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Zusammenfassung 
Stereopsis ist das Sehen räumlicher Tiefe durch binokulare  Disparität. Es ist erstaunlich, 
wie viel weniger fein wir Änderungen binokularer Disparität über Raum (Tyler, 1974; 
Prince and Rogers, 1998; Banks et al., 2004a)  und Zeit (Norcia and Tyler, 1984) 
wahrnehmen als räumliche und zeitliche Veränderungen von Helligkeitskontrasten. Um 
die physiologische Grundlage dieses geringen räumlichen und zeitlichen stereoptischen 
Auflösungsvermögens zu untersuchen, habe ich die neuronale Antwort 
disparitätssensibler Zellen im primären visuellen Kortex (V1) von vier wachen Affen 
gemessen. 
 
Zur Untersuchung der physiologischen Grundlagen des räumlichen stereoptischen 
Auflösungsvermögens, habe ich die dreidimensionale Struktur von 55 rezeptiven Feldern 
in V1 mit Zufallspunktstereogrammen charakterisiert. Diese Stimuli variierten die 
Disparität als sinusoidale Funktion vertikaler Position (dichoptisch werden sie deshalb als 
Welle wahrgenommen). Wenn die räumliche Wellenfrequenz niedrig war, modulierten 
die Neuronen ihre Entladungsrate mit der zeitlichen Frequenz des Stimulus. Bei höheren 
räumlichen Frequenzen nahm diese Modulation ab. Die mittlere Entladungsrate änderte 
sich nur wenig. Sie entsprach ungefähr der Rate, die durch einen gleichförmigen Stimulus 
mit mittlerer Disparität der Welle hervorgerufen wurde. Bei 48/55 (91%) der Neuronen 
war die Modulationsstärke eine Tiefpassfunktion der räumlichen Frequenz. Diese 
Ergebnisse sprechen dafür, dass die rezeptiven Felder fronto-parallel planar ausgerichtet 
sind, und dass die Zellen weder disparitätsbasierte Umfeldhemmung zeigen noch für 
Disparitätsgradienten selektiv sind. Dieses Schema sagt eine Beziehung zwischen der 
Größe des rezeptiven Feldes und der räumlichen Eckfrequenz voraus. Meine 
unabhängigen davon erhobenen Messungen der rezeptiven Feldgröße standen mit dieser 
Vorhersage in Einklang. Alle diese Eigenschaften stimmen mit dem Ohzawa-Freeman-
Modell („binocular energy model“) überein, das funktionell einer binokularen 
Kreuzkorrelation entspricht. 
 
Um die physiologischen Grundlagen des zeitlichen stereoptischen Auflösungsvermögens 
zu untersuchen, bestimmte ich bei 59 Neuronen die Selektivität für die zeitlichen 
Frequenzen der Disparitätsvariation. Dafür verwendete ich Zufallspunktstereogramme, 
deren Disparität sich als Sinusfunktion der Zeit änderte. Die zeitlichen Frequenzen, für 
die die Zellen bei Variation von Disparität bzw. Helligkeitskontrast selektiv waren, 
korrelierten nicht miteinander, und die Eckfrequenzen waren durchschnittlich niedriger 
für Disparitätsvariation. Letztere korrelierten negativ mit der Latenz und 
Geschwindigkeit der neuronalen Antwort sowie mit der zeitlichen Integrationszeit 
(berechnet aus der Steigung der Phasen-Frequenzfunktion der neuronalen Antwort). 
Binokulare Kreuzkorrelation der zeitlich bandpassgefilterten monokularen Antworten 
kann alle diese Ergebnisse erklären.  
 
Die optimale zeitliche Frequenz für Disparitätsvariation war 2Hz. Das entspricht den 
Werten für die höchste psychophysikalische Sensitivität, die ich bei vier 
Versuchspersonen ermittelte (1.5-3Hz). Auch die mittlere räumliche Eckfrequenz, 0.5 
cpd ("cycles per degree") ist dem Wert, der in psychophysikalischen Experimenten mit 

 iii



äquivalenten Stimuli gemessen wurde, sehr ähnlich (Tyler, 1974; Prince and Rogers, 
1998; Banks et al., 2004a).  
 
Meine Ergebnisse sprechen dafür, dass das menschliche zeitliche und 
räumliche Auflösungsvermögen für Disparitätsänderungen von Neuronen in V1 begrenzt 
wird. Ein und derselbe Mechanismus, nämlich binokulare Kreuzkorrelation zwischen den 
monokularen Abbildern, erklärt sowohl für den Raum als auch für die Zeit, warum die 
Auflösung für Disparitätsänderungen so viel niedriger ist als die für Kontraständerungen. 
Gleichzeitig gelingt mit diesen Ergebnisse ein wichtiger Schritt dahin zu verstehen, wie 
Neurone das Stereokorrespondenzproblem (Julesz, 1971) lösen. 
 

 

Abstract 
Stereopsis is the process of seeing depth constructed from binocular disparity. The human 
ability to perceive modulation of disparity over space (Tyler, 1974; Prince and Rogers, 
1998; Banks et al., 2004a) and time (Norcia and Tyler, 1984) is surprisingly poor, 
compared with the ability to detect spatial and temporal modulation of luminance 
contrast. In order to examine the physiological basis of this poor spatial and temporal 
resolution of stereopsis, I quantified responses to disparity modulation in disparity 
selective V1 neurons from four awake behaving monkeys.  
 
To study the physiological basis of the spatial resolution of stereopsis, I characterized the 
three-dimensional structure of 55 V1 receptive fields (RF) using random dot stereograms 
in which disparity varied as a sinusoidal function of vertical position (“corrugations”). At 
low spatial frequencies, this produced a modulation in neuronal firing at the temporal 
frequency of the stimulus. As the spatial frequency increased, the modulation reduced. 
The mean response rate changed little, and was close to that produced by a uniform 
stimulus at the mean disparity of the corrugation. In 48/55 (91%) of the neurons, the 
modulation strength was a lowpass function of spatial frequency. These results suggest 
that the neurons have fronto-parallel planar receptive fields, no disparity-based surround 
inhibition and no selectivity for disparity gradients. This scheme predicts a relationship 
between RF size and the high frequency cutoff. Comparison with independent 
measurements of RF size was compatible with this. All of this behavior closely matches 
the binocular energy model, which functionally corresponds to cross-correlation: the 
disparity modulated activity of the binocular neuron measures the correlation between the 
filtered monocular images. 
 
To examine the physiological basis of the temporal resolution of stereopsis, I measured 
for 59 neurons the temporal frequency tuning with random dot stereograms in which 
disparity varied as a sinusoidal function of time. Temporal frequency tuning in response 
to disparity modulation was not correlated with temporal frequency tuning in response to 
contrast modulation, and had lower temporal frequency high cutoffs on average. The 
temporal frequency high cut for disparity modulation was negatively correlated with the 
response latency, the speed of the response onset and the temporal integration time (slope 
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of the line relating response phase and temporal frequency). Binocular cross-correlation 
of the monocular images after bandpass filtering  can explain all these results. 
 
Average peak temporal frequency in response to disparity modulation was 2Hz, similar to 
the values I found in four human observers (1.5-3Hz). The mean cutoff spatial frequency, 
0.5 cpd, was similar to equivalent measures of decline in human psychophysical 
sensitivity for such depth corrugations as a function of frequency (Tyler, 1974; Prince 
and Rogers, 1998; Banks et al., 2004a).  
 
This suggests that the human temporal and spatial resolution for stereopsis is limited by 
selectivity of V1 neurons. For both, space and time, the lower resolution for disparity 
modulation than for contrast modulation can be explained by a single mechanism, 
binocular cross-correlation of the monocular images. The findings also represent a 
significant step towards understanding the process by which neurons solve the stereo 
correspondence problem (Julesz, 1971). 
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Chapter 1 

Introduction 
 

“…a painting, though conducted with the greatest art and finished to the last perfection, 

both with regard to its contours, its lights, its shadows and its colours, can never show a 

relievo equal to that of the natural objects, unless these be viewed at a distance and with a 

single eye.” 

Leonardo da Vinci, Trattato della Pittura (cited in Wheatstone, 1838) 

 

1.1 Binocular disparity 
We usually perceive a visual scene in three-dimensions even though the images on our 

retinae are two-dimensional. This seemingly geometrical puzzle –seeing in three 

dimensions when the available visual information is only about two dimensions- is solved 

because the visual system actively constructs the percept of depth. A number of potential 

depth cues are available during monocular viewing, such as occlusion of a distant object 

by a closer one, shading, cues from texture gradients, atmospheric perspective, linear 

perspective cues, relative size of familiar objects or motion parallax (Gibson, 1950; 

Rogers and Graham, 1979; Uttal, 1981; Fitzpatrick et al., 1982; Rogers and Graham, 

1982; Horn and Brooks, 1989; Anderson and Nakayama, 1994). A particularly potent 

depth cue requires dichoptic viewing: “binocular disparity”, small positional shifts of 

matching features in the left and right retinal images relative to the fovea. Stereopsis, the 

process of seeing depth constructed from binocular disparity was first described by 

Wheatstone (1838). In this thesis I will study some of the ways in which the 
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physiological mechanisms for detecting disparity place limits on the psychophysical 

ability to perceive the disparities.  

 

Since our eyes are located in the front of the head the largest part of the visual field is 

projected on both retinae. But because of the horizontal separation of the eyes even the 

overlapping portion of these projections are not identical.  

    

F

A

0 
αralαl

Figure 1.1 Binocular disparity. The two eyes fixate on F, and the images of F fall on the 
fovea of both eyes. The positions of the image of point A on the retina are al and ar, and 
their angular distance to the fovea αl and αr. The difference d = αl - αr is defined as 
binocular disparity.  
 
 
Imagine an observer fixating on some point in the visual scene (fixation point F in Figure 

1.1). The images of F therefore fall on the fovea of both eyes. And the images of any 

other point in the visual field (A) fall on the position al and ar on the left and right retina 

relative for the fovea. Taking the fovea as a point of reference, the positions al and ar can 

be expressed as a function of the angles αl and αr. Binocular disparity is defined as the 

difference between these two angles. As the separation of the eyes is horizontal the main 

disparity component during normal viewing is along a horizontal axis (Helmholtz, 1867; 

Longuet-Higgins, 1982; Read and Cumming, 2004)1. Using images of randomly 

                                                           
1 Vertical disparities occur mainly when an object is very close to the observer. They are used to maintain 
alignment of the eyes (Mayhew and Longuet-Higgins, 1982;  Howard and Rogers, 1995) and may play a 
critical perceptual role under some conditions (Rogers and Bradshaw, 1993; Backus et al., 1999; Berends 
and Erkelens, 2001; Brenner et al., 2001; Berends et al., 2002). In this thesis I only examined horizontal 
disparity. If not specified otherwise, I mean horizontal disparity whenever I use the term disparity. 
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distributed black and white dots (random dot stereograms, RDS), Bela Julesz, (1971) 

showed that horizontal disparity alone was sufficient to produce the perception of depth.  

 

 
   

Figure 1.2 Random dot stereogram. When the random dot images are fused central circle 
is perceived as standing out in depth (further away from to the observer). 
 

Figure 1.2 shows an example of a random dot stereogram. Both, the left and right panel 

contain randomly distributed dots. Both panels seem to be identical with all dots being in 

corresponding positions. But in a circular central region the dots in the right panel are 

shifted horizontally relative to their counterparts in the left panel. When fusing the two 

RDS, this gives the impression of a central circle standing out in depth. The information 

about the circle is not available monocularly. It only is available when the visual system 

combines information from the two eyes and makes use of the binocular disparity. The 

ability to perceive depth in these stimuli suggests that the relevant information for 

stereopsis is extracted early in the visual system, prior to object recognition (Julesz, 1971; 

Poggio and Poggio, 1984). Random dot stereograms allow one to study the processes 

relevant for stereopsis independent of the monocular processes. For this thesis all the 

experiments on binocular disparity and stereopsis were therefore conducted with these 

kinds of stimuli. Because random dot stereograms contain only two types of features, 

black and white dots, these stimuli are also apt to study the “stereo correspondence 

problem” (Julesz, 1971): In a visual scene only one match between features in the left and 

right eyes’ images gives rise to the appropriate disparity (“correct match”) but there are 

often other matches possible (“false matches”). In order to perceive depth from images 
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which contain correct and false matches, the perceptual system therefore needs to solve 

the correspondence problem and find the appropriate matches.  

 

 

1.2 Neurophysiological studies of disparity selectivity  

1.2.1 Primary visual cortex 
The primary visual cortex (Brodmann area 17, V1) is the largest known visual area in the 

brain (Zeki, 1990; Tootell et al., 1998), with well defined anatomical boundaries both in 

the human (e.g. Brodmann, 1909; von Economo and Koskinas, 1925; Stensaas et al., 

1974) and in the macaque (reviewed in Felleman and Van Essen, 1991). The macaque 

striate cortex is largely located within the calcarine sulci and on the operculum of the 

occipital gyrus, extends rostrally almost to the lunate sulcus and posterolaterally almost 

to the inferior occipital sulcus (Figure 1.3).  

 

Figure 1.3 Schematic lateral view of the macaque cortex. The striate cortex (V1, 
outlined) extends over the majority of the occipital cortex between the lunate sulcus and 
inferior occipital cortex. After (Albright, 1993).  
 
There is evidence from electrophysiological (Talbot and Marshall, 1941; Daniel and 

Whitteridge, 1961; Hubel and Wiesel, 1974; Guld and Bertulis, 1976; Van Essen and 

Maunsell, 1980; Dow et al., 1981), histochemical (Tootell et al., 1982; Tootell et al., 

1988b), optical imaging (Grinvald et al., 1986; Blasdel and Salama, 1986; Ts'o et al., 

1990) and functional MRI (Dubowitz et al., 2001; Van Essen et al., 2001; Brewer et al., 

2002) studies that it contains an entire retinotopically organized map of visual space. V1 

is divided between the two hemispheres with each side representing the contralateral half 
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of visual space. In the macaque, approximately half of the striate cortex on one 

hemisphere is located on the operculum2 representing about the central 8 degrees of the 

contralateral visual field (Blasdel and Campbell, 2001), with the center represented 

laterally and the visual field inverted around the horizontal axis.  

The striate cortex receives its main ascending input from the lateral geniculate nucleus 

(LGN) (e.g. Hubel and Wiesel, 1972; LeVay and Gilbert, 1976; Hendrickson et al., 1978; 

Blasdel and Lund, 1983). In the primate, most visual information is funneled through V1 

before ultimately reaching the rest of visual cortex (reviewed in Felleman and Van Essen, 

1991), which may functionally explain the overwhelming number of connections of V1 

with other visual areas (Zeki and Shipp, 1988). For V1, direct connections to (and 

projections from) have been identified for areas including V2, V3, V3A, V4, V4t, MT, 

STS, TEO, TE, TO, PO, PIP (Zeki, 1971; Maunsell and van Essen, 1983; Burkhalter et 

al., 1986; Perkel et al., 1986; Ungerleider and Desimone, 1986a, b; Felleman et al., 1987; 

Livingstone and Hubel, 1987; Colby et al., 1988; Shipp and Zeki, 1989; Boussaoud et al., 

1990; Rockland and Van Hoesen, 1994). 

 

While the input from the ipsi- and contralateral eye remains segregated in different layers 

in the LGN (Casagrande and Norton, 1991) the majority of the neurons in primary visual 

cortex receive binocular input (Hubel and Wiesel, 1970). Primary visual cortex is 

therefore the first stage in the visual pathway where binocular information is combined 

on one neuron, i.e. thus the first stage where- theoretically- specialization for disparity 

selectivity is possible.  

 

Visual neurons only respond to stimuli whose projections fall onto a restricted region on 

the retina. This area is defined as the “receptive field” (Hartline, 1938, 1940) of a neuron. 

This original rigorous formulation of the receptive field had to be somewhat modified. It 

is now well established that responses of neurons can be modulated from outside their 

classical receptive field (Maffei and Fiorentini, 1976; Li and Li, 1994; for review see 

Allman et al., 1985a), and the non-classical surround of the receptive field itself displays 

                                                           
2 Note that the extension on the operculum in the macaque differs from the human where V1 is mainly 
restricted to the medial surface on the brain (Wandell, 1999). As a consequence, the representation of the 
fovea is on the lateral bank of the occipital operculum in the monkey but medial in the human. 
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variable degrees of temporal and spatial selectivity (e.g. Allman, et al., 1985b; Sillito et 

al., 1995; Levitt and Lund, 1997; Walker et al., 1999, 2000; Freeman et al., 2001; 

Cavanaugh et al., 2002; Walker et al., 2002; Bair et al., 2003). These interactions 

complicate measurements of the receptive field. Nonetheless, the concept of a receptive 

field remains central for understanding the computations performed by visual neurons. In 

chapter 3 I will compare predictions of receptive field size obtained for responses to 

disparity modulating gratings with my independent measurements of receptive field size.  

