Die Struktur der Blut-Hirn- und der Blut-Liquor-Schranke - eine Literaturstudie -

Inaugural-Dissertation
zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München

vorgelegt von
Peter Uwe Brenner
aus
Bad Säckingen

München 2006
Gedruckt mit Genehmigung der Tierärztlichen Fakultät der
Ludwig-Maximilians-Universität München

Dekan: Univ.-Prof. Dr. E. P. Märtl Bauer
Referent: Priv.-Doz. Dr. S. Reese
Korreferent: Univ.-Prof. Dr. H. Ammer

Tag der Promotion: 10. Februar 2006
Für meine Eltern
Inhaltsverzeichnis

I. EINLEITUNG ... 1

II. GESCHICHTLICHER HINTERGRUND ZUR ENTDECKUNG DER BLUT-HIRN-SCHRANKE .. 2

III. MIKROSKOPISCHE STRUKTUR DER BLUT-HIRN- UND BLUT-LIQUOR-SCHRANKE .. 9
A. Mikroskopische Struktur der Blut-Hirn-Schranke .. 11
 1. Die Blutkapillaren ... 11
 2. Astrozyten .. 22
 3. Perizyten ... 25
B. Mikroskopische Struktur der Blut-Liquor-Schranke .. 40
 1. Äußerer Liquorraum mit Meningen ... 41
 2. Innere Liquorräume .. 45

IV. MOLEKULARE STRUKTUR DER BLUT-HIRN- UND BLUT-LIQUOR-SCHRANKE .. 54
A. Molekulare Struktur der Tight junctions ... 54
 1. Tight junction assozierte Proteine ... 55
 2. Zytosolische Proteine ... 61
 a) Membran assozierte Guanylat Kinasen (MAGUK) .. 61
 b) Plaqueproteine die nicht der MAGUK Gruppe zugerechnet werden 62
 c) Weitere zytoplasmatische Proteine, die mit TJ assoziiert sind ... 63
B. Molekulare Struktur der Adherens junctions .. 64
 a) Cadherin ... 65
 b) Catenin und andere Bindungspartner von Cadherin ... 65
 c) PECAM ... 65
C. Transportmechanismen an der Blut-Hirn-Schranke ... 65
 1. Allgemeiner Teil über die Mechanismen des Stofftransportes an der Blut-Hirn-Schranke.......... 65
 2. Transportproteine für organische, hydrophile Kationen: .. 68

D. Spezieller Teil der Transportsysteme an der Blut-Hirn-Schranke .. 70
 1. Glucosetransporter bzw. Hexosentransporter ... 70
 2. Monocarboxylat Transporter .. 79

E. Aminosäuren Transport an der Blut-Hirn-Schranke ... 80
 1. Der Transport von neutralen Aminosäuren: .. 81
 2. Transport von Kationischen Aminosäuren ... 85
 a) Kationische Aminosäure spezifische Transporter der CAT Familie 86
 b) Organische Anionen Transporter Proteine ... 87
 c) ABC Transporter ... 88
 3. Transportproteine, die an der metabolischen Blut-Hirn-Schranke beteiligt sind 90
 4. Multidrug-Resistenz-Proteine .. 91

V. BESONDERHEITEN IN DER STRUKTUR DER BHS UND BLS WÄHREND
 DER EMBRYONALEN UND FETALEN PHASE ... 93

VI. ABKÜRZUNGSVERZEICHNIS UND GLOSSAR ... 100

VII. ZUSAMMENFASSUNG .. 107

VIII. SUMMARY ... 108

IX. LITERATURVERZEICHNIS .. 109
I. Einleitung

II. Geschichtlicher Hintergrund zur Entdeckung der Blut-Hirn-Schranke

Abb. 1 Paul Ehrlich im Labor (aus der Internet Seite des Paul Ehrlich Institutes www.pei.de vom 20.01.05).

Bei den Versuchen, deren Ergebnisse Ehrlich 1885 veröffentlichte, injizierte er verschiedene Farbstoffe in der Peripherie lebender Tiere. Bei einigen Farbstoffen stellte er bei nachfolgenden histologischen Untersuchungen fest, dass die meisten Organe, im Gegensatz zum Gehirn, vom Farbstoff durchdrungen waren. Ehrlich nahm damals an, dass die Korngröße des Stoffes dafür verantwortlich sei, ob eine Substanz ins Gehirn gelangen könne, oder nicht. Er schloss also aufgrund seiner Untersuchungen: „dass die die Aufnahme beherrschenden Flächen am Gehirn […]“

„basische Farbstoffe, welche vom Blut durch keine chemischen Affinitäten zurückgehalten werden, vom Gehirn mit Vorliebe aufgenommen werden, während Farbsäuren [] das entgegengesetzte Verhalten zeigen“ (Ehrlich, 1902).

Der Erste, der für diese Forschungsergebnisse die Gehirnkapillaren verantwortlich machte, war Lewandowsky (1900). Er propagierte, „dass die Capillarwand den Übertritt bestimmter Stoffe wie Natriumferrocyanat verhindere, also spezielle Eigenschaften der Gehirnkapillaren den Übertritt bestimmter Stoffe (Spatz, 1933, Davson et al.,

Abb. 2 Portraitfoto von Edwin Goldman
(aus der Internet Seite des Kongresses: Vth International Conference on Cerebral Vascular Biology (CVB 2003) http://pharmacy.ama.ttuhsc.edu/Users/~smith/)

Edwin Goldmann, ein Schüler Ehrlichs (Abb. 2), zeigte 1909 mit seinen Experimen-
ten, gemeinhin als „erstes Experiment“ bezeichnet, dass in die Venen injiziertes Try-
panblau alle Organe färbt, das Gehirn und Liquor aber frei von Farbstoff bleibt (Goldmann, 1909) (Abb. 3, 4).

Desweiteren bewies er mit seinem Versuchen an Hunden und Kaninchen (Gold-
mann, 1913), dass in die cerebrospinale Flüssigkeit injiziertes Trypanblau das Gehirn färbt, nicht jedoch ins Blut oder andere Organe gelangen kann (Abb. 3).

Abb. 3 Goldmanns Farbexperimente (von 1913): Intravenöse Gabe von Trypanblau führt zur Färbung von Körpergewebe, eine intracerebrale Injektion nur zu einer ZNS- Anfärbung (aus der Internetseite www.acrossbarriers.de der Across Barriers GmbH vom 17.01.05).

Mit diesem wichtigen „zweiten Experiment“ konnte er zeigen, dass es wirklich eine Barriere zwischen dem Blut und dem Gewebe des Gehirnes gibt und nicht etwa die
fehlende Affinität des Hirnes zu den Farbstoffen verantwortlich für das Fehlen des Markers im Gehirn ist (Davson et al., 1993). Goldmann vertrat die Theorie, dass die Gliazellen eine limitierende Barriere bilden, sie sollte die Ursache für diese Effekte sein (Bradbury, 1995). Da sich beim ersten Experiment der Plexus chooroideus färbte, war Goldman der Meinung, dass der Sitz der Schranke dort zu suchen sei (Spatz, 1933). Zu dem Schluss, dass man zwischen einer Blut-Hirn-Schranke und eine Blut-Liquor-Schranke unterscheiden müsse, kamen die Forscher Walter (1933) und Spatz (1933) unabhängig voneinander. Spatz (1933) hatte Goldmans Versuche wiederholt und erweitert und dadurch war für ihn offensichtlich klar, „die Schranke zwischen Blut und Gehirn ist in der Innenhaut der cerebralnen Gefäß, die Schranke zwischen Blut und Liquor in der Innenhaut der Gefäß des Plexus und der weichen Häute zu suchen“.

Abb. 4 Eine Autoradiographie als modernes Gegenstück zu den Färbungsversuchen der frühen Forscher im Bereich der Blut-Hirn-Schranke, wie Ehrlich und Goldman. Das sehr helle, nicht mit dem Markierungsstoff belastete Gewebe des ZNS ist gut zu erkennen. Im Gegensatz dazu kann man dunkle Gewebebereiche an anderen Körperstellen erkennen, die den Marker aufgenommen haben (aus Padridge, 1986).

In einer von Krogh (1946) veröffentlichten wissenschaftlichen Abhandlung vertrat er die Meinung, dass Stoffe, die die Zellmembranen normalerweise nicht penetrieren können, auch nicht aus den Gefäßen des ZNS ins Gehirn gelangen können (Davson et al., 1993); dass also die Lipidlöslichkeit ausschlaggebend dafür sei, ob ein Stoff ins Gehirn gelangen könne und nicht die elektrische Ladung, wie zu jener Zeit ge- glaubt wurde. Dies verdeutlicht ein Auszug aus seiner Veröffentlichung von 1946:

„On the hole the permeability of the vessels in the CNS is very reminiscent of that generally found or assumed for the cellular membrane, and it would appear that in the search for drugs which act on this system one should be guided mainly by studies in their solubility in lipoid and not as very generally supposed, of their electrical charge.” Des Weiteren hielt er sekretorische Funktionen der Gehirngefäße
für möglich. Er war nicht etwa durch eigene Forschung zu diesem Ergebnis gelangt, sondern durch sorgfältiges Studium der Literatur und die Verknüpfung der unterschiedlichen Untersuchungsbefunde aus den letzten 50 Jahren (Bradbury, 1995).

Den ersten visuellen Beweis dafür, dass das Kapillarendothel verantwortlich für die wirkungsvolle Trennung zwischen Blut und cerebralen Gewebe ist, zeigten die Experimente von Reese und Karnovsky (1967), sowie Brightman und Reese (1969). Sie zeigten mit elektronenmikroskopischen Untersuchungen, dass Meerrettichperoxidase, ein 40 KDa großes Protein (Engelhardt, 2003), oder kolloidales Lanthanumhydroxid i.v. injiziert, nicht die Endothelgrenze im Gehirn überschreiten konnten. Dies wurde durch die, die Endothelzellen verbindenden Strukturen, Tight junctions (TJ) genannt, unterbunden, die den parazellulären Austausch verhindern (Abb. 7). Sofort nach Injektion in die cerebrospinale Flüssigkeit im Gehirn verteilen sich diese Marker im Hirngewebe und konnten sogar bis in die perikapillären Regionen der Kapillaren vordringen, ohne diese Barriere zu überschreiten (Abb. 6, 7). Die Existenz der Blut-

Abb. 7 Mit diesen zwei Aufnahmen konnte bewiesen werden, dass Tight junction (Pfeile) die benachbarten Endothelzellen miteinander verbinden. Der Grund dafür ist, dass keine Peroxidase aus dem Gefäß gelangen kann. Vergrößerung: rechts, x 110,000. links, x 210,000. (aus Reese und Karnovsky, 1967)
III. Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Damit eine Substanz aus dem Blut ins Gehirn gelangen kann, muss sie entweder die Blut-Liquor- oder die Blut-Hirn-Schranke überwinden (Greig, 1992; Spector, 2000).

A. Mikroskopische Struktur der Blut-Hirn-Schranke

1. Die Blutkapillaren

Um die Struktur der Blut-Hirn-Schranke (BHS) beziehungsweise der Blut-Liquor-Schranke (BLS) zu verdeutlichen, soll erst einmal die Anatomie der Gefäße, die einen wesentlichen Baustein der Barriere bilden, beschrieben werden.

Abb. 9 Aufbau des Gefäßsystems in den Gebieten der Mikrozirkulation, hier am Beispiel der Trachealschleimhaut einer Ratte, eine Floureszenzaufnahme. (aus Thurston et al., 1998).
Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Abb. 10 Schematischer Vergleich einer gefensterten peripheren Kapillare und einer dichten Gehirnkapillare (aus Reed, 1980).

Abb. 11 Diese rasterelektronenmikroskopische Aufnahme zeigt das dichte Kapillargeflecht in der Hirnrinde beim Menschen. Der Abstand zwischen den Gefäßen beträgt nur 40 µm woraus folgt, dass jedes Neuron von seinem eigenen Blutgefäß versorgt wird (aus Duvernoy et al., 1983).

Mit in die Basalmembran involviert sind sogenannte Perizyten, die circa 20 bis 32 % der Brain Capillary Endothel Cells (BCECs) abdecken (Frank et al., 1987; Allt und Lawrenson, 2001, Fenstermacher et al., 2001). Sie besitzen eine Vielzahl von Funktionen, wie zum Beispiel Kontraktion und Blutflussregulierung, Stabilisierung der Gefäße und deren Barriereigenschaften, Vorreiter in der Angiogenese (Sims, 2000) (siehe unten Kapitel Perizyten). Da sie aber kontraktile Eigenschaften besitzen, wird vermutet, dass sie an der Blutdruckregulation im ZNS beteiligt sind (Kamouchi et al., 2004). Die mögliche Beteiligung an Transportvorgängen (Krause et al., 1993) oder eine Beeinflussung des Kapillarwachstums und der Differenzierung des cerebralen Kapillarendothels (Antonelli-Orlidge et al., 1989; Balabanov und Dore-Duffy, 1998), die schon diskutiert wurden, gelten mittlerweile als bewiesen. Der Basalmembran liegen die Astrozytenfüßchen auf, die etwa 99 % der abluminalen Seite des Kapillarendothels bedecken (Abb. 14). Diese Endausläufer der Astrozyten sind jedoch nicht für die Impermeabilität verantwortlich, wie einige Zeit lang angenommen wurde, sondern versorgen die Neuronen mit Nährstoffen und regulieren die extrazelluläre Ionenkonzentration (Abott, 2002). Es wird den Astrozyten auch ein gewisser Einfluss während der Differenzierung zum dichten zerebralen Kapillarendothel nachgesagt (Holash et al., 1993; Minakawa et al., 1991). Die in der Peripherie der Endothelzellen gelegenen Astrozyten, Perizyten und Neurone sind wichtig für die Realisierung einer dichten Barriere, wobei es sich hier um ein System der gegenseitigen Beeinflussung handelt, das noch immer nicht vollständig erforscht und verstanden ist (Haseloff et al,
Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

2005). Im Kapillarendothel sind sehr wenige Mikrovesikel zu finden. Dafür ist aber die Zahl der Mitochondrien sehr hoch. Sie zeichnen sich oft als eine Reihe im Zytoplasma ab (Fenstermacher et al., 2001). Zusammenfassend gesehen ist die BHS im großen Netzwerk der Gehirnkapillaren und deren Endothelien lokalisiert. Charakteristisch für diese Barriere im Gehirn sind:

- das unfenestrierte Endothel;
- der hohe transendothelialer Widerstand, hervorgerufen durch die Tight junction;
- die niedrige Pinozytoserate,
- die durchgehende Basalmembran und

Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Abb. 15 Struktur der Tight junctions–Stränge schematisch und mit unterschiedlichen optischen Verfahren aufgenommen (aus Tsukita et al., 2001):

a) Mit Hilfe des Gefrierbruchverfahrens gemachte REM der extrazellularen Seite des TJ (Balkenlänge: 50 nm)
b) TEM Ultradünnsschnitt: Die Pfeile zeigen die Kontaktstellen der TJ Stränge beider Zellen (Balkenlänge: 200 nm)
c) Zeichnerische Darstellung einer TJ Kontaktzone

Morphologische Grundlage der engen Verbindung von Epithelzellen ist der sogenannte „junctional complex“, den Farquahar und Palade (1963) erstmals beschrieben und in drei Komponenten unterteilten:

Die am weitesten apical liegenden zonulae occludens oder Tight junctions, direkt darunterliegend die zonula adherens (adherens junction) (Huber et al., 2001), der die macula adherens, die aus einer Serie von Desmosomen besteht, angelagert ist (Farquahar und Palade, 1963). Die Tight junctions, die die Schlüsselstruktur bei der BHS darstellen (Reese und Karnovsky, 1967; Tani et al., 1977a, b; Shivers, 1979a, b; Haseloff et al., 2005), in einer Tiefe zwischen 100 bis 800 nm sind eine Zone, in der sich die Plasmamembranen der benachbarten Zellen stark angenähert haben (Abb. 15b). Diese Apposition verläuft wie eine Manschette um die Zelle (Madara, 1991). Im Transmissionselektronenmikroskop sind die TJ als Berührungspunkte von aneinandergrenzenden Plasmamembranen der angrenzenden Endothelzellen zu sehen, wobei an diesen Kontakt punkten sogenannten „kissing points“ kein Interzellularspalt mehr zu erkennen ist (Abb. 15b, c; Abb. 17). Einen Spalt von 15-20 nm weisen jedoch die in basolateraler Richtung benachbarten Membranen der Adherens junction und Desmosomen auf (Tsukita et al., 2001). In rasterelektronenmikroskopischen Bildern, die mit Hilfe der freece–fracture-Technik aufgenommen wurden, erscheinen die

Abb. 16 Schema der Komponenten des Mikrogefäßsystems und die jeweiligen dort befindlichen Struktur der TJ-Stränge in cerebralen und nicht cerebralen Geweben (aus Nagy et al., 1984).

Abb. 17 TEM Ultradünnschnitt der Kontaktstellen „kissing points“ (Pfeilspitzen) eines TJ sind (Balkenlänge: 100nm) (aus Tsukita et al., 2000).
Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Fence function

Abb. 19 Schematische Darstellung der TJ Anordnung
Die TJ Stränge umlaufen die laterale Plasmamembran (a) im apikalen Bereich der Zelle (b) vollständig. Luminale und Abluminale Bereiche der Lipiddoppelschicht werden durch die TJ voneinander getrennt und mit den Nachbarzellen durchgehende Kontaktlinien ausgebildet (c). (aus Lohmann, 2003).
Abb. 20 Grafische Darstellung der verschiedenen Barrieren des ZNS und deren Blutgefäßkonstruktion

a) an der Blut-Hirn-Schranke verhindern die TJ den parazellulären Stoffaustausch die begrenzte Anzahl der Transportvesikel reglementiert zusätzlich den transzellulären Transport

Die in anderen Geweben, als dem ZNS, vorkommenden TJ’s besitzen weniger Stränge, so dass sie stellenweise einen parazellulären Transport ermöglichen (Nagy et al., 1984). In manchen Geweben sind in den Kapillaren Tight junctions zu finden, die teilweise durch Gap junctions unterbrochen sind (Greig, 1992).

