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Abstract 

 

The BCR/ABL1 fusion protein is found in virtually all cases chronic myeloid 

leukemia (CML) and a large proportion of acute lymphoblastic leukemia (ALL). The 

fact that the BCR/ABL1 fusion protein is crucial for the development of leukemia 

makes this fusion protein an attractive target for therapy development. We have 

developed a strategy for the in vivo detection of the BCR/ABL1 fusion protein, in 

which the presence of the BCR/ABL1 fusion protein is detected intracellularly and if 

the fusion protein is present an arbitrary action is initiated in the cell (e.g. mark the 

cells or selectively kill the cells). 

Our BCR/ABL1 detection strategy is based on protein-protein interactions. Two 

detection proteins are expressed in the cells: 1) protein A, a GAL4-DNA binding 

domain/BCR interacting protein fusion protein (GAL4DBD-BAP-1) and 2) protein B, 

a GAL4-activation domain/ABL interacting protein fusion protein (GAL4AD-CRKL). 

Only when BCR/ABL1 is present in the cell, do protein A, protein B, and BCR/ABL1 

form a trimeric complex which activates the transcription of reporter genes under the 

control of GAL4-upstream activating sequence (UAS). 

A proof of principle for the strategy was implemented in the yeast system. We did not 

use full length BAP-1 or CRKL but only those portions of the proteins that directly 

interacted with BCR or ABL, respectively. We showed in the yeast two hybrid system, 

that the C-terminus of BAP-1(amino acids 617-879) binds to full length BCR. The 

site of interaction of CRKL and ABL was confirmed to be the N-terminal SH3 

domain (SH3n) of CRKL as described in the literature. Yeast cells (strain CG1945) 

transformed with a protein A expressing plasmid (pGBT9-BAP), a protein B 

expressing plasmid (pGAD424-CRKLSH3n), and a BCR/ABL expressing plasmid 

(pES1/BCR-ABL) showed expression of the reporter genes HIS3 and LACZ. The 

expression of the HIS3 reporter gene was assayed by growth of the yeast cells on 
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medium lacking histidine. The expression of the LACZ gene was verified by a 

beta-galactosidase filter assay. Yeast cells that were transformed with the pES1 

plasmid without the BCR/ABL1 coding region did not show activation of the reporter 

genes. Several other negative controls demonstrated the specificity of the assay. Thus 

the method was able to clearly distinguish between BCR/ABL expressing cells and 

cells did not express BCR/ABL1. 

We then adapted this system for use in mammalian cells. The open-reading frames 

encoding the proteins A and B were recloned into mammalian expression vectors. The 

human embryonal kidney cell line HEK293 and the murine myeloid progenitor cell 

line 32D which had been stably transfected with a BCR/ABL expressing plasmid were 

tested. The firefly luciferase gene and the yellow fluorescent protein (eYFP) were 

used to evaluate the whole cell population and single cell, respectively. Unfortunately, 

the system failed to work in the mammalian cell lines tested. Even though the 

detection system did not work in mammalian cells, most likely due to the cytoplasmic 

localization of the BCR/ABL1 fusion protein, it should still be a viable strategy for 

the detection of leukemia-associated fusion protein, which localize to the nucleus (i.e 

AML-ETO). This strategy could be adapted for purging the bone marrow of leukemia 

patients using therapeutically more useful effector genes like suicide genes, which 

encode pro-drug converting enzymes (e.g. HSV thymidine kinase), or markers that 

can easily be assayed (e.g. YFP). 
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ZZuussaammmmeennffaassssuunngg  

  

Man findet das BCR/ABL Fusionsprotein bei fast allen Fällen von chronisch 

myeloischer Leukämie (CML) und bei einem großen Anteil von akuten 

lymphoblastischen Leukämien (ALL). Die Tatsache, dass das BCR/ABL 

Fusionsprotein für die Entwicklung der Leukämie notwendig ist, macht dieses 

Fusionsprotein zu einem idealen Ziel für Therapieentwicklungen. Wir haben eine 

Strategie zur in vivo Detektion des BCR/ABL1 Fusionsproteins entwickelt, mit der 

die Anwesenheit von BCR/ABL1 in der lebenen Zelle nachgewiesen werden kann und 

mit der abhängig von der Anwesenheit des Fusionsproteins eine frei-wählbare Aktion 

angestoßen werden kann (z.B. die Zellen können mit einem Protein markiert werden 

oder die Zellen können spezifisch abgetötet werden). 

Unsere BCR/ABL1 Detektionsstrategie basiert auf Protein-Protein Interatkionen. 

Zwei Detektionsproteine werden in den Zellen exprimiert: 1) Protein A, ein 

Fusionsprotein bestehend aus einer GAL4-DNA-Bindungsdomäne und einer 

BCR-Interaktionsdomäne (GAL4DBD-BAP-1) und 2) Protein B, ein Fusionsprotein, 

das aus einer GAL4-Aktivierungsdomäne und einer ABL-Interaktionsdomäne besteht 

(GAL4AD-CRKL). Nur wenn BCR/ABL1 in der Zelle vorhanden ist, kann sich aus 

Protein A, Protein B und BCR/ABL ein trimerer Komplex bilden, der die 

Transkription von Reportergenen, die von einer GAL4-Upstream Activating Sequence 

(UAS) reguliert werden, aktiviert. 

Um die prinzipielle Durchführbarkeit dieser Detektionsstragie zu beweisen, wurde das 

System zunächst in Hefe etabliert. Hierzu wurden nicht das gesamte BAP-1 bzw. 

CRKL Protein verwendet, sondern nur die Domänen dieser Proteine, die direkt mit 

BCR bzw. ABL interagieren. Wir konnten im Hefesystem zeigen, daß der C-Terminus 

von BAP-1 (Aminosäuren 617-879) in der Lage ist, mit dem kompletten BCR-Protein 
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zu interagieren. Die N-terminale SH3-Domäne von CRKL konnte als ABL1 

Interaktionsdomäne bestätigt werden, wie es bereits in der Literatur beschrieben 

wurde. Hefezellen (Stamm CG1945), die mit einem Protein A exprimierenden 

Plasmid (pGBT9-BAP), einem Protein B exprimierenden Plasmid 

(pGAD424-CRKLSH3n) und einem BCR/ABL1 exprimierenden Plasmid 

transformiert wurden, zeigten Expression der Reportergene HIS3 und LACZ. Die 

Expression des HIS3 Reportergens konnte dadurch gezeigt werden, daß die 

Hefezellen auf Histidin-freiem Medium wuchsen. Die Expression des LACZ-Gens 

wurde in einem beta-Galactosidase Filterassay nachgewiesen. Hefezellen, die mit dem 

pES1 Plasmid, das keine BCR/ABL kodierende Region enthielt, transformiert worden 

waren, zeigten keine Reportergenexpression. Durch zahlreiche negative Kontrollen 

konnte die Spezifität des Assays gezeigt werden. Somit war diese Strategie in der 

Lage, sehr klar zwischen Hefezellen, die das BCR/ABL1 Fusionsprotein exprimierten, 

und solchen, die BCR/ABL nicht exprimierten, zu unterscheiden. 

Daraufhin adaptierten wir das System, so dass es auch in Säugetierzellen funktionierte. 

Hierzu wurden die für die Detektionsproteine A und B kodierenden Sequenzen in 

Säugeexpressionsvektoren umkloniert. Die menschliche embryonale Nierenzellinie 

HEK293 und die murine myeloische Vorläuferzellinie 32D, die beide stabil mit einem 

BCR/ABL1 exprimierenden Plasmid transfiziert worden waren, wurden benutzt, um 

das Detektionsystem zu testen. Als Reportergene wurde Firefly Luciferase und das 

“enhanced yellow fluorescent” Protein (eYFP) verwendet. Mit der Luciferase konnte 

die durchschnittliche Reportergenaktivierung gemittelt über die gesamte 

Zellpopulation ermittelt werden, während mit eYFP die Reportergenaktivität in 

einzelnen Zellen nachgewiesen werden konnte. Unglücklicherweise funktionierte das 

Detektionssystem in den verwendeten Zellinien nicht. Obwohl der Nachweis von 

BCR/ABL1 in Säugertierzellen nicht gelang, was mit großer Wahrscheinlichkeit auf 

die zytoplasmatische Lokalisation des BCR/ABL1 Fusionsproteins zurückzuführen ist, 

sollte die Strategie zur Detektion von nukleären Fusionsproteinen (eg. AML1-ETO) 
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geeignet sein. Diese Strategie könnte durch die Verwendung von geeigneten 

Reportergenen, wie Suizidgene, die ein Pro-drug Converting Enzym kodieren (e.g. 

HSV Thymidinkinase) oder Genen, die Markerproteine kodieren (e.g. YFP), für den 

therapeutischen Einsatz, wie z.B. dem Purgen von leukämischen Knochenmark, 

modifiziert werden.
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IInnttrroodduuccttiioonn  

 

Brief overview of genetics of leukemia and rationale for the development of new 

therapeutic strategies.  

TRecent advances in molecular genetics have greatly increased 

our understanding of the essential clinical, biological and 

molecular features of leukemia. Leukemia is a very 

heterogeneous disease on the molecular level. A common 

biologic feature, shared by genetically heterogeneous acute 

myeloid leukemias (AML), is a block of hematopoietic 

differentiation caused by fusion proteins which result from 

chromosomal translocations TT(Burmeister and Thiel 2001; 

Moe-Behrens and Pandolfi 2003) T. AML-associated fusion proteins 

function as aberrant transcriptional regulators that interfere with the 

process of myeloid differentiation, result in a stage-specific arrest of 

maturation and enhance cell survival in a cell-type specific manner. The 

abnormal regulation of transcription networks occurs through common 

mechanisms that include, for example, disruption of common signaling 

pathway T(Alcalay, Orleth et al. 2001). TTConsidering the 

existence of common mechanism underlying leukemogenesis, t The 

development of therapeutic strategies that target the pathways common to 

more than one fusion protein might be feasible, as well as the development 

of strategies which are specific for a given subtype. However, the 

development of therapeutic strategies that are specific for a 

leukemia-causing genetic aberration is still in its infancy. Current 

strategies for the treatment of leukemia are mainly based on conventional 

chemotherapeutic agents which do not differentiate between normal and 
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malignant hematopoietic cells. 

 

Detecting leukemic fusion proteins in vivo 

To take advantage of leukemia-specific genetic alterations to differentiate between 

normal and malignant cells for a therapeutic approach we have devised a strategy to 

detect leukemia-specific fusion proteins in vivo. The capability to detect 

leukemia-specific fusion proteins in vivo would be highly desirable because it would 

open up new approaches to study leukemia and might lead to novel treatment strategies. 

We chose the BCR/ABL1 fusion protein as a paradigm to develop our strategy because 

this fusion protein is the key factor in the development of chronic myelogenous 

leukemia (CML).  

 

CML as a test disease for the development of targeted strategies 

TCML is a clonal proliferative disorder of hematopoeitic stem cells. Myeloid, erythroid, 

megakaryocyte, and B-lymphoid cells are involved in the process of this clonal 

proliferation and differentiation. Characteristically, CML has a biphasic course 

evolving from a chronic phase (CP) with a median duration of 3-4 years to an 

accelerated phase and finally to a blast crisis which is usually fatal within 3-6 month 

T(Faderl, Talpaz et al. 1999; Faderl, Talpaz et al. 1999; Sawyers 1999). TOn the genetic 

level, in more than 95% of patients with CML, a reciprocal translocation between 

chromosomes 9 and 22 is present (t(9;22)(q34;11))T (Faderl, Talpaz et al. 1999). The 

der(22) chromosome is also known as Philadelphia chromosome (Ph+). The 

translocation causes the fusion of the ABL1 gene from 9q34 to the BCR gene from 

22q11 (Bartram, de Klein et al. 1983; Pane, Intrieri et al. 2002). The resulting 

BCR/ABL1 fusion gene encodes the BCR/ABL1 fusion protein which is a 

constitutively active tyrosine kinase. Animal models have been instrumental to 

understand the role of the BCR/ABL1 fusion protein in inducing and sustaining the 

leukemic phenotype of CML (Daley, Van Etten et al. 1990; Heisterkamp, Jenster et al. 
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1990; Kelliher, McLaughlin et al. 1990). The fact that the BCR/ABL1 fusion protein 

is the main causative factor of CML pathology made this protein an ideal target for the 

development of new targeted therapies.  

Imatinib mesylate (STI571), a potent and relatively selective tyrosine 

kinase inhibitor of ABL1 and BCR/ABL1, which represents a highly effective 

therapy for CML, has recently been approved by Federal Drug Administration 

(FDA) in the United States (Kantarjian, Cortes et al. 2002). However, 

clinical resistance against Imatinib due in part to point mutations in 

the BCR/ABL1 fusion gene occurs frequently thus making the development 

of alternative strategies for the treatment of this disease desirable 

(Gorre, Mohammed et al. 2001; Hochhaus, Kreil et al. 2001; Shah, Nicoll 

et al. 2002; Shah and Sawyers 2003). Recently, it could be shown that siRNAs 

(small interfering RNA), which are specific against the breakpoint 

sequences of the BCR/AL1 fusion gene can silence BCR/ABL1 expression and 

sensitize the cells against Imatinib mesylate (Scherr, Battmer et al. 2003). 

But, siRNAs are difficult to administer and cannot be used in patients 

yet. Furthermore, neither Imatinib nor siRNA lead to the apoptosis of all 

leukemic cells. These treatment strategies (tyrosine kinase inhibitor and 

repression via siRNA) either interfere with the function or expression 

of BCR/ABL1, but do not eliminate or selectively kill BCR/ABL positive 

cells. Therefore, the development of a new strategy which is able to 

selectively kill BCR/ABL positive cells would be advantageous. 

 

Principle of BCR/ABL1 detection strategy 

We have started to develop such a strategy which employs two steps (Fig1). 

The first step is to detect the presence of BCR/ABL1 fusion protein in 

vivo. If a fusion protein is detected in a cell, an action can be initiated 

in the second step. This action may be the expression of a marker protein, 
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which would allow selection of the BCR/ABL positive cells, or the 

expression of a pro-drug converting enzyme, which could permit the 

selective killing of the leukemic cells after adminstration of the 

appropriate pro-drug. 

 

 

Figure 1 Principle of BCR/ABL1 detection strategy. The strategy consists of two steps. The 
first step is to detect the BCR/ABL1 fusion protein. If the BCR/ABL1 fusion protein is 
present, then the BCR/ABL1 positive cells will be marked by e.g. eYFP or selectively killed.  

The first step in our strategy is the in vivo detection of the BCR/ABL1 

fusion protein. To achieve this in vivo detection, we used protein-protein 

interactions. This strategy relies on two detection proteins (protein A 

and protein B) which are expressed in the cells: 1) protein A, which is 

a fusion of the yeast GAL4-DNA binding domain and an BCR-interacting 

protein, and 2) protein B, which is a fusion of the yeast GAL4 

transcriptional activation domain and an ABL1 interacting protein. Only 

when BCR/ABL1 is present, do protein A, protein B, and BCR/ABL1 fusion 

protein form a trimeric complex which activates the transcription of a 

reporter gene under the control of GAL4 upstream activating sequence 

(GAL-UAS). It should be noted that in this setting the reporter gene can 
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be freely chosen. As mentioned above, this reporter gene can code for a 

marker protein (e.g. the yellow fluorescent protein) which would help to 

recognize BCR/ABL1 positive cells, or the reporter gene can be a pro-drug 

converting enzyme (e.g. thymidine kinase). In this case the BCR/ABL1 

positive cells would be sensitive to the pro-drug.  

  

Figure 2 Diagram of the BCR/ABL1 fusion protein detection strategy. Two proteins are 
expressed in this system: one is fusion protein of BCR interacting protein BAP-1 (X) and the 
GAL4-DNA binding domain (protein A), the other is a fusion of the ABL interacting protein 
CRKL(Y) and the GAL4-activation domain (protein B). If the BCR/ABL1 fusion protein is 
present, the BCR/ABL1 protein, protein A and protein B form a trimeric complex which 
transactivates the reporter gene. The reporter gene is then only expressed in the presence of 
the BCR/ABL1 fusion protein. The reporter gene can be freely chosen.  

