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ZusammenfassungIn dieser Dissertation untersuhe ih eine gro�e neue Klasse vierdimensionaler su-persymmetrisher Stringvakua, de�niert als Kompakti�zierungen des E8�E8 unddes SO(32) heterotishen Strings auf glatten komplex-dreidimensionalen Calabi-Yau-Mannigfaltigkeiten mit unit�aren Eihb�undeln und heterotishen F�unfbranen.Dies erm�ogliht die Konstruktion ph�anomenologish interessanter Stringkompak-ti�zierungen auf einfah zusammenh�angenden Mannigfaltigkeiten insofern diekonventionelle Eihbrehung mittels Wilsonlinien ersetzt wird durh die Einbet-tung niht-trivialer Linienb�undel in die zehndimensionale Eihgruppe.Im ersten Teil der Arbeit wird die Anwendung dieser Idee auf den E8 � E8heterotishen String diskutiert. Auf die De�nition einer gro�en Klasse grup-pentheoretisher Einbettungen mit unit�aren B�undeln folgt die Analyse der ef-fektiven vierdimensionalen N = 1 Supergravitationstheorie. Das gleihzeitigeAuftreten von F�unfbranen und abelshen Eihfeldern erfordert die Einf�uhrungneuer anomaliek�urzender Gegenterme in die e�ektive Wirkung. Diese werdenferner mithilfe einer M-Theorierehnung hergeleitet. Die vollst�andigen Green-Shwarz-Terme erm�oglihen es, die Ein-Loop-Korrekturen der Eihkopplungenzu berehnen. Aus dem eihinvarianten K�ahlerpotential der Modulifelder leiteih eine perturbative Ein-Loop-Modi�zierung des Fayet-Iliopoulos D-Termes ab.Darauf aufbauend shlage ih eine Deformation der hermiteshen Yang-Mills-Gleihung in erster Ordnung St�orungstheorie vor und f�uhre au�erdem die Ideeder �-Stabilit�at als das perturbativ exakte Stabililt�atskonzept ein, welhes die innullter Ordnung g�ultige Mumford-Stabilit�at ersetzt.Im folgenden de�niere ih eine Klasse SO(32) heterotisher Vakua mittelsunit�arer B�undel und heterotisher F�unfbranen. Das sih ergebende Spektrumsteht im Einklang mit der S-dualen Typ-I- Theorie bzw. den Typ-IIB-Orientifolds.Im Rahmen einer analogen Analyse der vierdimensionalen Supergravitation �ndetdie vorgeshlagene Ein-Loop-Korrektur der Stabilit�atsbedingung weitere Unter-mauerung, indem die Korrekturen im heterotishen Bild als das S-duale Analogondes perturbativen Anteils der �-Stabilit�atsbedingung identi�ziert werden. Let-ztere ist als das korrekte Stabilit�atskonzept in der Typ-IIB-Theorie bekannt.Es folgt eine Darstellung der Konstruktion stabiler holomorpher Vektorb�undelauf elliptish gefaserten Calabi-Yau-Mannigfaltigkeiten mit Hilfe der Methodespektraler �Uberdekungen. Daraufhin pr�asentiere ih semirealistishe BeispieleSO(32) heterotisher Vakua mit Pati-Salam und MSSM-�ahnlihen Eihsektoren.Diese verallgemeinern, im S-dualen Bild, das Konzept von magnetisierten D9-Branen auf toroidalen Hintergr�unden zu niht-abelshen Braneworlds auf ehtenCalabi-Yau-Mannigfaltigkeiten.Den Abshluss der Arbeit bildet die Konstruktion realistisher Vakua mitipped SU(5) GUT und MSSM Eihgruppe im Rahmen der E8 � E8-Theorieund auf der Grundlage der Einbettung von Linienb�undeln in beide E8-Faktoren.Einige der ph�anomenologish attraktiven Eigenshaften der stringtheoretishenRealisierung von ipped SU(5) Modellen, insbesondere die Stabilit�at des Pro-



tons, werden diskutiert. MSSM-artige Eihkopplungsvereinheitlihung ist f�ur dieauf Ein-Loop-Ebene korrigierten Eihkopplungen m�oglih. Ih konstruiere einigeexplizite supersymmetrishe Stringvakua, sowohl mit GUT als auh direkt mitStandardmodelleihgruppe, die genau die beobahteten drei Generationen hi-raler Materie ohne weitere exotishe hirale Fermionen zeigen.



AbstratIn this thesis we investigate a large new lass of four-dimensional supersym-metri string vaua de�ned as ompati�ations of the E8 � E8 and the SO(32)heteroti string on smooth Calabi-Yau threefolds with unitary gauge bundles andheteroti �ve-branes. This opens up the way for phenomenologially interestingstring ompati�ations on simply onneted manifolds in that the onventionalgauge symmetry breaking via Wilson lines is replaed by the embedding of non-at line bundles into the ten-dimensional gauge group.The �rst part of the thesis disusses the implementation of this idea into theE8�E8 heteroti string. After speifying a large lass of group theoreti embed-dings featuring unitary bundles, we analyse the e�etive four-dimensional N = 1supergravity upon ompati�ation. The simultaneous presene of �ve-branesand abelian gauge groups requires the introdution of new anomaly anellingounter terms into the e�etive ation. These are also derived by an M-theoryomputation. The full set of Green-Shwarz terms allows for the extration of thethreshold orretions. From the gauge invariant K�ahler potential for the moduli�elds we derive a modi�ation of the Fayet-Iliopoulos D-terms arising at one-loopin string perturbation theory. From this we onjeture a one-loop deformationof the Hermitian Yang-Mills equation and introdue the idea of �-stability asthe perturbatively orret stability onept generalising the notion of Mumfordstability valid at tree-level.We then proeed to a de�nition of SO(32) heteroti vaua with unitary gaugebundles in the presene of heteroti �ve-branes and �nd agreement of the re-sulting spetrum with the S-dual framework of Type I/Type IIB orientifolds. Asimilar analysis of the e�etive four-dimensional supergravity is performed. Fur-ther evidene for the proposed one-loop orretion to the stability ondition isfound by identifying the heteroti orretions as the S-dual of the perturbativepart of �-stability as the orret stability onept in Type IIB theory.After reviewing the onstrution of holomorphi stable vetor bundles on ellip-tially �bered Calabi-Yau manifolds via spetral overs, we provide semi-realistiexamples for SO(32) heteroti vaua with Pati-Salam and MSSM-like gauge se-tors. These an be viewed, by S-duality, as the generalisation of toroidal magne-tized D9-branes to non-abelian braneworlds on genuine Calabi-Yau manifolds.We �nally disuss the onstrution of realisti vaua with ipped SU(5) GUTand MSSM gauge group within the E8�E8 framework, based on the embeddingof line bundles into both E8 fators. Some of the appealing phenomenologialproperties of this stringy realisation of ipped SU(5) models, in partiular stabil-ity of the proton, are disussed. MSSM-like gauge oupling uni�ation is possiblefor the threshold orreted gauge ouplings. We expliitly onstrut a ouple ofsupersymmetri string vaua in both setups with preisely the three observedhiral matter generations and without any exoti hiral states.
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Chapter 1Introdution
1.1 Prologue: An invitation to String TheoryThe quest for a fundamental theory of the observed gravitational, eletro-weakand strong interations is one of the most pressing intelletual hallenges of ourtime. Among the heritage of the past entury are two beautiful, omplementaryand intriguingly suessful attempts to desribe partiular orners of the physialworld we observe - General Relativity and Quantum Field Theory. It is well-known that they both reprodue and predit a huge amount of empirial data withbreath-taking auray. It is equally well-known, however, that they are bothunaeptable as fundamental physial theories. They arry inside themselvesthe seed for their eventual inompleteness in the disguise of unphysial in�nitieswhih signal the inevitable breakdown of their validity.General Relativity ollapses as a well-de�ned theory whenever a massive ob-jet with a radius smaller than its Shwarzshild radius ollapses under its self-gravitation to form a blak hole. What is puzzling is that even though the initialonditions involve a well-de�ned extended objet, like a suÆiently heavy starundergoing the �nal stages of its evolution, the dynamial laws of gravity forethis mass to ontrat to a pointlike massive objet with a formally in�nite density.One might argue that the very onept of pointlike objets, familiar from lassialmehanis, is merely an idealisation and no reason to worry, but the situationjust desribed is of a totally di�erent genre. We start with very physial andsensible initial onditions, and are inevitably driven, by the equations of motion,into a regime where some of the most fundamental assumptions of the theorysuh as the notion of spaetime as a smooth manifold break down. Clearly, as apragmati outside observer we will never be a�eted by the unphysial enter ofthe blak hole due to the event horizon surrounding it. But the theory is inom-plete in the sense that there exist situations inside its domain of regime to whihit annot be sensibly applied. Apparently, at some stages of suh a pathologialproess, Nature obeys di�erent laws of gravity.Quantum Field Theory breaks down when a harged matter partile interatswith the vetor bosons oupling to the, say, eletro-magneti �eld it soures -3



even the �rst loop diagram in Quantum Eletrodynamis related to the self-energy of the eletron formally diverges. Again we an - and do - hide thein�nity for pratial purposes by introduing a uto�, and the fat that it ispossible to extrat non-trivial information using this tehnique of regularisationand renormalisation at all is ertainly a mirale by itself. Still, the need for suh aproedure is unsatisfatory beause it indiates the breakdown of the dynamiallaws at high energies. In both ases we fae the paradox that we have at ourdisposal a powerful formalism in triumphant agreement with experiments andobservations whih at the same time is inomplete as a physial theory. It yieldsan empirially suessful e�etive desription of ertain phenomena after we agreeto integrate out those high energy degrees of freedom whih are apparently notaounted for orretly.The situation is not ameliorated if one takes into aount the mutual inom-patibility between the lassial, deterministi harater of General Relativity andthe intrinsially probabilisti nature of Quantum Mehanis in its onventionalinterpretation as the oneptual foundation of Quantum Field Theory. At thisstage by the very latest one annot lose one's eyes any longer sine physialproesses at suh high energies that the gravitational interation annot be on-sistently negleted require, and be it merely for the sake of an e�etive approah,a genuinely quantum desription of gravity together with the other fores.Apart from these indisputable oneptual issues there is an aestheti one. Itis often stated that the Standard Model of Partile Physis ontains at least 19free parameters in the form of the masses and ouplings of the observed partiles.This is an optimisti point of view, beause, if one wants to be maliious, itatually involves an in�nite number of free parameters. A theory should notonly explain what we observe, but also what we do not observe1, and QuantumField Theory knows of no underlying intrinsi priniple whatsoever whih singlesout the Standard Model inside the moduli spae of anomaly-free gauge theories- exept that we happen to observe it.The ultimate goal of String Theory [1{7℄2 is none less than to overome allthese diÆulties and to provide a onsistent ultra-violet ompletion of both Quan-tum Field Theory and General Relativity. What is remarkable is that one andthe same onept appears to have the potential to takle both hallenges simul-taneously. The basi idea is to avoid the in�nities of Quantum Field Theoryby smoothening the apparently unphysial interation verties, thus leading toultra-violet �nite loop amplitudes. This is the purpose of introduing the notionof one-dimensional extended objets as the fundamental entities. Everything elseis fored upon us by requiring a onsistent quantisation of the lassial theory ofthe string propagating in spaetime. Kinematially, this is a very onservativeapproah in that it rests upon the well-established priniple of general ovariane1We are aware that, depending on their epistemologial bakground, the reader may or maynot agree with this argument.2Classi textbooks inlude [8{12℄. 4



of spaetime and assumes the standard axioms and methods of Quantum Me-hanis3. What makes the theory revolutionary are rather the dynamial laws itpredits in the genuinely stringy regime and even more so the way how these lawsare derived just from requiring onsisteny of the theory. Basially without anyfurther input than the kinematial pillars just quoted the two dynamial san-tuaries of modern physis inevitably follow in the low-energy limit: Einstein'sgravitational equations and the onept of gauge interations.It is important to stress that the struture of the fundamental laws governingthe low-energy phenomenology of the universe omes out almost as a byprod-ut. The peaeful oexistene of gravity and Yang-Mills theory at the quantumlevel in String Theory is an immediate onsequene of the presene of losedand open strings as the only two topologies whih a one-dimensional objet anexhibit. The role of the graviton is played by the massless spin two exitationsof the losed string, and Einstein's equations follow by requiring Weyl invari-ane of the non-linear �-model desribing the string propagation on a (urved)bakground manifold. The latter is equivalent to the onformal symmetry of thetwo-dimensional string worldsheet to be anomaly-free, whih is one of the on-sisteny onditions for the theory to make sense, more preisely for the abseneof negative norm states in the Fok spae. The Yang-Mills gauge bosons, byontrast, are furnished by the massless open strings or, in a dual desription,partiular massless exitations of the losed heteroti string. In any ase, onewe observe in our theory Yang-Mills interations, we automatially observe grav-ity as well, beause a theory of open strings neessarily requires the preseneof losed strings. This is ditated by another onsisteny ondition, namely theanellation of ertain infrared divergenes in the one-loop amplitude whih arerelated to the presene of a tadpole. Ironially, whereas in onventional QuantumField Theory it seems impossible to desribe both Yang-Mills theory and gravityat the quantum level, in String Theory, it is impossible to observe Yang-Millstheory without inorporating gravity.The way how the dynamial laws of gravity are modi�ed at higher energies orat smaller distanes makes it furthermore oneivable that the drasti urvaturesingularities of blak holes or the Big Bang might be resolved [13℄. These ques-tions are related to the emergene of stringy or quantum geometri properties ofspaetime as seen by suitable string probes [14℄. In swithing the point of viewfrom target spae to the string worldsheet, the fundamental physial onept isno longer lassial spaetime but the way how the string propagates along it. Inthis piture lassially unaeptable singularities are no oneptual issue providedthey leave the theory of the string probing it well-de�ned. The implementationof a holographi priniple [15℄ in the ontext of the AdS/CFT onjeture [16,17℄and the spetaular mirosopi omputation of the internal degrees of freedom of(at least BPS) blak holes [18℄, in perfet agreement with their thermodynamialentropy, are further piees of evidene that String Theory really inludes the or-3It has therefore in its present formulation nothing to say about oneptual issues of theinterpretation of Quantum Mehanis and related questions.5



ret number of degrees of freedom to yield a onsistent desription of QuantumGravity.At the same time, the theory gives rise to ertain general features whih arenot neessarily fored upon us just from the urrent low-energy experiments andobservations, but nonetheless enjoy popularity among many phenomenologists.The most prominent example is the predition of extra dimensions - based onthe renowned theorem that String Theory is well-de�ned only if the target spaeis ten-dimensional4. Furthermore, every onsistent, i.e. tahyon-free and stablestring theory in ten dimensions is automatially supersymmetri - out of thefour possible de�nitions of a modular invariant one-loop amplitude two lead toa stable and supersymmetri spetrum, the remaining ones su�ering from thepresene of tahyons in ten dimensions. Both these features - extra dimensionsand supersymmetry - are of ourse often onsidered for purely phenomenologialreasons in bottom-up approahes - e.g. in Randall-Sundrum-like brane-worldsenarios [20℄ or to aount, among several other things, for the weak hierarhyproblem by means of low-energy supersymmetry. In String Theory, by ontrast,there is nothing ad ho about the emergene of this extra struture whih has sofar not been observed in experiments - it is a logial onsequene5 of the stringonsisteny onditions.The ruial test whih String Theory has to pass in the long run is whetherit an make more expliit ontat with the low-energy physis of the StandardModel than to aount merely for the strutural foundations of gravity and Yang-Mills theory. To appreiate what a diÆult endeavour this may be, we shouldkeep in mind that the Standard Model in its present version ould only be formu-lated with the help of huge amounts of data just around the weak sale, i.e. atdistanes of 10�18 meters, where it is a good desription of Nature. We would nothave the least idea of the existene of QCD or the details of the weak setor if allour experiments were restrited to the sale of, say, some meters. Unfortunately,this is preisely the situation we fae today in trying to reonstrut the physis atthe Plank sale of 10�35 meters just from our empirial data. One single olliderexperiment at these energies would ertainly be enough to deide immediatelywhether or not String Theory is realized in Nature. It is thus obviously wrongto laim that String Theory is in priniple not falsi�able as a physial theory.After all it is as big a oneptual shortoming of String Theory not to lead tounique preditions at the TeV sale as it is a oneptual shortoming of QuantumChromodynamis to make no preditions whih Kopernikus ould have falsi�ed4This is atually an oversimpli�ation sine what is really predited is the total onfor-mal anomaly of the worldsheet �elds whih has to anel that of the Faddeev-Popov ghosts.Attempts to inlude �elds di�erent from additional spaetime oordinates lead to so-alled non-ritial String Theory in lower dimensions [19℄. Their use for phenomenologial appliations isyet to be understood. The 26-dimensional bosoni string, by ontrast, is unstable due to thepresene of a losed tahyon, and it is still unlear if it might be related to a lower-dimensionalstring theory upon tahyon ondensation.5For the ase of extra dimensions this is true modulo the remark in footnote 4.6



with the help of his telesope (or at most a magnifying glass). Even more re-markable is it that there exist important theoretial arguments of the type justreviewed that String Theory might well aount for Nature's ultra-violet degreesof freedom.The standard approah towards desribing our four-dimensional world fromthe point of view of String Theory is to desribe the extra dimensions as om-pati�ed on a small six-dimensional spae. The idea is that the in�nite tower ofKaluza-Klein modes deouples from the four-dimensional theory at low energiesand only the massless modes give rise to the observed matter. This logi leads toa geometrisation of the laws of four-dimensional physis whih are enapsulatedin the topologial and geometri details of the ompati�ation manifold. Thebakground manifold itself and the values of the bakground �elds, i.e. the possi-ble vauum expetation values of the internal omponents of the string �elds, aresubjet to strong string theoreti onsisteny onditions whih de�ne the resultingfour-dimensional e�etive theory as a solution of the equations of motion.It is in this sense that String Theory overomes the arbitrariness inherentto any phenomenologially motivated bottom-up approah like the StandardModel: There exists a single underlying theory with a number of e�etively four-dimensional groundstates. The phenomenon that a physial theory admits morethan one solution to its equations of motion is of ourse well familiar. Clearly,General Relativity does not predit the spei� distane between the earth andthe sun. Rather, this is the phenomenologial input required in order to identifythe spei� solution to Einstein's equations ompatible with these initial ondi-tions, on the basis of whih we then extrat all further information. Nobodywould laim that this justi�es disarding the laws of General Relativity.To keep the analogy, a question of prime importane in String Theory is thusto determine whih of its solutions are ompatible with the properties of ourvauum at all energies up to whih we an rely on experimental input. Morelearly: Are there realisti four-dimensional string vaua and, if so, how densedo they lie in the total solution spae of String Theory? Up to whih energy dowe have to measure suh that there is only one vauum left ompatible with alldata up to that point? And �nally, given that hypothetial vauum, does it makefurther preditions (possibly at higher energies) whih we an verify or falsify?Or is there a dynamial mehanism, probably non-perturbative in nature, whihsingles out some stable solutions over others?At the moment we are far from a de�nite answer to any of these questions.The number of meta-stable four-dimensional string vaua making out the stringlandsape [21{23℄ is urrently estimated to be of the order of 10500 [24℄ (seealso [25℄ for an early estimate), whih seems omputationally out of any reah [26℄.At least, the number of stable vaua appears to be �nite. This is already a bigsuess as ompared to the even vaster spae of anomaly-free and renormalisablee�etive quantum �eld theories whih an be onstruted without a onsistentoupling to gravity [27℄. We are by now not aware of a genuinely non-perturbative7



formulation of the theory, and most investigations are tied to highly non-generiperturbative orners of the moduli spae of the hypothetial underlying M-theory.Our available tehniques are restrited to the omputation of the very basi low-energy properties of a given vauum. In short, we need to understand the theorybetter. But we an nonetheless start and investigate some relevant features of atleast those domains in the moduli spae whih are aessible to us at this stage.This is the objetive of String Phenomenology.1.2 Classi heteroti model buildingHistorially, the earliest attempts of string model building foused on the het-eroti string [7℄. Its worldsheet theory ontains di�erent �elds in the left- andright-moving setor. In its fermioni formulation this is easily understood asfollows: The right-moving �elds are the same as in the orresponding setor ofthe superstring, i.e. ten worldsheet salars X�� transforming as 8V under thelittle group SO(8) in ten dimensions and their superpartners, the worldsheetMajorana-Weyl spinors  ��. Together with the superonformal ghost system, theright-moving onformal anomaly is anelled. The left-moving setor, by ontrast,omprises, apart from the left-movingX�+, another 32 worldsheet Majorana-Weylspinors �A+ whih are singlets under SO(1; 9). Sine the left-moving system is notsupersymmetri, again the ritial number of now 26 bosoni degrees of freedomis present to anel the ghost onformal anomaly. The physial states arise as thetensor produt of the right-moving and the left-moving exitations. There aretwo fully onsistent hoies to assign periodi or antiperiodi boundary onditionsto the �A+. If all of them arry the same boundary onditions, the left-movingsetor exhibits an SO(32) global symmetry whih is atually promoted to a gaugesymmetry. This an be most easily understood already from the appearane ofa massless state in the 8V of SO(8) and arrying antisymmetri indies A;Bunder SO(32) - the gauge boson. Sine the full spetrum ontains states in theeven-rank tensor representations and those related to one of the two spinor rep-resentations of Spin(32), the gauge symmetry is atually not SO(32) but ratherSpin(32)=Z26. If by ontrast, the �A+ pair into two groups, eah with the sameboundary onditions, the naive gauge symmetry Spin(16) � Spin(16) is in fatfurther enhaned to E8 � E8 upon performing a GSO projetion.In both ases, the massless bosoni setor omprises, in addition to the ve-tor bosons, gauge singlets whih deompose under SO(1; 9) into the spin twosymmetri traeless representation, the graviton, furthermore the antisymmet-ri representation, yielding the Kalb-Ramond B-�eld and �nally a salar, thedilaton. The spaetime theory is N = 1 supersymmetri and therefore ontainslikewise the fermioni superpartners of all bosoni states.At energies muh smaller than the lowest lying massive states, the e�etive6In standard abuse of notation we will, however, stik to the misnomer SO(32) heterotistring. 8



theory is dominated by the massless modes we have just reviewed. In partiular,one an think of appropriate oherent states of the massless �elds as determiningthe bakground on�guration probed by the string. In that sense, the bakgroundmetri of the spaetime manifold on whih the string propagates is to be viewed asa non-trivial vauum expetation value for the graviton. Similarly, we an thinkof bakground values for the �eld strength of the antisymmetri tensor �eld, forthe dilaton and the Yang-Mills gauge �eld. The bakground �elds are subjetto a number of strong onsisteny onditions sine they have to be solutions tothe stringy equations of motion. These will be reviewed extensively in hapter2. SuÆe it here to reall that in the simplest ase, where the dilaton �eld isonstant and the three-form �eld strength vanishes, the six-dimensional manifoldon whih we ompatify has to be Calabi-Yau to ensure N = 1 supersymmetryand therefore physial stability at the ompati�ation sale [28℄7.In the presene of bakground values for the massless string �elds, the world-sheet ation desribing the propagation of the string is the (0; 2) �-model [29,30℄,whih in favourable irumstanes an be rephrased in terms of a linear �-model [31℄. The resulting onformal �eld theory is a highly ompliated andnon-trivially oupled system whih, up to now, has not been solved for the generiase.There are in priniple two di�erent approahes to bypass this tehnial dif-�ulty. One an either fous on very speial bakground manifolds on whihthe worldsheet theory is still exatly solvable as a onformal �eld theory (CFT).Cases where this is feasible are toroidal orbifold ompati�ations [32{35℄, orvery symmetri points in the moduli spae of genuine Calabi-Yau manifolds or-responding to exatly solvable abstrat CFTs suh as Gepner models [36, 37℄.Slightly di�erent CFT methods inlude free fermioni [38℄ and free bosoni [25℄onstrutions. The advantage of the CFT approah is that whenever we have anexatly solvable onformal �eld theory at our disposal, its information is exatboth perturbatively and non-perturbatively in �0. Unfortunately this tehnologyis urrently appliable to only a small fration of relevant bakground on�gura-tions. Alternatively, one an try to analyse diretly the spaetime e�etive �eldtheory in the zero mode approximation. This approah is valid only in the stritlyperturbative regime, i.e. for the typial radius of the bakground manifold muhbigger than the string length and for suÆiently small string oupling. In otherwords, it is in a way insensitive to many genuinely stringy elements of the the-ory, but it is suÆiently powerful as far as an analysis of the vauum states isonerned8.This geometri approah was pioneered in [28, 39℄ soon after the formulationof the heteroti theory. What makes the E8 � E8 string so attrative for modelbuilding is the natural way how the standard semi-simple GUT gauge groups E6,7Extended supersymmetry in four dimensions would of ourse also lead to stable on�gura-tions.8We will desribe the methods of this latter e�etive or geometri approah in great detailin hapter 2. 9



SO(10) and SU(5) arise as subgroups of E8. Consequently, the task is to break E8down to one of these GUT groups by giving VEVs to the internal �eld strengthsin the ommutant of the �nal gauge group. For the ases just listed these areSU(3), SU(4) and SU(5), respetively. Aordingly, the 248 representation of E8splits into the respetive GUT multiplets whih inorporate the hiral fermionsof the Standard Model. Consistent E6 GUT models, for example, are espeiallystraightforward to obtain by identifying the SU(3) �eld strength with non-trivialbakground value with the urvature of the tangent bundle of the Calabi-Yaumanifold. In that ase the supersymmetry onditions for the gauge �elds implyingin partiular the Yang-Mills equation of motion are automatially satis�ed. Thenumber of 27 and 27 are simply ounted by the K�ahler and omplex struturemoduli of the Calabi-Yau and one might think that all one needs to do is searhfor appropriate geometri on�gurations. Unfortunately, E6 is not very attrativeas a GUT group from the phenomenologial point of view sine its fundamentalrepresentation 27 deomposes into 16 + 10 + 1 upon breaking E6 to SO(10)so that one GUT generation of E6 yields not only one full generation of MSSMmatter in form of the 16, but additional hiral exotis.To arrive at the phenomenologially more appealing SO(10) and SU(5) se-narios, one has to onstrut stable holomorphi vetor bundles with struturegroup SU(4) and SU(5) respetively [39℄. The mathematial property of sta-bility essentially guarantees that the bundle allows for a onnetion whih is asupersymmetri solution to the Yang-Mills equations. To prove stability for abundle is already a very hallenging task from the mathematial point of viewand it took until 1997 that a suÆiently general proedure was found to onstrutsuh stable SU(N) bundles on a large lass of Calabi-Yau manifolds, the spetralover onstrution [40,41℄. However, in onventional stringy GUT senarios it isimpossible to realize the GUT breaking further down to SU(3)�SU(2)�U(1)Yvia a �eld theoreti Higgs mehanism, simply beause the required vetor-likepairs from whih the GUT Higgs ould arise are not present in the partile spe-trum9. To break SU(5) down to the Standard Model group, for example, theHiggs �eld must transform in the adjoint representation of SU(5), but we willsee that the four-dimensional bosoni partile spetrum ontains only one vetormultiplet in the 24, the gauge multiplet, and no further suh states. To ourresue omes the use of Wilson lines as an alternative GUT breaking mehanism.Wilson lines are globally non-trivial bakground values of the gauge onnetionwhih loally are pure gauge and therefore indue a vanishing bakground �eldstrength.This onsiderably ompliates the onstrution of heteroti Standard Modelvaua. The point is that in order to have these Wilson lines at our disposal, weneed non-trivial elements in the �rst ohomology group of the internal manifold,i.e. homotopially non-trivial one-yles along whih the onnetion one-form antake a non-zero VEV. Now on general grounds, a Calabi-Yau an never admit9Note, however, that in the ontext of higher-level Ka-Moody algebras GUT Higgses anbe realized. 10



ontinuous Wilson lines, i.e. elements of H1(M;R), but at most torsional onesas non-trivial elements of H1(M;Z). This means that we have to onstrutnon-simply onneted Calabi-Yau manifolds suh that their Wilson lines are justright to break the GUT group to the MSSM gauge group. For example, Z2-valuedWilson lines break SU(5) down to SU(3) � SU(2) � U(1)Y , whereas Z2 � Z2-valued ones produe one additional abelian gauge fator U(1)B�L [42℄. Whilethis gauged U(1)B�L helps to suppress proton deay, it poses the problem thatdi�erent e�ets have to be invoked in order to break it to a global symmetry. Thesame holds for SO(10), whih requires at least Z3�Z3 Wilson lines and likewiseends up with an additional U(1)B�L.Finding Calabi-Yau manifolds with suh �rst fundamental groups is one morea highly non-trivial task, and it has been one of the reent triumphs of stringmodel building to provide lasses of suh Calabi-Yau manifolds as quotients ofmanifolds under an appropriate freely-ating orbifold group and to onstrut non-abelian vetor bundles on them [43{48℄. Globally de�ned realisti models fromSU(5) GUT on manifolds with Z2 Wilson lines in this ontext have been providedin [49℄. For non-supersymmetri models from SO(10) using Z3�Z3 Wilson linessee [50, 51℄. A reent onstrution of promising models in the setup of heterotitoroidal orbifolds an be found in [52℄.1.3 Unitary bundles in heteroti ompati�a-tionsIndependently of the heteroti model building industry, the disovery of D-branes [53℄ has opened up a omplementary - or rather dual - path to inor-porating gauge interations into String Theory, more preisely the Type II the-ory or orientifolds thereof. A stak of N oinident D-branes aommodates aU(N) gauge �eld in form of the massless modes of the open strings whose bothends are attahed to the brane. Soon it was realized that two staks of suhbranes interseting at a non-trivial angle feature hiral fermions in the bifunda-mental representation of the two unitary groups [54,55℄. This had the prospet ofonstruting MSSM-like models from type IIA orientifolds whih live at the four-dimensional overlap of several staks of D6-branes wrapping in addition speialLagrangian three-yles on the internal Calabi-Yau and interseting at super-symmetri angles [56℄10. On the other hand, it turns out extremely diÆult toextend this lass of onstrutions to non-toroidal bakgrounds. What hampersprogress into this diretion is the speial Lagrangian ondition for supersymmet-ri three-yles. Being real in nature, this onstraint annot be takled with thehelp of omplex geometry and is rather hallenging to ope with. Instead onemight try to invoke abstrat CFT methods and onsider rational onformal �eldtheories orresponding to orientifolds at the Gepner point of ertain Calabi-Yau10For a omplete list of referenes exploiting this idea see e.g. the most reent review [57℄.11



manifolds11, but again this strategy is not appliable to more generi situations.The arhiteture of the Interseting Brane World models di�ers from theE8 � E8 approah in that, instead of starting from one unifying group and thenaomplishing favourable gauge breaking, one ombines a number of separateU(N) modules given by the various brane staks to mimi the produt strutureof the MSSM gauge group or modi�ations thereof like Pati-Salam or left-rightsymmetri models. But are the onstrutions really so di�erent? The objetsmirror dual to D6-branes at angles in Type IIA theory are spae�lling D9-branesin Type I theory, endowed with non-trivial bakground �eld strengths for theabelian diagonal of the U(N) gauge group. These magnetized branes in turn areS-dual to abelian bakground bundles in the SO(32) heteroti theory. The naturalsubgroups of SO(32) are indeed just U(N) groups, and we an therefore interpretthe interseting brane piture as the geometri realisation of the breaking ofSO(32) into its U(N) subgroups via abelian bakground bundles.It is thus of obvious relevane to explore the usually negleted use of non-trivial line bundles12 in heteroti ompati�ations with the hope of extendingour model building possibilities beyond the lassi embedding of vetor bundleswith vanishing �rst Chern lass only. Likewise, one might wonder if turningon also non-abelian gauge bundles on D9-branes wrapping genuine Calabi-Yaumanifolds in Type I leads to interesting onstrutions. Sine the supersymmetryondition on the gauge bundles is holomorphi, there is reason to hope that thisbypasses the tehnial diÆulty whih the onstrution of speial Lagrangiansubmanifolds poses on the Type IIA side.It is the aim of this thesis to investigate these questions.Our main motivation stems from the interpretation of disrete Wilson lines asat abelian bundles whih are embedded into the ten-dimensional gauge group.As we pointed out, the onstrution of Calabi-Yau manifolds with non-trivial �rstfundamental lass is very involved. In fat, the only known example featuring e.g.Z3�Z3 Wilson lines neessary for SO(10) GUT breaking is the one onstrutedin [46℄. Arbitrary line bundles, by ontrast, are omparatively straightforwardobjets - on Calabi-Yau manifolds they are simply determined by speifying their�rst Chern lass as an element in H2(M;Z). If it were possible to replae theGUT breaking through Wilson lines by the embedding of non-at line or moregeneral unitary bundles, this would open up the very interesting prospet ofheteroti string model building on simply-onneted manifolds.The relevane of progress into this diretion beomes even more obvious ifone takes into aount the following ruial aspet: Eventually all realisti modelbuilding ativities have to be extended beyond the speial ase that the internalmanifold is Calabi-Yau. The underlying rationale is that the geometri moduli ofthe internal manifold as well as the dilaton appear as massless �elds in the four-dimensional �eld theory and are as suh unaeptable from the phenomenologial11Reent progress in the onstrution of Type II orientifolds of Gepner models has been madein [58{63℄ and our own work [64,65℄.12For some early referenes see [30, 66{68℄ and more reently [69℄.12



point of view. In on�gurations with non-trivial form �eld uxes in addition togauge instantons, the moduli are generially rendered massive via a superpoten-tial generated by these uxes and an therefore be removed from the low-energyspetrum. The resulting bakground manifold, however, is in general no longerCalabi-Yau as a onsequene of the modi�ed Killing spinor equations and thegravitational bakreation of the uxes. In the ase of heteroti ompati�a-tions with non-trivial three-form ux [70{74℄, it is not even K�ahler, and ertainlynot simply a toroidal orbifold. All methods whih are restrited to one of thesetwo properties have therefore no hane to yield ompletely realisti models inthe end. The lesson we learn is that in engineering the gauge setor we shouldrely as little as possible on the partiular non-generi struture of our onretebakground manifold. This, however, is just what we are doing in pursuing theWilson line approah to GUT breaking - after all one needs to identify very spe-i� elements in the �rst homotopy group, whih in more general situations maybe extremely hard to ompute.Let us outline the struture of this thesis. Before getting started, hapter2 reminds the reader of the basi onepts and tehnial details of Calabi-Yauompati�ations of the heteroti string. Also, we will take this opportunityto introdue our onventions and �eld normalisations. The highlighted stringtheoreti onsisteny onditions are the basis of the whole subsequent analysis.In hapter 3 we disuss the general theory of E8�E8 string ompati�ationsfeaturing unitary gauge instantons. The group theory of the assoiated embed-ding gives rise to an unexpetedly rih struture of possible low-energy gaugegroups inluding in partiular ipped SU(5) � U(1)X GUT [75℄ and just theMSSM gauge group. In addition we allow for heteroti �ve-branes, in whih asewe are atually in the strongly oupled Horava-Witten regime [76,77℄. The pres-ene of abelian gauge fators requires a areful study of possible anomalies andthe assoiated generalised four-dimensional Green-Shwarz mehanism. We willsee that onsisteny of the vaua alls for new anomaly anelling ounter termsin the presene of abelian gauge �elds and �ve-branes. These ounter terms willfurthermore be derived expliitly by dimensional redution of eleven-dimensionalheteroti M-theory to ten dimensions. Apart from the issue of anomaly anel-lation, the Green-Shwarz mehanism yields important terms in the low-energye�etive ation whih arise at one loop in string perturbation theory. Spei�ally,we will analyse the gauge threshold orretions, �nd a new ontribution to theD-term salar potential for �ve-branes and identify a one-loop orretion to theFayet-Iliopoulos term assoiated with the abelian gauge �elds. We will argue thatit represents atually a perturbative orretion to the Donaldson-Uhlenbek-Yausupersymmetry ondition on the gauge �elds and onjeture a orresponding de-formation of the loal Hermitian Yang-Mills equation as the perturbatively exatgeneralisation of the string tree-level supersymmetry ondition.An analogous investigation is possible also for the SO(32) heteroti string withunitary bundles and �ve-branes and is the subjet of hapter 4. The analysis of13



the breaking of SO(32) into its unitary subgroups and the assoiated deomposi-tion of the adjoint representation will reveal a gauge setor and spetrum whihexatly mimi that in the S-dual/T-dual framework of interseting branes, asantiipated already. The details of the Green-Shwarz mehanism are di�erent towhat we enountered in the E8�E8 theory, in partiular as far as the �ve-braneontributions are onerned, but again we will �nd loop orretions to the gaugeouplings and the Donaldson-Uhlenbek-Yau ondition. In the S-dual Type Iframework, these one-loop terms beome perturbative �0-orretions whih arewell-known to a�et also the loal supersymmetry equations and the resultingstability ondition. In fat, they make out just the perturbative part of the full�-stability ondition in the derived bounded ategory of oherent sheaves [78℄.This serves as further support for our onjeture about the modi�ed supersym-metry ondition for the E8 � E8 string.To apply the results of hapter 3 and 4 to onrete model building it is nees-sary to have ontrol over the moduli spae of stable holomorphi unitary vetorbundles. In hapter 5 we therefore review the spetral over onstrution [40,41℄for SU(N) bundles over elliptially �bered Calabi-Yau manifolds. By twistingthe SU(N) bundles with an additional line bundle, we an onstrut bundleswith unitary gauge groups. For speial lasses of twist bundles this proedureis equivalent to a sublass of the bundles provided by the generalisation of theoriginal spetral over method due to [69℄.In hapter 6 we provide two examples of semi-realisti vaua of the SO(32)heteroti theory with Pati-Salam and MSSM-like gauge group respetively. Theyillustrate the general arhiteture of this type of vaua and its similarity to theinterseting brane framework. This is a diret onsequene of the group strutureof SO(32). Generially, as we will see, the generi quiver struture of the modelsmakes it hard to suppress hiral exoti matter in supersymmetri on�gurations.These vaua an likewise be interpreted as arising from D9-branes in the Type Iwith non-abelian gauge �eld VEVs.Chapter 7 introdues a setup for the onstrution of realisti ipped SU(5)�U(1)X GUT and SU(3)� SU(2)�U(1)Y MSSM vaua from the E8�E8 string.The key to keeping the respetive U(1) potential massless is to embed the sameline bundle into both E8 fators. The ipped SU(5) models are phenomenologi-ally partiularly attrative due to the absene of operators triggering proton de-ay. Gauge oupling uni�ation in both senarios holds at the level of the thresh-old orreted gauge ouplings. As far as onrete phenomenologial appliationsare onerned, the main result of this thesis is the onstrution of four-dimensionalvaua with ipped SU(5) and Standard Model gauge group featuring preiselythree hiral generations and no further hiral exotis on simply-onneted man-ifolds. A olletion of these vaua will be presented in the remainder of hapter7 and in appendix D.Finally, we onlude with a on outlook to the most pressing questions to beinvestigated in the future.Supplementary material is provided in the appendies. Some useful de�nitions14



and formulae regarding the topologial invariants of holomorphi vetor bundlesan be found in appendix A, together with a ouple of trae identities whih arefrequently used throughout this thesis. In appendix B we ollet the K�ahler oneonstraints for elliptially �bered Calabi-Yau manifolds over del Pezzo surfaes.These are relevant when it omes to heking the supersymmetry onditions onthe gauge bundles. For the onveniene of the reader, we have hosen to inludein appendix C a disussion of the transformation rules for multiple U(1) fatorswhih, though elementary, might give rise to some onfusion.
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Chapter 2The vauum struture ofheteroti ompati�ations
2.1 On the heteroti low-energy e�etive �eldtheoryThe low-energy e�etive theory of the heteroti string is given by ten-dimensionalN = 1 supergravity oupled to super Yang-Mills theory. Depending on whih ofthe two heteroti theories we onsider, the original ten-dimensional gauge groupis E8�E8 or Spin(32)=Z21 and will be referred to as eG. The low-energy dynamisof both theories only di�ers in the gauge setor as long we restrit ourselves tothe perturbative limit of weak string oupling. The bosoni degrees of freedomomprise the ten-dimensional metri, the dilaton �10, the Kalb-Ramond two-formB(2) and the gauge potential A with �eld strength F = dA� iA ^ A. At lowestorder in the string oupling, the bosoni part of the string frame Lagrangian takesthe following formShet = 12�210 ZM(10) e�2�10 hR + 4 d�10 ^ ?d�10 � 12H ^ ?Hi� 12g210 ZM(10) e�2�10tr(F ^ ?F ): (2.1)We will stik throughout this thesis to the onventions of [12℄. In this nor-malisation the relative size of the gravitational and the Yang-Mills interation isset by �210 = 12(2�)7 (�0)4 and g210 = 2 (2�)7(�0)3. We adopt the standard notationthat 'tr' denotes the trae in the vetor representation of the gauge group and'Tr' formally refers to the trae over the adjoint representation. In partiular thetwo are related via TrF 2 = 30 trF 2 (see also appendix A.2).An important role will be played by the heteroti three-form �eld strengthH = dB(2) � �04 (!YM � !L); (2.2)1Nonetheless, the latter ase is usually denoted as the SO(32) theory, f. setion 1.2 .17



whih involves the gauge and gravitational Chern-Simons three-forms de�ned interms of the gauge potential A and the spin onnetion 
 by!YM = trA ^ dA� 2i3 trA ^ A ^ A; d!YM = trF 2;!L = tr
 ^ d
� 23 tr
 ^ 
 ^ 
; d!L = trR2: (2.3)Note that in the last line, the trae trR2 is over the fundamental representationof the tangent bundle of spaetime, whih, for at ten-dimensional spae, hasstruture group SO(1; 9). A ruial point to take into aount is that B(2) is nota globally de�ned two-form. This is beause it is not invariant under a ombinedgauge transformation of the Yang-Mills potential and the spin onnetionÆA = d�� i[A; �℄; Æ!YM = d tr(� ^ dA);Æ
 = d� + [
; �℄; Æ!L = d tr(� ^ d
); (2.4)but likewise transforms asÆB(2) = �04 [tr(� ^ dA)� tr(� ^ d
)℄: (2.5)The de�nition (2.2) makes lear that the gauge invariant and therefore globallyde�ned objet is the three-form �eld strength H.The hiral massless fermioni spetrum onsists of the gravitino in the 56representation of SO(1; 9), the 8' dilatino, both interating only gravitationally,and the 8 gaugino2 in the adjoint of the gauge group. The ten-dimensional theorytherefore exhibits gravitational, gauge and mixed gauge-gravitational anomaliesresulting from anomalous hexagon diagrams at one-loop in string perturbationtheory. It is of ourse among the renowned peuliarities of the gauge groupsE8 � E8 and SO(32) that the non-fatorisable anomalies vanish by themselvesand the fatorisable ones an be ast into a form suitable to be anelled by addinga one-loop ounter term. This ounter term involves the two-form potential B(2)and is therefore, aording to (2.4), not gauge invariant. The resulting lassialanomalies absorb the one-loop �eld theoreti anomalies, thus rendering the theorywell-de�ned. Sine we will make heavy use of it in the sequel, let us display theGreen-Shwarz anomaly anelling one-loop ounter term [79, 80℄,SGS = 124 (2�)5 �0 ZM(10) B(2) ^X8; (2.6)where the eight-form X8 readsX8 = 124TrF 4 � 17200 �TrF 2�2 � 1240 �TrF 2� �trR2�+ 18trR4 + 132 �trR2�2 :(2.7)2The 80 and the 8 are of opposite hirality.18



