrin signalling pathways. ILK was shown to induce 

phosphorylation of the protein kinase PKB/Akt and GSK-3β in cells overexpressing ILK 

(Delcommenne et al., 1998). PKB/Akt is a Ser/Thr kinase implicated in cell proliferation, 

survival and growth factor signaling. GSK-3β is a negative regulator of Wnt signaling that is 

inactivated by phosphorylation mediated by Wnt signals (Cohen and Frame, 2001) or ILK. This 

inactivation leads to the stabilization and elevation of β-catenin levels and translocation into the 

nucleus, where β-catenin interacts with Lef-1/Tcf, leading to the activation of gene expression 

including cyclin D1 and c-myc. In the present study, immunohistochemial staining of kidney 

sections with an anti-GSK-3β reveals no difference in the GSK-3β expression in podoILK -/- 

mice as compared to wild type controls (data not shown). This observation is further supported by 

another study performed by Grashoff et al. A condrocyte-specific deletion in vivo of ILK in mice 

did not affect the phosphorylation levels of PKB/Akt and GSK-3β (Sakai et al., 2003). In addition 

to this, isolated macrophages from the ILK knockout mice showed not only specific inhibition of 

PKB/Akt on serine 473 phosphorylation and a down regulation of cyclin D1 expression, but also 

showed inhibition of GSK-3β phosphorylation by the ILK-PKB/Akt pathway (Troussard et al., 

2003). 

In addition to its signaling properties as a kinase in the regulation of PKB/Akt, GSK-3 β and 

cyclin D1, ILK also functions as an adaptor protein in coupling integrins to the actin 

cytoskeleton. In our study only the kinase domain was deleted while, the adaptor domain of ILK 

was left intact. Despite the presence of the adaptor sequence a down regulation of proteins of the 

actin cytoskeleton such as α-actinin 4 was found in the current study. It known that ILK can 

interact with paxilin at the kinase domain and this interaction may be responsible for the 

localisation of ILK to the focal adhesion plaques (Wu and Dedhar, 2001). Recent genetic data 

from Drosophila and C. elegans (Zervas et al., 2001) provide strong support for an essential role 

for ILK in the regulation of cell adhesion and spreading. The observations from the present study 

reveals that ILK deletion in podocytes leads to a defect in their attachment to the GBM providing 

further support for an essential role of ILK in the regulation of cell attachment and spreading on 

extracellular matrix. The disorganization of the foot processes in the podoILK -/- mice may be a 

reflection of these altered cell attachment and spreading properties. Despite of this fact, flies as 

well as worms expressing an inactive kinase ILK gene are normal, suggesting no role of the 
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kinase activity of ILK in these systems (Zervas et al., 2001). As mentioned above, the activation 

of cyclins and cyclin-dependent kinases (cdc), the reduction of E-cadherin expression, 

stabilisation of β-catenin, and the formation of Lef-1/Tcf- β-catenin complexes are dependant on 

ILK expression, in our study we did not examine the expression of these genes if they are 

affected after ILK deletion in podocyte or not. An explanation of the phenotype that we observed 

could be due to an alteration of the gene expression. Recent biochemical studies in vitro are 

consistent with ILK being rather an adaptor than a kinase and may help to recruit a kinase into a 

multiprotein complex that phosphorylates PKB/Akt on Ser 473 (Lynch et al., 1999; Hill et al., 

2002). However, this issue remains controversial in the field. 

5.7. Overexpressionfailure of ILK 

ILK has been shown to be involved in the regulation of a number of integrin-mediated processes 

that include cell adhesion, cell shape changes, gene expression, and ECM deposition (Wu et al., 

1998a). Recent studies have implicated ILK dysregulation in the development of several chronic 

glomerular diseases. For instance, using an unbiased mRNA expression screening approach, ILK 

was identified as a candidate downstream effector in proteinuria in patients with congenital 

nephritic syndrome (Kretzler et al., 2001). Overexpression of ILK is also observed in glomerular 

podocytes in two murine proteinuria models (Wanke et al., 1992; Schadde et al., 2000). Such 

alteration in ILK abundance is associated with progressive FSGS (Kretzler et al., 2001). Our aim 

was to confirm this finding by in vivo overexpression of ILK in mice, and if its overexpression 

can primarily lead to induction of renal disease. 

In order to test the influence of ILK overexpression on kidney function in vivo, a similar strategy 

as used for podocyte-specific ILK deletion was adopted. To address this issue, a construct with 

the podocin promoter was employed for which only an expression of LacZ cassette in podocyte 

was demonstrated (Moeller et al., 2003). This construct was modified such that podocin promoter 

and the ILK gene were coupled to the EGF gene. The construct so obtained was then 

microinjected in mice to generate a line overexpressing the ILK gene. 3 mice lines which 

revealing genomic integration of ILK were analysed of which one line expressed ILK mRNA at 

higher levels as compared to controls (data not shown). However, it was not possible to detect the 

GFP-tagged ILK protein by western blot in kidney lysates or by immunofluoerscence in tissue 

sections. This mouse line also failed to show any features of a renal disease phenotype throughout 

its lifespan. The failure of this mouse line to show any disease phenotype could be attributed to 

several factors that influence whether a promoter/transgene construct will express (produce the 
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appropriate mRNA and protein) in transgenic mice. The promoters that are used must be known 

to function appropriately in vivo (in vitro function does not always guarantee this). A possibility 

that transgene constructs may have accumulated mutations during cloning (especially if PCR was 

involved) cannot be ignored. Perhaps the most important consideration has to do with the 

trangene's insertion site in the mouse genome. At many chromosomal locations, transgenes may 

be transcriptionally silent. At others they may express, but with a tissue- and temporal specificity 

that is not identical to what has previously been seen with the same promoter construct. The 

intrinsic ability of a promoter construct to drive transgene expression reliably and with faithful 

tissue specificity also varies from promoter to promoter, for reasons that are not well understood. 

One of the most critical steps in making transgenic mice is preparing the DNA for microinjection. 

Poorly prepared DNA can be toxic to the ovum and contaminants can clog the injection needle, 

which typically have inside diameters of 0.5 microns at the tip. 

It would be interesting to show, that both loss of function and gain of function mutations in 

integrin linked kinase lead to glomerular disease, and further studies following this strategy are 

underway. 
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6. Summary 
 

 

For many years the attention of researchers was focused on the glomerular besement membrane 

(GBM) or extraglomerular factors being responsible for increased glomerular permeability. 

