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3. Summary 

 

Synapses form when highly motile dendritic filopodia establish axonal contacts. 

When a synaptic contact is stabilized, it gives rise to the formation of a dendritic 

spine, which has recently been shown to involve a number of molecules that mostly 

regulate the actin cytoskeleton. Thus, it is not surprising that Eph receptor tyrosine 

kinases, as known regulators of signaling pathways involved in actin cytoskeleton 

remodeling, have been shown to be required for spine development and maintenance. 

The main characteristic of interactions of the Eph receptor with its membrane 

associated ephrin ligand is that they can propagate bidirectional signals. Both forward 

(downstream of Eph receptor) and reverse (downstream of ephrin ligand) signaling 

have been shown to play a role in mature synapses, where spine morphology changes 

are associated with synaptic plasticity. Thus, ephrinB reverse signaling might be as 

important for dendritic spine development as signaling pathways downstream of Eph 

receptors. Intrigued by this idea, we hypothesized that some of the spine morphology 

changes during plasticity might be regulated exclusively by ephrin reverse signaling 

pathways. Analyzing spine formation in cultures of dissociated hippocampal neurons, 

we demonstrated that stimulation of hippocampal neurons with EphB receptor bodies 

leads to increased spine maturation. Expression of a truncated form of ephrinB ligand, 

which is still able to activate EphB receptor but is unable to transduce intracellular 

signals, impairs spine morphology. To find new players of reverse signaling that are 

important in directing ephrin-mediated spine morphology, we performed a proteomic 

analysis of the phosphotyrosine dependent ephrin interactor Grb4 (Nck-2, Nck beta). 

We identified the signaling adaptor G protein-coupled receptor kinase-interacting 

protein (GIT)1 (Cat1) as well as the exchange factor for Rac βPIX (β-p21-activated 

protein kinase (PAK)-interacting exchange factor), also called RhoGEF7 or Cool-1, as 

novel Grb4 binding partners, which have both previously been shown to be required 

for spine formation. We show that Grb4 binds and recruits GIT1 to synapses 

downstream of activated ephrinB ligand. Interactions of Grb4 with ephrin or GIT1 are 

necessary for proper spine morphogenesis and synapse formation. We therefore 

provide evidence for an important role of ephrinB reverse signaling in spine formation 

and describe the ephrinB reverse signaling pathway involved in this process. 
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An important motif in the cytoplasmic tail of ephrinB ligand is a carboxy-terminal 

PDZ binding domain, which binds some multi-PDZ-domain-containing proteins. 

Thus, the current model for ephrinB reverse signaling implies a switch from an early 

and quick phosphotyrosine-dependent signaling to a more delayed and sustained PDZ 

domain-dependent signaling. One of these PDZ adaptors, GRIP1 (glutamate receptor 

interacting protein 1), is a 7 PDZ-domain containing protein that was shown to be 

specifically recruited into rafts through association with the cytoplasmic domain of 

ephrinB. In the work presented, we have used a proteomic analysis of GRIP1-binding 

proteins in neuroblastoma cells and in vivo in transgenic mice to identify protein 

complexes that are involved in PDZ-dependent signaling downstream of ephrinB 

ligands. Our results show GRIP1 binding partners with a remarkable range of cellular 

activities. Interaction with one binding partner, 14-3-3 proteins, was validated in vivo 

in the adult mouse brain, and more interestingly, we were able to show that this 

interaction occurs exclusively in rafts. Identification of a 14-3-3 binding site in GRIP1 

and the formation of a triple complex of ephrinB ligand, GRIP1 and 14-3-3 in rafts 

strongly implicates that this new interaction has an important functional relevance in 

ephrinB reverse signaling. 
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4. Introduction 

 

The brain serves as a center for cognitive function and neurons within the brain relay 

and store information about our surroundings and experiences. Modulation of 

neuronal circuitry allows us to process that information and respond appropriately. 

Proper development of neurons is therefore vital to the mental health of an individual, 

and perturbations in their signaling or morphology are likely to result in cognitive 

impairment. The development of a neuron requires a series of steps that begins with 

migration from its birthplace and initiation of process outgrowth, and ultimately leads 

to differentiation and the formation of connections that allow it to communicate with 

appropriate targets. Such processes require that cells communicate with each other 

and their environment. Information from outside of the cell is received via surface 

receptors that recognize specific stimuli and transduce signals into the interior of the 

cell in order to evoke the proper responses. Intracellular signal transduction is, 

however, not just a linear transmission of information. It rather involves complex 

networks of molecular interactions that require specific mechanisms to regulate 

important steps in different aspects of neuronal development including neurite 

outgrowth, differentiation, axon pathfinding and dendritic spine formation and 

maintenance. 

 

4.1 Actin cytoskeleton and dendritic spine formation 

 

The construction of neuronal circuits in the developing brain requires the correct 

assembly of trillions of synaptic connections. How, given the enormous numbers of 

axon and dendrites seeking contact in the growing neuropil, do the right partners 

manage to find one another? The challenge is met by a combination of genetically 

fixed routines that produce a “rough draft” of the final circuitry, followed by a process 

of experience-driven plasticity that refines the detailed pattern of connectivity during 

a critical period of juvenile learning (Berardi et al. 2004; Hensch 2004). Dendritic 

spines, small protrusions scattered along the dendrites of brain neurons, play a crucial 

part in this process (Figure 1). During development, immature dendrites first produce 

motile filopodia that search the developing neuropil for active presynaptic partners 
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with which to form synaptic contacts (Ziv and Smith 1996; Jontes and Smith 2000; 

Dunaevsky and Mason 2003; Yuste and Bonhoeffer 2004). These filopodia are later 

replaced by more stable mature spines, which typically comprise an expanded head 

joined to the dendrite shaft by a narrow neck (Figure 2). In this morphologically 

mature state, plasticity is restricted to motile ruffling of the spine head (Fischer et al. 

1998; Dunaevsky et al. 1999; Roelandse et al. 2003). The motility of both filopodia 

and spines depends on the turnover of actin filaments in the spine cytoskeleton (Matus 

et al. 2000; Star et al. 2002; Portera-Cailliau et al. 2003), suggesting that the transition 

from filopodia to mature spines involves the down-regulation of actin dynamics. 

 

Figure 1. Three-dimensional reconstructed electron microscopy picture of a dendrite, 
two spines and an associated axon. (a) A single electron microscope section of a dendrite 
and two spines that are associated with a passing axon. The axon makes a mature synapse 
with one of the spines. (b) Reconstructed dendrite (shown at a different angle), which shows 
the types of connections that are formed in hippocampal cultures (modified from Luo 2000). 
 

4.1.1 Spine formation 

 

How do spines develop and what regulates spine formation? There are several views 

on the origin of dendritic spines. In most cells, dendritic spines are more prominent in 

older cells while dendritic filopodia are more prominent on younger dendrites (Dailey 

and Smith 1996). Spines can be converted from an existing shaft synapse or formed 

de novo from a filopodium, which emerges from the dendrite, forms a synapse with 
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the presynaptic terminal and then collapses to become a short, 1-2 μm, “mature” spine 

(Harris and Kater 1994; Dailey and Smith 1996. The molecular mechanisms that lead 

to the formation of a mature, functional spine might be different for the two cases, as 

might the involvement of adhesion molecules and postsynaptic density protein 95 

(PSD-95) (El-Husseini, 2000 #43; Abe et al. 2004). An intermediate process has been 

proposed, in which a filopodium searches for a presynaptic partner, makes contact and 

pulls the axon close to the dendritic shaft, from which it later extrudes a spine. The 

mechanisms for producing spines in mature neurons might differ from that in 

developing neurons (Dailey and Smith 1996). Therefore, the different models may not 

be mutually exclusive and both extrinsic and intrinsic factors could potentially 

regulate the formation of dendritic spines. Indeed, cell-specific differences in 

regulation of formation of dendritic spines have been postulated (Yuste and 

Bonhoeffer 2004). 

 
 
Figure 2. Morphology of dendritic spines. (a) A pyramidal neuron in hippocampal slice 
culture transfected with green fluorescent protein (GFP) imaged with two-photon microscopy. 
Dendrites are covered by small protrusions: the dendritic spines. (b) High magnification 
image of a hippocampal dendrite demonstrating the diversity in the morphology of dendritic 
spines. Most dendritic spines, however, have a narrow neck and an enlarged head. (c) A 
schematic representation of morphological classifications of dendritic spines (modified from 
Lippman and Dunaevsky 2005). 
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4.1.1.1 Filopodia as spine precursors 

 

As synapses form, the number of filopodia declines and the number of stable spine-

like structures increases, suggesting that filopodia are the precursors of dendritic 

spines. In cultures of dissociated hippocampal neurons, Ziv and Smith (1996) first 

succeeded in visualizing in real-time the formation of contacts between dendritic 

filopodia and nearby functional presynaptic terminals using two different fluorescent 

dyes (Ziv and Smith 1996). Based on these observations, a sequence of events was 

proposed in which filopodia encounter axons, engage in synaptic contact and undergo 

a “filopodia to spine” transformation, which involves a decrease in motility, 

substantial shortening and development of a mature-shaped spine containing a head 

and a neck (Figure 3a). More recently, in vivo data has supported the hypothesis that 

synapse formation triggers the transformation of filopodial structures into spines 

(Dailey and Smith 1996; Maletic-Savatic et al. 1999; Marrs et al. 2001; Okabe et al. 

2001; Trachtenberg et al. 2002), suggesting that the function of the highly motile 

filopodium is to probe the space around the dendrite for an appropriate contact site on 

an axon. Interestingly, the release of the neurotransmitter glutamate promotes 

filopodial extension (Portera-Cailliau et al. 2003). Thus, it appears that this 

mechanism may guide filopodia to sites of presynaptic vesicle release. 

 

4.1.1.2 Spine formation from the dendritic shaft 

 

Spines have also been proposed to arise from synapses located on the dendritic shaft 

(Miller and Peters 1981), which originates from the observation that the majority of 

synapses in young pyramidal neurons are located on the dendritic shaft rather than on 

filopodia (Harris and Kater 1994). As neuronal networks mature, the number of spine 

synapses increases and the number of shaft synapses decreases suggesting that axonal 

filopodia (and not dendritic filopodia) may be involved in finding an appropriate 

region for synaptic contact on the dendritic shaft (Figure 3b). However, movement of 

axonal filopodia in pyramidal neurons remains to be examined, whereas electron 

microscopy images have indeed captured axonal filopodia in synaptic contact with the 

dendritic shaft (Fiala et al. 1998) and, moreover, live imaging of pyramidal neurons in 
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hippocampal slices have documented the emergence of mature spines from shaft 

synapses (Dailey and Smith 1996; Marrs et al. 2001). Therefore, it seems that spines 

can both emerge from the dendritic shaft and derive from filopodial precursors. A 

combination of these two models has also been proposed based on three-dimensional 

reconstruction from electron micrographs (Fiala et al. 1998) and live imaging 

experiments (Marrs et al. 2001) showing filopodia, which have established a synaptic 

contact, retract, thereby pulling the synapse towards the dendritic shaft and 

transforming it into a shaft synapse that later gives rise to a dendritic spine. Together, 

these experiments suggest that dendritic spine morphogenesis in hippocampal and 

cortical pyramidal neurons can occur through a combination of mechanisms. 

However, it is possible that a particular mechanism prevails in vivo. 

 

 
 
Figure 3. Three models of dendritic genesis. In model 1 (a), a dendritic filopodium captures 
an axonal terminal and becomes a spine. In model 2 (b), the terminal actually induces the 
formation of the spine. Finally, in model 3 (c), spines emerge independently of the axonal 
terminal (modified from Lippman and Dunaevsky 2005). 
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4.1.1.3 Spine formation without synaptic contact 

 

Although in both models above, the formation of synaptic contacts induces the 

development of dendritic spines, it seems that the presynaptic terminal is not 

absolutely required for the formation of all spines (Figure 3c). It has been shown that 

spine-shaped protrusions in cerebellar Purkinje neurons form through intrinsic 

mechanisms in the absence of axonal contact (Sotelo et al. 1990; Takacs et al. 1997). 

Indeed, morphologically normal dendritic spines in Purkinje cells form before the 

establishment of synaptic contact with the presynaptic parallel fibers, as seen in mice 

with mutations causing the absence of parallel fibers.  

In summary, the experimental evidence suggests that dendritic spines may form 

through different mechanism in different types of neurons, perhaps due to different 

molecular compositions (Carlin et al. 1980; Mundel et al. 1997; Rao et al. 1998; 

Sekerkova et al. 2003). 

 

4.1.2 Spine motility 

 

Live imaging of dendritic spines has revealed that dendritic protrusions are highly 

dynamic (Bonhoeffer and Yuste 2002). More mature dendritic spines with heads 

exhibit a more subtle type of motility than dendritic filopodia on young neurons, 

which show protrusive motility (Fischer et al. 1998). Local spine motility, or 

“morphing”, which might be relevant to the role of spines in memory formation, is 

powered by actin filament polymerization (Fischer et al. 1998; Dunaevsky et al. 1999) 

and might even still occur in the presence of a functional contact (Dunaevsky et al. 

2001; Deng and Dunaevsky 2005). The functional significance of spine morphing is 

not known, but the authors of a recent study proposed that it might be involved in the 

diffusion of molecules through the plasma membrane into the spine (Richards et al. 

2004). In this scenario, spine motility may have roles additional to the formation of 

initial cell-cell contacts. Such a mechanism might also be important for the fast 

delivery of receptors into the synapse, a process that is likely to be accelerated during 

the acquisition of memory. In addition, spine motility after synapse formation could 

serve to alter the signaling at the synapse, since alterations in spine shape have been 

shown to change calcium dynamics (Majewska et al. 2000). This may in turn lead to 
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activation of alternative pathways or potentiation of certain synapses over others and 

might therefore provide a mechanism for activity-dependent learning. 

 

4.1.3 Spine shape and function 

 

It has been reported that the size of miniature excitatory postsynaptic currents 

(mEPSCs) recorded at the soma after glutamate activation of single spines is 

positively correlated with the size of the spine head, that is, large spines produce large 

synaptic responses (Matsuzaki et al. 2001). It is likely that spines with larger heads 

accumulate more glutamate receptors and more of their interacting proteins, thereby 

producing larger somatic responses after synaptic activation. However, in other 

studies no difference or the opposite effect was seen in mEPSC properties (Murphy et 

al. 1998; El-Husseini et al. 2000; Pilpel and Segal 2004). 

 

4.1.4 Spines and memory 

 

Dendritic spines are the principal postsynaptic targets for excitatory synapses (Harris 

1999) and changes in their morphology are implicated in synaptic plasticity and long-

term memory (Segal and Andersen 2000). Synaptic plasticity is a term used to 

describe how synapses change in response to stimuli. The perforant path, an important 

input to the hippocampus, shows activity-dependent plasticity, which is called long-

term potentiation (LTP) (Bliss and Gardner-Medwin 1973). LTP is induced by a 

strong presynaptic stimulus and results in an increase in synaptic efficacy that can last 

up to hours in vitro and days or weeks in vivo. Activity-dependent synaptic plasticity 

often requires N-methyl-D-aspartate (NMDA)-type glutamate receptors, which are 

coincidence detectors requiring both presynaptic activity (glutamate release) and 

postsynaptic activity (depolarization) to control Ca2+ entry into the postsynaptic side 

of excitatory synapses. Ca2+ influx by NMDA receptors and associated signaling 

pathways orchestrate synapse formation and plasticity (Helmchen 2002). If learning 

and memory indeed correlate with persistent changes in spine morphology, some 

important criteria should be met. These spine morphology changes should be 

temporally associated with changes in memory and, in addition, the magnitude of 
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changes in spines has to correlate with changes in cellular behavior. Moreover, 

changes in spine morphology after acquisition of a memory should be blocked or 

enhanced by drugs that block or enhance memory formation, respectively . If changes 

in spine cause changes in memory, it will be interesting to address whether the 

formation of a “memory” is directly inducible by generating changes in spines. 

Finally, depotentiation or long-term depression (LTD) is a weakening of a synapse 

that lasts from hours to days and may result from persistent weak synaptic patterned 

stimulation (e.g. a 1-Hz stimulus). To establish a causative connection between spines 

and the formation and/or maintenance of memory, LTD, which represents an in vitro 

model for erasure of memory, should therefore be associated with a reversal of the 

spine changes. 

 

4.1.4.1 Changes in spines after a learning experience 

 

At present, no evidence for the involvement of spine formation in memory meets any 

of the above mentioned criteria and the main question is still what type of spine 

changes take place after a learning experience. The heterogeneity of the observed 

changes in spine morphology may be due to a number of reasons, such as the use of 

different experimental conditions, timescales or type of spines. Because of its high 

resolution, the three-dimensional reconstruction of spines after learning experience 

using electron microscopy should be the ultimate approach for measuring changes in 

individual spines and dendrites. However, as this is the most labour-intensive method, 

it is not used extensively. In summary, there has not been a consistent picture yet of 

the changes in spine dimensions after memory formation and some of the changes 

observed are probably transient and diminish with different time courses.  

One morphological change that has been reported by five independent groups in the 

past year, although to quite a heterogeneous extent, involves a rapid expansion of 

spine heads after tetanic stimulation in hippocampal slices or cultures. Matsuzaki and 

colleagues found a threefold increase in spine volume within 2-4 minutes after 

induction of LTP, which fell to a ~20-30% increase in spine volume after 20-40 

minutes (Matsuzaki et al. 2004). A similar change, albeit much smaller and slower 

(18% increase in the spine/dendrite ratio) was reported by Otmakhov et al. after the 

induction of LTP by bath application of forskolin (Otmakhov et al. 2004). However, 
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another study, reported that these changes occurred in only ~6% of the imaged spines 

(Lang et al. 2004), which is unlikely to underlie the twofold increase in field EPSP 

that was recorded in the same tissue slices.  

Recent evidence has confirmed that stimulation patterns associated with LTP increase 

the spine volume up to twofold and, moreover, using fluorescence resonance energy 

transfer (FRET) this has been shown to be associated with increases in levels of 

polymerized actin in spines (Okamoto et al. 2004). These effects are mediated by 

NMDA receptor activation, which also leads to an increase in the levels of both actin 

and actin binding proteins in the spine cytoskeleton (Furuyashiki et al. 2002; 

Ackermann and Matus 2003; Okamoto et al. 2004). Interestingly, drugs that inhibit 

actin dynamics selectively block LTP (Kim and Lisman 1999; Krucker et al. 2000; 

Chen et al. 2002) and slightly enhance LTD (Chen et al. 2002). And indeed, they also 

found that LTD was associated with spine shrinkage and an increase in the relative 

amount of G-actin in the spine head (Chen et al. 2002; Okamoto et al. 2004). Taken 

together, these data strongly suggest that in mature dendritic spines actin filament 

dynamics are closely coupled to LTP and LTD. Finally, Zhou reported a slow (20-60 

minutes) and small (16-33%) increase in the diameter of the spine heads after high 

frequency stimulation (Zhou et al. 2004). This study also showed for the first time 

symmetry between changes in spines and synaptic responses, in that spine heads 

shrunk after the induction of LTD and were enlarged after the formation of LTP, 

which is consistent with the expansion of the postsynaptic density (Fifkova and 

Anderson 1981; Desmond and Levy 1986), and could underlie an enhanced synaptic 

response and an increase in the amplitude of mEPSCs (Matsuzaki et al. 2004). 

Another morphological change in dendritic spines that can be seen is the formation of 

new spines, which was originally observed in cultured slices of the hippocampus and 

involved the accelerated formation of filopodia in response to local stimulation 

(Maletic-Savatic et al. 1999). A similar observation was made using a patterned LTP-

producing stimulus in cultured hippocampal slices (Engert and Bonhoeffer 1999) and 

was reproduced and extended in dissociated hippocampal cultures (Goldin et al. 2001) 

and in hippocampal slices (Jourdain et al. 2003). Similar to the expansion of spine 

heads, it is not clear whether the formation of new spines (1-6 spines per 100 μm 

(Engert and Bonhoeffer 1999; Jourdain et al. 2003)) can explain the changes observed 

in the electrophysiological responses, which normally increase up to 50-100% above 
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control levels. An explanation for this may be that most new spines are non-functional 

and therefore new spines constitute a greater proportion of active spines. 

 

4.1.4.2 Spines and long-term depression 

 

What happens when LTP and memories are erased (or depontentiated) or when the 

synapse is depressed by the induction of LTD? As mentioned above, in contrast to the 

changes observed upon induction of LTP, there is a shift to a lower F-actin/G-actin 

ratio in the spine head in response to LTD perhaps leading to the observed spine 

shrinkage (Okamoto et al. 2004). Zhou found a 25-40% shrinkage in the diameter of 

spine heads, which persisted for an hour after LTD induction (Zhou et al. 2004). 

Moreover, more spines disappear in a period of 6 hours after the induction of LTD (2-

3 spines per 100 μm of dendrite) than would be expected to disappear spontaneously 

(Nagerl et al. 2004). 

Taken together, these studies show that dendritic spines shrink and/or disappear when 

LTD is induced, which is consistent with the hypothesis that LTP or LTD are two 

directly opposed mechanisms that after formation lead to larger and more or smaller 

and fewer spines, respectively. 

 

4.1.4.3 Spine persistency 

 

How persistent are the changes in spine morphology and number after a stimulus has 

occurred? Two studies demonstrated that there are changes in spine density in rat 

brains 9 hours but not 24 hours after training on a water maize (Eyre et al. 2003) and 6 

hours but not 72 hours after passive avoidance training (O'Malley et al. 2000), which 

would indicate that morphological changes are transient. However, using two-photon 

microscopy in the intact brain, two recent studies came to the opposite conclusion 

regarding this issue. One study showed that in the mouse barrel cortex, about 50% of 

spines were transient, with a half-life of days (Trachtenberg et al. 2002). The other 

study showed that, in the mouse visual cortex, most spines (96%) were stable over 

months (Grutzendler et al. 2002), which might, though, also represent one extreme of 

the normal distribution of spine stability, whereas the first study represents a value 
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that is below the mean of spine stability. This discrepancy might on the other hand be 

explained by the fact that the studies use different cell types and different 

methodologies as well as by different activity patterns in the visual and somatosensory 

cortices.  

Regardless of the discrepancy between the observations of different studies, the issue 

of spine persistency is important where memory is concerned. If spines are transient 

by nature, then their function cannot be related to long-time memory. Nevertheless, as 

mentioned above, some neurons might be more plastic than others and, for example, 

spine density on CA1 neurons can vary by 30% across the oestrus cycle, which does 

not necessarily mean that 30% of memories are lost during that time (Woolley and 

McEwen 1993). 

