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ABBREVIATIONS 

 

1,25(OH)2D3  1,25-dihydroxyvitamin D3 
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et al.    et alii 
 
f     female 
FCS    foetal calf serum 
FGF23    fibroblast growth factor 23 gene 
FGF23    fibroblast growth factor 23 protein 
Fgf23    fibroblast growth factor 23 mouse orthologe gene 
Fgf23    fibroblast growth factor 23 mouse orthologe protein 
FGFR    fibroblast growth factor receptor protein 
Fig.     figure 
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Phex    PHEX mouse ortholog gene 
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SUMMARY 

 

The regulation of phosphate metabolism is a complex process that is still only partly 

understood. At the end of the eighties, studies in a mouse model for hypophosphatemic 

rickets provided evidence that phosphate wasting could not be explained by a primary 

defect of the kidney but rather by an unknown circulating factor with phosphaturic 

properties. X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic 

rickets (ADHR), and tumor induced osteomalacia (TIO) are three well defined human 

disorders of isolated renal phosphate wasting. XLH and ADHR are mendelian diseases 

while TIO is caused by rare, mostly benign tumors. The opposite phenotype, 

hyperphosphatemia due to increased renal phosphate reabsorption is associated to the 

recessive disorder familial tumoral calcinosis (FTC). 
 
At the beginning of this work the genes mutated in XLH and ADHR were cloned. One 

gene codes for the endopeptidase PHEX, the other for the fibroblast growth factor FGF23. 

Both proteins are probably involved in a novel common pathway of the regulation of 

phosphate homeostasis. Missense mutations in FGF23 causing phosphate wasting in 

patients with ADHR, overexpression of FGF23 in tumors from patients with TIO, and the 

observation that FGF23 plasma levels are elevated in most patients with XLH provided 

strong evidence that FGF23 is a hormone with phosphaturic activity. However, the 

function of FGF23 in the regulation of phosphate metabolism is far from understood. 
 
The intention of this study was to investigate the molecular properties of native FGF23 and 

its mutant forms. I conducted protein expression experiments in HEK293 cells which 

showed that native FGF23 is a secreted protein partially processed into an N-terminal 

fragment and a C-terminal fragment. I provided evidence that this cleavage occurs during 

protein secretion and it is performed by subtilisin like-proprotein convertases (SPCs). In 

addition, I determined that native FGF23 undergoes O-linked glycosylation before 

secretion by using a deglycosylation assay. Further, RT-PCR analysis of human tissues 

showed FGF23 expression in whole fetus, heart, liver, thyroid/parathyroid, small intestine, 

testis, skeletal muscle, differentiated chondrocytes and TIO tumor tissue. In mouse, FGF23 

was expressed in day 17 embryo and spleen. 
 
The FGF23 ADHR mutations replace arginine residues at the SPC cleavage site (RXXR 

motif). By expression of the FGF23-R176Q and –R179Q mutant proteins in HEK293 cells 
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I showed that ADHR mutations prevent cleavage at the RXXR site and stabilize FGF23. 

This alteration in the FGF23 cleavage enhances FGF23 phosphaturic activity in ADHR.  
 
Familial tumoral calcinosis (FTC) with hyperphosphatemia is a disease considered the 

mirror image of the hypophosphatemic condition. It is known that FTC is caused by 

mutations in the GALNT3 gene. By performing mutation analysis in two families with 

FTC, I could show that FTC can also be caused by inactivating mutations in the FGF23 

gene. To characterize the FGF23-S71G mutant protein I conducted in vitro expression 

assays, immunocytochemistry and ELISA to measure the FGF23 plasma levels in the 

patient with FTC. Taken together the results of these experiments showed that intact 

FGF23-S71G mutant protein remained inside the cells and only the C-terminal FGF23 

fragment was secreted. These investigations demonstrate that FGF23 mutations in ADHR 

and FTC have opposite effects on phosphate homeostasis. 
 
There is evidence that the endopeptidase PHEX which is mutated in patients with XLH and 

FGF23 act in the same pathway. PHEX function resides upstream of FGF23 and may be 

involved in the degradation of FGF23 thereby regulating its phosphaturic activity. I 

designed an assay with a recombinant secreted form of PHEX (secPHEX) to prove 

whether FGF23 is a substrate of PHEX. Although secPHEX activity could be 

demonstrated by degradation of PTHrP107-139, secPHEX failed to degrade FGF23 in this 

assay. These results provided evidence against a direct interaction of PHEX and FGF23. 
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A. INTRODUCTION 

 
In adult vertebrates, 10% of the skeletal bone mass is replaced every year, amounting to a 

complete structural overhaul every decade (Adelman and Solhaug 2000). This constant 

remodelling allows bone to carry out its many functions: to support the body and allow 

movement, to incubate developing immune cells, and to act as reserve of inorganic 

minerals, especially phosphorus and calcium. Phosphorus is one of the body’s most 

important and abundant ions and the homeostasis of the plasma phosphate level is essential 

for many biological processes. However, the regulation of serum phosphorus 

concentrations is a complex process and our current models are far from complete. 
 

1. PHOSPHATE HOMEOSTASIS 

 
The major determinants of phosphate homeostasis are dietary phosphate intake, intestinal 

absorption, exchange with intracellular and bone storage pools, and renal reabsorption. The 

serum phosphate level is maintained within a narrow rang through elaborate controls 

developed to keep phosphate from precipitating in tissues and to allow the controlled 

deposition of phosphate and calcium as hydroxyapatite (Ca5(PO4)3OH) in bone. The 

movement of phosphate into and out of bone mineral is mainly regulated by parathyroid 

hormone (PTH) and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] (for review see Tenenhouse 

and Econs 2001). 

 

1.1 Phosphorus 

 
Phosphorus exists in our body in an inorganic form and an organic form. Organic 

phosphorus is found inside the cells where it has a structural role in phospholipids and 

nucleic acids, forms high-energy ester bonds (e.g., in ATP and cAMP) and participates in 

cellular signalling through covalent phosphorylation of proteins and lipids (Tenenhouse 

and Econs 2001). Outside the cells, inorganic phosphate is the principal urinary buffer and 

plays a critical function in the regulation of free hydrogen ions. Approximately 12% of the 

plasma inorganic phosphorus is protein bound, and the remainder circulates as free 

monovalent (H2PO4
-) or divalent (HPO4

2-) orthophosphate ions (Hopkins et al. 1952). In 

animals with bones, most extracellular phosphate is found in bone mineral. The human  
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body contains around 700 g phosphorus whereof 600 g is bound in bones and teeth in the 

form of hydroxyapatite (Strom and Lorenz-Depiereux 2001). 
 
The plasma phosphate concentration varies as a function of age in humans: in the range of 

3.8-5.5 mg/dl in children and 2.7-4.5 mg/dl in adults (Greenberg et al. 1996). Although 

long term changes in plasma phosphate concentration clearly depend on the balance 

between intestinal absorption and renal excretion, short-term changes are affected by the 

continuous exchange of phosphate between the extracellular fluid (ECF) and either bone or 

cell constituents. ECF phosphate represents less than 1% of total body phosphate 

(Tenenhouse and Econs 2001). 
 
Plasma phosphate concentration shows a circadian rhythm with a minimum at 9:30-10:00 

a.m. and a peak at 4:00 a.m. The variation from nadir to peak may be as much as 1 mg/dl; 

i.e. 25-35% change in concentration (Markowitz et al. 1981). The factors determining this 

diurnal variation are not known. 

 

1.2 Phosphate transport 
 
The principal sources of dietary phosphorus are milk, milk products and meat. The daily 

intake of phosphorus is normally between 0.8 and 1.5 g (Walling 1977). About 70 % of 

ingested phosphate is absorbed in the small intestine, and enters the blood circulation 

through a sodium-dependent specific phosphate uptake cotransporter while the rest is 

excreted in the faeces. Intestinal phosphate absorption increases in proportion to the 

phosphate content of the diet and 1,25(OH)2D3 stimulates the reabsorption when phosphate 

intake is significantly reduced (Lee et al. 1986, Rizzoli et al. 1977). 
 
Even though phosphate is actively transported across the bowel wall, the kidney plays the 

major role in regulating body phosphate. Approximately 90% of the phosphate in plasma is 

filtered through the glomerulus, and 80-90% of this filtered load is reabsorbed in the 

proximal tubule. The rest is excreted in the urine (Harris et al. 1977, Pastoriza-Munoz et 

al. 1978). Only a small percentage of absorbed phosphate is incorporated into organic 

forms in proliferation cells, or deposited as a component of bone mineral (Tenenhouse and 

Econs 2001).  
 
The transcellular transport of phosphate is a carrier-mediated, saturable process and a 

maximal rate for tubular reabsorption of phosphorus (TmP), can be determined. The 
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balance between the rates of glomerular filtration (GFR) and maximal tubular reabsorption 

(TmP/GFR) determines the renal excretion of phosphate (Tenenhouse and Econs 2001). 

 

1.3 Cellular mechanisms of renal phosphate transport 
 
Phosphate travels across the brush-border membrane into the proximal tubular epithelial 

cell against an electrochemical gradient mediated by a sodium (Na+) phosphate (Pi) 

cotransporter (NPT) (Bonjour and Caverzasio 1984, Murer et al. 1991). 
 
Three types of Na+/Pi cotransporters have been identified (NPT-I, NPT-II, and NPT-III) 

but the main determinant of phosphate balance is the relative abundance of the type 2a 

cotransporter (NPT-IIa) localized in the apical brush-border membrane of the renal 

proximal tubular cells (Tenenhouse et al. 1998). Increased abundance of the NPT-IIa 

protein confers increased TmP/GFR and consequently raises serum Pi levels. NPT-IIa 

brush-border membrane abundance is determined by both transcriptional and post-

transcriptional events such as membrane retrieval/internalization and membrane insertion 

(Murer and Biber 1996).  

 

1.4 Hormonal regulation 

 
The homeostasis of phosphate as well as calcium is known to be modulated by vitamin D. 

Vitamin D receptor null mice (vdr -/-) are characterized by hypocalcemia and 

hypophosphatemic rickets (Yoshizawa et al. 1997). Vitamin D synthesis results from the 

photolytic cleavage of the B rings of ergosterol and 7-dehydrocholesterol which are 

obtained from the diet. Vitamin D is activated to 25-hydroxyvitamin D3 [25(OH)D3] in the 

liver. Further hydroxylation to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is mediated by 

25(OH)D3 1α-hydroxylase [1α(OH)ase] in the proximal tubule of the kidney (DeLuca 

1982). 1,25(OH)2D3 (calcitriol) is known to play an important role in the maintenance of 

phosphate levels in serum. Renal production of 1,25(OH)2D3 is stimulated by PTH and 

hypophosphatemia (Garabedian et al. 1972), and inhibited by 1,25(OH)2D3 itself and 

hypercalcemia (Tanaka and DeLuca 1972).  
 
PTH is the best-characterized physiological regulator of phosphate reabsorption, but its 

principal function is to maintain calcium homeostasis. Hypocalcemia increases serum 

1,25(OH)2D3 levels by stimulating 1α(OH)ase activity through a PTH-dependent 
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mechanism (Omdahl et al. 1972). These effects are exerted directly on the renal proximal 

tubular cells and are mediated by cAMP (Rost et al. 1981). 
 
Hypophosphatemia stimulates 1,25(OH)2D3 synthesis via the 1α(OH)ase in the kidney, 

leading to increased calcium and phosphate absorption in the intestine and enhanced 

mobilization of calcium and phosphorus from bone. In addition, hypophosphatemia 

stimulates the maximal tubular reabsorption of phosphate (TmP/GFR) in the kidney. The 

resultant increased serum calcium inhibits PTH secretion with a subsequent increase in 

urinary calcium excretion and tubular reabsorption of phosphate (Fig. 1). Thus, normal 

serum calcium levels are maintained and serum phosphorus levels are returned to normal 

(Tanaka and DeLuca 1973, Kawashima and Kurokawa 1986).  

 
Fig. 1. Role of 1,25(OH)2D3 in phosphate homeostasis. A decrease of the phosphate concentration in 
plasma leads to a PTH-independent rise of phosphate reabsorption and 1,25(OH)2D3 synthesis. The increase 
of 1,25(OH)2D3 plasma concentration activates intestinal absorption of phosphate (Pi) and calcium (Ca) and 
thus, rises the bone resorption. Further, PTH secretion is inhibited reducing the renal tubular calcium 
reabsorption. 
 

The mechanism by which restriction of phosphorus increases the 1α(OH)ase activity 

occurs at the level of mRNA and seem to be independent of PTH and changes in serum 

calcium (Bushinsky et al. 1985, Shinki et al. 1997). Further evidence for a PTH-

independent regulation of 1,25(OH)2D3 was provided by Hughes et al. Dietary phosphate 

restriction in rats enhanced circulating 1,25(OH)2D3 and 1α(OH)ase concentrations 

independently on the presence or absence of the parathyroid or thyroid glands (or both) 

(Hughes et al. 1975).  

 

Pi

Ca2+

PTH

Ca2+ reabsorption

Pi reabsorption
(PTH independent)

1,25(OH)2D3

Serum Pi

Absorption
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2. DISORDERS OF PHOSPHATE METABOLISM: HYPOPHOSPHATEMIAS 

 
In industrialized nations where vitamin D deficiency is relatively uncommon, inherited 

renal phosphate-wasting disorders are the most common cause of osteomalacia and rickets. 

Several hereditary disorders of isolated phosphate wasting have been described. These 

include X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic 

rickets (ADHR), hypophosphatemic bone disease (HBD), and hereditary 

hypophosphatemic rickets with hypercalciuria (HHRH). In addition, tumor induced 

osteomalacia (TIO) also termed oncogenic hypophosphatemic osteomalacia (OHO) is an 

acquired disorder of renal phosphate wasting (Econs and Strom 1999). Hypophosphatemia 

due to impaired renal function is also a prominent feature of several syndromes of 

hereditary hypercalciuric nephrolithiasis (kidney stones) associated to mutations in the 

chloride channel 5 (CLCN-5). These include X-linked recessive nephrolithiasis (XRN), X-

linked recessive hypophosphatemic rickets (XLRH), Japanese idiopathic low molecular 

weight proteinuria (JILMWP) and Dents disease (Rajesh 2000). 

 
Tab. 1. Characteristics of the phosphate syndromes. 

 

The characteristic symptoms of hypophosphatemic rickets are normal PTH levels in serum, 

but low serum phosphate and reduced TmP/GFR. Hypophosphatemia usually stimulates 

renal 1α(OH)ase and increases serum 1,25(OH)2D3 levels as a part of the homeostatic 

XLH ADHR TIO

Serum phosphorus

Serum calcium

1,25(OH)2D3

PTH

TmP/GFR

Urine calcium

Dental defect

Muscle weakness
Inheritance

Chromosome

Gene defect

low

normal

normal/low

normal/high

decreased

normal

dentin defects, 
dental abscesses

minimal

X-linked dominant

Xp22.1

PHEX

FTC

low

normal

normal/low

normal

decreased

normal

dental abscesses

present

autosomal dominant

12p13

FGF23

low

normal

normal/low

normal/high

decreased

normal

none

prominent

tumor associated

acquired

excess FGF23 (and other
phosphaturic proteins?)

high

normal

high

normal/high

increased

normal

pulp stones

none

autosomal recessive

2q24

GALNT3

XLH: X-linked hypophosphatemia, ADHR: autosomal dominant hypophosphatemic rickets, TIO: tumor induced osteomalacia, 
FTC: familial tumoral calcinosis, 1,25(OH)2D3: 1,25-dihydroxyvitamin D3, PTH: parathyroid hormone, TmP: maximal phosphate 
transport, GFR: rate of glomerular filtration, PHEX:  phosphate regulating gene with homologies to endopeptidases on the X-
chromosome, FGF23: fibroblast growth factor 23, GALNT3: N-acetylgalactosaminyltransferase. Adapted from Jan de Beur and 
Levine 2002.
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mechanism. In contrast, patients with XLH, ADHR, and TIO show inappropriately normal 

or low serum 1,25(OH)2D3 levels. Table 1 summarizes some clinical manifestations of 

these syndromes. Therefore, regulatory mechanisms for both tubular reabsorption of Pi and 

vitamin D metabolism are deranged in these hypophosphatemic diseases. 

 

2.1 X-linked hypophosphatemia 
 
XLH (Online Mendelian Inheritance in Man [OMIM] 307800) is the most common cause 

of rickets, with a prevalence of 1 in 20,000. The disease is inherited in an X-linked 

dominant manner and is highly penetrant, but the severity and specific clinical 

manifestations are variable, even among members of the same family (Econs and Strom 

1999). 
 
Manifestations of XLH include short stature, bone pain, tooth abscesses and lower-

extremity deformities. Progressive enthesopathy (calcification of tendon insertions, 

ligaments, and joint capsules) can occur, with pain and limitation of motion (Polisson et al. 

1985). Patients with XLH present hypophosphatemia secondary to renal phosphate wasting 

with inappropriately normal or low serum 1,25(OH)2D3 concentrations. Other laboratory 

manifestations are outlined in table 1. Radiographic changes of rickets, which include 

widening and cupping of the metaphyseal ends of long bones (Fig. 2), are often but not 

always present in children (Econs et al. 1991). Adults present osteomalacia (Reid et al. 

1989) and can have a variety of radiographic findings depending on disease severity, 

including pseudofractures, osteoarthritis, and enthesophatic changes (Polisson et al. 1985, 

Hardy et al.1989). 

Fig. 2. Radiography from a 2 ½ years old boy 
with XLH. Typical radiographic findings of 
XLH  showing bowing of the long bones with 
cupping of the metaphyseal ends of the bones 
(from Dr. K. L. Mohnike, Magdeburg).



Introduction 
 

 

 16

The most effective treatment of XLH consists of a combination of oral phosphate and 

vitamin D (1,25(OH)2D3) (Lyles and Drezner 1982). However, this form of therapy is less 

than ideal and has potentially serious long term side effects including hypercalcemia, 

hypercalciuria and nephrocalcinosis. 

 

2.1.1 Hyp and Gy mice models 
 
The Hyp and Gy mice, murine homologs of XLH, have provided useful models to study 

the basis for hypophosphatemia in this disorder. Early studies of parabiotic union of Hyp 

and normal mice showed development of hypophosphatemia and phosphaturia in the 

normal mouse rather than correction of the phosphaturic defect in the Hyp mouse (Meyer 

et al. 1989) and provided the initial evidence of a humoral factor as the cause of renal 

phosphate wasting. Subsequent work using renal cross-transplantation between normal and 

Hyp mice showed that the mutant phenotype was not transferred by transplantation of Hyp 

kidneys into normal mice, nor was the Hyp defect corrected by transplantation of normal 

kidneys into Hyp mice (Nesbitt et al. 1992). 
 
These studies confirmed earlier suggestions that Hyp mice produce a circulating factor that 

inhibits the Npt2 cotransporter which is not inactivated by circulation through a normal 

mouse (Tenenhouse 1994). The humoral factor in the Hyp mouse was further characterized 

in studies that demonstrated that Hyp mouse serum could inhibit phosphate uptake in 

primary cultures of mouse proximal renal tubular cells in a dose-dependent manner 

(Lajeunesse et al. 1996). A similar pathogenetic mechanism appears operative in XLH, 

because transplantation of an unaffected sister’s kidney into a brother with XLH led to 

renal phosphate wasting by the normal kidney (Morgan et al. 1974). The source of the 

circulating factor is unknown, but the factor may be produced by osteoblasts since 

transplantation of Hyp bone nodules into normal mice failed to correct completely the 

mineralization defect (Ecarot-Charrier et al. 1988). 
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2.1.2 Mutations in the PHEX gene cause XLH 
 
The HYP consortium identified the gene responsible for XLH in 1995 by a positional 

cloning approach (The HYP consortium 1995). The gene is called PHEX, for phosphate 

regulating gene with homologies to endopeptidases on the X-chromosome. To date, there 

are more than 176 known mutations (www.phexdb.mcgill.ca) scattered throughout the 

PHEX gene including deletions, splice site and frameshift mutations, duplications, 

insertion, deletional insertions and missense mutations, all of which lead to loss of protein 

function. Mutations in the Phex murine homolog were also identified in the Hyp and Gy 

mouse models of XLH (Strom et al. 1997, Lorenz et al. 1998). 

 

2.1.3 The PHEX protein 
 
PHEX codes for a 749-amino acid protein (Fig. 3) with homology to the M13 family of 

zinc metallopeptidases, which includes neprilysin (NEP), endotelin-converting enzymes 1 

and 2 (ECE-1 and ECE-2), the Kell blood-group protein, damage induced neuronal 

endopeptidase/X-converting enzyme (DINE/X-CE), and soluble endopeptidases/NEP-like 

enzyme 1 (SEP/NL1) (for review see Turner et al. 2001, Valdenaire et al. 1999, Ghaddar 

et al. 2000). The members of this family are involved in the degradation or activation of 

several bioactive peptides (Roques et al. 1993, Turner and Tanzawa 1997). Sequence 

similarity of PHEX to members of this family suggests also a role in regulating the activity 

of bioactive peptides. Indeed, experiments with internally quenched fluorogenic peptide 

substrates revealed that a secreted recombinant form of PHEX has endopeptidase activity 

(Campos et al. 2003), whereas mutated PHEX does not (Sabbagh et al. 2003).  
 

 
Fig. 3. Schematic representation of PHEX. Boxes represent the different domains of the PHEX protein: 
cytoplasmic domain (CD), transmembrane domain (TD) and extracellular domain (ED). Numbers down the 
boxes indicate amino acid positions. The zinc-binding motifs (HEXXH and ENXADXGG) are shown in 
black. C, Cystein residue.  
 
 
PHEX is a type II integral membrane glycoprotein with a short cytoplasmic N-terminal 

region, a single transmembrane domain, and a long extracytoplasmic domain, which 

1 21 24 41 42 749

CD TD ED

C C C C C CCCCC

HEFTH ENIADNGG
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contains the active site of the enzyme (Crine et al. 1997) (Fig. 3). PHEX is a glycoprotein 

with 8 potential N-glycosylation sites and 10 conserved cysteins, all involved in disulfide 

bridges, important for the maintenance of the three-dimensional protein structure (Oefner 

et al. 2000). The binding of Zn2+ ions is characteristic for this family of metallopeptidases. 

PHEX contains two conserved zinc-binding motifs, HEXXH and ENXADXGG, which are 

situated between the amino acids 580-584 (HEFTH) and 642-649 (ENIADNGG) 

respectively (Fig. 3). These residues are essential for zinc coordination and formation of 

the catalytic site (Holden et al. 1987). 

 

2.1.4 Relevance of PHEX in the pathophysiology of XLH 
 
The finding that PHEX is a membrane-bound protein with predicted enzymatic activity, 

and not a secreted protein, in addition to lack of PHEX expression in kidney clearly ruled 

out PHEX as the putative phosphaturic factor. Instead, it was hypothesized that PHEX, 

directly or indirectly, is involved in the processing of a peptide hormone, which plays an 

essential role in the regulation of bone mineralization, renal phosphate handling and 

vitamin D metabolism (The HYP Consortium 1995, Rowe 1997). 
 
