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ABBREVIATIONS 
ACRO  Somatotrophinoma 

ACTH  Adrenocorticotropic hormone 

Akt  Protein kinase B 

Bcl-2 B-cell leukemia 2 

CREB cAMP-response-element-binding  

CUSH Corticotrophinoma 

EGF Epidermal growth factor 

EGF-R Epidermal growth factor receptor 

ERK Extracellular signal regulated kinase 

FGF Fibroblast growth factor 

Flk-1  Fetal liver kinase 1 

KDR  kinase insert domain containing receptor 

Flt-1;-4 fms-like tyrosine kinase receptor-1, -4 

FSH Folliculo-stimulant hormone 

GAPDH Gyceraldehyde-3-phosphate dehydrogenase 

GH Growth hormone 

GSK3-β Glycogen synthase kinase-3 subunit β 

HGF Hepatocyte growth factor 

IGF-1 Insulin like growth factor-1 

IHC Immunohistochemistry 

IL-1 Interleukin-1 

IL-6 Interleukin-6 

IL-8 Interleukin-8 

ISH in situ hybridization 

LOH Loss of heterozygosity 

LH Luteinizing hormone 

LIF Leukemia inhibitory factor 

LYVE-1 Lymphatic vessel endothelial hyaluronan receptor-1 

MAPK Mitogen activated protein kinase 

MEK MAPK-1 

MEN-1 Multiple endocrine neoplasia type 1 
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NFPA Non functioning pituitary adenoma 

NP Normal pituitary 

PDGF Platelet derived growth factor 

PDGF-R Platelet derived growth factor receptor 

PDK-1 Phosphoinositide dependent kinase-1 

PI  Proliferation index 

PI3K Phosphatidylinositole 3´-kinase 

PI(4,5)P2  Phosphatidylinositole-4, 5 bisphosphate 

PI(3,4,5)P3  Phosphatidylinositole-3,4,5 trisphosphate 

PlGF Placenta growth factor 

PROL Prolactinoma 

PTEN Phosphatase and tensin homologue deleted on chromosome 10 

PTTG Pituitary transforming gene 

Rb Retinoblastoma 

RIA Radioimmunoassay 

RT-PCR Reverse transcriptase-Polymerase chain reaction 

TGF-α  Transforming growth factor-α 

TGF-β  Transforming growth factor-β 

THYR Thyreotrophinoma 

TNF-α  Tumour necrosis factor-α 

TSH Thyreo-stimulant hormone 

TSP  Thrombospondin 

VEGF Vascular endothelial growth factor 

VEGFR-1, -2, -3 Vascular endothelial growth factor-1, -2, -3 

Zac Zinc finger protein inducing Apoptosis and cell Cycle arrest 
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1 INTRODUCTION 

1.1 Anatomy of the pituitary gland 

The pituitary gland is a small oval body positioned on a saddle-shaped 

depression of the sphenoid bone (sella turcica) which plays a central role in the 

hormonal regulation of several processes in the human physiology. Its function is 

mainly regulated by another structure of the brain, the hypothalamus, a brain 

area localized just above the pituitary gland. 

This gland consists of three different parts: the endocrine part which 

constitutes the anterior lobe or adenohypophysis and derives embriologically 

from an evagination of the oral cavity (Rathke´s pouch) and the neuronal part 

known also as posterior lobe or neurohypophysis, derived by a downward 

extension of the hypothalamic area, which forms the hypophyseal stalk. Between 

the anterior and posterior lobes there is a third part, the intermediate lobe, which 

in rodents plays a significant role in the regulation of pigmentation but in human 

is reduced to some cells without any specific function.  

The neurohypophysis consists of nervous fibres and neuroglial cells called 

pituicytes. The fibres are the axons of neurons belonging to the hypothalamic 

paraventricular and supraoptic nuclei. Pituicytes secrete, directly in the 

fenestrated capillaries supplying the neurohypophysis, two hormones: the 

oxytocin, necessary to induce uterus contractions during delivery and the 

antidiuretic hormone, which regulates the renal water reabsorption. 

The anterior pituitary gland is composed of both endocrine and non-

endocrine cells. There are five different types of endocrine cells that, under the 

control of releasing and inhibiting hypothalamic factors, synthesize six different 

hormones. The most prevalent are the somatotrophs (around 50%) whose 

product is the growth hormone (GH), then come the corticotrophs (around 20%) 

which secrete the adrenocorticotrophic hormone (ACTH), the thyreotrophs (5%) 

which are known to secrete thyroid-stimulating hormone (TSH), the lactotrophs 
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that release prolactin and the gonadotrophs producing follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH). The activities of these hormones 

are disparate, as it can be seen from the physiologic responses they induce. GH 

promotes growth of the skeleton and soft tissues and has important metabolic 

effects. It acts directly on peripheral GH receptors or indirectly by inducing 

insulin-like growth factor I (IGF-I) synthesis in the liver. ACTH induces 

glucocorticoid secretion from adrenal cortex and is a split product of 

proopiomelanocortin, a precursor protein from which also β-lipotropic hormone, 

endorphins, encephalin, corticotropin-like immunoreactive peptide and 

melanocyte stimulating hormone, are produced. TSH is important for the 

physiological growth and function of the thyroid gland, whereas prolactin is 

necessary for the initiation and maintenance of lactation. Finally FSH and LH, 

collectively referred as gonadotrophins, are respectively known to promote 

follicular growth in the ovaries and spermatogenesis and to induce the 

development of corpus luteum. 

Approximately 5–10% of all pituitary cells is represented by a non-endocrine 

cell type: the folliculo-stellate cells (FS-cells) [Rinehart and Farquhar, 1953]. The 

name is due to their star-shaped morphology and ability to form tiny follicles. 

They do not secrete pituitary hormones and are connected to each other and to 

hormone-producing cells with gap junctions [Morand et al., 1996]. They also 

exhibit a phagocytic activity and are known to work as scavenger cells. Although 

the origin of this cell type is still unclear, they are immunopositive for S100 

protein [Nakajima et al., 1980] and glial fibrillary acidic protein [Velasco et al., 

1982], which are markers for cells of neuroectodermal origin.  FS-cells produce 

many cytokines or growth factors that control the function of neighbouring cells, 

such as, interleukin-6 (IL-6) [Vankelecom et al., 1993], leukemia inhibitory factor 

(LIF), basic fibroblast growth factor (bFGF) and vascular endothelial cell growth 

factor (VEGF) [Renner et al., 1998; Renner et al., 2004]. Nowadays, there is 

increasing evidence that anterior pituitary cells are not only regulated in a 

classical endocrine manner by hypothalamic factors and circulating peripheral 

hormones, but also by locally produced factors that act through auto- or 

paracrine mechanisms  [Renner et al., 1998; Ray and Melmed, 1997]. 
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1.2 Vascularization of normal anterior pituitary gland 

Unlike the majority of other tissues, the anterior pituitary gland, receives a 

dual blood supply (Fig. 1). The main vascular source is the hypothalamo-

hypophyseal portal system. At the same time, a direct arterial supply deriving 

from the systemic vasculature gives rise to the inferior hypophyseal artery, 

capsular vessels and middle hypophyseal artery. It is thought that this direct 

arterial input from the internal carotid artery and its basal branches may provide 

oxygen and nutritional substances to the pituitary cells, whereas the 

hypothalamic-hypophyseal portal veins provide a mean of communication 

between the hypothalamus and the adenohypophysis [Gorczyca and Hardy, 

1988]. In fact, it is through these vessels that the different releasing and 

inhibiting factors produced by the neuroendocrine cells of the hypothalamus and 

released in the blood flow of the median eminence capillaries, reach the 

endocrine cells of the anterior lobe and control their hormone secretion. The 

sinusoid-capillary network of the anterior lobe has a fenestrated layer of 

endothelial cells, as in all endocrine organs, which allows hormones and growth 

factors to diffuse into the surrounding tissue and in the systemic bloodstream 

and vice versa. 



Hypothalamus

Paraventricular nucleus
Median eminence

Posterior pituitary

To venous circulation

Arterial blood supply

Short portal veinTo venous circulation

Secretory endocrine cells

Anterior pituitary

Long portal veins

Arterial blood supply

Optic chiasm

Supraoptic nucleus

 
Figure 1. Vascularization of the pituitary gland.  A branch of the hypophyseal artery 

ramifies into a capillary bed in the lower hypothalamus, where hypothalamic hormones destined 

for the anterior pituitary are secreted. Blood from these capillaries goes into hypothalamic-

hypophyseal portal veins that branch again into another series of capillaries within the anterior 

pituitary. The vessels of this network, which carry the secreted pituitary hormones, join together 

and end into veins that, after collecting capillary blood from posterior pituitary gland, drain into 

the systemic venous blood.  

1.3 Pituitary adenomas 

Pituitary adenomas are benign neoplasms, accounting for approximately 

15% of intracranial tumours. An occult adenoma is discovered in about 25% of 

unselected autopsies. Results obtained from X-chromosome inactivation studies 

and LOH analysis showed that these tumours are monoclonal, which means that 

they initiate from a single transformed cell [Herman et al., 1990]. Pituitary 

tumours are usually benign and do not metastasize, although some of them can 

become invasive, leading to bone destruction and infiltration within the 

cavernous sinus. They can cause severe clinical symptoms due to their critical 
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location and expanding size, like headache and visual disorders, and to 

inappropriate pituitary hormone production. The clinical features associated with 

hormonal hypersecretion reflect specifically the type of endocrine cell from which 

the adenoma arises. Therefore, somatotrophinomas (ACRO) overexpress GH, 

causing gigantism in children and acromegaly in adults, which is associated with 

increased risk of hypertension, cardiac disease and diabetes; transsphenoidal 

surgical resection is the therapy chosen if the treatment with somatostatin 

analogues is not effective in suppressing GH secretion and reducing tumour 

volume. Prolactinomas (PROL), which are the most common of all functioning 

pituitary adenomas, cause amenorrhea, infertility and galactorrhea in female 

patients and impotence or infertility in males, because of the prolactin 

hypersecretion. Most prolactinomas show good response to dopamine agonists, 

although there are few cases with resistance. Reduction of dopamine- binding 

sites and absence of dopamine D2 receptors was demonstrated in prolactinomas 

from patients resistant to dopamine treatment [Caccavelli et al., 1994].  

Corticoptrophinomas (CUSH) lead to ACTH hypersecretion with consequent 

adrenal steroid overstimulation; these patients present truncal obesity, striae, 

muscle wasting, hirsutism, cardiovascular complications, osteoporosis and 

psychiatric disturbances. Transphenoidal surgery is the treatment of choice.  Pure 

gonadotrophinomas secreting intact FSH or LH are quite rare and may cause 

sexual dysfunction and hypogonadism. Thyreotrophinomas (THYR) cause a mild 

increase in thyroxine levels with inappropriate TSH secretion and consequential 

hyperthyroidism. Transphenoidal surgery is the treatment of choice, although 

octreotide administration can often normalise TSH levels and induce tumour 

shrinkage [Beck-Peccoz et al., 1996]. Non functioning pituitary adenomas 

(NFPA), also known as hormone inactive, do not secrete hormones and therefore 

have no typical hormone excess-related presentation. At diagnosis, patients have 

usually already very large tumours, presenting mass effects such as visual 

problems, neurological symptoms or disturbances related to hormone 

hyposecretion. Transphenoidal surgery is the best way to treat these tumours. 

The functional classification outlined above is not the only one used for 

pituitary adenomas. They can also be classified according to tumour size and 

local invasion (anatomical classification), or according to histological and 
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cytological features (histological classification). The anatomical classification 

(Hardy´s classification; [Hardy, 1979]) divides pituitary adenomas in four grades: 

grade I comprises the microadenomas with a diameter smaller than 10 mm; 

grade II refers to macroadenomas, bigger than 10 mm in diameter, that may 

exhibit suprasellar extension but no invasion to the surrounding bony structures; 

grade III adenomas are locally invasive tumours and grade IV refers to large 

invasive tumours that can invade, not only the bones, but also the hypothalamus 

and the cavernous sinuses and can metastasize.  

The histological classification is based on a combination of the results of 

immunohistochemistry and electron microscopy, which allows the identification of 

the pathologic cell types on the basis of their cellular hormonal content and their 

ultra-structural features. Thanks to this method it was possible to identify that 

among pituitary adenomas there are some tumours producing more than one 

hormone, i.e. some somatotrophinomas secrete both GH and prolactin (mixed 

GH-PRL adenomas and mammosomatotrophinomas), whereas some 

prolactinomas show GH reactivity (acidophilic stem cell adenomas). The most 

interesting findings are related to non functioning pituitary adenomas; most of 

these tumours were found to display reactivity for FSH, LH and/or α−subunit 

(common subunit shared by gonadotrophins and TSH), showing that the non 

functioning pituitary tumours lacking hormone reactivity are a minority. 

Furthermore, some non functioning pituitary tumours display immunoreactivity 

for ACTH (silent ACTH adenomas).  

In this study, the pituitary tumours investigated have been classified 

according to the clinical presentation and subdivided in four grades according to 

the anatomical localization and degree of invasion of the surrounding structures. 

1.4 Cell cycle and tumour development- general overview 

Cell cycle is the process by which a cell growths, replicates its genome and 

finally divides in two daughter cells. It is an event strictly controlled at different 

crucial points (restriction points), since its deregulation can lead to uncontrolled 

cell proliferation and consequently to tumour development. The cell cycle consists 
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of different phases: G1 phase, between the end of mitosis and beginning of DNA 

synthesis (S phase), in which the cell gets ready to enter into S phase by 

producing all the enzymes necessary for the replication of its genome; G2 phase 

occurs instead between DNA synthesis and mitosis (M phase), and during this 

period the cells produce the factors needed for the correct segregation of the 

chromosomes in the two daughter cells. In absence of mitogenic signals (e.g. 

growth factor binding to its receptor), the cell leaves the cell cycle and enters a 

quiescent phase called G0, where it can growth and differentiate.  

The most important restriction point in mammalian cells is in G1 phase. 

During the early G1 phase and after receiving a mitogenic signal, members of the 

cyclins D family bind and therefore activate the cyclin dependent kinases CDK 4/ 

6 [Baldin et al., 1993], that will phosphorylate the members of the 

retinoblastoma (Rb) protein family. The full phosphorylated form of these 

proteins (cyclin E/ CDK2 complex completes Rb phosphorylation in the late G1 

phase) releases the E2F transcription factor [Weintraub et al., 1992], which can 

subsequently bind to the promoters of several growth-promoting genes, such as 

c-myc, c-mib, thymidine kinase, DNA polymerase α and cyclin A [Sala et al., 

1994]. The latter protein sequesters CDK-2 from cyclin E and allows the 

progression through the S phase to G2 phase [Jeffrey et al., 1995]. During this 

phase, the activated cyclin B/ CDK1 complex induces the expression of genes 

involved in the production of the metaphase promoting complex, which plays an 

important role in mitosis [Pines and Hunter, 1989].  

The negative control on cell cycle progression is exerted by the cyclin 

dependent kinase inhibitors, which bind to CDK and inhibit their activity 

[Pavletich, 1999]. The members of the INK family (p16, p15, p19) inhibit CDK 4/ 

6 in the early G1 phase [Serrano et al., 1999], whereas members of the WAF/KIP 

family (p21, p27, p57) inhibit CDK2 activity in the late G1 phase [Nakayama and 

Nakayama, 1998]. 

Other factors are involved in the negative regulation of cell cycle progression. 

In the M phase for example, the protein securin binds and therefore prevents the 

protease separin to digest the protein cohesin, important for tethering the sister 

chromatides during metaphase. The degradation of securin triggers the anaphase 

and occurs only after activation of Anaphase Promoting Complex [Zou et al., 
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1999]. The product of the pituitary tumour transforming gene (PTTG) is identical 

to the securin protein [Kakar and Jennes, 1999]. Members of the p53 family play 

also a role in cell cycle progression control. These transcription factors are 

induced by oncogenes, DNA damage and other stress signals, and promote the 

transcription of several genes involved in cell cycle control (e.g. p21), DNA repair 

and programmed cell death (apoptosis) [reviewed in Vousden and Lu, 2002]. 

 

Tumour development and growth are thought to be the outcome of a series 

of different mutations occurring in a somatic cell, leading to progressive 

acquisition of proliferative advantage compared to non-mutated cells. These 

mutations can affect different genes essential for cell survival, belonging to two 

major categories: proto-oncogenes and tumour suppressor genes. Proto-

oncogenes have an important role in the regulation of cell proliferation, 

differentiation and apoptosis. They usually act as positive regulators of cell 

growth and in cancer they can be activated by gain-of-function point mutations, 

or overexpressed because of gene amplification, translocation of the proto-

oncogene in an area of actively transcribed chromatin, increase in promoter 

activity or protein stability. Other causes of oncogene activation in cancer can be 

translocation of the proto-oncogene near to another gene, whose fusion lead to 

the production of a protein with transforming properties [reviewed in Munger, 

2002]. Mutations affecting proto-oncogenes are defined as dominant since the 

mutation in one allele is sufficient to determine the phenotype.  

On the other hand, tumour suppressor genes inhibit cell proliferation and are 

mostly involved in the inhibition of cell cycle progression, induction of cell 

differentiation and programmed cell death and in the assemblement of the 

mitotic machinery. They acquire transforming potential loosing their anti-

proliferative properties. This can be due to loss-of-function mutations, loss of a 

big chromosomic portion or to epigenetic alterations, like hypermethylation of 

cytosine-guanine islands in promoters with consequent gene silencing [Baylin et 

al., 1998]. Mutations occurring in tumour suppressor genes are recessive, so in 

order to loose their growth inhibiting phenotype, both alleles must be inactivated. 
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1.5 Pituitary tumour genesis 

Pituitary tumour development results from both intrinsic alterations of the 

pituitary gland cells, as well as from deregulation of regulatory factors like 

hypothalamic releasing and inhibitory hormones, peripheral hormones and 

paracrine growth factors. 

There are two main theories about pituitary tumour genesis. One implies the 

occurring of a mutational transforming event in a single cell that then will 

proliferate under the effect of hormones and growth factors, originating a 

monoclonal tumour. The second theory supports the fact that hypothalamic 

hormones and growth factors induce the proliferation of target pituitary 

(hyperplasia) in which a mutational event in a hyperplastic cell will lead to 

tumour formation. Rarely, a further mutational event can induce a malignant 

transformation leading to pituitary carcinoma development. LOH and X-

inactivation experiments support the monoclonal theory, although there are 

reports of different LOH patterns in recurring pituitary tumours, meaning that 

they are different clonal entities from the original tumours, even though they are 

still monoclonal themselves [Clayton and Farrel, 2001]. 

The alterations that occur in pituitary cells and trigger pituitary tumour 

growth involve, as for other tumours types, activation or overexpression of proto-

oncogenes or inactivation or loss of tumour suppressor genes. Overexpressed 

oncogenes described in pituitary tumour genesis are: G proteins [Bertherat et al., 

1995; Weinstein et al., 1991], cyclin D1 [Hibberts et al., 1999], growth factors 

and their receptors (EGF, TGF-α, with their common receptor EGFR 

[Kontogeorgos et al., 1996; Theodoropoulou et al., 2004 a], FGF-2 with its 

receptors FGFR-1, -2, -3 [Ezzat et al., 1995; Ezzat et al., 2002]), PTTG [Pei, 

2000; McCabe et al., 2002; McCabe et al., 2003]. While, concerning the tumour 

suppressor genes lost or deregulated in pituitary adenomas: MEN-1 encoding for 

the protein menin [Theodoropoulou et al., 2004 b], Rb [Pei et al., 1995; Simpson 

et al., 2000], p16 [Woloschack et al., 1997], p27 [Lidahr et al., 1999] and Zac 
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encoding for a zinc finger transcription factor [Pagotto et al., 2000], have been 

reported.  

1.6 PI3K/Akt signalling pathway and its involvement in tumour 

development 

The PI3K/Akt signalling pathway is activated by many types of cellular stimuli 

and regulates fundamental cellular functions, such as proliferation, growth and 

survival (Fig. 2) [Datta et al., 1999; Vivanco and Sawyers, 2002]. The 

development and progression of cancer are the outcomes of a disturbance in the 

balance between cell proliferation and apoptosis and PI3K/Akt signalling is 

involved in both these events [Testa and Bellacosa, 2001; Nicholson and 

Andersons, 2002]. Tyrosine kinase receptors activate this pathway by binding the 

PI3K regulatory subunit (p85) to the phosphorylated tyrosine of their 

cytoplasmatic domain [Vanhaesebroeck and Waterfield, 1999]. This leads to the 

activation of the PI3K catalytic subunit (p110) which converts the plasmatic 

membrane phospholipid phosphatidylinositole-4,5 bisphosphate (PI(4,5) P2) to 

phosphatidylinositole-3,4,5 trisphosphate (PI(3,4,5) P3). The major negative 

regulator of this pathway is the PTEN phosphatase that catalyzes the opposite 

reaction [Myers and Tonks, 1997]. PI (3,4,5) P3 causes a conformational change 

in Akt, resulting in the exposure of its two main phosphorylation sites (Thr 308 in 

the kinase domain and Ser 473 in the C-terminal regulatory domain) [Alessi et 

al., 1996]. PDK1 phosphorylates Akt at Thr 308 and stabilizes its active 

conformation. Akt is fully activated after phosphorylation at Ser 473 within the C-

terminus, although the identity of the kinase catalyzing this step is still unknown.  

Activated Akt modulates the function of several substrates involved in the 

regulation of cell proliferation and apoptosis [Yao and Cooper, 1995], such as 

GSK-3β [Cross et al., 1995] and cyclin dependent kinase inhibitors like p21 [Zhou 

et al., 2001] and p27 [Liang et al., 2002]. Inhibition of GSK-3β by Akt-mediated 

phosphorylation leads to a decrease in the degradation rate of cyclin D1 [Diehl et 

al., 1998], which is then free to bind to CDK4-6, generating active holoenzymes 

helping the inactivation of the Rb protein growth-suppressive function [reviewed 
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in Weinberg, 1995]. In addition, Akt is known to block the anti-proliferative 

action of p21 and p27, by phosphorylating them and retaining them in the 

cytoplasm, where they cannot form a complex with and deactivate CDK1-cyclin D 

complex. Concerning the Akt involvement in the control of apoptosis, it was 

reported that Akt phosphorylates CREB protein [Du and Montminy, 1998] which 

then induces the transcription of anti-apoptotic genes like Bcl-2 [Pugazhenthi et 

al., 2000]. 

PI3K signalling pathway can be overactivated by several events like: 

overexpression or constitutive activation of tyrosine kinase receptors, as it was 

demonstrated in breast, ovarian, colon cancers and glioblastomas overexpressing 

ErbB2, PDGFR-α and FGFR-1 [reviewed in Blume-Jensen and Hunter, 2001]; by 

activating mutations or gene amplification of its components, as it was shown for 

PIK3CA gene (encoding P110 α catalytic subunit of PI3K) which is overexpressed 

in human colon, gastric, breast and lung cancers [Samuels et al., 2004], and for 

the different Akt isoforms genes, which are amplified in glioblastoma and 

pancreatic cancers [Knobbe and Reifenberger, 2003; Cheng et al., 1996], or by 

inactivating mutations in PTEN which is the negative regulator of the pathway, as 

reported in human colorectal cancer [Goel et al., 2004].  

PI3K is a necessary signalling component of VEGF-mediated cell cycle 

progression in human umbilical endothelial cells [Thakker et al., 1999]. In 

different cell types, activation of this pathway by VEGF promotes the growth and 

survival in melanoma cells [Graells et al., 2004] and in acute myeloid leukemia 

cells [List et al., 2004]. 