It was the aim of this work to improve the efficiency of the BCR/ABL1 

detection strategy and use it in mammalian cells. 
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BBaacckkggrroouunndd  

  

CML and the BCR/ABL1 fusion gene 

CML is a clonal myeloproliferative disorder of primitive hematopoietic 

stem cells. It involves the myeloid, erythroid, megakaryocytic, 

B-lymphoid and occasionally the T-lymphoid lineages. CML has an incidence 

of 2 cases per 100,000 people per year and accounts for 15 % of leukemias 

in adults. CML typically is a biphasic disease that is characterized by 

a chronic phase followed by a blast crisis. Most cases are diagnosed in 

the chronic phase. Approximately 50 % of patients in the chronic phase 

have no symptoms and are diagnosed by routine testing. Signs and symptoms 

can include fatigue, weight loss, abdominal fullness, bleeding, sweating, 

purpura, splenomegaly, anemia and hepatomegaly. The white blood cell count 

is usually higher than 20,000/ul, in some cases more than 80.000/ul. The 

mean duration of the chronic phase is 3-4 years. Prior to entering the 

blast crisis, 75 % of patients develop an intervening accelerated phase, 

which is characterized by worsening of the blood counts and symptoms. The 

accelerated phase progresses to blast crisis within 3-18 months. One–third 

of blast crisis cases are acute lymphocytic leukemia (ALL), while 

two-thirds are acute undifferentiated leukemia (AUL) or acute myelogenous 

leukemia (AML). 

Molecular pathogenesis of CML 

The hallmark of CML is the Philadelphia chromosome, a 

der(22)t(9;22)(q34,q11) chromosome which carries the BCR/ABL1 fusion gene. 

In 1960, Nowell and Hungerford (Nowell P 1960) described an abnormally 

shortened G-group chromosome, later termed the Philadelphia chromosome 

(Ph+) in the leukemic cells of a patient with CML. 13 years later, in a 



Background 

 

  

 

 

- 12 -

landmark paper, Janet Rowley using the newly developed technique of 

fluorescence chromosome banding (Quinacrine banding) demonstrated that 

Ph+ was in fact a der(22)t(9;22)(q34,q11) chromosome and the result of 

a reciprocal translocation of chromosome 9 and 22 (Rowley 1973). At the 

molecular level, the Ph+ chromosome results in the juxtaposing of the 5’ 

portion of the BCR gene on chromosome 22 to the 3’ portion of the ABL1 

gene on chromosome 9. The BCR/ABL1 fusion gene on the Ph+ chromosome can 

code for three variants of the BCR/ABL1 fusion protein which differ 

slightly in their molecular weight: the p190, the p210, and the p230. These 

three variants come about because there are slight differences in the 

breakpoint location on chromosome 22. These three main variants of BCR/ABL1 

fusion protein are associated with distinct clinical types of leukemia. 

The p190 is typically associated with ALL, the p230 with chronic 

neutrophilic leukemia (CNL) and the p210 with CML. However, there is some 

overlap. The p210 occurs in 40% of Ph+ ALLs, the p190 in 2-3% of CML and 

the p230 in some cases of CML (Melo 1996).  

Expression of the BCR/ABL1 fusion protein increases cell proliferation, 

decreases apoptosis, leads to cytokine independent growth, decreases 

adhesion to the bone marrow stroma and produces cytoskeletal abnormalities. 

Animal models of CML have been central to the understanding of the role 

of the BCR/ABL1 and served as models to evaluate the consequences of 

inhibiting BCR/ABL1 function. The following studies supported a role for 

the BCR/ABL1 fusion protein in the induction of leukemia: transgenic mice 

expressing p190 developed myeloid or lymphoblastic leukemia (Heisterkamp, 

Jenster et al. 1990); murine bone marrow cells infected with a retrovirus 

expressing p210 induced a CML-like pathology in 100% of recipient mice 

(Daley, Van Etten et al. 1990). The disease found in these mice had many 

features in common with human CML. The p230 also resulted in a CML-like 
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myeloproliferative disease in a murine bone marrow transplantation model 

(Li, Ilaria et al. 1999). In another study, using an inducible transgenic 

mouse model, p210 was expressed constitutively but could be rapidly down 

regulated upon administration of doxycycline to the animals. Most of the 

mice had an increased leukocyte count, and died from leukemia. 

Administration of doxycycline which caused repression of p210 expression 

induced leukemic cell apoptosis and normalization of the peripheral white 

cell count within 3 days (Huettner, Zhang et al. 2000). This study 

demonstrated that the fusion protein was required for the maintenance of 

the leukemia. These studies clearly showed that the BCR/ABL1 fusion protein 

would be an ideal target for treating CML. 

Treatment of CML and targeted therapy 

Three treatment options have been used in CML: chemotherapy, biological 

response modifier and bone marrow transplantation. 

Chemotherapy: the first chemotherapeutic agent used to treat CML was 

busulfan, an excellent agent for controlling the chronic phase of the 

disease. Busulfan leads to hematological remission so that chemotherapy 

with this agent has been the mainstay of CML treatment even though it has 

serious side effects like pulmonary fibrosis, secondary leukemias, 

weakness and skin hyperpigmentation. Because of the toxic effects of 

busulfan, hydroxyurea has been used to initiate therapy in patients with 

CML. Hydroxyurea does not have the side effects observed with busulfan 

and for that reason some therapists prefer it T(Hehlmann, Heimpel et 

al. 1993) T. Several other chemotherapeutic agents are also used to control 

the disease, however they are largely inferior to busulfan or hydroxyurea. 

With conventional treatment busulfan, hydroxyurea, or other cytotoxic 

drugs, it is usually possible to control the leukocyte count and to reduce 

the size of the spleen during the chronic phase of the disease, but complete 
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cytogenetic remissions (that is absence of the Ph+ from bone marrow cell 

metaphases) are only rarely observed. Conventional treatment, at best, 

has only a marginal effect on improving survival. 

Biological response modifiers: in an effort to improve survival and to 

obtain complete hematologic and cytogenetic remission, IFN-α was 

introduced in 1983 (Talpaz, McCredie et al. 1983) and has since become 

the standard therapy for patients with CML, who are not candidates for 

bone marrow transplantation. 20-25% of patients achieve a complete 

cytogenetic remission and 10-15% a partial cytogenetic remission. However, 

the toxicities of IFN-α are significant and as many as one-quarter of CML 

patients stop treatment with IFN-α because of adverse reactions. Clinical 

trials of combination of IFN-α with chemotherapy have been shown to be 

superior to IFN-α alone (Lindauer and Fischer 2001). The precise mechanism 

of action of IFN-α in CML treatment remains unknown. Some studies show 

that the effect of IFN-α is related to its ability to modulate the immune 

system (Molldrem, Lee et al. 2000). Many other immunotherapeutics like 

dendritic cells, cytotoxic T lymphocyte and donor lymphocyte infusion are 

being used in the clinical trials. However, it is not yet clear whether 

they are able to improve the outcome. Longer periods of observation are 

necessary (Garcia-Manero, Faderl et al. 2003). 

Bone marrow transplantation: Currently, allogeneic bone marrow 

transplantation (BMT) is the only curative treatment available for 

patients with CML. Allo-BMT achieves a 70% cure rate and an 80% five-year 

survival (Thijsen, Schuurhuis et al. 1999; Hehlmann, Hochhaus et al. 2000). 

However, only a minority of patients can be transplanted because of age 

or lack of an HLA-matched bone marrow donor (Thijsen, Schuurhuis et al. 

1999). 
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Targeted therapy: Advances in the understanding of the molecular 

mechanisms which sustain leukemic cells in CML have made possible the 

development of selective therapies for this disease. STI571 or Imatinib, 

a potent and relatively selective tyrosine kinase inhibitor of ABL1, 

BCR/ABL1, and c-KIT has been of particular interest because of its efficacy 

in treating CML (Carroll, Ohno-Jones et al. 1997). STI571 treatment induces 

complete hematologic response in 90 % and a major cytogenetic response 

in 60% of patients with CML in chronic phase. Patients responding to STI571 

have a 1000 to 100 000 fold reduction in BCR/ABL transcript levels compared 

to starting values (Hughes, Kaeda et al. 2003). However, the majority of 

patients who responded well to STI571 still have measurable of BCR/ABL1 

transcript in their blood --- at least during the first two years of 

follow-up (Lahaye, Riehm et al. 2005). There is also evidence that CML 

patients in complete cytogenetic remission still have Ph+ myeloid 

progenitors and stem cells in their marrow. Another problem is that 

resistance to STI571 occurs frequently and it is not known how this can 

be prevented or delayed (Kaeda, Chase et al. 2002). The effect of STI571 

on the long-term survival of CML patients remains unknown as well. Despite 

these problems, targetet therapy using STI571 has ushered in a new era 

of leukemia therapy. The success of STI571 therapy clearly shows that the 

BCR/ABL1 fusion protein is the correct target for CML therapy and using 

BCR/ABL1 as a target is the way to develop a more effective therapy, the 

aim of which should be the selective killing and elimination of Ph+ cells. 

In vivo detection of BCR/ABL1 fusion protein 

As mentioned above, we have developed a strategy to detect the BCR/ABL1 

fusion protein in vivo, which is based on protein-protein interactions. 

This strategy is derived from the yeast two-hybrid assay which is briefly 

explained in the following paragraphs. 
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The yeast two-hybrid assay, developed by Stanley Fields and coworkers, 

is a genetic assay in yeast to detect protein-protein interaction in vivo 

(Fields and Song 1989). It is based on the fact that many eukaryotic 

transcriptional activators consist of two protein domains which can be 

physically separated: one acts as the DNA binding domain, while the other 

functions as the transcriptional activation domain. The DNA binding domain 

recognizes specific DNA sequences which are present in the upstream regions 

of the genes that are regulated by the factor, while the activation domain 

contacts and recruits components of the basal transcription machinery 

which are required to initiate transcription. Both domains are necessary 

for specific gene activation, and the two domains can be either part of 

the same protein or they can be on separated proteins and be assembled 

in vivo at the promoter. In the original yeast two hybrid system, which 

is based on the yeast GAL4 transcription factor, two hybrid proteins are 

expressed in the yeast cell: one consists of the GAL4-DNA binding domain 

fused to protein X, and the other consists of the GAL4-activation domain 

fused to a second protein Y. Interaction between protein X and protein 

Y leads to the transcriptional activation of a reporter gene driven by 

the specific UAS (upstream activation sequence) for the GAL4 DNA-binding 

domain, (Fig3) 
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Figure 3 Schematic diagram showing the principle of the yeast two hybrid system. In the 
upper part of the figure, the native GAL4 protein containing both DNA-binding and 
activating domain induces GAL4-lacZ transcription. In the middle part of the figure, hybrids 
containing either the GAL4 DNA-binding with protein X or the GAL4 activating domain 
fused to protein Y are incapable of inducing transcription on their own. In the lower part of 
the figure, protein-protein interaction between protein X and protein Y brings the GAL4 
activation domain into close proximity to the promoter, which results in the activation of 
transcription. Adapted from Fields and Song, Nature 1989, 340 (20): 245. 

 

Based on the yeast two hybrid system we developed a strategy so that the 

expression of the BCR/ABL1 fusion protein could be detected in yeast. This 

was done in the following way: instead of protein X and protein Y 

interacting directly with each other to induce the expression of the 

reporter genes, we chose a protein X that would interact with BCR and a 

protein Y which is capable of interacting with ABL1. Protein X and Y are 

now no longer able to directly interact with each other and expressing 
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protein A (GAL4-DBD + BCR interactor) and protein B (GAL4-AD + ABL1 

interactor) will not turn on the expression of the reporter gene. However, 

if the BCR/ABL1 fusion protein is expressed in the cells a trimeric complex 

consisting of protein A, BCR/ABL1fusion protein, and protein B will form 

which is able to turn on transcription of the reporter gene (Fig 2). In 

our experiments we chose as the BCR interacting protein the BAP-1 protein, 

which is a member of the 14-3-3 proteins (Reuther, Fu et al. 1994). As 

the ABL1 interacting protein the CRKL protein was chosen (Oda, Heaney et 

al. 1994).  

 

The BAP-1 protein, BCR-associated protein, was first described in 1994 

(Reuther, Fu et al. 1994). It was isolated from a mouse embryo cDNA 

expression library screened by the recombinant P

32
PP-labelled BCR kinase 

domain as a probe. Its sequence is identical to a member of the 14-3-3 

family proteins, the 14-3-3 τ isoform. 14-3-3 proteins are expressed in 

all mammalian tissue and widely conserved in other eukaryotic organism 

including plants, insets and yeast. In some cell lines, i.e. Jurkat human 

T-cell lymphoma and the HeLa human carcinoma cell line, 14-3-3 proteins 

are also expressed. In in vivo and in vitro binding assays, the BAP-1 

protein interacts directly with the full-length BCR protein and the 

BCR/ABL1 protein, but not with c-ABL. The region of the BCR protein that 

mediates the BAP-1 protein binding is located at the N-terminal 

serine-threoine kinase domain, which is capable of autophosphorylation 

(Reuther, Fu et al. 1994; Michaud, Fabian et al. 1995). The three 

dimensional structure of some 14-3-3 proteins have been solved and show 

a high proportion of α-helices. 14-3-3 proteins form homo-dimers which 

allows them to be adapter proteins between different signaling proteins 

(Petosa, Masters et al. 1998). The precise role of BAP-1 in CML remains 
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unclear. 

As an ABL1 interactor we chose the CRKL protein. In contrast to the BAP-1 

protein, which is the substrate of the BCR serine-threoine kinase, the 

CRKL protein is the substrate of the ABL1 tyrosine kinase (Oda, Heaney 

et al. 1994). The CRKL protein belongs to the CRK protein family and is 

located on human chromosome 22, band q11, at least 500 kb to 1000 kb proximal 

to the BCR gene (ten Hoeve, Morris et al. 1993). Lacking a catalytic domain, 

CRKL consists of an N-terminal SH2 domain, followed by two SH3 domains. 

Through its N-terminal SH3 domain, CRKL interacts directly with ABL1 and 

BCR/ABL1 in the proline rich region of ABL (ten Hoeve, Morris et al. 1993; 

Feller, Ren et al. 1994; Heaney, Kolibaba et al. 1997). This protein was 

observed to be tyrosine phosphorylated in all CML cell lines and CML patient 

samples (Nichols, Raines et al. 1994; Oda, Heaney et al. 1994). Many studies 

provide direct and indirect evidence that the CRKL protein plays an 

important role in signal transduction pathway that originate from the 

BCR/ABL1 fusion protein (Uemura, Salgia et al. 1997; Sattler and Salgia 

1998; Rhodes, York et al. 2000; Grumbach, Mayer et al. 2001). 

The BCR/ABL1 fusion protein physically or functionally interacts with a 

wide range of other proteins. The choice of BAP-1 and CRKL as the 

interacting partners for the BCR part and the ABL part, respectively, for 

the BCR/ABL1 detection system was shown to be correct since in yeast the 

system was shown to work properly. In her doctoral thesis, Nicole Froehlich 

could show that a trimeric complex consisting of BAP-1, BCR/ABL1, and CRKL 

formed, leading to the transcriptional activation of the reporter genes 

LacZ and His3 in yeast (Fröhlich 2000). 

Although the detection of the BCR/ABL1 fusion protein was quite successful 

in yeast, we wanted to detect BCR/ABL1 in mammalian hematopoietic cells. 
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The yeast two-hybrid system had already been successfully adapted by Dang 

et al. (Dang, Barrett et al. 1991) for use in mammalian cells. 

This so-called mammalian two-hybrid assay relies on the functional 

reconstitution of GAL4-VP16, an artificial transcription factor 

containing the GAL4-DNA binding domain fused to the acidic transactivation 

domain of the herpes simplex virus VP16 protein. If interaction between 

proteins X and Y occurs in the mammalian cell the transcription of a 

reporter gene, which is under the control of the UAS, the recognition motif 

of the GAL4 DNA-binding domain, is switched on (Fig 4). In general, to 

test a given protein-protein interaction in the mammalian two-hybrid 

system one has to clone the cDNAs of the two proteins to be tested into 

the appropriate mammalian expression vectors. 

 

Figure 4 Mammalian Two-hybrid system. Upper panel: the conventional mammalian 
two-hybrid assay for the detection of protein–protein interactions. Cells are co-transfected 
with the reporter plasmid and expression vectors encoding the GAL4DBD-X and 
VP-16-Yfusion protein. In vivo association between the X and Y proteins induces 
transcription of the reporter gene. Lower panel: the bridge mammalian two hybrid assay to 
detect the formation of a multi-protein complex. Cells are co-transfected with the reporter 
gene, the expression vector for GAL4DBD-X, VP16-Y and an expression vector encoding a 
third protein (Z), which interacts with both the X and Y proteins. The expression of the 
reporter gene is induced by the formation of a stable trimeric complex involving proteins 
GAL4DBD-X, VP16-Y and Z. Adapted from Bartel P.L & Stanley Fieds et al, The Yeast 
Two Hybrid System Oxford University, 1997, 219 
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As an extension of the mammalian two-hybrid assay Wadman and Valge-Archer 

(Valge-Archer, Osada et al. 1994; Wadman, Li et al. 1994) developed the 

so-called mammalian bridge two-hybrid assay (Fig 4). This assay is capable 

of detecting the in vivo formation of multi-protein complexes in mammalian 

cells. The bridge two-hybrid system resembles closely the strategy that 

we developed to detect the BCR/ABL1 fusion proteins and shows that such 

a strategy can work in principle. However, it has to be kept in mind that 

both the mammalian two hybrid assay and especially the mammalian bridge 

two hybrid assay are much more stringent assays for detecting 

protein-protein interactions than the yeast two hybrid assay or other 

methods to detect protein-protein interactions like 

co-immunoprecipitations or glutathion-S transferase pull-downs. This 

means that interactions that can easily be detected in the yeast two-hybrid 

system are not necessarily amenable to analysis with the mammalian 

two-hybrid assay. 

