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ich im ’Mädchenbüro’ zum Glück nie über die neueste Schuhmode diskutieren. Bei Thomas
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Zusammenfassung

Die Überlebenszeitanalyse, oder allgemeiner die Verweildaueranalyse findet in der Praxis

zahlreiche Anwendungen vom klassischen Fall der klinischen Studie bis hin zur Model-

lierung von Kreditrisiken. Oftmals sind die Standard–Modelle jedoch nicht flexibel genug,

um der Modellierung komplexer Kovariableninformationen gerecht zu werden. Neben para-

metrisch und nichtparametrisch modellierten Kovariableneffekten, sowie räumlichen Effek-

ten und zufälligen Effekten zur Berücksichtigung von unbeobachteter Heterogenität, ist

bei der Verweildaueranalyse auch häufig eine flexible, nichtparametrische Modellierung

von zeitlich variierenden Effekten gefragt.

Diese Arbeit beschäftigt sich mit der Entwicklung von Bayesianischen Verweildauer-

modellen, die Erweiterungen des klassischen Cox–Modells darstellen. Indem die Hazardrate

durch einen strukturierten additiven Prädiktor modelliert wird, entsteht ein flexibles Mo-

dell zur Analyse von stetigen Verweildauern unter adäquater Berücksichtigung verschie-

denster Arten von Kovariablen. Zeitlich variierende Effekte werden dabei durch P–Splines

modelliert. Die Schätzung erfolgt mit Hilfe von Markov Chain Monte Carlo Verfahren.

Weitere Kapitel beschäftigen sich mit der sogenannten relativen Überlebenszeitanalyse

und mit Mehrzustandsmodellen. Bei ersterem geht es darum, ein zusätzliches Risiko einer

bestimmten Subpopulation zu modellieren, das über das allgemeine Risiko in der gesamten

Population hinaus besteht. Mehrzustandsmodelle stellen eine Verallgemeinerung der Ver-

weildauermodelle dar. Anstelle eines bestimmten Übergangs können hier mehrere ver-

schiedene Übergänge simultan analysiert werden.

Die in dieser Arbeit vorgestellten Methoden werden jeweils auf komplexe, reale Problem-

stellungen angewandt und erweisen sich als wirkungsvolle und flexible Instrumente.

Abstract

Survival analysis, or more generally duration time analysis has a large number of practi-

cal applications ranging from the classical field of clinical studies to credit risk analysis. In

most cases however, standard survival models do not offer enough flexibility to give appro-

priate consideration to modelling complex covariate effects. In addition to parametric and
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nonparametric effects as well as spatial effects and random effects to capture unobserved

heterogeneity, duration time analysis often demands a flexible nonparametric estimation

of time–varying effects.

This thesis is concerned with developing Bayesian duration time models representing

extensions to the classical Cox model. Modelling the hazard rate through a structured

additive predictor leads to a flexible model for the analysis of continuous duration times

having regard to the influence of several different types of covariates. Time–varying effects

are modelled by P–splines. Inference is accomplished using Markov Chain Monte Carlo

simulation techniques.

Further topics are the so–called relative survival analysis and multi–state models. The

former topic is concerned with modelling the excess risk of a certain subpopulation relative

to the base risk that is present in the whole population. Multi–state models are a general-

ization of duration time models. Instead of analyzing one particular transition only they

allow for the simultaneous analysis of diverse transitions.

The methods presented within this thesis are applied to several complex, real problems

and prove to be effective and flexible tools.
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Chapter 1

Introduction

The analysis of survival times is a specific type of regression analysis that has gained

considerable attention particularly in the classical field of medical applications, wherefrom

the conventional denotation ’survival analysis’ arises. The primary interest in medical

trials usually is the analysis of the influence of special drugs or therapies on the survival

times of patients that are diagnosed with a certain disease. Generally, survival analysis

is concerned with analyzing the influence of covariates on the duration time up to any

predefined event of interest. As will be illustrated in this work there is a number of further

fields of applications including for example the field of credit scoring, where the life of a

loan up to a default is analyzed.

In survival analysis a distinction is drawn between discrete time survival analysis, where

survival times are only given in certain units of time and continuous time survival analysis.

The former can be ascribed to binary response models and may therefore be based on

methodology for binary logit, probit or grouped Cox models. For this reason we will only

deal with the more challenging case, where survival times are measured on a continuous

time scale. Grouping the data for a discrete time survival analysis is possible, but leads to

a loss of information and is therefore not recommended. Another idea might be to analyze

survival times with generalized linear models for nonnegative continuous responses (like

lognormal or gamma regression). However, these methods do not account for censoring

and truncation, two specifics of survival data that are due to the fact that survival times

can often not be observed completely but only within a specific observation period. For

this reasons continuous time survival analysis actually is a separate area of statistical
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analysis that is treated extensively in the literature, see e.g. Lawless (1982), Kalbfleisch

and Prentice (1980), Blossfeld, Hamerle and Mayer (1989) and Klein and Moeschberger

(2003), or Andersen, Borgan, Gill and Keiding (1993) for a counting process representation.

1.1 Basic concepts

Consider survival time to be a nonnegative continuous random variable T , with density

function f(t). Then the corresponding distribution function F (t), which is the probability

of not surviving until time t is given by

F (t) = P (T ≤ t) =

∫ t

0

f(u)du.

In survival analysis however, it is more common to examine the so called survivor function,

which is the probability of the complementary event, i.e. the probability of surviving until

time t. It given by

S(t) = 1 − F (t) = P (T > t).

Another quantity that plays a decisive role in survival analysis is the hazard function λ(t),

which is defined by

λ(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)

∆t

and determines the instantaneous rate of death or failure at time t subject to the condition

of survival up to time t.

The following equations, where Λ(t) =
∫ t

0
λ(t) denotes the cumulative hazard function,

show how the quantities introduced above are related to each other:

λ(t) =
f(t)

S(t)

S(t) = exp(−Λ(t))

f(t) = λ(t)S(t) = λ(t) exp(−Λ(t))

The distribution of T is completely determined by one of these quantities. As an illustration

consider the Weibull distribution, where the hazard rate has the following structure

λ(t) = λα(λt)α−1,
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with scale parameter λ > 0 and shape parameter α > 0 (see Figure 1.3 below for a graphical

representation). The survivor function is thus given by

S(t) = exp

(
−

∫ t

0

λ(u)du

)
= exp

(
−

∫ t

0

λα(λu)α−1du

)

= exp

(
−λαλα−1

∫ t

0

uα−1du

)
= exp

(
−λαα[α−1uα]t0

)
= exp

(
−λαα(α−1tα)

)

= exp (−(λt)α)

leading to

f(t) = λ(t)S(t) = λα(λt)α−1 exp (−(λt)α) ,

which is indeed the density function of a Weibull distribution with parameters λ and α.

The exponential model, where the hazard rate is constant over time, i.e. λ(t) = λ > 0 is

included as the special case of α = 1.

1.2 The Cox model

Consider survival data in conventional form, i.e. assume that each individual i in the study

has a lifetime Ti and a censoring time Ci that are independent random variables (random

censoring). The observed lifetime is then ti = min(Ti, Ci), and δi denotes the censoring

indicator given by

δi =

{
1 Ti ≤ Ci

0 else
(1.1)

In addition to the lifetime one usually considers some individual–specific covariates that

are assumed to have an influence on the lifetime. The data is then given by

(ti, δi; vi), i = 1, . . . , n, (1.2)

where vi = (vi1, . . . , vir) is the vector of the r covariates observed with individual i. Note

that covariates may also be time–dependent, but for the moment we restrict discussion

to time–constant covariates for simplicity. The benchmark in the area of analyzing the

influence of covariates on survival time is the proportional hazards model introduced by
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Cox (1972). Here the hazard rate of individual i is modelled as the product

λi(t,vi) = λ0(t) · exp(vi1γ1 + . . . + virγr) = λ0(t) · exp(v′
iγ), (1.3)

where λ0(t) is the baseline hazard, that remains unspecified and is independent of the

covariates, but only depends on time t. In contrast, the influence of the covariates is

independent of time and modelled via a linear predictor v ′
iγ with a vector of regression

coefficients γ = (γ1, . . . , γr). Through the exponential link function, the covariates act

multiplicatively on the hazard rate. In the case of time–constant covariates the time

constance of the influence of the covariates implicates that the hazard rates of any two

individuals are proportional, which explains why the Cox model is called a proportional

hazards model. Let vi and vj denote the covariate vectors of two individuals i and j, then

the ratio of the hazard rates of these individuals is given by

λi(t,vi)

λj(t,vj)
=

λ0(t) · exp(v′
iγ)

λ0(t) · exp(v′
jγ)

= exp ((vi − vj)
′γ) ,

which yields

λi(t,vi) = c · λj(t,vj), c = exp ((vi − vj)
′γ) .

This implicit assumption of the traditional Cox model is rather restrictive and does often

not hold in practice. However, this assumption is crucial for inference based on the partial

likelihood proposed by Cox. Supposing that the baseline hazard λ0(t) is arbitrary, the

partial likelihood is derived by considering the observed survival times ti (at which we

assume for simplicity that ti 6= tj for i 6= j) and risk sets

R(ti) = {j|tj ≥ ti}

including all individuals j whose survival time is at least ti, i.e. all individuals that are still

at risk shortly before ti. Given that time ti is an observed failure time and conditionally

on the risk set R(ti) the probability that the failure is actually observed on individual i

(instead of any other individual j ∈ R(ti)) is given by

P (i fails at ti|one failure at ti, R(ti)) =
exp (v′

iγ)∑
j∈R(ti)

exp
(
v′

jγ
) ,
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which is independent of λ0(t). Under the assumption of independence the partial likelihood

is hence given by

L(γ) =
n∏

i=1

exp (v′
iγ)∑

j∈R(ti)
exp

(
v′

jγ
) .

The regression parameters γ may then be estimated by maximizing the partial likelihood.

Based on the estimated parameters γ̂ the cumulative baseline hazard Λ0(t) =
∫ t

0
λ0(u)du

may be estimated in a second step via the plug–in estimator by Breslow, which is defined

as follows

Λ̂0(t) =
∑

i:ti≤t

1∑
j∈R(ti)

exp(v′
jγ̂)

. (1.4)

Note that Λ̂0(t) is a step function with jumps at the observed survival times ti.

1.3 Extensions of the Cox model

To many complex applications the basic Cox model (1.3) is not adequate with respect to

several aspects such as

• In applications where predictions are of interest an improved, smooth estimation of

the baseline effect is needed.

• Effects of continuous covariates might be of any unknown nonlinear form.

• Some effects might be time–varying, at which the variation is of any unknown (non-

linear) form.

• Survival times might be spatially correlated.

• Unobserved heterogeneity among individuals or units might be present.

• Nonlinear interactions between covariates might exist.

In this thesis, we propose geoadditive survival models as a flexible spatial and spatio–

temporal generalization of Cox–type models. Within a unified framework, we extend the

common linear predictor of the Cox model to an additive predictor, including a spatial

component for geographical effects and nonparametric terms for modelling and exploring
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unknown functional forms of the baseline hazard rate, of nonlinear effects of continuous

covariates and further time scales, such as calendar time, and of time–varying coefficients.

The incorporation of such nonparametric components and their simultaneous estimation

with the baseline hazard and the spatial effects motivates the term ”geoadditive”, originally

introduced by Kammann and Wand (2003) in a mixed model approach to semiparametric

Gaussian regression. In addition, uncorrelated random effects (also referred to as frailty

effects) or nonlinear two–way interactions can be incorporated if appropriate.

Modelling and inference is developed from a Bayesian perspective, using information

from the full likelihood rather than from a partial likelihood.

1.4 Full likelihood

In survival analysis the complexity of the likelihood depends on what kind of censoring

and/or truncation is present in the data. Figure 1.1 illustrates some examples of observation

structures that we treat within this thesis.

1.4.1 Right censoring

Usually right censored data are considered, where the exact survival time is only observed

for some individuals, whereas others are only observed until a certain point of time prior to

the event of interest. This involves that it is only known that the survival time is greater

than the observed survival time. Right censoring typically appears in studies where indi-

viduals enter the study gradually and are only followed within a certain observation period.

Observations where the event did not take place until the end of the observation period are

right censored. A censoring concept that is often assumed to hold was already presented

in Section 1.2 and is called random censoring. Here the survival time Ti and the censoring

time Ci of each individual i, i = 1, . . . , n are assumed to be independent random variables,

the observed survival time ti is the minimum of those two variables and the censoring indi-

cator δi is defined as in (1.1). Considering time–constant covariates vi = (vi1, . . . , vip) and

under the assumption of non–informative censoring, i.e. the assumption that the censoring

time is not determined by parameters of interest, the likelihood contribution of individual
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-

6

calendar
time

values of
covariates

v1 = 2, v2 = 3

v1 = 2, v2 = 2

v1 = 2, v2 = 1

v1 = 1, v2 = 3

v1 = 1, v2 = 2

v1 = 1, v2 = 1

unknown t d

t d

t

@@R
death

t d

t d

@@R

censoring
���

@@R
truncation

@@R
truncation

@@R
death

t d

t d

���
death

t

� -observation period

no censoring, no truncation, time–constant covariates v1 = 2, v2 = 1

right censored, no truncation, time–constant covariates v1 = 1, v2 = 1

no censoring, no truncation, v1 = 2, v2 is changing from 2 to 3

no censoring, left truncated, time–constant covariates v1 = 2, v2 = 3

right censored, left truncated, v1 = 1, v2 is changing from 2 to 3

Figure 1.1: Illustration of 5 different right–censoring and left–truncation schemes each with

two covariates v1 ∈ {1, 2} and v2 ∈ {1, 2, 3}, that may be time–constant or time–varying.
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i is given by

Li =

{
fi(ti,vi) = λi(ti,vi) · Si(ti,vi), δi = 1

Si(ti,vi), δi = 0

= λi(ti,vi)
δi · Si(ti,vi)

= λi(ti,vi)
δi · exp

(
−

∫ ti

0

λi(u,vi)du

)
. (1.5)

For non–censored observations the likelihood is as usual given by the density fi at ti,vi,

whilst the likelihood for censored observations, where it is only known that the survival

time is at least ti, is given by the survivor function Si at ti,vi. Thus, under the usual

assumption of conditional independence the likelihood for the whole sample (ti, δi,vi),

i = 1, . . . , n is given by

L =
n∏

i=1

Li =
n∏

i=1

λi(ti,vi)
δi · Si(ti,vi).

1.4.2 Left truncation

Left truncation is the second type of incompletely observed survival data that we deal

with in this thesis. Here survival times of certain individuals can only be observed on

condition that they exceed a certain, individual–specific truncation time T tr
i involving that

some survival times are not to be observed. Left truncation typically occurs in observation

studies where individuals that have already been at risk for a known, individual–specific

amount of time ttri at the beginning of the observation period are included (additionally

to individuals that get at risk at a later date within the observation period and thus enter

the study gradually). Note that those observations would not be included if their survival

time was shorter than ttr
i , i.e. it has to be considered that no shorter survival time than ttr

i

may be observed with those individuals. This matter of fact is crucial in data situations,

where those individuals being at risk at earlier times differ from individuals being at risk

later, regarding values of influential covariates. Considering time–constant covariates, right

censoring and left truncation the data are given by
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(ti, δi, t
tr
i ; vi), i = 1, . . . , n,

where ttri = 0 if observation i is not left truncated and ttr
i > 0 if observation i is left

truncated. The individual likelihood contribution of individual i is given by

Li =





Si(ti,vi), δi = 0, ttri = 0

λi(ti,vi) · Si(ti,vi), δi = 1, ttri = 0

Si(ti,vi)
Si(ttri ,vi)

, δi = 0, ttri > 0

λi(ti,vi)
Si(ti,vi)
Si(ttri ,vi)

, δi = 1, ttri > 0

= λi(ti,vi)
δi · exp

(
−

∫ ti

ttri

λi(u,vi)du

)
, (1.6)

where left truncation is accounted for by conditioning on Ti > ttri , which results in a division

by S(ttri ,vi). For a detailed derivation of these likelihoods see e.g. Klein and Moeschberger

(2003). Again, under the usual assumption of conditional independence the likelihood

for the whole sample (ti, δi, t
tr
i ,vi), i = 1, . . . , n is given by the product of the individual

likelihood contributions.

1.4.3 Time–varying covariates

So far we have only considered time–constant covariates. Now we will illustrate, how

the likelihood of survival data with time–varying (piecewise constant) covariates can be

rewritten in the form of the likelihood of left truncated survival data with time–constant

covariates. For this purpose consider for instance survival data

(ti, δi, t
tr
i ; vi(t)), i = 1, . . . , n,

where v(t) is a time–varying covariate that may take two different values v(1) and v(2). The

likelihood contribution of an observation i with a trajectory as displayed in Figure 1.2,

where t
(1)
i and t

(2)
i mark the points of time when the covariates change, is given by
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-

t d

0 ttri

t d

t
(1)
i

t d

t
(2)
i

t d

ti
t

unknown

v(1)

v(2)

Figure 1.2: Exemplary trajectory for a time–varying covariate v(t) with two different values

v(1) and v(2).

Li = λi(ti, vi(ti))
δi · exp

(
−

∫ ti

ttri

λi(u, vi(u))du

)

= λi(ti, v
(1))δi · exp

(
−

∫ t
(1)
i

ttri

λi(u, v(1))du −

∫ t
(2)
i

t
(1)
i

λi(u, v(2))du −

∫ ti

t
(2)
i

λi(u, v(1))du

)

= λi(t
(1)
i , v(1))0 · exp

(
−

∫ t
(1)
i

ttri

λi(u, v(1))du

)

λi(t
(2)
i , v(2))0 · exp

(
−

∫ t
(2)
i

t
(1)
i

λi(u, v(2))du

)

λi(ti, v
(1))δi · exp

(
−

∫ ti

t
(2)
i

λi(u, v(1))du

)
.

This individual likelihood is identical to the likelihood of three left truncated observations

with a time–constant covariate given by

ti δi ttri vi

t
(1)
i 0 ttri v(1)

t
(2)
i 0 t

(1)
i v(2)

ti δi t
(2)
i v(1)

For this reason time–varying covariates can be included in the settings described before

via data augmentation.
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1.5 Modelling the baseline hazard

As can be seen from equations (1.5) and (1.6) the calculation of the likelihood involves

solving integrals over the baseline hazard rate, which is the only component that depends

on time in case of time–constant covariate effects. Depending on the complexity of the

assumed structure of the baseline hazard the integrals may be solved analytically or a

numerical integration technique may be required. Starting from the Cox model (1.3)

where the baseline hazard is typically unspecified, we present three alternatives to specify

the baseline hazard and their implications with calculating the likelihood.

1.5.1 Weibull model

The first alternative is a parametric Weibull model, where the baseline hazard rate is given

by

λ0(t) = αtα−1

with an unknown shape parameter α > 0. Note that the exponential model, where the

baseline hazard is time–constant is included as the special case of α = 1, whereas values

of α < 1 (α > 1) yield a decreasing (increasing) baseline hazard. To give an example,

Figure 1.3 displays the shapes of λ0(t) for α = 0.75, α = 1 and α = 1.25. Usually the

Weibull distribution is defined by a shape and a scale parameter. With our model the

scale parameter is included as an additive intercept term γ0 in the linear predictor, i.e. the

model is given by

λi(t,vi) = αtα−1 · exp (γ0 + v′
iγ) .

The integral in the likelihood given in (1.6) can be calculated analytically as follows

∫ ti

ttri

λi(u,vi)du =

∫ ti

ttri

αuα−1 · exp (γ0 + v′
iγ) du

= exp (γ0 + v′
iγ) ·

∫ ti

ttri

αuα−1du

= exp (γ0 + v′
iγ) · [uα]tittri

= exp (γ0 + v′
iγ) ·

(
(ti)

α − (ttri )α
)
.
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0
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3

0 1 2 3 4 5
t

alpha=1 alpha=0.75
alpha=1.25

Figure 1.3: Shape of the Weibull baseline hazard αtα−1 for different values of α.

Thus a Weibull hazard rate allows for an easy estimation and is a frequently used model

assumption. However, the flexibility is limited since the shape of the baseline hazard rate

is restricted to monotonic functions as displayed in Figure 1.3.

1.5.2 Piecewise exponential model (p.e.m.)

The basic idea of the p.e.m. is to divide the time axis into a grid that may be equidistant,

according to quantiles or of any arbitrary structure given by the intervals

(0 = ξ0, ξ1], (ξ1, ξ2], . . . , (ξs−1, ξs], . . . , (ξm−1, ξm], (ξm,∞),

where ξm is the largest of all observed survival times ti, i = 1, . . . , n. The baseline hazard

rate λ0(t) is assumed to be piecewise constant on that grid, i.e.

λ0(t) = λ0s, λ0s ≥ 0

for times t within the intervals (ξs−1, ξs], s = 1, ...,m. Since estimating the unknown

parameters λ0s would involve imposing the restrictions λ0s ≥ 0, s = 1, . . . ,m, we prefer to

estimate the unrestricted parameters g0s = log(λ0s) instead, i.e. we define

γ0(t) = log(λ0(t)) = γ0s
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for times t in the interval (ξs−1, ξs], s = 1, ...,m. Furthermore, let ηi(ti,vi) denote the

whole linear predictor of individual i including the log–baseline hazard, i.e.

ηi(t,vi) = γ0(t) + v′
iγ and hence

λi(t,vi) = λ0(t) · exp (v′
iγ) = exp (γ0(t) + v′

iγ) = exp(ηi(t,vi))

Here, ηis = γ0s + v′
iγ denotes the piecewise constant linear predictor in the time interval

(ξs−1, ξs], s = 1, ...,m.

In the case of a p.e.m., the integral reduces to a sum, and, after some calculations, the

likelihood contribution of observation i in each time interval (ξs−1, ξs] can be expressed as

Lis = exp (yisηis − exp (∆is + ηis))

where

yis =

{
1 ti ∈ (ξs−1, ξs],δi = 1

0 else.

∆∗
is =





0, ξs < ttri

ξs − ttri , ξs−1 < ttri ≤ ξs < ti

ti − ttri , ξs−1 < ttri < ti ≤ ξs

ξs − ξs−1, ttri ≤ ξs−1 < ξs < ti

ti − ξs−1, ttri < ξs−1 < ti ≤ ξs

0, ti ≤ ξs−1

∆is = log ∆∗
is (∆is = −∞ if ∆∗

is = 0).

That is to say that the likelihood of a p.e.m. is proportional to a Poisson–likelihood with re-

sponses yis and with the predictor ηis containing an additional offset term ∆is, see Fahrmeir

and Tutz (2001, Section 9.1) or Ibrahim et al. (2001, Section 3.1) for details. This result

yields that a p.e.m. may be estimated based on methodology for Poisson regression mod-

els, i.e. within the context of generalized linear models (GLMs) via data augmentation.

In practise this means that the data set has to be modified in such a way that for every

individual i there is an observation row for each interval (ξs−1, ξs] beginning with the in-

terval that includes the left truncation time ttr
i up to the interval in that observation time

ti ends. Instead of the indicator of non–censoring δi the modified data set contains the
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indicator yis, instead of survival time ti the variable ξs as well as the offset ∆is (covariates

are duplicated). To give a short example, if we have an equidistant grid with length 0.1,

the observations

i t δ ttr v1 v2

1 0.35 1 0.16 0 3

2 0.12 0 0 1 5
...

...
...

...

have to be modified to

i y ξ ∆ v1 v2

1 0 0.2 log(0.04) 0 3

1 0 0.3 log(0.10) 0 3

1 1 0.4 log(0.05) 0 3

2 0 0.1 log(0.10) 1 5

2 0 0.2 log(0.02) 1 5
...

...
...

...
...

...

and a Poisson regression with response y, covariates ξ, v1 and v2 and offset ∆ may be

accomplished. Note that time–varying covariates can be accounted for by varying the

covariates adequately from line to line in the table above. Hence, the assumption of a

p.e.m. is quite convenient, however, due to the assumption of a piecewise constant hazard

rate the estimated (log–)baseline effect is a step function on the defined grid, which may

not be adequate with continuous survival times. Furthermore it is a moot question how

to choose an ”ideal” grid. While a small grid size might lead to intervals with sparse data

and hence unreliable estimates of the according parameters, a large grid size might not

allow for enough flexibility. Within our Bayesian analysis we will use a rather small grid

size and specify random walk priors (as described in Fahrmeir and Lang (2001a)) for the

parameters γ0s to penalize too abrupt jumps between neighboring parameters γ0,s−1 and

γ0s yielding a flexible ”smooth step function”.
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1.5.3 P–spline model

Modelling the baseline hazard by a (Bayesian) P–spline is the most flexible alternative, that

will be primarily discussed within this thesis. While the log–baseline hazard is assumed to

be a piecewise constant function with the p.e.m., i.e. a polynomial of degree zero within each

predefined interval, we now consider extensions to piecewise polynomials of an arbitrary

degree l. Depending on the degree l this leads to more or less smooth functions instead of

step functions. Again, the time axis is divided into a grid

(0 = ξ0, ξ1], (ξ1, ξ2], . . . , (ξs−1, ξs], . . . , (ξm−1, ξm], (ξm,∞),

where ξs are usually called (inner) knots within the context of spline regression. Then a

polynomial spline has the following smoothness properties:

• A spline is a polynomial of degree l within each interval ξs−1, ξs, s = 1, . . . ,m.

• A spline is l − 1 times differentiable at the knots ξs.

