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Abbreviations 

Abbreviations 

 

AD Alzheimer's Disease 
Aβ Amyloid-β peptide 
ADAM a disintegrin and metalloproteinase 
AICD APP intracellular domain 
APH-1 anterior pharynx-defective phenotype 
APLP APP like protein 
APP β-amyloid precursor protein 
BACE β-site APP-cleaving enzyme 
C. elgans Caenorhabditis elegans 
CD44 Cluster of differentiation 44 
CTF C-terminal fragment 
Egl egg laying defective 
FAD familial AD 
F-NEXT Flag tagged NEXT 
F-Nβ Flag tagged Nβ 
GLP-1 germ-line proliferation defective 
HEK human embryonic kidney 
HOP-1 homologue of PS 
LIN-12 abnormal cell lineage-12 
MEF mouse embryonic fibroblast 
Nβ Notch β peptide 
NCT Nicastrin 
NEXT Notch extracellular truncation 
NICD Notch intracellular domain 
NTF N-terminal fragment 
PEN-2 PS enhancer-2 
PS Presenilin 
RNAi RNA interference 
S1, S2, S3, S4 site 1, site 2, site 3, site 4 
sAPP soluble APP 
SEL-12 suppressors and/or enhancers of lin-12 
SPE-4 spermatogenesis defective-4 
SPP signal peptide peptidase 
SPPL SPP like protein 
sw Swedish mutant 
TACE TNF-α convertase 

 



Abbreviations 

TMD transmembrane domain 
TMIC transmembrane-intracellular 
TNF-α tumor necrosis factor-α 
wt wild type 
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1.1 Histopathology of Alzheimer’s disease 1.1 Histopathology of Alzheimer’s disease 

Alzheimer’s disease (AD) is the most common neurodegenerative disease in the world 

(Selkoe, 2001). It is estimated that about 18 million people worldwide are currently 

affected with AD. Since the major risk factor of AD is ageing, the number of patients is 

projected to be doubled by 2025 due to the prolongation of life expectancy. 

(http://w3.whosea.org/en/Section1174/Section1199/Section1567/Section1823_8066.htm) 

Alzheimer’s disease (AD) is the most common neurodegenerative disease in the world 

(Selkoe, 2001). It is estimated that about 18 million people worldwide are currently 

affected with AD. Since the major risk factor of AD is ageing, the number of patients is 

projected to be doubled by 2025 due to the prolongation of life expectancy. 

(http://w3.whosea.org/en/Section1174/Section1199/Section1567/Section1823_8066.htm) 

The first AD patient, Auguste D., was reported by a German psychiatrist, Alois Alzheimer, 

in 1907 (Figure 1A and B). The symptoms described were progressive memory impairment, 

disordered cognitive function, altered behavior including paranoia, delusions, loss of social 

appropriateness and a progressive decline in language function (Alzheimer, 1907; 

Alzheimer et al., 1995).  

The first AD patient, Auguste D., was reported by a German psychiatrist, Alois Alzheimer, 

in 1907 (Figure 1A and B). The symptoms described were progressive memory impairment, 

disordered cognitive function, altered behavior including paranoia, delusions, loss of social 

appropriateness and a progressive decline in language function (Alzheimer, 1907; 

Alzheimer et al., 1995).  
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Figure 1: Alois Alzheimer and the first AD patient, Augste D. Figure 1: Alois Alzheimer and the first AD patient, Augste D. 

Photographs showing Alois Alzheimer (A) and the first reported AD patient Augste D. (B). Photographs showing Alois Alzheimer (A) and the first reported AD patient Augste D. (B). 
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Postmortem, the brain of the patient showed atrophy and “many fibrils” in the cell and 

“military foci” all over the cortex, especially in the upper layers, which were observed by 

silver staining. These lesions, that Alzheimer reported 100 years ago, are the pathological 

hallmarks of AD, which today are described as neuronal cell loss, the intracellular 

accumulation of neurofibrillary tangles and the extracellular deposition of senile plaque 

(Figure 2). The neurofibrillary tangles are composed of hyperphosphorylated forms of the 

tau protein (Grundke-Iqbal et al., 1986), which assembles into arrays of paired helical 

filaments (Figure 2A). Normally, tau is a soluble protein that promotes microtubule 

assembly and stabilization. In contrast, the pathological tau protein shows altered solubility 

properties, forms filamentous structures, is abnormally phosphorylated and has less affinity 

for microtubules (Grundke-Iqbal et al., 1986; Goedert et al., 1992). The neurofibrillary 

tangles are also observed in other neurodegenerative disorders, such as frontal temporal 

dementia or Pick’s disease. The second characteristic pathology of AD are the extracellular 

deposited senile plaques, which are usually found in brain regions such as hippocampus, 

amygdala, cortical and subcortical areas (Selkoe, 2001; LaFerla and Oddo, 2005). These 

plaques are primarily composed of Aβ (amyloid β-peptide) (Glenner and Wong, 1984). 

Aβ is a highly hydrophobic peptide that aggregates to form oligomers. Several Aβ species 

of 37 to 43 amino acids in length are found. Among those, the one ending at amino acid 42 

(Aβ42), that is two amino acid residues longer than the much more abundantly produced 

Aβ40 species, is more hydrophobic and particularly prone to aggregation (Jarrett et al., 

1993). Most plaques in the AD brain are “diffuse” plaques, in which the amyloid core is 

surrounded by few dystrophic dendrites and axons. There are also less frequent “neuritic” 

plaques (Figure 2B), in which dystrophic neurites are a prominent and commonplace 

feature. Since diffuse plaques are also found frequently in healthy aged brains, it is 

hypothesized that diffuse plaques are the precursor of neuritic plaques (Selkoe, 2001; 

LaFerla and Oddo, 2005). 
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Figure 2: Histopathology of Alzheimer’s disease 

Typical histopathological hallmarks of AD. A: Neurofibrillary tangles. The hyperphosphrylated tau 
protein is assembled into paired helical filaments. B: Amyloid plaque. Aβ deposition in the core of 
the plaque (blue arrow) and the dystrophic nerve terminals filled with deposits of 
hyperphosphorylated tau (red arrow). (Photos from Sisodia and St George-Hyslop, 2002) 

 

 

 

1.2 Genetics of Alzheimer’s disease 

5-10% of AD cases are genetically inherited as familial AD (FAD) while the majority of 

the cases are sporadic (Selkoe, 2001). The onset age of the disease is earlier in FAD than 

the sporadic AD. Genetical analysis of pedigrees with FAD has revealed at least three AD-

causing genes, APP (β-amyloid precursor protein), PS (presenilin) 1 and 2 (Goate et al., 

1991; St George-Hyslop et al., 1992; Levy-Lahad et al., 1995; Rogaev et al., 1995; 

Sherrington et al., 1995). Most FAD cases are caused by mutations in the PS1 gene 

whereas APP and PS2 mutations are rather rare. 

The APP gene is located on chromosome 21 and encodes for a protein of 770 amino acids. 

The gene can be alternatively spliced to encode for the protein of 695 or 751 amino acids 

APP variants. Both the 770 and 751 amino acids APP splice variants are ubiquitously 

expressed. Compared to these two splice variants, the 695 amino acid isoform is expressed 

at higher levels in neurons (Haass et al., 1991). APP is a type I transmembrane 

glycoprotein, which harbors the Aβ peptide. Three different enzymes termed α-, β-, and γ-

secretase (see also chapter 1.3.2) process APP (Figure 3 and Figure 4). Interestingly, all the 

FAD missense mutations found in APP are located near to the three secretase-cleavage 
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sites suggesting that they cause AD by an alteration of the APP cleavage. The mutations 

predominantly localize close to the γ-secretase cleavage site and cause an increase in the 

production of Aβ42 peptides. There is also a rare mutation in a Swedish family that 

localizes to the β-secretase cleavage site. This mutation causes an increase in the 

production of all Aβ peptides. Mutations in the vicinity of the α-secretase cleavage site do 

not influence the processing of APP but rather alter the aggregation properties of Aβ  

(Selkoe, 2001). The alteration of the normal APP expression is also known to cause AD as 

in Down’s syndrome patients. These patients exhibit AD pathology due to the 

overexpression of APP because they possess three copies of chromosome 21, on which the 

APP gene is found (Head and Lott, 2004). 

sites suggesting that they cause AD by an alteration of the APP cleavage. The mutations 

predominantly localize close to the γ-secretase cleavage site and cause an increase in the 

production of Aβ42 peptides. There is also a rare mutation in a Swedish family that 

localizes to the β-secretase cleavage site. This mutation causes an increase in the 

production of all Aβ peptides. Mutations in the vicinity of the α-secretase cleavage site do 

not influence the processing of APP but rather alter the aggregation properties of Aβ  

(Selkoe, 2001). The alteration of the normal APP expression is also known to cause AD as 

in Down’s syndrome patients. These patients exhibit AD pathology due to the 

overexpression of APP because they possess three copies of chromosome 21, on which the 

APP gene is found (Head and Lott, 2004). 

  

  

  

  

  

  

  

 

  

  

  

Figure 3: Schematic representation of APP and the Aβ domain Figure 3: Schematic representation of APP and the Aβ domain 

The secretase cleavage sites of APP and the FAD mutations (indicated in blue) are shown. The 
predicted TMD is boxed. The Aβ domain is displayed in red.   
The secretase cleavage sites of APP and the FAD mutations (indicated in blue) are shown. The 
predicted TMD is boxed. The Aβ domain is displayed in red.   
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The genes encoding PS1 and PS2 are located on chromosome 14 and 1 respectively (Levy-

Lahad et al., 1995; Sherrington et al., 1995). PS1 and PS2 are polytopic membrane proteins 

that share about 63% of sequence identity. To date, more than 150 of missense mutations 

are found in PS1 and 11 in PS2 (Alzheimer’s Disease and Frontotemporal Dementia 

Mutation Database: http://www.molgen.ua.ac.be/ADMutations/). All the mutations lead to 

an increase in the production of Aβ42. 

Apart from the three genes described above, the ε4 allele of apolipoprotein E has been 

identified as a major genetic risk factor for late-onset AD. Genetic analysis indicate that the 

inheritance of one or two ε4 alleles will increase the likelihood of developing AD leading 

to an earlier onset age compared to subjects harboring ε2 and/or ε3 alleles (Corder et al., 

1993). 

In contrary to the FAD cases, the reasons for the development of sporadic AD, which 

forms the majority of all AD cases, are unclear. The greatest risk factor of AD is ageing. 

However, the mechanism how ageing contributes to Aβ deposition in the brain is not well 

established. It is discussed that a deficiency in Aβ degradation (Yasojima et al., 2001) or 

an increase in β-secretase cleavage of APP (Holsinger et al., 2002; Yang et al., 2003) 

might cause sporadic AD. These observations suggest that the balance between generation 

and clearance of Aβ is altered by ageing. This may result from an alteration of gene 

expression or from unknown factor(s) involved in Aβ generation and clearance. Such 

alteration could also cause an acceleration of the Aβ aggregation rate in the brain. In 

addition, if for example the γ-secretase activity was altered during ageing, it would surely 

influence not only Aβ secretion but also intracellular signaling mediated by the 

intracellular domains that are generated by γ-secretase of all other γ-secretase substrates 

(see 1.3.2.1). Moreover, the difference in the levels of alteration of Aβ generation and 

clearance may account for the difference in the onset age of the disease. As described 

above (see 1.1), diffuse senile plaques, which also exist in healthy-aged brains, are 

suggested to be precursors of neuritic senile plaques. If that was the case, all persons 

developing diffuse plaques in their brains would eventually get AD if they lived long 

enough (Thal et al., 2002). Further investigations are required for understanding the cause 

of sporadic AD. 
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1.3 Molecular biology of Alzheimer’s disease 

1.3.1 β-Amyloid precursor protein processing 

Cleavage of APP within the ectodomain by either α- or β-secretase generates the 

membrane-bound APP C-terminal fragments, APP-CTFα or CTFβ (Figure 4). Following 

ectodomain shedding by α- or β-secretase, the membrane-bound APP-CTFs are 

subsequently processed by γ-secretase within the transmembrane domain. The α-secretase 

cleavage processes APP within the Aβ domain between residues 16 and 17 of the Aβ 

domain and thus precludes Aβ generation. Therefore, this process is referred to as the 

“non-amyloidogenic pathway”. The combination of α- and γ-secretase cleavage generates 

the AICD (APP intercellular domain) and releases soluble APPα (sAPPα) and the p3 

peptide. On the other hand, β-secretase cleaves APP at the beginning of the Aβ domain 

resulting not only in AICD and sAPPβ but also in Aβ peptide generation. Therefore this 

process is referred to as the “amyloidogenic pathway” (Figure 4). The γ-secretase cleavage 

site is located in the middle of APP transmembrane domain at the end of the Aβ domain. 

Besides the γ-secretase cleavage site, there is another γ-secretase dependent cleavage site 

close to the end of the transmembrane domain of APP, which is referred to as the ε-

cleavage site (Weidemann et al., 2002) (Figure 3 and Figure 4). This ε-cleavage site is 

analogous to the S3 cleavage site of another γ-secretase substrate, Notch (see also 1.3.2.1 

and Figure 6). The AICD species starts from the ε-cleavage site. So far, AICD starting 

from the γ-secretase cleavage site has not been found, whereas the longer intracellular Aβ 

can be isolated from mammalian cells (Zhao et al., 2004; Qi-Takahara et al., 2005; Zhao et 

al., 2005; Kakuda et al., 2006). Thus, ε-cleavage may precedes γ-cleavage. This hypothesis 

however is still under debate. 
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Figure 4: APP processing Figure 4: APP processing 

In the non-amyloidogenic pathway, the large ectodomain of APP is cleaved by α-secretase within 
the Aβ domain that releases sAPPα. The membrane-bound APP-CTFα is further cleaved by γ-
secretase within the transmembrane domain. This cleavage results in p3 and AICD generation. In 
the amyloidogenic pathway, APP is cleaved by the combination of β- and γ-secretase. These 
cleavages result in the generation of sAPPβ, Aβ and AICD. 

In the non-amyloidogenic pathway, the large ectodomain of APP is cleaved by α-secretase within 
the Aβ domain that releases sAPPα. The membrane-bound APP-CTFα is further cleaved by γ-
secretase within the transmembrane domain. This cleavage results in p3 and AICD generation. In 
the amyloidogenic pathway, APP is cleaved by the combination of β- and γ-secretase. These 
cleavages result in the generation of sAPPβ, Aβ and AICD. 

  

  

  

Ectodomain shedding of APP occurs primarily by α-secretase, a type I membrane protein. 

Studies with protease inhibitors revealed that α-secretase is a zinc metalloproteinase, and 

several members of ADAM (a

Ectodomain shedding of APP occurs primarily by α-secretase, a type I membrane protein. 

Studies with protease inhibitors revealed that α-secretase is a zinc metalloproteinase, and 

several members of ADAM (a disintegrin and metalloproteinase) family proteins, ADAM9, 

ADAM10 and ADAM17, which is also known as TACE (tumor necrosis factor-α 

convertace), were identified as α-secretase (Buxbaum et al., 1998; Koike et al., 1999; 

Lammich et al., 1999). 

BACE (β-site APP-cleaving enzyme)-1 has been identified as β-secretase. BACE-1 is a 

type I transmembrane protein, with aspartyl protease activity (Hussain et al., 1999; Sinha et 

al., 1999; Vassar et al., 1999; Yan et al., 1999; Lin et al., 2000). The BACE-1 knock out 

shows a complete absence of Aβ generation suggesting that BACE-1 is the only protease 

mediating β-secretase activity (Cai et al., 2001; Luo et al., 2001). 
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1.3.2 γ-Secretase 

After ectodomain shedding of APP by either α- or β-secretase, the resultant membrane- 

bound APP-CTF is cleaved by γ-secretase within the transmembrane domain.  

γ-Secretase is an unusual aspartyl protease occurring as a high molecular weight complex 

(Figure 5). PS was the first complex component to be identified in γ-secretase. The first 

hint that γ-secretase may be a complex was obtained from the observation that 

overexpression of PS in mammalian cells, causes a replacement of endogenous PSs, i.e. 

they disappear and cannot be detected anymore. It was speculated that there is a 

competition between exogenous and endogenous PS for limiting factors interacting with 

PS (Thinakaran et al., 1996; Thinakaran et al., 1997). Moreover, glycerol gradient 

experiments demonstrated that PS1 NTF and CTF co-fractionate in high molecular weight 

fractions (Capell 1998, Yu 1998). In addition, it has been found that γ-secretase activity is 

present in a high molecular weight fraction in a PS-dependent manner (Li 2000). Indeed, 

three proteins NCT (nicastrin) (Yu et al., 2000), APH (anterior pharynx-defective 

phenotype)-1 and PEN (PS-enhancer)-2 were identified as γ-secretase complex 

components (Francis et al., 2002; Goutte et al., 2002; Lee et al., 2002; Steiner et al., 2002) 

(Figure 5). Notably, it is known that PS1 and PS2 do not occur in the same complex (Yu et 

al., 1998; Steiner et al., 2002; Shirotani et al., 2004b). Edbauer et al (Edbauer et al., 2003) 

showed that when all four components were expressed together in yeast, which has no 

homologues of γ-secretase components and thus lacks γ-secretase activity, active γ-

secretase was reconstituted. This suggests that these four components are necessary and 

sufficient for the activity of the enzyme. The apparent molecular mass of the complex is 

approximately 200 kDa. However, different molecular weights of the γ-secretase complex 

have been reported ranging from 250 to 2000 kDa, most likely depending on the analytical 

methods used (Capell et al., 1998; Yu et al., 1998; Li et al., 2000a; Steiner et al., 2002; 

Kimberly et al., 2003; Nyabi et al., 2003). It is still unclear which molecular mass an active 

γ-secretase complex has. 

Because of the existence and requirement of four components for the γ-secretase activity, it 

is very difficult to analyze the individual function of the components of the complex. PS 

contains the catalytic center of γ-secretase with two critical aspartate residues (Wolfe et al., 

1999a), and NCT was recently reported as the initial substrate recognition molecule (Shah 
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et al., 2005). Compared to PS and NCT, very little is known about the roles of APH-1 and 

PEN-2 in the complex in the mechanism of γ-secretase cleavage. 

et al., 2005). Compared to PS and NCT, very little is known about the roles of APH-1 and 

PEN-2 in the complex in the mechanism of γ-secretase cleavage. 
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Figure 5: The γ-secretase complex Figure 5: The γ-secretase complex 

A schematic model of the γ-secretase complex composed of PS, NCT, APH-1 and PEN-2 is shown. 
TMDs 6 and 7 of PS, which harbor the two critical aspartates, are shown in green. The 
endoproteolytic cleavage site of PS is indicated with an arrow. 

A schematic model of the γ-secretase complex composed of PS, NCT, APH-1 and PEN-2 is shown. 
TMDs 6 and 7 of PS, which harbor the two critical aspartates, are shown in green. The 
endoproteolytic cleavage site of PS is indicated with an arrow. 

  

  

  

1.3.2.1 Notch and other substrates of γ-secretase 1.3.2.1 Notch and other substrates of γ-secretase 

Apart from APP, there is a growing number of type I transmembrane proteins that has been 

identified as substrates of γ-secretase such as APLP (AP

Apart from APP, there is a growing number of type I transmembrane proteins that has been 

identified as substrates of γ-secretase such as APLP (APP like protein) 1 and 2 (Scheinfeld 

et al., 2002), Notch (1-4) receptors (Wong et al., 1997; Davis et al., 1998; Levitan and 

Greenwald, 1998; Qian et al., 1998; Berezovska et al., 1999; De Strooper et al., 1999; 

Donoviel et al., 1999; Herreman et al., 1999; Herreman et al., 2000; Nakajima et al., 2000; 

Struhl and Greenwald, 2001), Delta and Jagged (Ikeuchi and Sisodia, 2003; LaVoie and 

Selkoe, 2003), N- and E-cadherin (Georgakopoulos et al., 1999; Baki et al., 2001; 

Marambaud et al., 2002), ErbB4 (Ni et al., 2001), CD44 (Cluster of differentiation 44) 

(Lammich et al., 2002). Among these proteins, Notch is one of the most important and 
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well-studied substrate of γ-secretase. Notch functions as a receptor at the cell surface and 

mediates cell-cell signaling interactions to specify cell fates during development (Bray, 

2006). The evidence that γ-secretase is involved in Notch processing was first indicated by 

genetic studies in C. elegans and Drosophila that showed the requirement of Notch signal 

transduction (Levitan and Greenwald, 1998; Struhl and Greenwald, 2001). Importantly, 

PS1 knockout mice or PS1/2 double knockout mice have defects reminiscent of Notch 

knockout phenotypes (Shen et al., 1997; Wong et al., 1997; De Strooper et al., 1998). The 

lethality of the PS knockout mice can be rescued by re-introduction of PS1 (Davis et al., 

1998; Qian et al., 1998). Furthermore, PS-deficient cells show defects Notch processing 

(De Strooper et al., 1998; Song et al., 1999), and in addition, γ-secretase inhibitors block 

Notch processing (De Strooper et al., 1999). Moreover, it has been demonstrated that 

Notch interacts with PS (Ray et al., 1999). 

Notch undergoes a proteolytic cascade like APP for its activation (Figure 6). Notch is first 

cleaved by furin in the trans-Golgi network at S1 during transport. The S1 cleavage 

generates a TMIC (transmembrane-intracellular) Notch, which interacts with ligands, 

Jagged and Delta. Upon the ligand interaction, TMIC undergoes a second cleavage at S2 

mediated by TACE. Upon S2 cleavage, the ligand-bound ectodomain region is 

endocytosed into the ligand expressing cell and the NEXT (Notch extracellular truncation) 

fragment remains embedded in the membrane at the cell surface (Parks et al., 2000). NEXT 

is subsequently cleaved by γ-secretase at two sites S3 and S4. The cleavage at S3 releases 

the NICD (Notch intracellular domain) from the membrane. NICD translocates to the 

nucleus and interacts with transcription factors to regulate target genes (Jarriault et al., 

1995; Schroeter et al., 1998). The S3 cleavage resembles the ε-cleavage of APP, whereas 

the cleavage at S4, which occurs in the middle of the transmembrane domain and release 

Nβ (Notch-β), an Aβ like peptide, is analogous to the γ-cleavage site of APP (Okochi et al., 

2002). Interestingly, similar to the processing of APP, an alteration of S4 cleavage is also 

observed in PS1 FAD mutant expressing cells and causes an increase of the ratio of longer 

species of Nβ (Nβ25) against the major shorter Nβ species (Nβ21), (Okochi et al., 2006). 
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Figure 6: Notch processing Figure 6: Notch processing 

Notch is cleaved at four different cleavage sites, S1-S4. The cleavage at S1 takes place in the trans-
Golge network, and the subsequent cleavages occur upon the interaction between TMIC and ligand 
that is presented by neighboring cell. The S3 and S4 cleavages are dependent on γ-secretase. The 
S3 cleavage product, NICD, translocates to the nucleus where it is involved in transcriptional 
regulation. The Nβ peptide, the analogue of Aβ, is produced by S4 cleavage. 

Notch is cleaved at four different cleavage sites, S1-S4. The cleavage at S1 takes place in the trans-
Golge network, and the subsequent cleavages occur upon the interaction between TMIC and ligand 
that is presented by neighboring cell. The S3 and S4 cleavages are dependent on γ-secretase. The 
S3 cleavage product, NICD, translocates to the nucleus where it is involved in transcriptional 
regulation. The Nβ peptide, the analogue of Aβ, is produced by S4 cleavage. 

  

  

  

1.3.2.2 Presenilin 1.3.2.2 Presenilin 

PSs (PS1 and PS2) are polytopic transmembrane proteins (Figure 5) that span the 

membrane 9 times (Kaether et al., 2004; Henricson et al., 2005; Laudon et al., 2005; Oh 

and Turner, 2005). PSs are endoproteolyzed within the large cytoplasmic loop (Figure 5, 

arrow) and exist as N-terminal fragment (NTF) and C-terminal fragment (CTF) in the cell 

(Thinakaran et al., 1996). These NTF and CTF form a heterodimer (Capell et al., 1998; Yu 
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and Turner, 2005). PSs are endoproteolyzed within the large cytoplasmic loop (Figure 5, 

arrow) and exist as N-terminal fragment (NTF) and C-terminal fragment (CTF) in the cell 
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et al., 1998; Saura et al., 1999), and this heterodimer form of PSs are more stable compared 

to the holoprotein (Ratovitski et al., 1997; Steiner et al., 1998). Endoproteolysis of PS is 

most likely an autocatalytic event. It was reported that endoproteolysis of PS1 or PS2 is 

blocked when one of its active aspartate is inactivated (Steiner et al., 1999b; Wolfe et al., 

1999a). Because of the apparent correlation between endoproteolysis and proteolytic 

activity, it was further suggested that PS is a protease that activates itself by auto-cleavage. 

The observation that endoproteolysis of PS may be an auto-cleavage is further supported 

by the study of Edbauer and colleagues showing γ-secretase complex reconstitution in 

yeast, which has no homologues of γ-secretase complex components and lacks γ-secretase 

activity (Edbauer et al., 2003). Edbauer and colleagues demonstrated that PS1 NTF and 

CTF were generated by endoproteolysis upon co-expression with the other three 

components NCT, APH-1 and PEN2 in yeast. However, it was demonstrated that 

endoproteolysis of PS is not required for γ-secretase activity because there is a FAD 

deletion mutant that lacks exon 9 domain (Δexon9) of PS1 which encodes the 

endoproteolysis and which displays γ-secretase activity (Steiner et al., 1999a). In addition, 

other artificial mutations in PS such as several mutants of G384 undergo endoproteolysis 

but do not support proteolytic activity of γ-secretase (Steiner et al., 2000). Thus, the 

endoproteolysis of PS is most likely an auto-cleavage but does not initiate its catalytic 

activity.  

The FAD mutations in PSs lead a small shift of APP cleavage at the γ-secretase cleavage 

site, which results in an increase in the ratio of Aβ42 to Aβ40 (Selkoe, 2001). Together 

with these findings, the severe impairment of Aβ generation in cells derived from PS1 

knockout mice (De Strooper et al., 1998) as well as the complete absence of Aβ generation 

in PS1 and PS2 double knockout (Herreman et al., 2000; Zhang et al., 2000) suggested that 

PSs are directly involved in the γ-secretase cleavage or are the γ-secretase itself. 

Furthermore, studies with peptidomimetic inhibitors designed to mimic the Aβ42 cleavage 

site to inhibit the γ-secretase activity suggested that the γ-secretase is an aspartyl protease 

(Wolfe et al., 1999b). It was supported by the finding of two completely conserved 

aspartate residues within transmembrane domains (TMD) 6 and TMD7 in all PSs (Figure 

5). The functional importance of these aspartate residues in PS1 and PS2 was demonstrated 

by Wolfe et al for PS1 and Steiner et al for PS2 (Steiner et al., 1999b; Wolfe et al., 1999a), 

showing that Aβ generation was abolished when either of the two aspartates was 

mutagenized. Furthermore, it was shown that PS1 has sequence homology particularly 
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around the second aspartate in TMD7 with bacterial type 4 prepilin peptidase and contains 

a novel GxGD motif instead of the classical aspartyl protease consensus sequence 

D(T/S)G(T/S). This GxGD active site motif is very well conserved in all PSs (Steiner et al., 

2000). Moreover, a cross-linking study and a pulldown assay using aspartic protease 

transition state analogue inhibitors that inhibit γ-secretase activity demonstrated a direct 

interaction between the inhibitor and PS (Esler et al., 2000; Li et al., 2000b; Beher et al., 

2003). Taken together, these data provide strong evidence that PS is a novel GxGD-type 

aspartyl protease. Subsequent studies identified SPP (signal peptide peptidase) and SPPL 

(SPP-like peptidase) (Weihofen et al., 2002) apart from the type 4 prepilin peptidases 

(LaPointe and Taylor, 2000; Steiner et al., 2000; Weihofen and Martoglio, 2003) as 

members of GxGD-type aspartyl protease family. SPP catalyzes intramembrane proteolysis 

of signal peptides liberated from secretory preproteins. In humans, besides the clearance of 

signal peptides, SPP is also required for processing of the hepatitis C virus core protein 

(Weihofen et al., 2002). Recently, TNFα has been identified as a substrate for the SPP 

homologues SPPL2a and SPPL2b. Release of the TNFα−ICD triggering expression of 

interleukin-12 (Friedmann et al., 2004; Fluhrer et al., 2006; Friedmann et al., 2006). 

Interestingly, the membrane topology of SPP and SPPL are diametrical from that of PS. 

Therefore, their substrates are as well diametrical, i.e. type II instead of type I 

transmembrane proteins as in PS. Also, unlike PS, SPP and SPPL are not endoproteolysed 

and moreover function by themselves, whereas PS requires complex formation to become 

active. Thus, the GxGD active site motif defines a novel class of protease, cleaving its 

substrates within the membrane (PS, SPP, SPPLs) or at the cytosolic region near the 

membrane (type 4 prepilin peptidases). 

 

 

1.3.2.3 Nicastrin 

NCT is a type I transmembrane glycoprotein (Figure 5). It was identified as a protein that 

interacts with PS by co-immunoprecipitation studies in the mammalian cells (Yu et al., 

2000). In addition, genetic studies in nematode Caenorhabditis elegans (C. elegans) 

showed that NCT is involved in the Notch signaling pathway (Goutte et al., 2000) and 

genetically interacts with SEL-12 (suppressor and/or enhancer of lin-12), a C. elegans PS 

homolog (Levitan et al., 2001). NCT has also been shown to interact with both γ-secretase 
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substrates, APP and Notch (Yu et al., 2000; Chen et al., 2001). NCT undergoes 

glycosylation within the secretory pathway to yield the mature complex-glycosylated form, 

which exists in the active γ-secretase complex (Edbauer et al., 2002; Leem et al., 2002; 

Tomita et al., 2002; Yang et al., 2002). The NCT function was not clear until recently, 

when Shah and co-workers (Shah et al., 2005) showed that the ectodomain of NCT can 

bind to ectodomain-shedded APP and Notch. This suggests that after the ectodomain 

shedding of the substrate, which is necessary for the further processing by γ-secretase 

(Struhl and Adachi, 2000), the stubs are recognized by NCT before γ-secretase cleavage 

occurs. 

 

 

1.3.2.4 APH-1 and PEN-2 

APH-1 and PEN-2 were identified by genetic screening for mutants which enhance the 

Notch signaling defect phenotype in C. elegans (Francis et al., 2002; Goutte et al., 2002). 

APH-1 is a multitransmembrane protein, which is predicted to span the membrane seven 

times (Fortna et al., 2004) (Figure 5). Co-immunoprecipitation and pull-down approaches 

revealed that APH-1 interact with PS NTF/CTF heterodimer and NCT in mammalian cells 

and in vivo (Lee et al., 2002). In humans, there are two homologues APH-1, APH-1a and 

APH-1b. Furthermore, there are two APH-1a splice variants reported, APH-1aL and APH-

1aS. Like PS1 and PS2, the different APH-1 species do not occur in the same complex 

(Hebert et al., 2004; Shirotani et al., 2004b) suggesting that there are six distinct γ-

secretase complexes with every possible combination of PS and APH-1 variants in human 

cells. In mice, which contain a third APH-1 homolog, APH-1c, there are eight complex 

possibilities (Hebert et al., 2004). However, whether there are any differences on the γ-

secretase activity or any substrate preference of an individual γ-secretase complex is not 

well understood. 

It has been demonstrated that the absence of APH-1 causes a decrease in the levels of the 

other γ-secretase complex components (Takasugi et al., 2003; Shirotani et al., 2004b; Ma et 

al., 2005; Serneels et al., 2005). This observation suggests that APH-1 stabilizes the γ-

secretase complex. However, the APH-1 function for cleavage within an assembled 

complex is still unclear.  
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PEN-2 is a small (~10kDa) membrane protein with two transmembrane domains (Figure 5). 

It has been demonstrated that PEN-2 is involved in the initiation of PS endoproteolysis 

(Takasugi et al., 2003) and that is required for the stabilization of PS NTF and CTF 

(Hasegawa et al., 2004; Prokop et al., 2004) within the γ-secretase complex. However, it is 

still unclear whether and how PEN-2 contributes to the catalytic function of γ-secretase. 

Further studies are required to elucidate the functions of APH-1 and PEN-2. 

 

 

1.3.2.5 Assembly of the γ-secretase complex 

RNA interference (RNAi) studies have revealed that PS is stabilized as an un-cleaved 

holoprotein in the absence of PEN-2 (Luo et al., 2003; Takasugi et al., 2003; Prokop et al., 

2004). Unlike nascent PS holoprotein, which is degraded rapidly (Steiner et al., 1998), the 

accumulated PS holoprotein under PEN-2-limiting conditions forms a stable high 

molecular weight complex together with NCT/APH-1. This indicates that PEN-2 is 

required to initiate the endoproteolysis of PS. The PS holoprotein accumulation is 

abolished when NCT or APH-1 has been knocked down together with PEN-2 suggesting 

that NCT and APH-1 function upstream of PEN-2. On the other hand, an overexpression of 

APH-1 increased the level of PS holoprotein, which was augmented by co-expression of 

APH-1 and NCT (Takasugi et al., 2003). This suggests that PS holoprotein is stabilized by 

APH-1 and NCT. Moreover, there is an evidence for a NCT/APH-1 subcomplex formation 

early during assembly (LaVoie et al., 2003; Morais et al., 2003; Shirotani et al., 2004a). 

These observations led to a model of γ-secretase complex assembly. According to this 

model, first NCT and APH-1 form a subcomplex that binds to the PS holoprotein and 

thereby stabilizes it. Then, PEN-2 elicits the final step of γ-secretase complex maturation 

by facilitating the endoproteolysis of PS (Figure 7). In addition, it has been demonstrated 

that the assembly of the γ-secretase complex is completed within the ER/early secretory 

compartments of the cells. Immediately after assembly of the last component, PEN-2, PS is 

endoproteolyzed, and the complex is released from the ER and targeted to late secretory 

compartments, including the plasma membrane, where it cleaves its substrates (Kaether et 

al., 2002; Capell et al., 2005). 
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Figure 7: Schematic model of γ-secretase assembly Figure 7: Schematic model of γ-secretase assembly 

Schematic model of γ-secretase assembly and activation is shown. First, a NCT/APH-1 subcomplex 
is formed that stabilizes the PS holoprotein. In the next assembly step, PEN-2 binds to initiate PS 
endoproteolysis. 

Schematic model of γ-secretase assembly and activation is shown. First, a NCT/APH-1 subcomplex 
is formed that stabilizes the PS holoprotein. In the next assembly step, PEN-2 binds to initiate PS 
endoproteolysis. 

  

  

  

1.3.2.6 Substrate recognition of γ-secretase 1.3.2.6 Substrate recognition of γ-secretase 

It has been demonstrated that ectodomain shedding of the substrate is required for the 

subsequent γ-secretase cleavage (Struhl and Adachi, 2000). In addition, a recent finding 

has demonstrated that the large ectodomain of NCT recognizes the ectodomain shedded-

substrate (Shah et al., 2005). Furthermore, before the substrate cleavage occurs at the 

active site of γ-secretase, the substrate binds to the so-called “docking site”, which is 

different from the active site. The existence of such a binding site was shown by 

coisolation of APP-CTFs with γ-secretase using immobilized active site-directed inhibitors 

(Esler et al., 2002; Tian et al., 2002; Beher et al., 2003; Tian et al., 2003). It was shown 

recently that the docking site is located in PS very close to the active site within a distance 

of three amino acids (Kornilova et al., 2005). Together with the finding that NCT functions 

as an initial substrate receptor, the existence of the docking site at the PS NTF/CTF 

suggests a model of stepwise substrate transfer to the active site (Figure 8). 

