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1 Introduction 

Cell division is one of the most fundamental processes in biology. In unicellular and 

multicellular organisms the generation of new cells from a parent cell serves reproductive 

purposes (sexual or asexual). In addition, in multicellular eukaryotes cell division forms 

the basis for ontogenesis and the maintenance of the adult organism�s cellular structure. 

The scope of this work is the functional characterization of a novel protein involved 

in the sexual reproduction of vertebrates. In particular, the protein functions in a pathway 

coordinating cell cycle progression of female germ cells with their fertilization. 

1.1 The cell division cycle 

The formation of daughter cells from a parent cell proceeds through a set of 

successive events that can be described as the cell division cycle (Alberts et al., 2002). The 

somatic cell division cycle is classically divided into different phases during which the cell 

grows, duplicates its genetic material, distributes it equally and forms physically separate 

daughter cells (see Figure 1.1). The phase during which the cell replicates its DNA is 

 

Figure 1.1: A basic eukaryotic cell division cycle (Alberts et al., 2002). The cell division cycle can be 
divided into S-phase where the DNA is replicated and M-phase where the replicated and condensed 
chromosomes are segregated. Both are interrupted by gap-phases G1 and G2 that can be more or less 
pronounced. Together, the gap-phases and the intervening S-phase are called interphase. The transition from 
interphase to M-phase where the cell divides is associated with very pronounced morphological and 
biochemical changes. 



The cell division cycle 

 3

called S-phase (for synthesis-phase), while the phase during which the replicated DNA is 

distributed to the daughter cells is called M-phase (for mitosis-phase). The final step of M-

phase called cytokinesis constitutes the actual physical separation of the cytoplasm to yield 

the resulting two daughter cells. The S- and M-phases are usually separated by so called 

gap-phases (G1 and G2) of variable length during which cells grow and prepare for M-

phase, respectively. 

In order to contribute to a functional tissue and perform their physiological role in 

this context, cells might exit the cell cycle from G1 into a phase called G0 to differentiate. 

Embryonic cell cycles (the first cell divisions of the developing metazoan organism) on the 

other hand often lack prominent gap-phases altogether. They consist solely of rapidly 

alternating S- and M-phases (Gilbert, 1997). 

Eukaryotic cells have two different types of cell division, termed mitosis and 

meiosis, which have different purposes. Particularly, in the case of meiosis this is reflected 

in a variation in the sequence of events of the basic cell division cycle depicted in Figure 

1.1 as will be described below. 

1.1.1 Mitosis 

A mitotic cell division leads to the formation of two genetically identical daughter 

cells. Mitosis is therefore involved in the asexual reproduction of single celled organisms; 

furthermore it is the foundation of the development and function of tissues in higher 

organisms. 

 

Figure 1.2: Staging of a mitotic nuclear division (Pines and Rieder, 2001). Mitosis can be staged 
phenomenologically (top) or based on more detailed knowledge of cellular processes (bottom). 
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Mitosis has historically been divided into certain stages that are discernable by light 

microscopy in tissue preparations or cultured cells (see Figure 1.2 top). After DNA 

replication cells begin to condense their chromatin leading to the formation of visible 

chromosomes during prophase. Chromosomes are aligned in the future cell division plane 

during prometaphase by a microtubule structure called the mitotic spindle. During the 

process of alignment the chromatids of a chromosome are attached to opposite poles of the 

mitotic spindle via a protein structure at their centromeres called the kinetochore. This 

process is referred to as bipolar attachment. After all chromosomes have been aligned in 

metaphase, spindle forces move the chromatids to opposite poles of the cell anaphase. 

The nuclear envelope reforms and the chromatin decondenses in telophase, which is also 

the time when cytokinesis takes place. 

Based on advances in understanding the cell division cycle at the molecular level, an 

alternative staging of mitotic progression has been proposed (Pines and Rieder, 2001). It 

relies on biochemical changes that constitute important transitions throughout mitotic 

progression (see Figure 1.2 bottom). In this work, however, the more common classic 

terminology will be used. 

1.1.2 Meiosis 

Meiosis is a specialized cell division that leads to the production of germ cells (also 

called gametes) from somatic precursor cells (Marston and Amon, 2004; Petronczki et al., 

2003). Meiosis proceeds through two consecutive nuclear divisions, meiosis I and meiosis 

II, without an intervening S-phase, theoretically resulting in four genetically non-

equivalent cells that carry only one genetic complement (i.e. they are haploid). In meiosis I 

homologous chromosomes are separated, whereas meiosis II segregates the chromatids 

leading to a reduction of the genetic complement. Fertilization, the fusion of the haploid 

paternal and maternal gametes, restores the diploid state leading to the formation of a 

zygote from which a new organism can develop by mitotic division of its somatic cells (see 

Figure 1.3). 
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Reduction of the genetic complement leading to gamete formation is not the only 

peculiarity of meiosis. An equally important feature of meiosis and sexual reproduction in 

general is recombination of maternal and paternal traits, which is thought to be 

evolutionarily extremely advantageous for the respective species (Hoekstra, 2005). 

Recombination of maternal and paternal genes happens through two different mechanisms. 

Upon entry into meiosis I after pre-meiotic S-phase homologous chromosomes pair before 

they are segregated in anaphase I. First, the segregation process is inherently random in the 

sense that maternal and paternal homologues have an equal chance to be pulled to one or 

the other pole. Second, the cell actively introduces double-strand breaks into the DNA after 

replication, which are often repaired by a mechanism leading to strand exchange (crossing-

over). 

Even though the phases of a meiotic nuclear division look similar to those of mitosis 

(and are in fact called prophase I, metaphase I, anaphase I, metaphase II and anaphase II), 

reduction of the genetic complement and recombination of the genetic material requires 

important changes to the process of chromosome segregation especially in meiosis I. 

 

Figure 1.3: Life cycle of a typical diploid organism (Petronczki et al., 2003). The organism�s body is 
made up of diploid cells which divide mitotically. Sexual reproduction is initiated by producing haploid 
germ cells that fuse to lead to the formation of zygote from which a new organism develops. 
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Linkage of homologous chromosomes has to be established by formation of chiasmata that 

result from crossing-over. Orderly segregation of homologues in meiosis I requires the 

suppression of bipolar attachment of sister centromeres as well as the protection of 

centromeric cohesion during anaphase I. Reduction of the genetic complement requires the 

suppression of DNA synthesis between meiosis I and meiosis II. 

1.2 Principles of cell cycle regulation 

Progression through the process of cell division, mitotic or meiotic, is chiefly 

regulated by post-translational modification of cell cycle-regulatory proteins. The two best-

understood modifications are phosphorylation by protein kinases and multi-ubiquitylation. 

Both mechanisms often act together on the same protein to influence its activity (Nigg, 

2001). Phosphorylation/de-phosphorylation is a rapidly reversible way of modulating 

protein activity by inducing structural change or altering the physico-chemical properties 

of the protein to create or block binding sites for other proteins. Multi-ubiquitylation 

targets proteins for proteolysis by the 26 S proteasome. This makes major cell cycle 

transitions, which are usually associated with degradation of key regulatory proteins, 

virtually irreversible ultimately resulting in directionality of the cell cycle (Reed, 2003). 

1.2.1 Phosphorylation and cell cycle regulatory kinases 

The most prominent example of cell cycle regulatory protein kinases is the family of 

cyclin-dependent kinases (Cdks) (Murray, 2004). The catalytically active form of these 

enzymes consists of a small Cdk-subunit containing the catalytic domain associated with 

one of various cyclin-subunits, which act as activators of kinase activity. Different 

combinations of Cdk/cyclin complexes promote specific events in different phases of the 

cell division cycle. The activity of the different Cdk/cyclin complexes is, besides other 

mechanisms, tightly regulated through availability of the corresponding cyclin. M-phase 

progression for example is mainly driven by Cdk1 in complex with cyclin B. Cyclin B 

protein accumulates at the beginning of mitosis and is degraded upon exit from mitosis. 

Together with Cdks other families of protein kinases regulate different aspects of cell 

cycle progression, especially in M-phase. These include the Aurora and Polo-like kinases 

(Barr et al., 2004; Nigg, 2001). Members of these kinase families have numerous functions 

related to spindle function and chromosome segregation throughout M-phase progression. 

Particularly, the polo-like kinase 1 (Plk1) and its involvement in promoting metaphase to 
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anaphase transition is of high importance for this work. The polo-like kinase family has 

been identified through a mutation in the Drosophila polo gene (Llamazares et al., 1991; 

Sunkel and Glover, 1988). The mammalian genome contains four genes coding for Plks of 

which the Plk1 protein is the best characterized. 

Plk1 has an amino-terminal kinase domain and two carboxy-terminal sequence 

motifs called polo-boxes which together form the so called polo-box-domain (PBD). This 

domain was found to be a phospho-peptide-binding domain that preferentially targets the 

kinase to proteins that contain PBD �docking sites� (see Figure 1.4). By peptide library 

screening the consensus sequence for optimal binding was determined to be S/T-Sp/Tp-P 

(where Sp/Tp stands for phosphorylated serine or threonine residues) (Elia et al., 2003a). 

The phosphorylation at the docking site is carried out by a so called priming kinase. The 

sequence of the optimal docking site suggests that mainly proline directed kinases like 

Cdks act as priming kinases for Plk1. There are, however, studies that show that other 

kinases including Plk1 itself can create docking sites (Neef et al., 2003; Rauh et al., 2005). 

Furthermore, binding of Plk1 to its docking site is thought to activate the kinase by 

releasing the kinase domain from auto-inhibitory binding to the PBD (Jang et al., 2002). 

1.2.2 Ubiquitylation and proteolysis in cell cycle control 

Ubiquitin is a small protein that has been named after its ubiquitous presence in 

virtually all eukaryotic cells (Hershko and Ciechanover, 1998; Hershko et al., 2000). It 

serves as a modifier that is attached post-translationally to lysine residues of other proteins 

via an iso-peptide bond. Ubiquitin can form chains if internal lysine residues in ubiquitin 

itself are used for isopeptide bond formation with further ubiquitin molecules. These multi-

 

Figure 1.4: Model of Plk1 targeting and activation (Sillje and Nigg, 2003). Plk1 is auto-inhibited by its 
PBD until it binds to a docking site that has been phosphorylated by a priming kinase. The kinase can then 
phosphorylate either the docking protein itself or other proteins in the vicinity. 
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ubiquitin chains serve as signals to recruit the modified proteins to the 26 S proteasome, a 

high molecular weight protease complex that hydrolyses its substrates into small peptides. 

Ubiquitin chain formation on the target is brought about by a cascade of enzymes 

that sequentially act to transfer ubiquitin to the target protein (see Figure 1.5). Free 

ubiquitin is first covalently attached to an �ubiquitin-activating enzyme� E1 via a thioester 

bond in an ATP-dependent manner. It is then transferred to an �ubiquitin-conjugating 

enzyme� E2. The E2-bound ubiquitin is then attached to a lysine residue in the target 

protein with the help of an �ubiquitin-ligase� E3 which is thought to position the E2-

ubiquitin and the substrate for efficient ubiquitin transfer. 

E3 enzymes are heavily regulated throughout the cell cycle in terms of their activity 

and/or substrate specificity. In cell cycle control two types of E3 ligases, have well 

established functions. They both belong to the family of cullin-based ubiquitin ligases, 

because they contain subunits that share homology with a group of proteins called the 

cullins. These E3 enzymes are the anaphase-promoting complex/cyclosome (APC/C) and 

the Skp1-Cullin-F-box (SCF) complexes (Peters, 1998; Vodermaier, 2004). 

The APC/C is a multi-protein complex consisting of at least twelve subunits. It 

associates with one of its two activators, Cdc20 (also called xFzy in Xenopus) or Cdh1 

(also called xFzr in Xenopus), to direct ubiquitylation of cell cycle-regulatory proteins. 

There is evidence that the activators as well as core APC/C subunits are involved in 

substrate specificity and recruitment (Burton et al., 2005; Carroll et al., 2005; Kraft et al., 

2005; Passmore et al., 2003). APC/C substrates usually contain sequence-motifs which are 

essential signals for recognition by APC/C. The first signal to be identified was pictorially 

labelled �destruction�-box (d-box) (Glotzer et al., 1991), however more signals have been 

and keep on being identified. In M-phase APC/CCdc20 targets cyclin B and an inhibitor of 

sister-chromatid separation called securin for degradation (Zou et al., 1999). This leads to 

 

Figure 1.5: Simplified scheme of the biochemistry of ubiquitin modification of proteins. Posttranslational 
modification of protein with a ubiquitin chain takes place through a cascade of enzymes generally called E1 
to E3. The ubiquitin chain serves as a signal for degradation of the substrate proteins by the 26 S 
proteasome, a cellular protease complex. 
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decreased Cdk1 activity and loss of centromeric cohesion on sister-chromatids, 

respectively. These two events are important for the ordered transition from metaphase to 

anaphase. 

SCF complexes are composed of an elongated cullin-backbone with the Skp1 protein 

bound to one side and the small Rbx1 subunit on the other (Zheng et al., 2002). Skp1 is 

associated with one of many so-called F-box proteins via its own F-box. The variable F-

box protein associated with Skp1 is thought to act as the substrate specificity factor for the 

complex. Binding of the respective substrate to the F-box protein requires phosphorylation 

on sequence motifs, that are thus called phospho-degrons (Ang and Harper, 2005). The 

archaetypal example for such a process is the yeast Cdk-inhibitor Sic1p (Feldman et al., 

1997). One of the best characterized examples in vertebrate systems is the SCF complex 

containing the F-box protein ß-transducin repeat containing protein (ß-TRCP). The 

paradigms of SCFß-TRCP function are its involvement in the degradation of the NF-κB 

inhibitor IκBα and the wingless-signalling pathway component ß-catenin (Winston et al., 

1999; Yaron et al., 1998). However, a number of other proteins some of which are critical 

cell cycle regulators have been identified as targets of this E3-ligase (Ang and Harper, 

2005). 

1.3 Vertebrate oocyte biology 

Metazoans produce two different kinds of gametes � sperm and oocyte. The motile 

sperm carries the paternal genetic information, whereas the oocyte contains the maternal 

complement. The oocyte is a specialized, often rather large cell, that accumulates lots of 

biological molecules (RNA, proteins) that are sufficient to support the early embryo�s 

metabolism and development through a series of rapid cell divisions after fertilization in 

the absence of extra nutrition (Gilbert, 1997). Oocytes of the African clawed frog Xenopus 

laevis, which served as a model system for this work, are in fact over 1 mm in diameter. 

1.3.1 Oocyte maturation 

Oocytes arise from precursor stem cells in the oogonia of the respective species 

through an asymetric meiotic division that produces one functional oocyte and, depending 

on whether the first polar body divides again or not, two or three small cells termed �polar 

bodies�. Throughout oogenesis, vertebrate oocytes are arrested in meiotic prophase and 

terminate their growth-phase as so called �immature oocytes� (Gilbert, 1997) (see Figure 
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1.6 top). In the frog stimulation of these oocytes with progesterone secreted from the 

surrounding follicle cells induces resumption of meiosis, a process that is synonymously 

called oocyte maturation (Ferrell, 1999; Kishimoto, 2003). Reentry into the meiotic cell 

cycle from prophase I arrest is triggered essentially by activation of a mitogen-activated 

protein kinase (MAPK) pathway with the germ-cell specific MAPK-kinase-kinase 

(MAPKKK) c-Mos at its top. This leads to activation of the Cdk1/cyclin B complex that 

drives progression through meiosis (see also 1.2.1). 

1.3.2 CSF-arrest 

Oocyte maturation proceeds until a second cell cycle arrest in metaphase of meiosis 

II. In this state the eggs are laid and await fertilization. Originating from a seminal 

publication by Masui and Markert in 1971 this arrest of the now �mature� oocyte is called 

cytostatic factor (CSF) arrest (Masui and Markert, 1971; Tunquist and Maller, 2003). In 

this work cytoplasmic injection experiments with frog eggs led to the identification of two 

major biochemical activities that control cell cycle progression of the oocyte (see Figure 

 

Figure 1.6: Overview of oocyte biology and the identification of MPF and CSF (Schmidt et al., 2006). 
After oogenesis oocytes are arrested at the G2/M transition (prophase I). In frogs progesterone triggers 
meiosis resumption. Release from CSF arrest by fertilization leads to the onset of embryonic development 
(top). Cytoplasmic injection experiments with frog eggs have led to the identification of MPF and CSF 
(bottom). 
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1.6 bottom). 