Ten-dimensional Hodge duality relates the Kalb-Ramond two-form to a six-form B(6) via ?10 dB(2) = e2�10 dB(6): (2.8)This suggests the existene of a �ve-dimensional objet as the soure for B(6) andtherefore as the magneti dual of the fundamental string to whih B(2) ouples.These heteroti �ve-branes are genuinely non-perturbative objets. The naturalframework to study them is onsequently the strong oupling limit of the heterotitheory. In this regime the parallels between the E8 � E8 and the SO(32) theoryome to an end and we need to distinguish as to whih theory we are referringto. For gauge group E8�E8 the strong oupling limit is given by Horava-Wittentheory [77℄, whih an be viewed, in the low-energy approximation, as eleven-dimensional supergravity on the interval S1=Z2. We will disuss some aspets ofthis theory relevant for our purposes in detail later on in setion (3.4.4). Theobjet whih redues to the heteroti �ve-brane in ten dimensions upon om-pati�ation of Horava-Witten theory along the eleventh dimension is known asthe M5-brane. It represents the magneti dual of the membranes as the funda-mental entities in M-theory. The world volume �a of the M5-brane supports aself-dual tensor �eld eBa, whih will play a role of similar importane as its ousinB(2) in setion (3.4.4). The e�etive ation governing the �ve-brane dynamisin ten dimensions an be inferred by dimensionally reduing the known Pasti-Sorokin-Tonin ation for the orresponding M5-brane in heteroti M-theory. Forthe details of the full PST ation we refer to [81℄, and for the parts of primeinterest to us again to setion (3.4.4).By ontrast, the SO(32) heteroti string redues in the limit of strong stringoupling to the weakly oupled Type I theory [82℄. The low-energy degrees offreedom of both theories are related to one another by S-duality. Now the TypeI theory, too, involves a �ve-brane, the D5-brane, whih is therefore S-dual tothe SO(32) heteroti �ve-brane. As a result, the dynamis of the latter di�ersonsiderably from the one of its ounterpart in the E8�E8 theory in that it sup-ports sympleti gauge �elds on its worldvolume and gives rise to hiral fermionsharged under this sympleti group [83℄. Again, we postpone a more detaileddisussion to setion (4.1).Having realled the di�erent strong oupling origins of the E8 � E8 and theSO(32) �ve-brane, we stress that in both ases their role as magneti soures forthe Kalb-Ramond �eld is enoded in the oupling to B(6)SWZ5 = �Xa NaT5 Z�a B(6) = �Xa NaT5 ZM(10) B(6) ^ Æ(�a); (2.9)where we onsider staks ofNa �ve-branes with worldvolume �a and Æ(�a) denotesthe four-form Poinar�e dual to �a. The �ve-brane tension as appearing abooveis T5 = ((2�)5�03)�1. Note however the impliit fator of e�2�10 present in B(6)19



as a onsequene of the relation (2.8) so that e�etively, the �ve-brane tension isof order 1g2s .Sine it will be of great importane for our purposes later on, let us take aloser look at the ation for B(2) respetively B(6). Dualizing the kineti ationof H and extrating all terms involving B(6) leads us to� 14�210 ZM(10) e2�10dB(6) ^ ?dB(6) + �08�210 ZM(10) B(6) ^ �trF 2 � trR2 �4(2�)2Xa Na Æ(�a)�: (2.10)The equation of motion after variation of B(6) follows asd(e2�10 ? dB(6)) = �04 �trF 2 � trR2 � 4(2�)2Xa Na Æ(�a)�: (2.11)In view of (2.8) and (2.2), the left-hand side is of ourse nothing other than dH 3,and (2.11) onstitutes its modi�ed Bianhi identity. Sine dH is an exat form,so must be the expression inside the brakets on the right. This statement is theso-alled Green-Shwarz anomaly anellation or tadpole anellation onditionin the presene of �ve-branes,14(2�)2 (trF 2 � trR2)�Xa Na Æ(�a) = [0℄; (2.12)whih requires that the left-hand side has to vanish in ohomology.2.2 Calabi-Yau ompati�ationOur hief interest is in ompati�ations of the ten-dimensional string theorydown to four dimensions [28℄. From now on, we will therefore onsider the topol-ogy of ten-dimensional spaetime to be given by the diret produt4M(10) = R(1;3) �M: (2.13)For stability reasons we insist that supersymmetry be unbroken at the om-pati�ation sale, in whih ase the internal six-dimensional manifold has to3One should de�nitely resist the temptation of equating the left-hand side simply to zero,using that d(e2�10 ? dB(6)) = d(dB(2)). Reall that dB(2) is not globally de�ned and thereforeis not an exat form, so d(dB(2)) need not vanish.4We will not onsider the general ase of warped produts in this thesis. Also we will simplywrite R1;3 for the external spae although we will at no plae disuss issues like the osmologialonstant et. Our fous will be exlusively on the gauge setor.20



admit a globally de�ned Killing spinor �. By standard arguments this reduesthe struture group of its tangent bundle to SU(3) (f. [84℄ for a formulation in themodern language of G-strutures, for a reent review of related ideas and morereferenes see also [85℄). Unbroken N = 1 supersymmetry in four dimensionsamounts to a solution of the Killing spinor equations, i.e. vanishing of the super-variation of the gravitino  , the dilatino � and the gaugino � as the fermionisuperpartners of the bosoni �elds entering the ation (2.1). The supervariationsrelate the fermioni zero-modes to the bosoni ones and in a given vauum statedepend on the expetation values of the latter. In order to keep four-dimensionalLorentz invariane, only the internal omponents of the bosoni �elds may take anon-trivial vauum expetation value. Shematially5, the Killing equations, atstring tree-level and at lowest order in �0, read [70℄0 = Æ = r�+ 14 H�;0 = Æ� = =��10� + 12 H�;0 = Æ� = 2F�: (2.14)Here H and F denote a suitable Gamma matrix ontration with the internalbakground values for the three-form and Yang-Mills �eld strength, respetively.Clearly, in the absene of a vauum expetation value (VEV) for the bak-ground �eld strength H, the �rst equation implies that the Killing spinor beovariantly onstant with respet to the Levi-Civita onnetion. It follows thatM is to be of SU(3) holonomy, i.e. a Calabi-Yau manifold. We restrit all ouronsiderations to this speial ase, together with a onstant dilaton in order tosatisfy also the dilatino equation. More preisely, we do not onsider bakgroundvalues for H at zeroeth order in �0. Nonetheless, the Bianhi identity (2.11) for Hrelates a non-trivial VEV for the internal urvature as well as for the Yang-Mills�elds to a VEV for H, whih, however, arises at linear order in �0. As reviewede.g. in [9℄, orretions to the Calabi-Yau ondition at this order do not breaksupersymmetry spontaneously, but an be aounted for by orreting the va-uum order by order. Note also that the gravitational bakreation of the gaugeux is likewise of order �0, as an be seen by omparing the di�erent orders of�0 of the Einstein-Hilbert term and the Yang-Mills kineti term in the ation(2.1). Consequently, at zeroeth order in �0, the Calabi-Yau indeed solves the six-dimensional Einstein equations. As long as we are in the genuine supergravityregime, where the typial length sale of the internal manifold is muh biggerthat p�0, it is therefore justi�ed to neglet both these e�ets. The more generalase in the ontext of heteroti ompati�ations was already pioneered in [70℄and has reently enjoyed revived interest among physiists and mathematiians,see e.g. [71{74℄. It will require some more sophistiated analysis in the ase of in-5Note that this simple form of the Killing spinor equations involves some resaling of thebosoni and fermioni �elds whih is detailed in [70℄ and whih we do not display here sine itwill play no role in the sequel. 21



terest to us and will be the subjet of future work. The supersymmetry onditionfor the Yang-Mills �eld strength will be disussed in detail in the next setion.If supersymmetry is preserved, the e�etive theory upon ompati�ation isgiven, again in the zero-mode approximation, by four-dimensional N = 1 su-pergravity. Most remarkably, the harateristis of the four-dimensional e�etivedynamis is entirely aptured by the topology and geometry of the internal mani-fold together with a onsistent hoie of vauum expetation values for the bosonizero modes enountered in the previous setion.We will extensively exploit this fat in order to desribe the dynamis of thegauge setor. A priori, if we simply ompatify the theory on a Calabi-Yau man-ifold without extra struture, the four-dimensional gauge �elds transform in theadjoint representation of the original heteroti gauge group eG. In general, how-ever, the internal spae may arry bakground gauge ux. This means that someof the gauge bosons orresponding to the generators of some subgroup G � eGmay take a non-trivial vauum expetation value onM. Of ourse not any arbi-trary on�guration of gauge uxes is allowed: The bakground values of the �eldstrength are subjet to the Bianhi identity and the Yang-Mills equations of mo-tion, together with additional onstraints if they are to preserve supersymmetry.Pure �eld theoreti onsiderations imply that the four-dimensional gauge groupis broken to the ommutant H of G in the original gauge group eG,G � eG �! H = eG=G: (2.15)In more mathematial terms, the e�etive gauge setor is therefore governedby the suitable embedding of a bakground gauge bundle W overM with stru-ture group G into the full E8�E8 or SO(32) bundle [39℄. Note that the require-ment that the bakground gauge �eld satisfy the Bianhi identity is automatiallyful�lled if it arises as the onnetion of a vetor bundle whereas the Yang-Millsequations of motion have to be imposed separately. Remarkably, a large amountof physial information is present already in the purely topologial part of thebundle data, most notably its various harateristi lasses (see appendix A.1 fora olletion of some of their properties). This is true in partiular as far as theemergene of hiral fermions in four dimensions is onerned, as we now review.The ten-dimensional massless fermions harged under the Yang-Mills setorare the gauginos as the fermioni superpartners of the gauge bosons and transformin the 496-dimensional adjoint representation of eG. The embedding (2.15) induesthe deomposition of this adjoint into the various irreduible representations ofthe four-dimensional gauge group H and the struture group G of the internalbundle, 496 �!Mj (Rj; rj): (2.16)That is, eah four-dimensional massless fermion in representation Rj of the unbro-ken gauge group arries spei� harges, enoded in rj, also under the struture22



group of the bakground bundle. Let us state that to eah rj we an assoiate aorresponding internal bundle Uj whih is essentially some tensor produt bundleofW or its subbundles. We will explain how to determine Uj when disussing theonrete embeddings we are interested in. This entanglement between the four-dimensional properties Rj of a massless state and its internal origin is the basisfor determining the massless spetrum of a ompati�ation from the geometry ofthe internal bakground bundles. In view of the splitting of the ten-dimensionalDira operator =D10 = =D4 + =D6 under ompati�ation on M, it is furthermorelear that the fermioni zero modes in four dimensions are given by the kernelof the internal Dira operator. Furthermore, the splitting of the ten-dimensionalhirality operator into the four- and six-dimensional ones is suh that the four-dimensional hirality of the fermion equals its six-dimensional one. As a matterof fat, on a Calabi-Yau manifold the positive (negative) hirality subspae of thekernel of the Dira operator is isomorphi to the even (odd) degree subspae ofthe Dolbeault ohomology. Sine it would lead too far to detail the derivation ofthis standard theorem, we refer e.g. to [9℄ for an aount. Taking this for granted,we onlude that the fermioni zero modes in the representation Rj under H aregiven by the Dolbeault ohomology H�(M; Uj) of the internal bundle Uj whih isassoiated to the representation rj under G. Of ourse, if N = 1 supersymmetryis unbroken eah fermion appears with a omplex bosoni superpartner to forma hiral supermultiplet. Most importantly, if the representation rj is omplex,the fermioni spetrum is hiral and the net-number of hiral matter multipletsis given by the index of the Dolbeault omplex twisted by the respetive bundleUj. It is the ontent of the Riemann-Roh-Hirzebruh theorem that this indexan be omputed as the Euler number�(M; Uj) = 3Xi=0 (�1)i dim(H i(M; Uj)= ZM �h3(Uj) + 112 2(TM) 1(Uj)� : (2.17)To be rystal lear, H i(M; Uj) denotes the ohomology group of Uj-valued (0; i)-forms onM under the Dolbeault operator �. In fat, for a holomorphi bundle Ujover a omplex n-fold, by Serre duality not all ohomology lasses are independentdue to the relation H i(M; Uj) ' Hn�i(M; U�j 
 KM); (2.18)where U�j denotes the omplex onjugate bundle to Uj and KM is the anonialbundle of M with 1(KM) = �1(TM). Clearly, KM is trivial for Calabi-Yaumanifolds.We state at this stage already that for a non-trivial �-stable bundle of zeroslope neessarily H0(M; Uj) = 0 = H3(M; Uj) and the same holds true for theonjugate bundle U�j . Fermions transforming in the representations Rj orre-sponding to a non-trivial internal rj and thus to a non-trivial Uj are therefore23



ounted preisely by H1(M; Uj) and H2(M; Uj) ' H1(M; U�j ) as long as Uj isstable. For the bundles whih ount the hiral part of the spetrum, this willalways be the ase. In view of the desribed relation between the four- andsix-dimensional hirality and the Dolbeault degree, the �rst ohomology groupounts the left-handed and the latter the right-handed hiral multiplets.On the other hand, as follows from the group theoreti deomposition ofthe 496, the four-dimensional gauge bosons transform in the trivial represen-tation under G 6, and the ohomology of the trivial bundle O on a Calabi-Yau is simply dimH�(M;O) = (1; 0; 0; 1). This is obvious if one realls thatH i(M;O) = H(0;i)(M) and the Hodge numbers of a Calabi-Yau are given byh(0;0) = 1 = h(0;3) and h(0;1) = 0 = h(0;2). H0 and H3 therefore ount vetor mul-tiplets, whih will be of use later on when we detet possible gauge enhanementsby searhing for additional ohomology groups of the trivial bundle.Another generi feature is the appearane of singlets under the four-dimensionalgauge groups, but transforming in the adjoint representation of the internal gaugegroup. These singlets are the moduli �elds assoiated to the deformations of theinternal bundle. For SU(N) bundles V , the adjoint is simply the trae free partof V 
 V �. Stability of V implies that H0(M; V 
 V �) = 1 = H3(M; V 
 V �).Subtrating this single element, whih orresponds preisely to the trae part, we�nd that the bundle moduli are ounted by H1(M; V 
 V �).Finally, we will be interested in ompati�ations featuring also the preseneof non-perturbative �ve-branes. In those ases we leave, stritly speaking, theregime of exatly zero string oupling, gs = 0, sine the tension of the �ve-branes sales like 1g2s and we annot aept for their mass to diverge, of ourse.Even though gs > 0, this does not imply, however, that we are inevitably be-yond the perturbative framework sine we an still onstrain ourselves to smallnon-vanishing gs suh that all perturbative e�ets higher than the one-loop leveland even more so additional non-perturbative orretions an onsistently be ne-gleted. In the ase of the E8�E8 heteroti string, the strong oupling limit of thetheory was pointed out already to be given by eleven-dimensional M-theory onS1=Z2, with the two E8 fators arising from the two orbifold �xed planes at the op-posite ends of the interval. We will always assume that the heteroti �ve-branes,if present, are loalised in the eleven-dimensional bulk between the E8-planes sothat they do not interfere with the geometry of the gauge bundles, possibly lead-ing to hirality or gauge group hanging small instanton transitions [86℄. Thisassumption is standard in all heteroti ompati�ations with �ve-branes in theliterature and should of ourse be eventually justi�ed by expliitly omputingthe e�ets �xing the �ve-brane position along the eleventh dimension for on-rete models. As stated already, we will, in this work, not be onerned withany issues of geometri moduli �xing, postponing this important, but involved6This is true as long as the gauge group is not enhaned due to degeneraies of the embeddingof the internal bundles. The lass of SO(32) vaua we will analyse in hapter 4 is preisely ofthat form. 24



question for a future analysis.2.3 Consisteny onditions for model buildingThe high degree of onsisteny of String Theory in its fundamental �-modelformulation on the worldsheet translates itself into severe onstraints whih thegeometri data in the e�etive desription have to satisfy in order to de�ne aonsistent supersymmetri string vauum. These an be summarized as follows:� At tree-level, the gauge bundles have to be holomorphi, �-stable and satisfythe Donaldson-Uhlenbek-Yau equation.� The �ve-branes have to wrap holomorphi two-yles on the internal man-ifoldM.� The gauge bundle and �ve-branes are subjet to the anomaly anellationondition.� The seond Stiefel-Whitney lass of the gauge bundle has to vanish.Let us turn to a detailed disussion of these onstraints.The gauge degrees of freedom of the bakground bundle are subjet to theYang-Mills equation of motion and the Bianhi identity. Moreover, as we notedalready, we insist on unbroken supersymmetry at the ompati�ation sale toguarantee physial stability of the vauum. Reall from (2.14) that the super-symmetry ondition on the gauge degrees of freedom is determined by demandingthat the variation of the gaugino vanish in the vauum, Æ� = 0. At string tree-level, this yields the following two equations in terms of holomorphi oordinatesonM involving the �eld strength of the bakground gauge �elds (see e.g. [9℄),Fab = Fab = 0; gab Fab = 0: (2.19)The �rst equation implies that W has to be a holomorphi vetor bundle, i.ethat it has to admit a holomorphi onnetion. Due to its holomorphiity, thisonstraint an only arise as an F-term in the e�etive N = 1 supergravity de-sription and therefore does not reeive any perturbative orretions in �0 or thestring loop expansion [87℄.The seond equation in (2.19) an be onveniently rewritten as J ^J ^F = 0by taking the Hodge dual. This is atually the zero-slope limit of the generalHermitian Yang-Mills (HYM) equationJ ^ J ^ F = 2� �(W ) volM id; (2.20)where id denotes the identity matrix ating on the �bre and J represents theK�ahler form of the internal Calabi-Yau. As the name suggests, in ombinationwith holomorphiity and the Bianhi identity for F , this ondition automatially25



implies that the Yang-Mills equation of motion is satis�ed. In (2.20) the slope� of a vetor bundle V with respet to the K�ahler form J on a manifoldM isde�ned as7 �(V) = 1rk(V) ZM J ^ J ^ 1(V): (2.21)Aording to a theorem by Donaldson [88℄ and by Uhlenbek and Yau [89℄, (2.20)has a unique solution if and only if the vetor bundle W in question is �-stable8,i.e. if for eah subbundle V of W with 0 < rk(V) < rk(W ) one has�(V) < �(W ): (2.22)Consequently, the zero-slope limit of the Hermitian Yang-Mills equations (2.19)relevant at tree level is satis�ed preisely by holomorphi �-stable bundles whihmeet in addition the integrability onditionZM J ^ J ^ 1(W ) = 0: (2.23)In ase the bundle W is the Whitney sum of several bundles, as it will be inthe ase of interest to us, eah summand bundle has to be stable and satisfy(2.23). We will refer to the latter onstraints in the following as the tree-levelDonaldson-Uhlenbek-Yau (DUY) equation. It is important to realize that theondition of �-stability is ompletely independent of the atual numerial valuewhih the slope � takes. The latter is enoded in the DUY equation, whihinsists on �(W ) = 0 and therefore makes lear that the supersymmetry onditionat tree-level is not merely (2.20), but a forteriori J ^ J ^ F = 0. Consider forexample a omplex line bundle L, i.e. a omplex vetor bundle with struturegroup U(1). The Bianhi identity dF = 0 implies in this ase that J ^ J ^ F ,together with dJ = 0 for K�ahler manifolds, is automatially a onstant multipleof the volume form so that the loal HYM equation (2.20) is trivially satis�ed.This is in agreement with the DUY theorem sine a line bundle over a Calabi-Yau manifold is also trivially stable. The tree-level supersymmetry ondition isthus merely given by the DUY equation (2.23). Clearly this is no more true fornon-abelian bundles.We stress that the Hermitian Yang-Mills and also the DUY ondition in theform above are valid only at tree-level and were derived for situations where noother �elds besides the gauge �elds take a non-zero vauum expetation value.As given in (2.23), the DUY ondition puts a onstraint on the K�ahler form of the7The fator of 2� in the Hermitian Yang-Mills equation is just a onsequene of the de�nitionof 1(V ) = 12� trF . Furthermore we have normalized the volume ofM to one.8To be preise, it is suÆient that the bundle be �-semistable. In that ase, however, it maysplit into subbundles suh that the resulting struture group is a subgroup of the original one.The ommutant of the struture group in eG, and thus the visible gauge group, would thereforeget enhaned during this proess, whih we would learly like to avoid in well-de�ned physialvaua. 26



internal manifold, whih after all annot take arbitrary values but has to lie insidethe so-alled K�ahler one. We will analyse these onstraints in great detail in thesequel and derive perturbative orretions both to the stability ondition and tothe DUY equation. Besides we will see expliitly how the DUY equation emergesalso as a D-term onstraint from the four-dimensional e�etive supergravity.Let us turn to the supersymmetry ondition for the heteroti �ve-branes. Inorder to keep Lorentz invariane in four dimensions, we only allow for situationswhere the worldvolume �a of the �ve-brane �lls the four large dimensions andtherefore wraps in addition an internal two-yle, denoted by a [90℄. The stan-dard arguments involving �-symmetry on the worldvolume of the �ve-brane yieldthat for unbroken supersymmetry the two-yle a has to be holomorphi [91℄.All on�gurations onsidered heneforth will be of this type. Put di�erently, theohomology lass assoiated with the two-yle a must be e�etive9. The setof e�etive lasses forms a one, the so-alled Mori one, in H2(M;Z). This isdue to the fat that a linear ombination of two-forms with positive integer oef-�ients again orresponds to an e�etive lass if the original two-forms do. It isonvenient to introdue furthermore the notation a for the element in H4(M;Z)Poinar�e dual to a.We have already enountered the anomaly anellation ondition (2.12) whihtranslates into a onstraint to be satis�ed by the internal gauge bundle W , thetangent bundle TM of the internal spae and the on�guration of heteroti �ve-branes. As we reall, it arises simply as the Bianhi identity for the three-form�eld strengthH. Its violation results in the appearane of gauge and gravitationalanomalies in the e�etive theory, sine (2.12) is a neessary and suÆient ondi-tion for the ten-dimensional anomaly anellation mehanism to work. Turningthe arguments around we an - and will - read (2.12) as the onstraint that theohomology lass [W ℄10 de�ned by[W ℄ = h 14(2�)2 trF 2i� h 14(2�)2 trR2i (2.24)must admit the interpretation as the lass Poinar�e dual to the homology lassof a sum of holomorphi urves. Here F and R denote the internal bakground�eld strength with values in G and the urvature two-form on TM, respetively.Aording to what we just said this translates into the requirement that theHodge dual lass of [W ℄ be e�etive. That is, we insist that the tadpole of thegauge instantons and the Calabi-Yau tangent bundle an just be anelled by asystem of supersymmetri �ve-branes. Failure of e�etiveness of [W ℄ (or morepreisely its Hodge dual lass) means that the �ve-branes, whih we an always9Reall that in general, e�etiveness of a ohomology lass of two-forms just states that itsrepresentatives are indeed dual to a smooth holomorphi urve, as required.10We trust that it does not onfuse the reader that we stik to the standard notation in theliterature and denote the �ve-brane lass as [W ℄. It will always be lear if W refers to theinternal gauge bundle or the �ve-brane lass. 27



introdue, are non-supersymmetri and in partiular non-BPS with respet to thegauge setor. Due to potential instabilities, we do not onsider suh situations inthis work11.There is a slightly more subtle topologial ondition on the gauge bundleswhih states that the seond Stiefel-Whitney lass of W has to vanish. This re-quirement was originally derived from the absene of world-sheet anomalies in thetwo-dimensional non-linear sigma model and we refer to [94,95℄ for more details.Sine the seond Stiefel-Whitney lass of a holomorphi bundle is isomorphi tothe Z2-restrition of its �rst Chern lass [30℄, the ondition is satis�ed preiselyif 1(W ) 2 H2(M; 2Z): (2.25)In the ase of the SO(32) string we will �nd a simple spaetime interpretationfor (2.25) as being equivalent to the absene of a global Witten anomaly on the�ve-branes in every topologial setor of the vauum. Due to its role as the an-ellation ondition for the torsion K-theory harges of non-BPS D7-branes in theS-dual Type I framework [96℄, we will sometimes refer to (2.25) as the K-theoryonstraint. We are not aware of a similar spaetime interpretation for the E8�E8theory.

11See, however, [92, 93℄ for a proposal of supersymmetry breaking vaua in the presene ofanti-�ve-branes. 28



Chapter 3The E8 �E8 Heteroti string withunitary bundlesThe vauum struture of perturbative four-dimensional heteroti ompati�a-tions is, as we reviewed in the previous hapter, spei�ed by a stable, holomor-phi vetor bundle W over the internal Calabi-Yau manifoldM together with anembedding of its struture group G into the original ten-dimensional heterotigauge group eG. By an appropriate hoie of G and the bundle data, one anthereby try and onstrut four-dimensional vaua with phenomenologially ap-pealing gauge group and matter ontent. As we also realled in setion 1.2, thestandard realisation of GUT groups in this ontext is to embed an an SU(4)or SU(5) bundle into one of the two E8 fators leading to SO(10) and SU(5),respetively, as the resulting observable gauge groups. The hiral matter aris-ing in these senarios transforms in the (16) or (10) + (5) representation of thegauge group. The spetrum does not provide any appropriate vetor-like matter,i.e. Higgs �elds, required to break the GUT group down to the Standard Model.This drawbak is overome by breaking SO(10) or SU(5) via non-trivial dis-rete Wilson lines, whih in general an only exist if the �rst homotopy group ofthe Calabi-Yau is non-trivial. Suh Calabi-Yau threefolds an be onstruted bytaking free disrete quotients of a Calabi-Yau with vanishing fundamental group.The eletroweak Higgs an appear from the (10) or the (5) + (5) representations.From the physial point of view, this is a very simple and ompelling piture andreently models whose partile spetrum is quite lose to the Standard Modelhave been onstruted [44, 49, 51℄.The starting point for our investigations is the following fat: The desribedbreaking of the GUT gauge symmetry down to the Standard Model via disreteWilson lines involves, in more mathematial terms, at abelian bundles. This,however, is not the most general type of onstrution. An obvious question isto explore whether one an use also non-at line bundles to obtain phenomeno-logially interesting GUT or MSSM-like models from the E8 � E8 string. Theontent of this hapter is a thorough and systemati analysis of this idea, based29



on [97, 98℄.1 We will �rst have to understand the group theoreti embeddingof vetor bundles with non-semisimple struture group and the resulting matterontent upon deomposition of the adjoint representation of E8 � E8. We willthen proeed to a detailed analysis of the low-energy e�etive theory in four di-mensions. The presene of anomalous U(1) fators in the visible gauge groupneessitates a areful study of the anomaly anellation mehanism, whih ispartiularly subtle in the presene of non-perturbative �ve-branes. We will de-rive new anomaly anelling terms upon redution of the �ve-brane ation fromheteroti M-theory down to ten dimensions. The importane of these terms isobvious only in the presene of U(1) groups and has therefore been overlookedpreviously. Most importantly, the various one-loop terms provided by the fullGreen-Shwarz mehanism will further lead us to the disovery of perturbativeorretions to the D-term superymmetry onditions a�eting in partiular therelevant stability ondition for the bakground bundles. We will onlude ouranalysis of the general features of the E8�E8 heteroti string with unitary bun-dles by exemplifying the rih embedding patterns leading to ipped SU(5) GUTmodels or diretly to the Standard Model gauge symmetry even on manifoldswithout Wilson lines. Further phenomenologial appliations of the ideas pre-sented in this hapter are postponed to hapter 7.3.1 Group theoreti embeddingThe vetor bundles we onsider are of the following generi formW =W1 �W2; (3.1)where the struture group Gi of Wi is embedded into the �rst and seond fatorof E(1)8 � E(2)8 , respetively, with ommutant Hi,G1 �G2 � E(1)8 � E(2)8 ! H1 �H2: (3.2)For eah building blok Wi we onsider the Whitney sum of SU(Ni) or U(Ni)bundles. They are hosen suh that the struture group of Wi ontains at leastone abelian fator. In order to determine the unbroken gauge group Hi relevantfor the physis in the string vauum, we need to reall some group theoretigeneralities onerning the embedding of non-semisimple Gi � E(i)8 .As a matter of fat, it is not possible to diretly embed the unitary group U(N)into E8 beause all subgroups of the latter are semi-simple. One therefore has totake a detour by �rst hoosing some auxiliary semi-simple subgroup SU(Ni) �1A study of U(N) bundles in the framework of the spetral over onstrution has appearedreently in [69℄. Besides that, to our knowledge, the only onstrutions prior to our analysis [97℄are some sattered results on aspets of four-dimensional models [30,99,100℄ and a few paperson �ve- and six-dimensional models [66{68,70,101℄. Our analysis di�ers onsiderably from someof the onlusions in [100℄ and [68℄. Reently, more aspets of the framework of [97℄ have beenanalysed in [102℄ and [103℄. 30



E(i)8 .2 Of ourse, we are very familiar with the embedding of this SU(Ni) into E(i)8by onsidering the usual branhing rules for E(i)8 (see e.g. [104℄). Let us olletivelydenote the ommutant of SU(Ni) in E(i)8 as E9�Ni. Conretely, forNi = 7; 6; : : : ; 2it is known to be given by SU(2), SU(3)� SU(2), SU(5), Spin(10), E6 and E7,respetively.What may be not so familiar is the seond step, the embedding of the non-semisimple struture group Gi into this auxiliary SU(Ni). It an be aomplishedin two distint ways.The �rst type of onstrution - dubbed of type A in the sequel - is basedon the embedding SU(Ni) � U(1)Mi � SU(Ni + Mi) and invokes in its mostelementary version the Whitney sumWi = VNi � MiMmi=1Lmi (Type A): (3.3)Here, the vetor bundle VNi has struture group SU(Ni) � SU(Ni +Mi) andthe �eld strengths of the line bundles Lmi are identi�ed with the spei� U(1)generators in SU(Ni +Mi) whih ommute with the generators of the hosenSU(Ni). To be more preise, the U(1) generators are determined iteratively byfollowing the stepwise deompositionSU(Ni +Mi)! SU(Ni +Mi � 1)� U(1)1 ! : : :! SU(Ni)� MiYmi=1U(1)mi :(3.4)Clearly, in eah step the new U(1)ki generator Tki an be represented by thediagonal SU(Ni +Mi) matrixTki = diagNi+Mi( 1; : : : ; 1| {z }Ni+Mi�ki times;�(Ni +Mi � ki); 0; : : : ; 0): (3.5)This realizes the promised embedding of the struture group SU(Ni)�U(1)Mi ofthe bundleWi into SU(Ni+Mi). We antiipate that the states in the fundamentalrepresentation of the line bundle Lmi an be taken to arry unit U(1)mi harge,thus �xing the otherwise arbitrary U(1) harge normalization. The various linebundles are not orrelated among one another and in partiular VNi gives noontribution to the U(1) harges. For later purposes, we summarize this bywriting Qki(Lmi) = Æki;mi ; Qki(VNi) = 0: (3.6)The relevane of this U(1)mi harge whih we thereby attribute to the line andvetor bundles will beome lear when we disuss the ohomology groups (3.18)2For the moment, let us onentrate on the ase where we really have only one fator ofSU(Ni). Generalizations are obvious and will be skethed at the end of this setion.31



ounting the massless spetrum.Example:We illustrate this Type A embedding by a simple example. Consider onlyone E8 fator. In the �rst step of our onstrution, take N = 4, orrespondingto the embedding SU(4) � E8 ! SO(10). Now we deompose the internalSU(4) as SU(4) ! SU(3) � U(1). This is aomplished by means of a bundleW = V � L, where V is a rank three bundle with 1(V ) = 0 and L a omplexline bundle. The struture group SU(3) � U(1) of W is embedded into thisSU(4) by identifying the �eld strength of the onnetion of L with the SU(4)generator T = diag(1; 1; 1;�3). L is assigned U(1) harge 1. In all, this realizesthe embeddingSU(3)� U(1) � SU(4) � E8 �! SO(10)� U(1): (3.7)As an alternative to the type A onstrution, one an embed U(Ni) bundlesVNi into E(i)8 by means of a partiular proedure where one atually starts witha U(Ni)� U(1)Mi bundle Wi with 1(Wi) = 0. To emphasize the di�erene fromthe ansatz (3.3) for SU(Ni)� U(1) bundles, let us adopt the notationWi = VNi � MiMmi=1L�1mi with 1(Wi) = 0 (Type B) (3.8)for U(Ni)� U(1)Mi bundles.What distinguishes the two onstrutions is that in (3.8) the line bundles areno more independent, but are hosen just to absorb the diagonal U(1)-hargeof U(Ni) in the splitting SU(Ni +Mi) ! U(Ni) � U(1)Mi. At the level of thebundles, this means that, as indiated, the �rst Chern lasses of the varioussummand bundles add to zero. Group theoretially, one has to �x the embeddingof the U(1) part of the struture group into SU(Ni +Mi). For ki = 1; : : : ;Mithis an be desribed by the hargesQki = (Qki(VNi); : : : ; Qki(VNi)| {z }Ni times ; Qki(L�11 ); : : : ; Qki(L�1mi)) (3.9)with NiQki(VNi) + MiXmi=1Qki(L�1mi) = 0: (3.10)The onrete harge assignment is again found iteratively by invoking the deom-position (3.4), where in eah step we an use the freedom to hoose a normaliza-tion of the new abelian harge in order to writeQki = ( 1; : : : ; 1| {z }Ni+Mi�ki times;�(Ni +Mi � ki); 0; : : : ; 0); (3.11)32



whih learly di�ers from its previous analogue (3.6). Note that as a onsequeneof the orrelation between the U(1) part of the struture group of VNi and thatof line bundles, the bundle Wi has struture group SU(Ni) � U(1)Mi . For thedetailed omputation of the various anomalies assoiated with the U(1)-fators,it will turn out to be onvenient to introdue the matrixQkimi = Qki(VNi) +Qki(Lmi): (3.12)Example:Applying this onstrution to our toy SO(10) hain (3.7) we now take W =V �L�1, with V a U(3) bundle and the line bundle L hosen suh that 1(W ) =1(V ) � 1(L) = 0. Clearly, L an be attributed U(1) harge 3, V arries unitharge, and (3.10) is satis�ed with Q = (1; 1; 1;�3), see (3.9) and (3.11). Notealso that Q = 4.Both onstrutions (3.3) and (3.8) admit obvious generalizations: Instead ofonsidering only one non-abelian bundle VNi per E(i)8 , we an, of ourse, allow forseveral suitable SU(Nkii ) or U(Nkii ) fators and embed them into SU(Pki Nkii +Mi). The point is that when embedding U(1)mi into SU(Ni), we an alternativelyidentify its generator Tmi with any other diagonal SU(Ni) generator, induingthereby the branhing U(1)mi � SU(Ni) �! SU(Ai) � SU(Bi) � U(1) withAi +Bi = Ni. As far as the type B onstrution is onerned, the generalisationof the above is to realise the breaking U(Ni) �! U(Ai)�U(Bi), Ai+Bi = Ni. Asystemati desription of the latter type of embeddings has reently been givenin [105℄. Arbitrary iterations and ombinations are obvious.Let us summarize the systematis: As desribed, the unbroken gauge groupin four dimensions is given by the ommutant H1 � H2 of the struture groupG1�G2 � E(1)8 �E(2)8 . In partiular, its non-abelian part is determined - leavingaside the issue of additional enhanements for the moment - by the standard om-mutant of the SU(Ni) in E(i)8 . The detailed form of how the SU(Nkii ) or U(Nkii )groups are embedded into the SU(Ni) deides on the additional abelian groupfators whih an potentially our. It is lear that the abelian part of the stru-ture group is ontained in H (U(1) fators of type (i) aording to [30, 68, 106℄),beause the U(1)s ommute with themselves. There might also be additionalU(1) fators in H not ontained in the struture group (U(1) fators of type (ii)).Finally, we antiipate that, depending now on the partiular topologial proper-ties of the vetor bundles we hoose, the gauge group an be further enhaned orU(1) fators an beome massive due to the Green-Shwarz mehanism. Thesetwo issues will be explored more extensively in the subsequent setions.In view of the above, a omplete and systemati lassi�ation of all possibleembeddings and the resulting gauge groups is in priniple possible, but not very33



illuminating. Of potential phenomenologial interest is the embedding of thoseSU(Ni+Mi) fators leading either diretly to SU(3)�SU(2) as the non-abelianpart of the ommutant in E8 or to appealing GUT groups suh as SO(10), SU(5)or the Pati-Salam SU(4) � SU(2) � SU(2). On simply-onneted Calabi-Yaumanifolds, the need to realize the �nal gauge group breaking down to the MSSMwithout the aid of Wilson lines further eliminates SO(10) and Georgi-GlashowSU(5) sine the GUT Higgs states required in these senarios are absent in themassless spetrum. Sine a general feature of our approah is the appearaneof at least one U(1) fator in the gauge group, we are very naturally lead to allthose senarios where suh abelian groups our. Besides the diret realisationof the MSSM gauge setor this is most prominently the so-alled ipped GUTframework, in partiular the ipped SU(5) � U(1)X model [75℄. We antiipatethat - unlike the onventional GUT models - the GUT Higgsing merely requiressalars in muh smaller representations whih are present in the spetrum. Thisyields the important prospet of bypassing the need of Wilson lines and thereforenon-simply onneted bakground manifolds.In all onrete examples we will restrit ourselves to (at most) one non-abelianbundle per E(i)8 fator3. We will therefore stik in our notation to this ase.3.2 Massless spetrum and ohomology lassesTo determine the massless spetrum, one analyses, as in (2.16), the splitting ofthe adjoint representation of E8 � E8 into irreduible representations R(i)xi underthe four-dimensional group and the internal one, denoted as r(i)xi ,248� 248!Xx1 (R(1)x1 ; r(1)x1 ; 1; 1) +Xx2 (1; 1;R(2)x2 ; r(2)x2 ): (3.13)From the struture of (3.13) it appears at �rst sight that the two E(i)8 setorsare hidden to eah other in the sense that all states harged under, say, E(2)8 aresinglets under E(1)8 and vie versa. This is de�nitely true for the non-abelian partof the representations, whih arises after embedding the SU(Ni +Mi) into E(i)8 .However, in the presene of abelian gauge group fators, this piture hanges. Inthe original, diagonal basis of U(1)mi generators, it still holds true that the statesin representation R(1)x1 are unharged under the abelian group fators embeddedinto E(2)8 and vie versa. But we are free to perform a hange of basis and onsiderarbitrary linear ombinations of U(1) generators from both E(i)8 .4 In partiular,states in the representation, say, (1; 1;R(2)k ; r(2)k ), though oming as singlets underH1, may arry non-trivial harges under the U(1) group generated by the linear3As it turns out, these are preisely the phenomenologially appealing ones.4In fat, these may be just the massless ombinations surviving the Green-Shwarz meha-nism. Our favourite onstrution in hapter 7 will be preisely of this form.34



ombination am1Tm1 + bn2Tn2 of generators Tmi of U(1)mi . As a onsequene ofthe embedding of U(N) bundles, the two E(i)8 are no more ompletely hidden toeah other.In the lass of models based on the splitting SU(Ni+Mi)! SU(Ni)�U(1)Mifor the internal bundle, we an give a rather general losed expression for therepresentations r(i)xi whih our. It is based on the elementary observation thatunder SU(N + 1)! SU(N) � U(1) we have the following deomposition of thelowest irreduible representationsAdj(N+ 1) ! Adj(N)0 + (1)0 + (N)N+1 + (N)�(N+1);(N+ 1) ! (N)1 + 1�N ;�2(N+ 1) ! �2(N)2 + (N)�(N�1);�3(N+ 1) ! �3(N)3 +�2(N)�(N�2): (3.14)For the various antisymmetri tensor representations we write more suggestively�N + 1k � ! �Nk�k + � Nk � 1��(N+1�k): (3.15)One an now follow the various steps in the full deomposition SU(N +M) !SU(N) � U(1)M for eah of the two E(i)8 as in (3.4) and prove by indution thefollowing deomposition of the lowest representations whih we will enounter inour appliationsAdj(N+M) ! Adj(N)(0;:::;0) +M � (1)(0;:::;0) + M�1Xk=0 (N) ~Q1k + :!+ M�2Xj=0 M�j�2Xk=0 (1) ~Q2j;k + :! ;(N+M) ! (N)(1;:::;1) + M�1Xj=0 (1) ~Q3j ;�2(N+M) ! �2(N)(2;:::;2) + M�1Xk=0 (N) ~Q4k + M�2Xj=0 M�j�2Xk=0 (1) ~Q5j;k ; (3.16)�3(N+M) ! �3(N)(3;:::;3) + M�1Xk=0 �2(N) ~Q6k + M�2Xk=0 M�k�2Xl=0 (N) ~Q7k;l +M�3Xl=0 M�l�3Xj=0 M�j�l�3Xk=0 (1) ~Q8l;j;k :The various U(1) harge vetors of the states are given by~Q1k = (1; : : : ; 1| {z }k ; (N + k + 1); (N + k + 2); : : : ; (N +M));35



