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I. Introduction          

          

1. Oxygenic photosynthesis 

 

The uniting structure of oxygenic photosynthesis is the thylakoid membrane located in the 

cytosol of cyanobacteria and in photosynthetic plastids of algae and plants. The four major 

protein complexes of this membrane involved in oxygenic photosynthesis are, in order of the 

reaction photosystem II (PS-II), the cytochrome b6ƒ-complex (cytb6ƒ), photosystem I (PSI-

LHCI) and the ATP synthase (CF0-CF1). In addition, relatively complex light harvesting 

assemblies (LHCI and LHCII) are associated to the two photosystems and some smaller 

proteins and cofactors perform vital electron shunting tasks and the final reduction of NADP+ 

(Figure 1). 

 

 
 
Figure 1: A schematic cut-through diagram of the thylakoid membrane, showing the protein 
complexes and electron carriers involved, as well as the stoichiometries of protons in oxygenic 
photosynthesis. Stoichiometries of the reactions indicated refer to the production of a single molecule 
of O2 (modified from Herrmann 1996). 
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The protein complexes involved in oxygenic photosynthesis are not evenly distributed in the 

thylakoid membrane. The two photosystems are spatially separated. PSI-LHCI is located in 

stroma lamellae membranes and at the margins of the grana stacks, while PSII to a great 

extent, is only present in grana stacks (Danielsson et al., 2004). The Cytb6ƒ is evenly 

distributed between the two regions (Ganeteg, 2004), whereas the ATP synthase complex is 

located at fringe regions of grana and in stroma lamella (Jansson et al., 1997). While the 

structure and function of most of the protein complexes involved in oxygenic photosynthesis 

are quite well described, the biogenesis and turnover of the different complexes have not been 

investigated to a comparable degree.  

 

2. Structure and function of higher plant PSI-LHCI 

 

The higher plant PSI complex core is composed of at least 15 different subunits, named 

alphabetically from PSI-A to PSI-P, excluding PSI-M which, like PSI-X, is exclusively 

present in cyanobacteria (Inoue et al., 2004). In addition, the light harvesting antenna I 

(LHCI) that associates to PSI on one side to the complex is composed of at least four different 

light harvesting proteins, designated Lhca1- Lhca4. Besides the protein subunits there is a 

relatively large complement of pigments and cofactors, at least 167 chlorophyll molecules, 

about 27 ß-carotenes, 10 luteins, 6 violaxanthins (Ganeteg, 2004) and 3 iron sulphur clusters 

(4Fe-4S). Taken together the findings make PSI to one of the largest protein complexes found 

in nature, with a molecular mass of 567 kilo Dalton (kDa) according to the subunit 

composition determined from the crystal structure of pea PSI-LHCI (Ben-Shem et al., 2003). 
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Figure 2: The structure of the entire higher plant PSI-LHCI complex, when viewed from the stromal 
side of the thylakoid membrane. Left: Model of higher plant PSI-LHCI complex, indicating the 
assignment/position of all subunits, except of PSI-N. The original model was published in Jensen et al. 
(2003) and modified in accordance to Jensen et al. (2004) with regard to PSI-O and the Lhca1-4 
assignments in accordance to (Ben-Shem et al., 2003) Right: The crystal structure of PSI-LHCI 
complex from pea, solved at 4.4 Å resolution, including cofactors and pigments. Subunits similar to 
cyanobacterial PSI are in black, later additions to the PSI complex are in red and the LHCI proteins are 
in green. The assignment of Lhca1-4 and the positions of the F, G, H and K subunits are indicated. 
The chlorophylls are depicted in different colours according to their assigned location and/or putative 
function: LHCI chlorophylls (blue), energy transfer between LHCI monomers (red), special function 
in energy migration between LHCI and the RC (magenta), conserved chlorophylls in the RC (yellow), 
added chlorophylls to the RC (cyan) (Ben-Shem et al., 2003). 
 

The functions of various PSI subunits have been identified (Scheller et al., 2001). The two 

major subunits, PsaA and PsaB, are plastid-encoded, form the central heterodimer and serve 

as anchors for binding cofactors necessary for light absorbance and the primary 

photochemical reactions. PsaA and PsaB bind pairs of the primary electron donor and 

acceptor chlorophylls, P700 and A0, respectively, the phylloquinone A1 and the [4Fe-4S] 

cluster Fx. The other two [4Fe-4S] clusters (FA and FB) are bound to plastid-encoded PsaC and 

transfer electrons from Fx to ferredoxin. Additional chlorophyll molecules are associated with 

the core complex and the outer antenna proteins Lhca1 - Lhca4 and involved in light 

absorbing and energy transfer (Saenger et al., 2002; Golbeck, 2003). 

 

3. Photosystem II, cytochrome b6f-complex and chloroplast ATP synthase complexes 

 

Besides the crystal structure of pea PSI (Ben-Shem et al., 2003) there are also crystal 

structures of the cyanobacterial PSII complex (Kamiya and Shen, 2003), the chloroplast PSII 

(Rhee, 2001), the plant major light-harvesting complex (Liu et al., 2004) and the cytochrome 

b6f complex from unicellular algae (Stroebel et al., 2003) and cyanobacteria (Kurisu et al., 

2003) available. 

 

Like PSI, PSII is a membrane-spanning, dimeric multisubunit pigment-protein complex. The 

energy absorbed by the LHCs is transferred to the reaction centres. In a multi-step process, the 

energy of 4 photons is used to oxidise two molecules of water to molecular oxygen. Based on 

the results from crystal structure analysis the primary organisation of PSII between 

cyanobacteria  and higher plants is basically conserved, but  there are also differences in some 

peripherical PSII subunits as well as in the antenna and the composition of the water splitting 

system (Hankamer et al., 2001; Barber and Nield, 2002; Kashino et al, 2002). 
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The cytochrome b6f complex is a pigment-protein complex which mediates the electron flow 

between the two photosystems, functions as a plastoquinol-plastocyanin-oxidoreductase and 

contributes to the formation of a proton gradient used to synthesize ATP, it is also involved in 

cyclic electron transport around PSI (Clark and Hind, 1983). The data for the cytochrome b6f 

complex reveals a dimeric structure and is essentially the same in unicellular algae and 

cyanobacteria (Strobel et al., 2003; Kurisu et al., 2003).     

 

Electron transport from water to NADP+ is light-dependent and generates a transmembrane 

electrochemical proton gradient used by the chloroplast ATP synthase for 

photophosphorylation (Evron et al., 2000). The ATP synthase complex is conserved between 

eubacteria, mitochondria and plastids with regard to structure, composition and basic 

organisation (Strotmann et al., 1998; Groth and Pohl, 2001). 

 

4. Biogenesis of thylakoid membrane protein complexes 

 

The biogenesis of thylakoid membrane protein complexes can be divided into 3 major 

processes: (1) The biogenesis of the constituent subunits and their cofactors and pigments, (2) 

their translocation and insertion to the thylakoid membrane, and (3) their assembly into an 

oligomeric protein complex . Each of these major processes rests on multiple steps, is subject 

to multiple control mechanisms, and requires many proteins besides the subunits comprising 

the photosynthetic apparatus (Wollman et al., 1999). One last major process vital to the 

biogenesis that the 3 major processes do not cover is proteolytic processing or degradation. It 

is an important participant at every step of biogenesis as well as when the complexes exceed 

their lifespan or become damaged (Adam, 2000; Adam and Ostersetzer, 2001). The 

biogenesis of protein complexes are complicated by the fact that the genes encoding subunits 

and auxiliary proteins are not located in the same genome. While some reside in the 

chloroplast genome (the plastome), others are located in the nuclear genome (Scheller et al., 

2001). This distribution is due to the origin of the chloroplast. More than 1.5 billion years ago 

the chloroplast as it is known today  was a  free living  cyanobacterium and while  some genes  

have been translocated to the nuclear genome; some remained in the plastome. There could be 

a number of reasons why it is not possible to move all the genes of the plastome to the nucleus 

(Martin & Herrmann, 1998).  
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Nevertheless, the fact remains that the genes are distributed and the cells spend a great deal of 

effort and energy to regulate and operate the two genome systems (Leister and Schneider, 

2003). 

 

During evolution of photoautotrophic eukaryotes, the nucleus has gained a dominant role in 

the coordination of the integrated genetic system of the cell consisting of three specifically 

coevolved genetic compartments. The photosynthetic machinery is encoded by the chloroplast 

and nuclear genomes. Therefore, biosynthesis and assembly of stochiometric amounts of 

subunits as well as association of the proteins with corresponding cofactors need to be 

managed and precisely regulated. 

 

5. PSI-LHCI biogenesis 

 

The biogenesis of the PSI-LHCI complex has only partially been elucidated. The genes 

responsible for the subunits of the complex, their transcription, the proteins responsible for the 

transcription and the posttranscriptional processing have been reasonably well described both 

from the nucleus and the chloroplast. In addition, quite substantial information is also known 

from translation and translocation of the nuclear encoded proteins. While all these areas are 

well explored, there are still aspects of the biogenesis left to evaluate. 

 

The assembly of PSI-LHCI starts with the translation and translocation of PSI-B into the 

thylakoid membrane. The initiation of PSI-B translation, in Arabidopsis thaliana, is 

controlled by at least two nuclear encoded factors, Tab1 and Tab2 (Dauvillee et al., 2003; 

Stampacchia et al., 1997). In Chlamydomonas reinhardtii, the translation of PSI-B initiates a 

CES controlled translation cascade that so far has shown to include the translation of PSI-A 

and PSI-C (Wostrikoff et al., 2004). The initiation of PSI-A translation requires the presence 

of PSI-B and the initiation of PSI-C translation requires the presence of PSI-A (Wostrikoff et 

al., 2004). The stable accumulation of PSI-A requires both the translation of PSI-B and the 

stable assembly into the AB core. The latter is achieved by assembly of the two subunits and 

the insertion of the majority of the chlorophyll a and the FX iron-sulphur cluster (Wollman et 

al., 1999).  
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Without the insertion of FX, the AB core does not accumulate in neither plant nor algae nor 

cyanobacteria (Golbeck, 2003; Lezhneva and Meurer, 2004). When the AB core has 

assembled the translation of PSI-C is initiated (Wostrikoff et al., 2004). When PSI-C is 

translated, it does not associate to the AB core, unless the FA and FB iron-sulphur clusters are 

inserted (Yu et al., 1997). 

 

6. Nuclear control of chloroplast gene expression 

 

Nucleus-encoded factors control the expression of the plastid genome. Most genetic studies 

addressing the role of nuclear genes in chloroplast gene expression have been carried out with  

either Zea mays (maize), Arabidopsis thaliana or Chlamydomonas reinhardtii (Barkan et al., 

1994; Meurer et al., 1996a; Rochaix et al, 2004). The majority of the factors identified by 

genetic approaches are specifically required for the expression of small subsets of chloroplast 

genes and are involved in post-transcriptional steps (Barkan and Goldschmidt-Clermont, 

2000). They may also serve to couple chloroplast gene expression with the assembly of the 

protein products into the large complexes of the photosynthetic apparatus. 

 

Nuclear encoded factors function in each step in plastid gene expression, including RNA 

splicing, processing and stability, and translation. The maize genes crs1 and crs2 are required 

for the splicing of chloroplast group II introns (Jenkins et al., 1997). Mutations in crs1 lead to 

a specific defect in the splicing of the atpF intron, whereas mutations in crs2 disrupt the 

splicing of several group II introns (Jenkins et al., 1997; Vogel et al., 1999). 

 

A nuclear gene in Chlamydomonas reinhardtii was identified, that is likely to be a component 

of the general 3´end processing machinery; mutations in this gene – called crp3 – have been 

described (Levy et al., 1997 and 1999). 

 

Arabidopsis hcf109 mutants accumulate reduced levels of transcripts from four polycistronic 

transcription units (psbB, psbD, ndhC, ndhH) (Meurer et al., 1996b). Run-on transcription 

analysis demonstrated that this is due to a defect in RNA stability rather than in transcription 

(Meurer et al., 2002). 
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In vascular plants, only two nuclear genes have been found where a mutation disrupts the 

translation of subsets of chloroplast mRNAs, contrasting with the frequent recovery of this 

type of mutant in Chlamydomonas (Barkan and Goldschmidt-Clermont, 2000). The maize 

gene atp1 is required specifically for the translation of the chloroplast atpB/E mRNA 

(McCormac et al., 1999) whereras mutations in the maize gene crp1 disrupt the translation of 

a subset of plastid mRNAs, namely petA and petD (Barkan et al., 1994). All these examples 

for nucleus mutations affecting chloroplast gene expression not only disrupt the expression of 

individual genes but are also involved in post-transcriptional steps. 

 

7. Arabidopsis as a model organism 

 

Over the last years, Arabidopsis thaliana, a member of the mustard family (Brassicaceae), 

has become a model organism for plant cellular and molecular biological studies due to its 

small sized genome, the short life cycle, well established transformation techniques and the 

large number of offspring. After the complete sequencing of the relatively small Arabidopsis 

genome (five chromosomes, 125 Mb, Arabidopsis Genome Initiative, 2000) and the 

annotation of its genome, assigning a function to an isolated gene has become a new 

challenge. The classical “forward” (phenotype-related) genetic approach is the method of 

choice for the identification of mutants isolated by phenotype screening. 

 

The genome of Arabidopsis thaliana contains around 25,500 genes (The Arabidopsis Genome 

Initative, 2000). Approximately 50% of these genes are known by their function either 

because they share sequence homologies with genes of known function or as a result of 

experimental efforts. The protein sequence of the remaining 50% of genes could be searched 

by prediction programs such as ChloroP (Emanuelsson et al., 1999) to obtain information 

about intracellular localisation. As only 87 proteins are encoded in the plastid DNA of 

Arabidopsis, all the other polypeptides of the chloroplast are encoded in the nucleus and 

posttranslationally imported into the organelle. In a proteome-wide search between 1,900 and 

2,500 proteins containing a chloroplast target sequence were predicted (Abdallah et al., 2000; 

Martin, 2003). Of these proteins, around 30% are derived from cyanobacterial ancestors 

indicating a conserved function for these proteins. 
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8. Functional genomics 

 

The screening of mutant populations with altered photosynthetic performance has been 

successfully performed to elucidate mechanisms controlling photosynthesis. Two widely used 

indicators of defects associated with photosynthesis are alterations in pigmentation and 

chlorophyll fluorescence. In general, every mutation that affects the photosynthetic electron 

transport chain can be detected as an increase in the fraction of absorbed energy re-emitted as 

fluorescence. This approach was used for the identification of hcf (high chlorophyll 

fluorescence) mutants of cyanobacteria, Chlamydomonas rheinhardtii and maize. Due to the 

relatively low sensitivity of this method severe effects of the photosynthetic electron transport  

cause seedling lethality under photoautotrophic conditions and complicate the analysis of the 

hcf-mutants. So far, several hcf-mutant collections have been described (Barkan et al., 1994; 

Meurer et al., 1996a; Rochaix et al, 2004) – from Arabidopsis thaliana 34 hcf-mutants have 

been identified and described (Meurer et al., 1996a). The majority of these hcf-mutants is 

lethal at the seedling stage and displays a decrease in photosynthetic electron transport 

activity. 

