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5.9 Dispersionskorrektur mittels durchstimmbarer Gaslinsen . . . . . . . . . . 110
5.10 Beispiele kompakter Hybridlinsen fixer Brennweite und Auflösung . . . . . 112
5.11 Abmessungen der Zonenplatten-Segmente . . . . . . . . . . . . . . . . . . 114
5.12 Beispiel einer A- und N-segmentierten Apertur . . . . . . . . . . . . . . . . 116
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5.24 Beispiele zum Leistungsvermögen diffraktiver Objektive . . . . . . . . . . . 137
5.25 Breitband-Segmentierung diffraktiver Objektive . . . . . . . . . . . . . . . 140
5.26 Profil des Achromaten in N-segmentierter Bauweise . . . . . . . . . . . . . 141
5.27 Detektorradien hybrid-segmentierter Objektive . . . . . . . . . . . . . . . . 142
5.28 Einsatz partieller Graufilter im Hybrid-Segment . . . . . . . . . . . . . . . 143
5.29 Spektraler Bandpass des stark absorbierenden Hybrid-Segments . . . . . . 144
5.30 Graufilter-freie Hybridverstärkung . . . . . . . . . . . . . . . . . . . . . . . 146
5.31 Einfluss der Segment-Absorption auf das Auflösungsvermögen . . . . . . . 147
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Zusammenfassung

Gegenstand der vorliegenden Arbeit war die Entwicklung und Analyse einer neuartigen
abbildenden Optik mit dem Ziel, das räumliche Auflösungsvermögen im Röntgenband zwi-
schen 1 keV . E . 20 keV auf wenigstens 10−3 arcsec zu verbessern. Aufgrund ihrer
hohen Toleranz gegenüber Fertigungsfehlern besitzen transmissive Linsen das prinzipielle
Potential zur beugungsbegrenzten Abbildung. Je nach Ausführung dürfen Abweichungen
von mehreren 102 − 103 nm gegenüber der idealen Formgebung auftreten. Im Gegensatz
zur absorptionsbehafteten, massiven Version weist die diffraktive, profiloptimierte Fresnel-
Linse auch in höheren Ordnungen eine Beugungseffizienz zwischen 40% und 100% auf.
Der Kontamination der Bildebene durch Streustrahlung benachbarter Ordnungen ist ggf.
durch eine ausreichende Zentralobstruktion zu begegnen, deren Radius dem doppelten
Detektor-Halbmesser entspricht. Strahlenoptische Berechnungen weisen diffraktive Linsen
als vergleichsweise tolerant gegenüber Aberrationen sphärischen wie winkelabhängigen Ur-
sprungs aus. Typische Öffnungsverhältnisse f ∼ (104 − 105) erlauben Verkippungen von
. 1◦. Die Lichtstärke, definiert als Produkt von effektiver Sammelfläche und Bandpass,
skaliert für Fresnel-Linsen ausschließlich linear mit der Brennweite, bleibt allerdings selbst
für Fokaldistanzen von ∼ 102 km auf wenige cm2 · keV beschränkt.

Mit der segmentierten Apertur lässt sich jedoch die Lichtstärke erhöhen, ohne das Prin-
zip der beugungsbegrenzten Abbildung und den klassischen Einzelfokus aufzugeben. Bei
einer Ortsauflösung von . 10−3 mm erreichen derlei inkohärent operierende Objektive eine
Lichtstärke von ∼ 103 cm2 keV. Unter Einsatz eines dem diffraktiven Bandpass adäquaten
Kristallspektrographen bedarf es dazu tendenziell großer Radien von ∼ 10 m und typischen
Brennweiten im Bereich einiger 102 km.

Ferner wurden im Rahmen dieser Arbeit mutmaßlich erstmals Multiband-Objektive
zur wissenschaftlich vorteilhaften Simultanfokussierung von bis zu drei Energiebändern
implementiert. Bestehend aus Partial-Linsen unterschiedlicher Gitterfrequenz, erweisen sie
sich der Monoband-Ausführung als bzgl. Auflösung, Brennweite und Lichtstärke prinzipiell
ebenbürtig.

Die Dispersionskorrektur mittels eines additiven refraktiven Linsenprofils erweitert den
spektralen Bandpass auf dem Detektor direkt zugängliche 102 eV oder mehr. Mit der
Absorption geht eine reduzierte Sammelfläche für kompakte Hybridlinsen einher. Trotzdem
resultiert unter Beibehalt der Winkelauflösung für Materialien wie Li oder Be jenseits
weniger keV eine gegenüber dem diffraktiven Analogon verbesserte Lichtstärke. Optimiert
bzgl. Material und Energie, steigern derartige Achromaten die Nachweisempfindlichkeit um
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das bis zu 40−fache – entsprechend einer Lichtstärke von ∼ 102 cm2 keV bei Brennweiten
von & 102 km. Wiederum segmentiert, wirkt sich die Absorption vergleichsweise geringfügig
auf die Winkelauflösung aus, die Sensitivität des dispersionskorrigierten Objektivs steigt
gegenüber der diffraktiven Version unter sonst gleichen Bedingungen jetzt um bis zu zwei
Größenordnungen. Bei gegebener Ortsauflösung von 0.75 × 10−3 m ergeben sich für Li
oberhalb von 6 keV und Be jenseits von 8 keV optimierte Lichtstärken zwischen 103 und 104

cm2 keV, vergleichbar jenen der gegenwärtig aktiven Observatorien Chandra und XMM-
Newton. Die Winkelschärfe skaliert invers mit der Fokaldistanz, für . 10−3 arcsec ergeben
sich Brennweiten von ∼ (102 − 103) km.

Plankonvexe Profile werden den zumeist kleinen Krümmungsradien der refraktiven
Komponente hinsichtlich ihrer Aberrationen dritten Grades im allgemeinen nicht gerecht.
Hingegen reduziert das aplanatische, nahezu bikonvexe Profil sowohl sphärische als auch
winkelabhängige Bildfehler auf ihre diffraktiven Beiträge und legt daher im segmentierten
Hybrid-Achromaten die Konstruktion symmetrischer, prismen-ähnlicher Bausteine nahe.

Die mit der kohärenten Profilreduktion einher gehende Interferenz erfordert den Einsatz
abbildender Spektrographen mit einer Auflösung nahe 1 eV. Vor allem optisch schwache
Materialien wie z.B. Polycarbonat (C16H14O3) profitieren von der erhöhten Transparenz bei
konstanter Orts- und Winkelauflösung; im Energieintervall 9 keV ≤ E ≤ 12 keV optimierte
Beispielkonfigurationen liefern eine Lichtstärke von wenigstens ∼ 1×103 cm2 keV. Modelle
aus Li und Be erreichen oberhalb von 4 keV bzw. 7 keV eine ähnliche Leistungsfähigkeit.

Multiband-Hybridsysteme gestatten anders als diffraktiv simultan fokussierende Ob-
jektive die Detektion mittels konventioneller CCD. Die aus Li und Be bestehenden Kon-
figurationen bilden jeweils zwei Energiebänder gleichzeitig ab und erweisen sich bei einer
Ortsauflösung im Sub-mm-Bereich sowie Brennweiten von wenigen 102 km als eine hin-
sichtlich ihrer Gesamt-Lichtstärke konkurrenzfähige Alternative zum Monoband-Teleskop:
Man erhält im Idealfall ∼ (4− 7)× 103 cm2 keV.

Dialytische Modell-Teleskope, deren refraktive Komponente von der diffraktiven räum-
lich separiert ist, bieten zum einen die Option einer über mehrere keV durchstimmbaren,
dispersionskorrigierten Optik. Unter Variation des Linsenabstandes ergibt sich ein nutz-
bares Energieintervall 6 keV ≤ E ≤ 14 keV. Die Lichtstärke nimmt dabei von ∼ 1 × 103

cm2 keV in zweiter bis auf ∼ 4× 103 cm2 keV in dritter Dispersionsordnung zu. Kompakte
Dialyten mit Durchmessern von ∼ 1 m besitzen das Potential zu einer Winkelauflösung
von wenigen 10−5 arcsec sowie einer Lichtstärke von mehreren 103 cm2 keV. Der spektrale
Bandpass solcher Modelle beträgt & 1 keV.

Abschätzungen zum Signal-Rausch-Verhältnis zeigen, dass bei ausreichender Abschir-
mung des Detektors und moderatem Quellfluss mit einer signal- oder photonenlimitier-
ten Beobachtungssituation zu rechnen ist. Dies gilt angesichts des diskreten Röntgen-
Hintergrundes weitgehend auch dann, wenn mehrere Teleskope parallel geschaltet werden.

Ergänzende Betrachtungen zu potentiellen astronomischen Beobachtungsobjekten zei-
gen, dass Koronae benachbarter Sterne, Jets von Röntgen-Doppelsternen und aktiven Ga-
laxienkernen, Supernova-Überreste bzgl. ihrer Ausdehnung einer Auflösung von . 10−3

arcsec genügen. Von großem Interesse dürften im Hinblick auf künftige Gravitationswellen-
Experimente ferner Betrachtungen verschmelzender, supermassiver Schwarzer Löcher sein.



Kapitel 1

Einführung

Die im Lauf der letzten Jahrzehnte gewonnenen Erkenntnisse über hochenergetische kos-
mische Strahlungsquellen ließen das Universum relativ zum bekannten visuellen Erschei-
nungsbild buchstäblich in einem neuen Licht erscheinen. Während die instrumentengestütz-
te Betrachtung des Sternenhimmels bereits mit Galilei im 17. Jahrhundert n.Chr. ihren
Anfang nahm, deuteten verschiedene Analysen der Ionosphäre [1, 2] erstmals in den drei-
ßiger Jahren des vergangenen Jahrhunderts auf die Existenz atomarer, extremer UV- und
Röntgenstrahlung solaren Ursprungs hin. Nach zunächst vagen Messungen [3] gelang deren
unzweifelhafter Nachweis schließlich 1949 mit Hilfe von Geigerzählern [4], die auf einer Ra-
kete montiert, kurzzeitig außerhalb der das Röntgenlicht absorbierenden Erdatmosphäre
operieren konnten. Eine optische Abbildung im Sinne einer zweidimensionalen Darstellung
der Intensitätsverteilung des Objekts in einer Bildebene gestaltete sich indes schwierig, da
die außerordentlich hohe Absorption im Röntgenbereich – der Imaginärteil des komplexen
Brechungsindex n = 1 − δ − iβ liegt für alle Materialien i.d.R. mehrere Größenordnun-
gen über dem entsprechenden Wert für sichtbares Licht – die Konstruktion konventionel-
ler Reflexions- oder Refraktionsteleskope nicht zulässt. Dennoch gelang es in der Folge
mehreren Forschern, die Sonne im besagten Spektralbereich zunächst mit Hilfe einfacher
Lochkameras, später unter Verwendung Fresnel’scher Zonenplatten zu fotografieren [5, 6].
Als fokussierende Transmissionsgitter basieren diese erstmals von Soret [7] beschriebenen
Linsen auf der Beugung elektromagnetischer Strahlung und umgehen damit das Absorpti-
onsproblem. Allerdings weisen Zonenplatten in ihrer einfachen Form eine mit weniger als
10% eher geringe Fokuseffizienz sowie eine starke chromatische Aberration auf – Umstände,
die ab den sechziger Jahren zur Entwicklung diverser Alternativen zur Zonenplatte führten.

Zum einen bot sich in Anlehnung an o.g. Pionierarbeiten [3] an, dem möglichst groß-
flächigen Zählermodul z.B. wabenartige Kollimatoren vorzuschalten. Spektral breitbandig
und unter maximaler Ausnutzung der Sammelfläche ließen sich so Röntgenquellen mit einer
Winkelauflösung von bis zu etwa 1◦ detektieren [8]. In der Tat gestattete die mit derarti-
gen Kollimator-Röhren realisierte Kombination ausreichender Sensitivität und Auflösung
in verschiedenen raketen- und ballongestützten Experimenten ab den frühen siebziger Jah-
ren erstmals die genaue Analyse extrasolarer Röntgenquellen, speziell von Cen X-3 und Cyg
X-1 durch

”
UHURU“ [9]. Die Röntgenquellen dieser Doppelsternsysteme erwiesen sich als
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Pulsar bzw. stellares Schwarzes Loch. Obgleich das Schema des kollimatorbewehrten Pro-
portionalzählers zur Entdeckung zahlreicher neuer Emitter führte und in einigen Fällen
deren grobe Analyse erlaubte, konnte die Methode vom optischen Standpunkt aus nicht
befriedigen. Die Gründe dafür liegen nicht allein in deren durch die Kollimatorabmessungen
beschränkter Winkelauflösung, sondern auch in der Tatsache, dass diese mit dem nutzbaren
Sichtfeld – im Englischen als “field of view“ (FOV) bezeichnet – zusammenfällt.

Theoretische, auf das Jahr 1952 datierte Arbeiten von H. Wolter schlugen die zweifache
externe Totalreflexion an einer koaxialen Anordnung aus einer paraboloiden und hyperbo-
loiden Spiegeloberfläche zur Bündelung einfallender Röntgenstrahlen in der Mikroskopie
vor [10]. Zwar war die Möglichkeit der Fokussierung durch einen einfachen Parabolspiegel
und auch das Phänomen der wegen Re(n) . 1 externen Totalreflexion schon zuvor bekannt,
doch scheiterte die Konstruktion einer derartigen Optik bis dato an den schwerwiegenden
Aberrationen im Fall nicht achsparallel einfallender Strahlen. Wie Wolter zeigte, lassen
sich die Abbildungsfehler durch eine zweite Reflexion an einer hyperboloiden Spiegelschale
drastisch reduzieren. Ein nützlicher Nebeneffekt der von Giacconi und Rossi [11] auf te-
leskopische Anwendungen übertragenen Konfiguration besteht in der dadurch auf einige
Meter verkürzten Brennweite. Mitte der sechziger Jahre waren die mit makroskopischer
Formgebung und dem Oberflächen-Finish auf der Skala von 10−9 m einhergehenden tech-
nischen Schwierigkeiten soweit überwunden, dass zunächst mit Hilfe von Raketen, kurz
darauf an Bord von

”
Skylab“ die ersten fokussierenden Röntgenteleskope in Betrieb ge-

nommen werden konnten [9]. Auf diese der Beobachtung der Sonnenkorona gewidmeten
Spiegelteleskope folgte 1978 mit

”
Einstein“ das erste Wolter(I)-Teleskop1 mit ausreichender

Sammelfläche, um extrasolare Ziele untersuchen zu können. Zu nennen sind die Entdeckung
der Schockwellenemission von Supernovae oder der thermischen Emission des heißen Ga-
ses in Galaxienhaufen nebst mehrerer tausend neuer Punktquellen. Die 1990 gestartete
ROSAT-Mission erweiterte den Katalog bekannter Röntgenquellen zahlenmäßig um zwei
Größenordnungen. Die Erfolge dieser und weiterer Missionen verhalfen dem Wolter(I)-
Spiegel rasch zum Durchbruch gegenüber konkurrierenden Ansätzen, so dass auf dessen
Schema bis heute fast alle Röntgensatelliten bis herauf zu etwa 10-15 keV basieren.

Scheidet die fokussierende Totalreflexion bei höheren Energien aus, bietet es sich an, vor
dem Detektor lediglich eine zweidimensionale, nach einem bestimmten Muster stellenweise
absorbierende Maske anzuordnen. Sie erzeugt von der Röntgenquelle einen geometrischen
Schattenwurf; da die resultierende Intensitätsverteilung in der Detektorebene demnach von
der Winkelposition der Punktquelle abhängt, ergibt sich für ausgedehnte Objekte durch
Superposition der einzelnen Schattenbilder eine eindeutige Zählratenverteilung im Detek-
tor, aus der sich dann das reale Bild rekonstruieren lässt. Dieses sog.

”
Coded Aperture

Imaging“ kommt mangels besserer Alternativen auch heute noch im harten Röntgen- und
Gammabereich, d.h. oberhalb von rund 10−20 keV, zum Einsatz. Der kompakten und ener-
gieunabhängigen Bauweise steht jedoch neben der geometrisch auf typischerweise rund eine
Bogenminute (engl.

”
arcmin“) begrenzten Winkelauflösung ein schlechtes Signal-Rausch-

1H. Wolter untersuchte auch Modifikationen dieser sog. (Typ I)−Konfiguration, die z.B. auf SOHO
oder in Form von EUV-Kollimatoren vereinzelt Anwendung finden, hier jedoch außen vor bleiben sollen.
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Verhältnis (SNR) gegenüber. Diese Eigenschaft jedes indirekten Abbildungsverfahrens ba-
siert auf der Tatsache, dass sich dem auf die gesamte Detektorfläche verteilten Signal einer
Punktquelle das Rauschen aller detektierten Photonen überlagert und lässt sich durch die
Verwendung einer direkten, fokussierenden Optik beseitigen.

Im Jahr 1999 haben mit
”
XMM-Newton“ und

”
Chandra“ die beiden bislang leistungs-

fähigsten Röntgenteleskope ihren Betrieb aufgenommen. Im Hinblick auf ihre schwerpunkt-
mäßige wissenschaftliche Zielsetzung sind die von ESA bzw. NASA initiierten Observa-
torien zueinander komplementär: XMM-Newton wurde bzgl. der Sensitivität, also des
geringsten noch nachweisbaren Strahlungsflusses optimiert, um so zeitlich und spektral
hochaufgelöste Spektren auch schwacher Röntgenquellen wie z.B. akkretierender Doppel-
sterne in benachbarten Galaxien zu gewinnen. Zu diesem Zweck besitzt XMM-Newton
3 Wolter-Teleskope, die ihrerseits aus 58 ineinander geschobenen Spiegelschalen bestehen
und jenseits von rund 0.5 keV eine gesamte effektive Fläche von bis zu 4500 cm2 besit-
zen. Die große wirksame Teleskopapertur geht zu Lasten des Winkelauflösungsvermögens,
da die aus Gewichts- und Platzgründen notwendigerweise dünnwandigen Spiegelschalen
nicht mit der erforderlichen Präzision konfiguriert werden können. Dies führt zu einer
Verbreiterung des Punktbildes (engl.

”
point spread function“, PSF) entsprechend einem

Auflösungselement von etwa 6 Bogensekunden (engl. arcsec). Bei Chandra hingegen wur-
de das Hauptaugenmerk auf möglichst exakt geformte und justierte Spiegel gelegt. Die
Winkelauflösung erreicht auf diese Weise mit 0.5 arcsec den besten jemals mit einem Rönt-
genteleskop erzielten Wert. Die geringe Zahl und größere Dicke der ineinander geschobenen
Spiegel resultieren nun jenseits von ca. 1 keV in einer Sammelfläche von bis zu 800 cm2.

Nach mehreren Jahrzehnten kontinuierlicher Verbesserung der optischen Qualität zei-
gen sich jedoch mittlerweile ernst zu nehmende technische Schwierigkeiten, was eine wei-
tere Optimierung der Spiegelgüte und damit der erreichbaren Winkelauflösung betrifft.
Die Probleme liegen dabei sowohl in hoch- als auch niederfrequenten Abweichungen vom
idealen parabolisch-hyperbolischen Spiegelprofil im Sinn von Oberflächenrauhigkeiten und
Formfehlern. Inzwischen wird ein Wert von rund 0.1 arcsec als faktisches Minimum für
teleskopische Anwendungen angesehen. Damit wird jedoch – um hier den Ausgangspunkt
der vorliegenden Arbeit zu definieren – die theoretisch erreichbare beugungsbegrenzte Ab-
bildungsschärfe um 2− 3 Größenordnungen verfehlt. Die eklatante Abweichung der realen
von der möglichen Bildschärfe muß vom physikalischen Standpunkt aus als umso unbefrie-
digender angesehen werden, als zahlreiche astronomische Objekte im Röntgenbereich unter
den gegenwärtigen beobachtungstechnischen Umständen punktförmig erscheinen und beim

”
näheren Hinsehen“ bislang unbekannte Strukturen erwarten lassen.

Hinzu kommt die relativ hohe Flächendichte, also das Verhältnis von Masse zu effektiver
Sammelfläche, wie sie für Spiegelteleskope bei streifendem Einfall typisch und unumgäng-
lich ist – typisch im Sinn vonWerten von kaum weniger als∼ 10−1 kg cm−2 für diesbezüglich
optimierte Missionen wie das noch in der Projektphase befindliche XEUS, unumgänglich
aber auch angesichts der mit zunehmenden Ansprüchen an die Bildqualität wachsenden
Schalendicke. Wie das gerade genannte Beispiel der beiden zueinander komplementären
Observatorien XMM-Newton und Chandra zeigt, geht die überragende Winkelauflösung
des letzteren zu Lasten einer geringeren Effizienz.
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Im folgenden soll nun versucht werden, Grundzüge einer künftigen Röntgenoptik für
astronomische Anwendungen zu entwickeln, die eben jene Hindernisse überwindet. Als
Grundlage dient die bereits erwähnte Zonenplatte als Paradigma einer transmittierenden
Abbildungsoptik auf Beugungsbasis. Kapitel 2 führt dem entsprechend von einem Überblick
zu abstrakten Prinzipien der Röntgen- und Beugungsoptik über Eigenschaften allgemeiner
Röntgenlinsen zu detaillierten Analysen von massiven refraktiven optischen Elementen, Zo-
nenplatten und deren Derivaten, allgemein also diffraktiven Linsen. Gemäß ihres Aufbaus
lassen sich letztere in amplituden- und phasenmodulierte Kreisgitter differenzieren.

Obwohl auf diesem Weg bereits die angestrebte beugungsbegrenzte Auflösung mit Lin-
sen großer Sammelfläche und geringer Masse erreicht werden kann, verbleibt die Korrektur
des intrinsischen Farbfehlers als zentrale Herausforderung. Der nach bisherigen Erkenntnis-
sen physikalisch wirkungsvollste Ansatz, dies mittels refraktiver Streulinsen zu erreichen,
ist Gegenstand des nächsten Kapitels 4.

Während die Arbeit soweit vorwiegend elementare theoretische Modelle beleuchtet hat,
rücken im weiteren Verlauf von Kap. 5 Aspekte ihrer Anwendung in großskaligen Tele-
skopen in den Vordergrund. Hierzu zählen insbesondere Fragen der Segmentierung groß-
flächiger Objektive, deren mögliche Implementierungen unter Berücksichtigung der zuvor
entwickelten Konzepte vorgestellt werden. Dabei wird zwischen primär diffraktiven und
dispersionskorrigierten Versionen unterschieden. Ferner sollen in diesem Teil der Arbeit
Möglichkeiten angesprochen werden, parallel geschaltete und im weichen Röntgenband
H2−basierte Optiken einzusetzen.

Unvermeidlich große Brennweiten von ∼ (101 − 104) km machen die räumliche Tren-
nung von Objektiv und Detektor unumgänglich – weshalb einer Analyse des Streulichts,
verursacht durch den diffusen Hintergrund, besondere Bedeutung zukommt. Ferner werden
Konzepte zur Auslegung des Detektors skizziert. Um die Bildqualität nicht durch zeitliche
Schwankungen der Relativposition zu beeinträchtigen, sind die beiden Module gegeneinan-
der axial und lateral mechanisch zu stabilisieren. Im Rahmen einer knappen Darstellung
wird daher, ausgehend von Betrachtungen zu möglichen Umlaufbahnen auf verschiedenen
Skalen, Kap. 6 auch gravitativen Gradientenkräften und anderen Einflüssen hinsichtlich
ihrer Auswirkungen auf die Positionierung der beiden Raumfahrzeuge gewidmet.

Die dem Teleskop zugrunde liegenden Leistungsparameter spezifizieren denn auch sei-
nen astronomischen Einsatzbereich. Das gegenüber bisherigen Missionen extrem kleine
Sichtfeld und die wegen der eher bescheidenen Lichtstärke nötigen langen Integrations-
zeiten lassen das Instrument als ungeeignet für großflächige Himmelsdurchmusterungen
erscheinen. Sein hohes räumliches Auflösungsvermögen prädestiniert es jedoch für die Ana-
lyse einzelner Objekte wie z.B. der schon erwähnten stellaren Koronae, Supernovae oder
der Akkretionsscheiben aktiver Galaxienkerne. In Kap. 7 werden daher potentielle Beob-
achtungsobjekte mit konkreten Beispielen und entsprechenden astrophysikalischen Frage-
stellungen zusammengestellt.

Das letzte Kap. 8 geht schließlich auf diverse Möglichkeiten ein, die gewonnenen Er-
kenntnisse experimentell zu überprüfen und technisch weiter zu entwickeln. Besonderes
Augenmerk ist in diesem Zusammenhang auf die Skaleninvarianz zu legen, die die Reduk-
tion der geometrischen Abmessungen auf praktisch zugängliche Längen gestattet.



Kapitel 2

Grundlagen der Röntgenoptik

Seit im Zuge der die geplante XEUS-Mission vorbereitenden Studien vor wenigen Jahren
die Option ins Auge gefasst wurde, den streifenden Einfall nicht an massiven Spiegelscha-
len, sondern präzise polierten, passend gefrästen und orientierten Si-Wafern zu vollziehen,
besteht Anlass zu der Hoffnung, die bis dato angesichts der gesamten effektiven Fläche von
bis zu 30 m2 (bei 1 keV) immer noch kritische Flächendichte von 8 × 10−2 kg cm−2 um
ein Vielfaches reduzieren zu können und damit Transport und Kalibration wesentlich zu
erleichtern. Gleichwohl bleibt die Winkelauflösung auf wenige Bogensekunden beschränkt,
da es sich bei diesem Konstrukt um einen Doppelkonus als Näherung einer verkürzten
Wolter-Optik handelt, stabilisiert in Form zahlreicher übereinander gelagerter Wafer.

Das Beispiel macht deutlich, dass eine Abkehr vom Konzept der massiven Spiegel-
module und eine Hinwendung zu dünnen, linsenähnlichen Geometrien nicht ausreicht, so-
wohl Sammelfläche als auch Auflösungsvermögen signifikant zu verbessern. Erfolg verspre-
chen vielmehr prinzipiell neue Methoden wie Beugung und Brechung, um Röntgenstrahlen
zu fokussieren. Gegenüber reflektiven Optiken lassen letztere wesentlich größere Toleran-
zen hinsichtlich optischer Weglänge (optical path difference, OPD) und Winkelstreuung zu
– beides halbquantitative Maßstäbe für die die Auflösung limitierenden Abbildungsfehler.
Grobe Abschätzungen der jeweiligen konstruktionsbedingten Fehler sind Abb. 2.1 zu ent-
nehmen. OPD und Winkelstreuung δφ ergeben sich dabei aus kleinen Versetzungen δx und
Verkippungen δθ entsprechend den eingefügten Skizzen und folgen im übrigen elementaren
Gesetzen der geometrischen Optik.

2.1 Strahlungs-Materie-Wechselwirkung

Nun zeigt jedoch der Brechungsindex n(E) als der die Wechselwirkung (WW) mit Medien
beschreibende Ausdruck als Funktion der Energie E im Röntgenbereich oberhalb weniger
100 eV ein grundsätzlich anderes Verhalten als im Visuellen. Wegen der nicht mehr zu
vernachlässigenden Absorption i.a. als

n = 1− δ − iβ mit δ, β ε R+ (2.1)
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Abbildung 2.1: Weg- und Winkeltoleranzen reflektiver und transmissiver Optik.
Abschätzungen für die Streuwinkel (durchgezogene Linien) hängen von der Verkippung
gegen die optische Achse ab (links). Typische Fehlergrenzen der optischen Wegdifferenz
(OPD) bzgl. des Rayleigh’schen λ/4-Kriteriums sind als Funktion der Energie aufgetra-
gen (rechts). Die Toleranzen der refraktiven Optik mit δ = 10−3 sind als untere Grenzen
anzusehen, während die anderen Werte ungefähre Größenordnungen repräsentieren.

ausgedrückt, steht das Inkrement δ ¿ 1 für eine sehr geringe Abweichung vom Vakuumwert
nvak ≡ 1. Die ebenfalls kleine Größe β übertrifft gleichwohl den entsprechenden Wert im
sichtbaren Spektralbereich um Größenordnungen und führt je nach Material und Energie
zu einer 1/e-Schwächung auf Skalen von meist (10−6 − 10−2) m.

Um ein halbquantitatives Verständnis1 von der Strahlungs-Materie-Wechselwirkung im
Röntgenbereich zu gewinnen, führen wir uns das semiklassische Modell eines Mediums,
bestehend aus Atomkernen und mehr oder weniger harmonisch gebundenen e− vor Augen.
Demnach strahlen die vom einfallenden (transversalen) Feld ~Ein (~r, t) beschleunigten e−

ihrerseits Dipolwellen ab. Das nach dem Huygens’schen Prinzip aus der Superposition aller
elementaren Beiträge resultierende Feld ~Eout (~r, t) wird im wesentlichen durch die über alle
N beteiligten Atome und deren Zn Elektronen summierte komplexwertige Streuamplitude

f =
N
∑

n=1

Zn
∑

s=1

f̂n,s

(

∆~k, ω
)

(2.2)

bestimmt. Sie hängt ihrerseits vom Impulsübertrag ∝ ∆~k ≡ ~kout−~kin mit
∣

∣

∣
∆~k
∣

∣

∣
= 2kin sin θ

und dem Streuwinkel θ ab, der in Form separabler Exponentialfaktoren in die Streuampli-
tude eingeht und auf die Positionen ∆~rn,s der Kerne bzw. ihrer e− Bezug nimmt:

f̂n,s

(

∆~k, ω
)

= Qn,s(ω) · e−i(∆
~k·∆~rn,s) (2.3)

Der räumlichen Lage der Kerne und auch der e− kommt nun entscheidende Bedeutung zu:

1Auf eine streng analytische Behandlung sei hier aus Platzgründen verzichtet, eine ausführlichere Dar-
stellung findet sich z.B. in [12].
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• Festkörper mit periodischer Struktur (Kristall). Die in Abständen d regelmäßig an-
geordneten Atome als Streuzentren ermöglichen feste Phasenbeziehungen zwischen
den Teilwellen. Mit Bindungslängen d & λ resultieren im Röntgenband scharfe In-
terferenzmaxima nach der Bragg-/Laue-Bedingung auch bei großen Streuwinkeln θ.
In diese Kategorie fallen insbesondere auch Metalle wie Li und Be.

• Amorphe Festkörper, Flüssigkeiten und Gase. Unregelmäßige und z.T. zeitlich varia-
ble Anordnung der Kerne und e− führt i. a. zu statistisch verteilten Phasenfaktoren

in Gl. 2.3. Offenbar gilt jedoch für θ ¿ 1 f̂n,s

(

∆~k, ω
)

∼= Qn,s(ω), so dass mit der

Vorwärtsstreuung in nullter Ordnung quasi der Trivialfall der Interferenz zu beob-
achten ist.

Auf eine solche bleibt im übrigen auch die Beugung im kristallinen Medium beschränkt,

wenn dort d¿ λ gilt. Der Grenzfall e−i(∆
~k·∆~rn,s) → 1 motiviert schließlich die Notation

n(E) = 1− 2π re

(

~c
E

)2

na
(

f 01 (E) + if 02 (E)
)

, (2.4)

wobei na für die atomare Anzahldichte, re für den
”
Elektronenradius“ und das Super-

skript
”
0“ des gesamten Streufaktors f 01 (E)+ if 02 (E) eben für den hier betrachteten Limes

(

∆~k ·∆~rn,s
)

→ 0 steht.

Eine weitere Differenzierung gilt der Energie bzw. Frequenz ω der Strahlung, insbeson-
dere in Relation zu den Energieniveaus bzw. Eigenfrequenzen des Atoms oder der chemi-
schen Verbindung.

• Starke Absorption erleidet grundsätzlich
”
weiche“ Röntgenstrahlung bis zu wenigen

keV, indem sie die Atome durch Herausschlagen innerer e− ionisiert. Folgerichtig
besteht eine starke Energieabhängigkeit, die im Bereich zwischen rund 1 und 20 keV
fern von Absorptionskanten zumeist wie E−γ verläuft, mit 3 ≤ γ ≤ 4. Als weniger
eindeutig erweist sich der funktionale Zusammenhang mit der Kernladung Z, der
von zahlreichen Sprüngen entsprechend der Lage des Elements im Periodensystem
geprägt ist.

• Elastische und kohärente Streuung tritt vor allem an stark gebundenen e− auf, die fe-
ste Phasendifferenzen zwischen einfallender und reflektierter bzw. gebrochener Welle
im Sinn der geometrischen Optik gewährleisten. Im Bild des harmonischen Oszilla-
tors folgen die e− mit Eigenfrequenzen ωs der Anregung mit der Frequenz ω À ωs
nur schwach und gegenphasig. Die geringe Brechkraft (δ ¿ 1) hat darin ihre Ursache.
Als frequenzerhaltende Streuung dominiert sie bei geringer Energie über die

• Inelastische oder Compton-Streuung, die erst bei vernachlässigbaren Bindungskräften
und E À EK (mit EK als der Bindungsenergie der e− in der K-Schale) zum Tragen
kommt. Sie erfolgt bei teilweisem Energieübertrag auf nur schwach gebundene e−

und ergo undefinierter Phasenbeziehung. Im Rahmen der in dieser Arbeit wichtigen
Vorwärtsstreuung spielt sie jedoch keine Rolle.
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Wegen der komplexen WW-Prozesse muß f 0(E) für jedes Medium semi-empirisch ermit-
telt werden – üblicherweise durch Messung der den Imaginärteil bestimmenden Absorpti-
onslänge mit anschließender Berechnung von f 01 (E) aus den Kramers-Kronig-Relationen.

Während das sich im Rahmen dieses Verfahrens bestimmte β(λ) nur grob durch eine
Funktion ∝ λ4 approximiert wird und Fehler von mehreren 10% auftreten können, folgt δ
zumindest im betrachteten Energiebereich recht genau einem λ2-Verlauf. Es gilt also

δ(λ) ∼= δc

(

λ

λc

)2

oder δ(E) ∼= δc

(

Ec
E

)2

, (2.5)

wenn δc = δ (λc) und für E analoge Bezeichnungen zugrunde gelegt werden. Tab. 2.1 gibt
einen Überblick über die Fitparameter und ihre ±1σ-Fehlergrenzen im Energieintervall
1 keV ≤ E ≤ 10 keV. Im Kontext der Beugungstheorie wird gewöhnlich nur auf die

Substanz α± σα in (keV)2 Substanz α± σαin (keV)2

H2 3.70× 10−8 ± 1.98× 10−12 He 3.72× 10−8 ± 1.88× 10−11

Li 9.72× 10−5 ± 1.38× 10−7 Be 3.49× 10−4 ± 8.35× 10−7

B 4.67× 10−4 ± 1.44× 10−6 C 4.78× 10−4 ± 1.43× 10−6

N 2.72× 10−7 ± 5.64× 10−10 O 3.08× 10−7 ± 6.34× 10−10

Tabelle 2.1: Zum Realteil des Brechungsindex zwischen 1 und 10 keV. Fern von Absorpti-
onskanten nimmt δ = 1−Re(n) mit der Energie E in guter Näherung gemäß δ(E) = α·E−2
ab. Aufgelistet sind die Steigungsparameter α mit ihren Standardfehlern.

Proportionalität 2.5 Bezug genommen, Absolutwerte des reellen Brechungsindex spielen
jedoch insbesondere im Rahmen der Theorie der Bildfehler eine Rolle.

Wir führen nun mit der
”
kritischen Zonenzahl“ N0 ≡ δ

2πβ
– nach [16] die Zahl der

Phasenumkehrungen pro Absorptionslänge – den für die optische Güte des Mediums cha-
rakteristischen Parameter ein. Anders als δ und β selbst zeigt sie bzgl. der Kernladung Z
einen verhältnismäßig glatten Verlauf, wie in Abb. 2.2 illustriert. Wie der Grafik zu ent-
nehmen ist, sind Elemente mit niedrigem Z und relativ harte Röntgenstrahlung im Sinne
geringer Absorption zu bevorzugen. Wo dies nicht möglich ist, kann eine hinsichtlich der K-
Elektronen günstige Materialwahl N0 um einen Faktor ∼ 10 verbessern, z.B. via 15Ph statt
13Al bei 2.0 keV. N0 verläuft im übrigen zumindest im weichen Röntgenband von wenigen
keV etwa proportional zu λ−2 und ergibt sich als Quotient der Funktionen von δ und 2πβ.

Bisher wurden lediglich elementare Stoffe betrachtet. Die optischen Eigenschaften von
Verbindungen wie z. B. Hybridkompositionen der Form XmHn oder Kunststoffen setzen
sich indes additiv aus jenen der Komponenten zusammen:

δ + iβ = 2π re

(

~c
E

)2

nmol
∑

k

(

f 01,k(E) + if 02,k(E)
)

(2.6)
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Abbildung 2.2: Verlauf der kritischen Zonenzahl N0 mit der Kernladung Z. Abseits von
Absorptionskanten zeigen die Messdaten (Punkte) für N0 für Z & 2 in guter Näherung eine
Z−3-Abhängigkeit (durchgezogene Kurven). Die hier durch Pfeile gekennzeichnete Diskon-
tinuität in N0(E) ist durch die K1s-Bindungsenergie des jeweiligen Elements bedingt.

Summiert wird über alle Atome (Index k) des Moleküls, deren nmol Stück im Einheitsvo-
lumen Platz finden. Von Relevanz bzgl. der Wahl des Materials ist nun zudem der Um-
stand, dass die molekulare Struktur, also die geometrische Anordnung der Atome, im Fall
der Vorwärtsstreuung gemäß obiger Argumentation normalerweise keine Rolle spielt. Eine
Ausnahme stellen lediglich die engen spektralen Bänder im Bereich der Absorptionskanten
dar, die durch anomale Dispersion gekennzeichnet sind und außer mit den gewöhnlichen
intra- auch mit den strukturabhängigen interatomaren Bindungen korrelieren.

Nach Gl. 2.6 folgt für die kritische Zonenzahl eines mehrelementigen Materials

N0 =

∑

k f
0
1,k(E)

2π
∑

k f
0
2,k(E)

=

∑

jmjf
0
1,j(E)

2π
∑

jmjf 02,j(E)
, (2.7)

wenn mj die Zahl der Atome der Sorte j pro Molekül angibt. Diese Relation spielt insbe-
sondere im Zusammenhang mit H2−Beimengungen zur Steigerung der optischen Qualität
eines Stoffes eine Rolle; andererseits ergibt sich aus ihr die aufgrund der Absorption pro-
blematische Wirkung des Kohlenstoffs, beispielsweise im Polycarbonat (C16H14O3).

Die mikroskopischen Eigenheiten von n(E) wirken sich nun auf die makroskopischen
physikalischen und formalen Gesetzmäßigkeiten der Röntgenoptik aus. Im weiteren wird
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grundsätzlich von einem lediglich auf relativ zur Wellenlänge sehr großen Skalen variie-
renden Brechungsindex n (~r, ω) ausgegangen. Diese Annahme schließt diskontinuierliche

Änderungen mit ~∇~r n (~r, ω) ∝
∑

b±δ (~r − ~rb) an ausreichend dimensionierten Blenden als

auch stetige Variationen der Form ~∇~r n (~r, ω) ≈ 0 ein, die somit in der zur Wellengleichung
führenden Differentiation der Maxwell-Gleichungen als lokale Konstanten zu betrachten
sind (eine analoge Beziehung gilt für ~B (~r, t)):

(

∂2

∂t2
−
(

c

n (~r, ω)

)2

4
)

~E (~r, t) = 0 (2.8)

Demnach besteht die allgemeine Lösung aus einer linearen Superposition von der Form

A (~r, t) ∝
∫

Ã
(

~k
)

ei(
~k~r−ω(k)t)d3k, (2.9)

wobei A (~r, t) für eine beliebige Komponente der Felder ~E (~r, t) und ~B (~r, t) steht. Die
Forderung der hinreichenden Homogenität des Mediums beschränkt beide auf durch das
∣

∣

∣

~k
∣

∣

∣
-Spektrum Ã

(

~k
)

definierte Wellenpakete mit ~E⊥ ~B und
(

~E, ~B
)

⊥~k. Im einfachsten

Fall resultieren ebene Wellen ~E (~r, t) und ~B (~r, t), die nur noch in Gestalt eines separablen
Faktors e−iωt von der Zeit abhängen. Die vereinfachte stationäre Variante von Gl. 2.8 lautet
somit

(

4+ k2
)

~E (~r) = 0, (2.10)

mit einem analogen Ausdruck für ~B (~r). Stetigkeitsbedingungen an die Felder liefern nun
die bekannten Gesetze der Reflexion und Brechung (vgl. Abb. 2.3), die wir hier ihrer quan-
titativen Abweichungen gegenüber dem visuellen Pendant wegen anführen. Wir betrachten
dazu die zur Einfallsebene senkrechten und parallelen Komponenten des elektrischen und
magnetischen Feldes an der Grenzfläche zweier Medien mit Brechungsindizes n1 und n2.
Analog zur visuellen Optik liefern Stetigkeitsforderungen an ~Ep und ~Hp sowie ~Ds und ~Bs

zunächst das triviale Reflexionsgesetz φe = φr. In ähnlicher Weise lässt sich das Brechungs-
gesetz ableiten,

n1 sinφe = n2 sinφg mit n1,2 ε C. (2.11)

An dieser Stelle sei die geringe, aber prinzipiell vorhandene Modifikation der aus Re (n1,2)
möglicherweise folgenden Ablenkrichtung durch Im (n1,2) erwähnt. Auf den ersten Blick
erscheint der Einfluss komplexer Brechungsindizes auf den Brechungswinkel β durchaus
unklar. Entsprechend kontrovers wurde diese Problematik von diversen Autoren diskutiert
[20]. So kursieren verschiedene Modelle, die gleichwohl bislang einer experimentellen Veri-
fizierung bzw. Falsifizierung harren. Nichtsdestoweniger scheinen zwischen ihnen allenfalls
marginale quantitative Unterschiede zu bestehen. Die Graphen in Abb. 2.4 basieren auf der
von den Autoren von [20] favorisierten Theorie. Wie insbesondere in Kap. 5 ausgeführt wird,
betragen aufgrund der großen Brennweiten die Ablenkwinkel allenfalls wenige Bogensekun-
den (arcsec). Ferner sind nach [20] für φe → 90◦ und maximale Brechungsindex-Parameter

δ . 5×10−4 und β . 5×10−5 relative Winkelabweichungen 1− φg,β 6=0
φg,β=0

. 10−4 zu erwarten.
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Abbildung 2.3: Reflexion und Brechung von Röntgenstrahlen an einer Grenzfläche zweier
Medien, die als linear, homogen und isotrop vorausgesetzt werden. Einfallende (Index

”
e“),

reflektierte und gebrochene Welle bestehen aus Feldkomponenten ~Es und ~Ep senkrecht (¯⊗)
und parallel (↑↓) zur Einfallsebene.

Im Extremfall nahezu streifenden Einfalls wäre daher mit einem absoluten Winkelfehler
von ∼ 1 mas, also in der Größenordnung der angestrebten Auflösung zu rechnen.

Die anzunehmenden Abweichungen vom absorptionsfreien Brechungswinkel erweisen
sich demnach im Regelfall als vernachlässigbar gering, solange der Einfallswinkel moderate
Werte φe nicht überschreitet. Ein signifikanter Einfluss auf die Abbildungsqualität der in
dieser Arbeit diskutierten optischen Systeme ist ergo im Allgemeinen nicht zu erwarten
und findet demnach vorläufig auch keine weitere Berücksichtigung. Mit δ, β ¿ 1 ergibt
sich nach sukzessiver Reihenentwicklung die praktische Formel sinφg ≈ n∆ sinφe, mit
n∆ ≡ 1 − (δ1 − δ2) − i (β1 − β2). Der vor allem für die Spiegeloptik wichtige Glanzwinkel
θc ≡ π

2
− φc der Totalreflexion folgt unter der Annahme βi → 0 zu

θc ∼=
√

2 (δ2 − δ1). (2.12)

In der Praxis treten daher, wieder unter Annahme von maximalen Brechungsindizes δ .
5× 10−4, Glanzwinkel von maximal ∼ 2◦, meist aber von deutlich weniger als 1◦ auf.

Wir kommen nun zu den Fresnel-Formeln für die Reflexions- und Transmissionskoeffizi-
enten, die sich wiederum wie im Visuellen aus Stetigkeitsforderungen an die tangentialen,
stationären Komponenten der elektrischen und magnetischen Felder ~E und ~H errechnen:

(

Er
Ee

)

s

=

n1
n2

cosφe −
√

1−
(

n1
n2

)2

sin2 φe

n1
n2

cosφe +

√

1−
(

n1
n2

)2

sin2 φe

und

(

Eg
Ee

)

s

=
2n1
n2

cosφe

n1
n2

cosφe +

√

1−
(

n1
n2

)2

sin2 φe
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Abbildung 2.4: Einfluss der Absorption auf den Brechungswinkel. In Abhängigkeit vom
Einfallswinkel φe ist die relative Abweichung des Brechungswinkels φg für diverse (δ, β)
angegeben. Die Kurven basieren auf dem in [14] favorisierten Modell.

geben die Amplitudenverhältnisse der zur Einfallsebene senkrechten Komponenten an
(s−Polarisation). Entsprechend lauten die Koeffizienten der p−polarisierten Komponente:

(

Er
Ee

)

p

=
cosφe − n1

n2

√

1−
(

n1
n2

)2

sin2 φe

cosφe +
n1
n2

√

1−
(

n1
n2

)2

sin2 φe

und

(

Eg
Ee

)

p

=
2n1
n2

cosφe

cosφe +
n1
n2

√

1−
(

n1
n2

)2

sin2 φe

.

Aus der verschwindenden Reflektivität der Parallelkomponente errechnet sich schließlich
noch der Brewsterwinkel φB zu

φB '
π

4
− 1

2
(δ2 − δ1) . (2.13)

Die sich aus diesen Gleichungen ergebenden Reflexionsverluste, Polarisation und deren
Drehung, wie sie im visuellen Spektralbereich stets zu berücksichtigen und bei Bedarf auf-
wendig zu kompensieren sind, können selbst im Fall großer Einfallswinkel φe vernachlässigt
werden – ein Resultat der außerordentlich schwachen Brechkraft aller Materialien im Rönt-
genbereich. Abb. 2.5 veranschaulicht diesen Sachverhalt.

2.2 Das paraxiale Beugungsintegral

Im Rahmen der geometrischen Optik ändern die Strahlen somit an Grenzflächen mit
sprunghafter Änderung von n (~r) – wie nicht anders zu erwarten – ihre Richtung unste-
tig, wenn auch nur um einen sehr kleinen Betrag. In diesem Sinn wurde bislang stets von
ebenen Wellen ausgegangen, die eine gute Näherung darstellen, solange die laterale Aus-
dehnung des (Röntgen-)Strahls sehr groß gegen λ ist. Nach Huygens treten jedoch an den
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Abbildung 2.5: Reflektivität und Polarisationsdrehung an Materialoberflächen. Basierend
auf den Fresnel-Formeln sind links die (Intensitäts-)Reflexionskoeffizienten der paralle-

len (‖) und senkrechten (⊥) Komponente des ~E-Feldes als Funktion des Einfallswin-
kels φe aufgetragen. Rechts sind die relativen Polarisationsdrehungen für diverse Winkel
γ ε {10◦, 65◦, 80◦} des ~E−Feldes gegen die Einfallsebene angegeben.

z. B. durch Blenden der Dimension D verursachten Begrenzungen Beugungseffekte auf, die
ebenso wie Interferenzeffekte die Feldverteilung auf Winkelskalen ∼ λ

D
bestimmen. Wegen

δ ¿ 1 lässt sich die i.a. etwas komplizierte Beugungstheorie nun allerdings wesentlich ver-
einfachen. Den Ausgangspunkt bildet erneut Gl. 2.10. Deren allgemeine Lösung besteht
wiederum aus einer linearen Superposition ebener Wellen

~E (~r) ∝
∑

n

~An e
i(~k~r+φn) + cc., (2.14)

die aus dem Halbraum z < z0 einfallend, mit Amplituden ~An und Phasen, die in kartesi-
schen Koordinaten mit ~r ≡ (x, y, z)T als

~k · ~r = xp+ yq + z
√

k2 − p2 − q2 (2.15)

geschrieben werden können, in z = z0 eine unstetige Ablenkung erfahren. Der Wellenvektor
~k, ausgedrückt durch

(

p, q,
√

k2 − p2 − q2
)

, soll dann mit der z−Achse ‖ ~ez einen Winkel

α ≡ arcsin
(

k−1
√

p2 + q2
)

bilden, der eben wegen λ¿ D und δ ¿ 1 im folgenden stets als

”
klein“ vorausgesetzt wird. Man spricht in diesem Fall bei der Beschreibung linsenoptischer
Abbildungen von der paraxialen oder Gauß’schen Approximation [14]. α ¿ 1 rechtfertigt
die Entwicklung von Gl. 2.15 nach Potenzen von sinα:

~k · ~r = xp+ yq + zk

(

1− sin2 α

2
− sin4 α

8
+ ...

)

(2.16)

Vernachlässigt man Terme ≥ O
(

sin4 α
)

, faktorisiert die Feldamplitude ~E (~r) gemäß

E (~r) = u (~r) eikz mit u (~r) ∼= exp

(

i

(

xp+ yq − zk sin
2 α

2

))

. (2.17)



14 2. Grundlagen der Röntgenoptik

Wie erwähnt, setzt eine solche Entwicklung eine genügend kleine Abweichung von ~k ge-
genüber ~ez voraus, quantitativ gegeben durch die Forderung

zk
sin4 α

8
¿ 1. (2.18)

Vergegenwärtigen wir uns nun im Vorgriff auf Kap. 5, dass sinα . R/F ¿ 1 selbst für
achsferne Punkte in der Fokalebene einer Optik mit Aperturradius R und Brennweite F
gilt, kann die Ungleichung 2.18 in praktisch allen zu behandelnden Fällen der diffraktiven
und refraktiven Abbildung mittels Röntgenlinsen als erfüllt angesehen werden.

Dank dieser schwachen Variation von u (~r) mit z gelangen wir zu der vereinfachten,
nach Leontovich und Fock benannten parabolischen Wellengleichung für u (~r),

(

∆x,y − 2ik
∂

∂z

)

u (~r) = 0. (2.19)

Um Gl. 2.19 zu verifizieren, setze man den Ansatz 2.17 in die allgemeine Wellengleichung
2.8 ein und vernachlässige den ∂2z−Term. Spezielle Lösungen lassen sich nun mit Hilfe des
aus der theoretischen Physik wohlbekannten Green-Formalismus aus einer anfänglichen
Amplitudenverteilung u0 (~σ) finden, die in einer Ebene z0 gegeben sei:

u (~r) =

∫

A

u0 (~σ)G (~r − ~σ) d2σ (2.20)

Der Vektor ~σ repräsentiert dabei die lokalen Koordinaten in der Austrittspupille der Fläche
A, während die Green’sche Funktion

G (~r − ~σ) ≡ ik

2π (z − z0)
e
−i k
2(z−z0)

(~r−~σ)2
(2.21)

anschaulich gesprochen die einzelnen miteinander interferierenden Beiträge der aus der
Apertur austretenden Partialwellen beschreibt. Das allgemeine paraxiale Beugungsintegral

E (~r) =
ik eikz

2π (z − z0)

∫

A

u0 (~σ) e
−i k
2(z−z0)

(~r−~σ)2
d2σ (2.22)

wird die Grundlage der Berechnungen zu fokalen Intensitätsverteilungen in Kap. 3 und 4
bilden. u0 (~σ) ergibt sich als von der Linsenstruktur modifizierte Signalamplitude.

In ihrer einfachsten Anwendung liefert 2.22 die wohlbekannte Airy-Funktion, als der
die Beugung an einer kreisförmigen Apertur beschreibenden Intensitätsverteilung. Um sie
abzuleiten, berücksichtigt man für einen lateralen Ortsvektor ~ρ in der Beobachtungsebene
~r = (ρ cosϕ, ρ sinϕ, z) und wählt z0 = 0. Für u (~r) ergibt sich nun die explizite Form

u (~r) = i
k

z
e−i

k
2z
ρ2
∫ R

0

ũ0(σ)e
−i k
2z
σ2J0

(

k

z
ρσ

)

σdσ (2.23)

mit J0 (x) als der Besselfunktion nullter Ordnung bzgl. x. Man beachte, dass ρ die laterale
Koordinate in der Bildebene beschreibt, ~r jedoch für den Ortsvektor mit Ursprung im
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Zentrum der Apertur – oder genauer – der Austrittspupille steht. In der Beobachtungsebene
z = F erzeugt eine Eingangsamplitude ũ0(σ) = 1 die Intensitätsverteilung

Ĩ (ρ) =

(

2π

λF

)2 ∣
∣

∣

∣

∫ R

0

e−i
π
λF

σ2J0

(

2π

λF
ρσ

)

σdσ

∣

∣

∣

∣

2

. (2.24)

Zur weiteren Evaluation berücksichtigt man den von 0 ≤ σ ≤ R abhängigen optischen
Weg einer Elementarwelle von der Apertur zum Beobachtungspunkt. Mittels elementarer
geometrischer Betrachtungen findet man

R2 + F 2 =

(

N
λ

2
+ F

)2

→ R ≈
√
NλF für F À Nλ (2.25)

wenn N die Zahl der Halbwellen oder π−Phasen bezeichnet, um die sich die optischen
Weglängen des Rand- und Zentralstrahls unterscheiden. In Abb. 2.6 deuten die alternierend
grauen und weißen Ringe diese sog. Fresnel-Zonen an. Unter der Annahme N ¿ 1 – dem

Abbildung 2.6: Beugung an der kreisförmigen Apertur. Vom Brennpunkt F auf der op-
tischen Achse aus betrachtet, erscheint die Öffnung in N Fresnel-Zonen aufgeteilt, hier
illustriert am Beispiel N = 10. Der Radius R ist rot hervorgehoben.

formalen Kriterium für die Fraunhofer- oder Fernfeldbeugung – verlegt sich der Brennpunkt
F virtuell ins Unendliche. Damit folgt schließlich für den reduzierten Radius υ ≡ N

R
ρ nach

der Normierung der Intensitätsverteilung Ĩ (~r) = |u (~r)|2 auf den Wert I (υ = 0) = 1 die
auf der Besselfunktion 1. Ordnung J1 basierende Airy-Funktion

I (υ) =
1

(πN)2
|u (~r)|2 =

(

2J1 (2πυ)

2πυ

)2

. (2.26)

Auf ihrer Grundlage lassen sich diverse Kriterien für das Orts- bzw. Winkelauflösungs-
vermögen einer (Teleskop-)Apertur definieren. Häufig werden Rayleigh-Kriterium, Halb-
wertsbreite (FWHM) und Energiedurchmesser (HEW,

”
half energy width“) herangezogen:
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Rayleigh-Kriterium. Die Airyfunktion I (υ) weist im Anschluss an das zentrale Maxi-
mum eine erste Nullstelle bei υRayleigh auf, die auf jeden Fall die Trennbarkeit zweier
benachbarter Beugungsscheibchen gewährleistet. Sie wird daher zumindest in theo-
retischen Überlegungen die Auflösung ∆εRayleigh = 2υRayleigh

λ
R

definieren und ist
explizit als ∆εRayleigh = 1

π
ξ1

λ
2R

mit ξ1 ≈ 3.83 als erster Nullstelle von J1 gegeben. Der
numerische Wert lautet

2υRayleigh ≈ 0.610. (2.27)

volle Halbwertsbreite (FWHM). Eine weitere Kenngröße, die sich zur Beschreibung
des Auflösungsvermögens heranziehen lässt, ist die HWHM-Halbwertsbreite, bei der
I (υHWHM ) = 1

2
I(0) gilt. Die numerische Lösung ergibt sich zu υHWHM ≈ 0.257. Die

Winkelauflösung beträgt demnach

2υFWHM ≈ 0.514, (2.28)

was etwa 84% der Rayleigh-Breite entspricht. Die FWHM-Definition stellt eine be-
sonders enge Definition der Auflösung bereit und eignet sich insbesondere bei scharf
begrenzten Gauss-förmigen Punktbildern.

Energiedurchmesser (HEW). Wegen der mitunter vom Profil der ungestörten, mono-
chromatischen PSF abweichenden Beugungsstruktur realer Objektive wird anstelle
des Rayleigh-Arguments oder der Halbwertsbreite (FWHM) vor allem in der Astro-
nomie oft die über υ integrierte Intensität herangezogen. Sie berücksichtigt weit aus-
laufende Intensitätsverteilungen, wie sie beispielsweise bei ringförmigen Aperturen
auftreten. Abb. 2.7 zeigt die auf den jeweiligen Maximalwert normierten Intensitäts-
verteilungen solcher Aperturen mit Zentralobstruktion 0 ≤ a ≤ 1, wobei a · R den
Radius der Abdeckung angibt. Üblicherweise legt man die Halbwertsbreite von 50%

Abbildung 2.7: PSF der Beugung an der abgedeckten Apertur. Normiert auf die jeweili-
ge Peak-Intensität, zeigen die Grafiken mit der relativen Zentralobstruktion zunehmende
Nebenmaxima, die Bildqualität und Auflösung beeinflussen.

der in einer Fläche A = π ·χ2 eingeschlossenen Energie (encircled energy,
”
EE“) bzw.

Leistung P zugrunde. Die Bestimmungsgleichung für die Auflösung lautet dann

PA (υHEW ) = 2π

∫ υHEW

0

I (υ) υdυ =
1

2π
für 2υHEW ≈ 0.535. (2.29)
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Der Grenzwert π−1 auf der rechten Seite steht für den der gewählten Variablen ent-
sprechenden Normierungsfaktor, der limχ→∞ PA(χ) = 1 sicherstellt.

Abb. 2.8 illustriert die Funktion PA(υ) für diverse Obstruktionen 0 ≤ a ≤ 1. Zur quanti-

Abbildung 2.8: Leistungsintegral der PSF. Für verschiedene Abdeckungsverhältnisse ist die
Funktion PA (υHEW ) eingetragen. Die HEW-Auflösung nimmt mit wachsendem a ab.

tativen Beschreibung der Abbildungsqualität eignet sich indes eher die optische Transfer-
Funktion D (~ω), die mittels einer Fourier-Transformation aus der PSF hervorgeht2:

D (~ω) =

∫

R2
I (~υ) e−2πi(~υ·~ω)d2υ, (2.30)

mit ~υ = υ (cos θ, sin θ). D (~ω) setzt sich aus der reellen Modulationstransferfunktion (MTF)
und einem imaginären Faktor mit der Phasentransferfunktion P (~ω) ε R zusammen,

D (~ω) =M (~ω) eiP (~ω), (2.31)

wobei M (~ω) ≡ |D (~ω)| gilt. Offensichtlich treten imaginäre Anteile nur für nicht axialsym-
metrische Intensitätsverteilungen, also für I (~υ) 6= I (υ) auf. Ein solcher Fall ist speziell bei
verzerrten Abbildungen achsferner Objekte und asymmetrischen Aperturen gegeben. Im
Fall symmetrischer Funktionen I (υ) axialer Punktquellen vereinfacht sich D (~ω) zu

M (ω) = 2π

∫ ∞

0

I (υ) J0 (2πυω) υ dυ. (2.32)

2Detaillierte Ausführungen zur hier knapp beschriebenen optischen Transferfunktion finden sich in [19].
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Generell bedarf es zur Bestimmung der Transferfunktion einer numerischen Integration
der PSF, lediglich wenige elementare Probleme lassen sich analytisch lösen, so z.B. das der
kreisförmigen Blende. Deren auf M(0) = 1 normierte MTF errechnet sich also gemäß

2π2
∫ ∞

0

(

2J1 (2πυ)

2πυ

)2

J0 (2πυω) υdυ =
2

π



arccos

(

ω

ω0

)

ω

ω0

(

1−
(

ω

ω0

)2
) 1
2



 (2.33)

mit ω0 = 2 als der maximal auflösbaren Frequenz, entsprechend einer realen Ortsfrequenz
ν0 = 2N

R
in der Bildebene. Es sei bemerkt, dass dieser Wert den aus dem Rayleigh-Kriterium

mit ν0,R =
(

0.61R
N

)−1
abgeleiteten um 22% und die aus υHEW mittels PSF-Integration

gewonnene Trennschärfe um ≈ 7% übertrifft und damit als absolute obere Schranke anzu-
sehen ist. Dem Grenzwert ν0 ist per definitionem M (ν0) = 0 zugeordnet. Ortsfrequenzen
0 ≤ ν < ν0 werden mit höherem Kontrast wiedergegeben.

Zum Abschluss des Kapitels werden die beiden in dieser Arbeit wesentlichen Größen –
geometrische und kritische Zonenzahl – nochmals definiert und kurz erläutert.

geometrische Zonenzahl N . Mit der geometrischen, fortan als
”
Zonenzahl“ bezeichne-

ten Größe N > 0 wird die in Einheiten von π gemessene Phasendifferenz zwischen
dem zentral auf der optischen Achse verlaufenden bzw. vom Rand der Apertur ein-
fallenden Strahl bezeichnet. Nach Gl. 2.25 gilt in teleskopischer Anwendung

N =
2

λ
F





√

1 +

(

R

F

)2

− 1



 =
R2

λF
+O

(

R

F

)4

, (2.34)

wenn R den Radius, F Brennweite und λ die Wellenlänge bezeichnet. Im allgemeinen
hängt N von λ bzw. der Brennweite ab. Lediglich im Fall der diffraktiven Linse mit
linearer Dispersion F ∝ λ−1 bleibt N konstant. Aus praktischen Gründen wird in
dieser Arbeit, von wenigen Ausnahmen abgesehen, N ε N angenommen.

kritische Zonenzahl N0. Die in [16] als N0 =
δ
2πβ

eingeführte
”
kritische Zonenzahl“ lässt

sich als effektive, in Einheiten von π gemessene geometrische Zonenzahl einer re-
fraktiven (Sammel-)Linse interpretieren, die im Röntgenbereich konkave Krümmung
aufweist. Deren radienabhängige Transmission T (r) ist im Vorgriff auf Kap. 3 durch

T (r) = e−
4π
λ
β r
2

2ξ (2.35)

gegeben, wobei ξ für den Krümmungsradius des parabolischen Profils steht. Mit der
Brennweite F ' ξ

δ
wird ein

”
kritischer Radius“ zu R0 ≡

√
N0λF definiert, so dass

T (r) = e
−
(

r
R0

)2

→ 1

e
für r → R0 (2.36)

folgt. Der durch N0 festgelegte, virtuelle kritische Radius beschreibt somit die bis
zu einer Absorptionslänge e−1 transparente Apertur. Da N0 bis auf einen Faktor 2π
durch den Quotienten δ

β
definiert ist, kann die kritische Zonenzahl auch als Maß für

die bei fixer Absorption wirksame Brechkraft angesehen werden.



Kapitel 3

Refraktive und diffraktive Linsen

Im allgemeinen dienen Linsen dazu, eine Wellenfront derart zu modifizieren, dass eine Fo-
kussierung in einen virtuellen oder reellen Brennpunkt erfolgt. Sammellinsen, die den Ge-
genstand dieses Kapitels bilden, weisen in ihrer elementaren, massiven Ausführung wegen
Re(n) < 1 ein konkaves Profil auf, dessen mit zunehmendem Radius rapide anwachsende
Absorption Effizienz und Auflösung limitiert. Setzt man nämlich für die Transmission

T (r) = e−
4π
λ
βt(r), (3.1)

mit der Profildicke t(r), so ergibt sich im einfachsten Fall einer gemäß t(r) = r2

2ξ
parabo-

lischen Linse eine Schwächung ln T (r) ∝ −r2. Man wird daher versuchen, die Profiltiefe
durch Abtragung soweit als möglich zu reduzieren –

”
soweit als möglich“ deshalb, weil mit

der höheren Transparenz modifizierte optische Eigenschaften insbesondere bzgl. der Disper-
sion einhergehen, die beim Design der Gesamtkonfiguration zu berücksichtigen sind. Wir
behandeln zunächst die massive Standardlinse, aus der durch sukzessive Abtragung von
Materialschichten zunächst die allgemeine und schließlich die maximal reduzierte Fresnel-
Linse hervorgeht, die sich im Extremfall bis zur binären Zonenplatte vereinfachen lässt.

3.1 Eigenschaften der refraktiven Röntgenlinse

Vor der expliziten Diskussion des optischen Verhaltens solcher Elemente bedarf es der Wahl
eines geeigneten Profils. Im weiteren Verlauf der Arbeit wird in der Regel das parabolische
Anwendung finden, da es im Rahmen der in Abschn. 2.2 eingeführten Paraxialnäherung
analytisch berechenbare und exakte Lösungen liefert1. In Anlehnung an das Fermat’sche
Prinzip erweist sich die parabolische Form als nicht nur die mathematisch einfachste,
sondern auch natürlichste Profilfunktion t(r). Fordert man nämlich unter Annahme des
Scheitel- oder Fußpunktes der Linse im Koordinatenursprung für die Konstanz des opti-
schen Lichtweges

(1− δ)t+
√

r2 + (F − t)2 = F = const. (3.2)

1Auf die für die Praxis bedeutsamen Komplikationen und Einschränkungen wird im Zusammenhang
mit den diversen Aberrationen eingegangen.
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mit der Brennweite F , finden sich die exakten Lösungen der quadratischen Gleichung zu

t±(r) =
F

δ − 2

(

−1±
√

1 +

(

1− 2

δ

)

( r

F

)2
)

. (3.3)

Eine Reihenentwicklung der physikalisch sinnvollen Lösung t+ nach Potenzen des relativ
zu F kleinen Radius r um 0 liefert dann

t+(r) =
1

2δ

r2

F
− δ − 2

8δ2
r4

F 3
+O

(

r6
)

(3.4)

Unter Verwendung der Definition ξ ≡ Fδ und Vernachlässigung höherer Ordnungen in δ
kann die Profilfunktion alternativ als

t+(r) ≈
1

2

r2

ξ
+
δ

4

r4

ξ3
+O

(

r6
)

(3.5)

geschrieben werden. Das parabolische Profil, das lediglich die niedrigste, quadratische Ord-
nung in r berücksichtigt, stellt wegen δ ¿ 1 für nicht allzu große Linsenradien bereits eine
sehr gute Approximation an die nach Fermat exakte Lösung 3.2 dar. Der Konstruktions-
parameter ξ wird als

”
Krümmungsradius“ bezeichnet, aufgrund der formalen Ähnlichkeit

mit der Reihendarstellung der sphärischen Profilfunktion

tsph(r) = ξ −
√

ξ2 − r2 = r2

2ξ
+

r4

8ξ3
+O

(

r6
)

. (3.6)

In zweiter Ordnung bzgl. r fallen somit parabolische und sphärische Linsenform zusammen,
während der vergleichsweise starke Korrekturbeitrag dritter Ordnung in r der sphärischen
Version zu signifikanten Abweichungen vom parabolischen Modell bei stark gekrümmten
Linsen führt (Abb. 3.1). Allgemein wird eine beliebige axialsymmetrische Linsenform durch

t(r) =
r2

2ξ
+ (1 + b)

r4

8ξ3
+O

(

r6
)

(3.7)

mit einem die Abweichung vom sphärischen Typ charakterisierenden Parameter b ε R be-
schrieben [13]. Wo weder parabolische noch sphärische Linsen Anwendung finden, kommen
bisweilen quasi aberrationsfreie aplanatische Ausführungen zum Einsatz, die im Röntgen-
bereich nahezu bikonkaver Natur sind und mit bapl & −1 der parabolischen Form ebenfalls
sehr nahe kommen. Abb. 3.1 illustriert die verschiedenen Profile.

Den weiteren Berechnungen liegt die rotationssymmetrische Linsen-Konfiguration zu-
grunde, die eine wesentliche Vereinfachung des allgemeinen Beugungsintegrals 2.22 ermög-
licht. In Anknüpfung an die Ausführungen in Abschn. 2.2 sei Gl. 2.23 als Ausgangspunkt
gewählt. Unter Berücksichtigung der paraxialen Näherung kann nun die Feldamplitude
unmittelbar hinter der Linse in der Austrittspupille als ũ(σ) = ũ0e

−ik(n−1)t(σ) geschrieben
werden [16]. Setzt man weiter für die Eingangsamplitude o.B.d.A. ũ0 = 1 und wie üblich
n ≡ 1− δ − iβ, präsentiert sich die Amplitude ũ(σ) schließlich als

ũ(σ) = e
−i k
2qλ

σ2
mit

1

qλ
≡ − 1

Fr(λ)

(

1 +
i

2πN0(λ)

)

, (3.8)
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Abbildung 3.1: Varianten konkaver Linsenprofile. Insbesondere die parabolische Oberfläche
lässt sich einfach durch sukzessive Materialabtragung in eine Fresnel-Linse verwandeln
(grau). Bei Bedarf kann alternativ auf sphärische oder aplanatische Profile zurückgegriffen
werden. Letztere weisen im Röntgenband eine nahezu bikonkave Form auf.

wobei mit der Funktion 1
qλ

eine gängige Abkürzung der Gauss’schen Optik verwandt wurde.

Weiterhin steht Fr(λ) =
ξ

δ(λ)
für die refraktive Brennweite, die sich im allgemeinen von der

diffraktiven Fokaldistanz unterscheidet. Nach Einsetzen in das Beugungsintegral ergibt sich

u (~r) = i
k

z
e−i

k
2z
ρ2
∫ R

0

e
−i k
2

(

1
qλ
+ 1
z

)

σ2
J0

(

k

z
ρσ

)

σdσ. (3.9)

Nimmt man nun Fc ≡ F (λc) für eine zentrale Wellenlänge λc an, schreibt sich der Krüm-
mungsradius als ξ = Fc · δ (λc). Damit folgt für die refraktive Dispersion

Fr(λ) = Fc
δ (λc)

δ(λ)
oder Fr(E) ' Fc

(

E

Ec

)2

, (3.10)

aufgrund Gl. 2.5. Unter Beachtung dieser Relation, der Konvention N0 (λ)→ N0 und mit
Hilfe der Zonenzahl N = N (λc) resultiert daraus die Beugungsamplitude

u (~r) = 2πi
ψ

ζ

N

R2
e−iπ(

ρ
R)
2
N ψ
ζ

∫ R

0

e
−iπ( σR)

2
N
(

ψ
ζ
− 1
ψ

(

1+ i
2πN0

))

J0

(

2πυ
ψ

ζ

σ

R

)

σdσ. (3.11)

Im Sinn einer vereinfachten Darstellung wurden hier für die relative Energie bzw. Fokaldi-
stanz die Bezeichnungen

ψ ≡ E

Ec
und ζ ≡ z

Fc
(3.12)
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eingeführt, die im weiteren Verlauf der Arbeit beibehalten werden. Setzt man nun noch
τ ≡ σ

R
ein, ergibt sich die nach Gl. 2.26 normierte Intensitätsverteilung I (~r) ∝ |u (~r)|2 zu

I (~r) =

(

2
ψ

ζ

)2 ∣
∣

∣

∣

∫ 1

0

e
−iπτ2N

(

ψ
ζ
− 1
ψ

(

1+ i
2πN0

))

J0

(

2πυ
ψ

ζ
τ

)

τdτ

∣

∣

∣

∣

2

. (3.13)

Eine besonders kompakte, wenn auch nach wie vor numerisch zu lösende Form nimmt die
Intensitätsverteilung für E = Ec im Fokus ~r = (ρ, F ) an, wobei F = Fc gesetzt wurde,

Is (υ) =

∣

∣

∣

∣

2

∫ 1

0

e−
s
2
τ2J0 (2πυτ) τdτ

∣

∣

∣

∣

2

. (3.14)

Die Punktbildfunktion hängt nun nur noch vom Parameter s ≡ N
N0

ab. Ausgehend von der
PSF einer idealen Apertur im Grenzfall s → 0 geht das Beugungsbild erwartungsgemäß
für wachsende s allmählich in die Gauss’sche Form über. Die beiden Grenzfälle der PSF
sind in Abb. 3.2 illustriert. Aus der lateralen Intensitätsverteilung lässt sich die Orts- oder

Abbildung 3.2: PSF und MTF massiver Linsen. Beide Funktionen werden vom Parameter
s ≡ N

N0
bestimmt. In den Grenzfällen s→ 0 und s→∞ resultieren laterale Intensitätsver-

teilungen vom Airy- bzw. Gauss-Typ (links). Der MTF ist das moderate Tiefpass-Verhalten
stark absorbierender Linsen zu entnehmen (rechts).

Winkelauflösung ermitteln. Wiederum soll die integrierte und auf P
(tot)
s = 1 normierte

Leistung (
”
encircled energy“) als universelles Kriterium dienen,

1

π
Ps(υHEW ) = 2π

∫ υHEW

0

Is (υ) υ dυ =
1

2π

1

s

(

1− e−s
)

=
1

2π
P (tot)s . (3.15)

Gemäß Abb. 3.3 bleibt die Auflösung 2υHEW für s . 1 auf dem ungefähr konstanten
Niveau χEE = 0.535, um für s & 10 wie

√
s anzusteigen. Zur analytischen Ableitung

dieses Sachverhalts betrachte man erneut das Beugungsintegral 3.14. Für große s liefert
der Integrand wegen des Exponentialterms nur im Bereich τ & 0 wesentlich von Null
verschiedene Beiträge, es gilt daher in guter Näherung

Is (υ) ≈
∣

∣

∣

∣

2

∫ ∞

0

e−
s
2
τ2J0 (2πυτ) τdτ

∣

∣

∣

∣

2

= [...] =

(

2

s
e−

2
s
(πυ)2

)2

. (3.16)
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Die Integration dieser Punktbildfunktion Gauss’schen Typs in [0, υHEW ] liefert explizit die
parametrisch von s abhängige Leistung Ps (υHEW ),

2π

∫ υHEW

0

(

2

s
e−

2
s
(πυ)2

)2

υ dυ = [...] =
2

s

(

1− e− 4s (υHEW ·π)2
)

=
1

π
Ps (υHEW ) , (3.17)

so dass sich schließlich die Halbwertsbreite υHEW aus dem Vergleich mit Gl. 3.15 gemäß

PsÀ1 (υHEW ) ≈ 1

2s
y υHEW |sÀ1 =

1

π

(s

4
ln 2
) 1
2 ∝
√
s (3.18)

ergibt. Nun sagt die laterale Auflösung noch nichts über die Güte aus, mit der die Ob-

Abbildung 3.3: Laterale Auflösung der massiven Linse. Nach HEW-Definition gestattet
die refraktive Ausführung eine beugungsbegrenzte Abbildung, solange N

N0
. 1. Für N

N0
= 2

nimmt der PSF-Durchmesser um ≈ 2% ab, um für N
N0
& 10 wie

√

N/N0 anzuwachsen.

jektstrukturen auf den unterschiedlichen realen Längenskalen 2ρmin ≤ 2ρ <∞ abgebildet
werden, wobei 2ρmin der lateralen Auflösungsgrenze 2υHEW entspricht.

In Abb. 3.3 sind die Transferfunktionen zu diversen Absorptionsparametern s eingetra-
gen. Während – wie nicht anders zu erwarten – die Übertragungsqualität hoher Raumfre-
quenzen zu größeren Werten s hin abnimmt, erfahren kleine Frequenzen eine geringfügige
Aufwertung. Die absorptionsbehaftete Röntgenlinse stellt also einen – wenn auch schwach
ausgeprägten – Tiefpass dar, als Konsequenz der absorptionsbedingt unterdrückten Beu-
gung an der Aperturberandung.

Die Übergangszone 1 . N
N0
. 10 führt auf ein Optimierungsproblem bzgl. der absoluten

lateralen Vergrößerung einer massiven Röntgenlinse. Nach Abb. 3.3 folgt der
”
Radius“ des
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Beugungsscheibchens in reduzierten Koordinaten einem funktionalen Verlauf von der Form

υHEW =
∆εHEW

2
· f
(

N

N0

)

mit ∆εHEW ≈ 0.535, (3.19)

wobei f(s) die stetige und asymptotisch lineare Funktion in s beschreibt. υHEW geht ober-
halb von N

N0
∼ 1 herum vom konstanten Optimum in den absorptionsdominierten Bereich

über. In realen Koordinaten gilt somit für den auf den Radius R bezogenen PSF-Radius
ρHEW unter Verwendung von N = N(E) = Nc

Ec
E

ρHEW
R

=
∆εHEW

2

1

Nc

E

Ec
· f
(

Nc

N0(E)

Ec
E

)

. (3.20)

Leider entzieht sich diese Gleichung wegen des teilweise nicht-analytischen Verlaufs der
Funktion f einer einfachen rechnerischen Behandlung. In Tab. 3.1 sind die numerisch er-
mittelten unteren Schranken an das Auflösungsvermögen diverser Linsenmodelle zusammen
mit dem jeweiligen Wirkungsgrad PN aufgelistet. Wie die Differentiation von Gl. 3.20 unter
Anwendung der Kettenregel zeigt, tritt dieses Minimum in ρHEW

R
notwendigerweise gerade

im Intervall 1 . N
N0

(E) . 10 auf, also dort, wo nach Abb. 3.3 f ′
(

N
N0

)

6= const gilt. Den

Be Li
E

N ρHEW
R

PN N ρHEW
R

PN

2 keV 108 3.0× 10−3 0.47% 290 1.1× 10−3 0.66%

3 keV 245 1.3× 10−3 0.54% 700 4.5× 10−4 0.73%

4 keV 450 7.1× 10−4 0.56% 1380 2.3× 10−4 0.65%

5 keV 725 4.4× 10−4 0.56% 2345 1.4× 10−4 0.50%

6 keV 1080 3.0× 10−4 0.52% 3650 9.2× 10−5 0.30%

Tabelle 3.1: Optimierung der Vergrößerung refraktiver Linsen. Bei gegebener Energie E
nimmt die laterale Auflösung, hier in Einheiten des Aperturradius R tabelliert, für eine
bestimmte, materialabhängige Zonenzahl N ein Minimum an. Zusätzlich sind die trans-
missionsbedingten Wirkungsgrade PN angegeben.

Daten ist eine relative Ortsauflösung bzw. Vergrößerung von ∼ 10−4 bei fast völliger Ab-
sorption (> 99%) und eher kleinen Zonenzahlen N ∼ (102 − 103) zu entnehmen. Trotzdem
liefert die Be-Linse für 6 keV und R = 0.5 m noch eine Auflösung von 5× 10−5 arcsec.

Um die axiale Intensitätsverteilung zu bestimmen, geht man wieder von Gl. 3.9 aus;
die Integration kann nun wegen J0 = 1 analytisch erfolgen und ergibt mit den oben ein-
geführten Definitionen für ψ und ζ sowie der obligatorischen Normierung nach Gl. 2.26

I(ψ, ζ) =

(

1

πN

)2 1− 2e
− N
2N0

1
ψ cos

(

πN
(

ψ
ζ
− 1

ψ

))

+ e
− N
N0

1
ψ

(

1− ζ
ψ2

)2

+
(

1
2πN0

ζ
ψ2

)2 . (3.21)
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Nahe des Brennpunkts zur relativen Energie ψ wird die Struktur der Intensitätsverteilung
im wesentlichen vom Verhältnis zwischen N und N0 bestimmt. Die beiden Grenzfälle hoher
und vernachlässigbarer Absorption schreiben sich für ψ = 1 als

lim
NÀN0

IEc(ζ) =
1

(πN)2 (1− ζ)2 +
(

N
2N0

ζ
)2 bzw. lim

N¿N0
IEc(ζ) =





sin
(

π
2
N
(

1− 1
ζ

))

π
2
N (1− ζ)





2

.