There are not many data about the proliferative and anti-apoptotic effects of 

the PI3K pathway in pituitary tumour cells, except that IGF-1 induced activation 

of the PI3K/Akt pathway inhibits apoptosis in cultured rat pituitary cells 

[Fernandez et al., 2004].  



 
Figure 2. The PI3/Akt signalling pathway. The binding of the growth factors to their 

receptor tyrosine kinase stimulates the PI3K comprised of p85 and p110 subunits. PI3K converts 

PI(4,5) P2 to PI(3,4,5)P3, whereas PTEN reverses this reaction. Akt translocates to the cell 

membrane and interacts with PI3(3,4,5)P3 via its PH domain, being phosphorylated at two 

residues (Thr304 and Ser473) by PDK1/2. Once active, Akt controls fundamental cellular 

processes, such as, the cell cycle and cell survival by phosphorylating and activating (i.e. CREB) 

or deactivating (i.e. GSK3-β) several signalling components.  

1.7 Angiogenesis and lymphangiogenesis- general overview  

1.7.1 Angiogenesis 

Capillaries are the simplest and smallest units of the vascular apparatus. 

Although there are several varieties of capillaries each designed for a particular 

function, they are all composed of a single layer of endothelial cells surrounded 

by a basal membrane that is encircled by one or two layers of pericytes. Larger 

vessels show multiple layers of cellular and extracellular materials: tunica intima 

which consists of the endothelium, the basal membrane and internal elastic 
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tissue; the tunica media composed by a layer of smooth muscle, collagen III 

reticular fibres, elastin and proteoglycans and the tunica adventitia that consists 

in external elastic tissue and fibrous connective tissue. The thickness of the 

tunica media is greater in arteries than in veins, since they must stand higher 

blood pressure. The blood vessel endothelial cells share many common features 

(flat morphologic shape, tight intercellular junctions and continuous basement 

membrane) but they also display some remarkable differences according to their 

localization in the organism, e.g. capillaries in heart, muscles, skeleton, brain 

have continuous endothelium, whereas capillaries in endocrine and exocrine 

glands, choroid plexus and intestinal villi have fenestrations [Pasqualini et al., 

2002].  

There are two main processes that lead to vessel formation: vasculogenesis 

and angiogenesis. Vasculogenesis takes place during embryogenesis and involves 

the differentiation of endothelial cells from angioblasts to endothelial cells that 

assemble into a vascular labyrinth [Risau, 1997]. 

Angiogenesis is defined as the development of new blood vessels from pre-

existing vasculature. It is a complex multistep process, involving stimulation of 

various pro-angiogenic growth factors production and reduction of angiogenesis 

inhibitors. Known pro-angiogenic growth factors are: VEGF [Ferrara, 1995], FGF-

2 [Slavin, 1995], TGF- α [Schmitt and Soares, 1999], proliferin [Jackson et al., 

1994], PDGF [Lindahl et al., 1999], IL-8 [Heidemann et al., 2003], HGF 

[Matsumoto and Nakamura, 1996]. While, angiogenesis can be inhibited by: 

angiostatin [Cao et al., 1998] and endostatin [O´Really et al., 1997], which are 

proteolytic fragments of plasminogen and collagen XVIII respectively, 

thrombospondins [Lawler, 1986] and LIF [Ferrara et al., 1992 b].  

The process starts when activated endothelial cells release specific 

proteases, which lead to degradation of the extracellular matrix surrounding the 

vessels, followed by migration and proliferation of endothelial cells. They are then 

reorganized into tubular structures which make connections with other newly 

formed vessels, leading to the formation of an anastomotic network [Risau, 

1997]. Physiological angiogenesis during adult life is mainly restricted to the 

female reproductive cycle and wound healing, while this process is usually 

inhibited in adult normal tissues [Canfield and Schor, 1995]. In pathological 
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conditions, like psoriasis [Nickoloff et al., 1994], retinal neovascularization 

[Sharp, 1995], arthritis [Colville-Nash and Scott, 1992] and cancer [Folkman, 

1990; Hanahan and Folkman, 1996], angiogenesis becomes activated. This 

process plays a crucial role in tumour growth and development by supplying 

nutrients and oxygen to malignant cells and removing the catabolic substances 

[Folkman and Shing, 1992]. Moreover, the degradation of extracellular matrix, 

which takes place during angiogenesis through the action of matrix 

metalloproteinases, allows tumour invasion of surrounding structures, and the 

new blood vessels provide a way for metastatic tumour cells to enter the 

systemic circulation [Folkman, 1990; Gasparini and Harris, 1995]. In both 

physiological and pathological contexts, the extent of angiogenesis can be 

represented as microvessel density measured by counting vessels identified by 

positive immunostaining with antibodies to different blood vessel endothelial cell 

markers such as CD31, Factor VIII-related antigen, CD34 and Ulex europaeus 

agglutinin-1. 

1.7.2 Lymphangiogenesis 

The lymphatic system consists of a one-way, open-ended, complex network 

of vessels collecting and transporting lymph from peripheral tissues to the venous 

system. Lymph is composed of interstitial fluid components, metabolites and 

plasma proteins extravasated from blood capillaries and cells deriving from the 

immune system [Karkkainen et al., 2002]. Lymphatic vessels are lined by one 

layer of endothelial cells that are non-fenestrated and slightly allow the passage 

of large macromolecules, pathogens and migrating cells of the immune system. 

These vessels harbour a discontinuous or completely absent basal membrane, 

are non-contractile and are bound to extracellular matrix by elastic fibres which 

play a role in the lymphatic flow [Swartz, 2001]. The growth of lymphatic vessels 

is called lymphangiogenesis and occurs after tissue injury, obstruction or damage 

of lymphatic vessels, in the adult tissues. During the embryonic development, 

these vessels are thought to sprout from the embryonic veins in the jugular and 

perimesonephric regions, after the blood vascular system has been established 

[Kaipanen et al., 1995]. Mesodermal lymphangioblasts may also contribute to the 
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development of the lymphatic system [Wilting et al., 2000]. Typical lymphatic 

markers are VEGFR-3, that becomes restricted to the lymphatic endothelium 

during development [Kaipanen et al., 1995], the podocyte cell-surface 

mucoprotein podoplanin [Breiteneder-Geleff et al., 1997] and LYVE-1 that is 

related to CD44, which is the major receptor for hyaluronic acid in epithelial, 

mesenchimal and lymphoid cells [Banerji et al., 1999]. VEGF-C, which is a 

member of the VEGF family, binds specifically to VEGFR-3 and induces lymphatic 

endothelial cell proliferation in vitro [Oh et al., 1997] and lymphatic hyperplasia 

in vivo [Jeltsch et al., 1997]. 

Apart from roles in immunity and fluid homeostasis, the lymphatics are an 

important way for the early metastastatic spread of tumours. The occurrence of 

intratumour lymphangiogenesis has been demonstrated in several works [Dadras 

et al., 2003; Stacker et al., 2001; Skobe et al., 2001]. 

1.8 The vasculature and angiogenesis of pituitary adenomas  

A direct extraportal arterial supply was identified in many pituitary adenomas 

and it is hypothesized that it may predispose to pituitary tumour development, 

since systemic blood contains low levels of hypothalamic hormones [Gorczyca 

and Hardy, 1988; Schechter et al., 1988]. From the ultrastructural point of view, 

the adenomatous capillaries were reported to have a thickened and swollen 

endothelium, devoid of fenestrations, with few cytoplasmic organelles, numerous 

pinocytic vesicles, multilayered and fragmented basal membrane and few 

sprouting capillaries [Erroi et al., 1986; Schechter, 1972]. 

 

Angiogenesis in pituitary adenomas, as well as, in other endocrine 

neoplasms, probably reflects the basic observations that tumours require 

neovascularization if they grow beyond 2 mm3 [Jugenburg et al., 1995]. 

However, because normal endocrine cells are usually highly vascularized, the 

changes that occur during neoplastic development may be different from that 

taking place in some other tissues that are normally less vascularized [Lloyd et 

al., 2003].  Actually, reduced vascularization in pituitary tumour parenchyma, 
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compared to normal pituitary gland was reported by different groups [Schechter, 

1972; Jugenburg et al., 1995; Turner et al., 2000 a]. This finding is quite unusual 

for tumours, but it may explain the slow growth rate of pituitary adenomas. An 

alternative explanation could be that the low growth rate of these tumours may 

not influence significantly the metabolic demand, so that vascularization does not 

limit their growth. Still, several studies have shown that even pituitary 

angiogenesis can be related to tumour behaviour and outcome. One of the first 

studies about angiogenesis in pituitary adenomas showed that in Fisher 344 rats, 

estrogen-induced prolactin-secreting pituitary tumours develop a new arterial 

supply, bypassing the normal hypothalamo-hypophyseal portal system and, in 

this way, escaping the dopamine-mediated inhibition of prolactin secretion [Elias 

and Weiner, 1984]. In addition, it has been reported that human 

macroprolactinomas are significantly more vascular than microprolactinomas 

[Turner et al., 2000 a]. The same observation was done comparing invasive 

prolactinomas to non-invasive tumours [Turner et al., 2000 b] and pituitary 

carcinomas to pituitary adenomas [Jugenburg et al., 1995; Turner et al. 2000 c; 

Vidal et al., 2001].  

1.9 VEGF and its receptors 

1.9.1 VEGF family 

VEGF is one of the most important angiogenic factors. It is a member of the 

VEGF family together with VEGF-B, VEGF-C, VEGF-D, VEGF-E (a sheep 

parapoxvirus open reading frame encoding a VEGF-related protein [Lyttle et al., 

1994]) and Placenta Growth Factor (PlGF) (Fig. 3).  In humans, the most 

prevalent form of VEGF (also known as VEGF-A) is actually translated from six 

VEGF mRNA species encoding different VEGF isoforms of 121, 145, 165, 183, 

189, and 206 amino acids (VEGF121–206) that are produced by alternative splicing. 

These isoforms differ in their ability to bind to heparan sulphate proteoglycans in 

the extracellular matrix [Leung et al., 1989; Tischer et al., 1989]. VEGF121, 
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VEGF165 and VEGF189 are the major secreted forms [Robinson and Stringer, 2001] 

and since mice expressing only VEGF164 (murine homologue of VEGF165) are 

viable and healthy [Stalmans et al., 2002], VEGF165 can be considered as the 

principal effector of VEGF actions. VEGF plays a key role in both physiological and 

pathological angiogenesis by increasing the proliferation and migration of 

endothelial cells [Ferrara and Bunting, 1996], but also the permeability of vessels 

by inducing pores and fenestration in the endothelium [Esser et al., 1998]. In 

addition, VEGF is a potent survival factor for endothelial cells during physiological 

and tumour angiogenesis and it was shown to induce the expression of the 

antiapoptotic protein Bcl-2 in these cells [Gerber et al., 1998]. Besides its effect 

on angiogenesis, VEGF can play a role in other physiological processes: it induces 

mobilization of haematopoietic stem cells from the bone marrow, monocyte 

chemoattraction, osteoblast-mediated bone formation and neuronal protection 

[Ferrara et al., 2003; Storkebaum et al., 2004]. Furthermore, it stimulates 

inflammatory cell recruitment and promotes the expression of proteases 

implicated in pericellular matrix degradation that occurs in angiogenesis [Pepper 

et al., 1991; Unemori et al., 1992]. 

During embryogenesis, VEGF is initially mainly expressed at sites of active 

vasculogenesis and angiogenesis [Weinstein, 1999] in the anterior part of the 

mouse embryo and directs the migration of VEGFR-1 and VEGFR-2 positive cells 

in the embryonic tissues [Hiratsuka et al., 2005]. The outstanding role of this 

growth factor during embryogenesis is confirmed by the finding that homozygous 

VEGF knockout mice die at day 8 -9 of embryonic life from defects in the 

development of blood islands, endothelial cells and vessels [Ferrara, 2004]. 

1.9.2 VEGF receptors 

VEGF activities are mediated by high-affinity receptor tyrosine kinases 

expressed primarily in endothelial cells. These are: VEGFR-1 (Flt-1) and VEGFR-2 

(Flk-1/KDR), which are mainly expressed by blood vessel endothelial cells and 

VEGFR-3 (Flt-4) expressed in lymphatic endothelial cells (Fig. 3) [de Vries et al., 

1992; Terman et al., 1992; Kaipainen et al., 1995]. These receptors are 

characterised by seven extracellular immunoglobulin-like domains, which bind the 
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growth factor, followed by a single membrane-spanning region and a conserved 

intracellular tyrosine kinase domain interrupted by a kinase insert sequence 

[Shibuya et al., 1990; Matthews et al., 1991; Terman et al., 1991; Pajusola et al., 

1992]. These receptors are themselves enzymes and once activated from the 

ligand binding, they dimerize and undergo autophosphorylation. This step 

enhances the capacity of the receptor to directly activate other target proteins by 

phosphorylating them on specific tyrosine residues.  

Each VEGF receptor binds specifically the different members of VEGF family: 

VEGF-A binds with high affinity to VEGFR-1 and VEGFR-2, VEGF-B and PlGF bind 

selectively  to VEGFR-1, VEGF-C and VEGF-D bind to VEGFR-2 and VEGFR-3 and 

VEGF-E binds exclusively to VEGFR-2 (Fig. 3) [Vaisman et al., 1990;Park et al., 

1994; Mustonen and Alitalo, 1995].  

VEGF and its receptors are the primary factors establishing the typical 

angiogenic phenotype found in tumours. Their expression correlates with the 

degree of vascularization of many experimental and clinical tumours, as detected 

by ISH and IHC [Brown et al., 1993; Brown et al., 1995; Hatva et al., 1995; Plate 

et al., 1992; Takahashi Y. et al., 1995]. Tumour growth- dependent hypoxia and 

activated oncogenes up-regulate VEGF levels in the neoplastic cells, and hypoxia, 

in combination with the locally increased VEGF concentrations, up-regulates 

VEGFR-1 and VEGFR-2 on tumour endothelial cells [Kremer et al., 1997; Plate et 

al., 1992; Shweiki et al., 1992]. VEGF receptors were also detected at high levels 

in several tumour cell types. Prostate carcinoma [Jackson et al., 2002], malignant 

mesothelioma [Strizzi et al., 2001], pancreatic [Von Marschall et al., 2000], 

gastric [Tian et al., 2001], bladder [Wu et al., 2003] and breast cancer cells [De 

Jong et al., 1998] can express high levels of VEGFR-1 and VEGFR-2. VEGF was 

found to induce proliferation in all these cells, suggesting a direct 

autocrine/paracrine effect of VEGF on tumour cell growth.  

1.9.2.1 VEGFR-1 

VEGFR-1 is mostly expressed by endothelial cells, but it can also be found in 

other cell types, like trophoblast cells, monocytes and renal mesangial cells 

[Charnock-Jones et al., 1994; Barleon et al., 1996; Takahashi T. et al., 1995]. 
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The function and signalling properties of VEGFR-1 can be different depending on 

the developmental stage and the cell type considered. 

During vascular development, VEGFR-1 works as ´decoy` receptor, since the 

number of endothelial progenitors lacking VEGFR-1 increases [Fong et al., 1999] 

implying a negative regulatory role for this receptor. Nevertheless, the VEGFR-1 

´decoy´function was suggested to take place also during angiogenesis in adult. 

The tyrosine autophosphorylation of this receptor in response to VEGF was found 

to be weak [Waltenberger et al., 1994] and the binding affinity of VEGF for 

VEGFR-1 is ten times higher than for VEGFR-2 [Terman et al., 1992; Quinn et al., 

1993]. VEGFR-1 also exists in a soluble form that lacks the transmembrane and 

intracellular part of the receptor and can sequester VEGF preventing its binding 

to other receptors [Carmeliet et al., 2001].  

Several studies report VEGFR-1 having an inhibitory activity: a repressor 

motif has been described in its juxtamembrane region that impairs PI3K 

activation and endothelial cell migration in response to VEGF [Gille et al., 2001]. 

Furthermore VEGFR-1 was found to inhibit VEGFR-2 induced endothelial cell 

proliferation [Zeng et al., 2001]. Nonetheless VEGFR-1, when stimulated with 

PlGF, is able to induce tyrosine receptor autophosphorylation, mitogenicity in 

endothelial cells and expression of enzymes involved in the degradation of the 

extracellular matrix [Landgren et al., 1998].  Moreover its activation by PlGF was 

reported to result in intermolecular transphosphorylation of VEGFR-2, thereby 

amplifying VEGF-driven angiogenesis through VEGFR-2 [Autiero et al., 2003]. In 

porcine aortic endothelial cells, VEGFR-1 was able to transduce signals for 

increased DNA synthesis and proliferation [Ito et al., 2001].  

Activation of VEGFR-1 by PlGF, can induce, in non-endothelial cells, a broad 

spectrum of signals resulting in: chemotaxis and expression of inflammatory 

cytokines, through PI3K/Akt activation in monocytes [Selvaraj et al., 2003], 

reconstitution of haematopoiesis through recruiting hematopioetic stem cells 

[Hattori et al., 2002] and upregulation of matrix metalloproteinases by vascular 

smooth muscle cells [Wang and Keiser, 1998].  
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1.9.2.2 VEGFR-2 

Mitogenesis, chemotaxis, cell survival and changes in the morphology of 

endothelial cells are mainly mediated by VEGFR-2 [Quinn, 1993; Waltenberger, 

1994]. The mitogenic signal is induced by activation of the Raf-Mek-Erk pathway 

[Takahashi et al., 1999], while the antiapoptotic effects and chemotaxis are 

mediated by PI3K/Akt activation [Gerber et al., 1998 b; Gille et al., 2001]. VEGF 

binding to VEGFR-2 also results in activation of several integrins, which are 

adhesion molecules involved in angiogenesis, in a PI3K/Akt dependent manner 

[Byzova et al., 2000]. Apart from being expressed in endothelial cells, VEGFR-2 is 

also found in haematopoietic stem cells, where it increases their survival 

[Larrivee et al., 2003], and in retinal progenitor cells, where it plays a critical role 

in neurogenesis and vasculogenesis [Katoh et al, 1995; Yang and Cepko, 1996].   

The key role of VEGFR-2 in developmental angiogenesis and haematopoiesis 

has been confirmed by the observation that knockout mice for VEGFR-2 die at 

8,5-9,5 days of embryonic life, due to lack of development of blood islands, 

embryonic vasculature and haematopoietic cells [Shalaby et al., 1997].  

1.9.2.3 Neuropilin-1 

The functional VEGF–VEGFR-2 complex includes neuropilins [Soker et al., 

1998], which are ubiquitous membrane-bound molecules, also implicated in axon 

guidance by binding to the collapsin/ semaphorin family members [Neufeld et al., 

2002]. Neuropilin-1 is the most important member of the family and is essential 

for the development of vascular system [Kawasaki et al., 1999]. However, 

neuropilins do not have a direct signalling function, since endothelial cells 

expressing neuropilin-1 but not VEGFR-2, are not able to respond to any VEGF 

isoform. This observation suggests that neuropilin-1 is not a signalling receptor 

for VEGF but it rather acts as a coreceptor for VEGFR-2, stabilizing the VEGF–

VEGFR-2 complex and enhancing the angiogenic activity of VEGF [Soker et al., 

1998]. A truncated soluble neuropilin-1 form, lacking the transmembrane and 

cytoplasmatic domains, was identified, and functions as a VEGF165 antagonist, 

preventing its binding to the other VEGF receptors [Gagnon et al., 2000].  
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1.9.2.4 VEGFR-3 

VEGFR-3 is characterized by distinct structural features, including a cleavage 

within the fifth extracellular immunoglobulin loop and a disulfide bridge keeping 

together the two parts of the extracellular domain [Pajusola et al., 1994]. During 

embryonic life, VEGFR-3 deficient mice die at the 10,5 day of gestation, because 

although vasculogenesis and angiogenesis are normal, large blood vessels are 

abnormally organized with defective lumens, leading to fluid accumulation in the 

pericardial cavity and cardiovascular failure. Thus, VEGFR-3 has an essential role 

in the development of the embryonic cardiovascular system, before the 

emergence of the lymphatic vessels [Dumont et al., 1998]. On the other hand, in 

the post-natal life, VEGFR-3 expression is detected primarily in lymphatic 

endothelial cells, but also in fenestrated capillaries of several organs including the 

bone marrow, splenic and hepatic sinusoids, kidney glomeruli and endocrine 

glands (pituitary gland included), where it is supposed to be involved in 

regulating the permeability of vessels [Partanen et al., 2000]. 

Activation of VEGFR-3 by VEGF-C and VEGF-D binding induces proliferation, 

migration and survival in lymphatic endothelial cells [Makinen et al., 2001]. 

However, the activities of this factor are not restricted to lymphatic endothelial 

cells, since it was observed that VEGFR-3 is, to some extent, also expressed in 

the blood vessel endothelial cells lining the capillaries adjacent to epithelial 

tissues [Witmer et al., 2002]. This expression is induced in proliferating blood 

vessel endothelial cells [Hamada et al., 2000], for example in the granulation 

tissue of healing wounds, and in the capillary endothelium of human gliomas and 

colon carcinomas that are known to be devoid of lymphatic vessels [Witmer et 

al., 2001]. A considerable body of literature suggests that in tumours, VEGFR-3 

and its ligands VEGF-C and VEGF-D expression correlates with metastasis to 

regional lymph nodes and poor prognosis. For example  VEGFR-3 expression is 

associated with tumour progression and may play an important role in facilitating 

lymphatic spread of  prostatic carcinoma [Li et al., 2004], while in cervical 

carcinogenesis a switch to the lymphangiogenic phenotype may occur at the 

most aggressive stage [Van Trappen et al., 2003]. In lung cancer, VEGF-C and 

VEGFR-3 are related to the lymphangiogenesis and angiogenesis, as well as to its 

occurrence and development [Li et al., 2003]. 



Similar to the other VEGF receptors, VEGFR-3 was found to be expressed 

directly by some tumour cells. In small cell lung carcinoma cell line, VEGFR-3 was 

detected and found to be phosphorylated by VEGF-D, which also induced cell 

proliferation [Tanno et al., 2004]. In human colorectal cancer expressing VEGF-C, 

a positive correlation was reported between VEGFR-3 expression in tumour cells 

and poor overall survival [Witte et al., 2002].  

Altogether these reports suggest that VEGFs promote cancer growth not only 

by stimulating angiogenesis, but also by acting on receptors present on the 

cancer cells themselves. 
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Figure 3. VEGF receptors and their ligands. VEGFR-1 and VEGFR-2 have seven extracellular 

immunoglobulin homology domains whereas in VEGFR-3, the fifth immunoglobulin domain is 

cleaved into disulfide-linked subunits. The extracellular domain of VEGFR-1 is also expressed as a 

soluble protein. Members the VEGF family: VEGF-A, -B, -C, -D, -E and PlGF bind in specific 

patterns to the different VEGF receptors. PlGF and VEGF-B are selective ligands for VEGFR-1, 
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whereas VEGF-A binds to both VEGFR-1 and VEGFR-2. VEGF-C and VEGF-D interact with both 

VEGFR-3 and VEGFR-2. On the other hand, VEGF-E binds only VEGFR-2. The non-tyrosine kinase 

transmembrane protein neuropilin-1 acts as a co-receptor for certain isoforms of VEGF-A. 

Although both VEGFR-1 and VEGFR-2 are expressed in blood vessel endothelium, biological 

angiogenic activities are transduced mainly through VEGFR-2. VEGFR-1 is also expressed on 

monocytes and its activation leads to chemotaxis and activation of proteases required for basal 

membrane degradation. VEGFR-3 is mainly expressed in lymphatic endothelium and is involved in 

lymphangiogenesis. 

1.10 VEGF and its receptors in normal and adenomatous pituitary 

There are many studies reporting that VEGF is secreted by normal and 

neoplastic anterior pituitary cells [Lloyd et al., 1999; Vidal et al., 1999; Ochoa et 

al., 2000; Onofri et al., 2004; Lohrer et al., 2001].  