 

9. Function of PsaJ in higher plants 

 

In plants, the two low molecular mass subunits, PsaF and PsaN, have been implicated in the 

interaction between PSI and plastocyanin (Haldrup et al., 2000). PSI-N is unique to higher 

plants and is entirely located in the thylakoid lumen. However, the recently published 

structural model of higher plant PSI based on a crystal structure at 4.4 Å does not reveal the 

presence of PSI-N (Ben-Shem et al., 2003) and cross-linking experiments have shown little 

interaction between PsaN and other small PSI subunits although putative cross-linking 

products with PsaG and PsaF were found (Jansson et al., 1996). 

 

PsaF contains one transmembrane helix and is exposed both to the lumen and to the stroma: 

its N-terminal domain is situated in the lumen (Ben-Shem et al., 2003) whereas the C-

terminus is in contact with PsaE on the stromal side (Fromme et al., 2001). PsaF and luminal 

interhelical loops of PSI-A and PSI-B form a docking site for PC or Cyt c6 (Farah et al., 1995;  

Hippler et al., 1997, 1998, 2002; Sommer et al., 2002).  In plants, which only use PC as an 

electron donor to PSI, an  extended  aminoterminal  domain  contributes  to  a helix-loop-helix  
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motif (Ben-Shem et al., 2003) that specifically enables more efficient plastocyanin binding 

and, as a result, two orders of magnitude faster electron transfer from PC to P700 (Hippler et 

al., 1996). 

 

Based on biochemical and structural studies predominantly in cyanobacteria it has been 

suggested that the small, membrane integral subunits such as PsaF, -I, -J, -K and –L mainly 

function in the stabilization of the antenna system and the quaternary structure of photosystem 

I (Fromme et al., 2001). PsaJ is a hydrophobic low molecular mass subunit with one 

transmembrane helix that is located close to PsaF (Jordan et al., 2001; Ben-Shem et al., 2003). 

The N-terminus of PsaJ is located in the stroma, the C-terminus in the lumen (Fromme et al., 

2001). In cyanobacteria, PSI-J binds three chlorophylls and is in hydrophobic contact with 

carotenoids (Jordan et al., 2001), whereas in plants only two chlorophyll molecules are bound, 

which are probably important for the energy transfer between LHCI and the PSI core (Ben-

Shem et al., 2003).  

 

In cyanobacteria, PsaJ interacts with PsaF (Xu et al., 1994a). A psaJ knock out in 

Synechocystis PCC 6803 contained only 20% PsaF subunit compared to wild-type (Xu et al., 

1994b). The corresponding psaJ knock out in Chlamydomonas contained wild-type levels of 

PSI-F and PSI, and the cells were able to grow photoautotrophically. A large fraction of the 

mutant PSI complexes displayed slow kinetics of electron donation from PC or Cyt c6 to 

P700: The absence of PsaJ did not alter the half-lives of the different kinetic phases, but lead 

to the formation of two subpopulations of PSI complexes which differed with respect to 

electron transfer to P700+. One population behaved like wild-type with fully functional PsaF 

and the other had characteristics similar to a PsaF deficient strain (Fischer et al., 1999). It was 

concluded that in 70% of the PSI complexes lacking PsaJ, the N-terminal domain of PsaF is 

unable to provide a binding site for either PC or Cyt c6 that in turn lead to electron transfer to 

P700+ and was explained by a displacement of this domain. Thus, PsaJ does not appear to 

participate directly in binding of PC or Cyt c6 but plays a role in maintaining a precise 

recognition site of the N-terminal domain of PsaF required for fast electron transfer from PC 

and Cyt c6 to PSI (Fischer et al., 1999).  
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II. Materials and Methods 

 

1. Materials 

 

1.1 Working materials  

 

Chemicals used in this work were of p.a. quality and were purchased from the following 

companies, if not otherwise mentioned: Applichem (Darmstadt, Germany), Biozym 

(Oldendorf, Germany), Fluka (Steinhein, Germany), ICN Biomedicals GmbH (Eschwege, 

Germany), Merck (Darmstadt, Germany), Pharmacia (Uppsala, Sweden), Roth (Karlsruhe, 

Germany), Serva (Heidelberg, Germany), Sigma-Aldrich Chemie GmbH (Taufkirchen, 

Germany), and USB (Cleveland, USA). Enzymes were obtained from Clontech (Palo Alto, 

USA), Invitrogen (Karlsruhe, Germany), MBI Fermentas (St. Leon-Rot, Germany), New 

England Biolabs (Frankfurt/Main, Germany), Promega (Mannheim, Germany), Qiagen 

(Hilden; Germany), Roche Diagnostics (Mannheim, Germany), and Stratagene (Heidelberg, 

Germany). Radioactive nucleotides and [35S]-methionine were purchased from Amersham 

Biosciences Europe GmbH (Freiburg, Germany). Other materials were obtained from Biomol 

(Hamburg, Germany), Eppendorf (Hamburg, Germany), Greiner Bio-One GmbH 

(Frickenhausen, Germany), Millipore (Eschborn, Germany), Pall Bio Support Division 

(Dreieich, Germany), Qiagen (Hilden, Germany), and Schleicher and Schüll (Dassel, 

Germany). The manufacturers of commercial devices are mentioned in the text. 

 

1.2 Plant material 

 

The apo1 mutation, accession Wassilewskija, was selected from a T-DNA-insertion  

collection (Feldmann 1991) obtained from the Arabidopsis Biological Resource Centre (Ohio 

State University, Columbus, USA).   

 

1.3 Bacterial strains and vectors 

 

E. coli DH5α       (Bethesda Res. Lab., 1986) 

Agrobacterium tumefaciens GV3101 (pMP90RK)  (Meurer et al., 1998a) 
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The vector pBluescript KSII+ (Stratagene, Heidelberg) was used for standard cloning. The 

plant binary expression vector pSEX001-VS (Reiss et al., 1996) was used for cloning of 

cDNAs under the control of the 35S RNA promoter of Cauliflower mosaic virus in 

complementation studies (Figure 1). 

 

 

 

Figure 3: Map of the plant binary expression vector pSEX001-VS. EcoRI,1 – EcoRI site at nucleotide 
position 1; SmaI,542 – SmaI site at nucleotide position 542; BamHI,547 – BamHI site at nucleotide 
position 547; XbaI,552 – XbaI site at nucleotide position 552; 5578,XhoI – XhoI site at nucleotide 
position 5578; Br and Bl – Agrobacterium T-DNA right and left border sequences, respectively; 35S – 
CaMV 35S RNA promoter; pAA – polyadenylation signal from CaMV; ori – E. coli origin of 
replication; tp-sul – sulfonamide-resistance gene equipped with a chloroplast targeting peptide; Amp – 
ampicillin-resistance gene; pVS1 – Agrobacterium origin of replication. 
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1.4 Hybridisation probes for Northern analysis 

 

Hybridization probes are listed below. Additional plastid DNA probes were generated by 

amplifying specific regions of the Arabidopsis plastid chromosome using oligonucleotide 

primers synthesized by MWG-Biotech (Ebersberg, Germany). 

 

Table 1: Hybridisation probes used for Northern analysis. 

Gene Plasmid Fragment Reference 

PsaA W3 BamHI/KpnI Westhoff et al., 1991 

PsaC pR668HSI HincII/SspI Kubicki et al., 1996 

 

PsbA pSoP2520.3 PstI/XbaI Westhoff et al., 1991 

RbcL pSoP2458 PstI/BamHI M. Streubel and P. Westhoff 

 

Gene Amplified 

Gene 

Primer 

designation 

Primer sequence (5′′′′→→→→3′′′′) 

Cab cab-f. 

cab-r. 

 5´-CTC ACC GCA ATG GCC GCC TCG 
ACA ATG GC-3´ 

5´-GAC GAA GTT GGT AGC GAA GGC 
CCA TGC-3´ 

PsaI psaI-f 

psaI-r 

 5´-CCG CGC GTA ATA CGA CTC ACT 
ATA GGA GTA AAT CGA GGT ACC 
CCT-3´ 

5´-AGC GGA TCT AAA CAA TC-3´ 

PsaJ psaJ-f 

psaJ-f 

 5´-TCG GTA AGA AAG AAG GGG  

ATG-3´ 

5´-CAG TTA ATT CGA ACT TGA GC-3´ 
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1.5 Oligonucleotides 

Table 2: Oligonucleotide primers used for amplification of genes and quantification of     
mRNAs 

Experiment Amplified gene Primer 

designation 

Primer sequence (5′→3′) 

Real-time RT-

PCR 

(apo 1) 

 F13011-50.305f. 

F13011-50.575r. 

5´-GCT TCT GGT TTC TCC TGC 
TTG TAG AGG TG-3´  

 5´-ACT TGT CTG CTC TCT ATG 
CTT CTG ATT-3´  

 

  internal control, 

with 18S rDNA 

primers 

5´-GCT CAA AGC AAG CCT ACG 
CTC TGG-3´  
 
5´-GGA CGG TAT CTG ATC GTC 
TTC GAG CC-3´ 

Complementation  

(apo1) 

apo 1 genomic  

DNA 

apo1-f. 

(Komp.1) 

apo1-r. 

(Komp.2) 

5´-CAC GGT CTG AGC TGA TTG 
CGT GTT CTC-3´ 
 
 
5´-CCA AGG ACT TAT GCG ACC 
ATG TCG GCT TCC-3´ 

PE psaA psaA-PE 

5´IRD 700 

 
5´-GTG AGC ATC AGC ATG TAG 
GTT CCA GAT CC-3´ 

iPCR  Sal1 (LB Sal1) 

Out2 (LB Out2) 

5´-CAC CTG TCC TAC GAG  

TTG C-3´  

 5´-GCA TAG ATG CAC TCG AAA 
TCA GCC-3´ 

GFP APO1 cDNA apoGFP-f. 

apoGFP-r. 

5´-ACT TAT ATA GTC GAC ATG 
CTT CTG GTT TCT-3´  
 
5´-GAT ATC CAC GTC GAC CGA 
TCA CTC TCT TCC-3´ 

RACE  apo1-r2  
5´-ACT TGT CTG CTC TCT ATG 
CTT CTG ATT-3´ 
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Import APO1 cDNA  apoT7 

F13011-51680r. 

 
5´-GTA ATA CGA CTC ACT 
ATA GGG CTT ATA TAG TCA 
ACA-3´ 
 
5´-CCA AGG ACT TAT GCG ACC 
ATG TCG GCT TCC-3´ 

Mapping  nga128 

Chr1-110 

 
5´-CAC ACA TAT TAA CGA GTG 
GAT TGA CG-3´   
 
5´-GGA CTC AAA TAT GTG ACA 
AGA GTA AGA CTC-3´ 

 

1.6 cDNA library 

 

A Uni-ZAPTMXR cDNA library (Stratagene, La Jolla, USA) was prepared from RNA of 

Arabidopsis leaves, ecotype Columbia, according to the manufacturer′s instructions and was 

kindly provided by Dr. Csaba Koncz (Max-Planck-Institut für Züchtungsforschung, Köln, 

Germany). 

 

1.7 Media, solutions and buffers 

 

TE buffer: 

10 mM Tris-HCl, pH 8.0 

1 mM Na2EDTA 

 

10x TBE buffer:  

108 g/l Tris, pH 8.2 - 8.4 

55 g/l M boric acid 

7.4 g/l Na2EDTA 

 

MOPS buffer:   

20 mM MOPS 

5 mM Na-acetate 

1 mM Na2EDTA, pH 7.0 
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20x SSC buffer:  

3 M NaCl 

0.33 M Na-citrate, pH 7.0 

 

MS-medium:    

1x MS-salts (Murashige and Skoog, 1962) 

1.5% sucrose 

2.5 mM MES-NaOH, pH 5.7 

0.3% gelrite 

 

Infiltration medium:  

5% sucrose 

0.05% Silvet L-77 (Clough and Bent, 1998) 

 

YEB medium:  

5 g/l beef extract 

5 g/l bacteriological peptone 

5 g/l sucrose 

2 ml 1 M MgCl2 

supplemented with 20 g/l agar for solid medium 

 

LB-medium:  

10 g/l peptone (bacteriological grade) 

5 g/l yeast extract 

10 g/l NaCl, pH 7.2  

supplemented with 15 g/l agar for solid medium 

 

Hybridisation buffer:  

250 mM Na2HPO4, pH 7.2 

7% (w/v) SDS 

2.5 mM EDTA (Church and Gilbert, 1984) 
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Washing solution 1:  

2.5x SSC 

1% SDS 

 

Washing solution 2:  

1x SSC 

1% SDS 

 

Washing solution 3:  

0.5x SSC 

1% SDS 

Materials 

          

Washing solution 4:  

0.2x SSC 

1% SDS 

 

Washing solution 5:  

0.1x SSC 

0.5% SDS 

 

Solutions and buffers which are not mentioned otherwise were prepared as described in 

Sambrook et al., (1989). 
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1.8 Antibodies 

Table 3: Antibodies used for Western analysis 

Protein or protein complex Subunit Source of an antibody 

PsaA/B R. Nechushtai (Hebrew 

University, Jerusalem, Israel) 

PsaC R. Herrmann 

PsaD R. Herrmann 

Photosystem I 

 

 

 

 
PsaF R. Herrmann 

 

Lhca1 Agri Sera AB (Vännäs, 

Sweden) 

Lhca2 Agri Sera AB (Vännäs, 

Sweden) 

LHCI 

Lhca3 Agri Sera AB (Vännäs, 

Sweden) 

          

 Lhca4 Agri Sera AB (Vännäs, 

Sweden) 

PsbB R. Berzborn (Ruhr-University 

Bochum, Bochum, Germany) 

PsbC (CP43) J. Mullet (Texas A&M 

University, College Station, 

Texas, USA) 

PsbD (D2) J. Mullet 

Photosystem II 

 

PsbO (PSII-O) R. Berzborn 
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Lhcb1 Agri Sera AB (Vännäs, 

Sweden) 

LHCII 

Lhcb2 Agri Sera AB (Vännäs, 

Sweden) 

PetA R. Herrmann 

PetB R. Berzborn 

PetE n.d. 

Cytochrome b6f complex 

 

 

 

 PetH n.d. 

α subunit (CF1 α, AtpA) R. Berzborn ATP synthase 

Subunit II (CFo II, AtpG) R. Berzborn 

Ferredoxin  R. Scheibe (Universität 

Osnabrück, Osnabrück, 

Germany) 

          

FtrA P. Schürmann  

(Université de Neuchâtel, 

Neuchâtel, Switzerland) 

Ferredoxin-thioredoxin 

reductase 

FtrB P. Schürmann  

NdhA Steinmüller Ndh-complex 

NdhH Steinmüller 

n.d.: source not known 
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2. Methods 

 

2.1 Cultivation of bacteria 

 

The E.coli strain was propagated in LB medium or on LB-agar plates at 37°C as described in 

Sambrook et al., 1989. For transformation with plasmids carrying ampicillin resistance, 70 

µg/ml ampicillin were added to the medium. The Agrobacterium strain was grown at 28°C in 

YEB medium supplemented with 100 µg/ml rifampicin and 25 µg/ml kanamycin. For 

transformation with binary vector carrying ampicillin resistance, 100 µg/ml carbenicillin were 

used. 