Den Gleichungen ist die jeweilige Halbwertsbreite (FWHM) der stark bzw. schwach absor-
bierenden Linse zu entnehmen. Via limNÀN0 IEc(ζ) = 1

2
limNÀN0 IEc(0) folgt nach kurzer

Rechnung

lim
NÀN0

∆
(z±
F

)

FWHM
= 2

√

2 + (2πN0)
2 (1 + (2πN0)

2)−1 ≈ 1

πN0
, (3.22)

während im anderen Grenzfall limN¿N0 IEc(ζ) =
1
2
limN¿N0 IEc(0) zweckmäßig die ersten

Nullstellen von limN¿N0 IEc(ζ) diesseits und jenseits des fokalen Hauptmaximums heran-
gezogen werden. Minima treten entlang der optischen Achse für πN

2
1
ζ
= kminπ auf, mit

kmin ε N, sofern die Absorption zu vernachlässigen ist. Die dem Fokus nächstgelegenen
Nullstellen des sin−Faktors bei kmin = N

2
± 1, entsprechend z

(min)
±1 , messen die vierfache

Fokustiefe (engl.: depth of field, DOF). Mit ∆z± = F − z(min)±1 folgt nach kurzer Rechnung

(

∆z±
F

)

min

= ± 2

N + 2
≈ ± 2

N
für N À 1. (3.23)

Die optische Feld- oder Schärfentiefe ergibt sich andererseits aus der Forderung, dass
der maximale Wellenfrontfehler ∆sopt eines um ∆z defokussierten Strahls den Wert λ

4

nicht überschreiten soll, um eine beugungsbegrenzte Abbildung zu erhalten (Rayleigh-
Kriterium). Unter Annahme kleiner Beugungswinkel bzw. großer Öffnungsverhältnisse f ≡
F
2R

folgt |∆sopt| ≈ 1
8f2

und schließlich mit der numerischen Apertur NA ∼= R
F

(∆z±)opt = ±
1

2

λ

(NA)2
= ± F

2N
. (3.24)

Die gesamte Schärfentiefe beträgt demnach in den beiden absorptionsbedingten Grenzfällen

lim
NÀN0

(

∆z

F

)

=
1

2πN0
und lim

N¿N0

(

∆z

F

)

=
1

N
. (3.25)

Auf ihrer Grundlage lässt sich die spektrale Bandbreite der massiven Röntgenlinse ableiten.
Offenbar gilt allgemein für ∆E ¿ E und mit der Dispersion F (E) ∝ δ−1(E)

F

(

Ec ±
∆E

2

)

= F (Ec)±
∆z±
2

und δ

(

Ec ±
∆E

2

)

∝ E2c±Ec ·∆E+

(

∆E

2

)2

. (3.26)
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Daraus errechnet sich die ungefähre spektrale Bandbreite der refraktiven Röntgenlinse zu

lim
NÀN0

(

∆E

E

)

≈ 1

4πN0
bzw. lim

N¿N0

(

∆E

E

)

=
1

2N
. (3.27)

Da nach Voraussetzung im ersten, absorptionsdominierten Grenzfall die (geometrische)
Zonenzahl N die kritische N0 deutlich übertrifft, beträgt die Fokustiefe des Gauss’schen,
stark absorbierenden Typs ein Vielfaches der schwach absorbierenden Version. Im Übergang
vom schwach zum stark absorbierenden Typ bestimmt das Verhältnis von N zu N0 die
Ausprägung der Minima längs der optischen Achse. Ausschlaggebend für Lage und Tiefe
der Minima ist der Zähler in Gl. 3.21, mit der fokalen Abweichung ∆z gegeben durch

1− 2e
− N
2N0 cos

(

πN

(

1

ζ
− 1

))

+ e
− N
N0 ≈ 1− 2e

− N
2N0 cos

(

πN
∆z

F

)

+ e
− N
N0 . (3.28)

Lage und Intensität der fokalen Minima auf der optischen Achse sind dann mit n ε Z durch

(

∆z

F

)

n

= 2
n

N
und I(min)n =

(

1

πN

)2
1− 2e

− N
2N0 + e

− N
N0

(

2 n
N

)2
+
(

1
2πN0

(

1 + 2 n
N

)

)2 (3.29)

gegeben. Abb. 3.4 veranschaulicht die fokusnahe Intensitätsverteilung. Offenbar verschwin-
den die Minima im Gauss’schen Grenzfall der stark absorbierenden Version mit N0 ¿ N .

Bislang wurde stets vom wenigstens unter der Ägide der paraxialen Wellengleichung
idealen parabolischen Linsenprofil ausgegangen und – mathematisch exakt – laterales und
axiales Beugungsbild eines unendlich fernen Bildpunktes auf der optischen Achse berechnet.
Den realen Gegebenheiten insbesondere im Fall großflächiger Aperturen, wie astronomische
Anwendungen ihrer mutmaßlich bedürfen, wird dieses vereinfachte Bild im allgemeinen je-
doch nicht gerecht. Nicht nur, dass sich bei großen Gesichtsfeldern oder gar Verkippungen
des Objektivs der Einfluss von achsfernen Bildfehlern bemerkbar zu machen droht, auch
folgt die reale Optik stark gekrümmter Linsen (ein Maß stellt der Quotient r

ξ
dar) nicht

mehr zwingend der paraxialen Näherung. Im Folgenden seien daher mögliche Aberrationen
diskutiert, soweit sie physikalischen Ursprungs sind, Konsequenzen technologischer Ferti-
gungsfehler werden daher nicht betrachtet.

Die als Folge des Einflusses von Termen ∝ φ3 in sin(φ) = φ − 1
3!
φ3 + O (φ5) bzgl. der

(Brechungs-)winkel auftretenden klassischen Bildfehler sind auch als Aberrationen drit-
ter Ordnung oder Seidel-Aberrationen bekannt. Die mathematisch relativ einfache, wenn
auch etwas mühsame Herleitung des strahlenoptischen Aberrationsfunktionals mit den da-
zugehörigen Koeffizienten erfolgt im Röntgen- analog zum visuellen Spektralbereich und
zählt zum Standard der theoretischen Optik. Anhang A bietet einen kurzen Abriss der z.B.
in [13] ausführlich beschriebenen Theorie. Hier sollen zunächst die Ergebnisse aufgeführt
werden, wie sie auf eine dünne Linse beliebigen Profils Anwendung finden. Der Begriff der

”
dünnen“ Linse bezieht sich dabei nicht auf die absolute oder zum Radius relative Dicke,
sondern auf deren Verhältnis zur – in teleskopischer Anwendung – Fokaldistanz.
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Abbildung 3.4: Peakeffizienz und axiale Intensität der refraktiven Linse in Abhängigkeit
von N0. Die maximale Intensität, normiert auf den absorptionsfreien Fall (schwarz) ist
für verschiedene 20 ≤ N0 ≤ 500 aufgetragen (strichliert). Für reale N0 < ∞ werden die
Minima mit fallendem N0 zunehmend gedämpft und die Schärfentiefe nimmt zu.

Unter Verwendung der in Anhang A eingeführten Notation lauten also die kartesischen
Komponenten der Seidel-Aberrationen

∆εx = Bσ3 cos θ − Fφσ2
(

1 + 2 cos2 θ
)

+ (2C +D)φ2σ cos θ − Eφ3 (3.30)

∆εy = Bσ3 sin θ − 2Fφσ2 sin θ cos θ +Dφ2σ sin θ, (3.31)

wobei B den Koeffizienten des sphärischen und C den des astigmatischen Bildfehlers be-
zeichnet, während D die Bildfeldwölbung, E die Verzeichnung und F die Koma beschreibt.
Sofern nun die Eintrittspupille mit der Linse zusammenfällt – also insbesondere keine Blen-
de zur Anwendung kommt – gilt für den sphärischen Fehlerfaktor B der dünnen Linse

B =
1

2
β+

n2

8(n− 1)2
P3− n

2(n+ 2)
K2P+

1

2n(n+ 2)
P
(

n+ 2

2(n− 1)
σ + 2(n+ 1)K

)2

, (3.32)

wobei nun wegen Abb. 2.4 der Brechungsindex n auf seinen Realteil 1−δ reduziert wird und

β ≡ (n−1)
(

b1
ξ31
− b2

ξ32

)

ε R ein Maß für die Abweichung des Linsenprofils (mit Krümmungs-

radien ξ1 und ξ2) vom sphärischen Standard darstellt. Als weitere Abkürzung findet der
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gewissermaßen als Summe der Brechkräfte der beiden Oberflächen zu interpretierende Pa-

rameter σ ≡ (n−1)
(

1
ξ1

+ 1
ξ2

)

Verwendung2. Hingegen steht P ≡ (n−1)
(

1
ξ1
− 1

ξ2

)

einfach

für die Brennweite, die sich über die Differenz der beiden Brechkräfte definiert. Schließ-
lich ergibt sich im teleskopischen Fall mit unendlicher Gegenstandsweite K ≡ − 1

2
P als die

Abbé-sche Invariante der Linse.
Die Terme C bis F erweisen sich demgegenüber beim Verzicht auf Aperturblenden als

kompakt oder verschwinden gar vollständig,

C =
1

2
P und D =

1

2

(

1 +
1

n

)

P und E = 0. (3.33)

Besondere praktische Bedeutung kommt noch wegen ihrer asymmetrischen Natur der durch

F =
1

2n
P
(

n+ 1

2(n− 1)
σ + (2n+ 1)K

)

(3.34)

gegebenen Koma zu, die vor allem bei der Abbildung mittels parabolischer Profile nur au-
ßerordentlich kleine Gesichtsfelder zulässt. Zumindest im visuellen Spektralbereich finden
solche Linsen daher und wegen des geringen sphärischen Fehlers gewöhnlich als Konden-
soren z. B. in Scheinwerfern Verwendung, nicht aber in abbildenden Systemen. Da sie im
Rahmen dieser Arbeit jedoch gewissermaßen als Paradigma firmiert, erscheint eine Ana-
lyse der parabolischen Röntgenlinse im Hinblick auf ihre Aberrationen sinnvoll. In ihrer
plankonkaven Ausführung, definiert via ξ1 =∞, ξ2 ≡ ξ und b2 = −1 nehmen die Aberra-
tionskoeffizienten folgende elementare Gestalt an,

B =
(δ − 2)δ2

2 ξ3
und C =

δ

2 ξ
und D =

(2− δ)δ
2(1− δ)ξ und F =

(1− δ)δ
2 ξ2

. (3.35)

Unter Beachtung von q ≡ r
ξ
und mit φ als Einfallswinkel resultieren schließlich die expliziten

Ausdrücke für die Winkelfehler ∆εx und ∆εy,

∆εx = δ2
δ − 2

2
q3 cos θ +

δ

2
(δ − 1)φ q2

(

1 + 2 cos2 θ
)

+
δ

2

4− 3δ

1− δ φ
2 q cos θ, (3.36)

∆εy = δ2
δ − 2

2
q3 sin θ + δ (δ − 1)φ q2 sin θ cos θ +

δ

2

2− δ
1− δφ

2 q sin θ. (3.37)

In Abb. 3.5 sind diese Gleichungen für verschiedene Werte von φ und jeweils ein Spek-
trum relativer Linsenradien 0 ≤ q ≤ 1 graphisch aufbereitet. Zunächst fällt der keineswegs
vernachlässigbare Beitrag des sphärischen Terms auf, der – dargestellt durch konzentrische
Kreise – in etwa ∝ δ2 an Bedeutung gewinnt und im axialen Fall mit φ = 0 das Beugungs-
bild dominiert. Aus dem ersten der fünf Bilder liest man den Grenzwert δmax ab, der auch
stärker gekrümmten Linsen mit q → 0.8 noch eine Winkelauflösung ∆ε ≈ 1 mas zubilligt.

2Angesichts der Komplexität der Fragestellung wird hier und im folgenden verschiedentlich von lokalen
Variablen wie z.B. β und σ Gebrauch gemacht, deren spezifische Definition im jeweiligen Kontext gilt.
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Abbildung 3.5: Seidel-Aberrationen des parabolischen Linsenprofils für verschiedene typi-
sche Werte von φ und δ = 10−4. Der vom Winkel φ unabhängige sphärische Fehler ist zum
besseren Vergleich separat rot dargestellt. Die Koma zeichnet im wesentlichen für die bei
φ 6= 0 zusätzlich auftretende Verzerrung verantwortlich.

Ferner braucht offensichtlich der Koma bis zu Winkeln, die etwa das (102 − 103)−fache
der angestrebten Auflösung von 10−3 arcsec betragen, keine Beachtung geschenkt zu wer-
den. Um deren Effekt zu visualisieren, wurde eine Sequenz mit drei Werten φ ε {1, 10, 100}
arcsec und einem typischen, konstanten Brechungsindex δ = 10−4 gewählt. Verkippungen
der Linse um ∼ 10 arcsec und mehr beeinflussen die durch den sphärischen Fehler ohnehin
schon beeinträchtigte Bildqualität offenbar signifikant negativ. Derlei Abschätzungen an
die Toleranzgrenzen eines konkreten parabolischen Linsendesigns lassen sich generell be-
sonders einfach aus einer geeigneten Näherung von Gl. 3.36f ablesen. Der bzgl. 0 ≤ θ < π
gemittelte Bildfehler sei unter dem Gesichtspunkt einer einfachen Berechnung als

〈∆ε〉θ =
(

1

2π

∫ 2π

0

∆ε2(q, δ, θ, φ) dθ

)1/2

≈ δ

2
q3

√

4δ2 + 5

(

φ

q

)2

für q À φ (3.38)

definiert, da die Integration des quadratischen Fehlerbetrages ∆ε2 ≡ (∆εx)
2 + (∆εy)

2 über
θ stets analytisch zu bewerkstelligen ist. Im Radikanden wurden einerseits die einzelnen

Summanden auf die führende Ordnung in δ reduziert, andererseits Terme ∝
(

φ
q

)4

ver-
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nachlässigt. Die mittlere Winkelaberration 〈∆ε〉θ wurde also unter der praktisch zumeist
gut erfüllten Annahme q À φ oder, äquivalent, δφf ¿ 1

2
abgeleitet, wobei f wie immer

das Öffnungsverhältnis bezeichnet.
Als vorläufiges Fazit bleibt somit die bzgl. Winkelfehlern bedingte Eignung des pa-

rabolischen Profils im teleskopischen Einsatz mit Gesichtsfeldern von bis zu etwa 1 arc-
sec festzuhalten, allerdings unter der Voraussetzung exakter Ausrichtung des Objektivs.
Grundsätzliche Schwierigkeiten bereitet freilich die wegen 〈∆ε〉θ (φ = 0) ∝ q3 für nicht
zu kleine q beträchtliche sphärische Aberration. Dieser Umstand erscheint auf den ersten
Blick als um so erstaunlicher, als Spiegeloberflächen mit einem zu r2 proportionalen Pro-
fil jenen Fehler gerade eliminieren. Der Nachweis lässt sich bekanntlich leicht mit Hilfe
des Fermat’schen Prinzips des konstanten Lichtweges sopt führen. Die gleiche Forderung
an die transmittierende Linse (mit dem Scheitelpunkt im Koordinaten-Ursprung) gestellt,
offenbart freilich die bislang übergangene Näherung,

sopt = (1− δ)z(r) +
√

r2 + (F − z(r))2 = F. (3.39)

Mit der stets zugrunde gelegten Profilfunktion z(r) = r2

2ξ
ergibt sich nach kurzer Rechnung

F (r) =
ξ

δ
+

r2

2 ξ

(

1− δ

2

)

= F0

(

1 +
1

2
δq2
)

, (3.40)

wobei F0 ≡ ξ
δ
die

”
kanonische“ Brennweite bezeichnet. Wegen δ ¿ 1 tritt zwar nur eine ge-

ringe, aber für q . 1 doch nicht vernachlässigbare Radienabhängigkeit der Fokallänge F (r)
auf. Mittels simpler geometrischer Betrachtungen unter Anwendung des Brechungsgesetzes
lässt sich diese Brennweitendispersion auch explizit berechnen. Wir geben an dieser Stelle
nur das Resultat an, wie es sich nach einer Reihe von Umformungen ergibt,

F (r) = r

















1 +
(

r
ξ

)2
1−δ

√

1+( rξ )
2
(1−(1−δ)2)

r
ξ



1− 1−δ
√

1+( rξ )
2
(1−(1−δ)2)





+
r

2 ξ

















. (3.41)

Die reale Brennweite F (q) schreibt sich relativ zur idealen (F0) nach einer Reihenentwick-
lung nach Potenzen von δ mit q = r

ξ
als

F (q) = F0
(

1 + δq2 −O
(

δ2
))

. (3.42)

Dass diese longitudinale Aberration tatsächlich mit der lateralen sphärischen Aberration
korrespondiert, folgt unmittelbar aus dem Strahlensatz:

r

F0 +∆z
=

∆x

∆z
→ ∆x =

r
F0
∆z

+ 1
= [...] ≈ δ ξ q3 → ∆ε ' ∆x

F0
= δ2q3, (3.43)
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wobei hier ∆x den lateralen, aberrationsbehafteten PSF-Radius in der Fokalebene in strah-

lenoptischer Näherung bezeichnet und ∆ε ≡
√

(∆εx)
2 + (∆εy)

2 den Bildfehler nach Gl. 3.36

im Spezialfall φ = 0 beschreibt.

Aus der aberrationsbedingten Radienabhängigkeit der Brennweite geht nun eine obere
Schranke an die nominelle Brennweite F0 hervor. Zu deren Ableitung betrachte man die
Fokustiefe ∆z± ≡ ±12 λ

(NA)2
= ± F0

2N
. Offenkundig spielt sie die Rolle eines Toleranzintervalls,

innerhalb dessen auch die fehlerbehaftete reale Brennweite F (r) variieren darf, um eine
näherungsweise beugungsbegrenzte Abbildung zu gewährleisten. Es gilt daher

F0
(

1 + δq2
)

≤ F0 +
F0
2N

(3.44)

Mit den Definitionen für F0 und N ∝ R2

2ξ
gelangt man schließlich zu der gesuchten Relation,

F0 ≤
1

2

λ

δ3

(

1

q

)4

. (3.45)

Abb. 3.6 illustriert die starke Abhängigkeit von q für die beiden Materialien Li und Be. Zum
Vergleich sei noch das Öffnungsverhältnis f ≡ F0

2R
angegeben. Wie wenige Umformungen

zeigen, gilt für letzteres nämlich

f =
1

2 δ

1

q
. (3.46)

Auch diese Größe wurde in Abb. 3.6 für verschiedene Energiewerte gegen q aufgetragen.
Die Resultate machen deutlich, dass die plankonkav parabolische, massive Röntgenlinse in

Abbildung 3.6: Öffnungsverhältnisse und maximale Brennweiten refraktiver Li- und Be-
Linsen. Die rot strichlierte obere Schranke an die Fokallänge hängt mit F

(max)
0 ∝ q−4

empfindlich vom relativen Linsenradius ab, während f nur wie q−1 abfällt (schwarz).

dieser Form definitiv nicht zur beugungsbegrenzten Abbildung in astronomischer Anwen-
dung geeignet ist. Darüber hinaus existiert eine fixe, nur von der Brennweite F abhängige
obere Schranke an die als Produkt von effektiver Fläche Aeff und Bandpass ∆E gemessene
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Leistungsfähigkeit eines derartigen Instruments. Diese Größe, im weiteren Verlauf und nur
im Kontext dieser Arbeit als

”
Lichtstärke“ des Objektivs bezeichnet, berechnet sich zu

Aeff ×∆E = T (s)πR2 ·∆E, (3.47)

wobei s = N
N0

und ∆E = E
2N

im transparenten bzw. ∆E = E
4πN0

im absorptionsdominierten

Grenzfall nach Gl. 3.27 gilt. Während die Transmission durch T (s) = 1
s
(1− e−s) gegeben

ist, bemisst sich der Radius zu R2 = NλF , so dass letztlich

lim
NÀN0

Aeff ×∆E = F
hc

4
bzw. lim

N¿N0
Aeff ×∆E = πF

hc

2
(3.48)

folgt. Abb. 3.7 illustriert die beiden Fälle. Es wird deutlich, dass die erweiterte Tiefenschärfe
(DOF) der absorbierenden Linse die transmissiven Einbußen nur teilweise kompensiert.

Abbildung 3.7: Lichtstärke der refraktiven Linse. Das zur Brennweite F proportionale Lei-
stungsvermögen erreicht sein Maximum im fiktiven Fall der 100%−igen Transparenz. Stark
absorbierende Modelle erreichen nur ∼ 20% dieses Optimums.

3.2 Die verallgemeinerte Fresnel-Linse

Offensichtlich beeinträchtigt das spezielle Transmissionsprofil der absorbierenden Röntgen-
linse nicht nur die Winkelauflösung, sondern reduziert nach Abb. 3.7 auch das Leistungs-
vermögen. Wir wenden uns daher nun der in Abb. 3.1 angedeuteten sukzessiven Abtragung
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ringförmiger Schichten zu, die eine partiell diffraktive oder interferometrische Struktur be-
dingt. Speziell im Fall der parabolischen Funktion spricht man dann vom

”
verallgemei-

nerten“ Fresnel-Profil3, das mittels eines Stufenparameters m ε N beschrieben wird. Eine
reguläre Fresnel-Struktur weist nun nach der Reduktion inklusive des zentralen Linsen-
segments 1 ≤ N

2m
≤ N

2
Ringe auf, wobei die Forderung N

2m
ε N eine über die gesamte

Apertur konstante Ringperiode mit fester Zonenzahl gewährleistet. m ε N bezeichnet also
die Zahl der 2π−Phasen innerhalb eines Rings bei der Blaze-Wellenlänge λc, ∆φ = 2πm.
Einfachen geometrischen Überlegungen folgend, ergibt sich das Profil der plankonkaven
verallgemeinerten Fresnel-Linse zu

tm,p (σ) = m
λc

δ (λc)

(

1− p+ N0 (λc)

2m

(

σ

R0 (λc)

)2
)

, (3.49)

wobei die
”
Blaze“-Wellenlänge λc mit dem zugrunde liegenden Krümmungsradius ξ = δF

assoziiert ist. Ferner zählt p ε N die Fresnel-Ringe, beginnend mit dem zentralen Segment
und p = 1. Die Eingangsamplitude lautet unter diesen Voraussetzungen

ũm,p(σ) = e
m
N0
(p−1)−i k

2qλ
σ2

mit
1

qλ
= − 1

Fr(λ)

(

1 +
i

2πN0(λ)

)

. (3.50)

Offenbar ist das Integral in Gl. 2.23 nun durch eine partielle Summe über die N
2m

Fresnel-
Ringe mit entsprechenden Radien gemäß

∫ R

0

dσ →
N
2m
∑

p=1

∫

√
2m
N
pR

√
2m
N
(p−1)R

dσ (3.51)

zu ersetzen. Vor der expliziten Berechnung der räumlichen Intensitätsverteilungen soll unter
Verwendung von Gl. 3.8 die Transmission in Abhängigkeit von N0 und m ermittelt werden.
Bezogen auf die absorptionsfreie Leistung P0 ∝ πR2 ergibt sich für λ = λc

PN0,m
P0

=
2

R2

N
2m
∑

p=1

∫

√
2m
N
pR

√
2m
N
(p−1)R

|ũm,p(σ)|2 σdσ = [...] =
N0
2m

(

1− e−
2m
N0

)

. (3.52)

Abb. 3.8 illustriert diese Funktion graphisch in Abhängigkeit vom Verhältnis 2m
N0

. Man
erkennt den mit N0 . 20 m beginnenden raschen Abfall der Transmission refraktiver
Röntgenoptik. Genau genommen erscheint es problematisch, die so berechnete Transpa-
renz ohne Vorbehalt als

”
Wirkungsgrad“ der Linse zu interpretieren, wirkt doch die ge-

neralisierte Fresnel-Linse je nach Grad der Reduktion mehr oder minder als kreisförmiges
Interferenzgitter, dessen Beugungsmaxima durch die in r2 periodische Transmissionsfunk-
tion bestimmt werden, die ihrerseits einer Beeinflussung durch die meist nicht zu ver-
nachlässigende Absorption unterliegt. Wie weiter unten erläutert wird, beschränken die

3Die Bezeichnung wurde in Anlehnung an die von Jean Auguste Fresnel erfundene Optik gewählt [15].
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Abbildung 3.8: Transmission generalisierter Fresnel-Linsen als Funktion des relativen Stu-
fenparameters 2m

N0
, der

”
optischen Profildicke“. Die unter Verzicht auf ein die Transparenz

apodisierendes Graufilter erzielte Maximaltransmission Tmax übertrifft die Mindesttrans-
mission Tmin am Ort der größten Profiltiefe um teils mehrere 10%.

absorptionsbedingten axialen Nebenmaxima als Folge der ungleichmäßigen Transmission
die maximal erreichbare Winkelauflösung der Linse. Versieht man aber die Linse beispiels-
weise auf der ebenen Seite mit einem der ursprünglichen Transmission komplementären

Graufilter, gewährleistet die jetzt über σ uniforme Transparenz Tmin = e
− 2m
N0 konstante

Bildqualität. Zum Vergleich zeigt Abb. 3.8 diese Kurve ebenfalls.

Das eigentliche Beugungsintegral der allgemeinen Fresnel-Linse lautet wegen Gl. 2.23

u (~r) = i
k

z
e−i

k
2z
ρ2

N
2m
∑

p=1

e
i km
Nqλ

R2(p−1)
∫

√
2m
N
pR

√
2m
N
(p−1)R

e
−i k
2
σ2
(

1
qλ
+ 1
z

)

J0

(

k

z
ρσ

)

σdσ. (3.53)

In dessen praktischer Auswertung sollen wie schon in Abschn. 3.1 zwei Fälle unterschie-
den werden: Zum einen liefert die axiale Intensitätsverteilung mit ρ = 0 Erkenntnisse über
grundsätzliche Funktionsweise, Fokustiefe und Beugungsordnungen, zum anderen geben
Punktbild- und Transferfunktionen in der Fokalebene z = F Aufschluss über die Bildqua-
lität im Sinn von Auflösungsvermögen und Kontrast.

Auf der optischen Achse, um vorläufig den ersten Aspekt zu behandeln, gilt J0 (0) =
1, ein Umstand, der wieder die analytische Integration von Gl. 3.53 erlaubt. Nach einer
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längeren Rechnung gelangt man unter Beachtung von I (~r) ∝ |u (~r)|2 zu

Ĩm(λ, z) =
1− 2e

−m
N

(

R
R0(λ)

)2

cos
(

2π
λz

m
N
R2
(

1− z
Fr(λ)

))

+ e
−2m

N

(

R
R0(λ)

)2

(

1− z
Fr(λ)

)2

+
(

1
2πN0(λ)

z
Fr(λ)

)2

(

sin
(

π
λz
1
2
R2
)

sin
(

π
λz

m
N
R2
)

)2

.

Aus dieser Darstellung wird ersichtlich, dass der Stufenparameter m explizit nur via m
N

eingeht und somit auch als Reduktionsfaktor bzgl. der Zonenzahl angesehen werden kann.
Zur numerischen bzw. graphischen Auswertung wird erneut angenommen, dass die Funk-
tion Fr(λ) der in Kap. 2 erläuterten quadratischen Abhängigkeit in λ gehorcht. Setzt man
also ψ ≡ E

Ec
und ζ ≡ z

Fc
, so lässt sich die axiale Intensitätsverteilung als

Ĩm(ψ, ζ) =
1− 2e

− m
N0

1
ψ cos

(

2πm
(

ψ
ζ
− 1

ψ

))

+ e
−2 m

N0

1
ψ

(

1− ζ
ψ2

)2

+
(

1
2πN0

ζ
ψ2

)2





sin
(

πN
2
ψ
ζ

)

sin
(

πmψ
ζ

)





2

(3.54)

schreiben. Der zweite, die sin−Terme enthaltende Faktor repräsentiert die Interferenzen
zwischen den Amplitudenbeiträgen der einzelnen Fresnel-Ringe, während der Nenner des
ersten Faktors den refraktiven Fokus beschreibt. Im Hauptfokus, mit ψ = 1 = ζ gilt

lim
N0→∞

Ĩm(ψ, ζ) = (πN)2 , (3.55)

unabhängig von m. Wie bisher wird Ĩm(ψ, ζ) fortan auf diesen Wert normiert, so dass sich

Im(ψ, ζ) =
1− 2e

− m
N0

1
ψ cos

(

2πm
(

ψ
ζ
− 1

ψ

))

+ e
−2 m

N0

1
ψ

(πN)2
(

1− ζ
ψ2

)2

+ 1
4

(

N
N0

ζ
ψ2

)2





sin
(

πN
2
ψ
ζ

)

sin
(

πmψ
ζ

)





2

(3.56)

ergibt. Aufgrund der Struktur des Interferenzfaktors stellt j ≡ mψ
ζ
ε N offenbar eine

notwendige Bedingung für Maxima dar. Ferner sei ω ≡ m
ψ

definiert. Außerdem erweist es
sich vorübergehend als zweckmäßig, den Einfluss der Absorption zu vernachlässigen,

Ij,m(ω) =

(

sin (π(j − ω))
π (j − ω)

)2(
j

m

)2

→
(

j

m

)2

für ω → j ε N. (3.57)

Die eigentlichen Hauptmaxima (
”
Foki“) unterliegen der zusätzlichen Bedingung ω = j oder

ζ = ψ2. Offenbar gestatten somit große Werte m zahlreiche Energiewerte Ej > Ec, für die
die Linse eingesetzt werden kann,

Ej = Ec
m

j
mit j ε N und m <

N

2
. (3.58)

Die Interferenzbedingung und damit die diskrete Verteilung der Maxima verlieren natürlich
im Sonderfall der rein refraktiven Linse mit m = N

2
ihre Grundlage. Weitgehend reduzierte
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Fresnel-Linsen mit m & 1 bleiben in ihrer Anwendung hingegen mehr oder minder auf

Ej ≤ Ec beschränkt. Vergegenwärtigt man sich, dass Fj = Fc

(

m
j

)2

, so erweist sich die Ge-

samtleistung im zur Energie Ej gehörigen Fokus unter Vernachlässigung der Absorption als
unabhängig von j, da die laterale Ausdehnung der PSF linear mit der Brennweite skaliert.
Abb. 3.9 vermittelt einen graphischen Eindruck der

”
Spektralformel“ 3.58. Gl. 3.56 liefert

Abbildung 3.9: Energiespektrum der allgemeinen Fresnel-Linse. In Abhängigkeit vom Stu-
fenparameter m fokussiert das Fresnel-Profil relative Energiewerte bis herauf zu Emax =
m · Ec. Unterhalb von Ec (rot) verdichtet sich das Spektrum zum Quasi-Kontinuum.

für ψ = 1 = ζ die fokale Peakintensität, die wegen der Normierung auf limN0→∞ Im(0) = 1
äquivalent zum Verhältnis zwischen effektiver und PSF-Fläche ist. Unter Annahme einer
auf Ec optimierten Fresnel-Linse der Stufenzahl m folgt

Im(0) =

(

N0
m

)2
(

1− e−
m
N0

)2

. (3.59)

Während Im(0) als Funktion von 2m
N0

ähnlich wie die Transmission (Gl. 3.52) für 2m
N0
& 1

stark abfällt, weist die Peakintensität, gemessen in Abhängigkeit von der absoluten Energie
E je nach Verlauf der Funktion N0(E) ein Maximum auf. Die Differentiation nach E liefert
zwei mögliche Extremal-Gleichungen gemäß

d

dE
Im(0) = 0 → e

m
N0 − 1 =

m

N0
∨ d

dE
N0(E) = 0. (3.60)

Da die erste Bedingung nur die triviale Lösung m
N0

= 0 besitzt, bestimmt das Maximum
von N0 die optimale Peakeffizienz. Nur die leichtesten Elemente mit Z ≤ 4 weisen diesseits



3.2 Die verallgemeinerte Fresnel-Linse 37

von 20 keV ein Maximum in N0 auf. Die maximalen N0−Werte von Lithium (Li) und
Beryllium (Be) liegen bei ∼ 103, so dass für moderate Stufenparameterm in der Umgebung
des schwach ausgeprägten Maximums näherungsweise Im(0) . 1 gilt.

Nicht nur zugunsten hoher Transmission und Peakintensität, auch im Sinn optimaler
Auflösung sollte 2m¿ N0 angestrebt werden. Die dem periodischen Absorptionsprofil ent-
springenden und auch im Hauptfokus für E = Ec auftretenden Interferenzmaxima wirken
sich negativ auf die Punktbildfunktion aus. Abb. 3.10 illustriert den zunehmenden Einfluss
der Interferenz am Beispiel N0 = 10 und N = 103. Während die refraktiven und diffrakti-
ven Halbwertsbreiten bzw. Fokustiefen durch Gl. 3.22 gegeben sind bzw. ∝ N−1 skalieren,
weisen die Interferenzmaxima einen Abstand |∆ζ| = 1

m+1
auf. Ihre Position liefert Gl. 3.56

für ψ = 1 via sin
(

πm1
ζ

)

= 0 zu

ζm,±k =
m

m± k mit k ε N ∪ {0} und k− < m. (3.61)

Der zentrale Fokus definiert sich über k = 0. Die Beschränkung k− < m symbolisiert die
obere Schranke Emax = m · Ec an die Energie E, die mit einer Linse vom Typ m

(

< N
2

)

fokussiert werden kann. Dieses Resultat schließt offensichtlich auch den Grenzfall der ex-
klusiv diffraktiv wirkenden Fresnel-Linse mit m = 1 ein – in diesem Fall befinden sich die
Interferenzmaxima bei ζm=1,k =

1
2
, 1
3
, 1
4
, ..., den gewöhnlichen Beugungsordnungen.

Die Punktbildfunktion derm−stufigen Fresnel-Linse ergibt sich allgemein aus interfero-
metrischen und absorptionsbedingten Charakteristika. Gl. 3.53 bildet den Ausgangspunkt,
um nun eine von dimensionsbehafteten Größen unabhängige Formel abzuleiten. Setzt man
nämlich z = F , gelangt man zunächst zu

Ĩm(r) =

∣

∣

∣

∣

∣

∣

2π

R2
N
λc
λ

N
2m
∑

p=1

(

e
−2πim λ

λc

(

1+ i
2πN0

)

(p−1)Jp,m(r)
)

∣

∣

∣

∣

∣

∣

2

, (3.62)

wobei das im allgemeinen numerisch auszuwertende Integral Jp,m(r) durch den Ausdruck

Jp,m(r) =
∫

√
2m
N
pR

√
2m
N
(p−1)R

e
−iπN λc

λ (
σ
R)
2
(

1−( λ
λc
)
2
(

1+ i
2πN0

))

J0

(

2π
N

R2
λc
λ
rσ

)

σdσ (3.63)

gegeben ist. Man beachte, dass auch N0 von λ abhängt. Vorläufig sollen die Effekte der
endlichen spektralen Bandbreite und der Absorption unabhängig voneinander betrachtet
werden. Im Grenzfall N0 →∞ ergibt sich dann für die reduzierte Ortskoordinate υ ≡ N r

R

ĨN,m (υ, ε) =

∣

∣

∣

∣

∣

∣

2πN(1 + ε)

N
2m
∑

p=1

e−2πim
p−1
1+ε

∫

√
2m
N
p

√
2m
N
(p−1)

e−πiNτ
2(1+ε− 1

1+ε)J0 (2π(1 + ε)υτ) τdτ

∣

∣

∣

∣

∣

∣

2

,

wobei die Apertur- oder Pupillenkoordinate τ ≡ σ
R

und die relative Energieabweichung
ε ≡ E

Ec
− 1 eingeführt wurden. Unter Beschränkung auf kleine Verstimmungen |ε| ¿ 1
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Abbildung 3.10: Übergang vom Gauss’schen zum diffraktiven Fokus am Beispiel N = 1000
und N0 = 10. Die Gauss’sche Intensitätsverteilung mit N À N0 bildet die Einhüllende der
Interferenzmaxima, die bei sukzessiver Reduktion für m < N

2
auftreten.
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und nach der obligatorischen Normierung mittels Division durch (πN)2 lautet das die
monochromatische PSF beschreibende Beugungsintegral schließlich in guter Näherung

I
(mono)
N,m (υ, ε) ≈

∣

∣

∣

∣

∣

∣

2

N
2m
∑

p=1

e2πimpε
∫

√
2m
N
p

√
2m
N
(p−1)

e−2πiNτ
2εJ0 (2πυτ) τdτ

∣

∣

∣

∣

∣

∣

2

. (3.64)

Terme der Form (1 + ε) im Vorfaktor und im Argument von J0 sind zu vernachlässigen,
da sie nur eine Korrektur der Ordnung O (ε) bewirken. Dagegen erfährt die spektrale
Verstimmung in den Exponentialfunktionen eine Multiplikation mit Faktoren ∝ O (N).

Auf der Basis dieser Gleichung 3.64 wird nun der spektrale Bandpass einer durch die
Parameter {N,m} definierten Fresnel-Linse ermittelt. Bei näherer Betrachtung von 3.64

zeigt sich, dass I
(mono)
N,m (υ, ε) letztlich nur vom Verhältnis q ≡ N

2m
und dem Produkt Λ = N ·ε

bestimmt wird. Die polychromatische PSF ergibt sich dann als Integral über das jeweilige
spektrale Band, das der Einfachheit halber Rechteckform aufweisen soll – alle Energiewerte
tragen also gleichermaßen zum Beugungsbild bei.

Um I
(poly)
N,m (υ,∆ε) numerisch zu berechnen, ist in der Praxis die Integration durch ei-

ne Summation über diskrete Verstimmungen εi zu ersetzen,
∫

dε →
∑

εi
. Die folgende

Auswertung basiert auf Schrittweiten δΛ = 10−1 in einem Intervall −∆Λ
2
≤ Λ ≤ ∆Λ

2

mit ∆Λ ≤ 4. Abb. 3.11 zeigt die mit zunehmender Bandbreite degradierende Winkel-
auflösung in parametrischer Abhängigkeit von q. Nahe des monochromatischen Idealfalls
verläuft die Aufweitung der PSF nach Potenzen von ∆E

E
bzw. N−1. Ein elementarer funk-

tionaler Zusammenhang ist jedoch nicht festzustellen, zur Anpassung der Fitkurven be-
darf es in der Regel einer Reihe vom Typ

∑4
n=1 cn

(

∆E
E

)n
. Aus der Grafik geht weiter die

Abbildung 3.11: Winkelauflösung der generalisierten FL für ∆E
E
∼ N−1. Gemessen in Ein-

heiten der Energie-Halbwertsbreite der ungestörten PSF, degradiert die Bildqualität mit ab-
nehmendem q und zunehmender Bandbreite ∆E

E
der eingestrahlten Energie immer schneller

(links). Ringzahlen q > 10 erbringen keine wesentliche Verbesserung der Bildqualität ge-
genüber der elementaren 2π-Version mehr, solange die Absorption zu vernachlässigen ist.
Größere Verstimmungen liefern eine in N−1 lineare Aufweitung der PSF in geometrischer
Näherung. Die Steigung ist ein Maß für die relative Dispersion γ (rechts).
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mit zunehmend diffraktiv dominierter Linsenstruktur immer größere Toleranz gegenüber

”
breitbandigen“ Strahlungsquellen hervor – ein Resultat der sich ändernden Dispersion.
Fresnel-Versionen ab q & 10 verhalten sich bereits weitgehend wie ideal interferometrische
(m = 1). Die entsprechenden Kurven sind daher nicht mehr eingezeichnet. Die Fitkur-
ven ermöglichen die unter Rückgriff auf die DOF-Analyse direkte numerische Bestimmung
des Bandpasses ∆E

E
, der die monochromatische Winkelauflösung annähernd erhält. Der

axialen Feldtiefe (DOF) folgend, wird die spektrale Toleranzbreite der (m = 1)-Variante
zumeist mit 1

N
angegeben, während die mit m = N

2
massive Version auch bei verschwin-

dender Absorption nur den halben Bandpass 1
2N

aufweisen kann. Dennoch degradiert die
Winkelauflösung ∆ε nach Gl. 2.29 bereits signifikant,

∆εm=1
(

∆E
E

= 1
N

)

∆εm=1
(

∆E
E
→ 0

) ≈ 1.06 und
∆εm=N

2

(

∆E
E

= 1
2N

)

∆εm=N
2

(

∆E
E
→ 0

) ≈ 1.08. (3.65)

Soweit wurden nur geringe Bandbreiten ∆E
E
∼ 1

N
betrachtet, mit entsprechend nichtli-

nearem Verlauf der Winkelauflösung. Gemäß den Gesetzen der geometrischen Optik erwei-
tert sich die PSF jedoch für größere Werte ∆E

E
linear, wie Abb. 3.11 rechts demonstriert.

Analytisch stellt sich eine allgemeine fokale Dispersionsrelation in der Form

z(E) = Fc

(

E

Ec

)γ

mit 1 ≤ γ ≤ 2 (3.66)

dar. Mithilfe des Strahlensatzes folgt weiter für den geometrischen
”
Radius“ ρPSF der PSF

ρPSF =

∣

∣

∣

∣

F

z
− 1

∣

∣

∣
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R bzw. in red. Koordinaten υPSF =

∣
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∣
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F

z
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∣

∣

∣

∣

N. (3.67)

Durch Einsetzen von Gl. 3.66 ergibt sich direkt die gesuchte Linearität im Bandpass ∆ε,

υPSF (∆ε) =

∣

∣

∣

∣

∣

(

1 +
∆ε

2

)−γ
− 1

∣

∣

∣

∣

∣

N = Nγ
∆ε

2
+O

(

∆ε2
)

. (3.68)

Aus Gl. 3.68 geht ferner hervor, dass die in ∆ε lineare Aufweitung der PSF nur für immer
noch

”
kleine“ Werte ∆ε gilt; solange ∆ε . 10−2, beschränkt sich der relative Fehler δυPSF

auf . 1%. Tab. 3.2 gibt einen Überblick zur Dispersion kombiniert refraktiv-diffraktiver
Linsen. Jenseits von N

2m
≈ 10 verhält sich das Fresnel-Profil bereits weitgehend diffraktiv.

#(Ringe) N
2m

1 2 4 5 10 20 50

Dispersion γ 2.00 1.45 1.15 1.11 1.05 1.03 1.03

Tabelle 3.2: Dispersionsfaktor der allgemeinen Fresnel-Linse. Für diverse Ringzahlen N
2m

zwischen 1 und 50 ist der Dispersionsexponent γ nach Gl. 3.66 eingetragen, wie er anhand
der numerisch berechneten Winkelauflösung nach Abb. 3.11 errechnet wurde.
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3.3 Die Zonenplatte in verschiedenen Ausführungen

Aufgrund ihrer starken intrinsischen Absorption eignet sich die massive Bauweise nur be-
dingt zur Abbildung zumeist ausgesprochen schwacher astronomischer Strahlungsquellen.
In Abschn. 3.2 wurde die bzgl. ihrer Transmission deutliche Überlegenheit reduzierter
Fresnel-Linsen (FL) gezeigt. Zudem unterscheidet sich deren Dispersion F (E) umso mehr
von derjenigen einer refraktiven Linse, je weiter die Reduktion fortgeschritten ist. Aus-
gangspunkt der Ausführungen dieses Abschnitts soll daher die maximal reduzierte FL
sein, deren einzelne Stufen jeweils einer Phasendifferenz ∆φ = 2π bei der

”
Blaze-“ Energie

entsprechen. Wird das parabolische, die kontinuierliche Phasendifferenz 0 ≤ ∆φ ≤ 2π in-
nerhalb einer Stufe gewährleistende Profil beibehalten, handelt es sich dem landläufigen
Sprachgebrauch folgend um eine sog. kinoforme Linse. Im Sinn einer vereinfachten Her-
stellung wird jene jedoch häufig noch innerhalb der einzelnen Stufen diskretisiert – im
Extremfall bis zur binären Zonenplatte (ZP)4, die nur noch aus alternierenden offenen und
opaken Zonen besteht, die optisch jeweils einer Phasendifferenz ∆φ = π entsprechen.

Im Sinn einer konsistenten Darstellung gehen wir im folgenden vom sog. Multi-Stufen-
profil aus, das in seinen Grenzfällen sowohl die ideale kinoforme als auch die binäre Zo-
nenplatte enthält. Um eine Vorstellung vom Transmissions- und Phasenprofil einer solchen
Multi-Stufen-ZP und ihren speziellen Varianten zu vermitteln, sei auf Abb. 3.12 verwiesen.
Im skizzierten Beispiel (e) ist die durch die Radien rn und rn+2 begrenzte Fresnel-Stufe
einer Linse mit Brennweite F bei λc in L = 7 Niveaus unterteilt. Ganz allgemein beschreibt

rp,L =

√

λcF

(

2
l

L
+ p− 2

)

mit 1 ≤ l ≤ L und p = 2n, n ε N (3.69)

die äußeren Radien der einzelnen Niveaus, die mit Phasendifferenzen ∆φl = 2π l−1
L

ver-
knüpft sind [18]. Die Amplitude um der in die m−te Ordnung gebeugten Strahlung errech-
net sich unter Verwendung von Gl. 2.22 bis auf eine beliebige Konstante als

um =
1− e−2πimL

2πm

L
∑

l=1

e
−
(

2πi(m− 1
ψ
)+ 1

ψ
1
N0

)

l−1
L mit m ε Z, (3.70)

aus der sich via Pm = |um|2 die Effizienz der Multi-Stufen-ZP bei der i.a. von λc abwei-
chenden Wellenlänge λ ergibt. Zu deren Berechnung erweist es sich als zweckmäßig, in Gl.
3.70 zuerst die als komplexe geometrische Reihe zu interpretierende Summe zu evaluieren,

L
∑

l=1

e
−
(

2πi(m− 1ψ )+
1
ψ
1
N0

)

l−1
L =

1− e−
1
ψ
1
N0

1− e
1
L

(

2πi(m− 1ψ )−
1
ψ
1
N0

) . (3.71)

Schließlich ergibt sich nach einigen Umformungen der explizite Ausdruck für die Effizienz,

4Zur Unterscheidung zwischen Fresnel-Linsen und Zonenplatten sollen letztere künftig nur noch alle
diskreten, nicht kinoformen Profile bezeichnen, während die FL das kinoforme Profil besitzt.
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Abbildung 3.12: Transmissionsprofile verschiedener diffraktiver Linsen. Die obere Grafik
zeigt die Amplituden- oder Intensitätstransmission T (r) von einfachen binären Zonenplat-
ten (a), regulären (b) und durch Zufallsstreuung geglätteten (c)

”
Photonensieben“. Eine

Modulation der Phase φ(r) bewirken binäre (d) und mehrstufige (e) Phasen-Zonenplatten.
Letztere approximieren im Grenzfall unendlich vieler Stufen die Fresnellinse (f), die bei
erheblicher Absorption zur Steigerung der Effizienz offene Zonen erhalten kann (fcut).

Pm =
1− 2e

− 1
ψ
1
N0 cos

(

2π
(

m− 1
ψ

))

+ e
− 2
ψ
1
N0

1− 2e
− 1
ψ

1
LN0 cos

(

2π 1
L

(

m− 1
ψ

))

+ e
− 2
ψ

1
LN0

(

sin
(

πm
L

)

mπ

)2

. (3.72)

Ausgehend von der weiter unten diskutierten Tatsache, dass eine geeignete Zentralobstruk-
tion alle außer der gewünschten, zumeist ersten Beugungsordnung abzuschirmen vermag,
sei zunächst nur deren Wirkungsgrad P1 (N0) als Funktion von N0 betrachtet. Abb. 3.13
illustriert den Verlauf mit ψ für m = 1. Gl. 3.72 vereinfacht sich speziell für ψ = 1 zu

P1 =

(

1− e−
1
N0

1− e−
1

LN0

)2(

sin
(

π 1
L

)

π

)2

→
(

sin
(

π 1
L

)

π 1
L

)2

für N0 →∞. (3.73)

In Abb. 3.13 sind die Wirkungsgrade in der Umgebung von Ec speziell für kleine Parame-
terwerte N0 und niedrige Stufenzahlen L aufgetragen. Man erkennt, dass mit N0 & 10 die
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Abbildung 3.13: Effizienz mehrstufiger Zonenplatten. Als maximal reduzierte und diskre-
tisierte Fresnel-Linsen weisen Multilevel-ZP’s eine mit der Stufenzahl L und N0 rasch
anwachsende Effizienz auf, die im Fall N0 ∼ 10 und L = 5 bereits rund 80% beträgt.
Im allg. verteilt sich die Gesamteffizienz auf zahlreiche Beugungsordnungen, deren Anteile
unter der Annahme vernachlässigbarer Absorption als Balkendiagramme dargestellt sind.
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Maximaleffizienz für N0 →∞ weitgehend erreicht wird. Wie nämlich eine Reihenentwick-
lung von Gl. 3.73 bzgl. 1

N0
zeigt, gilt in erster Ordnung

P1 (N0) =

(

1−
(

1− 1

L

)

1

N0

)

lim
N0→∞

P1 (N0) +O
(

1

N0

)2

, (3.74)

so dass speziell lim infL→∞ P1 (N0) =
(

1− 1
N0

)

limN0→∞ P1 (N0) gilt. In der Praxis wird

der Einfluss der Absorption daher meist zu vernachlässigen sein. Die ungenutzt in höhere
und negative Ordnungen gebeugten Anteile der Gesamteffizienz werden dann nur noch von
L bestimmt. Beispiele sind in Abb. 3.13 eingetragen. Sie ergeben sich rechnerisch aus dem
Grenzübergang N0 →∞ in Gl. 3.72 zu

lim
N0→∞

Pm =





sin
(

π
(

m− 1
ψ

))

sin
(

π 1
L

(

m− 1
ψ

))





2
(
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(

πm
L

)

πm

)2

, (3.75)

speziell aus den Nullstellen des Nenners sin
(

π 1
L
(m− 1)

)

, wenn ψ = 1. Offenbar unterliegen
sie der Bedingung mk = kL + 1 mit k ε Z. Wegen dieser speziellen Auswahlregel entfällt
auf einzelne Ordnungen entweder gar keine wie für m = 0 oder nur die Streustrahlung
bestimmter Stufenzahlen L (wie z. B. m = −1 für L = 2). Diese simple Zuordnung
entfällt freilich bei signifikanter Absorption, die Strahlung streut dann – wenn auch nur in
sehr geringem Ausmaß – in die nullte und andere Ordnungen. Dies gilt auch im Grenzfall
L→∞, der die ideale kinoforme FL repräsentiert. Gl. 3.72 vereinfacht sich dann zu

lim
L→∞

Pm =

(

1

2π

)2 1− 2e
− 1
ψ
1
N0 cos

(

2π
(

m− 1
ψ

))

+ e
− 2
ψ
1
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(

m− 1
ψ

)2

+
(

1
2πN0

1
ψ

)2 (3.76)

Der Gleichung ist die starke Disposition zur ersten Ordnung zu entnehmen, während die
übrigen unter der Annahme realistischer Absorption mit N0 > 1 unwesentliche Beiträge
liefern. Gl. 3.76 leitet sich alternativ aus der in Abschn. 3.2 präsentierten Formel 3.54 ab,

I(ψ, ζ) =

(

1

Nπ

)2 1− 2e
− 1
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1
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2

, (3.77)

mit der Auswahlregel ζ = 1
m
ψ für die Ordnungen und dem Stufenparameter m = 1. Sinn-

vollerweise korrespondieren daher die
”
Ordnungen“ einer FL mit der für E = Ec maximal

reduzierten Linse5. Der Übersichtlichkeit halber sei der Absorption vorläufig keine Beach-
tung geschenkt, Gl. 3.77 geht somit in

lim
N0→∞

I(ψ, ζ) =

(

2

Nπ

)2

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
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2

(3.78)

5Der Stufenparameter aus Abschn. 3.2 und die Beugungsordnung in diesem Abschn. 3.3 werden trotz
ihrer physikalischen Verschiedenheit mit dem gleichen Index bezeichnet.
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über. Wiederum unter Beachtung der Dispersionsbedingung ζ = 1
m
ψ resultiert die theore-

tische Leistungsfähigkeit der idealen kinoformen ZP zu

Pm(E) =

(

sin
(

π
(

m− Ec
E

))

π
(

m− Ec
E

)

)2

am Ort z =
1

m

E

Ec
Fc. (3.79)

In diesem letzten Schritt wurde dem die brennweitenabhängige PSF-Größe berücksichti-
genden Projektionseffekt Rechnung getragen, Pm(ψ, ζ) ∝ 1

m2
Im(ψ, ζ). Um einen Vergleich

mit der sog. Phasen-Zonenplatte zu ermöglichen, deren konstruktives Charakteristikum
gemäß Gl. 3.72 in einer Stufenzahl L = 2 besteht und die demzufolge eine theoretische

Effizienz von P
(2)
1 =

(

2
π

)2
erzielt, sind die Energieparameter ψm zu bestimmen, für die der

Wirkungsgrad P
(∞)
m (E) auf P

(2)
1 (Ec) abgefallen ist:

P (∞)m (E) =

(

sin
(

π
(

m− Ec
E

))

π
(

m− Ec
E

)

)2

=

(

2

π

)2

= P
(2)
1 (Ec) (3.80)

Aufgrund des transzendenten Charakters der Gleichung sin
(

π
(

m− 1
ψm

))

= 2
(

m− 1
ψm

)

steht eine analytische Lösung auf den ersten Blick nicht zur Diskussion. Es stellt sich jedoch
heraus, dass die gesuchten Lösungen ψm mit jenen übereinstimmen, die sich aus





sin
(

π
(

m− 1
ψm

))

π
(

m− 1
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
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2

=
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sin
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π
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π
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)


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(3.81)

ableiten, die gerade die Schnittpunkte ψm zu den Leistungskurven m−ter und (m+1)−ter
Ordnung beschreiben. Letztere errechnen sich zu ψm =

(

m+ 1
2

)−1
. Im übrigen gilt diese

Lösung auch für m = 0. ψ0 bildet somit die obere Schranke für den Energiebereich, inner-
halb dessen die FL sinnvollerweise einzusetzen ist, für E > 2Ec dominiert zunehmend die
unfokussierte Streustrahlung nullter Ordnung. Man gelangt so zu dem Ergebnis, dass die
mittels kinoformer Fresnel-Linsen erzielbare Effizienz für E ≤ 2Ec nie unter ≈ 40% abfällt:

∀ 0 < E ≤ 2Ec : P
(∞)
m (E) ≥ P

(2)
1 =

(

2

π

)2

. (3.82)

Abb. 3.14 illustriert diese besondere Eigenschaft kinoformer Profile. Es sei bemerkt, dass
Multilevel-Linsen in ihrem optischen Verhalten diesem Ideal umso näher kommen, je höher
die Zahl der Stufen gewählt wird. Im allgemeinen sollte L & 8 eine ausreichende Approxi-
mation darstellen.

Theoretisch lässt sich mit Hilfe solcher in höheren Ordnungen eingesetzten Fresnel-
Linsen der gesamte in Frage kommende Energiebereich zwischen 1 und 10 keV und mehr
abdecken. Praktisch stehen diesem Anspruch gleichwohl Hindernisse entgegen, deren erstes
die Absorption darstellt. Während wie schon erwähnt die durch sie bedingte Streustrahlung
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Abbildung 3.14: Fokuseffizienz einiger Transmissionsprofile aus Abb. 3.12. Die Effizienz-
kurven sind unter Vernachlässigung der Absorption in Abhängigkeit von der normierten
Energie E

Ec
skizziert, wobei Ec die Blaze-Energie bezeichnet. Die dick gezeichneten Segmente

des Graphen (f) beschreiben die Fokussierung durch Fresnel-Linsen in höheren Ordnungen.

in der Regel vernachlässigt werden kann, nimmt die Transmission mit der Energie gemäß

T (E) =
N0(E)

2

E

Ec

(

1− e−
2

N0(E)
Ec
E

)

(3.83)

ab, die durch T (E) beschriebene Funktion stellt die Einhüllende der in Abb. 3.14 fett
dargestellten Kurven bei nicht vernachlässigbarer Absorption dar. Während bei Ec = 10
keV die meisten Materialien eine nahezu 100%−ige Transparenz erzielen, belaufen sich
die Verluste einer auf Ec optimierten Be-Linse nahe 1 keV bereits auf rund 80%. Hinzu
kommt, dass ein solches maximal reduziertes Profil nicht freistehend zu konstruieren ist;
eine Stützstruktur im Sinn einer Schicht konstanter Dicke, der das Linsenprofil aufgeprägt
wird, ist unumgänglich.

Als hinderlich erweist sich ferner die bereits angesprochene Eigenschaft derartiger dif-
fraktiver Linsen, i. a. zahlreiche Beugungsordnungen mit Streustrahlung unterschiedlicher
Intensität zu belegen. Je höher die Stufenzahl L, desto ausgeprägter tritt diese Tendenz zu
Tage und führt im Grenzfall L→∞ theoretisch zu Beiträgen in unendlich vielen Beugungs-
ordnungen, die nur für E = 1

m
Ec in eine einzige kumulieren. Abb. 3.15 zeigt eine Methode,

sich der Streustrahlung zu entledigen. Gegeben sei eine FL mit Aperturradius R, Obstruk-
tionsradius robs < R und Brennweite Fm inm−ter Ordnung. Weiterhin bezeichne r

(m)
FOV den
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dem gewünschten Gesichtsfeld zugeordneten Radius in m−ter Ordnung. Dann folgt unter
Berücksichtigung der aus zu F proportionalen lateralen Auflösung resultierenden Relation
r
(m+1)
FOV = m

m+1
r
(m)
FOV sowie Fm+1 =

m
m+1

Fm,

r
(m)
FOV + robs

Fm
=
robs − r(m+1)FOV

Fm+1
→ [...]→ r

(m)
FOV

robs
=

1

2m
. (3.84)

Eine solchermaßen modifizierte FL gestattet einen störungsfreien Gebrauch in allen Ord-
nungen m ≥ 1, der sich nun nach Gl. 3.79 richtet. Man beachte, dass sich die wie m2

wachsende (Peak-)Intensität als Resultat einer
”
effektiven“ Zonenzahl m ·N interpretieren

lässt. Abb. 3.15 illustriert diese Merkmale der sich mit m verändernden Punktbildfunk-
tion. Als problematisch erweist sich zuletzt noch die mit 1

m
skalierende Bandbreite, die

daher die Leistungsfähigkeit der FL um diesen Faktor herabsetzt. Gleichwohl kann eine
Abbildung relativ weicher Röntgenstrahlung in entsprechend höheren Beugungsordnungen
zumindest unter Vernachlässigung der Absorptionsverluste das Signal-Rausch-Verhältnis
begünstigen. Dies deshalb, weil dem sich in Aeff×∆E messenden Signal S wegen der eben
genannten Bandpass-Relation eine

(

1
m

)

−Proportionalität zugrunde liegt, während sich der

zur Detektorfläche proportionale Hintergrund wie
(

1
m

)2
reduziert.

Abbildung 3.15: Einsatz von Fresnel-Linsen in höheren Beugungsordnungen. Unter der
Voraussetzung geeigneter Zentralobstruktion gelangt in eine gegebene Ordnung m keine
Streustrahlung anderer Ordnungen. Die Form der PSF hängt von Energie E und Ordnung
m ab; nichtsdestoweniger bleibt die gesamte fokussierte Leistung davon unberührt – zu-
mindest unter Vernachlässigung der Absorption. Der rechte obere Einsatz zeigt u.a. die
Energieabhängigkeit der normierten Absorptionslänge (dicke graue Kurve). Fern atomarer
Übergänge folgt diese i.d.R. einer E3-Abhängigkeit und limitiert in der Praxis den Einsatz
der Fresnel-Linsen zu hohen Ordnungen hin.

In Abb. 3.14 sind neben den beschriebenen Effizienzkurven kinoformer und zweistufiger
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Phasen-Zonenplatten noch die Wirkungsgrade binärer ZP’s und des noch zu besprechen-
den

”
Photonensiebes“ eingezeichnet. Im Sinn des zu Beginn des Abschnitts eingeführten

Konzepts der Multistufen-ZP entspricht die binäre dem Parameter-Paar (L = 2, N0 → 0).
Nach Einsetzen bzw. Durchführung des Grenzübergangs liefert Gl. 3.72

lim
N0→0

P (2)m =

(

sin
(

πm
2

)

πm

)2

→ 1

4
für m→ 0. (3.85)

Die einfachste aller Multistufen-ZP’s erzielt in erster Ordnung also einen energieunabhängi-

gen Wirkungsgrad von
(

1
π

)2 ≈ 10%. Angesichts offenkundig besserer Alternativen sowohl
unter dem Aspekt der optischen Güte als auch in fertigungstechnischer Hinsicht (→

”
Photo-

nensieb“) soll ihr hier diesbezüglich keine weitere Beachtung zuteil werden. Stattdessen soll
an dieser Stelle knapp auf die Aberrationen der Zonenplatte eingegangen werden, deren Zo-
nenradien rn konform mit den eingangs gemachten Voraussetzungen in ihrer parabolischen
Näherung dem Bildungsgesetz rn =

√
nλF unterliegen. Entsprechende Untersuchungen

wurden bereits von diversen Autoren durchgeführt, so z. B. von [22]. Ihnen zufolge er-
gibt sich die Wellenfrontaberration Ψ(4) nach der obligatorischen Entwicklung bzgl. des
Einfallswinkels φ bis zur dritten Ordnung zu

Ψ(4) =
r2n
2F
−∆sopt = −

r4n
8F 3
− φ r3n

2F 2
cos θ − φ2 r

2
n

2F
cos2 θ − φ2 r

2
n

4F
, (3.86)

mit der optischen Wegdifferenz (OPD) ∆sopt zwischen den ggf. unter einem Winkel φ ein-
fallenden axialen und marginalen Strahlen. Die Terme beschreiben nacheinander sphäri-
sche Aberration, Koma, Astigmatismus und Bildfeldwölbung. Als blendenfreie dünne Linse
weist auch die ZP keine Verzeichnung auf. Die Winkelfehler ergeben sich nun nach den
Ausführungen in Anhang A als partielle Differentiale der Wellenfrontaberration bzgl. der
lateralen Aperturkoordinaten,

∆εx = −
∂Ψ(4)

∂σx
und ∆εy = −

∂Ψ(4)

∂σy
mit σx = rn cos θ und σy = rn sin θ. (3.87)

Drückt man schließlich das Resultat durch das hier den Part des relativen Aperturradius
q = r

ξ
refraktiver Linsen übernehmende Öffnungsverhältnis f = F

2rn
aus, ergibt sich

∆εx =
1

16
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1
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1
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1
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)2
(
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cos θ, (3.88)

∆εy =
1

16
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sin θ +
1

4
φ

(
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f

)2

sin θ cos θ +
1

4
φ2
(

1

f

)

sin θ. (3.89)

Abb. 3.16 veranschaulicht diese Gleichungen für diverse Parameterpaare (f, φ). Wie bis-
her sind der ausschließlich sphärische Term und der Gesamtfehler getrennt dargestellt. Den
Grafiken ist die verhältnismäßig große Toleranz gegenüber sphärischen und winkelabhängi-
gen Fehlern zu entnehmen. So macht sich der zu φ proportionale Beitrag der Koma selbst
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Abbildung 3.16: Seidel-Aberrationen der Zonenplatte. Jede Grafik enthält sphärisch be-
dingte (rot) und winkelabhängige Aberrationskurven für verschiedene Öffnungsverhältnisse
f ≤ 700. Die darauf bezogene beugungsbegrenzte Toleranzgrenze liegt bei f & 300.

für Öffnungsverhältnisse f . 103 erst bei φ & 10 arcsec bemerkbar. Realistische Werte
für f ∼ (104 − 105) gestatten ohne weiteres φ ∼ 103 arcsec. Wegen der zumeist großen
Öffnungsverhältnisse empfiehlt es sich diesmal, den mittleren Bildfehler exakt anzugeben,

〈∆ε〉θ =
(

1

2π

∫ 2π

0

∆ε2(f, θ, φ) dθ

)1/2

=
1

16f 3

√

1 + 36 (fφ)2 + 80 (fφ)4. (3.90)

Eine Linse vom Radius R korrespondiert bei einer Wellenlänge λc mit der Brennweite F
gemäß R ∼=

√
NλcF , analog zur offenen Apertur in Abschn. 2.2. Diese Näherung erweist

sich insofern als gerechtfertigt, als realistische Zonenzahlen N . 105 bei Objektivradien
von maximal einigen Metern und Wellenlängen zwischen 10−10 und 10−9 nm Brennweiten
von mehreren (102 − 103) Kilometern bedingen. Der optische Weglängen-Unterschied der
Randstrahlen zwischen approximierter und exakter Formel nach Gl. 2.25 beträgt

s
(approx.)
opt − s(exakt)opt =

√
NλF + F 2 −

(

F +
Nλ

2

)

= −1

8

R4

F 3
+R · O

(

R

F

)5

¿ λ

4
, (3.91)

so dass das Rayleigh-Viertelwellen-Kriterium für eine näherungsweise aberrationsfreie Ab-
bildung in der Praxis immer erfüllt sein wird. Die angegebenen Aberrationen gelten im
wesentlichen für alle Versionen einer Zonenplatte bzw. Fresnel-Linse, zumindest unter der
Annahme kleiner Einfallswinkel φ ∼ 1◦, wie sie im teleskopischen Einsatz auftreten. Mit der
diffraktiven Reduktion konnte also eine gegenüber der parabolisch massiven Linse erheblich
erweiterte Toleranz gegenüber Bildfehlern aller Art erzielt werden.
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Neben der Fehlertoleranz nimmt auch – wenn auch nur geringfügig – das Leistungs-
vermögen zu: Analog zum massiven Linsenprofil folgt auch das Leistungsvermögen der
reduzierten, diffraktiven Linse einer einfachen Linearität in der Fokaldistanz F . Vernach-
lässigt man die Absorption, berechnet sich diese maximale Effizienz zu

Aeff ×∆E = P · πR2 ·∆E, (3.92)

wobei 0% ≤ P ≤ 100% die optimale, vom Profil bzw. der Stufenzahl L abhängige Beu-
gungseffizienz beschreibt. Während sich der Radius zu R2 = NλF bemisst, legt E

N
die

Bandbreite fest. Man findet also mit Planck-Quantum h und Lichtgeschwindigkeit c

Aeff ×∆E = P · π · F · hc. (3.93)

Abb. 3.17 illustriert die Relation für kinoforme (P = 1.0), phasenmodulierte (P ≈ 0.4)
und binäre (P ≈ 0.1) Profile. Offenbar verbessert die ideale kinoforme Linse das Leistungs-
vermögen des transparenten refraktiven Optimums um etwa einen Faktor 2.

Aus dieser eher moderaten Steigerung wird aber auch deutlich, dass binäre wie pha-
senschiebende Zonenplatten geringer Stufenzahl L ∼ 2 allenfalls unter fertigungstechni-
schen Gesichtspunkten eine halbwegs attraktive Alternative zu hochwertigen Multistufen-
Versionen darzustellen vermögen.

Abbildung 3.17: Leistungsvermögen der diffraktiven Linse. Die zur Brennweite proportio-
nale Effizienz Aeff ×∆E der kohärenten, kinoformen Fresnellinse übertrifft diejenige der
binären Zonenplatte um einen Faktor 10 und hängt nicht explizit vom Linsenradius ab.



Kapitel 4

Korrektur der Dispersion

Mit den in Abb. 3.7 und 3.17 illustrierten Richtwerten für die mit einfachen refraktiven oder
diffraktiven Linsenprofilen erzielbare Leistungsfähigkeit offenbart sich deren weitgehende
Insuffizienz im Bezug auf die der astronomischen Forschung dienliche Nachweis-Sensitivität.
Man wird daher versuchen, die wiederum in Einheiten von Aeff×∆E gemessene Lichtstärke
durch Erweiterung von Sammelfläche und / oder Bandpass zu verbessern. Letztgenannter
Aspekt soll Gegenstand des folgenden Kapitels sein, das im wesentlichen der Dispersions-
korrektur diffraktiver Linsenversionen gewidmet sein wird.

4.1 Die achromatische Hybridlinse

Das Problem der Dispersionskorrektur stellte sich ursprünglich in der visuellen Optik, de-
ren massive Linsen aufgrund der Wellenlängenabhängigkeit des Brechungsindex n(λ) zu
Verwaschungen im Sinn sphärischer Aberration Anlass gibt. Die materialspezifische Funk-
tion n(λ) bewirkt somit eine fokale Dispersion F (λ), die sich jedoch mittels Kombination
von zwei oder mehr Linsen verschiedener Glassorten teilweise eliminieren lässt; es gilt dann
F (λ) ≈ const. innerhalb eines gewissen Farbspektrums λ1 ≤ λ ≤ λ2. Allgemein berechnet
sich die Brennweite F eines aus zwei Komponenten bestehenden optischen Systems zu

1

F
=

1

F1
+

1

F2
− d

F1F2
, (4.1)

wobei d den Abstand der beiden Linsen und F1 bzw. F2 die jeweilige Fokaldistanz bezeichnet
[13]. Im strengen Sinn steht d für die Distanz der beiden sich nächstgelegenen Hauptebe-
nen. Unter Beschränkung auf dünne Linsen – und ausschließlich solche spielen im Kontext
dieser Arbeit eine Rolle – fallen jene jedoch zusammen. Vorläufig werden nur kompak-
te Konfigurationen betrachtet, in Gl. 4.1 ist der Linsenabstand daher zu vernachlässigen,
d → 0. Offensichtlich löst die Kombination zweier oder beliebig vieler diffraktiver Linsen
unter dieser Voraussetzung das Dispersionsproblem nicht. Wegen der nach Tab. 2.1 im
Röntgenbereich nahezu materialunabhängigen Dispersion refraktiver Linsen bleiben ande-
rerseits auch deren exklusive Konfigurationen wirkungslos. Vielmehr bedarf es eines aus
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Linsen unterschiedlicher Dispersion bestehenden Systems, d
dλ
F1(λ) 6= d

dλ
F2(λ). Speziell im

Fall einer diffraktiv-refraktiven
”
Hybridlinse“ geht Gl. 4.1 dann über in

1

F (E)
=

1

FZ(E)
+

1

FL(E)
mit FZ(E) ∝ E und FL(E) ∝ δ−1(E). (4.2)

Die Indizes
”
Z“ und

”
L“ stehen für die diffraktive bzw. refraktive Komponente. Um den

Farbfehler in erster Ordnung bzgl. kleiner Variationen in der Energie E zu eliminieren, ist

d

dE

(

1

F (E)

)

= 0 → [...] → Ec
δ′ (Ec)

δ (Ec)
= sig (FL)

NZ

NL

(4.3)

zu fordern. Mit δ′ (Ec) wurde das nach E differenzierte Brechungsindex-Inkrement für
die gewünschte Energie Ec beschrieben. sig (FL) symbolisiert das zunächst unbekannte
Vorzeichen der refraktiven Brennweite. NZ und NL bezeichnen diffraktive bzw. refraktive
Zonenzahl1. Die rechte der Gl. 4.3 lässt sich als notwendige Bedingung für die achromatische
Dispersionskorrektur in ihrer allgemeinsten Form interpretieren. Der integrierten Version

∫ δ

δc

dδ

δ
= sig (FL)

NZ

NL

∫ E

Ec

dE

E
→ δ(E) = δ (Ec)

(

E

Ec

)sig(FL)
NZ
NL

(4.4)

ist zu entnehmen, dass die refraktive Materialdispersion δ(E) einem Potenzgesetz bzgl.
der Energie folgen muß, um eine Korrektur in erster Ordnung zu erzielen. Eingesetzt in
4.2, liefert die durch Gl. 4.4 beschriebene Funktion δ(E) schließlich die energieabhängige
Gesamtbrennweite

F (E) = F
(c)
Z

(

Ec
E

+ sig (FL)
NL

NZ

(

E

Ec

)sig(FL)
NZ
NL

)−1

, (4.5)

wobei F
(c)
Z die Fokaldistanz der diffraktiven Komponente für E = Ec angibt. Setzt man

weiterhin ψ = E
Ec

und γ = NZ
NL

, resultiert mit einer Entwicklung nach Potenzen von (ψ− 1)

F

F
(c)
Z

=

(

1

ψ
+ sig (FL)

1

γ
· (ψ)sig(FL)γ

)−1
=

γ

γ ± 1
∓ 1

2

γ2

γ ± 1
(ψ − 1)2 +O (ψ − 1)3 . (4.6)

Nach Tab. 2.1 folgt nun δ(E) in sehr guter Näherung einer quadratischen Abhängigkeit
in 1

E
, so dass wegen Gl. 4.4 erstens sig (FL) = (−) und zweitens γ = NZ

NL
= 2 gilt. Die-

ser Normalfall beschreibt den Standard-Hybrid-Achromaten im Röntgenspektrum. Ledig-
lich in unmittelbarer Nähe der Absorptionskanten bewirkt die anomale Dispersion sowohl
eine Vorzeichenumkehr gemäß sig (FL) → (+) als auch eine quantitative Änderung des
γ−Faktors. In [24] werden die im weichen Röntgenband angesiedelten L-Kanten von Si
(EL ≈ 0.1 keV) und Cu (EL ≈ 0.9 keV) herangezogen, um trotz der hohen Absorption mit

1Sofern nicht anders angegeben, wird im weiteren Verlauf der Arbeit für NZ einfach N gesetzt.
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NL ¿ NZ den Bandpass der einfachen diffraktiven Komponente um einen Faktor 101−102

zu erweitern. Kanten jenseits von 1 keV – beginnend mit der Ordnungszahl Z = 11 für Na
– weisen einen zunehmend flachen Verlauf der Materialdispersion auf. Abgesehen von den
Vorzügen einer einfacheren weil breitbandigen Detektion rechtfertigt die geringe Effizienz
den Rückgriff auf die anomale Dispersion daher nicht. Bezugnehmend auf Tab. 2.1 variiert
die Brennweite des Standard-Achromaten also gemäß

F (E) = 2FZ

(

1 +

(

∆E

2E

)2

+O
(

∆E

2E

)3
)

, (4.7)

wobei ∆E
E

wieder den gesamten nutzbaren Bandpass angibt. Abb. 4.1 veranschaulicht die
Wirkung der in erster Ordnung bzgl. ∆E

E
eliminierten Dispersion, verglichen mit jener des

diffraktiven Analogons. Die Kombination der diffraktiv konvergenten Zonenplatte bzw. FL

Abbildung 4.1: Fokale Dispersion des Hybrid-Achromaten (schwarz), verglichen mit jener
der diffraktiven Linse (rot strichliert). Aufgetragen ist die zum jeweiligen Nennwert F (Ec)
bzw. FZ relative Änderung der Fokaldistanz in Abhängigkeit von der Verstimmung in E.

mit der refraktiv divergenten Streulinse verlängert die Gesamtbrennweite somit um einen
Faktor 2. Im übrigen stellt diese Zuordnung der Linsenfunktion – prinzipiell lässt sich auch
eine diffraktive Streu- mit einer refraktiven Sammellinse zu einer dispersionskorrigierten
Einheit kombinieren – die physikalisch allein sinnvolle Wahl dar. Aus Gl. 4.2 geht nämlich
hervor, dass andernfalls die massive und absorptionsbelastete Komponente einer unnötig
großen Zonenzahl bedarf, um F > 0 zu gewährleisten. Die der gewählten Konfiguration
entsprechende maximale (refraktive) Phasenverschiebung tritt demnach am Ort der größten
Dicke der Korrekturlinse auf und beträgt ∆φ = N π

2
. Abb. 4.2 illustriert die Bestandteile

des Achromaten, speziell gilt vorläufig d = 0.
Nach Abb. 4.1 durchläuft die energieabhängige Brennweite F (E) in Ec ein Minimum;

der spektrale Bandpass ergibt sich daher aus der Erwartung an F (E), innerhalb der halben
fokalen Feldtiefe eine weitgehend beugungsbegrenzte Abbildung sicherzustellen.

2FZ

(

1 +

(

∆E

2E

)2
)

= 2FZ +
1

2

λ

(NA)2
(4.8)
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Abbildung 4.2: Dispersionskorrektur mittels diffraktiv-refraktiver Linsenkombinationen in
nicht maßstabsgetreuer Darstellung. Die beiden Komponenten sind hier exemplarisch als
Fresnel- bzw. plankonvexes Profil skizziert. Letztere weist bei kompakter, nicht segmentier-
ter Ausführung einen maximalen Phasenschub ∆φ ' N π

2
auf. Die Fokalebene umfasst

typischerweise 103 × 103 Pixel der Größe ∆x.

führt nach wenigen Umformungen unter Beachtung der Tatsache, dass die Feldtiefe ein
Vierfaches des diffraktiven Analogons erreicht, auf die bekannte Formel für den Bandpass,

∆E

E
=

2√
N
. (4.9)

Die praktische Bedeutung dieser Gleichung liegt nicht nur in ihrem Einfluss auf die Licht-
stärke, sondern auch in der vereinfachten Detektion, die selbst für N ∼ 104 eine spektrale
Selektion mittels Monochromatoren überflüssig macht und statt dessen den Einsatz eines
konventionellen CCD oder vergleichbaren Instruments ermöglicht. Details werden in Kap.
6 beschrieben.

Den bisher aufgeführten Resultaten liegen geometrische Betrachtungen zugrunde, die
Beugungseffekten keine Rechnung tragen. Deren Einfluss berücksichtigt die paraxiale Ap-
proximation nach Gl. 2.22. Wiederum werden nur rotationssymmetrische, im Koordina-
tenursprung mit z0 = 0 angesiedelte Hybridlinsen betrachtet. Als diffraktives Element
soll im Sinn einer einfachen analytischen Kalkulation die maximal reduzierte, kinoforme
Fresnel-Linse zum Einsatz kommen, während das parabolisch-plankonvexe Profil der re-
fraktiven Komponente als komplementäres Gegenstück zum in Abschn. 3.1 vorgestellten
Kondensor firmiert. Die Profilfunktion der Hybridlinse schreibt sich dann einfach als Sum-
me der beiden in Kap. 3 in allgemeiner Form angegebenen Einzelterme mit Index p zu
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t(Z)p (σ) + t(L)(σ) =
λc

δ (λc)

(

1− p+ N

2

( σ

R

)2
)

+
λc

δ (λc)

N

4

(

1−
( σ

R

)2
)

. (4.10)

Sie liefert schließlich die auf ũ0 = 1 normierte, in Gl. 2.23 einzusetzende Eingangsamplitude

ũ(σ) = e
ikδ

(

1+ i
2πN0(λ)

)

t(σ)
mit t(σ) =

λc
δ (λc)

(

1− p+ N

4

(

1 +
( σ

R

)2
))

. (4.11)

Des weiteren ist noch die der Fresnel-Struktur Rechnung tragende Substitution 3.51 im
Spezialfall m = 1 zu berücksichtigen. Damit ergibt sich unter Verwendung der üblichen
Abkürzungen ψ = E

Ec
und ζ = z

F
sowie des relativen Aperturradius τ = σ

R
als Ausdruck

für die zu |u (~r)|2 proportionale Intensitätsverteilung nach der Normierung gemäß Gl. 2.26

I (υ, ζ) =

(

ψ

ζ

)2

e
− 1
N0

1
ψ (2+

N
2 )

∣

∣

∣

∣

∣

∣

N
2
∑

p=1

e

(

1
N0
−2πi

)

1
ψ
pJp (υ, ζ)

∣

∣

∣

∣

∣

∣

2

, (4.12)

wobei N0 implizit von der Energie abhängt und das Integral Jp (υ, ζ) durch die Formel

Jp (υ, ζ) =
∫

√
2
N
p

√
2
N
(p−1)

e
iπ
2

((

1+ i
2πN0

)

1
ψ
−ψ
ζ

)

Nτ2
J0

(

π
ψ

ζ
υτ

)

τdτ (4.13)

gegeben ist. Während wie im Fall der einfachen Linse nach Kap. 3 die laterale Verteilung
in υ nur numerisch ermitteln ist, resultiert aus Gl. 4.12 eine analytisch darstellbare Inten-
sitätsverteilung längs der optischen Achse. Setzt man υ = 0, faktorisiert Gl. 4.12 gemäß

I (υ = 0, ζ) =

(

1

Nπ

)2

g (ζ) · h (ζ) . (4.14)

Die erste Funktion g (υ, ζ) ähnelt ihrer Struktur nach den aus Kap. 3 bekannten Beugungs-
faktoren, speziell im Bezug auf den

”
refraktiven Nenner“. Explizit lautet sie

g (ζ) =
1− 2e

− 1
2N0

1
ψ cos

(

π
(

ψ
ζ
− 1

ψ

))

+ e
− 1
N0

1
ψ

(

1− ζ
ψ2

)2

+
(

1
2πN0

ζ
ψ2

)2 . (4.15)

Dagegen repräsentiert das positive Vorzeichen im cos−Term der Funktion h (υ, ζ) die Di-
spersionskorrektur in erster Ordnung bzgl. ψ,

h (ζ) =
1− 2e

− N
4N0

1
ψ cos

(

N
2
π
(

ψ
ζ
+ 1

ψ

))

+ e
− N
2N0

1
ψ

1− 2e
1
2N0

1
ψ cos

(

π
(

ψ
ζ
+ 1

ψ

))

+ e
1
N0

1
ψ

. (4.16)

Formal unterdrückt die spezielle Struktur des cos−Arguments in einem durch N festge-
legten Intervall die Oszillation der trigonometrischen Funktion. Um ihre Wirkungsweise zu
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analysieren, wird vorübergehend die Absorption vernachlässigt, so dass sich Gl. 4.14 zu

lim
N0→∞

I (υ = 0, ζ) =

(

2

Nπ

)2




sin
(

π
2

(

ψ
ζ
− 1

ψ

))

1− ζ
ψ2





2



sin
(

N
2
π
2

(

ψ
ζ
+ 1

ψ

))

sin
(

π
2

(

ψ
ζ
+ 1

ψ

))





2

(4.17)

vereinfacht. Die Dispersionskorrektur zeigt sich in der Reihenentwicklung bzgl. ψ für ζ = 1,

sin

(

N

2

π

2

(

ψ +
1

ψ

))

= sin
(

N
π

2

)

+N
π

4
cos
(

N
π

2

)

(ψ − 1)2 +O(ψ − 1)3. (4.18)

Die übrigen Terme, speziell der (sin)−Nenner, müssen nicht berücksichtigt werden, da sie
für genügend große N relativ langsam oszillieren. Abb. 4.3 illustriert den aus Gl. 4.17
resultierenden Verlauf der absorptionsfreien Peakintensität im Fokus als Funktion von ψ.
Unter dem Einfluss nicht allzu starker Absorption erweist sich deshalb auch der nutzbare

Abbildung 4.3: Bandpass des absorptionsfreien Hybrid-Achromaten. Die spektrale Breite,
für die I(ψ) ≈ const. gilt, skaliert mit 1√

N
. Im spektralen Schwerpunkt mit ψ = 1 beträgt die

Intensität wegen F = 2FZ nur 25% der im Fokus des diffraktiven Analogons auftreffenden.