It has been demonstrated that ectodomain shedding of the substrate is required for the 

subsequent γ-secretase cleavage (Struhl and Adachi, 2000). In addition, a recent finding 

has demonstrated that the large ectodomain of NCT recognizes the ectodomain shedded-

substrate (Shah et al., 2005). Furthermore, before the substrate cleavage occurs at the 

active site of γ-secretase, the substrate binds to the so-called “docking site”, which is 

different from the active site. The existence of such a binding site was shown by 

coisolation of APP-CTFs with γ-secretase using immobilized active site-directed inhibitors 

(Esler et al., 2002; Tian et al., 2002; Beher et al., 2003; Tian et al., 2003). It was shown 

recently that the docking site is located in PS very close to the active site within a distance 

of three amino acids (Kornilova et al., 2005). Together with the finding that NCT functions 

as an initial substrate receptor, the existence of the docking site at the PS NTF/CTF 

suggests a model of stepwise substrate transfer to the active site (Figure 8). 
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Figure 8: The substrate recognition and docking sites of the γ-secretase complex Figure 8: The substrate recognition and docking sites of the γ-secretase complex 

The ectodomain-shedded substrate (for example APP-CTFβ) is recognized first by NCT. It is 
subsequently bound at the docking site that exists in PS before it proceeds to the active site to get 
cleaved. This figure is modified from Shah et al., 2005. 

The ectodomain-shedded substrate (for example APP-CTFβ) is recognized first by NCT. It is 
subsequently bound at the docking site that exists in PS before it proceeds to the active site to get 
cleaved. This figure is modified from Shah et al., 2005. 

  

  

  

1.4 The presenilin homologues in C. elegans 1.4 The presenilin homologues in C. elegans 

Three PS homologues, SEL-12, HOP (homologue of PS)-1, and SPE (spermatogenesis 

defective)-4 have been identified in the nematode C. elegans (L'Hernault and Arduengo, 

1992; Levitan and Greenwald, 1995; Li and Greenwald, 1997). It has been shown that sel-

12 activity facilitates the activity of LIN (abnormal cell lin

Three PS homologues, SEL-12, HOP (homologue of PS)-1, and SPE (spermatogenesis 

defective)-4 have been identified in the nematode C. elegans (L'Hernault and Arduengo, 

1992; Levitan and Greenwald, 1995; Li and Greenwald, 1997). It has been shown that sel-

12 activity facilitates the activity of LIN (abnormal cell lineage)-12 and GLP-1 (germ-line 

proliferation defective-1), the C. elegans Notch receptors. (Levitan and Greenwald, 1995; 

Baumeister et al., 1997). Genetic analysis showed that reducing or eliminating SEL-12 

function causes an egg-laying defective (Egl) phenotype due to an abnormal vulva muscle 

development caused by a defect of Notch signaling. Interestingly, this Egl defect 
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phenotype can be rescued by human PS1 or PS2 (Levitan et al., 1996) suggesting that SEL-

12 is a bona fide PS. The second PS homologue in C. elegans, HOP-1, has been shown to 

have a similar function in Notch signaling like SEL-12 (Li and Greenwald, 1997). HOP-1 

is also able to rescue the Egl defect phenotype in the SEL-12 mutant worms. This 

observation suggests the functional redundancy of SEL-12 and HOP-1 like PS1 and PS2 in 

human. In contrast to the other two homologues, which are expressed somatically during 

all developmental stages in nearly all tissues (Levitan and Greenwald, 1995; Baumeister et 

al., 1997; Westlund et al., 1999), the third PS homologue in C. elegans, SPE-4, has a 

characteristic expression pattern. After hatching from the egg, C. elegans proceeds through 

four larval stages, which end in a molt, before it reaches adulthood. The spe-4 gene is 

exclusively expressed during the larval stage 4 (L4) in spermatogenesis in the spermatheca, 

and it is involved in spermatogenesis where it is required for protein transport or sorting 

(L'Hernault and Arduengo, 1992; Arduengo et al., 1998). However, it has not been 

investigated whether SPE-4 functions as a protease like PS and whether it is involved in 

Notch signaling. 

 

 

 

1.5 Aim of the study 

The first aim of this study was to investigate the putative proteolytic function of C. elegans 

SPE-4, the most distant PS homologue. Despite its low homology to PS, the two functional 

aspartates within TMDs 6 and 7 and the GxGD active site motif as well as the PALP motif 

are conserved. These motifs are characteristic for PS-type aspartyl proteases and thus 

indicated that SPE-4 functions as a protease. Because it is difficult to analyze SPE-4 

function directly in C. elegans due to its temporally and spatially limited expression and 

therefore low abundance, mammalian cells were employed to address the first aim. In 

addition, it was reasoned that, if SPE-4 had a proteolytic function, it might influence the 

substrate cleavage of γ-secretase due to its sequence differences to PS. The second aim of 

the study was therefore to investigate whether SPE-4 could be used as a tool to identify 

putative sequence requirements, in particular at the active site domain in TMDs 6 and 7 of 

PS, for γ-secretase activity by a domain-swapping approach.  



Materials and Methods 

2. Materials and Methods 

2.1 Machines, hardware and software 

2.1.1 Equipment and instrument 

Shaker (KM2)  Edmund Buhler 
Rotator  Scientific Industries 
Thermo-shaker (Thermomixer compact)  Eppendorf 
Magnet stirler (IKAMAG RCT basic)  IKA Labortechnik 
Vortex (Vortex Genie 2)  Scientific Industries 
Microwave Bosch 
Heatblock Liebisch 
  
Centrifuge for Eppendorf tubes (Biofuge pico) Heraeus, Kendro 
Centrifuge for Eppendorf tubes / 4℃ (Biofuge pico)  Heraeus, Kendro 
Centrifuge / 4℃ / swing rotor (Megafuge 1.0R) Heraeus, Kendro 
Centrifuge / 4℃ / swing rotor (Multifuge 3 L-R) Heraeus, Kendro 
Centrifuge (J2-21)  Beckman 
     Rotors: Type JA10, Type JA 20  Beckman 
Ultracentrifuge (L7-55)  Beckman 
     Rotors: Ti 50, Ti 70  Beckman, Sorvall 
Table ultracentrifuge (Optima Ultracentrifuge)  Beckman 
     Rotor: TLA-55 Beckman 
  
pH-Meter (Inolab pH Level 1) WTW 
Scale (Analytical+  200 g – 0,0001 g)  Ohaus 
Scale (Standard  2000 g – 0,01 g)  Ohaus 
  
Photometer (SmartSpecTM 3000)  Bio-Rad 
Disposable cuvette (10 x 11x 45 mm)  Sarstedt 
Quarz cuvette (10 x 10 x 45 mm)  Hellma 
  
Incubator 37°C (Function line) Heraeus  
Incubator 56°C Heraeus 
Freezer -20°C Elektrolux 
Fridge 4°C Elektrolux  
Autoclave (Tuttnauer 3850 EL) Systec 
Water deionizing machine (Milli-Q academic) Millipore 
Pipettier (Accu-Jet) Brand 
Disposable pipets (25 ml, 10 ml, 5 ml) Sarstedt 
Pipette tips (1 ml, 200 µl, 20 µl, 2 µl) Sarstedt 
Disposable tubes (50 ml, 15 ml, 2 ml, 1,5 ml,  0,5 ml, 0,2 ml) Sarstedt 
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2.1.2 Recombinant DNA techniques 

PCR-mashine (Mastercycler personal) Eppendorf 
37oC incubator (Function line) Haereus 
37oC shaker (Certomat BS-1) B. Braun Biotech 

International 
Elektrophoresis chamber (Model: B1; Model: B2) Owl Separation 

Systems, Inc. 
UV-Lamp (White/ Ultraviolet Transilluminator)  
Camera (CCD Video Camera Module) 
Software (Quickstore pluss II) 
Printer (p91) 

UVP 
 
MS Laborgeräte 
Mitsubishi 

 

 

2.1.3 Cell culture 

Clean bench (Hera Safe HS12)  Heraeus, Kendro 
CO2-Incubator (Hera cell) Heraeus, Kendro 
Gas burner (Vulcan) Heraeus, Kendro 
Centrifuge (Megafuge 1,0)  Heraeus, Kendro 
Water bath (Typ 1002 ; Typ 1003)  GFL 
Microscope (Wiloverts 10x 4/10/20)  Hund 
N2-Tank (Chronos) Messer Griesheim 
Freezer -80°C (HFU 80)  Heraeus, Kendro 
Cloning ring (8x8 mm) Bellco 
Sterile disposable pipettes (2 ml, 5 ml, 10 ml, 25 ml)  Sarstedt 
Disposable tubes (15ml, 50ml) Sarstedt 
Pasteur pipettes Sarstedt 
Disposable culture dish (60 x 15 mm, 100 x 17 mm, 
 24 well, 12 well)  

Nunc 
 

 

 

2.1.4 Protein analysis 

Electrophoresis chambers:  
Mini-PROTEAN 3 electrophoresis cell  Bio-Rad 
X Cell Sure LockTM Mini Cell  Novex, Invitrogen 
  
Transfer chamber: Mini Trans-Blot transfer cell Bio-Rad 
Power supply (Power Pac 300)  Bio-Rad 
Scanner: Epson Perfection 4870 Photo Epson 
Scanner: Umax Astra 1220S  
Film developer (Curix 60)  Agfa 
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2.1.5 Immunofluorescense microscopy 

Axioskop2 plus Zeiss 
63X/1.25 oil Plan-NEOFLUAR objective lens Zeiss 
Standard FITC und TRITC Fluorescenzse filter sets  
AxioCam HRm camera Zeiss 
Software: Axio Vision Software Images Zeiss 
  
Adobe Photoshop 6.0 Adobe 
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2.2 Recombinant DNA techniques 

2.2.1 Constructs and vectors 

Constructs Cloning sites Vector  
PS1 wt SmaI / NotI pBY895 §1 
PS1 wt EcoRI pcDNA3.1 zeo(+) §2 

His-PS1 wt BamHI / XhoI pcDNA4/His C §3 
PS1 D385N EcoRI / BamHI pcDNA3.1 zeo(-) §4 
PS1 D385A BamHI / XhoI pcDNA3.1 zeo(+) §5 

His-PS1 D385A BamHI / XhoI pcDNA4/His C §6 
SEL-12 SmaI / NotI pBY895 §7 
HOP-1 SmaI / NotI pBY895 §8 
SPE-4 SmaI / NotI pBY895 §9 

SPE-4 wt HindIII / XhoI pcDNA3.1 zeo(+)  
His-SPE-4 wt EcoRV / XhoI pcDNA4/His B  
SPE-4/PS1c HindIII / XhoI pcDNA3.1 zeo(+)  

His-SPE-4/PS1c EcoRV / XhoI pcDNA4/His B  
SPE-4/PS1 loop/PS1c HindIII / XhoI pcDNA3.1 zeo(+)  

His-PS1/SPE-46/7 EcoRI / XhoI pcDNA4/His C  
His-PS1/SPE-46/7 D394A BamHI / XhoI pcDNA4/His C  

His-PS1/SPE-46 BamHI / XhoI pcDNA4/His C  
His-PS1/SPE-47 BamHI / XhoI pcDNA4/His C  

His-PS1/SPE-47 F392L BamHI / XhoI pcDNA4/His C  
His-PS1/SPE-47 F392M BamHI / XhoI pcDNA4/His C  

His-PS1 L383F BamHI / XhoI pcDNA4/His C  
APPsw-6myc ClaI pCS2 §10 

F-NEXT  pcDNA3 hygro(+) §11 

Table 1: cDNA constructs 

The overview of the constructs and the vectors. Restriction enzyme sites which were used to clone 
the constructs into the respective vectors are also indicated.  

§1, 7, 8 and 9: The sel-12 cDNA (GenBank accession number AF171064) was amplified by PCR 
from a C. elegans mixed stage cDNA library (provided by Bob Barstead) and subcloned as a 
SmaI/NotI fragment under the control of a 2.8 kb sel-12 promoter fragment starting at the 
translational start ATG of sel-12 to generate pBY895 (Wittenburg et al., 2000). PCR-amplified 
cDNAs encoding HOP-1 (amplified from the C. elegans mixed stage cDNA library), SPE-4 
(provided by Dr. Steve L´Hernault) and PS1 were subcloned into pBY895 as SmaI/NotI fragments 
replacing the sel-12 cDNA thus placing them under the control of the sel-12 promoter. Those 
constructs were provided by Dr. Stefan Eimer. 

§2~6: These constructs were provided by Dr. Harald Steiner. 

§10: This construct was provided from Dr. Alison Goate (Hecimovic et al., 2004). 

§11: NEXT construct, which was provided from Dr. Raphael Kopan (Kopan et al., 1996), was 
modified by Dr. Masayasu Okochi (Okochi et al., 2002). 
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2.2.2 PCR 

Each cDNA fragment was amplified by PCR. Template cDNA, forward and reverse 

primers (Table 1) and dNTPs were mixed together with PCR reaction buffer and Pwo 

DNA polymerase (see 2.2.2.2) , and the PCR was carried as described in 2.2.2.3. 

 

 

2.2.2.1  Primers and template cDNAs 

Construct Primer pairs cDNA 
template  

F: 5'CCCAAGCTTTGTCTAAAAATGGACACC   

     CTTCGATCGATTTCTAGCGAATTAG-3' SPE-4  SPE-4 wt 
R: 5'-CCGCTCGAGTCATCCGTAAAGTTGCTC-3'   

F: 5'-GATATCGACACCCTTCGATCGATTTCT-3'  His-SPE-4 wt 
R: 5'-CCGCTCGAGTCATCCGTAAAGTTGCTC-3' 

SPE-4 
 

F: 5'-CCCAAGCTTTGTCTAAAAATGGACACCC  

       TTCGATCGATTTCTAGCGAATTAG-3'  

R: 5'-GGTGATGGAGATCGGCAGAGCAGG-3' 
SPE-4 wt 

 

F: 5'-CCTGCTCTGCCGATCTCCATCACC-3'  

SPE-4/PS1c 

R: 5'-CGCCTCGAGCTAGATATAAAATTG-3' 
PS1 wt 

 

F: 5'-GATATCGACACCCTTCGATCGATTTCT-3'  His-SPE-4/PS1c 
R: 5'-CCGCTCGAGTCATCCGTAAAGTTGCTC-3' 

SPE-4/PS1c 
 

F: 5'-CCCAAGCTTTGTCTAAAAATGGACACCC  

          TTCGATCGATTTCTAGCGAATTAG-3'  

R: 5'-GTGGACCTTTCGGACATAAAACGGCAAAGAG-3' 
SPE-4/PS1c 

 

F: 5'-CTCTTTGCCGTTTTATGTCCGAAAGGTCCAC-3'  

R: 5'-CTCCAAAGCCGAGACGTACTCCCCTTTCCTC-3' 
PS1 wt 

 

F: 5'-GAGGAAAGGGGAGTACGTCTCGGCTTTGGAG-3'  

SPE-4/PS1 loop/PS1c 

R: 5'-CGCCTCGAGCTAGATATAAAATTG-3' 
SPE-4/PS1c 

 

F: 5'-CCGAATTCAAGAAAGAACCTCAA-3'  

R: 5'-CAATCCAGAGAACAAACCACGCAGTCCATTC-3' 
PS1 wt 

 

F: 5'-GAATGGACTGCGTGGTTTGTTCTCTGGATTG-3'  

R: 5'-CTGTTGCTGAGGCTTTACCAATCAGAAGACTG-3' 
SPE-4/PS1 
loop/PS1c  

F: 5'-CAGTCTTCTGATTGGTAAAGCCTCAGCAACAG-3'  

His-PS1/SPE-46/7

R: 5'-CGCCTCGAGGCAAATATGCTAGATATA-3' 
PS1 wt 

 

F: 5'-CCGGATCCACAGAGTTACCTGCACC-3'  

R: 5'-GAAGACGAAAGCTCCAAAGC-3'  

F: 5'-GCTTTGGAGCTTTCGTCTTC-3'  

His-PS1/SPE-46/7 
D394A 

R: 5'-CGCCTCGAGGCAAATATGCTAGATATA-3' 

His-PS1/SPE-
46/7

 

F: 5'-CCGGATCCACAGAGTTACCTGCACC-3'  

R: 5'-GTGGACCTTTCGGACATAAAACGGCAAAGAG-3' 
His-PS1/SPE-

46/7  

F: 5'-CTCTTTGCCGTTTTATGTCCGAAAGGTCCAC-3'  
His-PS1/SPE-46

R: 5'-CGCCTCGAGGCAAATATGCTAGATATA-3' 
PS1 wt 
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Construct Primer pairs cDNA 
template  

F: 5'-CCGGATCCACAGAGTTACCTGCACC-3'  

R: 5'-CTCCAAAGCCGAGACGTACTCCCCTTTCCTC-3' 
PS1 wt 

 

F: 5'-GAGGAAAGGGGAGTACGTCTCGGCTTTGGAG-3'  
His-PS1/SPE-47

R: 5'-CGCCTCGAGGCAAATATGCTAGATATA-3' 
His-PS1/SPE-

46/7  

F: 5'-CCGGATCCACAGAGTTACCTGCACC-3' 

R: 5'-GAAATCTCCCAAGCCGAGACGTACTCCCCTTTC-3' 

F: 5'-CGTCTCGGCTTGGGAGATTTCGTCTTCTACAGT-3' 
His-PS1/SPE-47 F392L 

(§1) 
R: 5'-CGCCTCGAGGCAAATATGCTAGATATA-3' 

His-PS1/SPE-
47

 

F: 5'-CCGGATCCACAGAGTTACCTGCACC-3' 

R: 5'-GAAATCTCCCATGCCGAGACGTACTCCCCTTTC-3 

F: 5'-CGTCTCGGCATGGGAGATTTCGTCTTCTACATG-3 
His-PS1/SPE-47 F392M 

(§2) 
R: 5'-CGCCTCGAGGCAAATATGCTAGATATA-3' 

His-PS1/SPE-
47

 

F: 5'-CCGGATCCACAGAGTTACCTGCACC-3'  

R: 5'-GAAAATGAAATCTCCAAATCCAAGTTTTACTCC-3'  

F: 5'-GGAGTAAAACTTGGATTTGGAGATTTCATTTTC-3'  
His-PS1 L383F 

R: 5'-CGCCTCGAGGCAAATATGCTAGATATA-3' 

PS1 wt 

 

 

Table 2: Primers and cDNA templates used 

Primer pairs, forward primer (F) and reverse primer (R), and cDNA templates, which were used for 
PCR to generate the constructs, are shown. 

§1 and 2 were generated by Dr. Stefan Eimer. 

 

 

2.2.2.2 Reaction mixture 

cDNA template 1μl
Forward primer (1 μg/μl) 1μl
Reverse primer (1 μg/μl) 1μl
10xPCR reaction buffer complete (Peq Lab) 10μl
dNTPs (10 mM, Roche) 2μl
PWO DNA polymerase (1 U/μl, Peq Lab) 2.5μl
dH2O 82.5μl
Final volume: 100μl
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2.2.2.3 PCR program 

94℃ 2 min  
94℃ 15 seconds
48℃ 30 seconds
72℃ 1 min

 10 cycles 

94℃ 15 seconds
55℃ 30 seconds
72℃ 1 min

 15 cycles 

72℃ 7 min  
4℃ ∞  

 

 

2.2.2.4 Two-step PCR 

Two-step PCR was performed to introduce mutation or to replace domain(s) in the 

construct. The first PCR was performed using indicated primer pairs (see 2.2.2.1). The 

PCR products were isolated and purified as described in 2.2.3. Aliquot of purified PCR 

products were mixed (1:1) and this mixture was used as the cDNA template for the second 

PCR. The second PCR was performed using the outer primer pairs. 

 

 

2.2.3 Isolation and purification of PCR products 

2.2.3.1 Materials 

TBE-buffer:  
9 mM Tris-base, 2 mM EDTA in dH2O  
6x DNA-loading buffer:  
30% Glycerol, 0.25% Bromophenolblue and 0.25% Xylenecyanol FF in dH2O 
  
Agarose NA  Amersham Biosciences 
1 kb DNA ladder  Gibco Invitrogen Corporation 
Nucleo Spin Extraction Kit  Macherey-Nagel  
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2.2.3.2 Agarose gel electrophoresis 

20 μl of 6x DNA-loading buffer was added into 100 μl PCR products, loaded on 1% 

Agarose in TBE-buffer and 0.2 μg/ml Ethidiumbromide, and were separated by 

electrophoresis. 1 kb DNA ladder was applied in parallel to the PCR products. 

Electrophoresis was carried out by constant voltage at 150 volt.  

 

 

2.2.3.3 Isolation and purification of PCR products from agarose gels 

The expected size of cDNA band was confirmed under the UV lamp, cut out and 

transferred into an Eppendorf cup. cDNA fragments were extracted and purified from 

agarose gel using Nucleo Spin Extraction Kit at final volume 20-30 μl. Isolated and 

purified cDNA fragments were either used as template cDNA for the second PCR, if 

necessary, or proceeded to the enzyme treatment steps. 

 

 

2.2.4 Enzymatic modification of cDNA fragments 

2.2.4.1 Enzymes 

Restriction enzymes:  
HindIII (10 U/μl) MBI Fermentas 
XhoI (10 U/μl) MBI Fermentas 
EcoRI (10 U/μl) MBI Fermentas 
BamHI (10 U/μl) MBI Fermentas 
Alkaline phosphatase:  
Shrimp alkaline Phosphatase (SAP; 1 U/μl, ) Roche 
Ligase:  
T4 DNA ligase (5 U/μl) Roche 
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2.2.4.2 Restriction enzyme treatment 

Purified cDNA fragments were digested by the indicated restriction enzymes (see 2.2.1). 

Total amount of cDNA fragment (20 μl), 10 U of each enzyme and reaction buffer from 

the manufacture, adjusted the volume to 30 μl with dH2O, were mixed and incubated 

overnight at 37℃. 5 μg of vectors were also digested by the corresponding enzymes for 2 h 

at 37℃. After the reaction, cDNA fragments were isolated by agarose electrophoresis (see 

2.2.3.2) and purified with Nucleo Spin Extraction kit (see 2.2.3.3). 

 

 

2.2.4.3 Alkaline phosphatase treatment 

To avoid self-ligation, the linearized vectors were dephosphorylated by SAP (see 2.2.4.1) 

before ligation. 1 U of SAP per 10-15 μg of vector fragment was added with reaction 

buffer from the manufacture. The mixture was incubated at 37℃ for 1 h and SAP was 

deactivated by boiling the mixture at 65℃ for 10 min. 

 

 

2.2.4.4 Ligation of cDNA fragments 

Ligation was performed to insert cDNA fragments into a vector. 200-300 ng vector, 0.5-1 

μg cDNA fragment, 5 U T4 ligase and reaction buffer from the manufacture were mixed 

with dH2O at the final volume of 20 μl. The ligation mixture was incubated for 1 h at room 

temperature. 10 μl of the ligation mixture was used for E. coli transformation (see 2.2.5). 
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2.2.5 Transformation of E. coli 

2.2.5.1 Materials 

LB medium (Low Salt Luria-Bertani Medium): 
1% Tryptone, 0.5% Yeast Extract, 0.5% NaCl in dH2O (adjust pH to 7.0)  
(Autoclaved at 120°C/1.2 bar for 20 min) 
LB agarose plates with or without ampicillin: 
LB medium, 1.5% Agarose, (100 μg/ml ampicillin) 
(Autoclaved at 120°C/1,2 bar for 20 min) 
Transformation buffer: 
50 mM CaCl2, 15% Glycerol, 10 mM PIPES pH 6.6 
Competent E. coli strain: 
DH5α 

 

 

2.2.5.2 Preparation of competent cells 

Overnight DH5α culture in LB medium was adjusted to OD600=0.2 by dilution with fresh 

LB medium. 5 ml of OD adjusted DH5α was added into 400 ml fresh LB medium and 

further cultured for 2-3 h at 37℃ by shaking. When the density of the cells become 

OD600=0.2, the culture was chilled on ice for 10 min, then centrifuged at 1500xg for 10 

min at 4℃. The cell pellet was suspended in 200 ml of transformation buffer (see2.2.5.1), 

and was centrifuged again at 1500xg for 10 min at 4℃ after chilled on ice for 20 min. The 

cell was suspended once again in 20 ml of transformation buffer. Aliquots of the 

suspension were frozen in liquid N2 and stored at -80℃ in the freezer. 

 

2.2.5.3 Transformation of E. coli 

100 μl of competent cells were added to the ligation mixture (see2.2.4.4) and incubated for 

20 min on ice. Heat shock treatment of the E. coli / ligation mixture was done at 42℃ for 1 

min. 1 ml of fresh LB medium was added into the mixture and incubated at 37℃ for 1 h 

with shaking. The mixture was centrifuged at 16,000xg for 1 min and the pellet was re-

suspended with 100-200 μl of LB medium and was plated onto LB-agarose plate 

containing 100 μg/ml ampicillin. After incubation at 37℃ overnight, colonies were picked, 
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inoculated into 2 ml of fresh LB medium containing ampicillin and incubated overnight at 

37℃. 1.5 ml of the overnight culture was used for mini prep (see 2.2.6.2). 

 

 

2.2.6 Preparation of plasmid DNA from E. coli 

2.2.6.1 Materials 

LB medium: 
See 2.2.5.1
TENS buffer: 
10 mM Tris pH 8.0, 1 mM EDTA pH 8.0, 0.1N NaOH, 0.5% SDS in dH2O 
NaOAc buffer:  
3 M NaOAc in dH2O (adjust pH to 5.2) 
RNAse (DNAse-free):  
10 mg/ml RibonucleaseA (RNAse; Sigma) in 10 mM Tris pH 7.5, 10 mM NaCl 
Solved for 15 min at 100oC and cooled down slowly to room temperature.  
Stored at –20 oC. 
TE buffer 
10 mM Tris pH7.6, 1 mM EDTA pH8.0 in dH2O 
 
Nucleobond AX 500 Kits                         Macherey-Nagel 

 

 

2.2.6.2 Small-scale plasmid DNA preparation (mini-prep) 

Plasmid DNA transformed in E. coli was isolated by the alkaline-lysis method from E. coli. 

1.5 ml of overnight E. coli culture in LB medium (see 2.2.5.3) was collected into 

Eppendorf tube and centrifuged for 1 min at 16,000xg. The supernatant was gently 

discarded leaving 50-100 μl with cell pellet. The E. coli pellet was resuspended with 

leftover supernatant by vortexing, mixed well with 300 μl TENS buffer (see 2.2.6.1) and 

incubated for 5 min on ice. The suspension was neutralized by adding 150 μl 3 M NaOAc 

(see 2.2.6.1), and the insoluble fraction was removed by centrifugation for 5 min at 

16,000xg. Supernatant was transferred into a fresh tube and plasmid DNA and RNAwas 

precipitated by mixing with ice-cold 100% ethanol. Precipitated plasmid DNA and RNA 

was centrifuged for 10 min at 16,000xg. The pellet was rinsed once with ice-cold 70% 

ethanol, dried and solved in 27 μl TE buffer (see 2.2.6.1) with 3 μl RNAse solution. 
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2.2.6.3 Mini-prep DNA analysis 

3 μl of mini-prep DNA was treated with restriction enzymes as described above (see 

2.2.4.2) to identify positive clones.  After the restriction digest, the DNA fragments were 

separated by agarose electrophoresis (see 2.2.3.2). One of typically several positive clones 

containing the predicted size of insert cDNA fragment was selected and used for large-

scale DNA preparation (see 2.2.6.4). 

 

 

2.2.6.4 Large-scale plasmid DNA preparation (maxi-prep) 

5-10 μl of the leftover overnight culture from a positive E. coli clone was inoculated in 200 

ml of fresh LB ampicillin medium (see 2.2.5.1), and cultured at 37℃ overnight by shaking. 

Plasmid DNA was isolated and purified from the E. coli overnight culture using 

Nucleobond AX 500 Kits following the protocol from the manufacture. Plasmid DNA was 

resuspended in 200 μl TE buffer (see 2.2.6.1). 2 μl of aliquot was diluted in 600 μl TE and 

carried out for measurement of DNA concentration by photometer at OD260. 

 

2.2.7 DNA sequencing 

All cDNA constructs were confirmed by sequencing by GATC Biotech AG (Konstanz, 

Germany). 
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2.3 Cell culture and cell lines 

2.3.1 Materials 

Medium:  
Dulbecco's modified Eagle's medium (DMEM) Gibco Invitrogen Corporation 
Supplements:  
Fetal bovine serum  Gibco Invitrogen Corporation 
Glucose Gibco Invitrogen Corporation 
Antibiotics:  
Penicillin/streptomycine (PS) Gibco Invitrogen Corporation 
G418 Gibco Invitrogen Corporation 
Zeocin invitrogen 
Hygromycin B invitrogen 
Trypsin-EDTA Gibco Invitrogen Corporation 
  
PBS:  
140 mM NaCl, 10 mM Na2HPO4 2H2O, 1.75 mM KH2PO4, 2.7 mM KCl  

 

 

2.3.2 Cell lines and medium 

Cell lines Antibiotics 

PS1/2-/- MEF PS/G418 
HEK293/sw PS/G418 
PS1 wt/HEK293/sw PS/G418/zeocin 
PS1 D385N/HEK293/sw PS/G418/zeocin 
SPE-4 wt/HEK293/sw PS/G418/zeocin 
His-SPE-4 wt/HEK293/sw PS/G418/zeocin 
SPE-4/PS1c/HEK293/sw PS/G418/zeocin 
His-SPE-4/PS1c/HEK293/sw PS/G418/zeocin 
His-PS1 wt/HEK293/sw PS/G418/zeocin 
His-PS1 L383F/HEK293/sw PS/G418/zeocin 
F-NEXT/His-PS1 wt/HEK293/sw PS/G418/zeocin/hygromycin B 
F-NEXT/His-PS1 L383F/HEK293/sw PS/G418/zeocin/hygromycin B 
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2.3.3 Cell culture 

Mouse embryonic fibroblast (MEF) cells derived from PS1/2 double knockout (PS1/2-/-) 

mouse (Herreman et al., 1999) were cultured in DMEM supplemented with 10% fetal 

bovine serum, 2 mM glucose, 1% of penicillin/streptomycine and 200 μg/ml G418, under 

5% CO2 at 37℃. For inoculation, the cells were washed once with autoclaved PBS, 

trypsinized for 5 min and an appropriate amount of cells was spread in fresh medium.  

Human embryonic kidney (HEK) 293 cells stably expressing human APP carrying the 

Swedish mutation (HEK293/sw) (K595N and M596L double mutations in APP695 variant) 

(Citron et al., 1992) were cultured and spread as MEF cells. 

 

 

2.3.4 Transfection of mammalian cells 

2.3.4.1 Materials 

Medium:  
OptiMEM Gibco Invitrogen Corporation 
Transfection reagent:  
Lipofectamine 2000 Invitrogen 

 

 

2.3.4.2 Transfection mixture 

Culture 
plate 

Volume of 
plating medium 

Total cDNA and 
dilution volume

Lipofectamine 2000 
and dilution volume 

24 well 1 ml 1 μg and 50 μl 2 μl and 50 μl 
10 cm 15 ml 16 μg and 1.5 ml 40 μl and 1.5 ml 

 

 

2.3.4.3 Transient cotransfection 

One tenth of PS1/2-/- MEF cells from a confluent 10 cm culture dish were spread into a 10 

cm dish containing 15 ml of culture medium without antibiotics. On the next day, cells 

were transiently cotransfected with the respective combinations of two cDNAs using 

lipofectamine 2000 In total 16 μg of cDNAs (8 μg/cDNA) and 40 μl of lipofectamine 2000 
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per dish were used. First, cDNAs and lipofectamine 2000 were mixed with 1.5 ml of 

OptiMEM and incubated for 5 min at room temperature. Both solutions were mixed, 

incubated for 20 min at room temperature and then gently added onto the cells. 24 h after 

transfection, the medium was replaced with 4.5 ml of fresh medium and conditioned for 16 

h. 

 

 

2.3.4.4 Stable transfection 

To establish stable cell lines, HEK293/sw cells were transfected with cDNA as described 

above (see 2.3.4.3). A day after transfection, cells were split 1:10~1000. Two days after the 

transfection, zeocin at final concentration 0.2 mg/ml was added and the zeocin-resistant 

cells were selected under the zeocin containing medium for 2-3 weeks. Single cell clones 

were isolated using cloning-cylinders, transferred to 24 well plate and cultured. The 

appropriate clone was selected as working clone based on a robust expression level of 

transfected cDNA (see 2.5). Pool stable cell lines were generated by hygromycin B 

selection, at final concentration at 0.5 mg/ml, for F-NEXT stably expressing cells. The 

cells were transfected as described above (see 2.3.4.3), and split 1:10 in 4-5 of 10 cm 

dishes for selection. After 2-3 weeks, all hygromycin B-resistant single cell clones were 

collected all together, transferred into fresh 10 cm dish and further cultured. 
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2.4 Antibodies 

2.4.1 Monoclonal antibodies 

Antibody Epitope Reference / 
supplier IP1 Blot IF2

PS1N PS1  
N-terminus

(Capell et al., 
1997)  1: 5000  

3D7 PS1 
aa 263-407

(Steiner et al., 
1999b)  1:2000  

HF5C PS2 
aa 297-356

(Steiner et al., 
1999b)  1:10000  

6E10 Aβ 
aa 1-17 

Signet 
Laboratories  1: 10000  

M2 FLAG-tag Sigma  1: 1000  

9E10 Myc-tag Santa Cruz 
Biotechnology  1: 2000 1:500 

1: Abbreviation of immunoprecipitation, 2: Abbreviation of immunofluorescense 

 

 

2.4.2 Polyclonal antibodies 

Antibody Epitope Reference / 
supplier IP blot IF 

3027 PS1 
aa 263-407

(Walter et al., 
1997) 1:250 1: 1000  

3711 PS2 
aa 297-356

(Walter et al., 
1998) 1:250   

N1660 NCT 
aa 693-709 Sigma  1: 5000  

434G APH-1aL 
aa 245-265

(Prokop et al., 
2004)  1μg/ml  

1638 PEN-2 
aa 4-15 

(Steiner et al., 
2002)  1μg/ml  

8177 SPE-4 
aa 206-389  1:250 1:1000  

5313 APP 
aa 444-592

(Steiner et al., 
1999b)  1: 2000  

6687 APP 
last 20 aa 

(Steiner et al., 
2000)    

3552 Aβ 
aa 1-40  1: 300   

Cleaved Notch-1 NICD 
aa V1744 

Cell Signaling 
Technology  1: 1000  
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2.4.3 Secondary antibodies 

Antibody Epitope Reference / 
supplier IP blot IF 

anti-rabbit-HRP Rabbit 
IgG Promega  1:10000  

anti-mouse-HRP Mouse 
IgG Promega  1:5000  

anti-mouse-AP Mouse 
IgG Promega  1:5000  

Alexa Fluor 488 Mouse 
IgG 

Molecular 
Probes   1:500 

 

 

 

2.5 Protein analysis 

2.5.1 Total cell lysate 

2.5.1.1 Materials 

PBS: 
See 2.3.1
STEN-lysis buffer: 
50 mM Tris pH7.6, 150 mM NaCl, 2 mM EDTA, 1% NP-40 in dH2O 
Co-IP buffer: 
1% CHAPSO, 150 mM NaCitrate pH6.4 in dH2O 
BSA solution: 
2 mg/ml albmine from bovine serum in dH2O 
 
Protease inhibitor cocktail P8340            Sigma 
BIO-RAD protein assay                          BIO-RAD  

 

 

2.5.1.2 Cell lysate preparation 

Confluent cells were washed once with PBS buffer (see 2.3.1) and collected into eppendorf 

tubes by centrifugation for 5 min at 1000xg. Cell pellet was lysed with 500 μl of STEN-

lysis buffer with protease inhibitor cocktail (see 2.5.1.1) per 10 cm dish for 20 min on ice, 

and the lysate was ultracentrifuged for 30 min at 100,000xg. Supernatant fraction was 
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transferred into a new tube and an aliquot with drawn to measure the protein concentration 

by the Bradford protein assay from BIO-RAD (See 2.5.1.3). 

