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ZusammenfassungIn dieser Dissertation untersu
he i
h eine gro�e neue Klasse vierdimensionaler su-persymmetris
her Stringvakua, de�niert als Kompakti�zierungen des E8�E8 unddes SO(32) heterotis
hen Strings auf glatten komplex-dreidimensionalen Calabi-Yau-Mannigfaltigkeiten mit unit�aren Ei
hb�undeln und heterotis
hen F�unfbranen.Dies erm�ogli
ht die Konstruktion ph�anomenologis
h interessanter Stringkompak-ti�zierungen auf einfa
h zusammenh�angenden Mannigfaltigkeiten insofern diekonventionelle Ei
hbre
hung mittels Wilsonlinien ersetzt wird dur
h die Einbet-tung ni
ht-trivialer Linienb�undel in die zehndimensionale Ei
hgruppe.Im ersten Teil der Arbeit wird die Anwendung dieser Idee auf den E8 � E8heterotis
hen String diskutiert. Auf die De�nition einer gro�en Klasse grup-pentheoretis
her Einbettungen mit unit�aren B�undeln folgt die Analyse der ef-fektiven vierdimensionalen N = 1 Supergravitationstheorie. Das glei
hzeitigeAuftreten von F�unfbranen und abels
hen Ei
hfeldern erfordert die Einf�uhrungneuer anomaliek�urzender Gegenterme in die e�ektive Wirkung. Diese werdenferner mithilfe einer M-Theoriere
hnung hergeleitet. Die vollst�andigen Green-S
hwarz-Terme erm�ogli
hen es, die Ein-Loop-Korrekturen der Ei
hkopplungenzu bere
hnen. Aus dem ei
hinvarianten K�ahlerpotential der Modulifelder leitei
h eine perturbative Ein-Loop-Modi�zierung des Fayet-Iliopoulos D-Termes ab.Darauf aufbauend s
hlage i
h eine Deformation der hermites
hen Yang-Mills-Glei
hung in erster Ordnung St�orungstheorie vor und f�uhre au�erdem die Ideeder �-Stabilit�at als das perturbativ exakte Stabililt�atskonzept ein, wel
hes die innullter Ordnung g�ultige Mumford-Stabilit�at ersetzt.Im folgenden de�niere i
h eine Klasse SO(32) heterotis
her Vakua mittelsunit�arer B�undel und heterotis
her F�unfbranen. Das si
h ergebende Spektrumsteht im Einklang mit der S-dualen Typ-I- Theorie bzw. den Typ-IIB-Orientifolds.Im Rahmen einer analogen Analyse der vierdimensionalen Supergravitation �ndetdie vorges
hlagene Ein-Loop-Korrektur der Stabilit�atsbedingung weitere Unter-mauerung, indem die Korrekturen im heterotis
hen Bild als das S-duale Analogondes perturbativen Anteils der �-Stabilit�atsbedingung identi�ziert werden. Let-ztere ist als das korrekte Stabilit�atskonzept in der Typ-IIB-Theorie bekannt.Es folgt eine Darstellung der Konstruktion stabiler holomorpher Vektorb�undelauf elliptis
h gefaserten Calabi-Yau-Mannigfaltigkeiten mit Hilfe der Methodespektraler �Uberde
kungen. Daraufhin pr�asentiere i
h semirealistis
he BeispieleSO(32) heterotis
her Vakua mit Pati-Salam und MSSM-�ahnli
hen Ei
hsektoren.Diese verallgemeinern, im S-dualen Bild, das Konzept von magnetisierten D9-Branen auf toroidalen Hintergr�unden zu ni
ht-abels
hen Braneworlds auf e
htenCalabi-Yau-Mannigfaltigkeiten.Den Abs
hluss der Arbeit bildet die Konstruktion realistis
her Vakua mit
ipped SU(5) GUT und MSSM Ei
hgruppe im Rahmen der E8 � E8-Theorieund auf der Grundlage der Einbettung von Linienb�undeln in beide E8-Faktoren.Einige der ph�anomenologis
h attraktiven Eigens
haften der stringtheoretis
henRealisierung von 
ipped SU(5) Modellen, insbesondere die Stabilit�at des Pro-



tons, werden diskutiert. MSSM-artige Ei
hkopplungsvereinheitli
hung ist f�ur dieauf Ein-Loop-Ebene korrigierten Ei
hkopplungen m�ogli
h. I
h konstruiere einigeexplizite supersymmetris
he Stringvakua, sowohl mit GUT als au
h direkt mitStandardmodellei
hgruppe, die genau die beoba
hteten drei Generationen 
hi-raler Materie ohne weitere exotis
he 
hirale Fermionen zeigen.



Abstra
tIn this thesis we investigate a large new 
lass of four-dimensional supersym-metri
 string va
ua de�ned as 
ompa
ti�
ations of the E8 � E8 and the SO(32)heteroti
 string on smooth Calabi-Yau threefolds with unitary gauge bundles andheteroti
 �ve-branes. This opens up the way for phenomenologi
ally interestingstring 
ompa
ti�
ations on simply 
onne
ted manifolds in that the 
onventionalgauge symmetry breaking via Wilson lines is repla
ed by the embedding of non-
at line bundles into the ten-dimensional gauge group.The �rst part of the thesis dis
usses the implementation of this idea into theE8�E8 heteroti
 string. After spe
ifying a large 
lass of group theoreti
 embed-dings featuring unitary bundles, we analyse the e�e
tive four-dimensional N = 1supergravity upon 
ompa
ti�
ation. The simultaneous presen
e of �ve-branesand abelian gauge groups requires the introdu
tion of new anomaly 
an
elling
ounter terms into the e�e
tive a
tion. These are also derived by an M-theory
omputation. The full set of Green-S
hwarz terms allows for the extra
tion of thethreshold 
orre
tions. From the gauge invariant K�ahler potential for the moduli�elds we derive a modi�
ation of the Fayet-Iliopoulos D-terms arising at one-loopin string perturbation theory. From this we 
onje
ture a one-loop deformationof the Hermitian Yang-Mills equation and introdu
e the idea of �-stability asthe perturbatively 
orre
t stability 
on
ept generalising the notion of Mumfordstability valid at tree-level.We then pro
eed to a de�nition of SO(32) heteroti
 va
ua with unitary gaugebundles in the presen
e of heteroti
 �ve-branes and �nd agreement of the re-sulting spe
trum with the S-dual framework of Type I/Type IIB orientifolds. Asimilar analysis of the e�e
tive four-dimensional supergravity is performed. Fur-ther eviden
e for the proposed one-loop 
orre
tion to the stability 
ondition isfound by identifying the heteroti
 
orre
tions as the S-dual of the perturbativepart of �-stability as the 
orre
t stability 
on
ept in Type IIB theory.After reviewing the 
onstru
tion of holomorphi
 stable ve
tor bundles on ellip-ti
ally �bered Calabi-Yau manifolds via spe
tral 
overs, we provide semi-realisti
examples for SO(32) heteroti
 va
ua with Pati-Salam and MSSM-like gauge se
-tors. These 
an be viewed, by S-duality, as the generalisation of toroidal magne-tized D9-branes to non-abelian braneworlds on genuine Calabi-Yau manifolds.We �nally dis
uss the 
onstru
tion of realisti
 va
ua with 
ipped SU(5) GUTand MSSM gauge group within the E8�E8 framework, based on the embeddingof line bundles into both E8 fa
tors. Some of the appealing phenomenologi
alproperties of this stringy realisation of 
ipped SU(5) models, in parti
ular stabil-ity of the proton, are dis
ussed. MSSM-like gauge 
oupling uni�
ation is possiblefor the threshold 
orre
ted gauge 
ouplings. We expli
itly 
onstru
t a 
ouple ofsupersymmetri
 string va
ua in both setups with pre
isely the three observed
hiral matter generations and without any exoti
 
hiral states.
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Chapter 1Introdu
tion
1.1 Prologue: An invitation to String TheoryThe quest for a fundamental theory of the observed gravitational, ele
tro-weakand strong intera
tions is one of the most pressing intelle
tual 
hallenges of ourtime. Among the heritage of the past 
entury are two beautiful, 
omplementaryand intriguingly su

essful attempts to des
ribe parti
ular 
orners of the physi
alworld we observe - General Relativity and Quantum Field Theory. It is well-known that they both reprodu
e and predi
t a huge amount of empiri
al data withbreath-taking a

ura
y. It is equally well-known, however, that they are bothuna

eptable as fundamental physi
al theories. They 
arry inside themselvesthe seed for their eventual in
ompleteness in the disguise of unphysi
al in�nitieswhi
h signal the inevitable breakdown of their validity.General Relativity 
ollapses as a well-de�ned theory whenever a massive ob-je
t with a radius smaller than its S
hwarzs
hild radius 
ollapses under its self-gravitation to form a bla
k hole. What is puzzling is that even though the initial
onditions involve a well-de�ned extended obje
t, like a suÆ
iently heavy starundergoing the �nal stages of its evolution, the dynami
al laws of gravity for
ethis mass to 
ontra
t to a pointlike massive obje
t with a formally in�nite density.One might argue that the very 
on
ept of pointlike obje
ts, familiar from 
lassi
alme
hani
s, is merely an idealisation and no reason to worry, but the situationjust des
ribed is of a totally di�erent genre. We start with very physi
al andsensible initial 
onditions, and are inevitably driven, by the equations of motion,into a regime where some of the most fundamental assumptions of the theorysu
h as the notion of spa
etime as a smooth manifold break down. Clearly, as apragmati
 outside observer we will never be a�e
ted by the unphysi
al 
enter ofthe bla
k hole due to the event horizon surrounding it. But the theory is in
om-plete in the sense that there exist situations inside its domain of regime to whi
hit 
annot be sensibly applied. Apparently, at some stages of su
h a pathologi
alpro
ess, Nature obeys di�erent laws of gravity.Quantum Field Theory breaks down when a 
harged matter parti
le intera
tswith the ve
tor bosons 
oupling to the, say, ele
tro-magneti
 �eld it sour
es -3



even the �rst loop diagram in Quantum Ele
trodynami
s related to the self-energy of the ele
tron formally diverges. Again we 
an - and do - hide thein�nity for pra
ti
al purposes by introdu
ing a 
uto�, and the fa
t that it ispossible to extra
t non-trivial information using this te
hnique of regularisationand renormalisation at all is 
ertainly a mira
le by itself. Still, the need for su
h apro
edure is unsatisfa
tory be
ause it indi
ates the breakdown of the dynami
allaws at high energies. In both 
ases we fa
e the paradox that we have at ourdisposal a powerful formalism in triumphant agreement with experiments andobservations whi
h at the same time is in
omplete as a physi
al theory. It yieldsan empiri
ally su

essful e�e
tive des
ription of 
ertain phenomena after we agreeto integrate out those high energy degrees of freedom whi
h are apparently nota

ounted for 
orre
tly.The situation is not ameliorated if one takes into a

ount the mutual in
om-patibility between the 
lassi
al, deterministi
 
hara
ter of General Relativity andthe intrinsi
ally probabilisti
 nature of Quantum Me
hani
s in its 
onventionalinterpretation as the 
on
eptual foundation of Quantum Field Theory. At thisstage by the very latest one 
annot 
lose one's eyes any longer sin
e physi
alpro
esses at su
h high energies that the gravitational intera
tion 
annot be 
on-sistently negle
ted require, and be it merely for the sake of an e�e
tive approa
h,a genuinely quantum des
ription of gravity together with the other for
es.Apart from these indisputable 
on
eptual issues there is an aestheti
 one. Itis often stated that the Standard Model of Parti
le Physi
s 
ontains at least 19free parameters in the form of the masses and 
ouplings of the observed parti
les.This is an optimisti
 point of view, be
ause, if one wants to be mali
ious, ita
tually involves an in�nite number of free parameters. A theory should notonly explain what we observe, but also what we do not observe1, and QuantumField Theory knows of no underlying intrinsi
 prin
iple whatsoever whi
h singlesout the Standard Model inside the moduli spa
e of anomaly-free gauge theories- ex
ept that we happen to observe it.The ultimate goal of String Theory [1{7℄2 is none less than to over
ome allthese diÆ
ulties and to provide a 
onsistent ultra-violet 
ompletion of both Quan-tum Field Theory and General Relativity. What is remarkable is that one andthe same 
on
ept appears to have the potential to ta
kle both 
hallenges simul-taneously. The basi
 idea is to avoid the in�nities of Quantum Field Theoryby smoothening the apparently unphysi
al intera
tion verti
es, thus leading toultra-violet �nite loop amplitudes. This is the purpose of introdu
ing the notionof one-dimensional extended obje
ts as the fundamental entities. Everything elseis for
ed upon us by requiring a 
onsistent quantisation of the 
lassi
al theory ofthe string propagating in spa
etime. Kinemati
ally, this is a very 
onservativeapproa
h in that it rests upon the well-established prin
iple of general 
ovarian
e1We are aware that, depending on their epistemologi
al ba
kground, the reader may or maynot agree with this argument.2Classi
 textbooks in
lude [8{12℄. 4



of spa
etime and assumes the standard axioms and methods of Quantum Me-
hani
s3. What makes the theory revolutionary are rather the dynami
al laws itpredi
ts in the genuinely stringy regime and even more so the way how these lawsare derived just from requiring 
onsisten
y of the theory. Basi
ally without anyfurther input than the kinemati
al pillars just quoted the two dynami
al san
-tuaries of modern physi
s inevitably follow in the low-energy limit: Einstein'sgravitational equations and the 
on
ept of gauge intera
tions.It is important to stress that the stru
ture of the fundamental laws governingthe low-energy phenomenology of the universe 
omes out almost as a byprod-u
t. The pea
eful 
oexisten
e of gravity and Yang-Mills theory at the quantumlevel in String Theory is an immediate 
onsequen
e of the presen
e of 
losedand open strings as the only two topologies whi
h a one-dimensional obje
t 
anexhibit. The role of the graviton is played by the massless spin two ex
itationsof the 
losed string, and Einstein's equations follow by requiring Weyl invari-an
e of the non-linear �-model des
ribing the string propagation on a (
urved)ba
kground manifold. The latter is equivalent to the 
onformal symmetry of thetwo-dimensional string worldsheet to be anomaly-free, whi
h is one of the 
on-sisten
y 
onditions for the theory to make sense, more pre
isely for the absen
eof negative norm states in the Fo
k spa
e. The Yang-Mills gauge bosons, by
ontrast, are furnished by the massless open strings or, in a dual des
ription,parti
ular massless ex
itations of the 
losed heteroti
 string. In any 
ase, on
ewe observe in our theory Yang-Mills intera
tions, we automati
ally observe grav-ity as well, be
ause a theory of open strings ne
essarily requires the presen
eof 
losed strings. This is di
tated by another 
onsisten
y 
ondition, namely the
an
ellation of 
ertain infrared divergen
es in the one-loop amplitude whi
h arerelated to the presen
e of a tadpole. Ironi
ally, whereas in 
onventional QuantumField Theory it seems impossible to des
ribe both Yang-Mills theory and gravityat the quantum level, in String Theory, it is impossible to observe Yang-Millstheory without in
orporating gravity.The way how the dynami
al laws of gravity are modi�ed at higher energies orat smaller distan
es makes it furthermore 
on
eivable that the drasti
 
urvaturesingularities of bla
k holes or the Big Bang might be resolved [13℄. These ques-tions are related to the emergen
e of stringy or quantum geometri
 properties ofspa
etime as seen by suitable string probes [14℄. In swit
hing the point of viewfrom target spa
e to the string worldsheet, the fundamental physi
al 
on
ept isno longer 
lassi
al spa
etime but the way how the string propagates along it. Inthis pi
ture 
lassi
ally una

eptable singularities are no 
on
eptual issue providedthey leave the theory of the string probing it well-de�ned. The implementationof a holographi
 prin
iple [15℄ in the 
ontext of the AdS/CFT 
onje
ture [16,17℄and the spe
ta
ular mi
ros
opi
 
omputation of the internal degrees of freedom of(at least BPS) bla
k holes [18℄, in perfe
t agreement with their thermodynami
alentropy, are further pie
es of eviden
e that String Theory really in
ludes the 
or-3It has therefore in its present formulation nothing to say about 
on
eptual issues of theinterpretation of Quantum Me
hani
s and related questions.5



re
t number of degrees of freedom to yield a 
onsistent des
ription of QuantumGravity.At the same time, the theory gives rise to 
ertain general features whi
h arenot ne
essarily for
ed upon us just from the 
urrent low-energy experiments andobservations, but nonetheless enjoy popularity among many phenomenologists.The most prominent example is the predi
tion of extra dimensions - based onthe renowned theorem that String Theory is well-de�ned only if the target spa
eis ten-dimensional4. Furthermore, every 
onsistent, i.e. ta
hyon-free and stablestring theory in ten dimensions is automati
ally supersymmetri
 - out of thefour possible de�nitions of a modular invariant one-loop amplitude two lead toa stable and supersymmetri
 spe
trum, the remaining ones su�ering from thepresen
e of ta
hyons in ten dimensions. Both these features - extra dimensionsand supersymmetry - are of 
ourse often 
onsidered for purely phenomenologi
alreasons in bottom-up approa
hes - e.g. in Randall-Sundrum-like brane-worlds
enarios [20℄ or to a

ount, among several other things, for the weak hierar
hyproblem by means of low-energy supersymmetry. In String Theory, by 
ontrast,there is nothing ad ho
 about the emergen
e of this extra stru
ture whi
h has sofar not been observed in experiments - it is a logi
al 
onsequen
e5 of the string
onsisten
y 
onditions.The 
ru
ial test whi
h String Theory has to pass in the long run is whetherit 
an make more expli
it 
onta
t with the low-energy physi
s of the StandardModel than to a

ount merely for the stru
tural foundations of gravity and Yang-Mills theory. To appre
iate what a diÆ
ult endeavour this may be, we shouldkeep in mind that the Standard Model in its present version 
ould only be formu-lated with the help of huge amounts of data just around the weak s
ale, i.e. atdistan
es of 10�18 meters, where it is a good des
ription of Nature. We would nothave the least idea of the existen
e of QCD or the details of the weak se
tor if allour experiments were restri
ted to the s
ale of, say, some meters. Unfortunately,this is pre
isely the situation we fa
e today in trying to re
onstru
t the physi
s atthe Plan
k s
ale of 10�35 meters just from our empiri
al data. One single 
olliderexperiment at these energies would 
ertainly be enough to de
ide immediatelywhether or not String Theory is realized in Nature. It is thus obviously wrongto 
laim that String Theory is in prin
iple not falsi�able as a physi
al theory.After all it is as big a 
on
eptual short
oming of String Theory not to lead tounique predi
tions at the TeV s
ale as it is a 
on
eptual short
oming of QuantumChromodynami
s to make no predi
tions whi
h Kopernikus 
ould have falsi�ed4This is a
tually an oversimpli�
ation sin
e what is really predi
ted is the total 
onfor-mal anomaly of the worldsheet �elds whi
h has to 
an
el that of the Faddeev-Popov ghosts.Attempts to in
lude �elds di�erent from additional spa
etime 
oordinates lead to so-
alled non-
riti
al String Theory in lower dimensions [19℄. Their use for phenomenologi
al appli
ations isyet to be understood. The 26-dimensional bosoni
 string, by 
ontrast, is unstable due to thepresen
e of a 
losed ta
hyon, and it is still un
lear if it might be related to a lower-dimensionalstring theory upon ta
hyon 
ondensation.5For the 
ase of extra dimensions this is true modulo the remark in footnote 4.6



with the help of his teles
ope (or at most a magnifying glass). Even more re-markable is it that there exist important theoreti
al arguments of the type justreviewed that String Theory might well a

ount for Nature's ultra-violet degreesof freedom.The standard approa
h towards des
ribing our four-dimensional world fromthe point of view of String Theory is to des
ribe the extra dimensions as 
om-pa
ti�ed on a small six-dimensional spa
e. The idea is that the in�nite tower ofKaluza-Klein modes de
ouples from the four-dimensional theory at low energiesand only the massless modes give rise to the observed matter. This logi
 leads toa geometrisation of the laws of four-dimensional physi
s whi
h are en
apsulatedin the topologi
al and geometri
 details of the 
ompa
ti�
ation manifold. Theba
kground manifold itself and the values of the ba
kground �elds, i.e. the possi-ble va
uum expe
tation values of the internal 
omponents of the string �elds, aresubje
t to strong string theoreti
 
onsisten
y 
onditions whi
h de�ne the resultingfour-dimensional e�e
tive theory as a solution of the equations of motion.It is in this sense that String Theory over
omes the arbitrariness inherentto any phenomenologi
ally motivated bottom-up approa
h like the StandardModel: There exists a single underlying theory with a number of e�e
tively four-dimensional groundstates. The phenomenon that a physi
al theory admits morethan one solution to its equations of motion is of 
ourse well familiar. Clearly,General Relativity does not predi
t the spe
i�
 distan
e between the earth andthe sun. Rather, this is the phenomenologi
al input required in order to identifythe spe
i�
 solution to Einstein's equations 
ompatible with these initial 
ondi-tions, on the basis of whi
h we then extra
t all further information. Nobodywould 
laim that this justi�es dis
arding the laws of General Relativity.To keep the analogy, a question of prime importan
e in String Theory is thusto determine whi
h of its solutions are 
ompatible with the properties of ourva
uum at all energies up to whi
h we 
an rely on experimental input. More
learly: Are there realisti
 four-dimensional string va
ua and, if so, how densedo they lie in the total solution spa
e of String Theory? Up to whi
h energy dowe have to measure su
h that there is only one va
uum left 
ompatible with alldata up to that point? And �nally, given that hypotheti
al va
uum, does it makefurther predi
tions (possibly at higher energies) whi
h we 
an verify or falsify?Or is there a dynami
al me
hanism, probably non-perturbative in nature, whi
hsingles out some stable solutions over others?At the moment we are far from a de�nite answer to any of these questions.The number of meta-stable four-dimensional string va
ua making out the stringlands
ape [21{23℄ is 
urrently estimated to be of the order of 10500 [24℄ (seealso [25℄ for an early estimate), whi
h seems 
omputationally out of any rea
h [26℄.At least, the number of stable va
ua appears to be �nite. This is already a bigsu

ess as 
ompared to the even vaster spa
e of anomaly-free and renormalisablee�e
tive quantum �eld theories whi
h 
an be 
onstru
ted without a 
onsistent
oupling to gravity [27℄. We are by now not aware of a genuinely non-perturbative7



formulation of the theory, and most investigations are tied to highly non-generi
perturbative 
orners of the moduli spa
e of the hypotheti
al underlying M-theory.Our available te
hniques are restri
ted to the 
omputation of the very basi
 low-energy properties of a given va
uum. In short, we need to understand the theorybetter. But we 
an nonetheless start and investigate some relevant features of atleast those domains in the moduli spa
e whi
h are a

essible to us at this stage.This is the obje
tive of String Phenomenology.1.2 Classi
 heteroti
 model buildingHistori
ally, the earliest attempts of string model building fo
used on the het-eroti
 string [7℄. Its worldsheet theory 
ontains di�erent �elds in the left- andright-moving se
tor. In its fermioni
 formulation this is easily understood asfollows: The right-moving �elds are the same as in the 
orresponding se
tor ofthe superstring, i.e. ten worldsheet s
alars X�� transforming as 8V under thelittle group SO(8) in ten dimensions and their superpartners, the worldsheetMajorana-Weyl spinors  ��. Together with the super
onformal ghost system, theright-moving 
onformal anomaly is 
an
elled. The left-moving se
tor, by 
ontrast,
omprises, apart from the left-movingX�+, another 32 worldsheet Majorana-Weylspinors �A+ whi
h are singlets under SO(1; 9). Sin
e the left-moving system is notsupersymmetri
, again the 
riti
al number of now 26 bosoni
 degrees of freedomis present to 
an
el the ghost 
onformal anomaly. The physi
al states arise as thetensor produ
t of the right-moving and the left-moving ex
itations. There aretwo fully 
onsistent 
hoi
es to assign periodi
 or antiperiodi
 boundary 
onditionsto the �A+. If all of them 
arry the same boundary 
onditions, the left-movingse
tor exhibits an SO(32) global symmetry whi
h is a
tually promoted to a gaugesymmetry. This 
an be most easily understood already from the appearan
e ofa massless state in the 8V of SO(8) and 
arrying antisymmetri
 indi
es A;Bunder SO(32) - the gauge boson. Sin
e the full spe
trum 
ontains states in theeven-rank tensor representations and those related to one of the two spinor rep-resentations of Spin(32), the gauge symmetry is a
tually not SO(32) but ratherSpin(32)=Z26. If by 
ontrast, the �A+ pair into two groups, ea
h with the sameboundary 
onditions, the naive gauge symmetry Spin(16) � Spin(16) is in fa
tfurther enhan
ed to E8 � E8 upon performing a GSO proje
tion.In both 
ases, the massless bosoni
 se
tor 
omprises, in addition to the ve
-tor bosons, gauge singlets whi
h de
ompose under SO(1; 9) into the spin twosymmetri
 tra
eless representation, the graviton, furthermore the antisymmet-ri
 representation, yielding the Kalb-Ramond B-�eld and �nally a s
alar, thedilaton. The spa
etime theory is N = 1 supersymmetri
 and therefore 
ontainslikewise the fermioni
 superpartners of all bosoni
 states.At energies mu
h smaller than the lowest lying massive states, the e�e
tive6In standard abuse of notation we will, however, sti
k to the misnomer SO(32) heteroti
string. 8



theory is dominated by the massless modes we have just reviewed. In parti
ular,one 
an think of appropriate 
oherent states of the massless �elds as determiningthe ba
kground 
on�guration probed by the string. In that sense, the ba
kgroundmetri
 of the spa
etime manifold on whi
h the string propagates is to be viewed asa non-trivial va
uum expe
tation value for the graviton. Similarly, we 
an thinkof ba
kground values for the �eld strength of the antisymmetri
 tensor �eld, forthe dilaton and the Yang-Mills gauge �eld. The ba
kground �elds are subje
tto a number of strong 
onsisten
y 
onditions sin
e they have to be solutions tothe stringy equations of motion. These will be reviewed extensively in 
hapter2. SuÆ
e it here to re
all that in the simplest 
ase, where the dilaton �eld is
onstant and the three-form �eld strength vanishes, the six-dimensional manifoldon whi
h we 
ompa
tify has to be Calabi-Yau to ensure N = 1 supersymmetryand therefore physi
al stability at the 
ompa
ti�
ation s
ale [28℄7.In the presen
e of ba
kground values for the massless string �elds, the world-sheet a
tion des
ribing the propagation of the string is the (0; 2) �-model [29,30℄,whi
h in favourable 
ir
umstan
es 
an be rephrased in terms of a linear �-model [31℄. The resulting 
onformal �eld theory is a highly 
ompli
ated andnon-trivially 
oupled system whi
h, up to now, has not been solved for the generi

ase.There are in prin
iple two di�erent approa
hes to bypass this te
hni
al dif-�
ulty. One 
an either fo
us on very spe
ial ba
kground manifolds on whi
hthe worldsheet theory is still exa
tly solvable as a 
onformal �eld theory (CFT).Cases where this is feasible are toroidal orbifold 
ompa
ti�
ations [32{35℄, orvery symmetri
 points in the moduli spa
e of genuine Calabi-Yau manifolds 
or-responding to exa
tly solvable abstra
t CFTs su
h as Gepner models [36, 37℄.Slightly di�erent CFT methods in
lude free fermioni
 [38℄ and free bosoni
 [25℄
onstru
tions. The advantage of the CFT approa
h is that whenever we have anexa
tly solvable 
onformal �eld theory at our disposal, its information is exa
tboth perturbatively and non-perturbatively in �0. Unfortunately this te
hnologyis 
urrently appli
able to only a small fra
tion of relevant ba
kground 
on�gura-tions. Alternatively, one 
an try to analyse dire
tly the spa
etime e�e
tive �eldtheory in the zero mode approximation. This approa
h is valid only in the stri
tlyperturbative regime, i.e. for the typi
al radius of the ba
kground manifold mu
hbigger than the string length and for suÆ
iently small string 
oupling. In otherwords, it is in a way insensitive to many genuinely stringy elements of the the-ory, but it is suÆ
iently powerful as far as an analysis of the va
uum states is
on
erned8.This geometri
 approa
h was pioneered in [28, 39℄ soon after the formulationof the heteroti
 theory. What makes the E8 � E8 string so attra
tive for modelbuilding is the natural way how the standard semi-simple GUT gauge groups E6,7Extended supersymmetry in four dimensions would of 
ourse also lead to stable 
on�gura-tions.8We will des
ribe the methods of this latter e�e
tive or geometri
 approa
h in great detailin 
hapter 2. 9



SO(10) and SU(5) arise as subgroups of E8. Consequently, the task is to break E8down to one of these GUT groups by giving VEVs to the internal �eld strengthsin the 
ommutant of the �nal gauge group. For the 
ases just listed these areSU(3), SU(4) and SU(5), respe
tively. A

ordingly, the 248 representation of E8splits into the respe
tive GUT multiplets whi
h in
orporate the 
hiral fermionsof the Standard Model. Consistent E6 GUT models, for example, are espe
iallystraightforward to obtain by identifying the SU(3) �eld strength with non-trivialba
kground value with the 
urvature of the tangent bundle of the Calabi-Yaumanifold. In that 
ase the supersymmetry 
onditions for the gauge �elds implyingin parti
ular the Yang-Mills equation of motion are automati
ally satis�ed. Thenumber of 27 and 27 are simply 
ounted by the K�ahler and 
omplex stru
turemoduli of the Calabi-Yau and one might think that all one needs to do is sear
hfor appropriate geometri
 
on�gurations. Unfortunately, E6 is not very attra
tiveas a GUT group from the phenomenologi
al point of view sin
e its fundamentalrepresentation 27 de
omposes into 16 + 10 + 1 upon breaking E6 to SO(10)so that one GUT generation of E6 yields not only one full generation of MSSMmatter in form of the 16, but additional 
hiral exoti
s.To arrive at the phenomenologi
ally more appealing SO(10) and SU(5) s
e-narios, one has to 
onstru
t stable holomorphi
 ve
tor bundles with stru
turegroup SU(4) and SU(5) respe
tively [39℄. The mathemati
al property of sta-bility essentially guarantees that the bundle allows for a 
onne
tion whi
h is asupersymmetri
 solution to the Yang-Mills equations. To prove stability for abundle is already a very 
hallenging task from the mathemati
al point of viewand it took until 1997 that a suÆ
iently general pro
edure was found to 
onstru
tsu
h stable SU(N) bundles on a large 
lass of Calabi-Yau manifolds, the spe
tral
over 
onstru
tion [40,41℄. However, in 
onventional stringy GUT s
enarios it isimpossible to realize the GUT breaking further down to SU(3)�SU(2)�U(1)Yvia a �eld theoreti
 Higgs me
hanism, simply be
ause the required ve
tor-likepairs from whi
h the GUT Higgs 
ould arise are not present in the parti
le spe
-trum9. To break SU(5) down to the Standard Model group, for example, theHiggs �eld must transform in the adjoint representation of SU(5), but we willsee that the four-dimensional bosoni
 parti
le spe
trum 
ontains only one ve
tormultiplet in the 24, the gauge multiplet, and no further su
h states. To ourres
ue 
omes the use of Wilson lines as an alternative GUT breaking me
hanism.Wilson lines are globally non-trivial ba
kground values of the gauge 
onne
tionwhi
h lo
ally are pure gauge and therefore indu
e a vanishing ba
kground �eldstrength.This 
onsiderably 
ompli
ates the 
onstru
tion of heteroti
 Standard Modelva
ua. The point is that in order to have these Wilson lines at our disposal, weneed non-trivial elements in the �rst 
ohomology group of the internal manifold,i.e. homotopi
ally non-trivial one-
y
les along whi
h the 
onne
tion one-form 
antake a non-zero VEV. Now on general grounds, a Calabi-Yau 
an never admit9Note, however, that in the 
ontext of higher-level Ka
-Moody algebras GUT Higgses 
anbe realized. 10




ontinuous Wilson lines, i.e. elements of H1(M;R), but at most torsional onesas non-trivial elements of H1(M;Z). This means that we have to 
onstru
tnon-simply 
onne
ted Calabi-Yau manifolds su
h that their Wilson lines are justright to break the GUT group to the MSSM gauge group. For example, Z2-valuedWilson lines break SU(5) down to SU(3) � SU(2) � U(1)Y , whereas Z2 � Z2-valued ones produ
e one additional abelian gauge fa
tor U(1)B�L [42℄. Whilethis gauged U(1)B�L helps to suppress proton de
ay, it poses the problem thatdi�erent e�e
ts have to be invoked in order to break it to a global symmetry. Thesame holds for SO(10), whi
h requires at least Z3�Z3 Wilson lines and likewiseends up with an additional U(1)B�L.Finding Calabi-Yau manifolds with su
h �rst fundamental groups is on
e morea highly non-trivial task, and it has been one of the re
ent triumphs of stringmodel building to provide 
lasses of su
h Calabi-Yau manifolds as quotients ofmanifolds under an appropriate freely-a
ting orbifold group and to 
onstru
t non-abelian ve
tor bundles on them [43{48℄. Globally de�ned realisti
 models fromSU(5) GUT on manifolds with Z2 Wilson lines in this 
ontext have been providedin [49℄. For non-supersymmetri
 models from SO(10) using Z3�Z3 Wilson linessee [50, 51℄. A re
ent 
onstru
tion of promising models in the setup of heteroti
toroidal orbifolds 
an be found in [52℄.1.3 Unitary bundles in heteroti
 
ompa
ti�
a-tionsIndependently of the heteroti
 model building industry, the dis
overy of D-branes [53℄ has opened up a 
omplementary - or rather dual - path to in
or-porating gauge intera
tions into String Theory, more pre
isely the Type II the-ory or orientifolds thereof. A sta
k of N 
oin
ident D-branes a

ommodates aU(N) gauge �eld in form of the massless modes of the open strings whose bothends are atta
hed to the brane. Soon it was realized that two sta
ks of su
hbranes interse
ting at a non-trivial angle feature 
hiral fermions in the bifunda-mental representation of the two unitary groups [54,55℄. This had the prospe
t of
onstru
ting MSSM-like models from type IIA orientifolds whi
h live at the four-dimensional overlap of several sta
ks of D6-branes wrapping in addition spe
ialLagrangian three-
y
les on the internal Calabi-Yau and interse
ting at super-symmetri
 angles [56℄10. On the other hand, it turns out extremely diÆ
ult toextend this 
lass of 
onstru
tions to non-toroidal ba
kgrounds. What hampersprogress into this dire
tion is the spe
ial Lagrangian 
ondition for supersymmet-ri
 three-
y
les. Being real in nature, this 
onstraint 
annot be ta
kled with thehelp of 
omplex geometry and is rather 
hallenging to 
ope with. Instead onemight try to invoke abstra
t CFT methods and 
onsider rational 
onformal �eldtheories 
orresponding to orientifolds at the Gepner point of 
ertain Calabi-Yau10For a 
omplete list of referen
es exploiting this idea see e.g. the most re
ent review [57℄.11



manifolds11, but again this strategy is not appli
able to more generi
 situations.The ar
hite
ture of the Interse
ting Brane World models di�ers from theE8 � E8 approa
h in that, instead of starting from one unifying group and thena

omplishing favourable gauge breaking, one 
ombines a number of separateU(N) modules given by the various brane sta
ks to mimi
 the produ
t stru
tureof the MSSM gauge group or modi�
ations thereof like Pati-Salam or left-rightsymmetri
 models. But are the 
onstru
tions really so di�erent? The obje
tsmirror dual to D6-branes at angles in Type IIA theory are spa
e�lling D9-branesin Type I theory, endowed with non-trivial ba
kground �eld strengths for theabelian diagonal of the U(N) gauge group. These magnetized branes in turn areS-dual to abelian ba
kground bundles in the SO(32) heteroti
 theory. The naturalsubgroups of SO(32) are indeed just U(N) groups, and we 
an therefore interpretthe interse
ting brane pi
ture as the geometri
 realisation of the breaking ofSO(32) into its U(N) subgroups via abelian ba
kground bundles.It is thus of obvious relevan
e to explore the usually negle
ted use of non-trivial line bundles12 in heteroti
 
ompa
ti�
ations with the hope of extendingour model building possibilities beyond the 
lassi
 embedding of ve
tor bundleswith vanishing �rst Chern 
lass only. Likewise, one might wonder if turningon also non-abelian gauge bundles on D9-branes wrapping genuine Calabi-Yaumanifolds in Type I leads to interesting 
onstru
tions. Sin
e the supersymmetry
ondition on the gauge bundles is holomorphi
, there is reason to hope that thisbypasses the te
hni
al diÆ
ulty whi
h the 
onstru
tion of spe
ial Lagrangiansubmanifolds poses on the Type IIA side.It is the aim of this thesis to investigate these questions.Our main motivation stems from the interpretation of dis
rete Wilson lines as
at abelian bundles whi
h are embedded into the ten-dimensional gauge group.As we pointed out, the 
onstru
tion of Calabi-Yau manifolds with non-trivial �rstfundamental 
lass is very involved. In fa
t, the only known example featuring e.g.Z3�Z3 Wilson lines ne
essary for SO(10) GUT breaking is the one 
onstru
tedin [46℄. Arbitrary line bundles, by 
ontrast, are 
omparatively straightforwardobje
ts - on Calabi-Yau manifolds they are simply determined by spe
ifying their�rst Chern 
lass as an element in H2(M;Z). If it were possible to repla
e theGUT breaking through Wilson lines by the embedding of non-
at line or moregeneral unitary bundles, this would open up the very interesting prospe
t ofheteroti
 string model building on simply-
onne
ted manifolds.The relevan
e of progress into this dire
tion be
omes even more obvious ifone takes into a

ount the following 
ru
ial aspe
t: Eventually all realisti
 modelbuilding a
tivities have to be extended beyond the spe
ial 
ase that the internalmanifold is Calabi-Yau. The underlying rationale is that the geometri
 moduli ofthe internal manifold as well as the dilaton appear as massless �elds in the four-dimensional �eld theory and are as su
h una

eptable from the phenomenologi
al11Re
ent progress in the 
onstru
tion of Type II orientifolds of Gepner models has been madein [58{63℄ and our own work [64,65℄.12For some early referen
es see [30, 66{68℄ and more re
ently [69℄.12



point of view. In 
on�gurations with non-trivial form �eld 
uxes in addition togauge instantons, the moduli are generi
ally rendered massive via a superpoten-tial generated by these 
uxes and 
an therefore be removed from the low-energyspe
trum. The resulting ba
kground manifold, however, is in general no longerCalabi-Yau as a 
onsequen
e of the modi�ed Killing spinor equations and thegravitational ba
krea
tion of the 
uxes. In the 
ase of heteroti
 
ompa
ti�
a-tions with non-trivial three-form 
ux [70{74℄, it is not even K�ahler, and 
ertainlynot simply a toroidal orbifold. All methods whi
h are restri
ted to one of thesetwo properties have therefore no 
han
e to yield 
ompletely realisti
 models inthe end. The lesson we learn is that in engineering the gauge se
tor we shouldrely as little as possible on the parti
ular non-generi
 stru
ture of our 
on
reteba
kground manifold. This, however, is just what we are doing in pursuing theWilson line approa
h to GUT breaking - after all one needs to identify very spe-
i�
 elements in the �rst homotopy group, whi
h in more general situations maybe extremely hard to 
ompute.Let us outline the stru
ture of this thesis. Before getting started, 
hapter2 reminds the reader of the basi
 
on
epts and te
hni
al details of Calabi-Yau
ompa
ti�
ations of the heteroti
 string. Also, we will take this opportunityto introdu
e our 
onventions and �eld normalisations. The highlighted stringtheoreti
 
onsisten
y 
onditions are the basis of the whole subsequent analysis.In 
hapter 3 we dis
uss the general theory of E8�E8 string 
ompa
ti�
ationsfeaturing unitary gauge instantons. The group theory of the asso
iated embed-ding gives rise to an unexpe
tedly ri
h stru
ture of possible low-energy gaugegroups in
luding in parti
ular 
ipped SU(5) � U(1)X GUT [75℄ and just theMSSM gauge group. In addition we allow for heteroti
 �ve-branes, in whi
h 
asewe are a
tually in the strongly 
oupled Horava-Witten regime [76,77℄. The pres-en
e of abelian gauge fa
tors requires a 
areful study of possible anomalies andthe asso
iated generalised four-dimensional Green-S
hwarz me
hanism. We willsee that 
onsisten
y of the va
ua 
alls for new anomaly 
an
elling 
ounter termsin the presen
e of abelian gauge �elds and �ve-branes. These 
ounter terms willfurthermore be derived expli
itly by dimensional redu
tion of eleven-dimensionalheteroti
 M-theory to ten dimensions. Apart from the issue of anomaly 
an
el-lation, the Green-S
hwarz me
hanism yields important terms in the low-energye�e
tive a
tion whi
h arise at one loop in string perturbation theory. Spe
i�
ally,we will analyse the gauge threshold 
orre
tions, �nd a new 
ontribution to theD-term s
alar potential for �ve-branes and identify a one-loop 
orre
tion to theFayet-Iliopoulos term asso
iated with the abelian gauge �elds. We will argue thatit represents a
tually a perturbative 
orre
tion to the Donaldson-Uhlenbe
k-Yausupersymmetry 
ondition on the gauge �elds and 
onje
ture a 
orresponding de-formation of the lo
al Hermitian Yang-Mills equation as the perturbatively exa
tgeneralisation of the string tree-level supersymmetry 
ondition.An analogous investigation is possible also for the SO(32) heteroti
 string withunitary bundles and �ve-branes and is the subje
t of 
hapter 4. The analysis of13



the breaking of SO(32) into its unitary subgroups and the asso
iated de
omposi-tion of the adjoint representation will reveal a gauge se
tor and spe
trum whi
hexa
tly mimi
 that in the S-dual/T-dual framework of interse
ting branes, asanti
ipated already. The details of the Green-S
hwarz me
hanism are di�erent towhat we en
ountered in the E8�E8 theory, in parti
ular as far as the �ve-brane
ontributions are 
on
erned, but again we will �nd loop 
orre
tions to the gauge
ouplings and the Donaldson-Uhlenbe
k-Yau 
ondition. In the S-dual Type Iframework, these one-loop terms be
ome perturbative �0-
orre
tions whi
h arewell-known to a�e
t also the lo
al supersymmetry equations and the resultingstability 
ondition. In fa
t, they make out just the perturbative part of the full�-stability 
ondition in the derived bounded 
ategory of 
oherent sheaves [78℄.This serves as further support for our 
onje
ture about the modi�ed supersym-metry 
ondition for the E8 � E8 string.To apply the results of 
hapter 3 and 4 to 
on
rete model building it is ne
es-sary to have 
ontrol over the moduli spa
e of stable holomorphi
 unitary ve
torbundles. In 
hapter 5 we therefore review the spe
tral 
over 
onstru
tion [40,41℄for SU(N) bundles over ellipti
ally �bered Calabi-Yau manifolds. By twistingthe SU(N) bundles with an additional line bundle, we 
an 
onstru
t bundleswith unitary gauge groups. For spe
ial 
lasses of twist bundles this pro
edureis equivalent to a sub
lass of the bundles provided by the generalisation of theoriginal spe
tral 
over method due to [69℄.In 
hapter 6 we provide two examples of semi-realisti
 va
ua of the SO(32)heteroti
 theory with Pati-Salam and MSSM-like gauge group respe
tively. Theyillustrate the general ar
hite
ture of this type of va
ua and its similarity to theinterse
ting brane framework. This is a dire
t 
onsequen
e of the group stru
tureof SO(32). Generi
ally, as we will see, the generi
 quiver stru
ture of the modelsmakes it hard to suppress 
hiral exoti
 matter in supersymmetri
 
on�gurations.These va
ua 
an likewise be interpreted as arising from D9-branes in the Type Iwith non-abelian gauge �eld VEVs.Chapter 7 introdu
es a setup for the 
onstru
tion of realisti
 
ipped SU(5)�U(1)X GUT and SU(3)� SU(2)�U(1)Y MSSM va
ua from the E8�E8 string.The key to keeping the respe
tive U(1) potential massless is to embed the sameline bundle into both E8 fa
tors. The 
ipped SU(5) models are phenomenologi-
ally parti
ularly attra
tive due to the absen
e of operators triggering proton de-
ay. Gauge 
oupling uni�
ation in both s
enarios holds at the level of the thresh-old 
orre
ted gauge 
ouplings. As far as 
on
rete phenomenologi
al appli
ationsare 
on
erned, the main result of this thesis is the 
onstru
tion of four-dimensionalva
ua with 
ipped SU(5) and Standard Model gauge group featuring pre
iselythree 
hiral generations and no further 
hiral exoti
s on simply-
onne
ted man-ifolds. A 
olle
tion of these va
ua will be presented in the remainder of 
hapter7 and in appendix D.Finally, we 
on
lude with a on outlook to the most pressing questions to beinvestigated in the future.Supplementary material is provided in the appendi
es. Some useful de�nitions14



and formulae regarding the topologi
al invariants of holomorphi
 ve
tor bundles
an be found in appendix A, together with a 
ouple of tra
e identities whi
h arefrequently used throughout this thesis. In appendix B we 
olle
t the K�ahler 
one
onstraints for ellipti
ally �bered Calabi-Yau manifolds over del Pezzo surfa
es.These are relevant when it 
omes to 
he
king the supersymmetry 
onditions onthe gauge bundles. For the 
onvenien
e of the reader, we have 
hosen to in
ludein appendix C a dis
ussion of the transformation rules for multiple U(1) fa
torswhi
h, though elementary, might give rise to some 
onfusion.
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Chapter 2The va
uum stru
ture ofheteroti
 
ompa
ti�
ations
2.1 On the heteroti
 low-energy e�e
tive �eldtheoryThe low-energy e�e
tive theory of the heteroti
 string is given by ten-dimensionalN = 1 supergravity 
oupled to super Yang-Mills theory. Depending on whi
h ofthe two heteroti
 theories we 
onsider, the original ten-dimensional gauge groupis E8�E8 or Spin(32)=Z21 and will be referred to as eG. The low-energy dynami
sof both theories only di�ers in the gauge se
tor as long we restri
t ourselves tothe perturbative limit of weak string 
oupling. The bosoni
 degrees of freedom
omprise the ten-dimensional metri
, the dilaton �10, the Kalb-Ramond two-formB(2) and the gauge potential A with �eld strength F = dA� iA ^ A. At lowestorder in the string 
oupling, the bosoni
 part of the string frame Lagrangian takesthe following formShet = 12�210 ZM(10) e�2�10 hR + 4 d�10 ^ ?d�10 � 12H ^ ?Hi� 12g210 ZM(10) e�2�10tr(F ^ ?F ): (2.1)We will sti
k throughout this thesis to the 
onventions of [12℄. In this nor-malisation the relative size of the gravitational and the Yang-Mills intera
tion isset by �210 = 12(2�)7 (�0)4 and g210 = 2 (2�)7(�0)3. We adopt the standard notationthat 'tr' denotes the tra
e in the ve
tor representation of the gauge group and'Tr' formally refers to the tra
e over the adjoint representation. In parti
ular thetwo are related via TrF 2 = 30 trF 2 (see also appendix A.2).An important role will be played by the heteroti
 three-form �eld strengthH = dB(2) � �04 (!YM � !L); (2.2)1Nonetheless, the latter 
ase is usually denoted as the SO(32) theory, 
f. se
tion 1.2 .17



whi
h involves the gauge and gravitational Chern-Simons three-forms de�ned interms of the gauge potential A and the spin 
onne
tion 
 by!YM = trA ^ dA� 2i3 trA ^ A ^ A; d!YM = trF 2;!L = tr
 ^ d
� 23 tr
 ^ 
 ^ 
; d!L = trR2: (2.3)Note that in the last line, the tra
e trR2 is over the fundamental representationof the tangent bundle of spa
etime, whi
h, for 
at ten-dimensional spa
e, hasstru
ture group SO(1; 9). A 
ru
ial point to take into a

ount is that B(2) is nota globally de�ned two-form. This is be
ause it is not invariant under a 
ombinedgauge transformation of the Yang-Mills potential and the spin 
onne
tionÆA = d�� i[A; �℄; Æ!YM = d tr(� ^ dA);Æ
 = d� + [
; �℄; Æ!L = d tr(� ^ d
); (2.4)but likewise transforms asÆB(2) = �04 [tr(� ^ dA)� tr(� ^ d
)℄: (2.5)The de�nition (2.2) makes 
lear that the gauge invariant and therefore globallyde�ned obje
t is the three-form �eld strength H.The 
hiral massless fermioni
 spe
trum 
onsists of the gravitino in the 56representation of SO(1; 9), the 8' dilatino, both intera
ting only gravitationally,and the 8 gaugino2 in the adjoint of the gauge group. The ten-dimensional theorytherefore exhibits gravitational, gauge and mixed gauge-gravitational anomaliesresulting from anomalous hexagon diagrams at one-loop in string perturbationtheory. It is of 
ourse among the renowned pe
uliarities of the gauge groupsE8 � E8 and SO(32) that the non-fa
torisable anomalies vanish by themselvesand the fa
torisable ones 
an be 
ast into a form suitable to be 
an
elled by addinga one-loop 
ounter term. This 
ounter term involves the two-form potential B(2)and is therefore, a

ording to (2.4), not gauge invariant. The resulting 
lassi
alanomalies absorb the one-loop �eld theoreti
 anomalies, thus rendering the theorywell-de�ned. Sin
e we will make heavy use of it in the sequel, let us display theGreen-S
hwarz anomaly 
an
elling one-loop 
ounter term [79, 80℄,SGS = 124 (2�)5 �0 ZM(10) B(2) ^X8; (2.6)where the eight-form X8 readsX8 = 124TrF 4 � 17200 �TrF 2�2 � 1240 �TrF 2� �trR2�+ 18trR4 + 132 �trR2�2 :(2.7)2The 80 and the 8 are of opposite 
hirality.18