 

4.1.5 Cellular processes regulated by spine signaling 

 

Together with the regulation of AMPA receptors (Malinow and Malenka 2002) and 

local protein synthesis (Steward and Schuman 2003; Klann and Dever 2004), changes 

in the spine cytoskeleton have a crucial role in synaptic plasticity (Matus et al. 2000; 

Yuste and Bonhoeffer 2001; Carlisle and Kennedy 2005). Several mutations in human 

proteins that regulate the actin cytoskeleton cause mental retardation (Ramakers 

2002). Several studies have shown that synaptic stimulation alters the spine 

cytoskeleton (Lin et al. 2005), and that altering the actin dynamics interferes with 

synaptic plasticity (Fukazawa et al. 2003; Rabenstein et al. 2005). Actin dynamics in 

the spine are influenced by Ca2+ flux through activated NMDA receptors (Fukazawa 

et al. 2003; Tolias et al. 2005) and by signaling through Eph receptors, which activate 

the Rho GTPase Rac1 (Henkemeyer et al. 2003; Penzes et al. 2003). Rac1 belongs to 

the Rho family of small GTPases, which transduces signals from extracellular stimuli 

to the actin cytoskeleton and to the nucleus. Recent evidence implicated Rho GTPases 

in the regulation of neuronal morphogenesis, including migration, polarity, axon 

growth and guidance, dendrite formation and plasticity, and synapse formation (Luo 

2000). Rho GTPases constitute a subfamily of the Ras superfamily of small GTPases 

( 200 amino acids long). The best-studied Rho GTPases are RhoA (Ras homologous 

member A), Rac1 (Ras-related C3 botulinum toxin substrate 1) and Cdc42 (cell 

division cycle 42). Rho GTPases act as molecular switches and exist in two states: a 



  4. Introduction 

  22 

GDP-bound inactive state and a GTP-bound active state. Two classes of protein 

facilitate the switch between these two states. Guanine nucleotide exchange factors 

(GEFs) facilitate the exchange of GDP for GTP, thereby activating Rho GTPases. 

When bound to GTP, activated Rho GTPases can bind to various effectors and elicit 

different biological activities. By contrast, GTPase activating proteins (GAPs) 

increase the endogenous GTPase activity of Rho GTPases, thereby helping to switch 

them off (Luo 2000) (Figure 4). 

 

 
 

Figure 4. Rho GTPases as molecular switches. Upstream signals transduce signals to Rho 
GTPases through regulation of the activities of guanine nucleotide exchange factors (GEFs) 
or GTPase-activating proteins (GAPs), which facilitate switching on or off Rho GTPases. In 
their GTP-bound state, Rho GTPases bind to and activate their effectors to transduce the 
signal downstream. 
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4.1.5.1 Regulation of the actin cytoskeleton in spines by Rac 

 

During the development of synapses, the activation of NMDA receptors and EphB 

receptors influences spine morphology by regulating actin remodeling (Tolias et al. 

2005). In mature spines, the activation of NMDA receptors increases actin 

polymerization (Fukazawa et al. 2003), and activation of EphB receptors is necessary 

to maintain spine morphology (see below). Regulation of the cytoskeleton by NMDA 

receptors is mediated by TIAM1 (T-cell lymphoma invasion and metastasis 1), a Rac-

specific GEF that is expressed at high levels in the developing and adult brain (Tolias 

et al. 2005). Knockdown of TIAM1, or expression of a dominant-negative TIAM1, in 

hippocampal neurons disrupts the effects of NMDA receptor activation on the spine 

cytoskeleton. TIAM1 is present in dendrites and spines where NMDA receptor 

stimulation could lead to activation of its RacGEF activity. An entirely separate 

mechanism for activating Rac, through EphB receptors, has also a prominent role in 

controlling the actin cytoskeleton, but will be discussed in greater detail in chapter 

4.2. Other cytosolic proteins have been shown to regulate Rac activity in spines 

modulating spine morphology. One of these proteins, G-protein-coupled receptor 

kinase-interacting protein (GIT)1, has been shown to be a key regulator of spine 

morphology and synapse formation (Zhang, H. et al. 2003). Disrupting the synaptic 

localization of GIT1 by a dominant-negative mutant resulted in numerous dendritic 

protrusions and a significant decrease in the number of synapses and normal 

mushroom-shaped spines. The phenotype resulted from mislocalized GIT1 and its 

binding partner p21-activated protein kinase (PAK)-interacting exchange factor (PIX), 

an exchange factor for Rac, which is mutated in patients with nonsyndromic mental 

retardation. In another recent study, Zhang and colleagues were able to rescue the 

spine defects of GIT1 knockdown with activated PAK (p21-activated protein kinase) 

or myosin II regulatory light chain (MLC), which suggests that GIT1 functions 

through PAK and MLC (Zhang, H. et al. 2005). This points to a signaling complex 

consisting of GIT1, PIX, Rac and PAK that functions in regulating dendritic spine and 

synapse formation through modulating MLC activity. The molecule(s) that recruit this 

signaling complex to the synaptic membrane are currently unknown.  
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4.2 Eph receptors and their ephrin ligands 

 

Eph receptors and their membrane-bound ligands, the ephrins, are unique in the 

receptor tyrosine kinase family because their signaling is bidirectional, through both 

the receptor and the ligand (Kullander and Klein 2002). The Eph/ephrin system is 

mainly engaged in cell-to-cell communication between adjacent cells. To date, a 

variety of biological functions have been demonstrated for Eph receptors and ephrins, 

including vascular development, tissue-border formation, cell migration, axon 

guidance and synaptic plasticity (Palmer and Klein 2003). Roles of Ephs and ephrins 

in the biology of stem cells, immune function, blood clotting and tumor formation are 

also beginning to be characterized (Zou et al. 1999; Conover et al. 2000; Wohlfahrt et 

al. 2004; Clevers and Batlle 2006). The influence of this peculiar bi-directional 

signaling on cell behavior is, in most cases, repellent to cellular processes such as the 

neuronal growth cone (Zimmer et al. 2003). However, some examples of adhesive 

responses mediated by Eph and ephrin have also been described (Holmberg et al. 

2000). How the choice between repulsion and adhesion is regulated in vivo at the 

molecular level is so far unknown, although endocytosis of Eph and ephrin complexes 

have been postulated to play a role in this decision (Zimmer et al. 2003). In molecular 

terms, most of the signaling pathways downstream of Ephs and ephrins converge to 

remodel the cytoskeleton rather than having a regulatory effect on transactivation of 

gene expression (Murai et al. 2003; Noren and Pasquale 2004). 

 

4.2.1 The Eph class of receptor tyrosine kinases: forward signaling 

 

Eph receptors, which constitute the largest receptor tyrosine kinase family, are 

subdivided based on sequence similarity into two classes, EphA and EphB receptors. 

These two groups also correspond to the binding preference for the different ephrins. 

Promiscuous receptor-ligand interaction within each A or B class has been observed 

with two exceptions, ephrinA5, able to bind at high concentrations to EphB2 

(Himanen et al. 2004) and EphA4, which binds to all ephrinBs (Pasquale 2005). In 

vertebrates there are ten EphA and six EphB receptors, EphA1 – EphA10 and EphB1 

– EphB6 (Murai and Pasquale 2003; Pasquale 2004), which all share a common 
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structure. The extracellular part of Eph receptors includes the N-terminal ephrin-

binding domain, a cysteine-rich region (containing an epidermal growth factor (EGF)-

like motif) and two fibronectin type-III repeats (FNIII). The intracellular part includes 

a juxtamembrane segment that includes two conserved tyrosine residues, a classical 

protein tyrosine kinase domain, a sterile-α-motif (SAM) implicated in mediating 

protein-protein interaction via the formation of homo and heterotypic oligomers, and a 

PDZ (PSD 95/Disc large/ZO-1)-binding motif. The extracellular and intracellular 

parts are connected by a single membrane-spanning segment (Figure 5). The PDZ 

binding motif mediates protein-protein interactions by binding to PDZ domain-

containing proteins in a sequence-specific fashion.  

 

 
 
Figure 5. Eph receptors. The N-terminal globular ligand binding domain (Glob) is followed 
by a cysteine-rich region (Cys) and two fibronectin type III repeats (FNIII), which contain a 
dimerization motif. Phosphorylated tyrosine residues (P) provide docking sites for SH2 
domain-containing signaling proteins. Sterile--motif (SAM) domains form homodimers and 
may regulate receptor dimerization. Signaling proteins containing PDZ domains dock to a 
PDZ-binding domain (PBD) in the carboxy terminus of Eph receptors. Transmembrane 
domain (TM), juxtamembrane region (JM), kinase domain (KD). 
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4.2.1.1 Eph-ephrin clusters 

 

Another unique feature of this receptor-ligand system is that their functional signaling 

requires the formation of higher-order clusters (Stein et al. 1998). Upon formation of a 

monovalent interaction between an Eph receptor and an ephrin on juxtaposed cell 

surfaces with subsequent dimerization of two Eph-ephrin dimers into a tetramer, these 

complexes can progressively aggregate into larger clusters, the size of which might 

depend on the densities of Eph receptors and ephrins on the cell surface (Himanen and 

Nikolov 2003; Smith et al. 2004). Several weak ephrin-ephrin and receptor-receptor 

interactions, which include regions in the extracellular and juxtamembrane domain of 

ephrins, and in the ephrin-binding domain, cysteine-rich region and cytoplasmic SAM 

domain of Eph receptors, could promote the association of the complexes into an 

interconnected network (Himanen and Nikolov 2003). PDZ-domain proteins bound to 

Ephs and B-class ephrins might contribute to stabilize the clusters and lateral 

association of Eph receptors may help to expand these receptor signaling clusters 

beyond the region of cell-cell contact (Wimmer-Kleikamp et al. 2004).  

 

4.2.1.2 Activation and signaling 

 

Ligand engagement of the receptor dimer induces trans-activation of the receptor and 

subsequent autophosphorylation of several juxtamembrane tyrosine residues in the 

partner receptor (transphosphorylation), which is required for full activation of the 

protein tyrosine kinase domain of the receptor (Binns et al. 2000; Zisch et al. 2000; 

Kullander et al. 2001). The kinase domain of one receptor from each class (EphA10 

and EphB6) lacks residues that are essential for catalytic activity. Upon activation by 

ephrins, Eph receptors become heavily phosphorylated on tyrosine residues through 

Src-family kinases (SFKs) that are often associated with the receptor (Kalo and 

Pasquale 1999; Knoll and Drescher 2004). Upon phosphorylation of juxtamembrane 

tyrosine residues, the juxtamembrane domain is then released from the interaction 

with the kinase domain allowing the kinase domain to convert into its active state. The 

functional relevance of this activation in large signaling clusters has been recently 

revealed and shown to be important for a number of axon guidance decisions (Egea et 
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al. 2005). This phosphorylation via SFKs or transphosphorylation enables 

phosphotyrosine-binding proteins containing Src-homology-2 (SH2) domains to bind 

to the phosphorylated juxtamembrane domain (Kalo and Pasquale 1999; Kullander 

and Klein 2002; Murai et al. 2003; Prevost et al. 2003; Brantley-Sieders et al. 2004). 

Those adaptor proteins are a growing class of proteins that often lack intrinsic 

enzymatic activity and which, however, play important roles in the formation of 

protein complexes to connect signaling molecules to upstream and downstream 

signaling events. Although Eph receptors and ephrins are often co-expressed in the 

same cells and have been localized to lipid rafts (Wu et al. 1997; Bruckner et al. 1999; 

Huai and Drescher 2001; Gauthier and Robbins 2003), it is not known whether they 

mix and are free to interact laterally or if they are segregated in different subdomains 

of the plasma membrane. Interestingly, targeting of EphA receptor into ephrin-A-

enriched membrane domains has been shown to also lead to cis-interactions, which 

consequently attenuates trans-activated signaling (Marquardt et al. 2005). 

 

4.2.2 Ephrin ligands: reverse signaling 

 

The ligands are also divided into two subclasses: the A-subclass (ephrinA1-

ephrinA5), which are tethered to the cell membrane by a glycosylphosphatidylinositol 

(GPI) anchor, and the B-subclass (ephrinB1-ephrinB3), which have a transmembrane 

domain that is followed by a short cytoplasmic region (Figure 6). The ligands do not 

have intrinsic enzymatic activity. 
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4.2.2.1 Signaling through transmembrane ligands 

 

The cytoplasmic domain of ephrinB ligands contains five conserved tyrosine residues. 

Three of these tyrosines (residues 312, 317 and 332) have been identified as the main 

in vivo tyrosine phosphorylation sites of activated avian ephrinB1 from neuronal 

tissue (Kalo and Pasquale 1999). These residues become phosphorylated following 

stimulation with clustered soluble ectodomain of Eph receptors (Palmer et al. 2002), 

with the fibroblast growth factor (FGF), presumably by the co-expressed FGF 

receptor (Chong et al. 2000), and by stimulation of the endogenous PDGF (platelet 

derived growth factor) receptor (Bruckner et al. 1997). Phosphorylation of ephrinB 

cytoplasmic domain is positively regulated by SFKs, which are rapidly recruited to 

ephrinB-containing membrane clusters by EphB2 receptor stimulation (Palmer et al. 

2002) (Figure 7a). However, phosphorylation of ephrinB ligands is a transient event 

and, with delayed kinetics, the PDZ-domain containing protein-tyrosine phosphatase 

PTP-BL (protein tyrosine phosphatase-basophil-like) is recruited to these ephrinB 

membrane clusters through interaction with the PBD in ephrinB. PTPBL can thereby 

act as a negative regulator of ephrinB phosphorylation and Src activity. Thus, this 

mechanism may induce a switch from phosphotyrosine-dependent signaling to PDZ-

domain-dependent-signaling (Palmer et al. 2002). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
_____________________________________________________________________ 
Figure 6. Ephrin ligands. The two ephrin classes differ in their type of membrane 
attachment, that is, GPI-anchored (ephrinA) versus transmembrane region (ephrinB). EphrinA 
ligands: N-terminal ephrin domain (extracell), glycosylphosphatidylinositol (GPI) anchor. 
EphrinB ligands: N-terminal ephrin domain (extracell), cytoplasmic domain (Cyto), PDZ-
binding motif (PBD), tyrosine phosphorylation sites (P).  
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4.2.2.1.1 Phosphorylation-dependent signaling by ephrinB via Grb4 

 

The SH2-SH3 domain adaptor protein Grb4 (growth-factor-receptor-bound protein 4) 

has been identified as an interactor and downstream effector of ephrinB1 (Cowan and 

Henkemeyer 2001). Grb4, but not its related adaptor protein Nck (noncatalytic region 

of tyrosine kinase adaptor protein 1), binds to the phosphorylated cytoplasmic tail of 

ephrinB1 upon EphB2 engagement of ephrinB1 and induces loss of polymerized F-

actin structures, disassembly of focal adhesions and detachment of the cells from the 

substratum. This effect was accompanied by focal adhesion kinase (FAK) 

phosphorylation and redistribution of the focal adhesion protein paxillin from the 

plasma membrane, indicating regulated disassembly of focal adhesion sites. 

Moreover, EphB2-induced stimulation of ephrinB1 leads to recruitment of Grb4 and 

its SH3-binding partner c-Cbl-associated protein (CAP), from focal adhesions to 

localized regions of ephrinB1 activation (Figure 7b). 

 

4.2.2.1.2 Phosphorylation-independent signaling by ephrinB  

 

The cytoplasmic region of ephrinB ligands also contains a PDZ-binding motif (YKV) 

at its carboxyl terminus, which serves as docking site for both adaptor proteins that 

consist of only PDZ domains, such as GRIP1, GRIP2 as well as syntenin, and proteins 

containing PDZ domains and other protein domains, as for example protein kinase C-

interacting protein (PICK)1 and the tyrosine phosphatase PTP-BL (Figure 7). In most 

cases (except for PTP-BL), the functional relevance of these interactions in ephrinB1 

localization and clustering or reverse signaling events is not known. Another link that 

connects ephrin signaling in a phosphorylation-independent fashion to a functional 

read-out occurs through PDZ-RGS3, a cytoplasmic protein containing one PDZ and 

one “regulator of G-protein signaling” (RGS) domain, which binds constitutively to 

ephrinB ligands (Lu, Q. et al. 2001). RGS domains have a GAP activity for the  

subunit of heterotrimeric G-proteins, thereby serving as negative regulators of G-

protein signaling. EphrinB reverse signaling via PDZ-RGS interferes with the 

signaling of the chemokine stromal derived factor (SDF)-1 via its G-protein coupled 

receptor CXCR4. SDF-1 is an attractant for migrating cerebellar granule cells. The 
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inhibitory action of ephrinB reverse signaling was implicated in the correct layering of 

these cells during cerebellar development (Lu, Q. et al. 2001). 

 

 
 

Figure 7. EphrinB-mediated reverse signaling as described in the text. (a) Following 
activation of the ligand, ephrinB and Src family kinases (SFKs) are recruited to the same 
compartments and tyrosine phosphorylation of the ephrinB cytoplasmic tail via the activity of 
the SFK takes place. (b) Tyrosine phosphorylated residues act as docking sites for SH2-
containing molecules, such as Grb4, which transduce a phosphotyrosine-dependent signal to 
the interior of the cell inducing a rearrangement of the cytoskeleton. (c) PTP-BL 
dephosphorylates ephrinB ligands and inactivates Src and thereby switches phosphotyrosine-
dependent signaling off. (d) A variety of PDZ-domain containing proteins can now interact 
with the extreme carboxy-termini of ephrinB molecules. The chemokine SDF-1 binds to its 
G-protein-coupled receptor CXCR4 and activates signaling pathways through heterotrimeric 
G proteins. PDZ-RGS3, a GTPase-activating protein for heterotrimeric G proteins, binds 
constitutively to the PDZ-binding motif of ephrinB and reverses SDF-1-induced signaling by 
inactivating the α subunit of the heterotrimeric complex and therefore inhibiting chemotaxis. 
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4.2.2.1.3 EphrinB ligands and Rho proteins 

 

The Rho family of small GTPases has a central role in control of the dynamic 

reorganization of the actin cytoskeleton required for cell migration and adhesion (Hall 

and Nobes 2000). Although increasing evidence indicates that Eph receptors signal to 

the actin cytoskeleton via the Rho family of GTPases, little is known about the effects 

of ephrin reverse signaling on Rho family proteins. Some information comes from 

recent data showing that Dishevelled mediates RhoA and Rho kinase activation 

downstream of ephrinB1 (Tanaka et al. 2003). This demonstrates an important role for 

Dishevelled in both forward and reverse signaling downstream of EphB-ephrinB 

complexes. Another link between B-ephrins and RhoA may be src, which is required 

for ephrinB phosphorylation upon activation by EphB receptors (Palmer et al. 2002) 

and also phosphorylates p190RhoGAP (Brouns et al. 2001). However, the relevance 

of RhoA activation downstream of ephrins needs to be verified. Recently, there has 

been evidence that ephrin reverse signals activate Rac through the interaction of the 

Rac1-specific guanine nucleotide-exchanging factor TIAM1 with ephrinB1 and 

thereby mediate neurite outgrowth in cortical neurons (Tanaka et al. 2003).  

 

4.2.2.2 Signaling through GPI-anchored ligands 

 

Genetic studies indicated that the role of the single Caenorhabditis elegans Eph 

receptor (VAB-1) in cellular organization is, in part, kinase independent. This is in 

line with evidence from receptor-engaged C. elegans ephrinA, which mediates cell 

adhesion by activating the SFK member Fyn. Fyn kinase has been shown to co-

localize with the activated ephrinA ligand in lipid-raft microdomains (Davy et al. 

1999; Wang et al. 1999). Interestingly, available data consistently indicate that, in 

contrast to Eph receptors, ephrinA ligand activation, leads to enhanced integrin-

dependent adhesion (Davy et al. 1999; Davy and Robbins 2000; Huai and Drescher 

2001). Whereas the mechanisms for ephrinB signaling are beginning to be elucidated, 

as mentioned above, mechanisms for ephrinA reverse signaling, for which there is 

convincing biochemical and genetic evidence (Davy and Robbins 2000; Huai and 

Drescher 2001; Knoll et al. 2001; Holmberg et al. 2005), are largely unknown.  
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4.2.3 Ephs and ephrin functions in dendritic spine formation 

 

Using mainly cultured neurons, several reports have implicated EphB receptor 

forward signaling as a positive signal in spine formation. Postsynaptic EphB2, but not 

EphA receptor, has been shown to phosphorylate the cell-surface heparan-sulfate 

proteoglycan syndecan-2 on cytoplasmic tyrosine residues and to associate with 

syndecan-2 in a phosphorylation-dependent manner (Ethell et al. 2001). The same 

group had demonstrated before that syndecan-2 is able to promote spine maturation in 

cultured hippocampal neurons, presumably by recruiting a protein complex via its C-

terminus (Ethell and Yamaguchi 1999) (Figure 8). Inhibition of EphB2 signaling by 

overexpression of a kinase-inactive EphB2 mutant blocked endogenous syndecan-2 

clustering and spine formation. However, ultrastructural examination of synapse 

morphology has not revealed major changes in EphB2-null mutants, suggesting 

functional redundancy with other co-expressed Eph receptors (Grunwald et al. 2001; 

Henderson et al. 2001). Using EphB receptor triple knock-out mice, Henkemeyer and 

co-workers have now demonstrated a highly redundant requirement for three EphB 

receptors (EphB1, EphB2 and EphB3) in dendritic spine morphogenesis in the 

hippocampus (Henkemeyer et al. 2003). In vivo, few spines were still formed in triple 

mutants, whereas mutant cultured neurons completely lacked spines. The residual 

spines observed in vivo indicate the involvement of glial cells, which are more 

frequently present in vivo and might stabilize spines by enwrapping the synapses. 

Moreover, ephrinB2–mediated activation of the EphBs in vitro transformed thin 

immature spines into mature forms with spacious spine heads (Henkemeyer et al. 

2003). Downstream of EphB forward signaling, Moeller and colleagues very recently 

showed that shortening of dendritic filopodia involves the assembly of a complex, 

which includes focal adhesion kinase (FAK), Src, Grb2 (growth factor receptor-bound 

protein 2), and paxillin. Furthermore, EphB2 activation leads to the activations of 

FAK, Src, and paxillin, potentially initiating a number of downstream signaling 

pathways that are likely to contribute to the assembly of actin filaments in dendritic 

spines (Moeller et al. 2006). Rho-family GTPases have also been implicated in spine 

morphogenesis induced by Eph receptors (Irie and Yamaguchi 2002; Penzes et al. 

2003). Treatment of hippocampal neurons with soluble ephrinB1-Fc induced rapid 

formation of spine-like protrusions, which was blocked by overexpressing a kinase-
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inactive EphB2 mutant. EphB2 tyrosine kinase phosphorylated the endogenous 

RhoGEF kalirin in neurons, which was redistributed to larger and more synaptic 

clusters upon ephrinB1 stimulation. By using additional dominantly interfering tools, 

a pathway was outlined from Rho-GEF kalirin to filamentous actin formation and 

gene expression mediated by Rac1 and PAK, a key target of Rac1 (Penzes et al. 