As stated above, one goal of this thesis work was to modify the detection 

of the BCR/ABL1 fusion protein from the yeast system so that it would work 

in mammalian cells (Fig 4). Nicole Fröhlich had already performed the first 

experiments to try to detect the BCR/ABL1 fusion protein in mammalian cells 

(murine NIH3T3 fibroblasts). However, these experiments had not been very 

successful, i.e. the detection of BCR/ABL1 fusion protein could not be 

achieved reliably. It was thus necessary to test different deletion mutants 

of interactor proteins and different cell lines and transfection methods 

to try to achieve a reliable detection of the BCR/ABL1 fusion protein. 

A further goal of this work was to test different reporter genes that would 

be more useful if the detection system was to be used in a therapeutic 

setting. This also implied that the detection of the BCR/ABL1 fusion 
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protein should be reliable at the single cell level. 

Using our detection system, we would strive to eliminate the BCR/ABL 

positive cells from the bone marrow from patients with BCR/ABL positive 

leukemia. In the mean time the patient would have received high dosage 

myeloablative chemotherapy. AFter this myeloablative therpy, the patient 

would be given back his own purged bone marrow. It is our hope that such 

a therapy would be curative. 
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Material and Method  

  

1. Chemicals and lab ware 

1.1 Chemicals and reagents 

Agarose Roth, Karlsruhe 

Agar Roth, Karlsruhe 

Bromophenol blue Merck, Darmstadt 

Calf intestine alkaline phosphatase NEB, England 

DMEM PAN, Nürnberg 

DMSO Merck, Darmstadt 

DNA-polymerase I (klenow fragment) NEB, England 

Ethanol Merck, Darmstadt 

Ethidimbromid Amresco, Solon, USA 

Fetal calf serum Gibco-BRL, Karlsruhe 

Isopropanol Merck, Damstad 

β-mercaptoethanol Sigma-Aldrich, Hamburg 

PBS PAN, Nürnberg 

Penicillin/Streptomycine PAN, Nürnberg 

Pepton Merck, Damstadt 

Restriction endonucleases MBI-Fermentas, St. Leon-Rot 

RNase PAN, Nürnberg 
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RPMI-1640 PAN, Nürnberg 

SDS Merck, Damstadt 

Tag DNA polymerase PAN, Nürnberg 

T4 DNA ligase (400 U/ μl and 2000 U/ μl) TNEB, England 

0.4 % Trypan blue Gibcol-BRL, Karlsruhe 

Trypsin/EDTA PAN, Nürnberg 

X-Gal Biomol, Hamburg 

Xylene cyanol Serva, Heidelberg 

Yeast extract PAN, Nürnberg 

Yeast nitrogen base without amino acids Difco, Detroit, USA 

1.2 Reagents and Kits 

Plasmid mini-, midi, -maxi preparation Kit Qiagen, Hilden 

Gel Extraction Kit Qiagen, Hilden 

Roti-Fect transfection reagent Roth, Karlsruhe 

Dual Luciferase Kit Promega, Madision, USA 

Sequencing Kit ABI, Buckinghamshire,UK 

1.3 Lab ware 

Culture flasks and dishes Nunc, Roskilde, Danmark 

Electroporation Cuvettes Peqlab, Erlangen 

Filter (Whatman #5) Whatman, Maidstone, England 

All disposal staff PAN, Nürnberg 
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2. Plasmids and primers 

2.1 Plasmids 

GAL4-Luc Richard Bear, University of Texas 

GAL4-STAT2 Gerhard Behre, LMU, Munich 

pBluscript II SK (pBSK II) Stratagene, La Jolla, USA 

pBSKII/5’BCR Nicole Froehlich, Göttingen 

pcDNA3 Invitrogen, Groningen, Netherlands 

pcDNA3/BCR-ABL (pcDNA3/B-A) Michael Hallek, LMU,Munich 

pGBT9 Clontech, Heidelberg 

pGBT9/BAP Nicole Froehlich, Göttingen 

pGBT9/CRKLSH3n Nicole Froehlich, Göttingen 

pGAD424 Clontech,Heidelberg 

pGAD424/BAP Nicole Froehlich, Göttingen 

pGAD424/CRKL-SH3n Nicole Froehlich, Göttingen 

pES1/BCR Nicole Froehlich, Göttingen 

pM1 [Sadowski et al. 1992] 

pM1/BR304 Richard Bear, University of Texas 

pRL-null Promega, Mannheim 

pVP-FLAG [Tsan et al. 1997] 

pVP-HA/B202-NB Richard Bear, University of Texas 

2.2 Primers 

2.2.1 Sequencing primers: 

Y2H1: 5´-TCATCATCGGAAGAGAGTAG-3´ 

Y2H2: 5´-AATACCACTACAATGGATG -3´ 
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2.2.2 Primers used for the cloning of the constructs: 

BAPATG Eco: 5´-CATGGAATTCATGGAGAAGACTGAG-3´ 

BAPB879 Sal: 5´-CAGTGTCGACGACACCCTGTATGGA-3´ 

BAPT441Eco: 5´-CATCGAATTCATAGCCAATGCAACTAAT-3´ 

BAPB613Sal: 5’-CATGTCGACGTGGGTTGCATCTCTTTC-3  

BAPT617Eco: 5’-CTGAATTCCCAATCCGCCTGGGGC-3’ 

BAPB681Sal: 5’-CATGTCGACCTGGGTTATTAAGAATCT-3 

3. Solutions and medium 

3.1 Solutions 

U2 x BES-buffered saline 

50 mM BES (N,N-bis [2-hydroxyethyl]-2-aminoethanesulfonic acid) 

280 mM NaCl 

1.5 mM Na B2 BHPOB4 Bּ2HB2 BO 

pH 6.96, filtered with 0.22 μM filter 

U10X T4 DNA Ligase Reaction Buffer 

500 mM Tris-HCl 

100 mM MgCl2 

100 mM dithiothreitol 

10 mM ATP 

250 µg/ml BSA 

pH 7.5 
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E1-buffer 

100 µg/ml RNase 

50 mM Tris-HCl 

10 mM EDTA 

pH8.0 

E2-buffer 

200 mM NaOH 

1 % SDS 

E3-buffer 

3.1 M K-acetat, pH5.5 

PBS 

137 mM NaCl 

2.7 mM KCl 

4.3 mM NaHB2 BPOB4 B 

1.47 mM KHB2 BPOB4 B 

pH 7.4 

10 × PCR Reaction Buffer 

100 mM Tris-HCl 

500 mM KCl 

15 mM MgCl2 

pH 8.3  
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PEG/LiAc solution (polyethylene glycol/lithium acetate) 

40 % PEG-4000 

0.1 M lithium acetate 

10 mM Tris-HCl 

1mM EDTA 

6 × Loading buffer for agarose-gel electrophoroswas 

0.25 % bromophenol 

0.25 % xylene cyanol 

45 % sucrose 

5 × TBE buffer 

0.45 M Tris 

0.45 M boric acid 

10 mM EDTA 

pH 8.0 

TE buffer 

10 mM Tris-HCl 

1 mM EDTA 

TE/LiAc solution (lithium acetate) 

10 mM Tris-HCl 

1 mM EDTA 

0.1 M LiAc 
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TFB I 

15 % glycerol 

30 mM KAc 

50 mM MnCl B2 B 

100 mM RbCl  

10 mM CaCl B2ׂ B2HB2 BO 

pH 5.8 

TFB II 

15 % glycerol 

20 mM MOPS 

75 mM CaCl B2ׂ B2HB2 BO 

10 mM RbCl 

pH 6,9 

Trypsin/EDTA solution 

0.05 % trypsin 

0.02 % EDTA  

in PBS 

X-gal stock solution 

20 mg X-Gal/ml N, N´-Dimethylformamid 
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Z-buffer 

16.1 g/l NaB2 BHPOB4ׂ B7HB2 BO 

5.5 g/l NaHB2BPOB4 B ׂHB2 BO 

0.75 g/l KCl 

0.246 g/l mgSOB4ׂ B7HB2 BO 

pH 7.0 

Z-buffer/X-gal solution 

100 ml Z-buffer 

0.27 ml β-mercaptoethanol 

1.67 ml X-gal stock solution 

 

3.2 Growth Media 

3.2.1 Bacterial Growth Medium: 

LB medium: 

10 g/l trypton 

5 g/l yeast extract 

10 g/l NaCl 

15 g/l agar (for plates only) 

pH 7.0 

when used as selective medium, 50μg /l ampicillin was added after autoclaving. 
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3.2.2 Yeast Media: 

YPD medium: 

20 g/l pepton 

10 g/l yeast extract 

2 % glucose 

20 g/l agar (for plates only) 

pH 5.8 

SD-medium: 

6.7 g yeast nitrogen base without amino acids 

2 % glucose 

100 ml of the appropriate sterile 10 × Dropout Solution 

20g agar (for plates only) 

pH 5.8 

10 ×Dropout solution:  

200 mg/ml L-Adenine hemisulfate 

200 mg/ml L-Arginine HCL 

200 mg/ml L-Histidine HCL monohydrate 

300 mg/ml L-Isoleucine 

1000 mg/ml L-Leucine 

300 mg/ml L-Lysine HCL 

200 mg/ml L-Methionine 

500 mg/ml L-Phenylalanine 

2000 mg/ml L-Threonine 

200 mg/ml L-Tryptophan 

300 mg/ml L-Tyrosine 



Material and Method 

 

  

 

 

- 32 -

200 mg/ml L-Uracil 

1500 mg/ml L-Valine 

3.2.3 Mammalian Cell Culture Media: 

Complete DMEM medium: 

10 % fetal serum 

2 mM glutamine 

100 μg/ml streptomycine 

100 I.E./ ml ampicillin 

in DMEM  

Complete RPMI-1640 medium: 

10% fetal serum 

2 mM glutamine 

100 μg/ml streptomycine 

100 I.E./ ml ampicillin 

in RPMI-1640 

4. Cloning into plasmid vectors 

The appropriate plasmid vector was cleaved with one or more restriction 

enzymes and ligated to the insert DNA fragment bearing compatible termini. 

The products of ligation were then transformed into E. coli which were 

plated on appropriate selection medium. The transformed colonies were 

screened by PCR or by restriction enzymes to identify the recombinant 

plasmids. 
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4.1 Preparation of plasmid DNA: 

Plasmid DNA can be isolated from bacterial cultures using the alkaline 

lysis method. The resulting DNA preparation from small-scale bacterial 

culture can be analyzed by restriction endonuclease digestion and further 

used for cloning. However, the yields from small scale cultures were 

generally too low for the transfection of mammalian cells. Yields from 

large-scale bacteria culture range from 20-500 μg. After column 

purification, the plasmid DNA can be used to transfect cultured mammalian 

cells. 

4.1.1 Mini preparation of plasmid DNA  

1.5 ml aliquots from 4 ml overnight bacterial cultures were pelleted for 

1 min in an Eppendorf microcentrifuge. The bacterial pellet was then 

resuspended in 200 µl of E1 buffer by pipetting up and down. Then 300 µl 

of freshly prepared E2 buffer was added, mixed by inversion. After 

incubation on ice for 5 min the solution was neutralized by adding 300 

µl of E3 buffer, mixed and incubated on ice for 5 min. The debris was pelleted 

and 600 µl of the supernatant were removed. The plasmid DNA in the 

supernatant was precipitated by adding 0.7 volumes of isopropanol, 

incubating the solution on ice for 20 min and then pelleting by 

centrifugation for 15 min at 4°C. The DNA pellet was washed with 500 µl 

of 70% ethanol, air-dried and dissolved in 20 µl of TE buffer.  

4.1.2 Maxi preparation of plasmid DNA: 

1 ml of a bacterial overnight culture was diluted into 100 ml LB selective 

medium and incubated at 37 °C for 12-16 hours. The cells were harvest by 
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centrifugation at 6000 x g for 15 min at 4 °C. The cell pellet was well 

resuspended in 10ml Buffer P1 by vortexing. Then 10 ml of Buffer P2 was 

added and mixed by inversion. After 15 min of incubation on ice, 10 ml 

of Buffer P3 was added and mixed well. After incubation on ice for 5 min 

and centrifugation at 15 000 x g for 30 min at 4 °C the supernatant was 

loaded onto a column equilibrated with Buffer QBT. After loading, the 

column was washed twice with 30 ml of Buffer QC and eluted with 15 ml of 

Buffer QN.  DNA was precipated by adding 0.7 volumes of isopropanol to 

the eluted DNA and centrifuged at 15 000 x g for 30 min at 4 °C. The DNA 

pellet was washed with 5 ml of 70 % ethanol, air-dried and dissolved in 

500-600 µl TE buffer.  

4.2 Measuring DNA concentrations 

Two methods were used to measure the amount of DNA. By spectrophotometry, 

reading should be taken at the wavelength of 260 nm and 280 nm. One 

corresponds to ~50 μg/ml double stranded DNA. The ratio between the OD260 

and OD280 (OD260/OD280) provides an estimate of the purity of DNA. Pure 

preparations of DNA have OD260/OD280 ratios of 1.8. Contaminations with 

protein, RNA or other impurity will affect the reading and /or the ratio. 

If impurities were present accurate measurements were not possible. The 

alternative way was Ethidium bromide fluorescent quantification. The same 

volume of standard DNA and different diluted sample DNA were loaded onto 

an agarose gel and an electrophoresis was carried out. After Ethidium 

bromid staining, the gel was photographed. The quantity of DNA was 

estimated by comparing the fluorescence intensity of the DNA standard and 

the sample DNA. 
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4.3 Digestion of DNA with restriction endonucleases: 

Restriction endonucleases II recognize and cleave 4-6 base pairs specific 

sequences within double strand DNA. Digestion of DNA with restriction 

enzymes creates fragments of DNA with sticky or blunt termini. 

In the reaction system, 1 U of enzyme was sufficient for 1.0 μg DNA. The 

total volume was kept to a minimum, usually between 10 to 25 μl and the 

enzyme should comprise not more than 1/10 of the final reaction volume. 

For the restriction digest, buffers supplied by the manufacturers of the 

restriction enyzmes were used. Reaction was kept at the recommended 

temperature (usually 37°C) for a minimum of 1 hour to overnight. The 

reactions were stopped by adding EDTA or incubating at 65 ̊ C for 20 min. 

4.4 Generating blunt-ended DNA fragments 

Klenow fragment was a proteolytic product of E.coli DNA Polymerase I. It 

exhibits 5’ → 3’polymerase and 3’ →5’exonuclease activity, but lacks 5’ 

→3’exonuclease activity. For generating blunt ends of DNA by 3’ overhang 

removal or fill-in of 3’ recessed (5’overhang), 1 μg of DNA was dissolved 

in restriction enzyme buffer and incubated with 33 μM of each dNTP and 

1U Klenow for 15 min at 25°C. The reaction was stopped by adding EDTA to 

a final concentration of 10 mM and heating to 75 °C for 20 min.  

4.5 Dephosphorylation of linearized DNA 

When both ends of linearized vector DNA had the same restriction sites 

or were blunt ends, it was necessary to remove the 5’-phosphate group to 

reduce the frequencies of circularization and self-oligomerization. Since 

calf intestinal alkaline phosphatase (CIP)-treated fragments lack the 
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5’-phosphate termini required by ligase to self-ligate, it can be used 

to decrease the vector background in cloning experiments. CIP was active 

in all restriction enzyme buffers. When digestion was complete, 0.5 U/µg 

DNA CIP was added to the reaction, and incubated at 37 °C for 1 hour. The 

dephosphorylated vector was then purified by gel extraction. 

4.6 Gel purification of DNA  

QIAquick gel extraction kit was used to extract DNA fragment (70 bp-10 

kb) from standard agarose gels in TBE or TAE buffer. Such extraction can 

be used whenever it was necessary to inactive and remove the enzyme, or 

to generate the expected DNA fragment. 