Although unanswered questions remain, regarding the functional meaning of 

VEGF expression in the normal adenohypophysis, it is conceivable that VEGF 

plays a role both in the formation of pituitary portal vessels during foetal life and 

in maintenance of their differentiated state in adult animals [Ferrara et al., 1992 

a]. Originally, VEGF was identified to be secreted by pituitary FS- cells 

[Gospodarowicz et al., 1989] but was later also detected in secretory granules of 

the normal pituitary cells. Since VEGF co-localized with all the adenohypophyseal 

hormones, it was also suggested that it might affect the endocrine activity of 

pituitary cells. The anterior pituitary endocrine cells that showed the highest 

percentage of VEGF immunostaining were somatotrophs, corticotrophs and FS- 

cells [Vidal et al., 1999]. The subcellular distribution of VEGF indicates that it can 

be simultaneously released with the various pituitary hormones and affects 

perhaps vascular permeability facilitating the transport of pituitary hormones 

across the capillaries [Vidal et al., 2002].  

Expression of VEGF was reported in various pituitary adenoma cell lines and 

even in pituitary adenoma cells in primary culture [Lohrer et al., 2001; Borg et 

al., 2005]. VEGF is involved in pituitary neovascularization in estrogen-treated 

rats and in the pathogenesis of prolactinomas [Banerjee et al., 1997; Banerjee et 

al., 2000]. Indeed, the overexpression of VEGF and its receptor Flk-1/KDR was 
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linked to prolactinoma development in this animal model [Banerjee et al, 1997].  

In humans, it was reported that VEGF protein expression is higher in pituitary 

carcinomas than in adenomas [Lloyd et al., 1999]. Concerning the expression of 

VEGF in pituitary adenomas, there are conflicting reports. One study showed that 

VEGF mRNA expression is higher in pituitary adenomas compared to the normal 

pituitary gland, probably due to PTTG action [McCabe et al., 2002]. On the other 

hand, Lloyd and colleagues reported a stronger VEGF immunoreactivity in normal 

pituitary compared to pituitary adenomas [Lloyd et al., 1999], which might be 

consistent with the decreased vascularity detected in pituitary adenomas 

[Schechter, 1972; Jugenburg et al., 1995; Turner et al., 2000 a]. A third group 

reported no significant difference in VEGF immunostaining between normal and 

tumoural human pituitary tissues [Viacava et al., 2003]. 

The published literature does not contain many studies about VEGF receptors 

expression in normal and tumoural pituitary gland. VEGFR-2 was detected by IHC 

in the blood vessel endothelial cells of rodent normal and adenomatous pituitary, 

and its expression was significantly elevated after estrogen treatment [Banerjee 

et al., 1997]. Another study located VEGFR-2 in both endothelial and anterior 

pituitary cells, especially in GH- and prolactin-secreting cells, as well as, in GH3 

mammosomatotrophinoma cell line [Vidal et al., 2002]. No immunohistochemical 

studies on VEGFR-2 localization in human normal and adenomatous pituitary are 

available. The study of a large cohort of human pituitary adenomas, reported 

VEGFR-2 overexpression in all the tumours analyzed (especially NFPA) compared 

to normal pituitaries [McCabe et al., 2002]. A brief report showed VEGFR-2 

immunoreactivity in ACTH and LH/FSH secreting cells in normal human pituitary, 

as well as, in pituitary adenomas (mainly prolactinomas and gonadotrophinomas) 

[Lloyd et al., 2003].  

VEGFR-1 was initially identified in blood vessel endothelial cells of sheep 

pituitary [Jabbour et al., 1997], but later studies reported VEGFR-1 

immunoreactivity also in ACTH-secreting cells of the normal human pituitary. In 

pituitary adenomas, VEGFR-1 was found in corticotrophinomas, 

gonadotrophinomas and NFPA tumour cells [Lloyd et al., 2003]. VEGFR-1 

transcription was found to be significantly downregulated by TGF-β treatment in 

the human gonadotrophinoma cell line HP75 [Horiguchi et al., 2004]. 
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The number of studies on VEGFR-3 and neuropilin-1 in the pituitary gland is 

still quite restricted. This VEGFR-2 co-receptor was found to be overexpressed in 

estrogen-induced rat pituitary tumour cells and in the GH3 cell line, compared to 

normal rat pituitary cells, and this was associated with substantially enhanced 

tumour angiogenesis [Banerjee et al., 2000]. VEGFR-3 expression was detected 

in the blood capillary endothelial cells of the human foetal and adult anterior 

pituitary, as well as, in endothelial cells of fenestrated capillaries of tissues like 

thyroid and parathyroid glands, adrenal glands, spleen and kidneys, in which 

extensive molecular exchange occurs across the blood vessel wall [Partanen et 

al., 2000]. 
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2 AIM OF THE STUDY 

There is a large body of evidence claiming that angiogenesis plays a role in 

tumour growth and development through VEGF, which is one of the most 

powerful angiogenic factors. 

However, the few studies available, about the expression of VEGF and its 

receptors (VEGFR-1, VEGFR-2, neuropilin-1 and VEGFR-3) in normal and 

adenomatous pituitary, are controversial.  

The aim of this work is to investigate VEGF and its receptors expression in 

human normal pituitary and in different pituitary adenomas. In order to achieve 

these goals, the expression of VEGF and its receptors is examined in human 

normal and adenomatous pituitary tissues at RNA and protein levels through RT-

PCR, ISH and IHC analysis.  

The IHC results obtained for the expression of the different VEGF receptors 

are then correlated with the expression of their specific ligands and with several 

biological parameters like PI, blood and lymphatic vessel counts and tumour 

grade.  

The role of VEGFR-1 in pituitary endocrine cell function and growth is 

investigated in a pituitary adenoma cell line and the signalling pathways involved 

are analyzed. 



 32

3 MATERIAL AND METHODS 

3.1 Reagents  

Product Company 
ABC kit    Vector Laboratories (Burlingane, CA, 

USA) 
AP-ABC kit Vector Laboratories (Burlingane, CA, 

USA) 
Acetic acid MERCK (Darmstadt, Germany) 
Acridine orange Sigma (St. Louis. MO, USA) 
Agar Life Technologies (Paisley, UK) 
Ammonium persulfate Sigma (St. Louis. MO, USA) 
Amphotericin B  Biochrom (Berlin, Germany) 
Ampicillin Roche (Mannheim, Germany) 
Ampuwa water  Frisenius (Germany) 
Autoradiography photoemulsion 
NTB2 

Kodak (Stuttgart, Germany) 

Beta-mercaptoethanol MERCK (Darmstadt, Germany) 
Biomax MR films Kodak (Stuttgart, Germany) 
Boric acid Roth (Karlsruhe, Germany) 
Bovine serum albumin (BSA) Invitrogen Corp. (Paisley, UK) 
Protein assay Dye Reagent  Biorad (Munich, Germany) 
Chloroform Sigma (St. Louis. MO, USA) 
Collagenase  Worthington Biochemical Corp. 

(Lakewood, NJ, USA) 
Competent Bacteria  Promega Corp. (Madison, WI, USA) 
Developer solution Kodak (Stuttgart, Germany) 
Dextran sulphate Sigma (St. Louis. MO, USA) 
Diaminobenzidine (DAB) Sigma (St. Louis. MO, USA) 
Diethyl-pyrocarbonate (DEPC) Sigma (St. Louis. MO, USA) 
Dimethyl sulfoxide (DMSO) Sigma (St. Louis. MO, USA) 
Dithiothreitol (DTT) Sigma (St. Louis. MO, USA) 
DNAse I Invitrogen Corp (Paisley, UK) 
dNTP Mix MBI Fermentas (Vilnius, Lithouania) 
Dulbecco’s modified Eagle 
medium (DMEM) 

Invitrogen Corp (Paisley, UK) 

EcoRI Roche (Mannheim, Germany) 
Ethylenediaminotetracetic acid 
(EDTA) 

MERCK (Darmstadt, Germany) 

Ethidium bromide Sigma (St. Louis. MO, USA) 
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Foetal calf serum Gibco (Karlsruhe, Germany) 
Ficoll 400 Sigma (St. Louis. MO, USA) 
Fixer solution  Kodak (Stuttgart, Germany) 
Formamide Sigma (St. Louis. MO, USA) 
Guanidine thiocyanate Fluka Chemie AG (Buchs, Switzerland) 
3H-Thymidine Amersham Biosciences (Uppsala, 

Sweden) 
Herring sperm DNA Roche (Mannheim, Germany) 
Hexanucleotide Mix Roche (Mannheim, Germany) 
Hydrochloric acid     MERCK (Darmstadt, Germany) 
Hydrogen peroxyde Roth (Karlsruhe, Germany) 
Isoamylalcohol MERCK (Darmstadt, Germany) 
Isopropanol Sigma (St. Louis. MO, USA) 
KH2PO4 MERCK (Darmstadt, Germany) 
Levamisole Sigma (St. Louis. MO, USA) 
L-Glutamine Biochrom AG (Berlin, Germany) 
Lumi-Light Western Blotting 
Substrate 

Roche (Mannheim, Germany) 

LY294002 Calbiochem (La Jolla, CA, USA) 
Magnesium chloride  MERCK (Darmstadt, Germany) 
Marker 1kb Plus Life Technologies (Paisley, UK) 
MEM-Vitamins Biochrom (Berlin, Germany) 
Milk powder Roth (Karlsruhe, Germany) 
Nitrocellulose membrane Hybond-
ECL 

Amersham Biosciences (Uppsala, 
Sweden) 

Paraformaldehyde (PFA) MERCK (Darmstadt, Germany) 
PBS  Gibco/invitrogen (Carlsbad, CA, USA) 
Penicillin+Streptavidine mix Biochrom AG (Berlin, Germany) 
Peptone ICN Pharmaceuticals (Aurora, OH, USA) 
pGEM®-T Easy Vector Promega Corp. (Madison, WI, USA) 
Phenol Roth (Karlsruhe, Germany) 
Phosphate based buffer  
PBS 

Life Technologies (Paisley, UK) 

Placenta Growth Factor (PlGF) R & D Systems (Minneapolis, MN, USA) 
Polyacrylamide Invitrogen Corp (Paisle, UK) 
poly-L-lysine-coated microscope 
slides 
(SuperFrost® Plus) 

Menzel-Gläser (Braunschweig, Germany) 

Polyvinylpyrrolidone Sigma (St. Louis. MO, USA) 
Pothassium chloride (KCl) MERCK (Darmstadt, Germany) 
Qiaquick Nucleotide Removal kit Qiagen (Hilden, Germany) 
Reisin Bio-Rad (Hercules, CA, USA) 
RNAse A Roche (Mannheim, Germany) 
RNAsin (RNAase inhibitor) Promega Corp. (Madison, WI, USA) 
Rneasy Mini kit  QIAGEN (Hilden, Germany) 
Roti-Histokitt Roth (Karlsruhe, Germany) 
Roti-Histol Roth (Karlsruhe, Germany) 



 34

Reverse transcriptase  
(SuperScript II TM ) 

Invitrogen (Carlsbad, CA, USA) 

SacI New England Biolabs (Beverly, 
Massachussets, USA) 

SacII New England Biolabs (Beverly, 
Massachussets, USA) 

Sodium acetate dihydrate  MERCK (Darmstadt, Germany) 
Sodium acetate trihydrate MERCK (Darmstadt, Germany) 
Sodium chloride (NaCl)  Roth (Karlsruhe, Germany) 
Sodium citrate dihydrate MERCK (Darmstadt, Germany) 
Sodium dihydrogen phosphate 
mono-hydrate  
(NaH2PO4-H2O) 

MERCK (Darmstadt, Germany) 

Sodium hydrogen phosphate 
dihydrate (Na2HPO4-2H2O) 

MERCK (Darmstadt, Germany) 

Sodium peroxyde (NaOH) MERCK (Darmstadt, Germany) 
SP6 RNA polymerase Roche (Mannheim, Germany) 
35S-UTP Hartmann Analytic (Braunschweig, 

Germany) 
T4 DNA Ligase Promega Corp. (Madison, WI, USA) 
T4 DNA Ligase Buffer 2X Promega Corp. (Madison, WI, USA) 
T7 RNA polymerase  Roche (Mannheim, Germany) 
Taq DNA polymerase MBI Fermentas 
TEMED Sigma (St. Louis, Mo, USA) 
Tissue-Tek®    Sakura Finetek Europe (Zoeterwoude, 

The Nederlands) 
Toluidin Blue Sigma (St. Louis, Mo, USA) 
Transferrin Sigma (St. Louis, Mo, USA) 
Trichloroacetic acid Roth (Karlsruhe, Germany) 
Triethanolamine  Sigma (St. Louis, Mo, USA) 
Triiodothyronine Henning (Berlin, Germany) 
Tris-Glycine 10% gel Anamed (Darmstadt, Germany) 
Tris pure ICN Pharmaceuticals (Aurora, OH, USA) 
Triton X-100 Roth (Karlsruhe, Germany) 
tRNA Roche (Mannheim, Germany) 
Trypsin Sigma (St. Louis, Mo, USA) 
Tween 20 Sigma (St. Louis, Mo, USA) 
Ultima Gold Scintillation Solution Packard Bioscience (Gromingen, 

Netherlands) 
Vector Red kit Vector Laboratories (Burlingane, CA, 

USA) 
Vascular Endothelial Growth 
Factor (VEGF-A) 

R & D Systems (Minneapolis, MN, USA) 

X-Gal  Roche (Mannheim, Germany) 
Yeast extract powder  ICN Pharmaceuticals (Aurora, OH, USA) 
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3.2 Solutions 

Collagenase Mix 1000 U/ml 

Collagenase       : 4g/ 100ml solution 

Trypsin inhibitor : 10 mg/ 100ml solution 

Hyaluronidase    : 100 mg/ 100ml solution 

BSA                  : 400 mg/ 100ml solution 

Dnase               : 500 µl/ 100ml solution   

DEPC water 200 µl DEPC/l deionized water 

Leave under the fume hood overnight 

Autoclave 

Formamide 

deionized  

Add  Reisin: 5ml/ 50ml Formamide 

Formamide/4xSSC 

buffer 

Formamide deionized: 50ml/ 100ml solution 

SSC 20x sterile:          20ml/ 100ml solution 

DEPC water:              30ml/ 100 ml solution  

HDB buffer Hepes: 5,95 g/l 

NaCl  : 8 g/l 

KCl: 0,37 g/l 

Na2HPO4.H2O: 0,12 g/l 

Glucose: 1,982 g/l 

Amphotericine B 25µg/ml: 10 ml 

Penicillin/Streptomycin 105U/l : 10 ml 

Ad just pH to 7,3 with NaOH 

Store at +4°C 
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Hybridization mix Deionized formamide: 15 ml/ 30 ml solution 

Tris-HCl 1M pH 8,0: 0,6ml/ 30 ml solution 

NaCl 5M: 1,8 ml/ 30 ml solution 

EDTA 0,5M pH 8,0: 300 µl/ 30 ml solution 

Dextran Sulphate: 6 ml / 30 ml solution 

Polymers 10X: 3 ml/ 30 ml solution 

t RNA 10 mg/ml: 1,5 ml/ 30 ml solution 

Herring sperm DNA 10 mg/ml: 600 µl/ 30 ml 

solution 

DTT 5M: 1,2 ml/ 30 ml solution 

LB medium Peptone        :10 g/l 

Yeast extract: 5 g/l 

NaCl             : 5 g/l 

NaOH 1M     : 2 ml/l 

Adjust to pH 7.0    

NTE Buffer 5 X 

NaCl: 146,1 g/l 

Tris-HCl pH 8,0 1 M: 50 ml/l 

EDTA 0,5M pH 8,0: 50 ml/l 

Autoclave 

Paraformaldehyde  

(PFA)  

4% 

paraformaldehyde: 4 g/100 ml  

Sodium phosphate buffer: 20 ml/100ml  

Ampuwa water: 80 ml 

Add 1M NaOH to pH 7.4 

Heat at 56°C to dissolve 

Filter and cool before usage 

Store at +4°C for maximum 2 days 
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Phosphate based 

buffer  

(PBS) 

1x 

NaCl: 8 g/l 

KCl: 0.2 g/l 

Na2HPO4.2H2O: 1.44 g/l 

KH2PO4: 0.2 g/l 

Adjust to pH 7.4  

Polymers 10X 

Ficoll 400: 0,2 g/ 10 ml  

Polyvinl pyrrolidone: 0,2 g/ 10 ml 

BSA: 0,2 g/ 10 ml 

Dissolve in 10 ml DEPC water 

Sodium acetate  2M  

Sodium acetate trihydrate: 27.2 g/ 100ml 

DEPC: 20 µl  

Add acetic acid to pH 4.0  

Leave at room temperature overnight and 

the next day autoclave   

Sodium phosphate 

buffer 

50mM 

Na2HPO4.2H2O: 7.06 g/l 

NaH2PO4. H2O: 1.32 g/l 

Adjust to pH 7.4  

Solution D 4M Guanidium thiocyanate: 250 g/337 ml 

0,75 M Sodium citrate pH 7.0: 17,6 

ml/337ml 

10% Sarcosyl: 26,4 ml/337 ml 

dissolve in 293 ml DEPC  

To complete the medium add: 

180µl beta-mercaptoethanol/25ml solution 

just before use  
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SSC 20x 

NaCl : 175 g/l 

Sodium citrate dihydrate: 88.23 g/l 

Adjust to pH 7.0 

Filter and autoclave before use   

Triethanolamine/ 

acetic anhydride 

0,1 M 

Triethanolamine: 3,3 ml/ 250 ml 

NaCl: 2,25 g/ 250 ml 

DEPC water: 250 ml 

Adjust to pH 8,0 

Acetic Anhydride: 625 µl added in the last 

minute 

Tris borate EDTA 

buffer  

(TBE) 

10x 

Boric acid (H3BO3): 61.83 g/l 

EDTA: 37.2 g/l 

Tris pure: 30.03 g/l 

Adjust to pH 8.0 

Tris buffer Tris pure: 12.114 g/l 

Adjust to pH 7.6  

Tris-based buffer  

(TBS) 

1x 

Tris pure: 2.42 g/l 

NaCl: 8 g/l 

Adjust to pH 7.6 

Tris-HCl  1M 

Tris pure: 121.14 g/l 

Add 25% HCl to a pH 8.2   
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3.3 Human tissues 

This study was performed after approval of the ethics committee of the Max 

Planck Institute and informed consent was received from each patient or their 

relatives. 

The 3 normal pituitary glands (NP) were obtained from the autopsy 

performed within 12 h after accidentally occurred death of 3 healthy persons: 2 

males (age 67 and 47) and 1 female (age 37). The pituitary tumours studied 

were obtained from trans-sphenoidal surgery of 39 patients: 17 males and 22 

females with 47,1 ± 14,1 average age (range 26-77 years), classified according 

to clinical presentation in 11 somatotrophinomas (ACRO), 3 corticotrophinomas 

(CUSH), 17 non functioning pituitary adenomas (NFPA), 6 prolactinomas (PROL), 

2 thyreotropinomas (THYR). All the tumours were benign and tumour grade was 

determined according to a modified Hardy´s classification [Boggild et al., 1994] 

following the medical reports after nuclear magnetic resonance and after 

surgery: 2 grade I, 11 grade II and 26 grade III cases were identified (Tab. 5). 

Tissues fragments of normal pituitaries and pituitary adenomas were shock-

frozen on dry ice and stored at -80°C until use.  

3.4 RNA isolation 

RNA was isolated from normal human pituitaries and from human pituitary 

adenomas using the guanidium isothiocyanate protocol. The tissue piece was first 

homogenized in 800 µl of solution D added with β−mercaptoethanol, using the 

Ultra-TURRAX T8 (IKA Labortechnic) tissue homogenizer. 

Guanidium isothiocyanate and β−mercaptoethanol inhibit the RNAase action 

activated by cell disruption, preventing in this way RNA degradation. Eighty µl of 

sodium acetate 2 M pH 4,0 were added afterwards to precipitate RNA, followed 

by 800 µl of saturated phenol and 160 µl of a choloroform-isoamyl alcohol (49:1) 

solution. After 15 minutes incubation on ice the samples were centrifuged at 
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13000 rpm for 20 minutes at 4°C; this step led to the formation of two phases, 

the upper one containing RNA and the lower one containing DNA and proteins. 

The upper phase was then transferred to a new tube together with the same 

volume of ice-cold isopropanol. Incubation of the sample at –20°C at least for 2 

hours was necessary for RNA precipitation. After centrifugation of the sample at 

13000 rpm for 10 min at 4°C, the supernatant was discarded and the pellet was 

washed with ice-cold ethanol 70%. After 10 min centrifugation at 13000 rpm the 

supernatant was again discarded and the pellet left to dry at room temperature 

and then dissolved in an appropriate amount of DEPC-treated water. 

The samples absorbance was measured with a photometer and RNA 

concentration calculated according to the following formula: (A260x40x60)/1000= 

µg/µl RNA in which A260 is the sample absorbance at 260 nm, 40 is the 

concentration in µg/µl of RNA giving A260 value equal to 1 and 60 is the dilution 

factor used to measure the sample concentration (1 µl RNA+ 59 µl DEPC water). 

The lack of DNA contamination was assessed performing a PCR reaction for a 

housekeeping gene like GAPDH or β− actin, using the RNA sample: if no DNA 

contamination is present, no band is visible after loading the PCR product on an 

ethidium bromide gel (as described below). 

RNA extraction from the different pituitary adenoma cell lines used in this 

study was performed as described above. Cells were washed with PBS, scraped 

with 800 µl of solution D and collected in an eppendorf tube; from this point on 

the protocol was identical to that one just described. 

3.5 Reverse Transcriptase- Polymerase Chain Reaction 

Retrotranscription of RNA samples was performed incubating 1µg RNA with 1 

µl of dNTP mix 2 mM, 2 µl of 62.5 U/ml random primers (Hexanucleotide mix), 2 

µl of dithiothreitol (DTT) 10 mM and 1 µl of 200 U reverse transcriptase 

(SuperScript II) all diluted in 4 µl of 1x first strand buffer and DEPC-water to get 

a final volume of 20 µl, for 1 hour at 45°C. Reaction was stopped by boiling the 

samples at 95°C for 5 minutes. 
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One µl of c-DNA samples obtained was used for PCR reaction and incubated 

with 1.5 µl PCR buffer 10x, 0.9 µl Mg Cl2 25 mM, 1.5 µl dNTP mix 2mM, 0.5 µl 

amplification primer sense 10 pmol/µl, 0.5 µl amplification primer anti-sense 10 

pmol/µl, 0.15 µl Thermus aquaticus (Taq) DNA polymerase and 8.95 µl 

autoclaved distilled water. The PCR reaction consisted of 35 cycles each 

containing the following steps: denaturation at 94° C for 1 min, annealing at 55° 

C- 65° C according to the employed primers specific annealing temperature (see 

Tab. 1) for 1 min and finally elongation of the PCR fragment at 72° C for 1 min.  

The amplified fragments were electrophoresed  in ethidium bromide agarose 

gel 1 - 1,5% according to the size of the product (1% for 500- 1100 bp 

fragments, 1,5% for 200- 500 bp fragments), in 1 X TBE buffer for 15-20 min at 

80 V and then visualized under UV light. The 1 kb Plus DNA Ladder marker was 

used to determine the fragments size. 

In the table 1 the primers used are listed together with the corresponding 

sequence, annealing temperature and expected length of the amplified fragment. 