2003). EphB2 also physically associates with RhoGEF intersectin and activates its 

GEF activity in cooperation with neural Wiskott-Aldrich syndrome protein (N-

WASP), which in turn upon stimulation with ephrinB2-Fc activates the Rho-family 

GTPase Cdc42 and spine morphogenesis (Irie and Yamaguchi 2002). EphrinB-

mediated activation of EphB receptors also induces tyrosine phosphorylation and 

recruitment to dendritic spines of another Rac1 exchange factor: TIAM1 (Tanaka et 

al. 2004; Tolias et al. 2005). Blocking TIAM1 function with dominant-negative 

mutants or by RNA interference causes a marked reduction in dendritic spine 

numbers, suggesting a role for TIAM1 in dendritic spine development. 

While axonal-dendritic spine formation may be regulated by ephrinB-EphB 

interactions, glial-dendritic control of spine formation may involve ephrinA-EphA4 

signaling. EphA receptors have recently been shown to regulate dendritic spine 

morphology in hippocampal slices obtained from adult mice (Murai et al. 2003). 

Comparison of wild-type with EphA4-/- slices revealed that spines lacking EphA4 

were irregular in shape and significantly shorter than normal. Murai and co-workers 

also found highest expression of ephrinA3 on astrocytic processes near synaptic 

terminals suggesting that neuroglia interactions involving ephrinA3 and EphA4 

forward signaling stabilize spine morphology and possibly synapses in the intact 

hippocampus. 
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Figure 8. Eph signaling pathways leading to spine formation. The proteoglycan syndecan-
2 mediates synaptic spine formation. Eph receptors activate syndecan-2 by phosphorylation. 
The RhoGEFs Kalirin-7 and TIAM1 have also been implicated in EphB-mediated formation 
of dendritic spines through recruitment and activation of the Rho GTPase Rac1 and PAK. The 
RhoGEF intersectin connects Eph signaling to Cdc42 inducing F-actin formation, a 
prerequisite of spine formation. Activation of EphB receptors results also in the association of 
FAK, Grb2, and Src with EphB2. Following assembly of this protein complex, Src is 
activated and phosphorylates FAK and paxillin, which results in RhoA activation and 
dendritic filopodia shortening. 
 

4.2.4 Ephrins and Ephs in synaptic plasticity 

 

Recent research has shown that Eph receptors and ephrins are important in the adult 

nervous system, for example during the processes of synapse formation and synaptic 

plasticity, which is dependent on neuronal activity. While control of spine formation 

by Eph/ephrin appears to involve redundant contributions from several family 

members, the signaling events leading to activity-dependent synaptic plasticity require 
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the presence of the EphB2 receptor, which is thought to act postsynaptically by 

modulating glutamate receptors (Grunwald et al. 2001; Henderson et al. 2001; 

Contractor et al. 2002) and which was shown to associate with and to induce 

clustering of NMDA receptors (Figure 9). This in turn may suggest that ephrinB 

ligands in synaptic membranes induce the maturation of glutamatergic synapses by 

promoting NMDA receptor aggregation (Dalva et al. 2000). A model in which ephrin-

Eph signaling influences activity-dependent processes (Ca2+ influx) by modulating 

gene expression during development of synaptic connections comes from data 

obtained from very young cultured neurons, which showed enhanced NMDAR-

mediated Ca2+ influx and potentiated cAMP-response element binding protein 

(CREB)-phosphorylation and -dependent transcriptional events upon stimulation with 

ephrinB1 (Grunwald et al. 2001; Takasu et al. 2002). This might mechanistically 

occur by the recruitment and activation of SFKs, which phosphorylate certain subunits 

of the NMDAR (Grunwald et al. 2001; Takasu et al. 2002) Activation of SFKs is 

required for EphB2-mediated enhancement of Ca2+ influx, at least in a transfected cell 

system (Takasu et al. 2002). These in vitro observations are consistent with findings 

from EphB2-deficient mice (Grunwald et al. 2001; Henderson et al. 2001) showing a 

reduction or even loss of hippocampal long-term potentiation and long-term 

depression correlated with a redistribution of a significant fraction of NMDA 

receptors. Interestingly, targeted expression of a kinase-deficient EphB2 receptor 

isoform rescued the defects in EphB2-deficient mice, suggesting that ephrinB ligand 

reverse signaling may be the active signaling partner at the synapse (Grunwald et al. 

2001; Henderson et al. 2001).  

Recent evidence indicates that in certain synapses, the Eph/ephrin system is used in an 

inverted manner: At the mossy fiber–CA3 synapse, ephrinB3 is specifically expressed 

by presynaptic dentate gyrus cells while the EphB2 receptor is expressed by both 

presynaptic dentate gyrus and postsynaptic CA3 neurons. In contrast, in the CA1 

region of the hippocampus, ephrinBs are predominantly localized in postsynaptic 

neurons, whereas EphBs and EphA4 are expressed both pre- and postsynaptically 

(Grunwald et al. 2004) (Figure 9). Interestingly, conditional mutants of ephrinB2- and 

ephrinB3-null mutants display drastically reduced LTP. Moreover, EphA4 forward-

signaling is not required since the deficit is rescued by an EphA4 receptor with the 

intracellular domain completely deleted. Therefore, EphA4 does not act as a receptor 

in the traditional sense, but rather as a ligand for postsynaptic and possibly 
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presynaptic ephrinBs, which are competent for reverse signaling. This supports a 

model in which the Eph/ephrin signaling system is used for activity-dependent 

plasticity in a converse fashion at different hippocampal synapses via an as-yet 

unknown pathway and, therefore, some of the spine morphology changes during 

plasticity might be regulated exclusively by ephrin reverse signaling pathways. Thus, 

ephrinB reverse signaling might be as important for dendritic spine development as 

the signaling pathways downstream of the Eph receptors. However, the ability of 

ephrins to initiate intracellular signals at synapses as well as the pathways involved in 

such signaling processes remain unknown. 
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_____________________________________________________________________ 
Figure 9. Eph and ephrin signaling pathways in synaptic plasticity. EphB2 enhances 
NMDA-dependent calcium fluxes through the cytoplasmic tyrosine kinase Src, which 
phosphorylates the NMDA receptor and potentiates phosphorylation of CREB. CREB-
dependent transcriptional events, influenced by activity-independent EphB signaling, may 
affect synapse formation, maturation, and plasticity. In postsynaptic CA1 neurons, ephrinB 
reverse signaling is required for long-term plasticity. This raises the intriguing possibility that 
the bi-directional Eph/ephrin signaling system is used for activity-dependent plasticity in 
converse ways at different synapses. The signaling partners required for reverse signaling in 
the postsynaptic CA1 neurons remain unknown.  
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5. Results 

 

5.1 Grb4 and GIT1 transduce ephrinB reverse signals modulating 

 spine  morphogenesis and synapse formation 

 

Dendritic spines are small protrusions emerging from the dendrites that receive 

excitatory input. The process of spine morphogenesis occurs both in the developing 

brain and during synaptic plasticity. Molecules regulating cytoskeletal rearrangements 

have been involved in spine formation and maintenance. Work to be presented here 

will show that reverse signaling by the transmembrane ligands for Eph receptors, 

ephrinB ligands, is required for correct spine morphogenesis. The molecular 

mechanism underlying this function of ephrins involves the SH2/SH3 adaptor protein 

Grb4 and the signaling adaptor GIT1. Grb4 binds via its SH2 domain to Tyr392 in the 

synaptic localization domain (SLD) of GIT1. Phosphorylation of Tyr392 and the 

recruitment of GIT1 to synapses are regulated by ephrinB activation. Disruption of 

this pathway impairs spine morphogenesis and synapse formation. In the studies 

presented, an important role for ephrinB reverse signaling in spine formation has been 

shown and the required ephrinB reverse signaling pathway has been mapped. 

 

5.1.1 EphrinB ligand signaling promotes spine maturation and is required for 

 spine morphogenesis 

 

It has been previously shown that hippocampal neurons from triple EphB-deficient 

mice failed to make dendritic spines (Henkemeyer et al. 2003). EphrinB ligands are 

highly enriched in preparations of the postsynaptic density and they interact with 

postsynaptic proteins (Grunwald et al. 2004). In order to investigate if activation of 

ephrinB ligands at synapses promotes spine formation, we stimulated 12 DIV rat 

hippocampal neurons with a soluble pre-clustered form of EphB2 receptor 

ectodomain fused to the Fc portion of human IgG (EphB2-Fc). We transfected the 

neurons with Yellow Fluorescent Protein (YFP) at 7 DIV in order to visualize 

protrusions after stimulation. Activation of ephrinB ligands by EphB receptor induced 
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spine maturation reflected by the shortening of the spines and the appearance of 

mushroom-like heads (Figure 10a). The average length of spines was reduced from 

1.92 ± 0.19 µm in the Fc controls to 1.66 ± 0.02 µm in EphB2-Fc stimulated neurons. 

To interfere with ephrinB reverse signaling we transfected rat hippocampal neurons 

with a truncated form of ephrinB1 (ephrinB1-ΔC), which lacks the cytoplasmic 

domain and therefore is deficient in reverse signaling. EphrinB1-ΔC is expressed at 

the membrane and is able to bind to EphB receptors expressed in neighboring cells 

(Zimmer et al. 2003) therefore acting as a dominant negative molecule that will 

interfere with the binding of endogenous ephrinB ligands to EphB receptors. The 

morphology of the spines in neurons transfected with a control vector or Cyan 

Fluorescent Protein (CFP)-ephrinB1-ΔC was visualized by co-transfection at 7 DIV 

with YFP. Overexpression of the truncated ephrinB ligand induced a significant 

increase in immature filopodia-like protrusions without heads (Figure 10b). The 

average length of protrusions was increased from 1.91 ± 0.29 µm in the YFP 

transfected controls to 2.55 ± 0.03 µm in CFP-ephrinB1-ΔC transfected neurons. 

These results suggest that ephrinB reverse signaling promotes spine maturation and is 

necessary for correct spine development. 

 
 
 
 
 
 
 
 

 

 

 

_____________________________________________________________________ 
Figure 10. EphrinB ligand signaling and spine maturation. (a) Activation of ephrinB 
ligands promotes spine maturation. Rat hippocampal neurons at 7 DIV were transfected with 
YFP and stimulated at 12 DIV for 8 h with clustered EphB2-Fc or control Fc, fixed and 
analyzed for the morphology of dendritic protrusions. The length of dendritic protrusions 
(n>500) was quantified (bottom panels). Group A represents spines and group B represents 
dendritic filopodia based on the length. Bar, 2 μm. (b) Expression of truncated ephrinB 
ligands impairs spine formation. Rat hippocampal neurons were transfected at 7 DIV with 
YFP (left panels) or co-transfected with YFP and CFP-ephrinB1-∆C (right panels), fixed at 11 
DIV and analyzed for the morphology of dendritic protrusions. The length of dendritic 
protrusions (n>500) was quantified (bottom panels). Bars: (top) 20 μm; (bottom) 2 μm. 
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5.1.2 Grb4 is enriched in post-synaptic densities and localizes to synapses in

 cultured hippocampal neurons 

 

We next attempted to elucidate the signaling events downstream of ephrinB ligands 

involved in spine formation. The SH2/SH3 adaptor Grb4 acts as a transducer from the 

phosphorylated ephrinB1 cytosolic domain to signaling pathways controlling the 

cytoskeleton (Cowan and Henkemeyer 2001). To investigate the involvement of Grb4 

in synapse formation, and to map the signaling pathway downstream of ephrinB 

ligands in such a process, we examined first the subcellular distribution of Grb4 in 

hippocampal neurons. We immunostained low density cultures using a specific anti-

Grb4 antibody (Figure 11a). In mature hippocampal neurons Grb4 showed 

characteristic synapse localization, accumulating in puncta along the neuronal 

processes. Double staining with the postsynaptic density protein PSD-95 confirmed 

the postsynaptic localization of Grb4. Presynaptic localization of Grb4 was also 

confirmed by double immunostaining with the presynaptic marker synaptophysin.  

To obtain biochemical evidence that Grb4 localizes to the PSD, PSD fractions were 

prepared from adult mouse hippocampus using standardized sucrose gradients and 

triton/sarcosyl extraction (Cho et al. 1992). To assess the quality of our PSD 

preparations, PSD-95 and synaptophysin were used as post- and presynaptic markers 

respectively. Western blot analysis of the PSD preparations showed Grb4 strongly 

enriched in the postsynaptic density (Figure 11b). These findings indicate that Grb4 

is positioned in the right place to mediate ephrinB reverse signaling necessary for 

synapse formation.  

 

 

 

 

_____________________________________________________________________ 
Figure 11. Grb4 localizes to synapses. (a) Grb4 colocalizes with both pre- and postsynaptic 
markers. Hippocampal neurons at 3 weeks in culture were immunostained for endogenous 
Grb4 (left column), PSD-95 (upper and middle panels in middle column) and synaptophysin 
(lower panel middle column). Enlargements of the area in boxes are shown at the bottom of 
the pictures as well as a merge of the two signals in the right column. Bars: 20 μm; 
(enlargements) 2 μm. (b) Grb4 is enriched in the postsynaptic density (PSD). Different PSD 
subfractions, non-PSD fraction and total brain homogenate were analyzed by Western 
Blotting for the presence of the indicated proteins. 
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5.1.3 GIT1 interacts with Grb4 and forms a triple complex together with 

 ephrinB1 in adult mice brain 

 

To further dissect the pathway directing spine morphology downstream of ephrinB 

ligands, a proteomic analysis of Grb4 binding proteins from a neuroblastoma cell line 

was performed using the TAP-LC-MS/MS methodology (see Methods). Tandem 

affinity purification (TAP) has emerged as a versatile method to efficiently purify 

protein complexes from cells in culture (reviewed in Bauer and Kuster 2003). GIT1 

(Cat1) and 2 (Cat2) as well as the p21-activated protein kinase (PAK)-interacting 

exchange factors αPIX (RhoGEF6, Cool-2) and βPIX (RhoGEF7, Cool-1) were all 

identified as putative Grb4-interacting proteins in our screen (Table 1).  

 

Protein name 
Arf GTPase-activating protein GIT1, Cat1  
Arf GTPase-activating protein GIT2, Cat2  
FKSG30 
Heat shock cognate protein 54 
hnRNP A2/B1 
inositol polyphosphate 5-phosphatase OCRL-1 
prolactin-inducible protein precursor 
Rho-GEF 6, Cool-2, αPIX 
Rho-GEF 7, Cool-1, βPIX 
similar to tubulin α-chain isotype m-α-6-mouse 
similar to tubulin, beta 5 
TPMSK3 (fragment) 
tropomyosin 1 (ALPHA) 
tropomyosin isoform 
tubulin α-2 chain 
voltage-gated sodium channel α-subunit 

 

Table 1. Shortlist of Grb4 interactors identified by tandem affinity purification from SK-N-
BE2 cell stably expressing Grb4-CTAP. 
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To validate the tandem affinity purification results, we tested the ability of Grb4 to 

associate with the novel interactor GIT1 in a biochemical IgG pull-down assay in 

HeLa cells. We transfected HeLa cells with Grb4-TAP, or TAP as a negative control, 

together with GIT1- or GIT2-Flag and incubated the cell lysates with rabbit IgG 

agarose beads, which pull down via the Protein A portion of the TAP affinity tag. 

Western blotting analysis of the IgG precipitates showed that GIT1- and GIT2-Flag 

were co-precipitated with Grb4-TAP and not detected in the co-precipitations with the 

control TAP (Figure 12a). These results were further confirmed by experiments 

showing endogenous GIT1 co-precipitating with Grb4-TAP in transfected HeLa cells 

(Figure 12b). We next asked whether Grb4 and GIT1 form a complex in vivo in the 

mouse brain. To address this question we performed co-immunoprecipitation 

experiments from adult mouse brain extracts using specific antibodies against these 

proteins. Immunoprecipitation with anti-Grb4 antibodies precipitated GIT1 and GIT2, 

but did not if pre-immunization serum was used (Figure 12c). These results indicate 

that Grb4 associates with GIT1 and GIT2 in vivo.  

To investigate the involvement of the Grb4-GIT1 complex in ephrinB reverse 

signaling, we attempted to precipitate a triple complex from adult mouse brain formed 

by ephrinB, Grb4 and GIT1 using EphB2-Fc. Whole-brain lysates were mixed with 

soluble EphB2-Fc, which had been pre-clustered with anti-human immunoglobulin-γ 

(IgG) to pull down ephrinB and any associated protein. In these experiments, Grb4 

and GIT1 were found to co-precipitate in vivo with ephrinB1 in brains of adult mice 

(Figure 12d). As a control, precipitation using unfused Fc did not co-precipitate any 

of these three molecules. Thus, Grb4 and GIT1 form a ternary complex with ephrinB 

ligand, suggesting a role of Grb4-GIT1 in ephrinB reverse signaling in adult mouse 

brain. To investigate whether GIT1 and Grb4 also play a role in Eph receptor forward 

signaling, we next tested the ability of GIT1 and Grb4 to bind to endogenous EphB 

receptor by using soluble ephrinB1-Fc pre-clustered with anti-human-IgG to co-

precipitate potential EphB binding proteins. GIT1 was shown to bind to EphB 

receptor from adult mouse brain, while Grb4 was not detectable in these ephrinB1-Fc-

pulldowns (Figure 12e and data not shown) indicating that GIT1 may be a general 

signaling compound downstream of the receptor and the ligand. In case of the 

receptor GIT1 appears not to be recruited by Grb4 but might be recruited instead by 

Nck, which has already been shown to interact with EphB receptors. 
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5.1.4 GIT1 binds to the SH2 domain of Grb4 via its synaptic localization 

 domain (SLD) 

 

As mentioned before, GIT1 is targeted to synapses by a newly identified synaptic 

localization domain (SLD) and the molecules acting upstream and targeting GIT1 to 

the synapses remained to be elucidated (Zhang, H. et al. 2003). Therefore, we next 

attempted to map the region of GIT1 that is involved in the association with Grb4. 

Deletion of the SLD in GIT1 (GIT1∆SLD) (Figure 13e) led to the disruption of its 

interaction with Grb4 (Figure 13a). Therefore, the SLD domain is necessary for the 

binding to Grb4. Moreover, the SLD domain is sufficient to associate with Grb4, 

since the isolated SLD domain co-precipitated with Grb4 in HeLa transfected cells 

(Figure 13b). To discard the possibility of a non-proper folding of the deletion mutant 

we next tested the ability of GIT1∆SLD to bind endogenous βPIX. βPIX was shown 

to bind to GIT1 via SHD-1 (Spa-homology domain 1) (Zhao et al. 2000a), and indeed 

endogenous βPIX was still able to interact with GIT1∆SLD in HeLa cells (Figure 

14a). The fact that βPIX has been found in our TAP/MS analysis may point to an 

indirect Grb4-βPIX interaction, which is likely to occur via GIT1. 

 

 

 

_____________________________________________________________________ 
Figure 12. GIT1 interacts with Grb4. (a) GIT1 and GIT2 interact with Grb4 in HeLa cells. 
Expression constructs of GIT1- and GIT2-Flag were co-expressed in HeLa cells with Grb4-
TAP or the isolated TAP-tag as control. IgG pulldowns were analyzed by Western blotting 
with the indicated antibodies. Grb4-TAP and TAP were detected by a peroxidase (POD)-
conjugated anti-POD antibody (PAP) antibody. (b) Endogenous GIT1 interacts with Grb4 in 
HeLa cells. HeLa cells were transiently transfected with Grb4-TAP or TAP as control. Total 
lysates and IgG pulldowns were analyzed by Western blotting with the indicated antibodies. 
(c) GIT1 and GIT2 associate with Grb4 in adult mouse brain. Whole brains from adult mice 
were lysed and immunoprecipitated with anti-GIT1, anti-GIT2, anti-Grb4 and pre-
immunization serum (pre-imm). The immunoprecipitates were analyzed by Western blotting 
for GIT1 (upper panel) and GIT2 (lower panel). (d) GIT1 forms a triple complex with Grb4 
and ephrinB1 in adult mouse brain. Whole brain lysates were incubated with EphB2-Fc to 
precipitate ephrinB or with Fc as a control. Precipitates were analyzed by Western blotting for 
GIT1 and ephrinB1 (upper panel) and GIT1 and Grb4 (lower panel). (e) GIT1 also interacts 
with EphB receptor in adult mouse brain. Whole brain lysates were incubated with ephrinB1-
Fc to precipitate EphB or with Fc as a control. Precipitates were analyzed by Western blotting 
for EphB2 (upper panel) and GIT1 (lower panel). p.d.: pull down 
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Figure 13. GIT1 binds to Grb4 through its synaptic localization domain (SLD). (a) Grb4 
does not bind to SLD-deficient GIT1. Expression constructs of GIT1- (left panel) and 
GIT1∆SLD-Flag (right panel) were co-expressed in HeLa cells with Grb4-YFP. Flag-
immunoprecipitates were analyzed by Western blotting with the indicated antibodies. (b) SLD 
in GIT1 is sufficient to bind to Grb4. HeLa cells were transiently co-transfected with SLD-V5 
and Grb4-YFP. V5-immunoprecipitates were analyzed by Western blotting with the indicated 
antibodies. (c) Grb4 binds to GIT1 via its SH2 domain. HeLa cells were transiently 
transfected with full length Grb4, Grb4-SH2 and Grb4-SH3 (containing all three native SH3 
domains) all fused to YFP. The GFP-immunoprecipitates were analyzed by Western blotting 
with anti-GFP and anti-GIT1 to detect endogenous GIT1. (d) Grb4 binds to ephrinB1 through 
its SH2 and SH3 domains. Expression constructs of full length Grb4-YFP, Grb4 SH2-YFP 
and Grb4 SH3-YFP were co-expressed in HeLa cells with HA-ephrinB1. HA-
immunoprecipitates were analyzed by Western blotting with the indicated antibodies. (e) 
Schematic diagram of the full-length and deletion constructs of GIT1 and Grb4. The indicated 
domains are as follows: ADP-ribosylation factor (ARF)-GAP domain (Arf-GAP), ankyrin 
repeats (Ankyrin), Spa2 homology domain 1 (SHD-1), synaptic localization domain (SLD), 
paxillin binding site (paxillin), Src homology domain 3 (SH3) and Src homology domain 2 
(SH2). pre: pre-immunization serum 
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Grb4 comprises three N-terminal SH3 domains and one C-terminal SH2 domain 

(Braverman and Quilliam 1999). To analyze the domains of Grb4 that are involved in 

the association with GIT1, we generated two YFP-fusion proteins, which contain 

either all three Grb4 SH3 domains (Grb4 SH3-YFP) or the Grb4 SH2 domain (Grb4 

SH2-YFP), and tested their ability to interact with GIT1. Equal amounts of YFP-

tagged Grb4, SH2 and SH3 were recovered from all transfected cells by 

immunoprecipitation with the anti-GFP antibody (Figure 13c). Endogenous GIT1, 

however, was only detected in the anti-GFP immunoprecipitates from HeLa cell 

lysates expressing either full-length Grb4-YFP or Grb4 SH2-YFP. Grb4 SH3-YFP 

was not able to interact with GIT1. These results were further confirmed by the 

converse immunoprecipitation experiments in which Grb4-YFP and Grb4 SH2-YFP 

were co-precipitated with GIT1-Flag (Figure 14c). Association of transfected YFP-

fusion proteins Grb4 and SH3, but not SH2 to endogenous protein kinase C-related 

kinase (PRK2) (Figure 14b), as shown previously (Braverman and Quilliam 1999), 

demonstrated a proper folding of Grb4 SH3-YFP.  

