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Zusammenfassung

In dieser Dissertation untersuche ich eine grofie neue Klasse vierdimensionaler su-
persymmetrischer Stringvakua, definiert als Kompaktifizierungen des Fgx Eg und
des SO(32) heterotischen Strings auf glatten komplex-dreidimensionalen Calabi-
Yau-Mannigfaltigkeiten mit unitaren Eichbiindeln und heterotischen Fiinfbranen.
Dies ermoglicht die Konstruktion phanomenologisch interessanter Stringkompak-
tifizierungen auf einfach zusammenhangenden Mannigfaltigkeiten insofern die
konventionelle Eichbrechung mittels Wilsonlinien ersetzt wird durch die Einbet-
tung nicht-trivialer Linienbiindel in die zehndimensionale Eichgruppe.

Im ersten Teil der Arbeit wird die Anwendung dieser Idee auf den Eg x Fjy
heterotischen String diskutiert. Auf die Definition einer grofien Klasse grup-
pentheoretischer Einbettungen mit unitdren Biindeln folgt die Analyse der ef-
fektiven vierdimensionalen A/ = 1 Supergravitationstheorie. Das gleichzeitige
Auftreten von Fiinfbranen und abelschen Eichfeldern erfordert die Einfiihrung
neuer anomaliekiirzender Gegenterme in die effektive Wirkung. Diese werden
ferner mithilfe einer M-Theorierechnung hergeleitet. Die vollstandigen Green-
Schwarz-Terme ermoglichen es, die Ein-Loop-Korrekturen der Eichkopplungen
zu berechnen. Aus dem eichinvarianten Kéahlerpotential der Modulifelder leite
ich eine perturbative Ein-Loop-Modifizierung des Fayet-Iliopoulos D-Termes ab.
Darauf aufbauend schlage ich eine Deformation der hermiteschen Yang-Mills-
Gleichung in erster Ordnung Storungstheorie vor und fithre auflerdem die Idee
der A-Stabilitit als das perturbativ exakte Stabililtdtskonzept ein, welches die in
nullter Ordnung giiltige Mumford-Stabilitat ersetzt.

Im folgenden definiere ich eine Klasse SO(32) heterotischer Vakua mittels
unitarer Biindel und heterotischer Fiinfbranen. Das sich ergebende Spektrum
steht im Einklang mit der S-dualen Typ-I- Theorie bzw. den Typ-1IB-Orientifolds.
Im Rahmen einer analogen Analyse der vierdimensionalen Supergravitation findet
die vorgeschlagene Ein-Loop-Korrektur der Stabilitatsbedingung weitere Unter-
mauerung, indem die Korrekturen im heterotischen Bild als das S-duale Analogon
des perturbativen Anteils der II-Stabilitdtsbedingung identifiziert werden. Let-
ztere ist als das korrekte Stabilitdtskonzept in der Typ-IIB-Theorie bekannt.

Es folgt eine Darstellung der Konstruktion stabiler holomorpher Vektorbiindel
auf elliptisch gefaserten Calabi-Yau-Mannigfaltigkeiten mit Hilfe der Methode
spektraler Uberdeckungen Darauthin prasentiere ich semirealistische Beispiele
SO(32) heterotischer Vakua mit Pati-Salam und MSSM-&hnlichen Eichsektoren.
Diese verallgemeinern, im S-dualen Bild, das Konzept von magnetisierten D9-
Branen auf toroidalen Hintergriinden zu nicht-abelschen Braneworlds auf echten
Calabi-Yau-Mannigfaltigkeiten.

Den Abschluss der Arbeit bildet die Konstruktion realistischer Vakua mit
flipped SU(5) GUT und MSSM Eichgruppe im Rahmen der Eg x Eg-Theorie
und auf der Grundlage der Einbettung von Linienbiindeln in beide Eg-Faktoren.
Einige der phanomenologisch attraktiven Eigenschaften der stringtheoretischen
Realisierung von flipped SU(5) Modellen, insbesondere die Stabilitdt des Pro-



tons, werden diskutiert. MSSM-artige Eichkopplungsvereinheitlichung ist fiir die
auf Ein-Loop-Ebene korrigierten Eichkopplungen mdoglich. Ich konstruiere einige
explizite supersymmetrische Stringvakua, sowohl mit GUT als auch direkt mit
Standardmodelleichgruppe, die genau die beobachteten drei Generationen chi-
raler Materie ohne weitere exotische chirale Fermionen zeigen.



Abstract

In this thesis we investigate a large new class of four-dimensional supersym-
metric string vacua defined as compactifications of the Eg x Eg and the SO(32)
heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and
heterotic five-branes. This opens up the way for phenomenologically interesting
string compactifications on simply connected manifolds in that the conventional
gauge symmetry breaking via Wilson lines is replaced by the embedding of non-
flat line bundles into the ten-dimensional gauge group.

The first part of the thesis discusses the implementation of this idea into the
Eg x Eg heterotic string. After specifying a large class of group theoretic embed-
dings featuring unitary bundles, we analyse the effective four-dimensional N’ = 1
supergravity upon compactification. The simultaneous presence of five-branes
and abelian gauge groups requires the introduction of new anomaly cancelling
counter terms into the effective action. These are also derived by an M-theory
computation. The full set of Green-Schwarz terms allows for the extraction of the
threshold corrections. From the gauge invariant Kahler potential for the moduli
fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop
in string perturbation theory. From this we conjecture a one-loop deformation
of the Hermitian Yang-Mills equation and introduce the idea of A-stability as
the perturbatively correct stability concept generalising the notion of Mumford
stability valid at tree-level.

We then proceed to a definition of SO(32) heterotic vacua with unitary gauge
bundles in the presence of heterotic five-branes and find agreement of the re-
sulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A
similar analysis of the effective four-dimensional supergravity is performed. Fur-
ther evidence for the proposed one-loop correction to the stability condition is
found by identifying the heterotic corrections as the S-dual of the perturbative
part of Il-stability as the correct stability concept in Type IIB theory.

After reviewing the construction of holomorphic stable vector bundles on ellip-
tically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic
examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sec-
tors. These can be viewed, by S-duality, as the generalisation of toroidal magne-
tized D9-branes to non-abelian braneworlds on genuine Calabi-Yau manifolds.

We finally discuss the construction of realistic vacua with flipped SU(5) GUT
and MSSM gauge group within the Eg x Eg framework, based on the embedding
of line bundles into both Fg factors. Some of the appealing phenomenological
properties of this stringy realisation of flipped SU(5) models, in particular stabil-
ity of the proton, are discussed. MSSM-like gauge coupling unification is possible
for the threshold corrected gauge couplings. We explicitly construct a couple of
supersymmetric string vacua in both setups with precisely the three observed
chiral matter generations and without any exotic chiral states.
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Chapter 1

Introduction

1.1 Prologue: An invitation to String Theory

The quest for a fundamental theory of the observed gravitational, electro-weak
and strong interactions is one of the most pressing intellectual challenges of our
time. Among the heritage of the past century are two beautiful, complementary
and intriguingly successful attempts to describe particular corners of the physical
world we observe - General Relativity and Quantum Field Theory. It is well-
known that they both reproduce and predict a huge amount of empirical data with
breath-taking accuracy. It is equally well-known, however, that they are both
unacceptable as fundamental physical theories. They carry inside themselves
the seed for their eventual incompleteness in the disguise of unphysical infinities
which signal the inevitable breakdown of their validity.

General Relativity collapses as a well-defined theory whenever a massive ob-
ject with a radius smaller than its Schwarzschild radius collapses under its self-
gravitation to form a black hole. What is puzzling is that even though the initial
conditions involve a well-defined extended object, like a sufficiently heavy star
undergoing the final stages of its evolution, the dynamical laws of gravity force
this mass to contract to a pointlike massive object with a formally infinite density.
One might argue that the very concept of pointlike objects, familiar from classical
mechanics, is merely an idealisation and no reason to worry, but the situation
just described is of a totally different genre. We start with very physical and
sensible initial conditions, and are inevitably driven, by the equations of motion,
into a regime where some of the most fundamental assumptions of the theory
such as the notion of spacetime as a smooth manifold break down. Clearly, as a
pragmatic outside observer we will never be affected by the unphysical center of
the black hole due to the event horizon surrounding it. But the theory is incom-
plete in the sense that there exist situations inside its domain of regime to which
it cannot be sensibly applied. Apparently, at some stages of such a pathological
process, Nature obeys different laws of gravity.

Quantum Field Theory breaks down when a charged matter particle interacts
with the vector bosons coupling to the, say, electro-magnetic field it sources -



even the first loop diagram in Quantum Electrodynamics related to the self-
energy of the electron formally diverges. Again we can - and do - hide the
infinity for practical purposes by introducing a cutoff, and the fact that it is
possible to extract non-trivial information using this technique of regularisation
and renormalisation at all is certainly a miracle by itself. Still, the need for such a
procedure is unsatisfactory because it indicates the breakdown of the dynamical
laws at high energies. In both cases we face the paradox that we have at our
disposal a powerful formalism in triumphant agreement with experiments and
observations which at the same time is incomplete as a physical theory. It yields
an empirically successful effective description of certain phenomena after we agree
to integrate out those high energy degrees of freedom which are apparently not
accounted for correctly.

The situation is not ameliorated if one takes into account the mutual incom-
patibility between the classical, deterministic character of General Relativity and
the intrinsically probabilistic nature of Quantum Mechanics in its conventional
interpretation as the conceptual foundation of Quantum Field Theory. At this
stage by the very latest one cannot close one’s eyes any longer since physical
processes at such high energies that the gravitational interaction cannot be con-
sistently neglected require, and be it merely for the sake of an effective approach,
a genuinely quantum description of gravity together with the other forces.

Apart from these indisputable conceptual issues there is an aesthetic one. It
is often stated that the Standard Model of Particle Physics contains at least 19
free parameters in the form of the masses and couplings of the observed particles.
This is an optimistic point of view, because, if one wants to be malicious, it
actually involves an infinite number of free parameters. A theory should not
only explain what we observe, but also what we do not observe', and Quantum
Field Theory knows of no underlying intrinsic principle whatsoever which singles
out the Standard Model inside the moduli space of anomaly-free gauge theories
- except that we happen to observe it.

The ultimate goal of String Theory [1-7] is none less than to overcome all
these difficulties and to provide a consistent ultra-violet completion of both Quan-
tum Field Theory and General Relativity. What is remarkable is that one and
the same concept appears to have the potential to tackle both challenges simul-
taneously. The basic idea is to avoid the infinities of Quantum Field Theory
by smoothening the apparently unphysical interaction vertices, thus leading to
ultra-violet finite loop amplitudes. This is the purpose of introducing the notion
of one-dimensional extended objects as the fundamental entities. Everything else
is forced upon us by requiring a consistent quantisation of the classical theory of
the string propagating in spacetime. Kinematically, this is a very conservative
approach in that it rests upon the well-established principle of general covariance

'We are aware that, depending on their epistemological background, the reader may or may
not agree with this argument.
2Classic textbooks include [8-12].



of spacetime and assumes the standard axioms and methods of Quantum Me-
chanics®. What makes the theory revolutionary are rather the dynamical laws it
predicts in the genuinely stringy regime and even more so the way how these laws
are derived just from requiring consistency of the theory. Basically without any
further input than the kinematical pillars just quoted the two dynamical sanc-
tuaries of modern physics inevitably follow in the low-energy limit: Einstein’s
gravitational equations and the concept of gauge interactions.

It is important to stress that the structure of the fundamental laws governing
the low-energy phenomenology of the universe comes out almost as a byprod-
uct. The peaceful coexistence of gravity and Yang-Mills theory at the quantum
level in String Theory is an immediate consequence of the presence of closed
and open strings as the only two topologies which a one-dimensional object can
exhibit. The role of the graviton is played by the massless spin two excitations
of the closed string, and Einstein’s equations follow by requiring Weyl invari-
ance of the non-linear o-model describing the string propagation on a (curved)
background manifold. The latter is equivalent to the conformal symmetry of the
two-dimensional string worldsheet to be anomaly-free, which is one of the con-
sistency conditions for the theory to make sense, more precisely for the absence
of negative norm states in the Fock space. The Yang-Mills gauge bosons, by
contrast, are furnished by the massless open strings or, in a dual description,
particular massless excitations of the closed heterotic string. In any case, once
we observe in our theory Yang-Mills interactions, we automatically observe grav-
ity as well, because a theory of open strings necessarily requires the presence
of closed strings. This is dictated by another consistency condition, namely the
cancellation of certain infrared divergences in the one-loop amplitude which are
related to the presence of a tadpole. Ironically, whereas in conventional Quantum
Field Theory it seems impossible to describe both Yang-Mills theory and gravity
at the quantum level, in String Theory, it is impossible to observe Yang-Mills
theory without incorporating gravity.

The way how the dynamical laws of gravity are modified at higher energies or
at smaller distances makes it furthermore conceivable that the drastic curvature
singularities of black holes or the Big Bang might be resolved [13]. These ques-
tions are related to the emergence of stringy or quantum geometric properties of
spacetime as seen by suitable string probes [14]. In switching the point of view
from target space to the string worldsheet, the fundamental physical concept is
no longer classical spacetime but the way how the string propagates along it. In
this picture classically unacceptable singularities are no conceptual issue provided
they leave the theory of the string probing it well-defined. The implementation
of a holographic principle [15] in the context of the AdS/CFT conjecture [16,17]
and the spectacular microscopic computation of the internal degrees of freedom of
(at least BPS) black holes [18], in perfect agreement with their thermodynamical
entropy, are further pieces of evidence that String Theory really includes the cor-

31t has therefore in its present formulation nothing to say about conceptual issues of the
interpretation of Quantum Mechanics and related questions.



rect number of degrees of freedom to yield a consistent description of Quantum
Gravity.

At the same time, the theory gives rise to certain general features which are
not necessarily forced upon us just from the current low-energy experiments and
observations, but nonetheless enjoy popularity among many phenomenologists.
The most prominent example is the prediction of extra dimensions - based on
the renowned theorem that String Theory is well-defined only if the target space
is ten-dimensional*. Furthermore, every consistent, i.e. tachyon-free and stable
string theory in ten dimensions is automatically supersymmetric - out of the
four possible definitions of a modular invariant one-loop amplitude two lead to
a stable and supersymmetric spectrum, the remaining ones suffering from the
presence of tachyons in ten dimensions. Both these features - extra dimensions
and supersymmetry - are of course often considered for purely phenomenological
reasons in bottom-up approaches - e.g. in Randall-Sundrum-like brane-world
scenarios [20] or to account, among several other things, for the weak hierarchy
problem by means of low-energy supersymmetry. In String Theory, by contrast,
there is nothing ad hoc about the emergence of this extra structure which has so
far not been observed in experiments - it is a logical consequence® of the string
consistency conditions.

The crucial test which String Theory has to pass in the long run is whether
it can make more explicit contact with the low-energy physics of the Standard
Model than to account merely for the structural foundations of gravity and Yang-
Mills theory. To appreciate what a difficult endeavour this may be, we should
keep in mind that the Standard Model in its present version could only be formu-
lated with the help of huge amounts of data just around the weak scale, i.e. at
distances of 107 meters, where it is a good description of Nature. We would not
have the least idea of the existence of QCD or the details of the weak sector if all
our experiments were restricted to the scale of, say, some meters. Unfortunately,
this is precisely the situation we face today in trying to reconstruct the physics at
the Planck scale of 107° meters just from our empirical data. One single collider
experiment at these energies would certainly be enough to decide immediately
whether or not String Theory is realized in Nature. It is thus obviously wrong
to claim that String Theory is in principle not falsifiable as a physical theory.
After all it is as big a conceptual shortcoming of String Theory not to lead to
unique predictions at the TeV scale as it is a conceptual shortcoming of Quantum
Chromodynamics to make no predictions which Kopernikus could have falsified

4This is actually an oversimplification since what is really predicted is the total confor-
mal anomaly of the worldsheet fields which has to cancel that of the Faddeev-Popov ghosts.
Attempts to include fields different from additional spacetime coordinates lead to so-called non-
critical String Theory in lower dimensions [19]. Their use for phenomenological applications is
yet to be understood. The 26-dimensional bosonic string, by contrast, is unstable due to the
presence of a closed tachyon, and it is still unclear if it might be related to a lower-dimensional
string theory upon tachyon condensation.

SFor the case of extra dimensions this is true modulo the remark in footnote 4.



with the help of his telescope (or at most a magnifying glass). Even more re-
markable is it that there exist important theoretical arguments of the type just
reviewed that String Theory might well account for Nature’s ultra-violet degrees
of freedom.

The standard approach towards describing our four-dimensional world from
the point of view of String Theory is to describe the extra dimensions as com-
pactified on a small six-dimensional space. The idea is that the infinite tower of
Kaluza-Klein modes decouples from the four-dimensional theory at low energies
and only the massless modes give rise to the observed matter. This logic leads to
a geometrisation of the laws of four-dimensional physics which are encapsulated
in the topological and geometric details of the compactification manifold. The
background manifold itself and the values of the background fields, i.e. the possi-
ble vacuum expectation values of the internal components of the string fields, are
subject to strong string theoretic consistency conditions which define the resulting
four-dimensional effective theory as a solution of the equations of motion.

It is in this sense that String Theory overcomes the arbitrariness inherent
to any phenomenologically motivated bottom-up approach like the Standard
Model: There exists a single underlying theory with a number of effectively four-
dimensional groundstates. The phenomenon that a physical theory admits more
than one solution to its equations of motion is of course well familiar. Clearly,
General Relativity does not predict the specific distance between the earth and
the sun. Rather, this is the phenomenological input required in order to identify
the specific solution to Einstein’s equations compatible with these initial condi-
tions, on the basis of which we then extract all further information. Nobody
would claim that this justifies discarding the laws of General Relativity.

To keep the analogy, a question of prime importance in String Theory is thus
to determine which of its solutions are compatible with the properties of our
vacuum at all energies up to which we can rely on experimental input. More
clearly: Are there realistic four-dimensional string vacua and, if so, how dense
do they lie in the total solution space of String Theory? Up to which energy do
we have to measure such that there is only one vacuum left compatible with all
data up to that point? And finally, given that hypothetical vacuum, does it make
further predictions (possibly at higher energies) which we can verify or falsify?
Or is there a dynamical mechanism, probably non-perturbative in nature, which
singles out some stable solutions over others?

At the moment we are far from a definite answer to any of these questions.
The number of meta-stable four-dimensional string vacua making out the string
landscape [21-23] is currently estimated to be of the order of 10°%° [24] (see
also [25] for an early estimate), which seems computationally out of any reach [26].
At least, the number of stable vacua appears to be finite. This is already a big
success as compared to the even vaster space of anomaly-free and renormalisable
effective quantum field theories which can be constructed without a consistent
coupling to gravity [27]. We are by now not aware of a genuinely non-perturbative
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formulation of the theory, and most investigations are tied to highly non-generic
perturbative corners of the moduli space of the hypothetical underlying M-theory.
Our available techniques are restricted to the computation of the very basic low-
energy properties of a given vacuum. In short, we need to understand the theory
better. But we can nonetheless start and investigate some relevant features of at
least those domains in the moduli space which are accessible to us at this stage.
This is the objective of String Phenomenology.

1.2 Classic heterotic model building

Historically, the earliest attempts of string model building focused on the het-
erotic string [7]. Its worldsheet theory contains different fields in the left- and
right-moving sector. In its fermionic formulation this is easily understood as
follows: The right-moving fields are the same as in the corresponding sector of
the superstring, i.e. ten worldsheet scalars X" transforming as 8y under the
little group SO(8) in ten dimensions and their superpartners, the worldsheet
Majorana-Weyl spinors ¢". Together with the superconformal ghost system, the
right-moving conformal anomaly is cancelled. The left-moving sector, by contrast,
comprises, apart from the left-moving X, another 32 worldsheet Majorana-Weyl
spinors A\{ which are singlets under SO(1,9). Since the left-moving system is not
supersymmetric, again the critical number of now 26 bosonic degrees of freedom
is present to cancel the ghost conformal anomaly. The physical states arise as the
tensor product of the right-moving and the left-moving excitations. There are
two fully consistent choices to assign periodic or antiperiodic boundary conditions
to the )\f:. If all of them carry the same boundary conditions, the left-moving
sector exhibits an SO(32) global symmetry which is actually promoted to a gauge
symmetry. This can be most easily understood already from the appearance of
a massless state in the 8y of SO(8) and carrying antisymmetric indices A, B
under SO(32) - the gauge boson. Since the full spectrum contains states in the
even-rank tensor representations and those related to one of the two spinor rep-
resentations of Spin(32), the gauge symmetry is actually not SO(32) but rather
Spin(32)/Z,°. 1f by contrast, the A% pair into two groups, each with the same
boundary conditions, the naive gauge symmetry Spin(16) x Spin(16) is in fact
further enhanced to Fg x Fg upon performing a GSO projection.

In both cases, the massless bosonic sector comprises, in addition to the vec-
tor bosons, gauge singlets which decompose under SO(1,9) into the spin two
symmetric traceless representation, the graviton, furthermore the antisymmet-
ric representation, yielding the Kalb-Ramond B-field and finally a scalar, the
dilaton. The spacetime theory is N' = 1 supersymmetric and therefore contains
likewise the fermionic superpartners of all bosonic states.

At energies much smaller than the lowest lying massive states, the effective

In standard abuse of notation we will, however, stick to the misnomer SO(32) heterotic
string.



theory is dominated by the massless modes we have just reviewed. In particular,
one can think of appropriate coherent states of the massless fields as determining
the background configuration probed by the string. In that sense, the background
metric of the spacetime manifold on which the string propagates is to be viewed as
a non-trivial vacuum expectation value for the graviton. Similarly, we can think
of background values for the field strength of the antisymmetric tensor field, for
the dilaton and the Yang-Mills gauge field. The background fields are subject
to a number of strong consistency conditions since they have to be solutions to
the stringy equations of motion. These will be reviewed extensively in chapter
2. Suffice it here to recall that in the simplest case, where the dilaton field is
constant and the three-form field strength vanishes, the six-dimensional manifold
on which we compactify has to be Calabi-Yau to ensure A’ = 1 supersymmetry
and therefore physical stability at the compactification scale [28]".

In the presence of background values for the massless string fields, the world-
sheet action describing the propagation of the string is the (0, 2) o-model [29,30],
which in favourable circumstances can be rephrased in terms of a linear o-
model [31]. The resulting conformal field theory is a highly complicated and
non-trivially coupled system which, up to now, has not been solved for the generic
case.

There are in principle two different approaches to bypass this technical dif-
ficulty. One can either focus on very special background manifolds on which
the worldsheet theory is still exactly solvable as a conformal field theory (CFT).
Cases where this is feasible are toroidal orbifold compactifications [32-35], or
very symmetric points in the moduli space of genuine Calabi-Yau manifolds cor-
responding to exactly solvable abstract CFTs such as Gepner models [36, 37].
Slightly different CFT methods include free fermionic [38] and free bosonic [25]
constructions. The advantage of the CF'T approach is that whenever we have an
exactly solvable conformal field theory at our disposal, its information is exact
both perturbatively and non-perturbatively in o'. Unfortunately this technology
is currently applicable to only a small fraction of relevant background configura-
tions. Alternatively, one can try to analyse directly the spacetime effective field
theory in the zero mode approximation. This approach is valid only in the strictly
perturbative regime, i.e. for the typical radius of the background manifold much
bigger than the string length and for sufficiently small string coupling. In other
words, it is in a way insensitive to many genuinely stringy elements of the the-
ory, but it is sufficiently powerful as far as an analysis of the vacuum states is
concerned®.

This geometric approach was pioneered in [28,39] soon after the formulation
of the heterotic theory. What makes the Eg X Fg string so attractive for model
building is the natural way how the standard semi-simple GUT gauge groups Eg,

"Extended supersymmetry in four dimensions would of course also lead to stable configura-
tions.

8We will describe the methods of this latter effective or geometric approach in great detail
in chapter 2.



SO(10) and SU(5) arise as subgroups of Fg. Consequently, the task is to break Fj
down to one of these GUT groups by giving VEVs to the internal field strengths
in the commutant of the final gauge group. For the cases just listed these are
SU(3), SU(4) and SU(5), respectively. Accordingly, the 248 representation of Fj
splits into the respective GUT multiplets which incorporate the chiral fermions
of the Standard Model. Consistent Eg GUT models, for example, are especially
straightforward to obtain by identifying the SU(3) field strength with non-trivial
background value with the curvature of the tangent bundle of the Calabi-Yau
manifold. In that case the supersymmetry conditions for the gauge fields implying
in particular the Yang-Mills equation of motion are automatically satisfied. The
number of 27 and 27 are simply counted by the Kihler and complex structure
moduli of the Calabi-Yau and one might think that all one needs to do is search
for appropriate geometric configurations. Unfortunately, Ej is not very attractive
as a GUT group from the phenomenological point of view since its fundamental
representation 27 decomposes into 16 + 10 + 1 upon breaking Eg to SO(10)
so that one GUT generation of Eg yields not only one full generation of MSSM
matter in form of the 16, but additional chiral exotics.

To arrive at the phenomenologically more appealing SO(10) and SU(5) sce-
narios, one has to construct stable holomorphic vector bundles with structure
group SU(4) and SU(5) respectively [39]. The mathematical property of sta-
bility essentially guarantees that the bundle allows for a connection which is a
supersymmetric solution to the Yang-Mills equations. To prove stability for a
bundle is already a very challenging task from the mathematical point of view
and it took until 1997 that a sufficiently general procedure was found to construct
such stable SU(N) bundles on a large class of Calabi-Yau manifolds, the spectral
cover construction [40,41]. However, in conventional stringy GUT scenarios it is
impossible to realize the GUT breaking further down to SU(3) x SU(2) x U(1)y
via a field theoretic Higgs mechanism, simply because the required vector-like
pairs from which the GUT Higgs could arise are not present in the particle spec-
trum?. To break SU(5) down to the Standard Model group, for example, the
Higgs field must transform in the adjoint representation of SU(5), but we will
see that the four-dimensional bosonic particle spectrum contains only one vector
multiplet in the 24, the gauge multiplet, and no further such states. To our
rescue comes the use of Wilson lines as an alternative GUT breaking mechanism.
Wilson lines are globally non-trivial background values of the gauge connection
which locally are pure gauge and therefore induce a vanishing background field
strength.

This considerably complicates the construction of heterotic Standard Model
vacua. The point is that in order to have these Wilson lines at our disposal, we
need non-trivial elements in the first cohomology group of the internal manifold,
i.e. homotopically non-trivial one-cycles along which the connection one-form can
take a non-zero VEV. Now on general grounds, a Calabi-Yau can never admit

9Note, however, that in the context of higher-level Kac-Moody algebras GUT Higgses can
be realized.
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continuous Wilson lines, i.e. elements of H'(M,R), but at most torsional ones
as non-trivial elements of H'(M,Z). This means that we have to construct
non-simply connected Calabi-Yau manifolds such that their Wilson lines are just
right to break the GUT group to the MSSM gauge group. For example, Zo-valued
Wilson lines break SU(5) down to SU(3) x SU(2) x U(1)y, whereas Zy X Zo-
valued ones produce one additional abelian gauge factor U(1)p_r [42]. While
this gauged U(1)p_;, helps to suppress proton decay, it poses the problem that
different effects have to be invoked in order to break it to a global symmetry. The
same holds for SO(10), which requires at least Z3 x Zz Wilson lines and likewise
ends up with an additional U(1)p_r.

Finding Calabi-Yau manifolds with such first fundamental groups is once more
a highly non-trivial task, and it has been one of the recent triumphs of string
model building to provide classes of such Calabi-Yau manifolds as quotients of
manifolds under an appropriate freely-acting orbifold group and to construct non-
abelian vector bundles on them [43-48]. Globally defined realistic models from
SU(5) GUT on manifolds with Z, Wilson lines in this context have been provided
in [49]. For non-supersymmetric models from SO(10) using Zs3 x Z3 Wilson lines
see [50,51]. A recent construction of promising models in the setup of heterotic
toroidal orbifolds can be found in [52].

1.3 Unitary bundles in heterotic compactifica-
tions

Independently of the heterotic model building industry, the discovery of D-
branes [53] has opened up a complementary - or rather dual - path to incor-
porating gauge interactions into String Theory, more precisely the Type II the-
ory or orientifolds thereof. A stack of N coincident D-branes accommodates a
U(N) gauge field in form of the massless modes of the open strings whose both
ends are attached to the brane. Soon it was realized that two stacks of such
branes intersecting at a non-trivial angle feature chiral fermions in the bifunda-
mental representation of the two unitary groups [54,55]. This had the prospect of
constructing MSSM-like models from type ITA orientifolds which live at the four-
dimensional overlap of several stacks of D6-branes wrapping in addition special
Lagrangian three-cycles on the internal Calabi-Yau and intersecting at super-
symmetric angles [56]'°. On the other hand, it turns out extremely difficult to
extend this class of constructions to non-toroidal backgrounds. What hampers
progress into this direction is the special Lagrangian condition for supersymmet-
ric three-cycles. Being real in nature, this constraint cannot be tackled with the
help of complex geometry and is rather challenging to cope with. Instead one
might try to invoke abstract CF'T methods and consider rational conformal field
theories corresponding to orientifolds at the Gepner point of certain Calabi-Yau

0For a complete list of references exploiting this idea see e.g. the most recent review [57].
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manifolds!!, but again this strategy is not applicable to more generic situations.

The architecture of the Intersecting Brane World models differs from the
Eg x Eg approach in that, instead of starting from one unifying group and then
accomplishing favourable gauge breaking, one combines a number of separate
U(N) modules given by the various brane stacks to mimic the product structure
of the MSSM gauge group or modifications thereof like Pati-Salam or left-right
symmetric models. But are the constructions really so different? The objects
mirror dual to D6-branes at angles in Type ITA theory are spacefilling D9-branes
in Type I theory, endowed with non-trivial background field strengths for the
abelian diagonal of the U(N) gauge group. These magnetized branes in turn are
S-dual to abelian background bundles in the SO(32) heterotic theory. The natural
subgroups of SO(32) are indeed just U(N) groups, and we can therefore interpret
the intersecting brane picture as the geometric realisation of the breaking of
SO(32) into its U(N) subgroups via abelian background bundles.

It is thus of obvious relevance to explore the usually neglected use of non-
trivial line bundles'? in heterotic compactifications with the hope of extending
our model building possibilities beyond the classic embedding of vector bundles
with vanishing first Chern class only. Likewise, one might wonder if turning
on also non-abelian gauge bundles on D9-branes wrapping genuine Calabi-Yau
manifolds in Type I leads to interesting constructions. Since the supersymmetry
condition on the gauge bundles is holomorphic, there is reason to hope that this
bypasses the technical difficulty which the construction of special Lagrangian
submanifolds poses on the Type ITA side.

It is the aim of this thesis to investigate these questions.

Our main motivation stems from the interpretation of discrete Wilson lines as
flat abelian bundles which are embedded into the ten-dimensional gauge group.
As we pointed out, the construction of Calabi-Yau manifolds with non-trivial first
fundamental class is very involved. In fact, the only known example featuring e.g.
Z3 x Z3 Wilson lines necessary for SO(10) GUT breaking is the one constructed
in [46]. Arbitrary line bundles, by contrast, are comparatively straightforward
objects - on Calabi-Yau manifolds they are simply determined by specifying their
first Chern class as an element in H?(M,Z). If it were possible to replace the
GUT breaking through Wilson lines by the embedding of non-flat line or more
general unitary bundles, this would open up the very interesting prospect of
heterotic string model building on simply-connected manifolds.

The relevance of progress into this direction becomes even more obvious if
one takes into account the following crucial aspect: Eventually all realistic model
building activities have to be extended beyond the special case that the internal
manifold is Calabi-Yau. The underlying rationale is that the geometric moduli of
the internal manifold as well as the dilaton appear as massless fields in the four-
dimensional field theory and are as such unacceptable from the phenomenological

Recent progress in the construction of Type IT orientifolds of Gepner models has been made
in [58-63] and our own work [64,65].
12For some early references see [30,66-68] and more recently [69].
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point of view. In configurations with non-trivial form field fluxes in addition to
gauge instantons, the moduli are generically rendered massive via a superpoten-
tial generated by these fluxes and can therefore be removed from the low-energy
spectrum. The resulting background manifold, however, is in general no longer
Calabi-Yau as a consequence of the modified Killing spinor equations and the
gravitational backreaction of the fluxes. In the case of heterotic compactifica-
tions with non-trivial three-form flux [70-74], it is not even Kéhler, and certainly
not simply a toroidal orbifold. All methods which are restricted to one of these
two properties have therefore no chance to yield completely realistic models in
the end. The lesson we learn is that in engineering the gauge sector we should
rely as little as possible on the particular non-generic structure of our concrete
background manifold. This, however, is just what we are doing in pursuing the
Wilson line approach to GUT breaking - after all one needs to identify very spe-
cific elements in the first homotopy group, which in more general situations may
be extremely hard to compute.

Let us outline the structure of this thesis. Before getting started, chapter
2 reminds the reader of the basic concepts and technical details of Calabi-Yau
compactifications of the heterotic string. Also, we will take this opportunity
to introduce our conventions and field normalisations. The highlighted string
theoretic consistency conditions are the basis of the whole subsequent analysis.

In chapter 3 we discuss the general theory of Eg x Eg string compactifications
featuring unitary gauge instantons. The group theory of the associated embed-
ding gives rise to an unexpectedly rich structure of possible low-energy gauge
groups including in particular flipped SU(5) x U(1)x GUT [75] and just the
MSSM gauge group. In addition we allow for heterotic five-branes, in which case
we are actually in the strongly coupled Horava-Witten regime [76,77]. The pres-
ence of abelian gauge factors requires a careful study of possible anomalies and
the associated generalised four-dimensional Green-Schwarz mechanism. We will
see that consistency of the vacua calls for new anomaly cancelling counter terms
in the presence of abelian gauge fields and five-branes. These counter terms will
furthermore be derived explicitly by dimensional reduction of eleven-dimensional
heterotic M-theory to ten dimensions. Apart from the issue of anomaly cancel-
lation, the Green-Schwarz mechanism yields important terms in the low-energy
effective action which arise at one loop in string perturbation theory. Specifically,
we will analyse the gauge threshold corrections, find a new contribution to the
D-term scalar potential for five-branes and identify a one-loop correction to the
Fayet-Iliopoulos term associated with the abelian gauge fields. We will argue that
it represents actually a perturbative correction to the Donaldson-Uhlenbeck-Yau
supersymmetry condition on the gauge fields and conjecture a corresponding de-
formation of the local Hermitian Yang-Mills equation as the perturbatively exact
generalisation of the string tree-level supersymmetry condition.

An analogous investigation is possible also for the SO(32) heterotic string with
unitary bundles and five-branes and is the subject of chapter 4. The analysis of

13



the breaking of SO(32) into its unitary subgroups and the associated decomposi-
tion of the adjoint representation will reveal a gauge sector and spectrum which
exactly mimic that in the S-dual/T-dual framework of intersecting branes, as
anticipated already. The details of the Green-Schwarz mechanism are different to
what we encountered in the Fg x Eg theory, in particular as far as the five-brane
contributions are concerned, but again we will find loop corrections to the gauge
couplings and the Donaldson-Uhlenbeck-Yau condition. In the S-dual Type I
framework, these one-loop terms become perturbative a’-corrections which are
well-known to affect also the local supersymmetry equations and the resulting
stability condition. In fact, they make out just the perturbative part of the full
[I-stability condition in the derived bounded category of coherent sheaves [78].
This serves as further support for our conjecture about the modified supersym-
metry condition for the Fg x Ejy string.

To apply the results of chapter 3 and 4 to concrete model building it is neces-
sary to have control over the moduli space of stable holomorphic unitary vector
bundles. In chapter 5 we therefore review the spectral cover construction [40,41]
for SU(N) bundles over elliptically fibered Calabi-Yau manifolds. By twisting
the SU(N) bundles with an additional line bundle, we can construct bundles
with unitary gauge groups. For special classes of twist bundles this procedure
is equivalent to a subclass of the bundles provided by the generalisation of the
original spectral cover method due to [69].

In chapter 6 we provide two examples of semi-realistic vacua of the SO(32)
heterotic theory with Pati-Salam and MSSM-like gauge group respectively. They
illustrate the general architecture of this type of vacua and its similarity to the
intersecting brane framework. This is a direct consequence of the group structure
of SO(32). Generically, as we will see, the generic quiver structure of the models
makes it hard to suppress chiral exotic matter in supersymmetric configurations.
These vacua can likewise be interpreted as arising from D9-branes in the Type I
with non-abelian gauge field VEVs.

Chapter 7 introduces a setup for the construction of realistic flipped SU(5) x
U(1l)x GUT and SU(3) x SU(2) x U(1)y MSSM vacua from the Eg X Eg string.
The key to keeping the respective U(1) potential massless is to embed the same
line bundle into both Ejg factors. The flipped SU(5) models are phenomenologi-
cally particularly attractive due to the absence of operators triggering proton de-
cay. Gauge coupling unification in both scenarios holds at the level of the thresh-
old corrected gauge couplings. As far as concrete phenomenological applications
are concerned, the main result of this thesis is the construction of four-dimensional
vacua with flipped SU(5) and Standard Model gauge group featuring precisely
three chiral generations and no further chiral exotics on simply-connected man-
ifolds. A collection of these vacua will be presented in the remainder of chapter
7 and in appendix D.

Finally, we conclude with a on outlook to the most pressing questions to be
investigated in the future.

Supplementary material is provided in the appendices. Some useful definitions
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and formulae regarding the topological invariants of holomorphic vector bundles
can be found in appendix A, together with a couple of trace identities which are
frequently used throughout this thesis. In appendix B we collect the Kahler cone
constraints for elliptically fibered Calabi-Yau manifolds over del Pezzo surfaces.
These are relevant when it comes to checking the supersymmetry conditions on
the gauge bundles. For the convenience of the reader, we have chosen to include
in appendix C a discussion of the transformation rules for multiple U(1) factors
which, though elementary, might give rise to some confusion.
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Chapter 2

The vacuum structure of
heterotic compactifications

2.1 On the heterotic low-energy effective field
theory

The low-energy effective theory of the heterotic string is given by ten-dimensional
N = 1 supergravity coupled to super Yang-Mills theory. Depending on which of
the two heterotic theories we consider, the original ten-dimensional gauge group
is Fiy x Eg or Spin(32)/Z;" and will be referred to as G. The low-energy dynamics
of both theories only differs in the gauge sector as long we restrict ourselves to
the perturbative limit of weak string coupling. The bosonic degrees of freedom
comprise the ten-dimensional metric, the dilaton ¢,(, the Kalb-Ramond two-form
B® and the gauge potential A with field strength F' = dA —iA A A. At lowest
order in the string coupling, the bosonic part of the string frame Lagrangian takes
the following form

1 1
Shet = 2—2 6_2¢10 [R +4 d¢10 N *d¢10 ——HAxH
K10 J m(10) 2
1
- S 672¢10t1‘(F /\*F) (21)
2910 M(IO)

We will stick throughout this thesis to the conventions of [12]. In this nor-
malisation the relative size of the gravitational and the Yang-Mills interaction is
set by ki, = 1(2m)7 (/) and g7, = 2 (27)"(e’)®. We adopt the standard notation
that 'tr’ denotes the trace in the vector representation of the gauge group and
"Tr” formally refers to the trace over the adjoint representation. In particular the
two are related via TrF? = 30 trF? (see also appendix A.2).

An important role will be played by the heterotic three-form field strength

Oél

H = dB(Q) — Z(WYM — LUL), (22)

!'Nonetheless, the latter case is usually denoted as the SO(32) theory, cf. section 1.2 .
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which involves the gauge and gravitational Chern-Simons three-forms defined in
terms of the gauge potential A and the spin connection €2 by

wyy = tAANdA—ZtrANANA,  dwyy = trF? 03)
2.3
wy, = trQ/\dQ—%trQ/\Q/\Q, dw;, = trR?.

Note that in the last line, the trace trR? is over the fundamental representation
of the tangent bundle of spacetime, which, for flat ten-dimensional space, has
structure group SO(1,9). A crucial point to take into account is that B® is not
a globally defined two-form. This is because it is not invariant under a combined
gauge transformation of the Yang-Mills potential and the spin connection

dJA = dxy—i[A x|, dwyy = dtr(x AdA),
(2.4)
50 = do+[Q,0), Sw, = dtr(0 A dSQ),

but likewise transforms as

!/
5B = = [tr(x A dA) - tr(6 A dQ). (2.5)
The definition (2.2) makes clear that the gauge invariant and therefore globally
defined object is the three-form field strength H.