When small amounts of cytoplasm from a mature oocyte were transferred into an 

immature oocyte, this cell entered meiosis and progressed to metaphase of meiosis II in the 

absence of progesterone stimulation. This led Masui and Markert to propose that the 

cytoplasm of mature oocytes contains an activity they termed maturation-promoting factor 

(MPF). Purified MPF was subsequently found to contain Cdk1, the vertebrate homolog of 

the fission yeast cdc2 protein (Gautier et al., 1988). It became clear that MPF equals the 

evolutionary conserved complex of Cdk1/cyclin B that drives M-phase progression in all 

eukaryotic cells (Nurse, 2002). In a second set of experiments cytoplasm of mature oocytes 

was transferred into one cell of a mitotically dividing two-cell embryo. Following 

injection, the injected cell stopped dividing with the spindle apparatus in a metaphase 

configuration similar to the metaphase of meiosis II arrest. It was concluded that the 

mature cytoplasm also contains an activity able to arrest cells in metaphase. This activity 

was called CSF (see above). 

In summary the mature oocyte is arrested by an activity called CSF in metaphase of 

meiosis II with high MPF activity awaiting fertilization. The biological function of this 

second arrest is thought to be the prevention of development in the absence of fertilization, 

which is called parthenogenesis (see below). 

1.3.3 Fertilization 

The fusion of male and female gametes resulting in the subsequent mixing of 

paternal and maternal genetic material is called fertilization. The fusion event triggers 

signalling pathways, which release the oocyte from CSF arrest and allow for progression 

beyond metaphase II, a process that is also called egg activation (Jones, 2005). Egg 

activation synchronizes the cell cycle phases of sperm and egg. The egg can complete 

meiosis II and after the female pronucleus has formed it can fuse with the male pronucleus 

to yield the diploid zygote. The principal event that allows cell cycle progression is the 

release of calcium from intracellular stores. Calcium release happens in a wave-like 

fashion that can last from roughly ten minutes in frog eggs to several hours in mammalian 

eggs (Halet et al., 2003). It has been found that activation of Calmodulin-dependent kinase 

II (CaMKII) is sufficient to trigger CSF release in Xenopus eggs (Lorca et al., 1993), but 

the relevant targets of this kinase have remained obscure. 
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1.4 The molecular basis of CSF arrest 

As opposed to MPF which has been purified in the late 1980s, CSF has ever since it 

was proposed resisted detailed biochemical characterization. CSF has in fact never been 

assumed to be a single protein or protein complex. However, the experiments conducted on 

CSF together with its properties as an inhibitor of metaphase to anaphase transition have 

predicted criteria that molecules involved in CSF activity would have to fulfil. These 

molecules would have to a) accumulate and/or become active during oocyte maturation, b) 

be active at metaphase of meiosis II c) be inactivated upon fertilization/activation of the 

egg. These criteria have led the field to test candidate proteins potentially involved in CSF 

arrest. 

1.4.1 The classical CSF pathways 

The first candidate protein implicated in CSF activity in Xenopus eggs was the 

cellular counterpart of the oncogenic protein kinase mos (Sagata et al., 1989). Mos is a 

MAPKKK that is uniquely induced upon resumption of meiosis after prophase I arrest (see 

also 1.3.1). It was shown that mos is present in unfertilized (CSF arrested) eggs, but not in 

fertilized ones. Injection of mos RNA into two-cell embryos resulted in cleavage arrest of 

the injected half dependent on the amount of RNA injected, whereas cytosol from CSF 

arrested eggs depleted of mos protein lost its CSF activity (Sagata et al., 1989). 

Subsequently, it was found that mos is upstream of a cascade of kinases that 

successively activate each other to bring about CSF arrest. It was known that 

phosphorylation of MAPKK by mos can activate this kinase in vitro (Posada et al., 1993). 

Consistently, Haccard et al. found that a constitutively active MAPKK (also called MEK) 

that activates MAPK can induce metaphase arrest in cleaving embryos in the absence of 

mos, indicating that it has CSF activity (Haccard et al., 1993). This led to the idea that mos 

induced CSF arrest works through the MEK/MAPK module. MAPK in turn was shown to 

be able to activate proteins of the ribosomal S6 kinase (p90RSK) family in different contexts 

(Frodin and Gammeltoft, 1999). The p90RSK kinase is active in unfertilized eggs and 

therefore a good candidate of yet another downstream factor in mos-induced CSF arrest. 

Two independent studies showed that p90RSK is required for the establishment of a 

metaphase arrest in Xenopus cycling extracts and that injection of constitutively active 

kinase into cleaving embryos causes metaphase arrest (Bhatt and Ferrell, 1999; Gross et 

al., 1999). However, p90RSK was found to be dispensable once CSF arrest is established as 
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immuno-depletion of the protein from CSF arrested egg extracts does not lead to CSF 

release (Bhatt and Ferrell, 1999). 

At about the time mos was found to mediate CSF activity through the MAPK-

pathway an independent activity required for CSF arrest was found. Using anti-sense 

oligo-nucleotides Gabrielli et al. found that Cdk2 is required for CSF arrest in frog eggs 

(Gabrielli et al., 1993). Also, gain-of-function experiments with a Cdk2 that cannot be 

inactivated showed that a metaphase arrest can be induced in Xenopus cycling extracts 

(Tunquist et al., 2002). These results were, however, challenged by a study showing that 

injection of oocytes with the Cdk2 inhibitor p21Cip does not perturb metaphase arrest in 

oocytes (Furuno et al., 1997). 

1.4.2 CSF arrest and the APC/C 

Most of the early work on CSF described in section 1.4.1 has been conducted before 

the discovery of the APC/C (King et al., 1995; Sudakin et al., 1995) or even before 

ubiquitin/proteasome-dependent proteolysis of cell cycle regulators was well established 

(Glotzer et al., 1991) (see also 1.2.2). CSF arrest is a state, where transition from 

metaphase to anaphase is blocked as exemplified by high MPF (Cdk1/Cyclin B) activity 

and stable cohesion between sister-chromatids. Thus, the arrest is ultimately due to 

inactivity of the APC/C and CSF release is triggered by APC/C activation (see Figure 1.7). 

The APC/C activator Cdc20 was found to be absolutely required for APC/C activation at 

the metaphase II to anaphase II transition and therefore for CSF release (Lorca et al., 

1998). Xenopus eggs have been assumed to express only Cdc20, which is also called xFzy 

in the frog. This has only very recently been questioned (Papin et al., 2004). Here, 

expression of the Xenopus Cdh1 homolog in oocytes was reported, but its functions might 

 

Figure 1.7: Pathways shown to be involved in CSF-mediated APC/C inhibition in meiosis II. At the 
moment, the picture that emerges from the literature is that CSF activity is the sum of distinct, parallel 
pathways that all inhibit cyclin degradation (and therefore MPF inactivation) by the APC/C. For some of 
these pathways/proteins the molecular mode of action has begun to be explored (SAC proteins, Emi1), 
whereas for Cdk2 a mechanistic explanation has not emerged, yet. Notably, mutual dependencies of these 
seemingly parallel pathways have not been extensively tested. 
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be independent of APC/C-dependent proteolysis. Other meiosis specific APC/C activators, 

like the yeast Ama1 protein or the Drosophila cortex protein (Chu et al., 2001; Cooper et 

al., 2000), have not been found in Xenopus, yet. Thus, currently CSF release can be 

considered to be solely due to APC/CCdc20 activation. 

1.4.3 Spindle-assembly checkpoint proteins as CSF components 
downstream of the MAPK-pathway 

In mitotic cells the spindle-assembly checkpoint (SAC) is a pathway that prevents 

anaphase onset as long as not all chromosomes are attached to the mitotic spindle in a 

bipolar fashion and aligned at the metaphase plate (Musacchio and Hardwick, 2002; Yu, 

2002). It does so by creating a diffusible signal that prevents APC/C activation. Although 

the exact nature of this signal is still being explored, the components of this highly 

conserved pathway are well known. They have been identified in genetic screens 

undertaken in yeast as members of the budding uninhibited by benzimidazole (Bub) and 

mitotic arrest deficient (Mad) families (Hoyt et al., 1991; Li and Murray, 1991). 

The Xenopus homolog of protein kinase Bub1 was shown to be a substrate p90RSK in 

oocytes. Phosphorylation of Bub1 by p90RSK was able to activate its kinase activity in vitro 

suggesting that Bub1 could act as a mediator of p90RSK activities in oocytes (Schwab et al., 

2001) (see Figure 1.7). Depletion of Bub1 from Xenopus cycling extracts prevents the 

establishment of a mos-dependent metaphase arrest indicating that it is downstream of the 

mos/MAPK/p90RSK pathway of CSF arrest (Tunquist et al., 2002). 

Similarly, two other components of SAC have been shown to be involved in CSF 

mediated APC/C inhibition. The Mad1 and Mad2 proteins are thought to be at the very 

bottom of the SAC pathway. Mad1 is thought to act as a template for Mad2 converting it 

into a conformation competent to inhibit APC/CCdc20 directly by sequestration of Cdc20 

(Musacchio and Hardwick, 2002). Injection of Mad1 or Mad2 protein causes metaphase 

arrest in blastomeres of dividing Xenopus embryos (Tunquist et al., 2003). Conversely, 

depletion of both Mad1 and Mad2 prevents the establishment of a mos-dependent 

metaphase arrest in Xenopus cycling extracts. Surprisingly however, only the depletion of 

Mad1 and not Mad2 from CSF extracts leads to calcium-independent CSF release 

indicating that only Mad1 is required for CSF maintenance. This implies that the 

generation of the signal that brings about APC/C inhibition in the case of CSF arrest must 

mechanistically differ from that of the SAC. 



The molecular basis of CSF arrest 

 15

In summary, the work presented in section 1.4.1 and in this section suggests that CSF 

arrest may use the MAPK-kinase pathway to specifically modify the behaviour of the SAC 

resulting in stable APC/C inhibition. In addition, Cdk2 activity might be required 

independently to establish this arrest (for an overview see Figure 1.7). 

1.4.4 The APC/C inhibitor Emi1 as a putative CSF component 

Recently, the F-box protein early mitotic inhibitor 1 (Emi1) has been proposed as yet 

another independent element contributing to CSF arrest (Reimann et al., 2001a; Reimann 

and Jackson, 2002). The protein has been shown to be able to directly inhibit APC/C 

ubiquitylation activity in vitro. This inhibition was found to be mediated by an inhibitory 

interaction with the APC/C activator Cdc20, but by a mechanism different from the SAC 

protein Mad2 (Reimann et al., 2001b). Overexpression of Emi1 in CSF extracts prevents 

calcium-induced CSF release, whereas depletion of the protein from CSF arrested egg 

extract was reported to induce calcium-independent CSF release indicating that Emi1 is 

required to maintain CSF arrest. Interestingly, the ability of Emi1 to block CSF release was 

found to be independent of MAPK activity suggesting that Emi1 might act in parallel to 

this �classical� pathway involved in CSF activity (see Figure 1.7). 

In addition to its role as a CSF component other functions for Emi1 have been 

proposed. In fact, initially the protein was characterized mainly as a regulator of the 

mitotic, early embryonic cell cycles in Xenopus (Reimann et al., 2001a). Here, Emi1-

mediated APC/CCdc20-inhibition was thought to allow re-accumulation of mitotic cyclins to 

facilitate entry into M-phase. The human Emi1 homolog was shown to have a function 

promoting S-phase in tissue culture cells. In this case, inhibition of APC/CCdh1 by Emi that 

is expressed in an E2F-dependent manner allows accumulation of cyclin A (Hsu et al., 

2002). This study also reported that Emi1 is degraded in prophase, a process that was 

subsequently shown to require Plk1 and the SCFß-TRCP-complex (Hansen et al., 2004; 

Margottin-Goguet et al., 2003; Moshe et al., 2004). 

Doubts about a role for Emi1 as a true CSF component arose not only because the 

timing of Emi1 destruction in mitosis seemed to be incompatible with a function in 

metaphase (there was no obvious explanation how Emi1 could escape premature 

degradation in meiosis). Also, it was reported that Emi1 protein is undetectable in CSF 

arrested Xenopus eggs and that its mis-expression interferes with oocyte maturation 

altogether (Ohsumi et al., 2004). These results conflict not only with Emi1�s function as a 
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mediator of CSF activity, but also with reports describing a role for Emi1 in oocyte 

maturation (Tung and Jackson, 2005). Thus, a possible role of Emi1 in CSF arrest is 

currently heavily debated, also because of the work presented here (Zachariae, 2005). 

1.4.5 Activation of APC/C activity by kinases 

It has been realized quite early after its identification that tight regulation of the 

APC/C´s activity could be ensured by phosphorylation of APC/C subunits (Lahav-Baratz 

et al., 1995). In fact, a significant fraction of the vertebrate APC/C subunits, including the 

activators, are found phosphorylated specifically in M-phase (Kraft et al., 2003). The 

kinases that seem to create these sites are Cdk1/CyclinB and to a lesser extent Plk1. The 

roles for Cdk1/CyclinB in APC/C activation are well established, whereas the situation for 

Plk1 is less clear. It has been variously shown that Cdk1 phosphorylation of the APC/C is 

required for its activation by Cdc20 in vitro and in vivo (Kraft et al., 2003; Kramer et al., 

1998; Kramer et al., 2000; Rudner et al., 2000). 

For Plk1 conflicting results exist on whether phosphorylation of APC/C subunits is 

sufficient, required or even dispensable for APC/C activity. It has been shown for purified 

mammalian APC/C that Plk1, pre-phosphorylated by Cdk1, can activate its ubiquitin-ligase 

activity in vitro (Kotani et al., 1998). Golan et al. showed that both Cdk1 and Plk1 can 

contribute to APC/C activation in vitro by phosphorylating its subunits and that their 

effects are additive (Golan et al., 2002). However, reinvestigation of the relative 

contribution of Plk1 and Cdk1 to in vitro APC/C activation could only confirm a role for 

Cdk1 phosphorylation (Kraft et al., 2003). 



The molecular basis of CSF arrest 

 17

Despite the uncertainties about direct APC/C activation by Plk1 phosphorylation in 

vitro a role for Plk1 in promoting anaphase onset and APC/C activity is clearly established. 

Particularly, in Xenopus it was clearly shown that interfering with the activity of Plx1 (the 

Xenopus homolog of Plk1) prevents APC/C activation and consequently destruction of 

APC/C substrates (Descombes and Nigg, 1998). Therefore, Plx1 activity is essential for 

CSF release in CSF-arrested Xenopus egg extracts. Also, Plx1 was found to be required to 

maintain APC/C activity once it has been turned on by counteracting an unknown 

phosphatase (Brassac et al., 2000). 

These studies did not address the exact molecular mechanism by which Plx1 

activates the APC/C, but Descombes and Nigg have proposed a model including all likely 

possibilities of how Plx1 could be involved in APC/C activation (Descombes and Nigg, 

1998) (see Figure 1.8a). The model included the classic interpretations of Plk action on the 

APC/C, namely direct phosphorylation of the APC/C or its activator Cdc20/Fizzy. 

Furthermore, involvement of Plx1 in transduction of the calcium signal that leads to CSF 

release was envisioned. As a third alternative Plx1 was proposed to negatively regulate a 

putative APC/C inhibitor. A similar inhibitor has been proposed by Vorlaufer and Peters 

 

Figure 1.8: Models of APC/C regulation upon calcium-induced CSF release (Descombes and Nigg, 1998; 
Vorlaufer and Peters, 1998). a) Plx1 could be required for APC/C activation through many alternative 
pathways, one of them being the inactivation of a putative APC/C inhibitor. b) An inhibitor of cyclin-
proteolysis has also been proposed by Vorlaufer and Peters based on its phosphatase-sensitivity. 
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independently of Plx1 function based on their studies of putative APC/C regulatory 

phosphatases (Vorlaufer and Peters, 1998) (see Figure 1.8b). 

1.5 Objective of the project and experimental approach 

The general aim of this work was to perform a basic functional characterization of 

Xenopus Emi-related protein 1 (XErp1, also called Emi2 and formerly designated Pxp17). 

The Xenopus egg extract system proved to be extremely useful as a tool to study XErp1 

function and also part of its regulation. Both aspects of the project, the objective as well as 

experimental approach, will be explained in the following sections. 