Ten-dimensional Hodge duality relates the Kalb-Ramond two-form to a six-form B(6) via ?10 dB(2) = e2�10 dB(6): (2.8)This suggests the existen
e of a �ve-dimensional obje
t as the sour
e for B(6) andtherefore as the magneti
 dual of the fundamental string to whi
h B(2) 
ouples.These heteroti
 �ve-branes are genuinely non-perturbative obje
ts. The naturalframework to study them is 
onsequently the strong 
oupling limit of the heteroti
theory. In this regime the parallels between the E8 � E8 and the SO(32) theory
ome to an end and we need to distinguish as to whi
h theory we are referringto. For gauge group E8�E8 the strong 
oupling limit is given by Horava-Wittentheory [77℄, whi
h 
an be viewed, in the low-energy approximation, as eleven-dimensional supergravity on the interval S1=Z2. We will dis
uss some aspe
ts ofthis theory relevant for our purposes in detail later on in se
tion (3.4.4). Theobje
t whi
h redu
es to the heteroti
 �ve-brane in ten dimensions upon 
om-pa
ti�
ation of Horava-Witten theory along the eleventh dimension is known asthe M5-brane. It represents the magneti
 dual of the membranes as the funda-mental entities in M-theory. The world volume �a of the M5-brane supports aself-dual tensor �eld eBa, whi
h will play a role of similar importan
e as its 
ousinB(2) in se
tion (3.4.4). The e�e
tive a
tion governing the �ve-brane dynami
sin ten dimensions 
an be inferred by dimensionally redu
ing the known Pasti-Sorokin-Tonin a
tion for the 
orresponding M5-brane in heteroti
 M-theory. Forthe details of the full PST a
tion we refer to [81℄, and for the parts of primeinterest to us again to se
tion (3.4.4).By 
ontrast, the SO(32) heteroti
 string redu
es in the limit of strong string
oupling to the weakly 
oupled Type I theory [82℄. The low-energy degrees offreedom of both theories are related to one another by S-duality. Now the TypeI theory, too, involves a �ve-brane, the D5-brane, whi
h is therefore S-dual tothe SO(32) heteroti
 �ve-brane. As a result, the dynami
s of the latter di�ers
onsiderably from the one of its 
ounterpart in the E8�E8 theory in that it sup-ports symple
ti
 gauge �elds on its worldvolume and gives rise to 
hiral fermions
harged under this symple
ti
 group [83℄. Again, we postpone a more detaileddis
ussion to se
tion (4.1).Having re
alled the di�erent strong 
oupling origins of the E8 � E8 and theSO(32) �ve-brane, we stress that in both 
ases their role as magneti
 sour
es forthe Kalb-Ramond �eld is en
oded in the 
oupling to B(6)SWZ5 = �Xa NaT5 Z�a B(6) = �Xa NaT5 ZM(10) B(6) ^ Æ(�a); (2.9)where we 
onsider sta
ks ofNa �ve-branes with worldvolume �a and Æ(�a) denotesthe four-form Poin
ar�e dual to �a. The �ve-brane tension as appearing abooveis T5 = ((2�)5�03)�1. Note however the impli
it fa
tor of e�2�10 present in B(6)19



as a 
onsequen
e of the relation (2.8) so that e�e
tively, the �ve-brane tension isof order 1g2s .Sin
e it will be of great importan
e for our purposes later on, let us take a
loser look at the a
tion for B(2) respe
tively B(6). Dualizing the kineti
 a
tionof H and extra
ting all terms involving B(6) leads us to� 14�210 ZM(10) e2�10dB(6) ^ ?dB(6) + �08�210 ZM(10) B(6) ^ �trF 2 � trR2 �4(2�)2Xa Na Æ(�a)�: (2.10)The equation of motion after variation of B(6) follows asd(e2�10 ? dB(6)) = �04 �trF 2 � trR2 � 4(2�)2Xa Na Æ(�a)�: (2.11)In view of (2.8) and (2.2), the left-hand side is of 
ourse nothing other than dH 3,and (2.11) 
onstitutes its modi�ed Bian
hi identity. Sin
e dH is an exa
t form,so must be the expression inside the bra
kets on the right. This statement is theso-
alled Green-S
hwarz anomaly 
an
ellation or tadpole 
an
ellation 
onditionin the presen
e of �ve-branes,14(2�)2 (trF 2 � trR2)�Xa Na Æ(�a) = [0℄; (2.12)whi
h requires that the left-hand side has to vanish in 
ohomology.2.2 Calabi-Yau 
ompa
ti�
ationOur 
hief interest is in 
ompa
ti�
ations of the ten-dimensional string theorydown to four dimensions [28℄. From now on, we will therefore 
onsider the topol-ogy of ten-dimensional spa
etime to be given by the dire
t produ
t4M(10) = R(1;3) �M: (2.13)For stability reasons we insist that supersymmetry be unbroken at the 
om-pa
ti�
ation s
ale, in whi
h 
ase the internal six-dimensional manifold has to3One should de�nitely resist the temptation of equating the left-hand side simply to zero,using that d(e2�10 ? dB(6)) = d(dB(2)). Re
all that dB(2) is not globally de�ned and thereforeis not an exa
t form, so d(dB(2)) need not vanish.4We will not 
onsider the general 
ase of warped produ
ts in this thesis. Also we will simplywrite R1;3 for the external spa
e although we will at no pla
e dis
uss issues like the 
osmologi
al
onstant et
. Our fo
us will be ex
lusively on the gauge se
tor.20



admit a globally de�ned Killing spinor �. By standard arguments this redu
esthe stru
ture group of its tangent bundle to SU(3) (
f. [84℄ for a formulation in themodern language of G-stru
tures, for a re
ent review of related ideas and morereferen
es see also [85℄). Unbroken N = 1 supersymmetry in four dimensionsamounts to a solution of the Killing spinor equations, i.e. vanishing of the super-variation of the gravitino  , the dilatino � and the gaugino � as the fermioni
superpartners of the bosoni
 �elds entering the a
tion (2.1). The supervariationsrelate the fermioni
 zero-modes to the bosoni
 ones and in a given va
uum statedepend on the expe
tation values of the latter. In order to keep four-dimensionalLorentz invarian
e, only the internal 
omponents of the bosoni
 �elds may take anon-trivial va
uum expe
tation value. S
hemati
ally5, the Killing equations, atstring tree-level and at lowest order in �0, read [70℄0 = Æ = r�+ 14 H�;0 = Æ� = =��10� + 12 H�;0 = Æ� = 2F�: (2.14)Here H and F denote a suitable Gamma matrix 
ontra
tion with the internalba
kground values for the three-form and Yang-Mills �eld strength, respe
tively.Clearly, in the absen
e of a va
uum expe
tation value (VEV) for the ba
k-ground �eld strength H, the �rst equation implies that the Killing spinor be
ovariantly 
onstant with respe
t to the Levi-Civita 
onne
tion. It follows thatM is to be of SU(3) holonomy, i.e. a Calabi-Yau manifold. We restri
t all our
onsiderations to this spe
ial 
ase, together with a 
onstant dilaton in order tosatisfy also the dilatino equation. More pre
isely, we do not 
onsider ba
kgroundvalues for H at zeroeth order in �0. Nonetheless, the Bian
hi identity (2.11) for Hrelates a non-trivial VEV for the internal 
urvature as well as for the Yang-Mills�elds to a VEV for H, whi
h, however, arises at linear order in �0. As reviewede.g. in [9℄, 
orre
tions to the Calabi-Yau 
ondition at this order do not breaksupersymmetry spontaneously, but 
an be a

ounted for by 
orre
ting the va
-uum order by order. Note also that the gravitational ba
krea
tion of the gauge
ux is likewise of order �0, as 
an be seen by 
omparing the di�erent orders of�0 of the Einstein-Hilbert term and the Yang-Mills kineti
 term in the a
tion(2.1). Consequently, at zeroeth order in �0, the Calabi-Yau indeed solves the six-dimensional Einstein equations. As long as we are in the genuine supergravityregime, where the typi
al length s
ale of the internal manifold is mu
h biggerthat p�0, it is therefore justi�ed to negle
t both these e�e
ts. The more general
ase in the 
ontext of heteroti
 
ompa
ti�
ations was already pioneered in [70℄and has re
ently enjoyed revived interest among physi
ists and mathemati
ians,see e.g. [71{74℄. It will require some more sophisti
ated analysis in the 
ase of in-5Note that this simple form of the Killing spinor equations involves some res
aling of thebosoni
 and fermioni
 �elds whi
h is detailed in [70℄ and whi
h we do not display here sin
e itwill play no role in the sequel. 21



terest to us and will be the subje
t of future work. The supersymmetry 
onditionfor the Yang-Mills �eld strength will be dis
ussed in detail in the next se
tion.If supersymmetry is preserved, the e�e
tive theory upon 
ompa
ti�
ation isgiven, again in the zero-mode approximation, by four-dimensional N = 1 su-pergravity. Most remarkably, the 
hara
teristi
s of the four-dimensional e�e
tivedynami
s is entirely 
aptured by the topology and geometry of the internal mani-fold together with a 
onsistent 
hoi
e of va
uum expe
tation values for the bosoni
zero modes en
ountered in the previous se
tion.We will extensively exploit this fa
t in order to des
ribe the dynami
s of thegauge se
tor. A priori, if we simply 
ompa
tify the theory on a Calabi-Yau man-ifold without extra stru
ture, the four-dimensional gauge �elds transform in theadjoint representation of the original heteroti
 gauge group eG. In general, how-ever, the internal spa
e may 
arry ba
kground gauge 
ux. This means that someof the gauge bosons 
orresponding to the generators of some subgroup G � eGmay take a non-trivial va
uum expe
tation value onM. Of 
ourse not any arbi-trary 
on�guration of gauge 
uxes is allowed: The ba
kground values of the �eldstrength are subje
t to the Bian
hi identity and the Yang-Mills equations of mo-tion, together with additional 
onstraints if they are to preserve supersymmetry.Pure �eld theoreti
 
onsiderations imply that the four-dimensional gauge groupis broken to the 
ommutant H of G in the original gauge group eG,G � eG �! H = eG=G: (2.15)In more mathemati
al terms, the e�e
tive gauge se
tor is therefore governedby the suitable embedding of a ba
kground gauge bundle W overM with stru
-ture group G into the full E8�E8 or SO(32) bundle [39℄. Note that the require-ment that the ba
kground gauge �eld satisfy the Bian
hi identity is automati
allyful�lled if it arises as the 
onne
tion of a ve
tor bundle whereas the Yang-Millsequations of motion have to be imposed separately. Remarkably, a large amountof physi
al information is present already in the purely topologi
al part of thebundle data, most notably its various 
hara
teristi
 
lasses (see appendix A.1 fora 
olle
tion of some of their properties). This is true in parti
ular as far as theemergen
e of 
hiral fermions in four dimensions is 
on
erned, as we now review.The ten-dimensional massless fermions 
harged under the Yang-Mills se
torare the gauginos as the fermioni
 superpartners of the gauge bosons and transformin the 496-dimensional adjoint representation of eG. The embedding (2.15) indu
esthe de
omposition of this adjoint into the various irredu
ible representations ofthe four-dimensional gauge group H and the stru
ture group G of the internalbundle, 496 �!Mj (Rj; rj): (2.16)That is, ea
h four-dimensional massless fermion in representation Rj of the unbro-ken gauge group 
arries spe
i�
 
harges, en
oded in rj, also under the stru
ture22



group of the ba
kground bundle. Let us state that to ea
h rj we 
an asso
iate a
orresponding internal bundle Uj whi
h is essentially some tensor produ
t bundleofW or its subbundles. We will explain how to determine Uj when dis
ussing the
on
rete embeddings we are interested in. This entanglement between the four-dimensional properties Rj of a massless state and its internal origin is the basisfor determining the massless spe
trum of a 
ompa
ti�
ation from the geometry ofthe internal ba
kground bundles. In view of the splitting of the ten-dimensionalDira
 operator =D10 = =D4 + =D6 under 
ompa
ti�
ation on M, it is furthermore
lear that the fermioni
 zero modes in four dimensions are given by the kernelof the internal Dira
 operator. Furthermore, the splitting of the ten-dimensional
hirality operator into the four- and six-dimensional ones is su
h that the four-dimensional 
hirality of the fermion equals its six-dimensional one. As a matterof fa
t, on a Calabi-Yau manifold the positive (negative) 
hirality subspa
e of thekernel of the Dira
 operator is isomorphi
 to the even (odd) degree subspa
e ofthe Dolbeault 
ohomology. Sin
e it would lead too far to detail the derivation ofthis standard theorem, we refer e.g. to [9℄ for an a

ount. Taking this for granted,we 
on
lude that the fermioni
 zero modes in the representation Rj under H aregiven by the Dolbeault 
ohomology H�(M; Uj) of the internal bundle Uj whi
h isasso
iated to the representation rj under G. Of 
ourse, if N = 1 supersymmetryis unbroken ea
h fermion appears with a 
omplex bosoni
 superpartner to forma 
hiral supermultiplet. Most importantly, if the representation rj is 
omplex,the fermioni
 spe
trum is 
hiral and the net-number of 
hiral matter multipletsis given by the index of the Dolbeault 
omplex twisted by the respe
tive bundleUj. It is the 
ontent of the Riemann-Ro
h-Hirzebru
h theorem that this index
an be 
omputed as the Euler number�(M; Uj) = 3Xi=0 (�1)i dim(H i(M; Uj)= ZM �
h3(Uj) + 112 
2(TM) 
1(Uj)� : (2.17)To be 
rystal 
lear, H i(M; Uj) denotes the 
ohomology group of Uj-valued (0; i)-forms onM under the Dolbeault operator �. In fa
t, for a holomorphi
 bundle Ujover a 
omplex n-fold, by Serre duality not all 
ohomology 
lasses are independentdue to the relation H i(M; Uj) ' Hn�i(M; U�j 
 KM); (2.18)where U�j denotes the 
omplex 
onjugate bundle to Uj and KM is the 
anoni
albundle of M with 
1(KM) = �
1(TM). Clearly, KM is trivial for Calabi-Yaumanifolds.We state at this stage already that for a non-trivial �-stable bundle of zeroslope ne
essarily H0(M; Uj) = 0 = H3(M; Uj) and the same holds true for the
onjugate bundle U�j . Fermions transforming in the representations Rj 
orre-sponding to a non-trivial internal rj and thus to a non-trivial Uj are therefore23




ounted pre
isely by H1(M; Uj) and H2(M; Uj) ' H1(M; U�j ) as long as Uj isstable. For the bundles whi
h 
ount the 
hiral part of the spe
trum, this willalways be the 
ase. In view of the des
ribed relation between the four- andsix-dimensional 
hirality and the Dolbeault degree, the �rst 
ohomology group
ounts the left-handed and the latter the right-handed 
hiral multiplets.On the other hand, as follows from the group theoreti
 de
omposition ofthe 496, the four-dimensional gauge bosons transform in the trivial represen-tation under G 6, and the 
ohomology of the trivial bundle O on a Calabi-Yau is simply dimH�(M;O) = (1; 0; 0; 1). This is obvious if one re
alls thatH i(M;O) = H(0;i)(M) and the Hodge numbers of a Calabi-Yau are given byh(0;0) = 1 = h(0;3) and h(0;1) = 0 = h(0;2). H0 and H3 therefore 
ount ve
tor mul-tiplets, whi
h will be of use later on when we dete
t possible gauge enhan
ementsby sear
hing for additional 
ohomology groups of the trivial bundle.Another generi
 feature is the appearan
e of singlets under the four-dimensionalgauge groups, but transforming in the adjoint representation of the internal gaugegroup. These singlets are the moduli �elds asso
iated to the deformations of theinternal bundle. For SU(N) bundles V , the adjoint is simply the tra
e free partof V 
 V �. Stability of V implies that H0(M; V 
 V �) = 1 = H3(M; V 
 V �).Subtra
ting this single element, whi
h 
orresponds pre
isely to the tra
e part, we�nd that the bundle moduli are 
ounted by H1(M; V 
 V �).Finally, we will be interested in 
ompa
ti�
ations featuring also the presen
eof non-perturbative �ve-branes. In those 
ases we leave, stri
tly speaking, theregime of exa
tly zero string 
oupling, gs = 0, sin
e the tension of the �ve-branes s
ales like 1g2s and we 
annot a

ept for their mass to diverge, of 
ourse.Even though gs > 0, this does not imply, however, that we are inevitably be-yond the perturbative framework sin
e we 
an still 
onstrain ourselves to smallnon-vanishing gs su
h that all perturbative e�e
ts higher than the one-loop leveland even more so additional non-perturbative 
orre
tions 
an 
onsistently be ne-gle
ted. In the 
ase of the E8�E8 heteroti
 string, the strong 
oupling limit of thetheory was pointed out already to be given by eleven-dimensional M-theory onS1=Z2, with the two E8 fa
tors arising from the two orbifold �xed planes at the op-posite ends of the interval. We will always assume that the heteroti
 �ve-branes,if present, are lo
alised in the eleven-dimensional bulk between the E8-planes sothat they do not interfere with the geometry of the gauge bundles, possibly lead-ing to 
hirality or gauge group 
hanging small instanton transitions [86℄. Thisassumption is standard in all heteroti
 
ompa
ti�
ations with �ve-branes in theliterature and should of 
ourse be eventually justi�ed by expli
itly 
omputingthe e�e
ts �xing the �ve-brane position along the eleventh dimension for 
on-
rete models. As stated already, we will, in this work, not be 
on
erned withany issues of geometri
 moduli �xing, postponing this important, but involved6This is true as long as the gauge group is not enhan
ed due to degenera
ies of the embeddingof the internal bundles. The 
lass of SO(32) va
ua we will analyse in 
hapter 4 is pre
isely ofthat form. 24



question for a future analysis.2.3 Consisten
y 
onditions for model buildingThe high degree of 
onsisten
y of String Theory in its fundamental �-modelformulation on the worldsheet translates itself into severe 
onstraints whi
h thegeometri
 data in the e�e
tive des
ription have to satisfy in order to de�ne a
onsistent supersymmetri
 string va
uum. These 
an be summarized as follows:� At tree-level, the gauge bundles have to be holomorphi
, �-stable and satisfythe Donaldson-Uhlenbe
k-Yau equation.� The �ve-branes have to wrap holomorphi
 two-
y
les on the internal man-ifoldM.� The gauge bundle and �ve-branes are subje
t to the anomaly 
an
ellation
ondition.� The se
ond Stiefel-Whitney 
lass of the gauge bundle has to vanish.Let us turn to a detailed dis
ussion of these 
onstraints.The gauge degrees of freedom of the ba
kground bundle are subje
t to theYang-Mills equation of motion and the Bian
hi identity. Moreover, as we notedalready, we insist on unbroken supersymmetry at the 
ompa
ti�
ation s
ale toguarantee physi
al stability of the va
uum. Re
all from (2.14) that the super-symmetry 
ondition on the gauge degrees of freedom is determined by demandingthat the variation of the gaugino vanish in the va
uum, Æ� = 0. At string tree-level, this yields the following two equations in terms of holomorphi
 
oordinatesonM involving the �eld strength of the ba
kground gauge �elds (see e.g. [9℄),Fab = Fab = 0; gab Fab = 0: (2.19)The �rst equation implies that W has to be a holomorphi
 ve
tor bundle, i.ethat it has to admit a holomorphi
 
onne
tion. Due to its holomorphi
ity, this
onstraint 
an only arise as an F-term in the e�e
tive N = 1 supergravity de-s
ription and therefore does not re
eive any perturbative 
orre
tions in �0 or thestring loop expansion [87℄.The se
ond equation in (2.19) 
an be 
onveniently rewritten as J ^J ^F = 0by taking the Hodge dual. This is a
tually the zero-slope limit of the generalHermitian Yang-Mills (HYM) equationJ ^ J ^ F = 2� �(W ) volM id; (2.20)where id denotes the identity matrix a
ting on the �bre and J represents theK�ahler form of the internal Calabi-Yau. As the name suggests, in 
ombinationwith holomorphi
ity and the Bian
hi identity for F , this 
ondition automati
ally25



implies that the Yang-Mills equation of motion is satis�ed. In (2.20) the slope� of a ve
tor bundle V with respe
t to the K�ahler form J on a manifoldM isde�ned as7 �(V) = 1rk(V) ZM J ^ J ^ 
1(V): (2.21)A

ording to a theorem by Donaldson [88℄ and by Uhlenbe
k and Yau [89℄, (2.20)has a unique solution if and only if the ve
tor bundle W in question is �-stable8,i.e. if for ea
h subbundle V of W with 0 < rk(V) < rk(W ) one has�(V) < �(W ): (2.22)Consequently, the zero-slope limit of the Hermitian Yang-Mills equations (2.19)relevant at tree level is satis�ed pre
isely by holomorphi
 �-stable bundles whi
hmeet in addition the integrability 
onditionZM J ^ J ^ 
1(W ) = 0: (2.23)In 
ase the bundle W is the Whitney sum of several bundles, as it will be inthe 
ase of interest to us, ea
h summand bundle has to be stable and satisfy(2.23). We will refer to the latter 
onstraints in the following as the tree-levelDonaldson-Uhlenbe
k-Yau (DUY) equation. It is important to realize that the
ondition of �-stability is 
ompletely independent of the a
tual numeri
al valuewhi
h the slope � takes. The latter is en
oded in the DUY equation, whi
hinsists on �(W ) = 0 and therefore makes 
lear that the supersymmetry 
onditionat tree-level is not merely (2.20), but a forteriori J ^ J ^ F = 0. Consider forexample a 
omplex line bundle L, i.e. a 
omplex ve
tor bundle with stru
turegroup U(1). The Bian
hi identity dF = 0 implies in this 
ase that J ^ J ^ F ,together with dJ = 0 for K�ahler manifolds, is automati
ally a 
onstant multipleof the volume form so that the lo
al HYM equation (2.20) is trivially satis�ed.This is in agreement with the DUY theorem sin
e a line bundle over a Calabi-Yau manifold is also trivially stable. The tree-level supersymmetry 
ondition isthus merely given by the DUY equation (2.23). Clearly this is no more true fornon-abelian bundles.We stress that the Hermitian Yang-Mills and also the DUY 
ondition in theform above are valid only at tree-level and were derived for situations where noother �elds besides the gauge �elds take a non-zero va
uum expe
tation value.As given in (2.23), the DUY 
ondition puts a 
onstraint on the K�ahler form of the7The fa
tor of 2� in the Hermitian Yang-Mills equation is just a 
onsequen
e of the de�nitionof 
1(V ) = 12� trF . Furthermore we have normalized the volume ofM to one.8To be pre
ise, it is suÆ
ient that the bundle be �-semistable. In that 
ase, however, it maysplit into subbundles su
h that the resulting stru
ture group is a subgroup of the original one.The 
ommutant of the stru
ture group in eG, and thus the visible gauge group, would thereforeget enhan
ed during this pro
ess, whi
h we would 
learly like to avoid in well-de�ned physi
alva
ua. 26



internal manifold, whi
h after all 
annot take arbitrary values but has to lie insidethe so-
alled K�ahler 
one. We will analyse these 
onstraints in great detail in thesequel and derive perturbative 
orre
tions both to the stability 
ondition and tothe DUY equation. Besides we will see expli
itly how the DUY equation emergesalso as a D-term 
onstraint from the four-dimensional e�e
tive supergravity.Let us turn to the supersymmetry 
ondition for the heteroti
 �ve-branes. Inorder to keep Lorentz invarian
e in four dimensions, we only allow for situationswhere the worldvolume �a of the �ve-brane �lls the four large dimensions andtherefore wraps in addition an internal two-
y
le, denoted by 
a [90℄. The stan-dard arguments involving �-symmetry on the worldvolume of the �ve-brane yieldthat for unbroken supersymmetry the two-
y
le 
a has to be holomorphi
 [91℄.All 
on�gurations 
onsidered hen
eforth will be of this type. Put di�erently, the
ohomology 
lass asso
iated with the two-
y
le 
a must be e�e
tive9. The setof e�e
tive 
lasses forms a 
one, the so-
alled Mori 
one, in H2(M;Z). This isdue to the fa
t that a linear 
ombination of two-forms with positive integer 
oef-�
ients again 
orresponds to an e�e
tive 
lass if the original two-forms do. It is
onvenient to introdu
e furthermore the notation 
a for the element in H4(M;Z)Poin
ar�e dual to 
a.We have already en
ountered the anomaly 
an
ellation 
ondition (2.12) whi
htranslates into a 
onstraint to be satis�ed by the internal gauge bundle W , thetangent bundle TM of the internal spa
e and the 
on�guration of heteroti
 �ve-branes. As we re
all, it arises simply as the Bian
hi identity for the three-form�eld strengthH. Its violation results in the appearan
e of gauge and gravitationalanomalies in the e�e
tive theory, sin
e (2.12) is a ne
essary and suÆ
ient 
ondi-tion for the ten-dimensional anomaly 
an
ellation me
hanism to work. Turningthe arguments around we 
an - and will - read (2.12) as the 
onstraint that the
ohomology 
lass [W ℄10 de�ned by[W ℄ = h 14(2�)2 trF 2i� h 14(2�)2 trR2i (2.24)must admit the interpretation as the 
lass Poin
ar�e dual to the homology 
lassof a sum of holomorphi
 
urves. Here F and R denote the internal ba
kground�eld strength with values in G and the 
urvature two-form on TM, respe
tively.A

ording to what we just said this translates into the requirement that theHodge dual 
lass of [W ℄ be e�e
tive. That is, we insist that the tadpole of thegauge instantons and the Calabi-Yau tangent bundle 
an just be 
an
elled by asystem of supersymmetri
 �ve-branes. Failure of e�e
tiveness of [W ℄ (or morepre
isely its Hodge dual 
lass) means that the �ve-branes, whi
h we 
an always9Re
all that in general, e�e
tiveness of a 
ohomology 
lass of two-forms just states that itsrepresentatives are indeed dual to a smooth holomorphi
 
urve, as required.10We trust that it does not 
onfuse the reader that we sti
k to the standard notation in theliterature and denote the �ve-brane 
lass as [W ℄. It will always be 
lear if W refers to theinternal gauge bundle or the �ve-brane 
lass. 27



introdu
e, are non-supersymmetri
 and in parti
ular non-BPS with respe
t to thegauge se
tor. Due to potential instabilities, we do not 
onsider su
h situations inthis work11.There is a slightly more subtle topologi
al 
ondition on the gauge bundleswhi
h states that the se
ond Stiefel-Whitney 
lass of W has to vanish. This re-quirement was originally derived from the absen
e of world-sheet anomalies in thetwo-dimensional non-linear sigma model and we refer to [94,95℄ for more details.Sin
e the se
ond Stiefel-Whitney 
lass of a holomorphi
 bundle is isomorphi
 tothe Z2-restri
tion of its �rst Chern 
lass [30℄, the 
ondition is satis�ed pre
iselyif 
1(W ) 2 H2(M; 2Z): (2.25)In the 
ase of the SO(32) string we will �nd a simple spa
etime interpretationfor (2.25) as being equivalent to the absen
e of a global Witten anomaly on the�ve-branes in every topologi
al se
tor of the va
uum. Due to its role as the 
an-
ellation 
ondition for the torsion K-theory 
harges of non-BPS D7-branes in theS-dual Type I framework [96℄, we will sometimes refer to (2.25) as the K-theory
onstraint. We are not aware of a similar spa
etime interpretation for the E8�E8theory.

11See, however, [92, 93℄ for a proposal of supersymmetry breaking va
ua in the presen
e ofanti-�ve-branes. 28



Chapter 3The E8 �E8 Heteroti
 string withunitary bundlesThe va
uum stru
ture of perturbative four-dimensional heteroti
 
ompa
ti�
a-tions is, as we reviewed in the previous 
hapter, spe
i�ed by a stable, holomor-phi
 ve
tor bundle W over the internal Calabi-Yau manifoldM together with anembedding of its stru
ture group G into the original ten-dimensional heteroti
gauge group eG. By an appropriate 
hoi
e of G and the bundle data, one 
anthereby try and 
onstru
t four-dimensional va
ua with phenomenologi
ally ap-pealing gauge group and matter 
ontent. As we also re
alled in se
tion 1.2, thestandard realisation of GUT groups in this 
ontext is to embed an an SU(4)or SU(5) bundle into one of the two E8 fa
tors leading to SO(10) and SU(5),respe
tively, as the resulting observable gauge groups. The 
hiral matter aris-ing in these s
enarios transforms in the (16) or (10) + (5) representation of thegauge group. The spe
trum does not provide any appropriate ve
tor-like matter,i.e. Higgs �elds, required to break the GUT group down to the Standard Model.This drawba
k is over
ome by breaking SO(10) or SU(5) via non-trivial dis-
rete Wilson lines, whi
h in general 
an only exist if the �rst homotopy group ofthe Calabi-Yau is non-trivial. Su
h Calabi-Yau threefolds 
an be 
onstru
ted bytaking free dis
rete quotients of a Calabi-Yau with vanishing fundamental group.The ele
troweak Higgs 
an appear from the (10) or the (5) + (5) representations.From the physi
al point of view, this is a very simple and 
ompelling pi
ture andre
ently models whose parti
le spe
trum is quite 
lose to the Standard Modelhave been 
onstru
ted [44, 49, 51℄.The starting point for our investigations is the following fa
t: The des
ribedbreaking of the GUT gauge symmetry down to the Standard Model via dis
reteWilson lines involves, in more mathemati
al terms, 
at abelian bundles. This,however, is not the most general type of 
onstru
tion. An obvious question isto explore whether one 
an use also non-
at line bundles to obtain phenomeno-logi
ally interesting GUT or MSSM-like models from the E8 � E8 string. The
ontent of this 
hapter is a thorough and systemati
 analysis of this idea, based29



on [97, 98℄.1 We will �rst have to understand the group theoreti
 embeddingof ve
tor bundles with non-semisimple stru
ture group and the resulting matter
ontent upon de
omposition of the adjoint representation of E8 � E8. We willthen pro
eed to a detailed analysis of the low-energy e�e
tive theory in four di-mensions. The presen
e of anomalous U(1) fa
tors in the visible gauge groupne
essitates a 
areful study of the anomaly 
an
ellation me
hanism, whi
h isparti
ularly subtle in the presen
e of non-perturbative �ve-branes. We will de-rive new anomaly 
an
elling terms upon redu
tion of the �ve-brane a
tion fromheteroti
 M-theory down to ten dimensions. The importan
e of these terms isobvious only in the presen
e of U(1) groups and has therefore been overlookedpreviously. Most importantly, the various one-loop terms provided by the fullGreen-S
hwarz me
hanism will further lead us to the dis
overy of perturbative
orre
tions to the D-term superymmetry 
onditions a�e
ting in parti
ular therelevant stability 
ondition for the ba
kground bundles. We will 
on
lude ouranalysis of the general features of the E8�E8 heteroti
 string with unitary bun-dles by exemplifying the ri
h embedding patterns leading to 
ipped SU(5) GUTmodels or dire
tly to the Standard Model gauge symmetry even on manifoldswithout Wilson lines. Further phenomenologi
al appli
ations of the ideas pre-sented in this 
hapter are postponed to 
hapter 7.3.1 Group theoreti
 embeddingThe ve
tor bundles we 
onsider are of the following generi
 formW =W1 �W2; (3.1)where the stru
ture group Gi of Wi is embedded into the �rst and se
ond fa
torof E(1)8 � E(2)8 , respe
tively, with 
ommutant Hi,G1 �G2 � E(1)8 � E(2)8 ! H1 �H2: (3.2)For ea
h building blo
k Wi we 
onsider the Whitney sum of SU(Ni) or U(Ni)bundles. They are 
hosen su
h that the stru
ture group of Wi 
ontains at leastone abelian fa
tor. In order to determine the unbroken gauge group Hi relevantfor the physi
s in the string va
uum, we need to re
all some group theoreti
generalities 
on
erning the embedding of non-semisimple Gi � E(i)8 .As a matter of fa
t, it is not possible to dire
tly embed the unitary group U(N)into E8 be
ause all subgroups of the latter are semi-simple. One therefore has totake a detour by �rst 
hoosing some auxiliary semi-simple subgroup SU(Ni) �1A study of U(N) bundles in the framework of the spe
tral 
over 
onstru
tion has appearedre
ently in [69℄. Besides that, to our knowledge, the only 
onstru
tions prior to our analysis [97℄are some s
attered results on aspe
ts of four-dimensional models [30,99,100℄ and a few paperson �ve- and six-dimensional models [66{68,70,101℄. Our analysis di�ers 
onsiderably from someof the 
on
lusions in [100℄ and [68℄. Re
ently, more aspe
ts of the framework of [97℄ have beenanalysed in [102℄ and [103℄. 30



E(i)8 .2 Of 
ourse, we are very familiar with the embedding of this SU(Ni) into E(i)8by 
onsidering the usual bran
hing rules for E(i)8 (see e.g. [104℄). Let us 
olle
tivelydenote the 
ommutant of SU(Ni) in E(i)8 as E9�Ni. Con
retely, forNi = 7; 6; : : : ; 2it is known to be given by SU(2), SU(3)� SU(2), SU(5), Spin(10), E6 and E7,respe
tively.What may be not so familiar is the se
ond step, the embedding of the non-semisimple stru
ture group Gi into this auxiliary SU(Ni). It 
an be a

omplishedin two distin
t ways.The �rst type of 
onstru
tion - dubbed of type A in the sequel - is basedon the embedding SU(Ni) � U(1)Mi � SU(Ni + Mi) and invokes in its mostelementary version the Whitney sumWi = VNi � MiMmi=1Lmi (Type A): (3.3)Here, the ve
tor bundle VNi has stru
ture group SU(Ni) � SU(Ni +Mi) andthe �eld strengths of the line bundles Lmi are identi�ed with the spe
i�
 U(1)generators in SU(Ni +Mi) whi
h 
ommute with the generators of the 
hosenSU(Ni). To be more pre
ise, the U(1) generators are determined iteratively byfollowing the stepwise de
ompositionSU(Ni +Mi)! SU(Ni +Mi � 1)� U(1)1 ! : : :! SU(Ni)� MiYmi=1U(1)mi :(3.4)Clearly, in ea
h step the new U(1)ki generator Tki 
an be represented by thediagonal SU(Ni +Mi) matrixTki = diagNi+Mi( 1; : : : ; 1| {z }Ni+Mi�ki times;�(Ni +Mi � ki); 0; : : : ; 0): (3.5)This realizes the promised embedding of the stru
ture group SU(Ni)�U(1)Mi ofthe bundleWi into SU(Ni+Mi). We anti
ipate that the states in the fundamentalrepresentation of the line bundle Lmi 
an be taken to 
arry unit U(1)mi 
harge,thus �xing the otherwise arbitrary U(1) 
harge normalization. The various linebundles are not 
orrelated among one another and in parti
ular VNi gives no
ontribution to the U(1) 
harges. For later purposes, we summarize this bywriting Qki(Lmi) = Æki;mi ; Qki(VNi) = 0: (3.6)The relevan
e of this U(1)mi 
harge whi
h we thereby attribute to the line andve
tor bundles will be
ome 
lear when we dis
uss the 
ohomology groups (3.18)2For the moment, let us 
on
entrate on the 
ase where we really have only one fa
tor ofSU(Ni). Generalizations are obvious and will be sket
hed at the end of this se
tion.31




ounting the massless spe
trum.Example:We illustrate this Type A embedding by a simple example. Consider onlyone E8 fa
tor. In the �rst step of our 
onstru
tion, take N = 4, 
orrespondingto the embedding SU(4) � E8 ! SO(10). Now we de
ompose the internalSU(4) as SU(4) ! SU(3) � U(1). This is a

omplished by means of a bundleW = V � L, where V is a rank three bundle with 
1(V ) = 0 and L a 
omplexline bundle. The stru
ture group SU(3) � U(1) of W is embedded into thisSU(4) by identifying the �eld strength of the 
onne
tion of L with the SU(4)generator T = diag(1; 1; 1;�3). L is assigned U(1) 
harge 1. In all, this realizesthe embeddingSU(3)� U(1) � SU(4) � E8 �! SO(10)� U(1): (3.7)As an alternative to the type A 
onstru
tion, one 
an embed U(Ni) bundlesVNi into E(i)8 by means of a parti
ular pro
edure where one a
tually starts witha U(Ni)� U(1)Mi bundle Wi with 
1(Wi) = 0. To emphasize the di�eren
e fromthe ansatz (3.3) for SU(Ni)� U(1) bundles, let us adopt the notationWi = VNi � MiMmi=1L�1mi with 
1(Wi) = 0 (Type B) (3.8)for U(Ni)� U(1)Mi bundles.What distinguishes the two 
onstru
tions is that in (3.8) the line bundles areno more independent, but are 
hosen just to absorb the diagonal U(1)-
hargeof U(Ni) in the splitting SU(Ni +Mi) ! U(Ni) � U(1)Mi. At the level of thebundles, this means that, as indi
ated, the �rst Chern 
lasses of the varioussummand bundles add to zero. Group theoreti
ally, one has to �x the embeddingof the U(1) part of the stru
ture group into SU(Ni +Mi). For ki = 1; : : : ;Mithis 
an be des
ribed by the 
hargesQki = (Qki(VNi); : : : ; Qki(VNi)| {z }Ni times ; Qki(L�11 ); : : : ; Qki(L�1mi)) (3.9)with NiQki(VNi) + MiXmi=1Qki(L�1mi) = 0: (3.10)The 
on
rete 
harge assignment is again found iteratively by invoking the de
om-position (3.4), where in ea
h step we 
an use the freedom to 
hoose a normaliza-tion of the new abelian 
harge in order to writeQki = ( 1; : : : ; 1| {z }Ni+Mi�ki times;�(Ni +Mi � ki); 0; : : : ; 0); (3.11)32



whi
h 
learly di�ers from its previous analogue (3.6). Note that as a 
onsequen
eof the 
orrelation between the U(1) part of the stru
ture group of VNi and thatof line bundles, the bundle Wi has stru
ture group SU(Ni) � U(1)Mi . For thedetailed 
omputation of the various anomalies asso
iated with the U(1)-fa
tors,it will turn out to be 
onvenient to introdu
e the matrixQkimi = Qki(VNi) +Qki(Lmi): (3.12)Example:Applying this 
onstru
tion to our toy SO(10) 
hain (3.7) we now take W =V �L�1, with V a U(3) bundle and the line bundle L 
hosen su
h that 
1(W ) =
1(V ) � 
1(L) = 0. Clearly, L 
an be attributed U(1) 
harge 3, V 
arries unit
harge, and (3.10) is satis�ed with Q = (1; 1; 1;�3), see (3.9) and (3.11). Notealso that Q = 4.Both 
onstru
tions (3.3) and (3.8) admit obvious generalizations: Instead of
onsidering only one non-abelian bundle VNi per E(i)8 , we 
an, of 
ourse, allow forseveral suitable SU(Nkii ) or U(Nkii ) fa
tors and embed them into SU(Pki Nkii +Mi). The point is that when embedding U(1)mi into SU(Ni), we 
an alternativelyidentify its generator Tmi with any other diagonal SU(Ni) generator, indu
ingthereby the bran
hing U(1)mi � SU(Ni) �! SU(Ai) � SU(Bi) � U(1) withAi +Bi = Ni. As far as the type B 
onstru
tion is 
on
erned, the generalisationof the above is to realise the breaking U(Ni) �! U(Ai)�U(Bi), Ai+Bi = Ni. Asystemati
 des
ription of the latter type of embeddings has re
ently been givenin [105℄. Arbitrary iterations and 
ombinations are obvious.Let us summarize the systemati
s: As des
ribed, the unbroken gauge groupin four dimensions is given by the 
ommutant H1 � H2 of the stru
ture groupG1�G2 � E(1)8 �E(2)8 . In parti
ular, its non-abelian part is determined - leavingaside the issue of additional enhan
ements for the moment - by the standard 
om-mutant of the SU(Ni) in E(i)8 . The detailed form of how the SU(Nkii ) or U(Nkii )groups are embedded into the SU(Ni) de
ides on the additional abelian groupfa
tors whi
h 
an potentially o

ur. It is 
lear that the abelian part of the stru
-ture group is 
ontained in H (U(1) fa
tors of type (i) a

ording to [30, 68, 106℄),be
ause the U(1)s 
ommute with themselves. There might also be additionalU(1) fa
tors in H not 
ontained in the stru
ture group (U(1) fa
tors of type (ii)).Finally, we anti
ipate that, depending now on the parti
ular topologi
al proper-ties of the ve
tor bundles we 
hoose, the gauge group 
an be further enhan
ed orU(1) fa
tors 
an be
ome massive due to the Green-S
hwarz me
hanism. Thesetwo issues will be explored more extensively in the subsequent se
tions.In view of the above, a 
omplete and systemati
 
lassi�
ation of all possibleembeddings and the resulting gauge groups is in prin
iple possible, but not very33



illuminating. Of potential phenomenologi
al interest is the embedding of thoseSU(Ni+Mi) fa
tors leading either dire
tly to SU(3)�SU(2) as the non-abelianpart of the 
ommutant in E8 or to appealing GUT groups su
h as SO(10), SU(5)or the Pati-Salam SU(4) � SU(2) � SU(2). On simply-
onne
ted Calabi-Yaumanifolds, the need to realize the �nal gauge group breaking down to the MSSMwithout the aid of Wilson lines further eliminates SO(10) and Georgi-GlashowSU(5) sin
e the GUT Higgs states required in these s
enarios are absent in themassless spe
trum. Sin
e a general feature of our approa
h is the appearan
eof at least one U(1) fa
tor in the gauge group, we are very naturally lead to allthose s
enarios where su
h abelian groups o

ur. Besides the dire
t realisationof the MSSM gauge se
tor this is most prominently the so-
alled 
ipped GUTframework, in parti
ular the 
ipped SU(5) � U(1)X model [75℄. We anti
ipatethat - unlike the 
onventional GUT models - the GUT Higgsing merely requiress
alars in mu
h smaller representations whi
h are present in the spe
trum. Thisyields the important prospe
t of bypassing the need of Wilson lines and thereforenon-simply 
onne
ted ba
kground manifolds.In all 
on
rete examples we will restri
t ourselves to (at most) one non-abelianbundle per E(i)8 fa
tor3. We will therefore sti
k in our notation to this 
ase.3.2 Massless spe
trum and 
ohomology 
lassesTo determine the massless spe
trum, one analyses, as in (2.16), the splitting ofthe adjoint representation of E8 � E8 into irredu
ible representations R(i)xi underthe four-dimensional group and the internal one, denoted as r(i)xi ,248� 248!Xx1 (R(1)x1 ; r(1)x1 ; 1; 1) +Xx2 (1; 1;R(2)x2 ; r(2)x2 ): (3.13)From the stru
ture of (3.13) it appears at �rst sight that the two E(i)8 se
torsare hidden to ea
h other in the sense that all states 
harged under, say, E(2)8 aresinglets under E(1)8 and vi
e versa. This is de�nitely true for the non-abelian partof the representations, whi
h arises after embedding the SU(Ni +Mi) into E(i)8 .However, in the presen
e of abelian gauge group fa
tors, this pi
ture 
hanges. Inthe original, diagonal basis of U(1)mi generators, it still holds true that the statesin representation R(1)x1 are un
harged under the abelian group fa
tors embeddedinto E(2)8 and vi
e versa. But we are free to perform a 
hange of basis and 
onsiderarbitrary linear 
ombinations of U(1) generators from both E(i)8 .4 In parti
ular,states in the representation, say, (1; 1;R(2)k ; r(2)k ), though 
oming as singlets underH1, may 
arry non-trivial 
harges under the U(1) group generated by the linear3As it turns out, these are pre
isely the phenomenologi
ally appealing ones.4In fa
t, these may be just the massless 
ombinations surviving the Green-S
hwarz me
ha-nism. Our favourite 
onstru
tion in 
hapter 7 will be pre
isely of this form.34




ombination am1Tm1 + bn2Tn2 of generators Tmi of U(1)mi . As a 
onsequen
e ofthe embedding of U(N) bundles, the two E(i)8 are no more 
ompletely hidden toea
h other.In the 
lass of models based on the splitting SU(Ni+Mi)! SU(Ni)�U(1)Mifor the internal bundle, we 
an give a rather general 
losed expression for therepresentations r(i)xi whi
h o

ur. It is based on the elementary observation thatunder SU(N + 1)! SU(N) � U(1) we have the following de
omposition of thelowest irredu
ible representationsAdj(N+ 1) ! Adj(N)0 + (1)0 + (N)N+1 + (N)�(N+1);(N+ 1) ! (N)1 + 1�N ;�2(N+ 1) ! �2(N)2 + (N)�(N�1);�3(N+ 1) ! �3(N)3 +�2(N)�(N�2): (3.14)For the various antisymmetri
 tensor representations we write more suggestively�N + 1k � ! �Nk�k + � Nk � 1��(N+1�k): (3.15)One 
an now follow the various steps in the full de
omposition SU(N +M) !SU(N) � U(1)M for ea
h of the two E(i)8 as in (3.4) and prove by indu
tion thefollowing de
omposition of the lowest representations whi
h we will en
ounter inour appli
ationsAdj(N+M) ! Adj(N)(0;:::;0) +M � (1)(0;:::;0) + M�1Xk=0 (N) ~Q1k + 
:
!+ M�2Xj=0 M�j�2Xk=0 (1) ~Q2j;k + 
:
! ;(N+M) ! (N)(1;:::;1) + M�1Xj=0 (1) ~Q3j ;�2(N+M) ! �2(N)(2;:::;2) + M�1Xk=0 (N) ~Q4k + M�2Xj=0 M�j�2Xk=0 (1) ~Q5j;k ; (3.16)�3(N+M) ! �3(N)(3;:::;3) + M�1Xk=0 �2(N) ~Q6k + M�2Xk=0 M�k�2Xl=0 (N) ~Q7k;l +M�3Xl=0 M�l�3Xj=0 M�j�l�3Xk=0 (1) ~Q8l;j;k :The various U(1) 
harge ve
tors of the states are given by~Q1k = (1; : : : ; 1| {z }k ; (N + k + 1); (N + k + 2); : : : ; (N +M));35