Grb4 SH2 domain has previously been shown to bind to phosphorylated ephrinB 

ligands (Cowan and Henkemeyer 2001). Since we postulate the existence of a triple 

complex containing ephrinB ligands, Grb4 and GIT1, and Grb4 binds to GIT1 by its 

SH2 domain, we next investigated the possibility that the Grb4 molecules involved in 

such a complex would bind to ephrinB by the SH3 domains. We co-transfected HeLa 

cells with YFP-tagged Grb4, Grb4 SH2 and Grb4 SH3 together with HA-ephrinB1. 

HA-immunoprecipitates revealed the association of ephrinB1 with both the SH2 and 

the SH3 domains of Grb4, suggesting that Grb4 is also able to interact with ephrinB 

ligands via its SH3 domains (Figure 13d).  
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Figure 14. GIT1- and Grb4-deletion constructs are properly folded and bind to know 
interactors. (a) SLD-deficient GIT1 (GIT1∆SLD) is still able to interact with βPIX. HeLa 
cells transiently expressing GIT1-Flag or GIT1∆SLD-Flag were lysed, immunoprecipitated 
(IP) with pre-immunization serum (pre) or anti-Flag antibodies and analyzed by Western 
blotting with anti-Flag and anti-βPIX antibodies to detect endogenous βPIX. (b) SH2-
deficient Grb4 (Grb4 SH3) still interacts with PRK2. HeLa cells were transiently transfected 
with full length Grb4, Grb4 SH2 or Grb4 SH3 (containing all three native SH3 domains) all 
fused to YFP. The GFP-immunoprecipitates were analyzed by Western blotting with anti-
GFP and anti-PRK2 to detect endogenous PRK2. (c) GIT1 associates with the SH2 domain of 
Grb4. HeLa cells were transiently co-transfected with GIT1-Flag and full length Grb4-, Grb4 
SH2- or Grb4 SH3-YFP. Flag-immunoprecipitates were analyzed by Western blotting with 
anti-GFP and anti-Flag antibodies.  
 

5.1.5 Tyr392 in the SLD of GIT1 is required for Grb4 binding  

 

The fact that the SLD domain of GIT1 binds to the SH2 domain of Grb4 suggests that 

tyrosine phosphorylation sites in SLD mediate such binding. Among the 5 tyrosine 

residues in the SLD domain, only Tyr392 in the N-terminus was predicted by Netphos 

software (http://www.cbs.dtu.dk/services/NetPhos) to be phosphorylated with high 

probability. Interestingly, Tyr392 resides in a region of 32 aa in the N-terminus of the 

SLD and the deletion of this region has been demonstrated to significantly decrease 

the localization of GIT1 to synapses (Zhang, H. et al. 2003). We therefore mutated the 

http://www.cbs.dtu.dk/services/NetPhos
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tyrosine 392 in GIT1 into phenylalanine (Y392>F), a non-phosphorylatable aa, to test 

its requirement for the interaction with Grb4. Equal amounts of Flag-tagged wild-type 

GIT1 and mutated GIT1Y392>F were recovered from all transfected cells by 

immunoprecipitation with the anti-Flag antibody (Figure 15a). While Grb4-YFP co-

precipitated with wild-type GIT1-Flag in HeLa cells, the mutation in GIT1Y392>F-

Flag led to a disruption of the interaction of Grb4-YFP with GIT1. Reverse 

immunoprecipitation of Grb4-YFP lead to the same results: only GIT1 wild type and 

not the mutant was co-precipitated with Grb4 (Figure 15a). Therefore, these findings 

suggest that phosphorylation of tyrosine 392 in the SLD domain of GIT1 is required 

for the interaction with Grb4. The kinase responsible for such phosphorylation is so 

far unknown.  
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5.1.6 EphrinB reverse signaling induces the phosphorylation of GIT1 in Tyr392 

 and the formation of a Grb4-GIT1 complex 

 

Since Tyr392 was required for GIT1-Grb4 binding, we next investigated whether 

activation of ephrinB ligands would lead to phosphorylation of the SLD domain in 

Tyr392. We transfected HeLa cells stably expressing ephrinB1 (HeLa-ephrinB1) with 

SLD-YFP and, to follow the kinetics of phosphorylation of SLD, we stimulated the 

cells for 5, 15 and 45 minutes with pre-clustered EphB2-Fc (Figure 15b). Equal 

amounts of SLD-YFP were recovered from all transfected cells by 

immunoprecipitation with the anti-GFP antibody. Immunoblotting with anti-

phosphotyrosine antibody 4G10 revealed a transient, rapid increase of phosphorylated 

SLD-YFP after 5 minutes stimulation, which returned to baseline by 45 minutes.  

Moreover, we also investigated whether the binding of GIT1 to Grb4 was regulated 

directly by ephrinB ligand activation. We transfected HeLa-ephrinB1 cells with Grb4-

YFP and analyzed the binding of endogenous GIT1 to Grb4 after stimulation with 

EphB2-Fc (Figure 15c). After 5 minutes stimulation with pre-clustered EphB2-Fc, 

GFP-immunoprecipitates already showed endogenous GIT1 binding to Grb4. In 

agreement with the kinetics of phosphorylation of the SLD, the Grb4-GIT1 complex 

was transient and decreased after 45 minutes. GIT1 was practically undetectable in 

immunoprecipitates from Fc-stimulated cells. 

 

 

_____________________________________________________________________ 
Figure 15. Grb4-GIT1 binding is regulated by ephrinB reverse signaling. (a) The 
Y392>F mutation in GIT1 abolishes the binding of Grb4. Expression constructs of GIT1- or 
GIT1 Y392>F-Flag were co-expressed in HeLa cells with Grb4-YFP. Flag- (left panels) and 
GFP-immunoprecipitates (right panels) were analyzed by Western blotting with the indicated 
antibodies. (b) Tyrosine phosphorylation in SLD is induced upon ephrinB ligand activation. 
HeLa-ephrinB1 cells were transiently transfected with SLD-YFP and stimulated with pre-
clustered EphB2-Fc or Fc for the indicated time points. Total lysate were analyzed for levels 
of transfected SDL-YFP (lower panel) and were immunoprecipitated with anti-GFP and 
analyzed by immunoblotting with α-P-Tyr (4G10) (upper panel) and anti-GFP (middle panel). 
(c) GIT1 is recruited to Grb4 after ephrinB ligand activation. Full length Grb4-YFP was 
expressed in HeLa-ephrinB1 cells. Cells were stimulated with pre-clustered EphB2-Fc or Fc 
for the indicated time points and GFP-immunoprecipitates were analyzed by Western blotting 
for endogenous GIT1 (upper panel) and for Grb4-YFP levels. (d) Schematic diagram of the 
SLD including Tyr392 required for binding of Grb4 and present in the NH2-terminal 32 
amino acids, which have been previously shown to contribute to efficient synaptic 
localization.  



   5. Results 
 

  52 

5.1.7 Stimulation with EphB receptors recruits GIT1 to ephrinB patches at the 

 synapse in hippocampal neurons 

 

We next investigated the subcellular distribution of GIT1 in hippocampal neurons and 

its behavior after stimulation of those neurons with EphB receptors. We stimulated 

dissociated hippocampal neurons (14 DIV) for 10 minutes with pre-clustered EphB2-

Fc (Figure 16i-p) or Fc as a control (Figure 16a-h). Stimulation with EphB2-Fc, but 

not Fc, induced the formation of large clusters at the membrane visualized with anti-

human Fc antibody conjugated to TexasRed (Figure 16j, n). Triple immunostainings 

with anti-human Fc, anti-GIT1 and anti-PSD-95 antibodies revealed a redistribution 

of endogenous GIT1 protein into clusters along the neuronal processes that 

overlapped with EphB/ephrinB complexes and postsynaptic marker proteins in 

EphB2-Fc-stimulated neurons (Figure 16m-p), but not in unstimulated neurons 

(Figure 16e-h). Together these data indicate that GIT1 colocalizes in a regulated 

fashion with activated ephrinB in postsynaptic synapses of living neurons. 
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Figure 16. GIT1 is recruited to ephrin patches at the synapse. GIT1 is recruited to ephrin 
patches at the synapse. Primary rat hippocampal neurons isolated from E18.5 rats were 
cultured and were stimulated at 14 DIV with Fc (a-h) or EphB2-Fc (i-p). Receptor bodies, 
bound to ephrinB ligand, were visualized with an anti-human Fc antibody conjugated to 
TexasRed (j, n). Fc-stimulated neurons showed only background staining (b, f). Distribution 
of endogenous proteins detected with an anti-GIT1 polyclonal (c, g, k, o) and an anti-PSD-95 
monoclonal antibody (d, h, l, p) is shown. In the merge panels (a, e, i, m), the three signals are 
shown: GIT1 (green), receptor bodies (red) and PSD-95 (blue). Bars: (top) 20 μm; (bottom) 2 
μm. 
 

5.1.8 Disruption of ephrinB signaling via Grb4 and GIT1 affects spine 

 morphogenesis and synapse formation 

 

To further define the physiological significance of ephrinB/Grb4/GIT1 signaling in 

spine formation, we attempted to interfere with this signaling pathway by expressing 

two different dominant negative constructs in neurons: (1) the Grb4 SH2 domain, 

which interferes with the binding of endogenous GIT1 to Grb4, and (2) a small 

interfering ephrinB peptide containing the shortest sequence within the intracellular 

domain of ephrinB1 required for interaction with Grb4 (Cowan and Henkemeyer 

2001), which competes away the complex Grb4-GIT1 from ephrinB ligands. As 

reported previously, hippocampal neurons in culture require approximately 3 weeks to 

fully develop mature spines under normal conditions. Before 10 DIV, the majority of 
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dendritic protrusions are long, filopodia-like structures (Ethell and Yamaguchi 1999). 

It was previously shown that the expression of the SLD domain of GIT1 induced an 

increase in long and thin dendritic filopodia-like protrusions, suggesting that 

perturbing GIT1 localization results in defects in spine morphology and synapse 

formation (Zhang, H. et al. 2003). Here we show that neurons expressing Grb4 SH2 

domain and the ephrinB1 peptide fused to YFP, presented a high increase in the 

number of long, thin dendritic protrusions (Figure 17a). The average length of 

protrusions was increased from 1.86 ± 0.04 µm in the YFP-transfected controls to 

2.01 ± 0.01 µm in the Grb4 SH2-YFP and 2.23 ± 0.02 µm in the ephrinB1-313-335-

YFP transfected neurons (Figure 17b). In addition, in the Grb4 SH2 domain and 

ephrin peptide expressing neurons, the linear density of dendritic protrusions (number 

of protrusions per 100 µm dendrite) increased significantly compared with neurons 

expressing YFP (Figure 17c). Thus, these data suggest that perturbing Grb4-GIT1 

recruitment to ephrinB ligands at the synapse is crucial for normal spine 

morphogenesis. The morphological formation and maturation of spines in normal 

cultured hippocampal neurons directly correlates with synapse formation (Ethell and 

Yamaguchi 1999). We next asked if neurons, which fail to make proper mushroom-

shaped spines develop correct synapses. We analyzed synapse formation by counting 

the number of clusters of the pre-synaptic protein synapsin1. In the Grb4 SH2- and 

ephrinB1 peptide-expressing neurons the linear density of synapses (number of 

synapses per 100-μm dendrite) decreased significantly as compared to neurons 

expressing YFP (Figure 17d, e). This is consistent with previous findings in neurons 

overexpressing GIT1-SLD, which also showed decreased synapsin1 staining (Zhang, 

H. et al. 2003). These results suggest that the proper localization of the Grb4-GIT1 

complex is not only necessary for the formation of spines, but is also important for 

synapse formation. 
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_____________________________________________________________________ 
Figure 17. Disruption of ephrinB signaling through Grb4 and GIT1 affects spine 
morphogenesis and synapse formation. (a) Rat hippocampal neurons were transfected at 7 
DIV with YFP as control, Grb4 SH2-YFP or YFP-ephrinB1-313-335, fixed at 11 DIV and 
examined. Bars: (top) 20 μm; (bottom) 2 μm. (b-c) Quantification of the length (b) and 
density (c) of dendritic protrusions (n>500) analyzed for each transfection condition. Bars 
represent standard error of the mean. *, P<0.05, **, P<0.005, ***, P<0.0005. (d) Effects of 
Grb4 SH2-YFP and YFP-ephrinB1-313-335 expression on synaptic density. Rat hippocampal 
neurons were transfected with the indicated constructs at 7 DIV and stained for synapsin1 
(right panel) at 11 DIV. Bars, 2 μm. (e) Quantification of synaptic linear density analyzed for 
each transfection condition. Synapse formation was analyzed by numbers of synapsin1-
positive immunoreactivities. 
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5.2 Proteomic analysis of PDZ-mediated ephrinB reverse signaling 

 

To identify new components involved in PDZ domain-mediated reverse signaling 

downstream of ephrinB ligands, we used the tandem affinity purification (TAP) 

strategy. The TAP procedure is a sensitive and selective method to purify, under 

close-to-physiological conditions, multiprotein complexes formed in vivo (Rigaut et 

al. 1999; Gavin et al. 2002). We chose to TAP-tag the known PDZ domain-containing 

ephrinB interactor GRIP1 (Bruckner et al. 1999), which has recently been 

demonstrated to be recruited to ephrinB ligand in so-called raft membrane 

microdomain signaling centers. This TAP approach revealed a set of several novel 

GRIP1 interactors. Association with one new binding partner, 14-3-3 proteins, was 

further characterized and found to be restricted to raft membrane microdomains. A 

single Thr residue in a putative 14-3-3 binding site in GRIP1 was identified and 

shown to be required for the formation of the GRIP1-14-3-3 complex. Moreover, we 

have also applied the TAP technology in vivo. Transgenic mice expressing GRIP1-

CTAP were generated and the tagged protein shown to form functional complexes in 

those mice.  

 

5.2.1 Identification of GRIP1 complexes by tandem affinity purification 

 

After stable integration into SK-N-BE2 cells by retrovirus-mediated gene transfer, the 

tagged protein was purified and TAP/MS analysis of the protein complexes formed 

around GRIP1 was performed. Infected clones were subjected to tandem affinity 

purification, a procedure consisting of two specific binding and elution steps under 

mild conditions, which preserve the integrity of non-transient protein-protein 

interactions (Rigaut et al. 1999) (Figure 18). The affinity-purified complexes were 

resolved on SDS-PAGE and Coomassie-stained (Figure 19a). GRIP1 interactors were 

identified by peptide sequencing using tandem mass spectrometry (LC-MS/MS). A 

database generated by large scale TAP analysis in this cell line has been assembled by 

collaborators at Cellzome AG (Heidelberg) containing a high number of protein-

protein interactions and allowing the reliable assessment of the specificity of a given 

interaction (data not shown). Cellzome has also identified a set of potentially sticky 
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proteins, suspected to purify nonspecifically in the TAP method, which provides 

information about molecules, which are very likely to be false positives and should 

therefore be excluded from any further validation. In total, the raw data set contained 

134 non-redundant protein hits. Among those 132 interactors in total, 73 (54%) were 

considered to be sticky (Table 2) due to their frequent identification as interactors of 

various TAP-tagged molecules. The remaining 59 interactors (Table 2) were to be 

selected for further validation by literature screening on the basis of potential 

relevance in ephrinB reverse signaling.  

 

 

 
Figure 18. Overview of the Tandem Affinity Purification (TAP) strategy. The TAP tag 
comprises CBP (Calmodulin binding peptide) linked to a Protein A immunoglobulin (Ig)G-
binding domain separated by a tobacco etch virus (TEV) protease cleavage site. The 
purification of tissue or cell lysate consists of four specific steps: first, high affinity binding to 
IgG beads; second, elution using TEV protease; third, high-affinity binding to calmodulin 
beads in the presence of Ca2+; and finally, elution using Ca2+-chelating agents. 
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Protein name 
14-3-3 protein beta/alpha inositol polyphosphate 5-phosphatase OCRL-1 

14-3-3 protein eta L-lactate dehydrogenase A chain 

14-3-3 protein sigma myosin heavy chain, smooth-muscle isoform 

14-3-3 protein tau myosin IC 

26S proteasome non-ATPase regulatory subunit 2 myosin light chain 1, slow-twitch muscle A 

ADP-ribosylation factor 4 myosin light chain alkali, smooth-muscle 

ATP-dependent DNA helicase II, 70 kDa subunit myosin, light polypeptide, non-sarcomeric 

ATP-dependent DNA helicase II, 80 kDa subunit neurabin II protein, spinophilin 

cystatin A prolactin-inducible protein precursor 

DNA replication licensing factor MCM7 SCO2 protein homolog 

dopamine beta-hydroxylase precursor similar to FKSG30 

dopamine beta-monooxygenase precursor similar to heat shock 70KD protein 8 

emilin precursor similar to hnRNP A/B 

endothelin-A receptor delta 3-4 similar to hnRNP A2/B1 

enhancer of polycomb 1 similar to hnRNP Q2 

erythrocyte tropomodulin A similar to neu differentiation factor - human  

eukaryotic translation initiation factor 3 subunit 2 similar to RIKEN cDNA 1200016G03 

extracellular glycoprotein lacritin precursor similar to synovial sarcoma, X breakpoint 4 

FKSG30 similar to T-complex protein 10A - human 

glial fibrillary acidic protein, astrocyte similar to tropomyosin 1 (alpha) 

growth-arrest-specific protein 1 similar to tropomyosin, fibroblast - human 

GRY-RBP similar to tubulin α-chain, m-α-6 - mouse 

heat shock 27 kDa protein ssDNA-binding protein, 
mitochondrial precursor 

heat shock cognate protein 54 TPMSK3 (fragment) 

heat shock-related 70 kDa protein 2 tropomyosin 1 (alpha) 

hnRNP A2/B1 tropomyosin 1 alpha chain 

histone H2A.F/Z variant, isoform 1 tropomyosin isoform 

histone H2A.Z hypothetical protein FLJ12427 

hypothetical protein (fragment) tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein  

IKAPPAB kinase complex-associated protein  

 
Table 2. Shortlist of GRIP1 interactors identified by tandem affinity purification from SK-
N-BE2 cells stably expressing GRIP1-CTAP. 
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5.2.1.1 Identification of 14-3-3 as a GRIP1 binding protein 

 

14-3-3, a key regulator of cell division, signaling and apoptosis (van Hemert et al. 

2001), was identified with high confidence as a GRIP1 interactor. All 7 mammalian 

14-3-3-isoforms (β, γ, ε, η, σ, τ and ) were isolated by tandem affinity purification of 

GRIP1-CTAP in SK-N-BE2 cells. Further data has confirmed this interaction by 

reciprocal protein complex purification of 14-3-3-CTAP in the same cell line 

(Cellzome, personal communication). 14-3-3 proteins are highly conserved small 

acidic proteins, which, in most cases, regulate cellular processes by binding to specific 

pSer and pThr motifs within target proteins (Muslin et al. 1996). Two optimal 14-3-3 

phosphopeptide ligands with the consensus sequences RSXpS/TXP and 

RX(Y/F)XpS/TXP [where pS/T represents phosphoserine or phosphothreonine and X 

is any amino acid] have been defined (Yaffe et al. 1997). The roles of 14-3-3 proteins 

in cells have been classified on the basis of their mode of action. 14-3-3 proteins can 

for example induce conformational changes in target proteins as well as occlude 

specific sequences or structural features (reviewed in Mackintosh 2004). For all their 

regulatory functions 14-3-3 proteins need to associate in stable homo- and 

heterodimers (Chaudhri et al. 2003). The complexity of 14-3-3 actions is reflected by 

the increasing number of binding partners identified. Several studies have used tagged 

14-3-3 proteins to purify protein complexes from cells in culture (Jin et al. 2004; 

Meek et al. 2004; Pozuelo Rubio et al. 2004). 14-3-3 proteins are abundant in brain 

tissues and, although only few binding partners in brain have been so far postulated, 

14-3-3 proteins are clearly critical for brain development, memory and learning, and 

have been implicated as well in several neurological disorders (reviewed in 

Mackintosh 2004). 
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5.2.1.2 14-3-3 interacts with GRIP1 in total mouse brain lysate and forms a 

 complex with GRIP1 exclusively in raft membrane microdomains 

 

To confirm these interactions, we performed co-immunoprecipitation experiments 

from adult mouse brain extracts using a pan-antibody against 14-3-3. 

Immunoprecipitation with pan-14-3-3 antibodies co-precipitated GRIP1, but did not if 

pre-immunization serum was used (Figure 19b). Moreover, reverse co-

immunoprecipitation pulling down GRIP1 with a specific antibody confirmed the 

interaction with 14-3-3 (Figure 19b) indicating that GRIP1 associates with 14-3-3 in 

vivo. In an attempt to address the functional significance of GRIP1-14-3-3 interaction, 

we analyzed whether these complexes occurred in raft membrane microdomains, 

which have been implicated in processes such as sorting in polarized cells and signal 

transduction. The ligand ephrinB1 has been described, upon stimulation with EphB2 

receptor, to associate with GRIP1 in large raft patches that also contain a GRIP1-

associated serine/threonine kinase activity (Bruckner et al. 1999). Triton X-100 

(TX100)-insoluble raft membrane proteins can be identified by their ability, due to 

their high lipid content, to float in TX100-containing density flotation gradients as 

detergent-insoluble glycolipid-enriched complexes (DIGs) (Brown, D. A. and Rose 

1992). This property clearly distinguishes them from insoluble complexes formed by 

the cytoskeleton. As shown in Figure 19c and d (bottom panel), GRIP1 and 14-3-3 

are both found in the top fractions of the flotation gradient, indicating raft localization, 

as well as in non-raft fractions of adult mice brain. However, despite of the presence 

of the two proteins in rafts and non-rafts, GRIP1 can only be co-immunoprecipitated 

using an anti-14-3-3 antibody from the lipid-associated fraction 1 indicating 

localization of the GRIP1-14-3-3 complex exclusively in rafts of mouse tissue 

(Figure 19d, top panel). Since patches of raft domains are generally considered as 

signaling centers (Harder et al. 1998) these results show that interaction of the two 

molecules, may be regulated by a stimulus-dependent mechanism (e.g. Eph receptor 

stimulation), consistent with an important function in signal transduction . 
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5.2.1.3 EphrinB ligand, GRIP1 and 14-3-3 form a triple complex in raft 

 membrane microdomains of mouse brain  

 

We next wanted to see whether ephrinB reverse signaling might play a role in 

recruiting the GRIP1-14-3-3 complex to rafts. EphrinB1 interaction with GRIP2 is 

regulated by EphB2 receptor binding in NIH3T3 cells stably expressing ephrinB1 and 

GRIP2 (Manuel Zimmer, personal communication). Thus we immunoprecipitated 

ephrinB from raft and non-raft fractions of mouse brain using a specific antibody. 

