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1. Zusammenfassung

In der Taufliege Drosophila melanogaster wird die transkriptionelle Aktivität des

männlichen X Chromosoms erhöht, um die (im Vergleich zu weiblichen Zellen)

verminderte Gen-Dosis X-chromosomaler Gene auszugleichen. Dieser Prozess wird

durch den Dosis-Kompensationskomplex (DCC) vermittelt ,  einen

Ribonucleoproteinkomplex, der aus fünf Proteinen (MSL1, MSL2, MSL3, MOF und

MLE) sowie zwei nicht-kodierenden RNAs (roX1 und roX2) besteht. DCC bindet

bevorzugt an das X Chromosom, wo er die Transkriptionsrate verdoppelt. Zwei Enzyme

sind Teil des DCC: die Acetyltransferase MOF, die spezifisch das Lysin 16 des Histon

H4 (H4K16) acetyliert, sowie die RNA/DNA-helicase MLE. Beide Aktivitäten sind für

die korrekte Dosiskompensation in männlichen Fliegen verantwortlich. Allerdings

erschwert die schwache Assoziation von MLE mit den übrigen MSL Proteinen die

biochemische Analyse der Wirkung von MLE. Bislang konnte der Beitrag von MLE zur

Dosiskompensation nur genetisch gezeigt werden.

In dieser Arbeit werden mithilfe von verschiedenen experimentellen Ansätzen in vivo

und in vitro die physischen und funktionalen Wechselwirkungen von MLE mit den

übrigen MSL Proteinen, sowie mit den roX RNAs untersucht. Monoklonale Antikörper

gegen MLE wurden in Ratten induziert, ein wichtiges neues Werkzeug zur

Charakterisierung von MLE. Durch Co-Expression von DCC Untereinheiten in sf9

Zellen konnte ein rekombinanter Komplex rekonstituiert und gereinigt werden. Ein

präferentieller Einbau von roX RNA konnte beobachtet werden, allerdings nur in

Abwesenheit von MLE. In vitro konnte nur die unspezifische Bindung von MLE an

RNA charakterisiert werden. Der gereinigte DCC hatte keinen Einfluss auf die ATPase

Aktivität von MLE, unabhängig von der Anwesenheit von RNA. In vitro konnte eine

spezifische Assoziation von MLE mit MSL1 und MSL2 beobachtet werden, die direkt

und nicht durch RNA vermittelt war. Angesichts dieser Ergebnisse erscheint eine

wichtige Rolle der roX2 RNA bei der Koppelung von MLE an den DCC

unwahrscheinlich; vielmehr tragen Protein-Protein Wechselwirkungen zur Rekrutierung

von MLE an das X Chromosom wesentlich bei.
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MLE gehört zur Familie der DEAD-box RNA Helicasen, mit denen es eine ähnliche

Domänen-Organisation verbindet. Neben der zentralen ATPase/Helicase Domäne,

werden für MLE zwei N-terminale Doppelstrang-RNA (dsRNA) Bindungsmotive

(dsRBM1 und dsRBM2), sowie eine C-terminale Einzelstrang RNA/DNA

Bindungsdomäne (RGG Box) aus Sequenzvergleichen vorhergesagt. Diese Domänen

sind bislang im Kontext von RHA (RNA Helicase A), dem menschlichen Orthologen zu

MLE, charakterisiert und ihre RNA Bindungseigenschaften bestätigt worden.

Allerdings ist nicht bekannt, wie MLE an die RNA bindet und wie die verschiedenen

RNA-bindenden Module zur RNA Stimulierung der ATPase beitragen.

Hier konnte eine bevorzugte Bindung von MLE an doppelsträngige RNA (im Vergleich

zu einzelsträngiger) in Bindungsassays beschrieben werden. Die Affinität der Helicase

für RNA wird zudem durch Adenin-Nucleotide moduliert. Um den Beitrag einzelner

Domänen zu den MLE Funktionen zu bestimmen, wurden eine Reihe von

Deletionsmutanten von MLE in Insektenzellen hergestellt und gereinigt. Durch

transiente Expression von entsprechenden MLE Derivaten als Fusionen mit GFP (Green

Fluorescent Protein) wurde der Einfluss der Domänen auf die Rekrutierung von MLE

and das X-Chromosom bestimmt. Im Gegensatz zu den beschriebenen Daten zu RHA

erwiesen sich die RB1 und RGG als verzichtbar zur RNA Bindung und deren

Entwindung, während dsRB2 eine wichtige Rolle zukommt. Zur korrekten

Zielsteuerung von MLE an das X Chromosom ist allerdings die Funktionalität des

Enzyms als ATPase alleine nicht ausreichend. Die hier vorgestellte Struktur-

Funktionsanalyse leistet einen wichtigen Beitrag zur Beschreibung des

Wirkmechanismus der RNA Helicase MLE.
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2. Summary

In Drosophila melanogaster the transcriptional activity of the male X chromosome is

upregulated to compensate for the reduced dosage of X-linked genes as compared to the

two X chromosomes in females. This process is mediated by the Dosage Compensation

Complex (DCC), a ribonucleoprotein complex consisting of five proteins (MSL1,

MSL2, MSL3, MOF and MLE) and two non-coding RNAs (roX1 and roX2). The DCC

preferentially localizes on the X chromosomes in males where it doubles its

transcription rate. Two enzymes are associated with the DCC: the acetyltransferase

MOF, specific for the lysine 16 of H4 (H4-K16), and the DNA/RNA helicase MLE.

Genetic experiments demonstrated that both activities are required for dosage

compensation in male flies. However, the weak association of MLE to the DCC has

complicated its biochemical analysis and, so far, the involvement of MLE RNA helicase

in dosage compensation has only been demonstrated genetically.

Using different in vivo and in vitro approaches the physical and functional interactions

of MLE with the other MSL proteins and with the roX RNAs was addressed.

Monoclonal antibodies, specifically recognizing MLE, were raised in rats, offering a

new tool for MLE characterization. By coexpression of the DCC subunits in SF9 cells, a

recombinant complex containing MSL1-2-3, MOF, MLE and the roX2 RNA was

reconstituted and purified. A specific integration of roX2 into the DCC could be

observed only in the absence of MLE. Non specific RNA binding properties seemed

instead associated to MLE RNA helicase. Moreover, the purified MSL complex did not

affect the ATPase activity of MLE in the presence or absence of roX2 RNA. In vitro,

MLE showed a preferential association with MSL1 and MSL2 and MLE interaction

with both MSL proteins were not RNA mediated. In view of these results we suggest

that binding to roX2 is not the main determinant for MLE integration into the DCC

complex and protein-protein interactions might instead contribute to its proper

recruitment to the X chromosome.

MLE is a member of the DEAD-box RNA helicase family and it shares with the other

members the same domain organization. In addition to a central ATPase/helicase

domain, two predicted N-terminal double strand (ds) RNA-binding motifs (dsRBM1

and dsRBM2) and a predicted C-terminal single strand (ss) RNA/DNA-binding domain

(RGG-box) are also present in MLE protein. These domains have been extensively
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characterized in RHA, human ortholog of MLE, and their RNA binding properties

confirmed. However, it is not known how MLE binds RNA and how the different RNA

binding modules contribute to stimulate its enzymatic activities.

A preferential binding of MLE to dsRNA compared to ssRNA was shown by binding

assays. In addition, changes in the affinity of MLE for both ssRNA and dsRNA were

observed in the presence of different nucleotides. Deletion mutants of MLE were

produced and purified from insect cells in order to address the contribution of the

different RNA binding domains to MLE enzymatic activities. By transient expression in

Drosophila cells of the same deletion mutants fused to GFP, the effects of individual

domains on MLE recruitment to the X chromosome were also determined. The results

show that unlike RHA, the dsRB1 and the RGG domains are dispensable for MLE RNA

binding and unwinding, whereas dsRB2 seems to play the major role in coordinating

both activities. However, the enzymatic activities alone are not sufficient to properly

target MLE to the X chromosome.

These results provide new data on the functional properties of MLE RNA helicase that

may help to elucidate its molecular mechanisms of action.
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I. Introduction

1. Chromatin

At the end of the 19th century the genetic material was shown to be organized into a

complex structure composed of DNA and proteins and localized in a specialized

compartment, the nucleus. This structure, detected with basic and acidic dyes, was

called chromatin (from the Greek "khroma" meaning coloured) (Flemming, 1882).

In the late 1860's, based on microscopy observations, chromatin has been divided into

two distinct domains, distinguished by different levels of dye incorporation. Darkly

stained regions were designated as “heterochromatin” whereas less condensed and

stained regions were referred to as “euchromatin” (Heitz, 1928; Lyon, 1999).

Euchromatin and heterocromatin differ not only at a cytological level but they also

represent two different functional states of chromatin itself. Euchromatin is found often

associated with transcriptionally active sites, in contrast to heterochromatin consisting

predominantly of transcriptionally inactive sequences. Specific chromosomal regions

such as telomeres or centromers are organized constitutively in heterochromatic forms.

By contrast, euchromatin is more dynamic and can undergo dramatic changes in

compaction levels during specific cellular events (Adkins et al., 2004a; Farkas et al.,

2000).

Biochemical and electron microscopy studies have identified the nucleosome as the

structural and functional unit of chromatin (Germond et al., 1976). A nucleosome

consists of 147 bp of DNA wrapped around an octamer of histones. A tetramer of

histones H3 and H4, assembled with two dimers of histones H2A and H2B, forms the

nucleosome core particle (Thatcher and Gorovsky, 1994). The inner part of the

nucleosome consists of the globular parts of the histones, while their N- and C-terminal

domains protrude out of the nucleosome. The N-terminal basic tail region is highly

conserved across various species and constitutes the more accessible part of chromatin

(Luger et al., 1997; Richmond and Davey, 2003).

Consecutive nucleosomes, lined up on a DNA stretch, generate a fibre with a diameter

of 11 nm, named “beads on a string” (Benbow, 1992) (Fig. 1). This configuration is

only the first level of packaging of DNA. Several additional folding principles
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contribute to a high degree of compaction, necessary to fit, for example, in humans

approximately 2 m of DNA into a cell nucleus of about 10 µm of diameter. Association

of a fifth histone, H1, allows the formation of a more compact chromatin fibre with a

diameter of approximately 30 nm (Adkins et al., 2004b; Thoma and Koller, 1977).

Finally, intermolecular interactions between nucleosomes and other not well-

characterized non-histone proteins define higher orders of chromatin structure

(Felsenfeld and Groudine, 2003; Hayes and Hansen, 2001).

Fig 1. Different levels of chromatin organizations. 147 bp of DNA (a) form a double helix (b) wrapped
around a histone octamer (yellow) to constitute the nucleosome core particle. Adjacent nucleosomes,
connected by short stretches of DNA linker form a fibre of 10 nm, named “beads on a string” (c). The
string of nucleosome can be further folded into a 30 nm fibre (d). Association of other not well
characterized factors induce higher levels of chromatin compaction (e).
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1.1. Chromatin Dynamics

The complex organization of chromatin into higher order structures restricts the access

of regulatory proteins to DNA, which mediate essential cellular processes as

transcription, DNA replication or DNA repair. The need for a cell to modulate

chromatin organization, in response to different stimuli, becomes then a necessity.

Three major strategies to specifically and locally remodel chromatin have been

described so far (reviewed in (Mellor, 2005)).

Variants of histones H2A, H2B, H3 and H1 have been identified and shown to mediate

specific biological processes (Ausio and Abbott, 2002). For instance, the H3 variant

Cse4/CENP-A has an important role in centromers assembly and function (Black et al.,

2004). Another H3 variant, H3.3, is enriched at active loci throughout the cell cycle and

represents a specific mark for the transcription event (Tagami et al., 2004).

Remodelling complexes act directly on nucleosomes and use the energy of ATP

hydrolysis to alter their position on DNA, which may promote either repression or

activation of transcription (Becker and Horz, 2002; Lusser and Kadonaga, 2003).

Histone-modifying enzymes post-translationally modify histones to create specific

signals and to induce localized alterations of the chromatin structure and function

(Cosgrove and Wolberger, 2005). The “histone code” hypothesis postulates that specific

factors can act on chromatin by binding particular histone modifications. This

hypothesis is so far supported by the discovery of chromodomains and bromodomains

present in various proteins, which specifically recognize methylated and acetylated

lysines of histones, respectively (de la Cruz et al., 2005). Only this last part will be

discussed more in details in this introduction.
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1.2. Post-translational modifications of histones

1.2.1. Histone acetylation and deacetylation

Histone acetylation is the transfer of an acetyl group from the acetyl-coenzyme A

cofactor to the ε-amino nitrogen of lysine residues, mainly in histone tails (Fig. 2). This

reaction is catalysed by histone acetyltransferase enzymes (HATs), whereas the reverse

reaction is performed by histone deacetylases (HDACs) (Legube and Trouche, 2003).

The first histone acetyltransferase, hat1, was identified in yeast in 1995. Subsequently,

different transcriptional coactivators like Gcn5 or p300/CBP were shown to possess

histone acetyltransferase activity, suggesting a role for these enzymes in transcriptional

activation (Brownell and Allis, 1996). Further studies in yeast reinforced this hypothesis

demonstrating a clear enrichment of acetylated histones in promoter regions (Parekh

and Maniatis, 1999). Acetylation of lysines in the histone tails probably weaken the

interaction of histones with the nucleosomal DNA, thus opening chromatin and

facilitating the access of transcription factors to their recognition elements (Kurdistani

and Grunstein, 2003). In addition, acetylated lysines can create a specific signal for

regulating factors or chromatin remodelling complexes and contribute to their targeting

to a limited, specific region. Consistent with this last hypothesis, bromodomains have

been shown to act as acetyl-lysine recognition modules, targeting HATs, which contain

such a domain, to particular chromosomal sites and contributing to their substrate

specificity (Yang, 2004).

According to their sequence similarities, known HATs have been classified in six major

families: the Gcn5/PCAF, the HAT1, the CBP/p300, the SRC, the TAFII250 and the

MYST families (Marmorstein and Roth, 2001). Beside the presence of the HAT

domain, each family presents unique features. The size of the active domain and the

context of different modules in which this domain is present have been also used as

parameters for the HATs classification. The MYST HAT enzymes differ from the other

family members because of the presence of a chromodomain instead of a bromodomain.

Most of the MYST proteins are implicated in a wide range of processes and, in contrast

to a general role of HATs in transcriptional activation, some members of this family

appear to be involved in gene silencing (Grienenberger et al., 2002; Utley and Cote,

2003).
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Histone acetylation is a reversible modification and HDAC enzymes that specifically

remove acetyl groups from lysine residues have also been identified. In general, if

HATs are associated with transcriptional activation, HDACs negatively regulate gene

expression. Based on the sequence similarity to yeast Rpd3 (Reduced potassium

dependency), Hda1p (Histone acetylase 1) and Sir2 (Silent information regulator),

HDAC proteins have been classified in three families: class I, II, and III. In mammals

also a class IV has been described (Ng and Bird, 2000).

1.2.2. Histone methylation and demethylation

Histone methyltransferases (HMT) are the more recently characterized histone

modifying enzymes. Their general targets are lysines and arginines on H3 and H4 (Fig.

2). Lysines may be mono-, di- or tri-methylated, whereas arginines may be only mono-

or di-methylated (Bannister et al., 2002).

Initially the Su(var)3-9 gene was identified in Drosophila as a suppressor of position

effect variegation, suggesting a role for histone methyltransferases enzymes in

transcriptional repression (Tschiersch et al., 1994). Later, H3-K9 and H3-K27

methylation have been shown to be enriched at heterochromatic sites and to be required

for establishment and maintenance of gene silencing (Fischle et al., 2003; Min et al.,

2003). However, H3-K4 methylation correlates with the active transcriptional state both

in yeast and human (Strahl and Allis, 2000). This modification, widely present on all

autosomes in mammals, is absent from the transcriptionally inactive X chromosome in

females that is instead enriched in H3-K9 methylation (Cohen et al., 2005; Khalil et al.,

2004).

Methyl groups are relatively small and, in contrast to acetyl groups, they do not

neutralize positive charges. Methylation of histone tails does probably not induce

structural chromatin changes. However, chromodomains have been identified as

methyl-lysine recognition modules in several chromatin associated proteins (Nielsen et

al., 2002) as well as in several modifying enzymes (Lachner et al., 2001) and ATPases

of different chromatin remodelling complexes (Bannister et al., 2001; Wysocka et al.,

2005).

Lysines are not the only target of histone methyltransferases, also arginine methylation

occurs within the tails of histones (Strahl et al., 2001). So far two classes of arginine

methyltransferases that share a conserved catalytic domain have been described: class I,
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that asymmetrically dimethylate arginines and class II that catalyse symmetric

dimethylation. Arginine methylation, like acetylation, correlate with active transcription

(Cheng et al., 2005). The molecular mechanisms used by arginine methyltransferase

enzymes to activate transcription are still poorly understood and up to now a specific

methyl-arginine binding module has not yet been identified.

Unlike other modifications, histone methylation has been considered for a long time as

a stable mark. The recent discovery of LSD1, a specific lysine histone demethylase,

strongly suggests that also this modification is reversible. LSD1 is an amino oxidase

and it specifically demethylates H3-K4 in a FAD-dependent way (Shi et al., 2004).

Even though an arginine demethylase has not been reported, an alternative pathway to

reverse arginine methylation has been proposed. Arginine demethylation might be

brought about by the conversion of a methyl-arginine residue to citrulline, catalyzed by

the deiminase PADI4 (Cuthbert et al., 2004). This enzyme has been shown to act on

arginines or monomethyl-arginines at specific sites on H3 and H4 (Wang et al., 2004).

1.2.3. Histone phosphorylation

On H3, phosphorylation of serine 10 and serine 28 has been described (Fig. 2). In

particular, H3-S10 phosphorylation is linked to chromosome condensation during

mitosis and meiosis (Wei et al., 1998). Members of the aurora AIR2-Ipl1 kinase family

are responsible for this specific modification, whereas type 1 phosphatases (PP1)

catalyze the dephosphorylation reaction (Murnion et al., 2001). More recently, several

evidences indicate that H3-S10 phosphorylation, in combination with other

modifications on the same histone tails, has also an important role in transcriptional

activation in different organisms (Clayton and Mahadevan, 2003; Fischle et al., 2005).

How H3 phosphorylation affects gene expression is not known. One possibility is that

phosphorylation, like acetylation, increases the accessibility of chromatin to regulatory

proteins (Nowak and Corces, 2004). According to the “histone code” model,

phosphorylated serines can serve as a signal for the binding of transcription factors or

remodelling complexes. Recently, members of the 14-3-3 family of phosphoprotein-

interacting factors have been identified as phosphorylated H3 binding proteins (Liao et

al., 2005). These factors exist in vivo in a dimeric form, offering two sites for

phosphoprotein binding. 14-3-3 isoforms can then act as adaptor between

phosphorylated H3 and another phosphorylated protein, recruiting specific effectors to
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chromatin. Alternatively, they could bind modified H3 tails on two adjacent

nucleosomes (Macdonald et al., 2005).

1.2.4. Histone ubiquitylation

Histone ubiquitylation has been described for H2A and H2B only in the context of other

modifications. In yeast, H2B-K123 ubiquitylation is required prior to H3 methylation to

induce gene silencing at telomeric regions (Ng et al., 2002; Sun and Allis, 2002).

Although this covalent modification has been known for a long time, the enzyme

responsible for it has been identified only recently as the BreI RING domain (Hwang et

al., 2003). The improvement of techniques to study post-translational modifications,

such as mass-spectrometry, has allowed the identification of new histone modifications

and in particular of histone variants (Freitas et al., 2004). For example, macroH2A1.2

can be mono-ubiquitylated as well as phosphorylated and methylated at different

positions, suggesting that, like canonical H2A, this H2A variant is regulated by

combination of covalent modifications (Chu et al., 2005).
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Fig. 2. Histones are subjected to a variety of post-translational modifications. These modifications
include acetylation (Ac, red), methylation (Me, blue), phosphorylation (P, green) and ubiquitylation (Ub,
brown). The enzymes responsible for methylation of mammalian histones are listed above or below their
target sites (Margueron et al., 2005).
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1.2.5. The “histone code” hypothesis

In view of the large number of histone modifications known, a concept has been

introduced to explain how post-translational histone modifications can affect chromatin

functions. The “histone code” hypothesis proposes that covalent modifications of

histone tails constitute a code. The encoded information can then be read by chromatin

binding factors specifically recognizing particular modified residues within the histone

tails (Turner, 1993). The discovery of chromodomains and bromodomains as methyl-

lysine and acetyl-lysine binding modules, respectively, strongly supports this idea

(reviewed in (de la Cruz et al., 2005)). In the last years, several experimental results

suggested that the “histone code” probably uses combinations of modifications to

regulate functional chromatin states. This model can explain how the same modification

might lead in some cases to either transcriptional activation or repression (Strahl and

Allis, 2000). For example, H3-K9 methylation initiates chromatin condensation and

silencing (Lachner et al., 2001). In the context of methylated H3-K4 and H4-K20, H3-

K9 methylation contributes to create an active mark, by allowing the binding of

Brahma, the catalytic subunit of the Drosophila SWI/SNF remodelling complex (Beisel

et al., 2002). Another interesting aspect of the “histone code” hypothesis is the idea that

combinations of modifications on the same histone or in adjacent ones are

interdependent. H3-K4 methylation inhibits H3-K9 methylation, preventing the

placement of silencing marks at specific loci (Zegerman et al., 2002). In yeast, H2B-

K123 ubiquitylation is also required for efficient H3-K4 methylation (Sun and Allis,

2002).

In addition, the “histone code” hypothesis has been extended to the “nucleosome code”

hypothesis, by proposing that chromatin structures and functions are largely dependent

on the local concentration and combination of differentially modified nucleosomes

(Jenuwein and Allis, 2001).
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2. Dosage compensation

In many animal species, males and females differ by the number and type of sex

chromosomes, with females having often two X chromosomes and males only one X

chromosome in addition to the gene-poor Y chromosome. To overcome the unbalanced

expression of the X-linked genes, heterogametic organisms have evolved several

mechanisms to equalize the level of expression of sex chromosome-linked genes. These

strategies have been grouped under the term “dosage compensation” (reviewed in

(Lucchesi et al., 2005)) (Fig. 3).

So far, three model organisms are being used to study dosage compensation at the

molecular level: mammals, nematodes and flies. Despite some differences, all three

systems share a common feature: regulation of transcription through modulation of

chromatin structure (Mellor, 2005).