Bandpass bis herauf zu N0 . N als weitgehend konstant. Dagegen nimmt die Peakeffizienz
mit N0 rapide ab. Formal gelangt man unter Rückgriff auf Gl. 4.14 zu

I (N0) =

(

2
N0
N

)2
(

1− e−
N
4N0

1− e
1
2N0

)2
(

1− e−
1
2N0

)2

. (4.19)

Offenbar wird I (N0) hauptsächlich vom Quotienten N
N0

bestimmt, die durch den Abso-
lutwert von N0 auftretenden Beiträge tragen für N0 À 1 nur unwesentlich bei. Abb. 4.4
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verdeutlicht, dass Achromaten realistischer Zonenzahl (N & 103) mit kritischen Werten
N0 unterhalb von wenigen 102 kaum noch effizient zu betreiben sind. Dies gilt umso mehr,

Abbildung 4.4: Absorptionsbehaftete Peakeffizienz des Hybrid-Achromaten. Für diverse Zo-
nenzahlen 102 ≤ N ≤ 104 ist die normierte Maximalintensität im Fokus als Funktion der
via N0 gemessenen Absorption aufgetragen.

als die Bildqualität im Sinn von Winkelauflösung und Kontrast ebenfalls leidet. Zu deren
Analyse bedarf es der numerischen Berechnung der Modulations-Transferfunktion (MTF)
aus dem Beugungsintegral nach Gl. 4.12 unter der fokalen Bedingung ζ = 1, die erst auf

I (υ) = ψ2e
− 1
N0

1
ψ (2+

N
2 )

∣

∣

∣

∣

∣

∣

N
2
∑

p=1

e

(

1
N0
−2πi

)

1
ψ
p
∫

√
2
N
p

√
2
N
(p−1)

e
iπ
2

((

1+ i
2πN0

)

1
ψ
−ψ

)

Nτ2
J0 (πψυτ) τdτ

∣

∣

∣

∣

∣

∣

2

und dann unter der weitergehenden Reduktion auf den monochromatischen Fall mit ψ = 1

Is (υ) = e−s(
2
N
+ 1
2)





N
2
∑

p=1

e
s
N
p

∫

√
2
N
p

√
2
N
(p−1)

e−
s
4
τ2J0 (πυτ) τdτ





2

(4.20)

führt, wobei zuletzt noch das Zonenverhältnis s = N
N0

Verwendung fand. Der letztlich para-
metrisch nur von s bestimmten Punktbildfunktion ist zunächst die HEW-Winkelauflösung
zu entnehmen, dazu setze man analog zu Gl. 3.15

1

π
Ps(υHEW ) = 2π

∫ υHEW

0

Is (υ) υ dυ =
1

πs
e−

s
N

(

1− e− s2
)

=
1

2π
P (tot)s . (4.21)
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Tab. 4.1 listet für diverse Zonenverhältnisse N
N0

die prozentuale Abweichung der Lateral-
und damit Winkelauflösung vom Idealwert der mit s → 0 transparenten Hybridlinse auf.
Es wird deutlich, dass sich der Fehler in der i.a. noch tolerierbaren Größenordnung von

N/N0 0.1 0.4 0.8 1 2 3 4 5 6 7 8

δ (∆ε) (%) 0.11 0.51 1.16 1.54 4.06 7.73 12.9 20.1 31.2 55.5 145

Tabelle 4.1: Winkelauflösung der absorbierenden Hybridlinse. Mit zunehmendem Zonen-
verhältnis N

N0
verschlechtert sich die HEW-Auflösung überproportional. Solange N . N0,

erreicht sie noch nahezu das Optimum.

∼ 1% bewegt, solange N . N0 gilt. Während sowohl der einfachen refraktiven Sammel-
als auch der Hybridkomposition eine mit steigendem s abnehmende Auflösung eignet, fun-
giert letztere im Fall starker Absorption als quasi ringförmige Apertur nach Abschn. 2.2.
Mit der absorptionsbedingten

”
Zentralobstruktion“ geht zwar eine geringfügig verbesserte

Rayleigh- und FWHM-Auflösung einher, die jedoch nur im Fall punktförmiger Quellen wie
beispielsweise eines fernen Doppelsternsystems praktischen Nutzen verspricht. Der weitaus
häufigeren Beobachtungssituation auf mas-Skalen ausgedehnter Emissionsgebiete stehen
die intensiven Beugungsringe entgegen (vgl. Abb. 2.7). Quantitativ kommt dieser Sachver-
halt in der Modulations-Transferfunktion (MTF) zum Ausdruck, die sich nach Gl. 2.32 zu

M (ω) ∝ 2π

∫ ∞

0

Is (υ) J0 (2πυω) υ dυ (4.22)

berechnet. Die Proportionalität berücksichtigt die übliche Normierung auf M(0) = 1 mit-

tels der aus Gl. 4.21 übertragenen Beziehung 2π
∫∞
0
Is (υ) υ dυ = 1

π
P
(tot)
s . In graphischer

Form sind die Kontrastfunktionen in Abb. 4.5 aufgetragen. Offensichtlich bewirkt die kon-
vexe Korrekturlinse nun ein relatives Hochpass-Verhalten, im Gegensatz zur Tiefpass-
Funktion der konkaven Sammellinse nach Abb. 3.2. Auch dieser Darstellung ist die To-
leranz gegenüber moderater Absorption zu entnehmen – bis herauf zu N

N0
∼ 1 treten nur

geringfügige Abweichungen vom Idealfall der transparenten Apertur auf.
Angesichts der im folgenden Kapitel 5 eingehend diskutierten Tatsache, dass aus prakti-

schen Erfordernissen heraus die vage Toleranzgrenze von N ∼ N0 vielfach nicht eingehalten
werden kann, stellt sich die Frage nach einer die Auflösung erhaltenden Modifikation des
Hybridsystems. Offenkundig bedarf es einer hinreichend

”
flachen“ Transmissionsfunktion

T (τ), um das Gros der fokalen Leistung im zentralen Maximum zu konzentrieren. Man
wird daher versuchen, die Hybridlinse mittels eines zusätzlichen Graufilters zu apodisie-
ren. Zu diesem Zweck ist mit der refraktiven Linsentransmission TL(τ) – der Beitrag der
über τ periodisch konstanten Transmission der Fresnel-Linse sei hier vernachlässigt – und
dem Filterprofil Tgrau(τ)

TL(τ)× Tgrau(τ) = TL(0) ∀ 0 ≤ σ ≤ 1 (4.23)

zu fordern. Die gesuchte Filterfunktion ergibt sich dann wegen TL(τ) = e−
s
2(1−τ2) gemäß

Tgrau(τ) = TL(0)× T −1L (τ) = e−
s
2
τ2 , (4.24)
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Abbildung 4.5: Transferfunktion des absorbierenden Achromaten. Jenseits einer Grenze
s & 1 wirkt das Hybridelement zunehmend wie eine Linse mit Zentralobstruktion, deren
moderates Hochpassverhalten in der MTF zum Ausdruck kommt. Zum Vergleich ist die
MTF der idealen Apertur eingezeichnet (rot).

wobei für den normierten Aperturradius wieder τ = σ
R
gilt. Ausgestattet mit einem derar-

tigen Filter, weist die Hybridlinse eine über die gesamte Apertur konstante Transmission
auf, die dem geringsten, am Ort der größten Dicke auftretenden Wert entspricht. Der Rea-
lisierung eines solchen Filters steht zunächst die stets gekoppelt mit der Absorption auftre-
tende Brechung im Sinn von n = 1− δ− iβ entgegen, mit ggf. negativen Auswirkungen auf
die achromatische Phasenbedingung. Alternativ besteht die Möglichkeit, eine Lochmaske
zu verwenden, bestehend aus zahlreichen zufällig angeordneten Mikro-Öffnungen, die im
großräumigen Mittel die durch Gl. 4.24 vorgegebene Filterfunktion approximieren. Abb.
4.6 zeigt die Wirkung des Graufilters anhand verschiedener Werte für 1 ≤ s ≤ 3. Obwohl
hinsichtlich Winkelauflösung und Bildqualität gemäß Tab. 4.1 eine vollständige Apodisie-
rung nach Gl. 4.23 nicht erforderlich ist2, stellt sie quasi die mathematisch reine Lösung
des Beugungsproblems dar und soll daher vorläufig allen weiteren Rechnungen zugrunde
gelegt werden. Die Gesamt-Effizienz der Hybridlinse ist dann durch

Ts = TZ(s)× TL(s) =
N

2s

(

1− e− 2sN
)

× e− s2 mit s =
N

N0
(4.25)

gegeben, da die Transmissionsfunktion T (s) nun wegen TL(s) = const. in einen diffraktiven

2Ein entsprechend leistungssteigerndes partielles Filter für Linsensegmente wird in Kap. 5 eingeführt.
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Abbildung 4.6: Apodisierung des Transmissionsprofils mittels Graufiltern für 1 ≤ s ≤ 3.
Um Winkelauflösung und Kontrast der idealen absorptionsfreien Hybridlinse zu erhalten,
bedarf es eines komplementären Graufilters (grau, durchgezogen). Das ursprüngliche Trans-
missionsprofil (schwarz, strichliert) nimmt dann einen von r

R
unabhängigen Wert an (rot).

(Index
”
Z“) und einen refraktiven (Index

”
L“) Anteil faktorisiert. Mit ihrer Hilfe lässt sich

analog zu Kap. 3 die Lichtstärke Aeff ×∆E des Hybridelements abschätzen, es ergibt sich

Aeff ×∆E =
π

2

√
N · N

2s

(

1− e− 2sN
)

e−
s
2 · F · hc, (4.26)

mit den Naturkonstanten h und c. Abgesehen von der schon bekannten Linearität in der
Brennweite F tritt insbesondere die funktionale Abhängigkeit vom relativen Zonenparame-
ter s hervor, die für hinreichend große N0 im wesentlichen in Form des refraktiven Faktors
TL(s) = e−

s
2 eingeht. Da ferner die Zonenzahl N – wenn auch nur linear in

√
N – eingeht,

ist bei der Konstruktion eines Achromaten einer möglichst großen kritischen Zonenzahl N0
vorrangige Aufmerksamkeit zu widmen. Abb. 4.7 stellt N0 für die leichtesten Elemente mit
1 ≤ Z ≤ 6 graphisch dar. Augenscheinlich erreichen unterhalb von rund (2−3) keV nur H2
und He mit N0 & 102 hinreichend große Werte, um Hybridlinsen realistischer Zonenzahl
zu fertigen. Während einer einfachen Verwendung dieser Stoffe a priori ihre unter Normbe-
dingungen gasförmige Konsistenz entgegensteht, erreicht die optische Güte technisch gut
zu verarbeitender Feststoffe lediglich im harten Röntgenbereich jenseits von 10 keV eine
annähernd vergleichbare Größenordnung. Anstatt elementare Stoffe zur Dispersionskorrek-
tur zu verwenden, bietet sich alternativ der Einsatz chemischer Verbindungen an, wie sie
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Abbildung 4.7: Eignung diverser Elemente zur Fertigung refraktiver Korrekturlinsen. Ein-
getragen ist die kritische Zonenzahl N0 für die leichtesten Elemente H2 bis C im Energiein-
tervall 1 keV ≤ E ≤ 20 keV. Der optimale Einsatzbereich verschiebt sich mit wachsendem
Z ins harte Röntgenspektrum.

beispielsweise das bekannte Polycarbonat (C16H14O3) darstellt. Abb. 4.8 illustriert dessen

”
kritische“ Kurve zusammen mit jenen diverser anderer Verbindungen. Erwartungsgemäß
weisen die Hydride XmHn der leichten Elemente die besten Werte auf, gemäß Gl. 2.7. So-
weit bekannt, bilden von Li und Be lediglich LiH bzw. BeH2 stabile Kristalle [25]. Dagegen
existieren zahlreiche Bor-Hydride (

”
Borane“), unter denen jedoch nur die höherwertigen

mit m ≥ 10 bei 300 K kristallisieren. Exemplarisch ist die optische Güte von Decabo-
ran (B10H14) aufgeführt. Eine noch größere Vielfalt weisen die Kohlenwasserstoffe auf,
unter denen bei 300 K ebenfalls nur die höherwertigen in fester Phase bestehen. Relativ
ungünstig stellt sich die Situation dagegen für Kunststoffe wie Polycarbonat (C16H14O3)
oder Polyamid (C22H10N2O5) dar.

Den bisherigen Ausführungen zufolge treten also bzgl. des als Lichtstärke bezeichne-
ten Leistungsvermögens Aeff × ∆E zwei gegenläufige Effekte in Konkurrenz – während
jene mit der Zonenzahl

√
N skaliert, schwächt andererseits die zunehmende Absorption

die nutzbare Fläche. Ausgehend von dieser Überlegung erlaubt der Vergleich zwischen den
Lichtstärken einer Hybridlinse und deren diffraktivem Analogon die Definition eines uni-
versellen, quantitativen Kriteriums, das die Wirksamkeit der Dispersionskorrektur misst.
Bezeichnet man vorübergehend die Lichtstärken mit QZ bzw. QA, so gilt mit Gl. 4.25

QZ = πR2 · TZ(s)×
1

N
E und QA = πR2 · TZ(s) · TL(s)×

2√
N
E, (4.27)
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Abbildung 4.8: Eignung chemischer Verbindungen zur Fertigung refraktiver Korrekturlin-
sen. Unter den Verbindungen leichter Elemente eignen sich besonders die Hydride der Form
XmHn, während Kunststoffe wie Polycarbonat (C16H14O3) oder Polyamid (C22H10N2O5) re-
lativ schlechte Werte aufweisen.

wenn die diffraktive Komponente in beiden Fällen identisch ist und der Unterschied nur in
der additiven Korrekturlinse besteht. Der Quotient beider Lichtstärken ergibt sich nun zu

V ≡ QA

QZ

= 2
√
Ne
− N
2N0 (4.28)

und kann als Verstärkungsfaktor V interpretiert werden, den die Dispersionskorrektur be-
wirkt. Die Größe V hängt ausschließlich von geometrischer und kritischer Zonenzahl ab
und liefert bei optimaler Wahl von N relativ zum Materialparameter N0 ein Optimum,

d

dN

(

QA

QZ

)

= 0 → Nopt = N0. (4.29)

Den größten Nutzen verspricht die Dispersionskorrektur gerade dann, wenn geometrische
und kritische Zonenzahl zusammenfallen. Die maximale Verstärkung beträgt in diesem Fall

Vmax = 2e−
1
2

√
N ≈ 1.2

√
N. (4.30)

Dagegen tendiert die Funktion V (N) für kleine und große Zonenzahlen jeweils gegen Null,

lim
N→0

= 0 und lim
N→∞

= 0, wenn N0 <∞. (4.31)
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Im übrigen wirken sich bzgl. N0 ”
zu große“ Zonenzahlen N auf die Verstärkung weitaus

negativer aus als
”
zu kleine“. Tab. 4.2 listet einige Werte auf.

N/N0 0.1 0.2 0.3 0.5 0.8 1.0 2.0 3.0 4.0 6.0 8.0 10

V/Vmax 0.50 0.67 0.78 0.91 0.99 1.00 0.86 0.64 0.45 0.20 0.09 0.04

Tabelle 4.2: Relative Verstärkung von Hybridlinsen. Für diverse Zonenverhältnisse N
N0

ist
die auf Vmax normierte Verstärkung aufgelistet, welche bei N = N0 auftritt.

Abb. 4.9 illustriert den Verlauf nach Gl. 4.28 graphisch. Als letztlich etwas willkürliche
untere Schranke an den physikalisch-technisch sinnvollen Verstärkungsfaktor wird Vmin = 4
angesehen. Zum einen, weil durch die verlängerte Brennweite ohnehin eine um den Fak-
tor 2 verbesserte Lichtstärke erreicht wird; zum anderen geht die Dispersionskorrektur in
gleichem Maße zu Lasten der Ortsauflösung. Man liest unter anderem aus Abb. 4.9 ab

Abbildung 4.9: Verstärkungsfaktor von Hybrid-Achromaten. Für kritische Zonenzahlen
50 ≤ N0 ≤ 2000 ist der Gewinn an Lichtstärke gegenüber dem diffraktiven Analogon auf-
getragen. Unterhalb von Vmin = 4 erscheint eine Dispersionskorrektur nicht mehr sinnvoll.

bzw. berechnet mittels Gl. 4.28, dass V ≈ 4 für N0 = 1000 bei Nmax ≈ 7500 auftritt.
Li erreicht jenseits von 10 keV einen maximalen N0-Wert von etwa 1200, entsprechend
Nmax ≈ 9300. Physikalisch sinnvolle Feststoff-Achromaten sind somit in ihrer geometri-
schen Zonenzahl auf allenfalls einige 103 beschränkt. Entsprechend markiert V ≈ 40 die
größtmögliche Verstärkung kompakter Hybridlinsen. Tab. 4.3 gibt einen Überblick zu den
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N0 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Vmax 17 21 24 27 30 32 34 36 38 40 42 44

Tabelle 4.3: Maximalverstärkung von Hybridlinsen. Für diverse kritische Zonenzahlen N0
ist die größtmögliche Verstärkung angegeben, die bei N = N0 erreicht wird.

maximalen Verstärkungsfaktoren. Dabei ist jedoch zu bedenken, dass Hybridlinsen relativ
geringer Zonenzahl N ∼ 102 wegen des zu 1

N
proportionalen Quotienten ρPSF

R
praktisch

kaum von Bedeutung sind. Dieser Aspekt wird in Kap. 5 eingehend diskutiert. Ferner soll-
ten die in Tab. 4.3 angegebenen Daten nicht darüber hinweg täuschen, dass alle unter
Normbedingungen festen Materialien einschließlich Li und dessen Hydrid ihr Maximum in
N0 im harten Röntgenband jenseits von 10 keV erreichen, dem u.a. aufgrund nachlassender
Detektorsensitivität im Bezug auf die Lichtstärke zumindest in dieser Arbeit nachrangige
Aufmerksamkeit gilt.

Im praktischen Gebrauch stellt sich vielmehr eher die Frage, innerhalb welcher para-
metrischen (unteren) Grenzen ein bestimmtes Material die Konstruktion eines dispersions-
korrigierten Objektivs ausreichender Leistungsfähigkeit gestattet. Offenkundig liefert Gl.
4.28 bereits einen Teil der Antwort. Dazu betrachte man das Öffnungsverhältnis

f =
F

2R
= [...] ≈ 0.535

1

∆ε

1

N
, wenn ∆ε ≈ 1.07

λ

2R
(4.32)

die HEW-Winkelauflösung definiert. Betrachtet man sie als fixen Parameter, gibt das über
den Mindest-Verstärkungsfaktor Vmin = 4 ermittelte Supremum Nmax an die Zonenzahl
eine untere Schranke an das Öffnungsverhältnis, f ≥ f (Nmax) für N ≤ Nmax. Naturgemäß
nimmt fmin für ein gegebenes Material mit der Energie E zu. In Abb. 4.10 sind diese
Schranken für diverse Stoffe aufgetragen. Man erkennt anhand der linken Grafik, dass sich
bei festem f das Einsatzspektrum eines chemischen Elements umso weiter ins weiche Rönt-
genband erstreckt, je kleiner dessen Ordnungszahl Z ist. Analoges gilt für Verbindungen
(rechte Seite), unter denen allein LiH auch im Bereich weniger keV eingesetzt werden kann.

Die Forderung der Minimalverstärkung von V = 4 limitiert somit zu weichen Rönt-
genstrahlen hin, während der mit E generell zunehmenden Linsenkrümmung die Rolle der

”
harten“ Schranke zukommt. Um das zu sehen, ist diesmal für das Öffnungsverhältnis

f =
F

2R
= [...] =

1

2δ

1

q
mit q ≡ R

ξ
(4.33)

zu setzen. ξ steht wie bisher für den Krümmungsradius der plankonvexen Version, ξ = F ·δ.
Unter Annahme eines plankonvexen parabolischen Profils resultiert für q = 1 am Rand
der Apertur ein Steigungswinkel von 45◦. Legt man dagegen ein gegenüber Bildfehlern
tolerantes bikonvexes Profil zugrunde, definiert q = 2 ein grobes Maß für die technisch
mögliche Linsenkrümmung. Diese Festlegung ist als

”
flexible“ Grenze zu interpretieren.

Im Einzelfall können auch dickere Linsen mit q > 2 gewählt werden. Tab. 4.4 listet für
1 ≤ q ≤ 10 gemäß tan

(

α
2

)

= q
2
die halben Steigungswinkel α

2
auf. Bezugnehmend auf den
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Abbildung 4.10: Nutzbarkeit kompakter Feststoff-Hybrid-Achromaten in verschiedenen
Energiebereichen. Eingezeichnet sind untere Grenzen an das energieabhängige f -Verhältnis.
Die durchgezogenen Linien beziehen sich auf eine minimale Verstärkung von 4 gegenüber
dem diffraktiven Analogon. Im Gegensatz beschränken die refraktiven Krümmungsradien
den Einsatzbereich auf mehr oder weniger weiche Röntgenstrahlen (strichliert).

R/ξ 1 2 3 4 5 6 7 8 9 10

α/2 26.6◦ 45.0◦ 56.3◦ 63.4◦ 68.2◦ 71.6◦ 74.1◦ 76.0◦ 77.5◦ 78.7◦

Tabelle 4.4: Steigungswinkel bikonvexer Hybridlinsen. Die auf ganze Zahlen gerundeten
Werte sind in Abhängigkeit vom Radienverhältnis R

ξ
eingetragen.

Richtwert q = 2 sind die nach 4.33 in Abb. 4.10 strichliert eingetragen. Da die Brechkraft
δ mit der Energie abnimmt, nimmt die Schranke an f mit selbiger zu, es handelt sich also
um ein Limit zum harten Röntgenband hin.

Bislang wurde stets die erste Beugungsordnung der diffraktiven Hybrid-Komponente
herangezogen, um den Farbfehler bei der Blaze-Wellenlänge λc bzw. Zentral-Energie Ec zu
korrigieren. Nun gestatten die speziellen Abbildungseigenschaften der kinoformen3 Fresnel-
Linse in Verbindung mit den jeweiligen diffraktiven bzw. refraktiven Dispersionsrelationen
den Einsatz eines gegebenen Hybrid-Achromaten in höheren Beugungsordnungen. Auf-
grund FZ(E) ∝ E und FL(E) ∝ E2 ergibt sich nämlich explizit

2

m
F
(0)
Z = −F (0)L

E

Ec
mit m ε N (4.34)

als Bedingung für die Dispersionskorrektur in erster Ordnung bzgl. E. Die Superscript-
Indizes (0) verdeutlichen, dass die jeweiligen Brennweiten bei E = Ec einzusetzen sind. Die
Hybridlinse korrigiert somit ein Energiespektrum der Form Em = 1

m
Ec. Ausgehend von Gl.

3Multilevel-Approximationen hinreichend großer Stufenzahl L an das ideal kinoforme Profil erfüllen die
Anforderungen in der Praxis ebenfalls.
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4.17 lautet die Intensitätsverteilung I(υ = 0, ζ) unter Vernachlässigung der Absorption

lim
N0→∞

Im(ψ) =

(

2m

N

)2




sin
(

π
2
ψ
(

1
ψ2
−m2

))

π
2

(

1
ψ2
−m2

)





2



sin
(

N
2
π
2
ψ
(

1
ψ2

+m2
))

sin
(

π
2
ψ
(

1
ψ2

+m2
))





2

, (4.35)

wenn I(υ = 0, ζ) an der fixen axialen Position ζ =
(

1
m

)2
betrachtet wird, die die Lage der

diffraktiven Maxima m−ter Ordnung zur Energie E = 1
m
Ec markiert. Abb. 4.11 illustriert

das Prinzip der Dispersionskorrektur in höheren Ordnungen anhand des Beispiels N = 100.
In der Praxis unterliegt der mehrfach korrigierende Achromat der Einschränkung, dass der

Abbildung 4.11: Fokussierung mittels Fresnel-Achromaten in höheren Ordnungen. Eine Di-
spersionskorrektur in erster Ordnung erfolgt für Em = E0

m
und normierte Fokusdistanzen

Fm = F0
m2

, bei denen der Absolutbetrag der refraktiven (dicke strichlierte Linie) mit der dop-

pelten diffraktiven Brennweite der m-ten Ordnung zusammenfällt. Um der Übersichtlichkeit
willen wurden in dieser Grafik die relativ kleine Zonenzahl N = 100 unter Vernachlässigung
der Absorption und eine logarithmische Skalierung gewählt.

Bandpass wie 1√
m

abnimmt – entsprechend m ·N virtuellen Zonen der Fresnel-Linse,

∆E

E
=

2√
mN

mit m ε N. (4.36)

Zudem lassen sich wegen der zu weichen Röntgen-Energien stark zunehmenden Absorption
de facto nur wenige Ordnungen m effektiv nutzen. Eine mögliche Wahl könnte z.B. auf
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Ec = 20 keV fallen, so dass bei Em=4 = 5 keV mit einer aus Li bestehenden Korrekturlinse
noch eine moderate Lichtstärke zu erzielen wäre.

Wie bereits in Kap. 3 demonstriert, erweist sich das parabolische Profil der refraktiven
Sammellinse als ausgesprochen anfällig gegen Verkippungen. Da sich deren konkave von
der (plan-)konvexen Version nur durch das Vorzeichen des Krümmungsradius ξ unterschei-
det, gilt Ähnliches auch für die refraktive Komponente einer Hybridlinse. Wie z.B. in [13]
bewiesen wird, addieren sich die Aberrationskoeffizienten eines aus mehreren Linsen zu-
sammengesetzten optischen Systems. Die Aberrationskoeffizienten aus den Gln. 3.32 und
3.34 erfahren dabei eine Modifikation in dem Sinn, als die in der Abbé-schen Invariante
vertretene jeweilige Gegenstandsweite pi der i−ten Komponente im allgemeinen endlicher
Natur ist,

Ki ≡ −
1

gi
− 1

2
Pi, mit

1

pi
+

1

qi
= Pi. (4.37)

Sie wird für die Konjugierten pi und qi sukzessive aus dem Startwert p1 = ∞ ermittelt.
Astigmatismus, Bildfeldwölbung und Verzeichnung bleiben unter Annahme eines vernach-
lässigbaren Linsenabstandes hingegen unbeeinflusst – die Eintrittspupille liegt dann nach
wie vor in der annähernd gemeinsamen Linsenebene. Das auf endliche Gegenstands- und
Bildweiten erweiterte Aberrationsfunktional Ψ(4) der diffraktiven Linse lautet nach [22]

Ψ(4) = − r4n
8F 3Z
U(q)− φ r3n

2F 2Z
V(q) cos θ − φ2 r

2
n

2FZ
cos2 θ − φ2 r

2
n

4FZ
. (4.38)

Die endliche Gegenstands- und damit von FZ verschiedene Bildweite kommt in den Termen

U(q) = 1− 3

(

FZ
q
−
(

FZ
q

)2
)

und V(q) = 2
FZ
q
− 1 (4.39)

zum Ausdruck. Dem kanonischen Formalismus folgend, resultieren die Koeffizienten des
diffraktiven Elements zu

B =
1

2

(

1

FZ

)3

U(q) und F = −1

2

(

1

q2
− 1

p2

)

und C =
1

2

(

1

FZ

)

= D. (4.40)

In ihrer günstigsten, weil den sphärischen Fehler minimierenden Konfiguration ist die re-
fraktive Komponente mit ihrer gekrümmten Seite der einfallenden Strahlung zugewandt,
gefolgt vom Fresnel-Element. Die summierten Aberrationskoeffizienten lauten dann unter
Berücksichtigung von q = F = 2FZ in führender Ordnung bzgl. δ

B ≈ − 1

δF 3
und C ≈ 1

2F
und D ≈ − δ

2F
und F ≈ − 1

2δF 2
. (4.41)

Die Koeffizienten wurden hier sogleich durch die nominelle Brennweite F = ξ
δ
anstel-

le des Krümmungsradius ξ dargestellt. Eingesetzt in die Ausdrücke 3.30 für die Seidel-
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Koeffizienten findet man unter Verwendung des Öffnungsverhältnisses f

∆εx = − 1

8δ

(

1

f

)3

cos θ +
1

8δ
φ

(

1

f

)2
(

1 + 2 cos2 θ
)

+
1

2

(

1− δ

2

)

φ2
(

1

f

)

cos θ,

∆εy = − 1

8δ

(

1

f

)3

sin θ +
1

4δ
φ

(

1

f

)2

sin θ cos θ − δ

4
φ2
(

1

f

)

sin θ.

Der Gesamtfehler lässt sich wie schon im Fall der refraktiven Sammellinse nach Abschn.

Abbildung 4.12: Seidel-Aberrationen des parabolischen Hybrid-Profils. Der Winkelfehler
dominiert bereits für wenige arcsec (hier für 10 arcsec) über den sphärischen. Allen für
diverse Öffnungsverhältnisse f (×103) gezeichneten Graphen liegt die Brechkraft δ = 1 ×
10−4 zugrunde. Die absolute Dimension der Verzerrungen wächst mit der Linsenkrümmung.
Der sphärische Partialfehler mit φ = 0 ist separat in rot dargestellt.

3.1 zweckmäßig aus einer quadratischen Mittelung bzgl. 0 ≤ θ < 2π abschätzen,

〈∆ε〉θ =
(

1

2π

∫ 2π

0

∆ε2(f, δ, θ, φ) dθ

)1/2

≈ 1

8δ

(

1

f

)3√

1 + 5 (φf)2 + 8 (f 2φ2δ)2. (4.42)

Da der dritte, zu φ4δ2 proportionale Summand des Radikanden gegenüber den beiden
anderen bei nicht zu großen Winkeln φ zu vernachlässigen ist, skalieren sowohl die sphäri-
schen als auch verkippungskorrelierten Verzerrungen in etwa linear mit

(

1
δ

)

. Speziell im
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Sonderfall φ = 0 zeigt sich die starke Abhängigkeit vom Öffnungsverhältnis f ,

lim
φ→0

√

(∆εx)
2 + (∆εy)

2 =
1

8δ

(

1

f

)3

. (4.43)

Tab. 4.5 listet Öffnungsverhältnisse f auf, die sich aus Gl. 4.43 unter der Forderung einer
beugungsbegrenzten Abbildung mit 1 mas ergeben. Die aufgeführten Brechkräfte δ decken
das gesamte real auftretende Spektrum einschließlich des Wasserstoffs H2 ab. Hinsichtlich

δ 10−9 10−8 10−7 10−6 10−5 10−4 10−3

fmin 3.7× 105 1.7× 105 8.0× 104 3.7× 104 1.7× 104 8.0× 103 3.7× 103

Tabelle 4.5: Zulässiges Öffnungsverhältnis bei parabolischem Hybrid-Profil. Abhängig von
der Brechkraft δ sind untere Schranken an das Öffnungsverhältnis f = F

2R
angegeben, die

eine beugungslimitierte Abbildung mit einer Auflösung von 1 mas gewährleisten.

des sphärischen Fehlers würde die plankonvex parabolische Hybridlinse den Anforderungen
der Praxis annähernd genügen, eine aus technischer Sicht vorteilhafte Feststellung.

Anders verhält es sich mit den dem parabolischen Profil eigenen Winkelfehlern, insbe-
sondere der Koma. Das in Abschn. 3.1 eingeführte sphärische Profil erweist sich indes als
untauglich, wie eine Berechnung der Seidel-Koeffizienten zeigt. Mit dem Profilparameter
b = 0 in der das plankonvexe Modell beschreibenden Gl. 3.7 unterscheidet sich nur der
sphärische Beitrag

B ≈ − 1

2δ2

(

1

F

)3

(4.44)

vom parabolischen Ansatz, alle übrigen Koeffizienten und somit auch die Winkelabhängig-
keit der Bildfehler ändern sich nicht. Die um einen Faktor 1

2δ
und damit wenigstens drei

Größenordnungen höhere sphärische Aberration lässt dieses Profil jedoch als definitiv un-
geeignet erscheinen, Hybridlinsen moderater Öffnungsverhältnisse zu konstruieren.

Die bisher gewonnenen Erkenntnisse bestätigen die aus der visuellen Optik wohlbe-
kannte Tatsache, dass sich plankonvexe bzw. plankonkave Profile im allgemeinen nicht
eignen, die Aberrationen auf ein akzeptables Maß zu reduzieren. Anschaulich gesprochen,
beruht dieser Sachverhalt auf der optisch ungünstigen Brechung an nur einer bzw. im Fall
des Achromaten an zwei gekrümmten Flächen. In der Tat bestätigt eine mathematische
Analyse die vorteilhafte oder gar notwendige Aufteilung der Strahlablenkung auf mehre-
re Linsenoberflächen [13]. Wie sich herausstellt, weist eine solche, Koma und sphärische
Aberration eliminierende sog. aplanatische Linse im Röntgenbereich ein de facto bikonkav
bzw. bikonvex symmetrisches Profil auf. Die in Abb. 4.13 dargestellte Sandwich-Bauweise
berücksichtigt bereits die fertigungstechnische Randbedingung, nach der das diffraktive
Fresnel-Element zweckmäßig zwischen den plankonvexen Komponenten anzuordnen ist.
Die sphärischen und Koma-Koeffizienten der ersten, dem einfallenden Strahl zugewandten
refraktiven Komponente lauten

B1 =
δ (1 + δ + (1− δ) (b1 + δ2))

2ξ31(δ − 1)
und F1 =

δ + δ2 − δ3
2ξ21(δ − 1)

, (4.45)
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Abbildung 4.13: Strahlengang im aplanatischen Hybridprofil. Die bikonvexe Bauweise der
refraktiven Komponente eliminiert den sphärischen Fehler als auch die Koma des Gesamt-
systems für beliebige Öffnungsverhältnisse. Die drei Elementarlinsen sind zugunsten einer
übersichtlichen Darstellung voneinander separiert gezeichnet.

während Astigmatismus, Bildfeldwölbung und die verschwindende Verzeichnung durch

C1 = −
δ

2ξ1
und D1 =

δ(2− δ)
2ξ1(δ − 1)

und E1 = 0 (4.46)

gegeben sind. Unter Beachtung der endlichen Gegenstandsweite stellt sich der sphärische
Koeffizient der zweiten refraktiven Halblinse wie folgt dar,

B2 =
δ (q2 (b2 + (1− δ)2) (δ − 1) + ξ22(3δ − 5)− qξ2 ((7− 3δ)δ − 4))

2q2ξ32(δ − 1)
. (4.47)

wobei q bekanntlich die konjugierte Bildweite der Fresnel-Komponente bezeichnet. Für den
Anteil der Koma ergibt sich

F2 =
δ (ξ2(3− 2δ)− q(1− δ)2)

2qξ22(δ − 1)
. (4.48)

Astigmatismus, Bildfeldwölbung und Verzeichnung werden schließlich durch die Beiträge

C2 =
δ

2ξ2
und D2 =

δ(2− δ)
2ξ2(1− δ)

und E2 = 0 (4.49)

quantifiziert. Die Summation der Aberrationskoeffizienten erfolgt unter Hinzunahme der
Terme 4.40 sowie der Rand- bzw. Anschlussbedingungen

ξ2 =
Fδξ1
Fδ − ξ1

und p =
ξ1
δ

und q = − Fξ1
Fδ − 2ξ1

. (4.50)
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Zur expliziten Bestimmung des Profils fordert man zunächst via F1 + FZP + F2 = 0 Ko-
mafreiheit und erhält die beiden Krümmungsradien zu

(

ξ1
ξ2

)

= Gδ(F )
(

(1 + δ2)
−1

(δ2 − δ − 1)
−1

)

, (4.51)

wobei die vorübergehend eingeführte Funktion Gδ(F ) definiert ist durch den Ausdruck

Gδ(F ) ≡ 2Fδ + Fδ2. (4.52)

Offenkundig sind die höheren Potenzen von δ in sehr guter Näherung zu vernachlässigen,
tatsächlich gilt

(

ξ1
ξ2

)

= 2

(

+1
−1

)

Fδ + Fδ2 +O
(

δ3
)

. (4.53)

Um die sphärische Aberration zu eliminieren, stehen die Profilparameter b1 und b2 zur
Verfügung. Man verlangt wieder B1 + BZP + B2 = 0. Ohne Einschränkung kann b1 =
b2 gewählt und so die asphärische Korrektur zu gleichen Teilen den beiden Oberflächen
zugewiesen werden. Die Rechnung ergibt als theoretische Werte

b1,2 = −1− 6δ +O
(

δ2
)

(4.54)

und bestätigt die Erwartung einer bikonvexen und nahezu parabolischen Oberfläche. Die
von b1,2 unabhängigen Beiträge zum Astigmatismus und zur Bildfeldwölbung entziehen
sich allerdings einer potentiellen Optimierung, das schlussendliche Ergebnis lautet

B = 0 und C =
1

2F
und D =

δ

2F (δ − 1)
und E = 0 und F = 0. (4.55)

Der durch den Koeffizienten C beschriebene Astigmatismus verbleibt somit als einzige
nennenswerte Aberration und wird quantitativ allein durch das Öffnungsverhältnis f und
den Kippwinkel φ bestimmt,

∆εx =
1

2f

(

1− δ

2

)

φ2 cos θ und ∆εy = −
1

4f
δφ2 sin θ. (4.56)

Abb. 4.14 visualisiert diese Gleichungen für diverse Parametersätze (f, φ) – mit typischen
Öffnungsverhältnissen zwischen 3 × 104 und 5 × 105. Die Verzerrung beschreibt offenbar
die gestörte PSF in der Sagittalebene, in der Meridionalebene dreht die Figur um 90◦.
Ermittelt man schließlich noch den quadratisch über 0 ≤ θ ≤ 2π gemittelten Fehler, so
lautet die Gl. 4.42 entsprechende Formel

〈∆ε〉θ =
(

1

2π

∫ 2π

0

∆ε2(f, δ, θ, φ) dθ

)1/2

≈ 1

2
√
2f
φ2. (4.57)
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Abbildung 4.14: Seidel-Aberrationen des aplanatischen Hybrid-Profils. Die nahezu bikonve-
xe Hybridlinse toleriert Winkelabweichungen von ∼ 1◦, je nach Öffnungsverhältnis f . Den
gezeichneten Graphen liegt die Brechkraft δ = 1 × 10−4 zugrunde, die jedoch einen relativ
zum von δ unabhängigen Astigmatismus sehr geringen Anteil zum Gesamtfehler beiträgt.

Bis auf einen Faktor 1
2
√
2
stimmt dieser Wert mit der Länge der quasi eindimensional

verzerrten PSF überein. Um die beugungsbegrenzte Abbildung zu erhalten, sollte eine
Verkippung die Größenordnung

φ .
√

∆ε · f ∼ 10−4
√

f für ∆ε = 10−3arcsec (4.58)

nicht überschreiten. Übertragen auf reale Öffnungsverhältnisse, folgt die Abschätzung

104 . f . 105 → −1◦ . φ . +1◦. (4.59)

Sie gilt selbstverständlich nur im Idealfall einer auf die übrigen Bildfehler optimal korrigier-
ten Linse und bedarf aufgrund meist unvermeidlicher Fertigungstoleranzen in der Praxis
einer nochmaligen Überprüfung.

Der Vorteil aplanatischer Linsen liegt somit in der nahezu fehlerfreien Abbildung, selbst
unter dem Einfluss signifikanter Verkippungen. Mit den überragenden optischen Eigen-
schaften gehen freilich hohe technische Anforderungen an die Fertigung des bikonvexen
Profils einher, die in der Kombination mit der diffraktiven Linse noch an Bedeutung ge-
winnen.

Zum Abschluss sei wieder das Leistungsvermögen von Hybridlinsen abgeschätzt. Anders
als im diffraktiven Fall tritt die Zonenzahl N nun als expliziter Parameter auf. Man findet
unter Verwendung zuvor abgeleiteter Formeln

Aeff ×∆E ≈ π hc
√
N e

− N
2N0 F = π

hc

2
V F, (4.60)
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wenn die Absorption der diffraktiven Komponente vernachlässigt wird und V wie bisher die
Verstärkung beschreibt. Abb. 4.15 illustriert den Verlauf der Lichtstärke für diverse Werte
V . Im Vergleich zur diffraktiven Version erzielt die Hybridlinse bei gleicher Fokallänge F ei-

Abbildung 4.15: Lichtstärke von Hybridlinsen. Das in Einheiten von Aeff × ∆E gemes-
sene Leistungsvermögen wächst linear mit der Brennweite F und der Verstärkung V , de-
ren Maximum unter Feststoffen LiH-Kristalle mit Vmax ≈ 43 erreichen. Als physikalisch-
technisches Minimum wird Vmin = 4 angesehen.

ne um den Faktor V
2
verbesserte Leistung, im Optimum Li- oder LiH-basierter Modelle also

rund das 20−fache. Auf die spezielle Problematik des H2 wird in Abschn. 5.1 eingegangen,
der in Abb. 4.15 eingetragene Graph dient lediglich als theoretischer Vergleichswert.

4.2 Reduktion der refraktiven Profilkomponente

Angesichts der mit dem Zonenverhältnis N
N0

zunehmenden Absorption und der daraus er-
wachsenden Auflösungs-/Graufilterproblematik stellt sich die Frage nach einer zweckmäßi-
gen Methode, die Lichtstärke ohne wesentliche Einbußen in der Winkelauflösung zu ver-
bessern. Analog zur in Kap. 3 durchgeführten Reduktion des diffraktiven Profils bietet sich
dieses Verfahren prinzipiell auch im Fall der refraktiven Profilkomponente der Hybridlinse
an. Auf den ersten Blick sind jedoch der sukzessiven Abtragung enge Grenzen gesetzt,
da nach 3.2 bereits NL

2mL
≈ 10 Fresnelringe der refraktiven Profilkomponente weitgehend

diffraktiven Charakter verleihen und so das Prinzip der Dispersionskorrektur ad absurdum
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führen würden. Gleichwohl erweist sich eine zunächst formal allgemein gehaltene Ableitung
der Abbildungseigenschaften als sinnvoll. Als Grundlage dient eine erweiterte Variante des
Hybridprofils nach Gl. 4.10, die sich als

tm,n(σ) = t(Z)p,m(σ) + t(L)q,n(σ) (4.61)

schreiben lässt. Sie setzt sich aus diffraktivem (Z) und refraktivem (L) Anteil zusammen,

t(Z)p,m(σ) = m
λc

δ (λc)

(

1− p+ N0
2m

(

σ

R0,Z

)2
)

, (4.62)

und beschreibt mit den bereits bekannten Indizes p undm sowie dem kritischen diffraktiven
Radius R0,Z das kinoforme Profil einer FL mit NZ Zonen. Analog definiert

t(L)q,n(σ) = n
λc

δ (λc)

(

q − NL

2n
+
N0
2n

(

(

R

R0,L

)2

−
(

σ

R0,L

)2
))

(4.63)

die refraktive Korrekturkomponente der zunächst beliebigen Zonenzahl NL mit Laufindex
q und Stufenparameter n ε N4. Unter Berücksichtigung der üblichen Definitionen für R
und R0,Z sowie R0,L ergibt sich daraus die Amplitude

ũ(σ) = ũ0e
2πi 1

ψ

(

1+ i
2πN0

)

Fm,n(σ), (4.64)

wobei wie üblich ũ0 = 1, der Energieparameter ψ = E
Ec

und die reelle Funktion Fm,n(σ)
durch den Ausdruck

Fm,n(σ) = m(1− p) + nq +
1

2
(NZ −NL)

( σ

R

)2

(4.65)

gegeben ist. Erneut spaltet das Integral über σ in eine Summe über die einzelnen Fresnel-
Ringe auf, allerdings bedarf es nun einer sukzessiven Addition der ausschließlich diffraktiven
und zusätzlich refraktiven Beiträge. Jedenfalls muß die Integration formal der Struktur

∫ R

0

dσ →
qmax
∑

q=qmin

pmax
∑

p=pmin

∫

√
2m
N
pR

√
2m
N
(p−1)R

dσ (4.66)

folgen, wobei die Integrationsgrenzen nach wie vor durch die Fresnel-Ringe der diffraktiven
Komponente festgelegt sind. Die Summationsgrenzen über die Laufindizes p und q erhält
man mittels folgender Überlegung: Bezeichnet

# (TZ) =
NZ

2m
ε N und # (TL) =

NL

2n
ε N (4.67)

4Diese Größenbezeichnungen gelten nur im lokalen Kontext und sind nicht mit den sonst üblichen
Definitionen im Rahmen dieser Arbeit zu verwechseln.
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die Anzahl der diffraktiven bzw. refraktiven Fresnelringe, so ist auch für deren Verhältnis

# (TZ) ·#(TL)
−1 =

NZ

NL

( n

m

)

ε N (4.68)

zu fordern. Dieser Quotient beschreibt gerade die Zahl der auf einen refraktiven Ring ent-
fallenden diffraktiven Fresnel-Ringe, wobei natürlich n > m oder gar nÀ m angenommen
wird. Die Summen in 4.66 über p und q stellen sich nun als

pmin = (q−1)NZ

NL

n

m
+1 und pmax = q

NZ

NL

n

m
und qmin = 1 und qmax =

NL

2n
(4.69)

dar. Einsetzen der Amplitude nach 4.64 in das Beugungsintegral 2.23 und Rückgriff auf die
Summation nach 4.66 mit obigen Grenzen liefert schließlich nach einigen Umformungen

Ĩm,n (~υ) =

∣

∣

∣

∣

∣

∣

2
ψ

ζ

(

1− NL

NZ

)

e
− m
N0

1
ψ

NL
2n
∑

q=1

e
1
ψ

(

2πi− 1
N0

)

nqSq (~υ)

∣

∣

∣

∣

∣

∣

2

, (4.70)

wobei wieder ζ = z
F

gesetzt wurde. Die Gesamtbrennweite F hängt grundsätzlich vom

Zonenverhältnis NL
NZ

ab. Bezugnehmend auf Gl. 4.2 folgt nämlich für E = Ec unmittelbar

F = FZ

(

1− NL

NZ

)−1
. (4.71)

Der Summand Sq (~υ) zählt die diffraktiven Fresnel-Ringe innerhalb eines refraktiven Rings,

Sq (~υ) =
q
NZ
NL

n
m

∑

p=(q−1)NZ
NL

n
m
+1

e
− 1
ψ

(

2πi− 1
N0

)

mpJp (~υ) . (4.72)

Zuletzt verbleibt das eigentliche Beugungsintegral über den einzelnen diffraktiven Ring zu

Jp (~υ) =
∫

√
2 m
NZ

p

√
2 m
NZ
(p−1)

e
iπNZτ

2
(

1−NL
NZ

)(

1
ψ

(

1+ i
2πN0

)

−ψ
ζ

)

J0

(

2πυ
ψ

ζ

(

1− NL

NZ

)

τ

)

τdτ, (4.73)

mit dem relativen Aperturradius τ = σ
R
, das den Amplitudenbeitrag des p−ten diffraktiven

Rings zur Gesamtverteilung am Ort ~υ = (υ, ζ) liefert. Der Argumentation im Kontext von
Gl. 4.6 folgend, wird nun NL = 1

2
NZ gesetzt, in der Annahme, dass δ(E) ∝ E−2. Gleichwohl

bildet Gl. 4.70 die Basis beliebiger Dispersionskorrektoren, insbesondere des Bandkanten-
Achromaten nach [24]. Mit NL = 1

2
NZ lautet Gl. 4.70 also

Ĩm,n (~υ) =

(

ψ

ζ

)2

e
−2 m

N0

1
ψ

∣

∣

∣

∣

∣

∣

N
4n
∑

q=1

e
1
ψ

(

2πi− 1
N0

)

nq

2q n
m

∑

p=2(q−1) n
m
+1

e
− 1
ψ

(

2πi− 1
N0

)

mpJp (~υ)

∣

∣

∣

∣

∣

∣

2

,
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wobei NZ → N substituiert wurde und sich das Integral Jp (~υ) über den Fresnel-Ring auf

Jp (~υ) =
∫

√
2m
N
p

√
2m
N
(p−1)

e
iπ
2
Nτ2

(

1
ψ

(

1+ i
2πN0

)

−ψ
ζ

)

J0

(

πυ
ψ

ζ
τ

)

τdτ (4.74)

reduziert. Um die axiale Verteilung und speziell den spektralen Bandpass, also das in n ε N
verallgemeinerte Analogon zu Gl. 4.17 zu finden, wird zunächst υ = 0 gesetzt. Man erhält

Ĩm,n(ψ, ζ) =

(

ψ

ζ

)2

e
−2 m

N0

1
ψ

∣

∣

∣

∣

∣

∣

N
4n
∑

q=1

e
1
ψ

(

2πi− 1
N0

)

nq

2q n
m

∑

p=2(q−1) n
m
+1

e
− 1
ψ

(

2πi− 1
N0

)

mpJp(ψ, ζ)

∣

∣

∣

∣

∣

∣

2

.

Die längs υ = 0 analytische Integration von Jp(ψ, ζ) komplettiert die Summanden in p via

Jp(ψ, ζ) =
1

Nπi

1− e−mπi
(

1
ψ

(

1+ i
2πN0

)

−ψ
ζ

)

1
ψ

(

1 + i
2πN0

)

− ψ
ζ

e
mπip

(

1
ψ

(

1+ i
2πN0

)

−ψ
ζ

)

, (4.75)

so dass die fokale Intensitätsverteilung Ĩn(ψ) folgende Gestalt eines Produktes annimmt,

Ĩm,n(ψ, ζ) =

(

1

Nπ

)2

Fm (ψ, ζ) · Gn (ψ, ζ)
(

ψ

ζ

)2

. (4.76)

Zunächst nimmt der Term Fm (ψ, ζ) ausschließlich auf die diffraktive Komponente Bezug,

Fm (ψ, ζ) ≡
1− 2e

− m
2N0

1
ψ cos

(

πm
(

1
ψ
− ψ

ζ

))

+ e
− m
N0

1
ψ

1− 2e
m
2N0

1
ψ cos

(

πm
(

1
ψ
+ ψ

ζ

))

+ e
m
N0

1
ψ

. (4.77)

Schließlich wirken sich Variationen in n ε N lediglich auf den zweiten Faktor Gn (ψ, ζ) aus,

Gn (ψ, ζ) ≡
1− 2e

− n
N0

1
ψ cos

(

2nπ
(

1
ψ
+ ψ

ζ

))

+ e
−2 n

N0

1
ψ

1
ψ2

(

1 +
(

1
2πN0

)2
)

+
(

ψ
ζ

)2

− 2
ζ





sin
(

N
4
πψ
ζ

)

sin
(

nπψ
ζ

)





2

. (4.78)

Während der erste, die cos−Funktion enthaltende Term die refraktive Dispersionskorrek-
tur gewährleistet, führen die Nullstellen des zweiten zur nachfolgend zu besprechenden
Kammstruktur in der fokalen Intensitätsverteilung. Um in einem ersten Schritt den Band-
pass zu ermitteln, erweist es sich wieder als zweckmäßig, in Gl. 4.76 die Absorption zu
vernachlässigen. Ferner wird im Fokus ζ = 1 und für maximal diffraktive Wirkung m = 1
gesetzt. Wie im Fall des massiven Achromaten nach Abschn. 4.1 bestimmt nun eine trigo-
nometrische Funktion bzw. deren Argument den funktionalen Verlauf,

In(ψ) =

(

2

N

)2




sin
(

πn
(

ψ + 1
ψ

))

sin
(

π
2

(

ψ + 1
ψ

)) · sin
(

N
4
πψ
)

sin (nπψ)
·
sin
(

π
2

(

ψ − 1
ψ

))

π 1
ψ

(

ψ − 1
ψ

)





2

. (4.79)
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Aus der bereits auf In(ψ = 1) normierten Gl. 4.79 liest man ab, dass der mittlere der
drei Quotienten im Fall des massiven Standard-Achromaten nach Abschn. 4.1 mit n = N

4

den konstanten Wert 1 annimmt. Wählt man dagegen in einem ersten Reduktionsschritt
n = N

8
, so resultiert je nach Zonenzahl N eine Verteilung nach der oberen Grafik in Abb.

4.16. Abgesehen von den charakteristischen Oszillationen tritt zunächst der gegenüber
dem massiven Standard mit n = N

4
erweiterte Bandpass hervor. Er errechnet sich aus der

Einhüllenden În(ψ) der Intensitätsverteilung, gegeben durch

În(ψ) =

(

1

2n

)2




sin
(

πn
(

ψ + 1
ψ

))

sin
(

π
2

(

ψ + 1
ψ

))





2



sin
(

π
2

(

ψ − 1
ψ

))

π 1
ψ

(

ψ − 1
ψ

)





2

, (4.80)

und speziell aus den Nullstellen des ersten Faktors, die sich mit nÀ 1 aus der Bedingung

sin

(

nπ

(

ψ +
1

ψ

))

= 0 → ψ +
1

ψ
= z

1

n
mit z ε N (4.81)

ergeben. Die quasi triviale Lösung mit z0 = 2n repräsentiert die durch den Nenner des-
selben Faktors kompensierte und daher nicht sichtbare

”
Nullstelle“ bei ψ = 1. Um die

benachbarten Lösungen ψ± zu ermitteln, entwickle man den Term 4.81 gemäß

2 + (ψ − 1)2 ≈ z0 + 1

n
→ ψ± ≈ 1± 1√

n
(4.82)

bis zur zweiten Ordnung in ψ. Für n = N
4
liegen die ersten Minima bei ψ± ≈ 1± 2√

N
und

markieren damit den doppelten Bandpass nach Gl. 4.9. Es erscheint daher gerechtfertigt,
die nutzbare spektrale Breite der Kammstruktur reduzierter Achromaten mit

∆E

E
=

1√
n

mit n ε N (4.83)

anzugeben. Sie beträgt demnach für einfach reduzierte Versionen mit n = N
8

etwa das
1.4−fache und im Fall des zweifach reduzierten mit n = N

16
immerhin bereits das Doppelte

der ursprünglichen Bandbreite.
Die hochfrequente Oszillation selbst hat ihre Ursache in den zusätzlichen Interferenzen,

die durch die nun partiell diffraktive Ausführung der refraktiven Komponente entstehen.
Die Kammstruktur ist dahingehend zu interpretieren, dass Maxima in lateraler Dimension
einer

”
ordnungsgemäßen“, beugungsbegrenzten PSF entsprechen, während Minima mit

einer lokal defokussierten Abbildung korrespondieren. Um die Periode der Oszillationen zu
ermitteln, ist nach Gl. 4.79 für den Nenner des mittleren Faktors

sin (nπψ) = 0 → ψ = z
1

n
mit z ε N (4.84)

zu fordern. Setzt man zunächst ψ = 1, ergibt sich z0 = n. Die Differenz zweier Energiewerte
ψ und ψ ±∆ beträgt dann allgemein und unabhängig von ψ selbst

∆ =
1

n
≡
(

∆E

E

)

comb

> 0 ∀ n, (4.85)
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Abbildung 4.16: Bandpass reduzierter Hybrid-Achromaten. Im Gegensatz zur kontinuier-
lichen Effizienzkurve der Standard-Hybridlinse mit N = 5000 (rot strichliert) oszilliert
die fokale Peakintensität und damit auch die PSF-Qualität bzw. Winkelauflösung mit der
Periode

(

∆E
E

)

comb
= 1

n
. Die

”
globale“ spektrale Bandbreite, gegeben durch die Einhüllende

der Oszillationen, nimmt bei der einfachen Reduktion mit n = N
8
gegenüber der massiven

Version um ca. 40% zu, im Fall hochgradiger Abtragung um 1
2

√

N/n.
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wobei die beiden Bezeichnungen im Rahmen dieses Unterkapitels simultan verwendet wer-
den. Speziell ergibt sich ∆ = 8

N
im Fall der einstufigen Reduktion nach Abb. 4.16 (oben).

Offenbar
”
zählt“ der Nenner nur die Maxima, denn der Zähler des mittleren Faktors in

Gl. 4.79 oszilliert im Trivialfall n = N
4

zumindest mit gleicher, ansonsten mit der zwei-
oder allgemein

(

N
4n

)

-fachen Frequenz und berücksichtigt auch die Minima. Angesichts der
hohen Zonenzahlen N , denen die Motivation eines reduzierten Hybrid-Profils üblicherweise
zugrunde liegt, stellt sich sofort die Frage nach der spektralen Trennschärfe des Detektors.
Um die Winkelauflösung der gesamten, trotz Profilreduktion kohärenten Apertur zu erhal-
ten, bedarf es einer Spektralauflösung von der Bandbreite eines

”
Zackens“. Diese bestimmt

sich wiederum aus dem für die Kammstruktur verantwortlichen Faktor in Gl. 4.76. Zählt
q die Maxima in der Relativ-Energie ψ, ergeben sich diese aus dem Nenner zu

ψq(ζ) =
n± q
n

ζ mit q ε N0. (4.86)

Gl. 4.86 liefert unmittelbar die bzgl. eines
”
Zackens“ lokale Dispersionsrelation in ψq(ζ),

d

dζ
ψq(ζ) = 1± q

n
, während ∆zDOF = ±F

N
(4.87)

bekanntlich die Fokustiefe beschreibt. In linearer Näherung ergeben sich die Bandbreiten
(

∆E

E

)

±
=
(

1± q

n

) 2

N
≈ 2

N
. (4.88)

Die durch den Korrekturterm ± q
n
bedingten Abweichungen der Bandbreite eines Peaks

machen sich angesichts der üblicherweise
”
großen“ Werte für nÀ 1 erst fernab des zentra-

len Maximums in ψ = 1 bemerkbar und sind in aller Regel über das den globalen Bandpass
nach Gl. 4.83 beschreibende Energieintervall zu vernachlässigen. Abb. 4.17 illustriert die
lokale Dispersion des reduzierten Achromaten schematisch. Die lokale Bandpass-Formel Gl.

Abbildung 4.17: Lokale Dispersion des reduzierten Hybrid-Profils. Der Bandpass des zen-
tralen Maximums mit ψ = 1 beträgt exakt 2

N
. Spektral weit entfernte Peaks mit q± À 1

weisen eine größere (blau) oder kleinere (rot) Dispersion auf, gegeben durch tan γ± ≷ 1.

4.88 lässt eine Korrespondenz zur klassischen diffraktiven Linse vermuten. In der Tat ent-
spricht das dispersive Verhalten der hochreduzierten Hybridlinse in guter Näherung dem
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des rein diffraktiven Analogons halbierter Zonenzahl N . Um dies zu sehen, betrachte man
erneut Gl. 4.76 mit den entsprechenden Abkürzungen, setze darin m = 1 und vollziehe den
Grenzübergang N0 →∞. Man findet

In(ψ, ζ) =

(

1

Nπ

)2

Fm=1 (ψ, ζ) · Gn (ψ, ζ)
(

ψ

ζ

)2

, (4.89)

wobei nun unter der Annahme kleiner spektraler Abweichungen mit ψ ≈ 1 und ebensolcher
Fokusnähe gemäß ζ ≈ 1 in den Argumenten der trigonometrischen Funktionen durch

1

ψ
+
ψ

ζ
≈ 2 (4.90)

genähert werden kann. Diverse Vereinfachungen und Umformungen verkürzen Gl. 4.89 auf

In(ψ, ζ) ≈
(

4n

Nπ

)2




sin
(

1
2
π
(

1
ψ
− ψ

ζ

))

1− ζ
ψ2





2



sin
(

N
4
πψ
ζ

)

sin
(

πnψ
ζ

)





2

. (4.91)

Dem das die Differenz zwischen 1
ψ
und ψ

ζ
enthaltende Argument bleibt eine ähnliche Verein-

fachung versagt, da beide Terme ∼ O(1) und der sin−Zähler kritisch mit dem zugehörigen

”
refraktiven“ Nenner reagiert. Nun stimmt Gl. 4.91 im Grenzfall N À n→ 1 bis auf einen
hier unbedeutenden Faktor 1

2
im sin−Argument mit der fokalen Intensität einer diffrakti-

ven Linse halbierter Zonenzahl auf der optischen Achse nach Gl. 3.78 überein.
Die lokale Bandbreite der Kammstruktur wird im weiteren Verlauf allen Abschätzungen

zugrunde gelegt, es gilt also
(

∆E

E

)

loc

=
2

N
→ fn = 2

n

N
≤ 1

4
, (4.92)

wenn fn den Bruchteil der nicht reduzierten Bandbreite nach Gl. 4.83 benennt, der vom
Detektor tatsächlich erfasst wird. Dessen spektrales Auflösungsvermögen sollte im Interesse
der Bildqualität zumindest der lokalen Breite der Kammstruktur entsprechen,

(

∆E

E

)

det

≤ 2

N
. (4.93)

Die Profilreduktion bewirkt somit zweierlei: Einerseits nimmt die Transmission zu, anderer-
seits vermindert sie den Bandpass mit dem Grad der Reduktion. Angesichts dieser Tatsache
erscheint es sinnvoll, weitere, zuerst zwei- dann mehrstufige Reduktionen in Betracht zu
ziehen. Erwartungsgemäß modifiziert dieses Unterfangen abermals die spektrale Effizienz
In(ψ) im Sinn einer veränderten Kammstruktur. Abb. 4.16 zeigt unten das Beispiel eines
auf n = N

40
hochreduzierten Typs, während Abb. 4.18 Ausschnitte besagter Oszillationen

für n = N
8

und n = N
40

nach Gl. 4.79 illustriert. Die beiden Kurven unterscheiden sich
lediglich in den verschwindenden Maxima, während andere, im gegenseitigen Abstand der
Kammperiode

(

∆E
E

)

comb
angesiedelte unverändert erhalten bleiben.
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Abbildung 4.18: Kammstruktur bei ein- und mehrfacher Reduktion. Die Kammperiode des
reduzierten Achromaten 1. Stufe beträgt ∆E

E
= 8

N
, entsprechend der doppelten FWHM-

Breite eines
”
Zinkens“. Die Reduktion zehnter Stufe erhält jedes fünfte Maximum (unten).

Eben jenes Ziel, die Lichtstärke Aeff × ∆E bei konstanter Aperturgröße zu verbes-
sern, entbehrt daher nicht einer grundsätzlichen Ambivalenz: Der gesteigerten Transmis-
sion steht nun eine relativ zum massiven Hybrid-Standard verminderte Spektraleffizienz
aufgrund der Kammstruktur entgegen. Bezeichnet n wie bisher den Stufenparameter der
refraktiven Komponente, so stellen sich absolute und relative Lichtstärke allgemein als

Aeff ×∆E = fnπR
2 E√

n
· e−

2n
N0 → Q (n1, n2) =

fn2
fn1

√

n1
n2
e
2
N0
(n1−n2) (4.94)

dar. Hier wurde der Quotient Q (n1, n2) ≡ (Aeff ×∆E)n2 · (Aeff ×∆E)−1n1 als Maß für
den Nutzen der refraktiven Profilreduktion eingeführt, wobei n1 den Stufenparameter vor
und n2 denjenigen nach der Reduktion beschreibt. Üblicherweise gilt n1 =

N
4
und speziell

im Fall der einstufigen Korrektur n2 =
N
8
. Ferner steht 0 ≤ fn ≤ 1

4
für den Bruchteil des

gesamten Bandpass-Spektrums, der vom Detektor tatsächlich erfasst wird. Definiert

k ≡ M

4n
ε N, dann beschreibt fn(k) =

1

2k
(4.95)

die spektrale Nutzung in Abhängigkeit vom Reduktionsparameter k. Im Fall des Standard-
Achromaten mit n1 = N

4
gilt ausnahmsweise fn1 = 1 und k = 1. Eingesetzt in Gl. 4.94,
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ergeben sich für die genannten Werte n1 und n2 Funktionen nach Abb. 4.19. Es werden die
beiden niedrigsten Reduktionsstufen k = 2 und k = 3 angenommen. Der schraffierte Sektor

Abbildung 4.19: Zunahme der Lichtstärke durch Profilreduktion. Sie erweist sich als umso
effektiver, je größer N

N0
ausfällt. Für alle k verspricht sie gegenüber dem massiven, auf 1

normierten Profil nur dann eine quantitative Verbesserung, wenn s ≥ smin ≈ 3.7.

wird offensichtlich nicht berührt. Ansonsten ist insbesondere der Umstand hervorzuheben,
dass je nach der Wahl von k der Profilreduktion erst für N & 4N0 das Attribut einer
physikalisch sinnvollen Maßnahme zugestanden werden kann. Dies gilt im übrigen auch für
alle höheren Reduktionsgrade – ein Minimum wird mit

(

N

N0

)

min

≈ 3.7 für k = 4 (4.96)

durchschritten. Generell verspricht die Reduktion bei gegebenem k eine umso größere Wirk-
samkeit, je höher das Verhältnis N

N0
der Zonenzahlen ausfällt. Allgemein findet man bei

beliebiger Reduktion der refraktiven Komponente unter Rückgriff auf Gl. 4.94

Aeff ×∆E =
π

2
hc

√

N

k
e
− N
2kN0F mit n =

N

4k
, k ε N. (4.97)

Mit den Naturkonstanten h und c lässt sich Gl. 4.97 ins Verhältnis zur Lichtstärke des mas-
siven, nicht reduzierten Achromaten mit n = N

4
setzen und als Funktion zweier Variablen
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bzw. Parameter ausdrücken,

Qk(s) =
1

2
√
k
e
s
2(1−

1
k) mit s =

N

N0
. (4.98)

Tab. 4.6 listet einige Werte nach Gl. 4.98 auf. Obgleich in der Praxis k ε N gewählt wird,

s 1 2 3 4 5 6 7 8 9 10 11 12

Q2(s) 0.45 0.58 0.75 0.96 1.23 1.58 2.03 2.61 3.35 4.31 5.53 7.10

Q3(s) 0.40 0.56 0.78 1.10 1.53 2.13 2.98 4.15 5.80 8.09 11.3 15.8

Q5(s) 0.33 0.50 0.74 1.11 1.65 2.46 3.68 5.49 8.18 12.2 18.2 27.2

Q10(s) 0.25 0.39 0.61 0.96 1.50 2.35 3.69 5.79 9.08 14.2 22.3 35.0

Tabelle 4.6:Wirkungsgrad der Profilreduktion. In Abhängigkeit vom Zonenverhältnis s = N
N0

ist Qk(s) für diverse Reduktionsparameter k angegeben.

hängt Qk(s) auf R+ stetig vom Reduktionsparameter k ab, so dass für ein Extremum in k

d

dk
Qk(s) =

1

4
e
s
2(1−

1
k) 1√

k3

( s

k
− 1
)

→ 0 (4.99)

zu fordern ist. Auf den über die Bedingung d2

dk2
Qk(s) < 0 zu erbringenden Beweis, dass bei

k = N
N0

tatsächlich ein Maximum vorliegt, sei an dieser Stelle verzichtet. Bezeichnet [x] die
ganzzahlig gerundete Näherung der Zahl x ε R, so ist, übersetzt in reelle Zonenzahlen, die
optimale Profilreduktion also durch

kopt = [s]⇔ nopt =
1

4
[N0] und Qopt(s) =

1

2
√
s
e
1
2
(s−1) (4.100)

gegeben. Tab. 4.7 listet einige Werte s mitsamt ihrer optimalen Verstärkung Qopt(s) auf.
Der praktischen Konstruktion und Anwendung eines derart optimierten Hybrid-Profils

s 1 2 3 4 5 6 7 8 9 10 11 12

Qopt(s) 0.50 0.58 0.78 1.12 1.65 2.49 3.80 5.85 9.10 14.2 22.4 35.3

Tabelle 4.7: Optimierte Profilreduktion von Hybridlinsen. Normiert auf die Lichtstärke der
nicht-reduzierten Version, nimmt Aeff×∆E für den refraktiven Stufenparameter nopt =

N0
4

den größtmöglichen Wert nach Gl. 4.100 an.

steht unter Umständen die hohe spektrale Trennschärfe entgegen, die der Detektor zum
annähernden Erhalt der Winkelauflösung bekanntlich zu leisten hat und vorteilhaft wenig-
stens

(

∆E
E

)

det
= 2

N
betragen sollte.

Mittel- bis langfristig könnten (magnetische) Mikro-Kalorimeter (siehe Kap. 6) mit be-
stenfalls ∆E ∼ 1 eV bei einigen keV Praxisreife erlangen. Unter günstigen Bedingungen –
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dazu zählt insbesondere eine weitgehende Unterdrückung bislang unverstandener Rausch-
faktoren – darf mit einer Trennschärfe von & 3× 10−4 gerechnet werden. Im Rahmen der
vorliegenden Arbeit, speziell im Vorgriff auf Abschn. 5.5 wird eine Auflösung von

(

∆E

E

)

det

= 4× 10−4, entsprechend N = 5× 103 (4.101)

angenommen. Die Zonenzahl jedweder profilreduzierten Linse ist demnach de facto auf
N < 104 beschränkt. Gleichwohl wird anhand von Tab. 4.7 erneut deutlich, dass optisch

”
schwache“ Materialien mit niedrigem N0 am meisten von der Profilreduktion profitieren
und durchaus mit s > 10 betrieben werden können, während Li bzw. LiH als die hinsichtlich
ihrer maximalen kritischen Zonenzahl N0 ≈ 103 leistungsfähigsten Feststoffe mit s ∼ 5 an
ihre praktische Grenze stoßen.

4.3 Dialytische Konfigurationen

Zu Beginn des Kapitels wurde Gl. 4.1 via d→ 0 dahingehend eingeschränkt, dass lediglich
kompakte Hybrid-Achromaten mit fixer Blaze-Energie Ec zur Diskussion standen. Gemäß
Gl. 4.1 sollte die Eröffnung des zusätzlichen Freiheitsgrades d ≥ 0 die Dispersionskorrektur
jedoch auch bei räumlich separierten Komponenten gestatten. Im Sinn einer übersichtlichen
mathematischen Behandlung des Problems erweist sich eine Abkehr von der bisher benutz-
ten, auf der paraxialen Wellengleichung basierenden Beugungstheorie als zweckmäßig. An
ihre Stelle tritt nun der Matrizenformalismus der geometrischen Optik, wie er z.B. in [26]
ausführlich beschrieben wird. Die Linsen befinden sich der im Rahmen dieses Abschnitts
gewählten Notation zufolge an den axialen Positionen z1 und z2, wobei die Forderung
z2 = z1 + d der refraktiven Korrekturlinse den nachgeordneten Rang einräumt. Das Bild
eines bei z0 < z1 lokalisierten Objektpunktes befindet sich dann bei zF ≡ z3 > z2. Die geo-
metrischen Verhältnisse sind in Abb. 4.20 veranschaulicht. Die Annahme zF > z2 impliziert
insbesondere ein reelles Bild – eine im übrigen keineswegs selbstverständliche Eigenschaft
solcher

”
dialytischen“ Systeme, die beispielsweise von rein diffraktiven Dubletts verletzt

werden kann. Wenngleich der Linsenseparation im folgenden durch den Rückgriff auf Me-
thoden der geometrischen Optik Rechnung getragen wird, so geschieht dies doch weiterhin
in paraxialer Näherung. Die auftretenden Winkel der propagierenden Lichtstrahlen können
daher näherungsweise linearisiert werden, so dass eine allgemeine optische Operation als

~w =M · ~v oder wk =Mkl vl (4.102)

geschrieben werden kann. Die Vektoren ~v bzw. ~w beschreiben in axialsymmetrischen Pro-
blemstellungen Winkel α und radialen Abstand r von der optischen Achse. Entsprechend
wirken die als Operatoren fungierenden Matrizen M je nach Art des durch sie vertrete-
nen optischen Elements auf diese beiden Koordinaten. Translation Tij von zi nach zj und
Beugung Bi am i−ten optischen Element drücken sich demnach als

Tij =
(

1 0
zj − zi 1

)

bzw. Bi =
(

1 − 1
Fi

0 1

)

(4.103)
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Abbildung 4.20: Abmessungen eines dialytischen Dubletts. Die Konfiguration besteht aus
einer diffraktiven Sammel- und einer refraktiven Streulinse, die beide den Radius R besitzen
und an den axialen Positionen z1 bzw. z2 lokalisiert sind. Das System fokussiert nach
z3 = zF . Das Objekt bei z0 wird im Verlauf der Rechnung formal nach −∞ verlegt.

aus, wobei Fi die Brennweite besagter Komponente bezeichnet. Nach einschlägigen alge-
braischen Regeln berechnet sich nun die Abbildung durch das dialytische Linsensystem zu

(

α3
r3

)

= T23 · B2 · T12 · B1 · T01
(

α0
r0

)

(4.104)

mit den entsprechenden Indizes nach Abb. 4.20. Auf die explizite, aufwändige Darstellung
der Matrizenmultiplikation sei verzichtet. Um die Koordinaten des Bildes, sprich Einfalls-
winkel α3 und Fokalposition zF zu ermitteln, empfiehlt sich die Wahl

(

α0
r0

)

=

(

R
z1−z0
0

)

. (4.105)

Der Einfallswinkel des Strahls einer axialen Punktquelle in den Fokus ergibt sich nun zu

α3 = −
R

z0

((

1− z2 − z1
F2

)(

1− z1 − z0
F1

)

− z1 − z0
F2

)

, (4.106)

während sich die laterale Position r3 des Bildpunktes folgendermaßen darstellen lässt:

r3 = −
R

z0
· F (zi)−R · G (zi) (4.107)

wobei vorübergehend Funktionen F (zi) und G (zi) eingeführt wurden, die mit

F (zi) =

(

zF − z2 +
(

1− zF − z2
F2

)

(z2 − z1)
)(

1− z1 − z0
F1

)

(4.108)

G (zi) =

(

1 +
zF − z2
F2

)(

z1
z0
− 1

)

(4.109)
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ebenfalls von den Axialkoordinaten zi abhängen. Da im Gegensatz zur kompakten Hybrid-
optik aus Abschn. 4.1 mit d = 0 der Hauptebenenabstand nicht mehr vernachlässigt werden
kann, misst die Brennweite F des Gesamtsystems nun die Differenz zF − zH2 , wobei zH2
die bildseitige Hauptebene lokalisiert. Analog steht zH1 für die objektseitige Hauptebene.
Definitionsgemäß ergeben sich diese fiktiven Flächen aus elementaren Geradengleichungen,
die den effektiven Strahlverlauf zwischen Objekt- und Bildebene beschreiben [27]. Im Sinn
einer übersichtlichen Darstellung erweist es sich als sinnvoll, in den Gln. 4.106 und 4.107
z1 = 0 und folgerichtig z2 = d zu setzen. Damit verlagert sich die auf der optischen Achse
angesiedelte Punktquelle nach z0 < 0. Man findet

zH1 =
F1d

F1 + F2 − d
und zH2 =

F1d− d2
F1 + F2 − d

. (4.110)

Den Gegebenheiten der Praxis folgend, wurde hier in einem letzten Schritt der Grenzüber-
gang z0 → −∞ ausgeführt. Die Koordinaten des Bildpunktes lauten schließlich

(

α3
r3

)

= − R

F1F2

(

F1 + F2 − d
F1 (zF − d− F2) + F2zF − dzF + d2

)

. (4.111)

Um das angestrebte Ziel der Dispersionskorrektur zu realisieren, bietet Gl. 4.111 bezugneh-
mend auf lateralen und longitudinalen Fehler zwei prinzipiell verschiedene Möglichkeiten:

Die Forderung d
dE
α3(E) = 0 erweist sich als Ausdruck der Bedingung, dass die Varia-

tion der Gesamtbrennweite F = zF − zH2 in erster Ordnung bzgl. der Energie E bei Ec

verschwindet, denn offenbar gilt für den Einfallswinkel im Fokus

α3(E) = −R
(

1

F2
+

1

F1
− d

F1F2

)

= −R
F
. (4.112)

Unter vorläufigem Verzicht auf die spezifischen Dispersionsrelationen diffraktiver und re-
fraktiver Linsen führt die Extremalbedingung auf den Linsenabstand

d =
1

c1 + c2
(c2F1 + c1F2) mit Fi = ci E

γi und i = 1, 2. (4.113)

Mit ci und 1 ≤ γi ≤ 2 sind reelle Koeffizienten bzw. Exponenten bezeichnet. Gemein-
hin firmiert die durch den fokalen Einfallswinkel α3 bedingte Aberration in der optischen
Literatur unter dem Begriff des

”
lateralen Farbfehlers“. Er gestattet im korrigierten Ener-

gieintervall ∆E eine zumindest formal konstante Vergrößerung, die freilich praktisch kaum
genutzt werden kann, da der Brennpunkt zF (E) bzgl. E nach wie vor streut und somit bei
fester Detektorposition eine verwaschene Abbildung hervorruft.