 

 

2.5.1.3 Protein quantitation 

The protein concentration of the total cell lysate was measured by the Bradford assay. 1-2 

μl of total cell lysate was mixed with 1 ml of BIO-RAD protein assay solution, diluted 

with dH2O (1:5), incubated 5 min at room temperature, and was measured by photometer 

at OD595. 2 μl of 2 mg/ml BSA was included as standard in every measurement. 

 

 

2.5.2 Membrane lysate 

2.5.2.1 Materials 

PBS: 
See 2.3.1
Hypotonic buffer: 
10 mM MOPS, 10 mM KCL in dH2O, pH 7.0 
10% lubrol: 
10% lubrol in dH2O 
10% n-Dodecyl-β-D-maltoside (DDM): 
10% DDM in dH2O 
BSA solution: 
See 2.5.1.1
 
Glycerol 
Surfact-Amps 35, 10% Brig-35 solution                       Pierce 

 

 

2.5.2.2 Preparation and solubilization of membrane 

The cell pellet was resuspended in 500 μl of hypotonic buffer (see 2.5.2.1) and incubated 

for 20 min on ice. The suspension was rapidly frozen in liquid nitrogen to break the cells. 

10% lubrol and 10% Brig-35 solution (see 2.5.2.1) were added to the gently thawed 
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suspension to a final concentration of 1%. The suspension was incubated for 20 min on ice 

and centrifuged for 30 min at 2500xg at 4℃ to remove the nuclear fraction. Glycerol was 

added to the post nuclear supernatant fraction to a final concentration of 5%, and the 

fraction was ultracentrifuged for 30 min at 100,000xg to pellet the membranes. The 

membrane fraction was then solubilized with 1% DDM (see 2.5.2.1). The concentration of 

the lysate was measured by the Bradford assay as described in 2.5.1.3. 

 

 

2.5.3 Immunoprecipitation 

2.5.3.1 Materials 

PBS: 
See 2.3.1
Co-IP buffer: 
See 2.5.1.1
1% Triton X-100 buffer: 
1% Triton X-100 150 mM NaCitrate pH 6.4 in dH2O 
Protein A sepharose (PAS): 
1 g PAS / 10 ml STEN, 2 mg/ml BSA 
STEN-NaCl: 
50 mM Tris pH 7.6, 500 mM NaCl, 2 mM EDTA pH 8.0, 0.2% NP-40 in dH2O 
STEN-SDS: 
50 mM Tris pH 7.6, 150 mM NaCl, 2 mM EDTA pH 8.0, 0.1% SDS, 0.2% NP-40 in 
dH2O 
STEN: 
50 mM Tris pH 7.6, 150 mM NaCl, 2 mM EDTA pH 8.0, 0.2% NP-40 in dH2O 
 
Anti-FLAG M2 agarose                               Sigma 
Anti-HA agarose                                          Sigma 

 

 

2.5.3.2 Co-immunoprecipitation from total cell lysate 

Co-immunoprecipitation was performed to analyze the interaction between F-NEXT and γ-

secretase complex components. Anti-FLAG M2 agarose and anti-HA agarose (see 2.5.3.1) 

were washed 3 times with PBS (See 2.3.1), and 30 μl of those was added to 450 μl of total 
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cell lysate, either in co-IP buffer (see 2.5.1) or in 1% Triton X-100 buffer (see 2.5.3.1), 

from one 10 cm dish. After 2 h at 4℃ incubation by rotating, anti-FLAG M2 agarose was 

collected by centrifugation for 5 min at 3000xg, and washed 4 times with 1 ml co-IP buffer. 

After the last wash, the supernatant was carefully removed as much as possible, and 40 μl 

of urea SDS-SB (see 2.5.6.1) was added. 

 

 

2.5.3.3 Immunoprecipitation from conditioned medium 

Secreted Aβ and F-Nβ were analyzed from conditioned medium by combined 

immunoprecipitation/ immunoblotting. The conditioned media from transiently transfected 

PS1/2-/- MEF cells (see 2.3.4.3) were collected into falcontube and cleared by 

centrifugation for 10 min at 3000xg. For Aβ, 4 ml of conditioned medium were pre-cleared 

with 30 μl of PAS (see 2.5.3.1) for 30 min at 4℃. After centrifugation for 5 min at 3000xg, 

the pre-cleared medium was transferred to a fresh tube, containing 30 μl of PAS and 3552 

anti-Aβ antibody (see 2.4.2). The proteins were immunoprecipitated overnight at 4℃ by 

shaking. The immunoprecipitates were washed 10-15 min each with 1 ml of STEN-NaCl, 

STEN-SDS and STEN buffer (see 2.5.3.1).  

For F-Nβ, the conditioned medium was directly carried to immunoprecipitation without a 

pre-clear step. The same procedure as described for immunoprecipitation of Aβ was 

performed using 30 μl anti-FLAG M2 agarose (see 2.5.3.1) for 4ml medium. Both Aβ and 

F-Nβ were eluted with urea SDS-SB (see 2.5.6.1).  

To analyze Aβ40/42 ratio, HEK293/sw cell line stably expressing His-PS1 wt, His-PS1 

D385A, and the respective his-tagged chimeric proteins, were cultured in 10 cm dish. The 

cells were conditioned for 4-6 h with 4.5 ml fresh medium. Secreted Aβ species were 

immunoprecipitated as described above, eluted with urea SDS-SB or Wilgfang-SB (see 

2.5.6.1) and subfected to SDS-PAGE  (see 2.5.7). 
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2.5.4 Cell-free AICD assay 

2.5.4.1 Materials 

PBS: 
See 2.3.1
Hypotonic buffer: 
See 2.5.2.1
Na-Citrate buffer: 
150 mM Na-Citrate pH6.4 in dH2O 
STEN-lysis buffer: 
See 2.5.1.1
 
Complete Mini, Protease inhibitor cocktail tablets                   Roche 

 

 

2.5.4.2 Membrane preparation 

Stable HEK293/sw cells stably transfected respective PS constructs were used to analyze 

the de novo AICD generation. The cells were collected from confluent 10 cm dishes of 

each cell line after rinsing once with PBS (see 2.3.1), centrifuged for 5 min at 1000xg at 

4℃, and the pellet was resuspended in 500 ml hypotonic buffer (see 2.5.4.1) containing 1x 

complete mini protease inhibitor cocktail (see 2.5.4.1). After the incubation for 20 min on 

ice, cell suspension was homogenized by passing through a 23G needle with 10 strokes. 

Homogenized suspension was centrifuged for 15 min at 1000xg at 4℃. The supernatant 

fraction was transferred into a fresh tube, and further centrifuged for 45 min at 16,000xg at 

4℃ to collect the membrane fraction. The Membrane pellet was resuspended in 50 μl Na-

Citrate buffer containing complete mini (see 2.5.4.1). A 5 μl aliquot of the membrane 

suspension was lysed in 20 μl STEN-lysis buffer (see 2.5.1.1) as described above (see 0), 

and 10 μl of lysate was used for measuring the protein concentration by the Bradford assay 

(see 2.5.1.3). The volume membrane suspensions of the different cell lines to be used for 

assay were adjusted depending on the protein concentration. 
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2.5.4.3 AICD assay 

40 μl of the membrane suspension was incubated for 30 min at 37℃. Because of good 

efficiency of this assay, the incubation time was reduced from the original 2 h protocol 

(McLendon et al., 2000; Pinnix et al., 2001; Sastre et al., 2001; Moehlmann et al., 2002) to 

30 min to avoid saturation of AICD production due to the remaining amount of the 

endogenous PSs. After 30 min of incubation, the membrane suspension was subjected 

ultracentrifugation for 30 min at 100,000xg at 4℃. The supernatant fraction containing 

AICD was collected into a fresh tube, and urea SDS-SB (see 2.5.6.1) was added. 

 

 

2.5.5 In vitro γ-secretase assay with C100 

2.5.5.1 Materials 

Na-Citrate buffer: 
See 2.5.4.1
1% CHAPSO: 
1% CHAPSO in dH2O 
 
Purified recombinant C100 (Tian et al., 2002) 
Phosphatidylcholine 
DTT 
BSA 
 
Reaction mix: 
150 mM Na-Citrate, pH6.4, 0.25% CHAPSO, 0.5 mg/ml Phosphatidylcholine, 
10 mM DTT, 0.1 mg/ml BSA and 1x Complete Mini 
 
Complete Mini, Protease inhibitor cocktail tablets                   Roche 

 

 

2.5.5.2 In vitro γ-secretase assay 

Membrane fraction was prepared from cells as described above (see 2.5.4.2) and 

solubilized with 1% CHAPSO. After 30 min centrifugation at 100,000xg at 4℃, the lysate 

was pre-cleared with PAS (see 2.5.3.1) for 30 min. The pre-cleared lysate was co-

immunoprecipitated with either antibody against PS, 3027, or antibody against SPE-4, 
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8177, as described above (see 2.4 and 2.5.3.2). After 4 times washes with 0.5% CHAPSO 

in 150 mM Na-Citrate buffer, 20 μl of reaction mix (see 2.5.5.1) was added on the beads 

and incubated with 1 μl of C100 for over night either at 37℃ or at 4℃. 

 

 

2.5.6 Sample preparation for SDS-PAGE 

2.5.6.1 Materials 

Urea SDS-sample buffer (SB): 
62.5 mM Tris pH6.8, 2% SDS, 10% Glycerol, 2.5% β-Mercaptoethanol, 2 M Urea, 
Bromophenolblue in dH2O 
SB for modified Tris-Bicine urea gel 
0.72 M Bis-Tris, 0.32 M Bicine, 2% SDS, 5% β-Mercaptoethanol, 30% Sucrose,  
Bromophenolblue in dH2O 
 
Prestained protein standard; See Blue Plus2                      Invitrogen 

 

 

2.5.6.2 Sample preparation 

To detect PS1 NTF/CTF, NCT, APH-1, PEN-2, APPsw-6myc, APP-CTFs AICD, F-NEXT 

and NICD, total cell lysates were analyzed by immunoblotting. Prior to SDS-PAGE, 

proteins were denatured by adding urea SDS-SB (see 2.5.6.1) and boiling for 10 min at 

65℃ before applying on the gel. 25 μg proteins were separated by SDS-PAGE (see 2.5.7). 

12% urea Tris-Glycine gels (see 2.5.7.1) for analyzing PS1 NTF/CTF, and 7% Tris-

Glycine gels (see 2.5.7.1) for NCT, F-NEXT and NICD separation were used. 10-20% 

Tris-Tricine gels (see 2.5.7.2) were used to APPsw-6myc. 50 μg of proteins were loaded 

for detecting NICD by “Cleaved Notch-1” anti-NICD specific antibody. 

To detect AICD from cell-free AICD assay, urea SDS-SB was added to the supernatant 

fraction containing AICD and was boiled for 10 min at 95℃. 50% of the AICD fraction 

was separated on 10-20% Tricine gel (see 2.5.7.2). 

To detect sAPP, urea SDS-SB was added directly to aliquot of the 5 μl condition medium, 

and boiled for 10 min at 95℃ before applying on 7% Tris-Glycine gel. 
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Immunoprecipitated Aβ and F-Nβ from transiently transfected MEF cells on PAS or anti-

FLAG M2 agarose were released and denatured by adding urea SDS-SB or SB for the 

modified Tris-Bicine urea gels (see 2.5.6.1), and boiling for 10 min at 95℃. Total Aβ and 

F-Nβ were separated on 10-20% Tris-Tricine gels. Modified Tris-Bicine urea gels (see 

2.5.7.3) were used to separate Aβ40/42 species. 

To detect γ-secretase complex components co-immunoprecipitated with F-NEXT, 

immunoprecipitates were boiled for 10 min at 65℃  in urea SDS-SB. F-NEXT was 

separated in 7% Tris-Glycine gel, and the co-immunoprecipitated γ-secretase components 

were separated in 12% urea Tris-Glycine gel. 10% of immunoprecipitated fraction was 

applied for F-NEXT, and 50% was applied for γ-secretase components analysis. 

Prestained protein standard was mixed with the corresponding SB for each gel system, and 

always applied in parallel. 

 

 

2.5.7 SDS-Polyacrylamide gel electrophoresis (PAGE) 

2.5.7.1 Tris-Glycine gel 

2.5.7.1.1 Materials 

Lower Tris (4X): 
1.5 M Tris pH8.8, 0.4% SDS in dH2O 
Upper Tris (4X): 
0.5 M Tris pH6.8, 0.4% SDS in dH2O 

Acrylamide (SERVA): 
40% (w/v) Acrylamide / BIS-Acrylamid 37,5 :1 in dH2O 
8M Urea solution: 
8 M Urea in dH2O 
APS: 
10% (w/v) Ammonium Persulfat in dH2O 
Tris-Glycin gel running buffer: 
25 mM Tris, 200 mM Glycine, 0.1% SDS in dH2O 
 
N,N,N’ ,N’-tetramethylethylendiamine (TEMED)                       Merck 
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2.5.7.1.2 Gel preparation 

For one thick (1.5mm) mini gel: 

 7% separating 
gel Stacking gel 12% urea 

separating gel 
Urea 
stacking gel 

8 M Urea - - 2.625 ml 2.5 ml 
40% Acrylamide 1.31 ml 487.5 μl 2.25 ml 487.5 μl 
4x Lower Tris 1.875 ml - 1.875 ml - 
4x Upper Tris - 1.25 ml - 1.25 ml 
dH2O 4.315 ml 3.4 ml 0.75 ml 3.4 ml 
APS 15 μl 15 μl 15 μl 15 μl 
TEMED 15 μl 15 μl 15 μl 15 μl 

 

 

2.5.7.1.3 Electrophoresis 

Gels were set in Mini-PROTEAN 3 electrophoresis cell chamber (see 2.1.4), filled with 

Tris-Glycine gel running buffer. The power supply was (see 2.1.4) first set to constant 

voltage at 60 volt until all samples migrated into stacking gel then the voltage was raised to 

120 volt. 

 

 

2.5.7.2 Tris-Tricine gel 

2.5.7.2.1 Materials 

Tris-Tricine gel running buffer: 
100 mM Tris, 100 mM Tricine, 0.1% SDS in dH2O 
 
10-20% Tris-Tricine gel                         Invitrogen 

 

 

2.5.7.2.2 Electrophoresis 

Pre-cast Tris-Tricine Gel was put into X Cell Sure LockTM Mini Cell chamber (see 2.1.4). 

The gel chamber was filled with Tris-Tricine gel running buffer, and the Gel was run at 

constant voltage as described above (see 2.5.7.1.3). 
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2.5.7.3 Modified Tris-Bicine urea gel 

2.5.7.3.1 Materials 

Separating gel buffer: 
1.6 M Tris, 0.4 M H2SO4 in dH2O 
Spacer gel buffer: 
0.8 M Bis-Tris, 0.2 M H2SO4 in dH2O 
Stacking gel buffer: 
0.72 M Bis-Tris, 0.32 M Bicine in dH2O 
Acrylamide (BIO-RAD): 
40 % (w/v) Acrylamide / BIS-Acrylamid 19:1 in dH2O 
APS: 
See 2.5.7.1.1
20% SDS solution: 
20% SDS in dH2O 
 
Urea 
TEMED (See 2.5.7.1.1) 
 
Cathode buffer: 
0.2 M Bicine, 0.25% SDS, 0.1 M NaOH in dH2O 
Anode buffer: 
0.2 M Tris, 50 mM H2SO4 in dH2O 

 

 

2.5.7.3.2 Gel preparation 

For one thick (1.5 mm) mini gel: 

 Separating gel Spacer gel Stacking gel 
Urea 4.8 g - - 
40% Acrylamide 2.5 ml 300 μl 675 μl 
Separation gel buffer 2.5 ml - - 
Spacer gel buffer - 1 ml - 
Stacking gel buffer - - 1.5 ml 
20% SDS 50 μl 10 μl 10 μl 
dH2O 1.25 ml 680 μl 740 μl 
APS 40 μl 8 μl 18 μl 
TEMED 5 μl 2 μl 6 μl 

 

Spacer gel and stacking gel length were approximately 5 mm for each. 
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2.5.7.3.3 Electrophoresis 

Modified Tris-Bicine urea gels were run as described above (see 2.5.7.1.3). 

 

 

2.5.8 Western blotting 

2.5.8.1 Materials 

Blotting buffer: 
25 mM Tris, 200 mM Glycine in dH2O 
Blocking buffer: 
0.2% I-Block (TROPIX, see 2.5.8.1), 0.1% Tween-20 in PBS (see 2.3.1) 
TBST: 
10 mM Tris pH7.4, 150 mM NaCl, 0.1% Tween-20 in dH2O 
Sodium azide solution: 
5% Sodium azide in dH2O 
 
Filterpaper Schleicher&Schuell 
Immobilon-P (PVDF transfer membrane) Millipore 
Protran (Nitrocellulose transfer membrane) Schleicher&Schuell 
ECL, Western blotting detection reagent Amersham Biosciences 
ECL plus, Western blotting detection reagent Amersham Biosciences 
Western-Star, protein detection kit Tropix 
Super RX, Fuji Medical X-ray Film Fujifilm 

 

 

2.5.8.2 Blot 

The PVDF transfer membrane (see 2.5.8.1) was soaked in isopropanol, washed with dH2O, 

and put in blotting buffer (see 2.5.8.1). For Aβ and F-Nβ analysis, Nitrocellulose transfer 

membrane (see 2.5.8.1) soaked directly in blotting buffer was used. Gel plates were opened 

and gels were carefully removed from the plates. The transfer membrane was placed on the 

gel between blotting buffer two filter papers (see 2.5.8.1) soaked with blotting buffer, and 

one sponge on both sides. They were put in the Mini Trans-Blot transfer cell transfer 

chamber (see 2.1.4) filled with blotting buffer together with ice cube block and the protein 

transfer was performed for 1 h at 400 mA. 
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2.5.8.3 Blocking procedure 

After blotting, transfer membrane was removed, and blocked for 1 h at room temperature 

in I-Block (see 2.5.8.1). Nitrocellulose membranes for Aβ and F-Nβ were boiled for 5 min 

in PBS (see 2.3.1) before blocking to increase the signal. 

 

 

2.5.8.4 Primary antibody incubation 

Each primary antibody was diluted as described in 2.4 in I-Block (See 2.5.8.1) containing 

0.05% sodium azide (see 2.5.8.1). Transfer membranes were incubated with the respective 

primary antibody overnight at 4℃ with shaking. 

 

 

2.5.8.5 Secondary antibody incubation 

After overnight primary antibody incubation, transfer membranes were washed 4 times for 

15 min in TBST (see 2.5.8.1). After washing, transfer membranes were incubated with the 

appropriate horseradish peroxidase (HRP) conjugated secondary antibody at the optimal 

concentration (see 2.4.3) in TBST, for 1 h at room temperature. For Aβ and F-Nβ, 

Nitrocellulose transfer membrane was incubated in alkaline phosphatase (AP)-conjugated 

anti-mouse IgG secondary antibody, which was diluted in I-Block (See 2.5.8.1). After 

incubation, transfer membranes were washed in TBST. 

 

 

2.5.8.6 Detection 

Proteins were visualized by chemiluminescence. ECL plus reagent (see 2.5.8.1) was used, 

following the protocol from the manufacture, for detecting APH-1 and PEN-2. Aβ and F-

Nβ were detected by the Western-Star kit (see 2.5.8.1). All other proteins were detected by 

ECL (see 2.5.8.1). The signals were exposed on X-ray films for an appropriate time, and 

the films were developed using developer machine (see 2.1.4). 
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2.6 Immunofluorescense microscopy 

2.6.1 Cell preparation and transient cotransfection 

One tenth of PS1/2-/- MEF cells from confluent 10 cm culture dish was cultured on 

coverslips layed in 10 cm dish. The coverslips were transferred into 24 well plate with 1 ml 

culture medium without antibiotics next day, and the cells were transiently transfected with 

F-NEXT alone or cotransfected together with respective cDNAs as described  above using 

in total 1 μg cDNAs (0.5 μg/cDNA) and 2 μl of lipofectamine 2000 in 50 μl OptiMEM per 

well (see 2.3.4.2). 

 

 

2.6.2 Slide preparation 

2.6.2.1 Materials 

PBS: 
See 2.3.1
Fixation buffer: 
4% paraformaldehyde/4% sucrose in PBS 
Quenching buffer: 
50 mM NH4Cl in PBS 
Permealisation buffer: 
0.2% Triton X-100 in PBS 
Blocking buffer: 
0.2% gelatin in PBS 
 
Mowiol                                 CALBIOCHEM 

 

 

2.6.2.2 Cell fixation and permeabilisation 

Cell fixation and permeabilisation were performed as described (Wacker et al., 1997). 48 h 

after transfection, the cells were rinsed once in 1 ml PBS (see 2.3.1), and fixed for 20 min 

in fixation buffer (see 2.6.2.1). After fixation, cells were rinsed three times in PBS, and 

quenched for 10 min in quenching buffer (see 2.6.2.1). After rinsing three times in PBS, 
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permeabilisation was achieved in permeabilisation buffer (see 2.6.2.1) for 5 min. The cells 

were rinsed twice in PBS, and incubated for 10 min in blocking buffer (see 2.6.2.1). 

 

 

2.6.2.3 Antibody incubation and mounting 

The cells were incubated with a mixture of primary antibody diluted 1:500, 9E10 (see 

2.4.1) against the myc epitope to detect F-NEXT, in blocking buffer (see 2.6.2.1) for 20 

min. After rinsing twice in PBS (see 2.3.1), coverslips were incubated with a mixture of 

secondary antibodies diluted 1:500, Alexa 488-labeled polyclonal antibody (see 2.4.3) in 

blocking buffer for 20 min for detection. After rinsing in PBS, coverslips were mounted in 

a drop of Mowiol (see 2.6.2.1). 

 

 

2.6.2.4 Microscopic analysis 

Fixed cells were analyzed on a Zeiss Axioskop2 microscope equipped with a 63x/1.25 

objective and standard FITC and TRITC fluorescence filter sets using an Axiocam HRm 

Camera and AxioVision software. Images were assembled and processed using Adobe 

Photoshop (see 2.1.5). 

 

 

 

2.7 Transgenic lines of C. elegans and rescue assays 

The cDNAs were subcloned under the control of sel-12 promoter in pBY895 vector 

(Wittenburg et al., 2000) to allow the expression of the constructs in C. elegans. The 

transgenic lines were established by microinjection of the constructs into sel-12(ar171) 

mutant hermaphrodites together with the co-injection marker pBY1153 (sel-12::gfp) at a 

concentration of 20 ng/µl, each. At leaset three independent transgenic lines from the 

progeny of F1 or F2 generation animals were established. The number of eggs laid by 50 

individual transgenic animals was counted and grouped into fore categories: "Egl+++," 

 60 



Materials and Methods 

 61

robust egg laying, more than 50 eggs laid (wt phenotype); "Egl++," 15-50 eggs laid; 

"Egl+," 5-15 eggs laid; "Egl-," no eggs laid. These experiments were done by Dr. Stefan 

Eimer and Agata Smialowska in the laboratory of Prof. Dr. Ralf Baumeister. 

 



Results

3. Results 

 

 

3.1 Functional characterization of SPE-4 

3.1.1 SPE-4 is the most distant PS homologue 

The C. elegans sperm protein, SPE-4 (L'Hernault and Arduengo, 1992) is the most distant 

PS homologue. SPE-4 amino acid sequence shows approximately 23% homology to that of 

PS1 according to BLAST searches (Table 3). 

 

 

 

 identity/similarity (%)* 

 human PS1 SEL-12 HOP-1 SPE-4 

human PS1 100 51/69 30/50 23/42 

SEL-12  100 30/49 22/42 

HOP-1   100 23/42 

SPE-4    100 

Table 3: Sequence conservation of the C. elegans PSs 

* The Blast2 program available at the NCBI site (http://www.ncbi.nlm.nih.gov/BLAST/) was used 
to calculate the percentage of amino acid identity and similarity. 

 

 

 

Sequence alignment of PS1 and the three C. elegans PS homologues, SEL-12, HOP-1 and 

SPE-4, revealed that SPE-4 has a very short N- and C-terminus and a much longer 

cytoplasmic loop between TMD 6 and 7 compared to PS1. On the other hand, despite of 

this low homology, the two functional aspartates within TMDs 6 and 7, including the 

GxGD active site motif, and the PALP motif, which are characteristic for the PS-type 

protease family, are well conserved in SPE-4. This conservation of the functionally 

important motives and a known SPE-4 mutant with a mutation of the PALP motif of SPE-4 

(Arduengo et al., 1998) indicates that this protein has a proteolytic function like PS. 
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Figure 9: Sequence alignment of PS1 with its C. elegans homologues Figure 9: Sequence alignment of PS1 with its C. elegans homologues 

The amino acid sequence alignment of PS1 with SEL-12, HOP-1, and SPE-4. The sequence 
alignment was generated with T-Coffee and processed with BOXSHADE. Identical amino acids 
residues are displayed on black or red (identical in all PSs) background and similar ones on gray 
background. Putative TMDs 6 and 7 comprising the active site domain are underlined. Asterisks 
indicate the active site aspartate residues. 

The amino acid sequence alignment of PS1 with SEL-12, HOP-1, and SPE-4. The sequence 
alignment was generated with T-Coffee and processed with BOXSHADE. Identical amino acids 
residues are displayed on black or red (identical in all PSs) background and similar ones on gray 
background. Putative TMDs 6 and 7 comprising the active site domain are underlined. Asterisks 
indicate the active site aspartate residues. 

  

  

  

3.1.2 SPE-4 wt is not incorporated to the γ-secretase complex 3.1.2 SPE-4 wt is not incorporated to the γ-secretase complex 

To test the possibility whether SPE-4 has a proteolytic function like PS, mammalian cells 

were employed because it is difficult to analyze SPE-4 in C. elegans due to its limited 

expression pattern. SPE-4 wt was therefore stably expressed in HEK293/sw cells (Citron et 

al., 1992). These cells stably express APPsw mutant to increase the amount of Aβ 

production and to enhance amyloidogenic pathway. As shown in Figure 10A, SPE-4 wt 

was expressed. However, surprisingly, in contrast to exogenously expressed PS1 wt, SPE-4 

To test the possibility whether SPE-4 has a proteolytic function like PS, mammalian cells 

were employed because it is difficult to analyze SPE-4 in C. elegans due to its limited 

expression pattern. SPE-4 wt was therefore stably expressed in HEK293/sw cells (Citron et 

al., 1992). These cells stably express APPsw mutant to increase the amount of Aβ 

production and to enhance amyloidogenic pathway. As shown in Figure 10A, SPE-4 wt 

was expressed. However, surprisingly, in contrast to exogenously expressed PS1 wt, SPE-4 
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wt failed to replace endogenous PSs despite of its robust expression (Figure 10B). When 

PS is stably expressed in the cells, it competes with endogenous PSs for interaction with 

the other γ-secretase complex components. This competition results in the replacement of 

the endogenous PSs by the exogenous one due to its overexpression. Therefore, the 

replacement of the endogenous PSs is indication of γ-secretase complex formation of the 

exogenously expressed PS of interest. Thus, this result indicates that SPE-4 wt is not 

incorporated to the γ-secretase complex in HEK293/sw cells. 
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Figure 10: SPE-4 does not replace endogenous PSs 

HEK293/sw cells stably expressing SPE-4 wt were analyzed for the SPE-4 wt expression and the 
endogenous PSs replacement. A: SPE-4 wt expression was analyzed by immunoprecipitation of the 
lysate from metabolically labeled cells using anti-SPE-4 loop antibody, 8177. Immunoprecipitated 
protein was separated by SDS-PAGE on a 10% Tris-glycine-urea gel. B: Total cell lysates from 
indicated cell lines were analyzed for PS1 and PS2 by combined 
immunoprecipitation/immunoblotting with polyclonal and monoclonal anti-PS1 loop antibodies, 
3027/3D7, or polyclonal and monoclonal anti-PS2 loop antibodies, 3711/HF5C. Note that 
endogenous PSs are not replaced despite of its strong expression of SPE-4 wt. 
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3.1.3 SPE-4 does not process an APP-based substrate in vitro 

The above result showed that SPE-4 wt is not incorporated into the γ-secretase complex in 

the cells. The reason may be that SPE-4 is unable to interact with human complex 

components because of its very distant sequence from PS. In addition, this result, however, 

also suggests the possibility that, unlike the other PSs, SPE-4 has a proteolytic function by 

its own without the need of other complex components.  In order to analyze the possibility 

that SPE-4 may function as a protease without the requirement of other γ-secretase 

complex components, an in vitro γ-secretase assay was performed (Figure 11). SPE-4 wt 

was isolated from HEK293/sw cells stably expressing SPE-4 wt by immunoprecipitation. 

Endogenous γ-secretase complex, which was isolated from the same cell line by 

immunoprecipitaion with an antibody against PS1, was included as a positive control. The 

endogenous γ-secretase complex generated AICD and Aβ from the recombinant APP 

substrate, C100 in temperature dependent manner (Figure 11). In contrast, SPE-4 wt failed 

to generate neither AICD nor Aβ (Figure 11, lane 3 and 4). This shows that SPE-4 does not 

function by itself as a protease at least in APP processing. 
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Figure 11: SPE-4 wt does not process a recombinant APP substrate in vitro Figure 11: SPE-4 wt does not process a recombinant APP substrate in vitro 

In vitro γ-secretase assay was performed. SPE-4 wt and the PS1, which are an endogenous γ-
secretase complex, were isolated by immunoprecipitation with either anti-SPE-4 loop antibody, 
8177, or anti-PS1 loop antibody, 3027. The immunoprecipitates were used for in vitro γ-secretase 
assay. AICD and Aβ generated from C100 were separated on a 10-20% Tris-tricine gel and were 
detected by immunoblotting with monoclonal Penta-His antibody, for AICD (upper panel), or 
monoclonal 6E10 antibody raised against amino acid 1-17 of Aβ, for Aβ (lower panel). 

In vitro γ-secretase assay was performed. SPE-4 wt and the PS1, which are an endogenous γ-
secretase complex, were isolated by immunoprecipitation with either anti-SPE-4 loop antibody, 
8177, or anti-PS1 loop antibody, 3027. The immunoprecipitates were used for in vitro γ-secretase 
assay. AICD and Aβ generated from C100 were separated on a 10-20% Tris-tricine gel and were 
detected by immunoblotting with monoclonal Penta-His antibody, for AICD (upper panel), or 
monoclonal 6E10 antibody raised against amino acid 1-17 of Aβ, for Aβ (lower panel). 

  

  

  

3.1.4 The C-terminus of PS1 is required for γ-secretase complex assembly 3.1.4 The C-terminus of PS1 is required for γ-secretase complex assembly 

3.1.4.1 SPE-4 can undergo a partial γ-secretase complex assembly by 

exchanging its C-terminus with that of PS1 

3.1.4.1 SPE-4 can undergo a partial γ-secretase complex assembly by 

exchanging its C-terminus with that of PS1 

Because SPE-4 wt did not undergo complex formation in HEK293 cells, it was next tried 

to forced it assemble into a γ-secretase complex with the aim of further examining the 

putative proteolytic function of this protein. To allow SPE-4 wt to be incorporated in the γ-

secretase complex, a construct encoding SPE-4/PS1c, in which the C-terminus of SPE-4 

after its PALP motif was exchanged with that of PS1, was generated (Figure 12). The C-

terminal region of PS1 including the PALP motif is known to play a important role in γ-

Because SPE-4 wt did not undergo complex formation in HEK293 cells, it was next tried 

to forced it assemble into a γ-secretase complex with the aim of further examining the 

putative proteolytic function of this protein. To allow SPE-4 wt to be incorporated in the γ-

secretase complex, a construct encoding SPE-4/PS1c, in which the C-terminus of SPE-4 

after its PALP motif was exchanged with that of PS1, was generated (Figure 12). The C-

terminal region of PS1 including the PALP motif is known to play a important role in γ-
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secretase complex assembly (Tomita et al., 1999; Bergman et al., 2004; Kaether et al., 

2004; Wang et al., 2006).  

secretase complex assembly (Tomita et al., 1999; Bergman et al., 2004; Kaether et al., 

2004; Wang et al., 2006).  
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Figure 12: Schematic model of SPE-4/PS1c Figure 12: Schematic model of SPE-4/PS1c 

Schematic representation of the SPE4-PS1c fusion protein. The C-terminus of SPE-4 (blue 
background), after the PALP motif, was replaced with that of PS1 (yellow background). 
Schematic representation of the SPE4-PS1c fusion protein. The C-terminus of SPE-4 (blue 
background), after the PALP motif, was replaced with that of PS1 (yellow background). 

  

  

  

SPE-4/PS1c was stably expressed in HEK293/sw cells and it was analyzed as above 

(Figure 10). Immunoprecipitation of cell lysate from metabolically labeled SPE-4/PS1c 

expressing cells showed robust expression of the chimeric protein (Figure 13A). Compared 

to SPE-4 wt, SPE-4/PS1c successfully replaced endogenous PS1 and PS2 (Figure 13B). 

This result suggests that the PS1 C-terminus is indeed required to allow the SPE-4 

molecule to enter the γ-secretase complex. 

SPE-4/PS1c was stably expressed in HEK293/sw cells and it was analyzed as above 

(Figure 10). Immunoprecipitation of cell lysate from metabolically labeled SPE-4/PS1c 

expressing cells showed robust expression of the chimeric protein (Figure 13A). Compared 

to SPE-4 wt, SPE-4/PS1c successfully replaced endogenous PS1 and PS2 (Figure 13B). 

This result suggests that the PS1 C-terminus is indeed required to allow the SPE-4 

molecule to enter the γ-secretase complex. 
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Figure 13: SPE-4/PS1c replaces endogenous PSs in HEK293 cells 

HEK293/sw cells were stably transfected with the indicated cDNAs. A: SPE4-wt and SPE4-PS1c 
were analyzed by immunoprecipitaion of cell lysates prepared from metabolically labeled cells 
with antibody 8177 as in Figure 10. B: Cell lysates were analyzed for PS1 and PS2 by combined 
immunoprecipitation/immunoblotting with antibodies 3027/3D7 or 3711/HF5c. Note that in 
contrast to SPE4-wt, SPE4-PS1c almost completely replaces endogenous PSs. 