Fig. 3. Dosage Compensation mechanisms. In mammals equalization of X linked gene expression is
achieved through random inactivation of one X chromosome in females. In worms both X chromosomes
in the hermaphrodites are downregulated two fold as compared to males. In Drosophila melanogaster the
single male X chromosome is activated two fold (Lucchesi et al., 2005).
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2.1. Dosage compensation in mammals

In mammals, dosage compensation is initiated early in development and requires, as a

key step, the transcription of the non-coding RNA Xist (Brockdorff et al., 1991). In

undifferentiated ES cells both X chromosomes in females are active and X inactivation

occurs upon induction of differentiation. At this time, low level of Xist expression can

be detected on both X chromosomes in females. When differentiation starts, Xist

expression increases and becomes restricted to the inactive X chromosome (Lee et al.,

1999). The gene coding for Xist RNA resides in the X inactivation centre (Xic), which

is located within the X chromosome. The Xic regulates all three crucial events necessary

for X chromosome inactivation: X chromosome counting, selection of an X

chromosome to inactivate and the inactivation process itself (Lyon, 1996). Once

transcribed, Xist RNA spreads in cis along the entire X chromosome that undergoes

repression (Chow et al., 2005). This event precedes a multitude of chromatin changes

that specifically mark the inactive X chromosome during differentiation (Cohen et al.,

2005; Jeppesen and Turner, 1993). The pattern of DNA methylation at the Xist locus

correlates with its activity: the active Xist allele on the inactive X chromosome is

unmethylated, whereas the inactive Xist allele on the active X chromosome is

methylated (Hansen, 2003). DNA methylation is not the only epigenetic mark of the

inactive X chromosome. Several histone modifications known to be associated either

with expressed or silent chromatin also distinguish the active and inactive X

chromosomes respectively. Examples are the hypoacetylation of histones H3 and H4,

di-methylaton of H3-K9, H3-K27 tri-methylation, a lack of H3-K4 di- and tri-

methylation and, as a final event, the incorporation of the histone variant macroH2A.

All those marks seem to be required for the late maintenance of a repressive state on the

inactive X (Cohen et al., 2005).

Xist function is regulated by another locus mapped at the 3´of the Xic region, the X

controlling element (Xce) (Simmler et al., 1993). Xce codes another non-coding RNA,

Tsix, antisense to Xist. Like Xist, Tsix is polyadenylated, does not contain any open

reading frame and does not accumulate in the cytoplasm (Lee et al., 1999). Tsix is

expressed from the active X chromosome in somatic cells where it exerts a repressive

effect on Xist RNA accumulation before and during the initiation of X inactivation

(Mlynarczyk and Panning, 2000).
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Even though some progress have been made on the characterization of Xist RNA, open

questions regarding the tethering of Xist RNA on the X chromosomes and its exact

mechanism of action remain unanswered. Very little is known about the proteins that

bind to the different functional regions of Xist transcripts and the enzymes responsible

for the chromatin modifications associated with the inactive X chromosome. One

important finding has been the discovery that the Polycomb group proteins ESC (extra

sex chromosome) and Enx1 (mouse homologue of Enhancer of zeste) may be

implicated in X inactivation. The ESC/Enx1 complex transiently associates with the X

chromosome shortly after Xist coating. The presence of this complex correlates with

H3-K27 methylation consistent with a role for Enx1 as an HMTase (Silva et al., 2003).

In a recent study, the histone methyltransferase G9a has been shown to be responsible

for the modifications of H3-K9 and H3-K27 on the inactive X chromosome (Rougeulle

et al., 2004). The activity of these complexes seems to be implicated in the early

maintenance of X inactivation, whereas silencing appears strictly dependent on Xist

RNA (Plath et al., 2003).

Identification of new factors that specifically bind the inactive X chromosome will shed

new light on the molecular basis of counting and choice in female mammals.

2.2. Dosage compensation in worms

Unlike mammals, worms have no need to distinguish homologues chromosomes. In the

nematode C. elegans, dosage compensation is mediated by a large protein complex

targeted to both X chromosomes of hermaphrodites to reduce their expression by half

(Meyer et al., 2004). The C. elegans Dosage Compensation Complex (DCC) complex

has been extensively characterized both genetically and biochemically. This complex

can be separated into two further subcomplexes, SDC and DPY. DPY subcomplex is

composed of DPY-26, DPY-27, DPY-28 and MIX1, highly homologous to components

of the 13S condensin complex, required in both sexes for DNA compaction in mitosis

and meiosis (Chan et al., 2004). The SDC proteins SDC1, SDC2, SDC3 together with

DPY21 and DPY30 constitute the SDC subcomplex (Chu et al., 2002). SDC1 encodes a

conserved protein with seven N-terminal zinc finger motifs and expressed in both sexes,

suggesting a more general role for this factor not restricted to dosage compensation

(Nonet and Meyer, 1991). One important regulatory player of dosage compensation in
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nematodes is the SDC2 protein (Dawes et al., 1999). SDC2 is present only in

hermaphrodites, whereas its expression is blocked in males by the XOL-1 (XO lethal 1)

factor. Recruitment of SDC2 to the X chromosomes in hermaphrodites is independent

of the other complex components, but its interaction with SDC-1 and SDC-3 is required

for targeting the DPY/condensing-like complex to the X of and for transcriptional

downregulation of the X-linked genes (Nusbaum and Meyer, 1989). SDC3 possesses

two domains with separable functions: a zinc finger domain required for dosage

compensation and a myosin-like ATP-binding domain involved in transcriptional

repression at the her-1 locus. SDC3 does not bind chromatin and its association to the X

chromosomes has been shown to require the other DCC members (Davis and Meyer,

1997). In addition to SDC1, SDC2 and SDC3, targeting of the DPY subcomplex to the

X chromosomes also required DPY-30. This protein is ubiquitously expressed in the

nucleus and has high homology with the H3-K4 specific histone methyltransferase

Set1p (Hsu and Meyer, 1994).

The worm DCC also localizes to the autosomal, male sex determining her-1 gene,

repressing its activity around 20 fold (Hodgkin, 1980). In this case, SDC3 seems to play

a central role in the complex assembly and it can localize at the her-1  gene

independently of SDC2 (Yonker and Meyer, 2003).

Even though several recognition elements have been identified within the X

chromosomes in hermaphrodites, large portions of the X chromosomes do not attract the

DCC when translocated to autosomal positions. These regions still contain compensated

genes, suggesting that localization of the DCC to both X chromosomes happens

presumably by spreading of the complex from flanking binding sites (Csankovszki et

al., 2004). It is still not clear how the recognition elements recruit the DCC proteins and

how a two fold downregulation of gene expression is triggered. In contrast to mammals

and flies, no RNA component involved in compensation of the hermaphrodite X

chromosomes has been identified so far.

2.3. Dosage compensation in flies

In Drosophila melanogaster, dosage compensation happens in males, where the

transcription of the X chromosome is doubled to ensure a similar gene expression level

to females that carry two X chromosomes. This hyperactivation is mediated by a
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ribonucleoprotein Dosage Compensation Complex (DCC), containing at least six

known proteins (MSL1, MSL2, MSL3 (Male Specific Lethal 1, 2, 3), MOF (Male

absent on the First), MLE (Maleless) and JIL1) and two non-coding RNA (roX1 and

roX2) (Kelley and Kuroda, 2000). Both the MSL proteins and the roX RNAs have been

identified in a screen for mutation that confer male-specific lethality and subsequently

shown to be required for dosage compensation (Belote and Lucchesi, 1980).

One key regulatory player of dosage compensation in flies is the sex lethal gene product

SXL. This factor is absent in males, but expressed in females where it prevents the

translation of the MSL2 transcript. The absence of MSL2 and the subsequent decreased

stability of the other MSL proteins prevent the formation of the DCC complex in

females (Bashaw and Baker, 1995). Unlike MSL2 all the other MSL proteins are also

present in females, even though at a lower level as compared to males. The function of

these factors in females is not known.

In males, the MSL proteins are specifically targeted to the X chromosome where they

are responsible for the acetylation of H4-K16 by the acetyltransferase MOF (Akhtar and

Becker, 2000; Parekh and Maniatis, 1999). Phosphorylated H3-S10 is also enriched on

the X chromosomes in males. This modification is due to the Kinase JIL1. However, the

contribution of this enzyme to dosage compensation is still not clear (Wang et al.,

2001).

2.3.1. Establishment of the Drosophila Dosage Compensation Complex (DCC)

Dosage compensation in males begins at the late blastoderm/early gastrula stages. In

this time window, all the MSL proteins, maternally contributed, are present in the

embryos, with the exception of MSL2. Upon MSL2 expression, 3 hours after egg laying

(AEL), localization of the DCC to the male X chromosome can be observed in all

somatic cells (Franke et al., 1996; Hilfiker et al., 1994). H4-K16 acetylation appears

slightly after MSL recruitment to the X, in agreement with the role of MOF as the

histone acetyltransferase responsible for this modification (Rastelli et al., 1995).

Transcription of roX1 and roX2 non-coding RNAs, identical in expression in male

larvae and adults, is different in embryos. RoX1 is initially expressed in both sexes 2

hours AEL and disappears gradually from females during embryogenesis. In contrast,

roX2 expression is specifically restricted to males 6 hours AEL. Deletion of the roX2

gene has no phenotype and localization of the MSLs on the X chromosome happens
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normally 3 hours AEL. MSL binding to the X is delayed to 7 hours in embryos lacking

roX1 and drastically reduced in double-mutant flies for both RNAs. These results

suggest that while roX2 is dispensable, roX1 plays an important role in the initiation of

dosage compensation in males (Meller, 2003). RoX1 is expressed in embryos before

MSL2 and consequent formation of the complex. However, in embryos mutated for mle,

it disappears after gastrulation and can be detected again only 4-5 hours AEL. These

results suggest that none of the MSL protein is required for initial roX1 transcription,

whereas MLE might contribute to stabilize roX1 RNA at early developmental stages.

This role of MLE seems dependent on its RNA helicase activity, as a similar lack of

roX1 stability is also observed in embryos expressing the MLE helicase inactive mutant,

MLEGET (Meller, 2003).

A model has been proposed to explain the order of assembly of the DCC components

during embryogenesis. A first interaction between roX1 RNA and MLE is initially

formed and stabilized by MSL3 and MOF. All these proteins contain RNA binding

motives and, maternally provided, are present in the embryos during roX1 transcription

(Akhtar et al., 2000; Rastelli et al., 1995). Once expressed, MSL2 together with MSL1

and roX2 can complete the assembly of this initial ribonucleoprotein complex (Meller,

2003).

2.3.2. Targeting of the DCC to the male X chromosome

Targeting of the MSL proteins to the X chromosome can be visualized by

immunostaining on polytene chromosomes from salivary glands of Drosophila 3rd instar

larvae (Zhimulev et al., 2004). In wild type males the binding pattern of the DCC is

restricted to interbands on the X chromosome at around hundred sites (Demakova et al.,

2003). However, in the absence of MLE, MSL3 or MOF, only MSL1 and MSL2 can be

reproducibly observed at a subset of binding sites originally referred to as “chromatin

entry sites” (CES) (Kelley et al., 1999; Lyman et al., 1997). These genetic studies

allowed proposing the first “spreading model” to explain how the MSL proteins are

targeted to the X chromosome in males (Fig. 4, a). This model assumed that the CES are

the primary recruitment elements bound initially by MSL1 and MSL2. Additional

association of the other members, MLE with roX RNAs, MSL3 and MOF leads to the

formation of a stable ribonucleoprotein complex able to spread in cis and to cover all

hundreds sites along the X chromosome (Meller et al., 2000). The discovery of roX1
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and roX2 genes as two of the sites required for recruitment of the DCC to the X and the

further characterization of their targeting functions, strongly supported the “spreading”

mechanism (Kageyama et al., 2001; Park et al., 2003) (see paragraph 2.3.2.1).

Several recent observations brought up the idea that targeting of the DCC cannot be

restricted to a limited number of entry sites and that “spreading” may be only a specific

feature of the roX1 and roX2 genes. Large DNA fragments, lacking mapped entry sites,

have been shown to recruit the DCC when translocated from the X to autosomal

locations. “Spreading” to autosomal regions flanking the insertion site was not observed

even when a roX gene has been inserted close to it (Fagegaltier and Baker, 2004).

Moreover a third entry site, mapping to the 18D locus, recruits the DCC when moved to

autosomes both in wild type and in msl mutant backgrounds. However, unlike roX1 and

roX2, the 18D locus is not transcribed and, interestingly, it shows autosomal spreading

only as a multimer (Oh et al., 2004). These results suggest that all hundred sites on the

X are competent for binding and that, at the resolution of polytenes,“spreading” might

not be the major mechanism employed by the DCC to coat the X chromosome. In this

scenario, chromatin entry sites are not specific recruitment elements but rather the

highest affinity sites. In the new proposed “affinities model”, the concentration of the

DCC is the major determinant for recruitment. At limiting amount of MSL proteins,

partial or full complexes bind only the “high affinity“sites (Fig. 4, b). As complex levels

rise, also the “moderate” and the “low affinity” sites will be filled until the entire X

chromosome is covered (Fagegaltier and Baker, 2004; Straub et al., 2005a) (Fig. 4, b).

However, a 179 kb DNA segment, located between the two compensated genes white

and roughest and normally bound by the DCC on the X, failed to target the complex to

autosomes (Bhadra et al., 1999). It is therefore possible that many of the “lowest

affinity” sites profit from a high local concentration of MSL brought about by “high

affinities” sites on the X. When moved out of this context, these elements are no longer

able to recruit the complex. The term “spreading” can then be used to explain how the

DCC binds some of the “low affinity” sites (Straub et al., 2005a) (Fig. 4, c). It should be

considered that the low resolution of the polytene chromosomes does not allow

distinguishing the short-range distribution of the DCC within a single

immunofluorescent band (Fig. 4, d-f) and different possibilities have been proposed.

Each band could correspond to one single binding site for the DCC. Alternatively, many

specific binding sites might reside within it. In addition, each band could represent the

result of several binding events: a first binding to a specific recruitment element,
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followed by diffusion of the complex in cis. The term “spreading” could then be used to

describe the occupancy of different sites within a chromosomal domain or even a single

gene, a situation not visible on stained polytenes chromosomes.

.

Fig. 4. Models for targeting of the DCC to the male X chromosome. Depicted are two Drosophila
polytene chromosomes, stained for MSL1 at low (upper panel) and high (lower panel) complex
concentration. Models for targeting of the DCC to the male X chromosome. a) The “spreading model”. b)
The affinity model. Binding of the MSL proteins to “high” and “moderate affinity” sites (long-range
distribution). c) Recruitment of the DCC to low affinity sites. d), e), f) MSLs binding within one band
(short-range distribution) (Straub et al., 2005a).
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2.3.2.1. roX1 and roX2 “high affinity” sites

roX1 and roX2 genes are located on the X chromosome and have two distinct roles in

dosage compensation. First, they contain “high affinity” sites, bound by the DCC

complex in wild type male flies. Second they are the source of roX1 and roX2 non-

coding RNAs (Meller and Rattner, 2002). As binding element they have been

extensively characterized. Both loci can recruit the MSL proteins when inserted into an

autosomal position and in some cases they can support weak “spreading” to

neighbouring polytene chromosomal bands (Kelley et al., 1999). RoX1 and roX2 genes

contain a male-specific DNAse hypersensitive site (DHS), within a 110 bp region,

conserved among different Drosophila species. Both roX1 and roX2 DHS are necessary

for MSL targeting, however in contrast to roX1 DHS, no spreading occurs from the

roX2 DHS when inserted in an autosome (Park et al., 2003). Search for a similar

sequence on the X chromosome, did not identify any candidate within the remaining

postulated “high affinity” sites, failing in the identification of a common feature

between the X binding elements for the MSL proteins (Kageyama et al., 2001). RoX1

and roX2  seem to be atypical chromatin entry sites. They are the only so far

characterized binding elements able to produce non-coding RNAs and differently from

the other X chromosome sites, they require MLE binding to attract the remaining

components of the DCC complex. In a mle background, only the “high affinity” sites on

the X chromosome are bound by MSL1 and MSL2 proteins, with the exception of roX1

and roX2 genes. In contrast, in the absence of MOF or MSL3, partial complexes can be

visualized on both roX genes, as well as at a few other “high affinity” sites on the X

(Kageyama et al., 2001).

In addition, even though the targeting function of roX1 and roX2 DHS is independent of

their own transcription, in both cases, recruitment of the DCC complex requires roX

RNAs, which can be supplied in trans (Park et al., 2003).

These results, as well as the RNA-dependency of roX genes for MSL binding, provide a

strong evidence for an “RNA first” model explaining the MSL complex assembly at the

roX loci. This model suggests that the affinity of the MSL complex for chromatin is

increased by association of roX RNAs. On the other hand, stabilization of both RNAs

seems to require MLE (Park et al., 2003).
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2.3.3. How two fold activation is achieved

A specific feature of dosage compensation in flies is the two fold activation of X-linked

genes in males, to adjust their expression to female cells with two X chromosomes. The

molecular mechanism responsible for this compensation process is still debated.

MOF, one of the DCC members, is a histone acetyltransferase specific for H4-K16

acetylation (Akhtar and Becker, 2000). During embryogenesis, H4-K16 acetylation

follows targeting of the complex to the X chromosome, suggesting a main role for the

MSL proteins to specifically concentrate MOF activity on the X chromosome (Rastelli

et al., 1995). The DCC complex seems then to be directly responsible for chromatin

changes on the X, which in turn lead to activation of gene expression (Fig. 5, model A).

In agreement with this “direct model”, MOF has been shown to relieve chromatin-

mediated repression of transcription in vitro and in vivo, when artificially tethered to a

promoter (Akhtar and Becker, 2000). In addition, MSL proteins seem to associate with

actively transcribed regions for chromatin remodelling and compensation (Sass et al.,

2003).

Such a direct connection between histone acetylation and X-linked genes expression,

even though supported by several experimental observations, cannot explain all

situations. In yeast, H4 acetylation correlates in general with active transcription, but

acetylation at H4-K16 can also mark inactive chromatin regions by preventing binding

of the Bdf1 transcription factor (Kurdistani et al., 2004). An “inverse model” proposes

that the recruitment of the DCC complex to the X chromosome might not necessarily be

related to activation but it is instead necessary to counteract autosomal hyperactivation,

due to the presence of only one X chromosome in males (Birchler et al., 2003) (Fig 5,

model B). This model was initially developed to explain how aneuploidies could lead to

changes in gene expression and in this context monosomy of the X chromosome in

males can be considered a special case of aneuploidy. Accumulation of activating

factors to the autosomes (Fig. 5, model B, middle), after loss of one X chromosome in

males, increases gene expression. MOF, as activating factor, is then sequestered to the

X chromosome by the MSLs in order to re-establish on the autosomes a normal

expression profile (Fig. 5, model B, right). Finally, hyperactivation on the X due to

MOF activity is limited to two fold by other repressive regulatory mechanisms. This

model predicts a two-fold activation of the autosomal genes, upon ablation of the DCC,

a situation that can be studied in Schneider cells.
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Depletion of MSL2 in SL2 cells by RNA interference (RNAi) decreased X-linked genes

transcription around 50%, in agreement with a direct function of the DCC in

transcriptional activation. In the same experiments the autosomal genes tested did not

show any significative change in expression levels, contradicting the “inverse model”

(Hamada et al., 2005; Straub et al., 2005b).

However, even if the majority of genes on the X respond directly to MSL binding, some

of them appear to be compensated in an MSL-independent manner (Gergen and

Wieschaus, 1986). In addition, the large induction of transcription by artificial targeting

of MOF to a promoter in yeast cannot explain alone the precise two fold activation of

the X-linked genes observed in vivo (Akhtar and Becker, 2000). It is likely that general

chromatin regulators with repressive functions are also involved in dosage

compensation. On the other hand, a repressive role for the MSLs in limiting MOF HAT

activity to a precise two-fold activation should also be taken in account. Compensation

in vivo can be then seen as a balance between activation and repression. Several factors,

not identified in the screening for male-specific lethal mutations, have been also shown

to regulate X chromosomes structure and function. Low levels of JIL1 in hypomorph

flies severely reduce euchromatic regions of polytene chromosomes in both sexes, with

more severe effects on the male X chromosome (Wang et al., 2001). Mutations in ISWI

and NURF301, subunits of the NURF remodelling complex, affect both cell viability

and gene expression during Drosophila development and also cause a characteristic

“puffing” of the male X chromosome (Badenhorst et al., 2002; Corona et al., 2002).

Recently the level of expression of Suv(var)3-7, a protein involved in heterochromatin

formation together with Su(var)3-9 and HP1, has been shown to be critical for fly

viability and chromosome integrity. High doses of this protein induce chromosome

compaction both in females and in males, with the latter being the most affected. In

these transgenic flies the male X chromosome is covered by H3-K9 dimethylation and

to a lower extent by HP1. One possible explanation is that the unique chromatin

environment determined by the MSL protein renders the male X chromosome more

accessible to Su(var)3-7, followed by targeting of Su(var)3-9 and HP1 (Delattre et al.,

2004).
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Fig 5. Models to explain how dosage compensation in achieved between male (XY) and female (XX)
flies. Model A suggests that the dosage compensation complex (DCC) directly activates gene expression
on the male X. Model B proposes that compensation is accomplished by a genome-wide increase in
transcription, due to activator imbalance inferred by X chromosome monosomy. Recruitment of the
activators onto the X alleviates the transcription enhancement on the autosomes. While the expression
status is the same in wild type males for both models, MSL mutants (XY mle-) are predicted to show
major differences characterizing the two hypotheses (Straub et al., 2005a).
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2.3.4. The MSL proteins and their physical and functional interactions

MSL1 has a central “scaffold” role in the assembly of the DCC (Fig. 6). It interacts

directly with the RING finger domain of MSL2 trhough its N-terminal region and with

the MRG domain of MSL3 and the zinc-finger domain of MOF, respectively, via two

distinct region of its C-terminal PEHE domain (Li et al., 2005; Morales et al., 2004;

Scott et al., 2000). MSL2 contains also a cysteine-rich region (CXC) at the C-terminus,

not essential for dosage compensation (Copps et al., 1998). Association of MOF and

MSL3 with MSL1 is required in vitro for MOF nucleosomal HAT activity and

specificity (Morales et al., 2004). MLE is an ATP-dependent DNA/RNA helicase and

according to the prevalent concept is recruited to the X chromosome by binding roX

RNAs (Richter et al., 1996) (see paragraph 2.3.6). Also MSL3 and MOF have been

shown to bind RNA via their related chromo-barrel domains (Nielsen et al., 2005) and

together with MLE are released from the male X chromosome upon treatment of

cultured SL2 cell nuclei with RNAse (Akhtar et al., 2000). Furthermore, MSL3 is

acetylated by MOF both in vitro and in vivo. This modification has been suggested to

lead to a specific loss of interaction between MSL3 and roX2 RNA (Buscaino et al.,

2003). However, MSL3 and MOF RNA binding capacities are dispensable for

recruitment and, association with MSL1 seems instead determinant for their correct

localization on the X chromosome (Morales et al., 2005; Morales et al., 2004). Even

though MSL interactions seem necessary for correct complex assembly and recruitment,

it is possible that stable maintenance of the DCC on the X chromosome requires

association of MSL3, MOF and MLE with roX RNAs (Gu et al., 2000).
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Fig. 6. The MSL proteins and their physical and functional interactions. A) MSL1 works as a
“scaffold” protein for the DCC assembly. B) Functional domain and regions of the MSL proteins,
identified by protein-protein, protein-RNA/DNA interactions and in vivo localization studies.
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2.3.5. roX1 and roX2 non-coding RNAs

RoX1 and roX2 non-coding RNAs have been isolated in a RNA screening as specific

male transcripts (Amrein and Axel, 1997). Even though as binding element they have

been extensively characterized (see paragraph 2.3.2.1), little is known about the

function of roX1 and roX2 non-coding RNAs in dosage compensation.