The chiral massless fermionic spectrum consists of the gravitino in the 56
representation of SO(1,9), the 8’ dilatino, both interacting only gravitationally,
and the 8 gaugino? in the adjoint of the gauge group. The ten-dimensional theory
therefore exhibits gravitational, gauge and mixed gauge-gravitational anomalies
resulting from anomalous hexagon diagrams at one-loop in string perturbation
theory. It is of course among the renowned peculiarities of the gauge groups
Eg x Eg and SO(32) that the non-factorisable anomalies vanish by themselves
and the factorisable ones can be cast into a form suitable to be cancelled by adding
a one-loop counter term. This counter term involves the two-form potential B
and is therefore, according to (2.4), not gauge invariant. The resulting classical
anomalies absorb the one-loop field theoretic anomalies, thus rendering the theory
well-defined. Since we will make heavy use of it in the sequel, let us display the
Green-Schwarz anomaly cancelling one-loop counter term [79,80],

1
Sas = ——+— BP A X 2.6
@5 24 (271')5 o /M(w) 5 ( )
where the eight-form Xg reads
1 4 1 2\2 1 2 2 1 4 1 2\2
Xy = 5 Tk = —— (TrF?)” — 510 (TrF?) (trR?) + g+ o (trR?*)”.

(2.7)

2The 8' and the 8 are of opposite chirality.
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Ten-dimensional Hodge duality relates the Kalb-Ramond two-form to a six-
form B©® via

*10 dB(2) = 62¢10 dB(G) (28)

This suggests the existence of a five-dimensional object as the source for B and
therefore as the magnetic dual of the fundamental string to which B® couples.
These heterotic five-branes are genuinely non-perturbative objects. The natural
framework to study them is consequently the strong coupling limit of the heterotic
theory. In this regime the parallels between the Eg x Eg and the SO(32) theory
come to an end and we need to distinguish as to which theory we are referring
to.

For gauge group Eg X Eg the strong coupling limit is given by Horava-Witten
theory [77], which can be viewed, in the low-energy approximation, as eleven-
dimensional supergravity on the interval S'/Z,. We will discuss some aspects of
this theory relevant for our purposes in detail later on in section (3.4.4). The
object which reduces to the heterotic five-brane in ten dimensions upon com-
pactification of Horava-Witten theory along the eleventh dimension is known as
the M5-brane. It represents the magnetic dual of the membranes as the funda-
mental entities in M-theory. The world volume T', of the M5-brane supports a
self-dual tensor field B,, which will play a role of similar importance as its cousin
B®@ in section (3.4.4). The effective action governing the five-brane dynamics
in ten dimensions can be inferred by dimensionally reducing the known Pasti-
Sorokin-Tonin action for the corresponding M5-brane in heterotic M-theory. For
the details of the full PST action we refer to [81], and for the parts of prime
interest to us again to section (3.4.4).

By contrast, the SO(32) heterotic string reduces in the limit of strong string
coupling to the weakly coupled Type I theory [82]. The low-energy degrees of
freedom of both theories are related to one another by S-duality. Now the Type
I theory, too, involves a five-brane, the D5-brane, which is therefore S-dual to
the SO(32) heterotic five-brane. As a result, the dynamics of the latter differs
considerably from the one of its counterpart in the Fg x Eg theory in that it sup-
ports symplectic gauge fields on its worldvolume and gives rise to chiral fermions
charged under this symplectic group [83]. Again, we postpone a more detailed
discussion to section (4.1).

Having recalled the different strong coupling origins of the Eg x Eg and the
SO(32) five-brane, we stress that in both cases their role as magnetic sources for
the Kalb-Ramond field is encoded in the coupling to B

Sy7 = =y z\faT5/F B® ==%  N.T; /M BO A §(T),  (29)

(10)

where we consider stacks of N, five-branes with worldvolume T, and 6(T',) denotes
the four-form Poincaré dual to I',. The five-brane tension as appearing aboove
is Ty = ((27)°a/*)~!. Note however the implicit factor of e=210 present in B®)
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as a consequence of the relation (2.8) so that effectively, the five-brane tension is
of order .

Since 1t will be of great importance for our purposes later on, let us take a
closer look at the action for B® respectively B®). Dualizing the kinetic action

of H and extracting all terms involving B®) leads us to

1

/
- / e210dB® A xdB® 4 = B A (trF2 —trR? —
4/{;10 M(IO)

I€10 M (10)
4(27r)2ZNa6(Fa)). (2.10)

The equation of motion after variation of B® follows as

d(62¢10 *dB(G)) _ %(trFQ — trR? — 4(27)? ZN“ 5(1“a)>. (2.11)

In view of (2.8) and (2.2), the left-hand side is of course nothing other than dH 3,
and (2.11) constitutes its modified Bianchi identity. Since dH is an exact form,
so must be the expression inside the brackets on the right. This statement is the
so-called Green-Schwarz anomaly cancellation or tadpole cancellation condition
in the presence of five-branes,

4(2r)? (trF? — trR?) — ;Na 0(Ta) = 10], (2.12)

which requires that the left-hand side has to vanish in cohomology.

2.2 Calabi-Yau compactification

Our chief interest is in compactifications of the ten-dimensional string theory
down to four dimensions [28]. From now on, we will therefore consider the topol-
ogy of ten-dimensional spacetime to be given by the direct product*

MUO = RIS 5 M, (2.13)

For stability reasons we insist that supersymmetry be unbroken at the com-
pactification scale, in which case the internal six-dimensional manifold has to

30ne should definitely resist the temptation of equating the left-hand side simply to zero,
using that d(e??10 « dB(®)) = d(dB®). Recall that dB®) is not globally defined and therefore
is not an exact form, so d(dB(*)) need not vanish.

4We will not consider the general case of warped products in this thesis. Also we will simply
write R!"3 for the external space although we will at no place discuss issues like the cosmological
constant etc. Our focus will be exclusively on the gauge sector.

20



admit a globally defined Killing spinor €. By standard arguments this reduces
the structure group of its tangent bundle to SU(3) (cf. [84] for a formulation in the
modern language of G-structures, for a recent review of related ideas and more
references see also [85]). Unbroken N = 1 supersymmetry in four dimensions
amounts to a solution of the Killing spinor equations, i.e. vanishing of the super-
variation of the gravitino 1, the dilatino A and the gaugino x as the fermionic
superpartners of the bosonic fields entering the action (2.1). The supervariations
relate the fermionic zero-modes to the bosonic ones and in a given vacuum state
depend on the expectation values of the latter. In order to keep four-dimensional
Lorentz invariance, only the internal components of the bosonic fields may take a
non-trivial vacuum expectation value. Schematically®, the Killing equations, at
string tree-level and at lowest order in o/, read [70]

0 = 0 = Ve+iHe
0 = 0\ = Jdioe+ 1 He, (2.14)
0 = 0y = 2Fe

Here H and F denote a suitable Gamma matrix contraction with the internal
background values for the three-form and Yang-Mills field strength, respectively.

Clearly, in the absence of a vacuum expectation value (VEV) for the back-
ground field strength H, the first equation implies that the Killing spinor be
covariantly constant with respect to the Levi-Civita connection. It follows that
M is to be of SU(3) holonomy, i.e. a Calabi-Yau manifold. We restrict all our
considerations to this special case, together with a constant dilaton in order to
satisfy also the dilatino equation. More precisely, we do not consider background
values for H at zeroeth order in o'. Nonetheless, the Bianchi identity (2.11) for H
relates a non-trivial VEV for the internal curvature as well as for the Yang-Mills
fields to a VEV for H, which, however, arises at linear order in o/. As reviewed
e.g. in [9], corrections to the Calabi-Yau condition at this order do not break
supersymmetry spontaneously, but can be accounted for by correcting the vac-
uum order by order. Note also that the gravitational backreaction of the gauge
flux is likewise of order o/, as can be seen by comparing the different orders of
o' of the Einstein-Hilbert term and the Yang-Mills kinetic term in the action
(2.1). Consequently, at zeroeth order in o/, the Calabi-Yau indeed solves the six-
dimensional Einstein equations. As long as we are in the genuine supergravity
regime, where the typical length scale of the internal manifold is much bigger
that /o, it is therefore justified to neglect both these effects. The more general
case in the context of heterotic compactifications was already pioneered in [70]
and has recently enjoyed revived interest among physicists and mathematicians,
see e.g. [71-74]. Tt will require some more sophisticated analysis in the case of in-

5Note that this simple form of the Killing spinor equations involves some rescaling of the
bosonic and fermionic fields which is detailed in [70] and which we do not display here since it
will play no role in the sequel.
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terest to us and will be the subject of future work. The supersymmetry condition
for the Yang-Mills field strength will be discussed in detail in the next section.

If supersymmetry is preserved, the effective theory upon compactification is
given, again in the zero-mode approximation, by four-dimensional A/ = 1 su-
pergravity. Most remarkably, the characteristics of the four-dimensional effective
dynamics is entirely captured by the topology and geometry of the internal mani-
fold together with a consistent choice of vacuum expectation values for the bosonic
zero modes encountered in the previous section.

We will extensively exploit this fact in order to describe the dynamics of the
gauge sector. A priori, if we simply compactify the theory on a Calabi-Yau man-
ifold without extra structure, the four-dimensional gauge fields transform in the
adjoint representation of the original heterotic gauge group G. In general, how-
ever, the internal space may carry background gauge flux. This means that some
of the gauge bosons corresponding to the generators of some subgroup G C G
may take a non-trivial vacuum expectation value on M. Of course not any arbi-
trary configuration of gauge fluxes is allowed: The background values of the field
strength are subject to the Bianchi identity and the Yang-Mills equations of mo-
tion, together with additional constraints if they are to preserve supersymmetry.
Pure field theoretic considerations imply that the four-dimensional gauge group
is broken to the commutant H of GG in the original gauge group G,

GcG— H=G/G. (2.15)

In more mathematical terms, the effective gauge sector is therefore governed
by the suitable embedding of a background gauge bundle W over M with struc-
ture group G into the full Eg x Eg or SO(32) bundle [39]. Note that the require-
ment that the background gauge field satisfy the Bianchi identity is automatically
fulfilled if it arises as the connection of a vector bundle whereas the Yang-Mills
equations of motion have to be imposed separately. Remarkably, a large amount
of physical information is present already in the purely topological part of the
bundle data, most notably its various characteristic classes (see appendix A.1 for
a collection of some of their properties). This is true in particular as far as the
emergence of chiral fermions in four dimensions is concerned, as we now review.

The ten-dimensional massless fermions charged under the Yang-Mills sector
are the gauginos as the fermionic superpartners of the gauge bosons and transform
in the 496-dimensional adjoint representation of G. The embedding (2.15) induces
the decomposition of this adjoint into the various irreducible representations of
the four-dimensional gauge group H and the structure group G of the internal
bundle,

496 — EB (R;, 7). (2.16)

J

That is, each four-dimensional massless fermion in representation I?; of the unbro-
ken gauge group carries specific charges, encoded in r;, also under the structure
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group of the background bundle. Let us state that to each r; we can associate a
corresponding internal bundle U; which is essentially some tensor product bundle
of W or its subbundles. We will explain how to determine U; when discussing the
concrete embeddings we are interested in. This entanglement between the four-
dimensional properties I?; of a massless state and its internal origin is the basis
for determining the massless spectrum of a compactification from the geometry of
the internal background bundles. In view of the splitting of the ten-dimensional
Dirac operator D19 = D4 + Dg under compactification on M, it is furthermore
clear that the fermionic zero modes in four dimensions are given by the kernel
of the internal Dirac operator. Furthermore, the splitting of the ten-dimensional
chirality operator into the four- and six-dimensional ones is such that the four-
dimensional chirality of the fermion equals its six-dimensional one. As a matter
of fact, on a Calabi-Yau manifold the positive (negative) chirality subspace of the
kernel of the Dirac operator is isomorphic to the even (odd) degree subspace of
the Dolbeault cohomology. Since it would lead too far to detail the derivation of
this standard theorem, we refer e.g. to [9] for an account. Taking this for granted,
we conclude that the fermionic zero modes in the representation R; under H are
given by the Dolbeault cohomology H*(M, U;) of the internal bundle U; which is
associated to the representation r; under G. Of course, if N' = 1 supersymmetry
is unbroken each fermion appears with a complex bosonic superpartner to form
a chiral supermultiplet. Most importantly, if the representation r; is complex,
the fermionic spectrum is chiral and the net-number of chiral matter multiplets
is given by the index of the Dolbeault complex twisted by the respective bundle
U;. It is the content of the Riemann-Roch-Hirzebruch theorem that this index
can be computed as the Euler number

3
XM, Uj) = (=1)' dim(H (M, Uj)
i=0
1

_ / [chg(Uj) + S aTM)a(U)]. (2.17)

M
To be crystal clear, H (M, U;) denotes the cohomology group of Uj-valued (0, 7)-
forms on M under the Dolbeault operator 0. In fact, for a holomorphic bundle U;

over a complex n-fold, by Serre duality not all cohomology classes are independent
due to the relation

H' (M, Uj) ~ H" (M, U; @ Kum), (2.18)

where U} denotes the complex conjugate bundle to U; and Ky is the canonical
bundle of M with ¢;(Kpy) = —c1(TM). Clearly, Ky is trivial for Calabi-Yau
manifolds.

We state at this stage already that for a non-trivial u-stable bundle of zero
slope necessarily H(M,U;) = 0 = H*(M,U,) and the same holds true for the
conjugate bundle U. Fermions transforming in the representations R; corre-
sponding to a non-trivial internal r; and thus to a non-trivial U; are therefore
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counted precisely by H'(M,U;) and H*(M,U;) ~ H'(M,U) as long as Uj is
stable. For the bundles which count the chiral part of the spectrum, this will
always be the case. In view of the described relation between the four- and
six-dimensional chirality and the Dolbeault degree, the first cohomology group
counts the left-handed and the latter the right-handed chiral multiplets.

On the other hand, as follows from the group theoretic decomposition of
the 496, the four-dimensional gauge bosons transform in the trivial represen-
tation under G' %, and the cohomology of the trivial bundle @ on a Calabi-
Yau is simply dimH*(M,O) = (1,0,0,1). This is obvious if one recalls that
H'(M,0) = H®)(M) and the Hodge numbers of a Calabi-Yau are given by
h(00) =1 = p®3) and A®D =0 = p®? . H® and H? therefore count vector mul-
tiplets, which will be of use later on when we detect possible gauge enhancements
by searching for additional cohomology groups of the trivial bundle.

Another generic feature is the appearance of singlets under the four-dimensional
gauge groups, but transforming in the adjoint representation of the internal gauge
group. These singlets are the moduli fields associated to the deformations of the
internal bundle. For SU(N) bundles V, the adjoint is simply the trace free part
of V' ® V*. Stability of V implies that H'(M,V @ V*) =1 = H3(M,V @ V*).
Subtracting this single element, which corresponds precisely to the trace part, we
find that the bundle moduli are counted by H'(M,V & V*).

Finally, we will be interested in compactifications featuring also the presence
of non-perturbative five-branes. In those cases we leave, strictly speaking, the
regime of exactly zero string coupling, gs = 0, since the tension of the five-
branes scales like é and we cannot accept for their mass to diverge, of course.
Even though g, > 0, this does not imply, however, that we are inevitably be-
yond the perturbative framework since we can still constrain ourselves to small
non-vanishing g, such that all perturbative effects higher than the one-loop level
and even more so additional non-perturbative corrections can consistently be ne-
glected. In the case of the Fg x F heterotic string, the strong coupling limit of the
theory was pointed out already to be given by eleven-dimensional M-theory on
S')Z,, with the two Fg factors arising from the two orbifold fixed planes at the op-
posite ends of the interval. We will always assume that the heterotic five-branes,
if present, are localised in the eleven-dimensional bulk between the Ejg-planes so
that they do not interfere with the geometry of the gauge bundles, possibly lead-
ing to chirality or gauge group changing small instanton transitions [86]. This
assumption is standard in all heterotic compactifications with five-branes in the
literature and should of course be eventually justified by explicitly computing
the effects fixing the five-brane position along the eleventh dimension for con-
crete models. As stated already, we will, in this work, not be concerned with
any issues of geometric moduli fixing, postponing this important, but involved

6This is true as long as the gauge group is not enhanced due to degeneracies of the embedding
of the internal bundles. The class of SO(32) vacua we will analyse in chapter 4 is precisely of
that form.
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question for a future analysis.

2.3 Consistency conditions for model building

The high degree of consistency of String Theory in its fundamental o-model
formulation on the worldsheet translates itself into severe constraints which the
geometric data in the effective description have to satisfy in order to define a
consistent supersymmetric string vacuum. These can be summarized as follows:

o At tree-level, the gauge bundles have to be holomorphic, u-stable and satisfy
the Donaldson-Uhlenbeck-Yau equation.

e The five-branes have to wrap holomorphic two-cycles on the internal man-
ifold M.

e The gauge bundle and five-branes are subject to the anomaly cancellation
condition.

e The second Stiefel-Whitney class of the gauge bundle has to vanish.

Let us turn to a detailed discussion of these constraints.

The gauge degrees of freedom of the background bundle are subject to the
Yang-Mills equation of motion and the Bianchi identity. Moreover, as we noted
already, we insist on unbroken supersymmetry at the compactification scale to
guarantee physical stability of the vacuum. Recall from (2.14) that the super-
symmetry condition on the gauge degrees of freedom is determined by demanding
that the variation of the gaugino vanish in the vacuum, dx = 0. At string tree-
level, this yields the following two equations in terms of holomorphic coordinates
on M involving the field strength of the background gauge fields (see e.g. [9]),

Fu=Fz;=0, ¢g"Fz;=0. (2.19)
The first equation implies that W has to be a holomorphic vector bundle, i.e
that it has to admit a holomorphic connection. Due to its holomorphicity, this
constraint can only arise as an F-term in the effective N/ = 1 supergravity de-
scription and therefore does not receive any perturbative corrections in o/ or the
string loop expansion [87].

The second equation in (2.19) can be conveniently rewritten as JAJAF =0
by taking the Hodge dual. This is actually the zero-slope limit of the general
Hermitian Yang-Mills (HYM) equation

JNJNF =21 pu(W)volp id, (2.20)

where id denotes the identity matrix acting on the fibre and J represents the
Kéhler form of the internal Calabi-Yau. As the name suggests, in combination
with holomorphicity and the Bianchi identity for F', this condition automatically
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implies that the Yang-Mills equation of motion is satisfied. In (2.20) the slope
i of a vector bundle V with respect to the Kahler form J on a manifold M is
defined as’

;AV)::rkaA![;eIACIAcaOA. (2.21)

According to a theorem by Donaldson [88] and by Uhlenbeck and Yau [89], (2.20)
has a unique solution if and only if the vector bundle W in question is p-stable®,
i.e. if for each subbundle V of W with 0 < rk(V) < rk(W) one has

p(V) < u(W). (2.22)

Consequently, the zero-slope limit of the Hermitian Yang-Mills equations (2.19)
relevant at tree level is satisfied precisely by holomorphic u-stable bundles which
meet in addition the integrability condition

/ JNINc (W) =0. (2.23)
M

In case the bundle W is the Whitney sum of several bundles, as it will be in
the case of interest to us, each summand bundle has to be stable and satisfy
(2.23). We will refer to the latter constraints in the following as the tree-level
Donaldson-Uhlenbeck-Yau (DUY) equation. It is important to realize that the
condition of pu-stability is completely independent of the actual numerical value
which the slope u takes. The latter is encoded in the DUY equation, which
insists on (W) = 0 and therefore makes clear that the supersymmetry condition
at tree-level is not merely (2.20), but a forteriori J A J A F = 0. Consider for
example a complex line bundle L, i.e. a complex vector bundle with structure
group U(1). The Bianchi identity dF' = 0 implies in this case that J A J A F,
together with dJ = 0 for Kahler manifolds, is automatically a constant multiple
of the volume form so that the local HYM equation (2.20) is trivially satisfied.
This is in agreement with the DUY theorem since a line bundle over a Calabi-
Yau manifold is also trivially stable. The tree-level supersymmetry condition is
thus merely given by the DUY equation (2.23). Clearly this is no more true for
non-abelian bundles.

We stress that the Hermitian Yang-Mills and also the DUY condition in the
form above are valid only at tree-level and were derived for situations where no
other fields besides the gauge fields take a non-zero vacuum expectation value.
As given in (2.23), the DUY condition puts a constraint on the Kéhler form of the

"The factor of 27 in the Hermitian Yang-Mills equation is just a consequence of the definition
of ¢;(V) = 5=trF. Furthermore we have normalized the volume of M to one.

8To be precise, it is sufficient that the bundle be pu-semistable. In that case, however, it may
split into subbundles such that the resulting structure group is a subgroup of the original one.
The commutant of the structure group in GG, and thus the visible gauge group, would therefore
get enhanced during this process, which we would clearly like to avoid in well-defined physical

vacua.
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internal manifold, which after all cannot take arbitrary values but has to lie inside
the so-called Kéhler cone. We will analyse these constraints in great detail in the
sequel and derive perturbative corrections both to the stability condition and to
the DUY equation. Besides we will see explicitly how the DUY equation emerges
also as a D-term constraint from the four-dimensional effective supergravity.

Let us turn to the supersymmetry condition for the heterotic five-branes. In
order to keep Lorentz invariance in four dimensions, we only allow for situations
where the worldvolume I', of the five-brane fills the four large dimensions and
therefore wraps in addition an internal two-cycle, denoted by v, [90]. The stan-
dard arguments involving k-symmetry on the worldvolume of the five-brane yield
that for unbroken supersymmetry the two-cycle v, has to be holomorphic [91].
All configurations considered henceforth will be of this type. Put differently, the
cohomology class associated with the two-cycle v, must be effective’. The set
of effective classes forms a cone, the so-called Mori cone, in H*(M,Z). This is
due to the fact that a linear combination of two-forms with positive integer coef-
ficients again corresponds to an effective class if the original two-forms do. It is
convenient to introduce furthermore the notation 7, for the element in H*(M, Z)
Poincaré dual to 7,.

We have already encountered the anomaly cancellation condition (2.12) which
translates into a constraint to be satisfied by the internal gauge bundle W, the
tangent bundle T M of the internal space and the configuration of heterotic five-
branes. As we recall, it arises simply as the Bianchi identity for the three-form
field strength H. Its violation results in the appearance of gauge and gravitational
anomalies in the effective theory, since (2.12) is a necessary and sufficient condi-
tion for the ten-dimensional anomaly cancellation mechanism to work. Turning
the arguments around we can - and will - read (2.12) as the constraint that the
cohomology class [IW]'° defined by

W] = [@ ter] - {@trﬁﬂ (2.24)

must admit the interpretation as the class Poincaré dual to the homology class
of a sum of holomorphic curves. Here F and R denote the internal background
field strength with values in GG and the curvature two-form on 7'M, respectively.
According to what we just said this translates into the requirement that the
Hodge dual class of [W] be effective. That is, we insist that the tadpole of the
gauge instantons and the Calabi-Yau tangent bundle can just be cancelled by a
system of supersymmetric five-branes. Failure of effectiveness of [W] (or more
precisely its Hodge dual class) means that the five-branes, which we can always

9Recall that in general, effectiveness of a cohomology class of two-forms just states that its
representatives are indeed dual to a smooth holomorphic curve, as required.

10We trust that it does not confuse the reader that we stick to the standard notation in the
literature and denote the five-brane class as [IW]. It will always be clear if W refers to the
internal gauge bundle or the five-brane class.
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introduce, are non-supersymmetric and in particular non-BPS with respect to the
gauge sector. Due to potential instabilities, we do not consider such situations in
this work!!.

There is a slightly more subtle topological condition on the gauge bundles
which states that the second Stiefel-Whitney class of W has to vanish. This re-
quirement was originally derived from the absence of world-sheet anomalies in the
two-dimensional non-linear sigma model and we refer to [94,95] for more details.
Since the second Stiefel-Whitney class of a holomorphic bundle is isomorphic to
the Zo-restriction of its first Chern class [30], the condition is satisfied precisely
if

(W) € H* (M, 27). (2.25)

In the case of the SO(32) string we will find a simple spacetime interpretation
for (2.25) as being equivalent to the absence of a global Witten anomaly on the
five-branes in every topological sector of the vacuum. Due to its role as the can-
cellation condition for the torsion K-theory charges of non-BPS D7-branes in the
S-dual Type I framework [96], we will sometimes refer to (2.25) as the K-theory
constraint. We are not aware of a similar spacetime interpretation for the Fg x Fg
theory.

See, however, [92,93] for a proposal of supersymmetry breaking vacua in the presence of
anti-five-branes.

28



Chapter 3

The Es x Ey Heterotic string with
unitary bundles

The vacuum structure of perturbative four-dimensional heterotic compactifica-
tions is, as we reviewed in the previous chapter, specified by a stable, holomor-
phic vector bundle W over the internal Calabi-Yau manifold M together with an
embedding of its structure group G into the original ten-dimensional heterotic
gauge group . By an appropriate choice of G and the bundle data, one can
thereby try and construct four-dimensional vacua with phenomenologically ap-
pealing gauge group and matter content. As we also recalled in section 1.2, the
standard realisation of GUT groups in this context is to embed an an SU(4)
or SU(5) bundle into one of the two FEg factors leading to SO(10) and SU(5),
respectively, as the resulting observable gauge groups. The chiral matter aris-
ing in these scenarios transforms in the (16) or (10) + (5) representation of the
gauge group. The spectrum does not provide any appropriate vector-like matter,
i.e. Higgs fields, required to break the GUT group down to the Standard Model.
This drawback is overcome by breaking SO(10) or SU(5) via non-trivial dis-
crete Wilson lines, which in general can only exist if the first homotopy group of
the Calabi-Yau is non-trivial. Such Calabi-Yau threefolds can be constructed by
taking free discrete quotients of a Calabi-Yau with vanishing fundamental group.
The electroweak Higgs can appear from the (10) or the (5) + (5) representations.
From the physical point of view, this is a very simple and compelling picture and
recently models whose particle spectrum is quite close to the Standard Model
have been constructed [44,49,51].

The starting point for our investigations is the following fact: The described
breaking of the GUT gauge symmetry down to the Standard Model via discrete
Wilson lines involves, in more mathematical terms, flat abelian bundles. This,
however, is not the most general type of construction. An obvious question is
to explore whether one can use also non-flat line bundles to obtain phenomeno-
logically interesting GUT or MSSM-like models from the Eg x Eg string. The
content of this chapter is a thorough and systematic analysis of this idea, based
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on [97,98]." We will first have to understand the group theoretic embedding
of vector bundles with non-semisimple structure group and the resulting matter
content upon decomposition of the adjoint representation of Eg x Fg. We will
then proceed to a detailed analysis of the low-energy effective theory in four di-
mensions. The presence of anomalous U(1) factors in the visible gauge group
necessitates a careful study of the anomaly cancellation mechanism, which is
particularly subtle in the presence of non-perturbative five-branes. We will de-
rive new anomaly cancelling terms upon reduction of the five-brane action from
heterotic M-theory down to ten dimensions. The importance of these terms is
obvious only in the presence of U(1) groups and has therefore been overlooked
previously. Most importantly, the various one-loop terms provided by the full
Green-Schwarz mechanism will further lead us to the discovery of perturbative
corrections to the D-term superymmetry conditions affecting in particular the
relevant stability condition for the background bundles. We will conclude our
analysis of the general features of the Fs x Fg heterotic string with unitary bun-
dles by exemplifying the rich embedding patterns leading to flipped SU(5) GUT
models or directly to the Standard Model gauge symmetry even on manifolds
without Wilson lines. Further phenomenological applications of the ideas pre-
sented in this chapter are postponed to chapter 7.

3.1 Group theoretic embedding
The vector bundles we consider are of the following generic form
W =W, @ Ws, (3.1)

where the structure group G; of W; is embedded into the first and second factor
of Eél) X EéQ), respectively, with commutant H;,

G1x Gy C BV x EY 5 H, x H,. (3.2)

For each building block W; we consider the Whitney sum of SU(XN;) or U(LV;)
bundles. They are chosen such that the structure group of W; contains at least
one abelian factor. In order to determine the unbroken gauge group H; relevant
for the physics in the string vacuum, we need to recall some %roup theoretic
generalities concerning the embedding of non-semisimple G; C ESZ)

As a matter of fact, it is not possible to directly embed the unitary group U(N)
into Fs because all subgroups of the latter are semi-simple. One therefore has to
take a detour by first choosing some auxiliary semi-simple subgroup SU(N;) C

LA study of U(N) bundles in the framework of the spectral cover construction has appeared
recently in [69]. Besides that, to our knowledge, the only constructions prior to our analysis [97]
are some scattered results on aspects of four-dimensional models [30,99,100] and a few papers
on five- and six-dimensional models [66-68,70,101]. Our analysis differs considerably from some
of the conclusions in [100] and [68]. Recently, more aspects of the framework of [97] have been
analysed in [102] and [103].
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Eéi) 2 Of course, we are very familiar with the embedding of this SU(N;) into Eéi)
by considering the usual branching rules for Eéi) (see e.g. [104]). Let us collectively
denote the commutant of SU(N;) in Eéi) as Fg_y;,. Concretely, for N; =7,6,...,2
it is known to be given by SU(2), SU(3) x SU(2), SU(5), Spin(10), Es and E7,
respectively.

What may be not so familiar is the second step, the embedding of the non-
semisimple structure group G; into this auxiliary SU(N;). It can be accomplished
in two distinct ways.

The first type of construction - dubbed of type A in the sequel - is based
on the embedding SU(N;) x U(1)Mi ¢ SU(N; + M;) and invokes in its most
elementary version the Whitney sum

M;
W; =V, @ @ Ly, (Type A). (3.3)

m;=1

Here, the vector bundle Vy, has structure group SU(N;) C SU(N; + M;) and
the field strengths of the line bundles L,,, are identified with the specific U(1)
generators in SU(N; + M;) which commute with the generators of the chosen
SU(N;). To be more precise, the U(1) generators are determined iteratively by
following the stepwise decomposition

m;=1

Clearly, in each step the new U(1)y, generator Ty, can be represented by the
diagonal SU(N; + M;) matrix

Tki:diagNi+Mi( ]_,...,1 7_(Nz+Ml_kz)a0770) (35)

N;+M;—k; times

This realizes the promised embedding of the structure group SU(N;) x U(1)M: of
the bundle W; into SU(N;+ M;). We anticipate that the states in the fundamental
representation of the line bundle L,, can be taken to carry unit U(1),,, charge,
thus fixing the otherwise arbitrary U(1) charge normalization. The various line
bundles are not correlated among one another and in particular Vy, gives no
contribution to the U(1) charges. For later purposes, we summarize this by
writing

ka(Lmz) = 6/61‘,771“ le(VNl) = 0. (36)

The relevance of this U(1),,, charge which we thereby attribute to the line and
vector bundles will become clear when we discuss the cohomology groups (3.18)

2For the moment, let us concentrate on the case where we really have only one factor of
SU(N;). Generalizations are obvious and will be sketched at the end of this section.
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counting the massless spectrum.
Example:

We illustrate this Type A embedding by a simple example. Consider only
one Eg factor. In the first step of our construction, take A/ = 4, corresponding
to the embedding SU(4) C Es — SO(10). Now we decompose the internal
SU(4) as SU(4) — SU(3) x U(1). This is accomplished by means of a bundle
W =V @ L, where V is a rank three bundle with ¢; (V) = 0 and L a complex
line bundle. The structure group SU(3) x U(1) of W is embedded into this
SU(4) by identifying the field strength of the connection of L with the SU(4)
generator T' = diag(1,1,1, —3). L is assigned U(1) charge 1. In all, this realizes
the embedding

SU®3) x U(1) € SU(4) € By —s SO(10) x U(1). (3.7)

As an alternative to the type A construction, one can embed U(XN;) bundles
Vi, into Eéi) by means of a particular procedure where one actually starts with
a U(N;) x U(1)M: bundle W; with ¢;(W;) = 0. To emphasize the difference from
the ansatz (3.3) for SU(N;) x U(1) bundles, let us adopt the notation

M;
Wi=Vx, ® € L. with ¢ (W;) =0 (Type B) (3.8)
m;=1
for U(N;) x U(1)Mi bundles.

What distinguishes the two constructions is that in (3.8) the line bundles are
no more independent, but are chosen just to absorb the diagonal U(1)-charge
of U(N;) in the splitting SU(N; + M;) — U(N;) x U(1)Mi. At the level of the
bundles, this means that, as indicated, the first Chern classes of the various
summand bundles add to zero. Group theoretically, one has to fix the embedding
of the U(1) part of the structure group into SU(N; + M;). For k; = 1,..., M;
this can be described by the charges

Qki = (Qki(VNi)7 SR Qki(VNil’ Qki(Ll_l)a SR ka(L;zi)) (3'9)
N; times
with
M;
Ni Qr,(Vi) + Y Qi (L) = 0. (3.10)
m;=1

The concrete charge assignment is again found iteratively by invoking the decom-
position (3.4), where in each step we can use the freedom to choose a normaliza-
tion of the new abelian charge in order to write

N——

N;+M;—k; times
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which clearly differs from its previous analogue (3.6). Note that as a consequence
of the correlation between the U(1) part of the structure group of Vi, and that
of line bundles, the bundle W; has structure group SU(N;) x U(1)M:. For the
detailed computation of the various anomalies associated with the U(1)-factors,
it will turn out to be convenient to introduce the matrix

Qkimi = le(VNz) + le(Lmz) (3'12)

Example:

Applying this construction to our toy SO(10) chain (3.7) we now take W =
V@ L™, with V a U(3) bundle and the line bundle L chosen such that ¢, (W) =
c1(V) —ei(L) = 0. Clearly, L can be attributed U(1) charge 3, V' carries unit
charge, and (3.10) is satisfied with @ = (1,1,1,—3), see (3.9) and (3.11). Note
also that Q = 4.

Both constructions (3.3) and (3.8) admit obvious generalizations: Instead of
considering only one non-abelian bundle Vy, per Eéi), we can, of course, allow for
several suitable SU(N/) or U(N}?) factors and embed them into SU(D_y, Nfi+
M;). The point is that when embedding U(1),,, into SU(N;), we can alternatively
identify its generator T, with any other diagonal SU(N;) generator, inducing
thereby the branching U(1),,, € SU(N;) — SU(A;) x SU(B;) x U(1) with
A; + B; = N;. As far as the type B construction is concerned, the generalisation
of the above is to realise the breaking U(N;) — U(A;) xU(B;), A;+ B; = N;. A
systematic description of the latter type of embeddings has recently been given
in [105]. Arbitrary iterations and combinations are obvious.

Let us summarize the systematics: As described, the unbroken gauge group
in four dimensions is given by the commutant H; x H, of the structure group
Gix Gy C Eél) X EéQ). In particular, its non-abelian part is determined - leaving
aside the issue of additional enhancements for the moment - by the standard com-
mutant of the SU(A;) in E{”. The detailed form of how the SU(N) or U(N/)
groups are embedded into the SU(N;) decides on the additional abelian group
factors which can potentially occur. It is clear that the abelian part of the struc-
ture group is contained in H (U(1) factors of type (i) according to [30,68,106]),
because the U(1)s commute with themselves. There might also be additional
U(1) factors in H not contained in the structure group (U(1) factors of type (ii)).
Finally, we anticipate that, depending now on the particular topological proper-
ties of the vector bundles we choose, the gauge group can be further enhanced or
U(1) factors can become massive due to the Green-Schwarz mechanism. These
two issues will be explored more extensively in the subsequent sections.

In view of the above, a complete and systematic classification of all possible
embeddings and the resulting gauge groups is in principle possible, but not very
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illuminating. Of potential phenomenological interest is the embedding of those
SU(N; + M;) factors leading either directly to SU(3) x SU(2) as the non-abelian
part of the commutant in Ey or to appealing GUT groups such as SO(10), SU(5)
or the Pati-Salam SU(4) x SU(2) x SU(2). On simply-connected Calabi-Yau
manifolds, the need to realize the final gauge group breaking down to the MSSM
without the aid of Wilson lines further eliminates SO(10) and Georgi-Glashow
SU(5) since the GUT Higgs states required in these scenarios are absent in the
massless spectrum. Since a general feature of our approach is the appearance
of at least one U(1) factor in the gauge group, we are very naturally lead to all
those scenarios where such abelian groups occur. Besides the direct realisation
of the MSSM gauge sector this is most prominently the so-called flipped GUT
framework, in particular the flipped SU(5) x U(1)x model [75]. We anticipate
that - unlike the conventional GUT models - the GUT Higgsing merely requires
scalars in much smaller representations which are present in the spectrum. This
yields the important prospect of bypassing the need of Wilson lines and therefore
non-simply connected background manifolds.

In all concrete examples we will restrict ourselves to (at most) one non-abelian

bundle per Eéi) factor®. We will therefore stick in our notation to this case.

3.2 Massless spectrum and cohomology classes

To determine the massless spectrum, one analyses, as in (2.16), the splitting of

the adjoint representation of Fg X Ejy into irreducible representations RSZ.) under

the four-dimensional group and the internal one, denoted as r,(fi),

248 x 248 — > (RU) rV:1,1) + ) (1,1, RY), r()). (3.13)

xr1 X2

From the structure of (3.13) it appears at first sight that the two Eéi) sectors

are hidden to each other in the sense that all states charged under, say, EéQ) are

singlets under Eél) and vice versa. This is definitely true for the non-abelian part

of the representations, which arises after embedding the SU(N; + M;) into EL.
However, in the presence of abelian gauge group factors, this picture changes. In
the original, diagonal basis of U(1),,, generators, it still holds true that the states

in representation Rgl) are uncharged under the abelian group factors embedded

into E§2) and vice versa. But we are free to perform a change of basis and consider
arbitrary linear combinations of U(1) generators from both Eél).“ In particular,
states in the representation, say, (1, 1; R,(f), r,(f)), though coming as singlets under

H,, may carry non-trivial charges under the U(1) group generated by the linear

3As it turns out, these are precisely the phenomenologically appealing ones.
“In fact, these may be just the massless combinations surviving the Green-Schwarz mecha-
nism. QOur favourite construction in chapter 7 will be precisely of this form.
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combination a,,, T, + bn,Th, of generators T,,, of U(1),,,. As a consequence of
the embedding of U(N) bundles, the two Eéi) are no more completely hidden to
each other.

In the class of models based on the splitting SU(N;+ M;) — SU(N;) x U(1)Mi
for the internal bundle, we can give a rather general closed expression for the
representations ré? which occur. It is based on the elementary observation that
under SU(N + 1) — SU(N) x U(1) we have the following decomposition of the
lowest irreducible representations

Adj(N + 1) - Adj(N)o + (1)0 + (N)N+1 + (N)f(NH)’

(N+1) - (N)1+1—N’ (3 14)
A’ (N+1) — AZ(N), + (N)_(y_y). '
A*(N+1) — A*(N), + Az(N)—(N72)'

For the various antisymmetric tensor representations we write more suggestively

<N/;F 1) (Z)k + (;ﬁfl) . (3.15)

One can now follow the various steps in the full decomposition SU(N + M) —

SU(N) x U(1)M for each of the two Eéi) as in (3.4) and prove by induction the
following decomposition of the lowest representations which we will encounter in
our applications

Adj(N+M) — Adj(N) o+ M x (1),

k=0 j=0 k=0
M—1
N+M) = (N),_ .+ Z(UQ;a
=0
M-1 M-2M—j—2
A*(N+M) — Az(N)(z ..... 9) T Z (N)Q; + Z (1)9*35*; (3.16)
k=0 j=0 k=0
M-1 —2M—k—2
AN+M) = A*(N), o+ 3 AZ(N)g + (N)g;, +
k=0 k=0  1=0 ’
M-3M-—1-3M—j—1—3

The various U(1) charge vectors of the states are given by

3l = (1,...,1, (N+k+1), (N+k+2),..., (N+ M),
o) ( k ( ): ( ) ( )
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J k
o, (N + M),
g = (0,...,0, =(N+j), 1,....1),
J
Ot = (1,...,1, (-N—k+1),2,...,2),
k
?,k = (0,...,0, =(N+74),1,...,1, =(N+k+3),2,...,2),
J k
¥ = (2,...,2, -(N+k—2),3,...,3),
k
O, = (1,...,1, =(N+k—=1),2,...,2, =(N+k+1-1),3,...,3),
’ N—— N——
k l
G5 = (0,0, —=(N+01), 1,y 1, =(N4145), 2,2, ~(N+ 1+ j+k),
! J k
3,...,3). (3.17)

Following the discussion in section (2.2), thanks to the non-trivial internal
gauge background we find four-dimensional chiral matter in representations R;?
specified by the cohomology class H*(M, U;,gl)) What we can say at the general
level is that the fields in representation R;? will be counted by cohomology groups

of the form

M;
H* M,Aa;ivNi®®(§mi®,,.®LmL) : (3.18)

m;=1

m; .
Bz,;* —times

From the decomposition (3.16) we immediately identify the a;i as the rank of
the tensor representations of SU(N;) occurring in the corresponding internal r.
The powers S, of the line bundle are determined by demanding that the U(1)y,

charges qﬁz of the representation Rg} be correctly reproduced. Very generally,
they are found by solving

g5 = ol Qu (V) + D B Qui(Lumy). (3.19)

As we described, for embeddings of Type A, (3.3), the abelian charges of the oc-
curring representations are entirely due to the respective line bundles, see (3.6).
Thus the powers 3" in (3.18) can simply be read off from the entries in the charge
vectors specified in (3.16) and (3.17), since after all 5" = ¢J". By contrast, for
Type B embeddings, (3.8), the various line bundles and the vector bundle are
interrelated, and we need to take into account the different U(1) charges (3.11)
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carried by the bundles to determine the 8. In the explicit examples we will
discuss in the sequel this is straightforwardly accomplished.