 
There is a wealth of visual stimulus dimensions for which V1 neurons are specialized, 

including selectivity for orientation, stimulus size, temporal and spatial frequency, 

velocity, direction, binocularity, binocular disparity, wavelength (Barlow et al., 1967; 

Hubel and Wiesel, 1968; Poggio et al., 1975; Schiller et al., 1976a, b, c; Movshon et al., 

1978c; Orban et al., 1981; De Valois et al., 1982; Foster et al., 1985; Orban et al., 1986; 

Tootell et al., 1988a, c-e). The first of these functional specializations characterized for 

neurons in striate cortex was orientation selectivity (Hubel and Wiesel, 1968). These 

authors also identified an important distinction between two classes of V1 neurons, 

simple and complex cells. The responses of simple cells can essentially be described by 

linear spatio-temporal filtering of contrast (Movshon et al., 1978a; Andrews and Pollen, 

1979; Kulikowski and Bishop, 1981; for review see Carandini, 1999). The responses of 

complex cells are dominated by a non-linear transformation of contrast (Movshon et al., 

1978b). These properties have important consequences for the neuronal responses to 

drifting sinusoidal luminance gratings: the main feature of simple cell responses is 

modulation at the stimulus frequency (f1-component), whereas the response of complex 

cells is dominated by an unmodulated increase in overall firing (f0-component). Relative 

modulation of the response, defined as the ratio f1-component/f0-component has been 

used to classify V1 neurons into simple or complex cells (Movshon et al., 1978a; Skottun 

et al., 1991). In this thesis I use a similar metric (relative modulation in response to 

sinusoidal disparity modulation) to measure spatial and temporal frequency tuning to 

variation in disparity.  
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1.2.2 Selectivity for binocular disparity in V1 
Since the first published reports of visual neurons that responded selectively to a 

particular disparity and not to others in the primary visual cortex of anaesthetized cats 

(Barlow et al., 1967; Pettigrew et al., 1968) it was speculated that these neurons might 

represent the basic mechanism underlying depth discrimination. These researchers 

examined binocular responses to oriented bars influenced by Hubel and Wiesel’s reports 

(Hubel and Wiesel, 1968) that cortical neurons only responded to the appropriate specific 

stimulus (“trigger feature”), such as bars or edges. After initially being denied in 

anesthetized monkeys (Hubel and Wiesel, 1970), the existence of disparity selective V1 

neurons in response to bars was subsequently confirmed in awake monkeys (Poggio et 

al., 1977). Poggio and colleagues (Poggio and Talbot, 1981; Poggio et al., 1985; Poggio 

et al. 1988; Poggio, 1990) found that a large number of the V1 neurons in awake 

behaving macaques were also selective for binocular disparity when presented with 

random dot stereograms, i.e. in the absence of any monocular cue. Comparing the range 

and sharpness of tuning of the cells they recorded to stereoscopic abilities of humans and 

monkeys, they concluded that V1 neurons were likely to be part of the mechanism 

leading to depth perception. More recently (Prince et al., 2000) rigorously compared how 

reliably single neurons discriminate disparity (neurometric thresholds) in alert monkeys 

with simultaneously measured psychometric thresholds of the animals in a binocular 

disparity discrimination task. In this study, the signals of a small number of V1 neurons 

could support the psychophysical precision of stereoacuity. But there is evidence that V1 

neurons do not straightforwardly account for the perception of depth from binocular 

disparity. First, these neurons signal binocular disparity in anticorrelated random dot 

stereograms (each bright dot is paired with a dark dot and vice versa) (Cumming and 

Parker, 1997), because these neurons respond to local matches. But anticorrelated RDS 

do not result in a sensation of depth neither in humans nor monkeys (Cogan et al., 1993; 

Cumming and Parker, 1997), since there is no “global solution” (Julesz, 1971) to the 

correspondence problem. [In contrast, neurons with selective responses to correlated but 

not to anticorrelated RDS have been reported recently in inferior temporal cortex, 

(Janssen et al., 2003).] Second, it was shown that binocular V1 neurons encoded the local 

disparity of a grating stimulus (which is ambiguous because of cycle repetitions), not to 
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the perceived depth of an observer when the stimulus is rendered unambiguous by an 

aperture (Cumming and Parker, 2000). Finally, there is compelling evidence that 

stereoscopic depth judgments are based on relative disparities (i.e. the relative disparity 

between different visual features) rather than absolute disparities (i.e. the disparity 

relative to the fovea) in humans (Westheimer, 1979; Erkelens and Collewijn, 1985; 

Kumar and Glaser, 1992) and monkeys (Prince et al., 2000). But the responses of neurons 

in striate cortex correspond to absolute disparity signals and are not consistent with 

signaling relative disparity, (Cumming and Parker, 2000).  

It still seems likely that this early processing of binocular disparity places some limits on 

stereoscopic performance (Prince et al., 2000; Cumming and DeAngelis, 2001). (In a 

similar way, the activation of individual photoreceptors is very indirectly linked to our 

perception of form, but imposes limits on spatial acuity.) 

 

1.2.3 The energy model for binocular disparity in V1 
Many of the properties of disparity selective neurons in V1 (Ohzawa and Freeman, 

1986b; Prince et al., 2002a) can well be described by the binocular energy model 

(Ohzawa et al., 1990; Fleet et al., 1996; Zhu and Qian, 1996; Ohzawa et al., 1997a, b) 

(Figure 1.4). This model was initially developed to explain disparity tuning of neurons in 

area 17 of the cat (Ohzawa, 1990). Figure 1.4 schematically depicts a complex cell 

selective for zero disparity. It consists of four disparity selective simple-cell sub-units 

[consistent with quantitative results for simple cells in response to luminance gratings 

reported by Ohzawa and Freeman, (1986a) for the cat]. The monocular receptive fields of 

each simple cell are Gabor-shaped spatial filters (DeAngelis et al., 1991). Output from 

the monocular filters is half-wave rectified (Heeger, 1991, 1993) and squared before 

converging onto a disparity selective complex cell. All simple cell sub-units are selective 

for the same disparity (in Figure 1.4, this disparity is zero). When the subunits are in 

quadrature (90° phase shift of the sine-component of the Gabor-filter between s1 and s3 

or s2 and s4 respectively) the complex cell responds independently of stimulus phase. 

Due to the rectification it is nonetheless selective for disparity3.  

                                                           
3 Note that as a first approximation the energy model provides an excellent description of the neuronal data. 
Nonetheless, a number of quantitative features have been identified (reviewed in Cumming and DeAngelis, 
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s1

s2

s3

s4

 
Figure 1.4 The binocular energy model for disparity. Modified from (Cumming and 
DeAngelis, 2001) after (Ohzawa et al., 1990). The complex cell is tuned to zero disparity. 
It is constructed from four binocular simple cells tuned to zero disparity which are in 
pairs of quadrature phase{s1,s3}, {s2,s4}. 
 

It can be shown that the computation performed by the energy model is equivalent to a 

cross-correlation of monocular images (Adelsen and Bergen, 1985; Fleet et al., 1996; 

Qian and Zhu, 1997; Anzai et al., 1999a): assume L and R are the output of the left and 

right monocular receptive fields, respectively of one simple cell subunit. The output of 

the simple cell subunit is then: 

(L+R)2 = L2 + R2 + 2LR, where the last factor, 2LR, causes the simple cell to be disparity 

selective, and it corresponds to  cross-correlation between the left and right images. In 

chapter 3, I will compare model simulations based on a modification of the binocular 
                                                                                                                                                                             
2001) that are not captured by this original energy model but by a simple extension invoking a threshold 
non-linearity before binocular combination (Read et al., 2002; Read and Cumming, 2003b). 
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energy model using two-dimensional receptive fields (Bridge et al., 2001) with my 

neuronal results. In chapter 4, I will compare my data with a simulation performing a 

cross-correlation of the monocular images. 

  

 

1.2.4 Selectivity for complex disparity features 
all studies that have used 

stions using a stimulus that permitted me to explore the three-

Most studies of disparity selectivity in striate cortex including 

random dot stereograms have only explored responses to planar, fronto-parallel surfaces 

at different depths (DeAngelis, 2000). Conversely, typical three-dimensional scenes 

contain many irregular surfaces. There may therefore be some advantage to constructing 

receptive fields that are selective for surfaces more complex than fronto-parallel patches. 

There is evidence that some extrastriate cortical areas show selectivity for three-

dimensional slant (Shikata et al., 1996; Sakata et al., 1999; Tsutsui et al., 1999; Hinkle 

and Connor, 2002; Sugihara et al., 2002; Nguyenkim and DeAngelis, 2003;Taira et al., 

2000), or for higher order disparity features (Janssen et al., 1999; Janssen et al., 2000a, b; 

Janssen et al., 2001; Tanaka et al., 2001). Such responses may simply be inherited from 

complex three-dimensional receptive fields in V1 (if those exist). Alternatively, the 

striate cortex may contain a piecewise fronto-parallel depth map, from which the 

responses in extrastriate cortex are constructed. In such a scheme, the size of the patches 

in V1 would place limits on the spatial acuity of the three-dimensional maps in 

extrastriate cortex.  

I investigated these que

dimensional structure of the receptive field. The stimulus was a random dot pattern in 

which the disparity was a sinusoidal function of position, producing a grating in depth, 

(“corrugation”). In principle, the linear superposition of a series of such corrugations can 

be used to generate any three-dimensional surface [Fourier synthesis in the disparity 

domain- in analogy to its use for studies of luminance-contrast (Enroth-Cugell and 

Robson, 1966; Campbell and Robson, 1968; Maffei and Fiorentini, 1973; Kulikowski and 

Bishop, 1981; Kulikowski et al., 1982; Enroth-Cugell and Robson, 1984; Shapley and 

Lennie, 1985)]. I will present this work in chapter 3. 
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1.2.5 Temporal resolution for disparity modulation 
quency up to which 

was studied whether neurons were selective for disparity changes over time 

reograms 

.3 Spatial resolution for disparity modulation in human 

tudied the spatial acuity for detecting disparity modulation by using 

To my knowledge, there are no published reports on the temporal fre

disparity selective neurons –in striate or extrastriate cortex- signal modulation in 

disparity.  

Instead, it 

(motion in depth). Poggio and Talbot, (1981) found a small percentage of macaque V1 

neurons sensitive to opposite directions of image motion in the two eyes, and concluded 

that these cells were tuned for motion in depth. Maunsell and Van Essen, (1983) clarified 

that selectivity for a fixed disparity would have been sufficient to give rise to an apparent 

tuning for motion in depth in the above study. These authors recorded from middle 

temporal neurons of awake macaque monkeys and did not observe selectivity for motion 

in depth that could not be explained in terms of selectivity for a fixed disparity. 

By examining the responses of disparity selective V1 neurons to random dot ste

whose disparities modulate sinusoidally over time, I will be able to directly address both 

of these questions. I will do so in chapter 4. 

 

1

psychophysics 
 Tyler, (1973) first s

vertical line stimuli. If one eye was presented with a straight vertical line and the other 

with a wavy vertical line, this produced binocularly the percept of a line curved 

sinusoidally in depth. Tyler found that human subjects could detect depth modulations of 

the line up to about 3 cycles per degree (cpd). But when the wavy line was viewed 

monocularly, the undulations could be seen at spatial frequencies above 30 cpd [which 

agrees with the values for spatial acuity of contrast detection (e.g. Sekuler, 1974)]. Tyler 

subsequently replicated his findings on the spatial resolution for disparity modulation 

with random dot stereograms (1974). Presumably because this resolution is surprisingly 

low when considering the high acuity to detect luminance structure or stereo-acuity, 

several comparable studies have been conducted (Tyler, 1974; Schumer and Ganz, 1979; 

Howard and Rogers, 1995; Prince and Rogers, 1998; Bradshaw and Rogers, 1999; Banks 
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et al., 2004a), with very similar results. Banks et al., (2004a) showed that the poor 

resolution for disparity modulation cannot be explained by stimulus properties. The 

stimulus I use to explore the three-dimensional receptive field structure of the V1 neurons 

is equivalent to the random dot stereograms used in the above psychophysical studies. In 

chapter 3 I will therefore directly compare my neuronal findings with those from human 

psychophysics. These data may help to understand some of the limiting factors in the 

perception of shape from disparity. 

 

1.4 Temporal resolution for disparity modulation in human 

hers examined how sensitivity for disparity varied as a function of 

collected for striate neurons. 

psychophysics 
A number of researc

temporal frequency using isolated line (Tyler, 1971; Regan and Beverley, 1973; Beverley 

and Regan, 1974) or bar stimuli (Regan and Beverley, 1973). Despite considerable 

differences in the experimental paradigms, these studies roughly agreed that disparity 

thresholds were lowest between 1-2Hz. For all experiments conducted with line stimuli, 

the perception of depth failed above 4-6Hz, and in the study using bar stimuli, two 

transparent bars were seen at different depth above 4Hz. However, in all these 

experiments the monocular half-images contain a sufficient stimulus for apparent motion. 

The highest temporal frequency up to which human subjects can see disparity modulation 

in the absence of monocular motion cues was first investigated by Julesz and Payne using 

random dot stereograms (Julesz and Payne, 1968). They reported that apparent motion 

was perceived up to approximately 5Hz and that above frequencies of about 10Hz, two 

transparent planes were seen. Similarly, Norcia and Tyler (1984) observed 6Hz as the 

highest frequency for detecting motion in depth. They described that above this 

frequency, up to about 14Hz “depth pulsations” could be seen. These studies only 

determined absolute resolution and did not examine the variation of disparity sensitivity 

as a function of temporal frequency. In chapter 4 I will present disparity sensitivity 

functions as a function of depth modulation frequency that I measured in four human 

subjects in order to compare these with the temporal frequency tuning properties I 
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1.5 Aims of this thesis 
1) To study the three-dimensional receptive field structure of disparity selective 

neurons of the striate cortex and to investigate the role played by these neurons in 

the representation of complex three-dimensional surfaces. I will use novel stimuli 

that allow me to apply the power of Fourier analysis in the disparity domain. I 

will present this analysis in chapter 3. 

2) To compare my neuronal results on the three-dimensional receptive field structure 

with model simulations based on a variant of the energy model for binocular 

disparity (Bridge et al., 2001). I will include the results of these simulations 

whenever they are relevant for the interpretation of the neuronal findings and will 

in addition summarize them at the end of chapter 3. 

3) To quantify the ability to signal spatial variation of disparity in V1 neurons and to 

compare these measures with the well known values of human spatial resolution 

for disparity modulation. I will report this in chapter 3. 

4) To examine the temporal frequency tuning for disparity modulation of disparity 

selective neurons in the striate cortex. This is the first study of temporal frequency 

tuning for disparity modulation. I will try to understand the properties underlying 

the temporal frequency tuning for disparity modulation by comparing it with 

temporal frequency tuning in response to contrast, speed of the response onset and 

temporal integration time. I will also use a novel approach to investigate whether 

these neurons are selective for signaling motion in depth. I will present this work 

in chapter 4. 

5) To measure psychophysically the disparity sensitivity as a function of disparity 

modulation frequency in human subjects. In order to understand some of the 

limiting temporal factors for perceiving changes in a three-dimensional scene 

from disparity, I will compare these results with the temporal frequency tuning in 

response to disparity modulation. I will present this comparison in chapter 4. 
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Chapter 2 

Gen
 

2.1 A
For monkeys Hg and Rb, all procedures were carried out in accordance with the U.K. 

Home Office regulations on animal experimentation. For monkeys Df and Rf, all 

procedures complied with the Public Health Service policy on the humane care and use of 

laboratory animals and all protocols were approved by the Institute Animal Care and Use 

Committee.  

 

I studied neurons in striate cortex (V1) of one female (Rb) and three male (Df, Hg, Rf) 

alert monkeys (Macaca mulatta). In a surgical procedure under general anesthetic, the 

animals were implanted with a head fixation post and scleral eye coils in both eyes 

(Judge et al., 1980).  

The monkeys were then trained to maintain fixation on binocular visual stimuli for fluid 

reward. 

 

2.2 St
The vis pan; 

or monkeys Hg and Rb) and EIZO Flexscan F980 monitors (for monkeys Df and Rf), 

d were viewed at a distance of 89 cm in a Wheatstone stereoscope configuration 

through two small mirrors. The mirrors had a diameter of 18 mm (for monkeys Hg and 

b) and 30 mm (for monkeys Df and Rf), and were positioned about 1.5cm in front of the 

eral methods 

nimal training and surgical procedures 

imulus display for electrophysiology 
ual stimuli were displayed on two EIZO Flexscan 78 monitors (Ishikawa, Ja

f

an

R
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an

st

imals´ eyes. A Silicon Graphics workstation (Mountain View, California) generated the 

imuli at a mean luminance of 37 or 42 cd.m-2, maximum contrast of 99% and at a frame 

te of 72 Hz.  

 

.3 Eye movement recordings 
search system (C-N-C Engineering) measured the positions of both 

m trials in which fixation was maintained (to within 0.4 – l degree, 

yzed. 

.4 Unit recording 
odes (Merrill and Ainsworth, 

 response field of each neuron was initially mapped by hand with a high-

ontrast bar of approximately preferred orientation. Stimuli were then centered over the 

ays checked offline. Spike wave forms (voltage changes over time, 

he right panel two metrics (spike width as a function of spike amplitude) are 

lotted for each spike form. For the cluster on the right, values of these metrics are 

 a single unit (selected by the 

ra

2
A magnetic scleral 

eyes. Only data fro

depending on monkey) were anal

 

2
I recorded extracellularly with tungsten in glass microelectr

1972); monkeys Hg and Rb) and glass-coated platinum-iridium electrodes (FHC, Inc.; 

monkeys Df and Rf), introduced transdurally into the striate cortex each day of recording. 

The signal was amplified (Bak Electronics, Mount Airy, MD), filtered (200 Hz to 5 kHz), 

digitized (32 kHz), then stored to disk (using the Datawave discovery system). 

The minimum

c

minimum response field. 