RoX1 has only one intron and its spliced transcript is 3.1 kb long. RoX2 contains instead

two introns and undergoes alternative splicing. The major roX2 isoform present in

males has a length of approximately 0.6 kb (Park et al., 2003). A genetic approach has

been used to identify functional domains within roX1 RNA necessary for targeting and

functional activity of the DCC complex on the X chromosome in males (Stuckenholz et

al., 2003). The results showed that the 3´end of roX1 is required for dosage

compensation. However, most roX1 RNA deletions failed to rescue double roX1-roX2

mutant males, suggesting that different RNA domains, interspersed along the length of

roX1, cooperate with the MSL complex to compensate the X chromosome. Considering

the redundant function of roX1 and roX2 RNAs in dosage compensation and the lack of

an obvious sequence similarity between them it is more probable that the secondary

structure instead of the primary sequence of these two non-coding RNAs could be

important.

Despite their differences, roX1 and roX2 RNAs seem to have a redundant function in

dosage compensation. Transgenic flies mutated either for roX1 or roX2 loci do not show

any particular phenotype, while deletion of both genes is male lethal. In the double-

mutant flies, targeting of the MSL complex to the X chromosome is severely

compromised. MSL1 and MSL2 proteins bind only few “high affinity” sites on the X

and together with H4-K16 acetylation are mostly relocated to autosomal locations, to

the fourth chromosome and to heterochromatin. These results suggest a potential role

for roX RNAs in the specific targeting of the DCC to the male X chromosome (Kelley

et al., 1999; Meller and Rattner, 2002). In contrast to the absence of escapers from flies

mutated in each msl gene, a low percentage of roX1-roX2 double-mutant males are still

viable and overexpression of MSL1 and MSL2 can partly rescue their lethality. One

possible explanation is that a partial complex lacking non-coding RNAs can still be

assembled and targeted to the X for dosage compensation (Oh et al., 2003). This idea

suggests that roX RNAs are not the only components mediating targeting of the

complex. Alternatively, targeting of the MSL complex to chromatin required general
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not yet identified RNA cofactors, while recruitment to the male X chromosome is roX-

dependent.

Several published studies have addressed the transcriptional regulation of the roX genes.

Genetic experiments pointed to MSL2 as the only DCC factor responsible for roX

transcription independently of a functional DCC. In agreement with these data, deletion

of the roX1 DHS did not influence the ability of MSL2 to drive roX expression and

transcription was also observed in the absence of MSL1, MSL3, MOF or MLE (Rattner

and Meller, 2004). In a parallel, genetic study, the roX1 and roX2 DHS have been

shown to positively regulate roX expression and all MSL proteins were also required

(Bai et al., 2004). Additional contradictory results came from an independent analysis to

address the functional role of MLE in dosage compensation. Using a biochemical

approach, the authors showed a specific binding of MLE to a small region in the roX2

promoter, suggesting a possible function for this RNA helicase in roX2 transcription

(Lee et al., 2004). In view of all these data, further experiments are needed to elucidate

the molecular mechanisms controlling roX expression and function.

2.3.6. The DNA/RNA helicase MLE

MLE is a member of the DEAH family and has both ATPase and helicase activities

(Gorbalenya et al., 1989). Its human ortholog, RNA helicase A (RHA), has been

extensively characterized and showed to be involved in different biological processes

(Lee and Hurwitz, 1993) (see chapter 3).

Several observations classify MLE as a component of the dosage compensation

complex in Drosophila melanogaster. Similar to the other MSL proteins, depletion of

MLE is lethal in males whereas it has no phenotype in females. MLE colocalizes with

the MSLs on the X chromosome in males and is required early in development for

stabilization of roX1 RNA and correct assembly of the complex (Meller, 2003). After

establishment, maintenance of MSL3, MOF and roX RNAs with the DCC complex

depends on MLE, as in its absence, only MSL1 and MSL2 can be seen at a subset of

“high affinity” sites on the X (Meller et al., 2000).

Recruitment of MSL3, MOF and MLE to the X chromosome has been shown in cells to

be RNAse-sensitive (Richter et al., 1996). Surviving male flies, deleted for both roX1

and roX2 genes, show MSL1 and MSL2 at few “high affinity” sites on the X, whereas

MSL3, MOF and MLE strongly stained only autosomal loci. These observations are
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consistent with a role for roX1 and roX2 RNAs in the specific recruitment of MSL3,

MOF and MLE to the male X chromosome (Park et al., 2002). However, the existence

of RNA-free MSL complexes has also been documented. Overexpression of MSL2 can

rescue in part the lethality of the double-mutant males for roX1 and roX2 by inducing

further recruitment of MSL3 and MOF to the X (Meller and Rattner, 2002). In addition,

the MLEGET protein, deficient in ATPase activity, associates with the other MSLs at a

certain number of “high affinity” sites in the absence of any detectable roX1 and roX2

RNAs (Gu et al., 2000; Lee et al., 1997).

These results suggest that MLE RNA helicase activity may be required for stable

incorporation of the roX RNAs into the DCC. It has been proposed that once the

assembly of the complex is accomplished, roX RNAs can be lost and the other complex

components could then be held together by protein–protein interactions (Meller and

Rattner, 2002). Consistent with this idea, MSL2, MSL3 and MOF strongly interact with

MSL1 in vitro (Copps et al., 1998; Morales et al., 2004). In addition, partial MSL

complexes can be immunoprecipitated from RNase-treated S2 cell extracts in the

absence of detectable roX2 RNA (Akhtar et al., 2000).

MLE is the only MSL protein with a demonstrated function outside of dosage

compensation. Mutations in an MLE allele, nap (non action potential), have been shown

to block action potentials at high temperatures. This phenotype is mainly due to

decreased expression levels of the para genes coding for the Na+ channels (Kernan et

al., 1991). How exactly mle (nap) affects para expression remains uncertain. Para

transcripts undergo adenosine to inosine (A to I) RNA editing via a mechanism that

requires dsRNA secondary structure formation (Valente and Nishikura, 2005). In a mle

(nap) background, more than 80% of para transcripts are aberrantly spliced and contain

internal deletions including the normally edited regions. One possible explanation is

that MLE helicase activity is required in general to resolve secondary structures within

RNAs, allowing their correct folding (Kernan et al., 1991). Even if it is not known

whether roX RNAs are edited and whether this modification is required for their

functional integration into the DCC complex, such a role for MLE helicase activity

should not be excluded.
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3. DNA and RNA helicases

3.1. Helicases and their functions

Nucleic acid helicases are proteins that catalyze the transient unwinding of stable DNA

or RNA duplex molecules, using NTP hydrolysis as a source of energy (Delagoutte and

von Hippel, 2002). These enzymes are involved in all biological processes that require

manipulation of nucleic acids, like DNA replication, DNA repair, translation, RNA

splicing, RNA editing and ribosome biogenesis (Silverman et al., 2003). Although for a

long time helicase enzymes were thought to function mainly by destabilization of DNA

or RNA helices, it is becoming clearer that they also have many other activities.

Helicases can also facilitate the annealing of single-stranded nucleic acids, acting as

chaperones (Lorsch, 2002). Some helicases have been also shown to displace proteins

from nucleic acids or to be involved in nucleosomes remodelling, through their

translocation along DNA (Byrd and Raney, 2004; Jankowsky et al., 2001). Moreover, a

role for helicases as transcriptional coactivator or corepressor has also started to emerge

(Bates et al., 2005; Fujita et al., 2003; Lee et al., 2005).

The broad range of functions in which DNA and RNA helicases are involved cannot

explain their in vivo substrate specificity. The presence of accessory domains flanking

the conserved helicase domain, integration of helicases into multisubunits complexes

and/or restriction of these enzymes in specialized nuclear compartments might all

contribute to their specific target recognition (Delagoutte and von Hippel, 2003).

3.2. DNA and RNA helicase families

RNA and DNA helicases are characterized by the presence of a conserved helicase

domain, containing up to nine motifs (designated Q, I, Ia, Ib, II, III, IV, V and VI),

which are required for ATP binding, hydrolysis, nucleic acid binding and unwinding (de

la Cruz et al., 1999). Both DNA and RNA helicases enzymes have been grouped into

four superfamilies, SF1, SF2, SF3 and SF4, based on the extent of similarity and the

internal organization of the conserved motifs within the helicase domain (Gorbalenya et

al., 1989).
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SF1 and SF2 superfamilies are the largest and closely related groups, containing DNA

and RNA helicases (Silverman et al., 2003) from viral, prokaryotic and eukaryotic

organisms.  Both family members contain up to nine conserved amino acid motifs,

whose sequences, arrangements and predicted secondary structures are in general very

similar. Most RNA helicases belong to the SF2 superfamily, although some viral RNA

helicases are more related to the SF1 superfamily members (Gorbalenya et al., 1989).

SF3 helicases share a small helicase domain with only three conserved motifs (I, II and

a novel motif, C). Most members of this family are viral enzymes involved in DNA

replication (Hickman and Dyda, 2005).

The SF4 superfamily includes DNA helicases related in sequence to the Escherichia

coli Dna-B protein. These enzymes share five conserved motifs (I, Ia, II, III and IV) and

unwind DNA in the 5´to 3´direction (Oakley et al., 2005).

An additional fifth group, exemplified by the transcription termination factor Rho, has

been also recognized as a subgroup of the SF4 superfamily. SF5 helicases show high

sequence similarity to the β subunit of proto-translocating ATPase (Walmacq et al.,

2004).

3.3. The Helicase domain

The conserved helicase domain of SF1 and SF2 helicases contain up to nine

characteristic motifs (Q, I, Ia, Ib, II, III IV, V and VI) (Fig. 7). These enzymes can

unwind DNA or RNA duplexes either in 3´to 5´or 5´to 3´directions (de la Cruz et al.,

1999).

The Q motif has been discovered as a unique feature of the DEAD subclass of RNA

helicases (see later). It consists of a nine amino acid sequence, containing an invariant

glutamine (Q) and it is generally present upstream of motif I. Extensive analyses of this

element in the yeast translation initiation factor Ded1, showed that it regulates not only

ATP binding and hydrolysis but also the affinity of the protein for RNA substrates and

ultimately its helicase activity (Cordin et al., 2004).

Motif I, also known as Walker A motif, contains the AxxGxGKT consensus sequence,

where x could be any amino acid. The lysine within the GKT sequence binds to β and γ

phosphates of the ATP molecule. Replacement of this lysine with uncharged amino



Introduction

33

acids, as asparagines (GKT to GET), abolishes binding to ATP in several RNA

helicases (Pause and Sonenberg, 1992).

Motif Ia seems to be involved in single-stranded DNA or RNA (ssDNA or ssRNA)

binding and helicase activities. Specific mutations in motif Ia of UL9, a protein essential

for herpes simplex virus type 1 (HSV-1) replication in vivo, exhibited wild type levels

of ATPase activity and moderate to severe defects in ssDNA-stimulated ATPase

activity and ssDNA binding (Marintcheva and Weller, 2003).

Motif Ib participates in RNA binding, in association with motifs Ia, IV and V (Rogers et

al., 2002). However, motif Ib has been poorly studied at the biochemical level and its

involvement in RNA binding has been only deduced from the structure of the NS3 RNA

helicase co-crystallized with poly(dU)10 (Kim et al., 1998).

Motif II, or Walker B motif, is highly conserved among DNA and RNA helicases and it

is also present in many proteins involved in DNA replication and repair (Gorbalenya et

al., 1988). The first D residue within this motif has been shown to bind Mg2+, required

for ATP binding and to be responsible for coupling of ATPase and helicase activities

(Pause and Sonenberg, 1992). Variations in motif II have been also used to sub classify

SF2 RNA helicases into the DEAD-, DExH- and DEAH-box proteins. The exact

number and biological role of these enzymes are unclear. The majority of DEAD-box

helicases have a role in ribosome biogenesis and translation, whereas DExD/H enzymes

have been shown to be mostly involved in pre-mRNA splicing (Tuteja and Tuteja,

2004).

Motif III is required for both ATPase and unwinding activities. Eukaryotic initiation

factor 4A (eIF-4A), mutated within this domain, retains both ATP binding and

hydrolysis as well as RNA binding functions, while RNA helicase activity is severely

compromised (Pause and Sonenberg, 1992).

Motif IV contributes together with motif Ia to a specific interaction between RNA

helicases and oligonucleotides (Caruthers and McKay, 2002).

Motif V, as well as motif III, shows substantial differences in both length and amino

acid sequence among the different helicase families. The function of this motif is still

not well understood (Caruthers and McKay, 2002).

Sequence of motif VI is less conserved between SF1 and SF2 helicases. However, both

families share an arginine residue in the middle of the motif, shown to be important for

RNA binding and ATP hydrolysis in several DEAD-box RNA helicases (Pause et al.,

1993).
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Fig 7. Conserved motifs in the helicase domain of SF1 and SF2 helicases (Tuteja and Tuteja, 2004).

Only few DNA and RNA helicases have been crystallized (Carmel and Matthews, 2004;

Subramanya et al., 1996; Velankar et al., 1999; Zhao et al., 2004). These structures are

all very similar and to a large extent also superimposable. The first DNA helicase to be

crystallized in a complex with ADP was PcrA from a thermophilic bacterium Bacillus

stearothermophilus (Subramanya et al., 1996). PcrA crystallizes as a monomer, which

consists of two parallel domains (1 and 2), separated by a deep cleft. Each domain

consist of two additional subdomains (A and B), resembling the central region of the

recombinase RecA, which contains both helicase-like strand separating and strand

annealing activities (Fig. 8). Subdomain 1A contains both the Walker A and the Walker

B motifs. The ADP mojety is located at the bottom of the cleft between subdomain 1A

and 2A. However, only subdomain 1A can bind ADP. Subsequent crystal structures of

PcrA in complex with ssDNA/dsDNA junction and in the presence or absence of ATP,

suggested that PcrA undergoes conformational changes upon NTP binding and

hydrolysis. NTP binding determines the closure of a cleft between domain 1A and 2A,

The position of domains 1B and 2B is also consequently altered as a function of NTP

binding (Velankar et al., 1999).

The E. coli Rep SF1 helicase exists in solution as a monomer only in the absence of

DNA and binding to ssDNA induces its dymerization (Chao and Lohman, 1990).

Although in the crystal structure the two Rep monomers display the same major

contacts with ssDNA, they exist in two conformations, “open” and “closed”, which

differ in the orientation of the 2B subdomain, relative to the 2A domain (Fig. 9)

(Korolev et al., 1997). ADP is present in the cleft, formed by domain 1A, 1B and 2A of

only one Rep monomer and induces the formation of the “closed” state. Interestingly,
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the 2B domain is the only domain that does not contain any of the conserved

aminoacids of the nine helicase motifs and characteristic of the SF1 helicase

superfamily (Korolev et al., 1997). Later experiments using recombinant Rep, deleted

for the 2B domain did not show any effect on its helicase activity (Cheng et al., 2002).

These observations suggest that despite their high structural homology in the helicase

core region, the molecular mechanisms by which these enzymes carry out their catalysis

is different. This might be related to the different length of the linker region connecting

the two helicase domains as well as to the different rates of ATP hydrolysis, observed

for these enzymes.

Fig. 8. The relationship between linear sequence and the position of the conserved helicase motifs in
the PcrA helicase structure. In PcrA, domain A and B in the helicase core region are further divided
into two additional subdomain, 1 and 2. The ATP binding site is present in domain 1A. Binding of ATP
determines the closure of a cleft between domain 1A and 2A, maintained by interactions between the
bound Mg2+ in domain 1A and the γ phosphate of ATP in domain 2A. The domains are colored the same
as in the structure image. The bound ATP is colored pale lilac (Velankar et al., 1999).
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Fig. 9. Ribbon diagrams showing the superposition of the two conformations (“open” and “closed”)
of the wild type Rep protein in complex with ssDNA and ADP. Six nucleotides are shown in purple, and
the ADP is shown in orange (modified from (Korolev et al., 1997)). The two conformations differ in the
orientation of the 2B domain, shown in light blue for the open form and deep blue for the closed form.
The hinge region connecting the 2B domain to the 2A domain, and about which the 2B domain rotates by
≈130° to convert from one form to the other, is shown in yellow for the open form and red for the closed
form (Cheng et al., 2002).

3.4. Monomeric and multimeric helicase enzymes

The strong structural conservation of the helicase domain implies an equally strong

functional conservation between these enzymes. However, not all proteins containing a

helicase domain show unwinding activity, when tested in vitro. Examples are members

of the Swi/Snf family of remodelling complexes. These factors do not have helicase

activity and they use ATP hydrolysis mainly to move nucleosomes along DNA (Havas

et al., 2000). These observations suggest that the helicase domain is not sufficient on its

own to promote strand separation and that additional nucleic acid binding capacities

must be supplied either as adjacent motifs or by associated factors. DsRNA binding

motifs (dsRBM) and RGG-boxes have been infact identified outside of the conserved

core region of several RNA helicases. The presence or the absence of these domains has

been used to divide RNA helicases into monomeric and multimeric enzymes

respectively (Gibson and Thompson, 1994). It has been proposed that monomeric

helicases can bind non specifically both ssRNA and dsRNA in a forked RNA template.

However, only one of the RNA binding domains requires ssRNA specificity to account
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for the translocation polarity of the correspondent enzyme. In addition dsRBMs and

RGG-boxes seem also to mediate protein-protein interactions and to influence specific

substrate recognition (Lee and Hurwitz, 1993).

RNA helicases lacking accessory RNA binding domains are predicted to function in

multimeric complexes, by association with external RNA binding factors. This situation

has been described for the eukaryotic initiation factor eIF-4A and the Prp16 RNA

helicase from Saccharomyces cerevisiae. Even though eIF-4A hydrolyses ATP in vitro

as a monomer, its helicase activity is strongly enhanced by association with eIF-4B,

eIF-4H and eIF-4F (Rogers et al., 2001). In yeast, overexpression of helicase domain-

flanking regions of Prp16 helicase caused dominant negative phenotypes, suggesting

that sequestration of other factors or association with non functional complexes might

occur (Wang and Guthrie, 1998).

3.4.1. The dsRNA binding motif (dsRBM)

The double-stranded RNA binding motif (dsRBM) has been initially identified in the

Drosophila melanogaster protein staufen and the Xenopus laevis RNA binding protein

A, by sequence similarity searches (Fig. 10). Later, several other proteins have been

shown to contain this domain as a single motif or in multiple copies (St Johnston et al.,

1992).

DsRBMs from several proteins have been solved and revealed a peculiar α-β-β-β-α

fold. High resolution structures of these motifs bound to dsRNA targets showed a

striking similarity between them, suggesting a common mode of substrate recognition

(Nanduri et al., 1998). However, these structures do not explain how dsRNA binding

proteins select specific binding sites on dsRNA ligands. Biochemical data suggested

only a general binding affinity role for these domains with little or no selectivity. The

context of different domains or regions, flanking dsRBMs, seems instead to play an

important role in the specific RNA target recognition. In addition, dsRBMs can also act

as protein-protein interaction modules. Isolated dsRBMs of PKR form heterodimeric

complexes with full length PKR in vitro. Dymerization seems to be responsible for PKR

autophosphorylation and enzymatic activities (Zhang et al., 2001).

Even though the dsRNA nucleotide sequence is not essential for specific substrate

binding, it seems to contribute to the affinity of dsRBMs for RNA as compared to DNA

(Bevilacqua et al., 1998). RNA tends to fold together via base pair interactions into



Introduction

38

intricate secondary structures, essential for correct biological function. Common

secondary structure motifs include hairpin, loops, stems, bulges and the A-form double

helix. This double helix differs from the DNA B-form double helix because of a narrow

major groove, virtually inaccessible to proteins. Interactions of proteins with RNA

helices occur mainly in the minor groove. This structure allows dsRNA binding proteins

to interact non specifically with dsRNA or structured ssRNA regions and to ignore

ssRNA, ssDNA and dsDNA species (Seeman et al., 1976).

Fig. 10. Two high-resolution structures of dsRBMs bound to RNA. (A) Crystal structure of the X.
laevis RNA binding protein A (Xlrbpa) bound to coaxially stacked helices. The structure revealed three
regions on the RNA contacted by the dsRBM: two successive minor grooves and the intervening major
groove. (B) Structure derived by NMR studies of Staufen's third dsRBM bound to a stem-loop RNA. The
stem-loop RNA is composed by a minor groove, major groove and the loop region. These regions are
contacted by the same face of the protein as in the crystal structure. (C) Sequence alignment of numerous
dsRBMs (Drosophila Staufen motif III, X. laevis RNA binding protein A motif II, human PKR motifs I
and II, human ADAR2 motifs I and II, E. coli RNase III, and DICERI. The 1, loop 2, and loop 4 are
predicted to contact dsRNA based on the structures above (Carlson et al., 2003).
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3.4.2. The RGG-box

The RGG domain harbours a consecutive stretch of glycines, regularly interrupted by

either aromatic residues or arginines. In addition to RNA helicases, RGG-boxes have

also been found in many proteins involved in RNA metabolism (Ghisolfi et al., 1992).

Isolated RGG boxes from several RNA helicases show a preferential binding to ssRNA

and ssDNA in vitro (Cobianchi and Wilson, 1987), (Kiledjian and Dreyfuss, 1992),

(Zhang and Grosse, 1997). However, in combination with other RNA binding modules,

RGG domains can increase the affinity of a protein for both ssRNA and dsRNA,

suggesting that intramolecular interactions can also occur between adjacent RNA

binding domains (Zhang and Grosse, 1997). Interestingly, methylation of arginines has

been described for several RGG-box containing proteins (Kzhyshkowska et al., 2001;

Mears and Rice, 1996; Smith et al., 2004). In some cases, this modification has been

shown to modulate both helicases activity and nuclear localization (Smith et al., 2004).

In addition, RGG-boxes, like dsRBMs, also mediate protein-protein interactions

(Gendra et al., 2004; Smith et al., 2004). The C-terminal RGG-box of RNA helicase A

(RHA), the human ortholog of Drosophila MLE, forms with the N-terminal double-

stranded RNA binding domain II a protein-protein interaction surface required for its

association with the Werner syndrome protein (WRN) (Friedemann et al., 2005).

3.5. Unwinding models

While DNA helicases are processive enzymes and can unwind thousands of base pairs

without dissociating from the substrate, RNA helicases separate mainly short dsRNA

regions. However, both enzymes seem to utilize the same mechanisms to unwind

double-stranded nucleic acid substrates. Special features of each helicase and

experimental data have allowed proposing two major helicase mechanisms: the “active

rolling model” and the “inchworm model” (Fig. 11).