1.5.1 Objective of the project 

The F-box protein XErp1 has been identified in a yeast two-hybrid screen of a 

Xenopus oocyte library with kinase-dead Plx1 as a bait aimed at identifying effectors of 

Plx1 function (Duncan and Nigg, see (Schmidt et al., 2005)). The protein is evolutionarily 

conserved in vertebrates and its carboxy-terminal domain containing the F-box and a zinc-

binding region (ZBR) is very similar to Emi1 (see Figure 1.9). As a Plx1-interacting 

protein it is a potential effector and substrate of Plx1. Thus, in addition to a basic 

characterization of the protein, exploring the functional significance of its interaction with 

Plx1, particularly in the context of CSF regulation, was a major goal of the project. The 

well established function of Plx1 in activation of the APC/C in Xenopus egg extract guided 

 

Figure 1.9: Schematic representation of XErp1 and Xenopus Emi1 (Schmidt et al., 2006). XErp1 is an F-
box protein harbouring a carboxy-terminal zinc-binding region (ZBR). The amino-terminus contains two 
important sequence motifs that are involved in regulating the stability of XErp1 (partly described in this 
work). The carboxy-terminus shows significant sequence identity to the already described Emi1 protein. 
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the experiments as well as the choice of model system. 

1.5.2 The Xenopus egg extract system 

Cytoplasmic extracts from Xenopus laevis eggs are a widely accepted in vitro system 

to study cell cycle-related processes (for an overview see Figure 1.10). The system has 

been developed and has been successful because it uniquely combines ease of 

manipulation with a high degree of preservation of in vivo processes. This work uses 

cytoplasmic extracts from CSF-arrested Xenopus eggs (or short CSF extracts). These 

 

Figure 1.10: Schematic of the Xenopus egg extract system. Xenopus laevis females are injected with 
gonadotropin to induce ovulation. The laid eggs, which are CSF arrested, are collected and lysed by 
centrifugation to yield the cytoplasmic extract. After addition of sperm nuclei (DNA) and fluorescently 
labelled tubulin the configuration of the chromatin and the microtubules are easily observable and serve as 
indicators of the cell cycle phase of the extract. CSF release into interphase/S-phase is triggered by the 
addition of calcium ions. 
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extracts, as opposed to extracts from activated eggs which are called cycling extracts, 

remain CSF arrested after preparation, but can be induced to undergo CSF release by the 

addition of CaCl2 (see Materials and Methods for a detailed description). 

The extracts faithfully reproduce many complex biochemical processes in vitro like 

chromosome condensation of exogenously added sperm nuclei, assembly of bipolar 

spindle structures and reformation of fully functional nuclei and DNA synthesis upon 

release from CSF arrest. Importantly, at the biochemical level events like Cdc20-dependent 

APC/C activation and consequently timely degradation of cell cycle regulatory proteins are 

observed in this system. In addition, a very valuable feature particularly for cell cycle 

studies is the fact that the extract can be assumed to behave fully synchronous. The 

processes mentioned above are easily observed by sampling the extract either for 

microscopic inspection or biochemical analysis. 
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2 Results 

Following a basic characterization of XErp1 expression and behaviour in oocytes and 

their extracts, its function and regulation have been examined. Also, initial steps have been 

taken to elucidate the functional relationship to its interaction partner Plx1 and its 

functional significance in vivo. The results of these experiments will be presented in the 

following sections. 

2.1 Characterization of an anti-XErp1 antibody 

In order to analyze XErp1 function and regulation, a polyclonal antibody (XErp1-

NT) was affinity-purified by Thomas Mayer from serum raised by Peter Duncan against an 

amino-terminal fragment of XErp1. To examine its specificity, this antibody was 

characterized by Western blotting. The antibody recognizes a prominent band running at 

 

Figure 2.1: Anti-XErp1 antibody characterization. CSF extract (corresponding to 50 µg protein/lane), 
IVTed XErp1, Emi1 and unprogrammed wheat germ extract where processed for Western blotting with 2 
µg of affinity-purified anti-XErp1 antibody (left panel). Expression levels of the 35S-Met-labelled IVT 
products were examined by autoradiography (middle panel). For specificity analysis the antibody was 
blocked with a tenfold molar excess of the XErp1 fragment the antibody was made against (right panel). 



Results 

 22 

an apparent molecular weight of about 90 kDa in extract from CSF-arrested Xenopus eggs 

(see Figure 2.1 left panel). The calculated molecular weight of XErp1 is 72 kDa, which is 

significantly less than what is observed for the protein recognized in CSF extract. This 

difference is possibly due to the physico-chemical properties of the protein or post-

translational modifications or a combination of both (see following sections). 

The antibody also recognizes in vitro translated XErp1 which has a slightly higher 

electrophoretic mobility (for an explanation see sections below). Importantly, the antibody 

does not recognize in vitro translated Xenopus Emi1 or other proteins in the wheat germ 

extract used for translation. To test whether the observed signals derive from antibodies 

that bind XErp1 protein, the antibody was pre-incubated with a tenfold molar excess of the 

XErp1 fragment the antibody was raised against prior to Western blotting. After this 

treatment the signals for the prominent band in CSF extract as well as for IVTed XErp1 

vanished (see Figure 2.1 right panel). Together these data indicate that this antibody 

specifically recognizes XErp1 and is a useful tool to study its function and regulation. 

2.2 Expression and behaviour of XErp1 protein 

The Xenopus polo-like kinase Plx1 has been shown to be required for activation of 

the APC/C and destruction of its targets upon CSF release in Xenopus egg extract 

(Descombes and Nigg, 1998). The mechanism of Plx1-mediated APC/C activation was not 

addressed in this study. However, a yeast two-hybrid screen conducted to identify possible 

regulators or mediators of Plx1 action on the APC/C has identified XErp1 (Duncan and 

Nigg, see introduction). The identification of XErp1 as an interacting protein of a cell cycle 

regulatory kinase implicated in APC/C regulation upon CSF release suggested that XErp1 

might be a cell cycle regulatory protein implicated in this process. Cell cycle regulatory 

proteins often undergo cell cycle phase-dependent post-translational modifications and 

changes in protein level to regulate their activity. To investigate the fate of XErp1 during 

oocyte maturation up until CSF arrest, oocyte lysates have been analysed for XErp1 

abundance and modifications. 
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2.2.1 XErp1 protein during oocyte maturation 

For analysis of XErp1 protein levels during oocyte maturation, immature (stage VI) 

oocytes were isolated from female Xenopus laevis frogs (with the kind help of Ingmar 

Schön). The oocytes were treated with progesterone to induce oocyte maturation. In order 

to synchronize the oocytes, they were grouped according the time they underwent germinal 

vesicle breakdown (GVBD) as a sign of meiotic entry. This process is analogous to nuclear 

envelope breakdown in mitotic prophase and is clearly visible by the appearance of a white 

spot on the animal pole of the oocyte. 

Samples of the synchronized oocytes were taken at different time points and 

processed for Western blot analysis of their lysates (see Figure 2.2). Initiation of oocyte 

maturation after progesterone treatment is apparent by the signal for active MAPK after 

progesterone treatment. The slight drop in cyclin B1 levels at 2.5 and 3 hours indicates the 

transition from meiosis I to meiosis II where about half of the cyclin is degraded (Iwabuchi 

et al., 2000). Western blot analysis shows that XErp1 is already present in stage VI 

oocytes. XErp1 protein levels or modification status do not change immediately after 

progesterone treatment. However, after GVBD an electrophoretic shift is visible and later 

on at about 4 hours an increase in protein levels up until CSF arrest. Electrophoretic shifts 

are often caused by post-translational modifications like phosphorylation. 

 

Figure 2.2: Analysis of XErp1 levels during oocyte maturation. Lysates from Xenopus oocytes before 
(VI) and after progesterone treatment (time is given in hours after treatment) were processed for Western 
Blot analysis with antibodies against XErp1, phosphorylated Erk1/2 (active MAPK), Erk1/2 (MAPK) and 
cyclin B1. The bar �GVBD� indicates the approximate time at which the GVBD occurred in most 
oocytes. 
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2.2.2 Behaviour of XErp1 protein upon CSF release in extract 

The basic expression analysis in Xenopus oocytes indicated that XErp1 is a cell cycle 

regulated protein. It is present throughout meiosis until CSF arrest and undergoes cell cycle 

specific changes in abundance and modification status. Therefore, Xenopus egg extract 

seemed to be a well suited system to further investigate XErp1 function and regulation. 

Thus, CSF extract was prepared and analysed for XErp1 protein levels before and at 

different times after treatment with CaCl2 which mimics fertilization and induces release 

from CSF arrest (see Figure 2.3). 

Supporting the observations made in maturing oocytes, XErp1 is present in CSF 

extract in a high mobility form. This electrophoretic shift has been shown to result from 

protein phosphorylation (N.R. Rauh, see (Schmidt et al., 2005)). Upon calcium addition, 

XErp1 levels drop dramatically before the protein reappears in a lower mobility form 

beginning from forty minutes after CSF release. The reappearance of the protein requires 

protein synthesis since it was not observed when the extract was treated with calcium and 

the protein synthesis inhibitor cycloheximide (CHX) (see Figure 2.3 right panel). 

Inspection of DNA morphology of extract samples confirmed that the extract has been 

CSF arrested before calcium addition and released into interphase after addition of calcium 

(Figure 2.3 bottom). 

 

Figure 2.3: Behaviour of XErp1 protein upon calcium addition to CSF extracts. CSF extracts were 
released into interphase with CaCl2 in the presence or absence of the translation inhibitor cycloheximide 
(CHX). Samples were taken at different times and Western blotted for XErp1 protein. Release of the 
extract was monitored by analysing sperm DNA morphology. 



Functional analysis of XErp1 

 25

2.3 Functional analysis of XErp1 

Analyses of XErp1 protein levels and modifications in whole Xenopus oocytes and 

egg extracts indicated that its abundance and phosphorylation status is very tightly coupled 

to CSF release, indicating a possible role for XErp1 in regulating CSF activity. To 

investigate whether XErp1 has a role in regulating CSF activity, XErp1 loss-of-function as 

well as gain-of-function studies in CSF-arrested Xenopus egg extracts were employed. 

2.3.1 Inhibition of XErp1 function in CSF extracts 

To test a putative role of XErp1 in the regulation of CSF arrest, experiments to 

inhibit its function in CSF arrested egg extracts were performed. To this end different 

antibodies were immobilized on magnetic beads and added to CSF extracts. The fate of 

these extracts was observed over time by microscopic inspection of added sperm DNA 

morphology and by measuring H1 kinase activity as an indicator of Cdk1 activity. Extracts 

treated with antibodies specific for XErp1 released from CSF arrest in the absence of 

calcium addition as shown by decondensed sperm DNA (see Figure 2.4 left panel, 2). 

Release from CSF arrest is triggered by APC/C activation resulting in cyclin B 

destruction and a consequent drop of Cdk1 activity. A rapid drop in histone H1 kinase 

activity, which corresponds to Cdk1 activity, could be observed in the extract treated with 

 

Figure 2.4: Inhibition of XErp1 function causes CSF release. CSF extracts were incubated with the 
indicated antibodies on ice, warmed to 20°C and the cell cycle phase of the extracts was monitored 65 
minutes after warming by microscopic inspection of DNA morphology. The unreleased control extracts 
were treated with calcium and examined for DNA decondensation (left panel). Cdk1 activity in the extracts 
was measured by assaying histone H1 kinase activity after warming the extracts in the presence of blocked 
XErp1 antibody (1), XErp1 antibody (2) or blocked control antibody (3) (right panel). 
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XErp1 specific antibodies (see Figure 2.4 right panel, 2). This did not happen in extracts 

treated with an anti-XErp1 antibody that had been blocked with an excess of antigen before 

addition or an equally treated control antibody (see Figure 2.4 , 1 and 3). To confirm that 

the control extracts were capable of release from CSF arrest, they were treated with CaCl2 

after the experiment. Both extracts showed formation of nuclei after calcium treatment 

indicating that they were able to activate APC/C and release from CSF arrest. 

To confirm these results, the experiments were repeated with different affinity-

purifications from serum that has been raised against full-length XErp1 protein (#32.1 to 

3). These experiments lead to the same results as described above (XErp1-NT antibody). In 

all cases XErp1 specific antibodies lead to calcium-independent CSF release, whereas 

unspecific control antibodies did not perturb CSF arrest as shown by sperm DNA 

 

Figure 2.5: Inhibition of XErp1 function with different antibody preparations. CSF extracts were incubated 
with antibody used for the previous experiments (XErp1-NT) and different affinity purifications from serum 
raised against full-length XErp1 (#32.1 to 3). The extracts were warmed to 20°C and DNA morphology was 
examined after 60 minutes (top panel). Histone H1 kinase activity (bottom panel) was examined to monitor 
the cell cycle phase of the extracts throughout the experiment in samples taken at the indicated times after 
warming the extract. 
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morphology (see Figure 2.5, top panel) and H1 kinase activity of extract samples (see 

Figure 2.5, bottom panel). Together, these results indicated that inhibition of XErp1 

function interferes with the maintenance of CSF arrest in Xenopus egg extracts. 

In order to make sure that the observed effect is solely due to inhibition of XErp1 

function, rescue experiments have been performed. Here, endogenous XErp1 was immuno-

depleted from CSF extract and replaced with different in vitro translated proteins to 

examine their ability to complement loss of the endogenous protein. After warming to 

20°C, the extract was examined for integrity of CSF arrest. Since the inactivation of XErp1 

triggers the irreversible calcium-independent release from CSF arrest (see above), the 

rescue proteins had to be added before immuno-depletion of the endogenous XErp1 was 

started. Thus, the antibody raised against an amino-terminal fragment of XErp1 was used 

for depletion and carboxy-terminal fragments encompassing the two functional domains 

and the full-length as one negative control were used for rescue. 

As expected immuno-depletion with an unspecific rabbit antibody (ctrl ab) did not 

remove XErp1 from the extract and did not perturb CSF arrest (see Figure 2.6a and b, 1 

and 6). However, the XErp1 specific antibody significantly depleted the protein from the 

extract and lead to calcium-independent CSF release in the absence of rescue protein as 

evident from decondensed DNA morphology and stable IVT securin (see Figure 2.6a, 5 

and 10). When myc-tagged full-length XErp1 was added to the extract as a rescue 

construct, DNA morphology and instability of securin indicated that CSF release had taken 

place. In this case no rescue could be observed, because myc-tagged full-length XErp1 was 

recognized by the antibody and depleted along with the endogenous XErp1 (see Figure 

2.6b, myc WB and XErp1 WB). However, when a carboxy-terminal fragment of XErp1 

containing the ZBR and the F-box was added before depletion, CSF arrest was maintained 

as evident from condensed DNA, intact spindle structures and stable securin, indicating 

that it was sufficient to rescue depletion of endogenous XErp1. (see Figure 2.6a, 3 and 8; 

Figure 2.6b). The ability of this fragment to rescue CSF arrest and therefore APC/C 

inhibition critically depended on the integrity of the ZBR, since a fragment bearing a 

mutation in a conserved residue within the ZBR domain (C583A) could not rescue the 

effects of XErp1 depletion (see Figure 2.6a, 4 and 9). 
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The Western Blot for XErp1 shows the endogenous protein as well as the full-length 

rescue construct (marked with an asterisk). Comparison of these two bands and the signals 

detected for the myc-tagged rescue constructs shows that they have been used at 

concentrations that approximately match the endogenous level of XErp1. 

Taken together loss-of-function analyses of XErp1 indicate that it is required to 

maintain CSF arrest and consequently APC/C inhibition in Xenopus egg extract. This 

 

Figure 2.6: Rescue of XErp1 depletion from CSF extracts. (a) DNA and spindle morphology of the 
differently treated extracts have been examined before and after depletion of XErp1. (b) XErp1 depletion 
and the fate of the rescue constructs were analysed by Western Blotting of extract samples  against 
endogenous XErp1 and the myc-epitope tag (T is before and SN after depletion). APC/C activity was 
monitored by examining the stability of radioactively labelled securin that was added to the extract after 
depletion. The extract was sampled before (0) and 30 minutes after depletion and warming to 20°C (30). 
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function is mediated by the carboxy-terminal domain with an intact zinc-binding region, 

since this part of the protein is sufficient to rescue the effects of XErp1 depletion. 

2.3.2 Overexpression of XErp1 

To further support a role for XErp1 in preventing CSF release and therefore APC/C 

activation, the effects of XErp1 overexpression were investigated. To this end different 

 

Figure 2.7: Effects of XErp1 overexpression on CSF release. Recombinant MBP-XErp1 proteins were 
purified from bacteria, added to CSF extracts and their effect on CSF release and APC/C activation was 
examined. (a) DNA morphology was analysed by fixing extract samples 20 and 60 minutes after calcium 
addition. (b) Cdc27 gel mobility and stability of cyclin B amino-terminus and securin were monitored as 
markers of M-phase exit and APC/C activation. (c) Different fragments of XErp1 were examined for their 
effect on CSF at low concentrations. 
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recombinant full-length MBP-XErp1 fusion proteins were purified from bacteria and added 

to CSF extracts at defined concentrations to examine their effect on calcium-dependent 

CSF release. Wildtype MBP-XErp1FL,wt was added to the extract to a final concentration of 

500 nM (corresponding to 5-10 fold over endogenous levels as determined by semi-

quantitative Western Blotting, data not shown) and its effect on CSF release was examined 

after addition of calcium. As shown by condensed DNA until 60 minutes after calcium 

addition, overexpression of MBP-XErp1 completely prevented calcium-dependent CSF 

release (see Figure 2.7a, left). As expected from the loss-of-function/rescue analysis, a 

mutant protein lacking a conserved cysteine residue in the ZBR (MBP-XErp1FL,C583A) was 

unable to prevent CSF release as evident from decondensed chromatin 60 minutes after 

calcium addition (see Figure 2.7a, right). 