Die TJ’s verhindern weitgehend den parazellulären Transport, so dass die meisten Stoffe gezwungen sind durch die luminale und die abluminale Membran, sowie ein oder mehrere Kompartimente der Endothelzelle zu wandern (Fenstermacher et al., 2001). Das Fehlen bestimmter Transportmechanismen, es sind zum Beispiel in den BCECs nur wenige Microvesikel zu finden, wodurch die Transcytoserate sehr stark reduziert wird (Fenstermacher et al., 2001), sorgen dafür, dass Stoffe, größer als 20 kDa, nicht ohne weiteres die BHS überwinden können. Außerdem ist der transendotheliale elektrische Widerstand des Gehirnkapillarendothels, verglichen mit anderen Geweben sehr hoch (Ghersi-Ega et al., 2001). Messungen an dieser Zellbarriere ergaben ca. 1900 Ω/cm² beim Frosch (Crone und Olesen, 1982). Bei der Ratte wurden Werte zwischen 1500 bis 2000 Ω/cm² gefunden (Butt et al., 1990). Der gemessene elektrische Widerstand des Kapillarendothels im Muskelgewebe beträgt dagegen nur z.B. ca. 30 Ω/cm² (Butt et al., 1990), gemessen bei der Ratte, die Werte
2. Astrozyten

sind die fibrinösen von den plasmatischen Astrozyten zu differenzieren (Bradbury, 1979). Die fibrinösen Astrozyten besitzen wenige lange Fortsätze und sind in der weißen Substanz zu finden. Die plasmatischen Astrozyten hingegen sind mit kurzen Fortsätzen ausgestattet und in der grauen Substanz beheimatet (Schilling et al., 2004). Im Zytoplasma der Astrozyten befinden sich Intermediärfilamente, die aus dem für Astroglia spezifischen Protein, dem sauren glialen fibrillären Protein (GFAP), bestehen. Die Filamente verleihen den Astrozyten eine feste Struktur, so dass sie die Gewebe des ZNS auch mechanisch unterstützen (Haseloff et al., 2005; Schilling et al., 2004).

Abb. 22 Die freeze fracture Aufnahme zeigt die orthogonalen Strukturen an der durch die Astrozytenendfüschen gebildeten Glia limitans (Landis und Reese, 1981).

Des Weiteren sind Astrozyten sowohl bei der Eliminierung der Transmitter GABA und Glutamat, als auch bei der Versorgung der Nervenzellen mit wichtigen Nährstoffen beteiligt (Schilling et al., 2004). Astrozyten produzieren neurotrope Faktoren und beeinflussen sowohl Differenzierung, als auch Funktion der Nervenzellen. Ebenso sind Rezeptoren für Wachstumsfaktoren und Neuropeptide auf Astrozyten nachgewiesen worden (Schilling et al., 2004). Sie haben beim Aufbau der BHS der Säuger nicht die
Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Abb. 23 Grafik die zusammenfassend die unterschiedlichen an dem Aufbau der BHS beteiligten Strukturen und die jeweilig detektierte mRNA der MultiDrug-Transporter zeigt. Die Pfeile verdeutlichen den Einfluss, den die Astrozyten (blau) und Perizyten (grau) auf die endothelialen P-gp und MRP Transporter haben (aus Berezowski et al., 2004).

Astrozyten sorgen offenbar für die Organisation und Strukturierung der Gefäßwand. Wie in vitro Versuche zeigten, bei denen sich, erst nach dem Zusatz von Astrozyten, bei einer Cokultur von Perizyten und Endothelzellen „capillary like structures“ ausbildeten. Einen ähnlichen Effekt gab es auch beim Zusatz des Wachstumsfaktors „transforming growth factor beta 1“ (TGF-β1) (Ramsauer et al., 2002). Untereinander stehen die benachbarten Astrozyten durch Gap junctions in Verbindung, so dass Informationen in Form von Kalziumwellen weitergegeben und die Funktionen über weite Strecken koordiniert werden können (Junqueira et al., 2004). Astrozyten beein-
flussen auch andere Zellen des ZNS. So wird zum Beispiel der Myelinumsatz der Oligodentrozyten durch Zytokine des Astrozyten beeinflusst (Schilling et al., 2004). Da sie ebenfalls die Perizyten miteinschließen, kommt ihnen die Rolle des Mediators zwischen den Endothelzellen und dem umgebenden neuronalen Gewebe zu (Haselhoff et al., 2005).

3. Perizyten

Perizyten wurden erstmals von Rouget (1873) beschrieben. Ihr Name ist jedoch von Zimmermann (1923) geprägt worden. Diese Zellen sind an nahezu allen Mikrogefä-
Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Struktur

Die Übergangsperizyten sind gedrungener, die Ausläufer dicker und weniger verzweigt, die Nukleus-Region ist weniger ausgedehnt als bei den Mittkapillarperizyten (Diaz-Flores et al., 1991). Beim Übergang von einer Präkapillare auf eine Kapillare
ändert sich der Perizytencharakter. Das Perikaryon ist extrem langgezogen (Diaz-Flores et al., 1991), die Querfortsätze werden schmaler und stehen dichter (Zimmermann, 1923) (Abb. 26).

Die Perizyten der Mittkapillaren stellen sich als bis zu 0,2 mm große schlanke Zellen dar, welche nur stummelförmige Ausläufer ausbilden und enthalten kein glattmuskuläres Myosin, weshalb ihre kontraktilen Fähigkeiten beschränkt sind (Drenckhahn, 2004). Ihre Aufgabe ist die Stabilisierung des Gefäßes; die Ausläufer umfassen etwa 30-50 % des Endothelrohres (Drenckhahn, 2004).

Die frühere Annahme, dass sich die Morphologie der Perizyten aufgrund der unterschiedlichen mesenchymalen Abstammung in den jeweiligen Geweben unterscheidet, steht im Gegensatz zu der Erkenntnis, dass sich die Perizyten sogar innerhalb des gleichen Kapillarbettes unterscheiden können (Rucker et al., 2000).

Der Zellkörper eines Perizyten ist durch einen prominenten Nukleus, umgeben von zu wenig Zytoplasma, gekennzeichnet, von welchem zytoplasmatische Ausläufer ausgehen (Zimmermann, 1923; Rucker et al., 2000; Allt und Lawrenson, 2001). In den Kapillaren ziehen lange primäre Ausläufer nahezu parallel zur Gefäßachse, diese gehen in kleinere sekundäre Ausläufer über, welche die Kapillaren umfassen (Allt und Lawrenson, 2001; Diaz-Flores et al., 1991; Rucker et al., 2000; Welsch,
2003; Zimmermann, 1923;), wobei von diesen noch einmal kleinere tertiäre Ausläufer abgespalten werden (Shepro und Morel, 1993) (Abb. 27, 28).

Obwohl die Abdeckung der Perizyten an einem Gefäß nicht vollständig ist, gibt es Bereiche, an denen sich die zytoplasmatischen Ausläufer einfach oder doppelt überlappen (Diaz-Flores et al., 1991). Der Perizyt kann die zytoplasmatischen Ausläufer auch soweit ausdehnen, dass sie zu mehr als einem Haargefäss Kontakt aufnehmen (Allt und Lawrenson, 2001), wobei der Kern dann zwischen diesen Kapillaren liegt (Shimada et al., 1992; Zimmermann, 1923).
Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Abb. 27 Rasterelektronenmikroskopische Aufnahme einer Kapillare einer Ratte:
Zu sehen ist der verdickte Teil des Kerngebiets (N) die parallel zur Gefäßachse verlaufenden Primärausläufer (1) von diesen gehen rechtwinklig die das Gefäß umfassende Sekundärrprozesse (2) ab, die wiederum Tertiärausläufer (3) abspalten. Die Pfeilspitzen markieren die freie abluminale Oberfläche der Endothelzellen (aus Shepro und Morel, 1993).

Zusammenfassend lassen sich die Perizyten in 3 Typen bezüglich Form und Lokalisation unterteilen (Shimada et al., 1992):

Typ I findet man an den echten Kapillaren (Mittkapillaren). Er besitzt einen fusiformen oder polygonalen Zellkörper, an dem wenige lange longitudinal orientierte Primärprozesse abgehen, die sich in kleinere Sekundärprozesse aufzweigen, die die Kapillare umgreifen.

Typ II Perizyten befinden sich an dem arteriellen Schenkel (Präkapillaren). Diese sind gekennzeichnet durch ihre großen, flächigen, eher bandartigen Ausläufer, die das Gefäß komplett einschließen.

Die mit dem venösen Schenkel (Postkapillaren) assoziierten Typ III Perizyten zeichnen sich durch einen abgeflachten, relativ großen Zellkörper und kurze unregelmäßige zelluläre Prozesse aus.

Ultrastruktur

Anzahl und Verteilung der Perizyten im Gewebe

Abb. 29 Immunfluoreszenzdarstellung der Isoactine im Zytoplasma eines retinalen Perizyten (aus DeNofrio et al., 1989).
Funktionen und Eigenschaften

Die strukturelle und funktionelle Heterogenität der Perizyten (Allt und Lawrenson, 2001; Sims, 2000), welche gewebe- und gefäßabhängig ist (Hirschi und D’Amore, 1996), spiegelt ihren vielfältigen Aufgaben- und Funktionsbereich wieder.

Kontraktion

dass durch erhöhte Glucosespiegel eine Kontraktion von retinalen Perizyten verhindert werden kann, was bei der diabetischen Retinopathie eine Rolle spielen könnte (Gillies und Su, 1993).

<table>
<thead>
<tr>
<th>Kontraktivität</th>
<th>Vasoconstriktion</th>
<th>Vasodilatation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adrenergic agonists (α-2)</td>
<td>Adrenergic agonists (β-2)</td>
</tr>
<tr>
<td></td>
<td>Cholinergic agonists</td>
<td>Nitric oxide (O₂, CO₂)</td>
</tr>
<tr>
<td></td>
<td>Histamine</td>
<td>Atrial natriuretic peptide</td>
</tr>
<tr>
<td></td>
<td>Serotonin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angiotensin II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endothelin-1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regulationen am Endothel</th>
<th>Pericyte-derived factors</th>
<th>Reciprocal agents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transforming growth factor-β-1</td>
<td>Transforming growth factor-β-1</td>
</tr>
<tr>
<td></td>
<td>Basic fibroblast growth factor</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td></td>
<td>Vascular endothelial growth factor</td>
<td>Angiopoietin-1</td>
</tr>
<tr>
<td></td>
<td>Angiopoietin-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endothelin-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platelet-derived growth factor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Makrophagen aktivität</th>
<th>Up-regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-interferon</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noch nicht bekannt</th>
<th>Vasopressin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasoactive intestinal polypeptide</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1 Übersicht der verschiedenen, für die Perizytenfunktion wichtigen, Faktoren und deren Wirkung (nach Rucker et al., 2000).

Sekretion

Zu den Aufgaben dieser sich sowohl morphologisch, physiologisch, als auch biochemisch sehr unterschiedlich verhaltenden Zellen, gehört weiterhin die Sekretion zahlreicher vasoaktiver und autoregulierender Agonisten und die Realisierung struktureller Komponenten der Basalmembran (Shepro und Morel, 1993). Ein Mangel an
Injektionen von VEGF gestoppt werden kann. Diese Erkenntnis könnte man sich für Tumormarker zu nutze machen, weshalb wird versucht, eine Anti-VEGF Therapie zur Tumorbehandlung zu entwickeln (Zilberberg et al., 2003).

Perizyten induzieren die Expression von Occludin und der messenger Ribonukleinsäure (mRNA) des Multidrug resistance associated Protein (MRP) 6, durch Freisetzung eines Faktors aus dem angiopoietin-1 multimeric complex (Berezowski et al., 2004; Hori et al., 2004), was ihre Wichtigkeit für die Etablierung der BHS unterstreicht. Durch das an den Tie-2 Receptor andockende Angiopoetin-1 der Perizyten und die Produktion von TGF-β werden die Angiogenese gehemmt und Reifungsprozesse der Kapillaren mitgesteuert (Drenckhahn, 2004; Hori et al., 2004). Endothelin ist ein Faktor, der scheinbar Einfluß auf den Leitwert der Perizyten ausübt und sich damit auf die zwischenzelluläre Kommunikation der, an der Funktion der Kapillaren beteiligten, zellulären Einheiten auswirkt (Kawamura et al., 2002; Spatz et al., 1995). An den Kontaktstellen zu den Endothelzellen sind sowohl Tight junctions, Adherens junctions, als auch Adhesions Plaques zu finden (Diaz- Flores et al., 1991; Allt und Lawrenson, 2001). Diese Koppelung und die entsprechenden Rezeptoren ermöglichen eine schnelle Reaktion der Endothelzelle und der Perizyten auf sekundäre Signale (second messenger) der anderen Zellen (Diaz- Flores et al., 1991). Dies scheint auch bei Entzündungsreaktionen eine Rolle zu spielen, da die Perizyten eine schirmartige (umbrella-like) Form bilden, um Lücken zwischen den Endothelzellen abzudichten, und so die Extravasion zu verhindern (Miller et al., 1992; Sims et al., 1990; Sims, 2000). Da die Substanzen, die insgesamt an der Perizytenfunktion und Signalgebung zu den umgebenden Zellen eine Rolle spielen, sehr vielfältig sind, hier eine Übersicht in (Tab. 1) (Rucker et al., 2000).

Phagozytose

Vorläuferzellen und Stabilisierung des Endothels

Angiogenese Förderung

Welche Interaktionen zwischen Endothelzellen und Perizyten stattfinden, wird immer noch erforscht. Geklärt ist jedoch, dass die Interaktionen zwischen Perizyt und En-
Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

dothelzelle wichtig für die Reifung, Remodellierung und Stabilisierung des Gefäß-
systems sind (Allt und Lawrenson, 2001). Dies geschieht durch Sekretion von
Wachstumsfaktoren oder durch Veränderung der Extrazellulären Matrix (Allt und
Lawrenson, 2001). So wurde bereits nachgewiesen, dass die Perizyten die Proliferation
der Endothelzellen durch Inhibition der endothelialen Mitose regulieren (Sims,
1991; Shepro und Morel, 1993; Allt und Lawrenson, 2001). Die Heterogenität der Pe-
rizyten erfordert unterschiedliche Marker zur Identifizierung. Für die Perizyten im Be-
reich des Gehirns werden Antikörper gegen γ-Glutamyl-Transferase und Aminopep-
tidase N verwendet (Drenckhahn, 2004). Aufgrund ihrer zahlreichen Aufgaben sind
Perizyten auch in zahlreiche pathologische Prozesse involviert (Shepro und Morel,
1993; Sims, 2000), was durch die Vorstellung, dass Perizyten ein Hauptmodulator für
das kapilläre Wachstum sind, (Allt und Lawrenson, 2001) noch verständlicher wird.
Zum Beispiel kommt es am Anfang der vaso proliferativen diabetischen Retinopathie
tzu einem Verlust der Perizyten, dem sogenannten Perizyten „drop-out“, wodurch die
Angiogeneseememmung entfällt und es zur Gefäßaussprossung kommt (Hirschi und
D’Amore, 1996, Drenckhahn, 2004). Auch der erhöhte Glucosespiegel könnte hier
eine Rolle spielen, da dadurch Kontraktionen der Retinalperizyten verhindert werden
(Gillies und Su, 1993). Neuere Untersuchungen zeigen, dass auch andere Faktoren
in der diabetischen Retinopathie eine Rolle spielen könnten, da Angiotensin II und
„advanced glycation end products“ (AGEs) zu einer Hyperexpression des AGEs Re-
zeptors führen, was mit der Apoptose der Perizyten enden kann (Yamagishi et al.,
2005). Angiotensin II induziert also nicht nur bei der gestreiften Muskulatur, wie z. B.
dem Skelettmuskel und dem Myokard die Apoptose (Burniston et al., 2005), sondern
auch bei Perizyten. Weitere Krankheiten, in deren Verlauf Perizyten eine Rolle spie-
len, sind Bluthochdruck, Alzheimer Krankheit, Multiple Sklerose und Tumore des
ZNS (Allt und Lawrenson, 2001). Perizyten stellen eine für die Konstituierung der
BHS sehr wichtige zelluläre Komponente dar (Balabanov und Dore-Duffy, 1998). So
wird beispielweise eine Erhöhung der parazellulären Durchlässigkeit der BHS unter
hypoxischen Bedingungen teilweise mit dem Veränderungen der Perizyten erklärt, da
sie sehr empfindlich auf Sauerstoffmangel reagieren. Mit Sauerstoffdefizienz wird
sowohl eine Formveränderung, als auch Migration induziert (Gonul et al., 2002). Sie
haben sowohl die Rolle eines Regulators in der Angiogenese des Gehirns und der
endothelialen Formierung der Tight junction, als auch bei der Differenzierung der
Barriereeigenschaften inne und leisten ihren Beitrag zur Stabilität der Gefäße (Balab-
banov und Dore-Duffy, 1998). Die Forschungsergebnisse legen nahe, dass die Peri-
B. Mikroskopische Struktur der Blut-Liquor-Schranke

Im Gegensatz zu den Verhältnissen an der Blut-Liquor-Schranke, ist der Übergang aus dem Liquor in das Gehirnparenchym nicht durch Tight junctions abgedichtet (Ghersi-Egea et al., 2001). Das bedeutet jedoch nicht, dass die Extrazellulärflüssigkeit des ZNS die Zusammensetzung des Liquors genau widerspiegelt, da die Substanzen das selektive Ependym überwinden müssen, welches die Ventrikelwände auskleidet (Ghersi-Egea et al., 2001). Der Austausch zwischen Subarachnoidalraum und dem angrenzenden ZNS-Kompartimenten wird durch die Glia limitans, die außen

1. Äußerer Liquorraum mit Meningen

Der äußere Liquorraum liegt als Cavum subarachnoidale im Maschenwerk zwischen Arachnoidea und Pia mater. Die Arachnoidea und das subdurale Neurothel etablieren die Barriere zwischen extracerebralem und cerebralem Gewebe (Dermitzel,
Die Pia mater grenzt den äußeren Liquorraum zum Gehirngewebe ab und umgibt die Blutgefäße. Umscheiden die Gefäße eine Übergangsstrecke in das Gehirngewebe in der die Kapillaren BHS-Qualität bekommen (Brightman, 1975) (Abb. 31).