PHEX is mainly expressed in bone and teeth (Ruchon et al. 1998), but also at lower levels 

in lung, brain, muscle, and gonads. A primary osteoblast defect was also postulated to 

contribute to the bone disease in XLH since the observation that conditioned media from 

Hyp osteoblasts, but not normal osteoblasts, inhibited phosphate transport in primary 

mouse proximal tubule cells cultures (Lajeunesse et al. 1996). Other experiments showed 

that explants from Hyp mouse calvaria failed to mineralize appropriately even in 

physiologically normal environments and the mineralization effect was transferable to 

normal cells in co-culture experiments (Xiao et al. 1998). New experiments showed that 

the restoration of Phex function in Hyp mice by overexpression of Phex in osteoblasts 

failed to rescue the hypophosphatemia but resulted in partial correction of the skeletal 

phenotype (Bai et al. 2002, Liu et al. 2002). These findings implicate osteoblasts in the 

production of phosphate regulating hormones and suggest that PHEX has a double function 

in regulating phosphaturic hormones and a local effect in osteoblastic mineralization. 
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2.2 Autosomal dominant hypophosphatemic rickets 

 
ADHR (OMIM 193100) is a very uncommon disorder; only four cases have been reported. 

ADHR has a phenotype similar to that of XLH, although the clinical presentation tends to 

be variable because of incomplete penetrance and variable age of onset. 
 
Renal phosphate wasting and inappropriately normal 1,25(OH)2D3 concentrations are the 

predominant laboratory findings in ADHR (Tab. 1). Clinical and laboratory manifestations 

of ADHR are variable even within families and are characterized by short stature and bone 

mineralization defects that result in rickets, osteomalacia, and lower extremity deformities. 

Dental abscesses are a prominent feature of the syndrome. Those with childhood onset 

look phenotypically like XLH. Adults typically complain of bone pain, fatigue, and/or 

weakness and some have evidence of pseudofractures (Brame et al. 2004). Patients with 

ADHR patients are treated as those with XLH, i.e. oral substitution of phosphate and 

calcitriol. 

 

2.2.1 Mutations in the FGF23 gene cause ADHR 
 
Linkage studies of one large ADHR kindred demonstrated linkage of the ADHR trait to 

chromosome 12p13 (Econs et al. 1997). Subsequent mutation screening from index 

patients of 4 unrelated families that had a male-to-male transmission and clinical features 

compatible with ADHR identified specific mutations in the FGF23 gene (The ADHR 

Consortium 2000). FGF23 is composed of a 11 kb genomic sequence, three exons, and a 

3.0 kb cDNA that encodes a novel fibroblast growth factor (FGF23). Missense mutations 

affect one of two arginine residues at positions p.176 or p.179 leading to a glutamate or 

tryptophan substitution (R176Q, R179Q and R179W). 

 

Interestingly, the mutated arginine residues disrupt a subtilisin-like proprotein convertase 

(SPC) consensus proteolytic cleavage motif (RXXR). Most secreted and membrane-bound 

proteins undergo post-translational modifications before expression of the mature 

polypeptide. The SPCs are a seven-member family of serine proteases responsible for the 

processing of peptide hormones, neuropeptides, adhesion molecules, receptors, growth 

factors, cell surface glycoproteins, and enzymes. The substrates are cleaved C-terminal of 

the R-(X)n-R consensus site where n is 0, 2, 4, or 6, and X is any amino acid except 
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cystein. These enzymes are widely expressed in the trans-Golgi network, and possess 

similar, but not the same substrate specificities (for review see Seidah and Chretien 1999). 

 

2.2.2 FGF23 belongs to the fibroblast growth factor family 
 
FGFs are a family of polypeptide growth factors that are found in animals from 

Caenorhabditis elegans to vertebrates, as well as in some arthropod viruses. The human 

FGF family is divided into seven subfamilies. Members of each subfamily share increased 

sequence similarity, and biochemical and developmental properties (Ornitz and Itoh 2001). 

FGF signaling has been implicated in cell proliferation, differentiation, survival, and 

migration and is required for both development and maintenance of vertebrates (Coulier et 

al. 1997).  
 
There are 22 human FGF paraloges, ranging in size from 17 to 34 kDa. These proteins 

share a common core of around 140 amino acids, which consists of 12 antiparallel ß-

strands and has homology to the interleukin 1ß (IL-1ß) family of growth factors. Crystal 

structures have been solved for 6 of the 22 FGFs (FGF1, FGF2, FGF4, FGF7, FGF9, 

FGF10 and FGF19) (Harmer et al. 2003). These proteins all form a ß-trefoil structure with 

a pseudo-3-fold axis of symmetry (Fig. 4). 
 
FGFs bind to two types of molecules on the cell surface (Fig. 4). On one face of the FGF, 

they form a low-affinity interaction with heparin sulfate (HS). On a second face, they bind 

to and activate cell surface tyrosine kinase FGF receptors (FGFRs) that is required to 

mediate their biological responses. In mammals, there are five homologes (FGFR1-5) (Itoh 

and Ornitz 2004). Mutations in FGFRs are responsible for a diverse group of skeletal 

disorders involving craniosynostosis and dwarfing syndromes (Wilkie et al. 2002). In 

contrast, only two members of the fibroblast growth factor family are associated with a 

human disease. FGF23 was first reported causing ADHR (The ADHR consortium 2000) 

and recently, mutations in FGF10 have been associated with aplasia of lacrimal and 

salivary glands (Entesarian et al. 2005). 
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Fig. 4. Structural characterization of the FGF polypeptide. (A) Structural features of the FGF 
polypeptide: The amino terminus of some FGFs contains a signal sequence (shaded). All FGFs share a core 
region that contains conserved amino acid residues and conserved structural motifs. The locations of the ß 
strands within the core region are numbered and shown as black boxes. The heparin-binding region is 
indicated in pink. Residues that contact the FGF receptor are shown in green, blue and red. (B) Three-
dimensional structure of FGF2: a ribbon diagram is shown; ß strands are labeled 1-12 and regions of contact 
with the FGF receptor and heparin are color coded as in A (Ornitz and Itoh 2001). 
 
 
2.3 Tumor induced osteomalacia 
 

TIO, also termed oncogenic hypophosphatemic osteomalacia (OHO), is an acquired 

disorder of renal phosphate wasting. There are no accurate prevalence numbers as it is an 

uncommon, but probably underdiagnosed, disorder. There are 120 cases described in the 

literature. 
 
Laboratory abnormalities are similar to those in XLH and ADHR (Tab. 1). Clinical 

symptoms include gradual onset of muscular weakness, bone pain, and fatigue that may be 

present from a few months to many years before diagnosis. Children have the lower-

extremity disorders characteristic of rickets, whereas adults develop fractures and 

pseudofractures (Drezner 2003, Brame et al. 2004).  
 

A

B



Introduction 
 

 

 22

TIO is caused by a variety of mostly benign mesenchymal tumors that secrete a factor or 

factors, collectively termed “phosphatonins” (Drezner 2000, Kumar 2002) which can 

inhibit proximal renal tubular Pi reabsorption and impair synthesis of 1,25(OH)2D3. Tumor 

extracts and conditioned media from cultured tumors can inhibit phosphate transport in 

renal cell lines in vitro (Cai et al. 1994), and can induce phosphaturia and 

hypophosphatemia when administered in vivo into mice (Popovtzer 1981). The tumors are 

often located in the skeleton but can be quite difficult to localize. Surgical removal of the 

tumor relieves all symptoms.  

 

2.3.1 Characterization of “phosphatonins” from TIO tumors 
 
In light of the clinical similarity between ADHR and TIO, White et al. examined FGF23 

expression in TIO tumor tissue and found significantly higher levels of expression of 

FGF23 messenger RNA and protein than that of normal tissues (White et al. 2001). Other 

groups independently confirmed these findings by obtaining complementary DNA clones 

abundantly expressed in a tumor causing TIO. They identified several candidate molecules 

for the phosphaturic substance including fibroblast growth factor 23 (FGF23), frizzled-

related protein 4 (FRP4), matrix extracellular phosphoglycoprotein (MEPE), dentin matrix 

protein 1 (DMP1), heat shock protein-90, and osteopontin (Rowe et al. 2000, Shimada et 

al. 2001, Jan de Beur et al. 2002).  
 
Nude mice transfected with FGF23 tumor cells developed hypophosphatemia, renal 

phosphate wasting, and inappropriately low calcitriol levels with decreased expression of 

1α(OH)ase activity compared with control mice (Shimada et al. 2001). They also showed 

growth retardation and osteomalacia. Although FGF23 has been the best characterized 

tumor protein associated with TIO, it is not the only one. Phosphaturic activity of MEPE 

(Rowe et al. 2004) and FRP4 (Berndt et al. 2003) has also been described in in vivo and in 

vitro experiments. Thus, it is elusive whether only one or multiple secreted factors are 

involved in the pathogenesis of this syndrome. 

 

3. DISORDERS OF PHOSPHATE METABOLISM: HYPERPHOSPHATEMIAS 

 
Hyperphosphatemia usually occurs in the setting of impaired renal function, 

hypoparathyroidism, increased flux of phosphate into the extracellular fluid, or a 

combination of these factors. The most common cause of hyperphosphatemia is acute or 
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chronic renal failure (Avioli et al. 1968). Hyperphosphatemia may also result from the 

excessive administration of phosphate using cytotoxic drugs to treat malignancies, 

especially lymphomas or leukaemia. Other circumstances, in which renal tubular 

phosphate excretion is decreased, include acromegaly, and chronic therapy with etidronate 

or heparin (Wilber and Slatopolsky 1968, Bringhurst et al. 1999). The only hereditary 

disorder associated with hyperphosphatemia which has been described is familial tumoral 

calcinosis (FTC). 

 

3.1 Familial tumoral calcinosis 

 
Inclan et al. (Inclan et al. 1943) gave the name “tumoral calcinosis” to a condition 

characterized by ectopic calcifications, although the same disorder was originally 

described by Duret in 1899 (Duret et al. 1899). Familial tumoral calcinosis (OMIM 

211900) seems to represent the metabolic mirror image of hypophosphatemic conditions 

(Tab. 1). FTC is a rare disease, inherited in an autosomal recessive mode. The disease most 

commonly occurs in black African populations and usually appears before the second 

decade of life (Palmer et al. 1966, Martinez 2002). 
 
FTC is characterized by periarticular calcified masses often localized in the hip, elbow or 

shoulder. They start as small, discrete, calcified nodules and progress to large and more 

definite lobulated tumors with a calcifying progress and final ossification (Fig. 5 A). Since 

vascularity is observed in the more active lesions, it seems that FTC represents a 

disordered reparative process (Thomson 1966). These masses are usually asymptomatic 

but can cause discomfort or pain when they compress the adjacent muscles and impinge on 

nerves and vessels. Diaphyseal hyperostosis (Clarke et al. 1984) and developmental 

abnormalities of the dentine and pulp are often associated to this condition (Fig. 5 C). 

Calcification of other tissues including skin, cartilage, cerebral vessels, retina, and vascular 

calcification causing severe complications may be seen in FTC (Martinez 2002). 
 
FTC is associated with hyperphosphatemia and increased proximal tubular phosphate 

reabsorption despite normal serum levels of calcium and PTH (Lufkin et al. 1983 and 

1980, Mitnick et al. 1980). Serum levels of 1,25(OH)2D3 may be normal or elevated in 

these patients (Slavin et al. 1993). Despite this conflicting data, the presence of 

inappropriately normal to slightly elevated concentrations of 1,25(OH)2D3 in the presence 
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of pronounced hyperphosphatemia, suggests that these patients also have a defect in the 

regulation of the renal 1α(OH)ase (Tab. 1). 
 
 

Fig. 5. Characteristic findings of FTC in a 12 years old boy. Radiographs show the left elbow (A) before 
and (B) after resection of a discoid lobulated calcified tumoral mass in the soft tissue of the extensor site of 
the left distal humerus. Radiograph of the lower incisors (C) shows round calcareous deposits (arrows) within 
the pulp chambers so-called pulp stones (Benet-Pagès et al. 2005). 
 

Recently, biallelic mutations in the UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 3 (GALNT3) gene have been identified in two large 

families as a cause of FTC (Topaz et al. 2004). GALNT3 encodes a glycosyltransferase that 

belongs to a large family of Golgi-associated biosynthetic enzymes that are responsible for 

initiating mucin-type O-glycosylation. This finding suggests that a defective post-

translational modification underlies this disorder. Furthermore, evidence for heterogeneity 

was provided.  

 

4. FUNCTION OF PHEX AND FGF23: AN UNIFIYNG HYPOTHESIS 

 
The striking biochemical and clinical similarities between TIO, XLH, and ADHR have led 

to the speculation that a common circulating factor plays a pathogenic role in these 

disorders. The observation of high FGF23 concentrations in serum of patients with TIO 

(Yamazaki et al. 2002) and in most but not all patients with XLH (Jonsson et al. 2003) as 

well as in serum of Hyp mice (Aono et al. 2003), together with the finding that mutations 

in FGF23 were the cause for ADHR, suggested FGF23 as the phosphaturic candidate. 
 
 

A B C
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The discovery of PHEX in XLH and its homologies to other endopeptidases, has invited 

speculations concerning potential interactions between the PHEX metallopeptidase and the 

circulating factor causing phosphaturia. Whether or not FGF23 is a substrate of PHEX is 

controversial. It was initially reported that PHEX degraded FGF23 in an in vitro translation 

system (Bowe et al. 2001), but subsequent experiments were unable to show cleavage of 

an FGF23 peptide that encompassed arginines p.176 and p.179 by PHEX (Guo et al. 

2001). 
 
Most likely, FGF23 plays a central role in the pathophysiology of these disorders. Thus, a 

model explaining the link of FGF23 to all three phosphate wasting disorders was proposed 

(Strewler 2001): in XLH and Hyp mice, loss of function of PHEX may lead to higher 

concentrations of FGF23, which subsequently causes renal phosphate wasting. In ADHR, 

missense mutations replace key amino acids in FGF23 and render the protein resistant to 

proteolysis, thereby leading to enhanced FGF23 activity. Similarly, excess of FGF23 

synthesis by TIO tumors leads to extremely increased FGF23 plasma levels that cause 

phosphaturia. This model is summarized in figure 6. 

 

 
Fig. 6. Hypothesis of the FGF23 role in phosphate wasting conditions. Under normal conditions, FGF23 
activity may be negatively regulated by PHEX. In XLH and Hyp mice, the defective PHEX is unable to 
cleave and inactivate FGF23. Specific mutations render FGF23 resistant to PHEX processing within 
individuals with ADHR. In TIO, FGF23 is produced in such excess that FGF23 levels and activity cannot be 
modulated. 
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5. AIMS OF THE INVESTIGATION 

 
In the year 1995, the HYP consortium identified loss of function mutations in the PHEX 

metallopeptidase in patients with X-linked hypophosphatemic rickets (The HYP 

Consortium 1995). Five years later, mutations in a novel fibroblast growth factor (FGF23) 

have been identified as the cause of autosomal dominant hypophosphatemic rickets 

(ADHR) by positional cloning (The ADHR Consortium 2000). The phenotypic similarity 

between XLH and ADHR suggested that a common mechanism is involved in the 

pathogenesis of both disorders and an interaction between PHEX and FGF23 was proposed 

(Strewler 2001). The finding that FGF23 was overexpressed in tumours from patients with 

oncogenic hypophosphatemic osteomalacia provided further evidence that FGF23 is 

involved in the regulation of renal phosphate reabsorption (White et al. 2001, Shimada et 

al. 2001).  
 
However, the molecular and physiological mechanisms by which the mutations in FGF23 

lead to misregulation of renal phosphate handling in ADHR are currently unknown. To 

understand how FGF23 is involved in regulating renal phosphate wasting, it is particularly 

important to know more about the properties of this new hormone. To achieve this goal, I 

conducted the following studies in the present work: 

 
 Molecular characterization of the FGF23 protein. For this purpose antibodies 

against FGF23, which can be used for western blot and immunocytological assays, 

should be established. It should be proven whether FGF23 is a secreted protein and 

whether it is glycosylated. 
 
 ADHR is inherited in an autosomal mode and caused by missense mutations which 

could be explained by a gain of protein function. The mutations replace arginine 

residues within a subtilisin-like proprotein convertase cleavage site. It should be 

determined if the ADHR mutations lead to protease resistance of FGF23. 
 

 DNA from three patients with familial tumoral calcinosis was collected. Since FTC 

is considered the mirror image of the hypophosphatemic rickets, it should be 

investigated whether FTC can be caused by FGF23 mutations and whether the 

functional characterization of the mutant protein could explain this phenotype. 
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 Establishment of an assay to demonstrate possible substrates of the PHEX 

endopeptidase with the goal to determine whether there is an interaction between 

FGF23 and PHEX. This was based on the hypothesis that PHEX could regulate 

physiologically the amounts of FGF23. 
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B. MATERIALS AND METHODS 
 
1. MATERIALS 

 
1.1 DNA-Resources 

 
1.1.1 Patients 
 
Mutation screening was performed in members of two families from Austrian (family 1), 

and Spanish (family 2) origin that presented familial tumoral calcinosis (FTC) with 

hyperphosphatemia (Tab. 2). Blood samples from the members of the whole family were 

provided by Dr. Peter Orlik from the “Universitätsklinik für Kinder- und 

Jugendheilkunde”, Innsbruck, Austria, and Dr. Pilar Blay from the “Hospital central de 

Asturias”, Oviedo, Spain. 
 
Tab. 2. Mutation screening in families with FTC 
 

Family Patient Gender Affected Diagnose
1 23198 m no
1 23199 f no
1 23200 f no
1 23201 f no
1 23202 m yes FTC
2 23293 f yes FTC
2 23294 m no
2 23295 f no
2 23296 m yes FTC

 m: male, f: female, FTC: familial tumoral calcinosis 

 

1.1.2 cDNAs 
 
Human RACE-cDNAs: whole fetus, fetal brain, fetal kidney, brain, heart, small intestine, 

kidney, liver, testis, lung, skeletal muscle, and thyroid/parathyroid Marathon-ReadyTM 

cDNAs were provided by Clontech. Mouse RACE-cDNAs: embryo 12.5 days, embryo 17 

days, and spleen Marthon- ReadyTM cDNAs were provided by Clontech. 

 

1.1.3 Plasmids 
 
Full-length FGF23 and PHEX cDNAs were previously cloned in pBluescriptII SK +/- 

vector (Stratagene). Subsequent directional cloning for expression analysis was done in 

pMAL-c2 (New England Biolabs) or in pcDNA3.1/myc-His version B (Invitrogen).  
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1.2 Enzymes, chemicals and other materials  

 
1.2.1 Enzymes and chemicals 
 
The companies New England Biolabs and MBI Fermentas provided restriction enzymes. 

MBI Fermentas provided Taq- and Vent-polymerases used for PCR amplification. T4 

DNA-ligase and the 1 kb DNA ladder (0.075-12.216 kb) were obtained from Gibco BRL. 

PNGase F and Endo H glycosidases were provided by New England BioLabs, O-

glycosidase from Diplococcus pneumoniae by Roche and Neuraminidase X from 

Clostridium perfringens by Sigma. 
 
All chemicals used in this work had a degree of purity suitable pro analyse and were 

provided by Merck or Sigma. Other chemicals, buffers, and additional materials are 

described under the corresponding methods.  

 

1.2.2 Kits 
 
Advantage cDNA PCR Kit Clontech 
Big Dye Terminator v3.1 Cycle Sequencing Kit Applied Biosystems 
First-Strand cDNA-Synthesis Kit Pharmacia 
QIAquick Gel Extraction Kit Qiagen 
QIAquick PCR purification Kit Qiagen 
QIAprep Spin Plasmid Miniprep Kit Qiagen 
QIAGEN Plasmid Midi Kit Qiagen 
Ni-NTA Spin Kit Qiagen 
QuikChangeXL Site-Directed mutagenesis Kit Stratagene 
PCR Master Mix Kit Promega 
Human FGF-23 (C-Term) ELISA Kit Immutopics 
 

1.2.3 Oligonucleotides 
 
All oligonucleotides used in the PCR reactions were synthesised by the manufacturer 

Metabion. Table 3 shows primer pairs used for the directional cloning of the FGF23- (1) 

and PHEX-cDNA (2) sequences into the corresponding expression vectors (restriction sites 

are underlined). Primers used for FGF23 cloning into pMAL-c2 (1a), pcDNA3.1/myc-His 

with His tag (1b) and cloning of FGF23-cDNA fragment corresponding to amino acids 1-

178 in pcDNA3.1/myc-His (1c). Primers used for PHEX cloning in pcDNA3.1/myc-His 

(2a) and in pcDNA3.1/myc-His with His tag (2b). 
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Tab. 3. Cloning primers 

 Forward primer (5’ 3’) Reverse Primer (5’  3’) °C
1a CGGAATTCTATCCCAATGCCTCCCCACTG CGGGATCCCTAGATGAACTTGGCGAAGGG 58

1b CGGAATTCTCAGGGCACGATGTTGGGGGC GCTCTAGACTGATGAACTTGGCGAAGGGGCG 58 

1c CGGAATTCTCAGGGCACGATGTTGGGGGC GCTCTAGACTAGGTGTGCCGCCGTGGTATG 58 

2a ATAAGAATGCGGCCGCACATGGAAGCAGAAACAGGGAGC GCTCTAGACTACCAGAGTCGGAGGA 58 

2b ATAAGAATGCGGCCGCACATGGAAGCAGAAACAGGGAGC TGTCTAGATACCAGAGTCGGCGGAGTC 58 

 

Primer pairs designed to introduce the p.R176Q, p.R179Q and p.S71G mutations into the 

FGF23-cDNA sequence and to create a secPHEX construct by site-directed mutagenesis 

PCR (Tab. 4). 
 
Tab. 4. Site-directed mutagenesis primers 

Name Forward primer (5’ 3’) Name Reverse Primer (5’  3’) °C
FGF23R176Q CCATACCACGGCAGCACACCCGGAG FGF23R176Q CTCCGGGTGTGCTGCCGTGGTATGG 60

FGF23R179Q GCGGCACACCCAGAGCGCCGAGG FGF23R179Q CCTCGGCGCTCTGGGTGTGCCGC 60

FGF23S71G CATCAGACCATCTACGGTGCCCTGATGATC FGF23S71G GATCATCAGGGCACCGTAGATGGTCTGATG 60

PHEX28-29 GTCGTGTTTGTCCTTACCACCCTAGTTCTG PHEX28-29 CAGAACTAGGGTGGTAAGGACAAACACGAC 60

PHEXdel GTTCTGGGCACGACCAGTCAAGGTCTC PHEXdel GAGACCTTGACTGGTCGTGCCCAGAAC 60

PHEX30-32 TTTGTCCTTACCGTCATAGCTCTGGGCACGAT PHEX30-32 GATCGTGCCCAGAGCTATGACGGTAAGGACA 60

PHEX33-34 CCGTCATAGCTCAGCAGACGATCCTCTTTC PHEX33-34 GAAAGAGGATCGTCTGCTGAGCTATGACGG 60

PHEX36 GCTCAGCAGACGACCCTCTTTCTAGTG PHEX36 CACTAGAAAGAGGGTCGTCTGCTGAGC 60

PHEX37-40 GCTCAGCAGACGACCAGTCAAGGTCTCTTAA PHEX37-40 CTTAAGAGACCTTGACTGGTCGTCTGCTGAGC 60

 
 
Mutation analysis of the FGF23 and GALNT3 genes was performed with intronic primer 

pairs to amplify each exon separately (Tab. 5). All primers were used at an annealing 

temperature of 60°C. 
 