To corroborate these findings, biochemical markers of CSF release and APC/C 

activation were examined in the same experiment (see Figure 2.7b). The APC/C subunit 

Cdc27 is phosphorylated in M-phase by Cdk1 causing a pronounced mobility shift of the 

protein (King et al., 1995; Patra and Dunphy, 1998). Upon M-phase exit inactivation of 

Cdk1 by cyclin B degradation and removal of Cdk1 phosphorylation by opposing 

phosphatases abolishes this mobility shift. To examine this mobility shift as a marker for 

the cell cycle phase of the extract, samples where analysed by Western Blotting for Cdc27. 

In samples from CSF arrested egg extracts a low mobility form of Cdc27 was clearly 

visible. This band was not shifted down after calcium addition in the samples treated with 

wildtype MBP-XErp1 which also showed condensed chromatin after 60 minutes. In 

samples treated with mutant MBP-XErp1, Cdc27 was shifted down in the presence of 

calcium indicating that exit from M-phase has taken place. To investigate APC/C 

activation and M-phase exit more directly we examined the stability of the APC/C 

substrates cyclin B and securin. IVTed and radio-labelled securin and amino-terminus of 

cyclin B (cycBNT) were stable in extracts treated with wildtype MBP-XErp1, but not in 

extracts containing the mutant MBP-XErp1 indicating that the APC/C could not be 

activated properly in the presence of wildtype MBP-XErp1. 

To further clarify the role of the functional domains/motifs of XErp1 in preventing 

APC/C activation different fragments of MBP-XErp1 were examined for their effect on 

CSF release at different concentrations (not shown). At a final concentration of 100 nM 

only a carboxy-terminal fragment of XErp1 (aa 374-651, see also Figure 2.7c) was still 

able to prevent calcium-induced chromatin decondensation and therefore CSF release. 
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Equimolar amounts of full-length MBP-XErp1 or MBP-XErp1 amino-terminus did not 

prevent CSF release under these conditions. This indicated that the carboxy-terminal 

fragment alone was more effective than the full-length protein or the amino-terminus (see 

Figure 2.7c). This argues for possible negative effects of the amino-terminal part of the 

protein on the activity of full-length XErp1. 

2.3.3 MAPK-independency of XErp1 overexpression effects 

The results of the experiments addressing a possible function of XErp1 in CSF arrest 

suggested that XErp1 is in fact an indispensable component of CSF activity. The MAPK 

pathway has been shown to play a pivotal role in CSF arrest by preventing APC/C-

mediated M-phase exit (Abrieu et al., 1996). Thus, the requirement of this pathway for 

XErp1-induced prevention of CSF release and APC/C activation was tested. MAPK 

(specifically Erk1/2) is activated through phosphorylation of two neighbouring residues 

(corresponding to T183 and Y185 in mammalian Erk1/2) by a MAPK-kinase. Small-

molecule inhibitors have been developed that efficiently prevent MAPK activation by 

 

Figure 2.8: Effect of MAPK of XErp1 function. MBP-XErp1 or control buffer were incubated in CSF 
extract in the presence or absence of the MAPK pathway inhibitor UO126. CSF release after calcium 
addition was followed by analysing securin stability. The status of MAPK activity was monitored by 
comparing signals for total Erk1/2 to signals for phosphorylated (active) Erk1/2. 
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inhibiting the upstream MAPK-kinase Mek. One of these molecules called UO126 was 

used to inhibit MAPK activity in CSF extracts and to examine MBP-XErp1�s ability to 

suppress APC/C activation in the absence of MAPK activity. 

To this end extracts were treated with UO126 or DMSO as a solvent control and 

incubated with full-length, wildtype MBP-XErp1 or a control buffer. In the buffer control 

the APC/C substrate securin was readily degraded after calcium addition. This happened in 

the presence or absence of an active MAPK pathway as judged from staining with an 

antibody specific for the region around T183/Y185 in Erk1/2 (see Figure 2.8, right panel). 

However, when excess MBP-XErp1FL,wt was added to extracts treated with UO126 or 

DMSO, APC/C activation was prevented as shown by stable securin in both cases. Thus, 

suppression of MAPK kinase activity with UO126 did not prevent excess XErp1 from 

inhibiting APC/C activation (see Figure 2.8, left panel). This indicates that full activity of 

the MAPK pathway might not be strictly required for XErp1�s function in CSF arrest. 

2.3.4 Mechanism of XErp1 function 

The results from loss-of-function as well as gain-of-function experiments strongly 

support a role for XErp1 in preventing APC/C activation during CSF arrest. In particular 

the carboxy-terminus seems to be sufficient for this function, whereas the amino-terminus 

might exert a negative regulatory function. An intriguing possibility to test was a direct 

inhibition of APC/C�s ubiquitin ligase activity by XErp1. In order to investigate whether 

inhibition of the APC/C by XErp1 is direct, an in vitro ubiquitylation assay was established 

and the effect of different XErp1 fragments on the reaction was monitored.  

The assay uses purified components of the ubiquitin pathway (E1, E2 and ubiquitin) 

including immuno-purified APC/C plus its activator Cdc20 as an E3 to modify an amino-

terminal fragment of cyclin B (cycBNT) as a model substrate. The APC/C was immuno-

purified from M-phase extract and incubated with or without Cdc20 and the respective 

recombinant MBP-XErp1 fragments. After washing, the immobilized APC/C was mixed 

with the other assay components including the substrate. Ubiquitin modification is visible 

by the appearance of low-mobility bands over time, which represent multiple conjugates of 

the cyclin B amino-terminus with ubiquitin. 
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When immuno-purified APC/C was not incubated with exogenous Cdc20, it showed 

only basal activity towards the cyclin B amino-terminus, probably because the purification 

procedure removes most of the bound activator Cdc20 which is required for efficient 

substrate ubiquitylation (see Figure 2.9). As expected, pre-incubation of the APC/C with 

recombinant Cdc20 greatly increased its activity towards the substrate as shown by the 

formation high molecular weight conjugates and rapid loss of the band representing 

unconjugated substrate (Kramer et al., 1998; Kramer et al., 2000). However, if the pre-

incubation step was carried out in the presence of the XErp1 carboxy-terminus, which 

rescued XErp1 depletion and was most efficient in preventing calcium-triggered CSF 

release, ubiquitin conjugation to the cyclin B amino-terminus was largely suppressed in a 

concentration-dependent manner (see Figure 2.9). High molecular weight ubiquitin 

conjugates did not form as efficiently and considerable amounts of substrate remained 

unconjugated. In contrast, up to ten-fold higher concentrations of the amino-terminus did 

 

Figure 2.9: Effect of XErp1 fragments on APC/C activity in vitro. To analyze XErp1�s effect on APC/C 
activity in vitro, immuno-purified APC/C and Cdc20 were incubated with recombinant MBP-XErp1 
fragments. The APC/C was subsequently assayed for activity towards its model substrate amino-terminus of 
cyclin B. Samples of the reaction were taken at 0, 6 and 12 minutes, boiled in sample buffer and examined for 
cyclin B ubiquitylation by PAGE and autoradiography. 
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not have a visible effect on APC/C activity towards its model substrate. 

These results corroborate the finding that the carboxy-terminus of XErp1 is required 

and could be sufficient to ensure APC/C inhibition in CSF arrested egg extracts. They 

furthermore suggest that the mechanism by which XErp1 exerts its function is by direct 

inhibition of APC/CCdc20-dependent ubiqitylation of M-phase substrates. 

2.4 Regulation of XErp1 by Plx1 

XErp1 was identified as an interacting protein of Plx1, a kinase that has been shown 

to be involved in APC/C regulation. The results on XErp1 function show that the protein 

directly affects APC/C activity. This opens the possibility that XErp1 might be a mediator 

of Plx1�s function in activating the APC/C. Thus, the link between XErp1 and Plx1 in 

regulating APC/C activity was investigated. 

2.4.1 Phosphorylation of XErp1 by Plx1 

A straight-forward link between a kinase and any given protein could be a direct 

kinase/substrate relationship. This possibility is easily testable in vitro by incubating 

recombinant kinase and the candidate protein(s) in the presence of radioactively labelled 

ATP. To test whether XErp1 could serve as a substrate for Plx1, in vitro kinase assays 

were performed on full-length MBP-XErp1 and the two fragments that have also been used 

for the analysis of APC/C activity in vitro (see 2.3.4). Incorporation of radioactively 

labelled phosphate shows that the MBP-tagged full-length as well as the amino-terminus of 

XErp1 are in vitro substrates of Plx1. In contrast, the MBP-tagged carboxy-terminal part of 

the protein does not show significant phosphate incorporation (see Figure 2.10a). 
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The overexpression experiments had already indicated a possible role of the amino-

terminus in negatively regulating XErp1 function (see 2.3.2, Figure 2.7) and Plx1 was 

postulated to negatively regulate an inhibitor of the APC/C (see introduction). Since the 

amino-terminus was phosphorylated by Plx1, this part of the protein was scanned for 

possible Plx1 phosphorylation sites that could be implicated in negative regulation of 

XErp1 activity. Indeed, the amino-terminus contained sequence motif that is known to 

target proteins for degradation dependent upon phosphorylation of serine residues within 

this motif (phospho-degron, DSGXXXS, where X can be any amino acid). This motif is 

described to be reconized by an SCF complex containing ß-TRCP as a targeting subunit 

(SCFß-TRCP) (Fuchs et al., 2004). The motif does not fit the consensus generally assumed to 

be optimal for Plk phosphorylation (D/E-X-S/T-Φ, where Φ is a hydrophobic amino acid) 

(Barr et al., 2004), but the sequence around this motif contains several acidic residues and 

might thus be considered favourable for Plk phosphorylation. Also, Plk1 has been shown 

to target similar motifs in other proteins (Watanabe et al., 2004). When phosphate 

incorporation into full-length MBP-XErp1 was compared to a mutant where the critical 

residues S33 and S38 have been changed to a non-phosphorylateable residue, it was almost 

completely abolished (see Figure 2.10b). This indicated that these two serine residues 

represent the main sites of Plx1 phosphorylation on XErp1 in vitro. 

 

Figure 2.10: In vitro phosphorylation of amino-terminal XErp1 by Plx1. Recombinant MBP-tagged 
XErp1 fusion proteins were incubated with 32P-labelled ATP and recombinant Plx1. (a) Incorporation of 
labelled phosphate into full-length XErp1 and the amino- (NT) or carboxy-terminal (CT) fragments as 
shown by autoradiography (32P) and Coomassie staining (CBB) to control for approximately equal amounts 
in the assay. (b) Comparison of full-length wildtype XErp1 with a mutant in the phospho-degron (S33N, 
S38N) as in (a). 
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2.4.2 Relevance  of the XErp1 phospho-degron 

The results of the in vitro kinase assays have identified a potential phospho-degron in 

the amino-terminal part of XErp1 as a putative target site for negative regulation of XErp1 

by Plx1. To check whether the identified motif is implicated in phosphorylation-dependent 

degradation of XErp1, experiments were conducted to examine the behaviour of XErp1 

variants lacking this potential phospho-degron or made non-phosphorylateable at the 

critical positions. Low amounts of 35S-Met-labelled IVTed proteins were incubated in 

CSF-arrested egg extract in the presence or absence of calcium and their stability was 

monitored by autoradiography of extract samples after PAGE. To exclude that the addition 

of in vitro translated XErp1 proteins had an effect on M-phase exit similar to the addition 

of excess recombinant protein, the cell cycle phase before and after calcium addition was 

monitored. In analogy to previous experiments, this was done by microscopy of added 

 

Figure 2.11: Role of the phospho-degron for XErp1 stability. (a) Radioactively labelled IVT XErp1 proteins 
were incubated in CSF extract in the presence or absence of calcium to examine their stability. (b) and (c) 
Analysis of CSF release by microscopic inspection of DNA morphology and assaying H1 kinase activity 
confirmed that IVT addition had no effect on M-phase exit. 
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sperm nuclei and assaying H1 kinase activity of extract samples. 

When wildtype XErp1 IVT was added to ice cold CSF extract that was subsequently 

warmed to 20°C, it experienced a mobility shift similar to that seen in endogenous XErp1 

in M-phase. In the absence of calcium this upshifted form remained stable throughout the 

course of the experiment. However, in samples treated with calcium the labelled protein 

was completely degraded within ten minutes (see Figure 2.11a). Thus, wildtype IVT 

XErp1 like the endogenous protein is stable in CSF extract and degraded in a calcium-

dependent manner. IVT XErp1 carrying a mutation in the two critical serine residues of the 

DSGXXXS-motif (XErp1 S33N, S38N) also showed an upshift upon incubation in CSF 

extract and remained stable in the absence of calcium. In contrast to the wildtype protein 

however this XErp1 mutant did not get degraded in the presence of calcium. Instead, 

shortly after calcium addition it experienced a pronounced, transient mobility shift 

(henceforth called hypershift). At later time points the stabilized protein regains the 

increased gel mobility of unmodified IVT that in similar to endogenous protein in 

interphase extract.  

When the carboxy-terminal fragment of XErp1 was added to CSF extract it showed 

no sign of post-translational modifications and remained stable. No significant degradation 

after calcium addition was observed with this fragment. Also, the hypershift could not be 

observed upon CSF release. This is consistent with the idea that the phospho-degron motif 

in the amino-terminus is required for efficient XErp1 destruction upon CSF release. It also 

shows that the modifications of XErp1 seen in CSF extract and associated with CSF 

release depend on the presence of amino acids 1-373 (for a detailed analysis see N. Rauh, 

PhD thesis). 

In all cases the addition of the IVTed proteins did not have a visible effect on CSF 

release as shown by the formation of nuclei and the pronounced drop in H1 kinase activity 

after calcium addition (see Figure 2.11b and c). Taken together these results indicate that 

XErp1�s phospho-degron, which is the main site of Plx1 phosphorylation in vitro (see 

2.4.1), is required for its timely degradation in extract. 

2.4.3 Interplay between XErp1 and Plx1 

The evidence obtained so far indicated that APC/C activation upon CSF release in 

Xenopus egg extract could work through Plx1-dependent destabilization of the APC/C-
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inhibitor XErp1. To investigate this potential link between XErp1 and Plx1 in more detail 

Plx1 loss-of-function studies have been carried out. These were focussed on the fate of 

XErp1 and its role in Plx1-mediated APC/C activation under these conditions. Plx1 loss-

of-function has been successfully achieved in Xenopus egg extract by either depleting 

endogenous Plx1 or by adding excess recombinant, kinase-dead Plx1 (Plx1 N172A) to the 

extract (Descombes and Nigg, 1998). Kinase-dead Plx1 is assumed to act in a dominant-

negative fashion by recruiting Plx1 substrates into non-productive complexes. It has been 

shown that the PBD of Plx1 is required for dominant-negative effects of Plx1 on CSF 

release (Liu et al., 2004). This is consistent with the recently introduced model of PBD-

mediated targeting of Plks to substrates or structures in the cell and suggests that APC/C 

activation by Plx1 employs such a mechanism (Sillje and Nigg, 2003). 

To simplify the dominant-negative approach, it was checked whether the PBD of 

Plx1 is not only required, but whether its overexpression is also sufficient to create a Plx1 

 

Figure 2.12: Effects of dominant-negative MBP-PBD on CSF release and XErp1 stability. (a) MBP-
tagged PBD or a mutant incapable of phospho-peptide binding where added to CSF extracts in the 
presence or absence of calcium. (b) The effect of dominant-negative PBD on XErp1 stability was tested 
by monitoring IVT XErp1 stability. 
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loss-of-function situation in Xenopus egg extracts. To this end MBP-tagged PBD was 

purified from bacteria and added to CSF extracts to examine its effect on calcium-induced 

CSF release. Similar to kinase-dead Plx1, MBP-PBD prevented CSF release and 

destruction of the APC/C-target securin after addition of calcium (see Figure 2.12a, left 

panel). As for kinase-dead Plx1 this effect of the PBD required the ability to bind phospho-

peptides, because an MBP-PBD in which three residues critical for phosphate-binding 

were mutated (W408F, H532A, K534A; see (Elia et al., 2003b)) did not show a visible 

effect on CSF release as observed by spindle disassembly, chromatin decondensation and 

securin degradation (see Figure 2.12a, right panel). Thus, these results revealed that 

overexpression of wildtype MBP-PBD could be used to study XErp1�s fate and function 

under Plx1 loss-of-function conditions. 