~Q2j;k = (0; : : : ; 0| {z }j ; (�N + j); 1; : : : ; 1| {z }k ; (N + j + k + 2); (N + j + k + 3);: : : ; (N +M));~Q3j = (0; : : : ; 0| {z }j ; �(N + j); 1; : : : ; 1);~Q4k = (1; : : : ; 1| {z }k ; (�N � k + 1); 2; : : : ; 2);~Q5j;k = (0; : : : ; 0| {z }j ; �(N + j); 1; : : : ; 1| {z }k ; �(N + k + j); 2; : : : ; 2);~Q6k = (2; : : : ; 2| {z }k ; �(N + k � 2); 3; : : : ; 3);~Q7k;l = (1; : : : ; 1| {z }k ; �(N + k � 1); 2; : : : ; 2| {z }l ; �(N + k + l � 1); 3; : : : ; 3);~Q8l;j;k = (0; : : : ; 0| {z }l ; �(N + l); 1; : : : ; 1| {z }j ; �(N + l + j); 2; : : : ; 2| {z }k ;�(N + l + j + k);3; : : : ; 3): (3.17)Following the disussion in setion (2.2), thanks to the non-trivial internalgauge bakground we �nd four-dimensional hiral matter in representations R(i)xispei�ed by the ohomology lass H�(M; U (i)xi ). What we an say at the generallevel is that the �elds in representation R(i)xi will be ounted by ohomology groupsof the form H�0B�M;V�ixiVNi 
 MiOmi=1(Lmi 
 : : :
 Lmi| {z }�mixi �times )1CA : (3.18)From the deomposition (3.16) we immediately identify the �ixi as the rank ofthe tensor representations of SU(Ni) ourring in the orresponding internal r(i)xi .The powers �mixi of the line bundle are determined by demanding that the U(1)kiharges qkixi of the representation R(i)xi be orretly reprodued. Very generally,they are found by solvingqkixi = �ixi Qki(VNi) +Xmi �mixi Qki(Lmi): (3.19)As we desribed, for embeddings of Type A, (3.3), the abelian harges of the o-urring representations are entirely due to the respetive line bundles, see (3.6).Thus the powers �mixi in (3.18) an simply be read o� from the entries in the hargevetors spei�ed in (3.16) and (3.17), sine after all �mixi = qmixi . By ontrast, forType B embeddings, (3.8), the various line bundles and the vetor bundle areinterrelated, and we need to take into aount the di�erent U(1) harges (3.11)36



arried by the bundles to determine the �mixi . In the expliit examples we willdisuss in the sequel this is straightforwardly aomplished.Example:We again onlude these general remarks by exemplifying the proedure for oursimple model de�ned in (3.7). The �rst embedding, SU(4) � E8 ! SO(10)indues the familiar deomposition248 �! (15; 1) + (1; 45) + (4; 16) + (4; 16) + (6; 10): (3.20)Now we deompose the internal SU(4) representations under SU(4)! SU(3)�U(1) aording to (3.14) as15 �! 80 + 10 + 34 + 3�4;4 �! 31 + 1�3;6 �! 32 + 3�2: (3.21)Combining these two steps leads to the spetrum5248 SU(3)�SO(10)�U(1)�! 8>>>><>>>>: (1; 45)0(8; 1)0 + (1; 1)0 + (3; 1)4 + (3; 1)�4(3; 16)1 + (1; 16)�3(3; 16)�1 + (1; 16)3(3; 10)2 + (3; 10)�2
9>>>>=>>>>; : (3.22)As a straightforward appliation of the presription (3.19) we �nd furthermorethe ohomology groups listed in table 3.1 ounting the massless spetrum. Inevaluating (3.19) we used that for Type A onstrutions, Q(V ) = 0 andQ(L) = 1,whereas for Type B the harge assignments are normalized suh that Q(V ) = 1and Q(L) = 3. In addition to the spetrum tabulated there we �nd of oursethe vetor multiplets ontaining the gauge bosons of SO(10) and of the U(1)fator and whih are ounted by H�(M;O) with dimH�(M;O) = (1; 0; 0; 1)due to the absene of ontinuous Wilson lines on a Calabi-Yau manifold. Notealso the additional singlets under the four-dimensional gauge group ounted byH�(M; adj(V )). These orrespond to the vetor bundle moduli of V and desribethe possible deformations of its geometry.3.3 Global onsisteny onditionsWe have seen that the bakground bundles are subjet to two topologial on-straints, (2.24) and (2.25), in order that the resulting string vauum be globallywell-de�ned. Now that we have spei�ed the onrete embeddings, it is time5Note that in the last line we used that the antisymmetri of SU(4) is given by the 3.37



reps. Cohomology (Type A) Cohomology (Type B)161 H�(M; V 
 L) H�(M; V )16�3 H�(M; L�3) H�(M; L�1)10�2 H�(M; V 
 L�2) = H�(M; V 
 L�1) =H�(M; (V2 V 
 L2)�) H�(M; (V2 V )�)14 H�(M; V 
 L4) H�(M; V 
 L)Table 3.1: Massless spetrum of H = SO(10)� U(1) models.to evaluate their impliations. For this purpose, let us establish the followingnotation whih will be used extensively in the subsequent disussions. The ten-dimensional �eld strengths F 10 = F 101 + F 102 are written, upon ompati�ation,as F 10i = Fi + F i, where Fi is the external four dimensional part taking valuesin Hi and F i denotes the internal six-dimensional part, whih takes values in thestruture group Gi of the bundle. Reall that the U(1) fators of type (i) arespeial in that they appear both in Gi and Hi. We denote the four-dimensionalU(1) two-form �eld strengths as fmi and the internal ones as fmi .It will furthermore turn out useful to relate the traes appearing in expressionslike (2.12) to the Chern lasses of the bakground gauge bundle and the tangentbundle of the internal manifold. This an be aomplished with the help ofidentities of the typetrE(i)8 F 2i = 130 Xxi 2 (2�)2 �h2(U (i)xi ) � dim (R(i)xi )�= 4 (2�)2 hh2(VNi) + MiXmi;ni=1 �mi;ni 1(Lmi) ^ 1(Lni)i; (3.23)tr(R2) = trSO(6)f (R2) = 2 trSU(3)f R2 = �4 (2�)22(T ): (3.24)For onstrutions of type A, the parameters �mi;ni depend on the onreteembedding; for type B, by ontrast, we will see in the expliit examples that infat �mi;ni = 12Æmi;ni. Similarly we introdue the expansion oeÆients �mi;ni and�mi;ni, whih will be important later on and whih are de�ned by evaluating thefollowing traes over the onrete spetrum,trE(i)8 (FiF i) = 130 Xxi 2��h1(U (i)xi )� dim (R(i)xi ) � ( MiXmi=1 qmixi fmi)�= MiXmi;ni=1 �mi;ni fmi ^ fni ;38



trE(i)8 (F 2i ) = 130Xxi dim(rixi)  trE9�Ni�MiR(i)xi (Fi)2 + dim(Rixi) Xmi;ni qmixi qnixi fmi ^ fni!= 2 trE9�Ni�Mif (F 2i ) + MiXmi;ni=1 �mi;ni fmi ^ fni : (3.25)By qmixi we denote again the harge of the representation R(i)xi under U(1)mi . Infat for deompositions of the type spei�ed in the previous setion, �mi;ni = 0 =�mi;ni = �mi;ni for mi 6= ni. This is a onsequene of the fat the U(1)mi arisefrom the embedding into some SU(Ni): In eah line of the deomposition (3.16),the separate trae over the individual U(1)mi vanishes.Finally, the tadpole ondition (2.12) an be ast into the form2Xi=1  h2(VNi) + MiXmi;n1=1 �mi;ni1(Lmi) ^ 1(Lni)!�Xa Naa = �2(T ): (3.26)Reall that a denotes the internal four-form Poinar�e dual to the holomorphitwo-yle a wrapped by the �ve-branes.The seond global onsisteny ondition, the K-theory onstraint (2.25), isseen to be non-trivial only for embeddings of type A, in whih ase it readsM1Xm1=1 1(Lm1) + M2Xm2=1 1(Lm2) 2 H2(M; 2Z): (3.27)Clearly for embeddings of type B, (3.8), with 1(Wi) = 0, it is automatiallysatis�ed.3.4 Anomaly anellationIn String Theory, all irreduible anomalies anel diretly due to the string on-sisteny onstraints [107℄ suh as tadpole anellation. The fatorisable ones, byontrast, do not. For the four-dimensional e�etive theory resulting from stringompati�ations this means that all non-abelian ubi gauge anomalies do an-el, whereas the mixed abelian-nonabelian, the mixed abelian-gravitational andthe ubi abelian ones do not. Sine eah U(1) bundle in the struture group ofthe bundle implies a U(1) gauge symmetry in four dimensions, all these latterthree anomalies appear. For the string vauum to be onsistent, they have to beanelled by a generalised Green-Shwarz mehanism6. This setion is devotedto a detailed study of the fatorisable anomalies due to the embedding of non-semisimple gauge bundles in the E8 � E8 theory and the assoiated anomalyanellation mehanism. The latter is by no means just of aademi interest,6The Green-Shwarz mehanism for several U(1) symmetries in E8�E8 heteroti ompat-i�ations has also been disussed in [68℄, but their results di�er from our onlusions.39



but allows us to extrat ruial information about the e�etive four-dimensional�eld theory. The point is that the Green-Shwarz mehanism provides ertainterms in the e�etive ation whih arise at one-loop in string perturbation the-ory. Apart from the issue of anomaly anellation, these terms will be the basisfor determining the threshold orretions of the gauge kineti funtions and one-loop orretions to the Donaldson-Uhlenbek-Yau supersymmetry ondition forthe gauge bundles. Even more fundamentally, the detailed form of the Green-Shwarz terms deides upon whih of the abelian gauge fators beome massivevia a St�ukelberg-type mehanism and thus only survive as global symmetries.A areful study of the Green-Shwarz mehanism is therefore of immediate rele-vane even if we were only interested in the most basi physial properties of thestring vaua.After presenting in setion (3.4.1) the �eld theoreti anomalies, we will thor-oughly explain the generalized Green-Shwarz mehanism, fousing in setion(3.4.2) on the ase without �ve-branes. It will turn out that the inlusion of�ve-branes requires additional Green-Shwarz terms, as beomes obvious only inthe ontext of abelian gauge bundles. These modi�ations will be disussed in(3.4.2) and derived from Horava-Witten theory in (3.4.4). We will onlude thissetion by summarizing the axion-gauge boson mass terms in (3.4.5) whih areimportant for onrete model building.3.4.1 Field theoreti anomaliesWe restrit the detailed disussion for brevity to the ase that VNi has struturegroup SU(Ni), i.e. embeddings of Type A; we will indiate the modi�ationsin the otherwise largely analogous analysis of U(Ni) bundles at the end of thissetion.The �eld theoreti mixed U(1)mi-E29�Nj and mixed U(1)mi -G2�� anomalies formi 2 f1; : : : ;Mig; i; j 2 1; 2 an be omputed by onsidering the hiral partilespetrum resulting from the onrete embedding. Mathematially, anomalies infour dimensions are haraterised by their anomaly six-forms [108℄, whih in ourase are given byAU(1)mi�E29�Ni � fmi ^ trE9�Nif F 2i "Xxi C(2)(R(i)xi ) qmixi �(M; Uxi)# ;AU(1)mi�G2�� � fmi ^ trR2 "Xxi qmixi dim(R(i)xi )�(M; Uxi)# ; (3.28)AU(1)mi�U(1)ni�U(1)pi � fmi ^ fni ^ fpi "Xxi qmixi qnixi qpixi dim(R(i)xi )�(M; Uxi)# :Here, C(2)(R(i)xi ) relates the traes over the representation R(i)xi of E9�Nj and the40



fundamental representation viatrR(i)xi F 2i = C(2)(R(i)xi ) trfF 2i ; (3.29)and its value for the relevant representations is listed in appendix A.2, whereas theqmixi onstitute, as we reall, the U(1)mi harge of the representation R(i)xi . Notethat in this diagonal basis of U(1) generators, the anomalies involving U(1)mistem exlusively from the states harged under the same E(i)8 , and there exist noU(1)m1 � E29�N2 anomalies.In view of the slightly umbersome general form of the ourring represen-tations (3.16), (3.17), it is not very illuminating to perform this �eld theoretiomputation for the most general embedding possible. On the other hand, it isa simple task to do so for a spei� model. The results are ompatible with thefollowing universal expression for the anomaly six-forms:AU(1)mi�E29�Ni � fmi ^ trF 21 �ZM fmi ^ �trF 2i � 12trR2�� ; (3.30)AU(1)mi�G2�� � fmi ^ trR2 �ZM fmi ^ �12 trF 2i � 5 trR2�� : (3.31)To arrive at expressions of this type we will have to use (3.23) in order to relatethe Chern lasses arising in the formula (2.17) for the net hirality of the repre-sentations to the traes over the �eld strengths appearing in (3.30) and (3.31).The U(1)mi-U(1)ni-U(1)pi anomalies are slightly more ompliated and an besummarized in the following general formAU(1)mi�U(1)ni�U(1)pi � fmi ^ fni ^ fpi hZM fmi ^ Ænipi �trF 2i � 12trR2�+minipi fmi ^ fni ^ f pii: (3.32)Here we have assumed that for at least two U(1)s being idential, the single oneis U(1)mi . For mi 6= ni 6= pi the �rst term in (3.32) is absent. For ni = pi therelative fator between the �rst and the seond term in (3.32) an be expressedas minini = 83 �ni;ni �minini : (3.33)�minini denotes the symmetry fator of the anomalous diagram, i.e. �minini = 3for mi 6= ni and �mimimi = 1. The parameter �ni;ni was de�ned in (3.23).For embeddings of Type B, the onrete expressions get slightly modi�ed as aonsequene of the di�erent powers of line bundles appearing in the hiral index�(M; Uxj). As it turns out, we need to introdue the linear ombinationbfmi = MiXki=1Qmiki fki (3.34)41



in terms of the harge matrix (3.12). The mixed abelian-nonabelian and gravita-tional anomaly six-forms in this ase di�er from the ones displayed in (3.30) onlyby the replaement fmi ! bfmi , whereas the ubi abelian anomalies are now bestsummarized byAU(1)mi�U(1)ni�U(1)pi � fmi ^ fni ^ fpi hZM ̂minipi bfmi ^ Ænipi �trF 21 � 12trR2�+ bfmi ^ bfni ^ bf pii (3.35)with ̂minipi = 38 �mi;mi�minipi : (3.36)3.4.2 The four-dimensional Green-Shwarz mehanismwithout �ve-branesSine the ten-dimensional string theory is anomaly-free, there must exist a meh-anism whih anels the above �eld theoreti (mixed-) abelian anomalies whihour in the four-dimensional �eld theory. This is, of ourse, none other than thefour-dimensional analogue of the Green-Shwarz mehanism. As in ten dimen-sions, it provides ertain ounter terms in the low-energy e�etive ation leadingto anomalous ouplings between the involved gauge �elds. The point is that thethereby indued anomaly six-form is just of the right form to anel the one-loop�eld theoreti anomalies.Before analysing the expliit form of the ounter terms involved, we make aslight digression to disuss the general �eld theoreti features of the mehanism. Akey role is played by ertain four-dimensional two-form and salar �elds (axions).Conretely, they arise upon dimensional redution of the Kalb-Ramond two-formB(2) and the self-dual tensor �elds on the worldvolume of the �ve-branes. Supposewe have a olletion b(2)j ; b(0)j of suh �elds, with the supersripts denoting theirrespetive rank in four dimensions. As we will see, the two-form �elds and salarsare Hodge dual to eah other, satisfyingdb(0)j = �j ?4 db(2)j (3.37)for some �j to be determined later. This relation allows us to write the kinetiation for the b(2)j asSjkin = �j ZR1;3 db(2)j ^ ?4db(2)j = �j�j ZR1;3 db(2)j ^ db(0)j : (3.38)As a dynamial input, we will �nd the following two types of ouplings,Svertex = Xj Aj ZR1;3 b(0)j ^ trF2; (3.39)Smass = Xj ZR1;3 b(2)j ^Xm Mjmfm: (3.40)42



The oupling onstants Aj;Mjm will follow from the onrete Lagrangian andare just some parameters for the time being. The index m takes values in1; : : : ;M1;M1 + 1; : : : ;M1 +M2 and labels the U(1) groups stemming from bothE8 fators. F stands for one of the �elds Fi or R with appropriate Chern-Simonsform ! suh that d! = trF2, and fm = dAm denotes the �eld strength of theU(1)m gauge symmetry, under whih Am transforms as ÆAm = d�m.We an now straightforwardly integrate Smass by parts and ombine it withSjkin to integrate out the axions, writing shematiallydb(0)j = �j�j Xm MjmAm: (3.41)If we insert this bak into Svertex after integrating the latter by parts, we �nd theouplings Soup = �Xj �j�j Aj Xm Mjm ZR1;3 Am ^ !: (3.42)These terms are learly not invariant under the abelian gauge transformations.With respet to, say, the U(1)n symmetry they transform asÆU(1)nSoup = � ZR1;3(Î4)n with (Î4)n =Xj �j�j AjMjn (d�n ^ !) : (3.43)Î4 therefore de�nes an anomalous six-form (Î6)n via the hain [108℄(Î6)n = d(Î5)n; ÆU(1)n(Î5)n = d(Î4)n; (3.44)and we onlude that we indeed arrive at the anomaly six-form for the mixedU(1)n � F2 anomalyAGSU(1)n�F2 �Xj �j�j Aj Mjn �fn ^ trF2� : (3.45)The orresponding anomalous diagram therefore hinges both upon the preseneof the mass term Smass and of the vertex oupling Svertex. By ontrast, even ifthe latter is absent, Smass indues a St�ukelberg-type mass term for some of theabelian gauge �elds. This is immediately lear if we plug (3.41) bak into (3.40).After integrating by parts we identify the following mass term for the abeliangauge �elds SStukelberg = �M1+M2Xm;n=1 (M)2m;n (Am ^ ?4An) (3.46)with the squared mass matrix given by(M)2m;n =Xj 1�jMjmMjn: (3.47)43



To determine the massless abelian gauge fators we therefore need to �nd thezero eigenvetors of the mass matrix M2m;n. It will be more onvenient to workinstead with the oupling matrixMjn beause it an be read o� diretly from thee�etive ation without further manipulations. By elementary linear algebra onean onvine oneself7, after performing a suitable basis transformation, that themassless abelian gauge fators are preisely those linear ombinations of U(1)mwhose gauge potential Af =Pm amAm lies in the kernel ofMjm, i.eU(1)f =Xm am U(1)m ismassless () Xm Mjm am = 0: (3.48)We stress in partiular that the various abelian fators from the two di�erentE8 may ombine into a massless U(1). The number of massive U(1)s is givenby the rank of the matrixMjm and is always at least as big as the number ofanomalous U(1)s. However, sine the mass generating terms are independent ofthe existene of additional vertex ouplings Svertex, an abelian fator an wellaquire mass without being anomalous, i.e. without partiipating in the atualGreen-Shwarz mehanism. This phenomenon is familiar already from the anel-lation pattern of abelian anomalies in Type I/ Type II orientifolds (see e.g. [109℄).After these general remarks, we an now identify the relevant terms in thefour-dimensional e�etive ation. For the E8 � E8 theory, there are altogetherthree di�erent ontributions to the ounter terms: The atual Green-Shwarzterms, the kineti ation for the three-form �eld strength and, in the preseneof heteroti �ve-branes, additional ouplings whih are non-vanishing only if thegauge bundle ontains abelian fators. For this reason, the latter are not onsid-ered in the lassi ompati�ation with SU(N) bundles only.The four-dimensional Green-Shwarz terms arise upon dimensional redutionfrom their ten-dimensional parents given in (2.6) and (2.7). If we expliitly takeare of the two E8 fators by writing F = F1 + F2, we get for the anomalyeight-form (2.7)X8 = 14 �trF 21 �2 + 14 �trF 22 �2 � 14 �trF 21 � �trF 22 �� 18 �trF 21 + trF 22 � �trR2�+18trR4 + 132 �trR2�2 : (3.49)To arrive at this result we have to take into aount that TrE8�E8(F q1F r2 ) = 0(for simultaneously non-vanishing q and r) and furthermore use the trae iden-tities (A.16) in appendix A.2. With the help of the tadpole anellation ondi-tion (2.12), we dimensionally redue this term toSGS = 2Xi=1n 18 (2�)3 �0 ZM(10) B(2) ^ �trF 2i � � 14(2�)2 �trF 2i � 12trR2�� 13[W ℄�7This is spelled out in appendix C. 44



(3.50)+ 14 (2�)3 �0 ZM(10) B(2) ^ tr(FiF i) � 14(2�)2 �trF 2i � 12trR2�� 13[W ℄�(3.51)+ 124 (2�)5 �0 ZM(10) B(2) ^ �tr(FiF i)�2o (3.52)� 196 (2�)3 �0 ZM(10) B(2) ^ � 14(2�)2 �trR2� �trR2�� 2[W ℄� (3.53)� 124 (2�)5 �0 ZM(10) B(2) ^ tr(F1F 1) tr(F2F 2): (3.54)Note the expliit dependene on the heteroti �ve-branes present in the mostgeneral ase via the terms involving [W ℄ = PaNa a . We will disuss the on-sequenes of their ontributions momentarily; for the time being, let us onsiderthe speial ase without �ve-branes, i.e. where [W ℄ = 0.In this situation, the only missing ingredient is the kineti termSkin = � 14�210 ZM(10) e�2�10 H ^ ?10H: (3.55)For the purpose of the dimensional redution it is onvenient to make use ofa basis of two-forms !k, k = 1; : : : ; h11 and their Hodge dual four-forms8 b!k withthe property ZM !k ^ b!k0 = Ækk0: (3.56)In terms of the string length `s = 2�p�0 we now expandB(2) = b(2)0 + `2s h11Xk=1 b(0)k !k; B(6) = `6s b(0)0 vol6 + `4s h11Xk=1 b(2)k b!k;trF 21 = (2�)2 h11Xk=1(trF 21)k b!k; trR2 = (2�)2 h11Xk=1(trR2)k b!k; (3.57)fm = 2� h11Xk=1(fm)k !k;where for dimensional reasons we have introdued appropriate powers of �0 andvol6 is the volume form on M normalized suh that RM vol6 = 1. Note that8One might wonder at �rst sight why we only take the even ohomology into aount.The point is that even if the internal manifold exhibited elements in H1(M;Z) we would notpik up any four-dimensional ontributions from the Green-Shwarz terms orresponding tothe expansion of B(2) into internal and external one-forms. The same applies to the potentialexpansion of B(6) into internal and external 3-forms.45



fmk 2 Z due to the integrality of 1(L) 2 H2(M; 2Z). Let us antiipate that theuniversal axion b(0)0 omplexi�es the dilaton to form the omplex salar of a hiralsupermulitplet in the N = 1 supergravity theory, whereas the b(0)k pair with theK�ahler moduli. As a onsequene of the duality between B(2) and B(6), both typesof two-forms b(2)j are related to their axioni ounterparts by ?4 db(2)j = e2�10 db(0)jfor all j 2 f0; 1; : : : ; h11g, as promised in (3.37).The general strategy is lear: Insert the expansions (3.57) into (3.50) - (3.54)as well as (3.55) and organize the surviving ontributions as vertex (3.39) andmass terms (3.40). For simpliity, we fous now on the mixed abelian-nonabelianand abelian-gravitational anomalies. The GS-terms (3.50) and (3.53) give rise tothe following vertex terms in four dimensionsSGS = 2Xi=1n 132 (2�) ZR1;3 h11Xk=1 �b(0)k trF 21 � (trF 21 � 12trR2)ko (3.58)� 1384 (2�) ZR1;3 h11Xk=1 �b(0)k trR2� (trR2)k: (3.59)By ontrast, from (3.51) we yield a mass term for the four-dimensional two-form�eld b(2)0S0mass = 116 (2�)5�0 ZR1;3 M1Xm1=1�b(2)0 ^ fm1� �m1;m1 ZM fm1 ^ (trF 21 � 12trR2)+(1$ 2); (3.60)where we have used that �mi;ni = 0 for mi 6= ni (see (3.25)). This mass termfor the universal axion is obviously only present for U(1) symmetries of type (i),reeting the fat that for the E8 � E8 heteroti string U(1) fators of type (ii)are always non-anomalous.To anel the anomalies we also need a GS-term for the external axion b(0)0 andmass terms for the K�ahler axions b(2)k . They emerge from (3.55), whih ontains,apart from the kineti ation for B(2), the ross termSkin = �08�210 Z (trF 21 + trF 22 � trR2) ^B(6): (3.61)On the one hand, this gives rise to a four-dimensional GS-termS0GS = 18� ZR1;3 b(0)0 ^ (trF 21 + trF 22 � trR2): (3.62)In addition, reduing trFi ^ Fi suh that one fator takes values in the externalU(1)s and the other in the internal ones, we �nd mass terms for the b(2)k . Afterdimensional redution one eventually arrives at four-dimensional ouplings of the46



form Smass = 2Xi=1n 12`2s ZR1;3 MiXmi=1 h11Xk=1 �fmi ^ b(2)k � �mi;mi (fmi)ko: (3.63)The GS-ouplings (3.58),(3.62) and the mass terms (3.60), (3.63) have pre-isely the struture of the general oupling and mass terms onsidered in (3.39)and (3.40), whih, as we showed, lead to appropriate anomaly six-forms and an-el the �eld theoreti anomalies. In other words, they generate tree-level graphsof the form displayed in �gure 3.1, whih provide ouplings of the same type as theones appearing in the mixed gauge anomalies. For the mixed abelian-nonabelianGS ontribution we get, aording to the foregoing disussion,AGSU(1)mi�E29�Ni � �mi;mi32(2�)6 �0 fmi ^ trF 21 �ZM fmi ^ �trF 21 � 12trR2�� : (3.64)For the mixed abelian-gravitational anomaly the ontributions from internal ax-ions and the four-dimensional one add up toAGSU(1)mi�G2�� � � �mi;mi64(2�)6 �0 fmi ^ trR2 hZM fmi ^ �trF 21 � 12trR2�+ 112 ZM fmi ^ �trR2�i (3.65)= � �mi;mi64(2�)6 �0 fmi ^ trR2 �ZM fmi ^ �trF 21 � 512trR2�� :Along the same lines, one an also show that the mixed U(1)3 anomaliesanel. Now also the Green-Shwarz ouplings (3.52) ontribute.3.4.3 The generalized Green-Shwarz mehanism inlud-ing �ve-branesThe inlusion of heteroti �ve-branes ompliates the story of anomaly anel-lation and leads to interesting new phenomena. The point is that in order togenerate the orret anomaly anelling ouplings from the Green-Shwarz terms,we have to assume tadpole anellation to organize the various ontributions asin (3.50) - (3.54). This leads, in the presene of �ve-branes, to additional �ve-brane dependent ontributions whih yield anomalous diagrams in the e�etivetheory, but without there existing any one-loop anomalies whih would have tobe anelled by them.Let us go bak to (3.50) - (3.54) and ollet the terms involving the �ve-branelass [W ℄. From these we an, following the analogous steps performed in theprevious setion, onstrut an anomaly six-form. The result is47
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Figure 3.1: Green-Shwarz ounter term for the mixed gauge anomaly.
AM5 � � 124(2�)4�0 Xa Na Za tr(F1F 1) h14 �trF 21 + trF 22 � trR2�+34 �trF 21 � trF 22 �i+ (1$ 2): (3.66)Sine there does not exist any hiral matter from the M5-branes, the only way toompensate the anomaly from (3.66) is by additional Green-Shwarz terms fromthe M5-branes. In the next setion, we will provide a rigorous derivation of thepresene of these terms independently of the requirement of anomaly anellation.Here we will antiipate their form and disuss their role played in the Green-Shwarz mehanism.Let us start by observing that the �rst term in (3.66) an preisely be anelledby introduing the additional ouplingS(1)GS = 196(2�)3�0 Xa Na Z�a B(2) ^ �trF 21 + trF 22 � trR2� (3.67)in the e�etive ation. To show this we simply have to perform dimensionalredution and follow the steps detailed at the beginning of the previous setionand onstrut the anomaly six-form indued by the oupling (3.67).To ope with the seond ontribution in (3.66), we reall from the generaldisussion in setion (2.1) that on the six-dimensional world-volume of an M5-brane there lives a tensor �eld eBa whih is self-dual with respet to the metrion the six-dimensional worldvolume of the �ve-brane,d eBa = ?a d eBa: (3.68)Note that the orresponding Hodge star operator fatorizes as ?a = ?4 
 ?2a intothe external four-dimensional piee and the one de�ned with respet to the metriof the two-yle wrapped by the �ve-brane. By dimensional redution eBa givesrise to a two-form and a dual salareBa = eb(2)a + `2seb(0)a ba with deb(0)a = ?4 deb(2)a : (3.69)48



Here have introdued ba as the Hodge dual of a suh that it satis�es `2s?2aba = 1.For ompleteness, we point out that if the �ve-brane wraps a holomorphi urve ofgenus g, then taking one leg of eBa to be along one of its 2g one-yles gives rise to2g additional vetor �elds in four dimensions, only g of whih arry independentdegrees of freedom due to the self-duality of eBa [110℄. Consequently, we enounteran additional gauge group of U(1)g in four dimensions, possibly enhaned ifertain omponents of the holomorphi urve oinide. Sine there exists nohiral matter harged under this gauge group, and even more so no matter hargedsimultaneously under the visible gauge group resulting from the E8, it is veritablyhidden and will not a�et us any more in the sequel.The extra pair of dualeb(0)a �eb(2)a an generate additional Green-Shwarz ounterterms, again ompletely in the spirit of the previous setion. More preisely, onean apply the by now familiar strategy and onvine oneself that the followingoupling term S(2)GS = 18(2�)3�0 Xa Na Z�a eBa ^ �trF 21 � trF 22 � (3.70)provides just the right ounter terms to anel the seond �ve-brane dependentpart in (3.66).In fat, (3.70) an be viewed as arising from the ross terms in the kinetiation for the three-forms eHaSkin = � 12 (2�)3(�0)2 Z�a eHa ^ ?a eHa (3.71)with eHa = d eBa � �08 (!Y;1 � !Y;2) : (3.72)Note that we are free to hoose some normalisation of eHa and orrespondinglyalso of its kineti ation. What is �xed by requiring anomaly anellation is, as wereall from the disussion around (3.45), merely the ratio of the prefator of thekineti term for the two-form �elds (3.71) and of the Green-Shwarz like oupling(3.70). One an easily hek that the normalisations of (3.67),(3.70) and (3.71)are indeed onsistent with the anomaly six-form (3.66) if we take into aountthat d eBa is self-dual with respet to ?a. As a general remark, it is known thatdue to the self-duality of eHa, we should atually stik to the M-theory �ve-braneation [81℄, as will be done in setion (3.4.4).To onlude, both the terms (3.67) and (3.70) must indeed be present in theten-dimensional e�etive ation of the E8 heteroti string for a onsistent �ve-brane oupling. Even though the requirement of these terms by anomaly anel-lation is manifest only one we allow for bakground bundles with non-zero �rstChern lass, their presene annot depend on the gauge instanton bakground, ofourse. In partiular, they have an e�et on the gauge kineti funtion also of the49



�eld strength assoiated with the semi-simple part of the gauge group, as we willsee in setion (3.4.5). It is reassuring to note that both new ontributions to thee�etive ation are also onsistent with the analogous Green-Shwarz mehanismin six-dimensional ompati�ations, as analysed reently in [105℄. Still, as anon-trivial onsisteny hek for our setup, it is highly desirable to provide an in-dependent derivation of the unfamiliar ouplings from the viewpoint of heterotiM-theory. We will endeavour to do so in the next setion.3.4.4 M-theory origin of new GS-termsThe presene of the ounter terms (3.67) and (3.70) an indeed be derived diretlyfrom Horava-Witten theory. The logi is very similar to that leading to the usualGreen-Shwarz terms from heteroti M-theory, as �rst desribed in [111, 112℄.Here we will extend the analysis to the �ve-brane dependent terms.9As pointed out several times, Horava-Witten theory is eleven-dimensionalsupergravity plus higher derivative Chern-Simons ouplings ompati�ed on theirle S1 and modded out further by a Z2 involution ating on the eleventhdimension. Horava and Witten found [76℄ that the two ten-dimensional �xedplanes under the orbifold Z2 ation give rise to anomalies whih an only beanelled by postulating the existene of an E8 gauge theory on eah of theseplanes. The two ten-dimensional E8 gauge theories are identi�ed with the gaugesetor harged under the two fators in the heteroti E8 � E8 theory. As itwill turn out, the ten-dimensional dilaton is related to the size of the eleventhdimension and thus to the separation of the two E8 setors along the intervalS1=Z2. As always when dealing with orbifold theories one has the hoie to workeither "downstairs" on the spae modded out by the geometri orbifold ationand after projeting out all states not invariant under it, or in the "upstairs"piture. This means in our ase that we onsider the ation on the irle S1,bearing in mind, however, that we will eventually identify two opposite points onthe irle and keep only those terms in the ation invariant under the indued Z2ation.The e�etive ation of heteroti M-theory in the upstairs piture is given by aneleven-dimensional bulk part onM11u , the ten-dimensional gauge ations de�nedonM(10) and in addition the ontribution from possible M5-branes. Conretelywe use the onventions that [76, 77, 114℄S = Skin + SCS + Surv + SYM + SM5; (3.73)Skin = 12 �2 ZM11u R
� 12G ^ ?G;9Our derivation was done independently from [113℄, where a similar analysis has been per-formed. Note that this referene does not use the resulting Green-Shwarz terms for anel-lation of abelian anomalies and does not onsider the terms (3.70) arising from the M5-braneation. Also, to the best of our knowledge, the onnetion between the new GS terms and theFI-D-terms in setion 2.6 has not been explored previously.50



SCS = 12 �2 ZM11u 16C ^G ^G;Surv = 148(2�)3�2T5 ZM11u C ^ �18trR4 � 132(trR2)2� ;SYM = � 2Xi=1 12�2 ZM(10) tr (F i ^ ?F i)� 12tr (R ^ ?R);where M11u = M(10) � S1. The ompat eleventh dimension takes values inthe range ��� < x11 � �� and the gauge �elds are loalized at x11 = 0; ��.The part of M5-brane ation SM5 [81℄ relevant for our purposes will be givenat the end of this setion. The presene of a �ve-brane at position y along x11requires that we also inlude its Z2 image at �y with whih the original brane willeventually be identi�ed. Eleven-dimensional indies will be denoted by I; J;K; :::and ten-dimensional ones by A;B;C; :::. The ten-dimensional gauge ouplingsare related to � via �2 = (4�)(2��2)2=3 and the tension of the �ve-brane is givenby T5 = (2��4 )1=3 [114℄. Finally, under the orbifold ation x11 7! �x11, CAB11,GABC11 and the omponents g(11)AB and g(11)11 11 of the eleven-dimensional metri areeven, but CABC and GABCD are odd [76℄ .Supersymmetry onservation requires the inlusion of partiular ombinationsof the gauge �eld strengths and the urvature into the Bianhi identity for the�eld strength G = dC [76℄. Following the intuition that �ve-branes e�etivelyontribute to the ation like gauge instantons10, this Bianhi identity is modi�edfurther by M5-ontributions and takes the general form [110℄(dG)11ABCD = ��2�2�J1Æ(x11) + J2Æ(x11 � ��)+12J5 �Æ(x11 � y) + Æ(x11 + y)��ABCD: (3.74)Note that we take into aount the ontribution from the �ve-brane at x11 = yand its mirror brane at x11 = �y suh that together their e�et is that of one unitof gauge instanton (thus the fator 12). The generalisation to the ase of several�ve-branes is obvious. The gauge and urvature soures at the orbifold �xedplanes are given by Ji = trFi ^ Fi � 12trR ^ R = d!i for i = 1; 2, while the �ve-brane ontributes J5 = �4(2�)2Æ(�). Here Æ(�) is the four-form Poinar�e dual tothe worldvolume of the �ve-brane inM(10).11 In analogy with the Yang-Mills andLorentz Chern-Simons forms we also introdue the ten-dimensional three-form !5satisfying J5 = d!5.Being interested in the ten-dimensional theory after Kaluza-Klein redutionon S1, we now fous on the situation where the eleventh dimension is muh smaller10Alternatively, we an derive this ontribution from the CS oupling of the M5-brane to thedual six-form potential, essentially along the lines of the derivation of equ. (2.11) reviewed insetion 2.1.11When we further ompatify M(10) = R(1;3) � CY3 we have the obvious deompositionÆ(�) = Æ(R(1;3)) ^  for a �ve-brane wrapping the two-yle dual to the four-form  on CY3.51



than the ten-dimensional spae. This is the limit in whih the e�etive ationof the ten-dimensional weakly oupled heteroti string arises [111, 112℄. In thisregime ten-dimensional derivatives of gauge and urvature terms an be negletedas ompared to �eld variations along x11. Hene, one an give an approximatesolution for G and C to the above Bianhi identity and the equations of motionDI GIJKL = 0 by splitting the �elds into their zero-mode and a bakground partas C = C(0) + C(1) and G = G(0) + G(1). Inluding also the �ve-brane soures,we get CABC = C(1)ABC ; CAB11 = B(2)AB;GABCD = G(1)ABCD; GABC11 = (dB)ABC +G(1)ABC11;C(1)ABC = � �22�2�!1�(x11) + 12!5(�(x11 � y) + �(x11 + y))�x11�� (!1 + !2 + !5)�ABCG(1)ABCD = � �22�2�J1�(x11) + 12J5(�(x11 � y) + �(x11 + y))�x11�� (J1 + J2 + J5)�ABCDG(1)ABC11 = � �22�2 ��(!1 + !2 + !5)ABC : (3.75)�(x11) denotes the step funtion, i.e. �(x11) = +1 for x11 positive and �1 oth-erwise. We have introdued also the ten-dimensional two-form �eld B(2) whiharises as the Z2 invariant omponents of C. Note that G(1)ABCD is not ontinuousat x11 = �� �= ��� but rather takes the limiting valuesG(1)ABCDj��;< = �22�2 J2; G(1)ABCDj���;> = � �22�2 J2 (3.76)on both sides of the seond orbifold plane. When we take the exterior derivativedG, this gives a Æ-funtion loalized at �� and proportional to 2J2,(dG)11ABCD = �11G(1)[ABCD℄ � 4�[AG(1)j11jBCD℄ (3.77)= � �22�2 h2J1Æ(x11) + J5((Æ(x11 � y) + Æ(x11 + y)))+2J2Æ(x11 � ��)� 1��(J1 + J2 + J5)iABCD� 4�22�2�� �14(J1 + J2 + J5)ABCD� ;so that the �eld on�guration (3.75) indeed solves the Bianhi identity (3.74).Similarly, one may onvine oneself that the equations of motion for the �eld52



strength G are satis�ed up to terms proportional to �Ji, whih are assumed tobe negligible in the limit we are onsidering [111, 112℄.The ten-dimensional weakly oupled heteroti string theory is reovered byompati�ation on S1 aording to the standard ansatzds211 = e�2�10=3 g(10)AB dxA dxB + e(4�10=3)(dx11)2; (3.78)where we keep only those parts of the ation whih are invariant under x11 7!�x11. In partiular, the kineti term for G ontains a part involving the om-bination G11ABCG11ABC . Inserting the solution (3.75), integrating over S1 andfoussing only on terms not involving !5 due to the �ve-branes preisely yieldsthe familiar kineti termSHkin = � 14�210 ZM(10) e�2�10H ^ ?H (3.79)for the ten-dimensional three-form �eld strength H = dB(2) � �04 (!1 + !2) aftersetting 1�210 = 2���2 ; �0 = 4�22�2�� = 2�1=3�2� � �4��2=3 : (3.80)We are now ready to investigate the origin of the omplete Green-Shwarzounter terms inluding the ontribution from the �ve-branes. They arise atorder ( �22�2 )2 after inserting the above solution for C and G into the Chern-Simonsterms SCS in (3.73) asSCSj( �22�2 )2 = 312 �2 ZM(10) ZS1 B(2) ^G(1) ^G(1) ^ dx11 (3.81)= ��4�2 ( �22�2 )2 ZM(10) B(2) ^ �23(J21 + J22 � J1J2)� 16J5(J1 + J2)�plus additional terms proportional to R B(2) ^ J25 , whih however vanish afterperforming the integral. To arrive at this expression we plae the �ve-braneand its mirror symmetrially at y = ���2 between the two orbifold �xed-planes.Note that the ombination C[AB11G(1)CDEFG(1)GHIJ ℄ is indeed even under the orbifoldation and therefore survives in ten dimensions. Additional ontributions fromthe higher urvature orretions Surv areSurv = 148(2�)3�2T5 ZM11u C ^ �18trR4 � 132(trR2)2�= 124(2�)5�0 ZM(10) B(2) ^ �18trR4 � 132(trR2)2� : (3.82)The part 23(J21 + J22 � J1J2) in (3.81) ombines with (3.82) into the standardGreen-Shwarz eight-form X8 [111, 112℄.53



The additional ounter terms (3.67) we are after now arise from J5(J1+J2) =�4(2�)2Æ(�) ^ (trF 21 + trF 22 � trR2). In summary, (3.81) and (3.82) yield in theten-dimensional limitSGS =  ZM(10) B(2) ^ �X8 + (2�)24 Æ(�) ^ (trF 21 + trF 22 � trR2)� (3.83)with  = 83 ��4�2 ( �22�2 )2 = 124(2�)5�0 ; (3.84)as postulated in (3.67).The origin of the seond �ve-brane dependent ounter term (3.70) lies in theM5-brane ation. With the normalisations of [81℄ (see e.g. also [115℄), the partrelevant for our analysis is given bySM5 = �T52 Xa Na Z�a[�0a �14 eFa ^ ? eFa + eC + 12d eBa ^ C� ; (3.85)again summing over all branes and their mirrors. Here eFa = d eBa � C is themodi�ed �eld strength of the self-dual tensor �eld eBa living on the �ve-braneand eC is the bulk six-form potential dual to C. The ontribution from (3.85)we are interested in is the topologial oupling d eBa ^ C. Following the generalstrategy we insert again the appropriate bakground solution for C and plaebrane and mirror brane at y = ���2 respetively to �ndStop = �T54 Xa Na�Z�a eBa ^ dC(1) + Z�0a eBa ^ dC(1)� == T54 �22�2 Xa Na Z�a eBa ^ (trF 21 � trF 22 ): (3.86)It an be heked that, together with the kineti term for eBa, this oupling indeedyields preisely the required ounter terms to anel the ontribution to the �ve-brane anomaly in the seond line of (3.66). In the standard ten-dimensionalnormalisation of the kineti ation for eBa whih we used in (3.71) one eventuallyreovers the ounter term (3.70). Note that we are always free to hange thenormalization of eBa. What goes into the indued anomaly six-form is the merelythe relative normalisation of the above vertex oupling and the kineti term foreBa and una�eted by suh trivial �eld rede�nitions.3.4.5 Gauge-axion masses from the St�ukelberg meha-nismA entral question we need to address is whih of the abelian gauge fators re-main massless after the Green-Shwarz mehanism anels potential anomalies.54