 

 

 

3.1.4.2 SPE-4/PS1c does not support γ-secretase activity 

Next, the influence of SPE-4/PS1c on γ-secretase activity was investigated by analyzing 

the levels of APP-CTFs in the cells. When γ-secretase is active, APP-CTFs are 

immediately processed to AICD, p3 and Aβ (see Figure 4 in introduction). In contrary, 

when γ-secretase is inactive, APP-CTFs accumulate in the cells. Therefore, analyzing the 

levels of APP-CTFs accumulation was used as readout for γ-secretase activity. Cell lines 

stably expressing PS1 wt and PS1 D385N, a proteolytically inactive mutant (Steiner et al., 

1998), were included as positive and negative controls. It is known that this proteolytically 

inactive aspartate mutant is incorporated into the γ-secretase complex. However, it does not 

undergo endoproteolysis unlike PS1 wt (Wolfe et al., 1999a). As shown in Figure 14, no 

accumulation of APP-CTFs was observed in the parental cells and PS1 wt expressing cells 
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due to normal γ-secretase activity (lane 1 and 2). In the cell line stably expressing SPE-4 

wt, which does not undergo γ-secretase complex formation, no accumulation of APP-CTFs 

was observed (lane 4). Unexpectedly, APP-CTFs accumulated in SPE-4/PS1c expressing 

cells (lane 5) similar as in PS1 D385N expressing cells (lane 3). This result shows that 

although it successfully replaced endogenous PSs, SPE-4/PS1c does not support the γ-

secretase activity. 
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Figure 14: Accumulation of APP-CTFs in SPE-4/PS1c expressing cells 

Total cell lysates from the indicated cell lines were analyzed for APP-CTFs by immunoblotting 
with antibody 6687 that is raised against the C-terminus of APP. The lysates were separated by 
SDS-PAGE on a 10-20% Tris-tricine gel. 

 

 

 

3.1.4.3 Cells expressing SPE-4/PS1c are deficient in NCT maturation 

In order to investigate whether or not the γ-secretase complex was properly formed in the 

SPE-4/PS1c expressing cells, the maturation of NCT, one of the γ-secretase complex 

components, was analyzed. Following proper γ-secretase complex assembly the complex 

traffics through the secretory pathway and NCT becomes complex-glycosylated (Edbauer 

et al., 2002; Kimberly et al., 2002; Tomita et al., 2002; Yang et al., 2002). Thus, the 

analysis of NCT maturation can be used as a readout for correct γ-secretase complex 
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formation. Total cell lysates from the indicated cell lines were immunoblotted with an anti-

NCT antibody, N1660 (Figure 15A). Normal maturation of NCT consistent with the 

correct γ-secretase complex assembly was observed in the parental HEK293/sw cells, the 

SPE-4 wt expressing cells, and the PS1 wt or PS1 D385N expressing cells (Figure 15A, 

lane 1-4). In contrast, NCT remained immature in the SPE-4/PS1c expressing cells 

indicating incomplete γ-secretase complex formation (Figure 15A, lane 5). This result 

gives a plausible explanation for the γ-secretase deficiency of SPE-4/PS1c expressing cells. 

SPE-4/PS1c is able to replace endogenous PSs by forming a subcomplex with NCT, but is 

not able to bind to other complex components, therefore the complex cannot exit the ER. 

To further analyze this possibility, co-immunoprecipitation analysis was performed (Figure 

15B). Membranes were solubilized with CHAPS, a detergent which preserves the γ-

secretase complex and its activity (Li et al., 2000b) CHAPS-solubilized membrane lysates 

from the indicated cell lines were immunoprecipitated with an anti-PS1 loop antibody, 

3027, or with an anti-SPE-4 loop antibody, 8177, and immunoblotted for NCT. Both 

mature and immature NCT were co-immunoprecipitated with PS1 in cells expressing 

endogenous PS1 or exogenous PS1 wt and PS1 D385N (Figure 15B, upper panel, lane 1-4). 

Interestingly, immature NCT was co-immunoprecipitated with an antibody 8177 in the 

SPE-4/PS1c expressing cells (Figure 15B, lower panel, lane 5). The absence of co-

immunoprecipitated NCT in the lane of SPE-4 wt expressing cells indicates that the 

interaction between NCT and SPE-4/PS1c is specific (Figure 15B, lower panel, lane 4). 

These data thus suggest that SPE-4/PS1c is capable to form a complex, at least with NCT. 

However, this complex remains apparently immature. 
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Figure 15: NCT fails to maturate in SPE-4/PS1c expressing cells 

A: NCT maturation was analyzed by immunoblotting. Cell lysates were separated by SDS-PAGE 
on a 7% Tris-glycine gel and immunoblotted with anti-NCT antibody N1660. Note that only 
immature NCT is detected in SPE4-PS1c expressing cells. B: Co-immunoprecipitation analysis. 
CHAPS-solubilized membrane extracts were immunoprecipitated with 3027 or 8177 antibodies, 
which are against the PS1 or SPE-4 loop region, respectively. The immunoprecipitates were 
analyzed by immunoblotting with N1660 antibody. 

 

 

 

3.1.4.4 Cells expressing SPE-4/PS1c show strongly decreased PEN-2 levels 

To further analyze the reason for failure of NCT maturation of SPE-4/PS1c, the other γ-

secretase complex components were analyzed. At this stage, to obtain more experimental 

flexibility, hexahistidine-Xpress-tagged (His)-proteins were constructed, because if 

necessary, these constructs allow distinguishing exogenously expressed γ-secretase activity 

from the endogenous one by using antibodies against the His-tag. In contrast to tagging the 

C-terminus of PS1, that disturbs the γ-secretase activity (Tomita et al., 1999), tagging the 

N-terminus allows γ-secretase complex formation (Steiner et al., 2002). In addition, 
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presence of the N-terminal His-tag did not disturb γ-secretase activity (see following 

results). The membrane lysate from HEK293/sw cells stably expressing His-proteins were 

immunoblotted with each corresponding antibodies. As shown in Figure 16A, all 

constructs were successfully expressed and, consistent with the above described results, 

replacement of endogenous PSs occurred in all cell lines except SPE-4 wt expressing cells. 

Notably, consistent with previous results (Wolfe et al., 1999a; Steiner et al., 2000), PS1 

D385A did not undergo endoproteolysis, in contrast to PS1 wt. Like in Figure 15, SPE-

4/PS1c expressing cell failed to maturate NCT (Figure 16B, upper panel, lane 5). 

Interestingly, compared to the substantial levels of APH-1 expression, a strongly decreased 

level of PEN-2 was observed in this cell line (Figure 16B, middle and lower panels, lane 5). 

This result shows that the incompleteness of the γ-secretase complex formation in the SPE-

4/PS1c expressing cells is caused by the absence of PEN-2, which is probably degraded 

because of the lack of a stabilizing interaction with SPE-4/PS1c. This observation indicates 

the requirement of other PS domains for the formation of an active g-secretase complex in 

addition to its C-terminus. The above results revealed the importance of the PS1 C-

terminus to initiate assembly of the γ-secretase complex. However, because SPE-4/PS1c 

underwent only partial γ-secretase complex assembly and thus did not support γ-secretase 

activity, the question whether SPE-4 has a protease activity remained unclear. 
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Figure 16: Cells expressing SPE-4/PS1c are strongly deficient in PEN-2 Figure 16: Cells expressing SPE-4/PS1c are strongly deficient in PEN-2 

The effect of SPE-4/PS1c expression on the levels of the other γ-secretase complex components 
was analyzed. The membrane fractions from the indicated cells were solubilized with DDM and the 
lysates were analyzed by immunoblotting. 10% Tris-glycine urea gel for PS1 and SPE-4/PS1c (A), 
7% Tris-glycine gel for NCT, and 10-20% Tris-tricine gel for APH-1 and PEN-2 (B) were used. A: 
The expression of each protein and the replacement of endogenous PS were analyzed by 
immunoblotting with antibodies PS1N, 3027 (upper and middle panels) or 8177 (lower panel). B: 
The other γ-secretase complex components were analyzed by immunoblotting with antibodies 
N1660 for NCT, 434G for APH-1, and 1638 for PEN-2. 

The effect of SPE-4/PS1c expression on the levels of the other γ-secretase complex components 
was analyzed. The membrane fractions from the indicated cells were solubilized with DDM and the 
lysates were analyzed by immunoblotting. 10% Tris-glycine urea gel for PS1 and SPE-4/PS1c (A), 
7% Tris-glycine gel for NCT, and 10-20% Tris-tricine gel for APH-1 and PEN-2 (B) were used. A: 
The expression of each protein and the replacement of endogenous PS were analyzed by 
immunoblotting with antibodies PS1N, 3027 (upper and middle panels) or 8177 (lower panel). B: 
The other γ-secretase complex components were analyzed by immunoblotting with antibodies 
N1660 for NCT, 434G for APH-1, and 1638 for PEN-2. 
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3.1.5 The putative active site domain of SPE-4 may have proteolytic activity 3.1.5 The putative active site domain of SPE-4 may have proteolytic activity 

3.1.5.1 Construction of an active site chimeric protein 3.1.5.1 Construction of an active site chimeric protein 

To study the open question whether SPE-4 has a proteolytic function, the putative SPE-4 

active site domain was directly analyzed. Therefore, a chimeric protein, PS1/SPE-46/7, in 

which TMDs 6 and 7 of PS1 are replaced with those of SPE-4 (Figure 17), was constructed. 

In addition, PS1/SPE-46/7 D394A in which the active site aspartate of TMD7 was changed 

to alanine, was constructed as a potential negative control like PS1 D385A. 

To study the open question whether SPE-4 has a proteolytic function, the putative SPE-4 

active site domain was directly analyzed. Therefore, a chimeric protein, PS1/SPE-46/7, in 

which TMDs 6 and 7 of PS1 are replaced with those of SPE-4 (Figure 17), was constructed. 

In addition, PS1/SPE-46/7 D394A in which the active site aspartate of TMD7 was changed 

to alanine, was constructed as a potential negative control like PS1 D385A. 
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Figure 17: Schematic model of PS1/SPE-46/7

A schematic model of PS1/SPE-46/7 is shown. The TMDs of PS1 are indicated in red and of SPE-4 
in blue. The sequences of the swapped TMD domains are shown in detail.  
A schematic model of PS1/SPE-4

  

  

  

3.1.5.2 PS1/SPE-46/7 forms a γ-secretase complex in PS1/2-/- MEF cells 3.1.5.2 PS1/SPE-4

All experiments described above were performed using HEK293 cells. However, there is 

the possibility that the observed effect on γ-secretase activity may not be fully reflecting 

the exogenously expressed PS due to incomplete replacement of the endogenous PSs. 

Therefore, PS1/2-/- mouse embryonic fibroblast (MEF) cells derived from mice deficient 

for PS1 and PS2 (Herreman et al., 1999) were employed to confirm the biological activity 

of the constructs described above in an endogenous PS-free background to avoid potential 

All experiments described above were performed using HEK293 cells. However, there is 

the possibility that the observed effect on γ-secretase activity may not be fully reflecting 

the exogenously expressed PS due to incomplete replacement of the endogenous PSs. 

Therefore, PS1/2

Figure 17: Schematic model of PS1/SPE-46/7

6/7 is shown. The TMDs of PS1 are indicated in red and of SPE-4 
in blue. The sequences of the swapped TMD domains are shown in detail.  

6/7 forms a γ-secretase complex in PS1/2-/- MEF cells 

-/- mouse embryonic fibroblast (MEF) cells derived from mice deficient 

for PS1 and PS2 (Herreman et al., 1999) were employed to confirm the biological activity 

of the constructs described above in an endogenous PS-free background to avoid potential 
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interference of endogenous PSs in γ-secretase activity. Each cDNA was transiently 

cotransfected into PS1/2-/- MEF cells with cDNA encoding APPsw-6myc (Figure 18), a 

Swedish mutant of APP C-terminally tagged with six myc-epitopes (Hecimovic et al., 

2004). Total cell lysates were analyzed by immunoblotting. Expression of PS1 wt, PS1 

D385A, that were included as positive and negative controls, and the chimeric proteins was 

confirmed by immunoblotting with PS1N (to the PS1 NTF) or 3027 (to the PS1 CTF) 

antibodies. All four proteins were robustly expressed. As expected, PS1 D385A did not 

undergo endoproteolysis and remained as holoprotein, in contrast to PS1 wt (Figure 19A, 

lane 2 and 3). Likewise, PS1/SPE-46/7 was efficiently endoproteolyzed, whereas PS1/SPE-

46/7 D394A like PS1 D385A failed to undergo endoproteolysis (Figure 19A, lane 3 and 4). 

Due to the lack of PSs, there is no maturation of the γ-secretase complex in PS1/2-/- MEF 

cells thus resulting in the accumulation of immature NCT. As expected, the vector-

expressing cells showed no NCT maturation (Figure 19B, lane1). In contrast, all other cell 

lines expressing either PS wt, the D385A mutant, or PS chimeric proteins allowed a 

substantial recovery of NCT maturation demonstrating that these proteins are active in γ-

secretase complex formation (Figure 19B, lane2-5). 
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Figure 18: Schematic representation of APPsw-6myc and its processing pathway Figure 18: Schematic representation of APPsw-6myc and its processing pathway 

The Swedish FAD mutant APP (2.3.3 and Figure 3) is tagged with 6xmyc tag at the C-terminus. 
The full-length molecule, APP-CTFβ and AICD fragments are detectable with an anti-myc 
antibody. 

The Swedish FAD mutant APP (2.3.3 and Figure 3) is tagged with 6xmyc tag at the C-terminus. 
The full-length molecule, APP-CTFβ and AICD fragments are detectable with an anti-myc 
antibody. 
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Figure 19: PS1/SPE-4 chimeric proteins undergo γ-secretase complex formation 

Total cell lysates prepared from PS1/2-/- MEF cells, which were transiently cotransfected with the 
indicated cDNA constructs, were analyzed by immunoblotting. A: Total cell lysates were separated 
on 12% Tris-glycine urea gel and the expression of each protein was analyzed by immunoblotting 
with monoclonal anti-PS1 N-terminus antibody, PS1N (upper panel), or polyclonal anti-PS1 loop 
antibody, 3027 (lower panel). Antibody PS1N detected holoproteins and His-NTF, when the 
protein underwent endoproteolysis. Antibody 3027 detected CTF. B: NCT was separated on a 7% 
Tris-glycine gel, and detected by immunoblotting with polyclonal antibody N1660 that is raised 
against NCT C-terminus. NCT maturation was observed in every lane except the vector expressing 
cell line. 
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3.1.5.3 PS1/SPE-46/7 supports γ-secretase-mediated APP processing 

The above result demonstrated that PS1/SPE-46/7 is incorporated into a γ-secretase complex. 

To investigate its activity, processing of APPsw-6myc, which was co-expressed with either 

vector, PS1 wt, PS1 D385A, PS1/SPE-46/7 or PS1/SPE-46/7 D394A, was analyzed. The 

advantage of using APPsw-6myc is that 6myc-tagged AICD is rather stable as compared to 

non-tagged AICD, which is degraded rapidly in the cells. Despite robust expression level 

of substrate protein in every cell line (Figure 20A, upper panel), due to the lack of PSs, 

APP-CTFs accumulated and no AICD generation was observed in the vector expressing 

cells (Figure 20A, lower panel, lane 1) as expected. Moreover, combined 

immunoprecipitation/immunoblotting with antibodies 3552/6E10 did not detect any 

secreted Aβ (~4 kDa) in this cell line (Figure 20C, lane 1). This defect of γ-secretase 

activity was rescued by co-expression of PS1 wt but not by proteolytically inactive PS1 

D385A (Figure 20, lane 2 and 3). Like PS1 wt, PS1/SPE-46/7 was able to process APPsw-

6myc as judged from the robust rescue of APP CTF accumulation and the substantial 

generation of AICD and Aβ, whereas PS1/SPE-46/7 D394A like PS1 D385A failed to 

rescue the γ-secretase activity (Figure 20, lane 4 and 5). The secretion of APP itself of 

these cell lines was normal as judged from the secreted sAPP in the medium, which was 

detected by western blotting from conditioned medium using antibody 5313 (Figure 20B). 

These results suggest that the putative active site domain of SPE-4 is proteolytically active 

at least in APP processing. 
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Figure 20: PS1/SPE-46/7 supports APP processing 

The influence of each protein on APP processing was analyzed. A: Total cell lysates were 
separated on a 10-20% Tris-tricine gel and immunoblotted with a monoclonal anti-myc antibody 
9E10. Robust amounts of APPsw-6myc were expressed in every cell line (upper panel). In contrast 
to cell lines which are expressing PS1 wt or PS1/SPE-46/7, in vector, PS1 D385A, and PS1/SPE-46/7 
D394A expressing cell lines, APP-CTFs accumulated and AICD generation was not observed 
(lower panel). B: Secreted sAPP was detected by immunoblotting from conditioned medium. 
Conditioned medium were applied on a 7% Tris-glycine gel and immunoblotted with polyclonal 
anti-APP antibody, 5313, that was raised against APP amino acid 444-592. C: Secreted total Aβ in 
conditioned medium was analyzed by combined immunoprecipitation/immunoblotting using 
polyclonal and monoclonal anti-Aβ antibodies 3552/6E10. Immunoprecipitates were separated on a 
10-20% Tris-tricine gel. Aβ secretion was observed only in PS1 wt or PS1/SPE-46/7 expressing 
cells. 
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3.2 Identification of sequence requirements of PS for the γ-secretase 

substrate selectivity 

3.2.1 PS1/SPE-46/7 does not support Notch processing in PS1/2-/- MEF cells 

Although the active site of SPE-4 supported the processing of APP, PS1/SPE-46/7 might 

influence the cleavage of other γ-secretase substrates due to sequence differences of TMDs 

6 and 7 from those of PS1. If this was the case, PS1/SPE-46/7 could be used to identify 

putative sequence requirements of PS, in particular at the active site domain, for the γ-

secretase substrate cleavage. Therefore, PS1/SPE-46/7 was probed for its γ-secretase 

activity in the processing of Notch, the most important physiological γ-secretase substrate. 

PS1/2-/- MEF cells were transiently cotransfected with cDNA encoding F-NEXT, an 

extracellular truncated Notch derivative with a FLAG-epitope tag at the N-terminus and six 

myc-epitope tags at the C-terminus ((Okochi et al., 2002) and Figure 21), and PS1/SPE-46/7. 

PS1 wt and PS1 D385A were also transfected as positive and negative controls. Total cell 

lysate from each cell line was analyzed as described above. All cDNAs were successfully 

expressed, and PS1 wt and PS1/SPE-46/7 underwent endoproteolysis as expected (Figure 

22A). As shown in Figure 22B lane 1, the cells expressing the vector control, which have 

no γ-secretase complex, accumulated F-NEXT and the generation of NICD was not 

observed. F-Nβ, the secreted Aβ analogue of Notch, was also not generated (Figure 22C, 

lane 1). Like in the case for the APPsw-6myc substrate, this deficiency of Notch 

processing was rescued by expressing PS1 wt, but not by PS1 D385A (Figure 22B and C, 

lane 2 and 3). Thus, strikingly, despite its capability in APP processing, PS1/SPE-46/7 

showed a strong impairment in both NICD and F-Nβ generation (Figure 22B and C, lane 

4). 
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Figure 21: Schematic model of F-NEXT protein and its processing pathway Figure 21: Schematic model of F-NEXT protein and its processing pathway 

The extracellular truncated Notch (Figure 6) is tagged with a FLAG tag at the N-terminus and a 6x 
myc tag at the C-terminus. The anti-FLAG antibody facilitates the detecting of the full length 
molecule and the secreted Nβ peptide, and the anti-myc antibody facilitates the detecting of the full 
length molecule and the NICD fragment. 

The extracellular truncated Notch (Figure 6) is tagged with a FLAG tag at the N-terminus and a 6x 
myc tag at the C-terminus. The anti-FLAG antibody facilitates the detecting of the full length 
molecule and the secreted Nβ peptide, and the anti-myc antibody facilitates the detecting of the full 
length molecule and the NICD fragment. 
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Figure 22: F-NEXT is not processed in PS1/SPE-46/7 expressing cells 

The γ-secretase activity of PS1/SPE-46/7 on F-NEXT processing was analyzed. A: The expression 
level of each protein was analyzed as described in Figure 19. B: F-NEXT and NICD were separated 
on a 7% Tris-glycine gel. Total cell lysates were analyzed by immunoblotting with monoclonal 
anti-myc antibody 9E10 for F-NEXT and NICD or with an anti-NICD specific antibody, cleaved 
Notch-1, for NICD detection. F-NEXT accumulation and dramatically reduced NICD generation 
was observed in PS1/SPE-46/7 expressing cells. C: Secreted F-Nβ in conditioned medium were 
analyzed by combined immunoprecipitation/immunoblotting with the anti-FLAG antibody. The 
immunoprecipitates were separated on a 10-20% Tris-tricine gel. Consistent with the deficient 
NICD generation shown in panel B, F-Nβ secretion was strongly reduced in PS1/SPE-46/7 
expressing cells. 

 

 

 

 



Results 

 83

To further confirm the observation that PS1/SPE-46/7 is deficient in processing of Notch, an 

immunocytochemical analysis was performed. PS1/2-/- MEF cells were transiently 

cotransfected with F-NEXT and cDNAs encoding PS1 wt, PS1 D385A or PS1/SPE-46/7. 48 

h after transfection, the cells were washed and fixed. For the detection of F-NEXT and 

NICD, the 9E10 anti-myc antibody as primary and anti-mouse Alexa Fluor 488 as 

secondary antibody was used. The cells expressing F-NEXT alone showed only plasma 

membrane staining indicating that F-NEXT accumulated on the cell surface (Figure 23A) 

due to the lack of γ-secretase activity of PS1/2-/- MEF cells. The same result was obtained 

in the cells coexpressing PS1 D385A (Figure 23C). In contrast, strong nuclear staining was 

observed in the F-NEXT/PS1 wt coexpressing cells demonstrating that F-NEXT was 

processed and that NICD was released and translocated into nucleus (Figure 23B). 

Consistent with the previous data (Figure 22), the PS1/SPE-46/7 expressing cells showed 

strongly reduced nuclear NICD staining (Figure 23D). Occasionally, some cells showed 

weak nuclear staining, which is consistent with the residual minor NICD formation in 

Figure 22. These data show that although SPE-4 contains a functional protease active site, 

which is able to process APP, it is deficient in processing Notch as substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

 84 

 A

F-NEXT

F-NEXT
PS1 wt

F-NEXT
PS1 D385A

F-NEXT
PS1/SPE-46/7

B

C

D

A

F-NEXT

F-NEXT
PS1 wt

F-NEXT
PS1 D385A

F-NEXT
PS1/SPE-46/7

B

C

D

 

 

 

 

 

 

 

 

 

Figure 23: NICD does not translocate into the nucleus in PS1/SPE-46/7 expressing cells 

PS1/2-/- MEF cells were transiently transfected with F-NEXT either only or together with cDNA 
encoding PS1 wt, PS1 D385A or PS1/SPE-46/7. After fixation, F-NEXT or its cleavage product 
NICD, was visualized using monoclonal anti-myc antibody 9E10 and polyclonal Alexa-488 
antibody raised against mouse IgG. A: F-NEXT expressing cells. Only plasma membrane staining 
was observed. B: F-NEXT/PS1 wt coexpressing cells. Strong nuclear staining was observed. C: F-
NEXT/PS1 D385A coexpressing cells. Only plasma membrane staining was observed in this cell 
line. D: F-NEXT/PS1/SPE-46/7 coexpressing cells. Mainly plasma membrane staining was observed. 
Representative cell images are shown. 

 

 

 

3.2.2 TMD7 is the responsible domain for the Notch cleavage deficiency of 

PS1/SPE-46/7 

3.2.2.1 Construction of PS1/SPE-46 and PS1/SPE-47 

Next, the molecular basis of the apparent APP/Notch substrate discrimination by PS1/SPE-

46/7 was investigated. To map which one of the two TMD in PS1/SPE-46/7 is responsible 

for the Notch processing deficiency, two additional constructs, in which only one TMD of 

PS1 is exchanged with the corresponding TMD of SPE-4, PS1/SPE-46 and PS1/SPE-47 

(Figure 24), were generated.  
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Figure 24: Schematic model of PS1/SPE-46 and PS1/SPE-47

The TMDs of PS are indicated in red and those of SPE-4 in blue. The TMDs of PS are indicated in red and those of SPE-4 in blue. 

  

  

  

3.2.2.2 PS1/SPE-46 and PS1/SPE-47 support processing of APP 3.2.2.2 PS1/SPE-4

PS1/2-/- MEF cells were transiently cotransfected with cDNA constructs encoding APPsw-

6myc and PS1/SPE-46 or PS1/SPE-47. The expression level, their biochemical behavior, 

and the γ-secretase activity on APP processing of these hybrid active site proteins were 

analyzed as described above (see 3.1.5.2 and 3.1.5.3). The PS1/SPE-46/7 construct was 

included for comparison. PS1 wt and PS1 D385A were included as positive and negative 

controls like above. All constructs were expressed (Figure 25A) and both PS1/SPE-46 and 

PS1/SPE-47 underwent endoproteolysis (Figure 25A, lane 5 and 6) like PS1/SPE-46/7 

demonstrating that they formed a γ-secretase complex, which could additionally be 

confirmed by the maturation of NCT (Figure 25B). Note that NTF and holoprotein of 

PS1/SPE-46/7 migrated higher than the calculated molecular size of these fragments, which 

are supposed to be the same as those of PS1/SPE-46, for unknown reasons. 
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Figure 24: Schematic model of PS1/SPE-46 and PS1/SPE-47

6 and PS1/SPE-47 support processing of APP 
-/- MEF cells were transiently cotransfected with cDNA constructs encoding APPsw-

6myc and PS1/SPE-46 or PS1/SPE-47. The expression level, their biochemical behavior, 

and the γ-secretase activity on APP processing of these hybrid active site proteins were 

analyzed as described above (see 3.1.5.2 and 3.1.5.3). The PS1/SPE-46/7 construct was 

included for comparison. PS1 wt and PS1 D385A were included as positive and negative 

controls like above. All constructs were expressed (Figure 25A) and both PS1/SPE-46 and 

PS1/SPE-47 underwent endoproteolysis (Figure 25A, lane 5 and 6) like PS1/SPE-46/7 

demonstrating that they formed a γ-secretase complex, which could additionally be 

confirmed by the maturation of NCT (Figure 25B). Note that NTF and holoprotein of 

PS1/SPE-46/7 migrated higher than the calculated molecular size of these fragments, which 

are supposed to be the same as those of PS1/SPE-46, for unknown reasons. 
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Figure 25: PS1/SPE-46 and PS1/SPE-47 form a γ-secretase complex 

PS1/2-/- MEF cells were transiently cotransfected with PS1/SPE-46 and PS1/SPE-47 together with 
APPsw-6myc. Total cell lysates were analyzed as Figure 19. A: Expression of each protein was 
detected by immunoblotting with monoclonal anti-PS1 N-terminus antibody PS1N (upper panel) 
and polyclonal anti-PS1 loop antibody 3027 (lower panel). B: NCT maturation was analyzed using 
anti-NCT antibody N1660. Note that both PS1/SPE-46 and PS1/SPE-47 underwent endoproteolysis 
and allowed NCT maturation.  

 

 

 

As shown in Figure 26A, similar amounts of APPsw-6myc were expressed in each cell line 

(upper panel). Compared to the PS1 D385A expressing cells, APP-CTFs accumulation was 

dramatically reduced in the PS1/SPE-46 or PS1/SPE-47 expressing cells (Figure 26A, lower 

panel). Moreover, substantial generation of AICD (Figure 26A, lower panel) and secretion 

of Aβ (Figure 26C) were also observed in these cells. In addition, although there was some 

variation in the levels of secreted sAPP observed in this experiment, Figure 26B indicates 

the capability of secretion in each cell line. Notably, the cells expressing PS1/SPE-47 
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(Figure 26B and C, lane 6) showed substantial Aβ secretion despite its lower sAPP level 

compared to the other cell lines. Therefore, the level of secreted Aβ reflects the γ-secretase 

activity of each cell line. These results suggest that like PS1/SPE-46/7, both PS1/SPE-46 

and PS1/SPE-47 were capable to process APP. 
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Figure 26: PS1/SPE-46 and PS1/SPE-47 support APP processing 

APP processing was analyzed as in Figure 20. A: APPsw-6myc expression level (upper panel), 
APP-CTF accumulation and AICD generation (lower panel) were analyzed from total cell lysates 
by immunoblotting using monoclonal anti-myc antibody 9E10. B: Secretion of sAPP in 
conditioned medium were analyzed by immunoblotting with polyclonal anti-APP antibody 5313. 
C: Aβ secretion was analyzed from conditioned medium by combined 
immunoprecipitation/immunoblotting with polyclonal and monoclonal anti-Aβ antibodies 
3552/6E10. Note that both PS1/SPE-46 and PS1/SPE-47 were capable to process APPsw-6myc. 
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3.2.2.3 PS1/SPE-47 is inactive in Notch processing 

To analyze the capability of PS1/SPE-46 and PS1/SPE-47 on Notch processing, these 

constructs were transiently coexpressed in PS1/2-/- MEF cells with F-NEXT as described 

above (see 3.2.1), including the control constructs. All the constructs were successfully 

expressed and underwent endoproteolysis except PS1 D385A, as expected (Figure 27A). 

Interestingly, in contrast to PS1/SPE-46, expression of PS1/SPE-47 strongly impaired the 

generation of NICD (Figure 27B, lane 5 and 6) and the secretion of F-Nβ (Figure 27C, lane 

5 and 6) from F-NEXT. These results demonstrate that TMD7 of PS1/SPE-46/7 is 

responsible for the deficiency of the chimeric protein in Notch processing. 

 

 
A F-NEXT

PS1NTF

PS1holo

F-Nβ

F-NEXT
NICD

PS1CTF

B

C

ve
ct

or
PS

1 
w

t

PS
1 

D
38

5A

PS
1/

SP
E-

4 6
/7

PS
1/

SP
E-

4 6
PS

1/
SP

E-
4 7

1 2 3 4 5 6

A F-NEXT

PS1NTF

PS1holo

F-Nβ

F-NEXT
NICD

PS1CTF

B

C

ve
ct

or
PS

1 
w

t

PS
1 

D
38

5A

PS
1/

SP
E-

4 6
/7

PS
1/

SP
E-

4 6
PS

1/
SP

E-
4 7

1 2 3 4 5 6

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Cells expressing PS1/SPE-47 are deficient in Notch processing 

Influence of PS1/SPE-46 and PS1/SPE-47 on Notch processing was analyzed as in Figure 22. A: 
Total cell lysates were analyzed by immunoblotting with monoclonal anti-PS1 N-terminus antibody 
PS1N (upper panel) and polyclonal anti-PS1 loop antibody 3027 (lower panel). B: F-NEXT 
accumulation and NICD generation were analyzed by immunoblotting with monoclonal anti-myc 
antibody 9E10. C: Levels of secreted F-Nβ in conditioned medium were analyzed by combined 
immunoprecipitation/immunoblotting with monoclonal anti-FLAG antibody M2. Note that unlike 
PS1/SPE-46, PS1/SPE-47 failed to process Notch. 
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3.2.3 A single amino acid at position x of the GxGD motif contributes to the 

Notch processing deficiency of PS1/SPE-47 

3.2.3 A single amino acid at position x of the GxGD motif contributes to the 

Notch processing deficiency of PS1/SPE-47 

3.2.3.1 The GxGD active site motif of SPE-4 contains a phenylalanine residue 

at position x instead of leucine 

3.2.3.1 The GxGD active site motif of SPE-4 contains a phenylalanine residue 

at position x instead of leucine 

To further map the responsible sequence within the TMD7 of PS1/SPE-46/7, the amino acid 

sequence of TMD7 including the other C. elegans PS homologues was compared (Figure 

28). Interestingly, among the non-conserved amino acids, there was a more drastic amino 

acid change of the residue at the position x of the GxGD motif within the TMD7 in SPE-4 

from PS1. This residue of PS1 (L383) is rather conserved SEL-12 (L362) and in HOP-1 

(M276). However, it is drastically changed to an aromatic amino acid, phenylalanine, in 

SPE-4 (F392). To address the functional significance of this amino acid change, the 

phenylalanine residue of the GFGD motif in PS1/SPE-47 was mutagenzed to L to restore 

the PS1 or SEL-12 GLGD motif (PS1/SPE-47 F392L) or to M to restore the GMGD motif 

of HOP-1 (PS1/SPE-47 F392M). 

To further map the responsible sequence within the TMD7 of PS1/SPE-46/7, the amino acid 

sequence of TMD7 including the other C. elegans PS homologues was compared (Figure 

28). Interestingly, among the non-conserved amino acids, there was a more drastic amino 

acid change of the residue at the position x of the GxGD motif within the TMD7 in SPE-4 

from PS1. This residue of PS1 (L383) is rather conserved SEL-12 (L362) and in HOP-1 

(M276). However, it is drastically changed to an aromatic amino acid, phenylalanine, in 

SPE-4 (F392). To address the functional significance of this amino acid change, the 

phenylalanine residue of the GFGD motif in PS1/SPE-47 was mutagenzed to L to restore 

the PS1 or SEL-12 GLGD motif (PS1/SPE-47 F392L) or to M to restore the GMGD motif 

of HOP-1 (PS1/SPE-47 F392M). 
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Figure 28: Sequence comparison of TMD7 Figure 28: Sequence comparison of TMD7 

The amino acid sequence alignment of TMD7 of PS1, SEL-12, HOP-1, and SPE-4. Identical amino 
acids residues are displayed on black or red (identical in all PSs) background and similar ones on 
gray background. Arrowhead indicates the residues at position x of the GxGD motif. Asterisks 
indicate the active site aspartate residues. 

The amino acid sequence alignment of TMD7 of PS1, SEL-12, HOP-1, and SPE-4. Identical amino 
acids residues are displayed on black or red (identical in all PSs) background and similar ones on 
gray background. Arrowhead indicates the residues at position x of the GxGD motif. Asterisks 
indicate the active site aspartate residues. 
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3.2.3.2 PS1/SPE-47 F392L and PS1/SPE-47 F392M support APP processing 

The activity of the two new constructs on APP and Notch processing was then analyzed as 

described above. As shown in Figure 29A, both PS1/SPE-47 F392L and PS1/SPE-47 

F392M underwent endoproteolysis (upper and middle panels), and allowed NCT 

maturation (lower panel) demonstrating γ-secretase complex formation of these constructs. 

They were also capable to process APPsw-6myc (Figure 29B) as judged from the 

substantial amount of AICD and Aβ generated and from the rescue of APP-CTF 

accumulation (Figure 29B and C). The expression of APPsw-6myc (Figure 29B, upper 

panel) and sAPP secretion (Figure 29C, upper panel) were controlled as above. 
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Figure 29: PS1/SPE-47 F392L and PS1/SPE-47 F392M are active in APP processing 

PS1/2-/- MEF cells were transiently cotransfected with the indicated constructs and APPsw-6myc 
and analyzed as in Figure 26. A: The expression of each construct was analyzed by immunoblotting 
with monoclonal anti-PS1 N-terminus antibody PS1N (upper panel) or polyclonal anti-PS1 loop 
antibody 3027 (middle panel). NCT maturation was analyzed by immunoblotting using antibody 
N1660 (lower panel). B: Total cell lysates were analyzed by immunoboltting with monoclonal anti-
myc antibody 9E10 to detect the expression (upper panel) and the processing (lower panel) of 
APPsw-6myc. C: Secretion of sAPP was analyzed by immunoblotting with polyclonal anti-APP 
antibody 5313 (upper panel) and secretion of Aβ was analyzed by combined 
immunoprecipitation/immunoblotting with polyclonal and monoclonal anti-Aβ antibodies 
3552/6E10 (lower panel) from conditioned medium. 