As shown in De Boor (1978) a spline with those properties may for example be written

as a linear combination of M = m + l B–spline basis functions Bsl of degree l. Hence

the function g0(t) = log(λ0(t)) that is denoting the (smooth) function that describes the

log–baseline effect can be written as

g0(t) =
M∑

s=1

βsBsl(t),

where βs, s = 1, . . . ,M are unknown parameters. Note, that we are again estimating

the log–baseline hazard instead of the baseline hazard to avoid implying the restriction

λ0(t) ≥ 0. Figure 1.4 shows B–spline basis functions for degrees l = 0, l = 1 and l = 2,

respectively, with only several basis functions being displayed for reasons of clarity. B–

spline basis functions of degree zero are piecewise constant and do not overlap (in this

respect that each basis function Bs0 is nonzero only within the interval (ξs−1, ξs]), which

again illustrates that the p.e.m. is included as the special case of l = 0. B–spline basis

functions of degree one are nonzero within the range of two subsequent intervals (ξs−1, ξs]

and (ξs, ξs+1] and are linear functions within each interval, whereas basis functions of degree

two are nonzero within the range of three subsequent intervals and are quadratic functions
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within each interval. B–spline basis functions of degree l = 3 (not shown) would be nonzero

within the range of four subsequent intervals and be cubic functions within each interval

etc. Figure 1.5 exemplarily shows the construction of a B–spline of degree l = 2 with

m = 5 inner knots. Panel (a) displays the M = l + m = 6 basis functions Bs2 that cover

the considered range of (0, 1] in a way that for each point within this interval l + 1 = 3

basis functions take (positive) values different from zero. The weighted basis functions

βsBs2 are displayed in panel (b) and panel (c) shows the resulting spline function, which

is the sum of the weighted basis functions
∑M

s=1 βsBs2. For more details on B–splines see

De Boor (2001).

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10
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Figure 1.4: Some B–spline Basis functions for degrees l = 0, l = 1, and l = 2, respectively.

Besides the degree l the structure of the resulting spline considerably depends on the

number and the position of the knots. While a small number of knots might not guarantee

enough flexibility, a very large number of knots might lead to over–fitting and thus deliver

unreliable results. An attractive solution to this problem are penalized splines (P–splines),

that are based on roughness penalties and presented by Eilers and Marx (1996). The basic

idea is to use a rather large number of equidistant knots, but penalize too rough functions
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Figure 1.5: Construction of B–splines: 6 B–spline basis functions of degree l = 2 with 5 inner

knots at 0.0, 0.25, 0.5, 0.75 and 1.0 (a), weighted basis functions (b), and the resulting spline (c).

by imposing difference penalties on neighboring parameters βs−1 and βs. In this thesis we

will use Bayesian versions of P–splines as developed in Lang and Brezger (2004).

While the integrals in the likelihood (1.5) and (1.6), respectively, can be solved analyti-

cally with the two previously presented approaches (Weibull model and p.e.m.), this is not

in general true for survival models where the baseline hazard is modelled by a P–spline.

Apart from B–splines of degree l = 0 and l = 1 these integrals can only be solved nu-

merically. For this we use numerical integration in form of the trapezoidal rule. Here the

basic idea is to approximate the function λ0(t) by a piecewise linear function λ̃0(t) as dis-

played in Figure 1.6, where the area under λ̃0 is trapezoidal within each interval. In order

to guarantee that the approximation is also fairly accurate in time slices where observed

survival times are sparse, equidistant time points are used as additional knots besides the

observed life times ti. Now an integral
∫ t

0
λ0(u)du is approximated by

∫ t

0
λ̃0(u)du, which is

the sum of the areas of the corresponding trapezoids. For an interval (ti−1, ti] the area of
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t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 1.6: Trapezoidal rule: The function λ0(t) (dashed line) is approximated by a piecewise

linear function through the points (ti, λ0(ti)), where ti are (ordered) observed survival times,

as well as the additional points (as, λ0(as)) with a0 = 0. Hence the integral
∫ t9
0 λ0(u)du is

approximated by the sum of the areas of the gray shaded trapezoids.

the corresponding trapezoid would for example be given by

1

2
· (ti − ti−1) · (λ0(ti) + λ0(ti−1)).

Note, that we discussed the case of data where no left truncation is present, but the trape-

zoidal rule may be applied to left truncated observations as well. Here we use the truncation

times ttri as additional knots in Figure 1.6 and approximate the integrals
∫ ti

ttri
λ0(u)du by

∫ ti
ttri

λ̃0(u)du.
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1.6 Relations to other survival models

The scope of this section is to clarify in what way the extended continuous–time Cox model

that is presented in this thesis is related to some other common survival models, namely

to discrete time survival models and to location–scale models for log(T ), which are also

called accelerated failure time (AFT) models.

1.6.1 Discrete time survival analysis

Discrete time survival models are basically used in two different situations. Firstly they

are used in cases where failures actually only occur at discrete time points. This is for

example the case with durations of unemployment, since employments usually end and

begin with monthly allowance. The second situation is given where failures may occur at

any arbitrary point of time, however survival times can not be observed continuously, but

are only known to lie between two successive follow ups. This case is known as interval

censoring and typically occurs in medical studies where data can only be observed at

regular consultations.

Now consider discrete time D ∈ {1, 2, . . .}, then the discrete hazard function is given

by

λdiscr(s,v) = P (D = s|D ≥ s,v), s = 1, 2, . . .

which is the probability of failure at time point s, given that the failure time is at least s

and given the covariates v.

The grouped proportional hazards model

Consider the case of interval censoring where survival times T are continuous but are only

observed at k follow up times ξs, s = 1, . . . , k. Let time be divided in intervals

[ξ0, ξ1), [ξ1, ξ2), . . . , [ξs−1, ξs), . . . , [ξq−1, ξq), [ξk,∞)

where ξ0 = 0 and q = k− 1. Then D = s, s = 1, . . . , q denotes failure within the according

interval, i.e. T ∈ [ξs−1, ξs) and the discrete hazard function is given by
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λdiscr(s,v) = P (D = s|D ≥ s,v) = P (T < ξs|T ≥ ξs−1,v)

=
P (ξs−1 ≤ T < ξs|v)

P (T ≥ ξs−1|v)
=

F (ξs,v) − F (ξs−1,v)

S(ξs−1,v)

=
S(ξs−1,v) − S(ξs,v)

S(ξs−1,v)

= 1 −
S(ξs,v)

S(ξs−1,v)

= 1 −
exp

(
−
∫ ξs

0
λ(t,v)dt

)

exp
(
−
∫ ξs−1

0
λ(t,v)dt

)

= 1 − exp

(
−

∫ ξs

ξs−1

λ(t,v)dt

)
, (1.7)

i.e. the discrete hazard function λdiscr may be written as a function of the continuous

survivor function S and the continuous hazard rate λ, respectively. Inserting the formula

of the proportional hazards model or Cox model for continuous time (1.3) given by

λ(t,v) = λ0(t) · exp (v′γ)

into (1.7) yields the grouped proportional hazards model given by

λdiscr(s,v) = 1 − exp

(
− exp(v′γ)

∫ ξs

ξs−1

λ0(t)dt

)

= 1 − exp (− exp(γ0s + v′γ))

with γ0s = log
(∫ ξs

ξs−1
λ0(t)dt

)
. An alternative formulation is given by

log(− log(1 − λdiscr(s, v))) = γ0s + v′γ

and hence the grouped proportional hazards model is a sequential complementary log–

log model. Though in general grouping implies a loss of information (see e.g. Gould and

Lawless (1988)), it should be annotated that the parameter vector γ remains unchanged

by the transition between the continuous and the discrete model.
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Models for binary response

While sequential models for ordinal responses fit for the estimation of discrete time survival

models without right–censoring, binary models for the indicators

yis =

{
1 di = s and δi = 1

0 else
i = 1, . . . , n, s = 1, . . . , di (1.8)

that indicate whether or not a failure occurred with individual i at time s or in interval

[ξs−1, ξs), respectively, may be used instead for discrete survival analysis in cases where

right–censoring is present. For the purpose of fitting a binary model, the survival data

have to be augmented in a similar way as described in Subsection 1.5.2 for the p.e.m.

Note however, that the p.e.m. is a continuous time survival model, where the information

on the exact survival time (within each interval) is retained and enters the model via an

offset term. To give a short example, right–censored discrete time survival data with two

covariates v1 and v2 given by

i d δ v1 v2

1 3 1 0 3

2 2 0 1 5
...

...
...

...
...

have to be augmented to

i s y v1 v2

1 1 0 0 3

1 2 0 0 3

1 3 1 0 3

2 1 0 1 5

2 2 0 1 5
...

...
...

...
...

where for every individual i one line has to be created for each discrete point in time s

(every time interval, respectively) at which the individual is observed. Covariates are

duplicated and an indicator variable yis is created according to (1.8), that takes the
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value 0 in every line related to a right–censored observation i and takes the value 1 in

the last line related to an uncensored observation i and 0 in the preceding lines. In

practice such a data augmentation for right censored data with time–constant covari-

ates might for example be accomplished with the STATA command prsnperd as illus-

trated on http://www.ats.ucla.edu/stat/stata/library/survival2.htm. Note that

left–truncation and time–varying covariates can be easily accounted for by omitting the

accordant first lines in the tabular above and varying the covariates adequately from line

to line, respectively. The discrete hazard function may now equivalently be written as

λdiscr
i (s,vi) = P (yis = 1|vi)

and a binary regression with response yis and covariates s, v1 and v2 may be accomplished.

Thompson (1977) for example considers the logistic model

λdiscr(s,v) =
exp(γ0s + v′γ)

1 + exp(γ0s + v′γ)
(1.9)

and shows that this model is very similar to the proportional hazards model if grouping

intervals become short.

1.6.2 Log–location–scale models

Log–location–scale models are an alternative model class for continuous survival data,

where, in contrast to the classical Cox model (with time–constant covariates and time–

constant effects of covariates), proportional hazards are not presumed in general. To

account for the nonnegativity of survival time, log(T ) instead of T is related to a linear

predictor given by

log(T ) = γ0 + v′γ + σε, (1.10)

where σ is a constant scale parameter and ε is an error term independent of v. For the

special case where ε follows the standard extreme value distribution, we retain a Weibull

model with λ = exp (−(γ0 + v′γ)) and α = 1/σ, which is a proportional hazards model.

However, other distributions of ε do not yield proportional hazards models. Assuming a

normal distribution for ε, for example, results in lognormal distributed survival times and

a nonproportional hazards model. In the case of parametric models the parameters can

be estimated easily via maximum likelihood techniques. Since such parametric approaches
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are quite restrictive, semi–parametric procedures that leave the distribution of the error

term unspecified and only provide the estimation of the parameter vector γ may be used

alternatively, see e.g. Kalbfleisch and Prentice (2002). However, there is no pendant to the

Breslow estimator (1.4) (which is used with Cox models to estimate the cumulative baseline

hazard on the basis of the estimated parameter vector γ̂) and hence semi–parametric

procedures may not be used in cases where prediction is of interest. A method that offers

a joint estimation of the parameter vector γ and the baseline hazard with a flexible, smooth

error distribution is presented by Komárek, Lesaffre and Hilton (2005), who propose to use

a mixture of normals for the error distribution, with mixture weights being smoothed.

The model assumption in (1.10) may be rewritten as

T = exp(γ0 + v′γ) exp(σε),

which, according to Lesaffre, Komárek and Declerck (2004), leads to a hazard rate of the

following structure

λ(t,v) = exp (−(γ0 + v′γ)) · λ0(exp(−(γ0 + v′γ)) · t),

i.e. as with the Cox model the covariates act multiplicatively on the hazard rate, but

here the effect of a covariate additionally acts as an acceleration (deceleration) of the

event time, which explains why such models are also referred to as accelerated failure time

models (AFT). In this way classical AFT models seem to be more general than classical

Cox models, however, in contrast to Cox models, AFT models do not allow for the inclusion

of time–varying covariates and time–varying effects. For this reason we focus on extensions

of the Cox model, where the inclusion of time–varying covariates and time–varying effects

yields nonproportional hazards models.

1.7 Competing risks and multi–state models

So far we have only considered one type of failure. However, with a number of applications

one may distinguish between several types of failures or events. In clinical studies, for

example, the events may stand for several causes of death. Models for this type of data

are referred to as competing risks models. Let h = 1, . . . , H denote the distinct events.
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Corresponding to the definition of the hazard rate in (1.3) event–specific individual hazard

rates λhi are given by

λhi(t, vhi) = λh0(t) exp (v′
hiγh) , h = 1, . . . , H. (1.11)

Here, λh0(t) denotes the event–specific baseline hazard, vhi denotes the vector of covariates

having an influence on the accordant hazard rate and γh is the related event–specific

vector of parameters. As mentioned in the context of Cox models this basic model is

not adequate to many complex applications and needs to be extended with respect to the

aspects mentioned in Section 1.3.

Note, that in a discrete time setting competing risks models may be analyzed by mul-

ticategorical regression models via data augmentation (in a similar way as described above

for models for binary response). Fahrmeir and Lang (2001b), for example, present flexible,

Bayesian multicategorical regression models to analyze discrete unemployment durations,

with finding a full–time employment and finding a part–time employment as competing

events.

Multi–state models present a further extension to survival models. The models de-

scribed so far only consider one initial state and one or a number of terminating events.

Multi–state models on the other hand may be applied to analyze general event history

data. Here the various events are considered as transitions from one state to another. This

type of data is for example given in clinical studies where the interest lies in analyzing

transitions between different states of health.

Event–specific or transition–specific hazard rates are defined as before in (1.11), but

the likelihood of multi–state models is slightly more complex than the likelihood of com-

peting risks models. While (survival models and) competing risks models assume that

each individual is at risk to experience any event during the whole observation time, this is

not necessarily true with multi–state models. Here, a state structure specifies the diverse

states (that might be absorbing or transient) and defines which transitions are possible

and which ones are not. Thus it is important to consider that some individuals might not

be at risk to experience certain events over periods of time being in certain states. For this

reason the application of multicategorical regression models to discrete time event history

data is not completely straightforward, but demands some additional consideration.
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1.8 Overview

The thesis is organized as follows. The second chapter, which forms the core of this

thesis, is based on the manuscript ”Geoadditive Survival Models” by Hennerfeind, Brezger

and Fahrmeir that is accepted for publication in the Journal of the American Statistical

Association (JASA) Theory and Methods Section. Here we will present our nonparametric

Bayesian survival model approach to extend the basic Cox model with respect to the

aspects listed in Section 1.3. We will describe models, likelihood and priors for unknown

functions and parameters, discuss the inference via MCMC and present some simulations

and applications to different data sets.

In the third chapter of this thesis we deal with so called relative survival analysis, that

is used to model the excess risk of a certain subpopulation relative to the base risk that

is present in the whole population. Such models are typically used in the area of clinical

studies, that aim at identifying prognostic factors for disease specific mortality with data

on specific causes of death being not available. Our work has been motivated by real data

on breast cancer where causes of death are not known. This chapter forms an extension

of the analyses presented in the manuscript ”Age, period and cohort effects in Bayesian

smoothing of spatial cancer survival with geoadditive models” by Sauleau, Hennerfeind,

Buemi and Held which is accepted for publication in Statistics in Medicine. The usefulness

of our relative survival approach is supported by means of a simulated data set.

The fourth chapter is concerned with extensions to more general event history models.

Embedded in the counting process framework (Andersen, Borgan, Gill and Keiding 1993)

we present flexible multi–state models that are used to model transitions between a finite

number of different states and include the survival model as well as the competing risks

model as special cases. Applications to medical data on structural valve degeneration

of biological prostheses and to sleep–electroencephalography data with multiple recurrent

states of sleep illustrate our methods.

All approaches presented within this thesis are implemented in the statistical software

package BayesX. In Chapter 5 we present a tutorial to exemplify how Bayesian survival

and multi–state models may be analyzed using BayesX.
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Chapter 2

Nonparametric regression for

survival data

2.1 Introduction

In epidemiological, economic or social science applications, survival data often contain

geographical or spatial information such as the district or postal code of the residence of

individuals in the study. Analyzing and modelling geographical patterns for survival or

waiting times, in addition to the impact of other covariates, is of obvious interest in many

studies. For example, Henderson, Shimakura and Gorst (2002) model spatial variation

in survival of acute myeloid leukemia patients in northwest England, Banerjee, Wall and

Carlin (2003) apply a spatial frailty model to infant mortality in Minnesota, and Li and

Ryan (2002) analyze the effect of risk factors on the onset of childhood asthma with spatial

data from the East Boston Asthma Study. In Subsection 2.5.3 of this thesis, we will apply

our approach to data on waiting times to coronary artery bypass graft (CABG). Within a

discrete–time setting, spatial survival data from this study are analyzed by Crook, Knorr–

Held and Hemingway (2003), and Fahrmeir, Lang, Wolff and Bender (2003) investigate the

impact of small area labor market regions and other covariates, such as calendar time, age

and unemployment benefits, on unemployment duration with discrete–time models.

A particular advantage of our approach is that all unknown functions and parameters

are treated within a unified general framework by assigning appropriate priors with the

same structure but different forms and degrees of smoothness. Based on previous work



28 2. Nonparametric regression for survival data

(Fahrmeir and Lang, 2001a; Lang and Brezger, 2004) on semiparametric regression, non-

linear effects of unknown functions of time, in particular the log–baseline hazard rate, and

of continuous covariates or further time scales are modelled through Bayesian versions of

penalized splines (P–splines) introduced by Eilers and Marx (1996), Marx and Eilers (1998)

for generalized additive models in a frequentist setting. Basically, time is treated in the

same way as a continuous covariate, but the degree and amount of smoothness may be

different. For example, simple random walk priors for the log–baseline effect in a piecewise

exponential model are P–splines of degree zero. The spatial component is modelled by

Gaussian Markov random field (MRF) priors, as common in disease mapping, by two–

dimensional penalized tensor–product splines, or by a geostatistical (kriging) stationary

Gaussian random field (GRF) model. From a computational point of view, MRF’s and P–

splines are clearly preferable to GRF’s because their posterior precision matrices are band

matrices or can be transformed into a band matrix–like structure. This special structure

considerably speeds up computations and enhances numerical stability compared to the

full precision matrices arising from the GRF approach.

For data observed on a irregular discrete lattice, MRF’s seem to be most appropriate. If

exact locations are available, P–spline or GRF surface smoothers seem to be more natural,

but they can also be applied to discrete lattices after computing centroids of regions.

Our unified general framework also has theoretical and computational advantages for

posterior analysis. Extending previous results for mixed models in Sun, Tsutakawa and

Speckman (1999), we can show propriety of posteriors under regularity conditions. This

is important, because some of our priors are diffuse or partially improper. From the com-

putational point of view, full conditionals of blocks of parameters have similar structure,

and lead to efficient MCMC techniques. Smoothing parameters are an integral part of

the model and can be estimated jointly with unknown functions and other parameters.

Inferential procedures have been implemented in C++ as part of BayesX (Brezger, Kneib

and Lang 2005).

Non– and semiparametric Bayesian survival models have become quite popular in re-

cent years, and some previous work deals with special or related cases of our approach.

For fully Bayesian models without a spatial component Ibrahim, Chen and Sinha (2001)

provide a good introduction and overview. Joint estimation of the baseline hazard and

usual linear covariate effects in the Cox model has been considered by several authors.
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Gamerman (1991) proposes a Gaussian random walk model for the log–baseline hazard in

the piecewise exponential model, and Sinha (1993) suggests a joint Gaussian smoothness

prior, and Cai, Hyndman and Wand (2002) and Cai and Betensky (2003) use a mixed

model representation of linear regression splines to estimate the baseline hazard. In all

these approaches, however, effects of continuous covariates are assumed to be of the usual

linear parametric form, and no spatial component is present.

Survival models with a spatial component have recently been suggested in several pub-

lications. The approaches differ in the specification of the baseline hazard rate and in the

model chosen for the spatial component, but the remaining part of the predictor is still of

linear parametric form. Thus, non–parametric terms for flexible modelling and estimation

of the effects of continuous covariates, further time scales and time–varying coefficients

are not considered in these approaches. Li and Ryan (2002) add a spatial component in

form of a stationary Gaussian process to the linear predictor of the Cox model. Treating

the baseline hazard as a nuisance parameter, inference for the linear predictor and for

correlation function parameters is based on a marginal rank likelihood. No procedure for

estimating the spatial (random) effects is provided. Henderson et al. (2002) propose a Cox

model with conditionally independent spatial gamma frailties, with means following either

a geostatistical model or a Markov random field. For inference they use MCMC methods,

except the baseline hazard estimate. For this they plug in the Breslow estimator at each

iteration of the chain. Banerjee et al. (2003) assume a parametric Weibull baseline hazard

and geostatistical or MRF priors for the spatial component. In comparison they prefer

MRF priors, since computing times for geostatistical GRF models are much larger. This is

in agreement with our own findings. Banerjee and Carlin (2003) develop Bayesian spatio–

temporal survival models, modelling baseline hazard functions nonparametrically through

a beta mixture approach and assuming MRF or CAR (conditionally autoregressive) priors

for spatial effects, and Carlin and Banerjee (2002) extend this approach to multivariate

MRF models, with applications to cancer survival data from Iowa. A good overview is

given in Banerjee et al. (2004).

An empirical Bayes pendant to our semiparametric fully Bayesian approach has been

developed in Kneib and Fahrmeir (2004) (see also Kneib, 2006).

The rest of the chapter is organized as follows. In Section 2.2 we describe models,

likelihood, and priors for unknown functions and parameters. MCMC inference and model
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choice are outlined in Subsection 2.3.1 and Subsection 2.3.2, respectively, and Subsection

2.3.3 provides results on the propriety of posteriors in geoadditive survival models under

regularity assumptions. Performance is studied in Section 2.4 through simulation studies.

Applications in Section 2.5 illustrate the method.

2.2 Models, likelihood and priors

2.2.1 Observation model and likelihood

Consider survival data in usual form, i.e., it is assumed that each individual i in the study

has a lifetime Ti and a censoring time Ci that are independent random variables. The

observed lifetime is then ti = min(Ti, Ci), and δi denotes the censoring indicator. The data

are then given by

(ti, δi; vi), i = 1, . . . , n, (2.1)

where vi is the vector of covariates. Covariates may also be time–dependent, but we restrict

discussion to time–constant covariates for simplicity. The same applies to left truncation

(see Subsection 1.4.2), which might easily be included, but it is not discussed here for

facility of inspection.

In Cox’s proportional model the hazard rate for individual i is assumed as the product

λi(t; vi) = λ0(t) exp(γ1vi1 + . . . + γrvir) = λ0(t) exp(v′
iγ). (2.2)

The baseline hazard rate is unspecified, and, through the exponential link function, the

covariates v = (v1, . . . ,vr) act multiplicatively on the hazard rate. As pointed out in the

introduction, in a number of applications there is a need for extending this basic model

with respect to several aspects. We propose novel nonparametric Bayesian survival mod-

els that can deal with these issues in a flexible and unified framework. Reparametrizing

the baseline hazard rate through exp{g0(t)}, g0(t) = log{λ0(t)} and partitioning the vec-

tor of covariates into groups of covariates x, z, s and v, we extend model (2.2) to the

nonparametric multiplicative observation model

λi(t) := λi(t; xi, zi, si,vi) = exp{ηi(t)} (2.3)
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with geoadditive predictor

ηi(t) = g0(t) +

p∑

j=1

gj(t)zij +

q∑

j=1

fj(xij) + fspat(si) + v′
iγ + bgi

. (2.4)

Here g0(t) = log{λ0(t)} is the log–baseline effect, gj(t) is a time–varying effect of the

covariate zj, and fj(xj) is the nonlinear effect of a continuous covariate xj. The function

fspat(s) is a (structured) spatial effect, where s, s = 1, . . . , S is either a spatial index,

with si = s if subject i is from area s, or an exact spatial coordinate s = (xs, ys), e.g. for

centroids of regions or if exact locations of individuals are known. The vector γ is the

vector of usual linear fixed effects, and bg is a subject– or group–specific frailty or random

effect, with bgi = bg if individual i is in group g, g = 1, ..., G. For G = n, we obtain

individual–specific frailties, for G < n, bg might be the effect of center g in a multicenter

study or the unstructured (uncorrelated random) spatial effect of an area (i.e. bg = bs), for

example. Random slopes could also be introduced, but we omit this here. Several other

extensions of the model, such as choice of other link functions, inclusion of interactions and

competing risks, are possible. We discuss this in the concluding section. For identifiability

reasons, we center all unknown functions about zero, and include an intercept term in the

parametric linear term.

Under the assumption about noninformative censoring, the likelihood is given by

L =
n∏

i=1

λi(ti)
δi · exp

(
−

∫ ti

0

λi(u)du

)

=
n∏

i=1

λi(ti)
δi · Si(ti) , (2.5)

inserting (2.3) and (2.4).

To obtain a unified and generic notation, we rewrite the observation model in general

matrix notation. This is useful for defining priors in the next subsection and for developing

posterior analysis in Section 2.3 as well as for describing results on propriety of posteriors

for mixed models in Subsection 2.3.3.

Let η = (η1, . . . , ηi, . . . , ηn)′ denote the predictor vector, where ηi := ηi(ti) is the value

of predictor (2.4) at the observed lifetime ti, i = 1, . . . , n. Correspondingly, let gj =

(gj(t1), . . . , gj(tn))′ denote the vector of evaluations of the functions gj(t), j = 0, . . . , p,

f j = (fj(x1j), . . . , fj(xnj))
′ the vector of evaluations of the functions fj(xj), j = 1, . . . , q,
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f spat = (fspat(s1), . . . , fspat(sn))′ the vector of spatial effects, and b = (bg1 , . . . , bgn
)′ the

vector of uncorrelated random effects. Furthermore, let g̃j = (gj(t1)z1j, . . . , gj(tn)znj)
′, j =

1, . . . , p.

