Aus der
Abteilung für Infektions- und Tropenmedizin
(Leiter: Prof. Dr. med. Th. Löscher)
der Medizinischen Poliklinik – Innenstadt
(Direktor: Prof. Dr. med. D. Schlöndorff)
Klinikum der Ludwig-Maximilians-Universität München

UNTERSUCHUNGEN ZUM SPEKTRUM IMMUNOGENER
PROTEINE BEI ENCEPHALITOZOOON CUNICULI

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität zu München

vorgelegt von
Maximilian Wiedemann
aus
München
2006
Mit Genehmigung der Medizinischen Fakultät
der Universität München

Berichterstatter: Priv. Doz. Dr. Dr. H. Rinder
Mitberichterstatter: Priv. Doz. Dr. W. Fischer
Dekan: Prof. Dr. D. Reinhardt
Tag der mündlichen Prüfung: 16.11.2006
Meinen Eltern
Inhaltsverzeichnis

1 Einleitung

1.1 Allgemeines .. 1
1.2 Morphologie .. 2
1.3 Lebenszyklus .. 3
 1.3.1 Infektion der Wirtszelle ... 4
1.3.2 Proliferative Phase .. 4
1.3.3 Sporenbildung ... 6
1.3.4 Freisetzung der Sporen .. 6
1.4 Taxonomie ... 6
1.5 Wirtsspektrum und Übertragungswege ... 7
1.6 Epidemiologie .. 8
1.7 Klinische Manifestation ... 9
 1.7.1 Gastrointestinale Symptome .. 9
1.7.2 Weitere Manifestationen .. 11
1.8 Therapie von Mikrosporidiosen .. 11
1.9 Diagnostik von Mikrosporidiosen .. 12
 1.9.1 Mikroskopie .. 12
1.9.2 PCR ... 14
1.10 *Encephalitozoon cuniculi* ... 15

2 Problemstellung und Zielsetzungen der eigenen Arbeit ... 17

3 Materialien ... 19

3.1 Zelllinien und Sporen .. 19
3.2 Antikörper ... 19
3.3 Geräte ... 19
3.4 Chemikalien .. 21
3.5 Agar- und Gelmaterialien .. 23
3.6 Enzyme .. 23
3.7 Nukleotide .. 23
3.8 Kommerzielle „Kits“ .. 24
3.9 Sonstige Materialien ... 24
<table>
<thead>
<tr>
<th>4</th>
<th>Methoden</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Zellkultur</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Modifizierte Trichromfärbung nach Weber (Weber'sche Färbung)</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>Immunisierung von Kaninchen zur Gewinnung von E. cuniculi-Antiseren</td>
<td>27</td>
</tr>
<tr>
<td>4.4</td>
<td>Aufarbeitung der E. cuniculi-Sporen zur Gewinnung von mRNA</td>
<td>28</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Isolation der Gesamt-RNA</td>
<td>28</td>
</tr>
<tr>
<td>4.4.2</td>
<td>mRNA-Isolation</td>
<td>29</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Bestimmung der Gesamt-mRNA</td>
<td>30</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Fällung der Gesamt-mRNA</td>
<td>31</td>
</tr>
<tr>
<td>4.5</td>
<td>cDNA Synthese</td>
<td>32</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Synthese des ersten cDNA-Stranges</td>
<td>33</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Synthese des zweiten cDNA-Stranges</td>
<td>34</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Glätten der cDNA-Enden und Aufreinigung der cDNA</td>
<td>34</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Ligation der EcoRI-Adapter</td>
<td>35</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Phosphorylieren der EcoRI-Enden</td>
<td>36</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Restriktionsenzymverdau mit Xhol</td>
<td>36</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Größenfraktionierung mit einer Sepharosesäule</td>
<td>36</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Agarosegel-Elektrophorese der 12 verschiedenen cDNA-Fraktionen</td>
<td>38</td>
</tr>
<tr>
<td>4.5.9</td>
<td>Reinigung der cDNA-Fraktionen</td>
<td>39</td>
</tr>
<tr>
<td>4.5.10</td>
<td>Fällung der cDNA</td>
<td>39</td>
</tr>
<tr>
<td>4.5.11</td>
<td>cDNA-Quantifizierung</td>
<td>39</td>
</tr>
<tr>
<td>4.5.12</td>
<td>Ligation der cDNA in den ZAP Express Vektor</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Packen des Ligationsprodukts in λ-Helfer-Phagen</td>
<td>40</td>
</tr>
<tr>
<td>4.7</td>
<td>Ausplattieren und Titerbestimmung</td>
<td>42</td>
</tr>
<tr>
<td>4.8</td>
<td>Dot Blot Test</td>
<td>43</td>
</tr>
<tr>
<td>4.9</td>
<td>Ausplattieren der Phagensuspension</td>
<td>44</td>
</tr>
<tr>
<td>4.10</td>
<td>Immunoscreening</td>
<td>45</td>
</tr>
<tr>
<td>4.11</td>
<td>Ausstechen und Lagerung der positiven Plaques</td>
<td>46</td>
</tr>
<tr>
<td>4.12</td>
<td>Vereinzeln der positiven Phagen</td>
<td>46</td>
</tr>
<tr>
<td>4.13</td>
<td>In vivo-Exzision und Rezirkulation der ausgewählten geklonten Inserts</td>
<td>47</td>
</tr>
<tr>
<td>4.14</td>
<td>Plasmid „Miniprep“ mit E.Z.N.A. Plasmid Miniprep Kit I</td>
<td>49</td>
</tr>
<tr>
<td>4.15</td>
<td>Restriktionsenzymverdau mit EcoRI und Xhol</td>
<td>50</td>
</tr>
<tr>
<td>4.16</td>
<td>Sequenzieren der Plasmid-DNA</td>
<td>50</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

5 Ergebnisse .. 52
5.1 Kultur von Encephalitozoon cuniculi und mRNA-Isolierung ... 52
5.2 cDNA-Quantifizierung ... 52
5.3 Ligation in Phagen zur rekombinanten Proteinexpression ... 53
5.4 Dot Blot Test .. 54
5.5 Immunoscreening .. 55
5.6 In vivo-Exzision und Charakterisierung der cDNA-Inserts ... 56
5.7 Analyse der cDNA-Inserts .. 59
5.8 Alignment der cDNA-Sequenzen mit dem SWP1-Gen ... 59

6 Diskussion .. 67
6.1 Rationale des experimentellen Designs .. 67
6.1.1 Stand der Technik .. 67
6.1.2 Wahl des zu untersuchenden Mikrosporidiums .. 68
6.2 Spektrum immunogener Proteine von Encephalitozoon cuniculi 68
6.3 Bestimmung der immunogenen Region ... 70
6.4 Nutzen der Ergebnisse bei der Entwicklung eines Mikrosporidien-ELISA 72

7 Ausblick ... 73

8 Zusammenfassung ... 75

9 Literaturverzeichnis .. 77

10 Abkürzungen ... 85

11 Lebenslauf ... 87

12 Danksagung .. 89
1 Einleitung

1.1 Allgemeines

Mikrosporidien sind echte Eukaryoten, wobei die Größe und Struktur ihres Genoms, insbesondere die der Gene, die für die 16S- und 23S-rRNA kodieren, eher denen von Prokaryoten ähneln. Gleichfalls fehlen ihnen Mitochondrien, Peroxisomen, Zentriolen und die typischen Golgimembranstapel. Sie besitzen jedoch einen echten Zellkern, ein intrazytoplasmatisches Membransystem und die Chromosomen werden von Mitosespindeln getrennt. Ebenso wie bei anderen eukaryotischen Organismen erfolgt eine Polyadenylierung der mRNA. Mikrosporidien wurden deshalb als „extrem alte“ Eukaryoten, möglicherweise als die ältesten Eukaryoten überhaupt, beschrieben (Vossbrinck *et al*., 1987). So besitzt das haploide Genom der Mikrosporidienart *Encephalitozoon cuniculi* eine Größe von nur 2,9 Mb, was das kleinste eukaryotische Genom überhaupt darstellt, kleiner als das von *Escherichia coli* (4,2 Mb) (Biderre *et al*., 1995).

![Rasterelektronenmikroskopische Aufnahme von *Encephalitozoon cuniculi*-Sporen (Foto: Heidrun Schöl).](image-url)
Nachdem jedoch in den vergangenen Jahren das gesamte Genom dieser Mikrosporidienspezies sequenziert wurde, legen phylogenetische Studien anhand ausgewählter Proteine nahe, dass Mikrosporidien ihren evolutionären Ursprung von den Pilzen nahmen und somit mit ihnen verwandt sind (Babenko et al., 2004; Thomarat et al., 2004; Virel et al., 2004).

1.2 Morphologie

Die in der Umwelt vorkommenden Sporen von Mikrosporidien sind zwischen 1 und 20 µm groß, wobei die der Spezies, die Säugetiere infizieren, gewöhnlich nicht größer als 3 µm sind. Die Sporen haben eine dicke Wand, die aus 2 Schichten besteht: Erstens, einer elektronenmikroskopisch dichten, proteinösen Außenschicht (Exospore) und zweitens, einer aus Chitin bestehenden elektronenlichten Innenschicht (Endospore). Unmittelbar innerhalb dieser liegt die Zytoplasmasmembran an, die den Inhalt der Spore, das so genannte Sporoplasma, einschließlich der posterioren Vakuole, des Zellkerns und dem für Mikrosporidien charakteristischen aufgewundenen Polartubulus („Polfaden“), umschließt. Die Endospore ist am vorderen Pol, durch den der Polfaden bei der Infektion herausgeschleudert wird, verdünnt. In der dadurch gebildeten Vertiefung befindet sich die Ankerplatte des Polfadens. Vor der Ankerplatte liegt der Polaroplast, welcher aus lamellenartig angeordneten Membranen besteht, die in die äußere Membran des Polfadens übergehen. Die Mitte der Spore wird von einem (Enterocytozoon,
Einleitung

Abb. 2: Schematischer Aufbau einer Mikrosporidien-Spore (nach Didier, 1998).

Ex: Exospore
A: Ankerplatte
En: Endospore
Lp: lamellarer Polaroplast
P: Plasmamembran
Tp: tubulärer Polaroplast
Pt: Polpfaden
R: Ribosomen
Sp: Sporoplasma
D: Kerne
Pv: posteriore Vakuole

1.3 Lebenszyklus

1.3.1 Infektion der Wirtszelle

1.3.2 Proliferative Phase

Einleitung

Enterocytozoon

(\textit{E. bieneusi})

Encephalitozoon

(\textit{E. cuniculi})

1.3.3 Sporenbildung

1.3.4 Freisetzung der Sporen

Die intrazelluläre Vermehrung der Mikrosporidien dauert an, bis die Wirtszelle die Parasiten nicht länger fassen kann und rupturiert, wodurch die Sporen, aber auch unreife Organismen verschiedenster Entwicklungsstadien frei werden. Der massenhafte Untergang der Wirtszellen ist, je nach Lokalisation, für die klinischen Manifestationen der Infektion verantwortlich.

1.4 Taxonomie

Taxonomisch werden zum gegenwärtigen Zeitpunkt etwa 140 Gattungen und über 1200 Arten von Mikrosporidien unterschieden. Allerdings sind davon nur 7 Gattungen beim Menschen als humanpathogen beschrieben worden (Lippert et al., 2003). Die Systematik der Mikrosporidien ist, wie die vieler anderer Organismen, nicht starr und endgültig, sondern Gegenstand von Neu- und Reklassifizierungen. So bestehen derzeit auf Grund von neu gewonnenen Erkenntnissen bezüglich der nahen Verwandtschaft von Mikrosporidien mit den Pilzen Überlegungen, Mikrosporidien dem Stamm der Pilze zuzuordnen (Babenko et al., 2004; Thomarat et al., 2004; Virel et al., 2004)
1.5 *Wirtsspektrum und Übertragungswege*

Eine Übersicht über das Vorkommen der vier häufigsten humanpathogenen Mikrosporidienspezies gibt Tabelle 1.

Tab. 1: Übersicht über das Wirtsspektrum der vier häufigsten humanpathogenen Mikrosporidienspezies.

<table>
<thead>
<tr>
<th>E. bieneusi</th>
<th>E. intestinalis</th>
<th>E. hellem</th>
<th>E. cuniculi</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mensch</td>
<td>• Mensch</td>
<td>• Mensch</td>
<td>• Mensch</td>
</tr>
<tr>
<td>• Affe</td>
<td>• Kaninchen</td>
<td>• Huhn</td>
<td>• Affe</td>
</tr>
<tr>
<td>• Huhn</td>
<td>• Maus</td>
<td>• Kaninchen</td>
<td>• Fuchs</td>
</tr>
<tr>
<td>• Hund</td>
<td>• Taube</td>
<td>• Maus</td>
<td>• Hase</td>
</tr>
<tr>
<td>• Katze</td>
<td></td>
<td>• Papagei</td>
<td>• Huhn</td>
</tr>
<tr>
<td>• Maus</td>
<td></td>
<td>• Taube</td>
<td>• Igel</td>
</tr>
<tr>
<td>• Rind</td>
<td></td>
<td></td>
<td>• Maus</td>
</tr>
<tr>
<td>• Schwein</td>
<td></td>
<td></td>
<td>• Pferd</td>
</tr>
<tr>
<td>• Taube</td>
<td></td>
<td></td>
<td>• Ratte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Rind</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Schaf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Schwein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ziege</td>
</tr>
</tbody>
</table>
Einleitung

Die Möglichkeit von fäkal-oralen Übertragungswegen erscheint ebenfalls plausibel und wird durch eine Studie über Mikrosporidien an der Wasseroberfläche des Flusses Seine (Frankreich) und dem Bericht über einen trinkwasserassoziierten Mikrosporidienausbruch unterstützt (Cotte et al., 1997; Fournier et al., 2000). Das Auftreten von ausschließlich respiratorischen E. hellem-Infektionen ist ein Hinweis, dass Mikrosporidien auch inhalativ erworben werden könnten (Weber et al., 1993; del Aguila et al., 1997). Der Nachweis von jeweils derselben Mikrosporidienpezies bei Sexualpartnern deutet außerdem auf eine Übertragung durch Sexualentakte hin (Franzen und Müller, 1999; Sobottka et al., 2003).