We reall from the disussion around (3.46) that the oupling terms Smass in-volved in the anomaly anellation proess indue a St�ukelberg-like mehanismfor the abelian gauge fators whih is spei�ed by the mass matrix M2m;n inSStukelberg = �PMim;n=1 M2m;n (Am ^ ?4An). We now ollet all ontributions tothese axion-gauge boson mass terms from the universal axion, b(0)0 , the K�ahler-axions, b(0)k , and �nally the �ve-brane axions eb(0)a . For later purposes it is on-venient to display the results diretly in terms of the Chern haraters of thebakground bundles (f. (3.23)). This will allow us to identify the massless U(1)ombinations by inspeting the topologial data of the bundles.The mass term involving the universal axion readsS0;mimass = 14(2�)2�0 ZR(1;3) b(2)0 ^ fmi� MiXni=1 �mi;ni ZM 1(Lni) ^ �h2(VNi) +MiXki;li=1 �mi ;li 1(Lki) ^ 1(Lli) + 12 2(T )� 14Xa Naa��: (3.87)It arises as the sum of (3.51) and the extra ounter term (3.67).For the K�ahler axions the kineti term for H3 indues the mass terms,Sk;mimass = 12(2�)2�0 ZR(1;3) b(2)k ^ fmi� MiXni=1 �mi;ni ZM 1(Lni) ^ b!k�; (3.88)as we reall from (3.63), and the �ve-brane Green-Shwarz term (3.70) yields themass termSa;mimass = � 14 (2�)2�0 ZR(1;3) eb(2)a ^ fmi� MiXni=1 �mi;ni ZM 1(Lni) ^ a� (3.89)for the 5-brane axions. The plus sign holds for the abelian �eld strengths arisingfrom E(1)8 and the minus sign for E(2)8 .From these expressions one an immediately identify the matrixMjm of equ.(3.40), with j running over all bulk and brane axion labels. We reall that thekernel ofMjm is related to the massless ombinations of abelian gauge �elds oraxions, respetively, as desribed in equ. (3.48). Finally, let us point out that themass terms are all of the same order in both string and sigma model perturbationtheory. It is noteworthy that, though all mass terms are of order M2s , the masseigenstates of the gauge bosons an in priniple have masses signi�antly lowerthan the string sale at least in situations with multiple abelian fators.3.5 Gauge ouplingsIn this setion we extrat the holomorphi gauge kineti funtions for the non-abelian and abelian gauge groups [80, 116{119℄. Reall that the gauge kineti55



funtions fa are enoded in the four-dimensional Yang-Mills Lagrangian, whih,up to seond order and in our sign onventions, takes the form (f. e.g. [120℄)LYM = �12 Re(fa) tr(F ^ ?F ) + 12 Im(fa) tr(F ^ F ): (3.90)In partiular, the gauge oupling g, de�ned byLkin = � 14g2 tr(F��F ��); (3.91)is seen to be given by Re(fa) in this normalisation, possibly up to a multipliativeonstant whih takes aount of the proper normalisation of the trae and whihwill be �xed later. Dimensional redution of the ten-dimensional tree-level termS(10)YM = � 12�210 ZM(10) e�2�10 �04 (tr(F1 ^ ?10F1) + tr(F2 ^ ?10F2)) (3.92)reveals the tree-level gauge oupling as appearing inS(4)YM = � 12� ZR1;3 Vol(M)`6s e�2�10 14�tr(F1 ^ ?4F1) + tr(F2 ^ ?4F2)�: (3.93)The traes are, at this stage, still formally taken over the two E8 fators withoutdi�erentiating between the atual gauge groups in four dimensions. For laterpurposes we note also that the ompat volume is omputed fromVol(M) = 16 ZM J ^ J ^ J = `6s6 Xi;j;k dijk �i �j �k; (3.94)where dijk = RM !i ^ !j ^ !k are the triple intersetion numbers of the basis oftwo-forms and the K�ahler form is expanded as J = `2sPh11i=1 �i!i.The axioni oupling involving Im(fa), by ontrast, is ontained in the rossterm (3.62) emerging from the kineti ation for H,S0GS = 18� ZR1;3 b(0)0 ^ �tr(F1 ^ F1) + tr(F2 ^ F2)�: (3.95)Consequently the full tree level gauge kineti funtion is simply f = 12S 12 withthe omplexi�ed dilaton de�ned asS = 12� �e�2�10Vol(M)`6s + i b(0)0 � : (3.96)However, in the ourse of the disussion of the Green-Shwarz mehanismwe have enountered further axioni ouplings similar to (3.95) but involving12To be quite pedanti, there arise additional normalisation onstants related to the preisede�nition of the traes over the gauge fators. We will disuss them momentarily for thenon-abelian and abelian fators in four dimensions.56



the K�ahler and the �ve-brane axions. These stem from the onventional Green-Shwarz terms (3.50) and the new �ve-brane dependent ouplings (3.67), (3.70).In the e�etive four-dimensional N = 1 supergravity, these axions are not arbi-trary �elds but form the imaginary part of the lowest lying omponent in a hiralsuper�eld [121℄13. The full omplex bosoni part of these super�elds is given byTk = 12� �� 1̀2s ZM J ^ b!k + ib(0)k � ; (3.97)�a = 12� ���a Vol(�a)`2s + ieb(0)a � : (3.98)The �a denote the salars whih together with the self-dual two-forms eBaombine into tensor multiplets on the six-dimensional world-volume of the �ve-branes. In the strong oupling Horava-Witten model these salars are nothingelse than the position of the respetive �ve-branes along the eleventh diretion.The normalisation of the real versus the imaginary parts of (3.97) and (3.98) issuh that the kineti terms for all salars is inorporated orretly in a suitableK�ahler potential. The K�ahler potential onsistent with the above hoie will begiven in the next setion.Due to these axioni ouplings whih involve the imaginary parts of the su-per�elds (3.97) and (3.98), Imfa reeives additional ontributions. The N = 1supergravity formalism ditates that the full gauge kineti funtion is a holomor-phi quantity, and therefore a modi�ation of its imaginary part annot leave itsreal part inert. Rather, it must be that the full omplex orretion term is againproportional to the bosoni part of an N = 1 super�eld14.The gauge kineti funtion for the �eld strengths of the non-abelian gaugegroups whih we olletively denoted as E9�Ni an therefore be written, in thelarge radius regime, asfE9�Ni = S + 18 h11Xk=1 Tk trF 21;2 � 12trR2 �Xa Naa!k � 12Xa Na�a: (3.99)This preise normalisation arises when we express the trae over the E8 in termsof the trae over the atual gauge group in four dimensions. From equation (3.25)we reover a fator of 2 in front of the non-abelian traes whih we have inludedin (3.99). The upper sign of the last term involving the super�elds �a is for the�rst E8, the lower one for the seond. This is an immediate onsequene of thethe form of the �ve-brane dependent ounter term (3.70). We have furthermoreintrodued the notation a = h11Xk=1(a)k b!k: (3.100)13In abuse of notation, we will sometimes also refer to the omplex bosoni omponent asthe super�eld, just for brevity. It will always be lear from the ontext what is meant.14And mutatis mutandis for the fermioni terms if we onsider fa as a veritable super�eldinstead of fousing just on its bosoni part. 57



The physial quantities we are interested in are the gauge ouplings as thereal part of fa, for whih one gets at linear order in �a4�g2E9�Ni = e�2�103`6s ZM J ^ J ^ J � 1̀2s ZM J ^ 14(2�)2 �trF 21;2 � 12trR2�+ 1̀2s Xa Na �14 � �a� Z�a J: (3.101)This makes it lear how the �rst term, the tree-level gauge oupling, reeives one-loop threshold orretions depending both on the K�ahler moduli of the Calabi-Yau and the �ve-brane moduli �a (see also [113℄). If we set all �ve-brane modulito zero, then we nevertheless get a �ve-brane ontribution of 1=4 to the one-loopgauge ouplings in both the �rst and the seond E8. From the Horava-Wittenpoint of view this means that for �a = 0, the �ve-brane is plaed exatly in themiddle between the two end-of-the-world nine-branes and �a is measured withrespet to this symmetri on�guration (see �gure 3.2). We will give furtherevidene for this interpretation momentarily.The next-to-leading order M-theory omputation arried out in [122,123℄ pro-vides an O(�2) orretion to the real part of the dilaton super�eldS = 12� "e�2�10Vol(M)`6s +Xa Na �2a2`2s Z�a J + i b(0)0 # : (3.102)This orretion was derived in [123℄ essentially by requiring that the kineti termsfor the self-dual two-form on the M5-brane an indeed be orretly inorporatedinto an appropriate K�ahler potential. Using this result and holomorphiity of thegauge kineti funtion leads to the gauge ouplings4�g2E9�Ni = 13`6s g2s ZM J ^ J ^ J� 1̀2s ZM J ^ �h2(VNi) + MiXmi;ni=1 �mi ;ni1(Lmi) ^ 1(Lni) + 12 2(T )�+ 1̀2s Xa Na �12 � �a�2 Z�a J: (3.103)For �a = �12 , the ontribution of the �ve-brane to the threshold orretions fromE(1)8 is preisely that of a small instanton inside E(1)8 [83℄. This unambiguouslyidenti�es �a as the relative position of the �ve-brane measured with respet to themiddle of the interval between the orbifold planes, as suggested already. Di�erentnormalisations of the ounter terms (3.70) would have resulted in a orrespondingrede�nition of �a. As expeted, if one plaes the �ve-brane inside the E(2)8 wall,its gauge threshold orretions to the gauge ouplings from E(1)8 vanish and vieversa. 58



Figure 3.2: M5-brane potential in Horava-Witten theory on the Quinti induedby abelian gauge ux on E(1)8 .For the abelian gauge groups things are slightly di�erent. Now also the Green-Shwarz terms (3.52) and (3.54) lead to axioni ouplings besides the ones we haveenountered already. The resulting gauge ouplings are in general non-diagonaland are readily found to be given by4�g2mi;ni = �mi;ni12`6sg2s ZM J ^ J ^ J��mi ;ni4`2s ZM J ^ �h2(VNi) + MiXmi;ni=1 �mi;ni1(Lmi) ^ 1(Lni) + 12 2(T )�� 112`2s ZM J ^ MiXpi;qi=1 �mi;pi�ni;qi 1(Lpi) 1(Lqi)!+�mi;ni4`2s Xa Na �12 � �a�2 Z�a J (3.104)for both U(1) fators from the same E8 fator and by4�g2m1;n2 = 124`2s ZM J ^ M1Xp1=1 M2Xq2=1 �m1;p1�n2;q2 1(Lp1) 1(Lq2)! (3.105)for one U(1) from the �rst and one U(1) from the seond E8. Apparently, only fortrivial line bundles, i.e. Wilson lines, do the extra threshold orretions vanish.The normalisation relative to the expression for the non-abelian gauge groupsarises as follows: First we have to remember one more how to express the trae59



over E8 in terms of the four-dimensional gauge groups, see equation (3.25). Inaddition, the generators of the non-abelian groups are anonially normalized astrTaTb = 12Æab, and we need to adjust the normalisation of the abelian gaugefators by expliitly inluding this fator of 12 into the gauge oupling.We onlude the present disussion with an important remark. As is obvi-ous from the expliit expressions (3.103), (3.104), the tree-level ontribution tothe real part of the gauge kineti funtion is always positive, as it must; afterall, Re(f) is just the inverse square of the gauge ouplings. Clearly, positivityof Re(f) must still hold after subtrating the threshold orretions, at least inthe regime of small string oupling, where all potential higher orretions arenegligible ompared to the one-loop thresholds. A violation of this bound wouldindiate severe inonsistenies in the e�etive �eld theory, possibly in the sensethat the four-dimensional supergravity we have written down does not follow asthe onsistent trunation of the full ten-dimensional theory. In any ase, we insiston positivity of the real part of the threshold orreted gauge kineti funtions asan e�etive supersymmetry ondition. Sine the threshold orretions manifestlydepend on the K�ahler moduli, the �ve-brane position moduli and the dilaton,this ondition imposes onstraints on the involved moduli �elds. In short, in asupersymmetri vauum we must ensure thatRe(fE9�Ni ) > 0; Re(fU(1)) > 0; (3.106)for the two non-abelian gauge setors and for all unbroken, i.e. anomaly-free andmassless abelian gauge groups.3.6 D-terms and supersymmetry onstraintsThe Green-Shwarz ounter terms have provided us with important non-trivialinformation about the four-dimensional low-energy e�etive ation, notably thegauge threshold orretions. The ouplings between the abelian gauge �elds andthe axions have furthermore produed mass terms not only for the K�ahler ax-ions, but also for the universal axio-dilaton and the axions emerging from the�ve-branes, if present. In four-dimensional N = 1 supergravity, theses axionsform the imaginary part of the bosoni omponent of hiral super�elds. Thereal parts are, as we have seen, given by the K�ahler moduli, the dilaton and themoduli parameterising, in the M-theory limit, the position of the branes alongthe eleventh dimension. In supersymmetry preserving vaua, there must thus ex-ist a mehanism whih likewise renders the orresponding partners of the axionsmassive sine a splitting of the mass terms within one supermultiplet is inom-patible with supersymmetry. At string tree level, the Donaldson-Uhlenbek-Yauequation is preisely of the right form to yield the required mass terms for theK�ahler moduli. We therefore need to �nd analogous mass terms for the dila-ton and the �ve-brane moduli. It is natural to expet that the violation of theequal-mass-ondition for all omponents of a supermultiplet is manifestly orre-lated with the supersymmetry ondition. On the other hand, we know that in60



theories with massive abelian gauge fators, Fayet-Iliopoulos (FI) D-terms signala possible supersymmetry breakdown (e.g. [124℄). This is therefore the startingpoint for our investigations. We will make heavy use of the standard fat thatthe FI terms an be omputed from the K�ahler potential K with the help of thesupersymmetri �eld theory formula (e.g. [120℄)Dm �mg2m = Dm �K�Vm ���Vm=0; (3.107)where Vm onstitutes the abelian vetor super�elds assoiated with the abeliangauge symmetry U(1)m. After deriving the gauge invariant K�ahler potential, itwill be straightforward to extrat the FI terms. We will �nd an intriguing relationbetween the FI terms and the DUY equation whih allows us to identify one-looporretions to the latter involving the dilaton and the �ve-brane moduli. Theywill indeed solve the puzzle about the missing mass terms. They also imply amodi�ation of the stability ondition on the gauge bundles arising at one-loop.Finally, we will omment on a new D-term ontribution to the salar potential ofthe M5-brane in heteroti M-theory in the presene of abelian gauge ux on theend-of-the-world branes whih may be of signi�ane in osmologial appliations.3.6.1 Gauge invariant K�ahler potentialIn four-dimensional N = 1 supergravity, the K�ahler potential K is determinedby requiring that it reprodues the various kineti terms in the four-dimensionalation in the Einstein frame. Reall that the latter is obtained from the four-dimensional string frame ation (i.e. the one after ompatifying (2.1)) via therede�nition [12℄G(4)S = e2�10 G(4)E =) RS = e�2�10 �RE � 6r2�10 � 6(��10)2� : (3.108)In partiular, under this transformation the string frame kineti terms for thedilaton and its axion b(0)0 beome in Einstein framevol(M)2�210 ZR1;3(�G(4)S ) 12 e�2�10 ��RS + 4 ���10���10 � e4�102 ��b(0)0 ��b(0)0 � �!vol(M)2�210 ZR1;3(�G(4)E ) 12 ��RE � 2 ���10���10 � e4�102 ��b(0)0 ��b(0)0 � : (3.109)Note that the fator of e4�10 in front of the axioni kineti term in the �rstline arises after dualizing the kineti term for dB(2) in (2.1) with the help ofdB(2) = e2�10dB(6) and then extrating the four-dimensional axion.For the heteroti string without abelian gauge fators, the part of K relevantfor our present purposes is very well-known and given by the expressionK = �M2pl8� ln�eS + eS� +Xa Na2 (e�a + e��a)2(a)k(eTk + eT �k )�61



�M2pl8� ln�� h11Xi;j;k=1 dijk6 �eTi + eT �i ��eTj + eT �j ��eTk + eT �k��: (3.110)Here M2pl8� = ��210 Vol(M), and the super�elds eS; eTk; e�a have as their bosoni om-ponents the omplex salars de�ned in (3.102), (3.97) and (3.98) respetively.The quadrati part involving the �ve-brane supermultiplets e�a is non-standardand will be ommented on momentarily. Ignoring it for a seond, we an readilyonvine ourselves that this K�ahler potential enodes the orret kineti termsfor the various salars in the Einstein frame. To demonstrate this standard om-putation for the ase of the dilaton we adopt the notation of [120℄ and de�ne theomplete N = 1 super�eld eS aseS = S +p2� + i ���� ��S + : : : (3.111)with S given by (3.96). The kineti term for the dilaton and its axioni part-ner in the Einstein frame then follows upon performing the Grassmann integralR d2�d2�K and extrating the termS(E)kin = ZR1;3 �2K�S �S� ���S=0 ��S ��S� (3.112)= �Vol(M)�210  ZR1;3 �� �10���10 + ZR1;3 e4�10 14���10 ���10! :A similar omputation an of ourse be performed for the K�ahler super�elds eTk.If we inlude heteroti �ve-branes, the K�ahler potential has to be adjustedsuh that it also yields the kineti terms for the brane position moduli �a andtheir axioni partners eb(0)a . They an be dedued from the Pasti-Sorokin-Tonination for the M5-brane [81℄. We pointed out already that, following this logi,the authors of [122, 123℄ derived a orretion quadrati in �a in the de�nitionof the super�eld S whih we have displayed in (3.102). This orretion indeedinorporates the orret kineti ation if in addition one supplements the standardontribution �ln(eS + eS�) to K by a term quadrati in e�a + e��a resulting in�ln(eS + eS�) �! � ln�eS + eS� +Xa Na2 (e�a + e��a)2Ph1;1k=1(a)k(eTk + eT �k )�: (3.113)For a detailed derivation of these terms in the dilatoni K�ahler potential we referto [122, 123℄, but the omputation is similar in spirit to the one skethed above.The presene of massive U(1) fators in the four-dimensional gauge groupmodi�es K further in a very important manner. This is due to the fat that inthe resulting supergravity theory, the mass terms between the abelian gauge �eldsand the axions enfore the gauging of the axioni shift symmetry. Quite generally,62



if the standard kineti Lagrangian for some salar �eld b(0) is supplemented bythe oupling to an abelian gauge �eld15 as inSaxion = ZR1;3 ��b(0)��b(0) +Qm b(0) (��A�m); (3.114)then unbroken U(1)m gauge symmetry requires that underA�m �! A�m + ���m (3.115)the axion transforms as b(0) �! b(0) + Qm2 �m: (3.116)This is readily veri�ed by onsidering the transformationÆSaxion = ZR1;3 2 ��b(0)��(Qm2 �m) +Qmb(0) �����m +O(Q2m) = 0: (3.117)To put it di�erently, the global abelian symmetry b(0) ! b(0)+onst is promotedto a loal symmetry. In slightly more tehnial supergravity language, this is justthe simplest version of the gauging of one of the global isometries of the salarK�ahler manifold. These gauged isometries need not be restrited to abelian shiftsymmetries. For a disussion of the most general ase we refer e.g. to [121℄.Upon gauging, the K�ahler potential has to be modi�ed by appropriate ounterterms in order to remain gauge invariant. This proedure is omparatively easy inour abelian ase. Introduing the abelian vetor super�eld Vm and, respetively,hiral super�eld �m and eB with lowest omponents as inVm = ����A�m + : : : ; �m = i2�m + : : : ;eB = (r + ib(0)) + : : : ; (3.118)we note that the required gauge transformation translates as follows into super-�eld language [120℄A�m ! A�m + ����b(0) ! b(0) + Qm2 �m  ! � Vm ! Vm + �m + ��meB ! eB +Qm�m � (3.119)Applying all this to our spei� ase at hand, it is lear that the K�ahlerpotential (3.110) is rendered gauge invariant by a suitable subtration of theabelian vetor super�elds multiplied by the respetive harges ourring in theaxioni ouplings. Conretely, this results in the following gauge invariant K�ahlerpotential15Note that this oupling is preisely of the form of the mass terms (3.87),(3.88),(3.89). Justuse Hodge duality to rewrite R b(2) ^ f � R b(0) ^ d ?4 A.63



K = �M2pl8� ln�S + S� �Xm Qm0 Vm +Xa Na2 (�a + ��a �PmQma Vm)2(a)k(Tk + T �k �PaQmk Vm)��M2pl8� ln�� h11Xi;j;k=1 dijk6 �Ti + T �i �Xm Qmi Vm��Tj + T �j �Xm Qmj Vm��Tk + T �k �Xm Qmk Vm�� (3.120)with appropriately de�ned super�elds Vm. The harges Qmk an be identi�ed asthe ouplings in the mass terms (3.87),(3.88),(3.89) using the de�nitionSmass = MXm=1 h11Xk=0 Qmk2��0 ZR1;3 fm ^ b(2)k + MXm=1Xa Qma2��0 ZR1;3 fm ^eb(2)a : (3.121)Indeed it an be heked expliitly that this K�ahler potential orretly re-produes also the various gauge-axion oupling terms by a Grassmann integralsimilar to that performed in (3.112).3.6.2 Fayet-Iliopoulos terms and D-term onstraintsWe are �nally in a position to ome bak to our initial goal, the omputation ofthe FI terms de�ned by (3.107). What we obtain after some algebra from theK�ahler potential (3.120) and the harges (3.121) is�mig2mi = � 18`6s MiXni=1 �mi;ni�ZM J ^ J ^ fni2�� e2�10 `4s ZM fni2� ^ 14(2�)2�trF 2i � 12trR2�+ e2�10 `4sXa Na�12 � �a�2 Za fni2� �: (3.122)Obviously, the �rst term in (3.122) appears at string tree-level, whereas the seondand third terms arise at one-loop in string perturbation theory. The reason thatwe have been able to derive these perturbative orretions just from the e�etive�eld theory lies of ourse one again in the one-loop nature of the Green-Shwarzterms whih are responsible for the gauging of the supergravity.The presene of one-loop orretions to the FI terms indiates importantmodi�ations of the D-term supersymmetry ondition on the gauge bundles, aswe now disuss. By de�nition, the FI parameters for the various U(1)mi gauge64



groups in the e�etive four-dimensional N = 1 supergravity are related to thesalar D-term potential viaVD = 12 Xmi V miD = Xmi 12(gmiYM)2 ���X� qmi� j��j2 + �mi���2; (3.123)where the �� denote salar �elds with harge qmi� under the U(1)mi . Note thatthere might exist additional ontributions not involving the gauge bundles suh asterms purely quadrati in the matter �elds (see e.g. [125℄ and referenes therein).The vauum of the theory is of ourse determined by minimizing the ompletesalar potential inluding in partiular the F-terms. A neessary ondition forthe vauum to be supersymmetri is that the positive semi-de�nite quantity V miDhas to vanish for eah U(1)mi separately16. Now V miD ontains two qualitativelyvery di�erent ontributions: P� qmi� j��j2, whih involves the vauum expetationvalue of the harged matter �elds, and the FI term �mi. The latter depends on thetopologial data of the bakground gauge bundles inluding the �ve-branes, theK�ahler moduli and, by the one-loop orretion, on the dilaton. A non-vanishingFI parameter does not neessarily indiate a breaking of supersymmetry as long asthe VEVs of the harged matter �elds an be hosen in a supersymmetri manneras to ompensate �mi suh that V miD = 0. Obviously, this is possible at most formultiplets with non-zero Euler harateristi sine eah �eld and its omplexonjugate ontribute with opposite signs in the D-term. Whether or not thisan happen depends ruially on the struture of the additional ��-dependentterms in the salar potential. In ases where there are no suh terms whihindependently fore �� to be zero, the D-term merely onstrains a ombinationof the harged matter �elds on the one hand and of the K�ahler and brane moduliand the dilaton on the other. If, by ontrast, there were, say, a mass term of theform V� = m��2�, a non-vanishing FI parameter would learly be inompatiblewith supersymmetry [125℄.As an upshot of this disussion, the e�etive supergravity analysis results inthe following D-term supersymmetry onstraint on the gauge bundles,�mi(gs; J; �a) = �mi(��) (3.124)for some funtion �mi depending on the harged matter �elds. If we an ignorethe term �mi(��), for reasons of the type disussed above, then the gauge bundlesare subjet to the supersymmetry onstraints �mi = 0, i.e.16In addition, of ourse, also the K�ahler ovariant derivative of the F-term superpotentialhas to be zero, DW = 0. Together, these two onstraints are neessary and suÆient for thetheory to be in a supersymmetri minimum. 65



ZM J ^ J ^ 1(Lmi)�`4s g2s ZM 1(Lmi) ^ �h2(VNi) + MiXmi;ni=1 �mi;ni1(Lmi) ^ 1(Lni) + 12 2(T )�+`4s g2s Xa Na�12 � �a�2 Za 1(Lmi) = 0: (3.125)In these ases, the onditions (3.125) provide onstraints �xing, in priniple,ombinations of the K�ahler moduli, the dilaton and �ve-brane moduli. Therefore,the onstraint �mi = 0 e�etively renders a partiular ombination of the moduli�elds massive. This is just what has to happen in supersymmetri vaua, wellin aord with the fat that the axioni partners of these moduli likewise reeivea mass due to the oupling to U(1)mi . In partiular, if we did not inlude theone-loop orretion involving the dilaton and the brane moduli, this would bein diret onit with the mass terms indued for the axions b(0)0 and eb(0)a . Afterall, in supersymmetri on�gurations the whole supermultiplet has to beomemassive, not just some of its omponents.Note that the K�ahler form J as appearing above is not dimensionless, butimpliitly ontains a fator of �0. Therefore, the perturbative orretions e�e-tively depend only on g2s . In priniple, a anellation of the tree-level against theone-loop term an be ahieved in the perturbative regime of large internal radiiand small gs provided that the tree-level term an be arranged to be suÆientlysmall by itself. On manifolds with several K�ahler moduli this is learly possible,depending on the details of the intersetion form, of ourse.We onlude this setion with a side remark on what happens when we anela non-vanishing Fayet-Iliopoulos term against the VEV of a harged salar asin (3.124) (see also [102℄). From the �eld theory analysis, what we expet insuh a situation is that the salar VEV indues the breaking of part of the four-dimensional gauge symmetry. There is a very neat way how to understand thisHiggsing of the observable gauge group from the point of view of the internalbundles. To illustrate the idea, onsider the easiest ase with just one abeliangauge fator, i.e. suppose that the internal bundle is given by the diret sumWi = VNi � L�1 with struture group SU(Ni) � U(1). For simpliity, assumefurthermore that the harged salar in question orresponds to the internal bundleU (i)xi = VNi 
 L, in the notation of (2.17). Giving a VEV to this salar meansthat we turn on an element in the �rst ohomology group H(1)(M; U (i)xi ) 17. Now,as a mathematial fat, turning on an element in H(1)(M; VNi 
 L) implies adeformation of the internal bundle W suh that it no longer splits into a diretsum but rather is given by the extension of L�1 by VNi [40℄, i.e. it �ts into the17As we will disussed, the internal bundles have to be stable in the mathematial sense, inwhih ase H(0)(M; U (i)xi ) and H(3)(M; U (i)xi ) vanish and all matter omes from H(1) or H(2).W.l.o.g we assume that H(1)(M; U (i)xi ) 6= 0, otherwise just swith to the omplex onjugaterepresentation using Serre duality. 66



short exat sequene 0 �! VNi �!fW �! L�1 �! 0: (3.126)The bundle fW hereby de�ned has in fat struture group SU(Ni + 1), whihontains SU(Ni) � U(1), the struture group of VNi � L�1. The visible gaugegroup, being the respetive ommutant in E(i)8 , therefore gets redued, in thisase preisely by the abelian fator whih is Higgsed away in the �eld theoretipiture.What this tells us is that a anellation of a non-vanishing FI term againstmatter �eld ontributions is only possible at the ost of a severe deformation ofthe geometry of our gauge bundle. If we want to stik to our initial frameworkof Whitney sums of internal SU(N) or U(N) bundles, this means that we reallyhave to insist on a vanishing FI term as the D-term supersymmetry ondition.3.6.3 Loop-orreted Hermitian Yang-Mills equation andthe onept of �- stabilityIn the previous setion, we have derived the supersymmetry ondition on thegauge bundles by a purely �eld theoreti analysis of the D-term in the e�etivefour-dimensional supergravity. A priori, we annot exlude that this approahmisses ertain subtleties. The point is that we have assumed from the verybeginning that the e�etive theory in four dimensions an be desribed withinthe framework of N = 1 supergravity, whose properties we have used heavily inderiving the supersymmetry onstraints for the ground state of the theory.To see that these supersymmetry onditions may not be the whole story, on-sider as an example the requirement that the internal manifold be Calabi-Yau, asditated by the Killing spinor equation for the gravitino in the absene of H-ux.One we assume the Calabi-Yau onstraint and therefore trust the mahinery offour-dimensional N = 1 supergravity, we do not reover it from the �eld the-ory analysis any more. We rather have to onsult the ten-dimensional theory.All we an expet from the four-dimensional analysis is that we identify poten-tial soures for spontaneous supersymmetry breakdown within an in priniplesupersymmetri theory.Let us therefore ompare the four-dimensional results to the diret analysisof the ten-dimensional Killing spinor equation for the gaugino.As we reall from the disussion in setion (2.3), at tree level eah summandbundle of W has to be holomorphi and �-stable with respet to zero slope. Thelatter means that the eah of the stable summand bundles needs to satisfy theDUY equationZM J ^ J ^ 1(Vni) = 0; ZM J ^ J ^ 1(Lmi) = 0; (3.127)to be satis�ed for all ni, mi. 67



Evidently, the left-hand side of (3.127) is just the tree-level part of the FI term(3.122). We realize that our onerns were justi�ed in that the supersymmetryondition revealed by the four-dimensional analysis is inomplete: it is blind tothe loal supersymmetry equation, enoded in the requirement of stability, andonly yields the assoiated integrability ondition. Nonetheless, in view of theagreement at tree-level between the DUY equation and the FI term, it is mostnatural to interpret the one-loop orretion of the latter as nothing other than aone-loop orretion of the DUY equation. But sine the DUY is the integrabilityondition for a more fundamental loal onstraint, the Hermitian Yang-Millsequation, this suggests that the latter is likewise orreted at one-loop. In fat,it is onsistent to propose the followingConjeture 1:The perturbatively exat supersymmetry ondition on the gauge bundle is givenby the one-loop deformed Hermitian Yang-Mills equationJ ^ J ^ Fki � (2��0)2 g2s4 Fki ^ d�!YMi � 12!L� = 2� � (Vki ; �0gs) volM id(3.128)together with �(Vki; �0gs) = 1rk(Vki)�ki(��): (3.129)Here Vki represents any of the bundles VNi; Lmi in E(i)8 and Fki the orrespond-ing �eld strength. The deformed slope �(Vki; �0gs) is de�ned as the integral overthe left-hand side of (3.128) divided by the rank of Vki,�(Vki; �0gs) � 1rk(Vki) ZM J ^ J ^ 1(Vki) (3.130)�(2��0)2 g2s4 1(Vki) ^ d�!YMi � 12!L� ;in preise analogy with (2.21). The notation !YMi refers to the omplete Chern-Simons three-form of the bundle Wi satisfying d!YMi = trF 2i . We formallysubsumed the ontributions from the �ve-branes into this quantity sine, as weobserved in setion (3.5), their e�et is preisely that of a gauge instanton aftera small instanton transition.We reall from the previous setion that, taking the impliit fator of (�0)2in the tree-level part J ^ J ^ 1(Vki) into aount, the perturbative orretion ofthe slope arises of ourse preisely at order g2s relative to the tree-level part. Thereason why we hose to write the modi�ed slope as �(Vki; �0gs) is to remind usthat the orretion beomes small as ompared to the tree-level term if gs is small68



and/or we are in the large radius regime, where integrals involving J dominate.This will be important momentarily.Mimiking the situation at tree-level, the supersymmetry ondition omes intwo parts: The loal onstraint is the deformed Hermitian Yang-Mills equation(3.128). In addition we have to speify whih value the deformed slope has totake. This latter piee of information is all we �nd from the four-dimensionalD-term onstraint (3.124) upon identifying the deformed slope with the loop-orreted FI term. Note that equation (3.129) is just a reformulation of thisD-term onstraint18.Stritly speaking, we annot rigorously exlude the appearane of additionalohomologially trivial forms on the left-hand side of (3.128) whih vanish uponintegration and whose e�et annot simply be deteted in the supergravity anal-ysis. After all, the latter only provides us with the integrated version of theHermitian Yang-Mills equation. To be ompletely preise we should thereforeadd the exterior derivative of some potential globally de�ned �ve-form. Irrespe-tive of this subtlety, the de�nition of �(Vki; �0gs) as the integral over the left-handside of (3.128) is independent of suh terms, of ourse.In view of the deformation of the HYM equation at one loop in string pertur-bation theory, also the stability ondition on the gauge bundles must be modi�edappropriately. So whih is the stability ondition guaranteeing a solution to(3.128)?Let us neglet for the moment the D-term onstraint on �, whih relates thetree-level and the one-loop piee in �, and fous solely on the deformed HYMequation (3.128) for arbitrary �. To �nd the orret notion of stability in this lessonstrained situation, we rely on some inspiration from an analogous problem inthe mathematial literature, as studied by Leung [126℄. He onsiders a di�erentdeformation of the HYM equation, namelyetJ+ 12�F Td(M) = (V; t) id; where (V; t) = 1rkV ZM etJ h(F ) Td(M):(3.131)The quantity (V; t) is known as the Gieseker slope of V . The important pointis that the term at highest order in t is just the familiar t2 J ^ J ^ F , whereasthe deformations are of lower order. In this sense equ. (3.131) is perturbativein t sine it redues to the undeformed HYM equation for t!1. What Leungproved is the following theorem: For every vetor bundle V there exists a TV > 0suh that for all t > TV V admits a onnetion whose �eld strength is a solutionof equ.(3.131) (for this t) if and only if V is (V; t)-stable, i.e. if eah subsheafW of V is of smaller (W; t)-slope than V .To make the analogy to our situation rystal lear, we divide equ.(3.128) by(�0gs)2 and identify (�0gs)�1 with t. As in Leung's ase, for large t the tree-level18In Type IIB theory, as will be disussed, this equation de�nes whih N = 1 subalgebra ofthe bulk N = 2 supersymmetry algebra the gauge instantons on the D-branes have to respet.69



part both in the HYM equation and in the assoiated slope dominates over theloop orretion. Clearly, what we mean by small �0 is that we are in the largeradius regime. All that di�ers in our ase is the preise form of this perturbativeorretion, but this is irrelevant for Leung's argument to work.We are thus lead to the followingConjeture 2:Given a holomorphi vetor bundle V , then there exists a value of �0gs, de-pending on V , suh that for all �0gs smaller than this ritial value V ad-mits a onnetion whose �eld strength satis�es the one-loop deformed HermitianYang-Mills equation (3.128) i� eah subbundle W with rk(W) < rk(V ) satis�es�(W; �0gs) < �(V; �0gs).This proposal reeives onvining support from the orresponding phenomenaourring in the ontext of the SO(32) heteroti string, as we will disuss insetion (4.7.3). There we will be able to identify the one-loop orreted stabilityondition on the bundles as the S-dual version of the perturbative part of the �-stability ondition as formulated in the ontext of the derived bounded ategoryof oherent sheaves [78℄ in type II B string theory. Indeed, on the Type I side, theperturbatively exat stability ondition is just given by replaing the familiar �-slope with the �-slope in the above perturbative sense. A mathematial proof ofthis statement an be found in [127℄ and more details will be provided in setion(4.7.3).On the other hand one an easily onvine oneself that perturbatively every�-stable bundle is also �-stable in the following sense: Given a �-stable vetorbundle V , then there exists a value of �0gs (depending on V ) suh that for all�0gs smaller than that ritial value V is �(V; �0gs)-stable (with respet to thesevalues of �0gs). This follows from the fat that for �0gs suÆiently small, thedominant part in the �-slope of V and of eah of its �nitely many subsheavesW is the tree-level part, whih is just the �-slope. The perturbative orretionstherefore do not spoil the fat that �(W; �0gs) < �(V; �0gs) sine �(W) < �(V )for all W by assumption.The situation hanges drastially if we now take into aount also the D-term ondition (3.129), i.e. if we pose additional onstraints on the value whihthe slope of V is to take. Assume for simpliity that we do not turn on anyharged matter �elds so that the slope is simply equated to zero aording toequ. (3.129). If the one-loop ontribution in the �-slope for V does not happento vanish by itself, this implies that the tree-level and the one-loop piee have toanel eah other and must therefore be of the same order of magnitude. Theabove arguments onerning our simple version of �-stability and its relation to�-stability, however, only work if the tree-level part dominates arbitrarily over theloop-orretion for �0gs small enough. As a result, for a non-vanishing one-loopterm, we annot simply infer that a �-stable bundle solves the deformed HYMequation. This does not mean that the one-loop term neessarily has to vanish70



for supersymmetry to be preserved, but in ase it does not, we do not yet havean appropriate stability onept guaranteeing a solution to the HYM, and a moresophistiated mathematial analysis is required. Let us emphasize at this stagealready that the onrete appliations we will present are not in onit withthis subtlety sine the one-loop ontribution to the DUY equation will vanish byonstrution in all ases of interest.We stress furthermore that although the one-loop part of the slope �(V; �0gs)is learly present only if 1(V ) 6= 0, this does not mean that the above analysisis relevant only if we embed a U(N) as opposed to an SU(N) bundle into E8.Rather, the one-loop terms in the loal Hermitian Yang-Mills equation are ingeneral non-vanishing also for SU(N) bundles. In this ase, however, thanks tothe foregoing arguments, �-stability is always suÆient for supersymmetry in thesame way as it is suÆient for U(N) bundles for whih the orretion in �(V; �0gs)vanishes. In both ases, there must not exist an a priori lower bound on �0gs sinein relating �-stability to �-stability, we do not know the ritial value of gs belowwhih the �rst implies the latter.Whih further orretions to the DUY ondition and to the Hermitian Yang-Mills equation do we expet? From the supergravity analysis of the D-term andthe usual non-renormalisation arguments, it is lear that there annot exist anyhigher perturbative string-loop ontributions. Moreover, it is known [128℄ thatthere are no one-loop Fayet-Iliopoulos terms in the Type I string theory. Conse-quently, S-duality ditates that the DUY equation is also exat in sigma-modelperturbation theory sine it maps expressions at one-loop order in gs to perturba-tive �0 orretions. However, there might, and most probably will be additionalnon-perturbative orretions in gs and �0 whih are beyond the sope of thisanalysis. After all, it is the appearane of non-perturbative �0 orretions to theD-term supersymmetry onditions in Type IIB whih requires the introdutionof the onept of full �-stability [78℄.3.6.4 D-term potential for M5-branesLet us go bak to the Fayet-Iliopoulos term (3.122) and disuss possible onlu-sions about the D-terms arising from the �ve-branes. Apparently, a ux throughthe two-yle a of a �ve-brane on the wall E(i)8 generates a one-loop D-termpotential for the �ve-brane modulus �a. From (3.122) it seems at �rst sight thatthis D-term repels the �ve-brane from the wall and vanishes only if the �ve-branelies on top of the other wall. However, reall from (3.123) that the D-term salarpotential for a massive U(1) atually involves the quotient of the FI-term and thegauge oupling, whih, too, depends on the �ve-brane modulus in a non-trivialmanner.In order to get a qualitative idea of the ombined e�et of the FI terms andthe threshold orreted gauge oupling, it is instrutive to analyse a simple toyexample. Consider the Quinti Calabi-Yau manifold, whih has only one K�ahlermodulus, and assume that we have hosen a vetor bundle V � L�1 embedded71



into the �rst E8 wall without any matter harged under the U(1). Then theD-term potential arising from the FI-term of the U(1) is simplyVD = 12g2 � �g2�2 ; (3.132)where g denotes the gauge oupling of the U(1). For the Quinti one has 2(T ) =10�2 and J = `2sr � with r > 0 in terms of the single (1; 1)-form �. Moreover, wewrite h2(V ) = �v�2 + 12 l2�2 and h2(L) = 12 l2�2 and introdue one �ve-branewrapping the lass . The tadpole anellation ondition then reads�v + l2 � 2 = �10: (3.133)The relevant D-term potential takes the formVD ' � r2g2s � (2 � 5) + �12 � ��2 2�2� r2g2s � 3(2 � 5) + 3 �12 � ��2 2 � �21;1�1;1 l2� : (3.134)For �xed string oupling gs = 0:5, radius r = 2 and a hoie of parameters = l = 2, �21;1=�1;1 = 1=10, this potential for the �ve-brane modulus � has theharateristi shape shown in �gure 3.2. Naively, as pointed out, from the FI-termone might have expeted that the �ve-brane is repelled by the E8 walls arryinga non-trivial line bundle. However, the ontribution of the g2 term multiplyingthe FI-term in the salar potential hanges this piture and leads to an attrativepotential between the �ve-brane and the E8 wall arrying the bundle.How an we understand the physis behind this attrative interation? Arisingat one loop in the weakly oupled heteroti string, it is expeted to be due toappropriate amplitudes from membranes after unfolding the wrapped eleventhdimension in the strongly-oupled Horava-Witten regime. In fat, as derived in[123℄, there are non-perturbative ontributions to the F-term superpotential fromopen membranes strething between one of the orbifold �xed planes and the M5-brane provided that the worldvolume of the membranes is preisely of the form I�a. Here I simply denotes the interval along the eleventh dimension between theorbifold plane and �ve-brane. We see that, apparently, suh on�gurations alsoontribute to the D-term potential if the membrane an ouple to some abelianbakground gauge ux on the orbifold plane. As is manifest in (3.125), this anonly happen if the �ve-brane wraps a two-yle whih, pulled bak to the endof the world, arries non-vanishing gauge ux. In partiular, this interpretationexplains why the �ve-brane is sensitive to the presene of the gauge ux alonga even though it may be plaed at an arbitrary position along the eleventhdimension: The presene of the gauge ux is ommuniated by the exhange ofappropriate open membranes.This interpretation of the D-term potential as being due to open membranesstrething between the orbifold �xed plane and the M5-brane is well in agreement72



with the generi form of the potential found in (3.134): The ontribution of themembranes is of ourse minimized preisely if the interval along whih they wrapbetween the end of the world and the �ve-brane is vanishing.3.7 Example (I): Breaking E8 to ipped SU(5)�U(1)XIt is high time to illustrate the hitherto studied framework by means of onreteexamples. The number of possible embeddings is extremely high if we take intoaount all oneivable ombinations of the various building bloks at our dis-posal. In the next two setions, we will therefore restrit our attention to realistifour-dimensional gauge groups, fousing on the detailed appliation of the teh-nial aspets presented by now. Phenomenologial onsiderations and onretemodel building are postponed to hapter 7.As a warm-up we exemplify the breaking of the E8 group down to the ippedSU(5) gauge group based on the branhingSU(4)� U(1)X0 � SU(5) � E8 �! SU(5)� U(1)X0 : (3.135)The embedding SU(5) � E8 ! SU(5) indues the familiar deomposition248 �! (24; 1) + (1; 24) + (5; 10) + (5; 10) + (10; 5) + (10; 5): (3.136)Next we deompose the internal SU(5) representations under SU(5)! SU(4)�U(1)X0 aording to (3.14) as24 �! 150 + 10 + 45 + 4�5;5 �! 41 + 1�4;10 �! 62 + 4�3: (3.137)In ombination these two steps lead to the spetrum19248 SU(4)�SU(5)�U(1)X0�! 8>>>><>>>>: (15; 1)0(1; 1)0 + (1; 10)�4 + (1; 10)4 + (1; 24)0(4; 1)5 + (4; 5)�3 + (4; 10)1(4; 1)�5 + (4; 5)3 + (4; 10)�1(6; 5)�2 + (6; 5)2
9>>>>=>>>>; : (3.138)We point out, at this stage merely as an appetizer, that the abelian hargesof the spetrum are proportional to the U(1)X in the ipped SU(5) model, thusjustifying the notation. This ruial fat will be heavily exploited in the ontextof the phenomenologial adventures of hapter 7.19Note that in the last line we used that 6 = 6 for the antisymmetri of SU(4).73