Gehirnhäute (Meningen): Struktur und Bedeutung für die BLS

Im Bereich des ZNS existieren zwei bindegewebige Hüllen, die dem Schutz dieser empfindlichen Strukturen dienen (Bradbury, 1979). Man differenziert hier zwischen harter Hirnhaut (Pachymeninx) und weicher Hirnhaut (Leptomeninx). Die Hirnhäute (Meningen) setzen sich in den Rückenmarkskanal als Rückenmarkshäute fort.

Harte Hirnhaut (Pachymeninx)

Die als harte Hirnhaut oder Dura mater bezeichnete Struktur besteht aus einem straffen kollagenen Bindegewebe. Je nach Region sind jedoch auch zahlreiche elastische Fasern zu finden (Düring et al., 2004). Die Fasern der Dura mater liegen, ähnlich einem Geflecht angeordnet, der Schädelkalotte an und teilen sich in die periostale (pol), die meningeale (ml) und die neurotheliale Zellschicht (nl) auf (Abb. 32) (Fricke et al., 2001).

Weiche Hirnhaut (Leptomeninx)

Bei der Leptomeninx unterscheidet man grundsätzlich zwei Gewebeschichten unterschiedlicher Qualität. Die äußere, der Dura mater anliegende Schicht, wird als Spinnwebhaut (Arachnoidea); die dem Gehirn am nächsten gelegene Haut als Pia mater bezeichnet (Fricke et al., 2001).

Arachnoidea

Verbindung zum vierten Ventrikel und somit auch zu den inneren Liquorräumen (Schindler, 2003).

Abb. 32 Strukturelle Organisation der cerebralen Meningen. Diese bestehen aus Pachymeninx (P) und Leptomeninx (L). Die Pachymeninx teilt sich auf in die periostale Zellschicht (pol), die Meningeale Schicht (ml) und die neurotheliale Zellschicht (nl). Die Leptomeninx teilt sich in die äußere und innere arachnoidale Zellschicht im Subarachnoidalraum (SAS) und die Pia mater mit ihren Subkomponenten trabekuläre Leptomeninx (tL) adventitiale Leptomeninx (aL) und piale Leptomeninx auf (Pl). Die Lamina interna der Schädelkalotte, das Neurupil des Cortex (co) sind ebenfalls dargestellt. Weitere Strukturen: Arterie (a), Vene (vv), Kapillare (c), Nervenfaserbündel (nfb). Die Pfeile markieren die Topographie der verschiedenen Nervenenden in der Pachymeninx und innerhalb der verschiedenen Schichten der Leptomeninx. Die Pfeilspitzen deuten auf die efferente Innervation der cerebralen Aterien (aus Fricke et al., 2001).

Pia mater

Die Pia mater ist eine feine von Gefäßen durchwachsene Bindegewebsmembran, bei der zwei Schichten unterschieden werden. Die äußere Pia mater Schicht wird als Lamina externa piae oder piale Leptomeninx bezeichnet (Fricke et al., 2001). Sie ist je nach Lokalisation unterschiedlich stark ausgebildet. Sie besteht aus einem weitmaschigen Netz von dicken Kollagenfibrillenbündeln, dem vereinzelt Bindegewebs-

2. Innere Liquorräume

Mikroskopische Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Ependym

Abb. 33A (linkes Bild) Zeigt die hochprismatische Form der Ependymzellen (Pfeil zeigt hier auf einen basalen Ausläufer, der meist fehlt) im IV. Ventrikel einer Ratte (aus Bruni et al., 1983).

Tanyzyten

Zellen, je nachdem, welchen Differenzierungsstoffe man beimengte, sich sowohl Neuronen, als auch andere Zellen entwickeln können (Kugler, 2004).

Abb. 34 Rasterelektronenmikroskopische Aufnahme eines ependymalen Tanyzyten. Erkennbar sind die nicht mit Zilien besetzte luminale Oberfläche (Ts) und der einfache, unverzweigte Ausläufer (Tp), der sich am Ende aufzweigt und eine Kapillare (C) umschließt (Pfeile) (aus Bruni, 1974).
Circumventrikuläre Organe

Zu den CVO zählt man folgende Strukturen (Netsky und Shuangshoti, 1975, Davson et al., 1993, Ganong, 2000):

Im Bereich des III. Ventrikels:

- Neurohypophyse mit Emanentia mediana,
- Organum vasculosum laminae terminalis,
- Organum subfornicale,
- Glandula pinealis,
- Organum subcommissurale.

In der Region des IV. Ventrikels:

- Plexus choroideus und
- Area postrema.

Die hier produzierten Hormone sollen möglichst ungehindert über das Blut an ihre Erfolgsorgane gelangen können, z. B. Hypophysenhormone, epiphysiale Hormone. Auch das Brechzentrum liegt anatomisch gesehen benachbart der, zu den CVO ge-
zählten, Area postrema und muss auf Veränderungen in der Blutzusammensetzung reagieren und deshalb auch Zugriff auf „ungefiltertes Blut“ nehmen können (Davson et al., 1993).

Plexus choroidei

Die **Epithelbekleidung der Plexus choroidei** ist ein Monolayer kubischer Zellen, die als Lamina epithelialis choroidea bezeichnet werden (Serot et al., 2001) (Abb. 35). Eine hier vorhandene Basallamina grenzt das Epithel von der gefäßführenden Tela choroida ab (Serot et al., 2001) (Abb. 36).

Abb. 35 Semidünnschnitt durch den Plexus choroideus einer Ratte. Die Pfeile deuten auf die kubischen Epithelzellen (aus Serot et al., 2001).

Abb. 36 Transmissionselektronenmikroskopische Aufnahme eines Transversalschnitts durch den Plexus choroideus einer Ratte. Zu sehen sind eine Kapillare (C) deren Endothelzellen (Pfeilspitze) und Plexusepithelzellen (Pfeile), Stroma (S); Balkenlänge 200 nm (aus Serot et al., 2001).

Im Bereich des PC besteht die Ventrikelwand aus nur zwei Schichten. Zum Einem aus der Tela choroidea, einer bindegewebigen Schicht, die eine spezielle Form der Pia mater darstellt; zum Anderen aus dem Plexusepithel, einem spezifisch differenzierten Ependym, das durch TJ abgedichtet ist (Abb. 37, 38) (Düring et al., 2004).

Die besonderen Funktionen der Plexus choroidei erklären sich daraus, dass sie besondere Strukturen in der Ventrikelwand sind, die eine Schnittstelle zwischen den Flüssigkeiten Blut und Liquor bilden (Ghersi-Egea und Strazielle, 2001). So sind sie z. B. an der Nährstoffversorgung, der Signalweiterleitung und der Pufferung der extrazellulären Flüssigkeit beteiligt (Haselbach et al., 2001), tragen aber auch zum mechanischen Schutz des Gehirnes bei (Ghersi-Egea und Strazielle, 2001).

Alle Mechanismen, die an der Homöostase beteiligt sind, sind mit Energieverbrauch verbunden, wobei sich die Mengenverhältnisse, der daran beteiligten Enzyme, mit zunehmenden Alter ändern, da sich die Energiegewinnung vermehrt in eine anaerobe umstellt (Preston, 2001). Da die Anreicherung mit Sauerstoff im Bereich des PC sehr hoch ist, muss das Gewebe durch einige antioxidative Mechanismen vor Radikalen geschützt werden (Preston, 2001; Tayarani et al., 1989). So ist beispielsweise im Gewebe der PC's sehr viel Transferrin zu finden, ein Transportprotein, das dem Eiseninflux in das Gehirn reguliert, um dieses vor freien Radikalen, die bei der Femton Reaktion auftreten können, zu schützen (Preston, 2001). Auch die Versorgung und Anreicherung des Liquors mit Ascorbinsäure, welches das im Liquor am weitesten verbreitete hydrophile Antioxidans ist (Lonnrot et al., 1996; Alho et al., 1998) und dessen Konzentration etwa um Faktor 4 über dem Plasmaspiegel liegt (Lonnrot et al., 1996), muß gewährleistet sein.
IV. Molekulare Struktur der Blut-Hirn- und Blut-Liquor-Schranke

A. Molekulare Struktur der Tight junctions

1. Tight junction assoziierte Proteine

Die Transmembranproteine

Zu den Tight junction assoziierten Transmembran- oder integralen Membranproteinen werden drei bisher bekannte Vertreter gezählt; das Occludin, (Furuse et al., 1993) die Claudine (Furuse et al., 1998 a, b) und eine Anzahl Proteine aus der Immunglobulin Superfamilie. Die dazugerechneten Vertreter sind z. B. das „junction adhesion molecule (JAM) (Martin-Padura et al., 1998), das so bezeichnete endotheliale zellselektive Adhäsions Molekül (Nasdala et al., 2002) und der Coackie- sowie Adenovirusrezeptor (Cohen et al., 2001). Die hier aufgezählten Proteine besitzen je mindestens eine in der Lipiddoppelmembran verankerte Struktur.
Occludin

senschaftlern gefolgt, dass die Funktionen von den TJ oder auch von Occludin sehr viel komplexer sind, als bisher angenommen wurde (Wolburg und Lippoldt, 2002).

Abb. 41 Die Immunogold EM Aufnahme einer Gehirnkapillare der Ratte zeigt die Verteilung von Occludin am Gefäß (aus Cornford und Hyman, 2005).

Claudine

Claudine sind integrale Proteine der TJ Stränge, zwischen 22-24 kDa groß und zeigen in ihrer Aminosäuresequenz keinerlei Homologie zu Occludin (Lohmann, 2003). Sie haben mit ihm jedoch 4 Transmembrandomänen gemeinsam (Abb. 42) (Wolburg
und Lippoldt, 2002). Die ersten Claudine wurden in Gewebeproben der Hühnerleber gefunden (Furuse et al., 1998b) und als Claudin-1 und Claudin-2 bezeichnet. Bis heute sind mindestens 24 verschiedene, der Claudinfamilie zugerechnete, Proteine, Claudin-1 bis 24 identifiziert worden (Morita et al., 1999b; Tsukita und Furuse, 1999). Die meisten Claudine sind relativ gewebespezifisch (Furuse et al. 1998b, Morita et al., 1999b) und liegen in den Strängen oft als Hetropolymere vor. Neuere Untersuchungen haben gezeigt, dass Claudine nicht nur an der Zellmembran zu finden sind, sondern auch innerhalb der Zelle (Abb. 43) (Cornford und Hyman, 2005). Einige dieser Claudine sind ausschlaggebend für den Aufbau der Barrieren.

Abb. 42 Einbau von Occludin (a) und Claudin (b) in die Zellmembran. Occludin und Claudin–1 mit ihren 4 Transmembrandomänen und den intrazellulär gelegenen C– und N–Terminus (aus Tsukita et al., 2001).

Abb. 43 Tranksmissionsektronenmikroskopische Aufnahme einer Kapillare im Rattenhirn. Das Claudin 5 ist mit Hilfe eines polyclonalen Kaninchenantiserns detektiert worden. Das Claudin befindet sich weder an der luminalen oder abluminalen Membran, sondern intrazellulär (aus Comford und Hyman, 2005).
Abb. 44 Zeigt aus zwei Strängen aufgebaute Tight junction, die durch Poren (aquous pores) durchbrochen sind und die hypothetische Claudinanordnung in diesen Poren.
Dargestellt sind links die zwei Membranen der benachbarten Zelle (gelb) und die miteinander korrespondierenden TJ Stränge (blau), in die Poren (gelb) eingzeichnet sind. Links (im rechten Bild) die Claudinabfolge bei dichten, rechts bei lecken TJ. Da Claudin 1 und 2 im Gegensatz zu den anderen Vertretern nicht miteinander binden, entstehen Lücken (rote Punkte), die auch als Poren angesprochen werden können (aus Tsukita und Furuse, 2000).

So zeigten Versuche, dass Claudin–1 defiziente Mäuse kurz nach der Geburt sterben, da das Fehlen dieses Proteins in der Epidermis zu eklatanten Störungen der Barrierefunktion der Epidermis führt. Die Tiere starben an Dehydratation (Furuse et al., 2002). Inzwischen ist auch bewiesen, dass die TJ aus mehr als zwei Claudin Variationen aufgebaut sind und dass durch Knockout eines bestimmten Claudins keine Zerstörung der strukturellen Integrität der TJs hervorgerufen wird (Nitta et al., 2003). Struktur und Polarität können erhalten bleiben, obwohl die Barriereeigenschaften sich stark verändern, wobei Blutungen und Ödeme nicht gesehen wurden (Nitta et al., 2003). Für die cerebralen Kapillaren ist nachgewiesen, dass am Aufbau der TJ zumindest die Claudine 12 und 5 beteiligt sind (Nitta et al., 2003). Obwohl bei Claudin 5 defizienten Mäusen mit der Hämatoxylin-Eosin-Färbung keine gravierenden morphologischen Veränderungen zu finden waren, starben die Mäuse innerhalb weniger Stunden post natal (Nitta et al., 2003). Claudin-2 bildet offenbar Poren in den Tight junction von Epithzelzellen (Amasheh et al., 2002). Es gibt aber auch die Hypothese, dass je nach Abfolge der Claudine Bindungen entstehen, die Lücken aufweisen und so einen parazellulären Austausch ermöglichen. Solch ein Modell haben

Junctional Adhesions Molecule (JAM)

2. **Zytosolische Proteine**

a) **Membran assozierte Guanylat Kinasen (MAGUK)**

Plaqueproteine

Tight junction beinhalten verschiedene zytosolische Plaqueproteine, die bei der Formierung und der Regulation der Barriere wichtig sind, indem sie ein Grundgerüst für verschiedene Proteine und Adhäsionsmoleküle zur Verfügung stellen (Anderson und van Itallie; 1995; Tsukita et al., 2001). Zu den gut charakterisierten Plaqueproteinen gehören die Zonula occludens Proteine (ZO). Diese werden zu den membranassozierten Guanylat Kinasen (MAGUK) gezählt (Stevenson et al., 1986; Gumbnier et al., 1991; Haskins et al., 1998).

Zonula-Occludens Proteine (ZO–1, ZO–2, ZO–3)

Die MAGI’s (MAGUKS with Inverted domain structure) stellen eine Unterfamilie der MAGUK’s dar, wobei MAGI-1 (Ide et al., 1999) und MAGI-3 (Laura et al, 2002) mit den TJ assoziiert sind.

b) Plaqueproteine die nicht der MAGUK Gruppe zugerechnet werden

Zu den so bezeichneten TJ assoziierten Plaqueproteinen, die zu den nicht Membran assoziierten Guanylatekinasen zählen, gehören Cingulin, Symplekin und das 7H6 Antigen.
Cingulin

Cingulin (Citi et al., 1988) weist Bindungen mit den junctional adhesions molecule, sowie mit ZO–1, ZO-2, ZO-3 auf und ist auch mit dem Aktinomyosin-Zytoskelett verbunden. Es sorgt so für die Verankerung der TJ im Zytoskelett (Tsukita et al., 2001).

7H6 – Protein

Zhong et al. generierten 1993 einen monoklonalen Antikörper, der in der Nähe des Junctional Komplexes an ein 155 kDa großes Protein andockte. Mit 7H6 war ein neues TJ assoziiertes Protein entdeckt.

Symplekin

Das Protein 126,5 kDa große Symplekin wurde von Keon et al. (1996) charakterisiert.

c) Weitere zytoplasmatische Proteine, die mit TJ assoziiert sind

Der **Par-3-Par 6aPKC** Komplex (Izumi et al., 1998),

Pilt steht für “protein incorporated later into TJs”, besteht aus 547 Aminosäuren, hat keine Transmembrandomäne und bindet an der Peripherie an den Membranen der TJ an (Kawabe et al., 2001).

JEAP “junction-enriched and -associated protein“: besteht aus 882 Aminosäuren und ist an den TJ mit ZO-1 und Occludin verbunden (Nishimura et al., 2002).

Das Protein **MUPP-1** bindet an das COOH –Ende von Claudin 1 (Hamazaki et al., 2002).

“ZO-1-associated nucleic acid-binding protein”: **ZONAB** bindet an die SH3 Domäne von ZO-1 und ist wahrscheinlich in die Regulierung der epithelialen Barriere mit eingebunden (Balda und Matter, 2000).
Molekulare Struktur der Blut-Hirn- und Blut-Liquor-Schranke

“canine guanine nucleotide exchange factor“: **GEF-H1/Lfc** ist als Komponente der TJ mit in der Regulation des transepithelialen Widerstandes beteiligt (Benais-Pont et al., 2003),

JACOP „junction associated coil-coil protein“: ein 148 kDa großes Polypeptid sorgt für die Verankerung des apikalen „junctional- Komplexes“ am Zytoskelett (Ohnishi et al., 2004). JACOP ist in vielen endothelialen und epithelialen Zellen gefunden worden ist aber offenbar nicht nur mit den TJ assoziiert, da es auch an Aktinfilamenten gefunden wurde, die nicht mit den TJ’s verbunden waren (Ohnishi et al., 2004).