Example:

We again conclude these general remarks by exemplifying the procedure for our
simple model defined in (3.7). The first embedding, SU(4) C Eg — SO(10)
induces the familiar decomposition

248 — (15,1) + (1,45) + (4,16) + (4,16) + (6, 10). (3.20)

Now we decompose the internal SU(4) representations under SU(4) — SU(3) x
U(1) according to (3.14) as

15 — 80+10+34+§_4,
4 — 3, +1_3,
6 — 3,+3.,. (3.21)

Combining these two steps leads to the spectrum?®

(1, 45),
(8,1)0+ (1,1)0 + (3,1)s + (3,1) 4
948 SUGXS0U0XU() (3,16); + (1,16)_, . (3.22)
(E,E)_l + (17E 3
(g, 10)2 + (3, 10)—2

As a straightforward application of the prescription (3.19) we find furthermore
the cohomology groups listed in table 3.1 counting the massless spectrum. In
evaluating (3.19) we used that for Type A constructions, Q(V) = 0 and Q(L) = 1,
whereas for Type B the charge assignments are normalized such that Q(V) =1
and Q(L) = 3. In addition to the spectrum tabulated there we find of course
the vector multiplets containing the gauge bosons of SO(10) and of the U(1)
factor and which are counted by H*(M,O) with dimH*(M,0) = (1,0,0,1)
due to the absence of continuous Wilson lines on a Calabi-Yau manifold. Note
also the additional singlets under the four-dimensional gauge group counted by
H*(M,adj(V)). These correspond to the vector bundle moduli of V" and describe
the possible deformations of its geometry.

3.3 Global consistency conditions

We have seen that the background bundles are subject to two topological con-
straints, (2.24) and (2.25), in order that the resulting string vacuum be globally
well-defined. Now that we have specified the concrete embeddings, it is time

®Note that in the last line we used that the antisymmetric of SU(4) is given by the 3.
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reps. || Cohomology (Type A) | Cohomology (Type B)
16, H*(M,V®L) H*(M,V)
16_4 H*(M, L3 H* (M, L)
10, || H'M,V®L™?) = H*M,V®L™") =
H' (M, (N*V © L?)) H* (M, (AN*V)*)
1, H*(M,V ®L*) H*(M,V®L)

Table 3.1: Massless spectrum of H = SO(10) x U(1) models.

to evaluate their implications. For this purpose, let us establish the following
notation which will be used extensively in the subsequent discussions. The ten-
dimensional field strengths F''% = F'% + F)% are written, upon compactification,
as F!* = F; + F;, where F; is the external four dimensional part taking values
in H; and F; denotes the internal six-dimensional part, which takes values in the
structure group G; of the bundle. Recall that the U(1) factors of type (i) are
special in that they appear both in G; and H;. We denote the four-dimensional
U(1) two-form field strengths as f,, and the internal ones as f,,, .

It will furthermore turn out useful to relate the traces appearing in expressions
like (2.12) to the Chern classes of the background gauge bundle and the tangent
bundle of the internal manifold. This can be accomplished with the help of
identities of the type

—2 1 ; 4
trEéi)Fi = 3 . 2 (27)? (chQ(UgEi)) X dlm(Ril)))
M;
= 420 (Vi) + > emom, cal(Lm) Aci(Ln)], (323)
m;,n;=1
u(R) = ;R =2t} R = —4(21)2e(T). (3.24)

For constructions of type A, the parameters €, ,, depend on the concrete
embedding; for type B, by contrast, we will see in the explicit examples that in
fact €m;n; = 30m,;n;- Similarly we introduce the expansion coefficients k, ,,, and
Tm; n;» Which will be important later on and which are defined by evaluating the
following traces over the concrete spectrum,

1 .
o (FF) = 5 > 2 (e (U)) x dim (R mzlq fm))
M;
Z Rm;,n; fmi/\fni:
m;,n;=1
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1 Eo_n._u1, i
trE()(FQ) — % d1m( ) (trRZ?NZ Mi(F)? + dim( R, Z Q' A fmi /\fm)

mi,n;

M;
E
=2t YD) + D Do s A e (3.25)

m;,n;=1

By ¢y. we denote again the charge of the representation Rg} under U(1),,,. In
fact for decompositions of the type specified in the previous section, 9, n, = 0 =
Km;m; = €m;m; for m; # n;. This is a consequence of the fact the U(1),,, arise
from the embedding into some SU(N;): In each line of the decomposition (3.16),
the separate trace over the individual U(1),,, vanishes.

Finally, the tadpole condition (2.12) can be cast into the form

2 M;
Z(chQ(vMH > emnc1(Lm) Acr(L ) ZNM__CQ (T). (3.26)
i=1 m;,n1=1

Recall that 7, denotes the internal four-form Poincaré dual to the holomorphic
two-cycle v, wrapped by the five-branes.

The second global consistency condition, the K-theory constraint (2.25), is
seen to be non-trivial only for embeddings of type A, in which case it reads

My Mo
> (L) + Y ei(Lm,) € H*(M,2Z). (3.27)
mi=1 mo=1

Clearly for embeddings of type B, (3.8), with ¢;(W;) = 0, it is automatically
satisfied.

3.4 Anomaly cancellation

In String Theory, all irreducible anomalies cancel directly due to the string con-
sistency constraints [107] such as tadpole cancellation. The factorisable ones, by
contrast, do not. For the four-dimensional effective theory resulting from string
compactifications this means that all non-abelian cubic gauge anomalies do can-
cel, whereas the mixed abelian-nonabelian, the mixed abelian-gravitational and
the cubic abelian ones do not. Since each U(1) bundle in the structure group of
the bundle implies a U(1) gauge symmetry in four dimensions, all these latter
three anomalies appear. For the string vacuum to be consistent, they have to be
cancelled by a generalised Green-Schwarz mechanism®. This section is devoted
to a detailed study of the factorisable anomalies due to the embedding of non-
semisimple gauge bundles in the Eg x Fg theory and the associated anomaly
cancellation mechanism. The latter is by no means just of academic interest,

6The Green-Schwarz mechanism for several U (1) symmetries in Eg x Eg heterotic compact-
ifications has also been discussed in [68], but their results differ from our conclusions.

39



but allows us to extract crucial information about the effective four-dimensional
field theory. The point is that the Green-Schwarz mechanism provides certain
terms in the effective action which arise at one-loop in string perturbation the-
ory. Apart from the issue of anomaly cancellation, these terms will be the basis
for determining the threshold corrections of the gauge kinetic functions and one-
loop corrections to the Donaldson-Uhlenbeck-Yau supersymmetry condition for
the gauge bundles. Even more fundamentally, the detailed form of the Green-
Schwarz terms decides upon which of the abelian gauge factors become massive
via a Stiickelberg-type mechanism and thus only survive as global symmetries.
A careful study of the Green-Schwarz mechanism is therefore of immediate rele-
vance even if we were only interested in the most basic physical properties of the
string vacua.

After presenting in section (3.4.1) the field theoretic anomalies, we will thor-
oughly explain the generalized Green-Schwarz mechanism, focusing in section
(3.4.2) on the case without five-branes. It will turn out that the inclusion of
five-branes requires additional Green-Schwarz terms, as becomes obvious only in
the context of abelian gauge bundles. These modifications will be discussed in
(3.4.2) and derived from Horava-Witten theory in (3.4.4). We will conclude this
section by summarizing the axion-gauge boson mass terms in (3.4.5) which are
important for concrete model building.

3.4.1 Field theoretic anomalies

We restrict the detailed discussion for brevity to the case that Vi, has structure
group SU(N;), i.e. embeddings of Type A; we will indicate the modifications
in the otherwise largely analogous analysis of U(N;) bundles at the end of this
section.

The field theoretic mixed U(1)p,-E§_y, and mixed U(1),,-G}, anomalies for
m; € {1,...,M;},i,j € 1,2 can be computed by considering the chiral particle
spectrum resultlng from the concrete embedding. Mathematically, anomalies in
four dimensions are characterised by their anomaly six-forms [108], which in our
case are given by

Fo_
AU(l)m.—E2 ~  fmg Aty YR}

> CP(RD) g (M, U,,)

i

Zq dim(RY) x (M, U,,) | ,

I

Avy, a2~ fm ANIR? (3.28)

AU U (D O, ~ Smg N g N [qu Q! o, dlm( ) XM, Uy,)

Here, 0(2)(R;(,fi)) relates the traces over the representation R;(,ji) of Ey_y;, and the
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fundamental representation via
tr ) F?=CY(RY) tr,F?, (3.29)

and its value for the relevant representations is listed in appendix A.2, whereas the

m

gy constitute, as we recall, the U(1),,, charge of the representation Rg}. Note

that in this diagonal basis of U(1) generators, the anomalies involving U(1),,,
stem exclusively from the states charged under the same Eéi), and there exist no
U(1)m, — Ej_y;, anomalies.

In view of the slightly cumbersome general form of the occurring represen-
tations (3.16), (3.17), it is not very illuminating to perform this field theoretic
computation for the most general embedding possible. On the other hand, it is
a simple task to do so for a specific model. The results are compatible with the

following universal expression for the anomaly six-forms:
9 — — 1 —2

Av(yn,—cz, ~ fms ATR? U Fons A (12trff - 5tr§2)} . (3.31)
M

To arrive at expressions of this type we will have to use (3.23) in order to relate

the Chern classes arising in the formula (2.17) for the net chirality of the repre-

sentations to the traces over the field strengths appearing in (3.30) and (3.31).

The U(1)m;-U(1),,-U(1),, anomalies are slightly more complicated and can be

summarized in the following general form

1 12

- — 1 —
AU(l)m'_U(l)"'_U(l)m ~ fmi A foi N T [/ fml A Onip; <trFi - §trR ) +
M

Here we have assumed that for at least two U(1)s being identical, the single one
is U(1),,,. For m; # n; # p; the first term in (3.32) is absent. For n; = p; the
relative factor between the first and the second term in (3.32) can be expressed
as

8

Cmin;n; = g €n;.n; Ominin, - (333)

Om;n;n; denotes the symmetry factor of the anomalous diagram, i.e. o n;n; = 3
for m; # n; and oy, m;m; = 1. The parameter ¢,, ,,, was defined in (3.23).

For embeddings of Type B, the concrete expressions get slightly modified as a
consequence of the different powers of line bundles appearing in the chiral index
X(M,U,;). As it turns out, we need to introduce the linear combination

~ M; _
Fone = Qs fi, (3.34)
ki=1

41



in terms of the charge matrix (3.12). The mixed abelian-nonabelian and gravita-
tional anomaly six-forms in this case differ from the ones displayed in (3.30) only

— =~m;
by the replacement fml — f , whereas the cubic abelian anomalies are now best
summarized by

~ fmi/\fni/\fpi {

E\
[y

. —2 1 —9
AU W), U, U (1), Cminips Sm; N\ Onip, (trF 1= gt )

7 7 7

with 3
Ko
o, = AT 3.36
c iniPi 80_min1pz ( )

3.4.2 The four-dimensional Green-Schwarz mechanism
without five-branes

Since the ten-dimensional string theory is anomaly-free, there must exist a mech-
anism which cancels the above field theoretic (mixed-) abelian anomalies which
occur in the four-dimensional field theory. This is, of course, none other than the
four-dimensional analogue of the Green-Schwarz mechanism. As in ten dimen-
sions, it provides certain counter terms in the low-energy effective action leading
to anomalous couplings between the involved gauge fields. The point is that the
thereby induced anomaly six-form is just of the right form to cancel the one-loop
field theoretic anomalies.

Before analysing the explicit form of the counter terms involved, we make a
slight digression to discuss the general field theoretic features of the mechanism. A
key role is played by certain four-dimensional two-form and scalar fields (axions).
Concretely, they arise upon dimensional reduction of the Kalb-Ramond two-form
B® and the self-dual tensor fields on the worldvolume of the five-branes. Suppose
we have a collection b§2), b;o) of such fields, with the superscripts denoting their
respective rank in four dimensions. As we will see, the two-form fields and scalars
are Hodge dual to each other, satisfying

bl = B; 5y dbSP (3.37)

for some 3; to be determined later. This relation allows us to write the kinetic
action for the bf) as

Sl =aq, / b A wgdp? = 2 / db? A dv'?. (3.38)
Ri,3 ﬁj Ri,3
As a dynamical input, we will find the following two types of couplings,
S’uertex = ZA]/ bgo) N tI'j:Q, (339)
j Ri,3
Smass = Z/R b§2) A ZM]mfm (340)
j 1,3 m
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The coupling constants A;, M, will follow from the concrete Lagrangian and
are just some parameters for the time being. The index m takes values in
1,..., My, My +1,..., M; + M, and labels the U(1) groups stemming from both
Ejy factors. F stands for one of the fields F; or R with appropriate Chern-Simons
form w such that dw = trF?, and f,, = dA,, denotes the field strength of the
U(1), gauge symmetry, under which A,, transforms as 0A,, = d\,,.

We can now straightforwardly integrate S,.ss by parts and combine it with
S,zm to integrate out the axions, writing schematically

b = % 3" MimAn. (3.41)
J m

If we insert this back into Syerer after integrating the latter by parts, we find the
couplings

B.
Scoup = — Z a—j .Aj Z Mjm Am N w. (342)
j m

Ri,3

These terms are clearly not invariant under the abelian gauge transformations.
With respect to, say, the U(1),, symmetry they transform as

6U(1)n Scoup = — \/R (j4)n with (j4)n = Z % A]‘ Mjn (d)‘n N w) . (343)
1,3 j J

I, therefore defines an anomalous six-form (Ig), via the chain [108]

A ~

(fﬁ)n = d(f5)na S (1), (Is)n = d(14)n, (3.44)

and we conclude that we indeed arrive at the anomaly six-form for the mixed
U(1), — F?* anomaly

5.
j J

The corresponding anomalous diagram therefore hinges both upon the presence
of the mass term S,,,5s and of the vertex coupling Syeree. By contrast, even if
the latter is absent, S,,qss induces a Stiickelberg-type mass term for some of the
abelian gauge fields. This is immediately clear if we plug (3.41) back into (3.40).
After integrating by parts we identify the following mass term for the abelian
gauge fields

M1+ M

SStuckelberg = - Z (M),Qn’n (Am A *4An) (346)

m,n=1

with the squared mass matrix given by

|
(M) =D — Mijm M. (3.47)
j J
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To determine the massless abelian gauge factors we therefore need to find the
zero eigenvectors of the mass matrix ann It will be more convenient to work
instead with the coupling matrix M, because it can be read off directly from the
effective action without further manipulations. By elementary linear algebra one
can convince oneself’, after performing a suitable basis transformation, that the
massless abelian gauge factors are precisely those linear combinations of U(1),,
whose gauge potential Ay = )" a,, Ay, lies in the kernel of My, i.e

Ull), = Zam U(l),, ismassless <= ZMjm am = 0. (3.48)

m

We stress in particular that the various abelian factors from the two different
Fs may combine into a massless U(1). The number of massive U(1)s is given
by the rank of the matrix M;,, and is always at least as big as the number of
anomalous U(1)s. However, since the mass generating terms are independent of
the existence of additional vertex couplings Syerrer, an abelian factor can well
acquire mass without being anomalous, i.e. without participating in the actual
Green-Schwarz mechanism. This phenomenon is familiar already from the cancel-
lation pattern of abelian anomalies in Type I/ Type II orientifolds (see e.g. [109]).

After these general remarks, we can now identify the relevant terms in the
four-dimensional effective action. For the Fg x Fg theory, there are altogether
three different contributions to the counter terms: The actual Green-Schwarz
terms, the kinetic action for the three-form field strength and, in the presence
of heterotic five-branes, additional couplings which are non-vanishing only if the
gauge bundle contains abelian factors. For this reason, the latter are not consid-
ered in the classic compactification with SU(N) bundles only.

The four-dimensional Green-Schwarz terms arise upon dimensional reduction
from their ten-dimensional parents given in (2.6) and (2.7). If we explicitly take
care of the two FEjg factors by writing F' = F; + F,5, we get for the anomaly
eight-form (2.7)

Xg -

(trF2)* + % (trF2)* — % (trF7) (trFy) — < (trFY + trFy) (trR?) +

O | — x| —
oo | —

1 2
trR* + 33 (trR?)". (3.49)

To arrive at this result we have to take into account that Trp,. g, (F/F5) = 0
(for simultaneously non-vanishing ¢ and r) and furthermore use the trace iden-
tities (A.16) in appendix A.2. With the help of the tadpole cancellation condi-
tion (2.12), we dimensionally reduce this term to

2
1 1 — 1 — 1
- - (2) 2 - _ _Z
Ses Z{s(%)w /M<10)B A (teF?) {4(%)2 (trFZ 2trR> 3[W]]

=1

"This is spelled out in appendix C.
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(3.50)

1 ) — 1 —2 1 —2 1
+ Torpa /an B A tr(FT) [4 eor <trFi ~ S ) - g[W]]
(3.51)
+ 24 (2;)5 of /M(IO) BEA [tr(ﬂﬁi)f} (3.52)
o @ L om? (08 -
B /M(m)B A [4(%)2 (trR?) (t R) Q[W]] (3.53)
- m / BO A (R Ty tr(FT). (3.54)

Note the explicit dependence on the heterotic five-branes present in the most
general case via the terms involving [W] = > N,7, . We will discuss the con-
sequences of their contributions momentarily; for the time being, let us consider
the special case without five-branes, i.e. where [W] = 0.

In this situation, the only missing ingredient is the kinetic term

1
Shin = ——— 2010 [T A 19 H. 3.55
k 4/43%0 M (10) ¢ 10 ( )

For the purpose of the dimensional reduction it is convenient to make use of
a basis of two-forms wy, k = 1,..., hy; and their Hodge dual four-forms® &% with
the property

/ Wi A @k’ = 6kk’- (356)
M

In terms of the string length ¢, = 27v/a/ we now expand

hi11 hi11
B® = b+ 23 00w, BO =00 volg + 61 3 b Gy,
k=1 k=1
h11 h11
uFy = (2m)? Y (0F )G tR = (2m)2 Y (R, O, (3.57)
k=1 k=1

h11

Tm = 27 Z(?m)kwk;
k=1

where for dimensional reasons we have introduced appropriate powers of o' and
volg is the volume form on M normalized such that f/\/t volg = 1. Note that

80ne might wonder at first sight why we only take the even cohomology into account.
The point is that even if the internal manifold exhibited elements in H!(M,Z) we would not
pick up any four-dimensional contributions from the Green-Schwarz terms corresponding to
the expansion of B into internal and external one-forms. The same applies to the potential
expansion of B(®) into internal and external 3-forms.
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fr €7 due to the integrality of ¢,(L) € H?>(M,27Z). Let us anticipate that the
universal axion b(()U) complexifies the dilaton to form the complex scalar of a chiral
supermulitplet in the N' = 1 supergravity theory, whereas the bg]) pair with the
Kihler moduli. As a consequence of the duality between B®) and B, both types
of two-forms b§2) are related to their axionic counterparts by x4 dng) = 2%10 dbgo)
for all j € {0,1,...,hy1}, as promised in (3.37).

The general strategy is clear: Insert the expansions (3.57) into (3.50) - (3.54)
as well as (3.55) and organize the surviving contributions as vertex (3.39) and
mass terms (3.40). For simplicity, we focus now on the mixed abelian-nonabelian
and abelian-gravitational anomalies. The GS-terms (3.50) and (3.53) give rise to
the following vertex terms in four dimensions

hi11

5 = 1 =
Sas 32 o) /1&132 trF) (trF; 2trR )k} (3.58)
h11 )
O'trR?) ('R, 3.59
g [, 2 (0 0R) @, (3.59)

By contrast, from (3.51) we yield a mass term for the four-dimensional two-form
field b”)

M,

1 — —2 1 —
S S @®Am>mm/‘ A(trF — trR
mass 16 (271')5&' /Rl,3 mz_l 0 f 1] Bmima “ fm1 ( ey 5 T )
+(1 ¢ 2), (3.60)
where we have used that k,, ,, = 0 for m; # n; (see (3.25)). This mass term

for the universal axion is obviously only present for U(1) symmetries of type (i),
reflecting the fact that for the Eg x FEg heterotic string U(1) factors of type (ii)
are always non-anomalous.

To cancel the anomalies we also need a GS-term for the external axion béo) and
mass terms for the Kahler axions b(Q) They emerge from (3.55), which contains,
apart from the kinetic action for B , the cross term

!
Siin = 8% /(trFl2 + trF2 — trR?) A B9, (3.61)
K1o

On the one hand, this gives rise to a four-dimensional GS-term
1
ag::—:/ B A (trF? + trFY — trR?). (3.62)
87 Jr,

In addition, reducing trF; A F; such that one factor takes values in the external
U(1)s and the other in the internal ones, we find mass terms for the b . After
dimensional reduction one eventually arrives at four-dimensional couphngs of the

46



form

M;  hi

S =3 (g [ 230 () b T} (369

R1.3 im;=1 k=1

The GS-couplings (3.58),(3.62) and the mass terms (3.60), (3.63) have pre-
cisely the structure of the general coupling and mass terms considered in (3.39)
and (3.40), which, as we showed, lead to appropriate anomaly six-forms and can-
cel the field theoretic anomalies. In other words, they generate tree-level graphs
of the form displayed in figure 3.1, which provide couplings of the same type as the
ones appearing in the mixed gauge anomalies. For the mixed abelian-nonabelian
GS contribution we get, according to the foregoing discussion,

GS Kmg,m; 2 r 72 1 =2
AU(l)mi—Eé,Ni ~ 2o fm; NtUF; [/M Fomg N (trF1 — itrR )] . (3.64)

For the mixed abelian-gravitational anomaly the contributions from internal ax-
ions and the four-dimensional one add up to

. _ o 1
AGS .~ __Fmimi At 2[ o L
- 61(2m) o fm; NIR S, N | t0Fy 5 rRR

+ 11—2 7 (trR )] (3.65)

Eoms s 9 - —9 D =2
— _ 13170y ) F PR .
G102n) of fm; NTR [/M Sy N (tr 1 12trR )}

Along the same lines, one can also show that the mixed U(1)? anomalies
cancel. Now also the Green-Schwarz couplings (3.52) contribute.

3.4.3 The generalized Green-Schwarz mechanism includ-
ing five-branes

The inclusion of heterotic five-branes complicates the story of anomaly cancel-
lation and leads to interesting new phenomena. The point is that in order to
generate the correct anomaly cancelling couplings from the Green-Schwarz terms,
we have to assume tadpole cancellation to organize the various contributions as
n (3.50) - (3.54). This leads, in the presence of five-branes, to additional five-
brane dependent contributions which yield anomalous diagrams in the effective
theory, but without there existing any one-loop anomalies which would have to
be cancelled by them.

Let us go back to (3.50) - (3.54) and collect the terms involving the five-brane
class [W]. From these we can, following the analogous steps performed in the
previous section, construct an anomaly six-form. The result is
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Figure 3.1: Green-Schwarz counter term for the mixed gauge anomaly.

1 1
AMS T Na/t j2¥a [—tFQ trF2 — trR

3

= (iR} - tng)] (14 2). (3.66)

Since there does not exist any chiral matter from the M5-branes, the only way to
compensate the anomaly from (3.66) is by additional Green-Schwarz terms from
the Mb5-branes. In the next section, we will provide a rigorous derivation of the
presence of these terms independently of the requirement of anomaly cancellation.
Here we will anticipate their form and discuss their role played in the Green-
Schwarz mechanism.

Let us start by observing that the first term in (3.66) can precisely be cancelled
by introducing the additional coupling

(1 _ 1 2 2 2 2
SGS = m ;Na /a B( ) A (tI"Fl +tI'F2 —trR ) (367)

in the effective action. To show this we simply have to perform dimensional
reduction and follow the steps detailed at the beginning of the previous section
and construct the anomaly six-form induced by the coupling (3.67).

To cope with the second contribution in (3.66), we recall from the general
discussion in section (2.1) that on the six-dimensional world-volume of an M5-
brane there lives a tensor field Ea which is self-dual with respect to the metric
on the six-dimensional worldvolume of the five-brane,

dB, = %, dB,. (3.68)

Note that the corresponding Hodge star operator factorizes as x, = x4 ® x5, into
the external four-dimensional piece and the one defined with respect to the metric
of the two-cycle wrapped by the five-brane. By dimensional reduction B, gives
rise to a two-form and a dual scalar

B, = M+ 2507, with  db® = 5, db. (3.69)
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Here have introduced 7, as the Hodge dual of 7, such that it satisfies (2%,, 7, = 1.
For completeness, we point out that if the five-brane wraps a holomorphic curve of
genus g, then taking one leg of B, to be along one of its 2¢g one-cycles gives rise to
2g additional vector fields in four dimensions, only g of which carry independent
degrees of freedom due to the self-duality of B, [110]. Consequently, we encounter
an additional gauge group of U(1)¢ in four dimensions, possibly enhanced if
certain components of the holomorphic curve coincide. Since there exists no
chiral matter charged under this gauge group, and even more so no matter charged
simultaneously under the visible gauge group resulting from the FEj, it is veritably
hidden and will not affect us any more in the sequel.

The extra pair of dual 9 -5 can generate additional Green-Schwarz counter
terms, again completely in the spirit of the previous section. More precisely, one
can apply the by now familiar strategy and convince oneself that the following
coupling term

S = 27r e ZN/ B, A (trF? — trF2) (3.70)

provides just the right counter terms to cancel the second five-brane dependent
part in (3.66).

In fact, (3.70) can be viewed as arising from the cross terms in the kinetic
action for the three-forms fIa

1 ~ ~
= | HyAwH, 71
Sun = ~ 5T / A (3.71)
with
~ ~ O/
Ha = dBa — g (wy,l - wy,g) . (372)

Note that we are free to choose some normalisation of H, and correspondingly
also of its kinetic action. What is fixed by requiring anomaly cancellation is, as we
recall from the discussion around (3.45), merely the ratio of the prefactor of the
kinetic term for the two-form fields (3.71) and of the Green-Schwarz like coupling
(3.70). One can easily check that the normalisations of (3.67),(3.70) and (3.71)
are indeed consistent with the anomaly six-form (3.66) if we take into account
that déa is self-dual with respect to x,. As a general remark, it is known that
due to the self-duality of H,, we should actually stick to the M-theory five-brane
action [81], as will be done in section (3.4.4).

To conclude, both the terms (3.67) and (3.70) must indeed be present in the
ten-dimensional effective action of the Eg heterotic string for a consistent five-
brane coupling. Even though the requirement of these terms by anomaly cancel-
lation is manifest only once we allow for background bundles with non-zero first
Chern class, their presence cannot depend on the gauge instanton background, of
course. In particular, they have an effect on the gauge kinetic function also of the
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field strength associated with the semi-simple part of the gauge group, as we will
see in section (3.4.5). It is reassuring to note that both new contributions to the
effective action are also consistent with the analogous Green-Schwarz mechanism
in six-dimensional compactifications, as analysed recently in [105]. Still, as a
non-trivial consistency check for our setup, it is highly desirable to provide an in-
dependent derivation of the unfamiliar couplings from the viewpoint of heterotic
M-theory. We will endeavour to do so in the next section.

3.4.4 M-theory origin of new GS-terms

The presence of the counter terms (3.67) and (3.70) can indeed be derived directly
from Horava-Witten theory. The logic is very similar to that leading to the usual
Green-Schwarz terms from heterotic M-theory, as first described in [111,112].
Here we will extend the analysis to the five-brane dependent terms.?

As pointed out several times, Horava-Witten theory is eleven-dimensional
supergravity plus higher derivative Chern-Simons couplings compactified on the
circle S* and modded out further by a Z, involution acting on the eleventh
dimension. Horava and Witten found [76] that the two ten-dimensional fixed
planes under the orbifold Zs action give rise to anomalies which can only be
cancelled by postulating the existence of an Fg gauge theory on each of these
planes. The two ten-dimensional Eg gauge theories are identified with the gauge
sector charged under the two factors in the heterotic Fgs x FEg theory. As it
will turn out, the ten-dimensional dilaton is related to the size of the eleventh
dimension and thus to the separation of the two Fg sectors along the interval
S'/Z,. As always when dealing with orbifold theories one has the choice to work
either ”downstairs” on the space modded out by the geometric orbifold action
and after projecting out all states not invariant under it, or in the ”upstairs”
picture. This means in our case that we consider the action on the circle S*,
bearing in mind, however, that we will eventually identify two opposite points on
the circle and keep only those terms in the action invariant under the induced Z,
action.

The effective action of heterotic M-theory in the upstairs picture is given by an
eleven-dimensional bulk part on M}!, the ten-dimensional gauge actions defined
on M19 and in addition the contribution from possible M5-branes. Concretely
we use the conventions that [76,77,114]

S = Skin+ Scs + Seurv + Sym + Suss (3.73)
1 1
Skm P RO—-GA *G,
2 K Mqlll 2

90ur derivation was done independently from [113], where a similar analysis has been per-
formed. Note that this reference does not use the resulting Green-Schwarz terms for cancel-
lation of abelian anomalies and does not consider the terms (3.70) arising from the M5-brane
action. Also, to the best of our knowledge, the connection between the new GS terms and the
FI-D-terms in section 2.6 has not been explored previously.

20



SC’S — T/ —C/\G/\G
2K /\/l11

1 1 1
Seury = —/ CA [ <tr R* — —(tr R?)?
(271') ML 8 32
1 1
Sym = —» = tr (F* AxF') — —tr (RA*R
YM ; e /M(w) r( *F") 5 r(RA*R),
where M!'" = M9 x S'. The compact eleventh dimension takes values in

the range —mp < 2! < 7p and the gauge fields are localized at z'' = 0, 7p.

The part of Mb-brane action S5 [81] relevant for our purposes will be given
at the end of this section. The presence of a five-brane at position y along z!!
requires that we also include its Zs image at —y with which the original brane will
eventually be identified. Eleven-dimensional indices will be denoted by I, J, K, ...
and ten-dimensional ones by A, B,C,.... The ten-dimensional gauge couplings
are related to & via A2 = (47)(27%%)?/? and the tension of the five-brane is given
by Ts = (2)Y/? [114]. Finally, under the orbifold action z'' — —z'', Cup,

G apc11 and the components gj(qlé) and gﬂll)l of the eleven-dimensional metric are

even, but Capc and Gagep are odd [76] .

Supersymmetry conservation requires the inclusion of particular combinations
of the gauge field strengths and the curvature into the Bianchi identity for the
field strength G = dC' [76]. Following the intuition that five-branes effectively
contribute to the action like gauge instantons'?, this Bianchi identity is modified
further by M5-contributions and takes the general form [110]

(dG)llABCD = —%(J15( 11) + JQ(S(.IH — 7Tp)
+§J5 (5(z" = y) + 0(z" + y)))ABCD. (3.74)

Note that we take into account the contribution from the five-brane at z!' = y
and its mirror brane at 2! = —y such that together their effect is that of one unit
of gauge instanton (thus the factor %) The generalisation to the case of several
five-branes is obvious. The gauge and curvature sources at the orbifold fixed
planes are given by J; = tr F; A F; — %trR A R = dw; for i = 1,2, while the five-
brane contributes J5 = —4(27)§(T). Here 6(T) is the four-form Poincaré dual to
the worldvolume of the five-brane in M9 ' In analogy with the Yang-Mills and
Lorentz Chern-Simons forms we also introduce the ten-dimensional three-form wsy
satisfying J5 = dws.

Being interested in the ten-dimensional theory after Kaluza-Klein reduction
on S!, we now focus on the situation where the eleventh dimension is much smaller

10 Alternatively, we can derive this contribution from the CS coupling of the M5-brane to the
dual six-form potential, essentially along the lines of the derivation of equ. (2.11) reviewed in
section 2.1.

""When we further compactify M(10) = R(1:3) x C'Y; we have the obvious decomposition
6(T) = §(RE3 ) A7 for a five-brane wrapping the two-cycle dual to the four-form 7 on C'Vs.
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than the ten-dimensional space. This is the limit in which the effective action
of the ten-dimensional weakly coupled heterotic string arises [111,112]. In this
regime ten-dimensional derivatives of gauge and curvature terms can be neglected
as compared to field variations along z''. Hence, one can give an approximate
solution for G and C' to the above Bianchi identity and the equations of motion
D! Gryx1, = 0 by splitting the fields into their zero-mode and a background part
as C = CO + W and G = G© + G, Including also the five-brane sources,
we get

Cape = 0541])3(;, Casn = ij)ga
Gapecp = G(A%CD, Gapct1 = (dB)apc + GS)BCHa
o R 1y, L 1n_ 1
e = — o (wrela™) + Sunlela™ ) + el +)
L1
——(wl + Wwa + w5)>
) ABC
ey _ _E_Q 11 1 1 11
ABCD = T 53 Jie(z™) + 2J5(€(55 y) +e(z +y))
L1
SR A A J5)>
) ABCD
G(Al) = —*EQ (w1 + wa + ws) aBC- (3.75)
BC11 2)\2 P

e(z'") denotes the step function, i.e. e(x'') = +1 for x'! positive and —1 oth-
erwise. We have introduced also the ten-dimensional two-form field B which
arises as the Z, invariant components of C'. Note that GS)BCD is not continuous
at x'' = mp = —mp but rather takes the limiting values

K2 K2

1 1
GS4)BCD|7FP,< o Ja, qugcp‘—wpp =5 Js (3.76)

on both sides of the second orbifold plane. When we take the exterior derivative
dG, this gives a d-function localized at wp and proportional to 2.Js,

(dG)napop = nGiipop — 404G pep (3.77)

= o [2h56) + (GG - y) + 56"+ )

1
+2J58(z" — mp) — —(J1 + Jo + J5)]
P ABCD
47?2 1
—m |:Z(J1 + Jy + J5)ABCD:| ;

so that the field configuration (3.75) indeed solves the Bianchi identity (3.74).
Similarly, one may convince oneself that the equations of motion for the field
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strength GG are satisfied up to terms proportional to d.J;, which are assumed to
be negligible in the limit we are considering [111,112].

The ten-dimensional weakly coupled heterotic string theory is recovered by
compactification on S! according to the standard ansatz

ds?, = e~ 2010/3 ggg) da? da® + e(4910/3) (dz'")?, (3.78)

where we keep only those parts of the action which are invariant under z!'
—z!. In particular, the kinetic term for G contains a part involving the com-
bination G1,4pcG'4BY. Inserting the solution (3.75), integrating over S! and
focussing only on terms not involving ws due to the five-branes precisely yields

the familiar kinetic term

1

YA —
kin 9
4k,

/ e T2 A KH (3.79)
M(10)

for the ten-dimensional three-form field strength H = dB® — 2 (w; + w,) after
setting

(3.80)

= —; -—
2 2 4dr

0 I «“= 2\27p - T2p

1 2mp . AR 2_1/3<E>2/3
. .

We are now ready to investigate the origin of the complete Green-Schwarz
counter terms including the contribution from the five-branes. They arise at
order (%)2 after inserting the above solution for C' and G into the Chern-Simons
terms Scg in (3.73) as

222

3
Sesl ., = —_2/ /B(Z)/\G(l)/\G(l)/\d:rH (3.81)
(3x) 12k M(10) J g1

—92
LGy @A (224 72— 1
47?2 (2)\2) /.M(lO) BEA <3(J1 + s J1J2) 6J5(J1 + JQ)

plus additional terms proportional to [ B®) A J2, which however vanish after
performing the integral. To arrive at this expression we place the five-brane
and its mirror symmetrically at y = +% between the two orbifold fixed-planes.

Note that the combination C[ABUG(C%)DEFG(C}%HJ} is indeed even under the orbifold
action and therefore survives in ten dimensions. Additional contributions from
the higher curvature corrections S, are

1 1 1
Seurv = C A | Str R* — —(tr R?)?
18(27 )3 72T /M}Ll (8 Rt i)
= é/ BOA(Liert - i(trR2)2 (3.82)
24(271')50/ M (10) 8 32 . '

The part 2(J7 + J — JiJ2) in (3.81) combines with (3.82) into the standard
Green-Schwarz eight-form Xy [111,112].
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The additional counter terms (3.67) we are after now arise from J5(.J; +.Jo) =
—4(27)25(T) A (trFE + trF3 — trR?). In summary, (3.81) and (3.82) yield in the
ten-dimensional limit

2 2
Sas = c/ B® A <X8 + ( Z) S(T) A (trF? + trF} — trR2)> (3.83)
M(10)

with
8 mp R2 B 1

L S 3.84
=352 50~ e (3:84)

as postulated in (3.67).

The origin of the second five-brane dependent counter term (3.70) lies in the
Mb5-brane action. With the normalisations of [81] (see e.g. also [115]), the part
relevant for our analysis is given by

T l= = .1,
Sas = _?52]\7&/ <ZFQA*FQ+C+§dBa/\C>, (3.85)
- r,ur,

again summing over all branes and their mirrors. Here ﬁa = dﬁa — (' is the
modified field strength of the self-dual tensor field B, living on the five-brane
and C is the bulk six-form potential dual to C. The contribution from (3.85)
we are interested in is the topological coupling dB, A C. Following the general
strategy we insert again the appropriate background solution for C' and place
brane and mirror brane at y = £%? respectively to find

T: ~ ~
Stop = _sza </ Ba/\dC’(l)+/ Ba/\dC’(l)> _
a a I
T ®? -
= f;—AzZNa/F By A (trFY — trF). (3.86)

It can be checked that, together with the kinetic term for Ea, this coupling indeed
yields precisely the required counter terms to cancel the contribution to the five-
brane anomaly in the second line of (3.66). In the standard ten-dimensional
normalisation of the kinetic action for B, which we used in (3.71) one eventually
recovers the counter term (3.70). Note that we are always free to change the
normalization of éa. What goes into the induced anomaly six-form is the merely
the relative normalisation of the above vertex coupling and the kinetic term for

B, and unaffected by such trivial field redefinitions.
3.4.5 Gauge-axion masses from the Stiickelberg mecha-
nism

A central question we need to address is which of the abelian gauge factors re-
main massless after the Green-Schwarz mechanism cancels potential anomalies.
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We recall from the discussion around (3.46) that the coupling terms S,.ss in-
volved in the anomaly cancellation process induce a Stiickelberg-like mechanism
for the abelian gauge factors which is specified by the mass matrix ann in

SStuckelberg = — ngin:l M%m (Am A x4An). We now collect all contributions to

these axion-gauge boson mass terms from the universal axion, béo), the Kéahler-
axions, bfco), and finally the five-brane axions 5510). For later purposes it is con-
venient to display the results directly in terms of the Chern characters of the
background bundles (cf. (3.23)). This will allow us to identify the massless U(1)
combinations by inspecting the topological data of the bundles.