1.6 Epidemiologie

Mikrosporidien wurden aber auch bei Patienten mit anderen Formen von Immunsuppression nachgewiesen, wie zum Beispiel bei Patienten, die eine Organtransplantation erhalten hatten und medikamentös immunsupprimiert waren (Sing et al., 2001), aber auch bei Kleinkindern und Senioren (Lores et al., 2001; Tumwine et al., 2002; Munthin et al., 2005; Tumwine et al., 2005). Darüber hinaus werden Mikrosporidien zunehmend häufiger in aufsuchenden Untersuchungen (Surveys) auch bei immunkompetenten Personen, die an einer selbstlimitierender Diarrhoe erkrankt sind, gefunden, insbesondere bei Reisenden in tropische und subtropische Gebiete und in Einzelfällen bei Personen mit Tierkontakten (Raynaud et al., 1998; Müller et al., 2001). Infektionen des Menschen mit anderen Mikrosporidienarten als denen der Gattungen Enterocytozoon und Encephalitozoon sind auf einzelne Kasuistiken beschränkt.

1.7 Klinische Manifestation

1.7.1 Gastrointestinale Symptome

Tab. 2: Klinische Manifestationen bei Infektion mit humanpathogenen Mikrosporidien (nach Schottelius, 2003). Die wichtigsten klinischen Manifestationen der in Deutschland am häufigsten auftretenden Mikrosporidien sind im Fettdruck hervorgehoben.

<table>
<thead>
<tr>
<th>Mikrosporidienspezies</th>
<th>Immunsuppression</th>
<th>Immunkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterocytozoon bineusi</td>
<td>Chronische Diarrhoe, Cholangitis, Cholezystitis, Bronchitis, Pneumonie, Sinusitis</td>
<td>selbstlimitierende Diarrhoe</td>
</tr>
<tr>
<td>Encephalitozoon intestinalis (früher Septata intestinalis)</td>
<td>Chronische Diarrhoe, Cholangitis, Cholezystitis, Nephritis, Sinusitis, Harnwegsinfektion, Bronchitis, Keratokonjunktivitis, generalisierte Infektion</td>
<td>selbstlimitierende Diarrhoe</td>
</tr>
<tr>
<td>Encephalitozoon hellem</td>
<td>Keratokonjunktivitis, Sinusitis, Bronchitis, Pneumonie, Nephritis, Harnwegsinfektion, Prostatitis, generalisierte Infektion</td>
<td>selbstlimitierende Diarrhoe</td>
</tr>
<tr>
<td>Pleistophora spp.</td>
<td>Myositis</td>
<td>nicht beschrieben</td>
</tr>
<tr>
<td>Trachipleistophora hominis</td>
<td>Myositis, Keratokonjunktivitis, Sinusitis</td>
<td>nicht beschrieben</td>
</tr>
<tr>
<td>Trachipleistophora anthropophthera</td>
<td>Enzephalitis, Myositis, Hepatitis, Pankreatitis, generalisierte Infektion</td>
<td>nicht beschrieben</td>
</tr>
<tr>
<td>Nosema ocularum</td>
<td>nicht beschrieben</td>
<td>Keratitis</td>
</tr>
<tr>
<td>Brachiola connori (früher N. connori)</td>
<td>generalisierte Infektion</td>
<td>nicht beschrieben</td>
</tr>
<tr>
<td>Brachiola algerae (früher N. algerae)</td>
<td>nicht beschrieben</td>
<td>Keratitis</td>
</tr>
<tr>
<td>Brachiola vesicularum (früher N. vesicularum)</td>
<td>Myositis</td>
<td>nicht beschrieben</td>
</tr>
<tr>
<td>Vittaforma corneae (früher N. corneum)</td>
<td>generalisierte Infektion</td>
<td>Keratitis</td>
</tr>
<tr>
<td>Microsporidium ceylonensis</td>
<td>nicht beschrieben</td>
<td>Keratitis, Kornealulcus</td>
</tr>
<tr>
<td>Microsporidium africanum</td>
<td>nicht beschrieben</td>
<td>Keratitis, Kornealulcus</td>
</tr>
</tbody>
</table>

Der Name „*Microsporidium*“ wurde hier als eine kollektive, nicht taxonomische Bezeichnung für Mikrosporidien, die nicht klassifiziert werden konnten, verwendet.
1.7.2 Weitere Manifestationen

1.8 Therapie von Mikrosporidiosen

Während intestinale Mikrosporidieninfektionen bei immunkompetenten Personen meist selbstlimitierend verlaufen und keiner weiteren Behandlung bedürfen, ist die erfolgreiche Behandlung von immunsupprimierten Patienten sehr von der infizierenden Mikrosporidienspezies abhängig. Bei diesen Patienten ist die Differenzierung der Mikrosporidien sinnvoll, da sich hieraus unterschiedliche therapeutische Optionen ergeben. Es hat sich gezeigt, dass Infektionen mit Mikrosporidien der Gattung Encephalitozoon bei Patienten mit AIDS effektiv mit Albendazol (2 x 400 mg pro Tag für 3-4 Wochen) behandelt werden können (Poles et al., 2003). Dagegen führt bei Patienten, die an einer durch E. bieneusi verursachten chronischen Diarrhoe leiden, eine Albendazoltherapie meist nur bei etwa 50% zu einer vorübergehenden klinischen Besserung, ohne dass es zu einer Eliminierung
Einleitung

der Erreger kommt. Andere Substanzen wie Furazolidon, Thalidomid (teratogen!) und Fumagillin haben bei einzelnen Patienten zu einer Besserung geführt, sind aber für diese Indikation in Deutschland nicht zugelassen (Molina et al., 2002; Sobottka et al., 2003; Schottelius et al., 2003).

Zu Therapieversuchen mit anderen Wirkstoffen, darunter das bereits erwähnte Tumor-Nekrose-Faktor (TNF) hemmende Thalidomid (Sharpstone et al., 1995), existieren nur kleine Untersuchungsreihen und Kasuistiken ohne statistische Signifikanz (Franzen und Müller, 1999).

1.9 Diagnostik von Mikrosporidiosen

1.9.1 Mikroskopie

Bis zu Beginn der 90er Jahre war der Nachweis von Mikrosporidiosen wegen ihrer geringen Größe und ihrer uncharakteristischen Färbeeigenschaften ausschließlich der Elektronenmikroskopie vorbehalten (van Gool et al., 1990; Weber et al., 1994; Kotler und Orenstein, 1998). Dagegen ist heute die Lichtmikroskopie die einfachste Diagnostikmethode. Um den direkten Nachweis im Mikroskop jedoch erst zu

Empfohlen wird heute im Allgemeinen die modifizierte Trichromfärbung, da sie spezifischer ist. In einer multizentrischen Studie konnte für die Lichtmikroskopie in sechs teilnehmenden Labors eine durchschnittliche Sensitivität von 80% ermittelt werden (Rinder et al., 1998).
Einleitung

1.9.2 PCR

Zum Nachweis und zur Differenzierung der Mikrosporidien werden zunehmend auch PCR-basierte Methoden eingesetzt. Diese sind jedoch bisher nur Speziallaboratorien vorbehalten, da es aktuell keine kommerzielle oder standardisierte diagnostische „Kits“ gibt und die Labors auf selbst entwickelte PCR-Methoden oder Literaturangaben zurückreifen müssen. Gegenüber den lichtmikroskopischen Verfahren mit einer Nachweisgrenze von etwa 10^4 bis 10^6 Sporen/ml ist die Nachweisgrenze bei der PCR mit etwa 10^2 Sporen/ml um mindestens das Hundertfache niedriger. Eine vergleichende Studie zwischen sechs Laboratorien, die ihre selbst entwickelte PCR einsetzten und sechs anderen, die die Stuhlproben von Patienten lichtmikroskopisch untersuchten, ergab eine höhere durchschnittliche Empfindlichkeit für die PCR (89%) verglichen mit der Mikroskopie (80%). Die Spezifität beider Methoden erwies sich mit 98% bzw. 95% als sehr gut (Rinder et al., 1998).
Einleitung

Durch eine geeignete Wahl des Zielgens ist nicht nur der Nachweis von Mikrosporidien, sondern gleichzeitig auch eine einfache Artdifferenzierung möglich, z.B. durch Amplifizierung des nicht-kodierenden, intern transkribierten Spacer (ITS) des Gens der rRNA (rDNA) mit einer geschachtelten („nested“) Polymerasekettenreaktion (PCR) und dem Verdau des PCR-Produkts mit dem Restriktionsenzym *MnlI* mit nachfolgender elektrophoretischer Auftrennung (Katzwinkel-Wladarsch et al., 1996; Rinder et al., 1997).

1.10 *Encephalitozoon cuniculi*

![Rasterelektronenmikroskopische Aufnahme von *Encephalitozoon cuniculi*-Sporen, eine davon mit ausgeworfenem Polfaden (Foto: Heidrun Schöl).](image-url)
Einleitung

Problemstellung und Zielsetzungen der eigenen Arbeit

Mikrosporidieninfektionen beim Menschen finden sich ubiquitär. Im vorangegangenen Kapitel wurde aufgezeigt, dass die Diagnostik von Mikrosporidiosen durch den heutzutage immer noch problematischen Nachweis der Erreger mit konventionellen, aber auch biochemischen und immunologischen Methoden bislang sehr schwierig ist und dass bis heute noch keine Testmethode etabliert wurde, die sich für eine Routine-Diagnostik von Mikrosporidieninfektionen eignet. Lichtmikroskopische Methoden setzen eine große Erfahrung des Untersuchers voraus, immunologische Nachweise sind unspezifisch und für die PCR-Diagnostik sind immer noch keine standardisierten und zertifizierten Testsysteme kommerziell erhältlich. Gerade vor dem Hintergrund aktuell zunehmender HIV-Infektionen wäre aus dem oben genannten Grund eine spezifische, schnelle und einfach durchzuführende Diagnostikmethode wünschenswert.

In der vorliegenden Arbeit sollten die bereits erwähnten Schwierigkeiten auf der Suche nach einem geeigneten Antigen zur Entwicklung eines ELISA durch die Anwendung molekularbiologischer Methoden überwunden werden.
Problemstellung und Zielsetzungen der eigenen Arbeit

Im Einzelnen sollten in der vorliegenden Arbeit folgende Ziele verfolgt werden:

- Anzüchtung und Vermehrung der Mikrosporidienspezies *Encephalitozoon cuniculi* als Modellorganismus in der Zellkultur
- Isolation der Sporen aus dieser Kultur in möglichst hoher Anzahl und Reinheit
- Isolation der mRNA aus den Sporen
- Transkription der gewonnenen mRNA mit Hilfe der Reversen Transkriptase in cDNA (complementary DNA)
- Anlegen einer Genexpressionsklonbank
- Screenen der Genexpressionsklonbank mit polyklonalen Antikörpern, die durch Immunisierung von Kaninchen mit *E. cuniculi* gewonnen wurden
- Sequenzierung der durch die Antikörper identifizierten Klone, die immunogene Proteine exprimieren
- Analyse und Charakterisierung der gewonnenen cDNA-Sequenzen
- Suche nach Übereinstimmungen mit bereits bekannten Sequenzen in Gendatenbanken, um konservierte Domänen zu identifizieren
- Identifizierung immunogener Domänen durch Deletionsmutanten
- Charakterisierung immunogener Domänen bezüglich ihrer Eignung zur Entwicklung eines Koproantigen-ELISA
3 Materialien

3.1 Zelllinien und Sporen

3.2 Antikörper

Polyklonale Kaninchen Anti- *E. cuniculi* Serum-Immunglobuline
siehe Kapitel 4.3.