Western Blot analysis revealed a triple ephrinB-GRIP1-14-3-3 complex that 

exclusively occurs in raft fractions (Figure 20). As shown in Figure 20, in non-rafts 

only ephrinB and 14-3-3 interact, albeit to a much lesser extent as compared to the raft 

fraction. The non-raft fractions of 14-3-3 seem to be of different isoform composition 

compared to the 14-3-3 fraction, which is detergent insoluble located (Figure 19c). 

These findings suggest that 14-3-3 may occur in two different pools, possibly as two 

different isomers: one pool of 14-3-3 interacting with GRIP1 upon its phosphorylation 

and subsequent recruitment to ephrinB ligand, and the other pool might be associated 

with the ligand with different regulatory purposes. 

 

 

 

 

 

_____________________________________________________________________ 
Figure 19. Tandem affinity purification of GRIP1-CTAP reveals new GRIP1 interactor. 
(a) Coomassie-stained SDS-PAGE lane showing tandem affinity-purified GRIP1-CTAP. TAP 
complexes were run on a NuPAGE 4-12% Bis-Tris gel with MOPS running buffer and 
complete gel lane was then systematically cut into slices and proteins were digested in-gel 
with trypsin. Protein identification was performed by LC–MS/MS. (b) 14-3-3 associates with 
GRIP1 in brain of adult mice. Whole brains from adult mice were lysed and 
immunoprecipitated with anti-14-3-3, anti-GRIP1 and pre-immunization serum. The total 
lysates and immunoprecipitates were analyzed by Western blotting for 14-3-3 and GRIP1. (c) 
A membrane preparation of an adult mouse brain homogenate was subjected to TX100 
flotation followed by Optiprep flotation gradients. Seven fractions from top to bottom were 
collected and analyzed by Western Blotting for the presence of 14-3-3 and GRIP1 proteins. 
Caveolin and transferrin receptor serve as raft-associated and nonraft proteins, respectively, 
confirming specificity of the preparation. (d) 14-3-3 interacts with GRIP1 exclusively in rafts. 
Three fractions from top to bottom were collected and analyzed by Western Blotting for the 
presence of 14-3-3 and GRIP1 proteins (bottom panel). 14-3-3 immunoprecipitates were 
analyzed by Western Blotting for the presence of 14-3-3 and GRIP1 proteins (top panel). 
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Figure 20. 14-3-3 forms a triple complex with ephrinB and GRIP1 in rafts. One DIG-
enriched fraction and two nonraft fractions were immunoprecipitated (IP) with anti-ephrinB. 
The immunoprecipitates were analyzed by Western blotting for GRIP1, 14-3-3 and ephrinB.  
 

5.2.1.4 Thr956 between GRIP1 PDZ6 and PDZ7 is required for 14-3-3 binding 

 

The data obtained demonstrate that 14-3-3 interacts with GRIP1. Sequence analysis to 

identify motif(s) in GRIP1 contributing to 14-3-3 binding showed three putative 14-3-

3 binding sites inside the linker region between PDZ6 and PDZ7 (852-857, 941-946, 

953-958). These sites exactly match the optimal sequence motif of a recognition site I 

(Muslin et al. 1996; Yaffe et al. 1997) and either contain a serine or a threonine 

residue at position 0 (Figure 21a). To investigate the contribution of these putative 

recognition motifs to interaction between GRIP and 14-3-3, we mutated serine 944 

and/or threonine 956 in GRIP1 into alanine, thus altering these residues predicted to 

be critical for the interaction with 14-3-3. Equal amounts of HA-tagged wild-type 14-

3-3 was recovered from all transfected cells by immunoprecipitation with the anti-HA 

antibody (Figure 21b). While GRIP1-myc and GRIP1S944>A-myc co-precipitated 

with wild-type HA-14-3-3 in HeLa cells, the mutation in GRIP1T956>A-myc led to a 

disruption of the interaction of HA-14-3-3 with GRIP1. Mutation analysis of GRIP1 

thus indicates a requirement of the most C-terminal 14-3-3 binding site, spanning aa 

953-958, for the interaction with 14-3-3. The kinase responsible for such 

phosphorylation is currently unknown. Identification of such kinase as well as the 

significance of Thr956 for GRIP1 function in vivo will be pursued in future studies. 
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Figure 21. Thr956 in PDZ6 of GRIP1 is required for 14-3-3 binding. (a) Amino acid 
sequence of rat GRIP1. The depicted sequence contains three putative 14-3-3 binding sites in 
the linker region between PDZ6 and PDZ7 (indicated by red letters). Individual PDZ domains 
are underlined by closed horizontal bars. (b) The T956>A mutation in GRIP1 abolishes the 
binding of 14-3-3. Expression constructs of myc-tagged GRIP1 w.t. and GRIP1-S944>A, -
T956>A or -S944+T956>A (S/T-A) were co-expressed in HeLa cells with HA-14-3-3. HA-
immunoprecipitates (right panel) were analyzed by Western blotting with the indicated 
antibodies. 
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5.2.2 Transgenic expression of GRIP1 in mice to identify protein complexes in 

 vivo 

 

We also applied the TAP technology to identify in vivo interactors with GRIP. We 

generated transgenic mice expressing GRIP1-TAP under the control of the human 

ubiquitin C promoter (Ubi-GRIP1-CTAP). This promoter contains a 1,225-bp 

fragment of the human ubiquitin C promoter and directs ubiquitous expression to 

most mouse tissues (Schorpp et al. 1996). The TAP approach in transgenic mice has 

several advantages over other methods for identification of protein-protein 

interactions: (a) the use of an in vivo model; (b) the purification of a protein complex 

that has been established in its natural environment, and (c) the possibility of 

comparison of protein complexes derived from different tissues and at different 

developmental stages. 

 

5.2.2.1 Transgenic GRIP1-CTAP is expressed in the brain of some founders  

 

Eight founders of the transgenic line expressing GRIP1-CTAP driven by the ubiquitin 

C promoter gave offspring. UbiGRIP1-CTAP transgenic mice in a C57BL/6 genetic 

background were fertile and did not show any gross phenotypic abnormalities. As 

shown in Figure 22a, compared to wild-type brain only five lines showed expression 

in the brain, of which two lines yielded strong (founders 540864 and 540874) and 

three lines weak expression levels (founders 540863, 540870 and 541026). The weak 

expressors together with those that did not display any expression (540870, 540867 

and 540875) were excluded from further analysis. The two lines displaying the 

strongest signal (founders 540864 and 540874) were selected and used for further 

experiments. 
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5.2.2.2 GRIP1-CTAP localizes to the membrane of transgenic brain tissue 

 

Stimulation of ephrinB with soluble EphB2 receptor ectodomain causes the formation 

of large raft patches that contain GRIP1 protein (Bruckner et al. 1999). It has 

furthermore been shown that GRIP1 is present in lipid raft fractions isolated from 

mouse (Figure 19c, d) and rat brains (Hering et al. 2003). In fact, two of the binding 

partners that associate with GRIP1, ephrinB and AMPA receptor, have been shown to 

be located in rafts (Dong et al. 1997; Bruckner et al. 1999). To identify complexes, 

which assemble around GRIP1-CTAP and are relevant in ephrinB reverse signaling in 

vivo, we will selectively purify complexes that are associated to the membrane.  

To confirm that the GRIP1-CTAP transgenic mice are suitable for the purification of 

ephrinB-mediated GRIP1 complexes, we next asked if GRIP1-CTAP was properly 

expressed at the membrane in those mice. Therefore, we performed membrane 

fractionation assays and incubated the membrane fractions with different amounts of 

CHAPS or NP-40 for 1h at 4°C. GRIP1-CTAP from membrane fractions was 

precipitated using rabbit IgGs. IgG-pulldowns were subsequently analyzed by SDS-

PAGE and immunoblotted (WB) with PAP-antibody, which specifically detected 

GRIP1-CTAP at approximately 150kDa (Figure 22b). Treatment of membrane 

fractions with NP-40 gave best results as compared to CHAPS. Thus, a proportion of 

GRIP1-CTAP is located as expected at the membrane. 

 

 

_____________________________________________________________________ 
Figure 22. GRIP1-CTAP forms functional complexes in transgenic mice. (a) GRIP1-
CTAP is expressed at high levels in brain of some founder mice. Total brain lysates were 
analyzed by Western blotting with the indicated antibodies. GRIP1-CTAP was detected by a 
peroxidase (POD)-conjugated anti-POD antibody (PAP) or by a specific anti-GRIP1 antibody. 
(b) Brain homogenates from UbiGRIP1-CTAP+/- mice were subjected to a flotation gradient 
membrane fractionation assay, treated for 1 hour with CHAPS or NP-40 at different 
concentrations and analyzed for the presence of GRIP1-CTAP in membranous fractions. Total 
lysates were analyzed by Western blotting for GRIP1-CTAP using the PAP antibody. (c) 
Transgenic GRIP1-CTAP interacts with the known GRIP1-interactor GluR2/3. Membranous 
fractions obtained from transgenic brain homogenates were treated for 1 hour with NP-40 at 
different concentrations and analyzed for the presence of GluR2/3 by immunoprecipitation 
with rabbit IgGs. IgG pulldowns were analyzed by Western blotting with the indicated 
antibodies. (d) GRIP1-CTAP is able to rescue the lethal phenotype of GRIP1-/- mice. Tails 
from different litters were analyzed for the presence of the GRIP1-CTAP transgene and the 
GRIP1 KO allele. 
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5.2.2.3 GRIP1-CTAP interacts in vivo with GluR2/3, a known interactor of 

 GRIP1  

 

AMPA receptor GluR2/3 subunits have been shown to bind to PDZ domain 

containing proteins such as GRIP1 (Dong et al. 1997). This interaction occurs through 

their C-terminal four amino acids (-SVKI), which has been demonstrated to regulate 

AMPA internalization during LTD and to also be possibly involved in the expression 

of LTD in the hippocampus (Kim et al. 2001). To test whether transgenic expression 

of GRIP1-CTAP leads to formation of a properly folded protein in the mouse, we 

performed pulldown studies to analyze the interaction of the exogenous protein with 

the AMPA receptor GluR2/3 subunit as a known interactor of GRIP1. Brain lysates 

from heterozygous, transgenic adult mice, treated with different amounts of NP-40 for 

60 minutes, were incubated with rabbit IgG agarose beads. Western blotting analysis 

of the IgG precipitates with specific antibodies showed that GluR2/3 was co-

precipitated in vivo with GRIP1-CTAP (Figure 22c), consistent with the data obtained 

by Dong (1997). Moreover, GluR2/3 could be detected at highest levels when 

preparing the brain lysate under mild detergent conditions (0.1% NP-40) as shown in 

Figure 22c. Therefore, GRIP1-CTAP is able to interact with its known binding 

partner GluR2/3 in the transgenic mice indicating that it is folded properly. 

 

5.2.2.4 GRIP1-CTAP is able to rescue the lethal phenotype of GRIP-/- mice  

 

GRIP1 mutants die shortly after implantation around E12. Low, but significant, 

numbers of viable GRIP1-/- embryos could be identified up to E16. Elimination of 

murine GRIP1 leads to development of abnormalities of the dermo-epidermal junction 

of GRIP1-/- embryos, resulting in extensive skin blistering around day 12 of 

embryonic life (Bladt et al. 2002). Ultra-structural characterization of the blisters (or 

bullae) revealed cleavage of the dermo-epidermal junction below the lamina densa, an 

alteration reminiscent of the dystrophic form of human epidermolysis bullosa (Bladt et 

al. 2002) and R.L. Huganir, personal communication). In order to confirm that 

GRIP1-CTAP is functional in vivo and is able to form physiologically relevant 

complexes, we have performed a genetic experiment using GRIP1+/- mice, which were 
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crossed with our GRIP1-CTAP transgenic mice. TAP-tagged GRIP1 transgenics when 

crossed to GRIP1+/- mutant mice (kindly provided by R.L. Huganir) give birth to 

GRIP1-/-; GRIP1-CTAPhet litter (Figure 22d). Litter #5 shows amplification of only 

the GRIP1 KO allele, but not the wt allele (top panel) indicating the GRIP1-/- 

genotype. The same litter carries the transgene encoding GRIP1-CTAP as detected by 

PCR (bottom panel). GRIP1-/- mice have never been observed after E16 (Bladt et al. 

2002). Thus, rescuing the lethal embryonic phenotype by crossing in transgenic 

GRIP1-CTAP mice suggests that the GRIP1-CTAP protein is indeed functional in 

vivo and likely to be associated with most of its endogenous binding partners. 
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6. Discussion 

 

6.1 Grb4 and GIT1 transduce ephrinB reverse signals modulating 

 spine  morphogenesis and synapse formation 

 

EphrinB ligands are expressed at synapses in postsynaptic CA1 neurons and have 

been postulated to be the acting signaling partners for EphB receptors regulating 

synaptic plasticity of connections between CA3 and CA1 neurons (Grunwald et al. 

2004). The molecular mechanisms of ephrinB ligand action during synaptic plasticity 

remain unknown. However, morphological changes associated with synaptic plasticity 

might be regulated by ephrinB ligand reverse signaling via the same molecular 

pathways as the formation of new synapses. The work presented in this thesis 

provides evidence for the involvement of ephrinB reverse signaling in spine 

morphogenesis and synapse formation and identifies molecular pathways downstream 

of these ligands in such processes. Activation of the ephrinB ligands in cultured 

hippocampal neurons leads to an increased number of mature spines with mushroom-

like heads, whereas inhibition of reverse signaling by expression of the truncated 

ephrinB1 lacking the cytoplasmic domain renders immature spines and increased 

number of long and thin filopodia. Thus, ephrinB reverse signaling appears to be 

important for spine morphogenesis during development.  

Together, our results point to a signaling complex containing Grb4 and the G-protein-

coupled receptor kinase-interacting protein (GIT)1, which is involved in the 

regulation of spine formation by ephrinB ligands. Our work sheds light onto the 

molecular mechanisms that might underlie ephrinB reverse signaling function in 

important processes involving spine morphogenesis such as synaptic plasticity. 

 

6.1.1 Grb4 and GIT1 transduce signals downstream of ephrinB ligands 

 

Localized changes in the organization and dynamics of the actin cytoskeleton are 

thought to underlie the formation, maintenance, and plasticity of synaptic connections 

(Matus et al. 2000). The Rho family of small GTPases, key regulators of actin 
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dynamics and organization, are pivotal contributor in spinogenesis. Although Eph 

receptor interaction with the Rho pathway is well documented (Noren and Pasquale 

2004), only little is known about how ephrin reverse signaling effects Rho family 

proteins and subsequent signaling to the cytoskeleton. Recent data have shown that 

Dishevelled mediates RhoA and Rho kinase activation downstream of ephrinB1 

(Tanaka et al. 2003). Another link between ephrinBs and RhoA may be 

p190RhoGAP. Mice deficient in p190RhoGAP exhibit a lack of the anterior 

commissure (Brouns et al. 2001), a phenotype associated with a lack of ephrinB 

reverse signaling in EphB2-/- mice (Henkemeyer et al. 1996). Rac, along with the 

other Rho family members RhoA and Cdc42, has an important role in the regulation 

of the actin cytoskeleton in spines (Ramakers 2002). A recent study demonstrates that 

a novel domain in GIT1, the synaptic localization domain (SLD), is required for spine 

morphogenesis and synapse formation (Zhang, H. et al. 2003) by providing a docking 

site for the β-p21-activated protein kinase (PAK)-interacting exchange factor (βPIX), 

which serves as an exchange factor for Rac. This observation has been extended now 

by identifying a signaling pathway downstream of Rac, including PAK and myosin II 

regulatory light chain (MLC) and involved in the regulation of spine morphogenesis 

and synapse formation (Zhang, H. et al. 2005). Therefore, GIT1 appears to organize a 

signaling module containing an activator and effector of Rac that localizes and 

regulates Rac activity in dendritic spines and synapses. A mislocalized hyperactive 

signaling complex leads to an overabundance of dendritic protrusions, whereas a loss-

of-function mutation leads to decreased spine density (Zhang, H. et al. 2005). 

However, the signaling pathway or molecule that targets GIT1 and the entire signaling 

module to synapses and thereby induces spine formation and synaptogenesis remained 

so far unknown. 

The findings presented here implicate the SH2/SH3-domain containing adaptor Grb4, 

GIT1 and βPIX as important components of the signaling apparatus downstream of 

ephrinB ligands. The co-expression studies in PSDs of hippocampal neurons together 

with previously published data (Grunwald et al. 2004) support the idea that Grb4, 

GIT1, βPIX and ephrinB ligands act in concert in regulating spine morphogenesis and 

synapse formation. As we have shown, GIT1 is targeted to membrane patches at 

synapses of hippocampal neurons after ephrinB activation and interacts with ephrinB1 

and Grb4 in mouse brain. Moreover, we have shown that dominant negative 

interfering with the binding of Grb4 to ephrinB ligands (using the ephrinB1-313-335 



6. Discussion 

73 

peptide) and with GIT1 to Grb4 (using Grb4-SH2) impaired spine morphogenesis and 

synapse formation in dissociated rat hippocampal neurons mimicking the phenotype 

obtained previously when disrupting synaptic targeting of GIT1 by overexpression of 

the SLD domain (Zhang, H. et al. 2003). This suggests that overexpression of any of 

these dominant-negative molecules impairs the recruitment of endogenous Grb4-

GIT1-PIX-Rac complex to ephrinB1 ligands at the synapse. The findings of the 

presented study therefore implicate that the molecular mechanism leading to GIT1-

PIX-Rac-PAK-mediated spine formation and maintenance involves activated ephrinB 

ligand, its downstream interactor Grb4 and GIT1 indicating that ephrinB ligand 

provides the docking site for GIT1 and activated Rac to the synaptic membrane.  

 

6.1.2 Are GIT proteins general downstream effectors of Grb4/Nck signaling? 

 

We postulate that Grb4 serves to bridge ephrinB ligands with GIT1 at synapses. 

Consistent with this, we can show that the domain in GIT1 required for binding to 

Grb4 is indeed the SLD domain, a 221 aa stretch that has been shown to be required 

and sufficient for the synaptic localization of GIT1 (Zhang, H. et al. 2003). Mutant 

GIT1 lacking the NH2-terminal 32 aa of the SLD has been shown to localize to 

synapses significantly less (Zhang, H. et al. 2003) suggesting that these 32 aa 

contribute to efficient synaptic localization of GIT1. Interestingly, we show that 

Tyr392 in GIT1, which is present in the NH2-terminal 32 aa of GIT1 SLD, is required 

for GIT1 binding to the Grb4 SH2 domain. Moreover, Tyr392 is located in a sequence 

(YDSV) conserved among the GIT family and it resembles the consensus sequence 

for Nckα SH2 binding (Songyang et al. 1993).  

Using the ephrinB1 ligand ectodomain, we have also been able to co-precipitate GIT 

proteins with EphB receptors from adult mouse brain suggesting that GIT proteins 

could also act downstream of the receptor. Nckα binds exclusively to the receptor 

(Stein et al. 1998). Thus, a Nckα-GIT complex could be transducing the signals 

downstream of the receptor, while the Grb4-GIT complex may be restricted to 

signaling events downstream of the ligand. Grb4 is involved in transducing reverse 

signals into ephrinB-expressing cells (Cowan and Henkemeyer 2001) most likely 

regulating the cytoskeleton. Half of the known SH3 domain binding partners of the 

Nck proteins (Grb4 and its closest relative Nckα) have direct or indirect roles in the 
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regulation of actin dynamics (Li et al. 2001). Among them, a number regulate the 

activity of the Rho family of small GTPases. These include the exchange factors for 

Rac, Dock180 (dedicator of cytokinesis 180) and hnRNP K (heterogeneous nuclear 

ribonucleoprotein K), and PAK1, which regulates both Rac and Rho. Among the Nck-

SH3-effector complexes, the Nckα-PAK1-PIX-GITI complex is so far the best 

studied. Nckα relocates PAK1-PIX to the membrane proximity (Zhao et al. 2000a). 

The PAK1-associated PIX activates Rac (Obermeier et al. 1998) and binds to GIT1 

and focal adhesion kinase (FAK) thereby promoting cell motility by regulating focal 

complex dynamics (Zhao et al. 2000b). Thus, as Nck has been shown to bind to GIT 

proteins in a number of different scenarios (Zhao et al. 2000a; Brown, M. C. et al. 

2005), these proteins might very well be general downstream effectors of Grb4/Nck 

proteins in different biological processes. 

 

6.1.3 Regulated Grb4-GIT1 interaction during phosphotyrosine-dependent 

 ephrinB reverse signaling 

 

In cells stably expressing physiological levels of ephrinB1, phosphorylation of Tyr392 

and consequent interaction between endogenous GIT1 and Grb4 via its SH2 domain is 

not constitutive, but rather induced by EphB2 receptor engagement. The kinase 

required for phosphorylation of GIT1 on Tyr392 is unidentified. However, it is known 

that Src family kinases (SFKs) are rapidly recruited to ephrinB expression domains 

upon EphB receptor engagement, and this transient activation positively regulates 

ephrinB phosphorylation and phosphotyrosine-mediated reverse signaling (Palmer et 

al. 2002). The kinetics of ephrinB-mediated SLD phosphorylation correlate very well 

with the previously reported kinetics of Src recruitment to, and activation in 

ephrinB/EphB-containing membrane patches. Therefore, activation of the ephrinB 

ligand could recruit Src to PSDs, where ephrinB has been located (Grunwald et al. 

2004), to specifically phosphorylate GIT1 at synapses. Interestingly, GIT1 has already 

been shown to be phosphorylated on tyrosine residues by c-Src in response to 

angiotensin II and epidermal growth factor in vascular endothelial cells and 293 cells 

(Haendeler et al. 2003), and in response to thrombin in HUVECs (van Nieuw 

Amerongen et al. 2004). GIT2, a family member homologous to GIT1, has been 

demonstrated to be phosphorylated at Tyr392 by Src and FAK (Brown, M. C. et al. 
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2005). GIT proteins might therefore be general substrates for SFKs downstream of 

different receptors.  