~Q2j;k = (0; : : : ; 0| {z }j ; (�N + j); 1; : : : ; 1| {z }k ; (N + j + k + 2); (N + j + k + 3);: : : ; (N +M));~Q3j = (0; : : : ; 0| {z }j ; �(N + j); 1; : : : ; 1);~Q4k = (1; : : : ; 1| {z }k ; (�N � k + 1); 2; : : : ; 2);~Q5j;k = (0; : : : ; 0| {z }j ; �(N + j); 1; : : : ; 1| {z }k ; �(N + k + j); 2; : : : ; 2);~Q6k = (2; : : : ; 2| {z }k ; �(N + k � 2); 3; : : : ; 3);~Q7k;l = (1; : : : ; 1| {z }k ; �(N + k � 1); 2; : : : ; 2| {z }l ; �(N + k + l � 1); 3; : : : ; 3);~Q8l;j;k = (0; : : : ; 0| {z }l ; �(N + l); 1; : : : ; 1| {z }j ; �(N + l + j); 2; : : : ; 2| {z }k ;�(N + l + j + k);3; : : : ; 3): (3.17)Following the dis
ussion in se
tion (2.2), thanks to the non-trivial internalgauge ba
kground we �nd four-dimensional 
hiral matter in representations R(i)xispe
i�ed by the 
ohomology 
lass H�(M; U (i)xi ). What we 
an say at the generallevel is that the �elds in representation R(i)xi will be 
ounted by 
ohomology groupsof the form H�0B�M;V�ixiVNi 
 MiOmi=1(Lmi 
 : : :
 Lmi| {z }�mixi �times )1CA : (3.18)From the de
omposition (3.16) we immediately identify the �ixi as the rank ofthe tensor representations of SU(Ni) o

urring in the 
orresponding internal r(i)xi .The powers �mixi of the line bundle are determined by demanding that the U(1)ki
harges qkixi of the representation R(i)xi be 
orre
tly reprodu
ed. Very generally,they are found by solvingqkixi = �ixi Qki(VNi) +Xmi �mixi Qki(Lmi): (3.19)As we des
ribed, for embeddings of Type A, (3.3), the abelian 
harges of the o
-
urring representations are entirely due to the respe
tive line bundles, see (3.6).Thus the powers �mixi in (3.18) 
an simply be read o� from the entries in the 
hargeve
tors spe
i�ed in (3.16) and (3.17), sin
e after all �mixi = qmixi . By 
ontrast, forType B embeddings, (3.8), the various line bundles and the ve
tor bundle areinterrelated, and we need to take into a

ount the di�erent U(1) 
harges (3.11)36




arried by the bundles to determine the �mixi . In the expli
it examples we willdis
uss in the sequel this is straightforwardly a

omplished.Example:We again 
on
lude these general remarks by exemplifying the pro
edure for oursimple model de�ned in (3.7). The �rst embedding, SU(4) � E8 ! SO(10)indu
es the familiar de
omposition248 �! (15; 1) + (1; 45) + (4; 16) + (4; 16) + (6; 10): (3.20)Now we de
ompose the internal SU(4) representations under SU(4)! SU(3)�U(1) a

ording to (3.14) as15 �! 80 + 10 + 34 + 3�4;4 �! 31 + 1�3;6 �! 32 + 3�2: (3.21)Combining these two steps leads to the spe
trum5248 SU(3)�SO(10)�U(1)�! 8>>>><>>>>: (1; 45)0(8; 1)0 + (1; 1)0 + (3; 1)4 + (3; 1)�4(3; 16)1 + (1; 16)�3(3; 16)�1 + (1; 16)3(3; 10)2 + (3; 10)�2
9>>>>=>>>>; : (3.22)As a straightforward appli
ation of the pres
ription (3.19) we �nd furthermorethe 
ohomology groups listed in table 3.1 
ounting the massless spe
trum. Inevaluating (3.19) we used that for Type A 
onstru
tions, Q(V ) = 0 andQ(L) = 1,whereas for Type B the 
harge assignments are normalized su
h that Q(V ) = 1and Q(L) = 3. In addition to the spe
trum tabulated there we �nd of 
oursethe ve
tor multiplets 
ontaining the gauge bosons of SO(10) and of the U(1)fa
tor and whi
h are 
ounted by H�(M;O) with dimH�(M;O) = (1; 0; 0; 1)due to the absen
e of 
ontinuous Wilson lines on a Calabi-Yau manifold. Notealso the additional singlets under the four-dimensional gauge group 
ounted byH�(M; adj(V )). These 
orrespond to the ve
tor bundle moduli of V and des
ribethe possible deformations of its geometry.3.3 Global 
onsisten
y 
onditionsWe have seen that the ba
kground bundles are subje
t to two topologi
al 
on-straints, (2.24) and (2.25), in order that the resulting string va
uum be globallywell-de�ned. Now that we have spe
i�ed the 
on
rete embeddings, it is time5Note that in the last line we used that the antisymmetri
 of SU(4) is given by the 3.37



reps. Cohomology (Type A) Cohomology (Type B)161 H�(M; V 
 L) H�(M; V )16�3 H�(M; L�3) H�(M; L�1)10�2 H�(M; V 
 L�2) = H�(M; V 
 L�1) =H�(M; (V2 V 
 L2)�) H�(M; (V2 V )�)14 H�(M; V 
 L4) H�(M; V 
 L)Table 3.1: Massless spe
trum of H = SO(10)� U(1) models.to evaluate their impli
ations. For this purpose, let us establish the followingnotation whi
h will be used extensively in the subsequent dis
ussions. The ten-dimensional �eld strengths F 10 = F 101 + F 102 are written, upon 
ompa
ti�
ation,as F 10i = Fi + F i, where Fi is the external four dimensional part taking valuesin Hi and F i denotes the internal six-dimensional part, whi
h takes values in thestru
ture group Gi of the bundle. Re
all that the U(1) fa
tors of type (i) arespe
ial in that they appear both in Gi and Hi. We denote the four-dimensionalU(1) two-form �eld strengths as fmi and the internal ones as fmi .It will furthermore turn out useful to relate the tra
es appearing in expressionslike (2.12) to the Chern 
lasses of the ba
kground gauge bundle and the tangentbundle of the internal manifold. This 
an be a

omplished with the help ofidentities of the typetrE(i)8 F 2i = 130 Xxi 2 (2�)2 �
h2(U (i)xi ) � dim (R(i)xi )�= 4 (2�)2 h
h2(VNi) + MiXmi;ni=1 �mi;ni 
1(Lmi) ^ 
1(Lni)i; (3.23)tr(R2) = trSO(6)f (R2) = 2 trSU(3)f R2 = �4 (2�)2
2(T ): (3.24)For 
onstru
tions of type A, the parameters �mi;ni depend on the 
on
reteembedding; for type B, by 
ontrast, we will see in the expli
it examples that infa
t �mi;ni = 12Æmi;ni. Similarly we introdu
e the expansion 
oeÆ
ients �mi;ni and�mi;ni, whi
h will be important later on and whi
h are de�ned by evaluating thefollowing tra
es over the 
on
rete spe
trum,trE(i)8 (FiF i) = 130 Xxi 2��
h1(U (i)xi )� dim (R(i)xi ) � ( MiXmi=1 qmixi fmi)�= MiXmi;ni=1 �mi;ni fmi ^ fni ;38



trE(i)8 (F 2i ) = 130Xxi dim(rixi)  trE9�Ni�MiR(i)xi (Fi)2 + dim(Rixi) Xmi;ni qmixi qnixi fmi ^ fni!= 2 trE9�Ni�Mif (F 2i ) + MiXmi;ni=1 �mi;ni fmi ^ fni : (3.25)By qmixi we denote again the 
harge of the representation R(i)xi under U(1)mi . Infa
t for de
ompositions of the type spe
i�ed in the previous se
tion, �mi;ni = 0 =�mi;ni = �mi;ni for mi 6= ni. This is a 
onsequen
e of the fa
t the U(1)mi arisefrom the embedding into some SU(Ni): In ea
h line of the de
omposition (3.16),the separate tra
e over the individual U(1)mi vanishes.Finally, the tadpole 
ondition (2.12) 
an be 
ast into the form2Xi=1  
h2(VNi) + MiXmi;n1=1 �mi;ni
1(Lmi) ^ 
1(Lni)!�Xa Na
a = �
2(T ): (3.26)Re
all that 
a denotes the internal four-form Poin
ar�e dual to the holomorphi
two-
y
le 
a wrapped by the �ve-branes.The se
ond global 
onsisten
y 
ondition, the K-theory 
onstraint (2.25), isseen to be non-trivial only for embeddings of type A, in whi
h 
ase it readsM1Xm1=1 
1(Lm1) + M2Xm2=1 
1(Lm2) 2 H2(M; 2Z): (3.27)Clearly for embeddings of type B, (3.8), with 
1(Wi) = 0, it is automati
allysatis�ed.3.4 Anomaly 
an
ellationIn String Theory, all irredu
ible anomalies 
an
el dire
tly due to the string 
on-sisten
y 
onstraints [107℄ su
h as tadpole 
an
ellation. The fa
torisable ones, by
ontrast, do not. For the four-dimensional e�e
tive theory resulting from string
ompa
ti�
ations this means that all non-abelian 
ubi
 gauge anomalies do 
an-
el, whereas the mixed abelian-nonabelian, the mixed abelian-gravitational andthe 
ubi
 abelian ones do not. Sin
e ea
h U(1) bundle in the stru
ture group ofthe bundle implies a U(1) gauge symmetry in four dimensions, all these latterthree anomalies appear. For the string va
uum to be 
onsistent, they have to be
an
elled by a generalised Green-S
hwarz me
hanism6. This se
tion is devotedto a detailed study of the fa
torisable anomalies due to the embedding of non-semisimple gauge bundles in the E8 � E8 theory and the asso
iated anomaly
an
ellation me
hanism. The latter is by no means just of a
ademi
 interest,6The Green-S
hwarz me
hanism for several U(1) symmetries in E8�E8 heteroti
 
ompa
t-i�
ations has also been dis
ussed in [68℄, but their results di�er from our 
on
lusions.39



but allows us to extra
t 
ru
ial information about the e�e
tive four-dimensional�eld theory. The point is that the Green-S
hwarz me
hanism provides 
ertainterms in the e�e
tive a
tion whi
h arise at one-loop in string perturbation the-ory. Apart from the issue of anomaly 
an
ellation, these terms will be the basisfor determining the threshold 
orre
tions of the gauge kineti
 fun
tions and one-loop 
orre
tions to the Donaldson-Uhlenbe
k-Yau supersymmetry 
ondition forthe gauge bundles. Even more fundamentally, the detailed form of the Green-S
hwarz terms de
ides upon whi
h of the abelian gauge fa
tors be
ome massivevia a St�u
kelberg-type me
hanism and thus only survive as global symmetries.A 
areful study of the Green-S
hwarz me
hanism is therefore of immediate rele-van
e even if we were only interested in the most basi
 physi
al properties of thestring va
ua.After presenting in se
tion (3.4.1) the �eld theoreti
 anomalies, we will thor-oughly explain the generalized Green-S
hwarz me
hanism, fo
using in se
tion(3.4.2) on the 
ase without �ve-branes. It will turn out that the in
lusion of�ve-branes requires additional Green-S
hwarz terms, as be
omes obvious only inthe 
ontext of abelian gauge bundles. These modi�
ations will be dis
ussed in(3.4.2) and derived from Horava-Witten theory in (3.4.4). We will 
on
lude thisse
tion by summarizing the axion-gauge boson mass terms in (3.4.5) whi
h areimportant for 
on
rete model building.3.4.1 Field theoreti
 anomaliesWe restri
t the detailed dis
ussion for brevity to the 
ase that VNi has stru
turegroup SU(Ni), i.e. embeddings of Type A; we will indi
ate the modi�
ationsin the otherwise largely analogous analysis of U(Ni) bundles at the end of thisse
tion.The �eld theoreti
 mixed U(1)mi-E29�Nj and mixed U(1)mi -G2�� anomalies formi 2 f1; : : : ;Mig; i; j 2 1; 2 
an be 
omputed by 
onsidering the 
hiral parti
lespe
trum resulting from the 
on
rete embedding. Mathemati
ally, anomalies infour dimensions are 
hara
terised by their anomaly six-forms [108℄, whi
h in our
ase are given byAU(1)mi�E29�Ni � fmi ^ trE9�Nif F 2i "Xxi C(2)(R(i)xi ) qmixi �(M; Uxi)# ;AU(1)mi�G2�� � fmi ^ trR2 "Xxi qmixi dim(R(i)xi )�(M; Uxi)# ; (3.28)AU(1)mi�U(1)ni�U(1)pi � fmi ^ fni ^ fpi "Xxi qmixi qnixi qpixi dim(R(i)xi )�(M; Uxi)# :Here, C(2)(R(i)xi ) relates the tra
es over the representation R(i)xi of E9�Nj and the40



fundamental representation viatrR(i)xi F 2i = C(2)(R(i)xi ) trfF 2i ; (3.29)and its value for the relevant representations is listed in appendix A.2, whereas theqmixi 
onstitute, as we re
all, the U(1)mi 
harge of the representation R(i)xi . Notethat in this diagonal basis of U(1) generators, the anomalies involving U(1)mistem ex
lusively from the states 
harged under the same E(i)8 , and there exist noU(1)m1 � E29�N2 anomalies.In view of the slightly 
umbersome general form of the o

urring represen-tations (3.16), (3.17), it is not very illuminating to perform this �eld theoreti

omputation for the most general embedding possible. On the other hand, it isa simple task to do so for a spe
i�
 model. The results are 
ompatible with thefollowing universal expression for the anomaly six-forms:AU(1)mi�E29�Ni � fmi ^ trF 21 �ZM fmi ^ �trF 2i � 12trR2�� ; (3.30)AU(1)mi�G2�� � fmi ^ trR2 �ZM fmi ^ �12 trF 2i � 5 trR2�� : (3.31)To arrive at expressions of this type we will have to use (3.23) in order to relatethe Chern 
lasses arising in the formula (2.17) for the net 
hirality of the repre-sentations to the tra
es over the �eld strengths appearing in (3.30) and (3.31).The U(1)mi-U(1)ni-U(1)pi anomalies are slightly more 
ompli
ated and 
an besummarized in the following general formAU(1)mi�U(1)ni�U(1)pi � fmi ^ fni ^ fpi hZM fmi ^ Ænipi �trF 2i � 12trR2�+
minipi fmi ^ fni ^ f pii: (3.32)Here we have assumed that for at least two U(1)s being identi
al, the single oneis U(1)mi . For mi 6= ni 6= pi the �rst term in (3.32) is absent. For ni = pi therelative fa
tor between the �rst and the se
ond term in (3.32) 
an be expressedas 
minini = 83 �ni;ni �minini : (3.33)�minini denotes the symmetry fa
tor of the anomalous diagram, i.e. �minini = 3for mi 6= ni and �mimimi = 1. The parameter �ni;ni was de�ned in (3.23).For embeddings of Type B, the 
on
rete expressions get slightly modi�ed as a
onsequen
e of the di�erent powers of line bundles appearing in the 
hiral index�(M; Uxj). As it turns out, we need to introdu
e the linear 
ombinationbfmi = MiXki=1Qmiki fki (3.34)41



in terms of the 
harge matrix (3.12). The mixed abelian-nonabelian and gravita-tional anomaly six-forms in this 
ase di�er from the ones displayed in (3.30) onlyby the repla
ement fmi ! bfmi , whereas the 
ubi
 abelian anomalies are now bestsummarized byAU(1)mi�U(1)ni�U(1)pi � fmi ^ fni ^ fpi hZM 
̂minipi bfmi ^ Ænipi �trF 21 � 12trR2�+ bfmi ^ bfni ^ bf pii (3.35)with 
̂minipi = 38 �mi;mi�minipi : (3.36)3.4.2 The four-dimensional Green-S
hwarz me
hanismwithout �ve-branesSin
e the ten-dimensional string theory is anomaly-free, there must exist a me
h-anism whi
h 
an
els the above �eld theoreti
 (mixed-) abelian anomalies whi
ho

ur in the four-dimensional �eld theory. This is, of 
ourse, none other than thefour-dimensional analogue of the Green-S
hwarz me
hanism. As in ten dimen-sions, it provides 
ertain 
ounter terms in the low-energy e�e
tive a
tion leadingto anomalous 
ouplings between the involved gauge �elds. The point is that thethereby indu
ed anomaly six-form is just of the right form to 
an
el the one-loop�eld theoreti
 anomalies.Before analysing the expli
it form of the 
ounter terms involved, we make aslight digression to dis
uss the general �eld theoreti
 features of the me
hanism. Akey role is played by 
ertain four-dimensional two-form and s
alar �elds (axions).Con
retely, they arise upon dimensional redu
tion of the Kalb-Ramond two-formB(2) and the self-dual tensor �elds on the worldvolume of the �ve-branes. Supposewe have a 
olle
tion b(2)j ; b(0)j of su
h �elds, with the supers
ripts denoting theirrespe
tive rank in four dimensions. As we will see, the two-form �elds and s
alarsare Hodge dual to ea
h other, satisfyingdb(0)j = �j ?4 db(2)j (3.37)for some �j to be determined later. This relation allows us to write the kineti
a
tion for the b(2)j asSjkin = �j ZR1;3 db(2)j ^ ?4db(2)j = �j�j ZR1;3 db(2)j ^ db(0)j : (3.38)As a dynami
al input, we will �nd the following two types of 
ouplings,Svertex = Xj Aj ZR1;3 b(0)j ^ trF2; (3.39)Smass = Xj ZR1;3 b(2)j ^Xm Mjmfm: (3.40)42



The 
oupling 
onstants Aj;Mjm will follow from the 
on
rete Lagrangian andare just some parameters for the time being. The index m takes values in1; : : : ;M1;M1 + 1; : : : ;M1 +M2 and labels the U(1) groups stemming from bothE8 fa
tors. F stands for one of the �elds Fi or R with appropriate Chern-Simonsform ! su
h that d! = trF2, and fm = dAm denotes the �eld strength of theU(1)m gauge symmetry, under whi
h Am transforms as ÆAm = d�m.We 
an now straightforwardly integrate Smass by parts and 
ombine it withSjkin to integrate out the axions, writing s
hemati
allydb(0)j = �j�j Xm MjmAm: (3.41)If we insert this ba
k into Svertex after integrating the latter by parts, we �nd the
ouplings S
oup = �Xj �j�j Aj Xm Mjm ZR1;3 Am ^ !: (3.42)These terms are 
learly not invariant under the abelian gauge transformations.With respe
t to, say, the U(1)n symmetry they transform asÆU(1)nS
oup = � ZR1;3(Î4)n with (Î4)n =Xj �j�j AjMjn (d�n ^ !) : (3.43)Î4 therefore de�nes an anomalous six-form (Î6)n via the 
hain [108℄(Î6)n = d(Î5)n; ÆU(1)n(Î5)n = d(Î4)n; (3.44)and we 
on
lude that we indeed arrive at the anomaly six-form for the mixedU(1)n � F2 anomalyAGSU(1)n�F2 �Xj �j�j Aj Mjn �fn ^ trF2� : (3.45)The 
orresponding anomalous diagram therefore hinges both upon the presen
eof the mass term Smass and of the vertex 
oupling Svertex. By 
ontrast, even ifthe latter is absent, Smass indu
es a St�u
kelberg-type mass term for some of theabelian gauge �elds. This is immediately 
lear if we plug (3.41) ba
k into (3.40).After integrating by parts we identify the following mass term for the abeliangauge �elds SStu
kelberg = �M1+M2Xm;n=1 (M)2m;n (Am ^ ?4An) (3.46)with the squared mass matrix given by(M)2m;n =Xj 1�jMjmMjn: (3.47)43



To determine the massless abelian gauge fa
tors we therefore need to �nd thezero eigenve
tors of the mass matrix M2m;n. It will be more 
onvenient to workinstead with the 
oupling matrixMjn be
ause it 
an be read o� dire
tly from thee�e
tive a
tion without further manipulations. By elementary linear algebra one
an 
onvin
e oneself7, after performing a suitable basis transformation, that themassless abelian gauge fa
tors are pre
isely those linear 
ombinations of U(1)mwhose gauge potential Af =Pm amAm lies in the kernel ofMjm, i.eU(1)f =Xm am U(1)m ismassless () Xm Mjm am = 0: (3.48)We stress in parti
ular that the various abelian fa
tors from the two di�erentE8 may 
ombine into a massless U(1). The number of massive U(1)s is givenby the rank of the matrixMjm and is always at least as big as the number ofanomalous U(1)s. However, sin
e the mass generating terms are independent ofthe existen
e of additional vertex 
ouplings Svertex, an abelian fa
tor 
an wella
quire mass without being anomalous, i.e. without parti
ipating in the a
tualGreen-S
hwarz me
hanism. This phenomenon is familiar already from the 
an
el-lation pattern of abelian anomalies in Type I/ Type II orientifolds (see e.g. [109℄).After these general remarks, we 
an now identify the relevant terms in thefour-dimensional e�e
tive a
tion. For the E8 � E8 theory, there are altogetherthree di�erent 
ontributions to the 
ounter terms: The a
tual Green-S
hwarzterms, the kineti
 a
tion for the three-form �eld strength and, in the presen
eof heteroti
 �ve-branes, additional 
ouplings whi
h are non-vanishing only if thegauge bundle 
ontains abelian fa
tors. For this reason, the latter are not 
onsid-ered in the 
lassi
 
ompa
ti�
ation with SU(N) bundles only.The four-dimensional Green-S
hwarz terms arise upon dimensional redu
tionfrom their ten-dimensional parents given in (2.6) and (2.7). If we expli
itly take
are of the two E8 fa
tors by writing F = F1 + F2, we get for the anomalyeight-form (2.7)X8 = 14 �trF 21 �2 + 14 �trF 22 �2 � 14 �trF 21 � �trF 22 �� 18 �trF 21 + trF 22 � �trR2�+18trR4 + 132 �trR2�2 : (3.49)To arrive at this result we have to take into a

ount that TrE8�E8(F q1F r2 ) = 0(for simultaneously non-vanishing q and r) and furthermore use the tra
e iden-tities (A.16) in appendix A.2. With the help of the tadpole 
an
ellation 
ondi-tion (2.12), we dimensionally redu
e this term toSGS = 2Xi=1n 18 (2�)3 �0 ZM(10) B(2) ^ �trF 2i � � 14(2�)2 �trF 2i � 12trR2�� 13[W ℄�7This is spelled out in appendix C. 44



(3.50)+ 14 (2�)3 �0 ZM(10) B(2) ^ tr(FiF i) � 14(2�)2 �trF 2i � 12trR2�� 13[W ℄�(3.51)+ 124 (2�)5 �0 ZM(10) B(2) ^ �tr(FiF i)�2o (3.52)� 196 (2�)3 �0 ZM(10) B(2) ^ � 14(2�)2 �trR2� �trR2�� 2[W ℄� (3.53)� 124 (2�)5 �0 ZM(10) B(2) ^ tr(F1F 1) tr(F2F 2): (3.54)Note the expli
it dependen
e on the heteroti
 �ve-branes present in the mostgeneral 
ase via the terms involving [W ℄ = PaNa 
a . We will dis
uss the 
on-sequen
es of their 
ontributions momentarily; for the time being, let us 
onsiderthe spe
ial 
ase without �ve-branes, i.e. where [W ℄ = 0.In this situation, the only missing ingredient is the kineti
 termSkin = � 14�210 ZM(10) e�2�10 H ^ ?10H: (3.55)For the purpose of the dimensional redu
tion it is 
onvenient to make use ofa basis of two-forms !k, k = 1; : : : ; h11 and their Hodge dual four-forms8 b!k withthe property ZM !k ^ b!k0 = Ækk0: (3.56)In terms of the string length `s = 2�p�0 we now expandB(2) = b(2)0 + `2s h11Xk=1 b(0)k !k; B(6) = `6s b(0)0 vol6 + `4s h11Xk=1 b(2)k b!k;trF 21 = (2�)2 h11Xk=1(trF 21)k b!k; trR2 = (2�)2 h11Xk=1(trR2)k b!k; (3.57)fm = 2� h11Xk=1(fm)k !k;where for dimensional reasons we have introdu
ed appropriate powers of �0 andvol6 is the volume form on M normalized su
h that RM vol6 = 1. Note that8One might wonder at �rst sight why we only take the even 
ohomology into a

ount.The point is that even if the internal manifold exhibited elements in H1(M;Z) we would notpi
k up any four-dimensional 
ontributions from the Green-S
hwarz terms 
orresponding tothe expansion of B(2) into internal and external one-forms. The same applies to the potentialexpansion of B(6) into internal and external 3-forms.45



fmk 2 Z due to the integrality of 
1(L) 2 H2(M; 2Z). Let us anti
ipate that theuniversal axion b(0)0 
omplexi�es the dilaton to form the 
omplex s
alar of a 
hiralsupermulitplet in the N = 1 supergravity theory, whereas the b(0)k pair with theK�ahler moduli. As a 
onsequen
e of the duality between B(2) and B(6), both typesof two-forms b(2)j are related to their axioni
 
ounterparts by ?4 db(2)j = e2�10 db(0)jfor all j 2 f0; 1; : : : ; h11g, as promised in (3.37).The general strategy is 
lear: Insert the expansions (3.57) into (3.50) - (3.54)as well as (3.55) and organize the surviving 
ontributions as vertex (3.39) andmass terms (3.40). For simpli
ity, we fo
us now on the mixed abelian-nonabelianand abelian-gravitational anomalies. The GS-terms (3.50) and (3.53) give rise tothe following vertex terms in four dimensionsSGS = 2Xi=1n 132 (2�) ZR1;3 h11Xk=1 �b(0)k trF 21 � (trF 21 � 12trR2)ko (3.58)� 1384 (2�) ZR1;3 h11Xk=1 �b(0)k trR2� (trR2)k: (3.59)By 
ontrast, from (3.51) we yield a mass term for the four-dimensional two-form�eld b(2)0S0mass = 116 (2�)5�0 ZR1;3 M1Xm1=1�b(2)0 ^ fm1� �m1;m1 ZM fm1 ^ (trF 21 � 12trR2)+(1$ 2); (3.60)where we have used that �mi;ni = 0 for mi 6= ni (see (3.25)). This mass termfor the universal axion is obviously only present for U(1) symmetries of type (i),re
e
ting the fa
t that for the E8 � E8 heteroti
 string U(1) fa
tors of type (ii)are always non-anomalous.To 
an
el the anomalies we also need a GS-term for the external axion b(0)0 andmass terms for the K�ahler axions b(2)k . They emerge from (3.55), whi
h 
ontains,apart from the kineti
 a
tion for B(2), the 
ross termSkin = �08�210 Z (trF 21 + trF 22 � trR2) ^B(6): (3.61)On the one hand, this gives rise to a four-dimensional GS-termS0GS = 18� ZR1;3 b(0)0 ^ (trF 21 + trF 22 � trR2): (3.62)In addition, redu
ing trFi ^ Fi su
h that one fa
tor takes values in the externalU(1)s and the other in the internal ones, we �nd mass terms for the b(2)k . Afterdimensional redu
tion one eventually arrives at four-dimensional 
ouplings of the46



form Smass = 2Xi=1n 12`2s ZR1;3 MiXmi=1 h11Xk=1 �fmi ^ b(2)k � �mi;mi (fmi)ko: (3.63)The GS-
ouplings (3.58),(3.62) and the mass terms (3.60), (3.63) have pre-
isely the stru
ture of the general 
oupling and mass terms 
onsidered in (3.39)and (3.40), whi
h, as we showed, lead to appropriate anomaly six-forms and 
an-
el the �eld theoreti
 anomalies. In other words, they generate tree-level graphsof the form displayed in �gure 3.1, whi
h provide 
ouplings of the same type as theones appearing in the mixed gauge anomalies. For the mixed abelian-nonabelianGS 
ontribution we get, a

ording to the foregoing dis
ussion,AGSU(1)mi�E29�Ni � �mi;mi32(2�)6 �0 fmi ^ trF 21 �ZM fmi ^ �trF 21 � 12trR2�� : (3.64)For the mixed abelian-gravitational anomaly the 
ontributions from internal ax-ions and the four-dimensional one add up toAGSU(1)mi�G2�� � � �mi;mi64(2�)6 �0 fmi ^ trR2 hZM fmi ^ �trF 21 � 12trR2�+ 112 ZM fmi ^ �trR2�i (3.65)= � �mi;mi64(2�)6 �0 fmi ^ trR2 �ZM fmi ^ �trF 21 � 512trR2�� :Along the same lines, one 
an also show that the mixed U(1)3 anomalies
an
el. Now also the Green-S
hwarz 
ouplings (3.52) 
ontribute.3.4.3 The generalized Green-S
hwarz me
hanism in
lud-ing �ve-branesThe in
lusion of heteroti
 �ve-branes 
ompli
ates the story of anomaly 
an
el-lation and leads to interesting new phenomena. The point is that in order togenerate the 
orre
t anomaly 
an
elling 
ouplings from the Green-S
hwarz terms,we have to assume tadpole 
an
ellation to organize the various 
ontributions asin (3.50) - (3.54). This leads, in the presen
e of �ve-branes, to additional �ve-brane dependent 
ontributions whi
h yield anomalous diagrams in the e�e
tivetheory, but without there existing any one-loop anomalies whi
h would have tobe 
an
elled by them.Let us go ba
k to (3.50) - (3.54) and 
olle
t the terms involving the �ve-brane
lass [W ℄. From these we 
an, following the analogous steps performed in theprevious se
tion, 
onstru
t an anomaly six-form. The result is47
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Figure 3.1: Green-S
hwarz 
ounter term for the mixed gauge anomaly.
AM5 � � 124(2�)4�0 Xa Na Z
a tr(F1F 1) h14 �trF 21 + trF 22 � trR2�+34 �trF 21 � trF 22 �i+ (1$ 2): (3.66)Sin
e there does not exist any 
hiral matter from the M5-branes, the only way to
ompensate the anomaly from (3.66) is by additional Green-S
hwarz terms fromthe M5-branes. In the next se
tion, we will provide a rigorous derivation of thepresen
e of these terms independently of the requirement of anomaly 
an
ellation.Here we will anti
ipate their form and dis
uss their role played in the Green-S
hwarz me
hanism.Let us start by observing that the �rst term in (3.66) 
an pre
isely be 
an
elledby introdu
ing the additional 
ouplingS(1)GS = 196(2�)3�0 Xa Na Z�a B(2) ^ �trF 21 + trF 22 � trR2� (3.67)in the e�e
tive a
tion. To show this we simply have to perform dimensionalredu
tion and follow the steps detailed at the beginning of the previous se
tionand 
onstru
t the anomaly six-form indu
ed by the 
oupling (3.67).To 
ope with the se
ond 
ontribution in (3.66), we re
all from the generaldis
ussion in se
tion (2.1) that on the six-dimensional world-volume of an M5-brane there lives a tensor �eld eBa whi
h is self-dual with respe
t to the metri
on the six-dimensional worldvolume of the �ve-brane,d eBa = ?a d eBa: (3.68)Note that the 
orresponding Hodge star operator fa
torizes as ?a = ?4 
 ?2a intothe external four-dimensional pie
e and the one de�ned with respe
t to the metri
of the two-
y
le wrapped by the �ve-brane. By dimensional redu
tion eBa givesrise to a two-form and a dual s
alareBa = eb(2)a + `2seb(0)a b
a with deb(0)a = ?4 deb(2)a : (3.69)48



Here have introdu
ed b
a as the Hodge dual of 
a su
h that it satis�es `2s?2ab
a = 1.For 
ompleteness, we point out that if the �ve-brane wraps a holomorphi
 
urve ofgenus g, then taking one leg of eBa to be along one of its 2g one-
y
les gives rise to2g additional ve
tor �elds in four dimensions, only g of whi
h 
arry independentdegrees of freedom due to the self-duality of eBa [110℄. Consequently, we en
ounteran additional gauge group of U(1)g in four dimensions, possibly enhan
ed if
ertain 
omponents of the holomorphi
 
urve 
oin
ide. Sin
e there exists no
hiral matter 
harged under this gauge group, and even more so no matter 
hargedsimultaneously under the visible gauge group resulting from the E8, it is veritablyhidden and will not a�e
t us any more in the sequel.The extra pair of dualeb(0)a �eb(2)a 
an generate additional Green-S
hwarz 
ounterterms, again 
ompletely in the spirit of the previous se
tion. More pre
isely, one
an apply the by now familiar strategy and 
onvin
e oneself that the following
oupling term S(2)GS = 18(2�)3�0 Xa Na Z�a eBa ^ �trF 21 � trF 22 � (3.70)provides just the right 
ounter terms to 
an
el the se
ond �ve-brane dependentpart in (3.66).In fa
t, (3.70) 
an be viewed as arising from the 
ross terms in the kineti
a
tion for the three-forms eHaSkin = � 12 (2�)3(�0)2 Z�a eHa ^ ?a eHa (3.71)with eHa = d eBa � �08 (!Y;1 � !Y;2) : (3.72)Note that we are free to 
hoose some normalisation of eHa and 
orrespondinglyalso of its kineti
 a
tion. What is �xed by requiring anomaly 
an
ellation is, as were
all from the dis
ussion around (3.45), merely the ratio of the prefa
tor of thekineti
 term for the two-form �elds (3.71) and of the Green-S
hwarz like 
oupling(3.70). One 
an easily 
he
k that the normalisations of (3.67),(3.70) and (3.71)are indeed 
onsistent with the anomaly six-form (3.66) if we take into a

ountthat d eBa is self-dual with respe
t to ?a. As a general remark, it is known thatdue to the self-duality of eHa, we should a
tually sti
k to the M-theory �ve-branea
tion [81℄, as will be done in se
tion (3.4.4).To 
on
lude, both the terms (3.67) and (3.70) must indeed be present in theten-dimensional e�e
tive a
tion of the E8 heteroti
 string for a 
onsistent �ve-brane 
oupling. Even though the requirement of these terms by anomaly 
an
el-lation is manifest only on
e we allow for ba
kground bundles with non-zero �rstChern 
lass, their presen
e 
annot depend on the gauge instanton ba
kground, of
ourse. In parti
ular, they have an e�e
t on the gauge kineti
 fun
tion also of the49



�eld strength asso
iated with the semi-simple part of the gauge group, as we willsee in se
tion (3.4.5). It is reassuring to note that both new 
ontributions to thee�e
tive a
tion are also 
onsistent with the analogous Green-S
hwarz me
hanismin six-dimensional 
ompa
ti�
ations, as analysed re
ently in [105℄. Still, as anon-trivial 
onsisten
y 
he
k for our setup, it is highly desirable to provide an in-dependent derivation of the unfamiliar 
ouplings from the viewpoint of heteroti
M-theory. We will endeavour to do so in the next se
tion.3.4.4 M-theory origin of new GS-termsThe presen
e of the 
ounter terms (3.67) and (3.70) 
an indeed be derived dire
tlyfrom Horava-Witten theory. The logi
 is very similar to that leading to the usualGreen-S
hwarz terms from heteroti
 M-theory, as �rst des
ribed in [111, 112℄.Here we will extend the analysis to the �ve-brane dependent terms.9As pointed out several times, Horava-Witten theory is eleven-dimensionalsupergravity plus higher derivative Chern-Simons 
ouplings 
ompa
ti�ed on the
ir
le S1 and modded out further by a Z2 involution a
ting on the eleventhdimension. Horava and Witten found [76℄ that the two ten-dimensional �xedplanes under the orbifold Z2 a
tion give rise to anomalies whi
h 
an only be
an
elled by postulating the existen
e of an E8 gauge theory on ea
h of theseplanes. The two ten-dimensional E8 gauge theories are identi�ed with the gaugese
tor 
harged under the two fa
tors in the heteroti
 E8 � E8 theory. As itwill turn out, the ten-dimensional dilaton is related to the size of the eleventhdimension and thus to the separation of the two E8 se
tors along the intervalS1=Z2. As always when dealing with orbifold theories one has the 
hoi
e to workeither "downstairs" on the spa
e modded out by the geometri
 orbifold a
tionand after proje
ting out all states not invariant under it, or in the "upstairs"pi
ture. This means in our 
ase that we 
onsider the a
tion on the 
ir
le S1,bearing in mind, however, that we will eventually identify two opposite points onthe 
ir
le and keep only those terms in the a
tion invariant under the indu
ed Z2a
tion.The e�e
tive a
tion of heteroti
 M-theory in the upstairs pi
ture is given by aneleven-dimensional bulk part onM11u , the ten-dimensional gauge a
tions de�nedonM(10) and in addition the 
ontribution from possible M5-branes. Con
retelywe use the 
onventions that [76, 77, 114℄S = Skin + SCS + S
urv + SYM + SM5; (3.73)Skin = 12 �2 ZM11u R
� 12G ^ ?G;9Our derivation was done independently from [113℄, where a similar analysis has been per-formed. Note that this referen
e does not use the resulting Green-S
hwarz terms for 
an
el-lation of abelian anomalies and does not 
onsider the terms (3.70) arising from the M5-branea
tion. Also, to the best of our knowledge, the 
onne
tion between the new GS terms and theFI-D-terms in se
tion 2.6 has not been explored previously.50



SCS = 12 �2 ZM11u 16C ^G ^G;S
urv = 148(2�)3�2T5 ZM11u C ^ �18trR4 � 132(trR2)2� ;SYM = � 2Xi=1 12�2 ZM(10) tr (F i ^ ?F i)� 12tr (R ^ ?R);where M11u = M(10) � S1. The 
ompa
t eleventh dimension takes values inthe range ��� < x11 � �� and the gauge �elds are lo
alized at x11 = 0; ��.The part of M5-brane a
tion SM5 [81℄ relevant for our purposes will be givenat the end of this se
tion. The presen
e of a �ve-brane at position y along x11requires that we also in
lude its Z2 image at �y with whi
h the original brane willeventually be identi�ed. Eleven-dimensional indi
es will be denoted by I; J;K; :::and ten-dimensional ones by A;B;C; :::. The ten-dimensional gauge 
ouplingsare related to � via �2 = (4�)(2��2)2=3 and the tension of the �ve-brane is givenby T5 = (2��4 )1=3 [114℄. Finally, under the orbifold a
tion x11 7! �x11, CAB11,GABC11 and the 
omponents g(11)AB and g(11)11 11 of the eleven-dimensional metri
 areeven, but CABC and GABCD are odd [76℄ .Supersymmetry 
onservation requires the in
lusion of parti
ular 
ombinationsof the gauge �eld strengths and the 
urvature into the Bian
hi identity for the�eld strength G = dC [76℄. Following the intuition that �ve-branes e�e
tively
ontribute to the a
tion like gauge instantons10, this Bian
hi identity is modi�edfurther by M5-
ontributions and takes the general form [110℄(dG)11ABCD = ��2�2�J1Æ(x11) + J2Æ(x11 � ��)+12J5 �Æ(x11 � y) + Æ(x11 + y)��ABCD: (3.74)Note that we take into a

ount the 
ontribution from the �ve-brane at x11 = yand its mirror brane at x11 = �y su
h that together their e�e
t is that of one unitof gauge instanton (thus the fa
tor 12). The generalisation to the 
ase of several�ve-branes is obvious. The gauge and 
urvature sour
es at the orbifold �xedplanes are given by Ji = trFi ^ Fi � 12trR ^ R = d!i for i = 1; 2, while the �ve-brane 
ontributes J5 = �4(2�)2Æ(�). Here Æ(�) is the four-form Poin
ar�e dual tothe worldvolume of the �ve-brane inM(10).11 In analogy with the Yang-Mills andLorentz Chern-Simons forms we also introdu
e the ten-dimensional three-form !5satisfying J5 = d!5.Being interested in the ten-dimensional theory after Kaluza-Klein redu
tionon S1, we now fo
us on the situation where the eleventh dimension is mu
h smaller10Alternatively, we 
an derive this 
ontribution from the CS 
oupling of the M5-brane to thedual six-form potential, essentially along the lines of the derivation of equ. (2.11) reviewed inse
tion 2.1.11When we further 
ompa
tify M(10) = R(1;3) � CY3 we have the obvious de
ompositionÆ(�) = Æ(R(1;3)) ^ 
 for a �ve-brane wrapping the two-
y
le dual to the four-form 
 on CY3.51



than the ten-dimensional spa
e. This is the limit in whi
h the e�e
tive a
tionof the ten-dimensional weakly 
oupled heteroti
 string arises [111, 112℄. In thisregime ten-dimensional derivatives of gauge and 
urvature terms 
an be negle
tedas 
ompared to �eld variations along x11. Hen
e, one 
an give an approximatesolution for G and C to the above Bian
hi identity and the equations of motionDI GIJKL = 0 by splitting the �elds into their zero-mode and a ba
kground partas C = C(0) + C(1) and G = G(0) + G(1). In
luding also the �ve-brane sour
es,we get CABC = C(1)ABC ; CAB11 = B(2)AB;GABCD = G(1)ABCD; GABC11 = (dB)ABC +G(1)ABC11;C(1)ABC = � �22�2�!1�(x11) + 12!5(�(x11 � y) + �(x11 + y))�x11�� (!1 + !2 + !5)�ABCG(1)ABCD = � �22�2�J1�(x11) + 12J5(�(x11 � y) + �(x11 + y))�x11�� (J1 + J2 + J5)�ABCDG(1)ABC11 = � �22�2 ��(!1 + !2 + !5)ABC : (3.75)�(x11) denotes the step fun
tion, i.e. �(x11) = +1 for x11 positive and �1 oth-erwise. We have introdu
ed also the ten-dimensional two-form �eld B(2) whi
harises as the Z2 invariant 
omponents of C. Note that G(1)ABCD is not 
ontinuousat x11 = �� �= ��� but rather takes the limiting valuesG(1)ABCDj��;< = �22�2 J2; G(1)ABCDj���;> = � �22�2 J2 (3.76)on both sides of the se
ond orbifold plane. When we take the exterior derivativedG, this gives a Æ-fun
tion lo
alized at �� and proportional to 2J2,(dG)11ABCD = �11G(1)[ABCD℄ � 4�[AG(1)j11jBCD℄ (3.77)= � �22�2 h2J1Æ(x11) + J5((Æ(x11 � y) + Æ(x11 + y)))+2J2Æ(x11 � ��)� 1��(J1 + J2 + J5)iABCD� 4�22�2�� �14(J1 + J2 + J5)ABCD� ;so that the �eld 
on�guration (3.75) indeed solves the Bian
hi identity (3.74).Similarly, one may 
onvin
e oneself that the equations of motion for the �eld52



strength G are satis�ed up to terms proportional to �Ji, whi
h are assumed tobe negligible in the limit we are 
onsidering [111, 112℄.The ten-dimensional weakly 
oupled heteroti
 string theory is re
overed by
ompa
ti�
ation on S1 a

ording to the standard ansatzds211 = e�2�10=3 g(10)AB dxA dxB + e(4�10=3)(dx11)2; (3.78)where we keep only those parts of the a
tion whi
h are invariant under x11 7!�x11. In parti
ular, the kineti
 term for G 
ontains a part involving the 
om-bination G11ABCG11ABC . Inserting the solution (3.75), integrating over S1 andfo
ussing only on terms not involving !5 due to the �ve-branes pre
isely yieldsthe familiar kineti
 termSHkin = � 14�210 ZM(10) e�2�10H ^ ?H (3.79)for the ten-dimensional three-form �eld strength H = dB(2) � �04 (!1 + !2) aftersetting 1�210 = 2���2 ; �0 = 4�22�2�� = 2�1=3�2� � �4��2=3 : (3.80)We are now ready to investigate the origin of the 
omplete Green-S
hwarz
ounter terms in
luding the 
ontribution from the �ve-branes. They arise atorder ( �22�2 )2 after inserting the above solution for C and G into the Chern-Simonsterms SCS in (3.73) asSCSj( �22�2 )2 = 312 �2 ZM(10) ZS1 B(2) ^G(1) ^G(1) ^ dx11 (3.81)= ��4�2 ( �22�2 )2 ZM(10) B(2) ^ �23(J21 + J22 � J1J2)� 16J5(J1 + J2)�plus additional terms proportional to R B(2) ^ J25 , whi
h however vanish afterperforming the integral. To arrive at this expression we pla
e the �ve-braneand its mirror symmetri
ally at y = ���2 between the two orbifold �xed-planes.Note that the 
ombination C[AB11G(1)CDEFG(1)GHIJ ℄ is indeed even under the orbifolda
tion and therefore survives in ten dimensions. Additional 
ontributions fromthe higher 
urvature 
orre
tions S
urv areS
urv = 148(2�)3�2T5 ZM11u C ^ �18trR4 � 132(trR2)2�= 124(2�)5�0 ZM(10) B(2) ^ �18trR4 � 132(trR2)2� : (3.82)The part 23(J21 + J22 � J1J2) in (3.81) 
ombines with (3.82) into the standardGreen-S
hwarz eight-form X8 [111, 112℄.53



The additional 
ounter terms (3.67) we are after now arise from J5(J1+J2) =�4(2�)2Æ(�) ^ (trF 21 + trF 22 � trR2). In summary, (3.81) and (3.82) yield in theten-dimensional limitSGS = 
 ZM(10) B(2) ^ �X8 + (2�)24 Æ(�) ^ (trF 21 + trF 22 � trR2)� (3.83)with 
 = 83 ��4�2 ( �22�2 )2 = 124(2�)5�0 ; (3.84)as postulated in (3.67).The origin of the se
ond �ve-brane dependent 
ounter term (3.70) lies in theM5-brane a
tion. With the normalisations of [81℄ (see e.g. also [115℄), the partrelevant for our analysis is given bySM5 = �T52 Xa Na Z�a[�0a �14 eFa ^ ? eFa + eC + 12d eBa ^ C� ; (3.85)again summing over all branes and their mirrors. Here eFa = d eBa � C is themodi�ed �eld strength of the self-dual tensor �eld eBa living on the �ve-braneand eC is the bulk six-form potential dual to C. The 
ontribution from (3.85)we are interested in is the topologi
al 
oupling d eBa ^ C. Following the generalstrategy we insert again the appropriate ba
kground solution for C and pla
ebrane and mirror brane at y = ���2 respe
tively to �ndStop = �T54 Xa Na�Z�a eBa ^ dC(1) + Z�0a eBa ^ dC(1)� == T54 �22�2 Xa Na Z�a eBa ^ (trF 21 � trF 22 ): (3.86)It 
an be 
he
ked that, together with the kineti
 term for eBa, this 
oupling indeedyields pre
isely the required 
ounter terms to 
an
el the 
ontribution to the �ve-brane anomaly in the se
ond line of (3.66). In the standard ten-dimensionalnormalisation of the kineti
 a
tion for eBa whi
h we used in (3.71) one eventuallyre
overs the 
ounter term (3.70). Note that we are always free to 
hange thenormalization of eBa. What goes into the indu
ed anomaly six-form is the merelythe relative normalisation of the above vertex 
oupling and the kineti
 term foreBa and una�e
ted by su
h trivial �eld rede�nitions.3.4.5 Gauge-axion masses from the St�u
kelberg me
ha-nismA 
entral question we need to address is whi
h of the abelian gauge fa
tors re-main massless after the Green-S
hwarz me
hanism 
an
els potential anomalies.54