 

2.2 Seed sterilization, medium and culture conditions 

 

Wild-type and mutant plants were grown under green house conditions or on sucrose-

supplemented medium as described in Meurer et al. (1996a). In all analyses phenotypically 

wild-type plants of heterozygous progenies grown under the same conditions were compared 

to apo1. Selection of mutant plants was facilitated by a chlorophyll fluorescence video 

imaging system (FluorCam690M, Photon Systems Instruments, Brno, Czech Republic). The 

hcf mutants were readily distinguishable from wild-type plants because of their failure to 

quench chlorophyll fluorescence. Propagation of the lethal hcf mutants occurred via 

heterozygous offsprings grown on soil. In all experiments three-week-old plants were used if 

not differently indicated. 

 

2.3 General molecular biological methods 

 

Phenol/chloroform extraction, precipitation, gel electrophoresis, staining and quantification of 

nucleic acids were performed according to standard protocols (Sambrook et al., 1989). DNA 

fragments were purified from agarose gels using the QIAEX-II Gel extraction kit and PCR 

products were purified with the QIAquick PCR purification Kit (Qiagen, Hilden). 

Restriction and ligation of DNA fragments were performed according to the manufacturers 

instructions.  
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Plasmid DNA for sequencing or cloning was isolated using QIAprep Spin Miniprep Kit 

(Qiagen, Hilden, Germany). The alkaline lysis protocol (Birnboim and Doly, 1979) was used 

to obtain plasmid DNA after ligation. Preparation of competent cells and heat-shock 

transformation of E. coli occurred according to Hanahan (1983). 

 

2.4 Vector construction, chloroplast transformation and plant material  

 

The region of the tobacco chloroplast genome containing 700bp upstream and downstream of 

the psaJ reading frame was amplified using PCR. The 1535bp fragment was ligated into the 

SacI and BamHI sites of pUC19. The psaJ knock-out allele was generated by digestion of this 

construct with ScaI and a chimeric aadA gene conferring resistance to aminoglycoside 

antibiotics (Svab and Maliga, 1993) was inserted into this ScaI site to disrupt psaJ and to 

facilitate selection of chloroplast transformants. ScaI causes a disruption of the 132bp psaJ 

coding region after nucleotide 38. A plasmid clone carrying the aadA gene in the same 

orientation as psaJ yielded the transformation vector pPsaJ (Fig. 12). 

 

Chloroplasts of Nicotiana tabaccum cv. Petit Havanna were transformed by particle 

bombardment of leaves (Svab and Maliga, 1993). Selection and culture of transformed 

material as well as assessment of plastome segregation and of the homoplastomic state were 

performed essentially as described in Swiatek et al. (2003). The material was maintained on 

agar-solidified MS-medium (Murashige and Skoog 1962) containing 2% sucrose, and grown 

in 12 h dark/light cycles at 25oC and 20 µmoles photons m-2 s-1, under selective conditions 

with 500 µl/ml spectinomycin. For thylakoid isolation and physiological measurements, wild 

type and transformed plants were planted in compost and kept under growth chamber 

conditions in 8h light and 120 - 140 µmol photons m-2 s-1. 

 

2.5 DNA analysis 

 

2.5.1 Polymerase chain reaction (PCR) 

 

For PCR amplifications of DNA templates 0.5 mM oligonucleotide primers, 0.2 mM dNTPs, 

5 mM MgCl2 and 2.5 U Taq polymerase were used in a 20 µl final reaction volume. An initial  
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denaturation step was performed at 95°C for 3 min, and afterwards 32 cycles of denaturation 

(95°C for 15 sec), annealing (58 - 62°C for 15 sec) and extension (72°C for 1 min per 1 kb 

DNA) were performed followed by a final extension step at 72°C for 8 min. 

 

2.5.2 DNA isolation  

 

DNA was isolated from young Arabidopsis leaves (approx. 0.5 cm2). Plant material was 

homogenised in 1.5 ml-Eppendorf tubes using a mechanical stirrer RW16 basic (Kika 

Labortechnik, Staufen, Germany) for approx. 5 sec, and immediately afterwards 400 µl 

extraction buffer (0.2 M Tris/HCl, pH 7.5; 0.25 M NaCl; 0.025 M EDTA and 0.5% (w/v) 

SDS) was added. After a short vortexing step, the extract was centrifuged for 3 min at 16,000 

g at room temperature. 300 µl supernatant were transferred to a new Eppendorf tube and 300 

µl isopropanol was added. The mixture was vortexed, incubated at room temperature for 2 

min and centrifuged for 5 min at 16,000 g at room temperature or at 4°C. The supernatant was 

discarded, and the pellet was air-dried and resuspended in 50 µl TE buffer. For PCR 

amplification 2 µl DNA were used. 

 

2.5.3 iPCR 

  

T-DNA flanking sequences were isolated by inverse PCR. SalI-digested genomic DNA was 

religated and subsequently subjected to PCR using the primers 5´-CAC CTG TCC TAC GAG 

TTG C-3´ and 5´-GCA TAG ATG CAC TCG AAA TCA GCC-3´. PCR products were cloned 

and sequenced. 

          

2.5.4 GFP fusion 

 

PCR products of the APO1 cDNA were generated using primers 5´-ACT TAT ATA GTC 

GAC ATG CTT CTG GTT TCT-3´ and 5´-GAT ATC CAC GTC GAC CGA TCA CTC TCT 

TCC-3´ and cloned into the SalI site of the GFP expression vector pOL-LT (Mollier et al., 

2002), producing a translational fusion of the APO1 protein containing APO motif 1 with 

GFP.  
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GFP was transiently expressed in tobacco (Nicotiana tabacum) protoplasts using the 

polyethylene glycol protocol (Lyznik et al., 1991). Fluorescence was visualized using a 

fluorescence microscope equipped with a digital camera (Axioplan; Zeiss, Jena, Germany). 

 

2.5.5 Radioactive labelling of DNA 

 

DNA labelling was performed using the Random Primed DNA Labeling Kit (Roche 

Molecular Biochemicals, Mannheim, Germany) according to the method of Feinberg and 

Vogelstein (1983). 

 

2.5.6  Hybridisation of nucleic acids 

 

All hybridisations were performed overnight in hybridisation buffer (see Chapter 2.1.7) at 

62°C (Church and Gilbert, 1984). Prehybridisations were carried out in the same buffer for at  

least two hours. After hybridisation, filters were washed for 30 min in each of the washing  

solutions 1 to 5 (see Chapter 2.1.7). For exposure filters were sealed in plastic foils and 

analysed by phosphorimaging (BASIII Fuji Bio Imaging plates and BAS2000 software 

package and the AIDA software package v3.25 beta; Raytest, Straubenhardt, Germany). 

 

2.6 RNA analysis 

 

2.6.1 Isolation of total RNA of Arabidopsis 

 

Nucleic acids were isolated from 1 - 2 g of leaf material in 8 ml homogenisation solution 

(0.33 M sorbitol;  0.2 Tris - NaOH, pH 9.0;  0.3 M  NaCl; 10 mM EDTA; 10 mM EGTA;  2%  

SDS) mixed with 4 ml phenol and 4 ml chloroform at 40°C. Total RNA was selectively 

precipitated with 2 M LiCl (Lizardi 1983; Westhoff et al., 1993). PolyA+ mRNA was isolated  

using OligodT-beads according to the manufacturer´s instructions (Dynal, Oslo, Norway) and 

used for RACE experiments. 
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2.6.2 Northern analysis 

 

For Northern analysis 8 µg of total cellular RNA was used. RNA was denatured through 

incubation with 30% glyoxal (McMaster and Carmichael, 1977), electrophoretically separated 

in 1.2% agarose gels in MOPS buffer and transferred onto a Biodyne A nylon membrane (0.2 

µm; Pall, Dreieich, Germany) in 20x SSC buffer (Grüne and Westhoff, 1988). RNA was fixed 

to the membrane by UV radiation. EcoRI/HindIII-digested and glyoxylized lambda DNA was 

used as a molecular weight standard. 

 

2.6.3 RNA gel blot analysis of tobacco 

 

Nucleic acids were isolated from 1 – 2 g leaf material in 8 ml homogenisation solution (0.33 

M sorbitol; 0.2 M Tris-HCl, pH 9.0; 10mM EDTA; 10mM EGTA; 2% SDS) mixed with 4 ml 

phenol and 4 ml chloroform at 40ºC. Total RNA was selectively precipitated with 2 M LiCl 

(Lizardi 1983). For Northern analysis 8 µg of total cellular RNA was used. RNA was 

denatured through incubation with 30% glyoxal (McMaster and Carmichael, 1977), 

electrophoretically separated in 1.2% agarose gels in MOPS buffer and capillary transferred 

onto a Biodyne A nylon membrane (0.2 µm; Pall, Dreieich, Germany) in 20x SSC buffer 

(Grüne and Westhoff, 1988). RNA was fixed to the membrane by UV radiation.  DNA 

labelling was performed using the Random Primed DNA Labeling Kit (Roche Molecular 

Biochemicals, Mannheim, Germany) according to the method of Feinberg and Vogelstein 

(1983). 

 

2.6.4 Primer extension 

 

Primer extension reactions were performed with 50 mg of DNase-treated RNA using the 

Superscript II reverse transcriptase (Invitrogen, Karlsruhe, Germany) and the fluorochrome-

labeled primer 5´- GTG AGC ATC AGC ATG TAG GTT CCA GAT CC - 3´ annealing to the 

psaA 5´ coding region. Sequencing and product analysis was performed using the LI-COR 

4200IR2 two-laser system (MWG Biotech, Ebersberg, Germany). 
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2.6.5 Reverse transcription (RT)-PCR 

 

Reverse transcription was performed with 1 µg total RNA using SuperScript II RNase H- 

Reverse Transcriptase (Invitrogen, Karlsruhe, Germany) and either hexanucleotides (Roche 

Molecular Biochemicals, Mannheim, Germany) or gene-specific primers according to the 

manufacturers instructions. DNase I (RNase-free; Roche Molecular Biochemicals, Mannheim, 

Germany) was used for removal of DNA from RNA preparations prior to RT-PCR reactions. 

In case that some contaminating DNA remained in the RNA sample, primers were designed 

that anneal to sequences in exons at both sides of an intron to differentiate between 

amplification of cDNA and amplification of residual, if any, DNA. With this approach PCR 

products derived from genomic DNA are longer compared to those derived from the 

intronless mRNA. The 5´ end of the APO1 cDNA was determined by RACE experiments 

with the 5´ RACE primer SMART (BD BiosciencesClontech, Palo Alto, CA) and the gene-

specific primer apo1-r2 (5´-ACT TGT CTG CTC TCT ATG CTT CTG ATT-3´) located 

within the coding region. 

 

2.6.6 Quantitative real-time RT-PCR 

 

Quantitative two-step RT-PCR for apo1 and wild-type mRNA was performed using the 

LightCycler system (Roche Molecular Biochemicals, Mannheim, Germany) applying the 

SYBR Green protocol (Wittwer et al., 1997). Real-time PCR was performed with APO1 

exon-specific primers (5´-GCT TCT GGT TTC TCC TGC TTG TAG AGG TG-3´ and 5´-

ACT TGT CTG CTC TCT ATG CTT CTG ATT-3´)  and,  as  an  internal  control,  with 18S  

rDNA primers (5´-GCT CAA AGC AAG CCT ACG CTC TGG-3´ and 5´-GGA CGG TAT 

CTG ATC GTC TTC GAG CC-3´). Serially diluted samples of the APO1 cDNA were used 

for the calibration curve. 

 

2.6.7 Polysome analysis 

 

Isolation of polysomes from leaves of 3-week-old plants was performed essentially as 

described in Barkan (1998). Polysome aliquots were layered onto 15% to 55% sucrose 

gradients and centrifuged for 65 min at 272.000 g and 48°C in a SW60 Ti rotor (Beckman, 

Munich, Germany).  
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Fractions of 0.4 ml were collected, and the RNA obtained was subjected to RNA gel blot 

analysis. 

          

2.7 Translation inhibition experiment 

 

For translation inhibition, three-week-old wild-type and apo1-plants were used. Hypocotyls 

were clipped in a ½ MS solution containing 400 mg/l lincomycin to avoid air embolism. 

Control plants were incubated for the same time in a solution containing ½ MS nutrients. 

Total RNA was isolated from the harvested material and used for Northern analysis. The psaA 

and psbA probes used for the hybridisations are listed in Table 1.  

 

2.8 Protein and pigment analysis 

 

2.8.1 Measurement of protein and chlorophyll concentration in Arabidopsis 

 

Protein concentrations were measured according to Bradford (1976). Protein amounts of 

mutants were equalised to amounts in wild-type (10 µg) according to silver-stained gels 

(Blum et al., 1987). Chlorophyll concentrations were measured according to Arnon (1949). 

 

2.8.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 

 

Soluble and membrane proteins of three-week-old plants were isolated and separated by SDS-

PAGE as described in Meurer et al., (1996b). 

 

2.8.3 Immunological analysis 

 

Membrane proteins of 3-week-old plants were isolated substantially as described (Meurer et 

al., 1996a). The supernatant of the first centrifugation, which contained the soluble proteins, 

was  precipitated  with 15%  trichloroacetic  acid. The sediment was washed  twice with  80%  

acetone and resuspended in 100 mM Na2CO3, 10% sucrose, and 50 mM dithioerythritol. 

Proteins separated  by  SDS-PAGE  were  transferred to polyvinylidene difluoride membranes  

(Amersham Buchler, Braunschweig, Germany), incubated with specific antibodies (Meurer et 
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al., 1996a), and visualized by the enhanced chemiluminescence technique (Amersham 

Buchler). 

 

2.8.4 Radioactive labeling of plastid membrane proteins 

 

In vivo labeling of leaf proteins was performed as described (Meurer et al.,1996b), with the 

exception that the hypocotyls of plants were first cut in the  antibiotic-containing  solution and  

subsequently immersed into the appropriate medium supplemented with [35S]Met (50 mCi; 

specific activity >1000 Ci/mmol) for 20 min. 