 



Results 

 92 

3.2.3.3 PS1/SPE-47 F392L and PS1/SPE-47 F392M support Notch processing 

Next, processing of Notch was analyzed. All constructs were expressed and underwent γ-

secretase complex formation (Figure 30A). Strikingly, both PS1/SPE-47 F392L and 

PS1/SPE-47 F392M allowed the generation of NICD and F-Nβ as shown in Figure 30B 

(lane 6 and 7). These results suggest that phenylalanine at position x within the GxGD 

motif is indeed important for Notch processing. 
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Figure 30: PS1/SPE-47 F392L and PS1/SPE-47 F392M are active in Notch processing 

Notch processing was analyzed in transiently cotransfected PS1/2-/- MEF cells as in Figure 27. A: 
Total cell lysates were analyzed by immunoblotting using monoclonal anti-PS1 N-terminus 
antibody PS1N (upper panel), polyclonal anti-PS1 loop antibody 3027 (middle panel) or polyclonal 
anti-NCT antibody N1660 (lower panel). B: Levels of F-NEXT expression and NICD generation 
were analyzed from total cell lysates by immunoblotting with monoclonal anti-myc antibody 9E10 
(upper panel). Combined immunoprecipitation/immunoblotting with monoclonal anti-FLAG 
antibody M2 was performed from conditioned medium to analyze secreted F-Nβ (lower panel). 
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3.2.4 Leucine at the position x of the GxGD motif is important for Notch 

processing in PS1 

The above results suggest that the residue at the position x within the GxGD motif 

determines the efficiency of Notch processing. However, this effect might only occur in the 

context of the PS1/SPE-47 and PS1/SPE-46/7 chimeric proteins. To exclude this possibility 

and to obtain further evidence for an importance of this residue within the GxGD motif, 

L383 was mutated to F directly in PS1. The consequence of PS1 L383F on γ-secretase 

activity was then analyzed as above. 

PS1/2-/- MEF cells were transiently cotransfected with PS1 L383F and APPsw-6myc 

(Figure 31) or F-NEXT (Figure 32). PS1 L383F was capable of γ-secretase complex 

formation as judged from the generation of PS1 NTF (Figure 31A and Figure 32A, upper 

panels) and CTF (Figure 31A and Figure 32A, middle panels), and the maturation of NCT 

(Figure 31A and Figure 32A, lower panels). PS1 L383F was also able to process APPsw-

6myc, which showed substantial AICD (Figure 31B, lower panel) and Aβ (Figure 31C, 

lower panel) generation. 

In contrast, when PS1 L383F was expressed together with F-NEXT, an accumulation of F-

NEXT (Figure 32B, upper panel) was observed concomitant with dramatically reduced 

NICD (Figure 32B, upper panel) and F-Nβ (Figure 32B, lower panel) generation. These 

data indicate that the L383 residue is required in PS1 itself for efficient Notch processing. 
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Figure 31: PS1 L383F is active in APP processing 

PS1 L383F was transiently coexpressed together with APPsw-6myc in PS1/2-/- MEF cells and 
analyzed as in Figure 29. A: The expression of each construct was analyzed by immunoblotting 
with monoclonal anti-PS1 N-terminus antibody PS1N (upper panel) or polyclonal anti-PS1 loop 
antibody 3027 (middle panel). NCT maturation was analyzed by immunoblotting using polyclonal 
anti-NCT antibody N1660 (lower panel). B: Total cell lysates were analyzed by immunoboltting 
with monoclonal anti-myc antibody 9E10 to detect the level of expression (upper panel) and the 
processing (lower panel) of APPsw-6myc. C: The secreted sAPP and Aβ were analyzed either by 
immunoblotting with polyclonal anti-APP antibody 5313 (upper panel) or combined 
immunoprecipitation/immunoblotting with polyclonal and monoclonal anti-Aβ antibodies 
3552/6E10 (lower panel) from conditioned medium. 
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Figure 32: PS1 L383F is deficient in Notch processing 

PS1 L383F activity in Notch processing was analyzed as in Figure 30. A: Total cell lysates were 
analyzed by immunoblotting using monoclonal anti-PS1 N-terminus antibody PS1N (upper panel), 
polyclonal anti-PS1 loop antibody 3027 (middle panel) or polyclonal anti-NCT antibody N1660 
(lower panel). B: The levels of F-NEXT expression and NICD generation were analyzed from total 
cell lysates by immunoblotting with monoclonal anti-myc antibody 9E10 (upper panel). Combined 
immunoprecipitation/immunoblotting with monoclonal anti-FLAG antibody M2 was performed 
from conditioned medium for analyzing secreted F-Nβ (lower panel). 
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4.1 A proteolytic function of SPE-4 

4.1.1 SPE-4 does not undergo γ-secretase complex formation 

SPE-4 was identified as the most distant PS homologue with approximately 23% of 

homology to PS1 based on the BLAST search. Despite of its low homology, the two 

catalytic aspartates within TMD6 and 7, including the GxGD active site motif, and the C-

terminal PALP motif, which are characteristic for the PS protease family, are well 

conserved in SPE-4. The PALP motif is required for PS activity in humans and Drosophila. 

Mutation of the first proline in Drosophila presenilin eliminated its function in Notch 

signaling (Guo et al., 1999). Furthermore, as shown in human cells, this mutation 

eliminated both endoproteolysis of PS and γ-secretase activity even though they were 

incorporated into a high molecular weight complex (Tomita et al., 2001; Takasugi et al., 

2002; Kaether et al., 2004; Wang et al., 2004). These observations suggest that the PALP 

motif is crucial for γ-secretase activity. In case of SPE-4, a mutation of the first proline 

within the PALP motif results in arrests of spermatogenesis at an unusual cellular stage in a 

similar manner to a null phenotype (Arduengo et al., 1998). The conservation of the 

functional aspartates and motifs in SPE-4 suggests the conservation of a PS-type 

proteolytic function of SPE-4. Because it is difficult to analyze SPE-4 function directly in 

C. elegans due to its temporally and spatially limited expression, mammalian cells were 

employed to address to analyze this question. 

When PS is stably overexpressed in HEK293 cells, the exogenous PS replaces the 

endogenous PSs as a result of competition for the interaction with the other γ-secretase 

complex components. This replacement could be an indicator of γ-secretase complex 

formation of the exogenously expressed PS. Interestingly, despite its robust expression, 

SPE-4 wt was not able to replace endogenous PS1 and PS2 in HEK293/sw cells (Figure 

10), which indicates that at least in this situation this molecule is unable to assemble into 

the γ-secretase complex. It may be that SPE-4 is not able to interact with human complex 

components, because of its very distant sequence from PS. In addition, one could also 

speculate on the possibility that SPE-4 functions alone without forming a complex with 

other components. These possibilities will be discussed below. 
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To further investigate the putative proteolytic activity of SPE-4, it was forced to replace 

endogenous PSs by exchanging its C-terminus after the PALP motif with the 

corresponding region of PS1 which had been suggested to be required for γ-secretase 

complex formation (Tomita et al., 1999; Bergman et al., 2004; Kaether et al., 2004; Wang 

et al., 2006) (Figure 12). This construct, SPE-4/PS1c, with successfully replaced 

endogenous PSs shows this chimeric protein incorporated into γ-secretase complex (Figure 

13). However, surprisingly, the SPE-4/PS1c expressing cells showed an impairment of γ-

secretase activity, which was caused by the failure of NCT maturation (Figure 14 and 

Figure 15) and by the lack of PEN-2 interaction (Figure 16). Co-immunoprecipitation 

experiments revealed an interaction between NCT and SPE-4/PS1c (Figure 15). The 

absence of NCT binding to SPE-4 wt indicates that NCT binds specifically to SPE-4/PS1c 

via the exchanged PS1 C-terminal region. This observation is consistent with previous 

reports (Tomita et al., 2002; Bergman et al., 2004; Kaether et al., 2004) that showed the 

deletion or the mutation of the last amino acids of PS1 result in the inhibition of PS1 

endoproteolysis and the γ-secretase activity due to the lack of NCT binding. These 

observations could also explain why SPE-4 wt failed to form a γ-secretase complex, either 

because of its shorter C-terminus compared to the PS1 or by the difference in sequence in 

human cells at the C-terminus (Figure 9). Despite the fact that SPE-4/PS1c was able to 

bind NCT, γ-secretase complex formation remained incomplete. The analysis of the other 

γ-secretase components revealed the absence of PEN-2 in this cell line (Figure 16). This 

result suggested that the complex formed by SPE-4/PS1c, NCT and APH-1 failed to 

stabilize PEN-2, which is rapidly degraded in the cells when it is not incorporated into the 

complex (Bergman et al., 2004; Crystal et al., 2004). This observation accords to recent 

findings that suggest a direct interaction of PEN-2 with the PS1 NTF occurring via the PS1 

TMD4 (Kim and Sisodia, 2005; Watanabe et al., 2005), which is different in SPE-4/PS1c. 

Interestingly, the sequence of TMD4 that is suggested to be required for PEN2 binding is 

not very well conserved in C. elegans PS homologues. The result above thus also supports 

the notion that C. elegans PS/PEN-2 interactions might be different from that in mammals 

or insects (Watanabe et al., 2005).  Moreover, it also suggests that γ-secretase complex 

assembly occurs stepwise as follows: i) subcomplex formation by APH-1 and NCT 

interaction, ii) stable high molecular weight complex formation together with PS 

holoprotein and iii) final maturation step of active γ-secretase complex by joining of PEN-

2, which elicits endoproteolysis of PS (Figure 7) (Takasugi et al., 2003). Taken together, 
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the above results indicate that it is most likely that APH-1/NCT subcomplex formation and 

subsequent SPE-4/PS1c binding of this subcomplex occurred via the PS1 C-terminus. Also 

noteworthy, the interaction between NCT and SPE-4/PS1c was confirmed by co-

immunoprecipitation. In contrast, PEN-2 was degraded most likely due to the absence of a 

functional binding site on SPE-4/PS1c. Thus, a PS domain(s) other than its C-terminus is 

required for functional γ-secretase complex formation. 

 

 

4.1.2 The active site domain of SPE-4 supports APP processing  

Although the importance of the PS1 C-terminus in initiating γ-secretase complex formation 

was shown, the question whether or not SPE-4 has a proteolytic function remained unclear 

because of its incomplete γ-secretase complex formation in the mammalian cells. To 

investigate this area further, the capability of a proteolytic function of the putative active 

site domain of SPE-4 was directly tested separated from its sequence using the active site 

chimera PS1/SPE-46/7 (Figure 17). 

PS1/SPE-46/7 was able to assemble a complete γ-secretase complex in PS1/2-/- MEF cells, 

as judged from the NTF and CTF generated by PS endoproteolysis and the rescue of NCT 

maturation (Figure 19). This result supports the above observation that SPE-4/PS1c lacks 

an important domain required to form a mature γ-secretase complex. Moreover, PS1/SPE-

46/7 showed substantial activity in APP processing (Figure 20). Unlike the aspartate mutant 

variant of this chimeric protein, PS1/SPE-46/7 D394A, it rescued APP-CTF accumulation 

of the PS1/2-/- MEF cells caused by the lack of γ-secretase activity and allowed AICD and 

Aβ formation. The similar amount of APPsw-6myc expression and sAPP secretion suggest 

that the γ-secretase inactivity in the PS1/SPE-46/7 D394A expressing cell is due to the 

mutation of the catalytically active aspartate residue. The fact that both endoproteolysis 

and APP processing were dependent on an active site aspartate is a strong indication of the 

functional conservation of the putative SPE-4 active site domain. Notably, this is the first 

demonstration that γ-secretase can function with a related but not identical active site 

domain in its catalytic subunit PS.  
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4.2 Identification of sequence requirements of PS for γ-secretase 

substrate cleavage 

4.2.1 The active site of SPE-4 discriminates APP and Notch substrates 

The conservation of the proteolytic activity of SPE-4 active site domain provided an 

opportunity to investigate the putative sequence requirements of PS for the γ-secretase 

activity. It was reasoned that despite its substantial activity on APP processing a γ-

secretase complex containing PS1/SPE-46/7 might have an influence on the cleavage of the 

other γ-secretase substrates due to its sequence difference of TMDs 6 and 7 from PS. 

Therefore, the influence of PS1/SPE-46/7 on processing of Notch was analyzed. 

Surprisingly, despite of its substantial γ-secretase activity on APP processing, PS1/SPE-46/7 

did not support Notch processing. The generation of NICD and F-Nβ was impaired in 

transiently cotransfected PS1/2-/- MEF cells (Figure 22). This observation was confirmed 

by immunocytochemical analysis. Consistent with the biochemical data, PS1/SPE-46/7 

failed to process F-NEXT and mainly plasma membrane staining was observed (Figure 23). 

These data indicate that the TMDs 6 and 7 of SPE-4 including the active site domain could 

discriminate two substrates APP and Notch, at least in the context of this chimeric protein. 

 

 

4.2.2 Identification of a critical amino acid within TMD7 at position x of the 

GxGD motif 

Mapping of the responsible sequence determinant(s) for APP/Notch substrate selectivity 

revealed that a single amino acid at the position x of the GxGD motif within TMD7 plays a 

crucial role. The amino acid sequence comparison of PS1, SEL-12, HOP-1 and SPE-4 

showed one significant amino acid change in SPE-4 from the other PSs. Among the PS 

protease family, the residue x is typically an aliphatic amino acid leucine, with the 

exceptions of the C. elegans homologues HOP-1 and SPE-4 (Figure 9 and Figure 17). 

Compared to the change from leucine to methionine as in HOP-1, the change to an 

aromatic amino acid, phenylalanine, as in SPE-4 seems rather drastic. In fact, the Notch 

processing deficiency was rescued in mammalian cells by changing the phenylalanine 

residue to either leucine or methionine to restore the PS and SEL-12 GLGD motif or the 

HOP-1 GMGD motif within PS1/SPE-47 chimeric protein (Figure 30). This result suggests 
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the significance of the phenylalanine residue at the position x of the GxGD motif on 

APP/Notch substrate selectivity. However, it could have been possible that these results 

were obtained only in the context of PS1/SPE-47. To eliminate this possibility, PS1 L383F 

mutant, in which the corresponding leucine residue was mutated to phenylalanine in PS1, 

was further analyzed. The PS1 L383F mutant allowed substantial APP processing but 

showed strong impairment in Notch processing (Figure 32). This observation strongly 

suggests the importance of phenylalanine at the position x of the GxGD motif for PS. 

All above results were obtained in cultured cells. These observations were also confirmed 

in vivo in a collaboration with Dr. Stefan Eimer and Prof. Dr. Ralf Baumeister. It has been 

shown that sel-12 loss of function mutants in C. elegans exhibit an egg-laying defect (Egl) 

phenotype due to an abnormal vulva muscle development, which is caused by a defect of 

Notch signaling (Levitan and Greenwald, 1995). This Egl defect phenotype can be rescued 

by SEL-12, HOP-1 and human PS1 and 2 (Levitan et al., 1996; Baumeister et al., 1997; Li 

and Greenwald, 1997; Steiner et al., 1999b). cDNAs encoding the PS1/SPE-4 species and 

PS1 L383F, which were subcloned under the sel-12 promoter, were injected to sel-

12(ar171) mutant hermaphroditic worms and the Egl behavior was scored. The cDNAs 

encoding PS1, SEL-12 and HOP-1 SPE-4 wt were also injected in parallel. As shown in 

Table 4, Egl phenotype was rescued by PS1, SEL-12, HOP-1 as expected. SPE-4 itself, 

which is normally only expressed in the spermatheca (L'Hernault and Arduengo, 1992; 

Arduengo et al., 1998), was also analyzed to see if it could replace SEL-12 function under 

the control of the sel-12 promoter. Interestingly, SPE-4, unlike PS1, SEL-12 and HOP-1, 

was not able to rescue the Egl defect phenotype. However, consistent with the above 

results, PS1/SPE-46/7, PS1/SPE-47 and PS1 L383F that are deficient in Notch processing in 

vitro failed to rescue the Egl defect phenotype. In contrast, PS1/SPE-46 was able to rescue 

the phenotype. PS1/SPE-47 F392L and PS1/SPE-47 F392M mutants showed lesser but still 

considerable rescuing activity. This data confirmed the importance of the amino acid 

residue at position x of the GxGD (i.e. a leucine) motif in Notch signaling also in vivo. 

 

 

 

 

 



Discussion 

 101

Strain Transgene# Genotype egg-laying behavior* 

   +++ ++ + - 

N2 - wild type 50 0 0 0 

BR1129 - sel-12(ar171) 0 0 0 50 

BR1964 PS1 sel-12(ar171) 45 3 1 0 

BR2364 sel-12 sel-12(ar171) 48 2 0 0 

BR2993 hop-1 sel-12(ar171) 50 0 0 1 

§ spe-4 sel-12(ar171) 0 0 0 34 

§ spe-4 sel-12(ar171) 0 0 0 27 

§ spe-4 sel-12(ar171) 0 0 0 16 

BR3209 PS1/SPE-46/7 sel-12(ar171) 3 2 1 44 

BR3210 PS1/SPE-46/7 sel-12(ar171) 0 0 2 48 

 His-PS1 wt sel-12(ar171) 48 1 1 0 

 His-PS1/SPE-46 sel-12(ar171) 46 2 2 0 

 His-PS1/SPE-46 sel-12(ar171) 48 0 2 0 

 His-PS1/SPE-47 sel-12(ar171) 0 0 3 47 

 His-PS1/SPE-47 sel-12(ar171) 0 1 1 48 

 His-PS1/SPE-47 F392L sel-12(ar171) 14 10 21 13 

 His-PS1/SPE-47 F392L sel-12(ar171) 11 19 15 5 

 His-PS1/SPE-47 F392M sel-12(ar171) 10 8 25 7 

 His-PS1/SPE-47 F392M sel-12(ar171) 17 14 10 9 

 His-PS1 L383F sel-12(ar171) 0 1 4 45 

 His-PS1 L383F sel-12(ar171) 0 0 2 48 

 

Table 4: Rescuing activity of the sel-12 Egl defect of different PSs expressed in C. elegans. 

* For each transgenic animal the number of eggs laid were counted and were grouped into the 
following categories: +++, over 50 eggs progeny laid by an individual animal; ++, 15-50 eggs laid; 
+, 5-15 eggs laid; -, 0-5 eggs laid. 

# For all constructs at least three independent lines were tested, only two representative lines are 
shown.  

§ Stable lines could not be maintained due to progressive sterility. 
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4.2.3 Putative molecular basis of substrate discrimination by the GxGD motif 

What could be the mechanism of the apparent substrate discrimination by the GFGD active 

site motif? The presence of an aromatic amino acid residue, phenylalanine, at position x of 

the GxGD motif may cause subtle differences in the conformation of TMD6 and 7. During 

this study, the presence of two substrate-binding steps in the γ-secretase complex before 

the cleavage occurs at the active site was reported. The ectodomain-shedded substrate is 

first recognized by NCT via its length (Shah et al., 2005). Then, the substrate is further 

transferred to the other binding site, termed docking site, before it reaches the active site to 

be cleaved (Esler et al., 2002; Tian et al., 2002; Beher et al., 2003; Tian et al., 2003). The 

docking site was mapped very close to the active site within a distance of three amino acids 

(Kornilova et al., 2005). Considering the estimated distance of the docking site from the 

active site, it could be that changing leucine to phenylalanine at the position x of GxGD 

motif, which is just two amino acids away from the active site aspartate, caused some 

effect on the docking event or on a post-docking event due to a slight structural alteration. 

These observations suggest two possible scenarios that are i) Notch is not able to bind on 

the docking site of the complex or ii) Notch is able to bind on the docking site but is not 

cleaved. There is also a possibility that NCT in a GFGD-type γ-secretase complex cannot 

recognize F-NEXT because the overall structure of the complex might be influenced by the 

alteration of the active site motif due to the phenylalanine residue. However, this can be 

ruled out because of substantial APP processing mediated by the GFGD active site motif. 

Furthermore, NCT recognizes a free amino terminus of the short ectodomain-shedded 

substrate (Shah et al., 2005) arguing against this possibility. This is because F-NEXT is a 

short Notch extracellular truncated substrate that mimics the direct substrate of γ-secretase. 

In addition, preliminary co-immunoprecipitation experiments indicate an interaction of F-

NEXT and the GFGD-type γ-secretase. There was comparable F-NEXT binding between 

GLGD-type (as present in PS1 wt) and GFGD-type γ-secretase complex (as present in PS1 

L383F). This result demonstrates that Notch can bind to a GFGD-type γ-secretase complex, 

but is not processed. Thus, the structural alteration caused by the phenylalanine residue 

rather affects a limited region around the GxGD active site motif including the docking site 

instead of the overall structure of γ-secretase. 

Interestingly, compared to Notch processing, this structural alteration apparently had only a 

little influence on APP processing (see below). This observation may suggest that APP and 

Notch may have different docking sites on the γ-secretase complex. It may be that 
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phenylalanine residue at position x of the GxGD motif altered the docking site for Notch 

whereas the docking site for APP is not affected by this residue. The other possibility 

would be that, no matter whether APP and Notch share the same docking site, the docking 

site plays a role as a gate to the catalytic center. For example, it could be that after the 

initial recognition by NCT, Notch will be transferred to the docking site, but it is not able 

to enter the catalytic center to be processed because of the bulky aromatic amino acid 

phenylalanine, whereas APP is still able to pass through. Interestingly, a comparison of the 

TMD sequences of APP and Notch shows that there are four aromatic amino acids within 

the Notch TMD and none in the APP TMD (Figure 33). The combination of the bulky 

aromatic phenylalanine at the protease active site and the bulky residues in Notch TMD 

may account for the Notch processing deficiency. Interestingly, leucine/isoleucine–

phenylalanine variations at position x in the GxGD motif are also found in and/or between 

the SPP/SPPL (SPP-like protease) protease families (Figure 34)(Weihofen et al., 2002). As 

in PSs, these differences may have an impact on substrate identification. Future studies will 

be needed to answer these questions. 
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Figure 33: Comparison of the APP and Notch TMDs 

The amino acid sequence of the TMDs of APP and Notch are shown. TMDs are indicated with blue 
background. Aromatic amino acid residues are indicated with red letters. 
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Figure 34: Sequence comparison of the GxGD motif of the SPP family 

The GxGD motifs of SPP family from different species are shown. Aromatic amino acid residues 
are indicated in red letters. (Excerpt from Weihofen et al., 2002) 

 

 

 

When a single amino acid residue at position x of the GxGD motif has such a strong 

influence on the processing of Notch, it might also have an effect on APP cleavage 

specificity as well. Considering that FAD single point mutations cause a shift in APP 

cleavage site, APP cleavage specificity at the Aβ40 and 42 site might be also slightly 

affected by the GFGD active site motif even though it is processed. Indeed, preliminary 

data showed an altered Aβ40/42 ratio in cells expressing the GFGD-type γ-secretase 

complex. Interestingly, cells expressing PS1 with the GMGD active site motif, as present 

in HOP-1, showed an alteration of the Aβ40/42 ratio. Although these are preliminary data, 

it seems the precise APP processing is mediated only by the GLGD active site motif, as 
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present in PS and SEL-12. As discussed above, a slight structural change of active site 

domain region might be caused by a single amino acid at position x of the GxGD active 

site motif. The difference of the effects caused by the structural alteration is probably 

dependent on the amino acid residue present at position x of the GxGD active site motif, i.e. 

the alteration by methionine only changes the specificity of APP processing whereas the 

alteration by phenylalanine not only changes APP processing but also blocks Notch 

cleavage. Taken together, it may be that a residue at position x of the GxGD active site 

motif is not only contributing to substrate identification but also is required for the accurate 

processing of the substrate. 

 

 

 

4.3 Putative function of SPE-4 in C. elegans 

The result in this study strongly suggested the conservation of proteolytic function in SPE-

4. However, its physiological role in C. elegans is remained to be investigated. 

Interestingly, SPE-4 wt failed to rescue the Notch signaling-dependent Egl phenotype in 

the mutant worms (Table 4). This observation together with the finding of the contribution 

of the phenylalanine residue within the GxGD motif raises some ideas about the function 

of SPE-4 in C. elegans. Since SPE-4 failed to replace SEL-12 function, even though it was 

forced to be expressed under the control of sel-12 promoter, it can be speculated that SPE-

4 has more specific function as a protease in the worm during the spermatogenesis at L4 

stage. It may have its own substrate(s) that should be discriminated from Notch using its 

GFGD active site motif. On the other hand, the failure in rescue of the Egl defect 

phenotype in the mutant worms could be because of the absence of γ-secretase complex 

formation ability of SPE-4 (Figure 10 and Figure 13). In this case, one may also speculate 

that SPE-4 functions alone like the SPP family. To analyze the possibility that SPE-4 

functions independent of other proteins, an in vitro γ-secretase assay was performed 

(Figure 11). SPE-4 wt isolated from HEK293/sw cells stably expressing SPE-4 wt failed to 

generate AICD or Aβ from recombinant APP-based substrate, C100. This result indicates 

that either APP is not the right substrate for SPE-4 or SPE-4 does not function alone at 

least in this context. However, with this result, the possibility cannot be ignored that SPE-4 

forms a complex in C. elegans. SPE-4 might only not be able to interact with human NCT, 
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APH-1 and PEN-2 because their sequences are different from those homologues found in 

C. elegans. If this was the case, the inability of SPE-4 to replace the SEL-12 function in C. 

elegans might be due to its phenylalanine residue at the position x of the GxGD motif. 

Moreover, it is also possible that SPE-4 forms a complex with its own partner(s). 

 

 

 

4.4 Outlook 

The experiments using SPE-4/PS1c expressing cells demonstrated the importance of the 

PS1 C-terminus region for complex formation. To further map domains in PS that are 

required for an active γ-secretase complex formation, various SPE-4/PS1 swapping 

mutations can now be constructed and analyzed. For example, it would be interesting to 

analyze a construct, in which TMD4 of SPE-4 is exchanged with that of PS1 in the context 

of SPE-4/PS1c, to see whether or not PEN-2 would be stabilized by interaction with this 

construct (Kim and Sisodia, 2005; Watanabe et al., 2005). 

In this study, it was also demonstrated that a single amino acid residue, phenylalanine, at 

position x of the GxGD motif plays a critical role in APP/Notch substrate selectivity. The 

precise mechanism of this selectivity is still unclear. However, two possible explanations 

for the observed substrate discrimination were discussed above based on this study. i) APP 

and Notch have different docking sites, and the phenylalanine residue at position x of the 

GxGD motif only affects the Notch docking site. ii) The docking site plays a role as a gate 

to the active site and the combination of bulky aromatic amino acids within GxGD active 

site motif and the TMD of the substrate results in a blockage of the gate. When a bulky 

aromatic amino acid residue, phenylalanine, is present at the position x of the GxGD motif, 

Notch is not able to reach the active site whereas APP is. This may potentially be because 

the TMD of Notch contains more aromatic amino acids than APP. Apart from further 

obtaining the co-immunoprecipitation data described above, cross-linking experiments 

would be helpful to investigate the interaction between the substrate and the γ-secretase 

complex. Moreover, to explore the second possibility, other γ-secretase substrates or an 

APP TMD that is mutated to contain more aromatic amino acids can be examined to see 

whether a GFGD-type γ-secretase complex processes them. For example, it is known that 
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all four Notch homologues (Notch1-4) in mouse undergo γ-secretase dependent proteolysis 

(Saxena et al., 2001). Interestingly, each Notch homologue has a different number of 

aromatic amino acids within its TMD, Notch1; four, Notch2; three, Notch3; two, and 

Notch4; one (Figure 35). It will be very interesting to analyze the activity of a GFGD-type 

γ-secretase on these four homologues to compare the efficiency of the proteolysis to see 

whether there is any correlation between the efficiency and the number of the aromatic 

amino acids. Moreover, the constructs containing various point mutations at position x of 

the GxGD active site motif can be also tested. For example, one could insert other aromatic 

amino acids, tyrosine or tryptophan, at position x of the GxGD motif to generate GYGD or 

GWGD active site motifs for analyzing whether they discriminate APP and Notch like the 

GFGD active site motif does.  

 

 

 

...PSQLHLMYVAA FVL FFVGCAA L GVLLSRKR... 

 

 

 

 

Figure 35: The TMD amino acid sequence comparison of the mouse Notch homologues 

The amino acid sequences around TMDs of mouse Notch homologues are shown. TMDs are 
indicated with blue background. Aromatic amino acid residues are indicated with red letters. 

 

 

 

Finally, the physiological function of SPE-4 in C. elegans is remained to be investigated. 

As shown in this study, not only the functional motifs are conserved in SPE-4, but also the 

active site of SPE-4 has a proteolytic function in APP processing at least in the context of 

PS1/SPE-46/7. These observations strongly suggest the conservation of a proteolytic 

function in SPE-4. However, as discussed above, whether SPE-4 functions without its 

partner proteins or has its own distinct substrate(s) is unclear. It will be very helpful to 

...NAQLL LAVAVVIIL VIMAKRK...YL FFILLG
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analyze endogenous SPE-4 to study these open questions. Unfortunately, because it is 

exclusively expressed during the L4 stage in the spermatheca in C. elegans during 

spermatogenesis, it has been difficult to analyze the endogenous SPE-4 so far. Therefore, 

establishing a sensitive antibody against SPE-4 that can detect endogenous SPE-4 in C. 

elegans or an efficient method that can isolate endogenous SPE-4 from C. elegans is 

required. Once it becomes possible to analyze endogenous SPE-4, it will be very 

interesting to examine the molecular weight of isolated SPE-4 under native conditions to 

find out whether SPE-4 forms a complex. Moreover, identification of endogenous SPE-4 

substrate(s) using methods such as co-immunoprecipitation would be also very important 

to understand the function of SPE-4 in C. elegans. These future studies will be also very 

helpful for the further characterization of the intramembrane proteolytic activity by PS 

family.  



Summary
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The C. elegans transmembrane sperm protein SPE-4 is the most distant homologue of 

presenilin (PS), which represents the catalytic subunit of γ-secretase, an intramembrane-

cleaving aspartyl protease complex. Besides PS, γ-secretase consists of three other 

components, nicastrin (NCT), APH-1 and PEN-2. γ-Secretase catalyzes the intramembrane 

cleavage of Alzheimer’s disease-associated APP and many other type I transmembrane 

proteins including Notch, a major physiological γ-secretase substrate, which is required for 

cell differentiation during development and in adulthood. PS contains two functional 

aspartates within its transmembrane domains (TMDs) 6 and 7. The active site motif 

residing in TMD 7 of PS is an unusual GxGD motif, which presents a novel signature 

motif of a number of intramembrane cleaving aspartyl proteases. Despite its low homology 

to PS, the two functional aspartates including the GxGD active site motif are conserved in 

SPE-4 indicating a proteolytic function of this C. elegans PS homologue. In this study, the 

putative proteolytic activity of SPE-4 was examined. Because it was difficult to analyze the 

endogenous SPE-4 in C. elegans due to its temporally and spatially limited expression 

pattern, mammalian cells were chosen as experimental system. Surprisingly, when SPE-4 

was expressed in mammalian cells, it did not support γ-secretase complex formation 

suggesting that SPE-4 cannot interact with human γ-secretase complex components. 

Consistent with this observation, SPE-4 did not process a recombinant APP-based γ-

secretase substrate in vitro. These results indicated that SPE-4 cannot function as a 

protease alone and/or might have its own partner protein(s) and/or own substrate(s) in C. 

elegans. SPE-4 was incorporated into a γ-secretase complex only when its C-terminal 

region had been exchanged with the corresponding region of PS1, which is known to be 

required for γ-secretase complex assembly. Although the chimeric protein SPE-4/PS1c 

showed an interaction with NCT, it failed to support APP processing. This was due to the 

failure of an efficient interaction with PEN-2 thus resulting in incomplete γ-secretase 

complex formation. This result suggested a requirement of other PS domains for assembly 

of an active γ-secretase complex in addition to its C-terminus. Because SPE-4/PS1c failed 

to be incorporated into a functional γ-secretase complex, the proteolytic function of the 

putative SPE-4 active site domain was subsequently directly assessed by an active site 

domain exchange approach with PS. To this end, an active site chimeric protein PS1/SPE-

46/7, in which TMDs 6 and 7 of PS1 had been replaced by those of SPE-4, was constructed. 
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This chimeric protein PS1/SPE-46/7 underwent normal γ-secretase complex formation and 

was able to process APP, demonstrating that the putative active site of SPE-4 has a 

proteolytic function. 

Surprisingly, despite its substantial activity in APP processing, PS1/SPE-46/7 did not 

support Notch processing. Mapping the residue responsible for the Notch processing defect 

revealed that a single amino acid at position x of the GxGD active site motif in TMD 7 of 

PS affects Notch processing.  

During the progress of this study, the presence of two substrate-binding sites in the γ-

secretase complex was reported. One site is provided by NCT, which mediates the initial 

substrate recognition by recognizing the length of the ectodomain-shedded substrates. The 

other binding site, termed docking site, was mapped very close to the active site within a 

distance of three amino acids. The results of this study identifying a single amino acid 

critical for APP/Notch substrate selectivity, which is only two amino acids away from the 

active site aspartate supports the concept of a substrate-docking site close to the active site, 

and suggests that the GxGD active site motif region may be a part of it. 

Taken together, the findings in this thesis suggest a proteolytic function of SPE-4 in C. 

elegans and indicate an important role of the GxGD active site motif of PS in substrate 

identification in addition to its role in the catalytic function of γ-secretase. 
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A significant member of early-onset familial type of
Alzheimer’s disease cases has been shown to be caused
by dominant mutations in either of the two genes encod-
ing presenilin 1 (PS1) and presenilin 2 (PS2). These two
proteins are highly homologous to each other and have
been reported to be mainly localized to the membranes
of intracellular compartments such as the endoplasmic
reticulum. Information about the membrane topological
structures of these proteins is indispensable for under-
standing their physiological and pathological roles. Al-
though several models have been proposed previously,
their precise membrane topologies remain unknown. In
this study, we examined this issue in detail by express-
ing a series of C-terminally deleted PS1 mutants fused to
the hydrophilic portion of Escherichia coli leader pep-
tidase in vitro using a reticulocyte lysate in the presence
of microsomal membranes. Our results predict that PS1
exists mainly in a seven membrane-spanning structure
with its C-terminal end exposed to the luminal space.
This was also confirmed by expressing these fusion pro-
teins in cultured cells. We further showed that a ninth
hydrophobic segment is tightly bound to the membrane
without spanning it. Based on the above observations,
we propose a novel “seven membrane-spanning and one
membrane-embedded” topological model for presenilins.