 

2.5 Off-line isolation of single units 
Unit isolation was alw

aligned by their first peak) for one two second trial are shown in the left panel of Figure 

2.1. In t

p

similar, and waveforms are considered to originate from

black frame). The waveforms corresponding to the values within this window are drawn 

in black in the left panel. 
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Figure 2.1 The left panel depicts spike-waveforms (voltage as a function of time) in one 
trial superimposed on one another. In the right panel the width (ordinate) is plotted as a 
function of spike amplitude (abscissa) for each spike. The spikes within the window 
correspond to spikes with similar values for these metrics and therefore are considered to 
represent signals from one neuronal unit. 
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Chapter 3 

Three-dimensional receptive field structure of 

1 ns an  s atial a uit  fo ting 

lthough many natural surfaces are slanted or curved in depth, most physiological 

tudies of disparity in V1 have examined neurons only with fronto-parallel surfaces at 

ifferent depths (DeAngelis, 2000). It has been shown that some extrastriate cortical 

reas respond selectively to three-dimensional slant (Shikata et al., 1996; Sakata et al., 

999; Tsutsui et al., 1999; Sugihara et al., 2002; Nguyenkim and DeAngelis, 2003), or to 

e shape and curvature of disparity defined surfaces (Janssen et al., 1999). The question 

am asking here is whether such responses are inherited from complex three-dimensional 

eceptive fields in V1 or whether the striate cortex contains a piecewise fronto-parallel 

epth map, from which the responses in extrastriate cortex are constructed. In such a 

cheme, the size of the patches in V1 would place limits on the spatial acuity of the three-

imensional maps in extrastriate cortex, and on the cyclopean spatial acuity of the 

bserver.  

o investigate this question I used random dot patterns in which disparity varied as a 

inusoidal function of vertical position, producing a grating in depth (“corrugation”). In 

principle, the linear superposition of a series of such corrugations can be used to generate 

 

V neuro  d p c y r detec

disparity modulation 
 

.1 Introduction 3
A

s

d

a

1

th

I 

r

d

s

d

o

 

T

s

 17



an

th

y three-dimensional surface (Fourier synthesis in the disparity domain). This stimulus 

erefore allowed me to explore the three-dimensional structure of the receptive field 

F). In order to evaluate the significance of my findings, I also explored the responses 

of model neurons to disparity corrugations. These were modifications of the energy 

odel (Adelson and Bergen, 1985; Ohzawa et al., 1990; Fleet et al., 1996), using two-

dimensional receptive fields (Bridge et al., 2001).  

ata are the first to examine neuronal responses to 

such stimuli, and hence the first time that the power of Fourier analysis has been applied 

 the study of three-dimensional receptive field structure.  

Disparity tuning was measured using circular patches of dynamic random dot 

stereograms (RDS). In order to keep mean luminance constant, the RDS consisted of 

equal numbers of randomly distributed black and white dots of 99% contrast (0.1x0.1° 

size and with an overall density of 50%) on a mid-grey background. A new RDS was 

presented in each video frame. The RDS was centered on the minimum response field 

and extended beyond its limits. The disparity of the central region of the RDS varied 

from trial to trial, while a surrounding annulus (0.5- 2° wide) was kept at zero disparity. 

The width of the annulus was always greater than the largest disparity used, eliminating 

monocularly detectable changes in the stimuli and keeping variation of vergence to a 

minimum. If the neuron exhibited sensitivity to disparity, responses to sinusoidal 

modulations of disparity (corrugations, Figure 3.1A) were studied. The disparity defined 

grating was drifted across the receptive field at a temporal frequency of 2 Hz. The 

(R

m

 

Such corrugation stimuli have also been used to determine the cyclopean spatial acuity of 

human observers (for review see Rogers and Howard, 1995). I will therefore be able to 

compare my neuronal results with those of the previous psychophysical studies. These 

data may help to understand some of the factors limiting the human spatial resolution for 

detecting disparity modulation. These d

to

 

3.2 Methods 

3.2.1 Measurements of disparity tuning functions and responses to 

depth modulating corrugations 
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corrugation had a surrounding rectangular frame at zero disparity. The total stimulus size 

was 5°x5° (4° corrugation + 1° frame, Figure 3.1A), which always extended well beyond 

the limits of the minimum response field. Thus any contextual modulation by disparities 

within 2° of the RF center would be revealed. The corrugation was always oriented 

horizontally (disparity was a sinusoidal function of vertical position) so that horizontal 

disparities did not introduce any monocular texture gradients. In a vertically oriented 

orrugation, the disparity variation leads to changes in dot density, producing monocular 

ycles per degree (cpd) in one 

ctave increments, presented in pseudo-random order. At all corrugation frequencies, the 

gation was chosen in such a way that the central vertical position of the 

lowest corrugation frequency used, the full width of the stimulus was only one quarter of 

s a nearly uniform disparity with a sinusoidal 

c

images that contain vertical “stripes” defined by regions of high dot density. The only 

orientation that completely abolishes these monocular changes is horizontal. The 

disparity modulated between the preferred and the null disparity estimated from the 

disparity-tuning curve (Figure 3.1B). 

 

The spatial frequency of the corrugation (1/spatial period, Figure 3.1A) will be referred to 

as “corrugation frequency”. It was varied from 0.06 to 4 c

o

phase of the corru

corrugation was a peak (i.e. phase of 0°) at the beginning of each 2-second trial. At the 

a cycle, so the stimulus over the RF wa

modulation over time. Each stimulus condition was presented a minimum number of four 

times (maximum 18 times, mean 8.7).  

 

I interleaved an otherwise identical planar stimulus with a constant disparity equal to the 

mean disparity of the corrugation. Because there was no temporal variation in the 

disparity of this stimulus, it allowed me to estimate the extent of temporal modulation in 

the neuronal firing which was unrelated to the disparity modulation of the stimulus.  
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Figure 3.1: The experimental procedure. A) Schematic representation of the stimulus 

orrugation). The mean disparity and the range of disparity modulation were chosen for 

(B) of the cell. Corrugation frequency (1/p, p=spatial period) was varied systematically in 

curve for cell ruf150. The arrows indicate the mean disparity of the corrugation and the 

.2.2 Data analysis 
ta, variance increases approximately proportional to mean spike 

ount, (Dean, 1981). Using the square root of the spike counts approximately stabilizes 
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(c
each cell individually according to the values obtained from the disparity tuning curve 

random order between trials. The planar control stimulus was presented at a disparity 
equal to the mean disparity of the corrugation. B) An example of the disparity tuning 

range for which the depth modulation of the corrugation was chosen for this cell. 
 

 

3
For most neuronal da

c
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the variance (Cumming and Parker, 2000; Bridge and Cumming, 2001; Prince et al., 

002b). For this reason, I always used square roots of counts for this analysis or when 

sians to these data. 

ll the neurons included in the analysis showed significant modulation of firing rate with 

hanges in disparity (in RDS with uniform disparity) on a one-way ANOVA (p<0.05). 

d 15 spikes/sec. The strength of disp ed with the disparity 

discrimination index (DDI, Prince et al., 2002b): 

 

    

2

fitting Gaus

 

A

c

An additional selection criterion was that the mean response at the preferred disparity 

exceede arity tuning was assess

ernmax

min

2RMSR
R

+−
−

mi

max

R
R

est 

DDI =
ror

, 

 

where Rmax and Rmin are the highest and low tes  respectively on the tuning curves, 

and RMSerror is the square root of the residual variance around the means of rates  

ra

across all dispar ies. T s the difference in firing to the preferred and null 

disparity with firing variation. It varies over values between 0 and 1, and can be 

understood as a metric for the neuron’s reliability to signal disparity. If the neuronal 

firing is strongly modulated by disparity compared to the variability of the response, the 

I response is not modulated by disparity, any 

ull and preferred values, at the center of the RF. The main manifestation of disparity 

lectivity in response to these stimuli was therefore a periodic modulation in firing rate 

quantified this by measuring the relative modulation (RM, 

Movshon et al. 1978). This is the ratio of the amplitude of the modulation at the 

fundamental frequency (f1, the temporal frequency of the drifting corrugation), and mean 

he DDI compareit

DD yields values close to 1. If the neuronal 

differences in firing to different disparities will be due to noise in the response and the 

DDI will be close to 0.  

 

3.2.3 Relative modulation  
The corrugation stimuli produced a sinusoidal modulation of the disparity, between the 

n

se

at the drift frequency. I 
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response rate (f0). The value for f1 was obtained by averaging the responses for all trials, 

then calculating the modulation of this mean response at the frequency f1. The same 

calculation, applied to responses to the planar stimulus, served as a control for the extent 

f modulation that was not attributable to the corrugation. In order to eliminate artifactual 

 modulation in response to at least one 

orrugation of the lowest 5 corrugation frequencies had to be significantly higher (on the 

ple comparisons) than in response to the planar stimulus, 

esponse modulation was undertaken. This criterion did not 

ject any neurons that responded only to higher corrugation frequencies - all neurons 

s. 

ince these were purely descriptive functions, they were allowed 

 be a Gaussian function of linear or log frequency, whichever minimized the least-

ctions had four free parameters (mean, amplitude, 

o

modulation related to response-latency and the onset transient, the first stimulus cycle 

(500ms) of each trial was discarded.  

 

A resampling (1000 cycles) and bootstrapping method was used (Davison and Hinkley, 

1997) to determine confidence intervals. Relative

c

5% level, corrected for multi

before further analysis of the r

re

that showed significant modulation at 2 or 4 cpd showed greater modulation at lower 

frequencie

 

3.2.4 Corrugation frequency tuning  
For most cells I found that the extent of modulation (RM) decreased as the corrugation 

frequency of the disparity corrugations was increased (see Results). In order to describe 

this quantitatively, Gaussian functions were fit to RM as a function of corrugation 

frequency, using a nonlinear optimization algorithm based on the simplex-search method 

(Lagarias et al., 1998). S

to

square deviations. The Gaussian fun

standard-deviation and baseline), which except for the mean were constrained to values 

≥0.  

 

Gaussian fits were considered adequate if they explained more than 75% of the variance 

within the data. The high cutoff frequency was defined as the corrugation frequency at 

which the Gaussian dropped to 2/3 of its peak. (In a few cases, where Gaussians fits had a 
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mean <0, it was defined as the frequency at which the Gaussian dropped to 2/3 of the 

response at 0 cpd)   

 

3.2.5 Quantitative measurements of receptive field size 
To quantify receptive field size, I measured responses to a thin stationary rectangle (0.24 

x 5.99°) of dynamic random dots (each dot usually 0.08 x 0.08°) over a range of 

cations. Receptive field size was measured monocularly for each eye and binocularly, 

3.2.6 Spatial frequency tuning measurements with gratings 
The luminance structure of each receptive field was examined with drifting sinusoidal 

3.2.7 Model  

eurons to these stimuli. All simulations were run in Matlab 6 (MathWorks) on either 

 Pentium PC running Linux or a Silicon Graphics Octane. 

fields for each eye. Since the left and right subunits were generated separately, 

lo

in which case the preferred disparity of the cell was added to the display of the rectangle. 

In some cases only binocular measures at the preferred disparity were obtained because 

the cell was lost prior to collecting monocular data or monocular responses were too 

weak to be reliable. Since I always used horizontally oriented corrugations, response 

modulation to corrugations provided me with information about the receptive field 

structure only along a vertical axis. I therefore fit Gaussian functions to the neuronal 

response rate as a function of the vertical position of the stimulus.  

 

luminance gratings at the preferred orientation and temporal frequency. Spatial 

frequencies between 0.12 cpd and 16 cpd were presented a minimum of four times each. 

A Gaussian was fit to the mean response rate as a function of spatial frequency (in linear 

or logarithmic units, whichever gave the better fit). 

 

In order to assist the interpretation of my results, I also examined the responses of model 

V1 n

a

 

The model I used (Bridge et al., 2001) was a version of the binocular energy model 

(Ohzawa et al., 1990). Two-dimensional Gabor functions were used to simulate receptive 
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interocular differences in receptive field structure could be produced. Linear summation 

of the responses (inner product of the image and the RF) from each eye, followed by 

alfwave rectification then squaring, generated a binocular simple cell. Summation of 

r complex cell.  

from monkey Hg, 51 

om monkey Df, 36 from monkey Rf and 12 from monkey Rb. Of 106 cells exhibiting 

ponses to 

l modulation in response to sinusoidal corrugations  

ere a linear function of the 

isparities of the dots covering the RF, this should result in a sinusoidal modulation of 

h

four binocular simple cells (in quadrature phase pairs) produced a binocula

 

To create the corrugated RDS, a random number generator was used to determine the x 

and y positions of the 400 dots, each subtending 0.1° of visual angle. Disparity was added 

by horizontally displacing dots in opposite directions in the left and right eye stimuli. 500 

different RDS patterns were presented to the cells and the responses to each pattern were 

summed. Relative modulation was calculated as described for the physiological data 

analysis. 

 

3.3 Results 
I recorded data from 161 isolated single units in four animals, 62 

fr

significant disparity tuning, 25 failed to yield adequate data for examining res

depth corrugations (some cells were lost before collecting sufficient data, for others the 

stimulus was not properly matched to the disparity selective range; one cell was excluded 

because it showed strong intrinsic modulation of firing close to the stimulus frequency). 

Of the remaining 81 neurons, 55 showed significant modulation in firing rate when tested 

with disparity corrugations.  

 

3.3.1 Neurona
During presentation of these stimuli, the disparity at any point of the receptive field 

modulates sinusoidally over time. The temporal frequency of this modulation (2 Hz) is 

the same throughout the RF. If the neuron’s response w

d

firing rate with the same temporal frequency as the stimulus. This was exactly the pattern 

I observed (Figure 3.2A). For quantitative analysis of this behavior I calculated the 

relative modulation (RM) – the amplitude of the modulation at the stimulus temporal 
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frequency (f1) divided by the mean firing rate (f0). This measure is similar to the F1:F0 

ratio measured in response to sinusoidal luminance gratings, which is used to 

differentiate simple and complex cells (Skottun et al., 1991). An important difference 

arises because most V1 neurons show little response to a field of uniform luminance, 

while most neurons in this study showed a substantial response to an RDS with a uniform 

modulation. In order to control for this I also measured the response to a 

orrugation whose depth modulation was 0, i.e. a planar stimulus with a constant 

ace and time, interleaved with the modulating stimuli. 

iented corrugations.  

disparity (whose value was equal to the mean of the disparities covered by my 

corrugations, see Figure 3.1). This has two significant consequences. First, the value of 

RM is rarely much larger than 1 (i.e. the neurons are not generally silenced at the null 

disparity). Second, fluctuations in firing rate in the absence of any changes in disparity 

mean that the value of RM does not necessarily fall to zero even when there is no 

disparity 

c

disparity over sp

 

Because the corrugations were always horizontally oriented, the monocular images 

defining these stimuli were all indistinguishable. In preliminary experiments responses to 

other orientations were explored, and in these cases it was necessary to examine 

responses to the monocular images, since these contain variations in dot density. It was 

found that in some cases these density variations alone (in monocular images) were 

sufficient to modulate the neuronal discharge rate. For this reason the rest of this study 

was limited to horizontally or
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Figure 3.2: Responses of a typical neuron (left column, A, C, E) and the energy model 
(right column, B, D, F) to sinusoidal corrugations in depth. A and B show spike density 
functions for the response to a corrugation frequency of 0.06 cpd. C and D show 
responses to a corrugation frequency of 0.5 cpd. The temporal frequency was always 2 
Hz.  
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In panel E and F, relative modulation is plotted as a function of the corrugation 
or the data shown in 

f150 (the corrugation frequency at which the modulation falls to 2/3 of the peak).  
 
 

3.3.2 Responses to disparity modulating corrugations of different 

frequencies 
For the lowest corrugation frequency used (0.06 cpd) there was very little variation in 

disparity over the exten the F of the neurons in this study. This stimulus resembled a 

traditional planar RDS, in which the disparity of the patch varied over time. The 

sinusoidal response mo tion efore simply reflects the neuron’s selectivity for the 

disparity of a fronto-parallel planar patch (and the magnitude of the modulation depends 

on the strength of disparity se ivity). As the modulation amplitude is kept constant and 

the corrugation frequency increases, spatial varia  of disparity within the RF is 

introduced. At some frequency, this should increase RM in neurons that are selective for 

any spatial variation in disparity within the F just a th r t o  simple cell RF 

produces the strongest response for intermediate spatial frequency in luminance gratings). 

If the three-dimensional structure of the RF is planar and selective for the same disparity 

throughout, the response should depend on the weighted mean of the disparities (the 

weights being set according to the position of the dots over the

                   

frequency. The arrows indicate the relative modulation calculated f
panels A, B, C, D, and the high corrugation frequency cutoff (0.32 cpd) obtained for cell 
ru

t of 

dula
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ir R  ( s e st uc ure f a
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where R denotes the instantaneous neuronal response, i corresponds to the position in the 

receptive field, d(i) to th sp ty he imu a his w(  the weight of 

the RF envelope at this position.  (This is only true for dis ities limited to the linear 

portion of the response that lies between null and preferred disparities, as in my 

xperiments.) Consider a hypothetical cell with a rectangular RF, i.e. disparity input has 

nse. For a Gaussian RF, modulation decreases as a Gaussian function of increasing 

i) toe di ari  of t  st lus t t  position, 

par

e

equal weights throughout the RF (w(i)=constant). The response then simply depends on 

the mean disparity, so that when the spatial period of the corrugation equals the RF 

width, there is no modulation in the mean disparity, and hence no modulation in the 

respo
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corrugation frequency. Figure 3.2E shows the value of RM as a function of corrugation 

frequency, for a typical neuron and Figure 3.2F shows the response of the 

implementation of the energy model. Both show a lowpass function, behaving as if the 

sponse at any time is determined by the mean of the disparities over the RF.  

A second feature of responses reflecting the mean weighted disparity is that the mean 

 not change as a function of corrugation frequency (provided that a full 

s at low corrugation 

frequencies (spatially lowpass). Second, I examined the highest corrugation frequency 

that produced substantial modulation (high corrugation frequency cutoff, the point at 

re

 

firing rate should

number of corrugation-cycles is presented for each frequency, as I did in my 

experiments). This was a consistent feature of the neuronal responses - only 9/55 (16%) 

cells showed a significant change in mean spike rate with corrugation frequency (5% 

significance on ANOVA). Even these cells showed only modest changes in mean firing 

rate, and I did not observe a consistent pattern of change in mean firing with respect to 

corrugation frequency.  