 

2.8.5 Separation of thylakoid membrane complexes 

 

Approximately 1 g Arabidopsis seedlings were homogenized in 0.3 M sorbitol, 5 mM MgCl2, 

20 mM Tricine/KOH (pH 8.4), 20 mM EDTA, 0.1% (w/v) BSA. The homogenate was filtered 

through two Miracloth layeres (100 µm, Calbiochem, La Jolla, USA) and centrifuged for 3 

min at 2,370 rpm in a table centrifuge at 4°C. The pellet containing the membrane fraction 

was resuspended in 1 ml TMK buffer (10 mM Tris-HCl, pH 6.8, 10 mM MgCl2 and 20 mM 

KCl). The suspension obtained was incubated for 10 min on ice and then centrifuged (3 min at  

650 g). The pellet was washed twice with 500 µl TMK buffer to remove soluble proteins. 

Membrane fractions equivalent to 40 – 120 µg chlorophyll were resuspended in 40 µl TMK 

buffer, and 120 µl of 2% (w/v) β-dodecylmaltoside in TMK was added to obtain a final 

concentration of 1.5% (w/v). The suspension was incubated for 10 min on ice to solubilize the 

major thylakoid membrane protein complexes and centrifuged (10 min, 21,000 g in a table 

centrifuge at 4°C). The supernatant containing the thylakoid lysate was loaded onto a linear 

0.1 – 1.0 M sucrose gradient and centrifuged for 17 h at 125,000 g at 4°C in a SW60Ti rotor 

(Beckman, Munich, Germany). Fractions of 0.2 ml where collected from bottom-to-top and 

used for SDS-PAGE and Western analysis. 

 

2.8.6 Protein import into chloroplasts 

 

The APO1 cDNA was amplified with primers 5´ - GTA ATA CGA CTC ACT ATA GGG 

CTT ATA TAG TCA ACA - 3´ and 5´ - CCA AGG ACT TAT GCG ACC ATG TCG GCT 

TCC - 3´  that generate a T7-promoter upstream of the coding region, allowing  in vitro  trans-  
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cription. Isolated chloroplasts were incubated for 0, 5, 10, and 20 min with labeled in vitro 

translation products of apo1 generated in cell-free wheat germ extracts in the presence of 

[35S]Met (Roche Molecular Biochemicals). Chloroplasts were purified, washed twice, treated  

with thermolysin when indicated, and the isolated proteins were subjected to SDS-PAGE 

(Lezhneva et al., 2004). Gels were dried and exposed to phosphor imaging plates (BASIII Fuji 

Bio Imaging plates and BAS2000 software package (Tokyo, Japan) and the AIDA software 

package version 3.25 beta; Raytest, Straubenhardt, Germany). 

 

2.8.7 Isolation of thylakoid membranes and PSI assemblies from tobacco   

 

Leaves from 6- to 8-week-old plants were used for isolation of thylakoids as described 

previously (Haldrup et al., 1999). PSI particles were isolated from thylakoids after 

solubilization with dodecyl-β-D-maltoside and sucrose density ultracentrifugation as 

described in Jensen et al. (2000). Chl content and the Chl a/b ratio were determined in 80% 

acetone according to Lichtenthaler (1987). The samples were frozen in liquid nitrogen and 

stored at -80ºC.  

 

2.8.8 Chlorophyll content per leaf area  

 

Total leaf chlorophylls were extracted by boiling leaf disks in 95% EtOH for 30 min. After 

cooling to room temperature and volume adjustment the Chl content and Chl a/b ratio was 

determined in 95% EtOH according to Lichtenthaler (1987).  

 

2.8.9 Immunoblotting  

 

Immunoblotting analysis was performed essentially as described previously (Jensen et al., 

2000) using antibodies directed against subunits of the various thylakoid membrane 

complexes as indicated in the figure legends. Primary antibodies were detected using a 

chemiluminescent detection system (Immun-Star, Bio-Rad and Super-Signal, Pierce) 

according to the instructions of the manufacturer. The chemiluminescent signal produced was 

recorded digitally using a cooled CCD camera with the AC1 AutoChemi System (Ultra-Violet 

Products Ltd, Cambridge, UK).  
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The exposure time was set to 5 minutes, with accumulative snapshots at 30 second intervals. 

Signal intensity was quantified using the LabWorks Analysis Software (Ultra-Violet Products 

Ltd, Cambridge, UK). 

 

2.9 Spectroscopic and fluorimetric methods 

 

2.9.1 Chlorophyll a fluorescence analysis in Arabidopsis 

 

Chlorophyll a fluorescence analyses were performed using plants of the same age grown 

under identical conditions. A pulse amplitude–modulated fluorometer (PAM101; Walz, 

Effeltrich, Germany) equipped with a data acquisition system (PDA-100; Walz) and a 

personal computer using Wincontrol version 1.72 software (Walz, Effeltrich, Germany) for 

data collection were used to measure and analyze in vivo chlorophyll a fluorescence. The 

following settings were used for the PAM101 unit: light intensity, 4; gain, 6; damping, 9. 

After induction, saturating pulses of 4,000 µE m –2 s –1 light intensity and 1 s duration were 

applied in 30 s intervals to estimate quenching parameters (Meurer et al., 1996b). 

 

2.9.2 Light-induced change of the P700 redox state 

 

Light-induced changes of the P700 redox state were recorded by absorbance changes at 830 

nm, with the above described PAM system equipped with a dual wavelength emitter-detector 

unit (Meurer et al., 1996b). Multiple turn-over flashes of 50 µs were induced by a Xenon 

lamp (Walz, Effeltrich, Germany) and saturating light pulses of 1 s were applied by halogene 

lamps. 

 

2.9.3 Photochemical and non-photochemical chlorophyll a fluorescence quenching 

 

Photochemical (qP) and non-photochemical (NPQ) chlorophyll a fluorescence quenching at 

room temperature were performed using the PAM system described in Chapter 2.2.9.1. The 

actinic light intensity was 20 µE m –2 s -1, and the intensity of the saturating light pulses (1 s, 

20 s intervals) used for detection of the quenching parameters during induction was 4000 µE 

m –2 s -1. 
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2.9.4 Low temperature chlorophyll fluorescence spectra 

 

Chlorophyll fluorescence emission spectra at 77 K were recorded with a Hitachi fluorometer 

(model F-3010; Hitachi, Tokyo, Japan), as described in Meurer et al. (1996a). Spectra were 

normalized with respect to equivalent long-wavelength emission bands. 

 

2.9.5  Fluorescence measurements in tobacco 

 

Fluorescence emission spectra at 77 K were recorded on intact leaves from dark-adapted 

plants or PSI particles using a bifurcated light guide connected to a spectrofluorometer 

(Photon Technology International, Lawrenceville, NJ). The excitation light had a wavelength 

of 435 nm, and emission was detected from 650 to 800 nm. Standard fluorescence parameters 

- the QA redox state (1-qP), PSII quantum yield (ΦPSII), non-photochemical quenching (NPQ) 

under growth light conditions were performed as described in Lunde et al. (2003), and the 

parameters were calculated using the following equations, 1-qP = (Fs–F0')/(Fm'–F0'),
 
ΦPSII = 

(Fm'–Fs)/Fm', ΦPSII (dark-adapted)
 = (Fm–F0)/Fm and NPQ = (Fm–Fm')/Fm'

 for standard 

fluorescence.  

 

2.9.6 NADP+ photoreduction measurements and Chl/P700 

 

The NADP+ photoreduction activity of PSI was determined from the absorbance change at 

340 nm as described by Naver et al. (1996) using thylakoids equivalent to 5 µg of Chl. 

Thylakoids were solubilized in 0.1% N-dodecyl-β-D-maltoside prior to measurements. The 

total P700 content was determined from the ferricyanide-oxidized minus ascorbate-reduced 

difference spectrum using an extinction coefficient of 64,000 M–1 cm–1 at 700 nm. The 

thylakoids were solubilized with 0.2% Triton X-100, and the measurements were repeated 4 - 

5 times on several independent thylakoid preparations.  

 

2.9.7 Antenna size of PSI  

 

Functional PSI antenna size was determined from light-induced P700 absorption changes at 

810 nm using the Dual Wavelenght Emitter Detector Unit ED-P700DW-E connected via 

PAM 101 Fluorometer (Walz, Effeltrich/Germany) to a Tektronix TDS420 oscilloscope using  
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thylakoids equivalent to 33 µg of chlorophyll. Thylakoids were solubilized with 0.01% 

digitonin prior to measurements. For each sample four traces were averaged and the 

measurements were repeated five times on several independent thylakoid preparations. The 

absorption curves were fitted with single-exponential functions, and relative antenna sizes 

(percent of wild-type) were calculated  from  the halftimes (t1/2)  with  the assumption  that  all  

chlorophylls functionally connected to a reaction center contribute equally to P700 oxidation 

in the monitored millisecond time scale. 

          

2.9.8 Kinetic measurements  

 

Flash-induced P700 absorption decay was measured at 834 nm, as described previously 

(Naver et al., 1996; Drepper et al., 1996; Zygadlo et al., 2005) The saturating actinic pulse 

(532 nm, 6 ns) was produced by a Nd:YAG laser. Thylakoids (20 µg of chlorophyll) were 

dissolved in a final volume of 300 µl of 20 mM Tricine (pH 7.5), 40 mM NaCl, 8 mM MgCl2, 

0.1%  digitonin,  2 mM sodium ascorbate,  6 µM  2,6-dichlorophenolindophenol  and 100 µM  

methylviologen. The solution was incubated in darkness for 10 min on ice and centrifuged 

once for 10 s at 200 x g to remove starch. The sample (300 µl) was then transferred to a 

cuvette with a 1 cm path length and PC was added to the required concentration, from 5 - 

500µM. A diode laser provided the measuring beam, which was detected using a photodiode. 

The signal was passed via a preamplifier (Tektronix ADA400A) to an oscilloscope. The time 

resolution with this setup is about 2.5 µs. A total of 32 absorbance transients were collected 

with 4 s intervals and averaged for each decay curve. The recorded absorbance changes were 

resolved into three exponential decay components using a Levenberg-Marquardt non-linear 

regression procedure. Kinetic parameters were calculated from the exponential decays 

essentially according to Drepper et al. (1996). 

 

2.9.9 P700 oxidation state in WT and ∆∆∆∆PsaJ leaves  

 

The redox level was monitored at 810 nm and 860 nm with a PAM 101-103 chlorophyll 

fluorometer (Walz, Effeltrich, Germany) connected to a dual wavelength emitter-detector unit 

ED 700 DW as described by Klughammer and Schreiber (Klughammer and Schreiber, 1994). 

The  dual wavelength  emitter-detector system detects strictly differential  absorbance changes  
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(810 nm minus 860 nm) and is selective for absorbance changes caused by P700 

(Klughammer and Schreiber, 1998). Oxidized P700 (∆Amax) was recorded during far-red 

light illumination. The level of oxidized P700 in the leaf (∆A) was determined during white 

light illumination (from 25 to 800 µmol photons m-2 s-1). PSI acceptor side limitation was 

determined  using  50 ms  flashes  from a Walz XST 103 unit. Flashes were applied during the  

actinic light (SFal) and the far-red (SFfr) illuminations and the acceptor side limitation 

calculated as (SFfr - SFal)/ SFfr. 

          

2.10. Genetic methods 

 

2.10.1 Mapping of the apo1 mutation 

 

For genetic crosses, male plants of the accession Landsberg erecta were used to generate the 

F2 mapping populations. Single mutant seedlings were chosen for mapping the APO1 gene 

using the microsatellite marker nga128 (http://www.arabidopsis.org/) and the marker chr1-

110 (5´-CAC ACA TAT TAA CGA GTG GAT TGA CG-3´ and 5´-GGA CTC AAA TAT 

GTG ACA AGA GTA AGA CTC-3´) on chromosome 1 at positions 20.234 and 25.364 Mb, 

respectively. 

 

2.10.2 Complementation of the apo1 mutant 

 

The full-length cDNA of APO1 was amplified by PCR using the 5´ end primer apo1-f (5´-

CAC GGT CTG AGC TGA TTG CGT GTT CTC-3´) and the TAA stop codon–containing 

primer apo1-r (5´-CCA AGG ACT TAT GCG ACC ATG TCG GCT TCC-3´). The product 

obtained was cloned into the SmaI site of the binary plant transformation vector pS001 

(Meurer et al., 1998a). Heterozygous offsprings were transformed via Agrobacterium 

tumefaciens using the floral dip method (Clough and Bent, 1998). 

 

2.11. Sequence analysis 

 

Nucleotide sequences were determined using the ABI377 system (Applied Biosystems, Foster 

City, CA). Sequences were evaluated using Sequencher 3.0 software (Gene Codes Corp., Ann 

Arbor, MI). Protein homologues were identified by BLAST analysis (Altschul et al., 1997) of  



 41

Methods 
            

sequenced genomes at the NCBI website (http://www.ncbi.nlm.nih.gov/Blast). Sequence 

alignments were performed using the programme MacMolly tetra (SoftGene GmbH; 

Schöneberg et al., 1994). 

 

2.12 Chloroplast ultrastructure 

 

Sample preparation for ultrastructural analysis was performed as described (Meurer et al., 

1998b). Electron microscopy was performed by Prof. Dr. G. Wanner (LMU, München). 

 

2.13 GenBank accession numbers 

 

The GenBank accession number of Arabidopsis APO1 cDNA is AY466161. Accession 

numbers or names for other genes mentioned in this article are At5g57930.1, At5g61930.1, 

and At3g21740.1 (Arabidopsis APO2 to APO4 genes, respectively), AL662950, AK104342, 

AP003840, and AK064525 (rice APO1 to APO4 genes, respectively). 
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III. Results  

 

Part A: Characterisation of the apo1 mutant 

 

1. Selection, phenotype, and growth of apo1 

 

In a systematic screen for nuclear-encoded factors responsible for acclimation and 

maintenance of PSI biogenesis, Arabidopsis mutants were identified that are incapable of 

photoautotrophic growth (Meurer et al., 1996a). 87 mutants were selected with visible 

phenotypes that exhibited an albinotic, pale or hcf phenotype and seedling lethality. Mutant 

plants that were grown heterotrophically often survived, indicating photosynthetic 

deficiencies as primary defects. All analyses were performed with plants grown in vitro. On 

sugar-supplemented medium, the otherwise albinotic apo1 mutant showed a very pale and 

high chlorophyll fluorescence phenotype, indicating substantial loss of chlorophyll and that 

absorbed light energy cannot be used efficiently, which is therefore dissipated as increased 

red chlorophyll fluorescence (Figure 4A). The T-DNA–induced apo1 mutation of Arabidopsis 

was selected because it caused a complete loss of PSI activity (see below). Growth at 10 µmol 

photons m-2 s-1 was slower, but leaf morphology and development were unaltered in apo1 in 

comparison to wild-type plants (Figure 4A). Under moderate light intensities of 50 µmol 

photons m-2 s-1, mutant plants bleached rapidly, indicating increased light sensitivity. 

 

2. Fluorometric and spectroscopic characteristics of the photosynthetic apparatus and 

pigment content in apo1 revealed specific deficiencies of PSI 

 

The light-induced in vivo chlorophyll fluorescence measurements can serve as a sensitive tool 

to estimate the excitation state of PSII reaction centres. The ratio of variable fluorescence to 

maximum fluorescence (Fv/Fm) reflects the potential capacity of the photochemical reaction 

of PSII (Krause and Weis, 1991). The fluorescence is quenched by the use of light energy 

(photochemical quenching [qP]) measured at intensities of 3 and 30 µmol photons m-2 s-1. 