In the following, we can always express vectors g0, g̃j, f j, f spat and b as the matrix prod-

uct of an appropriately defined design matrix Z, say, and a (possibly high–dimensional)

vector β of parameters, e.g. g̃j = Zjβj, f j = Zjβj, etc. Then, after reindexing, we can

represent the predictor vector η in generic notation as

η = V γ + Z0β0 + . . . + Zmβm. (2.6)

2.2.2 Priors for parameters and functions

The Bayesian model formulation is completed by assumptions about priors for parameters

and functions. For fixed effect parameters γ in (2.6) we assume diffuse priors p(γ) ∝ const.

A weakly informative normal prior would be another choice. Uncorrelated random effects

are assumed to be i.i.d. Gaussian, bg ∼ N(0, τ 2
b ).

Priors for functions and spatial components are defined by a suitable design matrix

Zj, j = 0, . . . ,m, and a prior for the parameter vector βj. The general form of a prior for

βj in (2.6) is

p(βj|τ
2
j ) ∝ τ

−rj

j exp

(
−

1

2τ 2
j

β′
jKjβj

)
, (2.7)

where Kj is a precision or penalty matrix of rank(K j) = rj, shrinking parameters towards

zero or penalizing too abrupt jumps between neighboring parameters. For P–splines and

MRF priors, Kj will be rank deficient, i.e., rj < dj = dim(βj), and the prior is partially

improper.

For unknown functions fj(xj) or gj(t), we assume Bayesian P–spline priors as in Lang

and Brezger (2004). Random walk priors, suggested in Fahrmeir and Lang (2001a), may

be used as smoothness priors for the baseline effect and time–varying covariate effects in a

piecewise exponential model, correspond to the special case of P–splines with degree zero.

The basic idea of P–spline regression (Eilers and Marx 1996) is to approximate a function

fj(xj) as a linear combination of B–spline basis functions Bm, i.e.

fj(xj) =

dj∑

m=1

βjmBm(xj). (2.8)
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The basis functions Bm are B–splines of degree l defined over a grid of equally spaced

knots xmin = ξ0 < ξ1 < . . . < ξs = xmax, dj = l + s. The number of knots is moderate,

but not too small, to maintain flexibility, but smoothness of the function is encouraged by

difference penalties for neighboring coefficients in the sequence βj = (βj1, . . . , βjdj
)′. The

Bayesian analogue are first or second order random walk smoothness priors

βjm = βj,m−1 + ujm or βjm = 2βj,m−1 − βj,m−2 + ujm (2.9)

with i.i.d. Gaussian errors ujm ∼ N(0, τ 2
j ) and diffuse priors p(βj1) ∝ const, or p(βj1)

and p(βj2) ∝ const, for initial values. A first order random walk penalizes abrupt jumps

βjm − βj,m−1, and a second order random walk penalizes deviations from a linear trend.

The amount of smoothness or penalization is controlled by the variance τ 2
j , which acts

as a smoothness (hyper–)parameter, with hyperprior defined by (2.13). The joint prior

of the regression parameters βj is Gaussian and can be easily computed as a product of

conditional densities defined by (2.9) as

βj | τ 2
j ∝ τ

−rj

j exp

(
−

1

2τ 2
j

βj
′Kjβj

)
, (2.10)

which is the generic form (2.7).

The penalty matrix Kj is of the form Kj = D′D, where D is a first or second order

difference matrix. For second order random walks, for example, D is given by

Ddj−2×dj
=




1 −2 1
. . . . . . . . .

1 −2 1


 .

The matrix Kj has band structure which is very useful for computationally efficient MCMC

updating schemes (compare Section 2.3). It has rank rj = dj−1 and rj = dj−2 for first and

second order random walk priors, respectively. The n×dj design matrix Zj consists of the

basis functions evaluated at the observations xij, i.e., Zj(i,m) = Bm(xij). Priors for the

unknown functions gj(t) are defined in complete analogy as in (2.8) and (2.9). The design

matrix for time–varying effect terms g̃j, j = 1, . . . , p is derived as Zj(i,m) = zijBm(xij).

A common choice for approximating smooth curves are quadratic or cubic B–splines and

a second order penalty. This specification is also preferred by Eilers and Marx (1996) and

Lang and Brezger (2004) in order to obtain sufficiently smooth results. Computationally,
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linear splines are simpler. The simplest choice are B–splines of degree zero, i.e. Bm(x) ≡ 1

over the m–th interval, and Bm(x) ≡ 0 elsewhere. Then the effect is approximated by

a piecewise constant function, and the function values follow a random walk model as in

Fahrmeir and Lang (2001a). This special choice, with time t as covariate, is the easiest way

to smooth the baseline in the piecewise exponential model; moreover the integral in the

likelihood (2.5) reduces to a sum, see the next section. With P–splines of higher degree,

however, estimation of smooth baseline effects is improved in terms of MSEs, see Section

2.4. Another nice feature of cubic B–splines is that the well known smoothing splines

appear as a special case with knots at every observation point.

For comparison we also consider an alternative parametric form. In the parametric case

we choose a Weibull form for the baseline hazard (Banerjee, Wall and Carlin (2003)):

λ0(ti) = αtα−1
i . (2.11)

A GA(0.01, 0.01) prior is assumed for α, so that α has a prior mean of 1 (corresponding to

a constant hazard over time) and a large variance of 100.

For the structured spatial effect fspat(s) we assume either Markov random field (MRF)

priors, two–dimensional tensor product P–spline priors, or Gaussian random field (GRF)

priors, common in geostatistics (kriging).

In the case of MRF priors we define areas as neighbors if they share a common boundary

and assume that the effect of an area s is conditionally Gaussian, with the mean of the

effects of neighboring areas as expectation and a variance that is inverse proportional to

the number of neighbors of area s. Setting fspat(s) := βspat
s we have

βspat
s | βspat

s′ , s′ 6= s ∼ N

(
1

Ns

∑

s′∈δs

βspat
s′ ,

τ 2
spat

Ns

)
,

where Ns is the number of neighbors of area s, and s′ ∈ δs denotes that area s′ is a

neighbor of area s. The n × S design matrix Zspat is now a 0/1 incidence matrix. Its

value in the i–th row and s–th column is 1 if observation i is located in site or region

s, and zero otherwise. The S × S penalty matrix Kspat has the form of an adjacency

matrix with rank(Kspat) = rspat = S − 1. As for one–dimensional functions the amount of

spatial smoothness is controlled by the variance τ 2
spat. A generalization to weighted means

of neighboring areas is possible but not considered here.
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Our second approach is based on two–dimensional P–splines, a rather parsimonious, but

flexible method for modelling interactions between continuous covariates described in Lang

and Brezger (2004) for Gaussian regression. Considering the x– and y–coordinates of the

geographical center of each area, the spatial effect can be seen as an interaction between two

continuous covariates xs and ys. The assumption is that the unknown structured spatial

effect fspat(s) can be approximated by the tensor product of one–dimensional B–splines,

i.e.

fspat(s) = fspat(xs, ys) =

dspat∑

m1=1

dspat∑

m2=1

βspat
m1m2

Bspat,m1(xs)Bspat,m2(ys).

Now the B–splines of degree l are defined over a regular two–dimensional grid of a moderate,

but not too small number of equally spaced knots ξρν , ρ, ν = 1, . . . , dspat − 1. We restrict

ourselves to an equal number of knots for each direction. Knots are equally spaced within

each direction, but the distance may differ between direction xs and ys. Priors for βspat =

(βspat
11 , . . . , βspat

1dspat
, . . . , βspat

dspat1
, . . . , βspat

dspatdspat
)′ are based on MRF priors for spatial data on a

regular lattice (see e.g. Besag and Kooperberg, 1995). Since there is no natural ordering of

parameters, priors have to be defined by specifying the conditional distributions of βspat
m1m2

given neighboring parameters and the variance component τ 2
spat. The most commonly used

prior specification based on the four nearest neighbors can be defined by

βspat
m1m2

|· ∼ N

(
1

4
(βspat

m1−1,m2
+ βspat

m1+1,m2
+ βspat

m1,m2−1 + βspat
m1,m2+1),

τ 2
spat

4

)
(2.12)

for m1,m2 = 2, . . . , dspat − 1 and appropriate changes for corners and edges. For example,

for the upper left corner we obtain βspat
11 |· ∼ N(1

2
(βspat

12 + βspat
21 ),

τ2
spat

2
). For the left edge, we

get βspat
1m2

|· ∼ N(1
3
(βspat

1,m2+1 + βspat
1,m2−1 + βspat

2,m2
),

τ2
spat

3
).

The prior (2.12) is a direct generalization of a first order random walk in one dimension.

Its conditional mean can be interpreted as a least squares locally linear fit at knot position

ξρν given the neighboring parameters. More details can be found in Lang and Brezger

(2004). Defining Kspat = D′
1D1 + D′

2D2, where D1 = I ⊗ D and D2 = D ⊗ I, the

prior can again be expressed in the general form (2.7). Here, D is the first order difference

matrix known from the one–dimensional case, and D′
1D1 corresponds to the penalization

in the direction of x and D′
2D2 corresponds to the penalization in the direction of y.

Our third option are stationary Gaussian random field (GRF) priors, which can be

seen as two–dimensional surface smoothers based on special basis functions, e.g. radial
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basis functions, and have been used by Kammann and Wand (2003) for modelling the

spatial component in Gaussian regression models. The spatial component fspat(s) = βspat
s

is assumed to follow a zero mean stationary Gaussian random field {βspat
s : s ∈ R

2} with

variance τ 2
spat and use an isotropic covariance function cov(βspat

s , βspat
s′ ) = C(‖s − s′‖) as

proposed by Stein (1999). For a finite array s ∈ {1, . . . , S} of sites as in our application

the prior can be brought in the general form

βspat | τ 2
spat ∝ exp

(
−

1

2τ 2
spat

(βspat)′Kspatβ
spat

)

with penalty matrix Kspat = C−1, where C[k, l] = C(‖sk − sl‖), 1 ≤ k, l ≤ n, and design

matrix Zspat = C.

For the covariance function C(r) we follow again recommendations of Stein (1999) and

use the Matérn family of covariance functions C(r; ρ, ν). For the special case ν = 1.5 for

the smoothness parameter the covariance functions simplify to

C(r; ρ, ν) = τ 2
spat(1 + |r|/ρ)e−|r|/ρ,

which is the simplest member of the Matérn family that results in differentiable surface

estimates as Kammann and Wand (2003) point out. The parameter ρ controls how fast

covariances die out with increasing distance r. We choose ρ according to the rule

ρ̂ = max
k,l

‖sk − sl‖/c

to ensure scale invariability. This rule proved to work well in practice. The constant c is

chosen in such a way that C(c) is small, e.g. C(c) = 0.001.

While the dimension of the penalty matrix in a MRF equals the number of different

regions S, in a GRF the dimension corresponds to the number of distinct locations which

is likely to be close to or equal to the sample size. To reduce this computational burden

Kammann and Wand (2003) propose low–rank kriging to approximate stationary Gaussian

random fields. Therefore they define a ’representative’ subset of knots D = {κ1, . . . , κM}

of the set of distinct locations by applying a space filling algorithm (compare Johnson et

al. (1990) and Nychka and Saltzman (1998) for details). Based on these knots, we obtain

the approximation fspat(s) = z′
spat(s)β

spat with the M–dimensional design vector zspat(s) =

(C(‖s − κ1‖), . . . , C(‖s − κM‖))′ and penalty matrix Kspat = C̃ and C̃[k, l] = C(‖κk −
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κl‖). The number of knots controls the trade–off between accuracy of the approximation

and numerical simplification. Details on GRF and (low–rank) kriging can be found in

Kammann and Wand (2003), Kneib and Fahrmeir (2005) or Kneib (2006).

Still a serious drawback of this approach is the computational effort involved. Since

the penalty matrix Kspat has no longer band structure it is not possible to employ efficient

matrix algorithms for sparse matrices like the Cholesky decomposition in order to draw

samples from our multivariate normal proposal density and to compute the determinant of

the precision matrix, which is needed to calculate the acceptance probability of the MH–

step in every iteration (compare Section 2.3). For the application in Section 2.5, e.g., this

means that the required CPU time multiplies approximately by the factor 20, even if we

use low–rank kriging with a moderate number of 100 knots. It depends mainly on the data

at hand, which of the different approaches leads to the best fit. For data observed on a

discrete lattice or on the level of geographical regions as in our application, MRFs seem to

be most adequate, while surface smoothers as 2d P–splines or kriging may be more natural

in situations where exact locations are available. In general, MRFs exhibit more rough

results, while 2d P–splines produce the smoothest estimates. GRFs also tend to give quite

smooth curves.

A decision between MRFs and 2d P–splines or GRFs, respectively, may depend on

ones beliefs about the characteristics of the corresponding effect. If an effect is supposed

to vary smoothly (e.g. in case it is influenced by temperature or atmospheric pressure)

surface estimators can be expected to be the better choice. If, on the other hand, an effect

is likely to be induced, for example, by characteristics of geographical or political units,

which may depend on neighbors, but may quite as well be rather heterogenic, then a MRF

should be preferred. However, in applications sometimes surface estimators outperform

MRFs even for discrete data (and vice versa). This may be due to some regions having

few neighbors or observations, since a more smooth surface estimator is able to reduce the

bias for such regions.

In real data applications we do not know how much of the spatial variation is explained

by structured, spatially correlated effects and how much by unstructured, uncorrelated

effects. Therefore we may fit an additional (unstructured) area–specific random effect. We

recommend to interpret only the sum of the two effects, since identifiability is weak in that

case.
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We routinely assign inverse Gamma priors IG(aj; bj)

p(τ 2
j ) ∝

1

(τ 2
j )aj+1

exp

(
−

bj

τ 2
j

)
(2.13)

to all variances. They are proper for aj > 0, bj > 0, and we use aj = bj = 0.001

as a standard choice for a weakly informative prior. From our experience results are

rather insensitive to the choice of aj > 0 and bj > 0 for moderate to large data sets and

the posterior distribution is proper in any case under some regularity assumptions (see

Subsection 2.3.3 and Hennerfeind, Brezger and Fahrmeir (2005) for a proof). However,

since the limiting case, when aj and bj are zero, leads to an improper posterior distribution,

we present a sensitivity analysis in Section 2.4 and compare the results to those we obtained

with a uniform prior for the standard deviation τj, as proposed in Gelman (2004). Note

that uniform priors are a special (improper) case of the prior (2.13) with aj = −0.5, bj = 0,

still leading to proper posteriors under regularity assumptions.

The Bayesian model specification is completed by assuming that all priors for parame-

ters are conditionally independent, and that all priors are mutually independent.

2.3 Markov chain Monte Carlo inference

In what follows, let β = (β′
0, ...,β

′
m)′ denote the vector of all regression coefficients in the

generic notation (2.6), γ the vector of fixed effects, and τ 2 = (τ 2
0 , ..., τ 2

m) the vector of all

variance components. Full Bayesian inference is based on the entire posterior distribution

p(β, γ, τ 2 | data) ∝ L(β, γ, τ 2) p(β, γ, τ 2).

Due to the (conditional) independence assumptions, the joint prior factorizes into

p(β, γ, τ 2) =

{
m∏

j=0

p(βj | τ 2
j )p(τ 2

j )

}
p(γ),

where the last factor can be omitted for diffuse fixed effect priors.

The likelihood L(β, γ, τ 2) is given by inserting (2.3), (2.4) into (2.5), but the integral

requires integration over all terms depending on survival time t, i.e. terms of the form

Ii =

∫ ti

0

exp

(
g0(u) +

p∑

j=1

gj(u)zij

)
du, (2.14)
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where gj(t) =
∑

βjmBm(t). Apart from B–splines Bm(t) of degree zero, i.e. random walk

models, and linear B–splines, these integrals are not available in closed form. The first

case leads to the piecewise exponential model: The time axis is divided into a grid

0 = ξ0 < ξ1 < ... < ξt−1 < ξt < ... < ξs = tmax,

and gj(t) is assumed to be a piecewise constant function, i.e.

gj(t) = βjt

in time interval (ξt−1, ξt], t = 1, ..., s. In this case, the integral reduces to a sum, and, after

some calculations, the log–likelihood contribution of observation i in the interval (ξt−1, ξt]

can be expressed as

lit = yitηit − exp (∆it + ηit)

where

yit =

{
1 ti ∈ (ξt−1, ξt],δi = 1

0 else.

∆′
it =





ξt − ξt−1, ξt < ti

ti − ξt−1, ξt−1 < ti ≤ ξt

0, ξt−1 ≥ ti

∆it = log ∆′
it (∆it = −∞ if ∆′

it = 0).

This likelihood is proportional to a Poisson–likelihood, with the predictor ηit containing

an additional offset term ∆it, see Fahrmeir and Tutz (2001, Section 9.1) or Ibrahim et

al. (2001, Section 3.1) for details.

For linear B–splines, the integrals can still be solved analytically, but expressions are

rather messy and the computational effort is quite high, see Cai et al. (2002, Appendix).

Following their suggestion, we use simple numerical integration in form of the trapezoidal

rule for linear B–splines as well as for the commonly used cubic B–splines, where analytical

integration is not possible anyway.
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2.3.1 Updating full conditionals

Full Bayesian inference via MCMC simulation is based on updating full conditionals of

single parameters or blocks of parameters, given the rest of the data. For updating the

parameter vectors βj, which correspond to the time–independent functions fj(xj), as well

as spatial effects βspat, fixed effects γ and random effects b, we use a slightly modified

version of an MH–algorithm based on iteratively weighted least squares (IWLS) proposals,

developed for fixed and random effects by Gamerman (1997) and adapted to generalized

additive mixed models in Brezger and Lang (2006).

Suppose we want to update βj, with current value βc
j of the chain. Then a new value β

p
j

is proposed by drawing a random vector from a (high–dimensional) multivariate Gaussian

proposal distribution q(βc
j,β

p
j), which is obtained from a quadratic approximation of the

log–likelihood by a second order Taylor expansion with respect to βc
j, in analogy to IWLS

iterations in generalized linear models. More precisely, the goal is to approximate the

posterior by a Gaussian distribution, obtained by accomplishing one IWLS step in every

iteration of the sampler. Then, random samples have to be drawn from a high dimensional

multivariate Gaussian distribution with precision matrix and mean

P j = Z ′
jW (βc

j)Zj +
1

τ 2
j

Kj, mj = P−1
j Z ′

jW (βc
j)(ỹ − η̃).

Here, η̃i = ηi(ti) − fj(xij), W (βc
j) = diag(w1, . . . , wn) is the weight matrix for IWLS with

weights calculated from the current state βc
j as follows

wi = exp

(
q∑

j=1

fj(xij) + fspat(si) + v′
iγ + bgi

)
· Ii.

Concisely written we get wi =
∫ ti

0
λi(u)du = Λi(ti), which is the cumulative hazard rate.

The working observations ỹi are given by

ỹi = ηi(ti) +
δi

wi

− 1.

See Appendix A1 for a detailed derivation of those quantities. The proposed vector β
p
j is

accepted as the new state of the chain with probability

α(βc
j,β

p
j) = min

(
1,

p(βp
j | ·)q(β

p
j ,β

c
j)

p(βc
j | ·)q(β

c
j,β

p
j)

)
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where p(βj | ·) is the full conditional for βj (i.e. the conditional distribution of βj given

all other parameters and the data).

For a fast implementation, we use the fact that the precision matrices of the Gaussian

proposal distributions are banded for MRS and 2d P–spline models, so that Cholesky

decompositions can be performed efficiently. Now, random numbers from the high dimen-

sional proposal distributions can be efficiently drawn using an algorithm by Rue (2001).

The acceptance probability α(βc
j,β

p
j) involves the determinant det(P j) of the proposal den-

sity, since P j depends on βc
j. Fortunately, this quantity is obtained as a simple by–product

of the Cholesky decomposition with negligible computational effort.

Note, however, that this is not the case for GRF models. Here, K j is not banded, and

thus P j is not banded, either. Therefore, drawing from the proposal and evaluating its

determinant is much more demanding in terms of CPU time.

For the parameters βj corresponding to the functions g0(t), ..., gp(t) depending on time

t, the IWLS–MH algorithm requires considerably more computational effort, because the

integrals in the log–likelihood as well as first and second derivatives are involved now.

Therefore, we adopt a computationally faster MH–algorithm based on conditional prior

proposals, although IWLS–MH has better mixing properties. This algorithm was first

developed by Knorr–Held (1999) for state space models and extended for generalized ad-

ditive mixed models in Fahrmeir and Lang (2001a). It requires only evaluation of the

log–likelihood, not of derivatives. However, draws are not performed for the entire vector

βj, but iteratively for blocks of subvectors, see Fahrmeir and Lang (2001a) for details. In

the case of the parametric Weibull prior (2.11) a new value αp is proposed by drawing from

a Gamma distribution GA(αc · bw, bw), with αc denoting the current value of the chain and

bw being tuned automatically during the burn–in period.

The full conditionals for the variance parameters τ 2
j are (proper) inverse Gamma with

parameters

a′
j = aj +

1

2
rj and b′j = bj +

1

2
β′

jKjβj,

including the case aj = −0.5, bj = 0 of uniform priors on τj. Updating can be done by

simple Gibbs steps, drawing random numbers directly from the inverse Gamma densities.

In complete analogy, the full conditional for a variance component τ 2
spat of the spatial effect

and τ 2
b of a random intercept or slope is again an inverse gamma distribution, and updating
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is straightforward.

2.3.2 Model choice

Bayesian model choice is an area of ongoing research with several competing proposals

ranging from (modified) Bayes factors to posterior predictive loss approaches (Gelfand and

Gosh 1998). We routinely use the Deviance Information Criterion (DIC) developed in

Spiegelhalter, Best, Carlin and van der Linde (2002). It is given as

DIC = D(θ) + 2pD = D(θ) + pD,

where θ is the vector of parameters, D(θ) is the deviance of the model evaluated at the

posterior mean estimate θ, D(θ) is the posterior mean of the deviance and pD = D(θ) −

D(θ) is the effective number of parameters. Since it is at least unclear, how the saturated

model should be defined in the case of survival data when the baseline hazard and other

nonparametric functions are parameters of interest, we use the unstandardized deviance

D(θ) = −2·log–likelihood instead of the saturated deviance. Banerjee and Carlin (2004,

Section 4) provide good arguments why the DIC is a reasonable criterion in connection

with censored survival data.

2.3.3 Propriety of posteriors in geoadditive survival models

Consider a geoadditive survival model with predictor in generic form (2.6), where Z0β0

corresponds to an effect with prior (2.7) for β0 such that dim(β0) = d0 ≥ dj, rank(K0) =

r0 ≥ rj, j = 1, . . . ,m. This assumption is usually fulfilled for the spatial component or for

a high–dimensional vector of group–specific uncorrelated random effects.

Denote by ηu, V u, Zu = (Z1u, ...,Zmu), Z0u the (sub–)predictor and sub–design ma-

trices corresponding to uncensored observations. Assume that the following conditions

hold:

(C1) rank(V u) = rank(V ) = p = dim(γ),

rank(Zju) = rank(Zj) = dj = dim(βj), j = 0, ...,m

rank(Z ′
uRZu + K) = d

where d = d1 + ... + dm, K = diag(K1, ...,Km), R = I − V u(V
′
uV u)

−1V ′
u
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(C2) The priors p(τ 2
j ), j = 1, ...,m, are proper, and

∫
p(τ 2

0 )τ
−(r0−p−(d−r)−(d0−r0))
0 dτ 2

0 < ∞,

where r = r1 + ... + rm.

Theorem 1: If conditions (C1), (C2) hold then the posterior p(γ, β, β0, τ
2, τ 2

0 | y), where

τ 2 = (τ 2
1 , . . . , τ 2

m)′ and β = (β1, . . . ,βm)′, is proper.

The following corollary is easier to check.

Corollary 1: Assume proper inverse Gamma priors Ga(aj, bj) for τ 2
j with j = 0, ...,m and

r0 + 2a0 − p − (d − r) − (d0 − r0) > 0.

If condition (C1) holds, then the posterior p(γ, β, β0, τ
2, τ 2

0 | y) is proper.

Proofs are based on Sun et al. (1999), and are outlined in Hennerfeind, Brezger and

Fahrmeir (2005).

Remark 1: Condition (C1) is equivalent to rank(Z0u)=d0 and

rank

(
V ′

uV u V ′
uZu

Z ′
uV u Z ′

uZu + K

)
= p + d

Remark 2: Under additional assumptions, proper posteriors may also be obtained for

aj < 0, bj = 0, e.g. for the uniform prior on τj. A rigorous proof could be based on a

generalization of Sun, Tsutakawa and He (2001).

Remark 3: Informally expressed condition (C1) is fulfilled if the information provided

by uncensored observations is sufficient to support the estimation of each single parameter

in (γ, β, β0). Considering the cases where β0 denotes a spatial effect or a group–specific

random effect, rank(Z0u)=d0 is fulfilled if the data set comprises at least one uncensored

observation per area or group, respectively. Condition (C2) is fulfilled if the inverse Gamma

priors for τ 2
j are proper and r0 + 2a0 is greater than the number of improper priors for

parameters in (γ, β, β0).

Note that these conditions are sufficient conditions and may be weakened in some places.
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2.4 Simulation Study

Performance was investigated through simulation studies. In particular we were interested

in the following questions: How influential is the choice of MRF versus smoother spatial

priors and the choice of a piecewise exponential model (P–spline of degree zero) versus

a cubic P–spline model for the baseline hazard rate? How sensitive are the results with

respect to the hyperparameters for the variance parameters? And how does a P–spline

model perform compared to a Weibull–model in cases where the Weibull assumption is

indeed true and in cases where it is not true, respectively.