We re
all from the dis
ussion around (3.46) that the 
oupling terms Smass in-volved in the anomaly 
an
ellation pro
ess indu
e a St�u
kelberg-like me
hanismfor the abelian gauge fa
tors whi
h is spe
i�ed by the mass matrix M2m;n inSStu
kelberg = �PMim;n=1 M2m;n (Am ^ ?4An). We now 
olle
t all 
ontributions tothese axion-gauge boson mass terms from the universal axion, b(0)0 , the K�ahler-axions, b(0)k , and �nally the �ve-brane axions eb(0)a . For later purposes it is 
on-venient to display the results dire
tly in terms of the Chern 
hara
ters of theba
kground bundles (
f. (3.23)). This will allow us to identify the massless U(1)
ombinations by inspe
ting the topologi
al data of the bundles.The mass term involving the universal axion readsS0;mimass = 14(2�)2�0 ZR(1;3) b(2)0 ^ fmi� MiXni=1 �mi;ni ZM 
1(Lni) ^ �
h2(VNi) +MiXki;li=1 �mi ;li 
1(Lki) ^ 
1(Lli) + 12 
2(T )� 14Xa Na
a��: (3.87)It arises as the sum of (3.51) and the extra 
ounter term (3.67).For the K�ahler axions the kineti
 term for H3 indu
es the mass terms,Sk;mimass = 12(2�)2�0 ZR(1;3) b(2)k ^ fmi� MiXni=1 �mi;ni ZM 
1(Lni) ^ b!k�; (3.88)as we re
all from (3.63), and the �ve-brane Green-S
hwarz term (3.70) yields themass termSa;mimass = � 14 (2�)2�0 ZR(1;3) eb(2)a ^ fmi� MiXni=1 �mi;ni ZM 
1(Lni) ^ 
a� (3.89)for the 5-brane axions. The plus sign holds for the abelian �eld strengths arisingfrom E(1)8 and the minus sign for E(2)8 .From these expressions one 
an immediately identify the matrixMjm of equ.(3.40), with j running over all bulk and brane axion labels. We re
all that thekernel ofMjm is related to the massless 
ombinations of abelian gauge �elds oraxions, respe
tively, as des
ribed in equ. (3.48). Finally, let us point out that themass terms are all of the same order in both string and sigma model perturbationtheory. It is noteworthy that, though all mass terms are of order M2s , the masseigenstates of the gauge bosons 
an in prin
iple have masses signi�
antly lowerthan the string s
ale at least in situations with multiple abelian fa
tors.3.5 Gauge 
ouplingsIn this se
tion we extra
t the holomorphi
 gauge kineti
 fun
tions for the non-abelian and abelian gauge groups [80, 116{119℄. Re
all that the gauge kineti
55



fun
tions fa are en
oded in the four-dimensional Yang-Mills Lagrangian, whi
h,up to se
ond order and in our sign 
onventions, takes the form (
f. e.g. [120℄)LYM = �12 Re(fa) tr(F ^ ?F ) + 12 Im(fa) tr(F ^ F ): (3.90)In parti
ular, the gauge 
oupling g, de�ned byLkin = � 14g2 tr(F��F ��); (3.91)is seen to be given by Re(fa) in this normalisation, possibly up to a multipli
ative
onstant whi
h takes a

ount of the proper normalisation of the tra
e and whi
hwill be �xed later. Dimensional redu
tion of the ten-dimensional tree-level termS(10)YM = � 12�210 ZM(10) e�2�10 �04 (tr(F1 ^ ?10F1) + tr(F2 ^ ?10F2)) (3.92)reveals the tree-level gauge 
oupling as appearing inS(4)YM = � 12� ZR1;3 Vol(M)`6s e�2�10 14�tr(F1 ^ ?4F1) + tr(F2 ^ ?4F2)�: (3.93)The tra
es are, at this stage, still formally taken over the two E8 fa
tors withoutdi�erentiating between the a
tual gauge groups in four dimensions. For laterpurposes we note also that the 
ompa
t volume is 
omputed fromVol(M) = 16 ZM J ^ J ^ J = `6s6 Xi;j;k dijk �i �j �k; (3.94)where dijk = RM !i ^ !j ^ !k are the triple interse
tion numbers of the basis oftwo-forms and the K�ahler form is expanded as J = `2sPh11i=1 �i!i.The axioni
 
oupling involving Im(fa), by 
ontrast, is 
ontained in the 
rossterm (3.62) emerging from the kineti
 a
tion for H,S0GS = 18� ZR1;3 b(0)0 ^ �tr(F1 ^ F1) + tr(F2 ^ F2)�: (3.95)Consequently the full tree level gauge kineti
 fun
tion is simply f = 12S 12 withthe 
omplexi�ed dilaton de�ned asS = 12� �e�2�10Vol(M)`6s + i b(0)0 � : (3.96)However, in the 
ourse of the dis
ussion of the Green-S
hwarz me
hanismwe have en
ountered further axioni
 
ouplings similar to (3.95) but involving12To be quite pedanti
, there arise additional normalisation 
onstants related to the pre
isede�nition of the tra
es over the gauge fa
tors. We will dis
uss them momentarily for thenon-abelian and abelian fa
tors in four dimensions.56



the K�ahler and the �ve-brane axions. These stem from the 
onventional Green-S
hwarz terms (3.50) and the new �ve-brane dependent 
ouplings (3.67), (3.70).In the e�e
tive four-dimensional N = 1 supergravity, these axions are not arbi-trary �elds but form the imaginary part of the lowest lying 
omponent in a 
hiralsuper�eld [121℄13. The full 
omplex bosoni
 part of these super�elds is given byTk = 12� �� 1̀2s ZM J ^ b!k + ib(0)k � ; (3.97)�a = 12� ���a Vol(�a)`2s + ieb(0)a � : (3.98)The �a denote the s
alars whi
h together with the self-dual two-forms eBa
ombine into tensor multiplets on the six-dimensional world-volume of the �ve-branes. In the strong 
oupling Horava-Witten model these s
alars are nothingelse than the position of the respe
tive �ve-branes along the eleventh dire
tion.The normalisation of the real versus the imaginary parts of (3.97) and (3.98) issu
h that the kineti
 terms for all s
alars is in
orporated 
orre
tly in a suitableK�ahler potential. The K�ahler potential 
onsistent with the above 
hoi
e will begiven in the next se
tion.Due to these axioni
 
ouplings whi
h involve the imaginary parts of the su-per�elds (3.97) and (3.98), Imfa re
eives additional 
ontributions. The N = 1supergravity formalism di
tates that the full gauge kineti
 fun
tion is a holomor-phi
 quantity, and therefore a modi�
ation of its imaginary part 
annot leave itsreal part inert. Rather, it must be that the full 
omplex 
orre
tion term is againproportional to the bosoni
 part of an N = 1 super�eld14.The gauge kineti
 fun
tion for the �eld strengths of the non-abelian gaugegroups whi
h we 
olle
tively denoted as E9�Ni 
an therefore be written, in thelarge radius regime, asfE9�Ni = S + 18 h11Xk=1 Tk trF 21;2 � 12trR2 �Xa Na
a!k � 12Xa Na�a: (3.99)This pre
ise normalisation arises when we express the tra
e over the E8 in termsof the tra
e over the a
tual gauge group in four dimensions. From equation (3.25)we re
over a fa
tor of 2 in front of the non-abelian tra
es whi
h we have in
ludedin (3.99). The upper sign of the last term involving the super�elds �a is for the�rst E8, the lower one for the se
ond. This is an immediate 
onsequen
e of thethe form of the �ve-brane dependent 
ounter term (3.70). We have furthermoreintrodu
ed the notation 
a = h11Xk=1(
a)k b!k: (3.100)13In abuse of notation, we will sometimes also refer to the 
omplex bosoni
 
omponent asthe super�eld, just for brevity. It will always be 
lear from the 
ontext what is meant.14And mutatis mutandis for the fermioni
 terms if we 
onsider fa as a veritable super�eldinstead of fo
using just on its bosoni
 part. 57



The physi
al quantities we are interested in are the gauge 
ouplings as thereal part of fa, for whi
h one gets at linear order in �a4�g2E9�Ni = e�2�103`6s ZM J ^ J ^ J � 1̀2s ZM J ^ 14(2�)2 �trF 21;2 � 12trR2�+ 1̀2s Xa Na �14 � �a� Z�a J: (3.101)This makes it 
lear how the �rst term, the tree-level gauge 
oupling, re
eives one-loop threshold 
orre
tions depending both on the K�ahler moduli of the Calabi-Yau and the �ve-brane moduli �a (see also [113℄). If we set all �ve-brane modulito zero, then we nevertheless get a �ve-brane 
ontribution of 1=4 to the one-loopgauge 
ouplings in both the �rst and the se
ond E8. From the Horava-Wittenpoint of view this means that for �a = 0, the �ve-brane is pla
ed exa
tly in themiddle between the two end-of-the-world nine-branes and �a is measured withrespe
t to this symmetri
 
on�guration (see �gure 3.2). We will give furthereviden
e for this interpretation momentarily.The next-to-leading order M-theory 
omputation 
arried out in [122,123℄ pro-vides an O(�2) 
orre
tion to the real part of the dilaton super�eldS = 12� "e�2�10Vol(M)`6s +Xa Na �2a2`2s Z�a J + i b(0)0 # : (3.102)This 
orre
tion was derived in [123℄ essentially by requiring that the kineti
 termsfor the self-dual two-form on the M5-brane 
an indeed be 
orre
tly in
orporatedinto an appropriate K�ahler potential. Using this result and holomorphi
ity of thegauge kineti
 fun
tion leads to the gauge 
ouplings4�g2E9�Ni = 13`6s g2s ZM J ^ J ^ J� 1̀2s ZM J ^ �
h2(VNi) + MiXmi;ni=1 �mi ;ni
1(Lmi) ^ 
1(Lni) + 12 
2(T )�+ 1̀2s Xa Na �12 � �a�2 Z�a J: (3.103)For �a = �12 , the 
ontribution of the �ve-brane to the threshold 
orre
tions fromE(1)8 is pre
isely that of a small instanton inside E(1)8 [83℄. This unambiguouslyidenti�es �a as the relative position of the �ve-brane measured with respe
t to themiddle of the interval between the orbifold planes, as suggested already. Di�erentnormalisations of the 
ounter terms (3.70) would have resulted in a 
orrespondingrede�nition of �a. As expe
ted, if one pla
es the �ve-brane inside the E(2)8 wall,its gauge threshold 
orre
tions to the gauge 
ouplings from E(1)8 vanish and vi
eversa. 58



Figure 3.2: M5-brane potential in Horava-Witten theory on the Quinti
 indu
edby abelian gauge 
ux on E(1)8 .For the abelian gauge groups things are slightly di�erent. Now also the Green-S
hwarz terms (3.52) and (3.54) lead to axioni
 
ouplings besides the ones we haveen
ountered already. The resulting gauge 
ouplings are in general non-diagonaland are readily found to be given by4�g2mi;ni = �mi;ni12`6sg2s ZM J ^ J ^ J��mi ;ni4`2s ZM J ^ �
h2(VNi) + MiXmi;ni=1 �mi;ni
1(Lmi) ^ 
1(Lni) + 12 
2(T )�� 112`2s ZM J ^ MiXpi;qi=1 �mi;pi�ni;qi 
1(Lpi) 
1(Lqi)!+�mi;ni4`2s Xa Na �12 � �a�2 Z�a J (3.104)for both U(1) fa
tors from the same E8 fa
tor and by4�g2m1;n2 = 124`2s ZM J ^ M1Xp1=1 M2Xq2=1 �m1;p1�n2;q2 
1(Lp1) 
1(Lq2)! (3.105)for one U(1) from the �rst and one U(1) from the se
ond E8. Apparently, only fortrivial line bundles, i.e. Wilson lines, do the extra threshold 
orre
tions vanish.The normalisation relative to the expression for the non-abelian gauge groupsarises as follows: First we have to remember on
e more how to express the tra
e59



over E8 in terms of the four-dimensional gauge groups, see equation (3.25). Inaddition, the generators of the non-abelian groups are 
anoni
ally normalized astrTaTb = 12Æab, and we need to adjust the normalisation of the abelian gaugefa
tors by expli
itly in
luding this fa
tor of 12 into the gauge 
oupling.We 
on
lude the present dis
ussion with an important remark. As is obvi-ous from the expli
it expressions (3.103), (3.104), the tree-level 
ontribution tothe real part of the gauge kineti
 fun
tion is always positive, as it must; afterall, Re(f) is just the inverse square of the gauge 
ouplings. Clearly, positivityof Re(f) must still hold after subtra
ting the threshold 
orre
tions, at least inthe regime of small string 
oupling, where all potential higher 
orre
tions arenegligible 
ompared to the one-loop thresholds. A violation of this bound wouldindi
ate severe in
onsisten
ies in the e�e
tive �eld theory, possibly in the sensethat the four-dimensional supergravity we have written down does not follow asthe 
onsistent trun
ation of the full ten-dimensional theory. In any 
ase, we insiston positivity of the real part of the threshold 
orre
ted gauge kineti
 fun
tions asan e�e
tive supersymmetry 
ondition. Sin
e the threshold 
orre
tions manifestlydepend on the K�ahler moduli, the �ve-brane position moduli and the dilaton,this 
ondition imposes 
onstraints on the involved moduli �elds. In short, in asupersymmetri
 va
uum we must ensure thatRe(fE9�Ni ) > 0; Re(fU(1)) > 0; (3.106)for the two non-abelian gauge se
tors and for all unbroken, i.e. anomaly-free andmassless abelian gauge groups.3.6 D-terms and supersymmetry 
onstraintsThe Green-S
hwarz 
ounter terms have provided us with important non-trivialinformation about the four-dimensional low-energy e�e
tive a
tion, notably thegauge threshold 
orre
tions. The 
ouplings between the abelian gauge �elds andthe axions have furthermore produ
ed mass terms not only for the K�ahler ax-ions, but also for the universal axio-dilaton and the axions emerging from the�ve-branes, if present. In four-dimensional N = 1 supergravity, theses axionsform the imaginary part of the bosoni
 
omponent of 
hiral super�elds. Thereal parts are, as we have seen, given by the K�ahler moduli, the dilaton and themoduli parameterising, in the M-theory limit, the position of the branes alongthe eleventh dimension. In supersymmetry preserving va
ua, there must thus ex-ist a me
hanism whi
h likewise renders the 
orresponding partners of the axionsmassive sin
e a splitting of the mass terms within one supermultiplet is in
om-patible with supersymmetry. At string tree level, the Donaldson-Uhlenbe
k-Yauequation is pre
isely of the right form to yield the required mass terms for theK�ahler moduli. We therefore need to �nd analogous mass terms for the dila-ton and the �ve-brane moduli. It is natural to expe
t that the violation of theequal-mass-
ondition for all 
omponents of a supermultiplet is manifestly 
orre-lated with the supersymmetry 
ondition. On the other hand, we know that in60



theories with massive abelian gauge fa
tors, Fayet-Iliopoulos (FI) D-terms signala possible supersymmetry breakdown (e.g. [124℄). This is therefore the startingpoint for our investigations. We will make heavy use of the standard fa
t thatthe FI terms 
an be 
omputed from the K�ahler potential K with the help of thesupersymmetri
 �eld theory formula (e.g. [120℄)Dm �mg2m = Dm �K�Vm ���Vm=0; (3.107)where Vm 
onstitutes the abelian ve
tor super�elds asso
iated with the abeliangauge symmetry U(1)m. After deriving the gauge invariant K�ahler potential, itwill be straightforward to extra
t the FI terms. We will �nd an intriguing relationbetween the FI terms and the DUY equation whi
h allows us to identify one-loop
orre
tions to the latter involving the dilaton and the �ve-brane moduli. Theywill indeed solve the puzzle about the missing mass terms. They also imply amodi�
ation of the stability 
ondition on the gauge bundles arising at one-loop.Finally, we will 
omment on a new D-term 
ontribution to the s
alar potential ofthe M5-brane in heteroti
 M-theory in the presen
e of abelian gauge 
ux on theend-of-the-world branes whi
h may be of signi�
an
e in 
osmologi
al appli
ations.3.6.1 Gauge invariant K�ahler potentialIn four-dimensional N = 1 supergravity, the K�ahler potential K is determinedby requiring that it reprodu
es the various kineti
 terms in the four-dimensionala
tion in the Einstein frame. Re
all that the latter is obtained from the four-dimensional string frame a
tion (i.e. the one after 
ompa
tifying (2.1)) via therede�nition [12℄G(4)S = e2�10 G(4)E =) RS = e�2�10 �RE � 6r2�10 � 6(��10)2� : (3.108)In parti
ular, under this transformation the string frame kineti
 terms for thedilaton and its axion b(0)0 be
ome in Einstein framevol(M)2�210 ZR1;3(�G(4)S ) 12 e�2�10 ��RS + 4 ���10���10 � e4�102 ��b(0)0 ��b(0)0 � �!vol(M)2�210 ZR1;3(�G(4)E ) 12 ��RE � 2 ���10���10 � e4�102 ��b(0)0 ��b(0)0 � : (3.109)Note that the fa
tor of e4�10 in front of the axioni
 kineti
 term in the �rstline arises after dualizing the kineti
 term for dB(2) in (2.1) with the help ofdB(2) = e2�10dB(6) and then extra
ting the four-dimensional axion.For the heteroti
 string without abelian gauge fa
tors, the part of K relevantfor our present purposes is very well-known and given by the expressionK = �M2pl8� ln�eS + eS� +Xa Na2 (e�a + e��a)2(
a)k(eTk + eT �k )�61



�M2pl8� ln�� h11Xi;j;k=1 dijk6 �eTi + eT �i ��eTj + eT �j ��eTk + eT �k��: (3.110)Here M2pl8� = ��210 Vol(M), and the super�elds eS; eTk; e�a have as their bosoni
 
om-ponents the 
omplex s
alars de�ned in (3.102), (3.97) and (3.98) respe
tively.The quadrati
 part involving the �ve-brane supermultiplets e�a is non-standardand will be 
ommented on momentarily. Ignoring it for a se
ond, we 
an readily
onvin
e ourselves that this K�ahler potential en
odes the 
orre
t kineti
 termsfor the various s
alars in the Einstein frame. To demonstrate this standard 
om-putation for the 
ase of the dilaton we adopt the notation of [120℄ and de�ne the
omplete N = 1 super�eld eS aseS = S +p2� + i ���� ��S + : : : (3.111)with S given by (3.96). The kineti
 term for the dilaton and its axioni
 part-ner in the Einstein frame then follows upon performing the Grassmann integralR d2�d2�K and extra
ting the termS(E)kin = ZR1;3 �2K�S �S� ���S=0 ��S ��S� (3.112)= �Vol(M)�210  ZR1;3 �� �10���10 + ZR1;3 e4�10 14���10 ���10! :A similar 
omputation 
an of 
ourse be performed for the K�ahler super�elds eTk.If we in
lude heteroti
 �ve-branes, the K�ahler potential has to be adjustedsu
h that it also yields the kineti
 terms for the brane position moduli �a andtheir axioni
 partners eb(0)a . They 
an be dedu
ed from the Pasti-Sorokin-Tonina
tion for the M5-brane [81℄. We pointed out already that, following this logi
,the authors of [122, 123℄ derived a 
orre
tion quadrati
 in �a in the de�nitionof the super�eld S whi
h we have displayed in (3.102). This 
orre
tion indeedin
orporates the 
orre
t kineti
 a
tion if in addition one supplements the standard
ontribution �ln(eS + eS�) to K by a term quadrati
 in e�a + e��a resulting in�ln(eS + eS�) �! � ln�eS + eS� +Xa Na2 (e�a + e��a)2Ph1;1k=1(
a)k(eTk + eT �k )�: (3.113)For a detailed derivation of these terms in the dilatoni
 K�ahler potential we referto [122, 123℄, but the 
omputation is similar in spirit to the one sket
hed above.The presen
e of massive U(1) fa
tors in the four-dimensional gauge groupmodi�es K further in a very important manner. This is due to the fa
t that inthe resulting supergravity theory, the mass terms between the abelian gauge �eldsand the axions enfor
e the gauging of the axioni
 shift symmetry. Quite generally,62



if the standard kineti
 Lagrangian for some s
alar �eld b(0) is supplemented bythe 
oupling to an abelian gauge �eld15 as inSaxion = ZR1;3 ��b(0)��b(0) +Qm b(0) (��A�m); (3.114)then unbroken U(1)m gauge symmetry requires that underA�m �! A�m + ���m (3.115)the axion transforms as b(0) �! b(0) + Qm2 �m: (3.116)This is readily veri�ed by 
onsidering the transformationÆSaxion = ZR1;3 2 ��b(0)��(Qm2 �m) +Qmb(0) �����m +O(Q2m) = 0: (3.117)To put it di�erently, the global abelian symmetry b(0) ! b(0)+
onst is promotedto a lo
al symmetry. In slightly more te
hni
al supergravity language, this is justthe simplest version of the gauging of one of the global isometries of the s
alarK�ahler manifold. These gauged isometries need not be restri
ted to abelian shiftsymmetries. For a dis
ussion of the most general 
ase we refer e.g. to [121℄.Upon gauging, the K�ahler potential has to be modi�ed by appropriate 
ounterterms in order to remain gauge invariant. This pro
edure is 
omparatively easy inour abelian 
ase. Introdu
ing the abelian ve
tor super�eld Vm and, respe
tively,
hiral super�eld �m and eB with lowest 
omponents as inVm = ����A�m + : : : ; �m = i2�m + : : : ;eB = (r + ib(0)) + : : : ; (3.118)we note that the required gauge transformation translates as follows into super-�eld language [120℄A�m ! A�m + ����b(0) ! b(0) + Qm2 �m  ! � Vm ! Vm + �m + ��meB ! eB +Qm�m � (3.119)Applying all this to our spe
i�
 
ase at hand, it is 
lear that the K�ahlerpotential (3.110) is rendered gauge invariant by a suitable subtra
tion of theabelian ve
tor super�elds multiplied by the respe
tive 
harges o

urring in theaxioni
 
ouplings. Con
retely, this results in the following gauge invariant K�ahlerpotential15Note that this 
oupling is pre
isely of the form of the mass terms (3.87),(3.88),(3.89). Justuse Hodge duality to rewrite R b(2) ^ f � R b(0) ^ d ?4 A.63



K = �M2pl8� ln�S + S� �Xm Qm0 Vm +Xa Na2 (�a + ��a �PmQma Vm)2(
a)k(Tk + T �k �PaQmk Vm)��M2pl8� ln�� h11Xi;j;k=1 dijk6 �Ti + T �i �Xm Qmi Vm��Tj + T �j �Xm Qmj Vm��Tk + T �k �Xm Qmk Vm�� (3.120)with appropriately de�ned super�elds Vm. The 
harges Qmk 
an be identi�ed asthe 
ouplings in the mass terms (3.87),(3.88),(3.89) using the de�nitionSmass = MXm=1 h11Xk=0 Qmk2��0 ZR1;3 fm ^ b(2)k + MXm=1Xa Qma2��0 ZR1;3 fm ^eb(2)a : (3.121)Indeed it 
an be 
he
ked expli
itly that this K�ahler potential 
orre
tly re-produ
es also the various gauge-axion 
oupling terms by a Grassmann integralsimilar to that performed in (3.112).3.6.2 Fayet-Iliopoulos terms and D-term 
onstraintsWe are �nally in a position to 
ome ba
k to our initial goal, the 
omputation ofthe FI terms de�ned by (3.107). What we obtain after some algebra from theK�ahler potential (3.120) and the 
harges (3.121) is�mig2mi = � 18`6s MiXni=1 �mi;ni�ZM J ^ J ^ fni2�� e2�10 `4s ZM fni2� ^ 14(2�)2�trF 2i � 12trR2�+ e2�10 `4sXa Na�12 � �a�2 Z
a fni2� �: (3.122)Obviously, the �rst term in (3.122) appears at string tree-level, whereas the se
ondand third terms arise at one-loop in string perturbation theory. The reason thatwe have been able to derive these perturbative 
orre
tions just from the e�e
tive�eld theory lies of 
ourse on
e again in the one-loop nature of the Green-S
hwarzterms whi
h are responsible for the gauging of the supergravity.The presen
e of one-loop 
orre
tions to the FI terms indi
ates importantmodi�
ations of the D-term supersymmetry 
ondition on the gauge bundles, aswe now dis
uss. By de�nition, the FI parameters for the various U(1)mi gauge64



groups in the e�e
tive four-dimensional N = 1 supergravity are related to thes
alar D-term potential viaVD = 12 Xmi V miD = Xmi 12(gmiYM)2 ���X� qmi� j��j2 + �mi���2; (3.123)where the �� denote s
alar �elds with 
harge qmi� under the U(1)mi . Note thatthere might exist additional 
ontributions not involving the gauge bundles su
h asterms purely quadrati
 in the matter �elds (see e.g. [125℄ and referen
es therein).The va
uum of the theory is of 
ourse determined by minimizing the 
ompletes
alar potential in
luding in parti
ular the F-terms. A ne
essary 
ondition forthe va
uum to be supersymmetri
 is that the positive semi-de�nite quantity V miDhas to vanish for ea
h U(1)mi separately16. Now V miD 
ontains two qualitativelyvery di�erent 
ontributions: P� qmi� j��j2, whi
h involves the va
uum expe
tationvalue of the 
harged matter �elds, and the FI term �mi. The latter depends on thetopologi
al data of the ba
kground gauge bundles in
luding the �ve-branes, theK�ahler moduli and, by the one-loop 
orre
tion, on the dilaton. A non-vanishingFI parameter does not ne
essarily indi
ate a breaking of supersymmetry as long asthe VEVs of the 
harged matter �elds 
an be 
hosen in a supersymmetri
 manneras to 
ompensate �mi su
h that V miD = 0. Obviously, this is possible at most formultiplets with non-zero Euler 
hara
teristi
 sin
e ea
h �eld and its 
omplex
onjugate 
ontribute with opposite signs in the D-term. Whether or not this
an happen depends 
ru
ially on the stru
ture of the additional ��-dependentterms in the s
alar potential. In 
ases where there are no su
h terms whi
hindependently for
e �� to be zero, the D-term merely 
onstrains a 
ombinationof the 
harged matter �elds on the one hand and of the K�ahler and brane moduliand the dilaton on the other. If, by 
ontrast, there were, say, a mass term of theform V� = m��2�, a non-vanishing FI parameter would 
learly be in
ompatiblewith supersymmetry [125℄.As an upshot of this dis
ussion, the e�e
tive supergravity analysis results inthe following D-term supersymmetry 
onstraint on the gauge bundles,�mi(gs; J; �a) = �mi(��) (3.124)for some fun
tion �mi depending on the 
harged matter �elds. If we 
an ignorethe term �mi(��), for reasons of the type dis
ussed above, then the gauge bundlesare subje
t to the supersymmetry 
onstraints �mi = 0, i.e.16In addition, of 
ourse, also the K�ahler 
ovariant derivative of the F-term superpotentialhas to be zero, DW = 0. Together, these two 
onstraints are ne
essary and suÆ
ient for thetheory to be in a supersymmetri
 minimum. 65



ZM J ^ J ^ 
1(Lmi)�`4s g2s ZM 
1(Lmi) ^ �
h2(VNi) + MiXmi;ni=1 �mi;ni
1(Lmi) ^ 
1(Lni) + 12 
2(T )�+`4s g2s Xa Na�12 � �a�2 Z
a 
1(Lmi) = 0: (3.125)In these 
ases, the 
onditions (3.125) provide 
onstraints �xing, in prin
iple,
ombinations of the K�ahler moduli, the dilaton and �ve-brane moduli. Therefore,the 
onstraint �mi = 0 e�e
tively renders a parti
ular 
ombination of the moduli�elds massive. This is just what has to happen in supersymmetri
 va
ua, wellin a

ord with the fa
t that the axioni
 partners of these moduli likewise re
eivea mass due to the 
oupling to U(1)mi . In parti
ular, if we did not in
lude theone-loop 
orre
tion involving the dilaton and the brane moduli, this would bein dire
t 
on
i
t with the mass terms indu
ed for the axions b(0)0 and eb(0)a . Afterall, in supersymmetri
 
on�gurations the whole supermultiplet has to be
omemassive, not just some of its 
omponents.Note that the K�ahler form J as appearing above is not dimensionless, butimpli
itly 
ontains a fa
tor of �0. Therefore, the perturbative 
orre
tions e�e
-tively depend only on g2s . In prin
iple, a 
an
ellation of the tree-level against theone-loop term 
an be a
hieved in the perturbative regime of large internal radiiand small gs provided that the tree-level term 
an be arranged to be suÆ
ientlysmall by itself. On manifolds with several K�ahler moduli this is 
learly possible,depending on the details of the interse
tion form, of 
ourse.We 
on
lude this se
tion with a side remark on what happens when we 
an
ela non-vanishing Fayet-Iliopoulos term against the VEV of a 
harged s
alar asin (3.124) (see also [102℄). From the �eld theory analysis, what we expe
t insu
h a situation is that the s
alar VEV indu
es the breaking of part of the four-dimensional gauge symmetry. There is a very neat way how to understand thisHiggsing of the observable gauge group from the point of view of the internalbundles. To illustrate the idea, 
onsider the easiest 
ase with just one abeliangauge fa
tor, i.e. suppose that the internal bundle is given by the dire
t sumWi = VNi � L�1 with stru
ture group SU(Ni) � U(1). For simpli
ity, assumefurthermore that the 
harged s
alar in question 
orresponds to the internal bundleU (i)xi = VNi 
 L, in the notation of (2.17). Giving a VEV to this s
alar meansthat we turn on an element in the �rst 
ohomology group H(1)(M; U (i)xi ) 17. Now,as a mathemati
al fa
t, turning on an element in H(1)(M; VNi 
 L) implies adeformation of the internal bundle W su
h that it no longer splits into a dire
tsum but rather is given by the extension of L�1 by VNi [40℄, i.e. it �ts into the17As we will dis
ussed, the internal bundles have to be stable in the mathemati
al sense, inwhi
h 
ase H(0)(M; U (i)xi ) and H(3)(M; U (i)xi ) vanish and all matter 
omes from H(1) or H(2).W.l.o.g we assume that H(1)(M; U (i)xi ) 6= 0, otherwise just swit
h to the 
omplex 
onjugaterepresentation using Serre duality. 66



short exa
t sequen
e 0 �! VNi �!fW �! L�1 �! 0: (3.126)The bundle fW hereby de�ned has in fa
t stru
ture group SU(Ni + 1), whi
h
ontains SU(Ni) � U(1), the stru
ture group of VNi � L�1. The visible gaugegroup, being the respe
tive 
ommutant in E(i)8 , therefore gets redu
ed, in this
ase pre
isely by the abelian fa
tor whi
h is Higgsed away in the �eld theoreti
pi
ture.What this tells us is that a 
an
ellation of a non-vanishing FI term againstmatter �eld 
ontributions is only possible at the 
ost of a severe deformation ofthe geometry of our gauge bundle. If we want to sti
k to our initial frameworkof Whitney sums of internal SU(N) or U(N) bundles, this means that we reallyhave to insist on a vanishing FI term as the D-term supersymmetry 
ondition.3.6.3 Loop-
orre
ted Hermitian Yang-Mills equation andthe 
on
ept of �- stabilityIn the previous se
tion, we have derived the supersymmetry 
ondition on thegauge bundles by a purely �eld theoreti
 analysis of the D-term in the e�e
tivefour-dimensional supergravity. A priori, we 
annot ex
lude that this approa
hmisses 
ertain subtleties. The point is that we have assumed from the verybeginning that the e�e
tive theory in four dimensions 
an be des
ribed withinthe framework of N = 1 supergravity, whose properties we have used heavily inderiving the supersymmetry 
onstraints for the ground state of the theory.To see that these supersymmetry 
onditions may not be the whole story, 
on-sider as an example the requirement that the internal manifold be Calabi-Yau, asdi
tated by the Killing spinor equation for the gravitino in the absen
e of H-
ux.On
e we assume the Calabi-Yau 
onstraint and therefore trust the ma
hinery offour-dimensional N = 1 supergravity, we do not re
over it from the �eld the-ory analysis any more. We rather have to 
onsult the ten-dimensional theory.All we 
an expe
t from the four-dimensional analysis is that we identify poten-tial sour
es for spontaneous supersymmetry breakdown within an in prin
iplesupersymmetri
 theory.Let us therefore 
ompare the four-dimensional results to the dire
t analysisof the ten-dimensional Killing spinor equation for the gaugino.As we re
all from the dis
ussion in se
tion (2.3), at tree level ea
h summandbundle of W has to be holomorphi
 and �-stable with respe
t to zero slope. Thelatter means that the ea
h of the stable summand bundles needs to satisfy theDUY equationZM J ^ J ^ 
1(Vni) = 0; ZM J ^ J ^ 
1(Lmi) = 0; (3.127)to be satis�ed for all ni, mi. 67



Evidently, the left-hand side of (3.127) is just the tree-level part of the FI term(3.122). We realize that our 
on
erns were justi�ed in that the supersymmetry
ondition revealed by the four-dimensional analysis is in
omplete: it is blind tothe lo
al supersymmetry equation, en
oded in the requirement of stability, andonly yields the asso
iated integrability 
ondition. Nonetheless, in view of theagreement at tree-level between the DUY equation and the FI term, it is mostnatural to interpret the one-loop 
orre
tion of the latter as nothing other than aone-loop 
orre
tion of the DUY equation. But sin
e the DUY is the integrability
ondition for a more fundamental lo
al 
onstraint, the Hermitian Yang-Millsequation, this suggests that the latter is likewise 
orre
ted at one-loop. In fa
t,it is 
onsistent to propose the followingConje
ture 1:The perturbatively exa
t supersymmetry 
ondition on the gauge bundle is givenby the one-loop deformed Hermitian Yang-Mills equationJ ^ J ^ Fki � (2��0)2 g2s4 Fki ^ d�!YMi � 12!L� = 2� � (Vki ; �0gs) volM id(3.128)together with �(Vki; �0gs) = 1rk(Vki)�ki(��): (3.129)Here Vki represents any of the bundles VNi; Lmi in E(i)8 and Fki the 
orrespond-ing �eld strength. The deformed slope �(Vki; �0gs) is de�ned as the integral overthe left-hand side of (3.128) divided by the rank of Vki,�(Vki; �0gs) � 1rk(Vki) ZM J ^ J ^ 
1(Vki) (3.130)�(2��0)2 g2s4 
1(Vki) ^ d�!YMi � 12!L� ;in pre
ise analogy with (2.21). The notation !YMi refers to the 
omplete Chern-Simons three-form of the bundle Wi satisfying d!YMi = trF 2i . We formallysubsumed the 
ontributions from the �ve-branes into this quantity sin
e, as weobserved in se
tion (3.5), their e�e
t is pre
isely that of a gauge instanton aftera small instanton transition.We re
all from the previous se
tion that, taking the impli
it fa
tor of (�0)2in the tree-level part J ^ J ^ 
1(Vki) into a

ount, the perturbative 
orre
tion ofthe slope arises of 
ourse pre
isely at order g2s relative to the tree-level part. Thereason why we 
hose to write the modi�ed slope as �(Vki; �0gs) is to remind usthat the 
orre
tion be
omes small as 
ompared to the tree-level term if gs is small68



and/or we are in the large radius regime, where integrals involving J dominate.This will be important momentarily.Mimi
king the situation at tree-level, the supersymmetry 
ondition 
omes intwo parts: The lo
al 
onstraint is the deformed Hermitian Yang-Mills equation(3.128). In addition we have to spe
ify whi
h value the deformed slope has totake. This latter pie
e of information is all we �nd from the four-dimensionalD-term 
onstraint (3.124) upon identifying the deformed slope with the loop-
orre
ted FI term. Note that equation (3.129) is just a reformulation of thisD-term 
onstraint18.Stri
tly speaking, we 
annot rigorously ex
lude the appearan
e of additional
ohomologi
ally trivial forms on the left-hand side of (3.128) whi
h vanish uponintegration and whose e�e
t 
annot simply be dete
ted in the supergravity anal-ysis. After all, the latter only provides us with the integrated version of theHermitian Yang-Mills equation. To be 
ompletely pre
ise we should thereforeadd the exterior derivative of some potential globally de�ned �ve-form. Irrespe
-tive of this subtlety, the de�nition of �(Vki; �0gs) as the integral over the left-handside of (3.128) is independent of su
h terms, of 
ourse.In view of the deformation of the HYM equation at one loop in string pertur-bation theory, also the stability 
ondition on the gauge bundles must be modi�edappropriately. So whi
h is the stability 
ondition guaranteeing a solution to(3.128)?Let us negle
t for the moment the D-term 
onstraint on �, whi
h relates thetree-level and the one-loop pie
e in �, and fo
us solely on the deformed HYMequation (3.128) for arbitrary �. To �nd the 
orre
t notion of stability in this less
onstrained situation, we rely on some inspiration from an analogous problem inthe mathemati
al literature, as studied by Leung [126℄. He 
onsiders a di�erentdeformation of the HYM equation, namelyetJ+ 12�F Td(M) = 
(V; t) id; where 
(V; t) = 1rkV ZM etJ 
h(F ) Td(M):(3.131)The quantity 
(V; t) is known as the Gieseker slope of V . The important pointis that the term at highest order in t is just the familiar t2 J ^ J ^ F , whereasthe deformations are of lower order. In this sense equ. (3.131) is perturbativein t sin
e it redu
es to the undeformed HYM equation for t!1. What Leungproved is the following theorem: For every ve
tor bundle V there exists a TV > 0su
h that for all t > TV V admits a 
onne
tion whose �eld strength is a solutionof equ.(3.131) (for this t) if and only if V is 
(V; t)-stable, i.e. if ea
h subsheafW of V is of smaller 
(W; t)-slope than V .To make the analogy to our situation 
rystal 
lear, we divide equ.(3.128) by(�0gs)2 and identify (�0gs)�1 with t. As in Leung's 
ase, for large t the tree-level18In Type IIB theory, as will be dis
ussed, this equation de�nes whi
h N = 1 subalgebra ofthe bulk N = 2 supersymmetry algebra the gauge instantons on the D-branes have to respe
t.69



part both in the HYM equation and in the asso
iated slope dominates over theloop 
orre
tion. Clearly, what we mean by small �0 is that we are in the largeradius regime. All that di�ers in our 
ase is the pre
ise form of this perturbative
orre
tion, but this is irrelevant for Leung's argument to work.We are thus lead to the followingConje
ture 2:Given a holomorphi
 ve
tor bundle V , then there exists a value of �0gs, de-pending on V , su
h that for all �0gs smaller than this 
riti
al value V ad-mits a 
onne
tion whose �eld strength satis�es the one-loop deformed HermitianYang-Mills equation (3.128) i� ea
h subbundle W with rk(W) < rk(V ) satis�es�(W; �0gs) < �(V; �0gs).This proposal re
eives 
onvin
ing support from the 
orresponding phenomenao

urring in the 
ontext of the SO(32) heteroti
 string, as we will dis
uss inse
tion (4.7.3). There we will be able to identify the one-loop 
orre
ted stability
ondition on the bundles as the S-dual version of the perturbative part of the �-stability 
ondition as formulated in the 
ontext of the derived bounded 
ategoryof 
oherent sheaves [78℄ in type II B string theory. Indeed, on the Type I side, theperturbatively exa
t stability 
ondition is just given by repla
ing the familiar �-slope with the �-slope in the above perturbative sense. A mathemati
al proof ofthis statement 
an be found in [127℄ and more details will be provided in se
tion(4.7.3).On the other hand one 
an easily 
onvin
e oneself that perturbatively every�-stable bundle is also �-stable in the following sense: Given a �-stable ve
torbundle V , then there exists a value of �0gs (depending on V ) su
h that for all�0gs smaller than that 
riti
al value V is �(V; �0gs)-stable (with respe
t to thesevalues of �0gs). This follows from the fa
t that for �0gs suÆ
iently small, thedominant part in the �-slope of V and of ea
h of its �nitely many subsheavesW is the tree-level part, whi
h is just the �-slope. The perturbative 
orre
tionstherefore do not spoil the fa
t that �(W; �0gs) < �(V; �0gs) sin
e �(W) < �(V )for all W by assumption.The situation 
hanges drasti
ally if we now take into a

ount also the D-term 
ondition (3.129), i.e. if we pose additional 
onstraints on the value whi
hthe slope of V is to take. Assume for simpli
ity that we do not turn on any
harged matter �elds so that the slope is simply equated to zero a

ording toequ. (3.129). If the one-loop 
ontribution in the �-slope for V does not happento vanish by itself, this implies that the tree-level and the one-loop pie
e have to
an
el ea
h other and must therefore be of the same order of magnitude. Theabove arguments 
on
erning our simple version of �-stability and its relation to�-stability, however, only work if the tree-level part dominates arbitrarily over theloop-
orre
tion for �0gs small enough. As a result, for a non-vanishing one-loopterm, we 
annot simply infer that a �-stable bundle solves the deformed HYMequation. This does not mean that the one-loop term ne
essarily has to vanish70



for supersymmetry to be preserved, but in 
ase it does not, we do not yet havean appropriate stability 
on
ept guaranteeing a solution to the HYM, and a moresophisti
ated mathemati
al analysis is required. Let us emphasize at this stagealready that the 
on
rete appli
ations we will present are not in 
on
i
t withthis subtlety sin
e the one-loop 
ontribution to the DUY equation will vanish by
onstru
tion in all 
ases of interest.We stress furthermore that although the one-loop part of the slope �(V; �0gs)is 
learly present only if 
1(V ) 6= 0, this does not mean that the above analysisis relevant only if we embed a U(N) as opposed to an SU(N) bundle into E8.Rather, the one-loop terms in the lo
al Hermitian Yang-Mills equation are ingeneral non-vanishing also for SU(N) bundles. In this 
ase, however, thanks tothe foregoing arguments, �-stability is always suÆ
ient for supersymmetry in thesame way as it is suÆ
ient for U(N) bundles for whi
h the 
orre
tion in �(V; �0gs)vanishes. In both 
ases, there must not exist an a priori lower bound on �0gs sin
ein relating �-stability to �-stability, we do not know the 
riti
al value of gs belowwhi
h the �rst implies the latter.Whi
h further 
orre
tions to the DUY 
ondition and to the Hermitian Yang-Mills equation do we expe
t? From the supergravity analysis of the D-term andthe usual non-renormalisation arguments, it is 
lear that there 
annot exist anyhigher perturbative string-loop 
ontributions. Moreover, it is known [128℄ thatthere are no one-loop Fayet-Iliopoulos terms in the Type I string theory. Conse-quently, S-duality di
tates that the DUY equation is also exa
t in sigma-modelperturbation theory sin
e it maps expressions at one-loop order in gs to perturba-tive �0 
orre
tions. However, there might, and most probably will be additionalnon-perturbative 
orre
tions in gs and �0 whi
h are beyond the s
ope of thisanalysis. After all, it is the appearan
e of non-perturbative �0 
orre
tions to theD-term supersymmetry 
onditions in Type IIB whi
h requires the introdu
tionof the 
on
ept of full �-stability [78℄.3.6.4 D-term potential for M5-branesLet us go ba
k to the Fayet-Iliopoulos term (3.122) and dis
uss possible 
on
lu-sions about the D-terms arising from the �ve-branes. Apparently, a 
ux throughthe two-
y
le 
a of a �ve-brane on the wall E(i)8 generates a one-loop D-termpotential for the �ve-brane modulus �a. From (3.122) it seems at �rst sight thatthis D-term repels the �ve-brane from the wall and vanishes only if the �ve-branelies on top of the other wall. However, re
all from (3.123) that the D-term s
alarpotential for a massive U(1) a
tually involves the quotient of the FI-term and thegauge 
oupling, whi
h, too, depends on the �ve-brane modulus in a non-trivialmanner.In order to get a qualitative idea of the 
ombined e�e
t of the FI terms andthe threshold 
orre
ted gauge 
oupling, it is instru
tive to analyse a simple toyexample. Consider the Quinti
 Calabi-Yau manifold, whi
h has only one K�ahlermodulus, and assume that we have 
hosen a ve
tor bundle V � L�1 embedded71



into the �rst E8 wall without any matter 
harged under the U(1). Then theD-term potential arising from the FI-term of the U(1) is simplyVD = 12g2 � �g2�2 ; (3.132)where g denotes the gauge 
oupling of the U(1). For the Quinti
 one has 
2(T ) =10�2 and J = `2sr � with r > 0 in terms of the single (1; 1)-form �. Moreover, wewrite 
h2(V ) = �v�2 + 12 l2�2 and 
h2(L) = 12 l2�2 and introdu
e one �ve-branewrapping the 
lass 
. The tadpole 
an
ellation 
ondition then reads�v + l2 � 
2 = �10: (3.133)The relevant D-term potential takes the formVD ' � r2g2s � (
2 � 5) + �12 � ��2 
2�2� r2g2s � 3(
2 � 5) + 3 �12 � ��2 
2 � �21;1�1;1 l2� : (3.134)For �xed string 
oupling gs = 0:5, radius r = 2 and a 
hoi
e of parameters
 = l = 2, �21;1=�1;1 = 1=10, this potential for the �ve-brane modulus � has the
hara
teristi
 shape shown in �gure 3.2. Naively, as pointed out, from the FI-termone might have expe
ted that the �ve-brane is repelled by the E8 walls 
arryinga non-trivial line bundle. However, the 
ontribution of the g2 term multiplyingthe FI-term in the s
alar potential 
hanges this pi
ture and leads to an attra
tivepotential between the �ve-brane and the E8 wall 
arrying the bundle.How 
an we understand the physi
s behind this attra
tive intera
tion? Arisingat one loop in the weakly 
oupled heteroti
 string, it is expe
ted to be due toappropriate amplitudes from membranes after unfolding the wrapped eleventhdimension in the strongly-
oupled Horava-Witten regime. In fa
t, as derived in[123℄, there are non-perturbative 
ontributions to the F-term superpotential fromopen membranes stret
hing between one of the orbifold �xed planes and the M5-brane provided that the worldvolume of the membranes is pre
isely of the form I�
a. Here I simply denotes the interval along the eleventh dimension between theorbifold plane and �ve-brane. We see that, apparently, su
h 
on�gurations also
ontribute to the D-term potential if the membrane 
an 
ouple to some abelianba
kground gauge 
ux on the orbifold plane. As is manifest in (3.125), this 
anonly happen if the �ve-brane wraps a two-
y
le whi
h, pulled ba
k to the endof the world, 
arries non-vanishing gauge 
ux. In parti
ular, this interpretationexplains why the �ve-brane is sensitive to the presen
e of the gauge 
ux along
a even though it may be pla
ed at an arbitrary position along the eleventhdimension: The presen
e of the gauge 
ux is 
ommuni
ated by the ex
hange ofappropriate open membranes.This interpretation of the D-term potential as being due to open membranesstret
hing between the orbifold �xed plane and the M5-brane is well in agreement72



with the generi
 form of the potential found in (3.134): The 
ontribution of themembranes is of 
ourse minimized pre
isely if the interval along whi
h they wrapbetween the end of the world and the �ve-brane is vanishing.3.7 Example (I): Breaking E8 to 
ipped SU(5)�U(1)XIt is high time to illustrate the hitherto studied framework by means of 
on
reteexamples. The number of possible embeddings is extremely high if we take intoa

ount all 
on
eivable 
ombinations of the various building blo
ks at our dis-posal. In the next two se
tions, we will therefore restri
t our attention to realisti
four-dimensional gauge groups, fo
using on the detailed appli
ation of the te
h-ni
al aspe
ts presented by now. Phenomenologi
al 
onsiderations and 
on
retemodel building are postponed to 
hapter 7.As a warm-up we exemplify the breaking of the E8 group down to the 
ippedSU(5) gauge group based on the bran
hingSU(4)� U(1)X0 � SU(5) � E8 �! SU(5)� U(1)X0 : (3.135)The embedding SU(5) � E8 ! SU(5) indu
es the familiar de
omposition248 �! (24; 1) + (1; 24) + (5; 10) + (5; 10) + (10; 5) + (10; 5): (3.136)Next we de
ompose the internal SU(5) representations under SU(5)! SU(4)�U(1)X0 a

ording to (3.14) as24 �! 150 + 10 + 45 + 4�5;5 �! 41 + 1�4;10 �! 62 + 4�3: (3.137)In 
ombination these two steps lead to the spe
trum19248 SU(4)�SU(5)�U(1)X0�! 8>>>><>>>>: (15; 1)0(1; 1)0 + (1; 10)�4 + (1; 10)4 + (1; 24)0(4; 1)5 + (4; 5)�3 + (4; 10)1(4; 1)�5 + (4; 5)3 + (4; 10)�1(6; 5)�2 + (6; 5)2
9>>>>=>>>>; : (3.138)We point out, at this stage merely as an appetizer, that the abelian 
hargesof the spe
trum are proportional to the U(1)X in the 
ipped SU(5) model, thusjustifying the notation. This 
ru
ial fa
t will be heavily exploited in the 
ontextof the phenomenologi
al adventures of 
hapter 7.19Note that in the last line we used that 6 = 6 for the antisymmetri
 of SU(4).73