Fv/Fm reached levels of 0.62 ± 0.06 in apo1 as compared with 0.81 ± 0.02 in the wild-type, 

indicating partial loss of PSII capacity or a stimulated emission of PSI antenna  pigments  that  

contribute to a higher minimum fluorescence with no effect on Fv. At the lower light regime, 

qP  was reduced to 0.84 in the mutant as compared  with 0.98 in the wild-type (Figure 4B).  
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At still moderate light intensities of 30 µmol photons m-2 s-1, dramatic deficiencies were 

observed in qP processes in apo1. Whereas wild-type plants exhibited a qP of 0.81 under 

steady state conditions, apo1 failed to quench most of the variable fluorescence (qP < 0.06; 

Figure 4B). Such a behaviour is typical for mutants affected in electron transport processes 

independent of PSII (Meurer et al., 1996a). This inference was confirmed by measuring the 

light-induced redox kinetics of the PSI pigment P700. Under normal conditions, P700 is 

completely reduced in the dark and oxidized to its maximum level in selective PSI light, 

whereas under steady state conditions in heterochromatic light, the P700 redox state is 

adjusted somewhere in between (Klughammer and Schreiber, 1994). Although the dual 

wavelength pulse amplitude - modulated system was set at maximal sensitivity, light-induced 

P700 redox changes were below the limit of detection in apo1, indicating complete loss of 

PSI function (data not shown). In plants grown heterotrophically, levels of chlorophylls were 

10-fold reduced in apo1 as compared with wild-type seedlings (1.84 ± 0.09 mg/g fresh weight 

in the wild type and 0.17 ± 0.03 mg/g fresh weight in mutants). The ratio of chlorophyll a to 

chlorophyll b was altered from 2.88 ± 0.04 in the wild-type to 2.64 ± 0.12 in the mutant. The 

photosynthetic pigment absorbance spectra demonstrated that the typical maxima at 430 and 

670 nm for chlorophyll a, at 450 nm for chlorophyll b, and at 473 nm for carotenoids were 

present in the mutant (Figure 4C). The second derivative of the absorbance spectra showed a 

much broader carotenoid band at 473 nm in apo1, which is indicative of a relatively high 

carotenoid content and of an increased sensitivity to light (Figure 4C; Havaux and Niyogi, 

1999). 

 

3. Low-temperature fluorescence emission analysis demonstrates lack of the entire PSI 

complex in apo1 

 

Fluorometric studies at 77K showed that the PSII-specific band at 685 nm was present in the 

mutant and not shifted to shorter wavelengths. This indicates that PSII reaction centers are 

present at normal levels relative to the outer light-harvesting complex II (LHCII) and that 

excitons can be efficiently transferred from LHCII to the inner PSII antenna (Krause and 

Weis, 1991). The usually most-abundant PSI-specific absorbance band at 735 nm was 

reduced to a hardly detectable shoulder in the spectra of apo1 (Figure 4D). Therefore, it 

appears that PSII complexes are functionally assembled, whereas the whole PSI complex, 

including the outer antenna, severely and specifically fails to accumulate in apo1. 
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Figure 4: Phenotype, chlorophyll fluorescence, and absorbance spectra of apo1 mutant plants. 
(A) Three-week-old mutant plants growing on sucrose medium (MS medium) at 10 µmol photons m-2 
s-1 are pale and show a hcf phenotype under UV light. WT, wild-type. 
(B) Chlorophyll fluorescence induction and qP at low (3 µmol photons m-2 s-1) and moderate (30 µmol 
photons m-2 s-1) light intensities. Leaves were exposed to a series of superimposed 800 ms saturating 
light flashes. 
(C) Absorbance spectra of mutant and wild-type leaves grown at 10 µmol photons m-2 s-1. The 
increased band at 473 nm (see arrows) in the second order derivative spectra (dotted line) is indicative 
of an increased carotenoid accumulation in the mutant relative to chlorophyll levels. 
(D) Low-temperature (77K) fluorescence emission spectra. The PSII band at 688 nm in the apo1 
mutant was normalized to the PSI band at 735 nm in the wild-type. 
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4. Intrinsic and peripheral PSI subunits are severely reduced in apo1 

 

Stationary protein levels were normalized by equal loading of mutant and wild-type 

membrane and soluble proteins of the chloroplast. Immunological analysis of apo1 revealed 

that nuclear-encoded and plastid-encoded proteins of PSII (subunits PsbB, PsbC, PsbD, and 

PsbO1/2) and cytochrome b6f complex (subunits PetA and PetB) accumulated to significant 

levels between 50 and 100% (Figure 5A). Amounts of the ATP synthase (subunits AtpA and 

AtpG) and the soluble PetH and PetE proteins encoding ferredoxin-NADP reductase and 

plastocyanin, respectively, were unaltered in apo1. By contrast, only traces, if any, of the 

nuclear-encoded and plastid-encoded intrinsic PSI proteins PsaA/B, PsaC, PsaD, and PsaF 

could be detected in apo1 (Figure 5A). Levels of the peripheral antenna proteins of PSI were 

strongly reduced, amounting to 10% for LhcA1 and LhcA3 and 20% or less for LhcA2 and 

LhcA4 as compared with those of the wild-type (Figure 5B). This confirms the conclusions 

deduced from the 77K fluorescence data. The inability of apo1 to accumulate significant 

amounts of the four antenna proteins of PSI contrasts findings with other known Arabidopsis 

PSI mutants because they are primarily and specifically affected in the accumulation of all 

core subunits but not to this extent of the outer antenna (Lezhneva and Meurer, 2004; 

Lezhneva et al., 2004). Remarkably, the outer PSII antenna proteins LhcB1 and LhcB2 were 

also significantly reduced to <20% of the wild-type (Figure 5B). 

 

5. Accumulation of Fe-S cluster–containing proteins in apo1 

 

Recent findings show that Fe-S cluster assembly is important for stable accumulation of PSI 

and other proteins or complexes within the chloroplast (Lezhneva et al., 2004; Touraine et al. 

2004; Yabe et al., 2004). To investigate whether APO1 has additional targets that participate 

in chloroplast biogenesis, the accumulation of several plastid Fe-S cluster–containing 

complexes and proteins was studied (Figure 5C). Ferredoxin, which contains a [2Fe-2S] 

cluster, is not affected in size or in abundance in apo1. By contrast, the mutant had 

significantly reduced levels of [4Fe-4S] cluster–containing complexes like the 

ferredoxinthioredoxin reductase (FTR) and NAD(P)H-dependent dehydrogenase (NDH). The 

deficiency in accumulation of [4Fe-4S] clusters does not appear to be characteristic for 

mutants lacking  PSI because  hcf145, which  is  also  missing the  PSI  core  complex,  shows  
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normal levels of other chloroplast [4Fe-4S] cluster proteins (Figure 5C; Lezhneva and 

Meurer, 2004; Lezhneva et al., 2004). 

 

 

 

Figure 5: Accumulation of plastid proteins in wild-type and apo1. 
Loading 100 corresponds to 8 µg of membrane or soluble proteins of the wild-type. The quantity of 
apo1 thylakoid membranes (100%) was adjusted to wild-type levels of the ATP synthase. For 
quantification, dilution series of the wild-type were used. Three-week-old wild-type and apo1 leaves 
were used for analysis. 
(A) Immunoblot analysis of thylakoid membrane and soluble plastid proteins. Designations of proteins 
and of the corresponding complexes are labeled at the left and right, respectively. 
(B) Immunoblot analysis of the outer PSI and PSII antenna proteins in apo1 and wild type. Lhc, Light-
harvesting complex. 
(C) Immunoblot analysis of Fe-S cluster–containing plastid proteins. The plastid-encoded thylakoid 
membrane and the nuclear-encoded soluble protein complexes NDH and FTR, respectively, contain 
[4Fe-4S] clusters. Ferredoxin (FD) binds [2Fe-2S] clusters. 
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6. Accumulation and integrity of PSI transcripts is unaffected in apo1 

 

The abundance and sizes of nuclear (psaD, psaE, psaF, psaG, and psaH) and all plastid 

transcripts encoding PSI proteins (the trimeric psaA-psaB-rps14, psaC, psaI, and psaJ) were 

identical in mutant and wild-type plants as determined by RNA gel blot analysis and by 

expression profiling using macroarrays that were equipped with probes of all plastid genes 

(Figure 6A and data not shown). Transcript levels of the nuclear cab and rbcS genes, which 

are well known to be significantly reduced when the functional state of the chloroplast is 

arrested at an early stage (Surpin et al., 2002), were unaltered as well in apo1 (Figure 6A). 

RNA gel blot analysis demonstrates that the psaA-psaB genes yield just a single prominent, 

tricistronic RNA of 5.3 kb in Arabidopsis. Primer extension studies uncovered that the  

transcript - terminus of the psaA-psaB-rps14 tricistron is unaltered in apo1 when compared 

with the wild-type (Figure 6B). This suggests that the apo1 mutant exhibits normal promoter 

usage, integrity, and abundance of psaA-psaB-rps14 transcripts. 

 

7. Radiolabeling of the plastid PsaA and PsaB proteins is impaired in apo1 

 

PSI protein abundance could be limited by translational disturbances in the mutant. Therefore, 

pulse labeling of membrane - bound and soluble chloroplast proteins was performed with 

[35S]Met in the presence of the cytoplasmic translation inhibitor cycloheximide. With the 

exception of one plastid - encoded protein of 35 kD molecular mass, biosynthesis of other 

detectable soluble proteins in the stroma was unchanged in apo1 (Figure 6C). Labeling of 

ATP synthase subunits α and ß (AtpA and AtpB) was slightly increased in the mutant relative 

to the wild-type control based on equal loading of radioactive label. Incorporation of 

radioactivity into the PSII proteins PsbA (D1) and PsbD (D2) was comparable to that in wild- 

type, but labeling of the chlorophyll binding proteins PsbB and PsbC was reduced. These data 

demonstrate the pleiotropy of the phenotype. As a control, the labeling pattern of apo1 was 

compared with that of another Arabidopsis PSI mutant, hcf145, accumulating only 10% of the 

tricistronic psaA-psaB-rps14 mRNA (Lezhneva and Meurer, 2004). The hcf145 mutant 

specifically exhibits decreased levels of PsaA and PsaB radiolabeling (Figure 6C) and, similar 

to apo1, increased  incorporation of  label into AtpA and AtpB. A failure to radiolabel the PSI  
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core proteins PsaA and PsaB in apo1 could reflect that the rates of translation of the two PSI 

reaction center subunits are repressed in apo1. However, it also remains possible that the 

synthesis of PsaA and PsaB is unchanged in apo1, but the proteins or the nascent chains are 

rapidly degraded during the time course of the experiment. 

 

8. Polysome association of psaA and psaB transcripts is decreased in apo1 

 

If translation of psaA and psaB mRNAs is impaired in apo1, changes in polysome association 

for the psaA and psaB transcripts could be expected. Polysomal loading was analyzed by 

sucrose density gradient centrifugation. The sizes and distribution of polysomes loaded with 

psaC and psbA transcripts did not differ in the mutant when compared with the wild-type 

(Figure 6D). However, polysomes associated with tricistronic psaA-psaB-rps14 transcripts 

were shifted to decreased sucrose concentrations, suggesting a failure in the functional 

loading of psaA-psaB-rps14 transcripts with ribosomes in the mutant. To test whether 

initiation or elongation of translation is affected in apo1, the translation inhibitor lincomycin 

that prevents reinitiation and forces previously initiated ribosomes to run off was applied to 

wild-type and mutant plants 4 h before polysome isolation. As expected, the inhibitor caused 

banding of psaApsaB-rps14 mRNAs at much lower sucrose concentrations in wild-type, 

whereas in apo1 lincomycin induced a less prominent release of psaA-psaB transcripts from 

ribosomes, indicating that translational elongation is retarded in the mutant (Figure 6D). 

 

Lincomycin treatment of the mutant was as effective as in the wild-type because psbA-

containing and rRNA-containing polysomes were shifted towards the top of the gradient to 

the same extent in both cases. Therefore, it appears that APO1 is not needed for initiation but 

rather specifically for elongation of psaA and psaB translation, cofactor assembly during 

translation, or targeting of the nascent chains to their right place. However, the changes in the 

size of polysomes could also reflect an assembly mediated regulation of translation 

(Wostrikoff et al., 2004). 
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Figure 6: Quantities and integrity of psaA-psaB transcripts and protein labeling studies in wild-type 
and apo1 mutant. 
(A) RNA gel blot analysis of the plastid PSI genes and the nuclear cab and rbcS genes. Eight and two 
(1/4) mg of total RNA from three-week-old mutant and wild-type leaves were analyzed using gene-
specific probes. Sizes of the standard (right) and the bands (left) are indicated in kilobases. 
(B) Primer extension analysis of mutant and wild-type mRNA shows that the transcript 5` termini at 
position -199 nt relative to the start codon of the psaA message are intact in apo1. 
(C) In vivo labeling of plastid soluble (S) and membrane (M) proteins separated by SDS-PAGE in 
apo1, hcf145, and the wild-type (WT). Wild-type and mutant proteins with equivalent amounts of 
radioactivity (100.000 cpm) were loaded. 
(D) Polysome sedimentation in 15% to 55% sucrose (Suc) gradients by ultracentrifugation and 
subsequent RNA gel blot analysis of fractionated samples. Probes used are indicated on the left side. 
The filter used for the psaC probe was rehybridized with the psaA-psaB probe.  
The filter of the lincomycin-treated (LM) material was used for psaA-psaB and re-hybridized with the 
psbA probe. Lincomycin treatment of wild-type and mutant plants was performed 4 h before polysome 
preparation. rRNAs have been detected by staining the blots. 
 