Each sequence was checked with the NCBI BLAST program in order to exclude 

eventual annealing with other genes different from the ones studied. All primers 

were synthesized by MWG Biotech, reconstituted with sterile distilled water to a 

concentration of 100 µM and stored at -20 ° C. The annealing temperature for 

each pair of primers was optimized by PCR in a range of 55, 60 and 65 °C using 

cDNA from normal human pituitary as a template. The optimal temperature was 

the one which was yielding an intense signal with no secondary amplification 

fragments. 

 



Table 1. Primers used for RT-PCR reactions. 

Primers Sequence (5´-3´) Ta 
(°C) 

Amplified 
fragment (bp) 

β−actin 
human 

ACGGGGTCACCCACACTGTGC sense 
CTAGAAGCATTTGCGGTGGACGATG 
antisense 

60 660  

GAPDH 
rat 

ATGGTGAAGGTCGGTGTGAACG sense 
GTTGTCATGGATGACCTTGGC antisense 

60 495  

VEGF-A 
human 

CCTGGTGGACATCTTCCAGGAGTACC 
sense 
TGTGCTGTAGGAAGCTCAT antisense 

60 209 

VEGFR-1 
(flt-1) 
human 

TGCTTGAAACCGTAGCTGG sense 
GGTGCCAGAACCACTTGATT antisense 

60 378 

VEGFR-2 
(flk-1/KDR) 
human 

CTGGCATGGTCTTCTGTGAAGCA sense 
AATACCAGTGGATGTGATGCGG antisense 

60 790 

VEGFR-3 
human 

CAGGATGAAGACATTTGA sense 
AAGAAAATGCTGACGTATGC antisense 

60 190 

Neuropilin-1 
human 

GAAAGATAGCCCCTCCTCC sense 
CCACAGTAACGCCCAATG antisense 

60 372 

VEGFR-1 
(flt-1) rat 

CCCGGTTTGCTGAACTTGTGG sense 
GGCATTTGGTGAAAGCTCCTC antisense 
 

60 271  

VEGFR-2 
(flk-1/KDR) 
rat 

GCCAATGAAGGGGAACTGAAGAC sense 
TCTGACTGCTGGTGATGCTGTC antisense 
 

60 537 

VEGFR-3 
rat 

CCAAGGCCTGGCAAATGGTTAC sense 
AACACATAGGTGCTGGCAGCTG antisense 

60 339  

Neuropilin-1 
rat 

GGCTGCCGTTGCTGTGCGCCA sense 
ATAGCGGATGGAAAACCCTGC antisense 

60 383  

1st column: name of the gene, 2nd column: sense and antisense primers sequences, 3rd column: 

annealing temperature, 4th column: expected fragment size.  

3.6 In situ  hybridization with radioactive riboprobe 

3.6.1 Principle 

ISH is a method which allows the localization of a specific sequence of 

nucleic acid on a morphologically preserved tissue section, thanks to the ability of 
 42
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nucleic acid single strands to bind with a complementary sequence. In this 

specific case, the sequence of interest is recognized by a probe of 

complementary RNA, called riboprobe, labelled with a radioisotope (usually 35 S) 

which binds its cognate mRNA directly on the tissue section. Radiolabeled probes 

are then visualized by exposure of the tissue section on a photographic film or by 

dipping of the hybridized slides into a photographic emulsion sensible to 

radioactive emission. The slides are then stored in the dark at +4°C to allow the 

slide emulsion to become exposed and then developed in the same way as 

normal photographic film. The areas in which the riboprobe has bound to the 

mRNA in the tissue are visible as silver grains signals, on microscope. This 

method is particularly useful for investigating gene expression on a cellular level.  

In general, pre-treatment of the tissue sections on the slides is carried out to 

reduce background staining and to facilitate the probe access into the cells. For 

this purpose is chloroform treatment usually performed to remove lipids followed 

by acetylation with acetic anhydride (0.25%) in triethanolamine to decrease 

background and to inactivate RNAases. 

The composition of the hybridization solution is critical in controlling the 

efficiency of the hybridization process. Hybridization depends on the ability of the 

oligonucleotide to anneal to a complementary mRNA strand just below its melting 

point (Tm). The value of the Tm is the temperature at which half of the 

oligonucleotide is present in a single stranded form and depends mainly upon its 

specific guanine-cytosine content. The melting temperature is also dependent 

upon the length of the sequences to be annealed, pH, monovalent cation 

concentration and presence of organic solvents. Typical chemical compounds 

used to prepare the hybridization solution are: dextran sulphate that, becoming 

strongly hydrated, can reduce the amount of water for dissolving the nucleotides, 

increasing therefore the probe concentration in solution and resulting in higher 

hybridization rates. Formamide and dithiothreitol (DTT) are organic solvents able 

to reduce the thermal stability of the chemical molecular bonds, allowing 

hybridization to be carried out at lower temperatures. NaCl and Tris HCl buffer 

are employed since monovalent cations interact mainly with the phosphate 

groups of the nucleic acids, decreasing the electrostatic interactions between the 

two strands. EDTA is a chelator and removes free divalent cations from the 



 44

hybridization solution, avoiding them to stabilize duplex DNA. Finally, other 

components are added to decrease the chance of nonspecific binding of the 

probe and include: ssDNA (hydrolyzed salmon sperm DNA) and tRNA, which acts 

as a carrier for RNA. 

After hybridization, the slides are washed to remove unbound probe or probe 

which has loosely bound to imperfectly matched sequences. Washing is carried 

out close to the stringency condition at which the hybridization takes place with a 

final low stringency wash. 

3.6.2 Riboprobes characteristics- general overview 

Single strand labelled RNA probes are generated by in vitro RNA polymerase 

transcription of a linearized plasmid, containing RNA polymerase promoters from 

two different bacteriophages, in which the cDNA of the studied sequence is 

cloned. 

The target sequence has to be selected in the mRNA sequence of the gene 

investigated and to be around 1.0 kb long (enough to give a strong and specific 

radioactive signal but not too much in order to avoid problems in entering the 

cells). It does not have to contain the restriction sites of the endonucleases used 

for the linearization of the plasmid and it must contain one restriction site of one 

of the endonucleases which are in the polylinker site of the vector; this is 

necessary to assess the orientation in which the fragment has been inserted 

(explained in the next paragraph). 

RNA probes (cRNA probes or riboprobes) have the advantage that RNA-RNA 

hybrids are very thermostable and are resistant to digestion by RNases. This 

allows the possibility of post-hybridization digestion with RNase to remove non-

hybridized RNA and therefore reduces the possibility of background staining.  

According to the orientation of the inserted fragment, the use of the two 

different RNA polymerases allows to obtain two different single strand 

riboprobes: the sense (with the same sequence of the target mRNA) and the 

antisense (with the complementary sequence to the target mRNA) (Fig. 5); the 

hybridization with the labelled sense probe is considered as negative control and 

it measures the non-specific probe binding, only due to the chemical properties 
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of the probe. If the sense probe detects nothing, this means that any signal 

detected by the antisense probe is due to sequence-specific binding to mRNA and 

not to the binding to other targets within the cell. 

3.6.3  Protocol for riboprobes generation 

VEGFR-1 cDNA (920 bp fragment, GenBank accession AF063657, nucleotides 

617-1537) was generated by RT-PCR from the total human normal pituitary RNA 

using the primers shown in the table 2. VEGFR-2 cDNA (1031 bp fragment, 

GenBank accession AF035121, nucleotides 1406-2437) was obtained in the same 

way, employing the primers for VEGFR-2 (Tab. 2). The PCR reaction was identical 

to the one described above except that in this program, one single step of 

denaturation at 94 °C for 5 min and one single step of annealing at 72 °C for 5 

min, were added before and after the starting of the cycles, respectively. 

Both fragments were then cloned into pGEM®-T Easy Vector (see Fig. 4 for 

an overview of the plasmid structure and of all protocol steps); the use of this 

plasmid makes the fragments ligation shorter than it would be with the traditional 

vectors since it is linearized and contains a thymidine in both 3´-ends. These 

overhanging 3´-T at the insertion site greatly improve the efficiency of ligation of 

a PCR product into the plasmid by preventing recircularization of the vector and 

by providing a compatible overhang for PCR products, since most of the DNA 

polymerases usually add a single deoxyadenosine to the 3´-ends of the amplified 

fragments independently from the template sequence. 

The standard ligation reaction was performed using the following reagents 

for both fragments: 

T4 DNA Ligase buffer 2X 5 µl 

pGEM®-T Easy Vector        1 µl 

PCR product                     3 µl 

T4 DNA Ligase                  1 µl 

 

The tube containing the reaction mixture was incubated overnight at +4°C. 

For bacteria transformation, 5 µl of the ligation reaction mixture were mixed 

with 20 µl of competent bacteria and incubated on ice for 30 min. The mixture 
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underwent then a heat shock in a 42°C waterbath for 40 sec in order to let the 

plasmid enter into the cells and then after 2 more min on ice, 500 µl of LB 

medium without ampicillin were added and the vial was incubated for 45 min at 

37°C. The transformed bacteria were then seeded on agar plates containing X-

gal (20 mg/ml) and ampicillin (100 mg/ml) and incubated overnight at 37°C. 

These plates allow the growth only of the bacteria containing the plasmid, since it 

bears the gene for the ampicillin resistance. They are also useful to identify the 

colonies containing the transformed vector because the fragment insertion site in 

the plasmid is localized in the middle of the β-galactosidase gene, which is 

necessary to obtain the blue-coloured metabolic product of X-gal. For this reason, 

the colonies containing the plasmid transformed with the studied fragment are 

white.  

The following day, some of the white colonies were selected and amplified 

overnight at 37°C, in 2 ml of LB medium containing ampicillin. The plasmid DNA 

was then extracted and digested with EcoRI endonuclease (which cuts at both 

sides of the inserted sequence, see Fig. 4) to check if the selected clones really 

contained the plasmid with the inserted fragment. One of these colonies was 

finally amplified in 200 ml LB medium containing 100 mg/ml ampicillin overnight 

at 37°C. Plasmid isolation was performed using the QIAGEN plasmid purification 

system. Digestion with NdeI or PstI endonucleases was then carried out for 

VEGFR-1 and VEGFR-2 fragments respectively, in order to determine their 

orientation inside the vector and to employ the suitable linearizing enzymes and 

RNA polymerases (Fig. 4). 

For linearization and generation of each riboprobe, the following restriction 

enzymes and RNA polymerases were used: VEGFR-1 sense: SacI, T7; VEGFR-1 

antisense: SacII, SP6; VEGFR-2 sense: SacII, SP6; VEGFR-2 antisense: SacI, T7. 

After plasmid linearization, antisense and sense riboprobes were synthesized and 

labelled with 35S according to the following protocol: 
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Buffer 10X 3 µl 

dNTPs mix 3 µl 

0,5M DTT 1 µl 

Linearized plasmid   volume corresponding to 1,5 µg 

1 mCi α−35S-UTP   13 µl 

RNAsin 1 µl 

SP6 or T7 RNA polymerase 1µl 

Distilled water to a final volume of 30 µl  

 

The mix was incubated for 3 hours at 37°C and 0,5 µl of the RNA polymerase 

were added again after 1 hour. To remove any DNA contamination, DNAse 

treatment was performed at the end of the incubation time by adding 2 µl of the 

enzyme for 15 min at 37°C.  

After cleaning the riboprobe with Rneasy Mini kit from QIAGEN in order to 

remove nucleotides, enzymes, salts and all the compounds that had not been 

incorporated to the riboprobe, the radioactivity of each sample was determined in 

scintillation solution with a β−counter apparatus and 35,000-70,000 cpm/µl of 

antisense or sense (control) 35S-labeled riboprobe were used for the hybridization 

of the slides. 

Table 2. Primers used for generation of the riboprobes used in ISH studies. 

Primers Sequence (5´-3´) Ta (°C) Amplified 
fragment (bp) 

VEGFR-1 
(flt-1)  
human 

CTGTGAAGCAACAGTCAATGG sense 
CTATTATTGCCATGCGCTGAG 

antisense 

58 920  

VEGFR-2  
(flk-
1/KDR)  
human 

GAATACCCCTTGAGTCCAATC sense 
CTGAGTCTTCTACAAGGGTCT 

antisense 

58 1031  

1st column: name of the gene, 2nd column: sense and antisense primers sequences, 3rd 

column: annealing temperature, 4th column: expected fragment size.  
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 Figure 4. Structure of pGEM®-T Easy Vector before and after fragment (in violet) 

insertion. The multiple cloning site is inserted in the LacZ gene which allows the screening of 

the colonies transformed with plasmid containing the fragment, after the ligation reaction.  The 
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multiple cloning site enlargement (in white) shows the overhanging 3´-T and several restriction 

enzymes cutting sites, in bold are the ones used to determine the orientation of VEGFR-1 and -2 

fragments (NdeI e PstI) and for plasmid linearization(SacI and SacII). Promoters for T7 and SP6 

RNA polymerases flank the multiple cloning site. The plasmid contains also a bacterial replication 

origin site to be replicated inside bacteria cells and an ampicillin resistance gene that allows the 

growth of plasmid-containing bacteria only. How to check fragment orientation, before 

linearization and riboprobe synthesis, is shown in fig. 5 
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Figure 5. Different possible orientation of the inserted fragment and different 

enzymes employed for linearization and riboprobe synthesis, according to fragment 

orientation. (A) Both possible fragment orientations (5´-3´ and 3´-5´) inside the plasmid and 

bands obtained after NdeI digestion: a 268 bp band indicates a 5´-3´ fragment orientation, 

whereas a 846 bp band indicates a 3´-5´ fragment orientation. The inserted fragment is shown in 

violet, the polylinker area in white and the rest of the plasmid in yellow. (B) Linearization 

enzymes and RNA polymerases are chosen according to the fragment orientation. The linearizing 

enzyme opens the plasmid and the RNA polymerase promoter next to its restriction site is 

separated from the fragment and lost. 
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3.6.4 Protocol for cryostat sections 

For ISH study, 8-µm sections of shock-frozen tumour tissues were thaw 

mounted onto SuperFrost Plus slides and stored in –80°C until use. Before 

starting the experiment, slides were equilibrated to room temperature for 30 min 

and then fixed in 4% paraformhaldehyde in PBS; after a passage into 0,25% 

acetic anhydride in 0,1 M triethanolamine-HCl pH 8,0/ 0,9% NaCl for 10 min and 

two washes in 2X SSC, sections were dehydrated in ethanol: 1 min 60 % ethanol, 

1 min 75% ethanol, 1 min 95% ethanol and 1 min 100% ethanol; they were then 

delipidated with 5 min chloroform treatment and after two passages in 100% 

ethanol and 95% ethanol, two min each, finally air dried. The slides were then 

hybridized with 45 µl (35,000-70,000 cpm/µl) of antisense or sense (control) 35S-

labeled riboprobe for VEGFR-1 or VEGFR-2 mRNA diluted in hybridization buffer 

and incubated overnight at 65°C in a slides chamber humidified with deionized 

formamide in 20X SSC. The following day, the slides were washed four times in 

4X SSC for 5 min, treated with RNase A (20 µg/ml) at 37°C for 30 min, then 

twice in 2X SSC with 1mM DTT  and finally washed again twice, for 30 minutes, 

at 65°C in 0.1X SSC to remove nonspecific label. After dehydration in ethanol, the 

slides were exposed on Biomax MR film for 2 days and then dipped in 

autoradiography emulsion (diluted 1:1 with distilled water). The slides were 

exposed for 4 weeks at 4°C in light-tight desiccated slide boxes, photographically 

processed, counterstained in toluidine blue, fixed in Roti-Histol and coverslipped 

using Roti-Histokitt. 

3.7 Immunohistochemistry 

3.7.1 Principle 

The technique of IHC is useful to visualize the localization and expression 

intensity of a specific protein in a tissue section. The basic principle of this 

method is the ability of antibodies to recognize in a specific way particular areas 

of a protein, called antigen epitopes. To make the reaction visible at microscope 
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observation, it is necessary to amplify the signal of the primary antibody (raised 

against the protein of interest) and this purpose can be achieved using a 

secondary antibody raised against the antibodies of the animal in which the 

primary antibody was produced. For example, one of the primary antibodies 

employed in this study was anti- human VEGFR-1 made in rabbit, which was 

recognized by a secondary antibody anti-rabbit made in goat. To further amplify 

the signal, the secondary antibody is linked to biotin, a molecule that shows a 

very strong affinity to avidin; this latter molecule is associated to an enzyme able 

to convert a colourless substrate (chromogen) into a coloured product that 

precipitates on the slide at the site of the reaction. In the present work, the 

enzymes employed were: peroxidase, which produces a brown precipitate acting 

on the chromogen diaminobenzidine (DAB) (Fig. 6A) and alkaline-phosphatase 

that gives a red colour acting on the Vector Red substrate (Fig. 6B). 

3.7.2 Primary Antibodies 

The primary antibodies and dilutions used are listed in the Tab. 3. The 

antibodies were tested and dilutions were optimized in human normal pituitary 

glands, which were used as control tissues. 
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Table 3. Primary antibodies used for IHC studies. 

Antigens Primary antibodies 
Secondary 

biotinylated 
antibodies 

Incubation 
time in 

chromogen 
VEGF-A Goat anti-human (1:200 dil.) 

(Santa Cruz Biotechnology, 
Santa Cruz, CA) 

Horse anti goat 
(Vector 
Laboratories 
Inc., 
Burlingame, CA) 

5 min 

VEGF-C Rabbit anti-human (1:100 dil.) 
(Zymed, S. Francisco, CA) 

Goat anti rabbit 
(Vector Labs.) 

5 min 

VEGFR-1 (Flt-1) Rabbit anti-human (1:100 dil.) 
(Santa Cruz Biotechnology) 

Goat anti rabbit 
(Vector Labs.) 

2 min 30 sec 

VEGFR-2 (Flk-
1/KDR) 

Rabbit anti-human (1:100 dil.) 
(Santa Cruz Biotechnology) 

Goat anti rabbit 
(Vector Labs.)  

4 min 

Neuropilin-1 Goat anti-human (1:500 dil.) 
(Santa Cruz Biotechnology) 

Horse anti goat 
(Vector Labs.) 

6 min 

VEGFR-3 (Flt-4) Rabbit anti-human (1:800 dil.)  
(Santa Cruz Biotechnology) 

Goat anti rabbit 
(Vector Labs.) 

5 min 

CD31 (PECAM-1) Mouse anti-human (1:500 dil.) 
(Dako Cytomation, Glostrup, 
Denmark) 

Horse anti 
mouse (Vector 
Labs.) 

45 sec 

LYVE-1 Rabbit anti-human (1:800 dil.)  
(Upstate, Lake Placid, NY) 

Goat anti rabbit 
(Vector Labs.) 

1 min 

Ki-67 (MIB-1) Mouse anti-human (1:100 dil.) 
(Dako Cytomation) 

Horse anti 
mouse (Vector 
Labs.) 

1 min 

ACTH 
 

Mouse anti-human (1:1000 dil.)  
(Dako Cytomation) 

Goat anti mouse 
(Vector Labs.) 

30 min 

LH Mouse anti-human (1:1000 dil.) 
(Immunotech, Marseille, France) 

Goat anti mouse 
(Vector Labs.) 

30 min 

PRL 
 

Mouse anti-human (1:1000 dil.) 
(Immunotech) 

Goat anti mouse 
(Vector Labs.) 

30 min 

TSH 
 

Mouse anti-human (1:800 dil.) 
(Immunotech) 

Goat anti mouse 
(Vector Labs.) 

30 min 

FSH 
 

Mouse anti-human (1:800 dil.) 
(Immunotech) 

Goat anti mouse 
(Vector Labs.) 

30 min 

GH 
 
 

Mouse anti-human (1:800 dil.) 
(gift from Dr. C.J. Strasburger, 
Berlin, Germany) 

Goat anti mouse 
(Vector Labs.) 

30 min 

1st column: name of the antigen detected; 2nd column: characteristic of the primary antibodies, 

working dilution and producing companies; 3rd column: characteristic of the secondary antibodies 

and producing companies; 4th column: incubation time of the chromogenic reaction. 

3.7.3 Mono immunohistochemistry- protocol for cryostat sections 

For IHC detection, 8-µm sections of shock-frozen tumoural and normal 

pituitary gland tissues were thaw mounted onto SuperFrost Plus slides, fixed in 

4% paraformhaldehyde freshly prepared in PBS and stored in 96% ethanol, at 

4°C until use. 
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Different primary antibodies (listed in Tab. 3) were used to detect 

intratumoural VEGF receptors (anti VEGFR-1, -2, -3, neuropilin-1), VEGF-A and -C 

(anti VEGF-A, -C) expression, blood and lymphatic microvessels density (anti CD-

31 and anti LYVE-1) and PI (anti Ki-67), which gives an indication about the 

percentage of tumour cells entering the cell cycle. After a wash in 1X TBS, slides 

were first incubated for 30 min in serum (diluted 1:10 in 1X TBS buffer pH 7,6) of 

the same animal in which the specific biotinylated secondary antibody was 

raised; this step is necessary to prevent the non-specific binding of the primary 

antibody. For example, before the detection of VEGFR-1, which is recognized by 

a secondary antibody made in goat, slides were incubated in goat serum. In this 

way, anything that would bind goat IgG is blocked. Slides were then incubated 

overnight at 4°C with different primary antibodies diluted as listed in Tab. 3. 

After three washes in TBS buffer, the corresponding biotinylated secondary 

antibody, diluted 1:300, was added at room temperature for 30 min. The slides 

were again rinsed three times in TBS buffer and incubated for 30 min with the 

avidin-biotin-peroxidase complex (ABC complex) at room temperature. The ABC 

complex was prepared 30 min before use in order to allow the complex 

formation. The colour development was performed using 1 mg/ml DAB with 

0,01% hydrogen peroxide, applied for the suitable incubation time listed in Tab. 

3. Since DAB is light-sensitive, these final steps were performed in the dark. After 

three more washes, slides were finally counterstained for 15 min in tolouidine 

blue, which stains nuclei in light blue permitting a more clear visualization of the 

tissue structure. Excess of colour was removed with two washes in distilled water 

and one final wash in 70% ethanol containing 5 drops of acetic acid. After 

dehydration in 96% ethanol and in 100% ethanol, slides were fixed in Roti-Histol 

and coverslipped using Roti-Histokitt. Negative controls were performed omitting 

the primary antibody and no staining has been detected in negative control 

sections. 

3.7.4 Double immunohistochemistry 

For the co-localization of two different antigens on a tissue section, double 

IHC is the eligible technique, since it produces pictures in which the two antigens 
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of interest can be identified in two different colours. This is possible, performing 

one IHC after the other and employing, for one of the two antibodies, a different 

ABC complex called AP-ABC which is linked to the enzyme alkaline phosphatase. 

This enzyme acts on the components of the Vector red kit, producing a red 

colour. In this case the choice of the primary antibodies is very important in order 

to avoid cross-reactions, usually one monoclonal antibody (made in mouse) and 

one polyclonal antibody (made in another animal) are employed and the antibody 

which recognizes the most expressed protein is coupled to AP-ABC complex, 

since the colour developed by Vector red is less intense than the one obtained by 

DAB (Fig. 6 B).  

In this study we wanted to see which hormone-secreting cells of the human 

normal adenohypophysis were expressing VEGFR-1.  

After immunohistochemical staining of VEGFR-1 with DAB, different sections 

of human normal adenohypophysis were incubated, for 2 h at room temperature, 

with diluted monoclonal antibodies anti ACTH, LH, prolactin diluted 1:1000 and 

TSH, FSH and GH diluted 1:800. Staining was detected using the avidine-biotine-

alkaline phosphatase complex, prepared in the same way as ABC complex and 

Vector Red as chromogen. The Vector Red was prepared according to 

manufacturer´s instructions, using 2 ml Tris-HCl solution (100 mM, pH 8,2-8,5), 

500 µl levamisole (for blocking endogenous alkaline phosphatase activity) and 1 

drop of each of the three compounds of the kit; the mixture was then applied on 

the slides for 30 min. After processing, the slides were finally counterstained with 

toluidine blue, fixed in Roti-Histol and coverslipped using Roti-Histokitt. 