Let us now turn to the expli
it bundles whi
h realize this breaking of E8.Starting with 
onstru
tions of type A, we 
hoose the Whitney sumW = V � L su
h that 
1(V ) = 0 (3.139)with stru
ture group G = SU(4) � U(1). The embedding of the line bundle isa

omplished by identifying its �eld strength with the diagonal SU(5) generatorTX0 = (1; 1; 1; 1;�4): (3.140)As shown in table 3.2, the de
omposition (3.138) allows one immediately to reado� the 
ohomology 
lasses determining the massless spe
trum.reps. Cohomology (Type A)101 H�(M; V 
 L)10�4 H�(M; L�4)5�3 H�(M; V 
 L�3)52 H�(M;V2 V 
 L2)15 H�(M; V 
 L5)Table 3.2: Massless spe
trum of H = SU(5)� U(1)X0 models.From this embedding of the stru
ture group, we 
an determine the resultingtadpole 
an
ellation 
ondition (3.26) by 
omputing the tra
es as spelled out in(3.23),tr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(
h2(Ux)� dim(Rx))= 2 trSU(4)f (F 2SU(4)) + 40F 2U(1) = 4 (2�)2 (�
2(V ) + 10 
21(L));tr(R2) = 2 trSU(3)f (R2) = �4 (2�)2 
2(T ): (3.141)This yields the tadpole 
an
ellation 
ondition
2(V )� 10 
21(L) = 
2(T ): (3.142)The net-number of 
hiral multiplets is given by the Euler 
hara
teristi
 ofthe various bundles in table 3.2. Note that extra gauge bosons are 
ounted byH�(M;O), whi
h 
an only appear if L4 is the trivial bundle O, i.e. 
1(L) = 0.Clearly in this 
ase the gauge symmetry is extended to SO(10), whi
h is pre
iselythe 
ommutant of SU(4) in E8. Another way to see this is that the 20 additionalve
tor multiplets from the (1; 10)�4 and its 
onjugate arising when L4 gets trivial74



pre
isely �ll out, together with the 24+ 1 in the adjoint of SU(5)� U(1)X0 , the45-dimensional adjoint representation of SO(10). We will en
ounter mu
h moreintri
ate patterns of gauge symmetry enhan
ement for the 
ase that more U(1)bundles are involved in the next se
tion.It is now a straightforward exer
ise to 
ompute the four-dimensional gaugeanomalies from the general expressions given in equation (3.28), using also thetra
e identities of appendix A.2.� The non-abelian SU(5)3 anomaly is proportional toASU(5)3 = �(M; V 
 L) + �(M; L�4)� �(M; V 
 L�3)� �(M;V2V 
 L2)(3.143)and vanishes identi
ally even without invoking the tadpole 
an
ellation 
ondition.� The mixed abelian-gravitational anomaly U(1)X0 � G2�� however does not di-re
tly vanish and is given byAU(1)�G2�� = 10�(M; V 
 L)� 40�(M; L�4)� 15�(M; V 
 L�3) +10�(M;V2V 
 L2) + 5�(M; V 
 L5)= 10 ZM 
1(L) �12(�
2(V ) + 10 
21(L)) + 5 
2(T )� : (3.144)� Similarly the mixed abelian-non-abelian anomaly U(1)X0 � SU(5)2 takes theformAU(1)�SU(5)2 = 3�(M; V 
 L)� 12�(M; L�4)� 3�(M; V 
 L�3) +2�(M;V2V 
 L2)= 10 ZM 
1(L) �2(� 
2(V ) + 10 
21(L)) + 
2(T )� : (3.145)� Finally for the U(1)3X0 anomaly one obtainsAU(1)3 = 10�(M; V 
 L)� 640�(M; L�4)� 135�(M; V 
 L�3) +40�(M;V2V 
 L2) + 125�(M; V 
 L5) (3.146)= 200 ZM 
1(L) �6(�
2(V ) + 10 
21(L)) + 40
21(L) + 3 
2(T )� :These results are in 
omplete agreement with the general expressions (3.30) -(3.32) if one uses (3.141) to rewrite them in terms of tra
es. Note that theintegrands only vanish if 
1(L) = 0, in whi
h 
ase the gauge group is enhan
edto SO(10). In this simple 
onstru
tion, the U(1)X0 is therefore massive and onlypresent as a global symmetry. We will �nd a way to 
ir
umvent this apparentdrawba
k in 
hapter 7 when it 
omes to the 
onstru
tion of realisti
 
ippedSU(5)� U(1)X va
ua.For embeddings of Type B, one starts with a bundleW = V � L�1; with 
1(V ) = 
1(L); rank(V ) = 4; (3.147)75



whi
h has stru
ture group SU(4)� U(1). This bundle W 
an now be embeddedinto an SU(5) subgroup of E8 so that the 
ommutant is again SU(5) � U(1)X0 .We embed the U(1) bundle su
h thatQX0 = (1; 1; 1; 1;�4); (3.148)implying that the matrix Q de�ned in (3.12) is simplyQ = QX0(V ) +QX0(L) = 5: (3.149)The massless spe
trum is given by the 
ohomology 
lasses listed in Table 3.3.reps. Cohom.101 H�(M; V )10�4 H�(M; L�1)5�3 H�(M; V 
 L�1)52 H�(M;V2 V )15 H�(M; V 
 L)Table 3.3: Massless spe
trum of H = SU(5)� U(1)X0 models.An expli
it evaluation of the tra
es (see again (3.23)) astr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(
h2(Ux)� dim(Rx))= 4(2�)2(
h2(V ) + 
h2(L)) (3.150)
onvin
es us that the tadpole 
an
ellation 
ondition reads
2(V )� 
21(V ) = 
2(T ): (3.151)Similarly to the type A 
ase, one 
an show that all non-abelian gauge anomalies
an
el and that the abelian ones,AU(1)�G2�� = 52 ZM 
1(L) h12�� 
2(V ) + 
21(L)� + 5 
2(T )i ;AU(1)�SU(5)2 = 52 ZM 
1(L) h2�� 
2(V ) + 
21(L)� + 
2(T )i ; (3.152)AU(1)3 = 25 ZM 
1(L) h12�� 
2(V ) + 
21(L)� + 5
21(L) + 6 
2(T )i ;being 
onsistent with the general result displayed at the end of se
tion (3.4.1), are
an
elled by a Green-S
hwarz me
hanism. Note in parti
ular that �X0;X0 = 40,see (3.25). 76



3.8 Example (II): Breaking E8 to SU(3)� SU(2)�U(1)YOur model building possibilities are not limited to the 
onstru
tion of GUT groupva
ua. In this se
tion, we exemplify the breaking of E8 dire
tly down to theStandard Model gauge group based on the bran
hingSU(6) � E8 �! SU(3)� SU(2): (3.153)The general strategy presented in se
tion (3.1) allows us to iteratively in
orporateadditional line bundles and thus to introdu
e various abelian gauge fa
tors intothe visible gauge group. This is at the 
ost of lowering the rank of the non-abelian bundle VNi . In the presen
e of several U(1) fa
tors an extremely ri
hpattern emerges with numerous ways to obtain the Standard Model gauge groupand spe
trum. In this se
tion, we merely fo
us on one of the two E8 fa
tors inorder to explain the building blo
ks for the phenomenologi
al appli
ations to bedis
ussed later.As far as the resulting spe
trum is 
on
erned, we �rst note that the embedding(3.153) indu
es the following de
omposition of the adjoint representation of E8248 �! (35; 1; 1) + (1; 8; 1) + (1; 1; 3) +(20; 1; 2) + ((6; 3; 2) + (15; 3; 1) + 
:
:): (3.154)We now de
ompose the internal SU(6) following the steps spelled out in se
tion(3.1). Spe
i�
ally, we perform the de
ompositionsSU(6) �! SU(5)� U(1)Y 0 �! SU(4)� U(1)X0 � U(1)Y 0�! SU(3)� U(1)Z � U(1)X0 � U(1)Y 0: (3.155)3.8.1 Bundles with stru
ture group SU(5)� U(1)To realize the �rst step in the sequen
e (3.155), we 
hoose a bundle of type Awith stru
ture group SU(5)� U(1)Y 0 , i.e. we 
onsider the 
on�gurationW1 = V � L; with rank(V ) = 5: (3.156)Clearly, the 
ommutant in E(1)8 is SU(3)�SU(2)�U(1)Y 0 . The abelian 
harges ofthe states follow from the embedding of U(1)Y 0 into SU(6) su
h that the abeliangenerator is identi�ed with the diagonal elementTY 0 = (1; 1; 1; 1; 1;�5) (3.157)77



in SU(6). We de
ompose the various SU(6) representations under the splittingSU(6) �! SU(5)� U(1)Y 0,35 �! 240 + 10 + 56 + 5�6;6 �! 51 + 1�5;15 �! 102 + 5�4;20 �! 103 + 10�3: (3.158)One may 
onvin
e oneself that this is in agreement with the general bran
hingrule (3.14), taking into a

ount in parti
ular that the third rank antisymmetri
representation of SU(5) is the 10. Combining (3.158) with (3.154) eventuallyleads to the de
omposition of the adjoint representation of E8 as248 SU(5)�SU(3)�SU(2)�U(1)Y 0�! 8>><>>: (24; 1; 1)0 + (1; 1; 1)0 + (1; 8; 1)0 + (1; 1; 3)0(5; 3; 2)1 + (1; 3; 2)�5 + 
:
:(10; 3; 1)2 + (5; 3; 1)�4 + 
:
:(10; 1; 2)3 + (5; 1; 1)6 + 
:
: 9>>=>>; :(3.159)As be
omes obvious after rede�ning the visible U(1) 
harges asQY = 13QY 0 ; (3.160)(3.159) apparently 
ontains states with just the Standard Model quantum num-bers, as displayed in table (3.4). The expressions for the 
ohomology 
lasses
ounting the 
hiral fermions follow from the general 
onsiderations at the end ofse
tion (3.2) and are listed in the se
ond 
olumn of table (3.4).SU(3)� SU(2)� U(1)Y 
ohom. (type A) 
ohom. (type B) SM part.(3; 2) 13 �(V 
 L) �(V ) qL(3; 2)� 53 �(L�5) �(L�1) �(3; 1) 23 �(V2 V 
 L2) �(V2 V ) d
R(3; 1)� 43 �(V 
 L�4) �(V 
 L�1) u
R(1; 2)�1 �(V2 V 
 L�3) �(V2 V 
 L�1) lL(1; 1)2 �(V 
 L6) �(V 
 L) e
RTable 3.4: Massless spe
trum of H = SU(3) � SU(2) � U(1)Y models from internalSU(5)� U(1) bundles. 78



To study the gauge enhan
ement pattern, we re
all that additional gaugebosons (respe
tively their fermioni
 superpartners) in the visible spe
trum, whi
hwould indi
ate the enhan
ement of the original gauge group, are 
ounted byH�(M;O). Inspe
tion of the appearing 
ohomology groups reveals that thisis only possible when 
1(L) = 0, in whi
h 
ase H�(M; L�5) degenerates. Theappearan
e of a trivial bundle therefore enlarges the number of gauge bosonsfrom 8+3+1 by the ve
tor-like pair (3; 2)� 53 to yield pre
isely the 24 generatorsof SU(5). This is just what we expe
t, sin
e the 
ommutant of SU(5) is of 
oursesimply SU(5) to whi
h the visible gauge group must get enhan
ed.The tadpole 
an
ellation 
ondition follows from the by now well-familiar eval-uation of the tra
es over the spe
trum20tr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(
h2(Ux)� dim(Rx))= 2 trSU(5)f (F 2SU(5)) + 60F 2U(1)Y 0 = 4 (2�)2 (�
2(V ) + 15
21(L));tr(R2) = 2 trSU(3)f (R2) = �4 (2�)2 
2(T ): (3.161)The tadpole 
an
ellation 
ondition (3.26) 
onsequently takes the form
2(V )� 15 
21(L) = 
2(T ): (3.162)We now pro
eed to the 
omputation of the �eld-theoreti
 anomalies with thehelp of (3.28).� The non-abelian SU(3)3 anomaly is proportional toASU(3)3 = 2 (�(V 
 L) + �(L�5))� �(�2V 
 L2)� �(V 
 L�4) (3.163)and vanishes even without invoking the tadpole 
an
ellation 
ondition. Of
ourse there are no SU(2)3 anomalies anyway.� For the mixed abelian-gravitational U(1)Y 0 � G2�� anomaly, we �nd the ingeneral non-vanishing expressionAU(1)Y 0�G2 = 6�(V 
 L)� 30�(L�5) + 6�(�2V 
 L2)� 12�(V 
 L�4)�6�(�2V 
 L�3) + 6�(V 
 L6)= 180 ZM 
1(L) �(�
2(V ) + 15 
21(L)) + 512 
2(T )� : (3.164)� Similarly the mixed abelian-non-abelian anomaly U(1)Y 0 � SU(3)2 takesthe formAU(1)�SU(3)2 = 2�(V 
 L)� 10�(L�5) + 2�(�2V 
 L2)� 4�(V 
 L�4)= 30 ZM 
1(L) �(� 
2(V ) + 15 
21(L)) + 12
2(T )� ; (3.165)20Note that we keep the original normalisation of U(1)Y 0 whi
h di�ers from that of the visiblehyper
harge by a fa
tor of 3. 79



and the mixed abelian-non-abelian anomaly U(1)Y 0 � SU(2)2 follows like-wise asAU(1)�SU(2)2 = 3�(V 
 L)� 15�(L�5)� 3�(�2V 
 L�3)= 30 ZM 
1(L) �(� 
2(V ) + 15 
21(L)) + 12
2(T )� :(3.166)� Finally, we obtain the following 
ubi
 abelian U(1)3Y 0 anomalyAU(1)3Y 0 = 6�(V 
 L)� 750�(L�5) + 24�(�2V 
 L2)� 144�(V 
 L�4)�54�(�2V 
 L�3) + 216�(V 
 L6)= 2700 ZM 
1(L) �(�
2(V ) + 15 
21(L)) + 12 
2(T ) + 10
1(L)2� :(3.167)It is satisfa
tory to note that these anomalies are in agreement with the generalformulae (3.31), (3.30) and (3.32). As a result, unless the line bundle is trivial,i.e. 
1(L) = 0, the U(1)Y symmetry is anomalous and its anomaly has the rightform to be 
an
elled by the Green-S
hwarz me
hanism. From the general formof the axion-boson mass terms (3.87) and (3.88), we 
onvin
e ourselves that theU(1)Y is indeed massive whenever 
1(L) 6= 0.Having dis
ussed the details of the type A 
onstru
tion, let us start alterna-tively with a bundle of type B, i.e.W = V � L�1; with 
1(V ) = 
1(L); rank(V ) = 5; (3.168)and embed the U(1)Y 0 bundle su
h thatQY 0 = (1; 1; 1; 1; 1;�5): (3.169)The massless spe
trum is now 
ounted by the 
ohomology groups summarized inthe third 
olumn of table (3.4). Expli
it 
omputation yieldstr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(
h2(Ux)� dim(Rx))= 4(2�)2(
h2(V ) + 
h2(L)) (3.170)and 
on�rms the assertion made earlier that the tadpole 
ondition for type Bbundles takes the form 
2(V )� 
21(V ) = 
2(T ): (3.171)Again, the resulting anomalies are in agreement with the general expression dis-played in se
tion (3.4.1).If we are interested in phenomenologi
al appli
ations, we must therefore �nd ame
hanism how to keep the U(1)Y massless. What res
ues us is that for suitably
hosen bundle data the St�u
kelberg me
hanism only yields masses for parti
ular
ombinations of U(1) fa
tors. Let us therefore pro
eed and in
lude another linebundle. 80



3.8.2 Bundles with stru
ture group SU(4)� U(1)2By means of a se
ond U(1)X0 bundle, we 
an further break the internal SU(5) toSU(4)�U(1)X0 while keeping the non-abelian part of the visible Standard Modelgauge symmetry. Con
retely, we now 
onsider an SU(4)�U(1)X0�U(1)Y 0 bundleof type A �a la W = V � L1 � L2 (3.172)or of type B, i.e,W = V � L�11 � L�12 with 
1(W ) = 0; (3.173)respe
tively. In this latter 
ase, the embedding of the two U(1) bundles intoSU(6) is given byQX0 = (1; 1; 1; 1;�4; 0); QY 0 = (1; 1; 1; 1; 1;�5): (3.174)The for later use we note that the tra
es (3.25) yield �X0;X0 = 40 and �Y ;Y = 60.For the type B 
onstru
tion, the 
harge matrix be
omesQ = � 5 10 6� : (3.175)The visible gauge group is H = SU(3) � SU(2) � U(1)X0 � U(1)Y 0 and theresulting de
omposition of the adjoint representation of E8 reads
248 SU(4)�SU(3)�SU(2)�U(1)2�! 8>>>>>>>><>>>>>>>>:

(15; 1; 1)0;02� (1; 1; 1)0;0 + (1; 8; 1)0;0 + (1; 1; 3)0;0(1; 3; 2)0;�5 + 
:
:(1; 3; 2)�4;1 + (1; 3; 1)�4;�4 + (1; 1; 1)�4;6 + 
:
:(4; 3; 2)1;1 + (4; 3; 1)1;�4 + (4; 1; 1)1;6 + 
:
:(4; 3; 1)�3;2 + (4; 1; 2)�3;�3 + (4; 1; 1)5;0 + 
:
(6; 3; 1)2;2 + (6; 1; 2)2;�3 + 
:
:
9>>>>>>>>=>>>>>>>>; :

The (possibly anomalous) hyper
harge U(1)Y and the U(1)B�L 
harge are givenby the linear 
ombinationsQY = � 115 QY 0 + 25 QX0 ; QB�L = 215 QY 0 + 15 QX0 : (3.176)The massless spe
trum is 
ounted by the 
ohomology 
lasses in table 3.5. Asfar as the interpretation of the states as Standard Model parti
les is 
on
erned,a 
omparison of the spe
trum in table 3.5 and the one in table 3.4 reveals ageneral feature: The in
lusion of several U(1) fa
tors in the same E8 fa
tor,whi
h seems to be required in order to keep the U(1)Y massless, gives rise toa number of (unwanted) 
hiral exoti
 states whose 
ohomology is 
ounted just81



reps. 
ohom. (type A) 
ohom. (type B) SM part.(3; 2)1;1 H�(M; V 
 L1 
 L2) H�(M; V ) qL(3; 1)1;�4 H�(M; V 
 L1 
 L�42 ) H�(M; V 
 L�12 ) d
R(1; 1)1;6 H�(M; V 
 L1 
 L62) H�(M; V 
 L2) �R(3; 1)�3;2 H�(M; V 
 L�31 
 L22) H�(M; V 
 L�11 ) u
R(1; 2)�3;�3 H�(M; V 
 L�31 
 L�32 ) H�(M; V 
 L�11 
 L�12 ) lL(1; 1)5;0 H�(M; V 
 L51) H�(M; V 
 L1) e
R(3; 1)2;2 H�(M;V2 V 
 L21 
 L22) H�(M;V2 V ) (d
R)(1; 2)2;�3 H�(M;V2 V 
 L21 
 L�32 ) H�(M;V2 V 
 L�12 ) (l
L)(3; 2)�4;1 H�(M; L�41 
 L2) H�(M; L�11 ) -(3; 1)�4;�4 H�(M; L�41 
 L�42 ) H�(M; L�11 
 L�12 ) -(1; 1)�4;6 H�(M; L�41 
 L62) H�(M; L�11 
 L2) -(3; 2)0;�5 H�(M; L�52 ) H�(M; L�12 ) -Table 3.5: Massless spe
trum of H = SU(3) � SU(2) � U(1)X0 � U(1)Y 0 models.The last 
olumn gives the interpretation as SM parti
les with 
orre
t QY and QB�L.Bra
kets denote that only the hyper
harge of the state is the SM one.by tensor produ
ts of the line bundles. We will �nd a way how to avoid thisdrawba
k later on.The resulting tadpole 
an
ellation 
ondition reads
2(V )� 10 
21(L1)� 15 
21(L2) = 
2(T ) (3.177)for the type A bundle and�
h2(V )� 12 2Xi=1 
21(Li) = 
2(T ) (3.178)for the type B bundle. For generi
 �rst Chern 
lasses 
1(L1) and 
1(L2), the twoU(1) gauge symmetries are anomalous and gain a mass via the Green-S
hwarzme
hanism. Therefore, the generi
 unbroken gauge symmetry is SU(3)�SU(2).By 
omputing the various anomalies, one �nds that the linear 
ombinationU(1)f ' �1 U(1)X0 + �2 U(1)Y 0 (3.179)is anomaly-free pre
isely if the �rst Chern 
lasses of the two line bundles for theSU(4)� U(1)2 
ase satisfy the relation2�1 
1(L1) + 3�2 
1(L2) = 0 (3.180)82



and for the U(4)� U(1)2 
ase5�1 
1(L1) + (6�2 � �1) 
1(L2) = 0: (3.181)A detailed analysis of the relevant mass matrix shows that in these situations theanomaly-free U(1)f is also massless and therefore unbroken.In the SU(4)�U(1)2 
ase, for 
ertain values of the parameters �1; �2 some ofthe line bundles L�41 
 L2, L�41 
 L�42 , L�41 
 L62 and L�52 appearing in Table 3.5be
ome trivial and signal a non-abelian enhan
ement of the gauge symmetry. Forthe U(4)�U(1)2 bundles the situation is of 
ourse 
ompletely similar. The �ve21possible non-abelian enhan
ements of SU(3)�SU(2) are depi
ted in �gure (3.3).The easiest way to �nd the enhan
ed gauge groups is to 
ount the number ofadditional gauge bosons arising when one of the tensor produ
ts of line bundlesbe
omes trivial. For example, when L�41 
 L62 is trivial, i.e. 
1(L1) = 32
1(L2),we �nd two additional ve
tor multiplets (from (1; 1)�4;6 and its 
onjugate) whi
henhan
e the SU(3)�SU(2)�U(1) to SU(3)�SU(2)�SU(2). Likewise, one may
he
k that indeed the 
hiral spe
trum organizes into 
orresponding multiplets ofthe enhan
ed gauge group by 
omputing expli
itly the various Euler 
hara
tersof the representations. This reveals that not only the expe
ted SO(10) andSU(5) gauge groups are possible, but also other gauge groups 
ontaining SU(3)�SU(2)� U(1)2 as a subgroup.Another way to understand these gauge symmetry enhan
ements is by ob-serving that the linear relations (3.180), (3.181) for the two line bundles implya redu
tion of the stru
ture group to SU(4) � U(1), whi
h of 
ourse enhan
esthe 
ommutant. Its pre
ise form depends on how the U(1) is embedded intoSO(10), but su
h a group theoreti
 analysis is not ne
essary as one 
an read o�the enhan
ed gauge symmetries simply from Table 3.5.3.8.3 Bundles with stru
ture group SU(3)� U(1)3Let us explore further the model building possibilities several line bundles bringabout and 
onsider the embedding of a bundle of the typeW = V � L1 � L2 � L3 (3.182)with stru
ture group G = SU(3)�U(1)� U(1)�U(1). We thus break E8 downto H = SU(3)�SU(2)�U(1)Z�U(1)X0�U(1)Y 0 by repla
ing the internal SU(4)bundle of the previous example by an SU(3)� U(1)Z bundle. Alternatively, one
an again 
hoose the bundle W to be of the formW = V � L�11 � L�12 � L�13 (3.183)and the stru
ture group of V to be U(3). In this latter 
ase, the embedding ofthe three U(1) bundles into SU(6) is given byQ1 = (1; 1; 1;�3; 0; 0); Q2 = (1; 1; 1; 1;�4; 0); Q3 = (1; 1; 1; 1; 1;�5) (3.184)21In
luding the 
ase that all line bundles are trivial.83
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Figure 3.3: Gauge symmetry enhan
ement for bundles with stru
ture groupSU(4) � U(1)2. On generi
 lines through the origin the gauge symmetry is en-han
ed to SU(3) � SU(2) � U(1) while for the spe
i�
 values shown one getseven non-abelian enhan
ement. The left image shows the lo
i of non-abelian en-han
ement in the (
1(L1); 
1(L2))-plane for Type A bundles and the right imagefor Type B.with �Z;Z = 24, �X0;X0 = 40 and �Y ;Y = 60. This leads toQ = 0� 4 1 10 5 10 0 61A : (3.185)The massless spe
trum for both 
ases is 
ounted by the respe
tive 
ohomology
lasses in Table 3.6.The resulting tadpole 
an
ellation 
ondition reads
2(V )� 6 
21(L1)� 10 
21(L2)� 15 
21(L3) = 
2(T ) (3.186)for the SU(3)� U(1)3 bundle and�
h2(V )� 12 3Xi=1 
21(Li) = 
2(T ) (3.187)for the U(3)� U(1)3 bundle.For generi
 �rst Chern 
lasses 
1(L1), 
1(L2) and 
1(L3) the three U(1) gaugesymmetries are anomalous and gain a mass via the Green-S
hwarz me
hanism,resulting as before in SU(3) � SU(2) as the generi
 gauge symmetry. However,for parti
ular 
hoi
es of the bundle data we en
ounter a ri
h pattern of gaugeenhan
ements, as we will now dis
uss systemati
ally.84



The 
omputation of the various anomalies for the SU(3)�U(1)3 
ase revealsthat the linear 
ombinationU(1)f = �1 U(1)Z + �2 U(1)X0 + �3 U(1)Y 0 (3.188)is anomaly-free pre
isely if the �rst Chern 
lasses of the line bundles satisfy6�1 
1(L1) + 10�2 
1(L2) + 15�3 
1(L3) = 0: (3.189)The 
orresponding 
onstraint for the U(3)� U(1)3 
ase reads4�1
1(L1)� (�1 � 5�2) 
1(L2) + (6�3 + �1 � �2) 
1(L3) = 0: (3.190)For linearly independent �rst Chern 
lasses, the respe
tive equation 
annot besatis�ed other than trivially, of 
ourse, and we are left with gauge group SU(3)�SU(2). If, however, the 
1(Li) span a two- or one-dimensional subspa
e of their
ohomology 
lass, we 
an �nd { modulo res
aling { pre
isely one or, respe
tively,two non-anomalous U(1)f . These U(1) symmetries remain indeed massless.
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Figure 3.4: Gauge symmetry enhan
ement for SU(3) � U(1)3 bundles of TypeA. The pi
ture shows the proje
tion of the various planes de�ned in Table 3.7into the planes li � 
1(Li) = 1. At the point li = 0 for i = 1; 2; 3, the observablegauge group is E6.A 
loser look at Table 3.6 reveals a large number of possibilities for furthernon-abelian gauge enhan
ements for those 
hoi
es of 
1(L1); 
1(L2); 
1(L3) whereadditional gauge bosons in the H�(M;O) representation arise. In fa
t, one 
anverify that the spe
trum then organises itself into multiplets of the 
orrespondinggauge group, as listed in Table 3.7. We arrive at even higher rank gauge groups ifseveral of the states transform in the trivial bundle simultaneously. The resultingenhan
ement pattern is plotted s
hemati
ally in Figure 3.4 for the 
ase that V85



has stru
ture group SU(3). An analogous pattern 
an of 
ourse be derived forthe U(3) bundle 
onstru
tion.Independently of the 
on
rete bundle data, one 
an 
he
k that quite a fewvalues of �1; �2; �3 admit an interpretation of the 
orresponding abelian fa
tor,if massless, as the MSSM hyper
harge U(1)Y . We list them in Table 3.8 andTable 3.9 together with the respe
tive 
andidates for MSSM fermions exhibitingthe required SU(3) � SU(2) � U(1)Y (but not ne
essarily U(1)B�L) quantumnumbers.
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lass reps. 
ohom. (type A) 
ohom. (type B)D1 (1; 3; 2)0;�4;1 H�(M; L�42 
 L3) H�(M; L�12 )D2 (1; 3; 2)0;0;�5 H�(M; L�53 ) H�(M; L�13 )D3 (1; 3; 2)�3;1;1 H�(M; L�31 
 L2 
 L3) H�(M; L�11 )D4 (3; 3; 2)1;1;1 H�(M; V 
 L11 
 L2 
 L3) H�(M; V )B1 (1; 1; 2)�3;�3;�3 H�(M; L�31 
 L�32 
 L�33 ) H�(M; L�11 
 L�12 
 L�13 )B2 (3; 1; 2)�2;2;�3 H�(M; V 
 L�21 
 L22 
 L�33 ) H�(M; V 
 L�11 
 L�13 )B3 (3; 1; 2)�2;�2;3 H�(M; V 
 L�21 
 L�22 
 L33) H�(M; V 
 L�11 
 L�12 )B4 (3; 1; 2)1;�3;�3 H�(M; V 
 L11 
 L�32 
 L�33 ) H�(M; V 
 L�12 
 L�13 )C1 (1; 3; 1)0;�4;�4 H�(M; L�42 
 L�43 ) H�(M; L�12 
 L�13 )C2 (1; 3; 1)�3;�3;2 H�(M; L�31 
 L�32 
 L23) H�(M; L�11 
 L�12 )C3 (1; 3; 1)�3;1;�4 H�(M; L�31 
 L2 
 L�43 ) H�(M; L�11 
 L�13 )C4 (3; 3; 1)�2;2;2 H�(M; V 
 L�21 
 L22 
 L23) H�(M; V 
 L�11 )C5 (3; 3; 1)2;2;2 H�(M;V2 V 
 L21 
 L22 
 L23) H�(M;V2 V )C6 (3; 3; 1)1;�3;2 H�(M; V 
 L11 
 L�32 
 L23) H�(M; V 
 L�12 )C7 (3; 3; 1)1;1;�4 H�(M; V 
 L11 
 L2 
 L�43 ) H�(M; V 
 L�13 )A1 (1; 1; 1)0;�4;6 H�(M; L�42 
 L63) H�(M; L�12 
 L3)A2 (1; 1; 1)�3;5;0 H�(M; L�31 
 L52) H�(M; L�11 
 L2)A3 (1; 1; 1)�3;1;6 H�(M; L�31 
 L2 
 L63) H�(M; L�11 
 L3)A4 (3; 1; 1)1;5;0 H�(M; V 
 L11 
 L52) H�(M; V 
 L2)A5 (3; 1; 1)1;1;6 H�(M; V 
 L11 
 L2 
 L63) H�(M; V 
 L3)A6 (3; 1; 1)4;0;0 H�(M; V 
 L41) H�(M; V 
 L1)Table 3.6: Massless spe
trum of H = SU(3)� SU(2)� U(1)3 models.
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rep. Type A Type B gauge groupA1 (1; 1; 1)0;�4;6 �2l2 + 3l3 = 0 �l2 + l3 = 0 SU(3)� SU(2)2A2 (1; 1; 1)�3;5;0 3l1 � 5l2 = 0 l1 � l2 = 0 SU(3)� SU(2)2A3 (1; 1; 1)�3;1;6 3l1 � l2 � 6l3 = 0 l1 � l3 = 0 SU(3)� SU(2)2B1 (1; 1; 2)�3;�3;�3 l1 + l2 + l3 = 0 l1 + l2 + l3 = 0 SU(3)� SU(3)C1 (1; 3; 1)0;�4;�4 l2 + l3 = 0 l2 + l3 = 0 SU(4)� SU(2)C2 (1; 3; 1)�3;�3;�2 3l1 + 2l2 + 3l3 = 0 l1 + l2 = 0 SU(4)� SU(2)C3 (1; 3; 1)�3;1;�4 3l1 � l2 + 4l3 = 0 l1 + l3 = 0 SU(4)� SU(2)D1 (1; 3; 2)0;�4;1 �4l2 + l3 = 0 l2 = 0 SU(5)D2 (1; 3; 2)0;0;�5 l3 = 0 l3 = 0 SU(5)D3 (1; 3; 2)�3;1;1 3l1 � l2 � l3 = 0 l1 = 0 SU(5)Table 3.7: Generi
 enhan
ement of SU(3)�SU(2) by additional non-
hiral degrees offreedom for both the Type A and Type B embedding. We use the notation li = 
1(Li).
part. 
lass 0� 12110� 115 1A 0�� 514114�1321 1A 0� 32� 110115 1A 0� �123330� 115 1A 0� 121213 1A 0� 12� 110� 715 1AQL D 1; 2; 4 1; 3 1 2; 3 4 4UR C 2; 3; 4 4; 6 6; 7 4; 7 4; 7 4; 6DR C 1; 5; 6; 7 2 1 3 1; 2; 5 1; 3; 5L B 1; 2; 3; 4 3 4 2 1; 3; 4 1; 2; 4ER A 2; 3; 6 4; 6 4; 5 5; 6 4; 5; 6 4; 5; 6�R A 1; 4; 5 2 1 3 3 1Table 3.8: MSSM parti
le 
andidates for 
hoi
es of (�1; �2; �3), part I. The labels ofthe representations refer to the position in the respe
tive se
tions of Table 3.6 withbars denoting hermitian 
onjugation.
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part. 
lass 0��12�1213 1A 0� �14320� 415 1A 0� �115� 715 1A 0�� 112760� 115 1A 0� �135� 115 1A 0� �12710� 715 1AQL D 4 1; 3 1 2; 3 2 3UR C 6; 7 5 6 5 7 4DR C 2; 3; 5 2; 7 4; 7 3; 6 6; 4 6; 7L B 1; 2; 3 2; 4 3; 4 3; 4 2; 4 2; 3ER A 4; 5; 6 5 1; 2; 4; 5 4 1; 3; 5 2; 3; 6�R A 1 2 3 3 2 1Table 3.9: MSSM parti
le 
andidates for 
hoi
es of (�1; �2; �3), part II.
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Chapter 4
The SO(32) heteroti
 string withunitary bundles and �ve-branes
In view of the ri
h stru
ture we have en
ountered in the E8 � E8 string withunitary bundles, it is natural to try and follow a similar strategy in the heteroti
theory with gauge group SO(32). The di�eren
es in the perturbative se
tor willbe entirely due to the pe
uliarities of SO(32) as opposed to E8 � E8. We willreview momentarily that SO(32) possesses a very natural embedding of gaugebundles with unitary stru
ture group. In fa
t, its de
omposition into produ
tsof U(N) subgroups will reprodu
e exa
tly the massless spe
trum we are familiarwith in the S-dual Type I framework with magnetized D9-branes. The dynami
sof �ve-branes di�ers 
onsiderably from the E8�E8 
ase in that now the �ve-branesalso 
ontribute 
hiral fermions and additional symple
ti
 gauge fa
tors. Conse-quently, the Green-S
hwarz anomaly 
an
ellation pattern has to be re
onsidered.It hinges, as far as the �ve-branes are 
on
erned, on an anomalous 
oupling ofthe heteroti
 �ve-brane to the bulk, analogously to the anomaly in
ow argumentsfor D-branes. As an important aspe
t we will 
ompare the low-energy e�e
tivea
tion, notably the Fayet-Iliopoulos terms and the resulting one-loop 
orre
tedDonaldson-Uhlenbe
k-Yau equation, to known results on the Type I/ Type IIBside. This will serve as eviden
e for our interpretation of the 
orre
tion termsin the DUY 
onstraint as the four-dimensional shadow of a modi�ed stability
ondition.Sin
e, despite all the di�eren
es in the details, the general strategy is very
lose to the pro
edure in the E8 � E8 
ase, we will often be rather brief as farthe explanation of the 
on
eptual ba
kground is 
on
erned in order to avoidredundan
ies. In those 
ases, the required material has already been 
overed in
hapter 3 to whi
h we refer for additional details. The 
ontents of this 
hapter isbased on [129{131℄. 91



4.1 A 
lass of SO(32) heteroti
 string va
uaWe 
ompa
tify the SO(32) heteroti
 string on a Calabi-Yau manifold M and
onsider de
ompositions of the gauge group SO(32) into its unitary subgroups.Our strategy is to invoke the Whitney sum of internal ve
tor bundlesW = KMi=1 Vi: (4.1)Ea
h Vi denotes a rank ni unitary bundle, i.e.it has stru
ture group U(ni). Thegroup theoreti
 embedding is again a

omplished in a two-step pro
ess, similarlyto the E8�E8 
onstru
tion. The �rst step involves the natural U(Mi) subgroupsof SO(32) via the embeddingU(Mi) � SO(32) �! SO(32� 2Mi)� U(1)i: (4.2)Into this U(Mi), we diagonally embed the stru
ture group U(ni) of the bundleVi su
h that Mi = niNi, i.e.U(ni) � U(niNi) �! U(Ni): (4.3)The emergen
e of the non-abelian group U(Ni) 
an be understood as the non-abelian enhan
ement of the naive 
ommutant U(1)Ni . We just observed similarphenomena in the E8 � E8 theory, where non-abelian enhan
ement was tied tothe degenera
y of some of the internal bundles.In all, this a

omplishes the embeddingKYi=1 U(ni) � KYi=1 U(niNi) � SO(32) (4.4)and the resulting observable non-abelian gauge group isH = SO(2M)� KYi=1 U(Ni) with M + KXi=1 Mi = 16: (4.5)As we will dis
uss, maximally only the anomaly-free part of the U(1)K gaugefa
tors remains in the low energy gauge group - a feature whi
h we are by nowwell familiar with from the dis
ussion of the E8 � E8 theory.In addition to this perturbative se
tor we take into a

ount the possible 
on-tribution from heteroti
 �ve-branes [83, 132{135℄, whi
h we will denote as H5-branes to distinguish them from their 
ousins in the E8 �E8 theory. In 
ontrastto the situation en
ountered there, the in
lusion of H5-branes does a�e
t alsothe gauge se
tor of the 
ompa
ti�
ations. We noted already in se
tion (2.1) thatthe worldvolume of an SO(32) H5-brane a

ommodates a massless gauge �eld.To be more pre
ise, let us re
all from se
tion (2.3) that for supersymmetry ea
h92



H5-brane has to wrap an (in general redu
ible) holomorphi
 
y
le 
 onM. Thismeans that the asso
iated 
ohomology 
lass [b
℄ 2 H2(M; 2Z) is e�e
tive, i.e.lies inside the Mori 
one of M. If 
 is irredu
ible, this really 
orresponds to asingle H5-brane and gives rise to an additional Sp(2) gauge group in the e�e
tivea
tion. The appearan
e of these symple
ti
 gauge degrees of freedom was derivedin [83℄ by virtue of S-duality between the H5-brane and the D5-brane in Type Itheory. The latter, in turn, is known to 
arry symple
ti
 gauge groups [136℄. If
 is redu
ible, we de
ompose it into the irredu
ible generators of the Mori 
one
a, 
 = PLa=1 Na 
a; Na 2 Z+0 . Due to the multiple wrapping around ea
h irre-du
ible 
urve 
a, the additional gauge group in the e�e
tive a
tion gets enhan
edto Qa Sp(2Na). The de
omposition into generators may not be unique and thegauge group may therefore vary in the di�erent regions of the asso
iated modulispa
e. However, its total rank and the total number of 
hiral degrees of freedom
harged under the symple
ti
 groups are only dependent on 
, of 
ourse.By heteroti
-Type I duality, one 
an infer that the e�e
tive low energy a
tionon the H5-branes has to have the usual Chern-Simons formSH5a = ��5 ZR1;3�
a 1Xn=0B(4n+2) ^ �Na + `4s2(2�)2 trSp(2Na)F 2a� ^ qÂ(T
a)qÂ(N
a) ; (4.6)with the H5-brane tension �5 = 1(2�)5 (�0)3 . T
a and N
a denote the tangent bundleand the normal bundle, respe
tively, of the 2-
y
le 
a, whi
h for 
on
reteness wetake to be irredu
ible from now on and wrapped by a sta
k of Na H5-branes. The
urvature o

urring in the de�nition of the Â- genus Â(M) = 1+ 148 1(2�)2 trR2+� � �is de�ned as R = �ip2 `2sR (`s � 2�p�0 as before). This type of anomalous
oupling of the �ve-brane to the bulk is required in order to 
an
el the gravita-tional anomalies on the SO(32) H5-brane world-volume. Stri
tly speaking, thewell-known anomaly-in
ow arguments leading to (4.6) were applied in the S-dualType I framework [137℄, but the stru
ture of gravitational anomalies is not af-fe
ted by S-duality and therefore the full Wess-Zumino 
oupling is given by (4.6)also on the heteroti
 side.1 The sign of the Chern-Simons a
tion is di
tated by su-persymmetry: Jumping ahead a little, we state that the 
hoi
e in (4.6) guaranteesthat the real part of the gauge kineti
 fun
tion for the Sp(2Na)-group is indeedpositive, as we demonstrate in se
tion 4.5. Note that (4.6) implies both the usualmagneti
 
oupling to B(6) and a 
oupling to B(2). The latter will be essentialin se
tion (4.4) when it 
omes to 
an
elling the mixed abelian-gravitational andabelian-symple
ti
 anomalies by the generalized Green-S
hwarz me
hanism.For our up
oming purposes it is useful to re
all the somewhat 
omplementaryinterpretation of the SO(32) �ve-brane as an instanton of zero size [83℄. In1The normalisations of R and of the term involving trSp(2Na)F 2a di�er from what one mightnaively expe
t in view of the CS a
tion of a D5-brane in Type II B by a fa
tor of p2 and 2,respe
tively. This is a 
onsequen
e of a 
orresponding rede�nition of �0 in the 
ontext of theS-duality transformation to be dis
ussed further in se
tion 4.7.93



intuitive terms, we 
an think of it as a gauge instanton ba
kground whi
h, unlikethe holomorphi
 bundle W , is not spread out along the entire internal manifold,but whi
h has support only on the two-
y
le 
a. Mathemati
ally, su
h an obje
tis de�ned as the skys
raper sheaf Oj
a, whi
h is the restri
tion of the trivial sheafonM to 
a. Being a 
oherent sheaf, Oj
a admits a lo
ally free resolution, givenby an appropriate Koszul sequen
e. For details on Koszul sequen
es we referto the mathemati
al literature, e.g. [138, 139℄. SuÆ
e it here to re
all that thegeneral Koszul sequen
e is an exa
t sequen
e whi
h provides the resolution forthe restri
tion of a ve
tor bundle to some 
odimension k hypersurfa
e Y as [30℄0! V 
 ^kN� ! V 
 ^k�1N� ! : : : V 
N� ! V ! V jY ! 0; (4.7)where the hypersurfa
e Y emerges as the zero lo
us of a holomorphi
 se
tion ofN . This determines the total Chern 
hara
ter of V jY as
h(V jY ) = 
h(V )� 
h(V 
N�) + 
h(V 
 ^2N�) + : : :+ (�1)k
h(V 
 ^kN�):(4.8)Heuristi
ally, we 
an think of 
a as the 
omplete interse
tion of two generi
 di-visorsD1 andD2, 
a = D1\D2. This means that the Poin
ar�e dual four-form, 
a,is given by the 
ohomologi
al interse
tion 
a = D1 �D2. In this 
ase we 
an takefor the rank two holomorphi
 bundle N simply the dire
t sum O(D1)� O(D2).Re
all that O(D1) is the line bundle onM with �rst Chern 
lass 
1(O(D1)) = D1.Furthermore ^2N = O(D1+D2), as follows already from the 
omputation of theChern 
lasses (see also appendix A.1). In all, we take as the de�ning sequen
efor O(
a)0! O(�D1 �D2)! O(�D1)�O(�D2)! OM ! Oj
a ! 0: (4.9)It follows from equation (4.8) that the Chern 
hara
ters of the sheaf Oj
a 
anreadily be 
omputed as 
h(Oj
a) = (0; 0; D1 � D2; 0). In deriving this we haveassumed that the divisors D1 and D2 are in generi
 position so that in parti
ularD1 �D1 �D2 = 0 = D2 �D2 �D1.Due to the overall minus sign in the Chern-Simons 
oupling of the �ve-braneto the bulk, we have to in
lude an extra sign into the Chern 
hara
ter. As a
on
lusion, the �ve-brane has as its de�ning Chern 
hara
ter
h(Oj
a) = (0; 0;�
a; 0): (4.10)This is pre
isely what we expe
t from its interpretation as an instanton of zerosize: its "instanton number", i.e. 
2(Oj
a), is given simply by the e�e
tive 
lassPoin
ar�e dual to the 
lass of the two-
y
le it wraps.94