 

6.1.4 SH3 domains contribute to Grb4 interaction with ephrinB ligand  

 

Grb4 was identified as an ephrinB1 binding partner in a modified yeast two-hybrid 

screen, which allows for the detection of protein−protein interactions involving 

phosphotyrosine (Cowan and Henkemeyer 2001). The Grb4 SH2 domain was shown 

to associate with the cytoplasmic domain of tyrosine-phosphorylated ephrinB ligands 

in an Eph receptor stimulation-dependent fashion. We now identified the same 

domain in Grb4 to be crucial for association with phosphorylated GIT1. However, 

how can Grb4 be the bridging molecule in an ephrinB-Grb4-GIT1 complex and bind 

to ephrinB1 and to GIT1 at the same time via its SH2 domain? We have shown that 

Grb4 is not only able to bind to ephrinB ligands though its SH2 domain but it also 

binds through the SH3 domains. We postulate that Grb4 binding to ephrinB ligands is 

regulated by Eph receptor stimulation but is not exclusively phosphotyrosine-

dependent. In agreement with this hypothesis we observe long lasting co-localization 

of Grb4 with ephrinB patches (Manuel Zimmer and Amparo Acker-Palmer, 

unpublished results), even after ephrinB ligands have undergone dephosphorylation 

by the phosphatase PTP-BL, which typically occurs 15 minutes after stimulation 

(Palmer et al. 2002). Moreover, a mutant of ephrinB1, which has all 6 tyrosines 

present in the intracellular domain mutated to phenylalanine, was still able to bind to 

Grb4 (Manuel Zimmer and Amparo Acker-Palmer, unpublished results). The 

assembly of the triple complex formed by ephrinB-Grb4-GIT1 might therefore occur 

in different scenarios: (1) the interaction of Grb4 with ephrinB might be initiated by 

phosphotyrosine-dependent association of the Grb4 SH2 domain with phosphorylated 

ephrinB ligands and later stabilized by the Grb4 SH3 domains. The stabilization 

would in turn release the Grb4 SH2 domain and make it available for interaction with 

GIT1. Consistent with this, a characteristic PXXP motif for binding SH3 domain 

proteins is present in ephrinB cytoplasmic tails close to the PDZ binding motif. (2) 

The formation of a Grb4 dimer through association of the SH3 domains may enable 

the interaction with ephrinB and GIT1 at the same time via the two available SH2 

domains. (3) Alternatively, Grb4 may also be present in the cell in two different 
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populations, one that interacts with ephrinBs via the Grb4 SH3 domains and binds to 

GIT1 through the free Grb4 SH2 domain, and another, which does not assemble with 

GIT1 and interacts with ephrinBs via the Grb4 SH2 domain to exert different 

functions. 

 

6.1.5 EphrinB reverse signaling and mental retardation 

 

Pathological changes in dendritic spines are often observed in brain disorders such as 

nonsyndromic mental retardation (MR) (Fiala et al. 2002). As the importance of spine 

morphogenesis in cognitive function has become clearer, there has been accelerating 

interest in understanding its molecular basis. Through means of positional cloning, 13 

genes associated with nonsyndromic MR have been identified to date and three of 

these genes encode for regulators of Rho GTPases (Allen et al. 1998; Billuart et al. 

1998; Kutsche et al. 2000; Barnes and Milgram 2002; Ramakers 2002). However, the 

mechanisms by which these mutations lead to cognitive defects are not understood. 

One possibility is that decreased neuronal connectivity results from aberrant actin 

organization (Marin-Padilla 1972; Huttenlocher 1974; Purpura 1974; Kaufmann and 

Moser 2000). Indeed, some children with nonsyndromic MR show abnormalities in 

dendritic spine morphology in their cerebral cortex, i.e., numerous very long and thin 

spines and a reduction in the number of stubby and mushroom-shaped spines (Purpura 

1974). In the present study, the dominant-negative molecules disrupting the 

interaction ephrinB-Grb4 and Grb4-GIT1 show an intriguingly similar dendritic spine 

phenotype in cultured neurons. These mutant constructs also cause a decrease in 

synaptic density. Thus, our results suggest a scenario in which aberrant Rho family 

signaling could lead to decreased neuronal connectivity and eventually impaired 

cognitive functions. Interestingly, PAK3, one of the human MR mutations linked to 

Rho, has been identified in the signaling module downstream of GIT1 (Zhang, H. et 

al. 2005) and might therefore be mislocalized upon disruption of the ephrinB-Grb4-

GIT1 complex. Another gene associated with nonsyndromic MR is αPIX, a close 

relative of βPIX, which was as well identified as a novel Grb4 interactor in our 

proteomic approach. 
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6.2 Proteomic analysis of PDZ-mediated ephrinB reverse signaling 

 

The cytoplasmic tail of ephrinB ligands contains a PDZ binding motif, which is 

important for reverse signaling. Some multi-PDZ-domain-containing proteins have 

been shown to bind to the carboxy-terminal (YKV) target site of ephrinB ligands. 

Previous work proposed the presence of a switch mechanism, which allows a shift 

from phosphotyrosine-dependent to PDZ-domain-dependent signaling (Palmer et al. 

2002). Work presented in this thesis has been designed to dissect the nature of protein 

complexes that are involved in the PDZ-dependent signaling downstream of ephrinB 

ligands. As a target we have chosen the glutamate receptor interacting protein GRIP1, 

a 7 PDZ-domain containing protein that was shown to be specifically recruited into 

rafts through association with the cytoplasmic domain of ephrinB (Bruckner et al. 

1999). The binding of GRIP1 to the cytoplasmic tail of ephrinB ligands appears to be 

regulated by Eph receptor binding (Manuel Zimmer, personal communication). 

Besides our findings for GRIP1, I will also discuss the proteomics data mentioned in 

chapter 5.1.3, which we obtained for the phosphotyrosine-dependent ephrinB 

interactor Grb4. The functional and biological relevance of novel Grb4 interactions in 

ephrinB reverse signaling is discussed in detail in chapter 6.1 (“Grb4 and GIT1 

transduce ephrinB reverse signals modulating spine morphogenesis and synapse 

formation”). 

 

6.2.1 Identification of Grb4 and GRIP1 complexes by tandem affinity 

 purification 

 

Using affinity purification of the two TAP-tagged ephrinB ligand-interactors Grb4 and 

GRIP1 from neuroblastoma cell lysates in combination with mass spectrometry, we 

could isolate a number of potential Grb4 (17) (Table 1) and GRIP1 (61) (Table 2) 

interactors. Conspicuous targets of Grb4 and GRIP1, mainly cytoskeleton-related 

proteins such as tubulin, actin, tropomyosin, myosin alkali light chain, but also heat 

shock proteins or proteins like Elongation factor 1 alpha 1 (which has been shown to 

bind to a number of cytoskeleton-related proteins (Gross and Kinzy 2005)), were 

removed from consideration by consulting a dataset of “potentially sticky proteins” 
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that has been provided by Cellzome, even though some of these proteins might be 

genuine binding partners of these proteins.   

The pre-selected lists (without “potentially sticky proteins”) of Grb4- and GRIP1-

interactors however did not contain any of the published interactors of the two 

proteins, likely because their expression levels were low or these interactions might be 

cell type-specific and not be present in the neuroblastoma cell line used.  

Some of the newly identified binders have already been linked directly or indirectly to 

the regulation of the cytoskeleton, e.g. GIT1, GIT2, αPIX, βPIX or neurabin II 

(Brown, M. C. et al. 2005; Filipenko et al. 2005; Tsukada et al. 2005), and could 

therefore be potentially involved in ephrinB reverse signaling to the cytoskeleton. For 

other interactors, it is more difficult to determine whether they are really part of a 

Grb4/GRIP1 cytoskeleton remodeling complex. Some of the proteins involved in 

Grb4 and GRIP1 complexes, e.g. hnRNP A2/B1 or growth-arrest-specific protein 1, 

are likely to have additional cellular functions not related to cytoskeleton remodeling, 

and some of these interactors may reflect such functions. Among those remaining 

proteins that were co-purified are some whose known function may suggest a possible 

role in membrane trafficking. For example, the depletion of the GRIP1-interactor 

ADP-ribosylation factor 4 (ARF4) causes defects in secretory and endocytic traffic 

(Volpicelli-Daley et al. 2005).  

So far, most systematic protein-protein interaction studies and protein networks have 

relied on yeast two-hybrid techniques (Drewes and Bouwmeester 2003). Compared 

with these approaches, affinity purification of complexes coupled to mass 

spectrometry-based protein identification offers the advantage of studying actual 

molecular assemblies made up by direct and cooperative interactions. Moreover this 

approach allows purification from human cells, different types of tissue (for example, 

from the UbiGRIP1-TAP mouse), or even subcellular compartments (e.g. membrane, 

PSDs) under close to physiological conditions, rather than relying on reconstituted 

bimolecular interactions ex vivo (Gavin et al. 2002). Finally, the introduction of a dual 

purification strategy, TAP-tagging, represents a major improvement in sample 

purification for mass spectrometry. Compared to single purification steps, the double 

purification gives a much better purity yield resulting in a better specificity of binding 

partners. Due to the high degree of specificity conferred by the tandem purification, 

stringent washes are not necessary, allowing better preservation of less stable 

multiprotein complexes The number and quantity of contaminating proteins is also 
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low. The strength of the dual purification strategy, as compared with a single 

purification step with either tag alone, has also been demonstrated in the original 

publication of the TAP strategy (Rigaut et al. 1999).  

In summary, my interaction proteomics approach has provided a list of Grb4 and 

GRIP1 protein complexes demonstrating an expected correlation with cytoskeleton 

remodeling. We have identified a number of novel interactors, some of which have 

previously been demonstrated to form complexes with each other. The data provided 

in this study should provide a point of departure for more in depth studies that will 

eventually lead to a more complete description of events occurring downstream of 

Grb4 and GRIP1, some of them in ephrinB reverse signaling. 

From our list, we decided to continue characterizing in more detail two interactions: 

between GRIP1 and 14-3-3 and between Grb4 and GIT1. Four potential interactors of 

Grb4 have been identified: GIT1 (Cat1), GIT2 (Cat2), αPIX (RhoGEF6, Cool-2) and 

βPIX (RhoGEF7, Cool-1) (Table 1). Each of these has been reported previously to 

associate with the others (Bagrodia et al. 1999). The interaction Grb4-GIT1 was 

subject of the first part of my thesis. The interaction between GRIP1 and 14-3-3, 

which was additionally verified by reverse tandem affinity purification (Cellzome, 

personal communication) will be discussed below. 

 

6.2.1.1 Identification of 14-3-3 as a GRIP1 binding protein 

 

Signaling pathways regulate the dynamics of cell behavior by directing the assembly 

of multicomponent complexes (Hubbard and Cohen 1993; Pawson and Scott 1997; 

Pawson and Nash 2003). How can this be achieved within the crowded environment 

of a cell? The emerging answer is that many proteins have modular structures and 

contain distinct adapter domains that are specialized for binding to the most prevalent 

means of posttranslational modification, which is protein phosphorylation. 

Interestingly, many aspects of dynamic cellular behavior are regulated by reversible 

protein phosphorylation (Hunter 2000). Protein kinases frequently exert their 

biological effects by creating docking sites for adaptor domains, which selectively 

recognize phosphorylated motifs in their binding partners (Pawson and Nash 2003). 

14-3-3 proteins for example bind to serine/threonine-phosphorylated residues in a 

context-specific manner, analogous to the Src homology 2 (SH2) and phosphotyrosine 
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binding (PTB) domains, which associate with tyrosine-phosphorylated residues. 

Interestingly, it has been shown that GRIP1 may be phosphorylated on 

serine/threonine residues by an unknown serine/threonine kinase that associates with a 

complex formed by ephrinB and GRIP1 (Bruckner et al. 1999). Our observations 

show that association between GRIP1 and 14-3-3 occurs via a conserved 14-3-3 

binding site in the C-terminus of GRIP1. Furthermore, 14-3-3, GRIP1 and ephrinB1 

ligand interact exclusively in rafts of mouse brain supporting their signaling function 

in vivo and indicating that the GRIP1-14-3-3 complex may have an important function 

in organizing a signaling complex for ephrinB reverse signal transduction.  

 

6.2.1.2 GRIP1 contains three putative 14-3-3 binding sites, but only one is 

 required for interaction 

 

14-3-3 proteins were the first polypeptides shown to have phosphothreonine/serine 

(pSer/Thr) binding properties (Muslin et al. 1996). Structural analysis has shown that 

each 14-3-3 protomer folds into an α-helical structure with a conserved binding 

groove that accommodates pSer/Thr-binding sites (Yaffe et al. 1997; Obsil et al. 

2001), typically generated by basophilic kinases such as cAMP-dependent protein 

kinase (PKA) and protein kinase B (PKB) (Fu et al. 2000; Yaffe 2002). Accordingly, 

two optimal 14-3-3 phosphopeptide ligands with the consensus sequences RSXpSXP 

(mode I) and RXY/FXpSXP (mode II), where X is any amino acid, have been defined 

with degenerated peptide libraries (Muslin et al. 1996; Yaffe et al. 1997). Although 

we identified three putative 14-3-3 binding sites inside the linker region between 

PDZ6 and PDZ7 of GRIP1, which all exactly match the optimal sequence motif of 

mode I, mutation analysis showed only one of them to be required for 14-3-3 binding 

to GRIP1. Interestingly, the identified motif (RSNTLP) encompassing threonine 956 

is the only one out of all three, which is specific for GRIP1 and therefore not 

conserved in GRIP1-homolog GRIP2. Indeed, preliminary data indicate that 14-3-3 

interaction is exclusively restricted to GRIP1 (Inmaculada Segura, personal 

communication). However, previous studies have shown that GRIP1 may be able to 

form homomultimers or heteromultimers with GRIP2, allowing the formation of very 

large macromolecular complexes that might also include 14-3-3, which is recruited by 

GRIP1 (Dong et al. 1999).  
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6.2.1.3 What is the functional relevance of Thr956 in vivo? 

 

Setou and colleagues (Setou et al. 2002) have previously shown that GRIP1 can 

directly interact with kinesin and mapped the kinesin-binding domain in GRIP1 to the 

linker region between PDZ6 and PDZ7 (753-987, termed L2), which also contains the 

14-3-3 recognition motif we identified. Kinesin heavy chain (also known as KIF5) 

knockout and dominant-negative experiments showed an abnormal perinuclear 

clustering of GRIP, and overexpression of the KIF5-binding domain of GRIP in 

neurons resulted in an accumulation of kinesin in dendrites. Therefore, it has been 

postulated that GRIP “steers” kinesin transport into dendrites, thereby sorting specific 

protein complexes to dendritic structures (for example, AMPA receptors) (Setou et al. 

2002). Moreover, Hoogenraad and co-workers recently demonstrated a molecular 

mechanism in which KIF5-dependent trafficking of a GRIP1/EphB receptor complex 

is critical for dendrite morphogenesis (Hoogenraad et al. 2005). However, the exact 

site within L2 of GRIP1, which is necessary for GRIP1-KIF5 interaction, has not been 

mapped and thus it remains for future studies to test the role of Thr956 in GRIP1 in 

this interaction and whether this residue is functionally relevant in vivo. Interestingly, 

a mutant of GRIP1, in which Thr956 is replaced by Ala and therefore cannot bind to 

14-3-3 any longer, disrupts the formation and growth of dendrites in hippocampal 

neurons (Inmaculada Segura, personal communication). These data suggest that 14-3-

3 could bridge GRIP1 and KIF5 together in a phosphorylation-dependent manner to 

anchor these two proteins within close proximity of one another. Interestingly, KIF5B 

has been shown to be a target of 14-3-3 protein as well (Ichimura et al. 2002). 

 

6.2.1.4 Which is the kinase required for phosphorylation of Thr956 in GRIP1? 

 

GRIP1 is associated with a serine/threonine kinase activity when forming a complex 

with ephrinB ligands (Bruckner et al. 1999). This kinase might phosphorylate serines 

or threonines in GRIP1 upon ephrin activation, creating docking sites for 14-3-3 

molecules. Support for this idea comes from an observation by Amparo Acker-Palmer 

(personal communication), which shows that only the C-terminal half that contains 

the identified 14-3-3 binding site, but not the N-terminal half of GRIP1, becomes 



   6. Discussion 
 

  82 

phosphorylated after Eph receptor stimulation. A potential kinase that regulates the 

phosphorylation state of GRIP1 in ephrinB reverse signaling, might be the protein 

kinase Cdc25C-associated kinase 1 (C-TAK1), which has been co-purified with 

GRIP1 in a TAP approach using 14-3-3-eta- and -zeta-TAP (Cellzome, personal 

communication). C-TAK1 is a member of the EMK/MARK/Par1 kinase family and 

was first cloned based on its ability to associate with and phosphorylate Cdc25C (Ogg 

et al. 1994; Peng et al. 1998). Subsequently, the tyrosine phosphatase PTPH1 and 

KSR1 were found to be phosphorylated by C-TAK1 (Zhang, S. H. et al. 1997; Muller 

et al. 2001). Strikingly, for all known substrates of C-TAK1 (KSR1, Cdc25C and 

PTPH1), the residue phosphorylated by C-TAK1 serves as a 14-3-3 binding site. 

However, the exact identity of the kinase and its relevance in GRIP1 phosphorylation 

in response to Eph/ephrin signaling will have to be further explored. So far, the 

presented data only indicate the requirement of Thr956 for GRIP1 binding to 14-3-3. 

It would be of great interest to test if Thr956 is a major phosphorylation site in vivo 

and whether phosphorylation of this residue indeed directly increases the affinity of 

GRIP1 to 14-3-3. 

 

6.2.1.5 GRIP1 interaction with 14-3-3 and raft microdomains 

 

Previous work has shown that ephrinB ligands and SFKs, positive regulators of 

ephrinB phosphorylation, are both located in lipid rafts, and stimulation with soluble 

EphB receptor leads to reorganization of ephrinB- and Src-containing rafts into larger 

membrane patches (Palmer et al. 2002). Additionally, GRIP1 co-localizes with 

ephrinB1 raft patches (Bruckner et al. 1999). These specialized membrane 

microdomains are proposed to serve as sites of signal integration of signaling in a 

wide variety of processes (e.g. signal transduction), based on the many molecules 

known to be involved in intracellular signaling, which are enriched in this fraction 

(Simons and Toomre 2000; Zajchowski and Robbins 2002).  

Strikingly, the interaction of 14-3-3 with GRIP1 was found to be restricted to raft 

microdomains in mouse brain, indicating that both molecules associate with each 

other only upon an external stimulus, which then recruits the complex to these 

signaling centers. Furthermore, a small but significant and isoform-selective 

proportion of the 14-3-3 in mouse brain was raft associated, suggesting that this 14-3-
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3 might acquire new or enhanced functions on association with GRIP1 in raft 

microdomains. Although only a small proportion of the total brain 14-3-3 localizes to 

rafts, the association of it with only a specific subset of membranes suggests that it is 

functionally important. Similarly, Martin and co-workers have found that some of the 

14-3-3 in rat brain is selectively associated with some synaptic membranes raising the 

possibility that their presence in synapses might indicate a role in controlling 

phosphorylation of synaptic proteins (Martin et al. 1994). Our finding that ephrinB 

ligand interacts with GRIP1 and 14-3-3 in rafts support the hypothesis of ephrinB 

ligands signaling from highly organized signaling centers such as raft microdomains. 

Assembly of this signaling complex may be induced by EphB2 receptor binding to 

ephrinB1 (Manuel Zimmer, personal communication). Whether the interaction 

between GRIP1 and 14-3-3 is actually regulated by EphB receptor engagement of the 

ligand still needs to be investigated. 

 

6.2.2 Transgenic expression of GRIP1 in mice to identify protein complexes in 

 vivo 

 

Because of its multi PDZ-domain structure GRIP1 is likely to interact with other 

cytoplasmic proteins. One of these proteins is the ras-GTP-exchange factor GRASP-1 

(GRIP-associated protein 1) (Ye et al. 2000), however many others have been 

described as well, such as GluR2, EphB receptor, liprin-alpha, Fras1, PICK1 and 

NEEP21 (Dong et al. 1997; Torres et al. 1998; Wyszynski et al. 2002; Takamiya et al. 

2004; Lu, W. and Ziff 2005; Steiner et al. 2005). Together the available data suggests 

that GRIP1 molecules could serve as scaffolds for large protein complexes involved 

in signaling at the plasma membrane. To identify the complete “GRIP-signaling-

complex” we also applied the TAP tag technology in vivo by expressing TAP-tagged 

GRIP1 in transgenic mice using an ubiquitous promoter. This approach has several 

advantages over other methods for identification of protein-protein interactions: (a) 

the use of an in vivo model; (b) the purification of a protein complex that has been 

established in its natural environment, and (c) the comparison of GRIP1-protein 

complexes derived from different tissues/subcellular compartments (e.g. rafts or 

synaptic membranes).  
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6.2.2.1 Transgenic GRIP1-CTAP protein is functional 

 

Transgenic GRIP1-CTAP mice did not show any overt abnormalities, and several 

founders were tested for GRIP1-CTAP protein expression. The founders expressed 

varying levels of GRIP1-TAP, but in general the expression was moderate, possibly 

not more that 2-3 fold above endogenous levels. GRIP1-CTAP purified by tandem 

affinity purification associates in membrane fractions with its known interaction 

partner GluR2/3 providing further evidence for GRIP1-CTAP assembling with 

functional and physiologically relevant protein complexes. In order to confirm that the 

TAP-tagged protein is functional in vivo, we performed a genetic experiment with the 

GRIP1-CTAP transgenic mice. TAP-tagged GRIP1 transgenics when crossed with 

GRIP1-/- mutant mice (provided by R.L. Huganir) rescued the lethal phenotype of this 

null mutation, indicating that the GRIP1-CTAP protein is functional in vivo and likely 

to be associated with its endogenous binding partners. Therefore, these mice could 

also serve in the future as a tool for the verification of in vivo interactions with the 

candidates obtained in a first round of purification with the neuroblastoma cell line 

stably expressing GRIP1-CTAP. Moreover, since the transgene rescues the lethal 

phenotype of the GRIP1 KO, we could also use the transgenic mice as a genetic tool 

to try to identify regions in the GRIP1 protein and interactions with other proteins 

required for its in vivo function. 
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6.3 Concluding remarks 

 

Our studies reveal a new function of ephrinB reverse signaling in spine 

morphogenesis and synapse formation, which might be related to the known 

functional relevance of reverse signaling in synaptic plasticity (Grunwald et al. 2004). 

The pathway downstream of the ligand, which we demonstrated to be required for this 

function, involves the SH2-SH3 adaptor Grb4 and the scaffolding protein GIT1. 

Interestingly, GIT1 has been very recently shown to form a signaling complex with 

PIX, Rac, and PAK playing an essential role in the regulation of dendritic spine and 

synapse formation through modulating MLC activity (Zhang, H. et al. 2005). Thus, 

the ephrinB signaling pathway could serve as the upstream signaling cascade leading 

to the regulated formation and localization of this complex. 