After electrophoresis, the DNA fragment was cut from the agarose gel under 

UV light. 1 volume of gel was incubated with 3 volumes of Buffer QG (100 

mg~ 100 μl) at 50 °C for 10 min to dissolve the gel. For example, 300 μl 

of Buffer QG was added to 100 mg of gel slice. The maximal weight of gel 

slice was 400 mg per column. After the gel slice has complete dissolved, 

the color of the mixture should be yellow, similar to the Buffer QG without 

dissolved agarose. For DNA fragments smaller than 500 bp or larger than 

4kb, 1 volume of isopropanol was added to the sample and mixed well. This 

step increases the yield. For the DNA fragments between 500 bp and 4 kb 

additional isopropanol has no effect on yield. The sample was then applied 

to the QIAquick column and centrifuged at 13,000 rpm for 1 min. To wash 

away impurities, 0.75 ml Buffer PE was applied to the column, and 

centrifuged for 1 min at 13,000 rpm, the flow-through was discarded and 

the the QIAquick column was centrifuged at 13000 rpm for an additional 

1 min. For elution of bound DNA, 50 μl Buffer EB was added to the column 

and the column was centrifuged 1 min at 13000 rpm. Alternatively, for 
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increased DNA concentration, add 30 μl Buffer EB to the center of the 

QIAquick membrane, let the column stand for 1 min, and centrifuge. The 

extracted DNA can be used directly for cloning or sequencing. 

4.7 Ligation of vector and insert 

T4 DNA ligase was used to catalyze the formation of a phosphodiester bond 

between 5’ phosphate and 3’ hydroxyl termini in double stranded DNA. It 

will join blunt and cohesive termini. 

For protruding termini, the ligation reaction was set up as follows: 

50 ng vector DNA 

X ng insert DNA 

1 µl T4 DNA ligase 

2 μl ligation buffer (10×) 

HB2 BO to 20 μl 

The ligation was incubated at room temperature for 2 hours or at 4˚C 

overnight.  

For blunt-ended DNA ligation, more DNA and more T4 DNA ligase were used 

(high concentration T4 DNA ligase was used in this reaction, 20000U/ml).  

The optimal molar ratio of vector and insert was 1:1 to 1:10 with 1:3 being 

used most often. The following formula was used to calculate the amount 

of insert and vector DNA for the ligation reactions: 
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3 × vector concentration (μg/ μl) × insert size (bp)   x μg of insert 

                                        =  

insert concentration (μg/ μl) × vector size (bp)    50 ng of vector 

 

4.8 Preparation and transformation of competent E coli. 

4.8.1 Preparation of competent E.coli using calcium chloride 

Treatment of E.coli with ice-cold Cacl2 induces a transient state of 

“competency” in the recipient bacteria, during which they were able to 

take up DNAs from a variety of sources. 

1 ml of LB-broth overnight culture from E.coli XL-1 blue was diluted into 

100 ml of LB broth. After incubation of the culture at 37˚C with vigorous 

shaking until the OD600 reached between 0.5 and 0.7, the cells were 

recovered by centrifugation at 4000rpm for 10 min at 4 ̊ C. The cell pellet 

was then resuspended in 40 ml of ice–cold TFBI and incubated on ice for 

10-15min. The cells were pelleted as before, and resuspended in 4 ml of 

ice-cold TFBII. Aliquots of 200 μl of competent cells for transformation 

can be used immediately or kept at –80 ˚C until use. 

4.8.2 Transformation of E.coli  

5-20 μl of ligation reaction was added to the 200 μl competent cells (no 

more than 50 ng DNA in a volume of 10 μl or less) and incubated on ice 

for 30 min. Then a heat-shock was carried out at 42 °C for exactly 90 sec. 

The cells were then chilled on ice for 2 min, and incubated with 900 μl 

LB broth at 37 °C for 1 hour. After a brief centrifugation (15000 × g, 

RT), the cells pellet was resuspended in 100 μl of LB broth and spread 
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onto the selective plates. Colonies usually appeared after 12-16 hours 

at 37˚ C. 

5. The polymerase chain reaction (PCR) 

PCR was used to amplify a segment of DNA that lies between two regions 

of known sequences. PCR was used for a variety of tasks in molecular cloning 

and DNA analysis. For example, generation of specific segment of DNA for 

subcloning.  

Two oligonucleotides were used as primers for a series of synthetic 

reactions that were catalyzed by DNA polymerase. The template DNA was first 

denatured by heating in the presence of primers and four dNTPs. The reaction 

mixture was then cooled to a temperature that allows the primers to anneal 

to their target sequence, after which the annealed primers were extended 

in 5’ → 3’direction with Taq DNA polymerase (heat-stable polymerase 

purified from Thermus aquaticus). The cycle of denaturation, annealing 

and extension were repeated many times. The product of one round of 

amplification serves as template for the next. The major products will 

then be 2 P

n
P copies of the target DNA segments where n was the number of 

the cycles. 

When using plasmid DNA as template, each of the following components was 

mixed in PCR thin-wall tubes: 

10 fg –50 ng template DNA  

10 pmoles primer 1 (top) 

10 pmoles primer 2 (bottom) 

0.1 μl Taq DNA polymerase 

4 nmoles of each dNTPs 
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2 μl PCR buffer (10 x) 

HB2 BO to 20 μl. 

The PCR was carried out in Perkins –Elmer thermal cycler with the standard 

program.  

 

94˚C 5min 

94˚C 50 s 

56˚C 50 s   25cycles 

72˚C 50 s  

72˚C final extension 

 

The annealing temperature can vary according to the primer and template 

properties and the extension time was normally 1 min/1 kb target DNA 

segment.  

6. Sequencing amplified DNA by DYEnamic ET Terminator Cycle Sequencing 
Kits 

DYEnamic ET Terminator Cycle Sequencing Kit was used for sequencing of 

subcloned DNA. It was based on a modification dideoxynucleotide chain 

termination chemistry in which terminators were labeled with fluorescent 

dyes for automated detection. In this case, however, each of the four 

dideoxy terminators—ddGTP, ddATP, ddTTP, ddCTP— was labeled with two 

dyes—fluroescein and one of four different rhodamine dyes. Acting as the 

donor dye, fluorescein absorbs energy from incident light and transfer 

it to the rhodamine acceptor dye on the same terminator molecule. Each 
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acceptor dye then emits light at its characteristic wavelength for 

detection that identifies the nucleotide that terminated extension of the 

DNA chain. 

Each sequencing reaction was assembled as follows: 

Template DNA (0.1 –0.2 pmol) 

Primer (5 pmol)  

Sequencing reagent premix 8 µl (supplied by the manufacturer and containing 

the Taq DNA polymerase enzyme, dNTPs, labeled ddNTPs in the appropriate 

buffer). 

Water was added to a total volume 20 µl 

The programm for the sequencing was: 

 

96°C 2 min 

96°C 30 s 

50° C 15s  25 cycles 

60° C 4 min 

After thermocycling, 2 µl (1/10 volume) of sodium acetate and 100 µl of 

95 % ethanol were added to the tube. Then the tube was centrifuged at room 

temperature for 15 min at 12000 rpm. The DNA pellet was recovered, washed 

with 70 % ethanol and dissolved in 10 µl water. 

7. Two-hybrid assay in yeast 

7.1 Yeast strain  

Strain: Saccharomyces CG-1945, from Clontech, Heidelberg 

Genotype: MTA, ura3-52, his3-200, ade2-101, lys2-80, try-901, leu 2-3, 
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112, GAL4-542, gal80-538, cyhr2, lys::GAL1 

Reporter genes: HIS3, LacZ 

Transformation markers: trp1, leu2, cyhr2 

7.2 Lithium acetate (LiAc) mediated yeast transformation 

7.2.1 Small-scale LiAc-mediated yeast transformation 

TTo introduce plasmid DNA into yeast cells (yeast transformation) yeast 

cells were made chemically competent using lithium acetate. 15 ml of an 

overnight culture of CG-1945 in YPD at 30°C was diluted into 300 ml 

YPD to bring the OD600 to 0.2-0.3. After incubation at 30°C for about 3 

hours with shaking (230 rpm), an OD600 of 0.4-0.6 was reached. The cells 

were collected by centrifugation at 1000 × g for 5 min at room temperature. 

The cells were then washed with sterile water once and resuspended in 1.5 

ml of freshly prepared, sterile 1×TE/ 1×LiAc to obtain competent yeast 

cells. 1.0 μg of plasmid DNA (if more than one plasmid was 

co-transformed 1 µg of each plasmid was used) and 0.1 mg of herring 

tested carrier DNA were added to 0.1 μl of competent yeast cells and the 

solution was mixed well. Then 0.6 ml of sterile PEG/LiAc solution was 

added. After 30 min of incubation at 30°C with shaking at 200 rpm, 70 μl 

of DMSO was added and cells were heat shocked at 42°C for 15 min. The 

yeast cells were then concentrated, resuspended in 100 μl TE buffer and 

plated on Tthe appropriate medium to select for the transformants 

containing the introduced DNA. Colony growth was observed after 3-4 

days. 
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7.2.2 Sequential yeast transformation  

When three plasmids had to be introduced into the yeast strain, one of 

them was first transformed and then the transformed colony was picked, 

made competent according to the above-described procedure and then 

co-transformed with the other two plasmids. 

7.3 β-Galactosidase assay 

β-Galactosidase assay was a reporter assay to detemine the expression of 

the lacZ reporter gene. The colony-lift filter assay was a convenient, 

fast and relatively sensitive assay. 

A dry filer was placed over the surface of an agar plate with yeast colonies 

so that the colonies will stick to the filter. When the filter had been 

evenly wetted, it was transfered to a pool of liquid nitrogen (colonies 

facing up). Using forceps, the filter was completely submerged for 10 sec. 

After the filter had frozen completely (~10 sec), it was removed from the 

liquid nitrogen and let thaw at room temperature. Then the filter was 

carefully placed, colonies side up, on a Whatman #5 filter which was 

presoaked in 2.5-5 ml of Z buffer/ X-gal solution and incubated at 30°C 

until the appearance of a blue color reaction. 

8. Mammalian two hybrid assay 

8.1 Cell line 

The following cells were used 

•HEK293 cell line: Human embryonic kidney cancer cells (ATCC), were grown 

in complete DMEM medium. 
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•32D cell line: Murine IL-3 dependent myeloblastic cells (ATCC), were grown 

in complete RPMI-1640 medium and 10% conditioned medium from the WEHI-3B 

cell line, as a source of IL-3. 

•WT210 cell line: BCR/ABL expressing 32D cells, kindly provide by Karin 

Forster, University of Munich, were grown in complete RPMI-1640 medium. 

8.2 Transfection of 293 cells with the calcium phosphate method 

Transfection was used to transfer DNA into mammalian cells. In transient 

transfection, recombinant DNA was introduced into a recipient cell line 

in order to obtain a temporary but high level of expression of a target 

gene on the recombinant plasmid.  

The uptake of DNA by cells in culture was markedly enhanced when the nucleic 

acid was present as a coprecipitate of calcium phosphate and DNA. A 

modification of the classical calcium phosphate transfection method that 

greatly enhances the efficiency of transfection differs from the classical 

method in that the calcium phosphate–DNA co-precipitatate was allowed to 

form in the tissue culture medium during prolonged incubation (15-24 hours) 

under controlled conditions of pH (6.96) and reduced CO B2 Btension (2-4 %).  

A total of 2.0 μg DNA (0.5 μg of GAL4-Luc reporter plasmid, 0.5 μg of the 

GAL4-X expression plasmid, 0.5 μg of the VP16-Y expression plasmid, 0.5 

μg pcDNA3/BCR-ABL or 0.5 μg pcDNA3 empty vector, and 0.01 μg of control 

plasmid pRL-null) was diluted into 60 μl of water. 10 μl of 2.5 M CaCl B2 B 

and 100 μl of 2 × BBS buffer were added to the DNA solution. After mixing, 

the solution was incubated at room temperature for 20 min to let the DNA- 

CaClB2 B precipitate form. Then the mixture was added drop-wise onto each 

35 mm dish containing 3 × 10 P

4
P HEK293 cells seeded one day before. After 

incubation of the transfected cells at 37°C in 2-4 % CO B2 Bfor 15-24 h, the 
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medium was changed to fresh medium. After another 15-24 h of incubation 

at 37˚C in an atmosphere of 5 % CO B2 B, the cells were harvested and lysed 

for the luciferase assay. All the transfections were performed in 

duplicates and repeated three times. 

8.3 Electroporation of 32D cells and WT210 cells 

Pulsed electrical fields can be used to introduce DNA into cells. This 

technique is used when other transfection methods fail.  

8.3.1 Electroporation with convention device 

Cells were spun down and resuspended in growth medium at a concentration 

of 2.5 x10P

7 
Pcells/ml. 400 μl aliquots of the cell suspension (10 P

7
P cells) 

were transferred into electroporation cuvettes. A total of 20 μg DNA (5.0 

μg of GAL4-Luc reporter plasmid, 5.0 μg of the GAL4-X expression plasmid, 

5.0 μg of the VP16-Y expression plasmid, 5.0 μg of pcDNA3/BCR-ABL or 5.0 

μg of pcDNA3 empty vector, and 0.1 μg of control plasmid pRL-null) was 

added to the cell suspension in the cuvette and incubated at room 

temperature for 10 min. Then the cells were electroporated with 1500 μF, 

250 V for 32D cells or 1500 μF, 220 V for WT210. The cells were then 

transferred immediately to a flask containing 10 ml RPMI-1640 complete 

medium. After incubation at 37°C in an atmosphere of 5 % COB2 B for 48 hours, 

cells were harvested and lysed for the luciferase assay. All the 

transfection were performed in duplicates and repeated three times. 

8.3.2 Electroporation with the Amaxa Nucleofector Device: 

1 ×10P

6
P cells were sususpended in 100 μl in room temperature Nucleofector 
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SolutionV (component unknown) and mixed with total 3μg DNA (1.0 μg of 

GAL4-YFP reporter plasmid, 1.0 μg of the GAL4-X expression plasmid, 1.0 

μg of the VP16-Y expression plasmid, 1.0 μg of pcDNA3/BCR-ABL or 1.0 μg 

of pcDNA3 empty vector). Then the nucleofection sample was transferred 

into an Amaxa certificated cuvette and inserted into the cuvette holder. 

The cells were then electroporated with program E-32. After the program 

had finished (display showing “ok”), 500 μl culture medium was added to 

the cuvette. The cells then were transferred immediately to the 6-well 

plates pre-prepared with 1.5 ml culture medium in each well. After 

incubation at 37°C in an atmosphere of 5 % CO B2 B for 48 hours, cells were 

harvested and lysed for the luciferase assay. All the transfections were 

performed in duplicates and repeated three times. 

9. Dual- luciferase assay (DLR) 

The luciferase assay was a genetic reporter system for studying gene 

expression and cellular physiology. In the dual-luciferase system, there 

were two reporters, one was the firefly luciferase gene the expression 

of which was correlated to the effect of the specific experimental 

condition, and the other one was the Renilla luciferase which was used 

as an internal control. Normalizing the activity of the firefly luciferase 

to the activity of the Renilla luciferase minimizes experimental 

variability. The assays for firefly luciferase and Renilla luciferase 

activity were performed sequentially in the same reaction tube. 48 hours 

after transfection, the lysates were prepwered from the transfected cells 

by the addition of 200 μl lysis buffer (per 35 mm dish) and scraping the 

cells from the dishes. 20 μl of cell lysate was added to each luminometer 

tube containing 100 μl Luciferase Assay Reagent II to measure the 

luciferase activity. The luminometer was programmed to perform a 3-second 
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pre-measurement delay, followed by a 10 seconds measurement period for 

each reporter assay. After the measurement of the luciferase activity, 

the sample tube was removed from the luminometer, 100 μl of Stop& Glo 

Reagent was added and vortexed briefly to mix the solution. Then the sample 

was placed in the luminometer again to initiate the measurement of the 

Renilla luciferase activity. The ratio of Firefly luciferase activity to 

Renilla luciferase activity was calculated. Results were shown as mean±S.D 

and expressed as the ratio of relative Firefly luciferase avtivity to 

Renilla luciferase activity.
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Results 

 

Nicole Fröhlich had shown that the detection of BCR/ABL1 in mammalian cells 

was not very robust and reliable even though the same system had worked 

very well in yeast cells. One possible reason for this discrepancy was 

thought to be the fact that in mammalian cells there are many other proteins 

that are able to interact with BCR/ABL1 and the two protein interactors 

of BCR/ABL1 (BAP-1 and CRKL) used in the detection system. We therefore 

reasoned that by only using the protein domains of the interactors that 

were necessary for the interaction with BCR/ABL1 one would be able to 

minimize the interference from other protein interactions. To accomplish 

this, a series of deletion mutants of the BCR interactor BAP-1 was 

constructed to map the BCR interaction domain of this protein. 