A 

rabbit anti VEGFR-1

biotinylated
anti mouse IgG

ABC ABC-AP

 B 

Figure 6. The mono- and double-IHC principles. (A) Mono IHC. The antigen of interest is 

recognized by a specific  primary antibody that is recognized by a biotinylated secondary 

antibody, the biotin is bound by avidin conjugated with peroxidase (ABC complex) or alkaline 

phosphatase (AP-ABC complex), which using respectively as substrate DAB and Vector red 

catalyze a chromogenic reaction yielding a coloured product (brown or red). (B) Double IHC. Two 

antigens are investigated on the same tissue (i.e. VEGFR-1 and the different pituitary gland 

hormones); they have to be recognized by two biotinylated secondary antibodies made in 

different host animals in order to avoid cross-reaction. The biotin is bound to avidin conjugated 

with peroxidase for VEGFR-1 and with alkaline-phosphatase for the different pituitary hormones; 

in this way VEGFR-1 signal is brown (DAB chromogenic reaction) and hormone signal is red 

(Vector red substrate chromogenic reaction).  

 56
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3.7.5 Immunoreactivity evaluation 

The immunohistochemical staining for VEGF-A, VEGF-C and VEGFR-1 was 

detected in the cytoplasm of endocrine cells, both in normal and adenomatous 

pituitaries and the expression of these two antigens was evaluated counting the 

positive cells out of 100 cells, in three different areas, for each tissue section. 

The immunohistochemical signals for VEGFR-2, VEGFR-3, neuropilin-1, CD31 

and LYVE-1 were observed in the endothelial cells of vessels. For determining the 

number of positive vessels, stained vessels were counted inside an area delimited 

by an eyepiece grid 12,5 X 12,5 mm divided in 10 X 10 squares (Zeiss, Munich, 

Germany) at a magnification 200X (20X objective and 10X ocular). For each 

antigen, the number of vessels was determined counting the positive vessels in 

three different areas of each tumour [Perez-Castro et al., 2003; Graciarena et al., 

2004]. The same guidelines were applied for VEGFR-3 positive vessels and for 

vessels expressing LYVE-1 antigen. Vessels were defined as any positively stained 

single cell or cluster of cells or structure clearly separated from adjacent 

microvessels. VEGFR-2 and neuropilin-1 IHC extents have been expressed as 

percentage of positive vessels for these two antigens compared to CD31 positive 

vessels (the IHC analysis for these antigens has been performed in serial 

sections), whereas the VEGFR-3 and LYVE-1 extents are expressed as the 

average number of positive vessels counted in three different areas. 

Ki-67 is a growth-associated nuclear antigen and the PI was calculated 

counting the positive nuclei out of 100 cells, in three different areas of the tissue 

section. 

3.8 Cell cultures 

3.8.1 Primary rat pituitary cell culture 

The pituitary primary cell culture was obtained (as explained in Renner et al., 

1998) from adult male Sprague-Dawley rats (180-250 g). They were kept for 5 
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days in our animal house in standard conditions: 12 hours light/dark rhythm, 

temperature 21°C, water and standard food. Pituitary glands were obtained after 

decapitation performed quickly after CO2 narcosis. The tissue was washed with 

HDB buffer. Sliced fragments were enzymatically dispersed in a buffer containing 

4 g/l collagenase, 10 mg/l DNAse II, 0.1 g/l soybean trypsin inhibitor, and 1 g/l 

hyaluronidase (37°C, approximately 45 minutes). Dispersed cells were 

centrifuged and resuspended in Dulbecco´s Modified Eagle´s Medium (DMEM) 

supplemented with 2 mM essential vitamins, 40U/l insulin, 20 ng/l natrium 

selenate, 5 mg/l transferrin, 30 pM triiodothyronine (T3), 10% fetal calf serum, 2 

mmol/l L-glutamine, 2.5 ng/l amphotericine B and 105 U/ml penicillin-

streptomycin. Cell viability was determined by fluorescence microscopy after 

staining with acridin orange and ethidium bromide. Acridin orange enters the 

membranes of normal cells, yielding green fluorescence in viable cells. Ethidium 

bromide does not pass the healthy cell membrane and enters only in dead cells 

with damaged membranes, yielding a red fluorescence. Cell viability of pituitary 

cells was determined as the percentage of green cells in the total number of cells 

(counted in a Neubauer chamber) and was over 95%. Cells were distributed in 

96-well plates and incubated at 37°C under 5 % CO2. The stimulation was 

performed 48 hours after preparation. 

3.8.2 Immortalised pituitary cell lines 

Rodent and human cell lines were grown routinely in the suitable medium, 

different for each cell line and under the same conditions in an incubator at 37°C, 

with 5% CO2. Corticotrophinoma mouse AtT20, mammosomatotrophinoma rat 

GH3 and FS-like mouse TtT/GF cells were grown in DMEM supplemented with 

10% fetal calf serum (FCS), 2 mmol/l L-glutamine, 2,5 ng/ml amphotericin B and 

105 U/ml penicillin-streptomycin; the same medium was adopted for 

gonadotrophinoma HP75 cells except that these cells need 2,5% FCS and 15% 

horse serum. Somatotrophinoma rat MtT/S cells were cultured in the same 

medium described before for the primary rat pituitary cell culture. The expression 

of VEGF receptors was studied by RT-PCR in MtT/S cells, AtT20 cells, GH3 cells, 
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TtT/GF cells and HP75 cells. Functional studies on cell growth and signaling were 

performed in MtT/S cells. 

3.8.3 Cell Proliferation Assay 

Proliferation of MtT/S cells induced by exogenously added VEGF-A or PlGF 

was measured using the [3H]-thymidine incorporation method; the radioactivity, 

incorporated in the DNA of the stimulated cells during S phase of the cell cycle, is 

an indicator of the cells growth rate.  

The cells were seeded (20000 cells/well) in 48- well plates. After 24 h, the 

cells were made quiescent by overnight incubation with serum-free medium; this 

step synchronizes all the cells to the cell cycle phase G0. The quiescent cells were 

treated with various concentrations of VEGF or PlGF (0, 0.1, 1, 10, 50, 100 

ng/ml) in serum-free medium for 96 h. In order to study the effect of LY294002 

(a specific inhibitor of PI3K), four stimulation condition were planned. After 

overnight serum deprivation, the cells were treated as follows: control and the 

second condition with 0,1% DMSO (since LY294002 is dissolved in DMSO), the 

third and fourth condition were treated with LY294002 30µM for 1 h, then to the 

cells in conditon number two and four, 50 ng/ml PlGF were added for 96 h. 

During the last 3 h of incubation, 0.5  µCi/ml [3H]thymidine were added, then 

medium was removed and after one wash in cold PBS, cells were precipitated 

with ice-cold 10% tricholoroacetic acid (1 h, 4°C) and washed with cold PBS. 

Then DNA was hydrolyzed overnight with 0,5 M NaOH/0,1% Triton X-100 and 

the radioactivity measured in a liquid scintillation counter. 

3.9 VEGF-A ELISA (Enzyme linked immunosorbent assay) 

Enzyme-Linked Immunosorbent Assay (ELISA) is a useful and powerful 

method in estimating ng/ml to pg/ml ordered substances in solution, such as 

serum, urine and cell culture supernatant. It employs the quantitative sandwich 

immunoassay technique. Standards and samples are pipetted into the wells of a 

microplate pre-coated with affinity purified polyclonal antibody specific for mouse 
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VEGF-A and any mouse VEGF-A present in the supernatants is bound by 

immobilized antibody. After washing away any unbound substances, an enzyme-

linked polyclonal antibody, specific for mouse VEGF is added to the wells. 

Following a wash to remove any unbound antibody-enzyme reagent, a substrate 

solution is added to the wells. The enzyme reaction yields a coloured product 

whose intensity is measured by a microplate reader capable of measuring 

absorbance at 450 nm. The intensity of the colour measured is proportional to 

the amount of mouse VEGF bound in the initial step. The sample concentration 

values are then calculated from the standard curve. 

MtT/S cells were seeded in 48-well-plate at 50000 cells/well, serum deprived 

overnight and, after 24 h, supernatant was collected from three different wells. 

VEGF-A concentration was measured in MtT/S cell supernatants by a Quantikine 

ELISA kit specific for mouse VEGF-A (R&D Systems) according to the 

manufacturer´s instructions. The detection range was 3-2500 pg/ml. 

3.10 Hormones measurement by RIA 

Radioimmunoassay (RIA) is a highly sensitive and quantitative technique 

used for the measurement of substances such as enzymes, proteins, hormones, 

that exist in very low concentrations. In this study, the RIA has been used to 

measure the concentration of rat ACTH, PRL and GH secreted in the medium by 

primary rat pituitary cultures.  

RIA uses radiolabeled antigens (Ag) to detect Ag-Ab reactions. The 

procedure follows the basic principle of radioimmunoassay where there is 

competition between a radioactive and a non-radioactive antigen for a fixed 

number of specific antibody binding sites. The antigens are labeled with the I125 

(iodine-125) isotope, and the presence of Ag-Ab reactions is detected using a 

gamma counter.  

So the first step for starting the RIA is developing an antibody that is highly 

specific for the hormone being measured. An N-terminal specific antibody against 

rat ACTH was raised in rabbits using an antigen produced by the two-step 

carbodiimid method (explained in Stalla et al., 1989). Standards were purchased 
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from Bachem (Bubendorf, Switzerland). The rat GH and rat prolactin antibodies 

were included in the specific RIA reagent kits provided by the National Hormone 

and Peptide Program (Baltimore, MD), containing the specific antigens, 

antiserums and standards. A small quantity of the antibody was mixed with a 

certain quantity of the sample (cell culture supernatant) containing the hormone 

to be measured. At the same time, a certain amount of tracer (standard Antigen 

labeled with the radioactive isotope I125) was added to the mixture. The samples 

were incubated 1 hour at 37°C, allowing time for the hormone (Ag) to bind to the 

antibody. The mixture was prepared in such quantities that there was not enough 

antibody to bind with both the labelled hormone and with the hormone to be 

measured, so the natural hormone and the labeled hormone had to compete for 

binding sites. The quantity of each hormone bound was proportional to their 

concentration and the amount of labeled hormone (tracer) bound to the specific 

antibody was inversely proportional to the concentration of the natural hormone. 

After binding had reached the equilibrium, the quantity of radioactive hormone 

bound to the antibody was measured in a gamma counter. As explained above, 

the amount of radioactivity present in the test was inversely proportional to the 

amount of hormone in the sample.  

Quantification of the unknown free hormone in the sample was achieved by 

comparing their activity with a standard curve prepared by using increasing 

amounts of known concentrations of the hormone. 

Before hormone measurements, the primary rat pituitary cell culture were 

serum-deprived overnight, stimulated for 24 h with 0.1, 1, 10, 50, 100 ng/ml 

VEGF in serum-free medium and afterwards the supernatants were collected for 

RIA analysis. 

3.11 Western immunoblotting 

Western blot is a technique for detection of proteins in different samples 

such as, tissue or cell extracts, serum, liquor or cell culture supernatants. Mostly, 

the proteins are separated by electrophoresis, transferred to different types of 

membranes and detected by various methods, among them immunological 
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methods. The latter allow the measurement of the relative amount of a specific 

protein present in the above-mentioned samples. This is possible by using a 

primary specific antibody directed against the studied protein which will be 

detected by a secondary antibody (horseradish peroxidase-conjugated) and 

visualized on a nitrocellulose membrane, after incubation with a substrate 

developing a luminescent product.  

For the western blot experiments, 1x106 MtT/S cells were plated in a 10 cm-

diameter Petri dish containing the specific medium described before added with 

10% FCS; a dish was prepared for each different condition chosen for 

stimulation. After overnight serum deprivation, each dish was stimulated with 50 

ng/ml PlGF for 30 min, 1 h, 3h and 6 h to study the phosphorylation of the PI3K 

transduction pathway components (PDK1, PTEN, Akt (Thr308 and Ser473), 

GSK3-β); whereas for detection of Bcl-2 and cyclin D1, the cells were treated 

with 50 ng/ml PlGF and then collected 24h, 48h, 72h, 96 h after the stimulation.  

For the experiment with LY294002, four Petri dishes (one for each condition) 

were prepared with 1x106 MtT/S cells per dish. After overnight serum 

deprivation, the plates were treated as follows: control plate and the second 

plate with 0,1% DMSO (since LY294002 is dissolved in DMSO), the third and 

fourth plate were treated with LY294002 30µM for 1 h, then to the plate number 

two and four 50 ng/ml PlGF were added for 30 min. 

The cells were washed with cold PBS, removed from the dish with a plastic 

scraper and the proteins were extracted breaking the cell membranes by pipeting 

up and down through a very small (insulin) syringe, in proteases inhibitor cocktail 

diluted 1:100 in PBS, working always on ice; the volume of the inhibitor cocktail 

was decided according to the dimension of the membranes pellet obtained after 

centrifugation. The protein samples concentration was determined with Bradford 

dye assay [Bradford, 1976]. The method is based on the proportional binding of 

the dye Coomassie to proteins and colorimetric reaction of this binding; as the 

protein concentration increases, the color of the test sample becomes darker. 

The protein concentration of a test sample is determined by comparison to that 

of a series of protein standards known to reproducibly exhibit a linear absorbance 

profile in this assay. 
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Fifty µl of the protein mixture obtained for each sample were separated 

using a pre-cast Tris-Glycine 10% gel in an Invitrogen electrophoresis apparatus, 

according to the manufacturer´s instructions. This procedure separates the 

proteins according to their size.  

The protein bands were then transferred on a nitrocellulose membrane 

(Hybond ECL), through an electrophoresis procedure in which the gel was on the 

negative side of the apparatus and the nitrocellulose membrane on the positive 

side, in this way the negative-charged proteins are driven from the gel to the 

positive-charged membrane, in the same position. 

The nitrocellulose membrane was then blocked for 2 h at room temperature 

in a 1X TBS solution containing 5% milk powder and 0,1% Tween, with gentle 

shaking. Then it was incubated over night at 4°C with the primary antibody 

diluted (see Tab. 4) in a 1X TBS solution containing 2,5% milk powder and 0,1% 

Tween, with gentle shaking. After 3 washes in 1X TBS 0,1% Tween 10 min each, 

the membrane was incubated with the secondary antibody diluted 1:1000 in 1X 

TBS 2,5% milk 0,1% Tween solution for 1 h at room temperature. Three further 

washes in 1X TBS 0,1% Tween, 10 min each, were then performed before 

incubating the membrane in the Lumi-light Western Blotting Substrate solution, 

prepared according to the manufacturer´s instructions. An x-ray film was 

exposed to the membrane in an autoradiography cassette, to detect the light 

given off by the enzyme reaction. After 30 min, the film was removed and 

developed to visualize the immunoreactivity bands. The bands were present 

wherever there was a protein-primary antibody-secondary antibody-enzyme 

complex, or in other words, wherever the studied protein was. 
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Table 4. Antibodies used in the western blotting studies. 
Antigens Primary antibodies Secondary horseradish 

peroxidase conj. 
antibodies 

Phospho-PDK1 Rabbit anti-human, rat, mouse 
(1:1000 dil.) (Cell Signalling 
Tech., Beverly, MA) 

Donkey anti-rabbit 
(Amersham Biosciences, 
Bucks, UK) 

Phospho-PTEN Rabbit anti-human, rat, mouse 
(1:1000 dil.) (Cell Signaling 
Tech.) 

Donkey anti-rabbit 
(Amersham Biosciences) 

Phospho-Akt 
(Thr308) 

Rabbit anti-human, rat, mouse 
(1:500 dil.) (Cell Signaling 
Tech.) 

Donkey anti-rabbit 
(Amersham Biosciences) 

Phospho-Akt (Ser473) Rabbit anti-human, rat, mouse 
(1:500 dil.) (Cell Signaling 
Tech.) 

Donkey anti-rabbit 
(Amersham Biosciences) 

Phospho-GSK-3β Rabbit anti-human, rat, mouse 
(1:1000 dil.) (Cell Signaling 
Tech.) 

Donkey anti-rabbit 
(Amersham Biosciences) 

Cyclin D1 Mouse anti-human (1:1000 dil.) 
(BD Biosciences, San Diego, CA) 

Donkey anti-mouse 
(Amersham Biosciences) 

Bcl-2 Mouse anti-human (1:1000 dil.) 
(BD Biosciences) 

Donkey anti-mouse 
(Amersham Biosciences) 

1st column: name of the antigen detected; 2nd column: characteristic of the primary 

antibodies, working dilution and producing companies; 3rd column: characteristic of the secondary 

horseradish peroxidase conjugated antibodies and producing companies. 

3.12 Statistics 

The statistical analysis of the immunohistochemical expression of different 

VEGF receptors compared to the biological parameters of the tumours 

investigated was performed with the Fisher exact test. The same statistical test 

was employed to analyze the correlation between VEGF-A and VEGFR-1, -2, -3, 

neuropilin-1 expression and between VEGF-C and VEGFR-3. Statistical 

significance was considered at p<0,05. 

Hormone secretion and cell proliferation experiments were all performed in 

quadruplicate wells and results are expressed as mean ± standard error. 

For statistical analyses of stimulation experiments, the mean values were 

compared by one-way ANOVA. P values smaller than 0,05 were considered 

significant. The significance grades are marked with stars as follows: * p< 0,05, 

**  p<0,005, ***  p<0,001. 
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4 RESULTS 

4.1 Characteristics of the normal and adenomatous pituitary 

samples studied 

The normal and adenomatous pituitary tissues included in this study were 

analyzed by IHC to investigate PI, which represents the number of cells entering 

the cell cycle, as well as, the number of blood (CD31 positive) and lymphatic 

(LYVE-1 positive) vessels (Tab. 5). 

In the three NP analyzed, the PI values were not higher than 0,6%, whereas 

in the pituitary adenomas group, the PI values ranged between 0 and 10,6%: in 

21 cases the PI value was lower than 1%, in 10 cases it was between 1 and 2% 

and in 8 cases it was greater than 2%.  

Concerning blood vessels count in NP, two cases showed a vessels count 

higher than 30 vessels and one between 21 and 30 vessels. 

The blood vessels count analysis revealed a number of vessels lower than 10 

in 9 cases, between 10 and 20 in 12 cases, between 21 and 30 in 8 cases and 

more than 30 in 13 cases (Tab. 5).  

No lymphatic vessels were detected in the NP and in any tumour 

investigated, the lymphatic vessels count did not exceed the average of 14,6 

(Tab. 5). The majority of the pituitary tumours investigated, did not show LYVE-1 

immunopositive vessels, while 11 tumours out of 35 (in 4 cases the 

determination of lymphatic vessels count was not possible) showed positive 

LYVE-1 vessels.  Five cases out of these 11 had no more than 6 vessels in the 

whole tissue section. It is of interest that, 8 out of these 11 LYVE-1 positive cases 

were classified as grade III, and one tumour demonstrated the highest PI 

(10,6%). 

No other significant relation was found among tumour type, tumour grade, 

PI, blood and lymphatic vessels counts. 
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Table 5. Clinico-biological characteristics of the normal and adenomatous pituitary 
tissues included in this study.  

Tissue Gender Age Grade PI (%) 
Blood vessels  

Count  
(CD31+) 

Lymphatic 
vessels Count

(LYVE-1+) 
NP1 M 67 - 0,3 21-30 0 
NP2 M 46 - 0,6 >30 0 
NP3 
 

F 37 - 0,6 >30 0 

ACRO1 M 29 III 1,3 21-30 14 
ACRO2 F 28 II 0 >30 14,6 
ACRO3 M 41 II 0 10-20 0 
ACRO4 F 52 III 2 10-20 0 
ACRO5 M 70 III 7,6 <10 0 
ACRO6 F 51 II 4,6 10-20 n.d. 
ACRO7 F 77 III 0 >30 0 
ACRO8 F 60 III 0,6 >30 0 
ACRO9 M 44 II 0 21-30 0 
ACRO10 F 47 I 0 >30 0 
ACRO11 
 

F 50 II 0 10-20 0 

CUSH1 F 46 III 2,6 <10 0 
CUSH2 F 52 II 1 10-20 0 
CUSH3 
 

F 29 III 0 <10 n.d. 

NFPA1 M 48 III 1 10-20 0 
NFPA2 F 49 III 2 <10 8 
NFPA3 F 64 III 0,5 21-30 0 
NFPA4 M 35 III 0 <10 8,3 
NFPA5 M 68 III 0,5 >30 0 
NFPA6 M 53 III 0 >30 n.d. 
NFPA7 M 39 III 0 <10 3 * 
NFPA8 M 61 III 0 21-30 0 
NFPA9 F 59 III 0 <10 0 
NFPA10 F 55 III 2,3 >30 0 
NFPA11 F 52 II 1,3 >30 0 
NFPA12 F 30 III 2 21-30 0 
NFPA13 F 66 III 2,6 10-20 2 
NFPA14 M 61 II 0 10-20 0 
NFPA15 F 48 III 9 >30 0 
NFPA16 M 75 II 0 21-30 0 
NFPA17 
 

F 32 II 1 10-20 n.d. 

PROL1 F 37 III 0,6 <10 2 * 
PROL2 M 28 III 0 21-30 0 
PROL3 M 28 III 4,3 10-20 0 
PROL4 M 43 II 1,6 >30 3 * 
PROL5 F 26 I 0 >30 9,6 
PROL6 
 

M 43 III 10,6 10-20 4,3 

THYR1 F 29 III 1,3 <10 3 * 
THYR2 M 32 III 0,7 10-20 0 

1 st column: clinical diagnosis (see abbreviation list for the meaning of abbreviations); 2nd 
column: gender (M: male, F: female); 3 rd column: age at the time of autopsy/tumour resection; 
4 th column: tumour grade according to Hardy classification directions; 5 th column: PI values (% 
of ki-67 positive cells); 6 th column: blood vessels number (number of CD31 positive vessels); 7 
th column: lymphatic vessels number (number of LYVE-1 positive vessels); PI, blood and 
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lymphatic vessels numbers were determined as described in Materials and Methods; * number of 
LYVE-1 positive vessels in whole tissue; nd, not determined.  

4.2 Expression of VEGF and its receptors in normal and 

adenomatous pituitary by RT-PCR 

To have a first overview of VEGF and VEGF receptors expression in normal 

and adenomatous pituitary, RT-PCR was performed using specific primers for 

VEGF, VEGFR-1, VEGFR-2, VEGFR-3 and neuropilin-1 listed in Tab. 1. 

The results obtained are summarized in Tab. 6. All the three normal human 

pituitary tissues expressed VEGF, VEGFR-1, VEGFR-2, VEGFR-3 and neuropilin-1 

transcripts.  All tumours expressed VEGF mRNA, whereas 20 out of 21 expressed 

VEGFR-1 mRNA and only 1 case did not express this receptor mRNA. The results 

of RT-PCR analysis for VEGFR-2 15 out of 21 showed a strong expression of 

VEGFR-2 mRNA, whereas 3 out of 21 showed a weak expression and 3 out of 21 

did not express VEGFR-2 mRNA. Neuropilin-1 mRNA was expressed strongly in 6 

out of 9 tumours, weakly in 2 out of 9 cases and lacked in 1 case out of 9. The 

results of RT-PCR analysis for VEGFR-3 showed that the mRNA expression of this 

receptor was strong in 5 cases out of 8 and absent in the remaining 3 cases 

(Tab. 6). 