If XErp1 was a target of Plx1-dependent destabilization upon CSF release, then it 

should be stable when CSF release is prevented by dominant-negative interference with 

Plx1 function. To examine the fate of XErp1 in the presence of the dominant-negative 

MBP-PBD we incubated IVT XErp1 in CSF extract supplemented with MBP-PBD or 

control buffer (see Figure 2.12b). Upon induction of CSF release wildtype XErp1 was 

degraded in the control case. As expected, this degradation depended on the phospho-

degron, because a mutant in this motif was not degraded in the control. In contrast, when 

calcium was added to extract containing the dominant-negative PBD, wildtype XErp1 was 

not degraded, indicating that its degradation requires Plx1-activity. Again, a mutant in the 

phospho-degron did not get degraded under these conditions similar to the wildtype. 

Interestingly, the transient hypershift, that was well visible in this mutant in the control, 

was suppressed when MBP-PBD was present, suggesting that requires functional Plx1. 
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The working hypothesis that has emerged thus far suggests that Plx1-mediated 

inactivation of the APC/C inhibitor XErp1 leads to APC/C activation and therefore CSF 

release. This suggests that dominant-negative effects of the PBD might be largely mediated 

by preventing XErp1 inactivation through sequestration. To establish whether XErp1 is an 

important target of Plx1 in APC/C activation and CSF release, it was investigated if XErp1 

inactivation is sufficient to overcome dominant-negative effects of the PBD on these 

processes. To examine this, the MBP-PBD was used to interfere with Plx1 activity as 

before; in addition, anti-XErp1 antibody was used to inhibit XErp1 function at the same 

time as in 2.3.1. 

Consistent with the previous results, addition of MBP-PBD to CSF extract prevented 

CSF release in the presence of calcium and unspecific rabbit antibody as evident from 

condensed sperm DNA one hour after calcium addition and a moderate drop in H1 kinase 

activity by only about 40 % (see Figure 2.13, 3). However, when XErp1-specific antibody 

was added under these conditions, H1 kinase activity rapidly declined to interphase levels 

and sperm DNA decondensed to form nuclei, indicating that XErp1 inactivation is 

 

Figure 2.13: XErp1 as a target of Plx1-mediated APC/C activation. (a) XErp1 function was inhibited in 
the presence of dominant negative acting MBP-PBD or a mutant unable to bind phospho-peptides and in 
the presence or absence of calcium. CSF release and APC/C activation was monitored by H1 kinase assay 
and microscopy of sperm DNA. (b) The results of the H1 kinase assay were quantified by densitometric 
analysis of band intensities. 
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sufficient to overcome a block in calcium-induced CSF release induced by Plx1 loss-of-

function (see Figure 2.13, 1). Thus, MBP-PDB cannot prevent calcium-induced CSF 

release in the absence of active XErp1. The fact that inactivation of the Plx1 substrate 

XErp1 is sufficient to rescue an MBP-PBD-induced block in CSF release shows that 

XErp1 is an important target of Plx1 in mediating this process. 

Moreover, CSF release and drop in H1 kinase activity was also observed in the 

absence of calcium when XErp1 function was inhibited in the presence of MBP-PBD (see 

Figure 2.13, 2). This shows that the PBD cannot prevent CSF release induced solely by 

XErp1 inactivation which would be consistent with a model in which Plx1 acts upstream of 

its effector XErp1 in activating the APC/C. Again, the effects seen with MBP-PBD where 

dependent on phospho-peptide binding as a mutant MBP-PBD could not prevent CSF 

release in the presence of control antibody and calcium (see Figure 2.13, 5-8). 

Taken together, the experiments carried out to elucidate the functional relationship 

between XErp1 and Plx1 support a model in which Plx1-mediated inactivation of XErp1 is 

an important trigger for APC/C activation and subsequent CSF release. 

2.4.4 Regulation of XErp1 degradation by calcium 

Besides Plx1 activity, the calcium signal is a second obvious requirement for CSF 

release and therefore possibly XErp1 degradation. In fact, the calcium signal seems to 

determine the timing of XErp1 degradation in extracts. Also, the working model proposed 

by Descombes and Nigg predicts, that if the Plx1-regulated APC/C inhibitor exists, it 

would be inactivated by the calcium signal. Work by Lorca et al. has shown that 

calmodulin-dependent kinase II (CaMKII) is the sole mediator of this calcium signal in 

Xenopus egg extract (Lorca et al., 1993). Therefore, experiments were conducted to 

examine whether CaMKII activity is required for XErp1 degradation in extract using a 

CaMKII inhibitory peptide. Because the calcium signal, XErp1 degradation and CSF 

release are very tightly linked, the experiments had to be done under conditions were 

CaMKII activation and cell cycle progression are uncoupled. Anaphase arrested extract 

that does not have CaMKII activity is such a system. Extract can be arrested in anaphase 

with non-destructible cyclin B (Holloway et al., 1993; Stemmann et al., 2001). CaMKII 

activity can be retriggered by addition of calcium in the absence of cell cycle progession 

(Rauh et al., 2005). It is important to be able to trigger CaMKII activity because available 
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CaMKII inhibitors, be it small molecules or peptides, prevent only CaMKII activation and 

not activity. 

When wildtype XErp1 was incubated in anaphase-arrested egg extract that lacks 

CaMKII activity it experienced the M-phase specific upshift like in CSF extract, but 

remained stable over the course of the experiment (see Figure 2.14a, middle). In contrast, 

wildtype XErp1 was very rapidly degraded in extract in which CaMKII activity was 

retriggered by the addition of calcium (see Figure 2.14a, right). This degradation could be 

prevented with a peptide corresponding to the calmodulin-binding region in CaMKII that 

prevents efficient activation of the kinase (see Figure 2.14a, left). It was shown that 

CaMKII can phosphorylate XErp1 directly and that phosphorylation on threonine 195 

leads to enhanced Plx1 recruitment which triggers XErp1 degradation (Rauh et al., 2005). 

Consequently, a mutant in this critical residue was resistant to calcium-induced 

degradation. Interestingly, the previously proposed CSF component Emi1 was unstable in 

anaphase extract in the presence or absence of CaMKII activity suggesting that its stability 

might not be regulated by fertilization and the subsequent calcium-signal. 

A hallmark of anaphase is APC/C activity and consequently instability of its 

substrates. Rapid degradation of the APC/C substrate securin under all conditions showed 

that the manipulations did not affect anaphase arrest. CaMKII activity in this experiment 

 

Figure 2.14: CaMKII-dependency of XErp1 degradation in extract. (a) Radioactively labelled IVT XErp1 
wildtype or a mutant incapable of efficient Plx1 binding (T195A) and IVT Emi1 were incubated in extract 
without CaMKII activity (middle). Calcium was added to the extracts in the presence (left) or absence (right) 
of an inhibitory peptide. Anaphase state of the extract was confirmed by monitoring securin stability under 
all conditions. (b) CaMKII activity was measured in all samples by assaying extract samples for CamKII 
activity towards a specific peptide-substrate before (0) and 3 minutes after calcium addition (3). 
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was monitored by assaying extract samples for their phosphorylation of a CaMKII-specific 

peptide (see Figure 2.14b). Together these results show that CaMKII activity is required 

for XErp1 inactivation probably via enhanced Plx1 recruitment. 

2.5 In vivo analysis of XErp1 function 

Extracts from CSF arrested Xenopus eggs have mainly been used throughout this 

work to study XErp1 function and regulation. The available evidence suggests that XErp1 

plays an important role in maintaining CSF activity in these extracts and that its 

degradation after Plx1 phosphorylation on the phospho-degron sequence allows for APC/C 

activation and CSF release. CSF activity has originally been identified by cytoplasmic 

injection experiments into two-cell embryos. The observed cleavage arrest was used an 

indicator of potential CSF activity also for single proteins of the CSF pathways. Therefore, 

as a first step towards an in vivo analysis of XErp1 cytoplasmic injection experiments were 

 

Figure 2.15: Injection of XErp1 into Xenopus embryos. The carboxy-terminus of XErp1 or a mutant 
lacking a functional ZBR were injected into one cell of two-cell embryos and their development followed 
after injection (examples, left panel). All injected embryos were scored for their phenotype after the 
observation period (right panel, top). The purity of the injected protein is shown on a Coomassie stained gel 
(right panel, bottom). 
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carried out using recombinant XErp1. 

To this end the carboxy-terminal fragment, that was sufficient to rescue CSF release 

after XErp1 depletion from CSF extract, was injected into one cell of dividing two-cell 

embryos obtained by in vitro fertilization. As a control, embryos where injected with a 

carboxy-terminal fragment mutated in a critical residue of the ZBR, that was unable to 

rescue the effects of XErp1 depletion from CSF extracts. Development of the embryos was 

followed for about three hours after injection (see Figure 2.15, left panel). Of 19 embryos 

injected with the wildtype protein the injected half appeared arrested in 15 cases, whereas 

the other half seemed unaffected. In one case the embryo looked normal and in three cases 

the embryos were not reliably scorable due to signs of deterioration. Of the 24 embryos 

injected with the control protein carrying a point mutation in the ZBR, 21 had a normal 

appearance. No blastomere-arrest could be observed in any of the control-injected embryos 

(see Figure 2.15, right/top). Again, three embryos could not be unambiguously assigned 

due to beginning degradation. These results clearly indicate that misexpression of XErp1 

interferes with embryonic cell cycle progression in vivo similar to what has been observed 

for other proteins implicated in CSF activity. 
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3 Discussion 

This work has led to a basic characterization of XErp1 protein expression, function 

and regulation. The protein is expressed in immature oocytes and throughout oocyte 

maturation, where it experiences cell cycle-dependent changes in abundance and post-

translational modification status. Experiments using the Xenopus egg extract system show 

that XErp1 is present CSF-arrested Xenopus egg extract and is rapidly degraded after 

addition of calcium which mimics fertilization. Loss-of-function as well as gain-of-

function studies demonstrate that XErp1 activity is essential for CSF arrest and that its 

misregulation interferes with APC/C activation and therefore CSF release. In vitro 

experiments using immuno-purified APC/C show that this is due to direct inhibition of 

APC/C substrate ubiquitylation by XErp1. Moreover, oocyte injection experiments show 

that XErp1 misexpression in vivo leads to cell division arrest. 

Investigation of a potential link to its interacting protein Plx1 shows that a phospho-

degron motif in XErp1�s amino-terminus, which is required for XErp1 degradation upon 

CSF release in extract, is the main Plx1-phosphorylation site on XErp1. Experiments 

combining XErp1/Plx1 loss-of-function demonstrate that XErp1 is a critical target for Plx1 

in APC/C activation and CSF release. XErp1 degradation in extract is shown to depend on 

CaMKII activity, the sole mediator of the fertilization signal. As opposed to XErp1, the 

closely related Emi1 protein does not appear to be regulated by CaMKII in terms of its 

degradation. 

In this chapter the results of this work will be discussed with respect to their 

contribution to the understanding of CSF arrest and a possible mechanism of polo-like 

kinase-mediated APC/C activation. The data collected here will also be put into context 

with studies, that have been published on this topic throughout the course of this work and 

shortly thereafter. Moreover, emphasis will be put on observations that were not followed 

up on in this work, but pose interesting questions for future work on the subject. 

3.1 XErp1 behaviour in maturing oocytes and CSF extracts  

Analysis of XErp1 function has shown that it is an important component of CSF 

activity in Xenopus egg extracts. According to the current view in the field, CSF 
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components have to fulfil basic criteria. These derive from properties that CSF activity 

shows: the component should (1) become active during oocyte maturation (2) be present 

and active in metaphase of meiosis II (3) be inactivated upon fertilization or 

parthenogenetic activation of the egg (see also introduction). In this section the results 

obtained for XErp1�s behaviour during oocyte maturation and in CSF extracts will be 

discussed based on the criteria outlined above. The question of how XErp1 becomes active 

in the first place is of particular interest in this context. 

In CSF extracts XErp1 exists in a form with reduced gel mobility that was shown to 

result from protein phosphorylation (N. Rauh, see (Schmidt et al., 2005)). In the analysis of 

whole oocytes undergoing meiotic maturation a similar electrophoretic shift was observed 

around the meiosis I to II transition that persists until CSF arrest. It is tempting to assume 

that both shifts correspond to the same modification. Protein phosphorylation is often used 

by the cell to modulate protein activity, thus it seems reasonable to postulate that XErp1 

activity is modulated by phosphorylation throughout oocyte maturation. Since the 

functional investigation has shown that XErp1 is active as an APC/C inhibitor in the CSF 

state (consistent with the second criterion) and the modification occurs before CSF arrest, 

it also seems legitimate to hypothesize that if this phosphorylation modifies XErp1 

activity, it would probably have a positive effect (i.e. be an activating phosphorylation). 

This would be consistent with the first criterion, stating that a CSF component would have 

to become active during oocyte maturation. 

From a simplified point of view, progression through the meiotic cell cycle with two 

consecutive nuclear divisions is, like the mitotic cell cycle, regulated by alternating phases 

of Cdk1 and APC/C activity. However, XErp1 is present throughout meiosis which would 

exclude APC/C activation during the whole process if XErp1 was always active (i.e. also 

in meiosis I). This is clearly not what has been observed, lending further support to the 

hypothesis, that XErp1 activity is turned on or relieved from repression at a later stage of 

oocyte maturation before it fulfils its function at metaphase of meiosis II. The timing of the 

putative activating phosphorylation well after GVBD would fit with activation in meiosis 

II. The upshift is clearly delayed with respect to activation of the MAPK pathway, making 

it seem unlikely that it is MAPK itself that phosphorylates XErp1. This would fit well with 

the results showing that MAPK activity is not strictly required for XErp1 activity at least 

under overexpression conditions. 
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For Emi1, a protein closely related to XErp1, it has been suggested that downstream 

mediators of the MAPK-pathway influence its activity (Paronetto et al., 2004). In 

particular, phosphorylation of mouse Emi1 by p90RSK was published to enhance its binding 

to the APC/C activator Cdc20. This is thought to promote its potential as an APC/C 

inhibitor to ensure maintenance of CSF arrest in mouse oocytes. However, these results 

have been questioned by a recent publication showing that mice lacking all three p90RSK 

isoforms do not show defects in CSF arrest (Dumont et al., 2005). Moreover, a study 

showing that mouse XErp1 (which is here referred to as Emi2) is required for CSF arrest 

does not find such a role for Emi1 (Shoji et al., 2006). Also, the study that initially 

proposed a role for Emi1 in CSF arrest in Xenopus shows that Emi1 like XErp1 does not 

require full MAPK activity to prevent CSF release when overexpressed (Reimann and 

Jackson, 2002). 

In summary, XErp1 is clearly modified during oocyte maturation and this 

modification is probably an activating phosphorylation. The kinase that could carry out this 

phosphorylation is currently unknown. Possible candidates include the kinases already 

implicated in CSF-arrest establishment such as Cdk2 or downstream mediators of MAPK 

activity. The data shown in this work do not support a role for the MAPK-pathway or its 

downstream mediators, but do not completely exclude it either (see also below).  

3.2 XErp1�s contribution to CSF arrest  

Since its discovery as a biochemical activity in 1971 many proteins have been 

implicated in CSF arrest. Some of these are thought to act in linear pathways 

(mos/MAPK/p90RSK/Bub1), others have been identified as independent components of 

CSF activity or their relationship to the already known pathways has not been studied 

(Emi1 and Cdk2). The loss-of-function studies conducted on XErp1 clearly show that it is 

essential for CSF arrest maintenance in Xenopus egg extracts (see Figure 3.1a). 

As mentioned before, the available evidence collected suggests that this function 

might be independent of a fully active MAPK pathway. However, there is work showing 

that under certain circumstances low levels of MAPK activity might be sufficient to ensure 

CSF arrest maintenance (Yamamoto et al., 2005). This study also discusses the possibility 

that in experiments in which small molecule MAPKK inhibitors are used, these might not 

be potent enough to lower MAPK activity under the critical threshold that would interfere 

with CSF arrest maintenance. This would question the conclusion reached in this work as 
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well as those reached for Emi1 concerning their functional independence of the MAPK-

pathway (Reimann and Jackson, 2002; Schmidt et al., 2005). On the other hand, the data 

shown in the study by Yamamoto et al. clearly contradict the current view that the MAPK-

pathway is required only for CSF arrest establishment but not maintenance based on 

several studies addressing this question (for a review see (Tunquist and Maller, 2003)). 