 

I completed tests with corrugations of several different corrugation frequencies for 55 

cells that showed significant modulation for at least one frequency. The variation in RM 

as a function of corrugation frequency was generally well described by Gaussian 

functions (see Figure 3.2E). All Gaussian fits explained >75% of the variance in the data. 

These fits were then used to quantify the two main features of interest shown in Figure 

3.2E. First, I examined whether all cells had their largest response

which RM falls to 2/3 of the peak).  
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B

 

ow frequencies. The dashed line corresponds to the Gaussian 
 The relative modulation for the lowest frequency tested (0.06 

pd) was only 70% of that at the peak of the fit. This ratio, (RM at the lowest frequency 

. (Values for this comparison were obtained 

from the data, not from the fits). The large majority of these ratios were close to 1 (> 0.9 

for 40/55 cells, 73%, see Figure 3.3B). Except for one cell, all values were greater than 

0.5, and hence would be considered lowpass by the criterion of Hawken et al., (1996).  

 

The apparent reduction in RM at low frequencies for some cells may largely be the result 

of random fluctuations in response. To evaluate this statistically, I compared the RM at 

0.06 cpd with the largest RM observed. This was significant for 5 of the 55 cells (p < 

0.05, two tailed test corrected for multiple comparisons, by resampling). (I also used 

Figure 3.3: Response attenuation at low frequencies was unusual. Panel A shows relative 
modulation as a function of corrugation frequency for one neuron (ruf188) with unusually 
marked attenuation at l
curve fitted to the data.
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tested)/(RM at peak) was used to estimate the extent of low frequency attenuation for the 
population of 55 neurons (frequency histogram shown in B). Black bars correspond to the 
ratios of cells with statistically significant attenuation at low frequency. 
 

 

 

The fitted Gaussian functions were not constrained to be lowpass – Figure 3.3A shows an 

example in which the best fit had a peak at intermediate frequencies. I estimated the 

extent of attenuation in RM at low frequencies by comparing the RM at the lowest 

frequency tested with the peak value of RM
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nested Gaussian fits to see if adding a non-zero mean produced a significant 

improvement, with similar results, 7/55 being significant.) 

 

Thus it appears that a small population of neurons does show significant attenuation of 

their response modul o  corrugati re ies. However, even in this selected 

population the attenuation was modest (t  

five significant cases). Thus it does not app ent a specialization for processing 

more complex three-dimensional configurations. The phase of the responses suggested 

that these were  res face slant: the absolute response phases were close to 

0º (response peak whe sparity w  center of the RF), and there was 

no systematic shift in phase as a function of corrugation frequency. These features are 

l RFs. This is in 

greement with previous reports of binocular interaction profiles elongated in the fronto-

arallel plane (Anzai et al. 1999, their Figure 1). The results presented here go beyond the 

revious report in two respects. The examples shown by Anzai et al. display elongation in 

of 

isparities would be inadequately stimulated by such a noise stimulus. Non-linear 

ati n at low on f quenc

he example shown in Figure 3.3A was one of the

ear to repres

 not ponses to sur

n the preferred di as in the

compatible with a degree of surround suppression produced when the surround was at the 

same disparity as the center. 

 

The above analyses establish that the vast majority of V1 neurons show a lowpass 

response to sinusoidal variations in disparity, suggesting fronto-paralle

a

p

p

the fronto-parallel plane, but their analysis did not examine this feature quantitatively or 

rule out slant-selectivity. The quantitative analysis in the present study suggests that 

selectivity for a uniform disparity across the RF is a general feature of disparity selective 

neurons in striate cortex. Further, Anzai and colleagues’ use of a reverse-correlation 

analysis relies on the assumption of a linear neuronal response. They used a sequence of 

noise stimuli in which there is no single consistent pattern of disparities- whether it be 

planar or sinusoidal. Thus, a detecting system that is sensitive to a consistent pattern 

d

responses to combinations of disparities simultaneously present in the RF could therefore 

not be examined. For example a non-linear interaction between neighboring parts of the 

RF might generate selectivity for slant independent of mean disparity. Such a response 

would be revealed by my measures with corrugations, since the stimulus contains 
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appropriate multiple disparities. The lowpass response to the corrugations therefore 

allows us to exclude the possibility of non-linear responses to combinations of disparities. 

 is important to stress that the lowpass response not only indicates linear summation of 

r luminance gratings in monkey V1 at these eccentricities 

oster et al., 1985). The highest value observed was 1.3 cpd.  

It

disparities, but also that the input to this linear summation appears to show the same 

disparity preference at each point in the RF. Linear summation across an RF with a 

preferred disparity that changes across the RF would also generate bandpass responses.  

 

Since RM is a lowpass function of corrugation frequency for most neurons, their response 

can be summarized by the high corrugation frequency cutoff for the RM (see Figure 

3.2C). I took as my measure the frequency at which the fitted Gaussian fell to 2/3 of its 

peak value. Figure 3.4A shows the distribution of this high-cut frequency for 55 cells. It 

tends to occur at quite low frequencies, with a mean of 0.5 cpd (±0.26 cpd, S.D.), much 

lower than typical values fo

(F

 

However, this analysis is complicated by small eye movements during fixation. Changes 

in vertical eye position will change the phase of the sinusoid that falls over the RF center, 

changing the phase of the neuronal response. Significant variation in the phase of the 

response within and between trials leads to an underestimate of the modulation 

amplitude. This problem is greatest for high corrugation frequencies, since small 

movements constitute a larger fraction of the spatial period. This could therefore lead to 

an underestimate of the high corrugation frequency cutoff. However, the majority of the 

cutoff frequencies observed were too low to be explained by the observed variation in 

vertical eye position: the mean of the observed S.D.s was 0.14°, 0.19°, 0.21° and 0.22° 

for monkeys Hg, Rb, Df, and Rf respectively. Since the measured variation in eye 

position overestimates the true variation (Read and Cumming, 2003a), it seems that eye 

movements are unlikely to have compromised these measurements in more than a few 

neurons. 

 

As an additional safeguard against the effect of eye movements, I re-analyzed the data 

using the autocorrelation function to detect periodic modulation in firing rate, 
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independent of phase (Schlittgen and Streitberg, 2001). Appendix A shows how with the 

help of the autocorrelation-function the effect of saccadic eye-movements on relative 

modulation is reduced. Figure 3.4B compares the value of high corrugation frequency 

cutoff for the two analysis methods. In all but a few cases, the two methods gave similar 

answers, confirming that the influence of eye movements on the measurement of RM was 

generally small. In a few cases, the autocorrelation method produces clearly larger 

alues, suggesting that eye movements may have had a significant effect in these 

superimposes a smoothed density function. It is possible that in some cases, modulation 

the spike trains to estimate periodic modulation. This is less sensitive to eye movements 

stimulus time histogram (PSTH). Despite the generally excellent agreement between the 
ures, the cutoff frequency estimated from the autocorrelation functions is 

bstantially larger in a few cases. This leads to a significant difference between the two 
measures across the population (p<0.01, n=55, paired t-test). 

v

neurons. This leads to a weak, but significant (p<0.01, paired t-test) tendency towards 

higher values for the autocorrelation method (mean value 0.61±0.44 cpd, S.D. by the 

autocorrelation method). 

 

 

A B

                      
 

Figure 3.4: High corrugation frequency cutoff. Panel A shows a frequency histogram and 

to high frequency corrugations was underestimated because of the effects of fixational 
eye movements. I therefore re-analyzed all the data using the autocorrelation function of 

(see Appendix). Panel B compares the corrugation frequency high cutoffs calculated with 
this autocorrelation method with the cutoff estimated from the modulation in the peri-

two meas
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I compared the high frequency cutoff for depth corrugations with the spatial frequency 

high cutoff for luminance gratings in 35 of the 55 cells. The luminance gratings were 

presented at the preferred orientation (20 monocular, dominant eye, 15 binocular at the 

preferred disparity), while the depth corrugations were always horizontal (0º, disparity 

variation always along a vertical axis). In order to compare these values therefore, the 

high-cut frequency for the gratings was multiplied by cos(grating orientation), to estimate 

the cutoff frequency along the vertical axis. Despite the fact that this shifts the cutoff 

spatial frequency to lower values for the luminance gratings, these values are almost 

always greater than the cutoff corrugation frequency for depth modulation (Figure 3.5, 

note the different scales on abscissa and ordinate). This indicates that the three 

imensional structure of the RF is on a coarser scale than the luminance structure. 

urthermore, there is no significant correlation between these measures (r = 0.12, n.s.). 

Both of these obser ons follow if the luminance structure of the RF is used to calculate 

interocular correlation across finite regions of the two retinae (as in the energy model, see 

simulations below). The three-dimensio ucture is determined by the area over which 

this is estimated, not by the luminance RF structure within it.  

 

 

nusoidal luminance gratings 
bscissa). The filled symbols show data for 35 neurons, obtained monocularly for the 

ominant eye (circles, n=20) or binocularly (squares, n=15).  
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Figure 3.5: Comparison of high corrugation frequency cutoff values in response to 
orrugations (ordinate) and high spatial frequency cutoff to si
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There is no significant correlation between the two properties of the neurons (r=0.12; n.s., 
n=35). Open squares represent values obtained from the model using four different 
receptive fields. This illustrates that the model does not require a correlation between 
corrugation and spatial frequency cutoffs for these two stimuli.  
 

 

If the neurons were constructed from subunits that are all selective for the same fronto-

parallel disparity (as in the energy model, producing a lowpass response) then the high 

corrugation frequency cutoff for disparity modulation should be determined by the 

receptive field size. I therefore obtained quantitative estimates of the vertical extent of the 

receptive field for 21 neurons. These measures used thin strips of random dot texture like 

those used for the depth corrugations (see Methods). Gaussian functions were fit to the 

response rate as a function of vertical position, and the S.D. used as a measure of the 

halfwidth of the minimum response field. Data for one example neuron are shown in 

Figure 3.6. Two of these 21 neurons showed a degree of bandpass response (suggesting a 

center-surround organization). Their high frequency cutoff is determined by the size of 

the center region. [Similarly for retinal ganglion cells, the cutoff spatial frequency is a 

redictor of center size of the receptive field, e.g. (Linsenmeier et al., 1982).] Since the 

ze of the center of the preferred disparity would have been difficult to measure 

independently I excluded these two neurons from the comparison. 
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binocular 

 right              left monocular 

                                             
 

Figure 3.6: Example data illustrating the measurement of receptive field height for cell 
duf221. Vertical position of the stimulus relative to the fovea is depicted on the abscissa 
and firing rate on the ordinate. Filled circles represent the measurements in response to a 
binocular stimulus, open markers in response to a stimulus being presented monocularly. 
Gaussian functions (dashed lines) are fitted to each of the data-curves.  
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= . The frequency domain counterpart of the RF envelope is the corrugation 

frequency tuning width. If RM is a lowpass function of corrugation frequency (as for the 

vast majority of the neurons and in the energy model), the Gaussian in the frequency 

domain is centered around zero. In this case frequency tuning halfwidth can be estimated 

by the corrugation frequency cutoff.  
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Before examining this relation eal neurons, I ran simulations with the 

implementation of the energy , measuring the minimum 

response field and the high corrugation frequency cutoff for corrugations in the same way 

as for the neurons. One model param at had an important influence on this 

relationship was the value of the output exponent. (In Appendix B it is shown that for an 

output exponent of 2, the prediction should correspond to the identity line, which is also 

found in the simulation.) Although the energy model is usually described with a half-

squaring output nonlinearity, this is largely for mathematical convenience. Raising the 

output to higher powers produces qu ely ilar results, and a number of studies 

have suggested that the output exponents often are >2 in real neurons (Anzai et al., 

1999b; Gardner et al., 1999). For model neurons, larger output exponents lead to smaller 

 response field, while the cutoff frequency for depth 

orrugations was less affected. The relationship between minimum response field, high-

uperimposed on these model data, Figure 3.7 compares the size of the minimum 

sponse field with the high corrugation frequency cutoff for 19 neurons. Only fits that 

tendency f

model with an exponent of 2. This may indicate that most neurons have an output 

ship for r

model (Bridge et al, 2001)

eter th

alitativ  sim

estimates of the minimum

c

frequency cutoff, and output exponent for model neurons is shown by the dotted lines in 

Figure 3.7.  

 

S

re

explained >70% of the variance were used. The correlation (r=0.45, p<0.05) is significant 

and the great majority of neurons (18/19) lie beneath the line obtained from the model-

simulations (dotted line at output exponent of 2). The point above the line does not differ 

significantly from it (by resampling). Cells that fall below the predicted line can readily 

be explained by assuming an output exponent that is > 2. Across the population there is a 

or the high corrugation frequency cutoff to be lower than predicted by the 

nonlinearity that is more expansive that half squaring. Alternatively, it may be that the 

area over which the disparity integration takes place is somewhat larger than my estimate 

of the minimum response field. 
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e those in Figure 3.6, SDrf) and high frequency cutoff for depth corrugations 
a lowpass Gaussian fit to data like those shown in Figure 3.2E, SDsf). Since 

n inverse relationship is expected, 1 / (2π*SDrf) is plotted on the abscissa (i.e. the S.D. 

(r=0.45, p<0.05, n=19). The solid line represents the identity-line. Circles and squares 

significantly above the line predicted by the model with an output exponent of 2 (i.e. a 

.s. partial correlation with respect to monkey).  
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Figure 3.7: The relationship between receptive field size (the S.D. of a Gaussian fit to 
responses lik
(the S.D. of 

           [degree-1] 

co
rr

ug
at

io
n 

cu
to

ff 
[

pd

 output exponent:      1                 2          4

0   0.5   1  1.5   2   

0   

0.5  

1   

1.5  

2   

r=0.45 
n=19 

a
of the same Gaussian in the frequency domain). There is a significant correlation, with 

depict cells, for which the receptive field was measured monocularly in the dominant eye 
(n=14) and binocularly (n=5), respectively, error bars correspond to standard-errors (by 
resampling). 
This relationship was also examined with the model (dotted lines). The model responses 
are shown for three different output exponents (1,2 and 4). Note that no neuron lies 

half-squaring output nonlinearity). This line also represents the identity line. The output 
exponent of 1 refers simply to half-wave rectification, a sufficient nonlinearity to 
generate disparity selectivity. 
 

Although the high corrugation frequency cutoff was significantly correlated with 

minimum response field size, there was considerable scatter in this relationship. This may 

explain why I found no clear relationship between the high corrugation frequency cutoff 

and eccentricity (r=0.04, n=55, n
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3.3.3 Determinant n
The analysis above has prim y focused on how RM varies with changes in the 

corrugation frequency of dep dulation. The strength of the modulation was largely 

ignored. In this context  im tant to note that the estimation of RM is more reliable 

with higher mean firing rates. Figure 3.8 demonstrates this for two neurons firing at a 

mean spike rate of 46 spikes/sec (hg599, left column), and 8 spikes/sec (hg620, right 

column) respectively. Both neurons produce similar values of RM. The 2 Hz modulation 

is however much clearer in the spike density function for the neuron with the higher 

firing rate, (Figure 3.8A). The responses to the planar control stimulus show no clear 

modulation in either cell (data not shown), but their RM values differ by a factor of 3 

(baseline in Figure 3.8C and 8D: RM =0.24 for cell hg620).  

 

s of modulatio  strength 
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th mo

 it is por

=0.08 for cell hg599, RM
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Figure 3.8: Relative modulation and mean firing rate. Panels A and B show spike density 
functions for two neurons, with very different mean firing rates (46 spikes/sec and 8 
spikes/sec respectively). The corrugation frequency of the disparity corrugation was 0.06 
cpd, the temporal frequency was 2 Hz. Although the values of relative modulation are 
similar for both neurons (C,D), the modulation is much clearer for the neuron with the 
higher firing rate (A). Neurons with lower firings rates give less reliable estimates of 
relative modulation. This is most clearly seen from the error bars in (C, D), which show 
S.D.s of the resampled populations  
 

 

Raw values of RM can therefore be a misleading guide as large values can occur at 

random in weakly modulating cells with low mean firing, or simply because a neuron has 

a tendency to periodic activity regardless of the stimulus. I therefore quantified the 

modulation strength with a contrast measure, the relative modulation contrast which 

compares the modulation produced by corrugations with that produced by the planar 

stimulus with no disparity variation:  
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   relative modulation contrast = 
planarmax

planarmax

RMRM
RMRM

+
−          

                                   

where RMmax is e M in response to the corrugation and RMplanar is the RM in 

response to the planar stimulus with no temporal or spatial modulation in disparity. 

 

Note that when neuronal firing is weak, the valu o anar control stimulus is 

often large, so this measure is not biased towards large values in weakly activated 

neurons [unlike similar measures on raw spike counts, (Prince et al., 2002b)]. I 

investigated the relationship between relative modulation contrast and two properties: 

retinal eccentricity, and disparity y (DDI, Figure 3.9). There is no significant 

dependence of ula n on retinal ecce ricity (r=-0.0007, n=55, n.s., partial 

correlation with respect to monkeys, data not shown). But there is a highly significant 

positive correlation with the DDI (r=0.50, p<10 , Figure 3.9A).  

 

 

 

 

modulation contrast). Filled symbols represent the neurons for which the relative 
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Figure 3.9: The relationship between strength of disparity tuning (measured by the DDI) 
and the strength of modulation induced by the corrugations (measured by relative 

modulation was significant n=55, open circles indicate the neurons for which relative 
modulation was not significant, n=26
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disparity tuning, n=81. There is a strong and signific ) corre
neurons with a DDI greater than 0.65 showed significa re tion. 

ant (r=0.5, p<10-5 lation. All 
nt lative modula

 

 

Neurons without significantly higher modulation in response to the corrugations than in 

response to the planar stimulus (open circles, Figure 3.9A) have a significantly lower 

DDI (mean DDI 0.30 versus 0.61 for neurons with significant modulation, p<10-6, n=81, 

t-test). All neurons with a DDI above 0.65 show significant modulation. At first sight this 

correlation is not surprising, since both measures are closely dependent on the strength of 

disparity tuning. But this need not be true. Consider a neuron with a response that 

depends primarily on the magnitude of surface slant. Such neurons could show weak 

disparity selectivity for planar RDS, but modulate their activity strongly during 

presentation of depth corrugations, as these present different values of slant at different 

points in the cycle. 