Let us now turn to the expliit bundles whih realize this breaking of E8.Starting with onstrutions of type A, we hoose the Whitney sumW = V � L suh that 1(V ) = 0 (3.139)with struture group G = SU(4) � U(1). The embedding of the line bundle isaomplished by identifying its �eld strength with the diagonal SU(5) generatorTX0 = (1; 1; 1; 1;�4): (3.140)As shown in table 3.2, the deomposition (3.138) allows one immediately to reado� the ohomology lasses determining the massless spetrum.reps. Cohomology (Type A)101 H�(M; V 
 L)10�4 H�(M; L�4)5�3 H�(M; V 
 L�3)52 H�(M;V2 V 
 L2)15 H�(M; V 
 L5)Table 3.2: Massless spetrum of H = SU(5)� U(1)X0 models.From this embedding of the struture group, we an determine the resultingtadpole anellation ondition (3.26) by omputing the traes as spelled out in(3.23),tr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(h2(Ux)� dim(Rx))= 2 trSU(4)f (F 2SU(4)) + 40F 2U(1) = 4 (2�)2 (�2(V ) + 10 21(L));tr(R2) = 2 trSU(3)f (R2) = �4 (2�)2 2(T ): (3.141)This yields the tadpole anellation ondition2(V )� 10 21(L) = 2(T ): (3.142)The net-number of hiral multiplets is given by the Euler harateristi ofthe various bundles in table 3.2. Note that extra gauge bosons are ounted byH�(M;O), whih an only appear if L4 is the trivial bundle O, i.e. 1(L) = 0.Clearly in this ase the gauge symmetry is extended to SO(10), whih is preiselythe ommutant of SU(4) in E8. Another way to see this is that the 20 additionalvetor multiplets from the (1; 10)�4 and its onjugate arising when L4 gets trivial74



preisely �ll out, together with the 24+ 1 in the adjoint of SU(5)� U(1)X0 , the45-dimensional adjoint representation of SO(10). We will enounter muh moreintriate patterns of gauge symmetry enhanement for the ase that more U(1)bundles are involved in the next setion.It is now a straightforward exerise to ompute the four-dimensional gaugeanomalies from the general expressions given in equation (3.28), using also thetrae identities of appendix A.2.� The non-abelian SU(5)3 anomaly is proportional toASU(5)3 = �(M; V 
 L) + �(M; L�4)� �(M; V 
 L�3)� �(M;V2V 
 L2)(3.143)and vanishes identially even without invoking the tadpole anellation ondition.� The mixed abelian-gravitational anomaly U(1)X0 � G2�� however does not di-retly vanish and is given byAU(1)�G2�� = 10�(M; V 
 L)� 40�(M; L�4)� 15�(M; V 
 L�3) +10�(M;V2V 
 L2) + 5�(M; V 
 L5)= 10 ZM 1(L) �12(�2(V ) + 10 21(L)) + 5 2(T )� : (3.144)� Similarly the mixed abelian-non-abelian anomaly U(1)X0 � SU(5)2 takes theformAU(1)�SU(5)2 = 3�(M; V 
 L)� 12�(M; L�4)� 3�(M; V 
 L�3) +2�(M;V2V 
 L2)= 10 ZM 1(L) �2(� 2(V ) + 10 21(L)) + 2(T )� : (3.145)� Finally for the U(1)3X0 anomaly one obtainsAU(1)3 = 10�(M; V 
 L)� 640�(M; L�4)� 135�(M; V 
 L�3) +40�(M;V2V 
 L2) + 125�(M; V 
 L5) (3.146)= 200 ZM 1(L) �6(�2(V ) + 10 21(L)) + 4021(L) + 3 2(T )� :These results are in omplete agreement with the general expressions (3.30) -(3.32) if one uses (3.141) to rewrite them in terms of traes. Note that theintegrands only vanish if 1(L) = 0, in whih ase the gauge group is enhanedto SO(10). In this simple onstrution, the U(1)X0 is therefore massive and onlypresent as a global symmetry. We will �nd a way to irumvent this apparentdrawbak in hapter 7 when it omes to the onstrution of realisti ippedSU(5)� U(1)X vaua.For embeddings of Type B, one starts with a bundleW = V � L�1; with 1(V ) = 1(L); rank(V ) = 4; (3.147)75



whih has struture group SU(4)� U(1). This bundle W an now be embeddedinto an SU(5) subgroup of E8 so that the ommutant is again SU(5) � U(1)X0 .We embed the U(1) bundle suh thatQX0 = (1; 1; 1; 1;�4); (3.148)implying that the matrix Q de�ned in (3.12) is simplyQ = QX0(V ) +QX0(L) = 5: (3.149)The massless spetrum is given by the ohomology lasses listed in Table 3.3.reps. Cohom.101 H�(M; V )10�4 H�(M; L�1)5�3 H�(M; V 
 L�1)52 H�(M;V2 V )15 H�(M; V 
 L)Table 3.3: Massless spetrum of H = SU(5)� U(1)X0 models.An expliit evaluation of the traes (see again (3.23)) astr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(h2(Ux)� dim(Rx))= 4(2�)2(h2(V ) + h2(L)) (3.150)onvines us that the tadpole anellation ondition reads2(V )� 21(V ) = 2(T ): (3.151)Similarly to the type A ase, one an show that all non-abelian gauge anomaliesanel and that the abelian ones,AU(1)�G2�� = 52 ZM 1(L) h12�� 2(V ) + 21(L)� + 5 2(T )i ;AU(1)�SU(5)2 = 52 ZM 1(L) h2�� 2(V ) + 21(L)� + 2(T )i ; (3.152)AU(1)3 = 25 ZM 1(L) h12�� 2(V ) + 21(L)� + 521(L) + 6 2(T )i ;being onsistent with the general result displayed at the end of setion (3.4.1), areanelled by a Green-Shwarz mehanism. Note in partiular that �X0;X0 = 40,see (3.25). 76



3.8 Example (II): Breaking E8 to SU(3)� SU(2)�U(1)YOur model building possibilities are not limited to the onstrution of GUT groupvaua. In this setion, we exemplify the breaking of E8 diretly down to theStandard Model gauge group based on the branhingSU(6) � E8 �! SU(3)� SU(2): (3.153)The general strategy presented in setion (3.1) allows us to iteratively inorporateadditional line bundles and thus to introdue various abelian gauge fators intothe visible gauge group. This is at the ost of lowering the rank of the non-abelian bundle VNi . In the presene of several U(1) fators an extremely rihpattern emerges with numerous ways to obtain the Standard Model gauge groupand spetrum. In this setion, we merely fous on one of the two E8 fators inorder to explain the building bloks for the phenomenologial appliations to bedisussed later.As far as the resulting spetrum is onerned, we �rst note that the embedding(3.153) indues the following deomposition of the adjoint representation of E8248 �! (35; 1; 1) + (1; 8; 1) + (1; 1; 3) +(20; 1; 2) + ((6; 3; 2) + (15; 3; 1) + ::): (3.154)We now deompose the internal SU(6) following the steps spelled out in setion(3.1). Spei�ally, we perform the deompositionsSU(6) �! SU(5)� U(1)Y 0 �! SU(4)� U(1)X0 � U(1)Y 0�! SU(3)� U(1)Z � U(1)X0 � U(1)Y 0: (3.155)3.8.1 Bundles with struture group SU(5)� U(1)To realize the �rst step in the sequene (3.155), we hoose a bundle of type Awith struture group SU(5)� U(1)Y 0 , i.e. we onsider the on�gurationW1 = V � L; with rank(V ) = 5: (3.156)Clearly, the ommutant in E(1)8 is SU(3)�SU(2)�U(1)Y 0 . The abelian harges ofthe states follow from the embedding of U(1)Y 0 into SU(6) suh that the abeliangenerator is identi�ed with the diagonal elementTY 0 = (1; 1; 1; 1; 1;�5) (3.157)77



in SU(6). We deompose the various SU(6) representations under the splittingSU(6) �! SU(5)� U(1)Y 0,35 �! 240 + 10 + 56 + 5�6;6 �! 51 + 1�5;15 �! 102 + 5�4;20 �! 103 + 10�3: (3.158)One may onvine oneself that this is in agreement with the general branhingrule (3.14), taking into aount in partiular that the third rank antisymmetrirepresentation of SU(5) is the 10. Combining (3.158) with (3.154) eventuallyleads to the deomposition of the adjoint representation of E8 as248 SU(5)�SU(3)�SU(2)�U(1)Y 0�! 8>><>>: (24; 1; 1)0 + (1; 1; 1)0 + (1; 8; 1)0 + (1; 1; 3)0(5; 3; 2)1 + (1; 3; 2)�5 + ::(10; 3; 1)2 + (5; 3; 1)�4 + ::(10; 1; 2)3 + (5; 1; 1)6 + :: 9>>=>>; :(3.159)As beomes obvious after rede�ning the visible U(1) harges asQY = 13QY 0 ; (3.160)(3.159) apparently ontains states with just the Standard Model quantum num-bers, as displayed in table (3.4). The expressions for the ohomology lassesounting the hiral fermions follow from the general onsiderations at the end ofsetion (3.2) and are listed in the seond olumn of table (3.4).SU(3)� SU(2)� U(1)Y ohom. (type A) ohom. (type B) SM part.(3; 2) 13 �(V 
 L) �(V ) qL(3; 2)� 53 �(L�5) �(L�1) �(3; 1) 23 �(V2 V 
 L2) �(V2 V ) dR(3; 1)� 43 �(V 
 L�4) �(V 
 L�1) uR(1; 2)�1 �(V2 V 
 L�3) �(V2 V 
 L�1) lL(1; 1)2 �(V 
 L6) �(V 
 L) eRTable 3.4: Massless spetrum of H = SU(3) � SU(2) � U(1)Y models from internalSU(5)� U(1) bundles. 78



To study the gauge enhanement pattern, we reall that additional gaugebosons (respetively their fermioni superpartners) in the visible spetrum, whihwould indiate the enhanement of the original gauge group, are ounted byH�(M;O). Inspetion of the appearing ohomology groups reveals that thisis only possible when 1(L) = 0, in whih ase H�(M; L�5) degenerates. Theappearane of a trivial bundle therefore enlarges the number of gauge bosonsfrom 8+3+1 by the vetor-like pair (3; 2)� 53 to yield preisely the 24 generatorsof SU(5). This is just what we expet, sine the ommutant of SU(5) is of oursesimply SU(5) to whih the visible gauge group must get enhaned.The tadpole anellation ondition follows from the by now well-familiar eval-uation of the traes over the spetrum20tr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(h2(Ux)� dim(Rx))= 2 trSU(5)f (F 2SU(5)) + 60F 2U(1)Y 0 = 4 (2�)2 (�2(V ) + 1521(L));tr(R2) = 2 trSU(3)f (R2) = �4 (2�)2 2(T ): (3.161)The tadpole anellation ondition (3.26) onsequently takes the form2(V )� 15 21(L) = 2(T ): (3.162)We now proeed to the omputation of the �eld-theoreti anomalies with thehelp of (3.28).� The non-abelian SU(3)3 anomaly is proportional toASU(3)3 = 2 (�(V 
 L) + �(L�5))� �(�2V 
 L2)� �(V 
 L�4) (3.163)and vanishes even without invoking the tadpole anellation ondition. Ofourse there are no SU(2)3 anomalies anyway.� For the mixed abelian-gravitational U(1)Y 0 � G2�� anomaly, we �nd the ingeneral non-vanishing expressionAU(1)Y 0�G2 = 6�(V 
 L)� 30�(L�5) + 6�(�2V 
 L2)� 12�(V 
 L�4)�6�(�2V 
 L�3) + 6�(V 
 L6)= 180 ZM 1(L) �(�2(V ) + 15 21(L)) + 512 2(T )� : (3.164)� Similarly the mixed abelian-non-abelian anomaly U(1)Y 0 � SU(3)2 takesthe formAU(1)�SU(3)2 = 2�(V 
 L)� 10�(L�5) + 2�(�2V 
 L2)� 4�(V 
 L�4)= 30 ZM 1(L) �(� 2(V ) + 15 21(L)) + 122(T )� ; (3.165)20Note that we keep the original normalisation of U(1)Y 0 whih di�ers from that of the visiblehyperharge by a fator of 3. 79



and the mixed abelian-non-abelian anomaly U(1)Y 0 � SU(2)2 follows like-wise asAU(1)�SU(2)2 = 3�(V 
 L)� 15�(L�5)� 3�(�2V 
 L�3)= 30 ZM 1(L) �(� 2(V ) + 15 21(L)) + 122(T )� :(3.166)� Finally, we obtain the following ubi abelian U(1)3Y 0 anomalyAU(1)3Y 0 = 6�(V 
 L)� 750�(L�5) + 24�(�2V 
 L2)� 144�(V 
 L�4)�54�(�2V 
 L�3) + 216�(V 
 L6)= 2700 ZM 1(L) �(�2(V ) + 15 21(L)) + 12 2(T ) + 101(L)2� :(3.167)It is satisfatory to note that these anomalies are in agreement with the generalformulae (3.31), (3.30) and (3.32). As a result, unless the line bundle is trivial,i.e. 1(L) = 0, the U(1)Y symmetry is anomalous and its anomaly has the rightform to be anelled by the Green-Shwarz mehanism. From the general formof the axion-boson mass terms (3.87) and (3.88), we onvine ourselves that theU(1)Y is indeed massive whenever 1(L) 6= 0.Having disussed the details of the type A onstrution, let us start alterna-tively with a bundle of type B, i.e.W = V � L�1; with 1(V ) = 1(L); rank(V ) = 5; (3.168)and embed the U(1)Y 0 bundle suh thatQY 0 = (1; 1; 1; 1; 1;�5): (3.169)The massless spetrum is now ounted by the ohomology groups summarized inthe third olumn of table (3.4). Expliit omputation yieldstr(F 2) = 130 Tr(F 2) = 130 Xx 2(2�)2(h2(Ux)� dim(Rx))= 4(2�)2(h2(V ) + h2(L)) (3.170)and on�rms the assertion made earlier that the tadpole ondition for type Bbundles takes the form 2(V )� 21(V ) = 2(T ): (3.171)Again, the resulting anomalies are in agreement with the general expression dis-played in setion (3.4.1).If we are interested in phenomenologial appliations, we must therefore �nd amehanism how to keep the U(1)Y massless. What resues us is that for suitablyhosen bundle data the St�ukelberg mehanism only yields masses for partiularombinations of U(1) fators. Let us therefore proeed and inlude another linebundle. 80



3.8.2 Bundles with struture group SU(4)� U(1)2By means of a seond U(1)X0 bundle, we an further break the internal SU(5) toSU(4)�U(1)X0 while keeping the non-abelian part of the visible Standard Modelgauge symmetry. Conretely, we now onsider an SU(4)�U(1)X0�U(1)Y 0 bundleof type A �a la W = V � L1 � L2 (3.172)or of type B, i.e,W = V � L�11 � L�12 with 1(W ) = 0; (3.173)respetively. In this latter ase, the embedding of the two U(1) bundles intoSU(6) is given byQX0 = (1; 1; 1; 1;�4; 0); QY 0 = (1; 1; 1; 1; 1;�5): (3.174)The for later use we note that the traes (3.25) yield �X0;X0 = 40 and �Y ;Y = 60.For the type B onstrution, the harge matrix beomesQ = � 5 10 6� : (3.175)The visible gauge group is H = SU(3) � SU(2) � U(1)X0 � U(1)Y 0 and theresulting deomposition of the adjoint representation of E8 reads
248 SU(4)�SU(3)�SU(2)�U(1)2�! 8>>>>>>>><>>>>>>>>:

(15; 1; 1)0;02� (1; 1; 1)0;0 + (1; 8; 1)0;0 + (1; 1; 3)0;0(1; 3; 2)0;�5 + ::(1; 3; 2)�4;1 + (1; 3; 1)�4;�4 + (1; 1; 1)�4;6 + ::(4; 3; 2)1;1 + (4; 3; 1)1;�4 + (4; 1; 1)1;6 + ::(4; 3; 1)�3;2 + (4; 1; 2)�3;�3 + (4; 1; 1)5;0 + :(6; 3; 1)2;2 + (6; 1; 2)2;�3 + ::
9>>>>>>>>=>>>>>>>>; :

The (possibly anomalous) hyperharge U(1)Y and the U(1)B�L harge are givenby the linear ombinationsQY = � 115 QY 0 + 25 QX0 ; QB�L = 215 QY 0 + 15 QX0 : (3.176)The massless spetrum is ounted by the ohomology lasses in table 3.5. Asfar as the interpretation of the states as Standard Model partiles is onerned,a omparison of the spetrum in table 3.5 and the one in table 3.4 reveals ageneral feature: The inlusion of several U(1) fators in the same E8 fator,whih seems to be required in order to keep the U(1)Y massless, gives rise toa number of (unwanted) hiral exoti states whose ohomology is ounted just81



reps. ohom. (type A) ohom. (type B) SM part.(3; 2)1;1 H�(M; V 
 L1 
 L2) H�(M; V ) qL(3; 1)1;�4 H�(M; V 
 L1 
 L�42 ) H�(M; V 
 L�12 ) dR(1; 1)1;6 H�(M; V 
 L1 
 L62) H�(M; V 
 L2) �R(3; 1)�3;2 H�(M; V 
 L�31 
 L22) H�(M; V 
 L�11 ) uR(1; 2)�3;�3 H�(M; V 
 L�31 
 L�32 ) H�(M; V 
 L�11 
 L�12 ) lL(1; 1)5;0 H�(M; V 
 L51) H�(M; V 
 L1) eR(3; 1)2;2 H�(M;V2 V 
 L21 
 L22) H�(M;V2 V ) (dR)(1; 2)2;�3 H�(M;V2 V 
 L21 
 L�32 ) H�(M;V2 V 
 L�12 ) (lL)(3; 2)�4;1 H�(M; L�41 
 L2) H�(M; L�11 ) -(3; 1)�4;�4 H�(M; L�41 
 L�42 ) H�(M; L�11 
 L�12 ) -(1; 1)�4;6 H�(M; L�41 
 L62) H�(M; L�11 
 L2) -(3; 2)0;�5 H�(M; L�52 ) H�(M; L�12 ) -Table 3.5: Massless spetrum of H = SU(3) � SU(2) � U(1)X0 � U(1)Y 0 models.The last olumn gives the interpretation as SM partiles with orret QY and QB�L.Brakets denote that only the hyperharge of the state is the SM one.by tensor produts of the line bundles. We will �nd a way how to avoid thisdrawbak later on.The resulting tadpole anellation ondition reads2(V )� 10 21(L1)� 15 21(L2) = 2(T ) (3.177)for the type A bundle and�h2(V )� 12 2Xi=1 21(Li) = 2(T ) (3.178)for the type B bundle. For generi �rst Chern lasses 1(L1) and 1(L2), the twoU(1) gauge symmetries are anomalous and gain a mass via the Green-Shwarzmehanism. Therefore, the generi unbroken gauge symmetry is SU(3)�SU(2).By omputing the various anomalies, one �nds that the linear ombinationU(1)f ' �1 U(1)X0 + �2 U(1)Y 0 (3.179)is anomaly-free preisely if the �rst Chern lasses of the two line bundles for theSU(4)� U(1)2 ase satisfy the relation2�1 1(L1) + 3�2 1(L2) = 0 (3.180)82



and for the U(4)� U(1)2 ase5�1 1(L1) + (6�2 � �1) 1(L2) = 0: (3.181)A detailed analysis of the relevant mass matrix shows that in these situations theanomaly-free U(1)f is also massless and therefore unbroken.In the SU(4)�U(1)2 ase, for ertain values of the parameters �1; �2 some ofthe line bundles L�41 
 L2, L�41 
 L�42 , L�41 
 L62 and L�52 appearing in Table 3.5beome trivial and signal a non-abelian enhanement of the gauge symmetry. Forthe U(4)�U(1)2 bundles the situation is of ourse ompletely similar. The �ve21possible non-abelian enhanements of SU(3)�SU(2) are depited in �gure (3.3).The easiest way to �nd the enhaned gauge groups is to ount the number ofadditional gauge bosons arising when one of the tensor produts of line bundlesbeomes trivial. For example, when L�41 
 L62 is trivial, i.e. 1(L1) = 321(L2),we �nd two additional vetor multiplets (from (1; 1)�4;6 and its onjugate) whihenhane the SU(3)�SU(2)�U(1) to SU(3)�SU(2)�SU(2). Likewise, one mayhek that indeed the hiral spetrum organizes into orresponding multiplets ofthe enhaned gauge group by omputing expliitly the various Euler haratersof the representations. This reveals that not only the expeted SO(10) andSU(5) gauge groups are possible, but also other gauge groups ontaining SU(3)�SU(2)� U(1)2 as a subgroup.Another way to understand these gauge symmetry enhanements is by ob-serving that the linear relations (3.180), (3.181) for the two line bundles implya redution of the struture group to SU(4) � U(1), whih of ourse enhanesthe ommutant. Its preise form depends on how the U(1) is embedded intoSO(10), but suh a group theoreti analysis is not neessary as one an read o�the enhaned gauge symmetries simply from Table 3.5.3.8.3 Bundles with struture group SU(3)� U(1)3Let us explore further the model building possibilities several line bundles bringabout and onsider the embedding of a bundle of the typeW = V � L1 � L2 � L3 (3.182)with struture group G = SU(3)�U(1)� U(1)�U(1). We thus break E8 downto H = SU(3)�SU(2)�U(1)Z�U(1)X0�U(1)Y 0 by replaing the internal SU(4)bundle of the previous example by an SU(3)� U(1)Z bundle. Alternatively, onean again hoose the bundle W to be of the formW = V � L�11 � L�12 � L�13 (3.183)and the struture group of V to be U(3). In this latter ase, the embedding ofthe three U(1) bundles into SU(6) is given byQ1 = (1; 1; 1;�3; 0; 0); Q2 = (1; 1; 1; 1;�4; 0); Q3 = (1; 1; 1; 1; 1;�5) (3.184)21Inluding the ase that all line bundles are trivial.83
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Figure 3.3: Gauge symmetry enhanement for bundles with struture groupSU(4) � U(1)2. On generi lines through the origin the gauge symmetry is en-haned to SU(3) � SU(2) � U(1) while for the spei� values shown one getseven non-abelian enhanement. The left image shows the loi of non-abelian en-hanement in the (1(L1); 1(L2))-plane for Type A bundles and the right imagefor Type B.with �Z;Z = 24, �X0;X0 = 40 and �Y ;Y = 60. This leads toQ = 0� 4 1 10 5 10 0 61A : (3.185)The massless spetrum for both ases is ounted by the respetive ohomologylasses in Table 3.6.The resulting tadpole anellation ondition reads2(V )� 6 21(L1)� 10 21(L2)� 15 21(L3) = 2(T ) (3.186)for the SU(3)� U(1)3 bundle and�h2(V )� 12 3Xi=1 21(Li) = 2(T ) (3.187)for the U(3)� U(1)3 bundle.For generi �rst Chern lasses 1(L1), 1(L2) and 1(L3) the three U(1) gaugesymmetries are anomalous and gain a mass via the Green-Shwarz mehanism,resulting as before in SU(3) � SU(2) as the generi gauge symmetry. However,for partiular hoies of the bundle data we enounter a rih pattern of gaugeenhanements, as we will now disuss systematially.84



The omputation of the various anomalies for the SU(3)�U(1)3 ase revealsthat the linear ombinationU(1)f = �1 U(1)Z + �2 U(1)X0 + �3 U(1)Y 0 (3.188)is anomaly-free preisely if the �rst Chern lasses of the line bundles satisfy6�1 1(L1) + 10�2 1(L2) + 15�3 1(L3) = 0: (3.189)The orresponding onstraint for the U(3)� U(1)3 ase reads4�11(L1)� (�1 � 5�2) 1(L2) + (6�3 + �1 � �2) 1(L3) = 0: (3.190)For linearly independent �rst Chern lasses, the respetive equation annot besatis�ed other than trivially, of ourse, and we are left with gauge group SU(3)�SU(2). If, however, the 1(Li) span a two- or one-dimensional subspae of theirohomology lass, we an �nd { modulo resaling { preisely one or, respetively,two non-anomalous U(1)f . These U(1) symmetries remain indeed massless.
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has struture group SU(3). An analogous pattern an of ourse be derived forthe U(3) bundle onstrution.Independently of the onrete bundle data, one an hek that quite a fewvalues of �1; �2; �3 admit an interpretation of the orresponding abelian fator,if massless, as the MSSM hyperharge U(1)Y . We list them in Table 3.8 andTable 3.9 together with the respetive andidates for MSSM fermions exhibitingthe required SU(3) � SU(2) � U(1)Y (but not neessarily U(1)B�L) quantumnumbers.
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lass reps. ohom. (type A) ohom. (type B)D1 (1; 3; 2)0;�4;1 H�(M; L�42 
 L3) H�(M; L�12 )D2 (1; 3; 2)0;0;�5 H�(M; L�53 ) H�(M; L�13 )D3 (1; 3; 2)�3;1;1 H�(M; L�31 
 L2 
 L3) H�(M; L�11 )D4 (3; 3; 2)1;1;1 H�(M; V 
 L11 
 L2 
 L3) H�(M; V )B1 (1; 1; 2)�3;�3;�3 H�(M; L�31 
 L�32 
 L�33 ) H�(M; L�11 
 L�12 
 L�13 )B2 (3; 1; 2)�2;2;�3 H�(M; V 
 L�21 
 L22 
 L�33 ) H�(M; V 
 L�11 
 L�13 )B3 (3; 1; 2)�2;�2;3 H�(M; V 
 L�21 
 L�22 
 L33) H�(M; V 
 L�11 
 L�12 )B4 (3; 1; 2)1;�3;�3 H�(M; V 
 L11 
 L�32 
 L�33 ) H�(M; V 
 L�12 
 L�13 )C1 (1; 3; 1)0;�4;�4 H�(M; L�42 
 L�43 ) H�(M; L�12 
 L�13 )C2 (1; 3; 1)�3;�3;2 H�(M; L�31 
 L�32 
 L23) H�(M; L�11 
 L�12 )C3 (1; 3; 1)�3;1;�4 H�(M; L�31 
 L2 
 L�43 ) H�(M; L�11 
 L�13 )C4 (3; 3; 1)�2;2;2 H�(M; V 
 L�21 
 L22 
 L23) H�(M; V 
 L�11 )C5 (3; 3; 1)2;2;2 H�(M;V2 V 
 L21 
 L22 
 L23) H�(M;V2 V )C6 (3; 3; 1)1;�3;2 H�(M; V 
 L11 
 L�32 
 L23) H�(M; V 
 L�12 )C7 (3; 3; 1)1;1;�4 H�(M; V 
 L11 
 L2 
 L�43 ) H�(M; V 
 L�13 )A1 (1; 1; 1)0;�4;6 H�(M; L�42 
 L63) H�(M; L�12 
 L3)A2 (1; 1; 1)�3;5;0 H�(M; L�31 
 L52) H�(M; L�11 
 L2)A3 (1; 1; 1)�3;1;6 H�(M; L�31 
 L2 
 L63) H�(M; L�11 
 L3)A4 (3; 1; 1)1;5;0 H�(M; V 
 L11 
 L52) H�(M; V 
 L2)A5 (3; 1; 1)1;1;6 H�(M; V 
 L11 
 L2 
 L63) H�(M; V 
 L3)A6 (3; 1; 1)4;0;0 H�(M; V 
 L41) H�(M; V 
 L1)Table 3.6: Massless spetrum of H = SU(3)� SU(2)� U(1)3 models.
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rep. Type A Type B gauge groupA1 (1; 1; 1)0;�4;6 �2l2 + 3l3 = 0 �l2 + l3 = 0 SU(3)� SU(2)2A2 (1; 1; 1)�3;5;0 3l1 � 5l2 = 0 l1 � l2 = 0 SU(3)� SU(2)2A3 (1; 1; 1)�3;1;6 3l1 � l2 � 6l3 = 0 l1 � l3 = 0 SU(3)� SU(2)2B1 (1; 1; 2)�3;�3;�3 l1 + l2 + l3 = 0 l1 + l2 + l3 = 0 SU(3)� SU(3)C1 (1; 3; 1)0;�4;�4 l2 + l3 = 0 l2 + l3 = 0 SU(4)� SU(2)C2 (1; 3; 1)�3;�3;�2 3l1 + 2l2 + 3l3 = 0 l1 + l2 = 0 SU(4)� SU(2)C3 (1; 3; 1)�3;1;�4 3l1 � l2 + 4l3 = 0 l1 + l3 = 0 SU(4)� SU(2)D1 (1; 3; 2)0;�4;1 �4l2 + l3 = 0 l2 = 0 SU(5)D2 (1; 3; 2)0;0;�5 l3 = 0 l3 = 0 SU(5)D3 (1; 3; 2)�3;1;1 3l1 � l2 � l3 = 0 l1 = 0 SU(5)Table 3.7: Generi enhanement of SU(3)�SU(2) by additional non-hiral degrees offreedom for both the Type A and Type B embedding. We use the notation li = 1(Li).
part. lass 0� 12110� 115 1A 0�� 514114�1321 1A 0� 32� 110115 1A 0� �123330� 115 1A 0� 121213 1A 0� 12� 110� 715 1AQL D 1; 2; 4 1; 3 1 2; 3 4 4UR C 2; 3; 4 4; 6 6; 7 4; 7 4; 7 4; 6DR C 1; 5; 6; 7 2 1 3 1; 2; 5 1; 3; 5L B 1; 2; 3; 4 3 4 2 1; 3; 4 1; 2; 4ER A 2; 3; 6 4; 6 4; 5 5; 6 4; 5; 6 4; 5; 6�R A 1; 4; 5 2 1 3 3 1Table 3.8: MSSM partile andidates for hoies of (�1; �2; �3), part I. The labels ofthe representations refer to the position in the respetive setions of Table 3.6 withbars denoting hermitian onjugation.
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part. lass 0��12�1213 1A 0� �14320� 415 1A 0� �115� 715 1A 0�� 112760� 115 1A 0� �135� 115 1A 0� �12710� 715 1AQL D 4 1; 3 1 2; 3 2 3UR C 6; 7 5 6 5 7 4DR C 2; 3; 5 2; 7 4; 7 3; 6 6; 4 6; 7L B 1; 2; 3 2; 4 3; 4 3; 4 2; 4 2; 3ER A 4; 5; 6 5 1; 2; 4; 5 4 1; 3; 5 2; 3; 6�R A 1 2 3 3 2 1Table 3.9: MSSM partile andidates for hoies of (�1; �2; �3), part II.
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Chapter 4
The SO(32) heteroti string withunitary bundles and �ve-branes
In view of the rih struture we have enountered in the E8 � E8 string withunitary bundles, it is natural to try and follow a similar strategy in the heterotitheory with gauge group SO(32). The di�erenes in the perturbative setor willbe entirely due to the peuliarities of SO(32) as opposed to E8 � E8. We willreview momentarily that SO(32) possesses a very natural embedding of gaugebundles with unitary struture group. In fat, its deomposition into produtsof U(N) subgroups will reprodue exatly the massless spetrum we are familiarwith in the S-dual Type I framework with magnetized D9-branes. The dynamisof �ve-branes di�ers onsiderably from the E8�E8 ase in that now the �ve-branesalso ontribute hiral fermions and additional sympleti gauge fators. Conse-quently, the Green-Shwarz anomaly anellation pattern has to be reonsidered.It hinges, as far as the �ve-branes are onerned, on an anomalous oupling ofthe heteroti �ve-brane to the bulk, analogously to the anomaly inow argumentsfor D-branes. As an important aspet we will ompare the low-energy e�etiveation, notably the Fayet-Iliopoulos terms and the resulting one-loop orretedDonaldson-Uhlenbek-Yau equation, to known results on the Type I/ Type IIBside. This will serve as evidene for our interpretation of the orretion termsin the DUY onstraint as the four-dimensional shadow of a modi�ed stabilityondition.Sine, despite all the di�erenes in the details, the general strategy is verylose to the proedure in the E8 � E8 ase, we will often be rather brief as farthe explanation of the oneptual bakground is onerned in order to avoidredundanies. In those ases, the required material has already been overed inhapter 3 to whih we refer for additional details. The ontents of this hapter isbased on [129{131℄. 91



4.1 A lass of SO(32) heteroti string vauaWe ompatify the SO(32) heteroti string on a Calabi-Yau manifold M andonsider deompositions of the gauge group SO(32) into its unitary subgroups.Our strategy is to invoke the Whitney sum of internal vetor bundlesW = KMi=1 Vi: (4.1)Eah Vi denotes a rank ni unitary bundle, i.e.it has struture group U(ni). Thegroup theoreti embedding is again aomplished in a two-step proess, similarlyto the E8�E8 onstrution. The �rst step involves the natural U(Mi) subgroupsof SO(32) via the embeddingU(Mi) � SO(32) �! SO(32� 2Mi)� U(1)i: (4.2)Into this U(Mi), we diagonally embed the struture group U(ni) of the bundleVi suh that Mi = niNi, i.e.U(ni) � U(niNi) �! U(Ni): (4.3)The emergene of the non-abelian group U(Ni) an be understood as the non-abelian enhanement of the naive ommutant U(1)Ni . We just observed similarphenomena in the E8 � E8 theory, where non-abelian enhanement was tied tothe degeneray of some of the internal bundles.In all, this aomplishes the embeddingKYi=1 U(ni) � KYi=1 U(niNi) � SO(32) (4.4)and the resulting observable non-abelian gauge group isH = SO(2M)� KYi=1 U(Ni) with M + KXi=1 Mi = 16: (4.5)As we will disuss, maximally only the anomaly-free part of the U(1)K gaugefators remains in the low energy gauge group - a feature whih we are by nowwell familiar with from the disussion of the E8 � E8 theory.In addition to this perturbative setor we take into aount the possible on-tribution from heteroti �ve-branes [83, 132{135℄, whih we will denote as H5-branes to distinguish them from their ousins in the E8 �E8 theory. In ontrastto the situation enountered there, the inlusion of H5-branes does a�et alsothe gauge setor of the ompati�ations. We noted already in setion (2.1) thatthe worldvolume of an SO(32) H5-brane aommodates a massless gauge �eld.To be more preise, let us reall from setion (2.3) that for supersymmetry eah92



H5-brane has to wrap an (in general reduible) holomorphi yle  onM. Thismeans that the assoiated ohomology lass [b℄ 2 H2(M; 2Z) is e�etive, i.e.lies inside the Mori one of M. If  is irreduible, this really orresponds to asingle H5-brane and gives rise to an additional Sp(2) gauge group in the e�etiveation. The appearane of these sympleti gauge degrees of freedom was derivedin [83℄ by virtue of S-duality between the H5-brane and the D5-brane in Type Itheory. The latter, in turn, is known to arry sympleti gauge groups [136℄. If is reduible, we deompose it into the irreduible generators of the Mori onea,  = PLa=1 Na a; Na 2 Z+0 . Due to the multiple wrapping around eah irre-duible urve a, the additional gauge group in the e�etive ation gets enhanedto Qa Sp(2Na). The deomposition into generators may not be unique and thegauge group may therefore vary in the di�erent regions of the assoiated modulispae. However, its total rank and the total number of hiral degrees of freedomharged under the sympleti groups are only dependent on , of ourse.By heteroti-Type I duality, one an infer that the e�etive low energy ationon the H5-branes has to have the usual Chern-Simons formSH5a = ��5 ZR1;3�a 1Xn=0B(4n+2) ^ �Na + `4s2(2�)2 trSp(2Na)F 2a� ^ qÂ(Ta)qÂ(Na) ; (4.6)with the H5-brane tension �5 = 1(2�)5 (�0)3 . Ta and Na denote the tangent bundleand the normal bundle, respetively, of the 2-yle a, whih for onreteness wetake to be irreduible from now on and wrapped by a stak of Na H5-branes. Theurvature ourring in the de�nition of the Â- genus Â(M) = 1+ 148 1(2�)2 trR2+� � �is de�ned as R = �ip2 `2sR (`s � 2�p�0 as before). This type of anomalousoupling of the �ve-brane to the bulk is required in order to anel the gravita-tional anomalies on the SO(32) H5-brane world-volume. Stritly speaking, thewell-known anomaly-inow arguments leading to (4.6) were applied in the S-dualType I framework [137℄, but the struture of gravitational anomalies is not af-feted by S-duality and therefore the full Wess-Zumino oupling is given by (4.6)also on the heteroti side.1 The sign of the Chern-Simons ation is ditated by su-persymmetry: Jumping ahead a little, we state that the hoie in (4.6) guaranteesthat the real part of the gauge kineti funtion for the Sp(2Na)-group is indeedpositive, as we demonstrate in setion 4.5. Note that (4.6) implies both the usualmagneti oupling to B(6) and a oupling to B(2). The latter will be essentialin setion (4.4) when it omes to anelling the mixed abelian-gravitational andabelian-sympleti anomalies by the generalized Green-Shwarz mehanism.For our upoming purposes it is useful to reall the somewhat omplementaryinterpretation of the SO(32) �ve-brane as an instanton of zero size [83℄. In1The normalisations of R and of the term involving trSp(2Na)F 2a di�er from what one mightnaively expet in view of the CS ation of a D5-brane in Type II B by a fator of p2 and 2,respetively. This is a onsequene of a orresponding rede�nition of �0 in the ontext of theS-duality transformation to be disussed further in setion 4.7.93



intuitive terms, we an think of it as a gauge instanton bakground whih, unlikethe holomorphi bundle W , is not spread out along the entire internal manifold,but whih has support only on the two-yle a. Mathematially, suh an objetis de�ned as the skysraper sheaf Oja, whih is the restrition of the trivial sheafonM to a. Being a oherent sheaf, Oja admits a loally free resolution, givenby an appropriate Koszul sequene. For details on Koszul sequenes we referto the mathematial literature, e.g. [138, 139℄. SuÆe it here to reall that thegeneral Koszul sequene is an exat sequene whih provides the resolution forthe restrition of a vetor bundle to some odimension k hypersurfae Y as [30℄0! V 
 ^kN� ! V 
 ^k�1N� ! : : : V 
N� ! V ! V jY ! 0; (4.7)where the hypersurfae Y emerges as the zero lous of a holomorphi setion ofN . This determines the total Chern harater of V jY ash(V jY ) = h(V )� h(V 
N�) + h(V 
 ^2N�) + : : :+ (�1)kh(V 
 ^kN�):(4.8)Heuristially, we an think of a as the omplete intersetion of two generi di-visorsD1 andD2, a = D1\D2. This means that the Poinar�e dual four-form, a,is given by the ohomologial intersetion a = D1 �D2. In this ase we an takefor the rank two holomorphi bundle N simply the diret sum O(D1)� O(D2).Reall that O(D1) is the line bundle onM with �rst Chern lass 1(O(D1)) = D1.Furthermore ^2N = O(D1+D2), as follows already from the omputation of theChern lasses (see also appendix A.1). In all, we take as the de�ning sequenefor O(a)0! O(�D1 �D2)! O(�D1)�O(�D2)! OM ! Oja ! 0: (4.9)It follows from equation (4.8) that the Chern haraters of the sheaf Oja anreadily be omputed as h(Oja) = (0; 0; D1 � D2; 0). In deriving this we haveassumed that the divisors D1 and D2 are in generi position so that in partiularD1 �D1 �D2 = 0 = D2 �D2 �D1.Due to the overall minus sign in the Chern-Simons oupling of the �ve-braneto the bulk, we have to inlude an extra sign into the Chern harater. As aonlusion, the �ve-brane has as its de�ning Chern haraterh(Oja) = (0; 0;�a; 0): (4.10)This is preisely what we expet from its interpretation as an instanton of zerosize: its "instanton number", i.e. 2(Oja), is given simply by the e�etive lassPoinar�e dual to the lass of the two-yle it wraps.94