Simulation Setup I

Life times Ti, i = 1, ..., 1236, were generated from Weibull distributions according to the

hazard model

λi(t) = λ0(t) exp(f1(xi) + fspat(si) + γvi) = exp(log(3t2) + sin(xi) + sin(xsi
· ysi

) − 0.3vi),

(2.15)

with Weibull baseline hazard rate λ0(t) = 3t2, a binary covariate v, with the vis randomly

drawn from a Bernoulli B(1; 0.5) distribution, and a continuous covariate x, with the xis

randomly drawn from a uniform U [−3, 3] distribution. The spatial covariate si denotes

one of the s = 1, . . . , S = 309 counties of the former Federal Republic of Germany and xsi

and ysi
are the centered coordinates of the geographic center of county si. We simulated

four observations per county, resulting in 309 × 4 = 1236 observations in total. The

censoring was done as follows: We randomly selected a certain proportion of observations

(≈ 17% and ≈ 50%, respectively) that were to be censored. Censoring variables Ci for

these selected observations were then generated as i.i.d. draws from corresponding uniform

U [0, Ti] distributions.

Keeping the predictor fixed, 100 replications {T
(r)
i , C

(r)
i , i = 1, ..., 1236} respectively

{(t
(r)
i , δ

(r)
i ), i = 1, ..., 1236}, r = 1, ..., 100 of censored survival times were generated.

To investigate the first question, the log–baseline hazard g0(t) was modelled by second

order random walk priors, corresponding to a piecewise exponential model, and alterna-

tively as a cubic P–spline with 20 knots. The spatial effect was modelled as a MRF and

alternatively as a two–dimensional cubic P–spline with 12 × 12 knots. Simulations with
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GRF priors are not feasible due to much higher computation times, but the general mes-

sage will be the same. A cubic P–spline prior with 20 knots was chosen for f1(x) = sin(x)

in each case. Hyperparameters of inverse Gamma priors for variance components were set

to a = 0.001, b = 0.001, the standard choice.

For each replication r = 1, ..., 100, we computed the mean square errors

MSEr(g0) =
1

1236

1236∑

i=1

(ĝ
(r)
0 (t

(r)
i ) − g0(t

(r)
i ))2,

for the log–baseline hazard g0(t),

MSEr(f1) =
1

1236

1236∑

i=1

(f̂
(r)
1 (xi) − f1(xi))

2

for f1(x) = sin(x), and

MSEr(fspat) =
1

1236

1236∑

i=1

(f̂
(r)
spat(si) − fspat(si))

2

for the spatial effect fspat(s) = sin(xc · yc), where ĝ
(r)
0 and f̂

(r)
k , k = 1, spat, are posterior

mean estimates for simulation run r. The MSE(γ) was computed in the usual way.

Results: MRF versus 2d P–spline, p.e.m. versus P–spline model

Figures 2.1 and 2.2 display boxplots of the logarithmic MSEs (log(MSEr), r = 1 . . . , 100).

As was to be expected, the P–spline model has smaller MSEs for g0 when compared to

the piecewise exponential model. Interestingly, the MSEs for γ = −0.3, f1(x) and fspat(s)

are more or less unaffected by the choice of the smoothness prior for the log–baseline g0(t).

Estimated functions of replication r, with r chosen such that MSEr is the median of

MSE1, . . . ,MSE100, for g0(t), f1(x) and fspat(s) are displayed in Figures 2.3–2.5 (for the

censoring level of 17%). Regarding the two different levels of censoring Figures 2.1 and 2.2

show that the estimation of the log–baseline effect is the effect that is strongest influenced

by the level of censoring. While increasing the censoring level from 17% to 50% leads to

an approximately 2.75 times larger MSE for g0(t) the MSE for fspat(s) is only increased

by a factor of ca. 1.35. Due to the simulation scheme, where the spatial effect is defined as

a smooth 2–dimensional function of the spatial coordinates (fspat(si) = sin(xsi
· ysi

)), the

MSEs for fspat are smaller when a 2–dimensional P–spline prior is assumed instead of a

MRF prior.
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Figure 2.1: Simulation: model comparison via boxplots of log–MSEs for data sets with

low (ca. 17%) and high censoring level (ca. 50%), for estimations with MRF priors (left

panel) and 2–d P–spline priors (right panel) for the spatial effect each with cubic P–spline

priors for the log–baseline and p.e.m.s, respectively.
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Figure 2.2: Simulation: model comparison via boxplots of log–MSEs for data sets with

low (ca. 17%) and high censoring level (ca. 50%), for estimations with MRF priors (left

panel) and 2–d P–spline priors (right panel) for the spatial effect each with cubic P–spline

priors for the log–baseline and p.e.m.s, respectively.
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Figure 2.3: (log–)Baseline effects g0(t) for the various model specifications; displayed are

posterior mean estimates and 95% credible intervals of run r, with r chosen such that

MSEr is the median of MSE1, . . . ,MSE100 (solid line and grey shaded area), and the

true (log–)baseline effect (dashed line). a) p.e.m., MRF, r=11, MSE=0.183 b) p.e.m.,

2d P–spline, r=51, MSE=0.181 c) P–spline model, MRF, r=51, MSE=0.148 d) P–spline

model, 2d P–spline, r=7, MSE=0.145
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Figure 2.4: Nonparametric effects f1(x) for the various model specifications; displayed

are posterior mean estimates and 95% credible intervals of run r, with r chosen such that

MSEr is the median of MSE1, . . . ,MSE100 (solid line and grey shaded area), and the

true function (dashed line). a) p.e.m., MRF, r=53, MSE=0.0064 b) p.e.m., 2d P–spline,

r=36, MSE=0.0053 c) P–spline model, MRF, r=67, MSE=0.0068 d) P–spline model, 2d

P–spline, r=19, MSE=0.0056
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Figure 2.5: Spatial effects for the various model specifications with effects ranging from

-1.3 to 1.65; displayed are posterior mean estimates of run r, with r chosen such that MSEr

is the median of MSE1, . . . ,MSE100 a) true function b) p.e.m., MRF, r=41, MSE=0.041

c) p.e.m., 2d P–spline, r=13, MSE=0.021 d) P–spline model, MRF, r=12, MSE=0.042 e)

P–spline model, 2d P–spline, r=13, MSE=0.021
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Figure 2.6: Selected sampling paths of run r = 1 for parameters βj,1 and βj,13, j = 0, 1, spat and

different choices for the parameters a and b of the IG(a; b) hyperpriors.
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Results: influence of hyperparameters

To investigate the second question, in particular to analyze the behavior of the Markov

chains when a and b approach zero (and the prior for the hyperparameters thus approaches

the IG(0; 0) distribution, that leads to an improper posterior), we focus on the P–spline

model with MRF–prior and a censoring level of 17% and alternatively set a = b = 0.0001,

a = b = 0.00001 and a = b = 0.00000001. We additionally run the simulation study with

a = −0.5, b = 0, i.e. uniform priors on the standard deviations τ0, τ1 and τspat that act as

smoothing parameters for the log–baseline, the nonlinear effect of x and the spatial effect,

respectively. Selected sampling paths of run r = 1 are exemplarily shown in Figure 2.6.

We did not face problems with mixing or convergence of Markov chains with any of these

prior distributions. An exception are the first one or two parameters of the baseline effect,

i.e. β0,1 and β0,2, corresponding to the effect of small times t, where the mixing properties

are not always optimal. This can be explained by the very steep increase of the ’true’ log–

baseline, reaching to minus infinity as t approaches zero whereas it is quite flat elsewhere.

In this situation a global variance might not be an ideal choice. Another point may be

the usage of conditional prior proposals that usually lead to poorer mixing properties than

IWLS–proposals do. Figure 2.7 displays kernel density estimators of the posterior mean

of the variance parameters based on τ̂ 2
j

(r)
, r = 1, . . . , 100 for j = 0, 1, spat. Obviously

the different choices of the hyperparameters a and b of the inverse Gamma prior do not

seem to have much effect, whereas the uniform prior on the standard deviations tends to

result in somewhat larger estimates for the variance parameters and thus in less smooth

effects. The posterior distribution of the variance parameter of the spatial effect is quite

robust, as the full conditional is dominated by the values of rj =rank(Kj) and β′
jKjβj at

this. Figure 2.8 displays boxplots of the logarithmic MSEs (log(MSEr), r = 1, . . . , 100),

that are computed as before. While the MSEs are quite unaffected by the choice of the

hyperparameters a = b of the inverse Gamma prior, the uniform prior results in a slightly

smaller MSE for g0(t), but a slightly bigger MSE for f1(x). Altogether we come to the

conclusion that (at least with this model) it does not seem to be crucial, which one of these

weakly informative priors is assumed for the variance parameters.
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Figure 2.7: Kernel density estimates based on τ̂2
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(r)
, r = 1, . . . , 100 for j = 0, 1 and spat,

respectively. µ̂ denotes the mean estimated smoothing parameter.
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hyperpriors for a = b = 0.001, a = b = 0.0001, a = b = 1e − 05, a = b = 1e − 08 and

a = −0.5, b = 0 respectively.
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Figure 2.9: Simulation: model comparison via boxplots of log–MSEs.
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Figure 2.10: Simulation: posterior mean estimates together with 95% credible intervals for the

log–baseline effects (solid line and grey shaded area) of run r, with r chosen such that MSEr(g0(t))

is the median of MSE1(g0(t)), . . . , MSE100(g0(t)) and the true log–baseline (dashed line).
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Simulation setup II

To shed some light on the question what is lost and gained by applying a P–spline model

instead of a Weibull–model in cases where the true baseline hazard is Weibull shaped and

not Weibull shaped, respectively, lifetimes Ti, i = 1, . . . , 1000 were generated according to

the hazard models

λi(t) = λ0(t) · exp(γvi + f1(xi)) = λ0(t) · exp (0.3vi + sin(xi)) ,

with v and x denoting a binary and a continuous covariate as in (2.15). The baseline

hazard λ0(t) is once chosen to be a Weibull baseline with shape parameter α = 2, i.e.

λ0(t) = α · tα−1 = 2 · t

once to be a likewise monotonic, linear, but non–Weibull hazard rate given by

λ0(t) = 0.25 + 2 · t

and once to be bathtub–shaped according to the following equation

λ0(t) =

{
0.75 · (cos(t) + 1.5) , t ≤ 2π

0.75 · (1 + 1.5), t > 2π

i.e. the baseline hazard is assumed to be initially high, to decrease after some time and

increase again later on until the time t = 2π, from where on the hazard stays constant.

Such bathtub–shaped hazard rates appear quite frequently in survival time studies and

can not be comprehended with parametric approaches like the Weibull model.

While lifetimes Ti may be generated straightforward by drawing random numbers from

according Weibull distributions in the former case, i.e. Weibull distributions with shape

parameter α and scale parameter (1/ exp(0.3vi + sin(xi)))
1
α , a more elaborate simulation

technique is required for the second and third choice for the baseline hazard. Two possibil-

ities are for example given by the thinning method, a kind of rejection algorithm, where a

dominating hazard rate is required (see Lewis and Shedler, 1979) and the inversion method,

that is applicable in cases where the cumulative baseline hazard Λ0(t) and its inverse Λ−1
0 (t)

may at least be evaluated numerically (see e.g. Devroye, 1986 and Bender et al., 2005).
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With our simulation we used the inversion method, where lifetimes Ti are generated as

follows

Ti = Λ−1
0 (− log(Ui) exp(−0.3vi − sin(xi))) ,

with Ui randomly drawn from a standard uniform distribution, i.e. Ui ∼ U [0, 1]. As before

the censoring was done in a second step: We randomly selected a proportion of ca. 30% of

observations that were to be censored. Censoring variables Ci for these selected observa-

tions were then generated as i.i.d. draws from corresponding uniform U [0, Ti] distributions.

Again, keeping the predictor fixed, 100 replications {T
(r)
i , C

(r)
i , i = 1, ..., 1000} respec-

tively {(t
(r)
i , δ

(r)
i ), i = 1, ..., 1000}, r = 1, ..., 100 of censored survival times were generated

with each of the three baseline hazards. Estimation was done with a cubic P–spline prior

with 20 equidistant knots for the log–baseline effect g0(t) and with a Weibull model with

a GA(0.01; 0.01)–prior on α as described in (2.11), respectively. A cubic P–spline prior

with 20 knots was also assumed for the nonparametric effect of x and a diffuse prior was

assumed for the fixed effect of v.

Results: P–spline model versus Weibull model

The MSEs were calculated as described above and Figure 2.9 displays boxplots of the log-

arithmic MSEs. As before with the comparison between P–spline models and p.e.m.s the

MSEs of f1 and γ corresponding to the nonparametric effect of the continuous covariate x

and the fixed effect of the binary covariate v are barely affected by the choice of the prior

for the baseline hazard. However, as was to be expected the MSE of the log–baseline

effect g0(t) is smaller with the Weibull model in the case where the true baseline hazard

has a Weibull structure (Figure 2.9a)), but the MSE is smaller with the P–spline model in

case of λ0(t) = 0.25 + 2 · t and the bathtub–shaped baseline hazard (Figure 2.9 b) and c)).

Estimated log–baseline hazards of replication r, with r chosen such that MSEr(g0(t)) is

the median of MSE1(g0(t)), . . . ,MSE100(g0(t)) are displayed in Figure 2.10. Concerning

the simulation where the true baseline hazard has an exact Weibull structure, Figure 2.10

reveals that the Weibull model yields very good results for ĝ0(t). The cubic P–spline model

also yields quite satisfactory results for the most part, but does not reflect the steep increase

at the beginning (note that g0(0) = −∞ with Weibull hazard rates), which is the main rea-

son for the discrepancy in MSE when compared to the Weibull model. Bayesian P–splines
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with locally adaptive variances as developed in the context of generalized additive models

in Lang and Brezger (2004) for functions with changing curvature (and highly oscillating

functions) might provide a solution. Here the global variance parameters τ 2
j in equation

(2.9) are replaced by local variances τ 2
j /δjm, where the weights δjm are additional hyperpa-

rameters. Regarding the linear non–Weibull shaped baseline hazard (λ0(t) = 0.25 + 2 · t),

results are contrary to those the simulation with Weibull structure yields. While the cubic

P–spline model reflects the shape of the log–baseline satisfactorily, the true shape can by

definition not be reflected correctly by the Weibull model, which heavily underestimates

the log–baseline for very small values of t. The bathtub–shaped baseline is again reflected

rather sufficiently by the P–spline model, but also this structure can not at all be retrieved

with a Weibull model, which suggests a largely flat baseline hazard with an increased risk

for very small values of t.

Conclusion

Altogether we come to the conclusion that the choice of the prior for the baseline hazard

does not seem to be very important in cases where the only interest is to gain information

on time–constant effects of covariates. However, in cases where the baseline hazard is of

interest, we do not recommend to use a Weibull model since it is quite restrictive and only

outperforms the P–spline model in cases where the baseline hazard actually is Weibull

shaped. A flexible estimation becomes even more important in cases where time–varying

effects of covariates are to be examined.

2.5 Application

To illustrate our methods we present three applications to complex data sets with slightly

different requirements, with spatial information being given for the last data set only. The

examples arise from different fields, namely from the fields of credit risk, insurance and

biometrics.

Unless otherwise noted:

• time–varying as well as nonparametric effects of continuous covariates are modelled
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by cubic P–splines with 20 knots,

• diffuse priors are assumed for fixed effect parameters,

• MRF priors are assumed for structured spatial effects,

• unstructured (uncorrelated) random effects are assumed to be i.i.d. Gaussian with

mean zero,

• the parameters of IG(a; b) hyperpriors for variance parameters are set to a = b =

0.001.

2.5.1 Overdraft credit risk

Our first application is on overdraft credit data from a Swiss bank. The data comprises

information on the monthly account movements of 2891 debtors (companies) with date

of first borrowing within the observation period, i.e. between June, 1999 and June, 2004.

Besides the date when the credit was first granted (date), the observed credit duration

ti and the external covariate ”rate of unemployment” (unempl), the following continuous,

monthly varying covariates are given:

• tvb: transaction volume (receipts of payments, credit items etc.)/borrowings (aver-

aged over 5 months, restricted to values between 0 and 20)

• ndtl: number of days with transgressed credit limit

The question of interest is to analyze the influence of these covariates on the risk of default,

i.e. the risk that a debtor cannot repay his credit. There are only 69 (ca. 2.4%) defaults

observed, whereas 2109 credits (ca. 73%) are still existing at the end of the observation

period in June 2004. The remaining 713 credits (ca. 25%) are either repayed between

June 99 and June 2004 or sold to another bank. It is unknown which case is true and we

consider these 713 observations as well as the 2109 observations, where credits were still

existing in June 2004 as right censored and define the indicator of non–censoring of debtor

i, i = 1, . . . , 3068 as follows:

δi =

{
1 default of debtor i

0 else
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Since all covariates are continuous, the hazard rate λi(t) is modelled as follows

λi(t) = exp(g0(t) + ftvb(tvbi) + funempl(unempli) + fndtl(ndtli) + fdate(datei)),

where the log–baseline effect g0(t) as well as all other effects are modelled by P–splines.

Since the distribution of the number of days with transgressed credit limits is quite left–

skew, the position of the 20 knots was chosen according to quantiles in the case of fndtl.

The estimated effects are shown in Figure 2.11. It can be concluded that the log–baseline

hazard rate is highest in the first months after a credit is first granted and is decreasing

almost linearly with time. The effect of the covariate transaction volume/borrowings is

u–shaped, meaning that low values near zero and high values near 20 lead to an increased

default risk. While it is quite perspicuous that debtors with a transaction volume that is

very low compared to their borrowings and a consequently low value of tvb are at a high

risk, it is less clear why the risk is increased with debtors with high values of tvb. A possible

explanation is that this effect is caused by debtors that already have a bad credit history

and thus a reduced credit limit resulting in low borrowings and a therefor high value of tvb.

The effect of the rate of unemployment is roughly linearly increasing, meaning that the risk

of default is rising with an increasing rate of unemployment. Furthermore we observe that

credits that were first granted at the beginning of the observation period are at a higher

risk than credits granted in later years. This might either be due to an improved credit

risk management and a more restrictive credit policy or to the economic cycle. As was to

be expected the risk is rising with the number of days with transgressed credit limit, where

the increase is steepest in the beginning.

2.5.2 Long term care insurance

As a further illustration, we analyze data on survival time after entering long term care in-

surance (LTC) from a German private insurance company. The data was recorded between

April 1, 1995, when compulsory LTC insurance was introduced by the German government,

and December 31, 1998. It contains information on 5603 recipients of benefits from LTC

insurance. This data set has already been analyzed by Czado and Rudolph (2002), and

more details on the data set are given there. In a first step, they analyzed the data with a

conventional Cox model with fixed effects of covariates and products of covariates. After
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Figure 2.11: Overdraft credit risk: posterior means together with pointwise 80% and 95%

credible intervals
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careful model diagnosis (and the inclusion of two dummy–coded variables for modelling

deviations from linear effects) they extended their Cox model to a model with time–varying

effects, which were modelled through 0–1 step functions. Our analysis is based on their

final model – CR model for short. The covariates that are included are sex of claimant

(1=female, 0=male) and the following time–dependent covariates:

age(t) = age of claimant when a state transition occurs at time t,

nh(t) =

{
1 care in a nursing home at time t

0 care at home at time t

leveli(t) =

{
1 care at level i at time t, i = 2, 3

0 else,

with level1(t) as the reference category. Transition times between care levels and care

required (at home or in a nursing home) and dates of death or right–censoring are given

in day units. The three levels of care (and benefits) are defined as follows:

• Level 1: Care level 1 is reserved to persons in considerable need of LTC. They would

at least once a day require help for at least two activities in areas of personal hygiene,

nutrition or mobility. They would also need help several times a week with household

chores. Care level 1 can only be granted if the applicant needs help for at least 90

minutes a day, including 45 minutes of basic care.

• Level 2: Care level 2 is ear–marked for persons in severe need of LTC. They need

help at least three times a day with personal hygiene, eating or getting around. In

addition, they need help several days a week in housekeeping. In care level 2 the time

of help required must be at least 3 hours a day, of which 2 hours must be needed for

basic care.

• Level 3: Care level 3 is reserved to persons in extreme need of care. They require

round–the–clock help every day, as well as household help several times a week. Care

level 3 demands that the applicant needs at least 5 hours help a day, including a

minimum of 4 hours of basic care.
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BPH CR

mean std. dev. mean std. dev.

level2 0.81 0.07 0.81 0.07

level3 1.71 0.07 1.75 0.07

sex · nh -0.42 0.10 -0.44 0.10

level2 · nh -0.33 0.15 -0.33 0.14

level3 · nh -0.66 0.14 -0.67 0.14

Table 2.1: LTC data: posterior means and standard deviations for fixed effects

The exact date of first receipt of benefits is given for every claimant. In most cases this

date is prior to April 1, 1995, i.e. most of the observations are left truncated (ca. 70%).

Furthermore, about 60% of the observations are right censored.

As a start we apply a Bayesian multiplicative proportional hazard (BPH for short)

model λ(t) = exp(η(t)) with predictor

η(t) = g0(t) + γl2 · level2(t) + γl3 · level3(t) +

fage(age) + fsex(age) · sex + fnh(age) · nh(t) +

γsnh · (sex · nh(t)) + γl2nh · (level2(t) · nh(t)) + γl3nh · (level3(t) · nh(t))

Results for fixed effects are given in Table 2.1. The log–baseline g0(t) and the main effect of

age as well as the age–dependent effects fsex(age) of sex and fnh(age) of nh are displayed in

Figure 2.12. Our results for the age–independent effects are highly comparable to those of

the CR model. Although differences concerning modelling of the age–dependent functions

lead to slightly differing results, the age–dependent effects are as well quite similar for the

most part.

We conclude from our results that the hazard rate is increased in the first three to four

years of receiving benefits. The hazard is also increased for claimants receiving more care

(Level 2 and Level 3), but these main effects decrease by ca. 40% for claimants living in

a nursing home. Furthermore, care in a nursing home seems to decrease the hazard rate

with young people, but increase the hazard risk in the case of elderly claimants. Compared

to male claimants, female claimants living in a nursing home have a lower hazard. The

main effect of age increases almost linearly, while the interaction with sex is quite small.
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Figure 2.12: LTC data: posterior mean together with 80% and 95% credible intervals of the

centered log–baseline effect (a), main effect of age (centered) and age–dependent effects of

nh and sex for BPH (b) and CR (c)
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mean std. dev.

sex · nh -0.42 0.10

level2 · nh -0.33 0.14

level3 · nh -0.59 0.14

Table 2.2: LTC data, BNPH model: posterior means and standard deviations for fixed

effects

The latter is comparable with the fixed effect interaction (including two steps) of the CR

model only for age over 50 years.

Since Czado and Rudolph found out that the effect of care level is time–dependent, we

modify our PH–model to a nonproportional hazard (BNPH for short) model with predictor

η(t) = g0(t) + gl2(t) · level2(t) + gl3(t) · level3(t) +

fage(age) + fsex(age) · sex + fnh(age) · nh(t) +

γsnh · (sex · nh(t)) + γl2nh · (level2(t) · nh(t)) + γl3nh · (level3(t) · nh(t)).

In contrast to the global log–baseline hazard rate estimated with the BPH model the

log–baseline hazard rate g0(t) and the effect gl2(t) of level2 are now more or less time–

constant (compare Figure 2.13 a) and b)). Note that g0(t) is centered about zero, while

gl2(t) ≈ const. = 0.74. This means that the time–variation in the effect of level2(t) of the

CR model cannot be detected. The increased hazard for level3(t) for smaller t (Figure

2.13 c)) corresponds to a similar finding of the initial CR. A possible interpretation is that

this effect is caused by individuals which are already in a bad health state and therefore

need level 3 care immediately at the beginning of LTC. The BNPH model with time–

varying effects of level2 and level3 can be interpreted as a model with three separate

baseline effects g0(t), g0(t) + gl2(t), g0(t) + gl3(t) for claimants needing care of level 1,2

or 3, respectively. The corresponding estimated curves are displayed in Figure 2.13 d). As

can be gathered form Figure 2.13 e) and Table 2.2 the remaining effects are quite similar

to those the BPH model yields.
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Figure 2.13: LTC data, BNPH model: a)–c) posterior means together with 80% and 95%

credible intervals of time–dependent effects, d) posterior means of log–baseline effects for

claimants needing care level 1, 2 and 3, respectively, d) posterior means of age–dependent

effects
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2.5.3 Waiting times to CABG

As a third illustration we apply our methods to data from a study in London and Essex that

aims to analyze the effects of area of residence and further individual specific covariates on

waiting times to coronary artery bypass graft (CABG). The data comprise observations for

3015 patients with definite coronary artery disease who were referred to one cardiothoracic

unit from five contiguous health authorities. Waiting times from angiography to CABG

are given in days. Covariates are, among others, sex, age (in years), number of diseased

vessels (1, 2, 3), and the area of residence (one of 488 electoral wards).

The data were previously analyzed by Crook et al. (2003) who classified waiting times

in months and applied discrete–time survival methodology as described for example in

Fahrmeir and Tutz (2001, chap. 9). Here we apply continuous–time geoadditive survival

models, with waiting times given in days as in the original data set. We analyzed and

compared a hierarchy of models, with model comparison based on the deviance information

criterion (DIC), developed in Spiegelhalter et al. (2002). Whilst a log–baseline effect is

included in any model, covariate effects are only added gradually. The (log–)baseline

prior was assumed as a (log–)piecewise exponential model with grid length 4 = 50 days

and, alternatively, as a cubic P–spline model with 20 knots. Table 2.3 gives values for fit

(deviance) and complexity (effective number of parameters pD) for a selected number of

models. A comparison between the two baseline specifications shows that the complexity

is quite alike, whereas the fit is essentially better with the P–spline model than with the

p.e.m. The ranking of the models is the same as in Crook et al. (2003).

In the following we will present detailed results for the best models in terms of DIC.