The mass term involving the universal axion reads

1
Somi 1 A fn - L) A [ cho(Vi) +
mass 4(271')20/ /R(1,3) f ,|:nz_1ff i 1/ z) (C 2( Nz)
M;

> () Aall) +yem - SN )] @8

ki li=1

It arises as the sum of (3.51) and the extra counter term (3.67).
For the Kéhler axions the kinetic term for Hs induces the mass terms,

1
Shmi — — A fon: e ADe|, (3.88
mass 2(27r)2a/ /R;(lj) f i |:ZK/ i 1/ 1 ) wk:‘ ( )

n;=1

as we recall from (3.63), and the five-brane Green-Schwarz term (3.70) yields the
mass term

1
Spmi = f————— N
mass 4 (2m)%/ /R(l 3) fm {

for the 5-brane axions. The plus sign holds for the abelian field strengths arising
from Eél) and the minus sign for E§2)

From these expressions one can immediately identify the matrix M, of equ.
(3.40), with j running over all bulk and brane axion labels. We recall that the
kernel of M, is related to the massless combinations of abelian gauge fields or
axions, respectively, as described in equ. (3.48). Finally, let us point out that the
mass terms are all of the same order in both string and sigma model perturbation
theory. It is noteworthy that, though all mass terms are of order M2, the mass
eigenstates of the gauge bosons can in principle have masses significantly lower
than the string scale at least in situations with multiple abelian factors.

S ko, / n,)ma] (3.80)

n;=1

3.5 Gauge couplings

In this section we extract the holomorphic gauge kinetic functions for the non-
abelian and abelian gauge groups [80,116-119]. Recall that the gauge kinetic
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functions f, are encoded in the four-dimensional Yang-Mills Lagrangian, which,
up to second order and in our sign conventions, takes the form (cf. e.g. [120])

1 1
Lyy = —3 Re(f,) tr(F AxF) + 3 Im(f,) tr(F A F). (3.90)
In particular, the gauge coupling g, defined by

1
['kin = —4—g2tI‘(FuVFMV), (391)
is seen to be given by Re(f,) in this normalisation, possibly up to a multiplicative
constant which takes account of the proper normalisation of the trace and which
will be fixed later. Dimensional reduction of the ten-dimensional tree-level term

1 o/
S&(\J} _ 5 . e 2%10 T (tr(Fy AxioFy) + tr(Fy A *10Fy)) (3.92)
10 J M@0

reveals the tree-level gauge coupling as appearing in

1 Vol 1
Sy = _ﬁ/ %e—%w 0 (tr(Fl Ay Fy) + tr(Fy A *4F2)>. (3.93)
Ri,3 s

The traces are, at this stage, still formally taken over the two Fg factors without
differentiating between the actual gauge groups in four dimensions. For later
purposes we note also that the compact volume is computed from

05
JNINT = g Zdzgk oy O A, (394)

1,5,k

Vol(M) = é/

M

where d;;;, = fM w; A wj A wy, are the triple intersection numbers of the basis of

two-forms and the Kahler form is expanded as J = (2 Zfz“l ;Wi

The axionic coupling involving Im(f,), by contrast, is contained in the cross
term (3.62) emerging from the kinetic action for H,

1
Sts = g/R b A (tr(F A B + tr(F A F)). (3.95)
1,3

Consequently the full tree level gauge kinetic function is simply f = 15 '? with
the complexified dilaton defined as

1 1
S = [ewww +ibéo)] . (3.96)

27 s

However, in the course of the discussion of the Green-Schwarz mechanism
we have encountered further axionic couplings similar to (3.95) but involving

12To be quite pedantic, there arise additional normalisation constants related to the precise
definition of the traces over the gauge factors. We will discuss them momentarily for the
non-abelian and abelian factors in four dimensions.
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the Kéhler and the five-brane axions. These stem from the conventional Green-
Schwarz terms (3.50) and the new five-brane dependent couplings (3.67), (3.70).
In the effective four-dimensional N = 1 supergravity, these axions are not arbi-
trary fields but form the imaginary part of the lowest lying component in a chiral
superfield [121]'3. The full complex bosonic part of these superfields is given by

1 [ 1 o

T = 5 {—K—Q/MJ/\wk+zb,(€0)}, (3.97)
1 Vol(T,)  ~

Aa - —27r |:_)\a OE(Q ) + G 1(10):| : (398)

The A, denote the scalars which together with the self-dual two-forms B,
combine into tensor multiplets on the six-dimensional world-volume of the five-
branes. In the strong coupling Horava-Witten model these scalars are nothing
else than the position of the respective five-branes along the eleventh direction.
The normalisation of the real versus the imaginary parts of (3.97) and (3.98) is
such that the kinetic terms for all scalars is incorporated correctly in a suitable
Kahler potential. The Kahler potential consistent with the above choice will be
given in the next section.

Due to these axionic couplings which involve the imaginary parts of the su-
perfields (3.97) and (3.98), Imf, receives additional contributions. The N = 1
supergravity formalism dictates that the full gauge kinetic function is a holomor-
phic quantity, and therefore a modification of its imaginary part cannot leave its
real part inert. Rather, it must be that the full complex correction term is again
proportional to the bosonic part of an A/ = 1 superfield'.

The gauge kinetic function for the field strengths of the non-abelian gauge
groups which we collectively denoted as Fq_,r, can therefore be written, in the
large radius regime, as

h11

fr v =S+ % ST, (trFi2 _ %trRQ = N,ﬁa) + %Z NoAa.  (3.99)
k=1 a k a
This precise normalisation arises when we express the trace over the Fg in terms
of the trace over the actual gauge group in four dimensions. From equation (3.25)
we recover a factor of 2 in front of the non-abelian traces which we have included
in (3.99). The upper sign of the last term involving the superfields A, is for the
first Ey, the lower one for the second. This is an immediate consequence of the
the form of the five-brane dependent counter term (3.70). We have furthermore
introduced the notation
hi1
Ta= D (Ta)k B (3.100)
k=1
13In abuse of notation, we will sometimes also refer to the complex bosonic component as
the superfield, just for brevity. It will always be clear from the context what is meant.

14 And mutatis mutandis for the fermionic terms if we consider f, as a veritable superfield
instead of focusing just on its bosonic part.
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The physical quantities we are interested in are the gauge couplings as the
real part of f,, for which one gets at linear order in )\,

47 e~ 2010 1 1 _, -
= JNINT — — IJAN —— | trF. . — ZtrR
v OO J. 7,7 e (- 3

1 1
g TN (170) [ 7 (3.101)

a

This makes it clear how the first term, the tree-level gauge coupling, receives one-
loop threshold corrections depending both on the Kéhler moduli of the Calabi-
Yau and the five-brane moduli A, (see also [113]). If we set all five-brane moduli
to zero, then we nevertheless get a five-brane contribution of 1/4 to the one-loop
gauge couplings in both the first and the second Eg. From the Horava-Witten
point of view this means that for A, = 0, the five-brane is placed exactly in the
middle between the two end-of-the-world nine-branes and A, is measured with
respect to this symmetric configuration (see figure 3.2). We will give further
evidence for this interpretation momentarily.

The next-to-leading order M-theory computation carried out in [122,123] pro-
vides an O(\?) correction to the real part of the dilaton superfield

1 Vol A2
S = _[e%’wio (M)+ZN,1¢/F J+ib" . (3.102)

27 5

This correction was derived in [123] essentially by requiring that the kinetic terms
for the self-dual two-form on the M5-brane can indeed be correctly incorporated
into an appropriate Kahler potential. Using this result and holomorphicity of the
gauge kinetic function leads to the gauge couplings

4T 1 /
= JNINJT
Q?EQ_M 35 g3 Jm

1 Mi 1

_E y J A (ChQ(VNZ-) + m;_l €mym;C1(Lm,;) A c1(Ly,) + 5 CQ(T)>
1 1 2

+ 52 Na (5 F A J. (3.103)
S q Ty

For A\, = —%, the contribution of the five-brane to the threshold corrections from

Eél) is precisely that of a small instanton inside Eél) [83]. This unambiguously

identifies A\, as the relative position of the five-brane measured with respect to the
middle of the interval between the orbifold planes, as suggested already. Different
normalisations of the counter terms (3.70) would have resulted in a corresponding

redefinition of \,. As expected, if one places the five-brane inside the E§2) wall,

its gauge threshold corrections to the gauge couplings from Eél) vanish and vice

versa.
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Figure 3.2: Mb5-brane potential in Horava-Witten theory on the Quintic induced
by abelian gauge flux on Eél).

For the abelian gauge groups things are slightly different. Now also the Green-
Schwarz terms (3.52) and (3.54) lead to axionic couplings besides the ones we have
encountered already. The resulting gauge couplings are in general non-diagonal
and are readily found to be given by

aT N s /
= —= JNINT
s ms 126592 J s
n oL 1
_ dmini J/\(ch(V.)+ Z €my.n; C1(L .)/\C(L.)—I——C(T))
2 / 2\VN; m;,n; C1\Lvm; 1\Ln; 2
465 M m;,n;=1 2
1 i
_12£2 J N < Z KmipiFn; g Cl(Lpz‘) Cl(qu'))
s S M Pi,qi=1

2
N i 1
N, | = .104
+ 102 Ea a<2:F)\a> /FaJ (3.104)

for both U(1) factors from the same Ej factor and by

4T 1 My M
- 245? M JA (Z Z Kmi,p1Fna,g C1 (Lm) Cl(Lq2)>

2
Y n p1=1¢q2=1

(3.105)

for one U(1) from the first and one U(1) from the second Eg. Apparently, only for
trivial line bundles, i.e. Wilson lines, do the extra threshold corrections vanish.
The normalisation relative to the expression for the non-abelian gauge groups
arises as follows: First we have to remember once more how to express the trace

29



over Fg in terms of the four-dimensional gauge groups, see equation (3.25). In
addition, the generators of the non-abelian groups are canonically normalized as
trl, 1, = %6,1(,, and we need to adjust the normalisation of the abelian gauge
factors by explicitly including this factor of % into the gauge coupling.

We conclude the present discussion with an important remark. As is obvi-
ous from the explicit expressions (3.103), (3.104), the tree-level contribution to
the real part of the gauge kinetic function is always positive, as it must; after
all, Re(f) is just the inverse square of the gauge couplings. Clearly, positivity
of Re(f) must still hold after subtracting the threshold corrections, at least in
the regime of small string coupling, where all potential higher corrections are
negligible compared to the one-loop thresholds. A violation of this bound would
indicate severe inconsistencies in the effective field theory, possibly in the sense
that the four-dimensional supergravity we have written down does not follow as
the consistent truncation of the full ten-dimensional theory. In any case, we insist
on positivity of the real part of the threshold corrected gauge kinetic functions as
an effective supersymmetry condition. Since the threshold corrections manifestly
depend on the Kahler moduli, the five-brane position moduli and the dilaton,
this condition imposes constraints on the involved moduli fields. In short, in a
supersymmetric vacuum we must ensure that

Re(f5,_y.) > 0, Re(fr) > 0, (3.106)

for the two non-abelian gauge sectors and for all unbroken, i.e. anomaly-free and
massless abelian gauge groups.

3.6 D-terms and supersymmetry constraints

The Green-Schwarz counter terms have provided us with important non-trivial
information about the four-dimensional low-energy effective action, notably the
gauge threshold corrections. The couplings between the abelian gauge fields and
the axions have furthermore produced mass terms not only for the Kahler ax-
ions, but also for the universal axio-dilaton and the axions emerging from the
five-branes, if present. In four-dimensional N' = 1 supergravity, theses axions
form the imaginary part of the bosonic component of chiral superfields. The
real parts are, as we have seen, given by the Kahler moduli, the dilaton and the
moduli parameterising, in the M-theory limit, the position of the branes along
the eleventh dimension. In supersymmetry preserving vacua, there must thus ex-
ist a mechanism which likewise renders the corresponding partners of the axions
massive since a splitting of the mass terms within one supermultiplet is incom-
patible with supersymmetry. At string tree level, the Donaldson-Uhlenbeck-Yau
equation is precisely of the right form to yield the required mass terms for the
Kéhler moduli. We therefore need to find analogous mass terms for the dila-
ton and the five-brane moduli. It is natural to expect that the violation of the
equal-mass-condition for all components of a supermultiplet is manifestly corre-
lated with the supersymmetry condition. On the other hand, we know that in
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theories with massive abelian gauge factors, Fayet-Iliopoulos (FI) D-terms signal
a possible supersymmetry breakdown (e.g. [124]). This is therefore the starting
point for our investigations. We will make heavy use of the standard fact that
the FI terms can be computed from the Kahler potential I with the help of the
supersymmetric field theory formula (e.g. [120])

Em oK
Dm 9—2 — Dm W v :U, (3107)

where V,,, constitutes the abelian vector superfields associated with the abelian
gauge symmetry U(1),,. After deriving the gauge invariant Kéhler potential, it
will be straightforward to extract the FI terms. We will find an intriguing relation
between the FI terms and the DUY equation which allows us to identify one-loop
corrections to the latter involving the dilaton and the five-brane moduli. They
will indeed solve the puzzle about the missing mass terms. They also imply a
modification of the stability condition on the gauge bundles arising at one-loop.
Finally, we will comment on a new D-term contribution to the scalar potential of
the Mb5-brane in heterotic M-theory in the presence of abelian gauge flux on the
end-of-the-world branes which may be of significance in cosmological applications.

3.6.1 Gauge invariant Kahler potential

In four-dimensional N/ = 1 supergravity, the Kahler potential K is determined
by requiring that it reproduces the various kinetic terms in the four-dimensional
action in the Einstein frame. Recall that the latter is obtained from the four-
dimensional string frame action (i.e. the one after compactifying (2.1)) via the
redefinition [12]

Gg) — 2010 G%l) — Rg = 2010 [RE — 6V%p1 — 6(8¢10)2} ) (3.108)

In particular, under this transformation the string frame kinetic terms for the
dilaton and its axion bgo) become in Einstein frame

vol(M)
2K,
vol(M)

2
2K7y

64¢10

2

/Rm(_G(;));eQd)w |:_RS +14 8ﬂ¢103#¢10 _ aﬂb(()o)aub(()g)} R
e4¢10

2

/ (—GW)z [—RE —20,6100" $r0 — aﬂbg”aﬂbg“)] . (3.109)
RL.3

Note that the factor of e*?® in front of the axionic kinetic term in the first
line arises after dualizing the kinetic term for dB® in (2.1) with the help of
dB® = ¢??10dB©) and then extracting the four-dimensional axion.

For the heterotic string without abelian gauge factors, the part of K relevant
for our present purposes is very well-known and given by the expression

M; o, o Na Ka K* 2
K = ——“1n{5+5*+2—_( A
8 a 2 (f}/a)k(Tk + Tl:)
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k=1

Here ? = k¢ Vol(M), and the superfields §, fk, Ka have as their bosonic com-
ponents the complex scalars defined in (3.102), (3.97) and (3.98) respectively.
The quadratic part involving the five-brane supermultiplets Aa is non-standard
and will be commented on momentarily. Ignoring it for a second, we can readily
convince ourselves that this Kahler potential encodes the correct kinetic terms
for the various scalars in the Einstein frame. To demonstrate this standard com-
putation for the case of the dilaton we adopt the notation of [120] and define the

complete A/ = 1 superfield S as

S=258+V200+i05"00,5 + ... (3.111)
with S given by (3.96). The kinetic term for the dilaton and its axionic part-
ner in the Einstein frame then follows upon performing the Grassmann integral

[ d?0d*0 K and extracting the term

S(E) . 0’K

A K G* 112
kin Ris 65 65* s—0 ausa S (3 )
Vol(M 1
- (2 ) < Oy 0100" P19 + / etoro ~0up10 3“¢10> .
K 4
10 R1,3 Ri,3

A similar computation can of course be performed for the Kahler superfields Tk
If we include heterotic five-branes, the Kahler potential has to be adjusted
such that it also yields the kinetic terms for the brane position moduli A, and
their axionic partners ba . They can be deduced from the Pasti-Sorokin-Tonin
action for the M5-brane [81]. We pointed out already that, following this logic,
the authors of [122,123] derived a correction quadratic in A, in the definition
of the superfield S which we have displayed in (3.102). This correction indeed
incorporates the correct kinetic action if in addition one supplements the standard
contribution —In(S + S*) to K by a term quadratic in A, + A* resulting in

~ = =~ = N, Ao+ A2)?
4ms+§y—+4%5+y+§:jfhf +Au) =—|.  (3.113)
EHCANGER

For a detailed derivation of these terms in the dilatonic Kahler potential we refer
o [122,123], but the computation is similar in spirit to the one sketched above.
The presence of massive U(1) factors in the four-dimensional gauge group
modifies I further in a very important manner. This is due to the fact that in
the resulting supergravity theory, the mass terms between the abelian gauge fields
and the axions enforce the gauging of the axionic shift symmetry. Quite generally,

62



if the standard kinetic Lagrangian for some scalar field 5 is supplemented by
the coupling to an abelian gauge field'® as in

Saion = / 9,600 + Q,, b (9, A1), (3.114)
Ri,3

then unbroken U(1),, gauge symmetry requires that under

Al — AP+ 0" X (3.115)
the axion transforms as
B0y b0 Q_zm . (3.116)

This is readily verified by considering the transformation

Qm

8Sumion = / 2 6ub(°)8“(7xm) + Qmb® 0,0\ + O(Q%) = 0. (3.117)
Ri,3

To put it differently, the global abelian symmetry 5% — (%) 4 const is promoted
to a local symmetry. In slightly more technical supergravity language, this is just
the simplest version of the gauging of one of the global isometries of the scalar
Kéahler manifold. These gauged isometries need not be restricted to abelian shift
symmetries. For a discussion of the most general case we refer e.g. to [121].
Upon gauging, the Kahler potential has to be modified by appropriate counter
terms in order to remain gauge invariant. This procedure is comparatively easy in
our abelian case. Introducing the abelian vector superfield V;,, and, respectively,
chiral superfield ®,, and B with lowest components as in

Vi = 00,048 + ... @ngxm+...,

B = (r+id")+..., (3.118)

we note that the required gauge transformation translates as follows into super-
field language [120]

AR — AE 4 OFx H{ Vin = Vin + @ + @7, } (3.119)

b0 — b + &my,, B — B+ Q,, ®rm

Applying all this to our specific case at hand, it is clear that the Ké&hler
potential (3.110) is rendered gauge invariant by a suitable subtraction of the
abelian vector superfields multiplied by the respective charges occurring in the
axionic couplings. Concretely, this results in the following gauge invariant Kéahler
potential

5Note that this coupling is precisely of the form of the mass terms (3.87),(3.88),(3.89). Just
use Hodge duality to rewrite [b2) A f ~ [b©) Ad x4 A.
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with appropriately defined superfields V,,,. The charges )}" can be identified as
the couplings in the mass terms (3.87),(3.88),(3.89) using the definition

M  h11

Smasszzz%a/ Fon A +Zza:2m/ fu ADR). (3.121)

=1 k=0

Indeed it can be checked explicitly that this Kahler potential correctly re-
produces also the various gauge-axion coupling terms by a Grassmann integral
similar to that performed in (3.112).

3.6.2 Fayet-Iliopoulos terms and D-term constraints

We are finally in a position to come back to our initial goal, the computation of
the FI terms defined by (3.107). What we obtain after some algebra from the
Ké&hler potential (3.120) and the charges (3.121) is

5777,1_ fnz
o= SEGZ'{"”"I J/\J/\g

S n;=1

— 20 ¢t I A ! 5 (trff - 1trﬁ2>
M 2m 4(2m) 2

1 >t
+e*0 > N, <§ == )\a> / J;—’;r} . (3.122)
a Ya

Obviously, the first term in (3.122) appears at string tree-level, whereas the second
and third terms arise at one-loop in string perturbation theory. The reason that
we have been able to derive these perturbative corrections just from the effective
field theory lies of course once again in the one-loop nature of the Green-Schwarz
terms which are responsible for the gauging of the supergravity.

The presence of one-loop corrections to the FI terms indicates important
modifications of the D-term supersymmetry condition on the gauge bundles, as
we now discuss. By definition, the FI parameters for the various U(1),,, gauge
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groups in the effective four-dimensional A/ = 1 supergravity are related to the
scalar D-term potential via

Gal? + Em, 2, (3.123)

1 m; 1
Vo=3 2. V5= D g

m;

P4

where the ¢, denote scalar fields with charge ¢/ under the U(1),,,. Note that
there might exist additional contributions not involving the gauge bundles such as
terms purely quadratic in the matter fields (see e.g. [125] and references therein).
The vacuum of the theory is of course determined by minimizing the complete
scalar potential including in particular the F-terms. A necessary condition for
the vacuum to be supersymmetric is that the positive semi-definite quantity V"
has to vanish for each U(1),,, separately'®. Now V" contains two qualitatively
very different contributions: Y ¢7"|d4|?, which involves the vacuum expectation
value of the charged matter fields, and the FI term ¢,,,.. The latter depends on the
topological data of the background gauge bundles including the five-branes, the
Kéhler moduli and, by the one-loop correction, on the dilaton. A non-vanishing
FI parameter does not necessarily indicate a breaking of supersymmetry as long as
the VEVs of the charged matter fields can be chosen in a supersymmetric manner
as to compensate &,,, such that V)" = 0. Obviously, this is possible at most for
multiplets with non-zero Euler characteristic since each field and its complex
conjugate contribute with opposite signs in the D-term. Whether or not this
can happen depends crucially on the structure of the additional ¢,-dependent
terms in the scalar potential. In cases where there are no such terms which
independently force ¢, to be zero, the D-term merely constrains a combination
of the charged matter fields on the one hand and of the Kahler and brane moduli
and the dilaton on the other. If, by contrast, there were, say, a mass term of the
form Vs = ma¢?, a non-vanishing FI parameter would clearly be incompatible
with supersymmetry [125].

As an upshot of this discussion, the effective supergravity analysis results in
the following D-term supersymmetry constraint on the gauge bundles,

gm,’ (QSa J, )\a) = Ami(d)a) (3.124)

for some function A,, depending on the charged matter fields. If we can ignore
the term A, (dq), for reasons of the type discussed above, then the gauge bundles
are subject to the supersymmetry constraints &,,, = 0, i.e.

16In addition, of course, also the Kéhler covariant derivative of the F-term superpotential
has to be zero, DW = 0. Together, these two constraints are necessary and sufficient for the
theory to be in a supersymmetric minimum.
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In these cases, the conditions (3.125) provide constraints fixing, in principle,
combinations of the Kahler moduli, the dilaton and five-brane moduli. Therefore,
the constraint &,,, = 0 effectively renders a particular combination of the moduli
fields massive. This is just what has to happen in supersymmetric vacua, well
in accord with the fact that the axionic partners of these moduli likewise receive
a mass due to the coupling to U(1),,,. In particular, if we did not include the
one-loop correction involving the dilaton and the brane moduli, this would be
in direct conflict with the mass terms induced for the axions béo) and by, After
all, in supersymmetric configurations the whole supermultiplet has to become
massive, not just some of its components.

Note that the Kahler form J as appearing above is not dimensionless, but
implicitly contains a factor of o’. Therefore, the perturbative corrections effec-
tively depend only on ¢2. In principle, a cancellation of the tree-level against the
one-loop term can be achieved in the perturbative regime of large internal radii
and small g, provided that the tree-level term can be arranged to be sufficiently
small by itself. On manifolds with several Kahler moduli this is clearly possible,
depending on the details of the intersection form, of course.

We conclude this section with a side remark on what happens when we cancel
a non-vanishing Fayet-Iliopoulos term against the VEV of a charged scalar as
in (3.124) (see also [102]). From the field theory analysis, what we expect in
such a situation is that the scalar VEV induces the breaking of part of the four-
dimensional gauge symmetry. There is a very neat way how to understand this
Higgsing of the observable gauge group from the point of view of the internal
bundles. To illustrate the idea, consider the easiest case with just one abelian
gauge factor, i.e. suppose that the internal bundle is given by the direct sum
W; = Vy. & L™ with structure group SU(N;) x U(1). For simplicity, assume
furthermore that the charged scalar in question corresponds to the internal bundle
Ul = Vn, ® L, in the notation of (2.17). Giving a VEV to this scalar means
that we turn on an element in the first cohomology group H (M, Ué”) 7. Now,
as a mathematical fact, turning on an element in H(M,Vy, ® L) implies a
deformation of the internal bundle W such that it no longer splits into a direct
sum but rather is given by the extension of L™! by Vy, [40], i.e. it fits into the

17As we will discussed, the internal bundles have to be stable in the mathematical sense, in
which case H® (M, U?) and H® (M, UL?) vanish and all matter comes from H() or H®).
W.l.o.g we assume that H(l)(M,Uéf)) # 0, otherwise just switch to the complex conjugate
representation using Serre duality.
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short exact sequence
0—Vy, — W — L' —0. (3.126)

The bundle W hereby defined has in fact structure group SU(N; + 1), which
contains SU(N;) x U(1), the structure group of Vy. @& L~'. The visible gauge
group, being the respective commutant in Eéi), therefore gets reduced, in this
case precisely by the abelian factor which is Higgsed away in the field theoretic
picture.

What this tells us is that a cancellation of a non-vanishing FI term against
matter field contributions is only possible at the cost of a severe deformation of
the geometry of our gauge bundle. If we want to stick to our initial framework
of Whitney sums of internal SU(N) or U(N) bundles, this means that we really

have to insist on a vanishing FI term as the D-term supersymmetry condition.

3.6.3 Loop-corrected Hermitian Yang-Mills equation and
the concept of A- stability

In the previous section, we have derived the supersymmetry condition on the
gauge bundles by a purely field theoretic analysis of the D-term in the effective
four-dimensional supergravity. A priori, we cannot exclude that this approach
misses certain subtleties. The point is that we have assumed from the very
beginning that the effective theory in four dimensions can be described within
the framework of A" = 1 supergravity, whose properties we have used heavily in
deriving the supersymmetry constraints for the ground state of the theory.

To see that these supersymmetry conditions may not be the whole story, con-
sider as an example the requirement that the internal manifold be Calabi-Yau, as
dictated by the Killing spinor equation for the gravitino in the absence of H-flux.
Once we assume the Calabi-Yau constraint and therefore trust the machinery of
four-dimensional N' = 1 supergravity, we do not recover it from the field the-
ory analysis any more. We rather have to consult the ten-dimensional theory.
All we can expect from the four-dimensional analysis is that we identify poten-
tial sources for spontaneous supersymmetry breakdown within an in principle
supersymmetric theory.

Let us therefore compare the four-dimensional results to the direct analysis
of the ten-dimensional Killing spinor equation for the gaugino.

As we recall from the discussion in section (2.3), at tree level each summand
bundle of W has to be holomorphic and p-stable with respect to zero slope. The
latter means that the each of the stable summand bundles needs to satisfy the
DUY equation

/ JATAe(Vi) =0, / TAJTA e (L) =0, (3.127)
M M
to be satisfied for all n;, m;.
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Evidently, the left-hand side of (3.127) is just the tree-level part of the FI term
(3.122). We realize that our concerns were justified in that the supersymmetry
condition revealed by the four-dimensional analysis is incomplete: it is blind to
the local supersymmetry equation, encoded in the requirement of stability, and
only yields the associated integrability condition. Nonetheless, in view of the
agreement at tree-level between the DUY equation and the FI term, it is most
natural to interpret the one-loop correction of the latter as nothing other than a
one-loop correction of the DUY equation. But since the DUY is the integrability
condition for a more fundamental local constraint, the Hermitian Yang-Mills
equation, this suggests that the latter is likewise corrected at one-loop. In fact,
it is consistent to propose the following

Conjecture 1:

The perturbatively exact supersymmetry condition on the gauge bundle is given
by the one-loop deformed Hermitian Yang-Mills equation

JANJ A Fy, — (2ma’)? ng Fy, Nd (wYMi - %wL> =21\ (Vj,, & gs) volp, id
(3.128)
together with
AV, o'gs) = #Aki(%)- (3.129)
rk(V%,)

Here Vj, represents any of the bundles Vy,, L, in Eéi) and F}, the correspond-
ing field strength. The deformed slope A(V},, a'gs) is defined as the integral over

the left-hand side of (3.128) divided by the rank of Vj,,

AVi, ag,) /‘JAJACAWJ (3.130)
M

1
rk(Vk,)

_ra? % e (Vi) A (wyass — -
A 1\ Vk; Wy M QWL ;

in precise analogy with (2.21). The notation wy s refers to the complete Chern-
Simons three-form of the bundle W; satisfying dwy; = trEF?. We formally
subsumed the contributions from the five-branes into this quantity since, as we
observed in section (3.5), their effect is precisely that of a gauge instanton after
a small instanton transition.

We recall from the previous section that, taking the implicit factor of (a/)?
in the tree-level part J A J A ¢1(V%,) into account, the perturbative correction of
the slope arises of course precisely at order g2 relative to the tree-level part. The
reason why we chose to write the modified slope as A(V},, a’gs) is to remind us
that the correction becomes small as compared to the tree-level term if g, is small
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and/or we are in the large radius regime, where integrals involving .J dominate.
This will be important momentarily.

Mimicking the situation at tree-level, the supersymmetry condition comes in
two parts: The local constraint is the deformed Hermitian Yang-Mills equation
(3.128). In addition we have to specify which value the deformed slope has to
take. This latter piece of information is all we find from the four-dimensional
D-term constraint (3.124) upon identifying the deformed slope with the loop-
corrected FI term. Note that equation (3.129) is just a reformulation of this
D-term constraint'®.

Strictly speaking, we cannot rigorously exclude the appearance of additional
cohomologically trivial forms on the left-hand side of (3.128) which vanish upon
integration and whose effect cannot simply be detected in the supergravity anal-
ysis. After all, the latter only provides us with the integrated version of the
Hermitian Yang-Mills equation. To be completely precise we should therefore
add the exterior derivative of some potential globally defined five-form. Irrespec-
tive of this subtlety, the definition of A(Vj,, a/gs) as the integral over the left-hand
side of (3.128) is independent of such terms, of course.

In view of the deformation of the HYM equation at one loop in string pertur-
bation theory, also the stability condition on the gauge bundles must be modified
appropriately. So which is the stability condition guaranteeing a solution to
(3.128)7

Let us neglect for the moment the D-term constraint on A, which relates the
tree-level and the one-loop piece in A, and focus solely on the deformed HYM
equation (3.128) for arbitrary A. To find the correct notion of stability in this less
constrained situation, we rely on some inspiration from an analogous problem in
the mathematical literature, as studied by Leung [126]. He considers a different
deformation of the HYM equation, namely

1
ol o Td(M) =~(V,t)id, where ~(V,t)=—— e’ ch(F) Td(M).
rkV M

(3.131)

The quantity v(V,t) is known as the Gieseker slope of V. The important point
is that the term at highest order in ¢ is just the familiar t>.J A J A F, whereas
the deformations are of lower order. In this sense equ. (3.131) is perturbative
in ¢ since it reduces to the undeformed HYM equation for ¢ — co. What Leung
proved is the following theorem: For every vector bundle V' there exists a Ty, > 0
such that for all ¢ > Ty, V admits a connection whose field strength is a solution
of equ.(3.131) (for this ¢) if and only if V' is v(V,¢)-stable, i.e. if each subsheaf
W of V is of smaller v(W, t)-slope than V.

To make the analogy to our situation crystal clear, we divide equ.(3.128) by
(a'gs)? and identify (a/gs) ! with . As in Leung’s case, for large ¢ the tree-level

'8In Type IIB theory, as will be discussed, this equation defines which A" = 1 subalgebra of
the bulk ' = 2 supersymmetry algebra the gauge instantons on the D-branes have to respect.
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part both in the HYM equation and in the associated slope dominates over the
loop correction. Clearly, what we mean by small o' is that we are in the large
radius regime. All that differs in our case is the precise form of this perturbative
correction, but this is irrelevant for Leung’s argument to work.

We are thus lead to the following

Conjecture 2:

Given a holomorphic vector bundle V, then there exists a value of o/g,, de-
pending on V, such that for all /g, smaller than this critical value V ad-
mits a connection whose field strength satisfies the one-loop deformed Hermitian
Yang-Mills equation (3.128) iff each subbundle W with rk(W) < rk(V') satisfies
AW, ags) < AV, gs).

This proposal receives convincing support from the corresponding phenomena
occurring in the context of the SO(32) heterotic string, as we will discuss in
section (4.7.3). There we will be able to identify the one-loop corrected stability
condition on the bundles as the S-dual version of the perturbative part of the II-
stability condition as formulated in the context of the derived bounded category
of coherent sheaves [78] in type I B string theory. Indeed, on the Type I side, the
perturbatively exact stability condition is just given by replacing the familiar yu-
slope with the A-slope in the above perturbative sense. A mathematical proof of
this statement can be found in [127] and more details will be provided in section
(4.7.3).

On the other hand one can easily convince oneself that perturbatively every
p-stable bundle is also A-stable in the following sense: Given a pu-stable vector
bundle V', then there exists a value of o/¢g; (depending on V') such that for all
o'gs smaller than that critical value V' is A\(V, o/g;)-stable (with respect to these
values of o'g;). This follows from the fact that for /g, sufficiently small, the
dominant part in the A-slope of V and of each of its finitely many subsheaves
W is the tree-level part, which is just the pu-slope. The perturbative corrections
therefore do not spoil the fact that AW, a'gs) < A(V, d/gs) since u(W) < u(V)
for all W by assumption.

The situation changes drastically if we now take into account also the D-
term condition (3.129), i.e. if we pose additional constraints on the value which
the slope of V' is to take. Assume for simplicity that we do not turn on any
charged matter fields so that the slope is simply equated to zero according to
equ. (3.129). If the one-loop contribution in the A-slope for V' does not happen
to vanish by itself, this implies that the tree-level and the one-loop piece have to
cancel each other and must therefore be of the same order of magnitude. The
above arguments concerning our simple version of A-stability and its relation to
p-stability, however, only work if the tree-level part dominates arbitrarily over the
loop-correction for a’g; small enough. As a result, for a non-vanishing one-loop
term, we cannot simply infer that a p-stable bundle solves the deformed HYM
equation. This does not mean that the one-loop term necessarily has to vanish

70



for supersymmetry to be preserved, but in case it does not, we do not yet have
an appropriate stability concept guaranteeing a solution to the HYM, and a more
sophisticated mathematical analysis is required. Let us emphasize at this stage
already that the concrete applications we will present are not in conflict with
this subtlety since the one-loop contribution to the DUY equation will vanish by
construction in all cases of interest.

We stress furthermore that although the one-loop part of the slope A(V, a’gs)
is clearly present only if ¢;(V) # 0, this does not mean that the above analysis
is relevant only if we embed a U(N) as opposed to an SU(N) bundle into Ej.
Rather, the one-loop terms in the local Hermitian Yang-Mills equation are in
general non-vanishing also for SU(N) bundles. In this case, however, thanks to
the foregoing arguments, p-stability is always sufficient for supersymmetry in the
same way as it is sufficient for U(N) bundles for which the correction in A(V, o/¢g;)
vanishes. In both cases, there must not exist an a priori lower bound on /g, since
in relating p-stability to A-stability, we do not know the critical value of g, below
which the first implies the latter.

Which further corrections to the DUY condition and to the Hermitian Yang-
Mills equation do we expect? From the supergravity analysis of the D-term and
the usual non-renormalisation arguments, it is clear that there cannot exist any
higher perturbative string-loop contributions. Moreover, it is known [128] that
there are no one-loop Fayet-Tliopoulos terms in the Type I string theory. Conse-
quently, S-duality dictates that the DUY equation is also exact in sigma-model
perturbation theory since it maps expressions at one-loop order in g, to perturba-
tive o corrections. However, there might, and most probably will be additional
non-perturbative corrections in ¢, and o' which are beyond the scope of this
analysis. After all, it is the appearance of non-perturbative o/ corrections to the
D-term supersymmetry conditions in Type IIB which requires the introduction
of the concept of full II-stability [78].

3.6.4 D-term potential for M5-branes

Let us go back to the Fayet-Iliopoulos term (3.122) and discuss possible conclu-
sions about the D-terms arising from the five-branes. Apparently, a flux through
the two-cycle v, of a five-brane on the wall Eél) generates a one-loop D-term
potential for the five-brane modulus A,. From (3.122) it seems at first sight that
this D-term repels the five-brane from the wall and vanishes only if the five-brane
lies on top of the other wall. However, recall from (3.123) that the D-term scalar
potential for a massive U(1) actually involves the quotient of the FI-term and the
gauge coupling, which, too, depends on the five-brane modulus in a non-trivial
manner.

In order to get a qualitative idea of the combined effect of the FI terms and
the threshold corrected gauge coupling, it is instructive to analyse a simple toy
example. Consider the Quintic Calabi-Yau manifold, which has only one Kéhler

modulus, and assume that we have chosen a vector bundle V @ L' embedded
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into the first Eg wall without any matter charged under the U(1). Then the
D-term potential arising from the FI-term of the U(1) is simply

1, (&)

Vo==-¢* = 3.132

PTaY <92> ’ (3.132)

where g denotes the gauge coupling of the U(1). For the Quintic one has ¢(T') =

10n* and J = ¢%rn with r > 0 in terms of the single (1, 1)-form 7. Moreover, we
1

write chy(V) = —vn? + 2%n? and chy(L) = 3{*n? and introduce one five-brane

wrapping the class 7. The tadpole cancellation condition then reads
—v + 12— 4% = —10. (3.133)

The relevant D-term potential takes the form
2

(-(2-5+ (-0

(5-302 -5 +3 (5 - 1) - Ta2)

n1,1

VDQ

(3.134)

For fixed string coupling g, = 0.5, radius r = 2 and a choice of parameters
v =1=2,k%,/m = 1/10, this potential for the five-brane modulus A has the
characteristic shape shown in figure 3.2. Naively, as pointed out, from the FI-term
one might have expected that the five-brane is repelled by the Eyg walls carrying
a non-trivial line bundle. However, the contribution of the ¢? term multiplying
the FI-term in the scalar potential changes this picture and leads to an attractive
potential between the five-brane and the Fys wall carrying the bundle.

How can we understand the physics behind this attractive interaction? Arising
at one loop in the weakly coupled heterotic string, it is expected to be due to
appropriate amplitudes from membranes after unfolding the wrapped eleventh
dimension in the strongly-coupled Horava-Witten regime. In fact, as derived in
[123], there are non-perturbative contributions to the F-term superpotential from
open membranes stretching between one of the orbifold fixed planes and the Mb-
brane provided that the worldvolume of the membranes is precisely of the form I x
va- Here I simply denotes the interval along the eleventh dimension between the
orbifold plane and five-brane. We see that, apparently, such configurations also
contribute to the D-term potential if the membrane can couple to some abelian
background gauge flux on the orbifold plane. As is manifest in (3.125), this can
only happen if the five-brane wraps a two-cycle which, pulled back to the end
of the world, carries non-vanishing gauge flux. In particular, this interpretation
explains why the five-brane is sensitive to the presence of the gauge flux along
Y. even though it may be placed at an arbitrary position along the eleventh
dimension: The presence of the gauge flux is communicated by the exchange of
appropriate open membranes.

This interpretation of the D-term potential as being due to open membranes
stretching between the orbifold fixed plane and the M5-brane is well in agreement
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with the generic form of the potential found in (3.134): The contribution of the
membranes is of course minimized precisely if the interval along which they wrap
between the end of the world and the five-brane is vanishing.

3.7 Example (I): Breaking Fs to flipped SU(5) x
U(1)x

It is high time to illustrate the hitherto studied framework by means of concrete
examples. The number of possible embeddings is extremely high if we take into
account all conceivable combinations of the various building blocks at our dis-
posal. In the next two sections, we will therefore restrict our attention to realistic
four-dimensional gauge groups, focusing on the detailed application of the tech-
nical aspects presented by now. Phenomenological considerations and concrete
model building are postponed to chapter 7.

As a warm-up we exemplify the breaking of the Eg group down to the flipped
SU(5) gauge group based on the branching

SU4) x U(1)x: C SU(5) C By —» SU(5) x U(1) . (3.135)

The embedding SU(5) C Es — SU(5) induces the familiar decomposition

248 — (24,1) + (1,24) + (5,10) + (5,10) + (10,5) + (10,5).  (3.136)

Next we decompose the internal SU(5) representations under SU(5) — SU(4) x
U(1)xr according to (3.14) as

24 — 150+ 1+ 45+ 175,
5 — 4.+ 1 4,
10— 65+ 44 (3.137)

In combination these two steps lead to the spectrum®®

(15,1)0
1,10)-4 + (1,10)s + ( 24)g
)5 +(4,5) -5+ (4,
5+ (4, ) +(4,1
(6,5)->+(6,5)

We point out, at this stage merely as an appetizer, that the abelian charges
of the spectrum are proportional to the U(1)x in the flipped SU(5) model, thus

justifying the notation. This crucial fact will be heavily exploited in the context
of the phenomenological adventures of chapter 7.