4.2 The massless spetrumThe perturbative spetrum an be determined from the deomposition of theadjoint representation of SO(32) into representations of SO(2M)�Qi U(Ni) �U(ni),496! 0BBBBB� (AntiSO(2M); 1; 1)PKj=1(1;AdjU(Nj);AdjU(nj))PKj=1(1;AntiU(Nj);SymU(nj)) + (1;SymU(Nj);AntiU(nj)) + h::Pi<j(1;Ni;Nj;ni;nj) + (1;Ni;Nj;ni;nj) + h::PKj=1(2M ;Nj;nj) + h::
1CCCCCA :The internal ohomology groups ounting the various states are listed in ta-ble 4.1. It is most striking that we enounter the same massless spetrum as forthe perturbative Type I string on a smooth Calabi-Yau spae with magnetizedB-type D9-branes2. A prominent role is played by the hiral matter in the bifun-damental representations of pairs of observable U(Ni) fators. Correspondingly,in the framework of interseting D-branes T-dual to the Type I string with mag-netized D9-branes, hiral matter is loalized at the intersetion of two staks ofD6-branes and likewise transforms in the bifundamental of the two gauge groupsrealized on the respetive worldvolumes. Apparently, on the S-dual heteroti side,this typial struture emerges automatially due to the natural U(N) subgroupsof SO(32) and the assoiated deomposition of the adjoint representation. It willtherefore ome as no surprise that the arhiteture of the onrete models wewill present in hapter 6 is very reminisent of the multiple stak onstrutionsknown from the interseting brane piture.The appearane of massless states in the adjoint of U(Ni) and ounted byH�(M; Vi
V �i ) deserves some further omments. The element3 inH0(M; Vi
V �i )ounts the vetor multiplet of the U(Ni) group whih ontains its gauge bosons.The elements in H1(M; Vi 
 V �i ), by ontrast, orrespond to the moduli �eldsassoiated with the bundle deformations. In the speial ase that the internalbundle is abelian, Vi 
 V �i = O and we �nd h1(M;O) massless hiral multipletstransforming in the adjoint representation of a U(Ni) observable gauge fator,just as in the Type I framework and for interseting branes. On genuine Calabi-Yau manifolds, there do not exist any homologially non-trivial one-yles, ofourse, and this �ts with the fat that on a Calabi-Yau a line bundle has noontinuous moduli - it is de�ned one and for all by its �rst Chern lass as anelement in H2(M;Z). On the torus, however, one has H1(T 6;O) = 3, andthe omplex adjoint salars orrespond to the ontinuous Wilson lines on Mwhih parameterise the ontinuous deformations of a line bundle respetively the2Note, however, the reent investigation [140℄ of toroidal orbifold ompati�ations of theSO(32) heteroti string where models are found featuring e.g. the 16 spinor representation.Suh spinor representations are not present in our SO(32) heteroti ontext. We stress thatour results are valid for the ase of smooth bakground manifolds.3Reall that due to stability of V , H0(M; Vi 
 V �i ) = 1.95



deformations of the interseting branes. Analogously, turning on non-abelianbundles U(ni) on the Type I D9-branes gives rise to H1(M; Vi 
 V �i ) moduliorresponding to the deformations of the U(ni) bundle.reps. H =QKi=1 SU(Ni)� U(1)i � SO(2M)�QLa=1 Sp(2Na)(AdjU(Ni))0(i) H�(M; Vi 
 V �i )(SymU(Ni))2(i) H�(M;V2 Vi)(AntiU(Ni))2(i) H�(M;N2s Vi)(Ni;Nj)1(i);1(j) H�(M; Vi 
 Vj)(Ni;Nj)1(i);�1(j) H�(M; Vi 
 V �j )(AdjSO(2M)) H�(M;O)(2M;Ni)1(i) H�(M; Vi)(AntiSp(2Na)) Ext�M(Oja;Oja)(Ni; 2Na)1(i) Ext�M(Vi;Oja)(2Na; 2Nb) Ext�M(Oja;Ojb)Table 4.1: Massless spetrum with the struture group taken to be G = QKi=1 U(ni).The subsripts in the �rst olumn denote the harges under deomposition U(Ni) !SU(Ni)� U(1)i.Additional hiral matter appears from the non-perturbative H5-branes (seethe three last lines of table 4.1), whih is absent for the M5-branes in E8 � E8heteroti string ompati�ations [110℄. In the latter ase this is in aord withthe possibility of moving the �ve-branes into the eleven-dimensional bulk in theHorava-Witten theory. For the SO(32) theory, by ontrast, the desription of theH5-brane as the skysraper sheaf Oja makes it lear that the brane should betreated on the same footing as the smooth gauge instantons given by the bundleW , and this analogy must be taken even more seriously when it omes to thezero modes of the Dira operator.The matter arising in the H5-brane setor is desribed by appropriate exten-sion groups. Following for instane [141℄, the global extension groups Ext�M(E ;F)of two oherent sheaves on M give the sheaf theoreti generalisation of the o-homology groups H�(M; E 
 F�) for vetor bundles on smooth manifolds. Theohomology groups in table 4.1 ounting the zero modes in the bifundamental ofone Sp(2Na) and one U(Ni) fator are therefore the straightforward sheaf the-oreti generalisation of the Dolbeault ohomology groups in ase only smoothvetor bundles are involved. 96



In partiular, it is shown in [141℄ thatExt1M(Oja;Oja) = H1(a;O) +H0(a;Na); (4.11)where the �rst term ontains the possible Wilson line moduli on the H5-braneand the seond term the geometri deformations of the two-yles a � M. Allthese hiral supermultiplets transform in the antisymmetri representation of thesympleti gauge fator.The hirality index of the perturbative spetrum an be determined from theEuler harateristis (2.17) of the various bundles Ui ourring in the deompo-sition of SO(32). This is true also for the matter arising from the H5-branesor rather the oherent sheaves Oja. Namely, for general oherent sheaves therighthand side in (2.17) measures the alternating sum of the dimensions of theglobal extensions. It follows that in the non-perturbative setor, the H5-branesgive rise to hiral matter in the bifundamental (Ni; 2Na)1(i), whih is ounted bythe index �(M; Vi
Oj�a) = � ZM 1(Vi) ^ a: (4.12)The righthand side of (4.12) is an immediate onsequene of the formula forthe Euler harateristi (2.17) one we remember that with the help of (4.10)h3(Vi
Oj�a) = �1(Vi) ^ a and h1((Vi
Oj�a) = 0. In agreement with theabsene of hiral matter for sympleti gauge groups only, for two H5-braneswrapping 2-yles a and b one gets �(M;Oja 
Oj�b) = 0.For later use we point out that the requisite formulae to ompute the Eulerharateristis of produts of bundles Vi 
 Vj and the (anti)-symmetri produtbundle, V2 V and N2s V respetively, appearing in Table (4.1) an be found inappendix A.1.4.3 Global onsisteny onditionsWe an proeed to a detailed analysis of the topologial onsisteny onditionsour internal bundles have to satisfy.In order to evaluate the tadpole anellation ondition for our spetrum weneed, as in the E8 � E8 ase, to express the formal trae over the internal Yang-Mills �eld strength in (2.24) by the topologial data of W and the manifoldM.With the help of table 4.1 we an onvine ourselves thattrF 2 = 130 Xx 2(2�)2 (h2(Ux)� dim(Rx)) == 4(2�)2 Xi Ni h2(Vi): (4.13)For later use we note that similar trae identities of this type are olleted inappendix A.3. 97



Consequently, the tadpole ondition takes the simple formKXi=1 Ni h2(Vi)� LXa=1 Naa = �2(T ); (4.14)to be satis�ed in ohomology.In the presene of sympleti gauge group fators due to the H5-branes weneed to worry about potential global Sp(2Na) anomalies. As we know from [142℄this Witten anomaly is absent preisely if the number of hiral fermions in thefundamental of the Sp(2Na) group is even. Clearly, for a stak of Na �ve-braneswrapping the yle a, the hiral index of the Sp(2Na) is given byindexSp(2Na) = �Xi Ni ZM 1(Vi) ^ a = � ZM 1(W ) ^ a: (4.15)So apparently, the K-theory ondition1(W ) =Xi Ni 1(Vi) 2 H2(M; 2Z) (4.16)ensures the absene of a Witten anomaly for every probe �ve-brane and has there-fore the �eld theoreti interpretation as a global onsisteny ondition for everytopologial setor of the theory. Reall from setion 2.3 that from the point ofview of the underlying (0; 2) model, the rationale behind (4.16) is atually therequirement of absene of worldsheet anomalies [94,95℄. The onnetion betweenthese two di�erent arguments leading to (4.16) is omparable to the situation inType I string theory, where the analogue of (4.16) orresponds, mirosopially,to the torsion K-theory onstraint for the non-BPS D7-brane [96℄. Alternatively,this ondition an likewise be derived by requiring the absene of global Wit-ten anomalies on D5-branes for every possible probe brane and not just for theonrete vauum under onsideration.4.4 Anomaly anellation4.4.1 Field theoreti anomaliesNow let us disuss the resulting anomalies. The expressions for the �eld theoretianomalies follow immediately from the hiral spetrum in table (4.1). For theubi non-abelian anomalies we obtain4 fromASU(Ni)3 � (Ni � 4)�(N2s Vi)) + (Ni + 4)�(V2 Vi)) + 2M �(Vi) (4.17)+Xj 6=i Nj ��(Vi 
 Vj) + �(Vi 
 V �j )�+Xa 2Na �(Vi
Oj�a)4This uses one again the trae identities listed in appendix A.2.98



the expression in terms of Chern haraters,ASU(Ni)3 � 2 ZM 1(Vi)� Tad: (4.18)Here Tad = 2(T ) + KXj=1 Nj h2(Vj)�Xa Naa = 0 (4.19)in ohomology thanks to tadpole anellation (4.14). Thus in ontrast to theE8 � E8 examples, the ubi non-abelian anomalies vanish only if the Bianhiidentity for H is satis�ed [107℄.The expliit expressions for all mixed and ubi abelian anomalies an readilybe omputed along the same lines. Here we only state the result in terms of thevarious Chern haraters up to tadpole anellationAU(1)i�SU(Nj)2 � 2Ni ZM nj h3(Vi) + 2Ni ZM 1(Vi) ^ �h2(Vj) + nj122(T )�;AU(1)i�U(1)2j � Nj AU(1)i�SU(Nj)2 ;AU(1)i�G2�� � 12 ZMNi 1(Vi) 2(T ) + 24 ZMNi h3(Vi);AU(1)i�SO(2M)2 � 112 ZMNi 1(Vi) 2(T ) + ZMNi h3(Vi);AU(1)i�Sp(2Na)2 � �Ni ZM 1(Vi) ^  (4.20)For the �rst two anomalies we assumed that i 6= j, with straightforwardgeneralisations.4.4.2 Green Shwarz mehanism inluding �ve-branesThe Green-Shwarz mehanism anelling the ubi abelian and mixed abeliananomalies works in priniple in a manner very similar to what we enounteredin the ontext of the E8 � E8 string with U(N) bundles. The details of thefour-dimensional ounter terms, however, are quite di�erent for the following tworeasons: Firstly SO(32) possesses, unlike E8 � E8, an independent fourth-orderCasimir. Seondly the �ve-brane part in the anomaly anellation pattern isquite di�erent in that the �ve-branes do not only a�et the tadpole onditionbut also yield expliit ontributions to the anomalies themselves via the Sp(2Na)valued hiral fermions. At the same time, we enounter no self-dual tensor �eldson their world-volume whih, in the ontext of the E8 string, lead to new vertexand mass terms. There are, however, �ve-brane dependent vertex ouplings, butno suh mass terms, emerging from the Wess-Zumino oupling (4.6) to the bulktwo-form B(2). 99



Sine the knowledge of the dimensionally redued Green-Shwarz and massterms bore suh rih fruit in the previous ase and was essential far beyondthe issue of anomaly anellation, we will now present the resulting expressions,stiking losely to the philosophy and the notation of setion (3.4.2).In the SO(32) ase, dimensional redution of the GS ounter term (2.6) and(2.7) to four dimensions gives, upon splitting again the gauge �eld into a four-dimensional part F and the internal part F ,SGS = 1(2�)3`2s Z B(2) ^ 1144Tr(FF 3) (4.21)� 1(2�)3`2s Z B(2) ^ 12880Tr(FF ) ^ � 115TrF 2 + trR2� (4.22)+ 1(2�)3`2s Z B(2) ^ � 196Tr(F 2F 2)� 143200[Tr(FF )℄2� (4.23)� 1(2�)3`2s Z B(2) ^ 15760Tr(F 2) ^ � 115TrF 2 + trR2� (4.24)+ 1(2�)3`2s Z B(2) ^ 1384trR2 ^ �trR2 � 115TrF 2� : (4.25)The spei� prefators of the traes follow from the general trae identities listedin appendix A.2.The expressions (4.21), (4.22) are mass terms for the U(1) gauge fators.(4.23) and (4.24) lead to vertex ouplings of the axions with two gauge �elds and�nally the expression (4.25) gives rise to vertex ouplings of the axions and twogravitons.There are, of ourse, additional mass terms and vertex ouplings originatingin the ross kineti term for H (3.61) in the ten-dimensional e�etive ation aswell as vertex ouplings from the H5-brane ation (4.6).The traes ourring in the kineti and ounter terms are evaluated for thespetrum in table 4.1 in appendix A.3. With these results at hand, it is a simpletask to ollet the expliit mass and GS terms.From (4.21) and (4.22) we �nd that the four-dimensional two-form �eld b(2)0is rendered massive by the oupling to the abelian gauge �elds given byS0mass = 13(2�)5�0 KXi=1 Ni ZR1;3 b(2)0 ^ fi ZX�trU(ni)F 3 � 116trU(ni)F ^ trR2�:(4.26)In addition, (3.61) yields mass terms for the internal two-forms b(2)k ,Smass = 1(2�)2�0 KXi=1 h11Xk=1Ni ZR1;3(b(2)k ^ fi) [trU(ni)F ℄k: (4.27)100



The GS ounter terms (4.23) and (4.24) provide the anomalous ouplings of theaxions to the external gauge �elds and urvature,SGS = 12� h11Xk=1 ZR1;3 b(0)k ^ n KXi=1 �trSU(Ni)F 2 +Ni(fi)2� h12 trU(ni)F 2 � ni96trR2ik� 1192trSO(2M)F 2 [trR2℄k+ 1384trR2htrR2 � 4 KXi=1 NitrU(ni)F 2iko: (4.28)These are supplemented by ouplings to the sympleti gauge �elds and theurvature present in the H5-brane ation (4.6),SH5GS = � 14� h11Xk=1 ZR1;3 [a℄k b(0)k ^ �trSp(2Na)F 2a � Na24 trR2� (4.29)with [a℄k = Ra !k.Last but not least, from the kineti term (3.61) for H we inherit the axio-dilaton vertexS0GS = 18� ZR1;3 b(0)0 ^ �2 KXi=1 ni �trSU(Ni)F 2 +Ni(fi)2�+ trSO(2M)F 2 � trR2�:We an now follow the steps spelled out in setion (3.4.2) and derive thevarious anomaly six-forms. For the mixed U(1)i�SU(Nj) anomaly, for instane,we �ndAU(1)i�SU(Nj)2 � 16(2�)6�0 fi ^ trSU(Nj)F 2ZM�njtrU(ni)F 3 + 3 trU(ni)F ^ trU(nj)F 2 � nj8 trU(ni)F ^ trR2�;(4.30)whih is just tailor-made to anel the mixed U(1)i � SU(Nj)2 anomaly. Theanellation pattern for the remaining abelian-non-abelian, ubi abelian andmixed abelian-gravitational anomalies follows the same lines. Let us just list theresulting anomaly six-formsAU(1)i�SO2 � 112(2�)6�0 fi ^ trSO(2M)F 2 ZM�trU(ni)F 3 � 18trU(ni)F ^ trR2�;AU(1)i�G2�� � � 112(2�)6�0fi ^ trR2 ZM�trU(ni)F 3 � 116trU(ni)F ^ trR2�;AU(1)i�Sp(2Na) � � 12(2�)4�0 fi ^ trSO(2Na)F 2 ZM trF ^ a;101



AU(1)i�U(1)2j � 16(2�)6�0fi ^ f 2j ZM�Nj (nj trU(ni)F 3i � nj8 trU(ni)F ^ trR2) +trU(ni)F ^ trU(nj)F 2� (4.31)and point out that they are in perfet agreement with the �eld theoreti anomaliesgiven in the previous setion. As usual, the anomalous U(1)s are rendered massiveand therefore remain in the low-energy domain as perturbative global symmetries.The situation parallels that in Type I [109℄ and heteroti E8 � E8-theory, wherethe number of massive abelian fators is at least as large as that of the anomalousones and in general given by the rank of the mass matrixMki, as de�ned in (3.39),Mki = ( 1(2�)2�0 (trU(ni)F )k for k 2 f1; : : : ; h11g13(2�)5�0 RM�trU(ni)F 3 � 116trU(ni)F ^ trR2� for k = 0. (4.32)We stress one more that in ontrast to the M5-brane of the E8 � E8 theory,the H5-branes learly do not ontribute any mass terms due to the absene ofadditional tensor �elds emerging from their worldvolume.4.5 Non-universal gauge kineti funtionsLet us now derive the gauge kineti funtions [80, 116, 118, 119℄ as introdued insetion (3.5), to whih we refer for further oneptual details. With the de�nitionof the omplexi�ed dilaton (3.96) and K�ahler moduli (3.97) the full gauge kinetifuntions for the SU(Ni), U(1)i and SO(2M) groups an be read o� from theirimaginary parts in (4.28) and (4.30) to befSU(Ni) = ni S + h11Xk=1 Tk �trU(ni)(F 2)k � ni48(trR2)k�;fU(1)i = 12 NifSU(Ni); (4.33)fSO(2M) = 12S � 196 h11Xk=1 Tk (trR2)k:As in the E8 �E8 ase the relative normalisations for the di�erent gauge groupsare a onsequene of the trae identities, see in this ase appendix A.3. Again,the abelian gauge ouplings reeive an extra fator of 12 as ompared to the non-abelian ones due to the anonial normalisation of the non-abelian seond orderCasimir. In addition, the gauge kineti funtions for the sympleti fators arefSp(2Na) = 12�`2s Za (J � iB) ; (4.34)as we �nd from (4.29). 102



Note that the real part of the gauge kineti funtion are positive de�niteby de�nition. Therefore, as for the E8 � E8 theory, requiring positivity of theexpressions (4.33) in the perturbative regime, gs � 1 and internal radii muhbigger than the string sale, imposes extra onditions on the allowed bundles.Conretely, reality of the one-loop orreted SU(Ni) and U(1)i gauge ouplingsis guaranteed provided that in this regimeni3! ZX J ^ J ^ J � 2 g2s `4s ZX J ^ �h2(Vi) + ni24 2(T )� > 0: (4.35)The analogous onstraint for the SO(2M) group, where the term h(Vi) isabsent, is normally trivially satis�ed, sine for all manifolds we will enounterRM J ^ 2(T ) < 0. The real part of (4.34) is always positive as long as the K�ahlerform J lies in the K�ahler one. This is a onsequene of the minus sign in theWess-Zumino oupling (4.6) and atually serves as its justi�ation.Away from the small oupling and large radii limit one expets both world-sheet and stringy instanton orretions to the gauge kineti funtions [118℄.In ontrast to the E8 � E8 onstrution, no o�-diagonal ouplings amongabelian fators our. Even more strikingly, the tree-level and one-loop orretednon-abelian and abelian gauge ouplings of an observable SU(Ni) and U(1)i gaugefator only depend on the internal gauge ux in the orresponding U(ni). Sinewe used the same deomposition of SO(32) that naturally appears for intersetingD-branes, S-duality tells us that after all this result is not surprising. There, eahstak of D-branes omes with its own gauge oupling determined by the size ofthe three-yle the D6-branes are wrapping around.4.6 Fayet-Iliopoulos termsWe onlude our general disussion of the SO(32) theory with the derivation ofthe Fayet-Iliopoulos terms generated by the massive U(1) symmetries. Our meth-ods largely parallel the ones applied in the ontext of the E8�E8 theory. We willtherefore be omparatively brief and refer to setion (3.6) for more information.SuÆe it here to reall that the starting point for the derivation of the FI termsis the the gauge invariant K�ahler potentialK = M2pl8� �� ln�S + S� �Xx Qx0 Vx�� ln�� h11Xi;j;k=1 dijk6 �Ti + T �i �Xx Qxi Vx��Tj + T �j �Xx Qxj Vx��Tk + T �k �Xx Qxk Vx���: (4.36)This is preisely as for the E8 string, see (3.120), exept the fat that there are noontributions from tensor �elds living on the �ve-brane, of ourse. The harges103



Qxk are again de�ned viaSmass = KXx=1 h11Xk=0 Qxk2��0 ZR1;3 fi ^ b(2)k (4.37)and are enoded in the mass terms (4.26) and (4.27).We an therefore straightforwardly derive the oeÆients �x of the FI-termsfrom the gauge invariant K�ahler potential K via the relation�xg2x = �K�Vx ���V=0: (4.38)Inserting the onrete expressions for the harges eventually leads to the on-lusion that the FI terms vanish if and only if12 ZM J ^ J ^ trU(ni)F � 2 g2s `4s3! ZM�trU(ni)F 3 � 116trU(ni)F ^ trR2� = 0 (4.39)for eah external U(1)i fator separately. It is intriguing that, as expeted fromthe interseting D-brane piture, the FI-term for U(1)i only depends on the or-responding internal vetor bundle with struture group U(ni). This is to beontrasted with the analogous expression (3.122) for the E8 � E8 string, wherethe one-loop orretion of the FI term involves the seond Chern lasses of allvetors bundles embedded into the same E8 fator as the abelian gauge groupunder investigation. Note that the one-loop orretion in (4.39) involves the ubiterm trU(ni)F 3. This an be traed bak to the fat that in ontrast to E8 thegroup SO(32) has an independent fourth order Casimir operator. It implies thewell-known result that for the SO(32) heteroti string a bundle with struturegroup SU(N) generates a non-vanishing one-loop FI-term [124℄5. Again, awayfrom the small string oupling and large radii limit one expets additional non-perturbative world-sheet and string instanton ontributions to (4.39). We willfurther investigate the impliations of the supersymmetry ondition (4.39) of avanishing FI term in setion (4.7.3).4.7 S-duality to the Type I stringAn immediate question onerns the relation between the phenomena studied inthe ontext of the SO(32) heteroti and the S-dual Type I framework. Our aimis therefore to apply Heteroti-Type I S-duality to the equations derived by nowand to shed new light on their signi�ane by omparison with known results onthe Type I side. The main onlusion of this analysis will be the identi�ation of5There exist SU(N) bundles, however, with vanishing FI terms if the bundle data happento be suh that h3(V ) = 0. 104



the supersymmetry onditions (4.39) and (4.35) as the integrability ondition fora deformed Hermitian Yang-Mills equation. The orresponding statement for theE8 � E8 string has been onjetured in setion (3.6.3) and is further supportedby this observation. Before we an takle this issue in setion (4.7.3), however,it is indispensable to derive the preise form of the higher-order ounter termsin the Type I e�etive ation. In partiular, we need to investigate the full setof S-duality transformation rules whih relate the gauge kineti funtions and FIterms to their Type I/Type II B ounterparts. As a subtlety arising in the TypeI e�etive ation, we are always free to absorb an additive shift in the dilatonby a rede�nition of �0. For the purpose of quantitative statements we need tomake sure that all terms in the kineti ation on the Type I and heteroti sideare anonially normalized before they are transformed into one another by S-duality. We therefore annot help it but pause for a moment and �rst derivethe S-dual Type I ation together with its preise relationship to the heterotiation presented in (2.1). Although the ontents of this setion is well-knownin priniple, we onsider it enlightening to present the arguments leading to the�nal Type I ation (4.50) - not only in view of the remarkable onfusion in theliterature about the proper normalisation of the Green-Shwarz terms. Alongthe way, we will also provide the justi�ation for the SO(32) H5-brane ationpostulated in (4.6) as well as for our normalisation (2.6) of the Green-Shwarzounter terms.4.7.1 The Type I e�etive ationWe take as our starting point the relevant bosoni parts of the ten-dimensionalType IIB e�etive ation inluding the Chern-Simons terms of a stak of MD9-branes [12℄,SIIB = 12�210 ZM(10) e�2�10R� 14�210 ZM(10) G3 ^ ?G3 (4.40)� 12 g2Y ZM(10) e��10 trU(M) [F ^ ?F ℄ + �9 ZM(10)Xn C2n+2 ^ h(iF) ^pÂ;where �10 = 12(2�)7(�0)4, �9 = 1(2�)9(�0)5 , 1g2Y = (2��0)2�9, R = �i`2sR andhk(iF) = `2ksk! (2�)k trU(M)F k;qÂ (R) = 1� `4s96 (2�)2 trR2 + `8s18432 (2�)4 �trR2�2 + (4.41)`8s11520 (2�)4 �trR4� :The traes are over the fundamental representation of the U(M) gauge theoryliving on the D9-branes and of SO(1; 9), respetively. G3 = dC2 denotes the105



Ramond-Ramond (RR) three-form �eld strength. Its magneti dual is the six-form potential C6 satisfying ?10dC6 = dC2. Note that in ontrast to the heterotistring, there are no fators of e2�10 a�eting this magneti-eletri duality trans-formation. In (4.40) and in the de�nition of G3 we omitted all additional kinetiand Chern-Simons terms involving the RR forms C0 and C4 of the full Type IIBation.In ompatifying the ten-dimensional theory on R1;3�M, we allow in additionfor staks of Na D5-branes wrapping the holomorphi 2-yles a on M. They,too, give rise to U(Na) gauge groups on their worldvolume. The Chern-Simonsation on the D5-branes readsSCSD5a = ��5 ZR1;3�a  1Xn=0 C4n+2! ^ �Na + `4s2 (2�)2 trU(Na)(F 2a )� ^ qÂ (Ta)qÂ (Na)(4.42)with �5 = 1(2�)5�03 . Here Ta denotes the tangent bundle and Na the normalbundle of the D5-brane inM.The type I theory emerges after modding out the Type IIB string by theworld-sheet parity transformation 
 : (�; �) ! (��; �). At the level of thee�etive ation, this �rst of all means that we projet out the anti-invariant RRpotentials C0 and C4 and introdue the 
 image of the stak of branes, i.e a stakof M D9-branes and staks of Na D5-branes, eah with the negative respetive�eld strength �F .To keep further trak of the projetion, we divide the resulting ation by afator of two. Next we need to take into aount that the orientifold projetionresults in a tadpole for the Ramond-Ramond ten-form, C10, and, sine the Calabi-Yau is generially urved, an indued tadpole for the six-form C6.Quantitatively, these tadpoles are given by the CS-terms on the O9-plane[137, 143℄ SCSO9 = �32�9 ZM(10)  2Xn=0 C4n+2! ^sL̂�R4 �: (4.43)The Hirzebruh genus L̂ is de�ned assL̂�R4 � = 1 + `4s192 (2�)2 trR2 + `8s73728 (2�)4 �trR2�2 � `8s92160 (2�)4 �trR4� :(4.44)In partiular, extrating the top form ontributions both from the Wess-Zuminooupling of the D9-brane and of the orientifold,SC10 = �9 ZM(10) �12 2M � 32�C10; (4.45)106



learly shows that the D9-brane tadpole is anelled preisely for M = 16.The preliminary Type I ation therefore beomes6SI = 14�210 ZM(10) e�2�10R� 18�210 ZM(10) G3 ^ ?G3� 12 g2Y ZM(10) e��10trU(16) [F ^ ?F ℄ + �9 ZM(10)Xn C4n+2 ^ h(iF) ^pÂ�32�9 ZM(10)  2Xn=0 C4n+2! ^sL̂�R4 � (4.46)��5 ZR1;3�a  1Xn=0 C4n+2! ^ �Na + `4s2 (2�)2 trU(Na)(F 2a )� ^ qÂ (Ta)qÂ (Na) :For brevity we have omitted the kineti term for the gauge �elds on the �ve-branes.Now from a detailed worldsheet analysis, we know that due to the 
-projetionthe gauge group on the D9-branes is atually no more U(16) but rather SO(32)and likewise the D5-branes arry gauge group SP (2Na) instead of U(Na) [136℄.We therefore re-express the traes over the fundamental representation of theunitary groups by the ones over SO(32) and Sp(2Na), respetively, with the helpof the trae identitiestrU(16)[F 2℄ = 12trSO(32)[F 2℄; trU(16)[F 4℄ = 148TrSO(32)[F 4℄;trU(Na)[F 2℄ = 12trSp(2Na)[F 2℄; (4.47)with TrSO(32) denoting, as always, the trae in the adjoint representation.We see, however, that the kineti terms, inluding the ones for the Yang-Mills�elds, are not yet anonially normalized. This an be remedied by resalingC2 ! 2p2C2; �0 ! p2�0; e�10 ! 12p2 e�10 : (4.48)By Hodge duality this also impliesC6 ! 2p2C6: (4.49)After this rede�nition we arefully ollet all the Chern-Simons terms andeventually arrive at the ationSI = 12�210 ZM(10) e�2�10R� 14�210 ZM(10) G3 ^ ?G36Note that at this stage the D-brane ation is formally unaltered as ompared to the originalType IIB ation. This is a onsequene of dividing the latter by a fator of 2 after adding the
-image of the branes and furthermore identifying the branes with their orientifold image.107



� 12 g2Y ZM(10) e��10 trSO(32) [F ^ ?F ℄+ 24�210 �04 ZM(10) C6 ^ trSO(32)[F 2℄� tr[R2℄� 4(2�)2Xa Naa)!��5 ZR1;3�a C2 ^ � `4s2 (2�)2 trSp(2Na)(F 2a )� ^ qÂ (Ta)qÂ (Na)+ 124 (2�)5 �0 ZM(10) C2 ^X8; (4.50)where in the expressions involving Â (Ta) and Â (Na) we now de�ne R =�ip2`2sR to keep trak of the resaling of �0. Also, we introdued the Type Igauge oupling 1g2Y = 12(2�)7(�0)3 . The anomaly eight-from X8 is indeed just theone we enountered in the Green-Shwarz mehanism in the heteroti theory andgiven by equation (2.7).This ation is really S-dual to the heteroti string ation (2.1) by an applia-tion of the transformation rulesgIs = (gHs )�1;JI = (gHs )�1JH (4.51)and letting C(2) ! B(2).In partiular, this justi�es the onrete form and normalisation (4.6) of theanomalous Wess-Zumino oupling of the SO(32) heteroti �ve-brane, whih afterall was essential to derive the orret Green-Shwarz terms. Moreover, we haveexpliitly onvined ourselves how on the Type I side the anomaly anellingGreen-Shwarz ounter terms arise from the Chern-Simons ouplings of the D9-and D5-branes and the O9-planes. They appear at �rst order in open stringperturbation theory, as we see by omparison with the Yang-Mills kineti termsat order e��10 = g(�1)open. Along the way, this supports the normalisation (2.6) of theone-loop GS-terms with respet to the tree-level e�etive ation on the heterotiside.It is lear that we an proeed preisely as for the SO(32) heteroti stringand onsider gauge bakground �elds of the form (4.1) on the internal part ofthe spaetime-�lling D9-branes suh that the original SO(32) gauge symmetry isbroken orrespondingly. This is, of ourse, nothing other than the introdutionof magnetized D9-branes. The resulting global onsisteny onditions for theinternal gauge �elds, the spetrum and ohomology groups as well as the detailsof the GS mehanism follow by opying the steps spelled out for the heterotisetup. Note in partiular that the requirement that the rank of the heterotigauge group be 16 translates into the anellation of the D9-tadpole, whereasthe Bianhi identity for H or anomaly anellation ondition in the heterotitheory orresponds to D5-tadpole anellation in Type I. In all, this ertainly108



puts the framework of Type IIB magnetized D-branes oneptually on just thesame footing as the dual heteroti model building with gauge instanton bak-grounds. We antiipated these parallels already in setion 4.2 when pointing outthat the massless spetrum of the SO(32) string with unitary bundles and thatof the Type I/IIB framework with magnetized D9-branes are in one-to-one orre-spondene. It is furthermore lear that the magnetized D-brane piture is by nomeans restrited to turning on just the diagonal abelian part of the gauge �eldson the worldvolume of the branes. All statements about the SO(32) heterotistring with unitary bundles should therefore also be read as the generalisationof the setup of magnetized D-branes to non-abelian bakground bundles on theirworldvolume.4.7.2 The gauge ouplings for Type IAfter this little exerise, we are �nally in a position to take a fresh look at thesupersymmetry onditions (4.39) and (4.35) by analysing them in the S-dual TypeI setup. To do so, we an either perform the analogous omputation of the gaugekineti funtion and FI terms as they follow from dimensional redution of theType I ation (4.50) - or simply apply the S-duality transformation rules (4.51) tothe heteroti results. We go for the seond option and write the expression for thegauge ouplings in a way whih is more suitable for the S-duality transformation.The real part of the holomorphi gauge kineti funtion fSU(Ni) an be ast intothe formRe(fHSU(Ni)) = 1�`6s �ni3! g�2s ZM J ^ J ^ J � (2��0)2 ZM J ^ �trU(ni)F 2 � ni48trR2�� ::(4.52)For reasons whih will beome lear momentarily, we will atually be inter-ested in the S-dual expressions normalized with respet to the original Type IIBtheory from whih Type I arises after the orientifold projetion. As we have justdisussed this requires that we resale, after applying (4.51),�0 ! 1p2 �0; e�10 ! 2p2 e�10 : (4.53)The resulting Type I expressions are to be read as de�ned with respet tothe anonially normalized Type IIB ation. In this sense, the gauge ouplingsS-dual to (4.52) areRe(fISU(Ni)) = 1�`6sgs �ni3! ZM J ^ J ^ J � (2��0)22 ZM J ^ �trU(ni)F 2 � ni48trR2��(4.54)on the Type I/IIB side. Most importantly, the one-loop term has now beome aperturbative �0-orretion to the tree-level gauge oupling.109



4.7.3 The non-abelian MMMS onditionThe same S-duality relations (4.51), (4.53) applied to the FI-terms (4.39) yield12 ZM J ^ J ^ trU(ni)F � (2��0)23! ZM�trU(ni)F 3 � 116trU(ni)F ^ trR2� = 0(4.55)on the Type I/ IIB side, where the seond term is again a perturbative �0-orretion. We an ombine the gauge kineti funtion and the FI-term intoa single omplex quantity, the entral hargeZ = ZM trU(n) �e�i�2 �e�iJ id+FqÂ(M)�� ; (4.56)de�ned in terms of F = 2��0F . The gauge oupling and the FI-term are seen tobe proportional to the real and imaginary part, respetively, of Z.In the ase of abelian D9-branes in Type IIB we know that one an introduean additional phase parameterising whih N = 1 supersymmetry of the underly-ing N = 2 bulk supersymmetry is preserved by the brane. Therefore, the generalType IIB supersymmetry ondition isIm�ZM trU(n) �e�i' e�iJ id+FqÂ(M)�� = 0; (4.57)Re�ZM trU(n) �e�i' e�iJ id+FqÂ(M)�� > 0:As usual in Type IIB theory oupled to a brane, we have now de�ned F =2��0F + B id, thus taking into aount the fat that for open strings only thisombination is a gauge invariant quantity. Clearly, on the right-hand side ofthe �rst equation in (4.57), there might appear a non-vanishing funtion of theharged matter �elds as previously in (3.124), but having disussed these termsat length in setion (3.6.2) we an here just assume them to vanish for simpliity.Note that (4:56) is preisely the perturbative part of the expression for theentral harge as it appears in the �-stability ondition [78℄ for general B-typebranes7. To our knowledge the form of this expression has never been derivedfrom �rst priniples. Rather, we understand that the entral harge has beendesigned in suh a way as to keep in analogy with the well-known RR-harge ofthe B-type-brane as seen in the Chern-Simons ation - it is simply assumed thatin the geometri limit, the two quantities oinide [144℄.We �nd it quite interesting though not unexpeted that, starting from thewell-known Green-Shwarz anomaly terms, our four-dimensional e�etive �eld7This is true at least for spae �lling branes in ase we onsider also non-abelian �elds. Ofourse our analysis has nothing to say about lower-dimensional non-abelian branes.110



theory analysis leads preisely to the perturbative part of the �-stability onditionfor B-type branes.Equation (4.57) is also the integrability ondition for the non-abelian gen-eralisation of the MMMS equation for D9-branes in a urved bakground. Theabelian version of this equation has been proven (without the urvature terms)in [145℄ starting from the DBI ation of a single D-brane and it has been on-�rmed by a world-sheet alulation in [146℄. Up to now it is stritly speakingonly a onjeture that it an easily be generalised to (4.57) [127, 147℄. How-ever, our analysis relies exlusively on quantities of the four-dimensional N = 1e�etive supergravity theory, the one-loop FI-term and the holomorphi gaugekineti funtion. In partiular, the non-renormalization theorems guarantee theabsene of further perturbative orretions, thus ditating (4.57) as the pertur-batively exat integrability ondition at least for D9-branes. The absene of astringy one-loop orretion was shown in [128℄. Of ourse, there will be additionalnon-perturbative orretions, whih in the gs ! 0 limit make out the omplete�-stability expression [78℄.As we disussed in detail in setion (3.6.3) in the ontext of the E8-string, theintegrability ondition (4.57) is not yet suÆient for supersymmetry preservation,but has to be supplemented by the orret stability ondition. This will be thediret generalisation of �-stability, whih is the valid notion of stability only atleading order in �0 and gs.We an now largely repeat the analysis of setion (3.6.3): First, we have toknow the loal supersymmetry equation for non-abelian D9-branes underlying(4.57). All we an say for sure starting from (4.57) is that the loal SUSYondition for D9-branes has to be of the form�Im�e�i' e�iJ id+FqÂ(M)��top + d�5 = 0;where �5 is a globally de�ned 5-form so that d�5 is gauge ovariant. At least forompati�ations on genuine Calabi-Yau manifolds, where dJ = 0 and dH = 0,we annot �nd any 5-form of this type whih is also invariant under the axioniU(1) gauge symmetry B ! B+d�, A! A�� and does lead to a non-vanishingd�5.Therefore, we onlude that the possible orretion d�5 is absent and thatindeed the loal supersymmetry ondition is given by�Im�e�i' e�iJ id+FqÂ(M)��top = �(V )id volM (4.58)and in addition �(V ) = 0 (4.59)or suitable generalisations if one allows for a anellation of the FI terms againsthiral harged matter �elds. This is just the ounterpart of the full Hermitian111



Yang-Mills equation (3.128) we proposed in the ontext of the E8 � E8 theory.Likewise, the �-slope is now de�ned as�(V ) � 1rk(V )Im�ZM trU(n) �e�i'e�iJ id+FqÂ(M)�� : (4.60)A stritly perturbative (in the sense explained in setion 3.128) notion of sta-bility relevant for (4.58) has been analysed in [127℄ and been alled �-stability(to stress that it is only the perturbative part of �-stability). In partiular, theauthors have shown that for �0 smaller than a ritial value depending on thebundle V , equation (4.58) has a unique solution preisely if the bundle is stablewith respet to the deformed slope �(V ). This atually serves as additional sup-port for our orresponding onjeture regarding �-stability in setion (3.6.3). Asthe authors of [127℄ have also shown, in this perturbative sense �-stability im-plies �-stability. However, we fae the same problem that this notion of stabilityassumes that the terms in �(V ) at zeroth order in �0 dominate over the higherorder orretions in the extreme perturbative regime. This may be in onitwith the DUY equation (4.59). For a detailed disussion of this point we referbak to setion (3.128). We hasten to antiipate in this ontext that all onreteexamples we will onstrut in the sequel are not a�eted by this aveat sinethe deformation of the slope vanishes and are therefore supersymmetri providedthey are �-stable. To prove supersymmetry of non-abelian bundles in the moregeneral situation it is neessary to �nd a stability riterion whih is not only validfor arbitrarily small higher order orretions.
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Chapter 5Stable holomorphi U (n) bundleson elliptially �bered Calabi-YaumanifoldsWe have by now made extensive use of the equivalene of the following two typesof objets: solutions of the Hermitian Yang-Mills equations for a onnetion withvalues in the gauge group G on the one hand and holomorphi stable bundleswith struture group G (or, rather, the omplexi�ation of G) on the other. Ourinterest has been in G = SU(n) or U(n), but the orrespondene is not restritedto this hoie. We have seen that the Hermitian Yang-Mills equation for bothheteroti theories reeives perturbative orretions arising preisely at one-loopin string perturbation theory. In Type I/IIB theory, by ontrast, the orretionsare perturbative in �0. In any ase, the stability ondition onstraining the holo-morphi bundles is modi�ed and no longer given by �-stability, but by �- and�-stability, respetively. Sine �-stability implies �-stability in the perturbativelimit, we an therefore, as far as onrete appliations in model building are on-erned, stik to the more familiar �-stability onstraint. As a result, the questionof prime importane both to heteroti and Type I/IIB model building in thisontext onerns the onstrution of suitable stable holomorphi vetor bundlesover a Calabi-Yau threefoldM. The lassi�ation and onstrution of the mostgeneral suh bundles is a hallenging and unsolved mathematial problem. Luk-ily, for the speial ase that the Calabi-Yau manifold is elliptially �bered, a largelass of �-stable holomorphi G-bundles is at our disposal thanks to the spetralover onstrution, pioneered by Friedman, Morgan and Witten (FMW) in [40℄and Donagi [41℄ and further developed by several authors [47, 69, 103, 148{150℄.This will be the playground to provide onrete examples of the general theorypresented in the previous hapter, the main fous being eventually on phenomeno-logially interesting model building. In order to make this work as self-ontainedas possible and to introdue our notation, we will �rst review very briey themain ingredients of this mathematial onstrution relevant for our appliations.In doing so, we will rely on the original literature [40, 69, 149℄ to whih we refer113



for further details.5.1 Elliptially �bered Calabi-Yau manifoldsAn elliptially �bered omplex three-fold M is given by a omplex two-surfaeB, the base spae, together with an analyti map� :M! B; (5.1)where �bers over eah point b in the base,Eb = ��1(b); (5.2)are ellipti urves. Reall that an ellipti urve is a two-torus with a omplexstruture induing an abelian group law. In partiular it ontains a distinguishedpoint p ating as the zero element in this group.We require the �bration M to admit a global setion � : B ! M, assigningto every point in the base b 2 B the zero element �(b) = p 2 Eb on the �ber1.This setion embeds the base as a submanifold into M and we will often notdistinguish between B as a omplex two-fold and �(B) as a four-yle inM. Theassoiated homology lass in H4(M;Z) then intersets the �bre lass preiselyone. It will be useful to introdue also the lass in H2(M;Z) Poinar�e dualto the lass of �(B). In slight abuse of notation, it will also be referred to as�. The respetive meaning will hopefully always be lear from the ontext. Itsohomologial self-intersetion an be proven to be [40℄� � � = �� � ��(1(B)): (5.3)Likewise, we introdue F 2 H4(M;Z) as the Poinar�e dual to the �bre lass. Thefat that the base lass intersets the lass of the generi �bre one is reetedin the ohomologial intersetion form� � F = 1: (5.4)This shows that F is atually the Hodge dual to the two-form �. Now that weare at it, we state for later purposes the simple fat that the intersetion form ofthe pull-bak toM of two lasses � and � in H2(B;Z) is given by the pull-bakof the intersetion on B,��(�) � ��(�) = ��(� � �) = (� � �)F: (5.5)Often we will simply omit the �� when talking about the pull-bak of two-formstoM and likewise the F in expressions of the form above.1See, however, [47, 48, 103℄ for the spetral over onstrution on elliptially �bered three-folds whih admit two setions. 114