1 Mapping of the interaction domain of BAP-1 and BCR 

To minimize the disturbances to the domain structure of BAP-1, we designed 

the different deletion mutants of BAP-1 according to the 3 dimensional 

structure of the protein. There is no 3 dimensional protein structure of 

BAP1 itself available. However, the 3D structure of the closely related 

14-3-3ζ protein is deposited in the protein structure databases. Using 

the 3D structure of the 14-3-3 ζ protein as a guide, we made a series of 

deletion mutants of BAP1 to map the BCR interaction domain of BAP1 with 

the aim that this isolated BCR interaction domain would function better 

for the detection of BCR/ABL1 in mammalian cells. 

1.1 Construction of BAP-1 deletion mutant 

In order to identify the minimal region within BAP-1 that is able to 
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interact with BCR, we made various BAP-1 deletion mutants. Deletion mutant 

1, Bap1-114 (amino acid 1-114), contained the N-terminal 4 α-helices of 

BAP-1. Mutants 2-5 various portions of the C-terminal half of BAP-1. Mutant 

2, Bap106-246 (amino acid 106-246), contained the C-terminal half (helices 

5-9); mutant 3, Bap106-163 (amino acid 106-163), encompassed helices 5 

and 6; mutant 4, Bap164-246 (amino acid 164-246), contained helices 7, 

8 and 9; and mutant 5, Bap164-187 (amino acid 164-187), contained the single 

helix α7. As 14-3-3ζ isT Tcomposed of nine anti-parallel α-helices (A-I), 

the mutants were constructed in such a way that the α-helices would not 

be disrupted (Fig 5).  

 

Figure 5 Schematic of deletion mutants of BAP-1 constructs. The 14-3-3ζ protein, which is 
very homologous to BAP-1, contains 246 amino acid residues and is composed of 9α-helices 
named A to I starting from the N-terminus. Each α-helix, as defined in 14-3-3ζ, is 
represented by a box and non-helical regions are shown as lines in this diagram of BAP1 and 
its mutants. Full length and deletion mutants of BAP-1 were subcloned into pGBT9 for 
mapping the interaction site with BCR using the yeast two-hybrid system. The numbers 
indicates the BAP1 amino acids included in each mutant. The deletion mutants used in this 
study are as follows: full length (wild type); mutant1: aa 1-114 (α1-4); mutant2: aa 106-246 
(α5-9); mutant3: aa 106-163 (α5-6); mutant4: aa 164-245 (α7-9); mutant5: aa 164-187 (α7). 
On the right hand side, the results of the yeast two hybrid interaction assays with BCR are 
shown. 

Except for mutant 1, the coding region for BAP-1 and its deletion mutants 

were generated by PCR with EcoRI and SalI sites incorporated in the forward 

and reverse primers. PCR products were digested with EcoRI and SalI, and 
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inserted into corresponding site of pGBT9 or pGAD424. The resulting 

constructs were named as: pGBT9/BAP or pGAD424/BAP (full length), 

pGBT9/BAP106-246 or pGAD424/BAP106-246 (mutant 2), pGBT9/BAP106-163 or 

pGAD424/BAP106-163 (mutant 3), pGBT9/BAP164-246 or pGAD424/BAP164-246 

(mutant 4), pGBT9/BAP164-187 or pGAD424/BAP164-187 (mutant 5). Mutant 1 

was generated by removing the C-terminal fragment of BAP-1. For this, the 

pGBT9/BAP or pGAD424/BAP construct was digested with KpnI and SalI, blunt 

ended and re-ligated (Table 1). The resulting construct was named 

pGBT9/BAP1-114 or pGAD424/BAP1-114. 

All of the above constructs were sequenced to verify that no mutations 

had been introduced during PCR amplification. Fig 6 shows the restriction 

digests of the various BAP1 deletion constructs. 

 

                  

 

Figure 6 Restriction digest of pGBT9/BAP and the deletion mutants. Ethidium bromide 
stained 1.5% agarose gel after digestion of the pGBT9/BAP clones with EcoR1 and Sal1 to 
release the insert. 
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Table 1 Assignment of plasmids in Fig6  

Lane Plasmid  Insert PCR primer for 
amplifying the 

insert 

Cloning site Size 
of 

insert 
(bp) 

Enzymes used 

1 1kb ladder      

2 pGBT9/BAP BAP1 
Full length 

BAPATGEcoR
BAPB879Sal 

EcoRI and SalI 740 EcoRI and SalI

3 pGBT9/BAP1-114 α1-4  _ EcoRI and KpnI 
(blunt-ended) 

342 EcoRI and PstI

4 pGBT9/BAP106-246 α5-9 BAPT441EcoR
BAPB879Sal 

EcoRI and SalI 414 EcoRI and SalI

5 pGBT9/BAP106-163 α5-6  BAPT441EcoR
BAPB613Sal 

EcoRI and SalI 174 EcoRI and SalI

6 pGBT9/BAP164-246 α7-9  BAPT617EcoR
BAPB879Sal 

EcoRI and SalI 240 EcoRI and SalI

7 pGBT9/BAP164-187 α7  BAPT617EcoR
BAPB879Sal 

EcoRI and SalI 60 EcoRI and SalI

8 50 bp ladder      

 

All the deletion mutants were cloned into the yeast two-hybrid vectors 

pGBT9 and pGAD424. pGBT9 is a 5.5 kb yeast / E. coli shuttle vector that 

contains the sequence coding for the GAL4 DNA-binding domain (GAL4 1-147). 

It will express proteins as fusions with the GAL4DBD in yeast. pGBT9 carries 

the TRP1 gene that allows yeast cells of strains that are auxotroph for 

tryptophan carrying pGBT9 to grow on synthetic medium lacking tryptophan. 

pGBT9 also carries an Ampicillin resistance gene for selection in bacteria. 
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The shuttle vector pGAD424 is used to express a GAL4 activation domain 

fusion protein in yeast. It carries the LEU2 gene that allows yeast leucine 

auxotrophs carrying pGAD424 to grow on synthetic medium lacking leucine. 

pGAD424 also carries an Ampicillin resistance gene for selection in 

bacteria (Table 2). 

Table 2: Yeast-two hybrid vectors 

Vector Description Selection on SD medium Size (kb) 

pGBT9 
GAL4-DNA binding domain 

TRP1, ampr 
-Trp 5.5 

pGAD424 
GAL4-DNA activation domain 

LEU2, ampr 
-Leu 6.6 

 

1.2 Construction of pGAD424/BCR1-928 

The interaction of the various BAP-1 mutants with BCR had to be tested 

with the yeast two hybrid system first. To simplify these experiments, 

we used only the BCR portion of the BCR/ABL1 fusion protein to map the 

BAP interaction domain with BCR. The BCR portion (aa 1 to 928 of BCR) of 

the BCR/ABL1 fusion gene was cloned into pGAD424. For this, the BCR/ABL 

coding region was released by XhoI and EcoRI digestion from the 

pCDNA3/BCR-ABL plasmid and subcloned into pBluescript II SK, resulting 

in pBSKII B-A/5’BCR which had two KpnI restriction enzyme sites, one was 

in the vector 5’ of BCR and the other was at very beginning of the ABL 

portion. Then the BCR fragment was released from the plasmid pBSKII 

B-A/5’BCR by KpnI (blunt ended before EcoRI digestion) and EcoRI digestion. 

This fragment of BCR fragment was cloned into the EcoRI and SmaI sites 

of pGAD424. The resulting plasmid was called pGAD424/BCR1-928. 
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1.3 Mapping of the interaction domain of BAP-1 and BCR 

The deletion mutants of BAP-1 were used to map the BCR interaction domain 

of BAP-1 in the yeast two hybrid system. pGBT9/BAP or the deletion mutants 

and pGAD424/BCR1-928 were co-transformed into yeast stain CG1945. After 

transformation, the cells were plated on SD plates lacking tryptophan and 

leucine (SD –W, -L) to select for co-transformants, which carry both 

plasmids. The colonies were then restreaked onto SD plates lacking 

tryptophan, leucine and histidine (SD –W, -L, -H plates) to assay for the 

expression of the HIS3 reporter gene. Only those yeast cells in which the 

GAL4DBD fusion protein and the GAL4AD fusion protein interact will grow 

on SD –W, -L, -H plates. This analysis revealed that aa 109-264 of BAP-1 

(c-terminus) and aa 164-264 of BAP-1 (α 7-9) bind to BCR, while aa 1-114 

of BAP-1 (N-terminus ) and aa 106-163 of BAP-1 (α 5-6) showed no interaction 

with BCR portion (aa 1 to 928 of BCR) of the BCR/ABL1 fusion gene. aa 164-187 

of BAP-1 (the single α helix 7) showed week interaction with BCR portion. 

These experiments demonstrated that the C-terminus of BAP1 and helices 

α 7-9 of the C-terminus are sufficient for interaction with BCR. The results 

are shown in Table 3, Fig 7 and Fig 8. The results of the appropriate negative 

control experiments are also shown.  
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Table3 Mapping the BCR 1-928 interaction domain of BAP-1 

Plasmids transformed into yeast Selection SD plates Growth on selection 
plates 

PGBT9 -W, -H – 

PGBT9/BAP  -W, -H  – 

pGBT9/BAP1-114 -W, -H  – 

pGBT9/BAP106-246 -W, -H  – 

pGBT9/BAP106-163 -W, -H  – 

pGBT9/BAP164-246 -W, -H  – 

pGBT9/BAP164-187 -W, -H  – 

PGAD424 -L, -H  – 

PGAD424/BCR -L, -H  – 

PGBT9 + pGAD424 -W, -L, -H  – 

PGBT9/BAP+pGAD424/BCR -W, -L, -H  + 

pGBT9/BAP1-114+pGAD424/BCR -W, -L, -H  – 

pGBT9/BAP106-246+pGAD424/BCR -W, -L, -H  + 

pGBT9/BAP106-163+pGAD424/BCR -W, -L, -H  – 

pGBT9/BAP164-246+pGAD424/BCR -W, -L, -H  + 

pGBT9/BAP164-187+pGAD424/BCR -W, -L, -H  Few colonies 
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Figure7  pGBT9/BAP or its deletion mutants and pGAD424/BCR1-928 were transformed 
into yeast cells as follows: 1. pGBT9/BAP + pGAG424/BCR 2. pGBT9/BAP1-114 + 
pGAG424/BCR 3. pGBT9/BAP 106-246 + pGAG424/BCR 4. pGBT9/BAP106-163 + 
pGAG424/BCR 5. pGBT9/BAP164-246 + pGAG424/BCR 6. pGBT9/BAP164-187 + 
pGAG424/BCR 7. pGBT9+ pGAG424. Full length, aa 106-246 (c-terminus) and aa 164-246 
(α7-9) of BAP-1 interacted with BCR1-928, as shown by the growth of the yeast colonies on 
SD –W, -L, -H plates. aa 1-114 (α1-4) and aa 106-163 (α 5-6) of BAP-1 showed no interaction 
with BCR. Few colonies were found on the selection plates indicating weak interaction between 
aa 164-187 (α7) of BAP-1 and BCR1-928.  

These results corresponded quite well with data from the 3D structure of 

the BAP-1 related protein 14-3-3ζ. As shown in Fig 8, this molecule consists 

of aP

 
Pbundle of nine α-helices organized in an antiparallel fashion, P

 
Pwith 

α-helices participating in dimer formation. P

 
PThe dimeric molecule has a 

cup-like shape with a conserved inner surface and a variable outer surface. 

TheP

 
Pinner surface is a groove roughly 25Å long formed by the four P

 
Pparallel 

helices α 3, α 5, α 7, and α 9 (Petosa, Masters et al. 1998; Rittinger, 

Budman et al. 1999). Based on the crystal structure, we predicted that P

 

Pthis amphipathic groove would form the principal binding site P

 
Pfor 14-3-3 

ligands. In this respect, our results were consistent with the assumptions 

made from the crystal structure and further emphasized the importance of 

the α helices 7-9 in the protein interactions of 14-3-3 related proteins. 
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B 

 

Figure 8. 3 dimensional structure of 14-3-3. The 14-3-3 proteins are dimeric. EachP

 
Pmonomer 

is composed of nine anti-parallel α helices forming aP

 
Plarge ligand binding groove as revealed 

by crystal structure analysis. α7-9 is located near the edge, which is the common structural 
element for ligand binding/interaction. B is A rotated by 180° around the horizontal axis. A 
adapted from Rittinger et al., Molecular Cell 1999, 4 (2): 153 and B adapted from Petosa et 
al, The Journal of Biological Chemistry 1998, 273(26): 16305 

2 Detection of the BCR/ABL1 fusion protein in yeast 

We first tested our BCR/ABL1 detection system in yeast. In her doctoral 
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thesis, Nicole Fröhlich had already shown that the minimal interaction 

of domain of CRKL which is required for making contact with ABL is the 

N-terminal SH3 domain of this protein. A series of sequential 

transformation of pGBT9/BAP or its deletion mutants, pGAD424/CRKL-SH3n B 

Band pES1/BCR-ABL was performed for this purpose. The pES1 vector carries 

a LYS gene that allows yeast auxotrophs for lysine carrying pES1 to grow 

on synthetic medium lacking lysine (K). 

After plating the yeast cells on the plates lacking trytophan (-W), leucine 

(-L) and lysine (-K) to select for transformants containing all three 

plasmids, colonies were restreaked onto selection plates (SD –W, -L, -K, 

-H) which also lacked histidine to assay for the reporter gene HIS3. This 

would indicate the formation of a trimeric transcriptional activation 

complex of which the BCR/ABL1 fusion protein is the central component (see 

Fig2 Page 10 and the diagramm in Fig 9 C). These experiments were also 

performed using BAP-1 or its deletion mutant fused to pGAD424 and CRKLSH3n 

fused to pGBT9. If any one of the components of the trimeric complex was 

absent, no transcription would occur. 

However, in the absence of a GAL4 based transcriptional activation complex, 

the expression of the HIS3 reporter gene, which encodes 

imidazoleglycerol-phosphate dehydratase (His3p), is slightly leaky and 

cells show weak growth on medium lacking histidine. 3-amino-1, 2, 

4-triazole (3-AT) is a competitive inhibitor of the His3p and therefore 

only cells expressing higher amounts of His3p can survive in medium with 

3-AT. All the His P

+ 
Pcolonies were also able to grow on the SD- W, L, K 

plates with 10 mM 3-AT (Fig 9 A-C). 

We further tested the expression of the second reporter gene, LacZ, which 

is also under the control of a GAL4-promoter. The expression of LacZ can 
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be determined by measuring the β-galactosidase activity. Using a 

colony-lift filter assay, we found that the His P

+
P transformants were 

positive for β-galactosidase activity (they showed a blue color reaction 

within 6 hours, Fig 9 D), which further confirmed the interaction between 

BAP-1, CRKL-SH3n and BCR/ABL1. All of these results showed that in the 

yeast system the expression of reporter genes could be made strictly 

dependent on the presence of the BCR/ABL1 fusion protein. 

We also included several other negative controls in our experiment to 

confirm that the activation of the reporter gene was caused by the complex 

of BCR/ABL1, BAP-1 and CRKL-SH3n. A summary of all experiments including 

the negative controls is shown in Table 5. 
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Figure 9. BCR/ABL1 fusion protein detection system in yeast. The three expression 
plasmids for DBD-X and AD-Y protein as well as for the expression of the BCR/ABL1 
fusion protein were serially transformed into yeast strain CG1945 as explained in the table 4. 
The growth on SD –W, -L, -K indicates the presence of all of three plasmids (A). Expression 
of the His3 reporter constitutes evidence for the formation of the trimeric complex which is 
detected as growth in the absence of histidine. The trimeric complex consisting of 
BCR/ABL1, BAP-1 (or aa 106-246 and aa 164-246 of BAP) and CRKL-SH3n could form 
only in the presence of BCR/ABL1, resulting in the growth of the yeast cells on SD –W, -L, 
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-K, -H plates (B, Nr. 1-6) and SD –W, -L, -K, -H plates with 10 mM 3–AT(C, Nr. 1-6). If the 
BCR/ABL1 fusion is absent, the trimeric complex can not form, no transactivation of 
reporter occurs, resulting in no (or very little) growth of yeast cells on SD –W, -L, -K, -H 
plates (B, Nr. 7-12) and SD –W, -L, -K, -H plates with 10 mM 3–AT(C, Nr. 7-12). The HisP

 +
P 

transformant colonies also showed a positive β-galactosidase reaction (blue color) in a filter 
assay indicating the expression of the second reporter gene LacZ (D, Nr. 1-6). E denotes the 
nurmbering of transformation, shown in Table 4. 