SU(4)><SU‘(52><U(1)X/ (1, 1)0(1_(1
4

(4,1) 5

Note that in the last line we used that 6 = 6 for the antisymmetric of SU(4).
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Let us now turn to the explicit bundles which realize this breaking of Eg.
Starting with constructions of type A, we choose the Whitney sum

W=Veal such that ¢ (V) =0 (3.139)

with structure group G = SU(4) x U(1). The embedding of the line bundle is
accomplished by identifying its field strength with the diagonal SU(5) generator

Txr = (1,1,1,1,—4). (3.140)

As shown in table 3.2, the decomposition (3.138) allows one immediately to read
off the cohomology classes determining the massless spectrum.

reps. || Cohomology (Type A)
10, H*(M,V®L)

10 4 H*(M, L™)

5 3 H*(M,V ® L™3)
5, H*M,\*V ® L?)
15 H*(M,V ® L)

Table 3.2: Massless spectrum of H = SU(5) x U(1) x» models.

From this embedding of the structure group, we can determine the resulting
tadpole cancellation condition (3.26) by computing the traces as spelled out in
(3.23),

1
30

() = —Tr(F?)

=0 > " 2(27m)*(chy(Uy) x dim(R,))

S =2 —2
= 2" Fp) + 40 Fy) = 4(27)° (—eo(V) + 106(L),
2 SU(3) 2
(R = 26f’OR®) = —4(21) (7). (3.141)
This yields the tadpole cancellation condition

co(V) —10c3(L) = co(T). (3.142)

The net-number of chiral multiplets is given by the Euler characteristic of
the various bundles in table 3.2. Note that extra gauge bosons are counted by
H*(M, O), which can only appear if L* is the trivial bundle O, i.e. ¢,(L) = 0.
Clearly in this case the gauge symmetry is extended to SO(10), which is precisely
the commutant of SU(4) in Es. Another way to see this is that the 20 additional
vector multiplets from the (1,10) 4 and its conjugate arising when L* gets trivial
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precisely fill out, together with the 24 + 1 in the adjoint of SU(5) x U(1) x, the
45-dimensional adjoint representation of SO(10). We will encounter much more
intricate patterns of gauge symmetry enhancement for the case that more U(1)
bundles are involved in the next section.

It is now a straightforward exercise to compute the four-dimensional gauge
anomalies from the general expressions given in equation (3.28), using also the
trace identities of appendix A.2.

e The non-abelian SU(5)* anomaly is proportional to

ASU(5)3 = X(Ma Ve L) + X(Ma L_4) - X(Ma Ve L_3) - X(Ma /\2V ® LQ)
(3.143)
and vanishes identically even without invoking the tadpole cancellation condition.

e The mixed abelian-gravitational anomaly U(1)x — G?,, however does not di-
rectly vanish and is given by

Avy-cz, = 10xX(M,V®L) =40 x(M,L™") =15 x(M, V@ L) +
10X(M, ANV @ L?) +5x(M,V @ L)
= 10/ ci(L) [12(=c2(V) +10¢f(L)) + 5 ea(T)] - (3.144)
M

e Similarly the mixed abelian-non-abelian anomaly U(1)x, — SU(5)? takes the
form
Avay-suee = 3XIM,V@L) =12x(M, L7 =3x(M, Ve L) +
2x (M, N’V ® L?)

= IU/Mcl(L) [2(= (V) +10¢] (L)) + ea(T)] - (3.145)

e Finally for the U(1)3%, anomaly one obtains

)
Apayp = 10x(M,V® L) — 640 x(M,L™*) =135 x(M, V& L?) +
40 x(M, NV @ L?) + 125 (M, V ® L) (3.146)

- 200/ (L) [6(=ca(V) +102(L)) + 408 (L) + 3 ea(T)]

These results are in complete agreement with the general expressions (3.30) -
(3.32) if one uses (3.141) to rewrite them in terms of traces. Note that the
integrands only vanish if ¢;(L) = 0, in which case the gauge group is enhanced
to SO(10). In this simple construction, the U(1)x is therefore massive and only
present as a global symmetry. We will find a way to circumvent this apparent
drawback in chapter 7 when it comes to the construction of realistic flipped
SU(5) x U(1)x vacua.

For embeddings of Type B, one starts with a bundle
W=VeaL"' withc(V)=c(L), rank(V) = 4, (3.147)
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which has structure group SU(4) x U(1). This bundle W can now be embedded
into an SU(5) subgroup of Eg so that the commutant is again SU(5) x U(1)x:.
We embed the U(1) bundle such that

Qv = (1,1,1,1,—4), (3.148)
implying that the matrix Q defined in (3.12) is simply
0 = Qu(V) +Qu(I) =5 (3.149)

The massless spectrum is given by the cohomology classes listed in Table 3.3.

reps. Cohom.

10, H*(M,V)
10, || H*(M,L™)
5,3 | HHM, VL")
5, H*(M,\*V)

1, | H' M, VL)

Table 3.3: Massless spectrum of H = SU(5) x U(1) x» models.

An explicit evaluation of the traces (see again (3.23)) as

n(FY) = 3—10Tr(F2) _ % " 2(2m)2(chy(U,) x dim(R,))
= 4(27)*(chy(V) + cha(L)) (3.150)

convinces us that the tadpole cancellation condition reads
co(V) — (V) = ¢y(T). (3.151)

Similarly to the type A case, one can show that all non-abelian gauge anomalies
cancel and that the abelian ones,

Avy-c2, = g//\/t c1(L) [12(— (V) + cf(L)) + 5CQ(T):| ,
Av-suee = g /M c1(L) [2<— (V) + C?(D) + Cz(T)] , (3.152)

Apayp = 25 /M e (L) [12(— es(V) + cf(L)) +5¢2(L) +602(T)] ,

being consistent with the general result displayed at the end of section (3.4.1), are
cancelled by a Green-Schwarz mechanism. Note in particular that nx x» = 40,
see (3.25).
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3.8 Example (II): Breaking Fs to SU(3) x SU(2)x
Uy

Our model building possibilities are not limited to the construction of GUT group
vacua. In this section, we exemplify the breaking of Eg directly down to the
Standard Model gauge group based on the branching

SU(6) C Es —» SU(3) x SU(2). (3.153)

The general strategy presented in section (3.1) allows us to iteratively incorporate
additional line bundles and thus to introduce various abelian gauge factors into
the visible gauge group. This is at the cost of lowering the rank of the non-
abelian bundle Vy,. In the presence of several U(1) factors an extremely rich
pattern emerges with numerous ways to obtain the Standard Model gauge group
and spectrum. In this section, we merely focus on one of the two Ejg factors in
order to explain the building blocks for the phenomenological applications to be
discussed later.

As far as the resulting spectrum is concerned, we first note that the embedding
(3.153) induces the following decomposition of the adjoint representation of Eg

248 — (35:1,1) + (1;8,1) + (1;1,3) +
(20;1,2) + ((6;3,2) + (15;3,1) + c.c.). (3.154)

We now decompose the internal SU(6) following the steps spelled out in section
(3.1). Specifically, we perform the decompositions

SU6) — SUGB)xU)yr — SUMA) xU(1)x x U(1)y
— SUB)xU1)zxUl)x x U(1)y. (3.155)

3.8.1 Bundles with structure group SU(5) x U(1)

To realize the first step in the sequence (3.155), we choose a bundle of type A
with structure group SU(5) x U(1)y, i.e. we consider the configuration

Wy =Ve&L, with rank(V)=>5. (3.156)
Clearly, the commutant in Eél) is SU(3) x SU(2) xU(1)y:. The abelian charges of

the states follow from the embedding of U(1)y+ into SU(6) such that the abelian
generator is identified with the diagonal element

Ty = (1,1,1,1,1,—5) (3.157)
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in SU(6). We decompose the various SU(6) representations under the splitting
SU(6) — SU(5) x U(1)y,

35 — 240+ 1p+ 56 + 5_g,
6 — 5, +1 5,

15 — 10,4+ 5_4,

20 — 105+ 10_;.

(3.158)

One may convince oneself that this is in agreement with the general branching
rule (3.14), taking into account in particular that the third rank antisymmetric
representation of SU(5) is the 10. Combining (3.158) with (3.154) eventually
leads to the decomposition of the adjoint representation of Fg as

SU(5)x SU(3)x SU(2)xU (1)1 (5;3,2); +(1;3,2) 5+ c.c.
248 — (10;3,1), + (5:3,1)_4 + c.c.
(1_ ,2 3+ (5 s 1)6 + c.c.
(3.159)
As becomes obvious after redefining the visible U(1) charges as
1
Qy = gQY’: (3.160)

(3.159) apparently contains states with just the Standard Model quantum num-
bers, as displayed in table (3.4). The expressions for the cohomology classes
counting the chiral fermions follow from the general considerations at the end of
section (3.2) and are listed in the second column of table (3.4).

SU(3) x SU(2) x U(1)y || cohom. (type A) | cohom. (type B) | SM part.
(3.2), (Ve (V) "
(3.2)_s \(L9) (L) .
(3.1): XNV e L) X(N*V) d
(3,1)_s x(Ve L) x(VeLt) u
(1,2) XNVeL?) | x(N'VeL!) I
(1,1) x(Ve L) x(Vel) R

Table 3.4: Massless spectrum of H = SU(3) x SU(2) x U(1)y models from internal

SU(5) x U(1) bundles.
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To study the gauge enhancement pattern, we recall that additional gauge
bosons (respectively their fermionic superpartners) in the visible spectrum, which
would indicate the enhancement of the original gauge group, are counted by
H*(M, Q). Inspection of the appearing cohomology groups reveals that this
is only possible when ¢;(L) = 0, in which case H*(M, L™°) degenerates. The
appearance of a trivial bundle therefore enlarges the number of gauge bosons
from 8+ 3+ 1 by the vector-like pair (3, 2)73 to yield precisely the 24 generators
of SU(5). This is just what we expect, since the commutant of SU(5) is of course
simply SU(5) to which the visible gauge group must get enhanced.

The tadpole cancellation condition follows from the by now well-familiar eval-

uation of the traces over the spectrum?®
— 1 — 1
tr(F) = %Tr(FQ) = > " 2(2m)*(chy(U,) x dim(R,))

T

—=2 —2
= 20" (Fops) + 60F ), =4(2m)% (—ea(V) + 1562 (L)),
() = 260"IR") = —42n)2 es(T). (3.161)

Y!

The tadpole cancellation condition (3.26) consequently takes the form
co(V) —15¢3(L) = co(T). (3.162)

We now proceed to the computation of the field-theoretic anomalies with the
help of (3.28).

e The non-abelian SU(3)? anomaly is proportional to
Asu@p =2(x(VO L)+ x(L7°) = x(A*V @ L?) — x(V © L") (3.163)

and vanishes even without invoking the tadpole cancellation condition. Of
course there are no SU(2)? anomalies anyway.

e For the mixed abelian-gravitational U(1)y» — G, anomaly, we find the in
general non-vanishing expression

Avay,—a2 = 6x(V®L)—=30x(L™°) +6x(A’V @ L*) —12y(V ® L)
—6x(AV @ L) +6x(VeL°

~ 180 /Mcl(L) [(—CQ(V)+15C§(L))+%02(T)}. (3.164)

e Similarly the mixed abelian-non-abelian anomaly U(1)y: — SU(3)? takes
the form

Apy-suae = 2x(VOL)—10x(L7°) +2x(A*’V @ L?) —4x(V ® L™

~ 30 /MCI(L) {(—CQ(V)+15C%(L))+%CQ(T)}, (3.165)

20Note that we keep the original normalisation of U(1)y which differs from that of the visible
hypercharge by a factor of 3.
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and the mixed abelian-non-abelian anomaly U(1)y: — SU(2)? follows like-
wise as

Apay-sveer = 3x(V®L) = 15x(L7") =3x(A’V ® L)

= 30 /M c1(L) [(— co(V) +15¢3(L)) + %CQ(T):| :
(3.166)

e Finally, we obtain the following cubic abelian U(1)3, anomaly
Ay, = 6x(V@L) =750 x(L™") + 24 x(A’V @ L?) — 144 x(V ® L)
—54x(A*V ® L™%) + 216 x(V ® L)

2 1 2
= 2700 /M c1(L) |:(_02(V) +15¢((L)) + 3 c2(T) + 10¢y (L) } :
(3.167)

It is satisfactory to note that these anomalies are in agreement with the general
formulae (3.31), (3.30) and (3.32). As a result, unless the line bundle is trivial,
i.e. ¢q(L) =0, the U(1)y symmetry is anomalous and its anomaly has the right
form to be cancelled by the Green-Schwarz mechanism. From the general form
of the axion-boson mass terms (3.87) and (3.88), we convince ourselves that the
U(1)y is indeed massive whenever ¢, (L) # 0.

Having discussed the details of the type A construction, let us start alterna-
tively with a bundle of type B, i.e.

W=VaolL"' withc(V)=c(L), rank(V) =5, (3.168)
and embed the U(1)y bundle such that
Qy = (1,1,1,1,1, -5). (3.169)

The massless spectrum is now counted by the cohomology groups summarized in
the third column of table (3.4). Explicit computation yields

() = 3—10Tr(ﬁ2) _ 31—0 S 2(2m)2(cha(U,) x dim(R,))
= 4(27)*(chy(V) + cha(L)) (3.170)

and confirms the assertion made earlier that the tadpole condition for type B
bundles takes the form

co(V) = c1(V) = eo(T). (3.171)

Again, the resulting anomalies are in agreement with the general expression dis-
played in section (3.4.1).

If we are interested in phenomenological applications, we must therefore find a
mechanism how to keep the U(1)y massless. What rescues us is that for suitably
chosen bundle data the Stiickelberg mechanism only yields masses for particular
combinations of U(1) factors. Let us therefore proceed and include another line
bundle.
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3.8.2 Bundles with structure group SU(4) x U(1)?

By means of a second U(1)xs bundle, we can further break the internal SU(5) to
SU(4) x U(1) x while keeping the non-abelian part of the visible Standard Model
gauge symmetry. Concretely, we now consider an SU(4) xU (1) x: xU(1)y+ bundle
of type A a la

or of type B, i.e,
W=VeolL'eL; with (W) =0, (3.173)

respectively. In this latter case, the embedding of the two U(1) bundles into
SU(6) is given by

Qx = (1,1,1,1,-4,0), Qy = (1,1,1,1,1,-5). (3.174)

The for later use we note that the traces (3.25) yield nx/ x» = 40 and 7y ,y = 60.
For the type B construction, the charge matrix becomes

0= (g é) (3.175)

The visible gauge group is H = SU(3) x SU(2) x U(1)x» x U(1)ys and the
resulting decomposition of the adjoint representation of Eg reads

( (15, 1, 1)0’0 )
2 X (1, 1, 1)0’0 + (1, 8, 1)0’0 + (1, 1, 3)0’0
g48 SUWXSUGXSU@XU(): (1,3, 2)o,5 +c.c.
(4,3,2)11 + (4,3,1); 4+ (4,1,1)16 + c.c.
1,2) 5 5+ (4,1,1)50+c.c
(6,1,2)9 3+ c.c. )

The (possibly anomalous) hypercharge U(1)y and the U(1)p_r, charge are given
by the linear combinations

1 2 2 1
QY:_EQYI_FEQX,, QB*L:EQY’_FEQX" (3176)

The massless spectrum is counted by the cohomology classes in table 3.5. As
far as the interpretation of the states as Standard Model particles is concerned,
a comparison of the spectrum in table 3.5 and the one in table 3.4 reveals a
general feature: The inclusion of several U(1) factors in the same FEjg factor,
which seems to be required in order to keep the U(1)y massless, gives rise to
a number of (unwanted) chiral exotic states whose cohomology is counted just
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reps. cohom. (type A) cohom. (type B) SM part.
(3,2)14 H*(M,V®L ® Ly) H*(M,V) a
(3,1)1 4 H*(M,V ® L ® Ly*) H*(M,V ® L") ds,
(1,1)16 H*(M,V® L ® LY) H*(M,V ® Ly) VR
(3,1)_35 H*(M,V @ L®® L3) H*(M,V®L") us
(1,2) 3 5 | HHM,VRL?®Ly®) | HM, VR L'®L;") IL
(1,1)s5,0 H*(M,V ® L) H*(M,V ® Ly) €%
(3,1)25 | H' M, A"V ®L®Lj) H* (M, \*V) (d%)
(1,2)9, 5 || HFM,N'VOLIR L) | H (M, N VLY (1%)
(3,2) 41 H* (M, L' ® Ly) H*(M, L) -
(3,1)_4_4 H*(M,L;*® Ly") H* M, L' ® L,") -
(1,1) 4 H*(M, L' ® LY) H*(M,L7' ® Ly) -
(3,2)o,-5 H*(M, L) H*(M, L") -

Table 3.5: Massless spectrum of H = SU(3) x SU(2) x U(1)x: x U(1)y models.
The last column gives the interpretation as SM particles with correct Qy and Qp_r.
Brackets denote that only the hypercharge of the state is the SM one.

by tensor products of the line bundles. We will find a way how to avoid this
drawback later on.
The resulting tadpole cancellation condition reads

co(V) =10} (L1) — 15¢}(Ly) = co(T) (3.177)
for the type A bundle and

2

> (L) = eo(T) (3.178)

=1

—ChQ(V) -

DN |

for the type B bundle. For generic first Chern classes ¢;(L;) and ¢;(Ls), the two
U(1) gauge symmetries are anomalous and gain a mass via the Green-Schwarz
mechanism. Therefore, the generic unbroken gauge symmetry is SU(3) x SU(2).
By computing the various anomalies, one finds that the linear combination

U(l)f ~ K1 U(l)X/ + Ko U(l)yl (3179)

is anomaly-free precisely if the first Chern classes of the two line bundles for the
SU(4) x U(1)? case satisfy the relation

2/451 C1(L1) + 3I€2 C1(L2) =0 (3180)
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and for the U(4) x U(1)? case
5%1 Cl(Ll) + (6%2 - K,l) Cl(LQ) = 0. (3181)

A detailed analysis of the relevant mass matrix shows that in these situations the
anomaly-free U(1); is also massless and therefore unbroken.

In the SU(4) x U(1)? case, for certain values of the parameters k1, ko some of
the line bundles L;* ® Lo, L;* ® Ly*, L7* ® L§ and L," appearing in Table 3.5
become trivial and signal a non-abelian enhancement of the gauge symmetry. For
the U(4) x U(1)? bundles the situation is of course completely similar. The five?!
possible non-abelian enhancements of SU(3) x SU(2) are depicted in figure (3.3).
The easiest way to find the enhanced gauge groups is to count the number of
additional gauge bosons arising when one of the tensor products of line bundles
becomes trivial. For example, when L;* ® L§ is trivial, i.e. ¢(L1) = 3¢i(Lo),
we find two additional vector multiplets (from (1,1)_,6 and its conjugate) which
enhance the SU(3) x SU(2) xU(1) to SU(3) x SU(2) x SU(2). Likewise, one may
check that indeed the chiral spectrum organizes into corresponding multiplets of
the enhanced gauge group by computing explicitly the various Euler characters
of the representations. This reveals that not only the expected SO(10) and
SU(5) gauge groups are possible, but also other gauge groups containing SU(3) X
SU(2) x U(1)? as a subgroup.

Another way to understand these gauge symmetry enhancements is by ob-
serving that the linear relations (3.180), (3.181) for the two line bundles imply
a reduction of the structure group to SU(4) x U(1), which of course enhances
the commutant. Its precise form depends on how the U(1) is embedded into
SO(10), but such a group theoretic analysis is not necessary as one can read off
the enhanced gauge symmetries simply from Table 3.5.

3.8.3 Bundles with structure group SU(3) x U(1)?

Let us explore further the model building possibilities several line bundles bring
about and consider the embedding of a bundle of the type

W=VeaL &L oL, (3.182)

with structure group G = SU(3) x U(1) x U(1) x U(1). We thus break Fg down
to H=SU(3)xSU(2)xU(1)zxU(1)x: xU(1)y by replacing the internal SU(4)
bundle of the previous example by an SU(3) x U(1)z bundle. Alternatively, one
can again choose the bundle W to be of the form

W=VelL'eL's®L; (3.183)

and the structure group of V' to be U(3). In this latter case, the embedding of
the three U(1) bundles into SU(6) is given by

Ql = (17 1; 17 _370:0)7 QQ = (1; 17 1; 17 _470); QB = (1; 17 1; 17 1; _5)
(3.184)

ncluding the case that all line bundles are trivial.
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al,) (CP)

SU(3) x SU(2) x SU(2)
SU(4) xSU(2)
cily SU(5) cily
SU(3) x SU(2) N . SU(3) x SU(2) x SU(2)
sue) SU(4)x SU(2) 6)

Figure 3.3: Gauge symmetry enhancement for bundles with structure group
SU(4) x U(1)% On generic lines through the origin the gauge symmetry is en-
hanced to SU(3) x SU(2) x U(1) while for the specific values shown one gets
even non-abelian enhancement. The left image shows the loci of non-abelian en-
hancement in the (¢;(L1), ¢1(Lo))-plane for Type A bundles and the right image
for Type B.

with 1z 7 = 24, nx x» = 40 and ny y = 60. This leads to

Q=

O O =~

11
5 1. (3.185)
0 6

The massless spectrum for both cases is counted by the respective cohomology
classes in Table 3.6.
The resulting tadpole cancellation condition reads

co(V) — 6¢3(Ly) — 10c*(Ly) — 153 (Ls) = co(T) (3.186)
for the SU(3) x U(1)? bundle and

—chy(V) — Zcf(Li) = ¢y(T) (3.187)

i=1

DN |

for the U(3) x U(1)? bundle.

For generic first Chern classes ¢1(L1), ¢1(L2) and ¢;(L3) the three U(1) gauge
symmetries are anomalous and gain a mass via the Green-Schwarz mechanism,
resulting as before in SU(3) x SU(2) as the generic gauge symmetry. However,
for particular choices of the bundle data we encounter a rich pattern of gauge
enhancements, as we will now discuss systematically.
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The computation of the various anomalies for the SU(3) x U(1)? case reveals
that the linear combination

Ul)y=riU)z+kU)x + k3 U(1)y (3.188)
is anomaly-free precisely if the first Chern classes of the line bundles satisfy
61 ¢1(L1) + 10k2 ¢1(Ly) + 15k3 ¢4 (L3) = 0. (3.189)
The corresponding constraint for the U(3) x U(1)? case reads
4kic1(Ly) — (k1 — Bkg) c1(La) + (6k3 + k1 — K2) ¢1(L3) = 0. (3.190)

For linearly independent first Chern classes, the respective equation cannot be
satisfied other than trivially, of course, and we are left with gauge group SU(3) x
SU(2). If, however, the ¢;(L;) span a two- or one-dimensional subspace of their
cohomology class, we can find — modulo rescaling — precisely one or, respectively,
two non-anomalous U(1);. These U(1) symmetries remain indeed massless.

13 1 ;@
A
Cl c2lp A2 1|D2 c2 |1 D3
A3 D3
D1
D 12 L8 B 1
B
Al © Cl A2
D1 A3 Al C3 Cl
11'=1 12=-1 3=1
® SU(3)*SU(3) *SU(2) = SO(10) ® SU(5*SU(2) 4 SU(B)

Figure 3.4: Gauge symmetry enhancement for SU(3) x U(1)* bundles of Type
A. The picture shows the projection of the various planes defined in Table 3.7
into the planes [; = ¢;(L;) = 1. At the point [; = 0 for i = 1,2, 3, the observable
gauge group is Fyg.

A closer look at Table 3.6 reveals a large number of possibilities for further
non-abelian gauge enhancements for those choices of ¢1(L1), ¢1(Ls), c1(L3) where
additional gauge bosons in the H*(M, O) representation arise. In fact, one can
verify that the spectrum then organises itself into multiplets of the corresponding
gauge group, as listed in Table 3.7. We arrive at even higher rank gauge groups if
several of the states transform in the trivial bundle simultaneously. The resulting
enhancement pattern is plotted schematically in Figure 3.4 for the case that V
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has structure group SU(3). An analogous pattern can of course be derived for
the U(3) bundle construction.

Independently of the concrete bundle data, one can check that quite a few
values of ki, kg, k3 admit an interpretation of the corresponding abelian factor,
if massless, as the MSSM hypercharge U(1)y. We list them in Table 3.8 and
Table 3.9 together with the respective candidates for MSSM fermions exhibiting
the required SU(3) x SU(2) x U(1)y (but not necessarily U(1)p_;,) quantum
numbers.
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class reps. cohom. (type A) cohom. (type B)
D1 | (1;3,2)0, 4. H*(M, Ly" © L) H*(M, Ly")

D2 | (1;3,2)00,5 H*(M, L3?) H*(M, L3")

D3 | (1;3,2) 314 H*(M,L7*® Ly ® L3) H*(M, L)

D4 (3;3,2)1.11 H*(M,V ® L] ® Ly ® L3) H*(M,V)

Bl | (L,1.2) 3 53| HWM L ®L°®L"°) | H(ML'®L' @ L")
B2 | (3;1,2) 953 || HM,VRL’QL3®L;") | H'M,VRL'®L;")
B3 | (3;1,2) 5 93 || HM,VRL?’QL>®L3) | H'M,VRL'®L;")
B4 | (3;1,2), 3 3 | HM, VL ®L* L% | H* M,V L' ® L")
C1l | (1;3,1)g, 44 H* (M, Ly* ® L") H* (M, Ly' @ L)
C2 | (1;3,1) 3 3 H* M, L7?® L, @ L2) H*(M, L' ® L")
C3 | (1;3,1) 31,4 H*(M,L7*® Ly ® L3*) H*(M, LT ® L")
C4 | (3:;3,1) 99, HM,VRL7?® Lix L2) H*(M,V @ L")
C5 | (3:3,1)00s | HM N V®L2QL2® L2) H (M, \*V)

C6 | (3;3,1)1 35 H*(M,V®@L @ L*® L32) H*(M,V ® L;")
C7 | (3;3,1)11,4 H*M,V@L ®L,® L;*) H*(M,V®L3")
AL | (151, 1)0, 46 H*(M, Ly" ® L) H*(M, Ly' ® Ly)
A2 (1;1,1) 350 H* (M, L* ® L) H*(M, L ® Ly)
A3 | (131,1) 546 H (M, L’ ® Ly ® L) H*(M, L ® Ly)
A4 (3;1,1)150 H*(M,V ® Li ® L3) H*(M,V ® Ly)
Ab (3;1,1)1,16 H*(M,V® L} ® Ly ® L) H*(M,V ® Ly)
A6 (3:1,1)400 H*(M,V ® LY) H*(M,V ® L))

Table 3.6: Massless spectrum of H = SU(3) x SU(2) x U(1)? models.
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rep. Type A Type B gauge group

Al (1,1,1)0,-4s —2ly + 313 =0 ~ly+13=0 | SU(3) x SU(2)?
A2 1 (1,1,1)=35p0 3l —5ly =0 Lhi—1l,=0 | SU@3) x SU(2)?
A3 | (1,1,1) 316 | 3l —1ly—6l3=0 LL—Il3=0 | SU(3) x SU(2)?
Bl | (1,1,2) 5 35 3| L4+l+ls=0 |[li+l+13=0] SU(3)x SU(3)
Cl | (1,3,1)9 4 4 lo+13=0 lo+13=0 SU(4) x SU(2)
C2 | (1,3,1) 3 3 2|3l +2+3l3=0| [ +1,=0 SU(4) x SU(2)
C3 | (1,3, 1) 314 | Bli—lo+4l53=0 | L+Il3=0 | SUM4)xSU(?2)
D1 | (1,3,2)0 41 4l +13=0 Iy =0 SU(5)

D2 | (1,3,2)00,-5 l3=0 I3 =0 SU(5)

D3| (1,3,2) 311 | 3 —lo—1I3=0 L =0 SU(5)

Table 3.7: Generic enhancement of SU(3) x SU(2) by additional non-chiral degrees of
freedom for both the Type A and Type B embedding. We use the notation l; = ¢1(L;).

T _ 5 3 1 T T

2 14 2 2 2 2
part. | class 11—0 ﬁ —% % % —%
1 _13 1 1 1 T

15 21 15 15 3 15

Q. | D 1,2,4 1,3 1 2.3 4 4
Ugr C 2,3.4 4,6 6,7 4,7 4,7 4,6
Dr | C | 1,5,6,7 2 1 3 1,2,5 | 1,3,5
L B 1,2,3,4 3 1 2 1,34 | 1,2,4
Er A 2,3,6 4,6 4,5 5,6 4,5,6 4,5,6

7 | A 1,4,5 2 1 3 3 1

Table 3.8: MSSM particle candidates for choices of (k1, ko, k3), part I. The labels of
the representations refer to the position in the respective sections of Table 3.6 with
bars denoting hermitian conjugation.
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_1 _1 1 _ L 1 _1
% 34 1 712 3 72
part. ClaSS —l 5 _2—0i _gl _@i _gi _l—ol
3 15 15 15 15 15
QL D 4 1,3 1 2,3 2 3
Ukg C 6,7 5 6 5 7 4
ER C 2,3,9 2,7 4,7 3,6 6,4 6,7
L B 1,2,3 2.4 3,4 3,4 2.4 2.3
Egr A 4,5,6 5 1,2,4,5 4 1.3,5 2.3,6
Ur A 1 2 3 3 2 1

89

Table 3.9: MSSM particle candidates for choices of (k1, ko, k3), part II.
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Chapter 4

The SO(32) heterotic string with
unitary bundles and five-branes

In view of the rich structure we have encountered in the Fg x Eg string with
unitary bundles, it is natural to try and follow a similar strategy in the heterotic
theory with gauge group SO(32). The differences in the perturbative sector will
be entirely due to the peculiarities of SO(32) as opposed to Eg x Es. We will
review momentarily that SO(32) possesses a very natural embedding of gauge
bundles with unitary structure group. In fact, its decomposition into products
of U(N) subgroups will reproduce exactly the massless spectrum we are familiar
with in the S-dual Type I framework with magnetized D9-branes. The dynamics
of five-branes differs considerably from the Fgx Ejy case in that now the five-branes
also contribute chiral fermions and additional symplectic gauge factors. Conse-
quently, the Green-Schwarz anomaly cancellation pattern has to be reconsidered.
It hinges, as far as the five-branes are concerned, on an anomalous coupling of
the heterotic five-brane to the bulk, analogously to the anomaly inflow arguments
for D-branes. As an important aspect we will compare the low-energy effective
action, notably the Fayet-Iliopoulos terms and the resulting one-loop corrected
Donaldson-Uhlenbeck-Yau equation, to known results on the Type I/ Type IIB
side. This will serve as evidence for our interpretation of the correction terms
in the DUY constraint as the four-dimensional shadow of a modified stability
condition.

Since, despite all the differences in the details, the general strategy is very
close to the procedure in the Eg x Fy case, we will often be rather brief as far
the explanation of the conceptual background is concerned in order to avoid
redundancies. In those cases, the required material has already been covered in
chapter 3 to which we refer for additional details. The contents of this chapter is
based on [129-131].
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4.1 A class of SO(32) heterotic string vacua

We compactify the SO(32) heterotic string on a Calabi-Yau manifold M and
consider decompositions of the gauge group SO(32) into its unitary subgroups.
Our strategy is to invoke the Whitney sum of internal vector bundles

W=V (4.1)

Each V; denotes a rank n; unitary bundle, i.e.it has structure group U(n;). The
group theoretic embedding is again accomplished in a two-step process, similarly
to the Eg x Eg construction. The first step involves the natural U(M;) subgroups
of SO(32) via the embedding

U(M,) C SO(32) —s SO(32 — 2M;) x U(1),. (4.2)

Into this U(M;), we diagonally embed the structure group U(n;) of the bundle
V; such that M; = n; N, i.e.

The emergence of the non-abelian group U(XV;) can be understood as the non-
abelian enhancement of the naive commutant U(1)":. We just observed similar
phenomena in the Eg x Eg theory, where non-abelian enhancement was tied to
the degeneracy of some of the internal bundles.

In all, this accomplishes the embedding

K K

[Tv() c [JUmun:) c SO(32) (4.4)

i—=1 i=1

and the resulting observable non-abelian gauge group is

H = SO(2M) x ﬁ U(N;) with M + fj M; = 16. (4.5)

i=1 i=1

As we will discuss, maximally only the anomaly-free part of the U(1)* gauge
factors remains in the low energy gauge group - a feature which we are by now
well familiar with from the discussion of the Eg x Eg theory.

In addition to this perturbative sector we take into account the possible con-
tribution from heterotic five-branes [83,132-135], which we will denote as H5-
branes to distinguish them from their cousins in the Fg x Eg theory. In contrast
to the situation encountered there, the inclusion of H5-branes does affect also
the gauge sector of the compactifications. We noted already in section (2.1) that
the worldvolume of an SO(32) H5-brane accommodates a massless gauge field.
To be more precise, let us recall from section (2.3) that for supersymmetry each
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H5-brane has to wrap an (in general reducible) holomorphic cycle v on M. This
means that the associated cohomology class [§] € H?*(M,27Z) is effective, i.e.
lies inside the Mori cone of M. If « is irreducible, this really corresponds to a
single H5-brane and gives rise to an additional Sp(2) gauge group in the effective
action. The appearance of these symplectic gauge degrees of freedom was derived
in [83] by virtue of S-duality between the H5-brane and the D5-brane in Type I
theory. The latter, in turn, is known to carry symplectic gauge groups [136]. If
v is reducible, we decompose it into the irreducible generators of the Mori cone
Yay ¥ = Zle Nu e, No € Z§. Due to the multiple wrapping around each irre-
ducible curve v,, the additional gauge group in the effective action gets enhanced
to [[, Sp(2N,). The decomposition into generators may not be unique and the
gauge group may therefore vary in the different regions of the associated moduli
space. However, its total rank and the total number of chiral degrees of freedom
charged under the symplectic groups are only dependent on =, of course.

By heterotic-Type I duality, one can infer that the effective low energy action
on the H5-branes has to have the usual Chern-Simons form

. "
I A(Tva)
S, = — i / S B A (N4 = 72 ) A Y2 (4
Rl 3 XY, 2(271')2 1
; @ n=0 A(N’Ya)
with the H5-brane tension us = m T~, and N+, denote the tangent bundle
and the normal bundle, respectivefy, of the 2-cycle v,, which for concreteness we
take to be irreducible from now on and wrapped by a stack of N, H5-branes. The

curvature occurring in the definition of the A- genus A(M) = 1+$#tr7€2+- >

is defined as R = —iv2/(?R (¢, = 27\/a' as before). This type of anomalous
coupling of the five-brane to the bulk is required in order to cancel the gravita-
tional anomalies on the SO(32) H5-brane world-volume. Strictly speaking, the
well-known anomaly-inflow arguments leading to (4.6) were applied in the S-dual
Type I framework [137], but the structure of gravitational anomalies is not af-
fected by S-duality and therefore the full Wess-Zumino coupling is given by (4.6)
also on the heterotic side.! The sign of the Chern-Simons action is dictated by su-
persymmetry: Jumping ahead a little, we state that the choice in (4.6) guarantees
that the real part of the gauge kinetic function for the Sp(2N,)-group is indeed
positive, as we demonstrate in section 4.5. Note that (4.6) implies both the usual
magnetic coupling to B and a coupling to B®. The latter will be essential
in section (4.4) when it comes to cancelling the mixed abelian-gravitational and
abelian-symplectic anomalies by the generalized Green-Schwarz mechanism.

For our upcoming purposes it is useful to recall the somewhat complementary
interpretation of the SO(32) five-brane as an instanton of zero size [83]. In

' The normalisations of R and of the term involving trgpon,)Fy differ from what one might
naively expect in view of the CS action of a D5-brane in Type II B by a factor of v/2 and 2,
respectively. This is a consequence of a corresponding redefinition of o’ in the context of the
S-duality transformation to be discussed further in section 4.7.
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intuitive terms, we can think of it as a gauge instanton background which, unlike
the holomorphic bundle W, is not spread out along the entire internal manifold,
but which has support only on the two-cycle 7,. Mathematically, such an object
is defined as the skyscraper sheaf O|,,, which is the restriction of the trivial sheaf
on M to v,. Being a coherent sheaf, O|,, admits a locally free resolution, given
by an appropriate Koszul sequence. For details on Koszul sequences we refer
to the mathematical literature, e.g. [138,139]. Suffice it here to recall that the
general Koszul sequence is an exact sequence which provides the resolution for
the restriction of a vector bundle to some codimension k hypersurface Y as [30]

0= VOANN S VAN - . VRN =V = V]y =0, (4.7)

where the hypersurface Y emerges as the zero locus of a holomorphic section of
N. This determines the total Chern character of V]y as

ch(Vly) = ch(V)—=ch(V® N*) 4 ch(V @& A2N*) 4 ... + (=1)*ch(V & AFN*).
(4.8)

Heuristically, we can think of v, as the complete intersection of two generic di-
visors Dy and Ds, v, = D1ND,y. This means that the Poincaré dual four-form, 7,,
is given by the cohomological intersection 7y, = D; - Dy. In this case we can take
for the rank two holomorphic bundle N simply the direct sum O(D;) & O(Dy).
Recall that O(D,) is the line bundle on M with first Chern class ¢;(O(D,)) = D;.
Furthermore A2N = O(D; + D,), as follows already from the computation of the
Chern classes (see also appendix A.1). In all, we take as the defining sequence
for O(~,)

0 — O(—=D; — Dy) = O(—D;) & O(—D,) — Opy — Ol,, — 0. (4.9)

It follows from equation (4.8) that the Chern characters of the sheaf O, can
readily be computed as ch(O|,,) = (0,0, Dy - D,0). In deriving this we have
assumed that the divisors D; and D, are in generic position so that in particular
Dl'Dl'DQZOZDQ'DQ'Dl.

Due to the overall minus sign in the Chern-Simons coupling of the five-brane
to the bulk, we have to include an extra sign into the Chern character. As a
conclusion, the five-brane has as its defining Chern character

ch(0l,,) = (0,0, —7,, 0). (4.10)
This is precisely what we expect from its interpretation as an instanton of zero
size: its "instanton number”, i.e. ¢3(Ol,, ), is given simply by the effective class

Poincaré dual to the class of the two-cycle it wraps.
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4.2 The massless spectrum

The perturbative spectrum can be determined from the decomposition of the
adjoint representation of SO(32) into representations of SO(2M) x [[, U(N;) x
U(nl)a

(Antisognn; 1;1)
Zgl‘(:l(IQ Ade(Nj); Ade(nj))
496 — 2511(1; Antiyy,); Symy ) + (1;Symy, v y; Antiy, ) + h.c.
> i (LN, Nysng my) + (1, NG, Njymg, my) + hec.
S (2M:Njiny) + hec.

The internal cohomology groups counting the various states are listed in ta-
ble 4.1. It is most striking that we encounter the same massless spectrum as for
the perturbative Type I string on a smooth Calabi-Yau space with magnetized
B-type D9-branes?. A prominent role is played by the chiral matter in the bifun-
damental representations of pairs of observable U(XV;) factors. Correspondingly,
in the framework of intersecting D-branes T-dual to the Type I string with mag-
netized D9-branes, chiral matter is localized at the intersection of two stacks of
D6-branes and likewise transforms in the bifundamental of the two gauge groups
realized on the respective worldvolumes. Apparently, on the S-dual heterotic side,
this typical structure emerges automatically due to the natural U(N) subgroups
of SO(32) and the associated decomposition of the adjoint representation. It will
therefore come as no surprise that the architecture of the concrete models we
will present in chapter 6 is very reminiscent of the multiple stack constructions
known from the intersecting brane picture.

The appearance of massless states in the adjoint of U(N;) and counted by
H*(M, V;®V.*) deserves some further comments. The element?® in Ho(M, V;@V;*)
counts the vector multiplet of the U(N;) group which contains its gauge bosons.
The elements in H'(M,V; ® V;*), by contrast, correspond to the moduli fields
associated with the bundle deformations. In the special case that the internal
bundle is abelian, V; ® V;* = O and we find h!'(M, O) massless chiral multiplets
transforming in the adjoint representation of a U(NN;) observable gauge factor,
just as in the Type I framework and for intersecting branes. On genuine Calabi-
Yau manifolds, there do not exist any homologically non-trivial one-cycles, of
course, and this fits with the fact that on a Calabi-Yau a line bundle has no
continuous moduli - it is defined once and for all by its first Chern class as an
element in H*(M,Z). On the torus, however, one has H'(T% O) = 3, and
the complex adjoint scalars correspond to the continuous Wilson lines on M
which parameterise the continuous deformations of a line bundle respectively the

2Note, however, the recent investigation [140] of toroidal orbifold compactifications of the
S0(32) heterotic string where models are found featuring e.g. the 16 spinor representation.
Such spinor representations are not present in our SO(32) heterotic context. We stress that
our results are valid for the case of smooth background manifolds.