The analysis of ephrinB1/2/3 triple mutant mice is in progress and will help to 

elucidate the function of the ephrinB ligands in the context of spine development in an 

intact hippocampus. However, the lack of ephrinB ligands in these mice may lead to a 

decreased activation of EphB forward signaling and, therefore, abnormal spine 

development might be at least to some extent caused by disruption of signaling 

pathways downstream of the receptor. 

A number of issues remain unanswered. For instance, are effects of CA3-CA1 long-

term plasticity mediated by similar signaling mechanisms as in spine formation? What 

role does internalization of the Eph/ephrinB complex, a process that was recently 

shown to regulate the cellular response to Eph/ephrin signaling (Marston et al. 2003; 

Zimmer et al. 2003), have at the synapse? Is the novel Grb4 interactor αPIX, 

mutations of which have been found in patients with nonsyndromic mental 

retardation, involved in ephrinB-mediated spinogenesis as well? And does the switch 

from phosphorylation- to PDZ-dependent ephrinB reverse signaling, as suggested by 

Palmer and colleagues (Palmer et al. 2002), play a role in synapse formation? This 

could be relevant for multi-PDZ protein GRIP1-mediated AMPA receptor targeting 

and organization of postsynaptic complexes, which, interestingly, seems to also 

require GIT1 (Wyszynski et al. 2002; Ko et al. 2003). These issues could be addressed 

in future studies using the tools and observations described in this thesis.   
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7. Materials and Methods 

 

7.1 Materials 
 

7.1.1 Buffers and solutions 

 

7.1.1.1 Media and antibiotics for bacterial culture 

 

LB (Luria-Bertani-) media   10 g Bacto-Trypton 

      5 g Yeast extract 

      5 g NaCl 

      add H2O to 1 l, adjust pH to 7.5 

LB plates     supplement with 15 g/l agar 

 

Antibiotics     diluted 1:1000 

Ampicillin     Stock 100 mg/ml in H2O 

Kanamycinsulfate    Stock 50 mg/l in H2O 

 

7.1.1.2 Media and supplements for tissue culture 

 

DMEM Dulbecco’s Modified Eagle medium 

DMEM FBS G418 DMEM, 10% Foetal bovine serum, 0.292 mg/ml L-

Glutamine, 100 U/ml Penicillin, 100 µg/ml 

Streptomycin, 350 µg/ml geneticin sulfate (G418). 

Neurobasal, 2% B27 neurobasal medium (Invitrogen) was supplemented with 

B27 supplement (Invitrogen)  

OptiMEM GlutaMAX, 

5% Iron suppl. CS 

Optimem medium (Invitrogen) was supplemented with 

Iron suppl. Calf Serum (Sigma) 
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7.1.1.3 Media and supplements for primary culture of neurons 

 

Borate Buffer (500 ml) 1.24 g boric acid, 1.9 g Borax ad 400 ml H2O (pH 8.5) 

HBSS 135 mM NaCl2, 20 mM Hepes, 4 mM KCl, 1 mM 

Na2HPO4, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose 

(pH 7.3) 

 

7.1.1.4 Solutions for Biochemistry 

 

Laemmli stacking gel 4% w/v acrylamid/bis 29:1 

130 mM Tris-HCl (pH 6.8), 

0.4% SDS 

0.1% APS 

0.1% TEMED 

10% Laemmli separating gel 10% w/v acrylamid/bis 25:1 

130 mM Tris-HCl (pH 8.8),  

0.4% SDS 

0.05% APS 

0.05%TEMED 

5x Laemmli electrophoresis buffer  130 mM Tris base 

960 mM Glycine 

17 mM SDS 

10x Transfer buffer (2.5 l) 200 mM Tris base 

1.5 M Glycine 

34 mM SDS 

Stripping buffer 5 mM sodium phosphate buffer (pH 7.25) 

2 mM β-mercaptoethanol 

2% SDS 



  7. Materials and Methods 
 

  88 

6x Sample buffer for reducing 

conditions 

42 mM SDS 

300 mM Tris-HCl (pH 6.8) 

600 mM DTT 

52% Glycerol 

Bromophenol blue 

50 mM Tris-HCl (pH 7.5) 

0.15 mM NaCl 

0.5-1% Triton X-100 

Add fresh: 

Lysis buffer, 0.5-1% Triton X-100 

1 mM Na3VO4 

10 mM NaPPi 

20 mM NaF 

Protease inhibitor cocktail tablet (complete) 

(1 tablet/50 ml) 

50 mM Hepes (pH 7.5) 

150 mM NaCl 

10% Glycerol 

0.1% Triton X-100 

1.5 mM MgCl2 

1 mM EGTA 

Add fresh: 

PLC lysis buffer 

1 mM Na3VO4 

10 mM NaPPi 

20 mM NaF 

Protease inhibitor cocktail tablet (complete) 

(1 tablet/50 ml) 

20 mM Hepes (pH 7.5) 

150 mM NaCl 

10% Glycerol 

0.1% Triton X-100 

Add fresh: 

HNTG buffer (100 ml) 

1 mM Na3VO4 

Protease inhibitor cocktail tablet (complete) 
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 (1 tablet/50 ml) 

Lysis buffer (TAP) 50 mM Tris-HCl (pH 7.5) 

5% Glycerol 

0.2% NP-40 

1.5 mM MgCl2 

1 mM DTT 

100 mM NaCl 

Add fresh: 

50 mM NaF 

1 mM Na3VO4 

2 μM microcystine-LR 

Protease inhibitor cocktail tablet (complete), 

EDTA-free (1 tablet/50 ml) 

TEV Cleavage buffer (TAP) 10 mM Tris-HCl (pH 7.5) 

100 mM NaCl 

0.1% NP-40 

0.5 mM EDTA 

1 mM DTT 

CBP washing buffer (TAP) 10 mM Tris-HCl, (pH 7.5) 

100 mM NaCl 

0.1% NP-40 

1 mM Mg(CH3COOH)2 

1 mM Imidazole 

2 mM CaCl2 

1 mM DTT 

2x CBP dilution buffer (TAP) 10 mM Tris-HCl (pH 7.5) 

100 mM NaCl 

0.1% NP-40 

2 mM MgAc 

2 mM Imidazole 

4 mM CaCl2 

1 mM DTT 

CBP elution buffer (TAP) 10 mM Tris-HCl (pH 8.0) 
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5 mM EGTA 

Solution A (PSD purification) 0.32 M sucrose  

20 mM HEPES (pH 7.4)  

Add fresh: 

50 mM NaF 

1 mM Na3VO4 

1 mM PMSF  

Protease inhibitor cocktail tablet (complete) 

(1 tablet/50 ml) 

Solution B (PSD purification) 0.32 M sucrose  

20 mM HEPES (pH 7.4)  

Solution C (PSD purification) 12 mM Tris (pH 8.0) 

1% Triton X-100 

Solution D (PSD purification) 40 mM Tris (pH 8.0) 

Solution E (PSD purification) 12 mM Tris (pH 8.0)  

6% sarcosyl (N-lauryl-sarcosine) 

Tail lysis buffer  50 mM KCl  

1.5 mM MgCl2  

10 mM Tris (pH 7.5/8.5)  

0.45% NP-40  

0.45% Tween20 

TNE buffer 25 mM Tris-HCl (pH 7.5)  

150 mM NaCl  

0.8 mM EDTA, 250 mM sucrose 

Add fresh: 

50 mM NaF 

1 mM Na3VO4 

2 μM microcystine-LR 

Protease inhibitor cocktail tablet (complete) 

(1 tablet/50 ml) 
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7.1.2 Bacteria 

 

TOP10 

 

F- mcrA D(mrr-hsdRMS-mcrBC) F80 lacZ DM15 DlacX74 recA1 

araD139 D(ara-leu7697) galU galK rpsL (Strr) endA1 nupG 

DH5α 

 

supE44 DlacU169 (F80 lacZ DM15) hsdR17 recA1 endA1 gyrA96 

thi-1 relA1 

 

7.1.3 Plasmids 

 

7.1.3.1 GIT1 expression constructs 

 

Expression construct encoding full-length rat GIT1-Flag was a gift from R.T. Premont 

and is described (Premont et al. 1998). To generate GIT1ΔSLD-Flag, two restriction 

sites were inserted by mutagenesis into GIT1-Flag. Point-mutated rat GIT1-Flag was 

generated by site directed mutagenesis leading to exchange of Tyr392 to Phe. To 

generate SLD-YFP, the SLD coding region (384-596) was cloned into pEYFP-N1 

(Clontech) using XhoI and XmaI restriction sites. An expression construct encoding 

SLD-V5 was generated using the Gateway site-specific recombination system 

(Invitrogen) to insert SLD into pcDNA3.2/V5-DEST (Invitrogen). 

 

7.1.3.2 Grb4 expression constructs 

 

To obtain Grb4-CTAP, the Grb4 coding region was subcloned from clone 

IRALp962J117Q2 (RZPD) into pRVCTAPGw (Cellzome) by the Gateway site-

specific recombination system (Invitrogen). To generate Grb4-YFP, Grb4 SH2-YFP 

or Grb4 SH3-YFP, the Grb4, SH2 (283-380) or SH3 (1-255) coding region from clone 

IRALp962J117Q2 was cloned into pECFP-N1 (Clontech) using BamHI and XhoI 

restriction sites.  
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7.1.3.3 GRIP1 expression constructs 

 

To obtain UbiKOZ-GRIP1-CTAP for injection into oocytes, the CTAP and GRIP1 

coding regions were subcloned from pRVCTAP-GRIP1 (Cellzome) into UbiKOZ 

(based on pUC18, Francesca Diella) using XhoI (CTAP) and NotI (GRIP1) restriction 

sites. To generate GRIP1-myc, the GRIP1 coding region was subcloned from 

pRVCTAP-GRIP1 into pCDNA3.1Amyc/his using XbaI and KpnI restriction sites. 

Point-mutated GRIP1-myc was generated by site directed mutagenesis leading to 

exchange of Ser944, Thr956 or Ser944 and Thr956 to Ala. 

 

7.1.3.4 EphrinB1 interfering peptide expression construct 

 

To generate ephrinB1-313-335-EYFP, the respective ephrinB1 coding regions from 

HA-ephrinB1 (see below) were cloned into pEYFP-N1 (Clontech) using BamHI and 

HindIII restriction sites.  

 

7.1.3.5 Other expression constructs 

 

The expression construct of HA-ephrinB1 was provided by Manuel Zimmer and 

ECFP-ephrinB1-ΔC by Jenny Köhler. Expression construct encoding βPIX-Flag was 

a gift from Dongeun Park and is described (Lee et al. 2001). The expression 

constructs of EphB2-Flag is described (Dalva et al. 2000). Expression vector encoding 

HA-14-3-3 was generated using the Gateway site-specific recombination system 

(Invitrogen) to insert the PCR-amplified ORF of 14-3-3ζ (IMAGE: 2988020; RZPD) 

into the HA-tagged version of the MoMLV-based vector pZome1 (Cellzome). 
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7.1.4 Chemicals and commercial kits 

 

100x L-glutamine (Invitrogen) 
100x penicillin / streptomycin. (Invitrogen) 
30% Acrylamid/Bis 25:1 (Biorad) 
β-Mercaptoethanol (Sigma) 
BES (Sigma) 
Biorad Dc Protein Assay (Biorad) 
BSA (Sigma) 
Complete, Protease inhibitor cocktail tablets (Roche) 
Complete EDTA-free, Protease inhibitor cocktail tablets (Roche) 
Dithiothreitol (DTT) (Sigma) 
ECL Western Blot detection reagent (Amersham) 
EDTA (Sigma) 
EGTA (Sigma) 
EphB2-Fc chimera, mouse (R&D)  
Films, Kodak Biomax MS Film (Sigma) 
Foetal bovine serum (FBS) (Invitrogen) 
Gateway-specific recombination system (Invitrogen) 
Gel/Mount (Biomeda) 
Geneticin sulfate (G418) (Invitrogen) 
Glutathione-sepharose beads (Pharmacia) 
Iron-supplemented calf serum (Sigma) 
Human IgG-Fc fragment (Dianova) 
Mouse-laminin, natural (Invitrogen) 
Normal Donkey Serum (Dianova) 
Normal Goat Serum (Dianova) 
Nonidet P-40, IGEPAL CA-630 (Roche) 
OptiMEM GlutaMAX (Invitrogen) 
Optiprep (Nycomed Pharma) 
Orange G (Sigma) 
PfuUltra High-Fidelity DNA polymerase (Stratagene) 
phenylmethylsulfonyl fluoride (PMSF) (Sigma) 
Poly-D-lysine (Sigma) 
Poly-L-lysine (Sigma) 
PonceauS solution (Serva) 
Precision Plus Protein Standard (Biorad) 
Protein A Sepharose 4B (Amersham) 
Protein G Sepharose 4B (Amersham) 
Pyruvic acid (Sigma) 
QuikChange (XL-) Site-directed mutagenesis kit (Stratagene) 
TEMED (Biorad) 
Triton X-100, analytical grade (Serva) 
Trypsin/EDTA (Invitrogen) 
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7.1.5 Antibodies 

 

7.1.5.1 Primary antibodies 

 

Affinity purified anti-14-3-3  

(06-511, Upstate) 

Western-Blotting: 1:1000 

14-3-3 staining in Fig. 19, 20 

Immunoprecipitation: 4 g/IP 

Affinity purified rabbit anti-caveolin-1 

(sc-894, Santa Cruz Biotechnology) 

Western Blotting 1:1000 

caveolin staining in Fig. 19 

Rabbit serum anti-(SAM)EphB2 

(Grunwald et al. 2001) 

Western Blotting: 1:2000 

EphB2 staining in Fig. 12 

Affinity purified goat anti-ephrinB1 

(AF473, R&D) 

Western Blotting: 1:1000 

ephrinB1 staining in Fig. 12, 20  

Mouse anti-Flag  

(F3165, clone M2, Sigma) 

Western Blotting: 1:5000 

GIT1-/GIT1Y>F-Flag staining  

in Fig. 12, 13, 14, 15 

Immunoprecipitation: 1 g/IP 

Affinity purified rabbit anti-Flag 

(V10303, Biomeda) 

Immunoprecipitation: 2 g/IP  

Affinity purified goat anti-GIT1  

(sc-9657, Santa Cruz Biotechnology) 

Western Blotting: 1:500 

GIT1 staining in Fig. 12, 13, 15 

Rabbit anti-GIT1 (DU139, (Premont et 

al. 1998; Bagrodia et al. 1999) 

Western Blotting: 1:2000 

Immunocytochemistry: 1:1000 

GIT1 staining in Fig. 16 

Immunoprecipitation: 1 l/IP 

Rabbit anti-GIT2 (DU137, (Premont et 

al. 1998; Bagrodia et al. 1999) 

Western Blotting: 1:2000 

GIT2 staining in Fig. 12 

Mouse anti-GFP  

(8371-2, clone JL-8, Clontech) 

Western Blotting: 1:5000 

Grb4(SH2/SH3)-GFP staining  

in Fig. 13, 14, 15 
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Affinity purified rabbit anti-GFP  

(RDI-GRNFB4abr, RDI) 

Western Blotting: 1:3000 

Grb4(SH2/SH3)-GFP staining in Fig. 13d 

Immunoprecipitation: 1 g/IP 

Affinity purified rabbit anti-Grb4  

(07-100, Upstate) 

Western Blotting: 1:1000 

Grb4 staining in Fig. 11, 12 

Immunocytochemistry: 1:200 

Mouse anti-GRIP (611318, clone 32, 

BD Transduction Lab.) 

Western Blotting: 1:5000 

GRIP staining in Fig. 19, 20, 22 

Affinity purified rabbit anti-GRIP1, CT 

(06-986, Upstate) 

Immunoprecipitation: 2 g/IP 

Affinity purified mouse anti-HA 

(1583816, clone 12CA5, Roche) 

Western Blotting: 1:1000 

HA staining in Fig. 13, 21 

Immunoprecipitation: 4 g/IP 

Affinity purified goat anti-human Fc 

(109-005-098, Dianova) 

Fc-clustering: 1:10 w/w 

TR-conjugated goat anti human Fc 

(Jackson ImmunoResearch) 

Immunocytochemistry: 7.5 g/ml 

anti-Fc staining in Fig. 16 

Mouse anti-myc (clone 9E10) agarose 

beads (A7470, Sigma) 

Immunoprecipitation: 10 l/IP 

Mouse ascities anti-myc  

(clone 9E10) 

Western Blotting: 1:1000 

GRIP1-myc staining in Fig. 21 

Rabbit serum anti-βPIX (DU248, 

(Premont et al. 1998; Bagrodia et al. 

1999) 

Western Blotting: 1:2000 

anti-βPIX staining in Fig. 14 

 

Mouse anti-PRK2 (610794, clone 22, 

BD Biosciences Pharmingen) 

Western Blotting: 1:1000 

PRK2 staining in Fig. 14 

Affinity purified mouse anti-phospho-

tyrosine (hybridoma clone 4G10) 

Western Blotting: 1:5000 

Phospho-SLD-YFP staining in Fig. 15 

Mouse anti-PSD-95  

(P-246, clone 7E3-IB8, Sigma) 

Immunocytochemistry: 1:200 

PSD-95 staining in Fig. 11 

Mouse anti-synapsin 1  

(106 021, clone 46.1, Synaptic Systems) 

Immunocytochemistry: 1:500 

synapsin 1 staining in Fig. 17 

Rabbit anti-synaptophysin 1  Western Blotting: 1:1000 
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(101002, Synaptic Systems) synaptophysin 1 staining in Fig. 11 

Affinity purified mouse anti-human 

transferrin receptor (13-6800, clone 

H68.4, Zymed Laboratories Inc.) 

Western Blotting: 1:1000 

transferrin receptor staining in Fig. 19 

Mouse anti-V5  

(R960-25, Invitrogen) 

Western Blotting: 1:5000 

SLD-V5 staining in Fig. 13 

Rabbit IgG Agarose (A-2909, Sigma) Immunoprecipitation: 20 μl/IP 

ephrinB1-Fc (473-EB, R&D) Pulldown: 10 μg/pulldown 

EphB2-Fc (467-B2, R&D) Pulldown: 10 μg/pulldown 

 

7.1.5.2 Secondary antibodies 

 

Donkey anti-mouse-Cy3, -Cy5, -Texas 

Red (715-165-151, 715-175-151, 715-

075-151, Jackson ImmunoResearch) 

Immunocytochemistry: 3.75 g/ml 

Donkey anti-rabbit-Cy3, -Cy5 (711-165-

152, 711-175-152, Jackson 

ImmunoResearch) 

Immunocytochemistry: 3.75 g/ml 

Donkey anti-goat antibody HRP 

conjugate (705-035-003, Jackson 

ImmunoResearch) 

Western Blotting: 1:3000 

Goat anti-mouse antibody HRP 

conjugate (115-055-003, Jackson 

ImmunoResearch) 

Western Blotting: 1:3000 

Goat anti-rabbit antibody HRP 

conjugate (111-035-003, Jackson 

ImmunoResearch) 

Western Blotting: 1:3000 

Peroxidase Anti-Peroxidase (PAP) 

Soluble Complex antibody produced in 

rabbit (P-1291, Sigma) 

Western Blotting: 1:3000 

PAP staining in Fig. 12 
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7.1.6 Cell lines 

 

HeLa Human cervix carcinoma 

cells 

DMEM, FCS 

HeLa ephrinB1 

(kindly provided by KS 

Erdmann, Ruhr University 

Bochum) 

Human cervix carcinoma 

cells stably expressing 

ephrinB1 constructs 

DMEM, FCS, G418 

SK-N-BE2 Human Caucasian 

neuroblastoma cells 

OptiMEM I 

GlutaMAX,  

Iron suppl. CS 

SK-N-BE2 Grb4-CTAP 

(clone ZF_C2) 

Human Caucasian 

neuroblastoma cells stably 

expressing Grb4-CTAP 

OptiMEM I 

GlutaMAX,  

Iron suppl. CS 

SK-N-BE2 GRIP1-CTAP 

(clone XB C-180) 

Human Caucasian 

neuroblastoma cells stably 

expressing GRIP1-CTAP 

OptiMEM I 

GlutaMAX,  

Iron suppl. CS 
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7.1.7 Other materials and equipment 

 

Centrifuge Varifuge 3.0R (Kendro) 
Centrifuge Centrifuge 5810 (Eppendorf) 
Rotor GSA rotor & type 3 (Sorvall) 
Table centrifuge Centrifuge 5415 D (Eppendorf) 
Mini centrifuge Quickspin Minifuges, C-1200 (International Labnet) 
Incubator shaker Unitron-Pro (Infors) 
Thermo mixer Thermomixer comfort (Eppendorf) 
Balance XT2220M-DR (Precisa) 
Fine balance XT2220A-FR (Precisa) 
Magnetic stirring bar 50 × 8 mm (Brand) 
pH Meter Inolab, pH Level 1 (WTW) 
Electrophoresis power supply EPS 601 (Amersham) 
Water purification system Milli-Q Biocel A10 (Millipore) 
PCR machine Peltier Thermal Cycler, PTC-225 (MJ Research) 
Shaker IKA Schüttler MTS 4 IKA® (Werke) 
Shaker POLYMAX 2040 (Heidolph) 
Magnetic Stirrer with heating IKAMAG®Ret IKA® (Werke) 
Hood HERAsafe (Kendro) 
Laminar air flow hood HERAguard (Kendro) 
CO2 incubator HERAcell® 240 (Kendro) 
Spectrophotometer Ultrospec 3000 (Amersham) 
Vacuum sucking system VacuSafe (Integra Biosciences) 
Sequencer ABI Prism 377 DNA sequencer (Applied Biosystems) 
Vortexer VF2 IKA® (Werke) 
Epifluorescence microscope Zeiss Axioplan (Zeiss) 
Digital camera SpotRT (Diagnostics Instruments) 
Semidry blotting apparatus (Pharmacia) 
Nitrocellulose membrane, 0.45μm pore size (Scleicher & Schuell) 
BioRad gel system (BioRad) 
Straight forceps, Biology tip Dumont #5 (11252-20, Fine Science Tools) 
Vannas-Tübingen spring scissors (15003-08, Fine Science Tools) 
Dissection stereomicroscope Stemi SV 11 (Zeiss) 
Dissection lamp KL 1500 LCD (Leica) 

 

 



7. Materials and Methods 

99 

7.2 Methods 

 

7.2.1 Molecular Biology 

 

7.2.1.1 Preparation of plasmid DNA 

 

Plasmid DNA was purified from small-scale (5 ml, minipreparation) or from large-

scale (100 ml, maxipreparation) bacterial cultures. For this, single colonies of 

transformed bacteria or from a bacterial glycerol stock were picked each into 2 ml LB 

medium containing 100 µg/ml ampicillin or kanamycin and grown over day. 100ml 

LB medium containing the antibiotics were then inoculated with 1ml from this 2 ml-

culture and grown overnight (ON) at 37°C with vigorous shaking. The bacterial 

suspension was pelleted by centrifugation at 4,000 rpm for 20 min at 4°C. The pellet 

was resuspended in buffer P1 (QIAGEN). Mini- and maxipreparation of plasmid 

DNA were carried out according to the QIAGEN protocol (Qiagen Miniprep Spin kit, 

Qiagen HiSpeed Maxi Kit) using lysis of the cells and binding of the plasmid DNA to 

a special resin. After washing, elution and precipitation the plasmid DNA was 

redissolved in a suitable volume of H2O for minipreparation or endotoxin-free TE 

buffer (QIAGEN) for maxipreparation. DNA concentration was measured in a UV 

spectrometer at 260 nm. The following formula was used: dsDNA: OD × 50 × 

dilution factor = X µg/ml 

 

7.2.1.2 Enzymatic treatment of DNA 

 

Cleavage of plasmid DNA: Approximately 1 µg of DNA was cut in 50 µl of the 

appropriate NEB-buffer, 1xBSA (if required) and 2 to 5 units (U) restriction enzyme 

(NEB) for 1 to 2 h at an appropriate temperature. 
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7.2.1.2.1 Dephosphorylation of DNA fragments  

 

For dephosphorylation of DNA fragments, 1 U (1 µl) of shrimp alkaline phosphatase 

(1758250, Roche) was added to a 50 µl-restriction enzyme reaction, incubated for 60 

min at 37°C and heat-inactivated at 65°C for 15 min. Subsequently, the 

dephosphorylated DNA fragments were purified from the reaction mix (see 

purification of DNA). 