Um also vielmehr diesen
”
longitudinalen Fehler“ so weit als möglich zu eliminieren, ist

in Gl. 4.111 die Fokalposition zF der Forderung

d

dE
zF (E) = 0 mit zF (E) =

F1d+ F1F2 − d2
F1 + F2 − d

(4.114)
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zu unterwerfen. Der Ausdruck für zF (E) wurde dabei bezugnehmend auf die axiale Position
der Punktquelle mittels r3 = 0 vereinfacht. Da F1 + F2 6= d angenommen werden kann,
findet man nun die Lösungen in d wieder mit Fi = ci E

γi zu

d± = F1

(

1± i
√

γ1
γ2

F2
F1

)

, (4.115)

die offenbar genau dann reellwertig sind, wenn (γ1F2) (γ2F1)
−1 ≤ 0 gilt. Der triviale und

physikalisch sinnlose Fall des verschwindenden Radikanden soll hier nicht betrachtet wer-
den. Da nach Voraussetzung γi ε R+, bedarf es zur longitudinalen Dispersionskorrektur in
dialytischer Konfiguration zwingend einer Kombination aus Sammel- und Streulinse mit
Brennweiten Fi entgegengesetzten Vorzeichens. Es lässt sich unter Verwendung vorstehen-
der Gleichungen zeigen, dass mittels konventioneller diffraktiver Linsen keine Dispersions-
korrektur in Transmission möglich ist. Lediglich in Reflexion liefert die zweite Komponente
reelle Lösungen, so dass 0 < zF < d. In Ermangelung geeigneter Normal-Spiegel kommt
dieser Option jedoch keine praktische Bedeutung zu. Alternativ gestatten Konfiguratio-
nen von Fresnel-Linsen durch geschickte Kombination verschiedener Beugungsordnungen,
zumindest zwei Energiewerte simultan abzubilden – eine angesichts des technischen Auf-
wandes fragwürdige Variante, da sich der Bandpass nur geringfügig erweitert. Nach ge-
genwärtigem Kenntnisstand bedarf es zu einer rein diffraktiv-transmissiven Dispersions-
korrektur spezieller Linsen, die sich durch spezifische Funktionen r = r(n) auszeichnen,
wobei r für den Radius in Abhängigkeit von der Zonenzahl n steht [28]. Leider vermag
erst ein derartiges Triplett näherungsweise aberrationsfrei abbildend auch auf achsfremde
Punktquellen zu wirken. Zudem bleibt der spektrale Bandpass auch solcher Konfiguratio-
nen stets hinter dem der diffraktiv-refraktiven zurück [28]. Mit der Spezifikation auf ein
eben solches System mit F1 → FZ ∝ E und F2 → FL ∝ E2 vereinfacht sich Gl. 4.114 zu

FL = − 2

FZ
(FZ − d)2 oder d = FZ ±

√

−1

2
FZFL. (4.116)

In dieser Form beschreibt die linke der Gln. 4.116 die bei fixem Linsenabstand d zur
Dispersionskorrektur nötige refraktive Fokallänge FL, so dass die rechte der Gln. 4.116

d (Ec) = FZ (E0)
Ec
E0
−

√

−1

2
FZ (E0)FL (E0)

(

Ec
E0

)3

(4.117)

ergibt, wobei angenommen wurde, dass insbesondere der unveränderliche Krümmungsradi-
us der refraktiven Linse bei einer bestimmten Energie E0 durch ξ = FL (E0) δ (E0) gegeben
ist. Ec steht dieser Notation zufolge nun für den variablen Zentralwert des dispersionskor-
rigierten Energieintervalls. Die physikalische Annahme einer positiven Distanz d ≥ 0 geht
gemäß Gl. 4.117 mit der oberen Schranke

Ec
E0
≤ −2FZ (E0)

FL (E0)
mit FL (E0) < 0 (4.118)
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an das mögliche Spektrum der Energiewerte Ec einher. Da die Distanz d bei E0 durch

d (E0) = FZ (E0)−
√

−1

2
FZ (E0)FL (E0) und FL (E0) = −2FZ (E0) für d (E0) = 0

gegeben ist, erweist es sich als zweckmäßig, FZ (E0) und FL (E0) nach eben dieser Definition
zu wählen. Im Grenzfall d (E0) → 0 nimmt der Dialyt dann gerade wieder Gestalt und
Funktion der in Abschn. 4.1 besprochenen Hybridlinse an. Eingesetzt in Gl. 4.117, liefert
die Relation FL (E0) = −2FZ (E0) den Ausdruck

d (Ec) = FZ (E0)
Ec
E0

(

1−
√

Ec
E0

)

. (4.119)

Die Fokalposition zF aus Gl. 4.114 lautet nun mit Gl. 4.119 und wegen FL (E0) = −2FZ (E0)

zF (Ec) = FZ (E0)
Ec
E0

(

1− 3

√

Ec
E0

)(

1− 2

√

Ec
E0

)−1

. (4.120)

In Einheiten der diffraktiven Fokaldistanz FZ (Ec) ist diese Funktion, bezeichnet mit dem
Begriff der

”
Brennweite“ zusammen mit dem ebenso normierten Linsenabstand d (Ec) in

Abb. 4.21 aufgetragen. Ausgehend von der bekannten Erweiterung um den Faktor 2 bei E0
erstreckt sich die Fokalposition demnach mit fallender Energie zu immer größeren Werten,
um für Ec → 1

4
E0 zu divergieren. Die zunehmende Fokaldistanz bleibt nicht ohne Aus-

wirkungen auf die Fokustiefe (DOF), zu deren Berechnung nun allerdings der spezifische
Strahlengang im zweikomponentigen System nach Abb. 4.20 berücksichtigt werden muß.
Nach allgemeiner Definition ist sie durch

∆zF = ±1

2

λ

(NA)2L
mit (NA)L =

rL
zF − d

und rL = R

(

1− d

FZ

)

(4.121)

gegeben, wobei der vom Strahlenbündel erfasste Radius nach Abb. 4.20 mit rL bezeichnet
wurde. Wiederum evaluiert für E = Ec, ergibt sich

∆zF = ±1

2

(

FZ (Ec)

N

)

4
Ec
E0

(

2

√

Ec
E0
− 1

)−2

, (4.122)

mit der diffraktiven Zonenzahl N . Abb. 4.21 zeigt den Verlauf der auf den diffraktiven Wert
normierten Schärfentiefe. Ein qualitativ ähnliches Verhalten zeigt die laterale Ausdehnung
der PSF, d.h. die Ortsauflösung ∆xF . Normiert auf den Standard ∆xZ der einfachen dif-
fraktiven Komponente, errechnet sie sich gemäß

∆xF
∆xZ

=
1

FZ
(zF − zH2) = 2

√

Ec
E0

(

2

√

Ec
E0
− 1

)−1

, (4.123)
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Abbildung 4.21: Längenskalen dialytischer Konfigurationen. Linsenabstand d, Fokustiefe
(depth of field, DOF) und die vom Ort der ersten Linse aus gemessene Brennweite F sind
auf die jeweiligen Werte des einfachen diffraktiven Analogons bezogen. Man beachte die zur
besseren Darstellung um den Faktor 102 reduzierte Fokustiefe.

da die Winkelauflösung lediglich von der Apertur der ersten, diffraktiven Komponente
bestimmt wird. Ebenso wie die Schärfentiefe divergiert ∆xF im Grenzfall Ec → 1

4
E0,

ein Umstand, der die grundlegende, wenn auch nur theoretische Bedeutung der für diese
Energie auftretenden Singularität unterstreicht. Abb. 4.22 veranschaulicht in der rechten
Teilgrafik den Verlauf der in Einheiten von FZ(E) gemessenen Fokalposition zF (E). Man
liest ab, dass mit zunehmender, in Prozent der Abweichung Ec

E∞
−1 gemessener Annäherung

der Energie Ec an die Singularität bei E∞ = 1
4
E0 der Fokus immer empfindlicher auf kleine

Variationen von E um Ec reagiert. Die linke der beiden Grafiken illustriert anhand des
Verlaufs von zF nach Gl. 4.120, dass in E∞ nicht nur eine bzgl. FZ

Ec
E0

relative, sondern
absolute Singularität vorliegt.

Als praktisch bedeutsamer erweist sich das Minimum nahe Ec ∼ 1
2
E0. Seine Position

errechnet sich aus der Extremalbedingung an zF (Ec) aus Gl. 4.120 bzgl. Ec,

d

dEc
zF (Ec) = 0 → [...] → Emin =

4

9
E0 und zF (Emin) =

4

3
FZ (E0) . (4.124)

Die zweite Lösung der Extremalforderung an zF (Ec), gegeben durch Ec = 1
16
E0, wurde

wegen E∞ = 1
4
E0 unterschlagen. Während somit die Verstimmung hin zum relativ weichen

Röntgenband die Fokaldistanz und damit die Gesamtlänge des aus den beiden Linsen



90 4. Korrektur der Dispersion

Abbildung 4.22: Fokale Position und -Singularität des Dialyten. Links ist die in Einheiten
von FZ (E0) gemessene absolute Fokallänge als Funktion der relativen Energie Ec

E0
aufge-

tragen. Die rechte Grafik zeigt den Verlauf der Gesamtbrennweite nahe der Singularität.

und dem Detektor bestehenden optischen Systems gegenüber zF (E0) reduziert, bedarf es
andererseits nach Gl. 4.119 einer zunehmenden Separation der Komponenten, die etwa bei

d (Emin) =
4

27
FZ (E0) , aber spätestens in d (E∞) =

1

8
FZ (E0) (4.125)

ihr faktisches Ende findet. Eine wesentliche Verstimmung über Emin hinaus zu kleineren
Energiewerten erscheint nämlich infolge des kritischen Verhaltens des Dialyten nahe E∞
nicht ratsam.

Die bisher abgeleiteten Formeln nahmen keinerlei Bezug auf die um Ec variierende
Energie E. Lediglich in Abb. 4.22 wurde diese lokale Verstimmung vorab berücksichtigt.
Um den Verlauf der Dispersion zF (E) und insbesondere den Bandpass

(

∆E
E

)

zu ermitteln,
wird im folgenden zugunsten übersichtlicher Darstellung die relative Energie gemäß

E

E0
→ ψ0 (1 + ε) mit ψ0 ≡

Ec
E0

und ε ≡ ∆E

Ec
(4.126)

substituiert. Die verallgemeinerten Brennweiten schreiben sich in kompakter Form als

FZ(E) = FZ (E0)ψ0 (1 + ε) und FL(E) = −2FZ (E0)ψ
2
0 (1 + ε)2 . (4.127)

Hingegen bleibt der Linsenabstand d gegenüber kleinen Variationen in E um Ec invariant,

d (Ec) = FZ (E0)ψ0

(

1−
√

ψ0

)

. (4.128)

Eingesetzt in den Ausdruck für die Fokalposition zF nach Gl. 4.114 findet man schließlich

zF (E)

FZ (E0)ψ0
= 1−

√

ψ0 − 2ψ0(1 + ε)2 − 4ψ20(1 + ε)4√
ψ0 + ε− 2ψ0(1 + ε)2

(4.129)

für kleine Variationen ε um 0 bzw. E um Ec. Eine Reihenentwicklung um ε = 0 liefert

zF (E)

FZ (E0)ψ0
=

3
√
ψ0 − 1

2
√
ψ0 − 1

+ 2
3ψ0 − 2

√
ψ0

(

2
√
ψ0 − 1

)2 ε
2 + 4

1− 2ψ0
(

2
√
ψ0 − 1

)2 ε
3 +O

(

ε4
)

. (4.130)
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Mit der unabhängig von ψ0 verschwindenden 1. Ordnung in ε wirkt der Dialyt bei korrekter
Wahl des Linsenabstandes nach Gl. 4.119 stets als Achromat. Darüber hinaus eliminiert

3ψ0 − 2
√

ψ0 = 0 mit ψ0 =
4

9
(4.131)

nach Gl. 4.130 in Übereinstimmung mit Gl. 4.120 auch die 2. Ordnung in ε. Mathematisch
drückt sich dieser Umstand in Form einer doppelten Nullstelle in d

dE
zF als Sattelpunkt aus,

mit der 3. als niedrigster, nicht-konstanter Ordnung in ε, gemäß der Reihe von Gl. 4.129,

zF (E)

FZ (E0)ψ0
= 3 + 4ε3 +O

(

ε6
)

. (4.132)

Abb. 4.23 illustriert u.a. diesen Sattelpunkt bei Ec = 4
9
E0, in dem sich die Dispersion

grundsätzlich von derjenigen 2. Ordnung unterscheidet. Die von Ec
E0

abhängige spektrale

Abbildung 4.23: PSF-Radius und Dispersion des Dialyten in 2. und 3. Ordnung. Aufgetra-
gen sind die jeweiligen Größen in Einheiten derjenigen des einfachen diffraktiven Analog-
ons als Funktion der normierten Energie E

Ec
. Die Dispersion wird im Bereich 4

9
< E

Ec
≤ 1

durch die 2. Ordnung in ∆E
E

dominiert, um für E = 4
9
Ec den maximalen Bandpass in 3.

Ordnung zur Verfügung zu stellen.

Toleranz bemisst sich aus der jeweiligen Tiefenschärfe, die der Forderung

zF (Ec)±
1

2
∆zF = zF (E) (4.133)
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unterliegt. Unter Verwendung von Gl. 4.130 lautet Gl. 4.133 mit der Zonenzahl N explizit

2
3ψ0 − 2

√
ψ0

(

2
√
ψ0 − 1

)2 ε
2 + 4

1− 2ψ0
(

2
√
ψ0 − 1

)2 ε
3 +O

(

ε4
)

= ± 2

N

ψ0
(

2
√
ψ0 − 1

)2 . (4.134)

Lediglich die beiden in Abb. 4.23 eingezeichneten Spezialfälle gestatten analytische bzw.
semianalytische Lösungen. Die Wahl des Vorzeichens auf der rechten Seite richtet sich
dabei nach dem spezifischen Verlauf der Funktion zF (E) in der Umgebung der jeweiligen
Energie Ec. So ist beispielsweise nahe E0 nur das positive relevant, während für Ec ≈ 4

9
E0

die Feldtiefe den Bandpass sowohl zum harten als auch weichen Band hin begrenzt. Für
Ec = E0 geht Gl. 4.134 in den bekannten Ausdruck

ε2 − 2ε3 =
1

N
→ ε ≈ ± 1√

N
, also

∆E

E
=

2√
N

(4.135)

über, wenn für hinreichend große N die 3. Ordnung in ε vernachlässigt wird. Hingegen
liefert Gl. 4.134 im Sattelpunkt bei Ec =

4
9
E0

ε3 =
2

N
→ ε = ± 3

√

2

N
, also

∆E

E
= 2

3

√

2

N
. (4.136)

Der Quotient aus den spektralen Bandbreiten 3. und 2. Ordnung skaliert demnach wie 6
√
N .

Realistische ZonenzahlenN liefern einen typischen Faktor 5, um den der Bandpass bei Ec =
4
9
E0 den bei Ec = E0 übertrifft, wie Tab. 4.8 zeigt. Die übrigen Lösungen in ε sind i.a. auf

N (×103) 0.5 1 2 3 4 5 6 7 8 9 10

∆3/∆2 3.55 3.98 4.74 4.78 5.02 5.21 5.37 5.51 5.63 5.75 5.85

Tabelle 4.8: Verhältnis der Bandbreiten 3. und 2. Ordnung, symbolisiert durch ∆3/∆2. Mit
zunehmender Zonenzahl N wächst die Bedeutung der 3. Ordnung bzgl. E wie 6

√
N .

numerischem Weg zu ermitteln, da nicht nur die 3. Ordnung mit abnehmender Energie an
Einfluss gewinnt, sondern vor allem nahe des Sattelpunktes die Dispersion

”
kritisch“ von ψ0

abhängt. Abb. 4.24 zeigt das Resultat entsprechender manuell-numerischer Rechnungen für
diverse Zonenzahlen N . Demzufolge nimmt die spektrale Bandbreite mit fallender Energie
Ec kontinuierlich zu, um gegen Ec =

4
9
E0 auf ein Mehrfaches des Standardwertes ∆E

E
= 2√

N
anzuwachsen. Insbesondere erweist sich das Toleranzintervall bzgl. Ec, innerhalb dessen die
Dispersion in 2. Ordnung verschwindet, als von der regulären Bandbreite vereinnahmt,

(

∆Ec
Ec

)

Ec=
4
9
E0

≈ 1

2 3
√
N
< 2

3

√

2

N
=

(

∆E

E

)

Ec=
4
9
E0

(4.137)

In Abb. 4.24 sind die ungefähren numerischen Werte dieses Toleranzintervalls ∆Ec
Ec

einge-
tragen. Einer strengen Auswertung mit Hilfe der fokalen Tiefenschärfe folgend, verläuft die
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Abbildung 4.24: Spektrale Bandbreite des Dialyten. Der nutzbare Bandpass der separierten
Doppellinsen-Konfiguration nimmt in der Umgebung der 3. Ordnung bei Ec = 4

9
E0 ein

absolutes Maximum an, dessen Höhe und Breite von der Zonenzahl N abhängen.

Bandbreite innerhalb dieses Intervalls nicht konstant, sondern konvex – mit ∆E
E

= 2 3

√

2
N

als Minimum. Auf deren explizite Darstellung wurde im Sinn einer konservativen Auswer-
tung verzichtet. Eine Verstimmung des Systems hin zu Energiewerten Ec <

4
9
E0 reduziert

den Bandpass wieder annähernd symmetrisch bzgl. 4
9
E0 fast bis auf das Ausgangsniveau

∆E
E

= 2√
N
, um gegen die Singularität in E∞ = 1

4
E0 zu divergieren.

Die beschriebene Konfiguration erlaubt also eine Verstimmung im Intervall 1
3
E0 .

Ec ≤ E0. Unter Rückgriff auf die spezifischen Eigenschaften der Fresnel-Linse eröffnet
sich jedoch die prinzipielle Möglichkeit, das Band beträchtlich zu erweitern. Bezeichnet E0
nun die Blaze-Energie der Fresnel-Linse, so beträgt die Beugungseffizienz 1. Ordnung für
Ec = 2E0 nach Abschn. 3.3 noch ca. 40%. Der refraktiven und in m−ter Beugungsordnung
diffraktiven Fokaldispersion tragen unter Verwendung von ψ0 =

Ec
E0

die Transformationen

FL (Ec)→ −FZ (E0)ψ
2
0 und FZ (Ec)→

1

m
FZ (E0)ψ0 (4.138)

Rechnung. Die Feinabstimmung der Energie spielt im Kontext keine Rolle und wird igno-
riert (ε = 0). Eingesetzt in die ursprüngliche Gl. 4.117 für den Linsenabstand, findet man

dm (Ec) = FZ (E0)ψ0

(

1

m
−
√

1

2m
ψ0

)

mit m ε N. (4.139)
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Mit Hilfe dieser Formel nimmt die die Fokalposition beschreibende Gl. 4.114 die Form

zF (Ec) = FZ (E0)ψ0





1

m
−
√

1

2m
ψ0 − ψ0 −

ψ20
√

1
2m
ψ0 − ψ0



 (4.140)

an. Man entnimmt Gl. 4.140 insbesondere die verallgemeinerte singuläre Polstelle zu

ψ∞ =
1

2m
ψ0 mit m ε N, (4.141)

die sich jedoch bei geeigneter Wahl der Durchstimmintervalle, angepasst an die Beugungs-
charakteristik der Fresnel-Linse, umgehen lässt. Abb. 4.25 vermittelt einen Eindruck von
der Funktionsweise. In der Praxis kommt der ersten Beugungsordnung zweifellos hervor-

Abbildung 4.25: Der Fresnel-Dialyt in höheren Beugungsordnungen. Die Eigenschaft des
Fresnel-Profils, über einen weiten Energiebereich auch in höheren Beugungsordnungen zu
fokussieren, gestattet die Konstruktion eines durchstimmbaren Breitband-Achromaten. Fo-
kalposition zF (rot strichliert) und Linsenabstand d (schwarz) sind gegen die normierte
Energie aufgetragen. Ohne Skala ist die Effizienz der FL grau strichliert angedeutet.

gehobene Bedeutung zu, da sie nach den Ausführungen zum Multiband-Achromaten in
Abschn. 4.1 die maximale spektrale Bandbreite und damit volle Lichtstärke bereitstellt.
Nichtsdestoweniger erweitern zweite und höhere Ordnungen die nutzbare Bandbreite zu-
mindest theoretisch auf 0.2E0 . Ec ≤ 2E0 und damit das bis zu zweieinhalbfache ge-
genüber der einfachen dialytischen Konfiguration.
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Der zum relativ weichen Röntgenband nach Abb. 4.24 hin zunehmende Bandpass gleicht
den absorptionsbedingten Effizienzverlust der refraktiven Komponente zumindest teilweise
aus. In 3. Ordnung erfolgt unter Umständen eine Überkompensation, wie ganz allgemein
diese Konfiguration vor allem dort von wissenschaftlichem Interesse sein wird, wo ein be-
sonders breites Spektralband mit ∆E ∼ keV untersucht werden soll. Die nach Abb. 4.25
geschickt gewählte Blaze-Energie der FL gestattet im übrigen die Konstruktion eines über
mehrere keV konstant effizienten Dialyten, mit überkompensierter Lichtstärke in 3. Ord-
nung. Ein entsprechendes Modell wird in Abschn. 5.6 diskutiert.

Überleitend zum nächsten Kapitel sollen an dieser Stelle kompakte, optisch kohärente
Objektive auf ihre praktische Tauglichkeit hin untersucht werden. Fresnel-Linsen weisen
zwar eine maximale Beugungseffizienz auf, gleichwohl vermögen sie in kohärenter Bauweise
die astronomischen Anforderungen an ein leistungsfähiges Instrument theoretisch durchaus,
die technischen an ein handhabbares praktisch jedoch kaum zu erfüllen. Eine einfache
Abschätzung macht dies deutlich: Mit der Formel für die laterale Auflösung

∅PSF = ∆ε · F folgt R =
∅PSF

α
N mit α = 0.535. (4.142)

Damit ergibt sich die Lichtstärke des beugungsbegrenzt operierenden Objektivs mit der
Zonenzahl N zu

Aeff ×∆E = π

(

∅PSF

α

)2

N · E, (4.143)

skaliert also wie (∅PSF )
2N . Beide Größen sind aus praktischen Gründen nach oben hin be-

grenzt. Während die Punktbildfunktion zugunsten eines ausreichenden Sichtfeldes bei tech-
nisch realisierbaren Detektor-Flächen die Größenordnung von∼ 10−3 m nicht überschreiten
sollte, lassen Kristall-Spektrometer oder Micro-Kalorimeter eine spektrale Auflösung ∆E

E

von beispielsweise 5×10−4 erwarten. Für Lichtstärke und Winkelauflösung ergeben sich in
diesem Fall bei einer typischen Blaze-Energie E = 6.4 keV

Aeff ×∆E ≈ 1.4× 103 cm2 · keV und ∆ε = 5.7× 10−6 arcsec. (4.144)

Als problematisch erweisen sich hingegen die konstruktiv-geometrischen Parameter,

R = 3.74 m und F = 3.6× 104 km. (4.145)

Die großen Abmessungen dürften bei Transport und Betrieb erhebliche Probleme verur-
sachen. Den Gleichungen 4.142 und 4.143 ist andererseits die gemeinsame Abhängigkeit
von der Zonenzahl im Bezug auf die optischen und konstruktiven Daten zu entnehmen, so
dass eine

”
kompakte“ Bauweise mit drastischen Einbußen in der Lichtstärke einhergehen

würde.

Dieses Dilemma lässt sich unter Verwendung dispersionskorrigierter Objektive weitge-
hend beseitigen. Entsprechende Modelle wurden zuletzt vorwiegend für den Einsatz im
harten Röntgen- und Gammaspektrum von [30] diskutiert. Die Lichtstärke setzt sich nun
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aus geometrischer Fläche, Bandpass und der von Eins signifikant verschiedenen Transmis-
sion zusammen. Letztere beträgt unter Verzicht auf jegliche Apodisierung

Ts =
2

s

(

1− e− s2
)

mit s ≡ N

N0
, (4.146)

wie sich durch einfache Integration über den Linsenradius zeigen lässt. In [30] wird als
Standard T2 ≈ 63% gewählt – mit dem Verweis auf eine dann nur unwesentlich beein-
trächtigte Punktbildfunktion. Legt man als Qualitätskriterium derselben jedoch die HEW
zugrunde, nutzt die Bauweise mit s = 2 das optische Leistungsvermögen des betreffenden
Materials nicht voll aus.

Um die Lichtstärke für eine vorgegebene Ortsauflösung ∅PSF zu berechnen, bedarf
es eines Korrekturfaktors Qs. Er beschreibt die relative Winkelauflösung als Funktion des
Zonenverhältnisses und wurde in Tab. 4.1 für diskrete s aufgelistet. Die zu Gl. 4.142 analoge
Gleichung lautet nun

∅PSF = ∆ε · F → R =
∅PSF

2αQs

N mit α = 0.535. (4.147)

Die Lichtstärke ergibt sich mit Gl. 4.146 als Funktion von ∅PSF , Zonenzahl N und Energie,

Aeff ×∆E = π

(

∅PSF

αQs

)2√
N N0

(

1− e−
N
2N0

)

E. (4.148)

Zonenzahl und Energie treten gekoppelt auf. Wegen des für hohe Werte von N negativen
Einflusses von Qs durchläuft Aeff × ∆E für eine vorgegebene Energie E als Funktion
der Zonenzahl ein ausgeprägtes Maximum, typischerweise für s ∼ 5. Derlei Teleskope
erreichen eine beträchtliche Leistungsfähigkeit, wie Tab. 4.9 verdeutlicht. Demnach genügen

Material Li Be C16H14O3

Energie E 6 keV 8 keV 10 keV
Radius R 1.84 m 1.06 m 0.38 m

Brennweite F 10386 km 7980 km 3533 km
Auflösung ∆ε 0.015 mas 0.019 mas 0.044 mas
Aeff ×∆E 8318 cm2 keV 4852 cm2 keV 1278 cm2 keV

Tabelle 4.9: Beispiele kompakter Achromaten. Die leistungsoptimierten Parameter beru-
hen auf Gl. 4.148. Auf eine Zentralobstruktion wurde verzichtet, die Ortsauflösung beträgt
durchgängig ∅PSF = 0.75 mm.

merklich kleinere Radien und Brennweiten, um obiger diffraktiver Version vergleichbare
Leistungswerte zu erzielen. Dennoch schränken die Fokallängen von einigen 103 km die
Manövrierfähigkeit der Gesamtkonfiguration ein. Zudem dürften zumindest Modelle mit
Radien von deutlich mehr als einem Meter nicht mehr ohne weiteres kohärent herzustellen
sein – zum einen aufgrund mechanischer Toleranzen in den Zonenradien rn, zum anderen
wegen möglicher Inhomogenitäten im Material [30], wovon speziell aus Li und Be gefertigte
Linsen betroffen sein könnten.



Kapitel 5

Wege zur praktischen Umsetzung

Die bisherigen, in den Kap. 3 und 4 erarbeiteten Erkenntnisse legen den Schluss nahe,
dass kohärente, diffraktive Linsensysteme gleich welcher Art den wissenschaftlichen oder
aber technologischen Anforderungen nur ungenügend gerecht werden. So verbessert eine
dispersionskorrigierte Hybridkonfiguration die Lichtstärke Aeff×∆E je nach Material und
Energie um den Preis sehr langer Brennweiten um mehrere 103 % gegenüber dem diffrakti-
ven Analogon auf dann > 103 cm2 keV, einer Größenordnung, die dem Leistungsvermögen
des gegenwärtig operierenden Instrumentariums bereits recht nahe kommt, wie Abb. 5.1
illustriert. Die Grafik zeigt den Verlauf der nutzbaren Spiegelfläche als Funktion der Ener-
gie oberhalb von ca. 1 keV. Einschließlich des weichen Röntgenbandes zwischen rund 0.1
und 1 keV erreichen Chandra und XMM-Newton eine integrierte Lichtstärke von

Aeff ×∆E = 3.6× 103 cm2 keV bzw. Aeff ×∆E = 3.0× 104 cm2 keV. (5.1)

Deren Leistungsfähigkeit verleiht nun das intrinsische Vermögen reflektiver Spiegeloptik
zur dispersionsfreien Abbildung zumindest hinsichtlich spektral breitbandiger Aufnah-
men zusätzliches Gewicht – lediglich selektiven Messungen dominanter Spektrallinien wie
beispielsweise der Kα−Emission von Fe bei 6.4 keV dürften optimierte Hybridsysteme
ebenbürtig, evtl. gar überlegen dienen. Offenbar errechnet sich die auf ein enges Energie-
intervall ∆E beschränkte Lichtstärke gemäß

Aeff ×∆E =

∫ Ec+
∆E
2

Ec−∆E2
Aeff (E)dE ≈ Aeff (Ec)∆E. (5.2)

Jenseits von 1 keV erreichen Chandra und XMM-Newton nach dieser Definition eine Netto-
Sammelfläche von bis zu 7.9 × 102 cm2 bzw. 4.4 × 103 cm2 – abzüglich diverser Verluste
bei der Detektion. Es wird sich herausstellen, dass Transmissionsobjektive ausreichender
Größe ein Vielfaches dieser Sammelfläche zu liefern vermögen.

Das vorliegende Kapitel steht daher im Zeichen der Entwicklung optischer Konzepte,
die unter wissenschaftlichem wie technischem Aspekt die Konstruktion praxistauglicher
Instrumente gestatten. Den abstrakten Strukturen werden nun erstmals konkrete Zahlen-
beispiele anheimgestellt, die vorbehaltlich mathematisch idealisierter Kalkulation das zu
erwartende Leistungsvermögen der jeweiligen Konfigurationen abschätzen.
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Abbildung 5.1: Sammelfläche der Röntgenteleskope Chandra und XMM-Newton. Eingetra-
gen sind für E & 1 keV die reinen Nutzflächen der Spiegelschalen, bei XMM-Newton die
Summe aller drei Einzelteleskope. Detektor- und andere Verluste sind nicht berücksichtigt.

Ausgehend von der Überlegung, dass – von dialytischen Konfigurationen einmal abgese-
hen – jedem bislang diskutierten Linsentyp eine simple Proportionalität der Lichtstärke in
der Brennweite F innewohnt und dieser Umstand den Satz der zur Leistungssteigerung
verfügbaren Variablen auch dispersionskorrigierter, absorbierender Hybridlinsen bereits
weitgehend erschöpft, eröffnen sich zwei grundlegend verschiedene Optionen, die effekti-
ve Sammelfläche zu erweitern.

Zum einen erscheint es denkbar, zahlreiche der kompakten, in ihrem Aperturdurchmes-
ser die gewünschte Winkelauflösung repräsentierenden Objektive in Form eines noch näher
zu spezifizierenden Arrays anzuordnen und den Photonenfluss mittels einer entsprechenden
Detektormatrix zu registrieren. Zum anderen wird die Aufteilung einer großflächigen Aper-
tur in kleine, ebenfalls mit dem Auflösungsvermögen korrespondierende Segmente ebenfalls
die Lichtstärke verbessern, wenn deren Beiträge zur fokalen Intensität im gemeinsamen
Brennpunkt eine inkohärente Superposition erfahren.

In der nachstehenden Übersicht sind vorab die wesentlichen Eigenheiten dieser beiden
Ansätze zusammengestellt. Beide Konzepte stellen hinsichtlich ihres optischen Potentials,
aber auch im Bezug auf die ihnen eigenen physikalischen Fehlerquellen ein Novum je-
denfalls im Bereich der Röntgenastronomie dar. Abb. 5.2 vergleicht zudem ihre typischen
Konstruktionsmerkmale und Abmessungen anschaulich.
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Paralleloptik

Parallele, matrixähnliche Anordnung
zahlreicher kleiner, kompakter Linsen mit
zugehörigen Detektoren.

+ hohes Maß modularer Flexibilität
und Redundanz

+ kurze Brennweite von wenigen km

− mäßiges Signal-Rausch-Verhältnis?

−
”
cross-talk“ zwischen benachbarten
Elementarteleskopen.

Den einzelnen Elementarlinsen sind fixe
Energiewerte zugeordnet, deren bedarfs-
gerechte Verteilung das gewünschte spek-
trale Band in Form einer diskreten Kamm-
struktur abdeckt.

Segmentierung

Aufteilung der großflächigen Apertur in
Parzellen, die Detektion erfolgt in einem
gemeinsamen Fokus.

+ optimale Nachweisempfindlichkeit

+ gemeinsamer Fokus gestattet ein-
deutige Signal-Zuordnung

− fixes Leistungsvermögen aufgrund
komplexer Gesamtkonfiguration

− Fokaldistanzen von 102 − 103 km.

Je nach Design ermöglicht die segmentier-
te Apertur die simultane Fokussierung ei-
nes oder mehrerer diskreter Energiewer-
te oder die kontinuierliche Verstimmung
über ein weites Spektralband.

5.1 Prinzipien und Konstruktion paralleler Systeme

Verglichen mit Aufbau und Funktion konventioneller (Röntgen-)Teleskope basiert die An-
ordnung unabhängiger Elementarteleskope zu großflächigen Arrays auf gänzlich anderen
Grundsätzen. Beginnend mit eben diesen physikalischen Grundlagen und Rahmenbedin-
gungen spannt der folgende Abschnitt den Bogen zu möglichen Implementierungen H2−
und He-basierter Linsen, deren theoretisches Potential am ehesten in Form kleiner, kom-
pakter Objektive zum Tragen kommen dürfte. Schließlich vermitteln konkrete Modellkon-
figurationen einen Eindruck vom ungefähren Leistungsvermögen solcher Systeme.

5.1.1 Grundlagen transmissiver Linsenarrays

Mit der grundsätzlich über alle beteiligten Elementarteleskope konstanten Brennweite F
legen die in den Abb. 3.17 und 4.15 visualisierten Gln. 3.93 bzw. 4.60 unter Vorgabe von
Profiltyp bzw. Verstärkung V bereits die Lichtstärke eines solchen einzelnen Objektivs fest,
unabhängig insbesondere von weiteren geometrischen Parametern wie Aperturradius und
Lateral-Auflösung. Generell stehen daher via

Aeff ×∆E ∝ nT · F (5.3)

mit der Zahl nT parallel geschalteter Optiken zwei Freiheitsgrade zur Verfügung, das Lei-
stungsvermögen der Gesamtkonfiguration zu beeinflussen. Während der Fokaldistanz je-
doch nach oben durch die PSF- wie unten durch die Pixelgröße gewisse Grenzen gesetzt
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Abbildung 5.2: Mögliche Implementierungen großflächiger Teleskopoptik auf rein diffrakti-
ver Basis. Die Segmentierung (obere Hälfte der Grafik) erlaubt die Abbildung in einen zen-
tralen Fokus, allerdings auf Kosten großer und energieabhängiger Brennweiten. Alternativ
erfordert eine matrixähnliche Anordnung zahlreicher kleiner Linsen entweder die Bünde-
lung mittels Kristallen nahe der Fokalebene oder unabhängige Detektoren (untere Hälfte).
Die damit erreichbaren kurzen Brennweiten gehen freilich mit potentieller Kontamination
durch Hintergrund-Ereignisse und eventuellen crosstalk-Ereignissen einher. Die Längen-
skalen geben nur die ungefähre Größenordnung der Abmessungen wieder.

sind, unterliegt die Gesamtzahl der Elementarobjektive zunächst keiner Beschränkung.
Einer ersten naiven Näherung folgend, seien sie als optisch entkoppelt, also unabhängig
angenommen. Das Signal-Rausch-Verhältnis errechnet sich dann im einfachsten Fall gleich-
artiger Teleskope gemäß

SNRges =
S√
S +B

=
nT si√

nT si + nT bi
=
√
nTSNRi, (5.4)

als linear in
√
nT . Eine solchermaßen ideale Konfiguration sollte sich theoretisch einem ein-

zelnen Teleskop äquivalent erweisen, dessen Apertur und Detektorfläche mit nT skalieren.
De facto nicht zu verwirklichen – dazu wäre eine angesichts in km messenden Brennweiten
unrealistische räumliche Abschirmung analog zur Bauweise von XMM-Newton erforderlich
– wird hingegen stets mit mehr oder minder ausgeprägter Kopplung, dem bereits erwähnten

”
cross-talk“ , zu rechnen sein. Seines Ursprungs nach sind prinzipiell zwei Möglichkeiten
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zu unterscheiden, von denen die erste in Abb. 5.3 veranschaulicht ist. Unter vorläufigem

Abbildung 5.3: Akzeptanzwinkel und Sichtfeld der Parallelkonfiguration. Das effektive
Sichtfeld bestimmt sich aus dem durch 2warray und F festgelegten Öffnungswinkel.

”
Fremd-

detektoren“ registrieren bei ausreichender Feldtiefe und passender Energie auch außerhalb
des regulären Blickwinkels 2ϑdet ein scharfes Bild.

Verzicht auf Kollimatoren etc. empfängt jeder Elementar-Detektor grundsätzlich die fokus-
sierte oder diffus gestreute Strahlung aller Objektive. Erstreckt sich die hier mit quadra-
tischem Grundriss angenommene Anordnung in lateraler Richtung auf 2warray, ergibt sich
der Raumwinkel zu

Ωarray = (ϑarray)
2 ≈ 4

(warray
F

)2

À 4
(rFOV

F

)2

= (ϑdet)
2 = ΩFOV , (5.5)

wenn ΩFOV den – relativ kleinen – Raumwinkel der Elementaroptik angibt, definiert über
die Detektorfläche (2rFOV )

2. Je nach fokaler Schärfentiefe (DOF) und Blaze-Energie der
beteiligten Elementarteleskope wird sich die Kopplung nun in regulären, wenn auch un-
erwünschten Bildern oder aber diffuser Kontamination durch defokussierte Streustrahlung
äußern. Vorausgesetzt, jedem Detektor eignet im Rahmen der durch das Objektiv vorge-
gebenen spektralen Bandbreite eine spezifische Energie E

(i)
c , lässt sich die zu erwartende

Zahl next der externen, ”
falschen“ Bilder abschätzen, die von der Teilmenge aller auf E

(i)
c

abgestellten Detektoren registriert werden.

next ≈ QBΩFOV

(

n
(i)
T − 1

)

n
(i)
T ≈ QBΩFOV

(

n
(i)
T

)2

für n
(i)
T À 1 (5.6)

hängt somit linear von der Quellendichte QB des bei hinreichender Winkelauflösung in
diskrete Objekte kondensierenden Röntgenhintergrundes ab, deren Zahl nach Abb. 6.5 je
nach Energieband auf (6− 12)× 103 deg−2 beziffert werden kann. Mit typischen, regulären
Sichtfeldern von maximal ∼ 1 arcsec pro Elementarobjektiv ergeben sich

next . (5− 10)× 10−4
(

n
(i)
T

)2

(5.7)
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Faksimiles. Nun entscheidet jedoch weniger die absolute Zahl dieser optischen Täuschungen
über die Bildqualität als vielmehr deren Relation zur Anzahl nint echter interner Bilder
innerhalb des FOV der einzelnen Elementarteleskope. Mit Gl. 5.6 findet man unmittelbar

next
nint
≈ QB ΩFOV n

(i)
T → SNRext . (QB ΩFOV )

1/2

√

n
(i)
T SNRint. (5.8)

Die zuletzt angeführte Abschätzung zum Signal-Rausch-Verhältnis erfolgte unter der An-
nahme, dass der im jeweiligen spektralen Band gemessene Fluss der extern detektierten
Hintergrundquellen im Mittel denjenigen des im FOV regulär beobachteten Objekts zu-
mindest nicht überschreitet. Um das SNR der externen und bei hinreichender Schärfentiefe
von den regulären nicht zu unterscheidenden Störquellen um wenigstens eine Größenord-
nung zu unterdrücken, dürfen somit bei ΩFOV ≈ 1 arcsec2 je nach Hintergrund maximal
10− 20 Elementarteleskope zur jeweiligen Blaze-Energie parallel geschaltet werden.

Die aufgeführten Relationen genügen im übrigen einer sehr weit gefassten statistischen
Interpretation, so wurde bis dato keine Aussage zur räumlichen Anordnung der Elementar-
Optiken getroffen. Diese wirkt sich nämlich aufgrund der quasi zufälligen Verteilung der
Hintergrundquellen mit lediglich großräumig konstanter Dichte QB a priori nicht auf die
Abbildung des Beobachtungsobjekts im regulären FOV aus. Wieder stehen zwei grundsätz-
lich verschiedene Varianten zur Auswahl:

Zufallsverteilung

Die Elementar-Teleskope werden bzgl. ih-
rer Blaze-Energie gleichberechtigt nach
dem Zufallsprinzip in der Objektiv- bzw.
Detektorebene angeordnet. Teleskope glei-
cher Blaze-Energie können jeden beliebi-
gen (Winkel-)Abstand aufweisen, insbe-
sondere benachbart sein.

Matrixkonfiguration

Die Elementar-Teleskope einer spezifi-
schen Blaze-Energie besetzen ordentliche

”
Gitterplätze“ auf einem zweidimensiona-
len Raster. Die Gesamtanordnung ähnelt
dann einer 2D-Kristallstruktur. Teleskope
gleicher Blaze-Energie weisen einen festen
Mindestabstand auf.

Der Mindestabstand gleichartiger Elementar-Optiken in regelmäßiger Anordnung dürfte
sich vor allem bei der Beobachtung ausgedehnter Objektstrukturen als vorteilhaft erweisen,
deren Winkeldimension das reguläre FOV übertrifft. Ferner bedingt die Gitterstruktur ein
endliches Spektrum diskreter Distanzen zwischen gleichartigen Detektoren – ein Umstand,
der bei fixer Beobachtungsrichtung die Chance erhöht, keinerlei Kopplung zu erleiden.
Umgekehrt wirkt sich diese natürlich um so verheerender aus, wenn eine Hintergrundquelle
zufällig eine der Auswahlregeln an die Winkelabstände erfüllt.

Mit der diffusen Streustrahlung soll nun die andere Form der optischen Kopplung in-
nerhalb des Linsenarrays zur Sprache kommen. Sie verknüpft Elementar-Teleskope ver-
schiedener Blaze-Energie, indem der durch ein Objektiv der Energie E

(i)
c hindurchtretende

Photonenfluss der Energie E
(j)
c des regulären Beobachtungsobjekts von einem auf E

(j)
c an-

sprechenden Fremd-Detektor registriert wird, wobei nach Voraussetzung i 6= j gelten soll.
Mit der Einschränkung auf dem FOV entstammende Streustrahlung werden zugleich diffuse
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Beiträge der zuvor diskutierten externen Quellen dem gewöhnlichen Hintergrund zugerech-
net, der unter Verzicht auf hochselektive Kollimatoren aus einem Raumwinkel ΩB À Ωarray

auf die Detektorflächen einfallen dürfte.
Die Ausdehnung des Streuhalos ergibt sich letztlich aus der fokalen Dispersion des

spektral verstimmten Objektivs. Abb. 5.4 vermittelt einen anschaulichen Eindruck. Formal

Abbildung 5.4: Fokale Dispersion des verstimmten Achromaten. Aufgetragen in Einheiten
der Norm-Brennweite bei E = Ec, sind nur die im jeweiligen Energieintervall dominanten
Beugungsordnungen der Fresnel-Linse eingezeichnet. Kritische Streustrahlung verursachen
primär die Beiträge mit F < Fc. Zum Vergleich ist die fokale Dispersion des diffraktiven
Objektivs rot strichliert.

schreiben sich die dargestellten diffraktiven und hybridmodifizierten Dispersionen als

FZ(ψ) =
1

m
FZ (Ec)ψ bzw. Fhyb(ψ) = FZ (Ec)

(

m

ψ
− 1

2ψ2

)−1
, (5.9)

wobei mit m ε N wie üblich die Beugungsordnung bezeichnet wird und ψ = E
Ec

die relative
Energie des jeweiligen Elementarobjektivs symbolisiert. Dient als diffraktive Komponen-
te ein (annähernd) kinoformes Fresnel-Profil, so dominieren nach Abschnitt 3.3 in den
verschiedenen spektralen Bändern jeweils andere Ordnungen. Unter Beschränkung auf re-
guläre, innerhalb des FOV angesiedelte Objekte kontaminieren offenbar nur negativ oder
divergent verstimmte Objektive, deren Fokaldistanz also der Bedingung FZ(ψ) < FZ(1)
bzw. Fhyb(ψ) < Fhyb(1) unterliegt. Achromaten, deren Verstimmung lediglich wenige 10%
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beträgt, verursachen somit nach Abb. 5.4 keine signifikante Streustrahlung. Es sei ange-
merkt, dass mit ψ > 2 stark blau-verstimmte Hybridlinsen schwach divergent streuen, also
eine Fokaldistanz F (ψ) ¿ 0 aufweisen. Bei hinreichend großen Abständen zwischen den
Detektoren sollten sich diesbezügliche Beiträge jedoch kaum negativ bemerkbar machen.

Abb. 5.5 illustriert schematisch vereinfacht die Wirkung des Streuhalos exemplarisch
anhand einer auf drei spektrale Bänder sensitiven Zufallskonfiguration von Detektoren.
Angenommen, das System sei auf k ε N verschiedene Energiewerte E

(i)
c oder

”
Farben“ glei-

Abbildung 5.5: Zur Wirkung der Streustrahlung in großflächigen Detektor-Arrays. Unter
Annahme einer zufälligen Verteilung der links in 3 verschiedenen Graustufen angedeuteten

”
Detektor-Farben“ hängt die Gesamtkontamination durch den rot verstimmten Streuhalo

nicht von dessen Radius ab. Rechts ist die Pixelmatrix eines Elementardetektors mit der
regulären PSF sowie vereinzelter Streu-Kontamination dargestellt.

cher Lichtstärke sensitiv. Es werde eine Punktquelle betrachtet, deren über alle k spektralen
Bänder summierter Gesamtfluss durch das Signal S gegeben sei. Ferner bedecke jeder
Elementardetektor wie in Abb. 5.5 die maximale ihm zur Verfügung stehende Fläche – eine
formale Vereinfachung, die sich letztlich nicht auf das Resultat auswirkt. Ausgehend von
der Feststellung, dass im statistischen Mittel die Kontamination eines spektralen Bandes
nicht vom Radius der Streuhalos abhängt, ergibt sich das Signal-Rausch-Verhältnis zu

SNRj =
S

k

(

S

k
+

1

k

(

S
j

k
+Bext

)

APSF
Adet

)−1/2
, (5.10)

wenn 0 ≤ j ≤ k − 1 mit der Rangordnung der jeweiligen Farbe E
(i)
c in der spektra-

len Hierarchie korrespondiert, gegeben durch die Zahl der Farben höherer Energie, deren
rotverstimmte Streuhalos die Gesamtheit der Detektoren zur Energie E

(i)
c kontaminieren.

Ferner steht Bext für den gesamten externen Hintergrund, der aus Regionen außerhalb des
FOV einfällt. Damit entscheidet im wesentlichen der von den Punktbildern in Anspruch
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genommene Anteil an der gesamten Fläche über den quantitativen Beitrag der Hinter-
grundstrahlung zum SNR. In grober Näherung entspricht die einem Elementardetektor
zur Verfügung stehende Fläche Adet der Apertur des zugehörigen Objektivs. Simple Um-
formungen liefern

APSF
Adet

∼ I

I0
= γ

(

1

N

)2

, (5.11)

da das Verhältnis von einfallender zu fokussierter Intensität in jedem Fall quadratisch von
N abhängt. Der Proportionalitätsfaktor γ beträgt etwa 0.07 im Fall der diffraktiven Linse
und 0.14 beim Hybridprofil. Überlegungen zum Design praxistauglicher Systeme sollten
im Sinn einer wirksamen Rauschunterdrückung diesem Sachverhalt Rechnung tragen und
Linsen hinreichend großer Zonenzahl N einsetzen. Speziell folgt mit

Bext ∼ QBΩB → N & 102 für ΩB ∼ 1 deg2, (5.12)

einem für moderate Kollimation realistisch bis konservativ abgeschätzten Akzeptanzwinkel
ΩB der Hintergrundstrahlung. Diese sollte dem Signal im Radikanden des SNR nach Gl.
5.10 dann wenigstens um eine Größenordnung unterliegen. Damit wird aber gleichzeitig
deutlich, dass die Halo-Kontamination durch die dem Beobachtungsobjekt entspringende
Streustrahlung in ihrer Bedeutung für den Gesamtuntergrund zurücktritt, zumindest so-
lange deren Helligkeit den mittleren Fluss der umgebenden Hintergrundquellen nicht signi-
fikant überschreitet.

5.1.2 Röntgenobjektive auf Wasserstoff- und Heliumbasis

Flüchtige Stoffe wie H2 und He in der Röntgenoptik einzusetzen, erscheint zumindest
vorläufig noch unrealistisch. So kondensieren H2 wie He erst nahe des absoluten Nullpunk-
tes; festes He bleibt gar ausgesuchten Laborbedingungen vorbehalten. Dennoch motivieren
die überragenden optischen Eigenschaften der beiden leichtesten Elemente speziell im wei-
chen Röntgenband eine zumindest theoretische Betrachtung ihrer möglichen Verwendung
in der abbildenden Optik im Bereich weniger keV. Dort nämlich durchläuft die kritische
Zonenzahl N0 von H2 gemäß Abb. 4.7 ihr Maximum, während He seine optimale Wirkung
bei rund 7 keV entfaltet. Unterhalb von etwa 3 keV zählen beide im Bezug auf ihr N0
ein Vielfaches ihrer kristallinen Nachbarn im Periodensystem und eröffnen damit die Op-
tion, das Prinzip der klassischen, nicht reduzierten Dispersionskorrektur auf Energien von
& 1 keV auszudehnen. Ihrer optischen Güte entsprechend, erreichen H2 und He auch die
höchste Verstärkung V , für diverse Zonenzahlen N aufgetragen in Abb. 5.6. Der Maxi-

malwert Vmax(E) = 2
√

1
e
N0(E) beschreibt die Einhüllende. Nahe 3 keV beträgt Vmax für

H2 beinahe 102, bei Zonenzahlen von ≈ 5× 103. Im weichen Röntgenband, unterhalb von
rund 2 keV, scheidet für praktisch meist notwendige Zonenzahlen von > 103 selbst He aus,
während H2 dort eine signifikant höhere Lichtstärke verspricht.

Nun hängt N0 und damit die Hybrid-Verstärkung V nicht von der Dichte % und damit
dem Aggregatzustand der fraglichen Substanz ab, da sowohl δ als auch β linear mit %
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Abbildung 5.6: Achromatischer Verstärkungsfaktor für H2 und He. Eingetragen ist der
Lichtstärkenquotient V reiner H2−(durchgezogene Linien) bzw. He-Linsen (strichliert) für
diverse Zonenzahlen N . Das jeweilige theoretische Maximum ist rot hervorgehoben.

skalieren. Andererseits wird im Interesse möglichst starker Brechkräfte und damit kleiner
Öffnungsverhältnisse eine hohe Verdichtung der unter Normbedingungen gasförmigen Stoffe
H2 und He anzustreben sein. Bei einer Temperatur T und dem Druck p

T = 273.15 K und p = 1.013× 105 Pa (5.13)

beträgt die Volumen-Dichte einschlägigen Literaturangaben [29] zufolge lediglich

% (H2) = 8.99× 10−5g cm−3 bzw. % (He) = 1.79× 10−4g cm−3, (5.14)

zu wenig, um einkomponentige Linsen hinreichend kurzer Brennweite zu fertigen. Als Richt-
wert einer konstruktiv noch vertretbaren Linsenkrümmung soll wieder deren Äquivalenz
mit der geometrischen Ausdehnung der Apertur dienen. Dem bikonvexen Profil setzt somit

f &
1

4δ
→ fmin (H2) ≈ 6.7× 106 ≈ fmin (He) , jeweils für E = 1 keV (5.15)

eine ungefähre untere Schranke an die möglichen Öffnungsverhältnisse. Mit mehreren, im
Sinn sog.

”
compound refractive lenses“ hintereinander angeordneten refraktiven Kompo-

nenten – deren zur inversen Fokallänge proportionalen Brechkräfte addieren sich dann
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einfach – lässt sich das Problem zwar prinzipiell umgehen, gleichwohl dürfte eine solche
Option angesichts der zusätzlichen Absorption durch die das Fluidum beherbergende(n)
Linsenschale(n) praktisch ausscheiden.

Eine Kompression bzw. Verflüssigung tut daher Not. Mit den (Van-der-Waals)-Para-
metern a und b, dem Volumen V und der molaren Gaskonstante Rm ≈ 8.31 J mol−1 K−1

lautet die reale Gasgleichung

(

p+ a
1

V 2

)

· (V − b) = n ·Rm · T, (5.16)

wobei mit der Einschränkung auf die Molzahl n = 1 die Größe V die Bedeutung des
Molvolumens erlangt. Die empirischen (Van-der-Waals)-Parameter lauten für H2 und He

H2 : a = 2.5× 10−2 N m4 mol−2 und b = 2.7× 10−5 m3 mol−1, (5.17)

He : a = 3.5× 10−3 N m4 mol−2 und b = 2.4× 10−5 m3 mol−1, (5.18)

laut [29]. Abb. 5.7 illustriert die Isothermen der beiden Elemente nahe ihrer kritischen
Temperaturen, die sich aus den Parametern nach 5.17 zu

Tc (H2) = 33.2 K und Tc (He) = 5.24 K (5.19)

errechnen [29]. Der Vergleich beider p(V )-Kurven zeigt, dass für eine Verflüssigung vorran-

Abbildung 5.7: Isothermen von H2 und He im Van-der-Waals-Regime mit einer kritischen
Temperatur von 33.2 K bzw. rund 5 K und einem kritischen Druck pc = 1.29 MPa bzw. 0.23
MPa. Die den rot strichlierten Kurven unterliegenden Flächen beschreiben die jeweiligen
Gebiete der Phasenkoexistenz von gasförmigem und flüssigem Aggregatzustand.

gig H2 in Frage kommt, trotz des dazu nötigen relativ hohen Druckes von ∼ 106 Pa bei
rund 20 K. He wird sich hingegen primär einer Kompression zugänglich erweisen, die trotz
der geringen interatomaren Wechselwirkungen des Edelgases im Bereich von & 10 K den
Gesetzen des realen Gases folgt. Mit einer Dichte von 1.25× 10−1 g cm−3 bei 4.15 K und
Normaldruck beläuft sich dessen maximal mögliche Kompression auf das rund 700-fache
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des Volumens unter Normalbedingungen. Da nach Gl. 5.15 die Brechkräfte δ(E) von H2
und He anders als ihre Absorptionskoeffizienten bei 1 keV und darüber hinaus im gesamten
Intervall zwischen 1 und 10 keV nahezu übereinstimmen, skalieren die Öffnungsverhältnis-
se gleichermaßen mit der auf die Normdichte %0 bezogenen Dichte. Abb. 5.8 skizziert die
unteren Schranken an f der beiden Stoffe, im Fall des He für diverse Dichten. Der Ge-

Abbildung 5.8: Untere Schranken an das Öffnungsverhältnis H2− und He−basierter Linsen.
Alle Geraden stehen für ein Radienverhältnis R

ξ
= 2. Für H2 wurde die flüssige Phase

angenommen, während im Fall der He-Füllung Kurven für diverse Dichten %, relativ zur
Normdichte %0, eingetragen sind.

raden zu %
%0

= 2 × 103 kommt lediglich die fiktive Bedeutung eines Vergleichsmaßstabs
zu. Unter praktischen Gesichtspunkten dürfte sich die Kompression gasförmigen Heliums
freilich als ausgesprochen problematisch erweisen. So erfordert die Verdichtung bei einer
Temperatur von 20 K auf % = 1× 102%0 immerhin den 7.5-fachen Normdruck, während für
% = 3×102%0 bereits dessen Steigerung um einen Faktor 26 erforderlich ist. Die Frage nach
der technischen Umsetzung refraktiver Optik auf der Basis gasförmigen oder evtl. doch
extrem gekühlten flüssigen Heliums bleibt in dieser Arbeit außen vor.

Vorläufig rein theoretische Relevanz kommt somit auch dem nun knapp zu erörtern-
den Modell einer spektral kontinuierlich durchstimmbaren Hybridlinse zu, deren refraktive
Komponente aus H2 und He-Anteilen bestehe. Die Gesamtbrennweite errechnet sich via

1

F
=

1

FZ
+

1

FL1
+

1

FL2
, (5.20)

wenn L1,2 die beiden refraktiven Komponenten beschreibt. Relation Gl. 5.20 führt unter
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Verwendung der hinlänglich bekannten Formeln FZ = R2

λNZ(λ)
und FL1,2 = − R2

λNL1,2 (λ)
sofort

auf die verallgemeinerte Beziehung

1

2
NZ(λ) = NL1(λ) +NL2(λ) ∀ λ (5.21)

zwischen den Zonenzahlen. Nach den Ausführungen in Kap. 3 skalieren NZ und NL1,2 wie

NZ(E) = mNZ (Ec) und NL1,2(E) = NL1,2 (Ec)
Ec
E
, (5.22)

wenn m ε N die Beugungsordnung der Fresnel-Linse bezeichnet. Im Kontext gasgefüllter
Profile variabler Dichte % hängt schließlich auch NL2 (Ec) wegen der Linearität der Brech-
kraft δ in % von selbiger ab, so dass

NL2 (Ec) = NL2 (E0)
%c
%0
, (5.23)

wenn der Index
”
2“ mit der He-Komponente korrespondiert. Somit schreiben sich die Zo-

nenzahlen als

NZ (Ec) = m ·N (0)
Z und NL1 (Ec) = N

(0)
L1

E0
Ec

bzw. NL2 (Ec) = N
(0)
L2

%c
%0

E0
Ec
, (5.24)

wobei die Werte von NZ bzw. NL1,2 an der Stelle E0 durch das Superskript (0) abgekürzt
wurden. Der dem Dialyten variabler Linsendistanz aus Abschn. 4.3 entsprechenden Nota-
tion liegt somit eine formale wie physikalische Analogie zum Hybridsystem variabler Brech-
kraft zugrunde. E0 steht also für die Blaze-Energie der diffraktiven Fresnel-Komponente,
während Ec die Zentralenergie des dispersionskorrigierten Spektralbandes bezeichnet. Ein-
gesetzt in Gl. 5.21, folgt mit den Relationen 5.24

%c
%0

=
N
(0)
L1

N
(0)
L2

(

m

2

N
(0)
Z

N
(0)
L1

Ec
E0
− 1

)

. (5.25)

Die zur Dispersionskorrektur bei der Energie Ec erforderliche Dichte %c skaliert somit po-
sitiv mit Ec, was sich insofern als vorteilhaft herausstellt, als der Absorptionsparameter
β linear von % abhängt. Unter einer freilich kaum realistischen Vernachlässigung der die
H2− und He−Füllungen aufnehmenden Linsenschalen errechnet sich die Transmission der
refraktiven Komponenten allgemein zu

T1,2 (Ec) = exp

(

−E0
Ec

(

N
(0)
L1

N0,1 (Ec)
+

N
(0)
L2

N0,2 (Ec)

%c
%0

))

. (5.26)

Bis dato wurden den Zonenzahlen N
(0)
L1,2

keine expliziten Werte zugewiesen, sie unterlagen
lediglich der Bedingung 5.21. Als günstig erweist sich z.B. folgende Wahl:

N
(0)
L1

=
1

4
N
(0)
Z = N

(0)
L2

(5.27)
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Abbildung 5.9:Dispersionskorrektur mittels durchstimmbarer Gaslinsen. Die refraktive Lin-
se besteht je zur Hälfte aus flüssigem H2 und gasförmigem He, dessen auf ihren Wert
bei E0 = 10 keV normierte Dichte %c(E) in Abhängigkeit von der Ordnung m variiert
wird (rechte Ordinate, strichlierte Linien). Linksseitig ist die Mindest-Transmission des
[H2 − He]-Systems für einige Zonenzahlen N aufgetragen (durchgezogene Kurven).

ordnet somit bei E0 den H2− und He−Komponenten jeweils die Hälfte der optisch re-
fraktiven Gesamtwirkung zu. Übertragen auf die funktionale Änderung der Dichte %c mit
Ec ergibt sich unter Einbeziehung der höheren Beugungsordnungen der in Abb. 5.9 dar-
gestellte Verlauf. Mit dieser speziellen Zuordnung durchläuft %c also in den Maxima der
diffraktiven Beugungseffizienz, nämlich für Ec

E0
= 1

m
, linear den Referenzwert %0. Die Gln.

5.25 und 5.26 vereinfachen sich somit zu

%c = (2mψ0 − 1) %0 und T1◦2 (Ec) = exp

(

− 1

ψ0

N

4

(

1

N0,1 (Ec)
+

1

N0,2 (Ec)

%c
%0

))

,

wobei wieder der aus Abschn. 4.3 bekannte Energieparameter ψ0 verwandt wurde. Das
Beispiel in Abb. 5.9 verdeutlicht die prinzipielle Möglichkeit eines de facto über den ge-
samten interessierenden Spektralbereich durchstimmbaren, kompakten Achromaten. Ein
Urteil über die faktische Realisierbarkeit ist aufgrund der oben angedeuteten Probleme
hiermit noch nicht gefällt.
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5.1.3 Entwicklung exemplarischer Modellsysteme

Ausgehend von einer Winkelauflösung ∆ε von wenigstens 1 mas, skaliert die nötige Apertur
eines Elementarteleskops je nach Energie in Größenordnungen von ∼ (100 − 101) cm. Ein
laterales Sichtfeld von rund 103 Auflösungselementen beibehaltend, vermindert jedoch eine
möglichst große Apertur bei fixer Brennweite nach den Ausführungen in Abschn. 5.1.1 nicht
nur die Kopplung zwischen den Elementarteleskopen infolge des reduzierten Raumwinkels
ΩFOV , sondern auch den mutmaßlich dominanten Beitrag der von außerhalb des FOV ein-
fallenden, diffusen und zur Detektorfläche proportionalen Hintergrund-Zählrate. Da zudem
die Lichtstärke diffraktiver Linsen ausschließlich von deren Brennweite F abhängt, spricht
vieles dafür, mit Radien R(E) und Zonenzahlen N(E) laterale wie spektrale Trennschärfe
der Detektoren zu nutzen. Mit

F = 15× 103 m und ∆ε = 1× 10−4 arcsec → 2ρPSF = 7.3× 10−6 m (5.28)

nehmen Radien R(E) und Zonenzahlen N(E) zum harten Röntgenband hin ab, wie die bei-
den Tab. 5.1 und 5.2 quantifizieren. Die Aufgabe der Detektion würden in diesem Beispiel

E (keV) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10

R (cm) 27.4 24.9 22.8 21.0 19.5 18.2 17.1 16.1 15.2 14.4 13.7

Tabelle 5.1: Apertur-Radien der FL-Matrix für ∆ε = 0.1 mas. Die Angaben beziehen sich
auf die HEW-Definition und verstehen sich ohne Zentralobstruktion, Stützstreben etc.

E (keV) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10

N (×103) 20.1 18.3 16.8 15.5 14.4 13.4 12.6 11.8 11.2 10.6 10.1

Tabelle 5.2: Zonenzahlen N der FL-Matrix für F = 15 km. Die gewählten Werte korre-
spondieren näherungsweise mit dem Trennvermögen eines guten LiF(200)-Kristalls.

hochauflösende LiF(200)-Kristalle in Verbindung mit fein gerasterten CCD’s übernehmen.
Vernachlässigt man deren Verluste im Energieintervall zwischen 5 und 10 keV, so errechnet
sich die Lichtstärke der gesamten, aus nT Elementaroptiken zusammengesetzten Konfigu-
ration unabhängig von der energetischen Verteilung zu

Aeff ×∆E = 0.58 cm2 keV · nT , (5.29)

so dass sich die Leistung einer aus beispielsweise (50× 50) Objektiven bestehenden Matrix
zu Aeff × ∆E ≈ 1.45 × 103 cm2 keV summiert. Um das Band zwischen 5 und 10 keV
in Form eines spektralen

”
Kamms“ gleichmäßig zu erfassen, bietet sich eine Besetzung im

festen Abstand von jeweils 2 eV an.
Etwas anderen Randbedingungen unterliegt die aus Hybridelementen zusammengesetz-

te Paralleloptik. Da neben der Brennweite F die Verstärkung V und mit ihr die Zonenzahl



112 5. Wege zur praktischen Umsetzung

N über die Lichtstärke entscheidet, kommen ähnlich extreme Größenordnungen wie im
eben dargestellten Beispiel nicht in Betracht. Wählt man statt dessen

F = 25× 103 m und ∆ε ≤ 6× 10−4 arcsec → 2ρPSF ≤ 70× 10−6 m, (5.30)

so erreicht Li, der nach LiH leistungsfähigste Feststoff, bei 6 keV noch eine Verstärkung
V = 30.4 gegenüber dem diffraktiven Analogon. Nahe 12 keV durchläuft N0(E) ein globa-
les Maximum, weshalb Li dort auch mit V = 42.0 seinen höchsten Wirkungsgrad erreicht1.
Diesseits von rund 5 keV fällt V jedoch unter den physikalisch-technisch sinnvollen Mini-
malwert Vmin = 4 ab, so dass alternativ H2 bei 4 keV zur Dispersionskorrektur herange-
zogen wird, mit einer theoretischen Verstärkung V ≤ 84.6. Bezugnehmend auf Gl. 4.60,
ergeben sich zusammen mit den aus 5.30 folgenden Radien R(E) und Zonenzahlen N(E)
die in Abb. 5.10 eingetragenen Lichtstärken. Gesteht man – konservativ abgeschätzt – der

Abbildung 5.10: Beispiele kompakter Hybridlinsen fixer Brennweite und Auflösung. Mit
bikonvexen, refraktiven Komponenten aus H2 bzw. Li erreichen alle 3 Versionen die Fokal-
distanz F = 25 km und eine Winkelauflösung ∆ε ≤ 0.6 mas.

die H2−Füllung beherbergenden Schale (engl.
”
cladding“) bezugnehmend auf Tab. 8.2 ei-

ne Transmission von Tclad ∼ e−2 entsprechend zweier Absorptionslängen zu, so reduziert
sich die Lichtstärke der H2−Version auf ≈ 5.6 cm−2 keV und beträgt damit immer noch
das bis zu 102−fache einer bei 4 keV operierenden Li-Linse. Um unter Verwendung dieser
Elementarlinsen eine dem diffraktiven Array vergleichbare Lichtstärke zu erzielen, genügt
bereits eine Matrix aus (10× 10) Objektiven, z.B. bestehend aus 30 H2−Linsen, 40 auf 6
keV und 30 auf 12 keV sensitiven Li-Elementen.

Überleitend zum folgenden Abschnitt sei nun noch ein Aspekt angesprochen, der sich
wesentlich auf die optischen Eigenschaften der Gesamtkonfiguration auswirkt. Mit den
in vorstehenden Beispielen angenommenen Werten für die Radien R betragen die typi-
schen Abstände benachbarter Elementarteleskope & 10−1 m. Entsprechend einer Winkel-
auflösung von & 10−4 arcsec bestünde folglich die Gefahr von Interferenzen zwischen den
einzelnen Objektiven, würden diese nicht hinreichend unregelmäßig, sondern gleich einem
kohärenten, zweidimensionalen Gitter mit exakt konstanten Abständen angeordnet.

1Dieser Sachverhalt wird in einem der folgenden Unterkapitel genauer diskutiert.
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5.2 Die segmentierte Apertur

Mit der Aufteilung der bislang als kompakt angenommenen Apertur in verhältnismäßig
kleine Segmente wird nun ein Weg beschritten, der sich aller Voraussicht nach auch im
visuellen Spektralbereich, nämlich beim Bau großflächiger Spiegelteleskope, als zielführend
erweisen wird [31]. Zunächst liegt auch erdgebundenen segmentierten Objektiven die Er-
kenntnis der annähernden Unmöglichkeit zugrunde, die zur Vermeidung fertigungstechnisch
bedingter Aberrationen notwendige Phasenkohärenz über Durchmesser von 10 und mehr
Metern zu erhalten. Im Fall sehr großer Radien (R & 2 m) vermag die in Parzellen zer-
legte Fläche einer transmissiven Röntgenlinse bei geschickter Konstruktion zugleich das
Transportproblem zu lösen. Vor allem jedoch kommt ihr bei der Aufgabe, die effektive
Sammelfläche und mit ihr die Lichtstärke bei moderater Brennweite zu erhalten oder zu
verbessern, entscheidende Bedeutung zu – eine Tatsache, die sich als wesentliches positives
Resultat in die nachfolgenden Ausführungen zu den optischen Eigenschaften der segmen-
tierten Apertur eingliedert.

Den Segmenten wie im Visuellen operierenden Spiegeln eine hexagonale Form [31]
zu geben, erscheint angesichts des zu erwartenden konstruktiven Aufwandes zumindest
fragwürdig. Radial und azimutal geschnittene Parzellen dürften mit den der Fresnel- oder
Hybridoptik einbeschriebenen Symmetrieeigenschaften indes viel mehr harmonieren. Mit
der Segmentierung nach

”
konstanter Fläche“ und nach

”
konstanter Zonenzahl“ bieten sich

zwei prinzipiell verschiedene Konzepte an:

Segmente konstanter Fläche (A)

Die Apertur besteht aus TA ε N Ringen
gleicher Dicke. Jeder dieser Ringe wird
azimutal in Parzellen zerlegt, so dass diese
im Grenzfall TA → ∞ quadratische Form
und konstante Fläche aufweisen. Die Zo-
nenzahl Nseg pro Segment nimmt mit der
Ringnummer 1 ≤ k ≤ TA zu.

Segmente fixer Zonenzahl (N)

Die Apertur besteht aus TN ε N Ringen
gleicher Zonenzahl Nseg. Jeder dieser Rin-
ge wird azimutal in Parzellen zerlegt, so
dass diese im Grenzfall TN → ∞ quadra-
tische Form annehmen. Die Fläche der ein-
zelnen Segmente nimmt mit der Ringnum-
mer 1 ≤ k ≤ TN ab.

Sieht man von Stützstreben und anderen Spezifika der realen Konstruktion ab, sind die
radialen und azimutalen Begrenzungen des Segments fixer Fläche durch

rk = k r0 und θk,j = randk + 2π
j − 1

[(2k − 1)π]
mit k, j ε N (5.31)

definiert. Mit dem Zentralradius r0 des Objektivs ist zugleich der Radius des innersten,
durch k = 1 beschriebenen Rings festgelegt. Die Winkelkoordinaten θk,j der Segmentränder
zählen, beginnend mit einem Zufallswert 0 ≤ randk ≤ 2π, in konstanten Abständen via
1 ≤ j ≤ [(2k − 1)π] + 1 den gesamten Ring mit 0 ≤ θ ≤ 2π durch, wobei [x] ε Z die
der Zahl x ε R nächstgelegene ganze Zahl symbolisiert. Aus 5.31 folgen unmittelbar die
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radialen und winkeligen Abmessungen,

∆rk = r0 und ∆θk ≈
2

2k − 1
, (5.32)

wenn die Rundung x→ [x] vernachlässigt wird. Die Segmente nehmen daher im Grenzfall
großer Ringzahlen k annähernd quadratische Form an, wobei ihre Fläche

Aseg = ∆rk × 〈rk−1,k〉∆θk = r0
rk + rk−1

2

2

2k − 1
= (r0)

2 (5.33)

mit dem mittleren Radius 〈rk−1,k〉 des k−ten Rings konstant bleibt. Abb. 5.11 veranschau-
licht im unteren Sektor die Koordinaten der nach konstanter Parzellenfläche zerlegten,

”
A-

segmentierten“ Version. Alternativ können Radien und Winkel so gewählt werden, dass

Abbildung 5.11: Segmentierung großflächiger Linsen. Radiale und winklige Grenzen sind
für beide Schemata, die Segmentierung nach konstanter Fläche (A) als auch nach kon-
stanter Zonenzahl (N) in Abhängigkeit von der Ringnummer 1 ≤ k ≤ T angegeben. Im
Grenzfall k À 1 nehmen die Segmente näherungsweise quadratische Form an.

anstelle der Segmentfläche deren Zonenzahl Nseg erhalten bleibt, dazu definiert man

rk =
√
k r0 und θk,j = randk + 2π

j − 1

[π
√
k+
√
k−1√

k−
√
k−1 ]

mit k, j ε N. (5.34)
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Die Maße der sich daraus ergebenden Parzellen errechnen sich wieder unter Verzicht auf
die nur unter praktischen Gesichtspunkten notwendige Rundung x→ [x] zu

∆rk =
(√

k −
√
k − 1

)

r0 und ∆θk = 2

√
k −
√
k − 1√

k +
√
k − 1

, (5.35)

so dass die Parzellenfläche dieser
”
N-segmentierten“ Version einer zu Gl. 5.33 analogen

Kalkulation folgend

Aseg = ∆rk × 〈rk−1,k〉∆θk = [...] = (r0)
2
(√

k −
√
k − 1

)2

(5.36)

beträgt. Im Grenzfall großer Ringzahlen nehmen auch diese Segmente nahezu die Form

eines Quadrats der Kantenlänge r0

(√
k −
√
k − 1

)

an, ihre Fläche skaliert gemäß

Aseg → 1

4k
(r0)

2 für k À 1, (5.37)

asymptotisch invers proportional zu k. Abb. 5.11 illustriert auch diesen Fall. Die Anzahl
an Segmenten im k−ten Ring ergibt sich für A- und N-segmentierte Ausführung zu

#(Seg.)k,A = [(2k − 1)π] bzw. #(Seg.)k,N =

[

π

√
k +
√
k − 1√

k −
√
k − 1

]

. (5.38)

Tab. 5.3 listet die Zahl der Parzellen für die ersten 50 Ringe auf. Eine wiederum die

Ringnummer k 1 2 3 4 5 6 7 8 9 10 20 30 40 50

#(Seg.)k,A 3 9 16 22 28 35 41 47 53 60 123 185 248 311

#(Seg.)k,N 3 18 31 44 56 69 82 94 107 119 245 371 496 622

Tabelle 5.3: Anzahl der Segmente im k−ten Ring. Eingetragen sind die Werte für A- und
N-segmentierte Version.

ganzzahlige Rundung ignorierende Reihenentwicklung von #(Seg.)k,N bestätigt die aus
Tab. 5.3 abzulesende Tatsache, dass die N-segmentierte Version pro Ring rund doppelt so
viele Parzellen wie die A-segmentierte erfordert,

lim
kÀ1

#(Seg.)k,N = 2π(2k − 1) +O
(

k−1
)

≈ 2#(Seg.)k,A. (5.39)

Die drei mit k = 1 innersten Segmente füllen als Sektoren die dem Elementarradius r0
entsprechende Fläche aus – eine aus formalen Gründen eingeführte Konvention, um den
Flächengesetzen nach den Gl. 5.33 und 5.36 auch für k = 1 annähernd Rechnung zu tragen.

Bezeichnet nun TA bzw. TN die Ringzahl im A- bzw. N-segmentierten Fall, so gilt

R = r0,ATA bzw. R = r0,N
√

TN mit TA,N ε N, (5.40)
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wobei R wie immer für den Aperturradius steht und die nicht notwendig identischen Zen-
tralradien der beiden Varianten mit den entsprechenden Indizes bezeichnet werden. Unter
Verwendung obiger Definitionen aus 5.31 und 5.34 für die Segmentradien rk ergeben sich
die Zonenzahlen Nseg pro Segment zu

Nseg,A =
1

T 2A
(2k − 1)N bzw. Nseg,N =

1

TN
N, (5.41)

die in A-segmentierter Version demnach etwa ∝ k zunehmen und in N-segmentierter Aus-
führung per definitionem konstant sind. N steht wie üblich für die (Gesamt-)Zonenzahl.

Mit den beiden eingeführten Versionen stehen somit zwei grundsätzlich gleichwertige
Schemata zur Verfügung, zwischen denen beim Design einer realen Optik in Abwägung
ihrer jeweiligen technischen wie optischen Vor- und Nachteile zu entscheiden ist. Abb. 5.12
stellt die beiden Varianten anhand eines willkürlich gewählten Beispiels gegenüber. Wie

Abbildung 5.12: Beispiel einer A- und N-segmentierten Apertur. Beide Modelle erreichen
die gleiche Winkelauflösung. Im Fall gleicher Flächen beträgt TA = 10, die 4 zentralen
Ringe sind abgedeckt. Unter Annahme konstanter Zonenzahl mit TN = 7 Ringen wurde
lediglich auf den innersten Ring verzichtet.

weiter unten erläutert wird, kann durch passende Wahl der Parameter {r0,A, TA} bzw.
{r0,N , TN} dieselbe Winkelauflösung eingestellt werden.

Bislang wurde das Segmentierungsproblem lediglich unter geometrischen Gesichtspunk-
ten betrachtet. Um die eingangs erwähnte inkohärente Superposition der den einzelnen
Segmenten entstammenden Amplitudenbeiträge in der Fokalebene zu erreichen, bedarf es
jedoch einer beschränkt zufälligen, radialen Versetzung der Segmente gegenüber ihrer ur-
sprünglichen Position.
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Die theoretischen Prinzipien der Dekohärenz seien zunächst unter der letztlich un-
wesentlichen Beschränkung auf ein eindimensional-lineares, segmentiertes

”
Objektiv“ de-

monstriert, das eine einfache, analytisch exakte Lösung ermöglicht. Das Instrument bestehe
nach Abb. 5.13 ausM aneinander gereihten Spalten der konstanten Breite b, im ungestörten
Abstand ∆ > b. Zugunsten einfacher Analysis wird das Fraunhofer’sche Beugungsbild im
Fernfeld (F →∞) betrachtet – ob Gitter, Prisma oder eine dem Achromaten entsprechen-
de Hybrid-Kombination der beiden zum Einsatz kommt, spielt also keine Rolle. Besitzen

Abbildung 5.13: Dekohärenz des segmentierten Lineargitters. Eine zufällige, mittlere Ver-
setzung der einzelnen Segmente um 〈εm〉 = 1

2
zerstört die Interferenz, so dass die Peakin-

tensität von M 2I0 auf MI0 abfällt. Die allgemeine funktionale Abhängigkeit von ε wurde
für M = 100 Segmente simuliert und über ebenso viele Versuche gemittelt.

diese Spalten die Transmission T (x), so lautet deren Fourier-Transformierte

F(κ) = 1√
2π

M
∑

m=1

∫ (m+εm)∆+
b
2

(m+εm)∆− b2
T (σ)e−iκσdσ, (5.42)

wobei mit 0 ≤ εm ≤ ε eine kleine Zufallsverschiebung eingeführt wurde, deren Eigenschaf-
ten folgendermaßen definiert seien:

• Die Maximalverschiebung ε kann Werte zwischen 0 und wenigen Wellenlängen an-
nehmen, dimensionslos entsprechend 0 ≤ ε ∼ 1.

• Die Zufallswerte εm sind in 0 ≤ εm ≤ ε gleichverteilt, so dass in diesem Intervall alle
εm mit derselben Wahrscheinlichkeit auftreten.
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Da zudem ∆− bÀ λ vorausgesetzt wird, sind Überschneidungen der einzelnen Segmente
ausgeschlossen. Etwaige Absorption vernachlässigend, gilt ferner T (σ) = 1. Mit der in
einer Dimension skalaren Wellenzahl κ = 2π

λ
sinφ und dem Ablenkwinkel φ ergibt sich

nach kurzer Rechnung für das zur Intensitätsverteilung proportionale Amplitudenquadrat

|F(κ)|2 = b2

2π

(

sin
(

κ b
2

)

κ b
2

)2 ∣
∣

∣

∣

∣

M
∑

m=1

e−iκ∆(m+εm)

∣

∣

∣

∣

∣

2

. (5.43)

Während der Integralsinus die Beugung am einzelnen Segment repräsentiert, entscheidet
die nachfolgend als Dekohärenzfunktion bezeichnete Größe

DM(ε) =

∣

∣

∣

∣

∣

M
∑

m=1

e−iκ∆(m+εm)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

M
∑

m=1

e−2πiεm

∣

∣

∣

∣

∣

2

(5.44)

über das quantitative Ausmaß der Inkohärenz zwischen den einzelnen Segment-Amplituden
und damit über die Peak-Intensität des in erster Ordnung gemäß ∆ sinφ = λ beobachteten
Beugungsbildes. Um DM(ε) für große M zu berechnen, beachte man zunächst

DM(ε) =

〈

∑

m,n

e−2πi(εm−εn)

〉

=M +

〈

∑

m6=n
e−2πi(εm−εn)

〉

, (5.45)

wobei die zweifache Summation jeweils bis M läuft. Mit der Mittelung werden zahlreiche,
grenzwertig unendlich viele Versuche mit jeweils anderen Sätzen an Zufallsverschiebungen
Ω(ε) ≡ {εm : 0 ≤ εm ≤ ε} und |Ω(ε)| = M erfasst. Da die Doppelsumme in Gl. 5.45 nach
Extraktion des ideal inkohärenten Anteils mit m = n gewissermaßen entkoppelt, gilt für
deren Erwartungswert

〈

∑

m6=n
e−2πi(εm−εn)

〉

=
M
∑

m=1

(

M
∑

n6=m

〈

e+2πiεn
〉

)

〈

e−2πiεm
〉

. (5.46)

Im GrenzfallM →∞ liegen die Zufallswerte εm dicht, so dass von der Summe zum Integral,

〈

e−2πiεk
〉

→ 1

ε

∫ + ε
2

− ε
2

e−2πiµdµ =
sin(πε)

πε
, (5.47)

übergegangen werden kann. Der Index k repräsentiert die Indizes m und n. Unter Be-
achtung der Ausschlussbedingung n 6= m in Gl. 5.46 ergibt sich die Dekohärenzfunktion
schließlich zu

DM(ε) =M(M − 1)

(

sin(πε)

πε

)2

+M. (5.48)

Abb. 5.13 illustriert diesen Verlauf am Beispiel M = 100. Man erkennt, dass insbesondere
die beiden wichtigsten Spezialfälle für ε = 0 und ε = 1 den ideal kohärenten bzw. völlig
inkohärenten Zustand wiedergeben. Die zwischen den Nullstellen ansatzweise wiederaufle-
bende Kohärenz liegt in der Periodizität der komplexen Exponentialfunktion begründet.