The RT-PCR method is good for a preliminary screening of the investigated 

genes in a group of samples; however, it has some limitations, since it gives 

information only about the presence of the mRNA of the studied genes, but is not 

useful to detect the localization of the genes product or to get information about 

their translation into protein. This is the reason why we performed the RT-PCR 

analysis only in some pituitary tumour samples and we preferred to keep the 

other samples for ISH and IHC studies.  
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Table 6. Results of the RT-PCR performed for VEGF, VEGFR-1, VEGFR-2, VEGFR-3, 

neuropilin-1 in normal and adenomatous pituitary samples. 

Tissue VEGF VEGFR-1 VEGFR-2 Neuropilin-1 VEGFR-3 
NP1 + + + + + 
NP2 + + + + + 
NP3 
 

+ + + + + 

ACRO1 + + + n.d. n.d. 
ACRO2 n.d. n.d. n.d. n.d. n.d. 
ACRO3 + + + n.d. n.d. 
ACRO4 n.d. n.d. +/- - - 
ACRO5 n.d. n.d. n.d. n.d. n.d. 
ACRO6 n.d. n.d. n.d. n.d. n.d. 
ACRO7 + + + n.d. n.d. 
ACRO8 + + - n.d. n.d. 
ACRO9 n.d. n.d. n.d. n.d. n.d. 
ACRO10 n.d. n.d. n.d. n.d. n.d. 
ACRO11 
 

n.d. n.d. n.d. n.d. n.d. 

CUSH1 n.d. + +/- +/- - 
CUSH2 + + + n.d. n.d. 
CUSH3 
 

n.d. + + n.d. n.d. 

NFPA1 n.d. n.d. n.d. n.d. n.d. 
NFPA2 n.d. n.d. n.d. n.d. n.d. 
NFPA3 n.d. + + n.d. n.d. 
NFPA4 n.d. n.d. n.d. + + 
NFPA5 n.d. n.d. n.d. n.d. n.d. 
NFPA6 n.d. n.d. n.d. n.d. n.d. 
NFPA7 + + + + - 
NFPA8 + + + n.d. n.d. 
NFPA9 n.d. n.d. n.d. n.d. n.d. 
NFPA10 + + + + + 
NFPA11 + + + + n.d. 
NFPA12 + + + n.d. n.d. 
NFPA13 + + + +/- + 
NFPA14 n.d. n.d. n.d. n.d. n.d. 
NFPA15 + + +/- n.d. n.d. 
NFPA16 + + - n.d. n.d. 
NFPA17 
 

n.d. n.d. n.d. n.d. n.d. 

PROL1 n.d. n.d. n.d. n.d. n.d. 
PROL2 + + + n.d. n.d. 
PROL3 + + + + + 
PROL4 n.d. + + + + 
PROL5 n.d. n.d. n.d. n.d. n.d. 
PROL6 
 

n.d. - n.d. n.d. n.d. 

THYR1 n.d. n.d. n.d. n.d. n.d. 
THYR2 + + - n.d. n.d. 

See abbreviation list for the meaning of abbreviations  

+ strong expression; +/- faint expression; - no transcript; n.d., not determined. 
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4.3 VEGF-A expression in normal and adenomatous pituitary by 

IHC 

VEGF-A immunostaining was detected in endocrine cells cytoplasm of both 

normal pituitaries and pituitary adenomas. All the 3 NP expressed VEGF-A in a 

similar extent (31-60% of the endocrine cells). Nineteen out of 39 tumours 

showed VEGF-A immunoreactivity in more than 61% of the endocrine cells, 9 

tumours in 31-60%, 5 in 10-30% and 1 had less than 10% VEGF-A positive cells; 

5 tumours were negative for VEGF-A. All the cases of CUSH (3/3), PROL (6/6) 

and THYR (2/2) were positive for VEGF-A immunohistochemistry, whereas 8 out 

of 11 ACRO and 15 out of 17 NFPA showed VEGF-A immunostaining. Nineteen 

cases of the 39 pituitary adenomas investigated showed a number of VEGF-A 

positive cells higher than 61%, which is higher than the VEGF-A extent observed 

in NP (Tab. 7). 

4.4 VEGFR-1 expression in normal and adenomatous pituitary by 

IHC 

In all the 3 human NP studied, VEGFR-1 immunoreactivity was detected in 

30% of endocrine cells (Fig. 7A); double IHC revealed VEGFR-1 immunoreactivity 

in  ACTH-, FSH-, GH-, LH- and PRL- immunopositive cells (Fig. 8A, B, C, D, E). In 

pituitary adenomas, VEGFR-1 immunostaining was detected in endocrine cells, 

but not in vessels (Fig. 9A). Twenty-four out of 39 tumours stained positive for 

VEGFR-1: in 11 out of these 24 cases the number of immunopositive cells was 

higher than 61%, in 4 cases the percentage of positive cells was in the range 10-

30%, while in 9 cases VEGFR-1 immunoreactivity was detected in less than 10% 

of the endocrine cells. Half of the VEGFR-1 immunopositive tumours had higher 

number of VEGFR-1 expressing cells compared to the normal pituitary glands. 

VEGFR-1 expression was detected in 7 out of 11 ACRO, 2 out of 3 CUSH, 11 out 

of 17 NFPA, 3 out of 6 PROL and 2 out of 2 THYR (Tab. 7). ISH analysis 

confirmed the data derived by IHC (Tab. 7) and VEGFR-1 mRNA was localized in 

endocrine cells (Fig. 10A). 
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4.5 VEGFR-2 expression in normal and adenomatous pituitary by 

IHC 

Immunohistochemical analysis for VEGFR-2 revealed its expression in blood 

vessel endothelial cells of both normal (Fig. 7B) and adenomatous (Fig. 9B) 

pituitaries; these data were confirmed by ISH (Tab. 7, Fig. 10B).  

Comparison of the number of CD31 positive vessels with VEGFR-2 positive 

vessels demonstrated that not all the vessels, in normal and adenomatous 

pituitaries, expressed VEGFR-2. For this reason VEGFR-2 immunostaining was 

expressed as percentage of vessels positive for VEGFR-2 compared to vessels 

positive for CD31. In the normal pituitaries the percentage of VEGFR-2 positive 

vessels was higher than 61%. VEGFR-2 immunoreactivity was found in: 2 out of 

11 ACRO, 2 out of 3 CUSH, 10 out of 17 NFPA, 2 out of 6 PROL but all THYR 

were negative for VEGFR-2.  More in detail, 21 pituitary adenomas out of 39 did 

not express VEGFR-2, whereas in 12 of the positive cases, the percentage of 

VEGFR-2 positive vessels was higher than 61%, in 3 cases between 31 and 60%, 

in 1 case between 10 and 30% and in 2 cases lower than 10% (Tab. 7).  

4.6 Neuropilin-1 expression in normal and adenomatous pituitary 

by IHC 

IHC revealed neuropilin-1 expression in blood vessel endothelial cells in 

normal (Fig. 7C) and adenomatous (Fig. 9C) pituitary. As it was observed for 

VEGFR-2, not all the CD31 positive vessels were positive for neuropilin-1, thus 

immunostaining for this VEGF receptor was expressed as percentage of positive 

vessels compared to CD31 positive vessels. All the NP analyzed showed 

neuropilin-1 immunostaining, in 31 to 60% of the CD31 immunopositive vessels. 

In the different pituitary adenomas, neuropilin-1 was present in 5 out of 11 

ACRO, 1 out of 3 CUSH, 7 out of 17 NFPA, 3 out of 6 PROL and 1 out of 2 THYR. 

Immunohistochemical analysis for neuropilin-1 in pituitary adenomas revealed 

that more than half tumours were negative. Four tumours had less than 10% 

neuropilin-1 immunopositive vessels, 4 were in the range of 10-30% neuropilin-1 
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positive vessels, 7 had 31-60% neuropilin-1 positive vessels, while 2 cases had 

more than 61% of neuropilin-1 positive vessels. These two pituitary adenomas 

were the only ones with the number of neuropilin-1 positive vessels higher than 

in the normal pituitaries (Tab. 7). Altogether these data indicate that in the 

majority of pituitary adenomas, neuropilin-1 expression is lower than in the 

normal pituitary. 
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Table 7. Expression of VEGF-A, VEGFR-1, VEGFR-2 and neuropilin-1, investigated by 
IHC and ISH, in human normal and adenomatous pituitaries. 

Tissue Grade PI (%) 
Blood Vessel 

Count 
(CD31+) 

VEGF-A 
IHC 

VEGFR-1 
IHC ISH 

 

VEGFR-2 
IHC ISH  Neuropilin-1 

IHC 

NP1 - 0,3 21-30 +++ ++ + ++++ + +++ 
NP2 - 0,6 >30 +++ ++ n.d. ++++ n.d. +++ 
NP3 - 0,6 >30 +++ ++ n.d. +++ n.d. +++ 

          
ACRO1 III 1,3 21-30 +++ ++ n.d. - - -  
ACRO2 II 0 >30 ++++ ++++ n.d. - n.d. ++ 
ACRO3 II 0 10-20 ++ + + - - + 
ACRO4 III 2 10-20 - ++++ n.d. - n.d. - 
ACRO5 III 7,6 <10 - - n.d. - n.d. - 
ACRO6 II 4,6 10-20 ++ + n.d. +++ n.d. - 
ACRO7 III 0 >30 - ++ + - n.d. ++ 
ACRO8 III 0,6 >30 ++ ++++ n.d. ++ n.d. ++ 
ACRO9 II 0 21-30 +++ -   n.d. - n.d. ++ 
ACRO10 I 0 >30 ++++ - n.d. - n.d. - 
ACRO11 II 0 10-20 ++++ - n.d. - n.d. - 

          
CUSH1 III 2,6 <10 ++++ ++++ + ++++ + ++++ 
CUSH2 II 1 10-20 ++++ - n.d. + n.d. - 
CUSH3 III 0 <10 +++ ++ n.d. -  n.d. - 

          
NFPA1 III 1 10-20 +++ ++++ n.d. ++++ n.d. +++ 
NFPA2 III 2 <10 ++ ++++ n.d. - n.d. -  
NFPA3 III 0,5 21-30 ++++ ++++ + - - - 
NFPA4 III 0 <10 ++++ - n.d. ++++ n.d. - 
NFPA5 III 0,5 >30 ++++ - n.d. - n.d. -  
NFPA6 III 0 >30 +++ + n.d. +++ n.d. - 
NFPA7 III 0 <10 ++++ ++++ + - - - 
NFPA8 III 0 21-30 +++ + + - - - 
NFPA9 III 0 <10 ++++ - n.d. ++++ n.d. - 
NFPA10 III 2,3 >30 ++++ - - + + - 
NFPA11 II 1,3 >30 - - - +++ + + 
NFPA12 III 2 21-30 +++ ++ n.d. ++++ n.d. ++++ 
NFPA13 III 2,6 10-20 ++++ + n.d. ++++ n.d. +++ 
NFPA14 II 0 10-20 - ++++ n.d. - n.d. - 
NFPA15 III 9 >30 ++++ - n.d. ++++ n.d. +++ 
NFPA16 II 0 21-30 ++++ + n.d. ++++ n.d. +++ 
NFPA17 II 1 10-20 +++ - n.d. ++++ n.d. + 

          
PROL1 III 0,6 <10 ++++ + n.d. ++++ n.d. - 
PROL2 III 0 21-30 ++++ + + - - - 
PROL3 III 4,3 10-20 ++++ ++++ n.d. ++++ + +++ 
PROL4 II 1,6 >30 +++ - - - - + 
PROL5 I 0 >30 + - - - - - 
PROL6 III 10,6 10-20 ++ - n.d. ++++ + +++ 

          
THYR1 III 1,3 <10 ++++ + n.d. - n.d. - 
THYR2 III 0,7 10-20 ++++ ++++ + - - +++ 

Immunostaining intensity for VEGF-A and VEGFR-1 was assessed according to an arbitrary scale: 
- no immunoreactivity, + <10%, ++ 10-30%, +++ 31-60%, ++++ 61-100% immunopositive 
cells. Immunoreactivity for VEGFR-2 and neuropilin-1: - no immunoreactivity, + <10%, ++ 10-
30%, +++ 31-60%, ++++ 61-100 % of CD31 positive vessels which show immunostaining for 
VEGFR-2 and neuropilin-1. The results of ISH were scored as positive (+) or negative (-) only; 
n.d. not determined.  



Figure 7. Localization of VEGFR-1, VEGFR-2 and neuropilin-1 in normal human 

anterior pituitary. Immunostaining of VEGFR-1 was detected in endocrine cells (A); VEGFR-2 

(B) and Neuropilin-1 (C) immunostaining were detected in endothelial cells. Inserts: negative 

control omitting the primary antibody. Nuclei were counterstained with toluidine blue. 

Magnification 200X. 

Figure 8. Co-localization of VEGFR-1 and pituitary hormones in normal human 

anterior pituitary. VEGFR-1 immunostaining (in brown) and co- localized with pituitary 

hormones immunostaining (in red) for ACTH (A), FSH (B), GH (C), LH (D), PRL (E), but not with 

TSH (F). Open arrows indicate cells which express VEGFR-1 only, double arrows mark the cells 

expressing only pituitary hormones and the full arrows show the cells which express VEGFR-1 and 

one of the pituitary hormones. Nuclei were counterstained with toluidine blue. Magnification X 

200. 
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Figure 9.  Localization of VEGFR-1, VEGFR-2 and neuropilin-1 in some representative 

pituitary adenoma types (NFPA, PROL, ACRO). (A) VEGFR-1 immunoreactivity in endocrine 

cells of a NFPA, PROL, ACRO. (B) VEGFR-2 immunoreactivity in endothelial cells of a NFPA, PROL, 

ACRO. (C) Neuropilin-1 immunoreactivity in endothelial cells of a NFPA, PROL, ACRO. Inserts: 

negative controls omitting the primary antibodies. Nuclei were counterstained with toluidine blue.  

Magnification X 200. 
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A B

 

Figure 10.  ISH for VEGFR-1 and VEGFR-2 in a representative pituitary adenoma 

(NFPA). VEGFR-1 35S-labeled riboprobe signal (black grain) is localized in tumour cells (A), while 

VEGFR-2 35S-labeled riboprobe signal (black grain) is detected in vessels endothelial cells (B). 

Magnification X 400. 

4.7 Correlation between VEGF-A, VEGFR-1, VEGFR-2 and 

neuropilin-1 expression and clinico-biological parameters of 

the tumours studied 

The data obtained from IHC evaluation were analyzed for possible correlation 

between VEGF-A, VEGFR-1, VEGFR-2 and neuropilin-1 expression and different 

clinico-biological parameters of the tumours investigated, such as: tumour grade, 

PI and blood vessel count. VEGF-A expression was also compared to the 

expression of its receptors VEGFR-1, VEGFR-2 and neuropilin-1 (Tab. 8A). The 

statistical analysis of the IHC results, performed with the Fisher´s exact test, 

showed no correlation between VEGF-A and VEGFR-1 expressions and any of the   

parameters investigated (Tab. 8B). On the other hand, VEGFR-2 and neuropilin-1 

significantly correlated with PI (p=0,037 and p=0,009 respectively) (Tab. 8B). 

VEGF-A expression showed no significant association with the expression of any 

of its receptors (Tab. 9). 
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Table 8. Relationship between the expression of VEGF-A, VEGFR-1, VEGFR-2 and 

neuropilin-1 and tumour grade, PI and blood vessel count. 

A 

 __VEGF-A_ VEGFR-1_ VEGFR-2_ neuropilin-1_
 Low  

(-/++) 
High 
(+++/ 
++++) 

Low  
(-/++) 

High 
(+++/ 
++++) 

Low  
(-/++) 

High 
(+++/ 
++++) 

Low  
(-/++) 

High 
(+++/ 
++++) 

Grade         
I/II 5 8 11 2 9 4 12 1 
III 6 20 17 9 15 11 18 8 
PI         
≤ 2% 8 23 22 9 22 9 27 4 
> 2% 3 5 6 2 2 6 3 5 
Blood 
Vess 
Count 

        

≤ 20 7 14 13 8 11 10 15 6 
> 20 4 14 15 3 13 5 15 3 

 

   B 

 VEGF-A 

 

VEGFR-1 VEGFR-2 neuropilin-1 

Grade 0,453 0,276 0,728 0,225 

PI 0,663 1,000 0,037 0,009 

Blood vess count 0,382 0,569 0,323 0,464 

The immunoreactivities for VEGF-A and its receptors were subdivided in two categories: 

`low´ were considered the tumours scored -/++, whereas `high´ were the tumours scored with 

+++/++++. The tumours were classified in two groups according to tumour grade: grade I/II 

and grade III, according to PI values: less than or equal to 2% and more than 2% and according 

to blood vessels count: less than or equal to 20 or more than 20 counted vessels (A). The Fisher 

exact test was used for statistical analysis and statistical significance was considered at p< 0,05; 

the p values are shown in the lower table (B). The association between VEGFR-2 expression and 

PI and between neuropilin- 1 expression and PI are statistically significant. 
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Table 9. Association between VEGF-A expression and the expression of its receptors 

VEGFR-1, VEGFR-2 and neuropilin-1. 

 VEGF-A  VEGF-A  VEGF-A

 Low  
(-/2+) 

High 
(3+/4+) 

 Low  
(-/2+) 

High 
(3+/4+) 

 Low  
(-/2+) 

High  
(3+/4+) 

VEGFR-1   VEGFR-2   neuropilin-1   

Low  
(-/2+) 

7 21 Low 
(-/2+) 

7 16 Low (-/2+) 10 20 

High 
(3+/4+) 

4 7 High 
(3+/4+) 

4 12 High (3+/4+) 1 8 

p=0,694                                p=1,000                                      p=0,399 

According to Fisher exact test, there is no significant correlation between VEGF expression 

and its receptors. 

4.8 VEGF-C expression in normal and adenomatous pituitary by 

IHC 

VEGF-C immunoreactivity was detected in cytoplasm of endocrine cells both 

in NP (Fig. 11A) and in adenomas (Fig. 11 C, D, E, F). In all the 3 NP studied, the 

percentage of positive cells was less than 10%. Most (22 cases out of 32) of the 

tumours analyzed did not show any VEGF-C immunoreactivity; of the 10 positive 

tumours, 8 displayed more than 80% of VEGF-C positive cells, while 2 expressed 

VEGF-C in less than 10% of the cells (Tab. 10) (see also Fig. 11C-D). VEGF-C 

immunoreactivity was observed in: 3 out of 7 ACRO, 1 out of 2 CUSH, 4 out of 15 

NFPA, 1 out of 6 PROL and 1 out of 2 THYR. 

4.9 VEGFR-3 expression in normal and adenomatous pituitary by 

IHC 

VEGFR-3 immunoreactivity was detected in endothelial cells of both normal 

(Fig. 11B) and adenomatous human pituitary (Fig. 11 G, H, I). All the 3 NP 

investigated displayed a small number of VEGFR-3 immunopositive vessels (Tab. 

10). 
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Twenty-two out of 38 tumours showed VEGFR-3 positive vessels with 

numbers ranging from 14,6 to 3,3. Two cases had only 2 and 5 immunopositive 

vessels in the whole tissue. The positive cases observed were: 4 out of 11 ACRO, 

1 out of 3 CUSH, 11 out of 17 NFPA, 5 out of 6 PROL and 1 out of 2 THYR (Tab. 

10). 

Since VEGFR-3 is also known to be expressed in lymphatic vessels [Kaipainen 

et al., 1995], the number of vessels positive for VEGFR-3 should be compared to 

the number of vessels expressing the lymphatic marker, LYVE-1. However, since 

normal pituitary and most of the pituitary adenomas, had no LYVE-1 positive 

vessels, it is possible that the VEGFR-3 immunopositive endothelial cells were not 

belonging to lymphatic vessels.  
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Table 10. Expression of VEGF-C, VEGFR-3 and LYVE-1 investigated by IHC in human 
normal and adenomatous pituitaries. 

Tissue Grade PI(%) 

Blood 
Vessels 
Count 

(CD31+) 

VEGF-C VEGFR-3 
Lymphatic vessels 

Count 
(LYVE-1+) 

NP1  0,3 21-30 + 12 * 0 
NP2  0,6 >30 + 4 * 0 
NP3 
 

 0,6 >30 + 4 * 0 

ACRO1 III 1,3 21-30 n.d 11,3 14 
ACRO2 II 0 >30 - 0 14,6 
ACRO3 II 0 10-20 - 0 0 
ACRO4 III 2 10-20 ++++ 0 0 
ACRO5 III 7,6 <10 ++++ 0 0 
ACRO6 II 4,6 10-20 n.d. 0 n.d. 
ACRO7 III 0 >30 ++++ 5,6 0 
ACRO8 III 0,6 >30 - 7 0 
ACRO9 II 0 21-30 - 13,3 0 
ACRO10 I 0 >30 n.d. 0 0 
ACRO11 
 

II 0 10-20 n.d. 0 0 

CUSH1 III 2,6 <10 ++++ 6 0 
CUSH2 II 1 10-20 - 0 0 
CUSH3 
 

III 0 <10 n.d. 0 n.d. 

NFPA1 III 1 10-20 + 0 0 
NFPA2 III 2 <10 - 11 8 
NFPA3 III 0,5 21-30 - 0 0 
NFPA4 III 0 <10 - 6,3 8,3 
NFPA5 III 0,5 >30 - 14,6 0 
NFPA6 III 0 >30 - n.d. n.d. 
NFPA7 III 0 <10 ++++ 5 * 3 * 
NFPA8 III 0 21-30 - 12 0 
NFPA9 III 0 <10 ++++ 7 0 
NFPA10 III 2,3 >30 + 0 0 
NFPA11 II 1,3 >30 - 4,3 0 
NFPA12 III 2 21-30 - 4,6 0 
NFPA13 III 2,6 10-20 - 4,3 2 
NFPA14 II 0 10-20 n.d. 0 0 
NFPA15 III 9 >30 - 10,3 0 
NFPA16 II 0 21-30 - 0 0 
NFPA17 
 

II 1 10-20 n.d. 13,3 n.d. 

PROL1 III 0,6 <10 - 2 * 2 * 
PROL2 III 0 21-30 - 0 0 
PROL3 III 4,3 10-20 - 3,3 0 
PROL4 II 1,6 >30 - 7 3 * 
PROL5 I 0 >30 - 6 9,6 
PROL6 
 

III 10,6 10-20 ++++ 10,3 4,3 

THYR1 III 1,3 <10 ++++ 0 3 * 
THYR2 III 0,7 10-20 - 4 0 
VEGF-C immunoreactivity was scored as following: - no immunostaining signal, + <10%, ++ 10-
30%, +++ 31-60%, ++++ 61-100% of positive cells. In the case of VEGFR-3 and LYVE-1, the 
raw number is displayed, representing the mean of three counts in three different fields inside the 
eye-piece grid described before or, where the positive vessels were too few, the total number of 



positive vessels counted in the whole tissue. N.d., not determined. * number of LYVE-1 or VEGF-3 
positive vessels in whole tissue. 

Figure 11. Localization of VEGF-C and VEGFR-3 in human normal and adenomatous 

pituitary. VEGF-C immunoreactivity in endocrine cells of: normal pituitary (A), NFPA with only 

some positive cells (C), NFPA with almost all cells are positive (D), PROL (E), ACRO (F). VEGFR-3 

immunoreactivity in endothelial cells of: normal pituitary (B), NFPA (G), PROL (H), ACRO (I). 

Nuclei were counterstained with toluidine blue. Inserts: negative control in which the primary 

antibody was omitted. Magnification 200X. 

4.10 Correlation between VEGF-C, VEGFR-3 expression and clinico-

biological parameters of the tumours studied 

VEGF-C and VEGFR-3 IHC results were statistically analyzed, with Fisher 

exact test, for possible correlation with tumour grade, PI, blood and lymphatic 
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vessels counts. The expression of VEGF-C was also correlated with VEGFR-3 

expression.  