B. Molekulare Struktur der Adherens junctions

Abb. 45 Zeigt den komplexen Bau der Adherens junctions. Dargestellt sind die Cadherine, die verschiedenen Catenine (CAT), das PECAM und deren Verbindungen zu den Aktinfilamenten (aus Mingar und Alexander, 2003).
Der molekulare Aufbau von Adherens junctions ist komplex und noch nicht in allen Details geklärt (Bazzoni und Dejana, 2004), weshalb hier nur die wichtigsten Komponenten aufgeführt werden.

a) Cadherin

Cadherine sind Proteine, die sowohl im Blut-, als auch in Lympfgefäßen zu finden sind (Bazzoni und Dejana, 2004). Die Gefäßendothelzellen besitzen ein spezifisches, nur dort zu findendes, „vaskular endothelial“ (VE) Cadherin (Dejana et al., 1995; Dejana et al., 1999). Dies ist die Hauptkomponente der AJ.

b) Catenin und andere Bindungspartner von Cadherin

c) PECAM

C. Transportmechanismen an der Blut-Hirn-Schranke

1. Allgemeiner Teil über die Mechanismen des Stofftransportes an der Blut-Hirn-Schranke

Wie bereits erwähnt, muss einerseits der sehr wichtige Schutz des Gehirns vor unerwünschten Substanzen, andererseits aber auch der hohe Substratbedarf befriedigt
werden. Grundsätzlich sind die Voraussetzungen, ob ein Stoff in das Gehirn gelangen kann, zum einen von den Eigenschaften der Substanz selbst abhängig, also von seiner Fettlöslichkeit, die im Zusammenhang mit dem Molekulargewicht, der Bindung an Plasmaproteine und an Wasserstoff (Hydrogenbonding) steht, zum anderen davon, welche Transportmechanismen vorhanden sind (Padridge, 2003). An der Blut-Hirn-Schranke sind verschiedenste Transportsysteme etabliert, wobei hier den spezifischen transzellulären Mechanismen, die wohl wichtigsten funktionalen Aufgaben zukommen (Lohmann, 2003). Neuere Untersuchungen versuchen mit Hilfe der „in silico“ Methoden offene Fragen der verschiedenen Transporter und deren Funktionsmechanismen zu klären (Chang et al., 2005).

Molekulare Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Abb. 46 Übersicht über die verschiedenen Transportmechanismen und Strukturen an der Blut-Hirn-Schranke (aus Huber et al., 2001).

(1) parazelluläre Diffusion durch Tight junction reglementiert
(6) erleichterte Diffusion
(2) passive transzelluläre Diffusion
(7) aktiver Transport
(3) Kationenkanal
(8) aktiver Co-Transport
(4) Ionen-Symport
(9) rezeptorvermittelte Endozytose
(5) Ionen-Antiport

2. Transportproteine für organische, hydrophile Kationen:

Weitere wichtige und bis jetzt charakterisierte Transporter sind (Drewe und Krähenbühl, 2000):

OCTN 3, das nur an der Plazenta zu finden ist,
„cation transporter 1“ CT 1, das in den Hoden, Kolon, Leber und auch in anderen Geweben verbreitet ist,
„novel kidney transporter“ (NKT), der nur an der Niere vorkommt.

Es wird vermutet, dass die im Gehirn befindlichen Carrier der OCT Familie in der Regulierung der Neurotransmitter eher für die Neuronen, als für die BHS von Bedeutung sind (Busch et al., 1998; Wu et al., 1998 a).

D. Spezieller Teil der Transportsysteme an der Blut-Hirn-Schranke

1. Glucosetransporter bzw. Hexosentransporter

Die GLUT sind ähnlich strukturiert. Sie besitzen jeweils 12 Transmembran-Helices (Zuniga et al., 2001). Der Teil der Transporter, die Fructose als Substrat benutzen können, GLUT 2, 5 und 7 haben, im Gegensatz zu den anderen Transportern, an der Position „314“ ein Isoleuzin, statt eines Valins. Dafür können Glut 1, 2, 4 auch Ga-
Molekulare Struktur der Blut-Hirn- und Blut-Liquor-Schranke

laktose befördern, was den anderen Transportern nicht möglich ist (Manolescu et al., 2005).

Tab. 2 zeigt eine Übersicht der bekannten Glucosetransporter und den jeweiligen Spezifitäten (aus Joost und Thorens, 2001).

Die Einteilung der Subtypen (Abb. 47) erfolgt nach unterschiedlichen Gesichtspunkten:

In der Ersten Klasse sind die gut charakterisierten Transporter GLUT 1-4 enthalten, deren Gewebeverteilung recht individuell ist. GLUT 1 ist hauptsächlich auf Erythrozyten und an den kleinen Gefäßen des Gehirnes nachweisbar (Mueckler et al., 1985). GLUT 2 findet man hauptsächlich in Leber und Pankreas (Fukumoto et al., 1988), GLUT 3 an neuronalen Zellen (Kayano et al., 1988), GLUT 4 in Fett- und Muskelgewebe (Fukumoto et al., 1989). Sie haben eine vergleichbare Affinität zu Glucose und weisen ähnliche molekulare Strukturen und Hormonsteuerung auf (Joost und Thorens, 2001).

In Klasse Zwei sind die Transporter zusammengefasst, die auch Fructose als Substrat haben GLUT 5, 7, 9 und 11. Wobei GLUT 5 Fructose spezifisch ist. Diese

<table>
<thead>
<tr>
<th>Protein</th>
<th>alias</th>
<th>Gene name</th>
<th>Chromos. locatization</th>
<th>cDNA</th>
<th>Gene lensemble</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>SLCA1</td>
<td>1q35–31</td>
<td>47.7 MB</td>
<td>K301.95</td>
<td>AC023331</td>
<td>erythrocytes, brain (vascular)</td>
</tr>
<tr>
<td>GLUT2</td>
<td>SLCA2</td>
<td>3q26.2–27</td>
<td>106.9 MB</td>
<td>M301.10</td>
<td>AC068853</td>
<td>liver, ilete</td>
</tr>
<tr>
<td>GLUT3</td>
<td>SLCA3</td>
<td>12q13.3</td>
<td>136.1 MB</td>
<td>JQ0169</td>
<td>AC007536</td>
<td>brain (neuronal)</td>
</tr>
<tr>
<td>GLUT4</td>
<td>SLCA4</td>
<td>17q13</td>
<td>6.4</td>
<td>M20747</td>
<td>AC003888</td>
<td>muscle, fat heart</td>
</tr>
<tr>
<td>GLUT5</td>
<td>SLCA5</td>
<td>1q36.2</td>
<td>18.3 MB</td>
<td>JQ5461</td>
<td>AC041046</td>
<td>intestine, testis, kidney</td>
</tr>
<tr>
<td>GLUT6</td>
<td>GLUT6</td>
<td>SLCA6</td>
<td>9q34</td>
<td>126.5 MB</td>
<td>Y17503</td>
<td>AC002355</td>
</tr>
<tr>
<td>GLUT7</td>
<td>SLCA7</td>
<td>1q36.2</td>
<td>18.2 MB</td>
<td>Y17503</td>
<td>AC002355</td>
<td>unknown</td>
</tr>
<tr>
<td>GLUT8</td>
<td>GLUTX10</td>
<td>SLCA8</td>
<td>8q12.9</td>
<td>19 MB</td>
<td>Y17503</td>
<td>AC002355</td>
</tr>
<tr>
<td>GLUT9</td>
<td>GLUTX12</td>
<td>SLCA9</td>
<td>4p15.3–16</td>
<td>10.2 MB</td>
<td>AF210517</td>
<td>AC006674</td>
</tr>
<tr>
<td>GLUT10</td>
<td>SLCA10</td>
<td>20q12–13.1</td>
<td>47.3 MB</td>
<td>AF321400</td>
<td>AC031055</td>
<td>liver, pancreas</td>
</tr>
<tr>
<td>GLUT11</td>
<td>GLUT10</td>
<td>SLCA11</td>
<td>22q11.2</td>
<td>120.8 MB</td>
<td>A2171290</td>
<td>AC000850</td>
</tr>
<tr>
<td>GLUT12</td>
<td>GLUT8</td>
<td>SLCA12</td>
<td>6q23.2</td>
<td>114.5 MB</td>
<td>AL449563</td>
<td>AC558999</td>
</tr>
</tbody>
</table>

HMR	SLCA13	ambiguous	2q35.2; 35	JQ5461	AC019834	retranslocated from SLC2A3, 80% identical nt	
pseuogene	GLUT8	SLCA2P1	6q13–35	103.7 MB	JQ5461	AC019834	retranslocated from SLC2A3, 80% identical nt
pseuogene	GLUT8	SLCA2P2	1q21.3	73.6 MB	AC015896	retranslocated from SLC2A3, 80% identical nt	
pseuogene	GLUT8	SLCA2P3	12q13.3	19.5 MB	AC008651	retranslocated from SLC2A3, 80% identical nt	
pseuogene	GLUT8	SLCA2P1	6q13–35	103.7 MB	AC019834	internal stop: 89% identical as w. GLUT3	

1Mueckler et al. (1985); 2Fukumoto et al. (1988); 3Kayano et al. (1990); 4Fukumoto et al. (1988); 5Kayano et al. (1990); 6Doerge et al. (2000a); 7Joosten et al. (2001b); 8Dooge et al. (2000b); 9Ofner et al. (2000); 10Hibber et al. (2000); 11Plev et al. (2000); 12Tartaglia und Wang (1999); 13McVic-Ayle et al. (2001); 14Dooge et al. (2001a); 15Dooge et al. (2001b); 16Rogers et al. (1998); 17Udy et al. (2001).
Transporter zeigen einige spezifische Charakteristika auf molekularer Ebene (Joost und Thorens, 2001).

Abb. 48 Übersicht über die verschiedenen Carrier und deren Einteilung in die verschiedenen Subtypen (aus Joost et al., 2002).

In Klasse Drei der Glucosetransporter sind GLUT 6, 8, 10, 12 und H (+)-Myo-Inositol Cotransporter (HMIT) zusammengefasst. Diese Carrier besitzen eine kürzere erste extrazelluläre Schleife, an der eine Glykosilierungsstelle fehlt. Sie haben diese stattdessen an der, im Vergleich mit den anderen Klassen, größer angelegten neunten Schleife siehe (Abb. 49) (Joost und Thorens, 2001).

Um ein noch besseres Verständnis der Funktionsmechanismen zu erlangen, wird mit unterschiedlichen Methoden versucht ein dreidimensionales Bild der Struktur von verschiedenen Proteinen unter anderen auch der Transportproteine zu erstellen (Chang et al., 2005). In Bezug auf die Erstellung eines dreidimensionalen Modells (Abb. 52) von Glut 1 ist schon sehr viel Forschungsarbeit geleistet worden (Alisio und Mueckler, 2004; Manning et al., 2002, Mueckler und Makepeace, 1999; Mueckler und Makepeace, 2002; Mueckler et al., 2004; Mueckler und Makepeace, 2005; Salas-Burgos et al., 2004; Sato und Mueckler, 1999; Zuniga et al., 2001). Es ist der am genauesten erforschte Hexosetransporter (Chang et al., 2005).

Abb. 52 Bandmodelle von GLUT 1:

- a) zeigt eine seitlich Gesamtansicht
- b) extrazelluläre Ansicht
- c) Ansicht der Cytoplasmatischen Oberfläche (aus Zuniga et al., 2001).

Fukumoto et al. (1988) suchten nach einem Transporter, der für den Glucosetransport in die Leber zuständig ist. Sie fanden ein 524 Aminosäuren großes Protein, das in der strukturellen Organisation dem zuerst gefunden Transporter, der spätere GLUT 1, ähnlich war. Dieses, dem „Glucosetransporter ähnliche Protein“, unter-

Kayano et al. (1988) konnten ein drittes Protein identifizieren und charakterisieren, das starke Homologien (64,4% zu GLUT 1; 51,6% zu GLUT 2) zu den ersten beiden aufwies. Sie vermuteten, dass es sich bei diesen Transportern wohl um eine Familie mit ähnlicher Struktur handeln müsse, die in die Nährstoffversorgung der Zellen involviert sind. GLUT 3 ist wie Glut 1 in fast allen Körperzellen, vor allem aber im Gehirn, in der Niere, den Nervenzellen und in der Plazenta zu finden (Kayano et al., 1988; Xia et al., 1993). Diese insulinabhängigen (Xia et al., 1993; Horn et al., 2003) Transporter sind beide für die basale Versorgung mit Glukose verantwortlich (Horn et al., 2003). Zudem ist GLUT 3 sehr wichtig für die neuronale Glucoseversorgung undzeichnet sich durch eine sehr geringe K_M aus, wobei Stryer et al. (2002) sie mit 1mmol/l und Petrides (1998) mit 10 mmol/l angibt.

GLUT 5 (Kayano et al., 1990) ist primär ein Fructose-Transporter (Joost und Thorens, 2001; Manolescu et al., 2005). Dieser befindet sich in Dünndarm, Niere, Muskel- und Fettgewebe (Kayano et al., 1990) und auch an den Plasmazellen reifer Spermatozyciten (Petrides, 1998).

GLUT 8 ist der vormals auch als GLUTX1 bezeichnete Transporter (Joost und Thorens, 2001). Die cDNA von GLUT 8 wurde beim Mensch und Maus sequenziert (Doege et al., 2000b; Ibberson et al., 2000, Crayanopulus et al, 2000). Die mRNA dieses Transporters ist vor allem in den Hoden und in kleineren Mengen im Skelettmuskel, Herz, Dünndarm und Gehirn zu finden (Doege et al., 2000b). Da der GLUT 8 in Hoden von adulten Ratten zu finden war, nicht aber in den Testis von nicht geschlechtsreifen Ratten gefunden wurde, wird vermutet, dass es sich bei diesem Carrier um einen hormonesteuerten Glucosetransporter handelt, der im Hoden eine spezifische Rolle spielt (Doege et al., 2000b). Es gibt auch Vermutungen, dass die
Ausbildung von GLUT 8 mit dem Metabolismus von Adipozyten im Zusammenhang steht (Scheepers et al., 2001).

Bisher ging man davon aus, dass GLUT 11 (Doege et al., 2001a, b) nur in Herz- und Skelettmuskulatur zu finden sei. Inzwischen weiß man, dass es zwei vom „splicing“abhängige Formen gibt. Zum einen eine kurze Variante, die hauptsächlich in Herz und Skelettmuskulatur zu finden ist (Wu et al., 2002), zum anderen eine lange GLUT 11 Variation, die in Leber, Lunge und Gehirn vorkommt (Wu et al., 2002). Der Glucosetransport bei Glut 11 wird durch die Anwesenheit von Fructose gehemmt (Doege et al., 2001b).

Molekulare Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Myo-Inositol und dessen verwandte Stereoisomere transportiert, wobei eine Transportsteigerung bei niedrigen pH-Werten mit einem Maximum bei pH 5 (Uldry et al., 2001) festzustellen war. Der Transporter ist in intrazellulären Vesikeln zu finden, die nicht mit den synaptischen Vesikeln vergleichbar sind (Uldry et al., 2004). An der Zelloberfläche ist HMIT nach intrazellulärem Kalziumanstieg oder Zelldepolarisation zu finden und auch in Gebieten in denen nervales Wachstum stattfindet, kommt er vermehrt vor (Uldry et al., 2004).

2. Monocarboxylat Transporter

MCT (monocarboxylic acid transporter) ist ein protonengekoppelter Carrier, der für die essentielle Versorgung des Gehirns mit Monocarboxy-Carbonsäuren sorgt (Märten, 2004). Diese 9 Mitglieder (MCT1 - MCT9) umfassende Familie von Integral Proteinen spielt eine immens wichtige Rolle für die Energieversorgung des Gehirns, wenn aus der Versorgung mit D-Glucose nicht mehr ausreicht (Drewes et al., 2001). Dies ist zum Beispiel während ausgedehnter Fastenzeiten, aber auch während der Säuglingszeit und Neonaten der Fall (Drewes et al., 2001), weshalb diese Carrier zu dieser Zeit vermehrt ausgebildet sind. So ist zum Beispiel nachgewiesen, dass in einem 17 Tage alten gesäugten Rattenbaby die Dichte von MCT1, um das 25fache höher ist, als bei einem erwachsenen Tier (Leino et al., 1999) (Abb. 53, 54). Unter

Abb. 54 Gegenüberstellung der vorhandenen MCT1 Transporter an unterschiedlichen Kompartimenten bei Adulten und noch säugenden Ratten mit Hilfe der Immunogold-Elektronenmikroskopie (aus Leino et al., 1999).

E. Aminosäuren Transport an der Blut-Hirn-Schranke

1. Der Transport von neutralen Aminosäuren:

Für den Transport von neutralen Aminosäuren stehen einige Systeme im adulten Körper zur Verfügung.

Dies sind:

- das Na⁺ unabhängige L-System und
- die Na⁺ abhängigen Systeme:
 - ASC-Transporter,
 - das A-System,
 - der B⁰⁺ Carrier (Smith, 2000; Tamai und Tsuij, 2000),
 - das N-System und
 - das EAAC System (O´Kane und Hawkins, 2003).

Das L-System ist im Gegensatz zu den anderen Na⁺ abhängigen Transportern für neutrale Aminosäuren sowohl luminal als auch abluminal vorhanden (Oldendorf, 1971a, b; Oldendorf und Szabo, 1976; Padridge, 1977; Sánchez del Pino et al., 1995b, Joo, 1995, Smith und Stoll, 1998, Kanai et al., 1998). Es sorgt für den Über-

Es gibt insgesamt fünf Na⁺ abhängige Aminosäuretransporter, die alle in der abluminalen Zellmembran lokalisiert (Sánchez del Pino et al., 1995 a, b) sind, obwohl in in vitro Versuchen auch an der abluminalen Membran schon einige gefunden wurden (O’Kane und Hawkins, 2003). Diese Na⁺ abhängigen Transporter halten die Konzentration der neutralen Aminosäuren in Extrazellulärflüssigkeit bei etwa 10 % der Konzentration des Plasmaspiegels (Kruse et al., 1985; Martinez et al., 1993).