The correlation between DDI and relative modulation contrast, especially the lack of 

neurons showing strong relative modulation contrast with weak DDI, is further evidence 

that there is not a population of neurons in V1 that are selective for slant but only weakly 

selective for disparity in planar RDS. I also studied responses in 19 neurons that were not 

disparity selective (ANOVA p > 0.05), which are not shown in Figure 3.9. None of these 

showed significant modulation to the corrugations.  

 

One potentially important source of scatter in the relationship between the strength of 

disparity tuning and the strength of modulation to depth corrugations may be the 

temporal properties of the stimulus. All of the data reported here used a stimulus 

temporal frequency of 2 Hz. This is well below he temporal frequency high cutoff for 

most neurons when examined with luminance gratings. [All of the neurons reported by 

1996) ha cutoffs > 2 Hz.] However, it is 

ossible that the temporal integration for disparity processing is over greater periods, and 

 t

Hawken et al., ( d temporal frequency high 

p

that some neurons might have shown stronger modulation had I employed lower temporal 

frequencies 
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3.3.4 Comparisons of the physiological data with predictions from 

the model  
t several points I have shown responses of model complex cells, using a model similar 

uency selectivity for depth corrugations is determined by RF size. 

the eyes is introduced to the model 

igure 3.10). Although it has been suggested that such orientation differences might be a 

ot evidence against the existence of interocular differences in preferred 

A

to the energy-model for disparity tuned complex cells implemented by Ohzawa et al., 

(1990), but using two-dimensional receptive fields (Bridge et al., 2001). These 

simulations showed that all of the physiological data are compatible with such a model: 

 

1. The model responded with a sinusoidal modulation of the response at the stimulus 

temporal frequency (Figure 3.2).  

2. The strength of this modulation depended on the relationship between the corrugation 

frequency of the corrugation and the size of the receptive field, in a similar fashion to that 

seen in the neuronal data (Figure 3.7). 

3. Corrugation freq

Spatial frequency selectivity for contrast gratings is determined by the structure within 

the RF. For this reason, spatial frequency tuning for luminance contrast and corrugation 

frequency for depth corrugations can be manipulated separately in the model (Figure 3.5, 

open squares). They are also uncorrelated in the physiological data (Figure 3.5). 

4. The model shows a lowpass response to depth corrugations. Interestingly, this remains 

true even when an orientation difference between 

(F

specialization for detecting surface slant (Blakemore et al., 1972; von der Heydt, 1978; 

Ninio, 1985; Mitchison and McKee, 1990; Cagenello and Rogers, 1993), within the 

context of the energy model the response remains dominated by the effects of positional 

disparity [Bridge et al., 2001); their Figure 7], so that the modulation at low frequencies 

is very similar to that at intermediate frequencies. If very large orientation differences are 

used (40 degrees, much larger than those found physiologically, (Bridge and Cumming, 

2001) a modest increase in response can be seen at intermediate frequencies (Figure 3.10, 

dotted line). Thus the lack of any bandpass response to disparity corrugations in V1 

neurons is n
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orientation. It is evidence against the existence of neurons primarily sensitive to surface 

slant.  
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Figure 3.10: The effect of orientation differences in model neurons. Model neurons were 
constructed with different receptive field orientations in the two eyes. The response of 
these models to corrugations of variable corrugation frequency was then assessed, using 
the same protocol as I used for real neurons. Relative modulation (ordinate) obtained 
from model-simulations is plotted against corrugation frequency (abscissa). Orientation 
difference between the monocular receptive fields (0°, 20° and 40° for solid, dashed and 
dotted line respectively) was the only parameter changed between the simulations. Note 
that a decline in relative modulation at low spatial frequencies only becomes apparent for 
large orientation differences (40°, open circles). 
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3.3.5 Comparisons of the physiological data with results from 

human psychophysics  
omparing the physiological data here with psychophysical responses at similar 

ccentricities suggests that spatial integration of these V1 neurons is what limits 

erformance. The neuronal data show a reduction to 66% of maximal sensitivity at a 

mean frequency of 0.5 cpd, at a mean eccentricity of 3.7°. If psychophysical judgments 

depended on these responses, a  of 0.5 cpd should produce 

thresholds 50% higher than the human studies that examined 

thresholds at these eccentricities (Prince and Rogers, 1998; Banks et al., 2004a) found 

50% threshold elevation at 0.5-0.6 cpd. The similarity between these values for single 

neurons and for hu  psychophysics suggests that the acuity limit for humans is 

determined by the frequency at which the majority of V1 neurons fail to modulate their 

responses. The cutoff frequency for the neurons seems in turn to be limited by the size of 

the RF (Figure 4.7). Taken together these observations suggest a simple physiological 

explanation for the observation that cyclopean acuity for depth modulations is so poor. 

When the period of the corrugation is smaller than the RF size, the response of neurons 

with adjacent RFs becomes identical the corrugation cannot be detected.  
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0), but see 

lso Cumming, (2002). Nonetheless, they appear to play a critical limiting role for many 

spects of behavioral performance, such as acuity for perceiving spatial modulations of 

isparity (Chapter 3;  Nienborg et al., 2004). Here I examine the relationship between the 

mporal properties of disparity processing in single V1 neurons and in human observers.  

 central objective of the study was to resolve a paradox raised by two existing 

bservations. First, the temporal resolution of single V1 neurons for contrast modulation 

 high enough to support psychophysical performance (Hawken et al., 1996). Second, 

sychophysical studies have shown that the temporal resolution for disparity modulation 

orcia and Tyler, 1984) is poorer than for contrast modulation (Kelly, 1971a; Kelly et 

l., 1976).  If the temporal frequency resolution of single V1 neurons reflects filtering 

haracteristics intrinsic to the cell under study, then the resolution should be the same 

gardless of what stimulus is used to modulate the synaptic input. This suggests that 

 

Chapter 4 

Temporal frequency tuning for disparity 

modulation 

4.1 Introduction 
Most physiological and psychophysical studies have focused on the spatial properties of 

disparity sensitivity. The temporal resolution of disparity tuned neurons –in striate or 

extrastriate cortex- is unknown. Given the behavioral importance of detecting motion in 

depth this relative lack of knowledge seems surprising. Neurons in V1 do not directly 

account for many aspects of stereopsis (Cumming and Parker, 1997, 1999, 200
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single neurons should be able to resolve disparity modulation at the same frequencies as 

r contrast. It follows that such neurons would signal disparity modulations over a 

ubstantial range of frequencies that are psychophysically undetectable. The cornerstone 

 this argument is that the temporal integration of V1 neurons should be the same for 

disparity changes and for contrast changes. Here, I shall examine this assumption 

ng random dot stereograms that varied disparity as a sinusoidal 

 these data with behavioral performance, I measured human 

ses to disparity modulation as a function of temporal frequency, 

sing a procedure similar to that used by Norcia and Tyler, (1984), but modified to 

resholds at each temporal frequency. This then allowed me to 

construct a sensitivity curve which could be compared with the behavior of V1 neurons. 

4.2 Methods 

oment was essentially uniform within a receptive field (RF). The disparity modulated 

fo

s

of

experimentally usi

function of time.  

 

In order to compare

psychophysical respon

u

determine disparity th

This combination of physiology and psychophysics thus identifies the mechanisms by 

which neuronal populations support multiple behavioral abilities.  

 

4.2.1 Temporal frequency tuning for disparity modulation 
I studied disparity selective neurons with random dot stimuli which varied disparity 

sinusiodally as described in 3.2.1. For this study of temporal responses, the spatial 

frequency of this modulation was low enough (usually 0.125 cpd) that the disparity at any 

m

between a value close to the preferred disparity and a value close to the null disparity (so 

that firing rate was a monotonic function of disparity within the range used). The total 

stimulus size was 5°x5° (4° modulating region + 1° surrounding frame of zero disparity, 

black and white dots, 0.1x0.1° size, usually 99% contrast).  I varied the temporal 

frequency of the corrugation in one octave increments (1-32 Hz for monkeys Hg, Rb, 

1.125-36 Hz for monkeys Rf, Df), presented in pseudo-random order. Each stimulus 

condition was presented a minimum number of four times (maximum 27, mean 10.3).  
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For entry into this study, I required that all neurons show significant modulation of firing 

rate with changes in disparity (in RDS with uniform disparity) on a one-way ANOVA 

(p<0.05), and that their mean response at the preferred disparity exceeded 10spikes/sec. 

 

The main manifestation of disparity selectivity in response to the corrugations is a 

periodic modulation in firing rate at the drift frequency. I quantified this modulation by 

measuring the relative modulation (RM, defined in 3.2.3). The value for f1 was obtained 

y averaging the responses for all trials, then calculating the modulation of this mean 

(Davison and Hinkley, 

997) to determine confidence intervals. I required that relative modulation in response to 

ral frequency was significantly higher (on the 5% level, corrected for 

multiple comparisons) than in response to the planar stimulus, before further analysis of 

For comparison with the responses to disparity modulation I also measured temporal 

frequency tuning in response to drifting sinusoidal luminance gratings at high contrast 

(usually 99%). The stimuli were presented with the preferred orientation and spatial 

frequency, and over the same range of temporal frequencies as was used for disparity 

modulation, a minimum of four times each. Gaussian functions were fit to mean rate as a 

function of grating temporal frequency.  

b

response at the frequency f1. The same calculation (repeated for all temporal frequencies 

of the corrugations) applied to responses to the planar stimulus, served as a control for the 

extent of modulation that was not attributable to the corrugation. In order to eliminate 

artifactual modulation related to response-latency and the onset transient, the first 500ms 

of each trial was discarded.  
 

A resampling (1000 cycles) and bootstrapping method was used 

1

at least one tempo

the response modulation was undertaken.  

 

For most cells the variation of RM as a function of temporal frequency of the 

corrugations gave a curve that could well be described by Gaussian functions. I therefore 

used Gaussian fits for subsequent analysis.  

 

4.2.2 Temporal frequency tuning for contrast 
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It is possible that the differences in spatial structure between the RDS and the drifting 

gratings might be associated with a change in temporal integration (e.g. because of 

hanges in contrast normalization). In order to measure temporal frequency tuning for 

on at the second harmonic of the stimulus (Movshon et al., 

978b; Hawken et al., 1996). Tuning curves plotted therefore f2 (modulation amplitude at 

Characterization of the response at onset (latency and time to 60% peak response) was 

obtained from averaged spike density functions. I fitted a horizontal line followed by an 

exponential to the onset of the spike density function (from 30ms prior to stimulus onset 

to the peak of the response within the first 250ms after stimulus onset): 

 

c

contrast in an RDS stimulus, I employed dot patterns in which the dot locations remained 

fixed throughout an entire 2-second trial. However, the luminance of the dots was 

modulated sinusoidally (as dark dots got lighter, bright dots got dimmer, until the contrast 

was reversed).  This is equivalent to applying counterphase modulation to all of the 

spatial Fourier components of the dot pattern, so I describe this stimulus as a 

counterphase modulating RDS. The RDS were otherwise similar to the stimuli used for 

measuring disparity tuning. The RDS and gratings were presented monocularly, or 

binocularly at the preferred disparity. For complex cells the dominant response to 

contrast reversal is modulati

1

the second harmonic of stimulus temporal frequency) as a function of stimulus temporal 

frequency. I fitted Gaussian functions to the tuning curves.  

 

4.2.3 Onset transient 
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The fit had four free parameters: baseline, b, latency, l, gain, g, and a time constant τ, 

which were constrained to values >0. Least square residuals were minimized using a non-

linear optimization algorithm (Lagarias et al., 1998). The rise time to 60% peak was the 
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first bin in units of 0.1ms of the spike density function which was >60% of peak within 

4.2.5 Psychophysical experiments 
an subjects (one female, two 

aïve observers), with normal or corrected to normal vision. The subjects viewed the 

reoscope similar to that used for recordings. Stimuli were 

planar dynamic random dot stereograms (size 8°x8°, dot size 0.1°x0.1°, 50% black, 50% 

quency 0.5Hz to 

4Hz, varying between runs) from a control RDS in a two interval forced choice 

rocedure. The monitor framerate was for the psychophysical experiments to 

improve the frequency resolution. The amplitude of the disparity modulation was varied 

seudorandomly between trials to determine detection thresholds. Above the temporal 

s a 

 

e 

chosen such that they matched the disparities of the disparity modulating RDS (because 

the first 250ms after stimulus onset. 

 

4.2.4 Temporal integration time 
To determine the temporal integration time in response to disparity modulation, the phase 

of the response modulation was plotted as a function of stimulus frequency. For a 

constant temporal integration time, the phase is proportional to the input frequency, and 

the slope of the resulting function corresponds to the temporal integration time (Reid et 

al., 1992; Hawken et al., 1996). To reduce error caused by noise, phases were only 

calculated at the temporal frequencies for which RM was >0.5 peak RM. The slope of the 

function relating phase and input temporal frequency was then determined by linear 

regression.  

 

I measured sensitivity to disparity modulation in four hum

n

stimuli in a Wheatstone ste

white dots, 99% contrast, dot density 50%) whose disparity changed over time. In order 

to avoid monocularly detectable changes in the stimuli, the disparity modulating RDS 

was surrounded by a 1° frame at zero disparity. Total stimulus size was 9° (8°+1° frame). 

Subjects had to discriminate a disparity modulating RDS (temporal fre

2

p  set to 96Hz 

p

frequency limit of disparity modulation, a disparity modulating RDS is perceived a

transparent cube (Norcia and Tyler, 1984). The control interval therefore contained an

RDS giving the same percept. The disparities of the dots in the control interval wer
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of the monitor frame rate the sinusoidally disparity modulating stimulus containe

discrete disparity steps). For each 

d 

stimulus pair, the same total number of dots was 

resented at each disparity in the control as in the stimulus intervals. The control interval 

s on every frame, while the stimulus interval 

quencies I therefore added a small pedestal disparity (exceeding the disparity 

odulation amplitude) to both stimulus and control intervals. Thus at all frequencies, 

isparity over time in order to do the task. 

Finally, to ensure that temporal components of the onset did not distort the results, all 

4.2.5 Gaussian fits 

or logarithmic temporal frequency (whichever minimized the least square residuals) in a 

p

contained the same distribution of disparitie

contained only one disparity on each frame. At intermediate frequencies, this control 

stimulus gave rise to a thicker percept than the disparity modulating stimulus.  In order to 

prevent subjects from using perceived thickness as a cue in the task, I scaled the range of 

disparities contained in the control interval to ensure that this cue could not be used.  

 

At the lowest frequencies used (< 3Hz), the presence of a detectable (non-zero) disparity 

at any point in the trial might have been used to detect the interval with modulation. At 

these low fre

m

subjects were forced to detect modulation in d

disparities in the first 100ms were scaled down with a temporal Gaussian window, for 

both the control and stimulus intervals.  

 

Subjects were asked to fixate on a cross in the center of the monitors. Each trial was 

initiated by a button press. The stimuli were presented foveally and usually lasted for 1 

sec each (separated by a 100ms interval) unless subjects terminated trials earlier by 

making their choice before the end of the stimulus presentation. Cumulative Gaussian 

curves were fit (using a maximum likelihood estimator) to the psychometric functions to 

determine the point at which 75% correct performance was achieved. (I will refer to this 

as the disparity threshold at the respective temporal frequency of disparity modulation.)  

 

I used Gaussian fits to quantify temporal frequency tuning in response to disparity 

modulation, luminance gratings and counterphase modulating RDS, and to characterize 

the psychophysical performance. All fits were allowed to be a Gaussian function of linear 
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nonlinear optimization algorithm [based on the simplex-search method (Lagarias et al., 

1998)]. The Gaussian functions had four free parameters (mean, amplitude, standard-

deviation and baseline), which except for the mean were constrained to values ≥0.  
  

Gaussian fits were considered adequate if they explained more than 65% of the variance 

within the data. The temporal frequency at which the Gaussian dropped to 2/3 of its 

positive peak value (i.e. the peak within the segment of the Gaussian for which temporal 

frequencies were ≥0) was defined as the high cutoff frequency.  
 

4.3 Results 
I recorded from 242 isolated units in striate cortex of one female and three male 

monkeys: 110 from monkey Hg, 62 from monkey Df, 59 from monkey Rf, and 11 from 

monkey Rb. Of these, 117 units were significantly selective for disparity (5% level in 

ANOVA) and fired >10 spikes/sec in response to their preferred disparity. Responses to 

disparity modulating RDS were analyzed for 73 of the 117 cells. (For the remainder, the 

unit was either lost before a complete dataset was recorded or the range of disparity-

modulation did not match the range of disparity selectivity of the cell.)  

modulation 

 

resented with disparity modulating RDS of different temporal frequencies should 

ency of its modulation accordingly. This is what I observed.  