However, recent evidence suggests that the primary defect might be at the level of the podocyte, 

the glomerular visceral epithelial cell. Glomerular podocyte function is essential for the 

maintenance of the glomerular filtration barrier. Podocytes injury leads to a cascade of events 

starting from detachment from the GBM, and hence denuded GBM leading to misdirected 

filtration of protein. Injury to the podocyte can occur in many immune and non-immune renal 

diseases. Podocyte injury or structural inherited defects are increasingly implicated in the 

occurrence of glomerular proteinuria. In this light it is believed that alterations in podocyte cell-

cell and cell-matrix contacts are key events in progressive glomerular failure. Integrin-linked 

kinase (ILK) has been found to be a key molecule that may play a role in alteration of podocyte 

structure and function. Thus it was hypothesized that lack of ILK would lead to disruption of 

podocyte cell matrix interaction and thus compromised renal function. However, as ILK deletion 

results in early embryonic lethality, podocyte specific ILK knock-outs had to be generated to 

evaluate ILK function in vivo. Crossing of 2.5P-Cre mice, expressing Cre-recombinase under the 

control of podocin promoter in a podocyte specific manner, with ILK-floxed mice resulted in 

kidney specific ILK inactivation. ILK loss was confirmed by subsequent loss of podocyte ILK 

staining in bitransgenic mice homozygous for the floxed ILK allele (podoILK -/-). PodoILK -/- 

mice were found to appear normal at birth, but developed progressive filtration barrier failure and 

died while suffering from terminal renal failure at a mean age of 19 weeks. Kidneys from these 

mice revealed a classic progressive focal segmental glomerulosclerosis. The first ultrastructural 

lesion seen at onset of albuminuria was a 23% GBM diameter increase in orthogonal intercepts, 

resulting in a broadened and split GBM, while foot processes architecture and slit diaphragms 

remained intact. However, no significant reduction in the mRNA or protein levels of slit-

membrane molecules (podocin and nephrin), key GBM components (fibronectin, laminins and 

collagen IV isoforms) or podocyte matrix receptors (α3-/β1-integrine and dystroglycan) could be 

demonstrated at onset of albuminuria. α3-Integrins were found in granular pattern along the 

GBM, consistent with altered integrin function podoILK -/- mice.  
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In conclusion, podocyte specific ILK deletion resulted in a striking GBM phenotype followed by 

progressive glomerulosclerosis. As the key components of the GBM are expressed at comparable 

levels to controls, an alteration in matrix assembly subsequent to ILK deletion appears to be an 

attractive hypothesis for the phenotype observed. Further podocyte-specific ILK-deletion in mice 

led to cytoskeletal disruptions and alterations in podocyte cell-cell and cell-matrix contacts that 

are key events in progressive glomerular failure. 
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7. Zusammenfassung 
 

Die glomeruläre Filtrationseinheit ist die entscheidende Struktur um ein Protein-freies Ultrafiltrat 

zu generieren. Zytoskeletale Störungen und Veränderungen in Podozyten Zell-Zell- und Zell-

Matrix-Kontakten spielen eine Schlüsselrolle bei der Entwicklung progressiver glomerulärer 

Alterationen, die zum Nierenversagen führen. Integrin-linked kinase (ILK) ist mit α3/β1 

Integrinen assoziiert und in die Podozyten-Zell-Matrix-Interaktion involviert. ILK ist bei 

Patienten und in Mausmodellen mit schwerer Proteinuria induziert. Um die funktionelle Rolle der 

ILK zu evaluieren, wurde eine Podozyten spezifische ILK Knock-out Maus generiert. 

Da die ILK Knock-out Mäuse früh embryonal lethal sind, wurde eine Mauslinie, die die Cre-

Recombinase unter der Kontrolle des Podocin-Promoter exprimiert, mit einer ILK-floxed 

Mausline gekreuzt, um eine spezifische ILK-Deletion in Podozyten hervorzurufen. Die 

genomische Exzision der mit loxP-Erkennungstellen für die Cre-Rekombinase flankierten 

(„gefloxt“) ILK-Sequenz wurde mittels PCR nachgewiesen und anschließend das Fehlen des 

ILK-Proteins in den Podozyten mittels Immunfluoreszenz bestätigt. Podocin Cre-ILK-loxP 

Mäuse wurden mit einen intakten Filtrationseinheit geboren. Im Alter von 3 Wochen fand sich 

bei podoILK -/- Mäusen eine selektive Albuminurie und eine geringgradige Vergrößerung von 

einzelnen Podozyten insbesondere der juxtamedullären Glomerula im Vergleich zu Wildtyp-

Mäusen. Morphometrische Analysen konnten eine signifikante Verbreitung der glomerulären 

Basalmembran nachweisen. Die glomerulären Veränderungen von podoILK -/- Mäusen 

umfassten eine Vergrößerung von Podozyten, segmentale Mesangiumexpansionen mit 

Matrixvermehrung und Kapillardilatation sowie Podozyten-Retraktion. In der achten 

Lebenswochen zeigen die Tiere eine massive Proteinuria, eine fokal-segmentale 

Glomerulosklerose und eine tubulär-interstitial Fibrose zusammen mit laborchemischen 

Parametern des terminalen Nierenversagens. Molekularen Analysen wiesen eine Reduktion der 

Kollagen IV α3- 5 Ketten, sowie von Nephrin und WT-1 mRNA Spiegeln nach. Integrin α3 zeigt 

bei unveränderten Proteinspiegeln eine Relokalization innerhalb der Podozyten. In der Phase des 

progressiven Nierenversagens konnte eine Überexpression der Matrix-Molekülen, z.B. 

Fibronektin, nachgewiesen werden. Diese Daten weisen auf eine Schlüsselrolle der ILK für die 

Podozyten – GBM Interaktion nach. Als möglicher Mechanism ist hierbei ein Defekt im 

integrinabhängigen Matrixaufbau zu diskutieren. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Literature 

 

 

 

 

 

 

 



Literature 

 111

8. Literature 
 

Akhtar, M., and Al Mana, H. (2004). Molecular basis of proteinuria. Adv Anat Pathol 11, 304-
309. 

Andrews, P.M. (1981). Investigations of cytoplasmic contractile and cytoskeletal elements in the 
kidney glomerulus. Kidney Int 20, 549-562. 

Antignac, C. (1995). Molecular genetics of basement membranes: the paradigm of Alport 
syndrome. Kidney Int Suppl 49, S29-33. 

Asanuma, K., Kim, K., Oh, J., Giardino, L., Chabanis, S., Faul, C., Reiser, J., and Mundel, P. 
(2005). Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific 
manner. J Clin Invest 115, 1188-1198. 

Attwell, S., Mills, J., Troussard, A., Wu, C., and Dedhar, S. (2003). Integration of cell 
attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, 
and the tumor suppressor PTEN. Mol Biol Cell 14, 4813-4825. 

Attwell, S., Roskelley, C., and Dedhar, S. (2000). The integrin-linked kinase (ILK) suppresses 
anoikis. Oncogene 19, 3811-3815. 

Barisoni, L., Kriz, W., Mundel, P., and D'Agati, V. (1999). The dysregulated podocyte 
phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental 
glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10, 51-61. 

Barisoni, L., and Mundel, P. (2003). Podocyte biology and the emerging understanding of 
podocyte diseases. Am J Nephrol 23, 353-360. 

Barker, D.F., Hostikka, S.L., Zhou, J., Chow, L.T., Oliphant, A.R., Gerken, S.C., Gregory, M.C., 
Skolnick, M.H., Atkin, C.L., and Tryggvason, K. (1990). Identification of mutations in the 
COL4A5 collagen gene in Alport syndrome. Science 248, 1224-1227. 

Borza, D.B., Bondar, O., Todd, P., Sundaramoorthy, M., Sado, Y., Ninomiya, Y., and Hudson, 
B.G. (2002). Quaternary organization of the goodpasture autoantigen, the alpha 3(IV) collagen 
chain. Sequestration of two cryptic autoepitopes by intrapromoter interactions with the alpha4 
and alpha5 NC1 domains. J Biol Chem 277, 40075-40083. 

Boutaud, A., Borza, D.B., Bondar, O., Gunwar, S., Netzer, K.O., Singh, N., Ninomiya, Y., Sado, 
Y., Noelken, M.E., and Hudson, B.G. (2000). Type IV collagen of the glomerular basement 
membrane. Evidence that the chain specificity of network assembly is encoded by the 
noncollagenous NC1 domains. J Biol Chem 275, 30716-30724. 