Models 7 and 8 correspond to a continuous–time model with hazard rate

λ(t) = exp(g0(t) + fage(age) + fspat(ward) + γ1sex + γ2dv2 + γ3dv3),

where g0(t) is the log–baseline rate, fage(age) is the nonlinear effect of age and fspat(ward)

is the structured spatial effect. The remaining covariates are dummy–coded: sex = 1 for

female, and sex = 0 for male, dv2 = 1 if the number of diseased vessels equals 2, dv2 = 0

else, and dv3 = 1 if the number of diseased vessels equals 3, dv3 = 0 else. For comparison

we also estimated model 8 with a Weibull prior (2.11) for the baseline hazard. The DIC

of this Weibull model is 15273, composed of a deviance of 15190 and pD=42. Accordingly

the p.e.m. and the P–spline–model yield a lower DIC in spite of being less parsimonious.
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Table 2.3: Model comparison based on the DIC

P–spline–model p.e.m.

model specification dev. pD DIC dev. pD DIC

1 g0(t) 15607 13 15632 15777 12 15800

2 g0(t)+R 15553 38 15630 15722 38 15798

3 g0(t)+MRF+R 15523 47 15616 15693 44 15782

4 g0(t)+MRF 15532 40 15611 15705 38 15780

5 g0(t)+fage+sex+dv2+dv3 15069 20 15108 15234 19 15273

6 g0(t)+fage+sex+dv2+dv3+R 14934 79 15092 15085 83 15251

7 g0(t)+GRF+fage+sex+dv2+dv3 15017 33 15082 – – –

8 g0(t)+MRF+fage+sex+dv2+dv3 14967 56 15079 15125 58 15241

9 g0(t)+MRF+fage+sex+dv2+dv3+R 14943 68 15078 15097 71 15240

10 g0(t)+MRF+fage+sex+g1(t)dv2+g2(t)dv3 14945 64 15073 15107 65 15237

Since the DIC is not improved substantially by adding a random (unstructured) spatial

effect (indicated by the letter R in Table 2.3) we do not discuss model 9 in detail.

Since the distribution of the values of age is quite skew, it would be an interesting

alternative to choose a P–spline prior with knot positions according to quantiles, but we

used equidistant knots here, which is our standard choice. The spatial effect fspat(ward)

is modelled through a MRF prior. In the case of the P–spline model we alternatively

modelled the spatial effect through a GRF prior with 100 knots (model 7). Although this

model is more parsimonious, the DIC is greater than with a MRF prior due to a greater

deviance. Since the data augmentation that has to be accomplished for the p.e.m. results

in an ”observation number” of more than 30000, a GRF prior would lead to a computation

time of several days, which is not very viable.

The nonproportional hazard model 10, which has the lowest DIC of all models we

compared, is a modification of the geoadditive proportional hazard rate model 8, where

the fixed effects γ2 and γ3 of dv2 and dv3 are replaced by time varying effects.

Inverse Gamma priors IG(0.001; 0.001) were routinely assumed for the variances, but

we also specified uniform priors on standard deviations for comparison. The results were

quite alike (similar values of DIC and estimated effects), but uniform priors tend to lead to a
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Table 2.4: Posterior mean estimates and standard deviations for the fixed effects on time to

CABG

effect P–spline m., GRF P–spline m., MRF p.e.m., MRF Weibull m., MRF

sex -0.04 (0.08) -0.05 (0.08) -0.04 (0.08) -0.04 (0.08)

dv2 1.48 (0.10) 1.49 (0.10) 1.50 (0.10) 1.48 (0.10)

dv3 1.79 (0.09) 1.81 (0.09) 1.82 (0.09) 1.79 (0.10)

slightly better fit coming along with a somewhat larger number of effective parameters pD.

However, in contrast to our simulation study, we sometimes faced problems with mixing

of Markov chains with IG(ε, ε) priors with very small ε’s (like ε = 0.00000001) in the case

of the age effect, which is presumably due to the skew distribution of the values of age

(i.e. the small number of young patients).

Table 2.4 contains estimation results for the fixed effects in models 7 and 8. While

the effect of sex is nonsignificant, the effects of two or three diseased vessels are clearly

significant and show that waiting times are decreasing with increasing number of vessels.

These results correspond to the findings of Crook et al. (2003). The nonparametric baseline

effects in Figure 2.14 show an initially high, but strongly decreasing chance of CABG

immediately after diagnosis, followed by a slow increase between 150 and 450 days. Later,

the chance of being operated decreases. The overall pattern is similar to the results in

Crook et al. (2003), obtained with a discrete–time model. However, with the P–spline

prior we get a distinctly smoother curve. The Weibull model also yields a sharp decline

in the first days after diagnosis, however, due to the monotonicity of a Weibull baseline,

the slow increase between 150 and 450 days can not be detected. The effect of age (Figure

2.14) is almost constant between 40 and 80 years and does not have significant influence

on the waiting time. Also, the estimates under a piecewise exponential, a cubic P–spline

and a Weibull baseline prior are visually indistinguishable – regardless of which prior is

chosen for the structured spatial effect.

The maps in Figure 2.15 show the estimates for the structured spatial effects and give

an impression of the spatially varying chance of CABG with green (red) areas indicating

an increased (decreased) effect. Again, the estimates under a piecewise exponential and

a cubic P–spline baseline prior are visually nearly indistinguishable in the case of a MRF
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Figure 2.14: Posterior mean estimate for the (log–)baseline effect including the intercept term

(left panel) and the (centered) effect of age on time to CABG (right panel) together with 80%

and 95% credible intervals
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P–spline model, GRF P–spline model, MRF

−0.5 0.50 −0.5 0.50

Figure 2.15: Posterior mean estimates of the structured spatial effect on time to CABG; the

estimates under the p.e.m. with a MRF prior are visually indistinguishable from those of the

P–spline model with MRF prior, and are therefore not shown here

P–spline model, GRF P–spline model, MRF

Figure 2.16: Posterior probabilities of the structured spatial effects, with white (black) areas

indicating that at least 80% of the sample estimates were positive (negative)



2.5 Application 73

P–spline model p.e.m.

−
2

−
1

0
1

2
3

4
5

0 100 200 300 400 500 600 700 800 900 1000 1100
t

dv1 dv2
dv3

−
2

−
1

0
1

2
3

4
5

0 100 200 300 400 500 600 700 800 900 1000 1100
t

dv1 dv2
dv3

Figure 2.17: (log–)baseline effects on time to CABG: posterior mean estimates for 1 diseased

vessel (dv1), 2 diseased vessels (dv2) and 3 diseased vessels (dv3)

prior. Also a Weibull prior yields virtually the same result (not shown). Predictably, the

GRF prior results in a smoother estimated spatial effect than the MRF prior does, but

besides that the results are quite alike. Areas with increased chances are Chelmsford and

Malden in North Essex, while in areas around Harlow in North Essex and Walthamstow

and Chingford in North East London chances are lower, that means patients have to wait

longer for surgery. The maps in Figure 2.16 show posterior probabilities of these spatial

effects. White (black) areas indicate that at least 80 % of the sample estimates were

positive (negative). Remaining grey areas are considered as ’nonsignificant’. Striped areas

denote wards, where no patient was observed.

Model 10 with time–varying effects g1(t) and g2(t) of dv2 and dv3 can be interpreted as

a model with three separate baseline effects g0(t), g0(t)+g1(t), g0(t)+g2(t) for patients with

one, two or three diseased vessels, respectively. The corresponding estimated curves are

displayed in Figure 2.17 and indicate that the proportional hazards assumption is violated,

because the baseline effect of patients with three diseased vessels crosses the two other

curves.
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Different choices for hyperpriors

In the following we exemplary present some additional results of model 8 that were obtained

with other choices of IG(a; b) priors. In addition to our standard choice a = b = 0.001 we

set a = b = 1e − 08 and a = −0.5, b = 0 (i.e. uniform prior on the standard deviation).

Figure 2.18 exemplarily shows sampling paths of the first and 19th parameter of each

vector βj, j = 0, age, spat corresponding to the log–baseline effect, the effect of age and the

spatial effect, respectively. Independently of the choice of the prior for the hyperparameters

the mixing is not optimal for the first parameters of the parameter–vector β0 corresponding

to the log–baseline effect. In accordance with our simulation study this might be due to the

usage of conditional prior proposals and the assumption of a global variance, since the effect

is steeply dropping in the first 100 days, but comparatively flat elsewhere. Apart from that

we did not face problems with mixing or convergence in the case of IG(0.001; 0.001) and

IG(−0.5; 0) priors. However, in the case of an IG(1e−08; 1e−08) prior mixing properties

are poor for the first parameters of the effect of age, where we have sparse data since there

is only a very small number of young patients that suffer from coronary artery diseases. As

shown in Figure 2.19 a) the estimated log–baseline effects g0(t) are not influenced by the

choice of the hyperprior. The same applies to the fixed effects as well as the spatial effect.

Figure 2.19 b) however reveals a much smoother effect with the IG(1e− 08; 1e− 08) prior

compared to the effects the other two choices for the hyperpriors yield. But since credible

intervals are quite large, each estimated effect is within the 95% credible interval of each

other estimated effect of age.

We conclude that the results are in general quite insensitive regarding the choice of

non–informative hyperpriors. However, in situations where data are sparse IG(a; b) priors

with a and b close to zero might lead to poor mixing and are therefore not recommended.

2.6 Conclusion

Spatial extensions of statistical models for analyzing survival data will be of increasing

relevance because spatial small–area information is often available. Assessment of spatial

effects on hazard or survivor functions is not only of interest in its own but can be quite

useful for detecting unobserved covariates which carry spatial information. In this chapter,
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Figure 2.18: Selected sampling paths for parameters βj,1 and βj,19, j = 0, age, spat and different

choices for the parameters a and b of the IG(a; b) hyperpriors.
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Figure 2.19: Estimated log–baseline effects g0(t) and effects of age fage with different

specifications of IG(a; b) hyperpriors.

we have developed a flexible class of nonparametric geoadditive survival models within a

unified Bayesian framework for modelling and inference. Model choice is an important

area of ongoing research. A comparison of competing proposals in the context of flexible

Bayesian event history models will be of considerable importance.



Chapter 3

Relative Survival Analysis

3.1 Introduction

Many clinical studies aim at identifying prognostic factors for disease specific mortality.

However, data on specific causes of death is often not available or not reliable (Percy et

al. (1981)) and thus it is not possible to differentiate between cases of death that are

actually related to the disease of interest and those cases of death that are related to

other causes that are independent of this disease. Since the composition of patients in

a clinical study usually is quite heterogenous concerning covariates like age (which is the

main influencing factor for natural mortality), the natural mortality risk may differ heavily

between patients. Thus it might very well be the case that a higher number of deaths

is observed with older people although a disease is more likely to be lethal with younger

people. In such situations the Cox model is not suitable since therewith it is not possible to

distinguish whether a variable like sex or age has an effect on disease specific mortality, on

natural mortality or on both. Consequently this model will deliver effects that represent

some mixture of the effects on natural and disease related mortality and may therefore be

misleading regarding the identification of prognostic factors. Moreover, comparisons of the

results from different population–based prognostic studies are difficult due to differences

in the natural mortality of the populations. A remedy to this problem is provided by a

relative survival analysis which allows for a correction for the effect of other independent

causes of death by using the natural mortality in the underlying population as a reference.

Several models for relative survival analysis in a frequentist setting have been discussed
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in the literature. Esteve et al. (1990) assume that the observed hazard for total mor-

tality is the sum of two hazards, namely the expected, natural mortality hazard and a

disease related mortality hazard. Whereas the first component is obtained from exter-

nal sources the disease related hazard is estimated parametrically assuming a piecewise

constant baseline effect and time–constant fixed effects of covariates. This approach was

extended by Bolard et al. (2001) and Giorgi et al. (2003) by allowing for time–varying

effects, i.e. dropping the proportional hazards assumption. Bolard et al. (2001) consider

time–by–covariate interactions originally proposed by Cox (1972) as well as piecewise pro-

portional hazards, developed by Moreau et al. (1985) for crude survival analysis. The

drawbacks of these methods are that temporal variations in the effects of covariates are

limited to pre–specified parametric forms of interaction functions and step–functions on

pre–specified time intervals, respectively. A more flexible method is proposed by Giorgi et

al. (2003) who assume quadratic B–splines with two inner knots for the baseline effect as

well as for time–varying effects of covariates. In the Bayesian approach we present here

we extend the model of Esteve et al. (1990) by modelling the disease related hazard with

a flexible geoadditive predictor that may include a log–baseline effect, nonlinear effects of

continuous covariates and time–varying effects modelled by P–splines, as well as a spatial

effect, random effects and the usual fixed effects.

The rest of this chapter is organized as follows. In Section 3.2 we describe models,

likelihood and priors for unknown functions and parameters. Some comments on the

inference via MCMC are given in Section 3.3. To illustrate our approach we present an

application to data on the survival of women suffering from breast cancer in Section 3.4.

Reliability of our approach is verified in Section 3.5 by means of a simulated data set with

known risk profile.

3.2 Model, likelihood and priors

Consider right–censored survival data as described in Subsection 2.2.1 in which Ti now

denotes survival time of observation i until death of any cause, ti denotes the observed

survival time and δi denotes the censoring indicator. Following Esteve et al. (1990) we as-

sume that the hazard rate for total mortality λi(t, ai, covi) := λi(t) at time t after diagnosis

of an individual i with age ai at diagnosis and a vector of covariates covi = (zi, xi, si, vi)
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(possibly including age) is defined as the following sum of two hazards:

λi(t, ai, covi) := λi(t) = λe
i (ai + t, covsub

i ) + λc
i(t, covi) (3.1)

= λe
i (ai + t, covsub

i ) + exp (ηi(t, covi))

The first summand λe
i (ai + t, covsub

i ) represents the expected hazard for natural mortality

in a population and is obtained from mortality tables using external sources, i.e. there are

no unknown parameters involved here. This component depends only on age at time t after

diagnosis (i.e. ai + t) and covsub
i , a subvector including those covariates in covi mortality

tables account for (usually sex and period). The second summand λc
i(t, covi) is the disease

related mortality hazard rate which is estimated from the data at hand. This component

is modelled by a flexible, possibly geoadditive predictor as in (2.4). To simplify notation

the dependence on covsub
i and covi, respectively will be suppressed in the following, i.e. we

define λe
i (ai + t, covsub

i ) := λe
i (ai + t) and λc

i(t, covi) := λc
i(t). Depending on what kind of

covariates are given in covi, the predictor may be composed of the following summands:

ηi(t, covi) := ηi(t) = g0(t) +

p∑

j=1

gj(t)zij +

q∑

j=1

fj(xij) + fspat(si) + v′
iγ + bgi

, (3.2)

where g0(t) = log{λ0(t)} is the (disease related) log–baseline hazard, gj(t) are time–varying

effects of covariates zj, fj(xj) is the nonlinear effect of a continuous covariate xj, fspat(si)

is the (structured) effect of a spatial covariate s, γ is the vector of linear effects and bg is

a unit– or group–specific frailty or random effect (see Subsection 2.2.1 for a more detailed

description).

Once more, for a interpretation of equation (3.1) one may say that the natural mortality

hazard λe
i covers the basic mortality risk a population is exposed to and the disease related

hazard λc
i models the excess mortality risk that patients are exposed to beyond the basic

risk due to the disease they suffer from. From a statistical point of view λe
i is an additive

offset.

Under the assumption about noninformative censoring the likelihood is given by

L =
n∏

i=1

(λi(ti))
δi · exp

(
−

∫ ti

0

λi(u)du

)
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Inserting (3.1) results in

L =
n∏

i=1

(λe
i (ai + ti) + λc

i(ti))
δi exp


−

ti∫

0

(λe
i (ai + u) + λc

i(u)) du




=
n∏

i=1

(λe
i (ai + ti) + λc

i(ti))
δi exp


−

ti∫

0

λc
i(u)du


 exp


−

ti∫

0

λe
i (ai + u)du


 ,(3.3)

where the last factor does not depend on the parameters to be estimated. Hence the

following proportionality holds

L ∝
n∏

i=1

(λe
i (ai + ti) + λc

i(ti))
δi exp

(
−

∫ ti

0

λc
i(u)du

)
. (3.4)

This formula only differs from the likelihood of a crude survival model given in (2.5) by

the term λe
i (ai + ti).

Again, for defining priors and developing posterior analysis we can rewrite the observa-

tion model in generic matrix notation and represent the predictor η = (η1, . . . , ηi, . . . , ηn)′,

where ηi := ηi(ti), as

η = V γ + Z0β0 + . . . + Zmβm. (3.5)

See Subsection 2.2.1 for details. Then, to complete the Bayesian model formulation priors

for parameters and functions are assumed as described for the crude survival analysis in

Subsection 2.2.2, i.e. we assume diffuse priors for fixed effect parameters, i.i.d. Gaussian

priors for uncorrelated random effects, P–splines for the baseline effect, nonparametric ef-

fects of continuous covariates and time–varying effects, Markov random field (MRF) priors,

two–dimensional tensor product P–spline priors, or Gaussian random field (GRF) priors

for structured spatial effects and inverse Gamma hyperpriors for all variance components.

3.3 Markov chain Monte Carlo inference

As before in Section 2.3 let β = (β′
0, ...,β

′
m)′ denote the vector of all regression coefficients

in the generic notation (3.5), γ the vector of fixed effects, and τ 2 = (τ 2
0 , ..., τ 2

m) the vec-

tor of all variance components. Full Bayesian inference is based on the entire posterior

distribution

p(β, γ, τ 2 | data) ∝ L(β, γ, τ 2) p(β, γ, τ 2).
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Due to the (conditional) independence assumptions, the joint prior factorizes into

p(β, γ, τ 2) =

{
m∏

j=0

p(βj | τ 2
j )p(τ 2

j )

}
p(γ),

where the last factor can be omitted for diffuse fixed effect priors. The likelihood L(β, γ, τ 2)

is given by inserting (3.2) into (3.4). Note that the integral does not require integration

over the natural mortality hazard λe
i (ai + t) (which is fix anyway), but just over the same

terms as before with the crude survival analysis, i.e. terms of the form

Ii =

∫ ti

0

exp

(
g0(u) +

p∑

j=1

gj(u)zij

)
du,

where gj(t) =
∑

βjmBm(t). As described in Section 2.3 we usually use the trapezoidal rule

to solve these integrals numerically.

Again, full Bayesian inference via MCMC simulation is based on updating full condi-

tionals of single parameters or blocks of parameters, given the rest of the data. Basically

all parameters are updated as described in Section 2.3. However, the calculation of the

means and precision matrices of the multivariate Gaussian distributions, that are used

within the IWLS–MH algorithm to approximate the posterior of the parameter vectors βj,

which correspond to the time–independent functions fj(xj), as well as spatial effects βspat,

fixed effects γ and random effects b, is slightly more complex. Suppose we want to update

βj, with current value βc
j of the chain. Then a new value β

p
j is proposed by drawing a

random vector from a multivariate Gaussian distribution with precision matrix and mean

P j = Z ′
jW (βc

j)Zj +
1

τ 2
j

Kj, mj = P−1
j Z ′

jW (βc
j)(ỹ − η̃).

where η̃i = ηi(ti)− fj(xij), W (βc
j) = diag(w1, . . . , wn) is the weight matrix for IWLS with

weights

wi = Λc
i(ti) −

λe
i (ai + ti)λ

c
i(ti)δi

λi(ti)2

obtained form the current state βc
j and with Λc

i(ti) =
∫ ti
0

λc
i(u)du. The working observations

ỹi are given by

ỹi = ηi(ti) +
δiλ

c
i(ti)/λi(ti) − Λc

i(ti)

wi

.

See Appendix A2 for a detailed derivation of those quantities.
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3.4 Application

We illustrate our method by an application to data on breast cancer that was gathered in

the years from 1988 to 2002 by a cancer registry that covers the Haut–Rhin ’department’

which is located in the north-east of France, adjacent to Germany and Switzerland. This

department has 3525 km2 and 707555 inhabitants (in 1999) and is partitioned into 377

municipalities. The largest distance between the centroids of two municipalities is about

95 kms. The data set contains 3726 cases of breast cancer diagnosed between January the

1st 1988 and January the 1st 1998. There were 1235 (≈ 33%) deaths observed whereas

the causes of death are unknown. Observed lifetimes are given in days and range from 0

to 14 years, with a median of 6.4 years. Covariates are age at time of diagnosis (ranging

from 20.6 years to 87.1 years), date of diagnosis (ranging from 1988.0 (i.e. 01.01.1988) to

1998.0), area of residence (one of 377 municipalities) and number of metastases at the date

of diagnosis (no metastasis, one metastasis or more than one metastasis). This is part of

a data set that has been analyzed via crude survival analysis by Sauleau et al. (2006).

For comparison only we analyze the data with the crude survival model (2.3) although

this model does not account for natural mortality and is thus not appropriate to the data

at hand where causes of death are not available. Generally the specification of the hazard

rate is given by

λi(t, covi) = exp(ηi(t, covi)) (3.6)

covi = (ai, pi, si, meta1i, meta2i),

where t is time since diagnosis and covi is the vector of covariates with ai denoting the age

of patient i at date of diagnosis pi (period), si denoting the municipality patient i resides

in and the dummy–coded covariates meta1i and meta2i denoting, whether patient i has

one metastasis and more than one metastasis, respectively.

A relative survival analysis should be more suitable and deliver better results. Therefore

we alternatively assume a composed hazard rate of the following structure

λi(t, covi) = λe
i (ai + t, pi + t) + exp(ηi(t, covi)) (3.7)

covi = (ai, pi, si, meta1i, meta2i),

where λe
i (ai + t, pi + t) is the natural mortality rate of women of age ai + t at date pi + t

as recorded in mortality tables for the Haut–Rhin department. The second summand
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λc
i = exp(ηi(t, covi) represents the disease related hazard rate and is modelled in the same

way as the hazard rate in (3.6).

A hierarchy of models is analyzed with both approaches and compared via the deviance

information criterion (DIC). Whilst a log–baseline effect g0(t) modelled by a cubic P–

spline prior with 20 knots is included in any model, covariate effects are only included

gradually. Effects fa(ai) and fp(pi) of continuous covariates are modelled by cubic P–splines

with 20 knots. Diffuse priors are assigned to the fixed effects γ1 and γ2 of the dummy–

coded covariates meta1 and meta2. The structured spatial effect fspat(si) is modelled by a

MRF prior which is our standard choice with area–level data. An unstructured (random)

spatial effect bsi
is included additionally or alternatively in some of the models. Table 3.1

gives values for fit and complexity of a selected number of models according to the two

components of the deviance information criterion. Model I, which contains a structured

spatial effect modelled by a MRF–prior, the effect of the number of metastases and the

effect of age, yields a DIC of 9308 for the crude survival model with hazard rate (3.6) and

9249 for the relative survival model. Leaving out one or more of these effects leads to a

larger DIC. As Table 3.1 shows the DIC is slightly reduced by the additional inclusion of a

period effect. Models III and IV are versions of model II where the spatial effect is modelled

by an unstructured (random) effect bs and the sum of a structured and an unstructured

effect, respectively. However, those models will not be discussed here since they do not

lead to an improvement in terms of DIC. Figure 3.1 displays the estimated nonparametric

effects of model II with predictor

ηi = g0(t) + fa(ai) + fp(pi) + fspat(si) + γ1meta1 + γ2meta2.

With the software BayesX all unknown functions are centered about zero, and an intercept

term is included in the parametric linear term for identifiability reasons. For plotting, the

estimated effects of age ai and period pi are all centered at the observed values, i.e.

3726∑

i=1

f̂a(ai) =
3726∑

i=1

f̂p(pi) = 0,

while the intercept is added to the log–baseline effects. Hence it can be derived from

Figure 3.1(a) and (b) that the estimated global risk level is higher with the crude survival

model (since the log–baseline effect resulting from a crude survival analysis exceeds the
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log–baseline effect resulting from a relative survival analysis). This results from the fact

that the crude survival analysis delivers an estimation of the risk of dying of any cause,

whereas only the disease related excess mortality risk of breast cancer patients is estimated

by means of a relative survival analysis, where the natural mortality risk is accounted for

separately. Panels (a) and (b) further reveal that the crude survival analysis yields a fairly

constant log–baseline effect g0(t), whereas a relative survival analysis results in an effect,

that is increasing in the first two years and decreasing in the time between the third and

the 11th year after diagnosis. Presumably the decrease in risk is not reflected in panel

(a) as not accounting for natural mortality that is increasing with time after diagnosis

(since patients are aging) might lead to a neutralization. The estimated effects of age at

time of diagnosis exhibit an u–shaped risk profile and are displayed in panels (c) and (d).

While a crude survival analysis yields an increased risk for patients diagnosed with breast

cancer in their younger days, but a still much higher risk for those women diagnosed at

an age of more than 70 years, a relative survival analysis suggests that women diseased in

early life have the greatest risk. This result is in accordance with the fact that cancers are

often more aggressive with younger people. The differences between the two approaches

were to be expected since older women have a higher natural mortality risk that is not

accounted for separately with the crude, but only with the relative survival analysis. As

displayed in panels (e) and (f) both approaches yield a higher risk for patients that were

diagnosed with breast cancer in earlier periods. This effect might be explained by medical

progress. Figures 3.2 (a) and (b) display the values of the structured spatial effect in each

municipality. The two approaches yield a similar spatial pattern, but it is more pronounced

with the relative survival analysis. The risk seems to be higher in the south of the region.