The “inchworm model” seems to better explain the mode of action of monomeric

helicases while the “active rolling model” can be easier applied to multimeric enzymes.

However, both situations require binding and hydrolysis of NTPs and although in some

cases ATP binding seems to increase the affinity of the enzymes for duplex RNA or
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DNA, it is not certain at which step ATP hydrolysis takes place (Tuteja and Tuteja,

2004).

In the “active rolling model” two distinct DNA/RNA binding domains from a

multimeric enzyme alternatively move along DNA/RNA and unwind double-stranded

regions. Each site could bind single- or double-stranded nucleic acids with higher

affinity, depending on its conformational state. However, binding to ssDNA/RNA and

dsDNA/RNA cannot occur simultaneously in the same subunit. In an initial step both

domains interact with ssDNA/RNA. As a consequence of ATP binding, one subunit

undergoes conformational changes and acquires higher affinity for the duplex region.

Hydrolysis of ATP destabilizes the double helix and induces the release of one of the

two strands. At this point a new catalytic event, in which the second subunit acts as a

motor, can start (Yarranton et al., 1979).

In the “inchworm model”, two domains of a monomeric enzyme bind respectively

single-stranded or double-stranded nucleic acids. In this model one domain is constantly

bound to ssDNA/RNA during all the catalytic cycle, while the other one translocates

along the double-stranded region in concomitant with ATP binding and hydrolysis.

DsRNA/DNA destabilization and release of one of the single strand is not an active

event, but happens mainly as a passive consequence of the enzyme translocation

(Lohman and Bjornson, 1996).

Even if some helicases seem to fit this simple classification, for others, more

complicated mechanisms must be considered. Contradictory results have been

documented for the function of the viral RNA helicase NS3 (non structural protein 3) as

a monomeric or oligomeric enzyme (Kuang et al., 2004). RNA helicases of the Brr2

subfamily have been shown to contain two helicase domains, although mutational

analysis suggested that only one of them is functionally active (Kim and Rossi, 1999).

Some replicative DNA helicases form in vivo hexameric complexes, characterized by a

peculiar ring structure and different unwinding mechanisms have been proposed for

these enzymes (Davey and O'Donnell, 2003). In addition, even though an active rolling

model was first proposed for Rep unwinding ability, further studies rather supported a

dymeric inchworm model, in which the two monomers are alternatively active on the

dsDNA substrate (Cheng et al., 2002; Soultanas and Wigley, 2001). The further

characterization of other helicases enzymatic activities should help to elucidate the

molecular mechanisms that distinguish monomeric and multimeric enzymes.
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Fig. 11. Models for DNA and RNA helicase unwinding and translocation. A) Active rolling model.
The two subunits of dimeric helicase are shown as an oval shape in which one is black. The dimeric
helicase unwinds by interacting directly with both dsDNA and ssDNA. Each subunit alternates binding to
dsDNA as the dimer translocates when one subunit releases ssDNA and rebinds to dsDNA. In this model,
translocation along ssDNA is coupled to ATP binding, whereas ATP hydrolysis drives the unwinding of
multiple DNA base pairs for each catalytic event. B) Inchworm model. This model is consistent with the
monomeric or oligomeric state of the protein (shown as an oval shape). The enzyme monomer first binds
to ssDNA and then translocates along the DNA strand. It then binds to the duplex region at the fork. This
is followed by unwinding and release of one of the ssDNA strand. If the enzyme is a hexamer, such as the
SV40 large T antigen, then one of the subunits (monomer 1) remains associated with the fork through the
unwinding cycle (Tuteja and Tuteja, 2004).

3.6. RNA helicase A, human homolog of MLE

RNA helicase A (RHA) has been isolated from Hela cells by following its RNA

unwinding activity (Lee and Hurwitz, 1992). Based on its extensive similarity (49%

identity and 85% similarity) with MLE, it has been proposed that RHA is the human

counterpart of the Drosophila protein (Lee and Hurwitz, 1993). Both RHA and MLE

belong to the DEAH family of RNA helicases and they share with the other members

the same domain organization. In addition to the central conserved helicase core, two

dsRNA binding domains (dsRBM) and an RGG-box are present at the N-terminus and

at the C-terminus, respectively, of both enzymes (Gorbalenya et al., 1989). MLE and

RHA can unwind dsRNA and dsDNA in the 3´to 5´direction, with a higher efficiency

for dsRNA. In both cases, the presence of an overhanging single-stranded nucleic acid

is required for efficient unwinding (Lee et al., 1997; Lee and Hurwitz, 1992). Both
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enzymes can hydrolyze all common NTPs with similar KM values, illustrating their

broad substrate specificity (Zhang and Grosse, 2004).

The enzymatic properties of MLE have been not studied in detail, whereas RHA has

been extensively characterized. Biochemical studies confirmed that the isolated N-

terminal dsRBMs from RHA can bind dsRNA specifically, with only a limited affinity

for ssDNA or dsDNA. Moreover, both domains are required in vitro for efficient

binding to dsRNA substrates. In contrast, the RGG domain preferentially binds single-

stranded nucleic acids and in particular ssDNA. Interestingly, neither the deletion of the

two dsRBMs nor the deletion of the RGG-box abolishes RHA helicase activity,

although in both cases a decrease in the nucleic acid-stimulated ATPase activity of

RHA has been observed (Zhang and Grosse, 1997). These results suggest that all three

domains might be neighbors in the three-dimensional structure of RHA (Fig. 12). In this

model cooperation between the RGG-box bound to ssDNA/RNA and one or both the

dsRBMs docked to dsRNA/DNA, are required in order to stimulate RHA ATPase

activity and subsequent unwinding of the nucleic acid substrate (Lee and Hurwitz,

1993).

Interestingly, the dsRB1 of RHA has been shown to cooperate with its C-terminal

proline-rich region to form an integrated nucleic acid-binding module specific for the

consensus dsDNA sequence of the cyclin-AMP responsive element (CRE) (Hung et al.,

2003). This result was unexpected, as the crystal structure suggested that dsRNA

binding domain cannot accommodate either the A form of RNA or the B form of DNA

(Fierro-Monti and Mathews, 2000; St Johnston et al., 1992). However, variations in the

common dsRBM fold have been observed in some DNA binding proteins (Connolly et

al., 1998). In addition, the RNA binding affinity of dsRBMs is extremely variable and

some of them are even RNA binding incompetent (Romano et al., 1995). It has been

proposed that the linker region separating the dsRB1 and dsRB2 in RHA, due to its

flexibility, might cause conformational changes in RHA and determine the formation of

a versatile platform with different ligand binding properties.
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Fig.12. Hypothetical scheme showing how the various modules of RHA may fit to a forked RNA
substrate. The helicase domain is shown binding the 3´single-stranded region, which it pulls away from
the other strand, and along which it translocates. Models in which the C-terminal domain binds to the
3´strand instead of the 5´are also plausible (modified from (Gibson and Thompson, 1994)).
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4. Aim of this work

While the other MSL proteins have been studied to some degree, the role of MLE in

dosage compensation so far has been only demonstrated genetically. A male-specific

phenotype has been observed in transgenic flies deleted for mle (Fukunaga et al., 1975).

In addition, the MLEGET ATPase-inactive mutant localizes only to few “high affinity”

sites on the X chromosome when overexpressed in flies, suggesting that MLE

enzymatic activities are required for its proper targeting (Lee et al., 1997).

Contradictory observations regarding the roX RNA-dependent integration of MLE into

the DCC complex are present in the literature. In transgenic flies expressing the

MLEGET mutant neither roX1, nor roX2 can be detected on the X, suggesting that an

MSL complex containing MLE, but lacking RNA can still be assembled in vivo and

targeted to a limited number of sites (Gu et al., 2000). However, MLE is lost from the X

territory upon Rnase treatment of SL2 cells (Akhtar and Becker, 2000). Moreover, MLE

can be copurified from embryo extracts with the other MSLs only under low salt

condition and when special precautions against RNA degradation are taken (Scott et al.,

2000). These results suggest that association of MLE with the DCC members is RNA-

dependent. These conclusions are mainly indirect; final proof of a direct interaction of

MLE with the other MSL does not exist.

One of the aims of this work is to better understand how MLE interacts with the other

DCC members. For this purpose the baculovirus system has been employed to express

and purify the different DCC components.

In addition, a proper biochemical characterization of MLE is missing. MLE ATPase

activity has been shown to be strongly stimulated by dsRNA and to a lower extent by

DNA (Lee et al., 1997). Moreover, although MLE binds better to ssRNA as compared

to ssDNA, it is not known if it is able to discriminate between ssRNA and dsRNA

substrates. As a member of the DEAH family of RNA helicase MLE harbours two RNA

binding domains at the N-terminus and an RGG-box at the C-terminus (Gibson and

Thompson, 1994). These regions have been predicted to bind dsRNA and ssRNA

respectively, based on the homology of MLE with other enzymes, for which these

properties have been described.

To elucidate the RNA binding properties of the different MLE domains and the

mechanism of action of MLE RNA helicase, MLE deletion mutants have been

expressed in Sf9 cells and tested in several functional in vitro assays. Finally, transient
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transfection in the SF4 cells of MLE wild type and the different deletion mutants fused

to GFP have been used to describe those parts of MLE required for its correct targeting

to the X chromosome.
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II. Results

1. MLE monoclonal antibodies

In order to characterize MLE, rat monoclonal antibodies were generated. The first 265 aa

of MLE were fused to glutathione S-transferase (GST) and expressed in bacterial cells.

The recombinant GST-MLE (1-265) was affinity purified on glutathione beads and the

eluted material quantified on SDS-PAGE by Coomassie staining (Fig. 13, A). The

following steps were carried out by Dr. E. Kremmer (GSF, Martinsried). Purified GST-

MLE (1-265) was injected in rats to induce antibody production. Spleen cells isolated

from immunized animals were fused with myeloma cells to generate immortal hybridoma

cells. From a first screen of each hybridoma culture, seven supernatants contained

antigen-specific antibodies and they were then tested in different assays for their

specificity (Fig 13, B). When used in Western blot probing Drosophila SF4 cell extracts

or in immunoprecipitation assays, supernatants 8B5, 3C10, 5B10, 8E3 and 6E11

recognize a protein with a size that matches that of MLE. However, 5B10 also strongly

reacts with additional proteins and 3C10 clone immunoprecipitates MLE less efficiently,

when compared to the other antibodies (summary in Fig. 13, B). In immunofluorescence

experiments on SF4 cells, antibodies against each of the MSL proteins stain a small area

of the nucleus that corresponds to the X chromosome territory. In these assays, 8B5, 3C4,

3C10, 8E3 and 6E11 supernatants recognize a nuclear protein that colocalizes with MSL3

on the X chromosome and corresponds with high probability to MLE (Fig. 13, C). In

addition, a distinct punctuate staining in the nucleus can also be observed. These results

are in agreement with published immunofluorescence experiments on polytene

chromosomes from male larvae, where MLE, in addition to the X chromosome, also

localizes at different autosomal positions. The two hybridoma 6E11 and 8E3 were further

subcloned by Dr. Kremmer in order to obtain monoclonal antibodies against MLE. The

specificity of 6E11 and 8E3 subclones was tested in vivo after depletion of endogenous

MLE from SF4 cells using RNA interference (RNAi, (Celotto and Graveley, 2004)).

After 6 days of MLE-dsRNA treatment (see 2.1 and Fig. 14, B), only background staining

in the nucleoplasm can be observed with both antibodies. These results confirmed that the

protein recognized by 6E11 and 8E3 monoclonal antibodies and colocalizing with MSL3

on the X chromosome is indeed MLE.
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Fig. 13. Generation of αMLE monoclonal antibodies. A) Expression and purification of recombinant
GST-MLE (1-265). The N-terminal region of MLE (1-265 aa), fused to GST, was expressed and purified
from bacterial cells. 0.25 µl, 0.5 µl and 1 µl of the eluted fractions were loaded on a 8% polyacrylamide
gel and compared to 125 ng, 250 ng, 0.5 µg and 1µg of BSA by Coomassie staining. B) Summary of the
results from Western blot, immunoprecipitation and immunofluorescence experiments, using the different
MLE hybridoma supernatants. C) Immunofluorescence staining of SF4 cells. MLE 6E11 monoclonal
antibodies were used to detect MLE (αMLE (6E11)) and MSL3 polyclonal antibodies were used to mark
the X territory (αMSL3). DNA was counterstained with Hoechst 33258 (DNA).
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1.1. Purification of MLE interacting partners

The 6E11 clone was used in preparative immunoprecipitation experiments, in order to

identify new proteins, interacting with MLE (T. Straub and data not shown). Among the

DCC members, MLE is the only protein that was shown to have an additional function

not related to dosage compensation (Kenan et al., 1991). In order to distinguish male

specific proteins, nuclear extracts from Drosophila male SF4 cells and female Kc cells

were compared under the same conditions. A band of approximately 80 KDa could be

specifically coimmunoprecipitated with MLE from SF4 cells but not from Kc cells. By

mass-spectrometry this protein was identified as the DEAD-box RNA helicase Belle.

Belle had been shown to be required for viability in both male and female flies and may

have a role in translation initiation (Johnstone et al., 2005). The fact that another RNA

helicase can interact with MLE is not surprising as many of these enzymes are

integrated in multimeric complexes, where additional cofactors modulate their activity

or target helicases on a specific RNA substrate. RNAi experiments were employed to

test the possibility that Belle is directly involved in dosage compensation in males.

However, upon ablation of Belle in SL2 cells, no effect on the correct targeting of the

MSL proteins to the X territory could be observed.

These results suggest that Belle, unlike MLE (see 2.1.), is not required to assemble the

DCC, but it might act downstream of the DCC or be required for an MLE function

outside of the context of dosage compensation.

1.2. Limitations of 6E11 antibodies

Interestingly, 6E11 monoclonal antibodies specifically recognize an epitope within the

N-terminal dsRB1 of MLE, as they fail to detect both MLEΔRB1 and MLEΔRB1-2 mutants

in Western blot analysis (data not shown). In addition, none of the MSL proteins could

be identified by mass-spectrometry analysis in the fraction immunoprecipitated by 6E11

clone from SF4 cells. The same antibodies also failed to copurify the DCC complex

from Sf9 cells coinfected with the respective MSL baculoviruses, whereas recombinant

MLE-flag, under the same conditions, successfully pulled down all the DCC members.

Taken together these observations suggest that the epitope within the dsRB1 is available

in free MLE and hidden when MLE is integrated into the DCC complex.
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2. MLE and the dosage compensation complex (DCC)

2.1. Effects of MLE depletion in SL2 cells

In mle null flies, only MSL1 and MSL2 are recruited to few “high affinity” sites on the X

chromosome, suggesting a role for MLE in the first steps of the DCC assembly (Meller,

2003). In order to test if the same situation can be reproduced in cells and to generate a

tool for studying MLE function in vivo, SL2 cells were depleted of endogenous MLE by

RNAi.

A dsRNA, spanning the first 700 bp of the MLE cDNA was used and as a control for non-

specific effects of dsRNA, cells were treated in parallel with a dsRNA corresponding to

the sequence of GST. 3 and 6 days after addition of dsRNA, the relative amounts of each

protein in total extract from GST- and MLE-dsRNA treated cells were quantified by

Western blot (Fig. 14, A). After 3 days of dsRNA treatment, 70% MLE depletion was

reached, while only a slight decrease in the amounts of the other MSLs was observed,

with MSL1 and MSL2 being the most affected. After 6 days of treatment, also the MSL3

level start to decrease, consistent with its dependency on MSL1 and MSL2 for stability

(Chang and Kuroda, 1998; Rastelli et al., 1995). Surprisingly, while almost no differences

in the levels of MOF and of H4-K16 acetylation were observed after 3 days of MLE

RNAi, after 6 days a reproducible increase in H4-K16 acetylation was observed. The

relevance of these data was checked in vivo by immunofluorescence experiments (Fig.

14, B). 6 days after dsRNA treatment of the control cells the active MSL complex is on

the X chromosome, as shown by the colocalization of the MSL proteins and by the

specific presence of H4-K16 acetylation on the X territory. In contrast, in the absence of

MLE, none of the MSL proteins could be detected on the X and also H4-K16 acetylation

was lost from the X chromosome. The same situation was observed after 3 days of

dsRNA treatment, with a lower percentage of cells depleted of endogenous MLE (data

not shown). While for MSL1 and MSL2 only a homogeneous background staining in

both nucleus and cytoplasm could be observed, MSL3, MOF and H4-K16 acetylation

were still detected in the nucleus, although delocalized from the X territory (Fig. 14, B).
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Fig. 14. Effect of MLE depletion in SL2 cells. A) Western blots with specific αMSL and αH4-K16
acetylated antibodies on total cell extracts after 3 and 6 days of RNAi were quantify using the Odyssey
Infrared Imaging system. The amount of each protein in the MLE-RNAi treated cells is expressed as
percentage of the corresponding amount in the GST-RNAi control cells. Errors bars correspond to the
values of two loadings. In αMLE Western blot the star indicates endogenous MLE protein. B)
Immunofluorescence on SL2 cells after 6 days of dsRNA treatment against GST (GST-RNAi) or MLE
(MLE-RNAi). The cells were stained for all MSL proteins (MSL1, MSL2, MSL3, MOF and MLE) as
well as for acetylation of H4-K16 (Η4−K16ac). DNA was counterstained with Hoechst 33258.
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These results show that like in flies, also in the cells MLE is required for proper targeting

of the DCC complex to the male X. However, in the absence of MLE and at limiting

amounts of MSL1, it seems that an active MOF is redistributed in the nucleus and H4-

K16 acetylation is not anymore confined to the X chromosome.

2.2. Reconstitution of a DCC complex specifically containing roX2 RNA

Even though MLE RNA helicase is an essential component of dosage compensation, it

cannot be copurified from crude embryo extracts with the other MSL proteins under

stringent salt conditions (Scott et al., 2000). In addition, in transgenic flies deleted for

both roX1 and roX2 genes, MLE is no longer present at any of the X chromosomal sites

(Meller and Rattner, 2002). Binding of MLE to the X chromosome is also lost in RNAse-

treated SL2 nuclei (Akhtar et al., 2000). These results suggest that MLE associates only

weakly with the other MSLs and that its recruitment to the X chromosome is likely roX

RNA-dependent. However, genetic experiments in flies demonstrated that MLE may still

colocolize with MSL proteins in the absence of roX RNAs at a few “high affinity” sites

on the X chromosome (Gu et al., 2000).

To better understand how roX2 RNA influences association of MLE with the DCC, all

known complex components were coexpressed in Sf9 cells using the baculovirus-

expression system. In addition to the already available baculoviruses encoding MSL1,

MSL2, flag-MSL3 and HA-MOF, two viruses expressing MLE and roX2 RNA,

respectively, were created. As a control for MSL-specific RNA binding, a virus

expressing the antisense roX2 RNA (ant-roX2) was also generated. Sf9 cells were

coinfected with up to six viruses, thus expressing all the known subunits of the complex

with either roX2 or ant-roX2 RNA. The amount of roX2 and ant-roX2 viruses was

accurately titrated in order to express comparable levels of both RNAs (Fig. 15, A).

Correct expression of the MSL proteins in the presence of either roX2 or ant-roX2

RNAs was also controlled by Western blot (Fig. 15, B and data not shown).
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Fig 15. MSL proteins specifically interact with roX2 RNA. Sf9 cells were coinfected with
baculoviruses encoding MSL1, MSL2, flag-MSL3, HA-MOF (MSLs) and MLE, roX2 RNA or ant-roX2
RNA in the combination indicated with (+) above each lane. RNA-protein complexes were purified from
total Sf9 extracts using flag affinity beads. A) RT PCR on the input. B) Western blot on the input with
αMLE and αMSL3 antibodies. C) Western blot with αMLE antibodies (top) and Coomassie blue stained
SDS-PAGE of the eluted material (bottom). D) RT PCR on the eluted material.

In order to avoid dissociation of MLE from the other MSLs, low salt conditions were

used to prepare total Sf9 extracts, two days after infection. As previously reported,

MSL1, MSL2, MSL3 and MOF could be copurified from infected Sf9 cells via flag-

MSL3 (Morales et al., 2004) and association of these proteins in a four subunit complex,

can be visualized on a Coomassie blue stained gel (Fig. 15, C, bottom). Because MLE has
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a similar size to HA-MOF, its association with the other MSLs can be only confirmed by

Western blot (Fig. 15, C, top).

In the absence of MLE, the purified complex specifically coimmunoprecipitates roX2

RNA. By contrast, in the presence of MLE, both roX2 and ant-roX2 RNAs associate to

the complex (Fig. 15, D). These results suggest that MSL proteins can specifically

interact with roX2 RNA, while MLE seems to bind RNA non-specifically. RoX2 and ant-

roX2 RNAs have the same length and GC content, but they are probably folded

differently. Specific features of roX2 RNA, might be then recognized by MSL3 and

MOF, the other two RNA binding proteins of the DCC. In addition, even if MSL proteins

do not bind ant-rox2 and integration of this RNA into the DCC complex is strictly MLE-

dependent, comparable amounts of MLE can be copurified with the other MSL proteins

in the presence of either roX2 or ant-roX2 RNAs (Fig. 15, D, top). Taken together, these

results suggest that association of MLE with the DCC complex may be possible in the

absence of roX2 RNA.
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2.3. MLE preferentially associates with MSL1 and MSL2

Since MLE can associate with the DCC complex in the absence of roX2 RNA, its direct

association with the other MSL proteins was analyzed. In order to have comparable

conditions, MLE was flag-tagged at the C-terminus and coexpressed in Sf9 cells with

individual untagged MSL proteins. Partial complexes were purified via anti−flag

affinity beads and associated proteins were visualized by Western blot (Fig. 16).

MSL1 and MSL2 associate with MLE independently, whereas a weaker interaction with

MOF and no association with MSL3 were observed. However, binding of MSL1 or

MSL2 to MLE is rather weak, since all proteins are expressed at comparable levels

(data not shown), but only a small fraction (4-5%) associates with MLE.

Fig. 16. MLE preferentially associates with MSL1 and MSL2. Sf9 cells were infected with
baculoviruses expressing MLE-flag in combination with individual MSL protein (+). MLE-MSL
complexes were purified via anti-flag affinity beads. 2,5% of the input (for the MSLs), 0,5% of input (for
MLE) and 50% of the beads were loaded on a 8% polyacrylamide gel and subjected to Western blot
analysis with specific MSL antibodies (αMSL1, αMSL2, αMSL3, αMOF, αMLE).

Interaction between MLE and MSL1 was confirmed by in vitro pull-down experiments,

using recombinant MLE-flag and GST-MSL1, independently expressed and purified

from Sf9 cells. No interaction of MLE with both HA-MOF and flag-MSL3 was

observed under the same conditions (Fig. 17, A). In addition, in vitro translated MSL1
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and MSL2 also specifically interact with MLE (Fig. 17, B). These results show a

preferential association of MLE with MSL1 and MSL2.