Dako, Glostrup, Dänemark:
- „Peroxidase-Conjugated Swine Anti-Rabbit Immunoglobulins“

3.3 Geräte

Abimed, Düsseldorf:
- Pipette „Labmate L10“

Bender & Hobein AG, Zürich, Schweiz:
- Vibrationsmischer „Vortex Genie 2“

Claus Damm, Fredensborg, Dänemark:
- Laminarflow „clanLAF VFR 1206“
Materialien

Eppendorf Gerätebau, Hamburg:
- Kühlzentrifuge „5417 R“
- Photometer „PCP 6121“
- Absaugpumpe „4151“

Gilson, Bad Camberg:
- Pipetten „Pipetman P1000, P200 und P20“

Glasgerätebau Hirschmann, Eberstadt:
- Pipettierhilfe „Pipettus-Akku“

Heraeus Instruments, Hanau:
- Brutschrank „Typ B 5060 EC-CO2“
- Tischzentrifuge „Biofuge 13“

Hettich, Tuttlingen:
- Tischzentrifuge „Mikroliter“
- Zentrifuge „Rotanta S“

H + P Labortechnik, Oberschleißheim:
- Labor-Sterilisator „Varioklav 400 EP-Z“

IKA Labortechnik, Staufen:
- Schütteltisch „HS 250 Basic“

Julabo Labortechnik, Seelbach:
- Wasserbad „Julabo SW 1“

Leitz, Wetzlar:
- Umkehrmikroskop „Labovert“

LKB, Bromma:
- Wasserbad „2209 Multicool“
Materialien

Pharmacia Biotech, Cambridge, USA:
- Photometer „Gene Quant II, RNA / DNA Calculator“
- Elektrophoresenetzgerät „Gibco BRL ST 504 D“

Polaroid Cooperation, Cambridge, Massachusetts, USA:
- Sofortbildkamera „MP 4“

Sartorius GmbH, Göttingen:
- Tischwaage „Sartorius 3716“
- Tischwaage „Sartorius BP 210 D“

Schütt Labortechnik GmbH:
- Gassicherheitsbrenner „Flammy S“

Strehlau + Kruse, Freiburg:
- Gelelektrophoresekammer „Bioplex“, Größe 10 cm x 11 cm

3.4 Chemikalien

Biochrom, Berlin:
- MEM-EARLE-Medium (ohne Glutamin)
- Fetal Bovine Serum (FBS)
- L-Glutamin (200 mM)
- Penicillin / Streptomycin
- Trypsin / EDTA-Lösung
- Phosphate Buffered Saline (PBS)

BTS-Bio Tech Trade Service (Vertrieb Sigma):
- Isopropyl-β-D-thiogalactopyranosid (IPTG)
- 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranosid (X-Gal)
Materialien

Merck, Darmstadt:
- Essigsäure (99%)
- Magnesiumsulfat
- Methanol 100 %
- Natriumchlorid
- Xylol

Roth, Karlsruhe:
- 2-Mercaptoethanol 99 % p.a.
- Chloroform
- Ethanol 99,6% und 70 %
- Natriumhydrogencarbonat
- Phenol-Chloroform (1:1), pH 7,5

Sigma, Deisenhofen:
- Farbstoff „Chromotrope 2R“
- Ethidiumbromid
- Farbstoff „Fast green“
- Phosphorwolframsäure
- Tetracyclin
- Wasserstoffperoxid 30 %
- 4-Chloro-1-Naphtol
- Mineralöl „Light White Oil“

United States Biochemical Group (USB), Cleveland, Ohio, USA:
- Kanamycinsulfat
- Triton X 100
- Tween 20
3.5 Agar- und Gelmaterialien

Appligene, Heidelberg:
- Agarose „molecular biology grade“

Roth, Karlsruhe:
- Agar-Agar für die Bakteriologie, hochrein
- Trypton/Pepton aus Casein
- Hefeextrakt

Sigma, Deisenhofen:
- Gelatin

3.6 Enzyme

Amersham Pharmacia Biotech, Braunschweig:
- Restriktionsendonuklease EcoRI, 15 units/µl
- Restriktionsendonuklease XhoI, 8 units/µl

Invitrogen, Karlsruhe:
- Rekombinanter Ribonuklease Inhibitor „RNaseOUT“

3.7 Nukleotide

Invitrogen, Karlsruhe:
- 1 Kb DNA-Leiter

MWG Biotech, Ebersberg:
- Sequenzierprimer: T3 (5’-AAT TAA CCC TCA CTA AAG GG-3’)
- Sequenzierprimer: T7 (5’-TAA TAC GAC TCA CTA TAG GG-3’)
Materialien

Thermo Electron GmbH, Ulm:
- Sequenzierprimer: SWP-3 (5’-GGA YCA GTA CAA GAA GGC-3’)

3.8 Kommerzielle „Kits“

Peqlab Biotechnologie GmbH:
- „E.Z.N.A. Plasmid Miniprep Kit I“

Qiagen, Hilden:
- „Poly A⁺ RNA Oligotex Mini Kit“
- „QIAamp DNA Stool Mini Kit“
- „RNeasy Mini Kit“

Stratagene, Heidelberg:
- „ZAP Express cDNA Synthesis Kit“
- „ZAP Express cDNA Gigapack III Gold cloning Kit“
- „picoBlue Immunoscreening Kit“

3.9 Sonstige Materialien

Amersheim Biosciences, Freiburg:
- Nitrocellulose Filter Hybond-C Extra 45 Micron, 82 mm und 137 mm

Dow Chemical, Vertrieb Schubert Laborbedarf, München:
- Plastikfolie: „Saran“

Lynnon Corporation, Quebec, Kanada:
- Computersoftware „DNA-Man“

Nunc, Roskilde, Dänemark:
- Kulturflaschen mit Filterkappe „Nunclon Surface“, 25 cm² und 185 cm²
Materialien

Polaroid, Vertrieb Sigma, Deisenhofen:
- Sofortbildfilm „667“
4 Methoden

4.1 Zellkultur

4.2 Modifizierte Trichromfärbung nach Weber (Weber'sche Färbung)

Für die Herstellung der Trichrom-Färbelösung nach Weber et al. (1992) wurden 6,0 g des Farbstoffes „Chromotrope 2R“ und 0,15 g des Farbstoffes „Fast green“ zusammen mit 0,7 g Phosphorwolframsäure in 3 ml Essigsäure (99%) aufgelöst und mit einem Glasstab verrührt. Die Lösung wurde 30 Minuten bei Zimmertemperatur inkubiert und im Anschluss mit 100 ml Aqua bidest. aufgegossen und verrührt.

Für die Färbung von Mikrosporidien im Stuhl oder Nährmedium wurde auf einem Objektträger ein Ausstrich angefertigt, trocknen gelassen und im Anschluss mit reinem Methanol fixiert. Die nun auf dem Objektträger fixierte Probe wurde nun für 1,5 Stunden in der Trichromfärbelösung inkubiert. Zum Entfärben wurde der Objektträger für 10 Sekunden in Essigalkohol (99,55 ml Ethanol (90%) und 0,45 ml 99%ige Essigsäure) und die überschüssige Farbe im Anschluss 10 Sekunden mit 95%igem Ethanol abgespült. Zum Entwässern wurde der Objektträger in dieser Reihenfolge zuerst 5 Minuten in Ethanol (95%), weitere 10 Minuten in Ethanol (100%) und zum Schluss für 10 Minuten in reinem Xylol inkubiert. Der Objektträger wurde nun an der Luft getrocknet.

Die fertigen Präparate wurden unter höchster lichtmikroskopischer Vergrößerung (1000x-Objektiv) angeschaut. Die vorhandenen Mikrosporidien waren nun rot gefärbt.

4.3 Immunisierung von Kaninchen zur Gewinnung von E. cuniculi-Antiseren

beider Kaninchen wurde für Kaninchen Nr. 1 ein IFT-Titer von 1:512 und für Kaninchen Nr. 2 ein IFT-Titer von 1:2048 bestimmt. Auf Grund des höheren Titers wurde für das Immunoscreening das Serum von Kaninchen Nr. 2 verwendet.

4.4 **Aufarbeitung der E. cuniculi-Sporen zur Gewinnung von mRNA**

Bei der Aufarbeitung der *E. cuniculi*-Sporen galt es, etwa 5 µg mRNA zu isolieren, da die cDNA Synthese mit dem ZAP Express cDNA Synthesis Kit (Stratagene) für diese Menge optimiert ist.

4.4.1 **Isolation der Gesamt-RNA**

Um die mRNA der *E. cuniculi*-Sporen aufzuarbeiten, wurde aus fünf mit *E. cuniculi* infizierten Fibroblasten-Kulturen jeweils die gesamte Menge (5 x 25 ml) Nährmedium entnommen, in fünf 50 ml Zentrifugengeräten bei 1000 x g für 5 Minuten zentrifugiert und der Überstand abdekantiert. Danach wurde der Zellrasen jeder Kulturschale nach Spülung mit 25 ml PBS mit 15 ml Trypsin abgelöst und das Trypsin mit 15 ml Nährmedium geblockt. Die abgelösten, mit *E. cuniculi* infizierten Fibroblasten wurden zu den Röhrchen hinzugegeben, wiederum bei 1000 x g für 5 Minuten zentrifugiert und abdekantiert.

Die Isolation der Gesamt-RNA erfolgte mittels des „RNeasy Mini Kit“ (Qiagen, Hilden). Das Kit verwendet eine Silica-Gel-Membran, die die Eigenschaft besitzt, RNA mit einer Größe über 200 Nukleotiden besonders gut zu binden und damit rRNA und tRNA abzutrennen. Somit konnte die mRNA bereits im ersten Schritt konzentriert und gereinigt werden. Die fünf Sedimente („Pellets“) eines jeden Röhrchens wurden mit jeweils 1,2 ml „RLT“-Puffer (aus dem Kit) resuspendiert, gleichmäßig auf zwei 1,5 ml Mikrozentrifugengefäße verteilt und sofort auf Eis gestellt. Durch fünfmaliges Aufziehen und wieder Zurückdrücken aller fünf Eluate mit einer 10-Gauge-Kanüle, auf die eine sterile 2 ml Plastikspritze gesteckt war, erfolgte der mecha

28

4.4.2 mRNA-Isolation

wurde die mRNA mit 800 µl 65°C heißem Elutions-Puffer eluiert. Die gewonnenen 740 µl Eluat wurden sofort auf Eis gestellt. Die Zusammensetzungen aller im Kit enthaltenen Puffer werden von der Herstellerfirma nicht angegeben.

4.4.3 Bestimmung der Gesamt-mRNA

1. \[
\frac{\text{mRNA-Konzentration}}{\text{µg/ml}} = 0,0073 \times 20 \times 40 \frac{\text{µg}}{\text{ml}} = 5,84 \frac{\text{µg}}{\text{ml}}
\]

\[\text{Absorption \quad Verdünnung} \quad \text{Konzentration von ssRNA mit OD}_2{60} = 1\]

2. \[
\frac{\text{mRNA-Gehalt im Eluat}}{\text{µg}} = 5,84 \frac{\text{µg}}{\text{ml}} \times 0,7275 \text{ ml} = 4,25 \text{ µg}
\]

\[\text{mRNA-Konzentration \quad Eluatvolumen}\]

Somit wurde eine mRNA-Konzentration von 5,84 µg/ml errechnet, der Gesamt-mRNA-Gehalt betrug 4,25 µg gelöst in 727,5 µl Elutions-Puffer.
4.4.4 Fällung der Gesamt-mRNA

Zum Fällen der mRNA wurde die 727,5 µl mRNA-Eluat (siehe Abschnitt 4.4.3) ad 800 µl mit „Sample Buffer“ („Poly(A) Quick mRNA Isolation Kit“) aufgefüllt und dann auf 2 Mikrozentrifugengefäße zu jeweils 400 µl verteilt. In beide Gefäße wurden jeweils 1000 µl Ethanol (100%) gegeben, vermischt und die mRNA über Nacht bei -20°C gefällt. Am nächsten Tag wurden die Lösungen für 30 Minuten bei 12000 x g in der Kühlzentrifuge bei 4°C zentrifugiert und der Überstand vorsichtig abdekantiert. Beide Sedimente wurden mit jeweils 150 µl 70%igem Ethanol, das mit Diethylpyrocarbonat (DECP)-behandeltem Wasser hergestellt worden war, gewaschen. Danach wurde der Überstand abpipettiert und die Pellets an der Luft getrocknet.
4.5 cDNA Synthese

Für die cDNA-Synthese wurde das ZAP Express cDNA Synthesis Kit (Stratagene, Heidelberg) benutzt. Eine Übersicht über die cDNA-Synthese gibt Abbildung 6:

Abb. 6: Übersicht über die cDNA-Synthese aus mRNA.
4.5.1 Synthese des ersten cDNA-Stranges

Zur Synthese des ersten cDNA-Stranges wurde ein Hybrid Oligo(dT) Linker-Primer mit 50 Basen verwendet, dessen Sequenz Schnittstellen für die Restriktionsenzyme XhoI und SpeI beinhaltet.

\[5'\text{-GAGAGAGAGAGAGAGAGAGA-ACTAGT-CTCGAG-TTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3'} \]

“GAGA”-Sequenz SpeI XhoI Poly(dT)

Für die Transkription der mRNA in cDNA wurde die Reverse Transkriptase vom Mäuse-Leukämie-Virus eingesetzt, die keine RNase H-Aktivität (RNase H⁻ Version) besitzt (siehe Abschnitt 4.5.2). Der Nukleotid-Mix für den ersten Strang enthält die Nukleotide dATP, dGTP, dTTP sowie 5-Methyl-dCTP. Somit hat der komplette erste cDNA-Strang an jeder Cytosin-Base eine Methylgruppe, so dass die spätere doppelsträngige cDNA vor einem Verdau mit dem Restriktionsenzym XhoI geschützt ist, da XhoI nur nicht-methylierte DNA schneidet. Zu Beginn der Synthese des Erststrangs bindet die Poly-dT-Region des Linker-Primers an das Poly-A-Ende der mRNA. Danach transkribiert die Reverse Transkriptase die mRNA revers in cDNA.

In der praktischen Durchführung wurden die zwei getrockneten mRNA-Pellets (siehe Abschnitt 4.4.4) in jeweils 18,75 µl DECP-behandeltem Wasser resuspendiert und in einem neuen Mikrozentrifugengefähz zusammengegeben, so dass darin 37 µl gelöste mRNA enthalten waren. In die mRNA-Lösung wurden nacheinander 5 µl 10x Erststrang-Puffer, 3 µl Erststrang-Methylnukleotidmix (je 10 mM dATP, dGTP, dTTP und 5 mM 5-Methyl-dCTP), 2 µl Linker-Primer (1,4 µg/µl) und 1 µl RNase Block Ribonuclease Inhibitor (40 U/µl) (aus dem Kit) zugegeben. Die Lösung wurde 10 Minuten bei Raumtemperatur inkubiert, damit die Primer an die mRNA binden konnten. Danach wurde 1,5 µl StrataScript Reverse Transkriptase (50 U/µl) (aus dem
Methoden

Kit) zugegeben und vermischt. Für die Transkription musste die Lösung bei 42°C für 1 Stunde im Wasserbad inkubiert werden. Zum Beenden der Transkription wurde der Reaktionsansatz auf Eis gestellt.

4.5.2 Synthese des zweiten cDNA-Stranges

Zur Durchführung wurden in die Lösung, die den ersten Strang der cDNA (siehe Abschnitt 4.5.1) enthielt, folgende Bestandteile des Kits pipettiert: 20 µl 10x Zweitstrangpuffer, 6 µl Zweitstrang dNTP (je 10 mM dATP, dGTP, dTTP und 26 mM dCTP), 116 µl steriles demineralisiertes H₂O, 2 µl RNase H (1,5 U/µl) und 11 µl DNA Polymerase I (9 U/µl). Die Lösung wurde gemischt und zur Synthese des zweiten Stranges für 2,5 Stunden bei 16°C ins Wasserbad gegeben. Nach Ablauf dieser Zeit wurde die Lösung auf Eis gestellt, um die Reaktion zu beenden.