None of these effects is significant on a level of 95%, but a couple of regions exhibit effects

that are significant on a level of 80%, such as some regions in the north–east that have

a lower risk (Figures 3.2(c) and (d)). The estimated parameters γ̂1 and γ̂2 for the fixed

effects of meta1 and meta2 are greater with the relative survival approach. In detail the

results are as follows:

crude relative

γ̂1 0.66 0.96

γ̂2 2.23 2.74

meaning that compared to patients with no metastases the hazard rate is about 1.9 (9.3)
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crude survival relative survival

Model D(θ̄) pD DIC D(θ̄) pD DIC

I g0(t) + f(a) + fspat(s) + meta 9268 20 9308 9208 20 9249

II g0(t) + f(a) + f(p) + fspat(s) + meta 9259 24 9307 9200 23 9246

III g0(t) + f(a) + f(p) + bs + meta 9264 24 9312 9205 24 9253

IV g0(t) + f(a) + f(p) + fspat(s) + bs + meta 9250 29 9308 9192 28 9248

V g0(t) + f(a) + f(p) + fspat(s) + g(t) ∗ meta 9239 28 9296 9187 27 9241

Table 3.1: Deviance, effective number of parameters pD and DIC for some of the models we

compare.

and 2.6 (15.5) times higher for patients with one (more than one) metastasis, respectively.

To investigate if the proportional hazards assumption is appropriate, the number of

metastases is included as a covariate with time–varying effect in model II, i.e. the disease–

related log–hazard of model V is

λc
i = exp (g0(t) + meta1i · g1(t) + meta2i · g2(t) + fage(ai) + fp(pi) + fspat(si)) .

Here g0(t) is the log–baseline effect for patients without metastases, g0(t)+g1(t) corresponds

to the log–baseline for patients with one metastasis and g0(t)+g2(t) for patients with more

than one metastasis. The time–dependent functions gk(t), k = 0, 1, 2 are modelled with

cubic P–spline priors with 20 knots. As displayed in Table 3.1 the DIC is reduced by

allowing for a temporal variation in the effect of the number of metastases. The three

log–baseline effects are plotted in Figure 3.3 and reveal that the differences in risk between

the patient groups seem to diminish with time after diagnosis. The log–baseline effect for

patients with more than one metastasis even crosses the other curves, but this result must

not be over–interpreted since there are only 70 patients with more than one metastasis in

the study. The remaining estimated effects of model V resemble the results of model II

and are not shown for this reason.
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Figure 3.1: Model II: Posterior means and pointwise 80% and 95% confidence intervals for the

baseline effect including the intercept term (a,b), the centered effect of age (c,d) and the centered

effect of period (e,f). Figures b,d and f result from a relative survival analysis.
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Figure 3.2: Model II: posterior means of the structured spatial effect (MRF) and posterior

probabilities for a nominal level of 80%, where black denotes regions with strictly negative credible

intervals and white denotes regions with strictly positive credible intervals. Panels b) and d) result

from a relative survival analysis.
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Figure 3.3: Model V: posterior means of the log–baseline effects for patients with no metastases,

one metastasis and more than one metastasis (dots in the lowest, middle and highest row mark

observed lifetimes of patients with no metastases, one metastasis and more than one metastasis,

respectively)

3.5 Simulation

To verify the reliability of our relative survival model and to show that a model that

does not account for natural mortality can indeed be misleading concerning the effects of

covariates in such cases where data on specific causes of death is not available, we simulate

an appropriate data set with known risk profile. Survival times are generated according to

a hazard rate that is the sum of a natural hazard rate and a disease related hazard rate.

This data set is then analyzed with a crude survival model like in (2.3) and with a relative

survival model like in (3.1) and the results are compared subsequently.

As for the data generation we simulate survival times based on the covariates of our

real breast cancer data set, using known specifications for the baseline and the covariate

effects that resemble the effects estimated by the relative survival analysis of the real data

set. However, for the sake of simplification we neither consider a spatial effect nor a period

effect. We first simulate survival times for each subject and the censoring is done in a

second step. In detail, survival times Ti, i = 1, . . . , 3726, are generated according to the

following hazard rate model
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λi(t, ai, meta1i, meta2i) = λe
i (ai + t) + λc

i(t, ai, meta1i, meta2i)

= λe
i (ai + t) + exp(g0(t) + fage(ai) + γ1meta1i + γ2meta2i),

where the natural hazard rate λe
i is chosen in order to resemble the natural mortality rates

used with the application, but only depends on ai + t, which is the age of individual i at

time t after diagnosis. In our application natural mortality also depends on calendar time,

but we did not consider this here. As illustrated in Figure 3.4(a) the natural hazard rate

is increasing exponentially with age at time t after diagnosis. The disease related hazard

rate λc
i depends on time t after diagnosis, the age at time of diagnosis ai, and the two

binary covariates meta1i and meta2i, which indicate whether an individual i has one and

more than one metastasis, respectively. As displayed in Figure 3.4(b) the disease related

log–baseline g0(t) is increasing in the first 2.5 years after diagnosis, decreasing in the time

span between 2.5 and 12 years and staying constant afterwards. In contrast to the natural

mortality risk, the effect of age on the disease related risk is u–shaped and highest with

patients diseased in early life, whereas it is less increased with the initially oldest patients

in the study, who are diagnosed with breast cancer at the age of 87 (Figure 3.4(c)). Finally

the disease related log–hazard is increased by γ1 = 0.95 and γ2 = 2.75 for individuals with

one metastasis (meta1i = 1) and more than one metastasis (meta2i = 1), respectively.

Since the data used in our application were only gathered until the year 2002 we consider

all survival times exceeding the year 2002 as censored, i.e. observed survival times are given

by ti = min(Ti, 2002.0 − pi) with pi denoting the exact date of diagnosis observed in the

real data set. This mechanism results in a censoring rate of approximately 60% (compared

to approximately 67% with the real data set).

The data set generated in this way is initially analyzed with a crude survival model like

in (2.3) that does not distinguish between natural mortality and disease related mortality.

More precisely we wrongly assume a hazard rate as follows:

λi(t, ai, meta1i, meta2i) = exp(g0(t) + fage(ai) + γ1meta1i + γ2meta2i),

where the log–baseline g0(t) and the age–effect fage are modelled as cubic P–splines with 20

knots (with second order random walk smoothness priors and IG(0.001, 0.001) priors for
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effect and the disease related effect of age at time of diagnosis
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the variance components) and γ1 and γ2 are fixed effects with diffuse priors. Expectedly

the estimated log–baseline and the effect of age do not reflect the true disease related

effects but rather present a mixture of the two effects on natural mortality and disease

related mortality. The estimated log–baseline effect is increasing in the first years after

diagnosis, but the subsequent decline is less steep than with the true log–baseline effect

(Figure 3.5(a)). While the disease related log–baseline is decreasing between the 2.5th and

12th year after diagnosis, the natural mortality risk of each single patient is increasing

with time (since people are getting older) and these two effects seem to kind of balance.

As can be seen from Figure 3.5(c) the crude survival model underestimates the risk for

women diagnosed with breast cancer in early years and overestimates the risk of women

diseased at an old age. Again, this high risk for older people results from the increasing

natural mortality risk that is not accounted for separately. Finally also the fixed effects of

the covariates meta1 and meta2 are not estimated correctly, but are rather underestimated

by γ̂1 = 0.68 and γ̂2 = 2.33 (with standard deviations of 0.05 and 0.13, respectively). This

underestimation is due to the fact that only a part of the cases of death (namely those

cases that are related to the disease) are in association with the number of metastases,

whereas the crude survival analysis estimates the average influence based on all cases of

death.

Now we re–analyze the generated data set with a relative survival model as described

in (3.1). That is we assume a hazard rate as follows:

λi(t, ai, meta1i, meta2i) = λe
i (ai + t) + λc

i(t, ai, meta1i, meta2i)

=
exp

(
ai+t−30

10

)

2500
+ exp(g0(t) + fage(ai) + γ1meta1i + γ2meta2i),

where the disease related hazard rate λc
i is modelled as the total hazard rate λi was modelled

before. However, the total hazard is now amended by the known natural mortality rate

λe
i in order to account for cases of death that are not related to the disease of interest. As

displayed in Figures 3.5(b) and (d) the true disease related log–baseline and the effect of

age are now estimated quite satisfactorily, even though the effect of age is a bit too flat

which might be due to the very small number of young patients. Also the fixed effects of

meta1i and meta2i are estimated quite well with γ̂1 = 0.98 and γ̂2 = 2.79 (with standard

deviations of 0.07 and 0.15, respectively).
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3.6 Conclusion

In summary it can be ascertained that the simulation supports the usefulness of the relative

survival approach since it yields results that are highly comparable to those of our appli-

cation. As the simulation has shown, a model that does not account for natural mortality

is not suitable for the identification of prognostic factors for disease specific mortality in

cases where data on causes of death is not available since effects of covariates on natural

mortality and effects on disease specific mortality intermix and can not be separated easily

ex post.



3.6 Conclusion 93

crude survival relative survival

−
7

−
6

−
5

−
4

−
3

g_
0(

t)

0 2 4 6 8 10 12 14
t

(a) log–baseline effect g0(t)

−
7

−
6

−
5

−
4

−
3

g_
0(

t)

0 2 4 6 8 10 12 14
t

(b) log–baseline effect g0(t)

−
1

−
.5

0
.5

1
1.

5
2

f_
ag

e

20 40 60 80
age

(c) centered effect of age

−
1

−
.5

0
.5

1
1.

5
2

f_
ag

e

20 40 60 80
age

(d) centered effect of age

Figure 3.5: Simulation: posterior means (solid line) together with pointwise 80% and 95%

confidence intervals and true disease related effects (dashed lines) for the log–baseline effect

including the intercept term (a,b) and the centered effect of age (c,d). Figures b and d result

from a relative survival analysis.
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Chapter 4

Multi–state models

4.1 Introduction

In the previous chapters we described methods for analyzing data, where only one type of

event is considered. This chapter is concerned with extensions to more general event history

data, that is ascertained by observing individuals over time and contains information on

the times of occurrence of certain events and the types of events that occur.

In the simplest case one may distinguish between several distinct types of terminating

events, i.e. from a statistical point of view each event represents a transition from a transient

state to a certain absorbing state. Here just one transient state, but an arbitrary, finite

number of absorbing states may be considered. Models for this type of data are referred

to as competing risks models. In clinical studies, for example, the competing risks might

be the diverse causes of death.

The most general case that we discuss is given by continuous–time multi–state models.

Here the various events are considered as transitions from one state to another. A state

structure specifies the diverse states (that might be absorbing or transient) and defines

which transitions are possible. Each individual may experience a certain number of events

over time, i.e. pass through the considered, possibly recurrent states, with transition times

being arbitrary and measured on a continuous time–scale. Hence we consider individual

counting processes instead of individual survival times. This type of data is for example

given in clinical studies where the interest lies in analyzing transitions between different

states of health. Note that survival data represent a special type of event history data
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with just one type of event that is a transition from the only transient state to the only

absorbing state.

Multi–state models are discussed widely in the literature. Andersen and Keiding (2002)

provide a good overview over multi–state models with linear predictors in a frequentist set-

ting. Fahrmeir and Klinger (1998) propose a nonparametric multiplicative multi–state haz-

ard model that allows to model nonlinear functional forms of covariates and time–varying

effects, with estimation being based on penalized likelihoods and smoothing splines. While

several models for the analysis of spatially correlated survival data have been proposed

in recent publications, spatial models have received far less attention in the more general

setting of multi–state models.

Within this chapter we will illustrate how the Bayesian methods presented in Chapter

2 for analyzing extended Cox models are carried forward to continuous–time multi–state

models. We present an approach where the hazard or transition rates for the partic-

ular events are modelled via independent structured additive predictors each including

a nonparametrically modelled log–baseline effect as well as transition–specific effects of

(time–independent or time–dependent) covariates with possibly linear, nonlinear, spatially

correlated, time–varying or random effects. In principle different time scales, like e.g. time

since an individual–specific initial point of time and duration in the current state could

be considered as basic times for the various transition rates of a multi–state model. For

simplification however, in what follows we consider time t since an individual–specific ini-

tial point of time as the basic time scale with every transition rate, while other time scales

might be treated as time–dependent, but piecewise constant covariates.

The rest of this chapter is organized as follows. In Section 4.2 we will describe models,

likelihood and priors for unknown functions and parameters. In Section 4.3 we comment

on how the MCMC inference described in Section 2.3 for extended Cox models may be

utilized with multi–state models. In Section 4.4 we illustrate our methods by applications

to medical data on structural valve degeneration (SVD) of biological prostheses where

reoperation and death without previous reoperation act as competing risks, and to sleep–

electroencephalography data with multiple recurrent states of sleep.
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4.2 Models, likelihood, priors and MCMC inference

Within this chapter we will present two alternative representations of multi–state data. We

start off with a notation embedded in the counting process framework (Andersen, Borgan,

Gill and Keiding 1993), which is quite common with multi–state data. The second notation

is more closely related to the representation of survival data as introduced in Subsection

2.2.1.

Consider n individuals and let Nhi, for h = 1, . . . , H, i = 1, . . . , n, denote the counting

processes for events of type h, where Nhi(t) is the number of observed type h events expe-

rienced by the ith individual up to time t. We assume that individual intensity processes

exist and have multiplicative structure

αhi(t) = Yhi(t)λhi{t; zhi(t),xhi(t), shi(t),vhi(t)}, (4.1)

where Yhi(t) are left–continuous 1–0 processes indicating whether or not individual i is

at risk of experiencing a type h event just before time t. The individual type h hazard

or transition rate λhi in (4.1) depends on t and on possibly transition–specific and time–

dependent covariates. As in (2.4), the covariate vector zhi(t) is assumed to have time–

varying effects, xhi(t) consists of continuous covariates with possibly nonlinear effects, shi

denotes a spatial location and vhi(t) comprises covariates with linear effects. Note that

right censored survival data with lifetimes Ti, independent censoring times Ci, i = 1, . . . , n,

observed lifetimes ti = min(Ti, Ci), and censoring indicators δi are a special case with

h = 1, Ni(t) = I(Ti ≤ t, δi = 1), Yi(t) = I(ti ≥ t) and λi(t) as in (2.3) and (2.4).

The transition rate λhi(t) for individual i is assumed to follow a multiplicative model

λhi(t) := λhi(t; zhi(t),xhi(t), shi(t),vhi(t)) = exp(ηhi(t)), (4.2)

with the general form of the predictor given by

ηhi(t) = gh0(t) +

p∑

j=1

ghj(t)zhij +

p+q∑

j=p+1

fhj(xhij(t)) + fh,spat(shi) + v′
hi(t)γh. (4.3)

Here gh0(t) = log (λh0(t)) is the log–baseline effect for transition h, ghj(t) are time–

varying effects of covariates zhj(t), fhj(xhj(t)) is the nonlinear effect of xhj(t), fh,spat is

the spatially correlated effect of sh, and γh is the vector of usual linear fixed effects.
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As a further extension, i.i.d. random effects (also referred to as frailty effects) and ran-

dom slopes could be introduced in (4.3), but we omit this here. For given predictors

η = {ηhi, h = 1, . . . , H, i = 1, . . . , n}, the individual likelihood Li(η) and the likelihood

L(η) are given by

Li(η) =
H∏

h=1

∫ ∞

0

λhi(s)dNhi(s) · exp

{
−

∫ ∞

0

Yhi(s)λhi(s)ds

}
(4.4)

L(η) =
n∏

i=1

Li(η).

Note that the first integral in (4.4) always reduces to a sum because Nhi(s) is a step function.

Numerical problems arise in the evaluation of the second integral in (4.4). Again, only if

time–varying functions in the predictor are step functions, this integral also reduces to a

sum (compare Section 2.3). Otherwise numerical integration in form of the trapezoidal

rule is employed as illustrated in Figure 1.6 in Chapter 1.

An alternative formulation of the likelihood, that shows the close connection to survival

models more clearly, arises from considering multi–state data where for each individual i

times of occurrences of certain events ti1, ti2, . . . , tini
(as well as possibly a left truncation

time ti0) and H–dimensional event–type indicators δi1, δi2, . . . , δini
are given, that indicate

which type of event occurred and are defined as follows

δikh =

{
1 individual i experienced a type h event at time tik

0 else

for k = 1, . . . , ni and h = 1, . . . , H. Note that δini
= (0, . . . , 0) if an observation is right

censored, i.e. if individual i is in a transient state at time tini
but for some reason the

observation is discontinued at that point of time. Furthermore a state structure has to be

given that defines which state transitions are possible and hence defines the risk processes

Yhi(t). Via this kind of notation the individual likelihood may be alternatively written as

Li(η) =
H∏

h=1

ni∏

k=1

[
λhi(tik)

δikh · exp

{
−

∫ tik

ti,k−1

Yhi(s)λhi(s)ds

}]
. (4.5)

From this equation it can be seen how the likelihood of such a multi–state model is mul-

tiplicatively composed of likelihood contributions of according survival models (for left

truncated data) where one of the H events is modelled at each.
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As regards assumptions about priors for parameters and functions and hyperpriors for

variance components we may refer to Subsection 2.2.1 since we do not assume correla-

tions of any kind between transition rates and the priors do not depend on the type h

of transition (see Conclusion for a short discussion of this assumption). Hence with each

single transition rate may be proceeded as described in Chapter 2 for the hazard rate of

a survival model, i.e. each transition–specific log–baseline effect gh0 as well as every un-

known function fhj and ghj might for example be modelled via a Bayesian P–spline, while

diffuse priors are assumed for fixed effects parameters γh and MRF priors are our stan-

dard choice for structured spatial effects fh,spat. In the framework of the generic notation

as described for survival models in (2.6), after reindexing we can represent the predictor

vectors ηh=(ηh1(t1,1), . . . , ηh1(t1,n1), . . . , ηhn(tn,1, . . . , ηhn(tn,nn
))′ as

ηh = Vhγh + Zh0βh0 + . . . + Zhmh
βhmh

. (4.6)

Priors for functions and spatial components are then defined by suitable design matrices

Zhj, h = 1, . . . , H, j = 0, . . . ,mh, and a prior for each corresponding parameter vector βhj.

The general form of a prior for βhj is given by

p(βhj|τ
2
hj) ∝ τ

−rhj

hj exp

(
−

1

2τ 2
hj

β′
hjKhjβhj

)
, (4.7)

where Khj is an adequate precision or penalty matrix of rank(Khj) = rhj, shrinking

parameters towards zero or penalizing too abrupt jumps between neighboring parameters.

We assign inverse Gamma priors IG(ahj; bhj)

p(τ 2
hj) ∝

1

(τ 2
hj)

ahj+1
exp

(
−

bhj

τ 2
hj

)
(4.8)

to all variances, with ahj = bhj = 0.001 being our standard choice.

4.3 Markov Chain Monte Carlo inference

As with survival models, full Bayesian inference via MCMC simulation is again based on

updating full conditionals of single parameters or blocks of parameters (each with para-

meters corresponding to the same transition rate λhi), given the rest of the data. For
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updating the parameter vectors βhj, which correspond to the time–independent functions

fhj, as well as spatial effects β
spat
h , which correspond to spatial functions fh,spat, fixed effects

γh and random effects bh, we use the slightly modified version of the MH–algorithm based

on iteratively weighted least squares (IWLS) proposals, which is described in Section 2.3

and the Appendix, respectively, for survival models. The full conditional of a parameter

vector βhj with prior p
(
βhj|τ

2
hj

)
is for example given by

p(βhj|·) ∝ L(βhj) · p(βhj|τ
2
hj)

=
n∏

i=1

H∏

h̃=1

ni∏

k=1

[
λh̃i(tik)

δ
ikh̃ · exp

{
−

∫ tik

ti,k−1

Yh̃i(s)λh̃i(s)ds

}]
· p
(
βhj|τ

2
hj

)

∝
n∏

i=1

ni∏

k=1

[
λhi(tik)

δikh · exp

{
−

∫ tik

ti,k−1

Yhi(s)λhi(s)ds

}]
· p
(
βhj|τ

2
hj

)

=
n∏

i=1

ni∏

k=1

[
Lhik

(
βhj

)]
· p
(
βhj|τ

2
hj

)
,

at which the second proportionality holds because the transition rates λh̃i, h̃ 6= h do not

depend on βhj. Note that for Yhi = 1 the likelihood contribution Lhik has the same

structure as an individual likelihood contribution Li for a left–truncated survival time

(compare equations (1.6) and (2.5)). For Yhi = 0 it follows that δikh = 0, since a type h

transition can only be observed if the individual is at risk for a type h transition, i.e. if

Yhi = 1. Hence Yhi = 0 implies that Lhik = 1. As a consequence of these insights IWLS

proposals for the parameter vectors βhj may be derived in the same manner as described in

Section 2.3 and the Appendix, respectively. Thus, a new value β
p
hj is proposed by drawing

a random sample from a high dimensional multivariate Gaussian distribution q(βc
hj,β

p
hj)

which is obtained from a quadratic approximation of the log–likelihood by a second order

Taylor expansion with respect to the current value of the chain βc
hj. The precision matrix

and mean of this proposal distribution are given by

P hj = Z ′
hjW h(β

c
hj)Zhj +

1

τ 2
hj

Khj, mhj = P−1
hj Z ′

hjW h(β
c
hj)(ỹh − η̃h).
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Here, η̃h = ηh−Zhjβhj, W h(β
c
hj) = diag(wh,1,1, . . . , wh,n,nn

) is the weight matrix for IWLS

with weights calculated from the current state βc
hj as follows

whik =

∫ tik

ti,k−1

Yhi(s)λhi(s)ds, i = 1, . . . , n, k = 1, . . . , ni.

The vector of working observations ỹh is given by

ỹh = W−1
h (βc

hj)∆h − 1l + ηh

with ∆h = (δ1,1,h, . . . , δn,nn,h)
′. The proposed vector β

p
hj is accepted as the new state of

the chain with probability

α(βc
hj,β

p
hj) = min

(
1,

p(βp
hj | ·)q(β

p
hj,β

c
hj)

p(βc
hj | ·)q(β

c
hj,β

p
hj)

)
.

For the parameters βhj corresponding to the functions gh0(t), ..., ghp(t) depending on

time t, we again adopt the computationally faster MH–algorithm based on conditional

prior proposals, that only requires evaluation of the log–likelihood, not of derivatives (see

Fahrmeir and Lang (2001a) for details).

The full conditionals for the variance parameters τ 2
hj are (proper) inverse Gamma with

parameters

a′
hj = ahj +

1

2
rhj and b′hj = bhj +

1

2
β′

hjKhjβhj,

Updating can be done by simple Gibbs steps, drawing random numbers directly from the

inverse Gamma densities.

4.4 Application

4.4.1 Biological valve prostheses

Our first application is on data from 455 patients who underwent biological mitral valve

replacement (MVR) at the German Heart Center in Munich between 1974 and 2000. This

data has been analyzed before by Kaempchen et al. (2003) and more details about the

medical background may be found therein. The aim of our analysis is to assess the influence

of several covariates on reoperation free survival, at which death and reoperation due to

a failure of the biological valve are considered as competing risks. The state structure of
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this competing risks model is illustrated in Figure 4.1. Note that death after reoperation

is not of interest with this analysis and is therefore not considered. Within the observation

period 212 patients died without a previous reoperation and 125 patients had to undergo

a reoperation; the remaining 118 observations are right–censored. Covariates that are

given include the sex and the age of patients at valve replacement as well as the diagnosis

(insufficiency, narrowness or malformation of the mitral valve) and information on the

initial valve replacement, namely the date of implantation and whether or not an additional

aortocoronary venous bypass (ACVB) was accomplished. Including all the covariates, the

transition rates λri (reoperation) and λdi (death without previous reoperation) are modelled

as follows

λri(t) = exp [gr0(t) + fr,age(agei) + fr,date(datei)

+γr1 · sexi + γr2 · diag1i + γr3 · diag2i + γr4 · acvbi]

λdi(t) = exp [gd0(t) + fd,age(agei) + fd,date(datei)

+γd1 · sexi + γd2 · diag1i + γd3 · diag2i + γd4 · acvbi] ,

where t is time since valve replacement, gh0, h = r, d are the log–baseline effects, fh,age and

fh,date are nonlinear effects of the age of a patient at valve replacement and of the date

of valve replacement, respectively. All of these possibly nonlinear effects are modelled via

cubic P–splines with 20 knots. The remaining covariates are dummy–coded: sex = 1 for

female, and sex = 0 for male, diag1 = 1 if the patient was diagnosed with an insufficiency

of the mitral valve, diag1 = 0 else, diag2 = 1 if the patient was diagnosed with a

narrowness of the mitral valve, diag2 = 0 else and acvb = 1 if an additional ACVB

was accomplished, acvb = 0 else. Diffuse priors were assumed for the parameters γ.

Figure 4.2 displays the estimated nonlinear effects. Concerning the risk of a reoperation

we observe that the risk is highest between ca. 9.5 and 16.5 years after the initial valve

replacement, while it is lower in the first 9.5 years and after 16.5 years of reoperation free

survival, at which confidence intervals become quite broad for t > 20 years. The risk of

death without previous reoperation on the other hand is very high directly after the valve

replacement and is steeply decreasing within the first 2 years and slowly increasing from

that time on. The initially high risk might arise from consequences of the operation or

incompatibilities, while the slow increase for t > 2 is due to aging. The effect of age at
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Figure 4.1: State structure of the competing risks model for the analysis of reoperation free

survival after biological mitral valve replacement.

valve replacement turns out to be rather linear with both predictors. While the risk of a

reoperation is decreasing with increasing age it is vice versa with the risk of death without

previous reoperation. This result seems quite perspicuous. The lifespan of patients that

got a biological valve prostheses at the age of 80 or more, for example, is likely to be shorter

than the endurance of the valve prostheses. The date of the valve replacement does not

seem to have an influence on any of the two risks. In the first instance this appears to be

very disappointing since it would mean there has been no medical progress within 26 years.