9. Ultrastructure of apo1 chloroplasts     

 

The ultrastructure of apo1 was compared with that of three other PSI-specific mutants, 

hcf101, hcf140, and hcf113, and of the wild-type (Figure 6). Wild-type chloroplasts showed a 

well developed membrane system consisting of interconnected grana and a random 

distribution of starch grains. The apo1 plastids were 3 to 4 times smaller than those of the 

wild-type and appeared to be swollen. The mutant forms rudimentary thylakoids consisting 

only of stroma lamellae and fails to accumulate grana stacks. This indicates that membrane 

development is arrested at an early morphological stage and distinguishes apo1 from other 

PSI mutants, which form larger (hcf101), swollen (hcf140), or unoriented (hcf113) grana 

stacks but only fragmentary stroma lamellae (Figure 7). The small size of the chloroplasts in 

apo1 also explains the low level of chlorophyll based on the fresh weight.  
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Figure 7: Chloroplast ultrastructure of the wild-ype and the PSI mutants apo1, hcf101, 
hcf140, and hcf113. Bars = 1 µm. 
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10. Molecular mapping, T-DNA tagging of apo1 and complementation 

 

The apo1 mutation segregated in a Mendelian manner and was mapped between the two 

microsatellite markers nga128 and chr1-110 on the lower part of chromosome 1 at position 

23.3956 ± 0.8 Mb. Neither known genes encoding plastid ribosomal proteins nor PSI genes 

map in this region (Legen et al., 2001), suggesting that APO1 encodes a novel protein. The 

kanamycin resistance conferred by the T-DNA cosegregated with the mutant phenotype in 

384 analyzed segregants, indicating that APO1 is tagged by the insertion. The localization of 

APO1 to the lower part of chromosome 1 was confirmed by isolation and sequencing of the 

T-DNA left-border and right-border flanking regions by inverse PCR (Figure 8A). Using 

APO1 and T-DNA right-border probes for  DNA gel blot analyses confirmed a single T-DNA  

insertion that cosegregates strictly with the apo1 mutation (Figure 8B). The location of the 

insertion site close to the 5` end of APO1 at  position 24.153 Mb of chromosome 1 (position 

p103 relative to the APO1 start codon) is consistent with the mapping data. The full-length 

cDNA of APO1 was isolated using a rapid amplification of cDNA ends (RACE) approach 

(Frohman et al., 1988). Interestingly, the APO1 start codon is localized in the second exon 

(Figure 8A). Expression of the full-length APO1 cDNA under the control of the 35S RNA 

Cauliflower mosaic virus promoter functionally complemented the mutant phenotype, 

resulting in the development of fully green seedlings which grew photoautotrophically and 

showed all physiological chlorophyll fluorescence and P700 redox characteristics which are 

typical for the wild-type (Figure 8C; data not shown). 
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Figure 8: Inactivation of APO1 by T-DNA insertion and complementation of apo1. 
(A) Schematic view of the T-DNA insertion in apo1. The two introns are indicated by shaded boxes. 
HindIII (H) and EcoRI (E) restriction sites and the T-DNA left (LB) and right (RB) borders are shown. 
Sizes are given in kilobases. The transcription start and stop are indicated. The arrows show the 
positions of primers used in (C). The position of the translational start (ATG) and stop (TAA) codons 
are indicated. 
(B) Genomic DNA gel blot analysis of EcoRI and HindIII double-digested mutant and wild-type (WT) 
DNA results in polymorphisms that can be deduced from (A). The probes used of the T-DNA right 
border (RB) and the APO1 gene recognize one and the same 2.8-kb fragment. Het, heterozygous 
plants for apo1. 
(C) PCR analysis of wild-type, mutant, complemented mutant lines (apo1c), and the apo1 cDNA. 
Control primers, which amplify another chromosomal region of 1.335 kb, were used in the same 
reaction with the APO1 gene-specific primers. APO1 exon-specific primers apo 1-f and apo1-r2 did 
not amplify a 0.547 kb product of genomic DNA in the apo1 mutant and complemented lines, but a 
0.349 kb fragment originating from the expressed cDNA. 
(D) RNA gel blot analysis of mutant and wild type (WT) was performed with a probe specific for 
apo1. Equal loading (8 mg) is shown by hybridization with a probe specific for 18S rDNA. 
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11. Expression of apo1 is stimulated in illuminated leaves 

 

APO1 transcripts of 1.65 kb could be detected in the wild-type but were absent in apo1, 

consistent with the T-DNA insertional inactivation of the APO1 gene (Figure 8D). Because 

transcript abundance of APO1 was very low even in the wild-type, the precise expression 

levels of APO1 were estimated by real-time RT-PCR using 18S rRNA for normalization. 

Twelve-day-old dark-grown wild-type seedlings expressed 23% ± 5% of the light control. 

Expression in roots, stems, siliques, and flowers was 28% ± 3%, 63% ± 6%, 23% ± 4%, and 

69% ± 6%, respectively, relative to that found in leaves. Although substantial transcript levels 

were already present in the dark and in roots, expression of apo1 appears to be stimulated 

during photomorphogenesis. This implies an important role of APO1 in the dark as well as in 

non - photosynthetic tissues. 

 

12. Localization of APO1 to plastid nucleoids 

 

In vitro synthesized APO1 precursor proteins of 49 kD were imported into chloroplasts and 

processed to a mature size of 42 kD (Figure 9A), demonstrating the presence of a cleavable 

transit peptide even if no chloroplast target sequence could be identified with any of the 

prediction programs available in public databases. To sublocalize APO1 within the 

chloroplast, the APO1 cDNA was translationally linked to the gene for green fluorescent 

protein (GFP) and transiently expressed in isolated protoplasts. The green fluorescence was 

found exclusively in chloroplasts consistent with the findings of the in organello experiments 

(Figure 9B). Although there is a diffuse GFP signal apparently throughout the stroma, much 

of the APO1-GFP fusion resided in distinct spots within the organelle. Comparing the 

fluorescence induced by GFP with that induced by 4’-6-diamidino-2-phenylindole (DAPI) - 

stained cells indicates that the fluorescent labels of both samples overlapped. Therefore, 

APO1 appears to be associated with plastid nucleoids (Figure 9B). The relative intensity of 

the APO1 - GFP and DAPI fluorescence varied in the individual spots, indicating that APO1 

has a higher affinity to a distinct fraction of nucleoids. It is important to note  that  APO1-GFP  

association  with  nucleoids  does  not   seem  to  reflect  an   unspecific  aggregation  of  over- 
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expressed protein because the compartmentalization was also apparent in chloroplasts with 

barely detectable APO1 - GFP fluorescence and not observed with other highly expressed 

chloroplast-targeted GFP fusions which showed a uniform distribution (Meurer et al., 1998a). 

 

13. APO1 belongs to a novel gene family in vascular plants with four defined groups 

containing a conserved repeat motif 

 

The APO1 gene encodes a previously unknown protein and shows similarities to genes only 

found in vascular plants (Figure 10; data not shown). The absence of similarities in the 

sequenced genomes of eubacteria, archaebacteria, or Chlamydomonas indicates that the APO 

gene family evolved after the divergence of the green lineage or has been lost in related 

lineages. Using public databases (http://bioinf.cs.ucl.ac.uk/psipred/; http:// us.expasy.org), all 

attempts to identify sequence motifs or domains within APO1 that are indicative of a function 

failed. Because the instability index of APO1 is computed to be 44.97, the protein is classified 

to be unstable (Guruprasad et al., 1990). According to structural predictions, APO1 consists of 

extensive random coiled (58%) and, to a lesser extent, of alpha helical (28%) and extended 

strand (14%) structures. At the theoretical pI of 9.27 the APO1 protein contains 436 amino 

acid residues and has a deduced molecular mass of 49.6 kD consistent with the size of in vitro 

translated APO1 proteins (Figures 9A and 10A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 56

Results 
          

 

 

Figure 9: Localization of APO1 within the chloroplast. 
(A) Import of radiolabeled APO1 proteins into isolated chloroplasts and subsequent detection of gel-
separated proteins by phosphor imaging. The precursor of 49 kD (P) was imported and proteolytically 
processed to 42 kD at the indicated periods of chloroplast incubation. After import chloroplasts were 
either treated (p) or not treated (-) with thermolysin to digest not - imported proteins. 
(B) The APO1 protein was fused to GFP (APO1-GFP) and transiently expressed in tobacco 
protoplasts. GFP fluorescence was exclusively found in spots inside the chloroplast as revealed by 
chlorophyll fluorescence (top). Transformed protoplasts were incubated with DAPI and visualized at 
higher magnification (bottom). Bars = 1µm 
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Three additional homologous genes of unknown function, APO2 to APO4, are present in the 

Arabidopsis genome. Interestingly, each of the four APO proteins possesses an orthologous 

counterpart in the rice genome (Figure 10B). Therefore, the APO gene family consists of four 

distinguishable groups that are present in both monocotyledonae and dicotyledonae. APO1 to 

APO4 show much fewer similarities in the N terminus than in the remaining part of the 

proteins, indicating different localizations and/or functions. APO2 is also predicted to be 

localized in the chloroplast. In rice (Oryza sativa), APO3 is computed to be present in the 

chloroplast as well, whereas the Arabidopsis protein is predicted to be localized in 

mitochondria. APO4 is computed to represent a mitochondrial protein in both organisms. All 

members of the previously unknown APO gene  family contain  a 100  amino acid  residues - 

spanning  region  (APO motif 1)  with conserved Cys, His, Gly, and acidic and basic amino 

acids (Figure 10). The highly conserved APO motif 1 is duplicated at the C terminus 

(designated APO motif 2). These two motifs are always separated from each other by a less-

conserved spacer that is also variable in length but in groups 1 to 3 contains one conserved 

Met embedded within positively charged amino acid residues directly upstream of APO motif 

2 (Figure 10). A similar sequence is also present downstream of APO motif 2 close to the C 

terminus in all groups. APO motif 1 is followed by a short stretch containing positive charges 

in groups 1 to 3. The highly conserved signature of both motifs in APO1, which fits to all 

members of the APO gene family in vascular plants, can be defined as C-x2-C-x3-(H,Q)-x4-

GH-x4-C-x11-H-x-W-x6-D-x8- H-x(20-26)-PA-x2-E(L,I)C-x3-G. The conserved Cys in both 

motifs could provide ligands for tetranuclear Fe-S centers (Sticht and Rösch, 1998). Several 

conserved differences between the two motifs could indicate different functions (Figure 10B). 

For example, both motifs, APO 1 and 2, contain a conserved H in another position. Two 

conserved R residues are present in APO motif 1 and two K residues in motif 2. In addition, 

APO motif 2 contains conserved G, VW, YG, and A residues, which are not present in APO 

motif 1 in any of the groups (Figure 10). 

 

Figure 10: Sequence analysis of the APO gene family in Arabidopsis and rice. 
(A) Scheme of the primary APO1 structure with the conserved and repeated APO motifs 1 and 2. 
Conserved amino acid residues in group 1 and differences between motifs 1 and 2 present in this 
group are highlighted. 
(B) Sequence alignment of motifs 1 and 2 in APO1 to APO4 in Arabidopsis (At) and rice (Os). Amino 
acid residues that are conserved in all members are on gray background. Amino acid residues that are 
specific for each defined group in Arabidopsis and rice and different in the others are underlined. 
Conserved differences between the motifs 1 and 2 in all four groups are listed below the alignment. 
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Part B: Characterisation of the psaJ gene       

   

14. Targeted inactivation of the tobacco chloroplast psaJ gene 

 

PsaJ is a subunit of PSI in almost all photosynthetic organisms studied so far; the unicellular 

cyanobacterium Gloeobacter violaceus PCC 7421 appears to have a PSI without PsaJ 

(Nakamura et al., 2003; Inoue et al., 2004). PsaJ in higher plants is a protein of 44 amino acid 

residues, consisting of one membrane-spanning helix that is highly hydrophobic (Fig. 11). To 

determine the function of psaJ in plants we have taken a reverse genetics approach and 

constructed a knock - out allele for targeted disruption of the tobacco psaJ (Fig. 12A). The 

knock - out allele was introduced into the tobacco plastid genome by particle bombardment-

mediated chloroplast transformation (Svab and Maliga, 1993).  

 

 
 
 
PSAJ_ARATH        -MR-DLKTYLSVAPVLSTLWFGSLAGLLIEINRLFPDALTFPFFSF   44 
PSAJ_TOBAC        -MR-DLKTYLSVAPVLSTLWFGALAGLLIEINRFFPDALTFPFFSF   44 
 
PSAJ_CHLRE        -MK-DFTTYLSTAPVIATIWFTFTAGLLIEINRYFPDPLVFSF---   41 
PSAJ_PORPU        -MNNNFTKYLSTAPVIGVLWMTFTAGFIIELNRFFPDVLYFYL---   42 
 
PSAJ_SYNEL        -MK-HFLTYLSTAPVLAAIWMTITAGILIEFNRFYPDLLFHPL---   41 
PSAJ_PROMA        MFKIFSTKWFRSAPVVATIWIVITAGILVEWNRFVPDLLFHPGL--   44 

                                         : .          . : :     * * * : . . : * :       * * : : : *  * *     * *   * 
                                                                      Transmembrane span 
 

 
Figure 11: Alignment of PsaJ sequences representing cyanobacteria, algae and higher plants. In the 
database there are a total of 47 full-length PSI-J sequences and all were aligned using Clustal W. In 
the alignment shown are the sequences from plants (A. thaliana and tobacco), algae (Chlamydomonas 
reinhardtii (CHLRE) and Porphyra purpurea (PORPU)) and cyanobacteria (Synechcoccus elongatus 
(SYNEL) and Prochlorococcus marinus (PROMA)). Amino acid residues involved in Chl binding (W 
(Trp), E (Glu) and H (His) are shown in green *. Note that the histidine residue is only conserved in 
cyanobacteria in agreement with the notion that PsaJ of cyanobacteria is involved in binding 3 Chls 
whereas plant PsaJ only binds two Chls. Amino acid residues contacting β-carotene (I (Ile) and R 
(Arg) are indicated in red *.  
 

From 10 bombarded leaf samples 19 chloroplast transformants were selected as verified by 

PCR and DNA gel blot analysis. (Fig. 12B). Two independent transplastomic lines were 

subjected to additional rounds of regeneration on spectinomycin-containing medium to obtain 

homoplastomic tissue. 
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Figure 12:  
(A) Construction of the plastid transformation vector. Schematic map of the 2.53 kb chloroplast 
genomic fragment containing the psaJ gene. The aadA cassette is inserted into a ScaI site within the 
coding sequence of psaJ in the sense orientation. 
(B) PCR confirmation that the aadA insert is in the psaJ gene: 
Primers used for amplification: psaj-f.: 5´-TCGGTAAGAAAGAAGGGGATG-3´ and psaj-r.: 5´-
CAGTTAATTCGAACTTGAGC-3´. λ-DNA digested with EcoRI/HindIIIis used as length standard. 
Left lane: Transformed plants (Tr); middle lane: plasmid of the transformation vector (Pl, Fig. 2A); 
right lane: wildtype tobacco plants (Wt) 
(C) Northern blot showing that there is no psaJ messenger RNA. 
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15. Plants devoid of PsaJ are affected in photosynthetic performance 

 

When plants lacking PsaJ were transferred to soil they grew photoautotrophically and were 

fully fertile (Fig. 13). The original transformed lines were self-pollinated, and the seeds 

produced were germinated directly on soil. The resulting offspring displayed the same 

characteristics as the first generation. 

 

Figure 13: Phenotype of homoplastomic ∆psaJ plants grown under growth chamber conditions.  
(A) Photograph of plants from the regenerated generation.  
(B) Photographs of individual plants from the first seed generation. Note that the ∆psaJ plants are 
slightly smaller and also slightly paler than the wildtype plants. 
 

Tobacco plants lacking PsaJ were slightly smaller than wild-type plants. This was observed 

for both growth-chamber and green-house grown plants and suggests that elimination of the 

PsaJ protein from PSI affects the photosynthetic performance.  