A significant portion of inheritable familial Alzheimer’s dis-
ease (FAD)1 is caused and transmitted in a dominant manner
through mutations in either of the two highly homologous
genes encoding presenilin 1 (PS1) and presenilin 2 (PS2) on

chromosomes 14 and 1, respectively (1–5). These proteins have
been shown to be mainly localized to the endoplasmic reticulum
(ER), the Golgi apparatus, and the ER-Golgi-intermediate com-
partment (ERGIC) (6–8), although their localization to other
compartments such as the plasma membrane has also been
suggested (9, 10). One of the physiological roles of presenilins
has been suggested through genetic analysis of Caenorhabditis
elegans SEL-12, which codes for a protein highly homologous to
mammalian presenilins (11), and through analysis of PS1-
knockout mice (12, 13). These studies have suggested that
presenilins are involved in the Notch signaling pathway, which
is known to be involved in many different aspects of the regu-
lation of cell differentiation in C. elegans and higher eu-
karyotes. Several roles of presenilins in the pathogenesis of
FAD have also been suggested. First, in the cerebrospinal fluid
of FAD patients or in the medium of cultured cells expressing
FAD-linked mutant presenilins, elevation of the level of amy-
loid b protein consisting of 42 amino acid residues (Ab42),
which is thought to play a key role in the pathological progres-
sion of Alzheimer’s disease, especially for senile plaque forma-
tion, has been observed (14–17). This suggests that FAD-asso-
ciated mutations cause the disease by elevating the production
of Ab42 either intracellularly or extracellularly. Furthermore,
analysis of neuronal cell primary cultures derived from PS1
knockout mouse embryos implied that PS1 is required for
g-secretase cleavage of Ab from amyloid precursor protein (18).
Second, several works have shown that wild-type or mutant
presenilins are involved in the regulation of the cellular apo-
ptotic pathway (19–22), implying the possibility that they may
be related to the neural cell loss or degeneration commonly
observed in this disease. However, the mechanisms underlying
both the physiological and pathogenic functions of presenilins
at the molecular level remain to be elucidated.

To understand the function(s) of presenilins at the molecular
level, conformational information on these proteins in mem-
branes is indispensable. Several previous reports have sug-
gested different models for the membrane topologies of these or
related proteins differing in the number of membrane-span-
ning segments (six to eight), but in all of them the C terminus
is exposed to the cytosolic space (23–27). In this study, we
re-examined this issue using a series of fusion proteins consist-
ing of C-terminally deleted PS1 and a reporter sequence, with
special emphasis on the C-terminal half region, where signifi-
cant discordance still exists. Although two previous studies
involved similar strategies (25, 26), in our study special atten-
tion was paid when choosing the reporter fragment to be fused
because we consider it possible that the relatively hydrophobic
nature of the extreme C-terminal region of PS1 would affect the
results if the N-terminal portion of the reporter is also hydro-
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phobic. The results we obtained using a series of such fusion
proteins confirmed the notion that the N-terminal and the
large hydrophobic loop regions of PS1 face the cytosol, as sug-
gested by several previous studies. However, by using a re-
porter sequence that does not include hydrophobic residues in
the vicinity of the N-terminal portion of the reporter region just
after the fused point, we unexpectedly observed that a signifi-
cant fraction of the molecules expressed in vitro or in cultured
cells exposed their C-terminal ends to the luminal space on the
ER membrane. In addition, we show here that the eighth and
ninth hydrophobic segments do not span the membrane and
that, despite this, the latter is tightly bound to the lipid bilayer
from the cytosolic face. Based on the data presented in this
study, we here propose a “seven membrane-spanning and one
membrane-embedded” model for the topological structures of
presenilins. Possible causes for the discrepancy between our
results and the models proposed by several other groups are
also discussed.

MATERIALS AND METHODS

Cloning of the PS1 Gene and Plasmid Construction—cDNAs for four
contiguous parts spanning the whole coding region of human PS1 were
amplified from a human fetal brain cDNA library (Stratagene) by PCR
using four sets of oligonucleotides as primers (Table I). The four PCR
products were digested with appropriate restriction enzymes, then sub-
cloned into appropriate vectors, and finally recombined between the
EcoRI and XhoI sites of the Bluescript II vector (Stratagene) to recon-
stitute the whole PS1 coding region. For the most N-terminal region, we
subcloned the cDNAs for both of the two known variants in which VRSQ
between the 26th and 29th amino acid residues is retained or deleted,
respectively. Throughout this study, the VRSQ-deleted variant was
used. However, the amino acid residue number of PS1 used in this
study is based on that of the VRSQ-containing variant. The 1.4-kilobase
pair EcoRI-XhoI fragment containing the whole PS1 coding region
was excised and subcloned between the EcoRI-XhoI sites of the
pcDNA3.1(1) vector (Invitrogen) to produce pcDNA-PS1.

A series of C-terminally deleted fragments of PS1 was amplified by
PCR using appropriate N-terminal primers and the C-terminal primers
listed in Table II. For fusion plasmid construction, C-terminal frag-
ments of the Escherichia coli leader peptidase (LPase) coding region
beginning from codons corresponding to 104 or 142 aa were amplified
from pRD8 (28) as a template using the following primers: sense primer,
GACGGATCCGAGAAGTTTGCTTATGGCATT or GACGGATCCGAT-
TACATCAAGCGCGCGGTC, and antisense primer, GGCCTCGAGTT-
AGGCGTAGTCGGGCACGTCGTAGGGGTAATGGATGCCGCCAA-
TGCGACT. A BamHI site (underlined) was added to the N-terminal
end. A hemagglutinin tag sequence (boldface) was inserted before the
stop codon, and an XhoI site (underlined) was introduced after the stop
codon. To construct fusion plasmids expressing C-terminally deleted
PS1 and LPase fusion proteins, the PCR products of PS1 deletion
mutants digested with BamHI and an appropriate restriction enzyme
together with either of the two different BamHI-XhoI fragments for
LPase were substituted for the corresponding regions of pcDNA-PS1
except in the cases of DH3-C and DH9-C, in which a 0.9-kilobase pair
ClaI-XhoI fragment and a 0.2-kilobase pair BspEI-XhoI fragment of
pcDNA-PS1, respectively, were replaced with a BamHI-XhoI LPase
fragment together with adapters consisting of the following oligonucleo-
tides: CGCTGCTATAAGG and GATCCCTTATAGCAG or CCGGC-

GACTGGG and GATCCCCAGTCG, respectively.
For PS1-newt growth hormone (GH) fusion construction, a portion of

newt GH coding sequence spanning the region from the 3rd amino acid
residue of the mature protein to the C terminus was amplified by PCR
using its cDNA subcloned in a pBluescript II vector (Stratagene) as a
template (29). Primers used for amplification were GGTGGATCCG-
GCGTGTCCCTGACAAATCTC and CCGctcgagTCAATGATGATGAT-
GATGATGAATGGTGCAATTATTATCTA. A BamHI site (underlined)
was introduced to the N-terminal flanking region, and 63 His tag
(boldface) was introduced to the C-terminal end, and XhoI restriction
site (lowercase letters) was introduced to the C-terminal flanking re-
gion. Amplified PCR fragment digested with BamHI and XhoI was used
for the construction of PS1-GH as in the case of the PS1-LPase fusion
construction described above.

Antibodies and Immunological Procedures—Anti-LPase polyclonal
antibody LP-1 was raised against N-terminally 63 His-tagged LPase
spanning amino acids 104–323, which was expressed in E. coli using
pET16b (Novagen). Polyclonal antibody LOOP1 against the mouse PS1
loop region (332–371 aa) was raised by injecting a rabbit with glutathi-
one S-transferase fusion protein containing this region expressed in E.
coli using pGEX-5X-1 (Amersham Pharmacia Biotech) and was used
after purification using an Affi-Gel matrix (Bio-Rad) to which a fusion
protein consisting of maltose-binding protein and 263–407 aa of human
PS1 expressed using pMAL-c2 (New England Biolabs) was attached.
This antibody cross-reacts with the corresponding region of human PS1.
For immunoprecipitation, samples were diluted with immunoprecipita-
tion buffer (10 mM Tris-HCl, pH 7.4, 0.1% SDS, 0.1% Triton X-100, 2 mM

EDTA) and then incubated with the antibody for 1 h at room temper-
ature and further for 1 h in the presence of Pansorbin cell, fixed
Staphylococcus aureus cells (Calbiochem). After centrifugation, the pel-
lets were washed four times with immunoprecipitation buffer, and
proteins were extracted with 23 SDS-PAGE sample buffer (30) for 30
min at room temperature. Western blotting was performed after the
proteins had been separated by SDS-PAGE and transferred to polyvi-
nylidene difluoride membranes (Bio-Rad). Proteins were detected using
an ECL chemiluminescence detection kit (Amersham Pharmacia Bio-
tech) according to the manufacturer’s instructions.

In Vitro Transcription and Translation—Linearized plasmids were
transcribed in vitro from the T7 promoter located upstream of the
multicloning site of pcDNA3.1(1) using T7 RNA polymerase (Strat-
agene) according to the manufacturer’s instructions. The transcribed
mRNAs were used for translation in vitro using a rabbit reticulocyte
lysate (31) in the presence or absence of dog pancreas microsomal
membranes (MS) prepared as described previously (32).

TABLE II
PCR primers used for deletion mutant construction

Construct Primera

DH1-C GGCGGATCCATGCTTGGCGCCATATTTCAA
DH2-C GGCGGATCCTGAGTGCAGGGCTCTCTGGCC
DH4-C GGCGGATCCGTCCACAGCAACGTTATAGGT
DH5-C GGCGGATCCTCGAAGTGGACCTTTCCAGTG
DH6-C GGCGGATCCTTCAGGGAGGTACTTGATAAA
DH7-C GGCGGATCCTTCATTTCTCTCCTGAGC
DH8-C GGCGGATCCTTTTACTCCCCTTTCCTC
DH10-C GGCGGATCCTTTCTTGAAAATGGCAAG
DC GGCGGATCCATAATCTGTGGCAAAGTA
Full-C GGCGGATCCGATATAAAATTGATGGAATGC

a A BamHI restriction site (underlined) was introduced next to the
C-terminal end of each deletion mutant.

TABLE I
PCR primers used for PS1 subcloning

Amino acid residue Primer

1 –156 Sense GGCGAATTCTCCACCATGACAGAGTTACCTGCACCGa

Antisense CGGATCGATATTTATACAGAACCACCAGGb

157 –269 Sense GGCATCGATGCTATAAGGTCATCCATGCCb

Antisense CAACCAGCATGCGAAGTGGACCTTTCGGACAb

270 –401 Sense CACTTCGCATGCTGGTTGAAACAGCTCAb

Antisense CAGTCTCCGGAGGCTGTTGCTGAGGCTTTACb

402 –467 Sense CAGCCTCCGGAGACTGGAACACAACCATb

Antisense CCGCTCGAGCTAGATATAAAATTGATGGAc

a An EcoRI restriction site (underlined) and a Kozak sequence (boldface) were introduced just before the initiation codon (double underlined).
b ClaI, SphI, and BspEI restriction sites (underlined) were introduced at the junctions on adjoining sites, respectively, without changing the

encoded amino acids for convenience for further construction.
c An XhoI restriction site (underlined) was introduced just after the stop codon.
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Human Placenta Homogenate Preparation and Na2CO3 Extraction—
Human placenta tissue was homogenized in PBS(2) (0.2 g/liter
KH2PO4, 2.16 g/liter Na2HPO4, 7H2O, 8 g/liter NaCl, 0.2 g/liter KCl) in
the presence of 1 mM phenylmethylsulfonyl fluoride and then centri-
fuged at 1,500 3 g for 10 min. The supernatant was further centrifuged
at 100,000 3 g for 1 h. The pelleted membrane fraction was resus-
pended in 0.1 M Na2CO3 and then incubated on ice for 30 min. One-half
of it was further centrifuged at 100,000 3 g for 1 h, and then the
supernatant and pellet fractions were analyzed, together with the un-
centrifuged half, for the presence of C-terminal fragment (CTF) by
SDS-PAGE and Western blotting.

Cell Culture and Plasmid Transfection—COS-1 and CHO-K1 cells
were cultured in Dulbecco’s modified Eagle’s medium/high glucose me-
dium and F12 medium, respectively, both of which were supplemented
with 10% fetal bovine serum, penicillin, and streptomycin. Cells were
transfected with the indicated plasmids using LipofectAMINE (Life
Technologies, Inc.) according to the manufacturer’s instructions.

Cell Labeling—Cells cultured on 35-mm dishes were washed once
with PBS(2) and then preincubated for 2 h in Dulbecco’s modified
Eagle’s medium/high glucose without cysteine and methionine but sup-
plemented with dialyzed 10% fetal bovine serum at 37 °C under a 5%
CO2 atmosphere. Labeling was started by the addition of 100 mCi of
Met-35S-Label (mixture of L-[35S]methionine and L-[35S]cysteine, .37
TBq/mmol; American Radiolabeled Chemicals, Inc.) to the culture. Af-
ter 5 h labeling, the cells were washed three times with PBS(2), and
then the proteins were extracted with extraction buffer (PBS(2) sup-
plemented with 0.5% Nonidet P-40, 0.1% SDS, 1 mM phenylmethylsul-
fonyl fluoride, 10 mM antipain, 10 mM leupeptin, 10 mM chymostatin, and
10 mM pepstatin) and processed for immunoprecipitation.

RESULTS

Strategies for Membrane Topology Analysis—Hydropathy
analysis of the predicted primary structure of PS1 revealed 10
distinct hydrophobic regions (HR1 to HR10) that are candidate
membrane-spanning segments (Fig. 1A). In order to determine
which of these regions actually span the membrane, we
adopted a deletion strategy based on the assumption that poly-

topic membrane proteins are inserted into the membrane se-
quentially from the N terminus without the requirement of a
more distal C-terminal region (33). According to this assump-
tion, when a series of C-terminally deleted mutants for a poly-
topic membrane protein is expressed in the presence of ER
membrane, localization of the C-terminal end of each deletion
mutant should reflect the topology of the corresponding point
when the full-length protein is expressed. Thus, when a re-
porter protein is fused to the C terminus of such a deletion
mutant, the localization of the reporter protein according to the
membrane should reflect that of the fusion point in the wild-
type protein if the reporter region is neutral as to membrane
translocation. As a reporter protein, we used the C-terminal
hydrophilic region of E. coli leader peptidase (LPase). In E. coli,
LPase is expressed as an inner membrane protein, the C-
terminal region of which contains an active site located in the
periplasmic space (34). Thus, this portion should not interfere
with its translocation across the membrane. Moreover, it is
known that, when expressed in vitro in a eukaryotic system in
the presence of dog pancreas microsomes, this protein retains
the same topogenic ability as in E. coli, and the C-terminal
hydrophilic region localized in the luminal space undergoes
N-glycosylation efficiently (35). The latter property also en-
abled us to determine whether or not this portion is localized in
the luminal space.

Construction of C-terminally Deleted PS1 Fusion Genes—For
the analysis of PS1 topogenicity, based on the results of hy-
dropathy analysis, a series of C-terminally deleted PS1 mutant
cDNAs truncated at the points just prior to the hydrophobic
regions (PS1-DH1-C to PS1-DH10-C, Fig. 1B) and just after
HR10, the most C-terminal hydrophobic segment (PS1-DC),
were constructed, and they, together with the whole PS1 coding

FIG. 1. Hydropathy of human PS1
and construction of deletion mu-
tants. A, the hydropathy of human PS1
was plotted using the published algo-
rithm (51). A window size of 12 was used.
Ten detected hydrophobic segments (HR1
to HR10) are indicated by roman numer-
als. B, top, 10 hydrophobic segments are
schematically presented. Each segment
spans the region between the following
amino acid residues: HR1, Val82-Ile100;
HR2, Ile133-Tyr154; HR3, His164-Gly183;
HR4, Tyr195-Ile213; HR5, Leu221-Ile238;
HR6, Trp240-Leu262; HR7, Leu282-Ala299;
HR8, Leu381-Gly394; HR9, Ile408-he428;
and HR10, Ala431-Ala448. Bottom, the con-
structs of deletion mutants for PS1 used
in this study are indicated by horizontal
bars. To the right of each bar is shown the
amino acid residue to which each deletion
mutant spans. PS1-DH1-C means that
the region from HR1 to the C terminus of
PS1 was deleted, the same holds for PS1-
DH2-C to PS1-DH10-C. PS1-DC lacks the
C-terminal region beginning just after
HR10, and PS1-full contains the full-
length PS1. Each deletion mutant was
fused in frame to E. coli LPase to produce
fusion genes PS1-DH1-C-LP to PS1-
DH10-C-LP, PS1-DC-LP, and PS1-full-LP
through the BamHI restriction site which
inserts additional glycine and serine res-
idues between the PS1 region and LPase.
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region (PS1-full), were fused in frame to the sequence encoding
the C-terminal region of LPase corresponding to 104–323
amino acid residues. When choosing a reporter, especially for
the construction of a fusion protein with full-length PS1, the
hydrophilic property of the N terminus of the reporter fragment
is important to prevent fortuitous production of a hydrophobic
segment at the junction, because the extreme C-terminal por-
tion of PS1 is relatively rich in hydrophobic residues. The N
terminus of the above LPase region is hydrophilic enough to
prevent the creation of such hydrophobic segments together
with the C terminus of PS1, as judged by hydropathy analysis
(data not shown). These fusion constructs were transcribed in
vitro, and the synthesized mRNAs were translated in an in
vitro translation system using a rabbit reticulocyte lysate
in the presence of [35S]methionine and in the presence or ab-
sence of MS. The translation products were analyzed by
fluorography.

PS1 Spans the Membrane Seven Times—We assessed the
membrane orientation of the reporter portion of each fusion
protein expressed in vitro in the presence of MS using two
distinct criteria as follows: 1) susceptibility of the reporter
portion to proteinase K added via the cytosolic space; and 2)
N-linked glycosylation, specific for the luminal space of ER, of
the consensus sequence present in the reporter portion. Fig. 2
shows a fluorogram of the in vitro translation product for each
fusion construct. These data indicate first that, in the presence
of MS, translation products with slightly reduced electro-
phoretic mobility, as compared with those in the absence of the
membrane, were predominant for PS1-DH2-C-LP, PS1-DH4-C-
LP, PS1-DH6-C-LP, PS1-DC-LP, and PS1-full-LP (lanes 1 and 2
for each set in Fig. 2); however, in the cases of PS1-DH1-C-LP,
PS1-DH3-C-LP, PS1-DH5-C-LP, PS1-DH7-C-LP, PS1-DH8-C-
LP, PS1-DH9-C-LP, and PS1-DH10-C-LP (lanes 1 and 2 for
each set in Fig. 2), no such mobility shift was observed. These
results suggest that, for the former constructs, an N-linked
glycosyl chain was attached to the reporter portion as a result

of its translocation through the membrane and subsequent
exposure to N-glycosyltransferase, whose active site resides in
the luminal face of ER. This was confirmed by endoglycosidase
H treatment, which is known to remove N-linked glycosyl
chains from a polypeptide. Such treatment effectively restored
the mobility to the extent that was observed for the translation
products in the absence of microsomal membranes for all of the
five constructs above (Fig. 3).

Second, when proteinase K is added via the cytosolic space to
the translation products inserted into MS, the reporter portion
located in the luminal space is expected to be protected from
digestion because the protease cannot go into the luminal space
due to the lipid bilayer of the microsomal vesicles. As shown in
Fig. 2, only when a shift of the electrophoretic mobility was
observed in the presence of MS (PS1-DH2-C-LP, PS1-DH4-C-
LP, PS1-DH6-C-LP, PS1-DC-LP and PS1-full-LP) were pro-
tected fragments also observed (lane 3), which can be immuno-
precipitated with LP-1 specific for LPase (lane 5). These
fragments were abolished when proteinase K was added in the
presence of Triton X-100, which disrupts the membrane (lane
4). These results, together with the presence of N-linked gly-
cosylation, indicate that the reporter LPase portion of these
products derived from PS1-DH2-C-LP, PS1-DH4-C-LP, PS1-
DH6-C-LP, PS1-DC-LP, and PS1-full-LP is sequestered on the
luminal side of microsomal vesicles, whereas that in the fusion
proteins expressed by other constructs (PS1-DH1-C-LP, PS1-
DH3-C-LP, PS1-DH5-C-LP, PS1-DH7-C-LP, PS1-DH8-C-LP,
PS1-DH9-C-LP, and PS1-DH10-C-LP) is located on the cytosolic
face.

To confirm the above results, we further examined two ad-
ditional distinct series of constructs. On the one hand, in order
to determine whether or not the above results hold true when
another reporter protein, especially with a different N-terminal
sequence, is used, a series of distinct fusion constructs corre-
sponding to PS1-DH6-C, PS1-DH10-C, and PS1-DC were con-
structed using a shorter region of LPase (142–323 aa) having a

FIG. 2. In vitro translation of the fusion genes in a rabbit reticulocyte lysate and proteinase K protection assaying of the
translation products. The plasmids indicated below each panel were linearized with XbaI, and mRNA was synthesized using T7 RNA
polymerase. Transcripts were translated in a rabbit reticulocyte lysate in the presence of [35S]methionine and the presence (ER1, lanes 2–5 in each
panel) or absence (ER2, lane 1 in each panel) of dog pancreas microsomal membrane. The translation products obtained in the presence of the
membrane were divided into four parts, three of which were treated with proteinase K (20 mg/ml) in the presence (X1001, lane 4 in each panel)
or absence (X1002, lanes 3 and 5 in each panel) of 1% Triton X-100. A part of the latter was further immunoprecipitated with anti-LPase polyclonal
antibody, LP-1 (ImPpt1, lane 5 of each panel). The proteins in all samples were separated by 10% SDS-polyacrylamide gel electrophoresis, and
isotopically labeled proteins were detected by fluorography. The positions for the bands of unglycosylated or glycosylated proteins are indicated by
closed or open arrowheads, respectively, on the left of each panel. The bands for proteinase K-protected fragments containing the LPase region are
indicated by closed arrowheads on the right of the panels for PS1-DH2-C-LP, PS1-DH4-C-LP, PS1-DH6-C-LP, PS1-DC-LP, and PS1-full-LP. The
positions of prestained marker proteins (New England Biolabs) are indicated on the left of the fluorograms.
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different N-terminal sequence as a reporter. Experiments in-
volving these constructs gave results consistent with those
described above (data not shown). On the other hand, when an
extra membrane-spanning segment corresponding to TM2 of
LPase (58–76 aa), which spans the ER membrane from the
cytosol to the lumen when full-length LPase is expressed in a
eukaryotic system (34), was inserted between the presenilin
region and the reporter region, a complementary pattern of
N-linked glycosylation was observed (Fig. 4). For constructs
derived from PS1-DH7-C to PS1-DH10-C, the translation prod-
ucts were mainly N-glycosylated, whereas for those from PS1-
DH6-C, PS1-DC, and PS1-full, the translation products were
predominantly unglycosylated, although minor glycosylated
products were observed for the last two of the latter. The
existence of glycosylated species for PS1-DC-TM-LP and PS1-
full-TM-LP may be due to incompleteness of the translocation
efficiency of HR10. In such minor molecular species with cyto-
solic HR10, the extra membrane-spanning segment could span
the membrane from the cytosol to the lumen and hence result
in the translocation of the reporter portion to the luminal
space.

The consistent results obtained with the above three series of
constructs strongly suggest that PS1 spans the membrane
seven times with the portions of the PS1 molecule just proximal
to HR2, HR4, and HR6, the region just distal to HR10, and the
C terminus exposed to the luminal space, and the portions just
proximal to HR1, HR3, HR5, HR7, HR8, HR9, and HR10 ex-
posed to the cytosolic space.

We also examined a series of PS1-GH fusion constructs (Fig.
5). When GH was fused just prior to HR10 (PS1-DH10-C-GH),
or just after HR10 (PS1-DC-GH), results were consistent with
those in the case when LPase was used as a reporter, although
N-glycosylation and protection against proteinase K in PS1-
DC-GH were less efficient than those in PS1-DC-LP. When GH
was fused after the C terminus of PS1 (PS1-full-GH), the re-
sults were contradictory. N-Glycosylation and protection
against proteinase K were very inefficient as compared with
the case with the corresponding LPase fusion construct. As the
C-terminal portion of PS1 and the N-terminal portion of the
GH region fused to PS1 are intermediately hydrophobic, we
think the results of PS1-full-GH as an artifact of synthetic
hydrophobicity of the region around the fusion point (see
“Discussion”).

Topological analysis of PS1 in Cultured Cells—To confirm
the results obtained with the in vitro experimental system, we
transiently expressed PS1-DH6-C-LP to PS1-DH10-C-LP, PS1-
DC-LP, and PS1-full-LP in COS-1 cells in the presence of a
mixture of [35S]methionine and [35S]cysteine to label newly
synthesized proteins isotopically. As shown in Fig. 6, the elec-
trophoretic mobilities of the major translation products for
PS1-DH6-C-LP, PS1-DC-LP, and PS1-full-LP decreased when
the cell extracts were treated with endoglycosidase H prior to
immunoprecipitation, indicating that in the majority of the
fusion proteins expressed in living cells, the reporter regions
underwent N-linked glycosylation and were therefore translo-
cated to the luminal space. Note that significant portions of
them were unglycosylated, implying the existence of PS1 mol-
ecules with the C terminus exposed to the cytosol in living cells.
This may explain the discrepancy between our results and

FIG. 4. N-Glycosylation of the fusion proteins with an addi-
tional membrane-spanning segment. A series of PS1-LPase fusion
constructs in which an extra membrane-spanning segment was in-
serted at the fusion point (PS1-DH6-C-TM-LP, lanes 1 and 2; PS1-DH7-
C-TM-LP, lanes 3 and 4; PS1-DH8-C-TM-LP, lanes 5 and 6; PS1-DH9-
C-TM-LP, lanes 7 and 8; PS1-DH10-C-TM-LP, lanes 9 and 10; PS1-DC-
TM-LP, lanes 11 and 12; and PS1-full-TM-LP, lanes 13 and 14) were
constructed, and the presence of N-glycosylation was assessed by com-
paring the mobilities of the translation products in vitro in the absence
(lanes 1, 3, 5, 7, 9, 11, and 13) and presence (lanes 2, 4, 6, 8, 10, 12, and
14) of MS as described in Fig. 3. The positions of unglycosylated or
glycosylated proteins are indicated by closed or open arrowheads on the
right of each panel, respectively. The positions of prestained marker
proteins (New England Biolabs) are indicated on the left of the
fluorograms.

FIG. 3. The mobility shift is due to N-glycosylation. The in vitro translation products obtained in the presence of MS from the plasmids
exhibiting a mobility shift (PS1-DH2-C-LP, lanes 1–3; PS1-DH4-C-LP, lanes 4–6; PS1-DH6-C-LP, lanes 7–9; PS1-DC-LP, lanes 10–12; PS1-full-LP,
lanes 13–15) were treated with endoglycosidase H (EndoH1, lanes 3, 6, 9, 12, and 15) and then electrophoresed side by side with the products
obtained in the absence of MS (ER2, lanes 1, 4, 7, 10, and 13) and those in the presence of MS without endoglycosidase H treatment (ER1 and
EndoH2, lanes 2, 5, 8, 11, and 14). The positions for unglycosylated or glycosylated bands are indicated by closed or open arrowheads, respectively,
on the right of each panel. The positions of prestained marker proteins (New England Biolabs) are indicated on the left of the fluorograms.
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those from other groups (see “Discussion”). The mobility of
PS1-DH7-C-LP to PS1-DH10-C-LP was not changed by the
endoglycosidase H treatment. Expression of these proteins in
CHO-K1 cells showed similar results (data not shown). The
above results suggest strongly that the membrane topology of
PS1 predicted from the in vitro experimental system faithfully
reflects that in the living cell.

CTF Expressed Separately Can Be Assembled into the Mem-
brane in the Same Topology as in the case of Full-length PS1
Molecule—It has been reported that PS1 and PS2 undergo
processing into two fragments (N-terminal fragment and CTF)
in vivo (36, 37). In order to determine the specific function of
each of the two fragments, the separate expression of each
fragment will be a powerful approach. However, when the
results of such experiments are interpreted, especially in the
case of CTF, it is important to know whether or not this portion
expressed separately can be assembled into the membrane in
the same topological structure as in the case of the full-length
PS1 molecule. Moreover, the C-terminal portion of PS2 ex-
pressed alone has been shown to have the biological ability to
suppress apoptosis in several experimental contexts (21, 22).
So, we investigated this subject using a similar strategy to that
adopted above for full-length PS1. We constructed a series of
fusion genes in which the PS1 coding sequence starting at the
289th methionine, around which processing has been shown to
occur (38), and ending at either of the points corresponding to
PS1-DH8-C to PS1-DH10-C, PS1-DC, and PS1-full, was fused
to LPase (PS1-CTF-DH8-C-LP to PS1-CTF-DH10-C-LP, PS1-
CTF-DC-LP, and PS1-CTF-full-LP). These constructs were
transcribed and translated in vitro in the presence of MS, and
the translation products were examined for protection against
proteinase K and for N-linked glycosylation. The results unam-
biguously showed that only for the translation products of

PS1-CTF-DC-LP and PS1-CTF-full-LP were the reporter por-
tions proteinase K-resistant and N-glycosylated (Fig. 7, A and
B). These results are in accord with those obtained in the
experiments involving the constructs starting at the authentic
initiation codon and indicate that CTF expressed alone can be
assembled into the membrane in the same membrane topology
as the corresponding portion of the full-length PS1 molecule.

The Ninth Hydrophobic Segment of PS1 Is Embedded in the
Membrane without Spanning It—Although the above in vitro
and in vivo experiments suggested that HR8 and HR9 do not
span the membrane and are located on the cytosolic face of the
membrane, whether or not they interact with the membrane
remains unclear. The above results indicating that the CTF
portion can be assembled into the ER membrane in the same
topological structure as in the case of the full-length PS1 en-
couraged us to examine this issue in detail, because analysis of
the interaction of these segments with the membrane would be
much simpler in the absence of HR1 to HR7.

First, we examined the interaction of the CTF of PS1 with
the membrane in vivo using a homogenate of human placenta
by testing the extractability with sodium carbonate, which is
known to deplete the membrane of peripherally bound proteins
but not integral ones (39). The supernatant and pellet fractions
of the human placenta homogenate after sodium carbonate
treatment were analyzed by Western blotting for CTF using
LOOP1, which recognizes the loop region between HR7 and
HR8 of mouse and human PS1. This antibody detected three
polypeptides with apparent molecular masses of about 21, 24,
and 51 kDa, respectively. The dominant 21-kDa band and the
fainter 24-kDa band correspond to CTF, and the 51-kDa band
corresponds to the full-length molecule. The 21- and 24-kDa
bands may represent unphosphorylated and phosphorylated
molecular species, respectively, as described recently (40, 41).
These CTF polypeptides were not extracted with 0.1 M sodium
carbonate, suggesting that some portion(s) of CTF is inserted
into the lipid bilayer of the membrane in vivo (Fig. 8A), con-
sistent with the idea that HR10 spans the membrane.

Next, in order to investigate the interaction of HR8 and HR9
with the membrane, we analyzed the extractability of the in
vitro translation products for a series of CTF fusion constructs
expressed in the presence of MS with either a neutral buffer (20
mM HEPES, pH 7.6, 0.25 M sucrose, 1 M NaCl), in the presence
or absence of 1% Triton X-100, or 0.1 M sodium carbonate. In
order to assess the interaction between HR8 and the mem-
brane, PS1-CTF-DH9-C-LP containing only HR8 as a hydro-
phobic segment was examined. As shown in Fig. 8B (left panel),
this translation product was extracted with either the neutral
buffer (lanes 2 and 3) or sodium carbonate (lanes 4 and 5)
mainly into the soluble fraction, indicating that there is little,
if any, interaction between them. This result enabled us to
assess the interaction between HR9 and the membrane by
examining PS1-CTF-DH10-C-LP. Because the product of this
construct contains HR8 and HR9 as hydrophobic regions and,
as shown above, HR8 does not interact with the membrane, the
results for this construct should reflect the interaction between
HR9 and the membrane. As shown in Fig. 8B (middle panel),
the product derived from this construct could not be extracted
with either the neutral buffer in the absence of Triton X-100
(lanes 2 and 3) or sodium carbonate (lanes 4 and 5), suggesting
strongly that HR9 interacts tightly with the membrane and is
most likely embedded in the lipid bilayer. The product of PS1-
CTF-DC-LP was partitioned into the pellet fraction either with
the neutral buffer in the absence of Triton X-100 (lanes 2 and 3)
or with sodium carbonate (lanes 4 and 5), consistent with the
prediction that HR9 is embedded in the membrane and HR10
spans it. As an internal control, mRNA for PS1-DH6-C-LP

FIG. 5. Inefficiency of the membrane translocation of the C
terminus of PS1 when fused with growth hormone. The plasmids
encoding three different PS1-GH fusion proteins (PS1-DH10-C-GH,
PS1-DC-GH, and PS1-full-GH) were transcribed and translated in the
presence (ER1) or absence (ER2) of microsomal membrane as de-
scribed in Fig. 2. A portion of each was further proteinase K-treated and
immunoprecipitated with the polyclonal antibody GH-1 specific for
newt growth hormone (PK1 and IP1). Radiolabeled proteins were
separated by SDS-PAGE and detected fluorographically. Positions for
unglycosylated or glycosylated proteins are indicated by closed arrow-
heads on the left or right of each panel, respectively. Positions for
proteinase K-protected fragments in PS1-DC-GH are shown by open
arrowheads on the right of the panel. The positions of prestained
marker proteins (New England Biolabs) are indicated on the right of the
fluorogram.
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having five membrane-spanning hydrophobic segments was
co-translated with each of the constructs used. As expected, the
product of PS1-DH6-C-LP was partitioned mainly into the in-
soluble fraction with both sodium carbonate and the neutral
buffer in the absence of the detergent. Taken together, these
results suggest strongly that HR9 is embedded in the mem-
brane with both of its flanking regions exposed to the cytosolic
space (see Fig. 9 for our model).

DISCUSSION

Detailed knowledge of the membrane topological structures
of presenilins is crucial for understanding their molecular func-
tions in normal cells and in the pathogenesis of Alzheimer’s
disease. Earlier, based only on the information derived from
the primary structures of presenilins, a seven membrane-span-
ning model, in which HR1 to HR6 and HR9 span the mem-
brane, was proposed (5). Since then, based on at least some
experimental results, several groups have proposed distinct
topological models for these proteins (23–26, 40), although sig-
nificant disagreement exists among these models, especially
with regard to the C-terminal half portion. In this study, we
addressed this controversial subject in detail using a series of
fusion proteins in which C-terminally deleted PS1 is fused to a
reporter protein. We expressed such fusion proteins either in
vitro in the presence of the microsomal membrane (MS) or in
vivo using cultured cells, and we determined the localization of
the reporter portion by examining the N-glycosylation of this
portion and its susceptibility to cytosolically added proteinase
K. Based on the results of such experiments, together with
several lines of evidence also described in this study, we here
propose a novel model for the membrane topology of presenilins
with a seven membrane-spanning and one membrane-embed-
ded structure, as illustrated in Fig. 9A. According to this model,
(a) the N-terminal region is located in the cytosolic space and
the first six (HR1 to HR6) hydrophobic regions span the mem-
brane in alternating directions; (b) HR7, HR8, and the large
hydrophilic region between them are exposed to the cytosolic
space; (c) HR9 does not span the membrane, but it is tightly
associated with, most probably being embedded in, the lipid
bilayer; and (d) HR10 spans the membrane and the C-terminal
portion after this region is located in the luminal space.

The topology of the N-terminal half portion up to HR6 in our
model is consistent with most of the others (24–26, 40), further
confirming that the N terminus and the large hydrophilic loop

region between HR7 and HR8 are exposed to the cytosol and
that HR1 to HR6 span the membrane. Although our results
demonstrate that HR7 does not span the membrane and is
localized on the cytosolic face, it is still unclear from our results
whether or not a part of this portion is associated with the
membrane, as in one of the models proposed by Doan et al. (24).
Based on the accessibility of region-specific antibodies to pre-
senilin molecules expressed on the surface of unfixed living
DAMI cells, one group proposed that the N termini of cell
surface presenilins are extracellular and that HR1 to HR6 span
the membrane in opposite directions as compared with other
models including ours (23). The reason for this discrepancy is
unclear at present. Although it might be that presenilin mole-
cules expressed on the cell surface show a distinct membrane
topological structure from those retained on ER or ERGIC, it is
also possible that some misassembled PS1 molecules with a
non-physiologically inverted membrane topology caused by
overexpression leak out onto the cell surface because their
retention signal(s) to ER, ERGIC, or the Golgi apparatus can-
not function correctly in this membrane topology.