 

4.3.1 Temporal frequency tuning in response to disparity 

During presentation of these stimuli, the disparity at any point in a receptive field 

modulates as a sinusoidal function of time. I have previously shown that disparity 

sensitive V1 neurons respond to such stimuli with a sinusoidal modulation of their 

response at the stimulus frequency, (Chapter 3, Nienborg et al., 2004). A neuron

p

therefore change the frequ
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Figure 4.1 Responses to disparity modulating RDS for two neurons (hg597, ruf144). 
Panel A,B and E,F depict spike density functions in response to disparity modulating 
RDS at different temporal frequencies (2Hz, 4Hz for panel A and B, and 9Hz, 18Hz for 
panels E and F). Panels D and H show cycle averages of the spike density functions (2Hz 
to 16Hz and 4.5Hz to 36Hz respectively). The relative modulation (RM, modulation 
amplitude at the stimulus frequency over mean firing rate) is plotted as a function of 
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temporal frequency in panel C (cell hg597) and G (cell ruf144). Baseline RM is the 
modulation at each temporal frequency in response to a planar control stimulus (no 
modulation). The arrows point to the RM calculated for the data depicted in the 
respective panels A,B and E,F. RM plotted as a function of temporal frequency is fitted 
by Gaussian curves (dashed lines in panels C and G). The temporal frequency high cutoff 
was calculated at 2/3 (peak RM – mean baseline RM). High cutoff values were usually 
similar to that show  panel C (8.1Hz) bu ere significantly higher in a few neurons, 
as seen in panel G (35.3Hz). 
 

Figure 4.1 (panels A, and ) de cts t spike sity nctions of two cells in 

response to disparity m ulating RDS of differe poral frequencies. Panels D and H 

show cycle averages of these spike density functions allowing clearer comparison of the 

response amplitude and phase. These neurons, like all of those I observed, modulated 

their firing at the s ntified the extent of modulation by calculating 

the relative modulation (RM, Movshon et al., 1978a). It is the amplitude of the neuronal 

modulation at the tempo stimulus divided by the mean firing rate 

of the neuron (f0). In order to control for modulation unrelated to the stimulus 

modulation I also me response to a corrugation whose depth modulation was 0, 

i.e. a planar stimulus with a constant disparity over space and time, interleaved with the 

modulating stimuli. In 69 out of 73 neurons,  modulation was significantly stronger in 

at least one of the temporal frequencies tested, than in response to the planar control 

stimulus (by resampling).  

  

The mean firing rate was little affected by temporal frequency. Only 32/69 cells showed 

any significant change (one-way ANOVA, p<0.05), and  these cells the 

modulation in m  ing was modest a rarely showed syste tic changes as a 

function of temporal frequency.  I therefore used the RM-values to obtain temporal 

frequency tuning curves in response to disparity modulation (Figure 4.1C and 4.1G), and 

described these by fitting Gaussian curves. For 59/69 cells, the Gaussian fits explained 

>65% of the variance and were used to describe the temporal properties [high-cut 

n in t w

B E, F pi he  den fu

od nt tem

timulus frequency. I qua

ral frequency (f1) of the 

asured the 

the

 even for

maean fir nd 

temporal frequency (frequency at 2/3 peak RM), peak frequency and frequency 

bandwidth obtained from the mean and the S.D. of the Gaussian fit respectively]. 

 

Unless stated otherwise the remainder of the quantitative analysis is restricted to these 59 
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cells. The mean of the peak frequencies was 3.2Hz ± 2.9Hz (Figure 4.2B).  The mean 

high temporal frequency cut off was 10.0Hz ± 6.5Hz S.D. (Figure 4.2A), and the mean of 

the frequency bandwidth was 6.1 ± 6.7Hz (data not shown). The distribution of the peak 

temporal frequencies shows that a large number of cells have peaks at 1Hz (the lowest 

frequency tested), suggesting that they are lowpass. In order to quantify the extent to 

which cells were lowpass/bandpass I calculated the ratio of RM at the lowest temporal 

frequency over peak RM (I obtained the values for this ratio from the raw RM data, not 

uencies, it could lead to the appearance of low frequency 

tenuation. However, examination of vergence records revealed no systematic responses 

that the 

from the fit). Figure 4.2C depicts the distribution of this ratio, which is strongly biased 

towards values of 1. Nonetheless, 13/59 cells (filled bars) showed statistically significant 

low frequency attenuation. (p<0.05, two tailed test by resampling, corrected for multiple 

comparisons). The magnitude of the attenuation was generally modest, with only 4/59 

neurons showing responses that fell below half their peak value. 

 

It is possible that even these figures overestimate the true magnitude of low frequency 

attenuation, if the disparity modulation induced vergence eye movements. Monkeys 

trained to make tracking vergence eye movements are able to do so only up to 

frequencies of 1-4Hz (Cumming and Judge, 1986), depending on stimulus amplitude. If 

such movements were elicited by the stimuli used here, they would have reduced 

modulation in retinal disparity over the RF of the neuron. Since this reduction would only 

occur at low stimulus freq

at

to the disparity modulation in the stimulus. The measured amplitude of vergence 

modulation was on average only 15% of the modulation in stimulus disparity. Three 

observations suggest this vergence variation largely reflects artifacts [as also suggested 

by Read and Cumming, (2003a)]. First, the amplitude of the response at any one 

frequency was independent of the stimulus modulation frequency. Second, the extent of 

modulation observed in vertical vergence was similar to that seen for horizontal 

vergence, despite the fact that there was no modulation in the vertical disparity of the 

stimulus. Finally, I found no correlation between the relative amplitude of the vergence 

eye movements and the extent of low-frequency attenuation. Thus it appears 
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reduction in neuronal response amplitude at low stimulus frequencies is a real property of 

the neuron’s response to disparity, not an artifact related to vergence eye movements.  
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the peak temporal frequencies of the 59 neurons is shown in panel B (mean 3.2Hz). Most 
neurons had low peak temporal frequencies. The ratio of RM at the lowest tempo
frequency over peak RM was used to estimate the extent of low frequency attenuati

ral 
on 

n=59). Filled bars correspond to cells with statistically 
significant low frequency attenuation (n=13, p < 0.05 by resampling). 
 

To summarize the responses of the who

fits (n=62) describing the variation of RM as a function of temporal frequency (Figure 

4.3A). [Note that thi verage includes the fits for cells whose modulation was not 

significantly stronger in response to disparity modulation than in response to the planar 

control stimulus (n=3).] The temporal frequency cutoff for this averaged fit (solid line in 

Figure 4.3A) was 10.5Hz (  li  F re ), similar to the mean of the temporal 

frequency cutoffs, and t in Figure 4.3A). The low frequency 

roll-off was modest. If the temporal integration of disparity signals in striate cortex is a 

limiting factor for psychophysical performance, these features might be reflected in the 

psychophysical sensitivity to disparity modulation. A previous study showed that the 

highest temporal frequency at which hu able to detect motion in depth in RDS 

was 9Hz, and to detect flickering in depth 14Hz (Norcia and Tyler, 1984). However, it is 

difficult to relate these measures of limiting frequency with the continuous sensitivity 

curve I show for the neuronal population (Figure 4.3A). I therefore used a protocol very 

similar to that of Norcia and Tyler, but measured disparity thresholds at each frequency. 

The reciprocal of these thre y curve for human observers that 

can be compared with the neuronal population (Figure 4.3B). 

 

Comparing the neuronal and psychophysical sensitivity curves, there are several close 

similarities. First, despite differences between subjects in absolute sensitivity, the 

temporal frequency high cut off, (defined as 2/3 peak performance) was almost identical 

in all subjects (5.1Hz to 5.9Hz, mean 5.5Hz±0.4Hz S.D.). This is similar to the equivalent 

measure for the neuronal population, although slightly lower. Second, for all four 

subjects performance was best between 1.5Hz and 3Hz which corresponds to the peak of 

the neuronal population (2Hz). Th quency attenuation is similar 

(frequency histogram in C, 

le neuronal population, I averaged the Gaussian 

s a

dotted ne in igu 4.3A

he peak was 2Hz (dashed line 

mans were 

sholds then yields a sensitivit

ird, the extent of low-fre

for the psychophysical and neuronal data. These similarities between psychophysical and 
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neuronal data strongly suggest that the initial calculation of disparity in striate cortex is 

what limits the psychophysical temporal resolution for stereopsis.  
 

A 1 

 
 
Figure 4.3 Comparing the neuronal population response with the psychophysical 
performance. Panel A depicts the averaged Gaussian fits to the RM as a function of 
temporal frequency for the 62 neurons (solid line). The baseline is the mean RM in 
response to the planar control (no modulation) for these 62 neurons. Superimposed is the 
mean of the psychophysical performance (normalized for each subject by the value at 
1.5Hz) in response to disparity modulation for four human subjects (open squares). The 
dotted vertical lines indicate the high cutoff for the averaged fits of the neuronal data 
(10.5Hz) and the mean human psychophysical performance (5.5Hz). Psychophysical 
performance for each subject (n=4) is shown in panel B. Sensitivity (1/disparity 
threshold, see Methods) is plotted as a function of temporal frequency. The range of the 
temporal frequency cutoffs between subjects is indicated by the dotted lines. 
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What makes this conclusion surprising is that psychophysical detection of temporal 

modulation signaled by contrast is very different from the equivalent measures for 

disparity- despite both apparently being limited by the temporal resolution of V1 neurons. 

Sensitivity to c ndpass function of frequency (Kelly, 1971b), as 

are the respon  V1 neurons (Hawken et al., 1996). More strikingly, an 

observer’s highest detectable temporal frequency for contrast modulation is substantially 

higher than for . Under optimal conditions (high luminance, large fields) human 

flicker sensitivity can reach 80Hz (Kelly, 1961). For smaller stimulus sizes similar to 

those used in recording experiments (2-4degrees) and otherwise optimal conditions, 

contrast sensitivity falls to 2/3 peak at about 30Hz (de Lange, 1958; Keesey, 1970; Kelly, 

1971b), which is significantly higher than the temporal frequency cut off I found in 

response to disparity tion. Yet this better high frequency performance is matched 

by the properties of V1 neurons:  the mean high-cut and peak frequency to luminance 

gratings reported for V1 neurons (Hawken et al., 1996) are comparable to these 

psychophysical data, and are approximately 2.5 times the values I measured for  neuronal 

responses to disparity modulation. This comparison raises the question of how V1 

neurons are able to respond at higher temporal frequencies in response to contrast 

modulation than in response to disparity modulation.  

 

One possibility is that different populations of neurons were studied. In V1 only about 

60% of the neurons are di al  2002b). If disparity tuned 

eurons tended to prefer lower temporal frequencies than the average V1 population, this 

ont

ses

 dis

rast modulation is a ba

 of 

parity

many

 modula

sparity selective (Prince et .,

n

discrepancy would simply be the consequence of my sampling only disparity tuned 

neurons. To address this possibility, I directly compared the high-frequency cut off in 

response to disparity modulation with that in response to drifting luminance gratings, in 

the neuronal population. 
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onse to drifting luminance gratings 

 plotted against the high cut in response to disparity modulation for 27 cells. Only three 

his is different from the changes in temporal frequency tuning known to occur with 

changes in contrast (Holub and Morton-Gibson, 1981; Albrecht, 1995; Carandini et al., 

1997), where the changes probably reflect the power of the stimulus for driving the cells. 

Figure 4.4 Temporal frequency cutoffs in response to drifting luminance gratings is 
generally higher than in response to disparity modulation. Temporal frequency cutoffs in 
response to disparity modulating RDS were compared with that in response to drifting 
luminance gratings for 27 neurons. Only three neurons lie statistically significantly below 
the identity line (by resampling). The ratio of the cutoff in response to drifting luminance 
grating over cutoff in response to disparity modulation is significantly larger than 1 
(p<0.001, geometric mean 2.3).  
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cells lie significantly below the identity-line (by resampling). The mean temporal 

frequency high-cut for the gratings is 23.4Hz, similar to the values reported by Hawken et 

al. (1996). The correlation is not significant (r=-0.09, n.s.). The geometric mean ratio of 

grating cut-off over disparity cutoff is 2.3, which is significantly larger than one 

(p<0.001, by resampling). Thus it appears that the temporal frequency tuning of single 

neurons is different for the two stimuli.  

 

T
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I used full contrast both for the gratings and the RDS. Mean firing rates did not vary 

systematically between the two stimuli for the cells in Figure 4.4 (the geometric mean 

ratio of rates in response to the RDS over rates in response to the gratings was 0.9, n.s. 

different from 1, by resampling). This suggests that both stimuli were similarly effective 

in driving the cells and that different driving power of the stimuli cannot explain the 

difference in te fr ncy tuning. 

 

When trying to understand the origin of these different temporal properties remember that 

the temporal frequency tuning curves for disparity modulation were based on RM. In 

contrast, the temporal frequency cut offs in response to drifting luminance gratings were 

obtained from mean firing rates. Suppose a cortical cell receives input from LGN-

neurons that can modula er frequencies than the cortical cell 

llowing this reasoning, one possible explanation of the results might be that some input 

lements of the cells in Figure 4.4 have higher temporal frequency cut-offs than the 

ion at the second harmonic of the stimulus 

equency (Movshon et al., 1978b; Hawken et al., 1996). The use of counterphase 

mporal eque

te their response up to high

[as results by Hawken et al. (1996) suggest]. Then the cutoff frequency for modulation in 

firing rate would be limited by the temporal properties the cortical neuron. But at higher 

temporal frequencies the cortical neuron would still receive modulating input from the 

LGN, which may be sufficient to maintain a mean firing rate above baseline.  

 

Fo

e

output (as measured by the RM). Such an explanation should hold independently of what 

stimulus is used to drive response modulation. I therefore examined changes in firing rate 

elicited by contrast modulating stimuli. For simple cells (F1:F0 > 1), I examined the F1 

component in response to drifting gratings. In complex cells the response to drifting 

gratings is dominated by an increase of discharge relatively independent of the spatial 

phase of the stimulus (Movshon et al., 1978b). In order to modulate the response rates of 

complex cells, I used counterphase modulating stimuli (gratings or RDS). The dominant 

response of complex cells is modulat

fr

modulating RDS also ensures that any changes in temporal integration cannot be 

explained by differences in contrast normalization secondary to changing the spatial 

properties of the stimulus. Figure 4.5 compares these measures of high frequency cutoff 
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for each neurons’ response modulation with that observed in response to disparity 

modulation.  Note that the abscissa marks the frequency of the cell’s modulation. For the 

open symbols (counterphase modulating stimuli) it therefore corresponds to double the 

stimulus frequency. As in Figure 4.4, the cutoff frequency is systematically higher for 

contrast modulation, with only two cells significantly below the identity line. The 

geometric mean ratio of the temporal frequency cutoff in response to contrast modulation 

ver that in response of disparity modulation is 1.8, significantly larger than 1 (p<0.001, 

 

Figure 4.5 Temporal frequency cutoff for response modulation driven by contrast is 

cells). For these cells the cutoff frequency for the F1 component is plotted (filled circles). 

plots the frequency of the modulation in neuronal firing (i.e. twice the stimulus frequency 

modulation over cutoff based on disparity modulation) is significantly higher than one 

  

 

cutoff for 

o

by resampling).  
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significantly higher than in response to disparity modulation. Ten cells showed clear 
modulation at the stimulus frequency in response to drifting gratings (F1 > F0, simple 

For the remaining cells, the responses to counterphase modulating stimuli RDS (open 
diamonds, n = 11) or gratings (open squares, n=8) were analyzed. Note that the abscissa 

for the open symbols). They are plotted against temporal frequency cutoffs in response to 
disparity modulation. The geometric mean ratio (cutoff in response to contrast 

(1.8, p<0.009, by resampling). 

disparity modulation [Hz] 

0 20 40 60
0 

60 
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This indicates that the neurons are able to modulate their response rates at higher 

frequencies in response to contrast modulation than in response to disparity modulation. 

This cannot be explained simply by suggesting that cortical neurons modulate their 

output more sluggishly than their inputs. In addition, comparing the modulation 

amplitudes in response to disparity and contrast modulation yielded similar values on 

average (the geometric mean ratio of the maximal amplitude for disparity and contrast 

modulation was 1.0, n.s. from 1). This suggests that the lower temporal frequency cut off 

does also not result from a decrease in signal to noise ratio for disparity modulation.  

Rather, the lower temporal frequency cutoff seems to be specific to the disparity input 

driving the modulation. Studies of temporal responses in the LGN (Purpura et al., 1990; 

Hawken et al., 1996) and monocular temporal-spatial receptive field maps (Cai et al., 

1997; Anzai et al., 2001; Menz and Freeman, 2004) suggest that the monocular images 

are temporally bandpass-filtered. For contrast modulation, the response therefore reflects 

the frequency response of the band-pass filter. Simple models that successfully describe 

many features of disparity selective neurons in V1 (e.g. binocular energy model) 

functionally compute cross-correlations of monocular images (Fleet et al., 1996; Qian 

and Zhu, 1997; Anzai et al., 1999a).  

In order to understand the havior such a del to  stimulus, I explored the effect 

of temporal filtering of the monocul on the calculation of the correlation. 

Appendix C shows that whe  temporally bandpass filtered, 

subsequent measures of binocular correlation have a frequency response which is very 

 than for contrast modulation therefore follows directly 

m the computation of correlation of the monocular inputs by the binocular neuron. 

 be  of  mo  my

ar images 

n the monocular images are

different from that of the filter. The response to changes in correlation has a low-pass 

response (as observed for the majority of the neurons, Figure 4.2C). For similar 

monocular temporal kernels, the frequency response of the correlation is determined by 

the Fourier transform of the square of the temporal kernels. Because of the squaring, the 

temporal frequency cutoff is largely determined by the width of the monocular temporal 

filters – regardless of their temporal structure within it. The lower temporal frequency 

cutoff for disparity modulation

fro
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4.3.2 Further examination of the temporal properties of the 

neurons: response onset and -phase    

point in time after stimulus onset when the response reached 60% its peak, Figure 4.6A

The above scheme also predicts a reciprocal relationship of the temporal frequency cutoff 

for disparity modulation with two other properties:  1) the onset rise time (i.e. the first 

 

and see Methods); and 2) the integration time deduced from phase lags. 