4.2 The massless spe
trumThe perturbative spe
trum 
an be determined from the de
omposition of theadjoint representation of SO(32) into representations of SO(2M)�Qi U(Ni) �U(ni),496! 0BBBBB� (AntiSO(2M); 1; 1)PKj=1(1;AdjU(Nj);AdjU(nj))PKj=1(1;AntiU(Nj);SymU(nj)) + (1;SymU(Nj);AntiU(nj)) + h:
:Pi<j(1;Ni;Nj;ni;nj) + (1;Ni;Nj;ni;nj) + h:
:PKj=1(2M ;Nj;nj) + h:
:
1CCCCCA :The internal 
ohomology groups 
ounting the various states are listed in ta-ble 4.1. It is most striking that we en
ounter the same massless spe
trum as forthe perturbative Type I string on a smooth Calabi-Yau spa
e with magnetizedB-type D9-branes2. A prominent role is played by the 
hiral matter in the bifun-damental representations of pairs of observable U(Ni) fa
tors. Correspondingly,in the framework of interse
ting D-branes T-dual to the Type I string with mag-netized D9-branes, 
hiral matter is lo
alized at the interse
tion of two sta
ks ofD6-branes and likewise transforms in the bifundamental of the two gauge groupsrealized on the respe
tive worldvolumes. Apparently, on the S-dual heteroti
 side,this typi
al stru
ture emerges automati
ally due to the natural U(N) subgroupsof SO(32) and the asso
iated de
omposition of the adjoint representation. It willtherefore 
ome as no surprise that the ar
hite
ture of the 
on
rete models wewill present in 
hapter 6 is very reminis
ent of the multiple sta
k 
onstru
tionsknown from the interse
ting brane pi
ture.The appearan
e of massless states in the adjoint of U(Ni) and 
ounted byH�(M; Vi
V �i ) deserves some further 
omments. The element3 inH0(M; Vi
V �i )
ounts the ve
tor multiplet of the U(Ni) group whi
h 
ontains its gauge bosons.The elements in H1(M; Vi 
 V �i ), by 
ontrast, 
orrespond to the moduli �eldsasso
iated with the bundle deformations. In the spe
ial 
ase that the internalbundle is abelian, Vi 
 V �i = O and we �nd h1(M;O) massless 
hiral multipletstransforming in the adjoint representation of a U(Ni) observable gauge fa
tor,just as in the Type I framework and for interse
ting branes. On genuine Calabi-Yau manifolds, there do not exist any homologi
ally non-trivial one-
y
les, of
ourse, and this �ts with the fa
t that on a Calabi-Yau a line bundle has no
ontinuous moduli - it is de�ned on
e and for all by its �rst Chern 
lass as anelement in H2(M;Z). On the torus, however, one has H1(T 6;O) = 3, andthe 
omplex adjoint s
alars 
orrespond to the 
ontinuous Wilson lines on Mwhi
h parameterise the 
ontinuous deformations of a line bundle respe
tively the2Note, however, the re
ent investigation [140℄ of toroidal orbifold 
ompa
ti�
ations of theSO(32) heteroti
 string where models are found featuring e.g. the 16 spinor representation.Su
h spinor representations are not present in our SO(32) heteroti
 
ontext. We stress thatour results are valid for the 
ase of smooth ba
kground manifolds.3Re
all that due to stability of V , H0(M; Vi 
 V �i ) = 1.95



deformations of the interse
ting branes. Analogously, turning on non-abelianbundles U(ni) on the Type I D9-branes gives rise to H1(M; Vi 
 V �i ) moduli
orresponding to the deformations of the U(ni) bundle.reps. H =QKi=1 SU(Ni)� U(1)i � SO(2M)�QLa=1 Sp(2Na)(AdjU(Ni))0(i) H�(M; Vi 
 V �i )(SymU(Ni))2(i) H�(M;V2 Vi)(AntiU(Ni))2(i) H�(M;N2s Vi)(Ni;Nj)1(i);1(j) H�(M; Vi 
 Vj)(Ni;Nj)1(i);�1(j) H�(M; Vi 
 V �j )(AdjSO(2M)) H�(M;O)(2M;Ni)1(i) H�(M; Vi)(AntiSp(2Na)) Ext�M(Oj
a;Oj
a)(Ni; 2Na)1(i) Ext�M(Vi;Oj
a)(2Na; 2Nb) Ext�M(Oj
a;Oj
b)Table 4.1: Massless spe
trum with the stru
ture group taken to be G = QKi=1 U(ni).The subs
ripts in the �rst 
olumn denote the 
harges under de
omposition U(Ni) !SU(Ni)� U(1)i.Additional 
hiral matter appears from the non-perturbative H5-branes (seethe three last lines of table 4.1), whi
h is absent for the M5-branes in E8 � E8heteroti
 string 
ompa
ti�
ations [110℄. In the latter 
ase this is in a

ord withthe possibility of moving the �ve-branes into the eleven-dimensional bulk in theHorava-Witten theory. For the SO(32) theory, by 
ontrast, the des
ription of theH5-brane as the skys
raper sheaf Oj
a makes it 
lear that the brane should betreated on the same footing as the smooth gauge instantons given by the bundleW , and this analogy must be taken even more seriously when it 
omes to thezero modes of the Dira
 operator.The matter arising in the H5-brane se
tor is des
ribed by appropriate exten-sion groups. Following for instan
e [141℄, the global extension groups Ext�M(E ;F)of two 
oherent sheaves on M give the sheaf theoreti
 generalisation of the 
o-homology groups H�(M; E 
 F�) for ve
tor bundles on smooth manifolds. The
ohomology groups in table 4.1 
ounting the zero modes in the bifundamental ofone Sp(2Na) and one U(Ni) fa
tor are therefore the straightforward sheaf the-oreti
 generalisation of the Dolbeault 
ohomology groups in 
ase only smoothve
tor bundles are involved. 96



In parti
ular, it is shown in [141℄ thatExt1M(Oj
a;Oj
a) = H1(
a;O) +H0(
a;N
a); (4.11)where the �rst term 
ontains the possible Wilson line moduli on the H5-braneand the se
ond term the geometri
 deformations of the two-
y
les 
a � M. Allthese 
hiral supermultiplets transform in the antisymmetri
 representation of thesymple
ti
 gauge fa
tor.The 
hirality index of the perturbative spe
trum 
an be determined from theEuler 
hara
teristi
s (2.17) of the various bundles Ui o

urring in the de
ompo-sition of SO(32). This is true also for the matter arising from the H5-branesor rather the 
oherent sheaves Oj
a. Namely, for general 
oherent sheaves therighthand side in (2.17) measures the alternating sum of the dimensions of theglobal extensions. It follows that in the non-perturbative se
tor, the H5-branesgive rise to 
hiral matter in the bifundamental (Ni; 2Na)1(i), whi
h is 
ounted bythe index �(M; Vi
Oj�
a) = � ZM 
1(Vi) ^ 
a: (4.12)The righthand side of (4.12) is an immediate 
onsequen
e of the formula forthe Euler 
hara
teristi
 (2.17) on
e we remember that with the help of (4.10)
h3(Vi
Oj�
a) = �
1(Vi) ^ 
a and 
h1((Vi
Oj�
a) = 0. In agreement with theabsen
e of 
hiral matter for symple
ti
 gauge groups only, for two H5-braneswrapping 2-
y
les 
a and 
b one gets �(M;Oj
a 
Oj�
b) = 0.For later use we point out that the requisite formulae to 
ompute the Euler
hara
teristi
s of produ
ts of bundles Vi 
 Vj and the (anti)-symmetri
 produ
tbundle, V2 V and N2s V respe
tively, appearing in Table (4.1) 
an be found inappendix A.1.4.3 Global 
onsisten
y 
onditionsWe 
an pro
eed to a detailed analysis of the topologi
al 
onsisten
y 
onditionsour internal bundles have to satisfy.In order to evaluate the tadpole 
an
ellation 
ondition for our spe
trum weneed, as in the E8 � E8 
ase, to express the formal tra
e over the internal Yang-Mills �eld strength in (2.24) by the topologi
al data of W and the manifoldM.With the help of table 4.1 we 
an 
onvin
e ourselves thattrF 2 = 130 Xx 2(2�)2 (
h2(Ux)� dim(Rx)) == 4(2�)2 Xi Ni 
h2(Vi): (4.13)For later use we note that similar tra
e identities of this type are 
olle
ted inappendix A.3. 97



Consequently, the tadpole 
ondition takes the simple formKXi=1 Ni 
h2(Vi)� LXa=1 Na
a = �
2(T ); (4.14)to be satis�ed in 
ohomology.In the presen
e of symple
ti
 gauge group fa
tors due to the H5-branes weneed to worry about potential global Sp(2Na) anomalies. As we know from [142℄this Witten anomaly is absent pre
isely if the number of 
hiral fermions in thefundamental of the Sp(2Na) group is even. Clearly, for a sta
k of Na �ve-braneswrapping the 
y
le 
a, the 
hiral index of the Sp(2Na) is given byindexSp(2Na) = �Xi Ni ZM 
1(Vi) ^ 
a = � ZM 
1(W ) ^ 
a: (4.15)So apparently, the K-theory 
ondition
1(W ) =Xi Ni 
1(Vi) 2 H2(M; 2Z) (4.16)ensures the absen
e of a Witten anomaly for every probe �ve-brane and has there-fore the �eld theoreti
 interpretation as a global 
onsisten
y 
ondition for everytopologi
al se
tor of the theory. Re
all from se
tion 2.3 that from the point ofview of the underlying (0; 2) model, the rationale behind (4.16) is a
tually therequirement of absen
e of worldsheet anomalies [94,95℄. The 
onne
tion betweenthese two di�erent arguments leading to (4.16) is 
omparable to the situation inType I string theory, where the analogue of (4.16) 
orresponds, mi
ros
opi
ally,to the torsion K-theory 
onstraint for the non-BPS D7-brane [96℄. Alternatively,this 
ondition 
an likewise be derived by requiring the absen
e of global Wit-ten anomalies on D5-branes for every possible probe brane and not just for the
on
rete va
uum under 
onsideration.4.4 Anomaly 
an
ellation4.4.1 Field theoreti
 anomaliesNow let us dis
uss the resulting anomalies. The expressions for the �eld theoreti
anomalies follow immediately from the 
hiral spe
trum in table (4.1). For the
ubi
 non-abelian anomalies we obtain4 fromASU(Ni)3 � (Ni � 4)�(N2s Vi)) + (Ni + 4)�(V2 Vi)) + 2M �(Vi) (4.17)+Xj 6=i Nj ��(Vi 
 Vj) + �(Vi 
 V �j )�+Xa 2Na �(Vi
Oj�
a)4This uses on
e again the tra
e identities listed in appendix A.2.98



the expression in terms of Chern 
hara
ters,ASU(Ni)3 � 2 ZM 
1(Vi)� Tad: (4.18)Here Tad = 
2(T ) + KXj=1 Nj 
h2(Vj)�Xa Na
a = 0 (4.19)in 
ohomology thanks to tadpole 
an
ellation (4.14). Thus in 
ontrast to theE8 � E8 examples, the 
ubi
 non-abelian anomalies vanish only if the Bian
hiidentity for H is satis�ed [107℄.The expli
it expressions for all mixed and 
ubi
 abelian anomalies 
an readilybe 
omputed along the same lines. Here we only state the result in terms of thevarious Chern 
hara
ters up to tadpole 
an
ellationAU(1)i�SU(Nj)2 � 2Ni ZM nj 
h3(Vi) + 2Ni ZM 
1(Vi) ^ �
h2(Vj) + nj12
2(T )�;AU(1)i�U(1)2j � Nj AU(1)i�SU(Nj)2 ;AU(1)i�G2�� � 12 ZMNi 
1(Vi) 
2(T ) + 24 ZMNi 
h3(Vi);AU(1)i�SO(2M)2 � 112 ZMNi 
1(Vi) 
2(T ) + ZMNi 
h3(Vi);AU(1)i�Sp(2Na)2 � �Ni ZM 
1(Vi) ^ 
 (4.20)For the �rst two anomalies we assumed that i 6= j, with straightforwardgeneralisations.4.4.2 Green S
hwarz me
hanism in
luding �ve-branesThe Green-S
hwarz me
hanism 
an
elling the 
ubi
 abelian and mixed abeliananomalies works in prin
iple in a manner very similar to what we en
ounteredin the 
ontext of the E8 � E8 string with U(N) bundles. The details of thefour-dimensional 
ounter terms, however, are quite di�erent for the following tworeasons: Firstly SO(32) possesses, unlike E8 � E8, an independent fourth-orderCasimir. Se
ondly the �ve-brane part in the anomaly 
an
ellation pattern isquite di�erent in that the �ve-branes do not only a�e
t the tadpole 
onditionbut also yield expli
it 
ontributions to the anomalies themselves via the Sp(2Na)valued 
hiral fermions. At the same time, we en
ounter no self-dual tensor �eldson their world-volume whi
h, in the 
ontext of the E8 string, lead to new vertexand mass terms. There are, however, �ve-brane dependent vertex 
ouplings, butno su
h mass terms, emerging from the Wess-Zumino 
oupling (4.6) to the bulktwo-form B(2). 99



Sin
e the knowledge of the dimensionally redu
ed Green-S
hwarz and massterms bore su
h ri
h fruit in the previous 
ase and was essential far beyondthe issue of anomaly 
an
ellation, we will now present the resulting expressions,sti
king 
losely to the philosophy and the notation of se
tion (3.4.2).In the SO(32) 
ase, dimensional redu
tion of the GS 
ounter term (2.6) and(2.7) to four dimensions gives, upon splitting again the gauge �eld into a four-dimensional part F and the internal part F ,SGS = 1(2�)3`2s Z B(2) ^ 1144Tr(FF 3) (4.21)� 1(2�)3`2s Z B(2) ^ 12880Tr(FF ) ^ � 115TrF 2 + trR2� (4.22)+ 1(2�)3`2s Z B(2) ^ � 196Tr(F 2F 2)� 143200[Tr(FF )℄2� (4.23)� 1(2�)3`2s Z B(2) ^ 15760Tr(F 2) ^ � 115TrF 2 + trR2� (4.24)+ 1(2�)3`2s Z B(2) ^ 1384trR2 ^ �trR2 � 115TrF 2� : (4.25)The spe
i�
 prefa
tors of the tra
es follow from the general tra
e identities listedin appendix A.2.The expressions (4.21), (4.22) are mass terms for the U(1) gauge fa
tors.(4.23) and (4.24) lead to vertex 
ouplings of the axions with two gauge �elds and�nally the expression (4.25) gives rise to vertex 
ouplings of the axions and twogravitons.There are, of 
ourse, additional mass terms and vertex 
ouplings originatingin the 
ross kineti
 term for H (3.61) in the ten-dimensional e�e
tive a
tion aswell as vertex 
ouplings from the H5-brane a
tion (4.6).The tra
es o

urring in the kineti
 and 
ounter terms are evaluated for thespe
trum in table 4.1 in appendix A.3. With these results at hand, it is a simpletask to 
olle
t the expli
it mass and GS terms.From (4.21) and (4.22) we �nd that the four-dimensional two-form �eld b(2)0is rendered massive by the 
oupling to the abelian gauge �elds given byS0mass = 13(2�)5�0 KXi=1 Ni ZR1;3 b(2)0 ^ fi ZX�trU(ni)F 3 � 116trU(ni)F ^ trR2�:(4.26)In addition, (3.61) yields mass terms for the internal two-forms b(2)k ,Smass = 1(2�)2�0 KXi=1 h11Xk=1Ni ZR1;3(b(2)k ^ fi) [trU(ni)F ℄k: (4.27)100



The GS 
ounter terms (4.23) and (4.24) provide the anomalous 
ouplings of theaxions to the external gauge �elds and 
urvature,SGS = 12� h11Xk=1 ZR1;3 b(0)k ^ n KXi=1 �trSU(Ni)F 2 +Ni(fi)2� h12 trU(ni)F 2 � ni96trR2ik� 1192trSO(2M)F 2 [trR2℄k+ 1384trR2htrR2 � 4 KXi=1 NitrU(ni)F 2iko: (4.28)These are supplemented by 
ouplings to the symple
ti
 gauge �elds and the
urvature present in the H5-brane a
tion (4.6),SH5GS = � 14� h11Xk=1 ZR1;3 [
a℄k b(0)k ^ �trSp(2Na)F 2a � Na24 trR2� (4.29)with [
a℄k = R
a !k.Last but not least, from the kineti
 term (3.61) for H we inherit the axio-dilaton vertexS0GS = 18� ZR1;3 b(0)0 ^ �2 KXi=1 ni �trSU(Ni)F 2 +Ni(fi)2�+ trSO(2M)F 2 � trR2�:We 
an now follow the steps spelled out in se
tion (3.4.2) and derive thevarious anomaly six-forms. For the mixed U(1)i�SU(Nj) anomaly, for instan
e,we �ndAU(1)i�SU(Nj)2 � 16(2�)6�0 fi ^ trSU(Nj)F 2ZM�njtrU(ni)F 3 + 3 trU(ni)F ^ trU(nj)F 2 � nj8 trU(ni)F ^ trR2�;(4.30)whi
h is just tailor-made to 
an
el the mixed U(1)i � SU(Nj)2 anomaly. The
an
ellation pattern for the remaining abelian-non-abelian, 
ubi
 abelian andmixed abelian-gravitational anomalies follows the same lines. Let us just list theresulting anomaly six-formsAU(1)i�SO2 � 112(2�)6�0 fi ^ trSO(2M)F 2 ZM�trU(ni)F 3 � 18trU(ni)F ^ trR2�;AU(1)i�G2�� � � 112(2�)6�0fi ^ trR2 ZM�trU(ni)F 3 � 116trU(ni)F ^ trR2�;AU(1)i�Sp(2Na) � � 12(2�)4�0 fi ^ trSO(2Na)F 2 ZM trF ^ 
a;101



AU(1)i�U(1)2j � 16(2�)6�0fi ^ f 2j ZM�Nj (nj trU(ni)F 3i � nj8 trU(ni)F ^ trR2) +trU(ni)F ^ trU(nj)F 2� (4.31)and point out that they are in perfe
t agreement with the �eld theoreti
 anomaliesgiven in the previous se
tion. As usual, the anomalous U(1)s are rendered massiveand therefore remain in the low-energy domain as perturbative global symmetries.The situation parallels that in Type I [109℄ and heteroti
 E8 � E8-theory, wherethe number of massive abelian fa
tors is at least as large as that of the anomalousones and in general given by the rank of the mass matrixMki, as de�ned in (3.39),Mki = ( 1(2�)2�0 (trU(ni)F )k for k 2 f1; : : : ; h11g13(2�)5�0 RM�trU(ni)F 3 � 116trU(ni)F ^ trR2� for k = 0. (4.32)We stress on
e more that in 
ontrast to the M5-brane of the E8 � E8 theory,the H5-branes 
learly do not 
ontribute any mass terms due to the absen
e ofadditional tensor �elds emerging from their worldvolume.4.5 Non-universal gauge kineti
 fun
tionsLet us now derive the gauge kineti
 fun
tions [80, 116, 118, 119℄ as introdu
ed inse
tion (3.5), to whi
h we refer for further 
on
eptual details. With the de�nitionof the 
omplexi�ed dilaton (3.96) and K�ahler moduli (3.97) the full gauge kineti
fun
tions for the SU(Ni), U(1)i and SO(2M) groups 
an be read o� from theirimaginary parts in (4.28) and (4.30) to befSU(Ni) = ni S + h11Xk=1 Tk �trU(ni)(F 2)k � ni48(trR2)k�;fU(1)i = 12 NifSU(Ni); (4.33)fSO(2M) = 12S � 196 h11Xk=1 Tk (trR2)k:As in the E8 �E8 
ase the relative normalisations for the di�erent gauge groupsare a 
onsequen
e of the tra
e identities, see in this 
ase appendix A.3. Again,the abelian gauge 
ouplings re
eive an extra fa
tor of 12 as 
ompared to the non-abelian ones due to the 
anoni
al normalisation of the non-abelian se
ond orderCasimir. In addition, the gauge kineti
 fun
tions for the symple
ti
 fa
tors arefSp(2Na) = 12�`2s Z
a (J � iB) ; (4.34)as we �nd from (4.29). 102



Note that the real part of the gauge kineti
 fun
tion are positive de�niteby de�nition. Therefore, as for the E8 � E8 theory, requiring positivity of theexpressions (4.33) in the perturbative regime, gs � 1 and internal radii mu
hbigger than the string s
ale, imposes extra 
onditions on the allowed bundles.Con
retely, reality of the one-loop 
orre
ted SU(Ni) and U(1)i gauge 
ouplingsis guaranteed provided that in this regimeni3! ZX J ^ J ^ J � 2 g2s `4s ZX J ^ �
h2(Vi) + ni24 
2(T )� > 0: (4.35)The analogous 
onstraint for the SO(2M) group, where the term 
h(Vi) isabsent, is normally trivially satis�ed, sin
e for all manifolds we will en
ounterRM J ^ 
2(T ) < 0. The real part of (4.34) is always positive as long as the K�ahlerform J lies in the K�ahler 
one. This is a 
onsequen
e of the minus sign in theWess-Zumino 
oupling (4.6) and a
tually serves as its justi�
ation.Away from the small 
oupling and large radii limit one expe
ts both world-sheet and stringy instanton 
orre
tions to the gauge kineti
 fun
tions [118℄.In 
ontrast to the E8 � E8 
onstru
tion, no o�-diagonal 
ouplings amongabelian fa
tors o

ur. Even more strikingly, the tree-level and one-loop 
orre
tednon-abelian and abelian gauge 
ouplings of an observable SU(Ni) and U(1)i gaugefa
tor only depend on the internal gauge 
ux in the 
orresponding U(ni). Sin
ewe used the same de
omposition of SO(32) that naturally appears for interse
tingD-branes, S-duality tells us that after all this result is not surprising. There, ea
hsta
k of D-branes 
omes with its own gauge 
oupling determined by the size ofthe three-
y
le the D6-branes are wrapping around.4.6 Fayet-Iliopoulos termsWe 
on
lude our general dis
ussion of the SO(32) theory with the derivation ofthe Fayet-Iliopoulos terms generated by the massive U(1) symmetries. Our meth-ods largely parallel the ones applied in the 
ontext of the E8�E8 theory. We willtherefore be 
omparatively brief and refer to se
tion (3.6) for more information.SuÆ
e it here to re
all that the starting point for the derivation of the FI termsis the the gauge invariant K�ahler potentialK = M2pl8� �� ln�S + S� �Xx Qx0 Vx�� ln�� h11Xi;j;k=1 dijk6 �Ti + T �i �Xx Qxi Vx��Tj + T �j �Xx Qxj Vx��Tk + T �k �Xx Qxk Vx���: (4.36)This is pre
isely as for the E8 string, see (3.120), ex
ept the fa
t that there are no
ontributions from tensor �elds living on the �ve-brane, of 
ourse. The 
harges103



Qxk are again de�ned viaSmass = KXx=1 h11Xk=0 Qxk2��0 ZR1;3 fi ^ b(2)k (4.37)and are en
oded in the mass terms (4.26) and (4.27).We 
an therefore straightforwardly derive the 
oeÆ
ients �x of the FI-termsfrom the gauge invariant K�ahler potential K via the relation�xg2x = �K�Vx ���V=0: (4.38)Inserting the 
on
rete expressions for the 
harges eventually leads to the 
on-
lusion that the FI terms vanish if and only if12 ZM J ^ J ^ trU(ni)F � 2 g2s `4s3! ZM�trU(ni)F 3 � 116trU(ni)F ^ trR2� = 0 (4.39)for ea
h external U(1)i fa
tor separately. It is intriguing that, as expe
ted fromthe interse
ting D-brane pi
ture, the FI-term for U(1)i only depends on the 
or-responding internal ve
tor bundle with stru
ture group U(ni). This is to be
ontrasted with the analogous expression (3.122) for the E8 � E8 string, wherethe one-loop 
orre
tion of the FI term involves the se
ond Chern 
lasses of allve
tors bundles embedded into the same E8 fa
tor as the abelian gauge groupunder investigation. Note that the one-loop 
orre
tion in (4.39) involves the 
ubi
term trU(ni)F 3. This 
an be tra
ed ba
k to the fa
t that in 
ontrast to E8 thegroup SO(32) has an independent fourth order Casimir operator. It implies thewell-known result that for the SO(32) heteroti
 string a bundle with stru
turegroup SU(N) generates a non-vanishing one-loop FI-term [124℄5. Again, awayfrom the small string 
oupling and large radii limit one expe
ts additional non-perturbative world-sheet and string instanton 
ontributions to (4.39). We willfurther investigate the impli
ations of the supersymmetry 
ondition (4.39) of avanishing FI term in se
tion (4.7.3).4.7 S-duality to the Type I stringAn immediate question 
on
erns the relation between the phenomena studied inthe 
ontext of the SO(32) heteroti
 and the S-dual Type I framework. Our aimis therefore to apply Heteroti
-Type I S-duality to the equations derived by nowand to shed new light on their signi�
an
e by 
omparison with known results onthe Type I side. The main 
on
lusion of this analysis will be the identi�
ation of5There exist SU(N) bundles, however, with vanishing FI terms if the bundle data happento be su
h that 
h3(V ) = 0. 104



the supersymmetry 
onditions (4.39) and (4.35) as the integrability 
ondition fora deformed Hermitian Yang-Mills equation. The 
orresponding statement for theE8 � E8 string has been 
onje
tured in se
tion (3.6.3) and is further supportedby this observation. Before we 
an ta
kle this issue in se
tion (4.7.3), however,it is indispensable to derive the pre
ise form of the higher-order 
ounter termsin the Type I e�e
tive a
tion. In parti
ular, we need to investigate the full setof S-duality transformation rules whi
h relate the gauge kineti
 fun
tions and FIterms to their Type I/Type II B 
ounterparts. As a subtlety arising in the TypeI e�e
tive a
tion, we are always free to absorb an additive shift in the dilatonby a rede�nition of �0. For the purpose of quantitative statements we need tomake sure that all terms in the kineti
 a
tion on the Type I and heteroti
 sideare 
anoni
ally normalized before they are transformed into one another by S-duality. We therefore 
annot help it but pause for a moment and �rst derivethe S-dual Type I a
tion together with its pre
ise relationship to the heteroti
a
tion presented in (2.1). Although the 
ontents of this se
tion is well-knownin prin
iple, we 
onsider it enlightening to present the arguments leading to the�nal Type I a
tion (4.50) - not only in view of the remarkable 
onfusion in theliterature about the proper normalisation of the Green-S
hwarz terms. Alongthe way, we will also provide the justi�
ation for the SO(32) H5-brane a
tionpostulated in (4.6) as well as for our normalisation (2.6) of the Green-S
hwarz
ounter terms.4.7.1 The Type I e�e
tive a
tionWe take as our starting point the relevant bosoni
 parts of the ten-dimensionalType IIB e�e
tive a
tion in
luding the Chern-Simons terms of a sta
k of MD9-branes [12℄,SIIB = 12�210 ZM(10) e�2�10R� 14�210 ZM(10) G3 ^ ?G3 (4.40)� 12 g2Y ZM(10) e��10 trU(M) [F ^ ?F ℄ + �9 ZM(10)Xn C2n+2 ^ 
h(iF) ^pÂ;where �10 = 12(2�)7(�0)4, �9 = 1(2�)9(�0)5 , 1g2Y = (2��0)2�9, R = �i`2sR and
hk(iF) = `2ksk! (2�)k trU(M)F k;qÂ (R) = 1� `4s96 (2�)2 trR2 + `8s18432 (2�)4 �trR2�2 + (4.41)`8s11520 (2�)4 �trR4� :The tra
es are over the fundamental representation of the U(M) gauge theoryliving on the D9-branes and of SO(1; 9), respe
tively. G3 = dC2 denotes the105



Ramond-Ramond (RR) three-form �eld strength. Its magneti
 dual is the six-form potential C6 satisfying ?10dC6 = dC2. Note that in 
ontrast to the heteroti
string, there are no fa
tors of e2�10 a�e
ting this magneti
-ele
tri
 duality trans-formation. In (4.40) and in the de�nition of G3 we omitted all additional kineti
and Chern-Simons terms involving the RR forms C0 and C4 of the full Type IIBa
tion.In 
ompa
tifying the ten-dimensional theory on R1;3�M, we allow in additionfor sta
ks of Na D5-branes wrapping the holomorphi
 2-
y
les 
a on M. They,too, give rise to U(Na) gauge groups on their worldvolume. The Chern-Simonsa
tion on the D5-branes readsSCSD5a = ��5 ZR1;3�
a  1Xn=0 C4n+2! ^ �Na + `4s2 (2�)2 trU(Na)(F 2a )� ^ qÂ (T
a)qÂ (N
a)(4.42)with �5 = 1(2�)5�03 . Here T
a denotes the tangent bundle and N
a the normalbundle of the D5-brane inM.The type I theory emerges after modding out the Type IIB string by theworld-sheet parity transformation 
 : (�; �) ! (��; �). At the level of thee�e
tive a
tion, this �rst of all means that we proje
t out the anti-invariant RRpotentials C0 and C4 and introdu
e the 
 image of the sta
k of branes, i.e a sta
kof M D9-branes and sta
ks of Na D5-branes, ea
h with the negative respe
tive�eld strength �F .To keep further tra
k of the proje
tion, we divide the resulting a
tion by afa
tor of two. Next we need to take into a

ount that the orientifold proje
tionresults in a tadpole for the Ramond-Ramond ten-form, C10, and, sin
e the Calabi-Yau is generi
ally 
urved, an indu
ed tadpole for the six-form C6.Quantitatively, these tadpoles are given by the CS-terms on the O9-plane[137, 143℄ SCSO9 = �32�9 ZM(10)  2Xn=0 C4n+2! ^sL̂�R4 �: (4.43)The Hirzebru
h genus L̂ is de�ned assL̂�R4 � = 1 + `4s192 (2�)2 trR2 + `8s73728 (2�)4 �trR2�2 � `8s92160 (2�)4 �trR4� :(4.44)In parti
ular, extra
ting the top form 
ontributions both from the Wess-Zumino
oupling of the D9-brane and of the orientifold,SC10 = �9 ZM(10) �12 2M � 32�C10; (4.45)106




learly shows that the D9-brane tadpole is 
an
elled pre
isely for M = 16.The preliminary Type I a
tion therefore be
omes6SI = 14�210 ZM(10) e�2�10R� 18�210 ZM(10) G3 ^ ?G3� 12 g2Y ZM(10) e��10trU(16) [F ^ ?F ℄ + �9 ZM(10)Xn C4n+2 ^ 
h(iF) ^pÂ�32�9 ZM(10)  2Xn=0 C4n+2! ^sL̂�R4 � (4.46)��5 ZR1;3�
a  1Xn=0 C4n+2! ^ �Na + `4s2 (2�)2 trU(Na)(F 2a )� ^ qÂ (T
a)qÂ (N
a) :For brevity we have omitted the kineti
 term for the gauge �elds on the �ve-branes.Now from a detailed worldsheet analysis, we know that due to the 
-proje
tionthe gauge group on the D9-branes is a
tually no more U(16) but rather SO(32)and likewise the D5-branes 
arry gauge group SP (2Na) instead of U(Na) [136℄.We therefore re-express the tra
es over the fundamental representation of theunitary groups by the ones over SO(32) and Sp(2Na), respe
tively, with the helpof the tra
e identitiestrU(16)[F 2℄ = 12trSO(32)[F 2℄; trU(16)[F 4℄ = 148TrSO(32)[F 4℄;trU(Na)[F 2℄ = 12trSp(2Na)[F 2℄; (4.47)with TrSO(32) denoting, as always, the tra
e in the adjoint representation.We see, however, that the kineti
 terms, in
luding the ones for the Yang-Mills�elds, are not yet 
anoni
ally normalized. This 
an be remedied by res
alingC2 ! 2p2C2; �0 ! p2�0; e�10 ! 12p2 e�10 : (4.48)By Hodge duality this also impliesC6 ! 2p2C6: (4.49)After this rede�nition we 
arefully 
olle
t all the Chern-Simons terms andeventually arrive at the a
tionSI = 12�210 ZM(10) e�2�10R� 14�210 ZM(10) G3 ^ ?G36Note that at this stage the D-brane a
tion is formally unaltered as 
ompared to the originalType IIB a
tion. This is a 
onsequen
e of dividing the latter by a fa
tor of 2 after adding the
-image of the branes and furthermore identifying the branes with their orientifold image.107



� 12 g2Y ZM(10) e��10 trSO(32) [F ^ ?F ℄+ 24�210 �04 ZM(10) C6 ^ trSO(32)[F 2℄� tr[R2℄� 4(2�)2Xa Na
a)!��5 ZR1;3�
a C2 ^ � `4s2 (2�)2 trSp(2Na)(F 2a )� ^ qÂ (T
a)qÂ (N
a)+ 124 (2�)5 �0 ZM(10) C2 ^X8; (4.50)where in the expressions involving Â (T
a) and Â (N
a) we now de�ne R =�ip2`2sR to keep tra
k of the res
aling of �0. Also, we introdu
ed the Type Igauge 
oupling 1g2Y = 12(2�)7(�0)3 . The anomaly eight-from X8 is indeed just theone we en
ountered in the Green-S
hwarz me
hanism in the heteroti
 theory andgiven by equation (2.7).This a
tion is really S-dual to the heteroti
 string a
tion (2.1) by an appli
a-tion of the transformation rulesgIs = (gHs )�1;JI = (gHs )�1JH (4.51)and letting C(2) ! B(2).In parti
ular, this justi�es the 
on
rete form and normalisation (4.6) of theanomalous Wess-Zumino 
oupling of the SO(32) heteroti
 �ve-brane, whi
h afterall was essential to derive the 
orre
t Green-S
hwarz terms. Moreover, we haveexpli
itly 
onvin
ed ourselves how on the Type I side the anomaly 
an
ellingGreen-S
hwarz 
ounter terms arise from the Chern-Simons 
ouplings of the D9-and D5-branes and the O9-planes. They appear at �rst order in open stringperturbation theory, as we see by 
omparison with the Yang-Mills kineti
 termsat order e��10 = g(�1)open. Along the way, this supports the normalisation (2.6) of theone-loop GS-terms with respe
t to the tree-level e�e
tive a
tion on the heteroti
side.It is 
lear that we 
an pro
eed pre
isely as for the SO(32) heteroti
 stringand 
onsider gauge ba
kground �elds of the form (4.1) on the internal part ofthe spa
etime-�lling D9-branes su
h that the original SO(32) gauge symmetry isbroken 
orrespondingly. This is, of 
ourse, nothing other than the introdu
tionof magnetized D9-branes. The resulting global 
onsisten
y 
onditions for theinternal gauge �elds, the spe
trum and 
ohomology groups as well as the detailsof the GS me
hanism follow by 
opying the steps spelled out for the heteroti
setup. Note in parti
ular that the requirement that the rank of the heteroti
gauge group be 16 translates into the 
an
ellation of the D9-tadpole, whereasthe Bian
hi identity for H or anomaly 
an
ellation 
ondition in the heteroti
theory 
orresponds to D5-tadpole 
an
ellation in Type I. In all, this 
ertainly108



puts the framework of Type IIB magnetized D-branes 
on
eptually on just thesame footing as the dual heteroti
 model building with gauge instanton ba
k-grounds. We anti
ipated these parallels already in se
tion 4.2 when pointing outthat the massless spe
trum of the SO(32) string with unitary bundles and thatof the Type I/IIB framework with magnetized D9-branes are in one-to-one 
orre-sponden
e. It is furthermore 
lear that the magnetized D-brane pi
ture is by nomeans restri
ted to turning on just the diagonal abelian part of the gauge �eldson the worldvolume of the branes. All statements about the SO(32) heteroti
string with unitary bundles should therefore also be read as the generalisationof the setup of magnetized D-branes to non-abelian ba
kground bundles on theirworldvolume.4.7.2 The gauge 
ouplings for Type IAfter this little exer
ise, we are �nally in a position to take a fresh look at thesupersymmetry 
onditions (4.39) and (4.35) by analysing them in the S-dual TypeI setup. To do so, we 
an either perform the analogous 
omputation of the gaugekineti
 fun
tion and FI terms as they follow from dimensional redu
tion of theType I a
tion (4.50) - or simply apply the S-duality transformation rules (4.51) tothe heteroti
 results. We go for the se
ond option and write the expression for thegauge 
ouplings in a way whi
h is more suitable for the S-duality transformation.The real part of the holomorphi
 gauge kineti
 fun
tion fSU(Ni) 
an be 
ast intothe formRe(fHSU(Ni)) = 1�`6s �ni3! g�2s ZM J ^ J ^ J � (2��0)2 ZM J ^ �trU(ni)F 2 � ni48trR2�� ::(4.52)For reasons whi
h will be
ome 
lear momentarily, we will a
tually be inter-ested in the S-dual expressions normalized with respe
t to the original Type IIBtheory from whi
h Type I arises after the orientifold proje
tion. As we have justdis
ussed this requires that we res
ale, after applying (4.51),�0 ! 1p2 �0; e�10 ! 2p2 e�10 : (4.53)The resulting Type I expressions are to be read as de�ned with respe
t tothe 
anoni
ally normalized Type IIB a
tion. In this sense, the gauge 
ouplingsS-dual to (4.52) areRe(fISU(Ni)) = 1�`6sgs �ni3! ZM J ^ J ^ J � (2��0)22 ZM J ^ �trU(ni)F 2 � ni48trR2��(4.54)on the Type I/IIB side. Most importantly, the one-loop term has now be
ome aperturbative �0-
orre
tion to the tree-level gauge 
oupling.109



4.7.3 The non-abelian MMMS 
onditionThe same S-duality relations (4.51), (4.53) applied to the FI-terms (4.39) yield12 ZM J ^ J ^ trU(ni)F � (2��0)23! ZM�trU(ni)F 3 � 116trU(ni)F ^ trR2� = 0(4.55)on the Type I/ IIB side, where the se
ond term is again a perturbative �0-
orre
tion. We 
an 
ombine the gauge kineti
 fun
tion and the FI-term intoa single 
omplex quantity, the 
entral 
hargeZ = ZM trU(n) �e�i�2 �e�iJ id+FqÂ(M)�� ; (4.56)de�ned in terms of F = 2��0F . The gauge 
oupling and the FI-term are seen tobe proportional to the real and imaginary part, respe
tively, of Z.In the 
ase of abelian D9-branes in Type IIB we know that one 
an introdu
ean additional phase parameterising whi
h N = 1 supersymmetry of the underly-ing N = 2 bulk supersymmetry is preserved by the brane. Therefore, the generalType IIB supersymmetry 
ondition isIm�ZM trU(n) �e�i' e�iJ id+FqÂ(M)�� = 0; (4.57)Re�ZM trU(n) �e�i' e�iJ id+FqÂ(M)�� > 0:As usual in Type IIB theory 
oupled to a brane, we have now de�ned F =2��0F + B id, thus taking into a

ount the fa
t that for open strings only this
ombination is a gauge invariant quantity. Clearly, on the right-hand side ofthe �rst equation in (4.57), there might appear a non-vanishing fun
tion of the
harged matter �elds as previously in (3.124), but having dis
ussed these termsat length in se
tion (3.6.2) we 
an here just assume them to vanish for simpli
ity.Note that (4:56) is pre
isely the perturbative part of the expression for the
entral 
harge as it appears in the �-stability 
ondition [78℄ for general B-typebranes7. To our knowledge the form of this expression has never been derivedfrom �rst prin
iples. Rather, we understand that the 
entral 
harge has beendesigned in su
h a way as to keep in analogy with the well-known RR-
harge ofthe B-type-brane as seen in the Chern-Simons a
tion - it is simply assumed thatin the geometri
 limit, the two quantities 
oin
ide [144℄.We �nd it quite interesting though not unexpe
ted that, starting from thewell-known Green-S
hwarz anomaly terms, our four-dimensional e�e
tive �eld7This is true at least for spa
e �lling branes in 
ase we 
onsider also non-abelian �elds. Of
ourse our analysis has nothing to say about lower-dimensional non-abelian branes.110



theory analysis leads pre
isely to the perturbative part of the �-stability 
onditionfor B-type branes.Equation (4.57) is also the integrability 
ondition for the non-abelian gen-eralisation of the MMMS equation for D9-branes in a 
urved ba
kground. Theabelian version of this equation has been proven (without the 
urvature terms)in [145℄ starting from the DBI a
tion of a single D-brane and it has been 
on-�rmed by a world-sheet 
al
ulation in [146℄. Up to now it is stri
tly speakingonly a 
onje
ture that it 
an easily be generalised to (4.57) [127, 147℄. How-ever, our analysis relies ex
lusively on quantities of the four-dimensional N = 1e�e
tive supergravity theory, the one-loop FI-term and the holomorphi
 gaugekineti
 fun
tion. In parti
ular, the non-renormalization theorems guarantee theabsen
e of further perturbative 
orre
tions, thus di
tating (4.57) as the pertur-batively exa
t integrability 
ondition at least for D9-branes. The absen
e of astringy one-loop 
orre
tion was shown in [128℄. Of 
ourse, there will be additionalnon-perturbative 
orre
tions, whi
h in the gs ! 0 limit make out the 
omplete�-stability expression [78℄.As we dis
ussed in detail in se
tion (3.6.3) in the 
ontext of the E8-string, theintegrability 
ondition (4.57) is not yet suÆ
ient for supersymmetry preservation,but has to be supplemented by the 
orre
t stability 
ondition. This will be thedire
t generalisation of �-stability, whi
h is the valid notion of stability only atleading order in �0 and gs.We 
an now largely repeat the analysis of se
tion (3.6.3): First, we have toknow the lo
al supersymmetry equation for non-abelian D9-branes underlying(4.57). All we 
an say for sure starting from (4.57) is that the lo
al SUSY
ondition for D9-branes has to be of the form�Im�e�i' e�iJ id+FqÂ(M)��top + d�5 = 0;where �5 is a globally de�ned 5-form so that d�5 is gauge 
ovariant. At least for
ompa
ti�
ations on genuine Calabi-Yau manifolds, where dJ = 0 and dH = 0,we 
annot �nd any 5-form of this type whi
h is also invariant under the axioni
U(1) gauge symmetry B ! B+d�, A! A�� and does lead to a non-vanishingd�5.Therefore, we 
on
lude that the possible 
orre
tion d�5 is absent and thatindeed the lo
al supersymmetry 
ondition is given by�Im�e�i' e�iJ id+FqÂ(M)��top = �(V )id volM (4.58)and in addition �(V ) = 0 (4.59)or suitable generalisations if one allows for a 
an
ellation of the FI terms against
hiral 
harged matter �elds. This is just the 
ounterpart of the full Hermitian111



Yang-Mills equation (3.128) we proposed in the 
ontext of the E8 � E8 theory.Likewise, the �-slope is now de�ned as�(V ) � 1rk(V )Im�ZM trU(n) �e�i'e�iJ id+FqÂ(M)�� : (4.60)A stri
tly perturbative (in the sense explained in se
tion 3.128) notion of sta-bility relevant for (4.58) has been analysed in [127℄ and been 
alled �-stability(to stress that it is only the perturbative part of �-stability). In parti
ular, theauthors have shown that for �0 smaller than a 
riti
al value depending on thebundle V , equation (4.58) has a unique solution pre
isely if the bundle is stablewith respe
t to the deformed slope �(V ). This a
tually serves as additional sup-port for our 
orresponding 
onje
ture regarding �-stability in se
tion (3.6.3). Asthe authors of [127℄ have also shown, in this perturbative sense �-stability im-plies �-stability. However, we fa
e the same problem that this notion of stabilityassumes that the terms in �(V ) at zeroth order in �0 dominate over the higherorder 
orre
tions in the extreme perturbative regime. This may be in 
on
i
twith the DUY equation (4.59). For a detailed dis
ussion of this point we referba
k to se
tion (3.128). We hasten to anti
ipate in this 
ontext that all 
on
reteexamples we will 
onstru
t in the sequel are not a�e
ted by this 
aveat sin
ethe deformation of the slope vanishes and are therefore supersymmetri
 providedthey are �-stable. To prove supersymmetry of non-abelian bundles in the moregeneral situation it is ne
essary to �nd a stability 
riterion whi
h is not only validfor arbitrarily small higher order 
orre
tions.
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Chapter 5Stable holomorphi
 U (n) bundleson ellipti
ally �bered Calabi-YaumanifoldsWe have by now made extensive use of the equivalen
e of the following two typesof obje
ts: solutions of the Hermitian Yang-Mills equations for a 
onne
tion withvalues in the gauge group G on the one hand and holomorphi
 stable bundleswith stru
ture group G (or, rather, the 
omplexi�
ation of G) on the other. Ourinterest has been in G = SU(n) or U(n), but the 
orresponden
e is not restri
tedto this 
hoi
e. We have seen that the Hermitian Yang-Mills equation for bothheteroti
 theories re
eives perturbative 
orre
tions arising pre
isely at one-loopin string perturbation theory. In Type I/IIB theory, by 
ontrast, the 
orre
tionsare perturbative in �0. In any 
ase, the stability 
ondition 
onstraining the holo-morphi
 bundles is modi�ed and no longer given by �-stability, but by �- and�-stability, respe
tively. Sin
e �-stability implies �-stability in the perturbativelimit, we 
an therefore, as far as 
on
rete appli
ations in model building are 
on-
erned, sti
k to the more familiar �-stability 
onstraint. As a result, the questionof prime importan
e both to heteroti
 and Type I/IIB model building in this
ontext 
on
erns the 
onstru
tion of suitable stable holomorphi
 ve
tor bundlesover a Calabi-Yau threefoldM. The 
lassi�
ation and 
onstru
tion of the mostgeneral su
h bundles is a 
hallenging and unsolved mathemati
al problem. Lu
k-ily, for the spe
ial 
ase that the Calabi-Yau manifold is ellipti
ally �bered, a large
lass of �-stable holomorphi
 G-bundles is at our disposal thanks to the spe
tral
over 
onstru
tion, pioneered by Friedman, Morgan and Witten (FMW) in [40℄and Donagi [41℄ and further developed by several authors [47, 69, 103, 148{150℄.This will be the playground to provide 
on
rete examples of the general theorypresented in the previous 
hapter, the main fo
us being eventually on phenomeno-logi
ally interesting model building. In order to make this work as self-
ontainedas possible and to introdu
e our notation, we will �rst review very brie
y themain ingredients of this mathemati
al 
onstru
tion relevant for our appli
ations.In doing so, we will rely on the original literature [40, 69, 149℄ to whi
h we refer113



for further details.5.1 Ellipti
ally �bered Calabi-Yau manifoldsAn ellipti
ally �bered 
omplex three-fold M is given by a 
omplex two-surfa
eB, the base spa
e, together with an analyti
 map� :M! B; (5.1)where �bers over ea
h point b in the base,Eb = ��1(b); (5.2)are ellipti
 
urves. Re
all that an ellipti
 
urve is a two-torus with a 
omplexstru
ture indu
ing an abelian group law. In parti
ular it 
ontains a distinguishedpoint p a
ting as the zero element in this group.We require the �bration M to admit a global se
tion � : B ! M, assigningto every point in the base b 2 B the zero element �(b) = p 2 Eb on the �ber1.This se
tion embeds the base as a submanifold into M and we will often notdistinguish between B as a 
omplex two-fold and �(B) as a four-
y
le inM. Theasso
iated homology 
lass in H4(M;Z) then interse
ts the �bre 
lass pre
iselyon
e. It will be useful to introdu
e also the 
lass in H2(M;Z) Poin
ar�e dualto the 
lass of �(B). In slight abuse of notation, it will also be referred to as�. The respe
tive meaning will hopefully always be 
lear from the 
ontext. Its
ohomologi
al self-interse
tion 
an be proven to be [40℄� � � = �� � ��(
1(B)): (5.3)Likewise, we introdu
e F 2 H4(M;Z) as the Poin
ar�e dual to the �bre 
lass. Thefa
t that the base 
lass interse
ts the 
lass of the generi
 �bre on
e is re
e
tedin the 
ohomologi
al interse
tion form� � F = 1: (5.4)This shows that F is a
tually the Hodge dual to the two-form �. Now that weare at it, we state for later purposes the simple fa
t that the interse
tion form ofthe pull-ba
k toM of two 
lasses � and � in H2(B;Z) is given by the pull-ba
kof the interse
tion on B,��(�) � ��(�) = ��(� � �) = (� � �)F: (5.5)Often we will simply omit the �� when talking about the pull-ba
k of two-formstoM and likewise the F in expressions of the form above.1See, however, [47, 48, 103℄ for the spe
tral 
over 
onstru
tion on ellipti
ally �bered three-folds whi
h admit two se
tions. 114