Thus, the question of whether MAPK activity or its downstream mediators can be placed 

in one pathway with XErp1 (and/or Emi1) or are completely separate entities cannot be 

answered, yet. 

The MAPK-pathway and Cdk2, the two classical CSF components, are thought to act 

in an additive fashion (Tunquist et al., 2002). Whereas a possible link between the MAPK-

pathway and the two novel seemingly independent elements of CSF activity Emi1 and 

XErp1 has at least been addressed experimentally, no data exist on a possible link between 

these proteins and Cdk2. In Xenopus it has been shown that a complex of Cdk2 and cyclin 

E functions during the meiotic cell cycle (Rempel et al., 1995). The kinase activity of this 

complex increases markedly around entry into meiosis II. This would fit well with the 

observed modification of XErp1 after GVBD. The mechanism of Cdk2-mediated CSF 

arrest is presently unclear (Gabrielli et al., 1993; Tunquist et al., 2002). Thus, the 

hypothesis that Cdk2 targets XErp1 to enhance its APC/C inhibitory activity is valid and 

worth testing. This would put XErp1 downstream of Cdk2/cyclin E. 

Very recent work on Xenopus oocyte maturation shows that there are redundant 

pathways for MPF activation after progesterone exposure (Haccard and Jessus, 2006). It is 

thought that both of these pathways are normally active, but none of them is exclusively 

required for oocyte maturation to take place. One pathway acts by directly activating Cdk1 

through the synthesis of new B-type cyclins, the other acts by inducing the synthesis of 

mos. As we have seen before, mos activates the MAPK-pathway and its downstream 

component p90RSK. This kinase is able to inhibit Cdk1-inhibitory kinases and thereby leads 

to activation of MPF (Palmer et al., 1998). The fact that new cyclin synthesis in the 

absence of MAPK-pathway activity would be sufficient to observe seemingly normal 

oocyte maturation opens the possibility that the effects seen on CSF arrest after MAPK 

inactivation are an indirect consequence of processes that usually happen after MAPK 

activation in meiosis I. It is tempting to speculate that one such process could also be 

Cdk2/cyclin E activation in meiosis II. This would put the MAPK-pathway upstream of 

Cdk2/cyclin E which might in turn be upstream of XErp1. Such a view would unify most 
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activities that have so far been shown to be critical for CSF activity into one common 

pathway (see Figure 3.1c). However, until now no data exist to support this speculation. 

Alternatively, the two pathways could converge on XErp1 independently, so that 

phosphorylation of XErp1 by downstream mediators of the MAPK-pathway and Cdk2 are 

both necessary for full XErp1 activity (see Figure 3.1b). 

As a last point the injection experiments should be taken into account here. Clearly, 

the injection of the XErp1 functional carboxy-terminus leads to a cell cycle arrest similar 

to that observed for other factors implicated in CSF activity, suggesting that XErp1 acts as 

a CSF also in vivo. However, in this experiment the exact arrest point is not defined. It has 

not been analysed whether the XErp1 injected blastocysts arrest with high Cdk1 activity 

and metaphase-like spindles. Thus, in principle other mechanisms than APC/C inhibition 

before anaphase could have led to a cleavage arrest anywhere in the cell cycle. Although 

this would be surprising, this is an issue that needs more detailed analysis. 

Taken together, this work has shown that XErp1 is an essential component of CSF 

arrest in Xenopus egg extract. Recent work on mouse oocytes has shown that the mouse 

homolog also fulfils this function in vivo and it is likely that this is also true for XErp1 in 

intact Xenopus oocytes (Shoji et al., 2006). How XErp1 function relates to the other 

pathways that have been implicated remains largely unclear. 

 

Figure 3.1: Alternative models of how XErp1 could contribute to CSF. (a) XErp1 could be an 
independent element among the other already identified components of CSF. This would support a view 
where CSF is the sum of several independent pathways inhibiting the APC/C. (b and c) Data produced in 
this work suggest that XErp1 might get activated through phosphorylation. Also, there is serious doubt 
about the role of Emi1 in CSF arrest. The mechanism of SAC-mediated CSF arrest is unclear. Thus, XErp1 
could be the only APC/C inhibitor important for CSF onto which already described pathways converge. 
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3.3 Mechanism of XErp1 function 

The experiments carried out in this work show that XErp1 is able to significantly 

stabilize APC/C substrates in extract and that it can inhibit APC/CCdc20-dependent 

ubiquitylation in vitro. These activities require the presence of the ZBR. Similar results 

have been obtained for XErp1�s close relative Emi1 (Reimann et al., 2001a). The 

mechanism of Emi1-mediated APC/C inhibition has been studied in some detail (Reimann 

et al., 2001b). Emi1 is thought to bind the substrate binding region of the APC/C activator 

Cdc20 thereby preventing the recruitment of substrates to APC/CCdc20-complexes. How 

XErp1 exactly acts to inhibit APC/CCdc20 has not been investigated in this work. However, 

the sequence similarity of XErp1�s carboxy-terminus to Emi1 suggests that the mechanism 

by which XErp1 and Emi1 inhibit the APC/C might be largely the same. 

A close relative of Cdc20 is the other well characterized APC/C activator Cdh1. In 

mitotic cells Cdh1 functions in late mitosis and G1-phase to target late mitotic proteins for 

degradation and to prevent premature reaccumulation of cyclins, respectively. Emi1 has 

been shown to be able to inhibit APC/CCdh1-dependent ubiquitylation and stabilize cyclin A 

(Reimann et al., 2001b). In dividing Hela cells accumulation of Emi1 and the resulting 

stabilisation of cyclin A was shown to promote S-phase progression (Hsu et al., 2002). 

However, this result is called into question by the very recent analysis of embryos from 

Emi1 knock-out mice, which show normal S-phase progression (Lee et al., 2006). 

Nevertheless, abnormal cyclin A levels and a clear requirement for Emi1 in mitotic cell 

division is observed. 

Whether XErp1 is also able to inhibit APC/CCdh1 has not been tested in this work. 

Again, the level of conservation between XErp1 and Emi1 make it seem possible that this 

is the case. However, the functional significance of XErp1 inhibiting Cdh1 would remain 

elusive, since the Emi1 knock-out embryos show that functional redundancy between 

XErp1 and Emi1 at least in terms of mitotic progression might not exist (Shoji et al., 

2006). An involvement of Cdh1 in meiotic processes in Xenopus has recently been 

published (see introduction), but no obvious functional link to CSF activity exists (Papin et 

al., 2004). Thus, if XErp1 is also able to functionally inhibit APC/CCdh1 in a cellular 

context this is likely to be unrelated to its function in CSF arrest which was subject of this 

work. 
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3.4 Link between XErp1 and Plx1 

The question of how Plk1 might contribute to APC/C activation has long been tried 

to answer by looking at the effects of direct phosphorylation of APC/C subunits by Plk1 

(Golan et al., 2002; Kotani et al., 1998; Kraft et al., 2003). Results from this work together 

with studies that have been carried out in parallel on Emi1 now show that Plx1-mediated 

inactivation of APC/C inhibitory proteins might answer the question at least in part (see 

Figure 3.2). 

XErp1 was initially identified as a Plx1 binding protein in a yeast two-hybrid screen 

using kinase-dead Plx1 as a bait (Duncan and Nigg, see (Schmidt et al., 2005)). Typically 

kinase/substrate interactions are thought to be fairly transient which would lower the 

chances of detecting such an interaction in a yeast two-hybrid approach. However, the 

kinase-dead form of Plx1, which can bind substrates but not phosphorylate them, was used 

 

Figure 3.2: Link between XErp1 function in CSF arrest and Plx1 function in APC/C activation. In the 
CSF state the APC/C is kept inactive by XErp1. After fertilization, calcium release leads to enhanced 
binding of Plx1 to XErp1 (Rauh et al., 2005). Plx1-mediated phosphorylation of the phospho-degron 
sequence leads to destruction of XErp1 which derepresses the APC/C and allows for meiosis II exit. It is 
seems likely that the destruction is carried step is SCFß-TRCP-dependent. 
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for the screen. This might have led to prolonged trapping of substrates in a complex with 

the kinase facilitating the identification of XErp1. In this work the physical interactions of 

XErp1 and Plx1 were not further characterized. Experiments examining the interaction of 

XErp1 and Plx1 have been conducted in the context of a study investigating the role of the 

calcium signal for XErp1 degradation (N. Rauh, see (Rauh et al., 2005)). 

Proving, that a certain kinase directly phosphorylates a substrate in vivo or even in an 

extract is virtually impossible, because the system is much to complex and intermitting 

players can never be ruled out. Thus, only correlating in vivo data with in vitro evidence 

leads to a sufficient level of confidence that a protein is a direct substrate of a kinase in a 

physiological setting. However, in vitro phosphorylation reactions are often flawed by 

promiscuity of the kinase concerning the substrate itself and sites that are phosphorylated 

within the substrate. XErp1 has a fairly high serine/threonine content of about 14 % which 

would predict the protein to be prone to unspecific phosphorylation. In the case of XErp1 

the results of the in vitro phosphorylation assays clearly show that XErp1 can be a 

substrate for Plx1. Importantly, it is only the amino-terminus which is phosphorylated, 

whereas the carboxy-terminus is not phosphorylated at all. Since the phosphorylatable 

residues are approximately evenly distributed throughout the sequence of XErp1, this 

shows that the in vitro reaction cannot be completely unspecific. Moreover, removal of the 

putative target serines of the phospho-degron sequence from XErp1 led to a significant 

decrease in phosphate incorporation into the full-length protein providing evidence that 

these two residues are preferential sites of Plx1-mediated phosphorylation. 

Evidence that this phosphorylation happens in the extract comes from experiments 

examining the behaviour of mutants in these two sites in the extract and from Plx1 loss-of-

function experiments. These experiments clearly show that changing the respective 

residues to non-phosphorylatable ones completely stabilizes the protein after CSF release 

has been triggered. Also, the protein is not degraded when dominant-negative MBP-PBD is 

present before calcium is added to the extract. This experiment has however the caveat, 

that XErp1 degradation, Plx1 activity and CSF release are tightly coupled. Thus, it cannot 

be distinguished here whether XErp1 stability is a direct consequence of Plx1 loss-of-

function or of inhibited CSF release. Notably, the fact that XErp1 is stabilized under such 

conditions is consistent with the model that Plx1-dependent phosphorylation and 

degradation of XErp1 is required for CSF release. Experiments to show that XErp1 is 

stabilized by Plx1 loss-of-function independently of cell cycle progression in anaphase 
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arrested extracts have been carried out in the context of the project investigating the 

CaMKII requirement for XErp1 degradation (Rauh et al., 2005). 

A similar link to Plk1 has been found for the XErp1-related Emi1 protein. Initially, it 

was shown that Plk1 phosphorylation greatly enhances its recognition and ubiquitylation 

by SCFß-TRCP-complexes in vitro (Moshe et al., 2004). It has also been shown that Emi1 

destruction, which happens in prophase in mitotic cell cycles, depends on Plk1 

phosphorylation and subsequent recognition by SCFß-TRCP (Hansen et al., 2004; Margottin-

Goguet et al., 2003). Emi1 contains a phospho-degron sequence similar to that found in 

XErp1 (DSGXXS instead of DSGXXXS) which is required for its degradation. Notably, 

for XErp1 is has not been formally demonstrated, that it is in fact the SCFß-TRCP-complex 

which targets the protein for degradation, even though this seems extremely likely. 

A clear link between XErp1 and Plx1 function has been established by the 

experiments combining XErp1 and Plx1 loss-of-function. The result that inactivation of the 

Plx1-substrate XErp1 is sufficient to overcome an PBD-induced block in CSF release 

demonstrates that XErp1 is an important target of Plx1-depedent APC/C activation 

pathways. However, slight differences in the kinetics of H1 kinase activity loss upon CSF 

release leave room for a more complex interpretation of the results involving unknown 

players. It is apparent that the calcium-induced CSF release is always faster than the one 

induced by XErp1 inactivation. This could be due to incomplete or less efficient 

inactivation of XErp1 by the inhibitory antibody as compared to degradation. Assuming 

that the antibody inactivates XErp1 as efficiently as calcium, this observation could be 

taken as evidence that calcium activates other pathways than the Plx1/XErp1-mediated 

pathway of APC/C activation. Also, calcium-induced CSF release in the absence of XErp1 

is slower when wildtype PBD is present as opposed to the mutant. This could indicate that 

Plx1 has other targets than XErp1 that facilitate APC/C activity upon CSF release. Thus 

APC/C activation by Plx1 could indeed be chiefly caused by XErp1 inactivation, but 

supported by phosphorylation of APC/C subunits or other proteins that influence APC/C 

activity. 

3.5 Relationship between XErp1 and Emi1 

In this work XErp1 protein was characterized as a Plx1-regulated APC/C inhibitory 

protein required for CSF arrest in Xenopus egg extracts. Some aspects of XErp1 function 

and regulation have also been ascribed to the closely related Emi1 protein before or during 
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the course of this work. This immediately poses the question of whether the cellular 

functions of these two proteins are separable, redundant or partially overlapping. As this 

work was focussed on a basic characterization of XErp1 independently of Emi1, almost no 

comparative data have been acquired to elucidate the relationship of XErp1 and Emi1 

(except for the data on CaMKII-mediated degradation in anaphase). Yet, the literature 

available on Emi1 and the work of others as well as this work on XErp1 allow for some 

discussion of this issue. 

The available data on XErp1 and Xenopus Emi1 have until very recently suggested 

that they function in the same processes (namely CSF arrest, APC/C inhibition) and are 

regulated in the same way (Plk1/Plx1-dependent destruction by SCFß-TRCP). However, 

doubts about whether Emi1 could function in CSF arrest were raised by several 

observations. First, an Emi1 induced block to cell cycle progression stabilizes cyclin A and 

B, whereas a mos-induced cell cycle arrest stabilizes only cyclin B. Notably, it has not 

been tested whether XErp1 induced cell cycle arrest in extracts stabilizes cyclin A in 

addition to cyclin B. Second, the timing of Emi1 degradation in somatic cells already in 

prophase seemed incompatible with a function of Emi1 in metaphase of meiosis II, unless 

one assumes meiosis specific regulation of the degradation process. However, no evidence 

existed for such a mechanism. 

More severely, Ohsumi et al. raised an apparently sensitive antibody to Emi1 and 

found the protein to be absent from maturing and CSF arrested oocytes (Ohsumi et al., 

2004). They also found that exogenous Emi1 is unstable in CSF extracts, an observation 

also made by Jackson and colleagues (Ohsumi et al., 2004; Tung et al., 2005). Yet, data 

from the Jackson laboratory support the view that endogenous Emi1 is present at 

detectable levels in CSF-arrested oocytes (Tung et al., 2005). An explanation for the 

differences between the exogenously added protein and the endogenous Emi1 in terms of 

their stability does not exist so far. Thus, the question of Emi1�s presence in CSF-arrested 

oocytes is not definitively answered at the moment. 

Apart from the discussion about Emi1�s presence or absence from CSF arrested eggs, 

an important issue is the functional redundancy between XErp1 and Emi1, provided Emi1 

would be present. This issue has not been addressed satisfactorily due to the lack of 

specific reagents. It has been realized that some antibodies that have been used to study 

Emi1 function also recognize XErp1 (Tung et al., 2005; Tung and Jackson, 2005). Thus, 

especially the data obtained from �Emi1� loss-of-function experiments likely reflect the 
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effect of combined inactivation of Emi1 and XErp1. Since this work has shown that 

specific inactivation of XErp1 with an antibody raised against a non-conserved region is 

sufficient to ablate CSF activity, the role for Emi1 in this context remains to be clarified. 

This would have to include selective inhibition of Emi1 function in CSF extracts as an 

important piece of data to resolve this issue. 

An important hint as to whether XErp1 and Emi1 both function in CSF arrest might 

be the experiment investigating the CaMKII requirement for XErp1 and Emi1 degradation 

in anaphase extract. Whereas XErp1 degradation in anaphase is strictly CaMKII-

dependent, Emi1 is constitutively degraded seemingly unaffected by the presence or 

absence of CaMKII activity. This would lead to the conclusion that XErp1 but not Emi1 

stability is regulated by fertilization. However, the observations made on Emi1 in this 

experiment are difficult to interpret, since two groups have already observed independently 

that exogenous IVT Emi1 might behave different from the endogenous protein showing 

that it is unstable even in the CSF state (Ohsumi et al., 2004; Tung et al., 2005). 