Tab. 5. FGF23 and GALNT3 amplification primers 

Exon  Name Forward primer (5’ 3’) Name Reverse primer (5’  3’) bp 
1 FGF23e1F AATCTCAGCACCAGCCACTC FGF23e1R GATGGACAACAAGGGTGCTC 294
2 FGF23e2F TTTCAGGAGGTGCTTGAAGG FGF23e2R TTGCAAATGGTGACCAACAC 208

3 FGF23e3F CTTCACGTGGTTCGCTCTTG FGF23e3R TGCTGAGGGATGGGTTAAAG 510

1.1 GALNT3e1.1F CTACCATTAAAGATACCTTCTTCTCAG GALNT3e1.1R AGGACAGGCTTCAATTCTGC 257 

1.2 GALNT3e1.2F GATGTTGGATTTAATGCTAGAAGC GALNT3e1.2R CTCCCCTGCAAAGCCTG 257 

2 GALNT3e2F TCTCTGGGTGAGTGATTTGC GALNT3e2R TGAATATGTCCATCCTTGGATTC 173 

3 GALNT3e3F TTTGGAAGGATCATTGCTCTG GALNT3e3R CCTTTTAAATTAGAGGGAGAGGG 150 

4 GALNT3e4F TCAAAACACAAATTGACTCTGTTATTC GALNT3e4R GCAAGTACACAAATGAATGACTTTTAG 235 

5 GALNT3e5F CAAAAATCTTGACTTTGAAGATAGC GALNT3e5R TCTGTAATCATATGTACCAGCCG 118 

6 GALNT3e6F GGTGAACTTAAAAGCAACACTTTG GALNT3e6R ACGCAAAAGGACGTGTGAAC 201 

7-8 GALNT3e7/8F GCCTCTTGAATTTTTAGCATGG GALNT3e7/8R AGGCAACATCTCACTTGTGC 437 

9 GALNT3e9F TTTTGCAACTGAGCACATGG GALNT3e9R CATGTTCCACTCATTTTCCC 153 

10 GALNT3e10F TGGCTCACCTTAGAAAGATTTG GALNT3e10R TTTTCAAAAACTACAGTGTATGCC 123 
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Primer pairs used for semiquantitative multiplex-PCR of the seven human and mouse SPCs 

(Tab. 6). Due to high homology between the human and the mouse SPC sequences, only 

specific primers for the amplification of mouse Spc3, Spc6 and Spc7 were required. 
 
Tab. 6. Multiplex-PCR primers 

Name Forward primer (5’  3’) Name Reverse primer (5’  3’) bp  °C
SPC1F CTGGCGAGTGGGTCCTAGAG SPC1R CAAGTCTGCTCCACAGGGTC 394 59

SPC2F ACATGCAGCATCTGACTGTG SPC2R TCAGCAAAATGGACTTGGTG 387 59 

SPC3F GGTACTTGGACTTTGAGAATTACGAC SPC3R AAGTTTTCATAAGGGATGTTGAGC 407 59 

SPC4F CGCGGGTCATAAAGTTAGCC SPC4R CTTCAGCCTTTTCTCCCCAG 398 59 

SPC5F GACCTGGAGATCTCGCTCAC SPC5R GCAGGTGTAGCAGGAGGC 340 59 

SPC6F GGTATTTCAACGGCCAGGAC SPC6R GGCACAGATTGTTCTTTTTCAC 366 59 

SPC7F CCTACAGGCTTGTCATCAGG SPC7R TCTAGCTCTGTCCCTTCCTCC 403 59 

Spc3F TACAGACATGTCTGGAAGAATGC Spc3R TTCAGAGCCTTCAAGCTTGGAG 407 59 

Spc6F GTCTACACCAACCACTGGGCA Spc6R GGCTCCTTCGATATTCATGTCA 366 59 

Spc7F GCAGAAAGTCCCACACTTGGA Spc7R CCTCTTCAGCAGCGTTTGCTC 403 59 

 

First (1) and second (2) round primers used for the analysis of FGF23 expression in human 

and mouse tissues by RT-PCR (Tab. 7). 
 
Tab. 7. RT-PCR primers 

Name Forward primer (5’ 3’) Name Reverse Primer (5’  3’) °bp °C 
FGF23F1 TCAGAGGATGCTGGCTTTGTGGTG FGF23R1 TGCGTGTTCACTCGACCGCC 480 58 

FGF23F2 CCTCTGCATGGATTTCAGAGGCAAC FGF23R2 ATGGGTCACTGGCCATCGGG 396 58 

Fgf23F1 AGCCTGTCTGGGAGTGTCAG Fgf23R1 ATTCTGAATAGCGGTGCCTG 610 58 

Fgf23F2 TCAAACTCAGCATTAGCCACTC Fgf23R2 TTCCTCTACGTGGGCTGAAC 510 58 

 

 
1.2.4 Antibodies 
 
Anti-MBP monoclonal antibody  New England BioLabs 
Anti-His (C-term)-HRP antibody Invitrogen TM 
Anti-Flag M2-HRP antibody Sigma 
Anti-calnexin [AF18] antibody Abcam 
Anti-Lamp1 [LY1C6] antibody Abcam 
Monoclonal antibody against human mitochondria Chemicon 
Wheat germ agglutinin (WGA) antibody Molecular Probes  
Goat anti-rabbit IgG (H+L)-HRP conjugate Bio Rad 
Alexa Fluor 594 conjugate Molecular Probes 
 

The company Eurogentec provided the production and purification of polyclonal 

antibodies against human FGF23 and PHEX proteins. Immunizations were performed in 
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rabbits. Antigens were designed against peptides detailed in table 8.  
 
Tab. 8. Antibodies 

Protein Fragment Name Peptide Concentration 
FGF23 N-teminal FGF2348-67 48RNSYHLQIHKNGHVDGAPHQ67+C 0.75 mg/ml 
FGF23 N-teminal FGF23148-163 148GMNPPPYSQFLSRRNE163+C 0.59 mg/ml 
FGF23 C-terminal FGF23173-187 173IPRRHTRSAEDDSER187+C 0.37 mg /ml 
FGF23 C-terminal FGF23207-222 207SQELPSAEDNSPMASD222+C 0.33 mg/ml 
PHEX  PHEX171-185 171ESNIGPEGVWSERKF185+C 1.2 mg/ml 

 
 
1.2.5 Cell lines 
 
Human embryonic kidney cells (HEK293) were provided by the “Deutsches 

Krebsforschungszentrum” (DKFZ). Human prostate cancer cells (PC3), osteosarcoma cells 

(SaOS), chondrocytes, human microvascular endothelial cells (HMEC-1), and mouse 

osteoblastic cell line (MC3T3) were a gift from Dr. Beate Lanske, Harvard Medical 

School, Boston. 

 

2. METHODS 

 
2.1 DNA- and RNA- preparation 

 
2.1.1 DNA extraction from blood 
 
DNA was extracted from (EDTA)-whole blood following a modified protocol from Miller 

et al. from peripheral blood leukocytes (Miller et al. 1988). (EDTA)-Whole blood (5-10 

ml) was mixed with 40-45 ml lysis buffer. Erythrocytes were lysed and separated from the 

leukocytes after a centrifugation step (300 x g, 10 min, 10°C). Overnight incubation at 

37°C with 5 ml SE-buffer, 25 µl pronase E (20 mg/ml) and 250 ml 20% SDS, dissociated 

nucleate cells. Following addition of 2-3 ml 5 M NaCl, intensive vortex and centrifugation 

at 1300 x g for 10 min at RT, achieved protein precipitation. The DNA-containing 

supernatant was transferred into a clean tube and two volumes of absolute ethanol were 

added for DNA precipitation. Precipitated DNA was washed once with 70% ethanol, dried 

and diluted in 100-1000 µl TE-buffer. DNA-concentrations were measured with the 

SYBR-green I method (Molecular Probes) in a GENios micro plate reader (Tecan).  
 
Lysis buffer: 155 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA up to 1 l dH2O  

 (pH 7.4) 
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SE-Puffer: 75 mM NaCl, 25 mM EDTA, pH 8 (NaOH) 

TE-Puffer: 10 mM Tris-HCl (pH 8), 1 mM EDTA 

 

2.1.2 RNA extraction from cells 
 
RNA isolation was achieved by using the TRIZOL reagent (Gibco BRL) following the 

instructions supplied by the manufacturer. The reagent, a mono-phased solution of phenol 

and guanidine isothiocyanate, allows a single step isolation method developed by 

Chomezynski and Sacchi (Chomezynski and Sacchi 1987). Confluent cells growing in a 

small cell culture flask (25 cm²) were collected and mixed with 1 ml TRIZOL reagent.  
 
Addition of chloroform (0.2 ml/1 ml TRIZOL) followed by centrifugation (12000 x g, 10 

min, 4 °C), separates the solution into an aqueous phase and an organic phase. RNA 

remains exclusively in the aqueous phase. After transfer of the aqueous phase into a clean 

1.5 ml reaction tube, the RNA was recovered by precipitation with isopropyl alcohol (0.5 

ml/1 ml TRIZOL) and centrifugation at 12000 x g for 5 min at 4°C. RNA pellet was 

washed with 75% ethanol, centrifuged (7500 x g, 5 min, 4°C) and briefly dried. The 

prepared RNA can be stored in 75 % ethanol for one year or in DEPC-H2O for 4 weeks at 

20°C.  
 
To prove RNA quality and quantity, an aliquot of isolated RNA (1-2 µl) was analysed by 

electrophoreses in a 0.7% agarose gel and viewed under a 300 nm UV light illuminator. 

RNA concentration was measured in a photometer under an absorbance of 260 (1 OD260 = 

40 µg RNA/ml). The degree of purity from the isolated RNA measured at A260-280 should 

be between 1.6-1.8. 
 
DEPC-H2O: 0.01% (v/v) DEPC in dH2O, shake for 12 h at RT and autoclave 
 
All substances, dilutions and materials must be RNase free. General precautions for 

preventing RNase contamination are found in Sambrook et al. (Sambrook et al. 1989). 

 
2.2 Reverse transcription 
 

The synthesis of first-strand cDNA from isolated RNA was performed using the 1st Strand 

cDNA Synthesis Kit (Pharmacia). The cDNA was generated from 1-5 µg of total RNA. 

RNA was mixed with RNase-free water to 8 µl end volume, denatured at 65°C for 10 min 

and then chilled on ice for 10 min. For reverse transcription, 5 µl Bulk First-Strand cDNA 
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Reaction Mix, 1 µl DTT Solution, 1 µl NotI-d(T)18 primer (1:25 dilution) were mixed with 

the heat-denatured RNA in a 1.5 ml reaction tube and incubated at 37°C for 1 h. The 

completed first-strand cDNA reaction product is ready for immediate second-strand cDNA 

synthesis or PCR amplification. 

 

2.3 Polymerase chain reaction (PCR) 

 
2.3.1 Standard PCR 
 
PCR was established following the standard Saiki method (Saiki et al., 1988). 

Amplification protocols and reaction mixture conditions were optimized depending on the 

original DNA template (genomic DNA, cDNA, recombinant plasmid). Oligonucleotide 

primer pairs are detailed in section 1.2.3. Negative controls were always used and positive 

controls if required. For 50-100 ng genomic DNA template or 10-50 ng cDNA template, 

the reaction mixture consists of 50 µl with 1x PCR-buffer, 200 mM dNTPs, 40 pmol 

oligonucleotide primer (sense and antisense) and 0.5 U Taq-Polymerase (New England 

Biolabs). PCR reaction was performed in a thermal cycler (MJ Research PTC-225) with 

the following basic amplification program: 
 

1. 94°C 5 min 
2. 94°C 30 sec  
3. (*)°C 30 sec  
4. 72°C (**) sec  
5. 72°C 5 min 

 
The amplification stage comprises of 30 cycles from step 2 to 4. The annealing 

temperature of the primers (*) depends on the composition of them and the time required 

for primer extension (**) is directly related to the length of the desired PCR product. 
 
PCR-Buffer 10x: 750 mM Tris-HCl (pH 9), 200 mM (NH4)SO4, 25 mM MgCl2, 

 0.1% Tween 20 

 
2.3.2 RT-PCR and RT-”nested”-PCR 
 
The amplification of a specific cDNA resulted from performing RT-PCR using 10 ng of 

first strand cDNA obtained by reverse transcription of isolated RNA (see section 2.2) or 

from supplied cDNA (see section 1.1.2). Depending on the expression level of the gene, a 

second “nested”-PCR can be attached to the RT-PCR. The template for the second round is 
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the product obtained in the RT-PCR. The primer pairs for the “nested”-PCR are located 

within the first RT-PCR amplified cDNA sequence. Primer pairs are described in section 

1.2.3. To avoid polymerase mistakes for later expression experiments, 0.2 U of a 

proofreading Vent-Polymerase were added to the standard PCR reaction mixture. 

 

2.3.3 Multiplex RT-PCR 
 
For semiquantitative analysis of the expression level of a certain gene in a tissue or cell 

line of interest, multiplex RT-PCR was performed using 10 ng of first cDNA obtained by 

reverse transcription from isolated RNA (see section 2.2) as template. Two pairs of 

primers were used in the same PCR reaction. One pair of primers was used for 

amplification of the gene of interest and a second pair was used for amplification of the 

GAPDH gene as an internal control. PCR Advantage Kit (Clontech) was used with the 

following amplification program: 95°C for 8 min, 95°C for 45 sec, (*)°C for 30 sec and 

72°C for 30 sec during 35 cycles and 72°C for 10 min. Primers and annealing temperature 

are detailed in section 1.2.3. Two specific PCR products for every reaction are expected to 

be viewed in a 2% agarose gel after electrophoresis (see section 2.6.1). 

 

2.4 Site-Directed mutagenesis 

 
To construct expression vectors for the FGF23-R176Q, -R179Q, -S71G mutant proteins 

and the secreted form of the PHEX protein (secPHEX), in vitro site-directed mutagenesis 

was accomplished using the QuikChangeXL Site-Directed mutagenesis kit (Stratagene). 
 
Full-length FGF23 and PHEX plasmids previously cloned in pBluescript SK +/- 

(Stratagene) were used as templates for amplification with the mutagenesis oligonucleotide 

primers containing the desired mutation. Mutagenesis primers (see section 1.2.3) were 

designed considering the manufacturer's recommendations. PCR amplification was 

performed using Pfu Turbo DNA polymerase following the manufacturer’s protocol and 

XL10-Gold Ultra competent cells were transformed.  

 

2.5 DNA Sequencing 

 
Automated DNA sequencing was performed in a capillary-based automated sequencer, 

(ABI Prism 3100 Genetic Analyser, Applied Biosystems), after a cycle-sequence reaction 
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using the BigDye-Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). The 

BigDye-Terminator sequencing conditions depend on the type of template. For a plasmid-

DNA template, 100 ng of purified double-stranded DNA were mixed with 0,5 µl BigDye-

Terminator mix version 3.1, 1 µl buffer, 1 µl primer (0.20 pmol/µl) and dH2O up to 5 µl 

end volume reaction. The cycling program consists of 25 cycles: 10 sec 96°C, 5 sec 50°C, 

4 min 60°C.  
 
After the cycle-sequence reaction, the DNA was precipitated in 13 µl 100% ethanol, 

incubated for 10 min and centrifuged (3000 x g, 30 min, RT). The pellet was washed in   

20 µl 70% ethanol in DHPLC-H2O (LiChrosolv, Merck), vortexed for 1 min and 

centrifuged (2000 x g, 15 min, RT). The DNA pellet was dried at RT and dissolved in 50 

µl DHPLC-H2O. Dissolved DNA (25 µl) was transferred onto a microtiter plate, which 

was placed into the automated sequencer. The resulting data were collected and analysed 

using the Staden Package (see section 3.2). 

 

2.6 Electrophoresis 

 
2.6.1 Agarose gel electrophoresis 
 
Electrophoresis through 0.7-1.5% horizontal agarose gels was used to separate, identify, 

and purify DNA fragments. The 6-7 mm thick gel consists of 1x TBE-agarose with          

0.2 µg/ml ethidium bromide in 1x TBE buffer. The concentration of agarose in the 

electrophoresis buffer must be appropriate to separate the particular size fragments under a 

migration rate of 1.5 V/cm for 30 min. A DNA, 1 kb-ladder standard (BRL Gibco) was 

used to interpret the results, viewed under a 300 nm UV light transilluminator. 
 
10x TBE-buffer: 840 mM Tris, 900 mM boric acid, 20 mM EDTA, dH2O up to 1 l 

 (pH 8) 

Ethidium bromide: 10 mg/ml stock 

Gel-loading buffer: 0.05% (w/v) orange G or bromophenol blue in 25% (w/v) Ficoll 

 
2.6.2 Polyacrylamide Gel Electrophoresis 
 
Analytical electrophoresis for the separation of proteins was carried out in discontinuous 

sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). Denatured polypeptides bind 

SDS detergent in a ratio of 1:4 g SDS/g protein and become negatively charged because of 

the high negative density charge of SDS. As the amount of SDS bound is almost always 



Materials and methods 
 
 

 37

proportional to the molecular weight of the polypeptide and is independent of its sequence, 

SDS-polypeptide complexes separate by sieving through the gel according to size. 
 
2.6.2.1 Preparation of the mini gels 
 
Minigels with 0.75 mm of thickness were cast in the Mini-PROTEAN 3 Multi-Casting 

Chamber (Bio-Rad) following the instructions manual. The gel monomer solution was 

prepared with an Acrylamid/Bisacrylamid 30% v/w solution (SERVA Water-saturated 

isobutanol was used as overlaying solution. Polymerisation time was 30 min. Mini gels can 

be packed in a plastic foil and stored at 4°C for one week. 
 
The analysis of small proteins and polypeptides requires a buffer system and acrylamide 

percentages especially suited to small molecules. Ready Gel precast 16.5% Tris-tricine 

gels (Bio-Rad) were used for the separation of peptides and small proteins with molecular 

weights as low as 1 kDa. 
 
Tab. 9. Solutions for preparing tris-glycine SDS-PAGE resolving gels (7.5%, 10%, 12%, and 15%) and 
stacking gel (4%). 
 

 7.5 % 10 % 12 % 15 % 4 % 

 Ultra pure H2O 29 ml 24 ml 20 ml 14 ml 18.3 ml 

 1.5 M Tris/HCl pH 8.8 15 ml 15 ml 15 ml 15 ml 7.5 ml 

 PROTOGEL 15 ml 20 ml 24 ml 30 ml 4.0 ml 

 SDS (10%) 0.6 ml 0.6 ml 0.6 ml 0.6 ml 0.3 ml 

 TEMED 60 µl 60 µl 60 µl 60 µl 30 µl 

 APS (10%) 300 µl 300 µl 300 µl 300 µl 150 µl 
 
 
2.6.2.2 Electrophoresis 
 
Hand cast gels and Ready Gel precast gels were assembled in a Mini-PROTEAN 3 Cell 

running chamber and filled with running buffer following the manufacturer's instructions. 

Tris/glycine/SDS or Tris/tricine/SDS were used as running buffer systems. Protein samples 

were treated with Laemmli sample buffer or Tricine sample buffer in a 1:1 ratio, boiled at 

95°C for 5 min and loaded into the wells of the gel. For the analysis of membrane proteins, 

protein samples were heated to 40°C for 5 min. The electrophoresis was run constant at 

120 V until the bromophenol blue reached the edge of the gel. Kaleidoscope Prestained 

and Dual Color Prestained Precission Plus protein standards (Bio-Rad) were used for the 

determination of the molecular mass. 
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Tris/glycine/SDS buffer: 250 mM Tris, 1.92 M Glycine, 1% SDS, dH2O up to 1 l 

Tris/tricine/SDS buffer: 100 mM Tris, 100 mM Tricine, 0.1% SDS, dH2O up to 1 l 

 (pH 8.3) 

Laemmli sample buffer: 4% SDS, 50 mM Tris/HCl pH 6.8, 10% ß-mercaptoethanol, 

 20% glycerol, 0.2% bromophenol blue 

Tricine sample buffer: 20% SDS, 50 mM Tris/HCl pH 6.8, 20% ß-mercaptoethanol, 

 50% glycerol, 0.2% bromophenol blue 

 
2.6.2.3 Drying SDS-PAGE 
 
Mini-gels were dried using a mini gel drying system (Novex) following the manufacturer's 

instructions. Gels were immersed in drying solution for 20 min with gentle shaking and 

dried for 24 h at RT. 
 
Gel drying solution: 20% methanol, 2% glycerol in dH2O 

 

2.6.3 Western blot 
 
Electrophoretic transfer of proteins from polyacrylamide gels to a polyvinylidene fluoride 

(PVDF) membrane was performed using the mini Trans-Blot Electrophoretic Transfer Cell 

(Bio-Rad). PVDF membranes manifest a strong interfacial (hydrophobic) interaction with 

proteins with a capacity of 170 µg protein/cm². After gel electrophoresis, the gel was 

equilibrated for 15 min in pre-chilled transfer buffer. PVDF membrane (PALL Life 

Sciences) was moistened in methanol and soaked in transfer buffer together with two filter 

paper sheets and the fibre pads. Gel sandwich was prepared in the cassette following the 

instructions manual. Electrophoresis was performed at 100 mA for 1 h at 4°C. Upon 

completion of the run, the membrane was stained with Ponceau S (see section 2.12.3). The 

Detection of proteins in a PVDF membrane accomplished by using antibodies (see section 

2.13.1). 
 
Transfer buffer: 12 mM Tris, 96 mM glycine, 20% methanol in dH2O 

 

2.7 DNA cloning 

 
Full-length FGF23 and PHEX cDNAs, previously cloned in our laboratory into 

pBluescript SK +/-, were used as template for further directional cloning into different 

expression vector systems, depending on the purposes of the experiments. When needed, 
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insert DNA was amplified by PCR using pairs of oligonucleotide primers including 

cloning restriction sites to generate amplified segments of insert with cohesive ends. PCR 

products were enzymatically digested and directionally ligated into an expression vector 

system. pMAL-c2TM vector (New England BioLabs) was used for expression in a bacterial 

system and pcDNA3.1/myc-His version B (Invitrogen) vector was used for expression in 

eukaryotic cells.  

 

2.7.1 DNA digestion  
 
Target cDNA (1-10 µg), plasmid or plasmid-DNA was digested for 2 h with the 

appropriate restriction enzymes before cloning into the expression vector. The amount of 

endonuclease used depends on the µg of substrate to be digested; 1 U of restriction 

endonuclease digests 1 µg DNA in 1 h. The manufacturer specifies the reaction buffer and 

the optimum temperature for the digestion. At the end of the digestion, restricted DNA was 

viewed in an agarose gel and purified. 

 

2.7.2 DNA ligation 
 
For ligation of cohesive ends was used at a ratio of 3:1. Ligation mixture was set up in a 

0.5 µl reacion tube: 1x T4-DNA ligation buffer and 5 U T4-DNA ligase were mixed with 

the corresponding amounts of insert and vector in a total volume of 10 µl. Samples were 

incubated overnight in a water bath at 15°C. 