4.5.3 Glätten der cDNA-Enden und Aufreinigung der cDNA

In die Zweitstrang-Synthesereaktion wurden zur Auffüllung von möglicherweise bestehenden Einstrang-Überhängen 23 µl „Blunting dNTP Mix“ (je 10 mM dATP, dGTP, dTTP und dCTP) und 2 µl „Cloned Pfu DNA Polymerase“ (2,5 U/µl) (aus dem Kit) pipettiert. Die Lö sung wurde bei 72°C für 30 Minuten im Wasserbad inkubiert. Danach wurden 200 µl Phenol-Chloroform [1:1, pH 7,0-8,0] der Reaktion zugegeben und gemischt. Um das Chloroform wieder von der cDNA-Lösung zu trennen, wurde die Lösung 2 Minuten bei 12000 x g zentrifugiert und danach die obere wässrige Phase, die die cDNA enthielt, in ein neues Mikrozentrifugengefäß übertragen. Dazu wurde dasselbe Volumen an Chloroform (100%) zugegeben, gemischt und erneut für
2 Minuten zentrifugiert. Die obere Phase wurde abgenommen und wiederum in ein neues Mikrozentrifugengefäß übertragen, mit 20 µl 3 M Natriumacetat und 400 µl Ethanol (100%) versetzt, gemischt und die cDNA über Nacht bei -20°C gefällt. Am nächsten Tag wurde die gefällte cDNA-Lösung in der Kühlzentrifuge für 1 Stunde bei 4°C und 12000 x g zentrifugiert, der Überstand abdekantiert und das Pellet mit 500 µl Ethanol (70%) gewaschen. Die cDNA wurde erneut zwei Minuten zentrifugiert, der Überstand verworfen und das Pellet an der Luft getrocknet.

4.5.4 Ligation der EcoRI-Adapter

Der EcoRI-Adapter hatte folgende Sequenz:

\[
\begin{align*}
5' & - \text{OH} - \text{AATTGGCACGAGG} & - 3' \\
3' & - \text{GCCGTTGACTCC} & - \text{P} & - 5'
\end{align*}
\]

Dieser Adapter besteht aus zwei Oligonukleotiden mit 10 und 14 Nukleotiden und bildet nach Anlagerung beider Oligonukleotide einen EcoRI-kompatiblen Überhang. Das aus 10 Nukleotiden bestehende Stück ist phosphoryliert, so dass der Adapter an die bereits geglätteten Enden der cDNA ligiert werden kann. Das aus 14 Basen bestehende Oligonukleotid ist nicht phosphoryliert, um die zweite Seite des Linkers vor einer Ligation an andere DNA-Moleküle zu schützen.

Zur praktischen Durchführung wurde das getrocknete Pellet (aus Abschnitt 4.5.3) mit 9 µl EcoRI-Adapterlösung (0,4 µg/µl) resuspendiert und bei 4°C für 30 Minuten inkubiert, damit sich die cDNA komplett lösen konnte. Zur Kontrolle wurde 1 µl cDNA-Lösung abgenommen und bei -20°C gelagert, um sie später bei der Gelelektrophorese mitlaufen lassen zu können. Um die EcoRI-Adapter an die geglättete cDNA zu ligieren wurde 1 µl 10x Ligase-Puffer, 1 µl 10 mM rATP und 1 µl T4 DNA-Ligase (4 U/µl) zugegeben. Damit die EcoRI-Adapter binden konnten, wurde der Ligationsansatz zwei Tage lang im Kühlschrank bei 4°C inkubiert. Danach wurde die Ligase bei 70°C im Wasserbad 30 Minuten lang inaktiviert.
4.5.5 Phosphorylieren der EcoRI-Enden

Nachdem die Adapterligation abgeschlossen und die Ligase hitzeinaktiviert worden war, wurde nun auch das aus 14 Basen bestehende Oligonukleotid phosphoryliert, um die spätere Ligation in den nicht-phosphorylierten Vektor zu ermöglichen. Dazu wurde in die cDNA-Lösung 1 µl 10x Ligase-Puffer, 2 µl 10 mM rATP, 5 µl steriles Wasser und 2 µl T4 Polynukleotid-Kinase (5 U/µl) (aus dem Kit) pipettiert und 30 Minuten bei 37°C im Wasserbad inkubiert. Zum Inaktivieren der Kinase wurde die Lösung für 30 Minuten bei 70°C erhitzt.

4.5.6 Restriktionsenzymverdau mit XhoI

Durch die unmethylierte XhoI-Schnittstelle (siehe Abschnitt 4.5.2) kann durch Restriktion mit XhoI auf einer Seite der cDNA ein XhoI-kompatibler Überhang erzeugt werden. Um später zusammen mit der verbliebenen EcoRI-Schnittstelle am anderen Ende der cDNA eine so genannte „gerichtete“ Ligation in den Vektor zu ermöglichen (siehe Abschnitt 4.5.12), wurden in den Ansatz 28 µl XhoI-Puffer und 3 µl XhoI (40 U/µl) (aus dem Kit) pipettiert und für 1,5 Stunden bei 37°C im Wasserbad inkubiert. Danach wurden 5 µl 10x STE-Puffer (aus dem Kit) und 125 µl Ethanol (100%) zugegeben und die cDNA über die Nacht bei -20°C gefällt. Die cDNA-Lösung wurde am nächsten Tag in der Kühlzentrifuge 60 Minuten bei 4°C zentrifugiert, der Überstand abpipettiert und das an der Luft getrocknete Pellet mit 14 µl 1x STE-Puffer und 3,5 µl Säulenfarbstoff resuspendiert.

4.5.7 Größenfraktionierung mit einer Sepharosesäule

1x STE-Puffer (aus dem Kit) gewaschen und mit den 17,5 µl cDNA-Lösung aus Abschnitt 4.5.6 beladen. Die Elution erfolgte mit 3 ml 1x STE-Puffer. Sobald der Farbstoff, der in der Lösung enthalten war, die auf der Glaspipette aufgedruckte -0,4 ml Marke erreichte, wurden mit 12 Mikrozentrifugengefäßen Fraktionen jeweils zu 3 Tropfen (ca. 100 µl) gesammelt, die cDNA unterschiedlicher Länge enthielten.

Abb. 7: Aufbau der Sepharosesäule
4.5.8 Agarosegel-Elektrophorese der 12 verschiedenen cDNA-Fraktionen

Zur Herstellung eines 1,3%-igen Agarosegels wurden 0,57 g Agarose in 44 ml TAE-
Puffer (40 mM Tris-Acetat, pH 8,0, 1 mM EDTA) gekocht und nach Abkühlung auf ca. 40°C mit 1,2 µl einer 1%-igen Ethidiumbromidlösung versetzt und in eine Elektrophoresekammer gegossen. Von den 12 verschiedenen cDNA-Fraktionen wurden jeweils 15 µl zusammen mit 1,5 µl 10x Agarosepuffer (1% SDS, 0,25% Bromphenolblau, 15% Ficoll 400, 0,1 M EDTA) auf das Gel aufgetragen und bei 35 V und 40 mA 60 Minuten aufgetrennt. Als Größenstandard dienten 10 µl (0,05 µg/µl) einer 1 kb-DNA-Leiter (in 10 mM Tris-Cl, pH 7,5, 50 mM NaCl und 0,1 mM EDTA). Durch Interkalation des im Gel vorhandenen Ethidiumbromids zwischen den Basen des cDNA-Doppelstrangs wurden die Banden des cDNA-Produkts im UV-Licht (312 nm) durch Fluoreszenz sichtbar gemacht und fotografiert (siehe Abbildung 8). Die 4 längsten cDNA-Inserts wurden gemeinsam in ein neues Gefäß überführt.

Fraktion Nr.:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Leiter</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 8: Agarosegel-Elektrophorese der 12 cDNA-Fraktionen. Die Lage der Banden von Fraktion Nr. 4, 5, 6 und 7 ist mit einem schwarzen Rahmen gekennzeichnet, da diese auf dem Foto sehr schlecht zu erkennen sind.
4.5.9 Reinigung der cDNA-Fraktionen

Da die cDNA-Fraktionen für die weiteren Schritte gereinigt werden mussten, wurde in
die Lösung 1 Volumen Phenol-Chloroform zugegeben, vermischt und danach 2
Minuten zentrifugiert. Die obere Phase wurde wiederum in ein neues Gefäß
übertragen, 1 Volumen Chloroform zugegeben, vermischt und 2 Minuten
zentrifugiert. Die obere Phase wurde erneut in ein neues Gefäß gegeben.

4.5.10 Fällung der cDNA

Um die cDNA zu fällen wurde in die Lösung 1 Volumen Ethanol 100% gegeben und
über Nacht bei -20°C in den Gefrierschrank gestellt. Am nächsten Morgen wurde die
cDNA-Lösung in der Kühlzentrifuge bei 4°C für 60 Minuten zentrifugiert und danach
abdekantiert. Das Pellet wurde vorsichtig mit 200 µl Ethanol (80%) gewaschen und
erneut zwei Minuten zentrifugiert. Der Überstand wurde abgenommen und das Pellet
an der Luft getrocknet. Sobald das Pellet nur noch leicht feucht war, wurde es in 3 µl
sterilem demineralisierten Wasser gelöst und 0,5 µl der Lösung zur cDNA-
Quantifizierung abgenommen. Es verblieben 2,5 µl cDNA-Lösung für die Ligation in
den ZAP Express Vektor.

4.5.11 cDNA-Quantifizierung

Da für die Ligation der cDNA in den ZAP Express Vektor eine Verdünnung von 100
ng/µl benötigt wurde, musste die erstellte cDNA quantifiziert werden. Für die
Quantifizierung wurde ein 0,8%iges Agarose-Gel hergestellt (siehe Abschnitt 4.5.8),
 das 1 µl einer 1%igen Ethidiumbromidlösung enthielt und in eine Petrischale
gegossen. Danach wurde in der Mitte die 0,5 µl der cDNA aus Abschnitt 4.5.10
aufgetragen und außen herum kreisförmig je 0,5 µl von 7 DNA-Lösungen bekannter
Konzentrationen (10, 25, 50, 75, 100, 150 und 200 ng/µl in 100 mM EDTA)
aufgetragen und unter UV-Licht fotografiert. Auf dem Photoabzug wurde zur
Quantifizierung die Fluoreszenz der cDNA in der Mitte mit denen der umliegenden
bekannten Konzentrationsstandards verglichen. Die zu bestimmende cDNA in der
Mitte ähnelte am ehesten der Kontroll-cDNA mit der Konzentration 100 ng/µl (siehe
Abbildung 10, Kapitel 5.2). Da der ZAP Express Vektor für ein Optimum von
Methoden

100 ng/µl cDNA ausgelegt ist, konnten die 2,5 µl cDNA-Lösung aus Abschnitt 4.5.10 ohne Verdünnung verwendet werden.

4.5.12 Ligation der cDNA in den ZAP Express Vektor

Um die cDNA in den ZAP Express Vektor zu ligieren wurde in die 2,5 µl cDNA-Lösung folgende Bestandteile des Kits pipettiert: 0,5 µl 10x Ligase-Puffer, 0,5 µl 10 mM rATP (pH 7,5), 1 µl ZAP Express Vektor (1 µg/µl) und 0,5 µl T4 DNA-Ligase (4 U/µl). Die Reaktion wurde zwei Tage lang bei 4°C im Kühlschrank inkubiert. Die Zusammensetzung der Puffer wird von der Herstellerfirma nicht angegeben.

4.6 Packen des Ligationprodukt in λ-Helfer-Phagen

Die Lambda-Helfer-Phagen wurden zusammen mit der Escherichia coli-Zelllinie XL1-Blue MRF’ (RecA⁻) ausplattiert. Der pBK-CMV Phagen-Vektor kann in XL1-Blue MRF’-Zellen eindringen und hat in den Bakterien mehrere Funktionen:

Erstens beinhaltet er eine Sequenz, die für die α-Region des lacZ-Gens kodiert, das der ΔM15-Mutante des Wirtsbakteriums fehlt. Um ein enzymatisch aktives β-Galaktosidase-Protein zu produzieren sind zwei Domänen Voraussetzung: Die α-Region, die vom Vektor exprimiert wird und die ΔM15 lacZ-Region, die vom F'-Episom exprimiert wird. Diese beiden Regionen formen das funktionstüchtige Protein, da die α-Region die fehlenden Aminosäuren der ΔM15-Mutante ersetzt.

Drittens beinhaltet das F'-Episom das lacIq-Gen, welches die Transkription des lacZ-Promoters in Abwesendheit von IPTG unterdrückt. Dies ist notwendig, um die Expression von Fusions-Proteinen zu unterdrücken, die für E. coli tödlich sein
können. Da die Gegenwart vom lacIq-Repressor im *E. coli*-Gaststamm auf diese Weise die Repräsentation und Komplettierung der Bank verbessern kann, eignet sich XL1-Blue MRF’ sehr gut als Wirtszelle.

4.7 Ausplattieren und Titerbestimmung

Zur Herstellung einer Flüssigkultur der Wirtsbakterien wurde von einer auf LB-Tet-Agar ausplattierten XL1-Blue MRF'-Kultur mit einer Impföse ein Klon gepickt und in 50 ml Luria-Bertani (LB) Kulturmedium (10 g NaCl, 10 g Trypton und 5 g Hefeextrakt mit deionisiertem H₂O ad 1 Liter aufgefüllt und autoklaviert) angeimpft. Zusätzlich wurden 500 µl einer 20%igen Maltoselösung und 500 µl 1 M MgSO₄ hinzu gegeben und die Kultur über die Nacht unter Schütteln bei 30°C im Brutschrank bebrütet. Am nächsten Tag wurden die Bakterien bei 1000 x g herunterzentrifugiert, der Überstand verworfen und das Pellet in 10 ml einer 10 mM MgSO₄-Lösung resuspendiert. Im Anschluss wurden die Bakterien photometrisch mit 10 mM MgSO₄ auf eine OD₆₀₀ von 0,5 verdünnt.