Boute, N., Gribouval, O., Roselli, S., Benessy, F., Lee, H., Fuchshuber, A., Dahan, K., Gubler, 
M.C., Niaudet, P., and Antignac, C. (2000). NPHS2, encoding the glomerular protein podocin, is 
mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24, 349-354. 

Braden, G.L., Mulhern, J.G., O'Shea, M.H., Nash, S.V., Ucci, A.A., Jr., and Germain, M.J. 



Literature 

 112

(2000). Changing incidence of glomerular diseases in adults. Am J Kidney Dis 35, 878-883. 

Brakebusch, C., Bouvard, D., Stanchi, F., Sakai, T., and Fassler, R. (2002). Integrins in invasive 
growth. J Clin Invest 109, 999-1006. 

Bravou, V., Klironomos, G., Papadaki, E., Stefanou, D., and Varakis, J. (2003). Integrin-linked 
kinase (ILK) expression in human colon cancer. Br J Cancer 89, 2340-2341. 

Brinster, R.L., and Palmiter, R.D. (1984). Introduction of genes into the germ line of animals. 
Harvey Lect 80, 1-38. 

Buchholz, F., Angrand, P.O., and Stewart, A.F. (1998). Improved properties of FLP recombinase 
evolved by cycling mutagenesis. Nat Biotechnol 16, 657-662. 

Ciani, L., Patel, A., Allen, N.D., and ffrench-Constant, C. (2003). Mice lacking the giant 
protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia 
and anophthalmia phenotype. Mol Cell Biol 23, 3575-3582. 

Cohen, P., and Frame, S. (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol 2, 769-776. 

Cosgrove, D., Meehan, D.T., Grunkemeyer, J.A., Kornak, J.M., Sayers, R., Hunter, W.J., and 
Samuelson, G.C. (1996). Collagen COL4A3 knockout: a mouse model for autosomal Alport 
syndrome. Genes Dev 10, 2981-2992. 

Cuthbertson, R.A., and Klintworth, G.K. (1988). Transgenic mice--a gold mine for furthering 
knowledge in pathobiology. Lab Invest 58, 484-502. 

Dai, D.L., Makretsov, N., Campos, E.I., Huang, C., Zhou, Y., Huntsman, D., Martinka, M., and 
Li, G. (2003). Increased expression of integrin-linked kinase is correlated with melanoma 
progression and poor patient survival. Clin Cancer Res 9, 4409-4414. 

Dawid, I.B., Breen, J.J., and Toyama, R. (1998). LIM domains: multiple roles as adapters and 
functional modifiers in protein interactions. Trends Genet 14, 156-162. 

Dedhar, S., Jewell, K., Rojiani, M., and Gray, V. (1992). The receptor for the basement 
membrane glycoprotein entactin is the integrin alpha 3/beta 1. J Biol Chem 267, 18908-18914. 

Dedhar, S., Williams, B., and Hannigan, G. (1999). Integrin-linked kinase (ILK): a regulator of 
integrin and growth-factor signalling. Trends Cell Biol 9, 319-323. 

Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S. (1998). 
Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein 
kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A 95, 11211-11216. 

Delwel, G.O., de Melker, A.A., Hogervorst, F., Jaspars, L.H., Fles, D.L., Kuikman, I., Lindblom, 
A., Paulsson, M., Timpl, R., and Sonnenberg, A. (1994). Distinct and overlapping ligand 
specificities of the alpha 3A beta 1 and alpha 6A beta 1 integrins: recognition of laminin 
isoforms. Mol Biol Cell 5, 203-215. 

Deng, J.T., Van Lierop, J.E., Sutherland, C., and Walsh, M.P. (2001). Ca2+-independent smooth 
muscle contraction. a novel function for integrin-linked kinase. J Biol Chem 276, 16365-16373. 



Literature 

 113

Denny, P., and Justice, M.J. (2000). Mouse as the measure of man? Trends Genet 16, 283-287. 

Donoviel, D.B., Freed, D.D., Vogel, H., Potter, D.G., Hawkins, E., Barrish, J.P., Mathur, B.N., 
Turner, C.A., Geske, R., Montgomery, C.A., Starbuck, M., Brandt, M., Gupta, A., Ramirez-Solis, 
R., Zambrowicz, B.P., and Powell, D.R. (2001). Proteinuria and perinatal lethality in mice 
lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol 21, 4829-4836. 

Drenckhahn, D., and Franke, R.P. (1988). Ultrastructural organization of contractile and 
cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest 59, 673-682. 

Dymecki, S.M. (1996). Flp recombinase promotes site-specific DNA recombination in embryonic 
stem cells and transgenic mice. Proc Natl Acad Sci U S A 93, 6191-6196. 

Eddy, A.A., and Schnaper, H.W. (1998). The nephrotic syndrome: from the simple to the 
complex. Semin Nephrol 18, 304-316. 

Elices, M.J., Urry, L.A., and Hemler, M.E. (1991). Receptor functions for the integrin VLA-3: 
fibronectin, collagen, and laminin binding are differentially influenced by Arg-Gly-Asp peptide 
and by divalent cations. J Cell Biol 112, 169-181. 

Endlich, K., Kriz, W., and Witzgall, R. (2001). Update in podocyte biology. Curr Opin Nephrol 
Hypertens 10, 331-340. 

Friedrich, E.B., Liu, E., Sinha, S., Cook, S., Milstone, D.S., MacRae, C.A., Mariotti, M., 
Kuhlencordt, P.J., Force, T., Rosenzweig, A., St-Arnaud, R., Dedhar, S., and Gerszten, R.E. 
(2004). Integrin-linked kinase regulates endothelial cell survival and vascular development. Mol 
Cell Biol 24, 8134-8144. 

Gassmann, M., and Hennet, T. (1998). From Genetically Altered Mice to Integrative Physiology. 
News Physiol Sci 13, 53-57. 

Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K.M. (2001). Transmembrane crosstalk 
between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2, 793-805. 

Ghiggeri, G.M., Carraro, M., and Vincenti, F. (2004). Recurrent focal glomerulosclerosis in the 
era of genetics of podocyte proteins: theory and therapy. Nephrol Dial Transplant 19, 1036-1040. 

Graff, J.R., Deddens, J.A., Konicek, B.W., Colligan, B.M., Hurst, B.M., Carter, H.W., and Carter, 
J.H. (2001). Integrin-linked kinase expression increases with prostate tumor grade. Clin Cancer 
Res 7, 1987-1991. 

Gubler, M.C., Antignac, C., Deschenes, G., Knebelmann, B., Hors-Cayla, M.C., Grunfeld, J.P., 
Broyer, M., and Habib, R. (1993). Genetic, clinical, and morphologic heterogeneity in Alport's 
syndrome. Adv Nephrol Necker Hosp 22, 15-35. 

Gundersen, H.J., and Osterby, R. (1977). Glomerular size and structure in diabetes mellitus. II. 
Late abnormalities. Diabetologia 13, 43-48. 

Guo, L., and Wu, C. (2002). Regulation of fibronectin matrix deposition and cell proliferation by 
the PINCH-ILK-CH-ILKBP complex. Faseb J 16, 1298-1300. 

Haltia, A., Solin, M., Luimula, P., Kretzler, M., and Holthofer, H. (1999). mRNA differential 



Literature 

 114

display analysis of nephrotic kidney glomeruli. Exp Nephrol 7, 52-58. 

Hammes, A., Guo, J.K., Lutsch, G., Leheste, J.R., Landrock, D., Ziegler, U., Gubler, M.C., and 
Schedl, A. (2001). Two splice variants of the Wilms' tumor 1 gene have distinct functions during 
sex determination and nephron formation. Cell 106, 319-329. 