However, medical progress involved that over the years more and more patients with very

severe illnesses could be operated, that would not have been operated in earlier years since

there would have been no chances of success. Consequently the composition of patient

groups with respect to the severity of the illness is heterogeneous over the years. Hence

our result is likely to be due to the fact that the severity of the illness is not considered with

our analysis as it is only recorded with 116 out of those 455 patients. Concerning the fixed

effects we observe that an additional ACVB reduces the risk of a reoperation significantly

on the basis of a 80% significance level (γ̂r4 = −1.32, with a standard deviation of 0.79),

while the remaining fixed effects are not significant (compare Table 4.1).

4.4.2 Human sleep processes

Our second application is about analyzing human sleep processes. The data set arises from

recordings of electroencephalographic (EEG) data during one night taken for a group of 27
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Figure 4.2: MVR data: posterior mean together with 80% and 95% credible intervals of

the centered log–baseline effects (a) and (b), the effects of age (c) and (d), and the effects

of date (e) and (f) on the competing risks reoperation (left panel) and death (right panel).
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λr λd

mean std. dev. mean std. dev.

sex 0.17 0.22 -0.01 0.15

diag1 -0.29 0.25 0.14 0.18

diag2 0.07 0.23 -0.13 0.21

acvb -1.32 0.79 0.11 0.20

Table 4.1: MVR data: posterior mean estimations of fixed effects γ together with standard

deviations.

patients at the Max–Planck–Institut für Psychiatrie in Munich. Sleep–EEG data describe

the nocturnal sleep rhythm, usually classified in several stages such as awake, non–rapid

eye movement (NREM) and rapid eye movement (REM). Such sleep states indicating the

depth of sleep are recorded every 30 seconds. In addition, secretion of several hormones is

measured every 10, 20 or 30 minutes. The hormone cortisol is for example supposed to be

interrelated with the sleep structure. Figure 4.3 exemplarily displays the processes of sleep

states and nocturnal cortisol secretion for two patients. Without any kind of smoothing

it is difficult to identify typical sleep patterns. Furthermore individual–specific sleeping

customs must be considered in order to detect population effects.

Besides a dynamic analysis of the transition intensities between the distinct states,

a main concern is to investigate the question whether high cortisol concentrations have

a positive effect on the propensity to REM sleep, which has been hypothesized in simple

correlation and variance analyses. It is also of interest to allow this effect to vary over night.

Due to the very low number of direct transitions from AWAKE to REM, we consider only

a somewhat reduced state structure, which is illustrated in Figure 4.4 and comprises the

following four types of events

h = 1 transition from AWAKE to SLEEP, (AS)

h = 2 transition from SLEEP to AWAKE, (SA)

h = 3 transition from REM to NREM, (RN)

h = 4 transition from NREM to REM, (NR)

where SLEEP implies REM and NREM sleep states. In principle it might be of interest
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Figure 4.3: Individual sleep processes for two patients (i = 1 and i = 21, respectively) together

with the corresponding cortisol secretion.
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Figure 4.4: State structure for the analysis of human sleep processes.

to separately analyze the transitions AWAKE → REM, AWAKE → NREM and NREM

→ AWAKE, REM → AWAKE, respectively, but our data pool is not sufficient for such

a detailed analysis. In order to achieve some synchronization we take time t since sleep

onset as basic time scale. For the analysis of the possibly time–varying effect of high

cortisol secretion on the transition intensity from NREM to REM, we generate the time–

dependent dummy coded covariate ci(t), which takes the value one if the concentration

of cortisol is higher than 90 nmol/l at time t with patient i and the value zero otherwise.

Observed concentrations of cortisol range from 1 to 450 nmol/l, with 90 nmol/l being the

70% quantile. Based on the previous considerations, we analyze a multi–state model with

the following four transition rates

λhi = exp (gh0(t) + bhi) , h = AS, SA,RN

λhi = exp (gh0(t) + ci(t) · gh1(t) + bhi) , h = NR

at which again cubic P–spline priors are assumed for the transition–specific log–baseline

effects gh0(t), h = AS, SA,RN,NR, as well as for the time–varying effect of a high cortisol

level on the transition from NREM to REM gNR,1(t). The term bhi denotes transition–

and patient–specific random effects with i.i.d. Gaussian priors bhi ∼ N(0, τ 2
hb).

Estimated results for the time–varying baseline effects gh0(t) for the transitions h =



108 4. Multi–state models

AS, SA,RN,NR and the time–varying effect of a high cortisol level on the transition from

NREM to REM gNR,1(t) are displayed in Figure 4.5. As was to be expected the tendency to

fall asleep again is particularly low for patients who awake in the beginning and at the end

of the night, i.e. within the time spans t < 1 and t > 7, respectively. We further conclude

from our results that the propensity to fall asleep is notably high around t ∈ [2, 3.3] and

seems to have a local minimum around five hours after sleep onset. By contrast, the

tendency to wake up is roughly u–shaped and rather high in the beginning and especially

high at the end of the night while it is lowermost around t ∈ [4, 6]. The intensity for

the transition from REM to NREM sleep is highest directly after sleep onset and is then

decreasing until t ≈ 4, increasing again until t ≈ 6 and staying rather constant from that

time on. Concerning the inverse transition from NREM to REM sleep, the log–baseline

effect gNR,0(t) marks the effect for a low level of cortisol, while gNR,1(t) describes deviations

from this effect if the level of cortisol is high, i.e. exceeds 90 nmol/l. In case the cortisol

level is low, the intensity for a transition from NREM to REM is initially very low, but

steeply increasing within the first hour after initial sleep onset followed by some ups and

downs with peaks at t ≈ 1.3, t ≈ 3.0, t ≈ 4.9 and (possibly) t ≈ 7.8, i.e. we observe a cyclic

developing with two pronounced peaks in the first half of the night and two poor peaks

in the second half of the night. Since high levels of cortisol appear very rarely within the

first hours after sleep onset, the (pointwise) credible intervals for the time–varying effect

gNR,1(t) of ci(t) become quite broad for t < 2. Hence we can not draw any conclusions for

this time span. Figure 4.5 f) however, which displays the time–varying effect gNR,1(t) for

t > 4, exhibits an increased propensity to REM sleep for a time span around six hours after

sleep onset. This is to say that our analysis only supports the hypothesis posted above

(high cortisol concentrations have a positive effect on the propensity to REM sleep) for a

time span around t ∈ [5.5, 6.8]. The estimated individual– and transition–specific random

effects are displayed in Figure 4.6. There are several persons that show especially high or

low tendencies for one or more transitions. Patient i = 5 for example has an exceptionally

high tendency to awake, coming along with an exceptionally low tendency to fall asleep and

a low propensity to REM sleep. The individual sleep process of patient i = 5 is displayed

in Figure 4.7 and supports those results since it clearly differs from the prevailing sleep

patterns as exemplarily displayed in Figure 4.3.
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Figure 4.5: Human Sleep Processes: Posterior mean estimates for the time–dependent effects

gh0(t), h = AS, SA, RN, NR and gNR,1(t) together with 80% and 95% credible intervals.
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Figure 4.6: Human Sleep Processes: Posterior mean estimates (black dots) of the transition–

and individual–specific random effects bhi for h = AS, SA, RN, NR and i = 1, . . . , 27. Grey

crosses denote significance on a 95% level with -1: significant negative effect, 0: no significant

effect and +1: significant positive effect.
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Figure 4.7: Individual sleep process for patient i = 5.

4.5 Conclusion

Within this chapter we have shown how the geoadditive survival models presented in Chap-

ter 2 are generalized to multiplicative continuous–time multi–state models. Our approach

allows the estimation of transition–specific nonlinear log–baseline effects as well as time–

varying effects of covariates, nonlinear effects of continuous covariates and an appropriate

consideration of unobserved unit– or cluster–specific and spatial heterogeneity.

So far we have only considered transition–specific effects and did not assume any corre-

lation structure between transition rates. With some applications however, it might make

sense to assume that unit– or cluster–specific random effects or structured spatial effects

are correlated across (some or all) transition rates or are even transition–independent.

Extensions towards this aspect are topics of future work.
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Chapter 5

Bayesian survival and multi–state

analysis with BayesX: a tutorial

All models presented in this thesis are implemented in the statistical software package

BayesX. The focus of this chapter is to demonstrate how complex survival data and multi–

state data may be analyzed within BayesX based on MCMC techniques. For this purpose

the estimation of some of the survival models presented in Subsection 2.5.3 to analyze

waiting times on CABG as well as the estimation of the relative survival model presented

in Section 3.5 on the basis of simulated breast cancer data, and the estimation of the

multi–state model presented in Subsection 4.4.2 to analyze human sleep processes are

described in detail. For a description of the data sets we refer to the according subsections.

Note that in addition to MCMC techniques BayesX also provides restricted maximum

likelihood (REML) techniques as described in Kneib (2006) for the estimation of crude

survival models and multi state models.

This chapter is organized as follows. After some comments on the overall capabilities

of BayesX and the general structure of this software package given in Section 5.1 and in

Section 5.2, respectively, we start with the analysis in Section 5.3, which is concerned with

a description on how to create a dataset object to incorporate, handle and manipulate the

data. Since we want to estimate a spatial effect of the ward with the CABG data, we need

the boundaries of the districts to compute the neighborhood information of the map of

London and Essex. This information will be stored in a map object. Section 5.4 describes

how to create and handle these objects. Estimation of the regression models is carried
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out in Section 5.5 using bayesreg objects. Section 5.6 describes post estimation commands

which can be used to investigate the sampling paths and the autocorrelation functions of

the estimated parameters.

5.1 BayesX

BayesX is a public domain software package for performing complex full and empirical

Bayesian inference to estimate flexible regression models with structured additive predic-

tors. Functions for handling and manipulating data sets and geographical maps, and for

visualizing results are added for convenient use. BayesX is available at

http://www.stat.uni-muenchen.de/~bayesx

An overview over the capabilities of BayesX is given in Brezger, Kneib and Lang (2005).

For more detailed information on all available features and the methodological background

see the manuals that are provided in addition to the software BayesX and the references

given therein.

5.2 Getting started

After having started BayesX, a main window with four sub–windows appears on the screen.

These are a command window for entering and executing code, an output window for

displaying results, a review window for easy access to past commands, and an object browser

that displays all objects currently available.

BayesX is object oriented although the concept is limited, i.e. inheritance and other

concepts of object oriented languages like C++ or S–plus are not supported. For every

object type a number of object–specific methods may be applied to a particular object.

The syntax for generating a new object in BayesX is

> objecttype objectname

where objecttype is the type of the object, e.g. dataset, and objectname is the name

to be given to the new object.
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5.3 Dataset objects

In a first step we read the available data set information into BayesX. This is done by

creating three dataset objects named cabg, cancer and sleep for the CABG data, the

(simulated) breast cancer data and the human sleep data, respectively, by typing:

> dataset cabg

> dataset cancer

> dataset sleep

in the command window. We store the data in cabg, cancer and sleep using the method

infile. If the data is provided in the external ASCII files c:\data\cabg.raw, c:\data\

cancer.raw and c:\data\sleep.raw, respectively, we may type

> cabg.infile using c:\data\cabg.raw

> cancer.infile using c:\data\cancer.raw

> sleep.infile using c:\data\sleep.raw

Note, that this command supposes that the variable names are given in the first row of

the according external file. In case the variable names are not given in the file we would

have to supply them right after the keyword infile. If a data set has more than 10000

observations it is recommended to set the option maxobs to the according number of rows.

This option allows BayesX to allocate enough memory to store all the data right from the

start, which speeds up the execution time of the infile command.

After having read in the data set information we can inspect the data visually. Exe-

cuting the command

> cabg.describe

for example opens an object–viewer window containing the according CABG data in form

of a spreadsheet. This can also be achieved by double–clicking on the according dataset

object in the object browser.
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Further methods allow to examine the variables in the dataset object. For a categorial

variable the tabulate command may be used to produce a frequency table and for con-

tinuous variables the descriptive command prints several characteristics of the variable

in the output window.

There are also methods to manipulate variables and generate new variables in a dataset

object. Assume for example that cagb includes the categorical variable numdv that takes the

values 1,2 and 3 and indicates the number of diseased vessels. Then the dummy variables

dv2 and dv3 that are used for the estimation may be created and added to cabg using

method generate. This might be done by executing the following commands

> cabg.generate dv2=0

> cabg.replace dv2=1 if numdv=2

> cabg.generate dv3=0

> cabg.replace dv3=1 if numdv=3

or in condensed form by executing the commands

> cabg.generate dv2=(numdv=2)

> cabg.generate dv3=(numdv=3)

Here (numdv=2) may be interpreted as the (row–wise) query ”is numdv equal to 2 or not?”

(written as numdv==2 with some programming languages). Hence the first command causes

BayesX to add a new covariate dv2 to the dataset object cabg, that takes the value TRUE

coded as 1 if the corresponding row of numdv equals 2 and the value FALSE coded as 0

otherwise.

5.4 Map objects

In the following we want to estimate a spatially correlated effect of the ward a patient with

coronary artery disease lives. Therefore we need the boundaries of the wards in London and

Essex to compute the neighborhood information of the map of this part of Great Britain.

We therefore create a map object
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> map m

and read in the boundaries using the infile command of map objects :

> m.infile using c:\data\LondonEssex.bnd

Having read in the boundary information, BayesX automatically computes the neighbor-

hood matrix of the map. The file following the keyword using is assumed to contain the

boundaries in form of closed polygons. To give an example we print a small part of the

boundary file of London and Essex. The map corresponding to the section of the boundary

file can be found in Figure 5.1.

...

"8849",37

532351,181179

532407,181166

532404,181147

532399,181143

532399,181136

532409,181131

532412,181116

532418,181112

532424,181109

532446,181106

532446,181082

532463,181082

532511,181083

532532,181082

532528,181060

532530,181050

532558,181064

532579,181072

532572,181051

532571,181045

532563,181013

532561,180999

532608,180984

532589,180926

532502,180952

532491,180920

532445,180932

532448,180959

532450,180969

532383,180991
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532373,180941

532345,180944

532310,180952

532320,181015

532324,181059

532350,181163

532351,181179

...

For each region of the map the boundary file must contain the identifying name of the

region, the number of vertices the polygon consists of and the vertices of the polygons that

form the boundary of the region. The first line always contains the region code surrounded

by quotation marks and the number of vertices the polygon of the region consists of. Note

that the first vertex (532351,181179 with our example) has to be repeated at the end to

obtain a closed polygon and hence the number of vertices of a pentagon would for example

be 6. The region code and the number of vertices must be separated by a comma. The

subsequent lines contain the vertices that are to be connected by straight lines and thus

form the boundary of the region. The vertices are represented by the according coordinates,

which must be separated by a comma. Compare Chapter 5 of the complete BayesX manual

for a detailed description of some special cases, e.g. regions divided into subregions.

Figure 5.1: Corresponding graph of the section of the boundary file

Map objects may be visualized using method describe:

> m.describe

resulting in the graph shown in Figure 5.2. Additionally, describe prints further infor-

mation about the map object in the output window including the name of the object, the

number of regions, the minimum and maximum number of neighbors and the bandwidth

of the corresponding adjacency or neighborhood matrix:
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MAP m

Number of regions: 488

Minimum number of neighbors: 1

Maximum number of neighbors: 14

Bandsize of corresponding adjacency matrix: 39

Figure 5.2: The wards of London and Essex.

The numerical complexity associated with the estimation of structured spatial effects us-

ing MCMC techniques depends essentially on the structure of the neighborhood matrix.

Often the geographical information stored in a boundary file does not represent the ”ideal”

ordering (as regards to the estimation problem) of the districts or regions. Therefore it

may be useful to reorder the map using method reorder:

> m.reorder

Usually reordering results in a smaller bandwidth although the bandwidth is not the cri-

terion that is minimized by reorder. Instead the envelope of the neighborhood matrix is

minimized (compare George and Liu, 1981).

In order to avoid reordering the map object every time you start BayesX it is useful

to store the reordered version in a separate file. This can be achieved using the outfile

command of map objects :

> m.outfile, replace using c:\data\LondonEssexSort.bnd
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The reordered map is now stored in the given file. Note, that specifying the option replace

allows BayesX to overwrite an existing file with the same name. Without this option an

error message would be raised if the given file is already existing.

Reading the boundary information from an external file and computing the neighborhood

matrix may be a computationally intensive task if the map contains a large number of

regions or if the polygons are given in great detail. To avoid doing these computation

in every BayesX session, we store the neighborhood information in a so–called graph file

using method outfile together with the graph option:

> m.outfile, replace graph using c:\data\LondonEssexSort.gra

For more information on graph files we refer to Chapter 5 of the complete BayesX manual.

5.5 Bayesreg objects

We start with a detailed description of the estimation of survival models presented in

Subsection 2.5.3 to analyze waiting times on CABG. The description of the estimation of

relative survival models presented in Section 3.5, and the description of the multi–state

models presented in Subsection 4.4.2 to analyze human sleep processes follow thereafter.

5.5.1 Survival models

To estimate a survival model using MCMC techniques we first create a bayesreg object

which we name surv_m8:

> bayesreg surv_m8

By default estimation results are written to the subdirectory output of the installation

directory. In this case the default filenames are composed of the name of the bayesreg

object and the type of the specific file. Usually it is more convenient to store the results

in a user–specified directory. To define this directory we use the outfile command of

bayesreg objects :

> surv_m8.outfile = c:\data\m8
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Note, that outfile does not only specify a directory but also a base filename (the char-

acters ’m8’ in our example). Therefore executing the command above leads to storage of

the results in the directory ’c:\data’ and all generated filenames start with the characters

’m8’.

In addition to parameter estimates BayesX also gives acceptance rates for the different

effects and some further information on the estimation process. In contrast to parameter

estimates this information is not stored automatically but is printed in the output window.

Therefore it is useful to store the contents of the output window. This can be achieved

automatically by opening a log file using the logopen command

> logopen, replace using c:\data\cabg_log.txt

After opening a log file, every information written to the output window is also stored in

this file. Option replace allows BayesX to overwrite an existing file with the same name

as the specified log file. Without replace results are appended to an existing file.

Our dataset object cabg contains the imported variables ward (electorial ward a patient

resides in), time (time since diagnosis), delta (indicator of non–censoring), sex (1=male,

0=female), numdv (number of diseased vessels) and age (age of patient at time of diagnosis)

as well as the newly generated dummy variables dv2 and dv3. Models 7 and 8 presented

in Subsection 2.5.3 correspond to a continuous–time survival model with hazard rate:

λ(t) = exp(g0(t) + fage(age) + fspat(ward) + γ1sex + γ2dv2 + γ3dv3),

The log–baseline effect g0 and the continuous covariate age are assumed to have a possibly

nonlinear effect on the hazard and are therefore modelled nonparametrically via P–splines.

The effect of the spatial covariate ward is assumed to be spatially correlated, at which model

7 assumes a GRF prior and model 8 assumes a MRF prior. Note that the neighborhood

matrix and possible weights associated with the neighbors are obtained from the map object

m (compare Section 5.4).

To estimate model 8 (MRF prior for the spatial effect) we use method regress of bayesreg

objects :

> surv_m8.regress delta = time(baseline) + age(psplinerw2)

+ ward(spatial,map=m,proposal=iwlsmode) + sex + dv2 + dv3,

family=cox iterations=30000 burnin=10000 step=20 predict using cabg



122 5. Bayesian survival and multi–state analysis with BayesX: a tutorial

Note that with family=cox BayesX expects the indicator of non–censoring (named delta

in our example) to be entered on the left side of the equals sign. This indicator has to

be a 0–1 coded variable taking the value 0 if an observation is censored and the value 1

otherwise. Furthermore a baseline term has to be entered on the right side of the equals

sign, which is modelled by a P–spline with second order random walk prior. Note that the

variable time which indicates the observed survival time has to be greater than zero. In

case the global option begin is not specified after the comma, it is assumed that each row

in the data set represents an observation from t = 0 to t = time, i.e. no left truncation

and time–varying covariates are present. The effect of age is also modelled by a P–spline

with second order random walk prior, which is specified by psplinerw2. By default, the

degree of a spline is 3 and the number of inner knots is 20. Full details about all possible

options for P–splines are given in Section 7.1 of the BayesX reference manual. Concerning

the spatial covariate ward, the term spatial defines a MRF prior where the neighborhood

matrix is specified via the option map. The additional option proposal may be used to

specify the type of proposal density, with proposal=iwlsmode indicating an iteratively

weighted least squares (IWLS) proposal based on posterior mode estimation (see Brezger

and Lang (2006) for details). With this example iwlsmode turned out to yield higher

acceptance rates than the IWLS proposal based on the posterior mean which would be

used by default.

Options iterations, burnin and step define properties of the MCMC–algorithm. The

total number of MCMC iterations is given by iterations while the number of burn in

iterations is given by burnin. Therefore we obtain a sample of 20000 random numbers

with the above specifications. Since, in general, these random numbers are correlated, we

do not use all of them but thin out the Markov chain by the thinning parameter step.

Specifying step=20 as above forces BayesX to store only every 20th sampled parameter

which leads to a random sample of length 1000 for every parameter in our example. With

iterations=30000 the simulation run time of model 8 is about 40 minutes (Pentium 4

CPU 2.8 GHz).

If option predict is specified, samples of the unstandardized deviance, the effective number

of parameters pD, and the deviance information criterion DIC of the model are computed,

see Spiegelhalter et al. (2002). In addition, estimates for the linear predictor and the

expectation of every observation are obtained.
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For the estimation of model 7 (GRF prior with 100 knots for the spatial effect) we enter

the commands

> bayesreg surv_m7

> surv_m7.outfile = c:\data\m7

> surv_m7.regress delta = time(baseline) + age(psplinerw2)

+ ward(geokriging,map=m,nrknots=100) + sex + dv2 + dv3,

family=cox iterations=30000 burnin=10000 step=20 predict using cabg

For clarity we created a new bayesreg object surv_m7 and specified the base filename m7

by the outfile command. Note that using the bayesreg object surv_m8 without changing

the base filename would also be possible, but would lead to overwriting result files. With

iterations=30000 the simulation run time of model 7 is about 700 minutes (Pentium 4

CPU 2.8 GHz).

Recall the hazard rate of Model 10

λ(t) = exp (g0(t) + fage(age) + fspat(ward) + γ1sex + g1(t)dv2 + g2(t)dv3) ,

where the effect of the number of diseased vessels is modelled as a time–varying effect.

This model is estimated as follows

> bayesreg surv_m10

> surv_m10.outfile = c:\data\m10

> surv_m10.regress delta = time(baseline) + age(psplinerw2)

+ ward(spatial,map=m,proposal=iwlsmode) + sex

+ dv2*time(baseline) + dv3*time(baseline),

family=cox iterations=30000 burnin=10000 step=20 predict using cabg

The third command specifies cubic P–spline priors for the time–varying effects of the

dummy variables dv2 and dv3. With iterations=30000 the simulation run time of model

10 is about 70 minutes (Pentium 4 CPU 2.8 GHz).

To shed some light on the influence of different choices for hyperpriors we presented some

additional results of model 8 that were obtained with other choices of IG(a; b) priors. The

following command may for example be used to specify uniform priors on the standard

deviations (i.e. set a = −0.5 and b = 0)
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> bayesreg surv_m8u

> surv_m8u.outfile = c:\data\m8_uniform

> surv_m8u.regress delta=time(baseline,a=-0.5,b=0)+age(psplinerw2,a=-0.5,b=0)

+ward(spatial,map=m,proposal=iwlsmode,a=-0.5,b=0)+sex+dv2+dv3,

family=cox iterations=12000 burnin=2000 step=10 predict using cabg

In case the options a and b are not specified the parameters a and b are set to the default

values a = b = 0.001.

In addition to the information being printed to the output window results for each effect

are written to external ASCII files. The names of these files are given in the output window.

By default the files contain the posterior mean and median, the posterior 2.5%, 10%, 90%

and 97.5% quantiles, and the corresponding 95% and 80% posterior probabilities of the

estimated effects. The posterior quantiles and posterior probabilities may be changed by

the user using the global options level1 and level2.

The output window also contains information on how to visualize the estimation results.

For more details on visualizing estimation results we refer to Chapter 9 of the BayesX

reference manual.

Having finished the estimation we may close the log file by typing logclose. Note, that

the log file is closed automatically when you exit BayesX.

5.5.2 Relative survival analysis

To estimate the relative survival model presented in Section 3.5 we again start by creating

a bayesreg object by typing

> bayesreg rs

Note that we could also use the existing bayesreg object surv, but we prefer to create a

new one named rs for reasons of clarity. To store the results in the directory c:\data and

to specify rs as a base filename we enter the command

> rs.outfile = c:\data\rs

A log file where the contents of the output window are stored is then opened by
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> logopen, replace using c:\data\breastcancer_log.txt

The first lines of the dataset object cancer are given by

time delta age meta1 meta2 age_plus_time lambda_e

5.718018 0 46.6694 0 0 52.38742 .0037526

7.738525 0 50.91581 0 0 58.65434 .0070227

3.518052 1 63.14305 1 0 66.6611 .0156398

.5538804 1 78.95688 1 0 79.51076 .0565308

7.741333 0 80.16427 0 0 87.9056 .1308785

5.816528 0 82.85284 0 0 88.66936 .1412662

4.694092 0 83.3922 0 0 88.08629 .1332648

.9661008 1 83.95345 0 1 84.91956 .0970926

4.458618 0 80.96372 1 0 85.42234 .102099

. . . . . . .

. . . . . . .

. . . . . . .

where time is time t since diagnosis (in years), delta is the indicator of non–censoring,

which takes the value one if the patient died and the value zero if the observation is right–

censored. The covariate age denotes the age of the patient at time of diagnosis and the

dummy variables meta1 and meta2 indicate whether the number of metastases is one or

more than one, respectively. The variable age_plus_time is an auxiliary variable that

was used to generate the expected hazard rate. It is given by the sum of age and time

and denotes the age of the patient at the end of the observation, i.e. the age at death

or at the time, when the observation was right–censored. Finally, lambda_e denotes the

expected hazard rate, which with our example is given by lambda_e(age_plus_time) =

exp ((age_plus_time− 30)/10) /2500. Note that a dataset object used for the estimation

of a relative survival model has to contain the expected hazard rate λe, that usually depends

on the age at death, the sex of a patient and possibly the date of death or further covariates.