Meanwhile, regarding the topological structure of the portion
from HR8 to the C terminus of PS1 or its homolog, SEL-12,
several different models have been proposed (24–26). First,
according to our model, HR10 spans the membrane in the
direction from the cytosol to the lumen, and the C terminus is
exposed to the luminal space, whereas in all other models it is
exposed to the cytosolic space. In some models (24, 26), HR10 is
exposed to the cytosol, and in others (24), it spans the mem-
brane in the opposite direction to that in our model. Although
we cannot completely exclude the possibility that the LPase
sequence we used as a reporter artificially enhanced the inser-
tion of a naturally cytosolic HR10 segment into the membrane,
or that it interferes with the stop transfer activity of HR10
non-physiologically, we think this is unlikely for the following
reasons. First, in our fusion constructs LPase does not abolish
the stop transfer ability of HR2, HR4, and HR6 when fused
after them. Second, our three different reporter sequences, long
and short versions of LPase with different N-terminal se-
quences and LPase with an extra membrane-spanning segment
at the N-terminal end, gave consistent results. Third, when the
N-glycosylation consensus sequence and hemagglutinin tag se-
quence were introduced into the extreme C-terminal region of

FIG. 6. Fusion proteins expressed in cultured cells are capable of being assembled into the membrane with the same topology as
those translated in vitro. COS-1 cells were transfected with the indicated plasmids, and the newly synthesized proteins were isotopically labeled
in the presence of [35S]methionine and [35S]cysteine for 4 h. After the cells has been washed twice with PBS(2), the proteins were extracted. The
extract from each lot of transfected cells was divided into three parts. One of them was treated with endoglycosidase H and another one was treated
with the enzyme reaction buffer only. These two samples together with the untreated sample were immunoprecipitated with LP-1 and then
separated by SDS-PAGE on 7.5% gels. The 35S-labeled proteins were detected by fluorography. All samples were exposed for 24 h except for
PS1-DC-LP and PS1-full-LP, which were exposed for 4 days because the labeling efficiency was very low for these constructs. Lanes 1–3,
PS1-DH6-C-LP; lanes 4–6, PS1-DH7-C-LP; lanes 7–9, PS1-DH8-C-LP; lanes 10–12, PS1-DH9-C-LP; lanes 13–15, PS1-DH10-C-LP; lanes 16–18,
PS1-DC-LP; lanes 19–21, PS1-full-LP. Lanes 1, 4, 7, 10, 13, 16, and 19, untreated; lanes 2, 5, 8, 11, 14, 17, and 20, buffer-treated; lanes 3, 6, 9, 12,
15, 18, and 21, endoglycosidase H-treated. The positions of unglycosylated or glycosylated proteins are indicated by closed or open arrowheads on
the right of each panel, respectively. The positions of prestained marker proteins (New England Biolabs) are indicated on the left of the fluorogram.
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PS1, such a protein still underwent N-glycosylation,2 indicat-
ing that the luminal localization of the C-terminal portion of
PS1 is not specific for the LPase fusion constructs we employed.
Fourth, no previous study has demonstrated that a hydrophilic
region interferes with the stop transfer activity or enhances the
membrane anchoring ability of a preceding hydrophobic
segment.

Some of the cytosolic C-terminal models are based on results
obtained in experiments involving fusion proteins, as in this
study. On the one hand, Lehmann et al. (25) constructed a
series of fusion proteins in which C-terminally deleted PS1 is
fused to a portion of prolactin with several artificial N-glyco-
sylation consensus sequences at the C terminus, and the fusion
proteins were expressed either in an in vitro translation system
in the presence of the microsomal membrane or in cultured
cells. Based on their observation that neither N-glycosylation
in the reporter region nor protection of this region against
cytosolically added proteinase K was detected when a chimera
protein containing full-length PS1 was examined, they con-

cluded that the C terminus of PS1 is located in the cytosolic
space. On the other hand, Li and Greenwald (26) expressed in
C. elegans a series of C-terminally deleted SEL-12, the coun-
terpart of presenilins in the worm, fused to b-galactosidase,
and they examined b-galactosidase activity using 5-bromo-4-
chloro-3-indoyl-b-D-galactoside (X-Gal) staining in situ. They
observed that the activity was observed when b-galactosidase
was fused to the C-terminal portion of full-length SEL-12 and
that it was lost when an additional artificial hydrophobic seg-
ment was inserted between SEL-12 and b-galactosidase. As it
is empirically known that b-galactosidase activity is lost when
it is translocated to the luminal face of the ER membrane, they
concluded that the C terminus end of SEL-12 is exposed to the
cytosolic space.

So, what is the cause for such discrepancies between our
results and others? We think that the relatively hydrophobic
nature of the C-terminal region of PS1 or SEL-12 could lead to
artificial results unless care is taken when choosing the re-
porter protein to be fused. In fact, nine or eight out of 16 amino
acid residues of the C-terminal region after HR10 of human
PS1 or SEL-12, respectively, are hydrophobic. Although this2 T. Nakai and S. Miura, unpublished results.

FIG. 7. CTF separately expressed is assembled in the same membrane topology as in the case of full-length PS1. A, plasmids encoding
a series of fusion proteins starting from the 298th methionine of PS1 indicated on the top were transcribed and translated in vitro in the absence
(lane 1 in each panel) or presence (lanes 2–5 in each panel) of MS. The translation products obtained in the presence of MS were treated with
proteinase K in the absence (lanes 3 and 5 in each panel) or presence (lane 4 in each panel) of Triton X-100 (X100). A portion of the translation
products in the absence of Triton X-100 was further immunoprecipitated with LP-1 to identify fragments containing the LPase region (lane 5 in
each panel). Isotopically labeled proteins were detected as in Fig. 2. The positions of unglycosylated or glycosylated proteins are indicated by closed
or open arrowheads on the left of each panel, respectively. Proteinase K-protected fragments containing the LPase region in PS1-CTF-DC-LP and
PS1-CTF-full-LP are indicated by an asterisk on the right of each panel. The positions of prestained marker proteins (New England Biolabs) are
indicated on the left of the fluorograms. B, the mobility of the translation products of PS1-CTF-DC-LP and PS1-CTF-full-LP observed in the
presence of MS was due to N-type glycosylation: lanes 1 and 4, in the absence of MS; lanes 2 and 5, in the presence of MS; lanes 3 and 6, in the
presence of MS with endoglycosidase H treatment. In vitro translation, endoglycosidase H treatment and detection of the translation products were
carried out as in Fig. 4. The positions of unglycosylated or glycosylated proteins are indicated by closed or open arrowheads on the right of each
panel, respectively. The positions of prestained marker proteins (New England Biolabs) are indicated on the left of the fluorograms.

Membrane Topology of Presenilin 123654



region is not hydrophobic enough to constitute solely a mem-
brane-spanning stop-transfer segment, it could create a new
additional artificial membrane-spanning segment when it is
fused to a protein with a short hydrophobic region at its N-
terminal end, which is not hydrophobic enough to have mem-
brane-spanning ability itself. In such a case, the reporter re-
gion would be exposed to the cytosolic space despite the luminal
localization of the free C-terminal end of these proteins. To
prevent this, care was especially taken not to use a reporter
sequence with an N terminus of a hydrophobic nature. Indeed,
hydropathy analysis of the amino acid sequence around the
junction point of the PS1-prolactin fusion protein expected from
the construction in the literature (25) revealed an additional
hydrophobic segment which could span the membrane (data
not shown), although we could not examine the case of SEL-12
because of a lack of precise sequence information regarding the
fusion constructs in their report. Such a possibility will be
tested by examining constructs in which the reporter portion is
fused to PS1 or SEL-12 just after HR10, like in our PS1-DC-LP.
If our prediction is correct, such experiments should provide
results consistent with the translocation of the reporter portion
to the luminal space for such constructs because the C-terminal
hydrophobic portion after HR10 is eliminated in this case.

Supporting this view, we actually observed that N-glycosyla-
tion of the reporter portion or protection against proteinase K
was very inefficient when the whole PS1 was fused to a portion
of newt GH, whose N terminus is relatively hydrophobic (Fig. 5,
right). In contrast, when a fusion construct of PS1-DC, in which
the C-terminal portion of PS1 after HR10 was lacking, and GH
were used, the two indices for membrane translocation were
clearly positive (Fig. 5, middle). These results suggest that the
extreme C-terminal portion of PS1 after HR10 became an ad-
ditional eighth membrane-spanning segment when fused to
GH. In the case of SEL-12, an alternative possibility that its
C-terminal membrane topological structure is different from
those of mammalian presenilins cannot be excluded.

Another line of experimental evidence for the cytosolic local-
ization of the C terminus is the accessibility of antibodies
specific to the C-terminal region of PS1 from the cytosolic space
in cultured cells. Doan et al. (24) observed positive staining of
intracellular structures when CHO cells or N2a cells overex-
pressing PS1 were probed with anti-C-terminal-specific poly-
clonal antibodies after treatment with streptolysin O, which is
known to permeabilize specifically the plasma membrane with-
out disrupting the membranes of intracellular organelles. Un-
der such conditions, extracellularly added antibody molecules

FIG. 8. Interaction of HR8 and HR9 with the membrane. A, a 100,000 3 g membrane fraction of the human placenta homogenate was
prepared and suspended in 0.1 M sodium carbonate as described under “Materials and Methods.” A portion was fractionated by centrifugation at
100,000 3 g. Each fraction was analyzed for the presence of PS1-CTF by SDS-PAGE and Western blotting with a polyclonal antibody; PS1-LOOP:
lane 1, total membrane fraction before sodium carbonate extraction; lanes 2 and 3, supernatant and pellet fractions, respectively, obtained on
100,000 3 g centrifugation after sodium carbonate extraction. The positions of CTF are indicated by closed or open arrowhead on the right of the
panel. The upper bands (open arrowhead) may represent a phosphorylated molecular species. The full-length form is indicated by an asterisk on
the right of the panel. The positions of prestained marker proteins (New England Biolabs) are indicated on the left of the fluorograms. B,
PS1-CTF-DH9-C-LP, PS1-CTF-DH10-C-LP, and PS1-CTF-DC-LP were transcribed and translated in vitro as in Fig. 3 together with PS1-DH6-C-LP
as an internal control in the presence of MS. Each sample was divided into four parts, three of which were extracted with solutions containing the
following reagents: lanes 2 and 3, 20 mM HEPES, pH 7.6, 0.25 M sucrose, 1 M NaCl (buffer); lanes 4 and 5, 0.1 M Na2CO3 (Na2CO3); lanes 6 and
7, 20 mM HEPES, pH 7.6, 0.25 M sucrose, 1% Triton X-100 (buffer 1 Triton), for each panel, respectively. After centrifugation at 100,000 3 g for
1 h, the supernatants (S, lanes 2, 4, and 6) and pellets (P, lanes 3, 5, and 7) were separated by SDS-PAGE together with total unextracted samples
(T, lane 1), and labeled proteins were detected by fluorography. The positions of glycosylated or unglycosylated translation products for
PS1-CTF-DH9-C-LP, PS1-CTF-DH10-C-LP, and PS1-CTF-DC-LP (open or closed arrows, respectively) as well as the doublet bands for glycosylated
and unglycosylated translation products of PS1-DH6-C-LP (open and closed arrowheads, respectively) are indicated. The positions of prestained
marker proteins (New England Biolabs) are indicated on the left of the fluorograms.
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can diffuse into the cytosol through the plasma membrane but
are not expected to go into the luminal space of intracellular
organelles. Based on these observations, they concluded that
the C terminus is exposed to the cytosolic space. However, in
our view, although these data show the existence of PS1 mol-
ecules with the C terminus exposed to the cytosol in PS1-
overexpressing cultured cells, they do not logically exclude the
possibility of the existence of a molecular species whose C
terminus is topologically exposed to the luminal space. So, we
think it is highly possible that two topologically distinct molec-
ular species co-exist in these cells. Supporting this possibility,
when the PS1-LPase fusion protein was expressed transiently
in COS-1 cells, we occasionally observed, in addition to a pre-
dominant band corresponding to the N-glycosylated form, a
minor band corresponding to the unglycosylated form (for ex-
ample, see Fig. 6, lanes 16–21). The latter may represent those
that failed to translocate the C-terminal end of PS1, together
with the reporter portion, to the luminal space and may corre-

spond to the molecular species that Doan et al. (24) observed.
The molecular species of PS1 with the C-terminal region

facing the cytosol might be an artifact of overexpression. In
fact, although Doan et al. (24) also examined stably transfected
cell lines, these lines may still overexpress PS1 when compared
with cells expressing endogenous PS1. An alternative interpre-
tation would be that both topological species exist physiologi-
cally. They might have distinct functions, as suggested for
several other proteins (42–45). For example, the C-terminal
region might interact with distinct cellular factors in the cy-
tosol and luminal space of ER. Alternatively, cells might regu-
late the ratio of these two forms dynamically in a post-trans-
lational manner by actively translocating the C-terminal
region to and fro across the membrane in response to some
signals. For example, upon processing or interaction with other
factor(s), one of the forms will be converted to the other. In fact,
a protein exhibiting a change in its topology post-translation-
ally has been recently reported (46). In this regard, it will be
important to determine whether or not presenilins with the C
terminus exposed to the cytosol can also be observed in cells
physiologically without overexpressing them and to search for
cytosolic or luminal factors interacting with the C terminus of
PS1.

It is also an arguable point as to whether or not HR9 spans
the membrane. Our results suggest strongly that this segment
does not span the membrane, which is consistent with the
results of Lehman et al. (25). Consistent results obtained with
two different fusion strategies reinforce this idea and make it
unlikely that this is caused by an unusual property of the
reporter protein fused after this segment. Furthermore, we also
showed that, at least when the C-terminal half region of PS1
from the 298th methionine is expressed separately, HR9 inter-
acts with the membrane tightly. The N-glycosylation and pro-
teinase K protection patterns of the fusion proteins starting
from two different residues, the 1st and 298th methionines,
suggest strongly that, in the full-length PS1, HR9 is also in-
serted into the lipid bilayer without spanning the membrane.
Previously, similar structures have been implicated to exist in
several polytopic membrane proteins such as subunits of sev-
eral ion channels including glutamate receptors (47–49). Ad-
ditionally, a glycine residue (Gly-417) is present at approxi-
mately the center of HR9. As a glycine residue is known to tend
to form a turn in the secondary structure of a polypeptide (50),
it is possible that HR9 forms a bending structure in the lipid
bilayer which prevents it from spanning the membrane and
facilitates the embedded topological structure, as illustrated in
Fig. 9.

On the contrary, the experimental evidence in the literature
supporting the membrane spanning of HR9 seems to be weak.
On the one hand, Li and Greenwald (26) examined the activity
of b-galactosidase as a reporter protein, which was fused after
HR9 of SEL-12, and detected such activity, implying that the
C-terminal flanking region of HR9 is exposed to the cytosol. In
order to determine the location of the region between HR8 and
HR9, they examined the activity of b-galactosidase when this
enzyme was fused after HR8 or after an artificial extra mem-
brane-spanning segment which was placed just after HR8, but
no activity was detected for either of the fusion proteins. So,
they further examined similar chimera proteins in which HR8
was deleted and detected such activity only in the presence of
the artificial membrane-spanning segment. From this result,
they argued that HR9 spans the membrane. However, al-
though this result implies that HR9 could span the membrane
from the cytosol to the lumen of ER in some situations, it does
not necessarily prove that HR9 spans the membrane from the
lumen to the cytosol as in their model. Their result implies that

FIG. 9. Seven spanning and one embedded model for the mem-
brane topology of PS1. A, a schematic drawing of the seven mem-
brane-spanning and one membrane-embedded structure for the PS1
topology is depicted. This model has several novel features as follows.
(a) The N-terminal end is localized in the cytosolic space. (b) Hydropho-
bic segments HR1 to HR6 span the membrane in alternative directions,
respectively. (c) HR7, HR8, and large hydrophilic loop between them
are located in the cytosolic space. (d) HR9 is tightly bound to the
membrane, most likely being embedded in the lipid bilayer, without
spanning it. (e) HR10 spans the membrane from the cytosol to the
lumen. (f) The C-terminal portion after HR10 is exposed to the luminal
space. Our results suggest that interaction between HR8 and the mem-
brane is very weak, if any. It is possible that HR8 interacts with HR9 for
the formation of the membrane topological structure of the latter seg-
ment as indicated (see the text). HR7 can interact with the lipid bilayer
as depicted in the drawing, although we have no experimental evidence
for this at present. B, it is also possible that a molecular species in
which HR10 and a more C-terminal region is localized in the cytosolic
space co-exists physiologically together with the species with the novel
structure as indicated in A, although our data imply that the latter
species with the seven membrane-spanning and one membrane-embed-
ded structure is predominant. Furthermore, the intriguing possibility
exists that the two species are interchangeable post-translationally in
response to some physiological signals (see the text).
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HR9 spans the membrane from the cytosol to the luminal
space, which apparently contradicts our model. One interpre-
tation explaining this would be that some of the missing se-
quence in their HR8-deleted construct is required for the cor-
rect topogenesis of HR9. For example, the whole HR8 region or
a part of it might be needed for such an embedded structure of
HR9 through its direct interaction with HR9. Another possibil-
ity would be that the newly exposed flanking sequence before
HR9 in the HR8-deleted construct perturbed the topogenesis of
HR9. We are now examining such possibilities. On the other
hand, Doan et al. (24) proposed two possible models in which
both HR9 and HR10 span the membrane. However, no descrip-
tion of the experimental evidence for such a topological struc-
ture of these segments could be found in their report.

As to HR8, our results suggest that it does not span the
membrane. With PS1-DH9-C-LP as well as with PS1-CTF-
DH9-C-LP, in which the reporter LPase was fused just after
HR8, neither N-glycosylated nor proteinase K-protected LPase
was observed in contrast to the case of PS1-DH9-C-TM-LP,
where the two criteria for the translocation were clearly posi-
tive. Moreover, the results of sodium carbonate extraction ex-
periments with PS1-CTF-DH9-C-LP strongly suggested that
there is no physical interaction between HR8 and the mem-
brane. On the contrary, Li and Greenwald (27) claimed that
HR8 spans the membrane based on the observation that dele-
tion of this segment of PS1 or SEL-12 (26) changes the local-
ization of b-galactosidase fused after HR9 from the cytosol to
the lumen. However, as discussed above, these results can also
be explained by our model assuming that the N-terminal flank-
ing region of HR9 affects its topology. More recently, in exper-
iments involving an altered HR8 made more hydrophobic by
the addition of some hydrophobic amino acid residues, the
same group obtained results suggesting that this altered HR8
spans the membrane from the cytosol to the lumen (27). How-
ever, based on our results, we consider it highly likely that
their results are artifacts caused by the alteration of HR8.
Although they also showed that SEL-12 with this altered HR8
exhibits complementing ability as to the egg-laying defect of
the SEL-12 mutant worm, it is also possible that whether or not
HR8 spans the membrane is not important for the complement-
ing activity of SEL-12.

To summarize, in this study, we obtained evidence for the
existence of PS1 molecules with a seven membrane-spanning
and one membrane-embedded topology, in which tight bind-
ing of HR9 to the membrane without spanning it, membrane
spanning of HR10 from the cytosolic to the lumenal face, and
lumenal localization of the C terminus are novel features.
Further study is necessary to elucidate the biological mean-
ing of these structural aspects. For example, exposure of the
C terminus to the luminal space might be essential for this
protein to undergo proper processing, which is known to
occur normally in the cell, or for a specific interaction of this
protein with an unknown cellular factor localized to the lu-
men of ER or the Golgi apparatus. Experiments are under-
way to assess these possibilities.
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The Alzheimer disease-associated presenilin (PS) pro-
teins apparently provide the active site of �-secretase,
an unusual intramembrane-cleaving aspartyl protease.
PSs principally occur as high molecular weight protein
complexes that contain nicastrin (Nct) and additional so
far unidentified components. Recently, PEN-2 has been
implicated in �-secretase function. Here we identify
PEN-2 as a critical component of PS1/�-secretase and
PS2/�-secretase complexes. Strikingly, in the absence of
PS1 and PS1/PS2, PEN-2 levels are strongly reduced.
Similarly, PEN-2 levels are reduced upon RNA interfer-
ence-mediated down-regulation of Nct. On the other
side, down-regulation of PEN-2 by RNA interference is
associated with reduced PS levels, impaired Nct matu-
ration, and deficient �-secretase complex formation. We
conclude that PEN-2 is an integral �-secretase complex
component and that �-secretase complex components
are expressed in a coordinated manner.

The Alzheimer disease-associated polytopic membrane pro-
teins presenilin 1 (PS1)1 and presenilin 2 (PS2) are required for
the intramembranous �-secretase cleavage of the �-amyloid
precursor protein (APP) (1). Following an initial cleavage by
�-secretase within the APP ectodomain, �-secretase cleavage

releases the 40–42-amino acid amyloid �-peptide (A�) from the
membrane (1). The majority of familial Alzheimer disease cases
are associated with mutations in the PS1 gene (1). Apparently
all PS1 mutations investigated cause an increased generation
of the highly amyloidogenic A�42 (1). Absence of PS1 reduces
�-secretase activity (2, 3) and absence of PS1/PS2 eliminates
�-secretase function completely (4, 5). Mounting evidence sug-
gests that PSs are unusual aspartyl proteases with �-secretase
activity (6). All PSs contain two aspartates within transmem-
brane domains 6 and 7 that are critically required for �-secre-
tase activity (7, 8). Moreover, �-secretase inhibitors designed to
mimic the transition state of the catalytic mechanism of aspar-
tyl proteases can be covalently cross-linked to PSs (9, 10).
Finally, PSs are apparently members of a group of polytopic
membrane-bound aspartyl proteases that are all characterized
by a GXGD (X � variable amino acid) signature motif in which
the C-terminal active site aspartate is embedded (11). Besides
the PSs, the bacterial type 4 prepilin peptidases (11, 12) and
signal peptide peptidase and its related proteins carry this
signature motif (13, 14).

The PSs reside in high molecular weight complexes (15–18).
An integral component of these high molecular weight com-
plexes is the membrane glycoprotein nicastrin (Nct) (18–20).
Down-regulation of Nct in cultured mammalian or Drosophila
cells inhibits �-secretase cleavage of APP (18, 21) and site 3
(S3) cleavage of Notch (21) and reduces PS levels (18, 21, 22).
On the other side, absence of PS1 and PS1/PS2 causes a strong
inhibition of Nct maturation (18, 23).

PSs are not only required for the �-secretase-mediated proc-
essing of APP but also for intramembrane proteolysis of several
other type I transmembrane proteins including the Notch cell
surface receptors that are critically required for cell fate deci-
sions (24). Notch signaling depends on the PS-dependent S3
cleavage of Notch that leads to the liberation of the Notch
intracellular domain (NICD) from the membrane (24). NICD
translocates to the nucleus where it is involved in the tran-
scription of target genes (24). Genetic screening in Caenorhab-
ditis elegans led to the identification of novel components,
APH-1 and PEN-2, that are required for �-secretase activity in
APP and Notch S3 cleavage (21, 25). The function of APH-1 and
PEN-2 is currently unclear. Apparently, APH-1 and PEN-2
could either be transiently required for the assembly of the
�-secretase complex or may even be novel bona fide complex
components required for �-secretase activity (21). Here we in-
vestigated whether PEN-2 is an integral �-secretase complex
component.

EXPERIMENTAL PROCEDURES

Antibodies—The polyclonal antibody 1638 was raised to the N ter-
minus (residues 4–15) of human PEN-2 (21). The polyclonal and mono-
clonal antibodies against the PS1 C terminus (3027 and BI.3D7) (26)
and N terminus (2953) (27) and against the PS2 C terminus (3711 and
BI.HF5c) (26) and N terminus (2972) (28) were described. The poly-
clonal antibody N1660 against the C terminus (residues 693–709) of Nct
was obtained from Sigma. The anti-Xpress antibody was obtained from
Invitrogen.

cDNA Constructs and Transfections—N-terminally hexahistidine-
Xpress (H6X)-epitope-tagged PS1, PS1 �exon9, and PS2 variants were
generated by cloning the respective cDNAs into pcDNA4/HisC expres-
sion vector (Invitrogen) and stably transfected into human embryonic
kidney 293 (HEK 293) stably expressing Swedish mutant APP (swAPP)
(29).
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Cell Culture, Cell Lines, RNA Interference (RNAi), and Protein Anal-
ysis—HEK 293 stably expressing swAPP and mouse embryonic fibro-
blast cells derived from PS knock-out or littermate control mice (30)
were cultured as described (18). To inhibit expression of PEN-2 and Nct
by RNAi, HEK 293 cells were transiently transfected with siRNA du-
plexes PEN-2–160 (directed to the target sequence 5�-AAAGGCTAT-
GTCTGGCGCTCA-3�) and Nct-1045 as described (18). Cell lysates of
HEK 293 cells were analyzed for PEN-2 by combined immunoprecipi-
tation/immunoblotting with antibody 1638, for PSs by combined immu-
noprecipitation/immunoblotting as described (26), and for Nct by direct
immunoblotting with antibody N1660. Immunoprecipitations of PEN-2
were carried out in the presence of 0.1% SDS. To analyze PEN-2, PS,
and Nct expression levels in mouse embryonic fibroblast cells, cell
homogenates were subjected to ultracentrifugation, and the pellet frac-
tion was solubilized in the presence of 1% SDS as described (31). The
SDS extracts were diluted 10-fold and analyzed for PEN-2, PSs, and Nct
by combined immunoprecipitation/immunoblotting or immunoblotting
as described above.

Isolation and Analysis of PS Complexes—PS complexes were isolated
by detergent solubilization of membrane preparations with n-dodecyl
�-D-maltoside (DDM) (18). Homogenates of HEK 293 cells were ex-
tracted with 1% Brij-35,1% Lubrol WX, and membranes were isolated
by ultracentrifugation from the postnuclear supernatant fraction and
solubilized in DDM-lysis buffer (0.7% DDM, 50 mM sodium citrate, pH
6.4, 1 mM EDTA, 5% glycerol, protease inhibitors (Sigma)). Following a
clarifying spin by ultracentrifugation, DDM-solubilized membrane frac-
tions were subjected to co-immunoprecipitation analysis or analyzed for
the PS1 complex by blue native PAGE as described (18, 32). Co-immu-
noprecipitation analysis was performed with the indicated antibodies
for 1–4 h at 4 °C followed by two washes in DDM-wash buffer (0.5%
DDM, 50 mM sodium citrate, pH 6.4, 1 mM EDTA, 5% glycerol, protease
inhibitors). Immunoprecipitates were analyzed on 10–20% Tris-Tricine
gels (Invitrogen).

RESULTS AND DISCUSSION

To identify endogenous PEN-2, we raised antibody 1638 to
the N terminus of human PEN-2. To prove the specificity of this
antibody, cell lysates of HEK 293 cells were subjected to im-
munoprecipitation with antibody 1638 or the corresponding
preimmune serum. HEK 293 cells are known from numerous
previous studies to express a �-secretase activity, which has
identical functional and biochemical properties as the �-secre-
tase activity in neuronal cells or brain tissue (see Ref. 33 and
citations therein). As shown in Fig. 1A, robust amounts of the
�10-kDa PEN-2 were immunoprecipitated with antibody 1638
but not with preimmune serum.

To address the question whether PEN-2 is a bona fide com-
ponent of PS1- and PS2/�-secretase complexes we first per-
formed co-immunoprecipitation analyses using HEK 293 cells
stably transfected with N-terminal hexahistidine-Xpress
(H6X)-epitope-tagged PS1 or PS2. �-Secretase complexes were
isolated from DDM-solubilized membrane fractions by immu-
noprecipitation with an anti-Xpress antibody. As expected, PS1
and PS2 holoproteins and N-terminal fragments were immu-
noprecipitated, and the corresponding C-terminal fragments
were co-immunoprecipitated (Fig. 1B). Under these conditions
endogenous PEN-2 was found to co-immunoprecipitate with
PS1 and PS2. In addition, Nct also co-immunoprecipitated (Fig.
1B). As shown in Fig. 1C, association of PEN-2 with the �-secre-
tase complex is independent of endoproteolysis of PS1. Upon
stable expression of H6X-PS1 �exon9, which does not undergo
endoproteolysis due to the lack of the cleavage site for PS
endoproteolysis (34), PEN-2 was still co-isolated with the PS1
�exon9 holoprotein and with Nct (Fig. 1C). These results sug-
gest that PEN-2 is a component of individual PS1/�-secretase
and PS2/�-secretase complexes. Under these conditions we
could only immunoprecipitate very minor amounts of PEN-2
with antibody 1638 (data not shown), whereas mild denatur-
ation with 0.1% SDS was sufficient to robustly immuoprecipi-
tate PEN-2 (see Fig. 1A). This suggests that PEN-2 is tightly
packed within the �-secretase complex.

To confirm that PEN-2 is an integral component of the en-

dogenous �-secretase complex co-immunoprecipitations were
carried out with untransfected HEK 293 cells. DDM-solubilized
membrane fractions were immunoprecipitated with antibodies
to the C terminus of Nct and the N terminus of PS1 or PS2.
Immunoblotting with anti-PEN-2 antibody 1638 revealed ro-
bust amounts of co-immunoprecipitated PEN-2 demonstrating
that PEN-2 is a component of endogenous PS/�-secretase com-
plexes (Fig. 1D). As expected, antibodies to the N termini of
PS1 or PS2 co-immunoprecipitated the corresponding PS1 and
PS2 C-terminal fragments and mature Nct (Fig. 1D). Taken
together, these experiments demonstrate that PEN-2 is an
integral bona fide �-secretase complex component.

Eliminating PS1 or PS1/PS2 causes reduced levels of the
�-secretase complex and inhibits Nct maturation (18, 23).
Moreover inhibition of Nct expression also strongly reduced PS
expression and inhibited �-secretase complex formation (18).
This suggested that expression of �-secretase complex compo-
nents might be coordinately regulated. We therefore analyzed
PEN-2 expression in PS knock-out mice (2, 4, 30). As expected,
robust levels of PEN-2 were observed in embryonic fibroblasts

FIG. 1. PEN-2 binds to Nct, PS1, and PS2. A, identification of
endogenous PEN-2. Cell lysates from HEK 293 cells expressing endog-
enous (endog.) PEN-2 were analyzed for PEN-2 by immunoprecipitation
with antibody 1638 or with the corresponding preimmune serum (PIS)
and analyzed by immunoblotting with antibody 1638. B, co-immuno-
precipitation of endogenous PEN-2 with H6X-PS1 and H6X-PS2. DDM-
solubilized membrane fractions from HEK 293 cells stably expressing
H6X-tagged PS1 or PS2 were subjected to immunoprecipitation with an
anti-Xpress antibody (anti-Xpress IP) and analyzed for PEN-2, Nct,
PS1, and PS2 by immunoblotting with an anti-Xpress antibody (anti-
Xpress) and with antibodies 1638 (anti-PEN-2-N), N1660 (anti-Nct-C),
3027 (anti-PS1-C), and 3711 (anti-PS2-C). C, PEN-2 co-immunoprecipi-
tates with uncleavable H6X-PS1 �exon9. DDM-solubilized membrane
fractions from HEK 293 cells stably expressing H6X-tagged PS1 �exon9
(PS1�9) were immunoprecipitated with an anti-Xpress-antibody (anti-
Xpress IP) and analyzed by immunoblotting with the indicated antibod-
ies as in B. The asterisk denotes the IgG heavy chain. D, PEN-2
co-immunoprecipitates with endogenous Nct, PS1, and PS2. Membrane
fractions of HEK 293 cells expressing endogenous (endog.) �-secretase
complex components were solubilized with DDM and analyzed for Nct/
PEN-2, PS1/PEN-2, and PS2/PEN-2 interactions by immunoprecipita-
tion with preimmune serum (PIS IP) and the antibodies N1660 (anti-
Nct-C IP), 2953 (anti-PS1-N IP), and 2972 (anti-PS2-N IP) and
immunoblotting with antibodies 1638 (anti-PEN-2-N), N1660 (anti-Nct-
C), BI.3D7 (anti-PS1-C), and BI.HF5c (anti-PS2-C). The arrow indi-
cates immature Nct.
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derived from littermate control mice (Fig. 2A). Ablation of PS1
caused a strong reduction of PEN-2 levels, and the absence of
PS1/PS2 eliminated PEN-2 expression nearly completely. Com-
pared with the PS1 ablation, ablation of PS2 still allowed
significant PEN-2 expression (Fig. 2A). Similar effects of the PS
ablations were found on Nct expression. Ablation of PS1 or
PS1/PS2 dramatically reduced Nct maturation, whereas abla-
tion of PS2 allowed Nct maturation (Fig. 2A). We next investi-
gated whether PEN-2 expression is also dependent on the
presence of Nct. HEK 293 cells were transfected with the
siRNA duplex Nct-1045 to down-regulate Nct expression by
RNAi (18). As shown in Fig. 2B, RNAi-mediated down-regula-
tion of Nct caused a reduction of PEN-2 levels. Thus, expres-
sion of PEN-2 not only requires the presence of PSs (predomi-
nantly PS1) but that of Nct as well. To investigate whether
lowering PEN-2 levels affects PS and Nct levels, we next trans-
fected HEK 293 cells with the siRNA duplex PEN-2–160. PEN-
2-RNAi reduced PEN-2 expression, which was accompanied by
reduced levels of PS1 and PS2 (Fig. 3A). RNAi-mediated down-
regulation of PEN-2 levels also impaired the maturation of Nct
(Fig. 3A) as had been observed upon inhibition of PS1 or PS1/
PS2 (Fig. 2A). As a consequence of reduced PS expression and
impaired Nct maturation, inhibition of PEN-2 expression
caused a deficiency in the PS1/�-secretase complex (Fig. 3B) as
revealed by blue native PAGE analysis (18).

Taken together our findings demonstrate that at least PS,
Nct, and PEN-2 are integral components of the �-secretase
complex. Expression of these �-secretase complex components
is coordinately regulated. Removing any of these three compo-
nents results in reduced amounts of the �-secretase complex
and consequently in a loss of �-secretase activity (18, 21). We
propose that any additional so far unknown �-secretase com-
plex component may affect PS, Nct, and PEN-2 expression.
Obvious candidates for additional �-secretase complex compo-

nents are APH-1a and APH-1b, the two human homologues of
C. elegans APH-1 (21). Both act directly at or upstream of
�-secretase activity and apparently affect APH-2 (the C. el-
egans homologue of Nct) transport to the cell surface (25).
Moreover, like Nct and PEN-2, APH-1a and APH-1b are re-
quired for �-secretase activity (21).
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The GxGD Motif of Presenilin Contributes to Catalytic
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�-Secretase is a multisubunit aspartyl protease complex that catalyzes intramembrane cleavage of �-amyloid precursor protein (APP), a
substrate key to Alzheimer’s disease pathogenesis, and of Notch, a substrate crucial for cell differentiation. How �-secretase recognizes
and selects substrates is currently barely understood. Recent data suggest that its subunit nicastrin serves as an initial substrate receptor,
which might subsequently forward substrates to the active site domain located in its catalytic subunit presenilin (PS), where an additional
substrate binding site has been proposed. We now used an active site domain swapping approach of PS1 with its most distant homolog,
spermatogenesis defective (SPE-4), to identify sequence determinants in this region. Strikingly, when the active site domain of PS1 was
exchanged with that of SPE-4, the chimeric protein, PS1/SPE-46/7 , supported APP but not Notch processing. In addition, PS1/SPE-46/7 was
strongly impaired in Caenorhabditis elegans Notch signaling in vivo. Mapping experiments identified a single amino acid at position x of
the GxGD motif, which contains one of the two active site aspartates, to be responsible for the observed defect in Notch processing and
signaling. Our data thus implicate a role of the GxGD motif in catalytic function and substrate identification of �-secretase.