Hanks, S.K., and Quinn, A.M. (1991). Protein kinase catalytic domain sequence database: 
identification of conserved features of primary structure and classification of family members. 
Methods Enzymol 200, 38-62. 

Haslam, R.J., Koide, H.B., and Hemmings, B.A. (1993). Pleckstrin domain homology. Nature 
363, 309-310. 

Hill, M.M., Feng, J., and Hemmings, B.A. (2002). Identification of a plasma membrane Raft-
associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr Biol 12, 1251-
1255. 

Hoess, R., Abremski, K., Irwin, S., Kendall, M., and Mack, A. (1990). DNA specificity of the 
Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol 216, 873-882. 

Hudson, B.G. (2004). The molecular basis of Goodpasture and Alport syndromes: beacons for the 
discovery of the collagen IV family. J Am Soc Nephrol 15, 2514-2527. 

Hudson, B.G., Reeders, S.T., and Tryggvason, K. (1993). Type IV collagen: structure, gene 
organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes 
and diffuse leiomyomatosis. J Biol Chem 268, 26033-26036. 

Huttunen, N.P. (1976). Congenital nephrotic syndrome of Finnish type. Study of 75 patients. 
Arch Dis Child 51, 344-348. 

Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-
25. 

Ingber, D.E., Dike, L., Hansen, L., Karp, S., Liley, H., Maniotis, A., McNamee, H., Mooney, D., 
Plopper, G., Sims, J., and et al. (1994). Cellular tensegrity: exploring how mechanical changes in 
the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int 
Rev Cytol 150, 173-224. 

Juliano, R.L. (1994). Integrin signals and tumor growth control. Princess Takamatsu Symp 24, 
118-124. 

Kalluri, R., Shield, C.F., Todd, P., Hudson, B.G., and Neilson, E.G. (1997). Isoform switching of 
type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased 
susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 99, 2470-2478. 

Kaplan, J.M., Kim, S.H., North, K.N., Rennke, H., Correia, L.A., Tong, H.Q., Mathis, B.J., 
Rodriguez-Perez, J.C., Allen, P.G., Beggs, A.H., and Pollak, M.R. (2000). Mutations in ACTN4, 
encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24, 251-
256. 

Kashtan, C.E., Kleppel, M.M., Butkowski, R.J., Michael, A.F., and Fish, A.J. (1990). Alport 
syndrome, basement membranes and collagen. Pediatr Nephrol 4, 523-532. 



Literature 

 115

Kawachi, H., Koike, H., Kurihara, H., Yaoita, E., Orikasa, M., Shia, M.A., Sakai, T., Yamamoto, 
T., Salant, D.J., and Shimizu, F. (2000). Cloning of rat nephrin: expression in developing 
glomeruli and in proteinuric states. Kidney Int 57, 1949-1961. 

Kawachi, H., Kurihara, H., Topham, P.S., Brown, D., Shia, M.A., Orikasa, M., Shimizu, F., and 
Salant, D.J. (1997). Slit diaphragm-reactive nephritogenic MAb 5-1-6 alters expression of ZO-1 
in rat podocytes. Am J Physiol 273, F984-993. 

Kerjaschki, D. (2001). Caught flat-footed: podocyte damage and the molecular bases of focal 
glomerulosclerosis. J Clin Invest 108, 1583-1587. 

Kerjaschki, D., Ojha, P.P., Susani, M., Horvat, R., Binder, S., Hovorka, A., Hillemanns, P., and 
Pytela, R. (1989). A beta 1-integrin receptor for fibronectin in human kidney glomeruli. Am J 
Pathol 134, 481-489. 

Kestila, M., Lenkkeri, U., Mannikko, M., Lamerdin, J., McCready, P., Putaala, H., Ruotsalainen, 
V., Morita, T., Nissinen, M., Herva, R., Kashtan, C.E., Peltonen, L., Holmberg, C., Olsen, A., and 
Tryggvason, K. (1998). Positionally cloned gene for a novel glomerular protein--nephrin--is 
mutated in congenital nephrotic syndrome. Mol Cell 1, 575-582. 

Kierszenbaum, L.A. (2002). Histology and cell biology. Elsevier USA. 

Kikkawa, Y., Sanzen, N., and Sekiguchi, K. (1998). Isolation and characterization of laminin-
10/11 secreted by human lung carcinoma cells. laminin-10/11 mediates cell adhesion through 
integrin alpha3 beta1. J Biol Chem 273, 15854-15859. 

Kiss, E., Muranyi, A., Csortos, C., Gergely, P., Ito, M., Hartshorne, D.J., and Erdodi, F. (2002). 
Integrin-linked kinase phosphorylates the myosin phosphatase target subunit at the inhibitory site 
in platelet cytoskeleton. Biochem J 365, 79-87. 

Korhonen, M., Ylanne, J., Laitinen, L., and Virtanen, I. (1990). The alpha 1-alpha 6 subunits of 
integrins are characteristically expressed in distinct segments of developing and adult human 
nephron. J Cell Biol 111, 1245-1254. 

Kos, C.H., Le, T.C., Sinha, S., Henderson, J.M., Kim, S.H., Sugimoto, H., Kalluri, R., Gerszten, 
R.E., and Pollak, M.R. (2003). Mice deficient in alpha-actinin-4 have severe glomerular disease. 
J Clin Invest 111, 1683-1690. 

Kreidberg, J.A., Donovan, M.J., Goldstein, S.L., Rennke, H., Shepherd, K., Jones, R.C., and 
Jaenisch, R. (1996). Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. 
Development 122, 3537-3547. 

Kretzler, M. (2002). Regulation of adhesive interaction between podocytes and glomerular 
basement membrane. Microsc Res Tech 57, 247-253. 

Kretzler, M., Teixeira, V.P., Unschuld, P.G., Cohen, C.D., Wanke, R., Edenhofer, I., Mundel, P., 
Schlondorff, D., and Holthofer, H. (2001). Integrin-linked kinase as a candidate downstream 
effector in proteinuria. Faseb J 15, 1843-1845. 

Kritz, H., Underwood, S.R., and Sinzinger, H. (1996a). Imaging of atherosclerosis (Part I). Wien 
Klin Wochenschr 108, 87-97. 

Kritz, H., Underwood, S.R., and Sinzinger, H. (1996b). Imaging of atherosclerosis (Part II). Wien 



Literature 

 116

Klin Wochenschr 108, 123-132. 

Kwan, K.M. (2002). Conditional alleles in mice: practical considerations for tissue-specific 
knockouts. Genesis 32, 49-62. 

Lawlor, M.A., and Alessi, D.R. (2001). PKB/Akt: a key mediator of cell proliferation, survival 
and insulin responses? J Cell Sci 114, 2903-2910. 

Lemmink, H.H., Schroder, C.H., Monnens, L.A., and Smeets, H.J. (1997). The clinical spectrum 
of type IV collagen mutations. Hum Mutat 9, 477-499. 

Levidiotis, V., and Power, D.A. (2005). New insights into the molecular biology of the 
glomerular filtration barrier and associated disease. Nephrology (Carlton) 10, 157-166. 

Li, F., Liu, J., Mayne, R., and Wu, C. (1997). Identification and characterization of a mouse 
protein kinase that is highly homologous to human integrin-linked kinase. Biochim Biophys Acta 
1358, 215-220. 

Li, F., Zhang, Y., and Wu, C. (1999). Integrin-linked kinase is localized to cell-matrix focal 
adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked 
kinase is regulated by the PINCH-binding ANK repeats. J Cell Sci 112 ( Pt 24), 4589-4599. 