Das „basic amino acid“ System B⁰⁺⁺, (siehe: kationische Aminosäuren Transportern (KAT)).

Na-LNAA ist ein erst vor kurzem entdeckerter Na⁺-abhängiger Transporter, der die Aminosäuren Leu., Ile., Val., Trp., Tyr., Phe., Met., Ala., His., Thr., und Gly. als Substrate hat (O’Kane und Hawkins, 2003; O’Kane et al., 2004).

Das Transportsystem, das die Aminosäuren Aspartat und Glutamat bevorzugt ist das (excitatory amino acid carrier) **EAAC System**. Dieses Na⁺-abhängige Transportsystem besteht aus unterschiedlichen Variationen, die dafür sorgen, dass die Konzentration von Glutamat in der extrazellulären Flüssigkeit des Gehirns niedrig bleibt (O’Kane et al., 1999). Der Carrier findet sind sowohl an Astrozyten (EAAT1, EAAT 2), als auch an Neuronen (EAAT 3) (O’Kane et al., 1999). In den Gehirnkapillaren
sind alle drei Transporter an der abluminalen Zyttoplasmamembran zu finden und zwar nur dort (O’Kane et al., 1999).

<table>
<thead>
<tr>
<th>Nonessential</th>
<th>A</th>
<th>N</th>
<th>ASC</th>
<th>LNAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asparagine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histidin</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential in brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cysteine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3 Übersicht über die Na⁺ unabhängigen Aminosäuretransporter und deren Substrate an der Blut-Hirn-Schranke (aus O’Kane et al., 2004).

Abb. 55 Lokalisation und die jeweilige Clearence Rate der Carrier der neutralen Aminosäuren (aus O’Kane et al., 2004).
2. Transport von Kationischen Aminosäuren

Nach der alten Definition der Aminosäuretransporter: Na\(^+\) Abhängigkeit und Substratspezifität der Aminogruppe (Deves und Boyd, 1998) sind für das erwachsene Säugetier vier Transportsysteme charakterisiert worden, welche sich in ihrer Spezifität, kationischen Abhängigkeit und physiologischen Rolle unterscheiden (Deves und Boyd, 1998). Dies sind das System \(y^+\), das System \(B_0^\text{O,}^+\), das \(b_\text{O,}^+\) System und das \(y^\text{L}\) System (Deves und Boyd, 1998). Wobei nur das System \(y^+\) spezifisch für die kationischen Aminosäuren ist, während die Systeme \(B_0^\text{O,}^+\), das \(b_\text{O,}^+\) System und das \(y^\text{L}\) System auch neutrale Aminosäuren akzeptieren (Deves und Boyd, 1998). Auf der Grundlage von C-DNA, die in diesem Zusammenhang isoliert werden konnte, war man in der Lage, zwei Proteinfamilien zu identifizieren: Erstens, die cationic amino acid transporter (CAT) und zweitens die broad-scope transportproteins (BAT). Die aus den zwei Isoformen rBAT und 4F2hc bestehende Familie der BAT besitzen ein Molekulargewicht, das zwischen 59 und 78 kDa liegt, des Weiteren haben sie 1 bis 4 Transmembransegmente (Deves und Boyd, 1998). Den BAT Proteinen werden den Transport regulierende Aufgaben zugesprochen (Deves und Boyd, 1998). So wird zum Beispiel bei den Oozyten von *Xenopus laevis* durch die Expression von rBAT und 4Fhc die Aktivität von den Systemen \(b_\text{O,}^+\) und \(y^\text{L}\) induziert (Deves und Boyd, 1998).

Die Systeme \(B_0^\text{O,}^+\) und \(b_\text{O,}^+\) zählen zu den „broad-scope transport“ Proteinen (BAT). Die beiden Systeme unterscheiden sich in ihrem Transportmechanismus. System \(B_0^\text{O,}^+\) ist Na\(^+\) abhängig, das \(b_\text{O,}^+\) System ist Na\(^+\) unabhängig (Deves und Boyd, 1998). Substrate von System \(B_0^\text{O,}^+\) sind sowohl Lysin und L-Alanin, als auch andere bicyclische Aminosäuren (Deves und Boyd, 1998). Das \(b_\text{O,}^+\) System ist bei niedriger Leucin- und Lysinkonzentration für die größte Transportmenge an Leucin (88%) und Lysin (98%) im Blut zuständig (Deves und Boyd, 1998).

a) Kationische Aminosäure spezifische Transporter der CAT Familie

CAT-3 ist ein gehirnspezifischer kationischer Aminosäuretransporter, bestehend aus 619 Aminosäuren. Sein Molekulargewicht liegt bei ~ 67 kDa (Deves und Boyd, 1998).
Der Arginin Transport von CAT-3 ist Na⁺ unabhängig und nicht durch neutrale Aminosäuren beeinflusst (Deves und Boyd, 1998).

b) Organische Anionen Transporter Proteine

Tab. 4 Zeigt die Vertreter der Organischen Anionen Transporter, ihre Substrate und die jeweiligen Hauptfundorte (aus Sekine, 2000).

Kusuhara und Sugiyama (2001a) rechnen zu den für die Blut-Hirn- beziehungsweise die Blut-Liquor-Schranke wichtigen organischen Anionentransportern oatp 1, oatp2, OAT1, OATP/OATP A, Oat1, OAT1, Oat3. In der Ratte wurde das oatp1 im Plexus chooroideus an der ventrikulär gelegenen Membran nachgewiesen (Angeletti et al., 1997). Oatp2 scheint mit der basolateralen Plexusmembran assoziiert zu sein (Noe et al., 1997; Gao et al., 1999) in den Gehirnkapillaren aber sowohl luminal wie abluminal vorhanden zu sein (Gao et al., 2000), was zur Annahme führt, dass der Carrier
Molekulare Struktur der Blut-Hirn- und Blut-Liquor-Schranke

Abb. 56 Schema der Struktur von OAT1 der Ratte mit 12 Transmembrandomänen (Sekine et al., 2000).

Die Familie der oatp besitzt 12 die Membran durchspannende Segmente. Das von Abe et al. (1998) identifizierte oatp3 besteht aus 670 Aminosäuren. Man nimmt an, dass die oatp multifunktionelle Transporter sind, die für den Transport, beispielsweise der Schilddrüsenhormone Thyroxin und Trijodthyronin, in das Gehirn aber auch in die Leber, Niere und Retina verantwortlich sind (Abe et al., 1998).

c) ABC Transporter

Die ATP Bindungs Kassetten (ATP-binding cassette = ABC) Transporter repräsentieren eine sehr große Familie, diese spielt eine essentielle Rolle in vielen zellulären Prozessen (Dean und Allikments, 2001).

Zu den ABC Transportern zählt man im humanen Genom 48 Mitglieder (Märten, 2004). Wobei nicht bei allen klar ist, ob sie als Protein letztendlich auch vom Körper gebildet werden, oder ob nur ein Genort für das jeweilige Protein vorhanden ist, sie also nur ein Pseudogen darstellen (Märten, 2004). Die Aufteilung erfolgt in 7 Subfamilien (Dean und Allikments, 2001). Eine aktuelle Übersicht über die Nomenklatur
Molekulare Struktur der Blut-Hirn- und Blut-Liquor-Schranke

der unterschiedlichen Mitglieder ist im Internet unter www.gene.ucl.ac.uk/nomenclature/genefamily/abc.html zu finden.

3. Transportproteine, die an der metabolischen Blut-Hirn-Schanke beteiligt sind

4. Multidrug-Resistenz-Proteine

Diese Proteine sorgen dafür, dass in die Zelle gelangte Fremdstoffe wieder zurück ins Blut transportiert werden. Man geht davon aus, dass diese Proteine z. B. für 50% der fehlgeschlagenen Chemotherapien bei Tumorpatienten verantwortlich sind (Drewe und Krähenbühl, 2000). Bei den Multidrug-Resistenz-Proteinen werden folgende Gruppen unterschieden:

neuronale Gewebe des Gehirns einzusprossen (Bär, 1980; Risau und Wolburg, 1990).

VEGF wird an vielen unterschiedlichen Orten des Körpers produziert, so beispielsweise an der Aorta, den folikulären Epiphysenzellen, aber auch in bestimmten Tumorzellen. Im Gegensatz zu anderen Mitogenen ist die Wirkung von VEGF sehr spe-

Embryonale und fetale Entwicklung der Blut-Hirn- und Blut-Liquor-Schranke

Abb. 59 Zeigt mikroskopisch und schematisch die ontogenetische Vermehrung der BHS. Am Tag E 10 wird die intraneurale Zone von einem bereits existierenden perineuralen Plexus aus vaskularisiert und bereits an Tag E 17 ist die fehlende Fenestrierung und das Vorhandensein von junctionalen Komplexen zu sehen. Eine funktionelle BHS existiert bereits zu diesem Zeitpunkt. MGL: membrana glia limitans; IN: intraneurale Zone; PN: perineurale Zone; die Pfeile in den unteren Abbildungen deuten auf angeschnittene Kapillaren (cl) und Blutzellen (BC) (aus Risau, 1997).

Embryonale und fetale Entwicklung der Blut-Hirn- und Blut-Liquor-Schranke

Nach Netsky und Shuangshoti (1975) lässt sich die Entwicklung der Plexus im humanen Fetus in 4 Stufen einteilen, wobei sie hier histologische Gesichtspunkte an- setzten und das Vorhandensein von Glycogen in den epithelialen Zellen:

- Im ersten Stadium sind die Epithelzellen hohe, pseudogestreifte Zellen und besitzen einen zentralisierten Zellkern. Glykogen ist keines vorhanden.

- In Stadium Zwei nehmen die Epithelzellen eine säulenförmige Struktur an, der Kern befindet sich apikal. Die Zellen besitzen kein Glycogen.

- Stadium Drei ist durch kubische Epithelzellen gekennzeichnet, in denen der Kern apikal oder zentral liegen kann und moderate Mengen von Glyco- gen vorhanden sind.

- Im vierten Stadium haben die Epithelzellen kubische oder schuppenartige Form, der Kern liegt zentral oder basal und Glycogen fehlt.
Auch in den anderen Spezies sind diese Vier Stadien in gleicher Reihenfolge, aber in unterschiedlichen Längen und Zeitpunkten zu finden (Dziegielewksa et al., 2001).

VI. Abkürzungsverzeichnis und Glossar

AGEs: Advanced Glycation Endproducts. Im Körper bei der Maillard Reaktion, aus Blutzucker und Serumproteinen entstehende Verbindung, die im Verdacht steht, bei der Mikroangiopathie eine Rolle zu spielen.

Angioblasten: Vorläuferzellen der Endothelzellen, die sich intraembryonal aus mesenchymalen Zellen zu entwickeln scheinen (Poole und Coffin, 1988).

Angiogenese: Gefäßentwicklung, wobei durch Sprossung bereits bestehender Gefäße, neue Gefäße entstehen (Folkman, 1994); findet sowohl in der Embryonalentwicklung, als auch beim Erwachsenen, während der Wundheilung, der Gravidität oder dem Zyklusgeschehen statt. Siehe auch Vaskulogenese oder Intussuszeption.

apikal: die luminale Seite des Kapillarendothels -> basolateral

BAT: broad-scope transport protein ein Transporterprotein für kationische Aminosäuren zwei Isoformen: rBAt, 4F2hc

basolateral: abluminale Seite des Kapillarendothels -> apikal

bFGF: basic fibroblast growth factor

BHS: Blut-Hirn-Schranke

BCEC: Brain Capillar Endothel Cell

BLS: Blut-Liquor-Schranke

Caco 2 Zellen: Zellinie aus humanen Adenokarzinom Zellen des Kolon (Fogh et al., 1977).

CAT: cationic amino acid transporter, ein Transporterprotein für kationische Aminosäuren; 4 Isoformen: CAT-1; -2A; -2(B); -3.
Claudine: Claudin 1 und 2 neben Occludin weitere Transmembranproteine der TJ (Furuse et al., 1998 a); Claudine bilden wahrscheinlich das Rückrat der TJ (Tsukita et al., 2001), die Claudinfamilie umfasst mehr als 24 Vertreter (Morita et al., 1999a, b).

COT: organic cation transporter (Müller, 2005)

COTN: „organic cation transporter „mit N Bindungsstelle (Drewe und Krähenbühl, 2000)

CVO: Circumventrikuläre Organe, dazu gehören z.B. Plexus choroideus, Hypophyse und Epiphysse

E-face: extrazelluläre Seite der Lipid-Doppelschicht -> P-face

Ependym: ektodermale, einschichtige Zellauskleidung (Gliazellen) der Hirnhöhlen und des Zentralkanals des Rückenmarks. Ependymzellen, die meist Kinozilien tragen, bilden ein kubisches bis hochprismatisches Epithel (Junqueira et al., 2004).

FGF: Fibroblast Groth Factor; Fibroblasten Wachstums Faktor, unter anderem von Gehim und Hypophyse ausgeschüttet, hat mitogene Wirkung auf Fibroblasten, Gliazellen und Endothelzellen.

GFAP: aus dem englischen „glial fibrillary acid protein“ Protein aus dem die Intermediärfilamente der Astrozyten aufgebaut sind (Junqueira et al., 2004).

GLUT: Glucosetransporter, bisher beschrieben GLUT 1-12 und HMIT (Joost und Thorens, 2001) wobei bestimmte Transporter spezifisch für bestimmte Gewebe sind.

Haftproteine: Integrine: sorgen für die Verankerung mit der extrazellulärer Matrix

Cadherine: wichtig bei der Bildung von epithelialen Zellverbänden

Selektine: sorgen für Bindung gleichartiger Zellen und Abstoßung andersartiger Zellen (Baumhoer et al., 2000).

Intussuszeption: nicht sprossende Angiogenese, bei der Gefäße durch transkapilläre Pfeiler geteilt, und so vervielfältigt werden. Sie sind an Herz, Lunge und Chorioallantoismembran zu finden (Burri, 1992; Djonov et al., 2000; Patan et al., 1996; Van Groningen et al., 1991) -> Angiogenese, Vaskulogenese.

JEAP: “junction-enriched and -associated protein” TJ assoziiertes zytosolisches Protein (Nishimura et al., 2002).
JACOP: „junction associated coiled-coil protein“ (Ohnishi et al., 2004).

JAM: junctional adhesion molecule; letztes identifiziertes TJ assoziiertes Transmembranprotein; vermutlich lateral mit den Claudinen verbunden; bisher drei Vertreter entdeckt (Aurrand-Lions et al.; Palmeri et al., 2000); zählen zur Immunglobulin-Superfamilie, eine Transmembrandomäne.

LAT: „large neutral amino acid transporter“ Transporter für große neutrale Aminosäuren, bestehend aus LAT 1 und LAT 2 sind aus dem ursprünglichen L System hervorgegangen, Na⁺ unabhängig, luminal und abluminal vorhanden, funktioniert nach dem Prinzip der erleichterten Diffusion (Joost und Thorens, 2001; Jain-Vakkalagadda et al., 2003).

L System: Transportsystem für große neutrale Aminosäuren wurde in die LAT’s aufgeteilt (Joost und Thorens, 2001; Hyde et al., 2003)

Leptomeninx: eine zarte Hülle der weichen Hirnhaut, in der sich wiederum eine äußere Schicht, Arachnoidea genannt, und eine innere Pia mater unterscheiden lassen (Sinowatz, 1992).

MAGI: “MAGUKS with Inverted domain structure” zwei Mitglieder dieser MAGUK-Unterfamilie sind mit TJ assoziiert MAGI 1 und 3 (Laura et al., 2002)

MAGUK: membrane–associated guanylate kinase

Kₘ: Michaelis–Menten-Konstante: entspricht der Substratkonzentration bei der das Enzym die halbmaximale Umsetzungsgeschwindigkeit erreicht (Horn et al., 2003).

MDR: multidrug resistance protein

MRPs: multi drug resistance associated protein, Proteine die bestimmte Substanzen, wie Medikament-Metaboliten erkennen und wieder aus dem Hirngewebe ins Blut befördern; das Gehirn wird geschützt bestimmte Therapien werden erschwert MRP 1-7 (Berezowski et al., 2004).
MMP: Matrixmetallproteasen; körpereigene calciumabhängige Endopeptidasen, können Extrazelluläre Matrix abbauen und sind somit mit für den physiologischen Gewebeumbau während des Wachstums und der Ontogenese verantwortlich. Entgleisungen können jedoch zu pathologisch erhöhten Gewebsabbau bzw. -umbau führen.

mRNA: messenger Ribonukleinsäure, durch Transkription dann erzeugter einzelständiger RNA, die als Matrizen RNA für die Proteinbiosynthese dient.

Monodelphis domestica: Spitzmausbeutelratte

MUPP1: „multi-PDZ domain protein 1“, ein TJ assoziiertes zytosolisches Protein (Hamazaki et al., 2002).

Nexus: siehe Gap junction

Occludin: Zuerst entdecktes Transmembran-Protein der TJ. (Furuse et al., 1993); vermutlich direkt am TJ Aufbau beteiligt; weist 4 Transmembran- domänen auf; physiologische Funktion noch unbekannt.

Oatp: organic anion transporting polypeptid. Familie von Transportproteinen

PECAM: Platelet-endothelial cell adhesions molecule (Voura et al., 2000)

P-face: zytoplasmatische Seite der Lipid-Doppelmembran -> E-face

Pilt: Steht für “protein incorporated later into TJ’s” ein zytosolisches Protein (Kawabe et al., 2001).