Figure 4.6B shows that neurons with faster initial onsets (shorter times to 60% peak 

filled squares). The relationship can be described by a prediction (dashed line in Figure 

4.6B) obtained for a fixed delay of 40ms, followed by a computation of correlation 

between the temporally bandpass filtered monocular images (the temporal band-pass 

kernel was chosen to be consistent with physiological data reported for the LGN, Purpura 

et al., 1991; see also Appendix C). Despite an overall shift towards shorter rise times the 

correlation was also significant when the rise time was obtained in response to drifting 

luminance gratings (Figure 4.6B, open circles, n=33, r=0.42, p<0.02). I also found a 

response) were able to modulate at higher temporal frequency (r=0.35, p<0.01, n=54, 

significant correlation between the temporal frequency cutoff in response to disparity 

modulation and the reciprocal of the latency (r=0.4, p<0.01, n=41, data not shown). The 

correlation reflects the fact that response latencies in visual cortical neurons are in the 

order of ten times larger than expected from pure conduction delays (Reid et al., 1992), 

due to temporal filtering in addition to conduction delays. The temporal frequency high 

cutoffs in response to drifting luminance gratings was not correlated with the rise times in 

response to these stimuli (Figure 4.6C, r=0.14, p>0.3, n=47). This agrees with results by 

Hawken et al. (1996), who reported no correlation between their measures of temporal 

integration time and temporal frequency high cutoff in response to luminance gratings in 

V1.  
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Figure 4.6 Temporal fr ency cutoff to disparity modulation and rise time at response 
onset. Panel A shows averaged spike density functions of the onset in response to 
disparity modulating RDS. The arrow points to the onset of the stimulus (St). Dashed 
lines depict fits used to e response latency e to 60% peak (see 
Methods). Solid lines mark rise time to 60% peak. The neuron (ruf144) with the shorter 
time to 60% peak (42ms) has the higher temporal frequency cutoff (35.3Hz). Neuron 
hg597 has a time to 60% peak of 72ms and a temporal frequency cutoff of 8.1Hz. (The 
cells are the same for which the spike density functions in Figure 4.1 are shown.) The 
scatterplot in panel B com es he temporal frequency cutoffs in response to disparity 
modulation with the reciprocal of the time to 60% peak obtained for disparity modulating 
RDS (n=54, filled squares) and drifting luminance gratings (n=33, open circles). The 
correlation is significant (r=0.45, p<0.002 and r=0.47, p<0.01 respectively) as expected 
for a cross-correlation of bandpass fil   (dashed line, see Results and 
Appendix C). No correlation is found between the time to 60% peak for drifting gratings 
with the highcuts in response to these stimuli (Panel C, n=47, r=0.14, n.s.). 
 

Appendix C shows that m uring the correlation of temporally bandpass filtered images 

is equivalent to filtering with the squared monocular filter (which is similar to the square 

of the monocular envelo i.  a lowpass filter). For a low-pass filter, the phase lag 

increases systematically with frequency.  The slope of this relationship can be used to 

estimate the temporal integration time (Reid et al., 1992, Hawken et al., 1996). It 

corresponds to the sum e c duction d  and the ays caused by the temporal 

filtering.  
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Figure 4.7 Phase of the neuronal responses. Panels A and B depict two temporal 
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frequency tuning functions in response to disparity modulation, depicting RM (ordinate) 
tion of temporal frequency (abscissa). The temporal frequency cutoffs are 

0.4Hz (cell ruf540, panel A) and 35.3Hz (cell ruf144, panel B). In panels C and D the 
phase of the averaged peri-stimulus time histogram (PSTH) is plotted as a function of 

mporal frequency for the cells in A and B respectively. The slope of the line relating 
phase and temporal frequency (dashed line) was obtained by linear regression. It will be 
referred to as temporal integration time (206ms and 44ms for ruf540 and ruf144, 
respectively). Note the longer temporal integration time (steeper slope) for the neuron 
with the lower temporal frequency cutoff (ruf540 panel, A and C), and the intercepts of 
the dashed line with the ordinate at about 0 for both cells. 

 

Figure 4.7 (bottom) plots phase as a function of temporal frequency for two cells. (For 

comparison, the variation of RM as a function of temporal frequency for the cells is 

shown in the upper row.) In order to reduce the error caused by noise I calculated phases 

only for RM-values > 0.5 peak RM. Note that the slope of the line relating phase and 

temporal frequency (dashed line in Figure 4.7C and 4.7D) is steeper (i.e. that the cell has 

a longer temporal integration time) for the cell (ruf540) with the lower temporal 
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frequency cutoffs were significantly correlated with the reciprocal temporal integration 
time (the slope of the line relating response phase and temporal frequency, see Figure 
4.7C, D), n=41, r=0.6, p<10-4. The mean temporal integration time is 72ms±23ms (S.D.). 
The dashed line depicts the prediction for a constant delay of 40ms followed by cross-
correlation of monocularly band-pass filtered input. 
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4.3.3 No specialization for signaling motion in depth 
Plotting phase as a function of temporal frequency also allowed me to examine whether 

the neurons were specialized for signaling motion in depth. A previous study found a 

small number of macaque V1 neurons sensitive to opposite directions of image motion in 

the two eyes (Poggio and Talbot, 1981), and suggested that some V1 neurons are tuned 

for motion in depth. However, as Maunsell and Van Essen, (1983) pointed out, when 

using targets that move in depth, care must be taken that changes in mean disparity alone 

are not responsible for the tuning observed. These difficulties are all avoided in my 

analysis where only the temporal frequency of modulation varies. Sensitivity for motion 

in depth should result in an additional constant phase shift independent of stimulus 

frequency. The intercept of the line relating phase and stimulus frequency would then be 

at values close to ±90°. In the examples in Figure 4.7 this is not the case. Figure 4.9 

shows the distribution rcept for 45 cells. The mean is 16±28°. This is close to 0 

and only 1 cell has an intercept outside the range of ±65°. Thus V1 neurons appear 

insensitive to the rate o ange of disparity within the receptive field.   

 

rees) with the ordinate in the phase 
lots (Figure 4.7C, D) is shown in the frequency histogram for 45 cells. Most values are 
lose to 0 degrees (mean 16.0±28.2°SD) suggesting that the neurons respond to the 
stantaneous disparity and not to motion in depth. 
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Figure 4.9 The intercept of the line relating phase of the response and temporal 
requency with the ordinate. The intercept (in deg
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Discussion 
 

5.1 Summary of the main results 

Chapter 5 

1) I found that most disparity selective neurons in striate cortex responded to a 

sinusoidal corrugation with a lowpass function of spatial frequency (corrugation 

frequency). This suggests that the neurons respond strongest to a uniform 

disparity within their receptive field. My analysis shows that the neurons have 

fronto-parallel planar receptive fields, no specialization for signaling slant and no 

center-surround interaction. In such a scheme the high corrugation frequency 

cutoff is lim by e field size. My independent measurements of 

receptive field size were compatible with this. 

2) All of this behavior closely matched the model simulations based on the binocular 

energy m unctionally corresponding to binocular cross-correlation) for 

disparity modulations. 

3) The high cutoff corrugation frequency of V1 neurons is similar to the acuity limit 

for detecting disparity modulation of human observers. V1 receptive field size 

may therefore impose an initial acuity- n processing depth, just as retinal 

eptors do on p

4) I found that the temporal frequency high-cut in response to disparity modulation 

ited  the receptiv

odel (f

limit o

photorec rocessing shape. 

for V1 neurons is on average 10.5Hz. This value is similar to the temporal 

frequency high cut for detecting disparity modulation that I measured in human 
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observers. This suggests that disparity selective V1 neurons also limit the 

temporal resolution for detecting disparity modulation. 

5) The temporal frequency highcut of the neurons in response to disparity 

modulation was on average lower than that in response to drifting luminance 

gratings. Additional measurements suggest that this cannot simply be explained 

by differences in the analysis (temporal frequency measurements based on 

dulation or based on mean responses). Rather the different temporal 

 mathematically as a result of calculating cross-correlation between 

dpass filtered monocular images. It is therefore a necessary feature 

of simple models for disparity selectivity in V1 which functionally correspond to 

a cross-correlation of monocular images, such as the binocular energy model. 

elective V1 neurons are not specialized for 

 

5.2 T

spatia
Previou

corresp

respon cture of the stimulus (orientation, 

spa

dimens

modulation of disparity in random dot stereograms. Every aspect of the response I 

exa

dots co

disparit

 

Firs

tempor

modula

typical pattern. Third, the way in which the RM declined with increasing stimulus 

response mo

tuning follows

temporally ban

6) My analysis showed that disparity s

signaling motion in depth. 

hree-dimensional receptive field structure of V1 neurons and 

l acuity for detecting disparity modulation 
s studies of disparity selectivity in the striate cortex have used stimuli which 

ond to planar fronto-parallel surfaces. This differs markedly from studies of 

ses to contrast, where the two-dimensional stru

tial frequency etc.) is more important than its luminance. In order to explore the three-

ional structure of V1 receptive fields, I examined responses to sinusoidal 

mined could be explained as a response to the weighted mean of the disparities of the 

vering the RF (the weights being set by the RF envelope), as if the optimum 

y is the same at all locations within the RF 

t, this predicts that the response should be a sinusoidal modulation in activity, at the 

al frequency of the stimulus, exactly as I observed. Second, the extent of 

tion (relative modulation, RM) should be greatest at low frequencies. This was the 
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corruga

the form aussian. Furthermore, this 

cut

measur

and the

are wea

 

All of 

the ene

each ey

widely t to 

not

other m h the response is on average determined by the mean 

isparity of the dots weighted according to their location in the RF would suffice.  

excludes two plausible 

possibilities for an underlying RF structure. First it indicates a lack of any center-

n this small subpopulation, so it does 

ot appear to be a significant feature of the response of the population of V1 neurons. 

tion frequency was well described by a Gaussian function of frequency. This is 

 expected if the shape of the RF envelope is also a G

off frequency never significantly exceeded the limit predicted from an independent 

e of the RF envelope. Finally, the correlation between disparity selectivity (DDI) 

 maximum value of RM indicates that there is not a subpopulation of neurons that 

kly tuned to disparity but strongly tuned for disparity gradients.  

these properties of V1 neurons were readily matched with an implementation of 

rgy model (Ohzawa et al., 1990), extended to include two dimensional RFs in 

e (Bridge et al., 2001). This therefore represents another success for the most 

 accepted mechanism by which disparity selectivity arises in V1. It is importan

e that, taken by themselves, the data reported here are compatible with a wide range of 

odels. Any model in whic

d

 

The general absence of attenuation in RM at low frequencies 

surround organization in the disparity domain (i.e. any suppression from the surround 

does not depend on disparity, at least over the range of disparities tested here). If a region 

activated by one disparity was surrounded by a region where the same disparity 

suppressed the response, then a uniform field of dots at that disparity would produce a 

weaker response than a stimulus with an intermediate corrugation frequency placing the 

preferred disparity at the center but not in the surround. A few neurons (7/55) showed 

weak but significant attenuation of their response at low corrugation frequencies. The 

phase of their responses was compatible with a weak center-surround organization of this 

type. However, the attenuation was modest even i

n

 

Second, the lack of low frequency attenuation argues against a specialization for 

signaling slant. These depth corrugations place a time-varying slant over the receptive 

field, and since the amplitude of the corrugations was constant, the magnitude of the slant 
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variation increased with the corrugation frequency. A neuron activated only by non-zero 

values of slant would cease responding at low frequencies. Note that this observation 

does not exclude the possibility that the activity of some neurons is weakly affected by 

stimulus slant. It does indicate that the effects of changes in slant are small compared 

with the effects of changes in mean disparity. This is a feature of the energy model, even 

when inter-ocular differences in preferred orientation are incorporated (Bridge et al., 

001).  

euron. 

urthermore, disparity modulations presented at any other orientation introduce 

ant 

lectivity in area MT (Nguyenkim and DeAngelis, 2003) found responses to pairs of 

2

 

One possibility is that because I only used disparity modulations in one orientation, I 

might have missed a population of neurons that are selective for tilt about other axes. If 

this were the case, the population would have to be strongly biased away from 

responding to tilt around a horizontal axis to explain the lack of slant selective responses 

I observed, which seems unlikely. To measure responses to different corrugation 

frequencies at multiple orientations would require substantially more data per n

F

monocular changes to the stimulus (variation in dot density) that depend upon spatial 

frequency and orientation. Therefore, had I found neurons that appeared slant selective 

only for variation in disparity along non-vertical axes, this would not have provided clear 

evidence for slant selectivity.  

  

The lack of slant selectivity in V1 raises the question of how slant selectivity in 

extrastriate cortical areas arises. The most natural possibility is that this is derived by 

combining the outputs of V1 disparity selective neurons. This allows a neuron to detect 

slant by means of piecewise planar (fronto-parallel) approximations. Studies of slant 

selectivity in extrastriate cortex have all used large enough stimuli that this explanation is 

entirely possible (Shikata et al., 1996; Sakata et al., 1999; Tsutsui et al., 1999; Sugihara et 

al., 2002; Nguyenkim and DeAngelis, 2003). Furthermore a recent study of sl

se

small planar patches that were commensurate with this explanation. One consequence of 

such an explanation is that modulations over regions as small as V1 RFs should not be 

detected by such neurons. That is to say that if tested with depth corrugations like those 
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used here, this model predicts that high-frequency cutoffs for slant selective neurons 

should not be higher than those reported here. 

 

Although such responses have not been studied in extrastriate cortical areas, one can 

pursue the same logic all the way to psychophysical measures. If slant selectivity 

throughout the brain is derived from piecewise comparison of outputs from V1 neurons, 

then the high-frequency cutoffs reported here should limit the psychophysical observer’s 

bility to detect disparity modulations at high corrugation frequency. Human 

ended on these responses, a corrugation frequency of 0.5 

d should produce thresholds 50% higher than the optimum.  The two human studies 

a

psychophysical studies (Tyler, 1974; Schumer and Ganz, 1979; Howard and Rogers, 

1995; Bradshaw and Rogers, 1999; Banks et al., 2004a) have found that the acuity to 

detect disparity modulations is surprisingly poor (when considering the high acuity to 

detect luminance structure or stereo-acuity). Banks and colleagues, (Banks et al., 2004a) 

show that this cannot be explained by limitations inherent to the stimulus and also argue 

that using piecewise frontal disparity estimates imposes a limit on the highest attainable 

acuity for disparity modulations. Comparing the physiological data here with 

psychophysical responses at similar eccentricities suggests that spatial integration of 

these V1 neurons is what limits performance. The neuronal data show a reduction to 66% 

of maximal sensitivity at a mean frequency of 0.5 cpd, at a mean eccentricity of 3.7°. If 

psychophysical judgments dep

cp

that examined thresholds at these eccentricities (Prince and Rogers, 1998; Banks et al., 

2004a) found 50% threshold elevation at 0.5-0.6 cpd. The similarity between these values 

for single neurons and for human psychophysics suggests that the acuity limit for humans 

is determined by the frequency at which the majority of V1 neurons fail to modulate their 

responses. The cutoff frequency for the neurons seems in turn to be limited by the size of 

the RF (Figure 4.7). Taken together these observations suggest a simple physiological 

explanation for the observation that cyclopean acuity for depth modulations is so poor. 

When the period of the corrugation is smaller than the RF size, the response of neurons 

with adjacent RFs becomes identical, and the corrugation cannot be detected, as also 

suggested by recent psychophysical measurements of correlation-thresholds (Banks et al., 

2004b). 
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These comparisons of human psychophysics with neuronal responses in the monkey of 

ourse rely on the assumption that psychophysical measures of the same phenomena in 

ound (relative disparity, (Thomas et al., 2002). Also, it has been shown that V2 

c

monkeys would give rise to similar results. As most studies of stereoscopic visual 

function in the monkey have yielded results very similar to humans (Sarmiento, 1975; 

Harwerth et al., 1995; Siderov and Harwerth, 1995; Prince et al., 2000), this assumption 

seems reasonable.  

 

It is intriguing to compare the disparity structure of V1 receptive fields with the way in 

which other parts of the visual system are organized for luminance processing. The 

response appears to be determined by the disparity presented over a small region, 

regardless of the disparities outside that area. In this way, their processing of disparity is 

less sophisticated than the luminance processing of retinal ganglion cells. The closest 

analogy seems to be with photoreceptors whose response to luminance shows the same 

simple spatial structure as the response of V1 neurons to disparity. In this sense, disparity 

selective cells in V1 might be considered the photoreceptors of the “cyclopean retina” 

(Julesz, 1971). 

 

5.2.1 Future work 
The properties of V1 neurons do not explain why human sensitivity to depth corrugation 

is reduced at frequencies lower than 0.3 cpd, as nearly all neurons showed a simple 

lowpass function of corrugation frequency. The reduced sensitivity to low frequencies 

may therefore reflect the consequences of processing in extrastriate cortex. Suppose that 

extrastriate cortex generated a representation of relative disparity by comparing nearby 

subregions. At very low frequencies, there would be little difference in disparity between 

the subregions. Consequently the response will be attenuated at low frequencies. 

Conversely, the lack of low frequency attenuation that I report here for V1 neurons 

implies that they are not sensitive to disparity differences within their receptive fields. 

The question arises where sensitivity to disparity differences is first encoded in the brain. 

Some V2 neurons show selectivity for the disparity within their receptive field relative to 

their surr
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responds selectively to the orientation of disparity defined edges (von der Heydt et al., 

wer spatial resolution for disparity modulation than for contrast could 

e a mechanism by which the number of possible matches in the images are reduced, and 

V1 neurons. 

ency tuning for disparity modulation 

2000). V2 therefore seems to be a good candidate to have neurons also specialized for 

disparity differences within their receptive fields.  Examining the spatial properties of 

these neurons might enable one to identify the neuronal origin of the decline of the 

human resolution of disparity modulation at low frequencies. 