Key words: Alzheimer’s disease; amyloid �-peptide; �-secretase; Notch; presenilin; SPE-4

Introduction
Presenilin (PS1, PS2) is the catalytic subunit of �-secretase, an
aspartyl protease complex, which mediates the regulated in-
tramembrane cleavage of an increasing number of type I trans-
membrane proteins including the prototypic �-amyloid precur-
sor protein (APP) implicated in Alzheimer’s disease (AD) (De
Strooper, 2003; Haass, 2004; Steiner, 2004). �-Secretase cleavage
is typically preceded by ectodomain shedding of the substrate,
which removes the bulk of the extracellular domain. In the amy-
loidogenic pathway of APP, ectodomain cleavage by �-secretase
generates a membrane-retained C-terminal fragment (CTF). The
APP CTF is subsequently cleaved by �-secretase to release the
amyloid �-peptide (A�), which is deposited as senile plaques in
the brains of patients affected with AD, and the intracellular do-
main (ICD) of APP (AICD) from the membrane (Haass, 2004;
Steiner, 2004). �-Secretase-dependent liberation of ICDs has

been shown for many other substrates (Kopan and Ilagan, 2004)
including Notch-1, a major �-secretase substrate (De Strooper et
al., 1999). When released from the membrane, the Notch-1 ICD
(NICD) translocates to the nucleus where it functions as a key
transcriptional regulator required for cell differentiation during
development and in adulthood (Lai, 2004).

The two active site aspartates of �-secretase are located in
transmembrane domains (TMDs) 6 and 7 (Wolfe et al., 1999) of
the N-terminal fragment (NTF) and CTF of PS (Thinakaran et
al., 1996), which are likely derived by autoproteolysis (Wolfe et
al., 1999; Edbauer et al., 2003). PSs are founding members of
polytopic GxGD-type aspartyl proteases (Haass and Steiner,
2002) that include the type 4 prepilin peptidases (LaPointe and
Taylor, 2000), signal peptide peptidase (SPP) (Weihofen et al.,
2002), and its homologs (Krawitz et al., 2005). These protease
families are characterized by a highly conserved GxGD sequence
motif (Steiner et al., 2000), which includes the C-terminal active
site aspartate. Homology outside this signature sequence is
scarce, and the proteases carry out distinct biological functions
(Haass, 2004; Steiner, 2004). Together with the catalytic subunit
PS, three other integral membrane proteins, nicastrin (NCT),
anterior pharynx defective (APH-1), and presenilin enhancer
(PEN-2) have been identified, which are necessary and sufficient
for �-secretase complex formation and activity (Francis et al.,
2002; Edbauer et al., 2003; Kimberly et al., 2003; Takasugi et al.,
2003). In mammalian cells, PS1 and PS2 are the catalytic subunits
of distinct �-secretase complexes, which additionally differ in
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their APH-1 subunits, suggesting that �-secretase is a heteroge-
neous activity (Hebert et al., 2004; Shirotani et al., 2004).

Apart from the requirement for ectodomain shedding (Struhl
and Adachi, 2000), little information is available about substrate
selection by �-secretase. The C-terminal stubs that are left in the
membrane after ectodomain shedding need to be recognized
subsequently by �-secretase as substrate. NCT with its large
ectodomain is a candidate subunit of the �-secretase complex for
this initial substrate recognition, and indeed it has recently been
shown that it serves as a �-secretase substrate receptor (Shah et
al., 2005). In addition, previous work indicated that docking of
�-secretase substrates occurs at a site very close to but different
from the active site (Tian et al., 2002, 2003), and more recently it
was shown that such a docking site is located in PS (Kornilova et
al., 2005).

Based on these studies, we reasoned that, after initial substrate
recognition by NCT, the active site domain of PS in TMDs 6 and
7 might directly contribute to subsequent substrate docking and
probably a final substrate selection before cleavage by �-secretase.
We thus sought to identify sequence requirements in TMDs 6
and 7 of PS potentially involved in this process. We now have
mapped a single amino acid in TMD7 at position x of the GxGD
active site motif that influences APP/Notch substrate selectivity
of �-secretase. These data implicate a role of the PS active site
domain in �-secretase substrate selectivity and support the con-
cept of a substrate-docking site close to the active site of
�-secretase in PS.

Materials and Methods
Antibodies. The monoclonal antibody against the N terminus of PS1
(PS1N) has been described (Capell et al., 1997), and the polyclonal anti-
body against the C terminus of NCT (N1660) was obtained from Sigma
(St. Louis, MO). Polyclonal antibody 3552 was raised to A�1– 40 and
monoclonal antibody 6E10 against A�1–17 was obtained from Signet
Laboratories (Dedham, MA). Monoclonal antibodies against FLAG and
myc tags were from Sigma (anti-FLAG, M2) and Santa Cruz Biotechnol-
ogy (Santa Cruz, CA) (anti-myc, 9E10). Cleaved Notch-1 (V1744) anti-
body against NICD was obtained from Cell Signaling Technology (Bev-
erly, MA).

cDNA constructs. PS1 wild-type (wt) and mutant cDNAs were gener-
ated by PCR using appropriate primers and subcloned into the expres-
sion vector pcDNA4/HisC (Invitrogen, San Diego, CA). The suppressor/
enhancer of lin-12 (sel-12) cDNA (GenBank accession number
AF171064) was amplified by PCR from a Caenorhabditis elegans mixed-
stage cDNA library and subcloned as a SmaI/NotI fragment under the
control of a 2.8 kb sel-12 promoter fragment starting at the translational
start ATG of sel-12 to generate pBY895 (Wittenburg et al., 2000). PCR-
amplified cDNAs encoding homolog of presenilin (HOP-1) (amplified
from the C. elegans mixed-stage cDNA library), spermatogenesis defec-
tive (SPE-4), and PS1 were subcloned into pBY895 as SmaI/NotI frag-
ments replacing the sel-12 cDNA, thus placing them under the control of
the sel-12 promoter. cDNAs encoding H6X-tagged wt PS1, PS1 L383F,
and PS1/SPE-4 chimera were placed under control of the sel-12 promoter
by subcloning them into pBY2019 as NcoI/XhoI fragments. All constructs
were confirmed by sequencing.

Cell culture, cell lines, and cDNA transfections. Mouse embryonic fibro-
blast (MEF) cells derived from PS1/2 �/� mice (Herreman et al., 1999)
were cultured as described previously (Steiner et al., 2002) and tran-
siently transfected with the indicated cDNA constructs using Lipo-
fectamine 2000 (Invitrogen) according to the instructions of the
manufacturer.

Protein analysis. PS and derivatives and NCT were analyzed by immu-
noblotting of cell lysates with PS1N or N1660 antibody, respectively.
Processing of myc-tagged Swedish mutant APP (Wang et al., 2004) and
myc-tagged F-NEXT (Okochi et al., 2002) was analyzed by immunoblot-
ting of cell lysates with antibody 9E10. Where indicated, NICD was ad-

ditionally analyzed by immunoblotting of cell lysates with Cleaved
Notch-1 (V1744) antibody. To analyze secreted A� and F-N�, the me-
dium was replaced 24 h after transfection with fresh medium and condi-
tioned for 16 h. A� was analyzed from conditioned medium by com-
bined immunoprecipitation/immunoblotting with antibodies 3552/
6E10 and F-N� by combined immunoprecipitation with anti-FLAG M2-
agarose (Sigma) and immunoblotting with antibody M2.

Immunofluorescense microscopy. Immunofluorescense was performed
as described (Wacker et al., 1997). Anti-myc antibody 9E10 was used as
primary antibody and Alexa 488-labeled secondary antibody (Invitro-
gen, Leiden, The Netherlands) was used for detection. Fixed cells were
analyzed on an Axioskop2 microscope (Zeiss, Oberkochen, Germany)
equipped with a 63�/1.25 objective and standard FITC and TRITC (tet-
ramethylrhodamine isothiocyanate) fluorescence filter sets using an
Axiocam HRm camera and AxioVision software. Images were assembled
and processed using Adobe Photoshop.

Transgenic lines of C. elegans and rescue assays. To determine whether
the PS constructs are able to rescue the egg-laying defect of sel-12 mutant
hermaphrodites, all constructs were injected into sel-12(ar171) mutant
hermaphrodites together with the coinjection marker pBY1153
(sel-12::gfp) at a concentration of 20 ng/�l, each. The egg-laying behavior
of the transgenic animals was scored at 20°C as described previously
(Steiner et al., 1999).

Results
A PS1-based active site domain chimera supports
APP processing
To identify sequence determinants in TMDs 6 and 7 of PS poten-
tially involved in substrate docking and/or selection, we sought to
compare the active site domain of PS1 on �-secretase activity with
that of a distant PS by swapping TMDs 6 and 7. BLAST (basic
local alignment search tool) searches identified the C. elegans
sperm protein SPE-4 (L’Hernault and Arduengo, 1992) as the
most distant PS homolog with a low amino acid identity of 23%
to PS1. Sequence comparison of PS1 with SPE-4 including the
functional C. elegans PS orthologs SEL-12 and HOP-1 (Levitan
and Greenwald, 1995; Westlund et al., 1999) revealed conserva-
tion of key functional residues and sequence blocks, like the crit-
ical aspartates in TMDs 6 and 7 including the GxGD active site
motif and the C-terminal PALP motif (Fig. 1A). The latter motif
is required for SPE-4 function (Arduengo et al., 1998) and also for
PS activity in humans and Drosophila (Tomita et al., 2001; Taka-
sugi et al., 2002; Kaether et al., 2004; Wang et al., 2004) indicating
that SPE-4 functionally belongs to the PS family. Compared with
PS1, SPE-4 contains a very short N terminus, a much larger cy-
toplasmic loop between TMDs 6 and 7, and a shorter C terminus
(Fig. 1A). We then asked whether �-secretase is functional with
the related but not identical active site domain of SPE-4 and
constructed the N-terminally hexahistidine-Xpress (H6X)-
tagged chimeric protein PS1/SPE-46/7. In this construct, the pu-
tative TMDs 6 and 7 of PS1 are replaced with those of SPE-4 (Fig.
1B). In addition, we generated the PS1/SPE-46/7 D394A mutant
in which the active site aspartate of TMD7 was changed to ala-
nine. Constructs encoding H6X-tagged wt PS1 or inactive PS1
D385A were used as controls. We sought to assess the biological
activity of these constructs in a PS-free background to avoid po-
tential interference of endogenous wt PS in �-secretase activity.
We therefore transiently cotransfected MEF cells derived from
mice deficient for PS1 and PS2 (PS�/�) (Herreman et al., 1999)
with the above constructs and a construct encoding APPsw-
6myc, a Swedish mutant of APP C-terminally tagged with six myc
epitopes (Wang et al., 2004). As shown in Figure 2A, all four PS
variants were robustly expressed. PS1/SPE-46/7 was efficiently en-
doproteolysed similar to wt PS1 (Fig. 2A). In contrast, PS1/SPE-
46/7 D394A, like PS1 D385A, failed to undergo endoproteolysis,
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indicating a functional conservation of the putative SPE-4 active
site domain (Fig. 2A). Both wt PS1 and PS1/SPE-46/7 underwent
�-secretase complex formation, as evident from their capability
to undergo PS endoproteolysis, which occurs as final step in
�-secretase complex assembly (Kim et al., 2003; Takasugi et al.,
2003). �-Secretase complex formation was further supported by
the restoration of NCT maturation (Fig. 2B), which is deficient in
the absence of PS (Edbauer et al., 2002; Leem et al., 2002) and
which occurs subsequently to PS endoproteolysis (Kim et al.,
2003; Kimberly et al., 2003). In agreement with previous results
(Nyabi et al., 2003), the recovery of NCT maturation also sug-
gested �-secretase complex formation (Fig. 2B) of PS1 D385A
and PS1/SPE-46/7 D394A, although they were not endoproteol-
ysed. We next investigated whether PS1/SPE-46/7 supports
�-secretase activity in APP processing using APPsw-6myc as sub-
strate (Fig. 2C,D). Consistent with the absence of �-secretase
activity in PS�/� cells (Herreman et al., 2000; Zhang et al., 2000),
APP C-terminal fragments accumulated and both AICD and A�
failed to be generated (Fig. 2C,D). As expected, the defect in
�-secretase activity was rescued by the coexpression of wt PS1 but
not by proteolytically inactive PS1 D385A. PS1/SPE-46/7, in con-

trast to PS1/SPE-46/7 D394A, was capable
to process APPsw-6myc as judged from
the robust reduction of APP CTF accumu-
lation and the substantial generation of
AICD and A� (Fig. 2C,D). These data
show that �-secretase can be functional
with a homologous but distant GxGD-
type active site domain derived from
SPE-4 and that this particular active site
domain is capable of APP processing.

PS1/SPE-46/7 does not process Notch
We next investigated the capability of PS1/
SPE-46/7 to process Notch, a major physi-
ological substrate of �-secretase. We tran-
siently cotransfected the PS�/� MEF cells
with the above-described wt PS1, PS1
D385A, and PS1/SPE-46/7 constructs and a
cDNA construct encoding the Notch-1-
based �-secretase substrate F-NEXT
(Okochi et al., 2002). F-NEXT is a deriva-
tive of Notch�E lacking the bulk of the
ectodomain and carrying a FLAG-epitope
tag at the N- and six myc-epitope tags at
the C terminus (Okochi et al., 2002).
Strikingly, processing of F-NEXT was
strongly impaired in cells expressing PS1/
SPE-46/7. Compared with wt PS1-
expressing cells, F-NEXT accumulated
similarly as observed in PS1 D385A-
expressing cells, whereas NICD genera-
tion was strongly reduced (Fig. 3B). Like-
wise, the generation of F-N�, the secreted
peptide of Notch analogous to A� (Oko-
chi et al., 2002), was strongly impaired
(Fig. 3C). To further corroborate these
findings, immunocytochemical analysis of
PS�/� MEF cells transfected with F-NEXT
alone or cotransfected with the PS con-
structs above was performed (Fig. 3D).
When PS�/� MEF cells were transfected
with F-NEXT, a strong Notch staining at

the plasma membrane was observed, which is consistent with an
accumulation of unprocessed F-NEXT (Fig. 3B) because of the
�-secretase deficiency of these cells. Cotransfection of F-NEXT
with wt PS1 restored �-secretase activity, resulting in Notch pro-
cessing as evident from the nuclear Notch staining because of the
recovery of NICD formation. In contrast, cotransfection of
F-NEXT with proteolytically inactive PS1 D385A did not restore
�-secretase activity as suggested from the strong plasma mem-
brane staining of Notch. Similarly, PS�/� MEF cells transiently
cotransfected with PS1/SPE-46/7 and F-NEXT revealed Notch
staining at the plasma membrane. Consistent with the residual
minor NICD formation (Fig. 3B), occasionally some cells showed
weak nuclear staining (data not shown). These data suggest that
the SPE-4-derived active site of PS1/SPE-46/7, which is able to
process APP, is severely reduced in processing Notch as substrate.

PS1/SPE-46/7 is deficient in Notch signaling
The above results prompted us to also analyze Notch signaling in
an in vivo setting. PS1/SPE-46/7 was therefore next tested for its
activity to rescue the Notch signaling deficiency caused by loss of
function mutations in sel-12 (Levitan and Greenwald, 1995).

Figure 1. Sequence comparison of PS1 with its C. elegans homologs and schematic representation of the PS1/SPE-46/7 chimera.
A, Sequence alignment of PS1 with SEL-12, HOP-1, and SPE-4 identifies the GxGD active site motif and the PALP motif as the most
conserved regions between PS1 and SPE-4. The sequence alignment was generated with T-Coffee and processed with BOXSHADE.
Identical amino acids residues are displayed on black or red (identical in all PSs) background and similar ones on gray background.
Putative TMDs 6 and 7 comprising the active site domain are underlined. Asterisks indicate the active site aspartate residues. B,
Schematic representation of PS1, SPE-4, and PS1/SPE-46/7. The primary sequences representing the putative TMDs 6 and 7 of PS1,
SPE-4, and the PS1/SPE-46/7 hybrid are highlighted in blue (PS1 sequences) or yellow (SPE-4 sequences). The active site aspartate
residues are displayed in red. PS is depicted according to the recent nine TMD model (Henricson et al., 2005; Laudon et al., 2005; Oh
and Turner, 2005).
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These mutations cause an egg-laying defect (Egl) that can be
rescued by SEL-12, HOP-1, PS1, and PS2 (Levitan et al., 1996;
Baumeister et al., 1997; Li and Greenwald, 1997; Steiner et al.,
1999). In contrast to wt PS1, PS1/SPE-46/7 was not able to rescue
the Egl defect of the sel-12(ar171) mutant hermaphrodites (Table
1), suggesting that PS1/SPE-46/7 unlike PS1 does not support
Notch signaling, consistent with the above results. We also inves-
tigated whether SPE-4 itself might be able to replace SEL-12 func-
tion. Because spe-4 expression is normally restricted to the sper-
matheca (L’Hernault and Arduengo, 1992; Arduengo et al.,
1998), we expressed the spe-4 gene under the control of the sel-12
promoter in sel-12(ar171) mutant hermaphrodites and scored
the Egl defect in the transgenic animals. Surprisingly, SPE-4, un-
like PS1, SEL-12, and HOP-1, was not able to rescue the sel-12 Egl
defect when expressed under the sel-12 promoter (Table 1). sel-12
mutant hermaphrodites carrying a sel-12::spe-4 extrachromo-
somal array never laid any eggs like the sel-12 mutants alone
(Table 1) demonstrating that SPE-4 is unexpectedly unable to
replace SEL-12 function.

Notch processing depends on the amino acid at position x of
the GxGD active site motif
We next sought to define the molecular basis for the apparent
substrate preference of PS1/SPE-46/7 for APP versus Notch. We
first addressed the question which of the two SPE-4 TMDs was
responsible for the deficiency in Notch processing and thus gen-
erated the PS1/SPE-46 and PS1/SPE-47 hybrid active site con-
structs in which only one TMD of PS1 is exchanged with the
corresponding TMD of SPE-4. We then transiently cotransfected
PS�/� MEF cells with cDNA constructs encoding the PS1/SPE-46

and PS1/SPE-47 and the APPsw-6myc or F-NEXT constructs.

The PS1/SPE-46/7 construct was used for comparison in these
settings. In addition, in these and the subsequent experiments, wt
PS1 and PS1 D385A constructs were again included as positive
and negative controls, respectively. Both PS1/SPE-46 and PS1/
SPE-47 underwent �-secretase complex formation as judged
from their capability to undergo PS endoproteolysis (Fig. 4A,B)
and from the NCT maturation (data not shown). Like PS1/SPE-
46/7, both PS1/SPE-46 and PS1/SPE-47 were capable to process
APPsw-6myc as judged from the robust reduction of APP CTF
accumulation and the substantial generation of AICD and A�

Figure 2. PS1/SPE-46/7 supports APP processing. A, Cell lysates of PS �/� MEF transiently
cotransfected with the APPsw-6myc and the indicated H6X-tagged PS1 constructs were ana-
lyzed for PS1 expression and endoproteolysis by immunoblotting with antibody PS1N. Note
that, for unknown reasons, both PS1/SPE-46/7 holoprotein and its NTF migrated slightly slower
in SDS-PAGE. B, Maturation of NCT was analyzed by immunoblotting with antibody N1660. C,
Full-length APP, APP CTFs, and AICD were analyzed by immunoblotting with anti-myc antibody
9E10. D, Secreted A� was analyzed from conditioned media by combined immunoprecipita-
tion/immunoblotting with antibodies 3552/6E10, respectively. In A–D, molecular mass mark-
ers are shown on the left in kilodaltons. The asterisk indicates a nonspecific band.

Figure 3. PS1/SPE-46/7 is defective in Notch processing. A, Cell lysates of PS �/� MEF tran-
siently cotransfected with F-NEXT and the indicated H6X-tagged PS1 constructs were analyzed
for PS expression and endoproteolysis as in Figure 2 B. B, Expression and processing of F-NEXT
was analyzed by immunoblotting with antibody 9E10 (top panel). NICD was additionally ana-
lyzed by immunoblotting with Cleaved Notch-1 antibody (bottom panel). C, F-N� levels were
analyzed from conditioned media by combined immunoprecipitation/immunoblotting with
anti-FLAG-M2 antibody. D, PS �/� MEF were transiently transfected with F-NEXT and the
indicated H6X-tagged PS1 constructs. Forty-eight hours after transfection, cells were fixed and
analyzed for Notch processing by immunofluorescence microcopy with anti-myc antibody 9E10.
Expression of wt PS1, but not of PS1/SPE-46/7 or PS1 D385A, restores �-secretase activity as
indicated by nuclear Notch staining (arrowheads). Similarly as the proteolytically inactive PS1
D385A mutant, PS1/SPE-46/7 causes reduced nuclear Notch staining (arrowheads) and in-
creased cell surface staining (arrows). In A–C, molecular mass markers are shown on the left in
kilodaltons.

Table 1. Activity of different PSs to rescue the sel-12 Egl defect

Strain Transgenea Genotype

Egg-laying behaviorb

��� �� � �

N2 Wild type 50 0 0 0
BR1129 sel-12(ar171) 0 0 0 50
BR1964 PS1 sel-12(ar171) 45 3 1 0
BR3536 PS1/SPE-46/7 sel-12(ar171) 0 0 1 49
BR3210 PS1/SPE-46/7 sel-12(ar171) 0 0 2 48
BR2364 sel-12 sel-12(ar171) 48 2 0 0
BR2993 hop-1 sel-12(ar171) 50 0 0 1
c spe-4 sel-12(ar171) 0 0 0 34
c spe-4 sel-12(ar171) 0 0 0 27
c spe-4 sel-12(ar171) 0 0 0 16
aAll constructs used were untagged.
bFor each transgenic animal, the number of eggs laid were counted and were grouped into the following categories:
���, �50 eggs of progeny laid by an individual animal; ��, 15–50 eggs laid; �, 5–15 eggs laid; �, 0 –5
eggs laid.
cStable lines could not be maintained because of the sterility of spe-4 transgenic animals. Instead, F1 progeny from
three independent transformation experiments was scored.
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(Fig. 4A). However, in contrast to PS1/SPE-46, expression of PS1/
SPE-47 strongly impaired the generation of NICD and F-N� from
F-NEXT (Fig. 4B). Together, these results suggest that TMD7 of
PS1/SPE-46/7 is responsible for the observed defect in Notch
processing.

To further map the responsible sequence within the TMD7 of
PS1/SPE-46/7, we made advantage of our above finding that PS1,
SEL-12, and HOP-1, but not PS1/SPE-46/7 and SPE-4 was able to
rescue the Notch signaling-deficient phenotype of the sel-12(ar171)
mutant worms (Table 1). We reasoned that there may be differ-
ences in the conservation of crucial amino acids, which may under-
lie the observed rescuing activity of PS1, SEL-12, HOP-1 compared
with the nonrescuing activity of PS1/SPE-46/7 and SPE-4. We thus
compared the sequences of TMD7 of PS1, SEL-12, HOP-1, and
SPE-4. Interestingly, we found the only potentially significant dif-
ference within their GxGD active site motifs. Although the residue
x position of PS1 (L383) is rather conserved in SEL-12 (L362) and
HOP-1 (M276), it is more drastically changed to a phenylalanine
residue (F392) in SPE-4 (Fig. 1A,B). To address the functional
significance of this amino acid change, we mutated F392 of the
GFGD motif in PS1/SPE-47 to L to restore the PS1 or SEL-12 GLGD
motif or to M to restore the GMGD motif of HOP-1. We then
analyzed the PS1/SPE-47 F392L and PS1/SPE-47 F392M mutants
using the same experimental paradigms as above. As shown in Fig-
ure 5A, when assayed in the PS�/� background, the PS1/SPE-47

F392L and PS1/SPE-47 F392M mutants underwent endoproteolysis
and allowed NCT maturation (data not shown) consistent with
�-secretase complex formation. They also allowed a robust reduc-
tion of APP CTF accumulation concomitant with a notable gener-
ation of AICD and A�. Strikingly, both mutants allowed also the
generation of substantial levels of NICD and F-N�, suggesting that
the presence of leucine or methionine at position x within the
GxGD motif is indeed crucial for the capability of PS1/SPE-47 to
process Notch (Fig. 5B).

The above data suggested that the presence or absence of a phe-
nylalanine at position x of the GxGD motif determines whether
Notch can be efficiently processed or not. To obtain additional
evidence for the functional importance of this residue within the
GxGD motif, we next mutated L383 to F directly in PS1. We then

analyzed the influence of the L383F mutation in PS1 on the pro-
cessing of APP and Notch as above. The PS1 L383F mutant was
endoproteolytically processed and allowed maturation of NCT
(data not shown), suggesting �-secretase complex formation.
PS1 L383F also allowed robust rescue of APP CTF accumulation
concomitant with a notable generation of AICD and A� (Fig.
6A). In sharp contrast, the PS1 L383F mutant was defective in the
processing of Notch as judged from the strong reduction in
NICD and F-N� formation (Fig. 6B). Thus, the L383 residue
within the GxGD motif is also required in PS1 itself for efficient
processing of Notch.

PS1 L383F is deficient in Notch signaling
To further substantiate the above findings, we examined the
above constructs for their activity to rescue the sel-12 mutant

Figure 4. Mapping of the TMD in PS1/SPE-46/7 required for Notch processing. A, PS �/� MEF
were transiently cotransfected with APPsw-6myc and the indicated H6X-tagged PS1 constructs.
Cell lysates were analyzed for PS expression and processing as in Figure 2 A and for full-length APP,
APP CTFs, and AICD as in Figure 2C. Secreted A� levels were analyzed from the conditioned media
as in Figure 2 D. B, PS �/� MEF were transiently cotransfected with F-NEXT and the indicated
H6X-tagged PS1 constructs. Cell lysates were analyzed for PS expression and processing as in Figure
2 A and for processing of F-NEXT by immunoblotting with 9E10 as in Figure 3B. F-N� levels were
analyzed from the conditioned media as in Figure 3C.

Figure 5. Identification of phenylalanine at position x in the GxGD motif of PS1/SPE-46/7 as
a critical determinant for Notch processing. A, PS �/� MEF were transiently transfected with
APPsw-6myc and the indicated H6X-tagged PS1 constructs. Cell lysates were analyzed for PS
expression and processing as in Figure 4 A. APP processing was analyzed from cell lysates and
conditioned media as in Figure 4 A. B, PS �/� MEF were transiently transfected with F-NEXT
and the indicated H6X-tagged PS1 constructs. Cell lysates were analyzed for PS expression and
endoproteolysis and for processing of F-NEXT as in Figure 4 B.

Figure 6. Leucine 383 of PS1 is critical for Notch processing. A, PS �/� MEFs were transiently
transfected with APPsw-6myc and the H6X-tagged wt PS1, PS1 D385A, or PS1 L383F constructs.
Cell lysates were analyzed for PS expression and processing as in Figure 4 A. APP processing was
analyzed from cell lysates and conditioned media as in Figure 4 A. B, PS �/� MEF were tran-
siently transfected with F-NEXT and the H6X-tagged wt PS1, PS1 D385A, or PS1 L383F con-
structs. Cell lysates were analyzed for PS expression and endoproteolysis and for F-NEXT pro-
cessing as in Figure 4 B.
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deficiency in Notch signaling in vivo. The PS1/SPE-46, PS1/SPE-
47, PS1/SPE-47 F392L, and PS1/SPE-47 F392M mutants and PS1
L383F were expressed under the control of the sel-12 promoter in
sel-12(ar171) mutant hermaphrodites and the Egl defect in the
transgenic animals was scored (Table 2). As expected from the
above results, PS1/SPE-46 rescued the Egl phenotype, whereas,
consistent with its defect in Notch processing, PS1/SPE-47 did
not. The PS1/SPE-47 F392L and PS1/SPE-47 F392M mutants,
which comprise the GLGD motif of PS1 or SEL-12 or the GMGD
motif of HOP-1, respectively, showed lesser but still considerable
rescuing activity. PS1 L383F, restoring the GFGD motif of SPE-4,
was not able to rescue the sel-12 mutant phenotype. Thus, these
data confirm in vivo that the presence of a phenylalanine residue
at position x of the GxGD motif strongly impairs Notch signaling.

Discussion
In this study, using an active site domain swapping approach of
PS1 with its most distant homolog SPE-4, we obtained evidence
that the PS active site domain is implicated in APP/Notch sub-
strate selectivity of �-secretase. The active site chimera PS1/SPE-
46/7 that we generated was active in �-secretase complex forma-
tion, underwent endoproteolysis, and displayed robust
�-secretase activity in APP processing. Both endoproteolysis and
�-secretase activity were dependent on an active site aspartate.
This is the first demonstration that �-secretase can function with
a related but not identical active site domain in its catalytic sub-
unit PS. Interestingly, despite its �-secretase activity in APP pro-
cessing, PS1/SPE-46/7 was deficient in processing of Notch. In
agreement with this finding, we found that, in contrast to wt PS1,
PS1/SPE-46/7 failed to rescue the Notch signaling-deficient C.
elegans sel-12(ar171) mutant. These data indicated that the active
site domain of SPE-4 in TMDs 6 and 7 could discriminate sub-
strates such that processing of one substrate (APP) remains pos-
sible, whereas that of another substrate (Notch) is greatly im-
paired. Mapping of the molecular basis for the underlying
substrate discrimination between APP and Notch revealed a sin-
gle amino acid difference in TMD7 as responsible site. This dif-
ference was identified as a phenylalanine at position x of the
conserved GxGD motif. In the PS family of proteases, x is typi-
cally the aliphatic amino acid leucine, with the exceptions of the
C. elegans homologs HOP-1 and SPE-4. Whereas a methionine is

found instead of leucine in HOP-1, a rather strong amino acid
exchange is present in SPE-4 with the aromatic phenylalanine.
The phenylalanine is conserved in the SPE-4 homologs of the
related nematodes Caenorhabditis remanei (data not shown) and
Caenorhabditis briggsae, suggesting that it is an essential residue of
the GxGD motif of SPE-4. We found that changing the phenylala-
nine to leucine or methionine to restore the GLGD or GMGD active
site motifs of PS1, PS2, and SEL-12 or HOP-1, respectively, allowed
recovery of Notch processing and significant activity in Notch sig-
naling in vivo. The significance of the amino acid change could be
further corroborated when we mutated the corresponding leucine in
PS1 to phenylalanine. The PS1 L383F mutant allowed substantial
APP processing but was strongly impaired in Notch processing and
Notch signaling in vivo. This observation suggests that the residue at
position x of the GxGD motif is not only of critical relevance for
Notch processing in the PS1/SPE-46/7 hybrid but of general impor-
tance for Notch processing in all PSs.

The activity of PS1/SPE-46/7 in PS endoproteolysis and
�-secretase activity on APP processing also implies that SPE-4
itself has a proteolytic function. Because SPE-4 cannot function-
ally replace SEL-12, one may speculate that SPE-4 is a more spe-
cialized C. elegans PS protease, which may not be able to use the C.
elegans Notch receptors as substrates because of the presence of
the phenylalanine at position x in the GxGD motif. However, at
present, we cannot exclude the possibility that the failure of
SPE-4 to substitute for SEL-12 function may be attributable to a
potential incapability of SPE-4 to undergo �-secretase complex
formation (as observed in mammalian cells) (data not shown).
Interestingly, leucine/isoleucine–phenylalanine variations at po-
sition x in the GxGD motif are also found in and/or between the
SPP/SPPL (SPP-like protease) protease families (Weihofen et al.,
2002). As in PSs, these differences may have an impact on sub-
strate selectivity. Future studies will be needed to answer these
questions.

Mechanistically, the presence of a phenylalanine at position x
in the GxGD motif may cause subtle differences in the conforma-
tion of TMDs 6 and 7. Although such a conformational alteration
has apparently little influence on APP processing, it may affect
sufficient Notch binding. Alternatively, the bulky phenylalanine
may interfere with the transfer of the Notch substrate from the
docking site (Esler et al., 2002), a substrate-binding site outside
the active site, to the active site. The existence of a substrate
binding site different from the active site had been suggested
previously (Annaert et al., 2001), and strong evidence for such an
exosite in �-secretase was obtained by coisolation of APP CTFs
with �-secretase using immobilized active site-directed inhibitors
(Esler et al., 2002; Beher et al., 2003). The concept of a docking
site has been further supported by the noncompetitive inhibition
of �-secretase by transition-state analog inhibitors (Tian et al.,
2002, 2003). The docking site was recently shown to be located in
PS in very close proximity to the active site (Kornilova et al.,
2005). Interestingly, the distance between the two sites has been
estimated to be less than three amino acid residues in length
(Kornilova et al., 2005). Our identification of a critical amino acid
involved in APP/Notch substrate selection just two residues away
of an active site aspartate may thus indicate that residues of the
GxGD motif, in particular L383, preceding the active site aspar-
tate in TMD7 of PS contribute to the substrate docking site of
�-secretase.

Precisely how �-secretase recognizes and selects substrates fol-
lowing the obligatory step of ectodomain shedding and recogni-
tion by NCT (Shah et al., 2005) are intriguing and challenging
questions. Additional studies on these questions will not only be

Table 2. Activity of the different PS1/SPE-4 hybrid proteins to rescue the sel-12
Egl defect

Strain Transgenea Genotype

Egg-laying behaviorb

��� �� � �

N2 Wild type 50 0 0 0
BR1129 sel-12(ar171) 0 0 0 50
BR3537 PS1 sel-12(ar171) 48 1 1 0
BR3538 PS1/SPE-46 sel-12(ar171) 46 2 2 0
BR3539 PS1/SPE-46 sel-12(ar171) 48 0 2 0
BR3540 PS1/SPE-47 sel-12(ar171) 0 0 3 47
BR3541 PS1/SPE-47 sel-12(ar171) 0 1 1 48
BR3552 PS1/SPE-47 F392L sel-12(ar171) 10 10 19 11
BR3544 PS1/SPE-47 F392L sel-12(ar171) 11 19 15 5
BR3546 PS1/SPE-47 F392M sel-12(ar171) 10 8 25 7
BR3547 PS1/SPE-47 F392M sel-12(ar171) 17 14 10 9
BR3549 PS1 L383F sel-12(ar171) 0 1 4 45
BR3550 PS1 L383F sel-12(ar171) 0 0 2 48
aAll constructs used were H6X-tagged at their N termini. For all constructs, at least three independent lines were
tested; only two representative lines are shown.
bFor each transgenic animal, the number of eggs laid were counted and were grouped into the following categories:
���, �50 eggs of progeny laid by an individual animal; ��, 15–50 eggs laid; �, 5–15 eggs laid; �, 0 –5
eggs laid.
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of particular interest for targeting PS as the catalytic subunit of
�-secretase for AD treatment but should also further our under-
standing of intramembrane proteolysis in general.
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