Lux, S.E., John, K.M., and Bennett, V. (1990). Analysis of cDNA for human erythrocyte ankyrin 
indicates a repeated structure with homology to tissue-differentiation and cell-cycle control 
proteins. Nature 344, 36-42. 

Ly, J., Alexander, M., and Quaggin, S.E. (2004). A podocentric view of nephrology. Curr Opin 
Nephrol Hypertens 13, 299-305. 

Lynch, D.K., Ellis, C.A., Edwards, P.A., and Hiles, I.D. (1999). Integrin-linked kinase regulates 
phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18, 8024-
8032. 

Mackinnon, A.C., Qadota, H., Norman, K.R., Moerman, D.G., and Williams, B.D. (2002). C. 
elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr 
Biol 12, 787-797. 

Malakoff, D. (2000). The rise of the mouse, biomedicine's model mammal. Science 288, 248-253. 

Martin, J., Steadman, R., Knowlden, J., Williams, J., and Davies, M. (1998). Differential 
regulation of matrix metalloproteinases and their inhibitors in human glomerular epithelial cells 
in vitro. J Am Soc Nephrol 9, 1629-1637. 

Mayer, B.J., Ren, R., Clark, K.L., and Baltimore, D. (1993). A putative modular domain present 
in diverse signaling proteins. Cell 73, 629-630. 

Miner, J.H. (1999). Renal basement membrane components. Kidney Int 56, 2016-2024. 

Miner, J.H., Patton, B.L., Lentz, S.I., Gilbert, D.J., Snider, W.D., Jenkins, N.A., Copeland, N.G., 
and Sanes, J.R. (1997). The laminin alpha chains: expression, developmental transitions, and 
chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8-11, and cloning of 
a novel alpha3 isoform. J Cell Biol 137, 685-701. 



Literature 

 117

Miner, J.H., and Sanes, J.R. (1994). Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent 
basal laminae: sequence, distribution, association with laminins, and developmental switches. J 
Cell Biol 127, 879-891. 

Miner, J.H., and Sanes, J.R. (1996). Molecular and functional defects in kidneys of mice lacking 
collagen alpha 3(IV): implications for Alport syndrome. J Cell Biol 135, 1403-1413. 

Mochizuki, T., Lemmink, H.H., Mariyama, M., Antignac, C., Gubler, M.C., Pirson, Y., Verellen-
Dumoulin, C., Chan, B., Schroder, C.H., Smeets, H.J., and et al. (1994). Identification of 
mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport 
syndrome. Nat Genet 8, 77-81. 

Moeller, M.J., Sanden, S.K., Soofi, A., Wiggins, R.C., and Holzman, L.B. (2002). Two gene 
fragments that direct podocyte-specific expression in transgenic mice. J Am Soc Nephrol 13, 
1561-1567. 

Moeller, M.J., Sanden, S.K., Soofi, A., Wiggins, R.C., and Holzman, L.B. (2003). Podocyte-
specific expression of cre recombinase in transgenic mice. Genesis 35, 39-42. 

Mongroo, P.S., Johnstone, C.N., Naruszewicz, I., Leung-Hagesteijn, C., Sung, R.K., Carnio, L., 
Rustgi, A.K., and Hannigan, G.E. (2004). Beta-parvin inhibits integrin-linked kinase signaling 
and is downregulated in breast cancer. Oncogene 23, 8959-8970. 

Morimoto, A.M., Tomlinson, M.G., Nakatani, K., Bolen, J.B., Roth, R.A., and Herbst, R. (2000). 
The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase 
activity. Oncogene 19, 200-209. 

Mosher, D.F., Sottile, J., Wu, C., and McDonald, J.A. (1992). Assembly of extracellular matrix. 
Curr Opin Cell Biol 4, 810-818. 

Mundel, P. (1998). [Synaptopodin: an actin-associated protein of telencephalic dendrites and of 
podocytes in the kidney glomerulus]. Ann Anat 180, 391-392. 

Mundel, P., Gilbert, P., and Kriz, W. (1991). Podocytes in glomerulus of rat kidney express a 
characteristic 44 KD protein. J Histochem Cytochem 39, 1047-1056. 

Mundel, P., Heid, H.W., Mundel, T.M., Kruger, M., Reiser, J., and Kriz, W. (1997). 
Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell 
Biol 139, 193-204. 

Mundel, P., and Kriz, W. (1995). Structure and function of podocytes: an update. Anat Embryol 
(Berl) 192, 385-397. 

Mundel, P., and Shankland, S.J. (1999). Glomerular podocytes and adhesive interaction with 
glomerular basement membrane. Exp Nephrol 7, 160-166. 

Mundel, P., and Shankland, S.J. (2002). Podocyte biology and response to injury. J Am Soc 
Nephrol 13, 3005-3015. 

Muranyi, A., MacDonald, J.A., Deng, J.T., Wilson, D.P., Haystead, T.A., Walsh, M.P., Erdodi, 
F., Kiss, E., Wu, Y., and Hartshorne, D.J. (2002). Phosphorylation of the myosin phosphatase 
target subunit by integrin-linked kinase. Biochem J 366, 211-216. 



Literature 

 118

Natoli, T.A., Liu, J., Eremina, V., Hodgens, K., Li, C., Hamano, Y., Mundel, P., Kalluri, R., 
Miner, J.H., Quaggin, S.E., and Kreidberg, J.A. (2002). A mutant form of the Wilms' tumor 
suppressor gene WT1 observed in Denys-Drash syndrome interferes with glomerular capillary 
development. J Am Soc Nephrol 13, 2058-2067. 

Ninomiya, Y., Kagawa, M., Iyama, K., Naito, I., Kishiro, Y., Seyer, J.M., Sugimoto, M., 
Oohashi, T., and Sado, Y. (1995). Differential expression of two basement membrane collagen 
genes, COL4A6 and COL4A5, demonstrated by immunofluorescence staining using peptide-
specific monoclonal antibodies. J Cell Biol 130, 1219-1229. 

Noakes, P.G., Miner, J.H., Gautam, M., Cunningham, J.M., Sanes, J.R., and Merlie, J.P. (1995). 
The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular 
compensation by laminin beta 1. Nat Genet 10, 400-406. 

Novak, A., Hsu, S.C., Leung-Hagesteijn, C., Radeva, G., Papkoff, J., Montesano, R., Roskelley, 
C., Grosschedl, R., and Dedhar, S. (1998). Cell adhesion and the integrin-linked kinase regulate 
the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci U S A 95, 4374-4379. 

Pankov, R., and Yamada, K.M. (2002). Fibronectin at a glance. J Cell Sci 115, 3861-3863. 

Patey, N., Halbwachs-Mecarelli, L., Droz, D., Lesavre, P., and Noel, L.H. (1994). Distribution of 
integrin subunits in normal human kidney. Cell Adhes Commun 2, 159-167. 

Pattaramalai, S., Skubitz, K.M., and Skubitz, A.P. (1996). A novel recognition site on laminin for 
the alpha 3 beta 1 integrin. Exp Cell Res 222, 281-290. 

Pelletier, J., Bruening, W., Kashtan, C.E., Mauer, S.M., Manivel, J.C., Striegel, J.E., Houghton, 
D.C., Junien, C., Habib, R., Fouser, L., and et al. (1991). Germline mutations in the Wilms' tumor 
suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. 
Cell 67, 437-447. 