Für die Titerbestimmung wurden zwei Verdünnungen (10⁻¹ und 10⁻²) der Phagenlösung mit SM-Puffer (5,8 g NaCl, 2,0 g MgSO₄, 50 ml 1 M Tris-HCl (pH 7,5), 5 ml 2%ige Gelatine mit deionisiertem H₂O ad 1 Liter aufgefüllt und autoklaviert) angefertigt. Zur Infektion wurde zu drei Ansätzen mit je 200 µl Wirtsbakterien (OD₆₀₀ von 0,5) jeweils 1 µl Phagenlösungen mit den Verdünnung 10⁰ (unverdünnt), 10⁻¹ und 10⁻² zugegeben und 15 Minuten bei 37°C im Wasserbad inkubiert, damit sich die Phagen an die Wirtsbakterien anlagern konnten. Zum Ausplattieren wurden zu jedem Ansatz 3 ml geschmolzener und auf etwa 50°C abgekühlter NZY Top-Agar (5 g NaCl, 2 g MgSO₄, 5 g Hefeextrakt und 10 g NZ Amin mit deionisiertem H₂O ad 1 Liter aufgefüllt, auf einen pH von 7,5 mit NaOH eingestellt und autoklaviert), 15 µl IPTG (0,5 M in H₂O) und 50 µl X-Gal (250 mg/ml in DMF) zugegeben und sofort auf einer Platte (Durchmesser: 9 cm) mit NZY-Agar (5 g NaCl, 2 g MgSO₄, 5 g Hefeextrakt, 10 g NZ Amin und 15 g Agar, mit deionisiertem H₂O ad 1 Liter aufgefüllt und autoklaviert) ausplattiert. Nach 12 Stunden Bebrüten bei 37°C waren weiße und blauwe Plaques erkennbar (siehe Abbildung 11, Kapitel 5.3). Nun konnte der Phagentiter durch Auszählen der „Plaque Forming Units“ (pfu) mit folgender Formel berechnet werden:

\[
\frac{\text{Anzahl der Plaques (pfu)} \times \text{Lösungsfaktor}}{\text{Ausplattiertes Volumen (in µl)}} \times 1000 \, \text{µl /ml}
\]
Methoden

4.8 Dot Blot Test

Der Dot Blot-Test erfolgte, um eine geeignete Konzentration der Antikörper für das Immunoscreening zu bestimmen. Weiterhin sollten unspezifische Bindungen des ersten Antikörpers an die Nitrozellulose und/oder an den zweiten Antikörper sowie Kreuzreaktionen mit *E. coli* erkannt werden. Der Dot Blot Test wurde nach der Anleitung des „PicoBlue Immunoscreening Kits“ (Stratagene, Heidelberg) durchgeführt. Als erster Antikörper dienten polyklonale Kaninchen Anti-*E. cuniculi* Serum-Immunglobuline (siehe Kapitel 4.3). Für den zweiten Antikörper wurden Peroxidase-konjugierte Schwein Anti-Kaninchen Immunglobuline (Firma Dako, Dänemark) verwendet.

Zur praktischen Durchführung wurden fünf Verdünnungen des Antigens (10⁻¹–10⁻⁵) in TBS („Tris Buffered Saline“: 20 mM Tris-HCl pH 7,5, 150 mM NaCl) erstellt, das zuvor mit 50 µl Triton-X 100, 50 µl 1 M Tris-HCl und 945 µl H₂O 5 Minuten in 100°C heißem Wasser inkubiert wurde. Des Weiteren wurden fünf Verdünnungen (10⁻¹-10⁻⁵) in Blockungslösung [1% fötales Kälberserum (FKS) in TBS] des 1. Antikörpers und drei Verdünnungen (10⁻¹-10⁻³) in Blockungslösung des *E. coli*-Phagen-Lysats (10 mg/ml in 10 mM Tris-HCl, pH 7,0) erstellt. Aus Nitrocellulosefiltern wurden 6 Streifen (ca. 2 x 7 cm) ausgeschnitten und mit einem Bleistift 12 Quadrate eingezeichnet. Auf fünf Nitrocellulosestreifen wurde in die Quadrate der obersten Reihe je 1 µl des lysierten Antigens in den aufsteigenden Konzentrationen (10⁻⁰-10⁻⁵) aufgetragen, in die Reihe darunter je 1 µl der vier unterschiedlichen Konzentrationen des *E. coli*-Phagen-Lysates. Auf dem sechsten Streifen wurde allein die Konzentration des ersten Antikörpers aufgetragen. Nach dem Trocknen an der Luft wurden alle 6 Streifen in 25 ml Blockungslösung für 1 Stunde inkubiert, um unspezifische Bindungen zu blockieren. Danach wurden alle Teststreifen dreimal in 25 ml TBST [Tris Buffered Saline mit Tween 20 (20 mM Tris-HCl pH 7,5, 150 mM NaCl, 0,05% Tween 20)] gewaschen. Es wurden fünf Verdünnungen des ersten Antikörpers (10⁻²-10⁻⁶) in Blockungslösung hergestellt, um danach in jeder Lösung je einen Streifen für 1,5 Stunden zu inkubieren. Der sechste Streifen wurde separat in einer Schale mit 25 ml TBST beiseite gestellt. Nach Ablauf dieser Zeit wurden alle 6 Streifen dreimal in TBST für 5 Minuten gewaschen. Im Anschluss wurden die 6 Streifen in einer Lösung, die den zweiten Antikörper in einer Konzentration von
3 x 10^{-3} in Blockungslösung enthielt, für 1,5 Stunden inkubiert und danach viermal in TBST für 5 Minuten gewaschen. Um die Farbreaktion zu starten wurden in 21 ml TBS 12,5 µl H_2O_2 (30%) und 12,5 mg 4-Chloro-1-Naphtol, das in 4 ml eiskaltem (-20°C) Methanol (100%) aufgelöst wurde, gegeben. In diese Lösung wurden alle 6 Teststreifen 20 Minuten zum Entwickeln hineingelegt. Zum Beenden der Farbreaktion wurden die Teststreifen mehrmals mit demineralisiertem Wasser gewaschen und an der Luft getrocknet (siehe Abbildung 12, Kapitel 5.4).

4.9 Ausplattieren der Phagensuspension

Die gesamte verbliebene Phagensuspension wurde auf 2 x 250 µl Lösung aufgeteilt und zusammen mit jeweils 600 µl XL1-Blue MRF'-Zellen (OD_{600} von 0,5) vermischt. Nach zehnminütiger Inkubation bei 37°C, wurden die beiden Phagenlösungen mit etwa jeweils 15 ml NZY-Topagar auf 2 großen NZY-Platten (⌀ 15 cm) ausplattiert. Die Platten wurden etwa 8 Stunden bei 42°C bebrütet, bis erste Plaques sichtbar waren. Nun wurde auf jede Platte ein Nitrozellulosefilter, der zuvor in 10 mM IPTG-Lösung getränkt und an der Luft getrocknet worden war, aufgelegt. Das IPTG dient als Indikator und erhöht dadurch die Proteinexpression in den Bakterien.

Methoden

4.10 Immunoscreening

Abb. 9: Foto von entwickelten Filtern nach dem Immunoscreening.
4.11 Ausstechen und Lagerung der positiven Plaques

In jedes Gefäß, das einen positiven Plaque enthielt, wurden 500 µl SM-Puffer und 20 µl Chloroform pipettiert, um alle Wirtszellen zu töten und die Phagen zu suspendieren und lagerungsfähig zu machen. Die Phagen wurden anschließend im Kühlschrank bei 4°C gelagert. Bevor man mit den Phagen weiterarbeiten konnte, mussten sie mindestens 1 Nacht im Kühlschrank gelagert werden, damit die Phagen aus dem Agar in den SM-Puffer diffundieren konnten.

4.12 Vereinzeln der positiven Phagen

Um die optimale Verdünnung der Phagensuspensionen zu bestimmen, wurde stellvertretend von drei zufällig ausgewählten Suspensionen jeweils eine Verdünnungsreihe in SM-Puffer (10^{-2} - 10^{-6}) angefertigt und diese auf jeweils 5 kleinen NZY-Agarplatten mit 200 µl NZY-Topagar ausplattiert. Nach 8 Stunden Bebrüten wurde die jeweils beste Platte, nämlich dort, wo die Plaques so vereinzelt lagen, dass sie sicher einzeln ausgestochen werden konnten, für das Immunoscreening ausgewählt. Das Ausplattieren, Immunoscreening und Ausstechen lief wie oben beschrieben ab. Die restlichen Phagensuspensionen wurden nur noch in der zuvor als optimale Verdünnung bestimmten Konzentration ausplattiert (siehe Abschnitt 5.5). Insgesamt mussten alle Phagensuspensionen solange erneut ausplattiert und vereinzelt werden, bis entweder alle Plaques positiv waren oder aber sich ein ausgestochener Plaque als negativ herausstellte. Die gewonnenen isolierten
positiven Phagen wurden wie oben beschrieben ausgestochen und in 500 µl SM-Puffer mit 20 µl Chloroform haltbar gemacht.

4.13 In vivo-Exzision und Rezirkulation der ausgewählten geklonten Inserts

Zur Durchführung wurde am Abend vor der geplanten in vivo-Exzision jeweils von einem Drei-Ösen-Ausstrich von XL1-Blue MRF’- und XLOLR-Zellen auf LB-Tet-Agar (15 mg Tetrazyklin in 1 Liter LB Agar) eine Kolonie gepickt und jeweils in 50 ml LB-Medium mit Supplementen (500 µl 1 M MgSO_4 und 500 µl 20%ige Maltose) angeimpft und über Nacht bei 30°C bebrütet. Am nächsten Morgen wurden die beiden Übernachtkulturen jeweils bei 1000 x g für 15 Minuten zentrifugiert. Der Überstand wurde abdekantiert und die beiden Pellets mit je 10 ml 10 mM autoklaviertem MgSO_4 resuspendiert und auf eine OD_{600} von 1,0 verdünnt.

Die Phagensuspensionen wurden kurz anzentrifugiert, damit sich das Chloroform am Boden abtrennen konnte. Danach wurden pro LB-Tet-Agarplatte in ein 15 ml Zentrifugiergefäß 250 µl Phagensuspension, 200 µl XL1-Blue-MRF’ Zellen mit einer OD_{600} von 1,0 und 1 µl „ExAssist“ Helfer-Phagen pipettiert. Damit sich die Phagen an die Zellen anheften konnten, wurden sie für 15 Minuten bei 37°C ins Wasserbad gestellt. In jede Lösung wurde nun 3 ml LB-Medium mit Supplementen (30µl 1 M MgSO_4 und 30 µl 20%ige Maltose) hinzugegeben und für 3 Stunden bei 37°C unter Schütteln bebrütet. Nach dieser Zeit wurden die Lösungen im Wasserbad für 20 Minuten auf 70°C erhitzt, um die Lamda-Phagen-Partikel zu denaturieren und die Zellen zu lysieren. Danach wurden die Lösungen bei 1000 x g für 15 Minuten zentrifugiert, um die Zellreste abzuzentrifugieren. Im Überstand waren jetzt die ausgeschnittenen pBK-CMV Phagemide als fadenförmige Phagen-Partikel gepackt.

4.14 Plasmid „Miniprep“ mit E.Z.N.A. Plasmid Miniprep Kit I

Um eine ausreichende Menge eines gewünschten Plasmids aus einer Kolonie zu bekommen, wurde diese zuerst in einer Übernachtkultur vermehrt. Dazu wurde pro E.coli-Kolonie mit dem gewünschten Plasmid in einen 10 ml fassenden Glaskolben 5 ml LB-Medium, das 50 µg/ml Kanamycin enthielt, gefüllt. Nun wurde eine Kolonie mit einer Impfösse gepickt, damit das Nährmedium angeimpft und für 16 Stunden bei 37°C auf einem Schüttler inkubiert. Am nächsten Morgen wurden 1,5 ml der Übernachtkultur entnommen, in einem 1,5 ml Eppendorf-Gefäß 1 Minute bei 12000 x g zentrifugiert und der Überstand verworfen. Dieser Vorgang wurde noch einmal wiederholt, so dass insgesamt pro Kultur 3 ml Nährmedium verwendet wurden.

4.15 Restriktionsenzymverdau mit EcoRI und XhoI

Um die Länge des DNA-Inserts zu bestimmen, wurden die gewonnenen Plasmide mit EcoRI und XhoI verdaut. Dazu wurden pro Ansatz 1,2 µl 10x Puffer, 0,5 µl EcoRI, 0,5 µl XhoI und 9,8 µl Plasmid-DNA eingesetzt. Die Lösungen wurden 90 Minuten bei 37°C im Wasserbad inkubiert und danach zusammen mit 1,5 µl Agarosepuffer auf ein 1,3%iges Agarose-Gel mit 1 µl einer 1%igen Ethidiumbromidlösung aufgetragen.

4.16 Sequenzieren der Plasmid-DNA

Um die cDNA-Sequenzen der Inserts zu bestimmen, wurde die Plasmid-DNA durch die Firma MWG-Biotech (Ebersberg) sequenziert. Zum Versand wurde die DNA gefällt. Dazu wurden die verbliebenen 50 µl Plasmid-DNA-Lösung pro gewünschte Sequenzierung auf zwei Mikrozentrifugengefäße gleichmäßig verteilt und mit 10 mM TrisHCl (pH = 8) ad 100 µl aufgefüllt. In jedes Gefäß wurden 12,5 µl 10 M Ammonium-Acetat und 100 µl Ethanol (98%) gegeben und die DNA 2 Stunden bei -20°C gefällt. Nach Ablauf dieser Zeit wurden die Gefäße für 10 Minuten bei höchster Geschwindigkeit zentrifugiert, abdekantiert und die Pellets mit 200 µl 70%igem Ethanol gewaschen. Die Gefäße wurden erneut für 5 Minuten zentrifugiert, der Überstand abgenommen und die Pellets getrocknet.