3Recall that due to stability of V., HY(M,V; ® V;*) = 1.
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deformations of the intersecting branes. Analogously, turning on non-abelian
bundles U(n;) on the Type I D9-branes gives rise to H'(M,V; ® V;*) moduli
corresponding to the deformations of the U(n;) bundle.

reps. H =TI, SU(N;) x U(1); x SO2M) x [T-_, Sp(2N,)
(Adjy(w,))o) H*(M,Vi® V)
(Symy;y,))20) H (M, N\’ V)
(Antiy,))2) H* (M, ®; V:)
(Ni, Nj)1,10) H*(M,V;®V))
(N, Nj)1(i),-1) H(M,V;®V})
(Adjsoen) H*(M,0)
(2M, Ni) 1) H*(M, V)
(Antigpon,)) Ext,(0ly,, 0ly,)
(N3, 2Na) 1) Ext}, (Vi, Ol,)
(2N,, 2N,) Ext}((Oly,: Oly)

Table 4.1: Massless spectrum with the structure group taken to be G' = [[/<, U(n;).
The subscripts in the first column denote the charges under decomposition U(N;) —
SU(NZ) X U(l)l

Additional chiral matter appears from the non-perturbative H5-branes (see
the three last lines of table 4.1), which is absent for the M5-branes in Fg x FEg
heterotic string compactifications [110]. In the latter case this is in accord with
the possibility of moving the five-branes into the eleven-dimensional bulk in the
Horava-Witten theory. For the SO(32) theory, by contrast, the description of the
Hb5-brane as the skyscraper sheaf O|,, makes it clear that the brane should be
treated on the same footing as the smooth gauge instantons given by the bundle
W, and this analogy must be taken even more seriously when it comes to the
zero modes of the Dirac operator.

The matter arising in the H5-brane sector is described by appropriate exten-
sion groups. Following for instance [141], the global extension groups Ext’, (€, F)
of two coherent sheaves on M give the sheaf theoretic generalisation of the co-
homology groups H*(M, £ @ F*) for vector bundles on smooth manifolds. The
cohomology groups in table 4.1 counting the zero modes in the bifundamental of
one Sp(2N,) and one U(N;) factor are therefore the straightforward sheaf the-
oretic generalisation of the Dolbeault cohomology groups in case only smooth
vector bundles are involved.
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In particular, it is shown in [141] that
Extiy(Ol.., Ol.) = H (Y4, O) + H®(7a, N7a), (4.11)

where the first term contains the possible Wilson line moduli on the H5-brane
and the second term the geometric deformations of the two-cycles v, C M. All
these chiral supermultiplets transform in the antisymmetric representation of the
symplectic gauge factor.

The chirality index of the perturbative spectrum can be determined from the
Euler characteristics (2.17) of the various bundles U; occurring in the decompo-
sition of SO(32). This is true also for the matter arising from the H5-branes
or rather the coherent sheaves O|,,. Namely, for general coherent sheaves the
righthand side in (2.17) measures the alternating sum of the dimensions of the
global extensions. It follows that in the non-perturbative sector, the H5-branes
give rise to chiral matter in the bifundamental (N;, 2N,)1(;), which is counted by
the index

(M VOL) == [ V) A, (4.12)
The righthand side of (4.12) is an immediate consequence of the formula for
the Euler characteristic (2.17) once we remember that with the help of (4.10)
ch3(Vi®O[: ) = —ci(Vi) A7, and chi ((V;®@O[; ) = 0. In agreement with the
absence of chiral matter for symplectic gauge groups only, for two H5-branes
wrapping 2-cycles 7, and 7, one gets x(M, O|,, ® O}, ) = 0.

For later use we point out that the requisite formulae to compute the Euler
characteristics of products of bundles V; ® V; and the (anti)-symmetric product
bundle, /\2 V and ®§ V respectively, appearing in Table (4.1) can be found in
appendix A.1.

4.3 Global consistency conditions

We can proceed to a detailed analysis of the topological consistency conditions
our internal bundles have to satisfy.

In order to evaluate the tadpole cancellation condition for our spectrum we
need, as in the Fg x Fjy case, to express the formal trace over the internal Yang-
Mills field strength in (2.24) by the topological data of W and the manifold M.
With the help of table 4.1 we can convince ourselves that

—2 1 9 . _
trF = 30 x 2(2m)° (chy(U,) x dim(R,)) =
= 4(2m)” ) N;chy(V7). (4.13)

For later use we note that similar trace identities of this type are collected in
appendix A.3.
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Consequently, the tadpole condition takes the simple form

ZN chy(V; ZNG% = —c(T), (4.14)

to be satisfied in cohomology.

In the presence of symplectic gauge group factors due to the H5-branes we
need to worry about potential global Sp(2N,) anomalies. As we know from [142]
this Witten anomaly is absent precisely if the number of chiral fermions in the
fundamental of the Sp(2N,) group is even. Clearly, for a stack of N, five-branes
wrapping the cycle v,, the chiral index of the Sp(2N,) is given by

1ndexsp 2N,) ZN / Cl i /\7(1 = —/ Cl(W) /\7‘1. (415)
M

So apparently, the K-theory condition

ZN e (V;) € HX(M,2Z) (4.16)

ensures the absence of a Witten anomaly for every probe five-brane and has there-
fore the field theoretic interpretation as a global consistency condition for every
topological sector of the theory. Recall from section 2.3 that from the point of
view of the underlying (0,2) model, the rationale behind (4.16) is actually the
requirement of absence of worldsheet anomalies [94,95]. The connection between
these two different arguments leading to (4.16) is comparable to the situation in
Type I string theory, where the analogue of (4.16) corresponds, microscopically,
to the torsion K-theory constraint for the non-BPS D7-brane [96]. Alternatively,
this condition can likewise be derived by requiring the absence of global Wit-
ten anomalies on D5-branes for every possible probe brane and not just for the
concrete vacuum under consideration.

4.4 Anomaly cancellation

4.4.1 Field theoretic anomalies

Now let us discuss the resulting anomalies. The expressions for the field theoretic
anomalies follow immediately from the chiral spectrum in table (4.1). For the
cubic non-abelian anomalies we obtain* from

Asuvge ~ (Ni =) x(Q3 Vi) + (Ni + Ox(A* Vi) +2M x(V;)  (4.17)

+) N (x(Vie V) +x(Vie V) + > 2N, x(Vieol;, )
J#i a

4This uses once again the trace identities listed in appendix A.2.
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the expression in terms of Chern characters,

Aspiny ~ 2 / e1(V) x Tad. (1.18)
M

Here
Tad = »(T) + Z Nj chy(V] Z N7, =0 (4.19)

in cohomology thanks to tadpole cancellation (4.14). Thus in contrast to the
Es x Eg examples, the cubic non-abelian anomalies vanish only if the Bianchi
identity for H is satisfied [107].

The explicit expressions for all mixed and cubic abelian anomalies can readily
be computed along the same lines. Here we only state the result in terms of the
various Chern characters up to tadpole cancellation

Avy_soe ~ 2N / n; chy(V) + 2N, / (V) A (eha(15) + Ten(T)),
Avayi—umez ~ NiAvyi-su
Avyi-az, ~ —/ N; Cl(Vi)cQ(T)+24/ N; chs(V;)

Avy,—so@my?  ~ /Ncl co(T /NChs

Avy—spien.?  ~ —N¢/MC1(V;)/\7 (4.20)

For the first two anomalies we assumed that ¢ # j, with straightforward
generalisations.

4.4.2 Green Schwarz mechanism including five-branes

The Green-Schwarz mechanism cancelling the cubic abelian and mixed abelian
anomalies works in principle in a manner very similar to what we encountered
in the context of the Fg x FEjg string with U(/N) bundles. The details of the
four-dimensional counter terms, however, are quite different for the following two
reasons: Firstly SO(32) possesses, unlike Eg x Eg, an independent fourth-order
Casimir. Secondly the five-brane part in the anomaly cancellation pattern is
quite different in that the five-branes do not only affect the tadpole condition
but also yield explicit contributions to the anomalies themselves via the Sp(2V,)
valued chiral fermions. At the same time, we encounter no self-dual tensor fields
on their world-volume which, in the context of the Fg string, lead to new vertex
and mass terms. There are, however, five-brane dependent vertex couplings, but
no such mass terms, emerging from the Wess-Zumino coupling (4.6) to the bulk
two-form B,
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Since the knowledge of the dimensionally reduced Green-Schwarz and mass
terms bore such rich fruit in the previous case and was essential far beyond
the issue of anomaly cancellation, we will now present the resulting expressions,
sticking closely to the philosophy and the notation of section (3.4.2).

In the SO(32) case, dimensional reduction of the GS counter term (2.6) and
(2.7) to four dimensions gives, upon splitting again the gauge field into a four-
dimensional part F and the internal part F,

1 1 —3
_ @, L
Sos = e /B AT (FF) (4.21)
1 1 1 . —2 —2
_ @ A L
Cot / BO A S TH(FF) A <15TrF +trR> (4.22)
1 1 _ 1
BO A —=Tr(F?F’) — ——[To(FF 4.2
* (27r)3£g/ " (96 H(FE) = 300 1 ”) (4.23)

1 1 1 _ —2 —2
- B A Tr(FHA | =TrF +trR 4.24
(27r)3£§/ 5760 T A (pTE 4 (4.24)
1 1 —2 1 o
BO A —trR?A [trR — —TrF . 4.25
* (27r)3£§/ 384 T (4.25)

The specific prefactors of the traces follow from the general trace identities listed
in appendix A.2.

The expressions (4.21), (4.22) are mass terms for the U(1) gauge factors.
(4.23) and (4.24) lead to vertex couplings of the axions with two gauge fields and
finally the expression (4.25) gives rise to vertex couplings of the axions and two
gravitons.

There are, of course, additional mass terms and vertex couplings originating
in the cross kinetic term for H (3.61) in the ten-dimensional effective action as
well as vertex couplings from the H5-brane action (4.6).

The traces occurring in the kinetic and counter terms are evaluated for the
spectrum in table 4.1 in appendix A.3. With these results at hand, it is a simple
task to collect the explicit mass and GS terms.

From (4.21) and (4.22) we find that the four-dimensional two-form field béQ)
is rendered massive by the coupling to the abelian gauge fields given by

— 1 — —
A fi / (trU nz)Fg — 1_6trU(m)F A tI“RZ).

(4.26)

1 K

SO = a4 Nk Nz
mass 3(271-)5@’ Zzzl /VRI3

In addition, (3.61) yields mass terms for the internal two-forms b,(f),

K hi

1
Smass = (27'(')2&’ ;;Nz /Rls A fz) [tI'U (n;) F]k (427)
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The GS counter terms (4.23) and (4.24) provide the anomalous couplings of the
axions to the external gauge fields and curvature,

hi1 K

1 —2 Ny =2
_ 2 o £\2 - o
Sags = — E /R izgl (trSU(Ni)F +Nz(fz) ) [2 tI"U(n,')F 96tI“R }k
1 —2
——192tr50(2M)F2 [tI"R ]k
K 2
—t RQ[tR —4§ Nt n.F] } 4.28

These are supplemented by couplings to the symplectic gauge fields and the
curvature present in the H5-brane action (4.6),

h11

N,
SGs = Z /R (trsp@Na)Fj - ﬁtr}#) (4.29)

with [v,]x f Wi
Last but not least, from the kinetic term (3.61) for H we inherit the axio-
dilaton vertex

1
= g W (znl trswvy P + Ni()?) + trsopun F* - ).

We can now follow the steps spelled out in section (3.4.2) and derive the
various anomaly six-forms. For the mixed U(1); — SU(N;) anomaly, for instance,
we find

1
62l fi Nrsu,) F?

/ (njtrU(ni)Fg +3 trU(n,’)F A tI“U(nj)F2 — %trU(ni)F A trEQ),
M
(4.30)

Av1yi—su(n;)2

which is just tailor-made to cancel the mixed U(1); — SU(N;)? anomaly. The
cancellation pattern for the remaining abelian-non-abelian, cubic abelian and
mixed abelian-gravitational anomalies follows the same lines. Let us just list the
resulting anomaly six-forms

1 —3 1 - =
g0r ~ [y At F? (t i F — =t n.F/\tR),
AU(l)z SO 12(271')60/ f rSO(QM) /./\/1 rU( z) 8 rU( 1) r
A ¥f A trR? (tr - itlr F A trEQ)
U(1)i-Gj, 12(2m)5of i Wy U(ni) 16 U(n;) ]
1 9 = .
Av(1);-span,) ~ _W fi Ntrsoen,) F /M trF' A7,
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1 2 -3 n; - -2

trU(ni)F N trU(nj)F2> (431)

and point out that they are in perfect agreement with the field theoretic anomalies
given in the previous section. As usual, the anomalous U(1)s are rendered massive
and therefore remain in the low-energy domain as perturbative global symmetries.
The situation parallels that in Type I [109] and heterotic Eg x Eg-theory, where
the number of massive abelian factors is at least as large as that of the anomalous
ones and in general given by the rank of the mass matrix My;, as defined in (3.39),

;‘a'(trU(ni)F)k for k€ {1,..., hi1}
My, = { Cm” (4.32)

3(273)50/ fM (trU(ni)F3 - f—ﬁtrU(ni)F A tr§2> for £k = 0.

We stress once more that in contrast to the Mb5-brane of the Eg x FEg theory,
the H5-branes clearly do not contribute any mass terms due to the absence of
additional tensor fields emerging from their worldvolume.

4.5 Non-universal gauge kinetic functions

Let us now derive the gauge kinetic functions [80,116,118,119] as introduced in
section (3.5), to which we refer for further conceptual details. With the definition
of the complexified dilaton (3.96) and Kahler moduli (3.97) the full gauge kinetic
functions for the SU(N;), U(1); and SO(2M) groups can be read off from their
imaginary parts in (4.28) and (4.30) to be

hi1
—2 n; —2
fsuvy = mS+Y Ty (trU(ni)(F Je = g (trR )k),
k=1
1
foa, = 3 Nifson,), (4.33)
h11
1 1 —2
fsoem) = 55 ~ 96 ZTk (/).

As in the Eg x FEj case the relative normalisations for the different gauge groups
are a consequence of the trace identities, see in this case appendix A.3. Again,
the abelian gauge couplings receive an extra factor of % as compared to the non-
abelian ones due to the canonical normalisation of the non-abelian second order
Casimir. In addition, the gauge kinetic functions for the symplectic factors are

1 .
tooov) = 5oz | (= iB). (4.34)
S Ya

as we find from (4.29).
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Note that the real part of the gauge kinetic function are positive definite
by definition. Therefore, as for the Eg x Eg theory, requiring positivity of the
expressions (4.33) in the perturbative regime, g; < 1 and internal radii much
bigger than the string scale, imposes extra conditions on the allowed bundles.
Concretely, reality of the one-loop corrected SU(X;) and U(1); gauge couplings
is guaranteed provided that in this regime

li JAJAJ—ngz‘;/JA(chQ(w)+ECQ(T)) > 0. (4.35)

The analogous constraint for the SO(2M) group, where the term ch(V;) is
absent, is normally trivially satisfied, since for all manifolds we will encounter
JoJ Aca(T) < 0. The real part of (4.34) is always positive as long as the Kahler
form J lies in the Kahler cone. This is a consequence of the minus sign in the
Wess-Zumino coupling (4.6) and actually serves as its justification.

Away from the small coupling and large radii limit one expects both world-
sheet and stringy instanton corrections to the gauge kinetic functions [118].

In contrast to the Eg x FEg construction, no off-diagonal couplings among
abelian factors occur. Even more strikingly, the tree-level and one-loop corrected
non-abelian and abelian gauge couplings of an observable SU(XV;) and U(1); gauge
factor only depend on the internal gauge flux in the corresponding U(n;). Since
we used the same decomposition of SO(32) that naturally appears for intersecting
D-branes, S-duality tells us that after all this result is not surprising. There, each
stack of D-branes comes with its own gauge coupling determined by the size of
the three-cycle the D6-branes are wrapping around.

4.6 Fayet-Iliopoulos terms

We conclude our general discussion of the SO(32) theory with the derivation of
the Fayet-Iliopoulos terms generated by the massive U(1) symmetries. Our meth-
ods largely parallel the ones applied in the context of the Eg x Eyg theory. We will
therefore be comparatively brief and refer to section (3.6) for more information.
Suffice it here to recall that the starting point for the derivation of the FI terms
is the the gauge invariant Kahler potential

2 hi11

o= e n(ses - Sa) on(- 3 S nen - Yo

i,j,k=1
(Tj+Tj—ZQj’ Vx> (Tk+T,j—ZQz V))] (4.36)

This is precisely as for the Eg string, see (3.120), except the fact that there are no
contributions from tensor fields living on the five-brane, of course. The charges
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Q)7 are again defined via

K hi1

Q‘}’é/ (2)
: 4.
Smass—E § 2w Ja,, fiNby (4.37)

z=1 k=0

and are encoded in the mass terms (4.26) and (4.27).
We can therefore straightforwardly derive the coefficients £, of the FI-terms
from the gauge invariant Kahler potential K via the relation

& _ 0K

g2 IV,

(4.38)

V=0

Inserting the concrete expressions for the charges eventually leads to the con-
clusion that the FI terms vanish if and only if

1 — 2420 —3 1 —
—/ JNJTNtrgm) P — Is "s / (trU(n.)F3 — —trym)F A trR2> =0
2 Jm 3! M ’ 16 ’

(4.39)

for each external U(1); factor separately. It is intriguing that, as expected from
the intersecting D-brane picture, the Fl-term for U(1); only depends on the cor-
responding internal vector bundle with structure group U(n;). This is to be
contrasted with the analogous expression (3.122) for the Eg x Ejg string, where
the one-loop correction of the FI term involves the second Chern classes of all
vectors bundles embedded into the same FEg factor as the abelian gauge group
under investigation. Note that the one-loop correction in (4.39) involves the cubic

term trU(ni)Fg. This can be traced back to the fact that in contrast to Eg the
group SO(32) has an independent fourth order Casimir operator. It implies the
well-known result that for the SO(32) heterotic string a bundle with structure
group SU(N) generates a non-vanishing one-loop Fl-term [124]°>. Again, away
from the small string coupling and large radii limit one expects additional non-
perturbative world-sheet and string instanton contributions to (4.39). We will
further investigate the implications of the supersymmetry condition (4.39) of a

vanishing FI term in section (4.7.3).

4.7 S-duality to the Type I string

An immediate question concerns the relation between the phenomena studied in
the context of the SO(32) heterotic and the S-dual Type I framework. Our aim
is therefore to apply Heterotic-Type I S-duality to the equations derived by now
and to shed new light on their significance by comparison with known results on
the Type I side. The main conclusion of this analysis will be the identification of

>There exist SU(N) bundles, however, with vanishing FI terms if the bundle data happen
to be such that chz (V) = 0.
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the supersymmetry conditions (4.39) and (4.35) as the integrability condition for
a deformed Hermitian Yang-Mills equation. The corresponding statement for the
Egs x Eg string has been conjectured in section (3.6.3) and is further supported
by this observation. Before we can tackle this issue in section (4.7.3), however,
it is indispensable to derive the precise form of the higher-order counter terms
in the Type I effective action. In particular, we need to investigate the full set
of S-duality transformation rules which relate the gauge kinetic functions and FI
terms to their Type I/Type II B counterparts. As a subtlety arising in the Type
I effective action, we are always free to absorb an additive shift in the dilaton
by a redefinition of o/. For the purpose of quantitative statements we need to
make sure that all terms in the kinetic action on the Type I and heterotic side
are canonically normalized before they are transformed into one another by S-
duality. We therefore cannot help it but pause for a moment and first derive
the S-dual Type I action together with its precise relationship to the heterotic
action presented in (2.1). Although the contents of this section is well-known
in principle, we consider it enlightening to present the arguments leading to the
final Type I action (4.50) - not only in view of the remarkable confusion in the
literature about the proper normalisation of the Green-Schwarz terms. Along
the way, we will also provide the justification for the SO(32) H5-brane action
postulated in (4.6) as well as for our normalisation (2.6) of the Green-Schwarz
counter terms.

4.7.1 The Type I effective action

We take as our starting point the relevant bosonic parts of the ten-dimensional
Type IIB effective action including the Chern-Simons terms of a stack of M
D9-branes [12],

1 1
S — 245101%:-————/ G3 A xG 4.40
s 2&%0 M (10) ¢ 4%%0 AM(10) ’ ’ ( )
1 _¢ . \/7
-5 3 e~ P10 tI‘U(M) [F N *F] + L9 Z C2n+2 N Ch(Zj:) N A,
2 gy Jma0 M@0
where k19 = 3(2m)7 (), o = (Qﬂ)gl(a,)s, é = (2ma/)? g, R = —il’R and
2% \
chy(iF) = B (2 )F tryan F",
1 05 2 ; 2\ 2
R) = 1——2—1trR —3 —— (trR 4.41
A(R) 96 (22 " T 18432 (27)7 (1) + (4.41)
éS
2 (trR4) )

11520 (2m)*

The traces are over the fundamental representation of the U(M) gauge theory
living on the D9-branes and of SO(1,9), respectively. G3 = dC, denotes the
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Ramond-Ramond (RR) three-form field strength. Its magnetic dual is the six-
form potential Cg satisfying x,,dCs = dC5. Note that in contrast to the heterotic
string, there are no factors of e??1¢ affecting this magnetic-electric duality trans-
formation. In (4.40) and in the definition of G3 we omitted all additional kinetic
and Chern-Simons terms involving the RR forms Cy and Cy of the full Type I1B
action.

In compactifying the ten-dimensional theory on R"? x M, we allow in addition
for stacks of N, D5-branes wrapping the holomorphic 2-cycles v, on M. They,
too, give rise to U(N,) gauge groups on their worldvolume. The Chern-Simons
action on the D5-branes reads

1 »

/A A (T,)

Sgg = —Us / Z C147z-|—2 A Na + ;trU(Na)(FaQ) N ———
“ R1:3% 2 (2m)? N

Ta A (N7,)

(4.42)

with ps = ﬁ Here T#, denotes the tangent bundle and N+, the normal
bundle of the D5-brane in M.

The type I theory emerges after modding out the Type IIB string by the
world-sheet parity transformation Q : (0,7) — (—o,7). At the level of the
effective action, this first of all means that we project out the anti-invariant RR
potentials Cyy and C; and introduce the €2 image of the stack of branes, i.e a stack
of M D9-branes and stacks of N, D5-branes, each with the negative respective
field strength —F'.

To keep further track of the projection, we divide the resulting action by a
factor of two. Next we need to take into account that the orientifold projection
results in a tadpole for the Ramond-Ramond ten-form, Cy, and, since the Calabi-
Yau is generically curved, an induced tadpole for the six-form Cg.

Quantitatively, these tadpoles are given by the CS-terms on the O9-plane

[137,143]
& | (R
Cs _ _39 / E " = ). 4.4
5069 32 pug i (n_o Cy +2) Ay L < 4> (4.43)

The Hirzebruch genus £ is defined as

. 4 8 éS
E(S) =1+ — R = (R~ ——= — (ttRY).
<4> T2 eme M T 7378 20)! ()"~ o160 (2m)? (trF?")

(4.44)

In particular, extracting the top form contributions both from the Wess-Zumino
coupling of the D9-brane and of the orientifold,

1
SC10 = /Lg/ (— 2M — 32) Clg, (445)
Mo \ 2
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clearly shows that the D9-brane tadpole is cancelled precisely for M = 16.
The preliminary Type I action therefore becomes®

1 1
S = — _2¢1°R——/ Gz AN xG
! 4K3, M(m)e 8k2y J a0 ’ ’
1 =
- ~d10y F AF] + Cunsa A ch(iF) AV A
29y Muo)e o) | I po M(IO); e (iF)

2
~ (R
—32 E Cup AL — 4.46
g /M(w) <n_0 4 +2> <4> ( )

. -
54 .A (T’Ya)

—H5 / Z C4n+2 A <Na + - QtrU(Na)(Fl?) ) N ==
RL3xy, \ p—p 2(2m) A (N7a)

For brevity we have omitted the kinetic term for the gauge fields on the five-
branes.

Now from a detailed worldsheet analysis, we know that due to the {2-projection
the gauge group on the D9-branes is actually no more U(16) but rather SO(32)
and likewise the D5-branes carry gauge group SP(2N,) instead of U(N,) [136].
We therefore re-express the traces over the fundamental representation of the
unitary groups by the ones over SO(32) and Sp(2N,), respectively, with the help
of the trace identities

1 1
true[F] = §tr50(32)[F2]a truae) [F'] = ETrso(w) [F],
1
trU(Na)[FQ] = §tr5’p(2Na)[F2]; (4.47)

with Trgo(32) denoting, as always, the trace in the adjoint representation.
We see, however, that the kinetic terms, including the ones for the Yang-Mills
fields, are not yet canonically normalized. This can be remedied by rescaling
1
Cy = 2V20C,, o = V2a/, e - — b0, (4.48)

2V/2

By Hodge duality this also implies

After this redefinition we carefully collect all the Chern-Simons terms and
eventually arrive at the action

1 1
S[ = -5 672¢10R— —2/ Gg /\*Gg
2/4/10 A (10) 4:%10 A (10)

6Note that at this stage the D-brane action is formally unaltered as compared to the original
Type IIB action. This is a consequence of dividing the latter by a factor of 2 after adding the
Q-image of the branes and furthermore identifying the branes with their orientifold image.
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1
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gy Jamao

2 o
—— Co N |t F? — tr[RY — 4(27)%? ) N7
+4f€%0 4 (10) 6 (1‘50(32)[ ] 1“[ ] ( 7T) ; 'Ya)

67‘1’10 tr30(32) [F N *F]

Iz A(T7,)
e /ﬂm cn (Wtrs”(m)(ﬂ?)> A v
2 X Ya A(Nf}/a)
1
S — X 4.
e /M(w) Ca A Xs, (4:50)

where in the expressions involving A (Tv,) and A (Nv,) we now define R =
—iv/20%R to keep track of the rescaling of o/. Also, we introduced the Type I
gauge coupling % = W The anomaly eight-from Xy is indeed just the
one we encountered in the Green-Schwarz mechanism in the heterotic theory and
given by equation (2.7).

This action is really S-dual to the heterotic string action (2.1) by an applica-
tion of the transformation rules

gl = (¢!,
J'o= (g!Hta" (4.51)

and letting C?) — B®),

In particular, this justifies the concrete form and normalisation (4.6) of the
anomalous Wess-Zumino coupling of the SO(32) heterotic five-brane, which after
all was essential to derive the correct Green-Schwarz terms. Moreover, we have
explicitly convinced ourselves how on the Type I side the anomaly cancelling
Green-Schwarz counter terms arise from the Chern-Simons couplings of the D9-
and D5-branes and the O9-planes. They appear at first order in open string
perturbation theory, as we see by comparison with the Yang-Mills kinetic terms
at order e %10 = gf,;el,l. Along the way, this supports the normalisation (2.6) of the
one-loop GS-terms with respect to the tree-level effective action on the heterotic
side.

It is clear that we can proceed precisely as for the SO(32) heterotic string
and consider gauge background fields of the form (4.1) on the internal part of
the spacetime-filling D9-branes such that the original SO(32) gauge symmetry is
broken correspondingly. This is, of course, nothing other than the introduction
of magnetized D9-branes. The resulting global consistency conditions for the
internal gauge fields, the spectrum and cohomology groups as well as the details
of the GS mechanism follow by copying the steps spelled out for the heterotic
setup. Note in particular that the requirement that the rank of the heterotic
gauge group be 16 translates into the cancellation of the D9-tadpole, whereas
the Bianchi identity for H or anomaly cancellation condition in the heterotic
theory corresponds to Db5-tadpole cancellation in Type I. In all, this certainly
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puts the framework of Type IIB magnetized D-branes conceptually on just the
same footing as the dual heterotic model building with gauge instanton back-
grounds. We anticipated these parallels already in section 4.2 when pointing out
that the massless spectrum of the SO(32) string with unitary bundles and that
of the Type I/IIB framework with magnetized D9-branes are in one-to-one corre-
spondence. It is furthermore clear that the magnetized D-brane picture is by no
means restricted to turning on just the diagonal abelian part of the gauge fields
on the worldvolume of the branes. All statements about the SO(32) heterotic
string with unitary bundles should therefore also be read as the generalisation
of the setup of magnetized D-branes to non-abelian background bundles on their
worldvolume.

4.7.2 The gauge couplings for Type I

After this little exercise, we are finally in a position to take a fresh look at the
supersymmetry conditions (4.39) and (4.35) by analysing them in the S-dual Type
I setup. To do so, we can either perform the analogous computation of the gauge
kinetic function and FI terms as they follow from dimensional reduction of the
Type I action (4.50) - or simply apply the S-duality transformation rules (4.51) to
the heterotic results. We go for the second option and write the expression for the
gauge couplings in a way which is more suitable for the S-duality transformation.
The real part of the holomorphic gauge kinetic function fgy(n;) can be cast into
the form

Re(fgyx,)) = 76 [5 9s /M JNTNT = (QWCYI)Q/

M

—2  n; =2
J/\(t n.F2——’tR) .
TU (ny) 48r ]

(4.52)

For reasons which will become clear momentarily, we will actually be inter-
ested in the S-dual expressions normalized with respect to the original Type I1B
theory from which Type I arises after the orientifold projection. As we have just
discussed this requires that we rescale, after applying (4.51),

1
of - —a, e"0 = 2/2e00, (4.53)

V2

The resulting Type I expressions are to be read as defined with respect to

the canonically normalized Type IIB action. In this sense, the gauge couplings
S-dual to (4.52) are

1 [n; (2ra’)? —2 N, =2
fI = = — Fo-
Rel(flyov) = 7o [3! /MJ/\J/\J . /MJ/\ (tro) T = Z2trR”)
(4.54)

on the Type I/IIB side. Most importantly, the one-loop term has now become a
perturbative a/-correction to the tree-level gauge coupling.

109



4.7.3 The non-abelian MMMS condition
The same S-duality relations (4.51), (4.53) applied to the Fl-terms (4.39) yield

1 —  (27d)? —3 1 —
—/ JNJT N trgm)F — (2ma’) / trU(n.)F3 — —trU(ni)F/\trRQ =0
2 Jm ’ 3! M ’ 16
(4.55)

on the Type I/ IIB side, where the second term is again a perturbative o'-
correction. We can combine the gauge kinetic function and the FI-term into
a single complex quantity, the central charge

2= [ o [ (e i )| (4.56)

defined in terms of F = 27a'F. The gauge coupling and the Fl-term are seen to
be proportional to the real and imaginary part, respectively, of Z.

In the case of abelian D9-branes in Type IIB we know that one can introduce
an additional phase parameterising which A" = 1 supersymmetry of the underly-
ing N' = 2 bulk supersymmetry is preserved by the brane. Therefore, the general
Type IIB supersymmetry condition is

tn ([ v [ e i) ) = o (4.57)
(A

As usual in Type IIB theory coupled to a brane, we have now defined F =
2ra/F + Bid, thus taking into account the fact that for open strings only this
combination is a gauge invariant quantity. Clearly, on the right-hand side of
the first equation in (4.57), there might appear a non-vanishing function of the
charged matter fields as previously in (3.124), but having discussed these terms
at length in section (3.6.2) we can here just assume them to vanish for simplicity.

Note that (4.56) is precisely the perturbative part of the expression for the
central charge as it appears in the TI-stability condition [78] for general B-type
branes”. To our knowledge the form of this expression has never been derived
from first principles. Rather, we understand that the central charge has been
designed in such a way as to keep in analogy with the well-known RR-charge of
the B-type-brane as seen in the Chern-Simons action - it is simply assumed that
in the geometric limit, the two quantities coincide [144].

We find it quite interesting though not unexpected that, starting from the
well-known Green-Schwarz anomaly terms, our four-dimensional effective field

"This is true at least for space filling branes in case we consider also non-abelian fields. Of
course our analysis has nothing to say about lower-dimensional non-abelian branes.

110



theory analysis leads precisely to the perturbative part of the Il-stability condition
for B-type branes.

Equation (4.57) is also the integrability condition for the non-abelian gen-
eralisation of the MMMS equation for D9-branes in a curved background. The
abelian version of this equation has been proven (without the curvature terms)
in [145] starting from the DBI action of a single D-brane and it has been con-
firmed by a world-sheet calculation in [146]. Up to now it is strictly speaking
only a conjecture that it can easily be generalised to (4.57) [127,147]. How-
ever, our analysis relies exclusively on quantities of the four-dimensional A/ = 1
effective supergravity theory, the one-loop FI-term and the holomorphic gauge
kinetic function. In particular, the non-renormalization theorems guarantee the
absence of further perturbative corrections, thus dictating (4.57) as the pertur-
batively exact integrability condition at least for D9-branes. The absence of a
stringy one-loop correction was shown in [128]. Of course, there will be additional
non-perturbative corrections, which in the g; — 0 limit make out the complete
[I-stability expression [78].

As we discussed in detail in section (3.6.3) in the context of the Fg-string, the
integrability condition (4.57) is not yet sufficient for supersymmetry preservation,
but has to be supplemented by the correct stability condition. This will be the
direct generalisation of u-stability, which is the valid notion of stability only at
leading order in o/ and g,.

We can now largely repeat the analysis of section (3.6.3): First, we have to
know the local supersymmetry equation for non-abelian D9-branes underlying
(4.57).  All we can say for sure starting from (4.57) is that the local SUSY
condition for D9-branes has to be of the form

i (e i) das =

top

where a5 is a globally defined 5-form so that day is gauge covariant. At least for
compactifications on genuine Calabi-Yau manifolds, where dJ = 0 and dH = 0,
we cannot find any 5-form of this type which is also invariant under the axionic
U(1) gauge symmetry B — B+dyx, A — A— x and does lead to a non-vanishing
dOé5.

Therefore, we conclude that the possible correction das is absent and that
indeed the local supersymmetry condition is given by

[Im <e—w eIt A(M))] = 7(V)id volM (4.58)
top
and in addition

7(V) =0 (4.59)

or suitable generalisations if one allows for a cancellation of the FI terms against
chiral charged matter fields. This is just the counterpart of the full Hermitian
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Yang-Mills equation (3.128) we proposed in the context of the Eg x Eg theory.
Likewise, the 7-slope is now defined as

A strictly perturbative (in the sense explained in section 3.128) notion of sta-
bility relevant for (4.58) has been analysed in [127] and been called 7-stability
(to stress that it is only the perturbative part of II-stability). In particular, the
authors have shown that for o’ smaller than a critical value depending on the
bundle V', equation (4.58) has a unique solution precisely if the bundle is stable
with respect to the deformed slope (V). This actually serves as additional sup-
port for our corresponding conjecture regarding A-stability in section (3.6.3). As
the authors of [127] have also shown, in this perturbative sense p-stability im-
plies m-stability. However, we face the same problem that this notion of stability
assumes that the terms in 7(V") at zeroth order in o/ dominate over the higher
order corrections in the extreme perturbative regime. This may be in conflict
with the DUY equation (4.59). For a detailed discussion of this point we refer
back to section (3.128). We hasten to anticipate in this context that all concrete
examples we will construct in the sequel are not affected by this caveat since
the deformation of the slope vanishes and are therefore supersymmetric provided
they are p-stable. To prove supersymmetry of non-abelian bundles in the more
general situation it is necessary to find a stability criterion which is not only valid
for arbitrarily small higher order corrections.
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Chapter 5

Stable holomorphic U(n) bundles
on elliptically fibered Calabi-Yau
manifolds

We have by now made extensive use of the equivalence of the following two types
of objects: solutions of the Hermitian Yang-Mills equations for a connection with
values in the gauge group G on the one hand and holomorphic stable bundles
with structure group G (or, rather, the complexification of G) on the other. Our
interest has been in G = SU(n) or U(n), but the correspondence is not restricted
to this choice. We have seen that the Hermitian Yang-Mills equation for both
heterotic theories receives perturbative corrections arising precisely at one-loop
in string perturbation theory. In Type I/IIB theory, by contrast, the corrections
are perturbative in /. In any case, the stability condition constraining the holo-
morphic bundles is modified and no longer given by pu-stability, but by A- and
m-stability, respectively. Since p-stability implies A-stability in the perturbative
limit, we can therefore, as far as concrete applications in model building are con-
cerned, stick to the more familiar u-stability constraint. As a result, the question
of prime importance both to heterotic and Type I/IIB model building in this
context concerns the construction of suitable stable holomorphic vector bundles
over a Calabi-Yau threefold M. The classification and construction of the most
general such bundles is a challenging and unsolved mathematical problem. Luck-
ily, for the special case that the Calabi-Yau manifold is elliptically fibered, a large
class of p-stable holomorphic G-bundles is at our disposal thanks to the spectral
cover construction, pioneered by Friedman, Morgan and Witten (FMW) in [40]
and Donagi [41] and further developed by several authors [47,69,103, 148-150].
This will be the playground to provide concrete examples of the general theory
presented in the previous chapter, the main focus being eventually on phenomeno-
logically interesting model building. In order to make this work as self-contained
as possible and to introduce our notation, we will first review very briefly the
main ingredients of this mathematical construction relevant for our applications.
In doing so, we will rely on the original literature [40,69,149] to which we refer
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for further details.

5.1 Elliptically fibered Calabi-Yau manifolds

An elliptically fibered complex three-fold M is given by a complex two-surface
B, the base space, together with an analytic map

T: M= B, (5.1)
where fibers over each point b in the base,
Ey=7'(b), (5.2)

are elliptic curves. Recall that an elliptic curve is a two-torus with a complex
structure inducing an abelian group law. In particular it contains a distinguished
point p acting as the zero element in this group.

We require the fibration M to admit a global section o : B — M, assigning
to every point in the base b € B the zero element o(b) = p € Fj, on the fiber'.
This section embeds the base as a submanifold into M and we will often not
distinguish between B as a complex two-fold and o(B) as a four-cycle in M. The
associated homology class in Hy(M,Z) then intersects the fibre class precisely
once. It will be useful to introduce also the class in H?(M,Z) Poincaré dual
to the class of o(B). In slight abuse of notation, it will also be referred to as
0. The respective meaning will hopefully always be clear from the context. Its
cohomological self-intersection can be proven to be [40]

o-0=—0-71(c1(B)). (5.3)

Likewise, we introduce F' € H*(M, Z) as the Poincaré dual to the fibre class. The
fact that the base class intersects the class of the generic fibre once is reflected
in the cohomological intersection form

o-F=1. (5.4)

This shows that F' is actually the Hodge dual to the two-form . Now that we
are at it, we state for later purposes the simple fact that the intersection form of
the pull-back to M of two classes o and 3 in H?*(B,Z) is given by the pull-back
of the intersection on B,

m(a) -7 (f) = 7" (a- f) = (a- §) F. (5.5)

Often we will simply omit the 7* when talking about the pull-back of two-forms
to M and likewise the F' in expressions of the form above.

'See, however, [47,48,103] for the spectral cover construction on elliptically fibered three-
folds which admit two sections.

114



Let us now turn our attention to the elliptic fibre. Elliptic curves can be
described as the hyperplane in CP? defined by the homogeneous Weierstrass
equation

2y? = da® — gowz? — g32°, (5.6)

where x, 1, z are homogeneous coordinates on CP? and ¢, and g3 define the com-
plex structure. When we fiber the elliptic curve over the base, this means that
the z,y, 2 and likewise g5 and g3 must be promoted to global sections of a line
bundle £ on B, and the choice of £ defines the fibration.

We can actually take £ to be the conormal bundle to the section o(B) so that
the fibration is now defined by the specific choice of o . Then z,y, z are sections
of £2, £3 and O whereas g, and g3 appear as sections of £* and L8, respectively.
If the fibration M is to be Calabi-Yau, the first Chern class of the tangent bundle
T must vanish,

As shown e.g. in [149], this implies £ = K ', where Kp is the canonical bundle
of the base space. It follows that Kz* and K3° must have sections g, and g, re-
spectively. The surfaces compatible with this condition are found to be del Pezzo,
Hirzebruch, Enriques and blow-ups of Hirzebruch surfaces [151]. Note, however,
that the construction of stable holomorphic bundles on elliptically fibered three-
folds does not hinge upon the Calabi-Yau property. In order to simplify the
mathematical apparatus, we nonetheless assume (5.7) in the sequel.