The statistical analysis showed a significant correlation only between VEGF-C 

and blood vessels count: surprisingly, the tumours showing low VEGF-C 

immunoreactivity, displayed high blood vessels count (Tab. 11). 

No significant correlation was detected between neither VEGF-C and VEGFR-

3 expression and tumour grade, PI and lymphatic vessels counts (Tab. 11) nor 

between VEGF-C and VEGFR-3 expression (Tab. 12), except the one observed 

between low expression of VEGF-C and high blood vessel count. 

 

Table 11. Relationship between VEGF-C and VEGFR-3 expression and tumour grade, 

PI and blood and lymphatic vessels count. 

 VEGF-C VEGFR-3
 Low 

(-/++) 
High 
(+++/ 
++++) 

p Low  
(≤ 5) 

High 
(> 5) 

p 

Grade       
I/II 8 0 0,081 9 4 0,501 
III 16 8  14 11  
PI       
≤ 2% 20 5 0,550 18 12 0,698 
> 2% 4 3  4 4  
Lymphatic 
vessels 
count 

      

≤ 5 19 8 0,327 20 10 0,134 
> 5 4 0  1 4  
Blood 
vessels 
count 

      

≤ 20 9 7 0,037 15 6 0,185 
> 20 15 1  8 9  

VEGF-C immunoreactivity was classified in two categories: Low (-/++) and High (+++/++++); 
VEGFR-3 immunoreactivity was classified in two categories: Low (≤ 5 vessels) and High (> 5 
vessels). The Fisher exact test was used for statistical analysis and statistical significance was 
considered at p< 0,05. The association between VEGF-C expression and blood vessels count is 
statistically significant. 

 

Table 12. Association between VEGF-C and VEGFR-3 expression. 

 VEGF-C
 Low  

(-/++) 
High  
(+++/++++) 

VEGFR-3   
Low  
(≤ 5) 

14 4 

High  
(> 5) 

9 4 

P=0,698 No correlation was found according to Fisher exact test. 



4.11 VEGF receptors expression in human and rodent pituitary 

adenoma cell lines and normal pituitary by RT-PCR 

The expression of VEGF receptors mRNA was determined in different human 

and rodent pituitary tumour cell lines and in normal human and rat pituitary 

glands by RT-PCR, using the specific primers listed in Tab. 1. From the cell lines 

analyzed, the rat somatotrophinoma cell line MtT/S expressed VEGFR-1 and 

neuropilin-1, but not VEGFR-2 mRNA (Fig. 12 A3, B3, C3). VEGFR-3 was 

expressed only by AtT-20 cell line (Fig. 12 D4), while all the cell lines examined 

(GH3, TtT/GF, MtT/S, AtT20 and HP75) were positive for neuropilin-1 (Fig. 12C). 

Normal rat and human pituitary showed an amplification band for all the four 

VEGF receptors studied (Fig. 12 A5-7, B5-7, C5-7, D5-7). 

 
Figure 12. Expression of VEGFR-1 (A), VEGFR-2 (B), neuropilin-1 (C) and VEGFR-3 (D) 

and GAPDH/β-actin (E) in rat, mouse and human pituitary adenoma cell lines, 

analyzed by RT-PCR. VEGFR-1 mRNA was detected in somatotrophinoma MtT/S cells, VEGFR-2 

was not detected in any cell lines, neuropilin-1 was detected in all the cell lines and VEGFR-3 was 
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detected in corticotrophinoma AtT-20 cells; normal rat and human pituitaries were both 

expressing the four VEGF receptors mRNA. 1: rat mammosomatotrophinoma GH3 cells; 2: mouse 

TtT-GF folliculo-stellate cells; 3: rat somatotrophinoma MtT/S cells; 4: mouse corticotrophinoma 

AtT-20 cells; 5: rat normal pituitary; 6: human gonadotrophinoma HP75 cell line; 7: normal 

human pituitary; M: 1 kb Plus DNA Ladder. 

4.12 VEGF-A production by MtT/S cells 

Constitutive production of VEGF-A from MtT/S cells was observed, in basal 

condition, with an average secretion of 165, 21 ±22, 25 pg/ml after 24 h. 

4.13 VEGF-A effect on rat pituitary and MtT/S cells hormone 

secretion 

The detection of VEGFR-1 mRNA in rat pituitary and in the MtT/S cell line, 

together with the previous detection of VEGFR-1 protein in human pituitary 

adenomas, suggested to test the possible effect of VEGF-A on rat pituitary and 

MtT/S cells hormone secretion. Treatment of rat pituitary cells in primary culture 

with different concentrations of VEGF-A, increased significantly prolactin secretion 

in a dose-dependent fashion, after 24 h (Fig. 13A). The treatment with 1 ng/ml 

VEGF-A induced an increase of 21% (p<0,05) in the secretion of this hormone, 

but the highest response was obtained after stimulation with 50 ng/ml VEGF-A, 

which induced an increase of 65% (p<0,005), compared to basal secretion. 

VEGF-A increased significantly also ACTH secretion by 20% (p<0,005) at 50 

ng/ml but not at intermediate doses (Fig. 13B). On the other side, a tendency to 

enhance GH release, though not significantly, was observed after stimulation with 

50 ng/ml VEGF (Fig. 13C). As far as concerned with MtT/S cells, any stimulation 

in GH secretion was detected, after VEGF-A treatment used at the same 

concentrations (data not shown).  
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Figure 13. Effect of VEGF-A 24h-treatment on rat anterior pituitary hormone 

secretion. VEGF-A 50 ng/ml induced a significant secretion of prolactin (A) and ACTH (B). An 

increase in GH secretion (C) was also detected even if not significant. Values represent the means 

for 4 replicates. * p< 0,05, **  p<0,005, ***  p<0,001. 
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4.14 VEGFR-1 involvement in MtT/S cell proliferation 

The effect of VEGFR-1 ligands on pituitary tumour cell proliferation was also 

studied. The treatment of MtT/S cells, with VEGF-A for 96 h, induced a significant 

increase in cell proliferation of 11% and 36% compared to the untreated cells, as 

determined by [3H]-thymidine incorporation at 50 ng/ml and 100 ng/ml (both 

p<0,05) (Fig. 14A). Likewise, the treatment of the same cell line with the VEGFR-

1 selective ligand PlGF, for 96 h increased significantly cell proliferation, with 

maximal increases of 24% and 32% (both p<0,001) observed at 50 ng/ml and 

100 ng/ml PlGF doses, respectively (Fig. 14B). Stimulation with VEGF-E (that 

does not bind VEGFR-1), in contrast, was not able to induce any effect on [3H]-

thymidine incorporation (Fig. 14C). 

The [3H]-thymidine incorporation, induced by PlGF, was significantly inhibited 

by PI3K specific inhibitor LY294002 (p<0,001) (Fig. 15). 
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Figure 14. Cell proliferation of MtT/S cells measured by [3H]-thymidine incorporation 

after VEGF-A, PlGF and VEGF-E stimulation for 96 h. The concentration of 50 ng/ml and 

100 ng/ml of VEGF-A (A) and 10 ng/ml, 50 ng/ml and 100 ng/ml of PlGF (B) induced a significant 

increase of [3H]-thymidine incorporation in comparison to untreated cells, whereas VEGF-E 

treatment had no effect on [3H]-thymidine incorporation (C). Values represent the means for 4 

replicates and results are presented as percentage of control. * p< 0,05, **  p<0,005, ***  

p<0,001. 
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Figure 15. Effect of PI3K specific inhibitor (LY294002) on PlGF induced cell 

proliferation in MtT/S cells. Cells were treated with LY294002 30 µM (LY) and PlGF 50 ng/ml 

(Pl) for 96 h and LY294002 inhibited significantly the PlGF induced [3H]-thymidine incorporation in 

MtT/S cells. Values represent the means for 4 replicates and results are presented as percentage 

of control. * p< 0,05, **  p<0,005, ***  p<0,001. 

4.15 VEGFR-1 activates the PI3K/Akt pathway in MtT/S cells 

PlGF can induce angiogenesis in vivo and stimulate the migration and 

proliferation of endothelial cells in vitro [Ziche et al., 1997]. In order to elucidate 

whether the same mechanism is responsible for VEGFR-1 proliferative action in 

pituitary tumour cells, the effect of PlGF on the phosphorylation status of some 

members of the PI3K/Akt pathway was determined by western blotting. This 

signalling pathway was investigated, since it was found to be involved in the 

proliferation of endothelial cells [Yu and Sato, 1999; Thakker et al., 1999] and 

the p85 PI3K subunit was reported to bind to tyrosine autophosphorylated 

residues in the intracellular domain of VEGFR-1 [Cunningham et al., 1995; Yu et 

al., 2001]. 

Thirty minutes of PlGF treatment (50 ng/ml) increased the phosphorylation 

levels of PDK-1, Akt (at both phosphorylation sites Thr 308 and Ser 473) and 

GSK-3β (Fig. 16A). PDK-1 phosphorylation status increased in a time-dependent 

fashion up to 6 h, while the phosphorylation of Akt at Thr 308 reached maximum 

levels after 1 h and then slightly decreased. Akt phosphorylation at Ser 473 was 

maximal after 30 min, but it disappeared completely after 3h of treatment. The 
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highest levels of GSK-3 β phosphorylation were observed after 3 and 6 h. PlGF 

treatment did not affect the phosphorylation status of PTEN phosphatase, which 

is a major negative regulator of the PI3K/Akt signalling pathway (Fig. 16A) 

[Cantley and Neel, 1999]. Further, MtT/S cells treatment, with PI3K specific 

inhibitor LY294002 at 30 µM for 1 h, inhibited the PlGF induced phosphorylation 

of Akt in Thr 308 (Fig. 16B). 

 

    

                                                                                                A 

B 

Figure 16. PlGF induced activation of PI3K pathway in MtT/S cells. PlGF is able to induce 

activation of PI3K/Akt pathway in MtT/S cell line, enhancing an increase in the phosphorylation of 

PDK-1, Akt (in both Thr 308 and Ser473) and GSK3-β, after 30 min. Whereas the phosphorylation 

status of the negative regulator PTEN is unchanged (A). MtT/S cell lysates were obtained from 

cells collected after 30 min, 1h, 3h and 6 h stimulation with PlGF (50 ng/ml), separated on a Tris-

Glycine gel and after transfer on a nitrocellulose membrane, immunoblotted with anti pospho-

PDK1, anti phospho-PTEN, anti phospho-Akt (Thr 308), anti phospho-Akt (Ser 473) and anti 

phospho GSK-3β. MtT/S cells treatment with LY294002 30 µM (LY) is able to inhibit PlGF induced 

Akt phosphorylation at Thr 308 (B). Before collecting cell lysates for western blot analysis with 

anti phospsho-Akt (Thr 308), cells were treated for 1 h with LY294002 and then stimulated with 

50 ng/ml of PlGF for 30 min. 
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4.16 VEGFR-1 affects components of the cell cycle and apoptotic 

machinery 

GSK3-β was shown to inhibit cell cycle by phosphorylating and therefore 

marking for degradation, cyclin D1 [Diehl et al., 1998]. In order to see if the 

phosphorylation leading to inhibition of GSK3- β by PlGF has any effect on cyclin 

D1, MtT/S cells were treated with 50 ng/ml PlGF for 24, 48, 72 and 96 h. PlGF 

treatment increased the protein level of cyclin D1 after 24 h. This effect reached 

a maximum after 48 h and remained for 72 h (Fig. 17A).  

Since Akt phosphorylation of CREB protein was reported to induce the 

transcription of anti-apoptotic genes like Bcl-2 [Pugazhenthi et al., 2000], in 

order to see if PlGF could affect also Bcl-2 level, MtT/S cells were treated with the 

same conditions used to study PlGF effect on cyclin D1. An increase in Bcl-2 

protein amount was observed, with a maximum after 24 h and lasted for 72 h 

(Fig. 17A). Furthermore, the treatment with PI3K inhibitor LY294002 at 30 µM 

inhibited the production of cyclin D1 and Bcl-2 induced by PlGF, after 48 h (Fig. 

17B). 
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Figure 17. Effect of PlGF on cyclin D1 and Bcl-2 protein amount. Cyclin D1 augmentation 

is visible after 24 h, reaching a maximum after 48 h and then starting to decrease, whereas Bcl-2 

reaches its maximum after 24 and then it starts to decrease (A). MtT/S cell lysates were obtained 

from cells collected after 24h, 48h, 72h and 96 h stimulation with PlGF (50 ng/ml), separated on 

a Tris-Glycine gel and after transfer on a nitrocellulose membrane, immunoblotted with anti cyclin 

D1 and anti Bcl-2; the control consists in MtT/S cell lysate collected at 24h from unstimulated 

cells. MtT/S cell treatment with LY294002 30 µM (LY) is able to decrease the production of cyclin 

D1 and Bcl-2 induced by 50 ng/ml of PlGF (Pl) (B). Before collecting cell lysates for western blot 

analysis with anti cyclin D1 and anti Bcl-2, cells were treated for 1 h with LY294002 and then 

stimulated with 50 ng/ml of PlGF for 48h. 
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5 DISCUSSION 

To further understand the role of angiogenesis in the development of 

pituitary adenomas, in the present study, the expression and in particular the 

localization of one of the most important angiogenic factor, VEGF-A and of its 

receptors: VEGFR-1, VEGFR-2 and neuropilin-1, was investigated in normal 

human pituitary and in a series of pituitary adenomas. In addition, the expression 

and localization of VEGF-C and its receptor VEGFR-3, which are involved in 

lymphatic vessel development, was investigated in the same type of tissues.  

In the present study, it has been shown that VEGF-A is mostly expressed in 

pituitary adenomas in similar or even greater extent compared to the normal 

pituitary, therefore confirming previous studies [Lloyd et al., 1999; Ochoa et al., 

2000; Viacava et al., 2003]. However, most pituitary tumours are less 

vascularized than the normal adenohypophysis [Jugenburg et al., 1995; Turner et 

al., 2000a]. To explain this discrepancy, it was suggested that mechanisms 

suppressing endothelial cell growth could exist in pituitary tumours. However this 

hypothesis remains speculative since the expression of corresponding 

antiangiogenic-acting factors like endostatin, angiostatin and others has not been 

comprehensively studied in pituitary adenomas so far.  

Since it is possible that disturbances and alterations in the VEGF receptors 

expression are responsible for the reduced vessel formation, the expression of 

VEGFR-1, -2 and neuropilin-1 was studied in normal and adenomatous pituitary 

as they regulate the growth and function of the blood vessel endothelium. RT-

PCR analysis in normal and tumour tissues, revealed that normal pituitary and 

most of the tumours synthesize VEGF-A, VEGFR-1, VEGFR-2 and neuropilin-1 

transcripts. IHC analysis of a larger number of samples showed expression of all 

3 receptors in normal pituitary and in 7 out of 39 pituitary adenomas. Most 

tumours expressed only one or two receptor types, and 4 cases were negative 

for all 3 receptors. The discrepancy between RT-PCR and IHC results could be 

explained considering that receptor functionality is dependent on protein 

expression, whereas mRNA synthesis is less informative and the presence of a 

transcript does not assure its transcription into the corresponding protein. 
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However, there was no correlation between the degree of receptor absence and 

blood vessel density, suggesting that disturbances in the VEGF receptors 

expression do not sufficiently explain the poor vascularization of pituitary 

adenomas.  

It should be noted that the 4 tumours negative for all the VEGF receptors 

were somatotrophinomas and prolactinomas that have been pre-treated with 

somatostatin analogues and dopamine agonists. The latter drug was formerly 

reported to down-regulate VEGFR-2 in cerebral endothelial cells by inducing 

receptor internalization [Basu et al., 2001]. Somatostatin is also considered to act 

as anti-angiogenic [Woltering et al., 1991; Danesi et al., 1997]. Although pre-

medication was suspended at least one week prior to surgery, long-lasting 

suppressive effects of dopamine agonists and somatostatin analogues on the 

VEGF/VEGF receptor system can not be excluded. 

 

VEGFR-2 is the most important VEGF receptor for angiogenesis 

[Waltenberger, 1994]. Its localization was found to be restricted to blood vessel 

endothelial cells of VEGFR-2-expressing normal and tumoural human pituitaries. 

This finding confirms previous studies which observed VEGFR-2 expression in 

blood vessel endothelial cells of estrogen-induced prolactinomas in Fischer-344 

rats [Banerjee et al., 1997]. However, in normal rat pituitary, VEGFR-2 was found 

not only in blood endothelial, but also in epithelial hormone-producing cells. 

Moreover, mammosomatotrophinoma GH3 rat pituitary tumour cells were 

reported to express VEGFR-2 [Vidal et al., 2002], but the reason for this 

discrepancy is not yet clear.  

ISH and IHC, in a series of pituitary adenomas, detected no VEGFR-2 mRNA 

and protein in more than 50% of the tumours analyzed. Furthermore no VEGFR-2 

mRNA synthesis was detected in any of the pituitary adenoma cell lines studied. 

In VEGFR-2 immuno-positive adenomas, the immunoreactivity was present 

exclusively in blood vessels and there is no evidence of an over-expression in 

comparison to normal pituitary. No significant correlation between VEGFR-2 

expression and vessels number was detected; nonetheless, the lack of VEGFR-2 

protein was found to correlate significantly with low PI, probably due to its effect 
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in increasing vessels permeability and therefore nutrients and oxygen availability 

for tumour cells.  

These results contrast with a previous study, which has shown by 

quantitative PCR, very high levels of VEGFR-2 mRNA expression in extracts of 

121 adenomas compared to normal pituitary [McCabe et al., 2002]. In few of 

these adenomas studied, a marked over-expression of VEGFR-2 protein level was 

also observed by Western blotting. Normally, only rapidly expanding, well-

vascularized and aggressive types of solid tumours show an over-expression of 

VEGF and/or VEGF receptors. In the case of pituitary adenomas, only estrogen-

induced, rapidly growing prolactinomas of Fischer-344 rats are well vascularized 

and in fact, VEGF and VEGF receptors were found to be overexpressed in these 

tumours [Banerjee et al., 1997]. However, the findings of McCabe et al. do not fit 

very well to extremely slowly growing and poorly vascularized human pituitary 

adenomas, in contrast to the observations described in the present paper. 

Although the reason for the discrepancy between the two studies is not clear, it 

could derive from the different techniques used. 

 

Studies in Fischer rat prolactinomas have shown that not only VEGFR-2 but 

also neuropilin-1 expression is enhanced [Banerjee et al., 2000]. This is not 

surprising since the latter was identified as a VEGFR-2 co-receptor that has no 

intracellular signal transducing domain but improves the action of VEGFR-2 by 

accelerating the binding of VEGF, in particular the soluble VEGF165 isoform [Soker 

et al., 1998]. Neuropilin-1 was detected in the blood vessels of normal pituitary 

and in 17 out of 39 adenomas and in 2 cases, its expression was higher in the 

tumours than in the normal tissue counterpart. Furthermore, neuropilin-1 was co-

expressed with VEGFR-2 in only 11 cases, suggesting that in some human 

pituitary tumours, this receptor might be transiently functionless. Despite these 

findings, a possible role of neuropilin-1 in enhancing vessel permeability could be 

hypothesized, since as observed for VEGFR-2, tumours lacking neuropilin-1 

expression, showed lower PI values and no influence was seen on blood vessel 

number. Neuropilin-1 transcripts were detected in all rodent and human 

endocrine pituitary tumour cell lines analyzed, confirming previous report in 

mammosomatotrophinoma GH3 cells [Banerjee et al., 2000]. However, the 



 94

function of neuropilin-1 in VEGFR-2-negative cells is still not clear; nevertheless 

different types of metastatic tumours and cell lines were shown to express 

neuropilin-1, even if it was not associated to any other VEGF receptor expression 

[Soker et al., 1998; Bachelder et al., 2002; Stephenson et al., 2002]. These 

findings raise the possibility that neuropilin-1 can also function alone or in 

concert with other tyrosine kinase-linked receptors to transduce VEGF signalling, 

at least in metastatic tumours. Moreover VEGF165 is able to induce an anti-

apoptotic effect in neuropilin-1-expressing breast tumour cell line [Barr et al., 

2005]. The detection of this co-receptor in all pituitary adenoma cell lines 

investigated may be linked to the several transformation steps cell lines undergo, 

while acquiring a more aggressive phenotype compared to that of the tissue from 

which they originate.  

The fact that VEGF-A is expressed in endocrine cells whereas VEGFR-2 and 

its co-receptor neuropilin-1 are expressed in blood vessel endothelial cells, 

suggest the presence of a paracrine loop in the regulation of angiogenesis in 

pituitary adenomas. 

 

VEGFR-1 was found to be expressed in subsets of all types of endocrine 

epithelial cells in normal human pituitary, except of TSH-secreting cells, but not 

in the endothelial cells. VEGF-A treatment of rat pituitary cells in primary culture 

significantly induced prolactin and ACTH secretion in a dose-dependent way. 

These findings point for the first time to a direct involvement of VEGF-A and its 

receptor VEGFR-1 in pituitary hormone secretion, as it was already shown for 

other growth factors and cytokines, such as, IL-1 [Bernton et al., 1987], TNF-

α [Koike et al., 1991], IL-6 [Spangelo et al., 1989] and TGF-β1 [Coya et al., 

1999]. Furthermore, the presence of VEGF in the adult anterior pituitary indicates 

that it may facilitate hormone secretion by increasing vascular permeability, 

through VEGFR-2-dependent formation of endothelial cells fenestrations. This 

event would make the transport of the hormones through the capillary walls into 

the systemic blood stream easier. 

VEGFR-1 expression was also demonstrated in the endocrine tumour cells of 

more than 50% of the adenomas studied. The human HP75 gonadotrophinoma 

[Horiguchi et al., 2004] and, as shown in the present work, the 
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somatotrophinoma rat MtT/S pituitary tumour cells also express this receptor. 

These observations, in addition to the lack of correlation between VEGFR-1 

expression and blood vessel count, indicate that VEGFR-1 has little or no impact 

on the regulation of intrapituitary angiogenesis or vascular permeability, but it 

may mediate VEGF effects on normal and adenomatous pituitary cells. The 

hypothesis of a direct action of VEGF on tumour cells proliferation was also 

suggested by previous reports asserting a positive correlation between VEGF 

expression and PI in pituitary adenomas [Iuchi et al., 2000] and the lack of 

correlation between PI and blood vessel count [Turner and Wass, 1999; Vidal et 

al., 2001]. Therefore it is possible that VEGF plays a direct role in pituitary 

adenoma cell proliferation, possibly through VEGFR-1. To confirm this hypothesis, 

the rat somatotrophinoma MtT/S cells were treated with different VEGF family 

members. VEGF-A and the VEGFR-1 specific ligand PlGF induced a slight but 

significant increase in cell proliferation, while the VEGFR-2 ligand VEGF-E had no 

effect. In addition, MtT/S cells were found to secrete VEGF-A indicating that 

different VEGFs acting through VEGFR-1 may form an autocrine growth 

regulatory circuit in this kind of endocrine pituitary tumour cells.   

While the expression of PlGF has not yet been studied in human pituitary 

adenomas, we have previously shown that cultured human adenoma cells release 

0,05 to 13,5 pg VEGF-A per 1000 cells per 24 h [Lohrer et al., 2001]. Moreover, 

in the present work, MtT/S cells were found to secrete 1,65 pg VEGF-A per 1000 

cells per 24 h. Since cell numbers are much higher in pituitary adenomas and 

because VEGF-A is secreted into the small volume of intercellular space, effective 

intratumoural VEGF-A concentrations for growth stimulation may be reached.  