Let us now turn our attention to the ellipti �bre. Ellipti urves an bedesribed as the hyperplane in C P2 de�ned by the homogeneous Weierstrassequation zy2 = 4x3 � g2xz2 � g3z3; (5.6)where x; y; z are homogeneous oordinates on C P2 and g2 and g3 de�ne the om-plex struture. When we �ber the ellipti urve over the base, this means thatthe x; y; z and likewise g2 and g3 must be promoted to global setions of a linebundle L on B, and the hoie of L de�nes the �bration.We an atually take L to be the onormal bundle to the setion �(B) so thatthe �bration is now de�ned by the spei� hoie of � . Then x; y; z are setionsof L2, L3 and O whereas g2 and g3 appear as setions of L4 and L6, respetively.If the �brationM is to be Calabi-Yau, the �rst Chern lass of the tangent bundleT must vanish, 1(T ) = 0: (5.7)As shown e.g. in [149℄, this implies L = K�1B , where KB is the anonial bundleof the base spae. It follows that K�4B and K�6B must have setions g2 and g3, re-spetively. The surfaes ompatible with this ondition are found to be del Pezzo,Hirzebruh, Enriques and blow-ups of Hirzebruh surfaes [151℄. Note, however,that the onstrution of stable holomorphi bundles on elliptially �bered three-folds does not hinge upon the Calabi-Yau property. In order to simplify themathematial apparatus, we nonetheless assume (5.7) in the sequel.FMW showed that on suh spaes the Chern lasses of the tangent bundle ofthe total spae follow from the Chern lasses of the base spae. Espeially, westate for later purposes that the seond Chern lass of the tangent bundle an beomputed as 2(T ) = 12� � ��(1(B)) + �111(B)2 + 2(B)�F: (5.8)5.2 The spetral over onstrutionThe basi idea of the spetral over method is to �rst onstrut a stable U(n)or SU(n) bundle on the ellipti �bre over eah point of the base, whih is thenextended over the whole manifold by gluing the data together suitably. Reallthat in general, a U(n) or SU(n) bundle de�nes a rank n omplex vetor bundle.Suh a rank n bundle over an an ellipti urve must, in order to satisfy theHermitian Yang-Mills equation, be of degree zero. Note that this is still trueafter taking into aount the one-loop orretions whih vanish trivially uponrestrition to a omplex urve. More preisely, a rank n bundle an be shown tobe isomorphi to the diret sum of n omplex line bundlesVjEb = N1 � : : :�Nn; (5.9)115



eah of whih has to be of zero degree. If G = SU(n) as opposed to U(n), VjEbmust in addition be of trivial determinant, i.e. Nni=1Ni = OEb. The zero degreeondition on Ni implies that there exists for eah Ni a meromorphi setion withpreisely one zero at someQi and a pole at p, i.e. Ni = OEb(Qi�p). Consequently,stable (S)U(n) bundles on an ellipti urve are in one-to-one orrespondenewith the unordered n-tuple of points Qi, and the redution of U(N) to SU(n) isenoded in the additional requirement that Pi(Qi � p) = 0 in the group law ofthe ellipti urve.Having understood the restrition of a rank n bundle V to eah ellipti �bre,we an now proeed to onstruting the whole of V. In intuitive terms, the aboveimplies that over an elliptially �bered manifold a U(n) vetor bundle determinesa set of n points, varying over the base. More preisely, the bundle V over Mwith the property VjEb = nMi=1 O(Qi � p) (5.10)uniquely de�nes an n-fold rami�ed over C of B, the spetral over. It is de�nedby a projetion�C : C ! B and C \ Eb = ��1C (b) =[i Qi: (5.11)C is onveniently desribed, as a hypersurfae in M, by its Poinar�e dual two-form n�+ : : :. The �rst part is due to the fat that C is an n-fold over of B. Asdisussed in [149℄, if we insist that VjEb be an SU(n) bundle2 then the additionalterms in the de�nition of C must emerge from the pull-bak of a two-form on B,i.e. [C℄ = n� + ��(�) 2 H2(M;Z) (5.12)for � some e�etive lass in H2(B;Z). We will heneforth assume this to be thease.Several distint bundles overM may well give rise to the same spetral overC sine the latter only enodes the information about the restrition of V to the�bre Eb. To reover V from the spetral data we need to speify in addition howit varies over the base, i.e. VjB. As disussed in [40℄ this is uniquely aomplishedby the so-alled spetral line bundle N on C with the property�C�N = VjB: (5.13)We an formalise these results by introduing the notion of the Poinar�eline bundle P. For this purpose, onsider the �bre produt M�B M as the2This only means that the part of V over the ellipti �bre is of trivial determinant. Nonethe-less, the full V an have a non-vanishing �rst Chern-lass, whih, however, does not reeiveontributions from the �bre. This will beome lear shortly.116



set of pairs (z1; z2) 2 M � M with �(z1) = �(z2). Furthermore we need tointrodue �1 and �2 as the projetions on the �rst and seond fator, respetively.Moreover, �1 denotes the setion �1 : B ! X ! X �B X 0 and �2 the setion�2 : B ! X 0 ! X �B X 0. Then P is de�ned as the bundle overM�BM withthe two propertiesPjEb�x ' Pjx�Eb ' OEb(x� p); (�1�(P)) jB = OB: (5.14)Introduing the diagonal divisor �, the �rst Chern lass of the Poinar�e linebundle is [40℄ 1(P) = �� �1 � �2 � 1(B): (5.15)We will denote by PB the restrition of P to M �B C. Now by de�nition,�1�(PB)jEb =LiO(Qi�p), as is lear from the fat that C \Eb = SiQi and the�rst property in (5.14). This remains true if we tensor PB with ��2N for someline bundle N on C. After all, ��N as a bundle onM is trivial when restritedto the �bre Eb. On the other hand, Pj��BEb is likewise trivial due to the seondproperty in (5.14), and so �1�(��2N 
 PB)jB is simply given by �C�N . In otherwords, the bundle V = �1�(��2N 
 PB) (5.16)indeed exhibits the two de�ning properties (5.10) and (5.13). This establishes thede�nition of an (S)U(n) bundle on the elliptially �bered Calabi-Yau threefoldin terms of the spetral data (C;N ). We reiterate that we will only onsider thease that the restrition of the bundle to the ellipti �bre is an SU(n) bundle,i.e. that C is as in (5.12).The bundles onstruted so far are only �-semi-stable. It has been shownin [152℄, Theorem 7.1, that the spetral over must be irreduible in order toobtain a �-stable one, whih imposes two more onditions to the urve � [153℄:� The linear system j�j has to be base point free.� The lass � � n1(B) has to be e�etive.We will be more spei� about their impliations when it omes to a disussionof the properties of the basis. In fat, the proof guarantees stability of the bundlewith respet to an ample lass, i.e. a K�ahler lass, J = �� + JB suh that theK�ahler parameter of the �ber lies in a ertain range near the boundary of theK�ahler one, that is for suÆiently small �. Sine the value of � is not known, inall models involving the spetral over onstrutions it is therefore a subtle issueif the region of stability overlaps with the perturbative regime, whih is needed tohave ontrol over non-perturbative e�ets. In all examples whih will be relevantfor us, the onstraints will leave us enough freedom to go to regions of the K�ahlerone where � is muh smaller than JB.117



We now give the topologial invariants of the bundle V de�ned by (5.16). Theworking horse for this omputation is the Grothendiek-Riemann-Roh (GRR)theorem stating that, for a oherent sheaf V over a variety Y with a smoothprojetion � : Y ! X, the Chern haraters of the push-forward sheaf ��W overX an be omputed fromh��!(W )�Td(X) = ���h(W ) Td(Y )�; (5.17)with the operation �� on the right being essentially integration along the �bre of�. For ompleteness we note that �!(W ), appearing on the left, is the K-theoretiGysin map whih is de�ned as �!(W ) =Pi(�1)Ri��(W ) in terms of the higherdiret image sheaves Ri��(W ) . The latter an be thought of as the sheaf over Xwhose stalk over U � X is given by the ohomology group H i(��1(U);W j��1(U))and the alternating sum is to be understood in the K-theoreti sense. Moreinformation an be found e.g. in [138℄.The idea is now to apply this theorem to the projetion �1 :M�B C !Mand with W given by ��2N 
 PB. In this ase, the �ber of �1 over a point �(b)in M onsists simply of the n points in the n-fold over C whih projet to bunder �C : C ! B. Sine the �ber is zero-dimensional, all diret images Ri��(V )higher than R0�1�(W ) = �1�(��2N 
PB) vanish. The latter is just the de�nitionof V and this allows us to ompute the Chern lasses of V fromh(V)Td(M) = �1� �e1(��2N
PB) Td(M� C)� : (5.18)As disussed in [40℄, this relates, after additional manipulations, in partiular1(N ) and 1(V) as1(N ) = 1n ��C1(V)jB � 12 1(TC) + 12 ��C1(B) +  (5.19)in terms of the ohomology lass  satisfying�C� = 0: (5.20)One an prove that  an in general be written as = �(n� � ��C� + n��C1(B)); (5.21)where � 2 Q . Note furthermore that 1(TC) is minus the �rst Chern lass of theanonial bundle KC = O(C) on C, i.e. 1(TC) = �n� � ��C(�).We now parameterise 1(V) by some element 1(�) 2 H2(B;Z) to be spei�edmomentarily, 1(V) = ��1(�): (5.22)Putting everything together, we have1(N ) = n�12 + �� � + �12 � ����C� + �12 + n�� ��C1(B) + 1n ��C1(�):(5.23)118



Sine 1(N ) must be an integer lass, not every value of � 2 Q and 1(�) 2H2(B;Z) is allowed in the ansatz for 1(V). Rather they are subjet to theonstraints n�12 + �� 2 Z;�12 � �� � + �n�+ 12� 1(B) + 1n 1(�) 2 H2(B;Z); (5.24)but an otherwise be hosen arbitrarily. Note that if we are interested in SU(n)bundles as e.g. in [40℄, then simply 1(�) = 0 so that 1(V) = 0. All otheronsistent hoies yield U(n) bundles. Allowing non-trivial values for 1(V) was�rst onsidered in [69℄ and motivated by the relative Fourier-Mukai transform,but we will not invoke this piture here3 . Further appliations of the GRRtheorem lead, after onsiderable work, to the following expressions for the seondand third Chern lasses [40, 69, 148℄h2(V) = �� � ��� + � 12n1(�)2 � !�F;h3(V) = �� � (� � n1(B))� 1n 1(�) � �; (5.25)where ! = � 1241(B)2(n3 � n) + 12 ��2 � 14�n� � (� � n1(B)): (5.26)Note that h3(V ) has already been integrated over the �ber.As we emphasized several times, this kind of onstrution only gives bundleswith trivial �rst Chern lass as restrited to the ellipti �bres. To be more general,we an however twist the bundle V de�ned via the spetral over onstrutionwith an additional line bundle Q on X with [131℄1(Q) = q� + ��(1(�Q)); (5.27)where ��(1(�Q)) 2 H2(X;Z). The resulting U(n) bundleV = V 
 Q (5.28)is �-stable preisely if the original bundle V is [30℄. The Chern lasses for Vare straightforwardly omputed from the ones of V and from 1(Q) (see alsoappendix A.1). Note that the ontribution form ��(1(�Q)) an be absorbed intoan additive shift of 1(�) by n1(�Q). W.l.o.g. we will heneforth assume that1(�Q) = 0.The Chern haraters of V then read3To reover their expressions, simply set 1(�) = �E � n2 1(B) in the notation of [69℄.119



h1(V ) = nq� + 1(�); (5.29)h2(V ) = h�� + q2(21(�)� n q1(B))i � + aF ; (5.30)h3(V ) = �� � (� � n1(B))� 1n� � 1(�) + q� 12n1(�)2 � !�+ (5.31)q1(B)�� � q21(�) + nq26 1(B)� ;where aF = 12n1(�)2 � !: (5.32)For later purposes we also list the Chern lasses,1(V ) = nq� + 1(�); (5.33)2(V ) = h� + q(n� 1)�1(�)� q2n1(B)�i � + 121(�)2 � aF ; (5.34)3(V ) = q26 (n2 � 3n+ 2) �nq1(B)2 � 31(�) � 1(B)� ; (5.35)+ q2n(n2 � 2n+ 2)1(�)2 + (2q � nq � 2n�) � � 1(B)+n� 2n � � 1(�) + 2� �2 � nq aF � 2q !:To summarize, this lass of U(n) bundles is ompletely spei�ed by the rationalnumber �, the integer q and the lasses � and 1(�).5.3 del Pezzo base manifoldsAs alluded to already, the Calabi-Yau ondition imposes severe onstraints onwhih omplex two-surfaes are eligible as base manifolds of our ellipti �bration.Among the possibilities lassi�ed in [151℄ we an hoose as the base manifoldone of the del Pezzo surfaes dPr with r = 0; : : : ; 9. The surfae dPr is de�nedby blowing up r points in generi position on P2. This means that H2(dPr) isgenerated by the r + 1 elements l; E1; : : : ; Er, where l is the hyperplane lassinherited from P2 and the Em denote the r exeptional yles introdued by theblow-ups. The intersetion form an be omputed asl � l = 1; l �Em = 0; Em � En = �Æm;n: (5.36)The �rst equation follows from the fat that two representatives of the lassl de�ne two omplex lines in generi position whih learly interset preiselyone. The self-intersetion for the blow-ups is the usual one for exeptional120



yles. Furthermore, a omplex line in generi position does not pass throughany of the blow-ups, thus l � Em = 0.The Chern lasses read1(dPr) = 3l � rXm=1Em; 2(dPr) = 3 + r: (5.37)We learly reover the part involving l as simply the �rst Chern lass of theanti-anonial bundle of the parent P2. For the seond Chern lass of the elliptithreefoldM we obtain, applying (5.8),2(TM) = 12�1(B) + (102� 10r)F: (5.38)Now for a vetor bundle Vi we an expand �i and 1(�i) in a ohomologial basis�i = �(0)i l + rXm=1 �(m)i Em; 1(�i) = �(0)i l + rXm=1 �(m)i Em: (5.39)As mentioned before we have to require that � is e�etive and that for stability� � n 1(B) is e�etive as well. Fortunately, the generating system for the oneof e�etive urves on dPr has been given in [154℄ and we list the reformulatedresult of [153℄ in Table 5.1 for ompleteness. Reall that a general e�etive lassan be expanded into a linear ombination of these Mori one generators withnon-negative integer oeÆients.Moreover, j�j is known to be base point free if � �E � 0 for every urve E withE2 = �1 and E � 1(B) = 1. Suh urves are preisely given by the generators ofthe Mori one listed in Table 5.1.
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r Generators #1 E1, l � E1 22 Ei, l � E1 � E2 33 Ei, l � Ei � Ej 64 Ei, l � Ei � Ej 105 Ei, l � Ei � Ej, 2l � E1 � E2 � E3 � E4 � E5 166 Ei, l � Ei � Ej, 2l � Ei � Ej � Ek � El � Em 277 Ei, l � Ei � Ej, 2l � Ei � Ej � Ek � El � Em,3l � 2Ei � Ej � Ek � El � Em � En � Eo 568 Ei, l � Ei � Ej, 2l � Ei � Ej � Ek � El � Em,3l � 2Ei � Ej � Ek � El � Em � En � Eo,4l � 2(Ei + Ej + Ek)�P5i=1Emi ,5l � 2P6i=1Emi � Ek � El, 6l � 3Ei � 2P7i=1Emi 2409 f = 3�P9i=1Ei, and fyag with y2a = �1, ya � f = 1 1Table 5.1: Generators for the Mori one of eah dPr, r = 1; : : : ; 9. All indiesi; j; : : : 2 f1; : : : ; rg in the table are distint. The e�etive lasses an be writtenas linear ombinations of the generators with integer non-negative oeÆients.
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Chapter 6Semi-realisti SO(32) string vauaWe have �nally olleted all the relevant material we need in order to disussthe appliations of the novel embedding of U(n) bundles to string model buildingin either heteroti theory. In this hapter, based on [131℄ , we start with theSO(32) heteroti orner. From our disussion in hapter 4 it is lear that theparameter spae of potentially onsistent vaua is extremely huge. A systematisearh for interesting models, let alone a omplete lassi�ation of the assoiatedlandsape1, therefore appears hallenging and is far beyond the sope of this work.The large number of a priori possibilities is due to two independent soures.First we need to speify a onrete embedding of the type disussed in se-tion (4.1). Even if we restrit all onsiderations from the beginning to a phe-nomenologially appealing visible gauge setor - e.g. suh that it reprodue thePati-Salam or MSSM gauge group - we have the hoie of the intermediate groupU(Mi). Basially this amounts to the "internal" integer degree of freedom niin equation (4.4) for eah visible group fator. The e�etive tadpole has to beanelled by introduing an appropriate hidden setor onsisting of hidden gaugebundles and/or �ve-branes. The ombinatoris governing this problem renders alassi�ation of all possibilities highly non-trivial.All this is of ourse ompletely independent of the question on whih onretebakground manifold one endeavours to onstrut suitable vetor bundles. Forreasons of pratiability we will fous on the lass of stable holomorphi bundleson elliptially �bered Calabi-Yau manifolds the essential properties of whih wehave just reviewed in hapter 5. Any alternative methods to onstrut stablebundles over more general Calabi-Yau threefolds serve, in priniple, as equallygood starting points for model building. The disrete parameter spae even forthe speial set of bundles based on the spetral over onstrution is enormous.In this hapter we present two semi-realisti examples whih our very preliminaryand restritive survey has produed and whose properties are typial of a largeset of solutions that an easily be generated. In fat, we have only overed a tinyfration of the solution spae of vetor bundles on ellipti �brations over dP3 and1See [155, 156℄ for a treatment of the landsape of string vaua in the S-dual framework ofmagnetized D9-branes with abelian bundles respetively interseting branes.123



dP4.We have emphasized several times by now the one-to-one orrespondene be-tween the arhiteture of the SO(32) heteroti theory with U(n) bundles and thestruture known from the ontext of interseting D-brane model building. Takingthis duality at fae value we therefore advoate the following examples alterna-tively as Type I vaua with non-abelian magnetized D9-branes on non-toroidalthree-folds inluding D5-branes.Before digging into the details of the models, it only remains to evaluate theloop-orreted DUY ondition (4.39) for this lass of vetor bundles. With thehelp of the Chern haraters as given in equation (5.29), we obtain the DUYequation 12 r� �2JB � r� 1(B)� (1(�)� nq 1(B)) + nq2 J2B= 2 g2s ��(V )� 121(�) 1(B)� nq24 �2(B)� 1(B)2�� (6.1)after expressing J = `2s(r� �+JB) in terms of JB, the K�ahler form on the base B.This equation has to be satis�ed inside the K�ahler one for the model to be well-de�ned. The onstraints on the K�ahler moduli resulting from this requirementare olleted in appendix B.The positivity ondition (4.35) on the real part of the gauge kineti funtionfor a U(N) fator leads to the seond onstraintn3!r� �r2�1(B)2 � 3r�1(B)JB + 3J2B�� 2 g2s h(r�1(B)� JB)�� � q2 (21(�)� nq 1(B))� + r�aFi� g2s n h1(B)JB + r�12 �2(B)� 1(B)2�i > 0: (6.2)These onditions impose strong onstraints on the bundles to be put simulta-neously on the manifoldM. We reall that in general eah U(n) bundle freezesone ombination of the dilaton and the b2(B) + 1 radii.6.1 A four-generation Pati-Salam model on dP3As a �rst example we hoose the basis of the ellipti �bration to be the del Pezzosurfae dP3. Then we embed a bundle with struture group U(1) � U(2)2 intoU(4)3 yielding the observable groupH = U(4)� U(2)2 � SO(8): (6.3)The data for the twisted bundles are given in Table 6.1.It an be heked expliitly from (5.24) that this data results in well-de�nedspetral bundles N . Furthermore, �b and � as well as�b � 21(B) = 5l � E1 � 3E2 � E3; � � 21(B) = l � E1 + E2 � E3 (6.4)124



U(ni) �i �i qi �iU(1)a 0 0 0 �2l + 3E2 + 3E3U(2)b 0 11l � 3E1 � 5E2 � 3E3 0 �2l + 2P3m=1 EmU(2) 0 7l � 3E1 � E2 � 3E3 0 �8l + 8P3m=1 EmTable 6.1: De�ning data for a U(1)� U(2)2 bundle.are e�etive and the linear systems j�bj, j�j are base-point free, i.e. all inter-setions with the basis of the Mori one listed in Table 5.1 are non-negative.Therefore, the onstruted bundles are indeed �-stable.Finally, the tadpole2(T ) = 12"3l � 3Xm=1Em# � + 72 (6.5)is anelled without adding H5-branes due toh2(Va) = �7;h2(Vb) = [�11l + 3E1 + 5E2 + 3E3℄ � + 8;h2(V) = [�7l + 3E1 + E2 + 3E3℄� � 30: (6.6)The resulting hiral spetrum is displayed in Table 6.2. Observe in partiularthat there is no hiral state harged under SO(8) due to �(Vi) = 0 and that thereare no symmetri or antisymmetri hiral states sine in addition �i � h2(Vi) =�i � 2(T ) = 0 for all i.The analysis of the hiral spetrum shows that all three U(1) fators areanomaly-free. However, the mass matrix (4.32) has rank two, and only the linearombination 4U(1)b � U(1) remains massless.U(4)a � U(2)b � U(2) mult.(4; 2; 1)�1;�1;0 2(4; 2; 1)�1;1;0 2(4; 1; 2)1;0;�1 2(4; 1; 2)1;0;1 2Table 6.2: Chiral spetrum of a four generation Pati-Salam model on dP3.125



The resulting DUY onditions are very simple in this on�guration sine allone-loop ontributions anel,r� (3r2 + 3r3 + 2r0) = 0;r�  r0 + 3Xm=1 rm! = 0: (6.7)Aording to our disussion in setion 4.7.3 this ensures that �-stability is justthe right riterion for the bundle to satisfy the Hermitian Yang-Mills equation.Positivity of the gauge kineti funtions requiresr�  2r2� � r�(3r0 + 3Xm=1 rm) + r20 � 3Xm=1 r2m!� 2 g2s  �14r� + 3r0 + 3Xm=1 rm! > 0;r� 2r2� � r�(3r0 + 3Xm=1 rm) + r20 � 3Xm=1 r2m!� 2 g2s (30r� � 8r0 � 2r1 � 4r2 � 2r3) > 0;r�  2r2� � r�(3r0 + 3Xm=1 rm) + r20 � 3Xm=1 r2m!+ 2 g2s (16r� + 4r0 + 2r1 + 2r3) > 0:These onditions an be ful�lled in the perturbative regime inside the K�ahlerone, e.g. for arbitrary r� and gs < 0:11 r�, r0 = 1:8 r�, r1 = r2 = r3 = �0:6 r�.6.2 A three-generation Standard-like model ondP4This setion is devoted to a three-generation Standard-like model involving fourvetor bundles, where we now take the base manifold to be dP4. It an beregarded as the generalized S-dual version of the four-stak models whih havebeome popular in the framework of interseting branes. Our aim is therefore toobtain a visible gauge group U(3)a�U(2)b�U(1)�U(1)d and realize the quarksand leptons as appropriate bifundamentals. A possible hoie of the hyperhargeas a (massless) ombination of the abelian fators is given by QY = 16Qa+ 12(Q+Qd). In this ase, also some of the (anti-)symmetri representations arry MSSMquantum numbers . The details of the hiral MSSM spetrum we try to reproduean be found in Table 6.4.Among the many possibilities we onsider the simple embedding of the stru-ture group G = U(1)�U(1)�U(2)�U(1) into U(3)�U(2)�U(2)�U(1). Thisleads to H = U(3)� U(2)� U(1)� U(1)� SO(16) (6.8)modulo the issue of anomalous abelian fators. We hoose the bundles hara-terized in Table 6.3. 126



U(ni) �i �i qi �iU(1)a 0 0 1 5l � 3E1 � 5E2 � E3U(1)b 0 0 1 �3l + 5E1 + 2E2 � E3 + E4SU(2) 0 7l � 3E1 � 3E2 � E3 � E4 0 0U(1)d 0 0 - 1 �5l + 3E1 + 5E2 + E3Table 6.3: De�ning data for a U(1)� U(1)� SU(2) � U(1) bundle.Note that V atually has struture group SU(2) rather than U(2) sine its �rstChern lass vanishes, whih however makes no di�erene in the group theoretideomposition of SO(32). Again, one may verify expliitly that the onditionsfor �-stability are satis�ed. Let us also point out that the requirement (4.16) ofanellation of the Witten anomaly, whih is non-trivial for odd Na, is satis�edby the on�guration. Furthermore, the U(1)Y hyperharge is indeed masslessas desired (see (4.32)). However, sine the rank of the mass matrix is two, weget another massless U(1) in the four-dimensional gauge group, whih is readilyidenti�ed as U(1). The perturbative low energy gauge group is thereforeH = SU(3)� SU(2)� U(1)Y � U(1)0 � SO(16): (6.9)The degeneray of the bundle Va and Vd = V �a leads to a gauge enhanementof the U(3)a and the U(1)d to a U(4). Apart from these drawbaks, the on�g-uration indeed gives rise to three families of the MSSM hiral spetrum as listedin Table 6.4.In addition, we get some hiral exoti matter in the antisymmetri of the U(2)and in the bifundamental of the SO(16) with the U(3) and U(2), respetively (seeTable 6.5).In ontrast to the previous example, the hosen bundles alone do not satisfythe tadpole anellation ondition. However, the resulting tadpole an be an-elled by inluding H5-branes, whih demonstrates the importane of allowing forthese non-perturbative objets. From the general form of the tadpole equationwe �nd the four-form haraterizing this tadpole to be[W ℄ = 2(T ) + 4Xi=1 Ni h2(Vi) = 22F + (34l � 8E1 � 22E2 � 14E3 � 6E4) �:(6.10)Its Poinar�e dual lass [�℄ = 22� + 34l � 8E1 � 22E2 � 14E3 � 6E4 liesinside the Mori one, i.e. is e�etive, and an thus be regarded as the homologylass assoiated to a (reduible) holomorphi urve around whih we may wrapa system of H5-branes. To determine the detailed spetrum and gauge group127



U(3)a � U(2)b � U(1) � U(1)d � SO(16)�Qa Sp(2Na)MSSM partile repr. index mult. totalQL (3; 2; 1; 1)(1;�1;0;0) �(X; Va 
 V �b ) 8QL (3; 2; 1; 1)(1;1;0;0) �(X; Va 
 Vb) -11 -3uR (3; 1; 1; 1)(�1;0;�1;0) �(X; V �a 
 V � ) -3uR (3; 1; 1; 1)(�1;0;0;�1) �(X; V �a 
 V �d ) 0 -3dR (3; 1; 1; 1)(�1;0;1;0) �(X; V �a 
 V) -3dR (3; 1; 1; 1)(�1;0;0;1) �(X; V �a 
 Vd) 45dR (3A; 1; 1; 1)(2;0;0;0) �(X;N2s Va) -45 -3L (1; 2; 1; 1)(0;1;�1;0) �(X; Vb 
 V � ) -7L (1; 2; 1; 1)(0;1;0;�1) �(X; Vb 
 V �d ) -11L (1; 2; 1; 1)(0;�1;�1;0) �(X; V �b 
 V � ) 7L (1; 2; 1; 1)(0;�1;0;�1) �(X; V �b 
 V �d ) 8 -3eR (1; 1; 1; 1)(0;0;2;0) �(X;V2 V) 0eR (1; 1; 1; 1)(0;0;0;2) �(X;V2 Vd) 0eR (1; 1; 1; 1)(0;0;1;1) �(X; V 
 Vd) -3 -3�R (1; 1; 1; 1)(0;0;�1;1) �(X; V � 
 Vd) -3 -3Table 6.4: Chiral MSSM spetrum for a four-stak model withQY = 16Qa+ 12(Q+Qd).supported by the branes we must hoose a deomposition of [�℄ into irreduiblee�etive lasses around eah of whih we an wrap one H5-brane. These aregiven preisely by the generators of the Mori one in Table 5.1. Note that thedeomposition is not unique and onstitutes (part of) the moduli spae of ourmodel; what is universal is the total number of hiral degrees of freedom hargedunder the sympleti setor (see Table 6.5) and its total rank. In our ase, thelatter is easily found to be 74. For instane, the deomposition[�℄ = 22 � + 22(l � E2 � E3) + 12(l � E1 � E4) + 4E1 + 8E3 + 6E4 (6.11)results in the sympleti gauge group Sp(44)�Sp(44)�Sp(24)�Sp(8)�Sp(16)�Sp(12). The bifundamental exotis between the MSSM group and this sympletigauge setor an be determined with the help of (4.12). Ideally, this group wouldbe hidden, of ourse. 128



U(3)a � U(2)b � U(1) � U(1)d � SO(16)�Qa Sp(2Na)MSSM partile repr. index mult. total- (1; 1A; 1; 1)(0;2;0;0) �(X;N2s Vb) -77 -77- (3; 1; 16; 1)(1;0;0;0) �(X; Va) -1 -1- (1; 2; 16; 1)(0;1;0;0) �(X; Vb) -11 -11- (1; 1; 16; 1)(0;0;1;0) �(X; V) 0 0- (1; 1; 16; 1)(0;0;0;1) �(X; Vd) 1 1- Pa(3; 1; 1; 2Na)(1;0;0;0) �(X; Va
Oj) 8 8- Pa(1; 2; 1; 2Na)(0;1;0;0) �(X; Vb
Oj�) 56 56- Pa(1; 1; 1; 2Na)(0;0;1;0) �(X; V
Oj�) 0 0- Pa(1; 1; 1; 2Na)(0;0;0;1) �(X; Vd
Oj�) -8 -8Table 6.5: Chiral exoti spetrum for the four-stak model with QY = 16Qa + 12(Q +Qd). In the seond olumn, the �rst two entries refer to the U(3) and U(2) fators, thethird to the SO(16) group and the fourth olletively represents the sympleti harges.The U(1) harges are read o� from the lower-ase entries.The only independent DUY equations are those for Va and Vb12(r20 � 4Xm=1 r2m) + r�(2r0 + 2r1 + 4r2 � r4 � 12r�) = �496 g2s ; (6.12)12(r20 � 4Xm=1 r2m) + r�(�6r0 � 6r1 � 3r2 � 2r4 + 72r�) = �1216 g2s ; (6.13)and only �x two of the K�ahler moduli. Note that Va and Vb, being line bundles,automatially satisfy the Hermitian Yang-Mills equations. The reason is thattheir �eld strength is onstant over the manifold as a onsequene of the Bianhiidentity, whih in the abelian ase implies dF = 0.The SU(2)-bundle V, by ontrast, is suh that its one-loop part in the DUYorretion vanishes, so that for V �-stability is suÆient for supersymmetry.Therefore, the supersymmetry ondition redues entirely to the DUY equationand no further stability analysis is required.A solution to (6.12) for whih the real part of the various gauge kineti fun-tions is positive an well be found inside the K�ahler one and in the perturbativeregime. E.g. by taking r2 = �2:5 r�; r3 = �1:1 r�; r4 = � r� and gs < 0:41 r�for arbitrary r�, the solution for r0 and r1 satis�es all K�ahler one onstraints.We an therefore always hoose r� and gs suh that the model is indeed in the129



perturbative regime.
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Chapter 7GUT and Standard Model vauafrom E8 � E8Our ultimate goal is to �nd a new framework for the onstrution of realisti stringvaua. Conretely, we have already desribed two very promising senarios howto arrive at phenomenologially appealing gauge groups and a realisti partilespetrum in the framework of the E8 � E8 string. As one of its virtues themethod of embedding U(N) bundles has the potential to yield just the right gaugegroups without relying on the use of Wilson lines on the Calabi-Yau manifold,whih would restrit the hoie of the bakground geometry onsiderably. Reallthat the Wilson lines as at abelian gauge bundles inherited from the geometryare replaed by veritable line bundles with non-vanishing �rst Chern lass. Inother words, we have the freedom to put extra struture on our internal manifoldinstead of having to take from it what we get.The �rst example we enountered in setion 3.7 was the breaking of E8 downto ipped SU(5)� U(1)X via an SU(4)� U(1) gauge instanton, the seond onebeing the breaking SU(5)�U(1) � E8 ! SU(3)�SU(2)�U(1)Y , see setion 3.8.Provided that we an ensure that the abelian gauge fator remains massless, bothmodels therefore sueed in yielding the right gauge group in four dimensions.In the seond ase, this is obvious as we obtain the MSSM gauge group diretly.In the GUT SU(5)� U(1)X framework, by ontrast, we have to rely in additionon a �eld theoreti Higgs mehanism in order to break the GUT group down tothe Standard Model group. Unlike in the Georgi-Glasham SU(5) one arrives atby invoking just onventional SU(5) instantons on the Calabi-Yau, the spetrumin our model ipped SU(5) model indeed provides a GUT Higgs �eld suitable toaomplish this task.The question of primary importane is therefore how to keep the U(1) mass-less. One possibility, explored already in setion (3.8) for the SU(3) � SU(2)setup, is to redue the rank of the non-abelian instanton by embedding severalU(1) bundles into the same E8 fators suh that the right linear ombinationof U(1)s remains massless. While this is possible in priniple and indeed givesrise to an extremely rih vauum struture, we witnessed how the additional line131



bundles inevitably produed exoti matter. One might try to �nd expliit bundleon�gurations suh that the ohomology groups ounting this matter are trivial,but we follow here an easier and more natural solution by embedding the extraline bundle not into the same, but rather into the seond E8. This leaves thegauge group and matter from the �rst E8 intat while it allows nonetheless fora massless ombination of the two U(1)s. In both ases, the requirement thatthe U(1)X and U(1)Y , respetively, do not aquire a mass automatially leads toa spetrum with preisely g generations of ipped SU(5)/MSSM matter and nofurther hiral exotis. The phenomenology of the ipped SU(5) model is partiu-larly attrative due to the absene of dangerous proton deay operators. We willfurthermore see that the preditions of both senarios for gauge oupling uni�a-tion are ompatible with the Standard Model running of the oupling onstantsone we take threshold orretions into aount. We have found several three-generation realisations of both the ipped SU(5) and the MSSM onstrutionwhih are listed in an appendix. The ontents on this hapter is based on [98℄.7.1 Flipped SU(5)� U(1)X7.1.1 SU(4)� U(1) bundlesThe tehnial details of the breaking of E8 down to SU(5) � U(1)X have beendisussed at length in setion (3.7). For onveniene we repeat in table 7.1merely the visible spetrum resulting from the �rst E8 fator upon embedding theSU(4)� U(1) bundle W = V � L�1 (see the disussion after equation (3.147)).SU(5)� U(1)X0 ohomology (type B) SM part.101 H�(V ) (qL; dR; �R) + [H10 +H10℄10�4 H�(L�1) �5�3 H�(V 
 L�1) (uR; lL)52 H�(V2 V ) [(h3; h2) + (h3; h2)℄15 H�(V 
 L) eRTable 7.1: Massless spetrum of H = SU(5)� U(1)X0 models.The massless �elds preisely arry, up to a ommon fator, the U(1)X hargesas appearing in the ipped SU(5) GUT model [75, 157℄, QX = 12 QX0 .1 Reallthat this model di�ers from the onventional Georgi-Glashow GUT senario [158℄1Note that the normalisation of QX , as hosen here, di�ers from the one in [75℄ by a fatorof � 12 . 132



in that the MSSM U(1)Y is not entirely ontained in the SU(5), but arises as thespei� linear ombination12QY = �15QZ + 25QX ; (7.1)where Z is the generator of SU(5) ommuting with the generators of the Stan-dard Model SU(3) � SU(2). In the normalisation of [75℄ Z is given by Z =diag(�1=3;�1=3;�1=3; 1=2; 1=2). The way how the MSSM matter is organizedinto ipped SU(5) multiplets is related to the Georgi-Glashow senario by theip dR $ uR; eR $ �R: (7.2)Most importantly, the (10)1 ontains the right-handed neutrino as a partileunharged under the MSSM SU(3) � SU(2) � U(1)Y , and giving it a VEV antherefore serve as the Higgs e�et whih breaks the GUT group down to the Stan-dard Model one. It is this peuliarity of ipped SU(5) whih at �rst sight allowsus to work on manifolds without Wilson lines. However, if we only onsider thebundle (3.147) inside the �rst E8 with 1(L) 6= 0, one K�ahler/dilaton modulusreeives a mass from the DUY onstraint and therefore also one axion in ombi-nation with the U(1)X gauge boson. We expliitly demonstrated this in setion(3.7) by showing that the U(1)X0 is anomalous. Therefore, after GUT Higgsingby H10 the resulting U(1)Y would also be massive. This seems to bring us bakinto the old situation that we are fored to onsider manifolds with non-vanishingfundamental group to allow for non-trivial at bundles2.Alternatively, here we propose to embed another line bundle into the seondE8 suh that a linear ombination of the two observable U(1)'s remains massless.A priori, one might think that we an take any other line bundle L2. However,from the form of the mass terms, in partiular (3.88), for the two abelian gaugefators we see immediately that the �rst Chern lasses of the abelian bundles inboth E8s must be linearly dependent. The free overall fator relating them an ofourse be absorbed into the linear ombination of the two U(1)s whih remainsmassless. Therefore, we take L2 = L and embed the diret sumW2 = L� L�1 (7.3)into the seond E8, where it leads to the breaking E8 ! E7 � U(1)2 and thedeomposition248 E7�U(1)�! � (133)0 + (1)0 + (56)1 + (56)�1 + (1)2 + (1)�2 	 : (7.4)Note that we prefer to invoke the embedding of type B rather than type A alsoin the seond E8 fator so that the K-theory onstraint 1(W ) 2 H2(M; 2Z)is trivially satis�ed. The resulting massless spetrum is displayed in Table 7.2.133



E7 � U(1)2 ohomology (type B)561 H�(L)12 H�(L2)Table 7.2: Massless spetrum of H = E7 � U(1)2 models.Clearly, this is just the simplest possible hoie for the "hidden" bundle. It isstraightforward to onsider additional non-abelian summand bundles, but we willnot do so here3.It is needless to state that the trae over the seond E8 fator yieldstrE(2)8 (F 2) = 4(2�)2 (2 h2(L)): (7.5)In ombination with the orresponding expressions (3.150) for the bundle in E(1)8 ,the tadpole anellation ondition for this model, inluding possible �ve-braneontributions, readsh2(V ) + 3 h2(L)�Xa Naa = �2(T ): (7.6)Let us now take a loser look at the onditions for masslessness of a linear om-bination of the two U(1)s. Clearly, all three kinds of mass terms (3.87), (3.88)and (3.89) for U(1)X0 and U(1)2 must be related by the same onstant fator ifsuh a ombination is to exist. We antiipated already that the ontributionsfrom the K�ahler axions an vanish for a linear linear ombination only if the �rstChern lasses of the line bundles in both E8 fators are linearly dependent. Morepreisely, taking into aount that�X0;X0 = 10; �2;2 = 4; (7.7)as an be omputed via equ.(3.25), one realizes that preisely the linear ombi-nation U(1)X = 12 �U(1)X0 � 52 U(1)2� (7.8)has a hane to remain massless. From (3.89) we �nd that in the presene of�ve-branes, this requires the absene of mass terms from the axions ~ba stemming2For �1(X) = 0, a line bundle with 1(L) = 0 is always trivial and the observable gaugegroup gets enhaned to SO(10).3The reason is that they would produe additional matter harged under U(1)2 in the seondE8 whih will therefore appear as exoti eletrially harged, but otherwise neutral �elds fromthe point of view of the "visible" setor. The only exeption is the embedding of an SU(2)�U(1)into the seond E8, in whih ase the analysis goes through almost identially.134



from the self-dual tensors on their worldvolume sine these terms ontribute withopposite signs in the two E8 setors. Going now bak to the mass term involvingthe universal axio-dilaton, we onlude that the ombination (7.8) indeed remainsmassless if and only if the following onditions are satis�edZM 1(L) ^ 2(V ) = 0; Za 1(L) = 0 for all M5 branes: (7.9)In this ase the resulting hiral massless spetrum simpli�es onsiderably and isgiven in table 7.3 .SU(5)� U(1)X � E7 hirality SM part.(10; 1) 12 �(V ) = g (qL; dR; �R) + [H10 +H10℄(10; 1)�2 �(L�1) = 0 �(5; 1)� 32 �(V 
 L�1) = g (uR; lL)(5; 1)1 �(V2 V ) = 0 [(h3; h2) + (h3; h2)℄(1; 1) 52 �(V 
 L) + �(L�2) = g eR(1; 56) 54 �(L�1) = 0 �Table 7.3: Massless spetrum of H = SU(5)� U(1)X models with g = 12 RX 3(V ).Remarkably, just the requirement that the U(1)X be massless automatially leadsto preisely g generations of ipped SU(5) matter and no further hiral exotistates. This is straightforward to see: Just take the wedge produt of the tadpoleequation (7.6) with 1(L), integrate overM and use (7.9) to �ndZM 1(L)3 = �12 ZM 2(T ) ^ 1(L)=) �(L�1) = 0; �(V 
 L�1) = �(V 
 L) + �(L�2) = �(V ): (7.10)One important and very attrative onsequene of the breaking of E8 to SU(5)via a non-trivial line bundle is that the eletroweak Higgs arries di�erent quan-tum numbers than the lepton doublets, as is obvious from table 7.1. The onse-quenes of this peuliarity, whih distinguishes the spetrum of our ipped modelsfrom that emerging from onventional Wilson line breaking, for the absene ofproton deay operators will be disussed in the next setion.Note that in general the right-handed eletrons reeive ontributions fromboth the �rst and the seond E8. From a phenomenologial point of view, weneed to irumvent these latter in order to avoid non-MSSM like seletion rulesfor their Yukawa ouplings. They are absent if additionally one requires(7:6); (7:9) and �(L�2) = 0 =) ZM 31(L) = 0 = ZM 1(L) ^ 2(T ) = 0: (7.11)135