5.2 Die segmentierte Apertur 119

Die am elementaren Beispiel des Lineargitters dargelegten Grundsätze der Dekohärenz
finden im segmentierten, kreisförmigen Objektiv ihre qualitative Entsprechung, einer quan-
titativen Korrespondenz bzw. Übertragung steht das Problem entgegen, dass die De-
kohärenzterme von den regulären Amplitudenbeiträgen der einzelnen Segmente nicht ent-
koppeln und somit von den mittleren Koordinaten (〈rseg〉 , 〈θseg〉) der Parzellen abhängig
bleiben. Auf mögliche Näherungen im Grenzfall weit außen liegender und damit obiges
Lineargitter approximierender Segmente sei hier verzichtet. Es zeigt sich nämlich anhand
von Simulationen, dass die Dekohärenzfunktion segmentierter, fokussierender Kreisgitter
mit der des linearen weitgehend übereinstimmt. Abb. 5.14 zeigt exemplarisch das gemit-
telte Resultat einer vierfach wiederholten Simulation für ein N-segmentiertes Objektiv mit
TN = 5 Ringen, also insgesamt 56 Segmenten. Im ersten Minimum bei ≈ 2 〈∆rn〉 streuen

Abbildung 5.14: Dekohärenz einer segmentierten Zonenplatte. Abhängig vom radialen Feh-
ler der Segmentposition nimmt die Peakintensität einen Wert zwischen dem Spitzenwert
I/I0 = 1 bei perfekter Ausrichtung der Segmente und dem Minimum Imin = 〈I/I0〉ink
an, der durch maximale Inkohärenz in erster Ordnung bzgl. 〈∆rn〉 gekennzeichnet ist. Die
Zonenzahl der N-segmentierten Linse beträgt N = 100, die Ringzahl TN = 5.

die numerischen Daten um den inkohärenten Erwartungswert der betrachteten Apertur
〈I/I0〉ink = 1.8× 10−2, während für ≈ 4 〈∆rn〉 das zweite Minimum auftritt2.

Praktische Bedeutung kommt speziell dem Rauschintervall, also der maximalen radialen
Segmentversetzung zu. Bezogen auf den intrinsischen Zonenindex 1 ≤ n ≤ Nseg bedarf es

2Die inkohärente Peakintensität eines allgemeinen segmentierten Objektivs wird weiter unten abgeleitet.
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ganz allgemein einer Zufallsvariation von wenigstens 2 〈∆rn(k)〉, wobei 〈∆rn(k)〉 die mittle-
re Breite einer Zone des k−ten Segments bezeichnet. Der radialen Symmetrie des Objektivs
folgend, bietet sich eine Definition der gemittelten Zonenbreite über die Zonenzahl an, die
sich für eine A-segmentierte Apertur zu

〈Nseg(k)〉A = (2k − 1)
N

T 2A
→ 〈∆rn(k)〉A =

R

2N

2TA
2k − 1

(5.49)

ergibt. Hingegen findet man für die mittlere Zonenbreite eines N-segmentierten Objektivs

〈Nseg(k)〉N =
1

2
(2k − 1)

N

TN
→ 〈∆rn(k)〉N =

R

2N

√

2TN
2k − 1

. (5.50)

Hinreichend große Ringzahlen k vorausgesetzt, stimmen die so berechneten Mittelwerte
mit den arithmetischen überein,

〈∆rn(k)〉A ≈
R

2N

TA
k

und 〈∆rn(k)〉N ≈
R

2N

√

TN
k

für k À 1. (5.51)

Die erforderlichen Rauschintervalle erweisen sich somit als invers proportional zu k bzw.√
k. Ihre minimalen Werte nehmen sie am Rand der Apertur ein, so dass mit

2 〈∆rn(k)〉A,min ≈
R

N
≈ 2 〈∆rn(k)〉N,min (5.52)

die Mindest-Rauschtoleranz erwartungsgemäß durch das Verhältnis von Radius zu Gesamt-
Zonenzahl gegeben ist. Mit typischen Radien R ∼ (100 − 101) m und Zonenzahlen N ∼
(104 − 106) müssen die Mindest-Toleranzen ∼ (10−6 − 10−4) m betragen. Wie nachfolgende
Abschnitte aufzeigen, misst sich die laterale Auflösung in der Fokalebene aufgrund der
segmentierten Bauweise in der Größenordnung von 10−3 m. Versetzungen von . 10% der
Ortsauflösung sollten sich daher nicht signifikant auf die Bildqualität auswirken.

Um diese in Form der Punktbildfunktion zu analysieren, genügt es wiederum, anstelle
des vom Linsentyp und -profil abhängigen Beugungsintegrals nach Gl. 2.22 lediglich dessen
grenzwertigen Ausdruck für F →∞, nämlich die Fouriertransformierte der segmentierten
Apertur zu betrachten, deren Gesamtzonenzahl dann formal gegen Null strebt, N ¿ 1.
Unter der Annahme einer vollständig inkohärent operierenden Apertur berechnet sich die
Beugungsstruktur zu

ĨA (~υ) =

TA
∑

k=1

sk,A
∑

j=1

Ĩ
(seg)
k,j (~υ) bzw. ĨN (~υ) =

TN
∑

k=1

sk,N
∑

j=1

Ĩ
(seg)
k,j (~υ) (5.53)

wobei die Anzahl der Segmente pro Ring durch # (Seg.)k,A = sk,A bzw. # (Seg.)k,N =
sk,N abgekürzt sei. Die Intensitätsverteilung eines einzelnen Segments schreibt sich als
Betragsquadrat seiner zweidimensionalen Fouriertransformierten,

Ĩ
(seg)
k,j (~υ) = |Fk,j (~υ)|2 , (5.54)
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welche bei einer allgemein von den Aperturkoordinaten ~σ = σ(cos θ, sin θ) abhängigen
Transmission Tk,j (~σ) und der Segmentfläche Aseg die Form

Fk,j (~υ) =
1

2π

∫

Aseg

Tk,j (~σ) e
−i~υ~σd2σ (5.55)

annimmt. Unter Vernachlässigung jeglicher Absorption ergibt sich für ~κ = κ(cosϕ, sinϕ)

Fk,j (~κ) =
1

2π

∫ θk,j

θk,j−1

∫ rk

rk−1

e−iκσ cos(ϕ−θ)σdσdθ, (5.56)

mit den vorstehend angegebenen Definitionen der Segmentgrenzen im A-bzw. N-Modell.
Die Integration über θ ist nur im hier nicht relevanten Spezialfall 0 ≤ θ ≤ 2π analy-
tisch auszuführen. Um die zeitaufwändige numerische Integration zu umgehen, erscheint es
vielmehr naheliegend, den annähernd quadratischen Grundriss der optisch unabhängigen
Segmente zu nutzen. Deren Intensitätsverteilung errechnet sich zu

|Fk,j (~κ)|2 =
(

1

2π

)2
(

sin
(

1
2
κx̂
)

1
2
κx̂

)2(

sin
(

1
2
κŷ
)

1
2
κŷ

)2

, (5.57)

wenn die Kantenlänge ∆rk im k−ten Ring nach Gl. 5.32 bzw. 5.35 vorübergehend gleich
1 gesetzt wird. Die Koordinaten ~κ ≡ (κx̂, κŷ) stehen für die Wellenvektor-Komponente in
der Fokalebene und gehen im allgemeinen Fall aus einer Drehung hervor, ~κ = R (〈θk,j〉)~κ0,
wobei 〈θk,j〉 den mittleren Winkel des durch die Indizes k, j identifizierten Segments be-
schreibt. Die inkohärent überlagerten Beugungsbilder eines Rings durch das einer kreis-
förmigen Apertur zu ersetzen, reduziert den Fehler wesentlich, wenn dessen Radius das
1√
π
−fache der Kantenlänge im k−ten Ring beträgt. Man erwartet für die Intensität

|Fk (~κ)|2 = #(Seg.)k
〈

|Fk,j (~κ)|2
〉

〈θk,j〉 ≈
(

1

2π

)2

#(Seg.)k





2J1

(

κ 1√
π

)

κ 1√
π





2

(5.58)

Abb. 5.15 vergleicht das zumindest in k À 1 asymptotisch exakte Beugungsbild eines
Segments mit der des

√
π−Modells. Wie eine rechnerische Überprüfung zeigt, weicht die im

HEW-Maß definierte Winkelauflösung der Näherung nach Gl. 5.58 sowohl des A- als auch
N-segmentierten Modells von der exakten, durch direkte numerische Fouriertransformation
ermittelten selbst für die innersten Ringe mit 1 ≤ k ≤ 3 maximal um ±2% ab.

Um die Punktbildfunktion der gesamten Apertur zu bestimmen, sind die Beiträge der
einzelnen Segmente mit ihrer Größe und damit ihrem Anteil an der Gesamtleistung zu
gewichten. Der A-segmentierten Version wird unmittelbar Gl. 5.58 gerecht. Ungeachtet der
von der Zahl der Segmente bestimmten Normierung liefert sie im Fokus eine Intensitäts-
verteilung der Form

IA(κ) ≈
(

1

2π

)2




2J1

(

κ 1√
π

)

κ 1√
π





2

, während Ikoh,A(κ) ∝
T 2A
4π

(

2J1 (TAκ)

TAκ

)2

(5.59)
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Abbildung 5.15: Beugungsstruktur eines Segments und dessen Näherung. Die Segmente
eines Rings (links) ergeben in der Superposition näherungsweise das Beugungsbild einer
kreisförmigen Apertur (rechts), deren Radius das 1√

π
−fache der Kantenlänge des asympto-

tisch quadratischen Segments misst.

andererseits die Beugungsstruktur einer bei derselben Energie operierenden kohärenten
Apertur gleicher Größe und Brennweite beschreibt, deren Zentralobstruktion verschwindet.
Es erweist sich als sinnvoll, die aus Gl. 5.59 via numerischer Integration bestimmte HEW-
Winkelauflösung auf den entsprechenden Referenzwert ∆κkoh des kohärenten Analogons
zu beziehen. Man findet für die inkohärente Auflösung ∆κA als Funktion der kohärenten

∆κA =
√
π TA ∆κkoh, (5.60)

unabhängig von einer etwaigen zentralen Abdeckung des segmentierten Objektivs. Im Fall
der N-Segmentierung gilt diese Invarianz nicht mehr, statt dessen sind die Parzellen ihrer
Größe nach zu gewichten, so dass

IN(κ) =
1

4π (TN − [a2TN ])

TN
∑

k=[a2TN ]+1





2J1

(√
k−
√
k−1√
π

κ
)

κ





2

(5.61)

die auf 2π
∫∞
0
IN(κ)κdκ = 1 normierte PSF angibt. Mit der Rundung auf ganzzahlige

Laufindizes wird bei allgemeiner Wahl von 0 ≤ a ≤ 1 ein Fehler zu verzeichnen sein, den
die Einschränkung

a =

√

kobs
TN

mit kobs ε N0 (5.62)

auch analytisch exakt vermeidet, wenn kobs Ringe abgedeckt werden. Die numerische Aus-
wertung der Gl. 5.61 nimmt vorteilhaft wieder auf das kohärente Analogon Bezug. Dessen
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Punktbild folgt wiederum normiert auf Ikoh,N(0) = 1 einer Airy-Funktion der Form

Ikoh,N(κ) =
TN
4π

(

2J1
(√

TNκ
)

√
TNκ

)2

. (5.63)

Das Resultat entzieht sich einer streng analytischen Darstellung, vielmehr folgt die in-
kohärente Winkelauflösung ∆κN für nicht zu kleine TN ∼ 1 der Funktion

∆κN = ηN(a) TN ∆κkoh,N mit ηN(a) =
∑

n

cna
n und n ≥ 0. (5.64)

Die empirisch anzupassenden und ηN(a) ausreichend approximierenden Koeffizienten cn
ergeben sich zu

c0 = 2.27, c1 = 0.12, c2 = 0.98, c3 = 2.61, c4 = 4.17, c5 = 1.74. (5.65)

Nichtsdestoweniger gehorcht ∆κN nach wie vor einer exakten Linearität in der Ringzahl
TN . Abb. 5.16 vermittelt einen graphischen Eindruck des Konversionsparameters ηN(a).
Demnach dürfte ηN(a) ∼ 3 als universeller und im Regelfall hinreichend genauer Richtwert

Abbildung 5.16: Konversion zwischen kohärenter und segmentierter Apertur. Spektrale und
Winkelauflösung segmentierter Objektive lassen sich ebenso wie die Peakintensität mit Hilfe
der von a abhängigen, numerisch ermittelten Konversionsparameter aus den entsprechen-
den Werten des kohärenten Analogons berechnen.
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anzusehen sein. Während also Gl. 5.60 die einfache Berechnung der Winkelauflösung ei-
nes beliebigen N-segmentierten Objektivs erlaubt, genügt dessen spektraler Bandpass der
nahezu trivialen Relation

(

∆E

E

)

ink,N

= TN

(

∆E

E

)

koh,N

. (5.66)

Offenbar wird die bislang benutzte Fouriertransformation der axialen Intensitätsverteilung
nicht mehr gerecht, vielmehr ist wieder das allgemeine Beugungsintegral 2.22 oder ein
spezielles Derivat in Verbindung mit der inkohärenten Superposition nach Gl. 5.53 heran-
zuziehen. Es gilt also im A- wie N-segmentierten Fall

Ĩ (ζ) =
T
∑

k=1

sk
∑

j=1

Ĩ
(seg)
k,j (ζ) , (5.67)

wobei Ĩ
(seg)
k,j (ζ) nun die aus Gl. 2.22 abgeleiteten axialen Intensitätsbeiträge der einzelnen

Segmente im Fokus beschreibt. Wie sich zeigt, gilt nämlich Ĩ
(seg)
k,j (ζ) = f (Nseg) ∀ k, j ein

und derselben Apertur. Mit ~r = z~ez reduziert sich Gl. 2.22 auf

uk,j = (~r) = i
|~k|
2πz

ei|
~k|z
∫ θk,j

θk,j−1

∫ rk

rk−1

ũ0(σ)e
−i |~k|
2z
σ2σdσdθ, (5.68)

wenn zur Unterscheidung vom Ringindex k der Betrag |~k| = 2π
λ

des Wellenvektors benutzt
wird. Die entsprechenden Amplituden ũ0(σ) der diffraktiven bzw. Hybridlinse eingesetzt,
erweist sich unter Vernachlässigung der Absorption die axiale Verteilung

Ĩ
(seg)
k,j (ζ) ∝

(

∆θk
2ζ

)2

(γNseg(k))
2





sin
(

π
2
γNseg(k)

(

1− 1
ζ

))

π
2
γNseg(k)

(

1− 1
ζ

)





2

mit γ ε {1
2
, 1} (5.69)

als von der effektiven Zonenzahl Nseg(k) pro Segment determiniert. Der Vorfaktor γ beträgt
im Fall der Fresnel-Linse 1 und 1

2
beim Achromaten. Die axiale Wirkung eines einzelnen

Segments entspricht somit der einer kohärent operierenden Linse mit Nseg Zonen etwa nach

Gl. 3.22. Die sich in Ĩ
(seg)
k,j (ζ) widerspiegelnde fokale Schärfentiefe liefert denn auch mit

(

∆E

E

)(diffr.)

ink,N

=
1

Nseg

bzw.

(

∆E

E

)(achro.)

ink,N

=
2

√

Nseg

(5.70)

den Bandpass im N-segmentierten Fall und damit direkt Gl. 5.66.

Etwas komplexer gestaltet sich die Bestimmung der axialen Intensitätsverteilung im
Fokus der A-segmentierten Variante. Analog zur Auflösung des N-segmentierten Modells
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führt der Weg über die Addition der gewichteten Verteilungen. Bezeichnet ∆n0 die Zonen-
zahl der Segmente des innersten Rings mit k = 1, so lautet die Gesamtintensität

ĨA(ζ) =

∑TA
k=[aTA]+1

(1+ζ)2

[(2k−1)π]

(

sin(π2
1
1+ζ

(2k−1)∆n0)
cos(π2

1
1+ζ )

)2

∑TA
k=[aTA]+1

(2k−1)2
[(2k−1)π]

. (5.71)

Erneut vereinfacht die spezielle Wahl der Obstruktion a die Formel 5.71, so dass sich mit

a =

√

kobs
TA

mit kobs ε N0 (5.72)

als normierte Intensitätsverteilung der noch von der Zonenzahl ∆n0 abhängige Ausdruck

ĨA(ζ) =
1

(1− a2)T 2A∆n20

TA
∑

k=aTA+1

(1 + ζ)2

2k − 1





sin
(

π
2
1
1+ζ

(2k − 1)∆n0

)

cos
(

π
2
1
1+ζ

)





2

. (5.73)

ergibt. Der spektrale Bandpass ist numerisch und quasi manuell zu ermitteln. Als Krite-
rium dient die durch einen Intensitätsabfall auf ca. 80% des Maximums charakterisierte
Schärfentiefe des kohärenten Objektivs. Eine solche, in den optisch-geometrischen Kenn-
daten wiederum analoge Apertur bildet denn auch die Referenz,

Ikoh,A(ζ) =

(

1

∆n0T 2A

)2


(1 + ζ)
sin
(

π
2
1
1+ζ

∆n0T
2
A

)

cos
(

π
2
1
1+ζ

)





2

, (5.74)

deren Intensitätsverteilung für sich genommen ebenfalls von ∆n0 abhängt, im Verhältnis
zur inkohärenten nach Gl. 5.73 jedoch erwartungsgemäß irrelevant wird, da beide Varianten
aus N = ∆n0T

2
A Zonen bestehen. Das Ergebnis der numerischen Auswertung approximiert

wie schon in Gl. 5.64 eine Potenzreihe
(

∆E

E

)

ink,A

= ηA(a) TA

(

∆E

E

)

koh,A

mit ηA(a) =
∑

n

sna
n und n ≥ 0. (5.75)

Während demnach auch der Bandpass des A-segmentierten Modells proportional mit TA
zunimmt, ergeben sich die empirisch anzupassenden Koeffizienten sn zu

s0 = 2.27, s1 = 0.12, s2 = 0.98, s3 = 2.61, s4 = 4.17. (5.76)

Abb. 5.16 stellt diesen Konversionsparameter ηA(a) graphisch dar – als grober, von a
unabhängiger Richtwert mag somit 〈ηA〉a ∼ 2

3
gelten.

In Abb. 5.12 wurden zwei Exemplare segmentierter Objektive gegenüber gestellt, die
dieselbe Winkelauflösung erreichen. Bei gleichen geometrisch-optischen Parametern bedarf
es dazu einer speziellen Relation zwischen den Ringzahlen TA und TN . Offenbar ergibt sich
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diese direkt aus den Gln. 5.64 und 5.60. Stimmen sowohl inkohärente als auch kohärente
Auflösung überein, folgt

√
π TA = ηN(a)TN → TA =

ηN(a)√
π
TN . (5.77)

In Abb. 5.17 wurde Gl. 5.77 benutzt, um die Punktbildfunktion der beiden Modelle jeweils
für geringe und hohe Obstruktion aufzutragen. Die Normierung der Funktionen unterliegt

Abbildung 5.17: Modell-PSF der segmentierten Apertur. Der HEW-Radius nimmt nur
im Fall der N-Segmentierung mit der Zentralobstruktion a zu (durchgezogene Graphen),
während die Winkelauflösung des A-segmentierten Objektivs nicht vom Abdeckungsverhält-
nis abhängt (strichliert). Allen Graphen liegt das gleiche Objektiv fester Brennweite und
Größe zugrunde. Für a→ 0 weisen beide Varianten die gleiche Winkelauflösung auf.

der Forderung, dass die Gesamtleistung in der Fokalebene 1 beträgt – einer Forderung, der
die korrekte Wahl der Proportionalitätsfaktoren Rechnung trägt. Die auf den Idealwert
I0,koh = π∆n0T

2
A normierte Peakintensität lautet

Ĩ0,A =

(

1

TA

)2 TA
∑

k=[aTA]+1

(2k − 1)2

[(2k − 1)π]
≈ 1

π

(

1− a2
)

(

1

TA

)2

(5.78)

bei A-segmentierter Bauweise, wie sich unter Berücksichtigung der Segmentzahl # (Seg.)k,A
pro Ring verifizieren lässt. Der Gl. 5.78 entspricht die Konversionsrelation

Ĩ0,A = γA(a)

(

1

TA

)2

Ĩ0,koh mit γA(a) ≈
1

π

(

1− a2
)

(5.79)
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die ebenfalls in Abb. 5.16 dargestellt ist. Gl. 5.78 steht im Fall der N-segmentierten Version

Ĩ0,N =

(

1

TN

)2 TN
∑

k=[a2TN ]+1

[

π

√
k +
√
k − 1√

k −
√
k − 1

]−1

(5.80)

entgegen. Auf eine Näherung wird verzichtet, da eine solche erst für k À 1 akzeptable
Resultate liefert. Mit γN(a) als Konversionsfaktor zwischen inkohärenter und kohärenter
Peakintensität gilt nun

Ĩ0,N = γN(a)

(

1

TN

)2

Ĩ0,koh mit γN(a) ≈
∑

n

wna
n und n ≥ −1. (5.81)

Die Peakintensität des N-segmentierten Modells fällt somit ebenfalls invers proportional
mit T 2N , wobei sich die empirisch anzupassenden Koeffizienten wn annähernd zu

w−1 = 1.35× 10−2, w0 = 2.85× 10−1, w1 = 5.15× 10−1, w2 = 2.25× 10−1. (5.82)

ergeben. Abb. 5.16 stellt diesen Konversionsparameter γN(a) graphisch dar – er variiert
somit etwa im Intervall 1 . γN(a) . 3.

Die abgeleiteten Relationen gestatten die Berechnung der PSF eines segmentierten Ob-
jektivs, speziell genügen die in Abb. 5.17 eingetragenen Beugungsbilder der A-Variante

ĨA(κ) =
γA(a)

η2N(a)
π





2J1

(

1√
π
κ
)

1√
π
κ





2

. (5.83)

Erwartungsgemäß beeinflusst der Obstruktionsparameter a lediglich die Normierung, nicht
jedoch die Auflösung. Anders die PSF der N-segmentierten Version:

ĨN(κ) =
γN(a)

∑TN
k=[a2TN ]+1

Fk

TN
∑

k=[a2TN ]+1

Fk
(

2J1 (Gk(κ))
Gk(κ)

)2

(5.84)

weist für a → 0 die gleiche Winkelauflösung wie das Punktbild 5.83 des A-Modells auf,
wobei zur Abkürzung der Term

Fk ≡
[

π

√
k +
√
k − 1√

k −
√
k − 1

]

(√
k −
√
k − 1

)4

≈ π
(√

k −
√
k − 1

)2

(5.85)

eingeführt wurde. Die Funktion Gk(κ) erfüllt besagte Forderung an die Auflösung, wenn

Gk(κ) ≡
√
k −
√
k − 1√
π

ηN(0)

√

TN
π
κ. (5.86)

Offenbar bewirkt das Konstruktionsschema des N-Modells eine gegenüber der A-Version
erhöhte Peak-Intensität, solange a ¿ 1. Ringaperturen mit a . 1 fallen hingegen im
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Zentrum der PSF hinter das Analogon der A-segmentierten Variante zurück. Den Punkt-
bildern ist bekanntlich durch einfache Fourier-Transformation die MTF zu entnehmen, als
quantitatives Maß des Kontrastes. Mit

M(ω) = 2π

∫ ∞

0

ĨN(κ)J0 (2πωκ)κ dκ (5.87)

ergeben sich unmittelbar die in Abb. 5.18 dargestellten Funktionen. Man entnimmt den

Abbildung 5.18: MTF der N-segmentierten Apertur. Der normierte Kontrast im Fall kon-
stanter Zonenzahl Nseg hängt vom Obstruktionsverhältnis a ab. Mit zunehmender Ab-
deckung werden hohe Ortsfrequenzen immer schlechter übertragen.

Graphen die mit wachsender Obstruktion abnehmende Grenzfrequenz, bei der M(ω) ≈ 0
die kleinsten noch auflösbaren Strukturen markiert.

Während der elementaren PSF der A-segmentierten Version also eine verhältnismäßig
komplexe Beugungsstruktur der N-Variante gegenübersteht, verhalten sich die beiden Mo-
delle hinsichtlich ihrer axialen Intensitätsverteilung im Fokus quasi komplementär. Al-
ternativ zur übereinstimmenden Winkelauflösung gelingt es, beiden Varianten die gleiche
Schärfentiefe und damit Bandbreite zuzuweisen.

Ĩ0,A(ζ) = γA(a) (ηA(0))
2

∑

[

TN
ηA(0)

]

k=
[

a
TN
ηA(0)

]

+1
Fk
(

(1 + ζ)
sin(π2

1
1+ζ

(2k−1)G)
cos(π2

1
1+ζ )

)2

∑

[

TN
ηA(0)

]

k=
[

a
TN
ηA(0)

]

+1
Fk(2k − 1)2G2

(5.88)
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beschreibt die fokale Intensität des A-Modells auf der optischen Achse, wobei diesmal

Fk ≡
1

[(2k − 1)π]
und G ≡

[

∆n0 (ηA(0))
2] 1

TN
. (5.89)

Für diverse 0 ≤ a ≤ 1 ist Gl. 5.88 in Abb. 5.19 dargestellt. Erwartungsgemäß treten die

Abbildung 5.19: Axiale Intensitätsverteilung segmentierter Objektive, links im Fall der A-
segmentierten Apertur (A), rechts unter Annahme konstanter Segment-Zonenzahl (N). Bei-
den Varianten liegt die gleiche Apertur fixer Brennweite und Größe zugrunde. Für a → 0
weisen beide Versionen die gleiche Feldtiefe (DOF) auf.

typischen Beugungsminima erst bei ausgeprägter Zentralabdeckung a . 1 hervor. Die spe-
zielle Wahl der Faktoren Fk und G gewährleistet, dass die auf ≈ 80% der Maximalintensität
bezogene Schärfentiefe für a→ 0 mit jener der N-segmentierten Apertur übereinstimmt,

Ĩ0,N (ζ) =
γN(a)

(∆n0)
2



(1 + ζ)
sin
(

π
2
1
1+ζ

∆n0

)

cos
(

π
2
1
1+ζ

)





2

. (5.90)

Es sei bemerkt, dass sich Winkelauflösung und Bandpass der beiden Varianten streng
genommen jeweils nur exklusiv in Übereinstimmung bringen lassen; nach Gl. 5.66 und Gl.
5.75 ist für äquivalenten Bandpass nämlich

(

TA
TN

)

∆E
E

=
1

ηA(a)
6= ηN(a)√

π
=

(

TA
TN

)

∆κ

(5.91)

zu fordern. Die quantitativen Differenzen stellen sich jedoch als gering heraus, wie sich auch
aus Abb. 5.16 ablesen lässt. Als wesentlich bedeutsamer erweist sich freilich der eingangs
erwähnte zusätzliche Freiheitsgrad in der Lichtstärke, den die Aufteilung in inkohären-
te Parzellen mit sich bringt. Mit vorstehend abgeleiteten Relationen ergibt sich für die
Lichtstärke eines diffraktiven Objektivs

Aeff ×∆E = π ηA(a) TA hc F bzw. Aeff ×∆E = π TN hc F, (5.92)
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wiederum mit den Naturkonstanten h und c. Das Hybrid-Profil führt bekanntlich die
Verstärkung V als weiteren Parameter ein,

Aeff ×∆E = π
V

2
ηA(a) TA hc F bzw. Aeff ×∆E = π

V

2
TN hc F. (5.93)

Somit stehen maximal drei prinzipiell voneinander unabhängige Dimensionen zur Verfü-
gung, um die Lichtstärke zu optimieren. Abb. 5.20 stellt diesen Sachverhalt schematisch
dar. Mit der Entscheidung für eine stückweise zusammengesetzte Apertur geht die Not-

Abbildung 5.20: Einflussgrößen auf die Lichtstärke eines Röntgenobjektivs. Mit zunehmen-
der Komplexität der Optik steigt die Zahl der die Lichtstärke beeinflussenden Freiheitsgrade
auf maximal 3 unabhängige, multiplikativ in Aeff ×∆E eingehende Parameter.

wendigkeit geeigneter Stützstreben und -ringe einher, die sowohl Sammelfläche und Win-
kelauflösung, als auch Zonenzahl und Bandpass negativ beeinflussen. Bedeckt das mecha-
nische Stützgitter einen realistisch wohl zwischen ∼ (10− 20)% anzusiedelnden Anteil ΩS

an der Gesamtfläche, so degradiert die Winkelauflösung offenbar um einen Faktor

∆ε (ΩS)

∆εopt
≈ (1− ΩS)

−1 , während
I0 (ΩS)

I0,opt
≈ (1− ΩS)

2 (5.94)

die verminderte Peakintensität beschreibt.
Den Weg der Aufteilung nach gleichen Flächen oder konstanter Zonenzahl zu wählen,

bleibt sich letztendlich gleich – aus physikalischer Sicht, vermögen doch beide hinsicht-
lich Winkelauflösung, Bandpass und Lichtstärke nahezu dieselben Resultate zu liefern. Der
einen Version die andere vorzuziehen, mag daher vornehmlich praktischen Gründen erwach-
sen: Der A-segmentierten Apertur wird in erster Linie die vergleichsweise moderate Zahl an
Parzellen anzurechnen sein, während für die N-segmentierte die bei Hybrid-Linsen günstige
Konstanz der Profildicke zu Buche steht. Im weiteren Verlauf dieses Kapitels wird denn
auch stets letztere Bauweise zugrunde gelegt – freilich weniger technisch, sondern vielmehr
mathematisch motiviert, da sich Segmente konstanter Zonenzahl Nseg analytisch besonders
einfach handhaben lassen. Auch wird weiterhin von jedweder technischen Komplikation in
Form von Stützstreben etc. abgesehen, um dem Ideal des mathematisch abstrahierten Mo-
dells so weit als möglich gerecht zu werden.
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5.3 Diffraktiv-segmentierte Monoband-Objektive

Aufgrund diverser, physikalischer wie technischer Argumente kann die Entscheidung für ein
elementar diffraktives Objektiv fallen. Zum einen unterliegen Zonenplatten, Fresnel-Linsen
und deren Modifikationen anders als Hybridprofile keiner Einschränkung auf ein diskre-
tes Energiespektrum; um ein solches im Kontinuum des beobachteten Strahlungsflusses zu
registrieren, genügt die Verstimmung der Fokallänge gemäß F ∝ E. Zum anderen stellen
zuvorderst binäre, aber auch mehrstufig das kinoforme Ideal approximierende Interferenz-
gitter eine konstruktiv besonders einfache Form transmissiver Röntgenoptik dar. Stehen nur
beschränkte technologische wie finanzielle Mittel zur Verfügung, bietet sich mit dem

”
Pho-

tonensieb“ (PS) eine denkbare Alternative zur hoch effizienten Fresnel-Apertur. Ursprüng-
lich von [21] zur hochauflösenden Mikroskopie im Synchrotron-Strahl entwickelt, sind die
offenen und z.T. auch die opaken Zonen einer binären ZP durch eine Vielzahl winziger
kreisrunder Löcher ersetzt, die das radiale Transmissionsprofil der ZP approximieren. Die
linke Teilgrafik der Abb. 5.21 zeigt einen von [21] vorgestellten Prototypen. Wenngleich in

Abbildung 5.21: Lochmasken-Struktur im
”
Photonensieb“. Das Original nach [21] appro-

ximiert die Zonen einer binären ZP durch Löcher, wobei deren günstig gewählte Größe
und Verteilung die Bildqualität verbessern (links). Der rechts dargestellte Ausschnitt einer
effizienzoptimierten Variante besteht aus offenen und phasenversetzenden Löchern.

[21] der optimierten Lateral-Auflösung und Bildqualität durch geschickte Dimensionierung
und Positionierung der Löcher zugearbeitet wird, erscheint im Rahmen der hier diskutierten
Aufgabenstellung das Konzept des

”
Photonensiebes“ primär als Möglichkeit, großflächige

Zonenplatten ohne besonderen Aufwand mit der erforderlichen Präzision herzustellen. Wir
leiten nun die allgemeine Amplitudenfunktion dieser Lochmaske als Grundlage weiterer
Kalkulationen zu PSF, DOF etc. her. Die Koordinaten des m−ten Lochmittelpunktes
bzgl. des im Zentrum der ZP bzw. des PS liegenden globalen Koordinaten-Ursprungs seien
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vektoriell mit ~bm bezeichnet, die lokalen Koordinaten innerhalb des Loches mit ~τm. Der
gesamte Ortsvektor ~σm ≡ ~bm − ~τm beschreibt dann die Lage eines Punktes innerhalb des
m−ten Loches mit Radius am. Die Transmission ergibt sich formal zu

T (~σ) =
M
∑

m=1

Π

(

1

am

∣

∣

∣
~σ −~bm

∣

∣

∣

)

mit Π (x) ≡
(

1 für x ≤ 1
0 für x > 1

)

. (5.95)

Um auf deren Grundlage die Intensität im Punkt ~r = (~ρ, z) zu ermitteln, bedient man sich
zweckmäßig des paraxialen Beugungsintegrals gemäß Gl. 2.22, setzt darin wieder z0 = 0,
schreibt die Eingangsamplitude als u0 (~σ) = ũ0T (~σ) und gelangt so zur Amplitude

E (~r) =
ik

2πz
eik(z−

1
2z
|~ρ|2)

∫

A

ũ0T (~σ) e−i
k
z (
1
2
|~σ|2−~σ~ρ)d2σ, (5.96)

wobei sich die Integration über die gesamte Apertur der Fläche A, d.h. alle Löcher erstreckt.
Im Verlauf der durch eine Re-Substitution ~σm → ~bm−~τm zu bewerkstelligenden Berechnung
ist zu berücksichtigen, dass in guter Näherung e−i

k
2z
|~τm|2 ≈ 1 gilt – zumindest solange

ein Loch in erster Beugungsordnung nur eine Zone überdeckt. Das vom Photonensieb
im Bildraum erzeugte Interferenzmuster entsteht dann als kohärente Superposition der in
Fraunhofer’scher Fernfeldnäherung zu beschreibenden Amplitudenbeiträge der insgesamt
M Löcher. Schlussendlich schreibt sich die Intensität IPS (~r) mit ũ0 = 1 als

IPS (~r) =

(

k

z

)2

∣

∣

∣

∣

∣

∣

M
∑

m=1

e
−i k

z

(

1
2 |~bm|2−~bm~ρ

)

a2m

J1

(

k
z

∣

∣

∣
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∣

∣

∣ am

)

k
z

∣

∣

∣

~bm − ~ρ
∣

∣

∣ am

∣

∣

∣

∣

∣

∣

2

. (5.97)

Insbesondere zur Berechnung der (Peak-)Effizienz in den diversen Beugungsordnungen lässt
sich Gl. 5.97 weiter vereinfachen. Welche Anteile in die jeweiligen Ordnungen entfallen, wird
offenbar von Lage ~bm und Größe am der Bohrungen bestimmt. Um deren Einfluss auf den
Wirkungsgrad zu ermitteln, sei exemplarisch der Beitrag der n−ten Zone mit Mn Löchern
betrachtet. Im Fokus ~r = (0, 0, F ) vereinfacht sich deren partielle Intensität zu

I
(n)
PS (z = F ) =

(

Mn
an
bn
J1

(

k

F
anbn

))2

=

(

Mn

4n
ζn J1

(π

2
ζn

)

)2

, (5.98)

wobei an für den konstanten Lochradius in der n−ten Zone steht und bn deren mittleren
Radius bezeichnet, bn = rn+rn−1

2
. In der letzten Gleichung wurde unter Verwendung der

Zonenbreite ∆rn = rn−rn−1
2

≈ rn
2n

die zu ihr relative Lochgröße ζn ≡
(

d
w

)

n
= 2 an

∆rn
im

Einklang mit der in [21] verwendeten Notation eingeführt. Nachfolgend werden nun zwei

Möglichkeiten unterschieden, um I
(n)
PS (z = F ) zu optimieren:

• Feste Lochzahl Mn, unabhängig von deren Größe. Diese Situation liegt in [21] vor, ζn
soll den Amplitudenbeitrag eines einzelnen Loches maximieren. Der gesuchte Wert
ζ
(opt)
n folgt als Lösung der Relation

4

πζn
J1

(π

2
ζn

)

= J2

(π

2
ζn

)

− J0
(π

2
ζn

)

, (5.99)
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die ihrerseits aus einer Differentiation von Gl. 5.98 bzgl. ζn hervorgeht, in erster
Beugungsordnung zu ζ

(opt)
n ≈ 1.53.

• Variable Lochzahl Mn, die unter Annahme einer zu dn relativen
”
Stegbreite“ γ > 0

zwischen den Löchern einer Zone3 zusammen mit dn so zu wählen ist, dass der Beitrag
der gesamten Zone I

(n)
PS (z = F ) maximal wird. Die Lösung ergibt sich nun gemäß

d

dζn

(

π

1 + γ
J1

(π

2
ζn

)

)

= 0→ J0

(π

2
ζn

)

= J2

(π

2
ζn

)

(5.100)

mit ζ
(opt)
n ≈ 1.17 als von γ unabhängigem Resultat in erster Beugungsordnung.

Abb. 5.22 illustriert den Verlauf von I
(n)
PS (z = F ) mit ζn für mehrere γ−Werte in erster

und dritter Ordnung. Gegenüber dem klassischen Ansatz in [21] ist in erster Ordnung für

Abbildung 5.22: Effizienz der Lochmasken-Zonenplatte. Links ist der optimierte Wirkungs-
grad eines binären

”
Photonensiebes“ eingetragen, rechts der Bruchteil der maximalen In-

tensität, die ein durch phasenversetzende Löcher verbessertes Modell zu leisten vermag,
wenn ein stark absorbierendes Material zur Belegung der π−Zonen verwendet wird. Die
Stegbreite γ beträgt typischerweise & 10−1 und reduziert die Effizienz z.T. beträchtlich.

ζ
(opt)
n ≈ 1.17 eine Effizienzsteigerung um rund 25% zu erwarten. Werden auch die bislang
opaken Zonen mit Löchern belegt, entsteht ein

”
Phasensieb“ (PS∆φ). Abb. 5.21 zeigt rechts

ein Beispiel eines solchen dicht mit Bohrungen belegten Modells. Den Ausgangspunkt soll
eine Lochmasken-ZP mit ζ

(opt)
n ≈ 1.17 bilden, wobei die die opaken Zonen approximieren-

den Bohrungen durch Einsatz eines geeigneten Materials die notwendige Phasendifferenz
∆φPS . π bewirken. Der Beitrag zweier benachbarter Zonen beläuft sich auf

IPS (∆φ, ζ) =

(

π

1 + γ

)2 ∣
∣

∣

∣

J1

(π

2
ζ
)

− e−
(

i+ 1
2πN0

)

∆φ
J1

(π

2
(2− ζ)

)

∣

∣

∣

∣

2

. (5.101)

Die die Effizienz optimierende
”
Phasendicke“ ∆φPS und die offenen Lochweiten ζPS des

Phasensiebes bestimmt man sukzessiv durch partielle Differentiation. Es erweist sich, dass

3Realistische Werte für γ, die ausreichende Stabilität gewährleisten, dürften zwischen 0.1 und 0.3 liegen.
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der absorptionsabhängige Wert ∆φPS für N0 < ∞ stets etwas kleiner als π ist und ζPS
mit zunehmender Absorption den im Fall N0 →∞ idealen Wert 1 immer deutlicher über-
schreitet4. In der rechten Grafik der Abb. 5.22 wurden die Ergebnisse dieser hier nicht
explizit beschriebenen Rechnung benutzt, um die Effizienz eines Phasensiebes bei hoher
Absorption zu optimieren. Freilich belaufen sich die Abweichungen in der Lochweite ζPS
selbst für N0 & 1 nur auf wenige Prozent und sind somit primär theoretisch relevant. Von
Bedeutung sind hingegen die vom Stegparameter γ abhängigen Beugungseffizienzen Pγ
erster Ordnung, für ein binäres Modell optimierter Leistung gegeben durch

P0.1 = 7.0% und P0.2 = 5.9% und P0.3 = 5.0%. (5.102)

Diese eher moderate Effizienz erfährt durch Hinzunahme phasenmodulierender Bohrungen
nach Abb. 5.21 eine deutliche Steigerung,

P0.1 ≤ 27% und P0.2 ≤ 22% und P0.3 ≤ 17%, (5.103)

je nach Güte des verwendeten Materials. Freilich erreichen auch derlei Systeme nicht
annähernd den Wirkungsgrad einer Fresnel-Linse, deren theoretisches Optimum von 100%
allen folgenden Berechnungen zugrunde gelegt wird. Im Einzelfall sind die angegebenen
Werte für Sammelfläche, Lichtstärke etc. mit der entsprechend reduzierten Effizienz des
diffraktiven Elements zu multiplizieren.

Neben der Effizienz, Sammelfläche oder allgemein der Lichtstärke eines Objektivs ent-
scheidet die laterale Auflösung in der Fokalebene wesentlich über die Güte einer abbilden-
den Optik – aus praktischer Sicht wegen ihres Zusammenhangs mit dem unter Annahme
einer beschränkten Detektorfläche erzielbaren Gesichtsfeld, unter physikalischem Aspekt
hingegen aufgrund ihrer Auswirkungen auf das Signal-Rausch-Verhältnis. Mit

2ρPSF = ∆εink F und ∆εink = TN ηN(a) ∆εkoh (5.104)

sind laterale und inkohärente Winkelauflösung nach Gl. 5.64 gegeben, wenn von der Wel-
lenzahl κ wieder zur üblichen Notation für die Winkelschärfe übergegangen wird. Nach
einigen Umformungen und mit N? ≡ Nseg liefern die Gln. 5.104 die Relation

ρPSF =
α

2
ηN(a)

(

1

N?

)

R mit α ≡ 0.535, (5.105)

die aus Zentralobstruktion 0 ≤ a ≤ 1 und dem Apertur-Radius R denjenigen der Punkt-
bildfunktion ermittelt. Als praktisch bedeutsam erweist sich jedoch vor allem die inverse
Proportionalität in der Zonenzahl N?, als erstem Hinweis auf die überragende Bedeutung
dieses möglichst groß zu wählenden Parameters. Abb. 5.23 trägt den Quotienten R

rFOV
gegen

diese Segment-Zonenzahl N? auf, wobei mit rFOV = nFOV ·ρPSF und der gewünschten Zahl
an Auflösungselementen nFOV der Radius des als kreisförmig angenommenen Detektors
bezeichnet ist. Exemplarisch wurden Sichtfelder von 500 und 1000 Auflösungselementen

4Ausführliche Erläuterungen zu diesem Optimierungsproblem der Phasen-ZP finden sich z.B. in [23].
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Abbildung 5.23: Detektorradien diffraktiv-segmentierter Objektive. Das Verhältnis von
Apertur- zu Detektordurchmesser hängt linear von der Zonenzahl N? ab. Je nach Obstruk-
tion und FOV ergeben sich Quotienten innerhalb der angegebenen Schranken.

angenommen. Zudem beeinflusst die Obstruktion das laterale Auflösungsvermögen – die
mit a & 0 nahezu volle Apertur ist der ringförmigen nach Möglichkeit vorzuziehen. Eine
Einschränkung widerfährt diesem Bestreben, wenn Strahlung in andere Ordnungen als die
beobachtete, meist erste Beugungsordnung entfällt. Als kritisch erweisen sich besonders die
bei verstimmten Fresnel-Linsen auftretenden benachbarten Ordnungen, im Regelfall also
die nullte und zweite. Um sie abzuschirmen, ist unter Rückgriff auf Gl. 3.84

a = 2
rFOV
R

→ amin = α
nFOV
N?

ηN (amin) (5.106)

zu fordern. Die nötige Zentralobstruktion ergibt sich somit aus dem Quotienten nFOV
N?

.
Umgekehrt ordnet Gl. 5.106 der segmentierten Fresnel-Linse unter Vorgabe von a und N?

ein maximales Gesichtsfeld zu. N-segmentierten Aperturen eine Zentralobstruktion

a =

√

kobs
TN

mit kobs ε N (5.107)

zu verordnen, erweist sich als natürlich, zweckmäßig und mit kobs = 1 zumeist auch als
ausreichend. Mit der Ringzahl TN und insbesondere der Ortsauflösung ∅PSF = 2ρPSF
werden zwei weitere Parameter vorgegeben. Der Radius des Objektivs errechnet sich zu

R =
2

α
ρPSF N? η

−1
N

(

1√
TN

)

mit kobs = 1. (5.108)
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Aus den Formeln folgen unmittelbar die Ausdrücke für Detektorradius und Gesichtsfeld zu

rFOV =
R

2
√
TN

bzw. nFOV =
1

2
√
TN

R

ρPSF
. (5.109)

Winkelauflösung ∆ε und Brennweite F skalieren hingegen mit der Energie entsprechend

∆ε(E) = α
hc

E
ηN

(

1√
TN

)

TN
R

bzw. F (E) =
E

hc

R2

N?TN
. (5.110)

Vorrangig fertigungstechnische Interessen dürften beispielsweise Parameter wie minimale
Fresnel-Stufenbreite ∆rmin und gesamte Segmentzahl # (Seg.)N bedienen. Mit

∆rmin =
R

N?TN
bzw. # (Seg.)N =

TN
∑

k=2

[

π

√
k +
√
k − 1√

k −
√
k − 1

]

(5.111)

sind schließlich die wesentlichen Kenngrößen des diffraktiven Teleskops aus wenigen Ein-
gangsparametern abgeleitet worden. In Tab. 5.4 werden vorstehende Relationen benutzt,
um exemplarisch vier Modelle zu entwickeln, die hinsichtlich ihrer Ortsauflösung, Brenn-
weite und der geforderten Winkelauflösung von . 1 mas bei der Blaze-Energie Ec den
Anforderungen an praxistaugliche Systeme genügen sollten. Mit Zonenzahlen N? von bis

Ortsauflösung ∅PSF 0.5 mm 0.5 mm 1.0 mm 1.0 mm

Brennweite F (Ec) 132 km 134 km 267 km 270 km

Winkelauflösung ∆ε (Ec) 0.78 mas 0.77 mas 0.77 mas 0.76 mas

max. Sichtfeld nFOV 1.1× 103 1.6× 103 0.8× 103 1.2× 103

Zonenzahl N? 1× 104 2× 104 1× 104 2× 104

#(Segmentringe) TN 50 100 100 200

Radius R 4.04 m 8.14 m 8.14 m 16.36 m

min. Gitterperiode ∆rmin 8.08 µm 4.07 µm 8.14 µm 4.09 µm

Tabelle 5.4: Optische Parameter diffraktiver Objektive. Die Datensätze korrespondieren
mit den in Abb. 5.24 eingetragenen Leistungskurven und tragen lediglich exemplarischen
Charakter. Die Zonenzahlen N? wurden unter der Annahme ausreichend trennscharfer Kri-
stallspektrometer gewählt. Die Blaze-Energie Ec beträgt 5 keV.

zu 2×104 wird das Leistungsvermögen hochwertiger LiF(200)-Kristalle ausgenutzt, die bis
zu ≈ 3 keV herab zu verwenden sind. Zwar nimmt die Trennschärfe von LiF(200) jenseits
von ∼ 6 keV allmählich auf rund 1.5×104 ab, die Einbußen im Winkelauflösungsvermögen
werden jedoch via ∆ε ∝ E−1 kompensiert. Neben den großen Aperturdurchmessern fallen
in Tab. 5.4 besonders die Ringzahlen TN ∼ 102 auf, die mit Gl. 5.111 zwischen 1.6 × 104

und 2.5× 105 Segmente hervorbringen. Abgesehen von derlei technologischen Herausforde-
rungen wird als Blaze-Energie Ec = 5 keV gewählt, um im Bereich der astrophysikalisch
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bedeutenden Kα−Linie von Fe bei 6.4 keV ein Maximum an Lichtstärke zu erzielen. Unter
Vernachlässigung jedweder Absorption und anderer Verluste durch

Aeff ×∆E =

(

sin
(

π
(

1− Ec
E

))

π
(

1− Ec
E

)

)2

π

(

1− 1

TN

)

R2
E

N?

(5.112)

gegeben, resultieren unter Vorgabe der Daten aus Tab. 5.4 die Kurven nach Abb. 5.24. Wie

Abbildung 5.24: Beispiele zum Leistungsvermögen diffraktiver Objektive. Alle Modelle er-
reichen bei Ec = 5 keV eine Winkelauflösung von . 1 mas und Brennweiten um ∼ 102 km.
Absorptions- und andere Verluste sind nicht berücksichtigt.

bereits erwähnt, liegt den Graphen die Annahme eines perfekten (und perfekt ausgerich-
teten) Kristalls mit entsprechendem Auflösungsvermögen zugrunde. Vom Ideal der nahezu
100%−igen Peakreflektivität abweichende Exemplare sowie die Zonenzahl N? unterschrei-
tende Trennschärfe beeinflussen Aeff ×∆E negativ wie positiv. Auch idealisiert treten die
Konfigurationen nach 5.1 und Abb. 5.1 nicht zum Leistungsvermögen von Chandra oder gar
jenem des XMM-Newton in Konkurrenz. Ihre Stärke spielen diffraktive Objektive jedoch
aus, sobald der selektiven Beobachtung in scharfen Spektrallinien der Vorzug gegenüber
breitbandiger Detektion über mehrere keV gegeben wird. Bezogen auf eine Bandbreite von
∆E
E
∼ 10−4, beträgt die verlustfreie Lichtstärke von Chandra und XMM-Newton

Aeff ×∆E = 0.15 cm2 keV bzw. Aeff ×∆E = 1.76 cm2 keV. (5.113)

Ein realistischer Vergleich wird freilich die Schärfe der Spektrallinie einzubeziehen haben,
also das Verhältnis von Äquivalenz- zu FWHM-Breite berücksichtigen.
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Neben den vom Detektormodul verursachten Verlusten reduzieren optisch minderwer-
tige, jedoch leicht zu verarbeitende Linsensubstrate die Transmission. Erweisen sich die
Anforderungen bei der Produktion filigraner Fresnel-Linsen aus Li oder Be als zu hoch,
kann ein Rückgriff auf harte Substanzen wie Si, Ti oder Polycarbonat notwendig werden.
Tab. 5.5 gibt einen Überblick zur Beugungseffizienz kinoformer Profile aus Si und Ti im
Bereich weniger keV. Mit den nahe 2 bzw. 5 keV auftretenden Absorptionskanten sprechen

E(keV) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

PSi(%) 60.9 76.3 19.5 33.7 44.7 53.6 60.8 66.7 71.4 75.2 78.4 81.0

PTi(%) 19.4 39.1 54.3 64.9 72.3 77.5 81.3 83.9 22.9 37.9 43.7 48.5

Tabelle 5.5: Fresnel-Beugungseffizienz erster Ordnung für Si und Ti. Die Einbrüche bei ≈ 2
keV bzw. ≈ 5 keV beruhen auf dortigen Absorptionskanten. Stützstrukturen, Trägerschich-
ten etc. sind nicht berücksichtigt.

allerdings zahlreichen Elementen höherer Kernladungszahl eigene Charakteristika gegen
ihre vorbehaltlose Verwendung. Elemente wie Al, Ag, Au oder Pt versprechen keine si-
gnifikanten Vorteile. Das nach Li hochwertigste Metall sowie der Kunststoff Polycarbonat
(C16H14O3) weisen aber im Intervall zwischen 1 und 20 keV, und nach Tab. 5.6 speziell im
weichen Röntgenband keinerlei Kanten auf.

E(keV) 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

PBe(%) 82.6 88.2 91.6 93.7 95.2 96.2 96.9 97.5 97.9 98.2 98.5 98.7

PPC(%) 52.1 63.8 72.0 77.9 82.2 85.4 87.9 89.8 91.3 92.5 93.5 94.3

Tabelle 5.6: Fresnel-Beugungseffizienz erster Ordnung für Be und Polycarbonat. Jenseits
von 4 keV beträgt der Wirkungsgrad nahezu 100%, auf eine Darstellung wurde daher ver-
zichtet. Stützstrukturen, Trägerschichten etc. sind nicht berücksichtigt.

Bislang wurde stets von einer uniformen Belegung der Parzellen mit auf identische
Blaze-Energie Ec ausgelegten Segmenten ausgegangen. Obgleich diese Zuordnung den astro-
nomischen Erfordernissen zumeist genügen dürfte, kann in Einzelfällen eine modifizierte
Effizienz P (E) wünschenswert sein. Das diskrete Spektrum der Energiewerte

Ec ≡ {Ec(n) | 1 ≤ n ≤ Q} mit Q ε N (5.114)

beschreibe die Q unterschiedlichen Blaze-Energien der diversen Segmente. Steht qn für
deren Gewichtung, also den Anteil der auf Ec(n) optimierten Segmente an der Gesamtfläche
der Apertur, so liefert deren arithmetisches Mittel

Ptot(E) =

Q
∑

n=1

qnPn(E) mit

Q
∑

n=1

qn = 1 (5.115)
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die Beugungseffizienz Ptot(E) als gewichtete Summe der Einzelbeiträge Pn(E). Von Ein-
flüssen der Absorption und des i.a. energieabhängigen Bandpasses abgesehen, ist die Effi-
zienz eines auf Ec optimierten Segments zu

Pn(E) =
4

π2
sin2

(

π

2

Ec(n)

E

)

bzw. Pn(E) =





sin
(

π
(

1− Ec(n)
E

))

π
(

1− Ec(n)
E

)





2

(5.116)

beschrieben, im ersten Term für die Phasen-Zonenplatte mit dem Stufenparameter L = 2
nach Gl. 3.72, im zweiten für die hinlänglich bekannte kinoforme Fresnel-Linse. Nun er-
scheint angesichts der nach vorstehendem Beispiel 5.4 zu erwartenden Ring- und Segment-
zahlen ein Übergang von der diskreten Summe zum Integral über eine quasi kontinuierliche
Verteilung der Blaze-Energie Ec sinnvoll. Mit einer nun reellen Gewichtsfunktion f(x) und
x ε R+0 wird der Anteil der auf Ec(x) = xE0 optimierten Segmente bemessen. Analog zu
Gl. 5.115 erhält man die Gesamtleistung bei der Energie E zu

Ptot(E) =

∫

X
f(x)Px(E)dx mit

∫

X
f(x)dx = 1, (5.117)

wenn X das Integrationsintervall der relativen Energie zwischen Emin
E0

und Emax
E0

angibt,

X ≡ {x | Ec(x) = xE0, Emin ≤ Ec(x) ≤ Emax} . (5.118)

Der Beugungseffizienz aus den Gln. 5.116 entspricht im Quasi-Kontinuum mit ψ = E
E0

Px(E) =
4

π2
sin2

(

π

2
x
1

ψ

)

bzw. Px(E) =





sin
(

π
(

1− x 1
ψ

))

π
(

1− x 1
ψ

)





2

. (5.119)

In Abb. 5.25 sind die aus einem solchen Quasi-Kontinuum resultierenden Effizienzkurven
für ein Intervall 1

10
E0 ≤ Ec ≤ E0 eingetragen. Ihnen liegen Gewichtsfunktionen

f(x) ∝ const. bzw. f(x) ∝ 1

x
bzw. f(x) ≡ δ (x− x̂) (5.120)

zugrunde, wobei f(x) alternativ für die in Abb. 5.25 zur Unterscheidung zwischen der die
Phasen-ZP bezeichnenden Gewichtung h(x) und der der Fresnel-Linse zugeordneten Funk-
tion g(x) steht. Geeignete Proportionalitätsfaktoren stellen die Normierung nach Gl. 5.117
sicher. Die Blaze-Energie im Fall der δ−Funktionen beträgt mehr oder weniger willkürlich
Ec = 6

10
E0, so dass x̂ = 6

10
. Man liest unter anderem ab, dass zugunsten annähernd

konstanter und insbesondere signifikanter Effizienz im kritischen Band mit E . 1
3
E0 das

Fresnel-Profil vorteilhaft mit g(x) ∝ 1
x
zu gewichten ist.

Zum Schluss dieses Abschnitts sei noch auf den Einfluss der Segmentierung auf die
Aberrationen der diffraktiven Linse nach Abschn. 3.3 eingegangen. Der mittlere, vom Öff-
nungsverhältnis f und dem Kippwinkel φ abhängige Winkelfehler ergab sich zu

〈∆ε〉θ =
1

16f 3

√

1 + 36 (fφ)2 + 80 (fφ)4. (5.121)
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Abbildung 5.25: Breitband-Segmentierung diffraktiver Objektive. Bestehend aus Segmenten
unterschiedlicher Blaze-Energie, lässt sich die spektrale Effizienzverteilung den Erforder-
nissen anpassen und insbesondere ausgleichen. Aus Parzellen der Phasen-ZP zusammen-
gesetzte Modelle sind rot, solche auf (kinoformer) Fresnel-Basis schwarz dargestellt.

Nach den in Anh. A skizzierten Grundlagen der Aberrationstheorie entscheidet die (diffe-
rentielle) Variation der optischen Wegdifferenz zwischen realer und idealer Wellenfront mit
den Aperturkoordinaten über das Ausmaß der zu erwartenden Bildfehler. Da die Segmentie-
rung die Wirkung der diffraktiven Linse auf die Wellenfront durch die Zufallsversetzungen
nur lokal, im Mittel über zahlreiche Parzellen jedoch nicht ändert, kann 〈∆ε〉θ auch der
großflächigen Apertur zugrunde gelegt werden. Damit die Aberrationen in ihrer mittleren
Ausdehnung die inkohärente Winkelauflösung ∆εink nicht überschreiten, ist

〈∆ε〉θ . ηN(a) TN ∆εkoh = ∆εink mit ∆εkoh = α
λ

R
und α = 0.535 (5.122)

zu fordern. Nach wenigen Umformungen führt Gl. 5.122 auf die Abschätzung für N?

N? . 8 ηN(a) α
f 2

√

1 + 36 (fφ)2 + 80 (fφ)4
, (5.123)

die offenbar im Fall der sphärischen Aberration mit φ = 0 problemlos erfüllt wird und
nach Abschn. 3.3 auch Verkippungen des Objektivs unkritisch toleriert, wobei N? nun
größenordnungsmäßig an die Stelle der Zonenzahl N des kohärenten Analogons tritt.
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5.4 Hybrid-segmentierte Monoband-Objektive

Die in Tab. 5.4 präsentierten Modelle reizen das theoretische Potential diffraktiver Ob-
jektive unter Vorgabe der Ortsauflösung ∅PSF offenbar bereits weitgehend aus. Der Weg
zu Systemen signifikant verbesserter Lichtstärke führt indes über Hybrid-Aperturen, ba-
sierend auf den Ausführungen in Abschn. 4.1. Deren kohärente, kompakte Bauweise in
großflächige, segmentierte Objektive zu überführen, geht nun nicht mehr nur mit einer
einfachen Zerlegung der Fresnel-Linse in entsprechende Parzellen einher, sondern wirkt
sich grundsätzlich auf die radienabhängige Transmission aus. Nach Abtragung des optisch
überflüssigen Materials ergibt sich im Fall des N-segmentierten Hybridprofils mit Gl. 4.63

(

1

t2π

)

t
(L)
k (σ) ≈ N

4

(

k

TN
−
( σ

R

)2
)

mit t2π ≡
λc

δ (λc)
, (5.124)

wenn der Laufindex q nun mit der Ringzahl 1 ≤ k ≤ TN identifiziert wird. Die Zufallsver-
setzungen der inkohärent segmentierten Apertur kommen in der approximativen Gleichheit
zum Ausdruck. Abb. 5.26 illustriert das segmentierte Hybridprofil schematisch am Beispiel
TN = 3. Das Aspektverhältnis A(seg)max des äußersten Rings errechnet sich zu

Abbildung 5.26: Profil des Achromaten in N-segmentierter Bauweise. Die refraktive Kom-
ponente ist als aplanatische Version ausgeführt. Dicke ∆tmax und radiale Dimension ∆rmin
des äußersten der TN Segment-Ringe legen das maximal auftretende Aspektverhältnis fest.
Der Übersichtlichkeit wegen sind nur 3 Ringe dargestellt.

A(seg)max =
∆tmax
∆rmin

= 2 tan
(γ

2

)

= [...] =
R

Fδ (λc)
(5.125)

und sollte im Sinn einer problemlosen Fertigung ein moderates Vielfaches von 1 nicht über-
schreiten. Im übrigen liegt den Modellbeispielen dieses Abschnitts konform mit Abb. 5.26
die Annahme eines nach Abschn. 4.1 aberrationstoleranten bikonvexen Profils zugrunde.
Mit Gl. 4.57 galt für dessen quadratisch gemittelten Fehler

〈∆ε〉θ ≈
1

2
√
2f
φ2 (5.126)

der analog zu Gl. 5.122 die Auflösung der segmentierten Apertur nicht überschreiten sollte,

〈∆ε〉θ . ηN(a) TN ∆εkoh = ∆εink mit ∆εkoh = α
λ

R
und α = 0.535. (5.127)
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Die unter diesem Aspekt maximal zulässige Zonenzahl N? lässt sich damit diesmal zu

N? . 2
√
2ηN(a)αφ

−2 (5.128)

abschätzen – eine angesichts der großen Öffnungsverhältnisse erwartungsgemäß problemlos
zu erfüllende Bedingung. Als vergleichsweise kritisch erweist sich hingegen die Relation
zwischen Apertur- und Detektorradius, wiederum analog zu Abb. 5.23 diesmal für den
Achromaten dargestellt in Abb. 5.27. Demnach würden 103 Auflösungselemente einen De-

Abbildung 5.27: Detektorradien hybrid-segmentierter Objektive. Das Verhältnis von
Apertur- zu Detektordurchmesser hängt linear von der Zonenzahl N? ab. Je nach Obstruk-
tion und FOV ergeben sich Quotienten innerhalb der angegebenen Schranken.

tektor erfordern, der je nach Zonenzahl kaum weniger als ein Fünftel der Apertur misst.
Im Regelfall beträgt die Ortsauflösung ∅PSF . 10−3 m, so dass vermutlich unrealistische
Bildflächen in der Größenordnung von m2 resultieren. Im Unterschied zu den diffraktiven
Objektiven nach Abschn. 5.3 korrespondiert die Ortsauflösung mit dem Apertur-Radius
nun gemäß

ρPSF = α ηN(a)
1

N?

R mit α ≡ 0.535, (5.129)

infolge der bei konstanter Zonenzahl um den Faktor 2 erweiterten Fokaldistanz. Nun mo-
duliert das refraktive Korrekturprofil zudem die radiale Transmission und wird das laterale
Auflösungsvermögen weiter reduzieren, wenn nicht der Transparenz der einzelnen Segmen-
te durch geeignete Graufilter eine Apodisierung widerfährt. Um die Abbildungsqualität
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vollständig zu erhalten, sollte demnach die Transmission auf den konstanten Wert e
− N?
2N0

zu reduzieren sein. Nach Gl. 5.93 skaliert die Lichtstärke unter Vernachlässigung diffrakti-
ver Verluste linear mit der in Abschn. 4.1 definierten Verstärkung V ,

Aeff ×∆E = π
hc

2
V (TN − kobs)F und V = 2

√

N?e
− N?
2N0 . (5.130)

Umgerechnet auf die laterale Auflösung ∅PSF als vorzugebendem Parameter, findet man

Aeff ×∆E = πV

(

∅PSF

2α

)2
1− a2
η2N(a)

N?E, also Aeff ×∆E ∝ (∅PSF )
2 . (5.131)

Über N0 verknüpft V die Segment-Zonenzahl N? mit der Blaze-Energie E, so dass

d

dN?

(Aeff ×∆E) = 0 → Nopt = 3N0 (5.132)

die Zonenzahl Nopt liefert, die unter Vorgabe von ∅PSF die Effizienz optimiert. Auf den
expliziten Nachweis des Maximums sei wieder verzichtet – er ergibt sich qualitativ aus dem
Verlauf der Funktion N0(E) nach Abschn. 4.1. Sofern ∅PSF & 1 mm, erbringen derart
konstruierte Modelle aus Li oder Be im mittleren bis harten Röntgenband oberhalb einiger
keV eine den diffraktiven Modellen aus Abschn. 5.3 vergleichbare oder höhere Leistung.
Deren Steigerung um mehrere 10% verspricht im übrigen der Einsatz partieller Graufilter
nach Abb. 5.28. Zählt ν ≡ n

N?
mit 1 ≤ n ≤ N? und n ε N die jeweils n Zonen eines einzelnen

Abbildung 5.28: Einsatz partieller Graufilter im Hybrid-Segment. Gleicht das Filter die
Transmission nicht vollständig (rot), sondern nur teilweise (schwarz) aus, nimmt die
Transmission unter nahezu erhaltener Winkelauflösung um 30% für ∆s = 1 oder gar 72%
für ∆s = 2 zu (schraffierte Flächen).

Segments, und parametrisiert ∆s die Transparenz der apodisierten Optik, so gilt für diese

Tseg(ν)× Tgrau(ν) = Tapo(ν) = e
∆s
2
ν− s

2 , (5.133)

mit dem Parameter s = N?
N0

. Integriert über die Zonen eines Segments und ins Verhältnis
zur vollständig apodisierten Transparenz gesetzt, ergibt sich für den Gewinn (

”
Gain“) ∆V

in der Lichtstärke

∆V =
2

∆s

(

e
∆s
2 − 1

)

. (5.134)
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Hier wurde stillschweigend vorausgesetzt, dass der spektrale Bandpass ∆E unverändert er-
halten bleibt. In der Tat beeinträchtigen selbst ausnehmend große Werte s die Wirkung der
Dispersionskorrektur nicht. Abb. 5.29 vergleicht die fokale, spektrale Intensitätsverteilung
eines mit s = 20 stark absorbierenden Segments mit derjenigen des ideal transparenten
Analogons. Nach Gl. 4.14 – die auf der optischen Achse unbesehen einer geänderten Nor-

Abbildung 5.29: Spektraler Bandpass des stark absorbierenden Hybrid-Segments. Am Bei-
spiel eines Segments mit N? = 5000 sind absorptionsfreie (rot strichliert) und mit N?

N0
= 20

hoch absorptive (schwarz) Intensität im Fokus gegenübergestellt. Der Bandpass bleibt trotz
geschwächter Transmission erhalten.

mierung ebenso für segmentierte Objektive gilt – übernimmt der cos−Term im Zähler des
zweiten Faktors h(ζ) die Aufgabe der Dispersionskorrektur. Bzgl. ψ lautet er

Zh(ψ) ≈ 1− 2e−
s
4
1
ψ cos

(

N?

2
π (ψ − 1)2

)

+ e−
s
2
1
ψ , (5.135)

Die egalisierende Wirkung der cos−Variation mit (ψ − 1)2 unterbleibt erst, wenn für

ψ ≈ 1 y 1À 2e−
s
4 → sÀ 4 ln 2 ≈ 2.8, (5.136)

in qualitativer Übereinstimmung mit dem Beispiel aus Abb. 5.29. Angesichts dieser bemer-
kenswerten Toleranz liegt ein Verzicht auf jegliche Apodisierung nahe. Was zugunsten einer
unverändert optimalen Bildqualität im Fall des kompakten Hybrid-Achromaten theoreti-
sche Ansprüche bediente, wird nun im Interesse maximaler Effizienz fallen gelassen. Unter
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erneuter Vernachlässigung der diffraktiven Absorption ist die Gesamt-Transmission des
Hybrid-Segments durch

Tseg(s) =
∫ 1

0

e−
s
2
(1−ν)dν =

2

s

(

1− e− s2
)

→ 2
N0
N?

für sÀ 1. (5.137)

gegeben, wenn ν = n
N?

wieder für die relative Segment-Zonenzahl steht. Tab. 5.7 stellt
diese integrierte Transparenz für einige Zonenverhältnisse zusammen. Sie führt aufgrund

N?/N0 0 1 2 3 4 5 6 7 8 9 10 11

Tseg(%) 100 78.7 63.2 51.8 43.2 36.7 31.7 27.7 24.5 22.0 19.9 18.1

Tabelle 5.7: Gesamttransmission des filterfreien Hybrid-Segments. Auch unter Verzicht auf
ein Graufilter hängt Tseg nur vom Zonenverhältnis N?/N0 ab und übertrifft die Mindest-
transmission am Ort der größten Dicke mit zunehmendem N?/N0 um ein Vielfaches.

des unveränderten Bandpasses unmittelbar auf die zum diffraktiven Analogon relative
Lichtstärke, also die nun mit Vpur bezeichnete Maximalverstärkung

Vpur = 2
√

N?
2

s

(

1− e− s2
)

=
2

s

(

e
s
2 − 1

)

V. (5.138)

Der Unterschied zur bislang benutzten, idealisierten Referenz V wirkt sich bei hohen Zo-
nenquotienten s besonders drastisch aus und erlaubt den effizienten Einsatz der Dispersi-
onskorrektur auch noch bei Segment-Zonenzahlen N?, die die kritische um ein Mehrfaches
übertreffen. Analog zur Standard-Verstärkung V existiert ein optimales Verhältnis zwi-
schen geometrischer und kritischer Zonenzahl, das Vpur maximiert.

d

dN?

Vpur = 0 → [...] → e
s
2 = 1 + s y Nopt ≈ 2.5N0, (5.139)

als Lösung der transzendenten Gleichung in s. Für diverse N0 ist diese filterfreie Verstär-
kung in Abb. 5.30 gegen N? aufgetragen. Demnach kann ein Feststoff wie Li mit N0 . 1200
der Lichtstärke ein ähnliches Plus verleihen, wie es unter Annahme des Graufilters bislang
nur H2 und He vermochten.

Angesichts dieses unbestreitbaren Vorteils stellt sich die Frage nach den negativen Aus-
wirkungen auf die Winkelauflösung, mit denen im Fall der hier betrachteten prismen-ähnli-
chen Segmente ebenso wie beim kompakten Hybrid-Achromaten zu rechnen sein wird. Ihre
quantitative Analyse erfordert die Berechnung der über alle Segmente gemittelten PSF
unter dem Einfluss der Absorption. Um den numerischen Aufwand in Grenzen zu halten,
seien die approximativ quadratischen Segmente zudem als Prismen angenähert, auf den
Einfluss der radialen Profil-Krümmung und das diffraktive Element sei daher verzichtet.
Der Argumentation in Abschn. 5.2 folgend, errechnet sich das Punktbild einer Parzelle aus
der Fourier-Transformierten der Amplitude ũ (~ν),

Fs (~κ) =
1

2π

∫

Aseg

ũ (~ν) e−i~κ~νd2ν (5.140)
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Abbildung 5.30: Graufilter-freie Hybridverstärkung. Das nicht apodisierte Segment erweist
sich gegenüber dem diffraktiven Analogon als besonders effizient, wenn die kritische Zonen-
zahl N0 etwa das 2.5−fache der geometrischen Segment-Zonenzahl N? beträgt (rot strich-
liert). Eingetragen ist Vpur für ein Spektrum 400 ≤ N0 ≤ 1400.

wenn ~ν ≡ (νx, νy) die dimensionslosen, kartesischen und normierten Ortskoordinaten im
lokalen Koordinatensystem eines Segments bezeichnet, − 1

2
≤ νx ≤ +1

2
und −1

2
≤ νy ≤ +1

2
.

Wie in Abschn. 5.2 steht ~κ für den lateralen Wellenvektor in der Beobachtungsebene. Die
Eingangsamplitude ist durch

ũ (~ν) = e−
s
4
(1−νx) (5.141)

gegeben, mit insbesondere konstanter Transparenz in Richtung von νy. Nach elementarer
Rechnung findet man den zur PSF des Standard-Segments proportionalen Ausdruck,

|Fs (~κ)|2 =
(

1

2π

)2
(

sin
(

1
2
κy
)

1
2
κy

)2
1− 2e−

s
4 cos (κx) + e−

s
2

(

s
4

)2
+ (κx)

2
. (5.142)

Die absoluten Dimensionen des Segments spielen im übrigen keine Rolle, da lediglich die
zum ideal transparenten (s → 0) Segment relative Änderung des Auflösungsvermögens
interessiert. Um eben diese für einen aus Parzellen gleicher Größe bestehenden Ring der
Gesamtapertur zu errechnen, sind die Beugungsfiguren entsprechend ihrer azimutalen Ori-
entierung arithmetisch zu mitteln,

〈

|Fs (~κ)|2
〉

=
1

2π

∫ 2π

0

|Fs (~κ)|2 d2κ, (5.143)
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wobei sich nun eine Transformation ~κ→ κ (cosϕ, sinϕ) empfiehlt und die Integration bei
konstantem κ = |~κ| folglich über 0 ≤ ϕ ≤ 2π zu vollziehen ist. Es genügt, aus Gl. 5.143 die
HEW-Winkelauflösung κHEW nach entsprechender Normierung und dem in vorigen Kapi-
teln erläuterten Verfahren für einen einzelnen, beliebigen Ring zu bestimmen. Sei nämlich
die Partial-PSF des k−ten Rings entsprechend indiziert, so gilt aufgrund der Linearität

∫ χ

0

(

∑

k

〈

|Fs,k (~κ)|2
〉

)

κdκ =
∑

k

(∫ χ

0

〈

|Fs,k (~κ)|2
〉

κdκ

)

, mit χ→ κHEW . (5.144)

Im strengen Sinn liefert die Verallgemeinerung vom einzelnen Ring auf die Gesamtapertur
nur dann ein exaktes Ergebnis, wenn die Form der Partial-PSF

〈

|Fs,k (~κ)|2
〉

von s un-
abhängig ist und die Absorption nur im Sinn von Skalenparametern eingeht. Nachfolgend
wird die Separation des absorptiven Anteils als ausreichende Näherung akzeptiert. Abb.
5.31 stellt das Resultat dieser Integration dar, nach entsprechender Normierung auf den
absorptionsfreien Fall. Zusätzlich sind in Tab. 5.8 einige Werte bis s = 10 zusammenge-

Abbildung 5.31: Einfluss der Segment-Absorption auf das Auflösungsvermögen. Im N-
segmentierten Achromaten wirken die Segmente als Graukeile, deren gemittelte PSF die
Winkelauflösung als Funktion von N?

N0
vermindert.

fasst. Demnach verschmiert die PSF selbst für s→ 10 nur um wenige 10%, im Vergleich zu
kompakten Hybridlinsen nach Tab. 4.1 besteht also eine gegenüber absorptiven Einflüssen
weitaus höhere Toleranz. Gleichwohl ist die im folgenden mit Q(s) bezeichnete Abhängig-
keit des Winkelauflösungsvermögens vom Zonenverhältnis s = N?

N0
in die Kalkulation des

Leistungsvermögens segmentierter Hybrid-Objektive einzubeziehen. So ist Gl. 5.129 um
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s = N?/N0 0 1 2 3 4 5 6 7 8 9 10

∆Q(s)(%) 0.02 0.33 1.39 3.15 5.59 8.65 12.3 16.5 21.3 26.5 32.2

Tabelle 5.8: Daten zur absorptionsbedingten Auflösungsminderung. Die numerischen Werte
entsprechen der in Abb. 5.31 dargestellten Kurve und dienen als mathematische Referenz.

eben diesen Faktor zu erweitern,

ρPSF = α ηN(a)
1

N?

R Q(s) mit α = 0.535. (5.145)

Die Modifikation geht nun auch in Gl. 5.131 ein und quantifiziert die Lichtstärke gemäß

Aeff ×∆E = πVpur

(

∅PSF

2αQ(s)

)2
1− a2
η2N(a)

N?E. (5.146)

Gegenüber dem graufilterbewehrten Hybrid-Segment kompensiert der Faktor Q(s) somit
teilweise den auf Vpur basierenden Gewinn in Aeff × ∆E. Bildet man das Verhältnis Qs
zwischen der Lichtstärke nach Gl. 5.146 und der filterbehafteten nach Gl. 5.131, so resultiert
bei gleichem N? und fixer Energie als Maß für den Nutzen der filterfreien Bauweise

Qs =
2

s

(

e
s
2 − 1

)

(

1

Q(s)

)2

, (5.147)

dominiert durch den positiven Exponentialfaktor. Tab. 5.9 stellt einige Werte zusammen.
Der Verzicht auf ein Graufilter verspricht somit stets ein Plus an Leistung, das um so höher

s 0 1 2 3 4 5 6 7 8 9 10 11

Qs 1.00 1.29 1.67 2.18 2.87 3.79 5.04 6.76 9.11 12.36 16.86 23.13

Tabelle 5.9: Steigerung des Leistungsvermögens durch filterfreie Dispersionskorrektur. Rela-
tiv zur Lichtstärke des graufilterbewehrten Analogons erweist sich das filterfrei segmentierte
Objektiv mit steigendem s als zunehmend effizient.

ausfällt, je deutlicher N? die kritische Zonenzahl N0 übertrifft. Basierend auf den bisher
gewonnenen Erkenntnissen sollen nun diverse Modell-Objektive aus geeigneten Materialien
entwickelt werden. Naheliegend, weil abgesehen vom technologisch bedingt geeigneten LiH
optisch besonders hochwertig, ergeben sich für Li die in Tab. 5.10 angegebenen optimalen
Segment-Zonenzahlen, ermittelt aus der Extremalbedingung an Gl. 5.146,

d

dN?

(Aeff ×∆E) = 0 → N? = Nopt(E). (5.148)

Unter Vorgabe dieser numerisch ermittelten Werte, der Ringzahl TN , des Obstrukti-
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E(keV) 6 7 8 9 10 11 12 13 14 15 16

Nopt 4684 6046 7200 8064 8586 8866 8914 8790 8550 8244 7958

Tabelle 5.10: Optimierte Zonenzahlen segmentierter Li-Achromaten. Angegeben sind die
geradzahlig gerundeten und die filterfreie Lichtstärke maximierenden Zonenzahlen N?.

onsverhältnisses a sowie des die absorptive Aufweitung bereits berücksichtigenden PSF-
Durchmessers ∅PSF lassen sich für ein gegebenes Material und die gewünschte Energie
E die übrigen optischen wie konstruktiven Kenndaten ermitteln. Obschon eine Zentralob-
struktion anders als im Fall der diffraktiven Fresnel-Objektive aus optischer Sicht nicht
erforderlich ist, wird praxisnah diversen Hilfsinstrumenten via

a =
1√
TN

im Apertur-Radius R =
1

2α
N?

∅PSF

Q(s)
η−1N

(

1√
TN

)

(5.149)

Raum gegeben. Ferner ergibt sich mittels Gl. 5.149 die inkohärente Winkelauflösung zu

∆ε = α
λ

R
ηN

(

1√
TN

)

TNQ(s). (5.150)

Die Brennweite F errechnet sich damit als Quotient aus Lateral- und Winkelauflösung,

F =
∅PSF

∆ε
während Aeff = 2

N0
N?

(

1− e−
N?
2N0

)

π

(

1− 1

TN

)

R2 (5.151)

die effektive Sammelfläche liefert. Mit der üblichen Gl. 4.9 für den spektralen Bandpass des
Hybrid-Segments, den gleichfalls bekannten Formeln für die Breite ∆rmin der äußersten,
feinsten Fresnel-Ringe und des Aspektverhältnisses A(seg)max bietet Tab. 5.11 einen Überblick
zu den Parametern Li-basierter Achromaten. Im Interesse einer realistischen Einschätzung
der Daten sei nochmals darauf hingewiesen, dass weder Stützstreben noch Detektor- oder
gar eventuelle Absorptionsverluste im hier als ideal angenommenen diffraktiven Fresnel-
Profil berücksichtigt sind. Den Daten sind insbesondere die mit A(seg)max ∼ 2.5 bereits relativ
großen Aspektverhältnisse zu entnehmen, die sich angesichts der ohnehin schon geringen
Zahl TN ∼ 10 an Ringen auch kaum noch vermindern lassen – letztlich eine Folge der
verhältnismäßig geringen Brechkraft von Li. Noch geringer fällt diese im übrigen für LiH
aus, dem mutmaßlich unter Normbedingungen optisch besten Feststoff. Allerdings kristal-
lisiert LiH in der NaCl-Struktur, weist eine dementsprechend spröde Konsistenz auf und
dürfte schwerlich in kompakten, zur Fertigung der refraktiven Komponente notwendigen
Blöcken bzw. Prismen zu erzeugen sein.