Fig. 17. MLE directly interacts with MSL1. A) MLE-flag, GST-MSL1, flag-MSL3 and HA-MOF were
independently purified from Sf9 cells. 100 ng of each protein were used in in vitro pull-down
experiments. Due to the presence of the flag tag in both MLE and MSL3, MLE monoclonal antibodies
(6E11) were used in the pull-down experiments. 10% of input and 50% of the beads were loaded on an
8% polyacrylamide gel and subjected to Western blot analysis with specific MSL antibodies (αMSL1,
αMSL3, αMOF, αMLE). B) In vitro pull down experiment using MLE-flag purified from Sf9 and MSL1
and MSL2 translated in vitro in the presence of [35S]. After immunoprecipitation with flag affinity beads,
10% of input and 50% of beads were loaded on an 8% polyacrylamide gel, followed by autoradiography.
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Since MSL1 it is not known to bind RNA and stringent salt conditions were used to

purify MLE-flag, the interaction between these two proteins is probably direct. In

addition, the ATPase activity of MLE is strongly stimulated by RNA (Lee et al., 1997),

but no enzymatic activity can be detected when recombinant MLE-flag alone is used in

the ATPase assay, suggesting that no RNA was copurified (Fig. 19). The same

conclusion cannot be derived for the interaction with MSL2, as RNA is present in Sf9

cells as well as in the in vitro translation reaction. To rule out the possibility that non-

specific RNA mediates interaction between MLE and MSL2, extracts from cells

infected with MLE-flag and MSL2 baculoviruses were treated with RNase A and/or

DNaseI. Efficient depletion of nucleic acids was confirmed (Fig. 18, A). However,

under these conditions, MSL2 still interacts with MLE and no effects on the amounts of

MSL2 protein copurified are observed (Fig. 18, B). These data show that MLE, albeit

weakly, also directly interacts with MSL2.

Fig. 18. MLE directly interacts with MSL2. A) Total nucleic acids extracted from Sf9 cell extracts
infected with MLE-flag and MSL2 encoding baculoviruses and treated (+) or not (-) with RNase A and
DNaseI were loaded on a 1% agarose gel. B) MLE-MSL2 complexes were purified via flag affinity beads
and association of MSL2 with MLE was analyzed by Western blot using specific αMSL2 (upper panel)
and αMLE (lower panel) antibodies.
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2.4. MSL proteins do not influence the ATPase activity of MLE

In a previous study, MOF was shown to specifically acetylate H4-K16 on reconstituted

nucleosome arrays only when both MSL1 and MSL3 were present (Morales et al., 2004).

These results suggest that MSL interactions have an important role in regulating MOF

enzymatic activity, confining the H4-K16 acetylation mark specifically to the male X

chromosome. MLE possesses both ATPase and helicase activities, which are required for

dosage compensation (Gu et al., 2000). Since interaction of MLE with MSL1 and MSL2

was observed, the possibility that these proteins affect MLE enzymatic properties was

explored.

Only small amounts of MSL1, MSL2, MSL3 and MOF can be copurified via MLE-flag

from Sf9 cells (data not shown). Therefore, HA-MOF and MLE-flag were purified

separately whereas MSL1, MSL2 and flag-MSL3 were expressed and copurified.

Equimolar amounts of each protein were used in the ATPase assay. To stimulate the

ATPase activity of MLE, total RNA, extracted from Sf9 cells, was used as a substrate in

the ATPase reaction. The percentage of ATP hydrolyzed by MLE was measured in the

presence or absence of the other MSL proteins. As previously shown, the ATPase activity

of MLE was strongly stimulated by RNA. However, when all MSLs were present

together in the same reaction mixture, no effect on the capacity of MLE to hydrolyze

ATP was observed (Fig. 19, A). These results strongly suggest that MSL proteins do not

influence the ATPase activity of MLE.

Although MLE binds roX2 and ant-roX2 RNAs indiscriminately, the possibility that

specific secondary structures within roX2 RNA differently affect MLE enzymatic

activities were also tested in the ATPase assay (Fig. 19, B). Total RNA was prepared

from Sf9 cells infected with roX2 and ant-roX2 baculoviruses, respectively, and the same

amounts of RNA were used to stimulate MLE ATPase activity. MLE did not show any

preference for roX2 versus ant-roX2 RNAs as a substrate, suggesting that it probably

binds RNA non specifically. Because MLE helicase activity is strictly dependent on its

ATPase activity, the capacity of MLE to unwind double-stranded nucleic acids is not

expected to be influenced by its interaction with the other MSL proteins.
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Fig. 19. Effects of MSL proteins and roX2 RNA on MLE ATPase activity. A) MSL1, MSL2 and flag-
MSL3 were copurified from Sf9 cells. HA-MOF and MLE-flag were purified independently from Sf9
cells. Equimolar amounts (30 fmoles) of each protein were used in the ATPase assay in the combination
indicated by the (+). 1 µg of total RNA extracted from Sf9 cells was used to stimulate MLE ATPase
activity in the presence of saturating amounts of [γ32P]-ATP. After 30 min of incubation at 26 °C, an
aliquot of each reaction was analyzed by thin layer chromatography (TCL) and quantitated by
PhosphoImager analysis. B) RoX2 and ant-roX2 were expressed in Sf9 cells. Comparable amounts
(400ng) of total RNA extracted from these Sf9 cells were used to stimulate MLE ATPase activity.
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3. Biochemical characterization of MLE RNA helicase

3.1. Effects of RNA binding domain deletions on MLE ATPase activity

Mutational analysis and RNA binding studies revealed a weak RNA binding capacity by

the common motif VI in the conserved DEAD/DExH domain of many RNA helicases

(Cordin et al., 2005). However DEAD/DExH enzymes also present additional RNA

binding domains outside of the conserved core region (Pause et al., 1993). MLE, as well

as other members of the same DEAH-box RNA helicase family, harbors two dsRNA

binding domains (dsRB1 and dsRB2) at the N-terminus and a predicted ssRNA/ssDNA

binding domain at the very C-terminus. This region, highly enriched in arginines and

glycines, was named the RGG-box. Nevertheless the RNA binding properties of these

additional domains were characterized only for some of these enzymes.

In order to define how the proximal and distal RNA binding domains of MLE influence

its enzymatic activity, viruses expressing different MLE deletion mutants were produced.

The corresponding recombinant proteins were expressed and purified from Sf9 cells via

the fusion of a flag-tag at their C-terminal ends (Fig. 20, A). Comparable amounts of each

protein were tested in the ATPase assay for their ability to hydrolyze ATP in the presence

of total RNA extracted from Sf9 cells (Fig. 20 B, D). As previously shown, the MLE

ATPase activity is strongly stimulated by RNA, whereas no enzymatic activities are

associated to the MLEGET ATPase-inactive mutant ((Lee et al., 1997) and fig. 20, C).

Deletion of the first dsRNA binding domain (MLEΔRB1) as well as deletion of the C-

terminal RGG domain (MLEΔRGG) does not affect the ATPase activity, and both proteins

hydrolyze ATP with an efficiency comparable to that of the wild type protein. By

contrast, the MLEΔRB1-2 mutant protein does not hydrolyze ATP in the presence of RNA

(Fig. 20, C). This protein, as well as the MLEGET point mutant is expressed in Sf9 cells at

low levels and several additional bands can be visualized on Coomassie-stained gels after

flag purification (Fig.20, B). However, the presence of equimolar amounts of MLEGET or

MLEΔRB1-2 do not affect MLE ATPase activity, excluding the possibility that the

contaminant factors copurified are responsible for the absence of enzymatic activity

observed for both mutant proteins (data not shown). To test if dsRB1 and dsRB2 have a

redundant function for MLE RNA-dependent ATPase activity, an additional mutant

lacking only the dsRB2 (MLEΔRB2) was tested in the ATPase assay.
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Fig. 20. MLE RNA binding domains differently affect MLE ATPase activity. A) Schematic
representation of MLE and MLE mutants. B), D) Two amounts of each purified protein (2.5 ng and 5 ng)
were compared on a Coomassie-stained SDS-PAGE. Stars indicate MLE and the respective MLE
mutants. C) ATPase activity of recombinant MLE and the respective mutants was compared. Two
amounts of each protein (25 and 50 fmoles) were incubated in the absence or in the presence of saturating
amounts of total Sf9 RNA (1µg) and [γ32P]-ATP. After 30 min at 26 °C, ATP hydrolysis was measured as
describe in Material and Methods. The ATPase activities are indicated as a percentage of hydrolyzed
ATP. E) Constant amounts of MLE and the respective mutants (2.5 ng) were incubated in the absence or
in the presence of decreasing amounts of RNA (1 µg, 250 ng, 62 ng, 16 ng) and saturating amounts of
[γ32P]-ATP. After 20 min at 26 °C, ATPase activity was measured as above.
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Deletion of the dsRB2 completely abolished the capacity of the corresponding protein

to hydrolyze ATP (Fig. 20, E). This result suggests that the dsRB2 is essential for RNA-

induced MLE ATPase activity. Deletion of dsRB2 might affect the correct folding of

the neighboring ATPase domain and, consequently, the ATPase activity. Interestingly,

in the presence of limiting amounts of RNA, the MLEΔRGG mutant seems to hydrolyze

ATP less efficiently than wild type MLE and MLEΔRB1 (Fig. 20, E). To determine the

Michaelis-Menten kinetic parameters of MLE and the different mutant enzymes

decreasing amounts of RNA at saturating amounts of [γ32P]-ATP were used (Fig. 21).

The Linewever-Burk representation enabled the determination of the affinity constant

(KM) of MLE and the deletion mutant enzymes for RNA. Similar KM values were

obtained for MLE and MLEΔRB1, while MLEΔRGG shows a higher KM, revealing a lower

affinity for RNA. All together these data suggest that while the dsRB2 is essential for

the RNA dependent ATPase activity of MLE, the dsRB1 is dispensable and the RGG C-

terminal region influences or modulates the affinity of MLE for RNA.

Fig. 21. Linewever-Burk linear representation for the reaction kinetics of MLE, MLEΔRB1 and MLEΔRGG

as a function of RNA concentration [S]. V (reaction velocity) corresponds to the ratio of hydrolyzed ATP
during the time for each concentration of substrate. Error bars correspond to the average reaction velocity
at 10 min and 20 min.
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3.2. Effects of RNA binding domain deletions on MLE helicase activity

The RNA helicase activity is strictly dependent on the ATPase activity. However, certain

mutations in the conserved motifs of some helicases enzymes are known to affect only

the helicase activity (Rocak et al., 2005). In view of these results, MLE and all

derivatives of MLE, which are able to hydrolyze ATP, were tested in the helicase assay

for their capacity to unwind dsRNA. A 75 bp roX2 DNA sequence, predicted not to form

any secondary structures, was transcribed in vitro in the presence of radioactive [α32P]-

ATP. DsRNA hybrids were obtained by annealing the radioactive ssRNA with an excess

of the corresponding cold complementary sequence. Both ssRNA and dsRNA substrates

can be distinguished on a native 10 % polyacrylamide gel, due to their different mobility.

Increasing amounts of MLE, MLEΔRB1 and MLEΔRGG (Fig. 22 A) were incubated with

constant amounts of dsRNA yielding a molar ratio of approximately 1:4, 1:2, 1:1 and 2:1.

MLE unwinds dsRNA only in the presence of ATP and the efficiency of unwinding is

proportional to the amount of enzymes used (Fig. 22, B and lanes 5, 6, 7, 8). In the

control reactions (absence of ATP and absence of the recombinant protein) no helicase

activity was observed (Fig. 22, B and lanes 2, 3, 4, 13). MLEΔRB1 also efficiently unwinds

dsRNA in an ATP-dependent manner, with no significant differences to MLE (Fig. 22, B

and lanes 9, 10, 11, 12). Interestingly, deletion of the RGG domain strongly decreases the

helicase ability of MLE (Fig. 22, B and lanes 14, 15, 16, 17). It should be mentioned that

in these experiments the dsRNA probe had not been purified. DsRNA helicase activity

was therefore measured in the presence of an excess of ssRNA. However, when a purified

dsRNA substrate was tested, the MLEΔRGG mutant shows an ATP-dependent helicase

activity comparable to MLE (data not shown). One possible explanation for this result is

that the MLEΔRGG enzyme binds better ssRNA than MLE and the MLEΔRB1 mutant. In the

presence of excess ssRNA, less MLEΔRGG protein may be available for dsRNA binding

and unwinding. The dsRB1 seems instead dispensable for the helicase activity of MLE.
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Fig. 22. Helicase activity of MLE, MLEΔRB1 and MLEΔRGG recombinant proteins. A) MLE, MLEΔRB1

and MLEΔRGG proteins were purified from Sf9 cells as described in Material and Methods. 25 fmoles and
50 fmoles of each protein were loaded on an 8% polyacrylamide gel and quantified by Coomassie blue
staining. B) Increasing amounts of each protein (35.25, 75, 150 and 300 fmoles) were mixed with
radioactive, unpurified dsRNA substrates (120 fmoles) in the combinations indicated by (+). In the
absence of ATP the highest amount of each protein was used. Unwinding reactions were carried out at
37°C in the presence (+) or in the absence (-) of 1 mM ATP. After 30 min, an aliquot (10 µl) from each
reaction was analyzed by native 10% PAGE.
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3.3. RNA binding properties of recombinant MLE and MLE deletion mutants

3.3.1 Binding to ssRNA

MLE has been shown to bind ssRNA with higher affinity than ssDNA. In the same

studies MLE ATPase activity was strongly stimulated by dsRNA and MLE unwound

dsRNA substrates more efficiently than dsDNA. These data suggest that both, ssRNA and

dsRNA, can be bound by MLE (Lee et al., 1997). However, it is not known whether MLE

is able to distinguish both RNA substrates. To address the RNA binding properties of

MLE, electrophoresis mobility shift assays (EMSA) were employed. Comparable

amounts of MLE and MLE derivatives (Fig. 23, A) were mixed with ssRNA at an

approximate molar ratio of 1:1.

Only a weak mobility-shifted band could be observed for recombinant MLE and ssRNA,

and the shift was ATP independent. However, in the presence of non-hydrolysable ATP

(ATPγS), MLE was unable to bind the substrate. Inclusion of ADP permitted binding

(Fig. 23, B and lanes 2, 3, 4, 5).

The MLEGET protein contains a point mutation (K413E) in the active site of the ATPase

domain, shown for other helicases to abolish both ATP binding and hydrolysis. However,

in the case of MLE, this mutation impairs only its ATPase activity, but affects less

severely its capacity to bind NTPs. A 5 to 10 fold lower affinity for GTP compared to

wild type MLE has been estimated for recombinant his-MLEGET (Lee et al., 1997). The

experiment shows that MLEGET bound ssRNA in an ATP-independent manner. In

addition, unlike MLE, ATPγS did not affect the capacity of MLEGET to bind ssRNA (Fig.

23, B and lanes 6, 7, 8, 9).

Deletion of the dsRB1 had no impact on MLE ssRNA binding ability (Fig. 23, B and

lanes 10, 11, 12, 13). In contrast, MLEΔRB2 did not bind ssRNA in all tested conditions

(Fig. 23, B and lanes 14, 15, 16, 17).

Interestingly, MLEΔRGG showed a better capacity to bind ssRNA than MLE, and defined

bands can be reproducibly visualized for this mutant. In addition, while ATP did not

affect the ssRNA binding ability of the other proteins, binding of MLEΔRGG to ssRNA

was less efficient in the presence of ATP (Fig. 23, B and lanes 18, 19, 20, 21).
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3.3.2 dsRNA binding of MLE and MLE deletion mutants and helicase activity

The influence of the different RNA binding domains on MLE dsRNA binding capacity

was also tested. The same dsRNA substrate used in the helicase assay was further

purified and used as probe for the band shift experiments. Due to the strong activities of

the helicases, their unwinding capacity could be visualized in the same assay. A small

amount of ssRNA was not eliminated upon purification of the dsRNA. However, both

RNAs can be discriminated on the agarose gel, allowing comparing the ssRNA and

dsRNA binding properties of the MLE derivatives.

In the absence of ATP, two types of MLE-dsRNA complexes were observed (Fig. 23, C

and lane 3). With increasing amounts of MLE, the fast-migrating complex disappeared,

with the concomitant increase of the slow-migrating complex (data not shown). These

results suggest that more than one MLE protein binds one molecule of RNA successively.

It is also possible that MLE is able to dimerize and that the shifted bands correspond to

different multimeric protein-RNA complexes. In the presence of ATP, MLE helicase

activity was strongly stimulated and most of the dsRNA-hybrids were converted into

ssRNA (Fig. 23, C and lane 4). Only a weak shift of the corresponding ssRNA was

observed. In the presence of ATPγS, MLE helicase activity was inhibited and binding to

dsRNA was also impaired (Fig, 23, C and lane 5). When ADP was included, binding of

MLE to dsRNA occurred and MLE-RNA complexes were formed as in the absence of

ATP (Fig. 23, C and lane 6). Thus, MLE dsRNA binding capacity is different with ATP

and ATPγS, suggesting that the affinity to dsRNA is modulated at different stages in the

cycle of ATP hydrolysis.

MLEGET bound dsRNA less efficiently than MLE (Fig. 23, C and lanes 7, 8, 9, 10) and

dsRNA-MLEGET complexes were poorly resolved. However MLEGET, as expected, has no

helicase activity and in the presence of ATP no release of ssRNA was observed. In

addition, the binding of MLEGET to dsRNA was also inhibited in the presence of ATPγS.

The RNA binding capacity of MLE was not affected by deletion of the dsRB1, in

agreement with its similar ATPase and helicase activities to the wild type protein (Fig.

23, C, lane 11, 12, 13, 14).

The MLEΔRB2 mutant did not bind dsRNA (Fig. 23, C and lanes 15, 16, 17, 18). However,

in the presence of ATP or ADP a decrease in the dsRNA probe was observed, although

no defined RNA-proteins complexes could be resolved.
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Deletion of the RGG domain differently affected MLE RNA binding properties (Fig. 23,

C and lanes 19, 20, 21, 22). In the presence of ATP, helicase activities could be observed.

However, in contrast to the wild type MLE, MLEΔRGG has increased affinity for ssRNA,

yielding robust band shift. This result can also explain the higher KM for RNA calculated

for the MLEΔRGG mutant in the ATPase assay. Due to its better binding to ssRNA the

MLEΔRGG mutant releases ssRNA slower than the wild type MLE and the MLEΔRB1

mutant and thu the binding of new dsRNA substrate is affected. In addition, in the

presence of ATPγS, both dsRNA and ssRNA bands were shifted to slow-migrating bands,

whereas under similar conditions almost no binding to RNA could be observed for the

other proteins. In the ADP-bound conformation, binding of MLEΔRGG to ssRNA and

dsRNA substrates occurred as in the absence of any NTP.

These results show that MLE is able to discriminate between ssRNA and dsRNA, and

that it associates preferentially with dsRNA. Deletion of the C-terminal RGG domain

increases the affinity of the corresponding mutant for both dsRNA and ssRNA, although

like the wild type protein, the mutant binds dsRNA better than ssRNA. The dsRB1,

although predicted to bind double stranded RNA, appears not to contribute significantly

to MLE RNA binding in these conditions. Instead, the dsRB2 domain seems essential for

both ssRNA and dsRNA binding. However, the possibility that the MLEΔRB2 mutant is

not properly folded cannot be excluded. In addition, MLE RNA-binding capacity is

strongly modulated by ATP, with ATP binding and ATP hydrolysis having different

effects.
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Fig. 23. RNA binding properties of MLE and MLE derivatives. A) Quantification of MLE and MLE
deletion mutants on Coomassie stained polyacrylamide gel. For each protein two amounts were loaded
(30 ng and 60 ng). B) Electrophoresis mobility shift assay, using 25-50 fmoles of MLE or MLE deletion
mutants and 25-50 fmoles of radiolabeled ssRNA. Different NTP substrates (ATP, ATPγS and ADP)
were also added (+) or not (-) in each reaction mixture, at a concentration of 1 mM. C) Binding of
recombinant MLE and MLE mutants to dsRNA. Reaction conditions are the same as for the ssRNA band
shift. The position of ssRNA and dsRNA are also indicated.
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4. In vivo localization of MLE deletion mutants

MLE enzymatic activities are required in vivo for its stable localization to the X territory

and for dosage compensation (Gu et al., 2000; Lee et al., 1997). Since MLE mutant

proteins have different enzymatic properties in vitro, their ability to selectively associate

to the X chromosome was tested. The same constructs used to produce the baculoviruses

were cloned in a vector for expression in the male Drosophila Schneider cells line (SF4).

A sequence encoding the green fluorescent protein (GFP) was fused at their C-terminus

in order to distinguish them in vivo from endogenous MLE. 2 days after transfection, SF4

cells were subjected to immunofluorescence experiments, where GFP antibodies were

used to visualize the different fusion proteins and MSL1 antibodies were chosen to mark

the X territory. In order to have a better idea about the recruitment capacity of the

different mutants, only those cells where the GFP fusion proteins were expressed at low

levels were considered.

Exogenous MLE-GFP reveals a distribution pattern similar to the endogenous MLE

protein with a clear enrichment to the X territory as shown by its colocalization with

MSL1 (Fig. 24, A)

Surprisingly, the MLEΔRB1-GFP mutant, even though still active in vitro in both ATPase

and helicase assays did not preferentially localize to the X territory. Enrichment on the X

could be observed only in a very limited number of cells. However, the definition of the

territory was not as clear as for the wild type protein and higher staining in the

nucleoplasm was seen.

In flies MLEGET had been shown to be recruited to the X chromosome at only few sites as

well as at some autosomal loci (Lee et al., 1997). In Drosophila SF4 cells MLEGET-GFP

did not preferentially colocalize with MSL1 on the X. However, in some cases, like for

the MLEΔRB1 mutant, enrichment on the X chromosome was observed.

Both MLEΔRB2-GFP and MLEΔRB1-2-GFP fusion proteins were distributed over the entire

nucleus and no targeting to the X could be visualized. Differently from the other fusion

proteins, MLEΔRB1-2 also localizes in the cytoplasm.

Deletion of the RGG-box completely dislocated the MLEΔRGG-GFP mutant to the

cytoplasm, suggesting the presence of a nuclear localization signal (NLS) within this

region. To confirm this hypothesis and to verify the effect of the RGG domain on MLE

recruitment to the X, two additional mutants were produced. First, the region deleted in
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the MLEΔRGG-GFP protein was fused directly N-terminally to GFP. Second, an artificial

nuclear localization signal was placed behind the GFP in the MLEΔRGG-GFP fusion

protein (Fig. 24, B).

The RGG domain alone was sufficient to localize GFP in the nucleus, whereas the

MLEΔRGG-GFP-NLS protein, once artificially translocated to the nucleus, showed a

distribution pattern reminiscent of the one seen for MLEGET and MLEΔRB1 (Fig. 24, C).