With these extra onditions, the generalized DUY ondition for the bundle Lsimpli�es onsiderably, ZM J ^ J ^ 1(L) = 0; (7.12)and ontains only the tree-level part. The same holds for V , of ourse. We reallthe ruial observation made in setion 3.6.3 that it is preisely in suh a situationthat �-stability of V guarantees a solution to the deformed Hermitian Yang-Millsequation for suÆiently small gs. Also, equation 7.12 "freezes" only one of theh11 K�ahler moduli. By ontrast, the threshold orretions to the gauge kinetifuntions will be non-vanishing. For onsisteny of the low-energy e�etive theorywe need to ensure that the DUY an atually be solved in a regime inside theK�ahler one where the real part of the threshold orreted gauge kineti funtionsis positive, at least for the unbroken gauge symmetries. Apart form the SU(5)and the hidden E7 symmetry, we will therefore have to hek this ondition forthe gauge kineti funtion of the generator of U(1)X , whih is given by4fX;X = 14  fX0;X0 + �52�2 f2;2 � 5 fX0;2! (7.13)in terms of the orresponding quantities for U(1)X0 and U(1)2.7.1.2 Yukawa ouplings and proton deayThis string theory realization of ipped SU(5) � U(1)X exhibits many of theharateristi features of the �eld theory GUT model. For their details we referto [75, 157, 159, 160℄.The GUT breaking is naturally aomplished via a non-vanishing vauumexpetation value of the singlet omponent in H10+H10. This leads to a naturalsolution of the doublet-triplet splitting problem via a missing partner mehanismin the superpotential oupling 10H12 10H12 5�1: (7.14)The reason is that after GUT breaking all omponents of H10 + H10 aquire aGUT sale mass exept for a singlet and a triplet whih ombine, via the aboveoupling, with the triplet h3 in the 51, i.e. the eletro-weak Higgs, in just theright way as to make it heavy. More details are given in [159℄.This has very attrative onsequenes for proton stability sine problematidimension-�ve operators involving the otherwise present h3 omponent and whihwould mediate proton deay an be suppressed. Furthermore, as shown in [161℄,ipped SU(5) di�ers from the Georgi-Glashow model in that also the dimension-six proton deay operators, emerging after integrating out the o�-diagonal gauge4See appendix C for some remarks on this point.136



bosons in the (3; 2), an be ompletely eliminated. Additional details and morereferenes an also be found in [162℄.Moreover, the gauge invariant Yukawa ouplings10i12 10j12 5�1; 10i12 5j� 32 51; 5i� 32 1j52 5�1; (7.15)lead to Dira mass-terms for the d, (u; �) and e quarks and leptons after ele-troweak symmetry breaking. If there exist additional gauge singlets �10, then ou-plings of the form 10i12 10H� 12 �10 an give rise to Majorana type neutrino massesand therefore to a see-saw mehanism. These gauge singlets are ertainly presentin our set-up in the form of the vetor bundle moduli, i.e. non-hiral matterounted by H�(M; V 
 V �).Sine the eletroweak Higgs arries di�erent quantum numbers than the leptondoublet, the dangerous dimension-four proton deay operatorsl l e 2 5i� 32 1j52 5k� 32 ; qd l; udd 2 10i12 10j12 5k� 32 (7.16)are not gauge invariant and thus absent. A detailed disussion of this peuliarproperty of heteroti onstrutions with line bundles has reently been givenin [102℄ in the ontext of Georgi-Glashow SU(5).7.1.3 Gauge oupling uni�ationWe now disuss the issue of gauge oupling uni�ation in detail.The basis of the subsequent analysis is the well-known logarithmi runningof the oupling onstants for the gauge fators, labelled by i, in some low-energye�etive �eld theory, 1�(�)i = ki�GUT + bi2� log� �MGUT � : (7.17)Here, �GUT represents the values of the inverse squared gauge oupling (times4�) of a hypothetial GUT gauge group at the uni�ation sale MGUT . TheoeÆients bi parameterise the �eld theoreti running of the ouplings due toone-loop graphs. Their value is of ourse set by the harged partile ontent upto the GUT sale. The well-known observation for the Standard Model is that,given the values for �3, �Y and �2 measured at the weak sale and under theassumptions of just the MSSM matter up toMGUT , the system of three equations(7.17) is satis�ed with MGUT = 2 � 1016 GeV and k3 = k2 = 35kY [163, 164℄.Now if one breaks a stringy SU(5) or SO(10) GUT model down to the Stan-dard Model via disrete Wilson lines, then the underlying string theory alreadymakes a de�nite predition for the parameters ki whih relate the gauge ouplingsatMGUT . These are indeed the usual ones as for SU(5) or SO(10) GUT theories,i.e. �3 = �2 = 53�Y = �GUT : (7.18)137



Consequently, for onsisteny with the observed MSSM ouplings at the weaksale, one an dedue from (7.17) that �GUT ' 124 .As we have seen, in String Theory, the gauge ouplings omprise, beyondtheir tree-level part, additional string one-loop threshold orretions. Under thephenomenologial assumption that up to �GUT the MSSM spetrum is not aug-mented by additional light �elds, a phenomenologially aeptable string vauummust therefore reprodue the relations (7.18) for the full, possibly threshold or-reted, gauge ouplings. If we are in a regime where the threshold orretionsare negligible, then (7.18) must hold at string tree-level; otherwise the thresholdorretions must be suh that (7.18) is satis�ed for the omplete ouplings.An additional ompliation arises due to the observation that for the weaklyoupled heteroti string, the predition for the Plank sale is too low. The reasonis that for small string oupling, gs � 1, the theory relates the four-dimensionalNewton's onstant and the uni�ation sale viaGN � � 43GUTM2GUT : (7.19)For the details of the derivation see e.g. [90℄. Assuming the quoted values forMGUT and �GUT , the lower bound on GN is too large by a fator of 400 [90℄.This an be remedied in the strong oupling Horava-Witten theory [76, 77, 90℄.Here it turns out that the values of the eleven-dimensional Plank mass M11, �and rCY =M�1GUT have to lie within a partiular range in order to be ompatibleboth with the GUT relations and the Plank sale 5. It is noteworthy thatalready the standard Wilson line approah to GUT breaking requires a tuning ofthe parameters of the internal manifold and the size of the eleventh dimensionin order to predit orretly the observationally inferred GUT sale and Plankmass.Let us now analyse the gauge oupling behaviour in our models. Clearly, ifwe onsider Higgs breaking of the ipped SU(5) GUT model down to the MSSM,then the predition for the MSSM tree-level ouplings �3 and �2 at the GUT saleis simply �3 = �2 = �5, sine they both emerge from the same SU(5). What isspeial is that the U(1)X and therefore also the �nal U(1)Y gauge symmetry, byontrast, have their origin in both E8 walls. Reall the de�nitions of the variousabelian harges as12QY = �15QZ + 25QX ; QX = 12 �QX0 � 52Q2� (7.20)so that the gauge kineti funtions satisfy the relationfY Y = 425  fZ;Z + fX0;X0 + �52�2 f2;2 � 5 fX0;2! : (7.21)5Very qualitatively, this means that 1 � rCY � � in string units. The preise onstraintsan be found in [90℄. 138



Sine QZ is the diagonal U(1) generator within SU(5), the gauge ouplings areidential up to the normalisationfZ;Z = 512fSU(5): (7.22)The non-abelian gauge oupling of the SU(5) inluding the one-loop ontri-bution follows from (3.103) as1�5 = 13`6sg2s ZM J ^ J ^ J � 1̀2s ZM J ^ ��2(V ) + 21(L) + 122(T )�+ 1̀2s Xa Na �12 � �a�2 Za J: (7.23)Using �X0;X0 = 40; �2;2 = 4; �1;1 = 10; �2;2 = 4; (7.24)we an likewise read o� the expressions for fX0;X0; f2;2 and fX0;2 from (3.104) and(3.105). In view of the relations (7.21) and (7.22) we eventually onlude that1�Y = 83 1�5 � 1̀2s ZM J ^ �2(V ) + 4 21(L)�+ 2̀2s Xa Na�a Za J: (7.25)Note that the seond and third summands in (7.25) arise at one-loop as omparedto the lowest order ontribution in 1�5 . As we see, these string models do not giverise to the usual GUT tree level relation �GUT = 53�Y , but instead to �GUT = 83�Y .Therefore, if we assume just the Standard Model spetrum up to the uni�ationsale (i.e. no additional vetor-like matter like Higgs pairs) and if we are ina situation where the threshold orretions present in (7.25) are negligible, thegauge ouplings do not unify at MGUT . This is, however, not ompelling one wegive up one of the two stated assumptions. As far as the threshold orretions areonerned, depending on their preise value in the vauum under onsideration,they an eventually give a uni�ed gauge oupling piture again. De�ning1�Y = 83 1�GUT +� (7.26)we see that the threshold orretion must take the value � = � 1�GUT � �24, i.e.1�Y ���1�loop= �38 1�Y ���tree: (7.27)For �GUT = 1=24, suh a relation an just be satis�ed with gs < 1 and rCY > p�0for large enough Chern lasses of the vetor bundles. We will see in the nextsetion that for our expliit models this is indeed possible. Of ourse, in theweakly oupled heteroti framework, the Plank sale still omes out too low and139



one must onsider Horava-Witten theory, where now the next-to-leading orderorretions to the gauge ouplings are to be taken into aount.To onlude, what distinguishes our models from the standard Wilson lineapproah to GUT breaking is the appearane of one further onstraint on thegeometry of the ompati�ations. We reiterate that in the standard senario,too, the ondition that the four-dimensional Plank mass ome out orretlyredues the preditive power of the setup in that it involves additional tuningof the geometri parameters of the bakground. In that respet, inluding also(7.27) into the model building wish-list is oneptually just along the lines of thestandard proedure.Alternatively, one an ontemplate that extra light Higgs �elds, if present inthe non-hiral spetrum, might lead to gauge oupling uni�ation at a di�erentsale. However, this sale is neessarily lower than the usual GUT sale, whihworsens the mismath of the Plank sale.7.1.4 An example on dP4Having disussed the hief phenomenologial aspets of our heteroti ippedSU(5) onstrution, we now prove that it is indeed possible to �nd expliit re-alisations in our framework whih meet all the string onsisteny onditions andgive rise to preisely the hiral MSSM spetrum. We hoose as our bakgroundmanifold elliptially �bered Calabi-Yau threefolds over the base dP4 (see setion5.3 for a summary of their properties). We reall in partiular that the seondChern lass of the tangent bundle is given by (5.8),2(T ) = [36l � 12 4Xi=1 Ei℄ � + 62F; (7.28)where 1(dP4) is expanded in the ohomologial basis and F is the lass of the�ber. The Mori one is generated by the 10 e�etive lasses Ei, l � Ei � Ej,i; j = 1; : : : ; 4, i 6= j.We have found a ouple of three-generation ipped SU(5) vaua satisfyingall the required onstraints. They are displayed in table D.1 of appendix D. Wehoose the following example to demonstrate their properties. The U(4) bundleis given by the data � = 14 ; q = 0;� = 14l � 2E1 � 6E2 � 6E3 � 2E4; (7.29)1(�) = �4l + 4E2 + 4E3 + 4E4:Note that the �rst Chern lass of the line bundle N in the spetral over on-strution (5.23) is an integer lass, as required:1(N ) = 3� + ��C (8l � 2E1 � 3E2 � 3E3 � 2E4) : (7.30)140



It is easy to see that j�j is base point free, sine its intersetion with the generatorsof the Mori one is always positive. One an also easily show that � is e�etive aswell as �� 41(dP4) = 2l+2E1� 2E2� 2E3+2E4. Thus, this bundle is �-stable.The resulting Chern lasses are1(V ) = �4l + 4E2 + 4E3 + 4E4; (7.31)2(V ) = [14l � 2E1 � 6E2 � 6E3 � 2E4℄ � � 29F: (7.32)In our setup, the �rst Chern lass of the line bundle must be equal to the �rstChern lass of the vetor bundle (see (3.147)), thus1(L) = �4l + 4E2 + 4E3 + 4E4: (7.33)To �nd a solution to the tadpole ondition, we also inlude M5-branes. Theirombined assoiated ohomology lass is[W ℄ = 27F + (22l� 10E1 � 6E2 � 6E3 � 10E4) �: (7.34)To make physial sense, [W ℄ must be Poinar�e dual to the homology lass of aurve  inM, and must be therefore e�etive. [W ℄ is e�etive if its part on the�ber is greater than or equal to zero and its part on the base is e�etive in B.Therefore, we rewrite [W ℄ in terms of generators of the Mori one,[W ℄ = Xa Naa = 27F + [12E1 + 6(l � E1 � E2) (7.35)+6(l� E1 � E3) + 10(l � E1 � E4)℄ �:The generators of the Mori one, being irreduible as e�etive lasses, representthe lasses dual to the irreduible urves a around whih we wrap Na �ve-branes. In general, this deomposition is not unique. However, we also haveto satisfy the onstraint Ra 1(L) = 0 for a massless U(1)X , and (7.35) is theonly remaining deomposition ompatible with this requirement. The tadpoleanellation ondition for this setup, written in terms of Chern lasses, takes theform �2(V ) + 221(L)� [W ℄ = �2(T ) (7.36)and is indeed satis�ed. It is a simple alulation to show that the onditions tokeep the U(1)X in the ipped SU(5) model massless holdZM 1(L) ^ 2(V ) = 0; Za 1(L) = ZM 1(L) ^ a = 0: (7.37)Sine the Chern lass of the line bundle has no part in the �ber, the integral overits third power trivially vanishes,ZM 31(L) = 0; (7.38)141



and thus a ontribution to the right-handed eletrons from the seond E8 fatoris prevented. The number of generations in our example is given by�(V ) = 12 ZM 3(V ) = 3 (7.39)sine RM 1(V ) ^ 2(V ) = RM 1(L) ^ 2(V ) = 0.Expanding the K�ahler lass in the ohomologial basis,J = l2s(r�� + r0l + 4Xm=1 rmEi); (7.40)the DUY-equation (7.12)ZM J ^ J ^ 1(L) = �8l4sr�(r0 + r2 + r3 + r4) = 0 (7.41)�xes one K�ahler modulus. There exist solutions inside the K�ahler one. Take asan example 0 < r� < 2�; r0 = 3�; rm = ��; m = 1; : : : ; 4: (7.42)With this hoie, equation (7.41) holds and the K�ahler lass lies inside the K�ahlerone for every � 2 R+ .The universal gauge oupling for the non-abelian visible gauge group (3.103)an be omputed as64�g21 = 13g2s �5r3� � 15r2��+ 15r��2�� 24r� � 4�� (12 � �5)2(7r� � 34�); (7.43)whih is positive for a suitable hoie of parameters. The abelian gauge ouplingsare given by (3.104,3.105)4�Re (fi;i) = �i;i4 � 13g2s (5r3� � 15r2��+ 15r��2) (7.44)�24r� � 4�� (12 � �5)2(7r� � 34�)�+ 3203 r�;4�Re (fX0;2) = �1603 r� (7.45)with �X0;X0 = 40 and �2;2 = 4. The resulting gauge oupling (7.13) for the U(1)Xis then positive again:4�Re fX;X = 6516 � 13g2s (5r3� � 15r2��+ 15r��2)� 24r� � 4� (7.46)�(12 � �5)2(7r� � 34�)�+ 260 r�:6Note that in the following equations, �5 is the �ve-brane modulus and not the parameterbelonging to the bundle data. 142



In view of the disussion of possible gauge oupling uni�ation, we note thatthe threshold orretion as de�ned in 7.27 is, assuming for simpliity that �a = 0for all �ve-branes,� = � 1̀2s ZM J ^ �2(V ) + 4 21(L)� = 183r� � 26� (7.47)and has the orret sign if r� < 26183�.Note that with this hoie for r�, the positivity of the gauge ouplings anstill be ahieved and, equally importantly, it is onsistent with the requirementthat r� � � in order that the proof of �-stability of the bundles an be trusted.To summarize, this example with three hiral generations satis�es the tadpoleondition (7.6) as well as the onstraints (7.9) guaranteeing a massless U(1)X .We have no non-MSSM like seletion rules for the Yukawa ouplings of the right-handed eletrons sine there are indeed no ontributions from the seond E8(7.11). Furthermore, the K�ahler moduli an be hosen suh that the DUY equa-tion (7.12) holds and the gauge ouplings are positive.In appendix D, we list all three-generation models we have found on dP4by a omputer searh whih likewise satisfy all these onditions. We have alsofound three-generation examples for a senario diretly giving rise to the StandardModel gauge symmetry, to be disussed in the next setion.7.2 Just the SU(3)�SU(2)�U(1)Y gauge symme-try7.2.1 SU(5)� U(1) bundlesAs we have spelled out in setion 3.8.1, the diret breaking of E8 to the StandardModel group is possible by hoosing a bundle with struture group SU(5) �U(1)Y 0, resulting in gauge group SU(3) � SU(2) � U(1)Y 0 . Similarly to theipped SU(5) onstrution, we embed a bundle of type B,W = V � L�1; with 1(V ) = 1(L); rank(V ) = 5 (7.48)into the �rst E8.We have seen that again the U(1)Y 0 by itself annot remain massless so thatwe will perform the same onstrution as for the ipped SU(5) model. We antherefore be omparatively brief about the details of the largely analogous on-strution. We embed the line bundle L, or rather W2 = L � L�1, also in theseond E8 and realize that here the linear ombinationU(1)Y = 13 (U(1)Y 0 � 3U(1)2) (7.49)remains massless if again the onditionsZM 1(L) ^ 2(V ) = 0; Za 1(L) = 0 (7.50)143



are satis�ed. The resulting hiral massless spetrum takes the simple form givenin table 7.4.SU(3)� SU(2)� U(1)Y � E7 hirality SM part.(3; 2; 1) 13 �(V ) = g qL(3; 2; 1)� 53 �(L�1) = 0 �(3; 1; 1) 23 �(V2 V ) = g dR(3; 1; 1)� 43 �(V 
 L�1) = g uR(1; 2; 1)�1 �(V2 V 
 L�1) = g lL(1; 1; 1)2 �(V 
 L) + �(L�2) = g eR(1; 1; 56)1 �(L�1) = 0 �Table 7.4: Massless spetrum of H = SU(3) � SU(2) � U(1)Y models with g =12 RM 3(V ).Therefore, one gets preisely g generations of Standard Model matter withouta right-handed neutrino. The right-handed eletrons have ontributions fromboth the �rst and the seond E8. The latter are again absent if additionally onerequires ZM 31(L) = 0: (7.51)In this model, there are no additional gauge or obvious disrete symmetries ar-ried by the Standard Model partiles, so that the dangerous dimension four protondeay operators are not neessarily vanishing. We refer to table D.2 in appendixD for a ouple of examples with just the Standard Model hiral matter whihwe have found in this setup using the spetral over method over dP4 �beredCalabi-Yau threefolds.7.2.2 Gauge oupling uni�ationThe issue of gauge oupling uni�ation is preisely the same as what we haveenountered in the ipped SU(5) ontext. Now the gauge kineti funtion forU(1)Y = 13 (U(1)Y 0 � 3U(1)2) (7.52)follows as fY;Y = 19 (fY 0;Y 0 � 6fY 0;2 + 9f2;2) : (7.53)144



Eah individual term above an be omputed from the general expressions (3.104)and (3.105) with the help of the trae parameters�1;1 = 60; �2;2 = 4; �1;1 = 12; �2;2 = 4; (7.54)and the gauge ouplings for SU(3) and SU(2) equal the expression (7.23). Oneeventually onludes that again1�Y = 83 1�3;2 � 1̀2s ZX J ^ �2(V ) + 4 21(L)�+ 2̀2s Xa Na�a Za J: (7.55)We therefore �nd ourselves exatly in the same situation as in setion (7.1.3), towhih we refer for a disussion of the signi�ane of this result for gauge ouplinguni�ation.
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Chapter 8Conlusions and OutlookThe embedding of unitary bundles into the ten-dimensional gauge group of theheteroti string reveals a remarkably rih and hitherto negleted struture. Atthe oneptual level, the starring role in geometri string ompati�ations isplayed by holomorphi stable bundles - both in the heteroti and the Type I/Type IIB orientifold orner of the M-theory moduli spae. Despite the di�er-enes in the fundamental worldsheet formulation of these dual theories, we antherefore apply basially the same tehniques to an investigation of their pertur-bative four-dimensional vaua. The di�erenes in the struture of the emerginggauge setor in this setup has been identi�ed as being primarily due to the grouptheoreti features of E8 � E8 on the one hand and SO(32) on the other, mostnotably the respetive natural subgroups inluding the deomposition of the ad-joint representation. The idential massless spetrum emerging from the SO(32)heteroti and the Type I string on D9-branes with unitary gauge ux is satis-fatory in view of the onjetured S-duality relating both desriptions, but notompletely trivial - after all S-duality is a non-perturbative symmetry and in-terhanges, at the mirosopi level, the fundamental strings of one theory withthe solitoni, non-perturbative objets of the other. In that respet we point outthat although we found omplete agreement in our spei� setup, there is still apuzzle remaining how the reent emergene of various spinor representations inthe ontext of SO(32) heteroti orbifold models [140℄ an be understood from thepoint of the view of our bundle onstrutions. An answer to this question mightwell follow from a better understanding of the general relation between orbifoldonstrutions and smooth Calabi-Yau ompati�ations.Fousing again on the latter, it perfetly �ts into the piture just skethedthat the well-established �0-orretions to the supersymmetry ondition for bak-ground gauge �elds translate into string-loop orretions on the heteroti side.For the SO(32) theory the expressions we found for the integrated supersymme-try ondition are in one-to-one orrespondene with the Type IIB MSSM equa-tion [145℄ and only depend on the information of the individual U(N) gauge fatorunder onsideration. Clearly this just what we expet from the S-dual piture ofindependent magnetized D9-brane staks. For the E8 � E8 theory, by ontrast,147



the one-loop orretion involves ontributions from all bakground instantons.On the Type IIB side the perturbative �0-orretions are known to a�et notonly the integrated supersymmetry equation, but also the loal Hermitian Yang-Mills equations and therefore modify the stability ondition from �-stability, validat tree-level, to �-stability. This inspired us to onjeture a orresponding modi-�ation of the stability ondition on the bundles also on the heteroti side whihwe alled �-stability. Both �- and �-stability seem to be the right riterion onlyin the strit perturbative sense and appliable only under the assumption thatthe tree-level part in the respetive slope dominates in a well-de�ned mannerover the string-loop or �0-orretion. In addition, the non-perturbative ontribu-tions indued by worldsheet instantons in Type IIB make out the full �-stabilityondition in the derived bounded ategory of oherent sheaves and are expetedto have a heteroti ounterpart in the form of spaetime instantons. A detailedstudy of these e�ets inluding the preise mathematial de�nition of heteroti�-stability is to follow. Independently of this mathematial question it wouldbe important to justify the proposed deformation of the Hermitian Yang-Millsequation by an analysis of the ten-dimensional Killing spinor equations at theone-loop level.In pratial terms, the supersymmetry and thus stability ondition on the het-eroti/Type IIB side appears to be more approahable than in the mirror dualframework of Type IIA orientifolds. The reason is that the speial Lagrangianondition on supersymmetri three-yles for A-branes is beyond the regime ofomplex geometry, whose powerful tehnology, on the other hand, enables oneto onstrut quite general supersymmetri holomorphi bundles as the dual ob-jets. In this way, we an view the embedding of unitary bundles into the SO(32)heteroti/Type I string as bypassing the unsolved mathematial problem of iden-tifying speial Lagrangian three-yles on general Calabi-Yau manifolds.As far as the model building prospets are onerned, the most prominent ad-vantage of the embedding of unitary bundles into the E8�E8 string is the "deou-pling" of the gauge bundles from the topology and geometry of the bakgroundmanifold in that we do no more depend on the presene of a non-trivial �rstfundamental group. We expet this to be of ruial assistane when it omes toextending heteroti model building to the more realisti framework of non-K�ahlerompati�ations with non-vanishing form �eld uxes. This will eventually beinevitable in order to takle suh pressing problems as moduli stabilisation anddynamial supersymmetry breaking with nonetheless realisti gauge setors.As a �rst step, however, we have restrited our expliit model searh to thestandard framework of elliptially �bered Calabi-Yau bakgrounds where we anrely on the spetral over onstrution of stable holomorphi bundles. Even a verypreliminary searh has revealed a number of vaua with ipped SU(5)� U(1)Xand MSSM gauge group and preisely the observed three generations of hiralmatter. From the phenomenologial point of view, this is just the very �rst step.A omputation of the ohomology groups whih ount the harged matter willalso reveal the amount of vetor-like matter pairs whih annot be dedued just148



from the Euler harateristi of the gauge bundles. In partiular, we need todetermine the number of eletro-weak Higgs pairs and, in the ase of the ippedSU(5) � U(1)X models, the number of GUT Higgses whih are required for thevaua to give rise to realisti models at the weak sale. A derivation of themathematial methods required for this omputation is beyond the sope of thisthesis and is postponed to the forthoming publiation [165℄, where we will alsoexploit the framework of stable bundle extensions for our model searh. Let usmerely antiipate here that this tehnique seems to provide us with a surprisinglylarge number of models with a very realisti spetrum inluding the appearaneof preisely three families of quarks and leptons.An even more hallenging task will be the omputation of the Yukawa ou-plings and �-terms, possibly along the lines of [166{168℄. As we briey outlined,there seem to exist no a priori seletion rules in our ase whih forbid any of thephenomenologially required Yukawas, but the expliit omputation of the phys-ial ouplings is only possible one we know the K�ahler potential for the hargedmatter �elds in order to normalise their kineti terms appropriately.Our entire analysis has foused on the perturbative, large volume regime andavoided an expliit worldsheet formulation. It is not only of aademi interest,though, to larify the status of the underlying (0; 2) non-linear �-model andwhether or not it admits a desription in terms of a Landau-Ginzburg [169℄ orgauged linear �-model [31℄. In suh situations, the theory an be shown to befree of potentially destabilising worldsheet instantons [170{172℄.In the absene of a deeper understanding of the struture priniples behindthe vast landsape of string vaua the fate of all string model building attempts isto resemble the searh for the famous needle in a hay stak. Unless this situationhanges drastially due to some revolutionary insights, it appears therefore rea-sonable to supplement the onrete model-by-model searh by a statistial analy-sis of the distribution of the harateristi features in the moduli spae of vaua.In view of the oneptual similarities of the gauge setors arising on the Type IIand the heteroti side, the statistial approah performed in [155, 156, 173, 174℄for Type IIA orientifolds or of [63℄ for models at the Gepner point seems withinreah also for the heteroti string. Suh an analysis of a speial lass of non-supersymmetri four-dimensional heteroti vaua has reently appeared in [175℄.After all, the aim of String Theory is none less than to determine the status ofthe observed laws of Nature within the set of thinkable worlds.
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Appendix ASome useful mathematial fats
A.1 Topologial invariants of vetor bundlesThroughout this thesis we have made extensive use of various topologial invari-ants of vetor bundles. For onveniene of the reader we ollet here some usefulde�nitions and identities. Muh more information an be found e.g. in [176℄.Let V be a omplex rank r vetor bundle over a omplex d-dimensional man-ifold with �eld strength F . Then the total Chern harater h(V ) is de�nedas h(F ) = tr e 12�F = dXk=1 hk(V )hk(V ) = 1k! (2�)k trF k: (A.1)Note that h0(V ) = r. Furthermore the Chern haraters of the omplex onju-gate bundle V � are hk(V �) = (�1)khk(V ): (A.2)The Chern harater of the tensor produt and the Whitney sum of two vetorbundles Va and Vb of rank ra and rb respetively an be found from the relation.h(Va 
 Vb) = h(Va) ^ h(Vb);h(Va � Vb) = h(Va) + h(Vb): (A.3)In partiular,h0(Va 
 Vb) = ra rbh1(Va 
 Vb) = rb h1(Va) + ra h1(Vb); (A.4)h2(Va 
 Vb) = rb h2(Va) + h1(Va) ^ h1(Vb) + ra h2(Vb)h3(Va 
 Vb) = rb h3(Va) + h1(Va) ^ h2(Vb) + h2(Va) ^ h1(Vb) + ra h3(Vb):151



It immediately follows that the Chern haraters of the "adjoint" V 
 V �bundle read h0(V 
 V �) = 2r;h1(V 
 V �) = 0;h2(V 
 V �) = 2r h2(V )� (h1(V ))2; (A.5)h3(V 
 V �) = 0:For the Chern haraters of the antisymmetri and symmetri tensor produtsone an prove that (see e.g. [153℄)h1(V2V ) = (r � 1) h1(V );h2(V2V ) = (r � 2) h2(V ) + 12 h21(V ); (A.6)h3(V2V ) = (r � 4) h3(V ) + h2(V ) h1(V ):and h1(N2V ) = (r + 1) h1(V );h2(N2V ) = (r + 2) h2(V ) + 12 h21(V ); (A.7)h3(N2V ) = (r + 4) h3(V ) + h2(V ) h1(V ):By ontrast, the total Chern lass (V ) of a vetor bundle V is de�ned as(V ) = det(1 + 12�F ) = min(r;d)Xk=1 k(V ) (A.8)and satis�es (Va � Vb) = (Va) ^ (Vb): (A.9)In partiular 0(V ) = 1 and for a line bundle L all Chern lasses higher thank = 1 vanish identially, (L) = 1 + 1(L).The �rst three Chern lasses and Chern haraters are related ash1(V ) = 1(V );h2(V ) = �2(V ) + 1221(V );h3(V ) = 123(V )� 12 1(V ) ^ 2(V ) + 1631(V ): (A.10)The relevane of the Chern haraters is obvious from their appearane inthe Hirzebruh-Riemann-Roh index theorem, whih ounts, as we reall from152



setion 2.2, the alternating Hodge numbers of the twisted Dolbeault omplex,�(M; V ) = 3Xi=0 (�1)i dim(H i(M; V ) = ZM h(V ) ^ Td(TM)= ZM �h3(V ) + 112 2(TM) 1(V )� : (A.11)The last line is valid only if the manifold has omplex dimension 3. The otherlowest dimensional ases follow from the de�nition of the Todd lassesTd0(V ) = 1;Td1(V ) = 121(V ); (A.12)Td2(V ) = 112(21(V ) + 2(V )): : :Restriting ourselves again to the ase that dim(M) = 3, we an ompute theEuler harateristis of produts of bundles Va 
 Vb with the help of the formula�(Va 
 Vb) = ra �(Vb) + rb �(Va) + 1(Va) h2(Vb) + h2(Vb) 1(Va): (A.13)Finally, for the Euler harateristi of the antisymmetri produt bundle V2 Vone obtains�(V2 V ) = (r � 4)�(V ) + 1(V )�h2(V ) + 142(TM)� (A.14)and for the symmetri produt bundleN2s V�(N2s V ) = (r + 4)�(V ) + 1(V )�h2(V )� 142(TM)� : (A.15)A.2 Some general trae identitiesWe now display some useful trae identities for E8 � E8, SO(32) and unitarygroups whih we have used in various plaes of this work. A more ompleteaount an also be found e.g. in [177℄.The symbol tr denotes, unless we expliitly speify the representation other-wise, the trae over the fundamental representation of a gauge group, while Trrefers to the adjoint. The two objets are related as follows for the ases relevantfor our purposes:TrSU(N)F 2 = 2N trSU(N)F 2;TrSO(N)F 2 = (N � 2) trSO(N)F 2; (A.16)153



TrE8F 2 = 30 trE8F 2;TrSU(N)F 4 = 2N trSU(N)F 4 + 6 (trSU(N)F 2)2TrSO(N)F 4 = (N � 8) trSO(N)F 4 + 3 (trSO(N)F 2)2 (A.17)TrE8F 4 = 9 (trE8F 2)2:In evaluating the �eld theoreti anomaly six-forms we also enounter traesover the symmetri and antisymmetri representations. For SU(N) the onesrelevant for us are given bytrAntiSU(N)F 2 = (N � 2) trSU(N)F 2;trSymSU(N)F 2 = (N + 2) trSU(N)F 2; (A.18)trAntiSU(N)F 3 = (N � 4) trSU(N)F 3;trSymSU(N)F 3 = (N + 4) trSU(N)F 3: (A.19)The seond order Casimir for SO(N) is of ourse justtrAntiSO(N)F 2 = TrSO(N)F 2 = (N � 2) trSO(N)F 2: (A.20)A.3 Trae identities for the SO(32) heteroti stringWe ollet here some useful trae identities for the spetrum of the SO(32) het-eroti string U(ni) fators diagonally embedded into U(niNi) as displayed in table(4.1).TrFF 3 = 12 KXj=1 Nj fj ^ 4trU(nj)F 3 + trU(nj)F KXi=1 NitrU(ni)F 2! ;TrF 2F 2 = 4 KXj=1 �trSU(Nj)F 2 +Nj (fj)2� ^ �12 trU(nj)F 2 + nj KXi=1 Ni trU(ni)F 2�+ 8 KXi;j=1NiNj fi fj ^ trU(ni)F trU(nj)F + 2 trSO(2M)F 2 ^ KXj=1 Nj trU(nj)F 2;TrF 2 = 30 trSO(2M)F 2 + 60 KXj=1 nj �trSU(Nj)F 2 +Nj(fj)2� ;TrFF = 60 KXj=1 Njfj ^ trU(nj)F ;TrF 2 = 60 KXj=1 Nj trU(nj)F 2: (A.21)154



Appendix BK�ahler one onstraints onCalabi-Yau's with base dPrThe DUY equations have to admit solutions for the K�ahler parameters insidethe K�ahler one, i.e. suh that the integral of powers of the K�ahler form over allappropriate yles are positive,Z2�yle J > 0; Z4�yle J2 > 0; ZM J3 > 0: (B.1)We expand the K�ahler form on the elliptially �bered Calabi-Yau as J = l2s (r� �+JB) with JB = r0 l +Prm=1 rmEm being the K�ahler form on the base manifolddPr in terms of the anonial basis.From the �rst onstraint we read immediately that the radii must satisfyr� > 0; r0 > 0; rm < 0 for m 2 f1; :::; rg: (B.2)The seond inequality, R J2 > 0, holds preisely if in additionr20 � rXm=1 r2m > 0; r� < 23 r0; r� < �2rm for m 2 f1; ::; rg: (B.3)Finally positivity of the volume of the Calabi-Yau neessitates that alsor3� (9� r)� 3r2� (3r0 + rXm=1 rm) + 3r� (r20 � rXm=1 r2m) > 0: (B.4)
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Appendix CTransformation rules for multipleU (1) fatorsIn this appendix we reall, using elementary linear algebra, the rules for the basistransformation ourring when we de�ne spei� linear ombinations of abeliangauge fators.Suppose we are given a Lagrangian invariant under the abelian gauge sym-metries U(1)m, m 2 f1; : : : ;Mg, eah with generator Tm, gauge potential Amand �eld strength Fm. The ovariant derivative of the ombined system of U(1)sis written as D� = �� + i( ~A�)T ~T , where we have introdued an obvious vetornotation for the various U(1)s. Consider now an orthogonal basis transformationin the U(1)-spae suh that the harge vetor ~Q of a partile is transformed as~Q �! ~eQ = X ~Q; XT = X�1: (C.1)Clearly this transforms the generators ~T �! ~eT = X ~T and thus~A �! ~eA = X ~A; (C.2)so that the ovariant derivative remains unhanged as it must.Now suppose furthermore that the Lagrangian ontains mass terms for theabelian gauge potentials, written shematiallyLmass = ~ATM2 ~A; M2 =MTM (C.3)for some mass matrix M2. We reover furthermore the (k �m) oupling matrixM introdued in equ.(3.40), where the index k labels the various axions to whihthe abelian �eld strengths ouple via M. Written in terms of the new gauge�elds eA the mass Lagrangian readsLmass = (~eA)T (XM2XT )~eA = (~eA)TD~eA =Xm eAmdm;m eAm; (C.4)157



where we have assumed that the transformation is suh that it diagonalizes themass matrix M2. To �nd the massless ombination of U(1) potentials just interms of the matrixM we stress the obvious fat thatD = XMTMXT = (MXT )TMXT : (C.5)The gauge potential eAm is massless i� 0 = dm;m, whih is equivalent to requiringthat the vetor M ~X(m) = 0, where ~X(m) = (a1; : : : ; am) represents the m-tholumn of X written as an m- vetor. We have therefore onvined ourselves ofthe elementary fat thateAm =Xm amAm is massless()Xk Mkm am = 0: (C.6)Preisely the same lines of reasoning apply, of ourse, to the transformationof the gauge kineti funtion responsible for the oupling of the �eld strengthsvia Loup = (~F )Tf ~F = (~eF )T (XfXT )~eF : (C.7)Conretely, in setion 7.1.1 we de�neU(1)X = 12 �U(1)X0 � 52U(1)2� ; (C.8)with the orthogonal U(1) given byU(1) eX = 12 �52 U(1)X0 + 52U(1)2� : (C.9)This yields the transformation matrix X = 12 � 1 �5252 1 �, whih is orthogonalup to normalisation. In all, we �nd indeed thatfX;X = 14 �fX0;X0 + 52f2;2 � 5fX0;2� ; (C.10)as stated in equ.(7.13).
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Appendix DThree-generation modelsWe list all onsistent, supersymmetri three-generation models we have foundby a omputer searh on elliptially �bered Calabi-Yau spaes with base spaesdPr, r = 1; : : : ; 4 and the Hirzebruh surfaes Fr in a range from �10; : : : ; 10 forall parameters. We have found three-generation models only on dP4. Table D.1ontains the three-generation examples for the ipped SU(5) model disussed insetion 7.1, whereas in table D.2 we list all three-generation vaua diretly withMSSM gauge group (see setion 7.2) whih we have found.� � q 1(�) [W ℄14 14l � 2E1 � 6E2 � 6E3 � 2E4 0 �4l+ 4E2 + 4E3 + 4E4 27F + (22l � 10E1 � 6E2 � 6E3 � 10E4)�14 18l � 10E1 � 6E2 � 6E3 � 6E4 0 �4l+ 4E2 + 4E3 + 4E4 27F + (18l � 2E1 � 6E2 � 6E3 � 6E4)�14 14l � 6E1 � 2E2 � 2E3 � 6E4 0 �4E1 + 4E4 27F + (22l � 6E1 � 10E2 � 10E3 � 6E4)�14 14l � 2E1 � 6E2 � 6E3 � 2E4 0 �4E1 + 4E4 27F + (22l � 10E1 � 6E2 � 6E3 � 10E4)�14 18l � 6E1 � 10E2 � 6E3 � 6E4 0 �4E1 + 4E4 27F + (18l � 6E1 � 2E2 � 6E3 � 6E4)�14 14l � 2E1 � 6E2 � 6E3 � 2E4 0 4l � 4E1 � 4E2 � 4E3 27F + (22l � 10E1 � 6E2 � 6E3 � 10E4)�14 18l � 6E1 � 6E2 � 6E3 � 10E4 0 4l � 4E1 � 4E2 � 4E3 27F + (18l � 6E1 � 6E2 � 6E3 � 2E4)�Table D.1: Flipped SU(5)� U(1)X models on dP4.
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� � q 1(�) [W ℄12 15l � 3E1 � 5E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (21l � 9E1 � 7E2 � 7E3 � 7E4)�12 15l � 2E1 � 5E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (21l � 10E1 � 7E2 � 7E3 � 7E4)�12 17l � 7E1 � 7E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (19l � 5E1 � 5E2 � 7E3 � 7E4)�12 18l � 8E1 � 8E2 � 5E3 � 5E4 0 �5l + 5E2 + 5E3 + 5E4 7F + (18l � 4E1 � 4E2 � 7E3 � 7E4)�12 20l � 3E1 � 10E2 � 10E3 0 �5l + 5E2 + 5E3 + 5E4 7F + (16l � 9E1 � 2E2 � 2E3 � 12E4)�12 20l � 2E1 � 10E2 � 10E3 0 �5l + 5E2 + 5E3 + 5E4 7F + (16l � 10E1 � 2E2 � 2E3 � 12E4)�12 15l � 5E1 � 5E2 � 3E3 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 7E2 � 9E3 � 7E4)�12 15l � 5E1 � 5E2 � 2E3 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 7E2 � 10E3 � 7E4)�12 15l � 5E1 � 3E2 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 9E2 � 12E3 � 7E4)�12 15l � 5E1 � 2E2 � 5E4 0 �5E1 + 5E4 7F + (21l � 7E1 � 10E2 � 12E3 � 7E4)�12 15l � 5E2 � 3E3 0 �5E1 + 5E4 7F + (21l � 12E1 � 7E2 � 9E3 � 12E4)�12 17l � 7E1 � 5E2 � 5E3 � 7E4 0 �5E1 + 5E4 7F + (19l � 5E1 � 7E2 � 7E3 � 5E4)�12 17l � 7E1 � 5E2 � 7E4 0 �5E1 + 5E4 7F + (19l � 5E1 � 7E2 � 12E3 � 5E4)�12 17l � 7E1 � 7E4 0 �5E1 + 5E4 7F + (19l � 5E1 � 12E2 � 12E3 � 5E4)�12 17l � 5E1 � 7E2 � 7E3 � 5E4 0 �5E1 + 5E4 7F + (19l � 7E1 � 5E2 � 5E3 � 7E4)�12 17l � 7E2 � 7E3 0 �5E1 + 5E4 7F + (19l � 12E1 � 5E2 � 5E3 � 12E4)�12 18l � 8E1 � 5E2 � 5E3 � 8E4 0 �5E1 + 5E4 7F + (18l � 4E1 � 7E2 � 7E3 � 4E4)�12 18l � 8E1 � 5E2 � 8E4 0 �5E1 + 5E4 7F + (18l � 4E1 � 7E2 � 12E3 � 4E4)�12 18l � 8E1 � 8E4 0 �5E1 + 5E4 7F + (18l � 4E1 � 12E2 � 12E3 � 4E4)�12 18l � 5E1 � 8E2 � 8E3 � 5E4 0 �5E1 + 5E4 7F + (18l � 7E1 � 4E2 � 4E3 � 7E4)�12 18l � 8E2 � 8E3 0 �5E1 + 5E4 7F + (18l � 12E1 � 4E2 � 4E3 � 12E4)�12 20l � 10E1 � 5E2 � 3E3 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 7E2 � 9E3 � 2E4)�12 20l � 10E1 � 5E2 � 2E3 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 7E2 � 10E3 � 2E4)�12 20l � 10E1 � 3E2 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 9E2 � 12E3 � 2E4)�12 20l � 10E1 � 2E2 � 10E4 0 �5E1 + 5E4 7F + (16l � 2E1 � 10E2 � 12E3 � 2E4)�12 15l � 5E1 � 5E2 � 5E3 � 3E4 0 5l � 5E1 � 5E2 � 5E3 7F + (21l � 7E1 � 7E2 � 7E3 � 9E4)�12 15l � 5E1 � 5E2 � 5E3 � 2E4 0 5l � 5E1 � 5E2 � 5E3 7F + (21l � 7E1 � 7E2 � 7E3 � 10E4)�12 17l � 7E1 � 5E2 � 5E3 � 7E4 0 5l � 5E1 � 5E2 � 5E3 7F + (19l � 5E1 � 7E2 � 7E3 � 5E4)�12 18l � 8E1 � 5E2 � 5E3 � 8E4 0 5l � 5E1 � 5E2 � 5E3 7F + (18l � 4E1 � 7E2 � 7E3 � 4E4)�12 20l � 10E1 � 10E2 � 3E4 0 5l � 5E1 � 5E2 � 5E3 7F + (16l � 2E1 � 2E2 � 12E3 � 9E4)�12 20l � 10E1 � 10E2 � 2E4 0 5l � 5E1 � 5E2 � 5E3 7F + (16l � 2E1 � 2E2 � 12E3 � 10E4)�Table D.2: SU(3)� SU(2)� U(1) models on dP4.
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