Taken together, recent publications and the experiments presented in this work do 

not conclusively resolve the problem of XErp1 vs. Emi1 in CSF arrest. However, evidence 

accumulates that argues for a view in which XErp1 is the main player in regulating the 

meiosis-specific cell cycle arrest termed CSF, whereas Emi1 is more important for mitotic 

cell division. 

3.6 Conclusion 

This work was aimed at characterizing XErp1 function and regulation. It was based 

on models which predict the existence of putative APC/C inhibitors that regulate APC/C 

activity and CSF release. As a result of the basic characterization of XErp1 and further 

functional analyses, this protein seems to have many properties that these models predict. 

The functional characterization of XErp1 has contributed to the understanding of APC/C 

activation by polo-like kinases and to the understanding of CSF arrest of vertebrate 

oocytes. Open questions remain mainly concerning a possible activation of XErp1 during 

oocyte maturation. Also, a possible functional relevance of the F-box in XErp1, an aspect 

that has not been covered in this work, will be of interest for future research. 
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4 Materials and Methods 

4.1 Chemicals and buffers 

All chemicals that have been used for this study were at least of purity grade p.a. 

(pro analysi). Buffers and solutions were prepared with deionized water from a Milli-Q 

system (Millipore GmbH, Germany) which will be referred to as H2O. Buffers and 

solutions were either autoclaved or sterile filtered before use. 

4.2 Molecular Biology 

Standard molecular biology techniques have been used to generate, clone and 

subclone DNA encoding the genes of interest or fragments thereof. Plasmid DNA was 

usually purified from the E. coli strain TG1 using the Qiagen Mini kit according to the 

manufacturers instructions. DNA fragments were isolated from agarose gels using the 

Qiagen gel elution kit. Restriction digests were carried out as recommended by the enzyme 

supplier (New England Biolabs). Polymerase chain reaction (PCR) was carried out using 

Pfu Turbo polymerase (Stratagene). Ligation reactions were done overnight at 18 °C with 

T4 ligase (Roche). 

4.2.1 Cloning and Mutagenesis of XErp1, Emi1 and Plx1 fragments 

Full-length XErp1 was initially cloned by Peter Duncan and was then subcloned 

from the identified two-hybrid plasmid into a modified pCS2 vector introducing restriction 

sites for the Fse1 and Asc1 restriction enzymes. Primers with the sequences 5´-

ATTATGGCCGGCCAGAGATGGCAAATCTCTTAGAG-3´ and 5´-

ATTATGGCGCGCCGGAAGACTAGCTTCAAAGTCTC-3´ were used to amplify the 

coding sequence. Site-directed mutagenesis to yield the C583A mutation in the ZBR was 

carried out by Peter Duncan using the QuikChange kit (Stratagene) according to the 

manufacturer�s instructions. The amino-terminal and carboxy-terminal fragments of XErp1 

comprise the amino acids 1�424 and 374�651, respectively. Wild-type or mutant 

fragments were subcloned from plasmids containing the desired full-length XErp1 as a 

template following the strategy described above. For the carboxy terminal fragment 

primers 5´-ATTATGGCCGGCCCAGCTCAGATGAAAGCAGAGTCC-3´ and 5´-
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ATTATGGCGCGCCGGAAGACTAGCTTCAAAGTCTC-3´ were used. The amino-

terminal fragment was subcloned into a modified pMAL vector by Thomas Mayer. 

The polo-box domain construct (PBDwt) comprising amino acids 358�598 of Plx1 

was subcloned from full-length Plx1 in a pCS2-Myc plasmid using primers 5´-

ATTATGGCCGGCCGGAGTTCACGGAGCCTGC-3´ and 5´-

ATTATGGCGCGCCCTATGCCGAGGCCTTTAC-3´. Full-length Emi1 was cloned from 

a Xenopus oocyte cDNA library using primers 5´-

ATTATGGCCGGCCCAATATGATGTGCGGATTTGCAAGTAACC-3´ and 5´-

ATTATGGCGCGCCCTATAACCTCCGTAAATTCTGTTTGC-3´ into a modified pCS2 

vector. 

4.2.2 List of used plasmids 

The plasmids that have been used in this for protein expression or coupled in vitro 

transcription/translation are listed below referring to the TUM number in the Mayer 

laboratory plasmid collection: 

Table 1: List of plasmids used in this work. TUM numbers reflect the position in the Mayer laboratory 
plasmid collection which contains further information on these constructs. 

TUM gene insert vector 

101 XErp1 WT, fl pCS2-FA 

94 XErp1 WT, fl pCS2-Myc-FA 

155 XErp1 WT, fl pMAL-Tev-FA 

156 XErp1 C583A, fl pMAL-Tev-FA 

437 XErp1 WT, 374-651 pCS2-FA 

201 XErp1 WT, 374-651 pCS2-Myc-FA 

271 XErp1 WT, 374-651 pMAL-Tev-FA 

389 XErp1 C583A, 374-651 pCS2-Myc-FA 

697 XErp1 C583A, 374-651 pMAL-Tev-FA 
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269 XErp1 WT, 1-424 pMAL-Tev-FA 

380 XErp1 S33N/S38N, fl pMAL-Tev-FA 

381 XErp1 S33N/S38N, fl pCS2-FA 

535 XErp1 T195A, fl pCS2-FA 

174 Emi1 WT, fl pCS2-FA 

341 Plx1 WT, 358-598 (PBD) pMAL-Tev-FA 

423 Plx1 
W408F/H532A/K534H, 

358-598 (PBD) 
pMAL-Tev-FA 

237 cyclin B WT, NT pCS2-FA 

163 securin WT, fl pCS2-FA 

 

4.3 Protein Biochemistry 

Recombinant proteins for functional analysis in Xenopus egg extract or for in vitro 

assays have been produced by expression in bacteria or SF9 cells and subsequent affinity-

tag purification or by coupled in vitro transcription/translation in either wheat-germ extract 

or reticulocyte lysate. Standard protocols have been followed to analyse proteins and 

extracts by SDS-PAGE and Western blotting. 

4.3.1 Protein expression and purification from bacteria 

Bacteria of the E. coli strain BL21 were transformed with a suitable plasmid for 

expression of Maltose-binding protein (MBP)-tagged fusion proteins (pMal-Tev-FA, a 

modified form of pMal (New England Biolabs) encoding Tev-protease cleavage sites and 

unique Fse1 and Asc1 restriction sites in the MCS). Transformed clones were picked after 

overnight culture on LB-agar plates containing the selective antibiotics ampicilin (amp) 

and chloramphenicol (chl). A liquid overnight culture was used to inoculate 2 to 8 litres of 

LBamp, chl containing 0,2 % Glucose and 0,3 M saccharose. The culture was grown until 



Protein Biochemistry 

 59

OD600 reached 0,6 and was then induced for protein expression by addition IPTG to a final 

concentration of 0,3 mM. Expression was allowed for 3 hours at a temperature of 30 °C. 

After expression the cultures were spun down and the bacterial pellet resolved in 

column buffer (20 mM HEPES 7.7, 200 mM NaCl, 1mM EDTA, 1mM DTT). The bacteria 

were lysed by high pressure treatment in a french press apparatus. The lysate was then 

cleared by centrifugation in a Beckmann Ti45 rotor at 27000 rpm for 35 minutes. For 

affinity purification the cleared lysate was incubated with amylose beads (New England 

Biolabs) for at least 1 hour at 4 °C. The beads were the batch-washed with column buffer 

without DTT three times and allowed to settle onto a column. The fusion proteins were 

eluted from the column in fractions with elution buffer (column buffer without DTT 

containing 20 mM Maltose). The fraction size was adjusted to approximately equal the bed 

volume of the column. 

Fractions were analysed by PAGE and the ones containing protein of sufficient 

concentration and purity were dialysed against a storage buffer (20 mM HEPES 7.7, 50 

mM KCl, 40 % Glycerol) and stored in aliquots at -80 °C until further use. 

4.3.2 Protein expression and purification from SF9 cells 

Protein expression and purification from SF9 cells was carried out with the help of 

Thomas Mayer and Jenny Bormann. SF9 insect cells were kept at 27 °C in TC-100 

medium (Gibco or PAN) supplemented with 10 % fetal calf serum (FCS) and antibiotics 

(1000 units/ml penicillin G and 1 mg/ml streptomycin). For protein expression SF9 cells 

were seeded on 15 cm culture dishes at of 2x107 cells per dish. Cells were infected one 

hour later with the desired baculo-virus by addition of fresh culture medium containing the 

desired recombinant baculo-virus supernatant. After incubation for 48 hours the cells were 

collected by washing them off the dish with culture medium (for purification of 

recombinant Plx1 kinase, cells were cultured in medium containing 100 nM okadaic acid 

three hours prior to harvesting). Then, the collected solution was centrifuged at 400 x g for 

10 minutes. The supernatant was aspirated and the pellet flash frozen in liquid nitrogen and 

stored until purification. 

For purification the pellet was resuspended in lysis buffer (different, depending on 

the expressed protein) and either dounced in a glass homogenizer or lysed in a french press 

apparatus. The lysate was cleared by centrifugation and bound to Ni-NTA beads (Qiagen) 
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at least 1 hour at 4 °C. After binding beads were batch-washed in lysis buffer and loaded 

onto a column. Proteins were eluted from the column in lysis buffer containing 200 � 250 

mM imidazole. Purity of the eluted fractions was accessed by PAGE and the desired 

fractions were flash frozen in liquid nitrogen and stored at -80 degrees until further use. 

4.3.3 Coupled in vitro transcription/translation (IVT) 

IVT reactions to make 35S-Met-labelled proteins were carried out using the TNT kit 

(Promega) in either wheat-germ extract or reticulocyte lysate according to the 

manufacturer�s instructions. The reactions were programmed with 1 µg of the desired 

variant of pCS2 plasmid DNA and allowed to go on for approximately two hours at 30 °C. 

To make non-radioactive IVT products -Met amino acid mix was complemented with �Leu 

mix instead of 35S-Met. 

4.3.4 Production of antibodies 

The antibody against XErp1 (XErp1NT) that was mainly used for this work was 

produced by Peter Duncan as described in Schmidt et al.. Others antibodies against XErp1 

were produced from recombinant full-length XErp1 protein. To this end full-length XErp1 

was purified from bacteria as described in 4.3.1. Sufficiently concentrated protein fractions 

were then incubated with TEV protease to remove the amino-terminal MBP-tag. Since 

full-length XErp1 is insoluble without the MBP-tag, the precipitate was boiled in sample 

buffer and subjected to preparative PAGE. The gel was negatively stained in 0,2 M 

imidazole, 0,1 % SDS and developed with 0,2 M ZnSO4. After washing in H2O the desired 

band containing the full-length XErp1 protein without tag was cut out. The gel pieces 

containing the protein were eluted in 0,5 x running buffer in a gel elution apparatus (BIO-

RAD). Different elutions were collected and concentrated by ultrafiltration using the 

Amicon system (Millipore). The antigen was send to Elevage Scientific des Dombes (ESD, 

France) for injection into rabbits. 

4.3.5 Affinity purification of antibodies 

Antibodies were affinity purified from the desired serum over an HiTrap NHS-

activated sepharose column (1 ml column volume, Amersham Biosciences) coupled to the 

antigen. The columns are shipped filled with isopropanol. To remove the isopropanol and 

prepare the column for coupling the antigen, the column was washed with 2 times 3 ml ice 

cold 1 mM HCl. After washing the solution containing the antigen (1 mg/ml in 20 mM 
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HEPES pH 8.3, 500 mM NaCl, 1 mM EDTA) was directly applied to the column and 

incubated for one hour at room temperature. After coupling the unbound fraction was 

removed by washing the column following the procedure: 

 
Inject 6 ml of Buffer A. 

Inject 6 ml of Buffer B. 

Inject 6 ml of Buffer A. 

Leave the column for 15-30 min in room temp. or approx. 4 hours in +4°C. 

Inject 6ml of Buffer B. 

Inject 6 ml of Buffer A. 

Inject 6 ml of Buffer B. 

Finally, inject around 5 ml TBS. 

 
Buffer A is 0,5 M ethanolamine, 0,5 M NaCl, pH 8,3 

Buffer B is 0,1 M acetate, 0,5 M NaCl, pH 4 

After the column has been coupled to the antigen serum was allowed to circulate 

over the column to bind the antibodies. To this end the column was washed with 3ml TBS, 

then with 3 ml elution buffer (0,15 M NaCl, 0,2 M Glycin pH 2,3) and again with 5 ml 

TBS. 2-4 mls of serum were mixed 1:1 with PBS and the sultion was centrifuged for 10 

min at 4500 xg at 4 °C. The supernatant was applied to the column by pumping it over the 

column repeatedly over night. 

Before elution of the antibodies the column was again washed with 5ml TBS, 3ml 

wash buffer (20 mM Tris pH 7,5, 500mM NaCl, 0,2 % Triton X 100) and 3 ml TBS. The 

antibodies were eluted in 500 µl fractions with elution buffer. The tubes for fraction 

collection were prefilled with 90 µl Tris pH 8.5 to neutralize the pH. The pH was checked 

for neutrality and further adjusted if necessary. Initially, the fraction were tested by 

spotting 1µl on nitrocellulose membrane and Ponceau staining. Protein containing fractions 
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were examined by SDS-PAGE. The desired fractions were dialysed against PBS and stored 

at 4°C. 

4.4 Cell biology 

All cell biological experiments to characterize XErp1 function were carried out using 

the Xenopus egg extract system or Xenopus eggs. The protocols for extract preparation and 

analysis described below are largely based on the standard procedures described by Murray 

and Desai and colleagues (Desai et al., 1999; Murray, 1991). The buffers and solutions 

used for the experiments were exactly as described by Desai et al.. These include: Marc�s 

modified Ringer medium (MMR), CSF extraction buffer (CSF-XB), dejellying solution, 

energy mix, phospho-creatine kinase, ubiquitin, cytochalsin B. 

4.4.1 Preparation of CSF arrested Xenopus egg extract 

Female Xenopus laevis frogs were induced to ovulate by injection of 800 units 

human chorionic gonadotropin (Sigma) into the dorsal lymph sack approximately 1 day 

before egg collection. Frogs were put into tanks filled with 1x MMR for ovulation. Laid 

eggs of sufficient quality were collected and washed with 1x MMR. Subsequently they 

were treated with dejellying solution for up to ten minutes and then washed into CSF-XB. 

At this step activated and lysed eggs were removed as far as possible before transferring 

the eggs into centrifugation tubes pre-filled with 1 ml CSF-XB containing 0,1 mg/ml 

cytochalasin B. The eggs were then compacted by a two-step centrifugation for 1 minute at 

1000 rpm and another minute at 2000 rpm in a Sorvall HB-6 rotor. Excess buffer was 

removed from the tube after centrifugation leaving only the compacted, but intact eggs 

behind. 

In a final centrifugation step the eggs were then lysed by centrifugation for 10 

minutes at 10000 rpm at 4 °C leading to a characteristic separation and layering of the egg 

components in the tube. The middle layer contained the cytoplasmic extract which was 

isolated by puncturing the tube at the bottom of this layer and sucking it out with a 1 ml 

syringe. After isolation the extract was supplemented with energy mix (1:50), phospho-

creatine kinase (1:1000), ubiquitin (1:250) and cytochalasin B (1:1000) and stored on ice 

until further use. Routinely, an aliquot of the extract was tested for integrity of the CSF 

arrest and the ability to release from CSF arrest after addition of 0,6 mM CaCl2 by 

examining the morphology of added Xenopus sperm nuclei (500 to 1500 nuclei/µl extract). 
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To this end 1 µl of extract was pipetted into a 3 µl drop of fixing solution containing DAPI 

(4�,6-diamidino-2-phenylindole) on a glass slide and squashed under a coverslip. For some 

experiments examining spindle morphology low amounts of rhodamine-labelled tubulin 

was added to the extracts. 

4.4.2 Experiments examining protein stability in extract 

To examine the stability of different XErp1 variants or cell cycle markers, CSF 

extract was supplemented with up to 1/10 vol. of an IVT reaction containing 35S-Met-

labelled protein of interest on ice. The extract was then warmed to 20 °C and reactions 

containing the same IVT were split into two aliquots one of which was treated with 0,6 

mM CaCl2 to induce CSF release. Samples were taken at different times, boiled in sample 

buffer usually in a 1:10 dilution and flash frozen in liquid nitrogen for further analysis. 

The cell cycle state of the extract at the different time points was controlled by 

microscopic inspection of DNA morphology and/or assaying extract aliquots for H1 kinase 

activity. The experiments were analysed by running up to 1 µl of extract/lane on an SDS-

PAGE gel and subsequent autoradiography of the dried gel. 