FMW showed that on such spaces the Chern classes of the tangent bundle of
the total space follow from the Chern classes of the base space. Especially, we
state for later purposes that the second Chern class of the tangent bundle can be
computed as

e2(T) =120 - *(c1(B)) + (11¢1(B)* + ¢2(B)) F. (5.8)

5.2 The spectral cover construction

The basic idea of the spectral cover method is to first construct a stable U(n)
or SU(n) bundle on the elliptic fibre over each point of the base, which is then
extended over the whole manifold by gluing the data together suitably. Recall
that in general, a U(n) or SU(n) bundle defines a rank n complex vector bundle.
Such a rank n bundle over an an elliptic curve must, in order to satisfy the
Hermitian Yang-Mills equation, be of degree zero. Note that this is still true
after taking into account the one-loop corrections which vanish trivially upon
restriction to a complex curve. More precisely, a rank n bundle can be shown to
be isomorphic to the direct sum of n complex line bundles

Vg, =N1®...0N,, (5.9)
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each of which has to be of zero degree. If G = SU(n) as opposed to U(n), V|g,
must in addition be of trivial determinant, i.e. Q;_, N; = Op,. The zero degree
condition on AN; implies that there exists for each N; a meromorphic section with
precisely one zero at some @; and a pole at p, i.e. N; = O, (Q;—p). Consequently,
stable (S)U(n) bundles on an elliptic curve are in one-to-one correspondence
with the unordered n-tuple of points @);, and the reduction of U(N) to SU(n) is
encoded in the additional requirement that ) .(Q; — p) = 0 in the group law of
the elliptic curve.

Having understood the restriction of a rank n bundle V to each elliptic fibre,
we can now proceed to constructing the whole of V. In intuitive terms, the above
implies that over an elliptically fibered manifold a U(n) vector bundle determines
a set of n points, varying over the base. More precisely, the bundle V over M
with the property

Vir, = P O@i - ) (5.10)

uniquely defines an n-fold ramified cover C' of B, the spectral cover. It is defined
by a projection

7c:C — B and  CnE,=r'(b)=J @ (5.11)

C' is conveniently described, as a hypersurface in M, by its Poincaré dual two-
form no +. ... The first part is due to the fact that C' is an n-fold cover of B. As
discussed in [149], if we insist that V|g, be an SU(n) bundle? then the additional
terms in the definition of C' must emerge from the pull-back of a two-form on B,
ie.

[C] = no +7*(n) € H*(M,Z) (5.12)

for  some effective class in H%(B,Z). We will henceforth assume this to be the
case.

Several distinct bundles over M may well give rise to the same spectral cover
C since the latter only encodes the information about the restriction of V to the
fibre Ey. To recover V from the spectral data we need to specify in addition how
it varies over the base, i.e. V|g. As discussed in [40] this is uniquely accomplished
by the so-called spectral line bundle A" on C' with the property

WC*N:V|B. (513)

We can formalise these results by introducing the notion of the Poincaré
line bundle P. For this purpose, consider the fibre product M xp M as the

2This only means that the part of V over the elliptic fibre is of trivial determinant. Nonethe-
less, the full V can have a non-vanishing first Chern-class, which, however, does not receive
contributions from the fibre. This will become clear shortly.
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set of pairs (z1,29) € M x M with 7(z;) = m(23). Furthermore we need to
introduce m; and 75 as the projections on the first and second factor, respectively.
Moreover, o denotes the section oy : B — X — X x5 X' and 09 the section
09: B — X' = X xp X'. Then P is defined as the bundle over M x5 M with
the two properties

P|Eme ~ P|CL‘><E1, ~ OEb(l' —p), (71'1*(73)) |B = OB. (514)

Introducing the diagonal divisor A, the first Chern class of the Poincaré line
bundle is [40]

c1(P)=A -0y — 0y —c1(B). (5.15)

We will denote by Pp the restriction of P to M xg C. Now by definition,
m14(PB)|g, = @, O(Q:i —p), as is clear from the fact that CNE, = | J; Q; and the
first property in (5.14). This remains true if we tensor Py with m5N for some
line bundle A on C. After all, 7*\ as a bundle on M is trivial when restricted
to the fibre Ej. On the other hand, P|,« 5, is likewise trivial due to the second
property in (5.14), and so m.(TsN & Pg)|p is simply given by 7c.N. In other
words, the bundle

VY = m.(mN ® Pg) (5.16)

indeed exhibits the two defining properties (5.10) and (5.13). This establishes the
definition of an (S)U(n) bundle on the elliptically fibered Calabi-Yau threefold
in terms of the spectral data (C, N'). We reiterate that we will only consider the
case that the restriction of the bundle to the elliptic fibre is an SU(n) bundle,
i.e. that C is as in (5.12).

The bundles constructed so far are only p-semi-stable. It has been shown
in [152], Theorem 7.1, that the spectral cover must be irreducible in order to
obtain a p-stable one, which imposes two more conditions to the curve n [153]:

e The linear system |n| has to be base point free.
e The class n — nc;(B) has to be effective.

We will be more specific about their implications when it comes to a discussion
of the properties of the basis. In fact, the proof guarantees stability of the bundle
with respect to an ample class, i.e. a Kahler class, J = eo + Jp such that the
Kahler parameter of the fiber lies in a certain range near the boundary of the
Kahler cone, that is for sufficiently small e. Since the value of € is not known, in
all models involving the spectral cover constructions it is therefore a subtle issue
if the region of stability overlaps with the perturbative regime, which is needed to
have control over non-perturbative effects. In all examples which will be relevant
for us, the constraints will leave us enough freedom to go to regions of the Kahler
cone where ¢ is much smaller than Jp.
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We now give the topological invariants of the bundle V defined by (5.16). The
working horse for this computation is the Grothendieck-Riemann-Roch (GRR)
theorem stating that, for a coherent sheaf V over a variety Y with a smooth
projection 7 : Y — X, the Chern characters of the push-forward sheaf 7, W over
X can be computed from

ch <7r!(W)> Td(X) = =, (ch(W) Td(Y)), (5.17)

with the operation 7, on the right being essentially integration along the fibre of
7. For completeness we note that m (W), appearing on the left, is the K-theoretic
Gysin map which is defined as m(W) = >_.(—1)R'm, (W) in terms of the higher
direct image sheaves R, (W) . The latter can be thought of as the sheaf over X
whose stalk over U C X is given by the cohomology group H' (7~ '(U), W|,-117))
and the alternating sum is to be understood in the K-theoretic sense. More
information can be found e.g. in [138].

The idea is now to apply this theorem to the projection 7 : M xg C = M
and with W given by m3N ® Pp. In this case, the fiber of m; over a point o(b)
in M consists simply of the n points in the n-fold cover C' which project to b
under 7 : C' — B. Since the fiber is zero-dimensional, all direct images R'r, (V)
higher than R°m, (W) = m.(m3N ® Pg) vanish. The latter is just the definition
of ¥ and this allows us to compute the Chern classes of V from

ch(V)TA(M) = 7y, (e7 NP TA(M x O)) . (5.18)
As discussed in [40], this relates, after additional manipulations, in particular

c1(N) and ¢ (V) as

1 1 1
a(N) = ﬁﬂ'gCl(V)‘B —3 c1(TC) + 3 mae(B) + (5.19)

in terms of the cohomology class v satisfying
Tesy = 0. (5.20)
One can prove that v can in general be written as
v = ANno — i + nrper(B)), (5.21)

where A € Q. Note furthermore that ¢;(7'C') is minus the first Chern class of the
canonical bundle Ko = O(C) on C, i.e. ¢1(TC) = —no — w§(n).

We now parameterise ¢;(V) by some element ¢, () € H?(B,Z) to be specified
momentarily,

c1(V) = 7%¢1((). (5.22)

Putting everything together, we have
1 1 . 1 . 1,
cil(NV)=n <§ + A) o+ (5 — A) Ten + <§ + nA) mocl(B) + ﬁwccl(C)(5.23)
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Since ¢;(N) must be an integer class, not every value of A € Q and ¢;(¢) €
H?*(B,Z) is allowed in the ansatz for ¢;(V). Rather they are subject to the

constraints
1+ A o€ Z
n —
2 )

(5-2) wt (meg)a@ a0 e B2, G0

but can otherwise be chosen arbitrarily. Note that if we are interested in SU(n)
bundles as e.g. in [40], then simply ¢;(¢{) = 0 so that ¢;(V) = 0. All other
consistent choices yield U(n) bundles. Allowing non-trivial values for ¢;(V) was
first considered in [69] and motivated by the relative Fourier-Mukai transform,
but we will not invoke this picture here® . Further applications of the GRR
theorem lead, after considerable work, to the following expressions for the second
and third Chern classes [40,69, 148]

chy(V) = —o-mn+ (icl(@? - w) F,
chy(V) = An- (1= ner(B) — er(€) (525)
where
w = —icl(B)Q(n3 —n)+ % ()\2 — %) nn - (n — nei(B)). (5.26)

Note that ch3(V') has already been integrated over the fiber.
As we emphasized several times, this kind of construction only gives bundles
with trivial first Chern class as restricted to the elliptic fibres. To be more general,

we can however twist the bundle V defined via the spectral cover construction
with an additional line bundle Q on X with [131]

c1(Q) = g0 + 7" (c1(Ce)); (5.27)
where 7*(c1((g)) € H*(X,Z). The resulting U(n) bundle
V=V®Q (5.28)

is p-stable precisely if the original bundle V is [30]. The Chern classes for V'
are straightforwardly computed from the ones of V and from ¢;(Q) (see also
appendix A.1). Note that the contribution form 7*(¢;((g)) can be absorbed into
an additive shift of ¢;(¢) by nci((g). W.lo.g. we will henceforth assume that

CI(CQ) = 0
The Chern characters of V' then read

#To recover their expressions, simply set ¢ (¢) = ng — %¢;(B) in the notation of [69].
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chi(V) = nqgo+ ¢ ((), (5.29)

cho(V) = |-n+ 22a(¢) - naei(B))] o +ar. (5.30)
chs(V) = Aj- () — nes(B)) — %n e (O) + g (%cl(C)Q - w) + (5.31)
wr(®) (1= L0+ “ei(m).
where
0 = %cl(C)Q iy (5.32)

For later purposes we also list the Chern classes,

ai(V) = ngo+ca(Q), (5.33)
(V) = |n+qln—1) <Cl(<) — %cl(B)ﬂ o+ %01(4‘)2 —ap, (5.34)
(V) = %2( > —3n+2) (ngei (B)? = 3¢1(¢) - e1(B)) (5.35)
5 (n? = 20+ 2)er () + (2 — ng — 20\) - 1 (B)
n—2

_|_

— - a1(Q) +2A7° —ngap — 2w,

To summarize, this class of U(n) bundles is completely specified by the rational
number A, the integer ¢ and the classes n and ¢; (().

5.3 del Pezzo base manifolds

As alluded to already, the Calabi-Yau condition imposes severe constraints on
which complex two-surfaces are eligible as base manifolds of our elliptic fibration.
Among the possibilities classified in [151] we can choose as the base manifold
one of the del Pezzo surfaces dP, with r = 0,...,9. The surface dP, is defined
by blowing up r points in generic position on Py. This means that H?(dP,) is
generated by the r + 1 elements [, Ey, ..., E,, where [ is the hyperplane class
inherited from P, and the E,, denote the r exceptional cycles introduced by the
blow-ups. The intersection form can be computed as

[-1=1, 1 Ep=0, Ep-Ep=—0mn. (5.36)

The first equation follows from the fact that two representatives of the class
[ define two complex lines in generic position which clearly intersect precisely
once. The self-intersection for the blow-ups is the usual one for exceptional
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cycles. Furthermore, a complex line in generic position does not pass through
any of the blow-ups, thus [ - £, = 0.
The Chern classes read

cl(dP) =31=Y En.  c(dPB)=3+r. (5.37)

m=1

We clearly recover the part involving [ as simply the first Chern class of the
anti-canonical bundle of the parent P,. For the second Chern class of the elliptic
threefold M we obtain, applying (5.8),

¢o(TM) = 120¢,(B) + (102 — 10r) F. (5.38)

Now for a vector bundle V; we can expand n; and ¢;(¢;) in a cohomological basis

ni=0" 1+ Y 0™ B, a(G)=¢"1+> ("B, (5.39)
m=1 m=1

As mentioned before we have to require that 7 is effective and that for stability
n —nec(B) is effective as well. Fortunately, the generating system for the cone
of effective curves on dP, has been given in [154] and we list the reformulated
result of [153] in Table 5.1 for completeness. Recall that a general effective class
can be expanded into a linear combination of these Mori cone generators with
non-negative integer coefficients.

Moreover, |n| is known to be base point free if n- E > 0 for every curve E with
E? = -1 and E-¢;(B) = 1. Such curves are precisely given by the generators of
the Mori cone listed in Table 5.1.
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r Generators

E; | —E, — B,

Ei, |- E, - E,

Ei, |- E, - E, 10

Ei,|—FE;,—FE; 2l — B, — Ey — Es — B, — Es 16

Ei,|—E,—FE; 21— FE —E; — E, — B, — E, 27

Ei,|—E;,—E;, 2l — E; — E; — By, — B, — B,

31 -2E;, - E; — E, — E,— E,, — E, — E, 56

8 Ei,|—E;,—E;, 2l — E; — E; — By, — B, — B,
31— 2F; - E;— E,— F,— E,, — B, — E,,

4l = 2(E; + Ej + Ex) — .0, B,

51— 230 B, — E,— Ej, 61 —3E; — 231 Fyp, | 240
9 fzS_Z?:1Eia and {y,} with 92 =—-1,y,- f=1]| o

&
1 B, l-F 2
3
6

N | O | O = W N

Table 5.1: Generators for the Mori cone of each dP,, » = 1,...,9. All indices
iyj,... € {1,...,r} in the table are distinct. The effective classes can be written
as linear combinations of the generators with integer non-negative coefficients.
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Chapter 6

Semi-realistic SO(32) string vacua

We have finally collected all the relevant material we need in order to discuss
the applications of the novel embedding of U(n) bundles to string model building
in either heterotic theory. In this chapter, based on [131] , we start with the
SO(32) heterotic corner. From our discussion in chapter 4 it is clear that the
parameter space of potentially consistent vacua is extremely huge. A systematic
search for interesting models, let alone a complete classification of the associated
landscape!, therefore appears challenging and is far beyond the scope of this work.
The large number of a priori possibilities is due to two independent sources.

First we need to specify a concrete embedding of the type discussed in sec-
tion (4.1). Even if we restrict all considerations from the beginning to a phe-
nomenologically appealing visible gauge sector - e.g. such that it reproduce the
Pati-Salam or MSSM gauge group - we have the choice of the intermediate group
U(M;). Basically this amounts to the ”internal” integer degree of freedom n;
in equation (4.4) for each visible group factor. The effective tadpole has to be
cancelled by introducing an appropriate hidden sector consisting of hidden gauge
bundles and/or five-branes. The combinatorics governing this problem renders a
classification of all possibilities highly non-trivial.

All this is of course completely independent of the question on which concrete
background manifold one endeavours to construct suitable vector bundles. For
reasons of practicability we will focus on the class of stable holomorphic bundles
on elliptically fibered Calabi-Yau manifolds the essential properties of which we
have just reviewed in chapter 5. Any alternative methods to construct stable
bundles over more general Calabi-Yau threefolds serve, in principle, as equally
good starting points for model building. The discrete parameter space even for
the special set of bundles based on the spectral cover construction is enormous.
In this chapter we present two semi-realistic examples which our very preliminary
and restrictive survey has produced and whose properties are typical of a large
set of solutions that can easily be generated. In fact, we have only covered a tiny
fraction of the solution space of vector bundles on elliptic fibrations over dP3 and

'See [155,156] for a treatment of the landscape of string vacua in the S-dual framework of
magnetized D9-branes with abelian bundles respectively intersecting branes.
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dP4.

We have emphasized several times by now the one-to-one correspondence be-
tween the architecture of the SO(32) heterotic theory with U(n) bundles and the
structure known from the context of intersecting D-brane model building. Taking
this duality at face value we therefore advocate the following examples alterna-
tively as Type I vacua with non-abelian magnetized D9-branes on non-toroidal
three-folds including D5-branes.

Before digging into the details of the models, it only remains to evaluate the
loop-corrected DUY condition (4.39) for this class of vector bundles. With the
help of the Chern characters as given in equation (5.29), we obtain the DUY
equation

%rg (2,]3 -1, cl(B)> (1(¢) —ngei(B)) + %Jé
= 202 [\(V) - @) ei(B) = 34 (elB) - eBP)| (6)

after expressing J = (%(r, o +Jp) in terms of .Jg, the Kahler form on the base B.
This equation has to be satisfied inside the Kéhler cone for the model to be well-
defined. The constraints on the Ké&hler moduli resulting from this requirement
are collected in appendix B.

The positivity condition (4.35) on the real part of the gauge kinetic function
for a U(N) factor leads to the second constraint

%ra (r2ci(B)? = 3rqci(B)Jp + 3J3)
— 2¢2|(roer(B) = Jp) (n = 5 (2e1(¢) = ngex(B)) ) + rar
— gin|a(B)Js + = (c(B) - ai(B)?)] > 0. (6.2)

These conditions impose strong constraints on the bundles to be put simulta-
neously on the manifold M. We recall that in general each U(n) bundle freezes
one combination of the dilaton and the by(B) + 1 radii.

6.1 A four-generation Pati-Salam model on dP;

As a first example we choose the basis of the elliptic fibration to be the del Pezzo
surface dP3. Then we embed a bundle with structure group U(1) x U(2)? into
U(4)? yielding the observable group

H=U(4) x U(2)? x SO(8). (6.3)

The data for the twisted bundles are given in Table 6.1.
It can be checked explicitly from (5.24) that this data results in well-defined
spectral bundles A/. Furthermore, 1, and 7, as well as

nb_QCl(B) :5l—E1—3E2—E3, nC—QCl(B) :l—E1+E2—E3 (64)

124



ni) | Ai ni Gi Gi

(

(1)q | 0 0 0| —20+3E,+3F;
U2), | 0 | 11l =3B, —5E, —3E; || 0 | —=21+23) | B,

(2).| 0| 7—3E,—Ey—3E; || 0| -8+8Y° | E,

Table 6.1: Defining data for a U(1) x U(2)? bundle.

are effective and the linear systems |n,|, |n.| are base-point free, i.e. all inter-
sections with the basis of the Mori cone listed in Table 5.1 are non-negative.
Therefore, the constructed bundles are indeed p-stable.

Finally, the tadpole

eo(T) = 12 [31 - 23: Ep|o+72 (6.5)

m=1

is cancelled without adding H5-branes due to

Chg(‘/;l) = —7,
chy(Vy) = [~111+ 3E; + 5E» + 3E3] 0 + 8,
chy(V,) = [=7l+3E; + Ey+ 3Fs]0 — 30. (6.6)

The resulting chiral spectrum is displayed in Table 6.2. Observe in particular
that there is no chiral state charged under SO(8) due to x(V;) = 0 and that there
are no symmetric or antisymmetric chiral states since in addition (; - chy(V;) =
Ci . CQ(T) = 0 for all 7.

The analysis of the chiral spectrum shows that all three U(1) factors are
anomaly-free. However, the mass matrix (4.32) has rank two, and only the linear
combination 4U (1), — U(1). remains massless.

U4), x U(2)y x U(2), || mult.

N NN DN

Table 6.2: Chiral spectrum of a four generation Pati-Salam model on dP3.
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The resulting DUY conditions are very simple in this configuration since all
one-loop contributions cancel,

Ty (3rg + 3rs3 +2ry) = 0,
3
T (ro +> rm> = 0. (6.7)
m=1

According to our discussion in section 4.7.3 this ensures that p-stability is just
the right criterion for the bundle to satisfy the Hermitian Yang-Mills equation.
Positivity of the gauge kinetic functions requires

3 3 3
To <2r§ — 15 (3ry + Z Tm) + 78 — Z 7“3,1) —2g? (—147"(, + 3rg + Z rm>
m=1

m=1 m=1
3

3
Ty (27“(2, — 1,(3r¢ + Z Tm) + T8 — Z ri) — 292 (30r, — 8rg — 21y — 4ry — 213)

m=1

3 3
s <2r§ —15(3rg + Z Tm) + 78 — Z rfn) +2¢% (167, + 4rg + 211 + 2r3)
m=1

These conditions can be fulfilled in the perturbative regime inside the Kéhler
cone, e.g. for arbitrary r, and g, < 0.11r,, 7o = 1.87r,, r1 =19 =13 = —0.671,.

6.2 A three-generation Standard-like model on
dP,

This section is devoted to a three-generation Standard-like model involving four
vector bundles, where we now take the base manifold to be dP4. It can be
regarded as the generalized S-dual version of the four-stack models which have
become popular in the framework of intersecting branes. Our aim is therefore to
obtain a visible gauge group U(3), x U(2), x U(1). x U(1)4 and realize the quarks
and leptons as appropriate bifundamentals. A possible choice of the hypercharge
as a (massless) combination of the abelian factors is given by Qy = éQa + %(Qc—l—
Qq4). In this case, also some of the (anti-)symmetric representations carry MSSM
quantum numbers . The details of the chiral MSSM spectrum we try to reproduce
can be found in Table 6.4.

Among the many possibilities we consider the simple embedding of the struc-
ture group G = U(1) x U(1) x U(2) x U(1) into U(3) x U(2) x U(2) x U(1). This
leads to

H=U(3)xU(2) x U(1) x U(1) x SO(16) (6.8)

modulo the issue of anomalous abelian factors. We choose the bundles charac-
terized in Table 6.3.
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Uni) | A ni qi Gi

UM | 0 0 1 51— 3F) — 5F, — Ej
U1), | 0 0 1| =314 5E, + 2B, — By + B,
SUR). | 0 | 71—3E —3B,—Es—E, | 0 0

UMy | 0 0 1| =514 3E, +5E, + E

Table 6.3: Defining data for a U(1) x U(1) x SU(2) x U(1) bundle.

Note that V. actually has structure group SU(2) rather than U(2) since its first
Chern class vanishes, which however makes no difference in the group theoretic
decomposition of SO(32). Again, one may verify explicitly that the conditions
for p-stability are satisfied. Let us also point out that the requirement (4.16) of
cancellation of the Witten anomaly, which is non-trivial for odd N,, is satisfied
by the configuration. Furthermore, the U(1)y hypercharge is indeed massless
as desired (see (4.32)). However, since the rank of the mass matrix is two, we
get another massless U(1) in the four-dimensional gauge group, which is readily
identified as U(1).. The perturbative low energy gauge group is therefore

H = 8U@3) x SU2) x U(1)y x U(1)' x SO(16). (6.9)

The degeneracy of the bundle V, and V; = V" leads to a gauge enhancement
of the U(3), and the U(1)4 to a U(4). Apart from these drawbacks, the config-
uration indeed gives rise to three families of the MSSM chiral spectrum as listed
in Table 6.4.

In addition, we get some chiral exotic matter in the antisymmetric of the U(2)
and in the bifundamental of the SO(16) with the U(3) and U(2), respectively (see
Table 6.5).

In contrast to the previous example, the chosen bundles alone do not satisfy
the tadpole cancellation condition. However, the resulting tadpole can be can-
celled by including H5-branes, which demonstrates the importance of allowing for
these non-perturbative objects. From the general form of the tadpole equation
we find the four-form characterizing this tadpole to be

4
(W] =co(T)+ Y Nichy(V;) = 22 F + (341 — 8Ey — 22, — 14E5 — 6Ey) o
i=1

(6.10)

Its Poincaré dual class [I'] = 220 + 341l — 8F; — 22E, — 14E3 — 6E, lies
inside the Mori cone, i.e. is effective, and can thus be regarded as the homology
class associated to a (reducible) holomorphic curve around which we may wrap
a system of Hb-branes. To determine the detailed spectrum and gauge group
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U@3)a xU(2)y x U(1). x U(1)g x SO(16) x [[, Sp(2N,)
MSSM particle repr. index mult. || total

a (32100 w00 | X(XV.01) | 8

Qr (3,2;1,1)(1,1,00 X(X, Vo ® V) -11 -3

UR (3,1;1, D=10,-1,0) || X(X, V@ V) -3

UR (3,1;1,1)(—100-1) || X(X,VF@V)) 0 -3

dp (3,1;1,1) (1010 || X(X,VF®V) -3

dr (3,1;1,1)(1001) || X(X, V@ Vy) 45

dr (§A: I; 1, 1)(2,0,0,0) X (X, ®§ Va) -45 -3
(1,2;1, D110 || X(X, V@ V) -7

L (1,2; 1,1)(0,1’0,_” X(X,V, @ V) -11

L (1,21, 1)(0,71,71,0) X(X, V@ V) 7

L (1,2;1, D) o10-1) || X(X, VF@Vy) 8 -3

er (L1 Doz | x(LAV) |0

er (1,1;1,1)(0,0,0.2) X (X, A Va) 0

€r (1,11, 1) 0,01, X(X, V. @ Vy) -3 -3

VR (1, 1:1, ) 00,-1,1y || x(X,VF® V) -3 -3

Table 6.4: Chiral MSSM spectrum for a four-stack model with Qy = GQa+ (Qe+Qq).

supported by the branes we must choose a decomposition of [I'] into irreducible
effective classes around each of which we can wrap one Hb5-brane. These are
given precisely by the generators of the Mori cone in Table 5.1. Note that the
decomposition is not unique and constitutes (part of) the moduli space of our
model; what is universal is the total number of chiral degrees of freedom charged
under the symplectic sector (see Table 6.5) and its total rank. In our case, the
latter is easily found to be 74. For instance, the decomposition

[F} =220+ 22(l - EQ - E3) + 12(l - E1 - E4) + 4E1 + 8E3 + 6E4 (611)
results in the symplectic gauge group Sp(44) x Sp(44) x Sp(24) x Sp(8) x Sp(16) x
Sp(12). The bifundamental exotics between the MSSM group and this symplectic

gauge sector can be determined with the help of (4.12). Ideally, this group would
be hidden, of course.

128



U(3)a x U(2)s x U(1), x U(1)4 x SO(16) x T], Sp(2N,)

MSSM particle repr. index mult. || total
- (1,14; 1, 1) (0,200 X(X, @2 V3) 77| -TT
- (3,1;16,1)(1,0,0,0) X(X, VL) -1 -1
- (1,2;16,1)(0,1,00) X(X, V) -11 -11
- (1,1;16,1)(0,0,1,0) X(X, V2) 0 0
- (1,1;16, 1)0,00.1) X(X, Vi) 1 1

Y. (3,11, 2Na) (1,000 || X(X,Va®0],) 8 8
i 3, (1,21, 2N0) 000 || X(X,V@00r) || 56 || 56
> o(1,1:1,2Na)0,0,1,0) || X(X, Ve®Olr) 0 0
: (111, 2N,) ( 1N

a

0,001 || XX, Va®O|r

Table 6.5: Chiral exotic spectrum for the four-stack model with Qy = %Qa +3(Qc+
(Qq). In the second column, the first two entries refer to the U(3) and U(2) factors, the
third to the SO(16) group and the fourth collectively represents the symplectic charges.
The U(1) charges are read off from the lower-case entries.

The only independent DUY equations are those for V, and V}

- 1 49
Zr + 7 (2rg 4+ 2r1 + 4ryg — 14 — 3'o v) = —Egg, (6.12)
=1
. 7 121
- Z o) + 1o (—6rg — 6r1 — 31y — 274 + 57"0) = —7g§, (6.13)
m=1

and only fix two of the Kahler moduli. Note that V, and V}, being line bundles,
automatically satisfy the Hermitian Yang-Mills equations. The reason is that
their field strength is constant over the manifold as a consequence of the Bianchi
identity, which in the abelian case implies dF' = 0.

The SU(2)-bundle V,, by contrast, is such that its one-loop part in the DUY
correction vanishes, so that for V, pu-stability is sufficient for supersymmetry.
Therefore, the supersymmetry condition reduces entirely to the DUY equation
and no further stability analysis is required.

A solution to (6.12) for which the real part of the various gauge kinetic func-
tions is positive can well be found inside the Kahler cone and in the perturbative
regime. E.g. by taking ro = —2.57,,r3 = —1.1r,, 7y = —r, and g; < 0.41r,
for arbitrary r,, the solution for ry and r; satisfies all Kahler cone constraints.
We can therefore always choose r, and g, such that the model is indeed in the
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perturbative regime.

130



Chapter 7

GUT and Standard Model vacua
from Eg X E8

Our ultimate goal is to find a new framework for the construction of realistic string
vacua. Concretely, we have already described two very promising scenarios how
to arrive at phenomenologically appealing gauge groups and a realistic particle
spectrum in the framework of the Eg x FEg string. As one of its virtues the
method of embedding U(N) bundles has the potential to yield just the right gauge
groups without relying on the use of Wilson lines on the Calabi-Yau manifold,
which would restrict the choice of the background geometry considerably. Recall
that the Wilson lines as flat abelian gauge bundles inherited from the geometry
are replaced by veritable line bundles with non-vanishing first Chern class. In
other words, we have the freedom to put extra structure on our internal manifold
instead of having to take from it what we get.

The first example we encountered in section 3.7 was the breaking of Eg down
to flipped SU(5) x U(1)x via an SU(4) x U(1) gauge instanton, the second one
being the breaking SU(5)xU(1) C Es — SU(3)x SU(2) xU(1)y, see section 3.8.
Provided that we can ensure that the abelian gauge factor remains massless, both
models therefore succeed in yielding the right gauge group in four dimensions.
In the second case, this is obvious as we obtain the MSSM gauge group directly.
In the GUT SU(5) x U(1)x framework, by contrast, we have to rely in addition
on a field theoretic Higgs mechanism in order to break the GUT group down to
the Standard Model group. Unlike in the Georgi-Glasham SU(5) one arrives at
by invoking just conventional SU(5) instantons on the Calabi-Yau, the spectrum
in our model flipped SU(5) model indeed provides a GUT Higgs field suitable to
accomplish this task.

The question of primary importance is therefore how to keep the U(1) mass-
less. One possibility, explored already in section (3.8) for the SU(3) x SU(2)
setup, is to reduce the rank of the non-abelian instanton by embedding several
U(1) bundles into the same Eg factors such that the right linear combination
of U(1)s remains massless. While this is possible in principle and indeed gives
rise to an extremely rich vacuum structure, we witnessed how the additional line
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bundles inevitably produced exotic matter. One might try to find explicit bundle
configurations such that the cohomology groups counting this matter are trivial,
but we follow here an easier and more natural solution by embedding the extra
line bundle not into the same, but rather into the second Eg. This leaves the
gauge group and matter from the first Fy intact while it allows nonetheless for
a massless combination of the two U(1)s. In both cases, the requirement that
the U(1)x and U(1)y, respectively, do not acquire a mass automatically leads to
a spectrum with precisely g generations of flipped SU(5)/MSSM matter and no
further chiral exotics. The phenomenology of the flipped SU(5) model is particu-
larly attractive due to the absence of dangerous proton decay operators. We will
furthermore see that the predictions of both scenarios for gauge coupling unifica-
tion are compatible with the Standard Model running of the coupling constants
once we take threshold corrections into account. We have found several three-
generation realisations of both the flipped SU(5) and the MSSM construction
which are listed in an appendix. The contents on this chapter is based on [98].

7.1 Flipped SU(5) x U(1)x

7.1.1 SU(4) x U(1) bundles

The technical details of the breaking of Eg down to SU(5) x U(1)x have been
discussed at length in section (3.7). For convenience we repeat in table 7.1

merely the visible spectrum resulting from the first Fg factor upon embedding the
SU(4) x U(1) bundle W =V & L' (see the discussion after equation (3.147)).

SU(5) x U(1)x: || cohomology (type B) SM part.
10, H*(V) (qr. d, v) + [Hio + Hiol
10_,4 H*(L™) —
5 H*(V®L™) (U, L)
5 H*(\'V) [(h3, h2) + (h3, ho)]
1; H(V @ L) €6,

Table 7.1: Massless spectrum of H = SU(5) x U(1)x models.

The massless fields precisely carry, up to a common factor, the U(1)y charges
as appearing in the flipped SU(5) GUT model [75,157], Qx = %Qxf.l Recall
that this model differs from the conventional Georgi-Glashow GUT scenario [158]

'Note that the normalisation of @ x, as chosen here, differs from the one in [75] by a factor
of —1.
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in that the MSSM U(1)y is not entirely contained in the SU(5), but arises as the
specific linear combination

1 1 2

- S z 7.1
QQY 5Qz + 5QX, (7.1)
where Z is the generator of SU(5) commuting with the generators of the Stan-
dard Model SU(3) x SU(2). In the normalisation of [75] Z is given by Z =
diag(—1/3,—1/3,—-1/3,1/2,1/2). The way how the MSSM matter is organized
into flipped SU(5) multiplets is related to the Georgi-Glashow scenario by the
flip

d% <> uf, eq & Vg, (7.2)

Most importantly, the (10); contains the right-handed neutrino as a particle
uncharged under the MSSM SU(3) x SU(2) x U(1)y, and giving it a VEV can
therefore serve as the Higgs effect which breaks the GUT group down to the Stan-
dard Model one. It is this peculiarity of flipped SU(5) which at first sight allows
us to work on manifolds without Wilson lines. However, if we only consider the
bundle (3.147) inside the first Eg with ¢;(L) # 0, one Kéhler/dilaton modulus
receives a mass from the DUY constraint and therefore also one axion in combi-
nation with the U(1)x gauge boson. We explicitly demonstrated this in section
(3.7) by showing that the U(1)y is anomalous. Therefore, after GUT Higgsing
by Hig the resulting U(1)y would also be massive. This seems to bring us back
into the old situation that we are forced to consider manifolds with non-vanishing
fundamental group to allow for non-trivial flat bundles?.

Alternatively, here we propose to embed another line bundle into the second
FEjg such that a linear combination of the two observable U(1)’s remains massless.
A priori, one might think that we can take any other line bundle L,. However,
from the form of the mass terms, in particular (3.88), for the two abelian gauge
factors we see immediately that the first Chern classes of the abelian bundles in
both Egs must be linearly dependent. The free overall factor relating them can of
course be absorbed into the linear combination of the two U(1)s which remains
massless. Therefore, we take Ly = L and embed the direct sum

Wo=L&L" (7.3)

into the second Eg, where it leads to the breaking Fg — FE7 x U(1)y and the
decomposition

248 "0V £ (188)) + (1)p + (56)1 + (56)_1 + (1)o + (1) }.  (7.4)
Note that we prefer to invoke the embedding of type B rather than type A also

in the second Eg factor so that the K-theory constraint c¢;(W) € H?*(M,27Z)
is trivially satisfied. The resulting massless spectrum is displayed in Table 7.2.
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E; xU(1)s || cohomology (type B)

56, H*(L)
1, H*(L?)

Table 7.2: Massless spectrum of H = E7 x U(1)2 models.

Clearly, this is just the simplest possible choice for the ”hidden” bundle. It is
straightforward to consider additional non-abelian summand bundles, but we will
not do so here3.

It is needless to state that the trace over the second FEjy factor yields
(F?) = 4(27) (2 chy(L)). (7.5)

Bl
In combination with the corresponding expressions (3.150) for the bundle in Eél),
the tadpole cancellation condition for this model, including possible five-brane
contributions, reads

chy(V) + 3chy(L) = ¥ No7, = —ca(T). (7.6)

Let us now take a closer look at the conditions for masslessness of a linear com-
bination of the two U(1)s. Clearly, all three kinds of mass terms (3.87), (3.88)
and (3.89) for U(1)xs and U(1); must be related by the same constant factor if
such a combination is to exist. We anticipated already that the contributions
from the Kahler axions can vanish for a linear linear combination only if the first
Chern classes of the line bundles in both Fg factors are linearly dependent. More
precisely, taking into account that

RKxr xr = 10, Ro2 = 4, (77)

as can be computed via equ.(3.25), one realizes that precisely the linear combi-
nation

5

U1)y = % <U(1)X, -2 U(1)2> (7.8)

has a chance to remain massless. From (3.89) we find that in the presence of
five-branes, this requires the absence of mass terms from the axions b, stemming

2For 7m1(X) = 0, a line bundle with ¢;(L) = 0 is always trivial and the observable gauge
group gets enhanced to SO(10).

3The reason is that they would produce additional matter charged under U(1)s in the second
Eg which will therefore appear as exotic electrically charged, but otherwise neutral fields from
the point of view of the ”visible” sector. The only exception is the embedding of an SU(2) xU (1)
into the second FEg, in which case the analysis goes through almost identically.
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from the self-dual tensors on their worldvolume since these terms contribute with
opposite signs in the two Eg sectors. Going now back to the mass term involving
the universal axio-dilaton, we conclude that the combination (7.8) indeed remains
massless if and only if the following conditions are satisfied

/ (L) A es(V) = 0, / ei(L) =0 for all M5 branes. (7.9)
M

Ya

In this case the resulting chiral massless spectrum simplifies considerably and is
given in table 7.3 .

SU®) x U(1)x x Bs chirality SM part.
(10,1); x(V) =y (z, d%, vR) + [Hio + Hiol
(10,1) 5 X(L7H) =0 —
(5.1)_s x(VeL) =g (u%, I1)
(5,1) X(N*V) =0 [(h3, ha) + (hs, o))
(1,1)s x(VOL) +x(L?)=g €%
(1,56); X(L7H) =0 -

Table 7.3: Massless spectrum of H = SU(5) x U(1)x models with g = % [ c3(V).

Remarkably, just the requirement that the U(1) x be massless automatically leads
to precisely g generations of flipped SU(5) matter and no further chiral exotic
states. This is straightforward to see: Just take the wedge product of the tadpole
equation (7.6) with ¢; (L), integrate over M and use (7.9) to find

/ cl(L)3:—%/ e>(T) A r(I)
M M
= x(L™) =0, x(VOL")=x(V&L)+x(L7?) =x(V). (7.10)

One important and very attractive consequence of the breaking of Eg to SU(5)
via a non-trivial line bundle is that the electroweak Higgs carries different quan-
tum numbers than the lepton doublets, as is obvious from table 7.1. The conse-
quences of this peculiarity, which distinguishes the spectrum of our flipped models
from that emerging from conventional Wilson line breaking, for the absence of
proton decay operators will be discussed in the next section.

Note that in general the right-handed electrons receive contributions from
both the first and the second Fs. From a phenomenological point of view, we
need to circumvent these latter in order to avoid non-MSSM like selection rules
for their Yukawa couplings. They are absent if additionally one requires

(7.6), (7.9) and y(L~2) = 0 :>/ (L) =0 :/ e1(L) A e(T) = 0. (7.11)
13
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With these extra conditions, the generalized DUY condition for the bundle L
simplifies considerably,

/ JANJNe(L)=0, (7.12)
M

and contains only the tree-level part. The same holds for V', of course. We recall
the crucial observation made in section 3.6.3 that it is precisely in such a situation
that p-stability of V' guarantees a solution to the deformed Hermitian Yang-Mills
equation for sufficiently small g;. Also, equation 7.12 "freezes” only one of the
hy; Kahler moduli. By contrast, the threshold corrections to the gauge kinetic
functions will be non-vanishing. For consistency of the low-energy effective theory
we need to ensure that the DUY can actually be solved in a regime inside the
Kéhler cone where the real part of the threshold corrected gauge kinetic functions
is positive, at least for the unbroken gauge symmetries. Apart form the SU(5)
and the hidden E; symmetry, we will therefore have to check this condition for
the gauge kinetic function of the generator of U(1)y, which is given by*

1 5\
fX,X = Z (fX’,X’ + <§> f2,2 - 5fX1’2) (713)

in terms of the corresponding quantities for U(1)x: and U(1)s.

7.1.2 Yukawa couplings and proton decay

This string theory realization of flipped SU(5) x U(1)x exhibits many of the
characteristic features of the field theory GUT model. For their details we refer
to [75,157,159,160].

The GUT breaking is naturally accomplished via a non-vanishing vacuum
expectation value of the singlet component in Hyg+ H1g. This leads to a natural
solution of the doublet-triplet splitting problem via a missing partner mechanism
in the superpotential coupling

107104 5_,. (7.14)
2 2

The reason is that after GUT breaking all components of Hyy + Hiy acquire a
GUT scale mass except for a singlet and a triplet which combine, via the above
coupling, with the triplet hs in the 5y, i.e. the electro-weak Higgs, in just the
right way as to make it heavy. More details are given in [159].