Typically this variable will have to be generated in advance with the help of mortality

tables. Here it is important to consider that the observed survival time t and the hazard

rate λe refer to the same time unit. Mortality tables usually contain annual data. In that

case the survival times would have to be given in years as well.
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The model presented in Section 3.5 corresponds to a relative survival model with hazard

rate:

λ = λe(age, t) + λc(t, age, meta1, meta2)

= λe(age + t) + exp(g0(t) + fage(age) + γ1meta1 + γ2meta2),

where the hazard rate is additively composed of the known expected hazard rate λe and

the unknown disease–specific hazard rate λc. The log–baseline effect g0 and the continuous

covariate age are assumed to have a possibly nonlinear effect on the (disease–specific)

hazard and are therefore modelled nonparametrically via P–splines.

To estimate this model we again use method regress of bayesreg objects :

> rs.regress delta = time(baseline) + age(psplinerw2)

+ meta1 + meta2 + lambda_e(offest),

family=cox iterations=30000 burnin=10000 step=20 using rs

Note that the only difference to the estimation of crude survival models as presented in the

previous subsection is the additional term lambda_e(offset), that is used to specify the

variable lambda_e as the expected hazard rate. With iterations=30000 the simulation

run time of this model is about 30 minutes (Pentium 4 CPU 2.8 GHz).

Again, additionally to the information being printed to the output window results for each

effect are written to external ASCII files, with the names of these files being given in

the output window. Having finished the estimation we may close the log file by typing

logclose.

5.5.3 Multi–state models

To estimate the multi–state models presented in Subsection 4.4.2 we again start by creating

a bayesreg object by typing

> bayesreg ms

To store the results in the directory c:\data and to specify ms as a base filename we enter

the command
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id identification number of subject

beg time of transition to the current state (admission time)

end time of transition to the next state (emission time)

tas 1 a transition AWAKE→SLEEP is observed at t = end

0 else

tsa 1 a transition SLEEP→AWAKE is observed at t = end

0 else

trn 1 a transition REM→NREM is observed at t = end

0 else

tnr 1 a transition NREM→REM is observed at t = end

0 else

st 1 subject is currently in state AWAKE

2 subject is currently in state NREM

3 subject is currently in state REM

cort cortisol level in nmol/l

Table 5.1: Original variables of the dataset object sleep.
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> ms.outfile = c:\data\ms

A log file where the contents of the output window are stored is then opened by

> logopen, replace using c:\data\humansleep_log.txt

The original variables of the dataset object sleep are summarized and explained in Table

5.1. The additional dummy coded covariate corthigh, which indicates whether or not the

cortisol secretion is higher than 90 nmol/l is generated by typing

> sleep.generate corthigh = (cort>90)

Now the first lines of the dataset object sleep are given by

id st beg end tas tsa trn tnr cort corthigh

1 2 0 1 0 1 0 0 52.6 0

1 1 1 5 1 0 0 0 52.6 0

1 2 5 8 0 1 0 0 52.6 0

1 1 8 10 1 0 0 0 52.6 0

1 2 10 36 0 0 0 0 52.6 0

1 2 36 76 0 0 0 0 46.9 0

1 2 76 108 0 0 0 1 47.5 0

1 3 108 109 0 0 1 0 47.5 0

1 2 109 110 0 0 0 1 47.5 0

1 3 110 111 0 0 1 0 47.5 0

1 2 111 115 0 0 0 1 47.5 0

1 3 115 116 0 0 0 0 47.5 0

1 3 116 126 0 0 1 0 37.4 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Note that the states have to be numbered consecutively from 1 to H, at which numbers are

exchangeable. Since we are considering continuous time scales, an observation should start

at t = 0 (unless the observation is left truncated) and the variables beg and end should

be generated so that within each observation process beg equals the value of end in the

previous row (unless observations are fragmentary only).
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The transition rates of the multi–state model analyzed in Subsection 4.4.2 are given by

λh = exp (gh0(t) + bh) , h = AS, SA,RN

λh = exp (gh0(t) + c(t) · gh1(t) + bh) , h = NR

This model is estimated with BayesX by entering the following command

> ms.mregress tas = end(baseline) + id(random):

tsa = end(baseline) + id(random):

trn = end(baseline) + id(random):

tnr = end(baseline) + corthigh*end(baseline) + id(random),

family=multistate begin=beg state=st iterations=30000 burnin=10000

step=20 using sleep

Note that the command regress used with the estimation of Cox models (and other

models with univariate response) is now replaced by the command mregress which is used

to analyze models with multivariate responses. With family=multistate BayesX expects

the specification of at least two transitions separated by a colon, at which the corresponding

0–1 coded transition indicators are to be entered on the left side of the equals sign. With

the command above BayesX assumes cubic P–spline priors with 20 knots and second

order random walk priors for the log–baseline effects as well as the time–varying effect of

corthigh, diffuse priors for the fixed effects of sex and i.i.d. Gaussian priors with mean

zero for each individual and transition specific random effect. With iterations=30000

the simulation run time is about 160 minutes (Pentium 4 CPU 2.8 GHz). Concerning the

state structure, BayesX assumes that an observation with current state st is at risk of

experiencing a transition of type h if the data set contains at least one type h transition

with the accordant state st. For checking purposes the following matrix, that indicates

the number of type h transitions observed with every single state, is printed in the output

window.
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Matrix of possible transitions:

Transition 1 2 3 4

State

1 460 0 0 0

2 0 399 0 306

3 0 77 234 0

Again, additionally to the information being printed to the output window results for each

effect are written to external ASCII files, with the names of these files being given in

the output window. Having finished the estimation we may close the log file by typing

logclose.

5.6 Post estimation commands

Bayesreg objects provide some post estimation commands to get sampled parameters or to

plot autocorrelation functions of sampled parameters. For example

> surv_m8.plotautocor, maxlag=250

computes the autocorrelation functions for all parameters estimated with the regress

command (lastly) entered with the bayesreg object surv_m8. Here verb+maxlag+ specifies

the maximum lag number.

If the number of parameters is large this may be computationally expensive, so BayesX

provides a second possibility to compute autocorrelation functions. Adding the option

mean to the plotautocor command as in

> surv_m8.plotautocor, mean

leads to the computation of only the minimum, mean and maximum autocorrelation

functions.

Note, that executing the plotautocor command also stores the computed autocorrelation

functions in a file named autocor.raw in the output directory of the bayesreg object.
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To save memory, the sampling paths of the estimated parameters are only stored tem-

porarily by default and will be destroyed, when the corresponding bayesreg object is deleted.

If we want to store the sampling paths permanently, we have to execute the getsample

command

> surv_m8.getsample

which stores the sampled parameters in ASCII files in the output directory. To avoid

too large files, the samples are typically partitioned into several files.
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Appendix A

Calculation of IWLS weights

A.1 Geoadditive survival analysis

In Subsection 2.3.1, which is concerned with Bayesian inference for geoadditive survival

models, we describe how to update parameter vectors corresponding to time–independent

effects by an MH–algorithm based on IWLS proposals. The IWLS weights wi and working

observations ỹi used with this algorithm are derived as follows.

As specified in equation (2.4) the geoadditive predictor of our survival models is given by

ηi(t) = g0(t) +

p∑

j=1

gj(t)zij +

q∑

j=1

fj(xij) + fspat(si) + v′
iγ + bgi

.

Suppose for example we want to update the parameter vector βj = (βj1, . . . , βj,dj
)′ corre-

sponding to a time–independent function fj(xij), which is modelled by a P–spline. With

the generic notation of Subsection 2.2.1 this function may be written as

fj(xij) =

dj∑

m=1

βjmBm(xij) = Zjiβj

with Bm denoting B–spline basis functions and Zji =
(
B1(xij), . . . , Bdj

(xij)
)

denoting the

i–th row of the design matrix Zj introduced in Subsection 2.2.1. The predictor ηi(t) and

the vector of predictors η = (η1(t1), . . . , ηn(tn))′, respectively, may now be rewritten as

ηi(t) = Zjiβj + η̃i(t), η = Zjβj + η̃
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The following proportionality holds for the full conditional of βj

p(βj|·) ∝ L(βj) · p(βj|τ
2
j ) (A.1)

with the first factor denoting the likelihood that depends among others upon βj and the

second factor denoting the prior of βj. The dependency of the likelihood on βj may be

expressed as follows

L(βj) =
n∏

i=1

λi(ti)
δi · exp

[
−

∫ ti

0

λi(u)du

]

= exp

[
n∑

i=1

(
δiηi(t) −

∫ ti

0

exp(ηi(u))du

)]

= exp

[
n∑

i=1

(
δi(Zjiβj + η̃i(t)) −

∫ ti

0

exp(Zjiβj + η̃i(u))du

)]

= exp

[
n∑

i=1

li(βj)

]
= exp

[
l(βj)

]

with li denoting the individual log–likelihood. As specified in equation (2.7), the general

form of a prior for βj is

p(βj|τ
2
j ) ∝ τ

−rj

j exp

(
−

1

2τ 2
j

β′
jKjβj

)
,

Suppose the current value of the chain is βc
j. Then a new value β

p
j is proposed by drawing

a random vector from a multivariate Gaussian proposal distribution, which is obtain from

a quadratic approximation of the log–likelihood by a second order Taylor expansion with

respect to βc
j given by

l(βp
j) ≈ l(βc

j) + (βp
j − βc

j)
′s(βc

j) +
1

2
(βp

j − βc
j)

′H(βc
j)(β

p
j − βc

j) (A.2)

at which s and H are the score function and the Hessian matrix (with respect to βj),

respectively. Inserting (A.2) in (A.1) yields
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p(βp
j |·) ∝ exp

(
l(βp

j) −
1

2
β′

j

Kj

τ 2
j

βj

)

≈ exp

(
(βp

j)
′s(βc

j) +
1

2
(βp

j)
′H(βc

j)β
p
j − (βp

j)
′H(βc

j)β
c
j −

1

2
(βp

j)
′Kj

τ 2
j

β
p
j

)

= exp

(
(βp

j)
′s(βc

j) +
1

2
(βp

j)
′H(βc

j)β
p
j − (βp

j)
′H(βc

j)β
c
j −

1

2
(βp

j)
′Kj

τ 2
j

β
p
j

)

= exp

(
−

1

2
(βp

j)
′

(
−H(βc

j) +
Kj

τ 2
j

)
β

p
j + (βp

j)
′
(
s(βc

j) − H(βc
j)β

c
j

))

which is proportional to a multivariate Gaussian distribution with precision matrix and

mean

Pj = −H(βc
j) +

Kj

τ 2
j

, mj = (Pj)
−1
(
s(βc

j) − H(βc
j)β

c
j

)
. (A.3)

For the calculation of Pj and mj we need to compute the score function s and the Hessian

matrix H. The score function s is given by

s(βj) =

(
n∑

i

∂li(βj)

∂βj1

, . . . ,
n∑

i

∂li(βj)

∂βj,dj

)′

with

li(βj) = δi(Zjiβj + η̃i(t)) −

∫ ti

0

exp(Zjiβj + η̃i(u))du

= δiZjiβj + δiη̃i(t) − exp(Zjiβj)

∫ ti

0

exp(η̃i(u))du

and thus

∂li(βj)

∂βjm

= δiZjim − Zjim exp(Zjiβj)

∫ ti

0

exp(η̃i(u))du

= δiZjim − Zjim

∫ ti

0

exp(ηi(u))du

at which Zjim is the element in the i–th row and m–th column of the design matrix Zj.

Hence the score vector s(βj) is given by

s(βj) = Z′
j∆ − Z′

jW̃(βj) (A.4)
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at which ∆ = (δ1, . . . , δn)′ and W̃ = (w1, . . . , wn)′ with

wi =

∫ ti

0

exp(ηi(u))du = Λi(ti). (A.5)

The Hessian matrix H is defined as follows

H(βj) =

(
n∑

i=1

∂li(βj)

∂βjm∂βjk

)

m,k=1,...,dj

Computing the partial derivatives delivers

∂li(βj)

∂βjm∂βjk

= −ZjimZjik

∫ ti

0

exp(ηi(u))du

leading to

H(βj) = −Z′
jW(βj)Zj (A.6)

with the weight matrix W = diag(w1, . . . , wn) with wi as defined in (A.5).

Inserting (A.4) and (A.6) in (A.3) yields

Pj = Z′
jW(βc

j)Zj +
Kj

τ 2
j

mj = (Pj)
−1
(
Z′

j∆ − Z′
jW̃(βc

j) + Z′
jW(βc

j)Zjβ
c
j

)

= (Pj)
−1Z′

jW(βc
j)
(
W−1(βc

j)∆ − 1l + Zjβ
c
j

)

= (Pj)
−1Z′

jW(βc
j)
(
W−1(βc

j)∆ − 1l + η − η̃
)

= (Pj)
−1Z′

jW(βc
j) (ỹ − η̃)

with the n–dimensional vector of working observations

ỹ = W−1(βc
j)∆ − 1l + η =

(
η1(t1) +

δ1

w1

− 1, . . . , ηn(tn) +
δn

wn

− 1

)′
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A.2 Relative survival analysis

As mentioned in Section 3.3 updating of parameter vectors βj corresponding to time–

independent effects within a relative survival model is performed according to the same

principle as described above for crude survival models. However, as a consequence of the

slightly more complex likelihood the weights and working observations that are used within

the IWLS–MH algorithm are slightly more complex as well. Using the results of (A.3) those

quantities are derived as follows.

For updating the parameter vector βj again consider the following decomposition of ηi(t) =

log (λc
i(t)) and η = (η1(ti), . . . , ηn(tn))′, respectively

ηi(t) = Zjiβj + η̃i(t), η = Zjβj + η̃

With λi = λe
i + λc

i , where λe
i := λe

i (ai + ti) denotes the expected hazard and λc
i = λc

i(ti)

denotes the disease related hazard, it can be seen easily from (3.3) that the individual

log–likelihood li(βj) is given by

li(βj) = δi log (λe
i + λc

i) −

∫ ti

0

λe
i (ai + u)du −

∫ ti

0

λc
i(u)du

= δi log
(
λe

i + exp
(
Zjiβj + η̃i(ti)

))

−

∫ ti

0

λe
i (ai + u)du −

∫ ti

0

exp
(
Zjiβj + η̃i(u)

)
du

= δi log
(
λe

i + exp
(
Zjiβj

)
exp (η̃i(ti))

)

−

∫ ti

0

λe
i (ai + u)du − exp

(
Zjiβj

) ∫ ti

0

exp (η̃i(u)) du

Hence the partial derivative is given by

∂li(βj)

∂βjm

=
δi

λe
i + λc

i

Zjim exp
(
Zjiβj

)
exp (η̃i(ti))

−0 − Zjim exp
(
Zjiβj

) ∫ ti

0

exp (η̃i(u)) du

=
δiλ

c
i

λe
i + λc

i

Zjim − Zjim

∫ ti

0

λc
i(u)du
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and thus we get

s(βj) = Z′
j∆ − Z′

jW̃ (A.7)

with ∆ =
(

δ1λc
1

λe
1+λc

1
, . . . , δnλc

n

λe
n+λc

n

)′
and W̃ = (w̃1, . . . , w̃n)′ with

w̃i =

∫ ti

0

λc
i(u)du = Λc

i(ti) (A.8)

By means of the quotient rule the elements of the Hessian matrix H are computed as

follows

∂li(βj)

∂βjm∂βjk

=
(λe

i + λc
i)

∂δiλ
c
iZjim

∂βjk
− δiλ

c
iZjim

∂λe
i +λc

i

∂βjk

(λe
i + λc

i)
2 − ZjimZjik

∫ ti

0

λc
i(u)du

=
(λe

i + λc
i) δiZjimZjikλ

c
i − δiλ

c
iZjimZjikλ

c
i

(λe
i + λc

i)
2 − ZjimZjik

∫ ti

0

λc
i(u)du

=
λe

iδiZjimZjikλ
c
i

(λe
i + λc

i)
2 − ZjimZjik

∫ ti

0

λc
i(u)du

= Zjim
λe

iλ
c
iδi

(λe
i + λc

i)
2Zjik − Zjim

∫ ti

0

λc
i(u)duZjik

= −Zjim

(∫ ti

0

λc
i(u)du −

λe
iλ

c
iδi

(λe
i + λc

i)
2

)
Zjik

The Hessian matrix H may now be written as

H(βj) = −Z′
jWZj (A.9)

with W = diag(w1, . . . , wn) at which

wi = w̃i −
λe

iλ
c
iδi

(λe
i + λc

i)
2 = Λc

i(ti) −
λe

iλ
c
iδi

λ2
i

Inserting (A.7) and (A.9) in (A.3) yields the precision matrix and the mean of the Gaussian

proposal density for β
p
j as well as the working observations ỹ, which are derived as follows
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mj = (Pj)
−1
(
s(βc

j) − H(βc
j)β

c
j

)

= (Pj)
−1
(
Z′

j∆ − Z′
jW̃(βc

j) + Z′
jW(βc

j)Zjβ
c
j

)

= (Pj)
−1Z′

jW(βc
j)
(
W−1(βc

j)∆ − W−1(βc
j)W̃(βc
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with ỹ = (ỹ1, . . . , ỹn), at which
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δiλ

c
i/λi − w̃i

wi

.



140 A. Calculation of IWLS weights



Bibliography

Andersen, P.K., Borgan, ∅., Gill, R.D., and Keiding, N. (1993), Statistical models based on
counting processes, New York: Springer.

Andersen, P.K., and Keiding, N. (2002), ”Multi–state models for event history analysis,”
Statistical Methods in Medical Research, 11, 91–15.

Banerjee, S., and Carlin, B.P. (2003), ”Semiparametric Spatiotemporal Frailty Modelling,”
Environmetrics, 14, 523–535.

Banerjee, S., and Carlin, B.P. (2004), ”Parametric Spatial Cure Rate Models for Interval–
Cencored Time–to–Relapse Data,” Biometrics, 60, 268–275.

Banerjee, S., Carlin, B.P., and Gelfand, A.E. (2004), Hierarchical Modeling and Analysis
for Spatial Data, Chapman and Hall/CRC, Boca Raton.

Banerjee, S., Wall, M. M., and Carlin, B. P. (2003), ”Frailty modeling for spatially corre-
lated survival data, with application to infant mortality in Minnesota,” Biostatistics,
4, 123–142.

Bender, R., Augustin, T., and Blettner, M. (2005), ”Generating survival times to simulate
Cox proportional hazards models,” Statistics in Medicine, 24, 1713–1723.

Besag, J. and Kooperberg, C. (1995), ”On Conditional and Intrinsic Autoregressions,”
Biometrika, 82, 733–746.

Blossfeld, H.-P., Hamerle, A., and Mayer, K.U. (1989). Event History Analysis. Hillsdale,
N.J.: Lawrence Erlbaum Associates.

Bolard, P., Quantin, C., Esteve, J., Faivre, J., and Abrahamowicz, M. (2001), ”Mod-
elling time–dependent hazard ratios in relative survival: Application to colon cancer,”
Journal of Clinical Epidemiology, 54, 986–996.



142 BIBLIOGRAPHY

Brezger, A., Kneib, T., and Lang, S. (2005), ”BayesX: Analysing Bayesian Semiparametric
Regression Models,” Journal of statistical software, Vol. 14, Issue 11. Open domain
software available from http://www.stat.uni-muenchen.de/~bayesx/.

Brezger, A., and Lang, S. (2006), ”Generalized structured additive regression based on
Bayesian P–splines,” Computational Statistics and Data Analysis, 50, 967–991.

Cai, T., and Betensky, R. A. (2003), ”Hazard Regression for Interval Censored Data with
Penalized Spline,” Biometrics, 59, 570–9.

Cai, T., Hyndman, R., and Wand, M. (2002), ”Mixed model-based hazard estimation,”
Journal of Computational and Graphical Statistics, 11, 784–798.

Carlin, B. P., and Banerjee, S. (2002), ”Hierarchical Multivariate CAR Models for Spatio–
Temporally Correlated Data,” In: Bayesian Statistics 7, eds. J.M. Bernardo et al.,
Oxford: Oxford University Press.

Cox, D.R. (1972), ”Regression models and life tables,” Journal of the Royal Statistical
Society, Series B, 34, 187–220.

Crook, A., Knorr-Held, L., and Hemingway, H. (2003), ”Measuring spatial effects in time
to event data: a case study using months from angiography to coronary artery bypass
graft (CABG),” Statistics in Medicine, 22, 2943–2961.

Czado, C., and Rudolph, F. (2002), ”Application of survival analysis methods to long–term
care insurance,” Insurance: Mathematics and Economics, 31 (3), 395–413.

De Boor, C. (2001), A practical guide to Splines, New York.

Devroye L. (1986), Non–uniform random variate generation, New York: Springer.

Eilers, P.H.C., and Marx, B.D. (1996), ”Flexible smoothing using B-splines and penalized
likelihood” (with comments and rejoinder), Statistical Science, 11 (2), 89–121.

Esteve, J., Benhamou, E., Croasdale, M., and Raymond, L. (1990), ”Relative Survival and
the estimation of net survival: elements for further discussion,” Statistics in Medicine,
9, 529–538.

Fahrmeir, L., and Klinger, A. (1998), ”A nonparametric multiplicative hazard model for
event history data,” Biometrika, 85(3), 581–592.



BIBLIOGRAPHY 143

Fahrmeir, L., and Lang, S. (2001a), ”Bayesian Inference for Generalized Additive Mixed
Models Based on Markov Random Field Priors,” Journal of the Royal Statistical So-
ciety, Ser. C, 50, 201–220.

Fahrmeir, L., and Lang, S. (2001b), ”Bayesian semiparametric regression analysis of mul-
ticategorical time–space data,” Annals of the Institute of Statistical Mathematics, 53,
11–30.

Fahrmeir, L., Lang, S.,Wolff, J., and Bender, S. (2003), ”Semiparametric Bayesian Time-
Space Analysis of Unemployment Duration,” Journal of the German Statistical Society
(Allgemeines Statistisches Archiv), 87, 281–307.

Fahrmeir, L., and Tutz, G. (2001), Multivariate Statistical Modelling based on Generalized
Linear Models, Springer–Verlag, New York.

Gamerman, D. (1997), ”Efficient Sampling from the Posterior Distribution in Generalized
Linear Models,” Statistics and Computing, 7, 57–68.

Gelfand, A.E., and Gosh, S.K. (1998), ”Model Choice: A Minimum Posterior Predictive
Loss Approach,” Biometrika, 85, 1–11.

Gelman, A. (2004), ”Prior distributions for variance parameters in hierarchical models,”
provided by Economics Working Paper Archive at WUSTL in its series Econometrics
with number 0404001.

George, A. and Liu, J.W. (1981), Computer Solution of Large Sparse Positive Definite
Systems, Prentice–Hall.

Giorgi, R., Abrahamowicz, M., Quantin, C., Bolard, P., Esteve, J., Gouvernet, J. and
Faivre, J. (2003), ”A relative survival regression model using B–spline functions to
model non–proportional hazards,” Statistics in Medicine, 22, 2767–2784.

Gould, A., and Lawless, J.F. (1988), ”Estimation Efficiency in Lifetime Regression Models
when Responses are Censored or Grouped,” Comm. Statist. Simul., 17, 689–712.

Henderson, R., Shimakura, S., and Gorst, D. (2002), ”Modeling Spatial Variation in
Leukemia Survival Data,” Journal of the American Statistical Assosiation, 97, 965–
972.

Hennerfeind, A., Brezger, A., and Fahrmeir, L. (2005), ”Geoadditive Survival Models: A
Supplement,” SFB 386 Discussion Paper 454, University of Munich. Available from
http://www.stat.uni-muenchen.de/sfb386/.



144 BIBLIOGRAPHY

Hennerfeind, A., Brezger, A., and Fahrmeir, L. (2005), ”Geoadditive Survival Models,”
Journal of the American Statistical Association, Theory and Methods, to appear.

Ibrahim, J.G., Chen, M.H., and Sinha, D. (2001), Bayesian Survial Analysis. Springer
Series in Statistics, New York.

Kaempchen, S., Guenther, T., Toschke, M., Grunkemeier, G.L., Wottke, m., and Lange,
R. (2003), ”Assessing the benefit of biological valve prostheses: cumulative incidence
(actual) vs. Kaplan–Meier (actuarial) analysis,” European Journal of Cardio–thoracic
Surgery, 23, 710–714.

Kalbfleich, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd
edition. Hoboken: John Wiley & Sons.

Kammann, E.E., and Wand, M.P. (2003), ”Geoadditive models,” Journal of the Royal
Statistical Society, Ser. C, 52, 1–18.

Klein, J.P. and Moeschberger, M.L. (2003). Survival analysis. Springer, New York.

Kneib, T. (2006). Mixed model based inference in structured additive regression. PhD thesis,
Dr. Hut Verlag.

Kneib, T. and Fahrmeir, L. (2004), ”A mixed model approach for structured hazard
regression,” SFB 386 Discussion Paper 400, University of Munich. Available from
http://www.stat.uni-muenchen.de/sfb386/, accepted for publication in the Scan-
dinavian Journal of Statistics.

Kneib, T. and Fahrmeir, L. (2005), ”Structured additive regression for multicategorical
space-time data: A mixed model approach,” Biometrics, to appear.

Knorr–Held, L. (1999), ”Conditional Prior Proposals in Dynamic Models,” Scandinavian
Journal of Statistics, 26, 129–144.
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