Let us now turn our attention to the ellipti
 �bre. Ellipti
 
urves 
an bedes
ribed as the hyperplane in C P2 de�ned by the homogeneous Weierstrassequation zy2 = 4x3 � g2xz2 � g3z3; (5.6)where x; y; z are homogeneous 
oordinates on C P2 and g2 and g3 de�ne the 
om-plex stru
ture. When we �ber the ellipti
 
urve over the base, this means thatthe x; y; z and likewise g2 and g3 must be promoted to global se
tions of a linebundle L on B, and the 
hoi
e of L de�nes the �bration.We 
an a
tually take L to be the 
onormal bundle to the se
tion �(B) so thatthe �bration is now de�ned by the spe
i�
 
hoi
e of � . Then x; y; z are se
tionsof L2, L3 and O whereas g2 and g3 appear as se
tions of L4 and L6, respe
tively.If the �brationM is to be Calabi-Yau, the �rst Chern 
lass of the tangent bundleT must vanish, 
1(T ) = 0: (5.7)As shown e.g. in [149℄, this implies L = K�1B , where KB is the 
anoni
al bundleof the base spa
e. It follows that K�4B and K�6B must have se
tions g2 and g3, re-spe
tively. The surfa
es 
ompatible with this 
ondition are found to be del Pezzo,Hirzebru
h, Enriques and blow-ups of Hirzebru
h surfa
es [151℄. Note, however,that the 
onstru
tion of stable holomorphi
 bundles on ellipti
ally �bered three-folds does not hinge upon the Calabi-Yau property. In order to simplify themathemati
al apparatus, we nonetheless assume (5.7) in the sequel.FMW showed that on su
h spa
es the Chern 
lasses of the tangent bundle ofthe total spa
e follow from the Chern 
lasses of the base spa
e. Espe
ially, westate for later purposes that the se
ond Chern 
lass of the tangent bundle 
an be
omputed as 
2(T ) = 12� � ��(
1(B)) + �11
1(B)2 + 
2(B)�F: (5.8)5.2 The spe
tral 
over 
onstru
tionThe basi
 idea of the spe
tral 
over method is to �rst 
onstru
t a stable U(n)or SU(n) bundle on the ellipti
 �bre over ea
h point of the base, whi
h is thenextended over the whole manifold by gluing the data together suitably. Re
allthat in general, a U(n) or SU(n) bundle de�nes a rank n 
omplex ve
tor bundle.Su
h a rank n bundle over an an ellipti
 
urve must, in order to satisfy theHermitian Yang-Mills equation, be of degree zero. Note that this is still trueafter taking into a

ount the one-loop 
orre
tions whi
h vanish trivially uponrestri
tion to a 
omplex 
urve. More pre
isely, a rank n bundle 
an be shown tobe isomorphi
 to the dire
t sum of n 
omplex line bundlesVjEb = N1 � : : :�Nn; (5.9)115



ea
h of whi
h has to be of zero degree. If G = SU(n) as opposed to U(n), VjEbmust in addition be of trivial determinant, i.e. Nni=1Ni = OEb. The zero degree
ondition on Ni implies that there exists for ea
h Ni a meromorphi
 se
tion withpre
isely one zero at someQi and a pole at p, i.e. Ni = OEb(Qi�p). Consequently,stable (S)U(n) bundles on an ellipti
 
urve are in one-to-one 
orresponden
ewith the unordered n-tuple of points Qi, and the redu
tion of U(N) to SU(n) isen
oded in the additional requirement that Pi(Qi � p) = 0 in the group law ofthe ellipti
 
urve.Having understood the restri
tion of a rank n bundle V to ea
h ellipti
 �bre,we 
an now pro
eed to 
onstru
ting the whole of V. In intuitive terms, the aboveimplies that over an ellipti
ally �bered manifold a U(n) ve
tor bundle determinesa set of n points, varying over the base. More pre
isely, the bundle V over Mwith the property VjEb = nMi=1 O(Qi � p) (5.10)uniquely de�nes an n-fold rami�ed 
over C of B, the spe
tral 
over. It is de�nedby a proje
tion�C : C ! B and C \ Eb = ��1C (b) =[i Qi: (5.11)C is 
onveniently des
ribed, as a hypersurfa
e in M, by its Poin
ar�e dual two-form n�+ : : :. The �rst part is due to the fa
t that C is an n-fold 
over of B. Asdis
ussed in [149℄, if we insist that VjEb be an SU(n) bundle2 then the additionalterms in the de�nition of C must emerge from the pull-ba
k of a two-form on B,i.e. [C℄ = n� + ��(�) 2 H2(M;Z) (5.12)for � some e�e
tive 
lass in H2(B;Z). We will hen
eforth assume this to be the
ase.Several distin
t bundles overM may well give rise to the same spe
tral 
overC sin
e the latter only en
odes the information about the restri
tion of V to the�bre Eb. To re
over V from the spe
tral data we need to spe
ify in addition howit varies over the base, i.e. VjB. As dis
ussed in [40℄ this is uniquely a

omplishedby the so-
alled spe
tral line bundle N on C with the property�C�N = VjB: (5.13)We 
an formalise these results by introdu
ing the notion of the Poin
ar�eline bundle P. For this purpose, 
onsider the �bre produ
t M�B M as the2This only means that the part of V over the ellipti
 �bre is of trivial determinant. Nonethe-less, the full V 
an have a non-vanishing �rst Chern-
lass, whi
h, however, does not re
eive
ontributions from the �bre. This will be
ome 
lear shortly.116



set of pairs (z1; z2) 2 M � M with �(z1) = �(z2). Furthermore we need tointrodu
e �1 and �2 as the proje
tions on the �rst and se
ond fa
tor, respe
tively.Moreover, �1 denotes the se
tion �1 : B ! X ! X �B X 0 and �2 the se
tion�2 : B ! X 0 ! X �B X 0. Then P is de�ned as the bundle overM�BM withthe two propertiesPjEb�x ' Pjx�Eb ' OEb(x� p); (�1�(P)) jB = OB: (5.14)Introdu
ing the diagonal divisor �, the �rst Chern 
lass of the Poin
ar�e linebundle is [40℄ 
1(P) = �� �1 � �2 � 
1(B): (5.15)We will denote by PB the restri
tion of P to M �B C. Now by de�nition,�1�(PB)jEb =LiO(Qi�p), as is 
lear from the fa
t that C \Eb = SiQi and the�rst property in (5.14). This remains true if we tensor PB with ��2N for someline bundle N on C. After all, ��N as a bundle onM is trivial when restri
tedto the �bre Eb. On the other hand, Pj��BEb is likewise trivial due to the se
ondproperty in (5.14), and so �1�(��2N 
 PB)jB is simply given by �C�N . In otherwords, the bundle V = �1�(��2N 
 PB) (5.16)indeed exhibits the two de�ning properties (5.10) and (5.13). This establishes thede�nition of an (S)U(n) bundle on the ellipti
ally �bered Calabi-Yau threefoldin terms of the spe
tral data (C;N ). We reiterate that we will only 
onsider the
ase that the restri
tion of the bundle to the ellipti
 �bre is an SU(n) bundle,i.e. that C is as in (5.12).The bundles 
onstru
ted so far are only �-semi-stable. It has been shownin [152℄, Theorem 7.1, that the spe
tral 
over must be irredu
ible in order toobtain a �-stable one, whi
h imposes two more 
onditions to the 
urve � [153℄:� The linear system j�j has to be base point free.� The 
lass � � n
1(B) has to be e�e
tive.We will be more spe
i�
 about their impli
ations when it 
omes to a dis
ussionof the properties of the basis. In fa
t, the proof guarantees stability of the bundlewith respe
t to an ample 
lass, i.e. a K�ahler 
lass, J = �� + JB su
h that theK�ahler parameter of the �ber lies in a 
ertain range near the boundary of theK�ahler 
one, that is for suÆ
iently small �. Sin
e the value of � is not known, inall models involving the spe
tral 
over 
onstru
tions it is therefore a subtle issueif the region of stability overlaps with the perturbative regime, whi
h is needed tohave 
ontrol over non-perturbative e�e
ts. In all examples whi
h will be relevantfor us, the 
onstraints will leave us enough freedom to go to regions of the K�ahler
one where � is mu
h smaller than JB.117



We now give the topologi
al invariants of the bundle V de�ned by (5.16). Theworking horse for this 
omputation is the Grothendie
k-Riemann-Ro
h (GRR)theorem stating that, for a 
oherent sheaf V over a variety Y with a smoothproje
tion � : Y ! X, the Chern 
hara
ters of the push-forward sheaf ��W overX 
an be 
omputed from
h��!(W )�Td(X) = ���
h(W ) Td(Y )�; (5.17)with the operation �� on the right being essentially integration along the �bre of�. For 
ompleteness we note that �!(W ), appearing on the left, is the K-theoreti
Gysin map whi
h is de�ned as �!(W ) =Pi(�1)Ri��(W ) in terms of the higherdire
t image sheaves Ri��(W ) . The latter 
an be thought of as the sheaf over Xwhose stalk over U � X is given by the 
ohomology group H i(��1(U);W j��1(U))and the alternating sum is to be understood in the K-theoreti
 sense. Moreinformation 
an be found e.g. in [138℄.The idea is now to apply this theorem to the proje
tion �1 :M�B C !Mand with W given by ��2N 
 PB. In this 
ase, the �ber of �1 over a point �(b)in M 
onsists simply of the n points in the n-fold 
over C whi
h proje
t to bunder �C : C ! B. Sin
e the �ber is zero-dimensional, all dire
t images Ri��(V )higher than R0�1�(W ) = �1�(��2N 
PB) vanish. The latter is just the de�nitionof V and this allows us to 
ompute the Chern 
lasses of V from
h(V)Td(M) = �1� �e
1(��2N
PB) Td(M� C)� : (5.18)As dis
ussed in [40℄, this relates, after additional manipulations, in parti
ular
1(N ) and 
1(V) as
1(N ) = 1n ��C
1(V)jB � 12 
1(TC) + 12 ��C
1(B) + 
 (5.19)in terms of the 
ohomology 
lass 
 satisfying�C�
 = 0: (5.20)One 
an prove that 
 
an in general be written as
 = �(n� � ��C� + n��C
1(B)); (5.21)where � 2 Q . Note furthermore that 
1(TC) is minus the �rst Chern 
lass of the
anoni
al bundle KC = O(C) on C, i.e. 
1(TC) = �n� � ��C(�).We now parameterise 
1(V) by some element 
1(�) 2 H2(B;Z) to be spe
i�edmomentarily, 
1(V) = ��
1(�): (5.22)Putting everything together, we have
1(N ) = n�12 + �� � + �12 � ����C� + �12 + n�� ��C
1(B) + 1n ��C
1(�):(5.23)118



Sin
e 
1(N ) must be an integer 
lass, not every value of � 2 Q and 
1(�) 2H2(B;Z) is allowed in the ansatz for 
1(V). Rather they are subje
t to the
onstraints n�12 + �� 2 Z;�12 � �� � + �n�+ 12� 
1(B) + 1n 
1(�) 2 H2(B;Z); (5.24)but 
an otherwise be 
hosen arbitrarily. Note that if we are interested in SU(n)bundles as e.g. in [40℄, then simply 
1(�) = 0 so that 
1(V) = 0. All other
onsistent 
hoi
es yield U(n) bundles. Allowing non-trivial values for 
1(V) was�rst 
onsidered in [69℄ and motivated by the relative Fourier-Mukai transform,but we will not invoke this pi
ture here3 . Further appli
ations of the GRRtheorem lead, after 
onsiderable work, to the following expressions for the se
ondand third Chern 
lasses [40, 69, 148℄
h2(V) = �� � ��� + � 12n
1(�)2 � !�F;
h3(V) = �� � (� � n
1(B))� 1n 
1(�) � �; (5.25)where ! = � 124
1(B)2(n3 � n) + 12 ��2 � 14�n� � (� � n
1(B)): (5.26)Note that 
h3(V ) has already been integrated over the �ber.As we emphasized several times, this kind of 
onstru
tion only gives bundleswith trivial �rst Chern 
lass as restri
ted to the ellipti
 �bres. To be more general,we 
an however twist the bundle V de�ned via the spe
tral 
over 
onstru
tionwith an additional line bundle Q on X with [131℄
1(Q) = q� + ��(
1(�Q)); (5.27)where ��(
1(�Q)) 2 H2(X;Z). The resulting U(n) bundleV = V 
 Q (5.28)is �-stable pre
isely if the original bundle V is [30℄. The Chern 
lasses for Vare straightforwardly 
omputed from the ones of V and from 
1(Q) (see alsoappendix A.1). Note that the 
ontribution form ��(
1(�Q)) 
an be absorbed intoan additive shift of 
1(�) by n
1(�Q). W.l.o.g. we will hen
eforth assume that
1(�Q) = 0.The Chern 
hara
ters of V then read3To re
over their expressions, simply set 
1(�) = �E � n2 
1(B) in the notation of [69℄.119




h1(V ) = nq� + 
1(�); (5.29)
h2(V ) = h�� + q2(2
1(�)� n q
1(B))i � + aF ; (5.30)
h3(V ) = �� � (� � n
1(B))� 1n� � 
1(�) + q� 12n
1(�)2 � !�+ (5.31)q
1(B)�� � q2
1(�) + nq26 
1(B)� ;where aF = 12n
1(�)2 � !: (5.32)For later purposes we also list the Chern 
lasses,
1(V ) = nq� + 
1(�); (5.33)
2(V ) = h� + q(n� 1)�
1(�)� q2n
1(B)�i � + 12
1(�)2 � aF ; (5.34)
3(V ) = q26 (n2 � 3n+ 2) �nq
1(B)2 � 3
1(�) � 
1(B)� ; (5.35)+ q2n(n2 � 2n+ 2)
1(�)2 + (2q � nq � 2n�) � � 
1(B)+n� 2n � � 
1(�) + 2� �2 � nq aF � 2q !:To summarize, this 
lass of U(n) bundles is 
ompletely spe
i�ed by the rationalnumber �, the integer q and the 
lasses � and 
1(�).5.3 del Pezzo base manifoldsAs alluded to already, the Calabi-Yau 
ondition imposes severe 
onstraints onwhi
h 
omplex two-surfa
es are eligible as base manifolds of our ellipti
 �bration.Among the possibilities 
lassi�ed in [151℄ we 
an 
hoose as the base manifoldone of the del Pezzo surfa
es dPr with r = 0; : : : ; 9. The surfa
e dPr is de�nedby blowing up r points in generi
 position on P2. This means that H2(dPr) isgenerated by the r + 1 elements l; E1; : : : ; Er, where l is the hyperplane 
lassinherited from P2 and the Em denote the r ex
eptional 
y
les introdu
ed by theblow-ups. The interse
tion form 
an be 
omputed asl � l = 1; l �Em = 0; Em � En = �Æm;n: (5.36)The �rst equation follows from the fa
t that two representatives of the 
lassl de�ne two 
omplex lines in generi
 position whi
h 
learly interse
t pre
iselyon
e. The self-interse
tion for the blow-ups is the usual one for ex
eptional120




y
les. Furthermore, a 
omplex line in generi
 position does not pass throughany of the blow-ups, thus l � Em = 0.The Chern 
lasses read
1(dPr) = 3l � rXm=1Em; 
2(dPr) = 3 + r: (5.37)We 
learly re
over the part involving l as simply the �rst Chern 
lass of theanti-
anoni
al bundle of the parent P2. For the se
ond Chern 
lass of the ellipti
threefoldM we obtain, applying (5.8),
2(TM) = 12�
1(B) + (102� 10r)F: (5.38)Now for a ve
tor bundle Vi we 
an expand �i and 
1(�i) in a 
ohomologi
al basis�i = �(0)i l + rXm=1 �(m)i Em; 
1(�i) = �(0)i l + rXm=1 �(m)i Em: (5.39)As mentioned before we have to require that � is e�e
tive and that for stability� � n 
1(B) is e�e
tive as well. Fortunately, the generating system for the 
oneof e�e
tive 
urves on dPr has been given in [154℄ and we list the reformulatedresult of [153℄ in Table 5.1 for 
ompleteness. Re
all that a general e�e
tive 
lass
an be expanded into a linear 
ombination of these Mori 
one generators withnon-negative integer 
oeÆ
ients.Moreover, j�j is known to be base point free if � �E � 0 for every 
urve E withE2 = �1 and E � 
1(B) = 1. Su
h 
urves are pre
isely given by the generators ofthe Mori 
one listed in Table 5.1.
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r Generators #1 E1, l � E1 22 Ei, l � E1 � E2 33 Ei, l � Ei � Ej 64 Ei, l � Ei � Ej 105 Ei, l � Ei � Ej, 2l � E1 � E2 � E3 � E4 � E5 166 Ei, l � Ei � Ej, 2l � Ei � Ej � Ek � El � Em 277 Ei, l � Ei � Ej, 2l � Ei � Ej � Ek � El � Em,3l � 2Ei � Ej � Ek � El � Em � En � Eo 568 Ei, l � Ei � Ej, 2l � Ei � Ej � Ek � El � Em,3l � 2Ei � Ej � Ek � El � Em � En � Eo,4l � 2(Ei + Ej + Ek)�P5i=1Emi ,5l � 2P6i=1Emi � Ek � El, 6l � 3Ei � 2P7i=1Emi 2409 f = 3�P9i=1Ei, and fyag with y2a = �1, ya � f = 1 1Table 5.1: Generators for the Mori 
one of ea
h dPr, r = 1; : : : ; 9. All indi
esi; j; : : : 2 f1; : : : ; rg in the table are distin
t. The e�e
tive 
lasses 
an be writtenas linear 
ombinations of the generators with integer non-negative 
oeÆ
ients.
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Chapter 6Semi-realisti
 SO(32) string va
uaWe have �nally 
olle
ted all the relevant material we need in order to dis
ussthe appli
ations of the novel embedding of U(n) bundles to string model buildingin either heteroti
 theory. In this 
hapter, based on [131℄ , we start with theSO(32) heteroti
 
orner. From our dis
ussion in 
hapter 4 it is 
lear that theparameter spa
e of potentially 
onsistent va
ua is extremely huge. A systemati
sear
h for interesting models, let alone a 
omplete 
lassi�
ation of the asso
iatedlands
ape1, therefore appears 
hallenging and is far beyond the s
ope of this work.The large number of a priori possibilities is due to two independent sour
es.First we need to spe
ify a 
on
rete embedding of the type dis
ussed in se
-tion (4.1). Even if we restri
t all 
onsiderations from the beginning to a phe-nomenologi
ally appealing visible gauge se
tor - e.g. su
h that it reprodu
e thePati-Salam or MSSM gauge group - we have the 
hoi
e of the intermediate groupU(Mi). Basi
ally this amounts to the "internal" integer degree of freedom niin equation (4.4) for ea
h visible group fa
tor. The e�e
tive tadpole has to be
an
elled by introdu
ing an appropriate hidden se
tor 
onsisting of hidden gaugebundles and/or �ve-branes. The 
ombinatori
s governing this problem renders a
lassi�
ation of all possibilities highly non-trivial.All this is of 
ourse 
ompletely independent of the question on whi
h 
on
reteba
kground manifold one endeavours to 
onstru
t suitable ve
tor bundles. Forreasons of pra
ti
ability we will fo
us on the 
lass of stable holomorphi
 bundleson ellipti
ally �bered Calabi-Yau manifolds the essential properties of whi
h wehave just reviewed in 
hapter 5. Any alternative methods to 
onstru
t stablebundles over more general Calabi-Yau threefolds serve, in prin
iple, as equallygood starting points for model building. The dis
rete parameter spa
e even forthe spe
ial set of bundles based on the spe
tral 
over 
onstru
tion is enormous.In this 
hapter we present two semi-realisti
 examples whi
h our very preliminaryand restri
tive survey has produ
ed and whose properties are typi
al of a largeset of solutions that 
an easily be generated. In fa
t, we have only 
overed a tinyfra
tion of the solution spa
e of ve
tor bundles on ellipti
 �brations over dP3 and1See [155, 156℄ for a treatment of the lands
ape of string va
ua in the S-dual framework ofmagnetized D9-branes with abelian bundles respe
tively interse
ting branes.123



dP4.We have emphasized several times by now the one-to-one 
orresponden
e be-tween the ar
hite
ture of the SO(32) heteroti
 theory with U(n) bundles and thestru
ture known from the 
ontext of interse
ting D-brane model building. Takingthis duality at fa
e value we therefore advo
ate the following examples alterna-tively as Type I va
ua with non-abelian magnetized D9-branes on non-toroidalthree-folds in
luding D5-branes.Before digging into the details of the models, it only remains to evaluate theloop-
orre
ted DUY 
ondition (4.39) for this 
lass of ve
tor bundles. With thehelp of the Chern 
hara
ters as given in equation (5.29), we obtain the DUYequation 12 r� �2JB � r� 
1(B)� (
1(�)� nq 
1(B)) + nq2 J2B= 2 g2s ��(V )� 12
1(�) 
1(B)� nq24 �
2(B)� 
1(B)2�� (6.1)after expressing J = `2s(r� �+JB) in terms of JB, the K�ahler form on the base B.This equation has to be satis�ed inside the K�ahler 
one for the model to be well-de�ned. The 
onstraints on the K�ahler moduli resulting from this requirementare 
olle
ted in appendix B.The positivity 
ondition (4.35) on the real part of the gauge kineti
 fun
tionfor a U(N) fa
tor leads to the se
ond 
onstraintn3!r� �r2�
1(B)2 � 3r�
1(B)JB + 3J2B�� 2 g2s h(r�
1(B)� JB)�� � q2 (2
1(�)� nq 
1(B))� + r�aFi� g2s n h
1(B)JB + r�12 �
2(B)� 
1(B)2�i > 0: (6.2)These 
onditions impose strong 
onstraints on the bundles to be put simulta-neously on the manifoldM. We re
all that in general ea
h U(n) bundle freezesone 
ombination of the dilaton and the b2(B) + 1 radii.6.1 A four-generation Pati-Salam model on dP3As a �rst example we 
hoose the basis of the ellipti
 �bration to be the del Pezzosurfa
e dP3. Then we embed a bundle with stru
ture group U(1) � U(2)2 intoU(4)3 yielding the observable groupH = U(4)� U(2)2 � SO(8): (6.3)The data for the twisted bundles are given in Table 6.1.It 
an be 
he
ked expli
itly from (5.24) that this data results in well-de�nedspe
tral bundles N . Furthermore, �b and �
 as well as�b � 2
1(B) = 5l � E1 � 3E2 � E3; �
 � 2
1(B) = l � E1 + E2 � E3 (6.4)124



U(ni) �i �i qi �iU(1)a 0 0 0 �2l + 3E2 + 3E3U(2)b 0 11l � 3E1 � 5E2 � 3E3 0 �2l + 2P3m=1 EmU(2)
 0 7l � 3E1 � E2 � 3E3 0 �8l + 8P3m=1 EmTable 6.1: De�ning data for a U(1)� U(2)2 bundle.are e�e
tive and the linear systems j�bj, j�
j are base-point free, i.e. all inter-se
tions with the basis of the Mori 
one listed in Table 5.1 are non-negative.Therefore, the 
onstru
ted bundles are indeed �-stable.Finally, the tadpole
2(T ) = 12"3l � 3Xm=1Em# � + 72 (6.5)is 
an
elled without adding H5-branes due to
h2(Va) = �7;
h2(Vb) = [�11l + 3E1 + 5E2 + 3E3℄ � + 8;
h2(V
) = [�7l + 3E1 + E2 + 3E3℄� � 30: (6.6)The resulting 
hiral spe
trum is displayed in Table 6.2. Observe in parti
ularthat there is no 
hiral state 
harged under SO(8) due to �(Vi) = 0 and that thereare no symmetri
 or antisymmetri
 
hiral states sin
e in addition �i � 
h2(Vi) =�i � 
2(T ) = 0 for all i.The analysis of the 
hiral spe
trum shows that all three U(1) fa
tors areanomaly-free. However, the mass matrix (4.32) has rank two, and only the linear
ombination 4U(1)b � U(1)
 remains massless.U(4)a � U(2)b � U(2)
 mult.(4; 2; 1)�1;�1;0 2(4; 2; 1)�1;1;0 2(4; 1; 2)1;0;�1 2(4; 1; 2)1;0;1 2Table 6.2: Chiral spe
trum of a four generation Pati-Salam model on dP3.125



The resulting DUY 
onditions are very simple in this 
on�guration sin
e allone-loop 
ontributions 
an
el,r� (3r2 + 3r3 + 2r0) = 0;r�  r0 + 3Xm=1 rm! = 0: (6.7)A

ording to our dis
ussion in se
tion 4.7.3 this ensures that �-stability is justthe right 
riterion for the bundle to satisfy the Hermitian Yang-Mills equation.Positivity of the gauge kineti
 fun
tions requiresr�  2r2� � r�(3r0 + 3Xm=1 rm) + r20 � 3Xm=1 r2m!� 2 g2s  �14r� + 3r0 + 3Xm=1 rm! > 0;r� 2r2� � r�(3r0 + 3Xm=1 rm) + r20 � 3Xm=1 r2m!� 2 g2s (30r� � 8r0 � 2r1 � 4r2 � 2r3) > 0;r�  2r2� � r�(3r0 + 3Xm=1 rm) + r20 � 3Xm=1 r2m!+ 2 g2s (16r� + 4r0 + 2r1 + 2r3) > 0:These 
onditions 
an be ful�lled in the perturbative regime inside the K�ahler
one, e.g. for arbitrary r� and gs < 0:11 r�, r0 = 1:8 r�, r1 = r2 = r3 = �0:6 r�.6.2 A three-generation Standard-like model ondP4This se
tion is devoted to a three-generation Standard-like model involving fourve
tor bundles, where we now take the base manifold to be dP4. It 
an beregarded as the generalized S-dual version of the four-sta
k models whi
h havebe
ome popular in the framework of interse
ting branes. Our aim is therefore toobtain a visible gauge group U(3)a�U(2)b�U(1)
�U(1)d and realize the quarksand leptons as appropriate bifundamentals. A possible 
hoi
e of the hyper
hargeas a (massless) 
ombination of the abelian fa
tors is given by QY = 16Qa+ 12(Q
+Qd). In this 
ase, also some of the (anti-)symmetri
 representations 
arry MSSMquantum numbers . The details of the 
hiral MSSM spe
trum we try to reprodu
e
an be found in Table 6.4.Among the many possibilities we 
onsider the simple embedding of the stru
-ture group G = U(1)�U(1)�U(2)�U(1) into U(3)�U(2)�U(2)�U(1). Thisleads to H = U(3)� U(2)� U(1)� U(1)� SO(16) (6.8)modulo the issue of anomalous abelian fa
tors. We 
hoose the bundles 
hara
-terized in Table 6.3. 126



U(ni) �i �i qi �iU(1)a 0 0 1 5l � 3E1 � 5E2 � E3U(1)b 0 0 1 �3l + 5E1 + 2E2 � E3 + E4SU(2)
 0 7l � 3E1 � 3E2 � E3 � E4 0 0U(1)d 0 0 - 1 �5l + 3E1 + 5E2 + E3Table 6.3: De�ning data for a U(1)� U(1)� SU(2) � U(1) bundle.Note that V
 a
tually has stru
ture group SU(2) rather than U(2) sin
e its �rstChern 
lass vanishes, whi
h however makes no di�eren
e in the group theoreti
de
omposition of SO(32). Again, one may verify expli
itly that the 
onditionsfor �-stability are satis�ed. Let us also point out that the requirement (4.16) of
an
ellation of the Witten anomaly, whi
h is non-trivial for odd Na, is satis�edby the 
on�guration. Furthermore, the U(1)Y hyper
harge is indeed masslessas desired (see (4.32)). However, sin
e the rank of the mass matrix is two, weget another massless U(1) in the four-dimensional gauge group, whi
h is readilyidenti�ed as U(1)
. The perturbative low energy gauge group is thereforeH = SU(3)� SU(2)� U(1)Y � U(1)0 � SO(16): (6.9)The degenera
y of the bundle Va and Vd = V �a leads to a gauge enhan
ementof the U(3)a and the U(1)d to a U(4). Apart from these drawba
ks, the 
on�g-uration indeed gives rise to three families of the MSSM 
hiral spe
trum as listedin Table 6.4.In addition, we get some 
hiral exoti
 matter in the antisymmetri
 of the U(2)and in the bifundamental of the SO(16) with the U(3) and U(2), respe
tively (seeTable 6.5).In 
ontrast to the previous example, the 
hosen bundles alone do not satisfythe tadpole 
an
ellation 
ondition. However, the resulting tadpole 
an be 
an-
elled by in
luding H5-branes, whi
h demonstrates the importan
e of allowing forthese non-perturbative obje
ts. From the general form of the tadpole equationwe �nd the four-form 
hara
terizing this tadpole to be[W ℄ = 
2(T ) + 4Xi=1 Ni 
h2(Vi) = 22F + (34l � 8E1 � 22E2 � 14E3 � 6E4) �:(6.10)Its Poin
ar�e dual 
lass [�℄ = 22� + 34l � 8E1 � 22E2 � 14E3 � 6E4 liesinside the Mori 
one, i.e. is e�e
tive, and 
an thus be regarded as the homology
lass asso
iated to a (redu
ible) holomorphi
 
urve around whi
h we may wrapa system of H5-branes. To determine the detailed spe
trum and gauge group127



U(3)a � U(2)b � U(1)
 � U(1)d � SO(16)�Qa Sp(2Na)MSSM parti
le repr. index mult. totalQL (3; 2; 1; 1)(1;�1;0;0) �(X; Va 
 V �b ) 8QL (3; 2; 1; 1)(1;1;0;0) �(X; Va 
 Vb) -11 -3uR (3; 1; 1; 1)(�1;0;�1;0) �(X; V �a 
 V �
 ) -3uR (3; 1; 1; 1)(�1;0;0;�1) �(X; V �a 
 V �d ) 0 -3dR (3; 1; 1; 1)(�1;0;1;0) �(X; V �a 
 V
) -3dR (3; 1; 1; 1)(�1;0;0;1) �(X; V �a 
 Vd) 45dR (3A; 1; 1; 1)(2;0;0;0) �(X;N2s Va) -45 -3L (1; 2; 1; 1)(0;1;�1;0) �(X; Vb 
 V �
 ) -7L (1; 2; 1; 1)(0;1;0;�1) �(X; Vb 
 V �d ) -11L (1; 2; 1; 1)(0;�1;�1;0) �(X; V �b 
 V �
 ) 7L (1; 2; 1; 1)(0;�1;0;�1) �(X; V �b 
 V �d ) 8 -3eR (1; 1; 1; 1)(0;0;2;0) �(X;V2 V
) 0eR (1; 1; 1; 1)(0;0;0;2) �(X;V2 Vd) 0eR (1; 1; 1; 1)(0;0;1;1) �(X; V
 
 Vd) -3 -3�R (1; 1; 1; 1)(0;0;�1;1) �(X; V �
 
 Vd) -3 -3Table 6.4: Chiral MSSM spe
trum for a four-sta
k model withQY = 16Qa+ 12(Q
+Qd).supported by the branes we must 
hoose a de
omposition of [�℄ into irredu
iblee�e
tive 
lasses around ea
h of whi
h we 
an wrap one H5-brane. These aregiven pre
isely by the generators of the Mori 
one in Table 5.1. Note that thede
omposition is not unique and 
onstitutes (part of) the moduli spa
e of ourmodel; what is universal is the total number of 
hiral degrees of freedom 
hargedunder the symple
ti
 se
tor (see Table 6.5) and its total rank. In our 
ase, thelatter is easily found to be 74. For instan
e, the de
omposition[�℄ = 22 � + 22(l � E2 � E3) + 12(l � E1 � E4) + 4E1 + 8E3 + 6E4 (6.11)results in the symple
ti
 gauge group Sp(44)�Sp(44)�Sp(24)�Sp(8)�Sp(16)�Sp(12). The bifundamental exoti
s between the MSSM group and this symple
ti
gauge se
tor 
an be determined with the help of (4.12). Ideally, this group wouldbe hidden, of 
ourse. 128



U(3)a � U(2)b � U(1)
 � U(1)d � SO(16)�Qa Sp(2Na)MSSM parti
le repr. index mult. total- (1; 1A; 1; 1)(0;2;0;0) �(X;N2s Vb) -77 -77- (3; 1; 16; 1)(1;0;0;0) �(X; Va) -1 -1- (1; 2; 16; 1)(0;1;0;0) �(X; Vb) -11 -11- (1; 1; 16; 1)(0;0;1;0) �(X; V
) 0 0- (1; 1; 16; 1)(0;0;0;1) �(X; Vd) 1 1- Pa(3; 1; 1; 2Na)(1;0;0;0) �(X; Va
Oj
) 8 8- Pa(1; 2; 1; 2Na)(0;1;0;0) �(X; Vb
Oj�) 56 56- Pa(1; 1; 1; 2Na)(0;0;1;0) �(X; V

Oj�) 0 0- Pa(1; 1; 1; 2Na)(0;0;0;1) �(X; Vd
Oj�) -8 -8Table 6.5: Chiral exoti
 spe
trum for the four-sta
k model with QY = 16Qa + 12(Q
 +Qd). In the se
ond 
olumn, the �rst two entries refer to the U(3) and U(2) fa
tors, thethird to the SO(16) group and the fourth 
olle
tively represents the symple
ti
 
harges.The U(1) 
harges are read o� from the lower-
ase entries.The only independent DUY equations are those for Va and Vb12(r20 � 4Xm=1 r2m) + r�(2r0 + 2r1 + 4r2 � r4 � 12r�) = �496 g2s ; (6.12)12(r20 � 4Xm=1 r2m) + r�(�6r0 � 6r1 � 3r2 � 2r4 + 72r�) = �1216 g2s ; (6.13)and only �x two of the K�ahler moduli. Note that Va and Vb, being line bundles,automati
ally satisfy the Hermitian Yang-Mills equations. The reason is thattheir �eld strength is 
onstant over the manifold as a 
onsequen
e of the Bian
hiidentity, whi
h in the abelian 
ase implies dF = 0.The SU(2)-bundle V
, by 
ontrast, is su
h that its one-loop part in the DUY
orre
tion vanishes, so that for V
 �-stability is suÆ
ient for supersymmetry.Therefore, the supersymmetry 
ondition redu
es entirely to the DUY equationand no further stability analysis is required.A solution to (6.12) for whi
h the real part of the various gauge kineti
 fun
-tions is positive 
an well be found inside the K�ahler 
one and in the perturbativeregime. E.g. by taking r2 = �2:5 r�; r3 = �1:1 r�; r4 = � r� and gs < 0:41 r�for arbitrary r�, the solution for r0 and r1 satis�es all K�ahler 
one 
onstraints.We 
an therefore always 
hoose r� and gs su
h that the model is indeed in the129



perturbative regime.
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Chapter 7GUT and Standard Model va
uafrom E8 � E8Our ultimate goal is to �nd a new framework for the 
onstru
tion of realisti
 stringva
ua. Con
retely, we have already des
ribed two very promising s
enarios howto arrive at phenomenologi
ally appealing gauge groups and a realisti
 parti
lespe
trum in the framework of the E8 � E8 string. As one of its virtues themethod of embedding U(N) bundles has the potential to yield just the right gaugegroups without relying on the use of Wilson lines on the Calabi-Yau manifold,whi
h would restri
t the 
hoi
e of the ba
kground geometry 
onsiderably. Re
allthat the Wilson lines as 
at abelian gauge bundles inherited from the geometryare repla
ed by veritable line bundles with non-vanishing �rst Chern 
lass. Inother words, we have the freedom to put extra stru
ture on our internal manifoldinstead of having to take from it what we get.The �rst example we en
ountered in se
tion 3.7 was the breaking of E8 downto 
ipped SU(5)� U(1)X via an SU(4)� U(1) gauge instanton, the se
ond onebeing the breaking SU(5)�U(1) � E8 ! SU(3)�SU(2)�U(1)Y , see se
tion 3.8.Provided that we 
an ensure that the abelian gauge fa
tor remains massless, bothmodels therefore su

eed in yielding the right gauge group in four dimensions.In the se
ond 
ase, this is obvious as we obtain the MSSM gauge group dire
tly.In the GUT SU(5)� U(1)X framework, by 
ontrast, we have to rely in additionon a �eld theoreti
 Higgs me
hanism in order to break the GUT group down tothe Standard Model group. Unlike in the Georgi-Glasham SU(5) one arrives atby invoking just 
onventional SU(5) instantons on the Calabi-Yau, the spe
trumin our model 
ipped SU(5) model indeed provides a GUT Higgs �eld suitable toa

omplish this task.The question of primary importan
e is therefore how to keep the U(1) mass-less. One possibility, explored already in se
tion (3.8) for the SU(3) � SU(2)setup, is to redu
e the rank of the non-abelian instanton by embedding severalU(1) bundles into the same E8 fa
tors su
h that the right linear 
ombinationof U(1)s remains massless. While this is possible in prin
iple and indeed givesrise to an extremely ri
h va
uum stru
ture, we witnessed how the additional line131



bundles inevitably produ
ed exoti
 matter. One might try to �nd expli
it bundle
on�gurations su
h that the 
ohomology groups 
ounting this matter are trivial,but we follow here an easier and more natural solution by embedding the extraline bundle not into the same, but rather into the se
ond E8. This leaves thegauge group and matter from the �rst E8 inta
t while it allows nonetheless fora massless 
ombination of the two U(1)s. In both 
ases, the requirement thatthe U(1)X and U(1)Y , respe
tively, do not a
quire a mass automati
ally leads toa spe
trum with pre
isely g generations of 
ipped SU(5)/MSSM matter and nofurther 
hiral exoti
s. The phenomenology of the 
ipped SU(5) model is parti
u-larly attra
tive due to the absen
e of dangerous proton de
ay operators. We willfurthermore see that the predi
tions of both s
enarios for gauge 
oupling uni�
a-tion are 
ompatible with the Standard Model running of the 
oupling 
onstantson
e we take threshold 
orre
tions into a

ount. We have found several three-generation realisations of both the 
ipped SU(5) and the MSSM 
onstru
tionwhi
h are listed in an appendix. The 
ontents on this 
hapter is based on [98℄.7.1 Flipped SU(5)� U(1)X7.1.1 SU(4)� U(1) bundlesThe te
hni
al details of the breaking of E8 down to SU(5) � U(1)X have beendis
ussed at length in se
tion (3.7). For 
onvenien
e we repeat in table 7.1merely the visible spe
trum resulting from the �rst E8 fa
tor upon embedding theSU(4)� U(1) bundle W = V � L�1 (see the dis
ussion after equation (3.147)).SU(5)� U(1)X0 
ohomology (type B) SM part.101 H�(V ) (qL; d
R; �
R) + [H10 +H10℄10�4 H�(L�1) �5�3 H�(V 
 L�1) (u
R; lL)52 H�(V2 V ) [(h3; h2) + (h3; h2)℄15 H�(V 
 L) e
RTable 7.1: Massless spe
trum of H = SU(5)� U(1)X0 models.The massless �elds pre
isely 
arry, up to a 
ommon fa
tor, the U(1)X 
hargesas appearing in the 
ipped SU(5) GUT model [75, 157℄, QX = 12 QX0 .1 Re
allthat this model di�ers from the 
onventional Georgi-Glashow GUT s
enario [158℄1Note that the normalisation of QX , as 
hosen here, di�ers from the one in [75℄ by a fa
torof � 12 . 132



in that the MSSM U(1)Y is not entirely 
ontained in the SU(5), but arises as thespe
i�
 linear 
ombination12QY = �15QZ + 25QX ; (7.1)where Z is the generator of SU(5) 
ommuting with the generators of the Stan-dard Model SU(3) � SU(2). In the normalisation of [75℄ Z is given by Z =diag(�1=3;�1=3;�1=3; 1=2; 1=2). The way how the MSSM matter is organizedinto 
ipped SU(5) multiplets is related to the Georgi-Glashow s
enario by the
ip d
R $ u
R; e
R $ �
R: (7.2)Most importantly, the (10)1 
ontains the right-handed neutrino as a parti
leun
harged under the MSSM SU(3) � SU(2) � U(1)Y , and giving it a VEV 
antherefore serve as the Higgs e�e
t whi
h breaks the GUT group down to the Stan-dard Model one. It is this pe
uliarity of 
ipped SU(5) whi
h at �rst sight allowsus to work on manifolds without Wilson lines. However, if we only 
onsider thebundle (3.147) inside the �rst E8 with 
1(L) 6= 0, one K�ahler/dilaton modulusre
eives a mass from the DUY 
onstraint and therefore also one axion in 
ombi-nation with the U(1)X gauge boson. We expli
itly demonstrated this in se
tion(3.7) by showing that the U(1)X0 is anomalous. Therefore, after GUT Higgsingby H10 the resulting U(1)Y would also be massive. This seems to bring us ba
kinto the old situation that we are for
ed to 
onsider manifolds with non-vanishingfundamental group to allow for non-trivial 
at bundles2.Alternatively, here we propose to embed another line bundle into the se
ondE8 su
h that a linear 
ombination of the two observable U(1)'s remains massless.A priori, one might think that we 
an take any other line bundle L2. However,from the form of the mass terms, in parti
ular (3.88), for the two abelian gaugefa
tors we see immediately that the �rst Chern 
lasses of the abelian bundles inboth E8s must be linearly dependent. The free overall fa
tor relating them 
an of
ourse be absorbed into the linear 
ombination of the two U(1)s whi
h remainsmassless. Therefore, we take L2 = L and embed the dire
t sumW2 = L� L�1 (7.3)into the se
ond E8, where it leads to the breaking E8 ! E7 � U(1)2 and thede
omposition248 E7�U(1)�! � (133)0 + (1)0 + (56)1 + (56)�1 + (1)2 + (1)�2 	 : (7.4)Note that we prefer to invoke the embedding of type B rather than type A alsoin the se
ond E8 fa
tor so that the K-theory 
onstraint 
1(W ) 2 H2(M; 2Z)is trivially satis�ed. The resulting massless spe
trum is displayed in Table 7.2.133



E7 � U(1)2 
ohomology (type B)561 H�(L)12 H�(L2)Table 7.2: Massless spe
trum of H = E7 � U(1)2 models.Clearly, this is just the simplest possible 
hoi
e for the "hidden" bundle. It isstraightforward to 
onsider additional non-abelian summand bundles, but we willnot do so here3.It is needless to state that the tra
e over the se
ond E8 fa
tor yieldstrE(2)8 (F 2) = 4(2�)2 (2 
h2(L)): (7.5)In 
ombination with the 
orresponding expressions (3.150) for the bundle in E(1)8 ,the tadpole 
an
ellation 
ondition for this model, in
luding possible �ve-brane
ontributions, reads
h2(V ) + 3 
h2(L)�Xa Na
a = �
2(T ): (7.6)Let us now take a 
loser look at the 
onditions for masslessness of a linear 
om-bination of the two U(1)s. Clearly, all three kinds of mass terms (3.87), (3.88)and (3.89) for U(1)X0 and U(1)2 must be related by the same 
onstant fa
tor ifsu
h a 
ombination is to exist. We anti
ipated already that the 
ontributionsfrom the K�ahler axions 
an vanish for a linear linear 
ombination only if the �rstChern 
lasses of the line bundles in both E8 fa
tors are linearly dependent. Morepre
isely, taking into a

ount that�X0;X0 = 10; �2;2 = 4; (7.7)as 
an be 
omputed via equ.(3.25), one realizes that pre
isely the linear 
ombi-nation U(1)X = 12 �U(1)X0 � 52 U(1)2� (7.8)has a 
han
e to remain massless. From (3.89) we �nd that in the presen
e of�ve-branes, this requires the absen
e of mass terms from the axions ~ba stemming2For �1(X) = 0, a line bundle with 
1(L) = 0 is always trivial and the observable gaugegroup gets enhan
ed to SO(10).3The reason is that they would produ
e additional matter 
harged under U(1)2 in the se
ondE8 whi
h will therefore appear as exoti
 ele
tri
ally 
harged, but otherwise neutral �elds fromthe point of view of the "visible" se
tor. The only ex
eption is the embedding of an SU(2)�U(1)into the se
ond E8, in whi
h 
ase the analysis goes through almost identi
ally.134



from the self-dual tensors on their worldvolume sin
e these terms 
ontribute withopposite signs in the two E8 se
tors. Going now ba
k to the mass term involvingthe universal axio-dilaton, we 
on
lude that the 
ombination (7.8) indeed remainsmassless if and only if the following 
onditions are satis�edZM 
1(L) ^ 
2(V ) = 0; Z
a 
1(L) = 0 for all M5 branes: (7.9)In this 
ase the resulting 
hiral massless spe
trum simpli�es 
onsiderably and isgiven in table 7.3 .SU(5)� U(1)X � E7 
hirality SM part.(10; 1) 12 �(V ) = g (qL; d
R; �
R) + [H10 +H10℄(10; 1)�2 �(L�1) = 0 �(5; 1)� 32 �(V 
 L�1) = g (u
R; lL)(5; 1)1 �(V2 V ) = 0 [(h3; h2) + (h3; h2)℄(1; 1) 52 �(V 
 L) + �(L�2) = g e
R(1; 56) 54 �(L�1) = 0 �Table 7.3: Massless spe
trum of H = SU(5)� U(1)X models with g = 12 RX 
3(V ).Remarkably, just the requirement that the U(1)X be massless automati
ally leadsto pre
isely g generations of 
ipped SU(5) matter and no further 
hiral exoti
states. This is straightforward to see: Just take the wedge produ
t of the tadpoleequation (7.6) with 
1(L), integrate overM and use (7.9) to �ndZM 
1(L)3 = �12 ZM 
2(T ) ^ 
1(L)=) �(L�1) = 0; �(V 
 L�1) = �(V 
 L) + �(L�2) = �(V ): (7.10)One important and very attra
tive 
onsequen
e of the breaking of E8 to SU(5)via a non-trivial line bundle is that the ele
troweak Higgs 
arries di�erent quan-tum numbers than the lepton doublets, as is obvious from table 7.1. The 
onse-quen
es of this pe
uliarity, whi
h distinguishes the spe
trum of our 
ipped modelsfrom that emerging from 
onventional Wilson line breaking, for the absen
e ofproton de
ay operators will be dis
ussed in the next se
tion.Note that in general the right-handed ele
trons re
eive 
ontributions fromboth the �rst and the se
ond E8. From a phenomenologi
al point of view, weneed to 
ir
umvent these latter in order to avoid non-MSSM like sele
tion rulesfor their Yukawa 
ouplings. They are absent if additionally one requires(7:6); (7:9) and �(L�2) = 0 =) ZM 
31(L) = 0 = ZM 
1(L) ^ 
2(T ) = 0: (7.11)135