Beryllium hingegen, das nach Li leichteste Element, weist bei allerdings auch überpro-
portional stärkerer Absorption höhere Brechkräfte auf, so dass die Konfigurationen in Tab.
5.13 tendenziell unkritische Aspektverhältnisse gestatten – bei zudem höheren Ringzahlen.
Den Daten liegen nun die optimierten Zonenzahlen nach Tab. 5.12 zugrunde, die offenbar
signifikant unter den für Li ermittelten liegen. Gleichwohl deuten die Daten um 17 keV
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Parameter Li (Aeff ×∆E)→ max.

E (keV) 6 7 8 9 10 11 12 13 14

R (m) 1.16 1.49 1.76 1.94 2.05 2.12 2.11 2.06 2.00

∆ε (mas) 0.89 0.52 0.34 0.23 0.18 0.15 0.13 0.11 0.10

Aeff ×∆E 1820 3044 4387 5610 6661 7690 8167 8287 8563

F (km) 174 295 460 680 880 999 1210 1442 1511

∆rmin (µm) 15.5 17.6 20.3 24.1 26.6 26.6 29.6 33.4 33.4

A(seg)max 2.50 2.58 2.55 2.41 2.43 2.68 2.62 2.52 2.71

TN 16 14 12 10 9 9 8 7 7

Tabelle 5.11: Beispiele leistungsoptimierter Li-Hybrid-Achromaten. Die Zonenzahlen N?

entsprechen jenen aus Tab. 5.10. Die Zentralobstruktion beträgt a = 1√
TN

, die Ortsauflösung

∅PSF = 0.75 mm. Die Lichtstärke ist in Einheiten von (cm2 · keV) angegeben.

E(keV) 8 9 10 11 12 13 14 15 16 17 18

N? 2700 3324 3924 4472 4938 5310 5580 5754 5868 5914 5904

Tabelle 5.12: Optimierte Zonenzahlen segmentierter Be-Achromaten. Angegeben sind die
Zonenzahlen N?, die unter Verzicht auf ein Graufilter die Lichtstärke der Be-Hybridlinse
bei fixer Ortsauflösung maximieren. Alle Daten sind auf geradzahlige Werte gerundet.

herum erneut ein Maximum an, das hinsichtlich eines absoluten Leistungsoptimums des
betreffenden Materials Bedeutung erlangt. In dem ausgewählten Energiebereich zwischen
8 und 16 keV gegenüber dem Intervall 6 keV ≤ E ≤ 14 keV für Li kommt zugleich die
Disposition dieses Materials zum harten Röntgenband zum Ausdruck. Um sich nicht mit
den toxischen und teils karzinogenen Eigenschaften des Be auseinandersetzen zu müssen,
sollte evtl. BeH2 in Erwägung gezogen werden, eine nach [25] unter Normalbedingungen
feste Substanz polymerer Konsistenz. Die optische Güte übertrifft jene des elementaren Be
nach Abb. 4.7 bzw. 4.8 freilich nur um wenige Prozent.

Alternativ bieten sich Bor-Verbindungen wie das Boran B10H14 an. Hinsichtlich dessen
und ähnlicher Kristalle Konsistenz und Eignung sei auf die chemische-technische Fachlite-
ratur verwiesen. Unter optischen Gesichtspunkten jedenfalls fällt B10H14 trotz des hohen
H2−Anteils hinter Be zurück. Tab. 5.14 stellt wieder die optimalen Zonenzahlen zusammen,
gegeben für das Intervall 10 keV ≤ E ≤ 20 keV. Deren Optimum liegt offensichtlich be-
reits jenseits von 20 keV. Tab. 5.15 stellt einige Daten zusammen, wie sie unter Beachtung
einer Winkelauflösung ∆ε . 10−3 arcsec und eines moderaten Aspektverhältnisses A(seg)max

berechnet wurden. Während die Lichtstärke Aeff×∆E vergleichsweise bescheiden ausfällt,
ist die durchweg kurze Fokaldistanz von wenigen 102 km positiv hervorzuheben. Mit Bor
bzw. dessen Verbindungen dürfte die Palette der optisch hinreichend hochwertigen Stoffe
weitgehend erschöpft sein, die kritische Zonenzahl N0 etwa von Polycarbonat (C16H14O3)
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Parameter Be (Aeff ×∆E)→ max.

E (keV) 8 9 10 11 12 13 14 15 16

R (m) 0.65 0.82 0.97 1.11 1.23 1.33 1.39 1.44 1.47

∆ε (mas) 0.83 0.74 0.64 0.57 0.52 0.47 0.39 0.36 0.33

Aeff ×∆E 988 1596 2326 3169 4066 4941 5699 6394 7024

F (km) 186 208 242 273 298 332 393 434 472

∆rmin (µm) 22.0 17.6 15.5 13.8 12.5 11.9 12.5 12.5 12.5

A(seg)max 0.66 0.93 1.18 1.45 1.75 1.99 2.04 2.19 2.33

TN 11 14 16 18 20 21 20 20 20

Tabelle 5.13: Beispiele leistungsoptimierter Be-Hybrid-Achromaten. Die Zonenzahlen N?

entsprechen jenen aus Tab. 5.12. Die Zentralobstruktion beträgt a = 1√
TN

, die Ortsauflösung

∅PSF = 0.75 mm. Die Lichtstärke ist in Einheiten von (cm2 · keV) angegeben.

E(keV) 10 11 12 13 14 15 16 17 18 19 20

N? 2580 3028 3454 3842 4178 4452 4676 4842 4952 5012 5032

Tabelle 5.14: Optimierte Zonenzahlen segmentierter B10H14-Achromaten. Angegeben sind
die geradzahlig gerundeten Zonenzahlen N?, die unter Verzicht auf ein Graufilter die
Lichtstärke der Hybridlinse bei fixer Ortsauflösung maximieren.

nimmt sich derart bescheiden aus, dass allenfalls nahe 20 keV mit ausreichender Leistung
zu rechnen ist. So ergeben sich etwa für E = 18 keV folgende Kenndaten:

R = 0.65 m
∆ε = 0.40 mas

Aeff ×∆E = 2248 cm2 · keV
F = 386 km

(5.152)

Mit TN = 12 Ringen findet sich zudem eine minimale Breite der äußeren Fresnel-Ringe
von 20.3 µm sowie ein Aspektverhältnis A(seg)max = 2.09. Obschon aufgrund seiner unpro-
blematischen Materialeigenschaften als Werkstoff attraktiv, besitzt dieser Kunststoff im
betrachteten Energieintervall ein zu geringes Potential, um mit Li, Be und evtl. Bor sowie
deren Hydriden konkurrieren zu können. Abb. 5.32 macht diesen Sachverhalt deutlich. Die
Grafik zeigt den Verlauf der nach obigem Verfahren optimierten Lichtstärke, und zwar un-
ter Verzicht auf jegliche Zentralobstruktion (a = 0). Den Kurven liegt ferner, konform mit
den tabellierten Beispielkonfigurationen, ein PSF-Durchmesser von ∅PSF = 0.75 mm zu-
grunde. Die Umrechnung auf andere Ortsauflösungen erfolgt mittels Aeff×∆E ∝ (∅PSF )

2.
Ferner weist Abb. 5.32 einzig und allein für das offenbar generell überlegen operierende Li
ein absolutes Maximum diesseits von 20 keV aus, nämlich bei 16.7 keV.
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Parameter B10H14 (Aeff ×∆E)→ max.

E (keV) 10 11 12 13 14 15 16 17 18

R (m) 0.63 0.75 0.86 0.97 1.06 1.13 1.18 1.22 1.25

∆ε (mas) 0.75 0.75 0.74 0.79 0.77 0.76 0.64 0.55 0.47

Aeff ×∆E 1177 1735 2380 3114 3852 4586 5241 5835 6351

F (km) 206 206 209 197 201 204 242 283 327

∆rmin (µm) 20.3 15.5 12.5 9.69 8.43 7.46 7.92 8.43 9.02

A(seg)max 0.60 0.86 1.17 1.63 2.02 2.45 2.46 2.46 2.43

TN 12 16 20 26 30 34 32 30 28

Tabelle 5.15: Beispiele leistungsoptimierter B10H14-Hybrid-Achromaten. Die Zonenzahlen
N? entsprechen jenen aus Tab. 5.14. Die Zentralobstruktion beträgt a = 1√

TN
, die Orts-

auflösung ∅PSF = 0.75 mm. Die Lichtstärke ist in Einheiten von (cm2 · keV) angegeben.

5.5 Entwicklung diverser Multiband-Objektive

Den bislang diskutierten diffraktiven wie dispersionskorrigierten Objektiven die Fähigkeit
zur simultanen Fokussierung in mehreren spektralen Bändern zu verleihen, erscheint aus
wissenschaftlicher Sicht außerordentlich wünschenswert. So ergeben sich beispielsweise in
aktiven Galaxienkernen aus dem Verhältnis zwischen harter und weicher Röntgenstrah-
lung (

”
hardness ratio“) wertvolle Hinweise auf den Emissionsprozess. Beginnend mit allen

Kombinationsaperturen zugrunde liegenden Prinzipien sollen daher im folgenden einfache
Versionen solcher Multiband-Objektive entwickelt werden.

Die Simultan-Abbildung erfordert unter der Annahme N-segmentierter Bauweise die
Aufteilung der Apertur in Regionen unterschiedlicher Segment-Zonenzahl N? für die je-
weiligen Energien Ec, die ohne Einschränkung als Vielfache einer Basisenergie E0 gewählt
werden. Eine beliebige Anordnung der den diversen Spektralbändern zugeordneten Segmen-
te oder auch die Aufteilung in Form von Sektoren erweist sich als nicht zielführend. Viel-
mehr bedarf es einer Konfiguration, die dem Streuverhalten der rot- bzw. blauverstimm-
ten Partial-Linsen Rechnung trägt. Abb. 5.33 veranschaulicht das Prinzip der Streulicht-
Abschirmung. Betrachtet wird eine zunächst beliebige Fresnel-Linse mit Radius R, deren
Zentralabdeckung a sich im absoluten Maßstab zu

rmin = aR bemisst, so dass rmin → r± = z± tanϑ± (5.153)

die zunächst identischen inneren Radien r− = r+ angibt, deren Schattenwurf im rot ver-
stimmten Brennpunkt z− unter dem Winkel ϑ− und im blau verstimmten Fokus z+ un-
ter ϑ+ einfällt. Angesichts der großen Öffnungsverhältnisse linearisiert die tan−Funktion,
so dass sich aus 5.153 mittels einfacher geometrischer Überlegungen – geringfügige Beu-
gungseffekte an den Segmenträndern beschränken sich auf die Größenordnung des lateralen
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Abbildung 5.32: Absolutes Leistungsmaximum segmentierter Hybrid-Achromaten. Angege-
ben sind obstruktionsfreie (a = 0) Lichtstärken für Li, Be, B10H14 und C16H14O3. Für Li
durchläuft die Effizienz bei gegebener Ortsauflösung ein absolutes Maximum.

Auflösungsvermögens und werden vernachlässigt – die zur Abschirmung jedweder Streu-
strahlung notwendigen Mindestradien der Partial-Linse r− und r+ zu

r− = 2rFOV

(

1

ζ−
− 1

)−1
und r+ = 2rFOV

(

1− 1

ζ+

)−1
, (5.154)

wobei ζ− < 1 und ζ+ > 1 angenommen wird. Da sich die Gln. 5.154 nur durch ihr Vorzei-
chen unterscheiden, motiviert die Schreibweise

S (ζ±) ≡
r±
rFOV

= ±2
(

1− 1

ζ±

)−1
(5.155)

die Definition einer
”
Schattenfunktion“ S (ζ±), die in Einheiten des Detektor-Radius rFOV

die notwendige Zentralabdeckung beschreibt. Mit Gl. 5.153 ist demnach

aR ≥ S (ζ±) rFOV mit rFOV =
nFOV
2

∅PSF (5.156)

zu fordern. Unter Beachtung von ∅PSF = F · ∆εink und der Gl. 5.64 für die inkohärente
Winkelauflösung folgt daraus für den Radius

R2 ≥ α

2
S (ζ±)nFOV

ηN(a)

a
TNFλ mit α = 0.535. (5.157)
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Abbildung 5.33: Abschirmung des Streulichts bei Multiband-Objektiven. Die der jeweiligen
Blaze-Energie zugeordneten Mindestradien rmin ergeben sich aus dem Detektordurchmesser
2rFOV und den verstimmten Foki ζ±. Weitere Erläuterungen siehe Text.

Bezugnehmend auf die Standard-Relation für den Zusammenhang zwischen Radius und
Zonenzahl einer kohärenten Linse folgt schließlich

N? ≥
α

2
γS (ζ±)nFOV

ηN(a)

a
, (5.158)

wobei γ = 1 für die diffraktive und γ = 2 im Fall der dispersionskorrigierten Optik gilt. Der
Segment-Zonenzahl N? ist somit eine untere Schranke auferlegt, die unter anderem linear
von nFOV abhängt. In der nachfolgenden Konfiguration dispersionskorrigierter Modell-
Teleskope wird dieser Sachverhalt verhältnismäßig kleine Sichtfelder erzwingen, die im
Durchmesser nur wenige 102 Auflösungselemente gestatten. Obschon die Anordnung der
eine bestimmte Energie Ec repräsentierenden Segmente abseits der aus S (ζ±) hervorgehen-
den Mindestradien keiner sonstigen Bedingung unterliegt, erweist sich eine Belegung der
Segment-Ringe mit Parzellen einheitlicher Energie als sinnvoll. Für ein gegebenes Spektrum

En = {Ec | Ec = n · E0} mit n ε R+ ≥ 1 (5.159)

besteht die erste Aufgabe also darin, S (ζ±) für jede, einem dieser Energiewerte zugeordnete
Partial-Apertur unter Rückgriff auf die fokale Dispersionsrelation der jeweiligen Optik zu
ermitteln.

Beginnend mit dem vergleichsweise einfachen Streuverhalten der diffraktiven Fresnel-
Linse sei dieses Verfahren nun explizit erläutert. Mit

zm(E) =
1

m

Ec
E0
F (E0) → ζ =

1

m
ψ0 (5.160)

lautet die Schattenfunktion, jetzt in Abhängigkeit von der relativen Energie ψ0 =
Ec
E0
,

Sm (ψ0) = ±2
(

1− m

ψ0

)−1
mit m ε Z (5.161)
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als der m−ten Beugungsordnung. Um Sm (ψ0) für ein die Energie Ej abbildendes Energie-
band Ei zu finden, ist deren Maximum bzgl. aller Ordnungen m ε Z zu ermitteln.

Sm (ψ0) = ±2
(

1−mEi
Ej

)−1
(5.162)

führt unter Annahme von Ei = iE0 und Ej = jE0 mit i, j ε R+ sowie einer Ausschlussbe-
dingung i 6= j auf

Sm (Ei) = ±2
(

1−mi

j

)−1
→ max. (5.163)

Eine Differentiation zur Bestimmung des Maximums kommt angesichts der Singularität in
mEi = Ej nicht in Betracht. Deren physikalische Interpretation bedient sich der spezifi-
schen Eigenschaft diffraktiver Linsen, ganzzahlige Vielfache Ej = m · Ei einer gegebenen
Energie Ei in m−ter Ordnung in den gemeinsamen Brennpunkt F (Ei) zu fokussieren.
Die Abschirmung dieser Streukomponente erweist sich offenkundig als unmöglich und auch
nicht notwendig. Vielmehr trägt sie im positiven Sinn, wenn auch quantitativ maßvoll zur
Lichtstärke im Band Ej bei. Nach Gl. 3.79 beträgt die Beugungseffizienz für Ej = m · Ei

Pm =

(

sin
(

π
(

m− 1
m

))

π
(

m− 1
m

)

)2

→ P2 =

(

2

3π

)2

≈ 4.5%. (5.164)

Höhere Vielfache und damit Ordnungen weisen nur mehr eine Effizienz von 1% oder we-
niger auf und sind daher zu vernachlässigen. Hinzu kommt, dass der durch die Segment-
Zonenzahl N? zur Energie Ei gegebene spektrale Bandpass in m−ter Beugungsordnung
auf (mN?)

−1 reduziert wird, so dass mit

(Aeff ×∆E)2 ≈ 0.045 (Aeff ×∆E)1 (5.165)

die durch den Index 2 gekennzeichnete Lichtstärke zur Energie Ej = 2Ei daher nur noch
einen geringen Bruchteil derjenigen zu Ei erreicht.

Bei der Bestimmung des Maximums von Sm (Ei) sind demnach nicht die Singularitäten
an sich, sondern die ihnen benachbarten Ordnungen heranzuziehen. Im übrigen würde eine
Differentiation den ganzzahligen Ordnungen und dem diskreten Energiespektrum auch gar
nicht Rechnung tragen. Statt dessen ist unter den hinsichtlich m, j und des Vorzeichens
möglichen Werten von Sm (Ei) der größte zu entnehmen. Gewöhnlich genügt es, lediglich
die niedrigsten positiven Ordnungen m ≥ 1 zu betrachten.

Nach dem geschilderten Verfahren kann Sm (Ei) für das gesamte Spektrum Ei ermittelt
werden. Schließlich sollte

Sm (Ei) → Max [Sm (Ei) , 2] (5.166)

dem Problem der
”
Selbstkontamination“ nach 3.15 entgegen wirken, sollte die Partiallinse

zu Ei und mit ihr die übrigen einmal nicht exakt auf ihrer Blaze-Energie operieren.
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Abbildung 5.34: Beispiele diffraktiver Multiband-Objektive. Den eingetragenen Mindestra-
dien (strichliert) liegt die Annahme kinoformer Fresnel-Profile bzw. deren Streuverhalten
zugrunde. Die beiden Versionen (a) und (b) fokussieren jeweils zwei Energiewerte simultan,
während in Beispiel (c) E0, 2E0 und 4E0 abgebildet werden.

Solchermaßen ausgestattet, sind für diverse Energiespektren En die entsprechenden Min-
destradien einfach zu berechnen. Abb. 5.34 zeigt drei Beispiele. Mehr als drei Energiewerte
simultan zu fokussieren, erweist sich als praktisch unmöglich, und zwar aufgrund der sehr
großen Radien Sm (Ei), die sich dann für einzelne Bänder, darunter meist die Basisenergie
E0, ergeben. Doch auch unter der Einschränkung auf allenfalls dreifach simultane Abbil-
dung sind die einzelnen Energiewerte sorgfältig zu wählen; generell besteht für eng benach-
barte Energien (Ei ≈ Ej) oder aber große Differenzen (Ei À E0) eine Tendenz zu großen
Mindestradien Sm (Ei) und damit Zonenzahlen. Die für Abb. 5.34 ausgewählten Beispiele
repräsentieren diesbezüglich besonders günstige Konfigurationen.

Im Zuge der Kenndaten-Berechnung nehmen die Obstruktionsverhältnisse ai eine wich-
tige Rolle ein. Unter Beachtung der durch Sm (Ei) vorgegebenen Randbedingungen sind
sie den instrumentellen Gegebenheiten und der gewünschten Lichtstärke entsprechend zu
wählen. Eine mögliche Zuordnung ergibt sich für die Fälle (a), (b) und (c) aus

(a) a1 = 0.50 a2 = 0.08
(b) a1 = 0.45 a3 = 0.10
(c) a1 = 0.80 a2 = 0.50 a4 = 0.14

(5.167)

Begnügt man sich weiterhin mit nFOV = 500 Auflösungselementen, so folgen mit Gl. 5.158
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unmittelbar die mit der Trennschärfe von LiF(200) korrespondierenden Zonenzahlen N?,

(a) N1 = 18034 N2 = 7652
(b) N1 = 15592 N3 = 6140
(c) N1 = 15252 N2 = 10306 N4 = 4420

(5.168)

Ferner liefern die Obstruktionsverhältnisse ai in sukzessiver Anwendung ihrer Definition
die inneren wie äußeren Radien der Partial-Objektive im Beispiel (a) zu

(a) 4.69 m ≤ r1 ≤ 9.38 m und 0.38 m ≤ r2 ≤ 4.69 m, (5.169)

wenn sich rFOV unter Annahme einer – für alle Energiewerte identischen – Ortsauflösung
∅PSF = 0.75 mm ergibt. Für Modell (b) fallen die Abmessungen kaum moderater aus,

(b) 3.75 m ≤ r1 ≤ 8.33 m und 0.38 m ≤ r3 ≤ 3.75 m. (5.170)

Hingegen begnügt sich Objektiv (c) mit knapp sieben Metern Gesamtradius, die sich gemäß

(c) 5.36 m ≤ r1 ≤ 6.70 m und 2.68 m ≤ r2 ≤ 5.36 m und 0.38 m ≤ r4 ≤ 2.68 m

auf die drei Energiebänder aufteilen. Deren explizite Werte gehen somit offenbar nur über
das Blaze-Profil der Partial-Linsen in die Konstruktion ein. Im vorliegenden Fall dürfte

(a) E1 = 6 keV E2 = 12 keV
(b) E1 = 4 keV E3 = 12 keV
(c) E1 = 4 keV E2 = 8 keV E4 = 16 keV

(5.171)

sowohl technischen als auch astronomischen Bedürfnissen entgegen kommen. Die partiellen,
jeweils in Einheiten von (cm2 · keV) gemessenen Lichtstärken Qi ergeben sich daraus zu

(a) Q1 = 689.0 Q2 = 1107
(b) Q1 = 446.3 Q3 = 854.7
(c) Q1 = 133.0 Q2 = 530.9 Q4 = 823.6

(5.172)

Schließlich regelt die frei wählbare Ringzahl TN,i einer Partiallinse die für Ei erzielbare
Winkelauflösung ∆εi. Fordert man zweckmäßig ∆εj = ∆εi ∀ j, ergeben sich die übrigen
Ringzahlen TN,j zu

(a) T1 = 51 T2 = 60
(b) T1 = 39 T3 = 60
(c) T1 = 27 T2 = 51 T4 = 60

(5.173)

Andererseits bedingen fixer PSF-Durchmesser ∅PSF und konstantes ∆εi gleichbleibende
Brennweite F . Tab. 5.16 stellt die wichtigsten Parameter zusammen. Den bei moderaten
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Version (a) (b) (c)

Auflösung ∆ε 0.33 mas 0.42 mas 0.44 mas
Brennweite F 463 km 369 km 349 km
Aeff ×∆E 1796 cm2·keV 1301 cm2·keV 1488 cm2·keV

Tabelle 5.16: Leistungsdaten diffraktiver Multiband-Objektive. Angegeben sind Winkel-
auflösung, Fokaldistanz und gesamte Lichtstärke. Alle auf Abb.5.34 basierenden Modelle
weisen nFOV = 500 Auflösungselemente und ∅PSF = 0.75 mm auf.

Brennweiten von wenigen 102 km akzeptablen Lichtstärken von & 103 cm2 · keV ist zu ent-
nehmen, dass derartige Multiband-Objektive hinsichtlich ihres Leistungsvermögens durch-
aus mit Monoband-Modellen aus Abschn. 5.3 konkurrieren können. Gleichwohl erwächst
den hier diskutierten diffraktiven Multiband-Objektiven eine Komplikation: Unter Verwen-
dung eines konventionellen Kristalls erscheint die simultane Detektion nicht ohne weiteres
möglich. Welche technischen Optionen abseits des gewiss minder originellen mechanischen
Wechsels zwischen den passenden Bragg-Winkeln oder gar diversen Kristallen bestehen,
soll an dieser Stelle offen bleiben.

Fest steht, dass dispersionskorrigierte Multiband-Teleskope freilich um den Preis er-
höhter Komplexität derlei Probleme umgehen. Ihnen sei daher besondere Aufmerksamkeit
gewidmet. Ihre Segment-Zonenzahlen sind nun nicht mehr wie im diffraktiven Fall durch
die Trennschärfe des Detektors, sondern absorptionsbedingt auf einige 103 beschränkt.
Übertragen auf die Verhältnisse des Hybrid-Segments, lautet Gl. 5.158 explizit

N? ≥ α S (Ei)nFOV
ηN(a)

a
Q

(

N?

N0

)

. (5.174)

Für gegebenes S (Ei), nFOV und ai bei der Energie Ei ergibt sich N? numerisch aus der im-
pliziten Gl. 5.174, die wiederum vom Parameter Q(s) mitbestimmt wird. Es erweist sich,
dass Gl. 5.174 nur für geeignet gewählte Parameter S (Ei), nFOV und ai eine praktisch
sinnvolle Lösung in N? besitzt. Wieder führt der Weg über die Schattenfunktion, deren
Lösungen sich nun aus Gl. 4.17, genauer gesagt dessen sin−Nenner ergeben. Maxima un-
terliegen demnach der Bedingung

π

2

(

1

ψ
+
ψ

ζ

)

= mπ mit m ε Z → ζm =
ψ

2m− 1
ψ

, (5.175)

wobei dem Parameter m nun eine der Beugungsordnung analoge Bedeutung zukommt. Mit
dem für das Hauptmaximum in ζ = ψ zu m0 = 1 festgelegten Referenzwert m0 durchläuft
m erneut eine genügend große Anzahl benachbarter Streumaxima m ≷ m0. Eingesetzt in
die Definition der Schattenfunktion ergibt sich

Sm (ψ0) = ±
2

1− 1
ψ0

(

2m− 1
ψ0

) mit m ε Z. (5.176)
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Abbildung 5.35: Beispiele dispersionskorrigierter Multiband-Objektive. Die eingetragenen
Mindestradien (strichliert) berücksichtigen das Streuverhalten von Hybridlinsen. Die bei-
den Versionen (a) und (c) fokussieren ganzzahlige Vielfache von E0, während Beispiel (b)
hinsichtlich rmin (E0) optimiert ist.

Drei aus Gl. 5.176 hervorgehende Beispiele sind in Abb. 5.35 dargestellt. Den Modellen
(a) und (c) ist die im Vergleich zum diffraktiven Analogon große Distanz in Sm (ψ0) für
Energiewerte Ei,j zu entnehmen. Dieses

”
kritische“ Verhalten der dispersionskorrigierten

Schattenfunktion erlaubt nach bisherigen Erkenntnissen die Abbildung lediglich zweier
Energiebänder. Angesichts der bereits grenzwertigen Mindestradien von 8rFOV für Ec = E0
im Beispiel (a) bzw. 9rFOV für Ec = E0 in Modell (c) stellt sich die Frage nach einer bzgl.
rFOV optimierten, d.h. minimierten Funktion Sm (ψ0). Diese existiert in der Tat, und zwar
als reelle und damit physikalisch sinnvolle Lösung der Gleichung

± 2

1− 1
ψ0

(

2m± − 1
ψ0

) = 2ψ0 → ψ0 =
3 +
√
5

2
≈ 2.62 für

[

m+ = 1
m− = 2

]

. (5.177)

Der Mindestradius zu E0 nimmt in diesem Fall den absolut kleinstmöglichen Wert an,

Sm (E0) = 2ψ0 = 3 +
√
5 ≈ 5.24, also rmin ≈ 5.24 rFOV . (5.178)

Die für E¯ = 2.62E0 erforderliche Abschattung liegt theoretisch innerhalb des rFOV , gleich-
wohl wird dieser als faktischer Innenradius gewählt. Der nach Gl. 5.174 implizit auftreten-
den Zonenzahl wegen empfiehlt es sich, die Energiewerte Ei und damit deren N0 a priori
festzulegen. In 5.179 sind mögliche Daten zusammengestellt.

(a) E1 = 6 keV E2 = 12 keV
(b) E1 = 6 keV E¯ ≈ 16 keV
(c) E1 = 6 keV E3 = 18 keV

(5.179)
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Die Obstruktionsverhältnisse der inneren Partial-Objektive zu 2E0, E¯ und 3E0 in den
Beispielen (a), (b) und (c) ergeben sich unter Berücksichtigung der Mindestradien, die Ab-
deckung der äußeren Partial-Linsen wird zusammen mit den Sichtfeldern einer realistischen
Lösung in N? zugunsten bestimmt. Konkret eignen sich folgende Werte:

(a) a1 = 0.72 a2 = 0.25
(b) a1 = 0.57 a¯ = 0.19
(c) a1 = 0.62 a3 = 0.11

(5.180)

Zusammen mit den unten aufgeführten Sichtfeldern nFOV findet man die Zonenzahlen zu

(a) N1 = 10550 N2 = 3604
(b) N1 = 8890 N¯ = 2752
(c) N1 = 9204 N3 = 2898

(5.181)

Die Radien skalieren linear mit der Ortsauflösung ∅PSF = 0.75 mm, so dass im Fall (a)

(a) 0.96 m ≤ r1 ≤ 1.33 m und 0.24 m ≤ r2 ≤ 0.96 m; (5.182)

verglichen mit den diffraktiven Konfigurationen bescheidenen Abmessungen, jedoch über-
kompensiert durch den erweiterten Bandpass. Modell (b) weist mit dem optimierten Min-
destradius der Basisenergie E0 eine größere Fläche zu,

(b) 0.79 m ≤ r1 ≤ 1.39 m und 0.15 m ≤ r¯ ≤ 0.79 m. (5.183)

Das mit R = 1.36 m nahezu gleich große Objektiv (c) erfährt eine radiale Aufteilung gemäß

(c) 0.84 m ≤ r1 ≤ 1.36 m und 0.09 m ≤ r3 ≤ 0.84 m. (5.184)

Unter Verwendung der üblichen Formeln für Sammelfläche – die Absorption der diffraktiven
Hybrid-Komponente wird wie immer vernachlässigt – und spektralen Bandpass ergeben
sich schließlich die partiellen Lichtstärken Qi,

(a) Q1 = 374.8 Q2 = 3731
(b) Q2 = 732.5 Q¯ = 5331
(c) Q1 = 612.3 Q3 = 6787.

(5.185)

Die wie immer in Einheiten von (cm2 · keV) gemessenen Anteile zu E0 betragen somit le-
diglich ∼ 10% der partiellen Lichtstärken zu E2, E¯ bzw. E3 – ein für derartige Multiband-
Achromaten typisches Missverhältnis. Die über beide Energiebänder konstante Winke-
lauflösung motiviert wie im Fall der diffraktiven Multiband-Modelle die Ringzahlen

(a) T1 = 14 T2 = 24
(b) T1 = 12 T¯ = 20
(c) T1 = 9 T3 = 20,

(5.186)

so dass sich die in Tab. 5.17 zusammengefassten Leistungsdaten ergeben. Wie bereits an-
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Version (a) (b) (c)

Auflösung ∆ε 0.75 mas 0.54 mas 0.43 mas
Sichtfeld ∅FOV 320 ∆ε 400 ∆ε 250 ∆ε
Brennweite F 206 km 287 km 357 km
Aeff ×∆E 4106 cm2·keV 6063 cm2·keV 7399 cm2·keV

Tabelle 5.17: Leistungsdaten konventioneller Multiband-Achromaten. Angegeben sind Win-
kelauflösung, Sichtfeld, Fokaldistanz und gesamte Lichtstärke. Alle auf Abb. 5.35 basieren-
den Modelle weisen eine Ortsauflösung ∅PSF = 0.75 mm auf.

gedeutet, dürften sich im praktischen Einsatz vor allem die eingeschränkten Sichtfelder
negativ bemerkbar machen. Alle übrigen Parameter weisen die diskutierten Multiband-
Modelle nichtsdestoweniger als konkurrenzfähige Teleskope aus. Dies gilt zuletzt auch für
die Aspektverhältnisse, auf deren technische Akzeptanz angesichts der relativ großen Zo-
nenzahlen besonders zu achten ist,

(a) A1 = 2.43 A2 = 1.97
(b) A1 = 1.81 A¯ = 1.99
(c) A1 = 1.43 A3 = 2.25.

(5.187)

Im übrigen stellen derlei Systeme bei voller Nutzung des ohnehin beschränkten FOV ex-
trem hohe Anforderungen an die laterale Stabilisierung des Detektors relativ zur optischen
Achse. Anders als gewöhnliche Monoband-Objektive bedürfen sie einer absoluten Fixie-
rung – die bloße Unkenntnis (vgl. Kap. 6) von Bruchteilen der ∅PSF genügt i.a. nicht
mehr. Wie kritisch die Lateralposition des Detektors im Einzelfall zu bewerten ist, soll
zum Abschluss eine grobe Streulichtanalyse zeigen. Mit Gl. 5.175 führen die rot- bzw.
blauverstimmten Foki in der Bild- oder Detektorebene zu ringförmigen Streuhalos. Deren
Innen- und Außenradien r

(i)
scat bzw. r

(a)
scat sind elementargeometrisch durch

r
(i)
scat =

∣

∣

∣

∣

1− 1

ζ±

∣

∣

∣

∣

r(i)n und r
(a)
scat =

∣

∣

∣

∣

1− 1

ζ±

∣

∣

∣

∣

r(a)n (5.188)

gegeben, wobei die Radien r
(i)
n und r

(a)
n die n−te partielle Hybridlinse des Objektivs be-

grenzen, n ε {1, 2}. Im Beispiel (a) streut die Strahlung der Energie E1 = 6 keV in zweiter
Beugungsordnung nach ζ− = 0.25, da die Beugungseffizienz der Fresnel-Linse in 1. Ord-
nung verschwindet. Gleichwohl wurde die diesbezügliche Abschirmung S1 (E1) gewählt, um
unter geringfügigen Einbußen an der Lichtstärke zu E2 ein großes Sichtfeld in E0 zu er-
halten. Man findet 0.72 m ≤ rscat (E1) ≤ 2.88 m. Abb. 5.36 zeigt links die rotverstimmte
Detektor-Umgebung, die demnach immerhin ∼ 103 Auflösungselemente im Durchmesser
zulässt. Enge Grenzen zieht die blauverstimmte Streustrahlung der entsprechenden Detek-
torposition. Deren relative Brennweite ergibt sich in erster Beugungsordnung zu ζ+ = 4

3
.

Projiziert in die Beobachtungsebene erhält man 0.24 m ≤ rscat (E2) ≤ 0.33 m. Die rechte
Grafik der Abb. 5.36 illustriert die Abmessungen relativ zur Detektorfläche. Um die ab-
solute und zur fokussierten relative Lichtstärke der Streuhalos zu bestimmen, bedarf es
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Abbildung 5.36: Streuhalos des Dualband-Achromaten, Beispiel (a). Links ist die Detektor-
Umgebung im rotverstimmten Fall mit dem Sichtfeld (Wabenmuster) von nFOV = 960
Auflösungselementen dargestellt, rechts im gleichen Maßstab die blauverstimmte Kompo-
nente mit nFOV = 320. Das Koordinatensystem misst die Dimensionen in Metern.

zunächst einer Berechnung der Beugungseffizienz. Beschreibt Pm(ψ) diese für eine ideali-
sierte Fresnel-Linse, liefert

Pscat (Ei) = Pm

(

Ei
Ej

)

× TNj (Ei) (5.189)

die absorptionskorrigierte Streueffizienz zur Ordnung m, der Energie Ei sowie der Zonen-
zahl Nj mit i 6= j. Die Transmission ergibt sich aus

TNj (Ei) = 2
N0 (Ei)

Nj

Ei
Ej

(

1− e−
Nj

2N0(Ei)

Ej
Ei

)

. (5.190)

Unter Anwendung obiger Formeln resultieren im bislang betrachteten Beispiel (a)

Pscat (E1) = 5.69% und Pscat (E2) = 16.3%, (5.191)

wobei im zweiten Fall der relativ hohe
”
Wirkungsgrad“ Pscat (E2) durch die geringe Ab-

sorption in den auf E1 abgestellten Segmenten begünstigt wird. Mit der Streulichtstärke

(Aeff ×∆E)scat (Ei) =

(

(

r
(a)
j

)2

−
(

r
(i)
j

)2
)

πPscat (Ei)
2√
Ni

Ei (5.192)

wird dem Umstand Rechnung getragen, dass die spektrale Bandbreite der fokussierten
Strahlung auch im Streuhalo detektiert werden würde, wenn dessen Intensitätsverteilung im
Fall ausgedehnter Quellen das Signal kontaminiert. Konkret beläuft sich die Streuleistung
zu E1 im Beispiel (a) auf

(Aeff ×∆E)scat (E1) = 180.1 cm2 keV, (5.193)
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was 48% der fokussierten, nutzbaren Lichtstärke entspricht. Ungefähr im gleichen Verhält-
nis (47%) streut die Strahlung zu E2,

(Aeff ×∆E)scat (E2) = 1755 cm2keV. (5.194)

Eine Erweiterung des Streuhalos für Nj > Ni nimmt sich i.d.R. geringfügig aus und wird
in geometrischen Darstellungen wie Abb. 5.36 vernachlässigt. In erster Näherung verteilt
sich die defokussierte Strahlung also gleichmäßig auf die Ringfläche, die sich aus 5.188 zu

A
(scat)
i = π

(

1− 1

ζ±

)2(
(

r
(a)
j

)2

−
(

r
(i)
j

)2
)

(5.195)

errechnet, wobei wieder Ei die durch die auf Ej abgestellten Segmente gestreute Energie
bezeichnet.

Im Beispiel (b) liegen die Verhältnisse etwas anders. Nach obigen Ausführungen ist des-
sen Schattenfunktion auf eine kompakte Bauweise hin optimiert. Die mit E¯ assoziierten
Streuhalos erster und zweiter Beugungsordnung fallen in der Detektorebene zusammen.
Man erhält für ζ− ≈ 0.72 und ζ+ ≈ 1.62 jeweils 0.30 m ≤ rscat (E¯) ≤ 0.53 m. Abb. 5.37
veranschaulicht rechts die Dimensionen relativ zum Sichtfeld mit nFOV = 400 Auflösungs-
elementen. Das der Beobachtungsebene nächstgelegene Streumaximum zu E1 erlaubt ein

Abbildung 5.37: Streuhalos des Dualband-Achromaten, Beispiel (b). Links ist die Detektor-
Umgebung im rotverstimmten Fall mit dem Sichtfeld (Wabenmuster) von nFOV = 520
Auflösungselementen dargestellt, rechts im gleichen Maßstab die blauverstimmte Kompo-
nente mit nFOV = 400. Das Koordinatensystem misst die Dimensionen in Metern.

etwas größeres Sichtfeld, in zweiter Ordnung kumuliert die defokussierte Strahlung bei
ζ− ≈ 0.28, was einem ringförmigen Halo der Abmessungen 0.39 m ≤ rscat (E1) ≤ 2.07 m
entspricht. Die graphische Aufbereitung ist ausschnittsweise in Abb. 5.37 links dargestellt.
Aufgrund der Koinzidenz der

”
blauen“ Streuhalos zu E¯ sind deren partielle Streueffizien-

zen ebenso wie die Lichtstärken zu addieren, so dass

Pscat (E¯) = TN1 (E¯)
2
∑

m=1

Pm (ψ¯) = 13.3%, (5.196)
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wobei der Beitrag der zweiten Ordnung mit 1.69% vergleichsweise gering ausfällt. Die
gesamte Streulichtstärke errechnet sich zu

(Aeff ×∆E)scat (E¯) = 3240 cm2 keV; (5.197)

somit bleiben in der Relation zum fokussierten Anteil 60.8% der gesamten transmittierten
Lichtstärke ungenutzt. Zumindest relativ günstiger stellt sich die Situation im rotverstimm-
ten Fall dar, wenn nur die zweite Ordnung berücksichtigt wird. Dem Energieband zu E1
widerfährt in den auf E¯ optimierten Segmenten ein Streuverlust von

Pscat (E1) = 1.31% → (Aeff ×∆E)scat (E1) = 31.5 cm2 keV; (5.198)

lediglich 4.3% der Nutzleistung entfallen also in diesen Streubeitrag.
Eine beträchtliche Diskrepanz zwischen Streubeiträgen einzelner Ordnungen eröffnet im

Beispiel (c) die Möglichkeit, um den Preis einer geringfügigen Hintergrundkontamination
das Sichtfeld deutlich zu erweitern. So streut die Komponente E3 in zweiter Ordnung nach
ζ− ≈ 0.82, entsprechend einer ringförmigen Halo-Verteilung gemäß 0.19 m ≤ rscat (E3) ≤
0.30 m. In Abb. 5.38 beschränkt diesmal der in der linken Grafik blau eingetragene Halo das
Sichtfeld auf nFOV = 250 Auflösungseinheiten. Streueffizienz und zugehörige Lichtstärke

Abbildung 5.38: Streuhalos des Dualband-Achromaten, Beispiel (c). Links ist die Detektor-
Umgebung im rotverstimmten Fall mit dem Sichtfeld von nFOV = 1000 Auflösungselemen-
ten nebst dem restriktiven blauen Halo mit 250 Auflösungseinheiten dargestellt, rechts die
blauverstimmte Komponente in erster Beugungsordnung mit nFOV = 500.

ergeben sich nach bekannter Methode zu

Pscat (E3) = 1.39% → (Aeff ×∆E)scat (E3) = 332 cm2 keV. (5.199)

Angesichts der hohen nutzbaren Lichtstärke von nahezu 7 × 103 cm2 keV mag ein mäßi-
ges Rausch-Niveau zu akzeptieren sein – als das Sichtfeld limitierende Beugungsordnung
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fungiert dann die erste, deren virtueller Fokus sich bei ζ+ = 1.8 befindet. Projiziert in die
Beobachtungsebene, entspricht dies einem durch 0.38 m ≤ rscat (E3) ≤ 0.60 m begrenzten
Halo. Auf ihn entfällt eine Beugungseffizienz bzw. Streulichtstärke von

Pscat (E3) = 8.66% → (Aeff ×∆E)scat (E3) = 2075 cm2 keV. (5.200)

Nach Abb. 5.38 erweitert diese tolerante Abschirmung das Sichtfeld auf nFOV = 500
Auflösungselemente. Während nichtsdestoweniger die in das Band E3 gestreute Strahlung
das kritische Moment beim Design eines solchen Dualband-Achromaten darstellt, erweist
sich die Streukomponente zu E1 als völlig unproblematisch. Mit der in dritter Ordnung auf
ζ− = 1

9
verkürzten virtuellen Fokalposition resultiert ein ausgedehnter Halo, gegeben durch

0.75 m ≤ rscat (E1) ≤ 6.75 m. Damit belaufen sich Streueffizienz und -lichtstärke auf

Pscat (E1) = 4.72% → (Aeff ×∆E)scat (E1) = 130.2 cm2 keV, (5.201)

bei einer allerdings auf rund 6 × 102 cm2 keV beschränkten Nutzleistung. Das Sichtfeld
umfasst nach Abb. 5.38 nun nFOV = 1000 Auflösungseinheiten.

Im Zuge einer Weiterentwicklung der hier vorgestellten Dualband-Modelle dürfte einer
verbesserten Lichtstärke der

”
roten“ oder weichen Spektralkomponente entscheidende Be-

deutung zukommen. Dies könnte sowohl durch geschickte Ausnutzung des Streuverhaltens
der diffraktiven Komponente, evtl. den Einsatz von Kantenfiltern oder aber durch die im
folgenden diskutierten reduzierten Achromaten geschehen.

Zunächst auf uniform operierende Aperturen ausgelegt, besteht deren wesentliches
Merkmal nach Abschn. 4.2 in einer mehr oder minder ausgeprägten, stufenweisen Ab-
tragung der refraktiven Profilkomponente. Als Dreh- und Angelpunkt der konstruktiven
Überlegungen erweist sich der Reduktionsparameter k ε N, der sowohl Transmission als
auch Kammstruktur bestimmt. Hinsichtlich der Transmission sollte vielmehr ähnlich wie
im Fall des massiven Hybrid-Segments von einem absorptiven Profil gesprochen werden,
das je nach Zonenverhältnis N?

N0
und nun auch in Abhängigkeit vom Reduktionsparameter

k die Winkelauflösung in der Fokalebene beeinflusst. Erneut wird die Approximation der
Segmente durch quadratische Parzellen und die von ihnen erzeugte fokale Intensitätsvertei-
lung als Konsequenz der Fourier-Transformierten eine brauchbare Näherung des Problems
darstellen. In Erweiterung von Gl. 5.140 gegeben als

Fs,k (~κ) =
1

2π

∫

Aseg

ũk (~ν) e
−i~κ~νd2ν, (5.202)

beschreibt sie die Amplitudenverteilung eines Segments, wobei ~ν ≡ (νx, νy) wieder die
dimensionslosen, kartesischen und normierten Ortskoordinaten im lokalen Koordinatensy-
stem eines Segments bezeichnet, − 1

2
≤ νx ≤ +1

2
und −1

2
≤ νy ≤ +1

2
. ~κ steht bekanntlich für

den lateralen Wellenvektor in der Beobachtungsebene. Die Eingangsamplitude ist diesmal
aus Gl. 4.63 abzuleiten, man findet nach einfacher Rechnung

ũk (~ν) = e−
s
4
1
ψ (

q
k
−1+ψ(1−νx)) → ũk (~ν) = e−

s
4(

q
k
−νx) für ψ = 1, (5.203)
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wenn in Fernfeldnäherung formal der Grenzübergang N? → 0 vollzogen und der entspre-
chende Fresnel-Term in der Amplitude ũ (~ν) ignoriert wird. Der Einschränkung auf den
monochromatischen Fall mit ψ = 1 liegt die Annahme einer trotz Dispersionskorrektur
hinreichend engen Bandbreite zugrunde, so dass das laterale Auflösungsvermögen als von
ψ unabhängig erachtet bzw. dessen Mittelwert herangezogen wird. Mit Gl. 5.203 und dem
Laufparameter 1 ≤ q ≤ k schreibt sich die Fourier-Amplitude schließlich als

Fs,k (~κ) = F̂s,k (κy)
1√
2π

k
∑

q=1

∫ q
k

q−1
k

ûk (νx) e
−iκxνxdνx, (5.204)

sie separiert also in die eindimensionalen Komponenten bzgl. x und y, angedeutet durch
F̂s,k (κy) und ûk (νx). Eine elementare Rechnung liefert die gesuchte Intensitätsverteilung,

|Fs,k (~κ)|2 =
(

sin
(

1
2
κy
)

1
2
κy

)2
1− 2e−

s
4k cos

(

κx
k

)

+ e−
s
2k

(

s
4

)2
+ (κx)

2

(

sin
(

1
2
κx
)

sin
(

1
2
κx
k

)

)2

. (5.205)

Wie in Abschn. 5.4 errechnet sich die relative Winkelauflösung aus einer Mittelung über
die Punktbilder der auf 0 ≤ ϕ ≤ 2π orientierten Segmente,

〈

|Fs,k (~κ)|2
〉

=
1

2π

∫ 2π

0

|Fs,k (~κ)|2 d2κ. (5.206)

Die so bestimmten Punktbildfunktionen führen der üblichen HEW-Integration folgend wie-
der auf das absorptionsfrei normierte Auflösungsvermögen

Qk(s) ≡
∆κk(s)

∆κk(0)
mit Qk=1(s)↔ Q(s). (5.207)

Die parametrische Zuordnung des Reduktionsfaktors k erweist sich als zweckmäßig, da
dieser nur wenige diskrete Werte, das Zonenverhältnis s = N?

N0
aber das positive reelle

Kontinuum bedient. Wie bereits in Abschn. 4.2 angekündigt, wird allen nachfolgend dis-
kutierten Konfigurationen eine konstante Zonenzahl zugrunde gelegt,

N? = 5× 103 und n =
N?

4k
ε N. (5.208)

Die an den refraktiven Stufenparameter n gerichtete Auswahlregel stellt nur eine verhält-
nismäßig geringe Zahl möglicher k−Werte bereit, die in Tab. 5.18 aufgelistet sind. Für sie

k 1 2 5 10 25 50 125 250

n 1250 625 250 125 50 25 10 5

Tabelle 5.18: Mögliche Werte für k und n bei N? = 5× 103 Zonen. Die Angaben folgen Gl.
5.208 und unterteilen das Segment in Partialgitter konstanter Periode.
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s 5 10 15 20 25 30 35 40 45 50

Q2 1.02 1.10 1.23 1.44 2.56 3.31 3.69 3.98 4.23 4.45

Q5 1.00 1.02 1.04 1.06 1.10 1.15 1.21 1.28 1.36 1.48

Q10 1.00 1.00 1.01 1.02 1.03 1.04 1.05 1.07 1.08 1.10

Q25 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02

Tabelle 5.19: Absorptionsbedingte Ortsauflösung im reduzierten Hybrid-Segment. In
Abhängigkeit vom Zonenverhältnis s = N?/N0 ist die absorptionsfrei normierte Auflösung
Qk(s) für diverse Reduktionsparameter k angegeben.

fasst Tab. 5.19 den Einfluss der Absorption auf die Winkelauflösung zusammen. Im Rah-
men der hier betrachteten Modelle treten merkliche Beeinträchtigungen des Auflösungs-
vermögens von mehreren 10% demnach nur für die beiden geringsten Reduktionsstufen
k = 2 und k = 5 auf.

Nach derlei vorbereitenden Betrachtungen steht der Konfiguration konkreter Modell-
Teleskope nichts mehr imWege. Die Berechnung erfolgt auf ähnlichemWege wie im Fall der
massiven, segmentierten Achromaten nach Abschn. 5.4 – allerdings mit dem Unterschied,
dass nun unter Vorgabe der Zonenzahl N? der die Lichtstärke Aeff × ∆E optimierende
Reduktionsparameter k zu suchen ist. Jene ist allgemein gegeben als

Aeff ×∆E = Tk(s)πR2
(

1− a2
)

· 1

2k

E√
n

mit Tk(s) = 2
k

s

(

1− e− s
2k

)

(5.209)

als der wiederum filterfreien Transmission, wie sich mit Hilfe von Gl. 5.203 leicht verifizieren
lässt. Unter Verwendung der üblichen Definitionen für R und n findet man

Aeff ×∆E = πhc N0

(

1− e−
N?
2kN0

)

√

k

N?

(

1− a2
)

F TN , (5.210)

mit der Brennweite F und den bekannten Naturkonstanten h und c. Im Hinblick auf eine
an der Ortsauflösung ∅PSF orientierte Formel für Aeff ×∆E leistet indes die Darstellung

Aeff ×∆E = 2π

(

1

2α

)2
1− a2
η2N(a)

(

∅PSF

Qk(s)

)2
√

kN? N0

(

1− e−
N?
2kN0

)

E

bessere Dienste. Dabei wurde die ihrer Struktur nach aus Abschn. 5.4 bekannte Relation

∅PSF = 2α ηN(a)
R

N?

Qk(s) mit α = 0.535 (5.211)

benutzt. Zentralobstruktion a und Ortsauflösung ∅PSF werden nachfolgend universell zu

a =
1√
TN

und ∅PSF = 0.75 mm (5.212)
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angenommen. Einer gegebenen Energie E = Ec mitsamt einer passend zu wählenden
Ringzahl TN ist demnach vorzugsweise durch explizite Evaluation obiger Gleichung für
Aeff × ∆E der optimale Reduktionsparameter kopt zuzuordnen. Nach deren Festlegung
bestimmt sich die Winkelauflösung

∆ε = α
λc
R
ηN

(

1√
TN

)

TNQk

(

N?

N0

)

. (5.213)

Nach Gl. 5.213 wird den unten aufgeführten Beispielen TN zugunsten einer Auflösung ∆ε .
0.8 mas eingestellt. Schließlich seien noch die Formeln für Fokaldistanz F und maximales
Aspektverhältnis A(seg)max angegeben,

F =
∅PSF

∆ε
und A(seg)max =

R

Fδ (Ec)
. (5.214)

Tab. 5.20 stellt exemplarisch einige Datensätze für Li zusammen. Erwartungsgemäß be-

Parameter Li (Aeff ×∆E)→ max.

Energie E 4 keV 5 keV 6 keV 7 keV

Radius R 1.44 m 1.44 m 1.44 m 1.39 m

Auflösung ∆ε 0.81 mas 0.78 mas 0.54 mas 0.42 mas

Aeff ×∆E 708 cm2 keV 1164 cm2 keV 1590 cm2 keV 1997 cm2 keV

Brennweite F 191 km 197 km 288 km 365 km

Reduktion kopt 10 5 5 2

A(seg)max 1.26 1.91 1.88 1.95

Ringzahl TN 14 17 14 12

Tabelle 5.20: Beispiele reduzierter Li-Achromaten. Die optimalen Reduktionsparameter kopt
maximieren die Lichtstärke. Als Zentralobstruktion wurde a = 1√

TN
, für die Ortsauflösung

∅PSF = 0.75 mm gewählt. Allen Beispielen liegt N? = 5× 103 zugrunde.

dingt
”
weiche“ Röntgenstrahlung eine höhere Reduktion, um der Absorption entgegen zu

wirken. Um mit der spektralen Kammstruktur das eigentliche Charakteristikum reduzier-
ter Achromaten zu ermitteln, ist die fokale Intensitätsverteilung unter Berücksichtigung
der Absorption zu berechnen. Die Grundlage liefert Gl. 4.76. Setzt man darin m = 1,
substituiert den Stufenparameter n = N?

4k
und betrachtet ausschließlich die Fokalebene mit

ζ = 1, ergibt sich
Ĩk(ψ) = J0,N · ψ2 · F(ψ) · Gk(ψ), (5.215)

relativ zur Intensität der einfallenden Strahlung. Der Term F(ψ) nimmt unter den genann-
ten Vereinfachungen die Form

F (ψ) ≡
1− 2e

− 1
2N0

1
ψ cos

(

π
(

1
ψ
− ψ

))

+ e
− 1
N0

1
ψ

1− 2e
1
2N0

1
ψ cos

(

π
(

1
ψ
+ ψ

))

+ e
1
N0

1
ψ

(5.216)
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an, während Gk(ψ) den ”
refraktiven Nenner“ ebenso wie den von N0 unabhängigen Inter-

ferenzfaktor enthält,

Gk(ψ) ≡
1− 2e

− N?
4kN0

1
ψ cos

(

N?
2k
π
(

1
ψ
+ ψ

))

+ e
− N?
2kN0

1
ψ

(

1
2πN0

1
ψ

)2

+
(

1
ψ
− ψ

)2

(

sin
(

N?
4
πψ
)

sin
(

N?
4k
πψ
)

)2

. (5.217)

Den Einfluss der Segmentierung auf die Peakintensität quantifiziert Gl. 5.80, die spezia-
lisiert auf die im Kontext gewählte Obstruktion und deren Normierung an Gl. 5.215 an-
gepasst – Ring- und Reduktionsparameter werden zufällig gleichermaßen mit k notiert –

J0,N =

TN
∑

k=2

[

π

√
k +
√
k − 1√

k −
√
k − 1

]−1

(5.218)

lautet. In der numerischen Auswertung von Gl. 5.215 steht einer energieabhängigen und
damit möglichst genauen Beschreibung der Absorption via N0 = N0 (Ec)→ N0(E) nichts
entgegen. Für die Li-basierten Beispiele aus Tab. 5.20 ergeben sich etwa die in Abb. 5.39
präsentierten Peaks. Die globale Bandbreite umfasst somit typischerweise wenige 102 eV.
Die Zahl der erfassten spektralen Peaks richtet sich nach der Wahl von k, so dass

∆E

E
= 2

√

k

N?

1

2k
≈ #(Peaks)× 2

N?

→ #(Peaks) ≈ 1

2

√

N?

k
(5.219)

gilt. Die approximative Natur der Zählung liegt in der Verteilung der Peaks innerhalb des
globalen Bandes ∆E

E
= 1√

n
und speziell der randständigen Maxima begründet. Alternativ

k 1 2 5 10 25 50 125 250

#(Peaks) ∞ 25 15 11 7 5 3 3

Tabelle 5.21: Anzahl der Maxima in der Kammstruktur des reduzierten Achromaten. Nach
Gl. 5.219 nimmt sie etwa wie 1√

k
ab. Eingetragen sind die Werte für N? = 5× 103.

zu Li steht abermals Beryllium (Be) zur Diskussion, ein Werkstoff, der in seiner Ver-
wendung als refraktives Linsenmaterial massiven Hybrid-Achromaten ein verglichen mit
Li moderates Leistungsvermögen verlieh und zudem dem harten Röntgenband vorbehal-
ten blieb. Dieser Trend besteht auch im Fall reduzierter Profile fort – wenn auch etwas
abgeschwächt. Auf 7 keV ≤ E ≤ 10 keV ausgerichtete Teleskope erreichen nach Tab.
5.22 Lichtstärken zwischen rund 1 × 103 cm2 keV und 3 × 103 cm2 keV. Hinsichtlich
der übrigen Parameter, auch bzgl. des optimalen Reduktionsparameters kopt, besteht ei-
ne größenordnungsmäßige Übereinstimmung mit den Li-Konfigurationen. Abb. 5.40 zeigt
wieder die spektrale Intensitätsverteilung im Fokus. Sie weist ebenfalls keine wesentlichen
Unterschiede zu den Li-Beispielen auf. Relativ hoch reduzierte Profile bedingt dagegen
Polycarbonat (C16H14O3). Um unter sonst ähnlichen Bedingungen im Energie-Intervall
9 keV ≤ E ≤ 12 keV Lichtstärken von rund 1 × 103 cm2 keV bis 2 × 103 cm2 keV zu
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Abbildung 5.39: Spektrale Intensitätsverteilung reduzierter Li-Achromaten. Den Graphen
liegen die Parameter aus Tab. 5.20 zugrunde. Die Angaben zur Peak-Intensität sind relativ
zur einfallenden Intensität zu interpretieren. Der nutzbare Bandpass ist schwarz gezeichnet.
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s

Abbildung 5.40: Spektrale Intensitätsverteilung reduzierter Be-Achromaten. Den Graphen
liegen die Parameter aus Tab. 5.22 zugrunde. Die Angaben zur Peak-Intensität sind relativ
zur einfallenden Intensität zu interpretieren. Der nutzbare Bandpass ist schwarz gezeichnet.
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Abbildung 5.41: Spektrale Intensitätsverteilung reduzierter Achromaten aus Polycarbonat.
Den Graphen liegen die Parameter aus Tab. 5.23 zugrunde. Der nutzbare Bandpass ist
wieder schwarz, die Flügel sind rot gezeichnet.
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Parameter Be (Aeff ×∆E)→ max.

Energie E 7 keV 8 keV 9 keV 10 keV

Radius R 1.47 m 1.45 m 1.47 m 1.48 m

Auflösung ∆ε 0.79 mas 0.80 mas 0.79 mas 0.70 mas

Aeff ×∆E 1356 cm2 keV 1754 cm2 keV 2258 cm2 keV 2725 cm2 keV

Brennweite F 196 km 194 km 197 km 221 km

Reduktion kopt 10 5 5 5

A(seg)max 1.08 1.41 1.78 1.97

Ringzahl TN 25 28 32 32

Tabelle 5.22: Beispiele reduzierter Be-Achromaten. Die optimalen Reduktionsparameter kopt
maximieren die Lichtstärke. Als Zentralobstruktion wurde a = 1√

TN
, für die Ortsauflösung

∅PSF = 0.75 mm gewählt. Allen Beispielen liegt N? = 5× 103 zugrunde.

erzielen, bedarf es in der Regel einer Reduktion auf kopt = 25. In Tab. 5.23 und Abb. 5.41
sind einige Beispiele zusammengestellt.

Der mit der Profilreduktion im allgemeinen einhergehende Leistungszuwachs legt einen
Einsatz solcher Stufen-Hybridlinsen in den zuvor diskutierten Dualband-Achromaten nahe.
Als hierfür prädestiniert erweist sich speziell die niederenergetische, mit E1 assoziierte
Komponente, deren hohe Zonenzahlen für die geringe Lichtstärke von wenigen 102 cm2

keV waren. Eine Reduktion der für E2 bzw. E3 vorgesehenen Be-Komponente erweist
sich hingegen als bzgl. Aeff × ∆E nachteilig. Im folgenden werden denn auch alle oben
angegebenen Parameter unverändert übernommen, mit Ausnahme der Zonenzahlen N1
sowie deren Reduktionsparameter k1 ≥ 2. Die gemäß Abb. 5.36, 5.37 und 5.38 recht großen
Sichtfelder für E1 lassen ferner Spielraum für Variationen der entsprechenden Orts- und
Winkelauflösung, die rückwirkend über kleinere Segmente und damit Zonenzahlen abermals
die Transmission erhöht. Im einzelnen ergeben sich als annähernd optimale Zonenzahlen

(a) N1 = 3000 N2 = 3600
(b) N1 = 4480 N¯ = 2750
(c) N1 = 4544 N3 = 2900,

(5.220)

wobei die zu den harten Spektralbändern gehörigen Zonenzahlen gerundet beibehalten
wurden, während die WerteN1 im Vergleich zum massiven Fall um wenigstens 50% geringer
ausfallen. Die auf E1 abgestellten Segmente erfahren eine moderate Profilreduktion via

k1(a) = 2 und k1(b) = 4 und k1(c) = 4. (5.221)

Unterstützend wirken sich die neu angepassten Ringzahlen T1 auf die Lichtstärke aus,

(a) T1 = 29 T2 = 24
(b) T1 = 15 T¯ = 20
(c) T1 = 11 T3 = 20,

(5.222)
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Parameter C16H14O3 (Aeff ×∆E)→ max.

Energie E 9 keV 10 keV 11 keV 12 keV

Radius R 1.47 m 1.48 m 1.48 m 1.44 m

Auflösung ∆ε 0.66 mas 0.55 mas 0.44 mas 0.39 mas

Aeff ×∆E 1070 cm2 keV 1293 cm2 keV 1500 cm2 keV 1816 cm2 keV

Brennweite F 233 km 282 km 351 km 400 km

Reduktion kopt 25 25 25 10

A(seg)max 1.94 1.99 1.93 1.97

Ringzahl TN 27 25 22 20

Tabelle 5.23: Beispiele reduzierter Achromaten aus Polycarbonat. Die optimalen Redukti-
onsparameter kopt maximieren die Lichtstärke. Als Zentralobstruktion wurde a = 1√

TN
, für

die Ortsauflösung ∅PSF = 0.75 mm gewählt. Allen Beispielen liegt N? = 5× 103 zugrunde.

die allerdings auch zu einer modifizierten Ortsauflösung ∅PSF,1 Anlass geben,

(a) ∅PSF,1 = 1.50 mm ∅PSF,2 = 0.75 mm
(b) ∅PSF,1 = 0.94 mm ∅PSF,¯ = 0.75 mm
(c) ∅PSF,1 = 0.94 mm ∅PSF,3 = 0.75 mm

(5.223)

Abb. 5.42 fasst schließlich die partiellen Lichtstärken der diversen Modelle zusammen. Die

Abbildung 5.42: Lichtstärke teilreduzierter Dualband-Achromaten. Aufgetragen sind die
partiellen Beiträge in Einheiten von 103 cm2 keV. Die Diskrepanz zwischen den Antei-
len zu E1 und E2 bzw. E3 wächst mit der Energiedifferenz.

niederenergetische Komponente liefert nun durchgehend > 103 cm2 keV, während sich an
der Leistung im harten Röntgenband nichts ändert. Um die maximale Abbildungsqualität
zu erhalten, erfordert die Kammstruktur des weichen Bandes je nach Version die Detektion
mit einer spektralen Auflösung von

4.4× 10−4 ≤
(

∆E

E

)

det,1

≤ 6.7× 10−4. (5.224)
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Wenngleich in der Entwicklung befindliche Micro-Kalorimeter diesen Anforderungen eines
Tages für moderate Photonenenergien E1 ∼ 6 keV entsprechen dürften, stehen hinter der
Tauglichkeit derartiger Detektoren für E2, E¯ und E3 vorläufig noch Fragezeichen. Die

Version (a) (b) (c)

Auflösung ∆ε 1.50 / 0.75 mas 0.67 / 0.54 mas 0.54 / 0.43 mas
Det.-größe ∅FOV 72 / 24 cm 39 / 30 cm 75 / 19 cm
Brennweite F 206 km 287 km 357 km
Aeff ×∆E 4954 cm2·keV 6543 cm2·keV 7831 cm2·keV

Tabelle 5.24: Leistungsdaten teilreduzierter Dualband-Achromaten. Angegeben sind Winkel-
auflösung, Detektordurchmesser, Fokaldistanz und gesamte Lichtstärke. Alle Modelle basie-
ren auf den Mindestradien nach Abb. 5.35.

gesamte Lichtstärke nimmt somit um durchschnittlich rund 10% zu, während die partielle
Leistungsfähigkeit in E1 nun jeweils ein Mehrfaches des ursprünglichen Wertes beträgt.
Abb. 5.43 illustriert schließlich wieder die Sichtfelder im weichen und harten Röntgenband.

Abbildung 5.43: Sichtfelder teilreduzierter Dualband-Achromaten. Die maßstabsgetreuen
Abmessungen berücksichtigen die unterschiedliche Ortsauflösung für E1 (rot) und E2, E¯
bzw. E3 (blau) und beschreiben die gegen alle Streustrahlung abgeschirmte Nettofläche.

Zum Ausklang dieses Abschnitts sei noch auf eine der fokalen Kammstruktur eigene
Option zur spektralen, wenn auch quantitativ beschränkten Variation der Intensitätsma-
xima hingewiesen. Nach Gl. 4.86 verläuft die lokale Dispersion eines Peaks linear in der
Energie, es gilt in Fokusnähe

ψ(ζ) = ζ oder E(z) =
z

Fc
Ec für ψ ∼ 1 ∼ ζ. (5.225)

Es bietet sich an, diesen Sachverhalt in Verbindung mit dem spektral hochauflösenden De-
tektor zu nutzen, um beispielsweise eine Spektrallinie außerhalb des regulären Bandpasses
∆E
E

= 1√
n
zu vermessen. Nach Abb. 5.44 bedarf es dazu einer fokalen Versetzung

ζ = 1 +∆ζ, so dass ∆ζ = ∆ψ. (5.226)
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Dabei schwindet die Einhüllende im durch ψ = 1 definierten spektralen Schwerpunkt mit

Abbildung 5.44: Spektrale Feinverstimmung des reduzierten Achromaten. Versetzt man den
Detektor an die Position ζ = 1 +∆ζ, so resultieren die rot gezeichneten Verteilungen.

wachsender Verstimmung, während die Flügelverteilung z.T. sogar an Intensität gewinnt.

5.6 Konstruktion dialytischer Teleskope

Zweifellos erweitern die in Abschn. 5.5 beschriebenen Multiband-Objektive aufgrund ih-
res Potentials zur simultanen Abbildung in mehreren Spektralbändern das wissenschaftli-
che Einsatzgebiet gegenüber Monoband-Aperturen. Kammband-Achromaten erweitern das
Prinzip der segmentierten Dispersionskorrektur auf Energiebänder von wenigen keV und
können ggf. der spektroskopischen Abbildung dienen, wenngleich ihre Lichtstärke z.T. hin-
ter der des aus massiven Profilsegmenten bestehenden, optimierten Profils zurückbleibt.

Abgesehen von diffraktiven Linsen bleiben all diese Systeme jedoch auf das ihnen kon-
struktiv zugewiesene Energieband von bestenfalls einigen 102 eV beschränkt. Mit der in
Abschn. 4.3 eröffneten Separation der optischen Komponenten wurde jedoch ein Weg auf-
gezeigt, die abbildende Optik im Prinzip über mehrere keV durchzustimmen. Geschieht
dies durch eine der Energie angepasste Separation d (Ec), so gilt nach

d (Ec) =
1

2
F (E0)

Ec
E0

(

1−
√

Ec
E0

)

, (5.227)

also insbesondere d (E0) = 0. Es erscheint daher naheliegend, nicht zuletzt aus Gründen
einer gewissen Vergleichbarkeit, eine den in Abschn. 5.4 vorgeschlagenen Konfigurationen
ähnliche Optik zum Ausgangspunkt zu wählen. Günstige Resultate liefert beispielsweise
ein im harten Röntgenband optimiertes Hybrid-Teleskop aus Lithium, dessen konstruktive
Kenndaten E0, N? und ∅PSF hier explizit aufgeführt seien,

E0 = 14 keV und N? = 8550 und ∅PSF = 0.375 mm. (5.228)

Zentralobstruktion a, Ringzahl TN und Radius R werden wie folgt gewählt bzw. berechnet,

a = 0 und TN = 6 und R = 1.11 m, (5.229)
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wobei in die Kalkulation des Radius nach Gl. 5.149 wieder die absorptionsbedingte Auf-
weitung der PSF eingeht. Der geschlossenen Apertur mit a = 0 kommt nun offenbar die
besondere Bedeutung der optischen Notwendigkeit zu, zumindest im Fall der refraktiven
Komponente. Winkelauflösung ∆ε und Brennweite F ergeben sich zu

∆ε = 0.14 mas und F = 545 km @ E0 = 14 keV. (5.230)

Die Variation der dispersionskorrigierten Energie Ec erfolgt nun gemäß Gl. 5.227. Im Fo-
kus 3. Ordnung beträgt der – gleichzeitig maximale – Abstand zwischen diffraktiver und
refraktiver Komponente

E3 =
4

9
E0 ≈ 6.22 keV → d (E3) ≈ 40.4 km. (5.231)

Abb. 5.45 zeigt links den Verlauf des Linsenabstandes mit der Energie im Intervall 4 keV ≤
E ≤ 14 keV. Die Fokalposition, also der Abstand der Brennebene von der diffraktiven

Abbildung 5.45: Fokalposition und Linsenabstand des durchstimmbaren Dialyten. Beide
Kenngrößen durchlaufen im Fokus 3. Ordnung bei E3 =

4
9
E0 ein Extremum. Die Separation

d beträgt gleichwohl nur wenige % der Fokalposition.

Komponente, nimmt hingegen, ausgehend von F (E0) = 545 km, zunächst kontinuierlich
ab. Quantitativ gilt

zF (Ec) =
1

2
F (E0)

1− 3
√

Ec
E0

1− 2
√

Ec
E0

(

Ec
E0

)

, (5.232)

so dass speziell im Fokus 3. Ordnung ein absolutes Minimum in zF zu verzeichnen ist.

zF

(

4

9
E0

)

=
2

3
F (E0) ≈ 363 km. (5.233)

Um nach diesen geometrischen Parametern die wesentliche Kenngröße des Modells, die
Lichtstärke Aeff ×∆E zu bestimmen, bedarf es einer Vorüberlegung. Durchdringt die von
der Quelle stammende Eingangsamplitude die refraktive Linsenkomponente für d = 0, so
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erscheint sie vom Bildpunkt zF (E0) aus betrachtet unter der Zonenzahl NL = 1
2
N , wobei

für die segmentierte Zonenzahl N? eine analoge Beziehung gilt. Mit der Separation d ≥ 0
errechnet sich die für NL wichtige refraktive Brennweite FL aus der diffraktiven FZ zu

FL (Ec) = −2FZ (Ec)

(

Ec
E0

)2

(5.234)

Mit der Definitionsgleichung der Zonenzahl resultiert die Energieabhängigkeit derselben,

NL = − R2

λFL
→ NL (Ec) =

1

2
NZ (E0)

E0
Ec
, (5.235)

wobei selbstverständlich NZ (E0) ≡ N gilt. Mit Gl. 5.235 ergibt sich die wiederum filterfreie
Transmission der refraktiven, segmentierten Komponente zu

T (Ec) = 2
N0
N

Ec
E0

(

1− e−
N
2N0

E0
Ec

)

, (5.236)

und mit ihr die effektive Sammelfläche Aeff , die außerdem noch von der ebenfalls energie-
abhängigen Beugungseffizienz der diffraktiven Fresnel-Komponente beeinflusst wird,

Aeff (Ec) = T (Ec)× P1 (Ec) mit P1 (Ec) =





sin
(

π
(

1− E¯
Ec

))

π
(

1− E¯
Ec

)





2

. (5.237)

Der Bandpass ist letztendlich manuell-numerisch zu bestimmen, für die Zonenzahl N? =
8550 ergibt sich ein Verlauf entsprechend Abb. 4.24. Offenkundig eröffnet die bislang unbe-
stimmte Blaze-Energie E¯ einen zusätzlichen Freiheitsgrad, über den sich die Lichtstärke
den wissenschaftlichen Anforderungen anpassen lässt. Die konventionelle Zuordnung E¯ =
E0 erweist sich als ungünstig, da sie einen der zum weichen Röntgenband hin zunehmen-
den Absorption gleichgerichteten Verlauf der Beugungseffizienz bedingt. Im vorliegenden
Beispiel wurde

E¯ =
1

2
E0 = 7 keV (5.238)

gewählt. Abb. 5.46 zeigt, dass mit dieser Gewichtung eine der Lichtstärke im weichen
Röntgenband zuträgliche Auswahl getroffen wurde. Offensichtlich weist das hier betrachtete
Modell nahe der astrophysikalisch wichtigen Kα−Linie von Fe bei 6.4 keV eine besonders
hohe Lichtstärke auf, eben als Folge der entsprechend gewählten Blaze-Energie, speziell
aber auch aufgrund der hocheffizienten Dispersionskorrektur in 3. Ordnung.

Neben diesem durchaus erfreulichen Sachverhalt geht mit der spektralen Verstimmung
allerdings noch ein weiteres, dialytischen Teleskopen eigenes Charakteristikum einher. Be-
trachtet man nämlich gemäß

∅PSF (Ec) = ∆ε (Ec)× F (Ec) mit F (Ec) = F (E0)

(

Ec
E0

) 3
2

(

2

√

Ec
E0
− 1

)−1

(5.239)
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Abbildung 5.46: Lichtstärke des durchstimmbaren Li-Dialyten. Die Schwerpunktsetzung
der diffraktiven Beugungseffizienz (rot strichliert) auf E¯ = 7 keV reduziert zwar die
Lichtstärke bei E0 um 60%, verleiht jedoch dem relativ weichen Röntgenband und speziell
der 3. Dispersions-Ordnung bei Ec & 6 keV ein hohes Leistungsvermögen (schwarz).

die mit der dialytischen Gesamt-Brennweite F (Ec) variierende Ortsauflösung ∅PSF , so
erweist sich diese als signifikant von Ec abhängig,

∅PSF (Ec) ∝
√

Ec
E0

(

2

√

Ec
E0
− 1

)−1

→ ∅PSF

(

4

9
E0

)

= 2 ∅PSF (E0) . (5.240)

Hinzu kommt noch die absorptionsbedingte Aufweitung der Punktbildfunktion, die sich im
Verhältnis der jeweiligen Faktoren Q(s) quantifiziert, so dass

∅PSF (Ec)

∅PSF (E0)
=

√

Ec
E0

(

2

√

Ec
E0
− 1

)−1

Q

(

N

N0

)−1
·Q
(

N

N0

E0
Ec

)

(5.241)

den mit Ec → 4
9
E0 zunehmenden PSF-Durchmesser beschreibt. Tab. 5.25 stellt einige

Werte zusammen. Allerdings berücksichtigt Gl. 5.241 noch nicht den negativen Einfluss
der Segmentierung bei separierten Komponenten. Die mittleren kohärent ausgeleuchteten
Flächen, im Fall des Hybrid-Achromaten gegeben durch die Segmente, werden bei im all-
gemeinen nicht deckungsgleicher Transmission der von der diffraktiven Linse ausgesandten
und die refraktiven Segmente durchdringenden Strahlenbündel grundsätzlich kleiner als die
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E(keV) 6 6.5 7 7.5 8 9 10 11 12 13 14

∅PSF 5.72 4.16 3.17 2.54 2.13 1.65 1.39 1.23 1.13 1.05 1.00

Tabelle 5.25: Theoretische Ortsauflösung des durchstimmbaren Dialyten. Mit abnehmen-
der Energie erweitern sowohl geometrische als auch absorptionsbedingte Effekte ∅PSF

allmählich auf das rund fünffache in 3. Ordnung. Der Einfluss der refraktiven Segmen-
tierung ist nicht berücksichtigt.

ursprünglichen Segmentflächen ausfallen und damit die Auflösung weiter reduzieren. Auf
eine quantitative Analyse sei an dieser Stelle verzichtet.

Statt dessen soll nun noch dem vor allem wegen seiner überragenden Bandbreite in-
teressanten Spezialfall der 3. Ordnung Beachtung zuteil werden. Abb. 5.47 illustriert die
geometrischen Längenskalen und Strahlengänge. Es erweist sich, dass auch solche separier-

Abbildung 5.47: Strahlengang im Dialyten 3. Ordnung. Das diffraktive Element befindet
sich im Koordinatenursprung bei z = 0. Hauptebenen H1,2, diffraktive und dispersions-
korrigierte Fokalposition sowie die Lage der refraktiven Linse sind bzgl. z maßstabsgetreu
eingezeichnet. Der reale Strahlengang ist schwarz, der fiktive, mit Hilfe der Hauptebenen
konstruierte rot strichliert dargestellt.

ten Achromaten in Abhängigkeit von der diffraktiven Zonenzahl N bzw. N? bzgl. ihrer
Lichtstärke ein Optimum durchlaufen. Für den segmentierten Fall ergibt sich dieses zu

Aeff ×∆E = 2π

(

1

2α

)2

E 3

√

2

N?

η−2N (0)





∅PSF

Q
(

9
4
N?
N0

)





2

8

9
N0N?

(

1− e−
9
8
N?
N0

)

. (5.242)

Tab. 5.26 und Tab. 5.27 stellt die optimierten Zonenzahlen im mittleren und harten Rönt-
genband für Li und Be zusammen. In ähnlicher Weise wie im Fall der hybrid-segmentierten
Monoband-Objektive nach Abschn. 5.4 errechnen sich unter Vorgabe weniger Daten wie
der Energie Ec, der Auflösung ∅PSF oder der zugunsten eines noch vertretbaren Aspekt-
verhältnisses im übrigen sehr kleinen Ringzahl TN die Parameter der in Tab. 5.28 zusam-
mengefassten Beispiele. Angesichts der geringen Radien und des negativen Einflusses der
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E(keV) 6 7 8 9 10 11 12 13 14 15 16

N? = NZ 2392 3088 3676 4118 4384 4528 4552 4488 4366 4210 4064

Tabelle 5.26: Optimierte Zonenzahlen segmentierter Li-Dialyten. Die Daten beziehen sich
auf die graufilter-freie Korrektur in 3. Ordnung und sind angesichts der wenigen Ringe
TN & 1 lediglich als Richtwert zu interpretieren.

E(keV) 8 9 10 11 12 13 14 15 16 17 18

N? = NZ 1378 1698 2004 2284 2522 2712 2850 2938 2996 3020 3016

Tabelle 5.27: Optimierte Zonenzahlen segmentierter Be-Dialyten. Die Daten beziehen sich
auf die graufilter-freie Korrektur in 3. Ordnung und sind angesichts der wenigen Ringe
TN & 1 lediglich als Richtwert zu interpretieren.

Parameter Lithium Beryllium

E (keV) 6 7 8 9 10 10 11 12 13

R (m) 0.30 0.38 0.46 0.51 0.55 0.25 0.28 0.31 0.34

∆ε (mas) 1.08 0.57 0.42 0.25 0.21 0.62 0.49 0.51 0.44

Aeff ×∆E 724 1293 1978 2687 3315 899 1230 1582 1934

zF (km) 107 202 275 462 547 187 235 226 264

d (km) 11.9 22.5 30.6 51.3 60.7 20.8 26.1 25.2 29.3

TN 5 4 4 3 3 4 4 5 5

A(seg)max 3.51 3.28 3.74 3.16 3.51 1.32 1.45 1.98 2.14

Tabelle 5.28: Beispiele segmentierter Dialyten in 3. Ordnung. Die Zonenzahlen entspre-
chen jenen aus Tab. 5.26 und 5.27. Allen Modellen liegt eine nominelle Ortsauflösung
∅PSF = 0.75 mm zugrunde, die aber zusätzlichen negativen Einflüssen durch die Segmen-
tierung unterliegt. Wegen der kleinen Ringzahlen TN hängen diese stark von der relativen
Orientierung der Komponenten ab.

E(keV) 7 8 9 10 11 12 13 14 15 16 17

N = NZ 1204 1434 1606 1710 1766 1774 1750 1702 1642 1584 1524

Tabelle 5.29: Optimierte Zonenzahlen kohärenter Li-Dialyten. Die Daten beziehen sich wie
immer auf das diffraktive Element. Die refraktive Komponente ist in konservativer Kon-
vention mit dem Standard-Graufilter für konstante Transmission unterlegt.
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E(keV) 10 11 12 13 14 15 16 17 18 19 20

N = NZ 782 890 982 1056 1110 1146 1168 1178 1176 1164 1146

Tabelle 5.30: Optimierte Zonenzahlen kohärenter Be-Dialyten. Die Daten beziehen sich
wie immer auf das diffraktive Element. Die refraktive Komponente ist in konservativer
Konvention mit dem Standard-Graufilter für konstante Transmission unterlegt.