Persad, S., Attwell, S., Gray, V., Mawji, N., Deng, J.T., Leung, D., Yan, J., Sanghera, J., Walsh, 
M.P., and Dedhar, S. (2001). Regulation of protein kinase B/Akt-serine 473 phosphorylation by 
integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 
343. J Biol Chem 276, 27462-27469. 

Pozzi, A., and Zent, R. (2003). Integrins: sensors of extracellular matrix and modulators of cell 
function. Nephron Exp Nephrol 94, e77-84. 

Raats, C.J., van den Born, J., Bakker, M.A., Oppers-Walgreen, B., Pisa, B.J., Dijkman, H.B., 
Assmann, K.J., and Berden, J.H. (2000). Expression of agrin, dystroglycan, and utrophin in 
normal renal tissue and in experimental glomerulopathies. Am J Pathol 156, 1749-1765. 

Radeva, G., Petrocelli, T., Behrend, E., Leung-Hagesteijn, C., Filmus, J., Slingerland, J., and 
Dedhar, S. (1997). Overexpression of the integrin-linked kinase promotes anchorage-independent 
cell cycle progression. J Biol Chem 272, 13937-13944. 

Rahilly, M.A., and Fleming, S. (1992). Differential expression of integrin alpha chains by renal 
epithelial cells. J Pathol 167, 327-334. 

Rearden, A. (1994). A new LIM protein containing an autoepitope homologous to "senescent cell 
antigen". Biochem Biophys Res Commun 201, 1124-1131. 



Literature 

 119

Reiser, J., Kriz, W., Kretzler, M., and Mundel, P. (2000a). The glomerular slit diaphragm is a 
modified adherens junction. J Am Soc Nephrol 11, 1-8. 

Reiser, J., Oh, J., Shirato, I., Asanuma, K., Hug, A., Mundel, T.M., Honey, K., Ishidoh, K., 
Kominami, E., Kreidberg, J.A., Tomino, Y., and Mundel, P. (2004). Podocyte migration during 
nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin. J 
Biol Chem 279, 34827-34832. 

Reiser, J., Pixley, F.J., Hug, A., Kriz, W., Smoyer, W.E., Stanley, E.R., and Mundel, P. (2000b). 
Regulation of mouse podocyte process dynamics by protein tyrosine phosphatases rapid 
communication. Kidney Int 57, 2035-2042. 

Reiser, J., von Gersdorff, G., Simons, M., Schwarz, K., Faul, C., Giardino, L., Heider, T., Loos, 
M., and Mundel, P. (2002). Novel concepts in understanding and management of glomerular 
proteinuria. Nephrol Dial Transplant 17, 951-955. 

Ryding, A.D., Sharp, M.G., and Mullins, J.J. (2001). Conditional transgenic technologies. J 
Endocrinol 171, 1-14. 

Sakai, T., Li, S., Docheva, D., Grashoff, C., Sakai, K., Kostka, G., Braun, A., Pfeifer, A., 
Yurchenco, P.D., and Fassler, R. (2003). Integrin-linked kinase (ILK) is required for polarizing 
the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev 17, 926-940. 

Sasaki, T., Mann, K., Miner, J.H., Miosge, N., and Timpl, R. (2002). Domain IV of mouse 
laminin beta1 and beta2 chains. Eur J Biochem 269, 431-442. 

Schadde, E., Kretzler, M., Banas, B., Luckow, B., Assmann, K., and Schlondorff, D. (2000). 
Expression of chemokines and their receptors in nephrotoxic serum nephritis. Nephrol Dial 
Transplant 15, 1046-1053. 

Schnabel, E., Anderson, J.M., and Farquhar, M.G. (1990). The tight junction protein ZO-1 is 
concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111, 1255-1263. 

Schuler, F., and Sorokin, L.M. (1995). Expression of laminin isoforms in mouse myogenic cells 
in vitro and in vivo. J Cell Sci 108 ( Pt 12), 3795-3805. 

Schwartz, M.A., Schaller, M.D., and Ginsberg, M.H. (1995). Integrins: emerging paradigms of 
signal transduction. Annu Rev Cell Dev Biol 11, 549-599. 

Seiler, M.W., Venkatachalam, M.A., and Cotran, R.S. (1975). Glomerular epithelium: structural 
alterations induced by polycations. Science 189, 390-393. 

Shih, N.Y., Li, J., Karpitskii, V., Nguyen, A., Dustin, M.L., Kanagawa, O., Miner, J.H., and 
Shaw, A.S. (1999). Congenital nephrotic syndrome in mice lacking CD2-associated protein. 
Science 286, 312-315. 

Shirato, I., Sakai, T., Kimura, K., Tomino, Y., and Kriz, W. (1996). Cytoskeletal changes in 
podocytes associated with foot process effacement in Masugi nephritis. Am J Pathol 148, 1283-
1296. 

Smoyer, W.E., Mundel, P., Gupta, A., and Welsh, M.J. (1997). Podocyte alpha-actinin induction 
precedes foot process effacement in experimental nephrotic syndrome. Am J Physiol 273, F150-



Literature 

 120

157. 

Somlo, S., and Mundel, P. (2000). Getting a foothold in nephrotic syndrome. Nat Genet 24, 333-
335. 

St John, P.L., and Abrahamson, D.R. (2001). Glomerular endothelial cells and podocytes jointly 
synthesize laminin-1 and -11 chains. Kidney Int 60, 1037-1046. 

Sternberg, N., Sauer, B., Hoess, R., and Abremski, K. (1986). Bacteriophage P1 cre gene and its 
regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J 
Mol Biol 187, 197-212. 

Tan, C., Costello, P., Sanghera, J., Dominguez, D., Baulida, J., de Herreros, A.G., and Dedhar, S. 
(2001). Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent 
transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma 
cells. Oncogene 20, 133-140. 

Terpstra, L., Prud'homme, J., Arabian, A., Takeda, S., Karsenty, G., Dedhar, S., and St-Arnaud, 
R. (2003). Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-
linked kinase in chondrocytes. J Cell Biol 162, 139-148. 

Timpl, R., and Brown, J.C. (1996). Supramolecular assembly of basement membranes. Bioessays 
18, 123-132. 

Tisher, C.C., Madsen, K.M., and Verlander, J.W. (1991). Structural adaptation of the collecting 
duct to acid-base disturbances. Contrib Nephrol 95, 168-177. 

Troussard, A.A., Mawji, N.M., Ong, C., Mui, A., St -Arnaud, R., and Dedhar, S. (2003). 
Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase 
B/Akt activation. J Biol Chem 278, 22374-22378. 

Tryggvason, K., and Wartiovaara, J. (2001). Molecular basis of glomerular permselectivity. Curr 
Opin Nephrol Hypertens 10, 543-549. 

Tryggvason, K., Zhou, J., Hostikka, S.L., and Shows, T.B. (1993). Molecular genetics of Alport 
syndrome. Kidney Int 43, 38-44. 

van der Weyden, L., Adams, D.J., and Bradley, A. (2002). Tools for targeted manipulation of the 
mouse genome. Physiol Genomics 11, 133-164. 

Van Vliet, A., Baelde, H.J., Vleming, L.J., de Heer, E., and Bruijn, J.A. (2001). Distribution of 
fibronectin isoforms in human renal disease. J Pathol 193, 256-262. 

Velling, T., Risteli, J., Wennerberg, K., Mosher, D.F., and Johansson, S. (2002). Polymerization 
of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 
and alpha 2beta 1. J Biol Chem 277, 37377-37381. 

von Luttichau, I., Djafarzadeh, R., Henger, A., Cohen, C.D., Mojaat, A., Jochum, M., Ries, C., 
Nelson, P.J., and Kretzler, M. (2002). Identification of a signal transduction pathway that 
regulates MMP-9 mRNA expression in glomerular injury. Biol Chem 383, 1271-1275. 