These results confirm that the C-terminal region of MLE, containing the RGG-box, also

harbors a nuclear localization signal (NLS), required for its stable maintenance in the

nucleus. In addition, the failed localization of the MLEΔRB1-2 and the MLEΔRB2 inactive

mutants suggest that MLE enzymatic activities are necessary for the correct targeting of

MLE to the X chromosome. However, correct targeting does not follow the activity

profile as shown by the different distribution of the active MLEΔRB1 mutant when

compared to the wild type protein. Taken together these results also suggest that MLE

enzymatic activities, although necessary, are not sufficient for its correct targeting to the

X and reveal additional requirements (summary in Table 1).
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Fig. 24. In vivo localization of MLE and MLE deletion mutants. A, C) Drosophila SF4 cells were
transiently transfected with either MLE or the indicated MLE mutants, all fused to GFP at their C-
terminus. Localization of the fusion proteins was visualized using GFP antibodies (αGFP) and the X
territory was marked with MSL1 (αMSL1). DNA was counterstained with TOPRO-3. Images were
acquired with a Zeiss LSM 510 META confocal microscope. B) Schematic representation of RGG-GFP
and MLEΔRGG-GFP-NLS fusion proteins.
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Protein
X chromosome

targeting

Nuclear

localization

MLE + + + +

MLEGET + - + +

MLEΔRB1 + - + +

MLEΔRB2 - + +

MLEΔRB1-2 - + -

MLEΔRGG-NLS + - + +

MLEΔRGG -

Table 1. Summary of the results from the in vivo localization studies of MLE and MLE deletion
mutants in SF4 cells. Degrees of X chromosome targeting are indicated as follows: ++ (defined staining
on the X). +- (enrichment on the X with higher nuclear staining). – (no enrichment on the X). Degrees of
nuclear localization are indicated as follows: ++ (localization in the nucleus). +- (localization in both
nucleus and cytoplasm). - (localization in the cytoplasm).
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5. Strategies to study the function of roX RNAs

5.1. In vivo localization of the tagged ms2-roX2 RNA

An ms2 tagging approach has been used in different systems to visualize the in vivo

localization of reporter RNAs (Bertrand et al., 1998). The ms2 sequence codes a 19-

nucleotide RNA stem loop, which is specifically recognized by the viral coat protein

MS2. Fusion of MS2 to GFP can then be used to follow RNA movements in living cells.

The same system was utilized in Drosophila cells to characterize important regions of

roX2 RNA required for its correct targeting to the X chromosome (Fig. 25, A). Six ms2

sites were inserted at the 5´of the spliced isoform rox2 78.2.2, in order to increase the

signal from multiple bound GFPs (Fig. 25, B). The endogenous roX2 promoter was

chosen to avoid undesirable effects due to overexpression of the reporter roX2 RNA. The

expression levels of the MS2-GFP fusion protein were, however, driven by the inducible

metallothionine promoter. The ms2-roX2 construct was stably transfected into SF4 cells

and its correct expression analyzed by RT-PCR using specific ms2 and roX2 primers

(Fig. 25, C). Quantification showed an approximately 2 fold higher expression of

exogenous roX2 compared to endogenous roX2 RNA (data not shown). Recombinant

MS2-GFP was then expressed in the stable ms2-roX2 line and 2 days after transfection,

cells were observed under the microscope. An overall staining of MS2-GFP protein in

both nucleus and cytoplasm was observed in cells expressing MS2-GFP and specific

recruitment of ms2-roX2 RNA to the X chromosome was not apparent (Fig. 25, D). A

fine titration of MS2-GFP expression levels, avoiding overexpression of the chimera

fusion protein, also led to the same negative results (data not shown). These data suggest

that the presence of ms2 tags at the 5´ end of roX2 RNA may affect its correct folding

and as a consequence its proper localization to the X chromosome. This hypothesis is also

supported by the fact that the same ms2-roX2 construct did not rescue the lethality of the

double knockout roX RNAs male flies (M. Prestel, unpublished results).
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Fig 25. In vivo strategy to study the function of roX RNAs. A) Schematic representation of the in vivo
strategy to visualize roX2 RNA recruitment to the X chromosome in Drosophila cells. B) Schematic
representation of the ms2-roX2 construct. C) RT-PCR on total extract from wild type and the ms2-rox2
stable cell lines with specific ms2 and roX2 primers. D) A construct expressing recombinant GFP-MS2
fusion protein was transiently transfected into ms2-roX2 expressing cells.
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When ectopically expressed from autosomal positions, roX2 RNA was shown to compete

for the binding of the MSL proteins to the X chromosome (Park et al., 2002). In this

situation, recruitment of the MSLs to the insertion site and limited spreading of the DCC

on the X chromosome can be observed.

In view of these data it is possible that the ms2-roX2 RNA does not localize to the X

chromosome because the endogenous roX2 competes for proper targeting. However, the

tagged RNA might still be integrated into the DCC complex and lead to the delocalization

of the MSL proteins from the X territory. To test this hypothesis, the ms2-roX2 stable cell

line was subjected to immunofluorescence analysis with specific antibodies against

MSL3 and MLE. These proteins did not show any different distribution pattern when

compared to wild type SF4 cells (Fig. 26), suggesting that the ms2 tagging strategy

compromised both the targeting and the MSL binding properties of roX2 RNA.

Fig. 26. Immunofluorescence on wild type SF4 cells and ms2-roX2 stably transfected SF4 cells.
αMLE and αMSL3 antibodies were used to detect the corresponding endogenous proteins. DNA was
counterstained with Hoechst 33258.

5.2. Identification of proteins specifically binding ms2-roX2 RNA

In vitro pull down experiments were also attempted to analyze binding of MSLs to ms2-

roX2 (Fig. 27, left). The same approach may allow the identification of new candidate

proteins involved in dosage compensation.
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Nuclear extracts from the ms2-roX2 stable cell lines were incubated with GST-MS2 or

GST proteins bound to affinity glutathione beads. Nuclear extracts from untransfected

cells were used as a control. Specific binding of ms2-roX2 RNA to GST-MS2, but not to

GST beads, was confirmed by RT-PCR (data not shown). The presence of the MSL

proteins was checked by Western blot analysis with specific MSL antibodies. MLE could

be specifically copurified with ms2-roX2 as shown by its absence in the pull-down

fractions from wild type cells incubated with GST or GST-MS2 beads, as well as from

ms2-rox2 cell extracts incubated with GST beads (Fig. 27, right). In contrast, MSL1,

MSL2, MSL3 and MOF did not bind ms2-roX2 (data not shown). Since expression of

ms2-roX2 RNA does not affect the proper localization of MLE on the X chromosome,

one possible explanation is that only a small fraction of MLE interacts with this RNA. On

the other hand, the capacity of MLE to bind RNA not specifically should also be

considered. As shown in the silver stained gel, specific proteins were copurified with

ms2-roX2 (Fig. 27, right). However, since MSL proteins cannot be purified using this

approach, it remains doubtful that these factors have a role in dosage compensation.

Fig. 27. In vitro strategy to study the function of roX RNAs. Left) Schematic representation of the in
vitro approach to purify ms2-roX2 RNA binding proteins. Right) Extracts from wild type and ms2-roX2
expressing cells were incubated with GST or GST-MS2 coated beads. After pull down, the presence of
the MSL proteins was checked by Western blot, whereas unknown proteins, binding ms2-roX2 RNA,
were visualized on silver stained gel.
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III. Discussion

1. Association of MLE with the DCC complex

1.1. Reconstitution of a complete DCC in Sf9 cells: advantages of the baculosystem

The baculosystem has been previously used for the purification of a four subunit

complex containing an active MOF enzyme (Morales et al., 2004). Recombinant MLE-

flag, expressed and purified from Sf9 cells, is also strongly active and helicase activity

could be measured even at 4°C (see results). For these reasons the baculosystem was

employed for the reconstitution of the complete DCC. In addition to the known protein

components, a virus expressing roX2 RNA was generated. roX2 is correctly expressed,

showing that the Sf9 cells can also be used to produce and study non-coding RNAs. For

the purification of the MSL complex, Sf9 cells were coinfected with up to six viruses.

Although the recovery of the proteins was generally higher using fewer viruses, the

MSL proteins were stable and no degradation products were detected. Since MLE has a

similar size to MOF its interaction with the other MSL proteins was confirmed by

Western blot. However, when fractions of the eluted DCC complex were tested in the

ATPase assay, only a weak enzymatic activity could be measured (data not shown).

These results show that only a small fraction of MLE is copurified with the MSLs. It is

possible that MLE associates only transiently with the DCC because it enzymatically

acts on the complex, which may render MLE difficult to copurify with the MSL

proteins. Although the amount of baculoviruses expressing the different MSLs had been

fine-titrated, substoichiometric levels of MSL2 and MOF were present in the complex

relative to MSL1 and MSL3. If association of MLE with the DCC is strictly dependent

on MSL2, improving the stoichiometry of the reconstituted complex would also

increase the amount of MLE protein copurified.

When compared to the input material, only small amounts of roX2 RNA were

integrated into the DCC after purification, and several cycles of amplification were

needed for its detection. It is possible that correct incorporation of roX RNA requires a

co-transcriptional assembly of the MSL proteins, a condition that may not be met in Sf9

cells. However, the stoichiometry of roX RNAs and MSL proteins in the complex is
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currently not known. Moreover, whether each MSL complex, bound to the X, contains

roX RNAs cannot be verified with the state of art techniques employed. The possibility

that our results may reflect the real in vivo situation should not be excluded.

1.2. MSL proteins specifically bind roX2

Expression of the DCC components in the Sf9 cells has allowed for the first time to

demonstrate a specific interaction of the MSL complex with roX2 RNA. Among the

DCC members, MSL3, MOF and MLE bind RNA (Akhtar et al., 2000; Lee et al., 1997)

and so far, only MSL3 has been suggested to interact specifically with roX2 RNA in

vitro (Buscaino et al., 2003). However, this result has not been reproduced in our lab. A

possible explanation is that a specific and stable association of the MSLs with roX1 and

roX2 non-coding RNAs depends on their faithful integration into the DCC complex.

Analysis of the roX RNA binding properties of each single MSL protein should be

tested in the same system to confirm this hypothesis.

To address the specificity of the MSL proteins for roX2 RNA, the antisense sequence of

roX2 (ant-roX2) was chosen as control. Ant-roX2 RNA also codes for a non-coding

RNA with similar GC content and similar propensity to form secondary structures. It

should be mentioned that the programs available for RNA structure predictions are not

very reliable since for the same sequence they generally give very different results.

Therefore these obsevations should be interpreted with caution. However, among the

most stable structures, no identical hairpins were predicted for roX2 and ant-roX2

RNAs (data not shown). The MSL proteins specifically bind roX2 RNA, and no

interaction with ant-roX2 RNA could be detected. It is likely that only properly folded

roX2 RNA molecules are recognized by the DCC. It is conceivable that MLE, through

continuous cycles of winding and unwinding, might be required to maintain correct

structures under physiological conditions. However, I was unable to detect the

beneficial effects of MLE in the reconstitution system employed. In addition, stable

association of roX RNAs into the complex might also depend on MLE.
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1.3. Integration of MLE into the DCC does not require roX2 RNA

In flies mutated for MOF or MSL3, partial complexes consisting of MSL1, MSL2,

MLE and roX RNAs can be visualized at few high affinity sites on the polytene male X

chromosome (Kelley et al., 1999; Lyman et al., 1997). Due to the presence of roX

RNAs, it was suggested that integration of MLE into the DCC complex is roX RNA-

mediated (Meller et al., 2000). This conclusion was also suggested by previous attempts

to purify the DCC, which led to dissociation of MLE from remaining MSLs at high

stringency (Scott et al., 2000).

In my DCC reconstitution, MLE copurified with the other MSLs in the absence of

expressed RNA and in the presence of either roX2 or ant-roX2 RNAs. This result

suggests that association of MLE with the other MSL proteins is direct and does not

specifically require roX2. This hypothesis was confirmed in vitro by several assays,

where a preferential association of MLE with MSL1 and MSL2 was observed. In

addition, RNase and/or DNase treatment of coinfected Sf9 cells extracts did not affect

the capacity of MLE to pull down MSL2, showing that this interaction does not depend

on RNA.

Although roX RNA improves the assembly and the distribution of the DCC over the X

chromosome in wild type flies (Meller et al., 2000; Meller and Rattner, 2002; Park et

al., 2002), the lethality of roX1 and roX2 null males can be partially overcome by

overexpressing MSL1 and MSL2 (Oh et al., 2003). Consistent with these observations,

interaction of MSL3 and MOF with MSL1, rather than their ability to bind RNA, has

been shown to play the major role in the recruitment of both proteins to the X territory

(Morales et al., 2005; Morales et al., 2004). MSL3 and MOF bind RNA in vitro via their

related chromo-barrel domains and point mutations in MOF chromo-barrel domain also

affected RNA binding both in vitro and in vivo (Akhtar et al., 2000). However, structure

analyses suggest that, although the MOF-like chromo-barrel domains may have a role in

RNA binding, they also share a common fold with chromatin-associated modules

(Maurer-Stroh et al., 2003). The MSL3-like chromo-barrel domains are instead

predicted to bind methylated residues, a proposition that needs to be tested in vivo

(Nielsen et al., 2005). Moreover, MLE might have only a general affinity for RNA, as

comparable amount of roX2 and ant-roX2 are copurified in its presence. If MLE binds

RNA non specifically, considering that roX RNAs represent only a small fraction of the

total RNA present in a cell, it is plausible to think that they are also not the main
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determinant for MLE targeting to the X. Direct interaction of MLE with the other MSLs

might instead play the major role.

First attempts to identify regions within MLE required for MSL1 and MSL2 binding

failed. All the MLE derivatives, used for the characterization of MLE enzymatic

properties still interact with both MSLs, although with different affinities. A possible

explanation is that MLE uses more than one domain to interact with MSL1 or MSL2. In

support of this hypothesis, several factors have been shown to utilize dsRNA-binding

domains and RGG boxes to be integrated into multiprotein complexes. Recently the

RB1 and the RGG domains of RHA have been shown to form together a specific

interacting surface for the Werner syndrome protein, WRN (Friedemann et al., 2005).

2. Targeting of MLE to the X chromosome

2.1. Different properties of MLE RNA binding domains

Since for all helicases it is believed that nucleic acid binding plays a critical role in

coordinating NTP hydrolysis and the unwinding process (Delagoutte and von Hippel,

2002), the contribution of the different RNA binding domains to MLE enzymatic

activity was analyzed in detail.

In general, MLE and the different deletion mutants show a better binding to dsRNA as

compared to ssRNA. Interestingly, deleting the RGG domain increased binding of MLE

to ssRNA and presumably to dsRNA as well. As a result, a slight decrease in the

efficiency of MLE ATPase and helicase activities could be observed. The opposite

phenomenon has been described for RHA. The RGG box of RHA hardly had any

influence on RNA binding, whereas the ATPase activity of the corresponding RHA

mutant was severely affected (Zhang and Grosse, 1997). These results suggest that,

while the RGG domain of RHA is required for proper enzymatic activities, in the case

of MLE this domain might instead be needed to modulate the affinity of RB1 and/or

RB2 domains for RNA. In addition, the MLEΔRGG mutant is the only one showing

dependency on ATP for ssRNA binding.

In the absence of RB2, the RNA binding ability of MLE was strongly impaired and as a

consequence its ATPase and helicase activities were affected. The RB2 domain seems,
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therefore, to play the major role in coordinating RNA binding and enzymatic properties.

The same type of analysis for RHA showed that both RB1 and RB2 domains are

dispensable for helicase activity, as their deletion did not abolish the capacity of RHA to

hydrolyze ATP (Zhang and Grosse, 1997). However, I cannot exclude the possibility

that removal of the RB2 domain in MLE affects the correct folding of the ATPase

domain, resulting in an inactive protein. The RB1 domain of MLE is clearly dispensable

for both RNA binding and enzymatic activities.

The K413E mutation in MLE ATPase domain abolishes its ATPase activity, although

the MLEGET mutant still retains the capacity to bind NTP. A five to ten fold lower

affinity for GTP has been measured for this mutant as compared to the wild type protein

(Lee et al., 1997). As expected, MLEGET mutant does not have ATPase and helicase

activities. As previously shown, it also binds ssRNA less efficiently than wild type

MLE and in an ATP-independent manner. We also found a weaker association of

MLEGET to dsRNA compared to wild type MLE. However, contradictory results have

been obtained in the dsRNA binding assays. ATP and ATPγS, supposed to have the

same effect, gave instead opposite results. In the presence of ATP a poorly resolved

dsRNA/MLEGET band shift was observed, but ATPγS completely abolished the dsRNA

binding. One possible explanation is that the affinity of the MLEGET mutant for ATP

and ATPγS is different. However, upon sequencing of the MLEGET plasmid, in addition

to the expected K413E mutation, a second mutation P590R in the loop connecting the

ATPase domain and the helicase domain was identified. When the MLEGET-KRR double

mutant and the MLEGET point muant were fused to GFP and transfected in SF4 cells to

compare their recruitment capacities to the X, clearly different distribution patterns were

observed (data not shown). MLEGET showed a nuclear distribution and sometimes

enrichment on the X, whereas the MLEGET-KRR was distributed all over the nucleus and

the cytoplasm and no preferential association to the X could be observed. In addition,

since the MLEGET-KRR mutant is expressed at a low level in Sf9 cells and copurified with

additional factors, MLEGET-KPR/dsRNA complexes are poorly resolved. The further

expression and purification of the MLEGET mutant is needed to elucidate its mechanisms

of RNA binding.

Beside their high similarity (Lee and Hurwitz, 1993), RHA and MLE RNA binding

domains appear to have different roles. The isolated RGG domain from RHA showed a

strong affinity for single strand nucleic acids and in particular for ssDNA (Zhang and

Grosse, 1997). Based on these findings the same features have been predicted for the
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RGG domain of MLE (Gibson and Thompson, 1994). By contrast, removal of the RGG

region from MLE increased its affinity for ssRNA. However, it cannot be excluded that

the intrinsic properties of the isolated MLE RNA binding modules are different.

In addition, in the context of RHA cooperation between the RNA binding domains have

been proposed to change their affinity for ATP as well as for RNA in order to achieve a

proper stimulation of enzymatic activities. In view of our results such a model could

also be true for MLE. Unfortunately, there are no data available about the orientation of

RGG-boxes and dsRNA-binding domains in the tridimensional structure of large

helicase enzymes. Recently, the tertiary structure of the E. coli DbpA SFII RNA

helicase has been predicted by computational analysis (Talavera and De La Cruz, 2005).

DbpA is implicated in ribosome biogenesis and is characterized by a central helicase

domain and a C-terminal RGG domain, thought to determine the specificity for

ribosomal RNA (Tsu and Uhlenbeck, 1998). Using comparative modeling and structure

prediction methods, ten models for DbpA have been generated, all consisting of two

domains (Fig. 28): the N-terminal domain, containing the conserved helicase core and

the C-terminal domain, containing the RGG box. The structure of the helicase core is

very similar to other helicases (review in (Delagoutte and von Hippel, 2002)), whereas

the predicted C-terminal fold consisted of a β-hairpin and a α-helix with an overall

positive electrostatic potential due to a cluster of basic amino acids residues. These

findings are consistent with this domain playing a role in RNA binding (Tsu et al.,

2001). Although the predicted models differ in the relative orientation of the N-terminal

and the C-terminal domains, in all cases hydrophobic contacts bring the two domains

close to each other. This interaction has been proposed to influence the activity of the

helicase domain as well as its affinity for the ATP and the RNA substrates (Henn et al.,

2002; Polach and Uhlenbeck, 2002).
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Fig. 28. A) Structural homology model of DbpA illustrating the possible orientations of the C-terminal
domain. The ribbon diagrams are colored at the helicase core (residues 1–371 are silver; P-loop motif,
residues 47–54 are magenta; DEAD box, residues 151–156 are cyan; SAT motif, residues 184–186 are
yellow; motif VI, residues 325–335 are gold) and at the C-terminal domain. Residues 372–456 are
colored red (model 1), magenta (model 2), yellow-green (model 3), cyan (model 5), green (model 7), and
blue (model 9). B) Derived models consistent with hydrodynamic measurements (sedimentation
coefficient and diffusion coefficients) (Talavera et al., 2006).
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2.2. Model of MLE translocation on dsRNA

Different types of nucleotides have been employed in the band-shift assay to elucidate

the molecular mechanisms that govern MLE translocation along the dsRNA substrate.

Interestingly ATP binding and hydrolysis differently modulate MLE binding to both ss

and dsRNA. In the presence of ATPγS binding of MLE to ssRNA and dsRNA is

impaired, whereas ADP has the opposite effect. These results suggest that

conformational changes occur in MLE during the cycle of ATP hydrolysis (Fig. 22). In

the ADP-bound state the RB2 and the RGG domains might be close to each other,

forming the “closed” conformation of MLE. This situation allows the RGG domain to

constrain binding of the RB2 to the RNA substrate, perhaps decreasing its affinity for

RNA. Binding of ATP might instead lead to the formation of the “open” conformation,

in which the RB2 and the RGG domains are separated from each other. In this state

MLE seems to have a very low affinity for RNA and can then move along the substrate

and release ssRNA, in concomitance with ATP hydrolysis. In this model the RB1 has

not been considered. Deletion of RB1 did not have any effects on MLE enzymatic

activities and whether this domain is really able to bind RNA cannot be addressed in

these experiments. Noteworthy, in the MLEΔRB2 mutant, RB1 cannot complement the

loss of RB2. However, RB1 might be able to bind RNA, but it cannot reach the

substrate, because of the presence of RGG interacting with RB2. In this scenario,

deletion of RGG enables RB1 and RB2 to bind RNA, explaining the better RNA

binding observed for the MLEΔRGG mutant. The corresponding RB1 domain in RHA has

been shown to interact preferentially with dsRNA, although more efficient binding

could be observed when a mutant consisting of both RB1 and RB2 was tested. A more

detailed analysis of the isolated RB1 and RB2 domains of MLE is needed to elucidate

the precise function of all domain within MLE.

2.3. MLE enzymatic activity is not sufficient for proper targeting to the X

The enzymatic activities of MLE are essential for dosage compensation, as the MLEGET

ATPase-inactive mutant failed to rescue the lethality of mle null flies (Gu et al., 2000;

Lee et al., 1997). Since the deletion mutants used in this study affected the helicase
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activity of MLE differently, the role of the RNA binding domains on the recruitment of

MLE to the X territory was addressed.

The most surprising result was the distribution pattern of the MLEΔRB1 mutant. This

protein was expected to localize on the X chromosome, as it shows similar enzymatic

activities to the wild type protein in vitro. Instead, only a slight enrichment on the X

territory could be observed. In addition, similarly to the MLEGET and the MLEΔRGG-NLS

mutants, enhanced nuclear staining relative to wild type MLE was observed. These

results suggest that MLE enzymatic activities, although necessary for dosage

compensation, are not sufficient to target or to maintain MLE on the X chromosome.

However the main determinant for proper MLE targeting remains unknown. The RNA

binding capacity, protein-protein interactions and proper enzymatic activities might

contribute all together to integrate MLE into the DCC complex and to achieve a proper

compensation of X linked genes.