Table 4 Assignment of plasmids in Fig 9 

Number Transformed plasmids 

1 pES1/BCR-ABL + pGBT9/BAP + pGAD424/CRKL-SH3n 

2 pES1/BCR-ABL + pGBT9/BAP106-246 + pGAD424/CRKL-SH3n 

3 pES1/BCR-ABL + pGBT9/BAP164-246 + pGAD424/CRKL-SH3n 

4 pES1/BCR-ABL + pGAD424/BAP + pGBT9/CRKL-SH3n 

5 pES1/BCR-ABL + pGAD424/BAP106-246 + pGBT9/CRKL-SH3n 

6 pES1/BCR-ABL + pGAD424/BAP164-246+ pGBT9/CRKL-SH3n 

7 pES1 + pGBT9/BAP-1 + pGAD424/CRKL-SH3n 

8 pES1 + pGBT9/BAP106-246+ pGAD424/CRKL-SH3n 

9 pES1 + pGBT9/BAP164-246 + pGAD424/CRKL-SH3n 

10 pES1 + pGAD424/BAP + pGBT9/CRKL-SH3n 

11 pES1 + pGAD424/BAP106-246 + pGBT9/CRKL-SH3n 

12 pES1 + pGAD424/BAP164-246+ pGBT9/CRKL-SH3n 
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Table 5: Summary of experiments performed for the detection of the BCR/ABL1 fusion 
protein in yeast. 

Plasmids transformed into yeast Growth on selection plates 

BCR-
ABL1 

DBD-fusion AD-fusion SD-L,K,W SD-L,K,W,H
SD-L,K,W,H 

(10mM 

3-AT) 

β

-galactosidase 
assay 

(colony-lift 
filter assay)

pGBT9 pGAD424 + - - - 

pGBT9/BAP pGAD424/CRKL-SH3n + - - - 

pGBT9/BAP1-114 pGAD424/CRKL-SH3n + - - - 

pGBT9/BAP106-246 pGAD424/CRKL-SH3n + + - - 

pGBT9/BAP106-163 pGAD424/CRKL-SH3n + - - - 

pGBT9/BAP164-246 pGAD424/CRKL-SH3n + + - - 

pGAD424/BAP pGBT9/CRKL-SH3n + + - - 

pGAD424/BAP1-114 pGBT9/CRKL-SH3n + - - - 

pGAD424/BAP106-264 pGBT9/CRKL-SH3n + + - - 

pGAD424/BAP106-163 pGBT9/CRKL-SH3n + - - - 

pES1 

pGAD424/BAP164-246 pGBT9/CRKL-SH3n + + - - 

pGBT9 pGAD424 + - - - 

pGBT9/BAP pGAD424/CRKL-SH3n + + + + 

pGBT9/BAP1-114 pGAD424/CRKL-SH3n + - - - 

pGBT9/BAP106-246 pGAD424/CRKL-Sh3n + + + + 

pGBT9/BAP106-163 pGAD424/CRKL-SH3n + - - - 

pGBT9/BAP164-246 pGAD424/CRKL-SH3n + + + + 

pGAD424/BAP pGBT9/CRKL-SH3n + + + + 

pGAD424/BAP1-114 pGBT9/CRKL-SH3n + - - - 

pGAD424/BAP106-264 pGBT9/CRKL-SH3n + + + + 

pGAD424/BAP106-163 pGBT9/CRKL-SH3n + - - - 

pES1/
BCR-
ABL 

pGAD424/BAP164-246 pGBT9 + weak + + 



Results 

 

  

 

 

- 62 -

3 Detection of BCR-/fusion protein in Mammalian Cells  

3.1 Construction of DBD fusion and AD fusion protein for the mammalian 
detection system  

The rationale for the mapping of the BCR interaction domain of BAP1 was 

to improve the detection of the BCR/ABL1 fusion protein in mammalian cells. 

Nicole Fröhlich had shown in her doctoral thesis that using the N-terminal 

SH3 domain of CRKL (CRKL-SH3n), instead of the full length CRKL protein 

fused to the GAL4-DBD, the detection of the BCR/ABL1 fusion protein was 

possible in mammalian cells. However, the detection efficiency, even when 

using GAL4-DBD/CRKL-SH3n, was not very high and far too low to be used 

in a therapeutic setting. 

After the encouraging results with the BAP1 deletion mutants in the yeast 

system, we recloned these mutants into mammalian expression vectors to 

be used for the BCR/ABL1 detection system in mammalian cells. These 

mammalian expression vectors had been used in the mammalian two hybrid 

system before (Dang, Barrett et al. 1991). The pM1 vector was designed 

for mammalian expression of a fusion protein that contains the DNA-binding 

domain of the yeast GAL4 protein (Sadowski, Bell et al. 1992). The pVP-FLAG5 

plasmid was constructed for the expression of VP16AD fusion proteins. 

VP16AD is the acidic transactivation domain of herpes simplex virus VP16 

protein (amino acids 411-455) (Dang, Barrett et al. 1991). The coding 

sequences of BAP-1 deletion mutants (full length, aa 106-246 and aa 164-246 

of BAP-1) that interacted with the BCR portion of the BCR/ABL1 fusion 

protein were recloned to be expressed either as a fusion with the GAL4DBD 

or with the VP16AD. 

The coding region for BAP-1 and its deletion mutants were generated by 

PCR with EcoRI and SalI sites incorporated in the forward and reverse 
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primers. PCR products were digested with EcoRI and SalI, and inserted in 

frame into corresponding sites of pM1 or pVP-FLAG5.1. The resulting 

constructs were named: pM1/BAP or pVP-FLAG5.1/BAP, pM1/BAP106-246 or 

pVP-FLAG5.1/BAP106-246 and pM1/BAP164-246 or pVP-FLAG5.1/BAP164-246. A 

modified (pVP-FLAG5.1) vector was used. It was generated by removing the 

NcoI site (digested, blunt-ended and then relegated) in the multiple 

cloning site, which put the EcoRI site into the same reading frame as pM1. 

All of the above constructs were sequenced to verify that no mutations 

had been introduced during PCR amplification. Table 6 shows the constructs 

used for the detection system in mammalian cells. 
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Table 6 A summary of the constructs used in the mammalian BCR/ABL1 detection 

system 

Plasmid Insert PCR primer 
Cloning 
site 

Remark 

pM1/BAP 
Full length 
BAP-1 

BAPATG Eco
BAPB879 
Sal 

EcoRI  
SalI 

 

pM1/BAP106-246 
C-terminal 
of BAP-1 

BAPT441Eco 
BAPB879 
Sal 

EcoRI  
SalI 

 

pM1/BAP164-246 
Helices 7-9 
of BAP-1 

BAPT617Eco 
BAPB879 
Sal 

EcoRI  
SalI 

 

GAL4-DBD 
fusion protein 

pM1/CRKl-SH3n 

N-terminal 
of SH3 
domain of 
CRKL 

 
EcoRI  
SalI 

Provided 
by N. 
Fröhlich 

pvp-FLAG5.1/BAP
Full length 
BAP-1 

BAPATG Eco
BAPB879 
Sal 

EcoRI  
SalI 

 

pVP-FLAG5.1/ 
BAP106-246 

C-terminal 
of BAP-1 

BAPT441Eco 
BAPB879 
Sal 

EcoRI  
SalI 

 

pVP-FLAG5.1/ 
BAP 164-246 

Helices 7-9 
of BAP-1 

BAPT617Eco 
BAPB879 
Sal 

EcoRI  
SalI 

 

GAL4-VP16AD 
fusion protein 

pvp-FLAG5/ 
CRKL-SH3n 

N-terminal 
of SH3 
domain of 
CRKL  

 
EcoRI  
HindIII 

Provided 
by 
N.Fröhlich

BCR/ABL1 
fusion protein 

pcDNA3/ 
BCR-ABL 

BCR/ABL1 
fusion gene

 EcoRI  
Provided 
by  
M. Hallek

 

3.2 Detection of BCR/ABL1 fusion protein in mammalian cells with a luciferase 
reporter gene 

In the mammalian version of the two-hybrid system, the transcriptional 
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activity of a GAL4p-responsive reporter gene provides a quantitative 

measure of the in vivo protein-protein interaction. The 

GAL4p-responsitive reporter GAL4-Luc contains the TATA element as a 

minimal promoter and five tandem copies of the GAL4 upstream activating 

sequence (UASBG PB

:
P GTACTGTCCTCCGAGCGGA) immediately upstream of the coding 

sequences of the luciferase gene. Using luciferase as a reporter gene 

provides the advantages commonly attributed to luciferase, including high 

sensitivity and abroad range of linear response. The successful detection 

of the BCR/ABL1 fusion protein in these cells involves the formation of 

a trimeric complex containing GAL4-BAP, VP16-CRKL-SH3n and BCR/ABL fusion 

protein, which should lead to the expression of the luciferase reporter 

gene. Absence of any of the three components does not result in the 

transactivation of the reporter gene (Fig10). In the mammalian detection 

system, we also included positive controls and negative control. One of 

the positive controls is plasmid expressing the strong transcriptional 

activator STAT2 fused directly to the GAL4DBD (GAL4STA2) which leads to 

a very high expression of the luciferase reporter gene. The other positive 

controls were two proteins (BRCA1 and BRCA1-associated ring domain protein) 

which were known to interact and result in a positive luciferase read-out 

in this system(Wu, Wang et al. 1996). As P

 
Pan internal control for 

transfection efficiency, the pRL-null P

 
Pconstruct containing a Renilla 

luciferase gene was used. 
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Figure 10 Mammalian detection system of BCR/ABL1 fusion protein. The successful 
detection of the BCR/ABL1 fusion protein in the cells is in the form of a trimeric complex 
involving GAL4DBD-X, AD-Y and the BCR/ABL1 fusion protein, which would lead to the 
expression of the luciferase reporter gene. If the BCR/ABL1 fusion protein or either protein 
A or protein B is absent, no reporter gene activation should occur. 
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3.2.1 Detection system of BCR/ABL 1 fusion protein in HEK293 cell  

HEK293 cells were transiently co-transfected with GAL4-Luc, pM1/BAP-1 (or 

pM1/BAP106-246 or pM1/BAP164-246), pvp-FLAG/CRKL-SH3n and pcDNA3/BCR-ABL. 

As a transfection control, a Renilla luciferase reporter was included in 

each sample. Transfections were performed in duplicates and repeated at 

least three times. 48 hours after transfection, cells were lysed and 

assayed for luciferase assay. Detection was determined by comparing the 

relative activity of firefly luciferase to Renilla luciferase. Results 

were shown as mean±S.D and expressed as the ratio of firefly luciferase 

avtivity to Renilla activity. 

As shown in Table 7 (Appendix 1) and Fig 10, the mammalian two hybrid 

positive control and the GAL4/STAT2 positive control (columns 13 and 15, 

respectively) showed a high induction of luciferase activity compared to 

the negative control (column 14), indicating that this detection system 

worked well to detect the protein–protein interactions. In Nicole 

Fröhlich’s work, the SH3n domain of CRKL worked better in the detection 

of BCR/ABL1, in our experiment therefore only CRKL-SH3n was used. We first 

used the full length BAP-1 as interactor protein to detect BCR/ABL1. As 

described in the Introduction (Fig2 Page 10) and above, only when the 

BCR/ABL1 fusion protein was present, a trimeric complex will be formed 

consisting of BCR/ABL1, GAL4DBD-BAP (or VP16AD/BAP) and VP16AD/CRKL-SH3n 

(or GAL4DBD/CRKL-SH3n) which will lead to the transactivation of the 

luciferase reporter gene. However, the cells which were transfected with 

pcDNA3/BCR-ABL, pM1/BAP and pVP-FLAG/CRKL-SH3n did not show induction of 

luciferase activity (column 1) compared to the cells transfected only with 

pM1/BAP and pVP-FLAG/CRKL-SH3n, but without BCR/ABL1 expression (empty 

pCDNA3) (column 2). In the other setting, in which BAP was fused to the 

VP16AD and CRKL-SH3n was fused to the GAL4DBD (columns 3 and 4), the 
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presence of BCR/ABL1 also failed to produce a significant P

 
Pincrease of 

luciferase activity compared to the negative controls. We then used the 

two deletion mutants of BAP, BAP106-264 and BAP164-246, which worked well 

in the BCR/ABL1 detection in the yeast system as interactor proteins. 

Unfortunately, the results were similar to the results achieved with the 

full length BAP, indicating that the BCR/ABL1 detection system did not 

work in HEK293 cells. 

 

Figure 11 BCR/ABL1 detection system in 293 cells. 293 cells were transiently transfected 
with different plasmids shown in Table 7. Transfections were performed in duplicates and 
repeated three times.48 hours after transfection, cells were harvested for luciferase assay. 
Transfection results are shown as mean±S.D and expressed as the ratio of relative firefly 
luciferase avtivity compared to Renilla luciferase activity. The presence of BCR/ABL1 did 
not alter the luciferase activity. The standard deviations are indicated by error bars. The 
white columns denote the sample transfected with pcDNA3/BCR-ABL, and grey columns 
denote the samples transfected with pcDNA3 (no BCR/ABL1 insert). 

3.2.2 Detection system of BCR/ABL1 fusion protein in BCR/ABL expressing 32D 
cells 

After the relatively disappointing results that the BCR/ABL1 detection 

system achieved in the non-hematopoietic cell line HEK293, we decided to 

test whether this system would behave similarly in the hematopoietic cell 
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line 32D. 32D cells are derived from murine progenitors. Stably expressing 

BCR/ABL 32D cells, WT210, were used as a model for the detection of the 

BCR/ABL1 fusion protein. The BCR/ABL expressing WT210 cells were 

transiently transfected with the different interactor constructs shown 

in Table 8 (Appendix 2) and in Fig12. 32D parental cells, which do not 

express BCR/ABL1, were used as negative controls.  

First, we used full length BAP-1 and CRKL-SH3n as interactor proteins in 

WT210 cells shown in Fig 12 transfection 1, the induction of luciferase 

activity is about 4 fold compared to the 32D cells (transfection 4), which 

indicated that the presence of the BCR/ABL1 fusion protein induced 

transactivation of the reporter. To further confirm that the induction 

of luciferase activity was the result of the formation of the trimeric 

complex, we replaced pM1/BAP with the empty pM1 vector or 

pVP-FLAG/CRKL-SH3n with the empty pVP-FLAG vector. Here no luciferase 

transactivation should occur. However, in WT210 cells, the transfections 

which included pM1/BAP, pvp-FLAG/CRKL-SH3n and BCR/ABL1 fusion protein 

(transfection 1) showed lower luciferase activity compared to the 

transfections in which the pM1 or the pVP-FLAG empty vector was used as 

negative control (transfection 2 and 3). In the other setting, in which 

BAP was fused to the VP16AD and CRKL-SH3n fused to the GAL4DBD (transfection 

5), the induction of luciferase activity in WT210 cells was about 3 fold 

compared to the 32D cells (transfection 8). Similarly, compared to the 

sample in which pM1 instead of pM1/CRKL-SH3n or pVP-FLAG instead of 

pVP-FLAG/BAP1 was used (transfections 6 and 7), the sample which included 

pM1/CRKl-SH3n and pVP-FLAG/BAP1 showed lower luicferase activity 

(transfection 5). 

We then used aa 106-246 of BAP1 and CRKL-SH3n as interactor proteins. We 

found that compared to 32D cells, the luciferase activity in WT210 cells 
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was about 2-4 fold higher than in 32D cells (transfections 9 and 12 or 

13 and 16). Using empty vector as negative control, the transfections which 

included all the three components, the two interactors and the BCR/ABL1 

fusion protein (transfections 9 and 13), showed a 1.3 - 2 fold higher 

luciferase activity compared to the transfections in which one of the 

interactors was absent (transfection 10, 11 and 14, 15). This indicated 

that the detection of BCR/ABL1 could be achieved in mammalian cell if the 

C terminus of BAP1 (aa 106-246) was used instead of full length BAP1. 

However, the fold change in luciferase activity in the cells expressing 

BCR/ABL1 was rather modest. 

Finally, we used the smallest deletion mutant of BAP1, aa 163-264 of BAP1, 

as interactor protein, which worked well in yeast BCR/ABL1 detection system 

(transfections 20 to 27). Unfortunately, the results in this series of 

transfection were rather similar to the transfections 1 to 8, in which 

the full length BAP1 was used as the BCR interactor.   

From these three experiments, it was concluded that the detection of the 

BCR/ABL1 fusion protein using BAP1 or deletion mutants and CRKL or deletion 

mutants of these proteins cannot be achieved reliably in the setting where 

luciferase is used as an assay system. 
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Figure 12 BCR/ABL1 detection system in BCR/ABL expressing 32D cells. BCR/ABL 
expressing 32D cells, WT210 cells, or 32D parental cells were transiently transfected with 
different plasmids shown in Table 8. In transfection 4, 8, 12, 16, 17, 18, 19, 23 and 27, 32D 
cells were used, WT210 were transfected in all other transfections. The table under each 
sub-Fig showed the different components of transfection briefly. ‘+’ or ‘-‘denotes ‘yes’ or 
‘no’. Transfections were performed in duplicates and repeated three times. 48 hours after 
transfection, cells were harvested for luciferase assay. The results were shown as mean±S.D 
and expressed as the ratio of firefly luciferase avtivity compared to Renilla luciferase activity. 
The standard deviations are indicated by error bars.  