Vouret-Craviari, V., Boulter, E., Grall, D., Matthews, C., and Van Obberghen-Schilling, E. 
(2004). ILK is required for the assembly of matrix-forming adhesions and capillary 



Literature 

 121

morphogenesis in endothelial cells. J Cell Sci 117, 4559-4569. 

Wagenknecht, B., Gulbins, E., Lang, F., Dichgans, J., and Weller, M. (1997). Lipoxygenase 
inhibitors block CD95 ligand-mediated apoptosis of human. FEBS Lett 409, 17-23. 

Wang, Z., Symons, J.M., Goldstein, S.L., McDonald, A., Miner, J.H., and Kreidberg, J.A. (1999). 
(Alpha)3(beta)1 integrin regulates epithelial cytoskeletal organization. J Cell Sci 112 ( Pt 17), 
2925-2935. 

Wanke, R., Wolf, E., Hermanns, W., Folger, S., Buchmuller, T., and Brem, G. (1992). The GH-
transgenic mouse as an experimental model for growth research: clinical and pathological studies. 
Horm Res 37 Suppl 3, 74-87. 

Weibel, E.R., and Gomez, D.M. (1962). A principle for counting tissue structures on random 
sections. J Appl Physiol 17, 343-348. 

Whiteside, C.I., Cameron, R., Munk, S., and Levy, J. (1993). Podocytic cytoskeletal 
disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. 
Am J Pathol 142, 1641-1653. 

Wu, C., and Dedhar, S. (2001). Integrin-linked kinase (ILK) and its interactors: a new paradigm 
for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 
155, 505-510. 

Wu, C., Keightley, S.Y., Leung-Hagesteijn, C., Radeva, G., Coppolino, M., Goicoechea, S., 
McDonald, J.A., and Dedhar, S. (1998a). Integrin-linked protein kinase regulates fibronectin 
matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem 273, 528-536. 

Wu, C., Keightley, S.Y., Leung-Hagestein, C., Radeva, G., Coppolino, M., Goicoechea, S., 
McDonald, J.A., and Dedhar, S. (1998b). Integrin-linked protein kinase regulates fibronectin 
matrix assembly, E-cadherin expression, and tumorigenicity. JBC 273, 528-536. 

Yamaji, S., Suzuki, A., Sugiyama, Y., Koide, Y., Yoshida, M., Kanamori, H., Mohri, H., Ohno, 
S., and Ishigatsubo, Y. (2001). A novel integrin-linked kinase-binding protein, affixin, is 
involved in the early stage of cell-substrate interaction. J Cell Biol 153, 1251-1264. 

Yang, J.T., Rayburn, H., and Hynes, R.O. (1993). Embryonic mesodermal defects in alpha 5 
integrin-deficient mice. Development 119, 1093-1105. 

Yoganathan, N., Yee, A., Zhang, Z., Leung, D., Yan, J., Fazli, L., Kojic, D.L., Costello, P.C., 
Jabali, M., Dedhar, S., and Sanghera, J. (2002). Integrin-linked kinase, a promising cancer 
therapeutic target: biochemical and biological properties. Pharmacol Ther 93, 233-242. 

Yuan, H., Takeuchi, E., and Salant, D.J. (2002a). Podocyte slit-diaphragm protein nephrin is 
linked to the actin cytoskeleton. Am J Physiol Renal Physiol 282, F585-591. 

Yuan, H., Takeuchi, E., Taylor, G.A., McLaughlin, M., Brown, D., and Salant, D.J. (2002b). 
Nephrin dissociates from actin, and its expression is reduced in early experimental membranous 
nephropathy. J Am Soc Nephrol 13, 946-956. 

Zervas, C.G., Gregory, S.L., and Brown, N.H. (2001). Drosophila integrin-linked kinase is 
required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J Cell Biol 



Literature 

 122

152, 1007-1018. 

Zheng, K., Thorner, P.S., Marrano, P., Baumal, R., and McInnes, R.R. (1994). Canine X 
chromosome-linked hereditary nephritis: a genetic model for human X-linked hereditary nephritis 
resulting from a single base mutation in the gene encoding the alpha 5 chain of collagen type IV. 
Proc Natl Acad Sci U S A 91, 3989-3993. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

 

 

 

 

 

 

 



Aknowledgements 

 

 

124

Acknowledgments 
 

I am thankful to God for blessing me with ability to carry out my doctoral work. I am truly 

grateful to the graduierten collegue vasculaere biologie 437 for supporting this work. I would like 

to thank PD. Dr. Matthias Kretzler for providing the opportunity to work in the Department 

Klinische Biochemie, Klinikum Innenstadt, LMU, Munich and for his assistance during the 

thesis. I also thank PD. Dr. Angelika Böttger for providing me an opportunity, supporting me and 

for representing this work at the faculty. I would like to thank Prof. Detlef Schlöndorf who 

inspired me by his wealth of knowledge and in-depth understanding of the subject of research.  

I thank Prof. Rüdiger Wanke for many dedicated discussions and timely suggestions as well as 

Dr. Nadja Herbach for her help and performing qualitative and quantitative histologic and 

electron microscopic analyses and immunohitochemistry. I am thankfull to Prof. Maria Pia 

Rastaldi and Prof. Jeff Miner for performing the immunofluorescense stainings. 

I wish to thank Anne Henger, Simone Blattner and Anissa Boucherot for their co-operation 

during my research term during this project. I also wish to thank Ilka Eddenhofer for her 

assistance for animal care and to support me by routine analyses during this project. I also wish to 

thank Sandra Irrgang, Karin Fracht and Ingrid Bayer for their technical support.  

I thank Javid Wani for being a good friend and well-wisher and for careful reading my thesis. I 

also thank Prashant S. Patole for critically reviewing the thesis and for his invaluable assistance. I 

extand my gratitude to Dr. Pankaj Goyal for his expert help in editing the thesis.  

I am grateful to Bruno Luckow for extending a helping hand as a when needed in general 

laboratory procedures. Further, my colleagues at AG Klinische biochemie have been very helpful 

in the lab and providing a coherent work atmosphere.  

 

Finally, I specially thank my mother for her love, encouragement and support without which I 

nothing of this would be possible.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Curriculum Vitae 

 

 

 

 

 

 

 



Curriculum vitae 

 

 

 

126

Curriculum vitae 
 

Personal details 
Name:    Chiraz El- Aouni 

Sex:    female 

Date of birth:   09.05.1974 Sousse/ Tunisia 

Nationality:   Tunesian 

Material status:  single  

 

Career profile 

09.1979 – 07.1985  Primary School in Ben Guerdene, Tunesia 

09.1985 – 06. 1992  Secondary School in Ben Guerdene, Tunesia 

10.1993 – 09. 1994  German language course in Bremen, Germany 

10.1994 – 07.2001  Biology study, University of Bremen, Germany 

03. 2002 – 02. 2006 Ph.D. at the Medical Policlinic, Ludwig-Maximilians University, 

Munich, Germany, Dissertation: ILK deletion using transgenic 

mice. 

 

Conferences attended and Poster presentations 
1. Satellite symposium to the “World Congres of Nephrology” in Kloster Seon Germany, August 

2003. 

2. “Podocyte specific deletion of Integrin-linked kinase results in progressive glomerular 

filtration barrier failure”. Adhesion meeting 2005, podosomes - invadopodia - focal adhesions, 

München, April 28 - 30, Deutschland (poster presentation). 