One intriguing possibility is that the N-terminal RB1 domain of MLE, which is

dispensable for RNA binding, contributes instead to the specific targeting of MLE to the

X chromosome. In support of this hypothesis, the dsRB1 of RHA has been shown to be

required for specific dsDNA recognition at the p16INK4a promoter (Myohanen and

Baylin, 2001). Interestingly, a specific interaction of MLE with a short DNA sequence

within the roX2 promoter has been recently observed (Lee et al., 2004).

The nuclear localization signal of MLE was mapped to the RGG domain. The MLEΔRGG

fusion protein is cytoplasmic, whereas the isolated RGG domain alone positively

localizes to the nucleus. The presence of an NLS within the RGG domain had already

been described for other RGG-containing proteins, including RHA (Nichols et al., 2000;

Siomi and Dreyfuss, 1995). Interestingly, methylation of specific arginine residues

within this region by the PRMT class of arginine methyltransferases had been shown to

control the nuclear import of several RNA binding factors (Liu and Dreyfuss, 1995;

McBride et al., 2005; Xu and Henry, 2004). In the case of RHA, methylation is also

required for its stable maintenance in the nucleus (Smith et al., 2004). Treatment of SF4

cells with inhibitors of arginine methylation did not affect MLE localization, raising the

possibility that the nuclear import of MLE is regulated by a different mechanism (data

not shown). However, due to the lack of a proper control for arginine methylation we

cannot exclude the possibility that this modification also occurs within the RGG domain

of MLE. In this context it should be noted that the MLEΔRB1-2 fusion protein is the only
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MLE mutant that shows both nuclear and cytoplasmic staining. Stable maintenance of

MLE in the nucleus may rather rely on its N-terminal RNA binding domain than on

post-translational modification of the RGG domain.

2.4. Correct targeting of the DCC to the X territory in SL2 cells requires MLE

Genetic studies in flies led to a model of sequential recruitment of the MSL proteins to

the X chromosome in males. Accordingly, it has been suggested that MSL1 and MSL2

are the first DCC members that bind to the high affinity sites on the X. In this scenario,

recruitment of MSL1 and MSL2 is independent of the other MSLs, whereas MLE

seems required for correct targeting of MOF and MSL3 as well as of roX RNAs. Since

the MSLs have been shown to stabilize each other, their absence from the X

chromosome in flies mutated for each single msl genes, could simply be due to a

decreased amount of proteins not detectable by immunofluorescence.

I employed RNAi of MLE in SL2 cells to study the effects of MLE ablation on the

targeting of the other DCC components on the X chromosome. Even though the

resolution of signals in the small Schneider cell nuclei is not high enough to

discriminate X chromosomal binding sites, the RNAi technique offers the advantage to

follow the effects of changing the MSL proteins levels on their correct targeting on the

X during a time course. After 3 days of RNAi, when most MLE is gone, only a slight

reduction in MSL1 protein can be detected by Western blot and normal levels of the

other MSLs are still present in the cells. However no recruitment of the DCC on the X

territory could be observed and as a consequence H4-K16 acetylation was redistributed

all over the nucleus. These results suggest that MLE is required for proper targeting and

perhaps maintenance of the DCC on the X chromosome. However, whether MSL1 and

MSL2, in the absence of MLE, are still present at the “high affinity” sites on the X

could not be addressed. One possibility is that in the absence of MLE, MSL1 and MSL3

can still activate MOF. However, since recruitment of MOF to the X depends on MLE,

the acetyltransferase activity cannot be targeted to the X, but it is instead relocated onto

all chromosomes.

Interestingly, MLE 6E11 antibodies recognize a slow migrating band in the total SL2

extract, in addition to the band corresponding to endogenous MLE. The specificity of

this band for MLE is demonstrated by its lost upon RNAi of MLE. Modifications of
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MLE have not been described so far, but unstable post-translational modifications like

sumoylation or ubiquitylation might be considered as the slow migrating band is highly

unstable and lost upon nuclear extract preparation. E3 ligases, which are required in the

last step of the ubiquitylation reaction, generally contain RING finger domains, which

are essential for their enzymatic activity. Such a domain is present in MSL2 and I have

observed a preferential association between MLE and MSL2. A speculative hypothesis

is that MLE might be ubiquitylated by MSL2 in order to be targeted to the X

chromosome. Unmodified MLE might instead account for other functions not related to

dosage compensation. Recently, DNA-dependent protein kinase (DNA-PK) has been

shown to phosphorylate RNA helicase A, in a RNA-dependent manner (Zhang and

Grosse, 2004), opening even more complicated possibilities for MLE regulation.

A strong reduction in MSL1 protein level and a mild reduction of MSL3 protein level

were observed after 6 days of MLE RNAi. Considering that MOF has been proposed as

the only Drosophila histone acetyltransferase responsible for H4-K16 acetylation

(Akhtar and Becker, 2000) and that the HAT activity of MOF in vitro requires its

interaction with MSL1 and MSL3 (Morales et al., 2004), a decrease in H4-K16

acetylation levels was expected. In contrast, an increased H4-K16 acetylation was

reproducibly observed. These results suggest that while the MSL proteins might have a

specific role in restricting H4-K16 acetylation specifically to the X for dosage

compensation, unknown factors might activate MOF´s activity on the autosomes. The

increased level of this modification might be due to the fact that under those

circumstances more autosomal genes are targets of MOF. It is also possible that MOF

activity is counteracted on the X by repressive factors, whereas different mechanisms

might modulate its activity on autosomes.

3. Models for DCC assembly and targeting to the X chromosome in males

The results obtained and published data can be integrated into a model explaining the

targeting of the DCC to the X chromosome in males. We propose two main mechanisms

of recruitment, which mainly differ by the presence and the absence of the roX RNAs

(Fig. 29).
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In the former case MSL1 and MSL2 are the first DCC components, binding to few

“high affinity sites” on the X. Subsequently, MLE is targeted to the X by association

with MSL1 and MSL2. The MLE enzymatic activities might be required for the proper

folding of roX RNAs and/or for stabilization, by feeding them into partial MSL

complexes. Finally, interaction of MOF and MSL3 to MSL1 allows the formation of a

complete DCC. Due to the presence of roX RNAs, this ribonucleoprotein complex

might be more stable on chromatin and it can bind also moderate and low affinity sites,

covering the entire X.

In the second model the same protein-protein interactions are utilized by the MSLs to

assembly a complete complex on the X. However, due to the absence of roX RNA, the

DCC is less stable on chromatin and cannot bind moderate and low affinity sites. This

scenario is reminiscent of the one observed in flies lacking both roX1 and roX2 genes.

In these transgenic males RNA-free complexes can be visualized only at few high

affinity sites (Meller and Rattner, 2002). However, overexpressing MSL1 and MSL2

enhances the affinity of the DCC for X chromosome binding (Oh et al., 2003). It is

possible that roX RNAs form a scaffold upon which the MSLs are arranged in the

correct conformation. The enzymatic action of MLE on these RNAs might induce large

conformational changes of the DCC complex, inducing a stronger binding to chromatin.

Another possibility, that cannot yet be excluded, is that roX RNA contributes to

sequence specificity by annealing to chromosomal DNA on the X to form short

heteroduplex. This possibility could also explain the failure of past attempts to identify

of common sequences between the different binding sites on the X.
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Fig. 29. Models for targeting of the DCC to the male X chromosome. A) RNA dependent assembly.
B) RNA independent assembly.
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IV Materials and Methods

1. Materials

1.1. Chemicals, reagents and enzymes

Acrylamide (Roth); Agar, (Difco); Agarose high EEO (Biomol); Ampicillin (Roth);

ADP (Sigma); ATP (Sigma); ATPγS (Sigma); Aprotinin (Genaxxon); BSA, purified

(NEB); Bacto-Tryptone (Difco) β-mercaptoethanol (Sigma); Bromophenol blue

(Serva); Coomassie G250 (Serva); α-[32P]-ATP (Amersham Bioscience); γ-[32P]-ATP

(Amersham Bioscence); NTPs, dNTP mix (Amersham Bioscience); DTT (Roth); EDTA

(Sigma); EGTA (Sigma); Ethidium bromide (Sigma); Glycerol (Merck); Glycogen

(Roche); Glutathione (Sigma); Goat serum (Gibco/BRL); Hepes (N-(2-

hydroxyethyl)piperazine-H´-(2-ethanesulfonic acid), (Roth); IPTG (Isopropyl-D-

thiogalactopyranoside), (Sigma); Leupeptin (Genaxxon); N-propyl-gallate (Sigma);

NP40 (Igepal CA-630), (Sigma); Orange G (Sigma); Paraformaldheyde (Sigma);

Pepstatin (Genaxxon); PMSF (Phenylmethanesulfonyl fluoride), (Sigma); SDS (Sodium

dodecyl sulfate), (Serva); Temed (N,N,N´,N´-Tetramethylethylenediamine), (Roth);

Tris (USB Corporation); Xylene cyanol (Sigma).

DNA Polymerase I, Large (DNA Polymerase I (Klenow)) fragment (NEB); Pfu

polymerase with 10x PCR buffer (Stratagene); Proteinase K (Boeringer); Restriction

enzymes (NEB, Roche, MBI Fermentas); RNAse A (Sigma); RNAsin (Promega); RQ1

DNAse (Promega); SP6, T7, T3 RNA polymerase with 5x incubation buffer (Promega);

SuperscriptII, supplemented with 5x incubation buffer and DTT 100mM (Invitrogen);

Taq DNA Polymerase with 10X reaction buffer (Genaxxon); Protein-Marker II and IV

(PeqGOLD);

1.2. Oligonucleotides

All oligonucleotides were purchased by MWG Biotech (Ebersberg, Germany) or

Biomer Companies (Ulm, Germany).
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1.3. Antibodies

Antibody Host Type WB IF Source

anti-MSL1 rabbit
Affinity

purified
1:1000 1:500 Kuroda M

anti-MSL2 rabbit
Affinity

purified
1:1000 1:500 Kuroda M

anti-MSL3 goat
Affinity

purified
1:1000 1:500 Kuroda M

anti-MOF rabbit
Affinity

purified
1:1000 1:500 Akhtar A

anti-MLE

(6E11)
rat

Culture

supernatant
1:1000 1:1000

anti-H4-K16ac rabbit
Affinity

purified
1:1000 1:1000 Upstate

anti-GFP mouse
Monoclonal

3E6
1:200

Molecular

Probes

Table 2. List of antibodies used for the Western blot (WB) and for the immunofluorescence experiments
(IF). Dilutions in the respective blocking buffers are indicated

2. Methods

Standard molecular biology procedures like polymerase chain reaction (PCR),

restriction enzyme digestion, ligation of DNA fragments, preparation and

transformation of competent cells, analysis of DNA on agarose gels were performed

according to standard protocols (Ausubel, 1999; Sambrook and Rusell, 2001). Plasmid

DNA was prepared with the plasmid purification kit (Qiagen). Isolation and purification

of DNA fragments used for cloning were performed using the gel extraction kit

(Qiagen) according to the manifacture instructions. Further standard methods for protein

analysis, like SDS-PAGE and Western blot were done following the protocols described

in Sambrook and Rusell 2001.
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2.1. Plasmids

All plasmid have been sequenced by the MWG Biotech Company, (Ebersberg,

Germany)

2.1.1. Cloning of MSL1 and MSL2 cDNAs into the pGEM7zf+ vector

MSL1 cDNA was cut out from the pFastBac-MSL1 plasmid (Morales et al., 2004) with

HindIII and subcloned into the pGEM7zf+ vector (Promega) under the SP6 RNA

Polymerase promoter. MSL2 cDNA was cut out from the pHSP70-MSL2-GFP plasmid

(Straub et al., 2005b) with AgeI followed by fill in reaction with the DNA Polymerase I

(Klenow) to yield blunt ends and KpnI. The resulting DNA fragment was subcloned

into the pGEM7zf+ vector (Promega) digested SmaI/KpnI under the control of the T7

RNA Polymerase promoter.

2.1.2. GST-MLE (1-265 aa)

The NcoI/HindIII fragment, corresponding to the first 265 aa of MLE cDNA (M.

Kuroda, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston,

Massachusetts, USA) was cloned into the pGEX-2KG expression vector (Amersham),

digested with the same enzymes.

2.1.3. GST and GST-MS2

GST was expressed using the pGEX-2T expression vector (Amersham). GST-MS2

recombinant protein was produced by cloning the XbaI/NotI blunt DNA fragment,

containing the MS2 sequence, from the pPACE-MS2 plasmid to the pGEX-2T vector,

digested with EcoRI and incubated with DNA Polymerase I (Klenow) to yield blunt

ends. Correct orientation was checked by analytical digestion.

2.1.4. Proteins and RNAs baculovirus expression vectors

MSL1, MSL2, MSL3 and MOF cDNAs have been cloned into the pFastBac1 (for the

expression of MSL1, MSL2, MSL3 and MLE proteins) or pVL1392.2 (for MOF)
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vectors as described (Morales et al., 2004). For the cloning of untagged MLE, MLE

cDNA (M. Kuroda) was digested with NcoI and StuI enzymes, followed by fill in

reaction with the DNA Polymerase I (Klenow) enzyme (Biolabs) to yield blunt ends and

cloned into the pFastBac1 donor plasmid cut with StuI. Correct orientation was checked

by analytic digestion. Sense roX2 RNA expressing baculovirus was produced by

cloning of roX2 78.2.2 cDNA (M. Kuroda) into the pFastBac1 expression vector. Both

plasmids were cut with XbaI and XhoI enzymes. For the preparation of the ant-roX2

RNA expressing baculovirus, the same roX2.78.2.2 cDNA was digested with XbaI,

followed by incubation with the DNA Polymerase I (Klenow) enzyme to yield blunt

ends and XhoI. PfastBac1 plasmid was digested instead with HindIII, followed by

incubation with the DNA Polymerase I (Klenow) enzyme to yield blunt ends and XhoI

enzymes. Recombinant baculoviruses expressing the MSL proteins, roX2 and ant-roX2

RNAs were produced using the 'Bac-to-Bac' expression system (Invitrogen).

MLE-flag and MLE-flag mutant constructs were produced as follows: the complete

MLE sequence was amplified from the MLE cDNA using the MLE-BamHI.rv primer

and the MLE-SacI.fw primer, containing a BamHI and a SacI sites respectively. The

PCR product was digested BamHI/SacI and inserted into the pPACK-BACK-flag

expression vector (Invitrogen), digested with the same enzymes. Correct sequence was

confirmed by sequencing. The BamHI/XbaI DNA fragment containing MLE-flag

sequence was removed from pPACK-BACK-MLE-flag and inserted into the pFastBac1

Sf9 cells expression vector. The MLEGET-flag construct was generated by replacement

of the EcoRI/StuI fragment in MLE-flag with the correspondent fragment, containing

the GKT-GET mutation, from the His-MLEGET plasmid (a gift from C.G. Lee,

University of Medicine and Dentistry of New Jersey, Newark).

The MLEΔRB1-flag construct was obtained by digestion of pFastBac1-MLE-flag plasmid

with BamHI and StuI, followed by incubation with the DNA Polymerase I (Klenow) to

yield blunt ends and religation.

The MLEΔRB1-2-flag construct was obtained by digestion of pFastBac-MLE-flag with

SphI. The SphI MLE DNA fragment was subsequently subcloned into the pFast-Bac1

vector, SphI digested.

The MLEΔRGG-flag construct was obtained in a multistep procedure: a BamHI/EcoRI

DNA fragment was initially cut out from the pFastBac-MLE-flag construct and inserted

into the pFastBac1 vector to obtain the pFastBac-MLEΔRGG construct. Subsequently, the
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pFastBac-MLEΔRGG vector was digested BamHI/SacI and the correspondent 3543 bp

DNA fragment was inserted into the pFastBac-MLE-flag construct, lacking the

BamHI/SacI fragment, to obtain the pFastBac-MLEΔRGG-flag construct.

The MLEΔRB2-flag construct has been produced as follows: in a first step a 369 bp DNA

fragment, containing the first double strand RNA binding domain (dsRB1) of MLE

protein, was digested with BamHI and StuI from the pFastBac-MLE-flag construct and

cloned into the pFastBac1, cut with the same enzymes, to obtain the pFastBac-MLERB1

plasmid. In a second step, pFastBac-MLE-flag construct was digested with HindIII,

followed by incubation with DNA Polymerase I (Klenow) to yield blunt ends and XbaI.

The resulting HindIII/XbaI 3210 bp DNA fragment was inserted into the pFastBac-

MLERB1 plasmid digested with StuI and XbaI.

MLE-SacI.rv: 5´-TATGCAGAGCTCTTTCGATTTCGAACCC-3´

MLE-BamHI.fw: 5´-CGCGGGATCC ATGGATATAA AATC-3´

2.1.5. Wild type MLE-GFP and MLE-GFP mutants

The complete MLE sequence was amplified by PCR using the MLE-XmnI forward

primer and the MLE-AgeI reverse primer. The PCR product was cloned into pEGFP-1

plasmid (Clontech) digested with XmnI and AgeI.

The MLEGET-GFP construct was obtained by replacing the 3070 bp BstEII/PstI DNA

fragment in MLE-GFP with the corresponding DNA fragment containing the K413E

mutation, cut out from the pFastBac-MLEGET-flag plasmid.

The MLEΔRB1-GFP and MLEΔRB1-2-GFP plasmids were obtained by inserting the

StuI/AgeI and the DraI/AgeI DNA fragments from MLE-GFP respectively into the

pEGFP plasmid AgeI/XmnI digested.

The MLEΔRGG-GFP plasmid was obtained by digestion of MLE-GFP plasmid with

ScaI/AgeI, followed by incubation with the DNA Polymerase I enzyme (Klenow) to

yield blunt ends and religation.

The MLEΔRB2-GFP construct was obtained by insertion of the BglII/StuI DNA fragment

from MLE-GFP into MLE-GFP plasmid digested with HindIII/BglII and blunt for

HindIII. The MLERGG-GFP plasmid was obtained by PCR amplification of the DNA

fragment, containing the RGG box, with XmnI-RGG.fw and AgeI-MLE.rv primers
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using MLE-GFP as a template. The PCR product was digested XmnI/AgeI and inserted

into the pEGFP plasmid XmnI/AgeI digested.

The MLEΔRGG-GFP-NLS construct was obtained by insertion of an artificial NLS after

the GFP tag into the MLEΔRGG-GFP plasmid. The DNA fragment containing the NLS

sequence from the simian virus large T-antigen (Lanford et al., 1986), was obtained by

annealing of two complementary primers (NLS-NotI.fw and NLS-BsRGI.rv),

containing a NotI and a BsRGI site respectively.

MLE-AgeI.rv: 5´-TATAACCGGT CGGATCCAAG CTAATCG-3´

MLE-XmnI.fw: 5´-CGCGAACCCCTTCACCCCCATGGATATAAAA-3´

MLE-RGG-XmnI.fw: 5´-CGGAATACCT TCCCATGGTG CCGCACCAAT-3´  

MLE-RGG-BamHI.fw: 5´-ATGGATCCCC ATGGTGCCGC ACCAATCA-3´  

NLS-NotI.fw: 5´-GTACAAGGATCCAAAAAAGAAGAGAAAGGTATAAGC-3´

NLS-BsRGI.rv: 5´-GGCCGCTTATACCTTTCTCTTCTTTTTTGGATCCTT-3´

2.1.6. Cloning of ms2-roX2 under the endogenous promoter

Since the promoter region of roX2 is not well defined, for the cloning of the ms2-roX2

sequence under the control of the endogenous promoter a big DNA fragment 5´of the

roX2 transcription start site was amplified by PCR using a reverse primer containing the

StuI site (roX2-StuI.rv) and a forward primer containing the KpnI site (roX2-KpnI.fw).

Genomic DNA, extracted from SF4 cells was used as template. A reverse primer

containing the EcoRI site (roX2-EcoRI.rv) and a forward primer containing the StuI site

(rox2-StuI.fw) were used to amplify the roX2 sequence. Both amplified products were

cloned into pBL-KS plasmid (Stratagene), digested with KpnI and EcoRI enzymes.

After cloning, BamH1/AvaI/StuI sites were generated just before the first splice site in

roX2. Two complementary primers, containing the ms2 sequence (Bertrand et al., 1998)

were annealed and multimerized into the previous construct using the AvaI site. A

maximum of six ms2 sites could be inserted into the rox2 construct in front of the first

splice site.

roX2-EcoRI.rv: 5´-CGCGTCAACCAATGAAAACAA-3´

roX2-StuI.fw: 5´-AAGGCCTGAGCGTTTAGGTAAGCAAAC-3´

roX2-StuI.rv: 5´-AAGGCCTCCCGAGGATCCGACTTATGATATAAAAAGTAGCCC-3´
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roX2-KpnI.fw: 5´-GGGGTACCGGGCGACATGAATGACTGA-3´

ms2.rv: 5´-TCGGGCACTGTACATGAGGATCACCCATGTCCGTACGGACAGTGC –3´

ms2.fw:  5´-CGTGACATGTACTCCTAGTGGGTACAGGCATGCCTGTCACGAGCC-3

2.1.7. GFP-MS2

The GFP-MS2 plasmid was a gift from E. Gavis (Princeton University, Princeton, NJ,

USA). Cloning is described in Forrest et al., 2003.

3. Biochemical methods

3.1. In vitro transcription and translation

In vitro transcription and translation (IVT) reactions were performed for 3 h at 30°C

with the TNT System (Promega) using 1 µg of plasmid and 10 µCi of [35S] methionine

in 25 µl reaction volume.

3.2. Expression and purification of GST fusion proteins from bacteria

GST, GST-MLE (1-265) and GST-MS2 expressing constructs were used to transform

E. coli cells BL21. Bacteria were grown in 1 l of LB medium, containing ampicillin

(100 mg/ml), to A600= 0,6. The expression of GST-MLE recombinant protein was

induced by 1 mM IPTG for 2 h. Harvested bacteria were subjected to one freeze/thaw

cycle at -80°C and resuspended in 20 ml Lysis Buffer A (PBS, 100 mM NaCl, 1 mM

DTT, 1% Triton X, 10 % glycerol, protease inhibitor mix (PMSF, leupeptine, aprotinin,

pepstatin)). After incubation on ice for 15 min, the cell suspension was sonicated 3

times by pulses of 20 sec at 45% amplitude (Branson digital sonifier model 250-D), and

centrifuged for 30 min at 14 krpm at 4°C.  The supernatant was incubated 4 h on a

rotating wheel at 4°C, with glutathione beads (400 µl, Pharmacia Biotech) pre-

equilibrated in a 1:1 ratio in Lysis Buffer A. Beads were washed 4 times for 10 min on a

rotating wheel at 4°C with Lysis Buffer B (PBS, 200 mM NaCl, 1 mM DTT, 1% Triton
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X, 10 % glycerol, protease inhibitor mix (PMSF, leupeptine, aprotinin, pepstatin)).