 

2.7.3 Preparation of competent E. coli using the CaCl2 method 
 
A single bacterial colony (E. coli XL1-Blue, Stratagene) for the competent bacterial line 

was transferred into a culture tube with 3 ml TYM/MgCl2 medium and cultured overnight 

at 37°C. A part of this culture was diluted to 1:200 and incubated again for 3 to 4 hours at 

37° with vigorous agitation. The growth of the culture was monitored every 20 min until 

the OD600 reached 0.9. The culture tube was chilled on ice for 10 min and the cells were 

recovered by centrifugation (3000 x g, 10 min, 4°C). Cell pellet was then resuspended by 

gentle vortex in 15 ml of chilled Tfb-I solution and centrifuged at 3000 x g for 8 min at 

4°C. The cell pellet was again resuspended in 4 ml chilled Tfb-II solution, divided into 100 

µl fractions and preserved at -70°C. The transformation efficiency of the competent cells 

can be controlled by transforming 1 µg circular plasmid-DNA which should yield 1x106 to 

1x107 single colonies. 
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TYM /MgCl2: 20 g tryptone, 10 g yeast extract, 5.88 g NaCl, dH2O up to 1 l. 

 Autoclave and add 1M MgCl2 to 10 mM end concentration. 

Tfb-I solution: 30 mM K-Acetat, 50 mM MgCl2, 100 mM KCl, 10 mM CaCl2, 

 15% glycerol 

Tfb-II solution: 10 mM Na-MOPS pH 7, 75 mM CaCl2, 10 mM KCl, 15%  glycerol 

 

2.7.4 DNA transformation 
 
For transformation, 100 µl E. coli XL1-blue competent cells were thawed on ice, mixed 

with 10 µl ligation reaction and incubated for 20 min on ice. Tubes were then transferred 

into a preheated 42°C circulating water bath for exactly 45 sec, and chilled on ice for 2 

min. 900 µl TYM/MgCl2 medium were added into each sample tube and incubated for 1 h 

at 37°C with vigorous agitation. Cells were recovered by centrifugation (1000 x g, 2 min, 

RT) and 5 - 50 µl of the bacterial suspension were plated onto LB/agar culture dishes with 

50-100 µg ampicillin/ml. Cultured plates were incubated at 37°C in an incubator overnight. 
 
LB-medium: 10 g tryptone, 5 g yeast extract, 10 g NaCl, dH2O up to 1 l 

LB/agar: LB-medium with 1.5% agar 

Ampicillin: 50 mg/ml stock solution 

 

2.7.5 Preparation of recombinant plasmid-DNA 
 
Single E. coli transformed colonies were transferred from the LB/agar cultured plates into 

5 ml LB medium with antibiotic and incubated overnight at 37°C with vigorous agitation. 

After incubation, one aliquot of the bacterial culture was mixed with an equal volume of 

glycerol and stored at -70°C as bacterial stock. The rest of the cells were recovered by 

centrifugation (1000 x g, 10 min, RT). For the plasmid-DNA preparation the QIAprep Spin 

Plasmid Miniprep Kit (Qiagen) was used following the manufacturer's standard protocol. 

 

2.8 Protein expression 

 
2.8.1 Expression in a prokaryotic system 
 
Expression of genes in E. coli was performed using the pMALTM Protein Fusion & 

Purification System (New England BioLabs) following the manufacturer’s instructions. 

The gene of interest was cloned into a pMAL-c2 vector (see section 2.7) downstream from 

the malE gene, in frame with an encoded maltose-binding protein (MBP). This technique 
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uses an IPTG-inducible promoter and the translation initiation signals of MBP to express 

large amounts of fusion protein. Purification of the recombinant protein was performed in 

an amylose resin column (New England BioLabs) following the manufacturer's 

instructions. Purified protein was visualized after SDS-PAGE by Coomassie staining (see 

sections 2.6.2 and 2.12.1). Quantification of the purified fractions was achieved with the 

Protein 200 Assay in an Agilent 2100 Bioanalyser (Agilent Technologies) (see section 

2.11.1). Fusion protein was cleaved with Factor Xa following the recommendations of the 

manufacturer. Results were visualized after SDS-PAGE by Coomasie staining and after 

western blot (see section 2.6.3) by using anti-MBP monoclonal antibody (New England 

BioLabs) and antiFGF23207-222 polyclonal antibody (see table 8).  

 
2.8.2 Expression in an eukaryotic system 
 
The transfer of DNA into eukaryotic cells was accomplished with a stable transfection 

approach to establish clonal cell lines in which the transfected target gene is integrated into 

chromosomal DNA, from where it directs the synthesis of the target protein.  
 
Human embryonic kidney cells (HEK293) were maintained on cell culture medium. Cells 

were stable transfected with empty pcDNA3.1 vector or vector expressing native FGF23, 

tagged FGF23 (FLAG/FGF23 and FGF23/His), mutant FGF23 (FGF23-R176Q, FGF23-

R179Q and FGF23-S71G), as well as native PHEX, His-tagged PHEX and secPHEX 

recombinant proteins using EffecteneTM tranfection reagent (QIAGEN, GmbH). This is a 

lipid-mediated transfection method (Felgner et al. 1994), based on the formation of 

artificial membrane vesicles (liposomes) that bind DNA molecules. The resulting 

liposomes adhere to and fuse with the negatively charged cell membrane. Following 

selection with 1000 µg/ml G418 (Calbiochem, GmbH) during four weeks, single colonies 

were plated in 24-well plates. When colonies had grown, they were transferred to culture 

flasks and the G418 concentration was reduced to 100 µg/ml. Integration and expression of 

the plasmid was examined by multiplex RT-PCR as described in section 2.3.3.  
 
Cell culture medium: RPMI 1640 (1x) with HEPES medium, 10% FCS, 50 IU/ml 

 penicillin and 50 µg/ml streptomycin. Add 100 µg/ml G418. 
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2.9 Cell culture 

 
2.9.1 Preparation of conditioned medium 
 
Confluent cells growing into a 75 mm2 culture flask were washed once with PBS (PAA 

Laboratories, GmbH) and cultured overnight with 20 ml serum-free medium at 37°C in a 

humidified atmosphere of 5% CO2/95% air. Conditioned medium was collected and 

concentrated 1:20 with Macrosep-omega 10K concentrators (PALL Life Sciences) (4500 x 

g, 120 min, 4°C). Protein content from the conditioned medium was examined after SDS-

PAGE (12% gels for FGF23 and 7.5% gels for PHEX) by western blot analysis (see 

sections 2.6 and 2.13.1). Protein concentrations were determined using the Bradford 

protein assay (see section 2.11.2). 
 
Serum-free medium: RPMI 1640 (1x) with HEPES medium, 50 IU/ml penicillin and 

 50 µg/ml streptomycin. Add 100 µg/ml G418. 

 

2.9.2 Preparation of cells 
 
Cells growing in a culture flask were collected and washed once with PBS. After 

recovering the cells by centrifugation at 500 x g for 2 min, pellets were lysed in 300 µl to 

1000 µl of lysis buffer. A fraction of the cell lysate (100 µl) were mixed with 100 µl 5x 

Laemmli sample buffer and boiled for 5 min at 95°C. The protein content of the cells was 

examined after SDS-PAGE (12% gels for FGF23 and 7.5% gels for PHEX) by western 

blot analysis (see section 2.6). 
 
Lysis buffer: 100 mM Tris, 1% SDS  

Laemmli sample buffer: 4% SDS, 50 mM Tris/HCl pH 6.8, 10% ß-mercaptoethanol, 

 20% glycerol, 0.2% bromophenol blue 

 

2.9.3 Treatment with inhibitors 
 
2.9.3.1 Inhibition of SPCs activity 
 
HEK293 cells expressing native FGF23 were transferred into a 6-well culture plate (104 

cells/well) and cultured in cell culture medium (see section 2.8.2). Cells were washed once 

with PBS and cultured overnight with 1.5 ml serum-free medium (see section 2.9.1) in the 

presence of 0 µM, 0.13 µM, 1.3 µM, 13 µM, 26 µM and 39/52 µM concentrations of 

decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (Dec-RVKR-CMK) (BIOMOL Research 
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Laboratories), a specific inhibitor of SPC proteases. Conditioned medium was collected 

and concentrated to 100 µl using a Microsep-omega 10K concentrator (PALL Life 

Sciences) by centrifugation at 4500 x g for 30 min at 4°C. Samples were analysed by SDS-

PAGE and western blot (see section 2.6). 
 
2.9.3.2 Inhibition of secPHEX activity 
 
Different inhibitors, 1 mM EDTA, complete EDTA-plus protease inhibitor cocktail (Roche 

Diagnostics), complete EDTA-free protease inhibitor cocktail (Roche Diagnostics) or        

1 mM Dec-RVKR-CMK (BIOMOL Research Laboratories) were handled following the 

manufacturer's instructions. Reaction samples were incubated with the inhibitors 15 min at 

RT before the addition of substrates. Following substrate addition, samples were then 

incubated at 37°C for 30 min. After incubation, 3 µg of protein reaction sample were 

separated through SDS-PAGE and analysed by Silver staining (see section 2.12.2). 

 

2.9.4 Treatment with glycosidases 
 
2.9.4.1 N-glycosylation assay 
 
Protein-containing conditioned medium (3 µg) from HEK293 cells expressing native 

FGF23 and 1 µg RNase B (Sigma) as assay control were mixed with glycosidases, PNGase 

F or Endo H, according to the manufacturer’s protocol (New England BioLabs). Reaction 

mixtures were incubated for 1 h at 37°C.  
 
2.9.4.2 O-glycosylation assay 
 
Protein-containing conditioned medium (3 µg) from HEK293 cells expressing native 

FGF23 and 1 µg bovine fetuin (Sigma) as control were mixed with 4 mU neuraminidase 

type X (Sigma) in the presence of 20 mM phosphate buffer pH 6.5 and 0.2% BSA for 3 h 

at 37°C in a total volume of 25 µl. After incubation, 2 mU O-glycosidase (Roche) were 

added to the reaction mixture and further incubated for 16 h at 37°C.  
 
Reactions were stopped after incubation with 5x Laemmli sample buffer. Reaction 

products were analysed after SDS-PAGE by Coomassie staining or western blot analysis 

(see sections 2.6 and 2.12.1). 
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2.10 Protein purification 

 
2.10.1 FGF23/His purification 
 
Polyhistidine tracts bind tightly to a number of transition metals and transition metal 

chelate complexes. A protein carrying an exposed His-6 region will bind to a resin charged 

with divalent nickel ions. Contaminating proteins can be removed with appropriate 

washing, and a soluble competing chelator can then elute the protein of interest. To purify 

His-tagged FGF23, conditioned medium of HEK293 cells expressing FGF23/His protein 

was collected and concentrated 1:20 with Macrosep-omega 10K concentrators at 4°C. 

Concentrated conditioned medium was loaded onto a Ni-NTA spin column (QIAGEN) and 

FGF23/His protein was purified in a one-step procedure under native conditions by 

increasing the concentration of imidazole (20 mM – 250 mM) in the wash and elution 

buffers, following the manufacturer’s instructions (QIAGEN). Fractions were analysed 

after SDS-PAGE by Silver staining (see section 2.12.2). The fraction containing pure 

FGF23/His was dialysed against PBS. Protein concentrations were determined by the 

Bradford method (see section 2.11.2). 

 

2.11 Protein quantification 

 
2.11.1 Agilent protein assay 
 
Absolute quantification of protein from collected sample fractions after purification (see 

section 2.8.1) was performed with the help of an Agilent 2100 Bio analyser using the 

Protein 200 LabChip Kit (Agilent Technologies). The kit allows sizing and quantification 

of proteins ranging in size from 14 to 200 kDa. The Agilent 2100 Bio analyser detection is 

based on laser-induced fluorescence of an intercalating dye, which interacts with the 

protein/SDS complexes. Absolute quantification is enabled in combination with protein 

standards of known concentrations. Samples were mixed with the corresponding reagents 

following the manufacturer’s instructions and colorimetric change was read in the analyser. 

 
2.11.2 Bradford method 
 
The Bradford method (Bradford 1976) was used to quantify the concentration of proteins 

in solution. The method consists of a dye-binding assay based on the differential color 

change of the dye Coomassie Brilliant Blue G-250 in response to various concentrations of 

protein. When binding to protein occurs, the dye stabilizes from a doubly-protonated red 
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form to a unprotonated blue form so the maximum absorbance of the acidic solution of 

Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm. The Bradford assay has a 

high sensitivity (0.05 µg protein/ml). The Bio-Rad Protein Assay Kit I (Bio-Rad) was used 

for the Bradford assay following the manufacturer's instructions. 1 volume of Dye Reagent 

Concentrate was diluted with 4 volumes of ultra pure dH2O. 990 µl of the diluted reagent 

were mixed with 10 µl of the protein sample and incubated for at least 5 min at RT. 

Sample buffer (10 µl) was used as blank value. Absorption was measured at 595 nm. A 

regression curve with a protein standard (BSA, 0.1-10 mg/ml) was set up to help the 

quantification of the results.  

 

2.12 Protein staining 

 
2.12.1 Colloidal Coomassie staining 
 
The Colloidal Blue staining method described by Neuhoff (Neuhoff et al. 1988) is based 

on the colloidal properties of Coomassie Blue dyes. The free dye in solution is greatly 

reduced due to the hydrophobic effect, resulting in low background staining and high 

affinity binding of the dye to the proteins fixed in the gel, so proteins can be viewed as 

discrete blue bands. Colloidal Coomassie provides nanogram-level detection of proteins. 

The absorption of dye is approximately proportional to the amount of protein. After 

separation of the proteins by SDS-PAGE as described in section 2.6.2, gels were fixed on a 

rotating platform at low speed with 100 ml of solution A for 3 x 10 min. Following a rinse 

in solution B for 2 x 10 min, gels were incubated in solution C. After 10 min of shaking, 

2% staining solution was added and incubated overnight. To remove some possible 

background after incubation, gels were immersed in dH20 for 10 min. To make a 

permanent record, stained gels were scanned and dried as described in section 2.6.2. 
 
Solution A: 30% ethanol, 2% ortophosphoric acid in dH2O 

Solution B: 2% ortophosphoric acid in dH2O 

Solution C: 2% phosphoric acid, 18% ethanol and 15% (NH4)2SO4 in dH2O 

Staining solution: 2 g Coomassie G-250 in 100 ml hot dH2O 

 
2.12.2 Silver staining 
 
Proteins were stained with silver nitrate following a modified procedure from the originally 

devised by Sammons et al. (Sammons et al. 1981). Silver staining allows detection 
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between 0.1-1.0 ng of polypeptide in a single band. The identification of proteins by silver 

staining is based on the differential reduction of silver ions that are bound to the side 

chains of amino acids. After separation of the proteins by SDS-PAGE (see section 2.6.2), 

the gel was immersed in fixing solution for 2 x 15 min on a rotating shaker at low speed. 

Following washing with 50% ethanol for 3 x 10 min and rinsing with sensitizer for 20 sec, 

gels were incubated in the silver nitrate solution for 15 min with gentle shaking. Silver 

nitrate solution was discarded and the gel was washed with ultra pure H2O for 20 sec each. 

The gel was placed in developing solution until the stained bands of protein appeared. The 

reaction was stopped by washing the gel for 10 min in stopping solution. Stained gels were 

scanned and dried (see section 2.6.2). 
 
Fixing solution: 50% methanol, 12% acetic acid and 500 µl/l formaldehyde 

 37% ultra pure H2O 

Washing solution: 50% ethanol in ultra pure H2O 

Sensitizer: 200 mg/l Na2S2O3 in ultra pure H2O 

Silver nitrate solution: 2 g/l AgNO3, 750 µl/l formaldehyde 37% in ultra pure H2O 

Developing solution: 60 g/l Na2CO3, 5 mg/l Na2S2O3 and 500µl/l formaldehyde 

 37% in ultra pure H2O 

Stopping solution: 50% methanol, 12% acetic acid in ultra pure H2O 

 

2.12.3 Ponceau S 
 
To confirm the transfer of proteins after western blotting, the entire area of the PVDF 

membranes were stained with the removable and insensitive stain Ponceau S (Muilerman 

et al. 1982, Salinovich and Montelaro 1986). Membranes were incubated for 3 min in a 

Ponceau S (Merck) staining solution followed by 3 min fading in 50 ml fading solution. 
 
Ponceau S staining solution: 0.5 g Ponceau S, 1% acetic acid in dH2O  

Fading solution: 10% acetic acid, 50% methanol in dH2O 

 

2.13 Protein detection 

 
2.13.1 Immunoblot 
 
Proteins covalently bonded to a PVDF membrane can be detected with the help of 

antibodies. Membranes were pre-wetted in methanol and equilibrated for 5 min with 1x 
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PBS. Unreacted binding sites of the membrane were blocked in blocking solution for 1 h, 

to suppress non-specific adsorption of antibodies. After washing with 1x PBS/0.1% Tween 

20 (1 x 15 min and 2 x 5 min), immobilized proteins were incubated for 2 h with a specific 

polyclonal antibody diluted in blocking solution. Antibodies are detailed in section 1.2.4. 

Membranes were again washed and incubated with a secondary Goat Anti-rabbit IgG 

(H+L) –HRP antibody (Bio-Rad) diluted 1:5000 in blocking solution, followed by washing 

(1 x 15 min and 2 x 5 min). Incubations were performed at RT on a rotator shaker. 

Antigen-antibody complexes were viewed by chemiluminescent reactions with ECL plus 

reagent (Amersham Biosciences) following the manufacturer's instructions and signals 

were developed with a WicoRex X-Ray film (Typon Medical Systems). 
 
10x PBS: 80 g NaCl, 2 g KCl, 14.4 g Na2HPO4, 2.4 g KH2PO4 add dH2O 

 to 1 l. Adjust pH to 7.4 with HCl and autoclave 

Blocking solution: 0.5% low-fat dry milk in 1 x PBS, 0.1% Tween 20  

Washing solution: 1 x PBS, 0.1% Tween 20 

 

2.13.2 Immunocytochemistry  
 
HEK293 cells stable expressing mutant FGF23-S71G protein, native FGF23, and control 

HEK293 cells were cultured in culture medium (see section 2.8.2) on coated 8 chamber 

slides (Nunc) for 48 h. Cells were fixed in 4% paraformaldehyd for 15 min at room 

temperature, washed with PBS and permeabilized for 30 min followed by blocking for 30 

min at 37°C. The primary antibody antiFGF23148-163 against an N-terminal peptide was 

diluted to a concentration of 2.5 µg/ml, anti-calnexin [AF18] (Abcam), anti-Lamp1 

[LY1C6] (Abcam) antibodies, monoclonal antibody against human mitochondria 

(Chemicon), and wheat germ agglutinin (WGA) Alexa Fluor 594 conjugate (Molecular 

Probes) were diluted in the blocking solution as recommended by the manufacturer and 

incubated for 1 h at 37°C. Slides were washed in PBS, 0.1% Igepal 3 times for 10 min. The 

same incubation and washing procedures were used for the secondary antibodies anti-

rabbit Alexa fluor 350 nm and anti-mouse Alexa fluor 568 nm (Invitrogen) diluted 1:1000 

in the blocking solution. Preparations were viewed using an ApoTome Microscope (Zeiss) 

and images were processed by using the AxioVision LE software (see section 3.2). 

 
2.13.3 Enzyme-Linked Immunosorbent Assay (ELISA) 
 
Determination of human FGF23 levels in plasma were measured by using a 2-site enzyme-
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linked immunosorbent assay (Immutopics). The assay is based on the detection of FGF23 

by binding to two antibodies directed against epitopes within the carboxyl terminal portion 

of FGF23. One antibody is immobilized onto a microtiter plate well to capture FGF23, and 

the second antibody conjugated to biotin is used to generate a signal with avidin-

horseradish peroxidase. The enzymatic activity of the antibody bound to the protein is 

directly proportional to the amount of intact FGF23 in the sample. 
 
Plasma was obtained after centrifugation (2500 x g for 10 min at RT) and separation of    

10 ml EDTA-blood. Assay procedure was performed following the manufacturer’s 

instructions. Absorbance was measured in a Synergy HT Multi Detection Microplate 

Reader (Synergy).  

 

3. DATABASES AND COMPUTER PROGRAMMS 

 
3.1 Databases  

 
GenBank http://www.ncbi.nlm.nih.gov/Genbank/index.html 
NCBI http://www.ncbi.nlm.nih.gov/  
OMIM http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM&cmd=Limits 
PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi  
Swiss-Prot http://us.expasy.org/sprot/ 
 

3.2 Analysis tools and software packages 

 
ExPASy http://www.expasy.org/ 
Genome Browser http://genome.ucsc.edu/ 
ImageJ Quantification http://rsb.info.nih.gov/ij 
AxioVision LE http://www.zeiss.de/ 
Exon Primer at the Genome Browser web page 
PeptideMass at the ExPASy web page 
Tblastn at the NCBI web page 
Genewise at the NCBI web page 
Staden MCR Laboratory of Molecular Biology, Cambridge, UK 
ClustalWHUSAR Heidelberg Unix Sequence Analysis Resources 
PrettyboxHUSAR Heidelberg Unix Sequence Analysis Resources, DKFZ, 
 Heidelberg, Germany
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C. RESULTS 
 

1. CHARACTERIZATION OF THE FGF23 PROTEIN 

 
1.1 Description of the FGF23 amino acid sequence 
 
The complete human FGF23 cDNA consists of 756 nucleotides that encode an 

unprocessed precursor protein of 251 amino acids (Fig. 7). Residues 1 through 24 serve as 

signal peptide that allows efficient secretion of the mature protein. The unprocessed 

precursor protein is predicted to have a molecular weight of 27.9 kDa (Swiss-Prot 

accession number Q9GZV9). 

 
Fig. 7. Nucleotide and amino acid sequence of the FGF23 gene. Numbers on the left side indicate the 
nucleotide position and on the right side the amino acid position. Amino acids coding for the signal peptide 
are shown in bold. Mutated FGF23 amino acids causing ADHR and FTC are indicated with an asterisk (*). 
Polyclonal antibodies (antiFGF2348-67, antiFGF23148-163, antiFGF23173-187 and antiFGF23207-222) directed 
against underlined peptides were designed and generated in rabbits. 
 