With these extra 
onditions, the generalized DUY 
ondition for the bundle Lsimpli�es 
onsiderably, ZM J ^ J ^ 
1(L) = 0; (7.12)and 
ontains only the tree-level part. The same holds for V , of 
ourse. We re
allthe 
ru
ial observation made in se
tion 3.6.3 that it is pre
isely in su
h a situationthat �-stability of V guarantees a solution to the deformed Hermitian Yang-Millsequation for suÆ
iently small gs. Also, equation 7.12 "freezes" only one of theh11 K�ahler moduli. By 
ontrast, the threshold 
orre
tions to the gauge kineti
fun
tions will be non-vanishing. For 
onsisten
y of the low-energy e�e
tive theorywe need to ensure that the DUY 
an a
tually be solved in a regime inside theK�ahler 
one where the real part of the threshold 
orre
ted gauge kineti
 fun
tionsis positive, at least for the unbroken gauge symmetries. Apart form the SU(5)and the hidden E7 symmetry, we will therefore have to 
he
k this 
ondition forthe gauge kineti
 fun
tion of the generator of U(1)X , whi
h is given by4fX;X = 14  fX0;X0 + �52�2 f2;2 � 5 fX0;2! (7.13)in terms of the 
orresponding quantities for U(1)X0 and U(1)2.7.1.2 Yukawa 
ouplings and proton de
ayThis string theory realization of 
ipped SU(5) � U(1)X exhibits many of the
hara
teristi
 features of the �eld theory GUT model. For their details we referto [75, 157, 159, 160℄.The GUT breaking is naturally a

omplished via a non-vanishing va
uumexpe
tation value of the singlet 
omponent in H10+H10. This leads to a naturalsolution of the doublet-triplet splitting problem via a missing partner me
hanismin the superpotential 
oupling 10H12 10H12 5�1: (7.14)The reason is that after GUT breaking all 
omponents of H10 + H10 a
quire aGUT s
ale mass ex
ept for a singlet and a triplet whi
h 
ombine, via the above
oupling, with the triplet h3 in the 51, i.e. the ele
tro-weak Higgs, in just theright way as to make it heavy. More details are given in [159℄.This has very attra
tive 
onsequen
es for proton stability sin
e problemati
dimension-�ve operators involving the otherwise present h3 
omponent and whi
hwould mediate proton de
ay 
an be suppressed. Furthermore, as shown in [161℄,
ipped SU(5) di�ers from the Georgi-Glashow model in that also the dimension-six proton de
ay operators, emerging after integrating out the o�-diagonal gauge4See appendix C for some remarks on this point.136



bosons in the (3; 2), 
an be 
ompletely eliminated. Additional details and morereferen
es 
an also be found in [162℄.Moreover, the gauge invariant Yukawa 
ouplings10i12 10j12 5�1; 10i12 5j� 32 51; 5i� 32 1j52 5�1; (7.15)lead to Dira
 mass-terms for the d, (u; �) and e quarks and leptons after ele
-troweak symmetry breaking. If there exist additional gauge singlets �10, then 
ou-plings of the form 10i12 10H� 12 �10 
an give rise to Majorana type neutrino massesand therefore to a see-saw me
hanism. These gauge singlets are 
ertainly presentin our set-up in the form of the ve
tor bundle moduli, i.e. non-
hiral matter
ounted by H�(M; V 
 V �).Sin
e the ele
troweak Higgs 
arries di�erent quantum numbers than the leptondoublet, the dangerous dimension-four proton de
ay operatorsl l e 2 5i� 32 1j52 5k� 32 ; qd l; udd 2 10i12 10j12 5k� 32 (7.16)are not gauge invariant and thus absent. A detailed dis
ussion of this pe
uliarproperty of heteroti
 
onstru
tions with line bundles has re
ently been givenin [102℄ in the 
ontext of Georgi-Glashow SU(5).7.1.3 Gauge 
oupling uni�
ationWe now dis
uss the issue of gauge 
oupling uni�
ation in detail.The basis of the subsequent analysis is the well-known logarithmi
 runningof the 
oupling 
onstants for the gauge fa
tors, labelled by i, in some low-energye�e
tive �eld theory, 1�(�)i = ki�GUT + bi2� log� �MGUT � : (7.17)Here, �GUT represents the values of the inverse squared gauge 
oupling (times4�) of a hypotheti
al GUT gauge group at the uni�
ation s
ale MGUT . The
oeÆ
ients bi parameterise the �eld theoreti
 running of the 
ouplings due toone-loop graphs. Their value is of 
ourse set by the 
harged parti
le 
ontent upto the GUT s
ale. The well-known observation for the Standard Model is that,given the values for �3, �Y and �2 measured at the weak s
ale and under theassumptions of just the MSSM matter up toMGUT , the system of three equations(7.17) is satis�ed with MGUT = 2 � 1016 GeV and k3 = k2 = 35kY [163, 164℄.Now if one breaks a stringy SU(5) or SO(10) GUT model down to the Stan-dard Model via dis
rete Wilson lines, then the underlying string theory alreadymakes a de�nite predi
tion for the parameters ki whi
h relate the gauge 
ouplingsatMGUT . These are indeed the usual ones as for SU(5) or SO(10) GUT theories,i.e. �3 = �2 = 53�Y = �GUT : (7.18)137



Consequently, for 
onsisten
y with the observed MSSM 
ouplings at the weaks
ale, one 
an dedu
e from (7.17) that �GUT ' 124 .As we have seen, in String Theory, the gauge 
ouplings 
omprise, beyondtheir tree-level part, additional string one-loop threshold 
orre
tions. Under thephenomenologi
al assumption that up to �GUT the MSSM spe
trum is not aug-mented by additional light �elds, a phenomenologi
ally a

eptable string va
uummust therefore reprodu
e the relations (7.18) for the full, possibly threshold 
or-re
ted, gauge 
ouplings. If we are in a regime where the threshold 
orre
tionsare negligible, then (7.18) must hold at string tree-level; otherwise the threshold
orre
tions must be su
h that (7.18) is satis�ed for the 
omplete 
ouplings.An additional 
ompli
ation arises due to the observation that for the weakly
oupled heteroti
 string, the predi
tion for the Plan
k s
ale is too low. The reasonis that for small string 
oupling, gs � 1, the theory relates the four-dimensionalNewton's 
onstant and the uni�
ation s
ale viaGN � � 43GUTM2GUT : (7.19)For the details of the derivation see e.g. [90℄. Assuming the quoted values forMGUT and �GUT , the lower bound on GN is too large by a fa
tor of 400 [90℄.This 
an be remedied in the strong 
oupling Horava-Witten theory [76, 77, 90℄.Here it turns out that the values of the eleven-dimensional Plan
k mass M11, �and rCY =M�1GUT have to lie within a parti
ular range in order to be 
ompatibleboth with the GUT relations and the Plan
k s
ale 5. It is noteworthy thatalready the standard Wilson line approa
h to GUT breaking requires a tuning ofthe parameters of the internal manifold and the size of the eleventh dimensionin order to predi
t 
orre
tly the observationally inferred GUT s
ale and Plan
kmass.Let us now analyse the gauge 
oupling behaviour in our models. Clearly, ifwe 
onsider Higgs breaking of the 
ipped SU(5) GUT model down to the MSSM,then the predi
tion for the MSSM tree-level 
ouplings �3 and �2 at the GUT s
aleis simply �3 = �2 = �5, sin
e they both emerge from the same SU(5). What isspe
ial is that the U(1)X and therefore also the �nal U(1)Y gauge symmetry, by
ontrast, have their origin in both E8 walls. Re
all the de�nitions of the variousabelian 
harges as12QY = �15QZ + 25QX ; QX = 12 �QX0 � 52Q2� (7.20)so that the gauge kineti
 fun
tions satisfy the relationfY Y = 425  fZ;Z + fX0;X0 + �52�2 f2;2 � 5 fX0;2! : (7.21)5Very qualitatively, this means that 1 � rCY � � in string units. The pre
ise 
onstraints
an be found in [90℄. 138



Sin
e QZ is the diagonal U(1) generator within SU(5), the gauge 
ouplings areidenti
al up to the normalisationfZ;Z = 512fSU(5): (7.22)The non-abelian gauge 
oupling of the SU(5) in
luding the one-loop 
ontri-bution follows from (3.103) as1�5 = 13`6sg2s ZM J ^ J ^ J � 1̀2s ZM J ^ ��
2(V ) + 
21(L) + 12
2(T )�+ 1̀2s Xa Na �12 � �a�2 Z
a J: (7.23)Using �X0;X0 = 40; �2;2 = 4; �1;1 = 10; �2;2 = 4; (7.24)we 
an likewise read o� the expressions for fX0;X0; f2;2 and fX0;2 from (3.104) and(3.105). In view of the relations (7.21) and (7.22) we eventually 
on
lude that1�Y = 83 1�5 � 1̀2s ZM J ^ �
2(V ) + 4 
21(L)�+ 2̀2s Xa Na�a Z
a J: (7.25)Note that the se
ond and third summands in (7.25) arise at one-loop as 
omparedto the lowest order 
ontribution in 1�5 . As we see, these string models do not giverise to the usual GUT tree level relation �GUT = 53�Y , but instead to �GUT = 83�Y .Therefore, if we assume just the Standard Model spe
trum up to the uni�
ations
ale (i.e. no additional ve
tor-like matter like Higgs pairs) and if we are ina situation where the threshold 
orre
tions present in (7.25) are negligible, thegauge 
ouplings do not unify at MGUT . This is, however, not 
ompelling on
e wegive up one of the two stated assumptions. As far as the threshold 
orre
tions are
on
erned, depending on their pre
ise value in the va
uum under 
onsideration,they 
an eventually give a uni�ed gauge 
oupling pi
ture again. De�ning1�Y = 83 1�GUT +� (7.26)we see that the threshold 
orre
tion must take the value � = � 1�GUT � �24, i.e.1�Y ���1�loop= �38 1�Y ���tree: (7.27)For �GUT = 1=24, su
h a relation 
an just be satis�ed with gs < 1 and rCY > p�0for large enough Chern 
lasses of the ve
tor bundles. We will see in the nextse
tion that for our expli
it models this is indeed possible. Of 
ourse, in theweakly 
oupled heteroti
 framework, the Plan
k s
ale still 
omes out too low and139



one must 
onsider Horava-Witten theory, where now the next-to-leading order
orre
tions to the gauge 
ouplings are to be taken into a

ount.To 
on
lude, what distinguishes our models from the standard Wilson lineapproa
h to GUT breaking is the appearan
e of one further 
onstraint on thegeometry of the 
ompa
ti�
ations. We reiterate that in the standard s
enario,too, the 
ondition that the four-dimensional Plan
k mass 
ome out 
orre
tlyredu
es the predi
tive power of the setup in that it involves additional tuningof the geometri
 parameters of the ba
kground. In that respe
t, in
luding also(7.27) into the model building wish-list is 
on
eptually just along the lines of thestandard pro
edure.Alternatively, one 
an 
ontemplate that extra light Higgs �elds, if present inthe non-
hiral spe
trum, might lead to gauge 
oupling uni�
ation at a di�erents
ale. However, this s
ale is ne
essarily lower than the usual GUT s
ale, whi
hworsens the mismat
h of the Plan
k s
ale.7.1.4 An example on dP4Having dis
ussed the 
hief phenomenologi
al aspe
ts of our heteroti
 
ippedSU(5) 
onstru
tion, we now prove that it is indeed possible to �nd expli
it re-alisations in our framework whi
h meet all the string 
onsisten
y 
onditions andgive rise to pre
isely the 
hiral MSSM spe
trum. We 
hoose as our ba
kgroundmanifold ellipti
ally �bered Calabi-Yau threefolds over the base dP4 (see se
tion5.3 for a summary of their properties). We re
all in parti
ular that the se
ondChern 
lass of the tangent bundle is given by (5.8),
2(T ) = [36l � 12 4Xi=1 Ei℄ � + 62F; (7.28)where 
1(dP4) is expanded in the 
ohomologi
al basis and F is the 
lass of the�ber. The Mori 
one is generated by the 10 e�e
tive 
lasses Ei, l � Ei � Ej,i; j = 1; : : : ; 4, i 6= j.We have found a 
ouple of three-generation 
ipped SU(5) va
ua satisfyingall the required 
onstraints. They are displayed in table D.1 of appendix D. We
hoose the following example to demonstrate their properties. The U(4) bundleis given by the data � = 14 ; q = 0;� = 14l � 2E1 � 6E2 � 6E3 � 2E4; (7.29)
1(�) = �4l + 4E2 + 4E3 + 4E4:Note that the �rst Chern 
lass of the line bundle N in the spe
tral 
over 
on-stru
tion (5.23) is an integer 
lass, as required:
1(N ) = 3� + ��C (8l � 2E1 � 3E2 � 3E3 � 2E4) : (7.30)140



It is easy to see that j�j is base point free, sin
e its interse
tion with the generatorsof the Mori 
one is always positive. One 
an also easily show that � is e�e
tive aswell as �� 4
1(dP4) = 2l+2E1� 2E2� 2E3+2E4. Thus, this bundle is �-stable.The resulting Chern 
lasses are
1(V ) = �4l + 4E2 + 4E3 + 4E4; (7.31)
2(V ) = [14l � 2E1 � 6E2 � 6E3 � 2E4℄ � � 29F: (7.32)In our setup, the �rst Chern 
lass of the line bundle must be equal to the �rstChern 
lass of the ve
tor bundle (see (3.147)), thus
1(L) = �4l + 4E2 + 4E3 + 4E4: (7.33)To �nd a solution to the tadpole 
ondition, we also in
lude M5-branes. Their
ombined asso
iated 
ohomology 
lass is[W ℄ = 27F + (22l� 10E1 � 6E2 � 6E3 � 10E4) �: (7.34)To make physi
al sense, [W ℄ must be Poin
ar�e dual to the homology 
lass of a
urve 
 inM, and must be therefore e�e
tive. [W ℄ is e�e
tive if its part on the�ber is greater than or equal to zero and its part on the base is e�e
tive in B.Therefore, we rewrite [W ℄ in terms of generators of the Mori 
one,[W ℄ = Xa Na
a = 27F + [12E1 + 6(l � E1 � E2) (7.35)+6(l� E1 � E3) + 10(l � E1 � E4)℄ �:The generators of the Mori 
one, being irredu
ible as e�e
tive 
lasses, representthe 
lasses dual to the irredu
ible 
urves 
a around whi
h we wrap Na �ve-branes. In general, this de
omposition is not unique. However, we also haveto satisfy the 
onstraint R
a 
1(L) = 0 for a massless U(1)X , and (7.35) is theonly remaining de
omposition 
ompatible with this requirement. The tadpole
an
ellation 
ondition for this setup, written in terms of Chern 
lasses, takes theform �
2(V ) + 2
21(L)� [W ℄ = �
2(T ) (7.36)and is indeed satis�ed. It is a simple 
al
ulation to show that the 
onditions tokeep the U(1)X in the 
ipped SU(5) model massless holdZM 
1(L) ^ 
2(V ) = 0; Z
a 
1(L) = ZM 
1(L) ^ 
a = 0: (7.37)Sin
e the Chern 
lass of the line bundle has no part in the �ber, the integral overits third power trivially vanishes,ZM 
31(L) = 0; (7.38)141



and thus a 
ontribution to the right-handed ele
trons from the se
ond E8 fa
toris prevented. The number of generations in our example is given by�(V ) = 12 ZM 
3(V ) = 3 (7.39)sin
e RM 
1(V ) ^ 
2(V ) = RM 
1(L) ^ 
2(V ) = 0.Expanding the K�ahler 
lass in the 
ohomologi
al basis,J = l2s(r�� + r0l + 4Xm=1 rmEi); (7.40)the DUY-equation (7.12)ZM J ^ J ^ 
1(L) = �8l4sr�(r0 + r2 + r3 + r4) = 0 (7.41)�xes one K�ahler modulus. There exist solutions inside the K�ahler 
one. Take asan example 0 < r� < 2�; r0 = 3�; rm = ��; m = 1; : : : ; 4: (7.42)With this 
hoi
e, equation (7.41) holds and the K�ahler 
lass lies inside the K�ahler
one for every � 2 R+ .The universal gauge 
oupling for the non-abelian visible gauge group (3.103)
an be 
omputed as64�g21 = 13g2s �5r3� � 15r2��+ 15r��2�� 24r� � 4�� (12 � �5)2(7r� � 34�); (7.43)whi
h is positive for a suitable 
hoi
e of parameters. The abelian gauge 
ouplingsare given by (3.104,3.105)4�Re (fi;i) = �i;i4 � 13g2s (5r3� � 15r2��+ 15r��2) (7.44)�24r� � 4�� (12 � �5)2(7r� � 34�)�+ 3203 r�;4�Re (fX0;2) = �1603 r� (7.45)with �X0;X0 = 40 and �2;2 = 4. The resulting gauge 
oupling (7.13) for the U(1)Xis then positive again:4�Re fX;X = 6516 � 13g2s (5r3� � 15r2��+ 15r��2)� 24r� � 4� (7.46)�(12 � �5)2(7r� � 34�)�+ 260 r�:6Note that in the following equations, �5 is the �ve-brane modulus and not the parameterbelonging to the bundle data. 142



In view of the dis
ussion of possible gauge 
oupling uni�
ation, we note thatthe threshold 
orre
tion as de�ned in 7.27 is, assuming for simpli
ity that �a = 0for all �ve-branes,� = � 1̀2s ZM J ^ �
2(V ) + 4 
21(L)� = 183r� � 26� (7.47)and has the 
orre
t sign if r� < 26183�.Note that with this 
hoi
e for r�, the positivity of the gauge 
ouplings 
anstill be a
hieved and, equally importantly, it is 
onsistent with the requirementthat r� � � in order that the proof of �-stability of the bundles 
an be trusted.To summarize, this example with three 
hiral generations satis�es the tadpole
ondition (7.6) as well as the 
onstraints (7.9) guaranteeing a massless U(1)X .We have no non-MSSM like sele
tion rules for the Yukawa 
ouplings of the right-handed ele
trons sin
e there are indeed no 
ontributions from the se
ond E8(7.11). Furthermore, the K�ahler moduli 
an be 
hosen su
h that the DUY equa-tion (7.12) holds and the gauge 
ouplings are positive.In appendix D, we list all three-generation models we have found on dP4by a 
omputer sear
h whi
h likewise satisfy all these 
onditions. We have alsofound three-generation examples for a s
enario dire
tly giving rise to the StandardModel gauge symmetry, to be dis
ussed in the next se
tion.7.2 Just the SU(3)�SU(2)�U(1)Y gauge symme-try7.2.1 SU(5)� U(1) bundlesAs we have spelled out in se
tion 3.8.1, the dire
t breaking of E8 to the StandardModel group is possible by 
hoosing a bundle with stru
ture group SU(5) �U(1)Y 0, resulting in gauge group SU(3) � SU(2) � U(1)Y 0 . Similarly to the
ipped SU(5) 
onstru
tion, we embed a bundle of type B,W = V � L�1; with 
1(V ) = 
1(L); rank(V ) = 5 (7.48)into the �rst E8.We have seen that again the U(1)Y 0 by itself 
annot remain massless so thatwe will perform the same 
onstru
tion as for the 
ipped SU(5) model. We 
antherefore be 
omparatively brief about the details of the largely analogous 
on-stru
tion. We embed the line bundle L, or rather W2 = L � L�1, also in these
ond E8 and realize that here the linear 
ombinationU(1)Y = 13 (U(1)Y 0 � 3U(1)2) (7.49)remains massless if again the 
onditionsZM 
1(L) ^ 
2(V ) = 0; Z
a 
1(L) = 0 (7.50)143



are satis�ed. The resulting 
hiral massless spe
trum takes the simple form givenin table 7.4.SU(3)� SU(2)� U(1)Y � E7 
hirality SM part.(3; 2; 1) 13 �(V ) = g qL(3; 2; 1)� 53 �(L�1) = 0 �(3; 1; 1) 23 �(V2 V ) = g d
R(3; 1; 1)� 43 �(V 
 L�1) = g u
R(1; 2; 1)�1 �(V2 V 
 L�1) = g lL(1; 1; 1)2 �(V 
 L) + �(L�2) = g e
R(1; 1; 56)1 �(L�1) = 0 �Table 7.4: Massless spe
trum of H = SU(3) � SU(2) � U(1)Y models with g =12 RM 
3(V ).Therefore, one gets pre
isely g generations of Standard Model matter withouta right-handed neutrino. The right-handed ele
trons have 
ontributions fromboth the �rst and the se
ond E8. The latter are again absent if additionally onerequires ZM 
31(L) = 0: (7.51)In this model, there are no additional gauge or obvious dis
rete symmetries 
ar-ried by the Standard Model parti
les, so that the dangerous dimension four protonde
ay operators are not ne
essarily vanishing. We refer to table D.2 in appendixD for a 
ouple of examples with just the Standard Model 
hiral matter whi
hwe have found in this setup using the spe
tral 
over method over dP4 �beredCalabi-Yau threefolds.7.2.2 Gauge 
oupling uni�
ationThe issue of gauge 
oupling uni�
ation is pre
isely the same as what we haveen
ountered in the 
ipped SU(5) 
ontext. Now the gauge kineti
 fun
tion forU(1)Y = 13 (U(1)Y 0 � 3U(1)2) (7.52)follows as fY;Y = 19 (fY 0;Y 0 � 6fY 0;2 + 9f2;2) : (7.53)144



Ea
h individual term above 
an be 
omputed from the general expressions (3.104)and (3.105) with the help of the tra
e parameters�1;1 = 60; �2;2 = 4; �1;1 = 12; �2;2 = 4; (7.54)and the gauge 
ouplings for SU(3) and SU(2) equal the expression (7.23). Oneeventually 
on
ludes that again1�Y = 83 1�3;2 � 1̀2s ZX J ^ �
2(V ) + 4 
21(L)�+ 2̀2s Xa Na�a Z
a J: (7.55)We therefore �nd ourselves exa
tly in the same situation as in se
tion (7.1.3), towhi
h we refer for a dis
ussion of the signi�
an
e of this result for gauge 
ouplinguni�
ation.
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Chapter 8Con
lusions and OutlookThe embedding of unitary bundles into the ten-dimensional gauge group of theheteroti
 string reveals a remarkably ri
h and hitherto negle
ted stru
ture. Atthe 
on
eptual level, the starring role in geometri
 string 
ompa
ti�
ations isplayed by holomorphi
 stable bundles - both in the heteroti
 and the Type I/Type IIB orientifold 
orner of the M-theory moduli spa
e. Despite the di�er-en
es in the fundamental worldsheet formulation of these dual theories, we 
antherefore apply basi
ally the same te
hniques to an investigation of their pertur-bative four-dimensional va
ua. The di�eren
es in the stru
ture of the emerginggauge se
tor in this setup has been identi�ed as being primarily due to the grouptheoreti
 features of E8 � E8 on the one hand and SO(32) on the other, mostnotably the respe
tive natural subgroups in
luding the de
omposition of the ad-joint representation. The identi
al massless spe
trum emerging from the SO(32)heteroti
 and the Type I string on D9-branes with unitary gauge 
ux is satis-fa
tory in view of the 
onje
tured S-duality relating both des
riptions, but not
ompletely trivial - after all S-duality is a non-perturbative symmetry and in-ter
hanges, at the mi
ros
opi
 level, the fundamental strings of one theory withthe solitoni
, non-perturbative obje
ts of the other. In that respe
t we point outthat although we found 
omplete agreement in our spe
i�
 setup, there is still apuzzle remaining how the re
ent emergen
e of various spinor representations inthe 
ontext of SO(32) heteroti
 orbifold models [140℄ 
an be understood from thepoint of the view of our bundle 
onstru
tions. An answer to this question mightwell follow from a better understanding of the general relation between orbifold
onstru
tions and smooth Calabi-Yau 
ompa
ti�
ations.Fo
using again on the latter, it perfe
tly �ts into the pi
ture just sket
hedthat the well-established �0-
orre
tions to the supersymmetry 
ondition for ba
k-ground gauge �elds translate into string-loop 
orre
tions on the heteroti
 side.For the SO(32) theory the expressions we found for the integrated supersymme-try 
ondition are in one-to-one 
orresponden
e with the Type IIB MSSM equa-tion [145℄ and only depend on the information of the individual U(N) gauge fa
torunder 
onsideration. Clearly this just what we expe
t from the S-dual pi
ture ofindependent magnetized D9-brane sta
ks. For the E8 � E8 theory, by 
ontrast,147



the one-loop 
orre
tion involves 
ontributions from all ba
kground instantons.On the Type IIB side the perturbative �0-
orre
tions are known to a�e
t notonly the integrated supersymmetry equation, but also the lo
al Hermitian Yang-Mills equations and therefore modify the stability 
ondition from �-stability, validat tree-level, to �-stability. This inspired us to 
onje
ture a 
orresponding modi-�
ation of the stability 
ondition on the bundles also on the heteroti
 side whi
hwe 
alled �-stability. Both �- and �-stability seem to be the right 
riterion onlyin the stri
t perturbative sense and appli
able only under the assumption thatthe tree-level part in the respe
tive slope dominates in a well-de�ned mannerover the string-loop or �0-
orre
tion. In addition, the non-perturbative 
ontribu-tions indu
ed by worldsheet instantons in Type IIB make out the full �-stability
ondition in the derived bounded 
ategory of 
oherent sheaves and are expe
tedto have a heteroti
 
ounterpart in the form of spa
etime instantons. A detailedstudy of these e�e
ts in
luding the pre
ise mathemati
al de�nition of heteroti
�-stability is to follow. Independently of this mathemati
al question it wouldbe important to justify the proposed deformation of the Hermitian Yang-Millsequation by an analysis of the ten-dimensional Killing spinor equations at theone-loop level.In pra
ti
al terms, the supersymmetry and thus stability 
ondition on the het-eroti
/Type IIB side appears to be more approa
hable than in the mirror dualframework of Type IIA orientifolds. The reason is that the spe
ial Lagrangian
ondition on supersymmetri
 three-
y
les for A-branes is beyond the regime of
omplex geometry, whose powerful te
hnology, on the other hand, enables oneto 
onstru
t quite general supersymmetri
 holomorphi
 bundles as the dual ob-je
ts. In this way, we 
an view the embedding of unitary bundles into the SO(32)heteroti
/Type I string as bypassing the unsolved mathemati
al problem of iden-tifying spe
ial Lagrangian three-
y
les on general Calabi-Yau manifolds.As far as the model building prospe
ts are 
on
erned, the most prominent ad-vantage of the embedding of unitary bundles into the E8�E8 string is the "de
ou-pling" of the gauge bundles from the topology and geometry of the ba
kgroundmanifold in that we do no more depend on the presen
e of a non-trivial �rstfundamental group. We expe
t this to be of 
ru
ial assistan
e when it 
omes toextending heteroti
 model building to the more realisti
 framework of non-K�ahler
ompa
ti�
ations with non-vanishing form �eld 
uxes. This will eventually beinevitable in order to ta
kle su
h pressing problems as moduli stabilisation anddynami
al supersymmetry breaking with nonetheless realisti
 gauge se
tors.As a �rst step, however, we have restri
ted our expli
it model sear
h to thestandard framework of ellipti
ally �bered Calabi-Yau ba
kgrounds where we 
anrely on the spe
tral 
over 
onstru
tion of stable holomorphi
 bundles. Even a verypreliminary sear
h has revealed a number of va
ua with 
ipped SU(5)� U(1)Xand MSSM gauge group and pre
isely the observed three generations of 
hiralmatter. From the phenomenologi
al point of view, this is just the very �rst step.A 
omputation of the 
ohomology groups whi
h 
ount the 
harged matter willalso reveal the amount of ve
tor-like matter pairs whi
h 
annot be dedu
ed just148



from the Euler 
hara
teristi
 of the gauge bundles. In parti
ular, we need todetermine the number of ele
tro-weak Higgs pairs and, in the 
ase of the 
ippedSU(5) � U(1)X models, the number of GUT Higgses whi
h are required for theva
ua to give rise to realisti
 models at the weak s
ale. A derivation of themathemati
al methods required for this 
omputation is beyond the s
ope of thisthesis and is postponed to the forth
oming publi
ation [165℄, where we will alsoexploit the framework of stable bundle extensions for our model sear
h. Let usmerely anti
ipate here that this te
hnique seems to provide us with a surprisinglylarge number of models with a very realisti
 spe
trum in
luding the appearan
eof pre
isely three families of quarks and leptons.An even more 
hallenging task will be the 
omputation of the Yukawa 
ou-plings and �-terms, possibly along the lines of [166{168℄. As we brie
y outlined,there seem to exist no a priori sele
tion rules in our 
ase whi
h forbid any of thephenomenologi
ally required Yukawas, but the expli
it 
omputation of the phys-i
al 
ouplings is only possible on
e we know the K�ahler potential for the 
hargedmatter �elds in order to normalise their kineti
 terms appropriately.Our entire analysis has fo
used on the perturbative, large volume regime andavoided an expli
it worldsheet formulation. It is not only of a
ademi
 interest,though, to 
larify the status of the underlying (0; 2) non-linear �-model andwhether or not it admits a des
ription in terms of a Landau-Ginzburg [169℄ orgauged linear �-model [31℄. In su
h situations, the theory 
an be shown to befree of potentially destabilising worldsheet instantons [170{172℄.In the absen
e of a deeper understanding of the stru
ture prin
iples behindthe vast lands
ape of string va
ua the fate of all string model building attempts isto resemble the sear
h for the famous needle in a hay sta
k. Unless this situation
hanges drasti
ally due to some revolutionary insights, it appears therefore rea-sonable to supplement the 
on
rete model-by-model sear
h by a statisti
al analy-sis of the distribution of the 
hara
teristi
 features in the moduli spa
e of va
ua.In view of the 
on
eptual similarities of the gauge se
tors arising on the Type IIand the heteroti
 side, the statisti
al approa
h performed in [155, 156, 173, 174℄for Type IIA orientifolds or of [63℄ for models at the Gepner point seems withinrea
h also for the heteroti
 string. Su
h an analysis of a spe
ial 
lass of non-supersymmetri
 four-dimensional heteroti
 va
ua has re
ently appeared in [175℄.After all, the aim of String Theory is none less than to determine the status ofthe observed laws of Nature within the set of thinkable worlds.

149



150



Appendix ASome useful mathemati
al fa
ts
A.1 Topologi
al invariants of ve
tor bundlesThroughout this thesis we have made extensive use of various topologi
al invari-ants of ve
tor bundles. For 
onvenien
e of the reader we 
olle
t here some usefulde�nitions and identities. Mu
h more information 
an be found e.g. in [176℄.Let V be a 
omplex rank r ve
tor bundle over a 
omplex d-dimensional man-ifold with �eld strength F . Then the total Chern 
hara
ter 
h(V ) is de�nedas 
h(F ) = tr e 12�F = dXk=1 
hk(V )
hk(V ) = 1k! (2�)k trF k: (A.1)Note that 
h0(V ) = r. Furthermore the Chern 
hara
ters of the 
omplex 
onju-gate bundle V � are 
hk(V �) = (�1)k
hk(V ): (A.2)The Chern 
hara
ter of the tensor produ
t and the Whitney sum of two ve
torbundles Va and Vb of rank ra and rb respe
tively 
an be found from the relation.
h(Va 
 Vb) = 
h(Va) ^ 
h(Vb);
h(Va � Vb) = 
h(Va) + 
h(Vb): (A.3)In parti
ular,
h0(Va 
 Vb) = ra rb
h1(Va 
 Vb) = rb 
h1(Va) + ra 
h1(Vb); (A.4)
h2(Va 
 Vb) = rb 
h2(Va) + 
h1(Va) ^ 
h1(Vb) + ra 
h2(Vb)
h3(Va 
 Vb) = rb 
h3(Va) + 
h1(Va) ^ 
h2(Vb) + 
h2(Va) ^ 
h1(Vb) + ra 
h3(Vb):151



It immediately follows that the Chern 
hara
ters of the "adjoint" V 
 V �bundle read 
h0(V 
 V �) = 2r;
h1(V 
 V �) = 0;
h2(V 
 V �) = 2r 
h2(V )� (
h1(V ))2; (A.5)
h3(V 
 V �) = 0:For the Chern 
hara
ters of the antisymmetri
 and symmetri
 tensor produ
tsone 
an prove that (see e.g. [153℄)
h1(V2V ) = (r � 1) 
h1(V );
h2(V2V ) = (r � 2) 
h2(V ) + 12 
h21(V ); (A.6)
h3(V2V ) = (r � 4) 
h3(V ) + 
h2(V ) 
h1(V ):and 
h1(N2V ) = (r + 1) 
h1(V );
h2(N2V ) = (r + 2) 
h2(V ) + 12 
h21(V ); (A.7)
h3(N2V ) = (r + 4) 
h3(V ) + 
h2(V ) 
h1(V ):By 
ontrast, the total Chern 
lass 
(V ) of a ve
tor bundle V is de�ned as
(V ) = det(1 + 12�F ) = min(r;d)Xk=1 
k(V ) (A.8)and satis�es 
(Va � Vb) = 
(Va) ^ 
(Vb): (A.9)In parti
ular 
0(V ) = 1 and for a line bundle L all Chern 
lasses higher thank = 1 vanish identi
ally, 
(L) = 1 + 
1(L).The �rst three Chern 
lasses and Chern 
hara
ters are related as
h1(V ) = 
1(V );
h2(V ) = �
2(V ) + 12
21(V );
h3(V ) = 12
3(V )� 12 
1(V ) ^ 
2(V ) + 16
31(V ): (A.10)The relevan
e of the Chern 
hara
ters is obvious from their appearan
e inthe Hirzebru
h-Riemann-Ro
h index theorem, whi
h 
ounts, as we re
all from152



se
tion 2.2, the alternating Hodge numbers of the twisted Dolbeault 
omplex,�(M; V ) = 3Xi=0 (�1)i dim(H i(M; V ) = ZM 
h(V ) ^ Td(TM)= ZM �
h3(V ) + 112 
2(TM) 
1(V )� : (A.11)The last line is valid only if the manifold has 
omplex dimension 3. The otherlowest dimensional 
ases follow from the de�nition of the Todd 
lassesTd0(V ) = 1;Td1(V ) = 12
1(V ); (A.12)Td2(V ) = 112(
21(V ) + 
2(V )): : :Restri
ting ourselves again to the 
ase that dim(M) = 3, we 
an 
ompute theEuler 
hara
teristi
s of produ
ts of bundles Va 
 Vb with the help of the formula�(Va 
 Vb) = ra �(Vb) + rb �(Va) + 
1(Va) 
h2(Vb) + 
h2(Vb) 
1(Va): (A.13)Finally, for the Euler 
hara
teristi
 of the antisymmetri
 produ
t bundle V2 Vone obtains�(V2 V ) = (r � 4)�(V ) + 
1(V )�
h2(V ) + 14
2(TM)� (A.14)and for the symmetri
 produ
t bundleN2s V�(N2s V ) = (r + 4)�(V ) + 
1(V )�
h2(V )� 14
2(TM)� : (A.15)A.2 Some general tra
e identitiesWe now display some useful tra
e identities for E8 � E8, SO(32) and unitarygroups whi
h we have used in various pla
es of this work. A more 
ompletea

ount 
an also be found e.g. in [177℄.The symbol tr denotes, unless we expli
itly spe
ify the representation other-wise, the tra
e over the fundamental representation of a gauge group, while Trrefers to the adjoint. The two obje
ts are related as follows for the 
ases relevantfor our purposes:TrSU(N)F 2 = 2N trSU(N)F 2;TrSO(N)F 2 = (N � 2) trSO(N)F 2; (A.16)153



TrE8F 2 = 30 trE8F 2;TrSU(N)F 4 = 2N trSU(N)F 4 + 6 (trSU(N)F 2)2TrSO(N)F 4 = (N � 8) trSO(N)F 4 + 3 (trSO(N)F 2)2 (A.17)TrE8F 4 = 9 (trE8F 2)2:In evaluating the �eld theoreti
 anomaly six-forms we also en
ounter tra
esover the symmetri
 and antisymmetri
 representations. For SU(N) the onesrelevant for us are given bytrAntiSU(N)F 2 = (N � 2) trSU(N)F 2;trSymSU(N)F 2 = (N + 2) trSU(N)F 2; (A.18)trAntiSU(N)F 3 = (N � 4) trSU(N)F 3;trSymSU(N)F 3 = (N + 4) trSU(N)F 3: (A.19)The se
ond order Casimir for SO(N) is of 
ourse justtrAntiSO(N)F 2 = TrSO(N)F 2 = (N � 2) trSO(N)F 2: (A.20)A.3 Tra
e identities for the SO(32) heteroti
 stringWe 
olle
t here some useful tra
e identities for the spe
trum of the SO(32) het-eroti
 string U(ni) fa
tors diagonally embedded into U(niNi) as displayed in table(4.1).TrFF 3 = 12 KXj=1 Nj fj ^ 4trU(nj)F 3 + trU(nj)F KXi=1 NitrU(ni)F 2! ;TrF 2F 2 = 4 KXj=1 �trSU(Nj)F 2 +Nj (fj)2� ^ �12 trU(nj)F 2 + nj KXi=1 Ni trU(ni)F 2�+ 8 KXi;j=1NiNj fi fj ^ trU(ni)F trU(nj)F + 2 trSO(2M)F 2 ^ KXj=1 Nj trU(nj)F 2;TrF 2 = 30 trSO(2M)F 2 + 60 KXj=1 nj �trSU(Nj)F 2 +Nj(fj)2� ;TrFF = 60 KXj=1 Njfj ^ trU(nj)F ;TrF 2 = 60 KXj=1 Nj trU(nj)F 2: (A.21)154



Appendix BK�ahler 
one 
onstraints onCalabi-Yau's with base dPrThe DUY equations have to admit solutions for the K�ahler parameters insidethe K�ahler 
one, i.e. su
h that the integral of powers of the K�ahler form over allappropriate 
y
les are positive,Z2�
y
le J > 0; Z4�
y
le J2 > 0; ZM J3 > 0: (B.1)We expand the K�ahler form on the ellipti
ally �bered Calabi-Yau as J = l2s (r� �+JB) with JB = r0 l +Prm=1 rmEm being the K�ahler form on the base manifolddPr in terms of the 
anoni
al basis.From the �rst 
onstraint we read immediately that the radii must satisfyr� > 0; r0 > 0; rm < 0 for m 2 f1; :::; rg: (B.2)The se
ond inequality, R J2 > 0, holds pre
isely if in additionr20 � rXm=1 r2m > 0; r� < 23 r0; r� < �2rm for m 2 f1; ::; rg: (B.3)Finally positivity of the volume of the Calabi-Yau ne
essitates that alsor3� (9� r)� 3r2� (3r0 + rXm=1 rm) + 3r� (r20 � rXm=1 r2m) > 0: (B.4)
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Appendix CTransformation rules for multipleU (1) fa
torsIn this appendix we re
all, using elementary linear algebra, the rules for the basistransformation o

urring when we de�ne spe
i�
 linear 
ombinations of abeliangauge fa
tors.Suppose we are given a Lagrangian invariant under the abelian gauge sym-metries U(1)m, m 2 f1; : : : ;Mg, ea
h with generator Tm, gauge potential Amand �eld strength Fm. The 
ovariant derivative of the 
ombined system of U(1)sis written as D� = �� + i( ~A�)T ~T , where we have introdu
ed an obvious ve
tornotation for the various U(1)s. Consider now an orthogonal basis transformationin the U(1)-spa
e su
h that the 
harge ve
tor ~Q of a parti
le is transformed as~Q �! ~eQ = X ~Q; XT = X�1: (C.1)Clearly this transforms the generators ~T �! ~eT = X ~T and thus~A �! ~eA = X ~A; (C.2)so that the 
ovariant derivative remains un
hanged as it must.Now suppose furthermore that the Lagrangian 
ontains mass terms for theabelian gauge potentials, written s
hemati
allyLmass = ~ATM2 ~A; M2 =MTM (C.3)for some mass matrix M2. We re
over furthermore the (k �m) 
oupling matrixM introdu
ed in equ.(3.40), where the index k labels the various axions to whi
hthe abelian �eld strengths 
ouple via M. Written in terms of the new gauge�elds eA the mass Lagrangian readsLmass = (~eA)T (XM2XT )~eA = (~eA)TD~eA =Xm eAmdm;m eAm; (C.4)157



where we have assumed that the transformation is su
h that it diagonalizes themass matrix M2. To �nd the massless 
ombination of U(1) potentials just interms of the matrixM we stress the obvious fa
t thatD = XMTMXT = (MXT )TMXT : (C.5)The gauge potential eAm is massless i� 0 = dm;m, whi
h is equivalent to requiringthat the ve
tor M ~X(m) = 0, where ~X(m) = (a1; : : : ; am) represents the m-th
olumn of X written as an m- ve
tor. We have therefore 
onvin
ed ourselves ofthe elementary fa
t thateAm =Xm amAm is massless()Xk Mkm am = 0: (C.6)Pre
isely the same lines of reasoning apply, of 
ourse, to the transformationof the gauge kineti
 fun
tion responsible for the 
oupling of the �eld strengthsvia L
oup = (~F )Tf ~F = (~eF )T (XfXT )~eF : (C.7)Con
retely, in se
tion 7.1.1 we de�neU(1)X = 12 �U(1)X0 � 52U(1)2� ; (C.8)with the orthogonal U(1) given byU(1) eX = 12 �52 U(1)X0 + 52U(1)2� : (C.9)This yields the transformation matrix X = 12 � 1 �5252 1 �, whi
h is orthogonalup to normalisation. In all, we �nd indeed thatfX;X = 14 �fX0;X0 + 52f2;2 � 5fX0;2� ; (C.10)as stated in equ.(7.13).
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Appendix DThree-generation modelsWe list all 
onsistent, supersymmetri
 three-generation models we have foundby a 
omputer sear
h on ellipti
ally �bered Calabi-Yau spa
es with base spa
esdPr, r = 1; : : : ; 4 and the Hirzebru
h surfa
es Fr in a range from �10; : : : ; 10 forall parameters. We have found three-generation models only on dP4. Table D.1
ontains the three-generation examples for the 
ipped SU(5) model dis
ussed inse
tion 7.1, whereas in table D.2 we list all three-generation va
ua dire
tly withMSSM gauge group (see se
tion 7.2) whi
h we have found.� � q 
1(�) [W ℄14 14l � 2E1 � 6E2 � 6E3 � 2E4 0 �4l+ 4E2 + 4E3 + 4E4 27F + (22l � 10E1 � 6E2 � 6E3 � 10E4)�14 18l � 10E1 � 6E2 � 6E3 � 6E4 0 �4l+ 4E2 + 4E3 + 4E4 27F + (18l � 2E1 � 6E2 � 6E3 � 6E4)�14 14l � 6E1 � 2E2 � 2E3 � 6E4 0 �4E1 + 4E4 27F + (22l � 6E1 � 10E2 � 10E3 � 6E4)�14 14l � 2E1 � 6E2 � 6E3 � 2E4 0 �4E1 + 4E4 27F + (22l � 10E1 � 6E2 � 6E3 � 10E4)�14 18l � 6E1 � 10E2 � 6E3 � 6E4 0 �4E1 + 4E4 27F + (18l � 6E1 � 2E2 � 6E3 � 6E4)�14 14l � 2E1 � 6E2 � 6E3 � 2E4 0 4l � 4E1 � 4E2 � 4E3 27F + (22l � 10E1 � 6E2 � 6E3 � 10E4)�14 18l � 6E1 � 6E2 � 6E3 � 10E4 0 4l � 4E1 � 4E2 � 4E3 27F + (18l � 6E1 � 6E2 � 6E3 � 2E4)�Table D.1: Flipped SU(5)� U(1)X models on dP4.
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� � q 
1(�) [W ℄12 15l � 3E1 � 5E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (21l � 9E1 � 7E2 � 7E3 � 7E4)�12 15l � 2E1 � 5E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (21l � 10E1 � 7E2 � 7E3 � 7E4)�12 17l � 7E1 � 7E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (19l � 5E1 � 5E2 � 7E3 � 7E4)�12 18l � 8E1 � 8E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (18l � 4E1 � 4E2 � 7E3 � 7E4)�12 20l � 3E1 � 10E2 � 10E3 0 �5l + 5E2 + 5E3 + 5E4 7F + (16l � 9E1 � 2E2 � 2E3 � 12E4)�12 20l � 2E1 � 10E2 � 10E3 0 �5l + 5E2 + 5E3 + 5E4 7F + (16l � 10E1 � 2E2 � 2E3 � 12E4)�12 15l � 5E1 � 5E2 � 3E3 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 7E2 � 9E3 � 7E4)�12 15l � 5E1 � 5E2 � 2E3 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 7E2 � 10E3 � 7E4)�12 15l � 5E1 � 3E2 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 9E2 � 12E3 � 7E4)�12 15l � 5E1 � 2E2 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 10E2 � 12E3 � 7E4)�12 15l � 5E2 � 3E3 0 �5E1 + 5E4 7F + (21l � 12E1 � 7E2 � 9E3 � 12E4)�12 17l � 7E1 � 5E2 � 5E3 � 7E4 0 �5E1 + 5E4 7F + (19l � 5E1 � 7E2 � 7E3 � 5E4)�12 17l � 7E1 � 5E2 � 7E4 0 �5E1 + 5E4 7F + (19l � 5E1 � 7E2 � 12E3 � 5E4)�12 17l � 7E1 � 7E4 0 �5E1 + 5E4 7F + (19l � 5E1 � 12E2 � 12E3 � 5E4)�12 17l � 5E1 � 7E2 � 7E3 � 5E4 0 �5E1 + 5E4 7F + (19l � 7E1 � 5E2 � 5E3 � 7E4)�12 17l � 7E2 � 7E3 0 �5E1 + 5E4 7F + (19l � 12E1 � 5E2 � 5E3 � 12E4)�12 18l � 8E1 � 5E2 � 5E3 � 8E4 0 �5E1 + 5E4 7F + (18l � 4E1 � 7E2 � 7E3 � 4E4)�12 18l � 8E1 � 5E2 � 8E4 0 �5E1 + 5E4 7F + (18l � 4E1 � 7E2 � 12E3 � 4E4)�12 18l � 8E1 � 8E4 0 �5E1 + 5E4 7F + (18l � 4E1 � 12E2 � 12E3 � 4E4)�12 18l � 5E1 � 8E2 � 8E3 � 5E4 0 �5E1 + 5E4 7F + (18l � 7E1 � 4E2 � 4E3 � 7E4)�12 18l � 8E2 � 8E3 0 �5E1 + 5E4 7F + (18l � 12E1 � 4E2 � 4E3 � 12E4)�12 20l � 10E1 � 5E2 � 3E3 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 7E2 � 9E3 � 2E4)�12 20l � 10E1 � 5E2 � 2E3 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 7E2 � 10E3 � 2E4)�12 20l � 10E1 � 3E2 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 9E2 � 12E3 � 2E4)�12 20l � 10E1 � 2E2 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 10E2 � 12E3 � 2E4)�12 15l � 5E1 � 5E2 � 5E3 � 3E4 0 5l � 5E1 � 5E2 � 5E3 7F + (21l � 7E1 � 7E2 � 7E3 � 9E4)�12 15l � 5E1 � 5E2 � 5E3 � 2E4 0 5l � 5E1 � 5E2 � 5E3 7F + (21l � 7E1 � 7E2 � 7E3 � 10E4)�12 17l � 7E1 � 5E2 � 5E3 � 7E4 0 5l � 5E1 � 5E2 � 5E3 7F + (19l � 5E1 � 7E2 � 7E3 � 5E4)�12 18l � 8E1 � 5E2 � 5E3 � 8E4 0 5l � 5E1 � 5E2 � 5E3 7F + (18l � 4E1 � 7E2 � 7E3 � 4E4)�12 20l � 10E1 � 10E2 � 3E4 0 5l � 5E1 � 5E2 � 5E3 7F + (16l � 2E1 � 2E2 � 12E3 � 9E4)�12 20l � 10E1 � 10E2 � 2E4 0 5l � 5E1 � 5E2 � 5E3 7F + (16l � 2E1 � 2E2 � 12E3 � 10E4)�Table D.2: SU(3)� SU(2)� U(1) models on dP4.
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