P gp: P-glycoprotein, zählt zu den Multidrug Transportern

REM: Rasterelektronenmikroskop

SEM: scanning electron microskope

SLC 2A: solute carrier 2 A. Gruppe der Glucose Transporter wobei bei dieser Einteilung der Genort und nicht die Proteinstuktur wie bei der GLUT Einteilung zählt (Joost und Thorens, 2001)
Abkürzungsverzeichnis und Glossar

Sminthopsis crassicaudata: Dickschwänzige Schmalfuß Beutelmaus

SGLT: NA(+) dependent glucose transporter, Natriumabhängige Glucosetransporter. Familie umfasst SGLT 1-6, Gen-Name: SLC 5A, transportieren teilweise auch Galactose und sind in Niere und im Verdauungstrakt zu finden (Wood und Trayhurn, 2003).

Tanycten: (Leonhardt et al., 1966) Spezialisierte Ependymzellen, die durch sehr dichte TJ’s das restliche Hirngewebe durch eine Schicht um die CVO abgrenzt und schützt.

TEER: Transendothelialer Widerstand; spiegelt den Widerstand wieder, der einem kleinen Ion, wie Na+ oder Cl-, durch ein Endothel entgegen wirkt. Dient zum direkten messen der Impermeabilität des Endothels, wobei an den BHS der TEER sich logarithmisch zur TJ Strangzahl verhält (Claude, 1978).

TGF: Transforming growth factor. Familie von Proteinfaktoren, die von transformierten Zellen sezerniert werden. TGF–α ist ein Faktor in der Initialisierungskette für endotheliales Wachstum. TGF–β ist mit hämato-poetischen Gewebe assoziiert und am Signalisierungspfad für die Bekämpfung der ersten Tumorzellen beteiligt.

TJ: Tight Junction; (Zonula occludentes) Struktur, die maßgeblich für die Impermeabilität des BHS-Kapillar-Endothels verantwortlich ist.

Vaskulogenese: Hierbei entstehen primäre Blutgefäße aus sich in situ differenzierenden Vorläuferzellen (Angioblasten); findet laut neueren Untersuchungen nicht nur in der Embryonalentwicklung statt (Ashara et al., 1997; Ashara et al., 1999; Shi et al., 1998) -> Angiogenese, Intussuszepetion.
VEGF/VPF: vascular endothelial growth factor; vascular permeability Factor (Darland et al., 2003); 45 kD großes homodimerisches, basisches Glycoprotein mit der Fähigkeit Heparin zu binden (Shinaruk et al., 2003); verschiedene Isoformen, bei Mensch 4 bei Maus 3 Stück; wichtigster endothelialer Wachstumsfaktor der Gehirnangiogenese, erhöht die Permeabilität von Gefäßen. Zur Familie werden insgesamt VEGF A, B, C, D, E und „placenta growth factor“ gezählt, wobei VEGF-A mit 121 Aminosäuren die größte Bedeutung für die Angiogenese zuerkannt wird (Shinkaruk et al, 2003).

ZNS: Zentralnervensystem

ZO (-1, -2, -3,): Zonula occludens zytosolische Proteine sind ebenfalls am Aufbau der TJ beteiligt -> zytosolische Proteine.

ZONAB: ZO-1-associated nucleic acid-binding protein, ein TJ assoziertes zytosolisches Protein (Balda und Matter, 2000).

Zonula adherens: (Gürteldesmosom) biochemisch gesehen kein Desmosom sondern gebündelte Aktinfilamente, die gürzelförmig die Zelle umgeben. Meist im apikalen Bereich von Epithelzellen zu finden. Bildet im epithelialen Zellverband mit benachbarten Zonula adherens, im Lichtmikroskop erkennbare, durchgehende Bänder (Schlussleistennetz) (Baumhoer et al., 2000).

Zytosolische Proteine: ZO-1; (Stevenson et al., 1986); ZO-2,-3; (Gumbnier et al., 1991) binden direkt an das carboxyterminale Ende des Claudins, (Itoh et al., 1999b) und auch an das carboxyterminale Ende des Occludins, (Furuse et al., 1994; Fanning et al., 1998); ZO-1, ZO-2, sind direkt mit ihren Carboxy-terminalen Ketten mit dem Aktomyosin-Zytoskelett verbunden (Itoh et al., 1997; Fanning et al., 1998; Itoh et al., 1999 a, b); Cingulin ist mit ZO-1,-2,-3 und JAM assoziiert und mit dem Aktomyosin-Zytoskelett verbunden; vermittelt Kontakt zwischen TJ und dem Zytoskelett (Tsukita et al., 2001) weitere: 7H6 Protein, Symplektin.
ZUSAMMENFASSUNG

VII. ZUSAMMENFASSUNG

Zielsetzung der vorliegenden Literaturstudie ist es, einen Überblick sowohl über die mikroskopische als auch die molekulare Struktur der Blut-Hirn- und der Blut-Liquor-Schranke zu geben.

Um den Stofftransport aus dem Blut in das Gehirn sowohl zu kontrollieren, als auch zu regulieren, benötigt der Wirbeltierorganismus speziell aufgebaute Barrieren. Dies sind, im Bereich des Gehirnes, zum einem die Blut-Hirn-Schranke, zum anderen die Blut-Liquor-Schranke.

Nachdem der Sitz und sogar die Existenz einer Blut-Hirn-Schranke lange Zeit sehr kontrovers diskutiert wurden, konnten die ersten transmissionselektronenmikroskopischen Untersuchungen Ende der 60er Jahre zeigen, dass ihr wesentliches morphologisches Korrelat die Kapillarendothelien des Gehirns sind. Eine wesentliche Rolle kommt hier den Tight junctions zu, deren hohe Dichte diesem Endothel die Funktion einer physikalischen Barriere verleiht. Diese physikalische Barriere ist aber nur der Grundstock für die sehr komplexen, dynamischen Systeme, um die es sich bei der BHS und BLS handelt, an denen eine Vielzahl von Zellen (Astrozyten, Pericyten, perivaskuläre Zellen, Neurone) und Mechanismen (Effluxtransport) beteiligt sind.

VIII. Summary

The structure of the Blood-Brain Barrier and the Blood-CSF-Barrier
– a review –

The aim of this review was to give an overview about the structures of the blood-brain and the blood-csf-barrier.

In order to control the metabolic transport between blood and brain, as well as to regulate it, the organism of the vertebrates needs special equipped barriers. Those are, within the brain, the blood-brain-barrier (BBB) as well as the blood-liquor-barrier.

There was a long time of discussion about the position and even the existence of a blood-brain-barrier. Afterward the first transmission-electron-microscopic investigations gave the evidence of a blood-brain-barrier at the level of the brain capillary endothelial cells. The general structure seems very simple and either exists of capillary endothelial cells or epithelial cells, where, through apical laid structures, the so called tight-junctions, deny the unhindered metabolic exchange.

On second sight, one does discover that these barriers consist of very complex, dynamic systems, where a cell variety (astroglia, pericytes, perivascular microglia and neurones) and mechanisms (efflux transport) are involved.

In order to better comprehend the pharmacological occurrences in connection with medication, toxic substances and pathological effect, there is a need of structured, scientific researches, of the microscopic as well as the molecular field of the BBB. Therein it is necessary to use in vivo, in vitro as well as in silica methods, for every system shows its strengths and weaknesses, which can be only discovered and relativized by using more than one system. This kind of research is necessary to face challenges which will arise in Medicine today and the near future, such as the treatment of HIV, tumour therapy and geriatric diseases.
IX. Literaturverzeichnis

Relative Proximity and Orientation of Helices 4 and 8 of the GLUT1 Glucose Transporter.

10. Allt G. und Lawrenson J.G., 2001,
Pericytes: cell biology and pathology.

Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity.

Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells.

13. Amselgruber W.M., Schäfer M., Sinowatz F., 1999,
Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study.

Tight junctions and the molecular basis for regulation of paracellular permeability.

15. Anderson J.M., 2001,
Molecular Structure of Tight Junctions and Their Role in Epithelial Transport.

The choroid plexus epithelium is the site of the organic anion transport protein in the brain.
Proc Natl Acad Sci USA 94: 283–286.

17. Antonelli-Orlidge A., Saunders K., Smith S., D’Amore P., 1989,
An activated form of transforming growth factor β is produced by co-cultures of endothelial cells and pericytes.
Isolation of putative progenitor endothelial cells for angiogenesis.
Science 275:964-967.

19. Asahara T, Masuda H., Takahashi T., Kalka C., Pastore C., Silver M., Keame M., Magner M., Isner J.M., 1999,
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularisation.
Circ Res 85:221-228.

Molecular Sites of Regulation of Expression of the Rat Cationic Amino Acid.

Cloning of JAM-2 and JAM-3: an emerging junctional adhesion molecular family?

22. Balabanov R. und Dore-Duffy P., 1998,
Role of the CNS Microvascular Pericyte in the Blood-Brain Barrier.

23. Balda M.S., Anderson J.M., 1993,
Two classes of tight junctions are revealed by ZO-1 isoforms.
Am J Physiol 264:C918-924.

24. Balda M. S. und Matter K., 2000,
Transmembrane proteins of tight junctions.

Assembly of the Tight Junction: The Role of Diacylglycerol

The blood–brain barrier: an overview Structure, regulation, and clinical implications.

27. Banks W.A., Robinson S. M., Nath A., 2005,
Permeability of the blood-brain barrier to HIV-1 Tat.

46. Bradbury M.W., 1995,
Developing views of the blood-brain barrier.
New concept of the blood-brain barrier S. 1-9, Edited by J Greenwood et al.,

47. Breckner M., 2004,
Assoziation lymphozytärer Oberflächenmoleküle mit Blut-Hirn-
Schrankenstörungen.
Dissertation LMU München Medizin.

48. Breier G., Albrecht U., Sterrer S. und Risau W., 1992,
Expression of vascular endothelial growth-factor during embryonic angiogenesis
and endothelial cell differentiation.
Development 114:521-532.

49. Brightman M.W., 1968,
The intracerebral movement of proteins injected into blood and cerebrospinal
fluid of mice.
Prog Brain Res 29:19-40.

50. Brightman M.W., 1975,
Ultrastructural Characteristics of Adult Choroidal Plexus: Relation to the Blood-
Cerebospinal Fluid Barrier to Proteins. In: The Choroid Plexus in Health and
Disease von Martin G. Nettsky, Samuray Shuanghoti and collaborators.
University Press of Virgina, Charlottesvile S. 86-112.

51. Brightman M.W., 1989,
The Anatomic Basis of the Blood-Brain Barrier in Implications of the Blood-Brain
Barrier and Its Manipulation ed. Neuwelt E.A.
Plenum Publishing Corporation, 53-82.

52. Brightman M.W. und Reese T.S., 1969,
Junctions between intimately opposed cell membranes in the vertebrate brain.

53. Bruni J.E., 1974,
Scanning and transmission electron microscopy of the ependymal lining of the
third ventricle.

54. Bruni J.E., 1998,
Ependymal Development, Proliferation, and Functions.

55. Bruni J.E., Clattenburg R.E, Montemurro D.G., 1977,
Ependymal tanycytes of the rabbit third ventricle: a scanning electron
microscopic study.
Brain Res 73:145-150.

65. Case N.M., 1959,
Hemosiderin granules in the choroid plexus.
J Biophys Biochem Cytol 6:527-530.

GLUT-4 and GLUT-1 Glucose Transporter Expression Is Differentially Regulated by Contractile Activity in Skeletal Muscle

Angiogenic induction and cell migration in an orthopaedically expanded maxillary suture in the rat.
Arch Oral Biol 41:985-994.

Angiogenesis and osteogenesis in an orthopedically expanded suture.

69. Chang C., Ray A., Swaan P., 2005,
In silico strategies for modeling membrane transporter function.
DDT 10:663-772.

70. Citi S., Sabanay H., Jakes R., Geiger B., Kendrick-Jones J., 1988,
Cingulin, a new peripheral component of tight junctions.

71. Claude P. und Goodenough D.A., 1973,
Fracture faces of zonulae occludentestes from „tight“ and „leaky“ epithelia.

72. Claude P., 1978,
Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens.

The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction.

74. Cornford E.M. und Hyman S., 1999,
Blood–brain barrier permeability to small and large molecules.
75. Cornford E.M. und Hyman S., 2005,
Localization of Brain Endothelial Luminal and Abluminal Transporters with
Immunogold Electron Microscopy.
NeuroRx 2:27–43.

76. Cornford E.M., Hyman S., Pardridge W. M., 1993,
An electron microscopic immunogold analysis of developmental up-regulation of
the blood-brain barrier GLUT1 glucose transporter.

77. Cornford E.M., Hyman S., Black K.L., Cornford M.E., Vinters H.V., Pardridge,
W. M., 1995,
High expression of the Glut1 glucose transporter in human brain
hemangioblastoma endothelium.

78. Crone C., 1965,
Facilitated transfer of glucose from blood into brain tissue.
J Physiol (Lond) 181:103-113.

79. Crone C. und Olesen S.-P., 1982,
Electrical resistance of brain microvascular endothelium.
Brain Res 241:49-55.

P.A., 2003,
Pericyte production of cell-associated VEGF is differentiationdependent and is
associated with endothelial survival.

81. Davson H. und Spaziani E., 1959,
The blood-brain barrier and the extracellular space of brain.
J Physiol (Lond) 149:135-143.

82. Davson H., Zloković B., Rakić L., Segal B.S., 1993,
History and Basic Concept Kapitel 1
In An Introduction to the Blood- Brain Barrier.
CRC Press, Inc S. 1-128.

83. Dean M. und Allikmets R., 2001,
Complete characterization of the human ABC gene family.
J Bioenerg Biomembr 33: 475-479.

84. Dejana E., Corada M., Lampugnani M.G., 1995,
Endothelial cell-tocell junctions.

Transforming growth factor-β1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells.

Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production.

105. Dohrman G.J., 1970 a,
The choroid plexus: a historical review.

106. Dohrman G.J., 1970b,
Dark and light epithelial cells in the choroid plexus of mammals.

107. Dohrman G.J. und Bucy P.C., 1970,
Human choroid plexus: a light and electron microscopic study.
J Neurosurg 33:506-516.

108. Dohrman G.J. und Herdson P.B., 1970,
The choroid plexus of the mouse: a macroscopic, microscopic and fine structural study.
Z Mikrosk Anat Forsch 82:508-22.

109. Drenckhahn D., 2004,

110. Drewe J. und Krähenbühl S., 2000,

112. Düring M., Dermitzel R., Drenckhahn, 2004,
Hirnhäute, Ventrikelauskleidung , Liquor cerebrospinalis.
113. Duvernoy H., Delon S., Vannson J.L., 1983,
 The vascularization of the human cerebellar cortex.
 Brain Res Bull 11:419-480.

 Development of the Choroid Plexus.

 The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 a

116. Ehrlich P., 1885,
 Das Sauerstoff-Bedürfnis des Organismus eine farbenanalytische Studie.
 ursprünglich Hirschwald, Berlin 1885 aus Paul Ehrlich gesammelte Werke Band

117. Ehrlich P., 1886,
 Über die Methylenblau reaktion der lebenden Nervensubstanz.
 Nach einem am 21. Dez. 1885 gehaltenen Vortrag beim „Verein für innere
 aus Paul Ehrlich gesammelte Werke Band I S. 500-508 Springer Verlag Berlin
 Heidelberg 1956.

118. Ehrlich P., 1902,
 Über die Beziehung chemischer Constitution, Vertheilung und
 pharmakologischer Wirkung.
 Gesammelte Werke zur Immunitätsforschung, Berlin. (aus Paul Ehrlich
 gesammelte Werke Band I S.570-595 Springer Verlag Berlin Heidelberg 1956;
 ursprünglich aus Leyden-Festschr., Berlin Hirschwald, 1902).

 Expression and localization of organic cation/carnitine transporter OCTN2 in
 Caco-2 cells.
 Am J Physiol Gastrointest Liver Physiol 284:G863-G871.

120. Engelhardt B., 2003,
 Developement of the blood-brain barrier.

121. Engelhardt B. und Risau W., 1995,
 Developement of the blood-brain barrier.
 New concept of the blood-brain barrier S.11- 31, Edited by J Greenwood et al.,

132. Folkman J. und Klagsbrun M., 1987,
 Angiogenic factors.
 Science235:442-447.

133. Forbes M.S., Rennels M.L., Nelson E., 1977,
 Ultrastructure of pericytes in mouse heart.

134. Frank R.N., Duta S., Mancini M.A., 1987,
 Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat.

 Nerve Fibers Innervating the Cranial and Spinal Meninges: Morphology of Nerve Fiber Terminals and Their Structural Integration

136. Friedrich A., 2000,
 Studies of expression and caracterization of various transport systems at RBE 4 cells, an in vitro model of the blood-brain barrier.
 Dissertation an der Technische Universität Dresden.

 Sequence, tissue distribution, and chromosomaal localization of mRNA encoding a human glucose transporter-like protein.
 Proc Natl Acad Sci USA 85:5435-5438.

 Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-resposive tissues.

139. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., 1993,
 Occludin: a novel integral membrane protein localizing at tight junctions.

140. Furuse M., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., 1994,
 Direct assoziation of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions.

141. Furuse M., Fujita K., Hiiragi T., Fujimoto K., Tsukita S, 1998a,
 Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.
142. Furuse M., Sasaki H., Fujimoto K., Tsukita S., 1998b,
 A single gene product, claudin -1 or -2, reconstitutes tight junction strands and
 recruits occludin in fibroblasts.

143. Furuse M., Hata M., Furuse K., Yoshida Y., Haratake A., Sugitani Y., Noda T.,
 Kubo A., Tsukita S., 2002,
 Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a
 lesson from claudin-1–deficient mice.

144. Ganong W.F., 2000,
 Circumventricular organs definition and role in the regulation of endocrine and
 autonomic function.

 Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary
 endothelium and choroid plexus epithelium of rat brain.
 J Histochem Cytochem 47:1255–1264.