 

1       ATG  TTG  GGG GCC  CGC  CTC  AGG  CTC  TGG  GTC  TGT  GCC  TTG  TGC  AGC  GTC  TGC  AGC  ATG  AGC GTC CTC AGA
M      L      G         A       R        L       R       L       W      V       C       A       L       C       S        V       C        S       M       S      V       L     R 23

70     GCC  TAT  CCC  AAT  GCC  TCC  CCA  CTG  CTC  GGC  TCC  AGC  TGG  GGT  GGC  CTG  ATC  CAC  CTG  TAC  ACA  GCC  ACA
A Y       P        N       A       S        P        L      L       G        S        S       W       G       G        L  I        H        L       Y       T        A        T     46  

139     GCC  AGG  AAC  AGC  TAC  CAC  CTG  CAG  ATC  CAC  AAG  AAT  GGC  CAT  GTG  GAT  GGC  GCA  CCC  CAT  CAG  ACC  ATC  
A        R       N        S       Y        H       L        Q        I   H        K       N        G       H       V        D       G        A       P        H       Q T        I        69

antiFGF2348-67 antibody

208       TAC  AGT  GCC  CTG  ATG  ATC  AGA  TCA  GAG  GAT  GCT GGC  TTT  GTG  GTG  ATT  ACA  GGT  GTG  ATG  AGC  AGA  AGA  
Y         S A       L        M       I        R        S        E    D       A       G        F       V       V         I        T       G        V       M       S        R        R       92

*
277       TAC  CTC  TGC  ATG  GAT  TTC  AGA  GGC  AAC  ATT  TTT GGA  TCA  AAC  TAT  TTC  GAC  CCG  GAG  AAC  TGC  AGG  TTC

Y        L       C        M      D       F       R        G        N        I       F       G        S        H Y       F        D        P       E         N       C     R       F        115

346      CAA  CAC  CAG  ACG  CTG  GAA  AAC  GGG  TAC  GAC  GTC  TAC  CAC  TCT  CCT  CAG  TAT  CAC  TTC  CTG  GTC  AGT  CTG  
Q       H        Q        T       L        E     N        G       Y       D        V       Y       H        S P        Q       Y       H       F       L        V       S        L       138

415      GGC  CGG  GCG  AAG  AGA  GCC  TTC  CTG  CCA  GGC  ATG  AAC  CCA  CCC  CCG  TAC  TCC  CAG  TTC  CTG  TCC  CGG  AGG      
G        R       A        K        R        A    F        L        P        G       M       N        P        P        P       Y        S   Q       F        L        S       R        R 161

antiFGF23148-163 antibody

484      AAC  GAG  ATC  CCC  CTA  ATT  CAC  TTC  AAC  ACC  CCC  ATA  CCA  CGG  CGG  CAC  ACC  CGG  AGC  GCC  GAG  GAC  GAC  
N        E I        P        L        I        H       F        N  T        P        I        P        R        R H        T       R S        A       E        D        D 184

*                             *   antiFGF23173-187 antibody

553      TCG  GAG  CGG  GAC  CCC  CTG  AAC  GTG  CTG  AAG  CCC  CGG  GCC  CGG  ATG  ACC  CCG  GCC  CCG  GCC  TCC  TGT  TCA 
S        E        R D        P        L        N       V       L        K    P        R       A       R         M       T       P        A        P       A        S       C       S 207

622     CAG  GAG  CTC  CCG  AGC  GCC  GAG  GAC  AAC  AGC  CCG  ATG  GGC  AGT  GAC  CCA  TTA  GGG  GTG  GTC  AGG  GGC  GGT  
Q       E         L       P         S       A        E       D  N        S        P        M       A        S       D P        L       G        V       V        R       G    G     230

antiFGF23207-222 antibody

691    CGA  GTG  AAC  ACG  CAC  GCT  GGG  GGA  ACG  GGC  CCG  GAA  GGC  TGC  CGC  CCC  TTC  GCC  AAG  TTC  ATC  TAG
R        V       N        T       H        A      G        G        T        G        P       E        G       C R        P       F        A       K        F        I    *                 251
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All human FGF paraloges share a 12-stranded ß-sheet structure. The ß-sheets are arranged 

in 3 similar lobes around a central axis forming an anti-parallel ß-barrel (Harmer et al. 

2004). The ß-sheets are generally well preserved and the crystal structures superimpose in 

these areas. The intervening loops are less well conserved. An overview of the FGF2 

structure is shown in the introduction (Fig. 4). FGF23 shares 25-36% amino acid identity 

with the other members of the FGF family in the common core sequence and is most 

closely related to FGF15, FGF19 and FGF21. With 251 amino acids, FGF23 is, as yet, the 

largest FGF, characterized by a large carboxy-terminal part of the protein.  
 
In order to show the FGF23 evolutionary conservation, alignment of FGF23 from several 

vertebrate species was generated using ClustalW and Prettybox. The FGF23 sequence was 

determined in Tetraodon nigroviridis, and Danio rerio by nested RT-PCR or in Gallus 

gallus, Xenopus tropicalis, and Fugu rubripes by prediction from the corresponding draft 

genome assemblies using tblastn and Genewise. Homo sapiens (AAG09917), Mus 

musculus (AAG09916), and Rattus norvegicus (BAB84108) FGF23 sequences were 

obtained from GenBank.  
 
Alignment of the sequences showed high conservation within the N-terminal ß-barrel 

structure and considerably lower homology within the C-terminal part (Fig. 8). Mutations 

at two arginine residues (p.R176 and p.R179) cause ADHR and at a serine (p.S71) cause 

FTC. These residues are conserved in all species investigated except for p.R179 which is 

not conserved in Fugu rubripes (Fig. 8). The two arginines, separated by only two amino 

acids (176RHTR179), define a potential subtilisin-like proprotein convertase (SPC) 

consensus cleavage site (RXXR motif). Interestingly, within the peptide fragment C-

terminal of the proprotein convertase cleavage site, the homology is divergent among 

classes and only highly conserved within mammals and fish. Of note, the Xenopus 

tropicalis genome assembly (version 2) contained a second FGF23 homologous sequence 

(56% identity, 70% similarity) missing the proprotein convertase cleavage site (RXXR). 

According to a three-dimensional protein structure of FGF23 generated by modeling the 

protein sequence onto the superimposed crystal structure of FGFs (Harmer et al. 2004), 

serine 71 (p.S71) is situated at the end of the loop between strand 3 and 4 of the ß-barrel 

structure. Arginine 176 and 179 (p.R176, p.R179) are located outside of the conserved ß-

barrel structure and could not be modeled. 
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Fig. 8. Amino acid sequence alignment of FGF23. Human (AAG09917), mouse (AAG09916), rat 
(BAB84108), chicken, Xenopus tropicalis, Fugu rubripes, Tetraodon nigroviridis, and Danio rerio Fgf23 
alignment was generated with ClustalW and Prettybox. Black and grey shadings represent identical and 
similar residues, respectively. The 12 ß-strands that determine the core sequence are underlined. Within the 
N-terminal ß-barrel structure the conservation is high between all species. Within the peptide fragment C-
terminal of the proprotein convertase cleavage site, the homology is divergent among classes and only highly 
conserved among mammals and fishes. The p.S71 and the p.R176 sites (red) at which the p.S71G and 
p.R176Q mutations occurred are conserved in all species investigated. The p.R179 site (red) at which the 
p.R179Q or p.R179W mutations occurred is not conserved in Fugu rubripes. The signal peptide cleavage site 
is indicated by 'SP', the cysteines building a disulfide bond by 'C', and the proprotein convertase cleavage 
motif by a red bold line.  
 
 
1.1.1 Expression analysis of FGF23 in human and mouse tissues 
 
Total RNA was extracted from several human and mouse tissues or cell lines followed by 

reverse transcription to cDNA. All cDNA samples were checked by amplification with 

primers for the housekeeping gene GAPDH in order to confirm successful reverse 

transcription.  
 
Nested RT-PCR analysis of RNA from human tissues with intron-spanning primers 

revealed an amplified FGF23 product in human whole fetus, heart, liver, 

thyroid/parathyroid, small intestine, testis, skeletal muscle, differentiated chondrocytes and 
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TIO tumor tissue. Fetal brain, fetal kidney, lung, brain, kidney, human osteosarcoma cells 

(SaOS), human embryonic 293 kidney cells (HEK293), prostate cancer cells (PC3), and 

human microvascular endothelial cells (HMEC-1) were negative. In mice, nested RT-PCR 

was positive in day 17 mouse embryo and spleen, but not in 12.5 mouse embryo, primary 

bone cell cultures from calvaria, limb bud cells, mouse osteoblastic cell line (MC3T3) and 

stimulated adult chondrocytes. Results are summarized in table 10. 
 
 
Tab. 10. FGF23 nested RT-PCR in human and mouse tissues and cell lines. 

 

1.2 FGF23 expression in E.coli 

 
1.2.1 Generation of a prokaryotic FGF23 expression construct 
 
A bacterial expression system was used to produce large amounts of FGF23 protein. The 

amplified FGF23-cDNA insert corresponding to amino acids 25-251 (EcoRI/BamHI) was 

directionally cloned into the pMAL-c2 expression vector. The pMAL-c2 vector encodes 

maltose-binding protein (MBP) followed by a polylinker sequence, serving as consensus 

cleavage site (IEGR) for a specific protease (Factor Xa) (Fig. 9). This construct results in 

the expression of a soluble N-terminal MBP-fusion protein with the possibility to release 

RT-PCR human RT-PCR mauseFGF23 Fgf 23

Whole fetus
Fetal brain
Fetal Kidney
Brain
Heart
Small intestine
Kidney
Liver
Testis
Lung 
Skeletal muscle
Thyroid/parathyroid
TIO tumor tissue
Chondrocytes differentiated
Chondrocytes not differentiated
PC3 prostate cancer cells
HEK293 embryonic kidney cells
HMEC-1 endothelial cells
SaOS osteosarcoma cells

yes
no
no
no
yes
yes
no
yes
yes
no
yes
yes
yes
yes
no
no
no
no
no

Embryo 12.5 days
Embryo 17 days
Limb bud cells
Chondrocytes adult
Bone calvaria
MC3T3 osteoblasts
Spleen

no
yes
no
no
no
no
yes
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the target protein from MBP by proteolytic cleavage after specific affinity chromatography 

purification. 
 

 

Fig. 9. MBP/FGF23 construct. Schematic representation of recombinant MBP/FGF23 fusion protein. Boxes 
represent recombinant MBP and FGF23 proteins linked by the consensus cleavage IEGR sequence (red). 
Numbers under the boxes indicate the amino acids constituting each protein. Numbers on the horizontal 
arrows indicate the molecular weight of MBP, FGF23 and MBP/FGF23 fusion protein calculated using the 
PeptideMass tool from the ExPASy proteomics server. 
 
 
1.2.2 FGF23 expression and purification 
 
E.coli XL-1 blue cells transformed with the FGF23pMAL construct were cultured and 

induced with IPTG to produce high amounts of MPB/FGF23 fusion protein. An aliquot of 

cells was collected before and after induction. Cells were lysed and 5 µl of protein-

containing cells were run through SDS-PAGE and stained with Coomassie. Results 

indicate that induced bacterial cells produced more fusion protein when compared with 

uninduced cells (Fig. 10 A).  

 
Fig. 10. MBP/FGF23 expression in E.coli. (A) Protein contained in bacterial cell lysate (5 µl) from 
FGF23pMAL transformed E.coli cells before and after induction with IPTG and (B) elution fractions (5 µl) 
from MBP/FGF23 affinity chromatography purification were analysed with Coomassie staining after 12% 
SDS-PAGE. A more intensive band around 67 kDa appeared after IPTG induction (induced). Purified protein 
mainly eluted between fractions 3 to 7 (lanes 3-7). (C) Protein (5µl) from elution fraction 5 and control 
elution were separated trough 12% SDS-PAGE and analysed by western blot using anti-MBP or 
antiFGF23207-222 antibodies. An immunoreactive band around 67 kDa was observed in the elution fraction 5 
(lanes 2 and 4) whereas the control elution was negative (lanes 1 and 3). Molecular mass markers are 
indicated to the left. 
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Purification of MBP/FGF23 was performed by affinity chromatography through an 

amylose resin column. Bound material was eluted with maltose buffer and collected in 10 

separated fractions. A major band of approximately 67 kDa, which corresponded to the 

expected molecular size of MBP/FGF23, mainly eluted between fractions 3 to 7. A 

Coomassie stained SDS-PAGE monitoring the 10-elution fractions is given in figure 10 B. 
 
Protein-containing fraction 5 was analysed by western blot using specific anti-MBP and 

antiFGF23207-222 antibodies and compared to control eluate. A prominent band was 

detected with both antibodies only in the eluate from E.coli cells transformed with 

MBP/FGF23. These results confirmed that the 67 kDa band observed with Coomassie 

staining was in fact MBP/FGF23 fusion protein (Fig. 10 C).  
 
To quantify the amount of MBP/FGF23 present in the 10-elution fractions, protein samples 

were analysed with the help of an Agilent bioanalyser (Fig. 11). Absolute quantification 

yielded a MBP/FGF23 concentration of 29.4 µg/ml in fraction 3, 64 µg/ml in fraction 4, 

94.4 µg/ml in fraction 5, 72.9 µg/ml in fraction 6, and 23.1 µg/ml in fraction 7. 

 

 
Fig. 11. MBP/FGF23 quantification. Absolute quantification of the 10-elution fractions (lanes 1 – 10) from 
MBP/FGF23 purification performed in an Agilent bioanalyser using a Protein 200 kit. Concentrations 
(µg/ml) are indicated at the bottom of the figure. Molecular masses of the ladder (L) are indicated to the left. 
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To separate MBP from FGF23, 1 µg of pure MPB/FGF23 fusion protein was incubated 

with 10 ng Factor Xa for 8 and 24 hours at RT. After incubation, proteins were separated 

through 12% SDS-PAGE and visualized with Coomassie staining. Western blot analysis 

was also performed using antiFGF23207-222 antibody. Peptides of molecular weights around 

24 kDa for FGF23 and 43 kDa for MBP were expected after complete separation of 

MBP/FGF23 (see Fig. 9). However, a major 67 kDa band in addition to several minor 

bands around 30, 40, 49 and 62 kDa were detected after incubation with Factor Xa. The 

prominent MBP/FGF23 band (67 kDa) corresponded in size with the band of the fusion 

protein before incubation (Fig. 12). The same results were obtained when the incubation 

was conducted at 4°C. These results indicate incomplete and unspecific MBP/FGF23 

proteolytic cleavage by Factor Xa. Presumably, inadequate three-dimensional 

conformation of the fusion protein prevented efficient cleavage by Factor Xa. 

 
 
1.3 FGF23 expression in mammalian cells 

 
1.3.1 Generation of recombinant tagged and untagged FGF23 constructs 
 
To study the expression of the FGF23 protein in mammalian HEK293 cells, recombinant 

tagged and untagged FGF23 fusion constructs were created. The untagged FGF23 plasmid 

was constructed by cloning the full-length FGF23 cDNA (HindIII/EcoRI) into the 

pcDNA3.1 expression vector (Fig. 13). To construct the C-terminal myc-His-tagged 

FGF23 plasmid stop codon at position c.754 was removed and the modified insert 

(EcoRI/XbaI) was cloned after PCR amplification into the pcDNA3.1/myc-His expression 

vector. The construct pcDNA/FGF23/His contained an in frame myc epitope (residues 

EQKLISEEDL) and a polyhistidine tag (residues HHHHHH) followed by an artificial stop 

codon, at the C-terminus of the FGF23 coding sequence (Fig. 13). Finally, a FLAG-tagged 

0 h 8 h 24 h
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-64
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Fig. 12. MBP/FGF23 cleavage by Factor Xa. Western blot 
analysis with antiFGF23207-222 antibody was performed after 
12% SDS-PAGE loaded with 1 µg pure MBP/FGF23 protein 
before incubation (0 h) and after 8 hours (8 h) or 24 hours (24 
h) incubation with 10 ng Factor Xa. Appearance of several 
bands in addition to incomplete cleavage of MBP/FGF23 
occurred after 8 hours and 24 hours incubation. The 
MBP/FGF23 band (67 kDa) remained intact in the control lane 
(0 h). Molecular mass markers are indicated to the left.
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FGF23 construct (pFLAG/CMV/FGF23) was provided by Michael J. Econs (Indiana 

University School of Medicine, Indianapolis). FGF23 insert (EcoRI/BamHI) was 

directionally ligated into the pFLAG-CMV-3 expression vector (Sigma-Aldrich), which 

uses the preprotrypsin leader sequence to allow secretion of N-terminal FLAG tagged 

(residues DYKDDDDK) fusion proteins (Fig. 13). Molecular masses were predicted using 

the PeptideMass tool (ExPASy proteomics server). 

 

 
1.3.2 Expression of tagged and untagged FGF23 in HEK293 cells and polyclonal 
antibody assessment 
 
To determine whether the signal peptide encoded in the first 24 FGF23 residues is 

functional and FGF23 is indeed a secreted protein, FGF23 was expressed in HEK293 cells 

and its presence was determined both in cell lysate and in conditioned medium. 

Mammalian HEK293 cells were stable transfected with native FGF23 (pcDNA/FGF23), 

FLAG-tagged FGF23 (pFLAG/CMV/FGF23) and His-tagged FGF23 

Fig. 13. FGF23 recombinant 
proteins. Schematic representation 
of native FGF23 (A), myc-His-
tagged FGF23 (FGF23/His) (B) and 
FLAG-tagged FGF23 
(FLAG/FGF23) (C) recombinant 
proteins.  Hatched boxes represent 
the signal peptide (SP) and the 
preprotrypsin leader sequence (P). 
Relative tag position (myc-His or 
FLAG) is indicated into the gray  
boxes. Amino acids mutated in 
ADHR or FTC are in bold. Vertical 
arrows represent SPC cleavage at the 
RHTR motif site  (black box). 
Numbers on the horizontal arrows 
indicate the predicted molecular 
mass (kDa) of intact FGF23, as well 
as N- and C-terminal fragments.
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(pcDNA/FGF23/His) plasmids. Conditioned medium was collected and concentrated 1:20 

and cell pellets were suspended in lysis buffer. FGF23/His from conditioned medium was 

further purified via a NiNTA-agarose column. Protein elution was performed under native 

conditions with an imidazol gradient buffer to avoid denaturation of the protein structure.  
 
Affinity purified polyclonal antibodies to FGF23 were generated in rabbits (Eurogentec). 

The antibodies were directed against peptides within the N-terminal (antiFGF2348-67 and 

antiFGF23148-163) and the C-terminal parts (antiFGF23173-187 and antiFGF23207-222) which 

are indicated in figure 7. To assess the specificity of the anti-FGF23 polyclonal antibodies, 

western blot analysis was performed in conditioned medium and total cellular lysate using 

antiFGF2348-67 (Fig. 14 A) and antiFGF23173-187 (Fig. 14 B). Untransfected HEK293 cells 

were used as controls.  
 

 
Fig. 14. Expression of FGF23 in HEK293 cells. Protein (10 µg of cell lysate and 3 µg of concentrated 
conditioned medium) from native FGF23-expressing HEK293 cells as well as HEK293 control cells were 
previously separated on 12% SDS-PAGE and western blot analysis was performed with antiFGF2348-67 (A) 
and antiFGF23173-187 (B) antibodies. A band of 30 kDa was detected with both antibodies and two additional 
bands of 18 and 12 kDa were detected with antiFGF2348-67 or antiFGF23173-187 respectively in the conditioned 
medium. Control cells and cell lysates were negative. Molecular mass markers are indicated to the right. 
 

 

In the conditioned medium of cells expressing native FGF23, a 30 kDa band corresponding 

to intact FGF2325-251 protein was detected with both antibodies. In addition, two smaller 

bands around 18 and 12 kDa were detected with antiFGF2348-67 or antiFGF23173-187 

antibodies respectively, which were supposed to be N- and C-terminal FGF23 breakdown 

products. No immunoreactive bands were detected in the cell lysate.  
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The same bands were detected in the conditioned medium from HEK293 cells expressing 

FLAG/FGF23 and FGF23/His when analysed with anti-His (C-term)-HRP or anti-FLAG 

M2-HRP antibodies (Fig. 15). The FGF23/His and FLAG/FGF23 species migrate at a 

different rate because of the additional residues from the tags. These results confirm that 

FGF23 is a secreted peptide and that the smaller bands detected in the conditioned medium 

indeed correspond to N- and C-terminal FGF23 fragments, probably due to a partial 

processing of intact FGF23 during its biosynthesis in HEK293 cells. Pre-immune serum 

failed to detect a protein in all experiments. These results also provide evidence that the 

polyclonal affinity-purified anti-FGF23 antibodies specifically recognize the human 

FGF23 protein.  

 
 
Fig. 15. Analysis of tagged FGF23 in HEK293 cells. Western blot analysis with anti-His (C-term)-HRP (A) 
and anti-FLAG M2-HRP (B) antibodies performed after separation on 12% SDS-PAGE of 3 µg protein of 
concentrated conditioned medium from HEK293 cells expressing FLAG/FGF23 (A), FGF23/His (B) and 
control cells. A band around 32 kDa was recognized with both antibodies. Two additional bands around 20 
and 15 kDa were recognized with anti-FLAG M2-HRP or anti-His (C-term)-HRP antibodies respectively. 
Molecular mass markers are indicated to the right. 
 
 
1.3.3 Quantification of the FGF23 fraction in the conditioned medium 

 
Total protein concentration in the conditioned medium after concentration was between 0.5 

and 0.9 µg/µl. To analyse how much of the protein fraction was constituted from FGF23, 

conditioned medium and purified FGF23/His were quantified by image analysis of 

Coomassie stained SDS-PAGE with the help of the ImageJ Quantification software. 

Results yielded an FGF23/total protein ratio of 4% (Fig. 16). 
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Fig. 16. FGF23 quantification in the conditioned medium. (A) Silver and (B) Coomassie-stained 12% 
SDS-PAGE of protein (3 µg) of conditioned medium from FGF23/His-expressing HEK293 cells and control 
cells. Affinity purified FGF23/His protein (300 ng) was analysed with mass spectrometry. Quantification by 
image analysis of the Coomassie-stained SDS-PAGE yielded an FGF23/total protein ratio of 4%. Molecular 
mass markers are indicated to the right. 
 

1.4 Protein characterization 

 

1.4.1 Stability of native FGF23 
 
The stability of FGF23 in the conditioned medium from FGF23 expressing-HEK293 cells 

was analysed in order to prove that the smaller FGF23 fragments are indeed products from 

a specific cleavage and not from unspecific degradation due to the presence of proteases in 

the conditioned medium. 
 
Protein-containing conditioned medium of HEK293 cells expressing FGF23/His was 

collected and incubated without protease inhibitors at 37°C for 2 h or at RT for 2, 8 and 24 

hours. Conditioned medium was then concentrated and 3 µg protein was separated by 

SDS-PAGE. Western blot analysis using antiFGF23173-187 revealed two immunoreactive 

bands of 32 and 14 kDa corresponding to intact FGF2325-251 and the C-terminal FGF23180-

251 fragment, which did not present any signs of degradation after incubation (Fig. 17).  
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1.4.2 Intracellular versus extracellular cleavage of native FGF23 
 
To determine whether the cleavage of FGF23 in HEK293 cells observed in vitro was an 

intra- or extracellular process, conditioned medium from HEK293 cells stable transfected 

with FGF23 was incubated with control HEK293 cells not expressing FGF23 for 24 h at 

37°C and 5% CO2. After incubation, the medium was collected, concentrated and 

subjected to western blot analysis using antiFGF23173-187. There was no change in the ratio 

of the 30 kDa band to the 12 kDa band regardless of the treatment of the conditioned 

medium (Fig. 18), indicating that FGF23 cleavage occurred intracellularly, either before or 

during cellular secretion, and not by extracellular proteases expressed by HEK293 cells. 