Segmentierung als auch Absorption auf die Orts- und damit Winkelauflösung erscheint
alternativ eine kohärente Bauweise der diffraktiven und refraktiven Linse überlegenswert.
Wiederum verläuft die Berechnung der Parameter auf grundsätzlich analoge Weise wie in
den zuvor diskutierten Fällen, lediglich Lateral-Auflösung ∅PSF und Transmission T (Ec)
schreiben sich nun als

∅PSF = 4α
R

N
bzw. T (Ec) = e

− 9
8
N
N0 (5.243)

Die Lichtstärke Aeff ×∆E eines derartigen kohärenten Dialyten ist damit einfach als

Aeff ×∆E = 2π

(

N

4α
∅PSF

)2

e
− 9
8
N
N0 E

3

√

2

N
(5.244)

gegeben und genügt abermals einem Optimierungsproblem bzgl. der ZonenzahlN . Entspre-
chende Werte sind für Li in Tab. 5.29 und für Be in Tab. 5.30 zusammengefasst. Den Daten
ist neben der trotz sehr kleiner Apertur-Durchmesser überraschend hohen Lichtstärke die
überragende Winkelauflösung von wenigen 10−5 arcsec zu entnehmen. Dagegen sind die
großen Brennweiten von & 103 km zweifellos negativ zu bewerten.

Parameter Lithium (3. Ord.) Beryllium (3. Ord.)

E (keV) 8 9 10 11 12 10 11 12 13

R (m) 0.50 0.56 0.59 0.62 0.62 0.27 0.31 0.34 0.37

∆ε (mas) 0.03 0.03 0.02 0.02 0.02 0.05 0.04 0.03 0.03

Aeff ×∆E 2677 3637 4487 5208 5731 1217 1665 2141 2618

zF (km) 3408 4294 5080 5770 6328 2322 2911 3506 4083

d (km) 379 477 564 641 703 258 323 390 454

α0 9.43◦ 10.6◦ 11.7◦ 12.9◦ 14.0◦ 3.34◦ 3.68◦ 4.01◦ 4.34◦

∆E3 (keV) 1.79 1.94 2.11 2.29 2.50 2.74 2.88 3.04 3.22

Tabelle 5.31: Beispiele kohärenter Li- und Be-Dialyten in 3. Ordnung. Die Zonenzahlen
N entsprechen jenen aus Tab. 5.29 und Tab. 5.30. Auf eine Zentralobstruktion wurde ver-
zichtet, die Ortsauflösung beträgt ∅PSF = 0.75 mm. Die Lichtstärke ist in Einheiten von
(cm2 · keV) angegeben. Der Winkel α0 beschreibt die Steigung am refraktiven Linsenrand.



Kapitel 6

Detektion und Formationsflug

Wie bereits den Ausführungen in Kap. 5 zu entnehmen war, gehen mit den relativ gerin-
gen spektralen Bandbreiten und großen Fokaldistanzen gegenüber bisher gebräuchlichen
kompakten Spiegelteleskopen qualitativ neue Anforderungen an die nun räumlich sepa-
rierte Detektoreinheit und deren stabilisierte Ausrichtung im Formationsflug einher. Im
folgenden werden zunächst verschiedene Möglichkeiten zur spektral selektiven Detektion
der fokussierten Strahlung und – damit zusammenhängend – das Problem der Sensitivität
unter Berücksichtigung des

”
diffusen“ Hintergrundes diskutiert, bevor ein knapper Abriss

zu den mechanischen Aspekten des Formationsfluges das Kapitel beschließt.

6.1 Detektoren und Nachweisempfindlichkeit

Offenbar hängen die Anforderungen an die spektrale Trennschärfe des Detektorsystems von
der effektiven Zonenzahl Neff und dem Grad der von ihr bewirkten Dispersionskorrektur
ab. Ausschließlich diffraktiv ausgelegte Objektive bedürfen, um das vorgesehene Winkel-
auflösungsvermögen zu erhalten, in der Regel eines trennscharfen Kristall-Spektrographen,
ähnlich dem beispielsweise im SODART-Experiment auf dem russischen SPECTRUM-X-
GAMMA-Satelliten [32] verwendeten. Prinzipiell genügt ein einziger, unter dem passenden
Bragg-Winkel θ in den fokussierten Strahl gestellter Kristall, um die geforderte spektrale
Selektion ∆E

E
= 1

Neff
zu gewährleisten. Allerdings verlangt die relativ geringe Winkelak-

zeptanz ∆θ, innerhalb der die Strahlung der Bandbreite ∆E
E

detektiert wird, nach exakter
Ausrichtung der Detektoreinheit zur optischen Achse. Quantitativ kommt dieser Sachver-
halt in der Winkeldispersion der in erster Ordnung reflektierten Strahlung zum Ausdruck,

2d sin θ = λ → 2d δθ cos θ = δλ → ∆E

E
=

∆θ

tan θ
für ∆θ ¿ 1. (6.1)

Mit üblichen Bragg-Winkeln tan θ ∼ 1 sind Akzeptanzwinkel ∆θ ∼ (10−4 − 10−3), also
∼ (20 − 200) arcsec zu erwarten, je nach zugrunde gelegtem Neff . Bei einer Verkippung
der Detektoreinheit und damit des Kristalls um 1

2
∆θ wäre demnach der Detektor selbst,

also z.B. ein CCD, um den Winkel ∆θ nachzujustieren, um bei der Energie E + ∆E
2

kon-
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gruent abzubilden. Hingegen unterscheiden sich die lateralen Toleranzen nicht von den
in direkter, kristallfreier Abbildung geforderten. Kristall und Detektor bedürfen bei die-
ser Konstruktion einer festen mechanischen Kopplung. Alternativ besteht die Möglichkeit
einer nicht-dispersiven Doppelkristall-Konfiguration, wie sie in Abb. 6.1 dargestellt ist.
Hinreichend parallele Anordnung der beiden Kristallflächen vorausgesetzt, wirken diese of-

Abbildung 6.1: Strahlgeometrie am Bragg-Monochromator. Die Randstrahlen des durch den
Winkel ωFOV beschriebenen Gesichtsfeldes treffen unter θ± auf den Kristall, wobei θ für den
Bragg-Winkel steht. Durch die Verwendung eines zweiten parallelen Kristalls erzielt man
eine hohe Toleranz gegenüber Versetzungen, ohne die spektrale Auflösung zu beeinflussen.
Die Abschirmung gegen kontaminierende Hintergrund-Streustrahlung erfolgt mittels einer
vorgelagerten Blende in Form eines Kollimators. Der linke obere Einsatz illustriert die
Verhältnisse bei negativ defokussiertem Strahl.

fenkundig als den einfallenden Strahl lediglich versetzendes Periskop, und zwar unabhängig
vom aktuellen und evtl. störungsbehafteten Bragg-Winkel θ. Mit dem Kristallabstand dK
beläuft sich diese Versetzung V auf

V = 2dK cos θ. (6.2)

Innerhalb der dem Gesichtsfeld ∅FOV entsprechenden Kristallfläche b = ∅FOV
sin θ

spielen la-
terale (und axiale) Positionsfehler anders als beim Mono-Kristall keine Rolle, sofern das
Kristallmodul vom Detektor mechanisch entkoppelt und die stabile Ausrichtung des letzte-
ren zur optischen Achse gewährleistet ist. Die Anpassung an verschiedene Energiewerte E
könnte dann durch simultane Kippung in den Braggwinkel θ(E) und Variation des Kristall-
abstandes dK(θ) erfolgen, so dass V(E) = const. Während die Doppelkristall-Konfiguration
das spektrale Trennvermögen des einzelnen Kristalls weitgehend erhält – die Strahlung trifft
auf beide Oberflächen unter demselben Winkel θ auf – vermindert sie doch die reflektierte
Intensität1, so dass sie im Regelfall dem harten Röntgenband unter Einsatz entsprechend
hochwertiger Kristalle (vgl. dazu auch Tab. 6.1) vorbehalten sein dürfte.

1Eine ausführliche, quantitative Darstellung der Bragg-Kristall-Spektroskopie findet sich z.B. in [33].
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Zwischen den beiden Anordnungen sollte daher den technischen Gegebenheiten gemäß
gewählt werden; davon unabhängig hängt die optimale Funktion des Spektrometers von
der durch die fokale Strahlgeometrie bestimmten Winkeldivergenz |θ+ − θ−| bzw. |ϑ+ − ϑ−|
ab (vgl. Abb. 6.1). Im Regelfall wird die Fokustiefe (∆z)DOF = F

Neff
eine Größenordnung

von Metern erreichen, innerhalb der dann sowohl Kristall als auch Detektor liegen. Die
Winkeldivergenz ∆θFOV des zwischen F−(∆z

2
)DOF ≤ z ≤ F+(∆z

2
)DOF ungefähr parallelen

(Gauss’schen) Strahls limitiert die dem Sichtfeld entsprechende Detektorfläche ∅FOV zu

∆θFOV ≡ ∆θ+ +∆θ− = − (θ − θ+) + (θ − θ−) = 2ωFOV ≈
∅FOV

F
≡ 1

fFOV
. (6.3)

Mit typischen
”
Detektor-Öffnungsverhältnissen“ fFOV von meist mehr als 105 liegt die

Winkeldivergenz damit nach Gl. 6.1 sicher innerhalb des Akzeptanzintervalls des Bragg-
Kristalls, ∆θFOV < ∆θ. Ähnlich verhält es sich mit der Divergenz bzw. Konvergenz des
defokussierten Strahls, wie im Einsatz der Abb. 6.1 illustriert. Analog gilt nun

∆ϑFOV ≡ ∆ϑ+ +∆ϑ− = − (ϑ− ϑ+) + (ϑ− ϑ−) ≈
D

F (E)
=

1

fc

Ec
E
, (6.4)

mit dem Aperturdurchmesser D und dem Öffnungsverhältnis fc bei E = Ec. Die spek-
trale Selektion mittels Bragg-Kristallen erweist sich somit als außerordentlich tolerant ge-
genüber axialen Positionsfehlern der Detektoreinheit, die selbst außerhalb der Fokustiefe
außer einer entsprechend degradierenden Winkelauflösung mit f & 104 kaum Leistungs-
einbußen erwarten lässt. Tab. 6.1 listet einige Kristalle auf, die wegen ihrer Eigenschaf-
ten (u.a. Verfügbarkeit, Beständigkeit und Vakuumtauglichkeit) für einen Einsatz in der
Astronomie in Frage kommen. Die den ersten drei Vertretern RAP(001), Mica(006) und Be-

Kristall (hkl) 2d (nm) ∆E (keV) Rpeak E/δE Eignung

RAP (001) 2.6121 0.7− 1.8 ∼ 25% (1) 1.5× 103 @ 1.0 keV ◦
Mica (006) 1.984 0.8− 2.4 ≥ 25% (1) 1.3× 103 @ 1.7 keV +

Beryll (100) 1.5954 0.8− 3.0 ∼ 10% (1) 1.0× 103 @ 2.5 keV −
Ge (111) 0.6532 2.0− 7.4 > 40% (2) 3.4× 103 @ 5.0 keV +

Si (111) 0.6271 2.0− 7.7 > 40% (2) 7.8× 103 @ 6.0 keV ++

LiF (200) 0.4027 3.2− 12 > 50% (2) 1.6× 104 @ 8.0 keV +

Tabelle 6.1: Eine Auswahl geeigneter Bragg-Kristalle für verschiedene Energie-Bänder ∆E
zur Verwendung in rein diffraktiver Optik bzw. hochauflösender Spektroskopie. Die Anga-
ben zu Reflektivität Rpeak und spektraler Trennschärfe E/δE basieren auf einer typischen
mosaischen Unvollkommenheit von ≈ 1′ im weichen (1) und perfekten Gitterstrukturen im
harten (2) Röntgenbereich. Im letzteren Fall erreichen die reflektierten Intensitäten 90%
und mehr oberhalb von ∼ 5 keV.

ryll(100) eigene Mosaizität2 reduziert einerseits die Peak-Reflektivität Rpeak und erweitert

2Polykristalline Struktur, deren Kristallite gegen den Mittelwert statistisch geringfügig verkippt sind.
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andererseits die Bandbreite ∆θ bzw. ∆E. Des weiteren treten bei diesen Niederenergie-
Kristallen häufig scharfe, die Kalibration erschwerende Absorptionskanten auf, so z.B.
im Fall des Beryll(100) nahe 1.8 keV. Ausgeprägt monokristalline Gitterstrukturen wie
Ge(111), Si(111) und LiF(200) zeichnen sich hingegen durch eine hohe, mit der Energie
E zunehmende optische Qualität aus. Allen Kristallen gemeinsam ist die Polarisations-
abhängigkeit der Rocking-Kurve, also der Funktion R(θ) bei einer gegebenen Energie E.
Generell gilt R⊥(θ) > R‖(θ), wobei sich die Beiträge der beiden Komponenten mit wach-
sender Energie immer mehr angleichen3.

Neben der spektralen Selektion kommt der lateralen Ortsauflösung oder
”
Ausdeh-

nung“ der PSF besondere Bedeutung zu. Mit ∅PSF = ∆ε · F und ∆ε ≈ 5× 10−9 erstreckt
sich die dem Gesichtsfeld ∅FOV mit (500 − 1000)2 Auflösungselementen zugeordnete De-
tektorfläche bis in die Größenordnung von ∼ 1 m2. Den mit der Anfertigung derart groß-
flächiger und dann notwendigerweise zu stückelnden Detektoren verknüpften technischen
Schwierigkeiten sollte prinzipiell mit einer Nachfokussierung des Strahls in der Brennebene
zu begegnen sein. Abb. 6.2 illustriert eine naheliegende Methode. In der Ausführung als

Abbildung 6.2: Nachfokussierung mittels Kapillaroptik. Durch externe Totalreflexion der
Röntgenstrahlen an den Innenwänden der gekrümmten Kapillaren lassen sich PSF- bzw.
Detektorfläche um einen Faktor ∼ (102 − 104) reduzieren, je nach Konstruktion der Kapil-
larlinse; aus [35, 36].

Strahlverenger erlaubt diese von [37] erfundene Röntgenoptik, den Fokus auf ∼ (10− 100)
µm zu reduzieren und damit den Pixelgrößen gängiger Detektoren anzupassen. Die Re-
flexionsverluste belaufen sich je nach Material, Bauweise und Energie auf bis zu ∼ 50%.
Dieser Schwächung der Effizienz steht jedoch ein verbessertes Signal-Rausch-Verhältnis
entgegen. Der Akzeptanzwinkel für die aus der Beobachtungsrichtung empfangene Strah-
lung beträgt typischerweise ein Grad oder mehr, so dass der diffuse Röntgen-Hintergrund
durch zusätzliche Maßnahmen wie z.B. eine Blende abzuschirmen ist.

Die Anforderungen an den geeigneten Detektor ergeben sich vor allem aus Bandpass
und PSF-Durchmesser. Sofern mittels eines Bragg-Kristalls spektral vorselektiert wird oder

3Zur quantitativen Analyse bedarf es der numerischen Simulation der Bragg-Beugung, ein hierfür ge-
eignetes Programm steht beispielsweise unter [34] zur Verfügung.
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eine achromatische Optik zum Einsatz kommt, dürfte sich ein konventionelles Halbleiterin-
strument auf Si-Basis am besten eignen. Neben den bekannten CCD’s zählen hierzu auch
neuere Entwicklungen wie Driftdetektoren und aktive Pixelsensoren [38]. Deren spektrales
Auflösungsvermögen berechnet sich nach [38] zu

∆EFWHM = 2.355 ω

√

ENC2 +
FE

ω
, (6.5)

wobei ω = 3.65 eV die zur Erzeugung eines (e−-Loch)-Paares notwendige Energie angibt
und F den Fano-Faktor beschreibt, der hier zu 0.115 angenommen wird. Derzeit realisti-
sche Werte für das elektronische Rauschen (

”
equivalent noise charge“, ENC) liegen bei

etwa (1− 5) e− und hängen insbesondere von der Detektor-Temperatur ab. Das theoreti-
sche Optimum mit ENC = 0 (

”
Fano-Limit“) wird in der Praxis dagegen kaum erreicht.

Abb. 6.3 illustriert das Trennvermögen des Si-Halbleiterdetektors im Vergleich zum Band-
pass von Achromaten mit effektiven Zonenzahlen 5 × 102 ≤ N ≤ 2 × 104 im Intervall
1 keV ≤ E ≤ 10 keV. Das Auflösungsvermögen des CCD-Detektors von ∼ 102 eV wird
demnach i.d.R. ausreichen, um die PSF des dispersionskorrigierten Teleskops beugungsbe-
grenzt zu registrieren. Sehr große Zonenzahlen N > 2× 104 werden erst jenseits von rund
10 keV aufgelöst; sie kommen jedoch nach Abb. 4.7 wegen des im harten Röntgenbereich
ungünstigen Verlaufs der kritischen Zonenzahl N0 für keines der bekannten hochwertigen
Materialien in Betracht.

Außerdem nimmt die Quanteneffizienz des Halbleiterdetektors, bedingt durch die stark
energieabhängige Absorptionslänge von Si, oberhalb von rund 10 keV kontinuierlich ab.
Gleichwohl liefern moderne Ausführungen mit einer wirksamen Dicke von 500 µm bei 20
keV einen Wirkungsgrad von immerhin noch bis zu 45% [38].

Die sinnvolle Pixelgröße ergibt sich bei direkter Abbildung ohne vorgeschaltete Kapillar-
optik aus dem intrinsischen lateralen Auflösungsvermögen, d.h. der durch ∅PSF = ∆ε×F
bestimmten Größe der Punktbildfunktion. In Anbetracht der angestrebtenWinkelauflösung
von ∆ε = 1 mas und typischen Brennweiten von 102−103 km resultieren PSF-Durchmesser
in der Größenordnung von ∼ 1 mm. Kantenlängen

∆xpix ∼
(

102 − 103
)

µm (6.6)

gewährleisten dann ein angemessenes Oversampling4 und übertreffen die sonst üblichen
Abmessungen von ∼ (101 − 102)µm um einen Faktor 10. Gleiches gilt für die gesamte
Detektorfläche, die selbst bei einem auf ∼ (500× 500) Auflösungselemente beschränkten
Gesichtsfeld ∼ 103 cm2 betragen müsste. Obwohl technisch im Bereich des Machbaren,
nimmt die Zeitauflösung und Nachweiskapazität im Sinn der pro Integrationsintervall de-
tektierbaren Photonen wegen der längeren Auslesedauer ab. Nach [38] beträgt die Driftge-
schwindigkeit in einem pn-CCD typischerweise 20 m s−1 oder 1 cm pro 500 µs.

Nichtsdestoweniger erlauben CCD-ähnliche Detektoren als großskalige Pixel-Arrays ho-
her Packungsdichte den nach heutigem Kenntnisstand effizientesten Nachweis der Strah-
lung, ein Vorteil, der bis dato für spektral hochauflösende Micro-Kalorimeter nicht besteht.

4Auf die Bedeutung der Sampling-Frequenz wird weiter unten im Zusammenhang mit dem Signal-
Rausch-Verhältnis eingegangen.
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Abbildung 6.3: Spektrale Auflösung CCD-basierter Detektoren. Maximal korrigierte Achro-
maten lassen sich nur oberhalb einer durch das spektrale Trennvermögen des CCD-basierten
Detektors (für 0 e− ≤ ENC ≤ 5 e− schraffiert dargestellt) bestimmten Energie beugungsbe-
grenzt einsetzen (schwarze Halbgeraden). Andernfalls beeinträchtigt die Restdispersion der
Hybridlinse das Winkelauflösungsvermögen (grau strichliert). Beispiele sind für diverse
diffraktive Zonenzahlen 5× 102 ≤ N ≤ 2× 104 gegeben.

Letztere basieren auf der Messung des Wärmeäquivalents der Energie des registrierten
Röntgen-Photons. Üblicherweise im Temperaturbereich weniger (10−2 − 10−1) K betrie-
ben, gestatten Micro-Kalorimeter eine theoretische Energie-Auflösung

∆EMK = 2.355η
√

kBT 2C, (6.7)

mit der Boltzmann-Konstante kB und der Wärmekapazität C des Absorbers [39]. Mit
dem Parameter η ∼ 2 werden spezifische Konstruktionsmerkmale des jeweiligen Detektors
erfasst. Das für die XEUS-Mission in der Entwicklung befindliche Instrument sollte somit
eine a priori energieunabhängige Auflösung von ∼ 1 eV ermöglichen, verbunden mit einer
Quanteneffizienz nahe 100% bis zu einer Energie von rund 7 keV [39]. In der Praxis werden
derart hohe Werte für ∆EMK bislang nicht erreicht, dennoch unterbieten die experimentell
gewonnenen Daten mit ∆E

E
∼ 10−3 das diesbezügliche Leistungsvermögen konventioneller

Detektoren auf CCD-Basis um ein Vielfaches. Abb. 6.4 setzt das ungefähre, aus Messungen
und angestrebten Eckdaten abgeschätzte Trennvermögen des künftigen XEUS-Instruments
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mit dem Bandpass eines Objektivs effektiver Zonenzahlen 500 ≤ N ≤ 1500 in Beziehung.

Abbildung 6.4: Spektrale Auflösung des XEUS-Micro-Kalorimeters. Anhand der bisher ge-
messenen (Kreuze) und angestrebten (Quadrate) Leistungsdaten wurde das zu erwarten-
de Trennvermögen des künftig in XEUS einzusetzenden Micro-Kalorimeters abgeschätzt
(schraffierte Linie). Die mit Zonenzahlen 500 ≤ N ≤ 1500 versehenen Geraden beschrei-
ben den Bandpass diffraktiver Objektive der jeweiligen effektiven Zonenzahl.

Während die Entwicklung in den vergangenen Jahren die Trennschärfe vor allem auf der
Grundlage supraleitender Materialien unter Ausnutzung des steilen Widerstandsgradienten
im Bereich der Sprungtemperatur (

”
transition edge sensor“, TES) zu optimieren suchte,

wurde mit dem magnetischen Micro-Kalorimeter (
”
metallic magnetic calorimeter“, MMC)

kürzlich ein alternatives Konzept vorgestellt, das auf die temperaturabhängige Magnetisie-
rung des auf Temperaturen nahe des absoluten Nullpunktes gekühlten Sensors zurückgreift
[40]. Ersten Messungen an einem einzelnen Pixel zufolge wurde bei 5.9 keV eine Auflösung
von 3.4 eV erreicht, wobei vom Autor der Studie eine Verbesserung bis herab zu ≈ 1 eV
für die Zukunft nicht ausgeschlossen wird.

Unabhängig von der physikalischen Konzeption des einzelnen Pixels gestaltet sich das
Design großflächiger Arrays wesentlich schwieriger als im Fall der CCD-ähnlichen Halblei-
terdetektoren. Dies deshalb, weil deren auf Ladungstransfer-Prozessen basierender Ausle-
semodus auf Kalorimeter-Matrizen nicht anwendbar ist und statt dessen jedes Pixel einzeln
verdrahtet werden muss. Zudem bedarf es einer gegenseitigen thermischen Abschirmung
benachbarter Pixel, woraus ein optisch nutzbarer Flächenanteil (

”
Packungsdichte“) von

kaum mehr als (70− 80)% resultiert. Entsprechend markiert das für XEUS angestrebte
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Matrizenformat von 32× 32 Pixeln in etwa die Grenze des derzeit technisch Machbaren.

Hinsichtlich der Kantenlänge eines Pixels entsprechen die gegenwärtig typischen Werte
von ∼ 102 µm (für XEUS werden 240 µm anvisiert) entwicklungsbedingt noch eher als
die moderner CCD’s den Anforderungen der direkten, auf kapillaroptische Methoden etc.
verzichtenden höchstauflösenden Abbildung. Gleichwohl geht der hohe Anspruch an die
spektrale Trennschärfe nun mit dem Bestreben einher, möglichst kleine Pixel zu produzie-
ren, um nach Gl. 6.7 die Wärmekapazität gering zu halten.

Im Gegensatz zum Gitterspektrographen zeichnet sich das Micro-Kalorimeter-Array
also durch seine prinzipielle Fähigkeit zur spektral hochauflösenden, abbildenden Spek-
troskopie aus. Vor allem in Verbindung mit reduzierten Achromaten eröffnet sich hier die
interessante Perspektive, hocheffizient und zugleich beugungsbegrenzt abzubilden.

Neben CCD-artigen Kameras und Micro-Kalorimetern existiert mit den supraleiten-
den Tunnel-Detektoren (

”
superconducting tunnel junctions“, STJ’s) noch eine weitere In-

strumentenklasse, die hier kurz angesprochen werden soll. Deren Funktionsprinzip besteht
analog zum CCD in der Erzeugung einer der Energie E des absorbierten Photons ent-
sprechenden Zahl n(E) von Quasiteilchen, die durch das Aufbrechen von Cooper-Paaren
im Supraleiter entstehen und im Tunnelübergang innerhalb des Detektorelements nach-
gewiesen werden. Mit n(E) ≈ E

1.7∆
bilden sich nun aber wegen der typischerweise im

meV-Bereich angesiedelten Bandlücke ∆ rund 103 mehr
”
Zähleinheiten“ als im Fall des

CCD, resultierend in einer dem Micro-Kalorimeter vergleichbaren oder gar überlegenen
spektralen Auflösung. Die für XEUS diskutierte Ausführung aus Tantal (Ta) konnte in
ersten Tests die theoretisch mögliche Trennschärfe von 2.8 eV bei 1 keV bis auf einen
Faktor 2 [39] erreichen. Noch bessere Werte errechnen sich mit 1.3 eV für Molybdän (Mo)
bzw. 0.5 eV für Hafnium (Hf), jeweils bei 1 keV. Idealerweise, d.h. unter Vernachlässigung
fertigungstechnisch bedingter Rauschfaktoren, sollte die Energieauflösung einem einfachen
Potenzgesetz folgen,

∆ESTJ ∝
√
E. (6.8)

Diese angesichts des Verlaufs des optischen Bandpasses (siehe z.B. Abb. 6.4) an sich günsti-
ge Relation findet ihre Relativierung jedoch in der für E & 3 keV rapide abnehmende Quan-
teneffizienz der STJ’s. Während bei 3 keV je nach Material noch ca. (60− 80)% der Pho-
tonen nachgewiesen werden, absorbiert der STJ-Detektor bei 7 keV nur noch (10− 20)%
[39]. Seine Anwendung beschränkt sich daher üblicherweise auf den weichen Röntgenbe-
reich, der wiederum absorptionsbedingt für die Optik selbst nur ineffizient abzubilden ist.

Als Fazit bleibt somit festzuhalten, dass CCD’s und deren
”
Verwandte“ ihr bevorzugtes

Einsatzgebiet einerseits in der rein diffraktiven Optik in Verbindung mit einem vorselek-
tierenden Bragg-Kristall besitzen, andererseits offenkundig gut mit typischen Bandbrei-
ten voll korrigierter Achromaten harmonieren. Künftigen großflächigen Micro-Kalorimeter-
Matrizen sollte dagegen eine Adaption an die Kammstruktur teilkorrigierter, reduzierter
Hybridlinsen angedacht werden.

Während der Detektor eines konventionellen, kompakten Teleskops ausschließlich Strah-
lung aus dem Gesichtsfeld registriert, kommt einer Abschätzung der Hintergrundstrahlung
bei räumlich getrennten Objektiv- und Nachweismodulen besondere Bedeutung zu.
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Wie sich in den vergangenen Jahren anhand von Beobachtungen heraus kristallisier-
te, setzt sich der

”
diffuse“ Röntgenhintergrund hauptsächlich aus der Strahlung entfern-

ter AGN und zu einem geringen Teil aus der Emission heißen Gases in Galaxienhaufen
zusammen [41]. Wie Messungen mit ROSAT, ASCA, dem

”
Rossi X-ray Timing Explo-

rer“ (RXTE) und anderen Experimenten ergaben, folgt die spektrale Verteilung zwischen
rund 1 und 20 keV nach [42] in guter Näherung einem Potenzgesetz der Form

nb(E) = n0 · E−Γ, (6.9)

ausgedrückt durch die Photonendichte nb in Einheiten von s−1 cm−2 keV−1 sr−1. Die
Fitparameter ergeben sich zu n0 = (9.8 ± 0.3) s−1 cm−2 keV−1 sr−1 und Γ = 1.42 ± 0.02.
Abb. 6.5 stellt diesen Verlauf graphisch dar, wobei das Raumwinkelmaß von sr nach deg2

konvertiert wurde. Da es sich um diskrete Quellen handelt, beschreibt Gl. 6.9 lediglich den

Abbildung 6.5: Die diffuse Röntgen-Hintergrundstrahlung, wie sie u.a. von Chandra und
RXTE gemessen wurde. Dessen Beobachtungen, neben anderen im rechten oberen Einsatz
dargestellt, lassen auf einen Verlauf gemäß nphot ∝ E−γ mit γ ≈ 1.4 schließen (durch-
gezogene Gerade). Quellendichten des vorwiegend aus fernen AGN bestehenden Hinter-
grunds ermittelte Chandra im nördlichen

”
Hubble Deep Field“ (HDF-N) sowohl im weichen

(E ≤ 2 keV) als auch im harten (2 keV ≤ E ≤ 8 keV) Röntgenbereich.

über einen hinreichend großen Raumwinkel gemittelten Hintergrund. Im Zuge eines tiefen
Chandra-Screenings wurde die Quellendichte im nördlichen HDF (

”
Hubble Deep Field“)

abgeschätzt [43]. Die entsprechenden Resultate sind ebenfalls in Abb. 6.5 eingetragen.
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Die besonders im weichen Röntgenbereich relativ hohen Zählraten machen deutlich,
dass es neben einer kleinen Detektorfläche einer möglichst guten Abschirmung (engl.

”
baff-

ling“) bedarf, um auch schwache Objekte mit ausreichendem Signal-Rausch-Verhältnis zu
detektieren. Als naheliegende Lösung bietet sich ein dem Detektor vorangesetzter Kolli-
mator an, wobei offenbar der vom Detektor registrierte Raumwinkel Ω ≤ 2π durch das
Verhältnis γ von Öffnungsweite zu Röhrenlänge bestimmt wird. In Abb. 6.1 sind diese
Größen durch Weite wBlende und Abstand ∆xBlende einer Blende angedeutet. Man findet
unmittelbar

Ω = 2π
(

1−
(

1 + γ2
)−1/2

)

= πγ2 +O
(

γ4
)

. (6.10)

In der Praxis dürfte angesichts der zu erwartenden PSF-Durchmesser von ∼ 10−3 m eine
Feinselektion mit γ . 10−2 das Maximum darstellen. Die gesamte, zeitlich gemittelte
Hintergrundzählrate 〈nb〉 pro Pixel errechnet sich daher zu

〈nb,pix〉 = (∆xpix)
2 2π

(

1−
(

1 + γ2
)−1/2

)

∫ Ec+
∆E
2

Ec−∆E2
nb(E)dE, (6.11)

wobei ∆E
Ec

die spektrale Bandbreite des Signals bezeichnet. Im Fall einer rein diffraktiven
Optik beeinträchtigt dieser Röntgenhintergrund das Signal auch bei moderater Kollimation
mit γ = 1

10
kaum, wie Tab. 6.2 zeigt.

Zonenzahl 2 keV 4 keV 6 keV 8 keV 10 keV 12 keV

1.0× 103 1× 10−6 4× 10−7 2× 10−7 1× 10−7 1× 10−7 9× 10−8

5.0× 103 2× 10−7 9× 10−8 5× 10−8 3× 10−8 2× 10−8 2× 10−8

1.0× 104 1× 10−7 4× 10−8 2× 10−8 1× 10−8 1× 10−8 9× 10−9

1.5× 104 8× 10−8 3× 10−8 2× 10−8 1× 10−8 8× 10−9 6× 10−9

Tabelle 6.2: Pixel-Zählraten des diffusen Röntgenhintergrundes bei diffraktiver Optik. Den
Daten liegt die Annahme einer Pixelgröße von 1 mm und eine Kollimation mit einem
Öffnungsverhältnis γ = 1

10
zugrunde. Der Beitrag zum Gesamtrauschen liegt auch bei einer

Beobachtungszeit von 106 s bei weniger als einem Photon.

Hintergrundbeiträge der achromatischen Abbildung sind im Rahmen des Simulations-
beispiels, Abb. 6.6, graphisch dargestellt. Der erweiterte Bandpass ist hier soweit möglich
durch besonders sorgfältige Abschirmung und Kollimation zu kompensieren.

Als weitere natürliche Hintergrundquelle tritt die kosmische Teilchenstrahlung hinzu,
die überwiegend aus hochrelativistischen Protonen besteht und aus dem gesamten Raum-
winkel Ω = 4π auf das Nachweismodul trifft. Soweit keine Diskrimination im Antikoinzi-
denzverfahren (AK) erfolgt, liefern Brems- und Fluoreszenzstrahlung aus dem den Detektor
umgebenden Material Störbeiträge. Nicht nur wegen dieser Abhängigkeit von konstrukti-
ven Spezifika lässt sich dieser Beitrag kaum allgemeingültig abschätzen. Hinzu kommen
räumliche Inhomogenitäten in der großräumigen Verteilung der Partikelstrahlung. Für den
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Chandra-Orbit wurden AK-unbereinigt 250 cnts s−1 angegeben5, ein Wert, der sich durch
aufwändige AK auf ∼ 2 cnts s−1 reduzieren ließ [44].

Zuletzt ist noch der intrinsische Detektor-Hintergrund zu nennen, der sich im Fall eines
CCD-Instruments in der

”
equivalent noise charge“ (ENC) misst und die wie oben erwähnt

typischerweise wenige e− pro Auslesezyklus beträgt.
Die statistische Sicherheit, mit der sich ein gegebenes Signal vom Hintergrund- und

Detektorrauschen abhebt, misst sich im Signal-Rausch-Verhältnis. Mit der Anzahl der Sig-
nalereignisse S pro Integrationsintervall ist es für eine Punktquelle durch

SNR ≡ S√
S +B

≈ S
√

S + 〈nb,pix〉 · t · npix
(6.12)

definiert [45], wenn zugunsten B ∝ t für eine erste Abschätzung außer des diffusen Röntgen-
Hintergrunds alle übrigen Störfaktoren, insbesondere der intrinsische, zeitunabhängige Bei-
trag des ENC vernachlässigt werden und npix die effektive, von der PSF überdeckte Pi-
xelzahl bezeichnet. Sowohl Signal- als auch Hintergrund-Zählrate folgen einer Poisson-
Statistik. Als Richtlinie des

”
sicheren“ Nachweises eines Signals gilt die 3σ−Detektion,

wonach S√
S+B

≥ 3 zu fordern ist. Ob der Idealfall einer signallimitierten Messung mit
B → 0 oder S À B oder angesichts der oben abgeschätzten Hintergrundzählraten die

”
worst-case“-Situation einer Hintergrund-dominierten Detektion vorliegt, soll im folgen-
den diskutiert werden. Neben B ∝ t gilt auch S = 〈ns〉 · t, mit 〈ns〉 als der mittleren
Signal-Zählrate während der Integrationszeit t. Die mittleren Zählraten lassen sich als

〈ns〉 = n̄s × Aeff ×∆E und 〈nb,pix〉 ≈ n̄b (Ec)× Apix ×∆E × Ω (6.13)

schreiben, wobei n̄s den Photonenfluss des Beobachtungsobjekts in Einheiten von cm−2

keV−1 s−1 angibt. n̄b (Ec) approximiert wegen der stets relativ geringen Bandbreite ∆E den

Hintergrundfluss nb aus Gl. 6.9 bei der Energie Ec, so dass n̄b (Ec) ·∆E =
∫ Ec+

∆E
2

Ec−∆E2
nb(E)dE

gilt. Zuletzt wurde noch Apix ≡ (∆xpix)
2 gesetzt. Unter Verwendung dieser Vereinfachungen

gelangt man mit der PSF-Fläche APSF ≈ π·ρ2PSF zur funktionalen Abhängigkeit des Signal-
Rausch-Verhältnisses von den wichtigsten Beobachtungsparametern,

SNR =
S√
S +B

=
√

Aeff ×∆E (n̄s)
1/2

(

1 +
n̄b
n̄s

APSF
Aeff

Ω

)−1/2√
t. (6.14)

Hinsichtlich der relativen Bedeutung von Signal und Hintergrund lassen sich nun anhand
des Abbildungsverhältnisses APSF

Aeff
zwei Grenzfälle unterscheiden, die die Detektion als

signal- oder hintergrundlimitiert ausweisen:

Dominantes Signal. Sofern es gelingt, den Hintergrund gegenüber dem als noch hinrei-
chend stark angenommenen Signalfluss um wenigstens eine Größenordnung zu unter-
drücken, reduziert sich Gl. 6.14 wegen

n̄s À
APSF
Aeff

(n̄b × Ω) (6.15)

5Die Bezeichnung
”
cnts“(counts) steht hier für das Äquivalent eines Röntgen-Photons.
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auf eine Linearität des Signal-Rausch-Quotienten in der Quadratwurzel der Effizienz,

SNR→
√

Aeff ×∆E (n̄s)
1/2
√
t für S À B. (6.16)

Offenbar kommt diese funktionale Abhängigkeit dispersionskorrigierten Konfigura-
tionen entgegen, die mittels eines stark erweiterten Bandpasses die Effizienz trotz
der absorptionsbedingt reduzierten Sammelfläche optimieren. Im Hinblick auf eine
objektive Beurteilung ist jedoch zu berücksichtigen, dass die achromatische Korrek-
tur über PSF und effektive Fläche gemäß Gl. 6.15 selbst Einfluss auf den relativen
Hintergrundanteil nimmt.

Dominanter Hintergrund. Leuchtschwache Objekte, ein unzureichendes Abbildungs-
verhältnis oder mangelhafte Abschirmung drücken sich entsprechend in

n̄s ¿
APSF
Aeff

(n̄b × Ω) (6.17)

aus. Im Gegensatz zum signallimitierten Grenzfall hängt das SNR nun linear von der
effektiven Sammelfläche Aeff sowie invers von der Ortsauflösung ∅PSF ab,

SNR→
√
t

(

∆E

Ω · APSF

)1/2
n̄s√
n̄b

Aeff für B À S. (6.18)

Diese Relation korrespondiert nun wiederum in natürlicher Weise mit den Abbil-
dungseigenschaften rein diffraktiver Objektive. Über die effektive Sammelfläche Aeff
lässt sich nach Gl. 6.14 das hintergrundlimitierte SNR am wirksamsten beeinflus-
sen, wohingegen die Bandbreite ∆E nur durch ihre Wurzel beiträgt. Der effektiven
Fläche ist bei signifikanter Hintergrund-Kontamination also zusammen und in enger
Verbindung mit der fokalen Ortsauflösung beim Design einer Optik die vorrangige
Aufmerksamkeit zu widmen.

Da sich der Fluss n̄b × Ω des diffusen Röntgenhintergrundes für eine gegebene Energie
E nur in beschränktem Umfang über den Raumwinkel Ω abschirmen lässt, bestimmt die

Vergrößerung
(

ρPSF
R

)−1 ∝
(

APSF
Aeff

)−1/2
gemäß Gl. 6.15 bzw. 6.17 maßgeblich die Nachweis-

charakteristik im Sinn der Signal- oder Hintergrund-Dominanz. Mit ∅PSF = ∆ε · F und
∆ε ≈ λ

2R
ergibt sich elementar

ρPSF
R
≈ α · 1

N
mit

1

4
. α . 1, (6.19)

wobei der Parameter α je nach Ausführung des Objektivs als kohärentes oder segmentier-
tes, diffraktives oder dispersionskorrigiertes Instrument variiert und N wie immer für die
Zonenzahl steht. Der Quotient APSF

Aeff
erweist sich somit als proportional zu N−2, so dass

sich unter der Annahme realistischer Zonenzahlen die Abschätzung

APSF
Aeff

∼
(

10−7 − 10−8
) 1

P
für N ∼

(

103 − 104
)

(6.20)
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mit der Beugungseffizienz P des Objektivs ergibt. Letztere beläuft sich für diffraktive
Optiken auf ∼ (10 − 100)%, je nach Ausführung, Beugungsordnung und Energie. Disper-

sionskorrigierte Versionen liefern hingegen P ≈ e
− N
2N0 oder P ≈ 2N0

N
, je nach Filtereinsatz.

Abhängig vom Verhältnis N
N0

reduziert sich die Transmission und damit die Beugungsef-
fizienz im Extremfall auf wenige %. In der Praxis wird daher mit realistischen Werten

APSF
Aeff

. 10−5 und n̄b × Ω ∼
(

10−2 − 10−1
)

(6.21)

bei moderater Abschirmung unter Annahme von γ ∼ 10−1 zu rechnen sein. Nach wie vor
unter Vernachlässigung aller sonstigen Störbeiträge lässt sich die effektive Kontamination
durch den diffusen Röntgenhintergrund somit zu

APSF
Aeff

(n̄b × Ω) . 10−6 cm−2 s−1 keV−1 (6.22)

abschätzen. Dem Gesagten zufolge ist dieser Wert als unter technologischen und phy-
sikalischen Gesichtspunkten mutmaßlich realistische obere Schranke für die diskutierten
optischen Modelle zu betrachten. Im Vergleich zu gemessenen Flüssen diverser kosmischer
Röntgenquellen, die sich beispielsweise etwa zwischen 10−5 und 10−2 cm−2 s−1 keV−1 an-
siedeln, würde sich aus jener Abschätzung in guter Näherung eine signallimitierte Beob-
achtungssituation ergeben. Gleichwohl sei nochmals auf den schwer kalkulierbaren Einfluss
der kosmischen Strahlung und anderer Störquellen hingewiesen.

Bislang wurde die Sampling-Frequenz außer acht gelassen, mit der das Pixelraster die
originäre PSF

”
abtastet“. Um sie optimal zu reproduzieren, sollte die Wahl a priori auf

möglichst kleine Pixel fallen. Freilich verursacht eine zu hohe Sampling-Frequenz unnötiges
Ausleserauschen. Als günstig erweist sich zumeist ein moderates Oversampling von wenigen
Pixeln pro Auflösungselement. Als quantitatives Maß gilt die

”
Schärfe“ (sharpness) der

digitalisierten PSF [45], für Pixelindizes (i, j) und deren Partialintensitäten Pi,j definiert
durch

Ψ ≡
(

∑

i,j

Pij

)−2
∑

i,j

P 2ij → 1 für (i, j) = 1. (6.23)

Während die PSF im Fall signallimitierter Detektion hinsichtlich des SNR nicht explizit
in Erscheinung tritt, erweist sich Ψ insbesondere im Zusammenhang mit Hintergrund-
dominierter Nachweischarakteristik als nützliche und das SNR mitbestimmende Kenn-
größe. Ausgehend vom entsprechenden Limes in Gl. 6.12 gilt nämlich

SNR→ S√
B

=
S

√

〈nb,pix〉 · t · npix
=

S
√

〈nb,pix〉 · t
Ψ1/2 für B À S, (6.24)

wie sich unter Beachtung der Normierungsbedingung S =
∑

i,j Pij umgehend verifizieren

lässt. Die inverse PSF-Schärfe Ψ−1 kann somit als effektive, von der PSF in Beschlag
genommene Pixelzahl interpretiert werden.
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Abb. 6.6 illustriert die Wirkung der Digitalisierung anhand einer PSF, deren zentra-
les Pixelquartett die Ortsauflösung (zweifache HEW) repräsentiert. Die Schärfe Ψ ' 2

3

reduziert nun das maximal mögliche SNR einer Punktquelle auf (2/3)1/2 ≈ 82% des ur-
sprünglichen Wertes.

Als Simulationsbeispiel wurde eine hochaufgelöste Röntgenaufnahme der Sonne heran-
gezogen, die nach der Reduktion auf (32× 32) Pixel pro Detektorelement 49± 23 Signal-
Photonen aufweist. Das mittlere rms-Dynamikintervall zwischen maximaler und minimaler
Signal-Zählrate beträgt somit ID ∼ 3. Unter willkürlicher Annahme eines Hintergrundes
von ≈ 120 counts pro Pixel resultiert formal ein Signal-Rausch-Verhältnis SNR ∼ 3, ge-
treu der nach [45] üblichen Forderung, wonach das mittlere SNR ausgedehnter Objekte
dem gewünschten Dynamikintervall entsprechen sollte.

Das Beispiel vermittelt zugleich einen optischen Eindruck vom zu erwartenden
”
Er-

scheinungsbild“ eines fernen Sterns (vgl. Kap. 7), in diesem Fall anhand der bekannten
Capella (α Aur) mit einem Winkeldurchmesser von rund 7 mas.

Abbildung 6.6: Simulierte Abbildung eines Sterns. Links oben die verwendete diskretisierte
PSF mit einer Pixelschärfe Ψ = 2

3
nebst Graphen zum SNR bei verschiedenen Hintergrund-

Anteilen (B). Rechts oben ist die Häufigkeitsverteilung der Signalphotonen nach der Pixel-
reduktion angegeben. Darunter die Simulation am Beispiel der Sonne mit einem mittleren
Signal S ≈ 50 gegenüber einem (subtrahierten) Hintergrund B = 120, jeweils pro Pixel.
Die Darstellung entspricht etwa dem Stern α Aur bei einer Winkelauflösung von 0.5 mas.
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6.2 Bemerkungen zum Formationsflug

Der präzise Formationsflug von zwei oder mehr Komponenten wirft eine Reihe spezieller
Probleme auf, die im Bezug auf zahlreiche geplante Missionen wie XEUS, Con-X, LISA
u.a. eingehend studiert wurden und werden. In diesem Abschnitt sollen daher nur die
wichtigsten Aspekte angesprochen werden.

Mit zunehmender (Fokal-)Distanz zwischen den Komponenten kommt der Frage nach
dem geeigneten Orbit aufgrund der ortsabhängigen Gradientenkräfte wachsende Bedeutung
zu. Allgemein ist das stationäre Potential V (~r) des in guter Näherung aus Sonne und Erde
bestehenden Zweikörperproblems im mitrotierenden Schwerpunktsystem durch

− 1

G
V (~r) =

M¯
√

(

x+ ME

M¯+ME
R0

)2

+ y2
+

ME
√

(

x− M¯
M¯+ME

R0

)2

+ y2
+
M¯ +ME

2R30

(

x2 + y2
)

gegeben, wobei ~r = (x, y) die kartesischen Koordinaten mit Ursprung im Schwerpunkt
bezeichnet. Die Sonne übertrifft mit ihrer Masse M¯ die mit ME bezeichnete Masse der
Erde um das (3× 105)−fache. R0 steht schließlich für die Astronomische Einheit und G
für die Gravitationskonstante. Die Lagrangepunkte L1 und L2 repräsentieren semistabile
Sattelpunkte des Potentials V (~r) mit den Koordinaten

~rL1,2 =

(

R0

(

1∓ 1
3
√
3

(

ME

M¯ +ME

)1/3
)

, 0

)

. (6.25)

Sie liegen in einer Entfernung von jeweils ca. 1.5 × 106 km auf der der Sonne zu- (L1)
bzw. abgewandten Seite (L2). Neben diesen im raumfahrttechnischen Sinn wichtigsten
Lösungen ergeben sich weitere lokale Sattelpunkte (L3) bzw. dynamisch stabile Maxima
(L4,5), die ebenfalls in Abb. 6.7 eingetragen sind. Wie eine hier nicht näher auszuführende
Stabilitätsanalyse ergibt, lässt das in x−Richtung labile Sattelpotential in ihm geparkte
Raumfahrzeuge ohne entsprechende Gegensteuerung auf einer Zeitskala von τ ≈ 2× 106 s
einem Exponentialgesetz folgend

”
wegdriften“ [47]. Wie in Abb. 6.7 rechts oben angedeu-

tet, bieten sich jedoch bestimmte Umlaufbahnen um L1 bzw. L2 in der zur Verbindungs-
achse zwischen Sonne und Erde senkrechten Ebene an, die eine weitgehende Stabilität
gewährleisten. Während L1 besonders unter dem Einfluss der Sonnenstrahlung und des
zugehörigen Strahlungsdruckes prad ≈ 0.3 N cm−2 leidet, liegt L2 im Schatten der Erde
und verspricht daher besonders günstige Bedingungen im Sinn fast völlig verschwinden-
der äußerer Kräfte. Den aktuellen Planungen zufolge sollen u.a. XEUS, Con-X und das
James-Webb-Instrument (JWST) im L2 stationiert werden.

Relativ schwache, aber nicht verschwindende Gradientenkräfte treten entlang der Erd-
umlaufbahn um die Sonne mit Ausnahme der Lagrange-Punkte L4 und L5 auf. Wegen
ME ¿M¯ ergibt sich die radiale stationäre Kraftkomponente in unmittelbarer Umgebung
des Orbits näherungsweise gemäß

~F (~r) = −~∇rV (~r) = [...] = G
M¯
R20

(

r

R0
−
(

R0
r

)2
)

~er, (6.26)
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wobei r ≡ (x2 + y2)
1/2

und ausreichende Distanz zu den Lagrangepunkten vorausgesetzt
wird. Entsprechende Werte sind in Abb. 6.7 links unten graphisch in Einheiten der Erdbe-
schleunigung g skizziert. Eine Satellitenkonfiguration, die sich im Rahmen eines mehrjähri-

Abbildung 6.7: Umlaufbahnen extraterrestrischer Teleskope auf 3 verschiedenen Skalen. In
Erdnähe (unten rechts) treten beim Formationsflug naturgemäß relativ starke Gradienten-
kräfte auf. Abschätzungen der Radialbeschleunigung sind für den geosynchronen Spezialfall
(GEO) in Einheiten von g eingetragen. Analoge Verhältnisse gelten im Gravitationsfeld
der Sonne (große Grafik, links), jedoch mit nahezu vernachlässigbaren Gradientenkräften.
Als ambitioniertes Projekt erreicht ein

”
drift-away“ hier nach mehreren Jahren eine Di-

stanz von ∼ 1 AU. Zahlreiche geplante Missionen visieren statt dessen den L2 an, der
quasi-stabile Umlaufbahnen ermöglicht (rechts oben).

gen
”
drift-away“ in Richtung der idealen Position L4 bzw. L5 bewegen würde, wäre dem-

nach ebenfalls nur geringfügigen Kräften und damit Treibstoff-Verlusten ausgesetzt.
Anders liegen die Verhältnisse im Fall erdnaher Orbits, wie sie für Chandra und zahl-

reiche geostationäre Satelliten ausgewählt wurden. Aufgrund der dominierenden terrestri-
schen Gravitation betragen die radialen Gradientenkräfte nun das 105−fache der solaren,
auf Skalen von δr ∼ 103 km. Angesichts der zu erwartenden Fokallängen ähnlicher Größen-
ordnung dürfte eine erdnahe Umlaufbahn kaum in Frage kommen.

Die Überschlagsrechnungen zeigen, dass die Gradientenkräfte und damit der Treibstoff-
bedarf zur Gegensteuerung mit der Fokaldistanz zunehmen. Doch nicht nur im Bezug auf
die Stabilisierung erscheinen kurze Brennweiten wünschenswert. Auch der Zeit- und Ener-
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giebedarf zur Neuorientierung in Richtung auf ein anvisiertes Beobachtungsobjekt reduziert
sich gemäß

|∆~r| = 2F sin

(

∆ϕ

2

)

, (6.27)

wobei |∆~r| die gesamte zurückzulegende Wegstrecke eines oder beider Satelliten beschreibt,
um die Ausrichtung um den Winkel ∆ϕ zu ändern. Aufzuwendende Energie W und damit
Treibstoffbedarf steigen wie |∆~r|2 τ−2 an, wenn die Neuausrichtung eine Zeit τ benötigt. Mit
diesen groben Abschätzungen ergibt sich schließlich eine nicht-proportionale Abhängigkeit
des Energiebedarfs von der Brennweite,

W ∝ F 2. (6.28)

Zum Abschluss dieses Kapitels wenden wir uns den Toleranzen zu, denen der Detektor bzgl.
seiner relativen Ausrichtung zum Objektiv unterliegen darf, um die beugungsbegrenzte Ab-
bildungsqualität zu erhalten. In der Praxis wird nämlich ein geschlossener Regelkreis zu
implementieren sein, der das Nachweismodul innerhalb definierter Grenzen dynamisch sta-
bilisiert6. Die Abweichungen vom Sollzustand können sowohl lateral in (x, y)−Richtung und
axial in z−Richtung auftreten als auch den Rollwinkel um eben diese sowie die pitch/yaw-
Verkippung betreffen. Abb. 6.8 illustriert die diversen Raumkoordinaten. Nachfolgend wer-

Abbildung 6.8: Dreidimensionale Raumkoordinaten der Detektoreinheit. Die Richtung der
positiven z−Achse soll mit der Einfallsrichtung der Strahlung zusammentreffen. Der Ko-
ordinatenursprung des kartesischen (x, y, z)−Systems liege auf der Detektorfläche in deren
Mittelpunkt. Im ungestörten Zustand sei der Detektor senkrecht zur optischen Achse orien-
tiert (αx = 0). Der Übersichtlichkeit wegen sind der pitch αy und die Translation ∆y nicht
eingezeichnet.

den die einzelnen potentiellen Fehlerbeiträge in der Reihenfolge ihrer Relevanz diskutiert.

Lateraltranslation ∆x,∆y. Ihrer Kontrolle bzw. Überwachung ist die größte Aufmerk-
samkeit zu widmen, da bereits Verschiebungen von der Größenordnung des lateralen
Auflösungsvermögens die Bildqualität entsprechend reduzieren. Abb. 6.9 zeigt die sich
mit zunehmender Ortsunschärfe ∆x verschlechternde PSF-Qualität. Die Daten wur-

6Die Stabilisierung betrifft in der Praxis selbstverständlich gleichermaßen das optische Modul, zur
Vereinfachung sei es in dieser Betrachtung jedoch im Raum fixiert.
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Abbildung 6.9: Einfluss der lateralen Unschärfe auf die PSF-Qualität, dargestellt in ei-
ner Dimension. Die Unbestimmtheit ∆x, gemessen in Einheiten der PSF-Größe (FWHM)
wirkt sich erst oberhalb eines Schwellwerts von ≈ 33% negativ auf die PSF aus.

den durch Addition von je 500 beugungsbegrenzten (Airy-)Punktbildern erzeugt, die
längs der x−Achse innerhalb eines Intervalls ∆x einer gleichverteilten Zufallstrans-
lation unterlagen. Man erkennt, dass die ungestörte PSF bis zu einer in Einheiten
des FWHM gemessenen relativen Unschärfe ∆x ≈ 33% erhalten bleibt. In absoluten
Längenskalen bedeutet dies bei maximalen PSF-Durchmessern von wenigen 10−3 m,
dass die Lateraltoleranz allenfalls . 10−3 m betragen darf. Mit wachsender Unbe-
stimmtheit nimmt das Auflösungsvermögen näherungsweise linear mit ∆x ab, um für
∆x ≈ 200% die doppelte Halbwertsbreite (FWHM) der ungestörten PSF zu messen.

Der Begriff der
”
Toleranz“ ist hier im Sinn der Unkenntnis über die aktuelle De-

tektorposition zu verstehen, solange die der Zeitauflösung entsprechende Ausleserate
die charakteristische Frequenz, mit der die laterale Detektorposition variiert, über-
trifft. Die physikalische Unschärfe darf dann die Unkenntnis im Prinzip beträchtlich
überschreiten und wird nur durch das Gesichtsfeld beschränkt.

Die Stabilisierung zweier Satelliten auf eine gemeinsame optische Achse bedeutet eine
nicht-triviale technische Herausforderung. Als mögliche Lösung bietet sich der Einsatz
eines dritten Hilfssatelliten an, der analog zur LISA-Konfiguration zusammen mit den
beiden anderen ein sich selbst justierendes optisches Dreieck aufspannen würde.

Rollwinkel ϕ. Torsionen um die optische Achse beeinträchtigen wie Lateraltranslationen
die Winkelauflösung und Bildqualität um so mehr, je weiter die Abbildung von der
optischen Achse entfernt liegt (

”
off-axis“). Abb. 6.10 illustriert die zulässigen Dreh-



6.2 Bemerkungen zum Formationsflug 201

winkel. In der Praxis sollte sich die Stabilisierung längs der optischen Achse einfach
gestalten, da mit dem Gyroskop ein mechanisches Trägheits-Instrument und mit ei-
nem Sternsensor ein hochwertiges optisches Kontrollgerät zur Verfügung steht.

Abbildung 6.10: Zulässige Torsionswinkel des Detektormoduls. Auf der Grundlage der La-
teraltoleranzen (Abb. 6.9) ist die maximale Unschärfe ∆ϕz bzgl. Verdrehungen um die op-
tische Achse als Funktion des in Einheiten der PSF-Größe angegebenen rFOV eingetragen.

Axialtranslation ∆z. In axialer Richtung beschränkt die optische Feldtiefe die zulässige
Unbestimmtheit. Mit der numerischen Apertur NA = R

F
und

∆zDOF ≥ ±
1

2

λ

(NA)2
= [...] ≥ ±1

2

F

Nges

(6.29)

beläuft sie sich praktisch wegen der großen Brennweiten auf meist mehrere Meter.
Die totale Zonenzahl Nges bezeichnet hier im Unterschied zur

”
effektiven“ Zonenzahl

(z.B. eines Segments) die Zahl der π−Phasenstufen über die gesamte Apertur. Tab.
6.3 gibt einen Überblick zu den Axialtoleranzen diverser Öffnungsverhältnisse f . Die

f -Zahl 2 keV 4 keV 6 keV 8 keV 10 keV 12 keV

5× 106 3.1× 104 1.5× 104 1.0× 104 7.7× 103 6.2× 103 5.2× 103

1× 106 1.2× 103 6.2× 102 4.1× 102 3.1× 102 2.5× 102 2.1× 102

5× 105 3.1× 102 1.5× 102 1.0× 102 77 62 52

1× 105 12 6.2 4.1 3.1 2.5 2.1

5× 104 3.1 1.5 1.0 7.7× 10−1 6.2× 10−1 5.2× 10−1

Tabelle 6.3: Axialtoleranz in Metern in Abhängigkeit vom Öffnungsverhältnis. Die für Ener-
gien zwischen 2 und 12 keV angegebenen Daten sind nach Gl. 6.29 als (±)−Werte zu lesen.

offenbar moderaten Anforderungen an die longitudinale Positionsgenauigkeit lassen
sich problemlos mittels interferometrischer Methoden geeigneter Wellenlänge erfüllen.
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Pitch/Yaw-Winkel αx, αy. Inwieweit diese Freiheitsgrade als
”
kritisch“ einzustufen sind,

hängt von der gewählten Nachweismethode ab. Als unproblematisch erweist sich die
direkte Detektion ohne Bragg-Spektrometer, Kollimator etc. In diesem Fall resultiert
aus einer Verkippung um den Winkel αx,y eine projizierte Ortsauflösung, die um einen
Faktor

δ∅PSF = 1− cos (αx,y) (6.30)

von der idealen, beugungsbegrenzten abweicht. Die daraus resultierenden Toleranzen
liegen im Bereich mehrerer (Winkel-)Grad; so geht eine Verkippung um ca. 18◦ mit
einer Beeinträchtigung des Auflösungsvermögens um 5% einher.

Wesentlich restriktiver gestalten sich die Anforderungen an die Stabilisierung, wenn
dem eigentlichen Detektor ein Kollimator zur Unterdrückung des Hintergrundes vor-
geschaltet wird. Eine bereits geringfügige Unschärfe bzgl. αx,y wirkt sich weniger auf
die PSF-Qualität als vielmehr auf die nutzbare Sammel- und Detektorfläche aus. Die
Abschattung wα6=0 beläuft sich auf

wα6=0
wα=0

≈ 1

γ
tan (αx,y) =

αx,y
γ

+O
(

α3x,y
)

, (6.31)

wenn wie oben eingeführt γ das Blendenverhältnis beschreibt. Eine
(

γ = 1
10

)

−Ab-
schirmung beschränkt demnach die zulässige Toleranz auf ≈ 0.6◦, damit die Flächen-
verluste ca. 10% nicht überschreiten.

Eine spezielle Situation liegt vor, wenn ein Bragg-Spektrometer zum Einsatz kommt.
Während die zulässige Unbestimmtheit der parallel zur Einfallsebene orientierten
Winkeldimension αx einfach durch die Breite ∆θ ∝ ∆E

E
der Rocking-Kurve vorge-

geben wird, besteht senkrecht zur Einfallsebene eine größere Toleranz. Für kleine
Abweichungen ∆αy von der Soll-Orientierung ergibt sich

2d sin θ cosαy = λ → [...] → ∆αy ∼
√

∆E

E
. (6.32)

Demnach sollten Schwankungen von der Größenordnung der Quadratwurzel der spek-
tralen Trennschärfe noch keinen nennenswerten Einfluss auf die Funktion des Spek-
trometers bewirken.

Größere Variationen von mehreren (Winkel-)Grad erfordern eine Nachführung des
Detektors, um die Anpassung an den veränderten Reflexionswinkel zu gewährleisten.
Abhängig vom Ausmaß der Verstimmung wird mit einer entsprechenden Verschlech-
terung der Winkelauflösung zu rechnen sein, die sich signifikant bemerkbar macht,
sobald die selektierte Energie aus der optischen Feldtiefe heraustritt.

Im übrigen erfordern Axialposition und Pitch/Yaw-Verkippungen im Gegensatz zu la-
teralen Versetzungen und Variationen bzgl. des Rollwinkels eine absolute Stabilisierung,
da sich diesbezügliche Abweichungen unmittelbar auf Abbildungsqualität und Winkelauf-
lösung auswirken, also nicht durch Kenntnis der aktuellen (x, y)−Position bzw. Torsion ϕ
bei hinreichender Zeitauflösung des Detektors auszugleichen sind.



Kapitel 7

Anwendungen in der Astronomie

Mit der angestrebten Verbesserung der Bildschärfe um bis zu drei Größenordnungen wird
nicht nur in technologischer, sondern auch in wissenschaftlicher Hinsicht Neuland betreten.
Dass besonders im Röntgenbereich Bedarf an hohem Trennvermögen besteht, zeigen die
Aufnahmen heutiger Instrumente: Abgesehen von den Fällen weitläufiger Emissionsgebiete
heißen Gases in Galaxienhaufen, später Supernova-Überreste (engl.: supernova remnants,
SNR) und ausgedehnter Jets erscheinen die meisten Röntgenquellen gemäß ihres physi-
kalischen Ursprungs in energiereichen Zentralgebieten selbst für Chandra punktförmig.
Bisherige Erkenntnisse empirischer und theoretischer Natur sollen nun im Folgenden die
Grundlage neuer Forschungsansätze in der Hochenergie-Astronomie bilden.

Wir bestimmen zunächst in allgemeiner Form die nur im
”
nahen“ Universum lineare

Abhängigkeit des Auflösungsvermögens von der Rotverschiebung z eines Objekts der phy-
sikalischen Ausdehnung D. Die im Fall kleiner Winkel ∆ε durch D ≡ ∆ε dA definierte
scheinbare Winkeldistanz dA lässt sich nach allgemein-relativistischen Umformungen als

H0
c

√
Ω− 1 dA(z) =

√
k
rem
1 + z

(7.1)

ausdrücken, wobei k ε {−1, 0,+1} für die Raumkrümmung, c für die Lichtgeschwindigkeit
und H0 = 71±4 km s−1 Mpc−1 für die Hubble-Konstante steht1. Unter der Annahme einer
das homogene und isotrope Universum beschreibenden Robertson-Walker-Metrik errechnet
sich der Ort rem der Quelle seinerseits aus

arcsin
(√

k rem

)

=
H0
c

√
Ω− 1

∫ z

0

dH (z′) dz′. (7.2)

Der Dichteparameter Ω setzt sich additiv aus der Strahlungsenergiedichte ΩR, der Mate-
riedichte ΩM und der Größe ΩV zusammen, die nach heutiger Auffassung die Vakuumener-
giedichte beschreibt. Während ΩR heute vernachlässigt werden kann, bestimmen ΩM > 0
und ΩV ≥ 0 den Verlauf des Hubble-Radius dH(z) als Funktion der Rotverschiebung z,

dh(z) = c H−10
(

ΩR(1 + z)4 + ΩM(1 + z)3 + (1− Ω)(1 + z)2 + ΩV

)− 1
2 . (7.3)

1Die nachfolgend angenommenen kosmologischen Parameter folgen den WMAP-Resultaten [48].
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Nach i.a. numerischer Integration2 erhalten wir schließlich die dimensionslose und von
H0 unabhängige Größe H0

c
dA(z), die für alle Parametersätze mit Ausnahme des leeren

Universums (ΩM = 0) ein Maximum im Bereich 1 . z . 2 aufweist, grafisch dargestellt in
Abb. 7.1. Übertragen auf die reale Observable ∆ε ergeben sich bei einer angenommenen

Abbildung 7.1: Einfluss der kosmologischen Rotverschiebung auf die scheinbare Winkel-
größe. Normierte Winkeldistanz H0

c
dA(z) und beobachtete Objektausdehnung im Fall einer

Auflösung von 10−3 arcsec sind für verschiedene Weltmodelle angegeben. Unter den favori-
sierten flachen Systemen mit ΩM +ΩΛ = 1 (schwarz) deutet vieles auf einen Materieanteil
ΩM ≈ 0.27 hin. Die Fehlerbalken resultieren aus der Unsicherheit bzgl. H0 und beziehen
sich daher nur auf gemessene Daten (rechte Ordinate). Zum Vergleich sind zwei Beispiele
hyperbolisch offener Krümmungen eingetragen (grau, Parameter in Klammern).

Winkelauflösung von 10−3 arcsec noch trennbare Objektstrukturen D < 10 pc, je nach
Wert von ΩM und ΩV . Wir werden diesen Sachverhalt weiter unten zu nutzen versuchen,
um das hoch rotverschobene Universum zu

”
vermessen“– ausreichenden (Photonen-)Fluss

natürlich vorausgesetzt. Bezeichnen wir letzteren mit S, so gilt generell für eine Quelle der
intrinsischen Luminosität L die geometrische Beziehung

L = 4πS d2L(z), (7.4)

wobei dL(z) = (1 + z)2dA(z) als sog. Leuchtkraft-Entfernung weitaus schneller mit z

2Für eine ausführliche Abhandlung der physikalischen und mathematischen Details sei der Leser auf
die einschlägige Literatur, z.B. [49], verwiesen.
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anwächst als dA und daher bei der Beobachtung früher Phasen des Universums eine hohe
instrumentelle Sensitivität erfordert.

Eine Möglichkeit, die geringe Helligkeit ferner Objekte zumindest ansatzweise zu kom-
pensieren, mag der im Visuellen bei Quasaren bereits vielfach nachgewiesene Gravitati-
onslinseneffekt bieten. Die teils mehr als 10-fache Verstärkung [50] beruht hier auf einer
durch ein Schwerefeld verursachten Änderung des Raumwinkels, in den die Quelle abge-
bildet wird. Unter einem anderen Aspekt wird dieses Phänomen der Relativitätstheorie
Gegenstand des Abschnitts 7.1 sein. In weiteren Abschnitten kommen danach einige der
noch ungelösten Fragen der Astrophysik zur Sprache, soweit sie mit den hier in Rede ste-
henden Mitteln zu lösen sind – in bezug auf aktive Sterne, Supernovae und aktive Galaxien
in ihren vielfältigen Erscheinungsformen. Deren typische Entfernungen und Abmessungen
stellt Abb. 7.2 anhand bestehender Datensätze zusammen. Aus der Grafik wird ersicht-

Abbildung 7.2: Röntgenquellen auf verschiedenen Winkelskalen. Beispiele gemessener Da-
ten sind für Durchmesser einzelner Sterne [51], Umlaufbahnen von Doppelsternsystemen
[52] und Ausdehnungen galaktischer Supernova-Überreste (SNR) [53, 54] gegeben. Letzte-
re sind aufgrund ihrer Leuchtkraft auch in fernen Galaxien zu registrieren. Ferner sind
Durchmesser von Akkretionsscheiben [52] aktiver Galaxienkerne und die inneren 0.1% ih-
rer Jetlängen [55] eingetragen. Größen von Neutronensternen ([56]) und GRB-Afterglows
[57] wurden durch Streuung um die ungefähr bekannten Mittelwerte simuliert.

lich, dass qualitativ neue Erkenntnisse einer wenigstens um den Faktor 103 verbesserten
Winkelauflösung bedürfen. Darüber hinaus erweist sich meist eine sorgfältige Spektral-
analyse der untersuchten Strahlungsquellen als essentiell, um Rückschlüsse auf chemische
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Zusammensetzung und physikalische Prozesse zu ziehen. Obgleich entsprechende Instru-
mente aktueller und geplanter Missionen immerhin ein Trennvermögen R ≡ E

∆E
∼ 103

erzielen, diskutieren diverse theoretische Arbeiten inzwischen Linienspektren mit Struk-
turunterschieden von weniger als 1 eV. Entsprechend den Ausführungen aus Kap. 2 und 5
illustrieren wir daher den Einsatz in der abbildenden Spektroskopie anhand eines von R.
Sunyaev und Mitarbeitern gegebenen Beispiels [58].

Sie schlagen vor, den Helium-Anteil in Gaswolken anhand gestreuter Röntgenstrahlung
zu messen. Grundsätzlich kann die Streuung in diesem Energiebereich untergliedert werden
in Rayleigh-, Raman- und Comptonprozesse. Erstere liefern als elastische Streuvorgänge
beispielsweise für Helium (He) einen größeren Beitrag als Wasserstoff (H). Dagegen tritt
die inelastische Ramanstreuung bei Übergängen zwischen diskreten und damit gebundenen
Energieniveaus im Atom auf, die Energie der gestreuten Photonen ist daher charakteristisch
für das jeweilige Streumedium. Im Fall der Compton-Streuung erfolgt schließlich eine Ioni-
sation, die Form des Spektrums gibt Auskunft über die Bindungsenergie des Streuatoms.

Die prinzipielle Idee zur Messung des He-Anteils in Wolken besteht nun darin, mittels
hochauflösender Spektroskopie diesen Bruchteil aufgrund der spezifischen Unterschiede zur
Streuung an H-Atomen abzuschätzen. Bezüglich des quantitativen Vergleichs der Stärke der
kohärenten Rayleigh-Komponente sind dem Beobachter jedoch zunächst Beschränkungen
auferlegt, da hierzu eine räumliche Trennung der H- und He-Regionen notwendig wäre,
die selten gegeben sein dürfte. Dafür steht mit der Raman-Energielücke (

”
Gap“) ein umso

klareres Kriterium zum Nachweis von He-Beimengungen zur Verfügung. Diese Lücke ist
nämlich für He mit 20 eV doppelt so groß wie für H und müsste demnach eindeutig zu
unterscheiden sein (Abb. 7.3).

Abbildung 7.3: 180◦-Rückwärtsstreuung der Fe-Kα-Photonen mit einer Energie von 6.4
keV am Elektron; links für den rein elastischen Fall des freien ruhenden e−, in der Mitte
– nun mit zusätzlichen Compton- und Raman- Komponenten – für atomaren Wasserstoff
und rechts für Helium; aus [58].

Üblicherweise wird für derartige Untersuchungen die Kα-Fluoreszenz von Fe herangezo-
gen, die ihrerseits von höherenergetischer Röntgenstrahlung (über 7.2 keV) angeregt wird.
Die diskrete Rayleigh-Linie bei 6.4 keV erlaubt dann die Identifikation der spektralen Be-
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standteile. Eine explizite Abschätzung des H/He-Verhältnisses kann weiter aus der genauen
Vermessung der Compton-Schulter bezogen werden. Dabei berücksichtigt man, dass dieser
Schwanz für He wegen der größeren Bindungsenergie und der daraus resultierenden weniger
engen Impulsverteilung der e− im Grundzustand breiter ausfällt als für H. Der Anteil der
Röntgenphotonen im Compton-

”
Gebirge“ ist jetzt im Fall optisch dünner Wolken ein Maß

für die Thomson-Tiefe und ergibt so die He-Häufigkeit in der Wolke.
Zusätzlich zu den eben genannten elementaren Analysen sind verschiedene Erweiterun-

gen und Modifikationen denkbar. So besteht die Fe-Kα-Linie bei 6.4 keV aus zwei Dublett-
Partnern im Abstand von ca. 13 eV. Verschiebungen dieser Bestandteile im Sub-eV-Bereich
hängen davon ab, ob das streuende He-Atom frei im All

”
schwebt“ oder chemische Bindun-

gen innerhalb eines Staubkorns eingeht. Damit kann die genauere Zusammensetzung der
Wolke ermittelt werden. Generell stellt die gleiche Größenordnung der Dublett-Aufspaltung
und der Energielücke insbesondere im Fall von Fe bei 6.4 keV ein messtechnisches Problem
dar. Einen Lösungsansatz bietet der Übergang von Fe zu leichteren Elementen, bei denen
sowohl Dublett-Aufspaltung als auch Breite der Komponenten geringer sind, während die
Lücke von 20 eV unverändert erhalten bleibt. Diesem Vorteil stehen jedoch eine geringere
Fluoreszenz-Quantenausbeute, eine schwächere Reflektivität des Streumediums sowie ein
erhöhter kohärenter (elastischer) Anteil gegenüber.

Eine weitere Anwendungsmöglichkeit besteht schließlich in der Beobachtung inhomogen
verteilter Gasansammlungen in der Sonnenumgebung, die von der Röntgenemission solarer
Flares beleuchtet werden. Bei genügender Winkelauflösung können beleuchtende und streu-
ende Region getrennt und so die Kontamination des Raman-/Compton-Streuspektrums mit
der verursachenden Strahlung vermieden werden.

Aus dem genannten astrophysikalischen Anwendungsprofil ergeben sich die Anforde-
rungen an das Teleskop. Benötigt wird eine große effektive Sammelfläche von mind. 6000
cm2, wie sie von Con-X und XEUS bereitgestellt wird. Ferner wird ein feines spektrales
Auflösungsvermögen im Sub-eV-Bereich bei 6.4 keV entsprechend R & 104 ebenso wie eine
gute räumliche Trennschärfe von wenigstens 0.5 arcsec, besser jedoch einigen 10−2 arcsec
zu implementieren sein.

7.1 Anwendungen des Gravitationslinseneffekts

Wir setzen uns nun mit der zweiten Eigenschaft des Gravitationslinsen-Phänomens ausein-
ander, Lichtstrahlen abzulenken und Mehrfachbilder weit entfernter Quellen zu erzeugen.
Bekanntlich beträgt der Einstein-Radius R0 einer im Abstand DL (vom Beobachter) be-
findlichen Linsenmasse M , die eine dahinter liegende Quelle in der Entfernung DS mit
Relativabstand DLS ≡ DS −DL abbildet

R0 = 2

(

G
M

c2
DL

DS

DLS

) 1
2

. (7.5)

Der letztlich beobachtete Winkelradius errechnet sich daraus via θ0 = R0
DL

. Er stellt das
charakteristische Maß für die gravitative Lichtstrahlenkrümmung dar und soll den An-
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sprüchen der folgenden Abschätzung genügen, obwohl natürlich Versetzungen gegenüber
der optischen Achse, endliche Ausdehnung der Quelle und inhomogene Massenverteilung
in realen Gravitationslinsen-Abbildungen zu berücksichtigen sind.

θ0 erweist sich somit als proportional zu
√
M , ein Umstand mit bemerkenswerten Kon-

sequenzen: Typische Linsenereignisse mit Galaxien oder Galaxienhaufen als gravitativen
Zentren zeigen nämlich Ablenkungen in der Größenordnung von∼ (1−10)“, Winkel, die der
Leistungsfähigkeit von Teleskopen wie Hubble oder auch Chandra entgegen kommen. Wie
sich zeigt, erfordert deren auf ∼ 0.5“ beschränkte Trennschärfe extragalaktische Massen
von wenigstens 1010M¯. Anders verhält es sich im Fall galaktischer Linsen: Sterne rufen
aufgrund ihrer geringen Masse lediglich Ablenkungen von ∼ 10−3 arcsec hervor. Linsen
innerhalb der Milchstraße müssten demnach 106M¯ aufweisen [59].

Hier liegt nun das Potential der zu wesentlich schärferer Abbildung fähigen Röntgen-
astronomie. Geht man von einer Verbesserung des Auflösungsvermögens um einen Faktor
500-1000 aus, so bedeutet dies, dass zur Messung der Ablenkwinkel bereits 105 bis 106-
fach geringere Massen genügen. Damit wird aber der Weg frei für die Verwendung von
einzelnen Sternen (innerhalb der Milchstraße), Sternhaufen und evtl. gar mittelschwerer
schwarzer Löcher in Nachbargalaxien als abbildenden Systemen. Zwar finden stellare Mas-
sen bereits seit langem im Mikrogravitationslinseneffekt Verwendung, um dunkle Materie
aufzuspüren. Hierbei wird der zeitliche Verlauf der Verstärkung µ = µ1 + µ2 gemessen,
die die Gesamtheit der – i.d.R. zwei – Bilder der Quelle beim Durchlauf der Linsenmasse
erfährt. Sie erweist sich als Funktion des Winkelabstandes β zwischen Linse und Quelle in

Einheiten von θ0 (vgl. Abb. 7.4): µ1,2 = µ1,2

(

β
θ0

)

. Zum einen spielt sich nun der klassische

Abbildung 7.4: Geometrie des Gravitationslinseneffekts. Aus Gründen der Übersichtlichkeit
ist nur eines der i.a. zwei Bilder gezeichnet. Das schwächere liegt dabei innerhalb des
Einstein-Ringes mit Winkelradius θ0, das hellere außerhalb.

Mikrolinsen-Effekt bei Quasaren auf Zeitskalen von Wochen bis Monaten ab; zum anderen
liegt es auf der Hand, dass durch die – mangels ausreichender Winkelauflösung – alleinige
Messung der Gesamtverstärkung µ wertvolle Information über das Linsensystem verloren



7.1 Mikro-Gravitationslinsen 209

geht oder zumindest verschleiert wird. So bereitet die Unterscheidung zwischen intrinsi-
scher und linsenbedingter Variabilität etwa bei Quasaren in der Praxis oft Schwierigkeiten.
Der zusätzliche Nachweis von Mehrfachbildern kann nun nicht nur den gravitativen Ein-
fluss belegen, sondern über die aus der Winkeldistanz ∆θ zu berechnende Linsenposition
β den linsenbedingten Beitrag zur beobachteten Lichtkurve vorhersagen.

Überhaupt ließen jüngste Beobachtungen hoch rotverschobener Quasare (siehe dazu
auch Abb. 7.5) im Rahmen des Sloan Digital Sky Survey den Verdacht aufkommen, die
Strahlung eines signifikanten Anteils von bis zu 30% sei durch den starken Gravitations-
linseneffekt künstlich verstärkt [50]. Nach Aussage der Autoren kommen hierfür neben

”
gewöhnlichen“ auch Mikrolinsen-Ereignisse, hervorgerufen durch nahe Sterne, in Betracht.
Bis dato stützt sich die Hypothese auf wenige Daten und stochastische Abschätzungen. Eine
direkte Überprüfung dieser Vermutung, die theoretisch wie empirisch das frühe Universum
buchstäblich in einem ganz anderen Licht erscheinen ließe, erfordert je nach statistischer
Massenverteilung der Vordergrundobjekte eine Winkelauflösung von . 10−1 arcsec.

Abbildung 7.5: Röntgen-Leuchtkräfte von Quasaren, gemessen von ROSAT (links) und
Chandra (rechts). Die ROSAT-Daten beziehen sich auf die weiche Röntgenemission zwi-
schen 0.1 und rund 2 keV und entsprechen in grober Näherung einem Fluss fx & 4× 10−13

erg s−1 cm−2 (durchgezogene Linie). Chandra detektierte im Bereich von 2 bis 10 keV bei
typischen Zählraten zwischen 10−3 und 10−2 s−1. Zusätzlich ist auf der rechten Ordinate
der zu S(0) relative Fluss S(z) gemäß Gl. 7.4 aufgetragen.