 

7.2.1.2.2 Ligating vector and insert  

 

A 10 µl reaction containing purified linearized and dephosphorylated vector and DNA 

fragments (“insert”) in equimolar ratio, 1 µl of T4 DNA ligase (M0202L, NEB) and 

ligation buffer (10× T4 DNA ligase buffer, NEB) was incubated ON at 16°C or at RT 

for 1 h, followed by 30 min at 37°C for sticky end ligations. Then, 2 µl of the ligation 

reaction were used to transform competent bacteria. 

 

7.2.1.3 Separation of DNA on agarose gels 

 

The DNA mix and approximately 1/6 of the volume of 6×loading buffer were loaded 

onto an 0.8-2% agarose gel in TAE buffer containing ethidium bromide (2218.2, 

Roth, use 1 µl per 100 ml) and run for approximate 30 to 35 min at 100-200 V. After 

electrophoresis a photograph of the gel was taken in the transilluminator on a UV light 

box and printed. In a preparative gel, the DNA band was excised from the agarose gel 

with a clean, sharp scalpel and purified (see purification of DNA). 
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7.2.1.4 Purification of DNA 

 

7.2.1.4.1 From agarose gel  

 

Following extraction, purification of DNA fragments from agarose gels was carried 

out using the QIAquick Gel Extraction Kit (28704, QIAGEN) as recommended by the 

manufacturer. The DNA was eluted in 30 µl H2O. 

 

7.2.1.4.2 From enzymatic reactions  

 

To clean-up DNA fragments from salts, enzymes, unincorporated nucleotides, the 

QIAquick Nucleotide Removal Kit (28104, QIAGEN) was used according to the 

protocol of QIAGEN. The DNA was eluted in 30 µl H2O. 

 

7.2.1.5 Transformation of competent E. coli by electroporation 

 

50 µl of electro competent bacteria were gently thawed on ice, mixed with 1-2 µl of 

the ligation product. Sterile 0.2 cm (green) cuvettes were placed on ice. Gene pulser 

apparatus (BioRad) was set at 25 µF and to 2.5 kV; the pulse controller to 200 W. The 

mixture of bacteria and DNA was transferred to a cold electroporation cuvette and 

knocked down to the bottom of the cuvette. The cuvette was placed in the chamber 

slide, pushed into the chamber and pulsed once at the above settings. 1 ml LB medium 

was immediately added to the cuvette. The cells were resuspended, transferred to a 

reaction tube and incubated at 37°C for 60 min with shaking at 225-250 rpm. The 

bacteria were then plated on LB agar plates containing the appropriate antibiotic for 

the plasmid vector and incubated at 37°C ON. 
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7.2.1.6 Mutagenesis 

 

All mutagenesis (see plasmids) were performed using the QuikChange Site-Directed 

Mutagenesis Kit according to the protocol of Stratagene (200519). All desired 

mutations were verified by sequencing procedure (Ms. Thyrlas, MPI of 

Neurobiology). 

 

7.2.1.7 Extraction of genomic DNA and genotyping using PCR 

 

7.2.1.7.1 DNA preparation  

 

DNA was prepared from mouse tail by treatment with 100 μg/ml Proteinase K in tail 

lysis buffer. 40 µl of tail lysis buffer including Proteinase K was added to each 

approximate 2 mm mouse tail, which was placed at 56°C for 2 h. Proteinase K was 

then heat-inactivated for 5-10 min at 95°C. Before PCR, the genomic DNA prep was 

diluted with 900 µl H2O. 

 

7.2.1.7.2 PCR Ubi-GRIP  

 

1 µl of DNA per 50 µl PCR reaction was used for PCR amplification to check the 

DNA for the presence of the transgene. 

 

PCR master mix: 

5 µl 10×PCR buffer (Roche) 

0.5 µl 25 mM dNTPs 

0.5 µl 100 pmol/µl Sense-primer (GRIP1.9_Seq) 

0.5 µl 100 pmol/µl Antisense-primer (TAPgeno2_AS) 

1 µl Taq DNA polymerase (M0267L, NEB)  

1 µl genomic DNA 

to 50 µl add distilled water 
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Segment Cycles Temperature Time 

1 1 95°C 2 min 

2 35 95°C 1 min 

  60°C 1 min 

  72°C 1 min 

3 1 72°C 10 min 

 

The PCR product was mixed with 6×loading buffer, loaded on a 1.5% agarose gel and 

then electrophoresed for approximately 30 min at 200 V.  

 

7.2.1.7.3 PCR GRIP1-KO  

 

1 µl of DNA per 55 µl PCR reaction was used for PCR amplification to check the 

DNA for the presence of the KO allele. 

 

PCR master mix: 

5.5 µl 10×PCR buffer (Roche) 

0.5 µl 25 mM dNTPs 

0.25 µl 100 pmol/µl RHKT83 

0.25 µl 100 pmol/µl RHKT63 

0.25 µl 100pmol/µl RHKT55 

1 µl Taq DNA polymerase (M0267L, NEB)  

1 µl genomic DNA 

to 55 µl add distilled water 

 

Segment Cycles Temperature Time 

1 1 95°C 2 min 

2 35 95°C 1 min 

  60°C 1 min 

  72°C 20 sec 

3 1 72°C 5 min 
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The PCR product was mixed with 6×loading buffer, loaded on a 1.5% agarose gel and 

then electrophoresed for approximately 30 min at 200 V.  

 

7.2.1.8 Generation of transgenic mice 

 

Vector sequences, particularly prokaryotic promoter and origin (ori) sequences impair 

the expression of the transgene. Therefore, single cutting restrictions sites should 

flank the final DNA fragment and this should be taken into consideration during 

design of the construct. 

 

7.2.1.8.1 Plasmid digestion  

 

Plasmid UbiKOZ-GRIP1-CTAP (see plasmids) was purified for pronuclear injection 

from large-scale bacterial cultures using the HiSpeed Plasmid Maxi Kit without EtOH 

(12663, QIAGEN). About 110 µg of the plasmid were digested with 70 U of the 

restriction enzyme XmaI (NEB) and 220 U of NdeI (NEB) overnight. Next day, 

another 70 U of the restriction enzyme XmaI and 220 U of NdeI were added and again 

incubated overnight. 500 ng of the reaction mix was loaded and run on an agarose gel 

to check if digestion was complete. 

 

7.2.1.8.2 Pronuclear injection  

 

The pronuclear injection was carried out by the transgenic mice service of the EMBL, 

Heidelberg (Kristine Vintersten).  
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7.2.2 Cell Culture 

 

7.2.2.1 Primary culture of hippocampal neurons 

 

Before preparation, coverslips were pre-coated with 1mg/ml Poly-D-lysine in borate 

buffer for at least 4 h at 37°C. Coverslips in 24-well plates were washed twice with 

sterile water and dried in a sterile hood. After coating overnight at 37°C with 5 µg/ml 

mouse laminin in PBS, coverslips were washed twice with PBS and then replaced by 

Neurobasal-B27 medium. Media were left to equilibrate for at least one hour in the 

incubator with 5% CO2 atmosphere. Hippocampal neurons were taken from pregnant 

Wistar rats (MpiChbb:Thom, animal house, MPI of Neurobiology) at E18.5. Pregnant 

rats were deeply anesthetized using diethyl ether. After cervical dislocation, embryos 

were obtained and kept in ice-cold dissection medium. The preparation was then 

continued under an open sterile hood. Embryo heads were cut off and the scull opened 

to take out the brain. Embryonic brains were placed in fresh dissection medium and 

dissected under a stereomicroscope. Brain cortices were removed from the midbrain 

and brainstem and the meninges were pulled off. The striatum was cut out. The 

hippocampus was separated from the cortex and placed in fresh 15 ml dissection 

medium on ice. After removing the medium, hippocampi were incubated in 1.5 ml 

0.25%Trypsin/1mM EDTA-HBSS-solution (25200-056, Invitrogen) for 20 min at 

37°C. After carefully removing Trypsin/EDTA-HBSS-solution, the digestion reaction 

was stopped and the hippocampi were washed three times with 3 ml DMEM 10% 

FBS. Then the tissue was triturated approximately 20 times using a fire-polished glass 

pasteur pipette until the suspension was homogenous. Subsequently, the cell 

suspension was centrifuged for 5 min at 80 g to remove debris and the pellet 

resuspended in 2 ml Neurobasal-B27 medium. Cells were counted in a hemacytometer 

and plated on coated glass coverslips in a 24-well plate at a density of 620 cells/mm2. 

Cells were incubated for 11-21 days in vitro (DIV) at 37°C in a humidified incubator 

with an atmosphere of 5% CO2. After 7 or 12 DIV the hippocampal cultures were 

transfected using the Ca-phosphate-DNA precipitation procedure. 
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7.2.2.2 Transfection of cells 

 

HeLa cells were transfected following a conventional Ca-phosphate-DNA 

precipitation procedure (Sambrook et al. 1989). For calcium phosphate transfection of 

hippocampal neurons on coverslips, all solutions were warmed up to room 

temperature. The CaCl2-DNA-BBS mixture was added drop wise to 0.9 ml medium in 

a polystyrene-tube (Falcon) while vortexing. After collecting the remaining medium 

from 4 wells, 250 μl of the transfection solution was immediately added to each well. 

The collected medium was filter-sterilized and kept in the incubator. Cells were 

incubated at 37°C in a humidified incubator with an atmosphere of 5% CO2 for the 

desired transfection time (1-3 h). Afterwards, the transfection medium was removed 

and cultures were washed with prewarmed HBSS (14025-050, Invitrogen) twice and 

kept for 10 min each time in a 37°C incubator (no CO2 atmosphere). Then the “old” 

prewarmed culture medium was readded. 

 

7.2.2.3 Stimulation of cells with Eph receptors or ephrin ligands 

 

All cell types were stimulated with EphB2-Fc or Fc (Biochemistry: 1 µg/ml, 

Immunocytochemistry: 4 µg/ml), which had been pre-clustered for 1 h at room 

temperature using 1/10 (w/w) goat anti-human IgG (Jackson Immunoresearch). 

Before stimulation, all cell types except hippocampal neurons were starved for 24 h in 

medium containing 0% serum.  

 

7.2.3 Biochemistry 

 

7.2.3.1 Tandem affinity purification and mass spectrometry 

 

Retroviral transduction vectors were generated by cloning open reading frames, 

amplified by polymerase chain reaction, into a Moloney-based vector with the 

Gateway site-specific recombination system to obtain C-terminal TAP fusions of 

Grb4 and GRIP1. Virus stocks were generated in a HEK293 Gag–Pol packaging cell 
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line. SK-N-BE2 cells were infected and complexes were purified by using a modified 

TAP protocol (Gavin et al. 2002). Cells were grown in Optimem Glutamax 

(Invitrogen) medium with 10% iron supplemented FBS (Sigma). Eighty 15 cm-dishes 

of SK-N-BE2 Grb4-CTAP or SK-N-BE2 GRIP1-CTAP cells were harvested by 

mechanical detachment, washed with excess PBS on ice and lysed in 10 ml lysis 

buffer each using a Dounce homogenizer (30 times). Afterwards, lysates were 

incubated spinning on a wheel for 30 min at 4°C and then centrifuged for 10 min 

(13,000 rpm, 4°C, SS34 rotor). The supernatant was added on 200 μl rabbit IgG 

agarose beads (Roche) in a 15 ml-Falcon tube and incubated for 2h at 4°C. Beads 

were saved by centrifugation for 1 min (1,300 rpm, 4°C, Varifuge 3.0R), transferred 

into a small column (0.8 ml Mobicol M1002, MoBiTec) and washed with 10 ml lysis 

buffer followed by a wash with 5 ml TEV cleavage buffer. Beads were resuspended in 

150 μl TEV cleavage buffer and incubated upon addition of 4 μl TEV protease 

(recombinant, 10127-017, Invitrogen) for 3 h at 16°C in a thermoshaker (900 rpm). 

The TEV eluate was directly applied on calmodulin affinity resin (214303-52, 

Stratagene) in another column, mixed with 200 μl CBP binding buffer and incubated 

for 1 h at 4°C. Calmodulin beads were washed with 5 ml CBP washing buffer and the 

protein complexes eluted with 600 μl CBP elution buffer for 5 min at 37°C. Both the 

calmodulin beads after elution and the lyophilized protein samples were boiled for 5 

min with 50 μl 4x sample buffer (containing 20 mM DTT) and separated by NuPAGE 

4-12% Bis-Tris–PAGE (NP0321BOX, Invitrogen). Complete gel lanes were 

systematically cut into slices and proteins were digested in-gel with trypsin as 

described (Shevchenko et al. 1996). Protein identification was performed by LC–

MS/MS at Cellzome AG (Heidelberg) and MS data were searched against an in-house 

curated version of the International Protein Index (IPI), maintained at the EBI 

(Hinxton, UK). Results of database searches were read into a database system for 

further bioinformatics analysis. 

 

7.2.3.2 Cell lysis, immunoprecipitation, EphB2-Fc-pulldown experiments 

 

Transiently transfected HeLa cells were washed twice with ice-cold PBS and lysed in 

lysis buffer on ice. After scraping off and collecting the cells from the dish, the cell 

lysate was centrifuged at 10,000 g for 15 min at 4°C to remove insoluble material 
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(nuclei, cytoskeletal components and insoluble membranes). The supernatant was 

placed in a fresh Eppendorf tube and directly loaded onto a SDS-Polyacrylamide gel 

(SDS-PAGE) or purified further (see below). Before loading on a gel, samples were 

boiled in 6×sample buffer for 7 min to denature the proteins.  

For immunoprecipitation, 2-4 µg of the antibody against the protein of interest was 

prebound to protein A sepharose (for rabbit polyclonal antibodies) or protein G 

sepharose (for mouse monoclonal and goat polyclonal antibodies) for 30 min at RT. 

The total lysate was added and incubated for 2 hours on a rotating wheel at 4°C. 

Subsequently, the mixture was spun down at 4,000 g for 2 min at 4°C. The 

supernatant was discarded and the beads were washed three times with lysis buffer to 

remove traces of unbound proteins. 25 µl of 2×sample buffer was added to the beads 

and the mix was then boiled for 5 min. The entire sample was loaded on a SDS-PA 

gel under reducing conditions and further processed. 

EphB2-Fc precipitation from brain tissue or immunoprecipitation of ephrinB1-

HA/Grb4-YFP complexes from HeLa cells were performed following the protocol 

described (Cowan and Henkemeyer 2001). Briefly, 10 µg of EphB2-Fc (R&D 

Systems) or 4 µg of anti-HA (Roche) were coupled to protein G sepharose beads 

(Amersham) and incubated 2 h at 4°C with the lysates (1 mg/ml) prepared in PLC 

lysis buffer containing 1% NP-40. Bound proteins were then washed three times in 

HNTG for the EphB2-Fc pulldowns or three times in PLC lysis buffer followed by 

two washes in HNTG for HA-immunoprecipitations. Samples were then boiled 7 min 

in sample buffer, resolved by SDS-PAGE, transferred to nitrocellulose and 

immunoblotted with the indicated antibodies. 

 

7.2.3.3 Immunoblotting 

 

Protein samples derived from the procedures described above were separated by SDS-

PAGE and transferred to nitrocellulose or PVDF membranes by semi-dry blotting (1 

mA per cm2 for 1 to 1.5 h). Membranes were blocked at least for 30 min at RT or 

overnight at 4°C in blocking solution and then incubated for 1 h at RT or overnight at 

4°C with a primary antibody diluted in blocking solution. Subsequently, membranes 

were washed three times for 10 min in PBST at RT. Secondary antibodies linked to 

horseradish peroxidase (HRP) diluted in blocking solution were used to specifically 
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recognize the primary antibody. After incubation for 1 h at RT, membranes were 

washed three times for 10 min in PBST. To visualize signals, membranes were 

incubated with ECL solution for 1 min at RT and exposed to films. For reprobing, 

membranes were stripped with stripping buffer. 

 

7.2.3.4 Purification of membranes and rafts from adult mice 

 

For the analysis of detergent-insoluble complexes in flotation gradients, a membrane 

fraction was prepared at 4ºC as follows. Two brains from adult mice were 

homogenized in a Dounce homogenizer in 3 ml of ice-cold homogenization buffer 

TNE. The extract was passed ten times through a 22G needle, ten times through 25G 

needle and centrifuged for 15 min (13,000 g, 4ºC). The pellet was re-extracted with 1 

ml of TNE buffer using a 25G or 27G needle and centrifuged again for 15 min 

(13,000 g, 4°C). The supernatants of both centrifugations were adjusted to 40% 

Optiprep and overlaid in a SW40 centrifuge tube with 7 ml of 30% and 3 ml of 5% 

Optiprep in TNE buffer. After centrifugation for 4 h (24,000 rpm, 4ºC; SW40 rotor), 

the floated membranes were collected in 600 µl from the 5%/30% interface. 

Membranes were adjusted to 0.3% Triton X-100 following extraction for 30 min on a 

wheel at 4°C. The extracted membranes were adjusted to 40% of Optiprep and 

overlaid in a SW60 centrifuge tube with 2.5 ml 35% Optiprep and 400 µl of 5% 

Optiprep in TNE buffer. After centrifugation for 4 h (40,000 rpm, 4ºC; SW60 rotor) 

seven fractions were collected from the top. 

 

7.2.3.5 Postsynaptic density fractionation 

 

Postsynaptic densities were prepared as described by Cho (Cho et al. 1992). In brief, 

hippocampi of 12 wt C57/BL-6 adult male mice were homogenized in a dounce glass 

Teflon homogenizer in 12 ml solution A and centrifuged at 3,000 g for 10 min at 4ºC. 

Pellets were re-extracted with 5 ml solution A, centrifuged at 1,000 g for 10 min at 

4ºC, supernatants combined with the ones from the previous centrifugation and 

centrifuged at 10,000 g for 10 min at 4ºC. Pellets were resuspended in 5 ml solution 

B, overlaid on a 1.2 M/1.0 M/0.85 M sucrose gradient and ultracentrifuged at 25,500 
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g for 2 h at 4ºC. A synaptic membrane fraction was extracted at the interface of 1.2 

M/1.0 M sucrose layers and a control non-synaptic fraction was extracted between the 

top (0.32 M) and the 0.85 M sucrose layer. The synaptosome fraction was diluted to 9 

ml in solution B, 9 ml of solution C was added followed by a 15 min incubation on 

ice. The solution was divided into 6 samples and pelleted at 22,300 g for 20 min at 

4ºC. One pellet was resuspended in 100 μl solution D (PSD fraction 1), the remaining 

five pellets in 5 ml solution B. 2 ml of this solution were mixed with 2 ml solution C, 

incubated on ice for 15 min and centrifuged at 50,100 g for 60 min at 4ºC. The 

resulting pellet was resuspended in 100 μl solution D, 0.3% SDS (PSD fraction 2). 

The remaining 3 ml were mixed with 3 ml sol E, incubated on ice for 15 min, 

centrifuged at 50,100 g for 60 min and the pellet resuspended in 100 μl solution D 

(PSD fraction 3). For a description of solutions used, please refer to the Materials 

section. 

 

7.2.3.6 Immunocytochemistry 

 

7.2.3.6.1 Immunostaining of cells 

 

For normal immunocytochemistry of total protein distribution, neurons grown on 

coverslips were fixed with 4% PFA, 4% sucrose in PBS for 13 min at 4°C, washed 

once with PBS, then incubated with 50mM NH4Cl in PBS for 10 min at 4°C and 

washed again before permeabilization for 5 min with ice-cold 0.1% Triton X-100 in 

PBS. After washing, coverslips were blocked for about 30 min at RT or overnight at 

4°C with 2% bovine albumin (A-3294, Sigma) and 4% serum in PBS. After blocking, 

coverslips were transferred into a dark moist chamber, face up. Primary antibodies for 

total stainings were incubated for at least 60 min at RT in 50 µl blocking solution. 

After 3 washing steps with PBS for 5 min, secondary antibodies, previously diluted in 

50 µl of blocking solution, were applied for 30 min at RT in the dark. After washing, 

samples were mounted in Gel/Mount media and dried at RT. Images were acquired 

using an epifluorescence microscope (Zeiss) equipped with a digital camera (SpotRT, 

Diagnostic Instruments) and the MetaMorph software (Visitron Systems). 
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7.2.3.6.2  Image analysis and quantification 

 

Images were acquired using a digital camera (SpotRT; Diagnostic Instruments, 

Sterling Heights, MI) attached to an epifluorescence microscope (Zeiss, Göttingen, 

Germany) equipped with a 63X objective (Plan-Apochromat; Zeiss, Göttingen, 

Germany). All quantitative measurements were performed using MetaMorph 

software. Statistical analysis was performed using Microsoft Excel. Groups of 

protrusions were compared using t-test. Neurons expressing high levels of the 

constructs were chosen for quantification as follows. Approximately 100 dendrites 

from independent transfections were randomly selected for each construct to quantify 

number of protrusions in proximal 50 µm sections of dendrites. Length of protrusions 

was determined by measuring the distance between the tip and the base (n>500 

protrusions). 

 

7.2.4 Mouse work 

 

Transgenic mice were crossed in a C57/Black6 (C57BL/6NCrlMpi, animal house, 

MPI of Neurobiology) genetic background. For experiments with adult mice, mice 

were separated from their parents at the age of about three weeks, males and females 

were housed separately. Tail biopsies were taken and mice were ear tagged using six-

digit number eartag from the Nationalband & Tag company. For all experiments a 

heterozygous transgenic male was crossed with wild type females and the mice of the 

same litter were compared. 
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