 

1.4.3 Glycosylation of native FGF23 
 
Carbohydrates in the form of asparagines-linked (N-linked) or serine/threonine-linked (O-

linked) oligosaccharides are major structural components of many eukaryotic proteins. N-

linked oligosaccharides may contribute 3.5 kDa or more per structure to the mass of a 

glycoprotein. O-linked sugars, although usually less massive than N-linked structures, may 
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Fig. 17. FGF23 stability. Protein-containing 
conditioned medium from HEK293 cells 
expressing FGF23/His were incubated at 37 °C for 
2 h or at RT for 2, 8, and 24 h. Following 
concentration, 3 µg proteins was separated through 
12% SDS-PAGE and western blot analysis was 
performed using antiFGF23173-187. The two bands 
around 32 and 14 kDa corresponding to intact 
FGF2325-251/His and the C-terminal FGF23/His 
fragment remained stable during the whole 
incubation. Molecular mass markers are indicated 
to the right.
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be more numerous. The diversity of oligosaccharide structures often results in 

heterogeneity in the mass and charge of glycoproteins. 
 
To characterize the glycosylation state of FGF23, conditioned medium of HEK293 cells 

expressing native FGF23 was submitted to deglycosylation by PNGase F or endo H to 

remove N-linked carbohydrates and neuraminidase type X followed by O-glycosidase 

treatment to remove O-linked carbohydrates. RNase B and bovine fetuin were used as 

positive controls in the N-deglycosylation and O-deglycosylation assays respectively. 
 
Western blot analysis with antiFGF2348-67 or antiFGF23173-187 antibodies revealed that 

FGF23 was not sensitive to PNGase F or Endo H digestion (Fig. 19).  

 

 
Fig. 19. Treatment of native FGF23 with N-deglycosidases. (A) Protein-containing conditioned medium (2 
µg) of FGF23 expressing-HEK293 cells was treated with 1 U PNGase F or Endo H for 1 h at 37°C to remove 
N-linked oligosaccharides. Samples were visualized after separation through 12% SDS-PAGE by western 
blot analysis using antiFGF23173-187 antibody. (B) 1 µg RNase B was used as internal control and visualized 
by Coomassie staining of 12% SDS-PAGE. No difference in the mobility of native FGF23 was observed 
before and after treatment. Molecular mass markers are indicated to the right. 

 

In contrast, neuraminidase and O-glycosidase treatment revealed that intact FGF2325-251 

(30 kDa) and both N-terminal (18 kDa) and C-terminal (12 kDa) fragments were O-

glycosylated, since their electrophoretic mobility increased after digestion (Fig. 20). The 

double band of 18 kDa corresponding to the N-terminal FGF23 fragment turned into a 

single band after treatment with glycosidases which indicates heterogeneity in the 

glycosylation state of this fragment (Fig. 20 A). Monitoring of RNase B and bovine fetuin 

with Coomassie stain after SDS-PAGE showed a noticeable increase in mobility of both 

enzymes after deglycosylation (Fig. 19 B and 20 B). 
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Fig. 20. Treatment of native FGF23 with O-glycosidases. (A) Protein-containing conditioned medium (2 
µg) of FGF23 expressing-HEK293 cells was treated with 4 mU neuraminidase type X for 3 h at 37°C 
followed by 2 mU O-glycosidase for 16 h at 37°C. Samples were separated by 12% SDS-PAGE and 
visualized by western blot analysis using antiFGF2348-67 or antiFGF23173-187 antibodies. (B) 1 µg bovine 
fetuin as internal control was treated under the same conditions and viewed by Coomassie staining of 12% 
SDS-PAGE. Native FGF23 mobility increased after neuraminidase followed by O-glycosidase treatment. 
Molecular mass markers are indicated to the right. 

 
1.4.4 Purification of FGF23/His and mass spectrometry analysis 
 
His-tagged FGF23 present in the conditioned medium of HEK293 cells was purified after 

concentration by a Ni-NTA agarose spin column under native conditions. The fraction 

containing pure FGF23/His was dialyzed against PBS and proteins were separated through 

12% SDS-PAGE and silver stained (Fig. 16). The 32 kDa and 14 kDa fragments were 

excised from the gel and digested with trypsin in situ. The tryptic peptides were extracted 

from the gel slices and analysed by mass spectrometry. The mass spectrometry analysis 

was performed by Hans Zischka (Institute of Human Genetics, GSF Neuherberg).  

 

Figure 21 shows the MALDI-TOF spectrum of the 14 kDa protein fragment. Four tryptic 

peptides with masses of 918.51, 1450.75, 1855.82, and 1941.91 Da matched to the human 

C-terminal FGF23 sequence with 48% coverage. Insufficient data were obtained to identify 

the 32 kDa protein by MALDI-TOF. 
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Fig. 21 Mass spectrometric analysis of the FGF23/His C-terminal fragment. FGF23/His was affinity 
purified and separated by SDS-PAGE. The 14 kDa band was subjected to gel digestion with trypsin, and the 
extracted peptides were analysed by MALDI-TOF. Four peptide masses (918.51, 1450.75, 1855.82, and 
1941.91) matched the human FGF23 C-terminal fragment with 48% sequence coverage. T indicates tryptic 
peptides derived from trypsin and ACTH was used as internal control. Molecular masses are given in Daltons 
(Da). The C-terminal FGF23 sequence starting at amino acid position 180 is shown in the upper part of the 
figure. Tryptic peptides obtained from the mass spectrometric analysis are indicated in black, (^) indicates 
trypsin cleavage sites. 
 
 
2. CHARACTERIZATION OF FGF23 MUTANT PROTEINS 
 
2.1 Mutation analysis in FTC 
 
In previous studies, the ADHR Consortium (The ADHR Consortium, 2000) identified the 

FGF23 gene as causative factor for autosomal dominant hypophosphatemic rickets 

(ADHR) by a positional cloning approach (see introduction 2.2.1). Mutations affecting two 

argenines, p.R176Q (c.527G>A), p.R179W (c.535C>T) and p.R179Q (c.536G>A), were 

found in four families that showed a male-to-male transmission of the trait and clinical 

features compatible with ADHR (Tab. 11). 
 
In the present study, a mutation analysis was performed in two families with Austrian 

(family 1) and Spanish (family 2) origin that presented the clinical features of familial 
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tumoral calcinosis (FTC) with hyperphosphatemia (see introduction 3.1). FTC is inherited 

in an autosomal recessive mode. Biallelic mutations in the GALNT3 gene have been 

described in two large families as the cause of FTC (Topaz et al. 2004). Therefore, 

GALNT3 was considered as the first candidate gene for mutation screening. 

 
Tab. 11. Mutations found in FGF23 and GALNT3 genes as causative factors for ADHR and FTC. 

 

Using genomic DNA and balanced primer pairs, the ten GALNT3 coding exons were 

screened for pathogenic mutations in all members of the Austrian (family 1) and Spanish 

(family 2) families. A homozygous missense mutation (c.985G>A) in exon 4 resulting in 

the amino acid substitution glycine to arginine (p.G329R) was found in the two affected 

individuals (mother and son) from family 2. The same homozygous mutation was found in 

the healthy daughter. The father was heterozygous and the mutation was not found in 1250 

sequenced control alleles (Fig. 22 B). In contrast, no mutation was found in the patient 

from family 1. 
 
After exclusion of GALNT3 mutations in the affected individual from family 1, direct 

sequencing of the three FGF23 exons identified a homozygous missense mutation 

(c.211A>G) at the last nucleotide of the first exon. This finding constitutes the first 

description of a FGF23 mutation in this condition and demonstrates allelic heterogeneity of 

the disease. The mutation c.211A>G leads to a missense mutation replacing a serine by a 

glycine (p.S71G). The parents and one sister were heterozygous for the mutation (Fig. 22 

A), which was not found in 256 control alleles sequenced previously by the ADHR 

Consortium in the year 2000. I concluded that the novel FGF23 mutation c.211A>G and 

GALNT3 mutation c.985G>A were causative for the autosomal recessive transmission of 

FTC in these families. 

Disease         Gene            Mutation          Amino acid    

ADHR FGF23 c.527G>A p.R176Q

ADHR FGF23 c.535C>T p.R179W

ADHR FGF23 c.536G>A p.R179Q

FTC FGF23 c.211A>G p.S71G

FTC GALNT3 c.985G>A p.G329R

ADHR: autosomal dominant hypophosphatemic rickets, FTC:
familial tumoral calcinosis, FGF23: fibroblast growth factor 23, 
GALNT3: N-acetylgalactosaminyltransferase 3.
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Fig. 22. Mutation analysis. Pedigrees from the Austrian (family 1) and Spanish (family 2) families affected 
with FTC and electropherograms of the family members. (A) Segregation of the FGF23 c.211A>G transition 
(p.S71G) within family 1. The affected individual is homozygous for the mutation, the parents and one sister 
heterozygous. (B) Segregation of the GALNT3 c.985G>A transition (p.G329R) within family 2. Three 
individuals are homozygous for the mutation although one of them (daughter) is not affected. The father is 
heterozygous. 
 
 
2.2 FGF23 mutant proteins and expression in mammalian cells 
 
ADHR mutations p.R176Q, p.R179W, and p.R179Q lead to replacement of either of two 

critical arginine residues within a potential subtilisin-like proprotein convertase (SPC) 

minimum consensus cleavage site: 176RHTR179 (RXXR motif). SPCs are the major 
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endoproteolytic processing enzymes of the secretory pathway for a wide variety of 

hormone and neuropeptide precursors. If native FGF23 cleavage occurs at this site, it can 

be hypothesized that ADHR mutations interfere with the hydrolysis by SPCs. 
 
The FTC mutation in FGF23 leads to substitution of a serine by a glycine (p.S71G). 

Although the mutation is localized at the last nucleotide of exon 1 (c.211A) it is unlikely to 

cause aberrant splicing because it introduces a G which is most frequently used at this 

position and therefore increases the splice site consensus value as defined by Shapiro and 

Senapathy (Shapiro and Senapathy 1987). This serine (p. 71S) is situated at the end of the 

loop between strand 3 and 4 of the FGF ß-barrel according to structure modeling (Harmer 

et al. 2004) and it could be involved in post-translational modifications such as 

glycosylation or in the correct folding of the mature protein. 
 
In order to investigate whether FGF23 mutant proteins were expressed and secreted in 

mammalian cells in a similar manner as the native protein, FGF23 expression plasmids 

carrying p.R176Q (pcDNA/FGF23R176Q/His), p.R179Q (pcDNA/FGF23R179Q/His) 

and p.S71G (pcDNA/FGF23S71G) mutations were created by site directed mutagenesis 

and stable transfected in HEK293 cells. 

 

2.2.1 Analysis of the ADHR FGF23-R176Q and –R179Q mutant proteins 
 
Western blot analysis of conditioned medium and total cellular lysate from HEK293 cells 

transfected with His-tagged FGF23-R176Q and FGF23-R179Q was performed using 

antiFGF23173-187 antibody. Untransfected HEK293 cells and cells transfected with native 

FGF23/His were used as internal controls. Results revealed a 32 kDa band corresponding 

to intact FGF23-R176Q/His and FGF23-R179Q/His proteins (Fig. 23). No additional 

bands corresponding to processed products were detected in the conditioned medium from 

mutant FGF23/His-expressing HEK293 cells. In contrast, wild type FGF23/His resolves in 

two immunoreactive bands intact FGF23 (FGF2325-251/His) and C-terminal fragment 

(FGF23180-251/His). Total cellular lysates and control cells were negative (Fig. 23).  
 
These results indicate that FGF23-R176Q and FGF23-R179Q mutant proteins are secreted 

primarily as the intact protein species. Most likely, mutant proteins escape from proteolytic 

cleavage because the ADHR mutations may disrupt the cleavage motif 176RXXR179 

recognized by SPCs. 
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2.2.1.1 Inhibition of FGF23 processing at the RHTR site 
 
To determine whether FGF23 is processed at the 176RHTR179 site during its biosynthesis 

by SPC proteases, we used Decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (Dec-RVKR-

CMK). This is a highly specific, irreversible and cell permeable competitive inhibitor of 

proprotein convertases: furin/SPC1 (Ki= 1.0 nM), SPC2/PC2 (Ki= 0.36 nM), 

SPC3/PC1/PC3 (Ki= 2.0 nM), SPC4/PACE4 (Ki= 3.6 nM), SPC6/PC5/PC6 and 

SPC7/PC7/PC8 (Ki= 0.12 nM) (Denault et al. 1995, Bowler et al. 2002). The typical 

concentration range used in tissue culture is 25-100 µM. Increasing concentrations of Dec-

RVKR-CMK to 52 µM were added to the culture medium of HEK293 cells expressing 

native FGF23. Western blot analysis of the conditioned medium with antiFGF23173-187 

showed dosage-dependent inhibition of FGF23 cleavage. Complete inhibition of cleavage 

was achieved with 39 µM Dec-RVKR-CMK (Fig. 24).  
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Fig. 23. Expression of mutant FGF23-R176Q/His 
and FGF23-R179Q/His in HEK293 cells. Western 
blot analysis with antiFGF23173-187 antibody against   
C-terminal FGF23 peptide was performed after 12% 
SDS-PAGE of 5 µg protein-containing concentrated 
conditioned medium and cell lysate from 
FGF23/His-, FGF23-R176Q/His- and FGF23-
R179Q/His-expressing HEK293 cells and control 
cells. Bands of 32 and 12 kDa were detected in the 
conditioned medium from cells expressing 
FGF23/His whereas only a 32 kDa band was 
detected in the conditioned medium from cells 
expressing mutant FGF23-R176Q and FGF23-
R179Q. Cell lysates were negative. Molecular mass 
markers are indicated to the right.
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Fig. 24. Inhibition of proteolytic 
cleavage of FGF23 by a SPC inhibitor.
HEK293 cells expressing native FGF23 
were cultured overnight in 6-well culture 
plates with 1.5 ml serum-free medium in 
the presence of different concentrations 
of Dec-RVKR-CMK. Samples were 
concentrated to 100 µl using a Microsep-
omega 10K concentrator. Proteins (3 µg) 
were separated through 12% SDS/PAGE 
and incubated with anti-FGF23 
polyclonal antibody (antiFGF23173–187). 
FGF23 cleavage was completely 
prevented at a concentration of 39 µM 
Dec-RVKR-CMK. Molecular mass 
markers are indicated to the right.
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Quantification was performed by using the ImageJ Quantification software. Two replicates 

at an inhibitor concentration of 26 µM and four replicates at all other inhibitor 

concentrations resulted in the following mean values for the ratio of C-terminal to intact 

plus C-terminal protein: 59% at 0 µM inhibitor, 52% at 0.13 µM, 44% at 1.3 µM, 29% at 

13 µM, 18% at 26 µM, 4% at 39/52 µM indicating a marked reduction of the amount of C-

terminal fragment at higher inhibitor concentrations. These results show that members of 

the SPC family of proteases are required for FGF23 processing. 

 
2.2.1.2 Expression of SPCs in HEK293 cells and in mice osteoblasts 
 
To test whether FGF23 cleavage by proprotein convertases in cultured cells could be of 

physiological significance, the expression of this family of proteases was analysed in 

HEK293 cells and in mice osteoblasts where Fgf23 expression has been documented by 

real-time quantitative RT-PCR (Liu et al. 2003). 
 
A semi-quantitative multiplex PCR was performed in cDNAs from HEK293 cells and from 

mice osteoblasts to determine the expression of the different SPCs. SPC2, SPC4, SPC6 and 

SPC7 could be amplified from HEK293 cells at the same expression level as GAPDH (Fig. 

25 A). Spc1, Spc2, Spc3, Spc4 and Spc7 expression was detected in mice osteoblasts (Fig. 

25 B). These results suggested that FGF23 cleavage could be of biological significance 

because of the parallel expression of SPC2, SPC4 and SPC7 in HEK293 cells as well as in 

mice osteoblasts. Thus, SPCs are likely to be responsible for the processing of FGF23 also 

in vivo. 

 

Fig. 25. Expression of subtilisin-like proprotein convertases in HEK293 cells and mice osteoblasts. 
First-strand cDNA (10 ng) was used as template for a semi-quantitative multiplex PCR with the 
corresponding SPC/Spc and GAPDH/Gapdh primers. PCR amplification products were detected for SPC 2, 
4, 6, and 7 in HEK293 cells (A) and Spc 1, 2, 3, 4, and 7 in mice osteoblasts (B). 
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2.2.2 Analysis of the FTC FGF23-S71G mutant protein 
 
Expression and processing of mutant FGF23-S71G in HEK293 cells was analysed in the 

conditioned medium and in cell lysate by western blot analysis using antiFGF2348-67 and 

antiFGF23173-187 polyclonal antibodies (Fig. 26). Untransfected HEK293 cells and cells 

transfected with native FGF23 or empty pcDNA3.1 vector were used as internal controls.  

 

Fig. 26. Expression of mutant FGF23-S71G in HEK293 cells. Western blot analysis using anti-FGF23 
polyclonal antibodies against the N-terminal (antiFGF2348-67) (A) and the C-terminal (antiFGF23173-187) 
peptides (B) were performed in the conditioned medium and the cell lysate of HEK293 cells expressing 
mutant FGF23-S71G, native FGF23, HEK293 cells stable transfected with empty pcDNA3.1 vector as well 
as untransfected HEK293 cells. Bands of 30, 18 and 12 kDa were detected in the conditioned medium of 
cells expressing native FGF23 whereas only a 12 kDa band was detected in the conditioned medium from 
cells expressing mutant FGF23-S71G. In addition, a 25 kDa band was detected in the cell lysate from cells 
expressing mutant FGF23-S71G. Controls were negative. Molecular mass markers are indicated to the right.  
 
 
In the conditioned medium of cells expressing native FGF23 immunoreactive bands of 

approximately 30, 18 and 12 kDa were detected, corresponding to secrete intact FGF2325-

251 (30 kDa), N-terminal FGF2325-179 (18 kDa) and C-terminal FGF23180-251 (12 kDa) 

respectively. Sometimes after 1 day of exposure, a slight band corresponding to intact 

FGF2325-251 was detected in the cell lysate. In contrast, conditioned medium of cells 

expressing mutant FGF23-S71G contained almost exclusively C-terminal FGF23180-251 (12 

kDa). Only very slight bands of intact FGF2325-251 and N-terminal FGF2325-179 were 

detected in 7 of 10 and 4 of 5 experiments, respectively. Surprisingly, we detected a 

prominent band of approximately 25 kDa with both antibodies within the cell lysates. 

Other bands were not detected. Although this band migrated faster than the FGF2325-251 

detected in the conditioned media, it most probably represents intact FGF2325-251 in another 

folding state. Alternatively, the difference in the apparent molecular weight may be caused 
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by post-translational modifications or digestions at the N- or C-terminal ends. Taken 

together, these results demonstrate that most of the mutant intact FGF23-S71G protein 

remains trapped within the cells whereas only the C-terminal fragment is secreted. 

 
2.2.2.1 Subcellular localization of the FGF23-S71G mutant protein 
 
As a consequence of a mutation, proteins may be misfolded and degraded by the ubiquitin-

proteasome system, may be transported to lysosomes or may be retained within the 

endoplasmic reticulum or Golgi apparatus (Tsai et al. 2002). 
 
In order to study the subcellular localization of the mutant protein, immunocytochemistry 

experiments were performed in stable transfected HEK293 cells expressing mutant and 

wild-type protein. Untransfected HEK293 cells were used as controls. Primary antibodies 

against FGF23 (antiFGF23148-163) and fluorochrome-labelled secondary antibodies were 

used to detect the proteins. FGF23-S71G, but not native protein, was detected within the 

cells (Fig. 27).  

 

Fig. 27. Subcellular localization of FGF23-S71G. Light microscopy images of HEK293 cells (column I) 
stable transfected with FGF23-S71G (A), native FGF23 (B) and unstransfected HEK293 cells (C). Cells were 
stained with WGA Alexa Fluor 594 conjugate (red; column II) and antiFGF23148-163 antibody (green; column 
III). Merged images of the double-stained cells are shown in column IV. FGF23-S71G protein co-localized 
with the Golgi compartment specific WGA staining, whereas native FGF23 was not detected within the cells. 
HEK293 control cells showed no cross-reaction. 
 

Antibodies and markers against different cellular organelles were used for co-localization 

studies. Localization in endoplasmic reticulum, lysosomes and mitochondria was excluded 
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by using antibodies against calnexin, lysosome-associated membrane protein 1 and a 60 

kDa nonglycosylated protein component of mitochondria respectively. The green 

fluorescence of antiFGF23148-163 was localized to the polar perinuclear structure of the 

Golgi apparatus and perfectly co-localized with the red label of the Golgi marker WGA 

Alexa Fluor 594 conjugate (Fig. 27 A). Thus, FGF23-S71G is retained within the Golgi 

complex.  

 
2.2.2.2 Quantification of plasma FGF23 levels 
 
To investigate the effect of mutant FGF23-S71G in vivo, circulating FGF23 plasma levels 

were measured in the FTC patient, his parents, 2 sisters and 5 controls with a commercially 

available ELISA sandwich that uses antibodies against the C-terminal FGF23 fragment 

(Tab. 12). This assay detects intact FGF23 and C-terminal fragment. The FGF23 levels of 

normal controls ranged from 25 to 78 RU/ml (median 42 RU/ml), thus being within the 

normal range, which is below 150 RU/ml described for this assay (Jonsson et al. 2003). 

Also, the parents and sisters of the patient showed plasma levels within the normal range 

(45, 112, 92 and 39 RU/ml). In contrast, the affected individual had a markedly elevated 

FGF23 level of 1077 RU/ml. Most probably, these elevated levels are the result of 

increased production and secretion of the C-terminal FGF23 fragment. 

 
Tab. 12. FGF23 detection in plasma of normal controls and family members with FTC. 

 

 

 

 

 

 

Group Mutation S71G FGF23 RU/mlSex

Control I F no 40
Control II F no 51
Control III M no 25
Control IV F no 78
Control V M no 42

Father M heterozygous 45
Mother F heterozygous 112
Unaffected child F heterozygous 59
Unaffected child F no 92
Affected child M homozygous 1077
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3. FGF23 A SUBSTRATE OF THE PHEX ENDOPEPTIDASE 
 
The vast majority of active peptides are generated by selective cleavage of precursors at 

sites that contain one or more basic amino acids. First, one or more endopeptidases cleave 

the precursor to generate intermediates containing C-terminal basic residues. The major 

peptide-processing endopeptidases are SPCs (Zhou et al. 1998, Seidah and Chretine 1997). 

Subsequently, a carboxypeptidase was shown to be necessary for removal of the carboxy-

terminal basic residues (argenine or lysine) exposed by the endopeptidases (Fricker 1988, 

Wei 2003). 
 
It has long been discussed whether FGF23 is a substrate of the PHEX endopeptidase which 

is mutated in X-linked hypophosphatemic rickets (XLH) (see introduction 2.1). To study 

the ability of PHEX to degrade FGF23, co-culture experiments with HEK293 cells 

expressing native FGF23 or PHEX proteins as well as FGF23 incubation with membrane 

fractions containing PHEX were performed. FGF23 cleavage was not observed in co-

incubation experiments. By the use of membrane fractions, partial FGF23 cleavage with 

PHEX-containing membranes as well as with control membranes that did not contain 

PHEX was observed in some experiments. Most likely, this unspecific cleavage was 

caused by other proteases within the membrane fraction. To reduce this contaminating 

effect I decided to follow the strategy described by Boileau et al. (2001) to create a 

secreted and soluble form of the PHEX protein (secPHEX) that allowed incubation 

experiments without the use of membrane fractions. 