Das kosmische Linsenphänomen stellt auch eine Methode zur Messung der Hubble-
Konstante H0 bereit. Sie beruht auf der Bestimmung der Laufzeitdifferenz τ zwischen den
i.a. unterschiedlich langen Lichtwegen in Mehrfachabbildungen variabler Quasare. Mit den
Winkeln θ1 und θ2 zwischen den Bildern und der punktförmigen Linsenmasse gilt [60]

τ =
1

2c
DL

(

θ21 − θ22
)

(

1 +
DL

DLS

)

. (7.6)

Um daraus H0 zu errechnen, werden beide Distanzen D via c · zL,S = H0 · DL,S mit den
jeweiligen Rotverschiebungen verknüpft. Das zentrale Problem dieses Verfahrens besteht
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zunächst in seiner Mehrdeutigkeit aufgrund ausgedehnter Massenverteilungen M(r), das
eine unabhängige, detaillierte Analyse der Linsengalaxie bzw. des Haufens erfordert. Die
Messung von τ erlaubt schließlich gemäß

H0 = ξ (M(r))
θ2i − θ2j
τ

zL · zS
zL − zS

(7.7)

H0 für diverse Bilder (i, j) zu errechnen. ξ (M(r)) steht für die spezifische Massenvertei-
lungsfunktion. Aus unserer Sicht ist besonders die Frage nach der erreichbaren Messge-
nauigkeit dieses kosmologischen

”
Zollstocks“ von Interesse. Betrachten wir nun den Fehler

bzgl. H0 und vernachlässigen dabei die Unsicherheit in τ , zL sowie zS,

δH0
H0
' 2 δθi,j f (θi, θj) , (7.8)

wobei f (θi, θj) eine von θi,j abhängige Funktion darstellt, so bemisst sich die relative
Unbestimmtheit der Hubble-Konstante linear nach deren Positionsgenauigkeit.

Gewissermaßen als Kontrast zu diesem sehr vereinfacht beschriebenen Konzept soll
nun eine Methode zum Test von Galaxienverteilungsfunktionen mit Hilfe statistischer
Mikrolinsen-Ereignisse vorgestellt werden. Das Verfahren folgt einer im Jahr 2002 publi-
zierten Überlegung [61] und beruht auf der starken Abhängigkeit der statistischen Winkel-
verteilung der Linsenereignisse von radialem Massenprofil und differentiellem Verlauf der
Galaxienverteilungsfunktionen im Sub-Bogensekunden-Bereich.

Zur Beschreibung der Galaxienpopulation im Universum hinsichtlich ihrer Luminosität
dient meist die sog. Schechter-Funktion, die alternativ durch eine physikalisch wie formal
ähnliche Distribution

ψ(υc)dυc = ψ∗

(

υc
υ∗

)β

e−(
υc
υ∗
)
n

d

(

υc
υ∗

)

, (7.9)

der Rotationsgeschwindigkeiten vc ersetzt werden kann und abgesehen von empirisch zu
bestimmenden Werten für υ∗ und n = 2.5 durch den Parameter β < 0 charakterisiert wird.
Mit ihr ist im allgemeinen ein spezifisches, unter der Bezeichnung

”
singular isothermal

sphere“ (SIS) bekanntes Dichteprofil

ρ(r) =
v2c

8πGr2
(7.10)

verknüpft, dem wiederum ein bestimmter, von vc abhängiger Einstein-Radius θ0 zugeord-
net ist. Man erwartet daher eine mit der Leuchtkraft- bzw. Geschwindigkeitsverteilung
korrelierte Wahrscheinlichkeit P , einen Winkelabstand θ zu messen. Es erweist sich nach
dieser Theorie, dass der gemessene Winkelabstand zu geringen Separationen und damit
niedrigen Leuchtkräften hin einer nur von β abhängigen Funktion

dP

dθ
∝ θ

1
2
(β+3) (7.11)
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Abbildung 7.6: Überprüfung von Galaxienleuchtkraft- und Massen-Verteilungsfunktionen
mittels statistischer Mikrolinsenmessungen. Die differentielle Häufigkeit dP

dΘ
ist in der lin-

ken Grafik als Funktion des Winkelabstandes der Linsenabbildungen aufgetragen. Je nach
Wert des Parameters β liefern Leuchtkraft- und Massenverteilung nur für einen bestimm-
ten Anteil fSIS leuchtender Halo-Profile konsistente Resultate. Dieser ist in Abhängigkeit
von der Masse M in der rechten Skizze gezeichnet, aus [61].

folgen sollte, in Abb. 7.6 links aufgetragen. Andererseits erscheint es natürlich, dP
dθ

mit der
Galaxien-Massenfunktion nach Press und Schechter in Beziehung zu setzen. Um die dar-
aus folgende Winkelverteilung jedoch mit Gl. 7.11 in Einklang zu bringen, sind bestimmte
Bedingungen an das Verhältnis von leuchtenden zu dunklen (

”
dark matter“) Halos und

deren jeweilige Dichteprofile ρ(r) zu stellen. Demnach müssten massearme Galaxien un-
terhalb weniger 1011M¯ ebenso wie massive Haufen oberhalb von 1012M¯ durch dunkle
Materie dominiert werden, während Galaxien von typischerweise ∼ 1012M¯ überwiegend
leuchtende Materie enthalten.

Wie Abb. 7.6 illustriert, lassen sich diese Hypothesen durch eine Serie von Linsenbe-
obachtungen auf Winkelskalen bis herab zu 10−2 arcsec überprüfen und zugleich quanti-
fizieren. Mit heute verfügbaren Instrumenten wurden die in der linken Grafik mit ihren
Fehlerbalken eingetragenen Daten gewonnen, die sich als offenkundig untauglich erweisen.

7.2 Einzelne Sterne und ihre Koronae

Im Bestreben, die Oberflächen von Sternen räumlich aufzulösen und mit der wohlbekann-
ten Struktur unserer Sonne zu vergleichen, liegt seit seit jeher eine der Triebfedern für die
Entwicklung eines beugungsbegrenzten Röntgenteleskops. Schließlich warf der Nachweis
(thermischer) Röntgenemission von der Sonne (siehe Kap. 1) im vergangenen Jhd. sofort
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die Frage auf, wie diese zu erklären sei – reicht doch die photosphärische Oberflächentem-
peratur von . 6000 K keinesfalls aus, im Sinn des Planck’schen Strahlungsgesetzes den
beobachteten Fluss auch nur annähernd vorherzusagen. Anfängliche theoretische Modelle
zogen die Schock-Dissipation akustischer Wellen zur Deutung der offenbar erforderlichen
hohen Temperaturen heran. Allerdings widersprach dieser Ansatz zahlreichen späteren Be-
obachtungen anderer Sterne, wonach zwischen Röntgenfluss und Spektraltyp nicht der
erwartete Zusammenhang bestand. Heute wissen wir, dass die Temperatur von ca. 2× 104

in der Chromosphäre in einer dünnen Übergangsschicht von wenigen 104 km Dicke bis auf
∼ (1 − 5) × 106 K in der Korona ansteigt [62]. Die Röntgenstrahlung wird nun nicht et-
wa isotrop und homogen emittiert, sondern entspringt fast ausschließlich koronalen Bögen
(
”
loops“), die auf detaillierten Aufnahmen zum Vorschein kommen (vgl. Abb. 7.8). Neben

diesen geschlossenen und mit heißem Plasma angefüllten magnetischen Flussröhren treten
auch radiale, offene Feldlinien zu Tage. Damit ist klar, dass zumindest die solare Korona
von Magnetfeldern beherrscht wird, deren Energiedichte die thermische übertrifft.

Rätselhaft bleibt bis heute, wie die Umsetzung von magnetischer Feld- in thermi-
sche Strahlungsenergie genau vonstatten geht und wie die koronale Aktivität mit in-
trinsischen stellaren Parametern wie Spektraltyp, Masse, Rotationsfrequenz, Alter etc.
zusammenhängt. Aufschluss können darüber letztendlich nur detaillierte, spektrale wie
abbildende Untersuchungen fremder Sterne geben. Röntgenfrequenzen erweisen sich als
geradezu prädestiniert, die diesbezüglichen Informationen bereit zu stellen, da zu ihnen
anders als zur (E)UV-Emission selbst bei heißen OB-Sternen die Photosphäre praktisch
keine Beiträge liefert. Obgleich stellare Röntgenbeobachtungen in einer langen, bis auf das

”
Einstein“-Observatorium zurückreichenden Tradition stehen und mittlerweile Tausende
derartiger Quellen detektiert wurden, gestaltete sich die zweifelsfreie Identifikation lange
Zeit schwierig. Dies deshalb, weil ein Großteil in Doppelsternsystemen gebunden ist und
andere in bisweilen dichten Haufen lokalisiert sind. Zudem wirkte sich die Kontamination
durch den diffusen Hintergrund störend aus. Einen signifikanten Fortschritt in beiderlei
Hinsicht brachte erst

”
Chandra“ [63]. Freilich ist auch dieses Instrument bei weitem nicht

in der Lage, nahe Sterne räumlich aufzulösen.
Abb. 7.7 zeigt Winkeldurchmesser naher und visuell heller Sterne, wie sie aus ihren

ungefähr bekannten Entfernungen und abgeschätzten Radien berechnet wurden. Demnach
erscheint eine Trennschärfe von 10−3(10−4) Bogensekunden angemessen, um die koronale
Aktivität weniger (zahlreicher) Sterne der Umgebung zu kartieren.

Auf jeden Fall sollten jedoch & 10−3 arcsec ausreichen, um in allen potentiellen Binärsy-
stemen die Röntgenemission zweifelsfrei zuordnen zu können. Weshalb wird nun bereits
diesem recht bescheidenen wissenschaftlichen Anspruch Aufmerksamkeit geschenkt? Der
aktuellen Theorie zufolge sollten Sterne bestimmter Spektral- und Leuchtkraftklassen kei-
ne oder nur sehr geringe koronale Röntgenemission zeigen [64, 65]. Dazu gehören – aus
diversen Gründen – Vetreter der Hauptreihe vom Spektraltyp A ebenso wie späte Riesen.
Obwohl bisherige Beobachtungen diese These weitgehend stützen, werden gegenteilige und
zweifelhafte Messungen kontrovers diskutiert; fragend, ob die detektierten Photonen nicht
doch einem Begleitstern zuzuschreiben seien. Sollten sich die Vermutungen jedoch auf brei-
ter Front bestätigen, so wäre dies als Hinweis auf differenzierter oder zusätzlich wirkende
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Abbildung 7.7: Spektraltyp und Winkeldurchmesser heller Sterne mit einer scheinbaren vi-
suellen Helligkeit ≤ 3 mag sowie diverser sonnenähnlicher bzw. roter Zwerge (engl.: red
dwarfs, RD) der näheren Umgebung (unten rechts) [51, 88, 89]. Für eine Auswahl sind
Bezeichnung und Leuchtkraftklasse angegeben. Hauptreihensterne der durch

”
×HR“ ge-

kennzeichneten Spektraltypen weisen der gängigen Theorie zufolge keine koronale Röntge-
nemission auf. Gleiches gilt für rote (Über-)Riesen jenseits der jeweiligen Konvektions-
/Windgrenzen (X-ray dividing line, XRD).

Mechanismen anzusehen, um die die gängige Dynamo-Theorie zu erweitern wäre.

Bevor wir uns mit deren Implikationen eingehender befassen, seien Erfahrungswerte zu
typischen Leuchtkräften und nötiger Nachweisempfindlichkeit gegeben. Einen guten An-
haltspunkt stellen die Daten der ROSAT-Durchmusterung (ROSAT all-sky survey, RASS)
dar, die rund 1300 und damit ≈ 41% aller Sterne im Umkreis von 25 pc erfassen [66].
Innerhalb von etwa 14 pc werden gar ≈ 94% der F/G−Sterne als Röntgenquellen erkannt.
Möglich wurde dies mit einer Sensitivität von 2 × 10−13 erg cm−2 s. Anschaulich gespro-
chen, entspricht dies dem solaren Fluss in einer Entfernung von 10 pc. Offenbar weisen also
zahlreiche Sterne eine deutlich größere Röntgenleuchtkraft als die Sonne auf, die in der Tat
mit Lx ≈ 2 × 1027 erg s−1 zu den schwächeren Emittern zählt und von einigen beson-
ders aktiven Sternen um Größenordnungen übertroffen wird. So belaufen sich nach [66] die
Leuchtkräfte Lx kühler Sterne im Umkreis von 15 pc auf 1025 bis 1030 erg s−1, während sie
im Sichtbaren noch nicht einmal 3 mag absoluter Helligkeit erreichen. Augenfällig wird die
Nicht-Korrelation zwischen Lx und MV bei Vertretern des Spektraltyps M mit MV & 8.5,
die aber oft Lx & 1028 erg s−1 liefern können. In seltenen Fällen wurden bei Riesen vom
Spektraltyp G und M Röntgen-Luminositäten von ∼ 1030 erg s−1 gemessen [66].
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Doch nicht alle Sterne zeigen koronale Aktivität, geschweige denn von eben genanntem
Ausmaß. So erkannte das RASS-Programm nur (10 − 20)% aller B- und A-Sterne, deren
vermeintliche Röntgenleuchtkraft überdies aus oben angesprochenen Gründen angezweifelt
wird. Von einzelnen Exemplaren wie z.B. Arcturus ließ sich überhaupt kein meßbarer Fluss
detektieren, der somit weniger als 3× 1025 erg s−1 betragen muß.

Um diese großen Unterschiede zumindest qualitativ verstehen zu können, bedarf es ei-
nes nach Möglichkeit universalen Modells, das den internen physikalischen Zustand eines
Sterns berücksichtigt. Ein solches stellt die bereits erwähnte Dynamo-Theorie [67] bereit,
gewissermaßen eine Konzession an die sich mit wachsender empirischer Erkenntnis durch-
setzende Überzeugung, dass die koronale Aktivität das Phänomen eines primär magneto-
hydrodynamischen Prozesses darstellt. Demnach entsteht unter der (differentiellen) Rota-
tion der viskosen Sternmaterie in Verbindung mit der turbulenten Konvektion ein stark in-
homogenes Magnetfeld, dessen Flussschläuche bisweilen durch Druckstörungen nach außen
dringen können. Zahlreiche Beobachtungen deuten darauf hin, dass die Wirksamkeit dieses
Generators mit der Rotationsfrequenz des Sterns und der Dicke seiner Konvektionszone
zunimmt. Die Existenz einer – äußeren – konvektiven Schale stellt offenbar eine notwendi-
ge Bedingung dar, wie das weitgehende Fehlen koronaler Röntgenstrahlung von A-Sternen
und deren schlagartiges Einsetzen bei F-Sternen zu belegen scheint3. Umgekehrt liefern die
schnell rotierenden, variablen RS CVn Doppelsterne mit

”
weichen“ Röntgenleuchtkräften

von (1030 − 1031) erg s−1 ein starkes Indiz für die Bedeutung der Rotation.
Als quantitatives Maß für die mutmaßliche Effizienz des Dynamo-Prozesses wurde die

z.B. in [68] diskutierte sog. Rossby-Zahl

NR =
Prot
τc

(7.12)

als Rotationsperiode Prot, ausgedrückt in Einheiten der charakteristischen Konvektions-
Zeitskala τc für die Durchmischung, eingeführt. Letztere bezieht sich hier auf den hin-
sichtlich der Dynamo-Wirkung als besonders bedeutsam angesehenen Übergang zwischen
radiativem Kern und konvektiver Hülle. Man nimmt nun an, dass die

”
Dynamo-Zahl“, defi-

niert als N−2R , proportional zur Stärke der magnetischen Aktivität ist. Wenn auch bisherige
Messungen einen qualitativen Zusammenhang zwischen NR und der koronalen Emission
nahe legen, bleiben wichtige Fragen offen. So erklärt das Bild des Dynamos letztlich nicht
dessen Funktionsweise, ebensowenig wie die Heizung des koronalen Plasmas mittels ma-
gnetischer Feldenergie. Zur Vorsicht mahnt auch der Umstand, dass vollkonvektive Sterne
am Hayashi-Limit keinen erkennbaren Einbruch in der Konversionseffizienz Lx

Lbol
(mit der

bolometrischen Luminosität Lbol) erleiden [66]. Eigentlich sollten diese roten Zwerge mit
Massen M < 0.3M¯ in Ermangelung einer radiativ-konvektiven Grenze wenn überhaupt,
dann zumindest signifikant verschiedene Röntgenemission aufweisen.

Herausforderungen ganz anderer Art halten die Riesen der Leuchtkraftklassen I bis
III bereit, in Abb. 7.7 im Umfeld der jeweiligen Trennlinien (X-ray dividing lines, XDL)
angesiedelt. Einerseits treten relativ

”
gelbe“ Vertreter oftmals als ausgesprochen intensive

3Im Bereich dieses Spektraltyps vollzieht sich der Übergang von der radiativen zur konvektiven Hülle.



7.2 Stellare Koronae 215

Röntgenquellen in Erscheinung, andererseits sind so gut wie keine diesbezüglichen Bei-
spiele roter (Über-)Riesen bekannt. Mit Beteigeuze und Arcturus seien nur zwei klassische
Vertreter dieser Gattung genannt, die nichtsdestoweniger im Visuellen zu den hellsten über-
haupt zählen. An der wissenschaftlichen Relevanz dieser Exemplare ändert dies wenig, da
neueren Erkenntnissen zufolge die Korona hier mitsamt ihrer residualen Röntgenemissi-
on einem Schwelbrand gleich unter der Chromosphäre verborgen sein und evtl. punktuell
auf der Sternoberfläche hervortreten könnte [69]. Die Energie- und Massendissipation er-
folgt hier vielmehr durch kühle, schwache Winde, die nach vagen Vermutungen mit offenen
Feldlinien assoziiert sind. Im Gegensatz sollte die Beobachtung der sog. Hybrid-Sterne an
den XDL relativ mühelos gelingen. Sie zeichnen sich durch ein gleichzeitiges Vorhanden-
sein radialer Winde als auch geschlossener Magnetfelder aus [67]. Es sei noch erwähnt,
dass auch frühe (O-B)-Sterne Massenverlust durch starke Winde erleiden, die auch zu teils
beträchtlicher Röntgenhelligkeit von bis zu 1034 erg s−1 Anlass geben [67]. Obgleich auch
diese seltenen Objekte interessante Erkenntnisse liefern dürften, wollen wir uns im fol-
genden mit den beobachtungsspezifischen Fragen befassen, die sich auf koronale Emission
beziehen. Abb. 7.8 skizziert einige dieser Aspekte. Einer freilich spekulativen Extrapolation

Abbildung 7.8: Strukturelemente und Observable stellarer Koronae. Aufgrund des steilen
radialen Gradienten der Plasmadichte registriert ein Beobachter vor allem Strahlung aus
Regionen senkrecht zur Sichtlinie [70]. Bei konvektiven Sternen emittieren gemäß dem
Dynamo-Modell hauptsächlich Flares auf verschiedenen Skalen die in ihrer Intensität von
diversen Sternparametern abhängige Röntgenstrahlung. Weitere Erläuterungen siehe Text.

solarer Dimensionen gehorchend, dürfte sich die Korona generell bis zu mehreren Sternra-
dien erstrecken. Dies gestattet – ausreichende räumliche Auflösung vorausgesetzt – nach
dem in Abb. 7.8 genannten Argument u.U. ein radiales Profil des Röntgenflusses zu er-
stellen und daraus Rückschlüsse auf Temperatur- und Dichteverlauf zu ziehen. Im Idealfall
wäre eine solche Messung für eine isolierte Magnetfeldschleife vorzunehmen – mit dann di-
rektem Zugang zum Heizmechanismus. In Anbetracht der Ausdehnung solcher

”
loops“ bis
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herauf zur Größenordnung eines Sternradius mag diese Perspektive für ausgewählte Sterne
durchaus realistisch erscheinen. Davon abgesehen, kommt einer Analyse der räumlichen
wie zeitlichen Skalen, auf denen die koronale Emission eines bestimmten Sterns variiert,
elementare Bedeutung zu, verknüpft sie doch unmittelbar Ursache (Magnetfeld) und Wir-
kung (Röntgenstrahlung). Insbesondere darf vermutet werden, dass zwischen dem Grad
der Homogenität/Strukturiertheit der Ausstrahlung auf der Oberfläche und typischen Zu-
standsgrößen des Sterns ein quantitativer Zusammenhang besteht.

Zum Ende dieses Abschnitts wollen wir noch die Klasse der Vor-Hauptreihensterne zur
Sprache bringen. Sie zeichnen sich durch besonders intensive, durch starke Magnetfelder
und Winde verursachte Röntgenemission aus, die im Extremfall der in diesen Systemen be-
sonders ausgeprägten Flares bis zu ∼ 1035 erg s−1 betragen und räumliche Ausdehnungen
von mehreren 10 R¯ erreichen kann [71, 72]. Über die Struktur der stellaren

”
Kinder-

stuben“ ist aufgrund der im Optischen nahezu opaken Staubgürtel und eben mangelnder
Auflösung wenig bekannt. Eine der nächstgelegenen Sternentstehungsregionen, ρ Ophi, ge-
stattet in einer Entfernung von rund 150 pc jedoch immerhin eine detaillierte Erfassung der
Akkretionsscheiben von Protosternen (vgl. Abb. 7.9) mit charakteristischen Winkeldurch-
messern von ∼ 102 bis ∼ 103 mas [71]. Auch protostellare Objekte im klassischen, & 1500

Abbildung 7.9: Sowohl Protosterne als massenakkretierende stellare Vorläufer als auch Ver-
treter der (T-Tauri)-Klasse sind als starke Röntgenquellen bekannt. Typische Leuchtkräfte
Lx liegen mindestens um einen Faktor 102 − 103 über der entsprechenden Luminosität der
Sonne. Neben der Emission ausgedehnter Flares wurde inzwischen auch in den kollimierten
Ausflüssen von (T-Tauri)-Sternen entspringende Röntgenstrahlung nachgewiesen.

pc entfernten Orion-Nebel lassen sich noch gut untersuchen. Eine eingehende Diskussi-
on lohnt in diesem Kontext die Möglichkeit, die Akkretionsscheibe durch evtl. gestreute
Kα-Fluoreszenz zu vermessen. Als Pumpquellen könnten wiederum die zahlreichen Fla-
res dienen, die sich mit typischen Winkelausdehnungen von ∼ 10−3 arcsec eindeutig dem
zentralen Stern zuordnen lassen sollten.
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Auf die in ihrer Entwicklung weiter fortgeschrittenen T-Tauri-Sterne lassen sich ähnli-
che Überlegungen anwenden, jedoch mit der zusätzlichen Option, die in diesem Stadium
besonders häufigen Materieausflüsse bzw. ihre Wechselwirkung mit der interstellaren Ma-
terie ebenfalls auf Röntgenemission hin zu prüfen. In einem Fall gelang dies bereits mit
Hilfe von Chandra [73], auf Winkelskalen von wenigen Bogensekunden. Obwohl es sich da-
bei nicht um ein klassisches T-Tauri-Objekt, sondern um den Vertreter einer verwandten
Klasse von Vor-Hauptreihensternen handelte, ist diese Entdeckung als vielversprechender
Ansatz anzusehen.

7.3 Supernovae und Supernova-Überreste

Im Schnitt widerfährt pro Galaxie alle 100 Jahre einem Stern eine Supernova-Explosion.
Aufgrund ihrer enormen (visuellen) Helligkeit von rund −20 mag sind jedoch insbesondere
solche vom Typ I(a) noch in Entfernungen von mehreren Gpc nachzuweisen und dienen
als Standardkerzen zur Bestimmung kosmologischer Parameter. Supernovae vom Typ II
zeichnen sich hingegen ihrer Natur nach durch eine große Vielfalt hinsichtlich ihrer diversen
Charakteristika aus und eignen sich entsprechend besonders gut zum Studium der bis heute
nicht völlig verstandenen Explosionsdynamik.

Die beträchtliche Komplexität der physikalischen Abläufe beim Kollaps geht mit ei-
nem eindrucksvollen Spektrum elektromagnetischer und partikulärer Strahlung einher, die
vom Radio- über das sichtbare bis zum Röntgen- und Gammaband reicht und auch die
wichtige Neutrino-Emission einschließt. All diese Beiträge stehen für bestimmte Phasen
und Komponenten einer sich – in Form ihres Überrestes (supernova remnant, SNR) – oft
über viele 105 Jahre entwickelnden Supernova. Wir legen das Augenmerk auf die Rönt-
genstrahlung, die gemäß Abb. 7.10 in den ersten beiden Phasen bis zu einem Alter von
∼ 104 Jahren zur Lichtkurve beiträgt. Eine durchschnittliche Supernova-Explosion setzt
beim Gravitationskollaps des Weißen Zwerges 1053 erg frei, die freilich zu 99% in Form
von Neutrinos abgestrahlt werden. Die Beiträge der bolometrischen Lichtkurve und der
kinetischen Expansionsenergie der Hülle summieren sich zu den restlichen 1051 erg [60].

Nach der Kontraktion zum Neutronenstern dehnt sich die Schockfront und mit ihr die
Materie der äußeren stellaren Schalen mit einer Geschwindigkeit von 5 × 103 bis 2 × 104

km s−1 aus. Im Einzelfall hängt vrad von der tatsächlich emittierten Energie (abzüglich des
Neutrino-Anteils) und der Masse des kollabierten Sterns ab [74]:

vrad ≈ 104
km

s

(

E

1051erg s−1

)1/2(
M

M¯

)−1/2
(7.13)

Da diese Geschwindigkeit in der ersten, rund 102 Jahre dauernden Phase nahezu konstant
bleibt, expandiert die Druckwelle mit Radius r, wie bei einer Explosion nicht anders zu
erwarten, anfangs linear in der Zeit, r ∝ t. In einer 107 pc entfernten Galaxie entspricht
damit der für dieses Anfangsstadium charakteristische physikalische Radius von 1 pc im
Winkelmaß problemlos aufzulösenden 20× 10−3 arcsec. Die Suche nach SNR dieser frühen
Entwicklungsstufe erscheint wegen des besonders hohen Röntgenflusses zudem besonders
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Abbildung 7.10: Zeitliche Evolution von Supernova-Überresten. Die Hauptgrafik illustriert
die verschiedenen Phasen der Expansion mit Zeitabhängigkeit t, gemessen in Jahren,
sowie typischen Temperaturen T in K und Geschwindigkeiten v in km s−1. Chandra-
Beobachtungen sind für die Galaxis (schwarze Punkte) und die Magellanschen Wolken
(graue Punkte) eingetragen. Der Einsatz zeigt Röntgendaten von jungen SNR aus fernen
Galaxien. Ihre hypothetische Zeitentwicklung nach dem Druckwellenmodell der ersten Pha-
se führt nach einigen Jahren teils zu Winkelradien von mehreren 10−3 arcsec, nach [74].

erstrebenswert. Von erheblicher theoretischer wie praktischer Bedeutung ist nun der Um-
stand, dass diese hochenergetische Strahlung dem bis zu 108 K und während der Druck-
wellenphase konstant heißen Plasma im Inneren des SNR entspringt, während die in Form
einer Schockfront mit dem interstellaren Medium (ISM) wechselwirkende Schale vorwie-
gend im optischen und/oder Radiobereich leuchtet [75]. Zwar sind die eben angegebenen
Winkelskalen somit eher als obere Grenze anzusehen; nichtsdestoweniger kann gerade diese
unmittelbar mit der Detonation assoziierte Region anhand ihrer Intensitätsverteilung und
begünstigt durch die geringe Dichte von nur 10−3 bis 100 cm−3 wertvolle Informationen
über den Explosionsvorgang liefern.

Wenige Monate nach dem Kollaps zeigt zudem ein von dieser Bremsstrahlung un-
abhängiger Subprozess Wirkung, der unter Umständen messbar zur Röntgenlichtkurve
beitragen kann [74]. Gemeint sind Heizprozesse durch radioaktiven Zerfall, namentlich
56Ni→ 56Co und 56Co→ 56Fe. Als Nebenprodukt des ersteren entstehen γ-Quanten, die
durch Streuprozesse mit freien e− allmählich thermalisieren und so teils zu Röntgen-, UV-
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und optischen Frequenzen abgeschwächt werden. Obwohl die Zerfallsprozesse quasi in-
stantan einsetzen, verzögern die großen freien Weglängen die Konversion zu niedrigeren
Energien. Unter Berücksichtigung der Expansionsgeschwindigkeit resultiert ein zeitlicher
Versatz von rund 102 Tagen bis zur Sichtbarkeit. Vermutlich steht die bei der SN 1987A
nach 130 Tagen einsetzende Röntgenemission mit diesem Phänomen in Zusammenhang
(vgl. hierzu auch Abb. 7.12).

Nach etwa 200 Jahren verlangsamt sich die Ausbreitung der Staubhülle. Ihre Entwick-
lung tritt dann in die sog. Sedov-Phase ein, deren Charakteristikum in der konstanten
Gesamtenergie E des Systems besteht [74]. Unter der Annahme einer adiabatischen Ex-
pansion bei konstanter Dichte ρ des nicht komprimierten Mediums folgt aus der zu (r3v2ρ)
proportionalen Energie

r ∝
(

E

ρ

)1/5

t2/5. (7.14)

Hinsichtlich des Temperaturverlaufs sagt das Modell einen Abfall gemäß T ∝ t−6/5 voraus.
Innerhalb von ca. 104 Jahren kühlt der Supernova-Überrest so auf schließlich ∼ 106 K,
simultan zur abnehmenden Röntgenleuchtkraft.

Chandra beobachtete diverse SNR in der Galaxis und solche in den Magellan’schen
Wolken, die sich nach Abb. 7.10 mit Ausnahme der SN 1987A allesamt in der Sedov-
Phase befinden. Die in der Regel über den gesamten Spektralbereich von 0.3 bis 10 keV
gemessenen Luminositäten Lx liegen typischerweise bei 1036±1 erg s−1, selten weniger oder
mehr [53]. Ferne und mit kaum mehr als ein paar Jahren sehr junge Supernovae erreichen
dagegen gut und gerne 1037 bis 1040 erg s−1, obwohl es sich auch bei ihnen überwiegend um
solche vom generell häufigeren Typ II handelt [76]. Wie Abb. 7.11 illustriert, liegt deren
scheinbare Röntgenhelligkeit entsprechend ebenfalls über den extrapolierten Werten der
nahen SNR.

Abbildung 7.11: Beobachteter Röntgenfluss fx von Supernova-Überresten auf verschiedenen
Distanzen d. Die sehr jungen fernen SNR weisen eine vergleichsweise große Helligkeit auf,
relativ zur Extrapolation der nahen, alten SNR (graue, strichlierte Geraden). Für einige
Werte fx sind meßtechnisch bedingte untere Grenzen angegeben.
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Die große Streuung der (absoluten) Helligkeiten und auch der Radien nach Abb. 7.10
zu einer festen Zeit t machen deutlich, dass in der skizzierten Theorie der SNR-Evolution
allenfalls eine vereinfachte Modellvorstellung zu sehen ist. Umso dringlicher erscheint daher
die Aufgabe, durch präzise Messungen v.a. im Rahmen der abbildenden Spektroskopie die
Details des Explosionsvorgangs verstehen zu lernen. Einmal abgesehen vom kontinuierli-
chen Bremsspektrum, aus dem auf die Temperatur des Plasmas geschlossen werden kann,
geben räumliche und spektrale Position, Stärke und Profil der Emissionslinien Auskunft
über die chemische Zusammensetzung und Verteilung der expandierenden Sternmaterie.
Je besser dabei die räumliche Auflösung, desto differenzierter wird die Kartierung des
oft asymmetrischen SNR gelingen. Über den gesamten Nebel integrierte Spektren liefern
zwangsläufig breite, u.a. durch den Dopplereffekt verwaschene Linien, wie Abb. 7.12 am
Beispiel der SN 1987A illustriert. Im übrigen vermögen heutige Instrumente wie Chandra

Abbildung 7.12: Eigenschaften der Supernova 1987A in der LMC. Auf der linken Ordinate
ist der aus Chandra-Messungen abgeleitete SNR-Radius aufgetragen (durchgezogene Linie,
große Fehlerbalken), während die rechte Ordinate den immer noch ansteigenden Röntgen-
fluss beschreibt (strichliert, kleine Fehlerbalken). Im linken oberen Einsatz ist ein Spektrum
vom Mai 2002 mit O-, Ne-, Mg-, Si- und S-Linien zwischen ≈ 0.5 und ≈ 4 keV zu sehen,
rechts unten eine Chandra-Aufnahme aus dem Jahr 2003.

und XMM-Newton Geschwindigkeitsdifferenzen ∆vrad von typischerweise ∼ 100 km s−1

aufzulösen. Von ähnlicher Dimension ist mit E
∆E
∼ 3× 103 die zu

√
T proportionale ther-

mische Dopplerbreite bei T ∼ 106 K. Dem thermischen Dopplerprofil der Linien überlagert
sich i.a. noch eine Lorentzkomponente, bedingt durch den Stark-Effekt oder auch einfache
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kinematische Stöße zwischen den ionisierten Atomen. Es steht außer Frage, dass angesichts
dieser Größenverhältnisse eine spektrale Trennschärfe von 103 selbst die Bestimmung der
Äquivalenzbreiten zum Problem werden lassen dürfte. Andererseits herrscht bis dato weit-
gehende Unklarheit darüber, welche Längenskalen im Röntgenbereich innerhalb eines SNR
von physikalischer Relevanz sind, d.h. insbesondere welcher Grad an Inhomogenität in der
Materie- und Strahlungsverteilung vorliegt. Immerhin zeigen Hubble-Aufnahmen der SN
1987A weitaus mehr Details als die korrespondierenden Beobachtungen Chandras (vgl.
Abb. 7.12). Zudem dürften sich reale Beobachtungen junger SNR im Vergleich mit heuti-
gen [77] und künftigen Simulationen als besonders wertvoll erweisen, um die theoretisch
nach wie vor ungelöste Frage nach dem Explosionsmechanismus zu lösen.

Will man also die durch eine hohe Winkelauflösung sich bietende Chance zum Studium
der ortsabhängigen SNR-Dynamik nutzen, so empfiehlt sich, um wieder auf den ursprüng-
lichen Punkt zurückzukommen, eine spektrale Auflösung E

∆E
∼ 104.

7.4 Röntgendoppelsterne, AGN und γ-Blitze

Kaum eine andere Objektklasse übt – im doppelten Sinn – eine ähnliche Anziehungskraft
aus wie die der Schwarzen Löcher. So widmet ihnen die NASA in Gestalt der

”
MAXIM“-

Mission ein eigenes Projekt, das vermöge einer Abbildung des Schwarzschild-Radius RS den
direkten Nachweis ihrer Existenz erbringen soll. Wir beschränken uns auf die Analyse der
bis heute weitgehend unverstandenen Prozesse der Energieumwandlung in ihrer näheren
Umgebung. Für die intuitive Vermutung, die in Röntgendoppelsternen wirksamen Mecha-
nismen der Akkretion und des kollimierten Materieausstoßes stellten in vielerlei Hinsicht
nur eine miniaturisierte Version der Aktiven Galaxienkerne dar, existieren mittlerweile ge-
sicherte Belege [85]. Wir behandeln daher die beiden Phänomene weitgehend simultan.
Gammablitze, soweit sie auf Hypernova-Ereignissen beruhen, sollen vorläufig außen vor
bleiben, da sie sich trotz ähnlicher Funktionsweise in ihren zeitlichen und räumlichen Ska-
len wesentlich von den beiden erst genannten unterscheiden. Sie werden an geeigneter Stelle
in einem anderen Kontext Erwähnung finden.

Abb. 7.13 illustriert also nun die relevanten Abmessungen der
”
kosmischen Staubsau-

ger“, wie sie von den Autoren von [85] tituliert wurden. Entsprechend den Erwartungen aus
der Skaleninvarianz-Hypothese folgen tatsächlich alle wesentlichen Dimensionen zumindest
näherungsweise einfachen Funktionen von RS. Angesichts dieser Universalität mag man da-
her darauf spekulieren, durch kombinierte Beobachtungen der wegen dieser Analogie auch
als Mikro-Quasare bezeichneten Röntgendoppelsterne und aktiver Galaxienkerne (AGN)
die Funktionsweise der

”
Quasar-Maschine“ zu entschlüsseln. Generell gilt die Faustregel,

wonach Mikro-Quasare zum Studium zeitabhängiger Phänomene wie der Kopplung zwi-
schen Akkretion und Materieausstrom in Form von Jets oder deren dynamischer Entwick-
lung prädestiniert sind; Quasare gewähren dagegen besseren Zugang zur Umgebung der
Akkretionsscheiben und den Regionen, in denen sich die Jets formieren [78, 79]. Die Ursa-
chen für diese unterschiedliche Prioritätensetzung liegen zum einen in der charakteristischen
Variabilitäts-Zeitskala τ ∝ RS

c
und zum anderen im ebenfalls zu RS proportionalen Radius
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Abbildung 7.13: Vereinheitlichtes Modell aktiver Schwarzer Löcher, bestehend aus Akkre-
tionsscheibe und – senkrecht dazu – kollimierten relativistischen Materie- und Strahlungs-
ausflüssen. Abgesehen von peripheren, vom Begleitstern bei Röntgendoppelsternen bzw. der
Muttergalaxie im Fall aktiver Galaxienkerne abhängigen Eigenschaften unterliegen die phy-
sikalischen Abläufe einer Skaleninvarianz bzgl. des Schwarzschildradius RS.

der Akkretionsscheibe, der gemeinhin zu ∼ 102 bis maximal 103RS angenommen wird. Nun
unterscheiden sich die Massen der jeweiligen Schwarzen Löcher um einen typischen Faktor
105−107. In stellaren Systemen laufen daher Prozesse innerhalb von Sekunden bis Stunden
ab, die sich in galaktischen über Jahre erstrecken können [79]. Vergegenwärtigt man sich
hingegen die für die scheinbaren Abmessungen wesentliche Größe RS

d
mit der Entfernung

d, so liegen nach Abb. 7.2 die Winkeldurchmesser der Akkretionsscheiben von AGN unter
Annahme eines hundertfachen Schwarzschildradius bei (0.1±0.25)×10−3 arcsec und damit
immerhin um 4 Größenordnungen über den entsprechenden Dimensionen stellarer Systeme
in der Galaxis. An dieser Stelle lohnt ein Blick auf die (Mikro-)Quasaren eigene Variabi-
lität. Über die Bedingung der kausalen Verknüpfung emittierender Gebiete außerhalb des
Ereignishorizonts findet man

τ & 2π
RS

c
(7.15)
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als untere Grenze für die möglichen Zeitskalen. Ein supermassives Schwarzes Loch von
107M¯ lässt demzufolge Schwankungen der Leuchtkraft seiner Akkretionsscheibe bis zu Fre-
quenzen von 2×10−3 s−1 erwarten. Nun wurden mitunter (z.B. in den Galaxien MCG-30-15
und NGC 4051) verschiedene Variabilitäts-Zeitskalen im weichen und harten Röntgenband
gemessen, ein Umstand, der mit der mutmaßlich radienabhängigen Temperaturverteilung
in der Akkretionsscheibe zusammenhängt und die höchsten Frequenzen nahe RS vermuten
lässt [80].

Hinterlassen diese Fluktuationen Spuren in den Jets, und wenn ja, in welcher Weise?
Messungen am Röntgendoppelstern GRS 1915+105 und dem Quasar 3C 120 [79] legen
den Schluss nahe, dass Materiezustrom und -abfluss nicht etwa kontinuierlich, sondern in
periodischen Schüben von ∼ 20 min bzw. Jahren erfolgen. Eine gleichzeitige Analyse der
Jets tut also Not, die umso aufschlussreicher sein sollte, je näher diese am Ursprung der
Ausflüsse stattfindet. Bezüglich dessen herrscht noch weitgehende Unklarheit, in [79] wer-
den (30 − 100)RS angegeben. Fest steht jedenfalls, dass die Kollimation wesentlich auf
magnetischem Weg erfolgt und das Strahlungsspektrum – neben möglichen baryonischen,
thermischen Beiträgen – einem Synchrotron-Kontinuum der Form Fν ∝ ν−α folgt. Die hohe
Beschleunigung bedingt enge Öffnungswinkel θjet ∼ Γ−1 [81]. In den stationären Ausflüssen
der (Mikro-)Quasare treten Lorentzfaktoren Γ . 10 auf, während die ultrarelativistischen
Jets der γ-Bursts bis zu Γ ∼ 100 erreichen können. Aus Abb. 7.13 sind die typischen Längen
solcher Jets zu entnehmen. Wiederum eine Winkelschärfe von 10−3 arcsec angenommen,
ergibt eine kurze Überschlagsrechnung für die Auflösungsgrenze in Einheiten der jeweiligen

Schwarzschildradien log
(

r
RS

)

∼ 8± 1 im Fall stellarer und log
(

r
RS

)

∼ 5± 2.5 bei galak-

tischen Schwarzen Löchern. Die Längenskalen, auf denen die Jets auch in ihrer lateralen
Ausdehnung, also ihre Durchmesser aufgelöst werden können, liegen dem entsprechend bis
zu einer Größenordnung darüber. Es sei noch angemerkt, dass wegen der Synchrotron-
Charakteristik eine Kombination mit VLBI-Beobachtungen lohnend erscheint. Tab. 7.1
gibt einen Überblick zu einigen besonders interessanten Objekten.

Name Typ d (kpc) m (M¯) logLx
(

erg
s

)

P (d) / i Bemerkungen

Cyg X-1 XRBBH 2.5 ≥ 10 37.3 5.6 ms-Variab.

SS 433 XRBBH 5 16± 4 35.5 14 präzed. Jets

Cir X-1 XRBNS 6.1 ' 1.4 37 17 period. Akkret.

Cen A AGNE0 3.4 · 103 2 · 108 39.3 70◦ nächster AGN

M 87 AGNE1 18 · 103 3 · 109 43.5 35◦ bestes Rs/d

NGC 4261 AGNE2 31 · 103 1 · 109 41 64◦ großer Torus

Tabelle 7.1: Bekannte Röntgendoppelsterne und AGN mit Materieausstrom, die besonders
für räumlich hochauflösende Beobachtungen geeignet sind. Die Entfernungsangaben d beru-
hen auf H0 = 71 km s−1Mpc−1, m beschreibt die Masse des kompakten Objektes, während
P die Orbitalperiode in Tagen und i die Inklination angibt.
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Die angegebenen Leuchtkräfte liegen übrigens mit Ausnahme von Cen A innerhalb
der für die beiden Klassen typischen Grenzen von 1033 erg s−1 ≤ Lx, bin ≤ 1038 erg s−1

bzw. Lx, gal ≥ 1041 erg s−1 [82]. Seit rund 15 Jahren sind auch Objekte mit Röntgenleucht-
kräften zwischen 1039 und 1041 erg s−1 bekannt, die gemeinhin engl. als

”
ultralumious X-ray

sources“ (ULX) bezeichnet werden. Seitdem wird über die Natur, d.h. Masse des diese Lu-
minosität erzeugenden Schwarzen Lochs gerätselt. Zur Diskussion stehen evtl. annähernd
isotrop emittierende Schwarze Löcher von (102 − 103)M¯ und kollimierte (Blazar-ähnliche)
Emission gewöhnlicher Röntgen-Doppelsterne. Chandras Leistungsvermögen reicht ledig-
lich aus, in einer 10 Mpc entfernten Galaxie eine physikalische Länge von 20 pc aufzulösen
und damit in den meisten Fällen die ULX vom zentralen Schwarzen Loch zu unterscheiden.
Eventuelle Jets, geschweige denn ihre Struktur lassen sich hingegen nicht mehr erkennen.
Von einer Verbesserung um 3 Größenordnungen sind diesbezüglich neue Erkenntnisse zu
erwarten, die dem oben Gesagten zufolge Aufschluss über die Natur ihres Erzeugers geben
können. Ferner dürften die Massen der ULX mit der Art ihrer Umgebung korreliert sein.
So treten die in ihrer Entstehung ohnehin schwer zu erklärenden mittelschweren Schwarzen
Löcher häufig in jungen wie alten (Kugel-)Sternhaufen auf [83]. Hier könnten sich interes-
sante statistische Fragestellungen ergeben, finden sich in den alten Kugelsternhaufen doch
auch zahlreiche Röntgendoppelsterne niedriger Masse (low mass X-ray binaries, LMXB).
ULX werden aber auch in Sternentstehungsregionen gefunden, die wiederum bevorzugte
Geburtsstätten von Doppelsternen relativ hoher Masse (high mass X-ray binaries, HMXB)
mit MBH ≥ 10M¯ sind.

Im Rahmen der höchstauflösenden Röntgenastronomie sollte es somit möglich werden,
die einzelnen Röntgenquellen auch in fernen Galaxien nachzuweisen und voneinander zu
trennen. Schließlich sind die Leuchtkräfte wenigstens der helleren Röntgendoppelsterne und
der ULX denen der oben besprochenen jungen SNR vergleichbar und auf einer Längenskala
von wegen ihres relativ zur normalen Sternpopulation seltenen Auftretens meist vielen pc
voneinander separiert.

Eine Korrelation in der Wahrscheinlichkeit ihres Auftretens mit der stellaren Umgebung
wird inzwischen auch im Fall der γ-Bursts vermutet, zumindest solange diese einer Hyper-
nova entstammen. An dieser Stelle erinnere man sich an die relativistische Winkeldistanz
(Abb. 7.1), die – ausreichenden Fluss vorausgesetzt – eine Mindestauflösung von < 10 pc
gewährleistet. Es liegt daher im Bereich des Möglichen, γ-Bursts in ihr Umfeld einzuord-
nen, das nach dem Kollapsar-Modell massereicher Sterne wiederum mit Sternentstehungs-
Regionen assoziiert sein dürfte. Betreffend den Röntgen-Lichtkurven der Afterglows ist zu
sagen, dass diese gemäß einem Potenzgesetz fx(t) ∝ t−α abfallen [84]. Von BeppoSAX regi-
strierte Afterglows variierten in ihrer Helligkeit zwischen 5× 104 erg cm−2 s−1 unmittelbar
nach dem γ-Blitz und 5 × 10−2 erg cm−2 s−1 nach rund 5 × 105 s [84]. Die Daten lassen
im Mittel auf α ≈ 1.3 schließen. Leider geben die physikalischen Größen der Afterglows
keinen Anlass zur Hoffnung, diese aufzulösen. Indirekte Messungen mit Hilfe der Radio-
Szintillation weisen auf Durchmesser von ca. 1016 cm oder 3 × 10−3 pc nach einem Tag
hin. Gleichwohl erscheint es reizvoll, die enorme Leuchtkraft im Maximum auszunutzen,
evtl. hoch rotverschobene γ-Bursts mit z > 10 dann statt im Gamma- im Röntgenband zu
detektieren und ihre Muttergalaxien mit unerreichter Präzision zu identifizieren.
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Zum Abschluss soll aus aktuellem Anlass auf das Problem der verschmelzenden super-
massiven Schwarzen Löcher eingegangen werden. Im Jahr 2002 wurden erstmals zwei dieser
Objekte im Abstand von nur 103 pc im Zentralbereich der Galaxie NGC 6240 nachgewiesen
[86]. Nach etlichen 108 Jahren wird es zur Verschmelzung (engl. merging) kommen, unter
Aussendung von Gravitationswellen. Nach eben diesen wird aber in naher Zukunft durch
Instrumente wie LISA intensiv gefahndet werden.

Nun ist es keineswegs sicher, wie viele dieser Ereignisse innerhalb einer Betriebsdau-
er von vielleicht 10 − 20 Jahren überhaupt zu detektieren sind. Vage Schätzungen gehen
von ein paar Ereignissen pro Jahr aus. Überraschenderweise wurden bereits vor 25 Jahren
quantitative Überlegungen aufgestellt [87], deren Resultate in Abb. 7.14 grafisch aufberei-
tet sind. Eingeläutet wird der Prozess demnach von einem durch Reibung im

”
stellaren

Abbildung 7.14: Dynamik verschmelzender (super-)massiver schwarzer Löcher am Beispiel
einer typischen elliptischen Galaxie mit Massen von 108 und 3× 107M¯. Als Funktion des
auf der unteren Abszisse aufgetragenen Kernabstandes r sind charakteristische Zeitska-
len τi für die verschiedenen Phasen der Verschmelzung dargestellt (linke Ordinate). Auf-
grund des Verlaufs von τ(r) ist eine Häufung von Doppelkernen etwa im Intervall ∆acc

mit Relativabständen zwischen 1016 und 1019 cm zu erwarten. Je nach Entfernung können
solche Binärsysteme bei einer Auflösung von 10−3 arcsec identifiziert werden (obere Abszis-
se). Zusätzlich enthält die Grafik zwei indirekt mittels kollimierter Materieausflüsse (Jets)
messbare Perioden Pprec und Porbit (rechte Ordinate). Weitere Erläuterungen siehe Text.
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Gas“ dominierten Relaxationsvorgang (
”
dynamical friction“) auf einer Zeitskala τdf, der

die beiden zunächst ungebundenen Schwarzen Löcher einander bis auf wenige pc
”
näher

bringt“, bis sie sich gravitativ umkreisen und durch weitere, in ihren Details und den ent-
sprechenden Zeitskalen sehr spekulative Wechselwirkung mit den umgebenden Sternen in
immer engeren Kontakt gelangen. Zusätzlich zu diesen stellaren Einflüssen kann es zum
Ausstoß oder wie im Fall von NGC 6240 zur Akkretion von Gas kommen, einhergehend
mit Massenverlust oder -zunahme. Die zugehörige Zeitskala τgas liegt bei ca. 108 Jahren.
Erst bei Abständen r . 10−1 pc beginnt das binäre Schwarze Loch Gravitationswellen ab-
zustrahlen, unter relativ rascher Annäherung auf Skalen τgrav. Es sei noch einmal betont,
dass die hier grob skizzierten Modellvorstellungen nur einige der möglichen Szenarien be-
schreiben und letztlich durch Beobachtungen zu verifizieren oder falsifizieren sein werden.

Offensichtlich stellen diese Zeitskalen τ(r) ein Maß für die Wahrscheinlichkeit dar,
binäre schwarze Löcher in einem gegebenen Zustand r anzutreffen. Um definitive Aussa-
gen über den tatsächlichen Ablauf des merging-Vorgangs treffen zu können, bedarf es also
einer statistisch signifikanten Zahl vermessener Doppelkerne. Im Rahmen unserer Standard-
Auflösung von 10−3 arcsec führt dies zu noch trennbaren Abständen der Punktquellen von
r ∼ 10−1 pc in Entfernungen von 10 Mpc. Näher gelegene Galaxien lassen theoretisch
gar Messungen bis in den Wirkungsbereich der Gravitationswellen-Dynamik zu. Freilich
werden solche engen Systeme angesichts der aus Abb. 7.14 hervorgehenden geringen Wahr-
scheinlichkeit und der relativen Seltenheit naher Galaxien nicht häufig anzutreffen sein.
Fest steht jedoch allemal, dass anders als mit Chandra erstmals Galaxien im großen Um-
fang auf künftige Verschmelzungsprozesse hin durchmustert werden können, und dies für
Distanzen r, auf denen wie gesagt die Natur der Wechselwirkung und Kontraktion noch
nicht bekannt ist.

Doch damit nicht genug: Die Eigenart vieler supermassiver Schwarzer Löcher, längs
ihrer Spin-Achse relativistische Jets auszusenden, eröffnet eine weitere Möglichkeit, sich
umkreisende Massezentren zu analysieren. Geschieht dies nämlich mit einer Periode

Porb ∝ r3/2M−1/2, (7.16)

so wird der Jet (i.d.R. derjenige des massiveren schwarzen Lochs) nahe seines Ursprungs
ebenfalls Verkrümmungen aufweisen. Im Idealfall lassen sich zusammen mit der gemesse-
nen Expansionsgeschwindigkeit des Jets und dem Abstand r Rückschlüsse auf die Um-
laufperiode und die beteiligten Massen ziehen. Einen besseren Zugang zu diesen wichtigen
Kenngrößen wird jedoch die häufig anzutreffende Präzession der Jets bieten. Nach

Pprec ∝ r5/2
M

m
M−3/2 (7.17)

hängt die diesbezügliche Periode des massereicheren Partners vom Verhältnis der Kompo-
nenten ab. Andererseits lässt sie sich aus den geometrischen Kenngrößen der deformierten
Jets mit typischen Winkelskalen im Sub-Bogensekunden-Bereich ermitteln. Entsprechende
Graphen sind ebenfalls in Abb. 7.14 eingetragen.

Untersuchungen dieser Art können somit die Vorhersage von Gravitationswellen-Ereig-
nissen nicht nur in ihrer statistischen Häufigkeit, sondern über die Untersuchung der dy-
namischen Entwicklung künftiger

”
mergers“ auch in ihrer Struktur unterstützen.



Kapitel 8

Erste experimentelle Schritte

Ersten praktischen Tests der im Verlauf dieser Arbeit entwickelten Konfigurationen stehen
a priori die großen Abmessungen, insbesondere der Brennweite, entgegen. Zudem bedarf es
aufgrund der Absorption durch Luft einer hoch evakuierten Versuchsumgebung. Mit der

”
PANTER“-Anlage verfügt die Max-Planck-Gesellschaft jedoch über eine vergleichsweise
große Röntgen-Testeinrichtung, die bislang vorwiegend zur Kalibration diverser Spiegelte-
leskope und Detektoreinheiten verwandt wird. Es liegt daher nahe, teleskopische Modelle
auf Skalen zu transformieren, die der Nutzlänge der Testanlage entsprechen. Abb. 8.1 skiz-
ziert ihre wesentlichen Dimensionen. Im konventionellen Betrieb dient das 125 m lange

Abbildung 8.1: Abmessungen der PANTER-Testanlage. Zur experimentellen Erprobung
langbrennweitiger Röntgenoptik gestattet die Einrichtung unter Verwendung des Strahlroh-
res eine Nutzlänge von maximal ≈ 130 m.

Strahlrohr dazu, die künstliche Röntgenquelle aus Sicht des zu testenden, kurzbrennweiti-
gen Spiegelteleskops in der Instrumentenkammer näherungsweise punktförmig erscheinen
zu lassen und so beispielsweise einen fernen Stern zu simulieren. Um die Gesamtlänge
von bis zu 130 m zur Erprobung transmissiver Röntgenoptik nutzen zu können, muß die
relativ kleine Quellenkammer evtl. derart modifiziert werden, dass sie zusätzlich das zu un-
tersuchende Teleskopmodell aufnehmen kann. Die Instrumentenkammer übernimmt dann
lediglich die die fokale Intensitätsverteilung analysierende Messeinrichtung.

Als Röntgenquellen stehen diverse Anoden zur Verfügung, die nach gegenwärtiger Be-
stückung im Energiebereich 0.3 keV ≤ E ≤ 8.1 keV zahlreiche Fluoreszenzlinien erzeugen
[90]. Ihre äußerst geringe, natürliche Linienbreite lässt sie vor allem in Verbindung mit
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diffraktiver Optik als geeignete Teststrahlung erscheinen – unter der Voraussetzung ausrei-
chender Unterdrückung des benachbarten Brems-Kontinuums. Letzteres dürfte indes den
Abbildungseigenschaften dispersionskorrigierter Versionen entgegen kommen.

8.1 Diffraktive und refraktive Miniaturlinsen

Ausgehend von den Abmessungen der PANTER-Anlage orientiert sich das Design eines
Versuchsaufbaus notwendigerweise an der beschränkten Fokaldistanz, die im folgenden zu

F = 120 m (8.1)

angenommen wird. Die konstruktiven Eckdaten eines ausschließlich diffraktiven Objektivs
ergeben sich im wesentlichen aus der Basisgleichung 2.25. Bzgl. der Wahl des Radius R
und der Zonenzahl N besteht im Rahmen des fertigungstechnisch Machbaren weitgehende
Freiheit, da der kollimierte Kathodenstrahl der Röntgenquelle im Regelfall nur einen Teil
der Apertur ausleuchten dürfte. Als Beispiel seien angegeben:

Ec = 6 keV sowie N = 5× 102 → R ≈ 3.5 mm. (8.2)

Ausgelegt als maximal reduzierte Fresnel-Linse, misst der äußere Ring noch ≈ 7 µm, ent-
sprechend einer lateralen Auflösung von rund 4 µm. Konform mit den die praktische Reali-
sierung eines großflächigen Fresnel-Teleskops beschränkenden technologischen Möglichkei-
ten erscheint es naheliegend, das kinoforme Profil durch 4 oder mehr Stufen zu approximie-
ren. Die Strukturen bis herab zu Skalen von ∼ 1 µm sind modernen Herstellungsmethoden
wie der Elektronenstrahllithographie oder dem Ätzverfahren zugänglich, wobei deren Wahl
sich nach dem verwendeten Material richtet. Speziell bietet Polycarbonat (C16H14O3) die
Möglichkeit, Fresnel-Profil und Substrat homogen zu fertigen. Mit der 2π−Dicke

t2π =
λc

δ (λc)
= 28.2 µm (8.3)

errechnen sich bei Ec = 6 keV je nach Substratdicke Transmissionswerte nach Tab. 8.1.
Offenbar gestatten selbst Foliendicken von ∼ 102 µm noch eine Effizienz von einigen 10%.

tsub / t2π 1 2 3 4 5 6 7 8 9 10

T (%) 93.5 89.3 85.4 81.6 78.0 74.6 71.3 68.1 65.1 62.2

Tabelle 8.1: Transmission von Fresnel-Linsen aus Polycarbonat bei 6 keV. Die Dicke tsub
der Stützschicht ist in Einheiten der 2π−Dicke angegeben, die Transmission T in %.

Während also diffraktive Linsen den experimentellen Bedürfnissen entsprechend relativ
frei zu gestalten sind, erlegen Absorption und Krümmungsradius den Parametern eines Hy-
bridsystems enge Grenzen auf. Bezeichnet nämlich zunächstA ≡ tmax

2R
das Aspektverhältnis

aus maximaler refraktiver Linsendicke und dem Durchmesser 2R, so ergibt sich

R = 4δ (Ec)FA. (8.4)
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Aufgrund der geringen Brechkräfte δ(E) im Röntgenspektrum gestattet Gl. 8.4 somit nur
Durchmesser von allenfalls wenigen mm, zumal unter Verzicht auf serielle Linsensysteme
(
”
compound refractive lenses“, CRL) ein Aspektquotient A ∼ 1 bereits als grenzwertig zu

betrachten ist. Das Beispiel einer bikonvexen und damit aberrationsfreien Li-Linse soll den
Sachverhalt verdeutlichen,

Ec = 5 keV sowie R ≈ 1.8 mm → N = 228. (8.5)

Im Übergang zu niedrigeren Werten von Ec ergeben sich größere Radien R ∝ E−2 und
Zonenzahlen N , um den Preis verminderter Transmission, die bei Ec = 5 keV mindestens
77% beträgt. In Anbetracht der zusätzlichen Absorption durch die diffraktive Komponente
– deren Konstruktionsparameter nun den refraktiven Vorgaben anzupassen sind – wurde
jedoch Ec = 5 keV zugrunde gelegt.

Alternativ bietet sich eine aus Beryllium (Be) gefertigte Korrekturlinse an. Die physi-
kalisch sinnvollen und möglichen Parametersätze unterscheiden sich aufgrund der relativ
schlechten Werte für N0 quantitativ von jenen der Li-Version. Ein Sprung ins harte Rönt-
genband erweist sich als sinnvoll, um Bildqualität und Transmission zu erhalten. Mit

Ec = 12 keV sowie R ≈ 1.1 mm → N = 208 (8.6)

sind exemplarische Werte einer mit T (Ec) = 85% hochtransmissiven Linse angegeben, die
sich mit einer aufgeprägten, ebenfalls aus Be bestehenden diffraktiven Komplementärkom-
ponente als Achromat einsetzen lässt. Separat gefertigte Komponenten erlauben hingegen
den Test einer durchstimmbaren, dialytischen Optik. Zumindest die refraktive Korrektur-
linse des eben genannten Beispiels weist in dritter Ordnung bzgl. E, also bei 4

9
Ec noch

immer eine Mindesttransmission von 23% auf, so dass diese spezielle Eigenschaft der sepa-
rierten Konfiguration ebenfalls experimentell zugänglich sein sollte.

Ungeachtet der prinzipiellen Möglichkeit, derlei optische Modelle zu realisieren, werfen
die geringen Linsendurchmesser doch Fragen hinsichtlich der praktischen Handhabbarkeit
im Laborbetrieb auf. Sorgfältiger Fassung in justierbaren Rahmen bedarf es daher nicht
nur bzgl. der korrekten axialen Ausrichtung der Komponenten, sondern auch in Anbetracht
ihrer mechanischen Fragilität.

8.2 Segmentierung im visuellen Spektralbereich

Um das Problem der Subminiatur-Optik beim Test einiger der in dieser Arbeit entwickelten
Konzepte zu umgehen, erscheint eine Skalentransformation ins visuelle Frequenzspektrum
naheliegend. Ausgehend von der Basisgleichung diffraktiver Linsen ergibt nämlich eine
Abschätzung unmittelbar

R =
√
NλF → F (λvis) ∼ 10−3F (λx) , (8.7)

wenn F (λvis) die typische Brennweite im Visuellen und F (λx) das Analogon im Röntgen-
band weniger keV unter sonst gleichen Bedingungen wie Aperturradius R und Zonenzahl N
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misst. In anderer Weise transformiert sich das refraktive Verhalten im Material. So erweist
sich die 2π−Phasendicke

t2π =

∣

∣

∣

∣

λ

n− 1

∣

∣

∣

∣

→ t2π (λvis) ∼ t2π (λx) (8.8)

in grober Näherung als invariant, wenn dem Brechungsindex im Visuellen ein Wert von
nvis ≈ 1.5 zugestanden und im Röntgenband exemplarisch δ ∼ 10−4 zugrunde gelegt wird.
Als Profil- und Substratmaterial der im folgenden zu entwickelnden Fresnel-Linse soll daher
und wegen seiner vorteilhaften optischen und mechanischen Eigenschaften erneut Polycar-
bonat Anwendung finden. Im Visuellen weist der Kunststoff einen mittleren, nur schwach
dispersiven Brechungsindex von 1.586 bei vernachlässigbarer Absorption auf, so dass die
sich typischerweise in µm messenden Profilstrukturen auf einer ausreichend stabilen, frei-
tragenden Trägerschicht aufgebracht werden können.

Anhand eines einfachen Modells soll das Prinzip des Multiband-Objektivs, wie es in
Kap. 5 entwickelt wurde, demonstriert und getestet werden. Angesichts des spektral ver-
gleichsweise schmalen visuellen Fensters mit Wellenlängen zwischen 400 und 750 nm blei-
ben auch die simultan zu fokussierenden Energiewerte auf das Intervall E0 . E . 1.9 E0
beschränkt. Mit abnehmendem (relativem) Abstand der beiden Frequenzbänder bedarf es
nach Kap. 5 jedoch i.a. einer entsprechend erweiterten Zentralobstruktion, um die Streu-
strahlung in der Fokalebene abzuschirmen. Als Kompromiss werden im hier beschriebenen
Beispiel die beiden Werte E0 und 3

2
E0 gewählt, die sich mittels eines durchstimmbaren

Farbstoff-Lasers o.ä. einstellen lassen. Den beiden Frequenzen entsprechen

rmin (E0) = 6 rFOV und rmin

(

3

2
E0

)

= 4 rFOV (8.9)

als untere Schranken an die jeweiligen, in Einheiten des Detektor-Radius rFOV gemessenen
Obstruktionsradien. In möglichst

”
vorbildähnlicher“ Ausführung wird das Objektiv in Seg-

mente unterteilt, die, in TN Ringen hinreichend zufällig angeordnet, eine inkohärente PSF
in der Fokalebene gewährleisten. Es bietet sich an, die gesamte Apertur demselben Schema
zu unterwerfen und konstante Zonenzahl N? innerhalb eines spektralen Bandes zu fordern.
Ferner stimmt dann die Sammelfläche der beiden ringförmigen Aperturkomponenten für
E0 und

3
2
E0 im Fall identischer Ringzahlen überein. Mit

krmin( 32E0)
= 4 und krmin(E0) = 9 sowie TN = kR = 14 (8.10)

ergeben sich die geforderten ganzzahligen Werte für die Ringnummern 1 ≤ k ≤ TN . Dem
Radius der 3 zentralen Segmente ist demnach das Doppelte des als Bezugsgröße fungieren-
den Detektor-Radius zuzuschreiben,

r0 =

√

N?

(

3

2
E0

)

· λ
(

3

2
E0

)

· F = 2 rFOV . (8.11)

Schließlich errechnet sich der Radius R der gesamten Apertur unter vorstehenden Annah-
men zu R = 2

√
14 rFOV . Abb. 8.2 illustriert die diversen Radien und ihre Bedeutung.
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Abbildung 8.2: Konstruktion eines einfachen Multiband-Objektivs. Basierend auf den Er-
gebnissen aus Kap. 5, fokussiert dieses Modell simultan die Energiewerte E0 und

3
2
E0. Die

in Einheiten des Detektorradius rFOV gemessenen Mindestradien sind schwarz punktiert,
ihre Basis r0 wurde dagegen rot strichliert. Die Zentralobstruktion ist hellgrau unterlegt.

Um die Zonenzahlen N? für die beiden spektralen Bänder zu bestimmen, sind die Ob-
struktionsverhältnisse a

(

3
2
E0
)

und a (E0) zu ermitteln. Man findet nach kurzer Rechnung

a (E0) =
3√
14

und a

(

3

2
E0

)

=
2

3
. (8.12)

Die gesuchten Zonenzahlen ergeben sich nun unter der Annahme von jeweils nFOV = 5×102
Auflösungselementen in der Fokalebene zu

N? (E0) ≈ 2224 und N?

(

3

2
E0

)

≈ 2990, (8.13)

gerundet auf gerade Werte ε N. Da N? ∝ nFOV , lassen sich die entsprechenden Zonenzahlen
leicht an das gewünschte Gesichtsfeld anpassen. Zu guter Letzt seien zugunsten der An-
schaulichkeit numerische Daten des optischen Systems angegeben. Wählt man willkürlich

λ (E0) = 600 nm und λ

(

3

2
E0

)

= 400 nm, (8.14)

so ergeben sich mit einer labortauglichen Brennweite F = 5 m für Apertur-Radius R,
Detektorfläche AFOV = πr2FOV und laterales Auflösungselement ∅PSF zu

R = 0.25 m und AFOV = 34.9 cm2 sowie ∅PSF = 1.33× 10−4 m. (8.15)

Derlei Abmessungen sollten den Möglichkeiten des gängigen Labor-Instrumentariums nicht
zuwider laufen; allenfalls sind fertigungstechnische Komplikationen bei der Anfertigung der
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Fresnel-Linsen (für E0 und
3
2
E0) und ihrer Stückelung in Segmente zu erwarten. Da eine ex-

akte Formgebung zum Erhalt der theoretisch möglichen Orts- und Winkelauflösung jedoch
erforderlich ist, lässt sich anhand dieses Modells zugleich der Einfluss von Fertigungstole-
ranzen auf die Bildqualität diffraktiver Linsen untersuchen.

8.3 Aspekte der numerischen Simulation

Den Abschätzungen zu den Aberrationen 3. Ordnung der diversen diffraktiven und refrak-
tiven optischen Komponenten lagen die Näherungen der geometrischen Optik zugrunde,
angewandt auf homogene, axialsymmetrische Linsen. Die wesentliche analytische Erkennt-
nis nach der Notwendigkeit aplanatischer, technisch anspruchsvoller bikonvexer Profilfunk-
tionen refraktiver Korrekturlinsen lässt sich indes nicht ohne weiteres auf segmentierte und
/ oder reduzierte Hybridkonfigurationen übertragen. Dies deshalb, weil im einen Fall die
inkohärente Superposition der von fragmentarischen Parzellen der ursprünglich homoge-
nen Apertur ausgehenden Amplitudenverteilungen ebenso eine generell erweiterte optische
Fehlertoleranz erwarten lässt wie im anderen Fall das reduzierte Hybridprofil je nach Grad
seiner Ausprägung den schrittweisen Übergang zur generell unkritischen diffraktiven Optik
beschreibt.

Mithilfe geeigneter mathematisch-numerischer Methoden sollte daher die praktisch re-
levante Frage geklärt werden, welche Bedeutung der expliziten Profilfunktion solcher Lin-
sen im Hinblick auf die Abbildungsqualität zukommt. Nachdem übliches

”
ray-tracing“ der

Kopplung diffraktiver und refraktiver Beugungsstrukturen vermutlich kaum Rechnung tra-
gen und damit allenfalls die Simulation der segmentierten Apertur gestatten dürfte, bedarf
es zur Berechnung der Bildfehler semi-refraktiver, reduzierter, aber dennoch kohärenter
Optik ggf. beugungstheoretischer Betrachtungen. Deren Grundidee, das Aberrationsfunk-
tional Ψ nach Anh. A via eines Faktors e−ikΨ in das Beugungsintegral Gl. 2.22 einzufügen,
ist mitsamt seiner analytisch-numerischen Umsetzung z.B. in [13] beschrieben. Explizite
Definition des Funktionals Ψ und mathematische Auswertung der Winkelfehler gestalten
sich vergleichsweise anspruchsvoll, zumal aufgrund der mehr oder weniger komplizierten
Profilfunktionen reduzierter Hybridlinsen.

8.4 Permeation bei tiefen Temperaturen

Neben der selbst oder gerade unter Weltraumbedingungen schwierigen Kühlung des Was-
serstoffs unter den – druckabhängigen – Siedepunkt von rund 20 K erweitert vor allem die
Flüchtigkeit des leichtesten Elements den Satz der

”
unbekannten“ Variablen. Doch nicht

nur im Kontext H2-basierter Linsen ist der Permeation, wie die Diffusion von Partikeln
durch Membranen hindurch genannt wird, besondere Aufmerksamkeit zu widmen; auch
He-Atome unterliegen ihr – wenngleich in geringerem Maße. Im Fall hoher Temperaturen
von mehreren 102 K empirisch vielfach untersucht, stehen für das Permeationsproblem im
Bereich von wenigen 10 K nach Kenntnis des Verfassers keinerlei Daten zur Verfügung.
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Theoretische Arbeiten [91, 92] decken zwar naturgemäß ein breites Temperaturspektrum
ab, lassen jedoch ebenfalls keine verbindlichen Aussagen zum Durchtritt von H2-Molekülen
oder He-Atomen durch dünne Li-, Be- oder andere Fenster im Tieftemperatursektor zu.
Grundsätzlich entspricht der Teilchenstrom durch die Membran der Konzentrationsände-
rung auf Seiten des

”
Reservoirs“, ein Umstand, dem im stationären Fall mit

~j = −D~∇%N bzw.
∂

∂t
(%N) +∇~j = 0 (8.16)

das Fick’sche Gesetz (linke Gleichung) bzw. die Kontinuitätsgleichung (rechts) Rechnung
tragen. Dabei steht ~j für den Teilchenstrom, %N für die Teilchendichte auf Seiten des Re-
servoirs und D für die Diffusionskonstante. Im allgemeinen hängt D sowohl von thermody-
namischen Parametern wie Temperatur und Druck als auch von der Teilchenkonzentration
und natürlich den spezifischen Materialeigenschaften der Membran und deren Wechselwir-
kung mit dem diffundierenden Stoff ab. In der Bestimmung dieser komplexen funktionalen
Abhängigkeit liegt die eigentliche experimentelle Aufgabe. Insbesondere dürfte die Frage
von Interesse sein, inwieweit sich das Permeationsverhalten speziell des Wasserstoffs beim
Übergang von der gasförmigen zur flüssigen Phase ändert.

Gewöhnlich geht die Permeation der Moleküle speziell durch metallische Fenster wie Li
oder Be nämlich mit einer chemischen Reaktion zwischen H2 und der Membran einher. So
reagiert H2 mit Li gemäß

Li + H2 ­ LiH + H, (8.17)

wobei die Vorwärtsrichtung (→) einen Energieaufwand von ≈ 2 eV erfordert, während der
Zerfall des LiH-Salzes exotherm erfolgt [93]. Da bei 20 K die mittlere kinetische Energie
der H2-Moleküle nur 5

2
kBT ≈ 4 meV beträgt [93], sollte dieser naiven Betrachtung zufolge

Reaktion 8.17 nicht auftreten. Andere Autoren [92] beschäftigen sich mit dem H2-Transport
in Be-Membranen, allerdings im Bereich von mehreren 102 K – dies auch und besonders
vor dem Hintergrund der Bindungsenergie des H2-Moleküls von 4.75 eV. Während ihr
zufolge heiße Gase statistisch bereits zu einem beträchtlichen Teil atomar dissoziiert und
evtl. auch ionisiert sind, sollte der Wasserstoff im Bereich weniger 10 K fast ausschließlich
molekular auftreten. Legt man den Boltzmann-Faktor als Maß für den Anteil ndis der bei
der Temperatur T dissoziierten Moleküle mit der Bindungsenergie EB > 0 zugrunde, gilt

ndis ∼ e
− EB
kBT → 0 für H2 bei T ∼ 20 K. (8.18)

Die Permeation des einatomigen Edelgases He vollzieht sich hingegen unter gänzlich an-
deren Voraussetzungen. Da es keine Bindungen untereinander und mit dem Material der
Membran eingeht, sollten Druck- und Temperaturabhängigkeit vergleichsweise einfachen
Gesetzen folgen. Ferner wird die Permeationsrate durch atomare Radien und die Kristall-
struktur des Metalls beeinflusst werden.

Angesichts des äußerst vagen Kenntnisstandes erscheint also eine empirische Analyse
unumgänglich. Abb. 8.3 zeigt einen möglichen Versuchsaufbau. Als wesentliche Parame-
ter gehen Gas- bzw. Flüssigkeitsvolumen V , dessen Temperatur T , Druck p und – sich
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daraus ableitend – die Teilchenkonzentration %N ein. Die Fenster sind selbstverständlich
hermetisch abzudichten, ihre Dicke ∆x misst sich zwangsläufig in Einheiten weniger Ab-
sorptionslängen des jeweiligen Materials. Die Tab. 8.2 listet einige Werte auf. Man liest ab,

Abbildung 8.3: Testaufbau zur Optik und Permeation kühler Gase. Die Fenster der Dicke
∆x dichten die gas- bzw. flüssigkeitsgefüllte Kammer (Druck p und Temperatur T ) ab.
Zusätzlich zu den Permeationstests kann die Röntgen-Absorption gemessen werden.

dass insbesondere die Dicke von aus Li gefertigten Fenstern ohne weiteres ∼ 1 mm betra-
gen darf. Doch auch die zumindest bei Raumtemperatur mechanisch wesentlich stabileren

E (keV) 1 2 3 4 5 6 7 8 9 10

µLi (10
−1mm) 0.84 7.44 27.6 70.9 143 244 368 500 631 746

µBe (10
−1mm) 0.09 0.73 2.55 6.29 12.7 22.4 35.7 52.8 73.1 95.9

Tabelle 8.2: Absorptionslängen von Li und Be zwischen 1 keV ≤ E ≤ 10 keV. Die Daten

sind in Einheiten vom 10−1mm angegeben und beschreiben die Absorption via I = I0 e
−∆x

µ .

Be-Fenster gestatten bei wenigen keV Schichtdicken von ∼ 100 µm. Inwieweit sich letztere
gegenüber H2-Penetration resistent erweisen, sollte ebenfalls anhand von Messungen ermit-
telt werden; die Reaktion zu BeH2 gelingt zumindest in der experimentellen anorganischen
Chemie bislang nur auf Umwegen [25].

Parallel zu chemisch-thermischen Experimenten mag die empirische Überprüfung des
Brechungsindex n = 1 − δ − iβ der H2- oder He-Phase nach [17] über Absorption und
nachfolgende Berechnung von Re(n) mittels Kramers-Kronig sinnvoll erscheinen.



Anhang A

Geometrische Aberrationstheorie

Die folgenden Ausführungen zur Herleitung des Aberrationsfunktionals stellen eine adap-
tierte Zusammenfassung der in [13] allgemein diskutierten Theorie dar.

In vollem Umfang erstmals von L. Seidel im 19. Jhd. publiziert [95], stellt die nach ihm
benannte Theorie heute den kanonischen Formalismus zur Berechnung der Bildfehler in
dritter Ordnung und geometrischer Näherung bereit. Ihr Grundgedanke besteht darin, die
Änderung der optischen Weglängendifferenz ∆sopt zwischen realer und idealer Wellenfront
mit den Aperturkoordinaten in der Austrittspupille – die bei einer blendenfreien dünnen
Linse mit selbiger zusammenfällt – als Winkelfehler zwischen gestörtem und aberrations-
freiem Bildpunkt zu interpretieren.

Diversen Symmetrieüberlegungen folgend, hängt ∆sopt nur von den Winkelkoordinaten
~φ des punktförmigen Objekts bzgl. der optischen Achse sowie den lateralen Aperturkoor-
dinaten ~σ ab1. Sie gehen lediglich in quadratischer Form, nämlich als

φ2 = φ2x + φ2y, σ2 = σ2x + σ2y , κ2 = φxσx + φyσy (A.1)

in das nun zu definierende Aberrationsfunktional Ψ ein. Abb. A.1 illustriert die Bedeutung
der Variablen. Offenbar bringt eine Reihenentwicklung bzgl. dieser Koordinaten nur Terme
gerader Ordnung hervor, d.h.

Ψ = Ψ(0) +Ψ(2) +Ψ(4) +O
(

Ψ(6)
)

. (A.2)

Zunächst verschwindet der Beitrag nullter Ordnung, der schlicht die fehlerfreie Abbildung
auf der optischen Achse repräsentiert. Ferner würden die Bildfehler linear mit den Koor-
dinaten skalieren, bestünde Ψ auch aus Termen zweiter Ordnung. Damit bleibt schließlich
Ψ(4) als niedrigste nicht-triviale Störungsordnung bestehen, deren Struktur demnach

Ψ(4) = c1σ
4 + c2κ

4 + c3φ
2σ2 + c4φ

2κ2 + c5σ
2κ2 (A.3)

lauten muß. Die Koeffizienten cn ε R nehmen auf das spezifische optische System Bezug.
Auf den Summanden ∝ φ4 ist ohne Einschränkung zu verzichten, da die Aberrationen

1Im Interesse einer möglichst suggestiven und konsistenten Notation weichen die in der vorliegenden
Arbeit gewählten Bezeichnungen von den in [13] benutzten ab.
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Abbildung A.1: Notation zur Berechnung der geometrischen Bildfehler, wie sie in dieser
Arbeit verwendet wird. Aus Gründen der Übersichtlichkeit und Konsistenz weichen die
Bezeichnungen von den in [13] benutzten ab.

nicht ausschließlich von der Winkelposition des Objektes abhängen können. Weiterhin
kann wegen der zugrunde gelegten Rotationssymmetrie o.B.d.A. φy = 0 gesetzt werden,
das punktförmige Objekt sei damit horizontal angesiedelt. Schließlich erweist es sich als
zweckmäßig, der axialsymmetrischen Form der betrachteten Linsen durch die Einführung
von Polarkoordinaten

σx = σ cos θ und σy = σ sin θ (A.4)

Rechnung zu tragen, so dass die Wellenfrontaberration Ψ(4) letztendlich als

Ψ(4) = −1

4
Bσ4 − Cφ2σ2 cos2 θ − 1

2
Dφ2σ2 + Eφ3σ cos θ + Fφσ3 cos θ (A.5)

geschrieben werden kann. Die Proportionalitätskonstanten wurden dabei den üblichen Kon-
ventionen gemäß gewählt und gewährleisten in Verbindung mit den reellen Koeffizienten
B bis F konsistente Resultate. Dem eingangs erwähnten Grundgedanken folgend, ergeben
sich die Winkelfehler nun zu

∆εx = −
∂Ψ

∂σx
und ∆εy = −

∂Ψ

∂σy
. (A.6)

Die Seidel-Theorie wird reale Punktbilder i.a. befriedigend approximieren, solange Ψ(6) ¿
Ψ(6) gilt, die Winkelfehler ∆εx und ∆εy also klein gegen 1 bleiben. Die im Rahmen der
vorliegenden Arbeit präsentierten Beispiele erfüllen diese Forderung offenbar mit sehr guter
Genauigkeit – nicht zuletzt deshalb, weil die in [13] berechneten Aberrationskoeffizienten
refraktiver Linsen wegen ihrer Linearität in δ bzw. δ2 ohnehin nur geringe Beiträge liefern
und diejenigen diffraktiver wegen f & 103 praktisch nicht ins Gewicht fallen.
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Abbildung A.2: Auf zu neuen Ufern in der Hochenergie-Astrophysik... Auch auf diesem
Wege sei nochmals allen gedankt, die ihre Spuren in dieser Arbeit hinterlassen haben und
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