Das Plasmid ist mit Schnittstellen für verschiedene Primersequenzen ausgestattet, u.a. für T3 (Upstream-Primer) und T7 (Downstream-Primer). Die ausgewählten Klone wurden mit diesen Primer von beiden Seiten sequenziert. Sieben Inserts waren zu groß, um auf diese Weise vollständig sequenziert werden zu können. Deswegen wurde ein neuer Primer SWP-3 (Upstream-Primer) anhand der bereits vorliegenden Sequenz konstruiert, mit dem nun auch das Mittelstück sequenziert werden konnte.
Methoden

Sequenzierprimer:

T3 (Upstream): 5’-AAT TAA CCC TCA CTA AAG GG-3’
T7 (Downstream): 5’-TAA TAC GAC TCA CTA TAG GG-3’
SWP-3 (Upstream): 5’-GGA YCA GTA CAA GAA GGC-3’
5 Ergebnisse

5.1 Kultur von Encephalitozoon cuniculi und mRNA-Isolierung

Für die mRNA-Isolierung konnten 5×10^8 freie E. cuniculi-Sporen und die verbliebenen, sporenhaltigen MRC-5-Fibroblasten geerntet werden. Nach der Reinigung der Gesamt-RNA und anschließenden Isolierung der mRNA konnte photometrisch ein mRNA-Gehalt von 4,25 µg (gelöst in 727,5 Elutions-Puffer) gemessen werden. Somit wurde das für das cDNA-Synthese Kit empfohlene Optimum von 5 µg mRNA nicht ganz erreicht.

5.2 cDNA-Quantifizierung

Da das ZAP Express cDNA-Synthese-Kit für eine Menge von 100 ng cDNA pro Ansatz ausgelegt ist, musste die Menge der aus der mRNA resvers transkribierten cDNA quantifiziert werden. Dazu wurde ein Aliquot der zu bestimmenden cDNA-Lösung in die Mitte eines mit Etidiumbromid versetzten Agarosegels aufgetragen und kreisförmig mit 7 verschiedenen Lösungen bekannter DNA-Mengen umgeben und die Fluoreszenzintensitäten der Referenz-DNA-Lösungen mit der der zu bestimmenden cDNA-Lösung verglichen (siehe Abbildung 10).

Abb. 10: cDNA-Quantifizierung
Ergebnisse

Eine vergleichbare Intensität der zu bestimmenden cDNA-Lösung wurde annähernd mit der 100 ng/µl enthaltenden Referenz-DNA-Lösung ermittelt. In dieser Konzentration konnte die cDNA-Lösung für die weiteren Schritte unverdünnt eingesetzt werden.

5.3 Ligation in Phagen zur rekombinanten Proteinexpression

\[
\frac{75 \text{ pfu}}{200 \mu l} \times 1000 \mu l/ml = 375 \text{ pfu/ml}
\]

Abb. 11: NZY-Platte mit blauen und weißen Plaques zur Bestimmung der „Plaque Forming Units“.
5.4 Dot Blot Test

Der Dot Blot-Test erfolgte, um eine geeignete Verdünnung für den 1. Antikörper (polyklonale Kaninchen Anti-\textit{E. cuniculi} Serum-Immunglobuline) für das Immunoscreening ausfindig zu machen. So musste aufgezeigt werden, inwieweit der Antikörper an die Nitrozellulose bindet und inwieweit er mit dem 2. Antikörper (Peroxidase-konjugierte Schwein Anti-Kaninchen Immunglobuline) reagiert. Weiter sollten eventuelle Kreuzreaktionen mit \textit{E. coli}-Antigenen erkannt werden. Dazu wurden verschiedene Verdünnungen des lysierten Antigens (10^0 [unverdünnt], 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} und 10^{-5}) und eines \textit{E. coli}-Phagenlysates (10^0 [unverdünnt], 10^{-1}, 10^{-2} und 10^{-3}) mit dem ersten Antikörper in den Verdünnungen 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} und 10^{-6} inkubiert. Auf einem sechsten Streifen wurde der 1. Antikörper alleine in den Verdünnungsstufen 10^0 (unverdünnt), 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} und 10^{-5} aufgetragen. Anschließend wurden alle 6 Streifen mit dem 2. Antikörper mit der vom Hersteller empfohlenen Verdünnung von 1:3000 inkubiert (siehe Abbildung 12).

\textbf{Abb. 12}: Dot Blot Test: In der oberen Reihe der Teststreifen Nr. 1-5 sind jeweils 1 µl des lysierten Antigens in den Verdünnungsstufen 10^0, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} und 10^{-5}, in der unteren Reihe jeweils 1 µl des \textit{E. coli}-Phagen-Lysates in den Verdünnungsstufen 10^0, 10^{-1}, 10^{-2} und 10^{-3} aufgetragen. Auf dem sechsten Streifen ist je 1 µl des ersten Antikörpers (polyklonale Kaninchen Anti-\textit{E. cuniculi} Serum-Immunglobuline) in den Verdünnungsstufen 10^0, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} und 10^{-5} alleine aufgetragen. Die ersten 5 Streifen wurden in verdünnten Antiseren mit dem 1. Antikörper in den Verdünnungsstufen 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} und 10^{-6} inkubiert.

5.5 Immunoscreening

Nach Ausplattierung der cDNA auf zwei NZY-Platten zusammen mit XL1-Blue MRF'-Zellen, Bebrütung und Auflegen eines mit IPTG getränkten Nitrozellulosefilters auf die sichtbar werdenden Plaques, waren nach der Entwicklung des Nitrocellulosefilters insgesamt 33 Kolonien zu erkennen, die ein immunogenes Protein exprimiert hatten. Diese 33 Kolonien wurden den Plaques auf den Agarböden zugeordnet. Die Plaques wurden durch Ausstechen isoliert und mit den Nummern 1 – 33 bezeichnet (siehe Tabelle 3)

5.6 **In vivo-Exzision und Charakterisierung der cDNA-Inserts**

Zur einfachen Weiterklonierung der Inserts wurden alle 31 isolierten Phagen *in vivo*-exzidiert, die Inserts zu Plasmiden rezirkularisiert und in *E. coli*-Zellen amplifiziert. Nach Exzision der cDNA-Inserts mit den Restriktionsenzymen EcoRI und Xhol konnten gelelektrophoretisch cDNA-Längen zwischen 0,45 und 1,1 kb ermittelt werden (siehe Abbildung 14 und Tabelle 3).

Abb. 13: Nitrozellulosefilter mit Klonen, die eine positive Farbreaktion zeigen
Ergebnisse

Tab. 3: Übersicht über die isolierten Klone (grau unterlegt: ausgewählte Klone für vollständige Sequenzierungen)

<table>
<thead>
<tr>
<th>Plaque-Nr.</th>
<th>Klon-Nr.:</th>
<th>Insert (kb)</th>
<th>Sequenzierprimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>0,6 + 0,35 = 0,95</td>
<td>T3, T7</td>
</tr>
<tr>
<td>6</td>
<td>6.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3, T7, SWP-3</td>
</tr>
<tr>
<td>7</td>
<td>7.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>0,9 + 0,7 = 1,6</td>
<td>T3, T7, SWP-3</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>0,9 + 0,6 = 1,5</td>
<td>T3, T7, SWP-3</td>
</tr>
<tr>
<td>10</td>
<td>10.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3, T7, SWP-3</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td>11</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>12.2</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td>13</td>
<td>13.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td>14</td>
<td>14.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>15</td>
<td>15.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3, T7, SWP-3</td>
</tr>
<tr>
<td>16</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td>19</td>
<td>19.1</td>
<td>1,1 + 0,6 + 0,3 = 2,1</td>
<td>T3, T7</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>0,6 + 0,35 = 0,95</td>
<td>T3, T3, T7</td>
</tr>
<tr>
<td>20</td>
<td>20.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>20.2</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>21</td>
<td>21.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>21.2</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>22</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>23.2</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td>24</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>28.2</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td>29</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30.1</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>30.2</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3</td>
</tr>
<tr>
<td>31</td>
<td>31.1</td>
<td>1,1 + 0,45 = 1,55</td>
<td>T3, T7, SWP-3</td>
</tr>
<tr>
<td></td>
<td>31.2</td>
<td>1,1 + 0,6 = 1,7</td>
<td>T3, T7, SWP-3</td>
</tr>
<tr>
<td>32</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Kein Expressionsprodukt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.7 Analyse der cDNA-Inserts

5.8 Alignment der cDNA-Sequenzen mit dem SWP1-Gen

Mit den 10 vollständig sequenzierten Klonen und der Genbanksequenz des „Spore Wall Proteins 1“ wurde am Computer mit der Software „DNA-Man“ ein Alignment durchgeführt (siehe Abbildung 15). Abgesehen von einem Abweichen von der Anfangssequenz (GAATTC-GGCACGAGG), was sich durch Ligationsartefakte der Adapter-Oligonukleotide erklären lässt (siehe Kapitel 4.5.4), konnte bei drei Klonen (Nummer 6.1, 10.1 und 31.2) eine vollständige Übereinstimmung mit der in der
Ergebnisse


```
SWP1       AATTAAGATGATGAAGCTTTCACTGCTAGGTCTAGTAAGCTTCAGTGCAGT  55
Klon 5.1 ....................................................... 0
Klon 6.1 ................................................................. 52
Klon 9.1 ................................................................. 0
Klon 9.2 ................................................................. 0
Klon 10.1 g-a-tcg-cacga-g---------------------------------------- 55
Klon 15.1 .gaattc-gcacgagg--------------------------------------- 54
Klon 19.1 ................................................................. 0
Klon 19.2 ................................................................. 0
Klon 31.1 ................................................................. 35
Klon 31.2 ................................................................. 35

SWP1       GCTTGCAAGGGAGAAGAGGGGAATTGCAATGCTGCCCTGAGTACCCGAGTACCAGA 110
Klon 5.1 ................................................................. 0
Klon 6.1 ................................................................. 107
Klon 9.1 ................................................................. 0
Klon 9.2 ................................................................. 0
Klon 10.1 ................................................................. 110
Klon 15.1 ................................................................. 109
Klon 19.1 ................................................................. 0
Klon 19.2 ................................................................. 0
Klon 31.1 ................................................................. 90
Klon 31.2 ................................................................. 90
```
Ergebnisse

<table>
<thead>
<tr>
<th>SNP1</th>
<th>Sequence</th>
<th>Klon 5.1</th>
<th>Klon 6.1</th>
<th>Klon 9.1</th>
<th>Klon 9.2</th>
<th>Klon 10.1</th>
<th>Klon 15.1</th>
<th>Klon 19.1</th>
<th>Klon 19.2</th>
<th>Klon 31.1</th>
<th>Klon 31.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP1</td>
<td>TACCTCGAAAAAACAATCTTTTGGAGGGTCTCAAAGACATGGAGAAAGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP1</td>
<td>TCTGCGTGACGGAATGACGTAAGAGGATCTCGATGGAATCCAAGACTCATGCGACTCATGCATTCTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP1</td>
<td>TTCCCTCTCTTGACTCGAAGAAAGGAGGACAAGAACAGACATGAGAATATGCCTCCTCCCTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP1</td>
<td>AGCTGTCTTATGTTAGGCTGACTCCAGAGCAGTAGATTCAAGACCTATTTCATGCGATG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.gaattcgg-acgagg-- 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.gaattcgg-acgagg-- 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP1</td>
<td>TCTCCCTGGAATGACGCTCCCATGCGCCGGACTGACTCAGATTCAAGACTGCAAAGACATGCCCTGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 10.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>384</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 19.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klon 31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse

<table>
<thead>
<tr>
<th>SWP1</th>
<th>GCTGAGAACACCTATTATCAACATGGGAGAAAGGATATTTGAGTTCCTTAAGAAC</th>
<th>440</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>...</td>
<td>437</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>...</td>
<td>133</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>...</td>
<td>133</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>...</td>
<td>440</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>...</td>
<td>439</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>420</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>420</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWP1</th>
<th>TACGAGGATCAGTACAAGAAGGCCGTCGTTCTTTTCCTGACCAGGATTCTCT</th>
<th>495</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>...</td>
<td>492</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>...</td>
<td>188</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>...</td>
<td>188</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>...</td>
<td>495</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>...</td>
<td>494</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>475</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>475</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWP1</th>
<th>AGATTGGAAGATGTTGGTCTCCCTCTTTACCCAAGTGCAGATTACGCCCTGTAATTGA</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>...</td>
<td>547</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>...</td>
<td>243</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>...</td>
<td>243</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>...</td>
<td>550</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>...</td>
<td>549</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>530</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWP1</th>
<th>ACAGCTTGAGACGCTCGGGGTTACTGTTCCGTCCAACATGGCAGATCTCATCGCA</th>
<th>605</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>...</td>
<td>602</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>...</td>
<td>298</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>...</td>
<td>298</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>...</td>
<td>605</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>...</td>
<td>604</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>585</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWP1</th>
<th>GCCCTGATGCTGCTGAGGGGACCTCACTTGCAGGAACATGCTGCTATGCAC</th>
<th>660</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>...</td>
<td>657</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>...</td>
<td>353</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>...</td>
<td>353</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>...</td>
<td>660</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>...</td>
<td>659</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>..gaattccg-acgag...........</td>
<td>26</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>..gaattccg-acgag...........</td>
<td>26</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>640</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>640</td>
</tr>
<tr>
<td>Klon</td>
<td>SWP1 AAGAGGTATAGCAGCAGACTGCTACCAACACAATGTGCTATCTGGATCTTC</td>
<td>715</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>5.1</td>
<td>... a--tc</td>
<td>6</td>
</tr>
<tr>
<td>6.1</td>
<td>...</td>
<td>712</td>
</tr>
<tr>
<td>9.1</td>
<td>...</td>
<td>408</td>
</tr>
<tr>
<td>9.2</td>
<td>...</td>
<td>408</td>
</tr>
<tr>
<td>10.1</td>
<td>...</td>
<td>715</td>
</tr>
<tr>
<td>15.1</td>
<td>...</td>
<td>714</td>
</tr>
<tr>
<td>19.1</td>
<td>...</td>
<td>81</td>
</tr>
<tr>
<td>19.2</td>
<td>...</td>
<td>81</td>
</tr>
<tr>
<td>31.1</td>
<td>...</td>
<td>695</td>
</tr>
<tr>
<td>31.2</td>
<td>...</td>
<td>695</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klon</th>
<th>SWP1 CATGAGCCTCGTCACTAGGACTCTTTGCCAGCCAGGTCACACATTCAGTC</th>
<th>770</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>ggcac-agg- ..</td>
<td>61</td>
</tr>
<tr>
<td>6.1</td>
<td>...</td>
<td>767</td>
</tr>
<tr>
<td>9.1</td>
<td>...</td>
<td>463</td>
</tr>
<tr>
<td>9.2</td>
<td>...</td>
<td>463</td>
</tr>
<tr>
<td>10.1</td>
<td>...</td>
<td>770</td>
</tr>
<tr>
<td>15.1</td>
<td>...</td>
<td>769</td>
</tr>
<tr>
<td>19.1</td>
<td>...</td>
<td>136</td>
</tr>
<tr>
<td>19.2</td>
<td>...</td>
<td>136</td>
</tr>
<tr>
<td>31.1</td>
<td>...</td>
<td>750</td>
</tr>
<tr>
<td>31.2</td>
<td>...</td>
<td>750</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klon</th>
<th>SWP1 AATACACAGCCAATAATTACCATCGCAGGAAATGATCTGTTTACCAAGCATGG</th>
<th>825</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>...</td>
<td>116</td>
</tr>
<tr>
<td>6.1</td>
<td>...</td>
<td>822</td>
</tr>
<tr>
<td>9.1</td>
<td>...</td>
<td>518</td>
</tr>
<tr>
<td>9.2</td>
<td>...</td>
<td>518</td>
</tr>
<tr>
<td>10.1</td>
<td>...</td>
<td>825</td>
</tr>
<tr>
<td>15.1</td>
<td>...</td>
<td>824</td>
</tr>
<tr>
<td>19.1</td>
<td>...</td>
<td>191</td>
</tr>
<tr>
<td>19.2</td>
<td>...</td>
<td>191</td>
</tr>
<tr>
<td>31.1</td>
<td>...</td>
<td>805</td>
</tr>
<tr>
<td>31.2</td>
<td>...</td>
<td>805</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klon</th>
<th>SWP1 CCGTGTTCCAGATTACAGGACTCTACCGCCAGCTATTACTGCACTCAC</th>
<th>880</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>...</td>
<td>171</td>
</tr>
<tr>
<td>6.1</td>
<td>...</td>
<td>877</td>
</tr>
<tr>
<td>9.1</td>
<td>...</td>
<td>573</td>
</tr>
<tr>
<td>9.2</td>
<td>...</td>
<td>573</td>
</tr>
<tr>
<td>10.1</td>
<td>...</td>
<td>880</td>
</tr>
<tr>
<td>15.1</td>
<td>...</td>
<td>879</td>
</tr>
<tr>
<td>19.1</td>
<td>...</td>
<td>246</td>
</tr>
<tr>
<td>19.2</td>
<td>...</td>
<td>246</td>
</tr>
<tr>
<td>31.1</td>
<td>...</td>
<td>860</td>
</tr>
<tr>
<td>31.2</td>
<td>...</td>
<td>860</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klon</th>
<th>SWP1 TAATGCTCTTCAAGCAAAGCAAAGCAAATTTTCGTTACATTCTCCACTAAACTCAACAC</th>
<th>935</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>...</td>
<td>226</td>
</tr>
<tr>
<td>6.1</td>
<td>...</td>
<td>932</td>
</tr>
<tr>
<td>9.1</td>
<td>...</td>
<td>628</td>
</tr>
<tr>
<td>9.2</td>
<td>...</td>
<td>628</td>
</tr>
<tr>
<td>10.1</td>
<td>...</td>
<td>935</td>
</tr>
<tr>
<td>15.1</td>
<td>...</td>
<td>934</td>
</tr>
<tr>
<td>19.1</td>
<td>...</td>
<td>301</td>
</tr>
<tr>
<td>19.2</td>
<td>...</td>
<td>301</td>
</tr>
<tr>
<td>31.1</td>
<td>...</td>
<td>915</td>
</tr>
<tr>
<td>31.2</td>
<td>...</td>
<td>915</td>
</tr>
<tr>
<td>clone</td>
<td>sequence</td>
<td>score</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>5.1</td>
<td>ACCAACCTACAGACTGATGTTCAAAATGCTTTACAGCAGCTGATTAGGCGGCTTA</td>
<td>990</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td>987</td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td>683</td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td>683</td>
</tr>
<tr>
<td>15.1</td>
<td></td>
<td>990</td>
</tr>
<tr>
<td>19.1</td>
<td></td>
<td>989</td>
</tr>
<tr>
<td>19.2</td>
<td></td>
<td>356</td>
</tr>
<tr>
<td>19.2</td>
<td></td>
<td>356</td>
</tr>
<tr>
<td>31.1</td>
<td></td>
<td>970</td>
</tr>
<tr>
<td>31.2</td>
<td></td>
<td>970</td>
</tr>
<tr>
<td>5.1</td>
<td>CAACACTGACAAGTACCACATCAACAGAATTCACACAGTTTGCAAACTCTGAAAT</td>
<td>1045</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>336</td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td>738</td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td>738</td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td>1042</td>
</tr>
<tr>
<td>15.1</td>
<td></td>
<td>738</td>
</tr>
<tr>
<td>19.1</td>
<td></td>
<td>411</td>
</tr>
<tr>
<td>19.2</td>
<td></td>
<td>411</td>
</tr>
<tr>
<td>31.1</td>
<td></td>
<td>1025</td>
</tr>
<tr>
<td>31.2</td>
<td></td>
<td>1025</td>
</tr>
<tr>
<td>5.1</td>
<td>TGGAGCACTTACAGGAGAATCTTTGGATCAAGCGGAAGCGGATCAGGCGGGTCATCTG</td>
<td>1100</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>391</td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td>1097</td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td>793</td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td>793</td>
</tr>
<tr>
<td>15.1</td>
<td></td>
<td>1045</td>
</tr>
<tr>
<td>19.1</td>
<td></td>
<td>1044</td>
</tr>
<tr>
<td>19.2</td>
<td></td>
<td>466</td>
</tr>
<tr>
<td>31.1</td>
<td></td>
<td>466</td>
</tr>
<tr>
<td>31.2</td>
<td></td>
<td>1059</td>
</tr>
<tr>
<td>5.1</td>
<td>TCTGGTGGATCAAGTGGAAGCGGATCAGGCGGGTCATCTGGGATCAAGCGGAAGCGGATCAGGCGGGTCATCTG</td>
<td>1155</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>446</td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td>1152</td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td>848</td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td>848</td>
</tr>
<tr>
<td>15.1</td>
<td></td>
<td>1155</td>
</tr>
<tr>
<td>19.1</td>
<td></td>
<td>1078</td>
</tr>
<tr>
<td>19.2</td>
<td></td>
<td>521</td>
</tr>
<tr>
<td>31.1</td>
<td></td>
<td>521</td>
</tr>
<tr>
<td>31.2</td>
<td></td>
<td>1059</td>
</tr>
<tr>
<td>5.1</td>
<td>GTGGATCAAGTGGAAGCGGATCAGGCGGGTCATCTGGGATTGCAAGTGGAAGCGGATCAGGCGGGTCATTG</td>
<td>1210</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>501</td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td>1207</td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td>903</td>
</tr>
<tr>
<td>10.1</td>
<td></td>
<td>903</td>
</tr>
<tr>
<td>15.1</td>
<td></td>
<td>1210</td>
</tr>
<tr>
<td>19.1</td>
<td></td>
<td>1107</td>
</tr>
<tr>
<td>19.2</td>
<td></td>
<td>576</td>
</tr>
<tr>
<td>31.1</td>
<td></td>
<td>576</td>
</tr>
<tr>
<td>31.2</td>
<td></td>
<td>1059</td>
</tr>
<tr>
<td>5.1</td>
<td>GTGGATCAAGTGGAAGCGGATCAGGCGGGTCATCTGGGATCAAGTGGAAGCGGATCAGGCGGGTCATTG</td>
<td>1190</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>1190</td>
</tr>
<tr>
<td>SNP1</td>
<td>ATCAAGTGGAAGCGGATCAGATGGAAGCGGATCAGGCGGGTCATCTGGTGGATCA</td>
<td>1265</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Klon 5.1</td>
<td>---</td>
<td>556</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>---</td>
<td>1262</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>---</td>
<td>958</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>---</td>
<td>958</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>--</td>
<td>1265</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>--</td>
<td>1162</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>--</td>
<td>631</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>--</td>
<td>631</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>1092</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>1245</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP1</th>
<th>AGTGGAAGCGGATCAGGAGGTGAATCTGGTGGATCTTCTTCATAATCAGAGCCAACCAT</th>
<th>1320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>--</td>
<td>611</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>--</td>
<td>1317</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>--</td>
<td>1013</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>--</td>
<td>1013</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>--</td>
<td>1320</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>--</td>
<td>1217</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>--</td>
<td>686</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>--</td>
<td>686</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>--</td>
<td>1147</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>--</td>
<td>1300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP1</th>
<th>GAAACGGGATCGAGGGTAATCGTGGATCTTCTTCATAATCAGAGCCAACCAT</th>
<th>1375</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>---</td>
<td>666</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>---</td>
<td>1372</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>---</td>
<td>1068</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>---</td>
<td>1068</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>--</td>
<td>1375</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>--</td>
<td>1272</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>--</td>
<td>741</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>--</td>
<td>741</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>1202</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>1355</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP1</th>
<th>CCTAATGTGGATCCAAATCTAAATCTCATCCATAAGGACAGGGAAATACCAACAA</th>
<th>1430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>..</td>
<td>721</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>..</td>
<td>1427</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>..</td>
<td>1123</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>..</td>
<td>1123</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>..</td>
<td>1430</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>..</td>
<td>1327</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>..</td>
<td>796</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>..</td>
<td>796</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>1257</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>1410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP1</th>
<th>AGGGGCAAAGAATCTCGACAGGTCTTGTGGATTAGATGTACGACCCACATGCTATTT</th>
<th>1485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon 5.1</td>
<td>..</td>
<td>776</td>
</tr>
<tr>
<td>Klon 6.1</td>
<td>..</td>
<td>1482</td>
</tr>
<tr>
<td>Klon 9.1</td>
<td>..</td>
<td>1178</td>
</tr>
<tr>
<td>Klon 9.2</td>
<td>..</td>
<td>1178</td>
</tr>
<tr>
<td>Klon 10.1</td>
<td>..</td>
<td>1485</td>
</tr>
<tr>
<td>Klon 15.1</td>
<td>..</td>
<td>1382</td>
</tr>
<tr>
<td>Klon 19.1</td>
<td>..</td>
<td>851</td>
</tr>
<tr>
<td>Klon 19.2</td>
<td>..</td>
<td>851</td>
</tr>
<tr>
<td>Klon 31.1</td>
<td>...</td>
<td>1312</td>
</tr>
<tr>
<td>Klon 31.2</td>
<td>...</td>
<td>1465</td>
</tr>
<tr>
<td>Klon</td>
<td>SWP1</td>
<td>1540</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>------</td>
</tr>
<tr>
<td>5.1</td>
<td>TCGTTGGCGTCAGTTTTTTTCACTAGGCTGTAAATAAAAACCTGATTCCAAAAAAA</td>
<td>831</td>
</tr>
<tr>
<td>6.1</td>
<td>---------------------------------</td>
<td>1537</td>
</tr>
<tr>
<td>9.1</td>
<td>---------------------------------</td>
<td>1233</td>
</tr>
<tr>
<td>9.2</td>
<td>---------------------------------</td>
<td>1233</td>
</tr>
<tr>
<td>10.1</td>
<td>---------------------------------</td>
<td>1540</td>
</tr>
<tr>
<td>15.1</td>
<td>-------c--</td>
<td>1437</td>
</tr>
<tr>
<td>19.1</td>
<td>---------------------------------</td>
<td>906</td>
</tr>
<tr>
<td>19.2</td>
<td>---------------------------------</td>
<td>906</td>
</tr>
<tr>
<td>31.1</td>
<td>---------------------------------</td>
<td>1367</td>
</tr>
<tr>
<td>31.2</td>
<td>---------------------------------</td>
<td>1520</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klon</th>
<th>SWP1</th>
<th>1546</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>------aaaaaaaaaaaaaaaaactcgag............</td>
<td>860</td>
</tr>
<tr>
<td>6.1</td>
<td>------aaaaaaaaaaaaaaaaactcgag............</td>
<td>1565</td>
</tr>
<tr>
<td>9.1</td>
<td>------aaaaaaaaaaaaaaaaaaacgctcgag....</td>
<td>1271</td>
</tr>
<tr>
<td>9.2</td>
<td>------aaaaaaaaaaaaaaaaaaacgctcgag....</td>
<td>1271</td>
</tr>
<tr>
<td>10.1</td>
<td>------aaaaaaaaaaaaaaaaacgctcgag....</td>
<td>1566</td>
</tr>
<tr>
<td>15.1</td>
<td>------aaaaaaaaaaaaaaaaaaacgctcgag....</td>
<td>1469</td>
</tr>
<tr>
<td>19.1</td>
<td>------aaaaaaaaaaaaaaaaaaacgctcgag....</td>
<td>940</td>
</tr>
<tr>
<td>19.2</td>
<td>------aaaaaaaaaaaaaaaaaaacgctcgag....</td>
<td>939</td>
</tr>
<tr>
<td>31.1</td>
<td>------aaaaaaaaaaaaaaaaaaacgctcgag....</td>
<td>1404</td>
</tr>
<tr>
<td>31.2</td>
<td>------aaaaaaaaaaaaaaaaaaacgctcgag....</td>
<td>1558</td>
</tr>
</tbody>
</table>