The lack of significant correlation between VEGFR-1 and PI values that does 

not fit very well with this hypothesis, could be also due to the restricted number 

of samples analyzed, indeed the majority of tumours that did not express VEGFR-

1 showed low PI values too, though the difference with other groups was not 

significant. VEGF-A expression did not correlate with the expression of its 

receptor VEGFR-1 suggesting that they are not involved in an autocrine loop. 

Although we do not have any evidence that VEGF-A producing cells are not the 

ones expressing VEGFR-1 and therefore interacting in a paracrine fashion, this 

type of interaction could be likely according to this observation. Moreover, the 
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activation of the VEGF-A/ VEGFR-1 system may be an event occurring in more 

aggressive pituitary tumours: even though the observations were not statistically 

significant, we noticed that 10 out of 12 pituitary adenomas graded I/II with a PI 

value equal to 0 in 6 cases, but never higher than 1,6% in the other cases, did 

not show VEGFR-1 expression in most of the cases and showed a very weak 

expression in 2 cases.  

On the other hand, VEGF-A did not have any effect on GH secretion from 

MtT/S cells. However, it has to be considered that these cells have a small 

number of secretory granules indicating a low secretory capacity and suggesting 

that MtT/S cells are premature precursors of somatotroph cells [Mogi et al., 

2005]. 

The direct effect of VEGF on tumour cell proliferation was already shown in a 

variety of tumours. In pancreatic cancer and gastric adenocarcinoma, VEGF 

treatment was reported to trigger cell growth through VEGFR-2 phosphorylation 

and MAPK activation [Von Marschall et al., 2000; Tian et al., 2001]; while in 

bladder tumour cells, VEGF binding to VEGFR-2 induced DNA synthesis through 

the SPK1-PKC-Ras-MAPK pathway [Wu et al., 2003]. Although these studies 

highlighted the VEGFR-2 as mediator of VEGF growth effect, VEGFR-1 may also 

play an important role since treatment with an anti-VEGFR-1 antibody was found 

to inhibit VEGF induced proliferation of different human tumour cells [Masood et 

al., 2001]. Moreover, VEGFR-1 expression was observed in breast cancer cells, 

where it was associated with VEGF-dependent PI3K activation and involved in the 

reinforcement of their invasive ability [Price et al., 2001]. Recently, VEGFR-1 was 

also found in human colorectal cancer cells, where it was linked with increased 

cell mobility and invasiveness and formation of larger and more numerous 

colonies [Fan et al., 2005].  

In the present study, the VEGFR-1-specific ligand PlGF increased MtT/S cell 

proliferation indicating the involvement of VEGFR-1 in this event. Moreover, the 

growth inducing effect of PlGF was abolished after co-treatment with the PI3K 

inhibitor LY294002 [Vlahos et al., 1994], suggesting the activation of the PI3K 

pathway in this process. The inhibitory effect of LY294002 on MtT/S cell 

proliferation is much stronger than the increase induced by PlGF, suggesting that 

LY294002 can inhibit the function of other kinases, as indeed has been shown for 
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casein kinase 2 [Davies et al., 2000], that is implicated in many cell regulatory 

processes [Meggio and Pinna, 2003]. PI3K pathway deregulation is widely 

implicated in carcinogenesis, since this pathway plays a critical role in controlling 

the balance between cell survival and apoptosis [Vivanco and Sawyers, 2002]. 

The PI3K activation by tyrosine-kinase receptor determines PDK-1 activation and 

the consequent phosphorylation of Akt, which after a further phosphorylation 

becomes completely active [Alessi et al., 1996]. The fully phosphorylated Akt can 

then exert its action on different target proteins. PlGF treatment in MtT/S cells 

increased the phosphorylation levels of PDK-1 and Akt, but did not affect the 

phosphorylation status of the PI3K pathway inhibitor PTEN. Moreover, the 

activating effect of PlGF on Akt phosphorylation was reversed by the PI3K specific 

inhibitor LY294002. Since PlGF is a VEGFR-1 specific ligand, the stimulatory 

effects on the PI3K pathway may be attributed to VEGFR-1. These data are 

consistent with the previous report in which PI3K could bind tyrosine 1213 of 

VEGFR-1, in a yeast two-hybrid system [Igarashi et al., 1998]. Moreover, PI3K 

pathway activation was recently reported in hepatic stellate cells expressing only 

VEGFR-1, after VEGF treatment [Takahashi et al., 2003].   

PlGF determined phosphorylation and therefore de-activation of the Akt 

target GSK-3β, and this effect was accompanied by increase in the cell cycle 

promoting protein cyclin D1 levels; this observation is consistent with the lack of 

cyclin D1 phosphorylation by GSK-3β that prevents its expulsion from the nucleus 

and the consequent proteosomal degradation [Diehl et al., 1998; Alt et al., 

2000]. Treatment with LY294002 inhibited cyclin D1 production induced by PlGF, 

confirming the involvement of PI3K pathway in this process.  

Furthermore, the anti-apoptotic factor Bcl-2 production was also found to be 

up-regulated after stimulation with PlGF and this effect was reversed by the 

treatment with PI3K inhibitor LY294002. These findings suggest that VEGFR-1 

induces cell cycle progression and cell survival of MtT/S cells, through PI3K 

signalling pathway activation, highlighting a direct action of VEGF signalling on 

tumour cells, apart its well-documented role in angiogenesis. 

 

VEGF-C and its receptor VEGFR-3 are mainly expressed in lymphatic 

endothelial cells and the lymphatic system is known to be involved in the 
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diffusion of tumour metastases. This growth factor is a potent lymphangiogenic 

factor, which induces lymphatic endothelial cell proliferation in vitro and 

lymphatic hyperplasia in vivo [Makinen et al., 2001]. Even though pituitary 

adenomas rarely spread into metastases, VEGF-C and its receptor expression was 

also studied in order to obtain a more complete overview of VEGF receptors 

expression pattern in normal and tumoural human pituitary. RT-PCR analysis 

showed VEGFR-3 expression in all human normal pituitaries and in most of the 

adenomas studied. Immunohistochemical investigation on a wider group of 

samples confirmed VEGF-C immunoreactivity in all the normal human pituitaries 

in less than 10% of the endocrine cells, associated with some VEGFR-3 positive 

vessels and no LYVE-1 (lymphatic vessels specific marker) expressing vessels. 

These data are in agreement with a previous study reporting VEGF-C expression 

in prolactin-secreting cells of the human pituitary and VEGFR-3 expression in 

endothelial cells of fenestrated vessels [Partanen et al., 2000]; while the absence 

of LYVE-1 expression suggests that normal human pituitary is devoid of lymphatic 

vessels. The role of VEGF-C and VEGFR-3 in a tissue that does not have 

lymphatic vessels is rather difficult to be understood, although a possible 

involvement in the regulation of blood vessels permeability in blood capillaries 

with fenestrated walls was suggested [Partanen et al., 2000].  

The majority of pituitary adenomas investigated did not express VEGF-C, and 

the few that did, showed VEGF-C immunostaining in more than 80% of their 

endocrine cells. On the other hand, more than 50% of the tumours showed 

heterogeneous VEGFR-3 immunoreactivity in vessel endothelial cells. Most of the 

VEGFR-3-positive tumours did not show any LYVE-1 immunoreactivity, indicating 

the probable presence of blood vessels positive for VEGFR-3. This is not 

surprising since VEGFR-3 was found to be expressed by blood vessel endothelial 

cells in different types of tumours in mice [Kubo et al., 2000]. Moreover VEGFR-3 

was detected in the blood vessel endothelial cells of human breast cancer 

[Valtola et al., 1999], gliomas and colon carcinomas [Witmer et al., 2001]. It is of 

interest that VEGFR-3 was found to be expressed by blood vessel endothelial 

cells undergoing active angiogenesis, as observed in blood vessels in the 

granulation tissue of healing wounds, suggesting a probable role of this receptor 

not only in lymphangiogenesis but also in angiogenesis. 
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Testing pituitary adenomas for the presence of lymphatic vessels, it was 

found that about 30% of the pituitary adenomas investigated were 

immunopositive for the lymphatic marker LYVE-1. However it has to be noted 

that the number of lymphatic vessels was much lower compared to the number 

of CD31-positive blood vessels. This reflects previous observations in murine 

sarcomas, in which lymphatic vessels were detected in low number and in only 

few cases. This finding was supposed to be a consequence of the high pressure 

exerted by growing cancer cells on the other adjacent anatomical structures that 

could be sustained by blood vessels because of their connection to the high-

pressure arterial blood supply, but not by lymphatic vessels which have no 

comparable high-pressure source [Leu et al., 2000]. The above-outlined picture is 

quite likely to take place also during pituitary tumour development, as this kind of 

neoplasm has to grow in a very narrow and confined anatomical space where the 

achievement of a high mechanical pressure is not surprising.  

In spite of the observations that most of pituitary tumours did not bear 

lymphatic vessels and that anyway in the positive cases, their number was quite 

low, we also observed that most of these LYVE-1-positive tumours were classified 

as grade III and one of them showed the highest PI value. This would suggest 

that the occurrence of lymphatic vessels might be associated with a more 

aggressive (higher grade and rapidly growing) phenotype, whereas their 

development is impaired in those tumours in which the intrasellar pressure (due 

to tumour mass) is very high. Unfortunately we did not have the opportunity to 

examine pituitary carcinoma cases and anyway this hypothesis remains to be 

experimentally investigated.  

It is nonetheless necessary to remember that the normal pituitary is devoid 

of lymphatic vessels and it is not clear what their function could be in rarely 

metastatic and spatially localized tumours like pituitary adenomas.  

 

Concluding, VEGF and VEGF receptors expression in the normal 

adenohypophysis, as shown in this work, may maintain optimal intrapituitary 

vascularization and vessel permeability, which is needed for optimal pituitary 

hormone regulation and release. Moreover, the detection of VEGFR-1 in human 

normal pituitary endocrine cells combined with the stimulatory action on prolactin 
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and ACTH secretion, suggest the occurrence of a paracrine loop in which VEGF-A 

secreted by folliculo-stellate cells act on endocrine cells to regulate hormone 

secretion. This hypothesis is in agreement with the theory asserting that different 

cytokines expressed in the pituitary gland can act as paracrine or autocrine 

factors regulating hormone secretion and pituitary growth and having a 

physiopathological role in the maintenance of anterior pituitary homeostasis [Arzt 

et al., 1999].  

In the pituitary adenomas, we have observed marked variations in the PI 

values, the vessel density and the expression of VEGF-A and its receptors, but 

nearly no correlation between these parameters was found, except the ones 

mentioned and commented before between the absence of VEGFR-2 and 

neuropilin-1 and the low PI values, that may suggest a role for VEGFR-2 and 

neuropilin-1 in the induction of vascular permeability and the consequent higher 

nutrients and oxygen availability for tumour cells. The lack of correlation between 

the other parameters (tumour grade, PI, blood vessels count) and the expression 

of VEGF-A and its receptors could be explained by the fact that pituitary 

adenomas are slowly growing tumours with a limited metabolic demand. 

Variations in the PI of the adenomas ranging from 0 to 10% (independently from 

tumour grade, in the way that there are tumours with grade III but very low PI 

values) suggest that the tumours or at least the parts of the adenoma studied by 

IHC undergo periods of quiescence and of variable proliferation activity. If a 

previously growth arrested pituitary tumour (i.e. grade III that means invading 

surrounding pituitary structures) would start to proliferate (high PI value), 

neovascularization would follow with delay (absence or low expression of VEGF-A 

and its receptors) since a critical amount of newly generated tumour cells is 

needed to induce hypoxia and subsequent angiogenesis. On the other hand, if 

the intratumoural proliferation would transiently be terminated (PI value low or 

zero), angiogenesis may still occur (high VEGF-A and its receptors expression) 

until sufficient vascularization of the corresponding area within the adenoma is 

reached. Although this hypothesis needs to be experimentally confirmed, it could 

explain the discrepancies between PI, tumour grade, vessel density and markers 

of angiogenesis like VEGF-A and its receptors. However, it has to be pointed that 

similar to other tumour types, in pituitary adenomas the VEGF-A/VEGF receptors 
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system is not strictly connected to their angiogenic phenotype. The extent of 

angiogenesis in a tumour should be determined not by only one factor, but by 

the net balance between the different positive and negative angiogenic 

regulators expressed in the tissue under investigation. 

As one would expect for tumours that rarely metastasize, lymphangiogenesis 

does not seem to play a fundamental role in pituitary adenoma development and 

growth. Moreover, adenomas positive for LYVE-1 have a small number of 

lymphatic vessels even in cases where the VEGF-C/VEGFR-3 system is highly 

expressed. This would suggest the presence of an impediment in the 

development and growth of these tumours due to the confined anatomical space 

and the probable involvement of this system in other processes connected to 

tumour angiogenesis rather than to lymphangiogenesis.  

Finally, herein is shown the mechanism of the growth promoting action of 

VEGFR-1 not in endothelial, but in endocrine tumour cells. VEGFR-1 activated the 

PI3K/Akt pathway with subsequent increase in the synthesis of proteins involved 

in cell cycle progression (cyclin D1) and cell survival (Bcl-2).  

Till recently the focus of interest on VEGF system was limited to its 

angiogenic action in cancer pathophysiology. The present work constitutes part 

of an increasing number of studies demonstrating a direct role of VEGF and its 

receptors on the growth and function of tumour cells. Moreover, these data can 

shed a light in the obscure process controlling pituitary tumour genesis and 

provide potential pharmacological targets for the treatment of these tumours.  
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6 SUMMARY 

The role of members of the VEGF family and their receptors in angiogenesis, 

progression and pathophysiology of pituitary tumours is still poorly understood. 

In the present work, the expression and localization of the angiogenic factor 

VEGF-A and the lymphangiogenic factor VEGF-C as well as VEGF receptors 

(VEGFR-1, VEGFR-2, VEGFR-3 and neuropilin-1) have been comprehensively 

studied in normal and tumoural pituitary tissue and in transformed pituitary 

tumour cell lines. In addition, the role and mechanism of action of ligands of 

VEGFR-1 have been investigated in normal and transformed rat pituitary cells.   

Immunohistochemical investigations in 3 normal human adenohypophyses 

showed expression of VEGF-A and all its receptors (VEGFR-1, VEGFR-2 and 

neuropilin-1) at protein level. The last two receptors were localized in blood 

vessel endothelial cells, while the former one was found in endocrine cells. These 

findings were confirmed at RNA level by in situ hybridization analysis. VEGF-A 

significantly induced ACTH and prolactin secretion in normal rat pituitary cell 

cultures, indicating a role of VEGF-A and VEGFR-1 in the regulation of the 

secretion of these pituitary hormones. In contrast, VEGFR-2 and its co-receptor 

neuropilin-1 may be needed to maintain optimal intrapituitary vascularization and 

blood vessel permeability. Although no lymphatic vessels were identified in 

normal adenohypophysis, the lymphangiogenic factor VEGF-C and its receptor 

VEGFR-3 were detected by immunohistochemistry. Their expression in a low 

percentage of endocrine cells and in blood vessel endothelial cells, respectively, 

suggests the involvement of the VEGF-C/VEGFR-3 system, usually implicated in 

lymphangiogenesis, in the maintenance of blood vessel permeability. 

The expression of VEGFR-1, VEGFR-2 and neuropilin-1 in a series of 39 

pituitary adenomas reflected the same immunohistochemical localization pattern 

as observed in the normal adenohypophysis tissue. VEGFR-1 was detected in 

endocrine tumour cells in 24 cases, whereas VEGFR-2 and neuropilin-1 were both 

detected in vessel endothelial cells of 18 and 17 cases, respectively. Their 

expression was highly heterogeneous and mostly no significant correlation with 
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different parameters, such as: tumour type, tumour grade, proliferation index 

(PI) and blood vessel number, was noticed. Only the absence of VEGFR-2 and 

neuropilin-1 correlated with a low PI, suggesting a role of these two receptors in 

increasing vessel permeability and consequently the availability of nutrients and 

oxygen for tumour cells. These findings imply that in slowly growing tumours 

with limited metabolic demand like pituitary adenomas, the development of new 

blood vessels is not a limiting event for their development and pathogenesis.  

Functional studies, with the VEGF-A secreting somatotrophinoma MtT/S rat 

pituitary cells which express VEGFR-1 and neuropilin-1 but not VEGFR-2, showed 

that VEGF-A and the VEGFR-1 specific ligand, PlGF, significantly stimulated MtT/S 

cell proliferation, while the VEGFR-2 specific ligand VEGF-E was ineffective. In the 

same cell model, PlGF treatment induced the activation of PI3K pathway and the 

synthesis of Bcl-2 and cyclin D1 responsible for cell survival and cell cycle 

progression, respectively. These observations would suggest the presence of an 

autocrine loop between VEGF-A and VEGFR-1 acting directly on pituitary cell 

tumour growth, rather than on regulation of neovascularization. 

The low number of pituitary tumours positive for the lymphatic vessel marker 

LYVE-1 is not surprising as the lymphatic system has been reported to be 

implicated in metastasis spread that occurs rarely in pituitary adenomas. 

Nonetheless, VEGF-C immunostaining was detected in endocrine tumour cells of 

10 adenomas and VEGFR-3 immunopositive vessels were found in 22 tumours. 

This suggests that the VEGF-C/VEGFR-3 system may have a role in the regulation 

of tumour angiogenesis of pituitary adenomas, rather than in lymphangiogenesis, 

as already shown in other tumour types. 

In conclusion, the results of the present study provide strong evidence that 

VEGF may not only have a role in regulating pituitary adenoma 

neovascularization but also, through VEGFR-1, may affect in addition pituitary 

adenoma pathophysiology by modulating growth, cell cycle progression and 

survival of the adenoma cells. Whether anti-VEGF treatment strategies will be 

useful in the therapy of advanced stages of pituitary adenomas or carcinomas, 

needs to be clarified in future studies. 
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7 ZUSAMMENFASSUNG 

Die Bedeutung von Mitgliedern der VEGF Familie und ihrer Rezeptoren für die 

Angiogenese, Progression und Pathophysiologie von Hypophysentumoren ist 

noch weitgehend unklar. In der vorliegenden Arbeit wurde die Expression und 

Lokalisation des angiogenetischen Faktors VEGF-A und des 

lymphangiogenetischen Faktors VEGF-C sowie von VEGF-Rezeptoren (VEGFR-1, 

VEGFR-2, VEGFR-3, und Neuropilin-1) umfassend untersucht, und zwar im 

normalen Hypophysenvorderlappen, in Hypophysentumoren und in 

transformierten Hypophysentumorzelllinien. Zusätzlich wurde die Bedeutung und 

der Wirkmechanismus von Liganden des VEGFR-1 in normalen und 

transformierten Hypophysenzellen untersucht. 

Mittels Immunhistochemie konnte in 3 normalen humanen 

Hypophysenvorderlappen die Expression von VEGF-A und all seiner Rezeptoren 

(VEGFR-1, VEGFR-2, und Neuropilin-1) auf Proteinebene nachgewiesen werden. 

Die beiden letztgenannten Rezeptoren waren in Blutgefäßzellen lokalisiert, 

während ersterer in endokrinen Zellen gefunden wurde. Diese Befunde wurden 

auf RNA Ebene mittels in-situ Hybridisierung bestätigt. VEGF-A induzierte in 

Rattenhypophysenzellkulturen die ACTH- und Prolaktin-Sekretion, was darauf 

hinweist, dass VEGF-A eine Rolle bei der Regulation der Sekretion dieser 

Hormone spielt. Im Gegensatz dazu dürften VEGFR-2 und sein Co-Rezeptor 

Neuropilin-1 notwendig sein, um eine optimale intrahypophysäre Vaskularisation 

und Gefäßpermeabilität aufrecht zu erhalten. Obwohl im 

Hypophysenvorderlappen keine Lymphgefäße identifiziert wurden, konnte der 

lymphangiogenetische Faktor VEGF-C und sein Rezeptor VEGFR-3 

immunhistochemisch nachgewiesen werden. Ihre Expression in einem geringen 

Anteil endokriner Zellen und in Blutgefäß-Endothelzellen weist darauf hin, dass 

das VEGF-C/VEGFR-3 System, das gewöhnlich in der Lymphangiogenese 

involviert ist, hier am Erhalt der Blutgefäßpermeabilität beteiligt ist. 

Die Expression von VEGFR-1, VEGFR-2 und Neuropilin-1 in 39 untersuchten 

Hypophysenadenomen wies ein ähnliches Lokalisationsmuster wie in der 

normalen Hypophyse auf. VEGFR-1 wurde in endokrinen Zellen von 24 Tumoren 
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nachgewiesen während VEGFR-2 und Neuropilin-1 in Blutgefäßzellen von 18 bzw. 

17 Hypophysentumoren exprimiert wurde. Die Expression war sehr heterogen 

und korrelierte meist nicht mit Parametern wie Tumortyp, Tumorgrad, 

Proliferationsindex und Gefäßdichte. Lediglich eine Korrelation zwischen dem 

Fehlen von VEGFR-2 und Neuropilin-1 mit einem niedrigen PI ließ sich 

nachweisen, was auf die Bedeutung dieser Rezeptoren für die Verbesserung der 

Gefäßpermeabilität und der damit verbesserten Verfügbarkeit von Nährstoffen für 

die Tumorzellen hinweisen könnte. Die Befunde lassen vermuten, dass in 

langsam wachsenden Tumoren mit einem geringen Metabolismus, wie in 

Hypophysenadenomen, die Neovaskularisation nicht der limitierende Faktor für 

die Entwicklung und Pathogenese ist. 

Funktionelle Untersuchungen in VEGF-A sezernierenden somatotropen MtT/S 

Rattenhypophysentumorzellen, die VEGFR-1 und Neuropilin-1, aber nicht VEGFR-

2 exprimieren ergaben, dass VEGF-A und der VEGFR-1 spezifische Ligand PlGF 

die Proliferation von MtT/S signifikant stimulierten, während der VEGFR-2 

spezifische Ligand VEGF-E wirkungslos war. Im gleichen Zellmodell induzierte 

PlGF den PI3K-Signalweg und die Synthese von Bcl-2 und Cyclin D1, die für das 

Überleben von Zellen bzw. das Fortschreiten des Zellzyklus verantwortlich sind. 

Diese Ergebnisse weisen auf einen autokrinen Mechanismus hin, bei dem VEGF-A 

über VEGFR-1 direkt das Wachstum von Hypophysentumorzellen fördert und 

weniger die Neovaskularisation. 

Dass nur eine geringe Anzahl von Hypophysenadenomen immunopositiv für 

den Lymphgefäß-Marker LYVE-1 ist, überraschte nicht, da Lymphgefäßexpression 

mit der Metastasenentwicklung in Beziehung steht, und Hypophysentumoren nur 

selten metastasieren. Nichtsdestoweniger konnte VEGF-C in endokrinen Zellen 

von 10 Adenomen und VEGFR-3 in Gefäßzellen von 22 Hypophysentumoren 

nachgewiesen werden. Wie auch schon in anderen Tumoren beschrieben, weist 

dies auf eine Rolle des VEGF-C/VEGFR-3 Systems bei der Regulation der 

Tumorangiogenese und weniger bei der Lymphangiogenese hin. 

Schlussfolgernd lässt sich sagen, dass die Ergebnisse der vorliegenden Arbeit 

stark darauf hinweisen, dass VEGF nicht nur eine Rolle bei der Neovaskularisation 

von Hypophysenadenomen spielt, sondern über den VEGFR-1 zusätzlich auch die 

Pathophysiologie dieser Tumoren beeinflusst, indem VEGF das Wachstum, die 
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Zellzyklusprogression und das Überleben der Adenomzellen moduliert. Ob 

allerdings anti-VEGF-Behandlungsstrategien bei der Therapie von 

fortgeschrittenen Hypophysenadenomen oder –karzinomen von Nutzen sein 

werden, müssen zukünftige Untersuchungen zeigen. 
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