3. “Podozyten-spezifische Deletion der Integrin-linked Kinase induziert ein progredientes 

glomeruläres Filtrationsversagen“. 20 Juni 2005, Followsnight des Nephrologischen Forrums 

München (oral presentation), 1st price awarded from all competing candidates. 

4. “Podozytenspezifische Deletion der Integrin-linked Kinase führt zum progredienten Verlust 

der glomerulären Filtrationsbarriere“. 36. Kongress der Gesellschaft für Nephrologie / 38. 



Curriculum vitae 

 

 

 

127

Jahrestagung der Deutschen Arbeitsgemeinschaft für Klinische Nephrologie, Saarbrücken, 

Deutschland (oral presentation). 

5.“Glomerular podocyte specific deletion of integrin-linked-kinase results in severe Basement 

membrane alterations, progressive glomerulosclerosis and renal scaring”. 2nd International 

Meeting on Epithelial-Mesenchymal Transition, EMT 2005 October 1-3, 2005, Vancouver, 

British Columbia, Canada (poster presentation). 

6. “Podocyte specific deletion of Integrin-linked kinase results in severe glomerular basement 

membrane alterations and progressive glomerulosclerosis”. Annual Meeting of the American 

Society of Nephrology, November 10, 2005, Philadelphia, USA. 

 

Awards 
1st Award Fellowsnight, Nephrologisches Forum Muenchen 2005 

 

Publications 
1. Does conventional cytogenetics detect the real frequency of 19q13 aberrations in benign 

thyroid lesions? A survey of 38 cases. Cancer Genet Cytogenet. 2003 Oct 1; 146(1):70-2.  

Meiboom M, Belge G, Bol S, El-Aouni C, Schoenmakers EF, Bullerdiek J. 

 

2. Podocyte-specific deletion of Integrin-linked kinase results in severe glomerular basement 

membrane alterations and progressive glomerulosclerosis. J Am Soc Nephrol. 2006 May; 

17(5):1334-44. Epub 2006 Apr 12. 

Chiraz El-Aouni, Nadja Herbach, Simone M. Blattner, Anna Henger, Maria P. Rastaldi, George 

Jarad, Jeffrey H. Miner, Marcus J. Moeller, Rene St-Arnaud, Shoukat Dedhar, Lawrence B. 

Holzman, Ruediger Wanke, and Matthias Kretzler. 

 

 


	1.1. The kidney
	1.1.1. The glomerular filtration barrier
	1.1.2.  Glomerular basement membrane
	1.1.3. Podocyte
	1.1.3.1. The sole of the podocyte foot process 
	1.1.3.2. Podocyte proteins
	1.1.3.3. The slit diaphragm


	1.2. Glomerular disease and podocyte
	1.2.1. IgA nephropathy
	1.2.2. Hereditary nephritis- Alport syndrome
	1.2.3. Diabetic nephropathy
	1.2.4. Glomerulosclerosis and Focal Segmental Glomerulosclerosis 
	1.2.5. Minimal change disease
	1.2.6. Conginital nephrotic syndrome

	1.3. Integrins
	1.3.1. Signaling machinery of Integrins

	1.4. The extracellular matrix
	1.5. The cytoskeleton
	1.6. Integrin linked kinase (ILK)
	1.6.1. ILK structure

	1.7. The kinase activity of ILK
	1.7.1. ILK expression in human cancers
	1.7.2.  Role of ILK in relevance to nephrophathy
	1.7.3. ILK in kidney disease

	1.8. Transgenic mice
	1.8.1. Conventional transgenic mice
	1.8.1.1. Pronuclear injection
	1.8.1.2. Gene targeting

	1.8.2. Conditional transgenic mice 
	1.8.2.1. Conditional knockout
	1.8.2.1.1 The Cre/LoxP system 
	The Flp/FRT system



	3.1. Animals experimentation 
	3.2. Generation of ILK deficient mice in podocyte
	3.3. Identification of transgenic mice
	3.3.1. Polymerase chain reaction (PCR)
	3.3.1.1. Proteinase K digest of mouse tails
	3.3.1.2. PCR conditions

	3.3.2. Agarose gel electrophoresis
	3.3.3. Isolation and elution of DNA fragments from agarose gel
	3.3.4. Quantification of DNA
	3.3.5.  Enzymatic digestion of DNA
	3.3.6. DNA dephosphorylation
	3.3.7. DNA ligation
	3.3.8. Electroporation of E. coli

	3.4. DNA extraction and purification
	3.4.1. Mini preparation
	3.4.2. Midi preparation

	3.5. Protein analysis
	3.5.1. Extraction of protein from cells
	3.5.2. Extraction of proteins from tissues
	3.5.3. Measurement of protein concentration by Lowry
	3.5.4. Creatinine measurement
	3.5.5. Biochemical analysis
	3.5.6. Enzyme linked immunosorbent assay (ELISA)

	3.6. SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
	3.7. Western Blot
	3.7.1. Coomassie blue staining of protein gels
	3.7.2. Drying of SDS-PAGE gels

	3.8. Mice Perfusion
	3.9. Histological techniques
	3.9.1. Paraffin section
	3.9.2. Frozen sections
	3.9.3. Immunohistochemistry
	3.9.4. Immunofluorescence

	3.10. Transmission electron microscopy
	3.11. Scanning electron microscopy
	3.12. Determination of the mean glomerular volume
	3.13. Determination of the filtration slit frequency 
	3.14.  Microdissection and RNA isolation
	3.14.1. Microdissection 
	3.14.2. RNA isolation
	3.14.3. Reverse transcription
	3.14.4. Real-time quantitative RT-PCR 

	3.15. Statistics
	3.16. Antibody list
	3.17. Primer list for RT-PCR:
	3.18.   Equipment and reagents
	3.18.1. Product list
	3.18.2. Consumables
	3.18.3. Instruments

	4.1. Cre transgenic mouse 
	4.2. ILK-Lox transgenic mice
	4.3. Breeding scheme for the inactivation of ILK
	4.4. Targeted inactivation of ILK in podocytes of podoILK-/- mice
	4.5. PodoILK -/- mice exhibit changes in bio-physical parameters
	4.5.1. Body weight
	4.5.2. Kidney weight
	4.5.3. Urine protein analysis
	4.5.4. Biochemical analysis of blood
	4.5.5. Survival curve
	4.5.6. Histological analysis

	4.6.  PodoILK -/- mice develop progressive focal segmental glomerulosclerosis
	4.7.  PodoILK -/- mice show GBM and podocyte alteration at onset of albuminuria
	4.7.1. Morphometric analysis of GBM composition in podoILK -/- mice
	4.7.2. Analysis of GBM composition in podoILK -/- mice 
	4.7.2.1.  Immunohistochemistry staining for GBM components 


	4.8. Effects of ILK deletion on podocyte gene expression
	4.8.1. Raster Electron Microscopy

	4.9. The slit diaphragm and associated molecules are intact in proteinuric podoILK -/- mice
	4.9.1. Determination of the filtration slit frequency 

	5.1. Development of mouse lines with podocyte specific deletion of ILK
	5.2. Effect of ILK deletion on the expression of slit diaphragm component proteins
	5.3. Effect of ILK on glomerular basement membrane
	5.4. Podocyte specific effects as a result of ILK deletion in mice
	5.5. Alterations in α3β1 functions in absence of ILK
	5.6. Kinase activity of ILK
	5.7. Overexpressionfailure of ILK


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