 

Besides being slightly smaller than wild-type, the psaJ knock-out plants were also visibly 

paler. Pigment extraction of leaf disks using boiling ethanol and spectrophotometric 

quantification showed a 13% reduction in the content of chlorophylls per leaf area when 

compared to wild-type (Figure 14).  
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Figure 14: Chlorophyll measurements: Estimated from the leaf extracts the Chl a/b ratio was 2.95 in 
the psaJ knock-out leaves compared to 3.25 in those of wild-type. This difference was caused by a 
larger decrease in Chl a (15% less) and only a small decrease in Chl b (6% less) in the mutant. Similar 
measurements on several independent preparations of thylakoids also revealed a smaller Chl a/b ratio 
in the mutant although the absolute numbers were different. In thylakoids from PsaJ-less plants the Chl 
a/b ratio was 2.50, whereas in wild-type plants the ratio was 2.73. Thus, the reduced Chl a/b ratio in 
the absence of PsaJ suggests that plants without PsaJ either have a lower PSI/PSII ratio or an increase 
in the Chl b containing peripheral antenna. 
 

To analyze this finding further the amount of P700 was determined in solubilized thylakoids 

using chemical oxidation and reduction of P700. The number of chlorophylls/P700 reaction 

centre was 490 ± 43 for wild-type and 684 ± 99 for thylakoids from the PsaJ-less plants 

(Figure 15). Based on these data the increased Chl/P700 ratio corresponds to approximately 

35 - 40% less PSI in plants lacking PsaJ. A reduction in the amount of PSI relative to PSII 

should result in an imbalance in the linear electron flow. The PSII excitation pressure 

(estimated as 1-qP) was therefore measured directly in the growth chamber under those light 

conditions to which the plants were adapted. Under these conditions 1-qP was increased 1.7-

fold in the plants lacking PsaJ (Figure 15) indicating that the PSII excitation pressure was 

significantly increased due to a more reduced plastoquinone pool. Measuring 1-qP under 

greenhouse conditions on either a cloudy or a sunny  day  confirmed  the  higher  excitation  

pressure  in  plants  without PsaJ and especially under conditions where the plants have to 

cope with higher light intensities. This is in agreement with a restriction of electron flow at 

PSI. 
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At the same time the photochemical efficiency of photosystem II (ΦPSII) was reduced by 10% 

compared with wild type.  

 

 

 

 
Figure 15: Number of chlorophylls/P700 (left) and PSII excitation pressure (right) in wild-type and 
psaJ mutant. Chl/P700: The number of chlorophylls/P700 reaction centre was 490 ± 43 for wild-type 
and 684 ± 99 for thylakoids from the PsaJ-less plants, these data result in an decrease of PSI 
ofapproximately 35 - 40% in plants lacking PsaJ. The PSII excitation pressure (estimated as 1-qP) was 
measured under growth light conditions and shows a 1-qP – value that was increased 1.7-fold in the 
plants lacking PsaJ. 
 

16. The amounts of PSI core subunits are significantly reduced in the absence of PSI-J 

 

 The estimation of Chl per P700 indicated that there is less PSI in the ∆psaJ plants. In order to 

visualize this by an independent method and also to analyze whether the absence of PsaJ 

caused changes in other major thylakoid complexes immunoblot analysis of thylakoid 

proteins was performed using a variety of antibodies directed against subunits of the PSI-, 

PSII-, Cytb6f- and ATP synthase complexes (Figure 16). The gels were loaded with proteins 

corresponding to equal amounts of chlorophyll. This analysis showed that subunits of PSII, of 

the Cytb6f complex and of the ATP synthase were present in amounts close to the amounts 

found in wild-type (Fig. 16A). In contrast, the amounts of all analysed subunits of the PSI 

core were consistently reduced by approximately 50% compared to wild-type (Fig. 16A). This 

strongly suggests that PsaJ is required for stable accumulation of PSI either due to a 

requirement of the subunit for assembly or stability of the PSI complex. 
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A)                                                    B) 

WT         NoJ                   WT       NoJ                 WT       NoJ 
 
 
1 0.5 0.25 1 0.5                    1 0.5 0.25 1 0.5                  1 0.5 0.25 1 0.5                                 

   
 
Figure 16: Immunoblot analysis of proteins in thylakoids prepared from ∆psaJ and wild-type plants.  
(A) Content of a range of PSI core proteins and representative PSII proteins in ∆psaJ. Thylakoids 
were prepared from leaves from 2 - 4 different wild-type or ∆psaJ plants. A dilution series containing 
protein corresponding to 0.25, 0.5 and 1.0 µg chlorophyll of the wildtype and 0.5 to 1.0 µg chlorophyll 
of the mutant was separated by SDS-PAGE, blotted and analyzed with the antibodies indicated. WT 
and ∆psaJ dilutions were run side by side and for each antibody the resulting signal was quantified 
using the LabWorks software as described in the material and methods. The figure shows only the 
dilutions that gave a linear response, i.e. doubling in loaded protein should result in a doubling of 
measured signal.  
(B) Content of light harvesting chlorophyll a/b proteins of PSI and PSII. Thylakoid proteins were 
separated as above and the blots were incubated with antibodies as indicated. The Lhca2 antibody also 
detects Lhcb4 (CP29). Quantification was performed on two independent preparations of both WT and 
∆psaJ thylakoids. 
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The Lhca proteins, which constitute the peripheral antenna of PSI, were not reduced to the 

same extent as the core subunits. Lhca1 and Lhca4 are present in near wild-type amounts, and 

Lhca2 and Lhca3 are reduced by 10 - 20% compared to wild-type. This clearly indicates that 

the Lhca proteins are present in excess of the PSI core complexes and most probably 

accumulate unassembled in the membrane. In order to investigate this further fluorescence 

emission was measured at low temperature. Fluorescence emission spectra between 650 and 

800 nm during excitation at 435 nm at 77 K using intact leaves of wild-type plants and plants 

devoid of PsaJ are shown in Fig. 17. The spectra revealed that in the absence of PsaJ there is a 

2 - 3 nm blue shift in the far red emission originating from PSI-LHCI. Furthermore, the ratio 

between the far red emission and the PSII emission at 685 nm is decreased which is in 

agreement with the decreased content of PSI in the absence of PsaJ. The blue shift suggests a 

perturbation of the peripheral antenna, which either is because PsaJ plays a functional role in 

the binding/function of the LHCI antenna or because unassembled Lhca complexes are 

present in the membrane.  

 

Figure 17: Low temperature fluorescence emission. Shown are the spectra of intact leaves from a 
wild-type plant (WT) and a ∆psaJ plant (∆psaJ). Leaves from several individual plants of both 
genotypes were measured and the mutant consistently showed at least a 2 nm blue shift in the far-red 
fluorescence emission peak. Excitation wavelength was 435 nm. 
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The latter possibility was tested by gentle solubilization of the various thylakoid membrane 

complexes using N-dodecyl-β-D-maltoside and subsequent separation of the complexes using 

sucrose gradients. After separation the gradients were harvested in 0.5 ml fractions and the 

individual fractions were analysed by gel electrophoresis and immunoblotting analysis using 

antibodies against the four Lhca proteins and selected PSI subunits (Figure 18). This analysis 

revealed that significant amounts of free Lhca proteins were found in the fractions where 

normally free Lhc-complexes – mainly LHCII trimers and/or Lhcb-monomers – normally are 

found.  

  

 

 
                 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 

 

Figure 18: Western analysis of LhcA-proteins: Solubilised thylakoid membrane complexes 
(with N-dodecyl-β-D-maltoside) were separated using sucrose gradients. Afterwards gradients 
were harvested in 0.5 ml fractions and the fractions were analysed by gel electrophoresis and 
immunoblotting analysis using antibodies against the four Lhca proteins and PsaK as well as 
PsaF. 
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To find out whether the excess Lhca antenna proteins were functionally attached to the PSI 

complexes we estimated the functional antenna size of PSI using light-induced P700 

absorption changes at 810 nm after very gentle solubilization of the thylakoid membrane 

using digitonin as described in the section Materials and Methods. This method was 

previously used to successfully detect changes in PSI antenna due to association with LHCII 

during state transitions (Zhang and Scheller, 2004) or due to genetic elimination of individual 

Lhca proteins in Arabidopsis (Klimmek et al., 2005). The functional PSI antenna size was 

estimated as the t1/2 value which is defined as the time it takes to oxidize 50% of the P700 in 

the sample and was estimated at three different intensities of actinic light. At all three light 

intensities there was no difference in the t1/2 value in the samples lacking PsaJ when compared 

to the values obtained with wild-type samples (Figure 19) suggesting that the PSI antenna size 

is unaffected by the elimination of PsaJ and furthermore rule out that PsaJ is strictly required 

for binding of any of the Lhca antenna proteins. 

 

Figure 19: Measurement of PSI antenna size: The functional PSI antenna size was estimated as the t1/2 
value (defined as time to oxidize 50% of the P700 in a sample) at three different intensities of actinic 
light. No differences between wild-type samples and mutant material was observed. 

 

17. PsaJ does not affect interaction with plastocyanin 

 

Based on work with Chlamydomonas mutants lacking PsaJ it has been proposed that the 

function of PSI-J is to maintain PSI-F in a proper orientation which allows fast electron 

transfer from PC or Cyt c6 (Fischer et al., 1999). A similar role of PsaJ in higher plants is 

likely and in order to analyse this, NADP+ photoreduction was determined using thylakoids 

purified  from  plants  without  PSI-J  and wild-type  plants.  In the standard  assay with  2 µM  
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plastocyanin an activity of 11.9 ± 0.6 µmol of NADPH s–1 (µmol of P700)–1 (± S.D., n = 6) 

was obtained with thylakoids from wild-type. With thylakoids devoid of PSI-J an activity of 

4.9 ± 0.4 µmol of NADPH s–1 (µmol of P700)–1 (± S.D., n = 6) was determined. Thus, in the 

absence of PsaJ PSI has a 50 - 60% slower rate of in vitro NADP+ photoreduction. At varying 

concentrations of PC a similar difference in activity between wild-type and ∆PsaJ was seen 

(Fig. 20).  

 

Figure 20: NADP+ photoreduction measurements: NADP+ photoreduction was determined at varying 
concentrations of PC using thylakoids purified from plants without PSI-J and wild-type plants. In the 
absence of PsaJ PSI shows a 50 - 60% decreased rate of in vitro NADP+ photoreduction.  
 

The results from the in vitro NADP+ photoreduction measurements clearly indicated that PsaJ 

somehow affects electron transport. The work with green algae had suggested that the most 

obvious step was the electron transfer from PC to PSI (Fischer et al., 1999). This reaction is a 

multi-step reaction, which can be divided into three major steps: binding of PC to P700, 

electron transfer within a complex between PC and P700, and release of oxidized PC from the 

complex between PC and P700 (Hippler et al., 1996). To investigate the kinetics of the PC-

PSI interaction, flash-induced P700 absorption transients were determined by following the 

absorption at 820 - 835 nm in the presence of varying concentrations of PC ranging from 0 to 

500 µM (Bottin and Mathis, 1985; Nordling et al., 1991; Sigfriedsson et al., 1996). Flash 

excitation of PSI results in a very rapid absorption increase at 834 nm due to photo-oxidation 

of P700, followed by a slower absorption decrease due to reduction of P700+ by PC.  

 

 



 69

Results 
          

The P700 absorption decrease can be modelled as the sum of three exponential decays 

discerned as a fast phase, an intermediate phase and a slow phase (Bottin and Mathis, 1985; 

Nordling et al., 1991; Sigfriedsson et al., 1996). The data obtained with two different 

independent preparations of thylakoids from wild-type and ∆PsaJ plants could be modelled as 

the sum of three exponential decays as recently described in Zygadlo et al. (2005). From this 

it is clear that there is no significant difference in any of the estimated parameters suggesting 

that PsaJ in higher plants does not affect the electron transfer from PC to PSI. Thus, the 

explanation for the decrease in NADP+ photoreduction must be in the electron transport from 

P700 to Fd. 
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IV. Discussion 

 

1. Role of APO1 in psaA-psaB translation, PSI accumulation and grana stacking 

 

Regulation of PSI biogenesis and accumulation is important for establishing photosynthetic 

efficiency and the stoichiometric adjustment, for instance, if PSI-to-PSII ratios have to be 

balanced in response to exogenous or endogenous signals (Depège et al., 2003). Modulation 

of psaA and psaB gene expression at the levels of transcription (Allen and Pfannschmidt, 

2000), transcript stability (Barkan and Goldschmidt-Clermont, 2000), translation (Zerges, 

2000), and assembly of PSI (Schwabe and Kruip, 2000) represent key steps for such 

regulatory processes. APO1 is an indispensable component and plays a crucial role in the 

accumulation of the entire PSI complex and probably in photosystem adjustment in vivo. In 

higher plants the psaA and psaB genes are cotranscribed with rps14 encoding subunit S14 of 

30S plastid ribosomal moiety. We assume that translation of rps14, which is processed from 

the primary transcript (Lezhneva and Meurer, 2004), occurs independently and is functional 

in apo1 because the general organelle translational machinery is intact in the mutant. The 

findings that ribosomal loading of psaA-psaB transcripts and, therefore, initiation of 

translation takes place in apo1 and that liberation of psaA-psaB transcripts from ribosomes is 

retarded after lincomycin treatment in the mutant suggest that APO1 operates essentially at 

the level of translational elongation (Figure 6D). For example, when aconitase in prokaryotes 

and in the cytosol of eukaryotes loses its [4Fe-4S] cluster under iron starvation or oxidative 

stress, the altered iron regulatory protein binds specifically iron regulatory elements on 

mRNAs either to stabilize the transcripts or to block translation. How this specificity is 

achieved remains unknown (Kiley and Beinert, 2003), but it shows that reversible [4Fe-4S] 

cluster binding can be used to regulate translation. Synthesis or supply of chlorophyll and 

[4Fe-4S] clusters appears to play a crucial role in stabilization of PsaA and PsaB in 

chloroplasts (Mullet et al., 1990; Kim et al., 1994; Lezhneva et al., 2004). Because APO1 

possesses Cys that could bind [4Fe-4S] clusters, it is reasonable to propose a possible role of 

APO1 in [4Fe-4S] cofactor assembly or cotranslational incorporation into PsaA and/or PsaB 

proteins. The function of APO1 could also be required for either still unknown steps in other 

pathways, like  chlorophyll  biosynthesis or incorporation of  chlorophyll into PSI and antenna  
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proteins. This would explain the deficiency of LHC proteins and the loss of grana stacking in 

apo1. 