4.4.3 Recombinant protein addition to CSF extract 

To investigate their effect on in vitro cell cycle progression recombinant proteins 

were added to CSF-arrested egg extract. Aliquots of these proteins were thawed and 

centrifuged for 35 minutes at 100000 g at 4 °C. The concentration of the supernatant was 

determined using either a standard Bradford assay (BIO-RAD) or by comparing 

Coomassie stained gel bands to a BSA standard. Proteins were added to the extract in the 

nano-molar concentration range with the final volume of addition not exceeding 1/8 of the 

extract volume. Proteins were usually allowed to incubate in the extract for at least 10 

minutes before addition of calcium or other manipulations. Here experiments were 

analysed by inspection of DNA morphology, assaying H1 kinase activity or analysis of cell 

cycle markers by SDS-PAGE/Western blotting. 

4.4.4 Antibody addition and depletion of proteins 

For antibody addition as well as for XErp1 depletion experiments the desired amount 

of polyclonal anti-XErp1 antibody or a control antibody was coupled to Protein G 

Dynabeads (Dynal) in PBS buffer containing 0.1% Triton X-100 (PBSTx) at 4°C. Beads 
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were then washed three times in PBSTx by retrieving the beads on a magnet. The washed 

beads were mixed with the extract and incubated on ice under occasional mixing. 

Depending on the experiment the antibody beads were left in the extract throughout the 

course of the experiment or retrieved after incubation for at least 1 hour on ice. 

4.4.5 Injection of Xenopus embryos 

To obtain CSF-arrested oocytes for injection with recombinant protein, frogs were 

induced to ovulate by injection of 800 units human chorionic gonadotropin (Sigma). On 

the next day the already ovulated eggs were discarded and the frogs were gently squeezed 

to induce laying of fresh eggs into 1 x MMR in a glass petri dish. Eggs from different frogs 

were handled separately. 

To inject protein into one cell of a two-cell embryo the CSF arrested eggs have to be 

fertilized in vitro. Fertilization is carried out using the testes dissected out of a male frog 

after injection with 25 units pregnant mare serum gonadotropin (PMSG) 8 days and 

another 50 units human chorionic gonadotropin 3 days before dissection. To fertilize the 

eggs most of the 1 x MMR was removed from the petri dish containing the eggs, the testis 

was macerated from the tip and the sperm vigorously mixed with the eggs by moving the 

testis through the dish. Subsequently, the dish was filled with 0,1 x MMR and allowed to 

sit at room temperature for 20 minutes. Successful fertilization and therefore activation of 

the eggs is visible from a contraction of the pigmented animal pole of the embryo. To 

prepare the embryos for injection, they were dejellyed by replacing the 0,1 x MMR with 

dejellying solution (2 % cysteine in H2O, pH 7,8 with NaOH). Dejellying was complete 

after approximately five minutes. Embryos were washed six times in 0,1 x MMR after the 

dejellying step and arranged on a rubber grid with their pigmented animal poles facing up 

ready to inject.  

Injections were carried out using home-pulled needles from borosilicate glass 

capillaries (0,58 mm inner diameter, 1 mm outer diameter, Hilgenberg). After pulling the 

needles are closed at the tip and had to be broken off to give an orifice suitable for 

injection. Whether needles are suitable for injection is determined by the ratio of injection 

volume and injection pulse time at a given pressure. Needles where calibrated by counting 

the number of injection pulses needed to clear the needle from 1 µl of H2O. Needles that 

inject between 10 and 20 pl liquid over a pulse of approximately 300 ms can be considered 
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suitable for injection. To reduce errors from the calibration procedure, one experiment was 

carried out using the same needle. 

For the actual injection a Harvard apparatus PLI-100 connected to a compressed 

nitrogen bottle was used with the following settings: 

 

injection pressure (pinject) was 10 psi 

clearance pressure (pclear) was 70 psi 

balance pressure (pbalance) was around 1 psi 

Here, the injection pressure is the pressure with which the actual injection carried 

out. The clearance pressure is used to clean the needle and equals the maximal pressure the 

apparatus can produce. The balance pressure is constantly applied to the needle and 

prevents clogging of the needle by the internal pressure of the oocyte after the needle has 

entered the cell. For each oocyte 20 pl of a 800 ng/µl protein solution (wildtype protein or 

mutant control) was injected into one blastomere of a two-cell embryo. The other 

blastomere was left uninjected. The embryos were cultivated at 18°C for the indicated time 

and their phenotype was documented using a CCD camera mounted on the stereo-

microscope used for injection. 

4.4.6 H1 kinase assays 

To measure Cdk1 activity in the extract, the activity of extract samples towards the 

Cdk1 model substrate histone H1 was examined in in vitro kinase assays using 32P-labelled 

ATP. To this end 1 to 2 µl aliquots of extract were flash frozen in liquid nitrogen 

throughout the course of the experiment. For the assay the frozen extract was incubated 

with kinase assay mix containing 8 µg histone H1, 14 µM ATP, and 6.5 µCi 32P-ATP in 

H1 buffer (20 mM ß-glycerophosphate, 3mM MgCl2, 4mM EGTA, 0.025% NP40). 

Reactions were carried out at room temperature and stopped by boiling samples in SDS-

sample buffer. 
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4.4.7 In vitro ubiquitylation assays 

To assay the effect of XErp1 protein on APC/CCdc20 activity, in vitro ubiquitylation 

assays on APC/C immuno-purified from M-phase Xenopus egg extract were performed. 

The protocol described here is largely adapted from procedures described by Kramer and 

colleagues (Kramer et al., 1998; Kramer et al., 2000). 

To purify M-phase APC/C, CSF extract was released into interphase by the addition 

of 0,6 mM CaCl2 and driven back into M-phase by the addition of non-destructible cyclin 

B (approximate final concentration 5µg/ml, a kind gift from Olaf Stemmann). Monoclonal 

anti-Cdc27 antibody (purchased from Sigma) was coupled to Protein G dynabeads (Dynal) 

in PBSTx buffer and washed twice with PBSTx and three times with CSF-XB. To 

immuno-purify the APC/C, Cdc27 beads and M-phase extract were mixed and incubated 

on ice for at least 1 hour. Cdc27 beads were then retrieved from the extract and washed 

twice in buffer QA++ (10 mM Tris pH 7,5, 500 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 0,5 

% NP-40) and three times in buffer QA (10 mM Tris pH 7,5, 100 mM KCl, 1 mM MgCl2, 

1 mM CaCl2) to yield APC/C beads. 

APC/C beads were preincubated with exogenous histidin-tagged Cdc20 (or control 

buffer) in 30 µl QA to activate the APC/C. To analyze XErp1�s effect on APC/C activity, 

recombinant protein that has been centrifuged and assayed for protein concentration as 

described in 4.4.3 was added to the reaction along with Cdc20. Preincubation was allowed 

for 30 minutes at room temperature before the beads were washed once in QA and three 

times in CSF-XB. To start the assay the activated APC/C beads were resuspended in 30 µl 

reaction mix containing yeast E1 enzyme (Boston Biochemicals), E2 enzyme UbcX, 

ubiquitin (Sigma), an ATP regeneration system and a radiolabelled IVT of the amino-

terminus of cyclin B. The assay was carried out at room temperature and stopped by 

boiling samples in sample buffer after 0, 6 and 12 minutes. 

4.4.8 Plx1 kinase assays 

For kinase assays substrates were centrifuged and assayed for protein concentration 

as described in 4.4.3. The reaction was started by mixing the substrate proteins with a mix 

containing the kinase, 1mM ATP, 2 µCi 32P-labelled ATP in assay buffer (20 mM HEPES 

pH 7,7, 10 mM MgCl2, 1 mM EGTA, 1mM DTT, 5 mM NaF). Reactions were carried out 

at room temperature for 1 hour. The reaction was stopped by boiling a sample in sample 
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buffer. Samples were analysed by SDS-PAGE and subsequent autoradiography of the 

vacuum-dried gel. 

4.4.9 CaMKII activity assays 

To measure CaMKII activity in extract, samples were assayed for their ability to 

transfer 32P-labelled phosphate to a peptide derived from the CaMKII autophosphorylation 

sequence (AC-2, KKALRRQETVDAL, New England Biolabs). To this end 2 µl extract 

samples were flash frozen in liquid nitrogen and stored at -80°C until the assay. For the 

assay the frozen extract pellets were resuspended in CaMKII assay buffer (70 mM HEPES 

pH 7.7, 0,2 mM Mg-ATP, 200 mM EGTA) containing 1 µCi 32P-labelled ATP and 250 

µM AC-2 (or H2O as a background control) in a total volume of 20 µl. The reaction was 

incubated at room temperature for 8 minutes until 9 µl of each reaction were spotted onto 

P81 membrane (phosphocellulose, Whatman Inc.). The spots were allowed to dry and then 

the membrane was washed extensively in H2O. After washing the membrane was analysed 

by phosphoimaging and densitometric analysis of the spots. For initial establishment of the 

assay and some experiments the membrane pieces containing one spot each were analysed 

by liquid scintillation counting. 
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Summary 

Summary 

Cell division is one of the most fundamental processes in biology. Meiosis is a 

specialized form of cell division resulting in cells capable of sexual reproduction. In 

higher animals male reproductive cells are called sperm cells, the female ones are called 

oocytes. The life cycle of a typical sexually reproducing organism includes a point 

where sperm and oocyte fuse to yield a diploid zygote, which develops into a new 

individual. This process is termed fertilization. 

The oocytes of most vertebrates are arrested at metaphase of meiosis II before 

fertilization. This is thought to prevent development in the absence of fertilization 

(parthenogenesis). In 1971 a biochemical activity was discovered that mediates this cell 

cycle arrest and was hence termed cytostatic factor (CSF). CSF inhibits a protein 

complex called the anaphase-promoting complex/cyclosome (APC/C). The APC/C is a 

ligase that covalently attaches the small protein ubiquitin to cell cycle regulatory 

proteins in order to target them for proteolytic degradation. This results in ordered cell 

cycle progression. After fertilization of CSF-arrested oocytes calcium triggers the 

APC/C-dependent destruction of anaphase inhibitors like cyclin B or securin. This 

allows for progression beyond metaphase of meiosis II, pronuclear fusion and the 

subsequent onset of embryonic development. Studies in Xenopus egg extract have 

shown that the protein kinase Plx1 of the polo-like kinase family is also required for this 

process. 

This work has begun to characterize the protein XErp1, which has been found as 

interacting partner of Plx1. Function and regulation of XErp1 have been investigated in 

Xenopus egg extracts and oocytes. Inhibition of XErp1 in CSF-arrested Xenopus egg 

extracts has shown that the protein is required to maintain CSF arrest. Consistently, 

overexpression of XErp1 leads to an inability of the extract to activate the APC/C after 

a calcium stimulus which prevents metaphase to anaphase transition. These results 

suggested that XErp1 might be a direct inhibitor of the APC/C. Indeed, a carboxy-

terminal domain of XErp1 was found to be able to directly inhibit the ubiquitin ligase 

activity of immuno-purified APC/C. 
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Experiments examining the regulation of XErp1 have shown that the protein is 

degraded rapidly after calcium stimulation. This degradation could be shown to be 

dependent on a phosphorylated degradation signal in the amino-terminus of XErp1. 

Furthermore, it was shown that Plx1 phosphorylates the two serine residues 33 and 38 

within this motif in vitro. Together these results lead to a mechanistic model of APC/C 

activation associated with release from CSF arrest. According to this model, Plx1-

dependend phosphorylation of XErp1 leads to its destruction and therefore derepression 

of the APC/C. 
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Zusammenfassung 

Zusammenfassung 

Zellteilung ist einer der fundamentalsten biologischen Prozesse. Die Meiose ist 

eine spezielle Art der Zellteilung, die der Produktion von zur geschlechtlichen 

Fortpflanzung befähigten Zellen dient. Bei höheren Tieren bezeichnet man die 

männlichen Geschlechtszellen als Spermien und die weiblichen als Eizellen. Im 

Lebenszyklus eines typischen höheren Organismus verschmelzen Spermium und Eizelle 

und ergeben eine Zygote, die den Ausgangspunkt für die Entwicklung eines neuen 

Individuums bildet. Diesen Prozess nennt man Befruchtung. 

Die Eizellen der meisten Wirbeltierspezies sind vor der Befruchung in der 

Metaphase II des meiotischen Teilungszykluses blockiert, um eine Entwicklung ohne 

vorherige Befruchtung (Parthenogenese) zu verhindern. Dieser Arrest wird von einer 

1971 entdeckten biochemischen Aktivität verursacht, die man als zytostatischen Faktor 

(engl. cytostatic factor, CSF) bezeichnet hat. Der zytostatische Faktor inhibiert einen 

Proteinkomplex, den man „anaphase-promoting complex/cyclosome“ (APC/C) nennt. 

Der APC/C ist eine Ligase die das kleine Protein Ubiquitin kettenförmig an andere 

Zellzyklus-regulierende Proteine koppelt und diese damit für den proteolytischen Abbau 

markiert. Der durch ein Kalziumsignal induzierte, APC/C-abhängige Abbau von 

Anaphase Inhibitoren wie Zyklin B und Securin ist nötig, damit die Zelle den 

Metaphase-Anaphase Übergang der Meiose II nach Befruchtung vollziehen kann. 

Desweiteren, haben Untersuchungen in Eiextrakten des Krallenfrosches Xenopus laevis 

gezeigt, dass die Proteinkinase Plx1 für die Aktivierung des APC/C am Metaphase-

Anaphase Übergang nötig ist. 

Diese Arbeit befasst sich mit der Charakterisierung des Proteins XErp1, dass als 

Bindungspartner von Plx1 identifiziert wurde. Die Untersuchungen zur Funktion und 

Regulation von XErp1 wurden in Xenopus Eiern und deren Extrakten durchgeführt. 

Durch Inhibition der XErp1 Funktion in CSF-blockierten Eiextrakten konnte gezeigt 

werden, dass XErp1 essentiell für die Aufrecherhaltung des zytostatischen Faktor 

Arrestes ist. Im Einklang mit diesen Daten führt die Überexpression von XErp1 zu einer 

Situation, in der das Kalziumsignal den APC/C nicht mehr aktivieren kann und dem zu 
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Folge der Metaphase-Anaphase Übergang verhindert wird. Diese Ergebnisse deuten an, 

dass XErp1 ein Inhibitor des APC/C sein könnte. Tatsächlich wurde gefunden, dass eine 

carboxy-terminale Domäne von XErp1 in der Lage ist, die Ubiquitylierungsaktivität von 

immun-gereinigtem APC/C in vitro direkt zu inhibieren. 

Experimente zum Verhalten und zur Regulation von XErp1 haben gezeigt, dass 

XErp1 selbst unmittelbar nach dem Kalziumsignal abgebaut wird. Dieser Abbau hängt 

von einem Sequenzmotiv im amino-Terminus von XErp1 ab, das durch 

Phosphorylierung aktiviert wird. Es konnte im Folgenden gezeigt werden, dass Plx1 die 

Phosphorylierung an den Serinresten 33 und 38 in diesem Sequenzmotif in vitro 

ausführen kann. Zusammen führen diese Ergebnisse zu einem mechanistischen Modell 

der APC/C Aktivierung, welche zur Auflösung des zytostatischen Faktor Arrestes führt. 

Hiernach führt die Phosphorylierung des APC/C Inhibitors XErp1 durch Plx1 nach 

Befruchtung zu dessen Abbau und damit zur Aktivierung des APC/C. 
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Abbreviations 

APC/C  anaphase promoting complex/cyclosome 

CaMKII  calcium/calmodulin-dependent kinase II 

Cdk1  cyclin-dependent kinase 1 

CSF   cytostatic factor 

DNA  desoxyribonucleic acid 

DTT   dithiothreitol 

E. coli  Escherichia coli 

Emi1  early mitotic inhibitor 1 

GVBD  germinal vesicle breakdown 

HEPES  N-2-Hydroxyethylpiperazine-N’-2-ethane sulfonic acid 

i.e.  id est (that is) 

IVT   coupled in vitro transcription/translation 

M   molar 

min   minutes 

MPF   maturation-promoting factor 

PAGE  polyacrylamid gel electrophoresis 

PBD   polo-box domain 

PBS   phosphate-buffered saline 

PCR   polymerase chain reaction 
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Plk1   polo-like kinase 1 

Plx1   Xenopus polo-like kinase 1 

rpm   rounds per minute 

SCF   Skp1 cullin F-box 

WT   wildtype 

Xenopus Xenopus laevis 

XErp1  Xenopus Emi-related protein 1 

ZBR   zinc-binding region 
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