146. Gao B., Hagenbuch B., Kullak-Ublick G.A., Benke D., Aguzzi A., Meier P.F.,
 2000,
 Organic anion-transporting polypeptides mediate transport of opioid
 peptides across blood-brain barrier.
 J Pharmacol Exp Ther 294:73–79.

147. Ghersi-Egea J.F, Finnegan W., Chen J.L., Fenstermacher J.D., 1996,
 Rapid distribution of intraventricularly administrated sucrose into cerebrospinal
 fluid cisterns via subarachnoid velae in rat.
 Neurosciensce, 75:1271-88.

148. Ghersi-Egea J.F., Strazielle N., 2001,
 Brain drug delivery, drug metabolism and multidrug resistance at the choroid
 plexus.

149. Ghersi-Egea J.F., Strazielle N., Belin M.F., 2001,
 Neuroprotective and Detoxifying Mechanisms at the Blood-Brain Interfaces.
 In Blood-Brain Barrier Drug Delivery and Brain Pathology Kluwer

150. Gillies M.C. und Su T., 1993,
 High glucose inhibits retinal capillary pericyte contractility in vitro.
 Invest Ophthalmol Vis 34:3396-401.

161. Greig N.H., 1992,
Drug Entry Into the Brain and Its Pharmacologic Manipulation.

Optimizing drugs for brain action.

163. Gründemann D., Gorboulev V., Gabaryan S., Veyhl M., Koepsell H., 1994,
Drug excretion mediated by a new prototype of polyspecific transporter.

Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter.
Nat Neurosci 1:349-351.

165. Gumbnier B., Lowenkopf T., Apatira D., 1991,
Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1.
Proc Natl Acad Sci USA 88:3460-4.

166. Gurwitch A., 1923,
Die Capillarpericyten der Fische, Reptilien und Vögel.

Multi-PDZ Domain Protein 1 (MUPP1) Is Concentrated at Tight Junctions through its Possible Interaction with Claudin-1 and Junctional Adhesion Molecule

Dissociation of GLUT4 Translocation and Insulin-stimulated Glucose Transport in Transgenic Mice Overexpressing GLUT1 in Skeletal Muscle.

169. Hargreaves K.M. und Padridges W.M., 1988,
Neutral amino acid transport at the human blood-brain barrier.
Insulin-stimulated GLUT4 Translocation Is Mediated by a Divergent Intracellular
Signaling Pathway.

Porcine Choroid Plexus Epithelial Cells in Culture: Regulation of Barrier
Properties and Transport Processes.

In Search of the Astrocytic Factor(s) Modulating Blood–Brain Barrier Functions
in Brain Capillary Endothelial Cells In Vitro.

ZO-3 a novel member of the MAGUK protein family found in tight junctions,
interacts with ZO-1 and occludin.

Different signaling Roles of SHPTP2 in Insulin-induced GLUT1 Expression and
GLUT4 Translocation.

175. Hellström M., Gerhardt H., Kalén M., Li X., Eriksson U., Wolburg H., Betsholtz
C., 2001,
Lack of Pericytes Leads to Endothelial Hyperplasia and Abnormal Vascular
Morphogenesis.

176. Herman I.M. und D'Amore P.A., 1985,
Microvascular Pericytes Contain Muscle and Nonmuscle Actins.

177. Hirase T., Kawashima S., Wong E.Y.M., Ueyama T., Rikitake Y., Tsukita S.,
Yokoyama M., Staddon J.M., 2001,
Regulation of tight junction permeability and occludin phosphorylation by Rhoa-
p160ROCK-dependent and -independent mechanisms.

178. Hirase T., Staddon J.M., Saitou M., Ando – Akatsuka Y., Itoh M., Furuse M.,
Fujimoto K., Rubin L.L., 1997,
Ocludin as a possible determinant of tight junction permeability in endothelial
179. Hori S., Ohtsuki S., Hosoya K., Nakashima E., Terasaki T., 2004,
A pericyte-derived angiopoietin-1 multimeric complex induces occludingene
expression in brain capillary endothelial cells through Tie-2 activation in vitro.

180. Hirschi K.K., D’Amore P.A., 1996,
Pericytes in the microvasculature.

182. Hori S., Ohtsuki S., Hosoya K., Nakashima E., Terasaki T., 2004,
A pericyte-derived angiopoietin-1 multimeric complex induces occludingene
expression in brain capillary endothelial cells through Tie-2 activation in vitro.

183. Horn F., Lindenmeier G., Moc I., Grillhösl C., Berghold S., Schneider N.,
Münster B., 2003,
Biochemie des Menschen.
Das Lehrbuch für das Medizinstudium. 2. korrigierte Auflage, Georg Thieme
Verlag Stuttgart ,New York.

184. Huber D., Balda M.S., Matter K., 2000,
Occludin modulates transepithelial migration of neutrophils.

185. Huber J.D., Egleton R.D., Davis T.P., 2001,
Molecular physiology and pathophysiology of tight junctions in the blood–brain
barrier.
Trds Neurosci 24:719-25.

Amino acid transporters: roles in amino acid sensing and signaling in animal
cells.
Biochem J 373:1–18.

187. Ibberson M., Uldry M., Thorens B., 2000,
GLUTX1, a novel mammalian glucose transporter expressed in the central
nervous system and insulin-sensitive tissues.

188. Ide N., Hata Y., Nishioka H., Hirao K., Yao I., Deguchi M., Mizoguchi A.,
Nishimori H., Tokino T., Nakamura Y., Takai Y. 1999,
Localization of membrane-associated guanylate kinase (MAGI)-1/BAI-
associated protein (BAP) 1 at tight junctions of epithel cells.
Oncogene 18:7810–7815.
189. Ingber D.E., Madri J.A., Folkman J., 1987,
 Endothelial growth factors and extracellular matrix regulate DNA synthesis
 through modulation of cell and nuclear expansion.

190. Itoh M., Morita K., Tsukita S., 1999a,
 Characterization of ZO-2 as a MAGUK family member associated with tight as
 well as adherens junctions with a binding affinity to occludin and alpha catenin.

191. Itoh M., Furuse M., Morita K., Kubota K., Saitou M., Tsukita S., 1999b,
 Direct binding of three tight junction-associated MAGUKs, ZO – 1, ZO – 2, and
 ZO – 3, with the COOH termini of claudins.

192. Itoh M., Nagafuchi A., Moroi S., Tsukita S., 1997,
 Involvement of ZO-1 in cadherin based cell adhesion through its direct binding
 to alpha catenin and actin filaments.

193. Izumi Y., Hirose T., Tamai Y., Hirai S., Nagashima Y., Fujimoto T., Tabuse Y.,
 Kemphues K., Ohno S., 1998,
 An Atypical PKC Directly Associates and Colocalizes at the Epithelial Tight
 Junction with ASIP, a Mammalian Homologue of Caenorhabditis elegans
 Polarity Protein PAR-3.

194. Jägerhuber R., 2003,
 Untersuchungen über die Interaktion von Meningokokken mit Zellen der Blut-
 Hirn-Schanke.
 Dissertation an der LMU München, Tierärztliche Fakultät.

 Identification and Functional Characterization of a Na(+)-Independent Large
 Neutral Amino Acid Transporter, LAT1, in Human and Rabbit Cornea.

196. Johnson A.K. und Gross P.M., 1993,
 Sensory circumventricular organs and brain homeostatic pathways.
 FASEB J 7:678-86.

197. Johnson-Leger C., Aurrand-Lions M., Imhof B.A., 2000,
 The parting of the endothelium: miracle, or simply a junctional affair?
198. Joo F., 1995,
 Endothelial cells of the brain and other organ systems: Some similarities and differences.

199. Joost H.G. und Thorens B., 2001,
 The extended GLUT-family of sugar/polyol transport facilitators—nomenclature, sequence characteristics, and potential function of its novel members.
 Molec Membr Biol 18:247–256.

 Erratum: nomenclature of the GLUT family of sugar transport facilitators. GLUT6, GLUT9, GLUT10, and GLUT11.

 Nomenclature of the GLUT/SLC2A family.

 Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin.

203. Joyce N.C., Haire M.F., Palade G.E., 1985b,
 Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations.

204. Junqueira L.C.U., Carneiro J., Kelly R.O., 2002,
 Lehrbuch: Histologie.
 Springer Verlag Berlin Heidelberg, S. 452-454.

205. Kachar B. und Reese T.S., 1982,
 Evidence for the lipidic nature of tight junction strands.

 Calcium influx pathways in rat CNS pericytes.
 Mol Brain Res 126: 114–120.

207. Kanai Y., Segawa H., Miyamoto K., Uchino H., Takeda E., Endou H., 1998,
 Expression Cloning and Characterization of a Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 Antigen (CD98).

17. Kirsch B., Leonhard H., Buchheim W., 1978,
The functional and structural border between the CSF- and blood-milieu in the
circumventricular organs (organum vasculosum laminae terminalis, subfornical
organ, area postrema) of the rat.

Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex
via alpha-catenin.

19. Koepsell H., Schmitt B.M., Gorboulev V., 2003,
Organic cation transporters.

20. Koreskey A. P., 2004,
New Developments in Magnetic Resonance Imaging of the Brain.
NeuroRx 1:155-164.

22. Korr H., 1980,
Proliferation of different cell types in the brain. Adv Anat Embryol Cell Biol 61:1–
69.

23. Krause D., Kunz J., Dermietzel R., 1993,
Cerebral pericytes – a second line of defense in controlling blood-brain barrier
peptide metabolism.

24. Krogh A., 1946,
The actice and passive exchanges of inorganic ions through the surfaces of
living cells and through living membranes generally.
Proc Roy Soc B 133:140.

25. Kruse T, Reiber H. und Neuhoff V., 1985,
Amino acid transport across the human blood-CSF barrier.

26. Kuban K.C. und Gilles F.H., 1985,
Human telencephalic angiogenesis.
Ann Neurol 17:539-458.
227. Kugler P., 2004,
Grundzüge der Entwicklung. In Benninghoff und Drenckhahn: Anatomie
Makroskopische Anatomie, Histologie, Embryologie, Zellbiologie Band 2, 16.

228. Kusuhara H. und Sugiyama Y., 2001a,
Efflux transport systems for drugs at the blood-brain barrier and blood-
cerebrospinal fluid barrier (Part 1).
Drug Discov Today 6:150-156.

229. Kusuhara H. und Sugiyama Y., 2001b,
Efflux transport systems for drugs at the blood-brain barrier and blood-
cerebrospinal fluid barrier (Part 2).

230. Lacaz-Vieira F., Jaeger M.M.M., Farshori P., Kachar B., 1999,
Small synthetic peptides homologous to segments of the first loop of occludin
impair tight junction rescaling

231. Landis D.M.D und Reese T.S., 1981,
Astrocyte Membrane Structure: Changes after Circulatory Arrest.
J Cell Biol 88:660-663.

MAGI-1: a widely expressed, alternatively spliced tight junction protein.

Early alterations in cerebral hemodynamics, brain metabolism, and blood-brain
barrier permeability in experimental intracerebral hemorrhage.
J Neurosurg 91:1013-1019.

234. Lee G., Dallas S., Hong M., Bendayan R., 2001,
Drug Transporters in the Central Nervous System: Brain Barriers and Brain
Parenchyma Considerations.

235. Lee J.Y., Urbatsch I.L., Senior A.E., Wilkens S., 2002,
Projection structure of P-glycoprotein by electron microscopy. Evidence for a
closed conformation of the nucleotide binding domains.

236. Lefauconnier J.-M., 1992,
Transport of Amino Acids.
In Physiology and Pharmacology of the Blood-Brain Barrier. Edited by M.
237. Leino R.L., Gerhart D.Z., Drewes L.R., 1999,
 Monocarboxylate transporter MCT1) abundance in brains of suckling and adult
 rats: a quantitative electron microscopic immunogold study.
 Brain Res Dev Brain Res 113: 47-54.

238. Leonhardt, 1966,
 Über ependymale Tanyzyten des III. Ventrikels beim Kaninchen in
 elektronenmikroskopischer Betrachtung.

239. Leung D.W., Cachianes G., Kuang W.J., Goeddel D.V. und Ferrana N., 1989,
 Vascular endothelial-growth factor is a secret angiogenic mitogen.
 Science 246: 1306-1309.

240. Levin V.A., 1980,
 Relationship of octanol/water partition coefficient and molecular weight to rat
 brain capillary permeability.

241. Lewandowsky M., 1900,
 Zur Lehre der Cerebrospinal Flüssigkeit.

 Fuxe K., Haller H., 2000,
 Phorbol ester induced changes in tight and adherens junctions in the choroid
 plexus epithelium and in the ependyma.

243. Lohmann C., 2003,
 Dissertation Institut für Biochemie, Universität Münster.

244. Lohmann C., Huwel S., Galla H.J., 2002,
 Predicting blood-brain barrier permeability of drugs: evaluation.of differant in
 vitro assays.

245. Lonnrot K., Metsa-Ketela T., Molnar G., Ahonen J.P., Latvala M., Peltola J.,
 Pietela T., Alho H., 1996,
 The effect of ascorbate and ubiquinone supplementation on plasma and CSF
 total antioxidant capacity.

246. Madara J.L., 1991,
 Anatomy of the Tight Junction: Vertebrates.
Gene expression if the tight junction protein occludin includes differential splicing and alternative promoter usage.

Mutational Analysis of the Hexose Transporter of Plasmodium falciparum and Development of a Three-dimensional Model.

249. Manolescu A., Salas-Burgos A.M., Fischbarg J., Cheeseman C.I., 2005,
Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative Hexose transporter SLCC2A7 (GLUT7).

250. Märten S., 2004,
Proteomanalyse der Blut-Hirn-Schranke.
Dissertation an der Technische. Universität Darmstadt.

Altered cerebrospinal fluid amino acid pattern in the anorexia of aging: relationship with biogenic amine metabolism.

Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration.

253. Maxwell D.S. und Kruger L., 1965,
Small Blood Vessels and the Origin of Phagocytes in the Rat Cerebral Cortex following heavy Particle Irradiation.
Exp Neurol 12:33-54.

254. Maxwell D.S. und Pease, 1956,
The electron microscopy of the choroid plexus.
J Biophys Biochem Cytol 2:467-474.

255. Maynard E.A., Schultz, R.L. und Pease D.C., 1957,
Electron microscopy of the vascular bed of rat cerebral cortex.
Am. J. Anat., 100:409.

266. Morita K., Furuse M., Fujimoto K., Tsukita S., 1999a,
Claudin multigene family encoding four – transmembrane domain protein
components of tight junction strands in endothelial cells.
Proc Natl Acad Sci USA 96:511-516.

267. Morita K., Sasaki H. Furuse M., Tsukita S., 1999b,
Endothelial claudin: claudin - 5 / TMVCF constitutes tight junction strands in
endothelial cells.

A., Ogawa O., Inui K., 2002,
Gene expression levels and immunolocalization of organic ion transporters in
the human kidney.

269. Mueckler M. und Makepeace C., 1999,
Transmembrane Segment 5 of the Glut1 Glucose Transporter Is an
Amphipathic Helix That Forms Part of the Sugar Permeation Pathway.

270. Mueckler M. und Makepeace C., 2002,
Analysis of Transmembrane Segment 10 of the Glut1 Glucose Transporter by
Cysteine-scanning Mutagenesis and Substituted Cysteine Accessibility.

271. Mueckler M. und Makepeace C., 2005,
Cysteine-Scanning Mutagenesis and Substituted Cysteine Accessibility
Analysis of Transmembrane Segment 4 of the Glut1 Glucose Transporter.

272. Mueckler M., Caruso C., Baldwin S.A., Panico M., Brench I., Morris H.R., Allard
W.J., Lienhard G.E., Lodish H.F., 1985,
Sequence and structure of human glucose transporter.
Science 229:941–945.

273. Mueckler M., Roach W., Makepeace C., 2004,
Transmembrane Segment 3 of the Glut1 Glucose Transporter Is an Outer Helix.

274. Müller J., 2005,
Transport kationischer Arzneistoffe an den Epithelien von Darm und Plazenta.
Dissertation an der Mathematisch-Naturwissenschaftlich-Technischen Fakultät
der Martin-Luther-Universität Halle-Wittenberg.
275. Muller W.A., 2003,
Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response.

276. Nabeshima S., Reese T.S., Landis D.M., Brightman M.W., 1975,
Junctions in the meninges and marginal glia.

277. Nagy Z., Peters H. und Hüttner I., 1984,
Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions.
Lab. Invest. 50:313-322.

278. Nakano M., Atobe Y., Goris R. C., Yazama F., Ono M., Sawada H., Kadota T., Funakoshi K., Kishida R., 2000,
Ultrastructure of the Capillary Pericytes and the Expression of Smooth Muscle a-actin and Desmin in the Snake Infrared Sensory Organs.

A transmembrane tight junction protein selectively expressed on endothelial cells and platelets.

280. Nehls V. und Drenckhahn D., 1991,
Heterogeneity of Microvascular Pericytes for Smooth Muscle Type Alpha-Actin.
J Cell Biol 113: 147-54.

281. Nehls V., Denzer K., Drenckhahn D., 1992,
Pericyte involvement in capillary sprouting during angiogenesis in situ.

282. Netsky M.G. und Shuangshoti S., 1975,
Origin of Choroid Plexus and Ependyma.

283. Newman P.J., 1997,
The biology of PECAM-1.

284. Newman P.J., 1999,
Switched at birth: a new family for PECAM-1.

294. Oexender D.L. und Christensen H.N., 1963,
Distinct mediating systems for the transport of neutral amino acids by the
Ehrlich cell.

295. Ohnishi H., Nakahara T., Furuse K., Sasaki H., Tsukita S., Furuse M., 2004,
JACOP, a novel plaque protein localizing at the apical junctional complex with
sequence similarity to cingulin.