 

3.1 Expression of secPHEX in HEK293 cells 

 
3.1.1 Generation of recombinant PHEX constructs 
 
A C-terminal His-tagged PHEX plasmid was constructed by cloning the full-length PHEX 

cDNA (NotI/XbaI) into the pcDNA3.1/myc-His expression vector after removal of the stop 

codon at position 2863 (pcDNA/PHEX/His) (Fig. 28 A).  
 
To create a secreted and soluble PHEX, the signal peptide/membrane anchor domain (SA 

domain) of the protein was transformed into a cleavage-competent signal sequence. Site-

directed mutations in eight codons and deletion of four codons by PCR mutagenesis were 

introduced into the PHEX coding sequence previously cloned into the pBS vector 

(pBS/PHEX). The restriction fragment (NotI/XbaI) containing the secPHEX sequence was 
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digested and subcloned into the pcDNA3.1 expression vector (pcDNA/secPHEX) (Fig. 28 

B). 

 
Fig. 28. secPHEX recombinant protein. Schematic representation of His tagged PHEX (PHEX/His) (A) 
and secreted PHEX (secPHEX) (B) recombinant proteins. The hatched box represents the transmembrane 
domain and the black box the zinc-binding domain (HEXXH). Myc-His tag is shown at the C-terminal end of 
the box. Amino acid sequences of the wild-type (wt) and the mutated (sec) transmembrane domains are 
presented in the one-letter code. In the sec sequence, bold letters indicate the amino acids mutated by site-
directed mutagenesis PCR, whereas hyphens (-) depict deleted residues (adapted from Boileau et al. 2001). 
Numbers on the horizontal arrows indicate the predicted molecular mass (kDa) of the PHEX recombinant 
proteins. Molecular masses were predicted using the PeptideMass tool from the ExPASy proteomics server. 
 
 
3.1.2 Expression of PHEX and secPHEX in HEK293 cells 
 
To determine whether secPHEX was properly secreted, mammalian HEK293 cells were 

stable transfected with His-tagged PHEX (pcDNA/PHEX/His) and secPHEX 

(pcDNA/secPHEX). HEK293 cells stable transfected with pcDNA3.1 vector were used as 

controls. A polyclonal antibody against human PHEX was generated in rabbits and affinity 

purified (Eurogentec). In order to assess the specificity of the antiPHEX171-185 antibody, 

western blot analysis was performed in the conditioned medium and total cellular lysate. 
 
In the cell lysate of cells expressing PHEX/His, a resolving band of approximately 100 

kDa corresponding to intact PHEX/His was detected with antiPHEX171-185 whereas the 

conditioned medium was negative. The same band was detected with anti-His (C-term)-

HRP antibody in the cell lysate of PHEX/His-expressing HEK293 cells. Control cells were 

negative. This data confirmed the specificity of antiPHEX171-185 antibody (Fig. 29 A). Also, 

secPHEX was only detected in the conditioned medium whereas cell lysates were negative 

(Fig. 29 B).  
 
These results show that secPHEX was correctly secreted and that the polyclonal affinity-

purified anti-PHEX antibody recognizes specifically the human PHEX protein. Pre-

immune serum failed to detect a protein in all experiments.  
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Fig. 29. Detection of secPHEX in the conditioned medium Protein (10 µg of cell lysate and 3 µg of 
concentrated conditioned medium) from PHEX/His and secPHEX-expressing HEK293 cells as well as 
HEK293 control cells were separated on 12% SDS-PAGE and western blot analysis was performed with 
antiPHEX171-185 and anti-His (C-term)-HRP antibodies. A band around 100 kDa was detected with 
antiPHEX171-185 and with anti-His (C-term)-HRP in the cell lysate and not in the conditioned medium from 
PHEX/His-expressing cells. In the conditioned medium from cells expressing secreted PHEX (secPHEX) a 
resolving band around 100 kDa was detected with antiPHEX171-185. Cell lysate of secPHEX-expressing 
HEK293 cells and control cells were negative. Molecular mass markers are indicated to the right. 
 
 

3.1.3 Quantification of the secPHEX fraction in the conditioned medium 
 
Total protein concentration in the conditioned medium after concentration was 0.9 µg/µl. 

To analyse how much of the protein fraction was constituted of secPHEX; conditioned 

medium was quantified by image analysis of Coomassie stained SDS-PAGE. The 

quantification yielded a secPHEX/total protein ratio of 8% (Fig. 30). 
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3.2 Endopeptidase activity of secPHEX 

 
3.2.1 Analysis of the secPHEX activity 
 
In order to determine whether secPHEX had endopeptidase activity, PTHrP107–139 was used 

as control substrate. Digestion of PTHrP107–139 by secPHEX has been demonstrated and 

results in the production of four degradation products by cleavage N-terminal of three 

aspartate residues (Boileau et al. 2001). pH was optimized in order to ensure maximal 

secPHEX activity by determining activity at pH between 7.2 and 5.2. PTHrP107-139 cleavage 

was tested in the conditioned medium from secPHEX-expressing HEK293 cells and in the 

conditioned medium from HEK293 control cells. Degradation was observed after 30 min 

incubation in the presence of secPHEX, but not in the control samples. Activity was only 

observed at pH 7.2 (Fig. 31).  

 
 
3.2.2 Inhibition of secPHEX activity 
 
The effect of different inhibitors interfering with secPHEX activity was next examined. 

Complete mini EDTA-free tablets that efficiently inhibit serine and cysteine proteases but 

not metalloproteases, complete mini EDTA-plus tablets to inhibit maximal protease 

activity, and 1 mM EDTA that inhibits specific metalloproteases were mixed with 

conditioned medium for 15 min before addition of the substrate. Results indicate that 100% 

inhibition of secPHEX activity was only achieved in the presence of EDTA (Fig. 32).  
 
These results provided evidence that PTHrP107–139 was specifically degraded due to the 

secPHEX activity and not by other extracellular proteases present in the conditioned 

medium. To rule out the possibility that Dec-RVKR-CMK interferes with the activity of 

secPHEX, we also examined the effect of this inhibitor. Cleavage of PTHrP107–139 by 

secPHEX was not inhibited in the presence of Dec-RVKR-CMK (Fig. 32).  

-5

secPHEX: +      - +     - +    -
kDa

PTHrP107-139

pH 7.2 pH 5.5pH 6.2 Fig. 31. Analysis of secPHEX activity.
Silver-stained 16.5% Tris-tricine gels showing 
the degradation of PTHrP107-139 by secPHEX
protein. PTHrP107-139 (1 µg) was incubated for 
30 min at 37°C with 5 µg of protein from 
concentrated conditioned medium from 
secPHEX-expressing HEK293 cells and 
control cells under decreasing pH conditions. 
Specific degradation of PTHrP107-139 was only 
observed at pH 7.2.
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Fig. 32. Inhibition of secPHEX. secPHEX activity was studied in the presence of different inhibitors. 
Reaction mixtures, 5 µg of protein-containing conditioned medium premixed with inhibitor and then 
incubated with 1 µg PTHrP107–139, were subjected to a 16.5% Tris-tricine gel and silver stained. Inhibition 
was achieved with 1 mM EDTA or complete EDTA-plus protease inhibitor cocktail, but not with complete 
EDTA-free protease inhibitor cocktail or 39 µM Dec-RVKR-CMK. Molecular mass markers are indicated to 
the right. 
 

3.3 secPHEX co-incubation with FGF23 

 
To investigate whether FGF23 is a PHEX substrate, different FGF23 protein constructs 

were co-incubated with secPHEX. Concentrated conditioned medium from HEK293 cells 

expressing N-terminal FLAG-tagged FGF23 (FLAG/FGF23) and affinity purified C-

terminal His-tagged FGF23 (FGF23/His) were mixed with concentrated conditioned 

medium from secPHEX-expressing HEK293 cells or untransfected HEK293 control cells. 

Samples were incubated at pH 7.2 and 37°C for up to 3 h. Western blot analysis using anti-

FLAG M2-HRP and anti-His (C-term)-HRP antibodies revealed three bands corresponding 

to intact (FGF2325-251) (30 kDa) and N-terminal (FGF2325–179) (18 kDa) or C-terminal 

(FGF23180–251) (12 kDa) fragments (Fig. 33). None of the tagged proteins showed specific 

cleavage or significant degradation.  

 
Fig. 33. Assessment of tagged FGF23 hydrolysis by western blot analysis. Protein-containing conditioned 
medium (3 µg) from HEK293 cells expressing or not expressing secPHEX were mixed with 3 µg of 
FLAG/FGF23 protein from concentrated conditioned medium (A) or 300 ng of FGF23/His purified protein 
(B). Samples were incubated at pH 7.2 and 37°C for 30 min up to 3 h. Proteins were separated through 12% 
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SDS-PAGE and analysed by western blot using anti-FLAG M2-HRP or anti-His (C-term)-HRP antibodies. 
Bands around 32 and 18 kDa or 14 kDa showed no signs of degradation. (+) refers to conditioned medium 
samples from secPHEX expressing-HEK293 cells and ( - ) refers to conditioned medium from untransfected 
HEK293 of control cells. Molecular mass markers are indicated to the right. 
 

secPHEX stability during the experiment was proven by performing a western blot with 

antiPHEX171-185 polyclonal antibody (Fig. 34). SecPHEX was unaltered after 3 h at 37 °C. 

 

 

To prove that the tags within the fusion proteins did not interfere with the cleavage 

process, the same experiment was performed with native FGF23. Western blot analysis 

using antiFGF23173–187 antibody revealed no specific cleavage or significant degradation of 

intact (FGF2325–251) and N-terminal (FGF2325–179) or C-terminal (FGF23180–251) fragments 

(Fig. 35 A). 
 
To rule out the possibility that the lack of carboxypeptidase activity in this assay disrupts 

degradation of FGF23 by secPHEX, the C-terminal arginine residue (p.R179) in the 

FGF2325–179 intermediate after SPC cleavage was removed. Native FGF2325-178 expression 

plasmid (pcDNA/FGF2325-178) was stable transfected in HEK293 cells and conditioned 

medium was prepared. A co-incubation assay was conducted under the same conditions 

(Fig. 35 B). Degradation or cleavage could not be shown. 
 
The assay was finally performed with only intact FGF23. Conditioned medium was 

harvested after inhibition of FGF23 cleavage by SPCs with Dec-RVKR-CMK and again 

samples were incubated in the presence and absence of secPHEX (Fig. 35 C). In these 

experiments, neither intact FGF23 nor FGF2325-178 fragment showed specific cleavage or 

signs of degradation. 
 
SecPHEX was also able to degrade PTHrP107–139 after the addition of conditioned medium 

from FGF231–251-expressing cells indicating that FGF23 does not interfere with secPHEX 

endopeptidase activity. 
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Fig. 34. Analysis of the secPHEX stability. Western blot 
using anti-PHEX171-185 antibody was performed to verify the 
stability of secPHEX after the assay. (+) refers to 
conditioned medium samples from secPHEX expressing-
HEK293 cells and (-) refers to conditioned medium from 
untransfected HEK293 of control cells. A stable band around 
100 kDa appeared only in the conditioned medium from 
secPHEX-expressing HEK293 cells. Molecular mass 
markers are indicated to the right.
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Fig. 35. Assessment of native FGF23 hydrolysis by western blot analysis. Proteins (3 µg) of conditioned 
medium from HEK293 cells expressing (+) or not expressing ( - ) secPHEX were mixed with 3 µg protein of 
conditioned medium from HEK293 cells expressing native FGF23 (A), unprocessed native FGF23 (B) or 
FGF2325-178 fragment (C). Bands of 30, 18 and 12 kDa appeared and presented no signs of degradation or 
specific cleavage. Samples were incubated at pH 7.2 and 37°C for 30 min up to 3 h. Proteins were separated 
on 12% SDS-PAGE and immunoblotted using antiFGF2348–67 or antiFGF23173–187 antibodies. 

FGF23           
intact

FGF23        
C-terminal

-32 FGF23           
intact

FGF23       
N-terminal

A

-18.3

-7.5

+   - +   - +   - +    - kDa

FGF23  
unprocessed

B

FGF2325-178

C

30’            1h            2h            3h  30’            1h            2h            3h  

-32 

-18.3

-7.5

kDa

+    - +   - +    - +    -
30’            1h            2h            3h  30’            1h            2h            3h  

+   - +   - +   - +   -
30’            1h            2h            3h  30’            1h            2h            3h  

+   - +   - +   - +   -
30’            1h            2h            3h  30’            1h            2h            3h  

-32 

-18.3

-7.5

kDa

-32 

-18.3

-7.5

kDa

antiFGF2348-67 antiFGF23173-187



Discussion 
 
 

 79

D. DISCUSSION 

 
1. NATIVE FGF23 

 
This project is based on the study of a novel hormone, FGF23, which is mutated in patients 

with the renal phosphate wasting disorder ADHR (The ADHR Consortium 2000). FGF23 

is located on the chromosome 12p13 only 55 kb separated from FGF6 (The ADHR 

Consortium 2000). Clustering of FGF genes have been reported and supports a model of 

local gene duplications and chromosomal translocations during evolution (Itoh and Ornitz 

2004). Since the increase in the number of FGF genes is associated with the period of main 

evolutionary change that coincided with the origin of vertebrates, an important function of 

FGF/FGFR interactions has been proposed in the development of the skeletal system 

(Coulier et al. 1997). 

 
1.1 Overview of the FGF23 sequence 

 
FGF23 contains a predicted ORF of 251 amino acids and is the longest FGF member 

described up to now. Together with FGF21 and FGF19, FGF23 belongs to the FGF19 

subfamily (Fig. 36). Members of the same subfamily show increased sequence similarity, 

structure and biochemical properties (Ornitz and Itoh 2001). All FGFs share a common 

core sequence with 12 ß-strands that determines the characteristical three-dimensional ß-

barrel structure of this protein family (see introduction Fig. 4). Alignment of the core 

sequence between FGF23 and the other family members showed a 25-36% amino acid 

identity (The ADHR Consortium 2000). The last four residues in the core sequence of 

FGF23 define a subtilisin-like proprotein convertase (SPC) motif conserved in all species 

except in Fugu rubripes. FGF23 alignment among species shows a high homology at the 

N-terminal part but not at the part C-terminal from the SPC cleavage site (see results Fig. 

7). FGF23 has the longest C-terminal fragment among the members of the FGF family.  
 
Interestingly, all FGF23 mutations reported so far in ADHR (p.R176Q, p.R179Q, 

p.R179W) are located at the SPC cleavage motif (RXXR) and are conserved among 

species from fish to mammals (see results Fig. 8); these mutations make the protein 

resistant to cleavage by SPCs. The novel FGF23 mutation (p.S71G) found in patients with 

autosomal recessive FTC (see results Tab. 11) is located in the conserved N-terminal ß-



Discussion 
 
 

 80

barrel structure. The serine residue at position p.S71 is also conserved among species, from 

fish to mammals (see results Fig. 8). According to structure modeling, it is situated at the 

end of the loop between strand 3 and 4 of the FGF ß-barrel structure (Harmer et al. 2004). 

This serine probably has an important function since mutant FGF23-S71G remains stacked 

inside the cells interrupting its maturation process. 

 
Fig. 36. The evolutionary relationships within the human fibroblast growth factor (FGF) gene family. 
Twenty-two FGF encoding genes have been identified in the human genome. Phylogenetic analysis suggests 
that these genes can be arranged into seven subfamilies, each containing two to four members. Branch 
lengths are proportional to the evolutionary distance between each gene. Human FGF15 and mouse Fgf19 
have not been identified. Since human FGF19 is most closely related to mouse Fgf15 (51% amino acid 
identity), Fgf15 is thought to be the ortholog of human FGF19 (Adapted from Itoh and Ornitz 2004). 
 

The first 24 residues from the predicted FGF23 protein sequence determine a putative 

signal peptide. Members of the FGF family are often paracrine factors, but it is possible to 

identify some FGFs to be present in serum (Ikemoto et al. 1999, Larsson et al. 2002). Most 

FGFs have N-terminal signal peptides and are readily secreted from cells. FGFs 1, 2, 9, 16 

and 20 lack obvious, cleavable N-terminal signal peptides but can be nevertheless secreted. 

FGF22 remains attached to the cell surface rather than being secreted. FGFs 11-14 lack 

also signal peptides, remain intracellular and function within cells in a receptor-

independent manner (for review see Itoh and Ornitz 2004). Thus, a question that arose in 

the present study was whether FGF23 is a secreted factor as well. 
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1.2 FGF23 is a secreted protein 

 
The analysis performed in this study demonstrates that FGF23 is in fact a secreted protein 

with a molecular mass of around 30 kDa. When plasmids containing the native FGF23 

protein were stable transfected into HEK293 cells, FGF23 was detected in the supernatant 

but not in the cell lysate using specific antiFGF23 antibodies, antiFGF2348-67 and 

antiFGF23173-187 (see results Fig. 14). Two additional N- and C-terminal fragments around 

18 and 12 kDa respectively were also detected with the corresponding antibodies 

indicating cleavage of FGF23 during or after biosynthesis. The same cleavage products 

were observed when N- and C-terminal tagged FGF23 protein constructs were transfected 

into HEK293 cells and detected with antibodies directed against the tags (see results Fig. 

15). Expression of FGF23 in cells from other species including opossum kidney (OK/E), 

African green monkey kidney (COS-7), and Chinese hamster ovary (CHO) demonstrated 

the same processing (White et al. 2001, Shimada et al. 2001).  
 
Mass spectrometry analysis confirmed that the smaller 12 kDa fragment belongs to the C-

terminal part of the FGF23 protein (see results Fig. 21). Unfortunately, determination of 

the first residue from the C-terminal FGF23 fragment was not possible by peptide mass 

fingerprinting. Shimada et al. showed by amino acid sequencing that the smaller product 

had p.S180 at its N-terminus. The preceding amino acid sequence of p.S180, 176RHTR179 

agrees with the SPC consensus proteolytic cleavage sequence RXXR (Shimada et al. 

2001).  
 
Specificity of the cleavage was analysed by adding conditioned medium containing native 

FGF23 to untransfected HEK293 cells, indicating that no further cleavage occurs after 

secretion (see results Fig. 18). In addition, intact FGF23 as well as N- and C-terminal 

fragments are stable peptides, since incubation of FGF23 at room temperature up to 24 

hours and at 37°C did not alter the stability of the protein (see results Fig. 17).  
 
Taken together, these results provided evidence that FGF23 is a secreted protein that 

undergoes partial cleavage into two fragments, FGF2325-179 and FGF23180-251, during 

biosynthesis in HEK293 cells and ruled out the possibility that the smaller FGF23 

fragments were products of unspecific degradation. The observation that the SPC cleavage 

site (RXXR) is highly conserved among species and that FGF23 proteolysis was confirmed 

in other cell systems suggest a physiological relevance of the FGF23 cleavage. 
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1.3 Analysis of the FGF23 cleavage 

 
The processing of prepro- and pro-polypeptides to a mature form is critical for proper 

secretion. Many of the secreted factors that influence renal and bone mineral homeostasis, 

such as the bone morphogenic proteins (BMPs) (Constam and Robertson 1999), 

parathyroid hormone (PTH) (Hendy et al. 1995), and PTH-related peptide (PTHrP) (Liu et 

al. 1995) undergo cleavage by the subtilisin-like proprotein convertase family. Complete 

inhibition of FGF23 cleavage using the SPC inhibitor Dek-RVKR-CMK indicates that 

native FGF23 is specifically cleaved by enzymes of this family in HEK293 cells (see 

results Fig. 24).  
 
Evidence supporting the cleavage and activation by SPCs include FGF related growth 

factors that play important roles in bone growth and development such as platelet-derived 

growth factor (PDGF)-A and –B (Ostman et al. 1992), pro-transformant growth factor ß 

(pro-TGFß) (Dubois et al. 2001), and insulin-like growth factor (IGF)-I and –II (Duguay et 

al. 1997 and 1998). Furthermore, some secreted factors are processed by more than one 

SPC family member, such as bone morphogenic protein-4 (BMP4), which shows enhanced 

cleavage in the presence of SPC1 or SPC6 (Cui et al. 1998). Most tissues and cell lines 

express more than one SPC (Bergeron et al. 2000). It can not be excluded that the cells that 

secrete FGF23 in vivo express other SPCs than the model HEK293 system used for the 

present studies implying other modifications to FGF23 in its natural tissue. 
 
Recent reports show that bone is the predominant site of Fgf23 expression in mice (Liu et 

al. 2003). To provide evidence whether FGF23 cleavage by proprotein convertases is of 

physiological significance, expression of SPCs in mouse osteoblasts as well as in HEK293 

cells was examined (see results Fig. 25). The finding that SPC2, SPC4, and SPC7 are 

expressed in osteoblasts as well as in HEK293 cells raised the possibility that FGF23 is 

also cleaved by SPCs in vivo. Furthermore, we demonstrated that cleavage of FGF23 

occurs intracellularly, before or during secretion, where localization of SPC2, SPC4, and 

SPC7 has been reported (Thomas 2002). 

 

1.4 FGF23 glycosylation 

 
Intact FGF23 is predicted to have a molecular mass of 27.9 kDa (Swiss-Prot accession 

number Q9GZV9). Provided that a molecular mass of 30 kDa was estimated by SDS-
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PAGE, our findings could imply that FGF23 undergoes post-translational modifications. 

More than half of all proteins and many lipids in biological systems are glycosylated (Van 

de Steen et al. 1998). While N-linked oligosaccharides are characterized by big structures 

producing large changes in the molecular mass of the protein (more than 3.5 kDa), O-

linked sugars are usually less massive although they can be more numerous. As the 

difference between predicted (27.9 kDa) and SDS-PAGE observed (30 kDa) molecular 

mass of FGF23 is not any greater than 2-3 kDa, FGF23 may undergo O-glycosylation. The 

use of N-glycosidases failed to deglycosylate FGF23 whereas O-glycosidase and 

neuraminidase treatment resulted in a decrease of the molecular mass of intact FGF23 as 

well as both N- and C-terminal FGF23 fragments (see results Figs. 19 and 20). Thus, we 

conclude that FGF23 is O-glycosylated at the N- and C-terminal fragment.  
 
O-linked sugars can be very heterogeneous and eight core structures have been identified 

so far. The most common modification of the core is mono-, di- or tri-sialylation (Hounsell 

et al. 1996). The oligosaccharides linked to FGF23 must be composed by a sialylated N-

acetyl galactosamine (GalNAc) residue (Fig. 37) since O-glycosidase could only remove 

the sugar chain after incubation with neuraminidase. Thus, elimination of external sialic 

acid (NeuAc) with neuraminidase, followed by the elimination of the GalNAc core with O-

glycosidase, resulted in a slight advance of the FGF23 migration (see results Fig. 20). 
 
A consensus primary amino acid sequence for O-glycosylation has not been clearly 

defined. However, there is substantial evidence that serine and threonine residues, often in 

combination with proline, alanine, glycine, or valine, are potential sites of O-glycosylation 

(Kirnarsky et al. 1998). O-glycosylation is a post-translational and postfolding event. 

Therefore, only exposed serines and threonines will be glycosylated. In accordance with 

this, mucin-type O-glycosylation occurs mostly on ß-turns of the secondary structure or 

other regions with an extended conformation, and in regions with low hydrophobicity (Van 

de Steen et al. 1998).  
 