This has very attractive consequences for proton stability since problematic
dimension-five operators involving the otherwise present h3 component and which
would mediate proton decay can be suppressed. Furthermore, as shown in [161],
flipped SU(5) differs from the Georgi-Glashow model in that also the dimension-
six proton decay operators, emerging after integrating out the off-diagonal gauge

4See appendix C for some remarks on this point.
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bosons in the (3,2), can be completely eliminated. Additional details and more
references can also be found in [162].
Moreover, the gauge invariant Yukawa couplings

10"%10’%5_1, 10"%5{%51, Eiglfés_l, (7.15)

lead to Dirac mass-terms for the d, (u,v) and e quarks and leptons after elec-

troweak symmetry breaking. If there exist additional gauge singlets ¢;¢, then cou-

plings of the form 10 Eflé ¢10 can give rise to Majorana type neutrino masses
2

and therefore to a see-saw mechanism. These gauge singlets are certainly present
in our set-up in the form of the vector bundle moduli, i.e. non-chiral matter
counted by H*(M,V @ V*).

Since the electroweak Higgs carries different quantum numbers than the lepton
doublet, the dangerous dimension-four proton decay operators

lle ¢ & 15’i%, qdl, udd ¢ 1010’5
2 2

(7.16)

M5
wolot S

_3
2

are not gauge invariant and thus absent. A detailed discussion of this peculiar
property of heterotic constructions with line bundles has recently been given
in [102] in the context of Georgi-Glashow SU(5).

7.1.3 Gauge coupling unification

We now discuss the issue of gauge coupling unification in detail.
The basis of the subsequent analysis is the well-known logarithmic running
of the coupling constants for the gauge factors, labelled by ¢, in some low-energy

effective field theory,
1 ki b 7
= + —Ilo < ) . 7.17

a(p)i agur 27 & Meur (7.17)

Here, agpr represents the values of the inverse squared gauge coupling (times
47) of a hypothetical GUT gauge group at the unification scale Mgyr. The
coefficients b; parameterise the field theoretic running of the couplings due to
one-loop graphs. Their value is of course set by the charged particle content up
to the GUT scale. The well-known observation for the Standard Model is that,
given the values for a3, ay and oy measured at the weak scale and under the
assumptions of just the MSSM matter up to Mgy, the system of three equations
(7.17) is satisfied with Mgy = 2 - 10'® GeV and ks = ky = 2ky [163,164].

Now if one breaks a stringy SU(5) or SO(10) GUT model down to the Stan-
dard Model via discrete Wilson lines, then the underlying string theory already
makes a definite prediction for the parameters k; which relate the gauge couplings
at Mqgyr. These are indeed the usual ones as for SU(5) or SO(10) GUT theories,
ie.

5

3 = Qg = gOéY = qUuT- (718)

137



Consequently, for consistency with the observed MSSM couplings at the weak
scale, one can deduce from (7.17) that agyr ~ 5.

As we have seen, in String Theory, the gauge couplings comprise, beyond
their tree-level part, additional string one-loop threshold corrections. Under the
phenomenological assumption that up to agyr the MSSM spectrum is not aug-
mented by additional light fields, a phenomenologically acceptable string vacuum
must therefore reproduce the relations (7.18) for the full, possibly threshold cor-
rected, gauge couplings. If we are in a regime where the threshold corrections
are negligible, then (7.18) must hold at string tree-level; otherwise the threshold
corrections must be such that (7.18) is satisfied for the complete couplings.

An additional complication arises due to the observation that for the weakly
coupled heterotic string, the prediction for the Planck scale is too low. The reason
is that for small string coupling, g; < 1, the theory relates the four-dimensional
Newton’s constant and the unification scale via

4

3
Gy > —GUT | 7.19
" Mg 1)

For the details of the derivation see e.g. [90]. Assuming the quoted values for
Mgyt and agpr, the lower bound on Gy is too large by a factor of 400 [90].
This can be remedied in the strong coupling Horava-Witten theory [76, 77, 90].
Here it turns out that the values of the eleven-dimensional Planck mass My, p
and roy = Mgll,T have to lie within a particular range in order to be compatible
both with the GUT relations and the Planck scale ®. It is noteworthy that
already the standard Wilson line approach to GUT breaking requires a tuning of
the parameters of the internal manifold and the size of the eleventh dimension
in order to predict correctly the observationally inferred GUT scale and Planck
mass.

Let us now analyse the gauge coupling behaviour in our models. Clearly, if
we consider Higgs breaking of the flipped SU(5) GUT model down to the MSSM,
then the prediction for the MSSM tree-level couplings a3 and a5 at the GUT scale
is simply a3 = @y = a3, since they both emerge from the same SU(5). What is
special is that the U(1)x and therefore also the final U(1)y gauge symmetry, by
contrast, have their origin in both Eg walls. Recall the definitions of the various
abelian charges as

1 1 2 1 5
“0v — — = z = - P — = 7.20
2QY 5QZ + 5QX; Qx 5 (QX 2@2) (7.20)
so that the gauge kinetic functions satisfy the relation
4 5\
fyy = % fr.z + [xi x + 3 Joa2 =5 fx2 |- (7.21)

®Very qualitatively, this means that 1 < rcy < p in string units. The precise constraints
can be found in [90].
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Since Q7 is the diagonal U(1) generator within SU(5), the gauge couplings are
identical up to the normalisation

5)
fz,z = EfSU(5)- (7.22)

The non-abelian gauge coupling of the SU(5) including the one-loop contri-
bution follows from (3.103) as

1 1 1 ) 1
o = 3052 /MJ/\J/\J—@ MJ/\ [—02(V)+01(L)+§CQ(T)

1 1 ?
LSy, (Lo, . 2
() L r
Using
Nxrxt =40, Moo =4, k11 =10, Kep =4, (7.24)

we can likewise read off the expressions for fx: x/, foo and fxs 5 from (3.104) and
(3.105). In view of the relations (7.21) and (7.22) we eventually conclude that

1 81 1

2
- = 2= _ - 43(L — Y Ny, . (7.2
- e B MJ/\[cg(V)Jr A )]+£§ E /%J (7.25)

Note that the second and third summands in (7.25) arise at one-loop as compared
to the lowest order contribution in 0%5 As we see, these string models do not give
rise to the usual GUT tree level relation agpr = gay, but instead to agyr = %Oéy.
Therefore, if we assume just the Standard Model spectrum up to the unification
scale (i.e. no additional vector-like matter like Higgs pairs) and if we are in
a situation where the threshold corrections present in (7.25) are negligible, the
gauge couplings do not unify at Mgyr. This is, however, not compelling once we
give up one of the two stated assumptions. As far as the threshold corrections are
concerned, depending on their precise value in the vacuum under consideration,
they can eventually give a unified gauge coupling picture again. Defining

1 8 1

— = = + A 7.26

ay 3agur (7.26)

we see that the threshold correction must take the value A = _aclUT ~ —24, i.e.
1 31

il -] . 7.27

Qy |1—loop SOéy tree ( )

For agur = 1/24, such a relation can just be satisfied with g, < 1 and roy > Va!
for large enough Chern classes of the vector bundles. We will see in the next
section that for our explicit models this is indeed possible. Of course, in the
weakly coupled heterotic framework, the Planck scale still comes out too low and
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one must consider Horava-Witten theory, where now the next-to-leading order
corrections to the gauge couplings are to be taken into account.

To conclude, what distinguishes our models from the standard Wilson line
approach to GUT breaking is the appearance of one further constraint on the
geometry of the compactifications. We reiterate that in the standard scenario,
too, the condition that the four-dimensional Planck mass come out correctly
reduces the predictive power of the setup in that it involves additional tuning
of the geometric parameters of the background. In that respect, including also
(7.27) into the model building wish-list is conceptually just along the lines of the
standard procedure.

Alternatively, one can contemplate that extra light Higgs fields, if present in
the non-chiral spectrum, might lead to gauge coupling unification at a different
scale. However, this scale is necessarily lower than the usual GUT scale, which
worsens the mismatch of the Planck scale.

7.1.4 An example on dP,

Having discussed the chief phenomenological aspects of our heterotic flipped
SU(5) construction, we now prove that it is indeed possible to find explicit re-
alisations in our framework which meet all the string consistency conditions and
give rise to precisely the chiral MSSM spectrum. We choose as our background
manifold elliptically fibered Calabi-Yau threefolds over the base dP, (see section
5.3 for a summary of their properties). We recall in particular that the second
Chern class of the tangent bundle is given by (5.8),

eo(T) = [36] — 12 i Ej]o + 62F, (7.28)

i=1

where ¢;(dPy4) is expanded in the cohomological basis and F' is the class of the
fiber. The Mori cone is generated by the 10 effective classes E;, | — E; — Ej,
ihg=1,...,4,1#j.

We have found a couple of three-generation flipped SU(5) vacua satisfying
all the required constraints. They are displayed in table D.1 of appendix D. We
choose the following example to demonstrate their properties. The U(4) bundle
is given by the data

1
A==, ¢=0
47 q )
= 14l — 2F, — 6F, — 6F5 — 2F,, (7.29)
c1(() = —4l+4E,+4FE; +4E,.

Note that the first Chern class of the line bundle N in the spectral cover con-
struction (5.23) is an integer class, as required:

ci(N) =30 + 75, (81 — 2E, — 3E, — 3E; — 2Ey). (7.30)
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[t is easy to see that || is base point free, since its intersection with the generators
of the Mori cone is always positive. One can also easily show that 7 is effective as
well as n — 4¢;(dPy) = 21+ 2E, — 2E; — 2E3 + 2E,. Thus, this bundle is p-stable.
The resulting Chern classes are

Cl(V) = —4l + 4E2 + 4E3 + 4E4, (731)
(V) = [14l —2E, — 6E, — 6F3 — 2E4) 0 — 29F. (7.32)

In our setup, the first Chern class of the line bundle must be equal to the first
Chern class of the vector bundle (see (3.147)), thus

c1(L) = —Al + 4F, + AE; + 4E,. (7.33)

To find a solution to the tadpole condition, we also include M5-branes. Their
combined associated cohomology class is

To make physical sense, [W] must be Poincaré dual to the homology class of a
curve v in M, and must be therefore effective. [W] is effective if its part on the
fiber is greater than or equal to zero and its part on the base is effective in B.
Therefore, we rewrite [I¥] in terms of generators of the Mori cone,

[W] — ZNaia =27TF + [12E1 + 6(l — E1 — EQ) (735)
+6(l — B, — B3) + 10(1 — E, — Ey)] 0.

The generators of the Mori cone, being irreducible as effective classes, represent
the classes dual to the irreducible curves 7, around which we wrap N, five-
branes. In general, this decomposition is not unique. However, we also have
to satisfy the constraint f% c1(L) = 0 for a massless U(1)y, and (7.35) is the
only remaining decomposition compatible with this requirement. The tadpole
cancellation condition for this setup, written in terms of Chern classes, takes the
form

—co(V) + 261 (L) — [W] = —co(T) (7.36)

and is indeed satisfied. Tt is a simple calculation to show that the conditions to
keep the U(1)x in the flipped SU(5) model massless hold

/M (D) A es(V) = 0, L e (L) = /M (L) AT, = 0. (7.37)

Since the Chern class of the line bundle has no part in the fiber, the integral over
its third power trivially vanishes,

/ (L) =0, (7.38)



and thus a contribution to the right-handed electrons from the second FEg factor
is prevented. The number of generations in our example is given by

X(V) = /M e5(V) =3 (7.30)

since fM ci(V)Aeo(V) = fM ci(L) Aea(V) =0,
Expanding the Kéhler class in the cohomological basis,

4
T =1(re0 + 1ol + > rmEy), (7.40)

m=1

the DUY-equation (7.12)
/ JNTNc (L) = —=8ry(rg+ry+13+74) =0 (7.41)
M

fixes one Kahler modulus. There exist solutions inside the Kahler cone. Take as
an example

0<r,<2p, 190=3p, Tm=-—p, m=1,...,4. (7.42)

With this choice, equation (7.41) holds and the Ké&hler class lies inside the Kéhler
cone for every p € RY.

The universal gauge coupling for the non-abelian visible gauge group (3.103)
can be computed as®

dr 1

9 39
which is positive for a suitable choice of parameters. The abelian gauge couplings
are given by (3.104,3.105)

1
(573 — 15r2p + 157,p°) — 247, — 4p — (5 — X5)%(Try — 34p), (7.43)

ii 1
ke (i) = % (L (ors — 13r2p + 150" (7.44)
1 320
—24r, — 4p — (5 —Xs)2(Try — 34p)> + 5 To
160
ARe (fxr2) = 5 To (7.45)

with 1y x» = 40 and 1,9 = 4. The resulting gauge coupling (7.13) for the U(1)x
is then positive again:

65 (1
47Re fxx = 16 <3—g2(5r§ — 1572p + 157,p%) — 24r, — 4p (7.46)

1

—(5 — Xs)2(Try — 34/))) + 260 7.

6Note that in the following equations, A5 is the five-brane modulus and not the parameter
belonging to the bundle data.
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In view of the discussion of possible gauge coupling unification, we note that
the threshold correction as defined in 7.27 is, assuming for simplicity that A\, =0
for all five-branes,

A= 2/, JA [eo(V) + 4 (L)] = 183r, — 26p (7.47)

and has the correct sign if r, < %p.

Note that with this choice for r,, the positivity of the gauge couplings can
still be achieved and, equally importantly, it is consistent with the requirement
that r, < p in order that the proof of u-stability of the bundles can be trusted.

To summarize, this example with three chiral generations satisfies the tadpole
condition (7.6) as well as the constraints (7.9) guaranteeing a massless U(1)x.
We have no non-MSSM like selection rules for the Yukawa couplings of the right-
handed electrons since there are indeed no contributions from the second FEj
(7.11). Furthermore, the K&hler moduli can be chosen such that the DUY equa-
tion (7.12) holds and the gauge couplings are positive.

In appendix D, we list all three-generation models we have found on dP,
by a computer search which likewise satisfy all these conditions. We have also
found three-generation examples for a scenario directly giving rise to the Standard
Model gauge symmetry, to be discussed in the next section.

7.2 Just the SU(3) x SU(2) xU(1)y gauge symme-
try

7.2.1 SU(5) x U(1) bundles

As we have spelled out in section 3.8.1, the direct breaking of Ey to the Standard
Model group is possible by choosing a bundle with structure group SU(5) x
U(1)ys, resulting in gauge group SU(3) x SU(2) x U(1)ys. Similarly to the
flipped SU(5) construction, we embed a bundle of type B,

W=VealL"' withc(V)=c(L), rank(V)=15 (7.48)

into the first Ej.

We have seen that again the U(1)y by itself cannot remain massless so that
we will perform the same construction as for the flipped SU(5) model. We can
therefore be comparatively brief about the details of the largely analogous con-
struction. We embed the line bundle L, or rather Wy = L @ L', also in the
second Fg and realize that here the linear combination

Uy = 5 (U)y ~30(1)) (7.49)

remains massless if again the conditions

/M (L) A ex(V) = 0, L ()= (7.50)
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are satisfied. The resulting chiral massless spectrum takes the simple form given
in table 7.4.

SU3) x SU((2) x U(1)y x E; chirality SM part.
(3.2,1), x(V) =g qr
(3.2,1) s x(L7') =0 —
(3.1,1): X(N*V) =g d
(3,1,1)_s (VoL =y us,
(1,2,1) XN VeL!)=g I
(1,1,1), XVRL) +x(L?)=g| ¢
(1,1,56), X(L7) =0 -

Table 7.4: Massless spectrum of H = SU(3) x SU(2) x U(1)y models with g =
% fM c3(V).

Therefore, one gets precisely g generations of Standard Model matter without
a right-handed neutrino. The right-handed electrons have contributions from
both the first and the second Ejg. The latter are again absent if additionally one
requires

/ ¢ (L) = 0. (7.51)

In this model, there are no additional gauge or obvious discrete symmetries car-
ried by the Standard Model particles, so that the dangerous dimension four proton
decay operators are not necessarily vanishing. We refer to table D.2 in appendix
D for a couple of examples with just the Standard Model chiral matter which
we have found in this setup using the spectral cover method over dP, fibered
Calabi-Yau threefolds.

7.2.2 Gauge coupling unification

The issue of gauge coupling unification is precisely the same as what we have
encountered in the flipped SU(5) context. Now the gauge kinetic function for

Ul)y == U1)y —3U(1)y) (7.52)
follows as

fry = % (fyryr —6fyria+9f20). (7.53)

144



Each individual term above can be computed from the general expressions (3.104)
and (3.105) with the help of the trace parameters

M= 60, Tl2,2 = 4, K11 = 12, Koo = 4, (7-54)

and the gauge couplings for SU(3) and SU(2) equal the expression (7.23). One
eventually concludes that again

1 8 1 1

2
ay By, £ 4c(D)] + 5 D N (7.
ay Sans 2 XJA[Cz(VH c1( )]+£§§a: a)\a/%J (7.55)

We therefore find ourselves exactly in the same situation as in section (7.1.3), to

which we refer for a discussion of the significance of this result for gauge coupling
unification.
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Chapter 8

Conclusions and Outlook

The embedding of unitary bundles into the ten-dimensional gauge group of the
heterotic string reveals a remarkably rich and hitherto neglected structure. At
the conceptual level, the starring role in geometric string compactifications is
played by holomorphic stable bundles - both in the heterotic and the Type I/
Type TIB orientifold corner of the M-theory moduli space. Despite the differ-
ences in the fundamental worldsheet formulation of these dual theories, we can
therefore apply basically the same techniques to an investigation of their pertur-
bative four-dimensional vacua. The differences in the structure of the emerging
gauge sector in this setup has been identified as being primarily due to the group
theoretic features of Fg x Fg on the one hand and SO(32) on the other, most
notably the respective natural subgroups including the decomposition of the ad-
joint representation. The identical massless spectrum emerging from the SO(32)
heterotic and the Type I string on D9-branes with unitary gauge flux is satis-
factory in view of the conjectured S-duality relating both descriptions, but not
completely trivial - after all S-duality is a non-perturbative symmetry and in-
terchanges, at the microscopic level, the fundamental strings of one theory with
the solitonic, non-perturbative objects of the other. In that respect we point out
that although we found complete agreement in our specific setup, there is still a
puzzle remaining how the recent emergence of various spinor representations in
the context of SO(32) heterotic orbifold models [140] can be understood from the
point of the view of our bundle constructions. An answer to this question might
well follow from a better understanding of the general relation between orbifold
constructions and smooth Calabi-Yau compactifications.

Focusing again on the latter, it perfectly fits into the picture just sketched
that the well-established a/-corrections to the supersymmetry condition for back-
ground gauge fields translate into string-loop corrections on the heterotic side.
For the SO(32) theory the expressions we found for the integrated supersymme-
try condition are in one-to-one correspondence with the Type IIB MSSM equa-
tion [145] and only depend on the information of the individual U(N) gauge factor
under consideration. Clearly this just what we expect from the S-dual picture of
independent magnetized D9-brane stacks. For the Fg x Fg theory, by contrast,
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the one-loop correction involves contributions from all background instantons.
On the Type IIB side the perturbative o/-corrections are known to affect not
only the integrated supersymmetry equation, but also the local Hermitian Yang-
Mills equations and therefore modify the stability condition from p-stability, valid
at tree-level, to m-stability. This inspired us to conjecture a corresponding modi-
fication of the stability condition on the bundles also on the heterotic side which
we called A-stability. Both A- and m-stability seem to be the right criterion only
in the strict perturbative sense and applicable only under the assumption that
the tree-level part in the respective slope dominates in a well-defined manner
over the string-loop or a/-correction. In addition, the non-perturbative contribu-
tions induced by worldsheet instantons in Type IIB make out the full TI-stability
condition in the derived bounded category of coherent sheaves and are expected
to have a heterotic counterpart in the form of spacetime instantons. A detailed
study of these effects including the precise mathematical definition of heterotic
A-stability is to follow. Independently of this mathematical question it would
be important to justify the proposed deformation of the Hermitian Yang-Mills
equation by an analysis of the ten-dimensional Killing spinor equations at the
one-loop level.

In practical terms, the supersymmetry and thus stability condition on the het-
erotic/Type IIB side appears to be more approachable than in the mirror dual
framework of Type IIA orientifolds. The reason is that the special Lagrangian
condition on supersymmetric three-cycles for A-branes is beyond the regime of
complex geometry, whose powerful technology, on the other hand, enables one
to construct quite general supersymmetric holomorphic bundles as the dual ob-
jects. In this way, we can view the embedding of unitary bundles into the SO(32)
heterotic/Type I string as bypassing the unsolved mathematical problem of iden-
tifying special Lagrangian three-cycles on general Calabi-Yau manifolds.

As far as the model building prospects are concerned, the most prominent ad-
vantage of the embedding of unitary bundles into the Eg x Fg string is the ”decou-
pling” of the gauge bundles from the topology and geometry of the background
manifold in that we do no more depend on the presence of a non-trivial first
fundamental group. We expect this to be of crucial assistance when it comes to
extending heterotic model building to the more realistic framework of non-Kéhler
compactifications with non-vanishing form field fluxes. This will eventually be
inevitable in order to tackle such pressing problems as moduli stabilisation and
dynamical supersymmetry breaking with nonetheless realistic gauge sectors.

As a first step, however, we have restricted our explicit model search to the
standard framework of elliptically fibered Calabi-Yau backgrounds where we can
rely on the spectral cover construction of stable holomorphic bundles. Even a very
preliminary search has revealed a number of vacua with flipped SU(5) x U(1)x
and MSSM gauge group and precisely the observed three generations of chiral
matter. From the phenomenological point of view, this is just the very first step.
A computation of the cohomology groups which count the charged matter will
also reveal the amount of vector-like matter pairs which cannot be deduced just
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from the Euler characteristic of the gauge bundles. In particular, we need to
determine the number of electro-weak Higgs pairs and, in the case of the flipped
SU(5) x U(1)x models, the number of GUT Higgses which are required for the
vacua to give rise to realistic models at the weak scale. A derivation of the
mathematical methods required for this computation is beyond the scope of this
thesis and is postponed to the forthcoming publication [165], where we will also
exploit the framework of stable bundle extensions for our model search. Let us
merely anticipate here that this technique seems to provide us with a surprisingly
large number of models with a very realistic spectrum including the appearance
of precisely three families of quarks and leptons.

An even more challenging task will be the computation of the Yukawa cou-
plings and p-terms, possibly along the lines of [166-168]. As we briefly outlined,
there seem to exist no a priori selection rules in our case which forbid any of the
phenomenologically required Yukawas, but the explicit computation of the phys-
ical couplings is only possible once we know the Kéahler potential for the charged
matter fields in order to normalise their kinetic terms appropriately.

Our entire analysis has focused on the perturbative, large volume regime and
avoided an explicit worldsheet formulation. It is not only of academic interest,
though, to clarify the status of the underlying (0,2) non-linear o-model and
whether or not it admits a description in terms of a Landau-Ginzburg [169] or
gauged linear o-model [31]. In such situations, the theory can be shown to be
free of potentially destabilising worldsheet instantons [170-172].

In the absence of a deeper understanding of the structure principles behind
the vast landscape of string vacua the fate of all string model building attempts is
to resemble the search for the famous needle in a hay stack. Unless this situation
changes drastically due to some revolutionary insights, it appears therefore rea-
sonable to supplement the concrete model-by-model search by a statistical analy-
sis of the distribution of the characteristic features in the moduli space of vacua.
In view of the conceptual similarities of the gauge sectors arising on the Type II
and the heterotic side, the statistical approach performed in [155,156,173,174]
for Type ITA orientifolds or of [63] for models at the Gepner point seems within
reach also for the heterotic string. Such an analysis of a special class of non-
supersymmetric four-dimensional heterotic vacua has recently appeared in [175].
After all, the aim of String Theory is none less than to determine the status of
the observed laws of Nature within the set of thinkable worlds.
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Appendix A

Some useful mathematical facts

A.1 Topological invariants of vector bundles

Throughout this thesis we have made extensive use of various topological invari-
ants of vector bundles. For convenience of the reader we collect here some useful
definitions and identities. Much more information can be found e.g. in [176].

Let V be a complex rank r vector bundle over a complex d-dimensional man-
ifold with field strength F. Then the total Chern character ch(V') is defined
as

d
ch(F) = trex” = chy(V)
k=1

chy(V) = ku;ﬂkup*. (A1)

Note that chg(V) = r. Furthermore the Chern characters of the complex conju-
gate bundle V* are

chy(V*) = (—=1)kchy, (V). (A.2)

The Chern character of the tensor product and the Whitney sum of two vector
bundles V, and V} of rank r, and r, respectively can be found from the relation.

ch(Vo ® V) = ch(V,) A ch(V3),

ch(V, & V;) = ch(V,) + ch(V}). (A.3)
In particular,
Cho(‘/;l ® ‘/b) = TaTyp
chi(V, @ Vy) = rychy(Vy) + 7 chy(V3), (A.4)
cho(Vo, @ Vi) = 1ycha(Vy) + chy (V) A chy(Vy) 4 74 cha (V)
chy(V, @ Vi) = rychs(Vy) + chy (Vo) A cha(Vy) + cha(V,) A chy(Vy) + 74 chs(V3).

151



It immediately follows that the Chern characters of the "adjoint” V ® V*
bundle read

cho(VV*) = 2r

chy (V@ V) 0,

cho(V@V*) = 2rchy(V) — (chi(V))? (A.5)
chy(VeV*) = 0.

For the Chern characters of the antisymmetric and symmetric tensor products
one can prove that (see e.g. [153])

chi(A*V) = (r—1)chy(V),
cho(A°V) = (r—2)chy(V) 4 = ch?(V), (A.6)
chs(A*V) = (r —4)chg(V) + chy(V) chy (V).
and
chi (®°V) = (r+1)chy(V),
ho(@2V) = (r+2)chy(V) + = ch2(V), (A7)

2
chs(®°V) = (r+4)chs(V) + chy(V) chy (V).

By contrast, the total Chern class ¢(V) of a vector bundle V' is defined as

min(r,d)

(V) = det(1 + %F) = ) ) (A.8)
and satisfies
c(Va ® Vi) = (Vo) A ce(Va). (A.9)

In particular ¢o(V) = 1 and for a line bundle L all Chern classes higher than
k =1 vanish identically, ¢(L) =1+ ¢,(L).
The first three Chern classes and Chern characters are related as

chi(V) = ¢ (V),

cho(V) = —CQ(V)+%C§(V),
chy(V) = %c;),(V)—%cl(V)/\CQ(V)+éc:f(V). (A.10)

The relevance of the Chern characters is obvious from their appearance in
the Hirzebruch-Riemann-Roch index theorem, which counts, as we recall from
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section 2.2, the alternating Hodge numbers of the twisted Dolbeault complex,

XM, V) = Z(—l)idim(Hi(M,V):/Mch(V)/\Td(TM)

_ /M [ch3(V) + 11—2 e (TM) cl(V)} | (A.11)

The last line is valid only if the manifold has complex dimension 3. The other
lowest dimensional cases follow from the definition of the Todd classes

ng(V) = ]-7
T4 (V) = ge(V) (A12)
Td(V) = (A1) + (V)

12

Restricting ourselves again to the case that dim(M) = 3, we can compute the
Euler characteristics of products of bundles V, ® V; with the help of the formula

X(Va @ Vi) =10 x(Vy) + 16 x(Va) + 1 (Va) cha(Vy) + cha(Vy) e1(V,).  (A.13)

Finally, for the Euler characteristic of the antisymmetric product bundle /\2 V
one obtains

1
KNV = (= D) + V) (a0 + M) (a0
and for the symmetric product bundle ®§ V

X(@2V) = (r+ ) x(V) + er(V) (Ch2(V) - i@(TM)) . (A.15)

A.2 Some general trace identities

We now display some useful trace identities for Eg x Eg, SO(32) and unitary
groups which we have used in various places of this work. A more complete
account can also be found e.g. in [177].

The symbol tr denotes, unless we explicitly specify the representation other-
wise, the trace over the fundamental representation of a gauge group, while Tr
refers to the adjoint. The two objects are related as follows for the cases relevant
for our purposes:

TrSU(N)F2 = 2NtI‘SU(N)F2,
T‘I‘_go(N)FQ == (N—Q)tl‘go(N)FQ, (A16)
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Trg, F? = 30trg F?,

8
TI"SU(N)F4 = 2N tI"SU(N)F4 + 6 (trSU(N)F2)2
TI«SO(N)F4 = (N — 8) tI‘SO(N)F4 +3 (tI‘SO(N)F2)2 (A17)
Trp, F* = 9 (trpF?)>
In evaluating the field theoretic anomaly six-forms we also encounter traces

over the symmetric and antisymmetric representations. For SU(N) the ones
relevant for us are given by

trspin P2 = (N —2) trspn F?,
tri%nzN)FQ = (N + 2) trSU(N)FQ, (A]_S)
tr é;}t(l )F3 == (N—4) tI‘SU(N)FS,

i FY = (N +4) trsyn F2. (A.19)

The second order Casimir for SO(N) is of course just

tr5on = Trsom F? = (N = 2) trson F*. (4.20)

A.3 Trace identities for the SO(32) heterotic string

We collect here some useful trace identities for the spectrum of the SO(32) het-
erotic string U(n;) factors diagonally embedded into U(n;N;) as displayed in table
(4.1).

TFE = 12ZN fi A (4trU F o+t FZNtrU )

TrF2F2 = 4 Z trSU F + N (f])Q) A (12 trU(nj)FQ + n; Z Nz trU(ni)F2>

1=1
K K )
+ 8 Z NZN] fz f] N trU(ni)FtrU(nj)F + 2 trso(QM)F2 A Z N] tI‘U(nj)F s
i,j=1 j=1
K
TrF2 = 30 trso(QM)FQ + 60 Z’I’L]‘ (trSU(Nj)FQ + Nj(fj)Q) s
j=1
K
TFF = 60% N;f; Atryg,)F,
7j=1
2 X 2
TF = 60 N trym,)F . (A.21)
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Appendix B

Kahler cone constraints on
Calabi-Yau’s with base dP,

The DUY equations have to admit solutions for the Kéahler parameters inside
the Kahler cone, i.e. such that the integral of powers of the Kahler form over all
appropriate cycles are positive,

/ J >0, / J? >0, / J > 0. (B.1)
2—cycle 4—cycle M

We expand the Kihler form on the elliptically fibered Calabi-Yau as J = 12 (r, o+
Jg) with Jg = rol + > _, rmEy being the Kahler form on the base manifold
dP, in terms of the canonical basis.

From the first constraint we read immediately that the radii must satisfy

re > 0, ro > 0, rm <0 form e {l,..,r}. (B.2)

The second inequality, [.J? > 0, holds precisely if in addition

- 2
re — ern >0, 7, < 370 To < —2r, forme{1,.,r}. (B.3)
m=1

Finally positivity of the volume of the Calabi-Yau necessitates that also

ri 9-r)— 37”?, (3ro + Z T'm) + 375 (7“3 — Z rfn) > 0. (B.4)
m=1

m=1
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Appendix C

Transformation rules for multiple
U(1) factors

In this appendix we recall, using elementary linear algebra, the rules for the basis
transformation occurring when we define specific linear combinations of abelian
gauge factors.

Suppose we are given a Lagrangian invariant under the abelian gauge sym-
metries U(1),,, m € {1,..., M}, each with generator T,,, gauge potential A,,
and field strength F,,,. The covariant derivative of the combined system of U(1)s
is written as D, = 0, + z'(A_‘#)Tf, where we have introduced an obvious vector
notation for the various U(1)s. Consider now an orthogonal basis transformation
in the U(1)-space such that the charge vector @ of a particle is transformed as

@—Q=Xq X'=x" (C.1)
Clearly this transforms the generators T — T =XT and thus

A A-x4 (C.2)

so that the covariant derivative remains unchanged as it must.
Now suppose furthermore that the Lagrangian contains mass terms for the
abelian gauge potentials, written schematically

Lonass = AT M? A, M? = MT" M (C.3)

for some mass matrix M?. We recover furthermore the (k x m) coupling matrix
M introduced in equ.(3.40), where the index k labels the various axions to which
the abelian field strengths couple via M. Written in terms of the new gauge
fields A the mass Lagrangian reads

- - -

Lonass = (DT (XMXT) A = (A)"DA =3 Al A, (C.4)

157



where we have assumed that the transformation is such that it diagonalizes the
mass matrix M?. To find the massless combination of U(1) potentials just in
terms of the matrix M we stress the obvious fact that

D=XM"MX"=(MX"Y" MXT, (C.5)

The gauge potential ﬁm is massless iff 0 = d,;, ,, which is equivalent to requiring
that the vector MX™ = 0, where X(™ = (ay,...,ay) represents the m-th
column of X written as an m- vector. We have therefore convinced ourselves of
the elementary fact that

A, = ZamAm is massless < ZMkm Q= 0. (C.6)
m k

Precisely the same lines of reasoning apply, of course, to the transformation
of the gauge kinetic function responsible for the coupling of the field strengths
via

—

Looy = (FY'fF = (F)' (X fX")F. (.7)

Concretely, in section 7.1.1 we define

U(1)x = <U(1)X, - gU(1)2> | (C.8)

with the orthogonal U(1) given by

1/5 5
U(].))Z- = = —U(]_)XI + —U(]_)Q . (Cg)
2\ 2 2
1 -3
This yields the transformation matrix X = % 5 12 ), which is orthogonal
2
up to normalisation. In all, we find indeed that
1 5
fxx = 1 (fX’,X’ + §f2,2 - 5fX’,2> ) (C.10)

as stated in equ.(7.13).
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Appendix D

Three-generation models

We list all consistent, supersymmetric three-generation models we have found
by a computer search on elliptically fibered Calabi-Yau spaces with base spaces
dP,, r =1,...,4 and the Hirzebruch surfaces F, in a range from —10,...,10 for
all parameters. We have found three-generation models only on dP,. Table D.1
contains the three-generation examples for the flipped SU(5) model discussed in
section 7.1, whereas in table D.2 we list all three-generation vacua directly with
MSSM gauge group (see section 7.2) which we have found.

[ ] n [ | e1(¢) | W]
% 14l — 2E1 — 6FEy — 6E3 — 2F, 0 —4l +4FE> + 4FE3 + 4E4 27F + (221 — 10E1 — 6E> — 6E3 — 10E4)0
% 18] — 10E; — 6FE2 — 6E3 — 6F4 0 —4l + 4FE> + 4E3 + 4E4 27F + (18] — 2E1 — 6E2 — 6E3 — 6E4)0
L0l 141 -6E1 — 2B, —2E3 —6E4 | 0 —4F; + 4E4 27F + (221 — 6E, — 10E5 — 10E3 — 6E4)0
% 14l — 2FEy —6FEy — 6FE3 — 2F, 0 —4FE1 + 4FE,4 27F + (22l — 10E; — 6FEy — 6F3 — 10E4)a
% 18] —6F1 — 10Es — 6FE3 — 6F4 0 —4FE1 + 4FE,4 27F + (18l —6F1 —2FEy — 6F3 — 6E‘4)U
% 14l — 2E1 — 6FEy — 6E3 — 2F, 0 4] —4FE, — 4Eo — 4E3 27F + (221 — 10E1 — 6E> — 6E3 — 10E4)0
% 18] —6FE1 —6FEy — 6FE3 — 10FE, 0 4l —4FE) — 4Eo — 4FE3 27F + (18] — 6E1 — 6E2 — 6E3 — 2E4)0

Table D.1: Flipped SU(5) x U(1)x models on dP,.
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>

U

e1(¢)

W]

15l = 3F1 —5FEy —5FE3 — 5F4

—5l+5FEy +5E3 + 5E,4

TF + (21l — 9Ky — TEy — TE3 — 7E'4)U

15l — 2E; — 5E9 — 5E3 — 5F4

—5l+5Fy +5E3 + 5E,4

TF + (211 = 10E1 — TEy» — TEs — TE4)o

171 —TE1 — TEs — 5E3 — 5E4

—5l +5F9 + 5FE3 + 5E,

7F + (191 — 5E; — 5Ey — TE3 — TE4)0

18l —8FE1 —8FE3 — 5E3 — 5E4

—5l +5FE9 + 5FE3 + 5E,

7F + (181 — AE, — AEy — 7TE3 — TE4)0

20l — 3E1 — 10E2 — 10E3

—5l+5FEy +5E3 + 5E,4

TF + (161 — 9F; — 2Fy — 2F3 — 12F4)0

20l — 2E; — 10E2 — 10E3

—5l+5FEy +5E3 + 5E,4

TF 4+ (16l — 10E1 — 2E3 — 2E3 — 12E4)0

15l —5FE1 —5FE3 — 5FE3 — 3E4

5l —5E; — b5E> — 5E3

7F + (21l — 7By — 7TEy — 7TE3 — 9E4)0

15l — 5E1 — 5FE9 — 5E3 — 2Fy4

5l = 5K —5Fy —5E3

TF + (21l — TE; — TEy — TE3 — 10E4)0

171 —7TFE1 —5FEy —5FE3 — TE4

5l = 5K —5Fy —5E3

TF 4 (191 — 5E) — TEy — TE3 — 5E4)0

18] —8F1 —5Fy — 5FE3 — 8F4

5l = 5K —5Fy —5E3

TF + (181 — 4E; — TEy — TE3 — 4E4)o

20l — 10E1 — 10E> — 3E4

5l —5E; — b5E> — 5E3

TF + (16[ —2FE, — 2Ey — 12E3 — 9E4)0

20l — 10E1 — 10E> — 2E4

o|lo|jlo|lo|lo|lo|lo|j]lojlo|j]lo|lo|lo|jlo|loOo|lo|lOoO|lo|lo|jlo|lo|lOoO|lOo|lo|lo|lo]j]o|lO O | |OC|O|%

5l —5E; — bE> — 5E3

1

2

1

2

1

2

1

2

1

2

1

2

% 15l —5FE; —5FEy — 3E3 — 5Fy —5F1 + 5F4 TF + (2” —T7E) —TEy — 9F3 — 7E4)o’

% 151 —5FEy — 5E9 — 2E3 — 5E, —b5F1 +5E4 TF + (21[ —T7E, — 7TE2 — 10E3 — 7E4)0
% 151 — 5E1 —3Ey — 5E4 —b5F1 +5E4 TF + (21[ —T7Ey — 9E2 — 12FE3 — 7E4)0
% 151 — 5E1 —2E> — 5E4 —b5F1 +5E4 TF + (21[ —T7FE1 — 10Ey — 12E3 — 7E4)0‘
% 15/ — 5FEy — 3F3 —5F1 +5FE, TF + (21l —12Ey — TEy — 9FE3 — 12E4)0’
% 171 —7TE1 —5FEy — 5E3 — TEy4 —5F1 + 5F4 TF + (19l —b5FE) —TEy —TE3 — 5E4)0’

é 171 —TE1 —5FEs — TEy4 —5F1 + 5F4 TF + (19l —b5FEy —TEy — 12E3 — 5E4)o’
% 171 —TE1 — TE4 —5FE1 + 5E4 TF + (191 — 5E1 — 12E2 — 12E3 — 5E4)0
% 17l —5E1 —TE9 — TE3 — 5FE4 —5FE1 + 5E4 TF + (191 — TE1 — 5E2 — 5E3 — TE4)o

% 171 — 7TEy — TE3 —5F1 +5FE, TF + (19l —12Ey — 5FEy — 5F3 — 12E4)0’
% 181 —8F; —5Fy — 5FE3 — 8F4 —5F1 +5FE, TF + (18l —4FEy — TEy — TE3 — 4E4)o’

é 18] —8F; — 5Fy — 8F4 —5F1 +5FE, TF + (18l —4FEy — TEy — 12FE3 — 4E4)o’
% 18] — 8FE1 — 8E4 —5FE1 + 5E4 TF + (18] —4E1 — 12E> — 12E3 — 4E4)0
% 18] — 5E1 —8FE9 — 8E3 — 5F4 —5FE1 + 5E4 TF + (18] — TE1 — 4E2 — 4E3 — TE4)0

% 18] — 8FE> — 8FE3 —b5F1 +5E4 TF + (18[ — 12E, —4Ey — 4E3 — 12E4)0‘
% 200 — 10Ey — 5FEy — 3E3 — 10Fy —5F1 +5FE, TF + (16l —2FEy —TEy — 9FE3 — 2E4)o’

% 200 — 10Ey — 5Ey — 2E3 — 10FEy —5F1 +5FE, TF + (16l —2FE1 — TEy — 10E3 — 2E4)o’
% 200 — 10E1 — 3E2 — 10E, —5FE1 + 5E4 TF + (16l — 2E1 — 9E> — 12E3 — 2E4)0
% 200 — 10E1 — 2E> — 10E, —5FE1 + 5E4 TF + (16l — 2E1 — 10E2 — 12E3 — 2E4)0
1

2

1

2

1

2

1

2

1

2

1

2

7F + (161 — 2E; — 2E5 — 12E3 — 10E4)0

Table D.2: SU(3) x SU(2) x U(1) models on dP,.
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