 

3.3 Detection of BCR/ABL1 fusion protein in mammalian cells with YFP as the 
reporter 

The detection experiments described in the previous paragraphs using 

luciferase as a reporter gene represented measurements of the reporter 

gene activity averaged over a whole cell population. However, to use the 

BCR/ABL1 detection system in a therapeutic setting it would become 

necessary to determine the presence or the absence of the BCR/ABL1 fusion 

protein at the single cell level. Even though we were not able to see a 
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good detection of BCR/ABL1 when it was averaged over a whole cell population 

(luciferase experiments), the situation might be different if cell were 

examined individually. We chose the yellow fluorescent protein (eYFP) as 

a reporter gene to detect BCR/ABL1 in individual cells. The eYFP protein 

is derived from the green fluorescent protein found in certain jelly fish 

species. eYFP has a absorption maximum at 513 nm and an emission maxima 

at 527 nm (yellow light). When excited at 513 nm, eYFP is able to emit 

a bright fluorescent signal for flow cytometry or fluorescent microscopy. 

Because it requires no additional substrates for its fluorescence, it is 

ideal for use in living cell assays. For this, a new reporter plasmid, 

GAL4-YFP, containing eYFP under the control of TATA element and UAS BG Bwas 

generated. We replaced the firefly luciferase coding region in the GAL4-luc 

plasmid with the coding region of the eYFP protein. When BCR/ABL1 fusion 

protein was present, CRKL, BAP and BCR/ABL1 would form the trimeric complex 

through protein protein interaction, which should result in the 

transactivation of eYFP (shown in Fig 13).  

 

 

Figure 13 BCR/ABL1 detection system in mammalian cells using eYFP as reporter gene. 
eYFP is under the control of UASB. BProtein X is BCR interactor, BAP-1 or its deletion 
mutant and protein Y is the ABL interactor, CRKL-SH3n (or vice versa). The reporter 
YFP gene is induced by the formation of the trimeric complex involving BCR/ABL1, 
GAL4DBD-X and GAL4VP16-Y.    

As a transfection control, we planned to use a second fluorescent protein, 
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eCFP, to monitor the successfully transfected cells. The eCFP protein is 

an enhanced cyan fluorescent variant of the green fluorescent protein gene 

(GFP). eCFP produces an intense and stable cyan fluorescence 

noncatalytically by absorbing light maximally at 433 nm and emitting blue 

light with a peak at 475 nm. eYFP and eCFP were chosen because their emission 

spectra overlap minimally, so they can be distinguished when used 

simultaneously.  

In this way, if we co-transfected the cells with eCFP, BCR/ABL1 detection 

proteins and GAL4-YFP reporter plasmid, a blue and yellow cell (CFP and 

YFP double positive) would be a successfully transfected cell with the 

BCR/ABL1 protein. A blue cell but not yellow (CFP single positive) would 

be a successfully transfected cell without BCR/ABL1. Cells without 

fluorescence (CFP and YFP double negative) would be non-transfected cells 

which cannot be evaluated for the presence of absence of the BCR/ABL1 fusion 

protein (Table 9). 

 

Table 9 Predicted results using eYFP as reporter 

 Transfected cells  Not-transfected cells 

BCR/ABL1 positive 
blue and yellow 

(CFP and YFP double positive)
no fluorescence 

BCR/ABL1 negative 
blue 

(CFP single positive) 
no fluorescence 

 

Unfortunately, the flow cytometer available to our group was not able to 

detect eCFP fluorescent properly because of weakness of the laser and 

improper filter sets. We then used eYFP empty vector as transfection 
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efficiency control. We assumed that all the transfections were under 

similar transfection efficiency. Based on these assumptions we calculated 

how many BCR/ABL1 positive cells could be detected.  

 

3.3.1 Construction of GAL4-YFP 

Since the luciferase reporter gene plasmid GAL4-LUC contains the TATA 

element and five tandem copies of UAS BG B (GTACTGTCCTCCGAGCGGA) immediately 

upstream of the coding sequences of luciferase gene, we simply removed 

the firefly luciferase gene by cutting GAL4-LUC with HindIII and ClaI and 

inserted the eYFP coding region, which was generated by PCR from eYFP-C1 

plasmid with HindIIII and ClaI sites incorporated in the primers 

(YFPTHindIII and YFPBClaI). The resulting reproter construct was named 

GAL4-YFP. 

3.3.2 Electroporation of 32D cells using Amaxa Nucleofector device 

Since the Amaxa nucleofector device has higher transfection efficiency 

than conventional electroporation devices, we used it in this experiment. 

Because of technical problems with the flow cytometer as mentioned in 

paragraph 4.2.3, we were not able to use eCFP as a transfection control 

in the same cells with the GAL4-YFP reporter plasmid and the detection 

protein constructs. We used as a control for the transfection efficiency 

cells which were singly tranfected with the eYFP empty vector. First we 

did a series of positive control experiments. 1 ×10 P

6
P 32D cells were 

elctroporated with different plasmids and the total amount of DNA 

transfected was kept constant adding varying amounts of pBSKII as a filler, 

as shown in Table 10. Transfections were performed in duplicates and 

repeated three times. 48 hours after transfection cells were harvested 

for flow cytometry to check the intensity of the fluorescence in the cells. 

Forward and side scatter signals were used to restrict the analysis to 
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viable cells. YFP fluorescence intensity (FL1, x-axis) was plotted on a 

log scale (Figure 14). 
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Table 10 Assignment of plasmids in Fig13 

Sample Type of transfection Mainly transfected plasmids 

A YFP transfection efficiency control 1 μg pEYFP-C1  

B STAT2 positive control 
1 μg  GAL4-STAT2 
1 μg  GAL4-YFP 

C 
Mammalian two hybrid positive 
control 

1 µg  pM1/ BR304 
1 μg  pvp-HA/B202-NB 
1 μg  GAL4-YFP 

D 
Mammalian two hybrid negative 
control 

1 μg  pM1 
1 μg  pvp-HA/B202-NB 
1 μg  GAL4-YFP 

   CCC 

As shown in Fig 14, in the transfection efficiency control sample, 78.2% 

cells were YFP positive, indicating that 78.2 % of cells were transfected 

(Fig 14 A). We assumed that all the transfections were under similar 

condition; therefore these 78 % cells would be the “transfected cells” 

in all the transfection samples. In the GAL4-STAT2 positive control sample, 

37.7 % of all the 32D cells were YFP positive cells (Fig 14, B). We 

interpreted this to mean that about 50 % of the “transfected cells” (37.7 

% divided by 78 %) showed transactivation of the YFP reporter, indicating 

that the new GAL4-YFP repoter was able to be successfully transactivated 

by the strong transcriptional activator GAL4-STAT2. In the mammalian two 

hybrid positive control sample, which should give a positive read-out in 

this system because the two proteins have been shown to give positive 

read-outs in the luciferase based mammalian two hybrid assay, only 1.82 

% of the cells were YFP positive, suggesting that in only 2.6 % of 

“transfected cells” transactivation of the YFP reporter gene occurred  

(Fig 14 C) when compared to the negative control (Fig14 D). The mammalian 
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two hybrid positive control experiment indicated that the percentage of 

false negatives in transfected cells would be extremely high 

(100-2.6=97.4%). This meant that using the GAL4-YFP as reporter the vast 

majority of successfully transfected BCR/ABL1 positive cells would go 

undetected and could not be sorted out. However, these conclusions can 

not really be taken at face value because we did not use a transfection 

control that would indicate the cells that had taken up all three plasmids 

required for the mammalian two hybrid assay.  

 

Figure 14 Positive controls of mammalian two hybrid system in 32D cells analyzed by flow 
cytometry. 32D cells were electroporated with different plasmids as shown in Table 9. 
Electroporations were performed in duplicate and repeated at three times. 48 hours after 
electroporation, cells were harvested for flow cytometric analysis. YFP fluorescent cells are 
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detected in the lower right quadrant. The percentage of positive cells is indicated. 

 

DDiissccuussssiioonn  

  

The BCR/ABL1 fusion is found in virtually all cases CML and in a large proportion 

of ALLs. The fact that the BCR/ABL1 fusion protein is necessary to sustain the 

malignant phenotype (Huettner, Zhang et al. 2000) makes the fusion protein the ideal 

target for therapy. We are in the process of developing a novel strategy for the 

treatment of BCR/ABL1 positive leukemia, which is based on the capability to detect 

the BCR/ABL1 fusion protein in vivo in the individual cell. After this first detection 

step an action can be initiated in a second step such as the induction of the expression 

of a marker protein or the expression of a pro-drug converting enzyme. After this 

second step, the BCR/ABL1 positive cells can be selectively sorted out (in the case of 

the expression of a marker protein) or they can be made susceptible to the action of a 

pro-drug (in the case of the expression of a pro-drug converting enzyme). 

The main focus of the work presented here was the improvement of the first detection 

step of this strategy. The initial detection step is based on protein-protein interactions. 

A protein-protein interaction was chosen because most cellular processes are 

governed by very specfic protein-protein interactions. The yeast two-hybrid system is 

capable of detecting in vivo protein-protein interactions as a function of the 

transcriptional activation of a reporter gene. In the standard yeast two hybrid system, a 

protein-protein interaction is detected as the transcriptional activation of a reporter 

gene. One of the protein interaction partners is fused to a specific DNA binding 

domain (e.g. GAL4DBD) while the other interaction partner is fused to a 

transactivation domain (e.g. the trancriptional activation domain of the yeast 

transcription factor GAL4, GAL4AD). For the in vivo detection of the BCR/ABL1 
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fusion protein we used a modification of the standard yeast two hybrid assay, in which 

the GAL4DBD-X and the GAL4AD-Y fusion proteins can not interact directly with 

each other but are dependent on the presence of a third protein which acts as a bridge 

between these two proteins. This means that transcriptioanl activation of the reporter 

genes can only occur in the presence of this bridging protein. In our case we chose 

proteins X and Y of the GAL4DBD and the GAL4AD fusion, respectively, so that 

they would require BCR/ABL1 as this bridging protein (Fig 15). For this strategy to 

work with BCR/ABL1 as the bridge, it is required that X interacts with the BCR 

moiety of BCR/ABL1 while Y interacts with the ABL moiety of BCR/ABL1. We 

chose BAP-1 as the BCR interacting protein and used CRKL as the ABL interacting 

protein. 

 

 

Figure 15 Diagram of the BCR/ABL1 detection strategy. Two proteins are expressed in this 
system: one is fusion protein of BCR interacting protein Bap-1 (X) and the GAL4-DNA binding 
domain (protein A), the other is a fusion of the ABL interacting protein CRKL (Y) and the 
GAL4-activation domain (protein B). If the BCR/ABL1 fusion protein is present, the BCR/ABL1 
protein, protein A and protein B form a trimeric complex which transactivates the reporter gene. 
This system requires that the corresponding hybrid proteins be translocated to the nucleus, where 
reporter gene transcription occurs. The two detection proteins A and B localize in the nucleus. The 
BCR/ABL1 fusion protein localizes in the cytoplasma and presumably fails to be translocated into 
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nucleus.  

Nicole Fröhlich had shown in her MD thesis work that the detection of the 

BCR/ABL1 fusion protein using this strategy worked very well in the yeast 

system but that the implementation of the same strategy in mammalian cells 

resulted in only a very weak detection signal for the BCR/ABL1 fusion 

protein. The signal to noise ratio that could be achieved in Dr. Fröhlich's 

work for the mammalian BCR/ABL1 detection system was so low that it would 

not be possible to use this strategy in a therapeutic setting (e.g. for 

the elimination of BCR/ABL1 positive cells from a bone marrow sample). 

The reason for the poor performance of the detection system in mammalian 

cells was thought to be due to the fact that the BCR/ABL1 protein resides 

in the cytoplasm and that due to its many interactions with cytoplasmic 

proteins it will not readily translocate into the nucleus. However, nuclear 

translocaton of the BCR/ABL1 fusion protein is required for the 

transcriptional activation of the reporter genes which serve as a readouts 

for the presence of the BCR/ABL1 fusion protein. We also hypothesized that 

the two detection proteins A and B might engage in various other 

protein-protein interactions in mammalian cells preventing these proteins 

from interacting with the BCR/ABL fusion protein and/or from translocating 

into the nucleus. While the subcellular localization of BCR/ABL1 cannot 

be changed easily, using deletion mutants of the BCR and ABL interacting 

proteins which just contain the BCR and ABL interacting domains of these 

proteins might improve the performance of the detection system in mammalian 

cells by preventing these proteins from engaging in unnecessary or 

disruptive protein-protein interactions. In the yeast cells the cognate 

protein interaction of BCR/ABL1 would be largely absent which would result 

in a much weaker cytoplasmic localization of the BCR/ABL1 protein in the 

yeast cells. This in turn might explain why the detection system functions 
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well in yeast cell but fails in the more complex environment of the 

mammalian cells.  

Nicole Fröhlich had already shown that using the N-terminal SH3 domain of the ABL 

interacting protein CRKL instead of full length CRKL markedly improved the 

perfomance of the BCR/ABL1 detection system in mammalian cells. The N-terminal 

SH3 domain of CRKL is the ABL interacting domain of CRKL (ten Hoeve, Morris et 

al. 1993). 

We followed a similar strategy for the BCR interactor BAP-1. In the yeast two-hybrid 

Tsystem, we could demonstrated that the C-terminal half of BAP-1 (amino acid 

107-245), and within this C-terminal half the helices α 7-9 (amino acid 165-245), are 

capable of interacting with BCR. 

BAP-1, BCR-associated protein-1, is a member of 14-3-3 protein family and virtually 

identical to the 14-3-3ζ protein. BAP-1 is a substrate of the BCR serine-threonine 

kinase and is also phosphorylated on tyrosine by BCR/ABL1 but not by c-ABL. 

BAP-1 interacts with full length BCR and with the BCR/ABL1 fusion protein. As 

mentioned above, we could show that c-terminus, in particular α helices 7-9 of BAP-1 

are sufficient for BCR interaction. These results correspond well to the data from the 

3-dimensional structure of the BAP-1 related protein 14-3-3ζ. 14-3-3 proteins form 

dimers. In each 14-3-3 monomer, there are 9 anti-parallel α-helices. The dimer 

contains a large negatively charged groove. In the crystal structure, α helices 7-9 are 

located near the edge of this groove. These helices have a highly conserved amino 

acid sequence among the members of the 14-3-3 protein family and they are the 

common structural element for ligand binding. 

After demonstrating that the detection system using the BAP-1 deletion mutants 

worked well in yeast, the open-reading frames of the BAP-1 deletions mutants were 

cloned into mammalian expression vectors. Unfortunately, when the BAP-1 deletion 

mutants were tested in mammalian cells we were not able to improve markedly the 
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detection efficiency of BCR/ABL1 in the cell lines used. These were the human 

embryonal kidney cell line HEK293 and the murine myeloid progenitor cell line 32D 

which had been stably transfected with a BCR/ABL expressing plasmid. 

It is known that the mammalian two-hybrid system is a very stringent method for 

detecting protein-protein interaction in vivo. There are many protein interactions 

which can be verified by other methods (e.g. coimmunoprecipitation) which can not 

be detected in the mammalian two hybrid system. While the great majority of proteins 

that gave positive read-outs in the mammalian two hybrid system were nuclear factors, 

positive interactions could also be seen for some proteins which normally reside in the 

cytoplasma (Fearon, Finkel et al. 1992; Takacs, Das et al. 1993). These results imply 

that these cytoplasmic proteins were translocated to the nucleus, where reporter gene 

transcription occurs. This nuclear translocation is probably due to the action of 

nuclear localization signals which are a part of the Gal4-DNA binding domain or the 

VP16 activation domain. However, in the few reports of the mammalian bridge 

two-hybrid assay, which is in principle very similar to the BCR/ABL1 detection 

system, the bridging proteins that gave a positive readout all had a nuclear localization 

(Wadman, Li et al. 1994; Osada, Grutz et al. 1995). In both normal and leukemic 

human hematopoietic cells, ABL is found predominantly in the cytoplasm. ABL can 

also be detected in the nucleus, albeit at low levels. In contrast, normal endogenous 

BCR protein, as well as the aberrant p210 BCR/ABL1 or p190BCR/ABL protein 

consistently localize to the cytoplasma in both cell lines and primary cells (Wetzler, 

Talpaz et al. 1993). This argues again for the hypothesis that the weak performance of 

the BCR/ABL1 detection system is due to the strong cytoplasmic localization of the 

BCR/ABL1 fusion protein. 