          

2. Roles of APO1 in accumulation of other chloroplast [4Fe-4S] cluster–containing 

complexes 

 

APO1 could have additional targets that interfere with chloroplast and/or thylakoid membrane 

development because several differences between apo1 and other mutants specifically 

deficient in PSI became apparent. (1) The apo1 mutant shows an albinotic phenotype when 

grown photoautotrophically. (2) The thylakoid membrane system is poorly developed and, 

surprisingly, lacks grana stacks but contains extended stroma-type lamellae. (3) The average 

size of the chloroplast is approximately 4 times smaller than in the wild-type or in other PSI 

mutants (Figure 7). (4) The impairment of the accumulation not only of the entire PSI 

complex but also of the outer PSI and PSII light-harvesting antennae as well as the absence of 

the corresponding fluorescence band at 77K are unique to apo1 when compared with other 

PSI mutants (Figures 1 and 2; Lezhneva et al., 2004; Lezhneva and Meurer, 2004). (5) 

Members of the APO gene family are predicted to be localized in other cellular compartments 

like mitochondria. For apo2 the protein was successfully imported into the chloroplast (data 

not shown); for apo3 and apo4 the same experiment showed no import into the organelle. It 

remains to be shown whether isoforms are imported into mitochondria. (6) Not only levels of 

PSI but also those of two other [4Fe-4S] cluster–containing protein complexes, FTR and 

NDH, are reduced in apo1. This suggests a specific role of APO1 in the accumulation of 

[4Fe-4S] cluster–containing complexes and could explain the pleiotropic phenotype.  

 

Recently, a nuclear gene, Copper Response Defect1 (CRD1), which is responsible for PSI 

accumulation under copper starvation, was described from Chlamydomonas (Moseley et al., 

2000, 2002). The crd1 gene shows similarities to genes in photosynthetic organisms and has 

been suggested to be required for the synthesis of protochlorophyllide (Tottey et al., 2003). 

The failure of apo1 to accumulate the core as well as the outer antenna of PSI is in common 

with the crd1 mutant under copper starvation. However, the Arabidopsis crd antisense lines 

are predominantly affected in the levels of chlorophyll binding proteins but not in those of the 

photosynthetic core complexes (Tottey et al., 2003).  
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Therefore, the function of APO1 may be substantially different from that of CRD1. The 

Chlamydomonas mutants tab1 and tab2, which are primarily affected in initiation of psaB 

translation, are also unable to translate the psaA mRNA as a result of a secondary effect of the 

mutation, designated the CES process (Stampacchia et al., 1997; Dauvillée et al., 2003; 

Wostrikoff et al., 2004). Provided that the CES process, which operates for plastid-encoded 

proteins, also occurs in higher plants, a failure to synthesize PsaA could be caused by the lack 

of psaB translation in apo1. Nonetheless, because levels of the nuclear-encoded FTR complex 

also are significantly reduced in apo1, it appears unlikely that APO1 is primarily involved in 

the CES process itself. 

 

3. Comparison of the apo1 and hcf101 mutant phenotypes 

 

Although HCF101 has been proposed to be involved in [4Fe-4S] cluster biogenesis, unlike 

apo1, the hcf101 mutant is able  

(1) to accumulate substantial amounts of the outer antenna proteins of PSI and PSII,  

(2) to form grana stacks,  

(3) to incorporate radiolabel into PsaA/B proteins in vivo, and  

(4) to functionally load ribosomes with psaA/psaB transcripts (Lezhneva et al., 2004).  

 

Ribosomal loading of psaC, however, is unaltered in apo1 as well as in hcf101 mutants, 

although the PsaC protein contains two [4Fe-4S] clusters (Figure 3D; Lezhneva et al., 2004). 

Because of the stronger and pleiotropic phenotype of apo1, the function of the two proteins 

seems to be required for different though related pathways. For example, it is reasonable to 

assume that APO1 is essential for [4Fe-4S] (FX) cofactor incorporation into PsaA and/or PsaB 

proteins during translation and, therefore, stabilization of the nascent peptide chains, whereas 

HCF101 could to be required for the incorporation of the [4Fe-4S] clusters FA and FB into the 

PsaC protein. Alternatively, APO1 could be involved in early stages of [4Fe-4S] cluster 

incorporation, and HCF101 could function in subsequent processes. On the other hand, the 

two factors could be required for diverse stages of the [4Fe-4S] cluster metabolism, like 

biogenesis, insertion, or stability. Similarly, it also remained uncertain at which step 

rubredoxin functions in [4Fe-4S] cluster metabolism during PSI assembly in cyanobacteria 

(Shen et al., 2002).  In  this  context, it  should  be mentioned that HCF101 and APO1 are also  
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involved in the stable assembly of the nuclear-encoded, soluble FTR complex. It also remains 

to be shown at which stage during the assembly of the FTR the two factors are required. 

 

4. Association of chloroplast gene expression to plastid nucleoids 

 

Although it has been reported that initiation of both transcription and translation occurs in 

membrane-associated nucleoids of Escherichia coli (Simon and Nisman, 1977), little is 

known about the nucleoid organization, the interacting proteins, and processes leading to 

phase separation between nucleoids and the stroma or membranes in the chloroplast system 

(Herrmann et al., 1970; Kobayashi et al., 2002; Sato et al., 2003). In bacteria the specific 

association of ribosomes with nucleoids is a dynamic process including synthesis of RNA 

(Mascarenhas et al., 2001). The situation in the chloroplast may resemble the 

mitochondrial/eubacterial system, in which it has recently been shown that efficient 

expression of genes involves a complex series of interactions that localize transcriptionally 

active complexes in the nucleoids to the inner membrane surface to coordinate translational 

and transcriptional events (Rodeheffer and Shadel, 2003). There is increasing evidence that 

chloroplast gene expression occurs at the inner envelope membrane, and it has been shown 

that nucleoids are associated with the inner envelope membrane in differentiating chloroplasts 

(Kowallik et al., 1972; Sato et al., 1999; Zerges, 2000). These findings are relevant to the 

possible roles of APO1. The localization of APO1 close to the nucleoids suggests that 

translation of plastid-encoded genes and early PSI biogenesis are associated with the DNA-

containing subplastidial compartment. It is feasible that initiation and the first steps of 

translation elongation take place in transcriptionally active nucleoids, but late translational 

events occur at different places, for example, in the matrix or in association with membranes. 

APO1 seems to be preferentially associated with transcriptionally and translationally active 

nucleoids, reflecting its higher affinity to individual nucleoids inside the chloroplast (Figure 

9). 

          

5. The novel APO repeat gene family contains four distinct groups in vascular plants 

 

Remarkably, the APO1 start codon is localized in the second exon, indicating that the first 

exon  is  untranslated.  APO1  is  a  member  of  a  novel  gene  family with unknown function  
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encoding proteins consisting of 327 to 449 amino acid residues and exclusively found in 

vascular plants (Figure 10B). The size variation is mainly a result of different lengths of the 

N-terminal part in the individual groups APO1 to APO4 (Figure 10A). The APO gene family 

is characterized by a duplicated region of 100 amino acid residues (APO motifs 1 and 2) that 

is highly conserved among all members. These characteristics are indicative of a symmetric 

structure of APO proteins and probably of a symmetric ligand. On the other hand, APO1 

could bind two similar ligands. Interestingly, four genes are present in Arabidopsis, and the 

corresponding orthologs were also found in rice (Figure 10B). The orthologs are similar in 

size and share the same sequence characteristics that are specific for each of the four APO 

groups. APO2 and APO3 in rice are computed to be localized in the chloroplast as well. 

Therefore, the function of APO1 could be partially redundant. The conservation of these four 

gene copies in vascular plants indicates that they have specific functions not only in the 

chloroplast but also in other cellular compartments. 

          

Inactivation of the tobacco chloroplat psaJ gene      

  

The successful generation of transplastomic Nicotiana tabacum plants devoid of the J subunit 

of PSI allowed for the first time to investigate the role of the PsaJ-subunit in higher plants. 

The PsaJ-less plants have been analysed by using various biochemical and physiological 

methods. 

 

6. PsaJ is required for stable accumulation of PSI 

 

In the absence of PsaJ the steady-state accumulation of PSI is reduced by 50% suggesting that 

PsaJ is required for stability or assembly of the PSI complex in tobacco. This contrasts results 

reported for Chlamydomonas lacking PsaJ, where it was concluded that steady-state 

accumulation of PSI does not require the PsaJ subunit (Fischer et al., 1999). Differences 

between higher plants and green algae with respect to PSI stability and function have also 

been reported after removal of subunit PsaF (Haldrup et al., 2000). In this study the absence 

of PsaF resulted in a severe destabilization of PSI and especially in a loss of the subunits at 

the stromal face like PsaC, -D and -E. In Chlamydomonas a deletion of PsaF did not affect the  

stability of the PSI complex (Farah et al., 1995; Fischer et al., 1999).   
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Transgenic Arabidopsis plants without PsaN, PsaH, PsaK and PsaL (Haldrup et al., 1999; 

Naver et al., 1999; Jensen et al., 2000, Lunde et al., 2003) compensate for a poorly 

functioning PSI by accumulating 18 - 20% more PSI. Apparently, the plants devoid of PsaJ 

cannot compensate in a similar way and this suggests that PsaJ affects the stability or 

assembly in a different way than the absence of PsaN, -H, -K or -L. Whether it is the stability 

or the assembly of the PSI complex that is affected remains to be solved. 

 

The smaller amount of PSI was visible on the transgenic tobacco plants which were slightly 

smaller and paler when compared to wildtype. Plants devoid of the subunits PsaG or PsaK 

show also a  decrease in size (Varotto et al., 2002); plants devoid of PsaG show a 40% 

reduction in PSI content (Jensen et al., 2002) and also a slightly lighter pigmentation (Varotto 

et al., 2002). Thus, there is a good correlation between the amount of PSI, leaf size and 

pigmentation.  

          

7. PsaJ is required for efficient electron transport through PSI 

 

PSI-J affects the electron transport through PSI: in the absence of the subunit J a 50 - 60 % 

decrease of the steady state electron transport, measured as NADP+ in vitro photoreduction 

activity through PSI, is seen. The kinetic analysis of the PSI-PC interaction did not reveal any 

difference in any of the kinetic parameters between wild-type and the PsaJ deficient plants. 

Identical PC kinetics with PSI from ∆PsaJ and wildtype Chlamydomonas was also reported 

by Fischer et al. (1999) and it seems that PsaJ does not participate directly in the binding of 

PC both in plants and green algae. In contrast to the data obtained by Fischer et al. (1999) a 

decrease in the amplitude of the two fast components of electron transfer probably caused by 

an increased proportion of PSI complexes incompetent for fast electron transfer in the absence 

of PsaJ was not observed and therefore a stabilizing effect of PsaJ on PsaF is not very likely. 

Proper function of the donor side of PSI requires three low molecular mass subunits, namely 

PsaF, PsaN, and PsaJ. PsaF and PsaJ are membrane integral subunits. Their main functions 

are stabilization of the core antenna system and interaction with the peripheral antenna. In the 

case of PsaF there is also a well documented interaction with PC. PsaN is a luminal subunit 

which is involved in electron transport from PC (Haldrup et al., 1999).  
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The slower electron transport through PSI in the absence of PsaJ leads to a more reduced 

plastoquinone pool, this means an increased PSII excitation pressure, even under normal light 

conditions. 

 

8. PSI-J is not necessary for binding of the peripheral light-harvesting antenna 

 

The two chlorophylls bound to PsaJ in higher plants have been suggested to be important for 

the energy transfer between LHCI and the PSI core (Ben-Shem et al., 2003). The functional 

PSI antenna size is unaffected if PsaJ is removed from the PSI complex and binding of the 

various Lhca proteins to the PSI core is also unchanged. Thus, PsaJ is not required for binding 

of the peripheral antenna. However, the measurements of the functional antenna size using  

P700 oxidation rates do not possess sufficient time resolution to tell whether the absence the 

two chlorophyll molecules bound to PSI-J causes an inefficient transfer of excitation energy 

from the peripheral antenna to the core. Work with time resolved spectroscopy is in progress. 
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V. Summary 

 

1. APO-project 

 

The assembly of Fe-S clusters and their insertion into polypeptides has recently become an 

area of intense research. Plant cells can carry out both photosynthesis and respiration – two 

processes that require significant amounts of Fe-S proteins (Balk and Lobréaux, 2005). To 

investigate the nuclear-controlled mechanisms of [4Fe-4S] cluster assembly in chloroplasts, 

Arabidopsis thaliana mutants with a decreased content of photosystem I were selected. This 

photosystem contains three [4Fe-4S] clusters. One of the identified genes, 

ACCUMULATION OF PHOTOSYSTEM ONE (APO1), belongs to a previously unknown 

gene family with four defined members (APO1 to APO4) that are only found in nuclear 

genomes of vascular plants. All homologs contain two related motifs of approximately 100 

amino acid residues that could potentially provide ligands for [4Fe-4S] clusters. APO1 is 

required for photoautotrophic growth, and levels of PSI core subunits are below the limit of 

detection in the apo1 mutant. Unlike other Arabidopsis PSI mutants, apo1 fails to accumulate 

significant amounts of the outer antenna subunits of PSI and PSII and to form grana stacks. In 

particular, APO1 is essential for stable accumulation of other plastid-encoded and nuclear-

encoded [4Fe-4S] cluster complexes within the chloroplast, whereas [2Fe-2S] cluster-

containing complexes appear to be unaffected. In vivo labeling experiments and analyses of 

polysome association suggest that translational elongation of the PSI transcripts psaA and/or 

psaB is arrested in the mutant. Taken together, our findings suggest that APO1 is involved in 

the stable assembly of several [4Fe-4S] cluster-containing complexes of chloroplasts and 

interferes with translational events probably in association with plastid nucleoids. 

 

 

 

 

 

 

 

 

 



 78

Summary 

          
2. PsaJ-project 

 

The plastid encoded gene psaJ encodes a hydrophobic low molecular mass subunit of 

photosystem I containing one transmembrane helix. The role of PSI-J was investigated in 

tobacco plants by inactivation of the psaJ gene. Homoplastomic transformants with an 

inactivated psaJ gene were able to grow photoautotrophically but were slightly smaller and 

paler than wild-type plants. The paler appearance is caused by an approximately 13% 

reduction in chlorophyll content per leaf area. This in mainly caused by an almost 50% 

reduction in PSI core proteins in plants devoid of PsaJ compared to wild type plants. There 

was no specific effect on the content of subunits located close to PsaJ such as PsaF or any 

other core subunit of PSI. However, the lower content of PSI suggests that PsaJ is important 

for stability or assembly of the PSI complex. In contrast to the core subunits, the peripheral 

Lhca antenna proteins were present in excess compared to core proteins. This was apparent 

both from a blueshift of the photosystem I fluorescence band at 77K and immunoblotting 

using specific Lhca antibodies. However, the functional size of the PSI antenna was not 

increased suggesting that the excess Lhca proteins is not bound to the core complexes in the 

mutant. The specific PSI activity measured as NADP+ photoreduction in vitro revealed an 

almost 50% reduction in electron transport through PSI in the absence of PsaJ. This decreased 

electron transfer could not be attributed to changes in interaction with the luminal electron 

donor plastocyanin. Thus, PsaJ is an important subunit of PSI that affects both electron 

transport through the complex and stability or assembly of the PSI complex. 
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