 

Theoretically, the lo

b

therefore a step towards solving the correspondence problem (Fleet et al., 1996; Qian and 

Zhu, 1997). I showed that the low spatial resolution was a direct consequence of the 

computation of disparity within the energy model. The poor spatial resolution for 

disparity modulation I found in V1 does therefore not conflict with earlier studies 

suggesting that these neurons do not solve the correspondence problem (Cumming and 

Parker, 1997, 2000). The experimental paradigms designed by these authors could be 

used to test disparity selective neurons in extrastriate cortex for solving the 

correspondence problem and therefore whether they are more directly linked to 

perception than 

 

5.3 Temporal frequ
I compared the psychophysical temporal resolution and the physiological temporal 

frequency tuning of V1 neurons to disparity modulation. The characteristics of the 

psychophysical performance are similar to my findings in the population of the V1 

neurons: First, the high temporal frequency limitation for both was similar. Second, 

psychophysical performance was best for values between 1.5 and 3Hz. The averaged 

peak temporal frequency in the population (2Hz) agreed with this. Third, the 

psychophysical sensitivity for disparity modulation had a mild attenuation for low 

temporal frequencies. This was the general pattern in the neurons. 

 

These findings argue in favor of V1 being a limiting temporal factor for the poor 

temporal resolution of stereopsis. What makes this result surprising is the fact that the 

temporal response of V1 neurons also seems to match psychophysical detection of 
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contrast modulation, despite the fact that the psychophysical ability to resolve contrast 

modulation (de Lange, 1958; Kelly, 1971a, b) is much better than the resolution for 

disparity modulation (Norcia and Tyler, 1984). This implies that the disparity signal that 

drives modulation at the input to an individual neuron can change that neuron’s temporal 

response properties. This is confirmed by my comparison of temporal frequency tuning 

r disparity with temporal frequency tuning for contrast (Figures 4.4, 4.5).  

p between phase lag and frequency. I observe exactly such 

orrelations (Figures 4.6B and 4.8). Finally, a recent study (Read and Cumming, 2003c) 

he monocular 

cy is not surprising 

onsidering that a perceptual decision probably relies on the pooled activity of neurons. 

fo

 

These results can be explained when regarding the computation of disparity in V1 as a 

cross-correlation of the band-pass filtered monocular inputs. The temporal frequency 

cutoff for contrast modulation is then determined by the frequency response of the 

temporal kernel. Conversely, the temporal frequency cutoff for disparity modulation 

corresponds to the cutoff predicted approximately by the squared width of the monocular 

bandpass filter.  

 

This also predicts correlations between three different aspects of the response:1) the rise 

time of the initial response, 2) the amplitude attenuation with increasing frequency, and 

3) the slope of the relationshi

c

examined disparity tuning in V1 as a function of interocular delay between t

images. The observed integration time for these interocular delays predicted a mean 

temporal frequency cut off of around 10Hz, closely similar to the mean temporal 

frequency cut off I found.  

 

These early mechanisms can therefore explain the difference in psychophysical resolution 

for contrast and for disparity. However, with both types of stimulus, the absolute value of 

psychophysical resolution is poorer than that of many individual neurons, and indeed 

poorer than the mean neuronal performance. This discrepan

c

Any difference in temporal phase of response modulation between members of the pool 

(resulting from slightly different temporal integration times) will decrease the modulation 
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amplitude of the sum of the signals. This phenomenon will have more impact at higher 

frequencies, shifting the overall temporal resolution downwards  

 

Two other psychophysical phenomena can also be explained by my results. First, when 

human subjects judge the speed of motion in depth, performance is poor when the only 

cue is changing disparity in dynamic RDS (Harris and Watamaniuk, 1996). This suggests 

at the subjects do not have access to explicit neuronal signals about the rate of change 

an observers are lowest for about 2Hz and drop above 5Hz (Nakayama 

nd Tyler, 1981) and above 0.7cpd. These values correspond exactly to those observed 

5.3.1 Future work 

th

of disparity.  Examining the phase of neuronal responses to disparity modulation (Figure 

4.9) suggests that V1 neurons likewise are not sensitive to the rate of change of disparity 

over time (motion in depth).  

 

Second, when motion perception is isolated from cues about position, detection 

thresholds of hum

a

for spatial and temporal disparity modulation (Chapters 3 and 4). The energy model (and 

its functional analogy to cross-correlation) was originally formulated for motion detection 

(Adelson and Bergen, 1985). If the cross-correlation occurs over the same spatio-

temporal filters to construct motion detectors as disparity detectors, this predicts the same 

spatial and temporal resolution and therefore explains the similarity in the psychophysical 

behavior. 

 

 

By using drifting sinusoidal luminance gratings whose disparity modulates sinusoidally 

in depth, one can control both, the monocular temporal frequency and the temporal 

frequency of the disparity modulation independently: the above scheme makes 

predictions about how neurons would respond to such a stimulus. Measuring the 

responses to this novel stimulus would be an independent test of the scheme I propose.  
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5.4 An example for the analogy between space and time in the 

brain  

ccount for the psychophysical performance in tasks, both, 

ith high (contrast) and low (disparity) resolution: the poorer resolution for disparity 

. Measuring the correlation between bandpass filtered images yields frequency 

sponses of the correlation to lower frequencies than for the bandpass filters. 

5.5 Encoding disparity in V1: binocular cross-correlation as 

opposed to global feature matching 

 

y decreasing the number of possible matches (Marr and Poggio, 1979; Fleet et al., 1996; 

Qian and Zhu, 1997) and that the lower temporal resolution results from solving the 

correspondence problem (Banks, personal communication). I have shown in this thesis 

In chapter 3, I established that over space, the size of receptive fields of disparity 

selective neurons can explain why the spatial resolution of stereopsis is so much poorer 

than that for contrast. (The binocular receptive field size corresponds to the squared 

envelope of the monocular receptive field, Appendix B.) In chapter 4, I demonstrated that 

the poor temporal resolution of stereopsis depends on the square of the monocular 

temporal filter (Appendix C). For both, space and time, the same mechanism explains 

why single V1 neurons can a

w

modulation than for contrast modulation is explained by binocular cross-correlation of 

the output of the monocular (spatial or temporal) filters. This explanation holds 

independently of the dimension (space or time) over which the modulation occurs. Here 

my data show that the dimensions space and time are treated analogously in the brain. 

When considering how different temporal and spatial modulations (of contrast or 

disparity) are perceptually, the analogy appears very counter-intuitive. But the 

mathematics show that this follows naturally from a well known similarity of temporal-

spatial processing: the monocular images are bandpass filtered both, spatially and 

temporally

re

 

Psychophysical studies indicate that the perceptual system for stereopsis is not fooled by 

false matches in a visual scene but solves the correspondence problem (Cumming and 

Parker, 1997; Cumming and Parker, 2000). It has been suggested that the lower spatial 

resolution for disparity modulation is a step towards solving the correspondence problem

b
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that the lower spatial and temporal resolution for disparity modulation than for contrast 

modulation follow directly from the computation of cross-correlation by the binocular 

neuron. The low temporal and spatial resolution for disparity modulation I found in V1 

5.6 Conclusion 

rons show 

lectivity for the disparity within their receptive field relative to their surround [relative 

neurons also specialized for disparity differences within their receptive fields. Further 

) in extrastriate cortex are necessary to 

neurons is therefore no evidence that these neurons solve the correspondence problem. 

Together with previous results (Cumming and Parker, 1997), the findings in this thesis 

provide further evidence that rather than signaling global matches, V1 neurons respond to 

local matches by computing a cross-correlation of monocular images.  

 

The most important finding presented in this thesis is that disparity selective V1 neurons, 

although not directly supporting the perception of depth (Cumming and Parker, 1997, 

1999, 2000), impose a limit on both, the spatial acuity and the temporal resolution for 

detecting depth from disparity. This is the first time that this indirect but pivotal role of 

disparity selective V1 neurons for stereopsis has been established. It is also the first 

neuronal and computational characterization of the spatial and temporal resolution for 

signaling disparity modulation in visual neurons.  

 

Having established that disparity sensitive V1 neurons are selective for a uniform 

disparity throughout their receptive field, one can ask where in the visual pathway 

selectivity for more complex disparity features is first encoded. Some V2 neu

se

disparity, (Thomas et al., 2002)]. V2 therefore seems to be a good candidate to have 

experiments (Cumming and Parker, 1997, 2000

test for disparity selective responses that account for perceptual features of stereopsis 

requiring more complex processing (e.g. responses to global, not local matches).  

 

I suggest that the lower temporal resolution for disparity modulation than for contrast 

modulation results from measuring the cross-correlation between the temporally 

bandpass filtered monocular images.  
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Binocular cross-correlation of the bandpass filtered monocular images explains that both, 

the spatial and temporal resolution is lower for disparity modulation than for contrast 

modulation. The same mechanism therefore accounts for the low resolution for disparity 

modulation over space and over time. Mathematically, this follows directly from the well 

know similarity of spatial and temporal bandpass filtering of the monocular images. My 

results therefore provide another example for a computation (binocular cross-correlation 

of the monocular images) which occurs analogously over space and time in early visual 

rocessing.  p

 

Taken together, these findings represent a significant step towards understanding the 

process by which neurons solve the correspondence problem. Rather than trying to match 

every feature in each eye, finite regions of the images in each eye (in both space and 

time) are compared by cross-correlation. Without any additional computation this process 

itself greatly reduces the number of false matches that need to be eliminated in 

subsequent processing.  
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Appendix A: Reducing the effect of eye-movements on the 

Saccadic eye movements result in instantaneous changes of phase of the periodic 

modulation of the spike train. I used the autocorrelation function of the spike train in an 

attempt to estimate the periodic modulation in firing in a way that was not sensitive to 

this effect of eye movements. The autocorrelation function of the spike train describes for 

all t how we

calculation of relative modulation 

ll the spike train at time t correlates with the spike train at time t+τ, i.e. it 

ompares the spike train at t with that at t+τ. For a periodic spike train of period λ, its c

autocorrelation function is maximal for τ= n λ , for n=0,1,2 etc.. It thus is a description of 

the periodic modulation of the spike train, centered around 0, irrespective of the phase of 

the spike train. Although changes in the phase of a response can affect the extent of 

correlation, (the modulation amplitude in the autocorrelation function), this is small 

unless the phase changes are frequent. If a phase-shift occurs at t1, then this affects the 

comparison and consequently the extent of correlation for the segment of the spike train: 

t1<t< t1+τ, while for t< t1 and t> t1+τ it remains unaffected. Hence for small τ the effect of 

occasional phase-shifts is small, and the autocorrelation-function best represents the 

spike-train cleared from the disruptions caused by saccades. Extracting the f1-component 

from the autocorrelation function for small τ thus provides an estimate of its value that is 

relatively unaffected by saccades. At very small values of τ, the autocorrelation function 

reflects the intrinsic statistics of a neuron’s firing. I therefore calculated the amplitude of 

f1 modulation in the autocorrelation function from τ = 250 ms (0.5  λ) to τ = 750 ms (1.5 

λ). 

 

Appendix B: Relationship between the binocular receptive field 

size and the spatial frequency cut-off in response to a disparity 

modulating corrugation 
The energy model predicts a relationship between the receptive field size and the the 

spatial frequency cutoff (defined as the spatial frequency at 2/3 peak relative 
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modulation). Here, I will specify this predicted relationship mathematically. Consider 

vertically-oriented receptive fields. The response to a planar RDS with disparity δ is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )+∞+∞+∞+∞
xxdxyydyyxyxdxdyD RxLxRyLyRL ρδρρρρδρδ −=−= ∫∫∫∫ ∞−∞−∞−∞−

,, . 

And the response to a stimulus containing different disparities at different vertical 

positions (e.g. a sinusoidal corrugation) is: 

( ) ( ) ( )( ) ( )xyxdxyydyR ρδρρρ −= ∫∫
+∞

∞−

+∞

∞−
 

so, 
( ) ( )

( )( ) ( )xyxdx RxLx

RyLy

ρδρ −= ∫ ∞−∞+

∞−

. 

Thus, 

( ) ( ) ( )( )
( ) ( )∫

∫
∞+

∞−

′′′ yyyd

yDyydy

RyLy

RyLy

ρρ

δρρ

( )( )yDedyR y

y

δ
πσ

σ∫
∞+

∞−

−

=
2

2

1

Note that the responses D(δ(y)) are convolved with a Gaussian with a standard deviation 

yσ
2

1 σ

Now consider the sinusoidal modulation: 

D(δ

RxLxRyLy

( )( )
yyyd

yD

ρρ

δ
′′′∫

∞+

∞−

+∞

=R . 

Assume that both receptive fields have identical profiles along the y-axis, Gaussians with 

standard deviation σy. Then the response is: 

 

y

. 

, not y. 

(y)) is a linear function of disparity (approximately) over the range used in the 

xperiments. δ(y) is a sinusoidal function of y. e

Thus, 

( )( )bfyaedyR y

y

y

++= ∫
∞+ −

φπ
πσ

σ 2sin1 2

2

 
∞−

This has a constant term plus some modulation. Now the question is how the amplitude 

of the modulation varies as a function of f. 

The modulating term is  
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( ) ( )
πσ

φ += ∫ ∞−

−

fyedyM y

y

2sin

2

 σ∞+a

y

2

φπ

(Gradshteyn and Ryzhik, 2000), 3.923.1: ( ) rerqxedx a
q

ax sin2sin
2

2 −−∞+
=+∫

π
a∞−

Here, a=1/σy
2, q = πf, r=φ. 

. 

. 

Thus, the amplitude of the modulation is proportional to . This is a Gaussian in 

frequency with an SD of σfreq = 1 / (σyπ√2). 

f the receptive field is probed with a bar of random-dot pattern aligned along the x 

axis. Assume the image is a delta function in y. The convolution in each eye is  

 ) . 

 

( ) φφ πσ sin
222 fyeaM −=

222 fye πσ−

Now, i

( ) ( ) ( ) (xIxdxyyv LxLxbarLybarL ρ ∫= ρ

On average, therefore, the convolution is proportional to ρLy(ybar). So, the response of the 

cell to this monocular bar is 

( ){ } 2

2

2 y

y

Ly eyC σρ
−

∝∝ . 

And the standard deviation one obtains by fitting will be: 

The spatial frequency cutoff in response to the corrugation is the two-thirds maximum 

point of the Gaussian which is modulation as a function of frequency. Thus, to good 

 / (σyπ√2).  

he identity line. 

Appendix C: The effect of temporal filtering of the monocular 

images on the cross-correlation measured between the images 

Suppose that the correlation between the 

s a sinusoidal function of time (as in the RDS I used whose 

σbarprobe = σy /√2. 

accuracy, the corrugation cutoff = σfreq = 1

This is plotted against 1 / (2πσbarprobe) = √2 / (2πσy) = 1 / (πσy√2). 

For the energy model it should therefore lie on t

 

The energy model can be understood as functionally equivalent to measuring the cross-

correlation between monocular images. 

monocular input varies a
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disparity varied sinusoidally over time). In the following I will examine the effect of 

temporal filtering of the monocular images on the frequency response of this cross-

correlation. Suppose the images presented to left and right eyes are each a 1-pixel time-

d white dots (luminance +/-1). There are no 

correlations across time; however, the left and right time-series are correlated at any 

moment in time, and the correlation between left and right images is changing moment to 

moment: it is a function of tim n now is how the correlation between the 

are filte

a poral filters ρL and ρR to obtain the filtered 

ow consider the value of the product of the filtered time-series: 

. 

he average value over all ra om images will be written with angle brackets < >: 

oment. Thus, <IL(t’)IR(t”)> = 0 

less t s gives a Dirac delta (Bracewell, 1986): 

series which is a sequence of black an

e c(t). The questio

filtered time series behaves when the left and right images red: 

The images IL(t), IR(t) are p ssed through tem

time-series L(t), R(t): 

 ( ) ( ) ( )∫ ∞−
−′′′=

t

LL tttItdtL ρ  and ( ) ( ) ( )∫ ∞−
−′′′=

t

RR tttItdtR ρ . 

N

( ) ( ) ( ) ( ) ( )∫∫ ∞−∞−
−′′′′′′−′′′= RRLL tttItdtttItdtLR ρρ  

( ) (tt
′′′

tt

) ( ) ( ) ( )tItItttttdtdtLR RLRL ′′′−′′−′= ∫∫ ∞−∞−
ρρ

T nd

The original images were uncorrelated from moment to m

un ’ = t’’. Thi

( ) ( ) ( ) ( ) ( )tItItttttdttLR RLRL

t
′′−′−′′∆= ∫ ∞−

ρρ  

where ∆t is the extent of one time-frame (temporal pixel). 

The value of <I (t’)I (t’)> depends L R us correlation between the images. on the instantaneo

This is c(t’). So, 

tctttttdttLR RL ′−′−′′∆= ∫ ∞−
ρρ( ) ( ) ( ) ( )t

, 

or  

  ( ) ( ) ( )tctttdttLR ′−′′∆= ∫ ∞−
ρ  

t 2

if the temporal kernels of the left and right receptive fields are identical. 
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This is the correlation pattern convolved with the product of the left and right temporal 

receptive fields. Thus, the Fourier transform of <LR> is the product of the Fourier 

transform of (ρLρR) or ρ2 and the Fourier transform of the correlation pattern. 

If the correlation pattern is a sinewave, c(t’), then <LR> will be a sinewave too. The 

amplitude of the sinewave will be the amplitude of the Fourier transform of (ρLρR ) or ρ2 

at that frequency. Suppose that ρ is a temporal bandpass filter. The squared filter (ρ2) 

then approximates the squared envelope of the filter, regardless of the temporal structure 

within it. It therefore approximates a low-pass filter. As a consequence the monocular 

bandpass filters give rise to a lowpass response for correlation changes. 
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