O-linked glycosylation plays a major role in determining the structure of the fully folded 

protein; it is essential in the recognition process for protein-protein interactions and 

contributes to the activity of signalling molecules (Van de Steen et al. 1998). Our results 

show that native FGF23 is O-glycosylated at the N- and C-terminal fragments. Also, 

Shimada et al. reported variations of the number of O-linked sugar chains in the FGF23-

R176Q and –R179Q mutant proteins (Shimada et al. 2002). More experiments will be 
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necessary to confirm these data because O-linked glycosylation could play an important 

role in modulating the physiological function of FGF23. 

 

 
Fig. 37. O-linked glycosylation. The most common type in mammals is the mucin-type oligosaccharide. 
This structure includes an O-linked N-acetylgalactosamine (GalNAc) residue directly attached to a serine or 
threonine, followed by ß1-3 linked galactose (Gal) and α2-3 linked N-acetylneuraminic acid (NeuAc). 
 

1.5 FGF23 expression in human and mouse tissues 

 
Multiple tissue Northern blots of human mRNAs failed to detect FGF23 transcripts and 

nested RT-PCR was required to detect FGF23 in RNA from human tissues such as whole 

fetus, heart, liver, thyroid/parathyroid, small intestine, testis, skeletal muscle, differentiated 

chondrocytes, and TIO tumor tissue (see results Tab. 10). FGF23 expression in heart, liver, 

and TIO was confirmed by another group (Shimada et al. 2001). In mice the Fgf23 

transcript was detectable in 17 days embryo and spleen (see results Tab. 10). Fgf23 

expression by RT-PCR was also demonstrated in brain, thymus, small intestine and heart 

of adult mice. Expression of Fgf23 in the ventrolateral thalamic nucleus of the brain was 

reported by in situ hybridization (Yamashita et al. 2000).  
 
In accordance to our results, Mirams et al. confirmed the detection of FGF23 expression in 

liver and in the human hepatoma cell line (HUH-7) by real-time RT-PCR (Mirams et al. 

2004). This finding could indicate a physiological role of FGF23 in the liver.  
 
The same group found FGF23 expression in kidney tissue, in human embryonic kidney 

(HEK293) and opossum kidney (OK/E) cell lines. Liu et al. also detected low levels of 

Fgf23 mRNA expression in mouse kidney (Liu et al. 2003). In contrast, our results were 

negative for FGF23 expression in kidney and in HEK293 cells.  
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TIO tumors express abundant amounts of FGF23 mRNA, and FGF23 protein could be 

visualized by western blot analysis of tumor extracts (White et al. 2001). In addition, 

FGF23 was detected at high levels in serum from TIO patients but not from healthy 

controls (Yamazaki et al. 2002) suggesting that FGF23 is expressed and secreted into the 

circulation at low levels under normal circumstances. 

 

1.5.1 FGF23 expression in bone  
 
Although it has been supposed that bone is the source of FGF23, the principal site of 

secretion of circulating FGF23 is unknown. The investigations performed could neither 

show FGF23 transcripts in mice calvaria nor in human osteosarcoma cells (SaOS) and 

mouse osteoblastic cell line (MC3T3). Also other groups found no evidence for expression 

of FGF23 in bone (Yamashita et al. 2000, Guo et al. 2001 and 2002, Liu et al. 2002, White 

et al. 2001, Bai et al. 2003). However, recent studies could detect FGF23 expression in 

human bone by real-time quantitative RT-PCR (Mirams et al. 2004), and in osteogenic 

cells of trabecular bone by in situ hybridization (Riminucci et al. 2003). The expression of 

FGF23 in human bone is consistent with expression analyses in mice and rats where 

expression has been reported to be highest in bone (Liu et al. 2003, Ijuin et al. 2004). Ijuin 

et al. also showed a positive correlation of the amount of Fgf23 protein with osteoblast 

differentiation and bone nodule formation. These findings strongly suggest that FGF23 

may be directly involved in bone formation independently of its systemic actions.  

 

2. AUTOSOMAL DOMINANT HYPOPHOSPHATEMIC RICKETS 

 
2.1 FGF23-R176Q and –R179Q mutant proteins are resistant to cleavage 
 
In contrast to native FGF23 protein that is sensitive to protease cleavage during its 

biosynthesis, FGF23-R176Q, -R179W and -R179Q mutant proteins are resistant to 

cleavage after stable transfection into HEK293 cells (see results Fig. 23). Most probably, 

the mutations disrupt the 176RXXR179 motif of a SPC cleavage site. Secretion of the 

intact FGF23 may stabilize the protein and lead to renal phosphate wasting in ADHR 

patients.  
 
If FGF23 is normally co-expressed with the SPC enzymes then the majority of native 

FGF23 will probably be cleaved into fragments during secretion. In the case of TIO, 
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increased FGF23 expression may overwhelm SPCs activity, and the major portion of 

FGF23 would be secreted in its intact form. In support of this idea, only the 30 kDa FGF23 

protein species was detected in a tumor causing TIO. Both p.R176 and p.R179 FGF23 

mutations were not detected in DNA from this tumor (White et al. 2001).  

 

2.2 ADHR mutations cause gain of protein function 

 
ADHR does not arise from FGF23 haploinsufficiency because the experiments performed 

in this study demonstrated that the mutants are efficiently translated and secreted by 

mammalian cells (see results Fig. 23). Furthermore, FGF23 protein has been detected in 

TIO tumors (White et al. 2001) and circulates at high levels in serum from patients with 

TIO (Yamazaki et al. 2002, Jonsson et al. 2003). As serum phosphate levels become 

normal after resection of the tumors, it is likely that intact FGF23 functions as the 

phosphaturic factor in these conditions. 
 
Studies in mice showed that administration of intact FGF2325-251 (Shimada et al. 2001) or 

through subcutaneous implantation of cells expressing FGF23 into nude mice (Shimada et 

al. 2002, Bai et al. 2003) caused renal phosphate wasting. Others demonstrated that 

administration of FGF23-R179Q (Segawa et al. 2003) or FGF23-R176Q (Bai et al. 2003) 

significantly decreased renal Na/Pi cotransport activity in kidneys from normal rats. Taken 

together, these data provide evidence that FGF23 is a phosphaturic substance and that 

ADHR does not arise from inactivating mutations in a phosphate conserving factor. Rather, 

ADHR mutations enhance the phosphaturic activity of FGF23.  
 
Because the SPC family is often associated with activation of their substrates, we cannot 

rule out a possible biological role for the FGF23 cleavage products under normal 

physiological conditions, perhaps as autocrine or paracrine agents, as in the case of other 

members of the FGF family (Hannon et al. 1996, Hurley et al. 1994). Interestingly, the C-

terminal fragment of neuronal growth factor ß (NGFß) produced by partial SPC cleavage 

binds to tyrosine kinase receptors (Trk) promoting neuronal innervations and survival 

whereas intact pro-NGFß binds to the neurotrophin receptor (p75NTR) thereby activating 

apoptosis (Bono et al. 1999). 
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2.3 Searching for the FGF23 receptor 
 
Four functional FGF receptors have been identified in humans (Itoh and Ornitz 2004). 

However, it remains to be solved which receptor(s) is involved in FGF23 signalling. 

Preliminary reports demonstrate that FGF23 binds to the FGFR2 and FGFR4 receptors, 

both of which are expressed in the kidney and FGF23-R179Q showed preferentially 

binding to FGFR4 (Jonsson et al. 2001). Yamashita et al. showed FGF23 binding to 

FGFR3c and FGFR2c but not to FGFR1c by the Biacore system. FGF23 binding to 

FGFR3c inhibited renal phosphate reabsorption in vitro through a MAPK-dependent 

mechanism (Yamashita et al. 2002). A mutation in the FGFR1 was recently found to be the 

cause of the novel syndrome osteoglophonic dysplasia (White et al. 2005). The renal 

phosphate wasting and the elevated FGF23 levels in some of these patients raised the 

question whether FGF23 binds the FGFR1 receptor.  

 

3. FAMILIAL TUMORAL CALCINOSIS WITH HYPERPHOSPHATEMIA 

 
3.1 FGF23 in familial tumoral calcinosis 

 
3.1.1 FGF23-S71G mutant protein is not secreted 
 
Autosomal recessive familial tumoral calcinosis (FTC) with hyperphosphatemia is 

characterized as being the metabolic mirror image of the hypophosphatemic conditions 

(see introduction Tab. 1). Sequence analysis of the FGF23 gene in an affected individual 

revealed a homozygous missense mutation, encoding a p.S71G substitution, whereas non-

affected family members were either heterozygous or homozygous for the wild-type allele 

(see results Fig. 22). The heterozygous parents and one heterozygous sister showed no 

abnormalities in clinical and biochemical parameters, including serum FGF23 levels (see 

results Tab. 12), indicating that the expression of one FGF23 allele can compensate the 

manifestation of FTC. This is consistent with recent reports that showed viability of Fgf23 

heterozygous mice (Shimada et al. 2004, Sitara et al. 2004). 
 
In contrast to native FGF23 that is secreted into the medium, cell culture experiments 

demonstrated that the intact FGF23-S71G isoform is retained within the Golgi complex 

whereas only the C-terminal fragment is secreted (see results Figs. 26 and 27). Retention in 

the Golgi complex has also been reported in other mutant proteins (Mulders et al. 1998,  
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Sabbagh et al. 2001 and 2003). The N-terminal fragment was not detectable, neither within 

the cell nor in the conditioned medium, suggesting that this fragment is degraded.  

 

3.1.2 FTC mutation causes “loss” of function 
 
In order to show whether the in vitro experiments I performed reflect the in vivo situation, 

FGF23 in serum was measured with a commercially available FGF23 sandwich ELISA 

that uses polyclonal antibodies against peptides within the C-terminal part of FGF23 

thereby measuring intact FGF23 as well as the C-terminal fragment. Markedly elevated 

FGF23 levels were found in the affected individual. Most probably, these levels represent 

elevated concentrations of the C-terminal fragment as demonstrated by the cell culture 

experiments. In contrast to hypophosphatemia in ADHR which is caused by gain of 

function mutations of FGF23, and in TIO which is caused by over expression of FGF23, 

these results indicate that hyperphosphatemia in FTC is caused by a loss or reduction of 

FGF23 function due to loss or at least decrease of intact FGF23 in the circulation. 
 
It has been shown that over expression of both intact FGF23 (Shimada et al. 2002) or 

FGF23-R176Q, -R179Q (Segawa et al. 2003, Bai et al. 2003) in mice is associated with 

hypophosphatemia reflecting the TIO and ADHR situations in human disease. It is less 

well established whether N-terminal FGF2325-179 or C-terminal FGF23180-251 alone causes 

renal phosphate wasting. There is only a single report demonstrating that the 

administration of intact FGF23 to rodents caused renal phosphate wasting whereas the 

administration of N-terminal FGF2325-179 and C-terminal FGF23180-251 did not (Shimada et 

al. 2002). The results of this study exclude the possibility that the C-terminal fragment 

alone can cause phosphate wasting.  
 
Hyperphosphatemia due to increased renal phosphate reabsorption and increased 1,25-

dihydroxyvitamin D serum levels have also been found in Fgf23 null-mice (Shimada et al. 

2004, Sitara et al. 2004). However this mouse model showed in addition severe bone tissue 

abnormalities, severe growth retardation and reduced life span possibly because of marked 

vascular calcification in the kidneys, impaired renal function and hypoglycemia. These 

differences between the mouse model and human FTC, either due to FGF23 or GALNT3 

mutations, can either be explained by residual function of FGF23 in humans or by 

inadequacy of the mouse model. A residual function may be explained by low levels of  
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mutated intact FGF23, but a physiological function of the abundant C-terminal fragment 

cannot be excluded. 

 

3.2 GALNT3 in familial tumoral calcinosis 

 
In a second family presenting the characteristic features of FTC with hyperphosphatemia 

mutations in the GALNT3 gene were found. Sequence analysis of the GALNT3 gene in the 

affected individuals (mother and son) revealed a homozygous missense mutation, encoding 

a p.G329R substitution (see results Fig. 22). These findings are consistent with autosomal 

recessive inheritance. The same homozygous mutation was found in the healthy daughter. 

Since the clinical manifestations of FTC may be variable (see introduction 3.1) and her 

mother was first diagnosed at the age of 44 years (Blay et al. 2001), underdiagnosis of the 

disease due to low penetrance or late onset could have occurred in this family member.  

GALNT3 is an N-acetylgalactosaminyltransferase responsible for the initiation of O-linked 

glycosylation. A nonsense mutation causing premature termination of protein translation 

and an aberrant splice site mutation in the GALNT3 gene have already been described in 

individuals with FTC (Topaz et al. 2004). The missense mutation p.G329R is situated 

between the catalytic domain and the ricin-like domain, in a linker region that contains 

several residues important for the maintenance of the three-dimensional enzyme structure 

(Fritz et al. 2004). This glycine (p.G329) is highly conserved among species (Schwientek 

et al. 2002) and within members of the same family (Bennett et al. 1999) suggesting an 

important role of this residue in the linker region. 
 
The fact that FTC can be caused by mutations in a glycosyltransferase, GALNT3, or in a 

glycosylated factor, FGF23, suggests that FGF23 could be a substrate of GALNT3. 

Elevated FGF23 levels have recently been reported in two families with FTC due to 

mutations in the GALNT3 gene (Topaz et al. 2004). Although we demonstrated that mature 

FGF23 contains O-linked sugars, it is unlikely that the serine substituted in FGF23-S71G is 

O-glycosylated. According to structure modeling, this serine is solvent inaccessible 

(Harmer et al. 2004) and would sterically not allow O-glycosylation. Nevertheless, our 

results do not exclude that FGF23 is O-glycosylated by GALNT3 in other candidate sites 

and further experiments are necessary to prove whether there is a physiological interaction 

between FGF23 and GALNT3. 
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4. FGF23 IN X-LINKED HYPOPHOSPHATEMIC RICKETS 

 
4.1. Does PHEX function as an endopeptidase? 

 
Studies with Hyp and Gy mouse models together with the phenotypic similarities between 

ADHR, XLH and TIO, suggested that PHEX, a type II membrane protein with 

endopeptidase activity, and FGF23, a circulating phosphaturic hormone, are involved in 

the same pathway of the phosphate homeostasis. Loss of function mutations of PHEX and 

gain of function mutations of FGF23 formed the basis for a hypothesis to explain the 

common pathogenesis of these hypophosphatemic disorders (see introduction 2). 

According to this hypothesis FGF23 might be a substrate of PHEX, but this has not been 

proven yet (Strewler 2001, Jan de Beur et al. 2002). 
 
PHEX contains key residues required for catalytic activity of small peptides (Campos et al. 

2003), but a defined physiological substrate remains to be identified. PHEX does cleave at 

the N-terminus of acidic amino acid residues (Asp or Glu) and has a strong preference for 

Asp (Boileau et al. 2001, Campos et al. 2003). This was shown by PHEX cleavage 

analysis of small internally quenched synthetic fluorogenic peptides (IQFP) (Campos et al. 

2003). 
 
Degradation of FGF23 by PHEX in an in vitro translation system has initially been 

reported (Bowe et al. 2001), but has not been confirmed by others. More likely, 

degradation in the in vitro translation system is caused by the presence of contaminating 

enzymes in the reticulolysate (Liu et al. 2003). FGF23 processing by PHEX was also 

excluded using co-expression of tagged FGF23 and tagged PHEX (Liu et al. 2003). 

Further, membranes from cells expressing recombinant PHEX have been used to assess 

endopeptidase activity on potential substrates. Reports concerning PHEX degradation of 

PTH are also inconsistent (Jean et al. 1995, Lipman et al. 1998). Guo et al. excluded 

PHEX cleavage of stanniocalcin 1, casein and a FGF23 peptide (amino acid 172-186) but 

reported specific cleavage of [Leu]enkaphalin (Guo et al. 2001). Boileau et al., using a 

secreted form of PHEX, showed that it cleaves PTHrP107-139 (Boileau et al. 2001).  
 
On the other hand, members of the FGF family, such as FGF3, are processed by SPC 

protease cleavage before further hydrolysis can occur. Antoine et al. showed that Xenopus 

and mouse Fgf3 homologs are proteolytically processed at RQRR or RLRR motifs, 
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respectively, from a 31 kDa form to a 27 kDa species with increased biological activity and 

alternatively extracellular cleavage by exogenous plasminogen was determined in vitro 

(Antoine et al. 2000).  

 

4.2 Co-incubation of FGF23 and PHEX in an optimized assay 

 
The purpose of this experiment was to minimize possible contaminating proteases. 

Therefore, I followed the strategy proposed by Boileau et al. (Boileau et al. 2001) to create 

a recombinant secreted form of the PHEX protein (see results Fig. 28) that allowed to work 

with conditioned medium from transfected cells (see results Figs. 29 and 30). Further, by 

using untagged PHEX and FGF23 was excluded possible interfering of tags with the 

cleavage process. Recombinant secPHEX catalytic activity was demonstrated by the 

degradation of PHTrP107-139 (see results Figs. 31 and 32).  
 
In this assay, secPHEX failed to hydrolyze intact FGF2325-251 (see results Figs. 33 and 35) 

thereby excluding the possibility that PHEX in addition to SPCs cleaves FGF23 at the 

RHTR site. Also, the N-terminal (FGF2325-179 and FGF2325-178) and C-terminal (FGF23180-

251) fragments were not processed (see results Figs. 33 and 35) providing evidence against 

the possibility that FGF23 is cleaved at the sites detected within peptides derived from 

PHTrP107-139, FGF23 and MEPE (Campos et al. 2003, Boileau et al. 2001).These results do 

not exclude the possibility that co-factors are required for the processing of the FGF23 

protein by PHEX (Benet-Pagès et al. 2004). 
 
On the other hand, it is unlikely that PHEX substrate specificity observed within small 

synthetic peptides can be extended to larger proteins due to incompatible three-

dimensional structures that limit enzyme substrate interactions. The PHEX protein is 

similar to the NEP family of zinc metallopeptidases in several functional aspects such as 

conservation of the residues important for sequestering the zinc ion, stabilization of the 

transition state, and catalysis (Turner et al. 2001). The natural substrates for NEP are small 

(< 3 kDa), and this is also likely for PHEX (Oefener et al. 2000, Campos et al. 2003). 

Therefore, intact FGF23 (30 kDa) as well as N- and C- terminal fragments (18 kDa and 12 

kDa) would be excluded as substrates because of their size. 
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Finally, since phosphaturic activity in vivo has only been ascribed to intact FGF23 so far, 

SPCs are likely to regulate FGF23 activity by inactivation whereas further processing of 

FGF23 may not have biological relevance at least in phosphate regulation.  

 

4.3 PHEX proteolytic function remains unclear 

 
Although other potential PHEX substrates such as MEPE (Guo et al. 2002) and DMP1 

(Lemire et al. 1997) have been proposed, cleavage by PHEX has not been proven yet. 

PTHrP107-139 is the only naturally occurring, small-peptide substrate cleaved by PHEX 

(Boileau et al. 2001). Bony fish is the simplest organism containing a PHEX ortholog. 

However, PTHrP107-139 is absent in bony fish (Bianchetti et al. 2002), suggesting that 

PTHrP107-139 either is an unlikely PHEX substrate or has emerged as an alternative 

substrate in higher organisms. 
 
Notably, it has been demonstrated in vitro that PHEX binds but does not cleave MEPE 

(Guo et al. 2002, Rowe et al. 2004) and osteocalcin (Boileau et al. 2001). Further 

experiments are needed to confirm the nature of PHEX and its cell-surface interactions 

with MEPE, osteocalcin, and perhaps other matrix proteins. Moreover, since KELL protein 

binding to the XK protein does not implicate proteolytic cleavage (Lee et al. 1999, 2000, 

2003), it is reasonable to speculate that PHEX may well function as a matrix-protein 

ligand. 
 
The fact that FGF23 cannot be cleaved by PHEX leaves the question open whether PHEX 

may regulate FGF23 action by another mechanism than enzyme/substrate interaction. 

Recent results obtained in the double compound Hyp/Fgf23 null mice showed elevated 

serum phosphate levels that were indistinguishable from those of Fgf23 -/- animals (Sitara 

et al. 2004). This data provides further evidence that Phex is either directly or indirectly 

involved in the regulation or degradation of FGF23. An alternative hypothesis is that 

inactivating PHEX mutations can somehow upregulate FGF23 expression (Liu et al. 

2003). This would suggest that increased circulating FGF23 in Hyp mice and in patients 

with XLH might be due to increased synthesis rather than reduced clearance. Furthermore, 

other possible PHEX substrates remain to be determined in order to elucidate the function 

of PHEX within phosphate homeostasis. 
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5. A MORE COMPLEX MODEL TO EXPLAIN PHOSPHATE REGULATION  

 

The data provided in this study unravelled novel protein interactions of FGF23 that play an 

important role in modulating FGF23 function and therefore have physiological relevance 

in the hypophosphatemic disorders (Fig. 38). The experiments I performed demonstrated 

that FGF23 is cleaved by SPCs and this cleavage must be physiologically relevant since 

mutations disrupting the cleavage motif site are responsible for ADHR.  
 
The demonstration that FGF23 can cause FTC, which is characterized by 

hyperphosphatemia, provided additional evidence about the importance of FGF23 in the 

regulation of phosphate homeostasis and suggests that FGF23 interacts with GALNT3, a 

glycosyltransferase that could be responsible for O-glycosylation of FGF23. It can be 

concluded that FGF23 mutations in hypophosphatemic rickets and FTC have opposite 

effects on phosphate homeostasis. Finally, the construction of an assay to test possible 

PHEX substrates demonstrated that PHEX does neither cleave FGF23 before nor directly 

after SPCs processing. 
 

 
Fig. 38. Proteins involved in the modification of FGF23. FGF23 is cleaved by a subtilisin-like proprotein 
convertase (SPC) at the RXXR site whereas FGF23 proteolytic cleavage by PHEX could not be confirmed, 
leaving the question open whether FGF23 interacts with PHEX in a non-proteolytic way. In addition, FGF23 
is O-glycosylated most likely by GALNT3. 
 
 
Although our results showed that the model proposed has support for ADHR and TIO, 

there are a number of inconsistencies with regard to XLH, that raise concerns about 

whether a simple enzyme/substrate hypothesis is correct (see introduction 4). The 
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demonstration that other hormones such as FRP4 and MEPE are also overexpressed in TIO 

tumors and that MEPE causes inhibition of mineralization in vivo (Gowen et al. 2003), 

indicates that the pathophysiological mechanisms in these disorders are more complex. 

Since the bone phenotype in ADHR patients as well as in Hyp mice is not completely 

rescued by dietary phosphorus and vitamin D supplementation, a primary osteoblast defect 

has been suggested to cause these disorders in addition to renal phosphate wasting. 

Whether FGF23 has direct effects on bone mineralization has not been described yet.  
 
Although the physiological function of FGF23 is not completely understood, there is 

strong evidence that indicates a very specific and independent effect of FGF23 in the 

regulation of phosphate homeostasis. Further studies will be important to understand the 

significance of the FGF23 cleavage as well as the possible function of FGF23 cleavage 

fragments. Identifying specific receptors for FGF23 will also generate valuable 

information about extra-renal or extra-skeletal actions as well as potential autocrine or 

paracrine actions of FGF23.
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