Abb. 15: Vollständiges Alignment der 10 ausgewählten Klone mit SWP1. „-“ bezeichnet eine zur ersten Zeile identische Base und „.” steht für eine nicht vorhandene Base (Deletion).
6 Diskussion

6.1 Rationale des experimentellen Designs

6.1.1 Stand der Technik

Leider konnte für Mikrosporidien bis heute kein für die Routine-Diagnostik funktionierender ELISA etabliert werden, mit dem Stuhl eines mit Mikrosporidien infizierten Patienten untersucht werden kann. Hintergrund ist die Wahl eines geeigneten Antigens. Zwar fanden in den letzten Jahren zahlreiche Untersuchungen statt, die Identifizierungen eines passenden Antigens für die Routinediagnostik blieb jedoch aus. So wurden in verschiedenen Forschungsarbeiten monoklonale und polyklonale Antikörper erzeugt, die aus dem Serum von mit Mikropsoridien-Sporen infizierten Kaninchen oder Mäusen gewonnen wurden (Zierdt et al., 1993; Aldras et al., 1994; Enriquez et al., 1997; Mo et al., 2004; van Gool et al., 2004). Als Antigen
Diskussion

für die Immunisierung dienten jedoch immer Sporen, also die Gesamtheit aller Antigene der Zelle. Dadurch lässt sich naheliegend auch die mangelnde Spezifität erklären, die die Zuverlässigkeit der Nachweise beeinträchtigten. So wurden größtenteils die Mikrosoridien schlecht erkannt oder es wurden Kreuzreaktionen, beispielsweise mit Hefepilzen, Streptokokken und einigen gramnegativen Bakterien, beobachtet (Zierdt et al., 1993).

Mit dieser Arbeit sollte zum ersten Mal das Spektrum immunogener Proteine bei einem Mikrosoridium erforscht werden, um so ein Panel von Antigenen definieren zu können, mit dem dann spezifische mono- oder polyklonale Antikörper zur Entwicklung eines Koproantigen-ELISA erzeugt werden könnten.

6.1.2 Wahl des zu untersuchenden Mikrosoridiums

6.2 Spektrum immunogener Proteine von *Encephalitozoon cuniculi*

Bis heute konnten mehrere Proteine aus der Sporenwand und aus dem Polfaden von *E. cuniculi* isoliert werden. So sind aktuell zwei Sporenwandproteine (SWP1 und SWP3) und 3 Polfadenproteine (PTP1, PTP2, PTP3) bekannt (Bohne et al., 2000; Delbac et al., 2001; Peuvel et al., 2002; Xu et al., 2006). Allerdings ist die Bedeutung dieser Proteine in der Immunabwehr bisher unklar. In der vorliegenden Arbeit sollten die immunogenen Proteine bei *E. cuniculi* identifiziert werden, um so ein Panel von Antigenen zu definieren, mit dem in weiteren Arbeiten spezifische mono- oder polyklonale Antikörper zur Entwicklung eines Koproantigen-ELISA erzeugt werden können.
Aus einer mit der aus *E. cuniculi*-Sporen isolierten mRNA erstellten Genexpressionsbank konnte nach Screenen mit Serum-Immunglobulininen von immunisierten Kaninchen 31 Klone isoliert werden, die immunogene Proteine bildeten. Ein überraschendes Ergebnis zeigte sich bei der Sequenzierung der Klone. Während zuvor die Arbeitshypothese bestand, dass verschiedene Proteine als Antigene für die Immunantwort eine Rolle spielen, stellte sich hier heraus, dass alle isolierten Klone für Teile der Proteinsequenz des „Spore Wall Protein 1“ (SWP1) kodierten und dieses Protein damit das immunologisch dominierende Antigen von *E. cuniculi* sein muss.

Diese Schlussfolgerung deckt sich mit den Beschreibungen eines Laborunfalls (van Gool et al., 2004), in der die Immunantwort eines immunkompetenten Laborarbeiters untersucht wurde, der sich bei der Arbeit mit einer *E. cuniculi*-Kultur im Auge infizierte und eine Konjunktivitis und Keratitis entwickelte. Bei dem Patienten wurde die Immunantwort in verschiedenen Zeitabständen nach Infektion serologisch kontrolliert (siehe Tabelle 4).

Tab. 4: IgG-Titerbestimmung gegen SWP1 und 3 Polfadenproteine (*PTP1, PTP2, PTP3*) aus dem Serum eines mit *E. cuniculi* infizierten Patienten im Zeitraum von 38 Monaten.

<table>
<thead>
<tr>
<th>Zeit in Monaten nach Infektion</th>
<th>E. cuniculi (type 1 strain)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sporenwand (SWP1)</td>
</tr>
<tr>
<td>1</td>
<td>1:40</td>
</tr>
<tr>
<td>20</td>
<td>1:320</td>
</tr>
<tr>
<td>32</td>
<td>1:160</td>
</tr>
<tr>
<td>38</td>
<td>1:160</td>
</tr>
</tbody>
</table>

So konnte im Serum des Patienten bereits 1 Monat nach Infektion ein IgG-Antikörper-Titer gegen SWP1 bestimmt werden, der im Verlauf weiter anstieg, nicht jedoch gegen die Polfadenproteine *PTP1, PTP2* und *PTP3*. Diese waren erst in später entnommenen Seren nachweisbar. Außerdem fiel die Immunantwort gegen die Polfadenproteine im Vergleich zu denen der Sporenwandproteine schwächer aus. Von großem Interesse wäre sicherlich der Verlauf des IgG-Titers gegenüber den
Diskussion

Sporenwand- und Polfadenproteinen in den ersten 6 Monaten nach Infektion gewesen. Leider stand der Patient in diesem Zeitraum für die Serologie nicht zur Verfügung.

6.3 Bestimmung der immunogenen Region

Von großem Interesse für eine spätere rekombinante Expresion ist die Lage der potentiell immunogenen Domäne(n) auf der Proteinsequenz von SWP1. Zu deren Bestimmung wurden diejenigen Klone näher untersucht, die Deletionen aufwiesen. Insgesamt wiesen nur 3 der 10 ausgewählten Klone eine vollständige Gensequenz von SWP1 auf, die restlichen 7 Klone kodierte nur für Teilabschnitte der Proteinsequenz. Die Gründe für die Häufigkeit der gefundenen Deletionsklone sind unklar.

Abb. 16: Schematische Darstellung der mittels Deletionsklone postulierten immunogenen Domäne. Während die vollständig schwarz gefärbten Pfeile eine vollständige Übereinstimmung mit der Proteinsequenz von SWP1 zeigen, kodieren die innen weißen Pfeile auf Grund einer internen Deletion und der dadurch zu erwartenden Verschiebung des Leserasters für ein verändertes Protein.
6.4 Nutzen der Ergebnisse bei der Entwicklung eines Mikrosporidien-ELISA

7 Ausblick

Auf Grund der hier vorgestellten Ergebnisse könnte mit Hilfe der PCR versucht werden, die zu den hier beschriebenen Genabschnitten homologen Sequenzen mit Hilfe von degenerierten Primern aus nahe verwandten Organismen zu amplifizieren, zum Beispiel aus *E. intestinalis* und *E. hellem*. Im nächsten Schritt müssten die neuen gefundenen Sequenzen verglichen und auf die in der Evolution konservierten Regionen untersucht werden. Zu diesen Regionen ließen sich nun universielle Primer konstruieren, um homologe Gene aus dem nicht-kultivierbaren Organismus *E. bieneusi* zu amplifizieren und zu klonieren. Die teilweise oder komplette kodierende Region könnte dann für die Produktion großer Mengen und genügend reinem Antigen durch rekombinante Expression benutzt werden. Dieses Antigen
Ausblick

könte direkt in einem ELISA oder für die Immunisation und Produktion von spezifischen mono- und polyklonalen Antikörpern für einen Koproantigen-ELISA verwendet werden.
8 Zusammenfassung

Zusammenfassung

Verwendung dieser Sporenwanddomäne als Antigen für die Entwicklung immundiagnostischer Tests gemacht.

Zusammengefasst wurde in der vorliegenden Arbeit (a) das immunogene Spektrum von *Encephalitozoon cuniculi* als im Wesentlichen auf das Sporenwandprotein beschränkt beschrieben, (b) bei dem identifizierten Protein eine immunogene Domäne charakterisiert und (c) dadurch die Voraussetzungen für die Entwicklung immundiagnostischer Tests bei Mikrosporidieninfektionen verbessert.
9 Literaturverzeichnis

Babenko VN, Krylov DM: Comparative analysis of complete genomes reveals gene loss, acquisition and acceleration of evolutionary rates in Metazoa, suggests a prevalence of evolution via gene acquisition and indicates that the evolutionary rates in animals tend to be conserved. Nucleic Acids Research 2004; Vol. 32, No. 17 5029-35.

Literaturverzeichnis

10 Abkürzungen

A Adenin
AIDS Acquired Immune Deficiency Syndrome
ATP Adenosintriphosphat
C Cytosin
DNA Desoxyribonukleinsäure (Desoxyribonukleinacid)
cDNA aus mRNA durch reverse Transkription entstandene DNA (copy DNA)
CO₂ Kohlenstoffdioxid
Da Dalton-Einheit
dATP 2’-Desoxyadenosin-5’-triphosphat
dCTP 2’-Desoxycytidin-5’-triphosphat
DECP Diethylpyrocarbonat
dGTP 2’-Desoxyguanosin-5’triphosphat
DMSO Dimethylsulfoxid
dNTP Mischung aus dATP, dCTP, dGTP, dTTP zu gleichen Anteilen
dTTP 2’-Desoxythymidin-5’-triphosphat
EDTA Ethylendiamintetraessigsäure
EIA Enzym Immunoassay
ELISA Enzyme Linked Immunosorbent Assay
FKS Fötales Kälberserum
G Guanin
H₂O Wasser
HCl Wasserstoffchlorid
HIV Humanes Immundefizienz Virus
IFT Immunfluoreszenstechnik
IPTG Isopropyl-β-D-thiogalactopyranosid
KCl Kaliumchlorid
LB Luria-Bertani
mRNA Boten-RNA (messenger-RNA)
MgCl₂ Magnesiumchlorid
MgSO₄ Magnesiumsulfat
NaOH Natronlauge
OD Optische Dichte

85
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff / Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>Phosphat-gepuffertes Saline (Phosphate Buffered Saline)</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion (Polymerasechainreaction)</td>
</tr>
<tr>
<td>rATP</td>
<td>ribosomales ATP</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure (Ribonukleinacid)</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomale RNA</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>S</td>
<td>Svedberg-Einheit</td>
</tr>
<tr>
<td>ssRNA</td>
<td>Einzelstrang-RNA (single stranded RNA)</td>
</tr>
<tr>
<td>SWP</td>
<td>Spore Wall Protein, Sporenwandprotein</td>
</tr>
<tr>
<td>T</td>
<td>Thymin</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-gepuffertes Saline (Tris Buffered Saline)</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris-gepuffertes Saline mit Tween 20</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris[hydroxymethyl]methylamin</td>
</tr>
<tr>
<td>Tris•HCl</td>
<td>Tris[hydroxymethyl]methylaminhydrochlorid</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Bromo-4-chloro-3-indolyl-β-D-galactopyranosid</td>
</tr>
<tr>
<td>Y</td>
<td>Mischung aus C und T bei degenerierten Primern</td>
</tr>
</tbody>
</table>
11 Lebenslauf

Persönliche Daten:
Name: Maximilian Wiedemann
Geburtsdatum: 03.03.1979
Geburtsort: München

Schulausbildung:
06/1998 Allgemeine Hochschulreife

Wehrdienst:
07/1998 – 04/1999 Grundwehrdienst im Sanitätsdienst der Luftwaffe

Hochschulausbildung:
05/1999 – 10/2005 Studium der Humanmedizin an der Ludwig-Maximilians-Universität München
10/2005 Ärztliche Prüfung

Beruflicher Werdegang:
11/2005 Approbation als Arzt
seit 04/06 Assistenzarzt für Innere Medizin am Klinikum Traunstein

Wissenschaftliche Tätigkeit:
03/2004 Vortrag auf dem Kongress der Deutschen Gesellschaft für Parasitologie (DGP) in Würzburg:
Wiedemann M, Propping S, Rinder H: Developing diagnostics for non-culturable parasites: the microsporidium Enterocytozoon bieneusi as a model.
12 Danksagung

Mein größter Dank gilt Herrn Priv. Doz. Dr. med. Dr. rer. nat. H. Rinder für die Überlassung des Themas sowie die mir gewährte freundliche Unterstützung und Betreuung meiner Arbeit.

Herrn Prof. Dr. med. Th. Löscher danke ich für die großzügige Benützung aller Labore und Geräte in der Abteilung für Infektions- und Tropenmedizin.

Herrn Prof. Dr. med. vet. K. Pfister bin ich sehr dankbar, dass ich mich auch im Bereich des Instituts für Vergleichende Tropenmedizin und Parasitologie der veterinärmedizinischen Fakultät frei bewegen und alle Einrichtungen benutzen durfte.

Danke an alle Mitarbeiter im Tropeninstitut, die mich in jeglicher Weise unterstützt haben.

Herzlichst möchte ich mich bei meinen Eltern für die immerwährende Unterstützung bedanken.