Recently, it was shown that BCR/ABL1 can be found in the nucleus after treating the 

cells with the ABL kinase inhibitor STI571 and the nuclear export inhibitor, 

leptomycin B (LMB) (Vigneri and Wang 2001). Inhibiting the tyrosine kinase activity 

of BCR/ABL1 with STI571 forces BCR/ABL1 to enter the nucleus and then 
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BCR/ABL1 can be trapped in the nucleus by the administration of LMB. Using the 

combination of STI571 and LMB to coax BCR/ABL1 into the nucleus could 

conceivably improve the performance of the BCR/ABL1 detection system. We are 

currently trying to combine these two drugs with the detection system experiments. 

However, preliminary experiments have shown no improvement of the detection 

efficiency but showed a considerable cellular toxicity. 

In the BCR/ABL1 detection experiments using luciferase as the reporter gene the 

activity of the luciferase was measured from the whole cell population. In order to 

measure detection of BCR/ABL1 at the single cell level we used eYFP as the reporter 

gene. When we tested the induction of the YFP reporter with GAL4-STAT2, only 

about 50 % of the transfected cells showed transactivation of YFP. However, it has to 

be kept in mind that we did not have a reliable method to estimate transfection 

efficiency in this setting and that the percentage of transfected cells had to be inferred 

from a separate experiment. When we used the YFP reporter system to assay a known 

mammalian two hybrid interaction only very few cells became YFP positive. Also in 

these experiments, due to technical limitations, we did not have a proper control for 

transfection efficiency. When we extrapolated the results from this known mammalian 

two hybrid interaction to the BCR/ABL1 detection we expected a very high 

proprotion of false negative detections.  This implied that the majority of 

BCR/ABL1 positive cells would not be detected. Therefore, we did not test 

GAL4-YFP reporter in our BCR/ABL1 detection system. 

To overcome the difficulties encountered in developing a detection system for 

BCR/ABL1 we will persue the following strategy. Instead of relying on the 

transcriptional activation of a reporter gene for the detection of BCR/ABL1, which 

requires a nuclear localization of the trimeric detection complex, it should also be 

possible to induce a specific proteolytic cleavage as the readout of the trimeric 

detection complex. Since a proteolytic cleavage event can happen in the cytoplasm, 

the cytoplasmic localization of BCR/ABL1 would not be a problem. In the 
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split-ubiquitin system developed by Varshasky and colleagues (Johnsson and 

Varshavsky 1994), a protein-protein interaction results in a specific proteolytic 

cleavage event. This system might be adapted for the detection of BCR/ABL1 and 

other leukemic fusion proteins. 

Even though our detection system did not work mainly because of the localization of 

BCR/ABL1 fusion protein, it should still be a viable strategy for the detection of 

leukemia-associated fusion protein, which localize to the nucleus (i.e AML-ETO).  

In a clinical setting we envision that the detection system can be used to recognize and 

sort out (or selectively) kill leukemic cells. One would be able to purge the bone 

marrow of leukemia patients efficiently from leukemic cells and rescue the patients 

after a high dose chemotherapy treatment with an autologous bone marrow 

transplantation. In principle, this strategy should be superior to using small inhibitor 

molecules such as STI571, because STI571 treatment does not kill all leukemic cells 

but leads to a reduction in their number through growth inhibition and induction of 

apoptosis of leukemia cells. 
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Appendix 1  

Table 7 Transfection of HEK293 cells   

Transfection 1 2 3 

Type of Transfection BCR/ABL detection 1
Negtive control 1 

(without BCR/ABL) 
BCR/ABL detection 2 

Transfected plasmids

0.5 μg   pM1/BAP 
 
0.5 μg   pvp-FLAG5/

CRKL-SH3n
0.5μg   pcDNA3/ 

BCR-ABL 
0.5 μg   GAL4-Luc  
0.01μg  pGL-Null 

0.5 μg   pM1/BAP 
 
0.5 μg   pvp-FLAG5/

CRKL-SH3n
0.5 μg   pcDNA3 
 
0.5 μg   GAL4-Luc  
0.01μg   pGL-Null 

0.5 μg   pM1/ 
    CRKL-SH3n 

0.5 μg   pvp-FLAG5/ 
BAP 

0.5 μg   pcDNA3/ 
BCR-ABL 

0.5 μg   GAL4-Luc  
0.01μg   pGL-Null 

Mean of normalized 
luciferase activity 

251.34 317.28 239.45 

Standard deviation 56.12 133.46 69.67 

 

Transfection 4 5 6 

Type of transfection Negative control 2 
(without BCR/ABL)   

BCR/ABL detection 3 Negtive control 3 
(without BCR/ABL) 

Transfected plasmids 

0.5 μg   pM1/ 
    CRKL-SH3n 

0. 5μg   pvp-FLAG/ 
BAP 

0.5 μg   pcDNA3 
 

0.5 μg   GAL4-Luc  
0.01 μg  pGL-Null 

0.5 μg  pM1/ 
       BAP106-246 
0.5 μg  pvp-FLAG5/ 
       CRKL-SH3n 
0.5 μg  pcDNA3 
        BCR/ABL 
0.5 μg  GAL4-Luc  
0.01μg  pGL-Null 

0.5 μg  pM1/ 
BAP106-246 
0.5 μg  pvp-FLAG5/ 
       CRKL-SH3n 
0.5 μg  pcDNA3 
 
0.5 μg  GAL4-Luc  
0.01μg  pGL-Null 

Mean of normalized 
luciferase activity 

227.02 160.67 209.54 

Standard deviation 99.12 53.92 61.37 
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Table 7 continued  

Transfection 7 8 9 

Type of transfection BCR/ABL detection 4 Negtive control 4 
(without BCR/ABL) 

BCR/ABL detection 5 

Transfected plasmids 

0.5 μg   pM1/ 
CRKL-SH3n 

0.5μg   pvp-FLAG5.1/
BAP106-246 

0.5 μg   pcDNA3/ 
BCR-ABL

0.5 μg   GAL4-Luc  
0.01 μg  pGL-Null 

0.5 μg  pM1/ 
CRKL-SH3n

0.5 μg  pvp-FLAG5.1/
BAP106-246 

0.5 μg  pcDNA3 
 
0.5 μg  GAL4-Luc  
0.01 μg  pGL-Null 

0.5 μg  pM1/ 
BAP164-246  

0.5 μg  pvp-FLAG5/ 
    CRKL-SH3n 

0.5 μg  pcDNA3/ 
BCR-ABL 

0.5 μg  GAL4-Luc  
0.01 μg  pGL-Null 

Mean of normalized 
luciferase activity 

259.14 376.62 261.37 

Standard deviation 81.25 96.71 86.58 

  

Transfection 10 11 12 

Type of transfection Negtive control 4 
(without BCR/ABL) 

BCR/ABL detection 6 Negtive control 6 
(without BCR/ABL) 

Transfected 
plasmids 

0.5μg  pM1/ 
BAP164-246  

0.5μg  pvp-FLAG5/ 
CRKL-SH3n 

0.5 μg  pcDNA3 
 
0.5 μg  GAL4-Luc  
0.01μg  pGL-Null 

0.5 μg  pM1/ 
       CRKL-SH3n 
0.5 μg  pvp-FLAG5.1/

BAP164-246 
0.5 μg  pcDNA3/ 

BCR-ABL 
0.5 μg  GAL4-Luc  
0.01 μg  pGL-Null 

0.5 μg  pM1/ 
   CRKL-SH3n 

0.5 μg  pvp-FLAG5.1/
BAP164-246

0.5 μg  pcDNA3 
 
0.5 μg  GAL4-Luc  
0.01 μg  pGL-Null 

Mean of normalized 
luciferase activity 

324.27 281.34 384.89 

Standard deviation 78.29 105.78 112.45 
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Table 7 continued  

Transfection: 13 14 15 

Type of transfection Mammalian two hybrid 
positive control 

Mammalian two hybrid 
negative  control 

STAT2 activation 
control 

Transfected plasmids 

0.5 μg  pM1/ BR304 
0.5 μg  pvp-HA/ 

B202-NB 
0.5 μg  PBSKII 
0.5 μg  GAL4-Luc  
0.01 μg  pGL-Null 

0.5 μg   pM1 
0.5 μg   pvp-HA/ 
        B202-NB 
0.5 μg   PBSKII 
0.5 μg   GAL4-Luc  
0.01 μg  pGL-Null 

0.5 μg  Gal4-STAT2 
 
 

1.0 μg  PBSK 
0.5 μg  GAL4-Luc  
0.01 μg  pGL-Null 

Mean of normalized 
luciferase activity 

800.02 111.23 3915.667 

Standard deviation 126.34 59.93 594.29 
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Appendix 2  

Table 8 Trnasfection of WT210 and 32D cells 

Transfection 1 2 3 4 

Cells WT210 WT210 WT210 32D 

Type of 
experiment  

BCR/ABL 
detection   

Negative control  
(without BAP) 

Negative control 
(without 

CRKL-SH3n ) 

Negative control 
(without  

BCR-ABL fusion 
Transfected  

plasmids 
5μg  pM1/BAP 
5μg  pvp-FLAG5/ 

 CRKL-SH3n 
5μg  GAL4-Luc  
0.1μg pGL-Null 

5 μg  pM1 
5 μg  pvp-FLAG5/ 

CRKL-SH3n 
5 μg  GAL4-Luc  
0.1μg  pGL-Null 

5 μg pM1/ BAP 
5 μg pvp-FLAG5 
 
5 μg GAL4-Luc  
0.1 μg pGL-Null 

5 μg pM1/BAP 
5 μg pvp-FLAG5/ 

CRKL-SH3n 
5 μg GAL4-Luc  
0.1 μg pGL-Null 

Mean of 
Normalized 
luciferase 
activity 

13.43 24.60 12.18 4.72 

Standard 
deviation 

4.41 10.76 3.20 6.70 

 
 
Transfection  5 6 7 8 

Cells WT210 WT210 WT210 32D 

Type of 
experiment 

BCR/ABL detection  Negative control  
(without BAP) 

Negative control 
(without 

CRKL-SH3n ) 

Negative control 
(Without  

BCR-ABL fusion 
Transfected  

plasmids 
5 μg  pvp-FLAG/ 

BAP 
5 μg  pM1/ 

CRKL-SH3n 
5 μg GAL4-Luc  
0.1 μg pGL-Null 

5 μg  pvp-FLAG 
 

5 μg  pM1/ 
CRKL-SH3n 

5 μg  GAL4-Luc  
0.1 μg pGL-Null 

5μg  pvp-FLAG/ 
  BAP 

5 μg  pM1 
 
5 μg  GAL4-luc  
0.1 μg pGL-Null 

5 μg  pvp-FLAG/ 
BAP 

5 μg  pM1/ 
CRKL-SH3n

5 μg  GAL4-Luc  
0.1 μg pGL-Null 

Mean of 
normalized 
luciferase 
activity 

10.80 20.72 27.56 6.12 

Standard 
deviation 

5.71 14.43 12.46 9.38 
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Table 8 continued 

 

Transfection 9 10 11 12 

Cells WT210 WT210 WT210 32D 

Type of 
experiment 

BCR/ABL 
detection   

Negative control  
(without 

 BAP106-246) 

Negative control  
(without 

CRKL-SH3n ) 

Negative control 
(Without  

BCR-ABL fusion 
Transfected  

plasmids 
5μg  pM1/ 

BAP106-246 
5μg  pvp-FLAG5/ 

  CRKL-SH3n 
5μg  GAL4-Luc  
0.1μg pGL-Null 

5 μg   pM1 
 

5 μg   pvp-FLAG5/
    CRKL-SH3n

5 μg   GAL4-Luc  
0.1μg  pGL-Null 

5μg  pM1/ 
BAP106-246 

5 μg  pvp-FLAG5 
 
5 μg  GAL4-Luc  
0.1 μg  pGL-Null 

5μg pM1/ 
BAP106-246 

5μg  pvp-FLAG5/
 CRKL-SH3n

5 μg  GAL4-Luc 
0.1μg  pGL-Null 

Mean of the 
Normalized 
luciferase 
activity 

36.30 18.43 19.04 8.17 

Standard 
deviation 

20.41 10.05 9.54 3.96 

 
 
Transfection 13 14 15 16 

Cells WT210 WT210 WT210 32D 

Type of 
experiment 

BCR/ABL 
detection   

Negative control  
(without 

 BAP106-246) 

Negative control  
(without 

CRKL-SH3n ) 

Negative control 
(Without  

BCR-ABL fusion 
Transfected  

plasmids 
5μgpvp-FLAG5.1/ 

BAP106-246 
5 μg pM1/ 

CRKL-SH3n 
5 μg GAL4-Luc  
0.1 μg pGL-Null 

5 μg  pvp-FLAG5 
 
5 μg  pM1/ 

CRKL-SH3n 
5 μg  GAL4-Luc  
0.1 μg  pGL-Null 

5 μg pvp-FLAG5.1/ 
BAP106-246

5 μg  pM1 
 
5 μg  GAL4-Luc  
0.1 μg  pGL-Null 

5μg pvp-FLAG5.1/
BAP106-246 

5 μg  pM1/ 
CRKL-SH3n

5 μg  GAL4-Luc  
0.1 μg pGL-Null 

Mean of the 
Normalized 
luciferase 
activity 

74.00 59.91 28.36 34.92 

Standard 
deviation 

44.71 39.52 6.00 43.60 
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Table 8 continued  

Transfection  17 18 19 

Cells  WT210 WT210 WT210 

Type of 
experiment 

Mammalian two hybrid 
positive control   

Mammalian two hybrid 
negative  control   

STAT2 activation control

Transfected  
plasmids 

5 μg   pM1/ BR304 
5 μg   pvp-HA/B202-NB 
5 μg   GAL4-Luc  
0.1μg  pGL-Null 

5 μg   pM1 
5 μg   pvp-HA/ B202-NB 
5 μg   GAL4-Luc  
0.1μg  pGL-Null 

5 μg  Gal4-STAT2 
10 μg  PBSK 
5 μg   GAL4-Luc  
0.1μg  pGL-Null 

Mean of the 
Normalized 
luciferase 
activity 

521.82 1.36 1110.04 

Standard 
deviation 

328.96 0.9 420.67 

 

Transfection 20 21 22 23 

Cells WT210 WT210 WT210 32D 

Type of 
experiment 

BCR/ABL detection  Negative control  
(without  

BAP163-246) 

Negative control  
(without 

CRKL-SH3n ) 

Negative control 
(without  

BCR-ABL fusion 
Transfected  

plasmids 
5μg pM1/ 

BAP163-246 
5 μg pvp-FLAG5/ 

CRKL-SH3n 
5 μg GAL4-Luc  
0.1 μg pGL-Null 

5 μg  pM1 
 

5 μg  pvp-FLAG5/ 
CRKL-SH3n 

5 μg  GAL4-Luc  
0.1 μg pGL-Null 

5μg  pM1/ 
BAP163-246 

5 μg  pvp-FLAG5 
 
5 μg  GAL4-Luc  
0.1 μg pGL-Null 

5 μg  pM1/ 
BAP163-246

5μg  pvp-FLAG5/
CRKL-SH3n

5 μg  GAL4-Luc 
0.1 μg pGL-Null 

Mean of the 
Normalized 
luciferase 
activity 

8.31 23.47 19.49 2.15 

Standard 
deviation 

1.68 11.66 9.49 2.67 
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  Table 8 continued 

Transfection 24 25 26 27 

Cells WT210 WT210 WT210 32D 

Type of 
experiment 

BCR/ABL 
detection 

Negative control 
(without 

BAP163-246) 

Negative control 
(without 

CRKL-SH3n ) 

Negative control 
(without 

BCR-ABL fusion)
Transfected  

plasmids 
5μg pvp-FLAG5.1/ 

BAP163-246 
5 μg pM1/ 

CRKL-SH3n 
5 μg GAL4-Luc  
0.1 μg pGL-Null 

5 μg pvp-FLAG 
 

5 μg pM1/ 
CRKL-SH3n 

5 μg GAL4-Luc  
0.1 μg pGL-Null 

5 μg pvp-FLAG5.1/ 
BAP163-246 

5 μg pM1 
 

5 μg GAL4-Luc  
0.1 μg pGL-Null 

5μg pvp-FLAG5.1/
BAP163-246 

5 μg pM1/ 
CRKL-SH3n 

5 μg GAL4-Luc  
0.1 μg pGL-Null 

Mean of 
normalized 
luciferase 
activity 

16.11 10.64 13.56 6.10 

Standard 
deviation 

7.08 2.23 4.72 10.23 
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