Beads were applied to a column (Pharmacia Biotech) and washed once with 10 ml of

Wash Buffer I (50 mM TrisHCl pH 7.5, 600 mM NaCl, 1 mM DTT) and once with 10

ml of Wash Buffer II (50 mM TrisHCl pH 7.5, 300 mM NaCl, 1 mM DTT)

respectively. Recombinant GST-MLE protein was eluted from beads in 0.5 ml fractions,

using 3 ml of Elution Buffer (50 mM TrisHCl pH 7.5, 300 mM NaCl, 1 mM DTT, 5

mM glutathione and 50% glycerol). Aliquots of each fraction were separated on 10%

SDS polyacrilamide gel and stained by Coomassie Blue. Fractions containing

recombinant GST-MLE were collected and protein concentration was estimated on

Coomassie Blue stained SDS-PAGE, using BSA (Biolabs) as a standard.

3.3. Expression and purification of proteins and RNA from Sf9 cells

3.3.1. Sf9 cells infection

Sf9 cells were grown in Sf-900 II medium (Gibco) at 26°C. 1*106 cells were seeded

onto a 35 mm diameter dish and transfected with the respective bacmid plasmids

following the manifacture instructions. After 5 days of incubation at 26°C, supenatants

containing the respective baculoviruses were collected and amplified up to three times

following the manifacture instructions. Viruses were stored at 4°C.

The optimal amount of each virus, used to infect Sf9 cells was determined empirically.

The cells were collected after 2 days of incubation at 26°C. In general, the cell pellets

were frozen in liquid nitrogen and stored at -80°C prior to protein or RNA purification.

3.3.2. Whole Sf9 cell extracts preparation and single protein purification

Whole cell extract was prepared by resuspending Sf9 cell pellets in 1 ml Lysis Buffer

(50 mM Hepes pH 7.6, 300 mM KCl, 0.5 mM EDTA, 0.1% NP40, 1 mM DTT,

protease inhibitor mix (PMSF, leupeptine, aprotinin, pepstatin)) per dish and incubated

for 15 min on ice. The cell suspension was sonicated by three pulses of 15 sec at 15%

amplitude (Branson digital sonifier model 250-D), and centrifuged for 30 min at 14

krpm at 4°C. Supernatants (0.5 ml) were incubated for 2 h on a rotating wheel with
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affinity beads (25 µl of a 1:1 slurry in Lysis Buffer) according to the tag of the protein:

anti-flag M2 beads (Sigma) for flag-MSL3, MLE-flag and MLE-flag mutants, anti-HA

(Roche) beads for HA-MOF and glutathione beads (Amersham) for GST-MSL1. The

beads were washed five times with 0.5 ml of each of the three following buffers: Buffer

I: 0.3 M KCl, 50 mM Hepes pH 7.6, 0.5 mM EDTA, 1% NP40, 0.5 mM DTT, protease

inhibitor mix; Buffer II: Buffer I with 1 M KCl; Buffer III: 0.15 M KCl, 10 mM Hepes

pH 7.6, 0.5 mM EDTA, 0.1% NP40, 10% glycerol, 0.5 mM DTT, protease inhibitor

mix. Proteins were eluted (two times for 4 h on a rotating wheel at 4°C) in 100 µl of

Buffer III supplemented with flag peptides (0.25 mg/ml) for flag-MSL3, MLE-flag,

MLEGET-flag, MLEΔRB1-flag, MLEΔRB2-flag, MLEΔRB1-2-flag and MLEΔRGG-flag or HA

peptides (0.3 mg/ml) for HA-MOF. For GST-MSL1, elution was achieved with 20 mM

glutathione at pH 8.0. Eluted proteins were stored at -80°C.

3.3.3. Whole Sf9 cell extracts preparation and protein complexes purification

For the interaction of MLE-flag with individual MSL proteins coexpressed in Sf9 cells,

extracts were prepared as in 3.3.2 with the following differences: extracts were not

sonicated, but frozen and thawed three times in liquid nitrogen. Before Pull-down

experiments, the KCl concentration was adjusted to 0.15 M by addition of Buffer I

without KCl. After Pull-down, beads were washed 7 times in Buffer I (0.15 M KCl) and

resuspended in Loading Buffer. 2.5% of input and 50% of beads were loaded onto an

8% SDS-PAGE.

3.3.4. Whole Sf9 cell extracts preparation and protein/RNA complexes purification

For the extraction of the MSL complex in the presence of roX2 or ant-roX2 RNAs,

RNAsin (Promega) was added in the Lysis Buffer I, at a concentration of 1 U/ml. After

15 min of incubation in ice, the cell suspensions were frozen and thawed three times in

liquid nitrogen, prior to centrifugation for 30 min at 14 krpm at 4°C. The respective cell

extracts were diluted to 0.15 M KCl by the addition of Buffer I without KCl. 20% of

total Sf9 extract (input) was subjected to RNA extraction and RT-PCR or to Western-

Blot analysis, to control for correct expression of roX RNAs and MSL proteins,

respectively. 0.5 ml of extract was used for the RNA/protein complex purification, by
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the addition of affinity flag beads for 2 h at 4°C on a rotating wheel. Beads were then

briefly spun down and washed 5 times in buffer I (0.5 M KCl), containing RNAsin 1

U/ml. The bound material was eluted from beads using flag peptides, as described

above. 10% of the eluted material was boiled for 5 min in denaturing Loading Buffer

and analyzed by Coomassie-stained SDS-PAGE or Western-Blot. Total RNA was

extracted from half of the eluted material and the presence of roX2 or ant-roX2 RNAs

was detected by RT-PCR with specific roX2 primers.

3.4. Whole SF4 cells extract preparation

SF4 cells were grown in 500 ml of Schneider´s medium (Gibco) to a density of 5*106

cells/ ml, collected and resuspend in 2 ml of Extraction Buffer (30 mM Hepes, 250 mM

KCl, 2 mM MgCl2, 1 mM EGTA, 10% glycerol, 1mM PMSF and protease inhibitor

mix (leupeptine, aprotinin, pepstatin)). After 15 min on ice, the cell suspension was

centrifuged at 14 Krpm for 30 min at 4°C. Total protein concentration was estimated

using the Bio-Rad Protein assay according to the manufacture instructions. Total

proteins (0.1 mg) were separated on an 8% polyacrilamide gel and transferred onto a

Hybond-P PVDF membrane (Amersham Biosciences). Western-Blot analysis was

performed following standard protocols. In particular, after blocking, the membrane was

cut in slices and each slice was incubated with 50 µl of the respective MLE monoclonal

antibody, diluted in PBS, 0.1% Tween-20.

3.5. Immunoprecipitation experiments

0.4 ml of total SF4 extract (12 mg/ml) were diluted by addition of 0.5 ml of Binding

buffer (30 mM Hepes, 2 mM MgCl2, 1 mM EGTA, 10% glycerol, 1 mM PMSF

protease inhibitor mix  (leupeptine, aprotinin, pepstatin) and 0.1% NP40) to adjust the

KCl concentration to 100 mM. The diluted extract was precleared for 1 h at 4°C on a

rotating wheel, using 50 µl of protein A/protein G mix affinity beads (Pharmacia

Biotech), pre-equilibrated in Binding Buffer in a 1:1 ratio. After a brief centrifugation,

aliquots (125 µl) from the precleared extract were incubated with 50 µl of each MLE

antibody for 3 h at 4°C on a rotating wheel. 50 µl of protein A/protein G affinity beads
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were then added for 2 more hours. Beads were briefly centrifuged and washed 5 times

in binding buffer. 5% of extract before immunoprecipitation (input), 5% of extract after

immunoprecipitation (supernatant) and 15% of beads were separated by 8% SDS-

PAGE. Western-Blot analysis was performed following standard protocols using rabbit

anti-MLE polyclonal antibodies (a gift from M. Kuroda).

3.6. Pull down experiments

8 µl of MSL1 or MSL2 IVT reaction was mixed in 172 µl of buffer I (150 mM KCl). 9

µl of the mix was removed (input), and the remainder was split into two 85 µl aliquots,

incubated for 2-4 h at 4°C (rotating wheel) with anti-flag beads as negative controls or

anti-flag beads and MLE-flag (100 ng). Beads were washed 7 times with 0.5 ml of

Buffer I (150 mM KCl). Bound and unbound materials were analyzed by SDS-PAGE

and autoradiography of the corresponding dried gel.

To test the interaction of MLE-flag with GST-MSL1 or HA-MOF, equimolar amounts

(100 ng) of the respective proteins were incubated in 100 ml of Lysis Buffer I (150 mM

KCl) 2 h at 4°C on a rotating wheel, in the presence of flag affinity beads (30 ml). After

pull-down, beads were washed 7 times in Lysis Buffer I (150 mM KCl) and

resuspended in Loading Buffer. 1% of input and 50% of bound material were loaded on

a 8% SDS-PAGE and protein were visualized by Western-Blot.

Interaction of MLE-flag and flag-MSL3 was assayed under the same Pull-down

condition, but 5 µ l of monoclonal MLE antibody (6E11) were used to

immunoprecipitate MLE.

3.7. GST-MS2 Pull down experiments

500 µl of total SF4 extract (12 mg/ml) or ms2-roX2 extract were incubated with

comparable amounts of GST- and GST-MS2-coated glutathione beads (100 µl) 3 h at

4°C on a rotating wheel. After 5 washes with Extraction Buffer, half of the beads were
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separated on a 10% SDS-PAGE, Silver stained or analyzed by Western-Blot. The other

half was used to purify total RNA as described in 3.8.

3.8. RNA extraction and RT-PCR

For the RNA extraction, the respective materials were incubated 30 min at 65°C in the

presence of Proteinase K (1 mg/ml) and 0.1% SDS. The protein component was

eliminated by Trizol (Invitrogen) extraction following the manufacture instructions.

Nucleic acids were resuspended in DEPC-treated water. The SuperScript II Reverse

Transcriptase kit (Invitrogen) was used for the cDNA synthesis. Specific roX2 reverse

(mut1-XhoI.rv) and forward (mut1-SmaI.fw) primers were used to reverse transcribe

roX2 and ant-roX2 RNAs, respectively. Both primers were used together for the PCR

reaction (94°C for 5 min; 30 cycles at 94°C for 30 sec, 60°C for 30 sec and 72°C for 2

min; 72°C for 7 min). The presence of the ms2-roX2 RNA in the correspondent stable

cell line was determined using a roX2 specific primer (roX2c.rv) for the reverse

transcription and the same primer with a specific ms2 primer (ms2-1d.fw), for the PCR

reaction (5 min at 94°C; 25 cycles 30 sec at 94°C, 30 sec at 55°C and 1 min at 72°C; 7

min at 72°C). In all cases, PCR products were electrophoresed on a 0.8% agarose gel in

TBE.

Mut1-SmaI.fw: 5´-CGGCCCGGGATTGGTGTTACATATAGCT-3´  

Mut1-XhoI.rv: 5´-GCCCTCGAGGCTCTAAATCGATCTGTA-3´

ms2-1d.fw: 5´-CAGCAGCAAAATCAAGTGAATCAT-3´

roX2c.rv: 5´-TTGTCATCTCGCTCTAAATCG-3

3.9. ATPase assay

The ATPase activity of MLE-flag (30 fmole) and the corresponding mutant proteins

was measured in a reaction mixture (15 µl), containing 6.6 mM HEPES pH 7.6, 0.66

mM EDTA, 0.66 mM 2-mercaptoethanol, 0.033% NP40, 1.1 mM MgCl2, 33 mM ATP,

5 Ci [γ-32P] ATP (3000 Ci mmol_1, NEN). When indicated, 30 fmoles of the respective

MSL proteins were added as well. To stimulate the MLE ATPase activity, total RNA
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was extracted from Sf9 cells, or Sf9 cells infected with either roX2 or ant-roX2

baculoviruses using the Rnase Mini Kit (Qiagen), according to the manifacture

instructions. The indicated amounts of RNA were added in the ATPase reaction. After

30 min at 26°C, aliquots (1 µ l) of each reaction were spotted onto Thin Layer

ChromatograpHy (TCL) plates (Merck). ATP and phosphate were separated by

chromatography in 1M formic acid, 0.5 M LiCl for about 10 min. Plates were then dried

in a oven at 65°C for 5 min and exposed onto a PhosphorImager screen.

For the kinetic experiments, reaction mixtures were incubated at 26°C for 10 min, 20

min and 40 min, respectively.

3.10. Preparation of RNA substrates for the helicase and the gel-mobility shift

assays

The SP6.roX2 reverse primer, containing a binding site for the SP6 RNA Polymerase

and the T7.roX2 forward primer, containing a binding site for the T7 RNA Polymerase

were used to amplify a 75 bp roX2 DNA sequence, predicted to not form double strand

RNA structures (RNA fold program; http://rna.tbiunivie.ac.at/cgi-bin/RNAfold.cgi).

The roX2.78.2.2 cDNA (a gift from M. Kuroda) was used as a template for the PCR

reaction. The PCR product was purified using the MinElute Spin Columns (Qiagen). 1

µg of the PCR product was transcribed in vitro in the presence of ATP, GTP, UTP (2.5

mM each), CTP (100 mM), [α32P]-CTP 1 mM DTT, 1 µl of T7 RNA Polymerase

(Promega), 1 U/ml RNAsin (Promega) and 1x Transcription Buffer (Promega) in 25 µl

of final volume. The reaction mixture was incubated at 37°C for 2 h and the

radiolabeled ssRNA was purified in 100 µl of DEPC-treated water, using the mini

Quick Spin RNA Columns (Roche). The RNA concentration was measured

spectrophotometrically. In most cases, the specific activity of the labeled ssRNA

substrate was 102 cpm/fmole. The dsRNA substrate was prepared by annealing of the

radiolabeled ssRNA with the corresponding cold complementary ssRNA, which had

been transcribed under standard condition using the PCR product as a template for the

SP6 RNA Polymerase. The radioactive ssRNA was incubated with a 5 fold excess of

cold complementary RNA in a 200 µl of Hybridization Buffer (20 mM Hepes-KOH, pH

7.6, 0.5 M NaCl, 1 mM EDTA, 0.1% SDS) 5 min at 100°C, 30 min at 65°C and then

left cool down to room temperature. The dsRNA was then purified by electrophoresis
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on a native 10% polyacrylamide (30:1) gel, 1x TBE. The gel slice, containing the

dsRNA transcript (located by autoradiography) were ground with a micropestle and

eluted in 0.4 ml of Elution Buffer (0.5 M ammonium acetate, pH 7, 0.1% SDS, 10 mM

EDTA) 4 h at room temperature in a shaking incubator. After a brief centrifugation the

supernatant was extracted with phenol/chloroform and treated with 2.5 volumes of

absolute ethanol. After 1 h at -80°C, the transcript was collected by centrifugation at

4°C for 30 min. The pellet was washed with 0.5 ml of 70% ethanol and resuspend in the

appropriate volume of DEPC-treated water.

SP6-roX2.rv: 5´-CGATTTAGGTGACACTATAGAAATATTTGCTTAATTTGC-3´

T7-roX2.fw: 5´- CGTTAATACGACTCACTATAGGGAGACGTGTAAAATGTT-3´

3.11. Helicase assay

RNA helicase activity was measured in a reaction mixture containing 20 mM Hepes-

NaOH, pH 7.5, 2 mM DTT, 3 mM MgCl2, 1 mM ATP (when indicated), 0.1 mg/ml

BSA (NEB) 1 U/ml RNAsin (Promega), 120 fmoles of dsRNA substrate and increasing

amounts (35.3, 75, 150 and 300 fmoles) of MLE-flag, MLEΔRB1 and MLEΔRGG purified

proteins. Upon annealing, the dsRNA was not purified, but directly used in the helicase

assay. Enzymatic activities were then measured in the presence of a 5 fold excess of

ssRNA. Mixtures were incubated 30 min at 37°C, then stopped by the addition of 5 ml

of 5x Stop Buffer (0.1 M TrisHCl pH 7.5, 20 mM EDTA, 0.5% SDS, 0.1% NP40, 0.1%

bromophenol blue, 0.1% xylene cyanol and 50% glycerol. Aliquots (10 µl) of each

reaction were loaded onto a 10% polyacrylamide (30:1) gel and electrophoresed at 20

mA for 2-3 h. The dsRNA and the displaced ssRNA products were visualized by

autoradiograpHy of the dried gel.

3.12. Gel mobility shift assay

RNA gel mobility shift assays were performed as follows: a mixture containing

radiolabeled ssRNA or gel purified dsRNA (25-50 fmoles) in Band-shift Buffer (20 mM

Hepes-KOH pH 7.6, 3 mM MgCl2, 10% glycerol, 1mM DTT, 0.1 mg/ml BSA (NEB))
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was prepared and divided into four aliquots. To the first aliquot 1 mM of ATP was

added; to the second 1 mM of ATPγS; to the third 1 mM of ADP and to the fourth only

water (control). For each of them, the volume was adjusted to 64 µl with water. In

parallel, each recombinant protein (25-50 fmoles) was diluted in Buffer I (150 mM

KCl) and divided into 4 aliquots of 4 µl each. 16 µl from the ssRNA/nucleotide mixes,

were added to the 4 µl, containing the recombinant proteins. After incubation for 5-10

min on ice, 10 µl of each reaction were electrophoresed on a 0.6% agarose gel in 0.3X

TBE at 20 mA for about 1.5 h. Gels were dried and the RNA was visualized by

autoradiography.

4. Cell biology methods

4.1. Cell culture

Drosophila SF4 cells were obtained from D. Arndt-Jovin (Max Planck Institute for

Biophysical Chemistry, Göttingen, Germany). Cells were kept at 26°C in Schneider's

Drosophila medium (Invitrogen), supplemented with penicillin, streptomycin,

glutamine and 10% fetal calf serum (FCS). The cell density was maintained to

approximately 4*106 cell/ml by splitting them in 20 ml of Schneider's Drosophila

medium (Invitrogen) at a 1:10 ratio.

Sf9 cells were kept at 26°C in Sf-900 II medium (Invitrogen) supplemented with

penicillin and streptomycin.

4.2. Transient transfection in SF4 cells

In all cases transient transfections were performed using the Effectine Reagent Kit

(Qiagen), following the manifacture instructions.

For the visualization of MLE and deletion mutants fused to GFP, SF4 cells (1*106) were

transiently transfected with 0.4 µg of the respective DNA plasmid in six-well plates.

After 48 h of incubation, cells were immunostained as described previously with the

following modifications: anti-MSL1 antibodies (a gift of M. Kuroda) were used to mark
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the X territory and mouse anti-GFP antibody (Molecular Probes) to visualize the fusion

proteins. DNA was counterstained with TOPRO 3. Images were acquired with a Zeiss

LSM 510 META confocal microscope.

For the visualization of the MS2-GFP protein in the ms2-roX2 stable cell line, different

amounts (125 ng, 250 ng, 500 ng and 1 µg) of the MS2-GFP construct were used.

Cotransfected cells were generally examined after 2-4 days and pictures were taken at

1200 magnification using a Zeiss AxiopHot microscope coupled to a Retiga Exi CCD

Camera (Qimaging, Burnaby, Canada). The MS2-GFP expressing cells were visualized

using the Zeiss filterset 44.

4.3. Establishment of the ms2-roX2 stable cell line

For the preparation of the ms2-roX2 stable cell lines, SF4 cells (4*106/10 cm diameter

dish) were cotransfected with 1 µg of the ms2-roX2 plasmid and 0.2 µg pUCHS-NEO

(coding for neomycin resistance). After 48 h at 26°C, 1 mg/ml of neomycin was added

and selective growth was maintained for 4 weeks. As a control, untransfected SF4 cells

were incubated under the same induction conditions.

4.4. Immunofluorescence on SF4 and SL2 cells

SF4 or SL2 cells (1*106) were seeded onto coverslips and allowed to attach for 2 h.

Subsequently, cells were fixed in 2% paraformaldehyde (PFA) in PBS for 10 min on

ice. Following permeabilization in PBS supplemented with 0.25% Triton-X and 1%

PFA for 8 min on ice, cells were washed twice in PBS. All subsequent steps were done

at room temperature. Coverslips were blocked with 2% BSA and 5% goat serum in PBS

for 1 h. Cells were incubated, as needed, with primary antibodies, for 1 h at room

temperature in a humid chamber. After washing in PBS, slides were stained for 1 h with

the appropriate Cy3 and Cy2 labeled secondary antibodies (Jackson) diluted in Blocking

Buffer. Cells were washed four times in PBS. DNA was counterstained with 1 mg/ml

bisbenzimide (Hoechst 33258). Cells were mounted using 1.5% n-propyl gallate and

60% glycerol in PBS. Cells were examined and pictures were taken at 1200

magnification using a Zeiss AxiopHot microscope coupled to a Retiga Exi CCD
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Camera (Qimaging, Burnaby, Canada). Images were processed in Adobe PHotoshop.

4.5. RNAi in SL2 cells

A DNA plasmid containing MLE cDNA was used as a template in a PCR reaction, with

MLE-RNAi.fw and MLE-RNAi.rv specific primers

GST-RNAi.fw and GST-RNAi.rv primers served to amplify glutathione S-transferase

(GST). All primers contained a binding site for T7 RNA Polymerase. PCR products

were purified using the PCR Clean-Up Kit (Qiagen) according to the manufacturer

instructions. The purified DNA fragments were used as templates to transcribe in vitro

both sense and anti-sense MLE or GST mRNA, respectively, using the MEGAscript T7

kit (Ambion). A yield of approximately 100 µg of total RNA was generally obtained.

To denature secondary structures, RNA were heated for 30 min at 65°C, and slowly

cooled down to room temperature to form the dsRNA duplexes. A total of 2*106 SL2

cells were seeded into 6 well plates in 1 ml of Schneider´s Drosophila medium without

fetal calf serum (FCS) just before the addition of 10 µg of dsRNA. Plates were placed

onto a shaking platform for 10 min and then for 50 min at 26°C. 2 ml of medium

supplemented with FCS were then added to the cells and incubated at 26°C. Cells were

collected after 3 or 6 days after dsRNA treatment. For Western-Blot analysis after

RNAi, 1-2 *106 cells were centrifuged and resuspended in 50 µl of Urea Buffer (8 M

urea, 5% SDS, 200 mM Tris-HCl pH 6.8, 0.1 mM EDTA, 100 mM DTT), incubated at

65°C for 15 min and loaded on a 8% polyacrilamide gel.. Detection and quantification

was performed using the Odyssey Infrared Imaging system. For the immunostaining

experiments, cells were treated as described above.

RNAiMLE.fw: 5´-TTAATACGACTCACTATAGGGAGAATGGATATAAAATCTTTTTTGTACCAATTTTG-3´

RNAi-MLE.rv: 5´-TTAATACGACTCACTATAGGGAGAACAGGGCGCATGACTTGCT-3´

RNAi-GST.fw: 5´-TTAATACGACTCACTATAGGGAGAATGTCCCCTATACTAGGTTA-3

RNAi-GST.rv: 5´-TTAATACGACTCACTATAGGGAGAACGCATCCAGGCACATTG-3´
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