296. Oldendorf W.H., 1971 a,
Brain uptake of radiolabeled amino acids, amines and hexoses after arterial
injection.

297. Oldendorf W.H., 1971b,
Uptake of radiolabeled essential amino acids by brain following arterial injection.

298. Oldendorf W.H. and Szabo J., 1976,
Amino acid assignment to one of three blood-brain barrier amino acid carriers.

299. Orlidge A. und D’Amore P. A., 1987,
Inhibition of capillary endothelial cell growth by pericytes and smooth muscle
cells.

300. Palmeri D, van Zante A., Huang C.C., Hemmerich S., Rosen S.D., 2000,
Vascular endothelial junction – associated molecule, a novel member of the
immunoglobulin superfamily, is localized to intercellular boundaries of
endothelial cells.

301. Pappas G.D. und Tennyson V.M., 1962,
An electron microscopic study of the passage of colloidal particles from the
blood vessels of the ciliary processes and choroid plexus of the rabbit.

302. Pardridge W.M. 1977,
Regulation of amino acid availability to the brain.
Nutr Br 1: 141–205.

303. Pardridge W.M., 1986,
Blood-brain transport of nutrients. Introduction.
304. Pardridge W.M., 1991,
 Advances in cell biology of blood-brain barrier transport.

305. Pardridge W.M., 1993,
 Brain drug delivery and blood-brain barrier transport.

306. Pardridge W.M., 1997,
 Microvascular and Astrocyte Localization of P-Glycoprotein.

307. Pardridge W.M., 1998,
 CNS Drug Design Based on Principles of Blood-Brain Barrier Transport. J.

308. Pardridge W.M., 2001a,
 Brain Drug Targeting: The Future of Brain Drug Development.

309. Pardridge W.M, 2001b,
 Brain Drug Targeting and Gene Technology.

310. Pardridge W.M., 2001c,
 BBB-genomics: Creating new openings for brain-drug targeting.

311. Pardridge W.M., 2003,

312. Pardridge W.M., Boado R.B., Farrell R., 1990,
 Brain-type Glucose Transporter (Glut-1) Is selectivley Localized to the Blood-
 Brain-Barrier.

313. Patan S., Haenni B., Burri P.H., 1996,
 Implementation of intussusceptive microvascular growth in the chicken
 chorioallantoic membrane (CAM): 1. pillar formation by folding of the capillary
 wall.

314. Petrides E.P., 1998,
 Blut-Hirn-Schranke und Liquor cerebrospinalis.
 In Löffler/Petrides Biochemie und Pathobiochemie Ausg. 6, Springer-Verlag,
 Berlin Heidelberg New York, S. 973-975.

318. Pohl, 1881, zitiert nach Ehrlich, 1902

333. Risau W., 1997,
Mechanisms of angiogenesis.

334. Risau W., Hallman R., Albrecht U. und Henke-Fahle S., 1986,
Brain induces the expression of an early cell surface marker for blood-brain
barrier specific endothelium.
EMBO J. 5:3179-3183.

335. Robertson P.L., Du Bois M., Bowman P.D. und Goldstein G.W., 1985,
Dev. Brain Res. 23: 219-223.

336. Rogers S., James D.E., Best J.D., 1998,
Diabetes 47, Suppl 1: A45.

Identification of a novel glucose transporter-like protein GLUT-12.

338. Rouget C., 1873,
Mémoire sur le développement, la structure et les propriétés physiologiques des
capillaires sanguins et lymphatiques.
Arch Physiol Norm Pathol 5:603-663.

The cellbiology of the blood-brain barrier.

A cell culture modell of the blood-brain–barrier.

341. Rucker H.K., Wynder H.J., Thomas W.E., 2000,
Cellular mechanisms of CNS pericytes.

Complex phenotype of mice lacking occludin, a component of tight junction
strands.

353. Schindler T., 2003,
Untersuchungen zur differentialdiagnostischen Bedeutung des IgG- Index und
Albuminquotienten bei neurologisch erkrankten Hunden.
Dissertation an der Tierärztlichen Fakultät der LMU München.

P-Glycoprotein in the blood-brain barrier of mice influences the brain penetration
and pharmacological activity of many drugs.
J Clin Invest 97:2517-2524.

Wall R.M.W., Ruiter D.J., 1991,
Differential expression of markers for endothelial cells, pericytes, and basal
lamina in the microvasculature of tumors and granulation tissue.

356. Schnürch, H. und Risau, W., 1991,
Differentiating of mature neuron express the acid fibroblast growth factor gene
during chick neural development.
Development 111:1143-1154

357. Schor A.M., Canfield A.E., Sutton A.B., Areiniegas E., Allen TD., 1995,
Pericyte differentiation.

358. Schröder B.; Diener M., 2000,
Grundlagen der Zellphysiologie.
In Engelhardt und Breves; Physiologie der Haustiere; Enke Verlag 2000; S.12.

359. Schultz R.L., Maynard, E.A. und Pease D. C., 1957,
Electron microscopy of neurons and neuroglia of cerebral cortex and corpus
callosum.
Am. J. Anat., 100:369.

360. Schulze C. und Firth J. A., 1992,
Iniderendothelial junctions during blood-brain barrier development in the rat
morphological changes at the level of individual tight junctional contacts.
Dev. Brain Res. 69:85-95.

361. Schulze C., Smales C., Rubin L.L., Staddon J.M., 1997,
Lysophosphatidic acid increases tight junction permeability in cultured brain
endothelial cells.

362. Segawa H., Fukasawa Y., Miyamoto K., Takeda E., Endou H., Kanai Y., 1999,
Identification and Functional Characterization of a Na- independent Neutral
Amino Acid Transporter with Broad Substrate Selectivity.
363. Seigneuret M. und Garnier-Suillerot A., 2003,
A structural model for the open conformation of the mdr1 P-glycoprotein based
on the MsbA crystal structure.

364. Sekine T., Cha S.H., Endou H, 2000,
The multispecific organic anion transporter (OAT) family.
Pfluegers Arch 89:337–344.

H.F., 1983,
Tumor cells secrete a vascular permeability factor that promotes accumulation
of ascites fluid.
Science 219:983-985.

366. Serot J.M., Foliguet B., Béné M.C. Gilbert C. Faure G.C., 2001,
Choroid plexus and ageing in rats: a morphometric and ultrastructural study.

367. Shepro D., Morel N., 1993,
Pericyte physiology.
FASEB J 7:1031–1038.

368. Shi Q., Rafii S., Wu M.H.-D., Wijelath E.S., Yu C., Ishida A., Fujita Y., Kothari s.,
Mohle R., Sauvage L.R., Moore M.A.S., Storb R.F., Hammond W.P.; 1998,
Evidence for circulating bone marrow- derived endothelial cells.

369. Shimada T., Kitamura H., Nakamura M., 1992,
Three-dimensional architecture of pericytes with special reference to their
topographical relationship to microvascular beds.
Arch Histol Cytol 55(Suppl):77-85.

370. Shinkeruk S.; Bayle M.; Lain G.; Deleris G., 2003,
Vascular Endothelial Cell Growth Factor (VEGF), An Emerging Target for
Cancer Chemotherapy.
Curr Med Chem Anti-Canc Agents 3: 95-123.

371. Shivers R.R., 1979a,
The blood-brain barrier of a reptile, Anolis carolinensis. A freeze-fracture study.
Brain Res 169:221-230.

372. Shivers R.R., 1979b,
The effect of hyperglycema on brain capillary permeability in the lizard, Anolis
carolinensis: a freeze–fracture analysis of blood- brain barrier pathology.
Brain Res 170: 509-522.

383. Spector R., 2000,
 Drug Transport in the Mammalian Central Nervous System: Multiple Complex Systems.
 Pharmacology 60:58-73.

384. Spector R. und Johanson C.E., 1989,
 The mammalian choroid plexus.

385. Staehlin L.A., 1973,
 Further observations on the fine structure of freeze-cleaved tight junction.

 An atomic detail model for the human ATP-binding cassette transporter P-glycoprotein derived from disulfide cross-linking and homology modeling.
 FASEB J 17:2287–2289

387. Stern L. und Gautier R., 1921,
 Rapports entre le liquide céphalorachdien et la circulation sanguine.
 Arch Int Physiol, 17:138-192.

388. Stern L. und Gautier R., 1922,
 Les rapports entre le liquide céphalorachdien et les éléments nerveux de l’axe cérébrospinal.
 Arch Int Physiol 17:391-408.

389. Stevenson B.R., Siliciano J.D., Mooseker M.S., Goodenough D.A., 1986,
 Identification of ZO-1: a high molecular weight poly peptide associated with the tight junction (zonula occludens) in a variety of epithelia.

 Interendothelial junctional changes underlie the developmental ´tightening´ of the blood brain barrier.

391. Stewart P. A. und Hayakawa K., 1994,
 Early structural changes in blood–brain barrier vessels of the rat embryo.
 Dev. Brain Res. 78:25–34.

 Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras.
 Dev. Biol.84:183-192.
393. Strazielle N., Ghersi-Egea J.F., 2000,
Implication of blood-brain barrier interfaces in cerebral drug metabolism and
drug metabolite disposition.
In Molecular drug metabolism and toxicology, chap. 12 (G.M. Williams and O.I.

395. Suzuki H., Terasaki T., Sugiyama Y., 1997,
Role of efflux transport across the blood-brain and blood-cerebrospinal fluid
barrier on the disposition of xenobiotics in the central nervous system.

396. Tamai I. und Tsuji A., 2000,
Transporter-mediated permeation of drugs across the blood-brain barrier.

Cloning and characterization of a novel human pH-dependent organic cation
transporter, OCTN1.
FEBS Lett 419, 107-111.

398. Tamai I., Ohashi R., Nezu J., Yabuuchi H., Oku A., Shimane M., Sai Y., Tsuji A.,
1998,
Molecular and functional identification of sodium ion-dependent, high affinity
human carnitine transporter OCTN2.

399. Tani E., Itagaki T., Nakano M., 1977a,
Tight junctions of oligodendrocytes.
Cell Tissue Res 184:139-142.

400. Tani E., Yamagata S., Ito Y., 1977b,
Freeze-fracture of capillary endothelium in rat brain.

401. Tartaglia L.A. und Weng X., 1999,
Nucleic acid molecules encoding GLUTX and uses there of.

402. Tayarani I., Cloez I., Bourre J.M., 1989,
Antioxidant enzymes and related trace elements in aging brain capillaries and
choroid plexus.
Evidence for alanine, serine, and cystine system of transport in isolated brain capillaries.

404. Tennyson V.M., 1975,
Ultrastructural Characteristics of the Telencephalic and Myelencephalic Choroid Plexus in Fetus of Man and Rabbit, and a Comparsion with the Adult Choroid Plexus in Rabbit.

405. Tennyson V.M. und Pappas G.D., 1964,
Fine structure of the developing telencephalic and myelencephalic choroid plexus in the rabbit.

406. Tennyson V.M. und Pappas G.D., 1968,
The fine structure of the choroid plexus: Adult and developmental stages.
Prog Brain Res 29:63-85.

New approaches to in vitro models of blood-brain barrier drug transport.
Drug Discov Today 8:944-954.

408. Thurston G., Murphy T.J., Baluk P., Lindsey J.R., McDonald D.M., 1998,
Angiogenesis in Mice with Chronic Airway Inflammation Strain-Dependent Differences.

409. Tovar A., Tews J.K., Torres N., Harper A.E., 1988,
Some characteristics of the threonine transport across the blood-brain barrier of the rat.

The Tight Junction Protein ZO-2 Localizes to the Nucleus and Interacts with the Heterogeneous Nuclear Ribonucleoprotein Scaffold Attachment Factor-B.
J Biol Ch 278:2692-2700.

411. Tsukita S. und Furuse M., 1999,
Ocludin and claudins in tight – junction strands: leading or supporting players?
412. Tsukita S. und Furuse M., 2000,
 Pores in the Wall: Claudins Constitute Tight Junction Strands Containing Aqueous Pores.

413. Tsukita S., Furuse M., Itoh M., 2001,
 Multifunctional strands in tight junctions.

414. Tsuzuki H. und Sasa S., 1994,
 Ultrastructural observation of capillary sprouts in the dental organs of rat molars.
 Kaibogaku Zasshi 69:684-696.

415. Uldry M. und Thorens B., 2004,
 The SLC2 family of facilitated hexose and polyol transporters.
 Pflugers Arch 447:480-489.

416. Uldry M., Ibberon M., Riederer B., Chatton J.Y., Horisberger J.D., Thorens B.,
 2001,
 Identification of a novel H -myo-inositol symporter expressed predominantly in the brain.
 EMBOJ 20:4467–4477.

417. Uldry M., Steiner P., Zurich M.-G., Béguin P., Hirling H., Dolci W., Thorens B.,
 2004,
 Regulated exocytosis of an Hþ/myo-inositol symporter at synapses and growth.

418. Van Bremen V.L. und Clemente C.D., 1955,
 Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope.
 J Biophys Biochem Cytol 1:161-166.

419. Van Deurs B. und Koehler J.K., 1979,
 Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas.

 Myocardial capillaries: increase in number by splitting of existing vessels.

421. Van Meer G. und Simons K., 1986,
 The function of tight junction in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells.
 EMBO J. 5:1455-1464.
422. Vandenabeele F., Creemers J., Lambrichts I., 1996,
 Ultrastructure of the human spinal arachnoid mater and dura mater.
 J Anat 189:417-430.

423. Vleminckx K. und Kemler R., 1999,
 Cadherins and tissue formation: integrating adhesion and signaling.
 Bioessays 21:211–220.

 und Klagsbrun, M., 1987,
 Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition
 into subendothelial extracellular matrix.

425. Vorbrodt A.W. und Dobrogowska D.H., 2003,
 Molecular anatomy of intercellular junctions in brain endothelial and epithelial
 barriers: electron microscopist’s view.

426. Voura E.B., Chen N., Chi-Hung S., 2000
 Platelet-endothelial cell adhesion molecule-1(CD31)redistributes from
 endothelial junction and is not required for the transendothelial migration of
 melanoma cells.

427. Walter F.K., 1933,
 Die allgemeinen Grundlagen des Stoffaustausches zwischen dem
 Zentralnervensystem und dem übrigen Körper.

 Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid
 transporter.

429. Wang W., Merrill M.J., Borchardt R.T., 1996,
 Vascular endothelial growth factor affects permeability of brain microvessel
 endothelial cells in vitro.

430. Wang W., Dentler W.L., Borchardt R.T., 2001,
 VEGF increases BMEC monolayer permeability by affecting occludin
 expression and tight junction assembly.
The tight-junction-specific protein ZO-1 is a component of the human and rat
blood-brain barriers.

432. Wegener J, Galla H.J., 1996,
The role of non-lamellar lipid structures in the formation of tight junctions. Chem
Phys Lipids 81: 229-255.

433. Wegener J., Sieber M. und Galla H.J., 1996,
Impedance analysis of epithelial cell monolayers cultured on gold surfaces.

434. Welsch U., 2003,
Lehrbuch Histologie In Sobota Histologie Zytologie Mikroskopische Anatomie:
Kreislauforgane Urban & Fischer Verlag, München Jena, Kap. 5 :219-23.

van der Valk M., Schinkel A.H., Scheper R.J., Breimer D.D., Borst P., 2000,
Multidrug resistance protein 1 protects the choroid plexus epithelium and
contributes to the blood-cerebrospinal fluid barrier.

436. Wolburg H. und Lippoldt A., 2002,
Tight junctions of the blood brain barrier Development, composition and
regulation.
Vascular Pharmacology 38:323-337.

Farrell, C., Risau, W., 1994,
Modulation of tight junction structure in blood-brain barrier endothelial cells.
Effects of tissue culture, second messengers and cocultured astrocytes.

438. Wong V., Gumbiner B.M., 1997,
A synthetic peptide corresponding to the extracellular domain of occludin
perturbs the tight junction permeability barrier.

439. Wood I. S. und Trayhurn P., 2003,
Glucose transporters (GLUT and SGLT): expanded families of sugar transport
proteins

448. Yoshida Y., Yamada M., Wakabayashi K., Ikuata F., 1988,
Endothelial fenestrae in the rat fetal cerebrum.

449. Zenker D., 2001,
Etablierung, Charakterisierung und Anwendung eines in vitro Zellkulturmodells
der Blut-Hirn-Schranke.
Dissertation an der Johann Wolfgang von Goethe-Universität Frankfurt a.M.
Fachbereich Biochemie, Pharmazie und Lebensmittelchemie.

450. Zhong Y.T., Saitoh T., Minase T., Sawada N., Enomoto K., Mori M., 1993,
Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein
distinct from ZO-1, cingulin and ZO-2.

451. Zilberberg L., Shinkaruk S., Lequin O., Rousseau B., Hagedorn M., Costa F.,
Caronzolo D., Balke M., Canron X., Convert O., Laiñ G., Gionnet K.,
Goncalve´s M., Bayle M., Bello L., Chassaing G., Deleris G., Bikfalvi A., 2003,
Structure and Inhibitory Effects on Angiogenesis and Tumor Development of a
New Vascular Endothelial Growth Inhibitor.
J Biol Chem 278:35564-35573.

452. Zimmermann K., 1923,
Der Feinere Bau der Blutcapillaren.

Fischbarg J., 2001,
A Three-dimensional Model of the Human Facilitative Glucose Transporter
Glut1.
Danksagung

Mein Dank, am Ende dieser Arbeit gilt Herrn Privatdozent Dr. Sven Reese, für die Überlassung dieses Themas, die gewährte Unterstützung und Beratung. Frau Dr. Berg für die Korrekturen, Motivation und Bereitstellung einiger Equipements.

Für Motivation, Anregungen, Korrekturen, Essen und Trinken und vieles mehr meiner Freundin.

Meinen Eltern, die mich finanziell unterstützten.

Allen Freunden und Kommilitonen, die mich in der Zeit des Studiums und während der Anfertigung der Dissertation unterstützt haben.